SSSSSSSSSSSSSSSSS

Language and Operations
Reference Manual

FROXEROXEROXEROXEROXEROXEROX
DXEROXEROXEROXEROXEROXEROXEROR
ROXEROXEROXEROXEROXEROXEROXER(
ROXEROXEROXEROXEROXEROXEROXE
EROXEROXEROXEROXEROXEROXEROXHE
IXEROXEROXEROXEROXEROXEROXERO NS
OXEROXEROXEROXEROXEROXEROXERC

ROXEROXEROXEROXEROXEROXEROXER
ROXEROXEROXEROXEROXEROXEROXE
KEROXEROXEROXEROXEROXEROXEROX
IXEROXEROXEROXEROXEROXEROXERQ)
LOXEROXEROXEROXEROXEROXEROXER(
ROXEROXEROXEROXEROXEROXEROXER
EROXEROXEROXEROXEROXEROXEROXE
XEROXEROXEROXEROXEROXEROXEROX
OXEROXEROXEROXEROXEROXEROXERC
ROXEROXEROXEROXEROXEROXEROXER
ROXEROXEROXEROXEROXEROXEROXE
FROXEROXEROXEROXEROXEROXEROX S

META-SYMBOL DIRECTIVES

(lubell, .. .,Iubeln]

Iabel][, e lubeln]
labe\'[, e Iqbeln]
{iabel labe)]
['abei', e, Iabeln]

[lubeil, e, Iabeln]
{lobell, ey labeln]
labe!

[Iobel‘, sy labeln_]
Uabell, e labein}

labell[, v lobeln]
(iabel,, ..., label]

(lubet, ..., luheln]

1

[Iubel‘, e labeln]

(tobel ..., label]

[Iobell, Iobeln]
[lobell, e, labeln]

Iabei‘ (, R lobeln]

[Iobel‘, e, lobeln]
[tabel Ty |ube|n]

[lobei], e labeln]
(lobell, e iabeln]

ASECT

BOUND

colsp

CLOSE
CNAME[,n]
COM[, field list]
CSECT
DATA[,f]

DEF

DISP

DO

DOl

DSECT

ELSE

END

EQU[.s]

ERROR [,leve!{,c]]
FDISP

FIN

FNAME

GEN[field tist]
GOTO[, k]
LISt

LOCAL
OPEN

ORG

.
2
4
ea
PAGE
PCC
PEND
PROC
PSECT
PSR
PSYS

REF [, n)
RES(, n)
SET,s)
S:RELP
S:SINn
SOCW
SPACE
SREF [,n]
SYSTEM
TEXT
TEXTC
TITLE
USECT
WHILE

boundary

symbo)] [-- “ symboln]
[symbol], ey symboln]
[tist]

[value list)
[expression]

[v'alue\, e vo!uenj
[symbol Y symboln]
[tist)

[expression]
[expression]

[expression]

[expression]
Dist]
sy (e ‘csn‘]

symbot, [reeer symboln]

[1ist]

[valve .. .,vc(uen]

T
label,| (P |ube|n]

[expression)
{location]

[svmbol P symboln]
[symboll, ey symboln]

[Ioculion]

[expression)

(rist]

[expression]
[expression)
(expression]
[symbai‘, cees symboln]
[expression]

[Iisr]
[expression]

[expression]

[symbol], e Symboln]
nome

'cs]'(, cees'es
'cs’ ' [, vl 'csn‘]
[es')

name

[expression]

Page No.

35,37
34
42
57
62
35,37
59
50
34

25

43
44

24

58
56
60
60

56
57
48
26
43
42
53
55
55
48
33
54
55
56
27
35

© 1972, 1975, Xerox Corporation

Xerox Meta-Symbol

Sigma 5-9 Computers

Language and Operations

Reference Manual

90 09 52G

October 1975

XEROX

File No.: 1X23
XG48, Rev. 0
Printed in U.S A,

REVISION

This edition of the Xerox Meta-Symbol/LN, OPS Reference Manual, Publication Number 90 09 52G, merely
incorporates the 90 09 52F-1 revision package into the manual. There are no other technical changes. The manual
documents the HO1 version of the Meta=Symbol.

RELATED PUBLICATIONS

Title Publication No.
Xerox Sigma 5 Computer/Reference Manual 90 09 59
Xerox Sigma 6 Computer/Reference Manual 90 17 13
Xerox Sigma 7 Computer/Reference Manual 90 09 50
Xerox Sigma 8 Computer/Reference Manual 90 17 49
Xerox Sigma 9 Computer/Reference Manual 90 17 33
Xerox Batch Processing Monitor (BPM)/BP, RT Reference Manual 90 09 54
Xerox Universal Time-Sharing System (UTS)/TS Reference Manual 90 09 07

Manual Content Codes: BP —batch processing, LN — language, OPS —operations, RBP — remote batch processing,
RT —real-time, SM — system management, TS —time-sharing, UT —utilities.

The specifications of the software system described in this publication are subject to change without notice. The availability or performance of some features
may depend on a specific configuration of equipment such as additional tape units or larger memory . Customersshould consult their Xerox sales representative

for details.

PREFACE

1.

INTRODUCTION

Programming Features

CONTENTS

vi

Meta-Symbol Passes

Pass O

Pass 1

Pass 2

LANGUAGE ELEMENTS AND SYNTAX

Language Elements
Characters

Symbols

Constants

Addresses

Literals

Expressions

Syntax
Statements

Label Field

Command Field

Argument Field

Comment Field

Comment Lines

Statement Continuation

Processing of Symbols
Symbol References

Classification of Symbols

Symbol Table
Lists

Value Lists

Number of Elements in a List

ADDRESSING

Relative Addressing
Addressing Functions

$,$$

BA

HA

WA

DA

ABSVAL

Address Resolution

Location Counters

Setting the Location Counters

ORG

LOC

BOUND

RES

Program Sections
Program Section Directives

Absolute Section

Relocatable Contro! Sections

— o — —

NVNVOOOOCOONNNN N

-t i ot ot ot et ot ot —t
NNMNMNMNN—=OOOOO

20

20
20
20
20
21
2]
21
21
22
23
24
24
25
25
26
26
26
27
27

Saving and Resetting the Location Counters____ 28

Returning to a Previous Section
Dummy Sections

Program Sections and Literals

4. DIRECTIVES

Assembly Control

SYSTEM

END

DOI

GOTO

WHILE/ELSE/FIN

DO/ELSE/FIN

Symbol Manipulation

EQU

SET

LOCAL

OPEN/CLOSE

DEF

REF

SREF

Data Generation

GEN

COM

CF

AF

AFA

DATA

S:SIN

TEXT

TEXTC

SOCwW

Listing Control

SPACE

TITLE

LIST

PCC

PSR

PSYS

DISP

ERROR

PAGE

5. PROCEDURES AND LISTS

Procedures

Procedure Format

CNAME/FNAME

~ PROC

PEND
S:RELP

Procedure Display

CDISP/FDISP

Procedure Levels

Intrinsic Functions

LF

CF

28
31
31

32

33
33
34
34
34
35
37
42
42
43
43
44

48
48
50
50
51
52
52
52
53
53
54
55
55
55
55
56

56
56
57
57
57
58

59

59
59
59
60
60
62
62
62
63
63
63
64

AF

AFA

NAME

NUM

SCOR

TCOR

S:UFV

S:IFR

S:KEYS

Cs

S:NUMC

S:UT

S:PT

Procedure Reference Lists

Sample Procedures

ASSEMBLY LISTING

Equate Symbols Line
Assembly Listing Line

Ignored Source Image Line

Error Line

Literal Line

Summary Tables

OPERATIONS

Batch Monitor Control Commands
JOB Control Command

LIMIT Control Command

ASSIGN Control Command

METASYM Control Command

AC (act,acp, ... ,acp)
BA

BO

CI

CN

co

DC

GO

LO

LS

LU

ND

NS

PD[(sn], .
SB, SC

.o5n.)]

SD

SI

SO

SuU

EOD Control Command

FIN Control Command

Updating a Compressed Deck
Program Deck Structures

Creating System Files

Creating and Using a Standard Definition
File

Concordance Control Commands and Listing
Concordance Control Commands
10

SS

64
64
65
66
66
67
68
68
69
72
72
73
73
74
77

85

SERERE

90

90
90
90
90
21
N
92
92
92
92
92
92
92
92
92
92
92
92
92
92

93
93
93
93
93
93
94
96

9%
97
97
98
98

Messages
Concordance Control Command Error
Messages
Examples of Run Decks
INDEX
APPENDIXES
A. SUMMARY OF META-SYMBOL DIRECTIVES
B. SUMMARY OF SIGMA INSTRUCTION
MNEMONICS
FIGURES
1. Xerox Sigma Symbolic Coding Form
2. Flowchart of WHILE/ELSE/FIN Loop
3. Flowchart of DO/ELSE/FIN Loop
4. Command Procedure Display Format
5. Meta=Symbol Listing Format
6. Basic Symbolic and Compressed Deck Structures._.
7. Sample Legal Deck Structures
8. Deck Structure for SI and CI on Different
Devices
9. Example of System File Creation
10. Use of the AC Option

(O}

DS

END

Concordance Listing

Limitations

Meta=Symbol Error Messages

Terminal Errors

Encoder Phase Error Messages
Assembly Phase Error Messages
METASYM Control Command Error

98
98
98
98
99
99
99
99
101
104

104
105

17

107

m

40
63
85
94

94

95
96

96

. Creation of a Standard Definition File . 96

. Creation and Use of a Named Standard

Definition File 97

. Sample Run Deck—Single Symbolic Assembly____ 105

. Sample Run Deck—Single Assembly with Update__ 105
. Sample Run Deck—Batch Assembly 106
. Sample Run Deck—Multiple Assembly with Com-

pressed Input and Output on Magnetic Tape — 106

TABLES

Meta=Symbol Character Set

Meta=-Symbol Operators

Legal Use of Forward References

Reference Syntax for Lists
Valid Instruction Set Mnemonics

Meta=Symbol Syntax Error Codes

11

14

33

87

vi

PREFACE

Communication between the computer and the user in current high-speed systems can be improved greatly through
the use of highly discriminative programming languages. Such languages must be capable of expressing even
intricate problems in a brief, incisive, and readily comprehensible form.

Ideally, a programming language should be machine-independent, easily learned, and universally applicable to the
problems of science, engineering, and business. Prior to the advent of the meta-assembler concept, no single pro-
gramming language had the capacity and flexibility required for the efficient programming of all types of applica-
tions. Some languages were intended for the solution of mathematical problems, while others were designed for
business applications. Such programming languages are said to be "problem=-oriented".

The vocabulary of a symbolic programming language consists of the permissible names, literals, operators, and other
symbols that may be used to express a symbolic program. The syntax of such a language consists of the set of rules
governing its sentence (i.e., statement) structure. In the past, the syntax rules for a symbolic programming lan-
guage for a given computer were strongly influenced by the hardware characteristics of that machine. Thisresulted
in programming languages that were "machine-oriented" and which, consequently, had numerous restrictions and
unduly complex syntax rules. Because Sigma Meta-Symbol is neither a problem-oriented nor a machine-oriented
assembler, there are fewer rules to learn, and therefore the flexibility of programming is greatly enhanced.

The Xerox Sigma Meta-Symbol processor can be used both as an assembler and as @ meta-~assembler. Used as an
assembler, it translates symbolic programs into object-language code. Used as a meta-assembler, it enables the

user to design his own programming languages and to generate processors for such languages with aminimum of effort.

Note that programs written for the Sigma 9 can be assembled on the Sigma 5/6/7.

1. INTRODUCTION

PROGRAMMING FEATURES

The following list summarizes Meta-Symbol's more important
features for the programmer.

o The argument field can contain both arithmetic and
Boolean (logical) expressions, using constant or vari-
able quantities.

o Full use of lists and subscripted elements is possible.

e The DO and WHILE directives allow selective gener-
ation of areas of code, with parametric constants or
expressions determined at the time of the assembly.

e Command procedures allow a macro-assembler capa-
bility of generating many units of codes for a given
procedure call line. Further scphistication provides
completely parameterized coding, with procedures
applicable to many programs.

e Function procedures return values to the reference
line.

e The call line and its individual parameters can be
tested both arithmetically and logically.

o Nested procedures are used, and one procedure can
call another.

o Complete use of arithmetic and Boolean operators in
procedures is permitted.

META-SYMBOL PASSES

Meta~Symbol is a two-pass assembler that runs under con-
trol of various Xerox monitors. In addition to the two as-
sembly passes (referred to as Pass 1 and Pass 2), there is an
encoding pass (Pass 0) preceding the first assembly pass.

PASS 0

Pass O reads the input program (which may be symbolic,
compressed, or compressed with symbolic corrections) and
produces an encoded program for the assembler to process.
If requested to do so, Pass O will output the encoded pro-
gram in compressed form.

During Pass O the source program is checked for syntactical
errors. If such errors are found, appropriate notification is
given, and the encoding operation continues. Because the
function of Pass 0 is to prepare the source program for pro-
cessing by the assembler, it must recognize and process
those directives concerned with manipulation of symbols
(SYSTEM, LOCAL, OPEN, CLOSE). Thus, it is Pass O that
locates the designated systems in the system library and in-
corporates them in the encoded program.

PASS 1

After Pass O is finished, Pass 1 is executed. Pass 1 reads
the encoded program, builds the symbol table, and allocates
storage space for each statement that is to be generated.

PASS 2

Pass 2 is the final assembly phase which generates the ob-
ject code. It reads the encoded program and, using the
symbol table produced by Pass 1, provides the correct ad-
dresses for all symbols. During this phase, literals and
forward references are defined, and references to externally
defined symbols are noted to be provided by the loader.
Pass 2 also produces the assembly listing, the format for
which is described in Chapter 6.

t . .
Xerox loaders are routines that form and link programs to be

executed. A loader may be part of a monitor system or may
be an independent program.

Introduction]

2. LANGUAGE ELEMENTS AND SYNTAX

LANGUAGE ELEMENTS

Input to the assembler consists of a sequence of characters
combined to form assembly language elements. These lan-
guage elements (which include symbols, constants, expres-
sions, and literals) make up the program statements that

comprise a source program.

CHARACTERS

Meta-Symbol source program statements may use the char-
acters shown in Table 1.

Table 1. Meta~Symbol Character Set

Alphabetici A through Z, and §, @, #, s (break
character - prints as "underscore").

(: is the reserved alphabetic character,
as explained below).

Numeric: 0 through 9
Special
Characters: Blank

+ Add (or positive value)
- Subtract (or negative value)

Multiply, indirect addressing prefix,
or comments line indicator

/ Divide

// Covered quotient
Decimal point
Comma

Left parenthesis

~ o~ N

Right parenthesis

Constant delimiter (single quotation
mark

& Logical AND
I Logical OR (vertical slash)
Il Logicel exclusive OR (vertical slashes)
— Llogical NOT or complement
< Less than
> Greater than
= Equal to or introduces a [iteral
<= Less than or equal to
>= Greater than or equal to
—= Not equal to
; Continuation code

** Binary shift

TAB Syntactically equivalent to blank.

2 Language Elements and Syntax

The colon is an alphabetic character used in internal
symbols of standard Xerox software. It is included in the
names of monitor routines (M:READ), assembler routines
(S:IFR), and library routines (L:SIN). To avoid conflict
between user symbols and those employed by Xerox software,
it is suggested that the colon be excluded from user
symbols.

SYMBOLS

Symbols are formed from combinations of characters.
Symbols provide programmers with a convenient means of
identifying program elements so they can be referred to
by other elements. Symbols must conform to the fol-
lowing rules:

1. Symbols may consist of from 1 to 63 alphanumeric
characters: A-Z, $, @, *#, ., ., 0-9. At
least one of the characters in a symbol must be
alphabetic. No special characters or blanks can
appear in a symbol.

2. The symbols $ and $$ are reserved by the assembler to
represent the current value of the execution and load
location counters, respectively (see Chapter 3).

The following are examples of valid symbols:

ARRAY
Rl
INTRATE
BASE
7TEMP
#CHAR
$PAYROLL

$ (execution location counter)

The following are examples of invalid symbols:

BASE PAY
WO =2

Blanks may not appear in symbols.

Special characters (=) are not per-
mitted in symbols.

CONSTANTS

A constant is a self-defining language element. Its value
is inherent in the constant itself, and it is assembled as
part of the statement in which it appears.

Self-defining terms are useful in specifying constant values
within a program via the EQU directive (as opposed to en-
tering them through an input device)and for use in constructs

that require a value rather than the address of the location
where that value is stored. For example, the Load Immedi-
ate instryction and the BOUND directive both may use
self-defining terms:

LI, 2 57
2, 57, 8 are self-defining terms.
BOUND 8

SELF-DEFINING TERMS

Self-defining terms are considered to be absolute (non-

relocatable) items since their values do not change when
the program is relocated. There are three forms of self-
defining terms:

1. The decimal digit string in which the constant is
written as a decimal integer constant directly in the
instruction:

LW,R HERE +6 6 is a decimal digit string.

2. The character string constant in which o string of
EBCDIC! characters is enclosed by single quotation
marks, without a qualifying type prefix. A com-
plete description of C-type general constants is given
below.

3. The general constant form in which the type of con-
stant is indicated by a code character, and the value
is written as a constant string enclosed by single quo-
tation marks:

LW,R HERE + X'7B3' 783 is a hexadecimal
constant representing the
decimal valve 1971.

There are seven types of general constants:

Code Type

C Character string constant (redundant notation)
X Hexadecimal constant

o Octal constant

D Decimal constant

FX Fixed-point decimal constant

FS Floating-point short constant

FL Floating-point long constant

C: Character String Constant. A character string constant
consists of a string of EBCDICT characters enclosed by single
quotation marks and preceded by the letter C:

C'ANY CHARACTERS'

Each character in a character string constant is allocated
eight bits of storage.

*A table of Extended Binary-Coded Decimal Interchange
Codes, as well as information concerning hexadecimal
arithmetic and hexadecimal to decimal conversion, can be
found in the appropriate Sigma Computer Reference Manuals.

Because single quotation marks are used as syntactical
characters by the assembler, a single quotation mark in a
character string must be represented by the appearance of
two consecutive quotation marks. For example,

CIABI'CMI
represents the string
AB'C'

Character strings are stored four characters per word. The
descriptions of TEXT and TEXTC in Chapter 4 provide
positioning information pertaining to the character strings
used with these directives, When used in other data-
generating directives, the characters are right-justified
and a null EBCDIC character(s) fills out the field.

X: Hexadecimal Constant. A hexadecimal constant con-

sists of an unsigned hexadecimal number enclosed by single
quotation marks and preceded by the letter X:

X'9COTF!

The assembler generates four bits of storage for each hexa~
decimal digit. Thus, an eight-bit mask would consist of
two hexadecimal digits.

The hexadecimal digits and their binary equivalents are
as follows:

0 - 0000 8 - 1000
1 - 0001 9 - 1001
2 -0010 A -1010
3-00M B~ 10N
4 - 0100 C -1100
5-0101 D -1101
6 ~-0110 E-1110
7 -0111 F-1111

O: Octal Constant. An octal constant consists of an un-
signed octal number enclosed by single quotation marks and
preceded by the letter O:

0'731452¢6'

The size of the constant in binary digits is three times the
number of octal digits specified, and the constant is right-
justified in its field. For example:

Constant Binary Value Hexadecimal Value

0'1234' 001070011 100 0010 1001 1100 (29C)

Language Elements 3

The octal digits and their binary equivalents are as follows:
0 - 000 4 - 100
1 - 001 5-101
2-010 6-110
3-0mn 7-111
D: Decimal Constant. A decimal constant consists of an
optionally signed value of 1 through 31 decimal digits,

enclosed by single quotation marks and preceded by the
letter D.

D'735698721' = D'+735698721"

The constant generated by Meta-Symbol is of the binary-

coded decimal form required for Sigma decimal instructions.

In this form, the signt occupies the last digit position, and
each digit consists of four bits. For example:

Constant Value

D' + 99 1001 1001 1100

Adecimal constant could be used in aninstruction as follows:
LW, R L(D'99')

Load (LW) as a literal (L) into register R the decimal con-
stant (D) 99.

The value of a decimal constant is limited to that which
can be contained in four words (128 bits).

FX: Fixed-Point Decimal Constant. Afixed-pointdecimal
constant consists of the following components in the order
listed, enclosed by single quotation marks and preceded
by the letters FX:

1. An optional algebraic sign.
d, d., d.d, or .d, where d is a decimal digit string.
3. An optional exponent:

the letter E followed optionally by an algebraic
sign, followed by one or two decimal digits.

4. A binary scale specification:

the letter B followed optionally by an algebraic
sign, followed by one or two decimal digits that
designate the terminal bit of the integer portion
of the constant (i.e., the position of the binary
point in the number). Bit position numbering
begins at zero.

A plus sign is a four-bit code of the form 1100. A minus
sign is a four-bit code of the form 1101.

4 Language Elements

Parts 3 and 4 may occur in any relative order:

FX'. 007812586'

0000({0000/0000{0100{0000{0000{0000{0000

0 1 2 314 5 6/\7 8 9 10 ul2 13 14 15716 17 18 19J20 21 22 23024 25 26 27|28 29 30 31

FX'1.25E-1B17'

0000j0000j0000{0000/0000{1000/0000}0000

0 v 2 3V4 s 6 718 9 10 1h2 1314 asThe 17,08 19020 21 22 23]24 25 26 27§28 29 30 3!

N

FX'13.28125B2E-2"

0000j0100{0100/0000{0000{0000{0000j0000

0 2/\3 4 5 6 718 9 10 11512 13 14 15016 17 18 19§20 21 22 23§24 25 26 27{28 29 30 3

Example 1. Storing Fixed-Point Decimal Constants

Assume a halfword (16 bits) is to be used for two fields
of data; the first field requires seven bits, and the sec-
ond field requires nine bits.

The number FX'3. 75B4' is to be stored in the first field.
The binary equivalent of this number is 11 A 11, The
caret represents the position of the binary point. Since
the binary point is positioned between bit positions 4
and 5, the number would be stored as

Field 1 Field 2

0123456
ofoJofiififn

Bit positions

The number FX'.0625B-2' is to be stored in the second
field. The binary equivalent of this number is , 0001.
The binary point is to be located between bit posi-
tions -2 and -1 of field 2; there, the number wouldbe
stored as

Field 1 Field 2

012345678
ODIOUlﬂ'lﬂ0f7L10WIOWlQN

Bit positions

In generating the second number, Meta-Symbol
considers bit position -1 of field 2 to contain a
zero, but does not actually generate a value for
that bit position since it overlaps field 1. This

is not an error to the assembler. However, if
Meta-Symbol were requested to place a 1 in bit
position -1 of field 2, an error would be detected
since significant bits cannot be generated to be
stored outside the field range. Thus, leading
zeros may be truncated from the number in a field,
but significant digits are not allowed to overlap
from one field to another.

FS: Floating=Point Short Constant. A floating-point short
constant? consists of the following components in order,
enclosed by single quotation marks and preceded by the
letter FS:

1. An optional algebraic sign.
2. d, d., d.d, or .d where d is a decimal digit string.

3. An optional exponent:

the letter E followed optionally by an algebraic
sign followed by one or two decimal digits.

Thus, a floating=point short constant could appear as

FS'5.5E-3'

3 F 1 6 8 7 2 B

0 v 2 314 5 6 718 9 10 1nl12 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

The value of a floating-point short constant is limited to
that which can be stored in a single word (32 bits).

FL: Floating-Point Long Constant. A floating-point long
constantt consists of the following components in order,

enclosed by single quotation marks and preceded by the
letters FL:

1. An optional algebraic sign.
2. d, d., d.d, or .d where d is a decimal digit string.

3. An optional exponent:

the letter E followed optionally by an algebraic
sign, followr.d by one or two decimal digits.

Thus, a floating=-point long constant could appear as

FL'2987574839928. E-11"

4 2 1 D E 0 3 1

0 12 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

0 C 0 E 6 E 9 4

0 1 2 314 5 6 718 9 10 1111213 14 15118 17 18 19120 2) 22 23[24 25 26 27128 29 30 31

The maximum size constants permitted by Meta-Symbol is
as follows:

Constant
Desig- Maximum
nation Type Size
Decimal integer 64bits (18 +digits)
C Character string 504 bits (63 characters)
X Hexadecimal 64bits (16 digits)

number

"Refer to the appropriate Xerox Sigma Computer Reference
Manual for an explanation of floating-point format.

Constant
Desig- Maximum
nation Type Size
O Octal number 64bits (21 +digits)
D Decimal number 128 bits (31digits +sign)
FX ‘Fixed-point decimal 32 bits
number
FS Floating-point short 32 bits
number
FL Floating-point long 64 bits
number

ADDRESSES

An address value is an element that is associated with a
storage location in the Sigma main memory. There are two
types of address values:

1. An absolute address has a value that corresponds ex-
actly with a storage location in memory. Absolute ad-
dress values will not be altered by the process of
loading (linking) the program. Although absolute ad-
dress values are invariant under the linking process,
they are not considered as constants by Meta-Symbol.
It is necessary to inform the Xerox loaders of the dif-
ference between constants and absolute addresses; for
this reason, Meta-Symbol treats both absolute and re-
locatable addresses as a single type address.

2. A relocatable address has a value that consists of two
parts, control section base and offset from this base.
The base of any control section is determined by the
Xerox loaders; thus, the only correspondence between
a relocatable address value and an actual storage lo-
cation is the offset from a base section location.

LITERALS

A literal is an expression enclosed by parentheses and pre-
ceded by the letter L:

L(-185) decimal value ~185
L(X'5DF') hexadecimal value 5DF
L($+AB-3) an address value
or an expression preceded by an eq'uals sign:
=-185 decimal value -185
= X'5DF' hexadecimal valve 5DF
= $+AB-3 an address value
Literals are transformed into references to data values rather
than actual values. Literals may be used in any construct

that requires an address of a data value rather than the
actual value. For example, the Load Word instruction

. Language Elements 5

requires the address of the value to be loaded into the
register, and use of a literal will satisfy that requirement:

Lw,7 L(768) The value 768 is stored in the
literal table and its address
is assembled as part of this
instruction.

A literal preceded by an asterisk specifies indirect
addressing:

*=10 or *L(10)

When a literal appears in a statement, Meta-Symbol pro-
duces the indicated value, stores the value in the literal
table, and assembles the address of that storage location
into the statement. The address is assembled as a word
address, regardless of the intrinsic resolution of the literal
control section. This address may be referenced, however,
as a byte, halfword, or doubleword address (see "Addressing
Functions" in Chapter 3). Literals may be used anywhere a
storage address value is a valid argument field entry. How-
ever, literals may not be used in directives that require pre-
viously defined expressions.

During an assembly Meta-Symbol generates each literal as
a 32-bit value on a word boundary in the literal table.
The assembler detects duplicate values and makes only one
entry for them in the table.

When Meta-Symbol encounters the END statement, it gen-
erates all literals declared in the assembly. The literals
are generated at the current location (word boundary) of
the currently active program section.

Any of the previously discussed types of constants except
floating=point long (FL) may be written as literals:

L(1416)

integer literal

L(C'BYTE") character string literal
L(X'FOFOQ") hexadecimal literal
L(O'7777") octal literal
L(D'37879") decimal literal

L(FX'78.2E1810")
L(FS'-8.935410E-02")

fixed-point decimal literal

floating-point short literal

EXPRESSIONS

An expression is an assembly language element that repre-
sents a value. It consists of a single term or a combination
of terms (multitermed) separated by arithmetic operators.

The Meta=-Symbol language permits general expressions of
one or more terms combined by arithmetic and/or Boolean
(logical) operators. Table 2 shows the operators processed
by Meta-Symbol.

PARENTHESES WITHIN EXPRESSIONS

Multitermed expressions frequently require the use of paren-
theses to control the order of evaluation. Terms inside

6 Language Elements

parentheses are reduced to a single value before being
combined with the other terms in the expression. For
example, in the expression

ALPHA*(BETA + 5)

the term BETA + 5 is evaluated first, and that result is mul-
tiplied by ALPHA.

Expressions may contain parenthesized terms within paren-
thesized terms:

DATA+(HRS/8-(TIME*2*(AG + FG)) + 5)

The innermost term (in this example, AG + FG) is evaluated
first. Parenthesized terms may be nested to any depth.

Table 2. Meta=Symbol Operators

Binding

Operator | Strengthf Function'!

+ 7 Plus (unary)

- 7 Minus (unary)
— 7 Logical NOT or complement (unary)
*x 6 Binary shift (logical)
* 5 Integer multiply

/ 5 Integer divide

// 5 Covered quorienrm

+ 4 Integer add

- 4 Integer subtract

< 3 Less than

> 3 Greater than

<= 3 Less than or equal to

>= 3 Greater than or equal to
= 3 Equal to
—/= 3 Not equal to

& 2 Logical AND

| 1 Logical OR

I 1 Logical exclusive OR

f . .
See below, "Operators and Expression Evaluation".

t . . .
All operators are binary (i.e., require two operands)
except the first three, specifically indicated as unary.

A //B is defined as (A + B - 1)/B

OPERATORS AND EXPRESSION EVALUATION

A single-termed expression, such as 36 or $ or SUM, takes
on the value of the term involved. A multitermed expres-
sion, such as INDEX + 4 or ZD*(8+XYZ), is reduced to a

single value as follows:

1. Each term is evaluated and replaced by its internal
value.

2. Arithmetic operations are performed from left to
right. Operations at the same parenthetical level

with the highest "binding strength" are performed
first. For example,

A+B*C/D
is evaluated as

A+(B*C)/D)

3. All arithmetic and logical operations in expressions are
carried out in double precision (64 bits) with the fol~
lowing exceptions:

a. Multiplication allows only single precision oper-
ands (32 bits) but may produce a double precision
product.

b. Division allows a single precision divisor and a
double precision dividend and produces a single
precision quotient.

4. Division always yields an integer result; any fractional
portion is dropped.

5. Division by zero yields a zero result and is indicated
by an error notification.

An expression may be preceded by an asterisk (*), which is
often used to denote indirect addressing. Used as a prefix
in this way, the asterisk does not affect the evaluation of

the expression. However, if an asterisk precedes a subex-
pression, it is interpreted as a multiplication operator.

Multitermed expressions may be formed from the following
operands:

1. Symbols representing absolute or relocatable addresses,
which may be previously defined, forward, or external
references.

2. Decimal integer constants (e.g., 12345) or symbols
representing them.

3. All other general constants, namely character string
(C), hexadecimal (X), octal (O),. decimal (D), fixed~
point (FX), floating-point short (FS), and floating-
point long (FL), or symbols representing them.

The following should be noted with regard to expression
evaluation:

1. To allow for greater flexibility in generating and
manipulating C, D, FX, FS, and FL constants, the
assembler treats them as integers when they are used
arithmetically in multitermed expressions and carries
the results internally as integers. Character constants
(C) so used are limited to 8 bytes (64 bits), and deci-
mal constants (D) to 15 characters +sign (64 bits).

2. All operators may be used but only the + and -
operators and the comparison operators may take an ad- |
dress as an operand. An address operand is considered

to be

a. Any symbol that has been associated with an ad-
dress in a relocatable or absolute section.

b. Any local symbol referenced prior to its definition.

c. Any symbol that is an external reference.

3. The sum of any two address operands is an address. The
difference of any two address operands is an address,
except for the case where both items are in the same
control section and of the same resolution; the result
then is an integer constant.

4. An address operand plus or minus a constant must use a
single precision constant. Combining a negative con-
stant with an address operand, however, will produce
an error only if the negative constant cannot be repre-
sented correctly in single precision form. For example,
external reference -1 is correct; external reference
-9,589,934,592 is incorrect.

5. Meta-Symbol carries negatives as double precision

numbers and will therefore provide for generated neg-
ative values of up to 64 bits.

LOGICAL OPERATORS

The logical NOT (—), or complement operator, causes a
one's complement of its operand:

Hexadecimal
Value Equivalent One's Complement
3 00... 001 ... 1100
10 00... 1010 ... o101

The binary logical shift operator (**) determines the direc-
tion of shift from the sign of the second operand: a negative
operand denotes a right shift and a positive operand denotes
a left shift. For example:

5%*.3
results in a logical right shift of three bit positions for the
value 5, producing a result of zero.
The result of any of the comparisons produced by the com-
parison operators is ‘

0 if false (or operands are of incompatible type)

1 if true

so that

Expression Result
3>4 0

3 is not greater than 4.

— 34 0 The 32-bit value — 3is equal to
11. .. 1100 and is not equal to 4;

i.e., 00...0100.

Language Elements 7

Expression Result
3—=4 1 3 is not equal to 4.
—(@3=4) 11. . .11 3 s not equal to 4, so the

result of the comparison is
0 which, when comple-
mented, becomes a 64-bit
value (all one's).

The logical operators & (AND), | (OR), and Il (exclusive
OR) performs as follows:

AND
First operand: 0011
Second operand: 0101
Result of & operation: 0001
OR
First operand: oon
Second operand: 0101
Result of | operation: ot
Exclusive OR
First operand: 0011
Second operand: o101
Result of I operation: o110

Expressions may not contain two consecutive binary oper-
ators; however, a binary operator may be followed by a
unary operator. For example, the expression

-A*--B/-C-12
is evaluated as

((-A) * (—B)) / (-C)) - 12
and the expression

T+U * (V +-W) - (268 / -X)
is evaluated as

T+ U *(V+(-W)) - (268 / (-X))

SYNTAX

Assembly language elements can be combined with computer

instructions and assembler directives to form statements that
comprise the source program.

STATEMENTS
A statement is the basic component of an assembly language

source program; it is also called a source statement or a
program statement.

8 Syntax

Source statements are written on the standard coding form
shown in Figure 1.

FIELDS

The body of the coding form is divided into four fields:
label, command, argument, and comments. The coding
form is also divided into 80 individual columns. Columns 1
through 72 constitute the active line; columns 73 through 80
are ignored by the assembler except for listing purposes and
may be used for identification and a sequence number.

The columns on the coding form correspond to those on a
standard 80-column card; one line of coding on the form
can be punched info one card.

Meta-Symbol provides for free-form symbolic lines; that is,
it does not require that each field in a statement begin in a
specified column. The rules for writing free-form symbolic
lines are:

1. The assembler interprets the fields from left to right:
label, command, argument, comments.

2. A blank column terminates any field except the com-
ments field, which is terminated at column 72 on card
input or by a carriage-return or new-line character on
Teletype.

3. One or more blanks at the beginning of a line specify
there is no label field entry.

4. The label field entry, when present, must begin in
column 1, except when the initial line of a statement
contained a semi~colon in column 1. The label field

may then start in any active column in the second line.

5. The command field begins with the first nonblank eol -
umn following the label field or in the first nonblank
column following column 1, if the label field is empty.

6. The argument field begins with the first nonblank col -
umn following the command field. An argument field
is designated as a blank in either of two ways:

a. Sixteen or more blank columns follow the com-
mand field.

b. The end of the active line (column 72) is
encountered.

7. The comments field begins in the first nonblank column
following the argument field or after at least 16 blank
columns following the command field, when the argu-
ment field is empty.

ENTRIES

A source statement may consist of one to four entries

written on a coding sheet in the appropriate field: a
label field entry, a command field entry, an argument
field entry, and a comments field entry.

Xerox Data Systems
Xerox Sigma Symbolic Coding Form XEROX
ProBLew MOTHING WHATEVER IDENTIFICATION pace . or 7
PROGRAMMER L7 VA 73 pate_o2—=/5—7/
T
LABEL COMMAND ARGUMENT COMMENTS
il 5 10 15 20 25 30 35 137 40 45 50 55 60 65 70 72
B B e e B e L A B B s s s S s s S B
g SO S
Xty 7415 PRoGRAH NI#/TS NBT/JZA/G wm} EV.&-,Q: ¥% % ‘ ‘ '
s AL R AR AN et B L S m LA Tmaae et
e e T ESHM— S S SH M MM
1 . ,s‘r.s*nm 5167 '
e ——r—— S—E A S S
Aaé:F ﬁ%: L L T T T T T T T]
e = G
BTHIINGuWHHTEV ER || fes 7 o' ! ' ' ' ' ' ‘ '
TEXTC f/I/\/ﬁ WHHTEVEL T 7T ‘ ' ' '
o L SU NOTH, e T o o S A B
ARAMETERSTABLET L] T , £ ! ‘
YT T T T (:EngqIQLI. /1 I | ' [l .
' [T R T o T x T T T T T
et e L . T T T e S i T T T T e RSN
DAT /\/@THIN(-uwf//)vaER' ' ‘
T T e A L L S e e e T
! b
B I T e T) ERPENE 5 e e e
. I ! ChL & PARFHETIER TABLEL _ PRINT NETHING WHETE /2K
EXIT I i B AN] AND THEN STcP. "
Al R e IR L2 A b VAN A S A A SIS
ND START ' '
T o T 5 S - A — £ N T i o B o T IMMIMEUMIMENERES
e B L o e o e e R
e B T T B L T
. ' —r . A S —
Figure 1. Xerox Sigma Symbolic Coding Form
LABEL FIELD The label of a value, a list, or a function procedure may

A label entry is normally a list of symbols that identifies
the statement in which it appears. The label enables a
programmer torefer toaspecific statement from other state-
ments within the program.

The label on a procedure reference line (see Chapter 5)
may contain any list of valid Meta-Symbol expressions,
constants, or symbols.

Multiple labels may appear in the label field of any in-
struction and of any directive except DSECT, which must
have one and only one label. A label for some directives
is not meaningful and is ignored unless it is the target label
of a GOTO search. The labels must be separated by
commas. A series of labels may be continued onto follow-
ing lines by writing a semicolon after any character in the
_ label and writing the next character on another line, start-
ing in any column after column 1.

Example 2. Lcbel Field Entries

YEAR_TO_DATE, ACCUMULATED_SALARY;
, COMMISSIONS

Note that the semicolon does not replace the
comma that is required to separate the entries.

have the same configuration as a command, without conflict,
since Meta=-Symbol is able to distinguish through context
which usage is intended. For example, the mnemonic code
for the Load Word command is LW. An instruction may be
written with LW in the label field without conflicting with
the command LW.

The name of any intrinsic function that requires parentheses
(ABSVAL, BA, CS, DA, HA, L, NUM, S:IFR, S:NUMC, S:PT,
S:UFV, S:UT, SCOR, TCOR, and WA) may be used as a label
in either a main program or a procedure definition, if the
parentheses are omitted. The intrinsic functions AF, AFA,
CF, LF, and NAME may be used as labels in a main program,
but within a procedure definition they are always inter-
preted as functions.

Example 3. Label Field Entry

LABEL
1 5

PAY . R’AT[
/?(I +5 X)
a3

cosT@
FIFTEE
Bl T

COMMAND
15

T T

ARGUMENT
25 30

T

10

T
T
T
T
T

{4 4 4
-

COMMAND FIELD

A command entry is required in every active line. Thus,
if a statement line is entirely blank following the label

Syntax 9

field or if the commandentry isnot an acceptable instruction
or directive, the assembler declares the statement in error.

The command entry is a mnemonic operation code, an as-
sembler directive, or a procedure name. Meta-Symbol
directives and valid mnemonic codes for machine oper-
ations are listed in the Appendixes. Procedures are dis-
cussed in Chapter 5.

Example 4. Command Field Entry

LABEL COMMAND ARGUMENT
1 5 10 15 20 25 30 35]
T T g LI T T T T N T
L 5
T .51, Tw.‘.v T T T T T
L
T L_W’S T T T T T T
T T T AN AR | T T
AT L T T L*\‘/r‘s"x T T
ALPHA LWs5 .
BETA_LW,ls| ' L AR '
g bouW,s It
LoepP LW, ! '
T T T T T T T
T T T T

Tt T

™ T

ARGUMENT FIELD

An argument entry consists of one or more symbols, con-
stants, literals, or expressions separated by commas. The
argument entries for machine instructions usually represent
such things as storage locations, constants, or intermediate
values. Arguments for assembler directives provide the in-
formation needed by Meta-Symbol to perform the desig-
nated operation.

