
Xerox Meta-Symbol
Sigma 5-9 Computers

Language and Operations

Reference Manual

META-SYMBOL DIRECTIVES

POie No.

(label" ... , label n] ASECT 26

BOUND boundary 25

CDISP symbol
l
[, ... ,'symbol n] 62

CLOSE (symbol
l
, ... ,symbol n] 44

labeIIL ... ,label
n
] CNAME[,nJ [I ist] 59

labell["",labelnJ COM[,field list] [value list) 51

[lobe 'I' ' , ., lobe I n] CSECT [expressionJ 26

(label" ,." lobel
n
] DATA[,f] Ualue l , " "value n] 53

DEF [symbuI
1
, "" symbol n] 46

DISP [list] 57

[lobell"",lobeln] DO [expression] 37

[lobel" "" label n] 001 [expression] 34

label DSECT [expression 1 26

ELSE 35,37

[Iabel

"

. ",lobelnJ END [expression] 34

(label".,.,labeln] EQU(,s] [I ist] 42

ERROR (,level [,e] J 'e5
1

' (, .," 'e5n'] 57

FDISP symbo,ll [, , .. , symbol n] 62

FIN 35,37

lobel l [, . , ., lobel n] FNAME [list] 59

[label I' ,." labcl) GEN(,field list] [va lue]",', , " value nJ 50

GOTO[,k] lobel l [, ""Iabeln) 34

LIST (expreSSion) 56

(lubell' .. " lab.el n] LOcUJ (location] 25

LOCAL [symbol l", "symbol n] 43

OPEN [symbol I' ... , symbol n] 44

ORGm (lobel]' ... ,lobel
n

) [location] 24

PAGE 58

PCC [expression) 56

PEND [list] 60

PROC 60

[lobelt,·",lobel n] PSECT [expression J 27

PSR [expression) 56

PSYS [expression] 57

REF [, n] [symbol l' .•• ,symbol n] 48

[lobell"'" label) RES[,n] [expression] 26

[label" ..• , label n] SET [,sJ [list) 43

S:RELP 62

lobel
l
(, .. ,' label

n
] S:SIN,n [expression] 53

SOCw 55

SPACE [expression J 55

SREF (,n] (symbol]' ... ,symbol n) 48

SYSTEM- nome 33

[lobell' "', label n] TEXT 'es
l
'(, "., 'esn'] 54

[lobell"'" label) TEXT('e5,' [, "., 'csn '1 55

TITLE ['cs') 56

[lobell"·,,labeln] USECi nome 27

[lobell,··"lobel n] WHILE [expression] 35

<0 1972, 197~, Xerox Corporation

Xerox Meta-Symbol

Sigma 5 .. 9 Computers

Language and Operations

Reference Manu.al

900952G

October 1975

XEROX

File No.: 1 X23
XG48, Rev. 0
Printed in U.SA.

REVISION

This edition of the Xerox Meta-Symbol/LN,oPS Reference Manual, Publication Number 90 09 52G, merely
incorporates the 90 09 52F-l revision package into the manual. There are no other technical changes. The manual
documents the HOl version of the Meta-Symbol.

RELATED PUBLICATIONS

Publ ication No.

Xerox Sigma 5 Computer/Reference Manual 900959

Xerox Sigma 6 Computer/Reference Manual 90 17 13

Xerox Sigma 7 Computer/Reference Manual 900950

Xerox Sigma 8 Computer/Reference Manual 90 1749

Xerox Sigma 9 Computer/Reference Manual 90 17 33

Xerox Batch Processing Monitor (BPM)/BP, RT Reference Manual 900954

Xerox Universal Time-Sharing System (UTS)/TS Reference Manual 900907

Mqnual Content Codes: BP - batch processing, LN - language, OPS - operations, RBP - remote batch processing,
RT - rea I-time, SM - system management, TS - time-sharing, UT - uti lities.

The specifications of the software system described in this publication are subject to change without notice. The availability or performance of some features
may depend on a spec ific configuration of equipment such as additional tape units or larger memory. Customers should consult their Xerox sales representative

for details.

ii

CONTENTS

PREFACE vi Returning to a Previous Section 28
Dummy Sections 31

1. INTRODUCTION Program Sections and Literals 31

Programming Features
Meta -Symbo I Passes 4. DIRECTIVES 32

Pass 0
Pass 1 Assembly Control 33
Pass 2 SYSTEM 33

END 34
DOl 34

2. LANGUAGE ELEMENTS AND SYNTAX 2 GOTO 34
WHILE/ELSE/FIN 35

Language Elements 2 DO/ELSE/FIN 37
Characters 2 Symbol Manipulation 42
Symbols 2 EQU 42
Constants 2 SET 43
Addresses 5 LOCAL 43
Literals 5 OPEN/CLOSE 44
Expressions 6 DEF 46

Syntax 8 REF 48
Statements 8 SREF 48
Label Field 9 Data Generation 50
Command Field 9 GEN 50
Argument Field 10 COM 51
Comment Field 10 CF 52
Comment Lines 10 AF 52
Statement Continuation 10 AFA 52

Processing of Symbols 10 DATA 53
Symbo I References 11 S:SIN 53
Classification of Symbols 12 TEXT 54
Symbol Table 12 TEXTC 55

Lists 12 SOCW 55
Value Lists 12 Listing Control 55
Number of Elements in a List 17 SPACE 55

TITLE 56
LIST 56

3. ADDRESSING 20 PCC 56
PSR 56

Relative Addressing 20 PSYS 57
Addressing Functions 20 DISP 57

$, $$ 20 ERROR 57
BA 20 PAGE 58
HA 21
WA 21
DA 21 5. PROCEDURES AND LISTS 59
ABSVAL 21

Address Resolution 22 Procedures 59
Location Counters 23 Procedure Format 59
Setting the Location Counters __ 24 C NAM E/F NAME 59

ORG 24 PROC 60
LOC 25 PEND 60
BOUND 25 S:RELP 62
RES 26 Procedure Display 62

Program Sections 26 CDISP/FDISP 62
Program Section Directives 26 Procedure Levels 63
Absolute Section 27 Intrinsic Functions 63
Relocatable Control Sections 27 LF 63
Saving and Resetting the Locution Counters __ 28 CF 64

iii

AF 64 OS 98

AFA 64 DS 98

NAME 65 END 98

NUM 66 Concordance Listing 98

SCOR 66 Limitations 99

TCOR 67 Meta-Symbol Error Messages 99

S:UFV 68 Terminal Errors 99

S:IFR 68 Encoder Phase Error Messages 99

S:KEYS 69 Assembly Phase Error Messages 101
CS ___ 72 MET ASYM Control Command Error
S:NUMC 72 Messages 104

S:UT 73 Concordance Control Command Error
S:PT 73 Messages 104

Procedure Reference lists 74 Examples of Run Decks 105

Sample Procedures 77
INDEX 117

6. ASSEMBLY LISTING 85

Equate Symbols line 85
Assembly listing line 86
Ignored Source Image line 86
Error Line 86
literal Line 86
Summary Tables 88

7. OPERATIONS 90 APPENDIXES

Batch Monitor Control Commands 90
A. SUMMARY OF META-SYMBOL DIRECTIVES 107

JOB Control Command 90
B. SUMMARY OF SIGMA INSTRUCTION

LIMIT Control Command 90
ASSIG N Control Command 90

MNEMONICS 111

METASYM Control Command. 91
AC (ac 1 ,ac2' ..• ,acn) 91
BA 92
BO 92
CI 92
CN 92
CO 92
DC 92
GO 92
LO 92 FIGURES
LS 92
LU 92 1. Xerox Sigma Symbolic Coding Form 9

ND 92
NS 92 2. Flowchart of WHILE/ELSE/FIN Loop 36
PD[(sn l' ... I sn.,)] 92
SB, SC 92 3. Flowchart of DO/ELSE/FIN Loop 40

SD 93
SI 93 4. Command Procedure Disp lay Format 63

SO 93
SU 93 5. Meta-Symbol Listing Format 85

EOD Control Command 93
FIN Control Command 93 6. Basic Symbolic and Compressed Deck Structures_ 94

Updating a Compressed Deck 93
Program Deck Structures 94 7. Sample Legal Deck Structures 94

Creating System Fi les 96
Creating and Using a Standard Definition 8. Deck Structure for SI and CIon Different

File 96 Devices 95
Concordance Control Commands and Listing __ 97

Concordance Control Commands 97 9. Example of System Fi Ie Creation 96
10 98
SS 98 10. Use of the AC Option 96

iv

11. Creation of a Standard Definiition File 96 TABLES

12. Creation and Use of a Named Standard 1. Meta-Symbol Character Set 2
Definition Fi Ie 97

2. Meta-Symbol Operators 6
13. Sample Run Deck-Single Symbolic Assembly __ 105

3. Legal Use of Forward References 11
14. Sample Run Deck-SingleAssE~mbly with lJpdate_ 105

4. Reference Syntax for Lists 14
15. Sample Run Deck- Batch Asse·mbly 106

5. Val id Instruction Set Mnemonics 33
16. Sample Run Deck-Multiple Assembly with Com-

pressed Input and Output ,on Magnetic Tape _ 106 6. Meta-Symbol Syntax Error Codes 87

v

vi

PREFACE

Communication between the computer and the user in current high-speed systems can be improved greatl y through
the use of highly discriminative programming languages. Such languages must be capable of expressing even
intricate problems in a brief, incisive, and readily comprehensible form.

Idea" y, a programming language should be machine-independent, easil y learned, and universall y appl icable to the
problems of science, engineering, and business. Prior to the advent of the meta-assembler concept, no single pro­
gramming language had the capacity and flexibility required for the efficient programming of all types of applica­
tions. Some languages were intended for the solution of mathematical problems, while others were designed for
business applications. Such programming languages are said to be "problem-oriented".

The vocabulary of a symbol ic programm ing language consists of the permissible names, I iterals, operators, and other
symbols that may be used to express a symbol ic program. The syntax of such a language consists of the set of rules
governing its sentence (i. e., statement) structure. In the past, the syntax rules for a symbolic programming lan­
guage for a given computer were strongly influenced by the hardware characteristics of that machine. Thisresulted
in programming languages that were "machine-oriented" and which, consequently, had numerous restrictions and
unduly complex syntax rules. Because Sigma Meta-Symbol is neither a problem-oriented nor a machine-oriented
assembler, there are fewer rules to I.earn, and therefore the flexibility of programming is greatly enhanced.

The Xerox Sigma Meta-Symbol processor can be used both as an assembler and as a meta-assembler. Used as an
assembl er, it translates symbol ic programs into object-language code. Used as a meta-assembler, it enabl es the
user to design his own programming languages and to generate processors for such languages with a minimum of effort.

Note that programs written for the Sigma 9 can be assembled on the Sigma 5/6/7.

1. INTRODUCTION

PROGRAMMING FEATURES

The following I ist summarizes Meta-Symbol's more important
features for the programmer.

• The argument fiel d can contain both arithmetic and
Boolean (logical) expressions, using constant or vari­
able quantities.

• Full use of lists and subscripted elements is possible.

• The DO and WHILE directives allow selective gener­
ation of areas of code, with parametric constants or
expressions determined at the time of the assembly.

• Command procedures allow a macro-assembler capa­
bility of generating many units of codes for a given
procedure call I ine. Further sophistication provides
compl etel y parameterized coding, with procedures
appl i cabl e to many programs.

• Function procedures return values to the reference
line.

• The call I ine and its individual parameters can be
tested both arithmetically and logically.

•

•

Nested procedures are used, and one procedure can
call another.

Complete use of arithmetic and Boolean operators in
procedures is perm itted.

META-SYMBOL PASSES

Meta-Symbol is a two-pass assembler that runs under con­
trol of various Xerox monitors. In Clddition to the two as­
sembly passes (referred to as Pass 1 and Pass 2), there is an
encoding pass (Pass 0) preceding thE! first assembly pass.

PASS 0

Pass 0 reads the input program (which may be symbolic,
compressed, or compressed with symbol ic corrections) and
produces an encoded program for the assembler to process.
If requested to do so, Pass 0 wi II output the encoded pro­
gram in compressed form.

During Pass 0 the source program is checked for syntactica I
errors. If such errors are found, appropriate notification is
given, and the encoding operation continues. Because the
function of Pass 0 is to prepare the source program for pro­
cessing by the assembler, it must recognize and process
those directives concerned with manipulation of symbols
(SYSTEM, LOCAL, OPEN, CLOSE). Thus, it is Pass 0 that
locates the designated systems in the system I ibrary and i n­
corporates them in the encoded program.

PASS 1

After Pass 0 is finished, Pass 1 is executed. Pass 1 reads
the encoded program, builds the symbol table, and allocates
storage space for each statement that is to be generated.

PASS 2

Pass 2 is the final assembly phase which generates the ob­
ject ·code. It reads the encoded program and, using the
symbol table produced by Pass 1, provides the correct ad­
dresses for all symbols. During this phase, literals and
forward references are defined, and references to externa Ily
defined symbols are noted to be provided by the loadert.
Pass 2 a Iso produces the assembly I isting, the format for
which is described in Chapter 6.

tXerox loaders are routines that form and link programs to be
executed. A loader may be part of a monitor system or may
be an independent program.

Introduction

2. LANGUAGE ELEMENTS AND SYNTAX

LANGUAGE ELEMENTS

Input to the assembler consists of a sequence of characters
combined to form assembl y language elements. These lan­
guage elements (which include symbols, constants, expres­
sions, and literals) make up the program statements that
comprise a source program.

CHARACTERS

Meta-Symbol source program statements may use the char­
acters shown in T abl e 1.

Table 1. Meta-Symbol Character Set

Alphabetic: A through Z, and $, (w, #, I..-J (break
character - prints as "underscore ll

).

(: is the reserved a I phabet i c character,
as explained below).

~--------~---

Numeric: 0 through 9
--~--------------------------------~

Special
Characters: BI ank

+ Add (or positive value)

- Subtract (or negative value)

*

I
II

&

I

II

Multiply, indirect addressing prefix,
or comments I ine indicator

Divide

Covered quotient

Decimal point

Comma

Left parenthesis

Right parenthesis

Constant delimiter (single quotation
mark

Logical AND

Logical OR (vertical slash)

LogicC'1 exclusive OR (vertical slashes)

-, Logical NOT or compl ement

< Less than

) Greater than

= Equal to or introduces a literal

<= Less than or equal to

)== Greater than or equal to

-,= Not equal to

; Continuation code

** Binary shift

TAB Syntactically equivalent to blank.

2 Language Elements and Syntax

The colon is an alphabetic character used in internal
symbol s of standard Xerox software. It is inc I uded in the
names of monitor routines (M:READ), assembler routines
(S:IFR), and library routines (L:SIN). To avoid conflict
between user symbol s and those employed by Xerox software,
it is suggested that the colon be exel uded from user
symbols.

SYMBOLS

Symbols are formed from combinations of characters.
Symbols provide programmers with a convenient means of
identifying program el ements so they can be referred to
by other elements. Symbols must conform to the fol­
lowing rules:

1. Symbols may consist of from 1 to 63 al phanumeric
characters: A-Z, $, (a" #, :, I..-J, 0-9. At
least one of the characters in a symbol must be
alphabetic. No special characters or blanks can
appear in a symbol.

2. The symbols $ and $$ are reserved by the assembler to
represent the currenfvalue of the execution and load
location counters, respectively (see Chapter 3).

The following are examples of valid symbols:

ARRAY

Rl

INTRATE

BASE

7TEMP

#CHAR

$PAYROLL

$ (execution location counter)

The following are examples of invalid symbofs:

BASE PAY

TWO =2

Blanks may not appear in symbols.

Special characters (=) are not per­
mitted in symbols.

CONSTANTS

A constant is a self-defining language element. Its value
is inherent in the constant itself, and it is assembled as
part of the statement in wh ich it appears.

Self-defining terms are useful in specifying constant values
within a program via the EQU directive (as opposed to en­
tering them through an input device) and for use in constructs

that require a value rather than the address of the location
where that value is stored. For example, the load Immedi­
ate instruction and the BOUND dir'ective both may use
self-defining terms:

LI,2
2, 57, 8 arE! self-defining terms.

BOUND ~l
SELF-DEFINING TERMS

Self-defining terms are considered to be absolute (non­
relocatable) items since their values do not change when
the program is relocated. There are three forms of self­
defining terms:

1. The decimal digit string in which the constant is
written as a decimal integer constant directly in the
instruction:

lW,R HERE + 6 6 is a decimal digit string.

2. The character stri ng constant in wh i ch a stri ng of
EBCDICt characters is enclosed by single quotation
marks, without a qualifying type prefix. A com­
plete description of C-type general constants is given
below.

3. The general constant form in which the type of con­
stant is indicated by a code character, and the value
is written as a constant string enclosed by single quo­
tation marks:

lW, R HERE + X'7B3 1 783 is a hexadecimal
constant representing the
decimal value 1971.

There are seven types of general constants:

Code Type

C Character string constclnt (redundant notation)

X Hexadecimal constant

o Octal constant

D Decimal constant

FX Fixed-point decimal cc)nstant

FS Floating-point short constant

Fl Floating-point long constant

C: Character String Constant. A character string constant
consists ofa string of EBCDIC. characters enclosed by single
quotation marks and preceded by the letter C:

CIANY CHARACTERSI

Each character in a character string constant is allocated
eight bits of storage.

t A table of Extended Binary-Coded Decimal Interchange
Codes, as well as information concerning hexadecimal
arithmetic and hexadecimal to decimal conversion, can be
found in the appropriate Sigma Computer Reference Manuals.

Because single quotation marks are used as syntactical
characters by the assembler, a single quotation mark in a
character string must be represented by the appearance of
two consecutive quotation marks. For example,

CIABIICIII

represents the string

ABIC I

Character strings are stored four characters per word. The
descriptions of TEXT and TEXTC in Chapter 4 provide
positioning information pertaining to the character strings
used with these directives. When used in other data­
generating directives, the characters are right-justified
and a null EBCDIC character(s) fi lis out the field.

X: Hexadecimal Constant. A hexadecimal constant con­
sists of an unsigned hexadecimal number enclosed by single
quotation marks and preceded by the letter X:

XI9C01F I

The assembler generates four bits of storage for each hexa­
decimal digit. Thus, an eight-bit mask would consist of
two hexadecimal digits.

The hexadec ima I digits and their binary equivalents are
as follows:

0-0000 8 - 1000

1 - 0001 9 - 1001

2 - 0010 A-lOW

3 - 0011 B - 1011

4 - 0100 C -1100

5 - 0101 D - 1101

6-0110 E-l1lO

7-0111 F-l111

0: Octal Constant. An octal constant consists of an un­
signed octal number enclosed by single quotation marks and
preceded by the letter 0:

07.314526 1

The size of the constant in binary digits is three times the
number of octal digits specified, and the constant is right­
justified in its field. For example:

Constant Binary Value Hexadecimal Value

0 1 1234 1 001 010011 100 0010 1001 1100 (29C)

Language Elements 3

The octal digits and their binary equivalents are as follows:

0-000 4 - 100

1 - 001 5 - 101

2 - 010 6 - 110

3 - 011 7 - 111

D: Decimal Constant. A decimal constant consists of an
optionally signed value of 1 through 31 decimal digits,
enclosed by single quotation marks and preceded by the
letter D.

D'735698721 1 = D'+735698721 1

The constant generated by Meta-Symbol is of the binary­
coded decimal form required for Sigma decimal instructions.
In this form, the signt occupies the last digit position, and
each digit consists of four bits. For example:

Constant Value

D' + 99' 1001 1 001 nOD

Adecimal constant could be used in an instruction as follows:

LW, R L(D '99 1
}

Load (LW) as a literal (L) into register R the decimal con­
stant (D) 99.

The value of a decimal constant is limited to that which
can be contained in four words (128 bits).

FX: Fixed-Point Decimal Constant. A fixed-point decimal
constant consists of the foIl owing components in the order
listed, enclosed by single quotation marks and preceded
by the I etters FX:

1. An optional algebraic sign.

2. d, d., d. d, or . d, where d is a decimal digit string.

3. An optional exponent:

the letter E followed optionally by an algebraic
sign, followed by one or two decimal digits.

4. A binary scale specification:

the letter B followed optionally by an algebraic
sign, followed by one or two decimal digits that
designate the terminal bit of the integer portion
of the constant (i. e., the position of the binary
point in the number). Bit position numbering
begins at zero.

t A plus sign is a four-bit code of the form 1100. A minus
sign is a four-bit code of the form 1101.

4 Language Elements

Parts 3 and 4 may occur in any relative order:

FX'.OO78125B61

FX 11. 25E-l B 17'

FX'13.28125B2E-21

Example 1. Storing Fixed-Point Decimal Constants

Assume a halfword (16 bits) is to be used for two fields
of data; the first field requires seven bits, and the sec­
ond field requires nine bits.

The number FX '3. 75B41 is to be stored in the first field.
The binary equivalent of this number is 11 A 11. The
caret represents the position of the binary point. Since
the binary point is positioned between bit positions 4
and 5, the number would be stored as

Field 1 Field 2

Bit positions

The number FX'. 0625B-21 is to be stored in the second
field. The binary equivalent of this number is A 0001.
The binary point is to be located between bit posi­
tions -2 and -1 of fi el d 2; there, the number woul d be
stored as

Field 1 Field 2

Bit positions

In generating the second number, Meta-Symbol
considers bit position -1 of field 2 to contain a
zero, but does not actual! y generate a val ue for
that bit position since it overlaps fiel d 1. This
is not an error to the assembl er. However, if
Meta-Symbol were requested to place a 1 in bit
position -1 of field 2, an error would be detected
since significant bits cannot be generated to be
stored outside the field range. Thus, leading
zeros may be truncated from the number in a fiel d,
but significant digits are not allowed to overlap
from one fi el d to another.

FS: Floating-Point Short Constant. A floating-point short
constantf consists of the following components in order,
enclosed by single quotation marks and preceded by the
letter FS:

1. An optional algebraic sign.

2. d, d., d. d, or . d where d is a decimal digit string.

3. An optional exponent:

the letter E followed optionally by an algebraic
sign followed by one or tWCI decimal digits.

Thus, a floating-point short constant could appear as

FS '5.5E-31

[; J ,F, J 1""1,, ,~" ,1 ,,~,.1 ,,~, J.}~,1 ~BJ
The value of a floating-point short (::onstant is I imited to
that which can be stored in a singl e word (32 bits).

FL: Floating-Point Long Constant. A floating-point long
constantf consists of the following cClf'l'lponents in order,
enclosed by single quotation marks clnd preceded by the
letters FL:

1. An optional algebraic sign.

2. d, d., d. d, or . d where d is a decimal digit string.

3. An optional exponent:

the letter E followed optionally by an algebraic
sign, follow"d by one or two decimal digits.

Thus, a floating-point long constant could appear as

FL ' 2987574839928. E-l11

[; J ,2, J 1"..1" ,,~. "1,, ,,~ .. 1 ,,~,,1 },j, ~IJ
ac~, J~~~--I-::-::-::-:-~~
The maximum size constants permitt,edby Meta-Symbol is
as follows:

Constant
Desig­
nation

c
X

Decimal integer

Character string

Hexadecimal
number

Maximum
Si:ze

64bits (18 +digits)

504 bits (63 characters)

64bits (16 digits)

t Refer to the appropriate Xerox Sigma Computer Reference
Manual for an explanation of floating-point format.

Constant
Desig- Maximum
nation Type Size

a Octal number 64bits (21 +digits)

D Decimal number 128 bits (31 digits +sign)

FX Fixed-point decimal 32 bits
number

FS Floating-point short 32 bits
number

FL Floating-point long 64 bits
number

ADDRESSES

An address value is an element that is associated with a
storage location in the Sigma main memory. There are two
types of address va lues:

1. An absolute address has a value that corresponds ex­
actly with a storage location in memory. Absolute ad­
dress values will not be altered by the process of
loading (linking) the program. Although absolute ad­
dress values are invaricmt under the linking process,
they are not considered as constants by Meta-Symbol.
It is necessary to inform the Xerox loaders of the dif­
ference between constants and absolute addresses; for
this reason, Meta-Symbol treats both absolute and re­
locatable addresses as a single type address.

2. A relocatable address has a value that consists of two
parts, control section base and offset from this base.
The base of any control section is determined by the
Xerox loaders; thus, the only correspondence between
a relocatable address value and an actual storage lo­
cation is the offset from a base section location.

LITERALS

A literal is an expression enclosed by parentheses and pre­
ceded by the letter L:

L(-185}

L(X '5DF')

L($+AB-3)

decimal value -185

hexadecimal value 5DF

an address value

or an expression preceded by' an eq'uals sign:

= -185 decimal value -185

hexadecimal value 5DF

= $+AB-3 an address value

Literals are transformed into references to data values rather
than actual values. Literals may be used in any construct
that requires an address of a data value rather than the
actual value. For example, the Load Word instruction

Language Elements 5

requires the address of the value to be loaded into the
register, and use of a literal will satisfy that requirement:

LW,7 L(768) The value 768 is stored in the
literal table and its address
is assembled as part of this
instruction.

A literal preceded by an asterisk specifies indirect
addressing:

*=10 or *L(lO)

When a literal appears in a statement, Meta-Symbol pro­
duces the indicated value, stores the value in the literal
table, and assembles the address of that storage location
into the statement. The address is assembled as a word
address, regardless of the intrinsic resolution of the I itera I
control section. This address may be referenced, however,
as a byte, halfword, or doubleword address (see "Addressing
Functions" in Chapter 3). Literals may be used anywhere a
storage address value is a val id argument field entry. How­
ever, literals may not be used in directives that require pre­
viously defined expressions.

During an assembly Meta-Symbol generates each literal as
a 32-bit value on a word boundary in the literal table.
The assembler detects duplicate values and makes only one
entry for them in the table.

When Meta-Symbol encounters the END statement, it gen­
erates all literals declared in the assembly. The literals
are generated at the current location (word boundary) of
the currently active program section.

Any of the previously discussed types of constants except
Hoating-point long (FL) may be written as literals:

L(1416) integer literal

L(C'BYTE') character string literal

L(X'FOFO ') hexadecimal literal

L(O?777 1
) octal literal

L(D '37879 1
) decimal literal

L(FX?8.2E1BlO ') fixed-point decimal literal

L(FS ' -8.93541OE-02 1
) floating-point short literal

EXPRESSIONS

An expression is an assembly language element that repre­
sents a value. It consists of a single term or a combination
of terms (multitermed) separated by arithmetic operators.

The Meta-Symbol language permits general expressions of
one or more terms combined by arithmetic and/or Boolean
(logical) operators. Table 2 shows the operators processed
by Meta-Symbol.

PARENTHESES WITHIN EXPRESSIONS

Multitermed expressions frequently require the use of paren­
theses to control the order of evaluation. Terms inside

6 Language Elements

parentheses are reduced to a single value before being
combined with the other terms in the expression. For
example, in the expression

ALPHA*(BETA + 5)

the term BETA + 5 is evaluated first, and that result is mul­
tiplied by ALPHA.

Expressions may contain parenthesized terms within paren­
thesized terms:

DATA+(HRS/8-(TIME*2*(AG + FG)) + 5)

The innermost term (in this example, AG + FG) is evaluated
first. Parenthesized terms may be nested to any depth.

Table 2. Meta-Symbol Operators

Binding
Operator Strength t Functiontt

+ 7 Plus (unary)

- 7 Minus (unary)

--, 7 Logical NOT or complement (unary)

** 6 Binary shift (logical)

* 5 Integer multiply

/ 5 Integer divide

// 5 Covered quotient
ttt

+ 4 Integer add

- 4 Integer subtract

< 3 Less than

> 3 Greater than

<= 3 Less than or equa I to

>= 3 Greater than or equa I to

= 3 Equal to

--,= 3 Not equal to

& 2 Logical AND

I 1 Logical OR

II 1 Logical exclusive OR

t
See below, "Operators and Expression Evaluation".

ttAII operators are binary (i.e., require two operands)
except the first three, specifically indicated as unary.

tttA//B is defined as (A + B - 1)/B

OPERATORS AND EXPRESSION EVALUATION

A single.,.termed expression, such as 36 or $ or SUM, takes
on the value of the term involved. A multitermed expres­
sion, such as INDEX + 4 or ZD*(8+XYZ), is reduced to a
single value as follows:

1. Each term is evaluated and replaced by its interna I
value.

2. Arithmetic operations are performed from left to
right. Operations at the same parenthetical level

with the highest "binding streFlj~th" are performed
first. For example,

A+8*C/D

is eval uated as

A + «8 * C) / D)

3. A" arithmetic and logical operations in expressions are
carried out in double precision (64 bits) with the fol­
lowing exceptions:

a. Multiplication allows only single precision oper­
ands (32 bits) but may prodL'ce a double precision
product.

b. Division allows a single precIsion divisor and a
double precision dividend and produces a single
precision quotient.

4. Division always yields an integer result; anyfractional
portion is dropped.

5. Division by zero yields a zero result and is indicated
by an error not i fi cat i on.

An expression may be preceded by ani asterisk (*), which is
often used to denote indirect addressing. Used as a prefix
in this way, the asterisk does not aff.~ct the evaluation of
the expression. However, if an asterisk precedes a subex­
pression, it is interpreted as a multiplication operator.

Multitermed expressions may be formE~d from the following
operands:

1. Symbols representing absolute or relocatable addresses,
which may be previously defined, forward, or external
references.

2. Decimal integer constants (e.g., 12345) or symbols
representing them.

3. All other general constants, namely character string
(C), hexadecimal (X), octal (0), decimal (D), fixed­
point (FX), floating-point short (FS), and floating­
point long (FL), or symbols repn~senting them.

The following should be noted with regard to expression
evaluation:

1. To allow for greater flexibility in generating and
manipulating C, 0, FX, FS, and FL constants, the
assembl er treats them as integers when they are used
arithmetically in multitermed expressions and carries
the results internally as integers" Character constants
(C) so used are limited to 8 bytEls (64 bits), and deci­
mal constants (D) to 15 characters + sign (64 bits).

2. All operators may be used but only the + 'and -
operators and the comparison operators may take an ad- I
dress as an operand. An address operand is considered
to be

a. Any symbo I that has been assoc iated with an ad­
dress in a relocatable or absolute section.

b. Any local symbol referenced prior to its definition.

c. Any symbol that is an external reference.

3. The sum of any two address operands is an address. The
difference of any two address operands is an address,
except for the case where both items are in the same
control section and of the same resolution; the resu It
then is an integer constant.

4. An address operand plus or minus a constant must use a
single precision constant. Combining a negative con­
stant with an address operand, however, wi II produce
an error only if the negative constant cannot be repre­
sented correctly in single precision form. For example,
external reference -1 is correct; external reference
-9,589,934,592 is incorrect.

5. Meta-Symbol carries negatives as double precIsion
numbers and wi" therefore provide for generated neg­
ative values of up to 64 bits.

LOGICAL OPERATORS

The logical NOT (-,), or complement operator, causes a
one's complement of its operand:

Value

3

10

Hexadecimal
Equivalent

00 ... 0011

00 ... 1010

Onels Complement

11

11

1100

0101

The binary logical shift operator (**) determines the direc­
tion of shift from the sign of the second operand: a negative
operand denotes a right shift and a positive operand denotes
a left shift. For example:

5**-3

resul ts in a logical right shift of three bit positions for the
value 5, producing a result of zero. .

The result of any of the comparisons produced by the com­
parison operators is

o if false (or operands are of incompatible type)

1 if true

so that

Expression Result

3 > 4 0 3 is not greater than 4.

-, 3=4 0 The 32-bit value -, 3 is equal to
11 ... 1100 and is not equal to 4;
i.e., 00 ... 0100.

Language Elements 7

Expression Result

3-=4 3 is not equal to 4.

-,(3 =4) 11. .. 11 3 is not equal to 4, so the
result of the comparison is
o which, when comple­
mented, becomes a 64-bit
value {all one's}.

The logical operators & (AND), I (OR), and II (exclusive
OR) performs as follows:

AND

First operand:

Second operand:

Resul t of & operation:

OR

First operand:

Second operand:

Resul t of I operation:

Exclusive OR

First operand:

Second operand:

Result of II operation:

0011

0101

0001

0011

0101

0111

0011

0101

0110

Expressions may not contain two consecutive binary oper­
ators; however, a binary operator may be followed by a
unary operator. For exampl e, the expression

-A * -.., B / - C - 12

is eval uated as

«(-A) * (-,B)) / (-C)) - 12

and the expression

T + U * ry + -W) - (268/ -X)

is eval uated as

(T + (U * ry + (-W)))) - (268 / (-X))

SYNTAX
Assembly language elements can be combined with computer
instructions and assembler directives to form statements that
comprise the source program.

STAnMENTS

A statement is the basic component of an assembly language
source program; it is also called a source statement or a
program statement.

8 Syntax

Source statements are written on the standard coding form
shown in Figure 1.

FIELDS

The body of the coding form is divided into four fields:
label, command, argument, and comments. The coding
form is also divided into 80 individual columns. Columns 1
through 72 constitute the active I ine; columns 73 through 80
are ignored by the assembl er except for I isting purposes and
may be used for identification and a sequence number.

The columns on the coding form correspond to those on a
standard 80-column card; one I ine of coding on the form
can be punched into one card.

Meta-Symbol provides for free-form symbol ic I ines; that is,
it does not require that each fiel d in a statement begin in a
specified column. The rules for writing free-form symbolic
lines are:

1. The assembler interprets the fields from left to right:
label, command, argument, comments.

2. A blank column terminates any field except the com- I

ments field, which is terminated at column 72 on card
input or by a carriage-return or new-line character on
Teletype.

3. One or more blanks at the beginning of a line specify
there is no label field entry.

4. The label field entry, when present, must begin in
column 1, except when the initial line of a statement
contained a semi-colon in column 1. The label field
may then start in any active column in the second line.

5. The command field begins with the first nonblank col­
umn following the label fiel d or in the first nonblank
column following column 1, if the label field is empty.

6. The argument field begins with the first nonblank col­
umn following the command field. An argument field
is designated as a blank in either of two ways:

a. Sixteen or more blank columns follow the com­
mand field.

b. The end of the active line (column 72) is
encountered.

7. The comments field begins in the first nonblank column
following the argument field or after at least 16 blank
columns following the command field, when the argu­
ment field is empty.

ENTRIES

A source statement may consist of one to four entries
written on a coding sheet in the appropriate fiel d: a
label field entry, a command field entry, an argument
field entry, and a comments field entry.

Xerox Data Systems

XEROX

I OF ---.:/~_

Xerox Sigma Symbolic Coding Form

PROBLEM NeTJ-IIN6 WIi/lTEVER
IDENT IF leAT ION

PAGE

DATE --=-02_----...:-/_5_-~7_1 __ PROGRAMMER ~11..L..%..V.L..lK,,--____ _ 73 80
~~

LABEL COMMAND COMMENTS

1 5 0 15 50 55 60 65 70 n
ft" , , ,

"t" 'IHIS p'!('e'd,rt'p'H
I

, ,
,

I ,
, I , ,

, ,

*
, , , ,

I
,

I
, ,... ,

~- ,
, , , ,

, I ,
I

I 1

I 1

I I

I I

, I

r , I I

01!1 R." ~
, , I

, ,
I

,

,
EY IT

, I

, I

r ,'"
, , ' , , ' - , I , , I ,

, I I -, , I r-~ -,-,..-,,.....,--.-r-t--r-1,--,--r-;r-r....--r--r--r--T-r-,.- ...,.-,--r-r ,....,.-..,-,.-",.....,--r-;--.-...... ,........-I

-r-r-~-,-~~~~-r-,......,.'-,,~'. ~,...,-."-,-,,-,-,,....,.-,,4

Figure 1. Xerox Sigma Symbolic Coding Form

LABEL FIELD

A label entry is normally a list of symbols that identifies
the statement in which it appears. The label enables a
programmer to refer to a spec ific statement from other state­
ments within the program.

The label on a procedure referenCE! I ine (see Chapter 5)
may contain any I ist of va I id Meta-Symbol expressions,
constants, or symbo Is.

Multiple labels may appear in the label field of any in­
struction and of any directive excElpt DSECT, which must
have one and only one label. A I(lbel for some directives
is not meaningful and is ignored unless it is the target label
of a GOTO search. The labels must be separated by
commas. A series of labels may b.€l continued onto follow­
ing I ines by writing a semicolon aHer any character in the
label and writing the next character on another I ine, start­
ing in any column after column 1.

Example 2. Label Field Entries

YEAR_TO_DA TE, ACCUMU LATE D_SALARYi
,COMMISSIONS

Note that the semicolon does not replace the
comma that is required to sepclrate the entTies.

The label of a value, a list, or a function procedure may
have the same configuration as a command, without confl ict,
since Meta-Symbol is able to distinguish through context
which usage is intended. For example, the mnemonic code
for the Load Word command is LW. An instruction may be
written with LW in the label field without conflicting with
the comma nd L W •

The name of any intrinsic function that requires parentheses
(ABSVAL, BA, CS, DA, HA, L, NUM, S:IFR, S:NUMC, S:PT,
S:UFV, S:UT," SCOR, TCOR, and WA)may be used as a lobel
in either a main program or a procedure definition, if the
parentheses are omitted. The intrinsic functions AF, AFA,
CF, LF, and NAME may be used as labels in a main program,
but within a procedure definition they" are always inter­
preted as functions.

Example 3. Label Field Entry

LABEL COMMAND ARGUMENT

1 5 10 15 20 25 30 35

~~#
I

, ,-
-,-"-"--'--r-r-r- f----..- I ,

A(1 +.3,X)
I - ,.....--,-, I , ;-~

fl3
CBS,{£)

.... '---,,-r-r-"-r~-"~- ---.-----,1

'/=1 rr't:eN', IX'~ I , ~---r

, I ~-'-,~ --,-,--.--.--.- ,
--

, _____ =.::::s

COMMAND FIELD
A command entry is required in every active Ii ne. Thus,
if a statement line is entirely blank following the label

Syntax 9

field or if the command entry is not an acceptable instruction
or directive, the assembler declares the statement in error.

The command entry is a mnemonic operation code, an as­
sembler directive, or a procedure name. Meta-Symbol
directives and valid mnemonic codes for machine oper-
ations are I isted in the Appendixes. Procedures are dis-
cussed in Chapter 5.

Example 4. Command Field Entry

LABEL COMMAND ARGUMENT

~_5 10 15 20 25 30 35
Lly../ 5 T~

-r-,--,--,-

--J" '11/, , ,5
'-w ~ 'S'

, I ,
I

L''rJ.5
flL PH fli LIW,S

, , , I

BET ff 11..,:W .. 5
, , ~

lSI
r {W'S , , T

LeJB P ,
,

L"vI ~s
, I , ,

I' I , I , I ,

ARGUMENT FIELD

An argument entry consists of one or more symbols, con­
stants, literals, or expressions separated by commas. The
argument entries for machine instructions usually represent
such things as storage locations, constants, or intermediate
values. Arguments for assembler directives provide the in­
formation needed by Meta-Symbol to perform the desig­
nated operation.

Example 5. Argument Field Entry

COMMAND ARGUMENT

10 15 20 25 30 35 37 40

L. ~\ _~5 ilL PI-IR
, , , ,

f/W.Ol. 13/;2.
L'I 4. '~5

, , I I

L \;/ J C<9U NT
, T , r

Nep '8'L flN',{ '11 R'GUI1'[NT
L''fj !/ 'ANY I , ,

',; r , ,
, , ,

COMMENT FIELD

A comments entry may consist of any information the user
wishes to record. It is read by the assembl er and output as
part of the source image on the assembl y listing. Comments
have no effect on the assembl y.

