Xerox Extended Data Maha‘g"ement System (EDMS)

Sigma 6/7/9 Computers

Reference Manual

FROXEROXEROXEROXEROXEROXEROX
UXEROXEROXEROXEROXEROXEROXERC
ROXEROXEROXEROXEROXEROXEROXER(
FROXEROXEROXEROXEROXEROXEROXE
FROXEROXEROXEROXEROXEROXEROXE
IXEROXEROXEROXEROXEROXEROXERO
OXEROXEROXEROXEROXEROXEROXERC
ROXEROXEROXEROXEROXEROXEROXER
ROXEROXEROXEROXEROXEROXEROXE
KEROXEROXEROXEROXEROXEROXEROX
IXEROXEROXEROXEROXEROXEROXERO
OXEROXEROXEROXEROXEROXEROXER(
ROXEROXEROXEROXEROXEROXEROXET:
EROXEROXEROXEROXEROXEROXEROXE
XEROXEROXEROXEROXEROXEROXEROX
OXEROXEROXEROXEROXEROXEROXERC
ROXEROXEROXEROXEROXEROXEROXER
ROXEROXEROXEROXEFROXEROXEROXE
EROXEROXEROXEROXEROXEROXEROXE

XEROX

Xerox Extended Data Management System (EDMS)

Xerox 560 and Sigina6/7/9 Computers

Reference Manual

90 30 12C
90 30 12C-1

“June 1975

File No.: 1X33
XP82, Rev. 0
® Xerox Corporation, 1973, 1974, 1975 Printed in U.S.A.

NOTICE

This publication is a revision of the Xerox Extended Data Management System (EDMS) Reference Manual 90 30 12C.
This revision incorporates the Revision Package dated June 1975. A change in the text from that of the previous
manual is indicated by a vertical line at the margin of the page. EDMS provides all of the features of Basic DMS

plus additional features.

RELATED PUBLICATIONS

Title

Xerox Sigma 6 Computer/Reference Manual

Xerox Sigma 7 Computer/Reference Manual

Xerox Sigma 9 Computer/Reference Manual

Xerox Sigma Glossary of Computer Terminology

Xerox Control Program=Five CP-V/TS Reference Manual
Xerox Control Program-Five CP-V/OPS Reference Manual
Xerox Control Program=Five CP~V/TS User's Guide
Xerox ANS COBOL/LN Reference Manual

Xerox ANS COBOL (BPM)/OPS Reference Manual
Xerox Extended FORTRAN IV/LN Reference Manual
Xerox Extended FORTRAN IV/OPS Reference Manual
Xerox Meta=-Symbol /LN, OPS Reference Manual

Xerox Data Management System (DMS)/Reference Manual

Xerox Extended Data Management System (EDMS)/User's Guide
Xerox Interactive Database Processor (IDP)/LN, OPS Reference Manual

Xerox APL/LN, OPS Reference Manual

Publication No.

90 17 13
90 09 50
90 17 33
90 09 57
90 09 07
901675
90 16 92
90 15 00
90 15 01
90 09 56
90 11 43
90 09 52

90 17 38

90 30 37
90 30 &6
90 19 31

Manual Content Codes: BP - batch processing, LN =language, OPS = operations, RP - remote processing, RT ~real~time,

SM = system management, TS = time=sharing, UT = utilities

The specifications of the software system described in this publication are subject to change without notice. The availability or performance of some features

may depend on a specific configuration of equipment such as additional tape units or larger memory.

90 30 12C-1(6/75)

INTRODUCTION

EXTENDED DMS OVERVIEW

Data Relationships

System Functions

Database File Structure

Data Pages
Index Pages

Inventory Pages

Database Restructuring Subsystem _.

Subsystem Functions

Information Required from the User

FILE DEFINITION PROCESSOR

Data Definition Language Syntax _

Schema Generation

Schema Entry

Area Entries

Group Entries
Set Entries

END Entry

Subschema Generation

Subschema Entry
Set Entry

Area Entries

Group Entries
END Entry

DMSFDP Operational Interface
DCB Assignments

Terminal Usage

DATABASE MANAGER

DBM Routine Call Format

Meta-Symbol Call Format

FORTRAN Call Format

COBOL Call Format

DBM Routine Usage

Beginning of Processing

Adding Occurrences
Deleting Occurrences

Modifying Data Values

Modifying Linkages

Retrieving
Moving to Working Storage

Run-Time Statistics

Run=Time Tracing

Error Control

Preparing for Deadlock

Checkpointing

Terminating Processing

N

CoOoOvVvovvoVvVoeoo N

——

11

1
14
14
15
16

.23

27
27
28
29
29
30
32
32

33

CONTENTS

60

Error Processing

Journaling

Database Lockout

Summary Statistics Collection

DBM Operational Interface

Total Nonshared Library :
Combination Public and Shared Library
DBM DCB Requirements

DCB Assignments

EDMS UTILITY PROCESSORS

Database Initialization (DMSINIT)
AREA Statements

Dump Processor (DMSDUMP)

Dump Directives

Load Processor (DMSLOAD).

DMSLOAD Directives

Summary Statistics Processor (DMSSUMS)
Statistics Selection

Utilities Operational Interface

DMSINIT

DMSDUMP

DMSLOAD

DMSSUMS

DATABASE ANALYSIS PROCESSOR

RPCL Syntax
Words

Literals

File Identifiers

File Identifier Format

RPCL Entry Formats

Schema Entries

Area Entries

Load Entry

End Entry

Component Association and Attribute Change

Analysis
Data Loading Sequence

Default Data Loading Sequence

User Influenced Data Loading Sequence

Conveyance Process Generation
Internal File Handling

Unloading the Source Database
Selecting Set Occurrences

Loading the Target Database
Relinking Set Occurrences

Error Reporting

DMSANLZ Reports

Data Load Sequence Listing
Scheduled Process Sequence Listing
Scheduled File Listing

I|DMSANLZ Control Command

52
53
53
53
54
54
54
54
55

56

56
56
56
59
59
60
61
62
62
62
63
64
65

66

68
68
68
69
69
70
70
70
72
73

74
74
74
77
83
83
84
85
86
86
86
86

87

87
87

7. DATABASE RESTRUCTURING PROCESSOR 90
DMSREST Operational Interface 90
IDMSREST Control Command 90
Breakpoint/Restart 93
Backup/Recovery 93
Operator Communication 94
DCB Assignments 96
8. APL/EDMS Interface 98-1
INDEX 169
APPENDIXES
A. SCHEMA FILE 99
B. SUBSCHEMA FILE 114
C. SAMPLE DATABASE DEFINITION 125
D. DATABASE PAGE FORMATS 130
E. SEQUENTIAL FILE FORMATS 133
F. ERROR MESSAGES 137
G. DATA VALIDATION 155
H. ENQUEUE/DEQUEUE 156
I. DMSREST PROCESS FLOW 157
J. SAMPLE DATABASE RESTRUCTURING 161
K. DMSREST SEQUENTIAL FILE FORMATS 168
FIGURES
1. Shorthand Notation for Data Relationships 3
2. NEXT Pointers in an QOccurrence of
SET~A 4
3. NEXT and OWNER Pointers in an Occurrence
of SET-B 5
4, NEXT and PRIOR Pointers in an Occurrence
of SET=-C 5
5. System Overview 7
6. Restructing Subsystem 8
7. DMSFDP OQutputs 12
8. Run-Time Statistics Sample 49
9. Run-Time Trace Sample 49
10. DMSDUMP Qutput Sample (Batch Job) 57
1. Sample DMSDUMP Terminal Job 58
12, DMSSUMS Sample Qutput 61

A-1.

A=-2.

B-2.

B-3.

B-11.
B-12,

B-13.

B~14.

c-1.

c-2.

D-3.

Schema Database Diagram

Schema DDL for Schema

Subschema Definition Structure

Area Definition

Group Definition

Owner Definition

Member Definition

Item Definition

Control Definition

Subschema Definition

Password Definition

Indexed=Sequential (ISEQ) Definition

Check Definition

Alia.s Definition

Name Table Entry Format

Subschema File Directory Block Format
(Blockzero)

Schema DDL Listing for Sample Database

Schema Generation Summary Qutput for
Sample Database

Subschema=1 DDL and Summary Qutput for

Sample Database

COPY Listing Corresponding to
Subschema=1 for Sample Database

Subschema=2 DDL and Summary Qutput
for Sample Database

SYSTEM Corresponding to Subschema=2

for Sample Database

Data Page Format

Data Group Occurrence with Three=Byte
Set Pointers

Data Group Occurrence with Four-Byte
Set Pointers

Index Page Format

Inventory Page Format

Journal/Dump Begin Record

100

105

114

115

115

nz

117

19

120
120
121
121
122
123

123

124

125

126

127

127

128

129

130

130

131
131
132

133

90 30 12C-1(6/75)

J=6.

K-1.

Journal/Dump End Record
Journal/Dump Page-Image Record
Journal/Dump File Format Summary

Statistics Job Id Record

Area Statistics Record

Group Statistics Record

Set Statistics Records

DMSREST Flow Diagram

Schema DDL Listing for Sample Target
Database

DMSANLZ Control Command QOption
Listing for Sample Schema Analysis

DMSANLZ RPCL Listing for Sample

Schema Analysis

DMSANLZ Source and Target Schema
Component Analysis Listing for

Sample Schema Analysis

DMSANLZ Target Database Load Sequence

Listing for Sample Schema Analysis

DMSANLZ Scheduled Process Sequence
Listing for Sample Schema Analysis

DMSANLZ Scheduled File Usage Listing
for Sample Schema Analysis

DMSREST Control Command Option
Listing for Sample Restructuring

DMSREST Executed Scheduled Process
Sequence Listing for Sample
Restructuring

DMSREST RPCC Cataloged Files Listing
for Sample Restructuring (Listing
Produced as the Result of CATALOG
Keyin)

DMSREST Error Summary Listing for
Sample Restructuring

DMSREST Operator Console Listing
for Sample Restructuring

Conveyed Group's Reference Code

(CGRC) Record Format

90 30 12C-1(6/75)

134
134
135
135

136

136

136

157

161

162

162

163

163

163

164

165

165

166

166

167

168

TABLES

1. PICTURE-TYPE Corr--pondences 21
2, Contents of the Communications

Control Block 35
3. Mefo;-Symbol Addresses 36
4, FORTRAN Addresses 37
5. COBOL Arguments 37
6. Trace Codes for DBM Calls 50
7. Legal Daicbase Afrributé Changes_ 66
8. Restructuring Processes 84
9. Internal File Descriptors (IFIDs) 85
10, Control Command Options 87
11, Diagnostic !iessages for Option Errors 89
12, DMSREST Options 91
13. DMSREST Keyins and Responses 95
14, DMSREST DCBs and File Contents 97
15, Examples of lllegal Left Arguments 98-10
16, FROMDMS Result: Item Type 98-10
17. FROMDMS Result: Item Rank 98-10
18. FRC_)MDMS Result: Item Dimensions .. 98-11
19. FROMDMS Sample Results 98-11
A-1. Schema Items 101
F-1. DMSFDP Error Messages 137
F-2. DBM Data=Dependent Errors 143
F-3. DBM Non=Data=Dependent Errors 144
F-4, DMSINIT Error Messages 147
F=-5. DMSDUMP Error Messages 148
F-6. DMSLOAD Error Messages 149
F-7. DMSSUMS Error Messages 150
F-8. RPCL Error Messages 151
F-9. DMSREST Error Messages 153
F-10. APL/EDMS Errors 154-1

1. INTRODUCTION

The Xerox Extended Data Management System (EDMS) operates on Sigma 6/7/9 and Xerox 560 computers under the
control of the Xerox Control Program-Five (CP-V), and in conjunction with COBOL, Meta-Symbol, FORTRAN
applications programs or the APL processor. It is designed specifically for use by organizations that require the
same data to be used for many purposes and by many different applications programs.

Extended DMS provides a capability for accumulating large volumes of data into a single database, which may be
structured to reflect any desired data relationships, The structuring and related concepts are explained in Chap=
- ter 2, "Extended DMS Overview",

A special Extended DMS processor, the File Definition Processor (DMSFDP), creates a database description in two
phases. The first phase generates a schema file that describes the complete database, its file size requirements, stor-
age and retrieval techniques, privacy controls, etc. In the second phase, the DMSFDP creates the subschema file
by extracting information from the schema file, The subschema may describe the complete database or only those
portions that are required by a specific application. The DMSFDP, its Data Definition Language (DDL) input, and
its operational interface with CP=V are explained in Chapter 3,

The Database Manager (DBM) consists of a number of library routines, which are explained in Chapter 4, Included
in the explanation are the routine call formats for COBOL, Meta-Symbol, and FORTRAN, and descriptions of error
processing, journaling, tracing, and statistics collection. Also included are instructions for loading applications
programs with the library routines under CP=V. The APL/EDMS interface is described in Chapter 8.

The Extended DMS Utility processors (DMSi}:IT, DMSDUMP, DMSLOAD, and DMSSUMS)are described in Chapter 5.
The use of these processors for initializing files, saving and restoring the database, and printing summary statistics is
explained. Also explained are the operational interfaces of these processors with CP-V,

The Extended DMS Restructuring processors (DMSANLZ and DMSREST) are described in Chapters é and 7, respectively.
The requirements analysis function performed by DMSANLZ and the restructuring function performed by DMSREST
for the purpose of altering an existing database, are explained.

90 30 12C-1(6/75) Introduction

1

2. EXTENDED DMS OVERVIEW

The Extended Data Management System (EDMS) serves an an interface between a user and hisdata. The user defines
his database and generates applications programs that communicate with EDMS in terms of the defined data charac-
teristics and relationships. EDMS, in turn, communicates with the host operating system in terms of files, granules,
etc., fo transfer the specified data values to and from the database in response to user program requests.

The concept of a database is central to the design of EDMS. An EDMS database is an organized, interrelated col-
lection of information required for various types of activities (e.g., a company's accounting, inventory, and personnel
records). Its purpose is to make the same information available for many different uses without incurring the over-
head of redundant storage. The value of an EDMS database is realized when there is a need to access the same data
values in several different ways, for several different purposes. For example, purchase order data may be used by
both accounts payable and inventory control. Accounts payable may need all data for all purchase orders to each
vendor. Inventory control may need the total number of parts ordered from all vendors foreach type of part ordered.
To reduce the number of times the counts of parts ordered must be stored or to reduce the number of times afile must
be sorted to produce the information in the desired order, purchase-order data may be stored in an EDMS database
and simply linked in the desired ways. Similarly, information on, for example, students assigned to a particular
class may be linked in several different ways for use in generating class rosters and in generating student grade
reports.

The EDMS capability for accommodating multiple relationships among data values in a database is the most important
aspect of the system, Data relationships are described in the following paragraphs along with the system features
provided for managing the database, the physical structure of the database files, and the facilities available for
database restructuring.

Data Relationships

The term "network=structured" refers to the relationships that can exist in an EDMS database. It implies that a unit

of data may be associated with more than one other dafa unit. For example, information specifying parts on order
can be associated with information describing the vendors from whom the parts were ordered, and with stock infor-
mation on the parts. Relationships in an EDMS database are described in terms of items, groups, and sefts.

An item is a logical construct that defines the characteristics of a number of similar data values. The concept of
an item is analogous to that of a field. An item occurrence is a single data value with the specified characteristics.
For example, Smith might be an occurrence of an item called LASTNAME.

A group is a logical construct that defines a number of similar collections of item occurrences. A group occurrence
includes a fixed number of item occurrences, each in a fixed position relative to the others. For example, an
occurrence of a group called EMPLOYEE might include an occurrence of the item LASTNAME, an occurrence
of the item FIRSTNAME, and an occurrence of the item EMPLOYEENUMBER. Two group occurrences could be
depicted as

SMITH JOHN STOUT REX
1001 etc. 1002 etc.

A group occurrence can be considered as analogous to a record and the group itself to a record description or
definition,

A set is a logical construet that defines and controls the links existing between occurrences of specified groups. A
set occurrence consists of one occurrence of the group defined as owner, plus zero, one or more occurrences of the
group (or groups) defined as members. For example, a DEPARTMENT group, with an item DEPT-NAME could be

Extended DMS Overview

defined as the owner of DEPT-PERSONNEL set. If John Smith and Rex Stout were the only two employees in
the research department and EMPLOYEE the only group defined as a member of DEPT-PERSONNEL set, an oc-
currence of the set could be depicted as follows:

- - 0 7 7

Set Occurrence

|
' RESEARCH I
| |
I { |
| |
| |

SMITH JOHN STOUT REX
1001 1002

- -

A set occurrence is also somewhat similar to a record, in the sense that it contains all of a certain type of informa-
tion about an entity (the names of all employees in a department, in the example above).

The links defining a set occurrence are established between the one owner occurrence and the member occurrences,
if any. A notation such as shown in Figure 1 can be used to depict the relationships that exist between the one
owner group occurrence and the member group occurrences in each occurrence of the set, It should be noted that
Figure 1 shows a shorthand notation in which each box may represent many data values, and each connecting line
may represent many different set occurrences, each .onsisting of one owner group occurrence and zero, one, or many
member group occurrences.

Given these cautions, we can then describe groups as bei.xg owners or members of sets, and a set as consisting of one
owner group and one or more member groups. A group can participate in one or more sets as owner and one or more

" sefs as a member. For example, the group named GROUP=2 in Figure 1 is a member of the set named SET-A and the
owner of the sets named SET-B and SET-C. '

GROUP=-1
Cwner SET-A

SET-A

4
GROUP-2

Member SET-A
Owner SET-B
Owner SET-C

SET-B

A
GROUP-3

Member SET-B
Owner SET-D

SET-C

GROUP-4

SET-D

————-———1 Member SET-C
Member SET-D

Figure 1. Shorthand Notation for Data Relationships

Data Relationships

4

Though not shown in Figure 1, sets with two or more member groups are legal configurations. For example, a
group named GROUP-5 could also be defined as a member of SET-D. Or referring to the previous example,
the DEPT-PERSONNEL set could have a CONSULTANT group as well as the EMPLOYEE group as a member, This
configuration would be depicted os follows:

DEPARTMENT

DEPT-PERSONNEL

A
CONSULTANT EMPLOYEE

The data relationships are incorporated in the database by means of set pointers. Every group occurrence has a
NEXT pointer for each set in which the group participates (see Figure 2). In addition to the NEXT pointers, occur-
rences of member groups may have OWNER pointers as illustrated in Figure 3, and both member and owner group oc-
currences may have PRIOR pointers, as illustrated in Figure 4. Only the NEXT pointers are always inserted in the
database, OWNER and PRIOR pointers are user options, Appendix C describes the database that is illustrated in
Figures 1 through 4.

GROUP=1 Occurrence, Lt
SET-A NEXT pointer.!

J §

GROUP-2 (first occurrence)'.
SET-A NEXT pointer.

Other set pointers.' ——» Occurrences of GROUP=3 and GROUP-4

GROUP-2 (2nd occurrence)ft. e
SET=-A NEXT pointer. I

Other set pointers.' — Occurrences of GROUP-3 and GROUP-4

GROUP-2 (nth occurrence)'f, |«
SET-A NEXT pointer.

Other set pointers.t —» Occurrences of GROUP-3 and GROUP-4

t . _ .
Does not represent actual size or position of pointers.

HIn the occurrence of SET-A,

Figure 2. NEXT Pointers in an Occurrence of SET-A

Data Relationships

> GROUP=2 (an occurrence), [*
Other set pointers, ! —» Occurrences of GROUP-2 or GROUP-1
SET-B NEXT pointer,
Other set pointers. - —» Occurrences of GROUP-4 or GROUP-2

GROUP-3 (1st occurrence).t -
SET=-B NEXT pointer,

SET-B OWNER pointer.
Other set pointer. —® Cccurrence of GROUP-4

GROUP-3 (2nd occurrence).tt |a
SET-8 NEXT pointer.

SET-B OWNER pointer.
Other set pointer. —— Occurrence of GROUP-4

A

GROUP-3 (nth occurrence).”’ lat
SET-B NEXT pointer.

SET-8 OWNER pointer.
Other set pointer, ——» Occurrence of GROUP~4

t . ps .
Does not represent actual size or position of pointers.

H.ln the occurrence of SET-B,

Figure 3. NEXT and OWNER P~inters in an Occurrence of SET-B

GROUP=2 Occurrence. <

Other set pointers. {—— Occurrences of GROUP-2, GROUP-3, GROUP-1
SET-C PRIOR pointer,
SET-C NEXT pointer.

GROUP-4 (1st occurrence).tt
SET--C PRIOR pointer.

SET-C NEXT pointer.
> Other set pointers, ——» Occurrences of GROUP-3 and GROUP-4

A

GROUP-4 (2nd occurrence).!t |a
SET-C PRIOR pointer.
SET-C NEXT pointer. ‘ l

> Other set pointers. " — Occurrences of GROUP-3 and GROUP-4.

: GROUP~-4 (nth occurrence)." - y

’ SET-C PRIOR pointer.

SET=C NEXT pointer.
Other set pointers. —® Occurrences of GROUP-3 and GROUP-4

t . s .
|Poes not represent actual size or position of pointers,
In the occurrence of SET-C.

Figure 4. NEXT and PRIOR Pointers in an Occurrence of SET-C

Data Relationships

6

System Functions

The combination of free=standing processors and library routines that comprise EDMS perform five basic categories
of system functions:

e Database Definition.
e Database Initialization (null values),
e Data Manipulation (storing, updating, retrieving, etc.),

e Auxiliary Support (maintaining security and integrity, collecting and printing statistics, supplying de=
bugging support to user's programs, etc.),

e Database Restructuring (altering an existing database),

See Figure 5 for a graphic representation of EDMS and Figure 6 for a graphic representation of the restructuring
subsystem,

The definition function, centralized in the File Definition Processor (DMSFDP), provides for user specification of
database file size, item, group, and set characteristics, and security and integrity requirements. Definition is the
required first step in any database activity, and affects the performance of all subsequent functions,

Database initialization prepares the database files for receiving group occurrences. This step is necessary before
any actual data values can be added to the database. It creates the complete, maximum-size files, with pages left
blank except for control information. This step is performed by a free-standing utility processor, DMSINIT,

Data manipulation is the actual storing, retrieving, and changing of data values, It is performed, in response to
user program requests, by the set of library routines referred to collectively as the Data Base Manager (DBM). A
working storage area in the user's program, in a format determined by the database definition, is used for communi-
cation with the DBM, which performs any necessary file manipulation.

Auxiliary support functions include ensuring database integrity by saving copies of the files, journaling changes,
tracing program action, keeping and printing statistics, and other techniques. These features are provided partly
by the DBM, and partly by three utility processors, DMSDUMP, DMSLOAD, and DMSSUMS.

Database restructuring provides facilities for altering database size and format, These facilities are provided by
two free=standing processors, DMSANLZ and DMSREST.

Database File Structure

The EDMS database exists in random access storage (RAD or disk) as one or more areas, each of which is a file rec-
ognizable by the host operating system. EDMS subdivides each area into 512-word page segments. There are three
types of pages: data, inventory, and index pages. The number of data pages in each area is specified when the
database is defined. If the EDMS inventory facility is selected, one inventory page is added for each 2032 data pages
in the area. Pages for the primary index are added if the area is designated for storage of group occurrences in in-
dex sequential order. Each area maycontain from 1 to 220-1(1,048,575) pages. Pages are numbered consecutively
within each area, from 1 to the number defined for the area, plus the number added for inventory and index.

Data Pages

Data pages are used for storing the group occurrences in the area. A data page has a two-word page header and may
contain as many as 256 group occurrences and an optional checksum. (See Appendix D, Figure D=1, for an illustra-
tion of the data page format.)

The maximum number of group occurrences that can be stored on a data page depends on the size of the occurrences
and the number of available Iine numbers. The size of a group occurrence, which is a collection of item occur=-
rences, control data, and set pointers, is determined by the number and characteristics of the items defined for the

System Functions/Database File Structure

l
|
|
|
|
|
I
|
L

Data
Definition
Language

Initialization

Utility (DMSINTT)

File Definition
Processor (DMSFDP)

l
I
|
|
|
|
|
l

Note: Printed output from several

I

User's Raw
Data Input

Database . I
Description in \l\“ User's Applications Programs
Two Forms i Combined with Database Manager

| (DBM) Library Routines
|

Restore Utility (DMSLOAD)

Summary
Statistics

Summary Statistics
Utility (DMSSUMS) o

Database
m' —S—UPP_ORT—- e Trace and —|
| Dump Utility Run-Time ||
l (DMSDUMP) Statistics |
| |
| Backup Journal |
File File
| |
| ' |
| |
| |
| |

system features is not shown. - T _)

Figure 5. System Overview

Database File Structure

Source Datobase's
Data Definition

Languaqge

!

File Definition
Processor
{DMSFDP:

T

Restructuring
Process Control
Language

I

Source

Database
Description
(Schema)

Database
Analysis
Processor
(DMSANLZ)

.

Various Listing
Qutputs

A

Y

Restructuring
Process
Control
Context
(RPCC)

)
I

Existing -
Source
Database

Database:
Restructuring
Processor

(DMSREST)

larget Database's
Data Definition
Language

!

File Definition
Processor
(OMSFDP)

Target
Database
Description

(Schema)

\

Initialization
Utility
(DMSINIT)

Conveyance
Error
Messages

Restructured
Target
Database

Refcode
Correspon-
dence
File

Null Target
Database

Figure 6. Restructuring Subsystem

Database File Structure

group and the number of sets in which it participates. All occurrences of a given group are the same size,
but many groups, each with its own size, may be defined for a given database.

The maximum number of available line numbers is determined by the number of pages in the area. When a group oc-
currence is inserted in the database, it is assigned a line number that is appended to the page number and the area
number to form a reference code that uniquely identifies the occurrence. The reference code consists of eight bits
of area number and 24 bits shared between page number and line number. The default allocation 24 bits allows repre-
sentation of the page numbers of all pagesin the area, with the remaining bits of the 24 available for line number. For
example, if the area contains the maximum number of pages, 20 bits are reserved for page number and only four are
available for line number. Similarly, fewer pages allow more bits, up to a maximum of eight, for line number. Thus,
in a one=page area or in a 65, 535-page area, 16 bits are reserved for page number and eight bits for line number.
The user may override the default allocation of bits to allow fewer than the maximum available for line numbers. In
a one-area database, set pointers consist of only the 24-bit page-line~number portion of the reference codes. The
complete 32-bit codes, including area number, are used for set pointers in databases of two or more areas.

Index Pages

An index page is composed of a three-word page header, a variable number of index entries, and an optional check-
sum. See Appendix D, Figure D-4, for index page format. The number of pages necessary to contain the indexes is
added to the number of data pages specified for an area. Thus, after an area is initialized by the DMSINIT utility,
the index pages will follow the data pages of the area. The number of index pages is based on the number of data
pages defined to contain group occurrences in index sequential order, and the length of the items defined as the
index~key items for the group.

The contents of the index pages are automatically updated by the DBM. As a data page is filled, the highest key
value on the data page becomes the index entry in a level-0 index page. When a level-0 index page is filled,
the highest key value on that page becomes an index entry on a level-1 index page. The creation of higher level
indexes will continue to a maximum of eight levels. The relative position of an entry within an index level corres-
ponds to the relative page number of the page that the entry represents,

Once an index entry is created, it is not removed; i.e., deleting the highest key value on a data page will not
change the index for that page.

Inventory Pages

A database area has inventory pages if the user specifies an inventory percentage when he defines the area (see "Area
Entries" in the section titled "Schema Generation" in Chapter 3). Each inventory page accommodates space~-
available counts for 2032 data pages. Figure D=5 in Appendix D shows the inventory page format. The inventory
pages, initialized with zero space~available counts by DMSINIT, immediately follow the area's data pages or index
pages, if any exist.

The DBM automatically maintains the space-available count for a data page when group occurrences occupy more
than the specified percentage of the nonheader words on the page.

Database Restructuring Subsystem

The EDMS Restructuring Subsystem permits the user to change the size or logical structure of an existing database
when his requirements change. The Subsystem consists of two free-standing processors, the Database Analysis Pro-
cessor (DMSANLZ) and the Database Restructuring Processor (DMSREST), DMSANLZ performs an analysis of the
user's restructuring requirements and DMSREST uses the results of the analysis to restructure the existing database.

Prior to the availability of o generalized database restructuring facility, a user whose requirements necessitated a
change in the database had no recourse except to write special-purpose programs to transfer the data from his exist=
ing database into a new database, This process was sometimes prohibitively expensive, both in programming effort
and in execution time. Lacking an intimate knowledge of the physical attributes of his database, the user was

90 30 12C-2(4/76) , Database Restructuring Subsystem

10

required to traverse every set occurrence in his existing database in order to transfer the logical data relationship
into the new database, In so doing, he had to access the same dato page many times,

The EDMS Restructuring Subsystem minimizes this overhead by accessing the existing (source) database in physical
page sequence and outputting the data groups and set linkages to intermediate files. A base or "home" page in the
desired (target) daiakose is assigned to each of the data groups and they are then loaded, in one or more physically
sequential passes, into the target datakase. All dafa groups in the target database are then relinked, in physical
page sequence, with the adjusted set pointers,

Subsystem Functions

The requirements analysis function, performed by DMSANLZ, associates the various components (oreas, groups,
items, and sets) of the source and target databases, checks the legality of all changes, and determines the processes
that will be performed by DMSREST and the order in which they will be executed. DMSANLZ conveys this informa-
tion to DMSREST via the Restructuring Process Control Context (RPCC) file (an EDMS database whose subject is the
user's database tl at is to be restructured). The data in the RPCC file includes descriptions of the various components
in the user's database, descriptions (schemas) for the source and target database areas, and a variety of procedural
information.

The actual conveyance of the user's data is accomplished by DMSREST on the basis of the information in the RPCC
database. Data conveyance consists of a variable number of intermediate processes that may be executed in a single
job step or in several successive job steps, at the user's option,

Information Required from the User

All information relating to the structure of the user's database, the physical allocation of space within this data-
base, and any access monitoring and control attributes associated with the user's data ore obtained from the schema
files for the source and target databases. Thus the user must supply DMSANLZ with two schemas: one for the exist-
ing, or source, database, and one for the desired, or target, database, These schemas are referred to in this manual
as the source schema and the target schema, respectively.

Any information required to access schema files and database area files must be supplied to DMSANLZ by the user
via the Restructuring Process Control Language (RPCL). This information includes schema file names and extract
keys, area cipher keys, volume serial numbers for tape files and private disk packs, and account numbers and moni-
tor passwords associated with schemas and database areas. The RPCL may also specify the user's preference with
regard to the sequence in which his data groups are to be loaded into the target areas,

The user must provide DMSREST with an existing EDMS database, This may be either in database format (i.e., a
random file) or a database dump file created by the Dump Processor (DMSDUMP), The user must also supply DMSREST
with an initialized target database. DMSREST is so designed that the source and farget databases are not both ac-
cessed at the same fime.

Database Restructuring Subsystem

3. FILE DEFINITION PROCESSOR

The EDMS user defines his database to the File Definition Processor (DMSFDP) in terms of items, groups, sets, and
areas. DMSFDP processes the user's definition, stated in a Data Definition Language ©DL), and converts it to a
form that is usable by the Database Manager (DBM). The conversion is in two phases. The first phase results in a
schema and a listing of error messages, summary information and, optionally, the DDL input.

The schema is established as a file, resident on a random access device. This file contains the names and descrip-
tions of all the items, groups, sets, and areas of the database, and is available for use by the second-phase DMSFDP
and the EDMS utilities., Because of its size and complexity, the sctiema is an inefficient tool that cannotbe used by
the DBM in directly controlling application program interface with the database. Instead, a subschema, resulting
from the second phase of DMSFDP, is used by the DBM as a guide for processing the database.

The second phase of DMSFDP also develops the subschema-specific working storage format that is required for user=-

program communication with the DBM. Declarations to generate the required formats may be output in files suitable
for use in assembling/compiling the user's applications programs, as may listings of the declarations and of the sub-

schema DDL. Figure 7 illustrates DMSFDP outputs and their use in other processes.

Data Definition Language Syntax

The major element of the DDL is the entry. A DDL entry is either a simple entry consisting of one subentry, or a
compound entry consisting of two or more subentries. A subeniry is composed of one or more clauses and is termi-
nated by o period. The first clause in the first (or only) subentry of an entry identifies the entry, and the first clause
in the second, or a succeeding, subentry identifies the subentry. Every clause after the first in a subentry starts with
a word, optionally preceded by a semicolon, that identifies the clause. The second and subsequent clauses in a
subentry may appear in any order, but the syntactical units within a clause must appear in the specified order,

Clauses consist of words, which include system words and user-generated names, and literals, A word is a string of
not more than 30 characters selected from the letters A through Z, the digits 0 through 9, and the hyphen. A word
may not begin or end with a hyphen and must have af least one nonnumeric character. Although many system-words
having a special meaning in their DDL may also appear as user-generated names, some would result in ambiguity if
so used and are reserved for the system, These reserved words are listed below, along with some system-generated
names which must not be duplicated by user names,

ALIASES END PRIVACY
ALL FOR SCHEMA
ARE GROUP SET

AREA INVERT SET-TABLE
AREA-MASTERS -xx' IS STATISTICS
AREA-TABLE KEY STORAGE
CCB MEMBER SYSTEM
COMPONENTS NAME THRU
COPY NUMBER USING
DUPLICATES ON WITHIN

Literals canbe numeric or nonnumeric. A numeric literal is a string of characters selected from the digits Othrough 9,
the plus sign, the minus sign, the decimal point, and the letter E. Integers, the most commonly used numeric literals
in the DDL, are composed of digits only. The number of digits allowed in aninteger depends on its use in a clause.
Noninteger numeric literals appear only in CHECK clauses (see "Group Entry" in the section titled "Schema
Generation", below).

A nonnumeric literal is a string of characters enclosed in a pair of apostrophes. To include an apostrophe in
a literal, two apostrophes must be used. The second apostrophe does not become part of the literal. Nonnumeric

e represents any digit.

File Definition Processor n

12

Schema DDL.

DMSFDP
Phase I.

Subschema DDL.

Schema DDL
Listing.

/ y

/ DMS
: MSFDP -
y / PHASE 1. COPY
/
/
/| subschema DDL
/ Listing.
/
/

|

{ EDMS Utilities} COPY Listing.

SYSTEM Listing.

|

{campier

Symbol

Meta=-]
Assembler

User
Program

DBM cndl

Figure 7. DMSFDP Qutputs

Data Definition Language Syntax

literals are used for passwords and privacy locks (see Schema Entry and Subschema Entry, below) and in CHECK
clauses. The specific usage determines the allowable size.

The space, the comma, the period, und the semicolon are considered punctuation marks (except in comments and
nonnumeric literals) and are used as follows:

1. The space (blank) is a separator, required after words and literals in the absence of any other separator. A
space may precede or follow any other separator, and many spaces are the same as one {except in comments
and nonnumeric literals),

2. A comma is a separator that is legal only where it is specifically indicated in a language format. The comma,
where it is legal, can also serve as a terminator for words anc numeric literals. The comma is neverrequired.

3. A semicolon is an optional separator that may be used between clauses but is not needed to indicate the
end or beginning of a clause. The semicolon, where it is legal, can also serve as a terminator for words
and numeric literals.

4. The period (followed by a space) is required to terminate an entry or subentry,

A comment may be included at any point where a space is legal. Comments are delimited on the left by the con-
tiguous characters /* and on the right by */. A comment may not contain the */ character pair.

The DDL is essentially free-form in terms of length (up to 80 characters) of units of input. The input "unit" is
termed a line, though the original input source may be cards, keyboard terminal messages, or any other character-
string source. There is no provision in the language for designating a continuation to a new line (card, etc.). An
entry or subentry is considered continued until it is terminated by a period, regardless of the number of lines used.
However, the end of a line terminates a word or nimeric literal.

In this manual, the following notation is used to show the DDL entry/subentry format:

—

. An underlined word in upper case is required if the part of the format containing it is used.
2. Uppercase words not underlined are optional, but are legal only in the indicated positions.
3. Words in lower case represent names or values that are supplied by the user.

4. Brackets indicate that the enclosed part of the format is optional. If two or more language elements are
vertically stacked within brackets, none of the elements is required aznd no more than one maybe included.
For example, '

a
b a, orb, orc, or none.

c

5. Braces indicate a required choice. Of the two or more elements vertically stacked within braces, only one
may be used, and one is required. For example,

a
b a, orb, orc.

c

6. An ellipsis indicates that repetition is allowed. The portion of a format that may be repeated is the total
enclosed element whose outermost right bracket or brace immediately precedes the ellipsis. For example,

[[eb]e]. .. The whole sequence a b ¢ may be repeated.

[[ab][c]. ..] Only c may be repeated.

Data Definition Language Syntax

13

4

Schema Generation
The DMSFDP processes schema DDL and creates a schema file, an EDMS database whose subject is the user’s
database being defined. The data values in the schema database describe the areas, groups, items, and sets of the
user's database. The schema database is described in detail in Appendix A. The schema DDL provides the data
input for the schema database as wel! as information about the schema file itself.
The schema DDL consists of five types of entries.

1. Schema entry —one only.

2. Area entry —one for each area of the database.

3. Group entry —one for each group defined in the database.

4, Set eniry —one for each set in the database.

5. End entry —one only.
The schema entry is required and must be the first DDL entry. It is followed by the area entries (at least one),
which are followed by the group entries (at least one), which are followed by the set entries (none required)., The
end entry is the last schema entry. The schema, area, and end entries are simple entries, each consisting of a
single subentry. Group entries may be simple or compound. Set entries are always compound, with at least two
subentries.

Schema Entry

The schema entry supplies the file name for the schema file and specifies locks and passwords for {imiting access to
the schema itself and to the user's database.

Format

SCHEMA NAME IS schema-name
[; PRIVACY LOCK FOR EXTRACT IS privacy-lock-1]

[; PRIVACY LOCK FOR ALTER IS privacy-lock=2]

RETRIEVE) | KEYS ARE| , . ‘
[; PASSWORD IS password-1 [’[UPDTTE} [KEY IS] integer-1[, integer-2]. .] ..] e

Usage Rules

1. The SCHEMA clause, which must be the first clause in the entry, specifies the file name for the schema.
The specified schema-name must conform to the file naming conventions of the host operating system as
well as to the DDL rules for names.

2. The PRIVACY LOCK clauses specify the locks to be used to prevent unauthorized subschema generation
using the schema (EXTRACT) and unauthorized modifications (ALTER) of the schema file. (The ALTER
lock is not currently used and is provided for use by future enhancements.) The form for privacy-lock-1
and privacy~lock=2 is a nonnumeric literal of up to eight characters. If fewer than eight characters are
specified, blanks are added on the right to make an eight-character lock. A key that exactly matchesthe
EXTRACT lock must be supplied in the subschema entry (see "Subschema Generation", below) when a sub-
schema is to be generated.

3. The PASSWORD clause provides information for the DBM to use in controlling access to the user's data-

base. A user's program must supply the DBM with one of the specified passwords to gain access to any
database area. The passwords are specified as nonnumeric literals of up to eight characters. Blanks are

Schema Generation

added on the right to make eight characters if fewer are spacified. Any number of passwords can be specified,
within the limits of physical storage space available for the schema file. Access to individual groups and items
may be further controlled by the RETRIEVE/UPDATE keys, specified as integers from 1 throug., 255. A user program
is allowed to access the groups and items whose retrieve/update keys match those associated with the password it sup-
plied. (See description of DDL group and item entries, below.) From 0 to 255 retrieve keys and from 0 to 255 up-
date keys may be specified for each password.

Area Entries

Area entries supply (1) the file names by which the database areas are identified for the host operating system and in
the user's working storage declarations generated by the FDP; (2) information on the size of the area file; and (3) in-
formation on how the file space is to be managed by the DBM.

Format

AREA NAME IS area-name=-1 CONTAINS integer=1 PAGES
7 NUMBER IS integer=2
[; INVENTORY PERCENT I$ integer-3]
[; CHECKSUM 1S [NOT JREQUIRED]
[; JOURNAL IS [NOT]REQUIRED]
[; ENCIPHERING 1S [NOT |REQUIRED]
[; OVERFLOW RANGE IS PAGE integer-4 THRU PAGE integer-5)
[FILL PERCENT IS integer-6]

[; LINES PER PAGE [ERE] integer-7).

Usage Rules

1. The AREA NAME clause must be the first in the area entry. Since area-name=-1 is subsequently used by the
EDMS initialization utility (see Chapter 5) for the file name of the area, the name must conform to the file-
naming conventions of the host operating system as well as to the DDL rules for names. The mandatory
CONTAINS subclause, which must immediately follow the NAME subclause, specifies the number of data
pages required for all occurrences of all groups defined as within the area, including groups defined in in-
vert.subentries (see "Group Entries", below). The EDMS initialization utility calculates the size of the
area file by adding (to the number of pages specified) the number of pages, if any, required for inventory
and indexes. The number specified by integer-1 must be low enough to ensure that the total area size is
not greater than 1,048,575,

2. The required NUMBER clause provides a unique integer identifier for the area. The number specified by
integer-2 forms the area-number part of the reference codes for group occurrences in the area. The volue
specified for integer~2 must be in the range 1 to 64, inclusive, and must not duplicate the number of any
other area in the database.

3. The INVENTORY clause indicates that inventory pages are to be included in the area, and specifies the
percentage of data words or a page that may be occupied by group occurrences without requiring main-
tenance of space-available counts. (Data words here means any words not required for header or check-
sum.) Integer-3 must be in the range 50 to 99, inclusive. For example, INVENTORY PERCENT IS 50
means that space-available counts are to be maintained for all data pages on which more than 255 words
(254 if there isachecksum) are occupied by group occurrences. If the inventory clause is not included, no
pages will be added to the area file for inventory.

4. The CHECKSUM clause indicates whether or not arithmetic checksums are to be included on the EDMS

data pages to provide an error detection capability. If the checksum clause is not included, the data
pages will be checksummed, so the clause is needed only if the NOT option is desired. CHECKSUM NOT

Schema Generation

15

16

is illegal if an ENCIPHERING IS REQUIRED clause (see below) is included. The DBM and the EDMS
Utility routines generate and monitor checksums when the data pages are written and read. The user re~
ceives an indication if a checksum error is detected.

5. The JOURNAL clause indicates whether or not a journal file is to be maintained when a user program up=
dates the database. (See "Journaling", in Chapter 4.) If the journal clause is not included, no journal-
ing will occur. Specifying JOURNAL NOT, therefore, has the same effect as omitting the clause.

6. The ENCIPHERING clause indicates whether or not the area’s data pages and index pages are to be en-
ciphered before being written in the file. Specifying ENCIPHERING IS REQUIRED causes the DBM to use
a four-byte key-value supplied by the user's program at run time to modify the words on each page so that
they cannot be easily interpreted. To access the data in the area, the user must supply to the DBM or to
the EDMS utility routine the same value that was used as a key to encipher the pages. Pages are always
checksummed before enciphering, and the checksum is tested after the deciphering. A checksum error in-
dication from the DBM or from an EDMS utility may, therefore, signal either a data error or an improper
enciphering key. Specifying ENCIPHERING IS NOT REQUIRED or omitting the enciphering clause in-
dicates that the pages are not to be enciphered.

7. The OVERFLOW clause has meaning and is legal only if a group with location mode of indexed is defined
as within the area (see "Group Entries", below). Integer-4 specifies the first, and integer-5 the last,page
of a range that is to be reserved exclusively for overflow from the range specified for the indexed group.
The overflow pages will be used when a group occurrence that would normally be stored on a page within
the indexed group range will not fit on that page. (See "Adding Occurrences" in Chapter 4.) Integer-4
must be one or greater and integer-5 must be less than or equal to the total number of data pages specified
by integer=1 in the CONTAINS subclause.

8. The FILL PERCENT clause is also applicable and legal only if the area is to contain indexed group occur-
rences. The percent specified by integer-é controls the number of words on a page within the page-range
of the indexed group that will be used for storing group occurrences when the area is first created. Integer—6
may be any integer from 1 through 100. (Specifying 100 is the same as not specifying fill percent.) The
percent specified by integer-6 is applied to 510 (or 509, if checksum is specified) to determine the maxi-
mum number of words to be used.while the area is open in create mode. (See "Begin Processing”, in Chap-
ter 4, for an explanation of open in create mode.) It is the user's responsibility to select a reasonable per-
centage figure based on the size of his group occurrences and the relative number of occurrences he will
store during create mode.

9. The LINES clause allows the user to decrease the default value for the maximum number of group occur-
rences that may be contained in any one page in the area. The default value for the number of lines per
page is a function of the number of data pages in the area, as fol lows:

Number of Data Pages in Area Default Lines Per Page
1 to 65, 535 255
65,536 to 131,071 127
131,072 to 262,143 63
262,144 to 524,287 31
524,288 to 1,048,575 15

Legal values for integer=7 are 15, 31, 63, 127 and 255. The value of integer-7 may not exceed the de-
fault lines per page for the area.

Group Entries

Group entries specify the size, form and order of appearance of item values within group occurrences, the method
for locating occurrences, the privacy locks that are to control access to the occurrences, and which items, if any,
are to serve as secondary indexes. Corollary groups or subgroups, used to manipulate secondary indexes, are de-

fined to designate items as secondary indexes.

A group entry consists of a group subentry, followed by item subentries for al! items in the group, followed by invert
subentries for all of the corollary groups that control secondary indexes for the main group.

Schema Generation

Group Entry Skeleton

Group subentry

First item subentry

Last item subentry

First invert subentry

.

Last invert subentry

The required group subentry identifies the group entry. Item subentries and invert subentries are optional, but a
group entry with invert subentries must have corresponding item subentries. Other considerations usually necessitate
item subentries. Indexed and calc location modes require item values to determine storage and retrieval algorithms;
item values are used to determine linking order for member group occurrences in sorted sets; and finally, only items
have actual data values; therefore, occurrences of groups with no items are null occurrences, useful only for linking
other group occurrences. An itemless group might be useful on two occasions: (1) to serve as the owner of a set that
links all group occurrences of a single type, and (2) to serve as a member of two sets and establish connections be-
tween specific occurrences of independent groups.

ExcmeIe]

An application needs to access department information in order by department. A simple way to provide for this is
to define a set whose sole purpose is to link department group occurrences.

DEPARTMENT-HEADER

DEPTSET

i
DEPARTMENT

The group named DEPARTMENT-HEADER would not need to have any items (if its location mode were DIRECT, see
below), as all the data would be carried in occurrences of the group named DEPARTMENT, which could be accessed
through the set named DEPTSET.

ExamEIe 2

A department responsible for many projects and with many employees must process project information and employee
information and determine which employees are assigned to which project.

DEPARTMENT

DEPT-EMP \J'EPT-PROJ
SET SET

X

EMPLOYEE PROJECT
EMP-PRO.J / BRO-EMP
SET / SET

LNK-EMP-PROJ

Since occurrences of the LNK=E MP-PROJ groupserve only to linkspecific occurrences of EMPLOYEE tospecific occur=-
rences of PROJECT, this groupdoes not require any item subentries (assuming its location mode is via one of the sets).

Group Subentry

Group subentries specify the name of the group, the criteria for identifying a specific group occurrence, the
guidelines for placing the group in physical storage, and the privacy controls for the group.

Schema Generation

17

18

Format

‘GROUP NAME IS group=-name-1

; WITHIN area-name -1 [,[RANGE IS PAGE integer-1 THRU PAGE integer-2]

(DIRECT[,STORAGE IS set-name-1 SET])

INDEXED USING data-item-name-1[, data-item-name-2]. ..

v

; LOCATION MODE IS{ CALC USING data-item-name-3 [, data-item-name-4]. . .

DUPLICATES ARE [NOT]JALLOWED

b‘.VIA set-name-2 SET [, STORAGE IS set-name-3 SET]

; NUMBER IS integer-3

[; PRIVACY LOCK FOR RETRIEVE IS integer-4]
[; PRIVACY LOCK FOR UPDATE IS integer-5]

[; STATISTICS ARE[NOT]REQUIRED].

Usage Rules

1.

The GROUP NAME clause is required as the first clause in the subentry, The speciffed name identifies the
group for reference in subsequent set entries, subschema selection entries, and in working storage declara-
tions generated by DMSFDP, The name is used as specified for COBOL declarations but may be modified
for Meta-Symbol| declarations. (See "Subschema Entry" under "Subschema Generation", below.) Group-
name=-1 must conform to the DDL rules for names and must not be the same as the name specified for any
other group or for any item or set in the database.

The WITHIN clause specifies the area in which all occurrences of the group are to be stored, with area-
name=~1 the name of an area defined for the database (see "Area Entries", above). The RANGE subclause
specifies the range of pages (1 < integer-1 < integer-2) in the area on which group occurrences will be
stored. The pages are not reserved exclusively for the group, but there are some restrictions on overlapping
page ranges if a group with indexed location mode is defined as within the area. No group's range may
overlap that specified for OVERFLOW (see "Area Entries", above), and only a limited selection of other
groups may be ranged with the indexed group. Specifically, a group's range may coincide with that of
the indexed group only if its storage owner may be legally ranged with the indexed group. The storage
owner (i.e., the owner of the set specified in the STORAGE clause or the owner of the via set if there is
no STORAGE clause) may be the indexed group itself, or it may be a group whose storage owner is the
indexed group, etc., down as many levels as desired. The range of a group whose location mode is calc
may not overlap the range of an indexed group. Any range that overlaps the range of an indexed group
must exactly coincide with it, If RANGE is specified, integer-1 must be greater than or equal to 1 and
less than or equal to integer-2, and integer-2 must be less than or equal to the number of data pagesspeci-
fied for the area. If RANGE is not specified, the range used is 1 through the highest numbered data page
in the area,

The LOCATION MODE clause specifies the most important group characteristic. The location mode deter=
mines how the DBM selects physical locations for group occurrences and the primary means by which the
user identifies a specific occurrence to the DBM for refrieval and set=linking purposes. It also affects the
types of set linkages that are legal for the group. There are four location modes available: direct, indexed,
calc, and via set,

DIRECT — The user identifies a specific group occurrence to the DBM by supplying the reference code that
is returned by the DBM when the occurrence is stored. The location selected by the DBM for storing an
occurrence depends on whether there is a STORAGE set specified in thedefinition, If a STORAGE set is
specified, a group occurrence will be stored physically near its associated owner occurrence. If a STOR-
AGE set is not specified, the user must supply the area number and may supply a base page number in his
working storage for the DBM to use in selecting a physical location. (See "Adding Occurrences” in Chap-
ter 4,) If STORAGE is specified, the set owner must be defined as within the area identified by area-
name-1, The group's inclusion in the set must not be manual (see "Member Subentry", below).