Example 5. Argument Field Entry

COMMAND ARGUMENT
10 15 20 25 30 35 [37 40
AR ARMEASERREREN RARREEE
T T LI B S B S LA S pa S L
Nea 18/2 SO N —
LI Y SR SR E—
LW;/ rC@ NI T . — .
Nep il : BLENK ARGUMENT
N L5 ANY ERRRREN RERARES
{ T ™ T T T T

COMMENT FIELD

A comments entry may consist of any information the user
wishes to record. It is read by the assembler and output as
part of the source image on the assembly listing. Comments
have no effect on the assembly.

COMMENT LINES

An entire line may be used as a comment by writing an
asterisk in column 1. Any EBCDIC character may be used
in comments. Extensive comments may be written by using
a series of lines, each with an asterisk in column 1.

10 Processing of Symbols

The assembler reproduces the comment lines on the as-
sembly listing and counts comment lines in making line
number assignments (see Chapter 6 for a description of
output formats).

STATEMENT CONTINUATIOR

If a single statement requires more space than is available
in columns 1 through 72, it can be continued onto one or
more following lines. When a statement is to be continued
on another line, the following rules apply:

1. Each line that is to be continued on another line must
be terminated with a semicolon. The semicolon must
not be within a character constant string. Anything in
the initial line following the semicolon is treated as
comments. A semicolon within comments is not treated
as a contfinuation code.

2. Column 1 of each continuation line must be blank.
3. Comment lines may not be continued.

4. Comment lines may be placed between continuation
lines.

5. Leading blanks on continuation lines are ignored by
the assembler. Thus, significant blanks that must
follow label or command entries must precede the
semicolon indicating continuation.

Example 6. Statement Continuation

BEGIN Lw,3 A; Continuation
+B
NEW TEXT 'A; B ; is not a contin-

uation character.

LOCAL A,START,R1, ;

D,RATIO,B12,; Continuation
C,MAP
ANS Lw,3 ; The blank that

SUM, 1 terminates the
command field
precedes the
semicolon.

PROCESSING OF SYMBOLS

Symbols are used in the label field of a machine in-
struction fo represent its location in the program. In the
argument field of an instruction, a symbol identifies the
location of an instruction or a data value.

The treatment of symbols appearing in the label or argu-
ment field of an assembler directive varies.

DEFINING SYMBOLS

Asymbol is "defined" by its appearance in the label field of
any machine language instruction and of certain directives:

ASECT, CNAME, COM, CSECT, DATA, DO, DO,
DSECT, END, EQU, FNAME, GEN, LOC, ORG,
PSECT, RES, SET, S:SIN, TEXT, TEXTC, WHILE, and
USECT.

For all other directives a label entry is ignored (except as
a target label of a GOTO directive); that is, it is not as-
signed a value.

Any machine instruction can be labeled; the label is as-
signed the current value of the execution location counter.

The first time a symbol is encountered in the label field of
an instruction, or any of the directives mentioned above,
it is placed in the symbol table and assigned a value by the
assembler. The values assigned to labels naming instruc-
tions, storage areas, constants, and control sections repre-
sent the addresses of the leftmost bytes of the storage fields
containing the named items.

Often the programmer will want to assign values to sym-
bols rather than having the assembler do it. This may be
accomplished through the use of EQU and SET directives,
A symbol used in the label field of these directives is as-
signed the value specified in the argument field. The sym-

bol retains all attributes of the value to which it is equated.

Note: The use of labels is a programmer option, and as
many or as few labels as desired may be used.
However, since symbol definition requires assem-
bly time and stc-age space, unnecessary labels
should be avoided.

REDEFINING SYMBOLS

Usually, a symbol may be defined only once in a program.
However, if its value is originally assigned by a SET, DO,
or WHILE directive, the symbol may be redefined by a sub-
sequent SET directive or by the processing of a DO or
WHILE loop. For example:

SYM SET 15 SYM is assigned the value 15.

SYM DO 3 SYM is changed to zero and
is incremented by 1 each time

the DO loop is executed.

NOW .SET SYM NOW is assigned the value
SYM hod when the DO loop

was completed; i.e., 3not 15.

SYMBOL REFERENCES

A symbol used in the argument field of a machine instruc-
tion or directive is called a symbol reference. There are
three types of symbol references.

PREVIOUSLY DEFINED REFERENCES

A reference made to a symbol that has already been defined
is a previously defined reference. All such references are
completely processed by the assembler. Previously defined
references may be used in any machine instruction or directive.

FORWARD REFERENCES

A reference made to a symbol that has not been defined is a
forward reference. There are two distinct types of forward
references, local forward references and nonlocal forward
references. Table 3 summarizes the permissible places where
each type may be used. Directives not listed either do not
allow forward references (e.g., DO) or completely ignore
them (e.g., PAGE, PROC).

Table 3. Legal Use of Forward References

Command Field Argument Field

Command Local | Nonlocal Local | Nonlocal

Machine

Instruction X X X

X

CDIsP

CLOSE

CNAME X

COM

DATA

DEF

DISP

X | X | X |X

EQU X

ERROR X

FDISP

FNAME

=

GEN X

GOTO X

XIXIX|X I X[X|XIX[|X|X|X[X|X]|X

LIST

LOCAL X

OPEN

PCC

PEND

PSR

PSYS
SET X X

S:SIN X

SPACE

TITLE

XIXIX |X|X|X | X|X X |X

Procedure X X X

Processing of Symbols n

There are two general restrictions on the use of forward
references:

1. A forward reference may not be subscripted.

2. A subscripted symbol may not have a forward reference
in the subscript list.

Meta-Symbol permits the use of forward references in multi-
termed expressions.

EXTERNAL REFERENCES

A reference made to a symbol defined in a program other
than the one in which it is referenced is an external
reference.

A program that defines external references must declare them
as external by use of the DEF directive. An external defini-
tion is output by the assembler as part of the object program,
for use by the loader.

A program that uses external references must declare them as
such by use of a REF or SREF directive.

A machine instruction containing an external reference is

incompletely assembled. The object code generated for such
references allows the external references and their associated
external definitions to be linked at load time.

After a program has been assembled and stored in memory to
be executed, the loader automatically searches the program
library for routines whose labels satisfy any existing external
references. These routines are loaded automatically, and
interprogram communication is thus completed.

The permissible places in which external references may be
used are identical to the legal uses for local forward refer-
ences, as given in Table 3.

Meta-Symbol permits the use of external references in multi-
termed expressions.

CLASSIFICATIGN OF SYMBOLS

Symbols may be classified as either local or nonlocal.

A local symbol is one that is defined and referenced within
a restricted program region. The program region is desig~
nated by the LOCAL directive, which also declares the
symbols that are to be local to the region.

A symbol not declared as local by use of the LOCAL direc-
tive is a nonlocal symbol. It may be defined and referenced
in any region of a program, including local symbol regions.

The same symbol may be both nonlocal and local, in which

case the nonlocal and local forms identify different pro-
gram elements,

12 Lists

SYMBOL TABLE

The value of each defined symbol is stored in the as-
sembler's symbol table. Each value has a value type
associated with it, such as absolute address, relocatable
address, integer, or external reference. Some types require
additional information. For example, relocatable ad-
dresses, which are entered as offsets from the program
section base, require the intrinsic resolution of the symbol
(see Chapter 3 for a discussion of intrinsic resolution and
the section number).

When the assembler encounters a symbol in the argument
field, it refers to the symbol table to determine if the sym-
bol has already been defined. If it has, the assembler
obtains from the table the value and attributes associated
with the symbol, and is able to assemble the appropriate
value in the statement.

If the symbol is not in the table, it is assumed to be a for-
ward reference. Meta-Symbol enters the symbol in the
table, but does not assign it a value. When the symbol is
defined later in the program, Meta-Symbol assigns it a
value and designates the appropriate attributes.

LISTS

A list is an ordered set of elements. Each element occupies
a unique position in the set and can, therefore, be identi-
fied by its position number. The nth element of list R is
designated as R(n). An element of a list may also be
another list. Any given element of a list may be numeric,
symbolic, or null (i.e., nonexistent).

A list may be either linear or nonlinear. A linear list is
one in which all non-null elements consist of a single
numeric or symbolic expression of the first degree (i.e.,
having no element with a sub-subscript greater than 1).
A nonlinear list has at least one compound element; that
is, a non-null element with a sub-subscript greater than 1.

These definitions are explained in greater detail below.

Lists may be used in two ways: as value lists or as pro-
cedure reference lists. Value lists are discussed in this
chapter; see Chapter 5 for a description of procedure ref-
erence lists,

VALUE LISTS

LINEAR VALUE LISTS

A linear value list may consist of several elements or of
only a single non=-null element having a specific numeric
value (e.g., a signed or unsigned integer, an address, or a

floating-point number). Thus, asingle value and a linear
value list of one element are structurally indistinguishable.

An example of a linear value list, named R, having the
four elements 5, 3, =16, and 17 is shown below.

R=5, 3, -16, 17

(The symbol = means "is identical to".)

Reference Syntax. In the example given above, the four
elements of list R would be referred to as:

R(1) =5
R(2) =3
R@) =-16

R(4) =17

The numbers in parentheses are the subscripts of the ele-
ments. Note that, for the above example:

R(h) =null forn> 4

A null value is not a zero value. An element having a
value of zero is not considered a null element, because
zero is a specific numeric value. The null elements of a
value list are those that have not been assigned a value,
although they do have specific subscript numbers. That is,
all subscript numbers not assigned to non-null elements may
be used to reference implicit null elements. For example,
the list R, as defined above, consists of four elements:

R(1) =5

R(2) =3
R(3) = -16
R@) =17

and any number of implicit null elements:
R(5) = null
R() =null
R(n) =null for n > 4

A null value used in an arithmetic or logical operation has
the same effect as a zero value. Thus, if

LIST(a) =null

then
LIST(®) + LIST(a) = LIST®)

also

0 +LIST(@) =0
also

LIST(a) + null =0

Example 7. Linear Value List'

A SET 8,6,9
defines list A as

A(l) =8

A(2) =6

A@B) =9

A(4) =null

A() =null forn =24

The list could be altered by assigning additional
elements to list A:
A@4) SET -65

A(5) SET 231

changing list A to

A 8,6,9,-65,231

When a list contains explicit null elements (i.e., those fol-
lowed by one or more non-null elements), they are counted
with the non-null elements in determining the total number
of elements in the list.

Examples of lists containing explicit null elementsare shown
below.

A SET 5,17,10,,,14

B SET ,,6
defines lists A and B as

A =5, 17, 10, null, null, 14 list A contains six

explicit elements.

B =null,null, 6 list B contains three

explicit elements.

A trailing comma in a list specifies a trailing explicit null
element. Thus, a list defined as
5 SET 4,3,6,,2,

contains six explicit elements: 4,3,6,null,2,null.

If Q is the name of an m-element value list, e is an expres-
sion having the single value n, and nolist having more than
255 elements can be accommodated by the assembler, then

the reference syntax will give the values shown in Table 4.

Generation. The syntax for defining a list is

name followed by directive followed by sequence

"Lists values are normally defined by SET or EQU directives,

which are described in Chapter 4.

Lists 13

Table 4. Reference Syntax for Lists

Syntax of
Case Reference Range of n Meaning of the Reference Value(s) of the Reference
1 Q or Q(0) n=0 Reference to all elements of The m values of the elements
list Q. of list Q.
2 Q(e) 1<n<m Reference to the nth element The value of the nth element
of list Q. of list Q.
3 Qfe) m <n < 255 Reference to nonexistent (null) | Null. (Numeric effect equiv-
(n is an integer) element of list Q. (No alent to zero.)
error flag.)
4 Q(e) n<0orn>255 or Error. (Subscript out of range.) | The value of Q(1).
n is not an integer

The name may be any symbol chosen by the programmer,
the directive may be either EQU or SET, and the sequence
is one or more elements establishing the list structure.
Note that a name is mandatory.

Each element in a list-defining sequence must be either
(1) the expression to be used as the next element of the list,
or (2) areference (case 1 or 2 of Table 4) to an m-element
list, whose elements are to be copied as the next elements
of the list being defined. This is illustrated in Example 8,
where the effects of successive SET directives are to be
considered cumulative.

Example 8. Defining Linear Value Lists

Example 8a

Q SET 4,7 +2
creates

Q=49
Example 8b

R SET Qm,17,-6
creates

R=4,17,-6
Example 8¢

S SET Q
creates

S=4,9
Example 8d

T SET Q,19,Q,RE@)
creates

T=4,9,19,4,9,-6

14 Lists

Example 8e

Q SET T(6),T(3),205
redefines

Q=-6,19,205

Note: Example 8 does not result in redefinition of R,
S, or T, although they were initially defined
in terms of elements of Q; only Q will have
new values after execution of thisdirective.

Example 8f
T SET T(5)

redefines

T=9

Note: The evaluation of T(5) is performed before re-
definition of T. All elements of T that are of
higher order than T(1) will be null elements
after execution of this directive (i.e.,
T(n)=null forn >1).

Example 8g

S SET S,6
redefines

S=4,9,6
Example 8h

S SET 1,S
redefines

$=1,4,9,6

Manipulation. The SET directive can be used not only to
define or redefine an entire list, but also to define or re-
define any single element of a linear value list. The syntax

of the directive is still name followedby directive followed
by sequence, but the name is a subscripted symbol identi-
fying some particular list element; and the sequence is only
a single expression, representing either a specific numeric
value or the name of a previously cefined element having
a single value.

In Example 9 below, the effects of successive SET directives
are to be considered cumulative, but not retroactive.

Example 9. Redefining a Linear Value List

Example 9a
A SET 5,6,4
A(2) SET 17
redefines
A=5,17,4
Example %b
AQ3) SET A@3) +46
redefines
A=5,17,10

Example 11. Nonlinear Value List Notation

NONLINEAR VALUE LISTS

Anonlinear value list has at least one compound element; that
is, a non-null element having a sub-subscript greater than 1.
A compound element in a list is identified by enclosure
within parentheses. Example 10 illustrates this notation.

Example 10. Parentheses in Nonlinear Value Lists

X = @4) Redundant parentheses.
X = (4,7) Not redundant.
X = (A) If A has previously been equatedto asin-

gle value, the parentheses are redundant.

If Ahas previouslybeen equatedtoa list of
values, the parentheses are not redundant.

In Example 11, notice the use of parentheses in specifying
the level of the subelements. Z(1) consists of one sub-
element: (2, 3, 4), which is composed of threc sub-
subelements: 2, 3, 4, as compared with Z(2) which consists
of three subelements: 9, 8, 11, and no sub-subelements.
Meta-Symbol places no limit on the number of levels that
may be specified for subelements.

Z=((2,3,4),9,8,11),7,6, 5, 4)
The elements of list Z are
Z(1)=(2,3,4)
Z(2)=9,8, 11
ZQ8) =7
Z(4)=6,(5,4)
Zn)=null forn> 4

Subelements of list Z are identified by means of multiple subscripts (i.e., sub-subscripts):

z(,1,1)=2
— 2(1,1)=2,3,4 z(1,1,2)=3
Z()= (2,3, 4) _J Z(1,1,3)= 4
L zod=en e ———= Z(1,1,4) = null
—Z2,1)=9 N Z(2,1,1)=9
L 72,1,2) = null
z(2)=9,8, 11 —] | S —— 7(2,2,2) = null
———————— Z(2,3) =11 T Z(2,3, =1
: : | Z(2,3,2) =null
L — — 7@, 4 =null

Lists 15

0 z3,1,1)=7
2@ D=7 1 _ ——Z(3,1,2) =null
Z3) =7 —
————Z3,2) =null
S : Z@4,1,1)=6
) =6
@ L Z(4,1,2) =null
Z(4,2,1)=5
Z(4)=6,(5,4) Z(4,2)=5,4 Z(4,2,2)=4
| I =
L Z(4,3) = null Z@4,2,3)=null
A number of implicit null elements could be identified as subelements. In this example implicit null elements are
indicated with broken lines and only one such element is shown for each subdivision.

Redundant parentheses frequently occur in lists. For
example, the list

A=((4+7)* (3+2),6))

can be simplified as follows:
A= ((((11) * (5)),6))
A = (((55), 6))

The pair of parentheses enclosing 55 is redundant, since

(55) and 55 are identical. However, the remaining two
sets of parentheses are not redundant since they specify

the level of the subelements. The use of redundant paren-
theses in lists is permitted in Meta-Symbol.

Reference Syntax. The reference syntax used with nonlinear
value lists is the same as that used with linear value lists,
except that multiple subscripts are used to indicate the
subelement.

In addition to allowing the use of redundant parentheses,
the list-manipulation syntax allows lists to be defined in
terms of elements of other lists or even in terms of elements
of the list itself. For example, if list M is defined as

M= -6,(4,7),3
then another list could be defined as
N(2) SET M(2) making N(2) =4,7
or an entire |list could be defined as
P SET M making P = -6, (4,7),3

Furthermore, elements within a list can be redefined in
terms of list elements:

M SET -6, (4,7),9 making M = -6, (4,7),9
M(1) SET M@2,1) making M=4,(4,7),9
M(2,2) SET M@) making M = 4, (4,9), 9
M(3) SET M(@) making M =4, (4,9), 9
M(3) SET 9 making M =4, (4,9),9

Notice that the last two declarations result in no change in
value for element M(3).

16 Lists

Assume that list R is defined as equal to element A(a) of list
A, that list S is defined as element R(b) of list R, and that
list T is defined as element S(c) of list S. List T will then
be equal to element A(a,b,c) of list A. That is, if

R SET Afa)

and

S SET Rb)
and

T SET S(c)
then

T=A(g,b,c)

Example 12. Defining Nonlinear Value Lists

Assume list A is defined as

A=4,(206)4,1),17

then the following definitions could be made

R SET AQ2) making R = (2,6),4,1
S SET R(1) making S =2,6
T SET S(2) making T=6

The same definition for T could be achieved by writing

T SET A(2,1,2) making T=6

Generation. The definition syntax for nonlinear value
lists is the same as that for linear lists, and either EQU
or SET directives may be used. In Example 13 the effects
of successive SET directives are to be considered cumula-
tive, but not retroactive. Assume that all lists are initially
undefined.

Manipulation. The SET directive may be used to define or
redefine any single element or subelement of a nonlinear
value list. Thename used with the directive is a subscripted
symbol identifying some particular element or subelement,
and the sequence may consist of one or more expressions.

Example 13. Defining Nonlinear Value Lists

Example 13¢ C SET

the entire list A is to be one element of list C.

Example 13d D SET A,B

Example 13e B SET A, (B)

bol(s) on the lefthand side.

E_x_ample 13a A SET (5,6),7
Example 13b B SET 1+2*3,17,AQ,1)

A, (A), A(1), B(2)

Notice that the parentheses enclosing the second element in the definition of C are not redundant. They specify that

In Example 13e, the original elements of list B are used to redefine an element of the list. This is possible because
the assembler evaluates the items on the righthand side of the directive SET before equating them with the sym-

defines A =(5,6),7
thus A(1) =5,6

AR)=7
AB) = null

defines B=7,17

thus B(1)= 7
B(2) =17
B(3) = null

defines C = (5,6),7,((5,6),7),5,6,17

thus C(1)=5,6

Cc@)=7
C@)y=(5,6),7
Ci4)=5
C5)=6
c)=17

defines D = (5,6),7,7,17

thus D(1) =5,6

D(2)=7
D@)=7
D@4)=17

redefines B =(5,6),7,(7,17)

thus B(1) =5, 6
B2)=7
BE)=7,17

In Example 14 the effects of successive SET directives are
to be considered cumulative, but not retroactive. Assume
all lists are initially undefined.

NUMBER OF ELEMENTS IN A LIST

The number of explicit elements (i.e., non-null elements
plus explicit null elements) in a list can be determined
through the use of the intrinsic function NUM. The syntax
for this function is

NUM (hame)

The name specified may be that of a list, of an element, or
of a subelement of a list. In Example 15 the number of

explicit elements is determined for list S and also for each
of its elements and subelements.

If a list is defined as equal tosome given element of another
list, the new list will have the same number of explicitele-
ments as the original list. That is, if

Q SET P(a)
then
NUM(Q) = NUM(P(a))

Example 17 illustrates this point.

Lists 17

Example 14. Manipulating Nonlinear Value Lists

Example 14a A1) SET 1,2,3 defines A = (1,2,3)
thus A(1) =1,2,3 A, =1 AL =N
A2) =null AQ1,2)=2 A(1,1,2) = nul
A(1,3) =3 A(1,2,1)=2
A(2,1) =null A(1,2,2) = nul
A(1,3,1)= 3
AQ,3 2) =nu
Example 14b A(1,1,2) SET 4 defines a previously null element: A(1,1,2) =
making list A =((1,4),2,3)
thus A(1) =(1,4),2,3 A(1,1)=1,4
A@2) =null A(1,2)=2
A(1,3) =3
A(2,1) =null
Example 14c B(1,2) SET A(1,1),(A(1,2),A1,3))
defines B = (null,(1,4,(2,3)))
thus B(1) =null, (1,4,(2,3)) B(1,1) =null
B(2) = null B(1,2)=1,4,(2,3)
Example 14d c(1) SET A(1,2),(A(1,1, 1) defines C = (2, 1)
thus C(1) =2,1 ca,n=2
C(2) =null Cc(1,2)=1
Notice that the parentheses around A(1,1,1) are redundant in this example.
Example 14e B(1,1) SET c(1,2) defines a previously null subelement: B(1,1) =1
thus B 5(11014:(213)))
B(1) =1,(1,4,(2,3)) B(1,1)=1
B(2) =null B(1,2) =1,4,(2,3)
Example 15. NUM Function
S =A,(8,((C,D}))
NUMS) =
S(H=A S(1,N=
NUM@GS (1)) =1 NUMGS(1,1) =1
S(1,2) = null
NUM((1,2)) =0
5(2) =8, ((C, D)y S@2,1)=8 $(2,1,1)=8
NUM(S(2)) =2 NUM(@GS(2,1)) =1 NUM(S(2,1,1)) =1
$(2,1,2) =null
NUM(5(2,1,2)) =0
$(2,2) = (C,D) S2,2,)H)=C,D S(2,2,1,hH=C
NUM(5(2,2)) = 1 NUM(2,2,1)) =2 NUM(5(2,2,1,1)) =1
5(2,2,1,2)=D
NUM(5(2,2,1,2)) =1
$(2,2,1,3) = null
NUM(5(2,2,1,3)) =0
$(2,2,2) =null
NUM(5(2,2,2)) =0
$(2,3) = null
NUM(S(2,3)) =0
S(3) =null

NUMES @) =0

18 Lists

Example 16. NUM Function

Assume list Z is defined as

Y4 SET 3,0:4,,,

thus, NUM(Z) =7
If
Z(4) SET Z(2y

NUM(Z) =7

Note that NUM(Z(2)) =0

List Z consists of seven elements: 3, null, null, 4, null, null, null.

(Note

that the last null element is specified by the final comma in the list.)

That is, the fourth element of Z is redefined as a null element.

List Zwould still consist of seven elements:

null, null.

3, null, null, null, null,

Example 17. NUM Function

Assume list A is defined as

A=4, ((2,6),4,1),17

R SET A(2)
S SET R(1)
T SET S(2)

NUM(A(2)) =3
NUMR) =NUMA@2) =3

If the following definitions are made:

Then the following statements are true:

making A(2) =(2,6,),4,1

making R =(2,6),4, 1
making S =2,6
making T=6

NUM@S) = NUMR®)) = NUM(A(2,1)) =2
NUM(T) = NUM(S(2)) = NUMR(Y, 2))
= NUM(A(2,1,2)) = 1

Lists

19

3. ADDRESSING

Sigma computer addressing techniques require a register
designation and an argument address that may specify in-
dexing and/or indirect addressing. The programmer may
write addresses in symbolic form, and the assembler will
convert them to the proper equivalents.

RELATIVE ADDRESSING

Relative addressing is the technique of addressing instruc-
tions and storage areas by designating their locations in
relation to other locations. This is accomplished by using
symbolic rather than numeric designations for addresses.
An instruction may be given a symbolic label such as
LOOP, and the programmer can refer to that instruction
anywhere in his program by using the symbol LOOP in the
argument field of another instruction. To reference the
instruction following LOOP, he can write LOOP+1;
similarly, to reference the instruction preceding LOOP, he
can write LOOP-1.

An address may be given as relative to the location of the
current instruction even though the instruction being ref-
erenced is not labeled. The execution location counter,
described later in this chapter, always indicates the loca-
tion of the current instruction and may be referenced by
the symbol $. Thus, the construct $+8 specifiesanaddress
eight units greater than the current address, and the con-
struct $-4 specifies an address four units less than the cur-
rent address.

ADDRESSING FUNCTIONS

Intrinsic functions are functions built into the assembler.
Certain of these functions concerned with address resolution
are discussed here. Literals were discussed in Chapter 2,
and other intrinsic functions are explained in Chapter 5.

Intrinsic functions, including those concerned with address
resolution, may or may not require arguments. When an
argument is required for an intrinsic function, it is always
enclosed in parentheses

A symbol whose value is an address has an intrinsic address
resolution assigned at the time the symbol is defined. Usu-
ally this intrinsic resolution is the resolution currently ap-
plicable to the execution location counter. Theaddressing
functions BA, HA, WA, and DA (explained later)allow the
programmer to specify explicitly a different intrinsic address
resolution than the one currently in effect.

Certain address resolution functions are applied uncondi-
tionally to an address field after it is evaluated. The choice
of functions depends on the instruction involved. For in-
structions that require values rather than addresses (e.g.,

LI, M1, DATA), no final addressing function is applied.

For instructions that require word addresses {e.g., LW, STW,
LB, STB, LH, LD), word address resolution isapplied. Thus,

20 Addressing

the assembler evaluates LW, 3 ADDREXP as if it were
LW, 3 WA(ADDREXP). Similarly, instructions that require
byte addressing (e.g., MBS) cause a final byte addressing
resolution to be applied to the address field.

More information on address resolution is given after the
explanation of intrinsic addressing functions, which follows.

$,§8 Location Counters

The symbols $ (current value of execution location counter)
and $% (current value of load location counter) indicate that
the current value of the appropriate location counter is to
be generated for the field in which the symbol appears.

The current address resolution of the counter is also applied
to the generated field. This resolution may be changed by

the use of an addressing function.

Example 18. $, $$ Functions

A EQU $ Equates A to the current value
of the execution location

. counfer.

4 EQU $$ Equates Z to the current volue
. of the load location counter.

TEST BCS,3 $+2 Branches to the location speci-
fied by the current execution
location counter +2 if the
condition code and value 3

. compare 1's anyplace.

BA Byte Address
The byte address function has the format
BA(address expression)
where BA identifies the function, and address éxpression is
the symbol or expression that is to have byte address resolu-

tion when assembled. If address expression is a constant,
the value returned is the constant itself.

Example 19. BA Function

Z LI, 3 BA(L(48)) The value 48 is stored in the
literal table and its location
is assembled into this argu-

ment field as a byte address.

AA LI,5 BA(9) The current execution loca-
tion counter address is evalu-
ated as a byte address for this

. staternent,

HA Halfword Address

The halfword address function has the format

HA(address expression)
where HA identifies the function, and address expression
is the symbol or expression that is to have halfword address
resolution. If address expression is a constant, the value

returned is the constant itself.

Example 20. HA Function

z CSECT Declares control section Z.
Both location counters are
initialized to zero. Z is im-
plicitly defined as a word

resolution address.

Q EQU HA(Z+4) Equates Q to a halfword ad-
. dress of Z+4 (words).

'WA Word Address
The word address function has the format
WA (address expression)

where WA identifies the function, and address expression
is the symbol or expression that is to have word address
resolution when assembled. If acddress expression is a con-
stant, the value returned is the constant itself.

Example 21. WA Function

A ASECT Declares absolute section A
and sets its location counters
to zero.

LW, 3 Z1 Assembles instruction to be

stored in location 0.

Assigns the symbol B the
value 1, with word address
. resolution.

C EQU BA(B) Equates C to the value of B
. with byte address resolution.

F EQU WA(C) Equates F to the value of C,

with word address resolution.

/DA Doubleword Address
The doubleword address function has the format
DA(address expression)

where DA identifies the function, and address expression is
the symbol or expression that is to have doubleword address
resolution when assembled. If address expression is a con-
stant, the value returned is the constant itself.

Example 22. DA Function

LI, 5 DA(L(ALPHA)) The symbol ALPHA is stored
in the literal table and its
location is assembled into this
statement as a doubleword
address.

ABSVAL Absolute Value

This function converts a relocatable address into an absolute
value (viz., address expression minus relocation bias). It
has the format

ABSVAL(address expression)

where ABSVAL identifies the function, and address expres~
sion is any valid expression containing only addresses and
integers combined by addition or subtraction (no external
or local forward references). B

The absolute value of an address is evaluated according to
the resolution; thus, the absolute value of a relocatable
address, evaluated with word resolution, would resultin a
17-bit address (the two bits specifying byte and halfword
boundaries would be ignored). The absolute value of an
external reference, a blank field, a null field, an integer,
a character string, etc., is the same configuration as the
item itself; e.g., ABSVAL('AXY") is the value 'AXY"'.

Example 23. ABSVAL Function

Q CSECT 0 Declares control section
Q and sets location

counters to zero.

R EQU $+5 Equates R to the current value
of the execution location
counter plus 5 (i.e., to the
value 5 evaluated with

word resolution).

Addressing Functions 21

LI, 2 ABSVAL(R) Loads register 2 with
ABSVAL(R), which
is the value 5.

212|2(0(0|0|0|5

o] 3

LI, 2 ABSVAL(BA(R))

ADDRESS RESOLUTION

To the assembler an address represents an offset from the
beginning of the program section in which it is defined.

Consequently, the assembler maintains in its symbol table
not only the offset value, but an indicator that specifies
whether the offset value represents bytes, words, halfwords,
or doublewords. This indicator is called the "address
resolution”.

Example 24. Address Resolution

Address resolution is determined at the time a symbolic ad-
dress is defined, in one of two ways:

1. Explicitly, by specifying an addressing function.

2. Implicitly, by using the address resolution of the exe-
cution location counter. (The resolution of the execu-
tion location counter is set by the ORG or LOC direc-
tives. If neither is specified, the address resolution
is word.)

The resolution of a symbolic address affects the arithmetic

performed on it. If A is the address of the leftmost byte of
the fifth word, defined with word resolution, then the ex-
pression A + 1 has the value 6 (5 words + 1 word). If A is

defined with byte resolution, then the same expression has
the value 21 (20 bytes + 1 byte). See Example 24.

Forward and external references with addends are considered
to be of word resolution when used without a resolution
function in a generative statement or in an expression.
Thus, a forward or external reference of the form

reference + 2

is implicitly

WA (reference +2)

Generated
Location Code
CSECT
00000 - ORG 0 Sets value of location counters to zero with
word resolution.
00000 FFFB A GEN, 16 -5 Defines A as 0 with word resolution.
00000 2 0004 B GEN, 16 4 Defines B as O with word resolution.
00001 0000 GEN, 16 BA(A) Generates 0 with byte resolution.
00001 2 0002 GEN, 16 BA(B) Generates 2 with byte resolution.
00002 0001 "GEN, 16 HA(B) Generates 1 with halfword resolution.
00002 2 ORG, 1 $ Sets value of location counters fo 10 with
byte resolution.
00002 2 FFFF F GEN, 16 -1 Defines F as 10 with byte resolution.
00003 000A GEN, 16 F Generates 10 with byte resolution.
00003 2 0008 GEN, 16 F+1 Generates 11 with byte resolution.
00004 0002 GEN, 16 WA(F) Generates 2 with word resolution.
00004 2 0002 GEN, 16 WA(F+1) Generates 2 with word resolution.
00005 0008 GEN, 16 BA(WA(F+1)) Generates 8 with byte resolution.
00005 2 0003 GEN, 16 WA(F)+1 Generates 3 with word resolution.
00006 000C GEN,16 BA(WA(F)+) Generates 12 with byte resolution.
00006 2 000D GEN, 16 BAWA(F)+1)+1 Generates 13 with byte resolution.

22 Address Resolution

LOCATION COUNTERS

A location counter is a memory cell the assembler uses to
record the storage location it assigned last and, thus, what
location it should assign next. Each program has two loca-
tion counters associated with it during assembly: the load
location counter (referenced symbolically as $$) and the
execution location counter (referenced symbolically as $).
The load location counter contains a location value relative
to the origin of the source program. The execution location
counter contains a location value relative to the source pro-
gram's execution base.

Essentially, the load location counter provides information
to the loader that enables it to load a program or subprogram
into a desired area of memory. The execution location
counter, on the other hand, is used by the assembler to de-
rive the addresses for the instructions being assembled. To
express it another way, the execution location counter is
used in computing the locations and addresses within the
program, and the load location counter is used in computing
the storage locations where the program will be loaded prior
to execution.

In the "normal" case both counters are stepped together as
each instruction is assembled, and both contain the same
location value. However, the ORG and LOC directives
make it possible to set the two counters to different initial
values to handle a variety of programming situations. The
load location counter is a facility that enables systems
programmers to assemble a program that must be executed
in a certain area of core memory, load it into a different
area of core, and then, when the program is tobe executed,
move it to the proper area of memory without altering any
addresses. For example, assume that a program provides a
choice of four different output routines: one each for paper
tape, magnetic tape, punched cards, or line printer. In
order to execute properly, the program must be stored in
core as follows:

variable
A
To be used for data
» storage during pro-
gram execution.
P
2FFF Qutput routine
1FFF Main program
0000

Each of the four output routines would be assembled with
the same initial execution location counter value of 1FFF
but different load location counter values. At run time

thiswould enable all the routines to be loaded as follows:

variable
3
To be used for data
Line printer routine A storage during pro-
o Punched card routine gram execution.
4FFF une
3FFF Paper tape routine
Magnetic tape routine
2FFF } Executionarea for
output routine.
Main program
0000

When the main program has determined which output routine
is to be used, during program execution, it moves the rou-
tine to the execution area. No address modification to the
routine is re~ruired since all routines were originally assem-
bled to be executed in that area. If the punched card out-
put routine were selected, storage would appear as:

variable 3

SFFF Line printer routine ? Data storage.

4FFF Punched card routine

3FFF Paper tape routine

2FFF :Aagne”c ope rou.“ne] Executionarea for

1FFF unched card routine] output routine.
Main program

0000

The user should not assume from this example that the exe-
cution location counter must be controlled in the manner
indicated in order for a program to be relocated. By
properly controlling the loader and furnishing it with a
"“relocation bias", any Meta=-Symbol program, unless the pro-
grammer specifies otherwise, can berelocated into a memory
area different than the one for which it was assembled.
Most relocatable programs are assembled relative to location
zero. To assemble aprogramrelative to some other location,
the programmer should use an ORG directive to designate the
program origin. This directive sets both location counters
to the same value. More information on program sectioning
and relocatability is given at the end of this chapter.

Location Counters 23

Each location counter is a 19-bit value that the assembler
uses to construct byte, halfword, word, and doubleword
addresses:

0 1 2 314 5 6 718 9 10 11112 13 4 15118 17 18 20 21 22 13124 25 26 27128 2 30 3

~«——doubleword ————— =

- word —————

-~ halfword ——M8—=

byte

Thus, if o location counter contained the value

SETTING THE LOCATION COUNTERS

At the beginning of an assembly, Meta-Symbol automati-
cally sets the value of both location counters to zero. The
user can reset the location values for these counters during
an assembly with the ORG and LOC directives. The ORG
directive sets the value of both location counters. The
LOC directive sets the value of only the execution loca-
tion counter.

ORG Set Program Origin

The ORG directive sets both location counters to the loca-
tion specified. This directive has the form

OOOOOOOOIOOHOOIOOII

0 1 2 3Ta 56 7F8 9 1w nil12 1314 150116 17 18 19120 21 22 23124 25 26 27128 29 30 31

it could be evaluated as follows:

Hexadecimal
Resolution Value
Byte 193
Halfword c9
Word 64

Doubleword 32

The address resolution option of the ORG and LOC direc-
tives allows the programmer to specify the intrinsic resolu-
tion of the location counters. Word resolution is used as
the intrinsic resolution if no specification is given. Address
functions, as previously sxplained, are provided to override
this resolution.

Example 25. ORG Directive

label command argument
[label, ..., labeln] ORG[,n] [iocation]
where
label; are any valid symbols. Use of a label is op-

tional. When present, it is defined as the value
"location" and is associated with the first byte of
storage following the ORG directive.

n is an evaluatable, integer-valued expression
whose value is 1, 2, 4, or 8, specifying the address
resolution for both counters as byte, halfword,
word, or doubleword, respectively. [f n is
omitted, word resolution is assumed.

location is an evaluatable expression that results in
an address or an integer. If location is an address,
all attributes of location are substituted for $ and
$$, and the intrinsic resolution of $ and $$ are then
set to n. If location is an integer, $ and $$ re-
main in the current control section, but their value
is set to "location" units at "n" resolution (see Ex-
ample 25). If location is omitted, integer O is
assumed.

The address resolution option of ORG may be used to change
the intrinsic resolution specification to byte, halfword, or
doubleword resolution. Thereafter, whenever intrinsic reso~
lution is applicable, it will be that designated by the most
recently encountered ORG directive. For example, when-
ever $ or $$ is encountered, the values they represent are
expressed according to the currently applicable intrinsic
resolution.

.
.

AA ORG,2 8

Lw, 2 INDEX

Sets the location counters to 8 halfwords (i.e., 4 words) and assigns that location,
with halfword intrinsic resolution, to the label AA.

This instruction is assembled to be loaded into the location defined as AA. Thus, the
effect is the same as if the ORG directive had not been labeled and the label AA had
been written with the LW instruction.

24 Setting the Location Counters

Example 26. ORG Directive

A LW, 4 ANY

LI, 4 BA(ANY)

.

Assembles the symbol ANY as a byte address.

z CSECT Designates section Z and sets the location counters to zero,

ORG Z+4 Sets the location counters to Z + 4 with word resolution.

Assembles ANY with word resolution, and defines A with word resolution.

MBS, 0 B Forces a byte address. The type of address required by the command overrides the
intrinsic resolution of the symbol.

LOC Set Program Execution

The LOC directive sets the execution location counter ($)
to the location specified. It has the form

label command argument
[label o Iabeln] Loc [,n] Mocation]
where
label; are any valid symbols. Use of a label is op-

tional. When present, it is defined as the value
of location and is associated with the first byte of
storage following the LOC directive.

n is an evaluatable, integer-valued expression
whose value is 1, 2, 4, or 8, specifying the address
resolution for the execution location counter as
byte, halfword, word, or doubleword, respectively .
If n is omitted, word resolution is assumed.

location is an evaluatable expression that results
in an address or an integer. If location is an ad-
dress, all attributes of location are substituted for
$, and the intrinsic resolution of $ is then set
to n. If location is an integer, $ remains in the
current control section, but its value is set to
"location" units at "n" resolution (see Example 25).
If location is omitted, integer O is assumed.

Except that it sets only the execution location counter, the
LOC directive is the same as ORG.

Example 27. LOC Directive

PDQ

.
.

ASECT
ORG

LOC

100 Sets the execution location

counter and load location
counter to 100.

1000 Sets the execution location

counter to 1000, The load
location counter remains at

100.

Subsequent instructions will be assembled so that the object
program can be loaded anywhere in core relative to the
original of the program. For example, a relocationbias
of 500 will cause the loader to load the program at 600
(500 + 100). However, the programwill execute prop-
erly only after it has been moved to location 1000.