COMMENT LINES

An entire I ine may be used as a comment by writing en
asterisk in column 1. Any EBCDIC character may be used
in comments. Extensive comments may be written by using
a series of lines, each with an asterisk in column 1.

10 Processing of Symbols

The assembler reproduces the comment lines on the as­
sembly listing and counts comment lines in making line
number assignments (see Chapter 6 for a description of
output formats).

STATEMENT CONTINUATION

If a single statement requires more space than is available
in columns 1 through 72, it can be continued onto one or
more following I ines. When a statement is to be continued
on another line, the following rules apply:

1. Each I ine that is to be continued on another I ine must
be terminated with a semicolon. The semicolon must
not be within a character constant string. Anything in
the initial line following the semicolon is treated as
comments. A semicolon within comments is not treated
as a continuation code.

L. Col umn 1 of each continuation I ine must be blank.

3. Comment I ines may not be continued.

4. Comment I ines may be placed between continuation
lines.

5. Leading blanks on continuation lines are ignored by
the assembler. Thus, significant blanks that must
follow label or command entries must precede the
semicolon indicating continuation.

Example 6. Statement Continuation

BEGIN

NEW

ANS

LW,3 A· ,
+B

TEXT 'A;B'

LOCAL A,START,R1,;
D,RATIO,B 12,;
C,MAP

LW,3
SUM,l

Continuation

; is not a contin-
uation character.

Continuation

The blank that
terminates the
command fiel d
precedes the
semicolon.

PROCESSING OF SYMBOLS

Symbols are used in the label field of a machine in­
struction to represent its location in the program. In the
argument field of an instruction, a symbol identifies the
location of an instruction or a data value.

The treatment of symbols appearing in the label or argu­
ment field of an assembler directive varies.

DEFINING SYMBOLS

A symbol is "defined" by its appearance in the label field of
any machine language instruction and of certain directives:

ASECT, CNAME, COM, CSECT, DATA, DO, DOl,
DSECT, END, EQU, FNAME, GEN, LOC, ORG,
PSECT, RES, SET, S:SIN, TEXT, TEXTC, WHILE, and
USECT.

For all other directives a label entry is ignored (except as
a target label of a GOTO directive); that is, it is not as­
signed a value.

Any machine instruction can be labeled; the label is as­
signed the current value of the execution location counter.

The first time a symbol is encountered in the label field of
an instruction, or any of the directives mentioned above,
it is placed in the symbol table and assigned a value by the
assembler. The values assigned to labels naming instruc­
tions, storage areas, constants, and control sections repre­
sent the addresses of the leftmost bytm of the storage fields
containing the named items.

Often the programmer wi" want to (lssign values to sym­
bols rather than having the assembler do it. This may be
accomplished through the use of EQU and SET directives.
A symbol used in the label field of these directives is as­
signed the value specified in the argument field. The sym­
bol retains all attributes of the value to which it is equated.

Not~ The use of labels is a programmer option, and as
many or as few labels as desired may be used.
However, since symbol definition requires assem­
bl y time and stuage space, unnecessary labels
shoul d be avoided.

REDEFINING SYMBOLS

Usually, a symbol may be defined only once in a program.
However, if its value is originally assigned by a SET, DO,
or WHILE directive, the symbol may be redefined by a sub­
sequent SET directive or by the processing of a DO or
WHILE loop. For example:

SYM SET

SYM DO

NOW SET

15

3

SYM

SYM is assigned the value 15.

S YM is changed to zero and
is incremented by 1 each time
the DO loop is executed.

NOW is assigned the value
SYM had when the DO loop
was completed; i.e., 3 not 15.

SYMBOL REFERENCES

A symbol used in the argument field ()f a machine instruc­
tion or directive is called a symbol reference. There are
three ty pes of symbo I references.

PREVIOUSLY DEFINED REFERENCES

A reference made to a symbol that has already been defined
is a previously defined reference. All such references are
completely processed by the assembler. Previously defined
references may be used in any mach ine instruction or directive.

FORWARD REFERENCES

A reference made to a symbol that has not been defined is a
forward reference. There are two distinct types of forward
references, local forward references and nonlocal forward
references. Table 3 summarizes the permissible places where
each type may be used. Directives not listed either do not
allow forward references (e.g., DO) or completely ignore
them (e.g., PAGE, PROC).

Table 3. Legal Use of Forward References

Command Field Argument Field

Command Local Nonlocal Local Nonlocal

Machine
X X X X

Instruction

CDISP X

CLOSE X

CNAME X X

COM X

DATA X X

DEF X X

DISP X X
~-

EQU X X X

ERROR X X

FDISP X

FNAME X X

GEN X X

GOTO X X

LIST X

LOCAL X

OPEN X

PCC X

PEND X

PSR X
--

PSYS X
--

SET X X X

S:SIN X X

SPACE X

TITLE X

Procedure X X X X

Processing of Symbols 11

There are two general restrictions on the use of forward
references:

1. A forward reference may not be subscripted.

2. A subscripted symbol may not have a forward reference
in the subscript list.

Meta-Symbol permits the use of forward references in multi­
termed expressions.

EXTERNAL REFERENCES

A reference made to a symbol defined in a program other
than the one in which it is referenced is an external
reference.

A program that defines external references must declare them
as external by use of the DEF directive. An external defini­
tion is output by the assembler as part of the object program,
for use by the loader.

A program that uses external references must declare them as
such by use of a REF or SREF di recti ve.

A machine instruction containing an external reference is
incompletely assembled. The object code generated for such
references allows the external references and their associated
external definitions to be linked at load time.

After a program has been assembled and stored in memory to
be executed, the loader automatically searches the program
library for routines whose labels satisfy any existing external
references. These routines are loaded automatically, and
interprogram communication is thus completed.

The permissible places in which external references may be
used are identical to the legal uses for local forward refer­
ences, as given in Table 3.

Meta-Symbol permits the use of external references in multi­
te rmed ex press ions.

ClASSIFICAflG~ OF SYMBOLS

Symbols may be classified as either local or nonlocal.

A local symbol is one that is defined and referenced within
a restricted program region. The program region is desig­
nated by the LOCAL directive, which also declares the
symbo Is that are to be loca I to the reg ion.

A symbol not declared as local by use of the LOCAL direc­
tive is a nonlocal symbol. It may be defined and referenced
in any region of a program, including local symbol regions.

The same symbol may be both nonlocal and local, in which
case the nonloca I and loca I forms identify different pro­
gram elements.

12 Lists

SYMBOL TABLE

The value of each defined symbol is stored in the as­
sembler's symbol table. Each value has a value type
associated with it, such as absolute address, relocatable
address, integer, or external reference. Some types require
additional information. For example, relocatable ad­
dresses, wh i ch are entered as offsets from the program
section base, require the intrinsic resolution of the symbol
(see Chapter 3 for a discussion of intrinsic resolution and
the section number).

When the Qssembler encounters a symbol in the argument
field, it refers to the symbol table to determine if the sym­
bol has already been defined. If it has, the assembler
obtains from the table the value and attributes associated
with the symbol, and is able to assemble the appropriate
va lue in the statement.

If The symbol is not in the table, it is assumed to be a for­
ward reference. Meta-Symbol enters the symbol in the
table, but does not assign it a value. When the symbol is
defined later in the program, Meta-Symbol assigns it a
value and designates the appropriate attributes.

LISTS

A I ist is an ordered set of elements. Each element occupies
a unique position in the set and can, therefore, be identi­
fied by its position number. The nth element of list R is
designated as R(n). An element of a I ist may also be
another list. Any given element of a list may be numeric,
symbolic, or null (i. e., nonexistent).

A list may be either linear or nonlinear. A linear list is
one in which all non-null elements consist of a single
numeric or symbolic expression of the first degree (i .e.,
having no element with a sub-subscript greater than 1).
A nonl inear I ist has at least one compound element; that
is, a non-null element with a sub-subscript greater than 1.

These definitions are explained in greater detail below.

Lists may be used in two ways: as value I ists or as pro­
cedure reference lists. Value lists are discussed in this
chapter; see Chapter 5 for a description of procedure ref­
erence lists.

VALUE LISTS

LINEAR VALUE LISTS

A linear value list may consist of several elements or of
only a single non-null element having a specific numeric
va lue (e. g., a signed or unsigned integer, an address, or a

floating-point number). Thus, a!lingle value and a linear
value list of one element are struc:turally indistinguishable.

An example of a linear value list, named R, having the
four elements 5, 3, -16, and 17 iis shown below.

R == 5, 3, -16, 17

(The symbol == means "is iden1'ical to".)

Reference Syntax. In the example given above, the four
el ements of list R woul d be referreid to as:

R(l) = 5

R(2) = 3

R(3) = -16

R(4) = 17

The numbers in parentheses are thE! subscripts of the ele­
ments. Note that, for the above example:

R(n) = null for n > 4

A null value is not a zero value. An element having a
value of zero is not considered a rlull element, because
zero is a specific numeric value. The null elements of a
val ue I ist are those that have not been assigned a value,
although they do have specific subscript numbers. That is,
all subscript numbers not assigned to non-null elements may
be used to referencf' impl icit null elements. For exam pi e,
the list R, as defined above, consists of four elements:

R(l) = 5

R(2) = 3

R(3) = -16

R(4) = 17

and any number of impl icit null elements:

R(5) = null

R(6) = null

R(n) = null for n > 4

A null value used il1l an arithmetic or logical operation has
the same effect as a zero value. Thus, if

LIST(a) = null

then

LIST(b) + LlST(a) = LlST(b)

also

o + LIST(a) = 0

also

LIST(a) + null == 0

Example 7. Linear Value Listt

A SET 8,6,9

defines I ist A as

A(l)=8

A(2) = 6

A(3) = 9

A(4) = null

A(n) = null for n ~ 4

The I ist could be altered by assigning additional
elements to list A:

A(4)

A(5)

SET

SET

-65

231

changing list A to

A 8,6,9, -65,231

When a I ist contains expl icit null el ements (i. e., those fol­
lowed by one or more non-null elements), they are counted
with the non-null el ements in determining the total number
of elements in the list.

Examples of I ists containing expl icit null el ements are shown
below.

A

B

SET

SET

5,17,10",14

,,6

defines I ists A and B as

A = 5, 17, 10, null, null, 14 list A contains six
explicit elements.

B = null,null,6 list B contains three
expl icit elements.

A trailing comma in a list specifies a trailing explicit null
element. Thus, a list defined as

S SET 4,3,6" 2,

contains six explicit elements: 4,3,6"null,2,null.

If Q is the name of an m-element value list, e is an expres­
sion having the single value n, and no list having more than
255 elements can be accommodated by the assembler, then
the reference syntax will give the values shown in Table 4.

Generation. The syntax for defining a I ist is

name followed by directive followed by sequence

t Lists values are normally defined by SET or EQU directives,
which are described in Chapter 4.

Lists 13

Table 4. Reference Syntax for Lists

Syntax of
Case Reference Range of n Mean i ng of the Reference Value(s) of the Reference

1 Q or Q(O) n=O Reference to all elements of The m values of the elements
list Q. of list Q.

2 Q(e) lnm Reference to the nth el ement The val ue of the nth el ement
of list O. of list O.

3 O(e) m < n $ 255 Reference to nonexistent (null) Null. (Numeric effect equiv-
(n is an integer) element of list Q. (No al ent to zero.)

error fl ag.)

4 O(e) n < 0 or n > 255 or Error.
n is not an integer

The name may be any symbol chosen by the programmer I
the directive may be either EQU or SET, and the sequence
is one or more elements establishing the list structure.
Note that a name is mandatory.

Each element in a list-defining sequence must be either
(1) the expression to be used as the next element of the list,
or (2) a reference (case 1 or 2 of Table 4) to an m-element
list, whose elements are to be copied as the next elements
of the list being defined. This is illustrated in Example S,
where the effects of successive SET directives are to be
considered cumulative.

Example S. Defining Linear Value Lists

Example 8a

0 SET

creates

0=4,9

Example 8b

R SET

creates

R =4, 17,-6

Example 8c

S

creates

S = 4, 9

Example 8d

T

creates

SET

SET

T =4,9, 19,4,9,-6

14 Lists

4,7 + 2

0(1),17, -6

o

0, 19,0, R(3)

(Subscript out of range.) The value of 0(1).

Example Se

o SET T(6), T(3), 205

redefines

0== -6, 19,205

Note: Example S does not result in redefinition of R,
S, or T, although they were initially defined
in terms of elements of Q; only 0 will have
new val ues after execution of this directive.

Example Sf

T

redefines

SET T(5)

Note: The evaluation of T(5) is performed before re­
definition of T. All elements of T that are of
higher order than T(l) will be null elements
after execution of this directive (i. e.,
T(n) = null for n > 1).

Example 8g

S

redefines

SET

S=4,9,6

Example Sh

S

redefines

SET

S = 1,4,9,6

S,6

1, S

Manipulation. The SET directive can be used not only to
define or redefine an entire list, but also to define or re­
define any single element of a linear value list. The syntax

of the directive is still name followed by directive followed
by sequence, but the name is a subscripted symbol identi­
fying some particular list element; and the sequence is only
a single expression, representing elither a specific numeric
value or the name of a previously defined element having
a single value.

In Example 9 below, the effects of successive SET directives
are to be considered cumulative, but not retroactive.

Example 9. Redefining a Linear Value List

Example 9a

A
A(2)

redefines

SET
SET

A=5,17,4

Example 9b

A(3) SET

redefines

A==5,17,10

5,6,4
17

A(3) + b

Example 11. Nonlinear Value List Notation

Z =«2,3,4)),(9,8,11),7,(6,(5,4))

The elements of list Z are

Z(1) = (2,3,4)

Z(2) = 9, 8, 11

Z(3) = 7

Z(4) = 6, (5,4.)

Zen) == null for n > 4

NONLINEAR VALUE LISTS

Anonl inear value I ist has at least one compound element; that
is, a non-null element having a sub-subscript greater than 1.
A compound element in a I ist is identified by enclosure
within parentheses. Example 10 illustrates this notation.

Example 10. Parentheses in Nonl inear Value Lists

x - (4) Redundant parentheses.

x - (4, 7) Not redundant.

x - (A) If A has previously been equated to a sin­
gle value, the parentheses are redundant.

If A has pre vi ousl y been equated to a list of
val ues, the parentheses are not redundant.

In Example 11, notice the use of parentheses in specifying
the level of the subelements. Z(1) consists of one sub­
element: (2, 3, 4), which is composed of thre..: sub­
subel ements: 2, 3, 4, as compared with Z (2) wh ich consists
of three subel ements: 9, 8, 11, and no sub-subel ements.
Meta-Symbol places no limit on the number of levels that
may be specified for subelements.

Subelements of list Z are identifi'ed by means of multiple subscripts (i. e., sub-subscripts):

~
Z(1, 1,1)=2

Z(1, 1) =2,3,4 ________ ---11------ Z(1, 1,2) = 3

- - ---- ~~:: ::::: :,,11
Z (1) == (2, 3, 4) ~

Z(2) =9,8,11-

I '-------- Z(1,2) = null

(L
Z (2, 1, 1) = 9 ..-------- Z 2, 1) = 9 ___________ --1

-- - - -- Z(2, 1,2) = null

() L
Z(2,2, 1) = 8 1-------- Z 2',2 == 8 ________ --.:.. ___ -1

------ Z(2,2,2)= null

L
Z(2,3,1)=11

~----- Z(2,3) = 11 __________ -1

------ Z(2,3,2) =null I
I
L ____ - Z(2,4) = null

Lists 15

I
r------- Z(3, 1) == 7

Z(3) = 7 ------l.

-----------IL Z(3, 1, 1) = 7
-- - --- Z(3, 1,2) = null

I
L. _____ Z(3,2) = null

C
Z(4, 1) = 6 -----------IL Z(4, 1, 1) = 6

------ Z(4, 1,2)=null

t
Z(4,2, 1) == 5

Z(4) =6,(5,4)- Z(4,2) =5,4 ---------+----- Z(4,2,2) ==4
I
L ------ Z(4,2,3)=null
------ Z(4,3) =null

A number of implicit null elements could be identified as subelements. In this example implicit null elements are
indicated with broken lines and only one such element is shown for each subdivision.

Redundant parentheses frequently occur in lists. For
example, the list

A = ««4 + 7) * (3 + 2)),6))

can be simplified as follows:

A = ««(11) * (5)),6))

A = «(55),6))

The pair of parentheses enclosing 55 is redundant, since
(55) and 55 are identical. However, the remaining two
sets of parentheses are not redundant since they specify
the level of the subelements. The use of redundant paren­
theses in I ists is permitted in Meta-Symbol.

Reference Syntax. The reference syntax used with nonl inear
value I ists is the same as that used with I inear value lists,
except that multiple subscripts are used to indicate the
subel ement.

In addition to allowing the use of redundant parentheses,
the list-manipulation syntax allows lists to be defined in
terms of elements of other I ists or even in terms of elements
of the list itself. For example, if list M is defined as

M = -6, (4, 7), 3

then another list could be defined as

N(2) SET M(2) making N(2) == 4, 7

or an entire list coul d be defined as

p SET M making P == -6, (4, 7),3

Furthermore, elements within a I ist can be redefined in
terms of list el ements:

M SET -6, (4,7),9 making M = -6, (4,7),9

M(1) SET M(2, 1) making M == 4, (4, 7),9

M(2,2) SET M(3) making M = 4, (4,9),9

M(3) SET M(3) making M = 4, (4,9),9

M(3) SET 9 making M = 4, (4,9),9

Notice that the last two declarations result in no change in
val ue for el ement M (3).

16 Lists

Assume that list R is defined as equal to element A(a) of list
A, that list S is defined as el ement R (b) of list R, and that
list T is defined as element S(c) of list S. List T will then
be equal to el ement A(a, b, c) of list A. That is, if

R SET A(a)

and

S SET R(b)

and

T SET S (c)

then

T==A(a,b,c)

Example 12. Defining Nonlinear Value Lists

Assume I ist A is defined as

A =4, «2,6),4, 1), 17

then the following definitions could be rriade

R

S

T

SET A(2)

SET R(l)

SET S(2)

making R = (2,6),4, 1

making S == 2,6

making T == 6

The same definition for T could be achieved by writing

T SET A(2, 1,2) making T == 6

Generation. The definition syntax for nonlinear value
lists is the same as that for linear I ists, and either EQU
or SET directives may be used. In Example 13 the effects
of successive SET directives are to be considered cumula­
tive, but not retroactive. Assume that all lists are initially
undefined.

Manipul ation. The SET directive may be used to define or
redefine any single element or subelement of a nonlinear
value list. The name used with the directive is a subscripted
symbol identifying some particular element or subelement,
and the sequence may consist of one or more expressions.

Example 13. Defining Nonlinear Value Lists

Example 13a A SET

Example 13b 8 SET

Example 13c C SET

(5,6), 7

1 + 2 * 3, 17,A(3" 1)

A, (A), A(l), 8(2)

defines A = (5,6), 7

thusA(l)=5,6
A(2) == 7
A(3) == null

defines B == 7, 17

thusB(l)==7
8(2) = 17
8(3) = null

defines C = (5,6),7,«5,6),7),5,6,17

thus C(l) =5,6
C(2) == 7
C(3) == (5,6), 7
C(4) == 5
C(5) == 6
C(6) = 17

Notice that the parentheses enclo~;ing the second element in the definition of C are not redundant. They specify that
the entire I ist A is to be one element of list C.

Example 13d D SET

Example 13e 8 SET

A,8

A, (8)

defines D == (5,6),7,7, 17

thus D(l) == 5,6
D(2) == 7
D(3) == 7
D(4) == 17

redefines 8 == (5,6),7, (7, 17)

thus 8(1) == 5,6
8(2) == 7
8(3) == 7, 17

In Example 13e, the original elements of list B are used to redefine an element of the list. This is possible because
the assembler evaluates the item~1 on the righthand side of the directive SET before equating them with the sym­
bol (s) on the lefthand side.

In Example 14 the effects of successi've SET directives are
to be considered cumulative, but not retroactive. Assume
a" lists are initially undefined.

NUMBER OF ELEMENTS IN A LIST

The number of explicit elements (i. e., non-null el ements
plus explicit null elements) in a list can be determined
through the use of the intrinsic function NUM. The syntax
for this function is

NUM(name)

The name spec ified may be that of a list, of an el ement, or
of a subelement of a I ist. In Example 15 the number of
explicit elements is determined for list S and also for each
of its elements and subelements.

If a I ist is defined as equal to some given element of another
list, the new list will have the same number of explicitele­
ments as the original list. That is, if

Q SET P(a)

then

NUM(Q) = NUM(P(a»

Example 17 illustrates this point.

Lists 17

Example 14. Manipulating Nonlinear Value Lists

Example 140 A(1) SET 1,2,3

Example 14b A(l,l,2) 5ET 4

Example 14c B(1,2) 5ET A(l, 1),(A(l,2),A(1 ,3»

Example 14d C(l) 5ET A(l,2),(A(1, 1,1»

defines A == (1,2,3)

thus A(l) = 1,2,3
A(2) == null

A(1,l) == 1
A(1,2)==2
A(1,3) =3
A(2,l) = null

A(1,l,l)=l
A(1,l,2) = null
A(l,2,l)=2
A(l,2,2) = null
A(l,3,l)=3
A(l,3,2) = null

defines a previousl y null element: A(1,l,2) = 4

making I ist A = «1,4),2,3)

thus A(1) = (1,4),2,3 A(1,l) = 1,4
A(2) = null A(1,2)=2

A(1,3) == 3
A(2,l) = null

defines B = (null,(l,4,(2,3»)

thus B(1) = null, (1,4,(2,3»
B(2) == null

defines C == (2, 1)

thus C(l) = 2,1
C(2) = null

C(1,1)=2
C(1,2) = 1

B(l,l) =null
B(l,2) == 1,4,(2,3)

Notice that the parentheses around A(l,l,l) are redundant in this example.

Example 14e B(1,1) 5ET C(1,2) defines a previously null subelement: B(l,1) = 1

Example 15. NUM Function

5 = A,(8,«C,D»)
NUM(5) = 2

5(1) = A
NUM(5(1» = 1

5 (2) == B, «C, D»
NUM(5(2» = 2

5 (3) == null
NUM(5 (3» = 0

18 Lists

5(l,l)=A
NUM(5(1,1» = 1

5(1,2) = null
NUM(5(1,2» = 0

5 (2, 1) == B
NUM(5(2,1) = 1

5(2,2) = (C,D)
NUM(5(2,2» = 1

5 (2,3)= null
NUM (5 (2,3» = 0

thus B == (1,(1,4,(2,3»)
B(l) = 1,(1,4,(2,3»
B(2) = null

5(2,1,1) == B
NUM (5 (2, 1, 1» = 1

5 (2, 1 ,2) = null
NUM(5(2,l,2» = 0

5(2,2,1) =C,D
NUM(5(2,2,1» = 2

5 (2,2,2) == null
NUM(5(2,2,2» = 0

B(l,1) == 1
B(l,2) = 1,4,(2,3)

5(2,2,1,1) = C
NUM(5(2,2,1,1» = 1

5(2,2,1,2) = D
NUM(5(2,2,1 ,2» = 1

5 (2,2, 1 ,3) = nu II
NUM(5(2,2, 1,3» =0

Example 16. NUM Function

Assume list Z is defined as

Z SET 3, , , 4, , ,

thus, NUM(Z) = 7

If

Z(4) SET Z(2y

NUM(Z) = 7

Note that NUM(Z(2» = 0

Example 17. NUM Function

Assume I ist A is defined as

A==4, «2,6),4,1),17

If the following definitions are made:

R

S

T

SET

SET

SET

A(2)

R(1)

5(2)

Then the following statements are trLle:

NUM(A(2» = 3

= NUM,A(2» = 3

List Z consists of seven elements: 3, null, null, 4, null, null, null. (Note
that the last null element is specified by the final comma in the list.)

That is, the fourth element of Z is redefined as a null element.

List Zwould still consist of seven elements: 3, null, null, null, null,
null I null.

making A(2) == (2,6,),4, 1

making R == (2,6),4, 1

making S == 2,6

making T == 6

NUM(R)

NUM(S)

NUM(T)

= NUM(R(1» = NUM(A(2, 1» = 2

= NUM(S (2» = NUM(R(l,2»

= NUM(A(2, 1,2» = 1

Lists 19

3. ADDRESSING

Sigma computer addressing techniques require a register
designation and an argument address that may specify in­
dexing and/or indirect addressing. The programmer may
write addresses in symbolic form, and the assembler will
convert them to the proper equivalents.

RELATIVE ADDRESSING
Relative addressing is the technique of addressing instruc­
tions and storage areas by designating their locations in
relation to other locations. This is accomplished by using
symbolic rather than numeric designations for addresses.
An instruction may be given a symbolic label such as
LOOP, and the programmer can refer to that instruction
anywhere in his program by using the symbol LOOP in the
argument field of another instruction. To reference the
instruction following LOOP, he can write LOOP+ 1;
similarly, to reference the instruction preceding LOOP, he
can write LOOP-l.

An address may be given as relative to the location of the
current instruction even though the instruction being ref­
erenced is not labeled. The execution location counter,
described later in this chapter, always indicates the loca­
tion of the current instruction and may be referenced by
the symbol $. Thus, the construct $+8 specifiesanaddress
eight units greater than the current address, and the con­
struct $-4 specifies an address four units less than the cur­
rent address.

ADDRESSING FUNCTIONS

Intrinsic functions are functions bui It into the assembler.
Certain of these functions concerned with address resolution
are discussed here. literals were discussed in Chapter 2,
and other intrinsic functions are explained in Chapter 5.

Intrinsic functions, including those concerned with address
resolution, mayor may not require arguments. When an
argument is required for an intrinsic function, it is always
enclosed in parenthe:ie~

A symbol whose value is an address has an intrinsic address
resolution assigned at the time the symbol is defined. Usu­
ally this intrinsic resolution is the resolutioncurrentlyap­
plicable to the execution location counter. Theaddressing
functions BA, HA, WA, and DA (explained later) allow the
programmer to specify explicitly a different intrinsic address
resolution than the one currently in effect.

Certain address resolution functions are applied uncondi­
tionally to an address field after it is evaluated. The choice
of functions depends on the instruction involved. For in­
structions that require values rather than addresses (e.g.,
LI, MI, DATA), no final addressing function is appl ied.
For instructions that require word addresses (e.g., LW, STW,
LB, STB, LH, LD), word address resolution isapplied. Thus,

20 Addressing

the assembler evaluates lW,3 ADDREXP as if it were
LW,3 WA(ADDREXP}. Similarly, instructions that require
byte addressing (e.g., MBS) cause a final byte addressing
resolution to be appl ied to the address field.

More information on address resolution is given after the
explanation of intrinsic addressing functions, which follows.

$, $$ Location Counters

The symbols $ (current value of execution location counter)
and $$ (current value of load location counter) indicate that
the current value of the appropriate location counter is to
be generated for the field in which the symbol appears.

The current address resolution of the counter is also applied
to the generated field. Th is resolution may be changed by
the use of an addressing function.

Example 18. $, $$ Functions

A EQU $ Equates A to the current value
of the execution location
counter.

Z EQU $$ Equates Z to the current value
of the load location counter.

TEST BCS,3 $+2 Branches to the location speci-
fied by the current execution
location counter +2 if the
condition code and value 3
compare lis anyplace.

BA Byte Address

The byte address function has the format

BA{address expression)

where BA identifies the function, and address expression is
the symbol or expression that is to have byte address resolu­
tion when assembled. If address expression is a constant,
the value returned is the constant itself.

Example 19. BA Function

z LI,3 BA(L{48)) The value 48 is stored in the
literal table and its location
is assembled into this argu­
ment fie Id as a byte address.

AA LI,5 BA($) The current execution loca­
tion counter address is evalu­
ated I:lS a byte address for this
staternent.

HA Ha I fword Address

The halfword address function has the format

HA(address expression)

where HA identifies the function, and address expression
is the symbol or expression that is to have halfword address
resolution. If address expression ns a constant, the value
returned is the constant itself.

Example 20. HA Function

Z

Q

CSECT Declares, control section Z.
Both loc':ltion counters are
initial iZled to zero. Z is im­
plicitly defined as a word
resolution address.

EQU HA(Z+4) Equates Q to a halfword ad­
dress of Z+4 (words).

'WA Word Address

The word address function has the, format

WA(address e>c?ression)

where WA identifies the function, and address expression
is the symbol or expression that is; to have word address
resolution when assembled. If address expression is a con­
stant, the value returned is the constant itself.

Example 21. WA Function

A ASECT Declures absolute section A
and sets its location counters
to zero.

LW,3 Zl Assembles instruction to be
stored in location O.

B LW,4 Z2 Assigns the symbol B the
va I ue, 1, with word address
resolution.

C EQU BA(B) Equal'es C to the value of B
with byte address resolution.

F EQU WA(C} Equal'es F to the value of C,
with word address resolution.

! DA Doubleword Address

The doubleword address function has the format

DA(address expression)

where DA identifies the function, and address expression is
the symbol or expression that is to have doubleword address
resolution when assembled. If address expression is a con­
stant, the value returned is the constant itself.

Example 22. DA Function

LI,5 DA(L(ALPHA))

ABSVAL Absolute Value

The symbol ALPHA is stored
in the I iteral table and its
location is assembled into this
statement as a doubleword
address.

This function converts a relocatable address into an absolute
value (viz., address expression minus relocation bias). It
has the format

ABSVAL{address expression)

where ABSVAL identifies the function, and address expres­
sion is any valid expression containing only addresses and
integers combined by addition or subtraction (no external
or local forward references).

The absolute value of an address is evaluated according to
the resolution; thus, the absolute value of a relocatable
address, evaluated with word resolution, would result in a
17-bit address (the two bits specifying byte and halfword
boundaries would be ignored). The absolute va lue of an
external reference, a blank field, a null field, an integer,
a character string, etc., is the same configuration as the
item itself; e.g., ABSVALCAXY') is the value 'AXY'.

Example 23. ABSVAL Function

Q CSECT

R EQU

o

$+5

Declares control section
Q and sets location
counters to zero.

Equates R to the current value
of the execution location
counter plus 5 (i .e., to the
value 5 evaluated with
word resolution).

Addressing Functions 21

LI,2

LI,2

ABSVAL(R) Loads reg ister 2 with
ABSVAL(R), which
is the value 5.

(2121210101010151
o 31

ABSVAL(BA(R))

12
1
2

1
2

1
0

1010 11 141
o ~

ADDRESS RESOLUTION

To the assembler an address represents an offset from the
beginning of the program section in which it is defined.

Consequently, the assembler maintains in its symbol table
not only the offset value, but an indicator that specifies
whether the offset value represents bytes, words, halfwords,
or doublewords. This indicator is called the "address
resolution" •

Example 24. Address Resolution

Location

00000

00000

00000 2

00001

00001 2

00002

00002 2

00002 2

00003

00003 2

00004

00004 2

·00005

00005 2

00006

00006 2

Generated
Code

FFFB A

0004 B

0000

0002

0001

FFFF F

OOOA

OOOB

0002

0002

0008

0003

OOOC

OOOD

22 Address Resolution

CSECT

ORG

GEN,16

GEN,16

GEN,16

GEN,16

GEN,16

ORG"l

GEN,16

GEN,16

GEN,16

GEN,16

GEN,16

GEN,16

GEN,16

GEN,16

GEN,16

a

-5

4

BA(A)

BA(B)

HA(B)

$

-1

F

F+1

WA(F)

Address resolution is determined at the time a symbolic ad­
dress is defined, in one of two ways:

1. Explicitly, by specifying an addressing function.

2. Implicitly, by using the address resolution of the exe­
cution location counter. (The resolution of the execu­
tion location counter is set by the ORG or LOC direc­
tives. If neither is specified, the address resolution
is word.)

The resolution of a symbolic address affects the arithmetic
performed on it. If A is the address of the leftmost byte of
the fifth word, defined with word resolution, then the ex­
pression A + 1 has the value 6 (5 words + 1 word). If A is
defined with byte resolution, then the same expression has
the value 21 (20 bytes + 1 byte). See Example 24.

Forward and externa I references with addends a re considered
to be of word resolution when used without a resolution
function in a generative statement or in an expression.
Thus, a forward or externa I reference of the form

reference + 2

is implicitly

WA(reference +2)

Sets value of location counters to zero with
word resolution.

Defines A as a with word resolution.

Defines B as a with word resolution.

Generates a with byte resolution.

Generates 2 with byte resolution.

Generates 1 with halfword resolution.

Sets value of location counters fo 10 with
byte resolution.

Defines F as 10 with byte resolution.

Generates 10 with byte resolution.

Generates 11 with byte resolution.

Generates 2 with word resolution.

WA(F+1) Generates 2 with word resolution.

BA(WA(F+ 1)) Generates 8 with byte resolution.

WA(F)+l Generates 3 with word resolution.

BA(WA(F)+ 1) Generates 12 with byte resolution.

BA(W A(F)+ 1)+ 1 Generates 13 with byte resolution.

LOCATION COUNTERS

A location counter is a memory cell the assembler uses to
record the storage location it assigned last and, thus, what
location it should assign next. Each program has two loca­
tion counters associated with it during assembly: the load
location counter (referenced symbolically as $$) and the
execution location counter (referenced symbol ica lIy as $).
The load location counter contains CI location value relative
to the origin of the source program. The execution location
counter contains a location value relative to the source pro­
gram IS execution base.

Essentially, the load location counter provides information
to the loader that enables it to load a program or subprogram
into a desired area of memory. The execution location
counter, on the other hand, is used by the assembler to de­
rive the addresses for the instructions being assembled. To
express it another way, the execution location counter is
used in computing the locations and addresses within the
program, and the load loccltion counter is used in computing
the storage locations where the pro~,ram wi II be loaded prior
to execution.

In the II norma I" case both counters (Ire stepped together as
each instruction is assembled, and both contain the same
location value. However, the ORG and LaC directives
make it possible to set the two counters to different initial
values to handle a variety of programming situations. The
load location counter is a facility that enables systems
programmers to assemble a program that must be executed
in a certain area of core memory, Iclad it into a different
area of core, and the." when the program is to be executed,
move it to the proper area of memory without altering any
addresses. For example, assume thclt a program provides a
choice of four different output routines: one each for paper
tape, magnetic tape, punched cards, or line printer. In
order to execute properly, the program must be stored in
core as follows:

variable

2FFF

lFFF

0060

Output routine

Main program

To be used for data
storage during pro­
gram execution.

Each of the four output routines would be assembled with
the same initial execution location counter value of lFFF
but different load location counter values. At run time
th is wou I d enab I e a II the rout i nes to be loaded as fo II ows:

variable

5FFF

4FFF

3FFF

2FFF

0000

Line printer routine

Punched card routine

Paper tape routine

Magnetic tape routine

Main program

...,

}

To be used for da ta
storage during pro­
gram execution.

Execution area for
output routine.

When the main program has determined which output routine
is to be used, during program execution, it moves the rou­
tine to the execution area. No address modification to the
routine is re,.,lIired since all routines were originally assem­
bled to be executed in that area. If the punched card out­
put routine were selected, storage would appear as:

variable

5FFF

4FFF

3FFF

2FFF

lFFF

0000

Line printer routine

Punched card routine

Paper tape routine

Magnetic tape routine

Punched card routine

Main program

,

~

}

Data storage.

Execution area for
output routine.

The user should not assume from this example that the exe­
cution location counter must be controlled in the manner
indicated in order for a program to be relocated. By
properly controlling the loader and furnishing it with a
"relocation bias", any Meta-Symbol program, unless the pro­
grammer specifies otherwise, can be relocated into a memory
area different than the one for wh ich it was assembled.
Most relocatable programs are assembled relative to location
zero. To assemble a program relative to some other location,
the programmer should use an ORG directive to designate the
program origin. This directive sets both location counters
to the same value. More information on program sectioning
and relocatability is given at the end of this chapter.

location Counters 23

Each location counter is a 19-bit value that the assembler
uses to construct byte, halfword, word, and doubleword
addresses:

-doubleword ----... ~I

I_ .. ---word

- halfword ------...... 1

-- byte ..

Thus, if a location counter contained the value

it could be evaluated as follows:

Hexadecimal
Resolution Value

Byte 193

Halfword C9

Word 64

Doubleword 32

The address resolution option of the ORG and LOC direc­
tives allows the programmer to specify the intrinsic resolu­
tion of the location counters. Word resolution is used as
the intrinsic resolution if no speci fication is given. Address
functions, as previously cAplained, are provided to override
this resolution.

Example 25. ORG Directive

SETTING THE LOCATION COUNTERS

At the beginning of an assembly, Meta-Symbol automati­
cally sets the value of both location counters to zero. The
user can reset the location values for these counters during
an assembly with the ORG and LOC directives. The ORG
directive sets the value of both location counters. The
LOC directive sets the value of only the execution loca­
tion counter.

ORG Set Program Origin

The ORG directive sets both location counters to the loca­
tion specified. This directive has the form

label command argument

[label), ... ,Iabel n] ORG[,n] [location]

where

labeli are any valid symbols. Use of a label is op-
tional. When present, it is defined as the value
"Iocation" and is associated with the first byte of
storage following the ORG direcf'ive.

n is an evaluatable, integer-valued expression
whose value is 1, 2,4, or 8, specifying the address
resolution for both counters as byte, halfword,
word, or doubleword, respectively. If n is
omitted, word resolution is assumed.

location is an evaluatable expression that results in
an address or an integer. If location is an address,
all attributes of location are substituted for $ and
$$, and the intrinsic resolution of $ and $$ are then
set to n. If location is an integer, $ and $$ re­
main in the current control section, but their value
is set to II location" units at "nil resolution (see Ex­
ample 25). If location is omitted, integer 0 is
assumed.

The address resolution option of ORG may be used to change
the intrinsic resolution specification to byte, halfword, or
doubleword resolution. Thereafter, whenever intrinsic reso­
lution is applicable, it will be that designated by the most
recently encountered ORG directive. For example, when­
ever $ or $$ is encountered, the values they represent are
expressed according to the currently appl icable intrinsic
resolution.

AA ORG,2 8 Sets the location counters to 8 halfwords (i.e., 4 words) and assigns that location,
with halfword intrinsic resolution, to the label AA.

LW,2 INDEX

24 Setting the Location Counters

This instruction is assembled to be loaded into the location defined as AA. Thus, the
effect is the same as if the ORG directive had not been labeled and the label AA had
been written with the LW instruction.

Example 26. ORG Directive

Z CSECT Designates section Z and sets the location counters to zero.

ORG Z+4 Sets the location counters to Z + 4 with word resolution.

A LW,4 ANY Assembles ANY with word resolution, and defines A with word resolution.

MBS,O B Forces a byte address. The type of address required by the command overrides the
intrinsic resolution of the symbol.

LI,4 BA(ANY) Assembles the symbol ANY as a byte address.

LOC Set Program Execution

The LaC directive sets the execution location counter ($)
to the location specified. It has the form

label command argument
t--~-~- - ------~--~ ------~----~-~---------

[labell' ... , label n] lOC [, n] rlocation]

where

labeli are any valid symbols. Use of a label is op-
tional. When present, it is defined as the value
of location and is assodated with the first byte of
storage following the LOC directive.

n is an evaluatable, int'eger-valued expression
whose value is 1, 2, 4, or 8, specifying the address
resolution for the execution location counter as
byte, halfword, word, or doubleword, respectively.
If n is omitted, word resolution is assumed.

location is an evaluatab~e expression that results
in an address or an inte~~er. If location is an ad­
dress, all attributes of location are substituted for
$, and the intrinsic resolution of $ is then set
to n. If location is an integer, $ remains in the
current control section l , but its value is set to
"Iocation" units at lin II resolution (see Example 25).
If location is omitted, integer 0 is assumed.