Schema Generation

INDEXED — Indexed group occurrences are stored ins~quential order of increasing key values, A key value
is formed by the catenation of the values of the items identified by data-item-name-1, data-item-name=-2,
etc, From one to sevenitems may bespecified, The number of items used should be sufficient to provide

a unique key value for each occurrence of the group, as duplicate key values are not allowed. Thehigh=
est key value stored on a page is also stored on an index page as the key for the data page. Group occur-
rences may then be retrieved either individually by means of specific key values, or sequentially in either
direction. Not more than one group with indexed location mode may be defined for any given area.

CALC —User supplies, in working storage, the control item values of the specific group occurrence fo be
retrieved. Group occurrences are stored on or near a base page whose page number is determined through
a hashing of the values of the control items identified by data-item-name -3, data-item-name~4, etc. From
one to seven control items may be identified, all to L. 2:fined in item subentries in the group entry. The
DUPLICATES phrase is required in the cale specification. -If duplicates are not allowed, a data-dependent
error return will be made to a user's program that attempts to store a group occurrence whose combined con-
trol item values duplicate those of an existing group occurrence. If duplicates are allowed, more than one
group occurrence may have a specific control-item value combinatisn and the user will have to make more
than one retrieval request to obtain all group occurrences with that value.

VIA SET - Each occurrence of the group, which must be defined as an automatic member of the set identi=-
fied by set-name=2, is stored physically near the owner occurrence with which it is associated, However,
if a range is specified for the group, the occurrences will be stored within that range regardless of the lo-
cation of the selected owner occurrences, The set-name=3 set of the optional STORAGE clause replaces
set=-name-1 set for positioning of occurrences, but it does not override a RANGE specification, The pri-
mary means of identifying a specific occurrence of the group to the DBM for retrieval is by relating it to
a specific occurrence of the set iden*ifieu by set-name~2, [f STORAGE is specified, theset owner must be
defined as within the areq, and the group's inclusion in the set must not be manual.

4. The mandatory NUMBER clause assigns a unique ‘nteger identifier o the group. All occurrences of the
group will contain this number, which will also be part of the working storage identifier used to store the
reference code of the most recently accessed occurrence of this group (see the description of "Current-of -
Type " under "Adding Occurrences” in Chapter 4). The value of integer-3 may range from 1 to 999, but
must not duplicate the value assigned to any other group defined for the database.

5. The PRIVACY LOCK clauses supply lock values (integers 1 to 255) that DBM and the dump utility use to
determine if a user has authority to retrieve or update the group occurrences. If locks are specified, group
(or item) occurrences cannot be retrieved or updated unless a key that matches the lock is associated with
the password supplied to the DBM in the user program's working storage or as input to the dump utility. The
value of integer=4 and integer-5 must, therefore, match appropriate keys specified in a PASSWORD clause
in the schema entry.

6. The STATISTICS clause indicates whether or not the DBM is to keep summary-type statistics when group oc-
currences are stored, retrieved, or deleted. If the clause indicates that STATISTICS ARE REQUIRED, the
DBM will collect the statistics automatically during user program operation, though the user must assign a
file (see DBM "Operational Interface" in Chapter 4) for storing the statistics. If NOT is specified or if the
clause is omitted, no summary statistics will be kept on the group.

Item Subentries

Item subentries specify the characteristics of the items in the group. All of the item subentries for a group to-
gether provide an image of the data portion of the group occurrences in the database. The item values exist
in the group occurrences in the exact order in which the item subentries occur, with no intervening slack bytes.
For this reason, the order of the item subentries can affect the efficiency of subsequent accesses of the defined
database. For greatest efficiency, the item subentries should be arranged in an order that results in binary and
floating~point (long and short) item values beginning on word boundaries.

90 30 12C-1(6/75) Schema Generation

19

Format

~ data-item-name -1

PICTURE i .
[; {—r} IS charocwr-strlng]

-
BINARY

SHORT}
LONG

PACKED DECIMAL[, integer-1]

FLOATING {

LCHARACTER[, integer=2]

[; OCCURS integer-3 TIMES]

[; PRIVACY LOCK FOR RETRIEVE IS integer=4]
[

; PRIVACY LOCK FOR UPDATE IS integer-5]

PICTURE
[‘ CHECK 15 { ANIGE OF feral-1 THRU literaI-Z]]"' :

Usage Rules

1. Data-item-name-1 must appear first in the item subentry, must conform to the DDL rules for names, and
must not be the same as the name specified for another item in the group or for any set or group defined for
the database. The specified data-item-name is used in the working storage declarations that are gener-
ated for use in COBOL and Meta-Symbol applications programs. (In the COBOL definition the name ap~
pears as specified, but it may be modified for Meta-Symbol usage; see "Subschema Generation", below.)

2. The PICTURE clause may be used to indicate the form of the values of certain types of items. The picture
is included in the COBOL working storage declarations and may be used by the DBM to perform validity
checks on input data values (see CHECK clause, below). Characters in the picture character=string
represent characters and character positions in data values. The picture~character=string characters have
the following meaning.

A — |etter or space

X —any character

9 —digit

V —assumed decimal point
P —assumed scaling position

S =sign (+or =) — must be leftmost character if used.

To indicate a number of characters, the representative character (except S) may either be repeated or
followed by an integer enclosed in parentheses. For example, AA and A(2) both signify two letters.
The maximum number of characters in the picture character string is 30. The maximum item size depends
on a combination of the picture information and the specified item type. The PICTURE clause is required if
the TYPE clause (below) is not included, and is illegal for certain values of TYPE (see Table 1),

3. TheTYPEclause is used in conjunction with the PICTURE clause to determine (1)the database representation
of the item values and (2) the method DBM uses to process the values. The allowable item size depends on
the TYPE-PICTURE combination. The TYPE clause may specify item size if TYPE is PACKED DECIMAL
(integer-1) or CHARACTER (integer-2). If a size is specified, it must be the same as the size implied by the
picture clause. The size is required if the PICTURE clause is omitted. Table 1shows PICTURE-TYPE relation-
ships, the EDMS interpretation of each combination, and the allowable item sizes for each.

20 Schema Generation

Table 1. PICTURE-TYPE Correspondences

Type Picture DMS Interpretation Size
Binary Illegal Binary Fixed —one word.
Floating Long Illegal Double Precision Fixed —two words.
‘| Floating=Point
Floating Short Ilegal Single Precision Fixed —one word.
Floating-Point
Packed Decimal 9's, P's, S, and V Packed Decimai Variable —maximum 31 digits
(16 bytes).
Character or not s, P's, S, and V Signed Numeric Variable —maximum 31 digits
specified (C1 bytes) (only 9's counted).
Character or not 9's, P's, and V Numeric Variable —maximum 31 digits
specified 1 (no S) (31 bytes) (only 9's counted).
Character or not A's Alphabetic Variable —maximum 255 characters.
specified '
Character or not X's, or A's, Alphanumeric Variable —maximum 255 characters.
specified X's, and 9's
4, The OCCURS clause indicates the numbe- of times an item value is repeated in a group occurrence. The
size of the group occurrences will be made lary2 enough to accommodate an item that is integer=3 times
the size of the specified item. EDMS will treat the total as one large item. The OCCURS clause must
not be included if the item is a control item for a calc or indexed group, if the item is a sort key for a
set (see "Set Entries", below), or if the item is a secondary index item (see "Invert Subentries", below).
5. The PRIVACY LOCK clauses have the same effect as those in the group subentry except that the locks are
for the item values only. Authority to access a group does not imply authority to access all items if any
item has a privacy lock.
6. The CHECK clause indicates that the DBM is to validity=check values supplied for the item when a group

occurrence is stored or modified, Refer to Appendix G for a discussion of data validation by the DBM, If
PICTURE is specified, an attempt to store an item value that does not agree with the item's PICTURE clause
will result in an error return from the DBM, PICTURE is not allowed in a CHECK clause if there is no
PICTURE clause,

If RANGE is specified, an attempt to store an item value that is less than literal =1 or greater than literal-2
will result in an error return from the DBM. The values specified by literal-1 and literal-2 may be equal
and must be compatible with the item's size and form, as determined by the PICTURE-TYPE combination.
The RANGE option is not legal if the item size amounts to more than four words of computer storage.
Literal=1 and literal -2 may be numeric or nonnumeric literals, depending on the item.

A numeric literal is a string of characters selected from the digits 0 through 9, the plus sign, the minus sign,
the decimal point, and the letter E. Rules for the formation of numeric literals are

a. The literal must contain at least one digit.

b. The literal may contain at most two sign characters. A sign character is legal as the leftmost char-
acter of the literal and immediately to the right of the letter E. If either sign character is omitted, a
positive value is implied.

c. The literal must not contain more than one decimal point, which must be to the left of the let-

ter E. If no E is included, the decimal point may appear anywhere in the literal except as the
rightmost character, The number of digits to the left of the E must not be greater than 31 or less than 1,

Schema Generation

21

22

A nonnumeric literal is a string of any characters (up to 16) enclosed in apostrophes. If the value
is to contain an apostrophe, two apostrophes must be included.

Invert Subentries

Invert subentries identify the items in the group that are to serve as secondary indexes, providing an alternative tech=
nique of identifying specific group occurrences for refrieval. (The primary technique is determined by the group's
location mode.) A secondary-index-item value (supplied by the user in his working storage) can be used in the re-
trieval of the group occurrences in which that value exists.

The secondary index capability is implemented in EDMS by means of a corollary group, called an invert group. An
invert group, which has some of the characteristics of a regular calc group, must be defined for each item that is to
be a secondary index. Each occurrence of an item identified as a secondary index item causes the item value to be
stored in an occurrence of the invert group as well as in the occurrence of the main group in which the item is de-
fined. The occurrence of the invert group consists of the value of the secondary index item and the reference code
of the main-group occurrence that contains the value, plus control information and set pointers.

The first invert subentry in a group entry follows the last item entry for the group.

Format

INVERT ON data-item-name-1

; NUMBER IS integer-1
; WITHIN area-name-1[RANGE IS PAGE integer-1 THRU PAGE integer-2]

; DUPLICATES ARE [NOT JALLOWED.

Usage Rules

1.

The INVERT clause must appear first in the subentry, and data=-item=-name=1 must be the name of an item
defined in an item subentry that does not contain an OCCURS clause.

The NUMBER clause provides the unique integer group identifier (see "Group Subentry", above) for the
corollary invert group. The value of integer=1 must be in the range from 1 to 999 and must not be the
same as the integer specified in the NUMBER clause of any other group defined for the database.

The WITHIN clause identifies the area in which occurrences of the invert group are to be stored (see "Area
Entries", above). Because the invert group occurrences need not be stored in the same area as the occur~
rences of the associated main group, the area name in the invert subentry may either be the same or differ-
ent from that specified in the group subentry. The RANGE subclause specifies the pages within the area
on which the group occurrences are to be stored and must be included if a group with indexed location mode
is defined as within the specified area. Integer-1 must be greater than or equal to 1 and less than or equal
to integer-2. Integer=-2 must be less than or equal to the integer that specified the number of data pages
in the area (see "Area Entries", above). If there is an indexed group in the area, the range indicated by
integer-1 and integer-2 must not overlap its range. Nor maythe invertgroup range overlap the OVERFLOW
range (if one was specified).

The required DUPLICATES clause specifies whether or not two or more main group occurrences with the
same secondary-index item value will be allowed. If DUPLICATES ARE NOT ALLOWED, a user pro-
gram's atfempt to store a group occurrence that would cause a duplicate invert group occurrence will

receive an error return from the DBM. If DUPLICATES ARE ALLOWED, more than one retrieval request

may be needed to retrieve all group occurrenceswith a specific secondary-index item value.

Schema Generation

Set Entries

The set entries define all the user-specified relationships among group occurrences by inai.uiing which groups

are to participate in which sets, what set pointers are to be included in the group occurrences, what is to determine
which owner group occurrence a particular member group occurrence is to be associated with, and how the member
occurrences are to be associated with each other.

Set Entry Skeleton

Set Subentry
Member subentry

[Member subentry] . . .

Set Subentry

A set subentry provides the name by which the set isreferenced in other DDL entries {e.g., in group entries of groups
whose location mode is via set, and in subschema set entries), and in DMSFDP=-generated working storage de-
clarations; name the group type that is to be the owner of the set; and specify the mode of linking member
group occurrences to each other and to the owner occurrence.

A set occurrence is defined as one wccurrence of fiie owner group and a collection of associated occurrences of the
group or groups defined as members, as illustrated below for @ WARD-ASSIGNMENT set whose owner is a WARD
group and whose members are @ NURSE group and a DOCTOR group.

A

Owner Group
Occurrence
(Ward A)

3

SMITH

Member Group
Occurrence
(Nurse Smith)

h

JONES

Member Group
Occurrence
(Nurse Jones)

FRANK

Member Group
Occurrence
(Doctor Frank)

SMITH

Member Group
Occurrence
(Doctor Smith)

(The WARD-ASSIGNMENT set as depicted is in sorted order with group number as major sort key and a NAME item
as sort key in both member groups, see below.)

Schema Generation

23

24

Format

SET NAME IS set-name=1

1.

) group-name -1
; OWNER IS {AREA qreo-nome-]}

_— A 5
[somme [wim Group-no as(MALOR]

FIRST

LAST

NEXT

PRIOR
QALY

[; LINKED TO PRIOR]

[; STATISTICS ARE[NOT] REQUIRED].

Usage Rules

The SET NAME clause must be the first clause in the subentry. Set-name-1 must conform to the DDLrules
for names and must not be the same as the name used for any item or group, or for any other set defined for
the database.

The OWNER clause identifies the group that is to participate in the set as owner. Group-name=1 is the
name specified in the group subentry that defined the group. If AREA is specified, the DMSFDP will gen~
erate a group definition for a special group to serve as owner. A single occurrence of this group will be
maintained by the DBM, at page 1, line 1, of each area, to serve as the owner occurrence for every set for
which the area is owner. A set whose owner is area will, therefore, have only one set occurrence, which
will consist of the one area~group occurrence plus all the occurrences of the groups defined as members of
that set. The special EDMS-defined area group may be owner of many sets as illustrated in the data struc-
ture diagram shown below, where the OWNER IS AREA feature is used to link all the occurrences of the
NURSE group (e.g., for all nurses employed at a hospital) to each other, and to link all the occurrences of
the AIDE group to each other.

EDMS
generated
area group
All-Aides Set All-Nurses Set
Owner is Area Owner is Area
AIDE NURSE

The EDMS —generated area-group occurrence has no data values and is not accessible as a group to the
user. It serves only to link occurrences of a member-group to other occurrences of the same member group.

The ORDER clause specifies the manner in which DBM is to generate and modify set pointers so that they
will link a member occurrence into a set occurrence. It determines if the owner occurrence or a member

Schema Generation

occurrence is to be modified to point to the newlv linked occurrence and, if a member occurrence,
which one. Since set order is applied after the proper owner occurrence has been selected (see "Mem-
ber Subentry”, below), it refers only to logical sequence within a set occurrence. Five modes of pointer
maintenance are possible: sorted, first, last, next, and prior.

SORTED -- The DBM links a new member occurrence to other member occurrences according to the values
of the data items defined as KEYs in the member subentries, If WITH GROUP-NO is specified, the unique
numbers included in the occurrences of the member groups (see NUMBER clause in "Group Subentires”,
above) will be considered in selecting a set position for a new member occurrence. GROUP-NO is legal
only if more than one group type is designated as a member of the set. MAJOR or MINOR defines the
role of the GROUP-NC in the order of the set occurrences, The WARD-ASSIGNMENT SET occurrence
depicted above is an example of a set sorted with group~no as major (assuming the group subentries speci-
fied NUMBER 1S 100 for the DOCTOR group and 2uu rer the NURSE, and both groups had a NAME item

_designated as an ascending key in a member subentry, see below), If GROUP-NO AS MINOR was speci-
fied, the occurrence would appear as follows:

A
(Ward A)
3

SMITH FRANK

(Nurse Smith) (Doctor Frank)
y
SMITH JONES
et

(Doctor Smith) {Nurse Jones)

FIRST — The DBM creates LIFO-ordered set occurrences by inserting a new member occurrence as the first
occurrence following the owner occurrence. The NEXT pointer for the set in the occurrence of the group
designated as owner will point fo the most recently linked member occurrence.

LAST — The DBM creates FIFO-ordered set occurrences by inserting a new member occurrence immediately
preceding the owner occurrence, This order implicitly definesa prior pointer for the owner occurrence.

NEXT — A new member occurrence is inserted immediately following the occurrence identified as current
of the set. This order requires that the user establish a position in a set occurrence (by storing or retriev=-
ing the group occurrence to which the new occurrence is to be linked) before linking the new occurrence,

PRIOR — causes a new member occurrence to be inserted immediately before the occurrence identified
as current of the set. This order also requires that the user establish a current position in a set occur=
rence, as well as implicitly defining prior pointers for the owner and member occurrences.

Schema Generation

25

4. The LINKED TO PRICR clause defines the optional backward pointers for the set's owner and member
groups, so that each occurrence of the owner or a member will point to the preceding occurrence,

5. The STATISTICS clause indicates that the DBM is to maintain statistics for the set, If the clause is omitted
or if NOT is specified, st~tistics will not be collected,

Member Subentries

Member subentries identify the groups that are to be members of the set and specify all the controls that are to apply
when a new occurrence is stored or whenever a member occurrence is linked into a set occurrence, These controls
are (1) the technique for selecting the owner occurrence that the member is to be linked to, (2) whether or not
pointers to the owner occurrence are to be included in member occurrences, and (3) the itmes that are to control a
member occurrence's logical position in a set for which the specified order is sorted,

Format

MEMBER IS group-name-1

. (OPTIONAL] AUTOMATIC
; INCLUSION IS MANUAL

[; LINKED TO OWNER]
i SET OCCURRENCE SELECTION IS THRU

CURRENT OF SET
LOCATION MODE OF OWNER[ALIAS FOR data-item=name=1
IS dafa-item-name-Z]. .o

i [{AM }[RANGE]-KEY IS dafa-irem-name-3]. .

DESCENDING
FIRST
DUPLICATES ARE [LAST }
NOT ALLOWED

Usage Rules

1. The MEMBER clause, which must be the first clause in the subentry, must specify the name of a group that
is defined for the database and not specified in any other member subentry in this set entry,

2, The INCLUSION clause specifies that linking or delinking a member group occurrence from a set occur-
rence will be AUTOMATIC or MANUAL,

AUTOMATIC — Member-group occurrences are automatically linked or delinked by the DBM when they are
stored or deleted. If OPTIONAL is specified, the occurrences may also be linked and delinked by specific
user's calls to the DBM, (See "Linking or Delinking Member Occurrences” in the section titled "Modify=
ing Linkages", Chapter 4,)

MANUAL — The user will specifically link and delink member group occurrences by calls to the DBM
linking/delinking routines, The mode is not legal for the set identified as the VIA set or in a STORAGE
clause for the group identified by group-name-1,

3. LINKED TO OWNER defines a set pointer for the member group such that each member occurrence will
point to its associated owner occurrence,

4, SET OCCURRENCE SELECTION specifies the technique to be used to identify the set occurrence into which
a specific member occurrence is fo be linked,

CURRENT — Requires that the user establish a set occurrence as current by interacting with the DBM to store
or retrieve the owner occurrence or a member occurrence, This is the only mode that is allowed for sets
whose order is next or prior or whose owner is AREA,

26 Schema Generation

LOCATION MODE CF OWNER — Indicates that a unique set occurrence is selected by supplying the values
required to refrieve the unique owner-group occu.rence, If the owner's mode is direct, indexed, or calc,
a reference code or specific values for the control item(s) identify a unique occurrence.

If the owner's location mode is via set, there is no way of identifying a unique owner-group occurrance
unless the via set is sorted, If the owner's via set is sorted, a unique owner-group occurrence can be iden=-
tified by specific values for the sort=key items (or approximate values, if RANGE was specified for the key),

ALIASes may be specified to identify additional working storage locations to contain occurrence-selecting
values when a group is a member of two or more sets with the same owner, and two or more owner occur=
rences need to be identified at the same time. For example, the structure shown below could be used to
record which documents referenced, or were referenced by which other documents.

DOCUMENT

WHERE-REFERENCED WHAT-REFERENCED
\4 \d

CROSS-REFERENCE

Two occurrences of the DOCUMENT group may need to be identified simultaneously to be linked with a
CROSS-REFERENCE occurrence. If the location mode of DOCUMENT is calc using DOCUMENT=-ID, one
occurrence can be identified by supplying the proper value in working storage for DOCUMENT=ID. An
ALIAS for DOCUMENT-ID, say DOCUMENT=ID=2, could be defined inthe member subentry for CROSS-

REFERENCE in one of the sets. This we.ld cause working storage to be available for identifying the other
occurrence of DOCUMENT.

Selection through location mode of cwner may not be used when the set order is prior or next, or when the
owner is AREA,

The ASCENDING and DESCENDING subclauses identify the items in the member group that are to be
sort=key items for a sef in sorted order. Values of the specified items are used (in conjunction with the
group number, if WITH GROUP=NO is specified in the set subeniry), to establish the logical sequence of
member occurrences within a set occurrence, The optional RANGE modifier applies to any sets in which
the group identified by group-name-1 participates as owner and in which the set occurrence selection for
a member is through location mode of owner. RANGE is not meaningful if group-name=-1 does not identify
a group whose location mode is via set,

One ASCENDING or DESCENDING subclause is required if the set is sorted, and up to seven may be
specified, Every item specified by data-item-name-3, etc., must be defined as within the member group
and defined without OCCURS clauses,

One, and only one, DUPLICATES subclause must be included if any ASCENDING or DESCENDING sub-
clauses are included, The DUPLICATES specification controls the logical sequence of two or more member
occurrences with the same sort=key value, or prohibits duplicate values,

END Entry

The end entry is required after the last set entry, It has the form END.

Subschema Generation

The DMSFDP generates a subschema from a schema as specified in subschema Data Definition Language (DDL). The
subschema, which contains the information required for the DBM to identify data values and relationships within the
database, may describe a complete database or it may describe only that portion needed for a specific application.
It may or may nof include the names of the sets, groups, and items it defines,

Subschema Generation

27

The contents of the subschema determine the format of a working storage area that the user's program must contain in
order to communicate with the DBM. To simplify establishing user's storage to subschema correspondences, the
DMSFDP will (optionally) create COBOL COPY files or Meta-Symbol SYSTEM files containing the working storage
format definitions that correspond to the subschema it is creating.

The information extracted from a schema to form a subschema may describe either all the components (groups, data-
items, sets) of the database, all the components whose occurrences are to be stored in a specified area (or in speci=
fied areas), or only selected components. If a subschema is not fo describe a complete database, certain rules must
be observed when selecting the elements that are to be defined in the subschema.

If an area's definition is not included in the subschema, groups specified as within the area may not be defined in
the subschema. Nor may any set be defined in the subschema if its owner or any member is specified as within the
area. In addition, if an invert group for secondary indexes was specified as within the area, either the associated
item must be excluded from the subschema or it must be specifically selected with an indication that inversion is not
fo occur.

If a group definition is to be omitted from the subschema, all sets in which the group participates as owner or mem-
ber must also be excluded, (All items in the groups are automatically excluded,)

Not all data manipulation capabilities are allowed when a subschema does not define a complete database. For
example, a program may not store or delete occurrences of a group that is the owner or a member of a set that is not
defined in the subschema the program is using; nor may it store group occurrences if the definition of any item in the
group is omitted. Refer to the description of the DBM routines for more details on which are restricted when operat-
ing with a limited subschema,
The subschema DDL consists of entries in the following order:

1. The Subschema entry must be the first entry,

2. The set entry (there is only one) follows the subschema and precedes all area entries.

3. The area entry (or entries) for any areas to be included follow the set entry and precede all group entries.

4. The group entries follow the area entries. Group entries consist of a group subentry and, optionally, one
or more item subentries.

5. The end entry must be last.

Subschema Entry

A subschema entry provides the name for the subschema file, specifies whetherall or part of the database is to be de-
fined by the subschema, andindicates the form of working storage deciarations that are to be generated.

Format
SUBSCHEMA NAME IS sub-schema=-name OF SCHEMA schema=name
[; COBOL COPY IS copy-name]
[; META SYSTEM IS system-name [, NAMECHECK]]

[; PRIVACY KEY FOR EXTRACT IS privacy-lock]

[{ ?232358&35 }:RE} password-1[, password-2].]

; COMPONENTS ARE {Q;ELCIHED}

28 Subschema Generation 90 30 12C-1(6/75)

Usage Rules

1.

2.

Set Entry

The SUBSCHEMA NAME clause must be the first clause in the entry. Subschema-name is the file name
by which the subschema file is to be referenced. Hence it must conform to the host operating system's file
naming conventions as well as the DDL rules for names. The schema-name must be the file name of an ex-
isting schema file.

The COBOL clause provides the name fora COBOLsource file that is to contain declarations that define the
user's working storage needed for database operations based on this subschema. The copy-name must con-
form to the DDL rules for names as well as to the conventions of the host operating system.

The META clause provides the name for a Meta-Symbol source file that is to contain the directives needed
to define the user's working storage that corresponds to ihis subschema. The system-name must conform to
the DDL rules for names and to the conventions of the host operating system. The names of the groups,
items, and sets selected for the subschema will be modified to conform to Meta=-Symbol standards by re-
placing all hyphens with dollar signs.

Additionally, if the NAMECHECK option is specified, a symbol consisting of the "at" character (@) fol-
lowed by the group name will be appended to each item name to ensure uniqueness with regard to like-
named items in other groups. If the NAMECHECK option is not specified, the user is responsible for en-
suring that his item names are unique.

The PRIVACY clause supplies the key required to enable the generation of a subschema if the specified
schema has a PRIVACY LOCK FOR EXTRACT attached to it., The specified privacy~lock must be a nonnu=~
meric literal and must match the lock on the schema, or the subschema will not be generated,

The COMPONENTS clause specifiec that either the whole database (ALL) or selected parts of the database
(SPECIFIED) are to be defined in the subschema, SPECIFIED indicates that a set entry follows the sub-
schema entry. ALL indicates that the only other entry is an End entry.

The PASSWORD clause allows the user to speci™- which passwords from the schema are to be included in
the subschema. Passwords are specified as nonnumeric literals, and all passwords specified must have been
previously defined in the schema DDL. If the PASSWORD clause is omitted, all passwords defined in the
schema DDL are included in the subschema.

The set entry lists the sets that are to be defined in the subschema.

Format
SET IS set-name-1 [/ set-name-2] ...
SETS ARE ALL

Usage Rules

1.

2.

The specified set names must be names of sets that are defined in the schema.

For each set listed, the owner and all the member groups must be defined in the subschema. The groups may
be specified by group entries, or they may be impliedby the COMPONENTS AREALL option on an area entry.

Area Entries

Area eniries specify the areos of the database that are to be available through this subschema, and indicate
whether all or part of the specified areas are to be defined. A single area entry may name several areas that

90 30 12C-1(6/75) Subschema Generation

29

30

have the same components specification or a separate area entry may be included for each area. No area
entries are allowed if the subschema entry specified COMPONENTS ARE ALL.

Format
AREA IS area-name-1 [, area-name-2] ..]
AREAS ARE| |ALL

; COMPONENTS ARE {?}!’-ELCIFIED} ’

Usage Rules

1. The AREA/AREAS clause must be the first clause in the entry. The area-names must be names that exist as
area names in the schema. The naming of selected areas or ALLareas indicates that some portion of the groups
that may occur in the areas will be defined in the subschema.

2. The COMPONENTS clause determines that either ALL or SPECIFIED groups and items identified for the
specified areas in the schema are to be defined in the subschema. If COMPONENTS ARE SPECIFIED,
group entries must be included for any of the areas' groups that are to be included in the subschema.

Group Entries

Group entries are used to select the groups that are to be defined in the subschema. No 'group selection is needed
or allowed if no area entries indicated COMPONENTS ARE SPECIFIED. To be defined in the subschema, any non-
invert group within an area whose components are specified must be selected by a group entry. Invert groups' defi-
nitions are automatically included if the secondary index item is defined in the subschema and inversion is not spe-
cifically suppressed.

Group Entry Skeleton

Group Subentry

[ltem Subentry]. . .

Group Subentry
A group subentry identifies the group, optionally renames it (for working storage declarations), and indicates whether
some or all of the group's items are to be defined in the subschema group defintion.
Format
GROUP NAME IS group-name-1 [, RENAMES group-name-2]

; COMPONENTS ARE{?—PLELCIHED}

Usage Rules
1. The GROUP NAME clause must be the first clause in the entry. If the RENAMES optionis notspecified,

group-name=1 must be the name of a group defined in the schema as within an area that is named in a

Subschema Generation

subschema area entry. If RENAMES is specified. group-name=-2 must be the name of a group that is
so defined. If RENAMES is specified, group-name-1 must conform to the DDL rules for names and
must not duplicate the name of any group or set in the subschema.

The COMPONENTS clause specifies that either ALL of the items defined for the group in the schema are
to be defined in the subschema (exactly as they are defined in the schema) or that item definitions are
SPECIFIED in item subentries that immediately follow the group subentry., Ifa chan/ge in any one item de-
finition is desired, then all of the data items must be described in item subentries.

Item Subentries

Item subentries designate and opticnally rename the items that are to compose the group as defined in the subschema.

If the group subentry specified COMPONENTS ARE ALL, no item subentries are legal. If the group subentry indi-
cated COMPONENTS ARE SPECIFIED, all items that are to be included must be described in item subentries.

Format

[level-number] data-item-name-1 [, RENAMES data-item-name-2]

[; INVERSION IS [NOT] REQUIRED]

’—; CONDITION NAME IS condition-name-!
L

{_/AL_L&IS

VALUES ARE}literol-'l [THRU literal -2][, literal-3 [THRU literal-4]]] ..

Usage Rules

1.

The level number is optional, and if omitted is assumed to be the lowest level number specified for the group,
or 02 if no previous level number has been encountered. Item level numbers may have values in the range
from 02 through 49. Usage of level numbers is syntactically consistent with that described in the ANS
COBOL/LN Reference Manual, 90 15 00.

Dota-item=-name=-1 must immediately follow the level number (or must be the first element in the entry if no
level number is included). If RENAMES is not specified and data-item-name=1 is not defi: d in the schema
as being part of the group, it is assumed that the user desires to superimpose data-item-name-1 over one or
more data items which are so defined. In this instance, DMSFDP requires that the item subentry contain-
ing data-item-name-1 be followed by at least one item subentry containing a data~item-name which is de=~
fined as part of the group being analyzed and contains a level number higher than that of data-item ~name -1,
Note that this feature is included solely for the convenience of COBOL programmers and that data-item-
name~1 may not appear as an argument in a DBM call. '

The INVERSION clause, unless NOT is included, specifies that the invert group associated with the sec-
ondary index item identified by data-item-name-1 is to be defined in the subschema. This clause is legal
only for data items which appeared as data-item=name-1 in an INVERT entry of the schema DDL. If the
INVERSION clause is omitted, it is assumed that the invert group definition is required.

The CONDITION NAME clause causes a level-88 data description entry to be included in the COBOL
Copy file. Condition-ncme-1 must conform to DDL rules for names. Literal-1, literal-2 etc. are numeric
or nonnumeric literals depending on the schema definition of the item identified by data-item-name-1 and
must conform to the size and form of the item.

Subschema Generation

31

32

END Entry

The end entry signifies the end of the subschema description.

Format

END.

DMSFDP Operational Interface

The File Definition Processor may be operated in a batch mode or from a terminal, The operation of DMSFDP
relative to the amount and format of output is controlled by control command options. The control command has the
following form:

IDMSFDP [, NODDL][, NOSCHEM][, NOSUB][, NOCBL][, NOMETA][, NOLIST], NONAMES)

The order in which the options are specified is immaterial but repetition of an option is not allowed.

Exercising the options suppresses the normal output. The IDMSFDP with no options causes the following:

1.

7.

A schema will be created if the first DDLentry is a schema entry, no DDLerrors are encountered, and there
is not an existing file ih the user's account that has the same name as that specified in the schema entry.

A subschema will be created if the first DDL entry or the first entry after a schema-DDLend eniry is a sub-
schema entry, no DDL errors are encountered, and the file name specified in the subschema entry is not the
name of an existing file in the user's account. -

All DDL entries will be listed (both schema and subschema entries, if both are included in one run).

All error messages and summary messages will be listed. Error messages include a $ character printed
under the DDL line at the point where the error was detected and an explanatory message. Table F-1 in
Appendix F shows the DMSFDP error messages. Summary messages include information on file size and
structure plus number of diagnostic messages. A number of diagnostic messages other than zero indicates
that the generated schema/subschema file was not saved. Figure C=2 in Appendix C illustrates the summary
messages output by DMSFDP.

A COBOL COPY file will be created and its contents listed if the subschema entry includes a COBOL
clause, Figure C-4 shows a simple COPY file listing.

A Meta-Symbol SYSTEM file is created and its contents listed if the subschema entry includes a META
clause, Figure C-6 in Appendix C shows a sample SYSTEM listing output, The FORTRAN user may use
either the COPY or the SYSTEM listing to determine the format of the working storage area to be declared
in his program,

A name table relating set, group, and item names to their subschema definitions, is included in the sub-
schema file.

The suppress options operate as follows:

1.

NODDL —only erroneous DDL input statements are to be listed, correct DDL statements are not to be listed.
This does not affect the listing of COBOL and META files.

NOSCHEM —the schema file is not to be saved. (This may or may not affect the creation of a sub-
schema in the same run; the subschema creation requires a valid, existing schema file, but it may have
been created on an earlier run,)

DMSFDP Operational Interface

3. NOSUB — a subschema file is not to be saved, This cffects only the subschema file; any listing or other
file creation is controlled separately.

4, NOCBL — the COBOL COPY file is not to be created even though the subschema entry may include 2
COBOL clause,

5. NOMETA - the Meta-Symbol SYSTEM file is not to be generated even if the META clause is included on
the subschema entry.

6. NOLIST — COBOL or Meta=-Symbol data is not to be listed even if the corresponding file is created,

7. NONAMES ~ the subschema file is not to include the name table,

The NODDL option applies to both schema DDL and subschema DDL. NOSCHEM is obviously meaningless if only
subschema DDL is input; it is therefore ignored. Similarly, NOSUB, NOCBL, NOMETA, NOLIST and NONAMES

are meaningless if only schema DDL is specified,

DCB Assignments

Normally, no interface is required between the DMSFDP user and the CP-Vmonitor to create the schema, subschema,
COBOL COPY, and Meta=Symbol SYSTEM files, The user may assign the M:SI and M:LO DCBs to accept the
DDL input or to direct the listing output to other than the system standard devices.

The F:SCHE (schema), F:SSCH (subschema), F:COPY (COPY file), and F:META (SYSTEM file) DCBs may be assigned
if desired. One or more such assighments might be needed, for example, to place the files on a removable device
or, in the case of the schema, to specify WRITE accounts so that subschema generation can be run in an account dif-
ferent from that used to generate the schema. (Subschema generation involves writing into the schema file.)

Terminal Usage
DMSFDP may be run from a ferminal with DDL either input directly or (preferably) stored in an EDIT file. In

either case, the user initiates operation by entering DMSFDP in response to the system prompt and then entering the
control command options (or carriage return if there are no options) in response to the prompt from DMSFDP.

DMSFDP Operational Interface

33

34

4. DATABASE MANAGER

Database manager (DBM) is the term applied to the collection of library routines that are used with a user's
applications program to accomplisi. the storage, retrieval, and updating of the data values and pointers in a data-
base, Other features of the DBM provide for collecting run=time and summary statistics, tracing a user program's
interaction with the DBM, maintaining a journal of changed pages, and recovering a shared database in case of
deadlock or upon user request,

The user's program communicates with the DBM by means of calls fo the library subroutines. Most arguments for the
calls refer to addresses within the program's working storage, which must be formatted to correspond to the values
in the subschema being used.

The user's program area that is referred to as working storage consists of two parts, The first part has the same for-
mat in all EDMS programs, regardless of the nature of the database used. The second part must be formatted to re=
flect the specific subschema referenced by a program. The first part of working storage is designated the Communi=
cation Control Block (CCB) because it is used to communicate control and current-condition information between
the user program and the DBM, The format of the CCB is described in Table 2, which uses the COBOL COPY file
form for identifying the contents. In the Meta=-Symbol SYSTEM file the hyphens are replaced by dollar signs and
the characters @CCB are appended, e.g., REF$CODE@CCB instead of REF-CODE,

The format of the database-specific part of the user's working storage must provide for a set table for each set de=-
fined in the subschema, a group table for each group defined in the subschema, a statistics table if any statistics
are specified for the database, and a table for aliases if any are defined. The number and order of cccurrence of
these entities depend on the subschema being used, The proper order is best obtained by using or following one of
the working storage descriptions generated by the File Definition Processor., Figure C=4 shows an example of the
COBOL COPY working storage, and Figure C=6 shows an example of Meta=Symbol SYSTEM working storage, both
generated for the sample database shown in Figure 1, but for separate subschemas, (The FORTRAN user may use
either of the generated descriptions as a guide for manually generating declarations,)

The group tables are used to communicate item valuesand the reference code of the current occurrence of the group.

The set tables are used by the DBM to maintain the position of the user in each set. Each time a group occurrence
is retrieved explicitly by the user or implicitly by the DBM, the set table for each set defined in the subschema for
that group is updated, The address of the set table is used as an argument for set-processing DBM-=routine calls in
the same manner as group or item arguments,

DBM Routine Call Format

The DBM routines that store, retrieve, etc., are initiated by calls in the user's applications program. The format
of the call depends on the language in which the user's program is written; but whatever the language, the call re-
fers to a DBM function name, which is an entry point in the DBM library routines.

The general form used in the manual to describe the DBM calls is
ENTER DBM-function-name, argument=1[,argument-2]. . .

where the arguments represent addresses (optionally indirect) within the user's program area, either word addresses
or byte addresses, depending on the programming language used and on the characteristics of the entity located at
the specified address, In the descriptions of the DBM calls, below, the address arguments are referred to by de-
scriptive terms, REF-CODE, area-name, item=name, group=-name, and set-name denote addresses in the user's pro-
gram areas that correspond to DMSFDP-generated working storage declarations; error-code=name and recovery-name
denote addresses in the user's program area other than that corresponding to the DMSFDP-generated working storage
declarations; and procedure-name denotes an address in the user's program area to which the DBM is to return control
under certain conditions. The metalanguage used below to show DBM call formats is the same as that used to depict
the Data Definition Language (see "File Definition Processor," Chapter 3),

Database Manager

Table 2. Contents of the Communications Control Block

Contents

Description

REF-CODE

A 32-bit binary number whose value is the reference code of the group last accessed
by the user, At thesuccessful completion of any call that accesses a group occurrence
in the database, thereference code of the group is placed in this cell by the DBM.

The reference code is also used when an area is opened to specify the number of buffers,
when an area is closed to indicate whether or not core is to be released, and when o
group occurrence is to be stored or retrieved directly.

PAGE-NO

Contains the eight-character EBCDIC value of the page-number part of the reference code,

This value issupplied by the DBM at the successful completion of a call in the same manner
as REF-CODE,

LINE-NO

Contains the three-character EBCDIC value of the line-number part of the reference
code, This valueis suppliedby the DBM in the same manneras PAGE-NO,

FRST-REF

A communication cell used in conjunction with the FINDS or FINDSI procedural calls.
The user must initialize this cell with the reference code at which the DBM is to start
the physical scan of an areu of the database.

LAST-REF

A communication cell usea in conjunction with the FINDS or FINDS! procedural call.
The user must initialize this cell with the value which will control the termination of
the physical scan of an area of the database.

GRP-NO

Contains a 10-bit binary number whose value is the numeric synonym for the group
stored or retrieved by the user.

ERR-CODE

Initialized by the DBM with an eight-bit binary number whose value indicates that
some type of error occurred in executing the previous procedural call.

ERR-NO

A 10-bit binary number initialized by the DBM for certain types of errors, with the
numeric synonym for the group responsible for the error.

ERR-REF

A 32-bit binary value initialized by the DBM for certain types of errors, with the ref-
erence code of the group responsible for the error.

PASSWORD

A communication cell that must be initialized by the user with the eight-character
EBCDIC value of the password that allows the user access to the database.

AREA-NO

Contains the two=character EBCDIC value of the area number part of reference code.
This value is supplied by the DBM in the same manner as PAGE-NO,

DBM Routine Call Format

35

Meta-Symbol Call Format
A Meta-Symbol call takes the following form:

REF DBM=function=name
LI, 14 n number of arguments
BAL, 15 DBM-=-function=name

* * address~1

* * address=n

The asterisks indicate that the addresses are right~justified and may be generated by any of several Meta=Symbol
techniques. The addrcsses supplied may be indirect (but not indirect in a register), in which case the DBM
will obtain the proper effective address, either word-oriented or byte-oriented as shown below in Table 3.
The examples in Table 3 are from a Meta=Symbol program that includes the SYSTEM.file shown in Figure C=6, and
processes part of the data base shown in Figure 1.

FORTRAN Cail Format
A FORTRAN program call of a DBM library subroutine takes the form of a standard calling sequence, as follows:
CALL DBM=-function-name (argument-1,...)

The arguments used must result in addresses supplied to the DBM that conform to the DBM function description shown
in Tabie 4, All addresses are word addresses,

COBOL Call Format

The call from a COBOL program provides the model for the form of the DBM function description, It takes the form
of the ENTER statement,

ENTER DBM-function-name[,argument-1]...

Arguments to the ENTER statement of COBOL are either the data names of the appropriate data segment in the data
division or the procedure name in the procedure division,

Table 5 shows the values of the arguments to generate the types of addresses required. The examples reference the
COPY file names shown in Figure C-4,

Table 3, Meta=-Symbol Addresses

If the DBM Function

Description Specifies The Address Supplied Must Be
REF-CODE Word address of the first wordof the CCB, WA (REFSCODEQ@CCB),
Area-name Byte address of the appropriate area name word of the area table,

For example, BA(AREAS$2),

Group-name Byte address of the first word of user's working storage reserved for
the group, For example, BA(FIRST),

Item=-name First byte of working storage reserved for the item, if the item is

EBCDIC or packed decimal; first word of working storage reserved
for the item if the item is binary or floating point. For example,

BA(ITEMS31), but WA(ITEMS44),

36 DBM Routine Call Format

Table 3, Meta=-Symbol Addresses (cont.,)

If the DBM Function
Description Specifies

The Address Supplied Must Be

Set-name

Procedure=name

Error-code~name

Recovery-name

Byte address of the first word of the user's working storage reserved
for the set table of the set, For example BA(SET3$D).

Word address of the location to which the DBM is to return control,

Word address of a location in the user's program area that contains an
EDMS data-dependent error code in binary.

Word address of a location in the user's program area that zontains the
EBCDIC characters RECV,

Table 4. FORTRAN Addresses

If the DBM Function
Description Specifies

The Argument Must Be

REF-CODE
Area=-name

Group-name

{tem=-name

Set=name

Procedure~name

Error-code-name

Recovery-name

The identifier of the first variable in EDMS working storage.
The identifier of the variable used to establish to appropriate areaentry,

The identif:ar of the first variable used to reserve working storage for
the y.oup.

The identifier of the appropriate item variable.

The idenfifier of ihe first variable used to reserve working storage for
the set s table,

A statement label,

The identifier of a location established by the user. The value in the
location must be between 1 and twenty, inclusive,

The identifier of a location established by the user., The value in the
location must be the Hollerith constant RECV,

Table 5, COBOL Arguments

If the DBM Function
Description Specifies

The Argument Used Must Be

REF-CODE
Area-name

CGroup-name

Item=name

Set-name

Procedure-name

Error=-code-name

Recovery-name

Data-name REF-CODE of the CCB.
The name assigned to the area in the DDL. For example, AREA-1,

The data=name of the 01 level entry of the group. For example,
GROUP-1, GROUP-2-R,

The data=name of the appropriate item, For example, ITEM-21-22-23,

The data~name of the 02 level entry generated for the set table for
the set. For example, SET-C.

A name in the procedure division,

The data-name of an entry generated by the user, The entry must be
COMP usage and have a VALUE of 1-20,

The data-name of an entry generated by the user, The entry must be
alphabetic or alphanumeric and contain the value 'RECV',

DBM Routine Call Format

37

38

DBM Routine Usage

Database manager routines are used to accomplish all user-program interaction with the database, The first step of
a user-program's interaction is to open all areas that are to be accessed by the program, After all required areas
are opened and depending on th= type of open, new group occurrences may be added to the database, obsolete data
may be deleted, data values or set linkages may be medified, existing group occurrences may be retrieved, and
various miscellaneous functions may be performed by calling the appropriate DBM routines. The last DBM call from
a user program is to close the areas (or the last area in use) of the database to terminate processing. All of these
interactions are described below.

Beginning of Processing

Before any data manipulation activity can occur, the files in which the data is stored must be opened. The DBM
interacts with the operating system to open the file in response to an open=call from the using program. The open-
call identifies the area fo be opened, and indicates what type of activity is intended.

Format
[OPENRET)
OPRETSHD
ENTER { OPENUPD ,REF-CODE , area-name-1[,area-name-2], ..
OPUPDSHD
| CREATE
Usage Rules

1. An area must be opened before any other EDMS call that references the area (either directly or indirectly)
is executed. A call to open an already opened area is ignored, if no calls other than open calls are made
between the two opens.

2. A call to open an area may not be made if the user is currently executing in some other areq, i.e., there
may be two or more successive calls to open different areas only if there are no other intervening proce-
dural calls that reference the first area.

3. OPENRET opens an area for retrieval purposes only. Other programs may concurrently open the area in
OPENRET and OPENUPD mode. The user should be aware that this mode does not provide for protection
against changes made to the database by another program concurrently executing in the OPENUPD mode.

4. OPRETSHD opens an area for retrieval purposes and specifies that the area may be accessed concurrently
by other programs in this mode or for shared update.

5. OPENUPD opens an area for both retrieve and update purposes. Other programs may concurrently open
the area in OPENRET mode only.

6. OPUPDSHD opens an area for retrieve and update and specifies that the area may be accessed concurrently
by other programs in this mode or for shared retrieval.

7. If anyareas are opened in a shared mode (OPRETSHD or OPUPDSHD) by a program, no other areas may be
concurrently opened in a non-protectedmode (OPENRET, OPENUPD, or CREATE) by the program,

8. CREATE is a special open mode for an areathat has a group defined with location mode of indexed. While
an area is open in CREATE mode, the key values of an indexed group occurrence to be stored must be
higher than those of the occurrence most recently stored; i.e., the group occurrences must be presented
to the DBM for storage in ascending key order (see "Adding Occurrences”, below). The area may be con-
currently opened in OPENRET mode by other programs.

9. For all open modes, REF=CODE refers to the address of the beginning of the user's formatted working stor=
age. This location should contain the number of data buffers to be used (3 to 10, inclusively) at the time
the first open call is made. If a number less than 3 is specified, 3 will be used; ifanumber greater than 10
is specified, 10 will be used.

DBM Routine Usage

10. If any passwords were specified for the database, the call PASSWORD in the CCBmust be initialized before
an open call is made. An eight=character password that is associated with keys that allow access to the
desired groups and items should be supplied.

11. If an area to be opened is an enciphered area, the user must supply the enciphering key in the appropriate
area-name cell prior to the open call.

12, If any area of the datcbase has been closed and is to be reopened, all areas must first be closed; i.e., re-
opening an area may rot violate usage rule 2 above.

DBM Response

If any one of the required parameters is not supplied in the CCB; if any of the named areas is not assigned; if pro-
cessing has begun in an area; or if mixed mode (shared and non=protected) opens are attempted, the DBM returns an
error indication in ERR-CODE in the CCB. If all conditions are satisfactorily met, the DBM sets up the controls
necessary for processing the areas. The area files are not opened until a subsequent DBM call references one of
the areas.

When an area is opened in exclusive mode (OPENRET, OPENUPD, or CREATE), no provision is made for dynamic
recovery in case of deadlock, because deadlock cannot occur, and there is no requirement for locking of individual

pages.

When an area is opened in shared mode (OPRETSHD, OPUPDSHD) individual pages are locked, by means of the
CP-V enqueve/dequeue facility, as required (see Appendix H for additional information on Enqueue/Dequeue).

If an area is reopened, the DBM will zero out the contents of the set tables and current-of-type for all sets and
groups defined for the area. Thus, a program may not maintain a logical positionin an area between close and open.

Adding Occurrences

The first activity involving the data in the database is to load, or store, group occurrences in the area files, This
activity continues with varying frequency over the life of the database. The required conditions and the action of
the DBM when a request is made to add a group occurrence to a database area depends ona variety of factors such
as whether or not inventory pages exist for the area, whether or not there is an indexed group within the area, what
the location mode of the group is, what sets it participates in and how, etc.

Format

ENTER STORE, group-name

Usage Rules

1. The data values that are to constitute the group occurrence should be in the working=storage designated for
the group. '

2, If the group is an automatic member of any set, the desired set occurrence must be selected, This is done
either by retrieving the owner occurrence or @ member occurrence if the set selection is current (unneces-
sary if the occurrence most recently stored or retrievedis part of the desired set occurrences), or by putting
the uniqueness-determining value in working storage if selection is through location mode of owner. Note
that the uniqueness-determining values may be calc keys, index keys, set sort keys, or a combination of
sort keys and one of the others if several levels of owner are required to establish uniqueness.