The BOUND directive advances both location counters, if

Advance Location Counters to Boundary

necessary, so that the execution location counter is a byte

multiple of the boundary designated. The form of thisdi-

rective is

label

command

argument

BOUND

boundary

where boundary may be any evaluatable expression resulting
in a positive integer value that is a power of 2.

Setting the Location Counters

25

Halfword addresses are multiples of two bytes, full-word
addresses are multiples of four bytes, and doubleword ad-
dresses are multiples of eight bytes.

When the BOUND directive is processed, the execution
location counter is advanced to a byte multiple of the
boundary designated and then the load location counter is
advanced the same number of bytes. When the BOUND
directive results in the location counters being advanced,
zeros are generated in the byte positions skipped. Since
BOUND may generate data, it should never be used in de-
claring a blank common section for linkage with FORTRAN
programs (F4:COM DSECT).

Example 28. BOUND Directive

BOUND 8 Sets the execution location
counter to the next higher
multiple of 8 if it is not al-

ready at such a value.

For instance, the value of the execution location coun-
ter for the current section might be 3 words (12 bytes).
This directive would advance the counter to 4

(16 bytes), which would allow word and doubleword,
as well as byte and halfword, addressing.

RES Reserve an Area

The RES directive enables the user to reserve an area of
core memory .

label command argument
[labely, ..., label] RES[,n] [expression]
where
label; are any valid symbols. Use of a label is op-
i Y Y P

tional. When present, the label is defined as the
current value of the execution location counter
and identifies the first byte of the reserved area.

n is an evaluatable, integer-valued expression des-
ignating the size in bytes of the units to be re-
served. The value of n must be non-negative.

Use of n is optiornl; if omitted, its value is as-
sumed to be four bytes.

Example 29. RES Directive

expression is an evaluatable, integer-valued ex-
pression designating the number of units to be
reserved. Its value may be positive or negative.
If expression is omitted, zero is assumed.

When Meta-Symbol encounters an RES directive, it modi-
fies both location counters by the specified number of units,

PROGRAM SECTIONS

An object program may be divided into program sections,
which are groups of statements that usually have a logical
association. For example, a programmer may specify one
program section for the main program, one for data, and one
for subroutines.

PROGRAM SECTION DIRECTIVES

A program section is declared by use of one of the program
section directives given below. These directives also
declare whether a section is absolute or relocatable. The
list gives only a brief definition of these directives; their
use will be made clear by successive statements and ex-
amples in this chapter.

ee . .
ASECT specifies that generative statements’ will be as-
sembled to be loaded into absolute locations.
The location counters are set to absolute zero.

CSECT declares a new control section (relocatable).
Generative statements will be assembled to be
loaded into this relocatable section. The loca~-
tion counters are set to relocatable zero.

DSECT declares a new, dummy control section (relocat-
able). Generative statements will be assembled
to be loaded into this relocatable section. The
location counters are set to relocatable zero.

t . .
Generative statements are those that produce object code
in the assembled program.

ORG 100

Sets location counters to 100.

A RES,4 10
changing them to 110.

LW, 4 VALUE

Defines symbol A as location 100 and advances the location counters by 40 bytes (10 words)

Assigns this instruction the current value of the location counters; i.e., 110.

26 Program Sections

PSECT

USECT

The program section directives have the following form:

declares a new control section (relocatable)
which will begin on a multiple of 512(20014)
words. Generative statements will be assembled

to be loaded into this relocatable section.

location counters are set to relocatable zero.
PSECT differs from CSECT only in that the loader
will align a PSECT section on a page (512-word)

boundary .

designates which previously declared section
Meta-Symbol is to use in assembling generative

statements.

label

command

argument

(labety, ..

./ label] ASECT

[lobell, ..

./ labet,,] CSECT

[expression]

label

DSECT

[expression])

[labely, ..

., label,] PSECT

[expression)

(label, ..

., label,] USECT

name

where

label;

expression

programs.

is any valid symbol. The labels are assigned
the value of the execution location counter imme-
diately after the directive has been processed. For
ASECT, the value of the label becomes absolute
zero. For CSECT, DSECT, and PSECT, the label
value becomes relocatable zero in the appropriate !
program section. The label on a USECT directive
is defined as the value of the execution location
counter in the current control section.
on ASECT, CSECT, PSECT, and USECT may be ex-
ternalized by appearing in a DEF directive so that
the label can be referred to by other programs.

For DSECT, label is implicitly an external defini-
tion, because dummy sections are typically used

in order that they can be referred to by other

is an evaluatable, integer-valued expres-
sion whose value must be from 0 to 3. This value,
applicable only to CSECT, DSECT, and PSECT,
designates the type of memory protection to be
applied to these sections. In the following list,
"read" maans a program can obtain information
from the protected section; "write" means a pro-
gram can store information into a protected sec-
tion; and "access" means the computer can execute

instructions stored in the protected section.

Value Memory Protection Feature
0 read, write, and access permitted
1 read and access permitted

The label

Value Memory Protection Feature

2 read only permitted

3 no access, read, or write permitted

The use of expression is optional. When it is
omitted, the assembler assumes the value O for the
entry. It may not contain an external reference.

name is the label defined in a previously declared
section.

ABSOLUTE SECTION

Although ASECT may be used any number of times, the
assembler produces only one combined absolute section,
using the successive specifications of the ASECT directives.

RELOCATABLE CONTROL SECTIONS

A single assembly may contain from one to 127 relocatable
control sections, which Meta=Symbol numbers sequentially.
At the beginning of each assembly Meta-Symbo! sets both
the execution and load location counters to relocatable
zero, with word address resolution, in relocatable control
section 1. Control section 1 is opened by generating values
in, or referencing or manipulating the initial location

‘counters, or by declaring the first CSECT, DSECT, or PSECT

directive.

The execution of a CSECT, DSECT, or PSECT directive
always opens a new section. Therefore, if control section 1
has been opened by generating values in, or referencing or
manipulating the initial location counters, the first CSECT,
DSECT, or PSECT opens control section 2. For example,
these three program segments

DATA 5 DEF SORT ORG 500

CSECT HERE EQU $ CSECT

and CSECT and

END . END
éND

each produce two relocatable control sections, one implicit
(control section 1), and one explicit (control section 2);
whereas

VALUE EQU 5 INPUT CNAME
REF OuTPUT PROC
CSECT and
. : ‘ PEND
I.END (.:SECT
éND

each contains only one relocatable section (control section 1).
The statements preceding the CSECT do not open control
section 1 because they do not generate values in, or refer-
ence or manipulate the initial location counters,

Program Sections 27

SAVING AND RESETTING THE LOCATION COUNTERS

Since there is only one pair of location counters, Meta-
Symbol does the following when a new section is declared
(ASECT, CSECT, DSECT, or PSECT) (see Example 30):

1. Saves the current value of the execution location

counter ($) in the SAVED $ TABLE.

2. Compares the value of the load location counter ($%$)
with the value previously saved for the section in the
SAVED MAXIMUM $$ TABLE, if assembling a relocat-
able control section, and saves the higher valuve.

The control section to which the saved values are associated
is determined from the location counters. The counters
have the format:

Execution Location Counter

RS | Cs# ADDR VALUE

Load Location Counter

RS | cs# ADDR VALUE

where

RS specifies the resolution (BA, HA, WA, DA).

cst specifies the control section number and the
type of section (0 = absolute, X'1' — X'7F'

= relocatable).

Example 30. Program Sectioning

ADDR
VALUE

After Meta-Symbol has saved the value of the execution lo-
cation with the value in the SAVED MAX. $$ TABLE, it re-

sets both location counters to zero inthe new control section.

specifies that the value is an address.

is the value of the counter for the section.

RETURNING TO A PREVIOUS SECTION

A programmer may write a group of statements for one sec-
tion, declare a second section containing various state-
ments, and then write additional statements to be assembled
.as part of the first section. This capability is provided by
‘the following:

1. The SAVED $ TABLE, which contains the most recent value
of the execution location counter for each section.

2. The symbol table entry, which specifies a control sec-
tion number for symbols defined as addresses. The
entry has the same format as the location counters.

RS | cs# ADDR VALUE

where

RS specifies the resolution (BA, HA, WA, DA).

cst indicates the control section in which the
label is defined (0 = absolute, X'1' — X'7F'

=relocatable).

Current Location Counters

Program

$ Section $$

Section

SAVED § SAVED MAX. $%

ABS Cs1 CS2 Cs1 (&Y

0 ABS 0
300
350

0 CSt 0 CS1 RANDOM CSECT

100
0 Cs2 0

. .

ABS NUMBERS ASECT

ORG

CS2 DUMMY DSECT

200 200 END

300

350

100 100

200

loader in allocating memory.

The ASECT directive sets both location counters to absolute zero; the ORG statement resets the counters to 300.
quent generative statements will be assembled to be loaded into absolute locations. When CSECT is encountered, Meta-
Symbol saves the value of the execution location counter in the SAVED § TABLE. The value of the load location counter
is not saved. Meta-Symbol then resets the counters to relocatable zero in control section 1 and assembles generative
statements to be loaded as part of this section. The DSECT directive declares a new relocatable section. Meta=Symbol
saves the counters for control section 1 in the appropriate tables, resets the counters to relocatable zero in control section 2,
and assembles generative statements to be loaded in this section. The END directive causes Meta-Symbol to save the
value of the load location counter for control sectiori 2. The values in the SAVED MAX, $$ TABLE are used by the
Note that the use of ORG (and LOC) when it changes the current section also causes the
current value of the execution location counter to be saved. Additionally, ORG compares the current value of the load

Subse-

28 Program Sections

location counter with the value in the SAVED MAX. $$ TABLE and saves the higher value.

ADDR

VALUE

specifies that the value is an address.

is the assigned symbol value.

3. The USECT directive (see Examples 31 through 34),
which specifies a previously declared section that

Example 31. USECT Directive

Meta=Symbol is to use in assembling generative
statements,

There is only one absolute section and although ASECT may
be used any number of times, the SAVED $ value of the
absolute section is always that of the last designated ASECT.,

WA

1

ADDR

10

checks the SAVED $ TABLE FOR CS1, and copies this saved value (100) into both location counters.

Current Location Counters P SAVED $ SAVED MAX. $%
rogram
$ Section $$ Section ABS CS1 CS2 (o] CS2
0 Cs1 0 CS1 PSECT 0
10 10 TRAP
100 100 LAST
0 Cs2 0 Cs2 DSECT 100 100
200 200 .
100 | CSI 100 Csi USECT TRAP 200 200
END
When USECT TRAP is encountered, Meta-Symbol determines the control section from one symbol table entry for TRAP,

Example 32. USECT Directive
Current Location Counters P SAVED $ SAVED MAX. $$%
rogram
$ Section $$ Section ABS CS1 CS2 CS1 CS2
0 ABS 0 ABS ASECT 0
500 500 ORG 500
520 520 TABLE DATA 6
600 600 :
0 CSt 0 Csi CSECT 600
100 100 .
0 ABS 0 ABS ASECT 0 100 100
700 700 ORG 700
800 800 .
0 CS2 0 CS2 CSECT 800
200 200 :
800 | ABS 800 ABS USECT TABLE 200 200
When USECT TABLE is encountered, Meta-Symbol determines the control section from the symbol table entry for TABLE,
WA 0 ADDR - 520

checks the SAVED $ TABLE for the absolute section, and copies this saved value (800) into both location counters.

Program Sections

29

Example 33. Program Sectioning

Current Location Counters Program SAVED $ SAVED MAX. $$
$ Section $$ Section ABS CS1 CS2 CS1 CS2
0 CS1 0 cs1 CSECT 0
1000 | CS1 0 Cs1 FILE LOC 1000
1100 | CS1 100 CSi LAST :
0 CS2 0 Cs2 CSECT 1100 100
200 | CS2 200 CS2 :
1100 | CS1 1100 | CS1 USECT FILE 200 200
1200 | CS1 1200 | CS1 :
0 ABS 0 ABS ;.ASECT 1200 1200

The LOC directive advances only the execution location counter. When USECT FILE is encountered, Meta-Symbol sets
both counters to the value of the saved execution location counter for CS1 (1100). The ASECT directive causes Meta-
Symbol to save the value of the execution location counter for CS1and toreplace the SAVED MAX. $$ value (100) with 1200.

Example 34. Program Sectioning

Current Location Counters Program SAVED $ SAVED MAX. $%
$ Section $$ Section ABS Cs1 CSs2 CS1 CSs2
0 ABS 0 ABS CALL ASECT 0
100 | ABS 100 | ABS (;)RG 100
200 200 MAIN I._W,4 6
0 Cst 0 Cs1 (;SECT 200
50 50 HERE EQU $
100 100
0 Cs2 0 Cs2 CSECT 100 100
FF CS2 FF CS2 :

50 Cs1 100 | CS2 LOC HERE 100

300 | CSi 350 | Cs2 _

200 | ABS 200 | ABS USECT MAIN 300 350
400 400 :

300 |Cst 300 | Csi1 USECT HERE | 400

500 500 :

400 | ABS 400 | ABS USECT CALL 500 500

The statement HERE EQU $ defines HERE as the current value of the execution location counter (50). When the LOC
HERE statement in CS2 is encountered, Meta-Symbol sets the value of the execution location counter to 50 in CS1. Sub-
sequent statements will be assembled to be executed as part of CS1 but will be loaded as part of C52. The USECT MAIN
statement saves the value of the execution location counter for CS1 and the value of the load location counter for CS2,
The USECT HERE statement causes the counters to be set to the saved value of the execution location counter for CS(300).

30 Program Sections

DUMMY SECTIONS

Even though more than one of the subroutines may be
required in one load module, the loader will load the dummy

In any load module, dummy sections of the same name must section only once, and any of the subroutines may reference
be the same size and have the same memory protection. the data.

(The restriction on the size of dummy sections of the same

name is only enforced by certain Xerox loaders; otherwise,

the largest is used.) Dummy sections provide a means by

which more than one subroutine may load the same section.

For example, assume that three subroutines contain the

same dummy constant section:
SUBR 1 SUBR 2

CONST DSECT CONST DSECT CONST DSECT

END

Example 35. Program Sections and Literals

END

SUBR 3 PROGRAM SECTIONS AND LITERALS

When Meta-Symbol encounters the END statement, it gen-
erates all literals declared in the assembly. The literals

. are generated at the current location (word boundary) of
END the currently active program section (see Example 35).

Example 35a:
AREA CSECT

BAY CSECT
END
Example 35B:

GATE CSECT

ASECT
ORG
END

Example 35c:
REAL CSECT

LAST RES

LOOP CSECT
USECT
END

Example 35d:
NOW DSECT

HERE RES

ORG
END

100

REAL

HERE

Declares literals.

Declares literals.

Generates |iterals as part of section BAY.

Declares literals.

Generates literals beginning in absolute location 100.

Declares literals.

Declares literals.

Generates literals as part of section REAL immediately following the location
assigned to LAST.

Declares literals.
Declares literals.

Generates literals as part of section NOW, beginning at location HERE.

Program Sections 31

4. DIRECTIVES

A directive is a command to the assembler that can be The Meta-Symbol language includes these directives:
combined with other language elements to form statements.

Directive statements, like instruction statements, have four

fields: label, command, argument, and comments. Assembly Control

t

{
An entry in the label field is required for the directives: ASECT LOC DOI

CNAME, COM, FNAME, and S:SIN. The label field t t

entries identify the generated command or procedure. The CSECT BOUND po

location counters are not altered by these directives. psect RES' WHILE

Optional labels for the EQU and SET directives are defined PSECTt SYSTEM ELSE

as the value of the evaluated argument field, which may be '

a single value or a list of values. USECT END FIN
orG' GOTO

Optional labels for the directives ORG and LOC are de-
fined as the value to which the execution location counter

is set by the directive.
is set by the directive Symbol Manipulation

If any of the directives DATA, GEN, RES, TEXT, or TEXTC EQU OPEN REF
are labeled, the label(s) is defined as the current value of

the execution location counter, and identifies the first byte SET CLOSE SREF
of the area generated. These directives alter the location

counters according to the contents of the argument field. LOCAL DEF

Labels for the directives ASECT, CSECT, DSECT, PSECT,

USECT, and DO1 identify the first word of the area af- Data Generation

fected by the directive. A label field is required for

DSECT. GEN TEXT SOCW
A label for the END directive identifies the location imme- COM TEXTC

diately following the last literal generated in the literal

table. This is explained further under the END directive DATA S:SIN

in this chapter.

A label(s) on the following directives will be ignored unless M

it is the target label of a GOTO search: BOUND, CDISP,

CLOSE, DEF, DISP, ELSE, ERROR, FDISP, FIN, GOTO, PAGE PCC DISP
LIST, LOCAL, OPEN, PAGE, PCC, PEND, PROC, PSR, "
PSYS, REF, S:RELP, SOCW, SPACE, SREF, SYSTEM, TITLE. SPACE PSR CDISP

. tt
Labels for the DO and WHILE directives are handled in a TITLE ERROR FDISP
special manner explained later. LIST PSYS

The command field entry is the directive itself. If this field
consists of more than one subfield, the directive must be in

the first subfield, followed by the other required entries. Procedure Control (These directives are described in

Chapter 5.)
Argum\f fifald entries vary orjd are defined in the indivi- CNAME PROC S:RELP
dual discussion of each directive.

FNAME PEND

A comments field entry is optional.

The END, LOCAL, OPEN, and CLOSE directives are the
only directives unconditionally executed. They are pro-

cessed even if they appear within the range of a GOTO "
search or an inactive DO~loop. Discussed in Chapter 5.

"Discussed in Chapter 3.

32 Directives

In the format diagrams for the variousdirectives that follow,
brackets indicate optional items,

ASSEMBLY CONTROL

SYSTEM Include System File

SYSTEM directs the assembler to retrieve the indicated file
from the system storage medium, and to include it in the
program being assembled. The SYSTEM directive has the
form

label command argument

SYSTEM name

where name iseither an actual file name (less than 32 char-
acters), or one of the special instruction set names discussed
below. Whenanactual file name is specified, Meta=Symbol
reads the file from the appropriate account (see the AC
option, Chapter 7) and inserts it at that point in the source
program. The file is considered to be terminated when an
END directive (discussed below) is encountered.

Any number of SYSTEM directives may be included in a

program. System files may contain additional SYSTEM di-
rectives, allowing a structured hierarchy of library source

files. Meta-Symbol does not protect against circular or
repetitive calls for the same system,

Definitions of the Sigma machine instructions are contained
in the system file, SIG7FDP. This file is invoked, not by
name, but by one of the mnemonics for a particular instruc-
tion subset, as listed below. When a valid subset of
SIG7FDP is specified, Meta-Symbol assigns an identifying
value to the intrinsic symbol, S:IVAL, which is available
to the SIG7FDP file, as well as to the main program, It
then processes the file as described above.

The valid instruction set mnemonics, their meaning, and
the corresponding values of S:IVAL are as shown in Table 5.

Table 5. Valid Instruction Set Mnemonics

Name Instruction Set S:IVAL

SIGY Basic Sigma 9. X'1E

SIG9P Sigma 9 with Privileged X'TF!
Instructions.

SIG8 Basic Sigma 8 xXc

S1IG8P Sigma 8 with Privileged X'1D!
Instructions.

SIG7 Basic Sigma 7. X'08'

SIG7F Sigma 7 with Floating- X'ocC!
Point Option, :

SIG7D Sigma 7 with Decimal X'0A!
Option.

Table 5. Valid Instruction Set Mnemonics (cont.)

Name Instruction Set. S:IVAL

SIG7P Sigma 7 with Privileged X'09’
Instructions.

SIG7FD Sigma 7 with Floating-Point X'0E!

[and Decimal Option,

SIG7FP Sigma 7 with Floating-Point X'oD!
Option and Privileged
Instructions.

SIG7DP Sigma 7 with Decimal Option X'0B’
and Privileged Instructions.

SIG7FDP Sigma 7 with Floating=Point, X'OF'
Decimal Option, and
Privileged Instructions.

SIG6 Basic Sigma 6. X'0A'

SIG6F Sigma 6 with Floating-Point X'0E'
Option.

SIG6P Sigma 6 with Privileged X'0B’
Instructions.

SIG6FP Sigma 6 with Floating-Point X'OF'
Option and Privileged
Instructions.

SIGS Basic Sigma 5. X'00'

SIG5F Sigma 5 with Floating=Point X'04'
Option.

SIG5P Sigma 5 with Privileged X'o1'
Instructions.

SIG5FP Sigma 5 with Floating-Point X'05'
Option and Privileged
Instructions,

Example 36. SYSTEM Directive

SYSTEM

SYSTEM

SI1G7

SQRT

Assume a square root subroutine, identified as SQRT,
is on the system storage media and that it is to be
assémbled as part of the object program.
uses the basic instruction set.
appear in the source program:

The program
These directives would

Assembly Control

33

END End Assembly

The END directive terminates the assembly of a system
called by the SYSTEM directive as well as the assembly of
the main program. 1t has the form

label command argument
(labely, ..., label,] END [expression]
where
label; are one or more valid symbols, When pres-

ent, the label or labels are assigned (i.e., as-
sociated with) the location immediately following
the last location in the literal table.

expression is an optional expression that designates
a location to be transferred to after the program
has been loaded. "expression" may be external.

As explained under "Program Sections and Literals" af the
end of Chapter 3, Meta-Symbol generates all literals de-
clared in the assembly as soon as it encounters the END
'statement. The literals are generated in the location im-
mediately following the currently active program section
(see Example 35). If the END directive is labeled, the
label or labels are associated with the first location im-
mediately following the literal table. Thus, in Example 35¢c,
a label on the END statement would be associated with the
same location identified as LOOP, the first location in
control section 2.

END is processed even if it appears within the range of a
GOTO search or an inactive DO-loop.

Example 37. END Directive

SYSTEM SIG7
CONTROL CSECT

START LW, 5 TEST

END START
11113 Iteration Control

The DOT1 directive defines the beginning of a single state-
ment assembly iteration loop. It has the form

label command argument
(labely, ..., label] DOl [expression]
where
label; are one or more valid symbols. Use of labels

is optional . When present, they are defined as the
current value of the execution location counter
and identify the first byte generated as a result
of DOI1 iteration.

34 Assembly Control

expression is an evaluatable, integer-valued ex-
pression that represents the number of times the
line immediately following is to be assembled,
There is no limit to the number of times the line
may be assembled. If the expression is omitted
or negative, zero is assumed.

If the expression in the DO1 directive is not evaluatable,
Meta=-Symbol produces an error notification, and processes
the DOI directive as if the expression had been evaluated
as zero.

Example 38. DOI Directive

The statements

DOI 3
AW, 4 C

at assembly time would generate in-line machine code
equivalent to the following lines:

AW, 4 c
AW, 4 C
AW, 4 C

The line following the DOT1 directive should not be contin-
ved. If it is desired to skip or to iteratively assemble a
statement containing continuation lines, a DO/FIN group
should be used in place of DOI1.

It is not possible to skip or repeat an END directive with a
DO1; an attempt to do so causes an error diagnostic.

A LOCAL directive is unconditionally executed; it will not
be skipped by DO1.

If the iteration count of a DOI is greater than one, the next
line may not contain another DO directive, nor a SYSTEM

directive. Such a case causes an error diagnostic, and the

initial DO1 directive is ignored.

GOTO Conditional Branch

The GOTO directive enables the user to conditionally alter
the sequence in which statements are assembled. The GOTO
directive has the form

label command argument
GOTO[k] labely[, ..., label,]
where
k is an evaluatable, integer-valued expression. If k

is omitted, 1 is assumed.

label; are unsubscripted forward references.

A GOTO statement is processed at the time it is encoun-
tered during the assembly. Meta-Symbol evaluates the
expression k and resumes assembly at the line that contains
a label corresponding to the kth label in the GOTO argu-
ment field. The labels must refer o lines that follow the
GOTO directive. If the value of k does not lie between 1
and n, Meta-Symbol resumes assembly at the line immedi-
ately following the GOTO directive. An error notification
is given if the value of k is greater than n.

The target label of a GOTO search may be embedded in a
list of labels; it will be recognized and will terminate the
skip. A label will not be recognized if it is subscripted.
A GOTO to a local symbol must find its target before a
PEND, END, or LOCAL directive is encountered; if not,
an error notification is given. Within a procedure, label;
may be passed from the procedure reference line info the
GOTO argument field, but the target label must physically
appear within the procedure definition; it may not be passed
from the reference line.

While Meta-Symbol is searching for the statement whose
label corresponds to the kth label in the GOTO list, it
operates in a skipping mode during which it ignores all
machine-language instructions and all directives except
END, LOCAL, OPEN, and CLOSE.

Skipped statements are produced on the assembly listing in
symbolic form, preceded by an *S*.

When Meta-Symbol encounters the first of a logical pair
of directives’ while in the skipping mode, it suspends its
search for the label until the other member of the pair is
encountered. Then it continues the search. Thus, while
in skipping mode, Meta-Symbol does not recognize labels
that are within procedure definitions or iteration loops. It
is not possible, therefore, to write a GOTO directive that
might branch into a procedure definition, a DO/FIN loop,
or a WHILE/FIN loop". Furthermore, it is not permissible
to write a GOTO directive that might branch out of a pro-
cedure definition. If such a case occurred, Meta=-Symbol
would encounter a PEND directive before its search was
satisfied, would produce an error notification, and would
terminate the search for the label.

Example 39. GOTO Directive

A SET 3

COTO,A H, K,M Begins search for label M.

H i)O 5 Suppresses search for label M.

M EQU 5+8 This M is not recognized
because it is within an

iteration loop.

*Certain directives must occur in pairs: PROC/PEND, DO/
FIN, and WHILE/FIN.

™Mt is legal, however, to terminate a DO or WHILE loop by
branching past the associated FIN.

.

FIN Terminates suppression and
continues search.

M LW,A BETA Search is completed when
label M is found.
WHILE/ELSE/FIN Iteration Control

The WHILE directive defines the beginning of an iteration
loop; ELSE and FIN define the end of the loop. These di-
rectives have the form

label command argument
[labell, Ceey Iabeln] WHILE [expression])
ELSE
FIN
where
label; are one or more valid symbols. Use of labels

is optional. When present, they are initially as~-
signed the value zero and incremented by one
each successive time through the loop.

expression is an evaluatable, integer-valued ex-
pression that controls processing of the WHILE loop.
If the expression is greater than zero, the WHILE
loop will be processed; otherwise, it will not. If
expression is omitted, zero is assumed.

Figure 2 illustrates the logical flow of a WHILE/ELSE/FIN
loop.

The assembler processes each WHILE as follows:

1. Establishes an internal counter and defines its value as
zero.

2. If one or more labels are present for the WHILE direc-
tive, sets their value to zero.

3. If the WHILE is within a procedure, replaces any oc-
currence of LF, CF, AF, AFA, or NAME references in
the expression with their current value. The resulting
expression is then saved.

4. Evaluates the saved expression.

If the value of the saved expression is less than or
equal to zero and this is the first time the expression
has been evaluated, discontinues assembly until an
ELSE or FIN directive is encountered.

a. If an ELSE directive is encountered, assembles
statements following it until a FIN directive is
encountered.

b. When the FIN directive is encountered, termin-
ates control of the WHILE loop and resumes assem-
bly at the next statement.

If the value of the saved expression is less than or equal
to zero and this is not the first time the expression has
been evaluated (i.e., for the second and subsequent
times through the WHILE loop), terminates control of
the WHILE loop and resumes assembly at the statement
following the FIN directive.

Assembly Control 35

START
WHILE/ELSE/
FIN loop

\

0 —IC
0 — LABEL

A

Evaluate expression
EXP

EXP < 0?

IC = Internal counter

LABEL = Label (if present on WHILE line)
EXP = The result of evaluating the expression

on the WHILE line

no

IC+1
IC

LABEL

IC

»

Y

Ist

f.

Assemble next line

no
yes

Set flag to get line
following WHILE

Y

Next

time evaluated?
yes \/ e

line Eyyes

no

Is it FIN?
yes

\

Terminate loop

\

Assemble next line

Is
next line
FIN?

yes

\

Resume assembly
next line

Terminate loop

Y

Resume assembly

next line

36

Figure 2.

Assembly Control

Flowchart of WHILE/ELSE/FIN Loop

6. If the value of the saved expression is greater than
zero, increments the value of the internal counter
by 1, sets the value of the label or labels (if present)
to the new value of the counter, and continues assem-
bly until an ELSE or FIN directive is encountered, then
resumes the assembly at step 4. See Example 40.

If the expression is not evaluatable, Meta-Symbol sets the
internal counter to the value zero, produces an error noti-
fication, and processes the WHILE directive as if the
expression had been evaluated as zero.

The WHILE label is redefinable, and its value may be
changed via a SET directive during the processing of the
WHILE loop. Notice, however, that prior to each pass
through the loop, the value of the label or labels is set to
the value of the internal counter. Any symbols inthe WHILE
expression that are redefinable via SET may also be changed
within the loop. Since the expression is reevaluated prior
to each execution of the loop, such usage must be employed
carefully.

WHILE directives may be nested within WHILE- and DO-
loops. See Example 42.

Meta-Symbol assemblies involve various "levels". The
main program is arbitrarily defined as level 0. A procedure
invoked at level 0 is executed at level 1. If a procedure
is invoked at level 1, it is executed at level 2; etc. A
WHILE loop must be completely contained on a single pro-
gram level (see Example 45 under DO directive).

Example 40. WHILE/ELSE/FIN Directives

B SET 0

I WHILE B>5 Expression is O, so skips to ELSE.

ELSE Resumes assembly following ELSE
and continues, ignores FIN, and
leaves control of WHILE.

FIN

Example 41. WHILE/ELSE/FIN Directives

In this example, the dashed vertical line indicates
statements are skipped; solid vertical lines indicate
statements are assembled. The numbers above the
vertical lines specify which iteration of the WHILE-
loop is in process.

Iteration
2

: 3
A WHILE A<2 -
ELSE _J U

|
|
|
|
: |
FIN 1

When WHILE is first encountered, A is set to zero.
Since A is less than 2, the expression is true and has the
value 1; therefore, the internal counter is incremented
by 1, its new value (1) is assigned to A, and the loop is
executed as far as the ELSE directive. Then control is
returned to the WHILE directive where the expression is
reevaluated. The current value of A is 1, so the ex-
pression is true and has the value of 1. The internal
counter is again incremented by 1 and its new value (2)
is assigned to A. The loop is assembled as far as the
ELSE directive, and then control is returned to the
WHILE directive where the expression is reevaluated.
Since the current value of A is 2, the expression is no
longer true, so statements are skipped until the FIN
directive is encountered. Then assembly continues.

Example 42, WHILE/ELSE/FIN Directives

An iteration block within an iteration block:

WHILE
WHILE

ELSE block 2 block 1

FIN

i:lN

Example 43. WHILE/FIN Directives

I WHILE <2
GEN, 32 I
FIN

This sequence generates the values 1 and 2.

DO/ELSE/FIN’ Iteration Control

The DO directive defines the beginning of an iteration loop;
ELSE and FIN define the end of an iteration loop. These
directives have the form

label command argument
[label oo Iabeln] DO [expression]
ELSE
FIN
where
label; are valid symbols. Use of one or more labels

is optional. When present, each is initially

Assembly Control 37

assigned the value zero and incremented by one
each successive time through the loop.

expression is an evaluatable, integer-valued ex-
pression that represents the count of the number
of times the DO-loop is to be processed. If
expression is omitted or is less than zero, zero
is assumed.

Figure 3 illustrates the logical flow of a DO/ELSE/FIN
loop.

The assembler processes each DO-loop as follows:

1. Establishes an internal counter and defines its value as
zero.

2. If one or more labels are present on the DO line, sets
their value to zero.

Evaluates the expression that represents the count.

4. If the count is less than or equal to zero, discontinues
assembly untilan ELSE or FIN directive is encountered.

a. If an ELSE directive is encountered, assembles
statements following it until a FIN directive is
encountered.

b. When the FIN directive is encountered, terminates
control of the DO-loop and resumes assembly at
the next statement.

5. If the count is greater than zero, processes the' DO-
loop as follows:

Increments the internal counter by 1.

b. If one or more labels are present on the DO line,
sets them to the new value of the internal counter.

c. Assembles all lines encountered up to the first
ELSE or FIN directive.

d. Repeats steps 5athrough 5c until the loop has been
processed the number of times specified by the
count.

e. Terminates control of the DO-loop and resumes
assembly at the statement following the FIN.

In summary, there are two forms of iterative loops as shown
below.

Form 1. DO or WHILE
. } block 1
ELSE
. } block 2
FIN

Form 2. DO or WHILE
. l block 1
FIN

If the expression in a DO directive is evaluated as a posi-
tive, nonzero value n, then in either form block 1 is re-.
peated n times and assembly is resumed following the FIN.

If the expression in a WHILE directive is initially evaluated
as a positive, nonzero value n, then in either form block 1

38 Assembly Control

is assembled and the expression in the WHILE directive is
reevaluated. This process continues until the evaluation of
the expression in the WHILE directive no longer provides a
positive, nonzero value, at which time control of the WHILE
loop is terminated, and assembly resumes following the FIN.

If the expression in the DO directive is evaluated as a neg-
ative or zero value, then in

Form 1: block 1 is skipped, block 2 is assembled once,
and assembly is resumed following the FIN.

Form 2: block 1 is skipped, and assembly is resumed
following the FIN.

If the expression in the DO directive is not evaluatable,
Meta-Symbol sets the label or labels (if present) to the value
zero, produces an error notification, and processes the DO
directive as if the expression had been evaluated as zero.

An iteration block may contain other iteration blocks but
they must notoverlap. See Example 42 for the WHILE directive.

The label or labels for the DO directive areredefinable and
their value may be changed by SET directives during the
processing of the DO=loop. Any symbols in the DO direc-
tive expression that are redefinable may also be changed
within the loop. However, unlike the WHILE directive, the
count for the DO=-loop is determined only once and changing
the value of any expression symbol within the loop has no
effect on how many times the loop will be executed.

The processing of DO directives involves program levels in
the same manner as WHILE directives. Both a DO-loop and
a WHILE-loop must be completed on the same program level
on which they originate. That is, if a DO or WHILE direc-
tive occurs in the main program, the ELSE and/or FIN for
that directive must also be in the main program. Similarly,
if a DO or WHILE directive occurs within a procedure defi-
nition, the ELSE and/or FIN for that directive must also be
within the definition.

Example 44. WHILE/DO/FIN Directives

1 WHILE I<3

J DO I
GEN,32 1*J
FIN end DO
FIN end WHILE

This sequence of code generates the values 1, 2, 4, 3,
6, and 9:

1. The internal counter n is set to zero, and this
zero value of n is assigned to I.

2. I'(which is 0) is less than 3, so the WHILE-loop
is executed.

3. nisincremented by 1, and its new value is as-
signed to I, making I =1.

4. The DO directive is encountered:

a. The internal counter m is set to zero, and this

zero value of m is assigned to J.

10.

b. I has the value 1 (from step 3 above) so the
DO-loop is executed one time.

c. mis incremented by 1, and its new value is
assigned to J, making J =1,

d. The GEN directive produces the value
I*J=1%1=1asa 32-bit value.

e. FIN terminates the DO-loop.
FIN returns control to the WHILE directive.

I {which is 1) is less than 3, so the WHILE loop is
executed again,

n is incremented by 1, and its new value is as=-
signed to I, making I = 2,

The DO directive is encountered:

a. The internal counter m is set to zero, and this
zero value of m is assigned to J.

b. 1has the value 2 (from step 7 above) so the
DO-loop is executed twice.

c. misincremented by 1, and its new value is
assigned to J, making J = 1.

d. The GEN directive produces1 * J =2 * 1 =2

e. FIN terminates the first iteration and returns
control to the DO directive.

f. mis incremented by 1, and its new value is
assigned to J, making J =2,

g. The GEN directive produces I * J =2 *2=4
h. FIN terminates the DO=loop.

FIN returns control to the WHILE directive.

I (which is 2) is less than 3, so the loop is executed
again,

1.

n is incremented by 1 and its new value is assigned
to I, making I =3,

The DO directive is encountered.

a. The internal counter m is set to zero, and this
zero value of m is assigned to J.

b. I has the value 3 (from step 11 above) so the
loop is executed three times.

c. misincremented by 1, and its new value is
assigned to J, making J =1,

d. The GEN directive produces I * J =3 * 1 =3.

e. FIN terminates the first iteration and returns
control to the DO directive.

f. mis incremented by 1, and its new value is
assigned to J, making J = 2,

g. The GEN directive produces I * J =3 * 2 =6.

h. FIN terminates the second iteration and re—
turns control to the DO directive.

i. misincremented by 1, and its new value is
assigned to J, making J = 3.

i. The GEN directive produces I * J =3 *3 =9.

k. FIN terminates the DO-loop.

. FIN returns control to the WHILE directive.

I (which is 3) is not less than 3, so the loop is not
executed.

Skip the DO directive, the GEN directive,

the FIN directive (that is paired with DO), ,
and the FIN directive (that is paired with
WHILE).

Continue the assembly process.

Assembly Control

START
DO/ELSE/
FIN loop

0 —IC
0 —LABEL
Evaluate expression—EXP

no yes

!

IC+1 —IC
IC —— LABEL

Next line ELSE?

IC = Internal counter

LABEL = Label (if present on DO line)

EXP = The result of evaluating expres-
sion on DO line

Next line ELSE?

Assemble until FIN

y

Terminate loop

_|

Assemble]

Set flag to get line

= EXP?
following O IC = EXP?

Terminate loop

A
Resume assembly

A

after FIN

40

Figure 3. Flowchart of DO/ELSE/FIN Loop

Assembly Control

Example 45. DO/ELSE/FIN Directives

Assume the main program has a DO-loop that contains a procedure definition that in turn contains a WHILE-loop. The
ELSE and/or FIN for the WHILE-loop must be in the procedure definition, and those for the DO-loop must be in the
main program.

level O Main program = level 0.
EDO DO-loop commences at level 0.
:PROC level 1 Identifies beginning of procedure definition that will be assembled at
: level 1.
\:NH]LE WHILE-loop invoked at level 1.
?IN End WHILE-loop.
iPEND A End procedure definition.
EELSE ELSE directive is part of DO/ELSE/FIN group.
%IN End DO-loop.

Example 46. DO/ELSE/FIN Directives

In this example, the dashed vertical lines indicate statements that are skipped; solid vertical lines indicate statements
that are assembled. The numbers 1, 2, 3, and 4 above the vertical lines indicate which iteration of the DO=loop is in
process. This example uses a simple list; list A has four elements (0, 1, 2, 1) that can be referenced as A(1), A(2),
AR), and A(4), respectively.

Iteratior:
1 2 3 4 :
A EQU 0,1,2,1
I »I F"I 1 DO 4
| ; . :GOTO, Al ST
V| l :
T ; 1 ELSE
| , i :
1 1] s
!
! :
— , ELSE
| i :
1 i
I i T
]
. ' .
— t FIN

When the DO directive is encountered, the DO expression has the value 4 so the loop will be executed four times. When
the GOTO directive is encountered the first time through the loop, I has the value 1 so A(l) refers to the first element in

the list to which A is equated. . That element is the value zero. The expression for the GOTO has the value zero, so the
next statement in sequence is assembled, Assembly continues in sequence until the ELSE directive is encountered, which

ends the first iteration and returns control to the DO directive.

Assembly Control 141

When the GOTO directive is encountered the second time through the loop, 1 has the value 2 so A(l) refers to the second
element in list A; i.e., the value 1. Thus, the expression for GOTO has the value 1 so Meta-Symbol will skip until it
finds a statement labeled S. Starting with S, Meta-Symbol assembles code until it encounters the ELSE which terminates
the second iteration of the loop and returns control to the DO directive.