Except that it sets only the execution location counter, the
LaC directive is the same as ORG.

Example 27. LaC Directive

PDQ ASECT

ORG

LaC

100 Sets the execution location
counter and load location
counter to 100.

1000 Sets the execution location
counter to 1000. The load
location counter remains at
100.

Subsequent instructions wi II be assembled so that the object
program can be loaded anywhere in core relative to the
original of the program. For example, a relocation bias
of 500 wi II cause the loader to load the program at 600
(500 + 100). However, the program wi" execute prop­
erly only after it has been moved to location 1000.

BOUND Advance Location Counters to Boundary

The BOU ND directive advances both location counters, if
necessary, so that the execution location counter is a byte
multiple of the boundary designated. The form of this di­
rective is

label command argument

BOUND boundary

where boundary may be any evaluatable expression resulting
in a positive integer value that is a power of 2.

Setting the Location Counters 25

Halfword addresses are multiples of two bytes, full-word
addresses are multiples of four bytes, and doubleword ad­
dresses are multiples of eight bytes.

When the BOUND directive is processed, the execution
location counter is advanced to a byte multiple of the
boundary designated and then the load location counter is
advanced the same number of bytes. When the BOU ND
directive results in the location counters being advanced,
zeros are generated in the byte positions skipped. Since
BOUND may generate data, it should never be used in de­
claring a blank common section for linkage with FORTRAN
programs (F4:COM DSECT).

Example 28. BOUND Directive

BOUND 8 Sets the execution location
counter to the next higher
multiple of 8 if it is not al­
ready at such a value.

For instance, the value of the execution location coun­
ter for the current section might be 3 words (12 bytes).
This directive would advance the counter to 4
(16 bytes), which would allow word and doubleword,
as well as byte and halfword, addressing.

RES Reserve an Area

The RES directive enables the user to reserve an area of
core memory.

label command argument
1--------

[lobell' ... , label n] RES[,n] [expression]

where

labeli are any valid symbols. Use of a label is op-
tional. When present, the label is defined as the
current value of the execution location counter
and identifies the first byte of the reserved area.

n is an evaluatable, integer-valued expression des-
ignating the size in bytes of the units to be re­
served. The value of n must be non-negative.
Use of n is optior"li if omitted, its value is as­
sumed to be four bytes.

Example 29. RES Directive

ORG 100 Sets location counters to 100.

expression is an evaluatable, integer-valued ex-
pression designating the number of units to be
reserved. Its value may be positive or negative.
If expression is omitted, zero is assumed.

When Meta-Symbol encounters an RES directive, it modi­
fies both location counters by the specified number of units.

PROGRAM SECTIONS

An object program may be divided into program sections,
which are groups of statements that usually have a logical
association. For example, a programmer may specify one
program section for the main program, one for data, and one
for subroutines.

PROGRAM SECTION DIRECTIVES

A program section is declared by use of one of the program
section directives given below. These directives also
declare whether a section is absolute or relocatable. The
I:st gives only a brief definition of these directives; their
use will be made clear by successive statements and ex­
amples in this chapter.

ASECT

CSECT

DSECT

specifies that generative statements
t

wi II be as­
sembled to be loaded into absolute locations.
The location counters are set to absolute zero.

declares a new control section (relocatable).
Generative statements wi II be assembled to be
loaded into th is relocatable section. The loca­
tion counters are set to relocatable zero.

declares a new, dummy control section (relocat­
able). Generative statements wi II be assembled
to be loaded into this relocatable section. The
location counters are set to relocatable zero.

tGenerative statements are those that produce object code
in the assembled program.

A RES,4 10 Defines symbol A as location 100 and advances the location counters by 40 bytes (10 words)
changing them to 110.

LW,4 VALUE Assigns this instruction the current value of the location counters; i.e., 110.

26 Program Sections

PSECT

USECT

declares a new control section (relocatable)
which will begin on a multiple of 512(20016)
words. Generative statements wi II be assembled
to be loaded into this relocatable section. The
location counters are set to relocatable zero.
PSECT differs from CSECT only in that the loader
will align a PSECT section on a page (512-word)
boundary.

designates which previously declared section
Meta-Symbol is to use in assembling generative
statements •

The program section directives hav~~ the following form:

label commal1d argument ----.
[labell,···,labeln] ASECT -.
[labell' ••. , label n] CSECT [expression]

-. .----l -----
label DSECT [expression]

--

[labell' •.. , label n] PSECT [expression]
------_.

[labell,···,labeln] USECT name

where

labeli is any valid symbol. The labels are assigned
the value of the execution location counter imme­
diately after the directive has been processed. For'
ASECT, the value of the label becomes absolute
zero. For CSECT, DSECT, and PSECT, the label
value becon1es relocatable zero in the appropriate'
program section. The label on a USECT directive
is defined as the value of the execution location
counter in the current control section. The label I
on ASECT, CSECT, PSECT, and USECT may be ex- -
ternal ized by appearing in a DEF directive so that
the label can be referred~o by other programs.
For DSECT, label is implicitly an external defini­
tion, because dummy sections are typically used
in order that they can b«:: referred to by other
programs.

expression is an evaluatable, integer-valued expres-
sion whose value must be From 0 to 3. This value,
applicable only to CSECT, DSECT, and PSECT,
designates the type of mernory protection to be
appl ied to these ·sections. In the following list,
"read" maans a program can obtain information
from the protected section; "write" means a pro­
gram can store information into a protected sec­
tion; and "access" means the computer can execute
instructions stored in the protected section.

Value

o
Memory Protection Feature

read, write, and access permitted

read and acces:!i permitted

Value

2

3

Memory Protection Feature

read on Iy perm i tted

no access, read, or write permitted

The use of expression is optional. When it is
omitted, the assembler assumes the value 0 for the
entry. It may not contain an external reference.

name is the label defined in a previously declared
section.

ABSOLUTE SECTION

Although ASECT may be used any number of times, the
assembler produces only one combined absolute section,
using the successive specifications of the ASECT directi ves.

RELOCATABLE CONTROL SECTIONS

A single assembly may contain from one to 127 relocatable
control sections, which Meta-Symbol numbers sequentially.
At the beginning of each assembly Meta-Symbo: sets both
the execution and load location counters to relocatable
zero, with word address resolution, in relocatable control
section 1. Control section 1 is opened by generating values
in, or referencing or manipulating the initial location

-counters, or by declaring the first CSECT, DSECT, or PSECT
directive.

The execution of a CSECT, DSECT, or PSECT directive
always opens a new section. Therefore, if control section
has been opened by generati ng va lues in, or referenc i ng or
manipulating the initial location counters, the first CSECT,
DSECT, or PSECT opens control section 2. For example,
these three program segments

DATA 5

CSECT HERE

and
END

DEF

EQU

CSECT

END

SORT

$

and

ORG 500

CSECT

END

each produce two relocatable control sections, one implicit
(control section 1), and one explicit (control section 2);
whereas

VALUE EQU 5

REF

CSECT

END

OUTPUT

and

INPUT CNAME

PROC

PEND

CSECT

END

each contains only one relocatable section (control section 1).
The statements preceding the CSECT do not open control
section 1 because they do not generate values in, or refer­
ence or manipulate the initial location counters.

Program Sections 27

SAVING AND RESETTING THE LOCATION COUNTERS

Since there is only one pair of location counters, Meta­
Symbol does the following when a new section is declared
(ASECT, CSECT, DSECT, or PSECT) (see Example 30):

1. Saves the current value of the execution location
counter ($) in the SAVED $ TABLE.

2. Compares the value of the load location counter ($$)
with the value previously saved for the section in the
SAVED MAXIMUM $$ TABLE, if assembling a relocat­
able control section, and saves the higher value.

The control section to which the saved values are associated
is determined from the location counters. The counters
have the format:

Execution Location Counter

RS I CS# I ADDR VALUE

Load Location Counter

RS CS# ADDR VALUE

where

RS specifies the resolution (BA, HA, WA, DA).

CS# specifies the control section number and the
type of section (0 =: absolute, X l l 1 -X?FI
= relocatable).

Example 30. Program Sectioning

Current Location Counters
Program

$ Section $$ Section

0 ABS 0 ABS NUMBERS ASECT

ADDR

VALUE

specifies that the value is an address.

is the value of the counter for the section.

After Meta-Symbol has saved the value of the execution lo­
cation with the value in the SAVED MAX. $$TABLE, it re­
sets both location counters to zero in the new control section.

RETURNING TO A PREVIOUS SECTION

A programmer may write a group of statements for one sec­
tion, declare a second section containing various state­
ments, and then write additional statements to be assembled

.as part of the first section. This capability is provided by
the following:

1. The SAVED $ TABLE, which contains the most recent value
of the execution location counter for each section.

2. The symbol table entry, which specifies a control sec­
tion number for symbols defined as addresses. The
entry has the same format as the location counters.

RS CS# ADDR VALUE

where

RS specifies the resolution (BA, HA, WA, DA).

CS# indicates the control section in which the

ABS

o

label is defined (0 = absolute, X l l 1
- X?F'

= relocatable).

SAVED $ SAVED MAX. $$

CSl CS2 CSl CS2

300 300 ORG 300

350 350

0 CSl 0 CSl RANDOM CSECT 350

100 100

0 CS2 0 CS2 DUMMY DSECT 100 100

200 200 END 200

The ASECT directive sets both location counters to absolute zero; the ORG statement resets the counters to 300. Subse­
quent generative statements will be assembled to be loaded into absolute locations. When CSECT is encountered, Meta­
Symbol saves the value of the execution location counter in the SAVED $ TABLE. The value of the load location counter
is not saved. Meta-Symbol then resets the counters to relocatable zero in control section 1 and assembles generative
statements to be loaded as part of this section. The DSECT directive declares a new relocatable section. Meta-Symbol
saves the counters for control section 1 in the appropriate tables, resets the counters to relocatable zero in control section 2,
and assembles generative statements to be loaded in this section. The END directive causes Meta-Symbol to save the
va lue of the load location counter for control section 2. The values in the SAVED MAX. $$ TABLE are used by the
loader in allocating memory. Note that the use of ORG (and LOC) when it changes the current section also causes the
current value of the execution location counter to be saved. Additionally, ORG compares the current value of the load
location counter with the value in the SAVED MAX. $$ TABLE and saves the higher value.

28 Program Sections

ADDR specifies that I·he value is an address.

VALUE is the assigned symbol value.

3. The USECT directive (see Examples 31 through 34),
which specifies a previously declared section that

Example 31. USECT Directive

Current Location Counters
Program _. ------

$ Section $$ Section

0 CSl 0 CSll PSECT
10 10 TRAP
100 100 LAST
0 CS2 0 CS2 DSECT

200 200
100 CSl 100 CS~ USECT

END

Meta-Symbol is to use in assembling generative
statements.

There is only one absolute section and although ASECT may
be used any number of times, the SAVED $ value of the
abso lute section is a Iways that of the last designated ASECT •

SAVED $ SAVED MAX. $$

ABS CS1 CS2 CSl CS2

0

100 100

TRAP 200 200

When USECT TRAP is encounterEld, Meta-Symbol determines the control section from one symbol table entry for TRAP,

I WA I 1 I ADDR I 10]
checks the SAVED $ TABLE FOR CS1, and copies this saved value (100) into both location counters.

Example 32. USECT Directive

Current Location Counters
Program

SAVED $ SAVED MAX. $$
--

$ Section $$ Section ABS CSl CS2 CSl CS2
"'""-

0 ABS 0 ABS ASECT 0

500 500 ORG 500

520 520 TABLE DATA 6

600 600

0 CSl 0 CSll CSECT 600

100 100
0 ABS 0 ABS ASECT 0 100 100
700 700 ORG 700

800 800
0 CS2 0 CS2 CSECT 800

200 200
800 ABS 800 ABS USECT TABLE 200 200

When USECT TABLE is encountered, Meta-Symbol determines the control section from the symbol table entry for 'r ABLE,

I WA I 0 I ADDR I - 520 OJ
checks the SAVED $ TABLE for l'he absolute section, and copies this saved value (800) into both location counters.

Program Sections 29

Example 33. Program Sectioning

Current Location Counters

$ Section

o CS1

1000 CS1

1100 CS1

o CS2

200 CS2

1100 (Sl

1200 CS1

o ASS

$$

o
o
100

o
200

Section

CS1

CS1

C51

C52

C52

1100 CS 1

1200 CS1

o ASS

FILE

LAST

Program

CSECT

LOC

CSECT

USECT

ASECT

1000

FILE

SAVED $

AS5 C51

o

1100

1200

SAVED MAX. $$

CS2 C51 CS2

100

200 200

1200

The LOC directive advances only the execution location counter. When USECT FILE is encountered, Meta-Symbol sets
both counters to the value of the saved execution location counter for CS1 (1100). The ASECT directive causes Meta­
Symbol to save thevalueoftheexecution location counter for CS1 and to replace the SAVED MAX. $$value (100)with 1200.

Example 34. Program Sectioning

Current Location Counters

$ Section

o ASS

100 ASS

200

o

50

100

o
FF

50

CS1

CS2

CS2

CS1

300 CSI

200 ASS

400

300 CS1

500

400 ASS

$$

o
100

200

o

50

100

o
FF

100

350

200

400

300

500

400

Section

ASS

ASS

CS1

CS2

CS2

CS2

CS2

ASS

CS1

ABS

CALL

MAIN

HERE

Program

ASECT

ORG

LW,4

CSECT

EQU

CSECT

LOC

U5ECT

USECT

USECT

ASS

o
100

6

200

$

HERE

MAIN

HERE 400

CALL

SAVED $ SAVED MAX. $$

CS1 CS2 CS1 CS2

100 100

100

300 350

500 500

The statement HERE EQU $ defines HERE as the current value of the execution location counter (50). When the LOC
HERE statement in CS2 is encountered, Meta-Symbol sets the value of the execution location counter to 50 in CS1. Sub­
sequent statements wi II be assembled to be executed as part of CS 1 but wi" be loaded as part of CS2. The USECT MAl N
statement saves the value of the execution location counter for CS1 and the value of the load location counter for C52.
The USECT HERE statement causes the counters to be set to the saved value of the execution location counter for (5(300).

30 Program Sections

DUMMY SECTIONS

In any load module, dummy sections of the same name must
be the same size and have the sclme memory protection.
(The restriction on the size of dummy sections of the same
name is only enforced by certain Xerox loaders; otherwise,
the largest is used.) Dummy sections provide a means by
which more than one subroutine may load the same section.
For example, assume that three subroutines contain the
5,ame dummy constant section:

SUBR 1 SUBR 2 SUBR 3

CaNST DSECT CaNST DSECT CaNST DSECT

END END END

Example 35. Program Sections and literals

Examp I e 350:

AREA CSECT

} Declares literals.

BAY CSECT

} Declares literals.

Even though more than one of the subroutines may be
required in one load module, the loader will load the dummy
section only once, Clnd any of the subroutines may reference
the data.

PROGRAM SECTIONS AND LITERALS

When Meta-Symbol encounters the END statement, it gen­
erates all literals declared in the assembly. The literals
.are generated at the current location (word boundary) of
the currently active program section (see Example 35)"

END Generates I itera Is as part of section BAY.

Example 35B:

GATE CSECT

} Declares literals.

ASECT
ORG 100
END Generates literals beginning in absolute location 100.

Example 35c:

REAL CSECT

} Declares literals.

LAST RES
LOOP CSECT 0

} Declares literals.

USECT REAL
END Generates literals as part of section REAL immediately following the location

assigned to LAST. .

Example 35d:

NOW DSECT

} Declares literals.

HERE RES 2 t" ~)

} Declares literals.

ORG HERE
END Generates literals as part of secHon NOW, beginning at location HERE.

Program Sections 31

4. DIRECTIVES

A directive is a command to the assembler that can be
combined with other language elements to form statements.
Directive statements, like instruction statements, have four
fi elds: label, command, argument, and comments.

An entry in the label field is required for the directives:
CNAME, COM, FNAME, and S:SIN. The label field
entries identify the generated command or procedure. The
location counters are not al tered by these directives.

Optional labels for the EaU and SET directives are defined
as the value of the evaluated argument field, which may be
a single value or a list of values.

Optional labels for the directives ORG and LOC are de­
fined as the value to which the execution location counter
is set by the directive.

If any of the directives DATA, GEN, RES, TEXT, or TEXTC
are labeled, the label{s} is defined as the current value of
the execution location counter, and identifies the first byte
of the area generated. These directives alter the location
counters according to the contents of the argument field.

Labels for the directives ASECT, CSECT, DSECT, PSECT,
USECT, and DO 1 identify the first word of the area af­
fected by the directive. A label field is required for
DSECT.

A label for the END directive identifies the location imme­
diately following the last literal generated in the literal
table. This is explained further under the END directive
in this chapter.

A label{s} on the following directives will be ignored unless
it is the target label of a GOTO search: BOUND, CDISP,
CLOSE, DEF, DISP, ELSE, ERROR, FDISP, FIN, GOTO,
LIST, LOCAL, OPEN, PAGE, PCC, PEND, PROC, PSR,
PSYS, REF, S:RELP, SOCW, SPACE, SREF, SYSTEM, TITLE.

Labels for the DO and WHILE directives are handled in a
special manner explained later.

The command field entry is the directive itself. If this field
consists of more than one subfield, the directive must be in
the first subfield, followed by the other required entries.

Argument field entries vary and are defined in the indivi­
dual discussion of each directive.

A comments field entry is optional.

The END, LOCAL, OPEN, and CLOSE directives are the
only directi ves uncondi tional Iy executed. They are pro­
cessed even if they appear within the range of a GOTO
search or an inactive DO-loop.

32 Directives

The Meta-Symbol language incl udes these directives:

Assembl y Control

ASECT
t

LOC
t

DOl

CSEcl BOUND
t

DO

DSECT
t RESt WHILE

PSECT
t

SYSTEM ELSE

USECT
t

END FIN

ORG
t

GO TO

Symbol Manipulation

EaU OPEN REF

SET CLOSE SREF

LOCAL DEF

Data Generati on

GEN TEXT SOCW

COM TEXTC

DATA S:SIN

Listing Control

PAGE PCC DISP

SPACE PSR CDISp
tt

TITLE ERROR FDISptt

LIST PSYS

Procedure Control (These directives are described in
Chapter 5.)

CNAME

FNAME

tDiscussed in Chapter 3.
tt

Discussed in Chapter 5.

PROC S:RELP

PEND

In the format diagrams for the VClriOUS directives that follow I
brackets indicate optional items.,

ASSEMBLY CONTROL
SYSTEM Include System File

SYSTEM directs the assembler to retrieve the indicated file
from th~ system storage medium, and to include it in the
program being assembled. The SYSTEM directive has the
form

label command argument

I SYSTEM name

where name is either an actual file name (less than 32 char­
acters), or one of the special instruction set names discussed
below. When an actual fi Ie name is specified, Meta-Symbol
reads the file from the appropriate account (see the AC
option, Chapter 7) and inserts it at that point in the source
program. The fi Ie is considered to be terminated when an
END directive (discussed below) is encountered.

Any number of SYSTEM directiv·es may be included in a
program. System files may contuin additional SYSTEM di­
rectives, allowing a structured hierarchy of library source
fi les. Meta-Symbol does not protect against circular or
repetitive calls for the same syst,em.

Definitions of the Sigma machine instructions are contained
in the system fi Ie, SIG7FDP. This fi Ie is invoked, not by
name, but by one of the mnemonics for a particular instruc­
tion subset, as listed below. When a valid subset of
SIG7FDP is specifi-ed, Meta-Symbol assigns an identifying
value to the intrinsic symbol, S:IVAL, which is available
to the SIG7FDP file, as well as to the main program. It
then processes the fi I e as described above.

The valid instruction set mnemonics, their meaning, and
the corresponding val ues of S:IVAL are as shown in Table 5.

Table 5. Valid Instruction Set Mnemonics

Name Instructi on Set S:IVAL

SIG9 Basic Sigma 9. X'lE'

SIG9P Sigma 9 with Privileged X'lF'
Instructions.

SIG8 Basic Sigma 8 X'lC'

SIG8P Sigma 8 with Privi leged X'lD'
Instructions.

SIG7 Basic Sigma 7. X'08'

SIG7F Sigma 7 with Floclting- X'OC'
Point Option.

SIG7D Sigma 7 with Decimal X'OA'
Option.

Table 5. Valid Instruction Set Mnemonics (cont.)

Name Instruction Set. S:IVAL

SIG7P Sigma 7 with Privileged X'09 1

Instructi ons.

SIG7FD Sigma 7 with Floating-Point X'OE'
and Decimal Option.

SIG7FP Sigma 7 with Floating-Point X'OD '
Option and Privileged
Instructions.

SIG7DP Sigma 7 with Decimal Option X'OB'
and Privi leged Instructions.

SIG7FDP Sigma 7 with Floating-Point, X'OF'
Decimal Option, and
Pri vi I eged Instructi ons.

SIG6 Basic Sigma 6. X'OA'

SIG6F Sigma 6 with Floating-Point X'OE'
Option.

SIG6P Sigma 6 with Privi leged X'OB'
Instructi ons.

SIG6FP Sigma 6 with Floating-Point X'OF'
Option and Privileged
Instructi ons.

SIG5 Basi c Sigma 5. XIOOI

SIG5F Sigma 5 with Floating-Point X'04 1

Option.

SIG5P Sigma 5 with Privi leged X'Ol'
Instructions.

SIG5FP Sigma 5 with Floating-Point X'05 1

Option and Privi leged
Instructi ons.

Example 36. SYSTEM Directive

Assume a square root subroutine, identified as SORT,
is on the system storage media and that it is to be
assembled as part of 'the object program. The program
uses the basic instruction set. These directives would
appear in the source program:

SYSTEM SIG7

SYSTEM SORT

Assembly Control 33

END End Assembly

The EN D directive terminates the assembly of a system
called by the SYSTEM directive as well as the assembly of
the main program. It has the form

label command argument

[labell' ' , "Iabel n] END [expression]

where

labeli are one or more valid symbols. When pres-
ent, the label or labels are assigned (i. e., as­
sociated with) the location immediately following
the last location in the literal table.

expression is an optional expression that designates
a location to be transferred to after the program
has been loaded. II expressi on" may be externa I.

As explained under "Program Sections and Literals" at the
end of Chapter 3, Meta-Symbol generates a" literals de­
clared in the assembly as soon as it encounters the END

1 statement. The literals are generated in the location im­
mediately following the currently active program section
(see Example 35). If the END directive is labeled, the
label or labels are associated with the first location im­
mediately following the literal table. Thus, in Example 35c,
a label on the END statement would be associated with the
same location identified as LOOP, the first location in
control secti on 2.

END is processed even if it appears within the range of a
GOTO search or an inactive DO-loop.

Example 37. END Directive

SYSTEM SIG7

CONTROL CSECT

START LW,5 TEST

END START

001 Iteration Control

The DOl directive defines the beginning of a single state­
ment assembly iteration loop. It has the form

label command argument
I--- --1-----------

[labell' "., label n] 001 [expression]

where

labeli are one or more valid symbols. Use of I~bels
is optional. When present, they are defined as the
current value of the execution location counter
and identify the first byte generated as a result
of DOl iteration.

34 Assembly Control

expression is an evaluatable, integer-valued ex-
pression that represents the number of times the
I ine immediately following is to be assembled.
There is no limit to the number of times the line
may be assembled. If the expression is omitted
or negative, zero is assumed.

If the expression in the DOl directive is not eva luatable,
Meta-Symbol produces an error notification, and processes
the DOl directive as if the expression had been eva luated
as zero.

Example 38. DOl Directive

The statements

DOl 3
AW,4 C

at assembly time would generate in-I ine machi ne code
equivalent to the following lines:

AW,4 C
AW,4 C
AW,4 C

The line following the DOl directive should not be contin­
ued. If it is desired to skip or to iteratively assemble a
statement containing continuation I ines, a DO/FIN group
should be used in place of DOl.

It is not possible to skip or repeat an END directive with a
DOl; an attempt to do so causes an error diagnostic.

A LOCAL directive is unconditionally executed; it will not
be skipped by DOl.

If the iteration count of a DOl is greater than one, the next
line may not contain another DOl directive, nor a SYSTEM
directive. Such a case causes an error diagnostic, and the
initial DOl directive is ignored.

GOlD Conditional Branch

The GOTO directive enables the user to conditionally alter
the sequence in which statements are assembled. The GOTO
directive has the form

label command argument

GOTO[,k] label 1[' .. ,' lobe In]

where

k is an evaluatable, integer-valued expression. If k
is omitted, 1 is assumed.

labeli are unsubscripted forward references.

A G OTO statement is processed at the time it is encoun-,
tered during the assembly. Meta-Symbol evaluates the
expression k and resumes assembly CIt the I ine that contains
a label corresponding to the kth label in the GOTO argu­
ment field. The labels must refer ,to I ines that follow the
GOTO directive. If the value of k does not lie between 1
and n, Meta-Symbol resumes assembly at the line immedi­
ate�y following the GOTO directive. An error notification
is given if the value of k is greater than n.

The target label of a GOTO search may be embedded in a
list of labels; it will be recognized and will terminate the
skip. A label will not be recognized if it is subscripted.
A GOTO to a local symbol must find its target before a
PEND, END, or LOCAL directive is encountered; if not,
an error notification is given. Within a procedure, labeli
may be passed from the procedure reference line into the
GOTO argument field, but the target label must physically
appear within the procedure definition; it may not be passed
from the reference line.

Whi Ie Meta-Symbol is search ing fot" the statement whose
label corresponds to the kth label in the GOTO list, it
operates in a skipping mode during which it ignores all
mach ine-Ianguage instructions and all directives except
END, LOCAL, OPEN, and CLOSE.

Skipped statements are produced on the assembly listing in
symbolic form, preceded by an *S*.

When Meta-Symbol encounters the first of a log ical pair
of directivest while in the skipping mode, it suspends its
search for the label lInti I the other member of the pair is
encountered. Then it continues the search. Thus, while
in skipping mode, Meta-Symbol dOl:~s not recognize labels
that are within procedure definitions or iteration loops. It
is not possible, therefore, to write a GOTO directive that
might branch into a procedure definition, a DO/FIN loop,
or a WHILE/FIN looptt. Furthermore, it is not permissible
to write a GOTO directive that mi!~ht branch out of a pro­
cedure definition. If such a case occurred, Meta-Symbol
wou Id encounter a PE NO directive before its search was
satisfied, wou Id produce an error notification, and would
term inate the search for the label.

Example 39. GOTO Directive

A SET 3

GOTO, A H, K, M

H DO 5

M EQU 5+8

Begins search for label M.

Suppresses search for label M.

This M is not recognized
because it is within an
iteration loop.

tCertain directives must occur in p<lirs: PROC/PEND, 00/
FIN, and WHILE/FIN.

ttIt is legal, however, to terminate a DO or WHILE loop by
branching past the associated FIN.

FIN Terminates suppression and
continues search.

M LW,A BETA Search is completed when
label M is found.

WHILE/ELSE/FIN Iteration Control

The WHILE directive defines the beginning of an iteration
loop; ELSE and FIN define the end of the loop. These di­
rec t i ves have the form

label command argument

[labell,···,labelnJ WHILE [expression]
---j------

ELSE
~-------- .------~----

FIN

where

labeli are one or more valid symbols. Use of labels
is optional. When present, they are initially as­
signed the value zero and incremented by one
each successive time through the loop.

expression is an evaluatable, integer-valued ex-
pression that controls processing of the WHILE loop.
If the expression is greater than zero, the WHILE
loop will be processed; otherwise, it will not. If
expression is omitted, zero is assumed.

Figure 2 illustrates the logical flow of a WHILE/ELSE/FIN
loop.

The assembler processes each WHILE as follows:

1. Establishes an internal counter and defines its value as
zero.

2. If one or more labels are present for the WHILE direc­
tive, sets their value to zero.

3. If the WHILE is within a procedure, replaces any oc­
currence of LF, CF, AF, AFA, or NAME references in
the expression with their current value. The resulting
expression is then saved.

4. Evaluates the saved expression.

5. If the value of the saved expression is less than or
equal to zero and this is the first time the expression
has been eva I uated, di sconti nues assembly unti I an
ELSE or FIN directive is encountered.

a. If an ELSE directive is encountered, assembles
statements following it until a FIN directive is
encountered.

b. When the FIN directive is encountered, termin­
ates control of the WHILE loop and resumes assem­
bly at the next statement.

If the valueof the saved expression is less than or equal
to zero and this is not the first time the expression has
been evaluated (i.e., for the second and subsequent
times through the WHILE loop), terminates control of
the WHILE loop and resumes assembly at the statement
following the FIN directive.

Assembly Control 35

o -IC
o - LABEL

Evaluate expression
EXP

Assembl e next line

Set flag to get line
following WHILE

yes

yes

no

yes

yes

IC = Internal counter
LABEL = Label (if present on WHILE line)
EXP = The result of evaluating the expression

on the WHILE line

Assemble next line

Resume assembl y
next line

no

Resume assembl y
next line

Figure 2. Flowchart of WHILE/ELSE/FIN Loop

36 Assembly Control

6. If the va lue of the saved expressiion is greater than
zero, increments the value of thl~ internal counter
by 1, sets the value of the label or labels (if present)
to the new value of the counter, and continues assem­
bly unti I an ELSE or FI N directive is encountered, then
resumes the assembly at step 4. See Example 40.

If the expression is not evaluatable, Meta-Symbol sets the
internal counter to the value zero, produces an error noti­
fication, and processes the WHILE directive as if the
expression had been evaluated as zero.

The WHILE label is redefinable, and its value may be
changed via a SET directive during the processing of the
WHILE loop. Notice, however, that prior to each pass
through the loop, the value of the label or labels is set to
the value of the internal counter. An>! symbols in the WHILE
expression that are redefinable via SET may also be changed
within the loop. Since the expression is reevaluated prior
to each execution of the loop, such usage must be employed
carefully.

WHILE directives may be nested within WHILE- and DO­
loops. See Example 42.

Meta-Symbol assemblies involve various "Ievels". The
main program is arbitrari Iy defined as; level O. A procedure
invoked at level 0 is executed at level 1. If a procedure
is invoked at levell, it is executed ,at level 2; etc. A
WHILE loop must be completely contClined on a single pro­
gram level (see Example 45 under DO directive).

Example 40. WHILE/ELSE/FIN Directives

B SET o

WHILE B >5

ELSE

FIN

Expression is 0, so sk ips to ELSE.

Resumes assE~mbly following ELSE
and continuf:!!s, ignores FIN, and
leaves control of WHILE.

Example 41. WHILE/E LSE/FIN Directives

In this example, the dashed verticCiI line indicates
statements are skipped; solid vertical lines indicate
statements are assembled. The numbers above the
vertical lines specify which iteration of the WHILE­
loop is in process.

Iteration
1 2 3

A WHILE A<2

ELSE

FIN

When WHILE is first encountered, A is set to zero.
Since A is less than 2, the e,xpression is true and has the
value 1; therefore, the internal counter is incremented
by 1, its new value (1) is assigned to A, and the loop is
executed as far as the ELSE directive. Then control is
returned to the WHILE directive where the expression is
reevaluated. The current value of A is 1, so the ex­
pression is true and has the value of 1. The internal
counter is again incremented by 1 and its new value (2)
is assigned to A. The loop is assembled as far as the
ELSE directive, and then control is returned to the
WHILE directive where the expression is reevaluated.
Since the current va lue of A is 2, the expression is no
longer true, so statements are sk ipped unti I the FIN
directive is encountered. Then assemb Iy continues.

Example 42. WHILE/E LSE/FI N Directi ves

An iteration block within an iteration block:

WHILE

WHILE

ELSE block 2 block 1

FIN

FIN

Example 43. WHI LE/FI N Directives

WHILE
GEN,32
FIN

1<2
I

This sequence generates the values 1 and 2.

DO/EL'SE/FIN' Iteration Control

The DO directive defines the beginning of an iteration loop;
ELSE and FIN define the end of an iteration loop. These
directives have the form

label command argument
-----------~--~------------___II_____---------____4-------

[labell, •.. ,label
n

] DO [expression]
----------------- -~--------

ELSE
-------------~-------------------- ---/-----------

FIN

where

labeli are valid symbols. Use of one or more labels
is optional. When present, each is initially

Assembly Control 37

assigned the value zero and incremented by one
each successive time through the loop.

expression is an evaluatable, integer-valued ex-
pression that represents the count of the number
of times the DO-loop is to be processed. If
expression is omitted or is less than zero, zero
is assumed.

Figure 3 illustrates the logical flow of a DO/ELSE/FIN
loop.

The assembler processes each DO-loop as follows:

1. Establishes an internal counter and defines its value as
zero.

2. If one or more labels are present on the DO I ine, sets
their value to zero.

3. Eva luates the expression that represents the count.

4. If the count is less than or equal to zero, discontinues
assembly until an ELSE or FIN directive is encountered.

a. If an ELSE directive is encountered, assembles
statements following it unti I a FIN directive is
encountered.

b. When the FIN directive is encountered, terminates
control of the DO-loop and resumes assembly at
the next statement.

5. If the count is greater than zero, processes the' DO­
loop as follows:

a. Increments the i nterna I counter by 1.

b. If one or more labels are present on the DO line,
sets them to the new value of the internal counter.

c. Assembles all lines encountered up to the first
ELSE or FIN directive.

d. Repeats steps 5a through 5c unti I the loop has been
processed the number of times specified by the
count.

e. Terminates control of the DO-loop and resumes
assembly at the statement following the FIN.

In summary, there are two forms of iterative loops as shown
below.

Form 1. DO or WHILE

I block 1

ELSE
block 2

FIN

Form 2. DO or WHILE

1
block 1

FIN

If the expression in a DO directive is evaluated as a posi­
tive, nonzero value n, then in either form block 1 is re-.
peated n times and assembly is resumed following the FIN.

If the expression in a WHILE directive is initially evaluated
as a positive, nonzero value n, then in either form block 1

38 Assemb Iy Contro I

is assembled and the expression in the WHILE directive is
reevaluated. This process continues unti I the evaluation of
the expression in the WHILE directive no longer provides a
positive, nonzero value, at which time control of the WHILE
loop is terminated, and assembly resumes following the FIN.

If the expression in the DO directive is evaluated as a neg­
ative or zero value, then in

Form 1: block 1 is skipped, block 2 is assembled once,
and assembly is resumed following the FIN.

Form 2: block 1 is skipped, and assembly is resumed
following the FIN.

If the expression in the DO directive is not evaluatable,
Meta-Symbol sets the label or labels (if present) to the val ue
zero, produces an error notification, and processes the DO
directive as if the expression had been evaluated as zero.

An iteration block may contain other iteration blocks but
they must not overlap. See Examp Ie 42 for the WHILE directive.

The label or labels for the DO directive areredefinableand
their value may be changed by SET directives during the
processing of the DO-loop. Any symbols in the DO direc­
tive expression that are redefinable may also be changed
within the loop, However, unlike the WHILE directive, the
count for the DO-loop is determined only once and changing
the value of any expression symbol within the loop has no
effect on how many times the loop wi II be executed.

The processing of DO directives involves program levels in
the same manner as WHILE directi ves. Both a DO-loop and
a WHILE-loop must be completed on the same program level
on which they originate. That is, if a DO or WHILE direc­
tive occurs in the main program, the ELSE and/or FIN for
that directive must also be in the main program. Similarly,
if a DO or WHILE directive occurs within a procedure defi­
nition' the ~LSE and/or FIN for that directive must also be
within the defini tion.

Example 44. WHILE/DO/FIN Directives

I
J

WHILE
DO
GEN,32
FIN
FIN

1<3
I
I * J

end DO
end WHILE

This sequence of code generates the values 1, 2, 4, 3,
6, and 9:

1. The internal counter n is set to zero, and this
zero value of n is assigned to I.

2. I (which is 0) is less than 3, so the WHILE-loop
is executed.

3.

4.

n is incremented by 1, and its new value is as­
signed to I, making I = 1.

The DO directive is encountered:

a. The internal counter m is set to zero, and this
zero value of m is assigned to J.

b. I has the value 1 (from step 3 above) so the
DO-loop is executed one time.

c. m is incremented by 1, and its new value is
assigned to J, making J = 1.

d. The GEN directive produces the value
I * J = 1 * 1 = 1 as a 32-bit value.

e. FIN terminates the DO--Ioop.

5. FIN returns control to the WHILE directive.

6. I (which is 1) is less than 3, so the WHILE loop is
executed again.

7. n is incremented by 1, and its new value is as­
signed to I, making I = 2.

8. The DO directive is encount·ered:

a. The internal counter m is set to zero, and this
zero value of m is assigned to J.

b. I has the value 2 (from step 7 above) so the
DO-loop is executed twice.

c. m is incremented by I, (md its new value is
assigned to J, making J = 1.

d. The GEN directive produces I * J = 2 * 1 = 2

e. FIN terminates the first iteration and returns
control to the DO direct'ive.

f. m is incremented by 1, clnd its new value is
assigned to J, making J == 2.

g. The GEN directive prodlJces I * J = 2 * 2 = 4

h. FIN terminates the DO-~oop.

9., FIN r~tu'rns control to ,the WHILE directive.

10. I (which is 2) is less than 3, 5:0 the loop is executed
again.

11. n is incremented by 1 and its new value is assigned
to I, making I = 3.

12. The DO directive is encountered.

a. The internal counter m is set to zero, and this
zero value of m is assigned to J.

b. I has the val ue 3 (from step 11 above) so the
loop is executed three times.

c. m is incremented by 1, and its new value is
assigned to J, making J = 1.

d. The GEN directive produces I * J = 3 * 1 = 3.

e. FIN terminates the first iteration and returns
control to the DO directive.

f. m is incremented by 1, and its new value is
assigned to J, making J = 2.

g. The GEN directive produces I ", J = 3 * 2 = 6.

h. FIN terminates the second iteration and re­
turns control to the DO directive.

i. m is incremented by I, and its new value is
assigned to J, making J = 3.

i. The GEN directive produces I * J = 3 * 3 = 9.

k. FIN terminates the DO-loop.

13. FIN returns control to the WHILE directive.

14. I (which is 3) is not less than 3, so the loop is not
executed.

15. Skip the DO directive, the GEN directive,
the FIN directive (that is paired with DO),
and the FI N directive (that is paired with
WHILE).

16. Continue the assembly process.

Assembly Control 39

IC+l -IC
IC -LABEL

Set flag to get line ___ -<.
'----I following DO

O-IC
o -LABEL
Evaluate expression-EXP

no yes

IC = Interna I counter
LABEL = Label (if present on DO line)
EXP = The result of evaluating expres-

sion on DO line

Assemble until FIN

Terminate loop

Figure 3. Flowchart of DO/ELSE/FIN Loop

40 Assembly Control

Example 45. DO/ELSE/FIN Directives

Assume the main program has a DO-loop that contains a procedure definition that in turn contains a WHILE-loop. The
ELSE and/or FIN for the WHILE-loop must be in the procedure definition, and those for the DO-loop must be in the
main program.

level °
DO 1 leve! 1 PROC

WHILE

FIN

PEND

ELSE

FIN

Example 46. DO/ELSE/FIN Directives

Main program =: level 0.

DO-loop commences at level 0.

Identifies beginning of procedure definition that wi II be assembled at
level 1.