3. STORE is not permitted if the specified group is the owner or a member of a set that is not defined in the
subschema being used; if any item in the group is not defined in the subschema; if the subschema item sub-
entry for a secondary index item specified no inversion; or if the group is a member of a multimember sorted
set without group numker as major, and the definition of a sort key item in one of the other member groups
is not included in the subschema.

DBM Routine Usage 39

DBM Response

The DBM must physically and logically position the occurrence in the area. To physically position the occurrence,
the DBM determines a base page for the occurrence and stores it on that page if there is space, The base page for
a group occurrence is determinc differently for each location mode as follows:

CALC — The values of the calc conirol items are randomized across the page range for the group to determine
the base page.

INDEXED — The values of the index control items are compared to the primary index entries. The base page
for the group occurrence is that page which contains the occurrence of the group that has the next-higher values
in its index control items, If no occurrence of the group currently in the area has higher values, the base page
is the last page currently containing indexed group occurrences,

DIRECT — The base page is provided by the user in cell REF-CODE. If a storage parameter is selected for a
direct group, the base page is determined as if the group were a via group.

VIA SET = The base page is determined by the order of the via set, or storage sef if appropriate, and the exist=
ing members of the set:

a. Sorted — base page is the data page of the current group occurrence logically before the new occur-
rence in its sorted sequence.

b. First and Last — base page is the data page of the set owner occurrence,
c. Next and Prior — base page is the data page of the current member occurrence of the set,

If there is not sufficient space, or no available line number on the base page, the DBM systematically searches
until space is found, or if no space can be found, the DBM returns an error code in the CCB. The search is based
on the location mode of the group and whether or not there is an indexed group and an overflow range in the area.

If the occurrence cannot be stored because of subschema limitations, if the password supplied at open does not pro=-
vide an update key required for storing occurrences of the group; if values in the occurrence are duplicates of values
for which duplicates are not allowed (calc keys, sort keys, secondary indexes for which duplicates are not allowed,
or indexed location mode keys); if key values for an indexed group are not in ascending order in create mode; if
any values do not meet data validation criteria; or if a deadlock is precipitated during the store processing, the
DBM returns an error code in the CCB, Additional action is taken in the case of deadlock (see "Preparing for
Deadlock”, below).

The group occurrence is logically positioned in all sets in which it participates according to the set selection and

the set order, The occurrence is linked into all sets in which it is an automatic member. [f the occurrence cannot
be linked for some reason e.g., the correct owner occurrence cannot be retrieved, the DBM returns an error code
in the CCB.

At the successful conclusion of a STORE call, the group occurrence is recorded as

Current-of-file — Assigned reference code is in REF-CODE of CCB.

Current-of-type — Assigned reference code is in the CURR=-XXX cell in user's working storage.

* Current=of-set — Assigned reference code is in SET-CURR of all sets of which the group is an owner orauto-
matic member,

The numeric synonym for the group is also placed in GRP=NO of the CCB,

40 DBM Routine Usage

Deleting Occurrences

A group occurrence can be physically removed from the database or marked as unavailakh!= and flagged for future
removal, or the delete call can specify conditions under which the group is to be deleted. If the subschema being
used does not describe the complete database, there may be some EDMS~imposed restrictions on deleting g oup
occurrences,

Format
(DELETE)
REMOVE
ENTER { DELETSEL ¢, group=name
REMOVSEL
| DELETAUT |

Usage Rules
1. The group occurrence to be deleted is the occurrence identified as current-of-type for the group named,

2, The occurrence cannot be deleted if any set of which the group is an cwner or member is not defined in
the subschema or if any invert group associated with the group is not defined in the subschema.

3. The occurrence cannot be deleted if soinie member group at a lower level cannot be deleted because of
subschema omissions.

DBM Response

I the occurrence cannot be deleted because of subschema limitations; if the password supplied at open does not
provide update keys for one or more of the groups affected; if the current-of-type is not established, or if the de-
lete processing precipitates a deadlock, the DBM returns an error code in the CCB (there is additional processing
in the case of deadlock, see "Preparing for Deadlock" below).

If necessary conditions are met, the response is as follows:

DELETE — The group occurrence and any associated member group occurrences in a set of which it is the owner
are logically deleted from the database. The deleted group occurrences will only be physically removed from
the database if this does not require examining a complete set to establish the prior occurrence of the deleted
group,

REMOVE - The group occurrence and all of its associated member occurrences are logically a..d physicaily re-
moved from the database,

DELETSEL — The group occurrence is logically removed from the database only if it does not have associated
member occurrences. If the group occurrence is the owner of a nonempty set occurrence, the DELETSEL call
is not executed and an error code is returned in the CCB.

REMOVSEL - The group occurrence is logically and physically removed from the database only if it does not
have associated member occurrences, If the object group is the owner of a nonempty set occurrence, the
REMOVSEL call is not executed and an error code is returned in the CCB,

DELETAUT — The group occurrence is logically deleted from the database, If the group is defined as the owner
of a set with automatic members, all automatic~-member occurrences will be logically deleted from the database.
Any deleted automatic=member occurrences will be treated as if they were the object of a DELETAUT call, If
the group is defined as the owner of a set with manual members, the manual=member occurrence will be de-
linked from the set, Execution of this call makes all deleted group occurrences unavailable for subsequent ac-
cess by the user. The current-of-type for groups whose occurrences are deleted and the current-of-file
(REF-C ODE) are set to zero,

DBM Routine Usage 4]

42

Modifying Data Values

The values of one or more items in a single group occurrence can be modified.

Format

ENTER MODIFY, group-name [, item-name]...

Usage Rules

1. Before executing this call, the user must initialize working storage with the new values for the items to
be modified.

2, The object of the call is the group occurrence that is current=of=type for the group named.

3. The list of item=name arguments identifies the specific items to be modified. If no list is given, it is as-
sumed that all defined items in the group are to be modified.

4. This call may not be used under any of the following conditions:

a. If the item is a calc control item and definitions of other calc control items are omitted from
the subschema.

b. If the item is a sort key for a set and definitionsof other sort keys from the same set are omitted from
the subschema.

c. If the item is a sort key and the definition of the sorted set is omitted from the subschemas,

d. If the item is a sort key for a multimember set sorted without group number as major sort key and
the definitions of the sort keys in the other member groups are not all included in the subschema.

e, If the item is a secondary index and the invert=-group definition is omitted from the subschema,

f, If the item is an indexed location mode control item,

DBM Response

If one of the above conditions is not met; if the password supplied at open does not provide an update key required
for modifying the item(s); if a new value duplicates an existing value for which duplicates are not allowed (a calc
key, sort key or secondary index item with no duplicates); if the current=of-type for the group has not been established
(e.g., by a previous retrieval or store action); or if the modify attempt results in a deadlock with another program,
the DBM returns an error code in the CCB, (Additional actions in the deadlock case are described under "Preparing
for Deadlock", below.)

If there are no errors, the item value(s) is replaced with the new value(s).

If an item to be modified is a calc control item for the group, the item values are changed and the pointers in the
group occurrences affected are modified to indicate the new base page. The group occurrence with the modified
value, however, is not physicallymoved to the new base page. If an item to be modified is a sort control item for a
set in which this group is a member, the item values are changed and the group occurrence logically repositioned
in the set based upon the modified item values.

Modifying Linkages -
An occurrence of a group whose membership in a set is defined as optional or manual can be linked to or delinked

from a set occurrence (LINK and DELINK), Also, a member group occurrence can be changed from one owner oc-
currence to another in any set in which it participates (RELINK),

DBM Routine Usage

Linking, Delinking, or Relinking Member Occurrences

Format
LINK]
ENTER J DELINK }, group-name, set-name

RELINK

Usage Rules

. The object of the call is the group occurrence that is current-of=type for the group named,

—

2. To DELINK a group occurrence from the named set, the group must be defined as an OPTIONAL member
or a MANUAL member, and the occurrence must be linked into a set occurrence,

3. To LINK @ group occurrence into the named set, the group must be defined as a MANUAL member or an
OPTIONAL member, and the occurrence must not be currently linked iifo a set occurrence.

4, To RELINK a group occurrence from onz occurrence of the named set into another, the group must be de-
fined as a member of the named sef, and the object group occurrence must be linked into an occurrence
of the set,

5. For LINK or RELINK; the set occurrence into which the object group occurrence is to be linked must be
selected, If the defined set selection technique is through location mode of owner, working storage must
be initialized with the control-item values that uniquely identify the owner occurrence, If set selection
is through current=of-set, the set occurrence should be established as current by means of a DBM call. This
would normally be done by retrieving the owner occurrence or an occurrence of a different group type that
is also defined as a member of the set, For RELINK, the current set occurrence should not be established by
retrieving an already=-linked occurrence of the named group, because that would make the already-linkea
occurrence current-of=-type and the object of the call, which is contrary to the purpose of the call, and
is effectively a null action,

DBM Resgonse

If any of the above conditions is not met; if the password supplied at open did not provide update access to the named
group; if processing the call would result in non=allowed duplicate values of sort=keys; or if deadlock with another
program occurs, the DBM returns an error code in the CCB (additional action in the case of deadlock is described
under "Preparing for Deadlock", below).

If the LINK call is successful, the object group occurrence is current of the named set.

If the DELINK procedure is successful, the group occurrence that was prior to the object group occurrence is current
of the named set,

If the RELINK is successful, the object group occurrence is delinked from its previous set occurrence and linked into
the new one. The DBM will not check to determine that the new set occurrence is indeed different from the previous
set occurrence, If the order of the named set is sorted, the DBM will initialize working storage with the values

of the sort control items from the object group occurrence to ensure that the object group occurrence is relinked
into the proper logical position in the new set occurrence,

DBM Routine Usage

43

Retriaving

Various techniques are used for retrieving specified group occurrences from the database and making them available
in the buffers. (Subsequent GET calls must be made to move the data into user's working storage.) The selection
of the technique depends upon tho specific application. Technique selection must be gaverned by the group and
set characteristics of the occurrences to be retrieved. A single general format applies for the various techniques.

Format

r FINDG, group-naome
FINDC, group-name
FINDD

f_l_l_\l__D_M, set-name

FINDN {sef-name }

group=name, procedure-nome

FINDP, {:;:J';:::me, procedure-name}
ENTER 1 FINDS procedure-name [
FINDSI, procedure-name

FINDX, group-name, item-name, procedure-name
FINDSEQ, group-name, item=name, procedure-name
FINDFRST, group-name

FINDLAST, group=name

FINDOUP, group-name

Usage Rules

1. In each form of the retrieve (FIND) call, it is assumed that any data items necessary to identify the spe-
cific occurrence of the group to be retrieved have been initialized in working storage, The data
items that are necessary depend on the specific call and are described under "DBM Response", below.

2. FINDG will not be allowed if
a. Calc or index control items for the group are not defined in the subschema.
b. The via set is not defined in the subschema.
c. The via set is defined and one or more sort keys are not defined in the subschema.

d. The via set is sorted without graup numbers as major, and sort keys of another member group are not
defined in the subschema.

3. FINDG is also not allowed for the area group established to function as set owner.
4. FINDDUP is not allowed if any of the calc control items for the group are not defined in the subschema.

5. FINDX and FINDSEQ are not allowed if the invert-group is not defined in the subschema.

DBM Routine Usage

DBM Response

1.

2.

The action in each case causes the group occurrence to be made available in one or the DBM buffers. No
other action, such as moving the group to working storage, is implied.

At the successful conclusion of any retrieve call except FINDX, the object group occurrence is recorded
as follows:

Current-of-file - The reference code of the group occurrence is stored in the REF-CODE entry of
the CCB.

Current-of -type — The reference code of the group occurrence is stored in the CURR-XXX entry of
user working storage (XXX is the numeric synonym for the group).

Current-of-set — The reference code of the group occurrence is stored in the SET-CURR entry of the
set tables for each set in which the group participates.

Group=type — The numeric synonym for the group whose occurrence is retrieved is stored in the GRP-
NO entry of the CCB. When using any retrieve call that does not explicitly identify the group name,
an occurrence of any of several groupsmay be retrieved depending on the data structure involved. After
execution of the procedure, the user program may determine the group whose occurrence was retrieved
by referring to the GRP-NO entry of the CCB.

FINDG - The FINDG (find=group) call retrieves a specific occurrence of the named group. The group
occurrence retrieved is a function of the location mode of the group, When the group isdefinedasdirect,
the occurrence retrieved is identified by *he reference code stored in the REF-CODE entry of the CCB,
When the group is defined as calc, the occurrence retrieved is identified by the randomizing procedure,
using the values of those items defined as randomize control items. When group is defined as via set, the
occurrence must be retrieved via the owner occurrence of the set. Inthislast case, the values that uniquely
identify the owner occurrence must have been initialized in working storage in addition to the values of
those items (which must be SORT KEY items) thar uaiquely identify the viagroup occurrence, When the group
is defined as indexed, the occurrence retrieved is identified by referencing the primary index to find the
"base " page for the group and then using the values supplied for those items defined as the index items for
the group to search the page set,

FINDC — The FINDC (find-current) call retrieves the group occurrence identified by the reference code
currently stored in CURR=XXX, where XXX is the integer identifier of the group named. This call is used
to again refrieve the current-of-type group occurrence,

FINDD — The FINDD (find=direct) call refrieves the group occurrence identified by the reference code
stored in the REF=CODE entry of the CCB, If there is no occurrence with the specified reference code, or
if the occurrence has been logically deleted, the DBM returns an error code in the CCB,

FINDM — The FINDM (find-master-of-set) call retrieves the owner group occurrence of the set named.
The action of this call depends on the contents of the set table for the named set.

FINDN — The FINDN (find=next) call retrieves the next group occurrence in logical sequence of the set
named if the argument to the call is a set name. The actual group occurrence reirieved depends on the
user's position in the set as indicated by the set table.

If the argument to the call is a group name, the group must be an indexed group and the call retrieves
the group occurrence with the next higher key value. If, prior to the call, the user is positioned at the
group occurrence with the highest key value, no group occurrence is retrieved, and control is returned
to the user at the address specified by the procedure-name.

FINDP — The FINDP (find prior) call retrieves the prior group occurrence in logical sequence of the set
named if the argument to the call is a set-name. The actual group occurrence retrieved depends on the
user's position in the set as indicated by the set table.

If the argument to the call is a group name, the group must be an indexed group and the call retrieves
the group occurrence with the next-lower key value. If, prior to the call, the user is positioned at the
group occurrence with the lowest key value, no group occurrence is retrieved and control is returned fo
the user at the address specified by procedure-name.

DBM Routine Usage

45

46

10.

14,

15,

16.

FINDS — The FINDS (find-serial~search) call provides for a serial search of an area for the first group
occurrence that falls within a range of reference codes. The range is defined by the user by the initial-
ization of both the FRST-REF entry of the CCB with the first reference code of teh range and the LAST-
REF entry of the CCB with the last reference code of the range. Control is returned to the user with each

-group occurrence found wiri.in the range after the DBM has incremented the value of the FRST-REF. Re-

peated execution of the call causes retrieval of each group within the range until the value of FRST-REF
exceeds the value of LAST-REF. At this point, the call exits to the address specified by procedure-name.

FINDSI = The FINDSI (find=serial -search=from=initial-reference) call operates in the same manner as
FINDS except that search limits are defined in terms of an initial reference code in FRST-REF and a num=
ber of group occurrences in LAST-REF. With FINDSI, the LAST-REF value is decremented with each group
retrieved and the call exits to the address specified by procedure-name either when the LAST=REF value
reaches zero or when the end of the area is reached.

FINDX — The FINDX (find-indexed) call locates and places into REF=CODE the reference code of the
first group occurrence that contains a value (of the item named) equal to the value in working storage for
that item. This call is only valid when the item-name has been defined as a secondary index (invert) item
for the group named. Return from this call is to the first statement following the call when a group oc-
currence is identified that contains the value supplied in working storage. To find all group instances that
match, the call must be used repeatedly within o loop without changing the value of the item in working
storage. When no matching instances are found or when no additional instances exist, control is returned
to the location specified by procedure-name. Any time the value of either the item in working storage

or the FINDX arguments is changed, the DBM assumes that a new retrieval loop is involved and identifies
the first matching group occurrence. Unlike other types of retrieval calls, FINDX does not actually re=-
trieve the identified group occurrence. The only action apparent to the user program is the availability
of the reference code of the qualifying data group occurrence in the CCB entry REF-CODE. Should the
user wish to retrieve the selected group, he may do so by using the FINDD call.

FINDSEQ — The FINDSEQ (find=sequential) call sorts all occurrences of the specified secondary index
{invert group) and serially retrieves the main group occurrences that correspond to the sorted invert group
occurrences. This call is only valid when the named item is defined as an inverted item for the group
named. The initial use of this call with a given set of arguments causes the DBM to build a sort input file
consisting of all occurrences of the invert group for the secondary index, specified by item=-name. The
DBM then relinquishes conirol to the Sort processor, which sorts the invert group occurrences on the values
of the invert item. At the completion of the sort, the DBM regains control, reads the first sorted invert
group occurrence, retrieves the corresponding main group occurrence, and updates the CCB and set tables,
as appropriate. Control is then returned to the first statement following the FINDSEQ call. Subsequent
use of the call results in the retrieval of the next sequential main group occurrence until an end of file

is reached on the sorted file, at which point control is returned to the location specified by procedure-
name. Any time group-name or item-name is changed, it is assumed that @ new sort is involved and the
above=described initial procedure is executed.

FINDFRST — The FINDFRST (find=first) call retrieves the logically first indexed group occurrence, that
is, the group occurrence with the lowest key value. This call is only valid when the group named has a
location mode of indexed.

FINDLAST — The FINDLAST call retrieves, the logically last indexed group occurrence, that is, the group oc~-
currence with the highest key value, Thiscall is only valid when the group named has a location mode of indexed.

FINDDUP — The FINDDUP (find-duplicates) call retrieves the next calc group occurrence that has random-
izing control values equal to the current contents of user's working storage. This call is only valid when
the group named has a location mode of calc and duplicates are allowed.

Prior to this call the user must have retrieved a calc group whose randomizing control values are equal
to the current contents of user's working storage, To execute this call, the DBM will find the next group
of the calc set looking for a group with duplicate values. [f none is found, an error will be returned in
ERR-CODE of the CCB. ’

If the password supplied at open does not provide all necessary retrieve keys; if the values supplied in work-
ing storage are not sufficient to identify an occurrence; or if processing the call resulted in deadlock with
another program (see "Preparing for Deadlock" below), the DBM returns an error code in the CCB.

DBM Routine Usage

Moving to Working Storage

The FIND calls only cause the page containing the selected group occurrence to be placed .. the buffer and the
current indicators to be updated for the group and for the sets in which it participates. If the user wants to process

the data in the group occurrence, the program must make an additional call. The GET call is used for this purpose.

The HEAD call may be used to both retrieve and move a set owner-occurrence.

GET Call
Purpose. To move a retrieved group occurrence to working storage.
Format

ENTER GET, group-name [, item-name]. ..

Usage Rules
1. The object of the GET call is the group occurrence identified as the current-of-type for the group named.
2. The items to be moved to working storage may be any items defined within the group.

3. The list of item-names identifies the specified items to be moved. If no list is given, it is assumed that
all items are to be moved.

DBM Reseonse

The data values in the group occurrence are mov >4 to working storage.

HEAD Call
Purpose. To both retrieve and move to working storage the owner group occurrence of a set occurrence.

Format

ENTER HEAD, set~-name

Usage Rule

Before using this call, a previous database reference must have been made to establish a group occur-ence as SET-
CURR for the nomed set.

DBM Response
This call provides a function similar to the FINDM and GET calls except for the manner in which the set tables are
updated. After execution of the HEAD call, the owner group occurrence is established as the current-of -type and

as current=of=set for those sets in which the group is a member. It is not established as current-of=set for those sets
in which it is owner,

Run-Time Statistics

Purpose. To initiate and terminate, by calls to the DBM, the collection of statistics on the performance of a pro-
grom as it accesses a database. The statistics reflect the activity of that job only.

DBM Routine Usage

47

Format

DMSSTATS
ENTER { ENDSTATS
RPTSTATS
Usage Rule

Run-time statistics collection can be initiated at any time during the operation of the program.

DBM Response
1. DMSSTATS causes the DBM to collect statistics on the activity of the specific job within the database.
Statistics include the number of EDMS calls executed, the number of groups accessed by call and the
number of physical page 1/Os.
2. ENDSTATS causes the collection of the above statistics to be discontinued.

3. RPTSTATS causes a report of the statistics to be printed. After the report is written, the internal DBM
counters for the statistics are reset to zero. A sample of the report is given in Figure8.

Run-Time Tracing
Two types of trace information are accumulated by the DBM. The first type is initiated and terminated at the re-

quest of the user program and produces printed output. The second type is automatically maintained by the DBM
and is not output.

User Initiated Trace

Purpose. To record and print the access record of DMS calls made by a program during program operation. (Listing
output can be assigned to a file and printed later.)

Format
. DMSTRACE
ENTER { ENDTRACE }

Usage Rule

The trace can be initiated and terminated at any time during the operation of the program being tested.

DBM Response
1. DMSTRACE causes the DBM to print the following information in its order of occurrence:
DBM function name and user's calling address.
Group number of group accessed and reference code of the occurrence.
Number of page reads and writes.

A sample of the trace is given in Figure 9.

2. ENDTRACE terminates the trace reporting.

DBM Routine Usage

PROCEDURE CALLS

FINDC 9
STORE 85
PAGE READS

PAGE WRITES

GROUPS
9

381

6

1

Figure 8. Run-Time Statistics Sample

<MMS»

A
;
.
Wy
v

<™ 3y

<rrian

<nEy

STh=E FUTFRED FRE LBC 2Cg2%

RIS Tt felalvR Kot

IS I A ToisTal BNT JETY
5 ledunnsnadenny
um= ACK,
[P
DT -k

THENN &

R RS DRIGHVEINL NG
Toule)

i
Yy i
(YE o F

-
S Fo

Lledt
el

12001
J1eX0ORRC 1 0=0M
R ALCRES 31e3700 0 =01
LDRT AT e CYel it U Gl e
DED M s 31300001 =000

[CINAVRY:

SYRE TR R LAC
BREATCEER M1e) 0001 0e00
DR AL S8 i lelr! B VL IS LN
kS IN RS Mae) st

ST I N LT
IREOA(T le i T O e
DRDOACCE Jle)00 Y =00
ORDACCE 59 Medl N =L
DR AL SS Jled0305L01 0200
FLEES RS B RS WL I RE VL
51 -at FLTERT L p e Lsg

SleNLaN 1L e P
Ced5N25013°00R
ClednoGouti=uls
J1e 250501 05=007%

]

LR T ol

I B

N

R VIR

GdtT &% NP DU E 1 E

,

P

)

(9%

DBM Trace Table

Figure 9. Run=Time Trace Sample

The DBM maintains a record of user's calls in a trace table. No user action is required to initiate or terminate the
maintenance of the table, nor can the table be displayed. The table may be examined in a memory dump or by using

monitor SNAP commands.

The trace table is a circular list of ten entries, controlled by a stack pointer at DEF

Q:TRCTBL in the DBM. The table itself immediately follows the stack pointer doubleword, whose first word will
contain the address of the current trace entry in the circular list. A trace entry has the following format:

bits 0-7 — binary value of an error code or zero.

bits 8-14 — binary code for type of DBM call (see Table 6).

bits 15-31 — address in the user's program from which the call was made.

DBM Routine Usage 49

50

Table 6. Trace Codes for DBM Calls

1. OPENUPD
2. OPRETSHD
3. OPENRET
4. OPUPDSHD

" 5. CREATE
6. CLOSAREA
7. DELETE
8. DELETAUT
9. DELETSEL
10. REMOVE
11. REMOVSEL
12. FINDC
13. FINDG
14. FINDDUP

5. FINDFRST

6. FINDLAST

. GET

. MODIFY
. LINK

. DELINK
- RELINK
. STORE

FINDN (group)

. FINDP (group)

. FINDSEQ

FINDX
FINDS

. FINDSI
. Not Used

Not Used

. FINDN (set)
. FINDP (set)

33.
34,
35.
36.
37.
38.
39.
40.
41.
42.

44,
45.

47.

FINDM
HEAD
DMSRLSE
DMSCHKPT
CLOSEDB
FINDD
DMSRETRN
DMSTRACE
ENDTRACE
DMSSTATS
ENDSTATS
RPTSTATS
DMSABORT
SETERR
RESETERR
DMSLOCK

Error Control

condition.

Format

ENTER 9

DMSRETRN

Usage Rule

All locations specified by procedure-name must be within the user's program area.

DBM ResEonse

1. SETERR — Establishes the location that is to receive control in the event of a data-dependent error
If no error-code-name arguments are given, procedure-name will receive control on any
data-dependent error. If SETERR is entered with an error-code-name value that already has a procedure-

(codes 1-20).

DMSABQORT, procedure-name
[DMSLOCK, procedure~name

[SETERR, procedure-name [, error-code-name). ..

RESETERR [, error-code-name]. ..

-~

Purpose. To enable the user's program to maintain a degree of control over the handling of DBM-detected errors
by issuing a call that specifies a location to which the DBM is to return control in the event of a specified error

name established for it, the new procedure-name will replace the previous one.

2. RESETERR - Disassociates a data-dependent error code value from a procedure-name so that the DBM will
no longer trap to that procedure name if the error is encountered. If no error-code-names are given, all
error code values are dissassociated.

DBM Routine Usage

3. DMSRETRN = Causes control to be returned to the statement immediately following the last DBM function
call that resulted in an error for which the user had established an error-control procedure. The DMSRETRN
call is used fo exit from a procedure established by the SETERR call. The DBM -ill only retain the address
of the last function call that resulted in an error,

4. DMSABORT — Establishes the location that is to receive control in the event of a non~data~dependent er-
ror other than deadlock (codes 31-137), The location established to receive control should be a wrapup
routine as no additional DBM calls will be allowed. ‘

5. DMSLOCK — Establishes the location that is to receive control if it causes a deadlock (error code 30) with
another program that is sharing an area,

Preparing for Deadiock

There is a possibility of deadlock whenever two or more programs are concurrently accessing the same areq, if at
least one of them is updating the area (i.e., at least one program has used OPUPDSHD to open the area and at least
one other program has used either OPRETSHD or OPUPDSHD). The deadlock occurs when two programs are each
waiting for the other to release a locked page in order to proceed. An example is: Program A reads page 1 causing
it to be locked with shared status, Program B then also reads page 1 locking it with shared status (many programs
may lock a page with shared status without interfering with each other). Program A then attempts to update page 1,
resulting in a request to promote the lock status to exclusive. This promotion is delayed waiting for Program B to
remove the shared lock on page 1, If, instead of removing the shared lock on page 1, Program B also attempts to
promote to exclusive lock status to update page 1, it will be delayed, waiting for Program A to remove its shared
lock. The two programs are in deadlock and neither can proceed,

The monitor Enqueue/Dequeue function will detect u deadlock situation and return an error code to the program
that finally caused the deadlock (Program B in the above example). The DBM will recover the database using any
before images on the program's transient journal, thus undoing the program's database changes back fo its most recent
DMSRLSE call, or back fo the beginning of its operation, if there was no DMSRLSE.

DMSRLSE Call

Purpose, To release pages that are locked for the program and make them available for reading and/or updating by
other concurrently operating programs. The DMSRLSE call also establishes a point in the sequence of a program's
operation as a base point for recovery in case of deadlock, The call notifies the DBM that some defined portion

of the program's logic and/or input data has been completed, and that only subsequent database changes should be
nullified ifa deadlock occurs. The call may also be used, with the optional recovery=name specified, to erase pre-
vious changes to a shared database (for example if the program detects that a portion of its input has been in error).

Format

ENTER DMSRLSE[, recovery-=name]

Usage Rules

The call may be made at any time after all areas are open, but is effectively a null action if no area is opened for
shared access, or if no database accesses have been made,

¥

DBM Response

If there are no open areas, the DBM returns an error code in the CCB, If there are areas open, and the optional
recovery=name is specified, the DBM restores any before images from the transient journal fo the database, If
recovery-name is not specified, the DBM writes all modified pages currently in core back to the database, In
both cases the DBM:

1. Deletes all before images currently on the transient journal,

2, Sets the program's position in the database to zero; i.e., zeros out all set tables and current-of-type for
each group.

3. Releases all locked pages,

Database areas opened to the program are not closed,

DBM Routine Usage

51

52

Checkpointing

Purpose. To add an additional protection to the integrity of the database by allowing the user's program to period=
ically request that the DBM write all modified pages to the database,

Format

ENTER DMSCHKPT

Usage Rule

The using program may call the checkpoint routine at any time during its operation,

DBM Response
The DBM will write ail modified pages currently in the data buffers to the database area file. After-images will be

written to the journal file if jounaling is being done. No areas are closed, nor are any currenty indications
changed. The database lockout bit will be reset in all updated areas.

Terminating Processing

Purpose. To close opened areas when a program's database activity is finished.

Format
CLOSEDB
ENTER{CLOSAREA' area-name-1 [, areo-name-Z]. . }

Usage Rules

1. CLOSEDB terminates processing in all currently opened areas.
2, CLOSAREA terminates processing of those areas specified by area-name-1, area~name-2, etc,

3. When the last opened area is closed, the user may request that the DBM release back to the monitor any
common dynamic core acquired for the subschema and data buffers, The user requests this release of core
by setting the contents of cell REF-CODE to a negative value before executing the close call,

DBM Response

The DBM interacts with the host operating system to close the are files. If, however, CLOSAREA is used to termi-

nate processing in an area which has pages enqueued or if the area is open for update and other areas are left open
for update then the pages are not released and the operating system close is not issued until the remaining areas are
closed with.a CLOSAREA or CLOSEDB procedure call.

Error Processing

During execution of anEDMS program, two types of error conditions may occur and be recognized by the DBM. The
first type involves data-dependent situations and must be anticipated by the user program. The second type involves
situations that result from inproper use of the DBM routine calls, from invalid database definitions reflected in the
subschema, from hardware or software malfunctions that cannot be recovered by the DBM, and from deadlock with
another program that is sharing an area,

Error Processing

If an error is detected by the DBM, an identifying error code is placed in the ERR-=CODE entry of the CCB, If an
error-control location was established for the error code eiicountered, the DBM returns control to that location, If
no error-control location exists, control is returned to the location immediately foll~wing the DBM function
call.

If the error encountered is datu-dependent (see Table F-2 in Appendix F), the DBM returns the database to
its logical position before the call and makes the appropriate return to the user, Additional DBM calls will
be accepted,

If the error is non-data-dependent other than deadlock (see Table F-3), the DBM closes all open areas before
returning to the user. If any further calls are made to *he NBM, the job is terminated abnormally,

If there is a deadlock, the program's position in the database (i.e., values in the set tables and current-of-type
for each group) will be set to zero, The database areas are not closed and suksequent DBM calls will be processed.

Journaling

The DBM includes a facility to optionally create a journal file for each job step that updates an area of the
database, thus providing the data necessary to recover the content of the database in the event of hardware or
software failure.

The journal file will be generated if an area defi..ition specified journaling, provided the proper DCB assignments
are made (see "DBM Operational Interfacc”, below). The journal file is described in Appendix E.

A separate journat, called a transient journal, 1s created to contain before images for recovery of shared databases.
No DCB assignments are needed. The before images on the transient journal contain only the database page image.
(See Figure D=1.)

Database Lockout

The DBM will maintain a database lockout but in page 1 of each area to determine the integrity of the area. If an
area is opened for exclusive updute, the lockout bit will be set to 1 in the database, just prior to the first write ini=
tiated by a user update. The lockout bit is reset to zero when the area is checkpointed or closed by the user. Ter-
mination of a program without a user=initiated EDMS close will leave the lockout bit set. If the DBM detects that
the lockout bit is set when a user opens an area, an error code is returned to the user in the CCB. The DBM will
not set the lockout bit if the area is opened for shared update. It will, however, check if the bit was left set by a
previous program. '

Summary Statistics Collection

The DDL allows for the specification of statistics collection on group and/or set activity. The DBM will collect
the statistics during execution of the user program. These statistics, which are distinct from the run=time statistics
described above, provide a historical summary of all jobs affecting the database. The statisties are accumulated
in space reserved for them in the user's working storage area and written to a file when the area is closed. The
contents of the file may be examined subsequently by means of the Summary Statistics Utility processor (DMSSUMS,
see Chapter 5 for a description of this processor). Appendix E shows the format of the statistics file. The statistics
collected are
Area-Open Mode, Retrieve, Update, or Create

Total Page Reads and Writes

Total Groups Accessed

Total Groups Inserted

Total Groups Deleted

Journaling/Database Lockout/Summary Statistics Collection

53

54

Group~-Total Accesses
Total Inserts

Total Deletes

Set-Total FINDN calls
Total FINDP calls
Total HEAD and FINDM calls

DBM Operational Interface

The DBM will exist either as a nonshared library or as a combination public library and nonshared library at the in-
stallation's option. Linking of a user's program to the DBM will depend on the option selected.

Total Nonshared Library

The DBM will exist as three files, ;DIC, :LIB, and :BLIB, in account DMSLIB. The files :DIC and :LIB are for use
by the overlay loader while :BLIB is used by the one-pass loader.

To link a program to the DBM using the overlay loader, account DMSLIB should be specified as an UNSAT option
on the LOAD command. For example,

ILOAD (GO),(EF, (SUB1)), (UNSAT, (DMSLIB)). . .

To link a program to the DBM using the one-pass loader, file :BLIB in account DMSLIB should be specified as a
library identification in the LINK command. For example,

ILINK MYROM ON MYLMN;:BLIB. DMSLIB ...

Combination Public and Shared Library

The nonshared portion of the DBM will exist as three files, :DIC, :LIB, and :BLIB, in account DMSLIB. The shared
portion will exist as file :Pn, where n is a digit selected at the time the DBM is SYSGENed.

To link a program to the DBM using the overiay loader, account DMSLIB and the file :Pn should be specified as
UNSAT options on the LOAD command. For example,

ILOAD (GO), (EF, (SUB1)), (UNSAT, (DMSLIB), (:P2)). ..
To link a program to the DBM using the one-pass loader, Pn (the colon is omitted) should be specified as a library
search option and file :BLIB, in account DMSLIB, should be specified as a library identification in the LINK com-

mand. For example,

ILINK (P2) MYROM ON MYLMN; :BLIB. DMSLIB. ..

DBM DCB Requirements
The names for the DCBs used by the DBM are as follows:

Journal DCB — F: JRNL.
Subschema DCB — F:SSCH.

DBM Operational Interface

Transient Journal DCB-F:TJRL
Statistics DCB — F:STAT.
Database Area DCBs — F:DBnn, where nn may be any two digits from 01 through 64.

The F:JRNL, F:SSCH, F:TJRL, and F:5TAT DCBs are automatically included in the user's load module by the loader.
DCBs for the database areas must be included by the user as input to the loader. Element files are included in
account DMSLIB for this purpose. The element file names and the DCBs in each file are as follows:

DCB1 F:DBO1 1 DCB
DCB2 F:DBO2 and F:DBO3 2 DCBs
DCB4 F:DBO4 through F:DB07 4 DCBs
DCB8 F:DBO8 through F:DB15 8 DCBs
DCB16 F:DB16 through F:DB31 16 DCBs

DCB32 F:DB32 through F:DB64 33 DCBs

The user must specify, in the LOAD or LINK command, the proper element file(s) to provide a DCB for each area
defined in the subschema used by his program.

Excmele
Three areas defined in the subschema:
ILOAD (GO), (EF, (DCB1,DMSLIB), (DCB2, DMSLIB)), (MAP), (UNSAT, (DMSLIB))

"The DCBs thus included are F;DBO1, F:DB02, and 7:DB03. The files for the three areas of the database must be
assigned to these three DCBs. It is immaterial which file is assigned fo which DCB.

Example
Four areas defined in the subschema:
ILINK MYROM, DCB4, DMSLIB ON MYLMN;:BLIB. DMSLIB

The DCBs included are F:DB04, F:DB05, F:DB06 and F:DB07.

DCB Assignments

The database area files and the subschema file may exist in public RAD or disk storage, or on a private disk pack.
If they are on a private pack, the appropriate serial numbers must be included in the ASSIGN command. If the
files exist in an account other than the one in which the job is to be run, the account-name of the ac-ount that
owns the files must be specified in the ASSIGN command. A mode is not necessary in the assignment because the
DBM will open the files with a mode corresponding to the type of open call initiated by the user for the area.

Example
Subschema and database area named AREA1 on public storage database area, AREA2 on private pack number P124;

IASSIGN F:SSCH, (FILE, MYSUBSCH)
IASSIGN F:DBOZ2, (FILE, AREAT)
IASSIGN F:DBO3, (FILE, AREAZ), (SN, P124)

The journal and statistics files may be assigned to a file on RAD or disk storage, or to a labeled tape. A mode is
not required because the DBM will default the mode to OUT when the first database area is opened by a program.
If the program executes multiple opens and closes of the database areas, the DBM will initiate subsequent opens of
the journal and statistics files as INOUT, thus concatenating all of the output for any one job step through these
DCBs. If the user wishes to concatenate the output of several job steps, he may assign the DCBs as mode INOUT.

DBM Operational Interface 55

56

5. EDMS UTILITY PROCESSORS

The utility processors perform a service function in support of the other EDMS capabilities: initializing areas before
any data is stored; dumping the total contents of an area and saving it for backup; updating the saved data with jour~
naled pages for recovery purposes; printing selected portions of an area, journal, or backup file for visual checking;
and printing summary statistics collected by the DBM ipto a statistics file.

Database Initialization (DMSINIT)

DMSINIT initializes an area or areas of a database, or specified pages in an area., If a whole area is involved,
DMSINIT determines the required size for the area and creates the file by writing page headers and optional check-
sums on all data and index pages. If inventory is specified in the area definition, DMSINIT writes page headers
and optional checksums on the inventory pages and fills in unused space with zeros.

DMSINIT Error Messages are shown in Table F~5, Appendix F,
The user may select the areas to be initialized, or specific pages within selected areas. If no areas are selected,
all the areas defined for the database will be initialized. In all cases, the area file must be assigned (see "Utilities

Operational Interface", below) if an area is to be wholly or partially initialized. Areas are selected by one or more
area statements.

AREA Statements

Purpose. To cause DMSINIT to completely initialize one or more areas, or reinitialize a range of pages within each

of one or more areas. A single AREA statement may designate many areas to be completely initialized, but a sepa~

rate statement is required for each area in which specified pages are to be reinitialized,
Format

AREA = area-name~-1 [, area-name~-2[,area-name-3]. .]

RAN GE=(r], rz)[, (r3, r4)]. ..

Usage Rules

1. The AREA statement must end with a period,

2. At least one space must precede the word RANGE,

3. A space may precede or follow an equals sign, a comma, a left or right parenthesis, or a period,

4. The RANGE option defines the page range or ranges to be initialized for an existing area. Each page range

specified is validity-checked to determine that rq is equal to or less than rp, and that the page numbers used
fall within the total number of data pages in the area. The RANGE must not include index or inventory pages.

5. Each AREA statement should begin on a new input line, but a statement may be continued on as many lines
(records) as are needed. No continuation character is required, as a statement is considered continued
until a period is encountered,

6. If thespecified RANGE includes any pages within the page range of an indexed group, it must include all

pages in that range. The specified RANGE may not include pages within the area’s overflow range if it does
not include the indexed group's pages, and it must include all pages of the overflow range if it includes any,

Dump Processor (DOMSDUMP)

This processor dumps either all or selected parts of existing data base areas to a sequential file or to a printer. When
the output is defined as a sequential file, the file has the same format as the journal file except that each data page
image is dumped as an after-image, Figures E-1 through E-4 in Appendix E show the journal/dump file format,

EDMS Utility Processors

When the output from DMSDUMP is defined as printed output ard the job is run in batch, each page is formatted as
shown in Figure 10, The line indicated by (1)is a print header line containing relative page number and the number
of words of available space. The line indicated by (2) contains the two-word page heade:. The line indicated by

contains the decimal representation of the line number of the group occurrence, the group number, the relative
position on the page, and the group occurrence's reference code. The line indicated by @ is the begmmng of the
actual values in the group occurrence. The line indicated by@ shows the EBCDIC representation of the data (data
that does not convert to printable characters are represented by dots).

When printed output is requested by a terminal job, the output is as shown in Figure 11, The () indicates the header
line containing page number and number of words of available space, The@ indicates the two-word EDMS page
header (see Figure D-1 for data poge header format), The first word of the page header shown in Figure 11 contains
page number (1), page type (01, data page), the must-write~flag reset, and the number of words of available space
(1EC). The second word contains the Control Set pointer {areu 2, page 1, line 2). The printed line in Figure 11,
indicated by the (3) , contains the line number, group number, relative word position in page, and reference code
of the first group occurrence. Group number, printed as zero in this case because page 1 line 1 contains a DBM-
generated dummy group occurrence, is in the range 1 to 999 for user-defined groups. The line indicated by the ®
in Figure 11 is the beginning of the actual group occurrence, and the line i:dicated by @ is the cheéksum for the

page.

DMSDUMP Error messages are shown in Table F=6 in Appendix F, The processing options of DMSDUMP are selected
by input directives consisting of a type identifier followed by one or more area selection specifications.

If the database is password-protected, a password specification must precede the first directive. The password speci-
fication has the following form:

PASSWORD = 'user-password'

Should a request be made for a selection of groups whose access codes are not authorized by the password given, the
groups will be skipped. Items for which the password is not authorized will be zero filled,

LIN/GPN/WRD/REF «CD DATA PAGE (0000005 SPACE AVAILABLE 453
C:)oooosscs 02000501 .
C;%xzzoozooa/ooosot
201320007 02000502 00000014 F2FOFOFO 0GO0000A 020C0S08 02000804 (:D-............aooc............
002/200/009/000502
02320007 02000503 000C002A F2FOFOFO 00000014 02000502 02000502 $9000000000002000000s0r0n0ven
003/200/016/000503
03320007 02000500 00000032 F2FOFOFO 00000018 02000503 020C0503 ®008000000000200Co00nrranneny
004/201/023/000504
064324007 00000006 020€0501 020005C5 02000504 02000504 00000000 ®00 seesrerattrrserasersenges
005/203/030/00050%
05324007 00000007 02000504 02000506 02000505 02000505 00000000 ®ee seseneceresseerrrareneney
006/201/037/000506
06324007 00COC008 02060505 0200507 02000506 02000506 000C0C00 T Y T R
007/201/044/000507
07324007 00000009 020C0506 02000508 02000507 02C00507 00000000 ®es ssvevetssrnereersasenrey
008/201/051/000508
08324007 0000000A 02000507 02000501 02000508 02000508 00000CO0 ®ev seesresaeanetaterarenseny
CHECKSUM 3A650028

Figure 10, DMSDUMP Output Sampie (Batch Job)

Dump Processor (DMSDUMP)

57

INMSDUMP »

>PASSWORD=*11111111"

LIN/GPN/WRD/RFEF=CD
000015EC 02000102
001/7000/7002/7000101

01FA8003 02000308

CNORONO

0n2/200/0057000102
02320007 02000103

0037200/012/7000103

LIN/GPN/WRD/REF~CD
0N0025E8 02000201
001/200/7002/7000201
01320007 02000202
002/200/009/000202
02320007 02000203
003/7200/016/000203

03320007 02000200

ISFT F:DBOl DC/ARFA=-2

>PRINT ARFA=ARFA-2 CIPHKEY='1234"

03320007 02000100

ISET F3:SCHFE DC/MSTRSCH

DMSDUMP - EXTENDED DMS

RANGE=(1,2).

DATA PAGE 0000001 SPACF. AVAILABLF 492

02000408

00000016 F2FOFOF0 00000004 02000102 02000102

0000002C F2FOFOF0 00000016 02000103 02000103
CHECKSUM FF40865F

DATA PAGE 0000002 SPACE AVAILABLE 488

00000006 F2FOFOF0O 00000002 02000201 02000201
00000010 F2FOFOF0O 00000008 02000202 02000202

00000026 F2FOFOF0 00000012 02000203 02000203

CHECKSI)M F3690D39

Figure 11,

58 Dump Processor (DMSDUMP)

Sample DMSDUMP Terminal Job

Dump Directives

Purpose. To specify the type of output desired and to identify areas, lines, and groups to ... processed. Multipie
directives may be supplied. They are processed serially by DMSDUMP in order of input, with no attempt made to
minimize passes through the database area.

Format
'—AREA_= ared-name]
[CIPHKEY = user-cipher=key]
LINE }_ ~
(oune {GROUB = (N, N,)
PRINT

GROUP = N5[, N,]...

[RANGE = (r], r2)[l (r3/ r4)]' . ']

Usage Rules

1. The directive type identifier may begin in any character position and may be followed by any number of
spaces, and selection parameters may consist of several lines. A period is used to terminate a directive,
At least one space is required to separate hvo selection parameters. Spaces may precede or follow an
equals sign, a comma, a left or richt ou.enthesis, or a period.

2. DUMP/PRINT —Specifies that the selected portion of the database is to be output to a sequential file
(DUMP), or to a formatted print repori ‘PRINT)., The formatted print report contains the hexadecimal
representation with EBCDIC alongside, if the ;ch is run in batch. The output of a terminal job does not in-
clude EBCDIC. :

3. AREA —Identifies the specific area fo be processed. Should AREA not be supplied by the user, ali areas
of the database will be processed, (Area~name is the name of an existing area to be processed.)

4, CIPHKEY — Specifies that deciphering is required in order to produce the requested print report, (User-
cipher-key is the cipher key associated with the data in the area to be printed.)

5. LINE —Specifies the span of lines within a data page to be printed, Not legal if GROUP is specified.

6. GROUP —Is group number, which specifies a span of groups or some specific groups to be printed, Note
that CIPHKEY, LINE, and GROUP are not allowed with DUMP and are valid only when the AREA param-
eter is selected. (Nj, N2) permits the user to specify a span of lines or a span of group numbers to be pro-
cessed. Ngz[, NgJ... allows the user to specify up fo eight group numbers of groups whose cccurrences are
to be processed, GROUP may not be duplicated for a single area.

7. RANGE — Defines one or more page ranges fo be selected from an area of a database. Each range specified
is checked to confirm that it falls within the page range of an area (including inventory pages), and the
ry value is checked fo determine that it is equal to or less than the ry value. No check is made for over-
lapping ranges; i.e., all selected pages in each range are output. If no RANGE parameter is supplied,
the complete area is selected and sent to the output file. In this case, data, index, and inventory pages
are written to the output file, RANGE must be the last parameter specified for an area.

Load Processai {SMSLOAD)

DMS LOAD restores all or selected parts of existing database areas from a sequential file on magnetic tape, RAD, or
disk. Its output may be directed to another sequential output or to a printer.

The input file must be a single file created as a journal file by the DBM or a dump file created by the EDMS Dump
processor. In either case, the file format is as defined in Appendix E.

Load Processor (DMSLOAD) 59

60

When the output is directed to a database area, each page selected is written over (replaces) the corresponding
area page. Optionally, the area is reciphered and the inventory pages are updated to reflect the condition of each
data page restored,

DMSLOAD must always refer to existing areas of a database. Note that if a specific area no longer exists in the
database, the user should initia'ize it before using DMSLOAD to restore it.

When the output is directed to a sequential file, the selected pages are written to the file in the same sequence
and format as they are found on the input file, The ability towrite to a second sequential file makes it possible to
preselect before- or after-images from a journal file for use in recovering the database,

When the output is directed to a printer, the selected pages are formatted the same as in DMSDUMP output (see
Figures 9 and 10),

The processing options of the Database Restore routine are driven by directives supplied via the SI input file, A

directive consists of a type identifier optionally followed by an AREA selection specification, Each area specifica-
tion consists of an area identifier optionally followed by one or more area-level selection parameters,

DMSLOAD Directives

Purpose. To specify the form of the output and to select specific types of page images or specific pages to be
processed,

Format

AREA = area-name

[CIPHKEY = user-cipher-key]

LOAD) roerope](RATE = mm/dd/Y)’[,mm/dd/yy]}I
TAPE IAFTER] C [NEWCKEY = new-user-cipher-key] |
PRINT { TIME =hh:mm[,hh:mm]]

[INvuPD]

[RANGE = (r}, rp)[, (g v)]

Usage Rules

1. Each selection parameter must be separated from the next by at least one space (many spaces are the same
as one space). A period is required to terminate a directive, Spaces may precede or follow an equals
sign, a comma, a left or a right parenthesis, or a period.-

Each directive must begin on a new input line (record).

2. LOAD —Reloads ali or selected parts of an existing database from a sequential file on magnetic tape, RAD,
or disk,

3. TAPE —Recreates a sequential file on another magnetic tape, RAD, or disk with its selected output.

4. PRINT = Displays all or parts of the database from a DMS dump tape or journal tape to the printer or .
terminal,

5. BEFORE or AFTER — Specifies that only the before or after page images are to be selected from the input
file. If not specified, both types of page images are selected.

6. DATE and TIME are used to select pages from the input file. When a single date is given, only pages for
that date are selected, When two dates are given, an inclusiverange is defined and all input pages within
that range are selected, Also, the first date must chronologically precede the second, The time param=
eter is a logical extension of the date parameter and is used in the same manner. If both are used for a
given directive, the first time value is assumed to be the time for the first date and the second time value
for the second date.

Load Processor (DMSLOAD)

7. AREA — Allows user to specify the area he intands to process, If AREA is not supplied by the user, none of
the following area-level selection parameters siiouid appear, and all areas of the dotabase will be pro=
cessed, (Areg=-name is the name of an existing area to be processed.)