When the GOTO directive is encountered the third time through the foop, 1 has the value 3 so A(l) refers to the third
element in list A; i.e., the value 2. Thus, the expression for GOTO has the value 2 so Meta~Symbol will skip until
it finds a statement labeled T. Starting at T, Meta-Symbol assembles code until it encounters the FIN directive which
terminates the third iteration of the loop and returns control to the DO directive.

When the GOTO directive is encountered the fourth time through the loop, 1 has the value 4 so A(I) refers to the fourth
element in list A; i.e., the value 1. Thus, the expression for GOTO has the value 1 so Meta-Symbol will skip until it
finds o statement labeled S. Starting at S, Meta-Symbol assembles code until it encounters the ELSE directive which
terminates the fourth —and last — iteration of the loop. Then, Meta=Symbol skips until it encounters the FIN directive.
Assembly resumes at the first statement following the FIN,

SYMBOL MANIPULATION
EQU Equate Symbols
The EQU directive enables the user to define a symbol by

assigning to it the attributes of the list in the argument
field. This directive has the form

label command argument
[labely, ..., lobel,,] EQU[] [list]
where

label; are valid symbolic names. If there are no

labelj, the only effect of the EQU directive is to
cause evaluation of the list,

s isan integer-valued expression that identifies the
“type" of label. This expression is used in con-
junction with the SD option (see Chapter 7) to
provide explicit "type" information to a loader
and, subsequently to a run-time debugging pro-
gram. If s is omitted, label; are assumed to rep~
resent hexadecimal values. The legal values for s
and the associated meanings are given below:

X'00' Instruction

X'01' Integer

X'02' Short floating=point

X'03" Long floating~point

X'06' Hexadecimal (also for packed
decimal)

X'07' EBCDIC text (also for unpacked
decimal)

X'09' Integer array

X'0A' Short floating-point array

X'0B’ Long floating-complex array

Xx'o8' Logical array

X'10' Undefined symbol

list is any list. The elements in the list may con-
tain forward and external references.

When list is an expression, label is set equivalent to the
value of .the expression:

VALUE EQU 2*(8-5) + | makes VALUE =7
ALPHA EQU XYZ - 10 makes ALPHA = XYZ - 10

(The symbol = means "is identical to".)

42 Symbol Manipulation

When list is a list of more than one element, label is set
equivalent to all individual elements in the list. This is
shown in various exapmles given in Chapters 2 and 5.

If more than one label is given, each is set equivalent to
list. Thus,
AB EQU 5 makesA=5, B=5

The value or values in list appear on the assembly listing in
a special format that indicates the type of value(s) to which
label has been equated. This format is explained under
"Meta-Symbol Assembly Listing" in Chapter 6.

Example 47. EQU Directive

B EQU A Makes B= A, Because Aisa
forward reference, B also has the
attribute of being o forward
reference.

GEN,32 B Legal; the GEN directive allows
the use of forward references.

DO B lllegal; the DO directive does
not permit the use of forward
references, and it is processed

as if B=0,
DO A lllegal; A is a forward reference.
A EQU 5 Defines A,
DO A Legal; A is no longer a forward
reference.
DO B Legal; B is no longer a forward
reference.

SET Set a Value

The SET directive, like EQU, enables the user to define a
symbol or symbols by assigning to each the attributes of the
list in the argument field. SET has the form

label command argument

{labely, ..., label] SET [s] [tist]

where label, s, and list are the same as for EQU.

The SET directive differs from the EQU directive in that any
symbol defined by a SET may later be redefined by means
of another SET, It is an error to attempt to do this with an
EQU. SET is particularly useful in writing procedures.

~ The value or values in list appear on the assembly listing
in a special format that indicates the type of value(s) to
which label has been equated. This format is explained
under "Assembly Listing" in Chapter 6.

Example 48. SET Directive

A EQU X'FF!

M SET A M is set,to the hexadecimal
value FF.

S SET M Thus, 5 =M =X'FF'.

M SET 263 Redefines symbol M.

S EQU M Error; does not redefine
symbol S.

LOCAL Declare Local Symbols

The main program and the body of each procedure called
during the assembly of the main program constitute the non-
local symbol region for an assembly. Local symbol regions,
in which certain symbols will be declared unique to the
region, may be created within a main program or procedure
by the LOCAL directive. This directive has the form

label command argument

LOCAL [symboll s e, symbol]

where the symbol; are declared to be local to the current
region. Local symbols are syntactically the same as non-

local symbols. The argument field may be blank, in which

case the LOCAL directive terminates the current local sym-
bol region without declaring any new local symbols.

A label field entry is ignored by the assembler unless it is
the target label of a GOTO search.

The local symbol region begins with the first statement
(other than comments or another LOCAL) following the

LOCAL directive and is terminated by a subsequent use of
the LOCAL directive.

Within a local symbol region a symbol declared as LOCAL
may not be used as a forward reference in an arithmetic
process other than addition, subtraction, or comparison.
This does not limit the use of defined local symbols in other
arithmetic processes.

The occurrence of the PROC directive suspends the current
local symbol region until the corresponding PEND is en-
countered. The suspended local symbols are then reacti-
vated, See Example 52. (PROC and PEND define the
beginning and end, respectively, of a procedure definition.
See Chapter 5.)

When a LOCAL directive occurs between the PROC and
PEND directives, a procedure-local symbol region is cre-
ated, with local symbols that may be referenced only within
the specified region of the procedure being defined. When
the procedure is subsequently referenced in the program, the
currently active local or procedure-local symbols are sus-
pended until the corresponding PEND is encountered. The
suspended local symbols are then reactivated.

Example 49. LOCAL Directive

.
.

LOCAL A,B,C
LOCAL R,S,
LOCAL X,Y,Z

*COMMENT

START EQU $

LOCAL

The three LOCAL directives inform the assembler that
the symbols A,B,C,R, S, T, U, X, Y, and Z are to be local
to the region beginning with the line START. The final
LOCAL directive terminates the local symbol region
without declaring any new local symbols.

Example 50. LOCAL Directive

A EQU X'EV

LOCAL A

New A, not the same as A above.

A EQU 89 Legal, since this is the local A.

B EQU A

Defines B as the decimal
value 89.

LOCAL Z Terminates current local symbol
region and initiates a new
region.

z EQU A Z is equated to the hexadeci-
. mal value E1,

Symbol Manipulation 43

Example 51. LOCAL Directive

LOCAL B

Lw, 7 B*3 lllegal because B is a local
forward reference and mul-
tiplication is requested.

EQU 9 Defines symbol B,

LW, 9 B*3 Legal.

AW, 9 A/2 Legal because A is not a
local symbol.

EQU X'F3A' Defines symbol A,

Example 52. LOCAL Directive

EQU XET’

A

LOCAL A New A, not the same as
A above.

A iEQU 89 Legal, since this is the
local symbol A,

PROC A PROC suspends the range
of a LOCAL and reinstates
any prior nonlocal symbols.

B EQU A Defines B as the hexa-
decimal value E1.

i’END Terminates the procedure
and reinstates the prior
LOCAL symbols.

X EQU A<X'CF' Equates X to the value 1
because 8% is less than
X'CF',

LOCAL z Terminates current local
symbol region and initiates
a new region,

Z EQU A=X'El' Equates Z fo the value 1
because the nonlocal sym-
bol A has the hexadecimal
value E1,

44 Symbol Manipulation

OPEN/CLOSE Symbol Control

OPEN and CLOSE control the scope of nonlocal symbols,
These directives have the forms

label command argument
OPEN [symboll , ...,symboln]
CLOSE [symbol Ry symboln]

where symbol; represent a list of nonlocal symbols that
are to be opened or closed for use as unique symbols. The
OPEN directive explicitly declares subsequent usage of the
designated symbolic names (until closed or opened again) to
be completely independent of any prior uses of the same
symbolic name. See Example 53.

The CLOSE directive declares that the designated, currently
opened nonlocal symbols are to be permanently closed for
all subsequent usage. Once a symbol has been closed, it
cannot be opened again. For example, in the sequence

A EQU 15

CLOSE A
A LW,4 ALPHA
OPEN A

the CLOSE directive informs Meta-Symbol that the current
nonlocal symbol A may not be used again. The label A in
the next statement is a valid symbol, different from the pre~
vious A. The OPEN directive informs Meta=Symbol that a
new symbol A is to be used; this A is different from both of
the previous A's,

If a symbol'is not explicitly opened with an OPEN directive,
it is considered implicitly opened the first time it appears in
a program. The names of directives and intrinsic functions
are opened at the start of an assembly, but it is permissible
to close them or to open a new symbolic name having the
same configuration, Instructions in system instruction sets
may also be opened and closed (see Example 54). This
enables the user to close any directive, function, or system
name that may conflict with names he has used. Program-
mers should be very careful in using OPEN and CLOSE di-
rectives since misuse can result in an erroneous assembly or
termination of assembly. In fact OPEN and CLOSE are used
only in special applications; for example, communication
between system procedure calls requires nonlocal symbols,
because local symbols are purged at the end of each procedure.

OPEN and CLOSE are processed completely by the en-
coding phase (Pass 0); they are treated as comments in the
two assembly phases. As such, they are unconditionally
executed at the time they are first encountered within the
source program. Since a GOTO or DO directive is not
processed until the assembly phase, it is not possible to skip
or repeat an OPEN or CLOSE directive. Also, since proce-
dure references are not expanded until the assembly phase,
an OPEN or CLOSE directive within a procedure definition
is effective only when the definition is first processed; not
when the procedure is referenced.

OPEN and CLOSE control all forms of usage of the symbols

in a program, whether used as commands or as labels,

Example 53. OPEN/CLOSE Directives

OPEN
A EQU

w, 2

OPEN

A EQU

CLOSE

STW, 2
OPEN

LW, 3

A,B,C

BETA

ALPHA

Declares A, B, and C open
for use.

Same A as above.

Same A as above.

Opens a new A, different
from previous A,

Legal because this A does
not have the same value
that was equated to BETA,

Closes current A, This A
cannot be referenced again
(however, ALPHA can be).
The previously open A — the
one equated to BETA —is
now reinstated and any
references to A are to it.

Equivalent to STW, 2 BETA.

This is a new A, different
from both A's used above.

This is B that was opened
at the beginning of this
example.

S EQU

LW, 3

lllegal. EQU has been

opened as a new symbol;
therefore, Meta-Symbol
does not recognize EQU
as a directive.

Illlegal. LW has been
opened as a new symbol;
therefore, Meta~Symbol
does not recognize LW as
a command.

Example 55. OPEN/CLOSE/GOTO Directives

Example 54. OPEN/CLOSE Directives

SYSTEM
Z EQU
EQU LW, 4

OPEN

EQU, LW

SIG7FDP

Legal. Equates symbol Z
fo symbol F.

Legal. Directive names
may be used as label entries
without conflict.

Declares EQU and LW open
for use.

A SET

B SET

1

éOTO, A*B/2 X,Y,Z Begins search for label X.

W EQU
OPEN

X DO
CLOSE
FIN

X

Y

z

X

K*Z

Legal; does not
terminate search.

Makes a new definition
of X available to the
assembler.

Because of the OPEN
directive, this X is not
the same as the X for
which the search is be-
ing made and, there-
fore, is ignored.

Closes the new X and
again makes the old X
(i.e., X referenced to
in the GOTO statement)
available to the
assembler.

Search is successfully
completed and assembly
resumes here.

Symbol Manipulation 45

Example 56. OPEN/CLOSE/GOTO Directives

Opens Tas a new symbol .

OPEN T
K EQU 2

GOTO, K H,T,L Begins search for label T
(this is the same T that

was opened above).

CLOSE T Closes the symbol T for
which the assembler is
searching. Meta-Symbol
continues searching until
the end of the program.
It then produces an error

message .

Legal. This is the first
definition of the non-
local symbol A.

A EQU 15

This example emphasizes the fact that OPEN and CLOSE
directives affect only nonlocal symbols; local symbols
cannot be OPENed or CLOSEd.

DEF Declare External Definitions

The DEF directive declares which symbols defined in this
assembly may be referenced by other (separately assembled)
programs. The form of this directive is

label command argument

DEF [symboly, ..., symboln]

Example 57. OPEN/CLOSE/LOCAL Directives

z W, 6 A References symbol A,

OPEN A Opens a new nonlocal
symbol A, different from

the one used above.

LOCAL A Initiates a local symbol
region in which A is a

local symbol.

A EQU B This is the local symbol A.

CLOSE A Closes the nonlocal sym-
bol A that was opened
above and causes the pre-
vious nonlocal A (i.e.,
the one that appeared in
statement Z) to be rein-
stated when the current
local symbol region is
terminated.

A EQU Zb Illegal. This is the
local A which was
equated to B.

LOCAL X Terminates the previous
local symbol region and

initiates a new one in

Lw, 12 A This is the same A that

which X is a local symbol.{.

appeared instatement Z.

46 Symbol Manipulation

where symbol; may be the intrinsic functions, LF, CF, or
AF, or any global symbolic labels that are defined within
the current program. If there is no symbolj, the directive
is ignored.

DEF directives may appear anywhere in a program. Symbols
may be declared as external definitions prior or subsequent
to their use in the program.

Section names for ASECT and CSECT may be external
definitions; and, if such is the case, their names must
be explicitly declared external via a DEF directive. The
name of a dummy section (DSECT) is implicitly an external
definition and should not appear in a DEF directive; other-
wise a "doubly defined symbol" error condition will be
produced.

The same symbol must not be declared an external definition
more than once in a program (thus the restriction on a DSECT
label). Such a condition will normally be detected by the
assembler, and diagnosed as a "doubly defined symbol".
However, Meta-Symbol does not detect identical symbol
names that have been opened or closed; this case will be
diagnosed (if at all) only by the loader used to load the
assembled program (see Example 59).

As stated previously, all symbols declared as external defi-
nitions via a DEF directive must be defined within the same
program. However, there are restrictions on the values
assigned to DEFed symbols; they may be absolute or relo-
catable addresses, integer constants that may be correctly
represented in 32 bits, or any expression involving a com=-
bination of such terms. They may not be lists, function
names, or LOCAL symbol values (see Example 60). It is
permissible, however, to DEF a symbol whose value will
be found via a REF or SREF directive (see Examples 61
and 65). It is not legal, however, to DEF and REF the
same symbol.

All address values (absolute or relocatable) assigned to
DEFed symbols are generated into the object language as
byte-addresses, in order to retain any pertinent lower-order
resolution (see description of REF and SREF).

Example 58. DEF Directive

DEF

TAN, SUM, SORT

This statement identifies the labels TAN, SUM, and SORT as symbols that may be referenced by other programs.

Example 59. DEF Directive

DEF
Y EQU
OPEN
Y EQU
DEF

$+7

Declares symbols X, Y, and Z as external symbels that may ke refor-
enced by other programs.

Defines symbol Y.

To Meta-Symbo!, Y is now a completely new symbol.

Defines the new symbol, Y.

Unknown to Meta-Symbol, a second declaration and aefinition of
the symbol, Y, will now be produced. Depending on the loader,
this may be diagnosed as a load-time arror.

Example 60. DEF Directive

DEF
o i
s,Pl EQU
u EQU
R EQU

O, S, U,R

X'1F’

FL'.314159ET1"

X'E8',X'D6', X'E4’

U(2)

Declares symbols O, S, U, and R as external symbols that may be
referenced by other programs.)

Legal. Constants may be linked via external definitions.

Although this is a legal definition of both S and Pl, S cannot be
properly DEFed because it exceeds 32 bits in value (error).

Although this is a legal definition of U, a list cannot be DEFed in
the object language (error).

Legal. The value, X'Dé’', is generated as the external value of R.
Note, however, that it is not permissible to say

DEF U(2)

‘since the argument(s) of DEF must be unsubscripted symbols.

Symbol Manipulation

47

Example 61. DEF Directive

The following DEF occurs in a root module of a large system:

DEF SUBROUTNI1

SUBROUTN1 CSECT 1

The subsystems of this system are coded from a specification in which the above DEF was mistyped as SUBROUTIN,
and all 27 subsystems were thus coded as:

REF SUBROUTIN

BAL,LNK SUBROUTIN

As an alternate to modifying any of the existing code, the following module can be loaded into the root segment
of the program. It is legal and resolves the naming conflict illustrated above:

DEF SUBROUTIN
REF SUBROUTNT1
SUBROUTIN EQU SUBROUTNI1
END
REF Declare External References Example 62. REF Directive
The REF directive declares which symbols referenced in this REF IOCONT, TAPE, TYPE, PUNCH
assembly are defined in some other separately assembled
_program. The directive has the form This statement identifies the labels IOCONT, TAPE,
' TYPE, and PUNCH as symbols for which external defi-
nitions will be required at load time.
label command argument
REF [,n] [symboly , ..., symboiy]
Example 63. REF Directive
REF Q Q is an external reference.
where
n may be an (optional) constant, symbol or ex- B GEN, 16,16 Q,$% The value of an external
pression whose value is 1, 2, 4, or 8, specifying reference may be placed
the intrinsic resolution of the associated symbols in any portion of a ma-
as byte, halfword, word, or doubleword, respec- chine's word.
tively. If n is omitted, word resolution is assumed.
If any of symbol; reference a constant value, n is .
ignored by the loader. LW, 2 Q Q is an external reference.
symboli may be the intrinsic functions, LF, CF, or
AF, or any global symbolic labels that are to be
satisfied ot load time by other programs. If there SREF Secondary External References

i bol. ref the directive is i d.
s o symboTy reterence, the cirective 1s ignore The SREF directive is similar to REF and has the form

Symbols declared with REF directives can be used for sym= labe command argument

bolic program linkage between two or more programs. At SREF[,n] [symboly, ..., symbol,]

load time these labels must be satisfied by corresponding

external definitions (DEFs) in another program. where n and symbol; have the same meaning as in REF.

48 Symbol Manipulation

REF and SREF directives may appear anywhere in a program.
Symbols may be declared as external references before or
after their use in the program. Symbols that are external
references may be modified by the addition and subtraction
of integers, relocatable symbols, and other external refer-
ences. See Example 65,

SREF differs from REF in that REF causes the loader to
load ‘routines whose labels it references, whereas SREF
does not. Instead, SREF informs the loader that if the
routines whose labels it references are in core, the loader

Example 64. REF/SREF Directives

should satisfy the references and provide the interprogram
linkage. If the routines are not in core, SREF does not
cause the loader to load them; however, it does cause
the loader to accept any references within the program
to the names, without considering them to be unsatisfied
external references.

Although all symbols are DEFed as byte addresses, a pro-
gram that REFs them will use the word address unless other-
wise specified. Example 64 shows two program segments
that function identically.

REF OKE Although low-order resolution of these symbols is available, their word
REF FEN address will be used unless otherwise specified.
SREF OKEE
REF GA
LL7 HA(FEN) Halfword address of FEN.
LW, 5 BA(OKE) Always word address.
DATA GA; Implicit word address.
, OKEE Implicit word address.
END
REF, 1 OKE Each REF symbol is given an explicit intrinsic resolution that will be
REF, 2 FEN used unless otherwise specified.
SREF, 4 OKEE
REF, 8 GA
L, 7 FEN Halfword address of FEN.
LW, 5 OKE Always word address.
DATA WA(GA); Forces word address.
, OKEE Intrinsic word address.
END

Symbol Manipulation 49

Example 65. REF Directive

REF Q

Q is an external reference.

B EQU Q Equates B to all attributes

of Q.

LW, 2 B Equivalent to LW, 2 Q.

C EQU Q+2 Legal usage.

w,2 C Equivalent to LW, 2 Q+2.

M EQU N

REF N, P It is legal to declare N an ex~-
ternal reference after N has
appeared in the program. In
the sequence shown here, N is
made an external reference by
the REF directive.

DEF M,C Defines M and C as externals.
B is not an external.

DATA GENERATION

GEN Generate a Value

The GEN directive produces a hexadecimal value repre-
senting the specified bit configuration. It has the form

label command argument
[lobell, ey |obe|n] GEN(,field |isr] [valve Iisf]
where .
label; are any valid symbols. Use of one or more

labels is optional. When present, each is defined

50 Data Generation

as the current value of the execution location
counter and identifies the first byte generated.
The location counters are incremented by the num-
ber of bytes generated.

field list is a list of evaluatable, non-negative ex-
pressions that define the number of bits comprising
each field. The sum of the field sizes must be a
non-negative integer value that is a multiple of
eight and is less than or equal to 128. If "field
list" is omitted, 32 is assumed.

value list is a list of expressions that define the
contents of each generated field. This list may
contain forward references. The value, repre-
sented by the value list, is assembled into the
field specified by the field list and is stored in the
defined location (see Example 66). If value list
contains fewer elements than field list, zeros are
used to pad the remaining fields.

Note: The intrinsic symbols $ and $3 always refer to the
first byte generated by the GEN directive.

Example 66. GEN Directive

Produces two 16-bit
hexadecimal values:

FFO5 and 0059.

GEN, 16,16 -251,89

Example 67. GEN Directive

B EQU X'FFFFFFFF'
GEN,64 B Produces: 00000000

FFFFFFFF

There is a one-to-one correspondence between the entries
in the field list and the entries in the value list; the code
is generated so that the first field contains the first value,
the second field the second value, etc. The value pro-
duced by a GEN directive appears on the object program
listing as eight hexadecimal digits per line.

External references, forward references, and relocatable
addresses may be generated in any portion of a machine
word; that is, an address may be generated in a field that
overlaps word boundaries.

Example 68. GEN Directive

BOUND 4

LAB GEN,8,8,8 8,9,10
W, 5 L(2)
LB, 3 LAB, 5

Specifies word boundary .

Produces three consecutive bytes; the first is identified as LAB and con-
tains the hexadecimal value 08; the second contains the hexadecimal
value 09; and the third byte contains the hexadecimal value 0A.

Loads register 5 with the literal value 2.

Loads byte into register 3. LAB specifies the word boundary at which the
byte string begins, and the value of the index register (that is, the value 2
in register 5) specifies the third byte in the string (byte string numbering
begins at 0). Thus, this instruction loads the third byte of LAB (the
value OA) into register 3.

Example 69. GEN Directive

ALPHA EQU X'F*
BETA EQU x'c!
A GEN, 32 ALPHA + BETA

32 bits.

A GEN, 32 27

Defines ALPHA as the decimal value 15,
Defines BETA as the decimal value 12.

Defines A as the current location and stores the decimal value 27 in

In this case, the GEN directive results in a situation that is effectively the same as:

COM Command Definition

The COM directive enables the programmer to describe
subdivisions of computer words and invoke them simply.
This directive has the form

label command argument

Iubell[, eer Iabeln] COMI, field list] [value tist]

where

label; are valid symbols by which the COM may be
referenced. Symbols currently declared as local
may not be used as labels on a COM directive.

field list is alist of evaluatable expressions that de=
fine the number of bits comprising eachfield. The
sum of the elements in this list mustbe a positive in-
teger valuethatis a multiple of eightbits and is
lessthan or equal to 128. Iffield list is omitted, 32
is assumed.

value list is alist of expressions or intrinsic func-
tions (see below) that specify the contents of each
field.

When the COM directive is encountered, the label, field
list, and value list specifications are saved. When the
label of the COM directive subsequently appears in the

command field of a statement called a "COM reference

line", that statement will be generated with the configura-
tion specified by the COM directive.

The use of commands defined by a COM is restricted as fol-
lows: the COM command definition should precede all
references to it.

Note: As with the GEN directive, the intrinsic symbols $
and $$, used on a COM reference line, indicate the
first byte generated by the COM reference.

The COM directive differs from GEN in that Meta=Symbol
generates a value at the time it encounters a GEN direc-
tive, whereas it stores the COM directive and generates a
value only when a COM reference line is encountered. If
the reference line is labeled, the generated value will be
identified by that value.

If a COM directive is to produce four bytes, it will be pre-
ceded at reference time by an implicit BOUND 4.

Data Generation 51

Certain intrinsic functions enable the user to specify in the
COM directive which fields in the reference lines will con-
tain values that are to be generated in the desired config-
vration. These functions are

CF L' ,
AF NUM
AFA

CF Command Field

This function refers to the command field list in a reference
line of a COM directive. Its format is

CF (element number)
where CF specifies the command field, and element number

specifies which element in the field is being referenced.

Example 70. COM Directive and CF Function

CF(2), CF(3)

0

BYT tON\, 8,8

XX BYT, 35, X'3C’

The COM directive defines a 16-bit area consisting of
two 8-bit fields. It further specifies that data for the
first 8-bit field will be obtained from command field
2(CF(2)) of the COM reference line, and that data for
the second 8-bit field will be obtained from command
field 3(CF(3)). Therefore, when the XX reference line
is encountered, Meta-Symbol generates a 16-bit value,
so that the first eight bits contain the binary equivalent
of the decimal number 35 and the second eight bits
contain the binary equivalent of the hexadecimal
number 3C,

AF Argument Field

This function refers to the argument field list in a reference
line of a COM directive. Its format is

AF (element number)
where AF specifies the argument field, and element number

specifies which element in the list of elements in that field
is being referenced.

"See Chapter 5.

52 Data Generation

Example 71. COM Directive and AF Function

XYZ ~ COM,16,16 AF(1), AF(2)

ALPHA éQU X2
Y4 XYz 65, ALPHA+X'FC'

ofof4frjofv]1]o]
0 15 16 3

Meta-Symbol stores the COM definition for later use.
When it encounters the ZZ reference line, it references
the COM definition in order to generate the correct con-
figuration, At that time, the expression ALPHA+X'FC!

is evaluated. AF(1) in the XYZ line refers to 65 in the
ZZ line; AF(2) refers to ALPHA+X'FC'.

AFA Argument Field Asterisk

The AFA function determines whether the specified argu-
ment in the COM reference line is preceded by an asterisk.
The format for this function is

AFA (element number)

where AFA identifies the function, and element number
specifies which element in the argument field of the COM
reference line is to be tested. If element number is omitted,
AFA(1) is assumed. The function produces a value of 1 (true)
if an asterisk prefix exists on the argument designated;
otherwise, it produces a zero value (false).

Example 72. COM Directive and AFA Function

STORE COM,1,7,4,4 AFA(1),X'35',CF(2),AF(1)

STORE, 4 *TOTAL

The COM directive defines STORE as a 16-bit area with
four fields. The AFA(1) intrinsic function tests whether
an asterisk precedes the first element in the argument
field of the reference line. The first bit position of the
area generated will contain the result of this test. The
next seven bits of the area will contain the hexadecimal
value 35. The second element in the command field of
the refefence line will constitute the third field gener-
ated, while the first element in the argument field of
the reference line will constitute the last field.

When the reference line is encountered, Meta-Symbol
defines a 16-bit area as follows:

Bit Positions Contents

0 The value 1 (because the asterisk is
present in argument field 1).

1-7 The hexadecimal value 35.

8-11 The value 4.

12-15 The 4-bit value associated with the

symbol TOTAL.

DATA

Produce Data Value

DATA enables the programmer to represent data conve-
niently within the symbolic program. It has the form

label command argument
(labely, ..., label] DATA[,f] [valuey, ..., value,]
where
label; are valid symbols. Use ofoone or more labels

is operational. When present, each is defined as

the current value of the execution location counter

and is associated with the first byte generated by
the DATA directive. The location counters are
incremented by the number of bytes generated.

f is the field size specification in bytes; f may be

any evaluatable expression that results in an inte-

ger value inthe range 0< f <16.

value; are the list of values to be generated. A
value may be a multitermed expression orany sym-
bol. An addressing function may be used to specify
the resolution other than the intrinsic resolution of
the execution location counter, if desired. Omit-
ted values are assumed to be zero.

DATA generates each value in the list into a field whose
size is specified by f in bytes. If f is omitted, four bytes
are assumed.

Constant values must not exceed those specified under

"Constants" in Chapter 2.

Example 73. DATA Directive

BYTE

TEST

DT4

DATA,3 BA(L(59)) Assembles the byte
address of the literal
value 59 in a 24-bit
field, identified as
. BYTE.

DATA 0, X'FF' Generates two 4-byte
quantities; the first
contains zeros and the
second, the hexadeci-
mal value 000000FF .
The first value is

identified as TEST.
[o]oJo]o]o]o]o]o]
0 516]

EODEA0GEE

.

DATA,1 X'94' X'CF',X'AB'

Generates three 8-bit
values, the first of
which is identified as
DT4.

EnEEnn

S:SIN

Standard Instruction Definition

The S:SIN directive provides a direct mechanism for de-
fining the three main classes of Sigma machine instructions.
It has the form

label

command argument

labelq [, .

.., label] S:5IN, n [expression]

DATA,1 X'FF'

MASK1 Produces an 8-bit value
identified as MASK1.
G
. F—
MASK2 DATA,2 X'IEF' Generates the hexa-

decimal value O1EF as
a 16-bit quantity, iden-
tified as MASK2,

[oTe[F]

[15

where

label;

n

n=0

n =

are one or more valid global symbols which
become the mnemonics by which the instruction
is referenced.

is an evaluatable, integer-valued expression
which evaluates to one of the values 0, 1, or 2.
This specifies a standard instruction format and a
standard reference line assembly mode.

implies the format 1, 7, 4, 3, 17 and speci-
fies that a reference line is to be assembled "like"
an LW instruction. AF(1) of any command de-

fined via 5:SIN,0 will be generated as WA (AF(1)).

1 implies the format 1, 11, 3, 17 and specifies
that a reference line is to be assembled "like" a
BAZ/BANZ instruction. AF(1) of any command de-
fined viaS:SIN, 1 will be generated as WA (AF(1)).

Data Generation 53

n=2 implies the format 8, 4, 20and specifies that
a reference line is to be assembled "like" an LI
instruction. Any command defined via S:SIN,2 is
restricted to one argument field, and this argument
may not have an asterisk prefix.

expression is an expression that is used as the
operation code of the defined instruction. Nor-
mally this is an explicit hexadecimal constant.

Although the same definitions may be achieved by use of
command procedures (Chapter 5) or the COM directive,
S:SIN provides the fastest possible processing when Meta-
Symbol is used as a production assembler for Sigma machine
language programs.

Example 74. S:SIN Directive

The following definitions of various instructions are used
in the SIG7FDP system file.

Lw S:SIN, 0 X'32'

AND S:SIN, 0 X'4B'

B S:SIN, 1 X'680'

LCF S:SIN, 1 X'703'

Al S:SIN, 2 X*20'

Cl S:SIN, 2 xX'21!

.

TEXT BBCDIC Character String

The TEXT directive enables the user to incorporate mes-
sages in his program. This directive has the form

label command argument
. L 1 L
[label |, ..., label] TEXT cs|[,..., o,
where
label; are one or more valid symbols. Use of labels

is optional. When present, each label is associated
with the leftmost byte of the storage area assigned
to the assembled message.

‘es;' are evaluatable expressions that result in char-

acter string constants.

The character string is assembled in a binary-coded form in
a field that begins at a word boundary and ends at a word

boundary. The first byte contains the first character of the
character string, the second byte contains the second char-
acter, etc. If the character string does not require an even
multiple of four bytes for its representation, trailing blanks
are produced to occupy the space to the next word boundary .

When several character strings are present in the argument
field of a TEXT directive, the characters are packed in con-
tiguous bytes (see Example 75). This directive permits con--
tinuation lines, but the continuation indicator must occur
between two character strings.

54 Data Generation

The TEXT directive enables the user to pass a character
string as a parameter from a procedure reference line to a
procedure. The character string must be written on the pro-
cedure reference line within single quotation marks. It is
referenced from within the procedure via the AF, CF, or
LF intrinsic functions in a TEXT directive. The intrinsic
function is not written with single quotation marks (see
Example 76).

Example 75. TEXT Directive

COL1 TEXT 'VALUE OF X'

generates |V|A]|L [U

E O|F
X
TEXT 'A,'BCDE', FGHI',;
'JKLM!

generates | A C
E|F| G|H
11J]K|L
M

Example 76. TEXT Directive

TEXT AF(1)

In a procedure
definition.

TEXT 'SUM OF *, AF(1), ;

" AND ', AF(2) In a procedure

definition.

vi’RIN T1 'RESULTS = Procedure refer-
ence line.

i’RlNTZ DO 4 Procedure refer-

ence line.

Assume that the first TEXT directive is in the definition
of a command procedure called PRINT1, that the second
TEXT directive is in the definition of a command proce-
dure called PRINT2, ond that the last two statements are
procedure reference lines that call these procedures.
When procedure PRINT] is referenced, the first TEXT
directive causes Meta=Symbol to generate

RIEJS|U
L|T]|S

When procedure PRINT2 is referenced, the second
TEXT directive causes Meta-Symbol to generate

SITUIM
@)

F
AN |D
Y

Thus, entire messages or portions of messages may be
used as parameters on procedure reference lines.

TEXTC Text With Count

The TEXTC directive enables the user to incorporate mes-
sages in a program where the number of characters in the
message is contained as the first byte of the message. This
directive has the form

label command argument

L

[label P labeln]

TEXTC 'cs,'[,...,'cs]
n

where labeli and 'csi' have the same meaning as for TEXT.

The TEXTC directive provides a byte count of the total
storage space required for the message. The count is placed
in the first byte of the storage area and the character string
follows, beginning in the second byte. The count repre-
sents only the number of characters in the character string;
it does not include the byte it occupies nor any trailing
blanks. The maximum number of characters for a single

TEXTC directive is 255.

In all other aspects, the TEXTC directive functions in the
same manner as the TEXT directive.

Example 77. TEXTC Directive

ALPHA TEXTC 'VALUE OF X';
,' SQUARED'
generates 18|V | A | L
U |E o
F X
S|QJUJA
R{E|D

Socw Suppress Object Control Words

The SOCW directive causes Meta~Symbol to omit all object
control bytes from the binary output that it produces during
an assembly. This directive has the form

label command argument

SOCW

When Meta-Symbol encounters an SOCW directive, it sets
the location counters to absolute zero, processes the pro-
gram as an absolute section, and diagnoses any subsequent
CSECT, DSECT, PSECT, or USECT directives. Meta-Symbol
produces appropriate error messages if the directives that re-
quire control byte generation are used (REF, DEF, SREF,
and LOCAL except in procedures), if an illegal object lan-
guage feature is subsequently required (such as the occur-
rence of a local forward reference), or if the SOCW
directive has been used subsequent to the generation of any
object code in the program.

Once the SOCW directive is invoked, it remains in effect
during the assembly of the entire program.

Normally, control words are produced to convey to the
loader information concerning program relation, externally
defined and/or referenced symbols, etc. In special cases,
such as writing bootstrap loaders and special diagnostic pro-
grams, the programmer does not want the control words pro-
duced; he needs only the continuous string of bits that results
from an assembly of statements. The SOCW directive en-
ables the programmer to suppress the output of these con-
trol words.

Use of the ORG and RES directives is allowed, although
this is a questionable practice (i.e., no code is generated
for these directives, but the assembler's location counters
are modified as directed.

When SOCW is specified, it is recommended that it be the
first statement in the program, or at least that it precede
the first generative statement.

LISTING CONTROL

Listing control directives are used to format the assembly
listing and are only effective at assembly time. No object
code is produced as a result of their use.

SPACE Space Listing

The SPACE directive enables the user to insert blank lines
in the assembly listing. The form of this directive is

label command argument

SPACE [expression]

where expression specifies the number of lines to be spaced.
The expression must not contain any external references.

If the expression is omitted, or is less than 1, its value is
assumed to be 1. If the expression is greater than 16, it 'is
set to 16. If the value of the expression exceeds the number
of lines remaining on the page, the directive will position
the assembly listing to top of form.

Listing Control 55

Example 78. SPACE Directive

A SET 2

'SPACE 5 Space five lines.
SPACE 2*A Space four lines.

TITLE Identify Output

The TITLE directive enables the programmer to specify an
identification for the assembly listing. The TITLE directive
has the form

label command argument

TITLE {'es']

where cs is an expression that results in a character string
constant and may include 1 to 75 EBCDIC characters.

When a TITLE directive is encountered, the assembly listing
is advanced to a new page and the character string is
printed at the top of the page and each succeeding page
until another TITLE directive is encountered. A TITLE di-
rective with a blank argument field causes the listing to be
advanced to a new page and output to be printed without

a heading.

The first TITLE directive in a program is retroactive; that is,
its header will appear on the first page of the assembly list-
ing, regardless of the placement of the first TITLE directive.

A TITLE directive with a blank argument field will suppress
inclusion of the date and time in the heading; it will not
suppress the assembler version number or page count (see
Chapter 6).

Example 79. TITLE Directive

the title MAG TAPE 1/O ROUTINE. The Third TITLE
directive causes a skip to a new page but no title is
printed because the argument field is blank. The last
TITLE directivespecifies the heading 'CONTROLLER'.

LIST List/No List

The LIST directive enables the user to selectively suppress
and resume the assembly listing. The form of the direc-
tive is

label command argument

LIST [expression]

where expression is an evaluatable expression resulting in
an integer that suppresses or resumes assembly listing. If
the value of the expression is nonzero, a normal assembly
listing will be produced. If the expression is zero when
LIST is encountered, all listing following the directive will
be suppressed until a subsequent LIST directs otherwise. If
expression is omitted, zero is assumed.

Used inside a procedure, the LIST directive will not suppress
printing of the procedure reference (call) line. However,
LISTwill suppress printing of the object code associated with
the call line if the LIST directive was encountered prior to
any code generation within the procedure.

Until a LIST directive appears within a source program, the
assembler assumes a default convention of LIST 1, allowing
a normal assembly listing.

PCC Print Control Cards

The PCC directive controls the assembly listing of direc-
tives PAGE, SPACE, TITLE, LIST, PSR, PSYS, and any
subsequent PCC. The form of the directive is

leTLE 'CARD READ/PUNCH ROUTINE'
%ITLE '"MAG TAPE 1/0 ROUTINE!

| leTLE
fTITLE "'CONTROLLER""

The first TITLE causes Meta-Symbol to position the as-
sembly listing to the top of the form and to print CARD
READ/PUNCH ROUTINE there and on each succeeding
page until the next TITLE directive is encountered. The
next directive causes a skip to a new page and output of

56 Listing Control

label command argument

PCC [expression]

where expression is an evaluatable expression resulting
in an integer that suppresses or enables assembly listing of
the aforementioned directives. If the value of the expres-
sion is nonzero when PCC is encountered, all subsequent
listing control directives mentioned above will be listed.
This will continue in effect until canceled by a subsequent
PCC directive in which the expression is zero. If expres-
sion is omitted, zero is assumed.

Until a PCC directive appears within a source program, the
assembler assumes a default condition of PCC 1, allowing
assembly listing of the list control directives.

PSR Print Skipped Records

The PSR directive controls printing of records skipped under
control of the GOTO, DO, DOI, or WHILE directives,
as well as any records skipped due to unused command or
procedure definitions. The form of the directive is

label command argument

PSR [expression]

where expression is an evaluatable expression resulting in
an integer that suppresses or enables assembly listing of
skipped records. If rhe value of the expression is non-

zero, records skipped will be listed; if the expression is
zero when PSR is encountered, records skipped (not as-
sembled), subsequent to the PSR directive, will not be

listed until another PSR directs otherwise. If expression
is omitted, zero is assumed.

Until a PSR directive appears within a source program, the
assembler assumes a default condition of PSR 1, allowing
assembly listing of skipped records.

PSYS Print System

The PSYS directive controls the assembly listing of system
files. The form of the directive is

label command argument

S S S —

PSYS [expression]

where expression is an evaluatable expression resulting in
an integer that supprusses or enables the assembly listing of
files called by the SYSTEM directive. If the value of the
expression is nonzero when PSYS is encountered, the sym-
bolic records obtained during all subsequent SYSTEM calls
will be printed on the assembly listing. This will continue
in effect until canceled by a subsequent PSYS directive
in which the expression is zero. If expression is omitted,
zero is assumed.