WHILE-loop invoked at level 1.

End WHILE-loop.

End procedure definition.

ELSE directive is part of DO/ELSE/FIN group.

End DO-loop.

In this example, the dashed vertical lines indicate statements that are skipped; solid vertical lines indicate statements
that are assembled. The numbers 1, 2, 3, and 4 above the vertical lines indicate which iteration of the DO-loop is in
process. This example uses a simple list; list A has four elements (0, 1, 2, 1) that can be referenced as A(l), A(2),
A(3), and A(4), respectively.

Iteratior·

2 3

II! I
I
I

t
I

4

I
I
I
I
I
I

t
I
I
I
I
I
I

t

A EQU 0,1,2,1

DO 4

GO TO, A(I) S, T

ELSE

S

ELSE

T

FIN

When the DO directive is encountered, the DO expression has the value 4 so the loop will be executed four times. When
the GOTO directive is encountered the first time through the loop, I has the value 1 so A(I) refers to the first element in
the list to which A is equated .. That element is the value zero. The expression for the GOTO has the value zero, so the
next statement in sequence is ass.;,mbled. Assembly continues in sequence until the ELSE directive is encountered, which
ends the first iteration and returns control to the DO directive.

Assembly Control 41

When the GOTO directive is encountered the second time through the loop, I has the value 2 so A(I) refers t~ the second
element in list A; i. e., the value 1. Thus, the expression for GOTO has the value 1 so Meta-Symbol will skip until it
finds a statement labeled S. Starting with 5, Meta-Symbol assembles code until it encounters the ELSE which terminates
the second iteration of the loop and returns control to the DO directive.

When the GOTO directive is encountered the third time through the loop, I has the value 3 so A(I) refers to the third
element in list A; i. e., the value 2. Thus, the expression for GOTO has the value 2 so Meta-Symbol will skip until
it finds a statement labeled T. Starting at T, Meta-Symbol assembles code until it encounters the FIN directive which
terminates the third iteration of the loop and returns control to the DO directive.

When the GOTO directive is encountered the fourth time through the loop, I has the value 4 so A(I) refers to the fourth
element in list A; i. e., the value 1. Thus, the expression for GOTO has the value 1 so Meta-Symbol will skip until it
finds a statement labeled S. Starting at 5, Meta-Symbol assembles code until it encounters the ELSE directive which
terminates the fourth - and last - iteration of the loop. Then, Meta-Symbol skips unti I it encounters the FIN directive.
Assembly resumes at the first statement following the FIN.

SYMBOL MANIPULATION

EQ.U Equate Symbols

The EQU directive enables the user to define a symbol by
assigning to it the attributes of the list in the argument
field. This directive has the form

label command argument

[labell' ... , label n] EQU[,s] [I ist]

where

labeli are valid symbolic names. If there are no
labeli, the only effect of the EQU directive is to
cause evaluation of the list.

isaninteger-valued expression that identifies the
"type" of label. This expression is used in con­
junction with the SD option (see Chapter 7) to
provide explicit "type" information to a loader
and, subsequently to a run-time debugging pro­
gram. If s is omitted, labeli are assumed to rep­
resent hexadecimal values. The legal values for s
and the associated meanings are given below:

X100 1

X'Ol '
X '02 1

X '03 1

X '06 1

X '09 1

X'OA '
X'OB '
X '08 1

X ' lO '

Instruction
Integer
Short floating-point
Long floating-point
Hexadecimal (also for packed
decimal)
EBCDIC text (also for unpacked
decimal)
Integer array
Short floating-point array
Long floating-complex array
Logical array
Undefi ned symbo I

I ist is any list. The elements in the list may con-
tain forward and external references.

When list is an expression, label is set equivalent to the
value .of. the expression:

VALUE EQU 2*(8-5) + 1 makes VALUE == 7

ALPHA EQU XYZ - 10 makes ALPHA == XYZ - 10

(The symbol == means "is identical to".)

42 Symbol Manipulation

When list is a list of more than one element, label is set
equivalent to all individual elements in the list. This is
shown in various exapmles given in Chapters 2 and 5.

If more than one label is given, each is set equivalent to
list. Thus,

A,B EQ U 5 makes A == 5, B == 5

The value or values in list appear on the assembly listing in
a special format that indicates the type of value(s) to which
label has been equated. This format is explained under
II Meta-Symbol Assembly listing" in Chapter 6.

Example 47. EQU Directive

B EOU A Makes B == A. Because A is a
forward reference, B also has the
attribute of being a forward
reference.

GEN,32 B Legal; the GEN directive allows
the use of forward references.

DO B Illegal; the DO directive does
not permit the use of forward
references, and it is processed
as if B = O.

DO A Illegal; A is a forward reference.

A EOU 5 Defines A.

DO A Legal; A is no longer a forward
reference.

DO B Legal; B is no longer a forward
reference.

Set a Value

The SET directive, like EQU, enables the user to define a
symbol or symbols by assigning to eoch the attributes of the
I ist in the argument field. SET has the form

el r::.
§ ell' •.• ,Iabel n]

command argument

SET [,s] [I ist]

where label, s, and list are the same as for EQlJ.

The SET directive differs frem the EQU directive in that any
symbel defined by a SET may later be redefined by means
ef another SET. It is an errer te attempt to de this with an
EQU. SET is particularly useful in writing precedures.

The value er values in I ist appear en the assembly listing
in a special format that indicates the type of value(s) to
which label has been equated. This format is explained
under IIAssembly listing ll in Chapter 6.

Example 48. SET Directive

A EQU X'FF '

M SET A Mis set,te the hexadecimal
value FF.

S SET M Thus, S = M = X'FF'.

M SET 263 Redefi nes symbo 1M.

S EQU M Errer; dOles net redefi ne
symbel S.

LOCAL Declare Lecal Symbcls

The main pregram and the bedy of each precedure called
during the assembly ef the main program censtitute the nen­
local symbel regien for an assembly. Lecal symbel regiens,
in which certain symbels wi II be declared unique to the
region, may be created within a main pregram er procedure
by the LOCAL directive. This directive has the ferm

label command argument

I LOCAL ~ymboll , ... , symbol n]

where the symbe1i are declared te be lecal te the current
region. Lecal symbels are syntactically the same as nen­
local symbols. The argument field may be blank, in which
case the LOCAL directive terminates the current lecal sym­
bol region witheut declaring any new lecal symbels.

A label field entry is ignored by the assembler unless H is
t'he target label of a GOTO search. '

The local symbol region begins with the first statement
(other than comments or anether LOCAL) following the

LOCAL directive and is terminated by a subsequent use of
the LOCAL directive.

Within a local symbel region a symbol declared as LOCAL
may not be used as a ferward reference in an arithmetic
process other than addition, subtraction, or comparisen.
This dOles net limit the use ef defined local symbols in other
arithmetic precesses.

The occurrence of the PROC directive suspends the current
local symbol regien until the corresponding PE ND is en­
countered. The suspended local symbols are then reacti­
vated. See Example 52. (PROC and PEND define the
beginning and end, respectively, of a procedure definition.
See Cha pter 5.)

When a LOCAL directive occurs between the PROC and
PEND directives, a precedure-Iecal symbol regien is cre­
ated, with local symbols that may be referenced enly within
the specified region ef the procedure being defined. When
the precedure is subsequently referenced in the program, the
currently active local er procedure-local symbols are sus­
pended unti I the corresponding PE ND is encountered. The
suspended lecal symbels are then reactivated.

Example 49. LOCAL Directive

*COMMENT
START

LOCAL
LOCAL
LOCAL

EQU

LOCAL

A,B,C
R,S,T,U
X,Y,Z

$

The three LOCAL directives inform the assembler that
the symbols A, B, C, R, S, T, U, X, Y, and Z are to be leca I
te the region beginning with the line START. The final
LOCAL directive terminates the leca I symbel regien
without declaring any new lecal symbels.

Example 50. LOCAL Directive

A EQU X'El'

LOCAL A New A, not the same as A above.

A EQU 89 Legal, since this is the local A.

B EQU A Defi nes B as the dec ima I
value 89.

LOCAL Z Terminates current local symbol
regien and initiates a new
regien.

Z EQU A Z is equa ted to the hexadec i-
mal value El.

Symbol Manipulation 43

Example 51. LOCAL Directive

LOCAL B
LW,7 B*3 Illegal because B is a local

forward reference and mul-
tiplication is requested.

B EQU 9 Defines symbol B.

LW,9 B*3 Legal.

AW,9 A/2 Legal because A is not a
local symbol.

A EQU X'F3A' Defines symbol A.

Example 52. LOCAL Directive

A EQU X'E1'

LOCAL A New A, not the same as
A above.

A EQU 89 Legal, since this is the
local symbol A.

PROC A PROC suspends the range
of a LOCAL and reinstates
any prior nonlocal symbols.

B EQU A Defines B as the hexa-
decimal value E1.

PEND Terminates the procedure
and reinstates the prior
LOCAL symbols.

X EQU A<X'CF' Equates X to the value 1
because 89 is less than
X'CF'.

LOCAL Z Terminates current local
symbol region and initiates
a new regi on.

Z EQU A=X'E1' Equates Z to the va I ue
because the nonlocal sym-
bol A has the hexadecimal
value E 1.

44 Symbol Manipulation

OPEN/CLOSE Symbol Control

OPEN and CLOSE control the scope of nonlocal symbols.
These directives have the forms

label command argument

OPEN [symbol] , ... , symbol n]

CLOSE [symbol] , ... , symbol
n

]

where symbol; represent a list of nonlocal symbols that
are to be opened or closed for use as unique symbols. The
OPEN directive explicitly declares subsequent usage of the
designated symbolic names (until closed or opened again) to
be completely independent of any prior uses of the same
symbolic name. See Example 53.

The C LOSE directive declares that the desi gnated, currently
opened nonlocal symbols are to be permanently closed for
all subsequent usage. Once a symbol has been closed, it
cannot be opened again. For example, in the sequence

A

A

EQU
CLOSE
LW,4
OPEN

15
A
ALPHA
A

the CLOSE directive informs Meta-Symbol that the current
nonlocal symbol A may not be used again. The label A in
the next statement is a valid symbol, different from the pre­
vious A. The OPEN directive informs Meta-Symbol that a
new symbol A is to be used; this A is different from both of
the previous A's.

If a symbol· is not explicitly opened with an OPEN directive,
it is considered implicitlyopened the first time it appears in
a program. The names of directives and intrinsic functions
are opened at the start of an assembly, but it is permissible
to close them or to open a new symbolic name having the
same configuration. Instructions in system instruction sets
may also be opened and closed (see Example 54). This
enables the user to close any directive, function, or system
name that may confl i ct with names he has used. Program­
mers should be very careful in using OPEN and CLOSE di­
rectives since misuse can result in an erroneous assembly or
termination of assembly. In fact OPEN and CLOSE are used
only in special applications; for example, communication
between system procedure calls requires nonlocal symbols,
because local symbols are purged at the end of each procedure.

OPEN and CLOSE are processed completely by the en­
coding phase (Pass 0); they are treated as comments in the
two assembly phases. As such, they are unconditionally
executed at the time they are first encountered within the
source program. Since a GOTO or DO directive is not
processed until the assembly phase, it is not possible to skip
or repeat an OPEN or CLOSE directive. Also, since proce­
dure references are not expanded unti I the assembly phase,
an OPEN or CLOSE directive within a procedure definition
is effecti ve on I y when the defi ni ti on is fi rst processed; not
when the procedure is referenced.

OPEN and CLOSE control all forms of usage of the symbols
in a program, whether used as commands or as labels.

Example 53. OPEN/CLOSE Direc:tives

OPEN A, B, C

A EQU BETA

LW,2 A

OPEN A

A EQU ALPHA

CLOSE A

STW, 2 A

OPEN A

LW,3 B

Declares A, B, and Copen
for use.

Sam€~ A as above.

Sam€~ A as above.

Opens a new A, different
from previous A.

Lega I because th is A does
not have the same va lue
that was equated to BET A.

C I OSI~S current A. Th is A
cannot be referenced again
(however, ALPHA can be).
The previously open A - the
one '~quated to BETA - is
now rei nstated and any
references to A are to it.

Equivalent to STW, 2 BETA.

This is a new A, different
from both A's used above.

This is B that was opened
at the beginning of this
example.

Example 54. OPEN/CLOSE Directives

SVSTEM

Z EQU

EQU LW,4

OPEN

F

Z

SIG7FDP

Legal. Equates symbol Z
to symbol F.

Lege i . Di recti ve names
may be used as label entries
without conflict.

EQU, LW Declares EQU and LWopen
for u1se.

S EQU

LW,3

T

T

Illegal. EQU has been
opened as a new symbol;
therefore, Meta-Symbol
does not recognize EQU
as a directive.

Illegal. LW has been
opened as a new symbol;
therefore, Meta-Symbol
does not recogn i ze L W as
a command.

Example 55. OPEN/CLOSE/GOTO Directives

A SET 2

B SET

w

X

X

V

Z

GOTO, A *B/2 X, V, Z Begins search for label X.

EQU X Legal; does not
terminate search.

OPEN X

,DO K*Z

CLOSE X

FIN

Makes a new definition
of X available to the
assembler.

Because of the OPE N
directive, th is X is not
the same as the X for
which the search is be­
ing made and, there­
fore, is ignored.

Closes the new X and
again makes the old X
(i. e., X referenced to
in the GOTO statement)
available to the
assembler.

Search is successfully
completed and assembly
resumes here.

Symbol Manipulation 45

Example 56. OPEN/CLOSE/GOTO Directives

OPEN T Opens T as a new symbol.

K EQU 2

GOTO, K H, T, L Begins search for label T
(this is the same T that
was opened above).

CLOSE T Closes the symbol T for
which the assembler is
searching. Meta-Symbol
continues searching until
the end of the program.
It then produces an error
message.

Example 57. OPEN/CLOSE/LOCAL Directives

Z LW,6 A

OPEN A

LOCAL A

A EQU B

CLOSE A

A EQU ZD

LOCAL x

LW,12 A

46 Symbol Manipulation

References symbo I A.

Opens a new nonlocal
symbol A, different from
the one used above.

Initiates a local symbol
region in which A is a
local symbol.

Th is is the loca I symbol A.

Closes the nonlocal sym­
bol A that was opened
above and causes the pre­
vious nonlocal A (i. e.,
the one that appeared in
statement Z) to be rein­
stated when the current
local symbol region is
term i nated.

Illegal. Thisisthe
local A which was
equated to B.

Terminates the previous
local symbol region and
initiates a new one in
which X is a local symbol. .

This is the same A that
appeared in statement Z.

A EQU 15 Legal. This is the first
definition of the non­
local symbol A.

This example emphasizes the fact that OPEN and CLOSE
directives affect only nonlocal symbols; local symbols
cannot be OPENed or CLOSEd.

DEF Dec lare Externa I Definitions

The DEF directive declares which symbols defined in this
assembly may be referenced by other (separately assembled)
programs. The form of this directive is

label command argument
----- f------

DEF [symbol], ... ,symbol n]

where symboli may be the intrinsic functions, LF, CF, or
AF, or any global symbolic labels that are defined within
the current program. If there is no symboli, the directive
is ignored.

DEF directives may appear anywhere in a program. Symbols
may be declared as external definitions prior or subsequent
to their use in the program.

Section names for ASECT and CSECT may be externa I
definitions; and, if such is the case, their names must
be explicitly declared external via a DEF directive. The
name of a dummy section (DSECT) is implicitly an external
definition and should not appear in a DEF directive; other­
wise a "doubly defined symbol" error condition will be
produced.

The same symbol must not be declared an external definition
more than once in a program (thus the restriction on a DSECT
label). Such a condition will normally be detected by the
assembler, and diagnosed as a "doubly defined symbol".
However, Meta-Symbol does not detect identical symbol
names that have been opened or closed; th is case wi II be
diagnosed (if at all) only by the loader used to load the
assembled program (see Example 59).

As stated previously, all symbols declared as external defi­
nitions via a DEF directive must be defined within the same
program. However, there are restrictions on the values
assigned to DEFed symbols; they may be absolute or relo­
catable addresses, integer constants that may be correctly
represented in 32 bits, or any expression involving a com­
bination of such terms. They may not be lists, function
names, or LOCAL symbol values (see Example 60). It is
permissible, however, to DEF a symbol whose value wi II
be found via a REF or SREF directive (see Examples 61
and 65). It is not legal, however, to DEF and REF the
same symbol.

All address values (absolute or relocatable) assigned to
DE Fed symbols are generated into the object language as
byte-addresses, in order to retain any pertinent lower-order
resolution (see description of REF and SREF).

Example 58. DEF Directive

DEF TAN, SUM, SORT

This statement identifies the labe 11s TAN, SUM, and SORT as symbols that may be referenced by other programs.

Example 59. DEF Directive

DEF X,Y,Z

Y EQU X'l F'

OPEN Y

Y EQU $+7

DEF Y

Example 60. DEF Directive

DEF 0,5, U, R

o EQU X'lF'

5, PI EQU F L' . :114159 E l'

U EQU X'E8',X 'D6',X 'E4'

R EQU U(2)

.-------------------------------
Declares symbols X, Y, and Z as external symbol!' that may he ref"r­
enced by other programs.

Defi nes symbo I Y.

To Meta-Symbol, Y is now a completely new symbol.

Defi nes the new symbo I, Y.

Unknown to Meta-Symbol, a second declaration and oC!finition of
the symbo ~, Y, wi" now be produced. Depend i reg on the I ooder,
this may be diagnosed as a load-time arror.

Declares symbols 0, 5, U, and R as external symbols that may be
referenced by other programs. '.

Legal. Constants may be linked via external definitions.

Although this is a legal definition of both S and PI,S cannot be
properly DEFed because it exceeds 32 bits in value (error).

Although this is a legal definition of U, a list cannot be DEFed in
the object· language (error).

8

~egal. The value, X'D6', is generated as the external value of R.
Note, however, that it is not permissible to say

DEF U(2)

. si nce the argument(s) of DEF must be unsubscri pted symbols.

Symbol Manipulation 47

Example 61. DEF Directive

The following DEF occurs in a root module of a large system:

DEF SUBROUTN1

SUBROUTN1 CSECT

The subsystems of this system are coded from a specification in which the above DEF was mistyped as SUBROUTIN,
and all 27 subsystems were thus coded as:

REF SUBROUTIN

BAL,LNK SUBROUTIN

As an alternate to modifying any of the existing code, the following module can be loaded into the root segment
of the program. It is legal and resolves the naming conflict illustrated above:

REF

DEF
REF

SUBROUTIN EQU
END

SUBROUTIN
SUBROUTN1
SUBROUTN1

Declare External References

The REF directive declares which symbols referenced in this
assembly are defined in some other separately assembled
program. The directive has the form

label command argument

REF [,n] ~ymbol1 , .•• , symbol n]

where

n may be an (optional) constant, symbol or ex-
pression whose value is 1, 2, 4, or 8, specifying
the intrinsi c resolution of the associated symbols
as byte, halfword, word, or doubleword, respec­
tively. If n is omitted,word resolution is assumed.
If any of symboli reference a constant value, n is
ignored by the loader.

symbol i may be the intrinsic functions, LF, CF, or
AF, or any global symbolic labels that are to be
satisfied at load time by other programs. If there
is no symbol i reference, the directive is ignored.

Symbols declared with REF directives can be used for sym':"
bolic program linkage between two or more programs. At
load time these labels must be satisfied by corresponding
external definitions (DEFs) in another program.

48 Symbol Manipulation

Example 62. REF Directive

REF IOCONT, TAPE, TYPE, PUNCH

This statement identifies the labels IOCONT, TAPE,
TYPE, and PUNCH as symbols for which external defi­
nitions wi II be required at load time.

Example 63. REF Directive

REF Q Q is an external reference.

B GEN, 16,16 Q, $ The value of an external
reference may be placed
in any portion ·of a ma-
chine's word.

LW,2 Q Q is an externa I reference.

SREF Secondary Externa I References

The SREF directive is simi lar to REF and has the form

label command argument

SREF[,n] [symbol 1, ..• ,symbol n]

where nand symboli have the same meaning as in REF.

REF and SREF directives may appear anywhere in a program.
Symbols may be declared as e),terna I references before or
after their use in the program. Symbols that are external
references may be modified by the addition and subtraction
of integers, re locatable symbo Is, and other externa I refer-'
ences. See Example 65.

should satisfy the references and provide the interprogram
linkage. If the routines are not in core, SREF does not
cause the loader to load them; however, it does cause
the loader to accept any references with in the program
to the names, without considering them to be unsatisfied
external references.

SREF differs from REF in that REF causes the loader to
loqd .. routines whose labels it references, whereas SREF
does not. Instead, SREF informs the loader that if the
routines whose labels it references are in core, the loader

Although all symbols are DEFed as byte addresses, a pro­
gram that REFs them wi II use the word address unless other­
wise specified. Example 64 shows two program segments
that function identically.

Example 64. REF/SREF Directives

REF OKE
REF FEN
SREF OKEE
REF GA

L1,7 HA(FEN)

LW,5 BA(OKE)

DftTA GA;
,OKEE

END

REF, 1 OKE
REF,2 FEN
SREF,4 OKEE
REF,8 GA

L1,7 FEN

LW,5 OKE

DATA WA(GA);
,OKEE

END

Although low-order resolution of these symbols is available, their word
address wi II be used unless otherwise spec ified.

Halfword address of FEN.

Always word address.

Implicit word address.
Implicit word address.

Each REF symbol is given an explicit intrinsic resolution that wi II be
used unless otherwise specified.

Halfwordaddress of FEN.

Always word address.

Forces word address.
Intrinsic word address.

Symbol Manipulation 49

Example 65. REF Directive

B

c

M

REF

EQU

LW,2

EQU

LW,2

EQU

REF

Q

Q

B

Q+2

c

N

Q is an externa I reference.

Equates B to all attributes
of Q.

Equivalent to LW,2 Q.

Lega I usage.

Equivalent to LW,2 Q+2.

N, P It is legal to declare N an ex­
ternal reference after N has
appeared in the program. In
the sequence shown here, N is
made an externa I reference by
the REF directive.

DEF M, C Defines M and C as externals.
B is not an external.

DATA GENERATION

GEN Generate a Value

The GEN directive produces a hexadecimal value repre­
senting the specified bit configuration. It has th~ form

label command argument
i---__

[labell,···,labeln] GEN [,field list] [value list]

where.

labeli are any valid symbols. Use of one or more
labels is optional. When present, each is defined

50 Data Generation

as the current value of the execution location
counter and identifies the first byte generated.
The location counters are incremented by the num­
ber of bytes generated.

field list is a list of evaluatable, non-negative ex-
pressions that define the number of bits comprising
each field. The sum of the field sizes must be a
non-negative integer va lue that is a mu Iti pie of
eight and is less than or equal to 128. If "field
list" is omitted, 32 is assumed.

value list is a list of expressions that define the
contents of each generated field. This list may
contain forward references. The value, repre­
sented by the value I ist, is assembled into the
field specified by the field list and is stored in the
defined location (see Example 66). If value list
contains fewer elements than field list, zeros are
used to pad the remai ning fields.

Note: The intrinsic symbols $ and $$ always refer to the
first byte generated by the GE N directive.

Example 66. GE N Directive

GEN, 16, 16 -251,89

Example 67. GEN Directive

B EQU
GEN,64

XI FFFFFFFFI
B

Produces two 16-bit
hexadecimal val ues:
FF05 and 0059.

Produces: 00000000
FFFFFFFF

There is a one-to-one correspondence between the entries
in the field list and the entries in the value list; the code
is generated so that the first field conta ins the first va lue,
the second field the second value, etc. The value pro­
duced by a GE N directive appears on the object program
listing as eight hexadecimal digits per line.

External references, forward references, and relocatable
addresses may be generated in any portion of a machine
word; that is, an address may be generated in a field that
overlaps word boundaries.

Example 6S. GEN Directive

BOUND

LAB GEN,S,S,S

LW,5

LB,3

4

S,9,1O

L(2)

LAB, 5

Specifies word boundary.

Produces three consecutive bytes; the first is identified as LAB and con­
tains the hexodecimal value OS; the second contains the hexadecimal
value 09; and the third byte contains the hexadecimal value OAt

Loads register 5 with the literal value 2.

Loads byte into register 3. LAB specifies the word boundary at which the
byte string begins, and the value of the index register (that is, the value 2
in register 5) specifies the third byte in the string (byte string numbering
begins at 0). Thus, this instruction loads the third byte of LAB (the
value OA) into register 3.

Example 69. GEN Directive

ALPHA
BETA

EQU
EQU

X'F '
X1C 1

Defines ALPHA as the decimal value 15.
Defines BETA as the decimal value 12.

A GEN,32 ALPHA+ BETA Defines A as the current location and stores the decimal value 27 in
32 bits.

In this case, the GEN directive results in a situation that is effectively the same as:

A GEN,32 27

COM Command Definition

The COM directive enables the programmer to describe
subdivisions of computer words and invoke them simply.
This directive has the form

label command argument -.
labell [, "" label n] COM[, field list] [value list]

where

label i are val id symbols by which the COM may be
referenced,. Symbols currently declared as local
may not be used as labels on a COM directive.

field list is a listofevaluat'able expressionsthatde-
fine the number of bits comprising each field. The
sum of the elements in this I ist must be a positive in­
teger value that is a multi'ple of eight bits and is
lessthan or equal to 12S. Iffield list is omitted, 32
is assumed.

value I ist is a list of expres.sions or intrinsic func-
tions (see below) that specify the contents of each
field.

When the COM directive is encountered, the label, field
list, and value list specifications are saved. When the
label of the COM directive subsequently appears in the
.command field of a statement called a "COM reference
line", that statement will be generated with the configura­
tion specified by the COM directive.

The use of commands defined by a COM is restricted as fol­
lows: the COM command definition should precede all
references to it.

Note: As with the GEN directive, the intrinsic symbols $
and $$, used on a COM reference line, indicate the
fi rst byte generated by the C OM reference.

The COM directive differs from GEN in that Meta-Symbol
generates a value at the time it encounters a GEN direc­
tive, whereas it stores the COM directive and generates a
value only when a COM reference line is encountered. If
the reference I ine is labeled, the generated va lue wi" be
identified by that value.

If a COM directive is to produce four bytes, it wi" be pre­
ceded at reference time by an implicit BOUND 4.

Data Generation 51

Certain intrinsic functions enable the user to specify in the
COM directive which fields in the reference lines will con­
tain values that are to be generated in the desired config­
uration. These functions are

CF LFt

AF NUM
t

AFA

CF Command Field

This function refers to the command field list in a reference
I ine of a COM directive. Its format is

CF (element number)

where CF specifies the command field, and element number
specifies which element in the field is being referenced.

Example 70. COM Directive and CF Function

BYT COM,8,8 CF(2), CF(3)

xx BYT, 35, X'3C
12\3\3\ C \
o 15

The COM directive defines a 16-bit area consisting of
two 8-bit fields. It further specifies that data for the
first 8-bit field wi II be obtained from command field
2(CF(2)) of the COM reference line, and that data for
the second 8-bit field will be obtained from command
field 3(CF(3)). Therefore, when the XX reference line
is encountered, Meta-Symbol generates a 16-bit value,
so that the first eight bits contain the binary equivalent
of the decimal number 35 and the second eight bits
contain the binary equivalent of the hexadecimal
number 3C.

AF Argument Field

This function refers to the argument field list in a reference
I ine of a COM directive. Its format is

AF (e lement number)

where AF specifies the argument field, and element number
specifies which element in the list of elements in that field
is being referenced.

t
See Chapter 5.

52 Data Generation

Example 71. COM Directive and AF Function

XYZ

ALPHA
ZZ

COM, 16, 16

EQU
XYZ

AF(l), AF(2)

X' 21 1

65, ALPHA+X' FC

10101411101111\DI
o 15 16 31

Meta-Symbol stores the COM definition for later use.
When it encounters the ZZ reference line, it references
the COM definition in order to generate the correct con­
figuration. At that time, the expression ALPHA+X'FC'
is evaluated. AF(l) in the XYZ line refers to 65 in the
ZZ line; AF(2) refers to ALPHA+X' FC.

AFA Argument Field Asterisk

The AFA function determines whether the specified argu­
ment in the COM reference line is preceded by an asterisk.
The format for th is function is

AFA (element number)

where AFA identifies the function, and element number
specifies which element in the argument field of the COM
reference I ine is to be tested. If element number is omitted,
AFA(l) is assumed. The function produces a va lue of 1 (true)
if an asterisk prefix exists on the argument designated;
otherwise, it produces a zero value (fa Ise).

Example 72. COM Directive and AFA Function

STORE COM,1,7,4,4 AFA(l),X 1351 ,CF(2),AF(1)

STORE,4 *TOTAL

The COM directive defines STORE as a 16-bit area with
four fields. The AFA(l) intrinsic function tests whether
an asterisk precedes the first element in the argument
field of the reference line. The first bit position of the
area generated will contain the result of this test. The
next seven bits of the area will contain the hexadecimal
value 35. The second element in the command field of
the reference I ine wi II constitute the th ird field gener­
ated, while the first element in the argument field of
the reference line will constitute the last field.

When the reference line is encountered, Meta-Symbol
defines a 16-bit area as follows:

Bit Positions Contents

o The va lue 1 (because the asterisk is
present in argument field 1).

1-7 The hexadecimal value 35.

8-11 The value 4.

12-15 The 4-bit value assooCiated with the
symbol TOTAL.

DATA Produce Data Value

DATA enables the programmer to represent data conve­
niently within the symbolic program. It has the form

label command argument
f---- --

[labell' "" label n] DATA[,f] [valuel' "" valuen]

where

label i are val id symbols. Use of one or more labels
is operational. When present, each is defined as
the current value of the execution location counter
and is associated with the !first byte generated by
the DATA directive. The ~ocation counters are
incremented by the number of bytes generated.

f is the field size specification in bytes; f may be
any evaluatable expression that results in an inte­
ger value in the range 0 $ f $ 16.

valuei are the list of valuE~s to be generated. A
value may be a multitermed expression orany sym­
bol. An addressing function may be used to specify
the resolution other than thE~ intrinsic resolution of
the execution location counter, if desired. Omit­
ted va lues are assumed to be zero.

DATA generates each value in the list into a field whose
size is specified by f in bytes. If f is omitted, four bytes
are assumed.

Constant values must not exceed those specified under
"Constants" in Chapter 2.

Example 73. DATA Directive

MASK1

MASK2

Produces an 8-bit value
identified as MASK 1.

[IITJ
o 7

DA T A, 2 X I 1 EF I Generates the hexa­
decimal value 01EF as
a 16-bit quantity, iden­
tifiE~d as MASK2.

@I~
o 15

BYTE

TEST

DATA,3 BA(L(59)) Assembles the byte
address of the litera I
value 59 in a 24-bit
field, identified as
BYTE.

DATA 0,X1FF 1 Generates two 4-byte
quantities; the first
contains zeros and the
second, the hexadec i­
mal value OOOOOOFF.
The first value is
identified as TEST.

10101010101010101
o 1516 31

101010101010iFIFI
o 1516 31

Generates three 8-bit
values, the first of
which is identified as
DT4.

19\4\cIF\A\BI
o 23

S:SIN Standard Instruction Definition

The S:SIN directive provides a direct mechanism for de­
fining the three main classes of Sigma machine instructions.
I t has the form

label command argument

label1 [, •• ,' label n] S:5IN,n [expression]

where

labeli are one or more valid global symbols which
become the mnemonics by which the instruction
is referenced.

n is an evaluatable, integer-valued expression
which evaluates to one of the values 0, 1, or 2.
This specifies a standard instruction format and a
standard reference line assembly mode.

n= 0 implies the format 1, 7, 4, 3, 17 and speci-
fies that a reference line is to be assembled IIlike"
an LW instruction. AF(l) of any command de­
fined via S:SIN,O will be generated as WA(AF(l)).

n = 1 implies the format 1, 11, 3, 17 and specifies
that a reference line is to be assembled IIlike ll a
BAZ/BANZ instruction. AF (1) of any command de­
fined viaS:SIN, 1 will be generated asWA(AF(l)).

Data Generation 53

n = 2 implies the format 8, 4, 20and specifies that
a reference line is to be assembled "like" an LI
instruction. Any command defined via S:SIN,2 is
restricted to one argument field, and this argument
may not have an asterisk prefix.

expression is' an expression that is used as the
operation code of the defined instruction. Nor­
mally this is an explicit hexadecimal constant.

Although the same definitions may be achieved by use of
command procedures (Chapter 5) or the COM directive,
S:SIN provides the fastest possible processing when Meta­
Symbol is used as a production assembler for Sigma machine
language programs.

Example 74. S:SIN Directive

The following definitions of various instructions are used
in the SIG7FDP system file.

TEXT

lW
AND
B
LCF
AI

CI \f ,

S:SIN,O
S:SIN,O
S:SIN,l
S:SIN,l
S:SIN,2
S:SIN,2

X'32'
X'4B'
X'680'
X'703'
X'20'
X'21'

(
ftBCDIC Character String

The TEXT directive enables the user to incorporate mes­
sages in his program. This directive has the form

label command argument
1---

[labell' ... , label n] TEXT I 'J I ~ cS
I

, ... , cS
n

where

labeli are one or more valid symbols. Use of labels
is optional. When present, each label is associated
wi th the leftmost byte of the storage area assigned
to the assemb led message.

'csi' are evaluatable expressions that result in char-
acter string constants.

The character string is assembled in a binary-coded form in
a field that begins at a word boundary and ends at a word
boundary. The first byte contains the first character of the
character string, the second byte contains the second char­
acter, etc. If the character string does not require an even
multiple of four bytes for its representation, trailing blanks
are produced to occupy the space to the next word boundary.

When several character strings are present in the argument
field of a TEXT directive, the characters are packed in con­
tiguous bytes (see Example 75). This directive permits con-­
tinuation I ines, but the continuation indicator must occur
between two character stri ngs.

54 Data Generation

The TEXT directive enables the uSer to pass a. character
.string as a parameter from a procedure reference I ine to a
procedure. The character string must be written on the pro­
cedure reference line within single quotation marks. It is
referenced from within the procedure via the AF, CF, or
LF intrinsic functions in a TEXT directive. The intrinsic
function is not written with single quotation marks (see
Example 76).

Example 75. TEXT Directive

COLl TEXT 'VALUE OF X'

generates mALU

E 0 F

X

TEXT 'A', 'BCDE', FGHI',;
'JKLM'

generates

Example 76. TEXT Directive

TEXT

TEXT

PRINTl

PRINT2

AF(1)

'SUM OF " AF(l),;
, AND " AF(2)

'RESULTS ='

'X', 'V'

A B C D

E F G H

I J K L

M

In a procedure
definition.

In a procedure
definition.

Procedure refer­
ence line.

Procedure refer­
ence line.

Assume that the first TEXT directive is in the definition
of a command procedure called PRINTl, that the second
TEXT directive is in the definition of a command proce­
dure called PRINT2, and that the last two statements are
procedure reference lines that call these procedures.
When procedure PRI N T 1 is referenced, the fi rst TE XT
directive causes Meta-Symbol to generate

~
m±J

When procedure PRINT2 is referenced, the second
TEXT directive causes Meta-Symbol to generate

S U M

0 F X

A N D'

Y

Thus, entire messages or portions of messages may be
used as parameters on procedure reference lines.

TEXTC Text With Count

The TEXTC directive enables the user to incorporate mes­
sages in a program where the number of characters in the
message is contained as the first byte of the message. This
di rective has the form

[

label

[label], ... , label
n

]

argument

-:-~~[-~
cs] , .•. , cSnJ

command

TEXT(

where label. and 'cso' have the same meaning as for TEXT.
I I

The TEXTC directive provides a byt'e count of the total
storage space required for the message. The count is placed
in the first byte of the storage area and the character string
follows, beginning in the second byte. The count repre­
sents only the number of characters in the character string;
it does not include the byte it occupies nor any trailing
blanks. The maximum number of characters for a single
TEXTC directive is 255.

In all other aspects, the TEXTC directive functions in the
same manner as the 1 EXT directive.

Example 77. TEXTC Directive

ALPHA TEXTC 'VALUE OF XI;
I SQUARED'

generates

SOCW Suppress Object Control Words

18

U

F

S

R

V A L

E 0

X

Q U A

E D

The SOCW directive causes Meta-Symbol to omit all object
control bytes from the binary output· that it produces during
an assembly. This directive has the form

label command argument

I t--.

socw

When Meta-Symbol encounters an SOCW directive, it sets
the locati on counters to absolute zero, processes the pro­
gram as an absolute section, and diagnoses any subsequent
CSECT, DSECT, PSECT, or USECT directives. Meta-Symbol
produces appropriate error messages if the directives that re­
qu i re con tro I byte generati on are used (R EF, D EF, SR EF,
and LOCA L except in procedures), if an illegal object lan­
guage feature is subsequently required (such as the occur­
rence of a local forward reference), or if the SOCW
di recti ve has been used subsequent to the generati on of any
object code in the program.

Once the SOCW directive is invoked, it remains in effect
during the assembly of the entire program.

Norma IIy, control words are produced to convey to the
loader information concerning program relation, externally
defined and/or referenced symbols, etc. In special cases,
such as writing bootstrap loaders and specia I di agnosti c pro­
grams, the programmer does not want the control words pro­
duced; he needs only the continuous string of bits that results
from an assembly of statements. The SOCW directive en­
ables the p~ogrammer to suppress the output of these con­
trol words.

Use of the ORG and RES directives is allowed, although
this is a questionable practice (i. e., no code is generated
for these directives, but the assembler's location counters
are modified as directed.

When SOCW is specified, it is recommended that it be the
first statement in the program, or at least that it precede
the first generative statement.

LISTING CONTROL

Listing control directives are used to format the assembly
listing and are only effective at assembly time. No object
code is produced as a result of their use.

SPACE Space Listing

The SPACE directive enables the user to insert blank lines
in the assembly listing. The form of this directive is

label command argument
~- ~.-----------

SPACE [expression]

where expression specifies the number of I ines to be spaced.
The expression must not contain any external references.

If the expression is omitted, or is less than 1, its value is
assumed to be 1. If the expression is greater than 16, it is
set to 16. If the value of the expression exceeds the number
of lines remaining on the page, the directive wi" position
the assembly listing to top of form.

listing Control 55

Example 78. SPACE Directive

A SET 2

SPACE 5 Space fi ve lines.

SPACE 2*A Space four lines.

TITLE Identify Output

The TITLE directive enables the programmer to specify an
identification for the assembly listing. The TITLE directive
has the form

label command argument
f------.-------

TITLE ['cs']

where cs is an expression that resu Its in a character string
constant and may include 1 to 75 EBCDIC characters.

When a TITLE directive is encountered, the assembly listing
is advanced to a new page and the character string is
printed at the top of the page and each succeeding page
unti I another TITLE directive is encountered. A TITLE di­
rective with a blank argument field causes the listing to be
advanced to a new page and output to be printed without
a heading.

The first TITLE directive in a program is retroactive; that is,
its header will appear on the first page of the assembly list­
ing, regardless of the placement of the first TITLE directive.

A TITLE directive with a blank argument field will suppress
inclusion of the date and time in the heading; it will not
suppress the assembler version number or page count (see
Chapter 6).