8. CIPHKEY = Specifies that deciphering is required in order to produce the requested print report in PRINT
option or that an area of the database in LOAD option is to be reciphered,

9. NEWCKEY — Specifies that the area defined in the area identifier will be reciphered using a new cipher
key, NEWCKEY can only be specified when LOAD directive is selected. (New=user-cipher-key is a
one- to four-character string that will be used as a new cipher key to recipher the area specified,)

10. INVUPD — Has meaning only when used with the LUAU directive, When INVUPD is specified, DMSLOAD
updates the inventory pages of the area specified with the space available as defined by each page re~
stored, When INVUPD is not specified, it is assumed either that the inventory pages were restored from the
tape file by adirective that included the inventory pages or that it is not necessary to update the inventory,

11, RANGE -- Selects one or more page ranges within the specified area to be processed. Must be the last pa-
ramater specified for an area.

Summary Statistics Processor (DMSSUMS)

DMSSUMS outputs in print format the total contents of the statistics file generated by the DBM or selected counts
from that file. The user may select area counts, oroup counts, or set counts for all or specified area, groups, and
sefs by means of statistics selection specificatic.is irput to DMSSUMS. A valid schema must also be input,

The output from DMSSUMS is in the form shown in Figure 12. The information is output in the order in which it
occurs in the statistics file, DMSSUMS error messages are shown in Table F-8, Appendix F. Statistics File format
is shown in Appendix E, The statistics file is not moditied or deleted by DMSSUMS, it may be extended in subse-
quent jobs (see "DBM Operational Interface", Chapter 4) or it may be deleted,

DMSSUMS HERE

DMS SUMMARY STATISTICS
COLLECTED DURING JB3+0000C% 12,26/72 1335¢C

o GE BPENWMEDE

AREA«STATISTICS #GROUP #GRIUP »2ROUP #PA

£ ¢ ACCESSES INSERTIONS DELETIONS ACCESSES
AREA=A 216 27 7 118 UPDATE
GRBUP=STATISTICS ¥GRBUP #GROUP #GROBUP
SRev et ACCESSES INSERTIONS DELETIEGNS

GRBUP=A 9§ 10 2

STATISTICS F INDN F INDP HEAD+F INOM

SET- 1sTic CALLS CALLS CALLS
SETeA 50 16
GROUP=STA"!STICS #GROYP #GROUP #GROYP

ACCESSES INSERTI®NS DELETIONS

GROUP=B 2

Figure 12, DMSSUMS Sample OQutput

Summary Statistics Processor (DMSSUMS) 61

62

Statistics Selection

Purpose., To designate the areas, groups, and sets for which statistics are to be printed,

Format

[AREA _ {ir:f-nome {, area=name-2].. }] .

group-name-1 [, group-name-2].. }]

[croue - (ALl

_ [set=name=1 [, set-name-2]...]
[SET'{ALL }

Usage Rules

1. The AREA, GROUP, and SET clauses may be input in any order and may span as many input lines as neces=
sary. The period is required fo terminate the input. ALL may be specified only once each for AREA,
GROUP, and SET.

2, At least one space is required preceding the words AREA, GROUP, and SET, and many spaces are the same
as one except that a complete line of spaces is treated as an end=of-file. Spaces may precede or follow
the equals sign, the comma, and the period.

3. AREA indicates that statistics for the designated areas are to be printed. The area=names must be in the schema.

4, GROUP indicates that the statistics for the designated groups are to be printed, The group-names must be
in the schema,

5. SETindicates that the statistics for the designated sefs are to be printed. The set-names must be in the schema,

Utilities Operational Interface

All DMS utilities may be operated in batch mode or from a terminal inCP-V. All four prompt with a > character and
treat a line-feed or carriage-return in response to the first prompt as an end-of-file on the input. Input directives
and selections are read through the M:S1 DCB and print output and error messages are written through M:LO.

DMSINIT

DMSINIT requires file assignments for the schema that describes the areas to be initialized and for the areas them-
selves. It uses the DCB F:SCHE for the schema and F:DBnn (where nn is any two=digit combination between 01 and
64) for the areas. Any DBnn can be used for any area. If an area is to be updated or dumped by a job run in an
account other than the one in which DMSINIT is run, WRITE account should be specified in the area assignment.

Typical Deck Setup Examples (DMSINIT)
1. Initialize all areas of a database:

IASSIGN F:SCHE, (FILE, SCHEMA)
IASSIGN F:DBO1, (FILE, AREAT)
IASSIGN F:DBO02, (FILE, AREA2)
1ASSIGN F:DBO3, (FILE, AREA3)
IDMSINIT

No input is supplied because the database contains three areas, all of which are to be initialized.

2. Initialize selected areas of a database:

IASSIGN F:SCHE, (FILE, SCHEMA)
|ASSIGN F:DBO1,(FILE, AREAT)
IASSIGN F:DBO3, (FILE, AREA3)

IDMSINIT
AREA =AREA3,AREAT.
IEOD

Utilities Operational Interface

3. Reinitialize a portion of an existing area:
IASSIGN F:SCHE, (FILE, SCHEMA)
IASSIGN F:DBO1, (FILE, AREA3)
IDMSINIT
AREA = AREA3 RANGE = (3, 8), (16, 20), (51, 60).
IEOD

The result from the above setup is that pages 3 through 8, 16 through 20, and 51 through 60 of AREA3
are reinitialized. '

DMSDUMP

The user must supply !ASSIGN cards for the following files used by the Dump processor:
Database schema file (F:SCHE),
Output dump sequential file (required only when Dump directive is used (F:DUMP),

Each area to be processed (F:DBnn),

Typical Deck Setup Examples (DMSDUMP)

1. Dump all areas of the database to a sequential file:

IASSIGN F:SCHE, (FILE, SCHTMA,
IASSIGN F:DUMP, (LABEL, DUMPDB), (SAVE), ;
I (SN, 1234)
IASSIGN F:DBO1, (FILE, AREA-1)
IASSIGN F:DBO2, (FILE, AREA-2)
IASSIGN F:DBO3, (FILE, AREA-3)
IDMSDUMP
DUMP
IEOD

The above setup is to dump the database with three areas (AREA-1, AREA-2, and AREA-3) to a sequeniial
file (DUMPDB) on a labeled tape (SN, 1234),

2. Dump a portion of an area of the database to a sequential file:

IASSIGN F:DUMP, (LABEL, DUMPDB), (SAVE), ;
I (SN, 1234)
IASSIGN F:DBOI, (FILE, AREA-3)
IASSIGN F:SCHE, (FILE, SCHEMA)

IDMSDUMP

DUMP AREA = AREA-3

RANGE = (51, 80).

IEOD

The above shows that the contents of pages 51 through 80 of AREA=3 are dumped fo a sequential file on a
labeled tape.

3. Output on printer a portion of an area:

1AZS"GN F:DBOI, (FILE, AREA-2)
A3SIGN F:SCHE, (FILE, SCHEMA)

IDMSDUMP

PASSWORD ='TEST3001'

PRINT

AREA=AREA-2 GROUP=16, 30, 101, 298 .
IEOD

Utilities Operational Interface

&3

64

The result from the above setup is to have all occurrences of group 16, 30, 101, and 298 of AREA-2
printed on printer output. Note that occurrences of groups whose access codes are not authorized by the
password will not be printed and zeros will be printed instead of the values of items not authorized.

DMSLOAD
The user must supply !ASSIGN cards for the following files used by the Database Restore processor:
* Input journal or dump file (F:LOAD),
Database schema file (F:SCHE),
Depending on output functions specified, |ASSIGN cards are required for the following:
Each area (file) of DMS database (F:DBnn).

OQutput dump tape file (F:DUMP),

Typical Deck Setup Examples (DMSLOAD)

Restore database from a dump tape:

IASSIGN F:LOAD, (LABEL, DMSDP), (SN, 1234)
IASSIGN F:SCHE, (FILE, DMSCHEMA)
IASSIGN F:DBO1, (FILE, AREA-A)
IASSIGN F:DB02, (FILE, AREA-B)
IASSIGN F:DBO3, (FILE, AREA-C)
IDMSLOAD
LOAD.
IEOD

The above setup is to restore from labeled tape #1234, Before doing so, user must be sure that AREA-A,
AREA-B, and AREA-C exist in the database. (For a nonexisting area, user should initialize one and then
use DMSLOAD to restore it.)

Display a portion of the database on printer:

IASSIGN F:SCHE, (FILE, DMSCHEMA)
IASSIGN F:LOAD, (LABEL, DMSDP), (SN, 1234)
IDMSLOAD - :
PRINT
AREA=AREA-B CIPHKEY='BUG'
RANGE=(2, 5).

This setup will print pages 2 through 5 of AREA-B from a journal file or dump file,

. _Recover an area using BEFORE images from a journal tape.

IASSIGN F:SCHE, (FILE, DMSCHEMA)
IASSIGN F:LOAD, (LABEL, JOURNAL), (SN, 1234)
IASSIGN F:DBOT, (FILE, AREA-A)

IDMSLOAD

LOAD BEFORE AREA=AREA-A,

IEOD

The above setup enables a user to recover AREA=~A to its condition prior to the creation of the journal tape.
Recipher an area:

IASSIGN F:SCHE, (FILE, DMSCHEMA)
IASSIGN F:DBO1, (FILE, AREA-C)

Utilities Operational Interface

IASSIGN F:LOAD, (LABEL, DMSCHEMA), (SN, 1234)

IDMSLOAD
LOAD AREA=AREA-C
CIPHKEY='BUG' NEWCKEY='DOGS’,
IEOD

This setup changes the cipher-key associated with the area from 'BUG' to 'DOGS’.

DMSSUMS

The user must supply !ASSIGN cards for the following files processed by the summary statistics processor:
The statistics file output by the DBM (F:STAT),

The schema file for the database (F:SCHE).

Typical Deck Setup Example (DMSSUMS)

IASSIGN F:SCHE, (FILE, DMSSCHEMA)
IASSIGN F:STAT, (LABEL, SUMSTAT), (SN, 5678)

IDMSSUMS

AREA=ALL GROUP=GROUP-1, GROUP-2, GROUP-3 SET=ALL.

This setup causes all area statistics, all set statistics, and the statistics for GROUP-1 and GROUP-2 to be printed
from o statistics file on labeled tape.

Utilities Operational Interface 65

6. DATABASE ANALYSIS PROCESSOR

The Database Analysis Processor (DMSANLZ) is the portion of the subsystem that performs the restructuring
requirements analysi. and schcdules processes for actual database restructuring. DMSANLZ performs the following
major functions:

1. Restructuring i’rocess Control Language (RPCL) processing.
2. Component ussociation and attribute change analysis.

3. Data load sequence determination.

4. Conveyance process generation,

5. Restructuring process and file usage reporting.

By use of the RPCL, the user provides the Restructuring Subsystem with the information needed to access the source
and target schemas and database areas. The RPCL also allows the user to specify a preferred sequence for loading
the data groups into the target areas and the translation of certain types of items from the source to the target
database. ‘

1

RPCL Syntax

The entry is the major element of RPCL syntax. Each entry is composed of one or more clauses and is terminated by
a period, followed by a space. The first clause in an entry identifies that entry. Each succeeding clause begins
with a keyword (optionally preceded by a semicolon) identifying the clause. The second and subsequent clauses in
an entry may appear in any order, but the syntactic units within each clause must appear in a specified order.

Clauses are composed of words, literals, file identifiers, volume serial numbers, and separators; each of these is
considered to be a syntactic unit.

Words

A word is a string of characters that may be either alphabetic or numeric and may contain embedded hyphens. A
word must not begin or end with a hyphen and must contain at least one nonnumeric character.

There are two basic types of words, reserved and nonreserved. Reserved words in the RPCL are the same as those

in the DDL (see Chapter 3)and are legal only where specifically required. Nonreserved words may be either names
or fill words; their usage is context dependent. A given nonreserved word may be considereda fill word at one place
in an entry and interpreted as a naome at another. For example, the word SEQUENCE in the RPCL pass sequence
subentry is considered a fill word if it appears immediately following the keyword PASS, but may also appear as a
group name without ambiguitv. '

Literals

Literals can be either numeric or nonnumeric, A numeric literal is a string of numeric characters having an integer
value in the rang~ 1 through 100,

66 Database Analysis Processor 90 30 12C-2(4/76)

Table 7.

Legal Database Attribu* Changes (cont.)

DDL
Entry/Subentry

DDL
Clcuse/Subclause

Legal Change?

GROUP

NAME

WITHIN

RANGE

LOCATIbN MODE

STORAGE

USING

DUPLICATES

NUMBER

PRIVACY LOCK FOR RETRIEVE
PRIVACY LOCK FOR UPDATE

STATISTICS

no

no

yes

no

no

no

no

no

yes

yes

yes

Item

Item-name

PICTURE

TYPE

OCCURS

PRIVACY LdCK FOR RETRIEVE
PRIVACY LOCK FOR UPDATE

CHECK

no

no

no

no

yes

yes

no

INVERT

Inverted-data-item=-name
NUMBER

WITHIN

RANGE

DUPLICATES

no

no

ho

yes

no

SET

NAME
OWNER

ORDER

no

no

no

Database Analysis Processor

67

68

Toble 7. Legal Database Attribute Changes (cont,)

DDL DOL

Entry/Subentry Clause/Subclause Legal Change?

SET (cont.) GROUP-NO (as sort key) no
LINKED TO PRIOR no
STATISTICS yes

MEMBER Member~-group-name no
INCLUSION no
LINKED TO OWNER no
SELECTION no
ALIAS) no
ASCENDING/DESCENDING no
RANGE KEY no
DUPLICATES | no

RPCL Syntax

The entry is the major element of RPCL syntox, Each entry is composed of one or more clauses and is terminated by
a period, followed by a space. The first clause in an entry identifies that entry. Each succeeding clause begins
with a keyword (optionally preceded by o semicolon) identifying the clause. The second and subsequent clauses in
an entry moy appear in any order, but the syntactic units within each clause must appear in a specified order,

Clauses are composed of words, literals, file identifiers, volume serial numbers, and separators; each of these is
considered to be a syntactic unit,

Words

A word is a string of charucters that may be either alphabetic or numeric and may contain embedded hyphens. A
word must not begin or end with a hyphen ond must contain at least one nonnumeric character.

There are two basic types of words, reserved and nonreserved, Reserved words in the RPCL are the same as those

in the DDL (see Chapter 3)and are legal only where specifically required. Nonreserved words may be either names
or fill words; their usage is context dependent, A given nonreserved word may be considereda fill word at one place
in an entry and interpreteu us a name at another, For examplz, the word SEQUENCE in the RPCL poss sequence
subentry is considered o fill word if it appears immediately following the keyword PASS, but may also appeor as a
group nome without ambiguity.

Literals

Literals can be either numeric or nonnumeric. A numeric literal is o string of numeric characters having an integer
value in the range 1 through 100,

RPCL Syntax

A nonnumeric literal is a string of characters enclosed in apostrophes. To include an apostrophe in such a literal,

two apostrophes must appear in adjacent character positions. The second apostrophe does not become part of the
literal. Nonnumeric literals appear only-in the PRIVACY EXTRACT clause in the schema entry and the CIPHKEY

clause of the area entry. The specific usage determines the maximum size allowed.

File Identifiers

File identifiers are used to provide DMSANLZ with the information needed to access the source and target schemas
ond database area files. File identifier syntax is described below,

Volume Serial Numbers

Volume serial numbers (VSINs) identify the private disk packs or tape volumes on which schemas, database areas,
and DMSDUMP created files reside. Volume serial numbers for devices other than ANS labeled tape may contain
from one to four alphabetic or numeric characters. ANS labeled tape serial numbers must always contain six alpha-
betic, numeric, or blank characters. If blank characters are to be included in ANS labeled tape serial numbers,
the volume serial number must be enclosed in apostrophes.

SeErofors

Separators are required after all syntactic units, They are as follows:
1. The space (blank) is a separafor; it must follow all syntactic units in the absence of any other separator.
A space may precede or follow any other separator; any number of spaces is equivalent to a single space
(except in nonnumeric literals). Every input unit is implicitly followed by a space; thus, no syntactic unit
may span multiple input units,

2, The comma is a separator which is legal only where specifically indicated in the syntax; it is never
required,

3. The number sign (*) is a separator used exclusively to introduce a volume serial number. It is always re-
quired where indicated in the syntax.

4. The semicolon may be used as a separator between clauses; it is never required.

5. The period is a separator when followed by a space or when it is the last character in an input unit. A
period is required as the last separator in an entry.

The RPCL is essentially free-form in terms of length of input units (up to 80 characters). The input unit is termed
a "line", although the original source input may be from cards, keyboard, or any other character string source.
The language has no provision for indicating the continuation of lines; an entry is considered continued until termi-

nated by a period, regardless of the number of lines used. The end of a line, however, terminates a syntac-
tic unit,

The syntax notation used fo show the RPCL entry formats is the same as that used in the DDL description (see
Chapter 3).

File Identifier Format

A file identifier is used to provide DMSANLZ with the information needed to access a schema or database area file.

Format

file name [.{account] [, password]]

RPCL Syntax

69

70

Usage Rules

1. File=name is the name associated with a monitor file on disk or labeled tape. Account is the account
number under which the file was created, if different from the current user's account. Password is the
moniror pussword, ii any, associated with the file.

2. The file identifier may not contain any separators, and neither the file name, account, nor password may
contain a period,

3. The file identifier may not span multiple input units,

RPCL Entry Formats

The RPCL consists of seven types of entries:

1. Schema entry —one each for the source and target schemas,
Area entry —one for each source and target area, as required.
Load entry —as required.,

Override entry —one entry, as required.

Refcode entry —one entry for each item, as required.

Bypass entry —one entry, as required.

N o oA e

End entry —one entry.

The first two RPCL entries must be the schema entries, followed by any required area entries, followed by any re-
quired load entries, followed by any override entries, followed by any refcode entries, followed by any bypass
entries. The end entry must be last in the RPCL.

Schema Entries
The schema entries supply all information required to access the schema files,
Format

'SOURCE _ .
{TARGE]‘} SCHEMA IS file-identifier

[;PRIVACY KEY FOR EXTRACT IS privacy-lock]
[;DpP ivsn [f_vsn]. ...

Usage Rules

1. There must be one schema entry for the source schema and one for the target schema. One of these must
be the first entry in the RPCL, followed immediately by the other.

2, The SCHEMA clause must be the first clause in the entry, The file-identifier must identify an exist=
-ing schema file. .

3. The PRIVACY clause supplies the key required to access the schema, if the schema has a PRIVACY LOCK
FOR EXTRACT attached to it. The privacy key must exactly match the lock of the schema, or the pro-
cess will be aborted. The privacy-lock is a nonnumeric literal of up to eight characters. If less than eight
characters are supplied, trailing blanks are added to make up an eight-character key.

4, The DP clause provides the volume serial number(s) of the private disk pack(s) on which the schema resides,
if the schema is not in public storage. '

Area Entries

The area entries supply all information necessary to access database area files, as well as information on how in-
dexed group storage space is to be utilized during loading of the target database area.

RPCL Entry Formats 90 30 12C-2(4/76)

Format

{SOURCE

area=name DMSDUMP FILE IS dump-File—idenfifier}
TARGET

} AREA 15 [crec-file«idenrifier
[;CIPHKEY IS user~cipher~key]

[;INDEXED GROUP FILL PERCENT IS integer]

[,

Usage Rules

DP
[ANS] _91] #ysn[fusn]. .] .
[ANS] 7T

1. An area entry is required for any source or target area for wiiich any of the following is true:

a, The area is a source area and the user wants fo use a DMSDUMP file as input to rhe unload process
(see Chapter 7).

b. The database area file is not in public storage in the run account,
c. The database area file has a monitor password associated with it.
d. The orea is enciphered.

2. The AREA clause must be the first clause in the entry. If the area is a source area and is to be input from
a DMSDUMP file, area-name must “= the name of a database area defined in the source schema, and
dump-file=identifier must identify an exisii.; DMSDUMP file containing the named area in its entirety.
The DMSDUMP option is legal for source areas only, If the area is a target area, or if it is a source area
in random file format, aren-file-identifier must identify an existing database area file, Also, if the area
is a target area, it must exist in an initialized state (i.e., it must not contain any group occurrences).

3. The CIPHKEY clause supplies the enciphering-key, if any, associated with the area. The form for user=-
ciper=key is a nonnumeric literal of up to four characters, If less than four characters are supplied,
trailing blanks are added to make up a four-character key.

4. The INDEXED clause allows the user fo specify an intermediate fill percent to be used when loading the
indexed data group occurrences into the target area. This clause is only required if the user has included
groups whose location mode is via or direct in the same page ranye as the indexed group. In this case,
at least two load passes are made over the indexed group's page range. The first pass will load only the
indexed group occurrences; the second pass, and any subsequent passes, will load the direct or via group
occurrences. The fill percent in the INDEXED clause will be used instead of the fill percent in the target
schema DDL in the first pass only. In all subsequent.passes, the fill percent in the DDL will be used.

This technique allows the direct and via details to coreside with the indexed group occurrences in the
indexed group's page range. Otherwise, all via and direct member group occurrences would be placed
in the overflow range, since the first load pass would have exhausted the available space (up to the per-
cent specified in the target schema DDL) in storing the indexed group occurrences.

The integer specifying the fill percent must lie in the range 1 through 100, and must be less than or equal
to the fill percent specified in the target schema DDL.

The INDEXED clause is legal for target areas only. If the INDEXED clause is not specified, the fill per=
cer 11 tne target schema DDL is used for all load passes,

5. The volume serial number (vsn) clause specifies the device type (7-track tape, 9-track tape, or private
disk pack) and volume serial numbers of the private volumes on which the database area or DMSDUMP file
resides. Tape devices are legal only when the area is o be unloaded from a DMSDUMP file. Database
area files must always reside on random access devices,

RPCL Entry Formats

72

Load Entry

The load entries provide the user with a means of influencing the sequence in which his data will be loaded into
the target database (see "Data Loading Sequence", below, for a complete discussion of the data loading sequence
and the effects and implicati~ns of the use of load entries).

A load entry consists of a load subentry, followed by the preserve subentry, followed by the pass sequence subentries.
Load entries are never required.

Load Entry Skeleton

Load subentry

[Preserve subentry]

[Pass sequence subentry]...
The required load subentry identifies the load entry, The preserve subentry and the pass sequence subeniries are
optional.
Load Subentry

The load subentry identifies the area to be loaded.

Format

LOAD AREA area-name.

Usage Rules

1. Area-name must identify an area defined for the target database.
2. Only one load subentry may be specified for a given area.

3. Wherever possible, target areas will be loaded in the sequence defined by the load subentries.

Preserve Subentry

The preserve subentry provides the user with the capability of directing the Restructuring Subsystem to convey the
selected groups from the source database to the target database in such a way as to preserve their physical location,

Format

PRESERVE LOCATION OF {%-O—U—’i} {gfoup-mme | [’[group-name }]

GROUPS] [group-number group-number

Usage Rules

1. The groups identified by group-name or group=-number must be defined in the target database as having via
or direct location mode, and must reside in the area named in the associated load subentry, Via or direct
groups that share their page range with a group whose location mode is indexed, may not be specified in a
preserve subentry,

2, If specified, the preserve subentry must immediately follow its associated load subentry, and only one pre-
serve subentry may be specified for a given area,

RPCL Entry Formats

3. The Restructuring Subsystem is implemented so that the reference codes of all groups specified in preserve
subentries will be the same in the target database as they were in the source database, so long as the num-
ber of lines per page in the target area is the same os in the source area.

If the number of lines per page has changed and the source page number and line number are either un-
available or nonexistent, the groups will be placed in the target database as close to their source page

and line as possible.

4. The target page range of any group specified in a preserve subentry must be a superset of the source page
range.

5. Al groups specified in the preserve subentry for an area will be loaded in a special load pass before any
other data groups are loaded.

Pass Sequence Subentry

Pass sequence subentries allow the user to define the exact loading sequence of all or any part of the data groups
within an area,

Format

PASS SEQUENCE IS {9'°“p'""°"‘° }[{9'°”P'"°"‘e }])

group~number group-number

Usage Rules

1. The groups identified by group-name or group-number must be defined in the target database as being
within the area nomed in the associated load subentry, and must not have been specified in a preserve sub-
entry or in any preceding pass sequence subentry,

2, Each pass sequence subentry defines a separate load pass, and all groups specified in one pass sequence
subentry will be loaded in the same load pass. Within the defined pass, group occurrences will be loaded
in the order specified in the pass sequence subentry.,

3. The normal loading precedence is: direct groups without storage sets, followed by calc and indexed groups,
followed by via groups and direct groups with storage sets. These precedence groupings are given weight
factors of 1, 2, and 3, respectively. Note that direct groups with storage sets are conveyed as via groups.
Further, each pass sequence subentry is assigned a weight factor equal to that of the lowest-weighted group
specified in the subentry. For example, a pass sequence subentry containing a direct group and a calc
group would be assigned a weight factor of 1, while one containing a calc group and a via group would
have a weight factor of 2. Pass sequence subentries must be sequenced in ascending order by weight factor.

4. No via or direct group may be specified for loading prior to, or in the same pass as, the owner group of its

storage set if the storage set owner is in the same area as the via or direct group, Note that this restriction
does not apply to the special load pass performed as the result of a preserve subentry,

Override Entry
The override entry allows the user to override the default justification of an item being conveyed from the source to

the target database if the size of the item is being increased. The normal justification is left justified for alpahbetic
or alphanumeric items and right justified for numeric items.

90 30 12C-2(4/76) RPCL Entry Formats 73

Format

OVERRIDE DEFAULT JUSTIFICATION OF

data -item—ncme-lr{QE]gmup-nome-]] [dofo-item—nome—2[{%}group—ncme —2]]. o

LEIN

Usage Rules

1. If dota-item-name-n is not unique within the source schema then the optional group-name qualifier must
be used,

2, All items defined in the override entry must be one in which the number of characters and or digits has been
increased from the source to the target schema,

3. All items defined in the override entry must be one whose internal data format is either EBCDIC or packed
decimal and if it is a numeric value it must consist solely of integral digits in both the source and target
schema,

4. A change in internal data format between the source and target database is not allowed for any item
specifiea in the override entry,

5. An item may not be specified in both an override entry and a refcode entry.

Refcode Entry

The refcode entry provides for identification of those items in the source database which contain reference code
values, The source database value of alt refcode item occurrences will be replaced in the target database by its
target database reference code equivalent,

Format

REFCODE dqtc—item—nome%[[g} group-name-3] [SOURCE AREA IS oreo-nome].

o—
s

Usage Rules

1. I data-item=-name-3 is not unique within the source schema then the optional group-name qualifier must
be used.

2, If a reference code is defined as a three byte value in the source database,’ then the item values will be
remapped using the area number in which the data group containing the item resides unless the optional
source area clause is used. The optional source area clause may be used to specify that the reference code
values are for an area other than the one in which the containing data group resides.

3. The internal data type for items specified in the entry must be EBCDIC or binary. An occurs clause for
the item is permitted.

4. If an item defined in a refcode entry is increased from three bytes to four bytes then the area number will
be added as the higher order byte of each reference code value.

5. An item may not be specified in both an override and refcode entry.

Bypass Entry
The bypass entry allows the user to omit the selection and ordering of nonstorage setsduring the restructuring process.

For an explanation of the set ordering process see the following subsection 'Selecting Set Occurrences'. The set
ordering process may be very time consuming particularly when there are a large number of member occurrences for

73-1 RPCL Entry Formats 90 30 12C-2(4/76)

a set occurrence and the member occurrences physically lie in disjoint database pages. The benefits of ordering
nonstorage sets are the removal of logically deleted member occurrences and the validation of the accuracy of the
pointers within a set occurrence. In addition changes may be made to a set description if the set occurrences are

ordered.
Format
. ¢
BYPASS ORDERING OF{;;ES} set-name=-1[, set-name=2]... .

Usage Rules

1. Sets defined in the bypass entry may not have an optional prior or owner pointer defined in the target
schema unless the optional pointer was defined in the source schema,

2. Sets defined in the bypass entry must have all members defined for the set in the target schema that were
defined as members in the source schema,

3. Sets defined in the bypass entry must not have the set order changed such that a prior pointer exists in an
owner group occurrence of the target database where none existed in the source database (e.g., FIRST
to LAST). :

4, If a set defined in the bypass entry includes a member whose location mode is INDEXED in the target data-
base then a warning will be issued by DMSANLZ, If such a set has any logically deleted member occur~
rences in the source database then the unload step of the DMSREST process will terminate with an error

message and the restructuring process will not be carried out,

5. Sets defined in the bypass entry must not be defined as the VIA or STORAGE set for a group in the target
database, :

End Entry

The last entry in the RPCL must be the end entry,

Format

END.

90 30 12C-2(4/76) RPCL Entry Formats 73-2

The user should be aware that there is no capability in the Restructuring Subsystem for introduction of new data into
the target database. Thus, if a new area is defined, then that area will not be accessed by DMSREST unless exist-
ing data groups have been specified as being resident in the new area. If a new data group has been defined,
there will be no occurrences of that group in the target database, If data items are added to an existing group then
the item occurrences will be set to appropriate null value, i.e., zero for numeric and space for alphanumeric. If
an existing data item has an occurs clause added or increased then the n values from a source database item will be
placed in the first n values of the target database item and the new value occurrences set to a null value. If an
existing data group is defined as a member of a new set then the group occurrences will be designated as unlinked
in that set, If an existing data group is defined as the owner of a new set, then all group occurrences will be des-
ignated as the owner of an empty set. If the order of an existing set is changed (e.g., NEXT to LAST) the order

of the member occurrences in the target database is not changed by DMSREST,

Data Loading Sequence

The single most important factor in database restructuring is the data loading sequence. The order in which group
occurrences are loaded into the target database can significantly affect performance, especially with respect
to page overflows. An example of this would be the case where the user has two invert groups sharing a common
page range. The first of these (group A)is used primarily as an alternate retrieval path to the parent group (e.g.,
the parent is retrieved by the sequence: FINDX, A ; FINDD), The second invert group (group B) is used as the
object of a FINDSEQ call. If all occurrences of group B are loaded first, the probability that an occurrence of
group A will overflow its assigned base page is significantly increased. This can severely slow down the FINDX,
since there is a potential for multiple 1/O operations to retrieve o single occurrence of group A that has overflowed
its base page. Conversely, if occurrences of group A are loaded first, the overflow probability is greatly reduced.
Since occurrences of group B are seldom, if ever, retrieved directly, it is of little consequence whether they over-
flow, at least from the standpoint of retrieval.,

Default Data Loading Sequence

The creation of the data loading sequence can be thought of as a two=step process. In the first step, the sequence
is established within each areq; in the second, the order for processing the areas is determined.

In terms of the data loading sequence, there are three categories of groups. Each group is categorized according
to its location mode, and euach category is assigned a weight factor, as follows:

Weight Factor Category
1 Direct groups for which no storage set is specified.
2 Calc groups and indexed groups.
3 Via groups and direct groups for which a storage set is specified.

In the default case (i.e., where no RPCL preserve or pass sequence subentries are specified) groups are organized
into load passes by category. Each load pass is assigned a weight factor equal to that of the category being loaded,
and load passes are scheduled for execution in ascending order by weight factor. There will be one load pass each
for categories 1 and 2, and one for each level of category 3 groups, It is important to note that level determination
is based on storage sets only, and that no group with a storage set will be loaded by default prior to, or in the same
pass as, the owner group of the storage set, Note also that groups whose location mode is via are stored relative to
their via set, unless otherwise specified in the DDL. Example 3 shows a sample default loading sequence.

In cases where consecutive default load passes contain groups of different location modes, some optimization may

occur when there is no page range overlap, Example 4 shows how such optimization may occur; Example 5 illustrates
a case of partial optimization,

90 30 12C~2(4/76) Data Loading Sequence 74-1

Component Association and Attribute Change Analysis

In the schema DDL, every database component (i, e., area, group, item, and set) is assigned a name that is either
unique in itself or is capable of being uniquely referenced (e.g., by qualification), DMSANLZ uses this unique
name to associate corresponding components in the source and target schemas, If a component with a specific name
exists in the source schema but not in the target schema then that component is considered as deleted from the source
database, If a component with a specifiz name exists in the target schema but not in the source schema then that
component is considered as added to the target database.

There are very few restrictions placed on the changes made to the logical structure of the source database. Bear
in mind, however, that changes made to the structure may require changes to existing programs and subschemas
generated to access that structure, The structure changes which are not allowed are as follows:

e The number assigned to an area may not be changed between the source and target schemas,

e The number assigned to a data group or invert item may not be changed between the source and target
schemas.

e The location mode of a data group may not be changed to INDEXED in the target schema unless it was
defir.~1 as CALC DUPLICATES NOT ALLOWED in the source schema,

e A group defined with location mode of INDEXED may not have it's indexed control items changed, re-
placed, or deleted so that duplicate keys may exist in the target database where they did not in the source

database.

e The target database page range specified for a group with DIRECT location mode or one specified in an
RPCL preserve entry must be a superset of the source database page range.

e A member of a set defined with MANUAL or OPTIONAL AUTOMATIC mclus:on in the source schema may
not be changed to AUTOMATIC inclusion in the target schema,

e If a data group which exists in the source schema is defined as a member of a new set in the target schema
then its inclusion in that set must be MANUAL or OPTIONAL AUTOMATIC.

e The order of a set may not be changed to SORTED between the source and target SCHEMAS,

e A set which exists in the source and target schemas with order SORTED may not have the sort control items
for the members of the set changed so as to potentially alter the order of the member occurrences in a set
occurrence,

e The internal data type for a data item may not be changed as follows:

Non-=integer numeric to alphanumeric.
Alphabetic to signed numeric, numeric, binary, floating point, or packed decimal.
Alphanumeric to signed numeric, binary, floating point, or packed decimal.
Signed numeric to alphabetic or alphanumeric.
Nume.ric to alphabetic.
Binary to alphabetic or alphanumeric.
Floating point to alphabetic or alphanumeric.
Packed decimal to alphabetic or alphanumeric.
All differences in the description of the source and target database are reported by DMSANLZ. Any such differ-

ences that aie within the scope of the capabilities of the Restructuring Subsystem are reported as warnings; all other
differences are reported as errors.

74 Component Association and Attribute Change Analysis 90 30 12C-2(4/76)

Example 3. Default Loading Sequence

Consider the following structure for a single area,
in category 3 (even though its location mode is direct) since it has a storage set,

All sets shown are storage sefs,

Group A
Calc=category 2

Group D
Direct=category 1

Set AB

Set DE

Group B
Direct-category 3

Group E
Via-category 3

Set BC

Set EF

[

Group €
Via=category 3

Group F
Via=-category 3

Set FG

Group G
Via=category 3

Note that group B is

Assuming that all groups have overlapping page ranges, the default load sequence would be:

Pass Groups Loaded
1 D
2 A
3 B, E
4 C F
5 G
Example 4. Loading Sequence with Optimization

Consider the structure of Example 3, and assume that groups D and A have disjoint 'page ranges.
Optimization would occur as follows:

Pass

Groups Loaded

1

2

D, A

Data Loading Sequence

75

76

Example 5. Loading Sequence with Partial Optimization

When an entire load pass cannot be optimized, partial optimization may still occur. Consider the following
single-area structure:

Group A Group B Group D
Direct-category 1 Calc=category 2 Indexed~-category 2
\ [
Group C Group E
Via=-category 3 Via=-category 3
Group F
Via=category 3

The unoptimized loading sequence would be:

Pass Groups Loaded
1 A

2 8, D

3 C E

4 F

However, since groups A and D have disjoint page ranges, by definition, DMSANLZ would include group D
in the first pass with group A, as follows:

Pass Groups Loaded
1 A, D

2 B

3 " C, E

4 F

In this case, even though the optimization occurred, there was no saving with regard to the number of load
passes. If, however, groups B and E also had disjoint page ranges, one pass could have been eliminated:

Pass Groups Loaded
1 A, D
2 B, E
3 C, F

Here, two partial optimizations occurred, resulting in a saving of one load pass.

Data Loading Sequence

DMSREST loads group occurrences into the target database by first «..igning a base puge to each group occurrence
in the load pass. The base page assigned is dependent upon the group's location mode. The assignment is accom=
plished as follows:

Location Mode Assignment

Direct without The source database page is assigned as the base page in the target database. The

storage set group is placed at the same line in the target database that it occupied in the source
database if that line is available,

Calc The czalc control items are hashed (using the DBM hashing algorithm) to determine the
base page.

Indexed The group occurrences are sorted in ascending sequence on the index control items, A

base page is then determined by *h~ !'sading process depending upon the space avail=
able in the indexed group's page range and any fill percent specified in the RPCL or
target schema DDL.

Via and Direct If a preserve subentry was specified, the source Jdatabase page containing the group

with storage set occurrence is assigned as the target base page. If there was no preserve subentry for
the group, then the base page for a group uccurrence is the page in the target database
that contains the owner group of the storage set occurrence of which the group occur-
rence is a member,

After abase page is assigned, group occurrences are loadea in a pass ordered on base page and pass sequence nu.nber for
the group. If the base page does not contain space for a group nccurrence, the loading process will search forward in the
area for available space. This search is constrained by any page range specified for the group in the target schema,

When more than one group is loaded in a single pass, the order in which the groups are stored into pages may be a
factor affecting the efficiency of the target dai.pasc, This situation is somewhat similar to that described earlier,
wherein occurrences of the first group loaded into a page are less likely to overflow that page than are occurrences
of subsequent groups. There is an inherent difference, however, in the net result of loading two groups in separate
passes versus loading them in the same sequenc~ but in a single pass. Example 6 illustrates this difference, In
default load passes, groups are ordered in their targe! schema DDL sequence. Thus, if occurrences of groups A
and B are being loaded into the sume page in the same load pass, all occurrences of group A will be loaded first,
followed by all occurrences of group B, if group A precedes group B in the target schema DDL.

In the default case, the loading sequence for areas is the order in which they are specified in the target schema
DDL, Once an area is scheduled for loading, all groups within that area will be loaded before switching to the
next area, provided the storage set owners for any category 3 groups reside in the current area or in another pre-
viously loaded area. Example 7 shows the loading sequence for a multi=area structure containing a storage set that
crosses area boundaries, ’

User Influenced Data Loading Sequence

The user can influence the data loading sequence by means of the RPCL load entry. It is strongly recommended,
however, that the user run DMSANLZ first, without any RPCL load entries, and examine the genera.ed default load-
ing sequence, If the default sequence does not meet the user's requirements, he can include whatever load entries
are needed,

The easiest way for the user to influence the loading sequence is with the preserve subentry. .All groups specified
in a preserve subentry are designated for loading in the first load pass for the area with which the preserve subentry
is associated, The reference codes of all groups specified in a preserve subentry are guaranteed to be the same in
the target database as in the source database, provided the number of lines per page in the target area has not
changed from its source value, and that all source database pages also exist in the target database. If the number
of lines per page has changed, groups will be stored at the same page number and line number whenever possible,
or at the closest available location. Note that the only way the user can have a category 3 group loaded before
the owner groun of its storage set, is to specify the category 3 group in a preserve subentry, Example 8 shows how
the preserve . crtry could be used to preserve the location of all occurrences of a group.

The user can also influence the data loading sequence by use of RPCL pass sequence subentries. Each pass sequence
subentry defines one load pass. DMSANLZ will not try to optimize load passes by adding groups to a user-defined
load pass (i.e., one defined by a preserve or pass sequence subentry). Any groups not specified in pass sequence
subentries are handied by the default mechanism described earlier.

Data Loading Sequence

Example 6. Loading Two Groups in a Single Pass

Assume that groups A and B share a common page range and that they are being loaded in the same pass.
The following illustrates the result when page overflow occurs on page n.

Data Page n

Occurrences of group A assigned to page n

Occurrences of group B assigned to page n

Data Page n + 1

Overflow of group B occurrences assigned to page n

Occurrences of group A assigned to page n + 1

Data Page n + 2

Overflow of group A occurrences assigned to page n + 1

Overflow of all group B occurrences assigned to poge n + 1

Occurrences of group A assigned to page n + 2

Occurrences of group B assigned to page n + 2

Note the overflow of group A occurrences from page n + 1 into page n + 2, ond contrast this result with
the following case illustrating a similar situation, where group A is loaded in a separate pass before

group B is loaded.

Data Page n

Occurrences of group A assigned to page n

Occurrences of group B assigned to page n

Data Page n + 1

Occurrences of group A assigned to page n + 1

Overflow of group B occurrences assigned to page n

78 Data Loading Sequence

Data Page n + 2

Occurrences of group A assigned to page n + 2

Overflow of group B occurrences assigned to page n

Overflow of all group B occurrences assigned to page n + 1

Occurrences of group B assigned to page n + 2

page n to overflow two pages.

In this case overflow of group A is eliminated at the expense of allowing group B occurrences assigned to
Note that in the first example, cver. though group A occurrences over-
flowed page n + 1, no occurrences of either groups A or B overflowed to more than one page.

Example 7. Loading Sequence for a Multi=Area Structure

Consider the following structure; where all sets shown are storage sets.

AREA-1

Group A
Calec-category 2

AREA-2

Group D
Calc~category 2

|

]

Group B
Via-category 3

Group C
Via=category 3

Group E
Via-category 3

The default loading sequence would be as follows:

Pass

1

2

Groups Loaded

Area

A

B

AREA-1
AREA-1
AREA-2
AREA-2

AREA-1

Data Loading Sequence

79

Example 8. Loading Sequence Using Preserve Subentry

Consider the structure of Example 3 and assume that a requirement exists to preserve the location of all
occurrences of group 3. If only group B is specified in a preserve subentry, the loading sequence would be:

Pass Groups Loaded
1 B
2 D
3 A
4 C E
5 F
6 G

Note that even though there is no apparent potential for conflict should groups B and D be loaded in the
same pass, DMSANLZ will not ottempt to optimize load passes. If the user desires to have groups B and D
loaded in the same pass he must specify both B and D in the preserve subentry.

Each user-defined load pass is assigned a weight factor in a manner similar to that of default load passes. Since
user-defined load passes may be specified to contain groups from different categories, the weight factor of a user-
defined load pass is equal to that of the lowest weighted group in that load pass. User-defined load passes are
scheduled for execution immediately preceding default load passes of the same weight. Where multiple user-defined
load passes have the same weight, they are executed in the order in which they are defined in-the RPCL. Examples 9
and 10 illustrate how pass sequence subentries could be used to influence the order in which groups are loaded,

The user can also influence the area loading sequence by the order of his RPCL load entries. In the default case,
areas are scheduled for loading in the order in which they are specified in the target schema DDL. If load entries
are specified, the indicated areas are scheduled to be loaded first (in the order specified) and any areas for which
no load entry is supplied are scheduled last, in their DDL order,

Once an area is scheduled for loading, all groups within that area are loaded before any groups are loaded into
the next area, provided the storage set owners for any category 3 groups reside in the current area or in another pre-
viously loaded area, Example 11 shows how a load subentry could be used to improve upon the default loading
sequence,

Example 9. Loading Sequence Using Pass Sequence Subentry, |

Data Loading Sequence

Consider the following single~area structure, bearing in mind that only storage sets are shown. The area
is logically divided into four mutually exclusive page ranges, depicted by the dotted lines,
| |
Group A | Group. F Group K
. Inversion for |
Direct | Indexed
l group K |
|
F—————- ———- |
I l
Group B Group L
Cale I Group G | Via
| Cale |
\ | |
—— e — _ Y
Group C | Group M
Via Group H I Via
Via |
| | | Y
Group D Group | l Group N
Via Via : Via
|
| |
Group E Group J '
CGIC viq :

The default loading sequence for this area would be:

Pass Groups Loaded
1 A, F, G, K
2 B, E L

3 CHILM
4 D, J

’ ’

If the user had o specific requirement to load group B before group E, he might include the following load
entry in his RPCL:

LOAD SAMPLE-AREA
PASS SEQUENCE IS B.

This would generate the loading sequence:

Pass Groups Loaded
1 A

2 B

3 E, F, G, K
4 C,H I L
5 D, J,

6 N

Notice that since group B was specified in a separate load pass, groups F, G, and K were not included in
the first pass with group A. This resulted in two extra load passes. One of these extra passes could be

avoided by specifying groups F, G, and K to be loaded in the same pass with B, resulting in the load-
ing sequence:

Pass Groups Loaded
1 A

2 B, F, G, K

3 E, L

4 C,H LM

5 D, J

’

’

Still another pass could be eliminated if the user allowed groups C, H, and I to be loaded in the same pass
as group E. This alternative, however, may pose a problem with respect to page overflow, as shown in
Example 6. The user should carefully analyze the activity level of group E, and the usage frequency of
all retrieval paths by which group E is accessed before making this decision. Also, groups K, L, and M
would have to be loaded in the first, second, and third passes, respectively. This poses no problem,
however, since the page range for the K-L-M=N substructure is exclusive. The following RPCL load entry
would provide this optimized loading sequence:

LOAD AREA SAMPLE-AREA.
PASS SEQUENCE IS A, K,

PASS SEQUENCE IS B,F, G, L.
PASS SEQUENCE IS E, C, H, I, M.

The generated loading sequence would be:

Pass Groups Loaded
1 A, K

2 B, F, G, L

3 E,C,H LM
4 D, J, N

Data Loading Sequence

81

Example 10. Loading Sequence Using Pass Sequence Subentry, 11

Consider the structure of Example 9 and assume that groups I and J are to be loaded before group H. This
could be accomplished with the following RPCL load entry:

LOAD SAMPLE-AREA,

PASS SEQUENCE IS L
PASS SEQUENCE IS J.

Seven load passes would be generated:

Pass Groups Loaded
1 A, F, G, K
2 B, E
3 1
4 J
5 C H L
6 D, M
7 N

There are several ways the user could optimize this loading sequence. One pass could readily be elim-
inated, with no side effects, by loading group L in the fourth pass with group J. Groups M and N would
then be loaded in the fifth and sixth passes, respectively, eliminating the need for a seventh pass.

Another possibility is to load groups B and E in the first pass. This, however, might cause the reference
codes of occurrences of group A to change. For example, if three occurrences of groups B and E overflow
from data page n into data page n + 1, they will be assigned line numbers one, two, and three. If a
group A occurrence assigned to page n + 1, line two, is then encountered, it will be reassigned to the
first available line number; in this case, line number four.

If group A were a single=occurrence header group residing in page one, loading groups B and E in the same
pass as group A would not cause a problem, provided group A precedes groups B and E in the group se-
quence subentry. The following RPCL load entry wéuld cause five load passes to be generated:

LOAD SAMPLE-AREA,

PASS SEQUENCE IS A, B,E, F, G, K.
PASS SEQUENCE IS L

PASS SEQUENCE IS J, L.

The generated loading sequence would be:

Pass Group Loaded

1 A B, E F G, K
2 I

3 J, L

4 C,H M

5 D, N

One additional pass can be eliminated if the user is willing to let group C be loaded in the same pass as
group J. Again, this decision should take into account activity levels and retrieval strategies. Also
groups L, M, and N would have to be loaded in the second, third, and fourth passes, respectively.

LOAD AREA SAMPLE-AREA,

PASS SEQUENCE IS A, B,E,F, G, K.
PASS SEQUENCE IS I, L.

PASS SEQUENCE IS J, C, M.

82 Data Loading Sequence

The following loading sequence would be generated:
Pass Groups Loaded

A B E F G, K
1, L

J, C M

D, H, N

BWN -

Example 11, Load Subentry Used to Improve Default Loading Sequence

Consider the structure of Example 7. The user could improve upon the default loading sequence by
including a load subentry for AREA-2, The generated loading sequence would be:

Pass Groups Loaded Area
1 D AREA-2
2 E AREA-2
3 A AREA-1
4 B, C AREA-1

Conveyance Process Generation
DMSANLZ determines the processes that must be performed and the sequence of execution required to accurately
convey the user's data from his source database to his target database. This determination is based solely upon the

structure of the source and target databases; no consideration is made regarding the volume of data to be conveyed.

The major functions required to restructure an EDMS database are:

—
.

Unloading of all data group occurrences from the source database,

2. Identification of the storage set occurrences for all via groups and direct groups with storage sets.
3. Loading of all data group occurrences into the target database,

4, Relinking of all set occurrences in the target database.

5. Reporting of any errors found.

In performing these functions, the Restructuring Subsystem makes use of 11 separate processes (see Table 8).
Typically, each of these processes is executed a number of times during the course of restructuring a database. The
unload process, for example, is executed once for each source database area. Each process execution is termed
a "step". When he is running DMSREST, the user controls step execution to the extent that he may specify the
number of restructuring steps to be executed in a single CP-V job step. The user may also stop DMSREST at the end
of any step (see Chapter 7).

internal File Handling

The data conveyance process potentially involves. the creation of a large number of intermediate files. To facilitate
the identification and handling of these files, DMSANLZ names each scheduled intermediate file. These names
are composed of an Internal File Descriptor (IFID) followed by the number of the DMSREST step which will create
the file. When a file is created, a time suffix is optionally appended to the intermediate name. All intermediate
files created and used by DMSREST are thus cataloged in the RPCC and cataloged by the CP-V file system using a
name consisting of "IFID —step number [— time]".

90 30 12C-2(4/76) Conveyance Process Generation 83

84

Table 8. Restructuring Processes

Process Mnemonic Description

Unload UNLD Unload group occurrences from one source
areaq,

Polyphase set recovery PPSR Recover all sets whose owner resides in a

given source area,

Set extraction XSET Extract and validate occurrences of sets
recovered in one set recovery step.

Assign source base ASBP Identify the owner group occurrences for all

page via groups residing in one source area,

Assign target base ATBP Assign a target database page number to all

page via groups for one load pass,

Load LOAD Make one load pass across a target database
areq,

Link LINK Relink all set occurrences in one target

database area.

Update ’ UDAT Update an intermediate file with data from
another intermediate file.

Sort all SRTA - ' Sort an entire intermediate file,

Sort select SRTS Sort selected records from an intermediate
file.