Until a PSYS directive appears within a source program,
the assembler assumes a default condition of PSYS 0, sup-
pressing assembly listing of system files.

DISp Display Values

The DISP directive produces a special display of the values
specified in its argument list, one per line on the assembly
listing. The form of the directive is

.
label command argument

DISP [list]

where list is any list of constants, symbols, or expressions
that are to be displayed at that point in the assembly listing.
The values of the argument list will be displayed one per
line, beginning at the DISP directive line.

If a DISP directive is used inside a procedure, it will not
display values until the procedure is called on a procedure
reference line.

The value or values in list appear on the assembly listing in
a special format that indicates the type of value(s) being
displayed. This format is explained under "Assembly Listing"
in Chapter 6.

ERROR Produce Error Message

The ERROR directive conditionally generates an error mes-
sage in the assembly listing and communicates the severity
level to the assembler. This directive has the form

label command

ERROR [, level[,c]]

argument

esy'[r s lesy')

where

level is an integer-valued expression wiih a value
from X'0' through X'F', denoting error severity
level. If level is omitted, zero is assumed. If
level is preceded by an asterisk, Meta=~Symbol
omits the error line prefix (see Chapter 6), and the
message starts in column 1 of the assembly listing.
In addition, a level of zero preceded by an as-
terisk does not enter the line number in the error
line summary, providing a method for inserting
true comments into the assembly listing.

c is an integer-valued expression whose value de-
termines whether the error message is to be
produced:

If c is true (c > 0), the error message is
produced.

If cis false (c < 0), the error message is
produced.

If c is omitted, the error message is uncondi-
tionally produced.

c may be a forward reference.

‘cs; ' are expressions which evalute to character
string constants. The total number of charac-
ters must not exceed 115.

Each time an error message is generated, the assemblier com-

pares the severity level with that from the preceding ERROR
message and retains the higher value. After assembling an

assemble-and-execute job, Meta-Symbol communicates to the

Monitor the highest error severity level encountered. This
enables the programmer to control the aborting of assemble-
and-execute jobs via control messages to the Monitor.

The primary purpose of ERROR is to provide the procedure

writer with the capability of flagging possible errors in the
use of the procedure.

Listing Control 57

E

xample 80. ERROR Directive

ERROR, 3, ALPHA>5 ;
'ARGUMENT OUT OF RANGE'

When Meta-Symbol encounters this directive, it will
determine whether the value of ALPHA is greater than 5.
If it is, the result is true (value of 1); therefore, the
severity level (3) is compared with current highest se-
verity level, the higher of the two is saved, and the
message "ARGUMENT OUT OF RANGE" is generated
for the assembly listing.

E

xample 81. ERROR Directive

Assume the ERROR directive is a statement within the
definition of the command procedure LD and that the
reference to that procedure contains a forward ref-
erence. When the procedure reference is encoun-
tered, the procedure is assembled into the object
program. Since AF(1) refers to ALPHA, which is
a forward reference at the time the ERROR direc-
tive is assembled during the first pass, the result
of the logical AND operation is zero, and the
message is nof output. During the second pass of
the assembly, ALPHA is no longer a forward ref-
erence but has the value 5. Therefore, when the
ERROR directive is encountered the second time,
the result of the logical AND operation is 1, the
severity level (1) is compared with the previously
encountered highest level, the higher severity level
is retained, and the error message "ODD ARGU-

MENT FOR LD" is produced.

58

ERROR, 1, ABSVAL(AF(1)&1 ;
'ODD ARGUMENT FOR LD'

LD ALPHA

ALPHA EQU 5

Listing Control

PAGE Begin a New Page

The PAGE directive causes the assembly listing to be ad-
vanced to a new page. This directive has the form

label command argument

PAGE

9. PROCEDURES AND LISTS

PROCEDURES

Procedures are bodies of code analegous to subroutines,
except that they are processed at assembly time rather than
at execution time. Thus, they primarily affect the assem-
bly of the program rather than its execution.

Using procedures, a programmer can cause Meta-Symbol to
generate different sequences of code as determined by con-
ditions existing at assembly time. For example, a proce-
dure can be written to produce a specified number of ADD
instructions for one condition and to produce a program
loop for a different condition. (See Example 116 under
"Sample Procedures".)

There are two types of procedures: command procedures
and function procedures. In genercl, either type can per-
form any function that the main program can perform; i.e.,
any machine instruction or assembler directive can be used
within a procedure. A command procedure isreferenced by
its name appearing as the first element of the command
field. A function procedure is referenced by an attempt
to evaluate its name. The major difference in the two
procedure types is that a function procedure returns a value
to the procedure reference line (the line that calls the
procedure); a command procedure does not.

Procedures allow a program written in the assembly lon-
gauge of one computer (e.g., Xerox 9300) to be assembled
and executed on another computer (e.g., Xerox Sigma 7).

If a procedure is written for each 9300 machine instruction,
Meta-Symbol treats each instruction as a procedure ref-
erence, and calls in the associated procedure, thus gen-
erating Sigma 7 machine language code.

Much of the creative power of Meta-Symbol comes from
four directives: GEN, DO, WHILE, and PROC. The
GEN, DO, and WHILE directives were described in
Chapter 4; how they are used in procedures is illustrated

in the various examples in this chapter. The directives
that identify procedures, those that designate the beginning
and end of each procedure, and those that control the dis-
play of procedure execution are discussed in this chapter.
The intrinsic functions commonly used in writing procedures
are also discussed.

In this chapter, the descriptions of variousdirectives make
frequent mention of "lists". Lists are most useful in hand-
ling procedures. Value lists were described in Chapter 2;
procedure reference lists are discussed in detail later in
this chapter after procedures have been introduced.

PROCEDURE FORMAT

A procedure consists of two parts; the procedure identifica-
tion (names) and the procedure definition. The procedure
names must precede the procedure definition, and the defi-
nition in turn must precede all references to it. For this

reason, procedure definitions are normally placed at the
beginning of the source program; this ensures that the defi-
nitions will precede all references to them.

During an assembly, Meta=Symbol reads the procedure
definition and stores the encoded symbolic lines of the pro-
cedure in core memory. When Meta-Symbol later encoun-
ters the procedure reference line, it locates the procedure
it has stored and assembles those lines.

CNAME /FNAME Procedure Name

A procedure may be invoked by a command or function ref-
erence. The names that will be used to invoke a command

procedure must first be designated by the CNAME directive,
which has the form

label command argument

labelq[, ..., label,)] CNAME [, n] (list)

where

label; are the symbols by which the next procedure
to be encountered is identified. Symbols declared
to be LOCAL may not be used as labels for a
CNAME directive.

n is an evaluatable, integer-valued expression that
specifies the number of bytes to be allocated for a
reference to this command procedure during Pass 1
of assembly. If nis present, any labels on the
command reference line will be automatically de-
fined as the currentvalue of the execution location
counter ($). In addition, if nis equal to 4, an
implicit BOUND 4 will precede assembly of the
procedure definition.

list is an optional list of values that are evaluated
and associated with the label(s). The use of a
value list is explained later in this chapter under
"Multiple Name Procedures".

The names that will be used to invoke a function procedure
must first be designated by the directive FNAME, which has
the form

label command argumerit

label | [, ..., Iobeln] ENAME [tist]

where label and list have the same meqning as for CNAME.

A procedure may be both a command procedure and a func-
tion procedure. It may have a single name declared with
both CNAME and FNAME directives, or it may have differ-
ent names, one for command references and another for
function references. There is no limit to the number of
CNAME and/or FNAME directives that may be given for a
single procedure.

Procedures and Lists 59

The applicable CNAME/FNAME directives must precede the
procedure definition; however, the definition need not fol-
low immediately after the name lines., CNAME and FNAME
directives are associated with the first procedure definition
encountered following these directives. This means that
one cannot put all CNAME/FNAME directives before all
procedure definitions. If such a case occurred, all the
"labels" would be associated with the first procedure
definition, and an error notification would be produced
each time another procedure definition was encountered.

The intended purpose of procedures is to allow the program-
mer to redefine assembly language instructions belonging to
another system so they can be assembled by Meta-Symbol
for operation on a Sigma computer, and also, in effect, to
create new instructions, directives, and functions. How-
ever, using procedures to redefine existing Meta=Symbol
directives is a questionable practice frequently leading to
assembly errors. Consequently, when a Meta-Symbol
directive name (GEN, ORG, etc.) is encountered in the
label field of a CNAME directive, Meta-Symbol will not
define a new procedure for the directive (except as noted
below), and will produce the following message on the
assembly listing:

DBL DEF DIR
A directive can be redefined, however, if its name is first

opened with an OPEN directive. OPEN was explained in
Chapter 4 along with appropriate cautions as to its use.

PROC Begin Procedure Definition

The PROC directive indicates the beginning of a procedure
definition and has the form

label command argument

PROC

The first line encountered following the PROC directive
begins the procedure body. Nonlocal symbols are not
unique to a procedure unless they are specifically opened
and closed. A procedure may contain other procedure
definitions; this facilitates invoking a procedure that may
itself define another procedure.

PEND End Procedure Definition

The PEND directive terminates the procedure definition.
It has the form

label command argument

PEND [tist]

The list in the argument field of a PEND directive is mean-
ingful only for procedures referenced as functions, in which
case list represents the resultant value of the function; that
is, the value which will be substituted for the original

60 Procedures

function reference. When a procedure is called as a com-
mand, the argument field of the PEND directive is ignored.
If a procedure that has an empty argument field inits PEND
line is called as a function, the resultant value is null.

Generally, the format of a command procedure appears as

program
name CNAME list identifies the procedure
PROC
. procedure definition
PEND

and the format of a function procedure appears as

program
name FNAME list identifies the procedure
PROC
. procedure definition
PEND list

PROCEDURE REFERENCES

A procedure reference is a statement within a program that
causes Meta-Symbol to assemble the procedure definition.

Command Procedure Reference. The command procedure
reference line consists of a label field, a command field,
an argument field, and optionally a comments field:

label field command field argument field
a list cpr, b list c list
LF CF AF

procedure name

Within the procedure definition, the contents of the labe!l
field of the procedure reference line are referred to via the
intrinsic function LF; the contents of the command field
are referred to via the intrinsic function CF; and the con-
tents of the argument field are referred to via the intrinsic
function AF.

The programmer must specify in the procedure reference
statement the arguments required by the procedure definition
and the order in which the arguments are processed. For
example, a command procedure could be written to move
the contents of one area to another area of core storage.
Assume that the procedure is called MOVE, and that the
procedure reference line must specify in the command field
which register the procedure may use. In the argument field
it must specify the word address of the beginning of the
current area, the word address of the beginning of the area

into which the information is to be moved, and the number
of words to be moved. Such a procedure reference line
could be written:

ANY MOVE, 2 HERE, THERE, 16

Example 82 illustrates a command procedure and reference
line.

Example 82. Command Procedure

The command procedure SUM produces the sum of two
numbers and stores that sum in a specified location.
The procedure reference line must consist of:

1. label field Use of a label is optional.

2. command field The name of the procedure
(SUM) followed by the number
of the register that the proc-

dure may use.

The word address of the first
addend, followed by the word
address of the second addend,
followed by the word address
of the storage location.

3. argument field

Use of the comments field is
optional.

4. comments field

The procedure definition appears as

SUM CNAME

PROC

LF LW, CF(2) AF(1)
AW, CF(2) AF(2)
STW, CF(2) AF(3)
PEND

and the procedure reference line appears as
NOW SUM,3 EARNINGS, PAY, YRTODATE

The resultant object code is equivalent to

NOW LW,3 EARNINGS
AW, 3 PAY
STW, 3 YRTODATE

Meta-Symbol defines (assembles procedure code) only for
those procedure names actually referenced in the command
field of command procedure reference lines. Any CNAME
directive containing a procedure name not subsequently
referred to by a command procedure reference line will
have a skip flag (*S*) printed beside it on the assembly
listing. If none of the names associated with a procedure
are referenced, the same skip flag will print beside each
line of the procedure as well, indicating that it has been
skipped by the assembler.

The use of a label on a procedure reference line is optional.
When a label is present, the procedure definition must
contain the LF function in order for the labe! to be
defined.

Conversely, if a procedure reference line is not labeled,
the LF function within a procedure definition is ignorad by
the assembler.

Function Procedure References. A function procedure
reference is different from a command procedure
reference:

label field command field argument field

a list b list c list, fpr(d list),e list
\ - J \ v e
LF CF AF
procedure
name

Within the procedure definition, the contents of the label
field are referred to via the intrinsic function LF, and the
contents of the command field are referred to via the func-
tion CF. The arguments (referred to via the intrinsic func-
tion AF) of a function procedure reference consist of only
those items that are enclosed by a set of parentheses and
that immediately follow the name of the function proce-
dure. Other elements may appear in the argument field

of the function procedure reference line, but they are not
function arguments.,

The programmer must specify in the procedure reference
statement what arguments are required and in what order
they are processed. For example, a function procedure
could be written that will return a value of the number of
bit positions a given value must be shifted to right-justify
it within a 32-bit field. This function procedure is shown
in Example 83.

Procedures 61

Example 83. Function Procedure

The function procedure SHIFT produces a value that
indicates how many bit positions a number must be
shifted in order to right-justify it within a 32-bit
field. The procedure requires one argument: The
rightmost bit position of the number to be shifted.

The procedure appears as
SHIFT FNAME

PROC

PEND AF-31

The function reference could appear as

RT SAS,5 SHIFT(17)

MULTIPLE NAME PROCEDURES

The value list that appears on a particular CNAME or
FNAME line can be referred to within the procedure
definition via the intrinsic function NAME. This makes

it possible for a procedure that can be invoked by several
different names to determine which name was actually

used and to modify procedure action accordingly. Example
84 illustrates this concept.

Example 84. Multiple Name Procedure

QEL;:A gsmg é Identifies the procedure
PROC
DO NAME
LF GEN,32 100
ELSE
LF GEN,32 50
FIN
PEND
A ALPHA
B BETA

When this procedure iz called by ALPHA at state-
ment A the intrinsic function NAME isset to the value 1
because 1 is the value in the argument field of the
CNAME directive labeled ALPHA. When the proce-
dure is called by BETA, NAME is set to the value 0.
The DO directive will cause the line

LF GEN, 32 100

to be executed if the procedure is called by ALPHA,
or else the line

LF GEN,32 50

to be executed if the procedure is called by BETA.

S:RELP Release Procedure Definitions

The S:RELP directive causes all command and function pro-
cedure definitions to be discarded, and the procedure names
are set undefined. This directive has the form

label command argument

S:RELP

The S:RELP is intended for special cases where memory re-
quirements are critical, and procedures are defined and
used in such a way that they may be discarded immediately
following their use. S:RELP may only be used at main pro-
gram level (level 0).

PROCEDURE DISPLAY

When a procedure definition is encountered, Meta-Symbo!
produces on the assembly listing the symbolic code and the
line numbers, but it does not output the hexadecimal equiv-
alent of the instructions that comprise the procedure until it
encounters a procedure reference line.

When a procedure reference line is encountered, Meta-
Symbol produces the line number and the symbolic code
for the reference line, and follows this line with the hexa-
decimal equivalent of the results produced by the procedure.
The symbolic code defining the procedure is not shown on
the assembly listing at this time. However, the user can re-
quest Meta-Symbol to display symbolic code of a procedure
when assembling the procedure reference by including the
directives CDISP and/or FDISP in his symbolic program.

CDISP/FDISP Command/Function Procedure Display

The command display directive CDISP has the form

label command argument

CDIsP symboly Leeer svmboln]

62 Procedures

where symbol; are the command names by which the proce-
dure will be called.

The function display directive FDISP has the form

label command argument

FDISP symboly[, ..., symbol]

where symbol; are the function names by which the proce-
dure will be called.

Although it is not required, it is preferred practice to
place the CDISP and/or FDISP directives prior to the
name declaration directives CNAME or FNAME pertain-
ing to the procedures that are to be displayed. The
display itself occurs when the procedure reference line
is encountered. The format of a procedure display is
shown in Figure 4.

EARNINGS, PAY, YRTODATE

is the level at which the procedure is executed (see "Procedure Levels" in this chapter).

nnnnn CDISP SUM
nnnnn SUM CNAME
nnnnn PROC
nnnnn i-’END
nnnnn CALL éUM, 3
ok ke ke ke LEVEL 01 DISPLAY OF COMMAND SUM
nonnn 1111 hhhhhhhh LF LW, CF(2) AF(1)
nnnnn 11111 hhhhhhhh AW, CF(2) AF(2)
nnnnn [1111 hhhhhhhh STW, CF(2) AF(3)
***xx% END LEVEL 01 DISPLAY OF COMMAND SUM
nnnnn next line of program
where
nnnnn is the line number.
LEVEL 01
I location counter to word level.
hhhhhhhh is the hexadecimal value generated for that line of code.

Figure 4. Command Procedure Display Format

Function procedures are displayed in a similar manner.
However, because a function procedure returns a value to
the procedure reference line, a function display will pre~-
cede, instead of follow, the printout of its reference line.
The display will include a statement identifying the level
at which the procedure is executed, the fact that it is
a function procedure, and the procedure's name.

PROCEDURE LEVELS

As mentioned in connection with CDISPand FDISP, Meta-
Symbol assemblies involve various "levels" of execution.
The main program is arbitrarily defined as level 0. A pro-
cedure referenced by the main program is designated as
level 1; a procedure referenced from a level 1 procedure is
designated as level 2; and so forth. For example, assume
that command procedure C is to be displayed and that the
main program references procedure A which references pro-
cedure B which references procedure C. Command proce-
dure C would be displayed at level 3.

For each assembly a maximum of 32 levels is allowed, which
are numbered 0 through 31 for display purposes.

INTRINSIC FUNCTIONS

Intrinsic functions are functions that are built into the as-
sembler. The intrinsic functions BA, HA, WA, DA, con-
cerned with address resolution, were discussed in Chapter 3.
The functions CF, AF, and AFA were introduced in Chapter 4;
therefore, only the exfended features that are applicable to

procedures are described here. The Meta-Symbol addressing
function ABSVAL was discussed in Chapter 3.

The intrinsic functions discussed in this section include

LF AFA SCOR S:NUMC S:UFV
CF NAME TCOR S:UT S:IFR
AF NUM Cs S:PT

Intrinsic functions may appear in any field of any instruction
or assembler statement with the following exception: they
must not be used in the argument field of the DEF, REF, SREF,
CDISP, and FDISP directives nor in the label field of the
DSECT directive.

LF Label Field
This function refers to the label field list in a COM direc-
tive or a procedure reference line. Its format is

LF(subscript list)

where LF specifies the label field, and subscript list
specifies which element in that field is being referenced.
If subscript list is omitted, or is zero the function references
the entire label field.

Each LF reference causes Meta-Symbol to process the desig-
nated argument. That is, if the designated argument is an
expression, it will be evaluated when it is used and at each
point it is used, not at the time of call.

Procedures 63

Example 85. LF Function

Example 87. AF Function

A SET LF
TEST TOTAL, SUM<5 (7*XYZ/SUM+57);
, (5*XYZ/SUM+57)

Assume that line A is a statement within a procedure
definition and that line TEST is a procedure reference
line. The SET directive defines the symbol A as the
value of the label field of the reference line. In this
example, therefore, the result would be the same as

A SET TEST

CF Command Field

This function refers to the command field list in a COM
directive or a procedure referenceline. Its format is

CF(subscript list)

where CF specifies the command field, and subscript list
specifies which element in that field is being referenced.

If subscript list is omitted, or is zero the function references
the entire command field.

As for LF, each CF reference causes Meta-Symbol to pro-
cess the designated argument. That is, if the designated
argument is an expression, it will be evaluated when it is

used and at each point it is used, not at the time of the call.

Example 86. CF Function

CFVALUE SET CF

ALPHA STORE, 3,Z*Y HOLD, 4*(A/C+8)

Assume that line CFVALUE is withina procedure defini-
tion and that line ALPHA is a reference to that procedure.
When the CFVALUE line is executed, Meta-Symbol will
evaluateall expressions in the command field of the ref-
erence line and equate CFVALUE to the resultant value.

AF Argument Field

This function refers to the argument field list in a COM
directive or a procedure reference line. Its format is

AF(subscript list)
where AF specifies the argument field, and subscript list
specifies which element in that field is being referenced.

If subscript list is omitted, or is zero, the function references
the entire command field.

64 Procedures

AA SET AF

XX AOP 50, BETA/SUM

Assume that statement AA is within a procedure defini-
tion and that the XX statement is the procedure refer-
ence line. In the argument field of the procedure
reference line is a list of two elements. The first
element consists of the value 50 and the second ele-
ment consists of the value BETA/SUM. In state-
ment AA the construct AF refers to the entire argu-
ment field list because no specific element is
designated.

AFA Argument Field Asterisk

The AFA function determines whether the specified argu-
ment in a COM directive or procedure reference line is
preceded by an asterisk. The format for this function is

AFA(subscript list)

where AFA identifies the function, and subscript list speci-
fies which element in the argument field list is to be tested.
If subscript list is omitted, AFA(1) is assumed.

In the case where an argument may be passed down several
procedure levels, any occurrence of the argument with an
asterisk prefix will satisfy the existence of the prefix.

Example 88. AFA Function

BOUND 4
GEN, 8 AFA(T)

XYZ STORE, 5 *ADDR, 3

Assume that the BOUND and GEN directives are within
a procedure definition and that the XYZ statement is

a procedure reference line. The GEN directive will
generate the value 1 if the first element in the argu-
ment field of the procedure reference line (i.e., ADDR)
is preceded by an asterisk. If an asterisk is not present,
the GEN directive will generate a zero value.

NAME Procedure Name Reference

This function enables the programmer to reference (from
within the procedure) any element of the CNAME/FNAME
argument lists. Its format is

NAME((subscript list)

where NAME identifies the function, and subscript list
specifies which element in the CNAME/FNAME list is be-
ing referenced. If subscript list is nct specified, or is zero,
NAME refers to the entire list.

A programmer can write a procedure with several entry
points and assign the procedure several names via CNAME
or FNAME directives. Each name may be given a unique
value in the argument field of the CNAME/FNAME direc-
tive. Then, within the procedure definition the programmer
can use the NAME function to determine which entry point
was referenced.

Example 90. NAME Function

Example 89. NAME Function

SINE I.:NAME 1
COSINE lfNAME 2
S:BOTO, NAME SINE, COSINE
SINE .
COSINE ‘

.

.

Assume this represents a function procedure with two
entry points: SINE and COSINE. The NAME function
is set to the value 1 when the procedure isreferenced
as SINE and to the value 2when the procedure is refer-
enced as COSINE. Thus, different code will be pro-
duced depending on which name is used to reference
the procedure.

.
.

Bit Positions Contents

reference line.

B CNAME X'68',0 Declares three names for the following
BGE CNAME X'68',1 command procedure, each with an
BLE CNAME X'68', 2 associated list of values.
PROC
BOUND 4 Bound on a fullword boundary .
LF GEN,1,7,4,3,17 AFA(1), NAME(1), NAME(2), AF(2), WA(AF(1)) Generates a 32-bit word with the con-
figuration for a Branch, Branch if Greater
Than or Equal to, or Branch if Less Than
or Equal to instruction.
PEND End of procedure definition.
NOW BLE RETRY Procedure reference line. If condition

When the procedure reference line is encountered, Meta-Symbol processes the procedure. In this instance, the label
NOW is defined, and Meta~Symbol generates a 32-bit word as follows:

0 The value 0 because no asterisk precedes the first element in the argument field of the procedure

1-7 The hexadecimal value 68.

8-11 The hexadecimal value 2.

12-14 The hexadecimal value 0 because there is no second argument field element (i.e., no indexing
specified). ’

15-31 The first argument field element in the procedure reference line, evaluated as a word address.

codes contain the "less than" setting
(as theresult of a prior operation), branch
to location RETRY.

Procedures 65

NUM Determine Number of Elements

The NUM function yields the number of elements in the
designated list. Its format is

NUM(list name)

where NUM identifies the function, and list name identifies
the list whose elements are to be counted. List name en-
closed by parentheses is required.

The NUM function may also be used to determine the num-
ber of subfields in the label, command, and argument fields
of a procedure reference line (as in NUM(LF), NUM(CF),
and NUM(AF)).

Example 91. NUM Function

.

A SET 8,16,19,28

I DO NUM(A)

List A is composed of the elements 8, 16, 19, and 28.
Because there are four elements in list A, the count
for the DO-loop will be 4.

SCOR Symbol Correspondence

This function enables the programmer to test for the pres-
ence of a specified symbol on a procedure reference line.

The format of this function is

SCOR (symbol, fesf.', test,, oo, resfn)

2"

where SCOR identifies the function, symbol is the symbol
to be tested, and the fesri are the items with which symbol
&5 to be compared.

Symbol can be an explicit symbol name or one of the in-

trinsic functions designating an element on the procedure

reference line. The test; can likewise be explicit symbol
names or intrinsic functions.

SCOR compares the symbol with each of the test items. The
result of the comparison is the value k, where the kth item
is identical to symbol. The result of the comparison is zero
if there is no correspondence.

66 Procedures

Example 92. SCOR Function

J DO

SCOR(AF(3), MIN, LIMIT, MAX)

A TALLY, 2,3 HOLD, TEMP, LIMIT

Assume line J is within a procedure definition and that
line A is a reference line to that procedure. When
line J is processed, Meta~Symbol compares the third
element in the argument field of the reference line
(LIMIT) with the symbols MIN, LIMIT, and MAX.,

The resultant value is 2 since LIMIT is the second
symbol listed for the SCOR function, and the DO-
loop will be executed twice.

SCOR has many possible applications in procedures. To
fully understand its use it is important to note that Meta-
Symbol first substitutes designated items from the procedure
reference line for any intrinsic functions used as SCOR
arguments, and then evaluates the SCOR function. This

is made clearer by the following example:

Example 93. SCOR Function

SUM CNAME

PROC
X :§ET SCOR(C, AF(2))
Y _éET SCOR(AF(1), AF(2))
z :SET SCOR(AF(2))
PEND
K ;UM A,(B,C,A,D)

Lines X,Y, and Z are within the definition of proce-
dure SUM, and line K is a reference to that procedure.
When the procedure is called and line X is subse-
quently processed, its argument field will have the
internal configuration

SCOR(C, B, C, A, D)

SCOR will therefore produce the value 2, since C cor-
responds to the second test item, and X will be set to
2. When line Y is processed, its argument field will
have the internal configuration

SCOR(A, B,C, A, D)

SCOR will produce the value 3, since A corresponds
to the third test item, and Y will be set to 3. When
line Z is processed, its argument field will have the
internal configuration

SCOR(B, C, A, D)
SCOR will produce the value zero, since B does not

correspond to any of the test items, and Z will be
set to zero.

TCOR Type correspondence

The TCOR function compares the value type of a specified
item with the value types of a given list of test items.
The format of this function is

TCOR(item, test., test,, ..., test)
1 2 n

where TCOR identifies the function, item designates which
item is to be compared, and the test; are elements whose
value types are to be compared with that of the designated
item., Item may be any symbol, constant, evaluatable
expression, or any element on a procedure reference line.
The test; may be the same kind of elements as item or any
of the following value type intrinsic symbols:

Symbol Type

S:RAD Relocatable address

S:LIST List

S:AAD Absolute address

S:EXT External reference

S:FR Forward reference to global symbol
S:LFR Forward reference to local symbol
s:UND' Undefined global symbol

S:SUM Expression involving relocatable ad-
dresses, externals, or forward references

S:INT Integer constant
S:DPI Double precision integer constant
S:C Character corstant

ste extreme care with S:UND, as its misuse makes the
program sensitive to the two different assembly passes of
Meta-Symbol. Pass 1 of the assembler cannot detect truly
undefined symbols; it must assume that an undefined symbol
is a forward reference (S:FR). Pass 2 of the assembler de-
tects truly undefined global symbols; thus the value of
TCOR{UNDEF, S:UND) is zero on Pass 1 and one on Pass 2
if UNDEF is truly undefined.

Symbol Type

S:D Decimal constant

S:FX Fixed decimal constant
S:FS Floating short constant
S:FL Floating long constant

TCOR is most commonly used to determine the value type of
an item by comparing it with one or more of the above fist
of value type intrinsic symbols. If the value type of the
item corresponds to the type of one of the given symbols,
TCOR returns the value k, where the kth symbol's type is
the same as that of the item. If there is no correspondence,
a zero value is produced by the function.

It is important to note, however, that TCOR is not restricted
to using only the value type intrinsic symbolsas test;. Any
symbol, constant, or evaluatable expressionsmay be given,
and TCOR will return a value indicating which one corre-
sponds in type to "item",

Example 94. TCOR Function

A CNAME
PROC
K DO TCOR(AF, S:FL, S:DP1)>0
L DATA, 8 AF
ELSE
M DATA AF
FIN
PEND
N A FL'S!
P

A 16

Lines K, L, and M are within the definition of proce-
dure A, and lines N and P are references to the proce-
dure. When line N is processed, Meta=Symbol compares
its argument field (FL'5') with the list of value type iin-
trinsic symbols on line K. The argument FL'5' is a
floating long constant and corresponds to intrinsic sym-
bol S:FL. The TCOR function therefore produces ihe
value 1 (since the correspondence is to the first test
item on line K). This value isthen compared agaiist
zero, and since the result of this logical operation (i>0)
is "true", line Lisprocessed. Line Lproduces a 64-bit
(8-byte) data word containing the value Sasa floating-
point long constant.

Meta=Symbol performs the same kind of operation when
line P is processed. But since 16 is a decimal integer
constant corresponding to neither S:FL nor $:DPI, TCOR
returns a value of zero, the result of the logical opera-
tion 0 > 0 is "false", and line M is processed instead of
line L. Line M produces a 32-bit data word containing
the value 16 as a decimal integer constant.

Procedures 67

Example 95. TCOR Function

A CNAME

PROC

B %ET TCOR(AF(1), §, 5, 'A")
C A 17, 'PDQ’

D ;:\ FL'75'

Line B is within the definition of procedure A, and
lines C and D are references to the procedure. When
line C is processed, its first argument field is com-
pared against the list of test items on line B. Since 17
does correspond in type to the second test item (both
are decimal integer constants), TCOR produces the
value 2, and B is SET to 2. When line D is processed,
its first argument field does not correspond to any of
the test items on line B; B is therefore SET to zero.

Example 96. S:UFV Function

S:UFV Use Forward Value

S:FR ' Inhibit Forward Reject

The S:UFV intrinsic function is used to alter the manner in
which the assembler processes global forward references.
Its format is

S:UFV(item)

where
S:UFV identifies the function.

item represents any valid Meta~Symbol construct
(symbol, intrinsic function, expression, list, etc.).

tS:]FR is simply an alternate name for the S:UFV function;
there is no difference in the action of the two. S:UFV is
used in the examples because it seems more descriptive of
the actual use of the function.

START CSECT

GOTO, S:UFV(SWITCH) X,Y
GEN, 3,10,19

GOTO z
X BOUND 1
GEN, 3,11,18 SWITCH, X'7', HA($)-START
GOTO z
Y BOUND 1
GEN, 3,12,17 SWITCH, X'3', WA($)-START
Z BOUND 1
SWITCH EQU 2

At a point prior to the definition of SWITCH, it is desired to generate a data word in one of three formats, depending on
the value of SWITCH. Since only one word will be generated in any case, the correct format should be selected during
Pass 2. The S:UFV function makes this simple to accomplish.

SWITCH, X'13', BA($)-START Selected on Pass 1

Selected (and generated) on Pass 2

Example 97. S:UFV and TCOR Functions

to be found during Pass 2 assembly .

X EQU $

Normally, the TCOR function will match any global forward reference with S:FR. Use of S:UFV allows the actual type

CSECT
DATA TCOR (X, S:FR, S:RAD) Generates DATA 1
DATA TCOR(S:UFV(X), S:FR, S:RAD) Generates DATA 2

68 Procedures

Meta-Symbol is a two-pass assembler. In order to
maintain identical address assignments and to calculate
the same values on both assembly passes, certain restric-
tions are placed on the use of forward references to
symbols. For instance, directives that may directly or
indirectly affect address assignment (RES, BOUND, ORG,
LOC, DO, WHILE, etc.) may not contain a forward
reference in their argument field. If a forward refer-
ence is used with such directives, the value zero is used
on both passes, and a diagnostic is given on Pass 2 of
the assembly.

The "normal" processing of forward references (as in the
argument field of a DATA or GEN directive) is for Pass 1
fo ignore forward references and eventually define all
global symbols, and for Pass 2 to then use the value as-
signed to the symbol during Pass 1. In certain cases, this
behavior may be desired even in directives where forward
references are normally illegal. The S:UFV function is
used to achieve this.

During Pass 1 of the assembly, $:UFV returns an integer
zero if its argument is a forward reference; otherwise,
its value is the argument itself. During Pass 2 of the
assembly, S:UFV returns the value assigned by Pass 1
and inhibits the diagnostic that would occur if the global
forward reference was used in a normally illegal context
(see Example 96).

The S:UFV function may be used in conjunction with the
TCOR intrinsic function in order to determine the type of
. a global forward reference (see Example 97).

S:KEYS Keyword Scan

This intrinsic function, which may be used only within
procedures, permits one to easily scan a procedure refer-
ence argument field for the presence of specified key-
words. This scan can return information specifying how
mdny and which keywords are present as well as where in
*he argument field each keyword appears. The value re-
urned by S:KEYS is a linear list of two or more elements.
The first element is a keyword "hit" count. The second
element is a parameter/flag presence word that indicates
which keywords (up to a maximum of 32) were hit. The re-
maining elements are indexes that specify where in the ref-
erence line argument field the various parameter keywords
occurred. The form of the function is:

(+] <

:KEYS { mode, L*]i,, '
S:KEYS { mode []!1 [*],\K”,...,K]m)

[,

P I n
IRy []'nl [*](K ,...,K
nl

ng)

where

mode is an expression that evaluates to
0 <integer<7.

(mode&1)>0 specifies that AF(1) of the PROC refer-
ence argument field should not be scanned.

(mode&2)>0 specifies use of NUM(AF)+1 as o de-
fault index for parameter misses.

(mode&4)>0 specifies suppression of "unrecognized
key" error reporting.

[xik] is an explicit integer (0= i)) which specifies
that the ijth bit of the parameter/flag presence
word is to be associated with the keyword K| or
the keywords (K| 1, Ki2, . . ., K If i > 31,
subsequent keywords will not affect the parameter/
flag presence word.

If i, is preceded by an asterisk, then any sub-
sequent keyword occurring prior to () igr is
considered a parameter, in which case a hit on

the first or any subsequent keyword causes the
specified bit in the parameter/flag presence word
to be turned on and causes the concatenation to
the S:KEYS list of an element that specifies which
subfield in the reference line contained the spec-
ified word.

If i is not preceded by an asterisk, then any
subsequent keyword occurring prior to [*] i+ is
considered a flag, in which case only the specified
bit of the parameter/flag presence word and hit
count are affected. If more than one keyword is
specified for a given presence bit, then a hit on
the first keyword turns the presence bit on while a
hit on any other keyword has no effect.

[*]Kk and [*] (Kik1s o« +r Kk3) are any legal sym-
bols. These are the keywords associated with the
specified bit position. A leading asterisk indi-
cates that a hit is required, provided that K}
is a parameter.

ABBREVIATED SYNTAX
1f [+] i1, is omitted, *0 is assumed.
1f [*] ijt1 is omitted, [*] i +1 is assumed.

Procedures 69

Example 98. S:KEYS Abbreviated Syntax

S:KEYS(1,*0, A, *1,(B, C), *17,D, 18,E, 19, F)
may be abbreviated

S:KEYS (1, A, (B,C), *17,D, 18, E, F)

SYNTAX OF THE SCANNED ARGUMENT FIELD

S:KEYS, evaluated within a PROC, causes a scan of the
argument field of the PROC reference. That argument
field is expected to have the form

[AF(D.] (keyword, [{;f;’“]] —

.[PR (keywordn [, {;:::1]])]

where

AF(1) is not scanned if (mode&1)>0; hence its
structure is not significant to S:KEYS.

keyword is a keyword that will be looked at by
S:KEYS and compared with the K, and K in the
S:KEYS argument field.

item/list is any item or list of items that are to be
associated with a given keyword. When present,
the keyword is normally used as a parameter
rather than a flag. The term "item" is used be-
cause there are no restrictions, other than syn-
tactic, on what an item may be.

Notice that S:KEYS interrogates only the first subelement
of each subfield of the scanned argument field.

If a given argument of the scanned argument field contains
a keyword without an associated item (or list), then as far
as S:KEYS is concerned, the parentheses around that argu-
ment field are redundant,

That is,
(KEY1,25), (KEY2), (KEY3, 17, 42)
could be written

(KEY 1, 25), KEY2, (KEY3, 17,42)

USAGE EXAMPLES

Example 99. S:KEYS Usage Example

Assume a PROC reference line as follows:
HERE PROCSREF (D, 9), (A)
Equivalent notation is
HERE PROCSREF (D,9),A

70 Procedures

Assume the PROC PROCSREF contains the line

P SET S:KEYS(0,26,A,27,8,28,C,29,D,30,
E,31,F) y

then
mode =0
all keywords are flags
hits occur on A and D

P will be defined as the list of two elements
formed by S:KEYS

P(1) = 00000002 (hit count)

P(2) = 00000024 (in binary 0000...0010 0}00)
bit 29
bit 26

Equivalent notation is

P SET S:KEYS(0,26,A,8,C,D,E,F)

Example 100. S:KEYS Usage Example

Suppose the PROC from Example 99 contained the line

Q SET S:KEYS(0, *26, A, *27,B,*28,C,
*29,D, *30, E, *31,F)

then
mode =0
all keywords are parameters

hits occur on A and D

Q will be defined as the list of four elements

82;; Z 888888‘2)3} same as P(1) and P(2) above
Q(3) = 00000002 parameter A is in AF(2)
Q(4) = 00000001 parameter D is in AF(1)

Note the power gained by having this list. Without
knowing where in the scanned argument field the key-
word D is written, references to the keyword asso-
ciated value, 9, can be parameterized as AF(Q(4), 2).

Equivalent notation is

Q SET S:KEYS(0,*26,A,8,C,D,E,F)

Example 101. S:KEYS Usage Example

Suppose the PROC from Example 99 contained the line
R SET S:KEYS(2,*26,A,B,C,D,E,F)

then

mode = 2 (use default indexes for parameter misses)

all keywords are parameters

hits occur on A and D

misses occur on B, C,E, and F

R will be defined as the list of eight elements

EE;; jgggggggi] same as P and Q above
R(3) = 00000002 A - hit in AF(2)
)

R(4) = 00000003 B - miss, point at null argument
which evaluates to 0

R(5) = 00000003 C - miss

R(6) = 00000001 D - hit in AF(1)
R(7) = 00000003 E - miss

R(8) = 00000003 F - miss

An advantage of default parameter indexes is that
they permit a less complex parameterization since,
for example, R(5) may always be associated with
the parameter C, regardless of how many and which
parameters are hit. If NUM(AF(R(5)))>0 (i.e., not
null), then C is present. It is also true, since C is
a parameter, that bit 28 of R(2) will be on if and
only if C is present.

Example 102. S:KEYS Usage Example

Assume the function PROC reference line

NOW SET SUMTHIN((H, (4,3)), K,
(L, F:THERE), (M, 4), N)

where the function PROC SUMTHIN contains the line

Z SET S:KEYS(0,*17,L,H,4, N, *(A,K),
“8, (S, D), M)

then
mode =0
the keywords L, H, S, D, and M are parameters
the keywords N, A, and K are flags

hits occur on L, H, N, Kand M

Z will be defined as the list of five elements

Z(1) = 00000005 (hit count)
Z(2) = 08406000 (in binary 0000 1000 0100
0000 0110...)

bit 9
bit 18 M)
(H) bit 5
bit 17 (K)
(L) bit 4
(N)

Note that bit 5 is off. K is not the first flag
listed for this bit.