Example 79. TITLE Directive

TITLE 'CARD READ/PUNCH ROUTI NE'

TITLE 'MAG TAPE I/O ROUTINE'

TITLE

TITLE "'CONTROLLER'"

The first TITLE causes Meta-Symbol to position the as­
sembly listing to the top of the form and to print CARD
READ/PUNCH ROUTI NE there and on each succeeding
page unti I the next TITLE directive is encountered. The
next directive causes a skip to a new page and output of

56 Listing Control

the title MAG TAPE I/o ROUTINE. The Third TITLE
directive causes a skip to a new page but no title is
printed because the argument field is blank. The last
TIT LE di rective specifies the heading 'CONTROLLER'.

LIST List/No List

The LIST directive enables the user to selectively suppress
and resume the assembly listing. The form of the direc­
tive is

label command argument

LIST [expression]

where expression is an evaluatable expression resulting in
an integer that suppresses or resumes assembly listing. If
the value of the expression is nonzero, a normal assembly
listing wi II be produced. If the expression is zero when
LIST is encountered, all listing following the directive wi II
be suppressed until a subsequent LIST directs otherwise. If
expression is omitted, zero is assumed.

Used inside a procedure, the LIST directive wi II not suppress
printing of the procedure reference (call) line. However,
LIST wi II suppress pri nting of the object code assoc iated with
the call line if the LIST directive was encountered prior to
any code generation within the procedure.

Until a LIST directive appears within a SOIJrce program, the
assembler assumes a defau It convention of LIST 1, allowing
a normal assembly listing.

PCC Print Control Cards

The PCC directive controls the assembly listing of direc­
tives PAGE, SPACE, TITLE, LIST, PSR, PSYS, and any
subsequent PCC. The form of the di recti ve is

label command argument

PCC [expression]

where expression is an evaluatable expression resulting
in an integer that suppresses or enables assembly listing of
the aforementioned directives. If the value of the expres­
sion is nonzero when PCC is encountered, all subsequent
listing control directives mentioned above wi II be listed.
This will continue in effect until canceled by a subsequent
PCC directive in which the expression is zero. If expres­
sion is omitted, zero is assumed.

Unti I a PCC directive appears within a source program, the
assembler assumes a defau It condition of pec 1, allowing
assembly listing of the list control directives.

PSR Print Skipped Records

The PSR directive controls printing of records ski pped under
control of the GOTO, DO, DOl, or WHILE directives,
as well as any records skipped due to unused command or
procedure definitions. The form of the directive is

argument

PSR [expression] rl~~~------- com~~:~_
______ -L _____________ -L _______________________ ~

where expression is an evaluatable expression resulting in
an integer that suppresses or enab~es assembly listing of
skipped records. If rhe value of the expression is non­
zero, records skipped will be listed; if the expression is
zero when PSR is encountered, records ski pped (not as­
sembled), subsequent to the PSR directive, wi II not be
listed until another PSR directs ot·herwise. If expression
is omitted, zero is assumed.

Until a PSR directive appears within a source program, the
assembler assumes a default condition of PSR 1, allowing
assembly listing of skipped records.

PSVS Print System

The PSYS directive controls the assembly listing of system
files. The form of the directive is

where expression is em evaluatable expression resulting in
an integer that suppr'!sses or enables the assembly listing of
fi les called by the SYSTEM directive. If the value of the
expression is nonzero when PSYS is encountered, the sym­
bolic records obtained during all subsequent SYSTEM calls
wi II be printed on the assembly listing. This wi" continue
in effect unti I canceled by a subs€'quent PSYS directive
in whi ch the expression is zero. If expression is omitted,
zero is assumed.

Unti I a PSYS directive appears wi,thin a source program,
the assembler assumes a defau It conditi on of PSYS 0, sup­
pressing assembly lisf'ing of system files.

DISP Display Values

The DISP directive produces a spec:ial display of the values
specified in its argument list, one per line on the assembly
listing. The form of the directive is

where list is any list of constants, !;ymbols, or expressions
that are to be displayed at that point in the assembly listing.
The values of the argument list wi II be displayed one per
line, beginning at the DISP directive line.

If a DISP directive is used inside a procedure, it will not
display values until the procedure is called on a procedure
reference line.

The value or values in list appear on the assembly listing in
a special format that indicates the type of value(s) being
displayed. This format is explained under "Assembly Listing II
in Chapter 6.

ERROR Produce Error Message

The ERROR directive conditiona IIy generates an error mes­
sage in the assembly listing and communicates the severity
level to the assembler. This directive has the form

command argument
.. - _.-------

ERROR [, level [, C]] 'csl'[,···, 'csn ']
_.-

where

level is an integer-valued expression wllh a value

c

from X '0' through X 'F', denoting error severity
level. If level is omitted, zero is assumed. If
level is preceded by an asterisk, Meta-Symbol
omits the error line prefix (see Chapter 6), and the
message starts in column 1 of the assembly listing.
In addition, a level of zero preceded by an as­
terisk does not enter the line number in the error
line summary, providing a method for inserting
true comments into the assembly listing.

is an integer-valued expression whose value de­
termines whether the error message is to be
produced:

If c is true (c > 0), the error message is
produced.

If c is false (c ~ 0), the error message is
produced.

If cis omitted, the error message is uncondi­
tiona��y produced.

c may be a forward reference.

'csi' are expressions which evalute to character
string constants. The total number of charac­
ters must not exceed 115.

Each time an error message is generated, the assembler com­
pares the severity level with that from the preceding ERROR
message and retains the higher value. After assembling an
assemble-and-execute job, Meta-Symbol communicates to the
Monitor the highest error severity level encountered. This
enables the programmer to control the aborting of assemble­
and-execute jobs via control messages to the Monitor.

The primary purpose of ERROR is to provide the procedure
writer with the capabi lity of flagging possible errors in the
use of the procedure.

Listing Control 57

Example 80. ERROR Directive

ERROR, 3, ALPHA >5
'ARGUMENT OUT OF RANGE'

When Meta -Symbol encounters th i s di recti ve, it wi"
determine whether the value of ALPHA is greater than 5.
If it is, the resu It is true (va I ue of 1); therefore, the
severity level (3) is compared with current highest se­
verity 'Ievel, the higher of the two is saved, and the
message "ARGUMENT OUT OF RANGE" is generated
for the assembly listing.

Example 81. ERROR Directive

ERROR, 1, ABSVAL(AF(l)& 1
'ODD ARGUMENT FOR LD'

LD ALPHA

ALPHA EQU 5

58 Listing Control

Assume the ERROR directive is a statement within the
definition of the command procedure LD and that the
reference to that procedure contains a forward ref­
erence. When the procedure reference is encoun­
tered, the procedure is assembled into the object
program. Since AF(l) refers to ALPHA, which is
a forward reference at the time the ERROR direc­
tive is assembled during the first pass, the result
of the logical AND operation is zero, and the
message is not output. During the second pass of
the assembly, A LPHA is no longer a forward ref­
erence but has the value 5. Therefore, when the
ERROR directive is encountered the second time,
the result of the logical AND operation is 1, the
severity level (1) is compared with the previously
encountered highest leve I, the higher severity level
is retained, and the error message "ODD ARGU­
MENT FOR LD" is produced.

PAGE Begin a New Page

The PAGE directive causes the assembly listing to be ad­
vanced to a new page. This directive has the form

I 'abe' I ,ommond

PAGE

I o","men'

5. PROCEDURES AND LISTS

PROCEDURES
Procedures are bodies of code analogous to subroutines,
except that they are processed at as.sembly time rather than
at execution time. Thus, they primari Iy affect the assem­
bly of the program rather than its execution.

Using procedures, a programmer can cause Meta-Symbol to
generate different sequences of code as determined by con­
ditions existing at assembly time. For example, a proce­
dure can be written to produce a specified number of ADD
instructions for one condition and to produce a program
loop for a different condition. (See Example 116 under
"Sample Procedures II .)

There are two types of procedures: command procedures
and function procedures. In genero I, either type can per­
form any function that the main program can perform; i. e.,
any machine instruction or assembler directive can be used
within a procedure. A command procedure is referenced by
its name appearing as the first element of the command
field. A function procedure is referenced by an attempt
to evaluate its name. The major difference in the two
procedure types is that a function procedure returns a va lue
to the procedure reference line (thE! line that calls the
procedure); a command procedure does not.

Procedures a Ilow a program written in the assembly lan­
gauge of one computer (e.g., Xerox 9300) to be assembled
and executed on another computer (e. g., Xerox Sigma 7).
If a procedure is wriHen for each 9300 machine instruction,
Meta-Symbol treats ("ach instruction as a procedure ref­
erence, and calls in the associated procedure, thus gen­
erating Sigma 7 machine language code .

Much of the creative power of Mett:l-Symbol comes from
four directives: GEN, DO, WHILE, and PROC. The
GEN, DO, and WHILE directives were described in
Chapter 4; how they are used in procedures is illustrated
in the various examples in this chapter. The directives
that identify procedures, those thaI designate the beginning
and end of each procedure, and those that control the dis­
play of procedure execution are discussed in this chapter.
The intrinsic functions commonly u!;ed in writing procedures
are also discussed.

In th is chapter, the descriptions of various directives make
frequent mention of "Iists". Lists me most useful in hand­
ling procedures. Value lists were described in Chapter 2;
procedure reference I ists are discussed in detai I later in
this chapter after procedures have been introduced.

PROCEDURE FORMAT

A procedure consists of two parts; the procedure identifica­
tion (names) and the procedure definition. The procedure
names must precede the procedure definition, and the defi­
nition in turn must precede all references to it. For this

reason, procedure definitions are normally placed at the
beginning of the source program; this ensures that the defi­
nitions will precede all references to them.

During an assembly, Meta-Symbol reads the procedure
definition and stores the encoded symbolic lines of the pro­
cedure in core memory. When Meta-Symbol later encoun­
ters the procedure reference I ine, it locates the procedure
it has stored and assemb I es those lines.

CNAME/FNAME Procedure Name

A procedure may be invoked by a command or function ref­
erence. The names that wi II be used to invoke a command
procedure must first be designated by the (NAME directive,
which has the form

label command argument
1------------------

labell[' ... ,Iabel n] CNAME [, n 1 [I istJ

where

label i are the symbols by wh ich the next procedure
to be encountered is identified. Symbols declared
to be LOCAL may not be used as labels for a
CNAME directive.

n is an evaluatable, integer-valued expression that
specifies the number of bytes to be allocated for a
reference to this command procedure during Pass 1
of assembly. Ifn is present, any labels on the
command reference line will be automatically de­
fined as the current value of the execution location
counter ($). In addition, if n is equal to 4, an
impl icit BOUND 4 wi II precede assembly of the
procedure definition.

list is an optional list of values that are evaluated
and associated with the label(s). The use of a
value list is explained later in this chapter under
"Multiple Name Procedures".

The names that wi II be used to invoke a function procedure
must first be designated by the directive FNAME, which has
the form

label command orgumer,t
"-

lobel 1 [, ... ,Iabel
n

] FNAME [list]

where label and list have the same meaning as for CNAME.

A procedure may be both a command procedure and a func­
tion procedure. It may have a single name declared with
both CNAME and FNAME directives, or it may have differ­
ent names, one for command references and another for
function references. There is no I imit to the number of
CNAME and/or FNAME directives that may be given for a
single procedure.

Procedures and Lists 59

The applicable C NAME/F NAME directives must precede the
procedure definition; however, the definition need not fol­
low immediately after the name lines. C NAME and FNAME
directives are associated with the first procedure definition
encountered following these directives. This means that
one cannot put a" CNAME/FNAME directives before all
procedure definitions. If such a case occurred, all the
"labels" would be associated with the first procedure
defini tion, and an error notification wou Id be produced
each time another procedure definition was encountered.

The intended purpose of procedures is to allow the program­
mer to redefine assembly language instructions belonging to
another system so they can be assembled by Meta-Symbol
for operation on a Sigma computer, and also, in effect, to
create new instructions, directives, and functions. How­
ever, using procedures to redefine existing Meta-Symbol
directives is a questionable practice frequently leading to
assembly errors • Consequently, when a Meta-Symbol
directive name (GEN, ORG, etc.) is encountered in the
label field of a CNAME directive, Meta-Symbol will not
define a new procedure for the directive (except as noted
below), and wi II produce the following message on the
assembly listing:

DBL DEF DIR

A directive can be redefined, however, if its name is first
opened with an OPEN directive. OPEN was explained in
Chapter 4 along with appropriate cautions as to its use.

PROC Beg in Procedure Definition

The PROC directive indicates the beginning of a procedure
definition and has the form

IcommO'd
PROC

I o'gume,'

The first line encountered following the PROC directive
begins the procedure body. Nonlocal symbols are not
unique to a procedure unless they are specifically opened
and closed. A procedure may contain other procedure
definitions; this facilitates invoking a procedure that may
itself define another procedure.

PEND End Procedure Definition

The PEND directive terminates the procedure definition.
It has the form

label command argument
1------------- ------- ------- --------------- -----------------

PEND [list]

The list in the argument field of a PEND directive is mean­
ingful only for procedures referenced as functions, in which
case I.ist represents the resultant value of the function; that
is, the value which will be substituted for the original

60 Procedures

function reference. When a procedure is ca lied as a com­
mand, the argument field of the PEND directive is ignored.
If a procedure that has an empty argument field in its PEND
line is called as a function, the resultant value is null.

Genera Ily, the format of a command procedure appears as

program

name CNAME list identifies the procedure
PROC

procedure definition

PEND

and the format of a function procedure appears as

name

program

FNAME
PROC

list identifies the procedure

procedure definition

PEND list

PROCEDURE REFERENCES

A procedure reference is a statement within a program that
causes Meta-Symbol to assemble the procedure definition.

Command Procedure Reference. The command procedure
reference line consists of a label field, a command field,
an argument field, and optionally a comments field:

label field command field argument field

a list cpr, b list c list
, ~--~-----

l C~ procedure name

LF AF

Within the procedure definition, the contents of the label
field of the procedure reference line are referred to via the
intrinsic function LF; the contents of the command field
are referred to via the intrinsic function CF; and the con­
tents of the argument field are referred to via the intrinsic
function AF.

The programmer must specify in the procedure reference
statement the arguments required by the procedure defin ition
and the order in wh i ch the arguments are processed. For
example, a command procedure could be written to move
the contents of one area to another area of core storage.
Assume that the procedure is called MOVE, and that the
procedure reference line must specify in the command field
which register the procedure may use. In the argument field
it must specify the word address of the beginning of the
current area, the word address of the beginning of the area

into which the information is to be moved, and the number
of words to be moved. Such a procE!dure reference line
could be written:

ANY MOVE,2 HERE, THERE, 16

Example 82 illustrates a command procedure and reference
line.

Example 82. Command Procedure

The command procedure SUM produces the sum of two
numbers and stores that sum in a !ipecified location.
The procedure reference I ine must consist of:

1 • label field

2. command field

3. argument fi e I d

4. comments fiel)

Use of a label is optional.

The name of the procedure
(SUM) followed by the number
of the rE!gister that the proc­
dure may use.

The word address of the first
addend, followed by the word
address of the second addend,
followed by the word address
of the storage location.

Use of the comments field is
optional.

The procedure definition appears as

SUM CNAME

LF

PROC

LW, CF(2)

AW, CF(2)

STW, CF(2)

PEND

AF(l)

AF(2)

AF(3)

and the procedure reference I ine appears as

NOW SUM,3 EARNINGS, PAY, YRTODATE

The resultant object code is equivalent to

NOW LW,3

AW,3

STW,3

EARNINGS

PAY

YRTODATE

Meta-Symbol defines (assembles procedure code) only for
those procedure names actually referenced in the command
field of command procedure reference lines. Any CNAME
directive containing a procedure name not subsequently
referred to by a command procedure reference line wi II
have a skip flag (*S*) printed beside it on the assembly
listing. If none of the names associated with a procedure
are referenced, the same skip flag will print beside each
line of the procedure as well, indicating that it has been
skipped by the assembler.

The use of a I abe I on a procedure reference line is opt i ona I .
When a label is present, the procedure definition must
contain the LF function in order for the label to be
defined.

Conversely, if a procedure reference I ine is not labeled,
the LF function within a procedure definition is ignor~d by
the assemb I er.

Function Procedure References. A function procedure
reference is different from a command procedure
reference:

label field command field argument field

a list . b list c lis t, f pr (d lis t) ,e lis t

L::C~dure LF CF

name

With in the procedure defin ition, the contents of the label
field are referred to via the intrinsic function LF, and the
contents of the command field are referred to via the func­
tion CF. The arguments (referred to via the intrinsic func­
tion AF) of a function procedure reference consist of only
those items that are enclosed by a set of parentheses and
that immediately follow the name of the function proce­
dure. Other elements may appear in the argument field
of the function procedure reference line, but they are not
function arguments.

The programmer must specify in the procedure reference
statement what arguments are required and, in what order
they are processed. For example, a function procedure
could be written that will return a value of the number of
bit positions a given value must be shifted to right-justify
it within a 32-bit field. This function procedure is shown
in Example 83.

Procedures 61

Example 83. Function Procedure

The function procedure SHIFT produces a value that
indicates how many bit positions a number must be
shifted in order to right-justify it within a 32-bit
field. The procedure requires one argument: The
rightmost bit positionofthe number to be shifted.

The procedure appears as

SHIFT FNAME

PROC

PEND AF-31

The function reference could appear as

RT SAS, 5 SHIFT(17)

MULTIPLE NAME PROCEDURES

The value list that appears on a particular CNAME or
FNAME I ine can be referred to within the procedure
definition via the intrinsic function NAME. This makes
it possib Ie for a procedure that can be invoked by several
different names to determine which name was actually
used and to modi fy procedure action accordingly. Example
84 illustrates this concept.

Example 84. Multiple Name Procedure

ALPHA
BETA

LF

LF

A

B

CNAME
CNAME
PROC
DO
GEN,32
ELSE
GEN,32
FIN
PEND

ALPHA

BETA

1
a

NAME
100

50

Identifies the procedure

When this procedure :.: called by ALPHA at state­
ment A the intrinsic function NAME is set to the value 1
because 1 is the va lue in the argument field of the
CNAME directive labeled ALPHA. When the proce­
dure is called by BETA, NAME is set to the value O.
The DO directive wi" cause the line

LF GEN,32 100

to be executed if the procedure is called by ALPHA,
or else the line

LF GEN,32 50

to be executed if the procedure is ca lI.ed by BET A.

62 Procedures

S:RELP Release Procedure Definitions

The S:REL P directive causes a" command and function pro­
cedure definitions to be discarded, and the procedure names
are set undefined. This directive has the form

I o'gume,'

The S:RELP is intended for special cases where memory re­
quirements are critical, and procedures are defined and
used in such a way that they may be discarded immediately
following their use. S:RELP may only be used at main pro­
gram level (level 0).

PROCEDURE DISPLAY

When a procedure definition is encountered, Meta-Symbol
produces on the assembly listing the symbolic code and the
line numbers, but it does not output the hexadecimal equiv­
alent of the instructions that comprise the procedure until it
encounters a procedure reference line.

When a procedure reference line is encountered, Meta­
Symbol produces the line number and the symbolic code
for the reference line, and follows this line with the hexa­
decimal equivalent of the results produced by the procedure.
The symbolic code defining the procedure is not shown on
the assembly listing at this time. However, the user can re­
quest Meta-Symbol to display symbolic code of a procedure
when assembling the procedure reference by including the
directives CDISP and/or FDISP in his symbolic program.

CDISP/FDISP Command/Function Procedure Display

The command display directive CDISP has the form

label command argument
r----

CDISP symbol 1 [", "s'/mboln]

where symbol i are the command names by which the proce­
dure will be called.

The function display directive FDISP has the form

label command argument
~-- - ----

FDISP symbol 1 [, ,'" symbol n]

where symboli are the function names by which the proce­
dure w(1I be ca"ed.

Although it is not required, it is preferred practice to
place the CDISP and/or FDISP directives prior to the
name declaration directives CNAME or FNAME pertain­
ing to the procedures that are to be displayed. The
display itself occurs when the procedure reference line
is encountered. The format of a procedur~ display is
shown in Figure 4.

nnnnn

nnnnn

nnnnn

nnnnn

nnnnn

nnnnn
nnnnn
nnnnn

nnnnn

where

II III
1111 I
11111

SUM

CALL

CDISP

CNAME

PROC

PEND

SUM,3

SUM

EARNINGS, PAY, YRTODATE

LEVEL 01 DISPLAY OF COMMAND SUM

hhhhhhhh LF
hhhhhhhh
hhhhhhhh

LW, CF(2)
AW, CF(2)
STW, CF(2)

AF(l)
AF(2)
AF(3)

END LEVEL 01 DISPLAY OF COMMAND SUM

next I ine of program

nnnnn is the line numbE~r.

LEVEL 01 is the level at which the procedure is executed (see "Procedure Levels" in this chapter).

III I I location counter to word level.

hhhhhhhh is the hexadecimal value generated for that line of code.

Figure 4. Command Proc:edure Display Format

Function procedures are displayed in a similar manner.
However, because a function procedure returns a value to
the procedure reference I ine, a function display wi II pre­
cede, instead of follow, the printout of its reference line.
The display will include a statement identifying the level
at which the procedu"e is executed, the fact that it is
a function procedure, and the procedure's name.

PROCEDURE LEVI:LS

As mentioned in connection with CDISPand FDISP, Meta­
Symbol assemblies involve various "levels" of execution.
The main program is arbitrari Iy defined as level o. A pro­
cedure referenced by the main progmm is designated as
level 1; a procedure referenced from a level 1 procedure is
designated as level 2; and so forth. For example, assume
that command procedure C is to be displayed and that the
main program references procedure A which references pro­
cedure B wh i ch references procedure C. Command proce­
dure C would be displayed at level :3-

For each assemb Iy a maximum of 32 leve Is is allowed, wh ich
are numbered 0 through 31 for displo,y purposes.

INTRINSIC FUNCTIIDNS

Intrinsic functions are functions that are built into the as­
sembler. The intrinsic functions BA, HA, WA, DA, c.on­
cerned with address resolution, were discussed in Chapter 3.
The functionsCF,AF, andAFA were introduced in Chapter 4;
therefore, only the extended features that are applicable to

procedures are described here. The Meta-Symbol addressing
function ABSVAL was discussed in Chapter 3.

The intrinsic functions discussed in this section include

LF
CF
AF

AFA
NAME
NUM

SCOR
TCOR
CS

S:NUMC
S:UT
S:PT

S:UFV
S:IFR

Intrinsic functions may appear in any field of any instruction
or assembler statement with the following exception: they
must not be used in the argument field of the DEF, REF, SREF,
CDISP, and FDISP directives nor in the label field of the
DSECT directive.

LF Label Field

This function refers to the label field list in a COM direc­
tive or a procedure reference line. Its format is

LF(subscript list)

where LF specifies the label field, and subscript list
specifies which element in that field is being referenced.
If subscript list is omitted, or is zero the function references
the entire label field.

Each LF reference causes Meta-Symbol to process the desig­
nated argument. That is, if the designated argument is an
expression, it wi II be evaluated when it is used and at each
point it is used, not at the time of call.

Procedures 63

Example 85. LF Function

CF

A SET

TEST TOTAL, SUM<5

LF

(7*XYZ/SUM+57);
, (5*XYZ/SUM+57)

Assume that line A is a statement within a procedure
definition and that line TEST is a procedure reference
line. The SET directive defines the symbol A as the
value of the label field of the reference line. In this
example, therefore, the result would be the same as

A SET TEST

Command Field

This function refers to the command field list in a COM
directive or a procedure reference line. Its format is

CF(subscript list)

where CF specifies the command field, and subscript list
specifies which element in that field is being referenced.
If subscript list is omitted, or is zero the function references
the entire command field.

As for LF, each CF reference causes Meta-Symbol to pro­
cess the designated argument. That is, if the designated
argument is an expression, it wi II be eva luated when it is
used and at each point it is used, not at the time of the call.

Example 86. CF Function

CFVALUE SET CF

ALPHA STORE, 3, Z*y HOLD,4*(A/C+8)

Assume that line CFVALUE is withina proceduredefini­
tion and that' ine ALPHA is a reference to that procedure.
When theCFVALUE: lirle is executed, Meta-Symbol will
evaluateall expressions in the command field of the ref­
erence lineand equate CFVALUE to the resultant value.

AF Argument Field

This function refers to the argument field list in a COM
directive or a procedure reference line. Its format is

AF(subscript list)

where AF specifies the argument field, and subscript list
specifi es whi ch element in that field is being referenced.
If subscript list is omitted, or is zero, the function references
the entire command field.

64 Procedures

Example 87. AF Function

AA SET AF

xx AOP 50, BETA/SUM

Assume that statement AA is within a procedure defini­
tion and that the XX statement is the procedure refer­
ence line. In the argument field of the procedure
reference line is a list of two elements. The first
element consists of the value 50 and the second ele­
ment consists of the va lue BETA/SUM. In state­
ment AA the construct AF refers to the entire argu­
ment field list because no specific element is
designated.

AFA Argument Field Asterisk

The AFA function determines whether the specified argu­
ment in a COM directive or procedure reference I ine is
preceded by an asterisk. The format for this function is

AFA(subscript list)

where AFA identifies the function, and subscript list speci­
fies which element in the argument field list is to be tested.
If subscript I ist is om itted, AFA(1) is assumed.

In the case where an argument may be passed down several
procedure levels, any occurrence of the argument with an
asterisk prefix wi II satisfy the ex istence of the prefix.

Example 88. AFA Function

XYZ

BOUND
GEN,8

STORE,5

4
AFA(l)

*ADDR,3

Assume that the BOUND and GEN directives are within
a procedure definition and that the XYZ statement is
a procedure reference line. The GEN directive wi II
generate the value 1 if the first element in the argu­
ment field of the procedure reference line (i. e., AD DR)
is preceded by an asterisk. If an asterisk is not present,
the GEN directive will generate a zero value.

NAME Procedure Name Reference

This function enables the programmer to reference (from
, within the procedure) any element of the CNAME/FNAME

argument lists. Its format is

NAME(subscript list)

where NAME identifies the function, and subscript list
specifies which element in the CNAME/FNAME list is be­
ing referenced. If subscript list is nCot specified, or is zero,
NAME refers to the entire list.

A programmer can write a procedure with several entry
points and assign the procedure sevewl names via CNAME
or FNAME directives. Each name moy be given a unique
value in the argument field of the C~~AME/FNAME direc­
tive. Then, within the procedure definition the programmer
can use the NAME function to determine which entry point
was referenced.

Example 90. NAME Function

B
BGE
BLE

CNAME
CNAME
CNAME
PROC
BOUND

X '68' ,0
X "68', 1
X'68',2

4

Example 89. NAME Function

SINE

COSINE

SINE

COSINE

FNAME

FNAME

GOTO, NAME

2

SINE, COSINE

Assume this represents a function procedure with two
entry points: SINE and COSINE. The NAME function
is set to the value 1 when the procedure is referenced
as SINE and to the value 2 when the procedure is refer­
enced as COSINE. Thus, different code wi II be pro­
duced depending on which name is used to reference
the procedure.

Declares three names for the following
command procedure, each with an
associated list of values.

LF GEN, 1,7,4,3, 17 AFA(l), NAME(l), NAME(2), AF(2), WA(AF(l))
Bound on a fu Ilword boundary.
Generates a 32-bit word with the con­
figuration for a Branch, Branch if Greater
Than or Equal to, or Branch if Less Than
or Equal to instruction.

PEND

NOW BLE RETRY

End of procedure definition.

Procedure reference line. If condition
codes contain the "less than" setting
(as theresultofaprioroperation), branch
to location RETRY.

When the procedure reference line is encountered, Meta-Symbol processes the procedure. In this instance, the label
!'JOW is defined, and Meta-Symb()1 generates a 32-bit word as follows:

Bit Positions

o

1-7

8-11

12-14

15-31

Contents

The value 0 because no asterisk precedes the first element in the argument field of the procedure
reference line.

The hexadecimal value 68.

The hexadecimal value 2.

The hexadecimal value 0 because there is no second argument field element (i .e., no indexing
specified) •

The first argument field element in the procedure reference line, evaluated as a word address.

Procedures 65

HUM Determine Number of Elements

The NUM function yields the number of elements in the
designated list. Its format is

NUM(list name)

where NUM identifies the function, and I ist name identifies
the I ist whose elements are to be counted. List name en­
closed by parentheses is required.

The NUM function may also be used to determine the num­
ber of subfields in the label, command, and argument fields
of a procedure reference I ine (as in NUM(LF), NUM(CF),
and NUM(AF)).

Example 91. NUM Function

A SET 8, 16, 19,28

DO NUM(A)

List A is composed of the elements 8, 16, 19, and 28.
Because there are four elements in I ist A, the count
for the DO-loop wi II be 4.

SCOR Symbo I Correspondence

This function enables the programmer to test for the pres­
ence of a spec ified symbol on a procedure reference line.

The format of this function is

SCOR (symbol, test l' test 2' .•. , test n)

where SCOR identifies the function, symbol is the symbol
to be tested, and the test. are the items with which symbol
~s to be compared. I

Symbol can be an explicit symbol name or one of the in­
trinsic functions designating an element on the procedure
reference line. The testi can likewise be explicit symbol
names or intrinsic functions.

SCOR compares the symbol with each of the test items. The
result of the comparison is the value k, where the kth item
is identical to symbol. The result of the comparison is zero
if there is no correspondence.

66 Procedures

Example 92. SCOR Function

J DO SCOR(AF(3), MIN, LIMIT, MAX)

A TALLY,2,3 HOLD, TEMP, LIMIT

Assume line J is within a procedure definition and that
I ine A is a reference I ine to that procedure. When
line J is processed, Meta-Symbol compares the third
element in the argument field of the reference line
(LIMIT) with the symbols MIN, LIMIT, and MAX.
The resultant value is 2 since LIMIT is the second
symbol I isted for the SCOR function, and the DO­
loop wi II be executed twice.

SCOR has many possible applications in procedures. To
fully understand its use it is important to note that Meta­
Symbol first substitutes designated items from the procedure
reference line for any intrinsic functions used as SCaR
arguments, and then evaluates the SCOR function. This
is made clearer by the following example:

Example 93. SCOR Function

SUM

X

Y

z

K

CNAME
PROC

SET

SET

SET

PEND

SUM

SCOR(C, AF(2))

SCOR(AF(l), Af(2))

SCOR(AF(2))

A, (B, C, A, D)

Lines X, Y, and Z are within the definition of proce­
dure SUM, and line K is a reference to that procedure.
When the procedure is called and line X IS subse­
quently processed, its argument field wi II have the
internal configuration

SCOR(C, B, C, A, D)

SCOR will therefore produce the value 2, since C cor­
responds to the second test item, and X wi II be set to
2. When line Y is processed, its argument field will
have the internal configuration

SCOR(A, B, C, A, D)

SCOR will produce the value 3, since A corresponds
to the third test item, and Y will be set to 3. When
line Z is processed, its argument field wi II have the
interna I configuration

SCOR(B, C, A, D)

SCOR will produce the value zero, since B does not
correspond to any of the test items, and Z will be
set to zero.

TeOR Type correspondence

The TCOR function compares the v.:due type of a specified
item with the value types of a given list of test items.
The format of th is function is

TCOR(i tem, test l' test 2' ..• , test n)

where TCOR identifies the function, item designates wh ich
item is to be compared, and the te!iti are elements whose
value types are to be compared with that of the designated
item. Item may be any symbol, constant, evaluatable
expression, or any element on a procedure reference line.
The testi may be the same kind of edements as item or any
of the following value type intrinsic symbols:

S:RAD

S: LIST

S:AAD

S:EXT

S:FR

S:LFR

S:UND
t

S:SUM

S:INT

S:DPI

S:C

Relocatable address

list

Absolute address

Externa I reference

Forward reference to global symbol

Forward reference to local symbol

Undefined global symbol

Expression involving relocatable ad­
dresses, externa Is, or forward references

Integer constclnt

Double precision integer constant

Character corlstant

tUse extreme care with S:UND, as its misuse makes the
program sensi tive to the two different assembly passes of
Meta-Symbol. Pass 1 of the assembler cannot detect truly
undefined symbols; it must assume that an undefined symbol
is a forward reference (S:FR). Pass 2 of the assembler de­
tects tru Iy undefined global symbols; thus the val~e of
TCOR(UNDEF,S:UND) is zero on Pass 1 and one on Pass 2
ifUNDEF is truly undefined.

Symbol Type

S:D Dec ima I constant

S:FX Fixed decimal constant

S:FS Float i ng short constant

S:FL Floating long constant

TCOR is most commonly used to determine the value type of
an item by comparing it with one or more of the above list
of value type intrinsic symbols. If the value type of the
item corresponds to the type of one of the given symbols,
TCOR returns the value k, where the kth symbol's type is
the same as that of the item. If there is no correspondence,
a zero value is produced by the function.

It is important to note, however, that TCOR is not restricted
to using only the value type intrinsic symbolsas testi' Any
symbol, constant, or evaluatable expressions may be given,
and TCOR will return a value indicating which one corre­
sponds in type to II item" .

Example 94. TCOR Function

A CNAME
PROC

K DO
L DATA,8

ELSE
M DATA

FIN
PEND

N A
P A

TCOR(AF, S:FL, S:DPI»O
AF

AF

FL'5 '
16

Lines K, L, and M are within the definition of proce­
dure A, and lines Nand P are references to the proce­
dure. When line N is processed, Meta-Symbol c,)mpares
its argument field (FL '5 ') with the list of value type iil­
trinsic symbols on line K. The argument FL'5' is a
floating long constant and corresponds to intrinsic svm­
bol S:FL. The TCOR function therefore produces i he
value 1 (since the correspondence is to the first test
item on line K). This value is then compared against"
zero, and since the result of this logical operation (i>O)
• II II I' L" d L' L d 64 b" t IS true, Ine IS processe. I ne pro uces a - It
(8-byte) data wordcontainingthevalue5asa floating­
point long constant.

Meta-Symbol performs the same kind of operation when
line P is processed. But since 16 is a decimal integer
constant" corresponding to neither S:FL nor S:DPI, TeOR
returnsa value of zero(the result of the logical opera­
tion 0 > 0 is "false", and lineM is processed insteadof
line L. Line M produces a 32-bit data word contain:ng
the value 16 as a decimal integer constant.

Procedurf's 67

Example 95. TCOR Function

A

B

C

D

CNAME
PROC

SET

PEND

A

A

TCOR(AF(l), $,5, 'A ')

17, 'PDQ'

FL'75'

Line B is within the definition of procedure A, and
lines C and D are references to the procedure. When
line C is processed, its first argument field is com­
pared against the list of test items on lineB. Since 17
does correspond in type to the second test item (both
are decimal integer constants), TCOR produces the
value 2, and B is SET to 2. When line D is processed,
its first argument field does not correspond to any of
the test items on line B; B is therefore SET to zero.

Example 96. S:UFV Function

S:UFV Use Forward Va lue

S:IFR t Inhibit Forward Reject

The S:UFV intrinsic function is used to alter the manner in
whi ch the assembler processes globa I forward references.
Its format is

S:UFV(item)

where

S:UFV identifies the function.

item represents any valid Meta-Symbol construct
. (symbol, intrinsic function, expression, list, etc.).

t S:IFR is simply an alternate name for the S:UFV function;
there is no difference in the action of the two. S:UFV is
used in the examples because it seems more descriptive of
the actual use of the function.

At a point prior to the definition of SWITCH, it is desired to generate a data word in one of three formats, depending on
the value of SWITCH. Since only one word will be generated in any case, the correct format should be selected during
Pass 2. The S:UFV function makes th is simple to accompl ish.

START CSECT

GOTO, S:UFV(SWITCH) X, Y
GEN, 3, 10,19 SWITCH, X'13', BA($)-START Selected on Pass 1
GOTO Z

x BOUND 1
GEN,3, 11, 18 SWITCH, X'7', HA($)-START
GOTO Z

y BOUND 1
GEN,3, 12, 17 SWITCH, X'3', WA($)-START Selected (and generated) on Pass 2

Z BOUND 1

SWITCH EQU 2

Example 97. S:UFV and TCOR Functions

Normally, the TCOR function will match any global forward reference with S:FR. Use of S:UFV allows the actual type
to be found during Pass 2 assembly.

CSECT

DATA TCOR (X, S:FR, S:RAD) Generates DATAl

DATA TCOR(S:UFV(X), S:FR, S:RAD) Generates DATA 2

X EQU $

68 Procedures

Meta-Symbol is a two-pass assembler. In order to
maintain identical address assignments and to calculate
the same values on both assembly passes, certain restric­
tions are placed on the use of forward references to
symbols. For instance, directives that may directly or
indirectly affect address assignment (RES, BOUND, ORG,
lOC, DO, y/HI LE, etc.) may not contain a forward
reference in their argument field. If a forward refer­
ence is used wi th such directives, the value zero is used
on both passes, and a diagnostic is given on Pass 2 of
I'he assembly.

The "normal" processing of forwmd references (as in the
argument fie Id of a DATA or GE N directive) is for Pass 1
to ignore forward references and eventually define all
globul symbols, and for Pass 2 to then use the value as­
signed to the symbol during Pass 1. In certain cases, this
behavior may be desired even in directives where forward
references are normally illegal. The S:UFV function is
used to ach ieve th is.

During Pass 1 of the assembly, S:UFV returns an integer
z.ero if its argument is a forward reference; otherwise,
its value is the argument itself. During Pass 2 of the
assembly, S:UFV returns the va lue assigned by Pass 1
and inhibits the diagnostic that w()uld occur if the global
forward reference was used in a normally illegal context
(see Example 96).

The S:UFV function may be used in conjunction with the
TCOR intrinsic function in order to determine the type of
a global forward reference (see Example 97).

S:KEYS Keyword Scan

This intrinsic function, which mClY be used only within
procedures, permits one to easily !iCan a procedure refer­
ence argument field for the preSEmce of specified key­
words. This scan can return information specifying how
many and which keywords are present as well as where in
'he argument field each keyword clppears. The va lue re-
urned by S:KEYS is a linear list of two or more elements.

The first element is a keyword "hil'" count. The second
element is a parameter/flag presence word that indicates
which keywords (up to a maximum of 32) were hit. The re­
main ing elements are indexes that specify where in the ref­
erence line argument field the various parameter keywords
occurred. The form of the function is:

where

mode is an expression that evaluates to
o ~ integer~ 7.

(mode& 1»0 specifies that AF(l) of the PROC refer-
ence argument field should not be scanned.

(mode&2»0 specifies use of NUM(AF}+l as a de-
fault index for parameter misses.

(mode&4}>0 specifies suppressi on of "unrecogn iz.ed
key" error reporting.

[* ik] is an explicit integer (O~ ik) which specifies
that the ikth bit of the parameter/flag presence
word is to be associated with the keyword Kk or
the keywords (Kk 1, Kk2, ... , Kkm)' If i k > 31,
subsequent keywords wi II not affect the parameter/
flag presence word.

If ik is preceded by an asterisk, then any sub­
sequent keyword occurring prior to [*] ik+ 1 is
considered a parameter, in which case a hit on
the first or any subsequent keyword causes the
specified bit in the parameter/flag presence word
to be turned on and causes the concatenation to
the S:KEYS list of an element that specifies which
subfield in the reference line contained the spec­
ified word.

If ik is not preceded by an asterisk, then any
subsequent keyword occurring prior to [*] ik+ 1 is
considered a flag, in which case only the specified
bit of the parameter/flag presence word and hit
count are affected. If more than one keyword is
specified for a given presence bit, then a hit on
the first keyword turns the presence bit on wh i Ie a
hit on any other keyword has no effect.

[*]Kk and [*] (Kk 1, ••. , Kk3) are any legal sym-
bols. These are the keywords associated with the
specified bit position. A leading asterisk indi­
cates that a hit is required, provided that Kk
is a parameter.