Wrap up WRAP List all detected conveyance errors and gen-

erate the reference code correspondence file.

An IFID indicates (to some extent) the format of a file and the nature of the data contained in the file. Many
intermediate files may have the same IFID (but different step numbers), and some potential IFIDs may never be
needed for a given database, Table 9 lists the IFIDs that may be scheduled by the Restructuring Subsystem,

When a given process is scheduled for execution, only those files that could be generated by that process are
scheduled for creation. The unload process, for example, has the capability of creating a CIDG file. The CIDG
file, however, is scheduled for creation only if the area to be unloaded is defined as containing an indexed data
group. In the case where such a group is defined, but no occurrences of that group exist, the CIDG file is not
created even though it is scheduled for potential creation. This convention of not physically creating null files is
followed throughout the Restructuring Subsystem,

When DMSREST is preparing to execute a process, it first determines which input files that process may require. If
all input files scheduled for a given process were not created, that process is not executed. Thus, if the source
database schema defines components for which no occurrences exist, DMSANLZ may schedule files for creation that
in fact are not created, and may schedule processes that will not be executed. Appendix 1 illustrates the flow

of scheduled files through scheduled processes.

Unicading the Source Database

The first major operation required to restructure an EDMS database is the unloading of all data group occurrences
from the source database, DMSANLZ schedules one unload step for each source database area.

After all of the unload steps, DMSANLZ schedules one sort for each potential CIDG file. These sorts order the
indexed Jata groups by their index key values in preparation for loading them into the target database.

Conveyance Process Generation

Table 9. Internal File Descriptors (IFIDs)

IFID Mnemonic Contents
Conveyed calc and direct data CCDG Cale and direct group images.
groups
Conveyed indexed data groups CIDG Indexed group images,
Conveyed via data groups CvDG Via group images,
Conveyed farget data groups CTDG Group images for one load pass.
Conveyed reference code CRCO Set pointer occurrences.
occurrences
Conveyed set key data CSKD Set pointer occurrences.
Conveyed sets topologically CSTO Set pointer occurrences.
ordered
Conveyed group occurrences CGOR Reference codes of all conveyed data group
reference code occurrences.
Conveyed error group reference CEGR Reference codes of group occurrences causing
codes errors,
Conveyed storage master refer- CSMR Reference codes of storage set owner
ence codes occurrences,
Conveyed group's reference CGRC Corresponding source and target database refer-
codes ence codes for conveyed group occurrences.
Source database area SDBA User's source database,
Target datobase area TDBA User's target database.
Set recovery work files WRKI1 Scratch files for set recovery.
WRK8

Selecting Set Occurrences

To ensure that occurrences of via groups and direct groups with storage sets are loaded into the target database
properly, it is necessary to identify the storage set owner occurrence associated with each such via or direct group
occurrence. This entails the "recovery" of every occurrence of each storage set, since head pointers may not be
present in some or all of the member group occurrences. Set recovery consists of ordering a file of set pointers so

that each set occurrence appears as an owner group occurrence physically followed by all of its member group

occurrences.

A significant by-product of set recovery is the ability to validate set occurrences and to detect any inconsistencies
in the set pointers. For example, if group occurrence A contains a next pointer for some set pointing to group
occurrence B, and group occurrence B contains a prior pointer for that same set that does not point back to group
occurrence A, something is obviously wrong. The set recovery procedure detects and reports any such irregularities
regarding set pointers. Also, although set recovery is required only for storage sets, recovery is performed for
nonstorage sets in order to validate these sets for logical consistency.

ConQeyance Process Generation

85

86

The major processes involved in selecting set occurrences are: set recovery, set extraction, sorting, and source
base page assignment, The number of times each of these processes is executed depends upon the source database
structure. The basic pattern in which DMSANLZ schedules these processes is:

1. Recover and validate the storage sets for each source area. One set recovery process and one set extrac-
tion process are scheduled for each source area containing a group defined as owner of a storage set.

2. Identify the storage set owner occurrences for all via group occurrences and for all direct group occurrences
that have storage sets, Two sort processes and one source base page assignment process are scheduled for

each source area containing via groups or direct groups with storage sets.

3. Recover and validate the nonstorage sets for each area. One set recovery process and one set extraction
process are scheduled for each source area confaining a group defined as the owner of a nonstorage set,

Loading the Target Database
The main factor influencing the loading of the target database is the data loading sequence, described earlier in
this chapter. One sort process and one load process are scheduled for each load pass. If via groups or direct groups

with storage sets are to be loaded, however, DMSANLZ schedules another sort process and a target base page as-
signment process prior to the usual sort and load.

Relinking Set Qccurrences
After all required load passes have been scheduled, DMSANLZ schedules the processes needed to map source ref-

erence code items and set pointers to their target values, and to relink the set occurrences in the target database.
These processes include five sorts and two updates, followed by one relink process for each area.

Error Reporting
The last processes scheduled by DMSANLZ will include two sorts, one update, and a reporting process. These will

produce a listing of all errors encountered during DMSREST execution and an equivalence file of source and target
database reference codes.

DMSANLZ Reports

DMSANLZ produces three reports that provide the information necessary to interface with DMSREST. These are the
1. Data Load Sequence Listing
2. Scheduled Process Sequence Listing
3. Scheduled Files Listing

Appendix J contains samples of these reports,

Data Load Sequence Listing

This report details the sequence in which groups will be loaded into the target database. It itemizes the sequential
load pass number, the DMSREST step number scheduled to execute the load pass, the area that will be loaded,
and the names of all groups being loaded. The groups are listed in the order in which they will be loaded in
each pass. '

DMSANLZ Reports 90 30 12C-2(4/76)

Scheduled Process Sequence Listing:

All DMSREST processes scheduled for execution are listed in their order of execution. The nomes of all groups or
sets scheduled for use by a process are listed for that process. If the scheduled process is an unload, the group
names are listed following the IFID assigned to the file on which the groups will be written, This information may

be used to determine the volume of data that will be output through an IFID, ond thus any resource assignments that
may be desirable for execution of DMSREST, In addition, all files used by a process are listed for that process.

Scheduled File Listing
All files scheduled for use by DMSREST are listed in their order of creation. The default device type, a cipher

indicator, logical record length, and any volume serial numbers are listed for each file. In addition, the report
will contain the DMSREST step number of the process creating the file, as well as those that will read the file.

IDMSANLZ Control Command

The batch monitor control command to execute DMSANLZ has the form:

IDMSANLZ [option][, .« .]

The corresponding on-line command is:

IDMSANLZ

DMSANLZ prompts the on-line user with a colon (:) for any options. A carriage return or line feed is interpreted
as indicating the end of the list of options.

Options may be specified in any order; no options, however, may be repeated. Table 10 lists the options and their
meanings. The control command and a listing of the specified and default options is output via the M:LO DCB.
Any errors in the IDMSANLZ command are listed via the M:DO DCB; the RPCC is not created, and DMSANLZ
terminates, Table 11 lists the diagnostic messages for option errors.

Table 10. Control Command Options

Option Meaning
LOG Record in the RPCC that all processes executed in DMSREST shall log a start
NOLOG " message on the operator's console.

Alternatively, record in the RPCC that logging shall not be performed.

The DMSANLZ default is LOG.

WORK =w . Record in the RPCC that all set recoveries to be executed by DMSREST shall
employ w work file DCBs, where

3<wxs.

The DMSANLZ default is 8.

DMS Record in the RPCC that the database being restructured is a Basic versus Extended
DMS database. This option is required if the database is a Basic DMS database.

90 30 12C-2(4/76) IDMSANLZ Control Command

87

88

Table 10, Control Command Options (cont.)

Option

Meaning

SORT =5

Record in the RPCC that all sorts to be executed by DMSREST shall use s work
file DCBs, where

3<s <17

The DMSANLZ default is 17,

BUFFERS = {;}

Record in the RPCC that either one or two buffers may be allocated by DMSREST
to each IFID intermediate file, and the source and target database areas.

The DMSANLZ default is 2,

BLOCK =k Record in the RPCC that all IFID intermediate files to be created by DMSREST
shall have a nominal blocksize of k bytes, where
8 + max record byte size £ k < 32, 767
The DMSANLZ default is 2048 for disk/RAD files and CP-V labeled tape, and
is 4096 for ANS labeled tape.
ANS . Record in the RPCC that all IFID intermediate files to be created shall be allo-
LABEL cated to ANS labeled tape, or to CP-V labeled tape, or to disk/RAD files.
FILE
The DMSANLZ default is ANS labeled tape.
SAVE Record in the RPCC that DMSREST shall save all the intermediate files that it
RELEASE creates,
Alternatively, record in the RPCC that DMSREST shall release all intermediate
files upon completion of the last process scheduled to use each file.
The DMSANLZ default is SAVE.
Note that this option does not apply to IFID files SDBA, TDBA, and CTDG,
which are always saved.
CHECKSUM Record in the RPCC that all IFID intermediate files to be created shall be
NOCHECKS UM checksummed,
Alternatively, record in the RPCC that checksumming shall not be performed.
The DMSANLZ default is CHECKSUM,
CIPHER Record in the RPCC that all IFID intermediate files to be created shall be
NOCIPHER enciphered,
Alternatively, record in the RPCC that enciphering shall not be performed.
Note that this option is meaningless if enciphering was not present in the source
database.
The DMSANLZ default is CIPHER.
TIME Record in the RPCC that all IFID intermediate files to be created shall include
NOTIME the time as part of the file name.

Alternatively, record in the RPCC that time shall not be used.
The DMSANLZ default is NOTIME.

IDMSANLZ Control Command

3

90 30 12C-2(4/76)

Table 11. Diagnostic Me-sages for Option Errors

Message

Meaning

UNRECOGNIZED OPTION .

The scanned characters do not constitute a valid option.

DUPLICATE OPTION

The current option duplicates or confradicts a previously scanned
option.

UNRECOGNIZED DIGIT

A character following an equal sign is not numeric.

INVALID OPTION VALUE

The value following an equal sign is not within the allowed range for
the option.

SYNTAX COMMA MISSING

Required comma separating two options has been omitted.

IDMSANLZ Control Command

89

90

7. DATABASE RESTRUCTURING PROCESSOR

The Database Restructuring Processor (DMSREST) restructures a source database into a target database that has been
initialized by use of the DMSINIT utility. Restructuring is accomplished by executing those processes that have

been scheduled and stored in the RPCC by DMSANLZ. All processes for which nonnull files exist are executed by

DMSREST in the order in which they were scheduled by DMSANLZ. This step-by-step execution of scheduled pro-~
cesses is entriely automatic.

The execution of scheduled processes consists of four phases. Phase 1 unloads the source database and prepares the
data required to loud the target database. Phase 2 loads the target database. Phase 3 prepares data needed to

relink all reference codes, and then relinks and validates the target database. Phase 4 reports any errors detected
by DMSREST during the first three phases. Appendix I shows where shceduled IFID files are created, the flow of

data through all four phases, and all possible processes that may be scheduled by DMSANLZ.

DMSREST Operational Interface

The DMSREST Processor may be executed in a batch mode or on-line from a terminal. The operation of DMSREST
relative to the number of scheduled processes to be executed is determined by control command options. The spec~
ification of some of these options is recorded in the RPCC, The computer operator or terminal user may also
influence the execution of DMSREST via console interrupts and keyins, User-assigned DCBs control the allocation
of all intermediate files to public and private storage volumes. Allocation of all intermediate files is catalogued
in the RPCC, DMSREST includes operational features that provide for execution breakpoints and restart, along with
execution fault protection through backup/recovery procedures.

Each of the DMSREST operational interfaces is described below,

IDMSREST Control Command
The batch monitor control command to execute DMSREST has the form:

IDMSREST [option][, ...]

The corresponding on-line command is:
IDMSREST

DMSREST prompts the on=line user with a colon (:) for any options. A carriage return or line feed is regarded as
indicating the end of the list of options.

Options may be specified in any order, but no option may be repeated. The options and their meanings are listed

in Table 12. Note that some options cause information to be stored in the RPCC. Once an option has been recorded
in the RPCC, it remains in effect until a subsequent execution of DMSREST respecifies the option. The !IDMSREST
command and options are listed via the M:LO DCB. Any errors in the command are listed via the M:DO DCB.
Table 11 lists the diagnostic messages for option errors.

If the IDMSREST command is given without options, each of the scheduled processes is executed, in the order
specified by DMSANLZ, until all have been executed or until execution is interrupted by the terminal user or com=
puter operator.

Ordinarily, execution can be resumed after interruption by a IDMSREST command without options. If DMSREST is
interrupted during the re-execution of a step number range of processes, however, the originally specified RERUN
range is not completed. To complete the range after an interruption, the user must specify the balance of processes
to be re-executed. This can be accomplished via the RERUN and BREAK options in a subsequent job step.

Database Restructuring Processor

Table 12, DMSREST Options

Option Meaning
LOG Record in the RPCC that all future processes to be executed shall be logged on the
NOLOG operator's console,
Alteratively, record in the RPCC that logging shall not be performed.
The DMSANLZ default is LOG.
RUN =n Breakpoint process execution after n steps, where
last process step executed +n < highest process step number.
The first process executed is the next scheduled process not yet executed. RUN is
an illegal option when RERUN or BREAK options are specified. If n is zero, no
scheduled processes are executed, but the exercise of some other options which
may access the RPCC is permitted.
The DMSREST default is to run all scheduled processes not yet executed.,
RERUN = r Re-execute processes beginning with process step r, where
1 < r < last process step executed,
All processes beginning with step r through the highest process step number are
executed unless an option or operator BREAK intervenes,
RELOAD =a Re-execute all processes that load target database area number a, where
15 a< 64,
RELOAD is an illegal option when the RERUN option is also specified.
The user must reinitiolize the target database area using DMSINIT before specify-
ing this option. DMSREST will re-execute the processes necessary to load the
target database area and then continue normal process execution. Concurrent
specification of the BREAK or RUN options are only effective during this con-
tinued normal process execution,
BREAK = b Breakpoint process execution after process step b, where
last process step executed < b < highest process step number.
RERUN in conjunction with BREAK permits o range of process steps to be re-
executed. If RERUN is specified, then
r < b < highest process step number,
WORK = w Record in the RPCC that all future set recoveries fo be executed shall employ
w work file DCBs, where
3=w<8.
The DMSANLZ default is 8.

90 30 12C-2(4/76)

DMSREST Operational Interface

R4

92

. Table 12, DMSREST Options (cont,)

Option

Meaning

SORT =5

Record in the RPCC that all future sorts to be executed shall employ s work file
DCBs, where

3=s =17,

The DMSANLZ default is 17,

BUFFERS = {;}

Record in the RPCC that either one or two buffers may be allocated to each IFID
intermediate file, and the source and target database areas.

The DMSANLZ default is 2,

BLOCK =k Record is the RPCC that all future IFID intermediate files to be created shall have

a nominal block size of k bytes, where

8 + max record byte size £ k = 32,767,
The DMSANLZ default is 2048 for disk/RAD files and for CP-V labeled tape, and
is 4096 for ANS labeled tape.

ANS Record in the RPCC that alf future IFID intermediate files to be created shall be

LABEL " allocated to ANS labeled tape, or to CP-V labeled tape, or to disk/RAD files.

FILE The DMSANLZ default is ANS.

SAVE Record in the RPCC that DMSREST shall save all intermediate files that it creates.

RELEASE
Alternatively, record in the RPCC that DMSREST shall release all intermediate
files upon completion of the last process scheduled to use each file. - The
DMSANLZ default is SAVE,

Note that this option does not apply to IFID files SDBA, TDBA, or CTDG which
are always saved,

CHECKSUM Record in the RPCC that all future IFID intermediate files to be created shall be

NOCHECKS UM checksummed.

Alternatively, record in the RPCC that such files shall not be checksummed.
The DMSANLZ default is CHECKS UM,
CIPHER Record in the RPCC that all future IFID intermediate files to be created and en-
NOCIPHER ciphered shall be enciphered,
Alternatively, record in the RPCC that such files shall not be enciphered.
Note that this option is meaningless if enciphering was not present in the source
database. '
The DMSANLZ default is CIPHER,

CATALOG List through the M:LL DCB all saved IFID files. Any volume serial numbers for
each IFID file are listed. The listing is attached to the L1 logical device for
immediate output and is produced before any scheduled process is executed. An
example of the listing is shown in Appendix J, Figure J=10,

TIME Record in the RPCC that all IFID intermediate files to be created shall include the

NOTIME time as part of the file name.

Alternatively, record in the RPCC that time shall not be used.
The DMSANLZ default is NOTIME,

DMSREST Operational Interface

90 30 12C-2(4/76)

Breakpoint/Restart

Breakpoint/restart features permit a database to be restructured in a series of monitor job steps by selective execution
of scheduled processes. A breakpoint occurs in DMSREST at the completion of each scheduled process and before
execution of the next scheduled process. DMSREST completes each scheduled process with the following activities:

1. AIl IFID files created are closed and catalogued in the RPCC,
2. The executed process is marked "completed" in the RPCC.
3. The RPCC is closed,

4. A checkpoint RPCC file is created to enable DMSREST recovery.

If a breakpoint is not active at the end of the process, DMSREST will then open the RPCC and execute the next
scheduled process,

Activation of a breakpoint is controlled by the control command options RUN or BREAK, as described earlier.
Either option may be used to select the number of scheduled processes DMSREST shall execute during a job step.
The computer operator may also activate the next breakpoint by use of the operator keyins described below. An
operator activated breakpoint has priority over any activated by a control command option. DMSREST terminates
when an activated breakpoint occurs,

Restart from an activated breakpoint is accomplished by re-executing DMSREST in a batch or on-line mode.
DMSREST examines the RPCC to determine the last process completed prior to the activated breakpoint. It will
then automatically begin execution with the next scheduled process. New breakpoints may be activated when
DMSREST is restarted.

Backup/Recovery

DMSREST includes functions that permit recovery and restart of an abnormally terminated job step. These are the
RPCC checkpoint file and the RERUN and RELOAD control command options.

The RPCC checkpoint file is created by DMSREST after the successful execution of each process. The file is named
DMSRESTRPCCHKPT. Creation of a new checkpoint file automatically releases the checkpoint file created by the
previous process.

Recovery and re-execution of a partially completed job step is performed by restarting DMSREST. When DMSREST
is restarted it will examine the current contents of the RPCC, If the RPCC was not closed properly after the last
executed process, DMSREST will automatically recover the RPCC using the current RPCC checkpoint file, Execution
will then proceed with the process that was in execution when the job step terminated. DMSREST will output the
following message:

DMSREST AUTOMATICALLY RECOVERED FROM INCOMPLETE PROCESS
EXECUTION IN STEP n

Recovery of the restructuring process may be necessary if an intermediate file created by DMSREST cannot be
accessed, The control command option RERUN may be used to re-execute previously completed processes and thus
recreate the intermediate files, When a process is re~executed, all scheduled output IFID files are recreated and
catalogued in the RPCC. Cataloging of the files in the RPCC replaces those catalogued during the previous execu-
tion of the process. The previous output IFID files, however, are not released by DMSREST if the TIME option was
in effect, Re-execution of scheduled processes continues until an activated breakpoint occurs, at which time
DMSREST will terminate.

DMSREST executes two types of processes that place information in the target database. These are the LOAD and

LINK processes. One or more LOAD processes and one LINK process will be scheduled for each target database
area, The execution of each of these processes depends upon information placed in the target database by the

90 30 12C-2(4/76) DMSREST Operational Inte_rfaco

94

previous process; it is impossible, therefore, to restart DMSREST if a LOAD or LINK process was partially completed,
If this type of restart is attempted, DMSREST will output the following message and then terminate.

DMSREST REQUIRES INITIALIZATION OF TARGET AREA n name
RE-EXECU7 e DMSREST WITH RELOAD = n CONTROL COMMAND

The user must first reinitialize target area n using DMSINIT. DMSREST may then be restarted with the RELOAD
option. This will cause DMSREST to re-execute all LOAD steps already completed for the specified area, After
these steps are re-executed, processing will then continue beginning with the process that was in execution when
the job step terminated,

Operator Communication

DMSREST accepts operator interrupts and keyins to facilitate run-time control when executing in batch mode or
from an on-line terminal, If DMSREST accepts the control command options, it will then output the following mes-
sage on the OC device in batch mode, or on the user's terminal,

DMSREST -~ WILL ACCEPT OPERATOR INTERRUPTS

This message is not produced if the NOLOG option is active,

The operator may then interrupt DMSREST to establish communications. In batch mode, the INTt keyin is used to
effect an interrupt. Depressing the BREAK key causes an interrupt when DMSREST is executing from an on-line
terminal, Upon receipt of an interrupt, DMSREST responds with the following message:

DMSREST - INTERRUPTED BY OPERATOR, YOU MAY INPUT:

Operator keyins are then solicited by the following multi-line message:

IGNORE - TO IGNORE YOUR INTERRUPT

PAUSE - TO PAUSE DMSREST AFTER CURRENT STEP
BREAK - TO TERMINATE DMSREST AFTER CURRENT STEP
GO - TO CANCEL YOUR PRIOR 'PAUSE' OR 'BREAK'
CATALOG - TO LIST ALL FILES AFTER CURRENT STEP

QuIt - TO IMMEDIATELY TERMINATE DMSREST

DMSREST then requests a keyin by prompting with the message:

DMSREST - YOUR INPUT:

DMSREST responds to invalid keyins with the following message:

DMSREST - YOUR RESPONSE IS INVALID, YOU MAY INPUT:

The operator may then type a corrected keyin,

Keyins may be preceded or followed by blank characters; only the first 15 characters, however, are accepted by
DMSREST. Operator keyins that may be entered, and the resulting actions and messages by DMSREST, are given
in Table 13.

fSee the CP-V Operations Reference Manual (90 16 75).

DMSREST Operational Interface

Table 13. DMSREST Keyins and Responses

Operator
Keyin DMSREST Response
IGNORE DMSREST returns to the interrupted process without taking any action other than issuing
the message:
DMSREST - YOU'RE IGNORED
PAUSE DMSREST activates a pseudo breakpoint after the currently executing process. It then
issues the message:
DMSREST - WILL PAUSE AFTER STEP n
When the pseudo breakpoint is reached, DMSREST will issue the following message at
five minute intervals:
DMSREST - PAUSE FOR OsERATOR INTERRUPT AFTER STEP n
The operator may then interrupt DMSREST and enter another keyin. The PAUSE keyin
cancels any previous BREAK keyins,
BREAK DMSREST activates a breal ~~int after the currently executing process and then issues
the message:
DMSREST - BREAKPOINT SET AFTER STEP n
When the breakpoint is reached, DMSREST issues the following message and then term-
inates execution.
DMSREST - OPERATOR BREAKPOINT TERMINATION BEFORE STEP n
The BREAK keyin cancels any previous PAUSE keyin.
GO DMSREST deactivates any breakpoint activated by a previous PAUSE or BREAK keyin

and then issues the following message:

DMSREST - YOUR PAUSE OR BREAKPOINT CANCELLED

If no prior PAUSE or BREAK keyin was entered, DMSREST issues the message:

DMSREST - NO PRIOR PAUSE OR BREAKPOINT SET - YOU
MAY INPUT

The operator should then enter some other keyin. Breakpoints activated by the control
command options RUN or BREAK are not cancelled by a GO keyin.

DMSREST Operational Interface

95

96

Table 13. DMSREST Keyins and Responses (cont.)

Operator
Keyin DMSREST Response
CATALOG DMSREST prepares to produce a file catalog listing and then issues the following
message:
DMSREST - FILES WILL BE LISTED AFTER STEP n
When step n is completed, DMSREST will produce a file catalog listing and then con=
tinue execution with the next scheduled process. The catalog listing is attached to the
L1 logical device for immediate output. A sample of the catalog listing is provided in
Appendix J,
QUIT DMSREST issues the following message:
DMSREST - TERMINATED BY OPERATOR
The DMSREST processor is then immediately aborted,
DCB Assignments

No interface is required between the DMSREST user and the CP-V monitor, with respect to the assignment of the
RPCC, IFID files, sort work files, or listing output DCBs. Table 14 lists all DMSREST output DCBs and the contents
of the associated files, IFID input DCBs are dynamically assigned by DMSANLZ.

If the RPCC is assigned to a private disk pack when it is created by DMSANLZ, an IASSIGN command (or ISET
command, on-line) is required for the F:RPCC DCB, The private pack serial number is entered with the SN pa-
rameter of the IASSIGN command. The file name must be DMSRESTRPCC, An example is shown below.

1ASSIGN F:RPCC, (FILE, DMSRESTRPCC), (SN, DISK)

DMSREST defaults all output IFID files to ANS labeled tape, This default assignment may be changed by use of
the LABEL or FILE option in the IDMSREST control command (see Table 12), The user may temporarily override the
default assignment during a given job step by use of an IASSIGN command for an output IFID DCB. The output
IFID DCBs are F:WFO1 through F:WF15. Only the IASSIGN command keywords FILE, LABEL, and ANSLBL are
permitted for these DCBs. DMSREST will issue an error diagnostic and abort if any !ASSIGN command for an IFID
DCB specifies the DEVICE keyword. Note that standard DMSREST file names replace the file names specified in
IASSIGN commands for IFID DCBs. Only one IFID file is written to any tape volume, but many IFID files may be
output fo a private disk volume set, An example of output IFID file assignment for a job step is shown below. In
this example, all files output through F:WFO1 during the next job step will be public disk/RAD files, those output
through F:WF02 will be on CP-V labeled tape, and those output through F:WFO03 will be on ANS labeled tape.

IASSIGN F:WFO1, (FILE, WFO1)
IASSIGN F:WFO02, (LABEL, WFO02)
IASSIGN F:WFO03, (ANSLBL, WF03)

The Xerox Sort program, used by DMSREST, defaults all sort work files to public files. See the Xerox Sort and
Merge (for CP-V/BPM) Reference Manual (90 11 99) for information on assigning sort work file DCBs.

DMSREST Operational Interface

Table 14, DMSREST DCBskcnd File Contents

file catalog listings)

DCB Mode Contents

F:RPCC inout. RPCC

F:WFO1 out CIDG, CSMR

F:WF02 out CCbG

F:WF03 out CVvDG

F:WF04 out CSKD, CSTO, CGOR
F:WF05 out CRCO

F:WF06 out CEGR, CGRC

F:WF07 out CTDG

F:WFO08 outin WRK1

F:WF09 outin WRK?2

F:WF10 outin WRK3

F:WF11 outin WRK4

F:WF12 outin "WRKo

F:WF13 outin WRK$6

F:WF14 outin WRK7

F:WF15 outin WRKS8

F:SCRF1 outin Xerox Sort intermediate file
F:SCRF17 outin Xerox Sort intermediate file
M:LO out Listing output

M:DO out Diagnostic output

M:LL out Listing log (for control command and operator keyins requesting

Volume serial numbers used by IFID files output on ANS labeled tape, CP-V labeled tape, and private disk packs
are copied from the IFID output DCB into the RRCC when each IFID file is closed. Volume serial numbers are
entered into DCBs by an 1ASSIGN command or by MOUNT or ANSMOUNT keyins in response to a monitor mes=
sage (see the CP=V Operations Reference Manual, 90 16 75). DCBs F:WFO1 through F:WF15 each permit up to

10 volume serial numbers.

The SN parameter of an IASSIGN command for DCBs F:WFO1 through F:WF15 may preallocate up to 10 volume
serial numbers. Any IFID file output through an assigned DCB may use some number of these preallocated volumes.

Tape volumes may contain only a single IFID file, but private disk packs may contain many IFID files.

DMSREST Operational Interface

97

98

Tape volume serial numbers for each assigned DCB are saved by DMSREST. When an output IFID uses a DCB,
DMSREST reallocates to that DCB any saved, unused tape volume serial numbers that were preallocated to the DCB
by an IASSIGN command. After the IFID file is closed, all unused tape volume serial numbers are again saved by
DMSREST and become available for allocation to some other IFID file that may be output through that DCB. An
example is shown below. :

IASSIGN F:WF04, (ANSLBL, WF04), (SN, 111111, 222222, 333333, 444444)

In this example, if a CSKD output IFID file created in step 1 uses tape*111111, then volume serial numbers 222222,
333333, and 444444 are available for the next IFID file output through F:WF04, If another CSKD file output in
step 2 uses tapes 222222 and 333333, then only the preallocated volume serial number 444444 is available for the
next IFID file output through F:WF04. If a CSKD file output in step 3 needs a second tape, then 444444 is the first
volume and whatever tape is mounted by the operator is the second volume. Any IFID files output through F:WF04
in subsequent steps wiii also have serial numbers of tapes mounted by the operator.

Private disk file volume serial numbers may accommodate multiple IFID files, The monitor allocates each file to
those volumes of a private volume set that have unused space. DMSREST only records in the RPCC the first volume
serial number of a private volume set containing an output IFID file. A private volume set may also be extended
by means of an IASSIGN command, as shown below.

IASSIGN F:WFO03, (FILE, WFO03), (SN, 1111, 2222, 3333)

In this example, if a CVDG IFID file output in step 1 is wholly contained by disk volume 1111, then this volume
serial number is recorded in the RPCC, If another CVDG file output by step 2 is spread across disk volumes 2222
and 3333, then the first volume serial number of the private volume set is recorded in the RPCC, namely 1111,
Note that CP-V uses the first volume serial number of a private volume set to locate a file on any volume or volumes
of that set.

Another example of private volume set allocation is shown below.

IASSIGN F:WFO3, (FILE, WF03), (SN, 1111, 4444, 5555)

In this example, if the private volume set was 1111, 2222, 3333, then the |ASSIGN command extends the set to
include volumes 4444 and 5555. An output IFID file may be allocated by the monitor anywhere within this five-
pack set of volumes. DMSREST only records the first volume (1111 in this example) in the RPCC for any IFID file
output to the extended private volume set. ’

DCBs M:LO and M:DO use vertical format control and may be assigned to logical devices, files, or tape. The M:LO
DCB lists all processes executed and files created; the M:DOQ DCB lists all error diagnostics. An example of M:LO

assignment is shown below.

IASSIGN M:LO, (FILE, SAVELO)

In this example, all listings output through M:LO in the next job step will go to a public file named SAVELO.
File catalog listings are output through M:LL in response to control command options and operator keyins. DMSREST

connects M:LL to the L1 logical device, to enable immediate release of the symbiont file to an output device.
Vertical format control is present in the output.

DMSREST Operational Interface

A special interface allows APL programs access to EDMS databases. The interface consists of an intrinsic function,
within APL, and o set of AFL functions that perform argument formotting operations and execute the intrinsic
function. These functions normally reside in workspace DMSFNS in the DMSLIB account.
graphic representation of the APL/EDMS interface.

Since all user=function communication with the EDMS intrinsic function will be accomplished via the functions in
the DMSFNS workspace, the material in this chapter describes these functions only, and not the intrinsic function
itself. It is assumed that the reader is fomiliar with both APL and the services provided by the EDMS Database

8. APL/EDIMS INTERFACE

Manager (DBM), as described in Chapter 4.

See Figure 13 for a

The functions described in this chapter provide the APL programmer with most of the EDMS services available to the
COBOL, FORTRAN or assembly language progrommer. Not available to the APL progrommer are

FINDSEQ
DMSRTRN

DMSSTATS

ENDSTATS

RPTSTATS

User's APL Functions

APL/EDMS Interface
Functions from
DMSFNS Workspace

APL Processor

EDMS Intrinsic
Function

Dynamically Associated—=1

Y

EDMS Public Library

APL Dynamic Data

Dynamic Storage
for Subschema,

EDMS Working Storage,
Data Buffers, etc.

User's
Database

90 30 12C=1(6/75)

Figure 13. APL/EDMS Interface

APL/EDMS Interface

98-1

Additionally, functions that provide services unique to the APL environment include:

DMSSUB TODMS
DMS PKSN FROMDMS
DMSPASS CURRGRP
REFCODE CURRSET
FRSTREF DMSEND
LASTREF DMSERCOD
BREFC ODE ECDREF
BGRPNO DCDREF
BERRC ODE

APL/EDMS Overview

The first time an EDMS function is called, the EDMS intrinsic function within APL associates the EDMS Public Library
and cllocates dynamic memory to contain the user's subschema, working storage, name table and data buffers. This
dynamic storage is released, and the EDMS Public Library is disassociated, when the user executes a DMSEND call
or successfully executes an APL Load Clear, Off, Save or Continue command.

Unless otherwise stoted, the functions described in this chapter will return a null integer vector instead of ¢ mean-
ingful, explicit result. Typically, however, there would still be an implicit result of changes to the database and
to the user's logical "position" within the database structure, which would be reflected in the contents of the EDMS
working storage maintained by the Database Manager (DBM). These values are available to the user -functions
through the use of special working storage communication functions.)

Errors

Two levels of errors are possible when using the APL/EDMS interface: EDMS-level and APL-level errors. EDMS-
level errors are the standard EDMS errors, as defined in Appendix F. These are handled as they would be for

- FORTRAN, COBOL and assembly language programs; i.e., the ERR-CODE cell in the Communication Control Block
(CCB) is set to indicate the type of error encountered. APL-level errors are errors detected by the EDMS intrinsic
function, and are handled in a manner similar to APL domain, rank and length errors.

Character Translations

Because of the variety of terminal types that can be used for APL all input characters are translated into an internal
APL code. The only character translation of importance to the APL/EDMS interface is that of the hyphen as used in
EDMS data names. As an aid to the APL/EDMS user, all functions in the DMSFNS workspace will automatically
translate hyphens in dota-name text vectors to the appropriate code for use by the EDMS intrinsic. No translation,
however, is done on character dota volues. It is the user's responsibility to insure that character data going into
EDMS working storage (i.e., via the TODMS function) have the correct hexadecimal configuration.. AppendixB of
the APL reference manual describes the internal APL character set.

98-2 APL/EDMS Overview 90 30 12C-1(6/75)

Item Identifiers

The item identifier is o special form of argument accepted by the TODMS, FROMDMS and FINDX functions. It
consists of the item name, optionally qualified by a group name or set name. Examples:

'QTY -ON=-HAND' ‘ No qualification

'DATE IN STATUS -GRP! Group qualification

*PARTNO OF WHERE -USED-SET! Set qualification
The prepositions 'of' and 'in' are interchangeable in all qualification formats.
Group=-name qualification is required only when an item name = ..ot unique. Set-name qualificationisa mechanism
that allows the user to reference alias working storage areas. In this case, the named set must be one on which the

subject item has an alias defined. Note that the named item resides in the group defined as owner of the named set.
Item identifiers are always used in the form of text vectors,

Reference Codes

Two reference code formats are recognized by the functions in the DMSFNS workspace: encoded and decoded. A
decoded reference code is a three-element integer vector consisting of area number, page number, and line number.
An encoded reference code is an integer scalar that is the hexadecimal equivalent of a standard 32-bit reference
code, with the area number in bits 0 through 7 but limited to 641, and page and line numbers sharing the remaining
24 bits. Thus, the integer value of an encoded reference code is in the range 224 through 64 x 224,

The only function that recognizes reference ~odes in decoded format is ECDREF, which converts decoded reference
codes to encoded format. All other functions that accept reference code arguments require them in encoded format.

Function Usage
Functions accomplish all user-function interaction with the database and EDMS working storage. The function de~

scriptions given in the following paragraphs assume that the user is familar with both the APL language syntax and
EDMS services described in Chapter 4.

Beginning of Processing

Before manipulating any data, the user must identify the subschema for the database he intends to process, open the
database, and specify volume serial numbers and EDMS password.

Identifying the Subschema

DMSSUB, used to identify the subschema, is @ monadic function whose argument is a text vector composed of sub-
schema name and, optionally, account and monitor password, separated by periods.

Format

DMSSUB ‘'subschema name [.[account] [password]]'

Examples
DMSSUB 'TESTSUB! Subschema name only
DMSSUB 'PERSONNEL. . PRSPASS' Subschema name and monitor password only
DMSSUB 'PARTSUB. MFGACCT! Subschema name and account only

DMSSUB 'HOSPSUB. HOSPITAL. PASSOY! Name, account, and password

90 30 12C-1(6/75) Function Usage/Beginning of Processing 98-3

Usage Rules

1. DMSSUB must be the first EDMS function that is executed, except for the error control functions which
may be executed at any time.

2. The specified subsch. ma must include a name table.
3. The argument text vector must not contain any blanks.
4. The account and monitor=password portions of the argument are optional.

5. The DMSSUB call is legal at any time when there are no open database areas.

Response

DBM places subschema file identification information in the DCB through which the subschema will be read, and
associates the public library. On the first EDMS call ofter the DMSSUB call (with the exception of the DMSPKSN
call, described below), the EDMS intrinsic function acquires dynamic memory to contain the subschema, working
storage, name table and three data buffers.

Openning the Database

The functions used by APL to open the database are the same as the open=calls described in Chapter 4. Function
type is monadic. Argument is a text vector containing area name and, optionally, account, monitor password, ond
cipher key, separated by periods. -

Format
OPENUPD
OPENRET ‘ |
OPUPDSHD} ‘area name[.[account][.[monitor password] [. cipher key]]]'

OPRETSHD
CREATE

Examples
OPENRET 'TESTAREA! : no account, monitor password or cipher key

OPENUPD 'PAYROLL..PAYPASS, XPAY' monitor password and cipher key

OPUPDSHD 'PARTSDB. MFGACCT! account only
OPRETSHD 'HOSPDB...HOSP' cipher key only
Usage Rules

1. Database open functions are subject to the same usage rules as their standard EDMS counterparts.
2. Indicated area must be an existing EDMS database area file that is defined in the subschema.
3. Account, monitor password and cipher key portions of argument are optional.

4. Database open functions are legal any time after the DMSSUB call as long as there are no active data=
base areas.

Response

In addition to the standard open procedures described in Chapter 4, the EDMS intrinsic function acquires dynamic
memory for an inventory buffer, if required, and allocates an APL file I/O DCB for use in accessing the area.

98-4 Beginning of Processing 90 30 12C-1(6/75)

Specifying Volume Serial Numbers
DMSPKSN is a monadic function, whose argument is a text vector containing volume seria! ‘mbers.

F ormat
DMPKSN 'volume =serial =numbers’
Usage Rules

1. The argument must be text vector, from 1 to 12 characters in length containing volume serial numbers.

2. If a pack serial number assigned to, or contained in, the argument text vector consists of fewer than four
characters and is not the last (or only) serial number in ihe string, then the user must pcd that serial
number with trailing blanks to make its length an even four characters.

3. No intervening EDMS calls are allowed between a DMSSUB or open call and itsassociated DMSPKSN call.

Response

If the length of an argument test vector is not an even multiple of four, the EDMS intrinsic function peds it with
trailing blanks to make it so. The first four characters of the padded argument are then taken as the first volume
serial number, the second four as the second volume serial number, and the last four as the third. The EDMS intrin-
sic function then applies the serial numbers to the most recent DMSSUB or open call

Example

In the following example the subschema and 1 »~ database areas reside on the private volume set consisting of PK1,
PK2 and PK3. Note the trailing blank ofter the first two volume serial numbers.

DMSSUB 'TESTSUB!

DMSPKSN VSNS —'PK1 PK2 PK3'
OPENRET TESTAREAT’

DMSPKSN VSNS

OPENUPD 'TESTAREA2'

DMSPKSN VSNS

Specifying an EDMS Password
DMSPASS is a monadic function whose argument is a text vector containing the EDMS password.
DMSPASS 'password!

Usage Rules

1. The argument must be a text vector consisting of a string zero to eight characters long. A null vector
causes the password portion of the Communication Control Block (CCB) to be set to blanks.

2. The DMSPASS function may be used at any time after the DMSSUB call and before the first access o the
database.

ResEonse

The EDMS intrinsic pods the argument with trailing blanks to a length of eight characters, as required, and moves it
into the PASSWORD cell of the CCB.

90 30 12C-1(4/75) Beginning of Processing 98-5

Updating the Database

Updating Group Occurrences

APL functions for adding and deleting group occurrences in the database are subject to the same usage rules as their
standard EDMS counterparts. A difference exists in modifying data values. From APL this can be done only for an
entire group, whereas other host-language procedures can modify selected items within a group. The APL updating
functions are monadic. Argument is a text vector containing the group name.

Format

[STORE)
DELETE
DELETAUT

{ DELETSEL } 'group-name'’
REMOVE
REMOVSEL
MODIFY |

Modifying Set Linkages

The occurrence of a group whose membership in a set is defined as optional or manuel can be linked to, or delinked
from, a set occurrence. Also, a member group occurrence can be changed from one owner occurrence to another in
any set in which it participates. The functions to accomplish these modifications are dyadic and subject to the same
usage rules as the equivalent standard EDMS calls. Both arguments are text vectors.

Format
LINK
‘group-name' {DELINK} 'set=name’
RELINK

Group-Relative Retrieval

The group-relative retrieval functions are equivalent to their standard EDMS counterparts and subject to the same
usage rules. They are monadic functions. Argument is a fext vector containing group~name.

Format

FINDC)
FINDG
FINDDUP
\ FINDFRST } 'group=-name'
FINDLAST
FINDN

| FINDP

Response

The specified occurrence of the named group is retrieved according to the criteria implicit in the type of call. When
the last applicable group occurrence has been retrieved as the result of a FINDN or FINDP call, DBM sets the GRP-
NO cell in the CCB to zero as an indication of the "at-end" condition.

Usage Rules
1. For the FINDFRST, FINDLAST, FINDN, and FINDP calls, the indicated group must be defined with
INDEXED location mode. Note that the FINDN and FINDP calls aiso accept set-name arguments when

used to traverse sets (see below).

2. The group=relative retrieval functions are subject to the same usage rules astheir standard EDMS counterparts.

98-6 Updating the Database 90 30 12C-1(4/75)

Set Traversal

The functions are equivalent to their standard EDMS counterparts and subject to the sarma usage rules. They are
monadic. Argument is a text vector containing set-name.

Format

FINDN

FINDP ' '
FINDM set-name
HEAD

Response

DBM traverses the named set in the direction implicit in the type of call. Note that the HEAD function includes an
implicit move of the data items to working storage.

Retrieving Secondary-Index ltems

FINDX, used for retrieving secondary indexes, is 5ub|ect to the same usage rules os the standard EDMS FINDX pro~
cedure. It is a monadic function whose argument is o text vector containing an item |denhf|er. The format of the

item identifier wos given earlier in this chapter (under "Cverview").

Format

FINDX 'ifem-nome[[%} group-name]'

Reseonse

DBM retrieves the first (or next) secondary index for the indicated item. When the last applicable secondary index
occurrence hasbeen retrieved, DBMsets the GRF=1v O cell in the CCB to zero as an indication of the "at-end" condition.
Direct Retrieval

The direct retrieval functions are nyladic and subject to the same usage rules as their standard EDMS counterparts.
Format

FINDS

{FINDD '
FINDSI

Response

DBM retrieves a group occurrence on the basis of a reference code in the CCB according to the method implicit in
the type of call, When the last applicable group occurrence has been retrieved as the result of a FINDS or FINDSI
call, DBM sets the GRP-NO cell in CCB to zero as an indication of the "at-end" condition.

Moving to Working Storage

The GET function is monadic and subject to the same usage rules as the standard EDMS GET procedure. The GET
function's argument is a text vector containing group name.

Format
GET 'group-name'

Resgonse

DBM moves the contents of all items in the most recently retrieved occurrence of the indicated group from the DBM
data buffers to EDMS working storage. There is no facility for moving selected items.

90 30 12C-1(6/75) Updating the Database 98-7

Communicating with Working Storage

The working storage communication functions let the user (1)initialize selected areas of the EDMS CCB and working
storage, and (2} obtain specific values from the CCB and working storage areas in the form of an APL result.

CCB Initialization

The CCB initialization functions are monadic. Argument is an integer scalar reference code, in encoded format,
or a retrieval count. (Encoding and decoding of reference codes is explained below under "Reference Code
Conversions".) Reference code arguments will typically be the result of either the ECDREF or BREFCODE
functions.

Format

LASTREF

{FRSTREF
REFCODE

Examples

1. SAVEREF—BREFCODE Saving ond restoring the reference code of a specific group
. occurrence.

REFCODE SAVEREF

2. FRSTREF ECDREF 3 1 1 Retriave all group occurrences on page 1 of area 3.
LASTREF ECDREF 3 1 255 (First column is areo; 2nd, page number; 3rd, line number.)
3. FRSTREF ECDREF 1T 121 Retrieve ten group occurrences starting ot page 12 of area 1.
LASTREF 10
Response ’

The EDMS intrinsic function places the value of the at:gumenl' in the indicated cell of the CCB.

Usage Rules

1. The retrieval count form of the argument is acceptable only by the LASTREF function. It is intended for
use in conjunction with the FINDSI function.

2. The CCB initialization functions may be used at any time after the DMSSUB call and before @ DMSEND
call.

CCB Inquiry
The purpose of the CCB inquiry functions is to obtain an integer scalar representing the contents of the REF-CODE,
GRP-NO, or ERR-CODE cell of the CCB, as indicated by the function name specified.

Format

BGRPNO

{ BREFCODE]
BERRCODE

The functions are nyladic. They can be used at any time after the DMSSUB call and before a DMSEND call.

98-8 Communicating with Working Storage 90 30 12C-1(6/75)

Data item Initialization

TODMS is a dyadic function whose left argument is a data value and whose right argument is a text vector containing
an item identifier., The data value must be either an APL variable or the result of an APL expression, Item name,
optionally qualified by group-name or set-name, constitutes the item identifier. The data value is moved to the
EDMS working storage area for the indicated item,

Format

value TODMS 'ifem-ncme[{;%:} {group‘—name}]l

set-name
Usage Rules

1. I the item type is defined so as to be interpreted by EDMS as alphabetic or alphanumeric, then the data
type of the left argument must be character or a domain error will result (see Table 1, Chapter 3). If the
item definition were to result in an EDMS interpretation other than alphabetic or alphanumeric, the left
argument must be real, logical or integer, The TODMS function ~utomatically converts the data value to
the type defined by the DDL. Truncation errors are possible whenever a real APL value is moved to a
binary or floating short EDMS item, or whenever the object of the TODMS call is a numeric or packed
decimal item, Truncation is defined as any loss of integral or significant functional digits.

Conversions to numeric or packed decimal items are rounded to the number of digits specified by the item's
picture with a maximum of 15 digits. All conversions involving floating point numbers yield results identi-
cal to those of APL; however, this does not guarantee that converted numbers will exactly match those
produced via another processor,

2. The shape and dimensions of the du!u value must conform to the DDL description of the EDMS item. In no
event is an array of greater than two dimensions acceptable.

For alphabetic and alphanumeric EDMS 1iems that do not contain an OCCURS clause, the data value must
be either a scalar or a vector. A scalar is acceptable only for single~character items (e.g., PIC X). For
items containing more than a single character, a character=vector data value is required. The length of
the vector must be exactly the same as that of the EDMS item. For example, an item defined as PIC X(12)
requires a twelve element character vector as left argument for TODMS. If the EDMS item description
contains an OCCURS clause, the data value must be a mairix with its first dimension equal to the item's
occurs count and its second dimension equal to the number of characters in the item description. Example:
An item defined as PIC X OCCURS 5 requires a 5 by 1 matrix as the left argument for TODMS.

For EDMS items whose type is not alphabetic or alphanumeric and that do not contain an OCCURS clause,
only a scalar left argument is acceptable. If the EDMS item description contains an OCCURS clause, then
the left argument for TODMS must be a vector whose length is equal to the item's occurs count,

3. For numeric or packed decimal EDMS items whose picture does not specify a sign, only a positive value

may appear as left argument. Any atfempt to move negative values to an unsigned item will result in an
APL-level EDMS error,

Table 15 gives examples of illegal left arguments along with a form of the argument that would be legal, or an ex-
pression describing the legal range of values that the argument may assume.

Data Item Inquiry
FROMDMS obtains the contents of a data-item from working storage. The form of the result is determined by the

item's DDL description with respect o type, rank, and dimensions, in accordance with Tables 16, 17, and 18 shown
below, The function is monadic. Its argument is a text vector containing item identifier,

Format

FROMDMS 'ifem-name[{gi} {group-name}].
IN J lset=name

90 30 12C-1(6/75) Communicating with Working Storage 98-9

Table 15. Examples of lllegal Left Arguments

lllegal Left
Item Description Argument Reason for Error Legal Form or Range
PIC X(9) 'ABCD' INCORRECT LENGTH 94 'ABCD’
PIC X(8) 2 4p 'BETA' INCORRECT RANK ;2 4p 'ALPHABETA'
PIC X(9) OCCURS 2 'ALPHABETA' INCORRECT RANK 2 9p 'ALPHABETA'

PIC XXX

PIC 999

PIC 99V99

PIC 99V99 OCCURS 3
PIC 99V99

PIC PP999

BINARY

FLOATING SHORT
PIC 999, 9

123 INCORRECT TYPE

123 INCORRECT TYPE
'34, 5 INCORRECT TYPE
34.5 INCORRECT LENGTH
123.4 TRUNCATION
.01234 TRUNCATION

10*10 TRUNCATION

r/0 TRUNCATION

-12 SIGN

'123'

123

34.5

3p34,5

100 > arg

.01 >arg

-231< arg < 231
7.237E75 2 | arg
12

Table 16, FROMDMS Result: Item Type

APL Type

EDMS Interpretationt Character Real Integer
Alphabetic or Alphanumeric X
Binary X
Floating Point (Short or Long) X

Fewer than 10 Digits X
Numeric or Packed and no V' in Picture -
Decimal 10 or more digits or X

'V in Picture
fSee Table 1, Picture=-Type Correspondences,

Table 17. FROMDMS Result: Item Rank
Result Rank

EDMS
Item Description Scalar Vector Matrix

Alphabetic or Alphanumeric X
OCCURS Clause
not Specified Not alphabetic or X

Alphanumeric

Alphabetic or Alphanumeric X
OCCURS Clause
Specified Not Alphabetic or X

Alphanumeric

Communicating with Working Storage

90 30 12C~1(6/75)

Table 18. FROMDMS Result: Item Dimensions

Item Type
Not Alphabetic or

Result Rank Alphabetic or Alphanumeric Alphanumeric

Vector Length is number of characters in item Length is OCCURS Count
description,

Matrix First dimension is OCCURS count; Second
dimension is number of characters in item
description,

Usage Rules
1. FROMDMS may be used at any time after the DMSSUB call and bzfore @ DMSEND caill.