Z(3) = 00000003 the parameter L is in AF(3)
Z(4) =- 00000007 the parameter H is in AF(1)
Z(5) = 00000004 the parameter M is in AF(4)

Note that the order in which the indexes appear in
list P is not the bit-number order of P(2), but instead
the order of left-to-right occurrence of th~ varameter
keywords in the S:KEYS argument field.

Example 103. S:KEYS Usage Example

Suppose the PROC SUMTHIN from Example 102 con-
tained the line

T SET S:KEYS(1, *17, L, H, 4, N, *(A, K),
)

*8,(S,D),M
then
mode = 1 (AF(1) should not be scanned)
the keywords L, H, S, D, and M are parameters
the keywords N, A, and K are flags
hits occur on L, N, K, and M but not on H
T will be defined as the list of four elements.

T(1) = 00000004 hit count
T(2) = 08404000 (In binary 0000 1?00 0100 0000

0100...) bit 5
bit 17 (K)
(L) bit 4
(N)
bit 9
(M)

T(3) = 00000003 the parameter L is in AF(3)
T(4) = 00000004 the parameter M is in AF(4)

Procedures 71

Example 104.

S:KEYS Usage Example

Suppose the PROC SUMTHIN from Example 102 con-
tained the line

Y SET S:KEYS(3, *17, L, H, 4, N, *(A, K),

*8, (S, D), M)
then

mode = 3 (AF(1) should not be scanned; and default

indexes are tobe used for parameter misses.

the keywords L, H, S, D, and M are parameters
the keywords N, A, and K are flags

hits occur on L, N, K, and M

misses occur on H, A, S, and D

Y will be defined as the list of six elements

E ; gggggggg same as T(1) and T(2) above
Y(3) = 00000003 L - hit in AF(3)

Y(4) - 00000006 H - miss, pointat AF(6), anull
Y(5) = 00000006 S or D - miss
Y(6) = 00000004 M - hit in AF(3)

Example 105.

S:KEYS Usage Example

Assume the PROC Definition

ASPROC CNAME
PROC
P SET S:KEYS(2,W, X,Y, 2)

DATA AF(P(3),2), AF(P(4), 2),
AF(P(5), 2), AF(P(6), 2)

PEND
Now assume the PROC reference line

ASPROC (Z,7), (X, -1
P will be defined, for this reference of ASPROC, as
the list

P(1) = 00000002
P(2) = 50000000
P(3) = 00000003

P(4) = 00000002
P(5) = 00000003
P(6) - 00000001

This reference to ASPROC will cause four words of
data to be generated as follows:

00000000 (AF(3, 2) is null)

FFFFFFFF (AF(2,2) is -1)

00000000 (AF(3, 2) is null)

00000007 (AF(1,2) is 7)
72 Procedures

CS Control Section

This function returns the control section number of any item
whose value is a relocatable address. The format of this
function is

CS(item)

where CS specifies control section, and item is the element
whose control section is to be determined. Control section,
a value ranging from 1 to the total number of control sec-
tions, was discussed in the previous chapter under "Program
Section Directives", and is the same as that appearing on
the assembly listing for SET and EQU directives. If the
value of the item given is not a relocatable address, a zero
value is returned.

Example 106. CS Function

&SECT
A DATA 7
CSECT
B DATA 14
C DATA CS(A), CS(B), CS(-85)

When line C is processed, the first CS functionreturns
a value of 1 because item A is a relocatable address
within a control section 1; Meta-Symbol generates a
32-bit data word containing the value 1. The next
CS function is evaluated and returns a value of 2 be-
cause item B is a relocatable address within control
section 2; Meta-Symbol generates a 32-bit data word
containing the value 2. The last CS function is eval-
vated and returns a value of zero because item -85

is not a relocatable address; Meta-Symbol generates
a 32-bit data word containing the value zero.

S:NUMC Number of Characters
This function returns an integer count of the total number of
characters found in its evaluated argument. Its format is

S:NUMC(item)

where S:NUMC identifies the function, and item designates
the element or list for which a character count is to be cal-
culated. Any element in the evaluated argument other than
a character string is ignored in calculating the total count.

Note that an element in the list which is itself a list (i.e.,

a sublist) is thus ignored in the count.

If no character constants are found in the evaluated argu~
ment, S:NUMC returns a count of zero. No restriction is
imposed on the magnitude of the final count, although no
one character string may have a character count greater
than 255.

Example 107. S:NUMC Function

Example 108. S:UT Function

If A is defined as
A SET 'THESE', 'ARE’, 'STRINGS'
then
Q SET S:NUMC(A)

assigns the value 15 to Q.

However, if A were defined as

A SET 'THESE', (‘ARE’, 'STRINGS")
then

Q SET S:NUMC(A)

R SET S:NUMC(A(1), A(2))

assigns the value 5 to Q and the value 15 to R.

ST Unpack Text

This function provides the facility for manipulating char-
acter strings of arbitrary length. It unpacks a character
string into a sequence of single-character elements. Its
format is

S:UT(item)

where S:UT identifies the function, and item designates

the element or list which is to have its text-valued elements
"unpacked". Any element in the argument list other than

a character constant remains unchanged, although its
relative position in the value list may change as a result

of other unpacking operations. Note that an element in
the argument list which is itself a list (i.e., a sublist) is
thus left unchanged.

Care should be taken that the value list contains no more
than 255 elements as a result of unpacking several text
elements.

Note that, for a given list, Q, the relationship’
NUM(S:UT(Q)) = S:NUMC(Q) holds only if Qisalinear
list composed entirely of character constants.

If A is defined as

A SET 'THIS', 'IS', 'A', 'STRING'

then

Q SET S:UT(A(1), A(2), A(3), 'NEW', A(4))

creates a string Q as if Q had been defined as

Q SET lTlIlHlllll’!Sl'DlIIISII lAl';

lN|l |EI, |W|l |S|’ lTI, lRll IIII INI, IGI
Suppose that A had been defined as

A SET ('THIS', '1S', 'A"), 'STRING'

then

Q SET S:UT(A)

creates a string Q as if Q had been defined as

Q SET ('THIS', 'IS','A"Y), ;

ISII IT|’IR|’ III' INI, IGI

S:PT Pack Text

This function transforms any sequence of character constants
and nulls into a single character string. Its format is

S:PT(item)

where S:PT identifies the function, and item designates the
list to be "packed". During packing, any null elements
are discarded. After all nulls are eliminated, any contig-
vous character constants are concatenated to form a single
character string, provided that the resultant string contains
no more than 255 characters. If it does contain more, an
error message is given, and only the leftmost 255 characters
are used. This does not terminate packing; the remaining
characters are simply discarded.

Any element in the argument list other than a character
constant or a null is left unchanged, although its rela-
tive position in the value list may change as a result of
other packing operations. Note that an element in the
list which is itself a list (i.e., a sublist) is thus left
unchanged.

If the argument consists only of a null or a list of nulls, the
value of S:PT is a single null.

Procedures 73

Example 109. S:PT Function

Assume that the following definitions are made:

A SET ‘THIS!
B SET "ISAY
Cc SET ‘STRING'

then
Q SET S:PT(A, B, 'BIGGER ',C)
assigns the same value to Qas if Q had been defined as

Q SET 'THIS IS A BIGGER STRING'

generates the text string
'$-THIS-1S-A-STRING-$!

Notice that, in the above example, had the function
nesting been reversed, as

STR3 TEXT REPL(REPL(A,'"','="),'-','$"
the resulting text string would have been

"$STHISSISSASSTRING $$'

Example 110. Character String Functions

This function procedure iscalledwith three arguments,
The first argument is a string that is to be searched for
occurrences of the character in the second argument.
If sucha match is found, that character in the string is
replaced by the character in the third argument. The
value of the function is the new string after substitu-
tion. The definition is

REPL FNAME
PROC
LOCAL I, Q

Defines function REPL

Q SET S:UT(AF(1)) Forms character list
[DO NUM(Q)
DO1 Q(1)=AF(2)
Q) SET AF(3) Substitutes on match
FIN
PEND S:PT(Q) Returns new string
Now, if A is defined as

A SET '~ THIS IS A STRING -’

a call on the function such as

STR1 TEXT REPL(A, ' ', ".")

generates the text string
'-.THIS.IS.A. STRING. -’

while the following call

STR2 TEXT REPL(REPL(A, '-',"'$")," ', '=")

74 Procedure Reference Lists

PROCEDURE REFERENCE LISTS

A list composed only of elements that are evaluated when
Meta-Symbol encounters the list in a statement isreferred
to as a "value list", as discussed in Chapter 2. A list
having at least one element that cannot be evaluated when
first encountered is called a "procedure reference list".
For example, the directives SET, EQU, GEN, and COM
require value lists, because the elements must be evaluated
before the assembler can process the directives. Command
and function procedure reference lines require procedure
reference lists, because the list elements are not eval-
uated at the time the reference line is encountered, but
are acted upon within the procedure.

A list used in a procedure reference line cannot be
distinguished from a value list merely by appearance.
That is, the list may be either a procedure reference list
or a value list depending on its use in a program. If it
appears in a directive such as SET or GEN

R SET 5,A

GEN, 16,16 5, A

the list is a value list and is evaluated by Meta-Symbol
at the time it is encountered. However, if the list ap-
pears in a command or function procedure reference line,
it is a procedure reference list. For example, if there
were a command procedure name SUM, the reference
line could appear as

NOW SUM TABLE, 15*(TABLE2+;

TABLE)/4

When Meta-Symbol encounters this line, it will execute
the SUM procedure, and the elements of the named lists
will be evaluated depending on their use within the
procedure. That is, if LF is referenced within the proce-
dure, NOW becomes a defined symbol and is stored in

the symbol table. If LF does not appear within the proce-
dure, the label on the reference line is lost. The same
principle applies to the elements of command field and
argument field lists.

Excmple 111. Procedure Reference Lists

ALL SET AF
AF(1) SET AF(2,2)
AF(3) SET ALL(2,2)

Assumes these statements
are within a procedure
definition called LST.

A SET (11,12,13)

B SET (21,22,23) Main program.
C SET (31, 32, 33)
LST A,B,C Procedure reference line.

The three elements (A, B, C) on the procedure reference
line may be referred to within the procedure as

AF(1) = A
AF(2) - B
AF(3) = C

Example 112. Procedure Reference Lists

Notice, however, thatthe functions AF(1), AF(2), and
AF(3) apply only to the symbols that actually appear
on the procedure reference line (i.e., A, B, and C)
and not to the values that have been equated to them.
Thus, the statement

AF(1) SET AF(2,2)
results in AF(1) —which is A —being set to null
because there is no element AF(2,2) on the proce-
dure reference line.
On the other hand, the statement

ALL SET AF

causes Meta-Symbol to evaluate the symbols A, B,
and C, and to assign ALL as

ALL SET (11,12,13),(21,22,23),(31,32,33)

Therefore, the element AF(3) —which is C — can be
set to ALL(2,2) which has the value 22.

The following reference lines could call the procedure:

FIRST out 3,6,(4,7)
A SET 3,6

B SET “4,7)
WO ouTt A, B

ouTt CNAME

PROC

LOCAL COUNT
COUNT SET AF
LF GEN, 32 NUM(COUNT)

The procedure OUT generates a 32-bit value equal to the number of elements in the list of the procedure reference line:

ouTt CNAME Declares the command name of the procedure to be OUT.
PROC Identifies a procedure.

LF GEN, 32 NUM(AF) Generates 32 bits containing the number of elements in the argu-
. ment field of the procedure reference line.
PEND Signifies the end of the procedure.

Generates 00000003 (hexadecimal).

Generates 00000002 (hexadecimal).

The list in line FIRST consists of three elements: 3,6, and (4,7); therefore, the procedure OUT generates the value 3.
Next, A is defined as a value list of two elements: 3 and 6; and B is defined as a value list of one element: (4,7). The
list in line TWO consists of two elements: A and B. Meta-Symbol does not determine what values A and B have because
there is no statement within the procedure that causes Meta-Symbol to evaluate the argument field list.

Declares COUNT to be a local symbol within this procedure.

COUNT is SET to the value of the list in the argument field of the
procedure reference line.

Procedure Reference Lists 75

Since COUNT is declared to be a local symbol within this procedure, it cannot be confused with any previously defined
symbol "COUNT". When the SET directive is executed, Meta-Symbol must evaluate the list in the argument field of
the procedure reference line in order toassign a value to COUNT. With this procedure, the reference lines

FIRST ouT 3,6,(4,7) Generates 00000003 (hexadecimal).
A SET 3.6

B SET 4,7)

TWO ouT A,B Generates 00000003 (hexadecimal).

now generate the same value. When the procedure is called at line TWO, the list consists of A, B. The directive

COUNT SET AF

executed within the procedure, causes Meta-Symbol to evaluate A and B and to assign COUNT as

COUNT = 3,6,(4,7)

Thus, NUM(COUNT) yields the value 3.

Notice that although NUM(COUNT) now equals 3, NUM(AF) still equals 2. This is true because the elements A and B
in the reference line are not replaced by their values (3,6, and (4,7)). Thus a procedure can refer to the elements
that actually appear on the procedure reference line as well as the values of the elements.

Example 113. Procedure Reference Lists The use of procedure reference lists is not limited to the
argument field. A list appearing in any field in a proce-
Assume the command procedure CHECK dure or function reference line isa procedure reference list.
CHECK CNAME Example 114. Procedure Reference Lists
PROC
LOCAL CNT The statement
CNT SET AF
. A,C,D TABSIZ, S, T,U X,Y,Z
H DO NUM(CNT) could be a reference line fora command procedure that
. adds the items identified in the label field to those
J DO NUM(AF) identified in the command field and stores the results

in the locations identified in the argument field: i.e.,

A+S —X, C+T—=Y, D+U—Z

is called as follows:
All three lists are evaluated inside the procedure

UPPER SET 16, 24, 32 when the actual addition occurs:
LOWER SET 9,11,13
LIMIT SET 12,18 TABSIZ CNAME
. PROC
y | PO NUM(LF)
FIELD FHECK UPPER, LOWER, LIMIT AF(I) SET LE(+CE(1+1)
. FIN
In the CHECK procedure CNT is defined as PEND
n the procedure 's defined a The loop is to be executed NUM(LF) or 3 times. Each
CNT = 16,24,32,9,11,13,12,18 time through the loop, 1 is incremented by 1, so AF(I)

references element X, Y, and Z; LF(l) references ele-
ment A, C, and D; and CF(I + 1) references element

Therefore, the DOdirective at line H has a count of 8 S,T, and U. Therefore, the SET directive is equiva-

because CNT is a list of eight elements. On the other

hand, the DO directive at line J has a count of 3 lent to

because NUM(AF) determines how many elements are X SET A+S
in the argument field list of the reference line, and Y SET C+T
there are three: UPPER, LOWER, and LIMIT. Z SET D+U

76

" Procedure Reference Lists

PROCs are frequently used to define machine instructions.
In this manner, a programmer can use any mnemonic code
he wishes for an instruction by writing a procedure defini-
tion that will generate the appropriate bit configuration.
This is another instance when it is necessary for the pro-
grammer to remember that lists in procedure reference lines
are not evaluated at the time they are encountered but
rather at the time they are used inside the procedure.

Example 115. Lists in Procedures

Assume a procedure LOAD is to be written that pro-
duces the same bit configuration as a Load Word in-
instruction. The procedure definition could be

written
LOAD CNAME X'32
PROC
LOCAL P
P SET AF
LF GEN, 1,7,4,3,17 AFA(Q1), NAME;
. CF(2), P(2), P(1)
PEND
If the procedure is called by
LOAD, 4 *Z,5

the procedure functions as follows:
1. Pisdeclared a local symbol,

2. Pis SET to the value of the argument field of the
procedure reference line; i.e.,

P_Z5

3. In the GEN directive

a. LF causes Meta~-Symbol to determine whether
a label exists on the procedure reference line
and, if one does, to define it.

b. AFA(1) tests to determine whether an asterisk
appeared as the first symbol in the argument
field of the reference line. Ifanasterisk did
appear, a 1 is generated for bit position zero
of the instructionword; if an asterisk did not
appear, a 0 is generated for that bit position.

c. NAME causes Meta-Symbol toplace the value
X'32' (from the argument field of the CNAME
directive) in bits 1 through 7 of the word being
formed.

d. CF(2) specifies that the second entry in the
command field of the reference line is to be
assembled into the next four bits (i.e., bit

e. P(2) designates the second element of list P,
Since P = Z,5, its second element is5. This
value is assembled into bit positions 12
through 14 of the word.

f. P(1)designates the first element of list P, i.e., Z.
This value is assembled as a 17-bit address.

The same procedure will operate properly when called
in this fashion:

Q EQU Z,5
LOAD, 4 *Q

because inside the procedure the directive
P SET AF

forces Meta-Symbol to evaluate the argument field of
the procedure reference line and, therefore, to SET P:

P=2Z,5

If the procedure were written

LOAD CNAME X'32'
PROC

LF GEN,1,7,4,3,17 AFA(1),NAME;

,CF(2),AF(2),AF(1)
PEND
and called by

Q EQU Z,5

LOAD, 4 *Q

it would not operate properly. There is no directive
within this procedure definition to cause Meta=-Symbol
to evaluate the argument field of the procedure refer-
ence. Thus, when the GEN directive isprocessed, the
asterisk, the NAME entry, and the command field item
are handled correctly, but there is no AF(2) entry on
the procedure reference line since the argument field
consists only of *Q.

positions 8 through 11).

Thus, it can be seen that lists in procedure reference lines
are conditional in that Meta-Symbol evaluates them only
if there is an instruction or directive within the procedure
that causes it to do so; otherwise, the lists are passed
directly from the reference line to the procedure.

SAMPLE PROCEDURES

The following examples illustrate various uses of procedures,

" such as how one procedure may call another, and how a

procedure can produce different object code depending on
the parameters present in the procedure reference.

Sample Procedures 77

Example 116.

Conditional Code Generation

This procedure tests element N in the procedure reference line to determine whether straight iterative code or an indexed
loop is to be generated. If N is less than 4, straight code will be generated; if N is equal to or greater than 4, an in-
In either case, the resultant code will sum the elements of a table and store the result in

dexed loop will be generated.
a specified location.

The procedure definition is

ADDEM CNAME
PROC

LF SW, AF(3)

IND DO
AW, AF(3)
ELSE
LW, AF(5)
AW, AF(3)
BIR, AF(5)
FIN
STW, AF(3)
PEND

AF(3)

(AF(2)~ 4)*AF(2)
AF(1) + IND -1
L(-AF(2))

AF(1) 1 AF(2), AF(5)
5 -1

AF(4)

The general form of the procedure reference is

ADDEM ADDRS, N, AC, ANS, X
where
ADDRS represents the address of the initial value in the list to be summed.
N is the number of elements to sum.
AC is the register to be used for the summation.
ANS represents the address of the location where the sum is to be stored.
X is the register to be used as an index when a loop is generated.

For the procedure reference

XYz ADDEM

ALPHA, 2,8, BETA, 3

machine code equivalent to the following lines would be generated in-line at assembly time.

XYZ SW, 8
AW, 8
AW, 8
STw, 8

If the procedure reference were

ADDEM

8

ALPHA
ALPHA®1
BETA

ALPHA, 5,8, BETA, 3

the generated code would be equivalent to

AW, 8
BIR, 3
STwW, 8

8
L(-5)

ALPHA45,3
$-1
BETA

Clears the register.

Adds contents of ALPHA to register 8.
Adds contents of ALPHA + 1 to register 8.
Stores answer.

Clears the register.

The value -5 would be stored in the literal table and its address
would appear in the argument field of this statement. Thus, load
index with the value -5.

Register 3 contains -5, .". ALPHA+5-5 ALPHA.
Increments register 3 by 1 and branches.
Stores answer.

78

Sample Procedures

Example 117. Function Procedures

Assume that a 32-bit element of data consists of three fields: Field A occupies bits 0 through 6, field B occupies bits 7
through 17, and field C occupies bits 18 through 31. The program that uses this data will frequently need to alter the
contents of the fields. Two function procedures could be written to facilitate this process: SHIFT and MASK. The pro-
cedure SHIFT returns a value equal to the number of bit positions that a quantity must be shifted to right-justify it within
the 32-bit area. The procedure MASK produces a field of all 1's that occupy the required number of bits to mask a
given field.

The procedure definitions could be:

SHIFT FNAME
PROC
LOCAL SYM
SYM SET AF
PEND 31-SYM(2)
MASK FNAME
PROC
LOCAL VAL, ARG
ARG SET AF
VAL SET (1**(ARG(2)-ARG(1)+1)-1)**(31-ARG(2))
PEND L(VAL)

.

The sequences of code needed to reference these procedures include:

A EQU 0,6

B EQU 7,17 Defines fields A, B, and C.

C EQU 18, 31
LW, 4 L(5)
EVAV?/54 '?APXF;TK((BB)) Stores the value 5 into field B of data area Q.
STS, 4 Q

The EQU directives define the bits that comprise each of the three data fields.

The first Load Word instruction uses a literal constant for the value 5. The Arithmetic Shift instruction references the
SHIFT procedure, using as its argument the list B (defined as 7, 17). The SHIFT function procedure will return the value
14, because an integer must be shifted 14 bit positions in order to right justify it in the B field (i.e., in bits7 through 17).

The second Load Word instruction references the MASK procedure with an argument of B. The MASK procadure first
determines the number of bits in the specified field: ARG(2) - ARG(1)+1=17 =7+ 1=11. Then, the numbar 1 is shifted
left that number of bit positions. Next, the value 1 is subtracted from the shifted value, forming the desired mask of
eleven 1-bits. To position the mask for the correct data field requires shifting it left 14 positions. This is determined
by subtracting the value ARG(2) (i.e., 17) from 31. The correctly positioned mask is assigned to the label VAL. On
the PEND line, VAL appears as a literal, so the mask is stored in the literal table and its address is returned to the
procedure reference. Thus, the second Load Word instruction loads a mask for the B data field into register 5.

The Store Selective instruction stores the contents of register 4 into location Q under the mask in register 5.

Because Meta-Symbol allows one procedure to call upon another procedure, the MASK procedure could have been writ-
ten to call upon the SHIFT procedure to position the mask it developed. The MASK procedure could have been written:

MASK FNAME

PROC
LOCAL VAL, ARG
ARG SET AF

Sample Procedures 79

VAL SET (1**(ARG(2)- ARG(1)+ 1)=1)**SHIFT(ARG)
PEND L(VAL)

which would produce the same result.

Example 118. Recursive Function Procedure

As pointed out in the previous example, Meta-Symbol allows one procedure to call another. Meta-Symbol also allows
recursion; that is, a procedure may call itself. This is illustrated in the following function procedure that produces the
factorial of the argument.

FACT FNAME

PROC
LOCAL S, R
S SET AF
DO S(1)>1
R SET S * (FACT(S - 1))
ELSE
R SET 1
FIN

PEND R

Because the explanation of a recursive procedure necessarily refers to procedure levels and the use of identical symbols
on various levels, subscript notation is used to denote levels: Sl refers to level 1 symbol S; 52 to level 2 symbol S; etc.

The procedure reference in the main program could be

Q SET 8
LI, 4 FACT(Q-5)

Within the procedure, 5y and Ry are declared to be local symbols. Next, Sy is set to the value of the argument field at
level O; therefore, Q -5is evaluatedand Sy is SET to 3. The DO directive determines whether the first element of list $y
is greater than 1. Since Sj consists of only one element and it is greater than 1, the statement following the DO
directive is processed. The statement on line Ry calls the FACT procedure. So, the process begins again.

The symbols Sy and Ry are declared to be local symbols. (This time, they are local to the level 2 procedure and will not
be confused with the S and R that were local to the level 1 procedure.) S, is set to the value of the argument field,
which is Sy - 1(3 - 1); that is, Sy is set to the value 2. The DOstatement determines whether the first element of list Sp
is greater than 1. Because S, consists of only one element and that element is greater than 1, the line following the
DO directive is processed, The statement on line Ry calls the FACT procedure again — this time at level 3.

The LOCAL directive declares S3 and R3 to be local symbols. Next, S3 is set to the value of the argument field. This
time the argument fieldis So - 1, which is the value 1. The DO directive determines whether the first element of list S3
is greater than 1. S3 consists of only one element and it is not greater than 1, so control passes to the statement fol-
lowing the ELSE directive. Rz is set to the value 1. The FIN directive terminates the DO-loop. The PEND directive
terminates the procedure at level 3 and returns control to the procedure reference at level 2. Then, the processing of
line Rp is completed. The value 1, returned by the FACT procedure, is multiplied by So(2) and equated to the label Rp.
The ELSE directive terminates the DO-loop, and contro! passes to the statement following the FIN directive. The PEND
directive terminates the procedure at level 2 and returns control to the procedure reference at level 1.

The value of Ry(2) is returned to level 1, where it is multiplied by Sy(3), and the product 6 is equated to the label Ry.
The ELSE directive terminates the DO=loop, and control passes to the statement following the FIN directive. The PEND

directive terminates the procedure at level 1 and returns control to the procedure reference in the main program.

Thus, the Load Immediate instruction loads the value 6 into register 4.

80

Sample Procedures

Example 119. Recursive Command Procedure

a list.

SUM

level 01
R] SET
Z] SET
h DO
DO
FIN
Z] SET
FIN
DO
R](Q) SUM
level 02
R2 SET
R](Z) SET
12 DO
DO
FIN

CNAME
PROC
LOCAL
SET

SET

DO

DO
SUM
FIN
SET
FIN
PEND

Assume the procedure reference is

SET

SUM

R, 1
AF
0

NUM(R)
NUM(R() > 1

R(1)

R(I+ LF

Recursion can also occur in command procedures. This SUM procedure produces the sum of the values of the elements of

Inner Outer
Loop Loop

5,(3,4),(3,(7,8),4

Q

5,(3,4),(3,(7,8),4)

0
NUMR,)

NUM(R](I))>I

R](l)+ 'Zl

NUM(R](Z)).\I

R,(2)

3,4
0

NUM(RZ)

NUM(Rz(l))>l

Procedure Reference (level 01)

(As in Example 118, subscript notation is used to denote levels.) The resulting code is equivalent to

Equates local symbol R] to list.

Does the loop 3 times; increments counter of outer DO~loop by 1;
I counter; .%. I] 1.

1
False; R.I(l) 5; .. NUM(R](l)) 1, so skip to FIN.

Terminates inner loop.

.'.Z] 5+0 5

Increments counter of outer DO-loop by 1 and sets]] counter
S 2
True; R](Z) 3,4; .. NUM(R](Z)) >1.

Procedure Reference (level 02)

Equates local symbol R2 to sublist.

Does this loop 2 times; increments counter of outer DO-loop by 1;
| counter; .*. | 1.

2 2
False; R2(l) 3; .. NUN\(RZ(I)) 1, so skips to FIN.

Terminates inner loop.

Sample Procedures

81

82

level 01

Ry(3)

level 02

R,(3)

Sample Procedures

SET

FIN

SET

SET

DO

DO

FIN

SET

FIN

DO

FIN

SET

FIN

PEND

FIN

SET

FIN

DO

SUM

SET

SET

DO

DO

FIN

SET

FIN

R2(l) + R](2)

3, 4
0

NUM(R,)

2

NUM(RZ(I)) >

R2(1) + R, (2)

1

NUM(RQ(Z)) ~1

R2(2) + R](2)

R+ 2,

NUM(R,)

2

NUM(R2(1)>1

R (M +R,(3)

.'.R](Z) 3+0 3
Increments counter of outer DO-loop by 1 and sets 1, counter;
s 2.

2

Equates local symbol R, to sublist.

Does this loop 2 times; increments counter of outer DO=loop by 1;
1 counter; .'. 1 1.

2 2

False; R2(l) 3; .. NUM(Rz(l)) 1, so skips to FIN.

Terminates inner loop.

.’.R](Z) 3+0 3

Increments counter of outer DO-loop by 1 and sets 1

.'.I2 2.

False; R2(2) 4; . NUM(R2(2))

counter;

2

1, so skips to FIN.,

Terminates inner loop.

R](Z) 4+3 7

Terminates outer DO-loop.

Terminates level 02 procedure and returns to level 01.

Terminates inner loop.

.‘.Z] 7+5 12

Increments counter of outer DO-loop by 1 and sets |
s, 3.
3

True; R] (3)

counter;

3

3, (7,8),4; .‘.NUM(R](3)) 3.

Procedure Reference (level 02)

Equates local symbol R, to list. Note that Rp is a new symbol; it is
not to be confused with the previous level 2 symbol R,

Does this loop 3 times; increments DO-loop counter by 1; [2 * counter;
S, 0.
2
False; R2(l) 3; . NUM(RZ(I)), 1, so skips to FIN.
Terminates inner DO-loop.
SR@) 340 3
Increments counter of outer DO-loop by 1 and sets 12 = counter;
S, 02,
2

2)

R,(2)

level 02

R,

R,(3)

level 01

DO NUM(R2(2)) ~1

SUM R,(2)

SET 7.8

SET 0

DO NUM(R,)

DO NUM(Ry (1)1
FIN

SET Ry(1) + Ry(2)
FIN

DO NUM(R4(2)) ~1
FIN

SET Ry(2) + R(2)
FIN

PEND

FIN

SET Ry(2) + R, (3)
FIN

DO NUM(R,(3)) > 1
FIN

SET Ry(3) + R, (3)
FIN

PEND

FIN

SET R34 Z,
FIN

PEND

Thus, the main program statement

4

SUM Q

_results in the value 34 being assigned to label Z.

True; R2(2) 7,8; . NUN\(R2(2)).\ 1.

Procedure Reference (level 03).

Equates local symbol R3 to list.

Does this loop 2 times; increments DO-loop counter by 1;1

13 1.

False;R{B(l) 70 NUM(R3(I)) 1, so skips to FIN.

3

Terminates inner loop.

.'.R2(2) 740 7

Increments counter of outer DO-loop by 1 and sets |
A | 2.
3

False; R3(2) 8; .. NUN\(R3(2)) 1, so skips to FIN.

counter;

3

Terminates inner DO-loop.

,‘.R2(2) 8+7 15

Terminates outer DO-loop.

Terminates level 03 procedure and returns to level 02.

Terminates inner DO-loop.
.'.R]l(3) 15+3 18

Increments counter of outer DO-loop by 1 and sets |

..12 3.

False; R2(3) 4; .. NUM(R2(3)) 1, so skips to FIN.

counter;

2

Terminates inner DO-loop.
.'.R](S) 4+18 22

Terminates outer DO-loop.

Terminates level 02 procedure and returns to level 01.

Terminates inner DO-loop.

.’.Z] 22+12 34

Terminates outer DO-loop.

counter;

Terminates level 01 procedure and returns to main program at level 0.

Sample Procedures

83

Example 120. Procedure that Defines a Procedure

The following procedure is assigned two names (B and A) and defines a procedure when referenced.

Command
. Definitions Stack
Line
1 ORG 100 B Pointer
2 B CNAME 6 Sample 6
3 A CNAME 5 Stack B
4 PROC - A Pointer
5 LF CNAME NAME, AF - -] 5
6 PROC -1 - A
7 LF DATA NAME, AF pal } Q Pointer
8 PEND —— 6,17
9 PEND \ Q
T R Pointer
5,15
: R

When Meta-Symbol encounters the A/B procedure definition, it creates two stacks: the Somple Stack (lines 5-9) and the
Command Definitions Stack. In the latter stack, it enters B, assigning it the value 6, and A, assigning it the value 5.
These entries also containa pointer to the Sample Stack, indicating the lines that will be processed when B or A is sub-
sequently referenced.

The procedure reference lines

20 Q B 17
21 R A 15
22 J Q 77

cause Meta-Symbol to do the following:

1.

Line 20 causes Meta-Symbol to process lines 5 and 6 as

Q CNAME 6,17
PROC

which is u procedure definition. Therefore, Q is entered inthe Command Definitions Stack, assigned the values6, 17,
and associated with line 7. Line 8terminates the definitionof Q, andline 9returns control to the main program.

Line 21 causes Meta-Symbol to process lines 5 and 6 as

R CNAME 5,15
PROC

which is a procedure definition. Therefore, R is entered in the Command Definitions Stack, assigned the values 5,
15, and associated with line 7. Line 8 terminates the definition of R, and line 9 returns control to the main program.

Line 22 references Procedure Q which processes line 7 as
J DATA 6,17,77

Label J is assigned the value 100 (ORG 100).

84

Sample Procedures

6. ASSEMBLY LISTING

The Xerox Meta-Symbol assembler produces listing lines
according to the format shown in Figure 5. The page count,
a decimal number, appears in the upper right-hand corner
of each page.

EQUATE SYMBOLS LINE
Each source line that contains an equate symbols or dis-

play directive (EQU, SET, or DISP) contains the following
information:

or

IRRRI A one- to four-character value type
indicator when the value of the item
in the argument field is other than

an address or a single precision inte-

ger. This is discussed below.

and

SSS ... Source image. If source input was
from a keyed file, columns73-80
(print positions 100-117) will be re-

placed by the key number.

NNNNN* Source image line number in deci-
mal. An asterisk identifies an up- When the argument field of an EQU, SET, or DISP directive
date line. specifies a value that is neither a single precision integer
nor an address that is evaluatable when the directive is en-
and countered, the assembler will print a one- to four-character
value type indicator in the value field of the listing (print
XXXXXXXX Value of argument field as a 32- positions 19-26). If the argument field of these directives
bit value. specifies more than one value, or if one of the arguments is
itself the name of a list, the values or value type indicators
or will be printed singly beginning with the value field of the
. directive line and continuing for successive lines. The in-
CC Current section number in hexa- formation listed in the value field for various kinds of EQU,
decimal. The first control section SET, and DISP arguments is shown in the following listing:
of an assembly is arbitrarily assigned
e el | ot soctens SerEQUOS? Diglay
9 v Argument Type Listing Value Field
LLLLL Value of the argument field as a Sinal ision int lue of inteqe
hexadecimal word address. Ingle precision integer vatv inreger
Address value of address
B Blank, 1, 2, or 3 specifying the Fixed decimal constant FX
current byte displacement from a
word boundary. Floating short constant FS
Print
Position 1234567891011 1213 14151617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
Equate NNNNN Cc C L LLLL B S...
symbols NNNNN XX X X X X XX : S..
line NNNNN TTTT S..
Assembly
listing line NNNNN c C L L L L L B X X X X X X X X A S...
Ignored
source
image line NNNNN Ys o
Error line | * % * * me s s ag e S
Literal .)
listing line Cc C L L L L L B X X X X X X X X A

Figure 5. Meta-Symbol Listing Format

Assembly Listing 85

SET, EQU, DISP
Argument Type

Floating long constant
Decimal constant

Character string constant

Undefined global symbol
Forward reference

Local forward 1eference
External reference
Double precision integer

I expression involving
a relocatable item

List, i.e.,

vclue‘, .« .,value,

Display in

Listing Value Field
FL

D

TEXT (For EQU and SET
directives)first 8 bytes of
constant in EBCDIC (for
DISP directive)

UND
FR
LFR
EXT
DPI

value of integer

addend 1 S.
LIST followed by:

value 1
only for DISP
directive

value
Ak ok ok

Note: Any of the list items might itself be a list. In thot

case LIST and **** will print to define the elements

of such a sublist.

ASSEMBLY LISTING LINE

Each source image line containing a generative statement

prints the following information:

NNNNN * Source image line number in decimal.
An asterisk identifies an update line.

CC Current section number in hexadecimal.
See CC under "EquateSymbols Line".

LLLLL Current value of execution location
counter to word level inhexadecimal.

B Blank, 1, 2, or 3, specifying the byte
displacement from word boundary.

XX,

XXXX, Object code in hexadecimal listed in

XXXXXX, groups of one to four bytes.

XXXXXXXX

A Address classification flag:

blank denotes a relocatable
field.

A denotes an absolute ad-
dress field.

F denotes an address field
containing a forward
reference.

X denotes an address field
containing an external
reference.

86 Assembly Listing

N indicates that the object code
produced for the source line
contains a relocatable item
(i.e., an address, a forward
reference, or external refer-
ence) in some field other than
the address field.

NN specifies intersection refer-
ence number.

SSS. .. Source image.

IGNORED SOURCE IMAGE LINE

A skip flag indication
xgH

is printed in columns 33-35 for each statement skipped by
the assembler during a search for a GOTO label or while
processing a DO or DOI directive with an expression value
of zero. It will also be printed for a system directive that
specifies a file included in the standard definition file.
NNNNN and SSS. .. have the same meanings as in an as-
sembly listing line.

The *S* flag is also printed in columns 33-35 beside any
CNAME directive containing a procedure name that was
not subsequently referred to in a command procedure refer-
ence line. If none of the names for a procedure are
referred to, the entire procedure will be skipped and so
indicated on the assembly listing.

ERROR LINE

When an error is detected in the source image line, the line
immediately following begins with the error indication

* ok k ok

This line may contain one or more single-character syntax
error codes or an error message. The error codes print be-
neath the part of the source image line that is erroneous.
The error codes and their meaning are fisted in Table 6;
the error messages are given in Chapter 7, "Meta-Symbol
Operations". ')

LITERAL LINE

Any literals evaluated during an assembly are printed imme-
diately following the END statement. Literals are listed in
the order in which they were evaluated, and the listing line
contains

CC Current section number in hexadecimal.
See CC under "Equate Symbols Line".

LLLLL Current value of execution location

counter to word level in hexadecimal.

Table 6. Meta-Symbol Syntax Error Codes

Significance

Code | Severity'
A 4
B 4
C 4
E 4
F 4
L 4
M 4
N 4
o 4

Arithmetic operand error. Arithmetic has been attempted with an operand on which arithmetic is not
syntactically meaningful, probably a list. For example:

(8,C) * 2
A

Column 1 of a continuation card does not contain a blank. For example:

MASK DATA
X!'3FFF*
B

2

Constant string error. A constant contains an illegal character or is improperly formed. For example:

X'ABCDEFG!
C

Expression error. An arithmetic expression is malformed (a missing operand, an unknown operator, etc.).
For example:

51/2
E

Invalid system file name. The argument field of a SYSTEM directive contains other than a legal Meta-
Symbol name. System SIG7FDP is substituted. For example:

SYSTEM ALPHA 1 2
F

Label error. The argument field of one of the directives CDISP, FDISP, DEF, REF, SREF, LOCAL,
OPEN, or CLOSE contains other than a well-formed Meta-Symbol symbol. For example:

OPEN 50
L

Missing command field.

Parentheses nesting error. For example:

A*B/(C+1)
N

Arithmetic overflow during constant conversion. For example: - ®

FX'1.5B2E3'
O

Mhe highest error
listing.

severity level encountered in the assembly is passed to the loader and appears at the end of the assembly

Assembly Listing 87

Table 6. Meta-Symbol Syntax Error Codes (cont.)

Code Severityt Significance
Q 4 An apparent constant qualifier other than C, D, O, X, FS, FL, or FX has bean encountered. For
example:
G'FFAB!
Q
S 4 A general violation of syntax structure has been encountered, usually a juxtaposition of characters that
provides no indication of intended meaning. For example:
BA(A)B
S
\ 4 A character not in the recognized character set has been encountered outside a constant string. For
example:
ALPHA.R2
\
X 4 The previous list has more than 255 elements.
Mhe highest error severity level encountered in the assembly is passed to the loader and appears at the end of the assembly
listing.
B Blank, 1, 2, or 3, specifying the byte If an asterisk follows the control section number, as

displacement from word boundary.

XXXXXXXX Value of literal as a hexadecimal mem-
ory word.

A Address classification flag. See "Assem-
bly Listing Line".