ABBREVIATED SYNTAX

If [*] i 1, is om itted, *0 is assumed.

If [*] ik+1 is omitted, [*] ik +1 is assumed.

Procedures 69

Example 9S. S:KEYS Abbreviated Sy'ntax

S:KEYS(l, *0, A,~, (B, C), *17, D, lS, E, 19, F)

may be abbreviated

S:KEYS (1, A, (B, C), *17, D, lS, E, F)

SYNTAX OF THE SCANNED ARGUMENT FIELD

S:KEYS, evaluated within a PROC, causes a scan of the
argument field of the PROC reference. That argument
field is expected to have the form

[AF(l),] (keyword 1 [. I:::tml])~

L[, ... , (keywordn [. I:::tml])]
where

AF(l) is not scanned if (mode&l»O; hence its
structure is not significant to S:KEYS.

keyword is a keyword that wi II be looked at by
S:KEYS and compared with the Kn and Knm in the
S:KEYS argument field.

item/list is any item or list of items that are to be
associated with a given keyword. When present,
the keyword is normally used as a parameter
rather than a flag. The term "item" is used be­
cause there are no restrictions, other than syn­
tactic, on what an item may be.

Notice that S:KEYS interrogates only the first subelement
of each subfield of the scanned argument field.

If a given argument of the scanned argument field contains
a keyword without an associated item (or list), then as far
as S:KEYS is concerned, the parentheses around that argu­
ment field are redundant.

That is,

(KEY1, 25), (KEY2), (KEY3, 17,42)

could be written

(K EY 1,25), KEY2, (K EY3, 17,42)

USAGE EXAM PLES

Example 99. S:KEYS Usage Example

Assume a PROC reference line as follows:

HERE PROC$REF (D, 9), (A)

Equivalent notation is

HERE PROC$REF (D,9),A

70 Procedures

Assume the PROC PROC$REF contains the line

then

P SET S:KEYS(O, 26, A,27, Bf 2S, C, 29, D, 30,
E,31,F)

mode = 0

all keywords are flags

hits occur on A and D

P will be defined as the list of two elements
formed by S:KEYS

P(l) =00000002 (hit count)

P(2) = 00000024 (in binary 0000 ..• 0010 0100) ! L29
bit 26

Equiva lent notation is

P SET S:KEYS(O, 26, A, B, C, D, E, F)

Example 100. S:KEYS Usage Example

Suppose the PROC from Example 99 contained th~ line

Q SET S:KEYS(O, *26, A, *27, B, *2S,C,
*29, D, *30, E, *31, F)

then

mode = 0

all keywords are parameters

hits occur on A and D

Q wi II be defined as the I ist of four elements

Q(l) = 00000002}
Q(2) = 00000024
Q(3) = 00000002
Q(4) = 00000001

same as P(l) and P(2) above

parameter A is in AF(2)
parameter D is in AF(l)

1

Note the power gained by having this list. Without
knowing where in the scanned argument field the key­
word D is written, references to the keyword asso­
ciated value, 9, can be parameterized as AF(Q(4), 2).

Equivalent notation is

Q SET S:KEYS(O, *26, A, B, C, D, E, F)

Example 101. S:KEYS Usage Exclmple

Suppose the PROC from Example 99 contained the line

R SET S:KEYS(2, *26, A, B, C, D, E, F)

then

mode = 2 (use default indexes; for parameter misses)

all keywords are parameters

hits occur on A and D

misses occur on B, C, E, and f

~ wi" be defined as the I ist of eight elements

R(1) =- 00000002}
R(2) '" 00000024
R(3) =- 00000002
R(4) ~. 00000003

same as P and Q above

A - hit in AF(2)
B - miss, point at null argument
whi ch eva luates to 0

R(5) :cc 00000003
R(6) =:c 00000001
R(7) = 00000003
R(8) ::: 00000003

C - miss
D - hit in AF(l)
E - miss
F - miss

An advantage of default parameter indexes is that
they permit a less complex porameterization since,
for example, R(5) may always be associated with
the parameter C, regardless of how many and which
parameters are hit. If NUM(AF(R(5))»0 (i.e., not
null), then C is present. It is also true, since C is
a parameter, that bit 28 of R(2) wi" be on if and
only if C is present. ______________________________________ -J

Example 102. S:KEYS Usage Example

Assume the function PROC reference line

NOW SET SUMTHIt-J((H, (4,3)), K,
(L, F:THERE), (M, 4), N)

where the function PROC SUMTHIN conf'ains the line

Z SET S:KEY5(0, *17, L, H, 4, N, *(A, K),
*8, (S, D), M)

then

mode = 0

the keywords L, H, 5, D, and M are parameters

the keywords N, A, and K are flags

hits occur on L, H, N, K and M

Z wi II be defined as the I ist of five elements

Z(l) =:: 00000005 (hit count)
Z(2) == 08406000 (in bi nary 0000

0000 0110 ..•)

Jit 18
(H)

bit 17
(L)

1000 0100

bit 5
(K)

bit 4
(N)

t
bit 9
(M)

Note that bit 5 is off. K is not the first flag
listed for this bit".

Z(3) =-c 00000003 the parameter L is in AF(3)
Z(4) c 00000001 the parameter H is in AF(l)
Z(5) = 00000004 the parameter M is in AF(4)

Note that the order in which the indexes appear in
list P is not the bit-number order of P(2), but instead
the order of left-to-right occurrence of th parameter
keywords in the S:KEYS argument field.

Example 103. S:KEYS Usage Example

Suppose the PROC SUMTHIN from Example 102 con­
tained the line

then

T SET S:KEYS(l, *17, L, H,4, N, *(A, K),
*8, (S, D), M)

mode = 1 (AF(1) should not be scanned)

the keywords L, H, S, D, and M are parameters

the keywords N, A, and K are flags

hits occur on L, N, K, and M but not on H

T wi II be defined as the list of four elements.

T(l) = 00000004 hit count
T(2) = 08404000 (In binary 0000

0100 ...)
t
bit 17
(L)

1000 0100 0000

• bit 5
(K)

bit 4
(N)

bit 9
(M)

T(3) := 00000003 the parameter L is in AF(3)
T(4) = 00000004 the parameter M is in AF(4)

Procedures 71

Example 104. S:KEYS Usage Example

Suppose the PROC SUMTHIN from Example 102 con­
tained the line

then

Y SET S:KEYS(3, *17, L, H,4, N, *(A, K),
*8, (S, D), M)

mode 3 (AF(l) shouldnotbescanned;and default
indexes are to be used for parameter misses.

the keywords L, H, 5, D, and M are parameters

the keywords N, A, and K are flags

hits occur on L, N, K, and M

misses occur on H, A, S, and D

Y will be defined as the list of six elements

Y (1) =c 00000004
Y(2) ··08404000
Y(3) ···00000003
Y (4) c 00000006
Y(5) c- 00000006
Y (6) c= 00000004

same as T (1) and T (2) above

L - hit in AF(3)
H - miss, pointatAF(6), anull
S or D - miss
M - hit in AF(3)

Example 105. S:KEYS Usage Example

Assume the PROC Definition

A$PROC

P

CNAME
PROC
SET
DATA

PEND

S:KEYS(2, W, X, Y, Z)
AF(P(3), 2), AF(P(4), 2),
AF(P(5), 2), AF(P(6), 2)

Now assume the PROC reference line

A$PROC (Z, 7), (X, -1)

P wi II be defined, for this reference of A$PROC, as
the list

P (1) = 00000002
P(2) = 50000000
P(3) = 00000003
P (4) c-c 00000002
P(5) = 00000003
P(6) 00000001

This reference to A$PROC wi II cause four words of
data to be generated as follows:

00000000
FFFFFFFF
00000000
00000007

72 Procedures

(AF(3,2) is null)
(AF(2,2) is -1)
(AF(3,2) is null)
(AF(1,2) is 7)

CS Control Section

Th is function returns the control section number of any item
whose value is a relocatable address. The format of this
function is

CS(item)

where CS specifies control section, and item is the element
whose control section is to be determined. Control section,
a value ranging from 1 to the total number of control sec­
tions, was discussed in the previous chapter under "Program
Section Directives", and is the same as that appearing on
the assembly listing for SET and EQU directives. If the
value of the item given is not a relocatable address, a zero
va I ue is returned.

Example 106. CS Function

A

B

C

CSECT
DATA
CSECT
DATA

DATA

7

14

CS(A), C5(B), CS(-85)

When line C is processed, the first CS function returns
a value of 1 because item A is a relocatable address
within a control section 1; Meta-Symbol generates a
32-bit data word containing the value 1. The next
CS function is evaluated and returns a valueof2 be­
cause item B is a relocatable address within control
section 2; Meta-Symbol generates a 32-bit data word
containing the value 2. The last CS function is eval­
uated and returns a value of zero because item -85
is not a relocatable address; Meta-Symbol generates
a 32-bit data word containing the valu"e zero.

S:NUMC Number of Characters

This function returns an integer count of the total number of
characters found in its evaluated argument. Its format is

S: NUMC(item)

where S:NUMC identifies the function, and item designates
the element or list for which a character count is to be cal­
culated. Any element in the evaluated argument other than
a character string is ignored in calculating the total count.
Note that an element in the list which is itself a list (i .e.,
a sublist) is thus ignored in the count.

If no character constants are found in the evaluated argu­
ment, S:NUMC returns a count of zero. No restriction is
imposed on the magnitude of the final count, although no
one character string may have a character count greater
than 255.

Example 107. S:NUMC Function

If A is defined as

A SET 'THESE', 'ARE', 'STRINGS'

then

Q SET S:NUMC(A)

assigns the value 15 to Q.

However, if A were defined as

A SET 'THESE', ('ARE', 'STRINGS')

then

Q SET S:NUMC(A)

R SET S:NUMC(A(l), A(2))

assigns the value 5 to Q and th€~ value 15 to R.

S:UT Unpack Text

Th is function provides the fac iii ty for manipulating char­
acter strings of arbitrary length. H unpacks a character
string into a sequence of single-choracter elements. Its
format is

S:UT(item)

where S:UT identifies the function, and item designates
the element or list which is to have its text-valued elements
"ulnpacked". Any element in the Oirgument list· other than
a character constant remains unchanged, although its
relative position in the value list may change as a result
of other unpacking operations. Note that an element in
the argument list which is itself a list (i.e., a sublist) is
thus left unchanged.

Care should be taken that the valuE~ list contains no more
than 255 elements as a result of unpacking several text
elements.

Note that, for a given list, Q, the relationship
NUM(S:UT(Q)) = S:NUMC(Q) holds only if Q isa linear
list composed entirely of character constants.

Example 108. S:UT Function

If A is defined as

A SET 'THIS', 'IS', 'A','STRING'

then

Q SET S:UT(A(l), A(2), A(3), 'NEW', A(4))

creates a string Q as if Q had been defined as

Q SET 'T', 'H', 'I', '5', 'I', '5', 'A',;
'N','E', 'W', 'S','T', 'R','I', 'N','G'

Suppose that A had been defined as

A SET ('THIS', 'IS', 'A'), 'STRING'

then

Q SET S:UT(A)

creates a string Q as if Q had been defined as

Q SET ('THIS', 'IS', 'A'),;
'5', 'T','R','I','N','G'

S:PT Pack Text

Th is function transforms any sequence of character constants
and nulls into a single character string. Its format is

5:PT(item)

where S:PT identifies the function, and item designates the
list to be "packed". During packing, any null elements
are discarded. After all nulls are eliminal'ed, any contig­
uous character constants are concatenated to form a single
character string, provided that the resultant string contains
no more than 255 characters. If it does contain more, an
error message is given, and only the leftmost 255 characters
are used. This does not terminate packing; the remaining
characters are simply discarded.

Any element in the argument list other than a character
constant or a null is left unchanged, although its rela­
tive position in the value list may change as a result of
other packing operations. Note that an element in the
list which is itself a list (i .e., a sublist) is thus left
unchanged.

If the argument consists only of a null or a list of nulls, the
value of 5:PT is a single null.

Procedures 73

Example 109. S: PT Function

Assume thot the following definitions are made:

then

A
B
C

SET
SET
SET

'THIS'
, IS A '

'STRING'

Q SET S:PT(A, B, 'BIGGER ',C)

assigns the samevaluetoQasifQhadbeendefined as

Q SET 'THIS IS A BIGGER STRING'

Example 110. Character String Functions

Th is function procedure is called with three arguments.
The first argument is a string that is to be searched for
occurrences of the character in the second argument.
If such a match is found, that character in the string is
replaced by the character in the th ird argument. The
value of the function is the new string after substitu­
tion. The definition is

REPL FNAME Defines function REPL
PROC
LOCAL I, Q

Q SET S:UT(AF(l)) Forms character list

DO NUM(Q)

DOl Q(I)"-=AF(2)

Q(I) SET AF(3) Substitutes on match

FIN

PEND S:PT(Q) Returns new string

Now, if A is defined as

A SET '- THIS IS A STRING -'

a ca lion the function such as

STRl TEXT REPL(A, ' " '. ')

generates the text string

'-. THIS. IS.A. STRING.-I

whi Ie the fo IIowing ca II

STR2 TEXT REPL(REPL(A, I_I, '$'),' I, 1_')

74 Procedure Reference lists

generates the text string

'$-THI S-IS-A-STRING-$,'

Notice that, in the above example, had the function
nesting been reversed, as

STR3 TEXT REPL(REPL(A,", I_I), 1_',1$1)

the resulting text string would have been

'$$THISISA$STRI NG$$'

PROCEDURE REFERENCE LISTS

A I ist composed only of elements that are evaluated when
Meta-Symbol encounters the list in a statement is referred
to as a "value list", as discussed in Chapter 2. A list
having at least one element that cannot be evaluated when
first encountered is called a "procedure reference list".
For example, the directives SET, EQU, GEN, and COM
require value lists, because the elements must be evaluated
before the assembler can process the directives. Command
and function procedure reference lines requ ire procedure
reference lists, because the list elements are not eval­
uated at the time the reference I ine is encountered, but
are acted upon within the procedure.

A I ist used in a procedure reference I ine cannot be
distinguished from a value list merely by appearance.
That is, the list may be either a procedure reference list
or a value I ist depending on its use in a program. If it
appears in a directive such as SET or GE N

R SET 5,A

GEN, 16, 16 5, A

the list is a value list and is evaluated by Meta-Symbol
at the time it is encountered. However, if the list ap­
pears in a command or function procedure reference line,
it is a procedure reference list. For example, if there
were a command procedure name SUM, the reference
I ine could appear as

NOW SUM TABLE, 15*(T ABLE2+;

T ABLE)/4

When Meta-Symbol encounters this line, it will execute
the SUM procedure, and the elements of the named lists
will be evaluated depending on their use within the
procedure. That is, if LF is referenced within the proce­
dure, NOW becomes a defined symbol and is stored in
the symbol table. If LF does not appear within the proce­
dure, the label on the reference line is lost. The same
principle applies to the elements of command field and
argument field lists.

Example 111. Procedure Reference Lists

ALL SET AF Assumes these statements

AF(l) SET AF(2,2)
me within a procedure
definition called LST.

AF(3) SET ALL(2,2)

A SET (11, 12, 13)

B SET (21,22,23) Main program.

C SET (31,32,33)

Notice, however, that the functions AF(l), AF(2), and
AF(3) apply only to the symbols that actually appear
on the procedure reference line (i. e., A, B, and C)
and not to the values that have been equated to them.
Thus, the statement

AF(l) SET AF(2,2)

results in AF(l) -which is A - being set to null
because there is no element AF(2, 2) on the proce­
dure reference line.

On I'he other hand, the statement

ALL SET AF
LST A, B,C Procedure reference line.

The three elements (A, B, C) on the procedure reference
line may be referred to with in I'he procedure as

causes Meta-Symbol to evaluate the symbols A, B,
and C, and to assign A LL as

AF(l) A

AF(2) - B

AF(3) :- C

Example 112. Procedure Reference Lists

ALL SET (11, 12, 13) ,(21,22,23),(31,32,33)

Therefore, the element AF(3) - which is C - can be
set to ALL(2, 2) which has the value 22.

The procedure OUT generates a 32-bit value equal to the number of elements in the list of the procedure reference line:

OUT CNAME

PROC

LF GEN,32

PEND

NUM(AF)

Dec lores the command name of the procedure to be OUT.

Identifies a procedure.

Generates 32 bits containing the number of elements in the argu­
ment field of the procedure reference line.

Signifies the end of the procedure.

The following reference lines could call the procedure:

FIRST

A

B

TWO

OUT

SET

SET

OUT

3,6, (4,7) Generates 00000003 (hexadecimal).

3,6

(4,7)

A, B Genera tes 00000002 (hexadec i ma I) •

The I ist in line FIRST consists of three elements: 3,6, and (4,7); therefore, the procedure OUT generates the value 3.
Next, A is defined as a value list of two elements: 3 and 6; and B is defined as a value list of one element: (4,7). The
list in line TWO consists of two elements: A and B. Meta-Symbol does not determine what values A and B have because
there is no statement within the procedure that causes Meta,-Symbol to evaluate the argument field list.

OUT CNAME

PROC

LOCAL

COUNT SET

LF GEN,32

COUNT

AF

NUM(COUNT)

Declmes COUNT to be a local symbol within this procedure.

COUI'-lT is SET to the value of the list in the argument field of the
procedure reference line.

Procedure Reference Lists 75

Since COUNT is declared to be a local symbol within this procedure, it cannot be confused with any previously defined
symbol "COUNT". When the SET directive is executed, Meta-Symbol must evaluate the list in the argument field of
the procedure reference line in order toassign a value to COUNT. With this procedure, the reference lines

FIRST

A

OUT

SET

SET

OUT

3,6, (4,7)

3,6

Generates 00000003 (hexadecimal).

B

TWO

(4,7)

A, B Generates 00000003 (hexadecimal).

now generate the same value. When the procedure is called at line TWO, the list consists of A, B. The directive

COUNT SET AF

executed within the procedure, causes Meta-Symbol to evaluate A and B and to assign COUNT as

COU NT =- 3,6, (4,7)

Thus, NUM(COUNT) yields the value 3.

Notice that although NUM(COUNT) now equals 3, NUM(AF) still equals 2. This is true because the elements A and B
in the reference line are not replaced by their values (3,6, and (4,7)). Thus a procedure can refer to the elements
that actually appear on the procedure reference line as well as the values of the elements.

Example 113. Procedure Reference Lists

Assume the command procedure CHECK

CHECK

CNT

H

J

CNAME
PROC
LOCAL
SET

DO

DO

is called as follows:

UPPER
LOWER
LIMIT

FIELD

SET
SET
SET

CHECK

CNT
AF

NUM(CNT)

NUM(AF)

16,24,32
9,11, 13
12,18

UPPER, LOWER, LIMIT

In the CHECK procedure CNT is defined as

CNT =: 16,24,32,9,11,13,12,18

Therefore, the DO directive at line H has a count of 8
because CNT is a list of eight elements. On the other
hand, the DO directive at line J has a count of 3
because NUM(AF) determines how many elements are
in the argument field I ist of the reference I ine, and
there are three: UPPER, LOWER, and LIMIT.

76 Procedure Reference lists

The use of procedure reference I ists is not lim i ted to the
argument field. A list appearing in any field in a proce­
dure or function reference I ine is a procedure reference list.

Example 114. Procedure Reference lists

The statement

A,C,D TABSIZ,S,T,U X,Y,Z

could be a referencelinefora command procedure that
adds the items identified in the label field to those
identified in the command field and stores the results
in the locations identified in the argument field: i.e.,

A+S -X, C+T-Y, D+U-Z

All three lists are evaluated inside the procedure
when the actual addition occurs:

TABSIZ CNAME
PROC

I DO NUM(LF)
AF(I) SET LF(I)+CF(I+ 1)

FIN
PEND

The loop is to be executed NUM(LF) or 3 times. Each
time through the loop, I is incremented by 1, so AF(I)
references element X, Y, and Z; LF(I) references ele­
ment A, C, and 0; and CF(I + 1) references element
S, T, and U. Therefore, the SET directive is equiva­
lent to

X
Y
Z

SET
SET
SET

A+S
C+T
D+U

PROCs are frequently used to define machine instructions.
In th is manner, a programmer can use any mnemon ic code
he wishes for an instruction by wr:'ting a procedure defini­
tion that will generate the appropriate bit configuration.
This is another instance when it is necessary for the pro­
grammer to remember that lists in procedure reference lines
are not evaluated at the time they are encountered but
rather at the time they are used inside the procedure.

Example 115. Lists in Procedures

Assume a procedure LOAD is to be written that pro­
duces the same bit configuration as a Load Word in­
instruction. The procedure definition could be
written

LOAD CNAME X'32'
PROC
LOCAL P

P SET AF
LF GEN, 1,7,4,3,17 AFA(1), NAME;

, CF(2), P(2), P(l)
PEND

If the procedure is ca lied by

LOAD,4 *Z,5

the procedure functions as follows:

1 . P is declared a local symbol.

2. P is SET to fhe value of the argument field of the
procedure reference line; i. e. ,

P '- Z,5

3. In the GEN directive

a. LF causes Meta-Symbol to determine whether
a label exists on the procedure reference line
and, if one does, to define it.

b. AFA(l) tests to determine whether an asterisk
appeared as the first symbol in the argument
fi e Id of the reference line. If an asterisk did
appear, a 1 is genemted for bit position zero
of the instruction word; if an asterisk did not
appear, a 0 is generCIted for that bit position.

c. NAME causes Meta-Symbol to place the value
X '32' (from the argument field of the CNAME
directive) in bits 1 through 70fthewordbeing
formed.

d. CF(2) speci fies that j-he second entry in the
command field of the reference I ine is to be
assembled into the next four bits (i .e., bit
positions 8 through 11).

e. P(2) designates the second element of list P.
Since P :::: Z, 5, its second element is 5. Th is
value is assembled into bit positions 12
through 14 of the word.

f. P(l) designates the first element of list P, i.e., Z.
This value is assembled as a 17-bit address.

The same procedure wi II operate properly when ca lied
in this fashion:

Q EQU
LOAD,4

Z,5
*Q

because inside the procedure the directive

P SET AF

forces Meta-Symbol to evaluate the argument field of
the procedure reference line and, therefore, to SET P:

P::.: Z,5

If the procedure were wri tlen

LOAD

LF

and ca lied by

Q

CNAME
PROC
GEN, 1,7,4,3,17

PEND

EQU

LOAD,4

X'32'

AFA(l),NAME;
,CF(2),AF(2),AF(1)

Z,5

*Q

it would not operate properly. There is no directive
within this procedure definition to cause Meta-Symbol
to evaluate the argument field of the procedure refer­
ence. Thus, when the GEN directive is processed, the
asterisk, the NAME entry, and the command field item
are handled correctly, but there is no AF(2) entry on
the procedure reference I ine since the argument field
cons ists on Iy of *Q.

Thus, it can be seen that lists in procedure reference lines
are conditional in that Meta-Symbol evaluates them only
if there is an instruction or directive within the procedure
that causes it to do SOi otherwise, the lists are passed
directly from the reference line to the procedure.

SAMPLE PROCEDURES

The following examples illustrate various uses of procedures,
such as how one procedure may ca II another, and how a
procedure can produce different object code depending on
the parameters present in the procedure reference.

Sample Procedures 77

Example 116. Condi tiunal Code Generation

This procedure tests element N in the procedure reference line to determine whether straight iterative code or an indexed
loop is to be generated. If N is less than 4, straight code will be generated; if N is equal to or greater than 4, an in­
dexed loop will be generated. In either case, the resultant code wi" sum the elements of a table and store the result in
a specified location.

The procedure definition is

AOOEM CNAME
PROC

LF SW, AF(3) AF(3)
INO DO (AF(2) '- 4) A AF (2)

A.W, AF(3) AF(l) 1 INO -1
ELSE
LW, AF(S) L(-AF(2))
AW, AF(3) AF(1) 1 AF(2), AF(S)
BIR, AF(S) S - 1
FIN
STW, AF(3) AF(4)
PEND

The genera I form of the procedure reference is

ADOEM AOORS, N, AC, ANS, X

where

AOORS represents the address of the initial value in the list to be summed.

N is the number of elements to sum.

AC is the register to be used for the summation.

ANS represents the address of the location where the sum is to be stored.

X is the register to be used as an index when a loop is generated.

For the procedure reference

XYZ AODEM ALPHA, 2, 8, BETA, 3

mach ine code equivalent to the following I ines would be generated in-line at assembly time.

XYZ SW,8
AW,8
AW,8
STW,8

If the procedure reference were

ADOEM

8
ALPHA
ALPHAl1
BETA

ALPHA,5,8,BETA,3

the generated code would be equivalent to

SW,8
LW,3

AW,8
BIR,3
STW,8

78 Sample Procedures

8
L(-5)

ALPHA-l 5, 3
$-1
BETA

Clears the register.
Adds contents of ALPHA to reg ister 8.
Adds contents of ALPHA + 1 to register 8.
Stores answer.

Clears the reg ister.
The value -5 would be stored in the I iteral table and its address
would appear in the argument field of this statement. Thus, load
index with the value -5.

Register 3 contains -5, :. ALPHAt5-5 ALPHA.
1ncrements reg ister 3 by 1 and branches.
Stores answer.

Example 117. Function Procedures

Assume that a 32-bit element of data consists of three fields: Field A occupies bits 0 through 6, field B occupies bits 7
through 17, and field C occupies bits 18 through 31. The program that uses this data will frequently need to alter the
contents of the fields. Two function procedures could be written to faci I itate th is process: SHIFT and MASK. The pro­
cedure SHIFT returns a value equal to the number of bit positions that a quantity must be shifted to right-justify it within
the 32-bit area. The procedure MASK produces a field of all l's that occupy the required number of bits to mask a
given field.

The procedure definitions could be:

SHIFT FNAME
PROC
LOCAL

SYM SET
PEND

MASK FNAME
PROC
LOCAL

ARG SET
VAL SET

PEND

SYM
AF
31-SYM(2)

VAL, ARG
AF
(1 ** (ARG(2)-ARG(l)+ 1) -1) **(31-ARG(2))
L(VAL)

The sequences of code needed to reference these procedures include:

A EQU 0,6
B EQU 7,17 Defines fields A, B, and C.
C EQU 18,31

LW,4 L(5)
SAS,4 SHIFT(B)
LW,5 MASK(B)

Stores the value 5 into field B of data area Q.

STS,4 Q

The EQU directives define the bits that comprise each of the three data fields.

The first Load Word instruction uses a literal constant for the value 5. The Arithmetic Shift instruction references the
SHIFT procedure, using as its argument the list B (defined as 7, 17). The SHIFT function procedure will return the value
14, because an integer must be sh ifted 14 bit pos i tions in order to righ t justify it in the B fie Id (i. e., in bi ts i' through 17) .

The second Load Word instruction references the MASK procedure with an argument of B. The MASK proc1;:ldure first
determines the number of bits in the specified field:ARG(2) .- ARG(l)+ 1 = 17 -7+ 1 "'·11. Then, the numb,;:lr 1 is shifted
left that number of bit positions. Next, the value 1 is subtrocted from the shifted value, forming the desired mask of
eleven 1-bits. To position the mClsk for the correct data field requires shifting it left 14 positions. This is determined
by subtracting the value ARG(2) (i. e., 17) from 31. The correctly positioned mask is assigned to the labe I VAL. On
the PEND line, VAL appears as CI literal, so the mask is stored in the literal table and its address is returned to the
procedure reference. Thus, the second Load Word instruction loads a mask for the B data field into register 5.

The Store Selective instruction stores the contents of register 4 into location Q under the mask in reg ister 5.

Because Meta-Symbol allows one procedure to call upon another procedure, the MASK procedure could have been writ­
ten to call upon the SHIFT procedure to position the mask it developed. The MASK procedure could have been written:

MASK

ARG

FNAME
PROC
LOCAL
SET

VAL, ARG
AF

Sample Procedures 79

VAL SET
PEND

which would produce the same result.

(1-U (ARG(2)- ARG(l) + 1)-1)**SHIFT(ARG)
L(VAL)

Example 118. Recursive Function Procedure

As pointed out in the previous example, Meta-Symbol allows one procedure to call another. Meta-Symbol also allows
recursion; that is, a procedure may call itself. This is illustrated in the following function procedure that produces the
factorial of the argument.

FACT FNAME
PROC
LOCAL

S SET
DO

R SET
ELSE

R SET
FIN
PEND

S, R
AF
S(l) > 1
S * (FACT(S - 1))

R

Because the explanation of a recursive procedure necessari Iy refers to procedure levels and the use of identical symbols
on various levels, subscript notation is used to denote levels: Sl refers to level 1 symbol S; S2 to level 2 symbol S; etc.

The procedure reference in the main program could be

Q SET 8

L1,4 FACT(Q-5)

Within the procedure, Sl and R1 are declared to be local symbols. Next, Sl is set to the value of the aruument field at
level 0; therefore, Q -5is evaluatedand Sl is SET to 3. The DO directive determineswhetheri"he first element of list Sl
is greater than 1. Since 51 consists of only one element and it is greater than 1, the statement following the DO
directive is processed. The statement on line R1 calls the FACT procedure. 50, the process begins again.

The symbols S2 and R2 are declared to be local symbols. (This time, they are local to the level 2 procedure and will not
be confused with the 5 and R that were local to the level 1 procedure.) 52 is set to the value of the argument field,
which is 51 - 1 (3 - 1); that is, S2 is set to the value 2. The DOstatement determines whether the first element of list S2
is greater than 1. Because S2 consists of only one element and that element is greater than 1, the I ine following the
DO directive is prol..essed. The statement on line R2 calls the FACT procedure again - this time at level 3.

The LOCAL directive declares S3 and R3 to be local symbols. Next, S3 is set to the value of the argument field. This
time the argument field is S2 - 1, which is the value 1. The DO directivedetermineswhetherthe first element of list S3
is greater than 1. S3 consists of only one element and it is not greater than 1, so control passes to the statement fol­
lowing the ELSE directive. R3 is set to the value 1. The FIN directive terminates the DO-loop. The PEND directive
terminates the procedure at level 3 and returns control to the procedure reference at level 2. Then, the processing of
line R2 is completed. The value 1, returned by the FACT procedure, is mul tipl ied by 52(2) and equated to the label R2'
The ELSE directive terminates the DO-loop, and control passes to the statement following the FIN directive. The PEND
directive terminates the procedure at level 2 and returns control to the procedure reference at level 1.

The value of R2(2) is returned to levell, where it is multiplied by 51(3), and the product 6 is equated to the label R1'
The ELSE directive terminates the DO-loop, and control passes to the statement following the FIN directive. The PEND
directive terminates the procedure at levelland returns control to the procedure reference in the main program.

Thus, the Load Immediate instruction loads the value 6 into register 4.

80 Sample Procedures

Example 119. Recursive Command Procedure

Recursion can also occur in command procedures. This SUM procedure produces the sum of the values of the elements of
a list.

SUM CNAME
PROC
LOCAL R, I

R SET AF

LF SET 0
DO NUM(R)
DO NUM(R(I)) " 1 I

Inner Outer
R(I) SUM R(I)

Loop Loop
FIN

LF SET R(I)-f LF

FIN
PEND

Assume the procedure reference is

Q SET 5, (3,4), (3, (7,8), 4)

z SUM Q Procedure Reference (level 01)

(As in Example 118, subscript notation is used to denote levels.) The resulting code is equivalent to

level 01 ---

SET 5, (3,4), (3, (7,8), 4) Equates local symbol Rl to list.

SET 0

DO NUM(R
11

) Does the loop 2 times; increments counter of outer DO-loop by 1;

11 counter;:. 11 1.

DO NUM(R
1
(1)) > 1 False; R'I(l) 5;:. NUM(R

1
(1)) 1, so skip to FIN.

FIN Terminates inner loop.

SET R
1
(1)+ Zl :. z 1 .5 + 0 5

FIN Increments counter of outer DO-loop by 1 and sets 11 counter
:.1

1
2.

DO NUM(R
1
(2))" 1 True; R

1
(2) 3,4;:. NUM(R

1
(2)) > 1.

Rl (2) SUM R 1 (2) Procedure Reference (level 02)

level 02

R2 SET 3,4 Equates local symbol R2 to sublist.

R] (2) SET 0

'2
DO NUM(R

2
) Does this loop ~ times; increments counter of outer DO-loop by 1;

12 counter;:. 12 1 .

DO NUM(R
2
(l))" 1 False; R

2
(1) 3;:. NUM(R

2
(1)) 1, so skips to FIN.

FIN Terminates inner loop.

Sample Procedures 81

SET

FIN

SET

SET

DO

DO

FIN

SET

FIN

DO

FIN

R1 (2) SET

FIN

PEND

level 01

FIN

SET

FIN

DO

SUM

level 02

SET

SET

DO

DO

FIN

SET

FIN

82 Samp Ie Procedures

3,4

o

NUM(R
1
(3)) > 1

R
1
(3)

3, (7, 8), 4

o

NUM(R2(1)) > 1

Increments counter of outer DO-loop by 1 and sets 12 counter;
:.1

2
2.

Equates local symbol R2 to subl ist.

Does th is loop I times; increments counter of outer DO-loop by 1;
12 counter;:. 12 1 .

False; R
2

(1) 3;:. NUM(R
2
(l)) 1, so skips to FIN.

Terminates inner loop.

Increments counter of outer DO-loop by 1 and sets 12 counter;
:.1

2
2.

False; R
2

(2) 4;:. NUM(R
2

(2)) 1, so skips to FIN.

Terminates inner loop.

Terminates outer DO-loop.

Terminates level 02 procedure and returns to level 01.

Terminates inner loop.

:.Zl 7+5 12

Increments counter of outer DO-loop by 1 and sets 13 counter;
:.1

3
3.

True; R
1

(3) 3, (7,8),4; :.NUM(R
1

(3)) 3.

Procedure Reference (level 02)

Equates local symbol R2 to list. Note that R2 is a new symbol; it is
not to be confused witli the previous level 2 symbol R.

Does th is loop ~ times; increments DO-loop counter by 1; 12 - counter;
:. 12 1.

False; R
2
(l) 3;:. NUM(R

2
(l)), 1, so skips to FIN.

Terminates inner DO-loop.

Increments counter of outer DO-loop by 1 and sets 12 ,. counter;
:.1

2
2.

DO NUM(R
2

(2))" 1

R
2

(2) SUM R
2

(2)

level 03

R3 SET 7,8

R
2

(2) SET 0

13 DO NUM(R
3

)

DO NUM(R
3

(1))" 1

FIN

R
2

(2) SET R
3

(1) 1 R
2

(2)

FIN

DO NUM(I~3(2))" 1

FIN

R
2

(2) SET R
3

(2) 1 R
2

(2)

FIN

PEND

level 02 ----
FIN

R
1

(3) SET R
2

(2) + Rl (3)

FIN

DO NUM(I~2(3)))- 1

FIN

R
1

(3) SET R
2

(3) + R1 (3)

FIN

PEND

level 01

FIN

ZI SET R1(3) 1 ZI

FIN

PEND

Thus, the main program statement

Z SUM Q

. results in the value 34 being assigned to label Z.

True; R
2

(2) 7,8;:. NUM(R
2

(2))" 1 .

Procedure Reference (level 03).

Equates loca I symbol R3 to list.

Does this loop .£ times; increments DO-loop counter by 1; 13 counter;

13 1.

False;R
3

(1) 7;:. NUM(R
3

(1)) 1, so skips to FIN.

Terminotes inner loop.

Increments counter of outer DO-loop by 1 and sets 13 counter;
:.1

3
2.

False; R
3

(2) 8; :. NUM(R
3

(2)) 1, so sk ips to FIN.

Ter:'1inotes inner DO-loop.

Term inotes outer DO-loop.

Terminates level 03 procedure and returns to level 02.

Terminotes inner DO-loop.

:. R).(3) 15 1 3 18

Increments counter of outer DO-loop by 1 and sets 12 counter;

:·'2 3.

False; R
2

(3) 4;:. NUM(R
2

(3)) 1, so sk ips to FI N.

Terminotes inner DO-loop.

:.R
1
(3) 4+ 18 22

Terminotes outer DO-loop.

Termin(]tes level 02 procedure and returns to level 01.

Terminotes inner DO-loop.

:. Z1 22 + 12 34

Terminotes outer DO-loop.

Termin(]tes level 01 procedure and returns to mai n program at level O.

Sample Procedures 83

Example 120. Procedure that Defines a Procedure

The following procedure is ossigned two names (B and A) and defines a procedure when referenced.

line

1
2
3
4
5
6
7
8
9

B
A

LF

LF

ORG
CNAME
CNAME
PROC
CNAME
PROC
DATA
PEND
PEND

100
6
5

NAME, AF

NAME, AF

Sample
Stack

Command
Definitions Stack

B Pointer
6
B

/// _--------- A P0.J~nter
-- I-----=:--~

A ---- ---
-f------ -------- Q Pointer

---~ ____ 6,17
---- I-----=---'--Q ---f

R Pointer
5,15

R

When Meta-Symbol encounters the AlB procedure definition, it creates two stacks: the Sample Stack (lines 5-9) and the
Command Definitions Stack. In the latter stack, it enters B, assigning it the va lue 6, and A, assigning it the value 5.
These entries also contain a pointer to the Sample Stack, indicating the lines that will be processed when B or A is sub­
sequently referenced.

The procedure reference lines

20

21

22

Q

R

J

B

A

Q

17

15

77

cause Meta-Symbol to do the following:

1. Line 20 causes Meta-Symbol to process lines 5 and 6 as

Q CNAME

PROC

6,17

which is u procedure definition. Therefore, Q is entered in the CommandDefinitions Stack, assigned the val,ues6, 17,
and associated wi th line 7. Line 8 term inates the defini tion of Q, and line 9 returns control to the rna in program.

2. Line 21 causes Meta-Symbol to process lines 5 and 6 as

R CNAME

PROC

5,15

which is a procedure definition.
15, and associated with line7.

•

Therefore, R is entered in the Command Definitions Stack, assigned the values 5,
line 8 terminates the definition of R, and line 9 returns control to the main program.

3. Line 22 references Procedure Q wh i ch processes line 7 as

J DATA 6,17,77

Lobel J is assigned the value 100 (ORG 100).

84 Sample Procedures

6. ASSEMBLY LISTING

The Xerox Meta-Symbol assembler produces listing lines
according to the format shown in Figure 5. The page count,
a decimal number, appears in the upper right-hand corner
of each page.

EQUATE SYMBOLS LINE

Each source line that contains an equate symbols or dis­
ploy directive (EQU, SET, or DISP) contains the following
i nformoti on:

and

or

Print

NNNNN'k Source image line number in deci­
mal. An asterisk identifies an up­
date line.

XXXXXXXX Value of argument field as a 32-
bit value.

CC

LLLLL

B

Current sectiion number in hexa­
decimal. The first control secti on
of an assembly is arbitrarily assigned
the value 1, and subsequent sections
are numbered sequentially.

Value of the argument field as a
hexadecimal word address.

Blank, 1, 2, or 3 specifying the
current byte displacement from a
word boundary.

or

TTTT

and

SSS ...

A one- to four-character value type
indicator when the value of the item
in the argument fie Id is other than
an address or a single precision inte­
ger. This is discussed be low.

Source image. If source input was
from a keyed fi Ie, columns 73-80
(print positions 100-117) will be re­
placed by the key number.