2, If FROMDMS encounters a negative number in an unsigned numeric or packed decimal item, the absolute
value of the item is returned,

3. If the item's picture specifies a scaling factor that does not allow the item value to be accurately
represented in a floating point long number, e.g., PIC P(78)999 or PIC 999(78), an APL=level EDMS error
is reported.

4, If an illegal digit is encountered in a numeric or packed decimal item value, an APL-level EDMS error is
reported,

5. For numeric or packed decimal items, the maximum significance of the result value is approximately
15 digits. Thus, for items whose picture exceeds 15 digits of significance, e.g., PIC 9(17), only the first
15 digits are represented in the results; however, the scaling is retained.

Table 19 gives examples of the results of FROMDMS.

Table 19. FROMDMS Sample Results

Item's DDL Item
(Description) Contents FROMDMS Result
PIC 999P(6) 123 1. 23E8
PIC P(6)999 123 1.23E-7
PIC 99 OCCURS 5 1122334455 11 2233 44 55
PIC 9v9 OCCURS 5 1122334455 1.1 2 23.34,45,5
PIC 9(5) OCCURS 2 1122334455 11223 34455
PIC X(10) ABCDEFG123 ABCDEFG 123
PIC XX OCCURS 5 ABCDEFG123 AB
CD
. EF
Gl
23
PIC A(3)X(4)9(3) ABCDEFG 123 ABCDEFG 123

90 30 12C-1(6/75) Communicating with Working Storage 98-11

Current of Type Inquiry

CURRGRP returns the contents of the current~of-type cell for the indicated group as an integer scalar reference code
in encoded format, The function is monadic. Its argument is a text vector containing the group-name.

Format

CURRGRP 'group-name'

Usage Rule
The CURRGRP function may be used at any time after the DMSSUB call and before a DMSEND call,

Examples
CURRGRP 'PART-GRP'

33555095
DCDREF CURRGRP 'PART-GRP'
2 5 23

DCDREF is the function used for deco&ing reference codes, explained below under "Reference Code Conversions".

Current of Set Inquiry
CURRSET returns the contents of the set=table for the indicated set as an integer vector of reference codes inencoded

format, The function is monadic. Its argument is a text vector containing set~name. CURRSET may be used at any
time after the DMSSUB call and before a DMSEND call. :

Eormat

CURRSET 'set-name’

Example
CURRSET 'CALL-OUT-SET'
16777473 0 16778243 16779321 .
DCDREF ~ CURRSET ‘CALL~OUT=-SET'

1

— — O -
@ & O

57

DCDREF is the function used for decoding reference codes, explained below under "Reference Code Conversions".

Terminating Processing

The termination functions provide facilities for closing the user's database and releasing dynamic memory.

98-12 Terminating Processing - 90 30 12C-1(4/75)

Closing a Database Area

CLOSAREA closes the area indicated by its argument — a text vector contfaining the area name. The function is
monadic, It is subject to the sume usage rules as the standard EDMS CLOSAREA procedur ..

Format

CLOSAREA 'area-name’

Clasing all Database Areas

CLOSEDB, a nyladic function, causes all database areas to be closed. The function is subject to the same usage
rules as the standard EDMS CLOSEDB procedures.

Format

CLOSEDS8

Releasing Dynamic Memory

DMSEND, a nyladic function, causes all dvnam®: memory to be released and the EDMS public library to be dis=-
associated. The function moy be used at any time after the DMSSUB call, provided no database area files are open.

Format

DMSEND

EDMS - Level Error - Control Functions

The error-contro! functions are used to simulate the actions of their standard EDMS counterparts. See "Dynamics of
EDMS=Level Error Control", below, for a discussion of the simulation technique.

Setting Error Control for Data-Depandent Errors

SETERR, a dyadic function, specifies the name of the function that is to be invoked if a data~dependent error
occurs. The function's left argument specifies the error numbers to be set. The right argument is a text vector con-
taining the name of the function to be invoked if one of the specified errors occurs,

Format

error code(s) SETERR ‘function-name’

Examples
(10) SETERR 'ERRORFUNC' Catch and report all data=dependent errors,

357 SETERR 'CODES357' Catch and report errors 3, 5, and 7,

90 30 12C-1(6/75) EDMS=Level Error Control Functions 98-13

Usage Rules

1. The error code specification may be in the form of any APL expression that, evaluated, equals an integer
scalar or vector with values between 1 and 29 inclusive. ’

2. The named function must be a nyladic, no-result function. If, at the time a specified error occurs, the
named function is defined as other than a nyladic, no-result function, an APL-~level error is generated.
(See "APL-Level EDMS Errors" below.)

3. The SETERR function may be used at any time.

4, If the evaluated error code specification equals a null vector, the function-name of the right argument is
applied as error control for all data=dependent errors.

Resstting Error Control for Data-Dependant Errors

RESETERR resets error control on data-dependent errors. The function is monadic. Argument is error code specifica=
tion that identifies which errors are to be reset. :

Format

RESETERR error code specification

Examples
RESETERR 10 Reset all data=dependent errors

RESETERR 4 Reset error code 4

Usage Rules

1. The error code specification may be in the form of any APL expression that, evaluated, equals an integer
scalar or vector with values between 1 and 29, inclusive,

2, If the evaluated error code specification equals a null vector, all data-dependent errors are reset.

3. The RESETERR function may be used at any time.

Setting Error Control for Deadlock and Non-Data-Dependent Errors

DMSABORT and DMSLOCK specify the name of the function that is to be invoked if deadlock or a non~data~dependent
error occurs. The function is monadic. Argument is a text vector containing the name of the function to be invoked
if the indicated error occurs.

Format

{DMSABORT

DMSLOCK } 'function name'

Examples

DMSABORT 'ABORTFUNC!'

DMSLOCK " Quote marks signify a hull-chomcfer vector: Reset deadlock control.

98-14 EDMS-Level Error Control Functions 90 30 12C-1(4/75)

Usage Rules

1. The named function must be a nyladic, no=-result function. If at the time of occiirrence of a deadlock or
non-data-dependent error, the named function is defined as other than a nyladic, no-result function, an
APL-level error is gensrated. (See "APL-Level EDMS Errors" below.)

2. If the right argument is a null text vector, control for deadlock or non-data~dependent errors is reset.

3. The DMSABORT and DMSLOCK functions may be used at any time.

Obtaining the EDMS Error Code for an APL-Level Error

DMSERCOD is a nyladic function that results in an integer value representiang an APL-level EDMS error as listed in
Table F=10 (Appendix F), or in zero if no such error has occurred, Tygically, this function will be used in an APL
sidetracking procedure, See "APL-Level EDMS Errors", below. The DMSERCOD function may be used at any time.

Checkpointing Database Operations

DMSCHKPT, DMSRLSE, and DMSRECV are nyladi~ functions used to checkpoint processing or purge the monitor
enqueue tables and, optionally, roll back :~= database to iis state at the time of the last DMSRLSE. DMSCHKPT
and DMSRLSE are subject to the same usage rules as their standard EDMS counterparts, DMSRECV, being equiva-
lent to EDMS DMSRLSE with recovery, is similarly subject to its usage rules.

Reference Code Conversions

Two functions are available: ECDREF to encode reference codes in the form of integer matrixes containing area,
page, and line numbers, and DCDREF to decode the encoded reference code,

Encoding Reference Codes

ECDREF is a monadic function whose argument is a three-element integer vector or an n x 3 integer matrix. The re-
sult of the function is an infeger vector of encoded reference codes. The length of the vector is the same as the
first dimension of matrix arguments, i.e., the number of reference codes constituting the vector will be the same as
the number of matrix rows. If the argument is a vector, the result will be a single=element vector. See encode/
decode examples below,

Usage Rules

1. A matrix argument may have any number of rows but it must have three columns. The first column is area
number, the second column is page number and the third column is line number, If the argument is a vec~
tor, it is treated as a 1 x 3 matrix,

2. All area numbers in the argument must be defined in the subschema. The value specified for page number
must not exceed 24 bits minus the number of bits required to specify the line number. Line numbers may
not exceed the maximum number of lines per page for the given area.

3. The ECDREF function may be used at any time after the DMSSUB call and before @ DMSEND call.

90 30 12C-1(6/75) Obtaining the EDMS Error Code for an APL-Level Error/Checkpointing Database Operations 98-15
Reference Code Conversions

Decoding Reference Codes

DCDREF is a monadic function whose argument is an integer scalar or vector of encoded reference codes, Result is
an integer matrix whose first dimension (number of rows) is the number of reference codes in the argument, and whose
second dimension (number of columns) is three: area numbers, page numbers, and line numbers, in this order,

Usage Rules

1. The values given by LARG + 2*24 must all be numbers of areas defined in the subschema.

2, The DCDREF function may be used at any time after the DMSSUB call and before the DMSEND call.

Examples

1. BREFCODE CCB inquiry

16779010 Result
DCDREF BREFCODE
1 7 2
ECDREF DCDREF BREFCODE

16779010

2, CURRSET 'SETD’ Current of set inquiry
16777473 16778758 16779010 16779558 Result
(@) DCDREF 16777473 16778758 16779010 16779558
111 Result
166
17 2
1 9 38
(b) DCDREF CURRSET 'SETD’ Argument is Current of Set inquiry
111 Result
1 6 6
17 2
1 9 38

3. ECDREF DCDREF CURRSET 'SETD' Composite argument
16777473 16778758 16779010 16779558 Result

98-16

Execution Tracing

DMSTRACE initiates and ENDTRACE terminates the DBM procedural trace which performs the execution fracing.
The functions are nyladic and may be used at any time,

Reference Code Conversions 90 30 12C-1(6/75)

APL Command Restrictions

The following APL commands are disallowed while database areas are open and will result in an APL-level EDMS
error if any attempt is made to execute them,

LOAD CONTINUE
CLEAR SAVE
OFF

APL-Level EDMS Errors

All EDMS=-associated errors detected by the EDMS intrinsic funciion are handled at the APL level. A special error
type exists within APL for EDMS errors. This error (numbered 99) may be sidetracked like any other APL error. If
the user chooses to sidetrack on the EDMS error, he may use the DMSERCOD function to determine the nature of
the error, Table F-10 in Appendix F details the possible errors and their associated codes.

If the user chooses not to sidetrack on the EDMS error, a message indicating the type of error is printed immediately
before the APL-level error is initiated, A list of these messages appears in Table F-10,

Errors in EDMS Functions

Errors detected by the EDMS intrinsic function are reported by APL as having occurred in one of the functions
supplied in the DMSFNS workspace, This does not .nean that the error was caused by the function that called the
intrinsic function; rather it means that the in':insic call was the point in the APL program at which the error was
detected., Usually a domain, rank, or length error that occurs during execution of a function from the DMSFNS
workspace is an indication that the EDMS intrinsic is rejecting one of the user's arguments,

Dynamics of EDMS — Level Error Control

Nearly all of the standard EDMS errors are possible under the APL/EDMS interface. These errors are reported in the
usual manner, i,e., the error code is placed in the ERR-CODE cell in the CCB. Due to the interpretive nature of
the execution of APL programs and the inability to unconditionally transfer control to an arbitrary point outside of
the currently executing function, an error control interface has been devised that operates in a manner similar to
the APL CATCH debugging facility.

When an EDMS error occurs for which error control has been set, the function named to receive control is tested to
insure that it is a nyladic, no-result function, If it is not, an APL~level error occurs. If it is, the function is in-
voked just as if it had been called explicitly by the user function that called the EDMS function. If the error con=~
trol function chooses to ignore the error, it may resume execution merely by exiting. Thus a DMSRTRN call is
implicit in the fact that the error control function exits,

DMSFNS Workspace

The DMSFNS workspace will normally reside in the DMSLIB account, In addition to the functions described earlier
in this chapter, this workspace contains several utility functions that perform various argument=formatting and
validation services. The user does not need to be concerned with them beyond being aware of their existence. This
category of functions is characterized by a delta-underscore character (&) which is both the first and last character
in the function name.

The workspace contains three intrinsic functions: ADMS, the EDMS intrinsic; AWM, the workspace-management
intrinsic; and, ATE, the text-editing intrinsic, The ATE and AWM intrinsics are used to assist in argument manipu=
lation and to insure that all of the functions in the workspace are independent of the ORIGIN setting.

One APL "group" of functions, named RTRVGRP and associated with retrieval, is contained in the workspace. Thus,
the user who is writing o workspace to do only retrieval may include only those functions associated with retrieval

90 30 12C-1(6/75) APL Command Restrictions/APL-Level EDMS Errors/Errors in EDMS Functions/ 98-17
Dynamics of EDMS — Level Error Control/DMSFNS Workspace

and exclude all those associated with updating, Also, the user may selectively exclude entry-point functions that
are not used, For example, a user who is writing a workspace to generate a report that does not require the FINDS
procedure, may copy the RTRVGRP out of DMSFNS and then erase the FINDS function,

Subschema File

The APL/EDMS interface requires a subschema that (1) was generated by DMSFDP, version COQ or later, and
{2) contains a name table, If either condition is not met, an APL-level EDMS error is reported,

Area File DCBs

Since database area files are accessed via the APL file /O DCBs, APL/EDMS users are limited to a total of eight
concurrently open files and database areas. No assignment of the associated DCBs is necessary or possible. Execu=
tion of an EDMS open function initializes the DCBs with file name, account number and password, Files on private
disk packs may be accessed with the DMSPKSN call, Area files use file tie numbers that are the negative of the
area number (i.e., area number 16 has file tie number -16). Use of the APL I/O primitive operator 19 will thus
identify which DCBs are currently in use by EDMS,

The user should note that the EDMS intrinsic allocates @ DCB during each open call and deallocates all DCBs when
the last database area is closed. This means that database areas may have DCBs tied up even though they are not
actually in use,

Journal and Statistics DCBs

The permanent journal is written through DCB F:JRNL. It will be written if the schema DDL specifies journaling for
an area and that area is opened for update. The EDMS intrinsic function uses a journal default assignment to file
name 'JRNL-ID', where 1D is the system job ID. This file is created in the run account. If the database is opened
several times in a single APL/EDMS session, the EDMS intrinsic will extend the file on each open. The user may
set DCB F:JRNL to labeled tape or to a different file name prior to entering the processor.

If the schema DDL specifies that statistics are to be created on any group or set in the subschema, the EDMS intrinsic
function writes the statistics through the F:STAT DCB. The file name is defaulted to 'STAT-ID', where ID is
the system job ID, The user may set DCB F:STAT to labeled tape or to a different file name prior to entering the
processor,

98~18 Subschema File/Area File DCBs/Journal and Statistics DCBs 90 30 12C-1(6/75)

APPENDIX A. SCHEMA FiL

The schema file is itself an EDMS database of only one area. The "data" in this database is information about the
user database that is defined by the schema DDL. The user's database is defined in the schema in terms of its areq,
group, item, and set components. The schema also contains the subschema names of all subschemas that have been
generated using the schema. (Subschema information does not exist in the schema when it is initially created.)
Figure A-1 illustrates the schema dotabase relationships. The groups and sets are explained below. Table A-1con-
tains explanations of the items. Figure A-2 shows the schema Data Definition Language used to define the schema
database.

There is only one occurrence of the group SCHEMAHD. It is storee un page 1, line 1 of the file and is the basic
entry point to the schema database.

Linked to the SCHEMAHD occurrence are

1. One occurrence of the ASOWNER group for each set defined in the user's database (schema database
set W).

2. One occurrence of the PASSWORD group for each password defined for the user's database (schema set A).

3. One occurrence of the SSCHEM group for each subschema defined (set B). These occurrences are added
by the FDP when subschemas are generated.

4. One occurrence of AREAGP group for each area in the user's database (set C).

If an area contains an indexed-sequential group, its AREAGP occurrence has associated INDX group occurrences
describing the several significant page ranges in the area (set F). The significant page ranges are the range speci-
fied for the indexed group, the overflow range, and the range of pages used for each level of ihdexing.

An AREAGP occurrence also serves as an entry point (thiough set E) to information on all the groups in the area, in-
cluding information on the sets of which the groups are defined as owners and members.

The UNIT group occurrences contain the basic information on user's groups (size, location mode, etc.). Linked to
each UNIT group occurrence (through set H) is one occurrence of the ELEMENT group for each item defined for the
group. Also linked to each UNIT group is an occurrence of the ASOWNER group for each set of which the referent
group is an owner (set J), and an occurrence of the ASMEMBER group for each set of which the reference group is a
member (set 1).

Each ASMEMBER occurrence is linked (set M) to an ASOWNER occurrence for the referent set. (An ASMEMBER
and an ASOWNER occurrence that are linked together are, of course, linked to separate UNIT oceurrences.) An
ASMEMBER occurrence may be linked to one or more ASCONTROL group occurrences through set N. The ASCON-
TROL occurrences associate an ASMEM.BER occurrence with the ELEMENT occurrence(s) that describe the item(s) de-
fined as sort keys for the set.

An ASMEMBER occurrence may be associated indirectly with an ELEMENT occurrence by means of an ALIAS group
occurrence using sets O and U. Each UNIT group occurrence is linked to one or more GROUPRET group occurrences
(set G) and may be linked to one GSTATS group occurrence.

There is an occurrence of a NAMEGP group for each item, group, or set defined for the user's database. There is
also a NAMEGP occurrence for each alias name specified. Each NAMEGP occurrence is linked to SNAMLINK,
INAMLINK, GNAMLINK, and/or ALIAS occurrence.

Appendix A 99

SCHEMAHD =
A I B
y A \ 4
.PASSWORD SSCHEM AREAGP —F—$
E INDX
W J
S UNIT ———Q———‘
—» ASOWNER GSTATS H g GROUPRET
\
M I
T ELEMENT
Y Y
SSTATS ASMEMBER e .
U
lN
' P
ASCNTROL [+ K
R l
CHECK1 CHECK2
o}
r
PICTURE
NAMEGP
A A \Y
ALIAS -
D
» SNAMLINK INAMLINK |
» GNAMLINK |
Figure A-1., Schema Database Diagram

100 Appendix A

Table A-1. Schema Items

Group Item Explanation

(1) AREAGP NAMESIZE Number of characters in area name.
AREANAME User-supplied name.
AREANO User-assigned number.
INVPERCT Inventory percent assigned by user— 50% minimum.
NBROFLIN Lines per data page: 1 implies 16, 2 implies 32, 3 implies 64,

4 implies 128, 5 implies 256.

CHECKSUM 0 — no checksum on data pages; 1 — checksum.
FILPERCT Percentage of page DBM is to use when area is created.
JOURNAL 0 —no journal; 1 —journal.
ENCIPHER 0 — do not cipher data pcges; 1 — cipher pages.
INDEXED 0 — area not indexed; 1 — area indexed.
AOWNER 0 — area not owner of any sets; 1 —~area owns sets.
AREAFIL1 Unused.
DATAPGES Number of data pages.
PAGESIZE Number of words per data page (currently fixed at 512).
KEYSIZE Size of indexed key in bytes if area is indexed.
RETUSERS Number of retrieve users.
UPDUSERS Number of update users.
PAGEIO N.~ber of physical page 1/Os.
GRPSACSD Number of groups accessed.
GRPSINSD Number of groups inserted.
GRPSDLTD Number of groups deleted.
AREAFIL2 Unused.

(2) UNIT GROUPNO User-supplied number. .
LOCATMOD Location Mode: 1 for direct; 2 for indexed; 3 for calc;

4 for caledup; 5 for via. ‘
INVTITEM 0 —no inverted items in group; 1 — inverted items.
GRPRLLOCK User-supplied retrieve lock (maximum value = 255).
GRPULOCK User-supplied update lock (maximum valuve = 255),
STRGESET 0 — no storage set; 1 —storage set specified.
SECINDEX 0 — not secondary index; 1 — group is secondary index.
NUMKEYS Number of calc, index of sort key items (0-7).
DEFRGE 0 — user supplied page range; 1 — default.
GRPFILLI Unused.
GRPSIZE Size of group in bytes.
. g&%ﬁgi{é‘é} Page range for group.
5

PRIMVALU Prime number for hash of calc groups.
GRPFIL.2 Unused.

Appendix A

101

102

Table A-1. Schema Items (cont.)

Group Item Explanation
(3) ASOWNER SETTILLY Unused.
SETNO Sequential number for set.
OPSTNEXT Relative byte position of set NEXT pointer.
OPSTNPRI Relative byte position of set PRIOR pointer.
SETFILL2 Unused.
(4) ASMEMBER . ORDER 0 — implies last; 1 — prior; 4 — sorted; 8 — first; 9 — next.
GRPNOKY Group number as sort key; O implies not applicable; 1 — ignore;
2 — major; 3 — minor.
DUPSIND Duplicates indicated: O implies not allowed; 1 — first; 2 — last.
OPTIONAL 0 for membership not optional; 1 — membership is optional.
AUTOMANL 0 for membership is automatic; 1 — membership is manual.
PRIMARY 0 — not primary set for group; 1 — set is primary.
STORAG 0 - not storage set for group; 1 — set is storage set.
SELOWNER 0 — owner selection is unique; 1 — owner selection is current.
OWNERNO Unused.
MEMBFIL1 Unused.
MPSTNEXT Relative byte position of set NEXT painter.
MPSTNPRI Relative byte position of set PRIOR pointer.
PSTNHEAD Relative byte position of set HEAD pointer.
MEMBFIL2 Unused.
(5) ELEMENT ITEMTYPE 0 - signed numeric; 1 —alphanumeric; 2 — numeric; 3 — alphabetic;
4 — binary; 5 - floating=point short; 6 — floating-point long;
7 — packed decimal.
LEVELNBR Will not be used in the current FDP.
OCCURCNT Number of occurrences of this item.
ITMRLOCK User-supplied retrieve lock (maximum value = 255).
ITMULOCK User-supplied update lock (maximum value = 255).
INVTIDNO Number of secondary index group.
DATAVLID Data validation type: 0 implies none; 1 — picture; 2 — range;
3 - both.
CONTROL 0 — item not calc or index control; 1 —item is control.
DEFPIC 1 — Defaults picture supplied for packed decimal item.
ITEMFIL] Unused.
ITEMPSTN Relative byte position of item in group.
ITEMSIZE Size of item in bytes.
ITEMFIL2 Unused.
ITEMFIL3 Unused.
ITEMFIL4 Unused.

Appendix A

Table A-1. Schema It~:s (cont.)

Croup Item Explanation
{6) ASCNTROL MATCHIND Type of sort match: O for equal; 1 for range.
CTRLTYPE Sequence Control Type: 1 for ascending; 2 for descending.
CTRLFIL1Y Unused.
(7) SCHEMAHD COPYPSWD EXTRACT privacy lock.
ALTRPSWD ALTER privacy lock (not currently used).
PTRSIZE Size of set poirners in bytes.
SCHFIL Unused.
SCHDATIM Date and time when schema wes created.
SCHESIZE " Size of schema in pages.
NUMPSWDS Count of password groups.
NUMOWNRS | Count of ASOWNER groups.
NUMMBRS Count of AS/{AEMBER groups.
(8) PASSWORD PASSWORD User-supplied database access password.
RETKEYS Retri- ve keys for this password — one bit for each value up to 255.
UPDKEYS Update keys for this password — one bit for each value up to 255.
(9) SSCHEM SUBSNAME Subschern name.
ACCTNBR Account number under which subschema was created.
SUBDATE Date created (halfword binary year and halfword binary julian
day).
SUBSTIME Time created: byte 0 = hour (0-23); byte 1 = minutes (0-59);
byte 2 = second (0-59); byte 3 = hundredths of a second (0-99).
(10) INDX

BEGPGNBR }

Beginning and ending page numbers which together define an INDX

ENDPGNBR overflow range or index level.
DEFNTYPE Type of definition: O for overflow range; 1 for index level.
INDXLEVL Index level number (0 implies indexed data group page range).
INDXFILT Unused.

(11) PICTURE PICTCNT Number of characters in picture.
ITEMPICT User=-supplied picture for item
SCALE Scaling factor for picture.
PICFILI] Unused.

(12) CHECK1 LOWLITI} Low and high literals for data validation (CHECK clause) of binary
HILIT] and floating-point short items.
CKIFIL1 Unused.

Appendix A

103

Table A-1. Schema Items (cont.)

Group Item Explanation
(13) CHECK?2 hﬁ_\llrlé”z} Low and high literals for data validation (CHECK clause) of
floating-point long, packed decimal, and EBCDIC items. Floating-
point long literals will be in the first two words of each item.
Packed decimal will always be 16 bytes. EBCDIC literals will
be left-justified in each item.
CK2FILY Unused.
(14) ALIAS (No items)
(15) GROUPRET DATNAME Name of retrieval item or set, or sort key.
RTVLTYPE Retrieval type: 1 implies index name; 2 — calc item name;
3 - via setname; 4 — storage setname; 5 — sort key name.
GRFILL] Unused.
(16) NAMEGP NAMEVALU User-supplied name for set, group or item.
PRIMNAME Not used in current version.
NAMETYPE 1 implies setname; 2 — group name; 3 — item name; 0 — none.
DUPNAME 0 if no other item in schema has this name; 1 — duplicates exist.
NAMFIL] Unused.
(17) INAMLINK (No items)
(18) GNAMLINK (No items)
(19) SNAMLINK (No items)
(20) GSTATS (Reserved for future implementation.)
NBRACSD Number of group occurrences accessed.
NBRINSD Number of group occurrences inserted.
NBRDLTD Number of group occurrences deleted.
(21) SSTATS . (Reserved for future implementation.)
HEADACCS Number of head accesses through this set.
NEXTACCS Number of next accesses through this set.
PRIRACCS Number of prior accesses through this set.

104 Appendix A

SCHEMA IS SCHEMASCHEMA.

APEA IS SCHEBASE CONTAINS 1 PACES
NUMBER IS 1

ENCIPHERING IS5 NOT RFOUIRCD
CHECKSUM IS REQUIRED
JOURITAL IS MOT REQUIRED

e e e we ~

GROUP IS ARFAGP

WITHIN SCHEBASE

LOCATION MODE IS CALC USINC AREANAME
NUMBER IS 1

s we wo ~o

NAMESIZE; PIC X.
AREANAME; PIC X(3n).
ARFANO ; PIC ¥.

INVPERCT;: PIC 99,
NBROFLIM; PIC 9.
CHECKSUM; PIC 9.
FILPERCT; PIC 99.
JOURNAL; PIC 9.

ENCIPHER; PIC 9.
INDEXIND; PIC 9.

AOWNER; PIC 9.

AREATFIL1; TYPE IS BINARY.
DATAPGES; TYPE IS BINARY.
PAGESIZE; TYPE IS BINARY.
KEYSIZE; TYPE IS BINARY.
RETUSERS; TYPE IS BINARY.
UPDUSFRS; TYPE IS BINARY.
PAGEIO; TYPE IS BINARY,
GRPSACSD; TYPE IS BINARY.
GRPSINSD; TYPE IS BIMARY,
GRPSDLTD; TYPE IS BINARY.
AREAFIL2; TYPE IS BINARY,

GROUP IS UNIT
WITHIN SCHEBASE

~e

NUMBER IS 2

* ~e wo

GROUPNO; PIC 9(4).
LOCATMOD; PIC 9.
INVTITEM; PIC 9.
GRPRLOCK; PIC 999,
GRPULOCK; PIC 999,
STRGESET; PIC 9.
SECINDEX; PIC 9.
HUMKEYS; PIC X.

DEFRGE; PIC 9.

GRPFIL1; TYPE IS BIMARY.

-

GRPSIZE; TYPE 1S BINARY.

BEGPGRGE; TYPE IS BINARY,
ENDPGRGE; TYPE IS BINARY.
PRIMVALU; TYPE IS BINARY.

GRPFILZ2; TYPE IS BINARY.

GROUP IS ASOWNER

WITHIN SCHEBASE

LOCATION MODE IS VIA OWNERSFET
NUMBER IS 3

 we we wo

DUPLICATES !NOT ALLOWED

LOCATION MODE IS CALC USING CROUPMNO DUPLICATES NOT ALLOWED

Figure A=2. Schema DDL for Schema

Appendix A

105

SETFILL1; TYPL IS BIMNAFY,
SETNO; PIC 9(4).

CPSTHNEXT; TYPE IS BIMNARY.
OPSTNPRI; TYPE IS BIMAPRY,
SETFILL2; TYPE IS BI!NAFY.

GROUP IS ASMEMBER

WITHIYN SCHEBASE
LOCATION MODE IS VIA MMIMRSIT
NUMBER IS 4

® e wa e

ORDER; PIC 9,

GRPMOKY; PIC 9.

DUPSIND; PIC 9.

OPTIONAL; PIC 9.
AUTOMANL; PIC 9.

PRIMARY; PIC 9.

STORAG; PIC 9.

SELOWNER; PIC 9.

OWNRNO; PIC 9(4).
IMEMBFIL1; TYPE IS BINARY.
MPSTNEXT; TYPE IS BIMNARY.
MPSTNPRI; TYPE IS BINARY.
PSTNHEAD; TYPE IS BINARY.
MEMBFIL2; TYPE IS BINARY.

GROUP IS ELEMNENT

WITHIN SCHEBASE
LOCATION MODE IS VIA ITEMSET
NUMBER IS §

® wo “o wa

ITEMTYPE; PIC 9.
LEVELNBR; PIC 999,
OCCURCNT; PIC 999,
ITMRLOCK; PIC 999,
ITMULOCK; PIC 999,
INVTDNO; PIC 999,
DATAVLID; PIC 9.

CONTROL; PIC 9.

DEFPIC; PIC 9.

ITEMFIL1; TYPE IS BINARY.
ITEMPSTN; TYPE IS BINAFPY.
ITEMSIZE; TYPE IS BINARY.
ITEMFIL2; TYPE IS BINARY.
ITEMFIL3; TYPE IS BINARY,
ITEMFIL4; TYPE IS BIMARY.

GROUP IS ASCNTROL

WITHIN SCHEBASE
LOCATION MODE IS VI2 CTRLSCT
NUMBER IS 6

8 wo e

MATCHIND; PIC 9.
CTRLTYPE; PIC 9.
CTRLFIL1; PIC 99.

GROUP IS SCHEMAHD

; WITHIN SCHEBASE, RANGE IS PAGE 1 THRU PAGE 1
; LOCATION MODE IS DIRECT
;s NUMBER IS 7.

Figure A=2, Schema DDL for Schema (cont.)

Appendix A

COPYPSWD; PIC X(8).
ALTRPSUD; PIC X(83).
PTRSIZFE; PIC 9.

SCHFIL1; PIC XXX.
SCHDATIM; PIC X(20).
SCHESIZE; TYPE IS BINARY,
HUMPSWNDS; TYPE IS BINARY,
NUMOWNRS; TYPE IS BIMARY,
HUMMBRS; TYPE IS BINARY.

CROUP IS PASSWORD
WITHIM SCHEBASE

NUMBER IS B

® ~e Ne ~e

PASSWRD; PIC X(8).
RETKEYS; PIC X(32).
UPDKEYS; PIC X(32),

GROUP IS SSCHEM
WITHIN SCHEBASE

NUMBER IS 9

® we ~e ~o

SUBSNAMF; PIC X(30).
ACCTMBR; PIC X(8).
SUBSDATE; TYPE IS BINARY.
SUBSTIME; TYPE IS BINAPY,

GROUP IS INDX
WITHIN SCHEBASE

~e

NUMBER IS 10

o wo ~e

BEGPGNBR; TYPL IS BINARY.
ENDPGNBR; TYPE IS BINARY,
DEFNTYPE; PIC 9.
INDXLEVL; PIC 9.
INDXFIL1; PIC 99.

GROUP IS PICTURE
WITHIN SCHEBASE

NUMBER IS 11

® we we we

PICTCNT; PIC X.

ITEMPICT; PIC X(30).
SCALE; PIC X.

PICFILL1; TYPE IS BINARY,

GROUP IS CHECK!1
WITHIN SCHEBASE

NUMBER IS 12

* e ~e ~o

LOWLIT1; TYPE IS BINARY.
HILIT1; TYPE IS BINARY,
CK1FIL1; TYPE IS BIMARY.

LOCATION MODE IS VIA PASSWSET

LOCATION MODE IS VIA SSCHMSET

LOCATION MODE IS VIA INDEXSPRT™

LOCATION MODE IS VIA DESCPSET

LOCATION MODE IS VIA DESCPSET

Figure A-2,

Schema DDL for Schema (cont.)

Appendix A

107

GROUP IS CHECKZ2

WITHIN SCHEBASE

LOCATION MODLE 1S VIA DESCPSFET
MTUMBER IS 13

o we So ws

LOWLITZ2; PIC X(16).
HILIT2; PIC X(16).
CK2FIL1; TYPE IS BINARY.

GROUP IS ALIAS

WIITHIN SCHEBASE

LOCATION MODE IS VIA ALI2SSET
NUMBER IS 14

® we ~o wo

GPOUP IS GROUPFRET

s+ WITHIN SCHEBASE
LOCATION MODE IS VIA CRPPRT
NUMBER IS 15

® w8 we ~

DATNAME; PIC X(30).
RTVLTYPE; PIC 9.
GRFILL1; PIC 9.

CROUP IS NAMEGP
WITHIN SCHEBASE

LOCATION MODE IS CALC USINC NAMEVALU DUPLICATES NOT ALLOWED
NUMBER IS 16

® we Se ~a

NAMEVALU; PIC X(39).
PRIMNAME; PIC 9.
NAMETYPE; PIC 9.
DUPNAME; PIC 9.
NAMIPIL1; PIC 9(3).

GROUP IS IMNAMLINK

; WITHIN SCHEBASE
LOCATION MODE IS VIA IMAMESET
NUIBER IS 17

o we w» N

GROUP IS QTAMLINK

; WITHIN SCHEBASE
LOCATION MODE IS VIA GNAMESET
NUMBER IS 18

~

o ~o we

GROUP IS SMNAMLINK

WITHIN SCHEBASE

LOCATION MOLDE IS VIA SMAMESET
NUMBER IS =19

8 we e we

GROUP IS GSTATS

WITHIN SCHEBASE

LOCATION MODE IS VIA GSTATSET
NUMBER IS 20

® we we we

NBRACSD; TYPE IS BINARY.
NBRINSD; TYPE IS BINARY.
NBRDLTD; TYPE IS BINARY.

Figure A=2. Schema DDL for Schema (cont.)

108 Appendix A

CROUP IS SSTATS

WITHIN SCHEBASE

LOCATION MODE IS VIA SSTATSET
HUMBER IS 21

e w8 we wo

HEADACCS; TYPE IS BIMARY,
iIRYTACCS; TYPE IS BIMARY,
PRIRACCS; TYPE IS BINARY,

/*
SETS
*/
SET IS PASSWSET
OWMEP IS SCHEMAHD
ORDER IS SORTED

e ~e ~o

MEMBER IS PASSWORD

INCLUSION IS AUTOMATIC

SCLECTION IS CURPRENT

ASCENDING REY IS PASSWRD DUPLICATES NOT ALLOWED

® we we we

OWNER IS SCHEM2AHD

SET IS SSCHMSET
;
;3 ORDER IS SORTED

MEI'BER IS SSCHEM

INCLUSION IS AUTOMATIC

SELECTION IS CURREMT

ASCENDING KEY IS SURSHNAME DUPLICATES NOT ALLOWED

9 we w8 w»

SET IS AREASET
OWMER IS SCHEMAHD
ORDER IS LAST

o we e

I'EMBER IS AREAGP
INCLUSION IS AUTOMATIC
SELECTION IS CURREMT

 ~s we

SET IS NAMESET
OWNER IS NAMECP
ORDER IS FIRST

o we e

MEMBER IS INAMLINK

INCLUSION IS AUTOMATIC
SELECTION IS5 CURRENT
LINKED TO CWMER

o we we we

Figure A=2. Schema DDL for Schema (cont.)

Appendix A 109

MEMBER IS GNAMLINK

INCLUSION IS AUTOMATIC
SELECTION IS CURREMT
LIVKED TO OWMER

@ we we e

MEMBER IS SNAMLINK

INCLUSION IS AUTOMATIC
SELECTION IS CURPFMT
LINKED TO OWMEPR

® wo ~o o

SET IS GROUPC
OUNER IS AREACGP
ORDER IS LAST

® wa o

MEMBER IS UNIT

INCLUSION IS AUTOMATIC
SELECTIOM IS CURRENT
LINKED TO OWMLR

@ e we ~o

0n
2]
3

IS IMDEXSET
¢ OWNER IS AREAGP
7 ORDER IS LAST

NMEMBER IS INDX
; IMCLUSION IS AUTOMATIC
3 SELECTION IS CUPPENT

SET IS GRPRET
OWNEPRP IS UNIT
ORDER IS LAST

o ~o we

MEMBER IS GROUPRET
INCLUSION IS AUTOMATIC
SELECTION IS CURPFNT

~

* ~e

SET IS ITEMSET
OWNER IS UNIT
ORDER IS LAST

* = we

MEMBER IS ELEMENT

¢+ INCLUSION IS AUTOMATIC
SELECTION IS CURRFNT
LIMKED TO OWNER

® we we ~

SET IS MEMBRSET
OWNER IS UNIT
ORDER IS LAST

s e we

MEMBER IS ASIMEMBER

INCLUSION IS AUTOMATIC
SELECTION IS CURPENT
LINKED TO OWNER

e ~o we we

Figure A-2. Schema DDL for Schema (cont.)

110 Appendix A

SET IS OWNERSET
OWMIER IS IMIIT
ORDER IS LAST

s ~o o

MEMBER IS ASOWNER

INCLUSION IS AUTOMATIC
SELECTION IS CURRENT
LIIIKED TO OWMER

~s we

~-

o

SET IS DESCPSET
OWNER IS ELEMENT
ORDER IS LAST

* we we

IMEMBER IS PICTURE
INCLUSION IS AUTOMATIC
SELECTION IS CURRENT

2 I

MEMBER IS CHECK1
INCLUSION IS AUTOMATIC
SELECTION IS CURPFENT

o we ~o

INCLUGSION IS AUTOMRATIC

MEMBER IS CHECK2
!
7 SELECTION IS CURRENT

SET IS MODFYSET
7 OWHER IS ELEMENT
: ORDEPR IS LAST

MEMBER IS ASCNTROL

INCLUSION IS AUTOMATIC
SELECTION IS CURRENT
LINKED TO OWIER

o wo we we

SET IS SETLIMK
OWNER IS ASOWNER
ORDER IS LAST

@ w2 we

MEMBER IS ASMEMBER

INCLUSION IS AUTOMATIC
SELECTIOM IS CURPEUT
LINKED TO OWMER

s we we =

SET IS CTRLSET
OWMER IS ASMEMBER
ORDER IS LAST

o we v

MEMBER IS ASCMNTROL

INCLUSION IS AUTOMATIC
SELECTION IS CURRENT
LINKED TO OWNER

e we ~e

SET IS ALIASSET
; OWNER IS ASMEMBER

Figure A-2. Schema DDL for Schema (cont.)

Appendix A m

;s ORDER IS LAST

'FIMBER IS ALIAS

INCLUSION IS ANTOMATIC
SELECTION IS CURRENT
LINKED TO OWMER

e ~e wo e

SET IS INAMESET
OWNER IS ELCMENT
ORDER IS LAST

o we wo

MEMBER IS INAMLINK

INCLUSION IS AUTOMATIC
SECLECTION IS CURFEMT
LINKED TO OWNER

o we o we

OWNER IS UNIT

SET IS CMAMESET
i
; OPDER IS LAST

MEMBER IS GNAMLINK

INCLUSIOM IS AUTO!NATIC
SELECTION IS CURRENT
LINKED TO OWMER

® we wo we

SET IS SNAMESET
OWNER IS ASOWNER
ORDER IS LAST

o ~e we

MEMBER IS SNAMLINK

INCLUSION IS AUTOMATIC
SELECTION IS CURRENT
LINKED TO OMMER

o we we e

SET IS GSTATSET
OWNER IS UNIT
ORDER IS FIRST

o ~o e

MEMBER IS GSTATS
INCLUSION IS AUTOMATIC
SELECTION IS CUPRRENT

e we v

SET IS SSTATSET
OWNER IS ASOWNER
ORDER IS FIRST

® ~e ~o

MEMBER IS SSTATS
+ INCLUSION IS AUTOMATIC
3 SELECTION IS CURRENT

Figure A-=2. Schema DDL for Schema (cont.)

112 Appendix A

SET IS MKALTSET

o we ~e

MEMBER

® we ~o ~e

OWNER IS ELLCMIONT
ORDER IS LAST

IS ALIAS

INCLUSION IS AUTOMATIC
SELECTION IS CURRENT
LIMKED TO OWMNMER

SET IS ALNAMSET

* we we

&
%

e we we =3

o ~e we

MEMBER

o ~o wa

CMD.

OMIER IS NAMLOP
ORDER IS LAST

IS ALIAS

INCLUSION IS AUTOMATIC
SELECTION IS CURRDNT
LINKED TC OWMER

SET IS HDRSET
OWNEPR. IS SCHEMAHD
ORDER IS LAST

IS ASOWNER
INCLUSION IS AUTOMATIC
SELECTION IS CcCuUpIrmym™

Figure A-2. Schema DDL for Schema (cont.)

Appendix A

113

APPENDIX B. SUBSCHEMA FILE

The subschema file contains a control block, a list structure that defines all or a part of a database for the Database
Manager (DBM) and an optional block of name table entries. Figure B-1 illustrates the relationship among the dif-
ferent categories of data within the list structure used by the DBM.

The list structure contains encoded information on the structure of the database to guide the DBM in its interpretive
execution of user's procedural accesses to the database. The list structure also contains a layout of the user's work-
ing storage that will exist in every program using this subschema when processing in the database. A complete lay-
out of the list structure is included in Figures B-2 through B-12. Figure B-13 shows the format of the entries in the

optional name~table. Figure B-14 shows the subschema file directory block format.

Except for the PASSWORD definition, all the values for LINK NEXT and LINK HEAD in the definitions are offsets
from the beginning of the subschema, word 0 of the subschema definition. These values are translated to actual core
locations when the subschema is read into core by the DBM. PASSWORD LINK NEXT in the subschema definition
refers fo a block number of the first block of passwords; PASSWORD LINK NEXT in the PASSWORD definition is
nonzero for all but the last definition in the password list.

Subschema links roughly correspond to schema set pointers, though the subschema is not a database.

Password Link Subschema
Definition
LArec Link
Pas.sw./o.rd Area Definition ISEQ Link
Definition
Group Link
\ 4
[_ — —— —— — e — — —»{ Group Definition ISEQ Definition
|
, Owner
Link
L _ ltem . Set Owner
|-— — — —»| Item Definition Link Definition
Member
1 Check I Link
I Lnnk Modlfy L
| Check Link Set Member Set Link
I Definition Definition -
Control
l Link Alias Link
l A
| Control Definition Alias Definition
|
| |
| Primary ltem Poinfer ~_ _ __ __ __ __ _}

Figure B=1. Subschema Definition Structure

114 Appendix B

7.8 11,12,1314,15,16 23,24 31
Word 0 xon \\\\\\ Working Storage Increment
1 \\‘\\\\\\\\ Number of Data Pages in Area
‘\\
NN
2 Area Number Area Link Next
3 | Inventory Percent C|D ISEQ Link Next
4 Fill Percent \\\\\ Group Link Next
N P
5 Size of Index Key in Bytes Page Size in Words
Words 6 through 13 contain the area name in TEXTC format.
where
A =1 if area has checksums.
B = size of data=page line numbers in bits (4, 5, 6, 7, or 8).
C =1 if data pages are to be enciphered.
D =1 if area is to be journaled.
Figure B-2. Area Definition
7,8,9.101112,1314 2324 31

Word 0

15,16

X'02' A|B|Cjl |DIE|F

Working Storage Increment

N
Group Number

Owner Link Next

Retrieve Lock

N\
DA

Member Link Next

Figure B-3.

Group Definition

Appendix B

115

0 7,8,9,1911, 12131415,16 23,24 31

8 Page Range Prime Value

Words 6 and 7 are optional and present only if bit D is set. Word 8 is optional and present only if
bit C is set. Word 9 is optional and present only if bit H is set.

where
A =1 if group is stored relative to a storage set.
B =1 if this is a direct group.
C =1 if this is a calc group.
D =1 if page range is present,
E =1 if group has any inverted items.
F =1 if this is an indexed group.
G =1 if group cannot be stored because of missing items, sets, or secondary indexes.
H =1 if statistics shall be generated for the group.

I =1 if group cannot be deleted because of missing sets or secondary indexes.

t
In words.

Figure B=3. Group Definition (cont.)

116 Appendix B-

9.1011,121314,15,16 2324 31

Word 0 X'03' \\\\ Working Storage Increment
1 Group Nurber \\ Owner Link Next

S
2 Position Next Owner Link Head
\ ’
\

3 Position Prior \ Set Link Next

4 Set Number \\\\ Statistics Working Storage
& g Storag

Word 4 is optional and present only if bit A is set.

YR
)>

where

A =1 if statistics are to be generated,

Figure B-4. Owner Definition

0 7,8,9,10,11121314,15,16 181920 2122 25,26 2728,29,30,31

Word 0 X'04' AlB[C \\D E F G |H|J[K|L
1 Group Number \\ Control Link Next

Member Link Next

2 Position Next

\
3 Position Prior \\\ Set Link Next

Figufe B-5. Member Definition

Appendix B

117

0 7,8 1412 141516 23124 31

N
Word 4 Position Head \\ Set Link Head

Word 6 is optional; it is present only if bit N is set and it is used only if bit A is set,

where
A =1 if there are any aliases defined for the set.
B =1 if member is optional,
C =1 if member is manual.
D =1 if PAGESET member.
E =01 if group number is major sort key; = 10 if minor.

F indicates set order: 0000 implies last; 0001 — prior; 0100 — sorted; 1000 — first; 1001 — next;
0110 — sorted by group number.

G =01 implies duplicates first; 10 — duplicates last; 00 — duplicates not allowed.
H =1 if CALCSET member.

J =1 if selection is current; = 0 if location mode of owner.

K =1 if this is storage set for group.

L = 1 if this is prime retrieval set.

M =1 if control items are omitted.

N =1 if definition is seven words; =0 if six words.

Figure B=5. Member Definition (cont.)

118 Appendix B

0 7,89 10,11,1213141516 1920 2324 31

Word 0 X'05! A B Working Storage Increment

2 Retrieve Lock &\QF Modify Link Next
3 Updafe Lock \\\\\\\\\\\\ Item Link Next

° \\\\\\\\\\\\\\ Index Head Pointer
AN st

Word 5 is optional and present only if bit C is set and bit F is reset. Word 6 is
optional and present only if bit D .nd/or bit E is set.

where
A =1 if this is control item (calc, index, or sort key on via set).

B indicates item type: 0 implies signed number; 1 — alphanumeric; 2 = numeric;
3 — alphabetic; 4 — binary; 5 — floating short; 6 — floating long; 7 — packed.

C =1 if item is inverted.
D =1 if there is a check on range.

E =1 if there is a check on picture.

F =1 if this is an inverted item (bit C is set) and the secondary index group has been omitted
(i.e., item cannot be modified).

G =1 if item is a sort key in a set which is omitted (i.e., item cannot be modified).

Figure B=6. Item Definition

Appendix B 119

! \\\\\\\\\\\\\\\\\\ -

2\\\\\\\\\\\\\\\\ e

1111111

R

tes long (i.e., multiple area database).

0 7.8 141516 2324 31

Wordo | xos &\\\\N pessword Link Next

1 Password (First Half)

2 Password (Second Half)

Words 3 through 10 contain the retrieve authority indicators. Words 11 through 18
contain the update authority indicators.

Figure B-9. Password Definition

0 - 78 1112 141516 2324 2829 31

Word 0 X'0A' \\\\\\\\\\\\\\\\\ A, 8
] \\\\\\\\\ Beginning Page Number
3 \\\\\&\\\\\\\ ISEQ Link Next

where

A =0 if overflow range, =1 if index level.

B = index level number, O through 8. (Note that index level zero actually contains the page
range of the indexed data group.)

Figure B-10. Indexed-Sequential (ISEQ) Definition

Appendix B

121

0 7,8 9,10 1213141516 2324 31

Word 0 X'08' C NA B8 Check Link Next
N

Words 1 through N contain the check value(s), with N calculated as follows:

o If check value is a picture, N =8. The picture is in TEXTC format starting at byte 0 of
word 1.

o If check value is a range, N is based on the item type

Item Type N
Binary 2
Floating short 2
Floating long 4
Packed 8
EBCDIC 8

If the item type is binary or floating short, the low/high values will be in words 1 and 2 and
the total definition size will be three words.

. If the item type is floating long, the low value will be in words 1 and 2 and the high value
in words 3 and 4. Total definition size will be five words, :

If the item type is packed decimal, the low/high range values will be in packed format and
always 16 bytes in length. If item type is EBCDIC, the low/high range values will be left-
justified in a 16=byte field and blank filled. In both of these cases, the low value will be
in words 1 through 4, the high value in words 5 through 8, and total definition size will be
nine words,

A =1 if check value is PICTURE.

B =1 if check value is RANGE.