SUMMARY TABLES

Immediately following the literal table, the following eight
summaries are printed as a standard part of the assembly list-
ing. Each summary is preceded by an identifying heading.

1, Control Section Summary. Shows, in hexadecimal, the
section number, size, and protectiontype of all control
sections in the program. A typical item has the form

01 00584 2 PT 1

where 01 is the control section number, and 00584 is the
number of words in the section, plus two additional
bytes. PTdenotes “protection type" and 1 means that
protection type 1is assigned tothis section. Protection
type, an integer from O to 3, is specified by a CSECT
or DSECT, or PSECT directive (see Chapter 2). The con-

trol section summary is listed four items per line.

88 Assembly Listing

in
03*001D3 PT O

it indicates that control section 3 was declared to be
of size X'1D3" words in the object language (if gener-
ated), but that the listing indicates a different maxi-
mum size for control section 3. This may indicate that
a different amount of data was generated by pass 1 of
the assembler than was generated by pass 2. This con-
dition causes an error severity level of 3.

A page eject follows the control section summary and
the following summaries then print. Items 2 through 5
below may be omitted by including the option NS
(no summaries) on the METASYM control card. Items 6
through 8, the error summaries, always print, however.

Symbol Value Summary. Shows all nonexternal symbols
in the program, except those designated as LOCAL or
closed. A typical item has the form

SCALE/01 001B5

where SCALE is a symbol name, 01 is its control section
and 001B5 is the hexadecimal word address at which it

is defined. In place of a control section and word
address, some symbols will have a 32-bit value dis-
played as an eight-digit hexadecimal number or may
have a one- to four-character value type indicator.

In other words, the information following a symbol
name may have the same formatas described previously
under "Equate Symbols Line". On some items, the
slash is replaced by an asterisk if the SD option has
been included in the METASYM control card. The

SD option specifies that symbolic debugging code (i.e.,
a symbol table) is to be included in the relocatable
object module.

The symbol values are printed four per line except
where an entry is too long for its allotted print field
and overflows into the field to its right.

External Definition Summary. Shows all symbols in the
program declared to be external definitions. Format is
the same as the Symbol Value Summary.

Primary External Reference Summary. Shows all symbols
declared to be external references. Only symbol names
are listed, formatted seven per line where possible.

Secondary External Reference Summary. Shows all
symbols declared to be secondary external references.
Format is the same as for the Primary External Refer-
ence Summary .

Undefined Symbol Summary. Shows all symbols used
but not defined nor declared to be external references.
Format is the same as for the Primary External Refer-
ence Summary .

Error Severity Level. This line shows the highest error
severity level encountered in the program.

Error Line Summary. Shows the line numbers of all lir »s
inthe source program onwhich errors were encountered.

Assembly Listing 89

1. OPERATIONS

Meta-Symbol has been designed to run under control of
the Sigma Batch Processing Monitor and Batch Time-Sharing
Monitor, thereby making available to it all facilities of
the Monitor system. This document provides a discussion
of the Monitor interface that affects the typical user. In
particular, Monitor control commands necessary to assemble
a program are described. Consult the reference manuals
for the above mentioned Monitors for further information
about their operation and use.

BATCH MONITOR CONTROL COMMANDS

To assemble a Meta-Symbol program, a run deck containing
the necessary Monitor commands must first be prepared.
This chapter describes those commands. A large variety of
other Monitor commands exist; for these, the user is referred
to the appropriate Monitor Reference Manual.

JOB CONTROL COMMAND

The first card in each Meta-Symbol run deck must be a JOB
card, which has the format shown below.

1JOB account number, name, priority

where

account number is a 1- to 8-character alphanumeric
string identifying the account or project to which
the run is to be charged.

name is a 1- to 12-character alphanumeric string
identifying the user.

priority is a number between X'1' and X'F' speci-
fying the priority of the job. Although the priority
is not used by the unscheduled Monitor, it must be
specified; otherwise, the Batch Monitor will reject
the entire job.

LIMIT CONTROL COMMAND

Immediately following the JOB card there should be a
LIMIT card, which has the format shown below. The order
of the three limit options is immaterial.

ILIMIT (LO,limit),(PO,limit),(TIME, limit)

where limit is a decimal integer specifying maximum oper-
ational limits, as follows:

LO, limit specifies the maximum number of pages
that can be listed.

90 Operations

PO, limit specifies the maximum number of cards
that can be punched.

TIME, limit specifies, in minutes, the maximum
time that the job can take.

These three limits are applied, respectively, to the sums of
LO output, PO output, and time used across the entire job.
Thus, these limits should reflect the maximum expected
usage for all assemblies within the job, not just the first
assembly. If the LIMIT card is omitted, the installation
default limits are used.

ASSIGN CONTROL COMMAND

Appearing next in the run deck are any ASSIGN cards
relating to the assembly. Normally, ASSIGN cards will
not be needed, since the system has the following standard
default assignments.

Logical Device or File Physical Device

BO Card punch
CI Card reader
coO Card punch
DO Line printer
GO Magnetic disk
LO Line printer
SI Card reader
SO Card punch

X1 (Intermediate file)
X2 (Update file)
X2KF Update file)
X3 (Concordance file)

Magnetic disk
Magnetic disk
Magnetic disk
Magnetic disk

If the user desires to reassign any of these 1/O options, an
appropriate ASSIGN card is necessary. For most users, the
only change from the above standard assignments will be
the assignment to magnetic tape of Cl and/or CO or the
intermediate files.

Meta-Symbol does not protect against conflicts that may
arise when two or more output options are assigned to the
same physical device. Such conflicts (such as SO and LS
to a line printer, or SO and CO to a card punch) may cause
the output to be interspersed in an irregular manner. Such
conflicts should be resolved by reassigning one or more of
the output options to a different device, or by calling the
assembler more than once, specifying only one such option
per assembly .

METASYM CONTROL COMMAND

The next card in the run deck will be the METASYM card,
which has the following format:

IMETASYM optionl,option 2,...,option n

where any number of options, or none, may be specified.
The options and their meanings are given below.

AC(ac],acz, - .,ocn) Account number specification,
where each ac is a Batch

Monitor account number.

BA Batch assembly mode.

BO Binary output.

ClI Compressed input.

CN Concordance output.

co Compressed output.

DC Default concordance.

GO Ovutput GO file.

LD List standard definition file.
LO List assembly output.

LS List source.

LU List updates.

ND No standard definition file.
NS No summaries.

PD (sny,sn9, . . .,sn,) Producestandard definition file.
SD Symbolic debugging output.

SB or SB(. . .)
SCoor SC(. . .)

Sequence binary.
Sequence compressed.

SI Source input.
SO Source output.
SU Sequential update.

Options may be specified in any order. Except for AC,
repetitions of the same option are ignored, that is, the
effect is that of a single occurrence. If no options are
specified, the following options are assumed:

51,L0, GO

The METASYM card is free form; blanks may appear any-
where except between the two letters of an option name or
between the option name and the left parenthesis for AC,
B, and SC'. At least one blank must separate the METASYM
command from the first option. The option list may be con-
tinued on one or more cards following the METASYM card.
Continuation is specified by placing a semicolon at any
point where a blank is legal. Processing of the METASYM
card is then resumed at the first nonblank column. METASYM
continuation cards must not have an ! in column one.

If the program -is on cards, it must imfr\ediately follow the

METASYM card. However, if CN has been specified,

the METASYM card must be followed immediately by

~ Concordance Control Command cards, the last one of

.~ which must be a .END card (see "Concordance Control
Commands and Listing" later in this Chapter). . The

*tNote that blanks may be significant characters for the SB
and SC options.

Meta-Symbol program deck is considered terminated by the
first card containing an END directive in the command
field. Any cards after the END directive are ignored by
the Meta-Symbol assembler.

A sample METASYM card is shown below.

IMETASYM SI,LO, CI, BO, SB(BIN)

The meanings of the various options are as follows:

AC(acy,acy,...,ac,) where n < 9. This option is used
in conjunction with the SYSTEM directive of Meta-Symbol.
With this directive, the user has the capability of calling
system files that have been placed on disk. Normally the
only system files used are those provided by the assembler
(namely, SIG7FDP, ... ,SIG5). However, when a user wants
to provide his own system files, a minor problem arises in
that, typically, he will have access to only a limited number
of account numbers' provided by the Monitor with which to
identify these files when they are entered onto the disk.
In order for Meta-Symbol to access these files, the assembler
must be told what their account numbers are. The AC option
provides this information.

If the AC option is specified and Meta-Symbol later en-
counters a SYSTEM directive, it will ask the Monitor to
search for the system name in the Monitor's account number
and nome table, under the account numbers given in the AC
option. The search will be performed according to the order
of the numbers in the AC option, from left to right, until
the specified system is found or the account nymbers are
exhausted. If the system is not found under the user-
specified account numbers, the systems filed under the
“system account number"tt are then searched. If the AC
option is not specified, the system specified by the SYSTEM
directive is searched for only under the "system account
number", Since all standard Meta-Symbol systems are filed
under the "system account number", they will be found
correctly even when the AC option is not used. If more
than one AC option is specified, the search is performed
from left to right across the card.

Thus,
IMETASYM AC(1),...,AC(2,3),...,AC(4),...
is equivalent to
IMETASYM AC(1,2,3,4),...
and both will cause a system search to be performed, first

under account number 1, then 2, 3, 4, and, finally, under
the "system account number".

fSee " JOB Control Command" for the definition of account
numbers.

M he "system account number" is the account number (:SYS)
under which all standard Xerox Sigma software is filed.

Batch Monitor Control Commands 1

A system is identified by the name under which it is entered
on the disk. This name must correspond to the name speci-
fied on the SYSTEM directive line used to reference the
system. Further, a system name must constitute a legal
"symbol" according to the Meta-Symbol syntax rules,
whereas the Monitor's rule for naming files is somewhat
broader (see "Creating System Files").

BA Selects the batch assembly mode. In this mode, suc-
cessive assemblies may be performed with asingle METASYM
card. The assembler will read and assemble successive pro-
grams until a double end-of-file is read. In the batch mode
current device assignments and options on the METASYM
card are applied to all assemblies within the batch.

A program is considered terminated when an END directive
is processed. Successive programs may or may not have an
end-of-file indicator separating them.

With input from the card reader, an end-of-file is indicated
by an EOD card. Two successive EOD cards or any other
Monitor control card terminates the job.

With input from unlabeled magnetic tape, standard tape
end-of-files provide job termination.

With input from labeled files on disk or tape, the job will
terminate when all programs inthe file have been assembled.

When batch assemblies consist of successive updates from
the card reader, to compressed programs from disk or tape,
the update packets are considered terminated by a +END
card, and should not be separated by EOD cards. There
must be a one-to-one correspondence of update packets to
compressed programs. End of job is signaled by end-of-file
conventions applied to the Cl device.

Output may be to any device, or labeled files on disk or
tape. QOutput on a device will be separated by ends-of-
file, and terminated by a double end-of-file. All output
to labeled files specified on the original ASSIGN card will
be written as successive records in the appropriate output
file, without module or program end-of-file separators.

BO This option specifies that binary output is to be pro-
duced on the BO device.

Ci This option specifies that compressed input is to be
taken from the Cl device.

CN This option specifies that a concordance, or sym-
bolic name cross-reference listing, is to be produced on the
LO device. One or more Concordance Control Commands
will follow the METASYM card on the C device. These
commands specify the range of names to be included in the
concordance (see "Concordance Control Commands and
Listing" later in this chapter). The concordance listing is
produced at the end of the assembler's encoding phase, and
does not require a full assembly. It may be produced in
conjunction with an LS listing.

co This option specifies that compressed output is to
be produced on the CO device.

92 Batch Monitor Control Commands

oc This option specifies that a “standard" concordance
is to be produced on the LO device. The DC option differs
from the CN option in that no attempt is made to read the
C device for concordance control commands. If both DC
and CN are specified, the DC option takes priority, and
the CN option is ignored.

GO This option specifies that the binary object program
is to be placed in a temporary file from which it can later
be loaded and executed. The resultant GO file is always
temporary and cannot be retained from one job to another.
To retain the binary object program for a subsequent job,
the BO option (with BO assigned to disk or magnetic tape)
must be used.

LD This option specifies that a listing of the standard
definition file (if any) is to immediately piecede the noi-
mal program listing. LD will have no effect if LO is not
also specified.

Lo This option specifies that a listing of the assembled
object program is to be produced on the LO device.

LS This option specifies that a listing of the source pro-
gram is to be produced on the LO device. This listing con-
sists of an image of columns 1 to 72 of each input line (after
updates have been incorporated) with its line number.

LU This option specifies that a listing of the update
decks (if any) is to be produced on the LO device. This
listing consists of an image of each update line with the
number of the lines in the update deck.

ND This option specifies that no standard definition file
is to be input for this assembly. Note that PD implies the
ND option, so that ND is redundant if PD is also specified.

NS This option specifies that summaries following the
assembly listing are to be omitted for symbol values, ex-
ternal definitions, and primary and secondary external
references.

PD (shy...,Sny) This option specifies that a standard
definition file is to be produced. The file will ke written
through the F:STD DCB, which contains a built-in file name
of $:STDMET. Thus, if F:STD is not reassigned, the PD op=
tion will cause creation (or overwriting) of a file, $:STDMET,
in the current job account. F:STD may be assigned to a dif-
ferent file name in the current account, and a standard defi-
nition file of that name will then be created.

The optional sn; are names which, if used as arguments of a
SYSTEM directive in a program that subsequently uses this
file, will cause that SYSTEM directive to be ignored. This
allows programs to reference SYSTEM directives as usual,
yet take advantage of a standard definition file that includes
the designated system.

$B,SC These options specify, respectively, that binary or
compressed card images are to be sequence numbered in col-
umns 77 to 80. The form SB(...) or SC(...) also may be
used, where the ellipsis represents a string of alphanumeric
characters.” With this form the leftmost four characters of

t .

All legal EBCDIC characters are permitted except for com-
mas, semicolons, and left or right parentheses. Blanks are
treated as significant characters.

the string are punched as identification in columns73to 76.
If fewer than four characters are specified, they are left-
justified and blank-filled in the remaining columns. [f SB
or 5C is specified without a corresponding output option
(BO or CO, respectively), the SB or SC option has no
effect.

SD This option specifies that symbolic debugging code
(i.e., asymbol table) is to be included in the relocatable
object module produced by the assembler. Inclusion of this
symbol table allows a debug subsystem to associate symbolic
names and type information with specified memory cells.
This allows run-time debugging and modification of a pro-
gram in a symbolic format similar to the actual assembly
listing.

If the SD option appears on the METASYM card, BO or GO

must be given also.

When a symbol value summary is produced at the end of the
assembly listing, any symbols entered into the object code
will be identified in the summary by an asterisk (*) instead
of a slash (/) preceding their value, word address, or type

indicator.

] This option specifies that symbolic input is to be
taken from the SI device.

SO An EBCDIC card image representation of the input
program is to be produced. The symbolic records will be

written on the SO device. The full range of assignments

may be made when obtaining source output.

Creation of source output does not require a complete as-
sembly, but rather is done during the encoding phase.

Su This option specifies that the update control com-
mands (see "Updating a Compressed Deck ")within any up-
date deck must be given in sequential order. Normally, the
order of these commands is immaterial, the assembler order—
ing them as required; but if SU is specified, only update
control commands in sequential order are permitted. This
option is provided to accommodate those systems whose disk
storage is too small to hold the intermediate file necessary
to perform updating. In such a case, this file could be
placed on magnetic tape.

EOD CONTROL COMMAND

In the batch mode (that is, when the BA option is specified),
programs on cards may optionally be separated by EOD
cards, which have the format 'EOD.

Each EOD card will normally be placed immediately after the
END card in a program deck. Any cards between the first
END card of the program and the EOD card are ignored.

FIN CONTROL COMMAND

Another Monitor control card should allow the last program
deck of the assembly. This may be a FIN card, which has
the format 'FIN.

Since the FIN command returns the Monitor to the idle

state, however, the program deck will be followed in most
cases by a LOAD card, METASYM card, or JOB card.

UPDATING A COMPRESSED DECK

By the use of the CO option on the METASYM card, Meta-
Symbol may be directed to produce a compressed deck of a
source program which can then be used as input during a
later assembly. Since a typical compressed deck contains
one-fourth to one-fifth as many cards as the corresponding
source deck, the use of compressed decks offers significant
operating advantages in both manageability and speed. The
following discussion explains how to update a compressed
deck with an"update packet". An update packet is consid-
ered to be the set of cards between the first t (update)
command and the compressed deck. If any symbolic carcs
precede the first | command they are termed a "symbolic
deck"; however, they are treated as if they were preceded
by a 10 card (see 'k below); that is, they are inserted
before the first line of the program.

Meta-Symbol recognizes four update control commands:

13 where k is a line number corresponding to a
line number on the source ov assembly listing
produced from the compressed deck. The 1k
control card designates that all cards following
the tk card, up to but not including the next
update control card, are to be inserted after
the kth line of the source program. The com-
mand 10 designates an insertion before the first
line of the program.

Uik where j and k are line numbers corresponding
to line numbers on the source or assembly listing
produced from the compressed deck, and j< k.
This form designates that all cards following the
1j.k card, up to but not including the next update
control card, are to replace lines j through k of
the source program. The number of lines to be
inserted does not have to equal the number of lines
removed; in fact, the number of lines to be in-
serted may be zero. In this case, lines j through k
are deleted.

o4 identifies a comment card that will be dis-
played within the update listing (LU specified),
but will have no other effect upon the update
process. Comments may begin in column 3 of
the 1* command. Comment cards are not in-
serted into the program being updated.

+ END designates the physical end of an update
packet. If the SI and CI devices are the same,
this command is optional, since, if omitted,
Meta-Symbol will terminate the update packet
automatically on encountering the first compressed
card. If the SI and CI devices are different, this
command is required.

Updating a Compressed Deck 93

The + character of each update control command must be in
column 1, followed immediately by the control information,
with no embedded blanks. The control command is termi-
nated by the first blank column encountered. Optionally,
the blank may be followed by comments. Unless the SU op-
tion has been specified, the update control commands, with
their associated update records, may occur in any order;
Meta=-Symbol will order them as required.

The ranges of successive insert and/or delete control com-
mands must not overlap, except that the following case is
permissible: +j,k followed by +k, where j<k.

Overlapping or otherwise erroneous control commands will
cause an abcert error.

PROGRAM DECK STRUCTURES

Meta-Symbol accepts two basic types of input decks:
symbolic decks and compressed decks preceded by optional
update packets. Meta-Symbol will accept any number of
alternating symbolic and compressed (with update) decks
until a deck is found that contains an END directive; any
cards remaining after the END directive are ignored up to
the next Meta=Symbol control card. These decks, up to
and including the END directive, are combined into one
program. Five basic deck structures are possible, as shown
in Figure 6.

1. Symbolic only.

Symbolic

2. Compressed only.

Compressed

3. Compressed with update.

I—Compressed

Update

Figure 6. Basic Symbolic and Compressed
Deck Structures

94 Program Deck Structures

4. Symbolic and compressed.

Y
|

Compressed

r

5. Symbolic and compressed with update.

I.

Compressed

Figure 6. Basic Symbolic and Compressed
Deck Structures (cont.)

Any of these five kinds of deck structures may be combined
with any other kind, as required. Various legal deck struc-
tures are shown below in Figure 7.

Compressed

I Compressed

Figure 7. Sample Legal Deck Structures

I Compressed

2.

bymbol ic
Compres;ed
3.

Compressed

Compressed

Compressed

lCompressed

(81)

éymbollc

(C1

Compress‘eﬂdv B

Figure 7.* Sample Legal Deck Structures (cont.)

If the SI and CI devices are different and it is desired to
read compressed input from the CI device, then the only
permissible structure is that shown in Figure 8.

Figure 8. Deck Structure for SI and CI on
Different Devices

The symbolic deck on the SI device may be omitted. If the
SI device contains a compressed deck preceded by an update
packet that does not terminate with a +END card, that
compressed deck will be updated and assembled, and the
CI device will not be read.

If an update packet and its associated compressed deck are
to come from different devices, both SI and CI must be
specified on the METASYM card. If both are on the same
device (or if only symbolic input or only compressed input
is to be processed), the assembler can distinguish among
the three types of decks from the deck structure and card
format, and is therefore not dependent on the options speci-
fied. The action of the assembler for each combination of
options is as follows:

SI (or CI) only. The assembler will read from the SI (CI)
device and process whatever structure it finds. In either
case, this may consist of any legal combination of symbolic,
update, and compresseddecks. The only difference between
the SI and CI option in this situation is that SI causes input
to be read from the SI'device and CI from the CI device.

Sl and CI. The assembler will read the SI device first; it

must contain some information. If the input deck on the SI
device consists of an update deck terminating with a + END
control command, the CI device is then read. If there is no

. +END card on the update deck, and this is followed by a

compressed deck, it is assumed to be the compressed input
specified by the CI option and no attempt is made to read
the CI device.

Program Deck Structures 25

(The section headed "Maintaining Compressed Files on
Magnetic Tape" has been deleted.)

CREATING SYSTEM FILES

To place a system deck on disk, the Monitor control com-
mand sequence shown in Figure 9 could be used.

|' IFIN
I_Sysrem Deck
_[COPY CR TO system name
frpcL

1JOB account, name, priority

Figure 9. Example of System File Creation

This sequence will cause the deck following the PCL COPY
card to be entered onto the disk with the "system name"
given on the COPY card and under the account number
specified on the JOB card. The system deck may consist of
either a single symbolic or a single compressed Meta-Symbol
program. If the account number is the "system account
number" (:SYS), this system deck can be referenced by
other programs without using the AC option on a METASYM
card. Otherwise, any assembly that needs to reference this
deck must use the appropriate AC option. That is the case
in the typical usage shown in Figure 10.

Part of

symbolic
input
deck

s
/

Vi
SYSTEM MYS$PROCSDECK
(Card containing

SYSTEM statement)

7
/
7

IMETASYM SI, LO, BO, AC(3716) \—
[system deck named MY$PROCSDECK
[1coPY CR TO MY$PROCSDECK
IPCL
1JOB 3716, BRIAN, 1

Figure 10. Use of the AC Option

Note that use of the AC option was necessary even though
the assembly was done under the same account number as
that under which the system deck MY$PROCSDECK was

entered. This number was not the system account number.

CREATING AND USING A STANDARD
DEFINITION FILE

Although system files provide the most general and flexible
means for including common source libraries into the pro-
gram, they can cause a processing overhead that is unac-
ceptable for short programs or on-line terminal use. A
standard definition file is similar in function to a system
file, but exists in a Meta-Symbol internal format that is
directly usable by the assembler, thus avoiding the proces-
sing time required for source or compressed system files.
Unlike system files, a standard definition file is not invoked
by name but is automatically read in prior to starting an
assembly. Only one standard definition file is available
to a single program, but SYSTEM directives may still be
used to include other required source library files in the
program.

Since standard definition files are installation-specific in
content, a program that may be assembled at different in-
stallations should still use a SYSTEM directive to identify
each required system file. The process of producing a stan-
dard definition file allows specification of system file names
that are included in that file; Meta-Symbol will then ig-
nore any SYSTEM directives whose file name is one of those
included in the standard definition file. Figure 11 illus-
trates a typical standard definition file creation.

['FIN

[EnD

| SYSTEM DATADEF

| SYSTEM BPM

| SYSTEM siG7FDP
[[METASYMSI,PD(SIG,BPM,DATADEF)

1JOB :SYS, STANDARD, 7

Source
deck

Figure 11. Creation of a Standard Definition File

Note that the Sigma instruction procedures are identified in the
PD option with the special keyword SIG. When a SYSTEMdi-
rective is included in the program that specifies any of the in-

struction subsets (SIG5P, SIG7, etc.), thedirectiveisignored

and treated as if it specified the same set of instruction proce-

dures which was used to create the standard definition file.

96 Creating System Files/Creating and Uing a Standard Definition File

By default, use of the PD option will produce a file named

$:STDMET in the current job account. Also by default, it
will attempt to open the $:STDMET file (unless the ND op-
tion is used) first in the current job account, and if not
found, in the :SYS account. If neither account contains

a $:STDMET file, the assembly proceeds as if ND had been
specified. Note that the AC option does not apply to

standard definition files.

It is possible to create and use standard definition files with
other names. This requires an ASSIGN card for the F:STD
DCB prior to calling Meta-Symbol. Figure 12 illustrates
this method.

Unlike the default case when F:STD is preassigned by Meta-
Symbol, a user assignment of F:STD will cause an abort if
the file cannot be located.

There is no restriction on the language elements that may

be included in a standard definition file, although it is ex-
pected that the common use will be for procedure defini-

tions and certain symbol definitions. No output occurs on
the listing for inclusion of a standard definition file; if the
file causes code to be generated, the location counters will
start with the values last set by the standard definition file.

CONCORDANCE CONTROL COMMANDS
AND LISTING

When the CNoption is included on the METASYM card, the
assembler will access the C device for additional control
records describing the data to be included in the concor-
dance (symbolic name cross-reference) listing.

An alphanumeric string, such as R2, B, o‘r RES is considered

by Meta-Symbol to be an operation code when used in the
first command field of a statement. When used elsewhere
in a statement it is considered to be a symbol.

If desired, a "standard" concordance can be produced by
entering the DC option on the METASYM command and
omitting all concordance control records on the C device.

The "standard" concordance listing does not include opera-
tion code names, but otherwise includes all symbol refer-

ences, including function and command procedure names
and intrinsic functions such as §, L, AFA, etc.

LOCAL symbols or symbols appearing as arguments of a
SYSTEM directive do not appear on any concordance listing.
Except for this restriction, all symbols and operation codes

used in a program can be listed by selective use of the con-
cordance control commands.

CONCORDANCE CONTROL COMMANDS

The concordance subsystem provides the following commands
for specifying the contents of a concordance listing:

10 Include all or a selected set of operation codes.
SS Suppress all or a selected set of symbols.
OS Include only a selected set of symbols.

DS Produce a modified LS listing, displaying only
lines that reference a selected set of names.

END Terminate concordance control commands.

\

I User program

r IMETASYM S1,LO,DC

IASSIGN F:STD,(FILE,MY$PROCS)

[1JoB 124C41 RALPH,5

[User standard definition source

I IMETASYM 51,PD

| 1ASSIGN F:STD,(FILE,MY$PROCS),(SAVE)

1JOB 124C41,RALPH,5

Figure 12. Creation and Use of a Named Standard Definition File

Concordance Control Commands and Listing 97

The control records must have a period (.) in column 1 and
the selection code (i.e., command name) in columns 2-4,
After a space of one or more blanks, a name list of the form
name1, name?, ... may follow the selection code. Em=-
bedded blanks between names in the list are not allowed.
The name list may be continued for several physical records
by using the Meta-Symbol semicolon continuation conven=
tion. Furthermore any number of records containing the
same selection code may be used.

Symbols specified on concordance control commands are im=-
plicitly OPENed when the command is processed. The sym-
bols may subsequently be OPENed and CLOSEd within the
program and the command will control all such symbols with
the same name. However, if a CLOSE balances the initial
implicit OPEN, that symbol is effectively removed from fur-
ther concordance control at the point of the CLOSE.

Concordance control records are printed, as read, on the
LO device.

10 This command specifies that all operation codes, or
only those given, are to appear on the concordance listing.
The form of the command is

.]O[nome],namez, v ,nomen]

If the name list is given, only the operation codes it
specifies will be listed. If the name list is absent, all op~
eration codes will be listed. (The brackets do not appear
on the control record; they are shown above only to indi-
cate that the name list is optional.)

S This command specifies that all symbols, or only
those given, are to be suppressed on the concordance listing.
The form of the command is

.SS [nome] ,namey, .. .,name]

If the name list is given, only the symbols it specifies will
be suppressed. If the name list is absent, all symbols will
be suppressed. The SS and OS commands (explained below)
may not both be used in a given set of concordance control
commands. (The brackets do not appear on the control rec-
ord; they are shown above only to indicate that the name
list is optional.)

0s This command specifies that only a given list of
symbols is to appear on the concordance listing. The form
of the command is

.OS ndme],name2, -+ +/name

98 Concordance Control Commands and Listing

The name list is mandatory. Only the symbols it specifies
will appear on the concordance listing. The SS and OS
commands may not both be used in a given set of con-
cordance control commands.

DS This command specifies that a given list of symbols is
to be displayed by producing a modified LS listing. (The LS
option was explained previously under "METASYM Control
Command",) The format of the DS command is

.DS name,,name,, ...,name
1’ 2’ ! n

The name list is mandatory. Only the symbols it specifies
will appear on the modified LS listing. Instead of the en-
tire source program, the LS listing will display only lines
containing names — in any context — specified in the DS
name list. The DS command is independent of the 10, SS,
and OS commands. The DS command overrides a request for
a full LS listing.

END This command identifies the end of a set of concor-
dance control commands. Its format is

.END

The END command is mandatory if the CN option is speci=
fied. If only the END command appears on the C device,
a “"standard" concordance listing will be produced.

CONCORDANCE LISTING

The concordance listing precedes the regular assembly list-
ing. Names are printed on the concordance listing in
alphabetical order, sorted on the first seven characters.
Appearing on the lines below each name are one or more
name reference items. The general format of each name
reference item is

- op. code
reference line number { $

/ op. code [*]
where

reference line number is the source program line
number in which the name appears. The largest
reference line number that may be correctly pro-
cessed is 32767. 1f update records appear in the
concordance in the form "n.n", the largest update
record number (".n") that may be correctly pro-
cessed is 16383.

- op. code indicates that the name occurs in the
label field of the reference line, and op. code is
the operation code name used on that line.

$ indicates that the name occurs in the first com-
mand field of the reference line. In this case, $
terminates the reference item.

/ op. code (+] indicates that the name occurs in
other than the label or first command field of the
reference line, and op. code is the operation
code name used on that line. The operation code
name may be followed by an asterisk if the name
specified occurred in argument field 1 and was
indirectly addressed.

A sample name might appear on the concordance listing as

A

372 - DATA 459/LW*

This display means that symbol A was used at line 372 in
the label field of a DATA statement, and at line 459 of an
indirectly addressed Load Word instruction.

Reference line numbers can appear in the form "n" or
"n.n", depending on the form of the source program. The
form n.n appears for those lines that are in an update rec-
ord format and for which a new compressed file has not
been produced.

The reference items following each name are formatted
seven per line and are sorted by reference line number.
Unusually long operation code names will cause fewer ref-
erence items per line to be printed.

LIMITATIONS

The largest reference line number that may be correctly
processed is 32,767. If update records appear in the con—
cordance in the form "n.n", the largest update record num-
ber (".n") that may be correctly processed is 16,383.

META-SYMBOL ERROR MESSAGES

Meta=-Symbol has two basic phases: (a) the "encoder" phase,
during which the input file is read and updated, system
files are read, and syntax analysis is performed; and (b) the
"assembly" phase, during which the input is assembled, and
a listing and binary object program are produced. Both
phases of Meta-Symbol may generate various error messages

and diagnostics. This chapter explains these error messages.

TERMINAL ERRORS

Certain unusual conditions cause Meta-Symbol to terminate
an assembly prematurely. In such a case, an explanation
for the termination is given, followed by the message

METASYMBOL ABORT ERROR

If an abort occurs during a batch assembly (BA) run, the
standard termination message is

METASYMBOL ABORT ERROR
PROCESSING PROGRAM NO. nnn

where nnn is the sequence number of the program within the

batch.

Following either of the above messages, Meta-Symbol causes
an error exit (M:ERR) to the monitor.

ENCODER PHASE ERROR MESSAGES

Errors detected during the "encoder" phase fall into five
classes:

SYNTAX ERRORS

The encoder detects a variety of syntax errors during its pass
over the input file. These errors are noted for later inclu-
sion in the assembly listing, and will also appear in the
source listing if one is produced (i.e., if the LS option is
specified), Syntax error identification is in the form of a
one-character flag displayed beneath the character in the
symbolic image at which the error was detected. These
one-character flags and their meanings were given in
Table 6, Chapter 6.

ERRORS ENCOUNTERED DURING PROCESSING OF AN
UPDATE PACKET

Update Syntax Errors

record number erroneous control record

ILLEGAL SYNTAX

METASYMBOL ABORT ERROR

The update control record displayed has a syntax error in
the position indicated by the colon. The position of the
erroneous record in the update packet is indicated by the
record number. For example:

100 +5,Z

Update Record Sequence Errors

record number 1 erroneous control record 1

record number 2 erroneous control record 2

ILLEGAL UPDATE SEQUENCE

METASYMBOL ABORT ERROR

The update control records displayed are not in sequential
order and the SU option has been specified.

Meta-Symbol Error Messages 99

Update Command Value Errors

erroneous control record
ILLEGAL UPDATE SEQUENCE
METASYMBOL ABORT ERROR

record number

The update control record displayed is of the form +j,k
where j > k.

Update Record Overlap Errors

record number 1 erroneous control record 1
erroneous control record 2
OVERLAPPING SEQUENCE NUMBERS

METASYMBOL ABORT ERROR

record number 2

The update control records displayed are overlapping in an
illegal manner. For example:

10 +13,26
27 +3,15

Update Line Number Errors

UPDATE CONTROL NUMBERS EXCEED COMPRESSED
FILE

METASYMBOL ABORT ERROR

A line number specified in an update control record is
greater than the number of lines in the program.

ERRORS ENCOUNTERED WHILE PROCESSING AN INPUT
FILE

Input File Control Byte Errors

ERROR RECORD CONTROL BYTES xx/xx/xx/xx.
1D/SEQUENCE/CHECKSUM/BYTE COUNT.

PROCESSING SYSTEM — system name.] | °"or 06~
curs while
AT LEVEL — level of system file nesting. processing a
system file.
ID
COMPRESSED RECORD [SEQUE NCE ERROR
CHECKSUM

identification
SHOULD BE — correct { sequence
checksum

METASYMBOL ABORT ERROR

While reading a compressed input or system file, a com-
pressed record was encountered with the indicated erroneous
control byte.

100 Meta-Symbol Error Messages

Compressed Input File Missing

COMPRESSED FILE MISSING AFTER UPDATE PACKET
METASYMBOL ABORT ERROR

After processing an update packet, the encoder expected
but did not find o compressed file on the appropriate input
device.

Compressed Input File Incomplete

INCOMPLETE COMPRESSED FILE

PROCESSING SYSTEM — system name, | || /O 0¢~
curs while

AT LEVEL — level of system call nesting. processing d
system file.

METASYMBOL ABORT ERROR

A symbolic record or an end-of-file was encountered while
processing a compressed file, prior to having encountered
the compressed end-of-file byte. Typically, this error
occurs when cards have been lost from the end of a com-
pressed deck.

Input File END Directive Missing

EOF ENCOUNTERED. END DIRECTIVE SUPPLIED BY
ENCODER.

PROCESSING SYSTEM — system name. If ervor oc-
curs while

AT LEVEL - level of system call nesting. processing a

. system file.

While processing the input file, an end-of-file was encoun-
tered prior to encountering an END directive. The missing
END directive is supplied by the encoder.

ERRORS ENCOUNTERED DURING THE OPENING OR
PROCESSING OF SYSTEM FILES

System Missing

UNABLE TO FIND SYSTEM — system name.
AT LEVEL — fevel of system nesting.

METASYMBOL ABORT ERROR

A SYSTEM directive specifying the system name displayed
has been encountered, but there is no system filed with this
name under any of the account numbers specified by the
AC option (if any), under the current job account, or under
the “system account number".

Monitor-Detected Errors

ERROR IN OPENING - system nome.
AT LEVEL ~ level of system nesting.

METASYMBOL ABORT ERROR

Duplicate Definitions of Program Symbols

DBL DEF

An error has occurred while trying to find the system filed
under the system name displayed.

OTHER ABNORMAL CONDITIONS ENCOUNTERED BY
THE ENCODER

No Input Option Specified

NO INPUT SPECIFIED,

METASYMBOL ABORT ERROR

Neither SI nor Cl was specified on the METASYM card,
but the card contained other options.

Monitor-Detected Abnormal Conditions

BAD 1/O. ABNORMAL CODE — xx.

If error oc-
curs while

processing a
system file.

PROCESSING SYSTEM — system name.

AT LEVEL — level of system call nesting.

METASYMBOL ABORT ERROR

An abnormal condition has been signaled by the Monitor.

Encoder Abort Errors

ENCODER ABORT,

symbolic image

METASYMBOL ABORT ERROR

A machine error or an assembler error during the encoder's
syntax analysis was encountered in processing the line
displayed.

ASSEMBLY PHASE ERROR MESSAGES

In the "assembly" phase, a variety of syntactical, logical,
and functional errors are detected during the two passes
over the input. These errors are normally included in the
assembly listing, but will be listed on the LO device even
if the LO option is not specified. The non-fatal errors
cause severity of 3. ‘

Checksum Errors

X1 CHECKSUM ERROR
METASYMBOL ABORT ERROR

A hardware malfunction has occurred while reading the
intermediate file.

This error message is caused by one of the following
conditions:

1. A non-redefinable symbol is defined more than once
within the program, or a symbol is defined in both
a redefinable and a non-redefinable context.

2. The same symbol is declared as an external definition
more than once within the program, or the symbol is
declared as both an external definition and an external
reference.

Unterminated Loops

PEND/END BEFORE FIN

The assembler has detected an unterminated DO or WHILE
loop (i.e., a PEND or END directive was encountered
before the FIN directive that should have terminated the
loop).

Unterminated Procedures

END BEFORE PEND

The assembler has detected an unterminated procedure (i .e.,
an END directive was encountered before the PEND direc-
tive that should have terminated the procedure).

Illegal Placement of a Directive

INVALID DIRECTIVE

This error message is produced when a directive occurs in a
context where it either is meaningless-or cannot be pro-
cessed consistently.

I. AnELSEorFINdirective occurs outside a DO or WHILE
loop, or an extra ELSE was encountered inside a DO
or WHILE loop.

2. A PENDdirective occurs outside aproceduredefinition.

3. A DOI, END, or SYSTEM directive immediately fol-
lows a DOldirective thathas a repeat count greater
than one.

4. AnS:RELPdirective was encountered within a procedure.

Meta-Symbol Error Messages 101

Illegal Argument Fields

ILLEGAL AF

This error message is caused by one of the following
conditions:

1. The argument field for SCOR or TCOR is not a list.

2. The argument field for BOUND contains other than an
integer from 1 to X'8000'.

3. The argument field for DO, DO, RES, SPACE, or
WHILE contains other than a single-precision integer.

4. The argument field for ORG or LOC contains other
than an integer or an address.

5. The argument field for USECT contains other than an
address.

6. The argument field for CSECT, DSCET, or PSECT con-
tains other than an integer between 0 and 3.

7. The argument field of a standard instruction is blank,
or contains more than two fields.

8. The argument field for DEF, REF, SREF, CDISP, or

FDISP contains other than unsupscripted global symbols.

9. The (nonblank) argument field for TITLE contains other
than a single character string constant of 0 to 75
characters.

10. The argument field of an immediate class instruction is
indirect, or specifies indexing.

11. The (honblank) argument field for LIST, PCC, PSR,
PSYS contains other than a non-negative, single-
precision integer.

12. The argument field for ERROR, TEXT, or TEXTC con-
tains other than character string constants.

13. The argument field for COM or GEN contains more

values than the nu—ber of fields specified in the
command field.

Illegal Command Fields

ILLEGAL CF

This error message is caused by one of the following
conditions: o

1. Theseverity level for” ERROR is other than an inte-
ger from O to 15, or the condition is other than “an
integer.

2. The command field for ORG, LOC, REF, or SREF con-

tains other than the integers 1, 2, 4, or 8.