When the argument field of an EQU, SET, or DISP directi'/e
specifies a value that is neither a single precision integer
nor an address that is evaluatable when the directive is en­
countered, the assembler wi II pri nt a one- to four-character
value type indicator in the value field of the I isti ng (pri nt
positions 19-26). If the argument field of these directives
specifies more than one value, or if one of the arguments is
itself the name of a list, the values or value type indicators
will be printed singly beginning with the value field of the
directive line and continuing for successive lines. The in­
formation listed in the value field for various kinds of EQU,
SET, and DISP arguments is shown in the following listing:

SET, EQU, DISP
Argument Type

Single precision integer

Address

Fixed decimal constant

Floating short constant

Display in
Listing Value Field

value of integer

value of address

FX

FS

Position 1 2 3 4 5 6 7 8 9 10 '11 12 13 14 15 16 17 18 19 2'0 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

Equate INNNNN C C L L L L L B S ...
symbols NNNNN X :x X X X X X X S ...
line NNNNN T T T T S ...

Assembly
listing line NNNNN C C L L L L L B X X X X X X X X A S ...

Ignored
source
image line NNNNN k S 'k

Error line * k * * m e s s (] g e S ...

l.i tera I
listing line C C L L L L IL B X X X X X X X X A

Figure 5. Meta-Symbol Listing Format

Assembly Listing 85

SET, EQU, DfSP

Argu~-=-~t_Tl'~

Floating long constant

Decimal constant

Character string constant

Undefined global symbol

Forward reference

Display in
Listing Value Field

FL

D

TEXT (For EQU and SET
directives)first 8 bytes of
constant in EBCDrc (for
DfSP directive)

UND

FR

Local forward I eference LFR

External reference EXT

DPf Double precision integer

I expression involving value of integer
addend L...J S. a relocatable item

List, i.e., UST followed by:

ValUe l }
: only for DISP
. directive
value
-)ddd .. n

value 1, ••• ,valuen

Note: Any of the list items might itself be a list. fn that
case UST and \I-\-' wi" print to define the elements
of such a sublist.

ASSEMBLY LISTING LINE

Each source image line containing a generative statement
prints the following information:

NNNNN'~

CC

LLLLL

B

XX,
XXXX,
XXXXXX,
XXXXXXXX

A

Source image line number in decimal.
An asterisk identifies an update line.

Current secti on number in hexadeci mal.
See CC under "Equate Symbols Line ".

Current value of execution location
counter to word level in hexadecimal.

Blank, 1, 2, or 3, specifying the byte
displacement from word boundary.

Object code in hexadecimal listed in
groups of one to four bytes.

Address classification flag:

blank

A

F

X

denotes a relocatable
field.

denotes an absolute ad-
dress field.

denotes an address field
containing a forward
reference.

denotes an address field
containing an external
reference.

86 Assembly Listing

SSS ...

N

NN

indicates that the object code
produced for the source line
contai ns a relocatable item
(i. e., an address, a forward
reference, or external refer­
ence) in some field other than
the address field.

specifies intersection refer­
ence number.

Source image.

IGNORED SOURCE IMAGE LINE

A skip flag indication

-AS-A-

is printed in columns 33-35 for each statement skipped by
the assembler during a search for a GOTO label or while
processing a DO or DOl directive with an expression value
of zero. It wi" also be printed for a system directive that
specifies a file included in the standard definition file.
NNNNN and SSS ..• have the same meanings as in an as­
sembly listing line.

The *S-A- flag is also printed in columns 33-35 beside any
CNAME directive containing a procedure name that was
not subsequently referred to in a command procedure refer­
ence line. [f none of the names for a procedure are
referred to, the entire procedure wi" be skipped and so
indicated on the assembly listing.

ERROR LINE

When an error is detected in the source image line, the line
immediately following begins with the error indication

This line may contain one or more single-character syntax
error codes or an error message. The error codes print be­
neath the part of the source image line that is erroneous.
The error codes and their meaning are listed in Table 6;
the error messages are given in Chapter 7, "Meta-Symbol
Operations". -

LITERAL LINE

Any literals evaluated during an assembly are printed imme­
diately followi ng the END statement. Literals are listed in
the order in which they were evaluated, and the listing line
contains

CC

LLLLL

Current section number in hexadecimal.
See CC under "Equate Symbols Line".

Current value of execution location
counter to word level in hexadecimal.

Table 6. Meta-Symbol Syntax Error Codes

Code Severit/ Significance

A 4

B 4

C 4

E 4

F 4

L 4

M 4

N 4

o 4

Arithmetic operand error. Arithmetic has been attempted with an operand on which arithmetic is not
syntactically meaningful, probably a list. For example:

(B,C)-A 2
A

Column 1 of a continuation card does not contain a blank. For example:

MASK
X '3FFF'
B

DATA ;

Constant string error. A constant contains on illegol chomcter or is improperly formed. For exomple:

X'ABCDEFG'
C

Expression error. An mithmetic expression is molformed (0 missing opemnd, on unknown opemtor, etc.).
For example:

5 1/2
E

Involid system file name. The mgument field of a SYSTEM directive contoins other thon 0 legol Meto­
Symbol name. System SIG7FDP is substituted. For example:

SYSTEM ALPHA I 2
F

Label error. The argument field of one of the directives CDISP, FDISP, DEF, REF, SREF, LOCAL,
OPEN, or CLOSE contains other than a well-formed Meta-Symbol symbol. For example:

OPEN 50
L

Missing command field.

Parentheses nesting error. For example:

A ". (B / (C + 1)
N

Arithmetic overflow during constant conversi'on. For example:

FX ' 1.5B2E3 1

o

•

tThe highest error severity level encountered in the assembly is passed to the loader and appears at the end of the assembly
listing.

Assembly Listing 87

Table 6. Meta-Symbol Syntax Error Codes (cont.)

Code S . t
eventy Significance

Q 4 An apparent constant qualifier other than C, D, 0, X, FS, FL, or FX has bean encountered. For
example:

G'FFAB'
Q

S 4 A general vi olation of syntax structure has been encountered, usually a juxtaposi ti on of characters that
provides no indication of intended meaning. For example:

BA(A)B
S

v 4 A character not in the recognized character set has been encountered outside a constant string. For
example:

x 4

ALPHA.R2
V

The previ ous I ist has more than 255 elements.

tThe highest error severity level encountered in the assembly is passed to the loader and appears at the end of the assembly
listing.

B Blank, 1, 2, or 3, specifying the byte
displacement from word boundary.

XXXXXXXX Value of literal as a hexadecimal mem­
ory word.

A Address classification flag. See "Assem­
bly Listing Line".

SUMMARY TABLES

Immediately following the literal table, the following eight
summaries are printed as a standard part of the assembly list­
ing. Each summary is preceded by an identifying heading.

l. Control Section Summary. Shows, in hexadecimal, the
section number, size, and protection type of all control
sections in the program. A typical item has the form

01 005B4 2 PT 1

where 01 is the control section number, and 005B4 is the
number of words in the section, plus two additional
bytes. PT denotes "protection type" and 1 means that
protection type 1 is assigned to this section. Protection
type, an integer from 0 to 3, is specified by a CSECT
or DSECT, or PSECT directive (see Chapter 2). The con­
trol section summary is listed four items per line.

88 Assembly Listing

If an asterisk follows the control section number, as
in

03*001 D3 PT 0

it indicates that control section 3 was declared to be
of size X'lD3' words in the object language (if gener­
ated), but that the listing indicates a different maxi­
mum size for control section 3. This may indicate that
a different amount of data was generated by pass 1 of
the assembler than was generated by pass 2. This con­
di ti on causes an error severity level of 3.

A page eject follows the control section summary and
the foil owi ng summaries then pri nt. Items 2 through 5
below may be omitted by including the option NS
(no summaries) on the METASYM control card. Items 6
through 8, the error summaries, always print, however.

2. Symbol Value Summary. Shows all nonexternal symbols
in the program, except those designated as LOCAL or
closed. A typical item has the form

SCALE/Ol 001 B5

where SCALE is a symbol name, 01 is its control section
and 001 B5 is the hexadecimal word address at which it

is defined. In place of a control section and word

address, some symbols will have a 32-bit value dis­

played as an eight-digit hexadecimal number or may
have a one- to four-character value type indicator.

In other words, the information following a symbol

name may have the same formal'as described previously

under "Equate Symbols Line". On some items, the

slash is replaced by an asterisk if the SO option has
been included in the METASYM control card. The

SD option specifies that symbolic debugging code (i.e.,

a symbol table) is to be included in the relocatable

object module.

The symbol values are printed four per line except

where an entry is too long for its allotted print field

and overflows into the field to its right.

3. External Defini tion Summary. Shows all symbols in the

program declared to be externcil definitions. Format is

the same as the Symbol Value Summary.

4. Primary External Reference Summary. Shows all symbols

declared to be external references. Only symbol names

are listed, formatted seven per line where possible.

5. Secondary Ex terna I Reference Summary. Shows a II

symbols declared to be secondary external references.

Format is the same as for the Primary Ex terna I Refer­

ence Summary.

6. Undefined Symbol Summary. Shows all symbols used
but not defined nor declared to be external references.
Format is the same as for the Primary Externa I Refer­

ence Summary.

7. Error Severity Level. This line shows the highest error

severity level encountered in the program.

8. Error Line Summary. Shows the line numbers of all lir 's

inthe source program onwhicherrors were encountered.

Assembly Listing 89

7. OPERATIONS

Meta-Symbol has been designed to run under control of
the Sigma Batch Processing Monitor and Batch Time-Sharing
Monitor, thereby making available to it all facilities of
the Monitor system. This document provides a discussion
of the Monitor interface that affects the typical user. In
particular, Monitor control commands necessary to assemble
a program are descri bed. Consult the reference manuals
for the above mentioned Monitors for further information
about their operation and use.

BATCH MONITOR CONTROL COMMANDS

To assemble a Meta-Symbol program, a run deck containing
the necessary Monitor commands must first be prepared.
This chapter describes those commands. A large variety of
other Monitor commands exist; for these, the user is referred
to the appropriate Monitor Reference Manual.

JOB CONTROL COMMAND

The first card in each Meta-Symbol run deck must be a JOB
card, which has the format shown below.

!J OB account number, name, pri ori ty

where

account number is a 1- to 8-character alphanumeric
string identifying the account or project to which
the run is to be charged.

name is a 1- to 12-character alphanumeric string
identifying the user.

priority is a number between X'l' and X'F' speci-
fying the priority of the job. Although the priority
is not used by the unscheduled Monitor, it must be
specified; otherwise, the Batch Monitor will reject
the entire job.

LIMIT CONTROL COMMAND

Immediately following the JOB card there should be a
LIMIT card, which has the format shown below. The order
of the three limit options is immaterial.

! LIMIT (LO,I imit),(PO, I imit),(TIME,1 imit)

where limit is a decimal integer specifying maximum oper­
ational limits, as follows:

LO, limit specifies the maximum number of pages
that can be listed.

90 Operations

PO, limit specifies the maximum number of cards
that can be punched.

TIME, limit specifies, in minutes, the maximum
time that the job can take.

These three limits are applied, respectively, to the sums of
LO output, PO output, and time used across the entire job.
Thus, these limits should reflect the maximum expected
usage for all assemblies within the job, not just the first
assembly. If the LIMIT card is omitted, the i nstallati on
default limits are used.

ASSIGN CONTROL COMMAND

Appearing next in the run deck are any ASSIG N cards
relating to the assembly. Normally, ASSIG N cards wi II
not be needed, since the system has the fo! lowing standard
default assignments.

Logical Device or Fi Ie

BO

CI

CO

DO

GO

LO

51

SO

X 1 (Intermediate fi Ie)

X2 (Update file)

X2KF (Update file)

X3 (Concordance file)

Physi cal Device

Card punch

Card reader

Card punch

Line printer

Magnetic disk

Line printer

Card reader

Card punch

Magneti c disk

Magneti c disk

Magneti c disk

Magneti c disk

If the user desires to reassign any of these I/o options, an
appropriate ASS IG N card is necessary. For most users, the
only change from the above standard assignments wi II be
the assignment to magnetic tape of CI and/or CO or the
intermediate files.

Meta-Symbol does not protect against confl icts that may
arise when two or more output options are assigned to the
same physical device. Such confl iets (such as SO and LS
to a I ine printer, or SO and CO to a card punch) may cause
the output to be interspersed in an irregular manner. Such
conflicts should be resolved by reassigning one or more of
the output options to a different device, or by calling the
assembler more than once, specifying only one such option
per assembly.

METASYM CONTROL COMMAND

The next card in the run deck wi II be the METASYM card,
which has the following format:

(METASYM optionl,option 2, ... ,option n

where any number of options, or none, may be specified.
The options and their meanings are given be low.

AC (ac 1,ac
2

, ... ,ac) Account number speci fication,
n where each ac is a Batch

BA
BO
CI
CN
CO
DC
GO
LD
LO
LS
LU
ND
NS
PD (sn 1,sn2' ••. ,snn)
SD
SB or SB(•.•)
SC 'or SC(•.•)
SI
SO
SU

Monitor account number.
Batch assembly mode.
Binary output.
Compressed input.
Concordance output.
Compressed output.
Default concordance.
Output GO file.
Li sf' standard defini tion fi Ie.
List, assemb Iy output.
List source.
List updates.
No standard definition fi Ie.
No summaries.
Produce standard definition fi Ie.
Symbolic debugging output.
Sequence binary.
Sequence compressed.
Source input.
Source output.
Sequential update.

Options may be specified in any order. Except for AC,
repetitions of the same option are ignored, that is, the
effect is that of a single occurrence. Ifnooptionsare
spec i fi ed, the fo "ow i ng opt iom are assumed:

SI, LO, GO

The METASYM card is free form; blanks may appear any­
where except between the two ~etters of an opti on name or
between the option name and the left parenthesis for AC,
SB, and sct. At ~east one blank must separate the METASYM
command from the first option. The option list may be con­
tinued on one or more cards following the METASYM cord.
Continuation is specified by placing a semicolon at any
point where a blank is legal. Processing of the METASYM
card is then resumed at the first nonblank column. METASYM
continuation cards must not have an ! in column one.

If the program is b.n cards, it I]llJst im!"ediately fo"~~ the
METASYM card. However, if CN has been speCIfIed,
the METASYM card must be followed immediately by
Concordance Control Command cards, the last one of
which ilnust be a .END card (see "Concordance Control
Commands anp Listi!1~" later in this Chapter) •. The

., -tNote that blanks may be significant characters for the SB
and SC options.

Meta-Symbol program deck is considered terminated by the
first card containing an END directive in the command
field. Any cards after the END directive are ignored by
the Meta-Symbol assembler.

A sample METASYM card is shown below.

IMETASYM SI, LO, CI, BO, SB(BIN)

The meanings of the various options are as follows:

AC{acl,a'1'IO.;,acn} where ~ ~~. This option is used
in conjunction with the SYSTEM directive of Meta-Symbol.
With this directive, the user has the capability of calling
system fi les that have been placed on di sk. Normally the
only system fi les used are those provided by the assembler
(namely, SIG7FDP, ... ,SIG5). However, when a us~r w~nts
to provide his own system files, a minor problem arises In
that, typically, he wi II have access to only C1 limited number
of account numberl provided by the Monitor with which to
identify these files when they are entered onto the disk.
In order for Meta-Symbol to access these fi les, the assembler
must be told what their account numbers are. The AC option
provides this information.

If the AC option is specified and Meta-Symbol later en­
counters a SYSTEM directive, it wi" ask the Monitor to
search for the system name in the Monitor's account number
and name table, under the account numbers gi ven in the AC
option. The search will be performed according t.o the ord.er
of the numbers in the AC option, from left to right, until
the specified system is found or the account llI.,.1mbers are
exhausted. If the system is not found under the user­
specified account numbers, the systems filed under the
"system account number"tt are then searched. If the AC
option is not specified, the system specified by the SYSTEM
directive is searched for only under the "system account
number", Since all standard Meta-Symbol systems are filed
under the "system account number", they wi II be found
correctly even when the AC option is not used. If more
than one AC option is specified, the search is performed
from left to right across the card.

Thus,

IMETASYM AC(l), .•. ,AC(2,3), •.. ,AC(4), ..•

is equivalent to

IMETASYM AC(1,2,3,4), ...

and both wi II cause a system search to be performed, fi rst
under account number 1, then 2, 3, 4, and, finally, under
the "system account number".

tSee "JOB Control Command" for the definition of account
numbers.

ttThe "system account number" is the account number (:SYS)
under which all standard Xerox Sigma software is filed.

Batch Monitor Control Commands 91

A system is identified by the name under which it is entered
on the disk. This name must correspond to the name speci­
fied on the SYSTEM directive line used to reference the
system. Further, a system name must consti tute a legal
"symbol" according to the Meta-Symbol syntax rules,
whereas the Monitor's rule for naming files is somewhat
broader (see "Creating System Fi les").

8A Selects the batch assembly mode. In this mode, suc-
cessive assembl ies may be performed wi th a single METASYM
card. The assembler wi II read and assemble successive pro­
grams unti I a double end-of-fi Ie is read. In the batch mode
current device assignments and options on the METASYM
card are applied to all assemblies within the batch.

A program is considered terminated when an END directive
is processed. Successive programs mayor may not have an
end-of-file indicator separating them.

With input from the card reader, an end-of-file is indicated
by an EOD card. Two successive EOD cards or any other
Man i tor contra I card term i nates the job.

W'th input from unlabeled magnetic tape, standard tope
end-of-files provide job termination.

With input from labeled fi les on disk or tape, the job wi II
terminate when a II programs in the fi Ie have been assembled.

When batch assemblies consist of successive updates from
the card reader, to compressed programs from disk or tape,
the update packets are considered terminated by a -t END
card, and shou Id not be separated by EOD cards. There
must be a one-to-one correspondence of update packets to
compressed programs. End of job is signaled by end-of-fi Ie
conventions applied to the CI device.

Output may be to any device, or labeled files on disk or
tape. Output on a device wi II be separated by ends-of­
file, and terminated by a double end-of-file. All output
to labeled files specified on the original ASSIGN card will
be written as successive records in the appropriate output
fi Ie, wi thout modu Ie or program end-of-fi Ie separators.

80 This option specifies that binary output is to be pro-
duced on the BO device.

CI This option specifies that compressed input is to be
taken from the CI device.

CN This option specifies that a concordance, or sym-
bolic name cross-reference listing, is to be produced on the
LO device. One or more Concordance Control Commands
will follow the METASYM card on the C device. These
commands spec i fy the range of names to be inc luded in the
concordance ,(see "Concordance Control Commands and
Listing" later in this chapter). The concordance listing is
produced at the end of the assembler's encoding phase, and
does not require a full assembly. It may be produced in
coniUrict~o~ with an LS listing.

'.
CO 'Th'is option spec ifies that compressed output is to
be produced on the CO device.

92 Batch Mon i tor Contro I Commands

DC This option specifies that a "standard" concordance
is to be produced on the LO device. The DC option di Hers
from the CN option in that no attempt is made to read the
C device for concordance control commands. If both DC
and CN are specified, the DC option takes priority, and
the C N option is ignored.

GO This option specifies that the binary object program
is to be placed in a temporary file from which it can later
be loaded and executed. The resultant GO file is always
temporary and cannot be retained from one job to another.
To retain the binary object program for a subsequent job,
the BO option (with BO assigned to disk or magnetic tape)
must be used.

LO This option specifies that a listing of the standard
definition file (if any) is to immediately plecede the nOI­
mal program listing. LD wi II have no effect if LO is not
also specified.

LO This option specifies that a listing of the assembled
object program is to be produced on the LO device.

LS This option specifies that a listing of the Source pro­
gram is to be produced on the LO device. This listing con­
sists of an image of columns 1 to 72 of each input line (after
updates have been incorporated) wi th its I ine number.

LU This option specifies that a listing of the update
decks (if any) is to be produced on the LO device. This
listing consists of an image of each update line with the
number of the lines in the update deck.

NO This option specifies that no standard definition file
is to be input for this assembly. Note that PD impl ies the
NDoption, so that ND is redundant if PD is also specified.

NS This option specifies that summaries following the
assembly listing are to be omitted for symbol values, ex­
ternal definitions, and primary and secondary external
references.

PO (5nl, ... ,5nn) This option specifies that a standard
definition file is to be produced. The file will be written
through the F:STD DCB, which contains a built-in file name
of $:STDMET. Thus, if F: STD is not reassigned, the PD op­
tion will cause creation (or overwriting) of a file, $:STDMET,
in the current job account. F :STD may be assigned to a dif­
ferent file name in the current account, and a standard defi­
nition file of that name will then be created.

The optional sni are names which, if used as arguments of a
SYSTEM directive in a program that subsequently uses this
fi Ie, wi II cause that SYSTEM directive to be ignored. Th is
allows programs to reference SYSTEM directives as usual,
yet take advantage of a standard definition file that includes
the designated system.

S8,SC These options specify, respectively, that binary or
compressed card images are to be sequence numbered in col­
umns 77 to 80. The form SB(...) or SC(...) also may be
used, wh~re the ellipsis represents a string of alphanumeric
characters. t With this form the leftmost four characters of

tAli legal EBCDIC characters are permitted except for com­
mas, sem icolons, and left or right parentheses. Blanks are
treated as significant characters.

the string are punched as identification in columns 73to 76.
If fewer than four characters are specified, they are left­
justified and blank·-filled in the remaining columns. If SB
or SC is specified without a corresponding output option
(BO ~r CO, respectively), the SB or SC option has no
effect.

SO This option specifies that symbolic debugging code
(i. e., a symbol table) is to be included in the relocatable
object module produced by the as:;embler. Inclusion of this
symbol table allows a debug subsystem to associate symbolic
names and type information with specified memory cells.
This allows run-time debugging and modification of a pro­
gram in a symboli c format simi lar to the actual assemb Iy
listing.

If the SD option appears on the MET ASY M card, BO or GO
must be given also.

When a symbo I va lue summary is produced at the end of the
assembly listing, any symbols entered into the object code
wi II be identified in the summary by an asterisk (A) instead
of a slash (/) preceding their value, word address, or type
indicator.

SI This option specifies that symbolic input is to be
taken from the 51 device.

SO An EBCDIC card image representation of the input
program is to be produced. The symbolic records will be
written on the 50 device. The full range of assignments
may be made when obtain ing source output.

Creation of source output does no~ require a complete as­
sembly, but rather is done during the encoding phase.

SU This option specifies that 'the update control com­
mands {see "Updating a Compressed Deck "}within any up­
date deck must be given in sequential order. Normally, the
order of these commands is immaterial, the assembler order­
ing them as required; but if SU is. specified, only update
control commands in sequential order are permitted. This
option is provided to accommodate those systems whose disk
storage is too small to hold the intermediate fi Ie necessary
to perform updating. In such a case, this fi Ie could be
placed on magnetic tape.

EOD CONTROL COMMAND

In the batch mode (that is, when the BA option is specified),
programs on cards may optionally be separal'ed by EOD
cards, which have the format !tOD.

Each EOD card wi II normally be ploced immediately after the
END card in a program deck. Any cards between the first
END card of the program and the E OD card are ignored.

FIN CONTROL COMMAND

Another Monitor control card shou Id allow the last program
deck of the assembly. This may be a FIN card, which has
the format I FI N.

Since the FIN command returns the Monitor to the idle
state, however, the program deck wi II be followed in most
cases by a LOAD card, METASYM card, or JOB card.

UPDATING A COMPRESSED DECK

By the use of the CO opti on on the MET ASY M card, Meta­
Symbol may be directed to produce a compressed deck of a
source program which can then be used as input during a
later assembly. Since a typical compressed deck contains
one-fourth to one-fifth as many cards as the corresponding
source deck, the use of compressed decks offers significant
operating advantages in both manageability and speed. The
following discussion explains how to update a compressed
deck with an "update packet". An update packet is consid­
ered to be the set of cards between the first I (update)
command and the compressed deck. If any symbolic'carel,
precede the first I command they are termed a "symbol ic
deck"; however, they are treated as if they were preceded
by a l 0 card {see I k below}; that is, they are inserted
before the first line of the program.

Meta-Symbol recognizes four update control commands:

Ik where k is a I ine number corresponding to a
line number on the source or assembly listing
produced from the compressed deck. The I k
control card designates that all cards following
the1k card, up to but not including the next
update control card, are to be inserted after
the kth I ine of the source program. The com­
mand 10 designates an insertion before the first
line of the program.

I i,k where i and k are Ii ne numbers corresponding
to line numbers on the source or assembl y Ii sti ng
produced from the compressed deck, and i ~ k.
This form designates that all cards followi ng the
I i,k card, up to but not including the next update
control card, are to replace lines j through k of
the source program. The number of lines to be
inserted does not have to equa I the number of lines
removed; in fact, the number of lines to be in­
serted may be zero. In this case, lines i through k
are deleted.

-1\ identifies a comment card that will be dis-
played within the update listing (LU specified),
but wi II have no other effect upon the update
process. Comments may begin in column 3 of
the I 'A' command. Comment cards are not in­
serted into the program being updated.

-j END designates the physical end of an update
packet. If the SI and CI devices are the same,
this command is optional, since, if omitted,
Meta-Symbol wi II termi nate the update packet
automatically on encountering the first compressed
card. If the 51 and CI devices are different, th is
command is required.

Updating a Compressed Deck 93

The + character of each update control command must be in
column 1, followed immediately by the control information,
with no embedded blanks. The control command is termi­
nated by the first blank column encountered. Optionally,
the blank may be followed by comments. Unless the SU op­
tion has been specified, the update control commands, with
their associated update records, may occur in any order;
Meta-Symbol will order them as required.

The ranges of successive insert and/or delete control com­
mands must not overlap, except that the following case is
permissible: + i,k followed by + k, where i < k.

Overlapping or otherwise erroneous control commands wi II
cause an abert error.

PROGRAM DECK STRUCTURES

Meta-Symbol accepts two basic types of input decks:
symbolic decks and compressed decks preceded by optional
update packets. Meta-Symbol wi II accept any number of
alternating symbolic and compressed (with update) decks
unti I a deck is found that contains an END directive; any
cards remaining after the END directive are ignored up to
the next Meta-Symbol control card. These decks, up to
and including the END directive, are combined into one
program. Five basic deck structures are possible, as shown
in Figure 6.

1. Symbol ic only.

Symbol ic

2. Compressed only.

Compressed

3. Compressed with update.

Figure 6. Basic Symbol ic and Compressed
Deck Structures

94 Program Deck Structures

4. Symbolic and compressed.

5. Symbolic and compressed with update.

Figure 6. Basic Symbol ic and Compressed
Deck Structures (cont.)

Any of these five kinds of deck structures may be combined
with any other kind, as required. Various legal deck struc­
tures are shown below in Figure 7.

Figure 7. Sample Legal Deck Structures

3.

Figure 7.- Sample Legal Deck Structures (cont.)

If the 51 and CI devices are different and it is desired to
read compressed input from the CI device, then the only
permissible structure is that shown iin Figure 8.

•

(51)

(CI)

Figure 8. Deck Structure for 51 and CIon
Different Devices

The symbolic deck on the 51 device may be omitted. If the
51 device contai ns a compressed deck preceded by an update
packet that does not termi nate wi th atE ND card, that
compressed deck wi II be updated and assembled, and the
CI device wi II not be read.

If an update packet and its associated compressed deck are
to come from different devices, both 51 and CI must be
specified on the METASYM card. If both are on the same
device (or if only symbolic input or only compressed input
is to be processed), the assembler can distinguish among
the three types of decks from the deck structure and card
format, and is therefore not dependent on the opti ons spec i­
fied. The action of the assembler for each combination of
options is as follows:

51 (or CI) only. The assembler wi II read from the 51 (CI)
device and process whatever structure it finds. In either
case, this may consist of any legal combination of symbolic,
update, and compressed decks. The only difference between
the 51 and CI option in this situation is that 51 causes input
to be read from the st device and CI from the CI device .

.
51 and CI. The assembler wi II read the 51 device first; it
must contain some information. If the input deck on the 51
device consists of an update deck terminating with a -lEND
control command, the CI device is then read. If there is no
+ END card on the update deck, and this is followed by a
compressed deck, it is assumed to be the compressed input
spec i fi ed by the CI opti on a nd no attempt is made to read
the CI device.

Program Deck Structures 9.1

(The section headed "Maintaining Compressed Fi les on
Magnetic Tape" has been deleted.)

CREATING SYSTEM FILES

To place a system deck on disk, the Monitor control com­
mand sequence shown in Figure 9 could be used.

System Deck

COpy CR TO system name

Figure 9. Example of System Fi Ie Creati on

This sequence wi" cause the deck following the PCl COpy
card to be entered onto the disk with the "system name"
given on the COpy card and under the account number
specified on the JOB card. The system deck may consist of
either a single symbolic or a single compressed Meta-Symbol
program. If the account number is the "system account
number" (:SYS), this system deck can be referenced by
other programs without using the AC option on a METASYM
card. Otherwise, any assembly that needs to reference th is
deck must use the appropriate AC option. That is the case
in the typical usage shown in Figure 10.

Part of
symbolic
input
deck

/

/
/

/

(Card containing
/ SYSTEM statement)

Figure 10. Use of the AC Option

t

Note that use of the AC option was necessary even though
the assembly was done under the same account number as
that under which the system deck MY$PROC$DECK was
entered. This number was not the system account number.

CREA TlNG AND USING A STANDARD
DEFINITION FILE

Although system fi les provide the most general and flexible
means for including common source libraries into the pro­
gram, they can cause a processing overhead that is unac­
ceptable for short programs or on-line terminal use. A
standard definition file is similar in function to a system
file, but exists in a Meta-Symbol internal format that is
directly usable by the assembler, thus avoiding the proces­
sing time required for source or compressed system files.
Unl ike system fi les, a standard definition fi Ie is not invoked
by name but is automatically read in prior to starting an
assembly. Only one standard definition file is available
to a single program, but SYSTEM directives may still be
used to include other required source library files in the
program.

Since standard definition files are installation-specific in
content, a program that may be assembled at different in­
stallations should still use a SYSTEM directive to identify
each required system file. The process of producing a stan­
dard definitionfile allows specification of system file names
that are included in that fi Ie; Meta-Symbol wi" then ig­
nore any SYSTEM directives whose fi Ie name is one of those
included in the standard definition file. Figure 11 illus­
trates a typical standard definition fi Ie creation.

!FIN

END

SYSTEM DAT ADEF
SYSTEM BPM

SYSTEM SIG7FDP

!METASYM SI,PD(SIG,BPM,DATADEF)

!JOB :SYS, STANDARD, 7

Figure 11. Creation of a Standard Definition File

Note that the Sigma instruction procedures ai'e identified in the
PDoptionwiththespecialkeywordSIG. When a SYSTEMdi­
rective is inc luded in the program that specifies any of the in­
struction subsets (SIG5P, SIG7, etc.), the directive is ignored
andtreatedasifitspecifiedthe same set of instruction proce­
dures which was used to create the standard definition fi Ie.

96 Creating System Fi les/Creating and U~ing a Standard Definition File

By default, use of the PD option wii I produce a fi Ie named
$:STDMET in the current job account. Also by default, it
will attempt to open the $:STDMET file (unless the ND op­
tion is used) first in the current job account, and if not
found, in the :SYS account. If neither account contains
a $:STDMET file, the assembly proceeds as if ND had been
specified. Note thot the AC option does not apply to
standard definition files.

It is possible to create and use standard definition files with
other names. This requires an ASSIGN card for the F:STD
DCB prior to calling Meta-Symbol. Figure 12 illustrates
this method.

Unlike the default case when F:STD is preassigned by Meta­
Symbol, a user assignment of F :STD wi II cause an abort if
the fi Ie cannot be located.

There is no restriction on the languCige elements that may
be included in a standard definition fi Ie, al though it is ex­
pected that the common use wi II be for procedure defini­
tions and certain symbol definitions. No output occurs on
the I isting for inclusion of a standard definition fi Ie; if the
fi Ie causes code to be generated, the location counters wi II
start with the values last set by the sj"andard definition fi Ie.

CONCORDANCE CONTROL COMMANDS
AND LISTING

When the CN option is included on "he METASYM card, the
assembler wi II access the C device for additional control
records describing the data to be included in the concor­
dance (symbol i c name cross-reference) listing.

An alphanumeric string, such as R2, 8, or RES is considered
by Meta-Symbol to be an operation code when used in the
first command field of a statement. When used elsewhere
in a statement it is considered to be a symbol.

If desired, a "standard" concordance can be produced by
entering the DC option on the METASYM command and
omitting all concordance control records on the C device.

The "standard" concordance listing does not include opera­
tion code names, but otherwise includes all symbol refer­
ences, including function and command procedure names
and intrinsic functions such as $, L, AFA, etc.

LOCAL symbols or symbols appearing as arguments of a
SYSTEM directive do not appear on any concordance listing.
Except for this restriction, all symbols and operation codes
used in a program can be listed by selective use of the con­
cordance control commands.

CONCORDANCE CONTROL COMMANDS

The concordance subsystem provides the followins commands
for specifying the contents of a concordance listing:

10 Include all or a selected set of operation codes.

SS Suppress all or a selected set of symbols.

OS Include only a selected set of symbols.

DS Produce a modified LS listing, displaying only
I ines that reference a se lected set of names.

END Terminate concordance control commands.

Figure 12. Creation and Use of a Named Standard Definition File

Concordance Control Commands and Listing 97

The control records must have a period (.) in column 1 and
the selection code (i. e., command name) in columns 2-4.
After a space of one or more blanks, a name I ist of the form
namel, name2, ..• may follow the selection code. Em­
bedded blanks between names in the list are not allowed.
The name list may be continued for several physical records
by using the Meta-Symbol semicolon continuation conven­
tion. Furthermore any number of records containing the
same selection code may be used.

Symbols specified on concordance control commands are im­
plicitly OPENed when the command is processed. The sym­
bols may subsequently be OPENed and CLOSEd within the
program and the command wi II control a II such symbols with
the same name. However, if a CLOSE balances the initial
implicit OPEN, that symbol is effectively removed from fur­
ther concordance control at the point of the CLOSE.

Concordance control records are printed, as read, on the
LO device.

10 This command specifies that all operation codes, or
only those given, are to appear on the concordance listing.
The form of the command is

•]O[name 1,name
2

, •.. ,namen1

If the name I ist is given, only the operation codes it
spec ifies wi II be listed. If the name I ist is absent, all op­
eration codes wi II be listed. (The brackets do not appear
on the control record; they are shown above only to indi­
cate that the name list is optional.)

SS This command specifies that all symbols, or only
those given, are to be suppressed on the concordance listing.
The form of the command is

If the name list is given, only the symbols it specifies will
be suppressed. If the name list is absent, all symbols will
be suppressed. The 55 and OS commands (explained below)
may not both be used in a given set of concordance control
commands. (The brackets do not appear on the control rec­
ord; they are shown above only to indicate that the name
I ist is optional.)

OS This command specifies that only a given list of
symbols is to appear on the concordance listing. The form
of ~ommand is

(005 name l ,name2, 00 o,namen

98 Concordance Control Commands and Listing

The name I ist is mandatory. Only the symbols it speciHes
will appear on the concordance listing. The 55 and OS
commands may not both be used in a given set of con­
cordance control commands.

OS This command specifies that a given list of symbols is
to be displayed by producing a modified LS listing. (The LS
option was explained previ ously under "MET ASYM Control
Command ".) The format of the D5 command is

(DS name I ,name2, 0 0 0 ,name n

The name list is mandatory. Only the symbols it specifies
wi II appear on the modified LS I isti ng. Instead of the en­
tire source program, the LS listing will display only lines
containing names - in any context - specified in the DS
name list. The D5 command is independent of the]0, 55,
and as commands. The DS command overrides a request for
a full LS listing.

END This command identifies the end of a set of concor-
dance control commands. Its format is

The END command is mandatory if the CN option is speci­
fied. If only the END command appears on the C device,
a "standard II concordance listing wi II be produced.

CONCORDANCE LISTING

The concordance listing precedes the regular assembly list­
ing. Names are printed on the concordance listing in
alphabetical order, sorted on the first seven characters.
Appearing on the I ines below each name are one or more
name reference items. The genera I format of each name
reference item is

[

- op.

reference line number $

/op.

code 1
code [*]

where

reference line number is the source program line
number in which the name appears. The largest
reference I ine number that may be correctly pro­
cessed is 32767. If update records appear in the
concordance in the form "n.n", the largest update
record number (" .n") that may be correctly pro­
cessed is 16383.

- op. code indicates that the name occurs in the
label field of the reference line,and op. code is
the operation code name used on that line.

$ indicates that the name occurs in the first com­
mand field of the reference line. In "his case, $
term i nates the reference i I"em.

/op. code [*] indicates that the name occurs in
other than the label or first command field of the
reference I ine, and op. code is the operation
code name used on that line. The operation code
name may be followed by an asterisk if the name
specified occurred in argument field 1 and was
i nd i rect I y addressed.

A sample name might appear on the concordance listing as

A

372 - DATA 459/lW*

This display means that symbol A WclS used at line 372 in
the label fieldofa DATAstatemen~, and at line 459 of an
indirectly addressed Load Word instruction.

Reference I ine numbers can appear in the form "n II or
"n. n ", dependi ng on the form of the source program. The
form n.n appears for those lines that are in an update rec­
ord format and for wh ich a new compressed fi I e has not
been produced.

The reference items following each name are formatted
seven per line and are sorted by reference line number.
Unusually long operation code naml8S wi II cause fewer ref­
erence items per line to be printed,

LIMITATIONS;

The largest reference I ine number that may be correctly
processed is 32,767. If update records appear in the con­
cordance in the form "n. n", the largest update record num­
ber (". n ") that may be correctly processed is 16,383.

META-SYMBOL ERROR MESSAGES

Meta-Symbol has two basic phases: (a) the "encoder" phase,
during which the input file is read and updated, system
fi I es are read, and syntax ana Iys is is performed; and (b) the
"assembly" phase, during which the input is assembled, and
a I isting and bi nary object program are produced. Both
phases of Meta-Symbol may generate various error messages
and diagnostics. This chapter explClins these error messages.

TERMINAL ERRORS

Certain unusual conditions cause Meta-Symbol to terminate
an assembly prematurely. In such (l case, an explanation
for the termination is given, followed by the message

[METASYMBOL ABORT ERROR

If an abort occurs during a batch assembly (BA) run, the
standard termination message is

METASYMBOL ABORT ERROR
PROCESSING PROGRAM NO. nnn

where nnn is the sequence number of the program within the
batch.

Following either of the above messages, Meta-Symbol causes
an error exit (M:ERR) to the monitor.

ENCODER PHASE ERROR MESSAGES

Errors detected during the "encoder" phase fall into five
classes:

SYNTAX ERRORS

The encoder detects a variety of syntax errors during its pass
over the input fi Ie. These errors are noted for later inclu­
sion in the assembly I isting, and wi II also appear in the
source listing if one is produced (i .e., if the LS option is
specified). Syntax error identification is in the form of a
one-character flag displayed beneath the character in the
symbol ic image at which the error was detected. These
one-character flags and their meanings were given in
Table 6, Chapter 6.

ERRORS ENCOUNTERED DURING PROCESSING OF AN
UPDATE PACKET

Update Syntax Errors

record number erroneous control record

ILLEGAL SYNTAX

METASYMBOL ABORT ERROR

The update control record displayed has a syntax error in
the position indicated by the colon. The position of the
erroneous record in the update packet is indicated by the
record number. For example:

100 +5,Z

Update Record Sequence Errors

record number 1 erroneous control record 1

record number 2 erroneous control record 2

ILLEGAL UPDATE SEQUENCE

METASYMBOL ABORT ERROR

The update control records displayed are not in sequentia I
order and the SU option has been specified.