C is definition size code: 0 implies three words; 1 ~ five words; 2 — nine words,

Figure B=11. Check Definition

122 Appendix B

Word 0

0

1213141516

23 24 31

Alias Link Next

\\\\\\\\\\

Alias

Working Storage Increment

AN

2 Primary Head Pointer
—
Figure B=12, Alias Definition
0 7,8 14 15 16 23,24 31
D
Word 0 wcC SCALDISP ; CMPN
1 Name
2 Name (cont.) Scale PICTCNT
. N
3 PICTURE \\\\\\
N
wcC = Word count (zero indicates last entry).
SCALDISP = Byte displacement to scaling factor (zero implies no scaling factor and hence no PICTURE),
Dup = 1 if duplicates exist (i.e., name must be qualified),
CMPN = Subschema increment of component,
Name = DATA NAME with one trailing blank.
Scale = Number of fractional digits (negative value indicates unused integral digits.
PICTCNT = Length of PICTURE (bytes).
PICTURE = Character image of PICTURE,

Figure B-13. Name Table Entry Format

Appendix B

123

124

31

Word 0

Number of Significant Words (currently = 8)

Word 1

Word 2

Word 3

Block Number of First Subschema Block

Count of Subschema Blocks

Block Number of First Password Block

Word 4

Count of Password Blocks

Word 5

Word 6

Word 7

Block Number of First Name Table Block

Count of Name Table Blocks

Count of Words in Subschema

Word 8

Checksum

Appendix B

Figure B-14. Subschema File Directory Block Format (Blockzero)

| APPENDIX C. SAMPLE DATABASE DEFINITICN

This appendix illustrates (in Figures C=1 through C=7) the various aspects of the database definition function, and
the operation of DMSFDP. The schema DDL for the sample database pictured in Figure 1 in the fext is included,
and two subschema DDL configurations using the schema are shown. The DMSFDP outputs in each of its two phases
are shown, including a COPY and a SYSTEM listing.

l1e4e200%%+ EXTENDED DMS FILF DEFINITION PROCESSAR e, VERSION AON
L]
seai(%es EXTENDED DMS SCHFMA DDLe

1¢ /e THe ODL CONTAINFD IN THIS FILg 1S ERRBR FREE, #/

.

3% SCHEMA NAME 1S SAMPLESCHEMA; PRIVSCY LBCK FAp
H

4 EXTRACT IS 'EXI.BCK?'; PASSWORD IS 'PASWRDY!

53 RETRIEVE KEYS ARE 1,17,25 UPDATE KEY 18 231,247
68 PASSWBRD 1S 'PASWRD2' RETRIEVE KEY IS 93

78 UFDATE KEYS ARF 561974760

8:

9! AREA NAME IS AREAe3 CONTAINS 100 PAGES; NUMRFR 1S 1
108 JINVENT@RY 75

118 3 CHECKSUM 1S N6, REQUIRED; JBURNAL 1S NBY

1§8 REQUIREDS ENCIPHERING 1S NBT REQUIREDe

138

14! AREA AME IS AREAw2 CBNTAINS 50 PAGESs NUMBFR

158 1S 21 INVENTBRY

161 PERCENT IS 50; JBURNAL IS 12T REQUIRED,

178

181 GRBUP NAME I8 GRBUP,1 WITHIN AREA.1J NUMBER IS

193 1005 LBCATION MBOE 1S DIRECT; PRIVACY LBCK

201 FBR RETRIEVE 1S 1s PRIVACY LACK FBR UPNRATE 1S
213 231; STATISTICS ARE REGUIRED.

22:

23! GROUF NAME I8 GRBUPe2 WITHIN AREA«l RANGE IS 1 THRU
24 303 NUMBER 1S 200s LBCATIBN MBDE IS v]a

251 SETeA SET PRIVACY LBCK FBRRETRIEVE 1S5 ¢7

261 PRIVACY LBCK FAR UPDATE IS 2310

271 ITEMe21; PICTURE IS A(16)3 TYPE 1S CHARACTER

283 PRIVACY LBCK FBR RETRIEVE 1S 174 PRIVAcy

29! LBCK FOR UPDATF IS 231,

308 ITEM=22 TYPE 1S BINARY; BCCURS #4¢

313 I1TEMe23; TYPE 1S FLBATING LONG,

32t

331 GRBUP NAME IS GRBUP.3 WITHIN AREA.2 LOCATION MBOE
343 IS CALC USING ITEMe32 ODUPLICATES ARE ALLOWEDS
351 NUMBER IS 300; PRIVACY L8CK FOR RETRIEVE

361 1S 17 PRIVACY LBCK FBR UPDATE IS 247,

37% ITEMe31 PICTURE 1S X(31) BCCURS 4 TIMES,

381 ITEMe32; TYPE 1S CHARACTER, 31

391

40! GROUP NAME 15 GRBUPe4 wITHIN AREAe2 RANGE 18 § THRU 25

413 NUMBER [§ 40YJ LOCATION MBDE 1S CALC UsING

421 ITEMe4]l DUPLICATES NOT ALLIWED,

ua: ITEM-?! PICTURE 1S 99v99; PRIVACY LACK FOR RETRIEVE
44 S 1

458 ITEMewp PICTURE 1S AA9(4)Ae
468 ITEMey3 TYPE 1S CHARACTER, 4.
47t ITEMe44 TYPE IS BINARY,s

Figure C-1. Schema DDL Listing for Sample Database

Appendix C

126

481 :
498 SET NAME IS SETeA; 8,NER IS GRBUP-1; BRDER 18 FIRST,

50t MEMBER S GRBUPep

st JINCLUSIBN 1S AUTBMATIC SgT eccunagwcs SELECTIBN
gg: IS LBCATION MBDE 8F BWNgR,

543 SET NAME 1S SETeB; OWNER !S GROUPe2

551 B8RDER 18 NEXT) STATISTICS ARE REQUIRED,
56¢ MEMBER 1S GRBUPe3 INCLUSION IS AUTBMATIC

57¢ JILINKED T8 BWNFRs SET 8CCURRENCE SELECTION
gg: 1S THRU CURRENT 8F SET.

605 SET NAME IS SETeC, BROER IS NEXY

613 JBWNER 1S GROUPe2) LINKED T® PRIBR

621 ISTATISTICS ARE REQUIRED.

63! MEMBER IS GRBUPe4 INCLUSION IS MANUAL

6;3 SELECTIBN IS THRU CURRENT 8F SET.

6514

663 SET NAME IS SETD;8WNER 1S GROUPs3

673 1 DROER IS SORTEDs STATISTICS ARE

68! REQUIRED.

691 MEMBER [S GROBUPes INCLUSIBN IS AUTOMATIC

708 ILINKED TB OWNER

711 JSET BCCURRENCF SELECTION 1S THRU LBCATION
721 MBDE OF OWNER) ASCENDING RANGE KEY IS

;3: ITEMe41 DUPLICATES ARE NOT ALLOWED,

751 END.

Figure C=1. Schema DDL Listing for Sample Database (cont.)

swu207%08 SChEMA CONTAINS n00% PAGES,
soa208%us THERE WERE 0000 NIAGNBSTIC MESSAGES,
STORAGE REGUIREMENT QUMMARY

AREA NUMRER DATA PAGFS INDFX PAGFS
01 0000100 0000000
o2 0300053 Qo0nnoao

esep)l*ee SCHEMA GENERATIBN COMPLETE,

. INVENTORY PAGES

0000004
0000001

Figure C=2. Schema Generation Summary Output for Sample Database

Appendix C

{eau2C0%es EXTENDED OMS FILE DEFINITION PRBCESSAR ee VERSIBN 400,

L]
»a02C2ees EXTENDFDO DMS SUBSCWEMA DDL .
4! SUBSCHEMA NAME 1S CABALSUP BF SCREMA SAMPLESCHEMA

Y] CBMPONENTS ARE SFECIFIED,

2: SETS ARE SETeA SETeB SETeCo

Z: AREAS ARE ALL3J COMpBNENTS ARE SPECIFIED,
;?; GROLP NAME 1S GROUPe1; COMPENENTS ARE AlLbe

12! GROLP NAME IS GROUP.2.R RENAMES GRBUP.2; CBMPBNENTS ARE SPECIFIED,
131 03 ITEMu21222230

14¢ CS5 ITEMe21C, RENAMES ITEMa?1.

15¢ CS TEMe22e23,

16! C7 ITEMe22e4AL T,

173 11 1TEM=22.

18 07 ITEMe23e

19¢

2C! GROUP NAME 1S GROUPe3; CBMPONENTS ARE SPECIFIED,
21!

221 GRBLP 1S GROUPLus COBMPBNENTS ARE SPEGIFIED,
¢3! C2 ITEMu4loe

24!

25! ENDo

4ve14vww CURSCHEMA FILE BCCUPIES 0C3 GRANULES,
#vep15uus IN CORE SUESCREMA REQUIRES pCy CORE PAGES.
seszofens THERF WERE 00Cc DIAGNBSTIC MESSAGES.
#sap03nes SUBSCHEMA GENERATIEN COMPLETE,

Figure C=3. Subschema=1 DDL and Summary Output for Sample Database

01 CtCBo.
02 REFeCALE CBMP VALUE ZERA,
02 FAGE=NA PIC 9(8).
€2 LINEeNA PIC 9(3),
02 FRSTeRFF (COMP,
C2 LASTeREF CAMP,
02 GRPeNB CBMP,
02 ERReCACE COMP,
€2 ERReNS COMP,
02 ERReREF (8MP, .
c2 PASSWBRD PIC X(8) VALUE SPACES
€2 AREAeN8 PIC 99,
01 SETeTABLES COMF.
02 SETeA.
03 SET=0WAR,
03 SETPRIR,
03 SEYeCURR,
03 SETeNEXTe
03 SETeGRFe
C2 SETeB,
03 SETeRWAR,
03 SET=PRIR.
03 SET=CURR,
03 SETeNEXT,
03 SET=GRF.
SETeCo
03 SETe0WAR,
03 SETePRIR,.
03 SET=CURR,
03 SETeNEXT,
03 SETeGRF.
01 AREATABLE,
C? AREA«1 PIC X{4) VALUF SPACFS,
02 ARFAe2 PIC X(4) VALUE SPACFES,
01 GrAUPe1.
02 CURRe{(r0 CAMP,
01 "GRAUPe2eR,
CI ITEMe21=27223,

oz

Figure C-4. COPY Listing Corresponding to Subschema=1 for Sample Database

Appendix C

127

01
01

0t

o1

05 1TEMe21C PIC Allg)
08 1TF™Me2Z«23.
C7 ITEMe22<AlLT,
11 ITEMe22 CBMP OCCUYRS (CO4 TIMES,
" [TEM=23 CAMP=2+0Q075) ¢
03 CULRRe200 CAMP,
GRBUP=3,
03 CLRRe3¢0 CBMR,
GRAUPeU ¢
02 ITEMed4q PIC 99Vv99s
2 CLRResqpc CAMP,
AREA=MASTERS=0Z CHMP,
02 CLRRel1£00
€2 CALCSET.
C3 SET=8WAR,
03 SET=PRIR.
03 SET~CURRe
03 SETeNEXT.
03 SETwGRF.
STATISTICS COMP,
02 GRP=STATSe100 CBMP,
03 STAT=CTRL.
03 STaATeACCo
03 STAT=IAS.
03 STAT«DELS
02 SETeSTATSe(002 CEMP,
03 STAT=CTRL,
03 STATSNEXT,
02 STATPRIR,
03 STAT-HEAD.
C2 SETeSTATSeCNO3 COMP,
03 STAT=CTRL,
03 STATeNEXT,
C3 STAT=PRIR,
03 STAT-HEADs

Figure C-4. COPY Listing Corresponding to Subschema=1 for Sample Database (cont.)

1t
“s

1s842C0%ew FXTENDED OMg FILE DEFINITION PRACESSAR == VERGIBN AQQe

.
ensCaves FXTENDED CMS SUBSCREMA DDL.

SUBSCHEMA NAME S MFTASUB OF SCHEMA SAMPLESCHEMA
} COMPANENTS ARE SPECIFIED.

SET IS SETe«0Ds
AREA IS AREAez CBMpANENTS ARE SPECIFIEN,
GROLP NAME 1S FIRST, RENAMES GROBUPe3; CAMPANENTS ARE ALL,
GROLP NAME 1S SECANC, RENAMES GRBUP_,4; CBMPANENTS ARE
ITEMe& s
1TEMed4ye

END.

se82y4%9e SUBSCHEMA FILE BCCUPIES 003 GRANULES,
esez15ees IN CARE SURSCHEMA REQUIRES gC1 CORE PAGES,
wnscpues THERF WERE 00CO DIAGNBSTIC MESSAGES.
anepC3nse CUBSCHEMA GENERATIAN CBMPLFTE,

128 Appendix C

Figure C-5. Subschema-2 DDL and Summary Output for Sample Database

HRUND 8
cce RES o]
REF¢CHCFRCCH CATA
PAGF¢NH5CC8 RES»1
LINFSNAACCB FFS»1
FRETEREFECCH RES,1
LASTSREFACCH RES,1
GKPSNRHECCR RESs1
FER$CHDFACCH &FSs1
EFR$NAGCCH FES,1
ERRe¢RFFACCR RES,1
PASSWARDECCH DATA
ARE ASNARCCH KeSsd

RBUNT 8
SETHTABLES RES 0
SETEIWAR FQU
SFY¢PRIR EQU
SFTe¢CLKR FQU
SETENEXT FQU
SFTEGRFP EQU
SFTED CATA £2Cs0sCaC

HAUNE 8
ARFASTARLE RES 0
AREASZ DATA '

BAUNC 8
FIRST RFS C
1TEMAZL RES,1 n124
ITFM$32 RFS,1 CC3M

BARUND &
CLRF$3CO FRE%,1 &

HAUNE R
SFCPNC RES €
ITEMe4]l RFS,1 COC4

HRUND 4
[TEMeuy RES,1 QCCH

RAUNC &
CURF$4CO RESs1 &

HYUNEC B
AREA¢MAGTERS$C2 RFES 0

BYUNEC &
CURF$1CCCa07 RES)1 &
CALCSFTA0Z DATA C,0,0,C,0

RrAUNE B8
STATISTICS RES O
STATeCTRL EQL ©
STATSACC,STATSNEXT EGU 1§
GTAT2ING,gTATEPRIN EQU 2
STATSIEL,STATSREAD EqQL' 3
SETESTATS®0CC4H CATA €,C,0.C

END

&E e s s F RO

FWNN— O

Figure C-6. SYSTEM Corresponding to Subschema=-2 for Sample Database

Appendix C

129

APPENDIX D. DATABASE PAGE FORMATS

This appendix contains Figures D=1 through D-5, showing details of the various page formats in an EDMS database

0 7,8 | 1920 21222324 31
M
Word 0 Page Number Pg Ty W| Space Available
01 | Page

Header
1 , Control Set Pointer

|

Data Groups

Optional Checksum

f

Available Space
51

|

Pg Ty - Page Type =01 for data page, 10 for inventory page, 11 for index page
MWF - Must-Write Flag

Figure D=1. Data Page Format

0 7.8 15016171819 223124 31

Line Number Group Number D Zero

I

Group Size

. t
Zero Control Set Pointer

Data item values — no slack bytes

Set 1 Next Pointer

pet 1 Next Pointer Set 1 Prior Pointer
(cont.)

where DI is the Delete Indicator: 1 means group has been logically deleted.

Control Set Pointer is included only for groups defined with calc or indexed location modes.

Figure D=2. Data Group Occurrence with Three=Byte Set Pointers

130 Appendix D

7,8 15116 17,1819 22,23 31
Line Number Group Number [l) Zero Group Size
Control Set Pointer
Data Item Values (No slack bytes)
Set 1 Next
Set 1 Next (cont.) Set 1 Prior
Set 1 Prior (cont,) Zero

where DI is the Delete Indicators: 1 means group has been logically deleted.

Figure D=3. Data Group Occurrence with Four-Byte Set Pointers

Word 0

511

718 11,:2 15116 1920211222324 31
PgTy M .
Page Number an V’:/ Space Available
Area Number Zero Next Index Page Number for this Level

Number of Index Entries

on this Page Page -Number for First Index Entry on this Page
Page n Index Entry (Assuming 3 byte Key) Page
n + 1 Index Entry Page n + 2
Index Entry Page n + 3 Index Entry

Page n + 676 Index Entry

DA\

Checksum of Page (optional)

Pg Ty - Page Type =01 for data page, 10 for inventory page, 11 for index page
MWF - Must-Write Flag

Figure D=4, Index Page Format

Appendix D

131

132

Word 0

51

L

]

Page Number

PgTy
(10)

M
W
F

Space Available
(always zero)

Area Number

Next Inventory Page Number (this page number + 1)

Number of Data Pages on this

Inventory Page

Page Number of First Data Page on this
Inventory Page (page n)

Space Avai lable'"
Page n

Space Available
Page n + 1

Space Available
Page n + 2

Space Available
Page n + 3

Space Available
Page n + 2028

Space Available
Page n + 2029

Space Available
Page n + 2030

Space Available
Page n + 2031

Checksum of Page (optional)

fAlwc:ys 2032 (except for last inventory page).

Mo if page is less than specified percent full; 1 if page is exactly full; >1 = actual space available.

Pg Ty = Page Type =01 for data page, 10 for inventory page, 11 for index page
MWF - Must-Write Flag

Page
Header

Appendix D

Figure D=5. Inventory Page Format

APPENDIX E. SEQUENTIAL tILE FORMATS

This Appendix describes the two types of sequential files that are generated and processed by Extended DMS, the
Journal/Dump file and the Statistics file.

Sequential files of the Journal/Dump format are created by the DBM during user program (journal) and by the dump
and load utilities (dump format). Journal/Dump files have records in three formats: Begin records, End records, and

Page-Image records. Figures E-1 through E-3 illustrate these individual records. Figure E-4 shows a summary of

the three.

Statistics files are created by the DBM during program operation. and contain records in four formats: Job ID rec-

ords, Area records, Group records, and Set records. These records are illustrated in Figures E-S through E-8.

Byte O Byte 1 Byte 2 | Byte 3 -
Word 0 0 Record type = 3 Record length = 68
1 0 0 0 open mode
2 Date
3 Time
4 0 0 0 0
5 area number 0 System=Id
6
Area-Name
13
14
Account Number
15
16 Checksum

Figure E-1. Journal/Dump Begin Record

Appendix E

133

Byte O Byte 1 Byte 2 . Byte 3

Word 0 0] Record Type =4 Record Length = 68
1 0 0 0 Close Mode
2 Date
3) ' Time
4 0 0 0 0
5 Area Number 0 . System=Id
6 .
Area Name
13
14
Account Number
15
16 | Checksum
Figure E=2. Journal/Dump End Record
Byte 0 Byte 1 Byte 2 . Byte 3
Word 0 0] Record Typet Record Lengthﬂ
1 Sequence Number
2 Date
3 Time
4 0 0 0 0
5 Area Number | 0 System=-Id
6
. | Data Page image N is number of actual data words, does not include empty space.
N+5
N+6 Checksum

*Record type is 5 for Before= and 6 for After-Image Records.

"Record length varies from 36 bytes (? words) to 2076 (519 words), since the smallest data page image
is 2 words, and the largest is 512 words.

Figure E-3. Journal/Dump Page-Image Record

Appendix E

Word Byte Begin
0 0 mez'
1 Record type (3)
2-3 Record length in bytes
10 0-2 msZ'
3 Open mode
2 0-3 Date
3 0-3 Time
4 0-3 msz'
5 0 Area number
] mez'
2-3 System=Id
6=13 Area-name
14-15 Account number
16 Checksum
where

End

mez'

Record type (4)
Record length in bytes
mez'

Close mode
Date

Time

msz'

Area number
MBZt

System=~1d
Area-name
Account number

Checksum

Before or After

maz!

Record type (=5 before; =6 after)
Record length in bytes

Sequence number

Date
Time

mez'

Area number
mez'
System-1d

tt

Record length (word 0) is that of journal recc.d. (Record size varies from 9 to 519 words).

Open mode (word 1) =1 for retrieve, 2 for update, 3 for create, 4 for DMSDUMP.

Close mode (word 1) =0 for normal, 1 for abnormal.

Sequence number (word 1) - before start, at =1 ond decrementing; after start, at +1 and incrementing.

Date (word 2) is binary halfword year and binary halfword Julian day.

Time (word 3) is binary value HHMMTTTT (hour, minute, calculated time approximately milliseconds

since last minute).

Word 4 is reserved for use in future enhancements.

System-1d (word 5) is @ two~byte binary value.

l’Musr be zero.

”Each Before/After record contains a data page image in words 6 through N+5, and a checksum in word N+6
(where N is the number of data words actually stored on the page).

Figure E~4. Journal/Dump File Format Summary

Word O

Byte O

Byte 1

Byte 2

Record=Type=1

System=Id

‘Binary Year and Day

Binary Time

Figure E-5. Statistics Job Id Record

Appendix E

135

136

Word 0

Byte O Byte 1 Byte 2 Byte 3

Record Type=2 Open Mode' Area Number

Total Page Reads and Writes

Total Groups Accessed

Total Groups Inserted

Total Groups Deleted

N = Retrieve, 2 = Update, 4 = Create.

Figure E-6. Area Statistics Record

Byte O Eyte 1 Byte 2 | Byte 3 »
Word 0 Record Type=3 Group Number
1 Total Accesses
2 Total Inserts
3 Total Deletes
Figure E=7. Group Statistics Record
Byte O Byte 1 Byte 2 | Byte 3
Word 0 Record Type=4 Set Number
1 Total FINDN Calls
2 Total FINDP Calls
3 Total HEAD and FINDM Calls

Appendix E

Figure E=8. Set Statistics Records

APPENDIX F. ERROR MESSAGES

This appendix contains error messages generated by the EDMS File Definition Processor, the Database Manager, and

the EDMS utility routines, as follows:

Source Table

DMSFDP Fal

DBM, Data-Dependent F-2

DBM, Non-Dc:tc-Depéndenf E-3

DMSINIT E-4

DMSDUMP E-5

DMSLOAD F=6

DMSSUMS F-7

RPCL F-8

DMSREST F-9

APL/EDMS E-10

Table F=1. DMSFDP Error Messages
Message Meaning

x100 REDUNDANT CLAUSE NOT ALLOWED.

A clause other than password, check, ascend-
ing/descending, or condition was repeated in
a subentry.

101 WITHIN CLAUSE MISSING.

A schema=DDL group or invert subentry did
not specify the area that is to contain
occurrences.

**k102%*%* NUMBER CLAUSE IS MISSING.

An area, group, or invert subentry did not
specify a unique identifier for the area or
group.

x]103* LOCATION CLAUSE IS MISSING.

A group subentry did not specify a location
mode (direct, calc, indexed, or via) for the
group.

105 OWNER CLAUSE IS MISSING.

A set subentry did not identify a group to
participate as owner.

106 ORDER CLAUSE IS MISSING.

A set subentry did not specify logical sequence
(First, last, next, or sorted) for set occurrences.

*xx]Q7*** INCLUSION CLAUSE IS MISSING.

A member subentry did not specify whether in-
clusion of member occurrences in set occurrences
would be automatic or manual.

*#%%10g*** SELECTION CLAUSE IS MISSING.

A member subentry did not specify the method
(current or location mode of owner) of identi-
fying set occurrences for linking member
occurrences.

90 30 12C-1(6/75)

Appendix F

137

138

Table F-1.

DMSFDP Error Messages (cont.)

Message

Meaning

*#**109*** DUPLICATES CLAUSE/SUBCLAUSE MISSING.

Clause was not included in an invert subentry; or
subclause was not included with cale location
mode in a group subentry, or with ascending/de-
scending sort keys for a member of a sorted key.

]10 USING SUBCLAUSE MISSING.

Calc or indexed location mode in group subentry
did not name control items.

%111* COMPONENTS CLAUSE IS MISSING.

A subschema-DDL subschema, area, or group
entry did not indicate if components were all or
specified.

204 REDUNDANT OPTION -- ILLEGAL.

A control option was repeated.

%205* TILLEGAL OPTION.

A control card option was not a DMSFDP option.

%206* NOSCHEM OPTION IGNORED -- NO
SCHEMA DDL.

%218* NOSUB OPTION IGNORED -- NO
SUBSCHEMA DDL.

219 NOCBL OPTION IGNORED -- NO SUB-
SCHEMA DDL OR NO COPY FILE NAME.

220 NOMETA OPTION IGNORED -- NO SUB-
SCHEMA DDL OR NO SYSTEM FILE NAME.

221 NOLIST OPTION IGNORED -~ NO SuB-
SCHEMA DDL OR NO SYSTEM OR COPY
FILE NAMES.

A control card option has specified suppression
of an output that could not have resulted from
the inputs in any case.

301 SYNTAX ERROR.

Any of several errors, such as illegal characters,
misspelling, use ofa reserved word as a name, etc.

%302* AREA ENTRY OUT OF ORDER.
303 GROUP ENTRY OUT OF ORDER.
304 ITEM ENTRY OUT OF ORDER.
305 INVERT ENTRY OUT OF ORDER.
306 SET ENTRY OUT OF ORDER.
307 MEMBER SUBENTRY OUT OF ORDER.

308 END ENTRY OUT OF ORDER.

The DDL-required entry/subentry order has been
violated. This may have resulted from an entry
being discarded for errors.

309 ONLY ONE SCHEMA/SUBSCHEMA
ALLOWED.

More than one was included.

310 UNEXPECTED END OF FILE.
PROCESSING TERMINATED.

The last entry processed was not an end entry.

311 PRECEDING ENTRY HAS BEEN DIS-
CARDED BECAUSE OF ERRORS.

This may cause succeeding entries to be out of
order,

Appendix F

Table F~-1. DMSFDP Error Messayes (cont.)

Message

Meaning

4Q1 SYMBOL TOO LONG.

A name was more than 30 characters long.

402 [LLEGAL VALUE.

An integer value, group number, area number,
etc. was greater than the specified limits.

x404 NON=-UNIQUE AREA NAME.

The name specified in a schema=DDL area entry
duplicated that of another area in the database.

*#%405*** NON=-UNIQUE GROUP OR SET NAME.

The name specified in a schema~DDL group or
set subentry duplicated the name of a previously
defined group, set, or item,

406 UNDEFINED AREA.

The area named in a group or invert subentry
within clouse was not defined in an area entry.

%407 TOO MANY CONTROL/SORT KEYS.

More than seven keys were specified in a calc or
indexed location mode specification, or in
ascending/descending clauses in a member
subentry .

x408* CONTROL ITEM item-name FOR group-name
GROUP IS UNDEFINED.

The item identified by item-name was designated
as a control item for location mode of calc or
indexed, but was not defined in an item subentry
for the group identified by group-name.

**+x409%+* GROUP group-name INTERSECTS INDEX/
OVERFLOW RANGE.

The page range specified for the named group
overlaps the range of an indexed group or the
overflow range for the area.

410 MULTIPLE INDEXED GROUPS DEFINED IN
THE SAME AREA,

Two or more subschema=DDL group subentries
specified location mode of indexed and the same

‘area~name in the within clauses.

*¥*4110* NON-UNIQUE GROUP OR INVERT NUMBER.

The integer in a schema-DDL group or invert
subentry number clause duplicated the number in
a previous group or invert subentry.

%412* UNDEFINED KEY.

A retrieve /update key in a schema-DDL group
or item subentry did not match any key specified
in a password clouse.

413 ITEM NAME DUPLICATES GROUP OR SET
NAME.

The name specified in a schema-DDL item sub-
entry duplicated the name of a previously de-
fined set or group.

414 ITEM NAME CANNOT BE UNIQUELY
IDENTIFIED.

The name specified for an item resultsin o dupli-
cation even when qualified (two items within the
same group with the same name).

415 PICTURE AND TYPE INCONSISTENT.

Specifications for picture and type in a schema=-
DDL item subentry conflicted (e.g., a numeric
picture and character type).

***416%** ILLEGAL CHECK VALUE IN CHECK CLAUSE
) NUMBER nn.

A check clause in a schema~DDL item subentry
contained an illegal value. The nn refers to the
sequence of input of the clauses.

Appendix F

139

Table F-1,

DMSFDP Error Messages (cont.)

Message

Meaning

***4]7%*%* groyp~name GROCUP SIZE EXCEEDS ONE PAGE. -

The combination of items (including occurs) de-
fined for the named group resulted in a group
size of more than 510 (or 509 if there is a check=
sum) words,

*x%418*** ITEM NOT DEFINED IN PRECEDING GROUP.

The item designated as secondary index in an in-
vert subentry was not defined in an item subentry
for the group.

*+%419%** MULTIPLE INVERT ENTRIES USE SAME ITEM.

The same item was specified as the secondary
index item in two or more invert subentries,

420 UNDEFINED GROUP,

The group identified as owner in a set subentry,
or as member in a member subentry was not de-
fined in a group entry.

x421* SIZE OF DATA ITEM INDETERMINATE.

A schema-DDL item subentry did not include a
picture clause, and the type clause did not in-
clude or imply an item size. .

%422% TRUNCATION.

An integer value consisted of more than the
legal number of digits (e.g., three digits used
for area number).

%423* MANUAL OR OPTIONAL INCLUSION
ILLEGAL FOR SET WHICH GROUP IS VIA.

A schema=DDL member subentry specified man=-
ual or optional automatic inclusion and the group
location mode is via the set.

*xx424*** UNDEFINED ITEM.

An item=name specified did not match any name
specified in an item subentry.

#425% SORT ITEM NOT DEFINED IN MEMBER GROUP.

An item designated as a set sort key in a member
subentry was not defined in the group specified
as member,

426 DATA ITEM NOT DEFINED IN OWNER GROUP.

The item for which an alias was specified in a
member subentry was not defined in the group
named in the owner subentry.

427 NON-UNIQUE ALIAS.

The same item~name was used for two or more
alias clauses in a member subentry.

%428% WARNING == ALIASES FOR set-name SET
INCONSISTENT WITH OWNER'S CONTROLS.

The aliases specified in a member subentry did
not exactly correspond to the control items for
the owner group. For example, the owner group
was calc using four items, and only three were
given aliases. This situation is not illegal, only
dangerous, and does not interfere with schema
generation.

%429* FILL PCT/OVERFLOW RANGE USED IN AREA
area=-name WHICH HAS NO INDEXED GROUP.

No group defined as within the named area had
a location mode of indexed, making the fill per-
cent or overflow range specification meaningless.

%430* STORAGE/VIA SET set-name UNDEFINED.

A schema=-DDL group subentry specified the
named set in a via location mode or in a storage
subclause, but there was no set entry defining
the set.

140 Appendix F

Table F=1.

DMSFDP Error Messones (cont.)

Message

Meaning

%43]1+ STORAGE IS set-name SET FOR group-
name -- AREA CONFLICT.

The owner group of the named set was defined as
in a different area than the group identified by
group-name, therefore the use of that set as the
storage set is illegal.

%432* L LEGAL PICTURE.

The character=string in a picture clause was not
a legal combination of characters,

433 [TEM SIZE EXCEEDS 255 BYTES PER
OCCURRENCE.

The total size of the item in the DMS group oc-

. currence would exceed maximum item-size.

434 CHECK ILLEGAL WITH OCCURS OR WHEN
ITEM SIZE EXCEEDS 16 BYTES,

A restriction on the use of the check clause was
violated.

435 CAN'T INVERT ON AN ITEM WHICH OCCURS.

An iiem that was defined with an occurs clause
was specified as the secondary index item in an
invert subentry .

***436%** [TEM WHICH OCCURS CAN'T BE CONTRCL
KEY.

An item defined with an occurs clause was desig~
nated as a set sort key.

%437% GROUP group~name CONTROL ITEM item~-
name ILLEGAL OCCURS.

The named item, specified as the control item in
a location mode using=subclause for the named
group, was defined with an occurs clause.

%438* MEMBER group-name IN SET set-name NEED$
SORT KEYS.

The named set was defined as sorted, but the
member subentry designating the named group
did not include ascending/descending clauses.

*xx439%** INCONSISTENT SORT KEY TYPE/SIZE FOR
MEMBERS OF set-name SET.

The items specified as sort keys in member sub-
entries for two or more groups did not correspond.

*xx440*** GROUP NUMBER USED AS SORT KEY ON set-
name SET WHICH HAS BUT ONE MEMBER.

The order clause for the named set specified
sorted with group number as major or minor, but
only one group was identified as a member of the
set,

kx44]%% OCCURRENCE SELECTION MUST BE CURRENT
FOR AREA OWNER, OR FOR SETS ORDERED
NEXT OR PRIOR.

The set occurrence selection clause in a member
subentry violated one of the indicated restrictions.

*k*442%** MEMBER NOT IN AREA WHICH OWNS THIS SET.

Area-is-owner was specified for il e set and a
group designated as a member was not defined as
within the area.

%443* STORAGE IS set-name SET FOR group-nome --
NOT MEMBER.

The named set was identified as the storage set
in the group subentry defining the named group,
but the group was not identified in a member
subentry for the set.

444 GROUP CANNOT PARTICIPATE MORE ’THAN
ONCE IN SINGLE SET,

A group was designated as both a member and an
owner or as a member twice inthe same set entry.

446 MEMBER group~name OF set-name SET GIVES
ALIAS FOR item=-name == NOT CONTROL
ITEM.

The member subentry for the named group included
an alias subclause for an item that was not o
control item for the owner of the named set.

Appendix F

141

142

Table F-1. DMSFDP Error Messages (cont.)

Message

Meaning

447 STORAGE MASTER FOR GROUP group-name

NOT IN INDEXED DATA RANGE -- MUST BE.

The page range for the owner of the set specified
in a storage subclause for the named group was

not within the range specified for the area's in-

dexed group.

448 NO STORAGE SET SUPPLIED FOR GROUP

group—-name.

The group subentry for the named group included
a storage subclause, but the specified set was
not defined in a set entry.

449 MEMBER group-name OF set-name SET

NEEDS UNIQUE OWNER.

The member subentry for the named group in the
named set specified location mode of owner for
set occurrence selection, but the owner's loca-
tion mode does not provide uniqueness.

450 [LLEGAL RANGE IN CHECK CLAUSE

NUMBER nn. (I.E. LO > HI).

Range of values specified in improper order.
The nn refers to sequence of input of the clauses.

451 MUST HAVE CHECKSUMS ON ENCIPHERED

AREA.

Checksums were prohibited and enciphering re-
quested in the same area entry.

***452%%* SORT KEYS ARE NOT ALLOWED UNLESS

SET ORDER IS SORTED.

A member subentry included ascending/descend-
ing keys but the set order specified in the set
subentry was not sorted.

453 CHECK ON PICTURE ILLEGAL

IF NO PICTURE CLAUSE.

An item subentry included a CHECK clause spec=
ifying PICTURE, but no PICTURE clause.

501 PRIVACY LOCK VIOLATION. PROCESSING

TERMINATED.

An attempt was made to generate a subschema
from an extract-protected schema without supply=-
ing the proper key in the subschema entry.

502 UNDEFINED OR DUPLICATE SET.

The subschema~DDL set entry named a set not
defined by the schema or named the same set
twice.

+503* UNDEFINED OR DUPLICATE AREA.

An area not defined in the schema was specified
in a subschema-DDL area entry or one area was
named twice in one or more area entries.

504 GROUP IS IN AREA NOT DEFINED FCR

SUBSCHEMA.,

The group named in a subschema~DDL group
entry was defined in the schema as within an
area that is not defined in the subschema.

505 UNDEFINED OR DUPLICATE GROUP.

The group specified in a subschema-DDL group
entry was not defined in the schema or the same
group was named in two or more group entries.

506 'ALL' OPTION ILLEGAL HERE. SKIPTO

NEXT'.*.

ALL was specified after specific areas were
named in a subschema area entry.

508 GROUP IS IN AREA WHICH INCLUDES ALL

COMPONENTS.

A subschema-DDL group entry specified a group
that was defined as within an area for which a
components clause indicated oll.

509 SEC INDEX FOR item=name IN group-name

IS IN OMITTED AREA.

The named item in the nomed group was desig-
nated a secondary index and the area that was
to contain the invert group occurrences is not

defined for. the subschema.

Appendix F

Table F-1.

DMSFDP Er.or Messages (cont.)

Message

Meaning

511 BAD SCHEMA -- GROUPRET EXISTS
FOR ITEM NOT DEFINED IN GROUP.
PROCESSING TERMINATED.

x512* BAD SCHEMA == CAN'T FIND SCHEMAHD.
PROCESSING TERMINATED.

These two messages indicate a defective schema
file. Neither should occur if the schema was
generated correctly and not subsequently
modified.

x513* ILLEGAL LEVEL NUMBER.

The level number specified in a subschema-
DDL item subentry did not conform to the rules
for level-number sequence.

514 DUPLICATE ITEM.

The same item name was specified in two or
more subschema-DDL item subentries.

*#%515%** SET set~name REQUIRES GROUP group-name.

The named set was selected for the subschema
but the named group (which is the owner or a
member of the set) was not.

x516% LAST ITEM IN PRECEDING GROUP WAS
NOT DEFINED.

The item name i1 a subschema-DDL item sub-
entry did not refer to an item defined in the
schema (not discovered until after processing
had begun on the following group subentry).

x517* RENAMES ILLEGAL WITH UNDEFINED ITEM
NAME.

The item name in a renames clause was not the
name of an item defined in the schema.

%518* JLLEGAL ALPHANUMERIC LITERAL.

The size of the literal specified in a condition
clause in a subschema=DDL item subentry was
greater than the space allocated for it in a
COPY record.

%522* EXPECTED SUBSCHEMA ENTRY NOT
FOUND. PROCESSING TERMINATED.

Input that followed the schema-DDL end was
not a subschema entry.

Table F=2. DBM Data-Dependent Errors

Error Number Error Condition

1 Space is insufficient to insert a new group occurrence in that portion of the data=-

base in which the group type may be placed.

2 An attempt was made by the DBM to retrieve an occurrence of a given group. The

not the group intended.

reference code used was from REF=CODE in the CCB, CURR=-XXX for the group, or
a set table for a set in which the group participates. The occurrence retrieved was

3 Attempt was made to retrieve a group on the basis of its location mode. The values

supplied for the control items did not define a group occurrence.

4 Attempt was made to establish a group occurrence that violated a duplicate clause

for the group.

5 Attempt to use FINDD with REF-CODE equal to zero.

Appendix F

143

144

Table F-2, DBM Data Dependent Errors (cont,)

Error Number

Error Condition

6

13

14

15

16

17

18

19

20

Reference code supplied for the FINDD call resulted in retrieval of a group occur=
rence that was logically deleted.

The reference code of a group occurrence to be retrieved is not present in the page.
Page number of a data page is outside the range of data pages for the area.

Attempt to retrieve a direct-group occurrence with value of REF-CODE equal to
zero.

The area number portion of the reference code supplied for retrieval of a group occur-
rence is incorrect,

The area number portion of the reference code supplied for storing a direct=-group
occurrence is incorrect,

Attempt to traverse a set without establishing a position in the set because of the op-
tional or manual status of the set member,

Attempt to use DELETSEL or REMOVSEL, withthe object group occurrence the owner
of a nonempty set occurrence,

Attempt to link a manual or optional group, with the object group occurrence already
linked into an occurrence of the set,

Attempt to delink a manual or optional group, with the object group occurrence not
linked into an occurrence of the set,

Attempt to store an indexed group in create mode, with the values for the index con-
trol items not greater than those already in the area.

Attempt to modify or store a data group where the values of a data item do not pass the
data validation checks specified in the schema,

FINDDUP of a calc group resulted in inability to find a group having duplicate val-
ves for the calc control items.

An area was opened for refrieval and the database lockout bit was set.

Attempt to relink a manual or optional group, with the object group occurrence not
linked into an occurrence of the set.

Table F=3, DBM Non=Data-Dependent Errors

Error Number

Error Condition

30

31

32

33

Monitor returned a deadlock indication on an attempt to enqueue ai pages in a
shared area.

Group to be retrieved or stored depends upon retrieval of a current owner group.
The user has not retriaved an occurrence of the owner group.

Attempt to use a procadure whose object is the current of group type without having
a current occurrence of the group type, The procedures are Get, Modify, Delete
(all forms), Link, Delink, Relink, and FINDDUP.

Attempt was made to traverse a set with no current position in the set.

Appendix F

Table F-3. DBM Non-Date Dependent Errors (cont.)

Error Number

Error Condition

34
35

36

37
38
39

40
41
42

43

44
45
46
47
48
49

50

51

52

53
61
62
63
64

65
66

67

68

Attempt to use the HEAD procedure without a current position in the set.

Attempt to use the FINDC procedure without having a current of the group
type.

Use of FINDG call with the object group occurrence having location mode via set.
The set is not sorted.

Attempt to HEAD a set whose owner is defined to be the AREA.
Attempt to modify a data item that is an index control item.

Attempt was mode to update an area of the database that was opened for re-
trieve only.

Procedura! call to open any area while execu*ing in another area.
Attempt to access an unopened area.

Procedural call without any areas open. The only calls allowed without an open
area are DMSTRACE, ENDTRACE, DMSSTATS, ENDSTATS, RPTSTATS, DMSABORT,
SETERR, RESETERR, and DMSLOCK.

Group referenced by FINDX or FINDSEQ call does not contain any inverted
items.

Item referencpﬂ by FINDX or FINDSEQ call is not an inverted item.
DMSRETRN ¢all without an available return address.

Password specified uues not allow the intended procedural action.
Password not supplied for a password-secured database.

Ani area was open for update and the database lockout bit was set.

Either invalid argument in a procedural call, or the subschema definition of working
storage does not mafch the definition in the program.

DBM call other than release with recovery made after a previous call was
interrupted.

Attempt to open an area in shared mode after opening one or more in exclusive
mode or vice versa.

Attempt to open an area with shared mode ‘and the monitor version does not in-
clude enqueue/dequeve.

The users account authorization does not include use of enqueue/dequeve.
Attempt to store a group with items or sets omitted in the subschema.

Attempt to delete a group with sets or inverted items omitted in the subschema.

Attempt to link or delink a group that is not defined as an optional or manual member.

Attempt to use the FINDG procedural call without havmg all of the control items
defined for the group or its owners.

Attempt to link a group in a sorted set without having all sort keys defined.

Attempt to modify a secondary index item or a sort control item and the invert
group or the sorted set definition is omitted from the subschema.

Attempt to modify a data item that is a control item and one or more other control
items are omitted.

Attempt to execute a FINDX or FINDSEQ procedure but the inverted option has
been omitted for the item.

Appendix F

145

146

Table F-3. DBM Non-Data-Dependent Errors (cont.)

Error Number

Error Condition

69

70

71

72

73

80

81

82

83

84

85

86

91

92

93

94

95

96

97

98

99-101

121
122

123

A group has been retrieved that is not defined in the subschema.

Attempt to traverse a set that does not have the owner and all member groups defined.
The via set has not been defined for the referenced group.

Unable to store the new invert group occurrence for a modified secondary index item.

Unable to store an invert group occurrence for the secondary index item value in the
group occurrence just stored.

The storage set has not been defined for a group.

A group occurrence has been refrieved that is of a different size than that specified
by the subschema.

An operation was attempted on an indexed data group but the subschema does not
contain a complete definition of the indexed area.

Group established to control secondary indexes is not a calc group.

The subschema does not define the invert group for a secondary index item.

Set control items are not defined correctly in the subschema.

Sort or random control items are not defined within the group by the subschema.

An area to be opened has not been assigned.

An area of the database is still unavailable after five attempts to open it.

The monitor has detected an illegal operation and returned to the trap routine.

The monitor has returned an error or abnormal code as the result of an 1/O operation.

A page read from the database or subschema has an invalid checksum or the en-
ciphering key presented by the user is not correct.

The page read from the database is not the correct page for the random block accessed.
Dynamic core memory is insufficient to load the subschema.

Dynamic memory available is insufficient to interface with Sort for a FINDSEQ
procedure.

The memory space allocated for a
User Argument table (99) N
Area definition table (100)
Detail Pushdown list (101)

has been exceeded.

Detail definition list is incorrect.

Group retrieved is not defined for set accessed.

Attempt to delink a group with set-next zero.

Appendix F

Table F-3. DBM Non-Data~Dependent Errors (cont.)

Error Number

Error Condition

124 Attempt to link a group with set-next zero.

125 Group specified by set=next cannot be retrieved.

126 Group just stored cannot be retrieved to complete set linkages.

127 Prior group of set cannot be retrieved.

128 Group specified by set=prior cainw be retrieved.

129 Unable to retrieve the main group while in the process of deleting the invert group
occurrence for a secondary index item.

131 Unable to retrieve the invert group occurrence for the secondary index item of the
current main group.

133 Sort processor has abnormally terminated while executing FINDSEQ sort.

134 The main group defined by a secondary index is not retrievable. .

135 Unable to retrieve the group occurrence that was just created,

136 Invalid internal DR*A argument.

137 Error has occurred in handling area owner group.

Table F-4. DMSINIT Error Messages '
Message Meaning

***ASSIGN CARD MISSING FOR area-name.

Area file identified by area-name was not as-
signed or was not properly assigned.

***E:DBnn NOT OUT OR INOUT FILE.

Function assigned for the F:DBnn is not QUT
or INOUT.

***]/O ERROR F:SCHE - xx yy. . An 1/O error return from the monitor oceurred

while processing the schema file - xx and yy
are the major and minor codes returned by CP-V.

***] /O ERROR F:DBnn - xx yy. ‘ An 1/O error return from the monitor occurred

while processing the area file assigned to
F:DBnn — xx and yy are the major and minor
status returned by CP-V.

***UNEXPECTED END OF FILE ON SI.

Period missing at end of statement, or additional
input was expected,

***ILLEGAL RANGE.

Range specified was not within data pages of
area.

***INCORRECT AREA NAME. An area=name specified did not match any of

the area names in the schema.

***RANGE NOT SPECIFIED FOR RE-INIT OR AN Range parameter is required to reinitialize an

EXISTING AREA.

existing area.

Appendix F

147

148

Table F~4. DMSINIT Error Messages (cont.)

Message

Meaning

***PARTIAL RE-INIT OF INDEXED GROUP RANGE OR
OVERFLOW RANGE NOT ALLOWED

If any pages in the indexed group's page range
or in the overflow range are to be reinitialized,
all must be reinitialized.

***[LLEGAL RE-INIT OF OVERFLOW-RANGE

Overflow range may not be reinitialized if
indexed group range is not.

***SYNTAX ERROR

Missing equals sign or comma, misspelling of

AREA or RANGE, etc.

***SCHEMA FILE IS BAD DBM ERROR CODE = xx

Error encountered in schema file — xx is the .
error code returned by the DBM.

Table F=5. DMSDUMP Error Messages

Message

Meaning

***SCHEMA FILE IS BAD, DBM ERROR CODE - xx

An error in the schema was.detected by the
DBM routines used to process it — xx is the
DBM error code.

***INCORRECT AREA NAME

An area~-name in a dump or print directive
did not match any of the area names in the
schema.

***SYNTAX ERROR

Missing equals sign, comma, etec.

***UNEXPECTED END OF FILE ON SI

Additional input was expected to complete an
area, line, or group specification, or period
was missing.

***INCORRECT DATA PAGE READ FROM area-name

Page read from database was not the desired
page.

***ILLEGAL DIRECTIVE

Directive not PRINT or DUMP.

***ILLEGAL PASSWORD

Password not given or it was not a correct one.

***[LLEGAL RANGE

Range specified was not within the area.

***ASSIGN CARD MISSING FOR area=-name

Area file identified by area-name was not as-
signed or not correctly assigned.

***]/O ERROR F:SCHE -- xx yy

An 1/O error return from CP-V occurred while
processing the schema file — xx and yy are the
major and minor codes returned by CP-V.

***1/0O ERROR, F:DBnn == xx Yy

An 1/O error return from CP=V occurred onarea
file assigned to F:DBnn — xx and yy are the
major and minor codes from CP-V,

***1/O ERROR F:DUMP -- xx yy

An 1/O error return from CP-V occurred on se~-
quential output file — xx and yy are the major
and minor codes from CP-V,

Appendix F

Table F-5. DMSDUMP Error Messages (cont.)

Message

Meaning

**+*BAD LINE # OR GROUP LENGTH

Duplicate line numbers, zero group length, or
invalid group length found on page being pro-

cessed. Contents of page are printed in hexa-

decimal following this message.

***CHECKSUM ERROR OR PROPER CIPHER KEY
REQUIRED

Either there was a checksum error, or the cipher
key was not the proper key, or not in correct
input order. The checksummed page is printed
following this message. Checksum for the page
is the last word printed.

Table F-6. DMSLOAD Error Messages

Message

Meaning

***SCHEMA FILE IS BAD, DBM ERROR CODE - xx

An error in the schema was detected by the
DBM routines used to access it — xx is the
error code returned by the DBM.

***INCORRECT AREA NAME

An area nome in a LOAD, TAPE, or PRINT
directive did not match any of the area names
in the schema.

***INSUFFICIENT MEMORY FOR DMSLOAD

Not enough core space can be obtained for
buffers.

***ASSIGN CARD MISSING FOR area=name

Area file identified by area~name was not as~
signed or not properly assigned.

***CIPHKEY/NEWCKEY NOT REQUIRED

Cipher key or new cipher key was specified
for an area that is not enciphered.

***ILLEGAL RANGE

A range specified for an area did not corre-
spond to the size of the area, was less than
one, or was greater than the area size.

***UNEXPECTED END OF FILE ON SI

The input directive was incomplete, perhaps
missing only the period.

***ILLEGAL DIRECTIVE

Directive identifier was not LOAD, TAPE,
or PRINT.

***SYNTAX ERROR

Any of several format errors: missing comma,
parenthesis, etc.

***[/O ERROR, F:SCHE —- xx yy

An 1/O error return from the monitor occurred
while processing the schema file — xx and yy
are the major and minor codes returned by
CpP-v.

***]/O ERROR, AREA=nn -~ xx yy

An /O error return from the monitor occurred
while processing the area whose number is
specified by nn — xx and yy are the major and
minor codes returned by CP-V.

Appendix F

149

Table F-6. DMSLOAD Error Messages (cont.)

Message

Meaning

***1/0 ERROR, F:LOAD == xx yy

An 1/O error return from the monitor occurred
while reading the dump or journal file input —
xx and yy are the major and minor codes re=-

turned by CP-V.