102 Meta-Symbol Error Messages

3. The command field for DATA contains other than an
integer from 0 to 16.

4. The command field (for class 0 or 2) of a standard
instruction is blank.

5. The (nonblank) command field list for COM and GEN
contains other than non-negative, single-precision in-

tegers, or the total is not a multiple of 8, or is greater
than 128.

6. The (nonblank) command field for CNAME, EQU,
GOTO, RES, S:SIN, or SET contains other than a
non-negative, single-precision integer, or the com-
mand field for S:SIN is greater than 2.

lllegal Forward References

ILLEGAL FORWARD

A symbol or literal was used in a directive in such a way
that core allocation could not be determined at the time
that the directive was processed (e.g., a forward reference
in the field list of a GEN directive or in the command or
argument field of a RES directive).

Unsatisifed Local GOTO Searches

INVALID LOCAL GOTO

The assembler has encountered a LOCAL directive while a
GOTO search was being made for a local symbol.

IHlegal Use of GOTO

ILLEGAL GOTO

This error message is caused by one of the following
conditions:

1. Command field two of the GOTO directive specifies a
number greater than the number of symbols in the argu-
ment field.

2. The selected argument is not a symbol.

3. The selected argument is a local symbol passed info the
procedure from the reference line.

Illegal Labels

ILLEGAL LABEL

This error message is caused by one of the following
conditions:

1. The label field for CNAME, COM, FNAME, orS:SIN
contains other than an unsubscripted global symbol or
a list of such symbols.

2. The label field for DSECT contains other than a single
unsubscripted global symbol.

3. The label field for a directive that enters values into
the symbol table contains other than a blank, a symbo!,
a subscripted symbol, or a [ist of symbols or subscripted
symbols.

1llegal Subscripts

ILLEGAL SUBSCRIPT

A subscripted definition is not an integer from 1 to 255, or
a subscripted reference is not an integer from 0 to 255.

Maximum Procedure Level Exceeded

PROC LEVEL > 31

More than 31 levels of procedure referencing have been
encountered.

New Literals in Pass 2

NEW LITERAL IN PASS 2

Most commonly, the argument of a literal is itself a literal,
i.e., the literal of a literal.

I[llegal Operand Types

OPERAND TYPE ERROR

An operand that is illegal for the associated operator (or,
possibly, for all operators) has been encountered.

Excessive Number of List Elements

LIST TOO LONG

The indicated operation would create a list containing more
than 255 elements. The list is truncated to the first 255
elements.

Unterminated Skips

SKIP TERMINATED BY PEND/END

The assembler has detected an unterminated skip in a con-
ditional assembly sequence in a procedure (i.e., a PEND
or END directive was encountered before the termination
condition was satisfied).

Memory Overflows

INSUFFICIENT CORE
META-SYMBOL ABORT ERROR

The program being assembled is too large to assemble in
the amount of core memory available. (This error can also
occur during the "encoder" phase.)

Overlong Text Strings

TEXT TOO LONG

Asingle text string contains more than 255 EBCDIC characters.

Excessive Generated Data Lengths

TRUNCATION

The assembler has encountered a generated data value that
is too long for the specified field.

Undefined Local Symbols

UNDEFINED LOCALS

A symbol declared to be local was used, but not defined,
within the previous local region. (This message appears at
the end of a local region.)

Undefined Symbols

UNDEF SYM

An attempt was made to evaluate a global symbol that was
not defined on Pass 1 of assembly, and has not yet been de-
fined on Pass 2.

Unrecognized Commands

UNDEF COM

The assembler has encountered a command procedure refer-
ence containing an unrecognized command procedure name.
The command is evaluated as if it were a class O instruction
with an op~code of X'00'.

Circularly Defined Symbols

CIRCULAR DEF

The assembler has encountered a symbol that is defined in
terms of itself, either directly or indirectly.

Use of Doubly Defined Symbols

USE OF DBL DEF SYM

The assembler has encountered an instruction in which a
doubly defined program symbol is used.

Meta=Symbol Error Messages 103

IHlegal Object Language Value

VALUE TYPE ERROR

The argument cannot be expressed in the standard object
language.

Doubly Defined Commands

DBL DEF COM

The assembler has encountered a CNAME, COM, or S:SIN
statement label that is identical to the label of another
CNAME, COM, or S:SIN statement.

Arithmetic Operand Precision Exceeded

ARITHMETIC TRUNCATION

The assembler has encountered an arithmetic operation in
which the precision of one or more of the operands exceeds
the limits allowed.

Iiegal Use of CNAME

DBL DEF DIR

An attempt has been made to redefine a Meta-Symbol di-
rective with CNAME, COM, or S:SIN.

Excessive Number of Control Sections

TOO MANY CS

A CSECT, PSECT, or DSECT directive has been encountered
after 127 relocatable control sections have been generated.
The directive is ignored.

1llegal Use or Placement of SOCW

SOCW ERROR

An illegal object language feature is required, or one of
the directives DEF, REF, SREF, CSECT, DSECT, or USECT
has been encountered, while the assembly is under SOCW
control, or the SOCW directive has been encountered after
the assembler has begun generating object code.

Unrecognized Key in S:KEYS Function

UNRECOGNIZED KEY

The scanned argument field of the PROC reference contains
a keyword which is not specified in the S:KEYS reference.
Reporting of this condition is suppressed if mode&4>0.

104 Meta-Symbol Error Messages

Missing Key in S:KEYS Reference

MISSING KEY

A required hit has not occurred.

Key Conflict in S:KEYS Function

KEY CONFLICT

More than one hit has occurred for a single bitspecification.

Illegal Use of S:KEYS

ILLEGAL S:KEYS

S:KEYS is not being used within a PROC or the S:KEYS ar-
gument contains illegal syntax.

METASYM CONTROL COMMAND ERROR MESSAGES
Errors can also be detected on the METASYM control card:

Unrecognized METASYM Options

METASYM card image

ILLEGAL OPTION IGNORED

The option inthe position indicated by the colon is unknown.

IHlegal Account Numbers

METASYM card image

ILLEGAL ACCOUNT NO. IGNORED

The account number in the position indicated by the colon
contains more than eight alphanumeric characters, or more
than nine account numbers have been specified.

Syntax Errors in METASYM Commands

METASYM card image

ILLEGAL SYNTAX

The character in the position indicated by the colon is er-
roneous syntactically.

CONCORDANCE CONTROL COMMAND ERROR MESSAGES

Control Command Conflict

*CONTROL CONFLICT. ABOVE STATEMENT IGNORED

Both the SS and OS commands have been encountered. Both
may not be used.

Incorrect Symbol List

*IMPROPER SYMBOL LIST

The name list in the preceding control command is improp-
erly formatted: blanks between names, no commas, etc.

Missing Symbol List

*MISSING SYMBOL LIST

The mandatory list of names is missing after the OS or DS
control command.

Incorrect Control Command

*IMPROPER CN CONTROL. END OF PROCESSING

The previous record was not a concordance control record.
The sequence of control records is considered terminated,
but a concordance listing will be produced according to any
legal commands received prior to the error.

Concordance Overflow

*INSUFFICIENT SPACE TO PRODUCE CN

Less than one page (512 words) of computer memory, over
and above the assembly's symbol tables, is available to the
assembler when the concordance listing is to be produced.
The concordance listing is aborted.

Extended Memory Required

EXAMPLES OF RUN DECKS

Shown below in Figures 13 through 16 are examples of legal
run deck structures of varying complexity. In all the fol-
lowing examples, a blank has been inserted after the char-
acter "1" preceding some commands. This is permissible on
all but the input control commands; namely, EOD, BIN,
BCD, DATA, and FIN.

[1FIN \

ISymbquc Deck
[IMETASYM 51, LO, BO
[rLimIT (LO, 100), (PO, 300), (TIME, 2)
1JOB 1, JONES, F

Figure 13. Sample Run Deck — Single
Symbolic Assembly

*CONCORDANCE EXTENDED MEMORY MODE

*REFERENCE COUNT — xxxx. DISC OVERFLOW — yyyy.

Maximum efficiency in producing the concordance listing
is attained when all its reference data may be co-resident
in memory with the assembly's symbol tables. If this is not
possible, part of the data must remain on the intermediate
file during concordance listing, causing repeated accesses
to the RAD. When this is the case, the above message
prints just before the concordance listing.

The reference count is the total number of reference items,
and disk overflow count is the number of items that are not
memory resident. If output speed reaches an unacceptable
level, the disk overflow figure indicates the approximate
amount the data should be reduced by modifying the con-
cordance control commands.

As another alternative, the programmer might wish to con-
sider use of the DS command. The DS command requires
no reference item storage.

[1FIN

Compressed Deck

lUpdote Deck
L IMETASYM I, LO, BO

JrLmIT (LO, 500), (PO, 200), (TIME, 5)
1JOB17, KIRK, 9

Figure 14, Sample Run Deck — Single
Assembly with Update

Examples of Run Decks 105

[1FIN
['meTASYM C1, B0
| 15N, 276)
[1ASSIGN M:CI, (DEVICE, 9T), ;

| 1FIN

Update Deck

[Compressed Deck
lieob!

Compressed Deck

[[Symbolic Deck
1EOD!

l Symbolic Deck

_____| SU, SB(SERIAL), LS

| AC(29, 30), ;

IMETASYM SI,.CI,LO,BO, ; w

| 1ASSIGN M:CO,(DEVICE,CPA04) \
[I(SN, 910)
L 1ASSIGN M:CI,(LABEL, SX), ;

Compressed Deck
JUpdoie Deck
[tMETASYM I, Cl, LU, BO, LO, BA

L__{1LIMIT (TIME, 10),(LO,300), (PO,700)
1JOB 1026, SMITH, 6

AS‘.vymbolic Deck

[BO, 5B(XYZ)
[IMETASYM CI,LO,5C(C0),CO, ;
———1 I(SN, 946)
[1ASSIGN M:CO, (LABEL,MY$CO),;

[1 LIMIT (TIME, 15),(LO, 700), (PO, 2000)
TJOB 71, XERES, 3

tOptionc:l program separator.

Figure 16. Sample Run Deck — Multiple Assembly

with Compressed Input and Output on
Figure 15. Sampie Pun Deck — Batch Assembly Magnetic Tape

106 Examples of Run Decks

APPENDIX A. SUMMARY OF META-SYMBOL DIRECTIVES

In this summary brackets are used to indicate optional items.

YRR Iobeln] ASECT

BOUND

Cpisp
CLOSE

label [, ..., label] CNAME[,n]

Iobell{, Cey Iabeln] COM(,field list]

[label yroe |abe|n] CSECT

[label YRR |obe|n] DATA[, f]

DEF

DISP

[label YRRy labeln] DO

[_|c.be|-J, ., labeln] DO1

boundary

symboll[, ceey symboln]

[symbol v .,symbo!n]

[1ist]

[value |ist]

[expression]

[value cer valuen:]

1"

[symbol Vo symboln]

[1ist]

[expression]

[expression]

Function

Declares generative statements will be assem-
bled to be loaded into absolute locations.

Advances the execution location counter to
a byte multiple of "boundary" and advances
the load location counter the same number
of bytes.

Displays the command procedure identified by
"symbo|i".

Declares that "symbol;" are to be permanently
closed for all subsequent usage.

Designates a command ("label") for the
next procedure definition and specifies the
values ("list") associated with "label".

Describes a command skeleton; specifies
the contents of each "field"; "label" is the
symbol by which the command skeleton is
referenced.

Declares program section "label" as a relo-
catable control section with memory protec-
tion specified by "expression" where 0 <
expression € 3. If "expression" is omitted,

the value 0 (no memory protection) is assumed.

Generates each value in the list of "value;"
into a field whose size is specified by f in
bytes. If f is omitted, a field size of 4 bytes
is assumed.

Declares that the "symbol;" may be refer-
enced by other separately assembled
programs.

Displays each value specified in "list" on
the assembly listing.

If the value of "expression" is greater than
zero, processes the code from DO to ELSE or
FIN (if ELSE is absent) "expression" times.
Then continues assembly at the statement fol-
lowing FIN. If "expression" <0, skips all
code from DO to ELSE or FIN (if ELSE is ab~

sent); resumes assembly at that point.

If the value of "expression" is greater than
zero, processes the one statement following
the DOI1, "expression" times, then continues
the assembly at the next statement. If "ex-
pression" <0, skips the statement following
DO1 and resumes assembly .

Appendix A

Page

26

25

62

44

59

51

26

53

46

57

37

34

107

Form

label

| [label

[iabel

Iabell

[label

[1abel

108

1

YRRy labeln]

,Iubeln]

..., label]

YERRY lobeln]

YRR |abe|n].

Appendix A

DSECT

ELSE

END

EQU[,S]

ERROR[, s[, ¢]]

FDISP

FIN

FNAME

GEN[,field list]

GOTO[, k]

LIST

LOC[, n]

LOCAL

OPEN

[expression]

[expression]

symboll[, e, symboln]

{1ist]

[value list)

labell[, ey |obe|n]

[expressi on]

[location]

[symbol Vo symboln]

[symbol

1"

. .,Symboln]

Function

Declares a dummy program section "label"
with memory protection specified by "ex-
pression” where 0 < expression < 3, If
"expression" is omitted, the value 0 (no
memory protection) is assumed.

Terminates the range of an active DO or
WHILE loop, or identifies the beginning
of the alternate sequence of code for an
inactive DO or WHILE loop.

Terminates a program or system file. Op-
tionally provides the starting address of the
program. If a label is given, associates it
with the location immediately following the
literal table, which is generated at the end
of the currently active program section.

Equates "label" to the value of "list". (Non-
redefinable)

If ¢ >0, s is compared with the current high-
est severity level, the higher value is retained,
and "message" is output. 1f ¢ <0, ERROR is
ignored.

Displays the function procedure identified by
the "symbol.".

Terminates a DO or WHILE loop.

Designates a function name ("label” for the
next procedure definition and specifies the
values ("list") associated with "label".

Produces a hexadecimal value representing
"value list" in the number of bits specified
by "field" in "field list".

Resumes assembly at the statement whose
label corresponds to the kth "label".

Suppresses or resumes assembly listing de-
pending on value of "expression". If
"expression" is zero, assembly listing following
LIST will be suppressed until resumed by
another LIST directive; if "expression" is
nonzero, assembly listing is enabled.

Sets the execution location counter ($) to
the value "location" and sets its resolution
specification to n, where the value of n is

1, 2, 4, or 8.

Terminates existing local symbol region and
initiates a new region where the "symbol."

i
are local symbols.

Declares that the "symbol;" are to be open for
use as symbols until another OPEN or o CLOSE
directive is encountered.

Page

26

35,37

34

42

57

62

35,37

59

50

34

56

25

43

44

Form

Dabell,...,labeln]

[lobel‘,. . .,Iobeln]

chell,..”lobeln]

[lobell, .. .,lobeln]

|0be_|][,. . .,|abe|n]

ORG[,n]

PAGE

PCC

PEND

PROC

PSECT

PSR

PSYS

REF [,n]

RES[,n]

SET[,s]
S:RELP

S:SIN,n

[location]

[expression]

[1ist]

[expression]

[expression]

[expression]

symbol . [, ...,symbol
Y 1 4 n

[expression]

[tist]

[expression)

Function

Sets both the current load location counter
($$) and the current execution location
counter ($) to the value "location" and sets
their resolution specifications to n, where
the value of nis 1, 2, 4, or 8.

Upspaces assembly listing to the top of form.

Suppresses or resumes assembly listing of direc-
tives PAGE, SPACE, TITLE, LIST, PSR, PSYS,
and PCC, depending on value of "expression".
If "expression" is zero, assembly listing of these
directives will be suppressed until resumed by
another PCC directive; if "expression" is non-
zero, these directives will be listed.

Terminates procedure definition.

Identifies the beginning of a procedure
definition.

Declares program section "label" as a relo-
catable control section to be loaded on a

page boundary with memory protection speci-
fied by "expression" where expression is in
the range O to 3. If "expression’ is omitted,
the value 0 (no memory protection) is assumed.

Suppresses or resumes assembly listing of lines
skipped under control of GOTO, DO, or
WHILE, depending on value of "expression".
If "expression" is zero, assembly listing of
lines skipped subsequent to PSR will be sup-
pressed until resumed by another PSR direc-
tive; if "expression" is nonzero, skipped lines
will be listed.

Suppresses or resumes assembly listing of files
called by the SYSTEM directive. If "expres-
sion" is zero, assembly listing of all files
called by SYSTEM subsequent to PSYS will
be suppressed until resumed by another PSYS;
if "expression" is nonzero, system files will

be listed.

Declares that the "symbol;" are references to
externally defined symbols.

Adjusts both location counters ($ and 3) by
the number of n-sized units indicated by the
value of expression. If n is omitted, a size of
four bytes is assumed.

Equates "label" to the value of "list".
(Redefinable.)

Releases all command and function procedure
definitions.

Defines standard instruction, "label", to be of
format "n", with opcode "expression".

Appendix A

Page

24

58

56

60

60

27

56

57

48

26

43

62

53

109

Form

[Iabell,. . .,labeln]
[labell, .. .,labeln)
[lobel],. . .,lobeln]
| [|qbe|],. - label]
110 Appendix A

SOCW

SPACE

SREF[,n]

SYSTEM

TEXT

TEXTC

TITLE

USECT

WHILE

[expression]

[symboly,..., symbol]

v
name
cs]'[, .
)
cs] [,. ey

['es']

name

[expression]

Function
Suppresses the automatic generation of
object control words.

Upspaces the assembly listing the number
of lines indicated by expression. If expres-
sion is omitted, 1 is assumed.

Declares that the "symbol;" are secondary
external references.

Calls system "name" from the library
storage media.

Assembles the "cs;" (character string constant)
in binary-coded format for use as an output
message.

Assembles the "cs;" (character string con~
stant) in binary-coded format, preceded
by a byte count, for use as an output
message .

Prints "cs" (character string constant) as a
heading on each page of assembly listing.

Specifies that the control section of which
label "name" is part is to be used in assem-
bling subsequent statements.

If "expression” <0, skips all code from
WHILE to ELSE or FIN (if ELSE is absent),
and resumes assembly at that point, If
"expression" ~0, performs the comparison
(0 < expression) again, and proceeds
accordingly.

Page

55

55

48

33

54

55

56

27

35

Required syntax items are underlined whereas optional items
The following abbreviations are used:

register expression
value expression
indirect designator
address expression
index expression
displacement expression

are not,

m

:

A\

a

X

d
Mnemonic
LOAD/STORE
LI m,r
LB m,r
LH m,
LW m, T
LD m,r
LCH m, T
LAH m,r
LCW m,r
LAW m,r
LCD m,r
LAD m,r
LS m,r
LM mr
LCFI m
LCI m
LFI m
LC m
LF m
LCF m
LAS m,r
LMS m,r
LRA m,r
XW m,r
STB m,r
STH m, T
STW m,r
STD m,r
STS m,r
STM mr
STCF m

>
Z
>
=
<
N
m
>
A
W)

*| <

% % 3
ol|olo
21o1g

* % ke %k
aigigigig]
X X X X X X X X X X X X

* ok
ieigigl

~ IS

* %
o
~

<

#H<i<i<

4 Q
181818

2o

LR R
1

*
[*]

*

121

*
Qo

14

X X X X X X X X X X X X X X

~

* kX %
~ '~

18181819

~

ANLZ

INT

FIXED-POINT ARITHMETIC

3

~
-

3

~
-

|

Al
AH
AW
AD
SH

|2

3
x|
oo

~
=

~

X X X =

3

~
-

~

3

~
-

%
Igha

~

3

<
-

APPENDIX B. SUMMARY OF SIGMA INSTRUCTION MNEMONICS

Sigma 9

Sigma 7 (or 9)
Privileged
Decimal Option

Lock Option

ITCTMO TNO

w
-n

Function

Load Immediate

Load Byte

Load Halfword

Load Word

Load Doubleword

Load Complement Halfword

Load Absolute Halfword

Load Complement Word

Load Absolute Word

Load Complement Doubleword

Load Absolute Doubleword

Load Selective

Load Multiple

Load Conditions and Floating Control Immediate
Load Conditions Immediate

Load Floating Control Immediate
Load Conditions

Load Floating Control

Load Conditions and Floating Control
Load and Set

Load Memory Status

Load Real Address

Exchange Word

Store Byte

Store Halfword

Store Word

Store Doubleword

Store Selective

Store Multiple

Store Conditions and Floating Control

Analyze
Interpret

Add Immediate
Add Halfword
Add Word

Add Doubleword
Subtract Halfword

Codes for required options are

Floating=Point Option

P Memory Map Option
Special Feature —notimplemented onall machines

Equivalent to:

Mnemonic Syntax

FIXED-POINT ARITHMETIC (cont.)

*

SW m,r a, x
SD m,r *a, x
MI m,r v
MH m,r *a, x
MW m,r *a, x
DH m,r *a, x
DW m,r *a,x
AWM m,r *a,x
MTB m, v *a,x
MTH m, v *a,x
MTW mv *a,x
COMPARISON

Cl m,r v

CB m,r *a, x
CH m,r *a, x
Cw m,r *a, x
CDh m,r *a, X
Cs m,r *a, x
CLR m,r *a,x
CiM m, r *E, x
LOGICAL

OR m,r *a, x
EOR m,r *a,x
AND m,r ‘g, x
SHIFT

S m,r *a, x
SLS m,r v, X
SLD mr v, x
SCS m,r v, x
SCD m,r v, x
SAS m,r v, x
SAD m,r v, x
SSS mr g,x
SSD m,r a,x
SF m,r *a,x
SFS m,r v, x
SFL mr v, x
CONVERSION

CVA m,r *a, x
CVvs m,r *E, x

|

.

FLOATING-POINT ARITHMETIC

*

FAS m,r a, x
FAL m,r *a, x
FSS m,r *a,x
FSL m,r *a,x
FMS m,r *a,x
FML m,r *a,x

112 Appendix B

Function

Subtract Word
Subtract Doubleword
Multiply Immediate
Multiply Halfword
Multiply Word

Divide Halfword
Divide Word

Add Word to Memory
Modify and Test Byte
Modify and Test Halfword
Modify and Test Word

Compare Immediate

Compare Byte

Compare Halfword

Compare Word

Compare Doubleword

Compare Selective

Compare with Limits in Register
Compare with Limits in Memory

OR Word
Exclusive OR Word
AND Word

Shift

Shift Logical, Single
Shift Logical, Double
Shift Circular, Single
Shift Circular, Double
Shift Arithmetic, Single
Shift Arithmetic, Double
Shift Searching, Single
Shift Searching, Double
Shift Floating

Shift Floating, Short
Shift Floating, Long

Convert by Addition
Convert by Subtraction

Floating Add Short
Floating Add Long
Floating Subtract Short
Floating Subtract Long
Floating Multiply Short
Floating Multiply Long

‘Equivalent to:

Required
Options

MMM M T

Required
Mnemonic Syntax Function Equivalent to: Options

FLOATING-POINT ARITHMETIC (cont.)

FDS m,r *a, x Floating Divide Short F
FDL mr o *a,x Floating Divide Long F
DECIMAL

DL m,v *a,x Decimal Load D
DST m, v *a, x Decimal Store D
DA m,v *a,x Decimal Add D
DS m, v *a, x Decimal Subtract D
DM m v *a,x Decimal Multiply D
DD m,v *a,x Decimal Divide D
DC m, v “'E, X Decimal Compare D
DSA m *a, x Decimal Shift Arithmetic D
PACK myv *a,x Pack Decimal Digits D
UNPK r-n_,—_v_ *a, x Unpack Decimal Digits D
BYTE STRING

MBS “m,rd Move Byte String 7
CBS m,r d Compare Byte String 7
TBS m,r d Translate Byte String 7
TTBS mr d Translate and Test Byte String 7
EBS E E:l_ Edit Byte String D
PUSH DOWN

PSW m,r *a, x Push Word

PLW m,r *a,x Pull Word

PSM m,r *a,x Push Multiple

PLM m,r *a,x Pull Multiple

MsP E "‘E, x Modify Stack Pointer

EXECUTE/BRANCH

EXU m *a, x Execute

BCS m,v *a, x Branch on Conditions Set

BCR m,v *a,x Branch on Conditions Reset

BIR m,r *a, X Branch on Incrementing Register

BDR m,r *a, x Branch on Decrementing Register

BAL m,r *a, x Branch and Link

B E— *E, x Branch BCR, 0 4 *a, x
BE m *a, x (" Branch if Equal BCR, 3 *a, x
BG m *a, X Branch if Greater Than BCS, 2 *§_, X
BCE m *a, x Branch if Greater Than or Equal fo BCR, 1 *a, x
BL m *a, x Branch if Less Than BCS, 1 *_3_, X
BLE m *a, x Branch if Less Than or Equal to BCR, 2 *a, x
BNE E *E, X For Use After Branch if Not Equal to BCS, 3 *a, x
BEZ m *a, x Comparison < Branch if Equal to Zero BCR, 3 *a, x
BNEZ m *a, x InserCﬁons . Branch if Not Equal to Zero BCS, 3 *a, x
BGZ m *a, x Branch if Greater Than Zero BCS, 2 *a, x
BGEZ m *a, x Branch if Greater Than or Equal to Zero BCR, 1 *a, x
BLZ m *a, x Branch if Less Than Zero BCS, 1 *a, x
BLEZ m *a, x Branch if Less Than or Equal to Zero BCR, 2 *E, X
BAZ m *a, x L Branch if Implicit AND .is Zerof BCR, 4 *a, x
BANZ m *E, x Branch if Implicit AND is Nonzerot BCS, 4 *a, x

t .
See CW instruction in Xerox Sigma 7 Computer Reference Manual.

Appendix B 113

Mnemonic Syntax

EXECUTE/BRANCH (cont.)

BOV
BNOV
BC

BNC
BNCNO
BWP
BDP

[2i31312]31313

BEV
BOD

1313

BID
BLD

1313

BSU
BNSU
BSE
BSNE
BSF
BSNF
BSO
BNSO

1313131313131313

BIOAR
BIOANR
BIODO
BIODNO
BIOSP
BIOSNP
BIOSS
BIOSNS

{313131313131213

CALL
CALI
CAL2
CAL3
CAL4

3
<

3
<

3
<

2
<

|

CONTROL

LPSD
XPSD
LRP
MMC
LMAP
LMAPRE
LPC
LLOCKS
WAIT
RD

WD

3

3

121012
NN
X X X

EIE

3

3
2

2
.

2133

3

114 Appendix B

~ I~

~

R TR
~

IQiglglaoialola
X X X X X X X

*
~ IS

*
S

18
X X

*

%

|@le
SN2
x X

*

* ok %
1ojoje
SIS

* 0% ¥ X
|lQjajojao|o
~ IO

X X X X X X X X

* *
Q
Pl N

siolglglgl

~

X ok k¥ Ok
\INQ|

o ~
X X X X X X X X

* % %
~ IS

X X X X

*

12181818

* X

*

<

*a, x

For Use After
Fixed-Point
Arithmetic
Instructions

For Use After
Fixed-Point
Shift Instruc-
tions

For Use After
Decimal
Instructions

For Use After
Push Down
Instructions

For Use After
Input/Output <

Instructions

*a, x or (v, v), x
*a, x or (v, v}, x

I

Function

Branch if Overflow

Branch if No Overflow

Branch if Carry

Branch if No Carry

Branch if No Carry and No Overflow
Branch if Word Product

Branch if Doubleword Product

Branch if Even (number of 1's shifted)
Branch if Odd (number of 1's shifted)

Branch if 1llegal Decimal Digit
Branch if Legal Decimal Digit

Branch if Stack Underflow
Branch if No Stack Underflow
Branch if Stack Empty

Branch if Stack Not Empty
Branch if Stack Full

Branch if Stack Not Full
Branch is Stack Overflow
Branch if No Stack Overflow

Branch if 1/O Address Recognized
Branch if /O Address Not Recognized
Branch if 1/O Device Operating
Branch if 1/O Device Not Operating
Branch if 1/O Start Possible

Branch if 1/O Start Not Possible
Branch if 1/O Start Successful

Branch if 1/O Start Not Successful

Call 1
Call 2
Call 3
Call 4

Load Program Status Doubleword
Exchange Program Status Doubleword
Load Register Pointer

Move to Memory Control

Load Map

Load Map (Real Extended)

Load Program Control

Load Locks

Wait

Read Direct

Write Direct

Required

Equivalent to: Options
BCS, 4 *a, x
BCR, 4 *a, x
BCS, 8 *a, x
BCR, 8 *a, x
BCR, 12 *a, x
BCR, 4 *a, x
BCS, 4 *a, x
BCR, 8 *a, x
BCS, 8 *a, x
BCS, 8 *a, x
BCR, 8 *a, x
BCS, 2 *a, x
BCR, 10 *a, x
BCS, 1 *a, x
BCR, 1 *a, x
BCS, 4 *a, x
BCR, 15 *a, x
BCS, 8 *a, x
BCR, 8 *a, x
BCR, 8 *a, x
BCS, 8 *a, x
BCS, 4 *a, x
BCR, 4 *a, x
BCR, 4 *a, x
BCS, 4 *a, x
BCR, 4 *a, x
BCS, 4 *a, x

P

P

P

p

7MP

oMP

7MP

LP

P

P

P

Mnemonic Syntax

CONTROL (cont.)

NC)Pr m a, x
PZE m *a, x
INPUT/OQUTPUT
SIO m,r *a, x or (v, v}, x
T “or (v, v, v), x
HIO m,r *a, x or (v, v), X
or (v, ;I—;-)Ix
TIO m,r *a,x or (v,v),x
“or (v, v, v), x
DV m,r *a, x of (v, v), X
T T or (v, vy v),x
AIO m,r *a, x
RIO m,r *a, x
POLP m,r *a, x
POLR m,r *a,x

Function

No Operation
Positive Zero

Start Input/Output

Halt Input/Qutput

Test Input/Output

Test Device

Acknowledge Input/OQutput Interrupt
Reset Input/Output

Poll Processor
Poll and Reset Processor

t
Generates an LCFI instruction with neither C nor F specified.

Required
Options

9P
9P
9P

Appendix B

115

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in

numerical sequence.

+END (update command), 93,95
+j, k (update command), 93,111
+k (update command), 93,111
$, 20,2,23-25,28,50, 100
$$, 20,2,23,24,28,50
* ok ok i‘, 86
S, 35,61,86
(literal designator), 5

A

absolute address, 5

absolute section, 27

absolute value, 21

absolute zero, 55

ABSVAL function, 21

AC option, 91

address resolution, 22
addresses, 5-8

addressing, 20

addressing functions, 20
advance location counters to boundary, 25
AF function, 52,64

AFA function, 52,64
argument field, 10,8, 52, 64
argument field asterisk, 52,64
ASECT directive, 26-30

assembly

control, 32-42

listing, 85-89

listing line, 86

passes, 1

phase error messages, 103
ASSIGN

control command, 90, 109

control command format for labeled tape, 96
asterisk

as indirect addressing, 6,7

as multiplication operator, 7

in column 1 (comments), 10

in concordance listing, 100

test for presence of (AFA function), 52,64,65

BA function, 20,92

batch monitor control commands, 90-93
begin new page, 58

begin procedure definition, 60

blank lines in assembly listing, 55
blanks at beginning of field, 8

-BO option, 92,110

bootstrap loaders, 55
BOUND directive, 25
byte address, 20

byte count, 55

C

CDISP directive, 62
CF function, 52,64
character
set, 2
string constant, 3,55,56,73
string functions, 74
Cl, 95,92,110
classification of symbols, 12
CLOSE directive, 44-46
CN option, 92,110
CNAME directive, 59
cO, 92,110
coding form, 9
COM directive, 51
command
definition, 51
definitions stack, 84
field, 9,8,52,64
procedure, 59,60,61
commas, 9
comment
field, 10,8
lines, 10
compressed files on magnetic tape, 96
concordance control
command error messages, 106
commands and listing, 99, 100
conditional branch, 34
conditional code generation, 78
constants, 2
continuation lines, 10
control section, 72
control section summary, 88
creating and using standard definition files, 98
creating system files, 97,112
CS function, 72
CSECT directive, 26-30

DA function, 21

DATA directive, 53

data generation, 50-55, 32
DC option, 92

decimal constant, 4

Index

V17

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in

numerical sequence.

declaration of
external definitions, 46
external references, 48
local symbols, 43
DEF directive, 46
defining symbols, 11
determine number of elements, 66
directives, 32-58
summary of, 113-116
DISP directive, 57
display values, 57
DO directive, 37-42
DO-loop, 38
doubleword address (DA function), 21
DOI1 directive, 34
DS concordance command, 100
DSECT directive, 26
dummy sections, 31

E

EBCDIC character string, 54
ELSE directive, 35-42
encoder phase error messages, 101
end assembly, 34
END directive, 34
END concordance command, 100
end procedure definition, 60
entries, 8
EQOD control command, 93,111
EQU directive, 42
equate symbols (EQU directive), 42
equate symbols line, 85
ERROR directive, 57
error
line, 86
line summary, 89
messages, 101,106, 107
severity level, 57,89
errors
encountered during processing of update packet, 101
encountered during opening or processing of system
files, 102
encountered while processing an input file, 102
examples of run decks, 108
execution location counter, 28
expression evaluation, 6
expressions, 6,7
external
definition, 46
definition summary, 89
reference, 12,48

F

FDISP directive, 62
field list, 50,51
fields, 8

118 Index

FIN directive, 35-42

FIN control command, 93
fixed-point decimal constant, 4
floating-point long constant, 5
floating-point short constant, 5
FNAME, 59

forward references, 11,69
function procedure, 59,61

GEN directive, 50
generate a value, 50
GO option, 92,110
GOTO directive, 34

HA function, 21
halfword address, 21
hexadecimal constant, 3

identify output, 56
ignored source image line, 86
include system file, 33
inhibit forward reject, 68
instruction set mnemonics, 33
intrinsic

address resolution, 20

functions, 63-74

symbols, 67
1/0O concordance command, 99
iteration control, 34,35
iterative loops, 38

J

JOB control command, 90

keyword scan (S:KEYS function), 69

L

L (literal designator), 5
Jabel field, 9,8,63
labeled magnetic tapes, 96
LF function, 63

LIMIT control command, 90
linear value lists, 12

LIST directive, 56

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in

numerical sequence.

list/no list, 56

listing
control, 55-58, 32
format, 85

of skipped records, 56
of system files, 57
lists, 12-19
in procedures, 74-77
literal line, 86
literals, 5,31
LO option, 92,110
load location counter, 28
LOC directive, 25,23
LOCAL directive, 43
local symbol region, 43
location counter, 23, 20, 55
logical operators, 7
LS option, 92,110
LU option, 92,110

memory protection feature, 27
METASYM

control command, 91,110

control command error messages, 106
mnemonics, 117-121, 33
monitor error messages, 107
multiple

labels, 9

name procedures, 62

NAME function, 65

ND option, 92

nonlinear value lists, 15

NS option, 92,110

null value, 13

NUM function, 17,66

number of characters, 72
number of elements in a list, 17

octal constant, 3

OL option, 111

OPEN directive, 44-46
operating procedures, 90-112

operational labels, implicitly assigned, 109

operators, 6
ORG directive, 23,24
OS concordance command, 100

P

pack text, 73
PAGE directive, 58
parentheses, 6,9,16,70
Pass 0, 1
Pass 1, 1
Pass 2, 1
PCC directive, 56
PD option, 92
PEND directive, 60
previously defined references, 11
primary external reference summary, 89
print
control cards, 56
skipped records, 56
system, 57
PROC directive, 60
procedure
control, 32
display, 62
format, 59
levels, 63
name reference, 65
reference lists, 74-77
references, 60
procedure~-defining procedure, 84
procedure-local symbol region, 43
procedures and lists, 59-84
processing of symbols, 10
program
deck structures, 94,112
section directives, 26
sections, 26-31
PSECT directive, 27
PSR directive, 56
PSYS directive, 57

quotation marks, 3,54

recursive

command procedure, 81

function procedure, 78
redefining symbols, 11
redundant parentheses, 16
REF directive, 48
reference syntax for lists, 14
relative addressing, 20
release procedure definitions, 62
relocatable

address, 5

control sections, 27
RES directive, 25

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

reserve an area, 26 statements, 8

restrictions on forward references, 69 SU option, 93,111

returning to a previous section, 28 suppress object control words, 55
run decks, examples of, 108, 109 symbol

control, 44
correspondence, 66

S manipulation, 42-50, 32
references, 11

S:AAD, 67 table, 12,22

s:C, 67 value summary, 88

S:D, 67 symbols, 2,10, 12

S:DPI, 67 syntax, 8

S:EXT, 67 syntax errors, 101

S:FL, 67 SYSTEM directive, 33

S:FR, 67

S:FS, 67

S:FX, 67

S:IFR, 68 T

S:INT, 67

S:KEYS, 69,70 TCOR function, 67

S:LFR, 67 terminal errors, 101

S:LIST, 67 TEXT directive, 54

S:NUMC, 72 text with count, 55

S:PT, 73 TEXTC directive, 55

S:RAD, 67 TIME option (LIMIT command), 90

S:RELP, 62 TITLE directive, 56

S:SIN, 53 trailing blanks, 54,55

S:SUM, 67 type correspondence, 67

S:UFV, 68

S:UND, 67

S:UT, 73

sample procedures, 77-84 u

sample stack, 84

saving and resetting the location counters, 28 undefined symbol summary, 89

SB option, 92 unlabeled magnetic tapes, 96

SC option, 92 vnpack text, 73

SCOR function, 66 updating o compressed deck, 93

SD option, 93,111 updating a compressed file, 111

secondary external references, 48, 89 use forward value, 68

self-defining terms, 3 USECT directive, 27

semicolon, 9
SET directive, 43
set
a value, 43 V
g:zg:z: z:‘;f:""z'; 25 value lists, 12-17,50, 51
location counter, 24
Sl, 93,111

skip flag ($$$), 86,61 W

skipped records, 56 :

skipping mode, 35) . WA function, 21

SO, 93,11 WHILE directive, 35-38
SOCW directive, 55 WHILE-loop, 35-38
source statement, 8 word address, 21

SPACE directive, 55
space listing, 55

SREF directive, 48 R x

SS concordance command, 100

standard instruction definition, 53 XOS control commands, 109
statement continuation, 10 XOS operations, 109

120 Index

Reader Comment Form

XEROX

We would appreciate your comments and suggestions for improving this publication

Publication No. Rev. Letter | Title

Current Date

How did you use this publication?

[] Learning D Installing

D Sales

Is the material presented effectively?

D Fully Covered

[:] Well llustrated D Well organized D Clear

D Good D Poor

D Reference D Maintaining E] Operating
What is your overall rating of this publication? What is your occupation?
[:] Very Good D Fair D Very Poor

Your other comments may ke entered here. Please be specific and give page, column, and line number references where
applicable. To report errors, please use the Xerox Software Improvement or Difficulty Report (1188) instead of this form.

Your name & Return Address

Thank You For Your Interest. (fold & fasten as shown on back, no postage needed if mailed in U S.A)

PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapted forms

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO, 591563 LOS ANGELES,CA 90045

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
5250 W. CENTURY BOULEVARD
LOS ANGELES, CA 90045

ATTN: PROGRAMMING PUBLICATIONS

Honeywell

-——————-—~:—-——-——-————-——-———————A"-——-—————-—-—————————-————-——A————————— - CUT ALONG LINE = — — — — — — —

FOLD ALONG LINE

FOLD ALONG LINE

- Honeywell Information Systems
Inthe U.S.A.. 200 Smith Street, MS 486, Waltham, Massachusetts 02154
in Canada: 2025 Sheppard Avenue East, Willowdale, Ontario M2J 1W5
In Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F.

21506, 5CB78, Printed In U.S.A.

XG48, Rev. 0

	00001
	00002
	0001
	0002
	0003
	0004
	0005
	0006
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	replyA
	replyB
	xBack