*#**]/O ERROR, F:DUMP == xx yy

An 1/O error return from the monitor occurred
while writing the sequential file output — xx -
and yy are the major and minor codes returned
by CP-V.

***BAD LINE # OR GROUP LENGTH

Duplicate line numbers, zero group length, or
invalid group length found on a page being
processed. Page in question is printed in
hexadecimal following this message.

***CHECKSUM ERROR OR PROPER CIPHER KEY
REQUIRED

Either there was a checksum error, or the cipher
key was not the proper key, or not in correct
input order. The checksummed page is printed
following this message. The checksum for the
page is the last word printed.

***WRONG INVENTORY PAGE == xxxxxxxx

The page that was read in was not the inventory
page expected. xxxxxxxx is the number of the
desired page. The page read is printed in
hexadecimal following this message.

Table F-7. DMSSUMS Error Messages

Message

Meaning

***CANNOT OPEN STATISTICS FILE

Statisties file was not assigned or did not exist.
Processing is terminated.

***STATISTICS FILE WRONG FORM

The first record read from the statistics file was
not a Job ID record. Processing terminates.

***1/O ERROR ON STATISTICS FILE

An error return from the monitor occurred while
processing the statistics file. Processing is
terminated.

***CANNOT OPEN SCHEMA FILE

The schema file does not exist, is not assigned,
or is read-protected. Processing is terminated.

***]/O ERROR ON SI

An 1/O error return from the monitor occurred
while reading input. Processing is terminated.

***SCHEMA FILE IS BAD

An error return from the DBM routines used to
process the schema occurred. Processing is
terminated.

***UNRECOGNIZED SELECTION

Selection specification was not AREA, GROUP,
or SET. Remaining selection input is scanned
for errors but no statistics will be printed.

***INCORRECT AREA NAME

A specified area-name did not match any of
the area names in the schema.

Appendix F

Table F-7. DMSSUMS Error Messages (cont.)

Message

Meaning

***SYNTAX ERROR

Missing comma, equals sign, etc. Remaining
input is scanned.

***JSE OF ALL MADE SPECIFIC SELECTION ILLEGAL

ALL may be used only once and no other se-
lection is legal after ALL. Remaining input is
scanned but no statistics are printed.

***UNEXPECTED END OF FILE ON SI

Missing period or partial selection was spec-
ified. Processing is terminoted.

***INCORRECT GROUP NAME

Group-name specified was not in schema.
Remaining input is scanned but no statistics
are prirted.

***INCORRECT SET NAME

Specified set-name was not in schema, remain-
ing input is scanned but no statistics are
output.

Table F-8.

RPCL Error Messages

Message

Meaning

UNDEFINED ENTRY == SKIPPED

DMSANLZ does not recognize the first word
in the RPCL entry as a legal entry type.
The entry is skipped.

ENTRY IS ILLEGAL DUPLICATE OR OUT OF
ORDER -- ENTRY SKIPPED

The entry is not in the correct sequence
within the RPCL or it is a duplicate of a
previous entry, The entry is skipped.

SYNTAX ERROR == SKIPPING TO NEXT ENTRY .

The syntax of the entry violates the RPCL
form for the entry, The entry is skipped.

CIPHER KEY EXCEEDS 4 CHARS IN LENGTH -~
IGNORED

The cipher key for an area is greater than
four characters. The cipher key is ignored.

FILL PERCENT IS NOT IN RANGE 1-100 OR IS GREATER
THAN FILL PERCENT IN TARGET SCHEMA

The indexed group fill percent specified for
an area in the RPCL is either an illegal per-~
centage value or is greater than the filf

percent for the area in the target schema

DDL.

MAX NUMBER OF SERIAL NUMBERS EXCEEDED

Assembly parameter limit for maximum num-
ber of schema or area volume serial numbers
has been exceeded. For AQO, this limit

is 10,

DATABASE AREA MUST BE ON RANDOM DEVICE

The volume serial number clause specified
a device type for a database area that was
other than DP.

AREA NOT EXCIPHERED ~-- CLAUSE MEANINGLESS

A cipher key has been specified for an area
that is notenciphered. The clauseisignored.

Appendix F

151

Table F-8. RPCL Error Messages (cont,)

Message

Meaning

AREA HAS NO INDEXED DATA GROUP -- CLAUSE
MEANINGLESS

An indexed group fill percent has been
specified for an area that does not con-
tain an indexed data group. The clause
is ignored,

UNDEFINED AREA -~ ENTRY SKIPPED

The area name specified in the RPCL area
entry is not defined in the source or target
schema. The enfry is skipped.

TARGET AREA MUST BE DATABASE FORMAT

User attempted to specify a target area in
DMSDUMP format.

FILL PERCENT MEANINGLESS FOR SOURCE AREA

An indexed group fill percent clause has
been specified for a source area. The
clause is ignored,

DUPLICATE CLAUSE -- ILLEGAL

A clause has been illegally duplicated,
The clause is ignored.

PRIVACY KEY EXCEEDS 8 CHARS IN LENGTH --
IGNORED

The length of aschema privacy key isgreater
than eight characters. The key is ignored.

ILLEGAL NONNUMERIC LITERAL -- SKIPPING TO
NEXT ENTRY

Either the closing apostrophe for a non-
numeric literal has been omitted or the user
attempted continuation of a nonnumeric
literal across multiple input units, The
entry is skipped.

ILLEGAL CHARACTERS IN VOLUME NUMBER

A volume serial number contains characters

other than A through Z and 0 through 9.

VOLUME SERIAL NUMBER HAS ILLEGAL NUMBER
OF CHARS

The number of characters in a CP-V volume
serial number is greater than four, or the
number of characters in an ANS labeled
tape volume serial number is not 6.

PASS NOT IN WEIGHT FACTOR SEQUENCE

A pass sequence subentry attempted to vio-
late the rules for ordering load passes,

UNDEFINED GROUP

A group has been specified in a preserve or
pass sequence subentry that is not defined
in the target schema.

DUPLICATE GROUP SPECIFICATION

The user specified a group in more than one
preserve or pass sequence subentry, or the
same group appeared more than once in a
single preserve or pass sequence subentry.

152 Appendix F

Table F-8. RPCL Er-or Messages {(cont.)

Message

Meaning

UNDEFINED AREA

The area named in a load subentry is not
defined in the target schema,

CAN'T PRESERVE CALC OR INDEXED GROUP

The user specified a group whose location
mode is calc or indexed in a preserve
subentry.

ATTEMPT TO LOAD GROUP group-name AHEAD OF ITS
STORAGE MASTER

A pass sequence subentry specified the
named group to be loaded prior to loading
its storage set owner or in the same load
pass as its storage set owner,

CAN'T PRESERVE GROUP THAT SHARES PAGE RANGE
OF INDEXED DATA GROUP

A group which resides in the same page
range as an indexed data group has been
specified in u preserve subentry,

Table F=9. DMIREST Error Messages

Message

Meaning

DCB F:WFnn ASSIGNED TO UNRECOGNIZED DEVICE

DCB F:WFnn is assigned to a device type
that is not recognized by DMSREST. The
device types recognizedare DP, 7T, and 9T,

DCB F:WFnn NOT ASSIGNED TO FILE, LABEL,
OR ANSLBL

DCB F:WFnn has an explicit or default de-
vice assignment. Assignment must be to

FILE, LABEL, or ANSLBL.

SORT ERROR n

DMSREST has linked to the XEROX SORT
program and the sort has completed with
error code n, See the Xerox Sort and
Merge Reference Manual for an explana-
tion of error codes returned by SORT in
register 6,

1/O ERROR AT LOC nnn IN name CODE nn SUBCODE nn
ON dcbname

A error or abnormal return was made by the
monitor to the /O CAL near location "nnn"
in DMSREST module "name". The message
includes the error code and subcode along
with the DCB referenced.

nK WORDS ADDITIONAL MEMORY REQUIRED

Insufficient memory is available to
DMSREST. A memory increment of at least
nK words is required.

Appendix F

153

154

Table F~9. DMSREST Error Messages (cont.)

Message

Meaning

ERROR nn ..

. FILE INCONSISTENCY IN filename

DMSREST has detected a file error, where
code nn is:

21 - file 1/O error
22 - file I/O abnormal

23 - number of blocks processed do not
equal number of blocks required

24 - block or database page number
transmitted is not the one required

25 - checksum or encipher error in block
or database page

26 - RPCC recovered from wrong check-
point file

27 - number of records processed do not
equal the number of record required

28 - invalid record length

29 - invalid origin for a block or data-
base page

30 - illegal line number present in data-
base page

31 - available space invalid in data~
base page

32 - duplicate line number present in
database page

33 - too many SNs present

34 - SN lost by monitor

ERROR nn ..

. PROGRAM FAULT ... REPORT TO

XEROX ANALYST

A program error nn has occurred from which
recovery is not possible,

Appendix F

Table F-10. AP!/EDMS Errors

Error

Code Message Text Commenis

501 INSUFFICIENT SUBSCHEMA FOR APL/EDMS OR FILE If file named in DMSSUB call

NAMED IN DMSSUB NOT SUBSCHEMA is indeed a subschema, then it
‘ was created by a DMSFDP
version before C00,
502 CHECKSUM ERROR IN SUBSCHEMA FILE
503 DMS CALL AFTER FATAL ERROR nnn HAS OCCURRED nnn is error code listed in
Table F=3,
504 1/0O ERROR READING SUBSCHEMA FILE The monitor error code is
available via APL ERRX
intrinsic.
505 FIRST EDMS CALL NOT 'DMSSUB!
506 NO DCB AVAILABLE FOR AREA TO BE OPENED
508 EDMS PUBLIC LIBRARY IS NOT IN ':p22'
509 ATTEMPT TO EXECUTE DMSEND OR DMSSUB WITH
ACTIVE AREAS

510 ILLEGAL DIGIT IN ZONED OR PACKED ITEM VALUE

51 VALUE IN NUMERIC OR PACKED 1M WILL NOT FIT
IN FLOATING LONG NUMBER

512 ARGUMENT NAME NOT IN NAME TABLE

513 NON-UNIQUE ITEM REFERENCE WAS NOT
QUALIFIED '

514 UNABLE TO ASSOCIATE ITEM-NAME WITH
QUALIFIER

515 TRUNCATION

516 ATTEMPT TO ASSIGN NEGATIVE VALUE TO UNSIGNED
ITEM

517 DMS CALL WITH NO OPEN AREAS

518 ATTEMPT TO EXECUTE OPEN CALL WITH ACTIVE AREAS

519 CAN'T GIVE YOU ERROR CONTROL— ERROR FUNC 15

NOT NYLADIC, NO-RESULT
520 LOAD, CLEAR, OFF, CONTINUE AND SAVE
COMMANDS NOT LEGAL WITH ACTIVE AREAS

90 30 12C-1(6/75)

Appendix F

154-1

APPENDIX G. DATA VALIDATION

EDMS provides for the validation of data item values when they are stored or modified in the database. Through
clauses in the Schema DDL, validation may be specified against a picture of the item and a range of values for the
item,

If picture validation is requested, the value of edach character in the item is compared to a set of allowed values for
the corresponding picture character. If the values do not agree, adata dependent error is returned. The picture
character and the allowed volues for EBCDIC items are:

Picture Values

9 Hexadecimal FO-F9 (numeric values only)
A Hexadecimal C1-C9, D1-D9 and E2-E9 (alphabetic values) and hexadecimal 40 (space).
X Hexadecimal 00-FF (all values).

If the item type is signed numeric, the allowed values for the low order character position are A0O-A9, B0-B89,
C0-C9, DO-D9, E0-E9 and FO-F?. Packed decimal values are checked to ensure that each half byte contains a
valid numeric value, i.e., 0-9. If the number of characters in the item is even, the value of the first half byte of
the item must be zero. The halfbyte for the sign character is checked for a hexadecimal value in the range A through
F, inclusive,

If range validation is requested, the value of the data item is compared to the converted values for the literals sup-
plied in the check clause of the DDL. The item value must be equal to either literal value or it must be greater than
the low literal and less than the high literal. Velidation against a single value moy be accomplished by using the
same literal for the low and high values in tne DDL check clause. The user is cautioned against using this approach

for the extremes in floating point short and floating point long values. Different programming languages may con-

vert the same literal to different floating point representations. The File Definition Processor converts literals in the
DDLby using the same routines as the Xerox COBOUL compiler. If a program is written in FORTRAN or Meta-Symbol,

literals supplied for item values may not be converted to identical floating point representations. The DBM may thus
return an error condition if a range of values was not specified in the check clause.

When comparing signed numeric or numeric EBCDIC item values to the literals, the DBM will ignore the first half
byte of each character position except the low order character. In the low order character position hexadecimal

values A, C, E or F are considered as a positive sign and values B or D as a negative sign.

The DBM uses the decimal instructions of the hardware for comparison of packed decimal values. Thus, sign values
A, C, E and F are considered positive and values B and D as negative.

In the comparison of data items to range literals, no check is made to ensure that the characters in the item are
valid characters for the item type. This is only done for picture validation.

Appendix G 155

156

APPENDIX H. ENQUEUE/DEQUEUE

The DBM uses the enqueue/dequeue function of the CP-V operating system to control the interaction of programs
concurrently accessing an area of the database. The enqueue function provides for control of a global resource (the
database area) and/or an element of that resource (a page of the area) at two levels, shared use or exclusive use.

The DBM issues an enqueue request for shared use of an element just prior to the read of each page from the area.
If the request is successful the page is locked to the program for shared use. If the request is not successful, the
program is suspended by the operating system until the request can be satisfied. When an element is enqueued for
shared use, other programs may also enqueue the element for shared use (i.e., can read the page).

The DBM issues an enqueue request for exclusive use of an element just prior to modifying the data page in the DBM
buffer. If the request is successful the page is locked ta the program for exclusive use. If the request is not success-
ful the program is suspended until the request can be satisfied. The operating system will not allow an enqueue re-
quest for exclusive use if some other program has that element enqueued for shared use. Once an element isenqueued
for exclusive use no other program may enqueue that element for shared use.

When the user program issues a DMSRLSE procedural call or closes the last open area, the DBM will dequeue all
elements locked for that program. Other programs that may have been suspended because of conflicting enqueue
requests may then be placed back in execution by the operating system.

Through DBM use of enqueue/dequeue, concurrently executing programs are protected from interfering with each
other. When the DBM sends a page and returns data or a set position to the program, that data or set position cannot
be changed by another program until the reading program explicitlyreleases the page. When a program has updated
a page no other program may read the modified data or set pointers until the updating program releases the page.

As previously stated, each DBM enqueue request is for a global resource (the area) and an element (a page) of that
resource. The area is defined in the enqueue request by a 3-byte hashed value of the area name and the account
under which it exists. The page is identified by the 20-bit EDMS page number. A hashed value is used in place of
the full area name and account number to reduce the space and time required in accessing the operating system en-
queve tables. When a hashing technique is used there is a possibility that the values derived from two or more area
names may result in duplicates. If this should occur the result would be an overprotection of the programs accessing
the two areas. The user should also be aware of the conflicts that may result if the enqueue/dequeue function is
used in a program to protect a resource other than a database area and that resource has the same resource name as
a database area.

A program has been included on the EDMS release tape to enable the user to identify potential conflicts in resource
names. This program, named Hash, reads area name/account number pairs through M:SI DCB. The format is
AREA-NAME.ACCOUNT-NUMBER. Each pair must begin on a new input record (i.e., card, edit line etc.).
Output is through the M:LO DCB and is the 3-byte hash value derived from the AREA-NAME/ACCOUNT-NUMBER

pair. The hash value is displayed as six hexadecimal characters.

Following is a sample run of the program.

1BUIL.D HASHVALUE
1.000 AREA~1.893AA3JP
2,000 MFG-DB=01.0131)
3.000 OUR-DATABASE~AREA~01.MYACCT
4.000 i ’ ’

1SET M3SI DC/HASHVALUE

THASH,

AREA=~] »893AA3JP

HASH VALUE = 2BA4215
MF@-DB-01.0131

HASH VALUE = 69DF64
OUR-DATABASE-AREA-01.MYACCT
HASH VALUE = A3FDFB

Appendix H

APPENDIX |. DMSREST PROCESS FLOW

Phase 1: Unload

SDBA

1 An Unlood process is scheduled for each source
dafabase area. Group occurrence unloading is

1 accomplished by a sequential read of all source
database pages. Unload processes cre scheduled to
Unload be executed in the order of AREA DDL statements
for the source database. All unioad processes are
scheduled fo be executed before the following
processes.

t ! ! 1

ing sort of the INDEXED groups unloaded from a

2 A Sort process is scheduled for each source database
CEGR CRCO CSKD CCDG CIDG CVvDG orea containing INDEXED groups. This is an ascend-
source area, The sort keys are the INDEXED groups'

~

* ! ' key items. These sort processes are scheduled to be
3 executed before the following processes.
C 8
Set Recovery Sort -

3 A Set Recovery process is scheduled for each source
database area containing the owner groups of sets.
One process will recover those sets that control the

- storcge of a group (i.e., the STORAGE set of a VIA
or DIRECT group). The other process will recover
CSTO

CIDG those sets that do not control the storage of a group.

4 All Set Pointer Extract processes are scheduled
I immediately after each Set Recovery process (3).
Set Pointer o This extract process produces the dota necessory to
Extract relink the target database reference codes (CRCO)
ond to recover the source database base poge for
every group occurrence that is controlled by a
storage set,

§ A Sort process is scheduled for all source areas con=
CEGR CSTO CRCO . taining groups that are controlled by a storage set.
This sort orders the extracted base page reference
codes to permit on orderly update of groups that are

‘ controlled by a storage set.
¥ s
Sort 6 An Assign Source Base Page process is scheduled for
all source areas containing groups that are controlled
by a storage set. This process basically updates the
member group occurrences with their recovered
- source database base poge.
CsTO
1 A Sort process is scheduled for all source areas con=
S taining groups that are controlled by o storage set,
This sort orders the groups so that their recovered
source database base page can be converted into
G target database base page values by o later process,
Assign Source
Base Page

'

CEGR (cvoe _Legend
Process
1

)
Sort

CvDG

Figure I-1, DMSREST Flow Diagram

Appendix | 157

158

Phase 2: Load

Sort

CSMR

)

Assign Target
Base Page

:
-

-

i}

CTDG

Load

TDBA

-

CSMR

CGOR

CEGR

10

A Sort process is scheduled prior to a load pass for
groups that are controlled by a storage set. This
sort orders the source and target database base page
so that the target database base page may be as-
signed to member group occurrences by the next
scheduled process.

An Assign Target Base Page process is scheduied prior
to a load pass for groups that are controlled by a stor-
age set, This process basically updates these group
occurrences with their actual target database base
page prior to loading them.

A Sort process is scheduled for all group occurrences
that are to be loaded in the next load pass. This sort
orders group occurrences according to the data load-
ing sequence criteria,

A Load process is scheduled for each load pass neces~
sary to meet the DMSANLZ default or user influenced
data loading sequence. Group occurrence loading is
accomplished by a sequential update of some target
database pages. Any group that controls the storage
of another group through a storage set, causes source
and target base page reference codes to be saved
(CSMR) for later use in loading such storage controlled
group occurrences. The source and target database
reference codes of each loaded group occurrence are
saved (CGOR) to permit relinking the target database
sets and inverted group occurrences.

Appendix [

Figure I-1,

DMSREST Flow Diagram (cont,)

Phase 3: Relink and Validate

D
12 K]
Sort Sort
CGOR CRCO
“
Update
CRCO
15
Sort
CRCO
18
Update
(e
CRCO
18 "
Sort T
‘} Sort
CGOR -
‘ CRCO
1]
Relink and
Validate
CEGR

12

"

A Sort process is scheduled after the last scheduled
load process (11). This sort orders all source and
target databose reference codes of the loaded group
occurrences so that the set pointer and inverted group
source databose reference codes may be assigned their
equivalent target database reference code values,

A Sort process is scheduled to order all set pointer
and inverted group source database reference codes.
This sort orders the source database location of these
reference codas so that they may be assigned their
target database lrcation by the next process.

An Update process is scheduled and assigns the target
database location to each source database set pointer
and inverted group reference code.

A Sort process is scheduled to order ail source database
set pointer and inverted group reference codes on

their source database values. This sort permits the
assignment of target dotabase reference codes to

these set pointer and inverted group source database
reference codes by the next process.

An Updote process is scheduled and assigns the target
database reference code values of each set pointer
and inverted group occurrence.

A Sort process is scheduled to order all set pointer
and inverted group occurrence reference codes on
their target database locations,

A Sort process is scheduled to order all locations of
loaded group occurrences.

A Relink and Validate process is scheduled for each
target database area. This process relinks all set
pointers and inverisd groups by substituting target
reference codes for their source reference codes. The
set pointers are validated to assure that this substitu=
tion is correct. All target group occurrences are
validated to verify that no source group occurrence:
were lost and that no spurious target group occurrences
were loaded into the target database area by DMSREST,

Figure -1, DMSREST Flow Diagram (cont,)

160

Phase 4: Wrap Up

2
Sort
@ ‘ CEGR
2
Update
(}P ‘ CEGR
i
2
Sort
|
@ ‘ CEGR
I
b4}
Wrap Up
[
CGRC

2

2

23

A Sort process is scheduled to order all DMSREST
detected source dafabase errors on their source data-
base locations. This sort permits the assignment of
target database locations to these errors by the next
process.

An Update process is scheduled and assigns the target
database location to each source database error de-

tected by DMSREST.

A Sort process is scheduled to order all DMSREST de-
tected source and target database errors on their target
database locations. '

A Wrap Up process is scheduled to report all source
and target database errors detected by DMSREST, and
fo produce a correspondence file of all source and
target database reference codes.

Figure I-1,

Appendix |

DMSREST Flow Diagram (cont.)

APPENDIX J. SAMPLE DATAEASE RESTRUCTURING

This appendix illustrates various aspects of the Restructuring Subsystem and the operation of DMSANLZ and DMSREST
(see Figures J-1 through J=12). The database being restructured is the sample database of Figure 1 in this manual,
The source database schema DDL is presented in Figure C-1; the target database schema is that shown in Figure J-1.
The DMSANLZ and DMSREST outputs and an IFID file catalog listing are provided.

#x8200%%» EXTENDED DMS FILE DEFINITION PRACESSBR <= VERSIBN B0O
[]
veui0ses EXTENDED DMS SCHEMA DDL

1% SCHEMA NAME 1S SAMPLESCHEMAMAD; PRIVACY |LBULK FABR

23 EXTRACT 15 'EXLHCK'; PASSwARD 1S 'PASWRD1L!
33 RETRIEVE KEYS ARE 1217 UPDATE KEY IS 2312247
'Y PASSWBRD 1S5 'PASWRD2!' RETRIEVE KEY 1S 1,17
53 PASSWEBRD 1S '"PASWRDY'.
63 AREA NAME 1g AREA=)1 CANTAINS 100 PAGESS NUMBER Is 1
74 J INVENTBRY 80
8 JCHECKSUM 18 RFQUIREDS JBLRNAL [S NBT
9t REGQUIRED; ENLIPHERING IS NAT REGUIREDe
103 ARE. NAME S ARFA=2 CENTAINS 100 PAGES; NUMBER
113 I[> 2; INVENTORY
123 PLRCENT 1S 80; JBURNAL [S NO6T REQUIRED,
13! GRAUP NAME 1S (iRUUP) WITHIN AREAe(; NUMBER IS
141 100; LBCATIUN MODE 1S DIRECT; PRIVACY LHCK
153 FBR RETRIEVE IS 15 PRIVACY Leck FOR UMWDATE IS
161 2313 STATISTICS ARE REQUIRED,
17! GROUP NAME IS GRMUP2 WITHJ]* ARFAel
181 NUMBER IS 2003 LSIATIHN MADE 1S VIA
19 SET=A SET PRIVACY LOCK FBR RETRIEVE I% 1
20¢ PRIVACY LRCK FRR UPDATE IS 231
218 ITEM=21) PICTURE A(16) TYOF 1S CHARACTER
221 PRIVACY LACK FAR RFTRIEVE 1S 173 PRIVACY
234 LBCK FAR UPDATE [S 231

243 1TEMe22 TYPE IS BINARY; BCCURS 49
25t ITEMe23; TYPE IS FLAATING LONG,
263 GROBLP NAME [S GRBUF.3 WITHIN AREA«2 RANGE 1 THRU Sp LBCATION FUDE

271 1S CALC USING ITEM=32 DUPLICATES ARE ALLBWED;
28; NUMBER IS 300; PRIVACY LBCK FBR RETRIEVE
29 1S 17 PRIVACY LBCK FBR UPLATE IS 247

308! ITEM«31 PICTURE X(31) RCCURS & TIMESe
31! ITEM=32; TYPE 1S CHARACTER, 31
321 GRBUP NAME IS fGRUUPaL WITHIN AREA=2 RANGE IS 51 THRU 100

333 NUMBER 18 400; LBCATIEON MADE 1S CALC USING
341 "1TEMeyy DUPLICATES NBT ALLOWED PRIVACY LBCK FOBR RETRIEVE IS 7
354 PRIVACY LBCK FAR UPDATE 1S 247

36 ITEMe41 PICTURE IS 99v99.

371 IYEMe42 PICTURF IS AA9(4)A PRIVACY LUCK FBR RETRIEVE
388 1S 17,

397 ITEMe43 TYPE 18 CHARACTER 4

401 ITEM=44 TYPE IS BINARY,

411 SET NAME IS SgETeA) BWNER 1S GROUPmy; BRDER IS FIRST.
428 MEMBER 1S GROUPe2

43¢ JINCLUSION IS AUTBMATIC SET OCCURRENCE SELECTION
b IS LBCATIAN MBDE BF OWNER.,

451 SET NAME 1S SET«8J) BWNER S GROUPe2

461 BRDER 1S NEXT) STATISTICS ARE REQUIREV,
473 MEMBER IS GRBUFP=3 INCLUSION [S AUTBMATIC

489 JLINKED T® BWNER; SET SCCLRRENCE SELEGTION
493 1S THRU CURRENT BF SETe

50! SET NAME 1S SETeC; BRDER IS NEXT

511 JUWNER IS GROUP=2; LINKED TO PRIOR

s21 JSTATISTICS ARE REQUIRED,

538 MEMBER IS GROUPe4 INCLUSIBN]S MANUAL

5S4t SELECTIBN IS THRU CURRENT OF SETe

583 SET NAME 1S SETeDJ BWNER 1S GROBUPe13

56}) ORDER 16 SURTED; STATISTICS ARE

573 REQUIRED,

Figure J=1. Schema DDL Listing for Sample Target Database

Appendix J 161

58% MEMBER |S GROUP«4 [NCLUSIBN [S AUTAMATIC

593 JLINKED TR BWNER
601 JSET 8CCURKENCE SELECTISN [S THRU LHCATION
811 MUCE BF BWNEN; ASCENDING RANGF KEY IS
521 ITEMea1 DUPLICATES ARE NOT ALLOWED
43¢ END e

¥»s207%4s SCHEMA CANTAINS 0005 PAGESs .

#24203%4e THENE WERE (000 DIAGNBSTIC MESSAGESS

STURAGE REQUIREMENT QUMMARY

ARF a DATA pAGES INDEX PAGES INVENTORY PGS TBTAL FAGES
01 00001900 0000990 2030001 0000121
02 0JGCo100 0000000 2000001 ocooict

“»22Q 0w SCHEMA GaNEpATIﬂN COMPLETE»

Figure J=1. Schema DDL Listing for Sample Target Database (cont,)

00130 JUL 184'74 DMSANLZ FILE,RELEASE
CJURRENT BFTI8NS: L8G
WORK® a
SARTs 17
BUFFERSa 2
BLECKs 2048
FILE
RELEASE
CHECKSUM
CIPHER

Figure J=2. DMSANLZ Control Command Option Listing for Sample Schema Analysis

00:30 JUL 18,'74 %4 PROCESS CONTROL LANGUAGE
1T SBURCE SCHEMA 1S SAMPLESCHEMA PRIVACY EXTRACT 1EXLOCK!,
21 TARGET SCHEMA 1S SAMPLESCHEMAMBD PRIVACY EATRACT 'EXLOCK!e
31 SBURCE AREA AREA=1 DMSDUMP SAMPDBDUMP.
41 SBURCE AREA AREA=2 DMSDUMP SAMPDEDUMP.
51 ENDe

.THERE WERE 000 DIAGNBSTIC MESSAGES
RPCl, PROCESSING COMPLETE

Figure J=-3. DMSANLZ RPCL Listing for Sample Schema Analysis

162 Appendix J

00330 JUL 18,'74 L) C8MPEBNENT ANALYSI]S .o
PASSWBRDS AND/BR ACCESS CBLES CHANGED
INVENTBRY PERUENT #F AREA AREA«1 CHANGED
CHECKS UM B8PTIUN BF AREA AREA«1 CWANGED
ACLESS KEYS OF GRBUP GRBUP.2 CHANGED
PAGE RANGE 8F GRZUP GROUPe2 CHANGED
INVENTBRY PERCENT AF AREA AREA.2 CHANGRD
DATA PAGES BF AREA AREA2 CHANGED
ACLESS KEYS 8F GRBUP GRBUPae4 CHANGED
PAUE RANGE BF GRBUP GRYUPw4 CHANGED
ACLESS KEYS BF [TEM ITEMw4y IN GRUUP GRBUPw4 CHANGED
ACCESS KEYS OF ITEM ITEMw42 [N GROUP GROUPw4 CRANGED

THERE WERE 11 LEGAL CHANGES
THERE WERE 0 ILLEGAL CHANGES

Figure J=4, DMSANLZ Source and Target Schema Component Analysis Listing for Sample Schema Analysis

00:30 JUL 18,'74 # %% DATAW LYAD SEGUENGCE «4«e
PASS STEP AREA GROUPS LBADED
1 13 AREAw1 GROVP«{
2 17 ARZAs1 GR9UPe2
3 19 AREA#2 GROVP*3 GROLUPw Y

Figure J=5, DMSANLZ Target Database Load Sequence Listing for Sample Schema Analysis

00:30 JuL 1R2'74 LI) SCwWwE "L LE F w®CESS SEWLENCE L
SYEP: 2 PROCESS: UNLL = UNLBAC SRLKCE AREA SAMPDRUUMR

[FI1D GRALPS
CCDG GRAUPe2 GROUPes

INPLY FILES
1FID FYLE Na“ge STeP CREATED BY DeVICe CIPHEREC ACCOUNT VBLLMES
SOBA SAMPDBLLMM DUMP PUBLIC NG

BUTPUY P ILES
IFID FILE NAME oce DEVICE CIPmEREC
CCDG CCNhG=po02- FiwFo2 PLELIC ne
CSKD C8KD=0002- FIWFO& PLBLIC ND
CRCB CRCA=0002" FIwFQS PuBLIL LY}
CEGR CEGR=0J02¢ FIWFQOs PUBLIC Y]

Figure J=6, DMSANLZ Scheduled Process Sequence Listing for Sample Schema Analysis

Appendix J

i63

164

» * @

92130 JUL 185174

STERP: 19 PROCESS! LOAD «-
GROLFS
GROUP=3
INPUT FILES
IFID FILE NAME

CYDG CTDG~0Q18*

BUYPUT PILES
IFID FILE NAME

CSMR CSMRe=Q019«
CGBR (CGBR=QQ19*
CEGR CEGR=0019~

INBUT FILES
IFID FILE NAME

TOBA AREA-2

SC=EDUVULED

Y ROCESS

SEGLENCE LR 23

LBAD GROLP OCCURMENCES JNTB TARGET AREA AREAe2

GROUPe4

STEP CREATED BY

14

oce

FiwFQl
FIwFQ4
FIWFQ6

STeP CREATED BY

USER

DevicCe

PLSLIC

DEVICE
PLBLIC
PLBLIC
PLBLIC
CEVICE

PLBLIC

CIPWEREC ACCBUNT VOLLMES

N0

CIPwEREC

N
L1}
N

CIPWERED ACCOUNT veLLres

NS

Figure J=6, DMSANLZ Scheduled Process Sequence Listing for Sample Schema Analysis (cont,)

J5430 JUL 18/'74 . .0
IEIn FILE NAMF
Epl-T) RAMPLUBOUMP
fotelo]] CCDG=2001 ~
ZvDG CvDG=000l~
CskD C5x0=coQl =
£RC® CRCY=200t-
CEGR CtGR=C00L~
5284 SAMPUBDUMP
ccoe CCDGwCOQRP=
cSxD CSx0=Coca~
CRCH CRCB=CQ02~
CEGR CEGReCO0R~
csTe CSTH=COC3.
csT9 CSTB»0004.
clce CRCO=CO04~
CEGR CEGR=0Q00%~
csre CST8e0005~

S CHE LWL ECL FIlLE
DeVvICF CIPH AR S-]
PLUBLIC NG 2c48
ousLlC bY:-] 32
eulLIC LL] 24
puUBLLC e 24
PLBLIC L} e
BLBLIC NO 32
PLBLIC NG 2248
PuUBLIC NGO 195
PG IC ~e 24
pPUBLIC NE 24
PUBLIC L] 32
PLHLIC NG 24
PuBLIC e 24
puUBLIC N 24
RUBLIC LY} 32
PUBLIC 8 24

) 37

LS AGE
STEP CWFATEC BY STEPS USEC BY yOLUPMES
cLme 1 = LNLE
1 = LALC 12 = SRTS
1 = LALD 6 « ASBP
1 = UNLC 3 - PPSH
8 « PPSO
1t « UMD 21 = SRTA
1 = LALD 29 = SRTA
[pI¥ 4 g 2 = UNLD]
2 = UALD 18 « SRTS
2 = LALD 8 - PPSE
10 » PPSH
2 - UALE 21 ~ SRTA
2 « UNLE 29 - SRTA
3 « PPSH 4 « XSET
W . XSET 5 « SRTA
4 = XSET 21 « SRTA
4 » XSET 29 ~ SRTA
5 « SATA 6 = ASBP

Figure J-7. DMSANLZ Scheduled File Usage Listing for Sample Schema Analysis

Appendix J

00133 JUL 184174
CURRENT BPTIONS:

DMSREST
L8G
WORKx
SARTs
BUFFERSS
BLECKs
FILE
RELEASE
CHECKSUM
CIPHER

17

2048

Figure J=8. DMSREST Control Command Option Listing for Sample Restructuring

23133 JUL 18:774

IF10

S3BaA

CCcos

CSKD

cace

CEGR

ELAPSED STEP TImg

05135 JUL 184'74

1F10

CTDG

CSMR

CGOBR

ELAPSED STEP TiME

FILE

STATLS

SAVED

SAVED

SAVED

UNUSED

UNUSED

FILE
STATUS

SAVED

UNUSED

SAVFD

UNUSED

SAVED

STE¥ ¢
oCg & 170 %
TYPE OevICE
FiwF0g NPT
FILE PUBLIC
FiwF02 WBUTRUY
FILE PUBLIC
FiwFQ4 BUTPLT
FILE PUBLIC
FiWwF05 BUTRLT
FiwF0s BUTPLT

01s0

STEP 198
oee & 178 %
TYPE DevICE
FIWFO9 INPLT
FILE PusL
FiwF0y BuUTRUT
FiwFQs OUTRUT
FILE PUBLIC
FiwF0g HUTPUT
FIwFOs INOUT
FILE rUBLIC

0100

VANLT ee UNLBAD GKOLP BCLURKFANCES FrePRv SALRCE AREA

CRUAN,
ACLESS

RAANBM
Ci=ecCr

CONSEC
SEWUEN

CONSEC
SESUEN

CONSEC

CBNSEC

STEP EXECUTION TIME

FILE NAME IN RPCC CATALBG
K PROTELTION ATTRIBLTES

SAMPLEN! wP
CHICKSUMMED

CCRGe0N02=2R6593
CRECKSUMMED
ALT®NT «19113JP

CSKC»0J02~286593
CRECKSUPMED
ACCHUNT x19143JP

CRCH~0002-284593

CEGR=00C2-£865°3

JeQ37?

STEP SERVICE TIME

BYYE SIZE BF:
BLACK RECHRD

2676 2C48
1972 195
2548 24
248 24
2026 22

0+0312

LBAD e LOAD GROUP BCCUKRENCES INTU TARGET AREA

RRGANS
ACCESS

CENSEC
SEGUEN

CONSEC

CONSEC
SEWUEN

CBNSEC

RANDOM
DIRECTY

STEP EXECUTION TIME

FILE NAME IN RPCC CATALGG
5§ PROTELTION ATTRIBLTES

CTnG=001%=¢46598
CRECKSUMMEC
ACCHLANT «19113JP

CSMR=0019=28659%

CGRR=0)19+286595
CrECKSUMMED
ACCIUNT K191130P

CEGR=0119°286595

ARFA=2
CHECKSUMMED

240263

STEP SERVICE TIME

BYTE SIZE OF!
BLACK KECBRC

1972 195
2068 12
2n48 12
2nze 32
2n48 2048

ce0321

3

NLMBER OF FILEY
BLOCKS RECBRCS
50 90
L} 90
3 120
o] 0
0 0
61 360
23

NUMBER OF FILEY
BLOCKS RECOROS
L} sC

o] [+

1 90

o]]

100 [+]
109 180

Figure J=9. DMSREST Executed Scheduled Process Sequence Listing for Sample Restructuring

Appendix J

165

166

02138 JUL 1807 D) R FCC CATALBGUED FILES L1 sTlilnNG LR I

CvDG RELEASE F1wFO3 OUTRUT (CHBNSEC CvnGe0006=cRAB93 2~28 L 2
FIus PULLIC SESUEN CHELKSLMMED

CVOG RELFASE FiwF03 BUTOUT CBASEC CVvCGw0707~286593 2028 84 2
FILE PUBLIC SEGUEN CHECLKSLMMED

CST® RELFASE FiwFQu HBUTPUT CONSEC (STRe0npR=2R6594 ELLY] 26 2
FILE PUBLIC SEVUEN CHECKSUMMED

CRCM RELEASE FiwFOS OUTPUT CBASEC CRC2=0009+284594 2048 24 .
FILE PURL IC SEGUEN CHECKSUMMED

CST® RELEASE F{wFOs4 BUTPUT COBNSEC CST8=0010-E86%594 2r4B 24 2
FILE PUBLIC SEQUEN CHECKSULMMED

CRCH RELEASE FiIwFOS BUTPUT C(CBNSEC CRC990011+28659 Pr a8 264 2
FILE Puol1C SEGUEN CWECKSUMMED

CEGR RELEASE F wF06 OUTPUT CBASEC CEGR=0011-286594 2024 a2 1
FILE PUBLIC SEUVEN CHECKSUMMED

CTI3 SAVED FiwFQY UYUTRUT CBNSEC (TDG=0012+-28659%4 2228 32 1
FlLg PUBLIC SEUYUEN CHECK SUMMED

TOBA SAVED FiwFOB INBUT QANDBM AREA=} 2r48 2048 100
FILE PUBLIC DIRECT CHECKSUMMED

3e

3c

27¢C

9C

120

1€

40

Figure J-10. DMSREST RPCC Cataloged Files Listing for Sample Restructuring
(Listing Produced as the Result of CATALOG Keyin)

G9UP GRALPe4 CONTAING PAQ ~pal PAINT:R AT BYTE 99 FBHR SET SETN == SOLNCE HEAC PBINTER WAS
02902801 SHBULD maAVE BFEN 42002971 ee SBURCE GWOBUP ReFCOBCE wAS 20p11c02
e= TARGE'T GRAUP REFL2CE 1S 02005901

THERE WERE | ERR@RS LOGGELD

Figure J=11, DMSREST Error Summary Listing for Sample Restructuring

Appendix J

41
DMSREST

WILL ACCEPT OPERATOR INTERRUPTS

a1e
DMSREST = UNLD 0001
0033

41
OMSREST
41s
DMSREST
1INT, 41

UNLLD 0002

PPSR 0003

413
OMSREST = XSET 0004
L1
DMSREST -~ INTERRUPTED BY OPERATOR, YOU MAY INPUT:
41
IGNORE ~ TO IGNORE YBUR INTERRUPT

MSPAUSE = T80 PAUSE DMSREST AFTER CURRENT STEP
ngBREAK « TG TERMINATE DMSREST AFTER CURRENT STEP
“:GO = T0 CANCEL YOUR PRIOR *PAUSE® OR °*BREAK®
~:=CATALUG = T0 LIST ALL FILES AFTER CURRENT STEP

"QUIT ~ TO IMMEDIATELY TERMINATE DMSREST
DUSREST = YOUR INPUT TGNCRE

00234

w1

DMSREST = YOU'RE IENORED

#1g
OMSREST = SRTA 0005

Figure J=12, DMSREST Operator Console Listing for Sample Restructuring

Appendix J 167

168

This appendix defines the form~t of the sequential file generated by DMSREST that may be accessed by a user,
file is the Conveyed Group's Reference Code (CGRC) file that is produced by the wrap-up process of DMSREST,
contains a record for each group occurrence conveyed from the source database to the target dakabase.

APPENDIX K. DMSREST SEQUENTIAL FILE FORMATS

includes the referenge code for the group in the source database and in the target database.

Word 0

Byte O | Byte 1

Byte 2 | Byte 3

Checksum or zero

Number of DMSREST step
that created the file

t
Sequence number

Group number in target database

Group's reference code in target database

Group number in source database

Group's reference code in source database

t .
Sequence numbers start at one and are incremented by one.

Appendix K

Figure K=1. Conveyed Group's Reference Code (CGRC) Record Format

INDEX

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed

in numerical sequence.

IDMSFDP options, 30

A

adding occurrences, 37
alias, 25

AREA clause, 28,60
area entries, 13,27
area name, 13

AREA NAME clause, 13
area number, 13

AREA statements, 54

backward pointers, 24
beginning of processing, 36

C

CHECK clause, 19
checkpointing, 50

checksum, 13

CHECKSUM clause, 13
CLOSAREA call, 50

CLOSEDB call, 50

COBOL call format, 34

COBOL clause, 27

combination public and shared library, 52
comments, 11

communications control block, 33
COMPONENTS clause, 28,29
CONDITION NAME clause, 29
continuation, 11

CREATE call, 36

data definition language syntax, 9
data item name, 18

data item type, 18

data pages, 6

data relationships, 2

data validation, 117

database file structure, 6

database initialization (DMSINIT), 54
database manager, 32

DBM DCB requirements, 52

DBM operational interface, 52
DBM routine call format, 32

DBM routine usage, 36

DCB assignments, 31,53

deadlock, 49

deciphering, 57

DELETAUT coll, 39

DELETE call, 39

deleting occurrences, 39
veLe:SEL call, 39

DELINK call, 41

DMSABORT call, 48,49
DMSCHKPT call, 50

DMSFDP operational interface, 30
DMSFDP outputs, 10

DMSINIT, 60

DMSLOAD, 62

DMSLOAD directives, 58
DMSLOCK call, 48, 49
DMSRETRN call, 48,49
DMSRLSE call, 49

DMSSTATS call, 46

DMSSUMS, 63

DMSTRACE call, 46

DUMP directive, 57

dump directives, 57

dump processor (DMSDUMP), 54
DUMSDUMP, 61

duplicate invert group occurrence, 20

DUPLICATES clause, 20

E

enciphering, 14,37
ENCIPHERING clause, 14
END entry, 25,30
ENDSTATS call, 46
ENDTRACE call, 46

error control, 48

error messages, 102

error processing, 50

F

file definition processor, 9

file name for the schema file, 12
files used by the database restore processor, 62
files used by the dump processor, 61
fill percent, 14

FILL PERCENT clause, 14

FINDC call, 43,42

FINDD call, 43,42

FINDDUP call, 44,42

FINDFRST call, 44,42

FINDG call, 43,42

FINDLAST call, 44,42

FINDM call, 43,42

FINDN call, 43,42

Index

169

Note: For each entry in this index, the number of the most significant page is listed first, Any pages thereafter are listed

in numerical sequence.

FINDP call, 43,42
FINDS call, 44,42
FINDSEQ call, 44,42
FINDSI call, 44,42
FINDX call, 44,42
FORTRAN call format, 34

G

GET call, 45

group, 2

group area, 16

GROUP clause, 60

group entries, 14,28

group identifier, 17,20

group name, 16

GROUP NAME clause, 16, 28
group subentries, 15

HEAD call, 45

INCLUSION clause, 24
index pages, 8

invent subentry, 20
INVENTORY clause, 13
inventory pages, 8,13
INVERSION clause, 29
INVERT clause, 20
invert group, 20

item, 2

item name, 18

item subentries, 17,29
item type, 18

item value occurrences, 19
itemless group, 15

)

JOURNAL clause, 14
journal file, 14
journaling, 51

L

level number, 29

LINK call, 41

LINKED TO OWNER clause, 24
LINKED TO PRIOR clause, 24
LOAD directive, 58

load processor (DMSLOAD), 57
location mode, 16

170 Index

LOCATION MODE clause, 16
locks, 12

MEMBER clause, 24
member subentries, 24

META clause, 27
mefa-symbol call format, 34
MODIFY call, 40

modifying data values, 40
modifying linkages, 40
moving to working storage, 45

name checking, 27

NEXT pointer, 4
nonnumeric literal, 20
NUMBER clause, 13,17, 20

numeric literal, 19

0

OCCURS clause, 19
OPENRET call, 36
OPENUPD call, 36
OPRETSHD call, 36
OPUPDSHD call, 36
ORDER clause, 22
OVERFLOW clause, 14
overflow pages, 14
overview, 2
OWNER clause, 22
OWNER pointer, 4

P

PASSWORD clause, 12

passwords, 12

picture, 18

PICTURE clause, 18

pointer modes, 23

PRINT directive, 57,58

PRIOR pointer, 4

PRIVACY clause, 27

privacy lock, 12,17,19

PRIVACY LOCK clause, 12,17,19

punctuation, 11

range of a group, 16
RELINK call, 41
REMOVE call, 39

Note: For each entry in this index, the number of the most significant page is listed first, Any pages thereafter are listed

in numerical sequence,

REMOVSEL call, 39

reserved words, 9

RESETERR call, 48

retrieving specified group occurrences, 42
RPTSTATS call, 46

run-time statistics, 45

run=time tracing, 46

S

sample database definition, 90
SCHEMA clause, 12

schema entry, 12

schema file, 65

schema generation, 12
secondary index item, 20
SELECTION clause, 24
sequential file formats, 98
sef, 2,3

SET clause, 60

set entries, 21

set entry, 27

set name, 22

SET NAME clause, 22

set occurrence, 21

set order, 23

set owner, 22

set position for a new member occurrence, 23
set subentry, 21

SETERR call, 48

sets with two or more member groups, 4
statistics, 17, 24, 45, 51
STATISTICS clause, 17,24
statistics selection, 60

STORE call, 37

subschema entry, 26

subschema file, 80

subschema generation, 25

SUBSCHEMA NAME clause, 27

summary statistics, 17

summary statistics collection, 51

summary statistics processor (DMSSUMS), 59
system functions, 6

T

TAPE directive, 58
terminal usage, 31
terminating processing, 50
total nonshared library, 52
trace table, 47

track information, 46

TYPE clause, 18

utilities operational interface, 60
utility processors, 54

v

validity check, 19

W

WITHIN clause, 16, 20

Index

171

XEROX "~ Publication Revision Sheet

APRIL, 1976

CORRECTIONS TO THE XEROX EXTENDED DATA MANAGEMENT SYSTEM (EDMS) REFERENCE MANUAL
{Xerox 560 and Sigma 6/7/9 Computers)

PUBLICATION NO. 90 30 12C, December, 1974

The attached pages contain changes reflecting the BOO version of EDMS restructuring which is a non-supported
product. All changes marked by revision bars are not in the standard product; they are only in the product released
from the User's Group library.

Pages in the C edition (and C-1 revision package) that are to be replaced are: 9, 65-70, 73-74, 83-84, 85-88,
and 91-94,

20424
2C478
Printed in U.S.A,

File No.: 1X33

XP828B, Rev, 0

XEROX® is a trademark of XEROX CORPORATION. 1 90 30 12C-2(4/76)

Reader Comment Form

XEROX

We would appreciate your comments and suggestions for impraving this pubiication

Pubtication No.

Rav. Letter

Title

Current Date

D Learning

How did you use this publication?

[] Installing

Iis the material presented effectively?

D Sales

[:] Fully Covered D Well Iltustrated D Weil organized D Clear

D Good

(:] Poor

D Reference D Maintaining D Operating
What is your overall rating of this publication? What is your occupation?
D very Good D F air D Very Poor

Your other comments may bo entered here. Please be specific and give page, column, and line number references where
applicable. To report errors, please use the Xerox Software Improvement or Difficulty Report {1188) instead of this form.

Your name & Return Address

Thank You For Your Interest

(fold & tasten as shown on back. no postage needed if mailed in US.A))

PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms

NO POSTAGE
NECESSARY
IF MALILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO, 59153 LOS ANGELES,CA 90045

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
5250 W. CENTURY BOULEVARD
LOS ANGELES, CA 90045

ATTN: PROGRAMMING PUBLICATIONS

Honeywell

— e ——————————— |~ —— —— — — — . CUT ALONG LINE = — — — — — — —

FOLD ALONG LINE

FOLD ALONG LINE

Honeyweli Information Systems
Inthe U.S.A: 200 Smith Street, MS 486, Waltham, Massachusetts 02154
In Canada: 2025 Sheppard Avenue East, Willowdale, Ontario M2J 1W5
in Mexico: Avenida Nuevo Leon 250, Mexico 11. D.F.

23001, 2.5C379, Printed in U.S.A.

XP82, Rev. 0

	0000
	0001
	0002
	0003
	0004
	0005
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073-0
	073-1
	073-2
	074-1
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098-00
	098-01
	098-02
	098-03
	098-04
	098-05
	098-06
	098-07
	098-08
	098-09
	098-10
	098-11
	098-12
	098-13
	098-14
	098-15
	098-16
	098-17
	098-18
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154-0
	154-1
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	_01
	replyA
	replyB
	xBack