Meta-Symbol Error Messages 99

Update Command Value Errors

record number erroneous control record

ILLEGAL UPDATE SEQUENCE

METASYMBOL ABORT ERROR

The update control record displayed is of the form + j,k
where j > k.

Update Record Overlap Errors

record number 1 erroneous control record 1

record number 2 erroneous control record 2

OVERLAPPING SEQUENCE NUMBERS

METASYMBOL ABORT ERROR

The update control records displayed are overlapping in an
illegal manner. For example:

10
27

+ 13,26
+ 3, 15

Update Line Number Errors

UPDATE CONTROL NUMBERS EXCEED COMPRESSED
FILE

METASYMBOL ABORT ERROR

A line number specified in an update control record is
greater than the number of lines in the program.

ERRORS ENCOUNTERED WHILE PROCESSING AN INPUT
FILE

Input File Control Byte Errors

ERROR RECORD CONTROL BYTES xx/xx/xx/xx.
ID/SEQUE NCE/CHECKSUM/BYTE COUNT.

If error oc­
PROCESSING SYSTEM - system name.] curs whi Ie

processing a
AT LEVEL - level of system fi Ie nesting.

system fi Ie.

~OMPRESSED RECORD {~~QUE NCE]
CHECKSUM

{

identificatiOn]
SHOULD BE - correct sequence

checksum

METASYMBOL ABORT ERRQR

•

ERROR

Whi Ie reading a compressed input or system fi Ie, a com­
pressed record was encountered with the indicated erroneous
control byte.

100 Meta-Symbol Error Messages

Compressed Input File Missing

COMPRESSED FILE MISSING AFTER UPDATE PACKET

METASYMBOL ABORT ERROR

After processing an update packet, the encoder expected
but did not find a compressed file on the appropriate input
device.

Compressed Input Fi Ie Incomplete

INCOMPLETE COMPRESSED FILE

PROCESSING SYSTEM - system name.]

AT LEVEL - level of system call nesting.

METASYMBOL ABORT ERROR

If error oc­
curs whi Ie
processing a
system fi Ie.

A symbol ic record or an end-of-fi Ie was encountered whi Ie
processing a compressed file, prior to having encountered
the compressed end-of-fi Ie byte. Typically, this error
occurs when cards have been lost from the end of a com­
pressed deck.

Input File END Directive Missing

EOF ENCOUNTERED. END DIRECTIVE SUPPLIED BY
ENCODER.

PROCESSING SYSTEM - system name.]

AT LEVEL - level of system call nesti ng.

If error oc­
curs while
processing a
system fi Ie.

While processing the input file, an end-of-file was encoun­
tered prior to encountering an END directive. The missing
END directive is supplied by the encoder.

ERRORS ENCOUNTERED DURING THE OPENING OR
PROCESSING OF SYSTEM FILES

System Missing

UNABLE TO FIND SYSTEM - system name.

AT LEVEL - level of system nesting.

METASYMBOL ABORT ERROR

A SYSTEM directive specifying the system name displayed
has been encountered, but there is no system fi led wi th th is
name under any of the account numbers spec i fied by the
AC option (if any), under the current job account, or under
the "system account number".

Man i tor-Detected Errors

ERROR IN OPENING - system name.

AT LEVEL - level of system nesting.

METASYMBOL ABORT ERROR

An error has occurred while trying to find the system fi led
under the system name displayed.

OTHER ABNORMAL CONDITIONS ENCOUNTERED BY
THE ENCODER

No Input Option Specified

NO INPUT SPECIFIED.

METASYMBOL ABORT ERROR

Neither SI nor CI was specified on the METASYM card,
but the card contained other options.

Mon itor-Detected Abnormal Conditions

BAD I/O. ABNORMAL CODE - xx.

If error oc­
PROCESSING SYSTEM - system name.. }

curs while

AT LEVEL - level of system call nesting. processing a
system fi Ie.

METASYMBOL ABORT ERROR

An abnormal condition has been signaled by the Monitor.

Encoder Abort Errors

[

ENCODER ABORT. symbolic image

METASYMBOL ABORT ERROR

A machine error or an assembler error during the encoder's
syntax analysis was encountered in processing the line
displayed.

ASSEMBLY PHASE ERROR MESSAGES

In the "assembly" phase, a variet)' of syntactical, logical,
and functiona I errors are detected during the two passes
over the input. rhese errors are normally included in the
assembly listing, but wi II be listed on the LO device even
if the LO option is not specified. The non-fatal errors
cause severity of 3.

Checksum Errors

X 1 CHECKSUM ERROR

MET ASYMBOL ABORT ERROR

1-\ hardware malfunction has occurred whi Ie reading the
intermediate fi Ie.

Duplicate Definitions of Program Symbols

I DBL DEF

Thi s error message is caused by one of the fo 1I0wing
condit ions:

1. A non-redefinable symbol is defined more than once
within the program, or a symbol is defined in both
a redefinable and a non-redefinable context.

2. The same symbol is declared as an external definition
more than once within the program, or the symbol is
declared as both an external definition and an external
reference.

Unterminated Loops

I PEND/END BEFORE FIN

The assembler has detected an unterminated DO or WHI LE
loop (i. e., a PEND or END di rective was encountered
before the FIN directive that should have terminated the
loop).

Unterminated Procedures

I END BEFORE PEND

The assembler has detected an unterminated procedure (i .e.,
an END directive was encountered before the PEND direc­
tive that should have terminated the procedure).

Illegal placement of a Directive

INVALID DIRECTIVE

This error message is produced when a directive occurs in a
context where it either is meaning less· or cannot be pro­
cessed consistently.

1. An ELSE or FIN directive occurs outside a DO or WHI LE
loop, or an extra ELSE was encountered inside a DO
or WHILE loop.

2. A PEND directive occurs outside aproceduredefinition.

3. A DOl, END, or SYSTEM directive immediately fol­
lows a DO 1 di rective that has a repeat count greatel
than one.

4. An S:RELPdirective was encountered within a procedure.

Meta-Symbol Error Messages 101

Illegal Argument Fields

I ILLEGAL AF

This error message is caused by one of the following
conditions:

1. The argument field for SCaR or TCOR is not a list.

2. The argument fi eld for BOUND contains other than an
integer from 1 to X '8000'.

3. The argument fi e Id for DO, DO 1, RES, SPACE, or
WHILE contains other than a single-precision integer.

4. The argument field for ORG or LaC contains other
than an integer or an address.

5. The argument field for USECT contains other than an
address.

6. The argument fi eld for CSECT, DSCET, or PSECT con­
tains other than an integer between 0 and 3.

7. The argument fi eld of a standard instruction is blank,
or contains more than two fields.

8. The argument field for DEF, REF, SREF, CDISP, or
FDISP contains other than unsupscripted global symbols.

9. The (nonblank) argument field for TITLE contains other
than a sing Ie character string constant of 0 to 75
characters.

10. The argument field of an immediate class instruction is
indirect, or specifies indexing.

11. The (nonblank) argument field for LIST, PCC, PSR,
PSYS contains other than a non-negative, sing le­
precision integer.

12. The argument field for ERROR, TEXT, or TEXTC con­
tains other than character string constants.

13. The argument field for COM or GEN contains more
values than the Ilu:-,ber of fields specified in the
command field.

Illegal Command Fields

I ILLEGAL CF

This error message is caused by one of the following
conditions:

1. The everity level for- ERi0R" is other than an inte­
ger from 0 to 15, or the condition is other than -an
integer.

2. The command field for ORG, LaC, REF, or SREF con­
tains other than the integers 1, 2, 4, or 8.

102 Meta-Symbol Error Messages

3. The command field for DATA contains othcl than an
integer from 0 to 16.

4. The command field (for class 0 or 2) of a standard
instruction is blank.

5. The {nonblank} command field list for COM and GEN
contains other than non-negative, single-precision in­
tegers, or the total is not a mu Iti pie of 8, or is greater
than 128.

6. The {nonblank} command field for CNAME, EQU,
GOTO, RES, S :SIN, or SET contains other than a
non-negative, sing Ie-precision integer, or the com­
mand field for S:SIN is greater than 2.

Illegal Forward References

I ILLEGAL FORWARD

A symbol or literal was used in a directive in such a way
that core allocation cou Id not be determined at the time
that the directive was processed {e.g., a forward reference
in the field list of a GEN directive or in the command or
argument field of a RES directive}.

Unsatisifed Local GOTO Searches

I INVALID LOCAL GOTO

The assembler has encountered a LOCAL directive whi Ie a
GOTO search was being made for a local symbol.

Illegal Use of GOTO

I ILLEGAL GOTO

This error message is caused by one of the following
conditions:

1. Command field two of the GOT a directive specifies a
number greater than the number ofsymbqls in the argu­
ment field.

2. The selected argument is not a symbol.

3. The selected argument is a local symbol passed into the
procedure from the reference line.

Illegal Labels

I ILLEGA L LABEL

This error message is caused by one of the following
conditions:

1. The label field for CNAME, COM, FNAME, or S:SIN
contains other than an unsubscripted global symbol or
a list of such symbols.

2. The label field for DSECT cont(lins other than a single
unsubscripted global symbol.

3. The label field for a directive that enters values into
the symbol table contains other than a blank, a symbol,
a subscripted symbol, or a list of symbols or subscripted
symbols.

Illegal Subscripts

[ILLEGAL SUBSCRIPT

A subscripted definition is not an integer from 1 to 255, or
a subscripted reference is not an inl'eger from 0 to 255.

Maximum Procedure Level Exceeded

[PROC LEVEL> 31

More than 31 levels of procedure referencing have been
encountered.

New Literals in Pass 2

[NEW LITERAL IN PASS 2

Most commonly, the argument of a literal is itself a literal,
i.e., the literal of a literal.

Illegal Operand Types

[OPERAND TYPE ER_RO_R ___________ __

An operand that is illegal for the associated operator (or,
poss ib Iy, for a II operators) has been encountered.

Excessive Number of List Elements

I LIST TOO LONG

The indicated operation would create a list containing more
than 255 elements. The I ist is truncated to the first 255
elements.

Unterminated Skips

[SKIP TERMINATED BY PEND/EN~
The assembler has detected an unterminated skip in a con­
ditional assembly sequence in a procedure (i.e., a PEND
or END directive was encountered before the termination
condition was satisfied).

Memory Overflows

INSUFFICIENT CORE
META-SYMBOL ABORT ERROR

The program being assembled is too large to assemble in
the amount of core memory available. (This error can also
occur during the "encoder" phase.)

Overlong Text Strings

I TEXT TOO LONG

A single text string contains more than 255 EBCDIC characters.

Excessive Generated Data Lengths

I TRUNCA nON

The assemb ler has encountered a generated data va I ue that
is too long for the specified fie Id.

Undefined Local Symbols

I UNDEFINED LOCALS

A symbol declared to be local was used, but not defined,
within the previous local region. (This message appears at
the end of a local region.)

Undefined Symbols

I UNDEF SYM

An attempt was made to evaluate a global symbol that was
not defi ned on Pass 1 of assemb Iy, and has not yet been de­
fi ned on Pass 2.

Unrecognized Commands

I UNDEF COM

The assembler has encountered a command procedure refer­
ence containing an unrecognized command procedure name.
The command is evaluated as if it were a class 0 instruction
with an op-code of X'OO'.

Circularly Defined Symbols

I CIRCULAR DEF

The assembler has encountered a symbol that is defined in
terms of itself, either directly or indirectly.

Use of Doubly Defined Symbols

.1 USE OF DBL DEF SYM

The assembler has encountered an instruction in which a
doubly defined program symbol is used.

Meta-Symbol Error Messages 103

Illegal Object Language Value

I VALUE TYPE ERROR

The argument cannot be expressed in the standard object
language.

Doubly Defined Commands

I DBL DEF COM

The assembler has encountered a CNAME, COM, or S:SIN
statement label that is identical to the label of another
CNAME, COM, or S:SIN statement.

Arithmetic Operand Precision Exceeded

I ARITHMETIC TRUNCATION

The assembler has encountered an arithmetic operation in
which the precision of one or more of the operands exceeds
the limits allowed.

Illegal Use of CNAME

I DBL DEF DIR

An attempt has been made to redefine a Meta-Symbol di­
rective with C NAME, COM, or S:SIN.

Excessive Number of Control Sections

I TOO MANY CS

A CSECT, PSECT, or DSECT directive has been encountered
after 127 relocatable control sections have been generated.
The directive is ignored.

Illegal Use or Placement of SOCW

I SOCW ERRO~"

An illegal object language feature is required, or one of
the directives DEF, REF, SREF, CSECT, DSECT, or USECT
has been encountered, while the assembly is under SOCW
control, or the SOCW directive has been encountered after
the assembler has begun generating object code.

Unrecognized Key in S:KEYS Function

I UNRECOGNIZED KEY

The scanned argument field of the PROC reference contains
a keyword which is not specified in the S:KEYS reference.
Reporting of this condition is suppressed if mode&4>O.

104 Meta-Symbol Error Messages

Missing Key in S:KEYS Reference

I MISSING KEY

A required hit has not occurred.

Key Conflict in S:KEYS Function

I KEY CONFLICT

More than one hit has occurred for a single bit specification.

Illegal Use of S:KEYS

I ILLEGAL S:KEYS

S:KEYS is not being used within a PROC or the S:KEYS ar­
gument contains illegal syntax.

METASYM CONTROL COMMAND ERROR MESSAGES

Errors can also be detected on the METASYM control card:

Unrecognized MET ASYM Options

METASYM .card image

ILLEGAL OPTION IGNORED

The option in the position indicated by the colon is unknown.

Illegal Account Numbers

METASYM card image

ILLEGAL ACCOUNT NO. IGNORED

The account number in the position indicated by the colon
contains more than eight alphanumeric characters, or more
than nine account numbers have been specified.

Syntax Errors in METASYM Commands

MET ASYM card image

ILLEGAL SYNTAX

The character in the position indicated by the colon is er­
roneous syntactically.

CONCORDANCE CONTROL COMMAND ERROR MESSAGES

Control Command Confl ict

*CONTROL CONFLICT. ABOVE STATEMENT IG NORED

Both the SS and OS commands have been encountered. Both
may not be used.

Incorrect Symbol List

[IMPROPER SYMBOL LIST

The name list in the preceding control command is improp­
erly formatted: blanks between names, no commas, etc.

Missing Symbol List

[-MISSING SYMBOL LIST

The mandatory list of names is missing after the OS or DS
control command.

Incorrect Control Command

~IMPROPER CN CONTROL. END OF PROCESSING

The previ ous record was not a concordance control record.
The sequence of control records is considered terminated,
but a concordance listing will be produced according to any
le~Jal commands received prior to the error.

Concordance Overflow

~INSUFFICIENT SPACE TO PRODUCE CN

Less than one page (512 words) of computer memory, over
and above the assembly's symbol tables, is avai lable to the
assembler when the concordance listing is to be produced.
The concordance listing is aborted.

Extended Memory Required

"'CONCORDANCE EXTENDED MEMORY MODE

"'REFERENCE COUNT - xxxx. DISC OVERFLOW - yyyy.

MClximum efficiency in producing the concordance listing
is attained when all its reference dota may be Go-resident
in memory with the assembly's symbol tables. If this is not
possible, part of the data must remain on the intermediate
fi Ie during concordance listing, causing repeated accesses
to the RAD. When th is is the case, the above message
prints just before the concordance listing.

The reference count is the tota I number of reference items,
and disk overflow count is the number of items that are not
memory resident. If output speed reaches an unacceptable
level, the disk overflow figure indicates the approximate
amount the data should be reduced by modifyi ng the con­
cordance control commands.

As anothel alternative, the programmer might wish to con­
sider use of the OS command. The DS command requires
no reference item storage.

EXAMPLES OF RUN DECKS

Shown below in Figures 13 through 16 are examples of legal
run deck structures of varying complexity. In all the fol­
lowing examples, a blank has been inserted after the char­
acter "!" preceding some commands. This is permissible on
all but the input control commands; namely, EOO, BIN,
BCD, DATA, and FIN.

Figure 13. Sample Run Deck - Single
Symbolic Assembly

Figure 14. Sample Run Deck - Single
Assembly with Update

Examples of Run Decks 105

t Optiona I program separator.

Figure 15. Samp:e ~'Jn Deck - Batch Assembly

106 Examples of Run Decks

Figure 16. Sample Run Deck - Multiple Assembly
with Compressed Input and Output on
Magnetic Tape

APPENDIX A. SUMMARY OF META-SYMBOL DIRECTIVES

In this summary brackets are used to indicate optional items.

Form

[label 1 ' ... , label n] ASECT

BOUND boundary

CDISP symbol 1 [, ... , symbolnJ

CLOSE [symboI 1, ••• ,symbollnJ

label
1
[, ... , label n J CNAME ern] [I is!]

label
l
[, ... , label

n
] COM[,field list] [value list]

[labell, ... ,labelnJ CSECT [expression]

[labell, ... ,label
n

] DATA[,f] [valuel, ..• ,value
n

]

DEF [symbo 1
1
, ••• , symbo I n]

D1SP [list]

[labell' ... , label n] DO [expression]

[labe"'l, ... ,label n] DOl [expressi on]

Function

Declares generative statements wi II be assem­
bled to be loaded into absolute locations.

Advances the execution location counter to
a byte multiple of "boundary" and advances
the load location counter the same number
of bytes.

Displays the command procedure identi fied by
"symbol." .

I

Declares that "symbol i" are to be permanently
closed for all subsequent usage.

Designates a command ("label") for the
next procedure definition and specifies the
values ("list") associated with "label".

Describes a command skeleton; specifies
the contents of each "fie Id"; "label" is the
symbol by which the command skeleton is
referenced.

Declares program section "label" as a relo­
catable control section with memory protec­
tion spec ified by "expression" where 0:5
expression:5 3. If "expression" is omitted,
the va lue ° (no memory protection) is assumed.

Generates each value in the list of "valuei"
into a field whose size is specified by f in
bytes. If f is omitted, a field size of 4 bytes
is assumed.

Dec lares that the "symbo Ii" may be refer­
enced by other separately assembled
programs.

Displays each value specified in "list" on
the assembly listing.

If the value of "expression" is greater than
zero, processes the code from DO to ELSE or
FIN (if ELSE is absent) "expression" times.
Then continues assembly at the statement fol­
lowing FIN. If "expression" .:S 0, skips all
code from DO to ELSE or FIN (if ELSE is ab­
sent); resumes assembly at that point.

If the va lue of "expression" is greater than
zero, processes the one statement following
the DOl, "expression" times, then continues
the assembly at the next statement. If "ex­
pression" .:SO, skips the statement following
DOl and resumes assembly.

26

25

62

44

59

51

26

53

46

57

37

34

Appendix A 107

Form

label DSECT [express ion]

ELSE

[Iabel
l
, ... , labelnJ END [express i on]

[labell, ... ,labelnJ EQU['sJ [I ist J

ERROR[, s[, c]] 1 1 [1 I] cS 1 , ••• , cs n

FDISP symbol
1
[, ... , symbol

n
]

FIN

label
l

[, ... , label n] FNAME [I ist]

[Iabel
l
, ... , labelnJ GEN['field list1 [value list]

GOTO[, k] label
l
[, ... , label nJ

LIST [expressi on]

[labell' ... ,label] LOC [, n]
n

[location]

LOCAL [symbol l' ... , symbolnJ

OPEN [symboI
1
, ••• ,symbolnJ

108 Appendix A

Function

Declares a dummy program section "label"
with memory protection specified by "ex­
pression" where 0 ~ expression ~ 3. If
"expression" is omitted, the value 0 (no
memory protection) is assumed.

Terminates the range of an active DO or
WHILE loop, or identifies the beginning
of the a Iternate sequence of code for an
inactive DO or WHILE loop.

Terminates a program or system file. Op­
tionally provides the starting address of the
program. If a label is given, associates it
with the location immediately following the
literal table, which is generated at the end
of the currently active program section.

Equates "label" to the value of "list". (Non­
redefinable)

If c >0, s is compared with the current high­
est severity level, the higher value is retained,
and "message" is output. If c :5 0, ERROR is
ignored.

Displays the function procedure identified by
the "symbol i ".

Terminates a DO or WHILE loop.

Desi gnates a functi on name ("I abe I" for the
next procedure definition and specifies the
values ("list") associated with "label".

Produces a hexadecimal value representing
"value I ist" in the number of bits specified
by "field" in "field list".

Resumes assembly at the statement whose
label corresponds to the kth "label".

Suppresses or resumes assembly listing de­
pending on value of "expression". If
"expression" is zero, assembly listing following
LIS T wi II be suppressed unti I resumed by
another LIST directive; if "expression" is
nonzero, assembly I isting is enabled.

Sets the execution location counter ($) to
the value "location" and sets its resolution
specification to n, where the value of n is
1, 2, 4, or 8.

Termina.tes existing local symbol region and
initiates a new region where the "symbol."
are local symbols. I

Declares that the "symbol i" are to be open for
use as symbols unti I another OPEN or a CLOSE
directive is encountered.

Page

26

35,37

34

42

57

62

35,37

59

50

34

56

25

43

44

Form

ORG [,n J

PAGE

PCC

PEND

PROC

PSECT

PSR

PSYS

REF [,n]

[Iabel l ,·· .,labelnJ RES[,n]

[Iabel l ,·· .,labelnJ SETLs]

S:RELP

S:SIN,n

[location]

[expressi on]

[I ist]

[expression]

[expressi on]

[expression]

symbo 11 [, ... ,symbo I]
n

[expression]

[I ist]

[expression]

Function

Sets both the current load location counter
($$) and the current execution location
counter ($) to the value "location" and sets
their resolution specifications to n, where
the value of n is 1,2,4, or 8.

Upspaces assembly I isting to the top of form.

Suppresses or resumes assembly listing of direc­
tives PAGE, SPACE, TITLE, LIST, PSR, PSYS,
and PCC, depending on value of "expression".
If "expression" is zero, assembly I isting of these
directives wi II be suppressed unti I resumed by
another PCC directive; if "expression" is non­
zero, these directives wi II be listed.

Terminates procedure definition.

Identifies the beginning of a procedure
definition.

Dec lares program section "Iabe I" as a re lo­
catable control section to be loaded on a
page boundary with memory protection speci­
fied by "expression" where expression is in
the range 0 to 3. If "expression" is omitted,
the value 0 (no memory protection) is assumed.

Suppresses or resumes assembly listing of lines
skipped under control of GOTO, DO, or
WHILE, depending on value of "expression".
If "expression" is zero, assembly I isting of
lines skipped subsequent to PSR will be sup­
pressed until resumed by another PSR direc­
tive; if "expression" is nonzero, skipped lines
wi II be listed.

Suppresses or resumes assembly I isting of fi les
called by the SYSTEM directive. If "expres­
sion" is zero, assembly I isting of all fi les
called by SYSTEM subsequent to PSYS will
be suppressed unti I resumed by another PSYS;
if "expression" is nonzero, system fi les wi II
be listed.

Declares that the "symbol i " are references to
externally defined symbols.

Adjusts both location counters ($ and $$) by
the number of n-sized units indicated by the
value of expression. If n is omitted, a size of
four bytes is assumed.

Equates "label" to the value of "list".
(Redefinable.)

Releases all command and function procedure
definitions.

Defi nes standard instruction, "lobe I", to be of
format "n", with opcode "expression".

Page

24

58

56

60

60

27

56 I

57 I

48

26

43

62

53

Appendix A 109

Form

SOCW

SPACE [expression]

SREF [,n] [symboll"'" symbol n]

SYSTEM name

[Iabel
l
,· .. , label n] TEXT 1 1 [1 I]

CS 1 ' ••• , cs n

[labell' ... , label n]
TEXTC 1 1 [1 I] cS

l
, ... , cS

n

TITLE

USECT name

WHILE [expressi on]

llO Appendix A

Function

Suppresses the automatic generation of
object control words.

Upspaces the assembly listing the number
of lines indicated by expression. If expres­
sion is omitted, 1 is assumed.

Dec lares that the IIsymbo I i II are secondary
ex terna I references.

Calls system IIname ll from the library
storage media.

Assembles the IIcsill (character string constant)
in bi nary-coded format for use as an output
message.

Assembles the IIcsill (character string con­
stant) in binary-coded format, preceded
by a byte count, for use as an output
message.

Prints IICS II (character string constant) as a
heading on each page of assembly listing.

Spec ifies that the control section of wh ich
label IIname ll is part is to be used in assem­
bling subsequent statements.

If lIexpressionll:S 0, skips all code from
WHILE to ELSE or FIN (if ELSE is absent),
and resumes assembly at that point. If
lIexpression II "0, performs the comparison
(0 :s expression) again, and proceeds
accordingly.

Page

55

55

48

33

54

55

56

27

35

APPENDIX 8. SUMMARY OF SIGMA INSTRUCTION MNEMONICS

Required syntax items are underlined whereas optional items
are not. The following abbreviations are used:

m

v
-A"

a
x

mnemonic
register expression
val ue expression
indirect desi gnator
address expression

Codes for requ ired opti ons are

9 Sigma 9
7 Sigma 7 (or 9)
P Pri vi I eged
D Decimal Option
F Floating-Point Option
L Lock Opti on
MP Memory Map Option

d
index expression
displacement expression SF Special Feature-not implemented onall machines

Mnemonic Syntax

LOAD/STORE

LI ~ v
LB ~ "*a, x

LH ~ -A'~,x

LW ~ *~, x
LD ~ -A'~,x

LCH ~
"k-a,x

LAH ~ *a, x
LCW ~ -A'~,x

LAW ~ *~,x
LCD ~ *~,x
LAD ~ *~, x
LS ~ *~, x
LM ~ -A'~ x

-' LCFI m ~,v

LCI m v

LFI m v
LC m *0, x
LF m *0, x
LCF m *~,x
LAS ~,r *~,x
LMS ~, r *0, x

LRA ~ *a, x
XW ~ *~,x
STB ~ *~,x
STH ~ *~,x
STW ~ *~, x
STD ~ *0, x
STS ~ -A'o, x

STM ~ *0, x
STCF m *~,x

AI'-JAL YZE AND INTERPRET

ANLZ ~
"k a,x

INT ~ *~x

FIXED-POINT ARITHMETIC

AI ~ v
AH ~ "ka, r

AW ~
, .. -
a,x

AD ~
"A'-a,x

SH ~ "k~, x

Function

Load Immediate
Load Byte
Load Halfword
Load Word
Load Doubl eword
Load Comp I ement Ha I fword
Load Absolute Halfword
Load Complement Word
Load Absolute Word
Load Complement Doubleword
Load Absol ute DOlJbleword
Load Selective
Load Multiple
Load Conditions and Floating Control Immediate
Load Conditions Immediate
Load Floating Control Immediate
Load Condi ti ons
Load Floating Control
Load Conditions and Floating Control
Load and Set
Load Memory Status
Load Real Address
Exchange Word
Store Byte
Store Halfword
Store Word
St"ore Doubleword
Store Selective
Sf-ore Multiple
Store Conditions and Floating Control

Analyze
Interpret

Add Immediate
Add Halfword
Add Word
Add Doubleword
Subtract Halfword

Equival ent to:
Required

Option~

SF
SF
9P

Appendix B 111

Mnemoni c Syntax

FIXED-POINT ARITHMETIC (cont.)

SW
SD
MI
MH
MW
DH
DW
AWM
MTB
MTH
MTW

COMPARISON

CI
CB
CH
CW
CD
CS
CLR
ClM

LOGICAL

OR
EOR
AND

SHIFT

S
SLS
SLD
SCS
SCD
SAS
SAD
SSS
SSD
SF

SF~
SFL

CONVERSION

CVA
CVS

*a, x
*~ x -'
v

*~,x
*a, x
".~, x

*~,x
,,·~,x

,,·~,x
· a,x
.A.~, X

v

*a,x
"·a,x
*a,x
".~, x
"·a, x

"·a,x
".~ x
-'

*a, x

*~, x

*~, x

"·~,x

'!...' x
'!...' x
'!...' x
'!...,x
'!...' x
~x

~,x

a, x
*a,x

'!...' x
~x

*a, x

*~ x -'

FLOATING-POINT ARITHMETIC

FAS
FAL
FSS
FSL
FMS
FML

112 Appendix B

*a, x
*a,x
*a,x
"·0, x

*0, x
*~,x

Function

Subtract Word
Subtract Doubleword
Multiply Immediate
Multiply Halfword
Multiply Word
Divide Halfword
Divide Word
Add Word to Memory
Modify and Test Byte
Modify and Test Halfword
Modify and Test Word

Compare Immediate
Compare Byte
Compare Halfword
Compare Word
Compare Doubleword
Compare Selective
Compare with Limits in Register
Compare with Limits in Memory

OR Word
Exclusive OR Word
AND Word

Shift
Shift Logical, Single
Shift Logical, Double
Shift Circular, Single
Shift Circular, Double
Shift Arithmetic, Single
Shift Arithmetic, Double
Shift Searching, Single
Shift Searching, Double
Shift Floating
Shift Floating, Short
Shift Floating, Long

Convert by Addition
Convert by Subtraction

Floating Add Short
Floating Add Long
Floating Subtract Short
Floating Subtract Long
Floating Multiply Short
Floating Multiply Long

Required
Equivalent to: Options

9
9

7
7

F
F
F
F
F
F

Required
Mnemonic Syntax Function Equivalent to: Options

-------- ----

FLOA TIN G-POINT ARITHMETIC (cont.)

FDS ~ *a, x Floating Divide Short F
FDL ~ *~ x Floating Divide Long F -'

DECIMAL

DL m, v *a, x Decimal Load D
DST m,v" *a,x Decimal Store D
DA m, v ""a, x Decimal Add D
DS m,v *a,x Decimal Subtract D
DM m, v *0, x Decimal Multiply D
DO m, v ""a, x Decimal Divide D
DC m, v ""a, x Decimal Compare D
DSA m ""~, x Decimal Shift Ari thmeti c D
PACK m,v ""~, x Pack Decimal Digits D
UNPK m, v ""~ x -' Unpack Decimal Digits D

BYTE STRING

MBS ~ d Move Byte Stri ng 7
CBS ~ d Compare Byte Stri ng 7
TBS ~ d Translate Byte String 7
TTBS ~ d Translate and Test Byte String 7
EBS ~ d" Edit Byte String D

PUSH DOWN

PSW ~ *a, x Push Word
PLW ~ *0, x Pull Word
PSM ~ *0, x Push Multiple
PLM ~ *0, x Pull Multiple
MSP ~ "::i x Modify Stack Pointer -'

EXECUTE/BRANCH

EXU m *a, x Execute
BCS m,v *a,x Branch on Conditions Set
BCR m,v *o,x Branch on Conditions Reset
BIR ~ *0, x Branch on Incrementing Register
BDR ~ *0, x Branch on Decrementing Register
BAL ~ *0, x Branch and Link
B m *~, x Branch BCR,O *a, x

BE m *a, x r Branch if Equa I BCR, 3 *a, x
BG m *0, x Branch if Greater Than BCS, 2 *a,x
BGE m *0, x Branch if Greater Than or Equal to BCR, 1 *a,x
BL m *0, x Branch if Less Than BCS, 1 *0, x
BLE m *'0, x Branc h if Less Than or E qua I to BCR, 2 *;, x
BNE m *0, x

For Use After
Branch if Not Equal to BCS,3 *;, x

BEZ m ""a, x
Comparison

Branch if Equal to. Zero BCR, 3 *0, x
BNEZ m *- Branch if Not Equal to Zero BCS,3 *0, x a,x

Instructions
BGZ m *0, x Branch if Greater Than Zero BCS,2 *0, x
BGEZ m *0, x Branch if Greater Than or Equal to Zero BCR, 1 *a,x
BLZ m *a,x Branch if Less Than Zero BCS, 1 ""a, x
BLEZ m *0, x Branch if Less Than or Equa I to Zero BCR, 2 ""a, x
BAZ m *a,x Branch if Implicit AND "is Zerot BCR,4 *a,x
BANZ m *0 x Branch if Implicit AND is Nonzerot BCS,4 *0, x

-' ----
tSee CW instruction in Xerox Sigma 7 Computer Reference Manual.

Appendix B 113

Required
Mnemonic Syntax Function Equivalent to: Options

EXECUTE/BRANCH (cont.)

BOV m *a, x Branch if Overflow BCS,4 *a, x
BNOV m *~,x

For Use After
Branch if No Overflow BCR,4 *~, x

BC m "'~,x
Fixed-Point

Branch if Carry BCS,8 *~, x
BNC m *~,x

Arithmetic
Branch if No Carry BCR,8 *~, x

BNCNO m *~,x
Instructions

Branch if No Carry and No Overflow BCR,12 *~, x
BWP m *~,x Branch if Word Product BCR,4 *~, x
BDP m *~ x

-' Branch if Doubleword Product BCS,4 *; x
-'

For Use After

{ BEV m "'"a, x Fixed-Point Branch if Even (number of l's shifted) BCR,8 "'"a, x
BOD m *~ x Shift Instruc- Branch if Odd (number of l's shifted) BCS,8 *~,x -'

tions

B10 *a, x
For Use After

{ Branch if Illegal Decimal Digit BCS,8 *a, x m
Decimal

BLD m *~,x
Instructions

Branch if Legal Decimal Digit BCR,8 *~ x

BSU m "'"a, x Branch if Stack Underflow BCS,2 "'"a, x
BNSU m *~,x Branch if No Stack Underflow BCR,10 *~, x
BSE m *~,x

For Use After
Branch if Stack Empty BCS,l *~,x

BSNE m *~,x
Push Down

Branch if Stack Not Empty BCR,l "'"~, x
BSF m *~, x

Instructions
Branch if Stack Full BCS,4 *~,x

BSNF m *~,x Branch if Stack Not Full BeR,15 *~,x
BSO m *~,x Branch is Stack Overflow BCS,8 *~, x
BNSO m *; x

-' Branch if No Stack Overflow BCR,8 *; x
-!

BIOAR m *a, x Branch if I/O Address Recognized BCR,8 *a, x
BIOANR m *;, x Branch if I/o Address Not Recognized BCS,8 *;, x

BIODO m *~,x
For Use After

Branch if I/O Device Operating BCS,4 *;,x
BIODNO m *~, x

Input/Output
Branch if I/O Device Not Operating BCR,4 *;,x

BIOSP m *~, x Branch if I/o Start Possible BCR,4 *;, x

BIOSNP *;,x
Instructions

Branch if I/O Start Not Possible BCS,4 *~, x m
BlOSS m *(;", x Branch if I/O Start Successful BCR,4 "'"~, x
BIOSNS m *~ x

-'
Branch if I/O Start Not Successful BCS,4 *~x

CALL

CAll m,v *~,x CallI
CAL2 m,v *a,x Cal12
CAL3 m,v *a, x Cal13
CAL4 m,v *a, x Cal14

CONTROL

LPSD m, r *a, x Load Program Status Doubleword P
XPSD m, r *;,x Exchange Program Status Doubleword P
LRP m *;,x Load Register Pointer P
MMC m, r v Move to Memory Contro I P
LMA,.P m,r Load Map 7MP
LMAPRE m, r Load Map (Real Extended) 9MP
LPC m, r Load Program Control 7MP
LLOCKS m, r Load Locks LP
WAIT m *a, x Wait P
RD m, r *;, x or (v, v), x Read Direct P
WD ~ *~, x or (v, v), x Write Direct P

114 Appendix B

Mnemonic Syntax

CONTROL (cont.)

NOpt !!l
PZE m

INPUT/OUTPUT

510 ~

HIO ~

T10 m,r

TDV ~

AIO m, r
RIO ~
POLP ~
POLR m, r

a,x
~,x

*a,xor(~,x

or (v,v,v),x
*a, x or (v, v), x
-- or (v, v, v), x
*a,x or (v,v),x
-or (v, v, v), x
*a, x or (v, v), x
-or (v, v, v), x

*~x
*a, x
*~x

*~x

Function

No Operation
Positive Zero

Start Input/Output

Ha It Input/Output

Test Input/Output

Test Device

Acknowledge Input/Output Interrupt
Reset Input/Output
Po II Processor
Poll and Reset Procl~ssor

t Generates an LCFI instruction with neither C nor F specified.

Requ ired
Options

P

P

P

P

P
9P
9P
9P

Appendix B 115

INDEX

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

+E I'JD (update command), 93,95
+i, k (update command), 93, 111
-tk (update command), 93, 111
$,20,2,23-25,28,50,100
$$, 20,2,23,24,28,50
***'k, 86
*5-1.', 35,61,86

(I iteral designator), 5

A
absolute address, 5
absolute section, 27
absolute value, 21
absolute zero, 55
ABSVAL function, 21
AC option, 91
address resolution, 22
addresses, 5-8
addressing, 20
addressing functions, 20
advance location counters to boundary, 25
AF function, 52,64
AFA function, 52,64
argument field, 10,8,52,64
argument field asterisk, 52,64
ASECT directive, 26-30
assembly

control, 32-42
listing, 85-89
I isting line, 86
passes, 1
phase error messages, 103

ASSIGN
control command, 90, 109
control command format for labeled tape, 96

asterisk

B

as indirect addressing, 6,7
as multiplication operator, 7
in column 1 (comments), 10
in concordance listing, 100
test for presence of (AFA function), 52,64,65

BA function, 20,92
batch monitor control commands, 90-93
begin new page, 58
begin procedure definition, 60
blank lines in assembly listing, 55
blanks at beginning of field, 8

, BO option, 92, 110

bootstrap loaders, 55
BOU ND directive, 2:5
byte address, 20
byte count, 55

c
CDISP directive, 62
CF function, 52,64
character

set, 2
string constant, 3,55,56,73
string functions, 74

CI, 95,92, 110
classification of symbols, 12
C LOSE directive, 44-46
CN option, 92, 110
CNAME directive, 59
CO, 92, 110
coding form, 9
COM directive, 51
command

definition, 51
definitions stack, 84
field, 9,8,52,64
procedure, 59,60,61

commas, 9
comment

field, 10,8
lines, 10

compressed files on magnetic tape, 96
concordance control

command error messages, 106
commands and listing, 99, 100

conditional branch, 34
conditional code generation, 78
constants, 2
continuation lines, 10
control section, 72
control section summary, 88
creating and using standard definition files, 98
creating system files, 97,112
CS function, 72
CSECT directive, 26-30

o
DA function, 21
DATA directive, 53
data generation, 50-55,32
DC option, 92
dec ima I constant, 4

Index 117

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereaft'er are listed In

numerical sequence.

declaration of
external definitions, 46
externa I references, 48
local symbols, 43

DEF directive, 46
defining symbols, 11
determine number of elements, 66
directives, 32-58

summary of, 113-116
DISP directive, 57
display values, 57
DO directive, 37-42
DO-loop, 38
doubleword address (DA function), 21
001 directive, 34
OS concordance command, 100
DSECT directive, 26
dummy sections, 31

E

EBCDIC character string, 54
ELSE directive, 35-42
encoder phase error messages, 101
end assembly, 34
END directive, 34
E NO concordance command, 100
end procedure definition, 60
entries, 8
EOD control command, 93, 111
EQU directive, 42
equate symbols (EQU directive), 42
equate symbols line, 85
ERROR directive, 57
error

line, 86
line summary, 89
messages, 10 1, 106, 107
severity level, 57,89

errors
encountered during processing of update packet, 101
encountered during opening or processing of system

fi les, 102
encountered whi Ie processing an input fi Ie, 102

~xamples of run decks, 108
execution location counter, 28
expression evaluation, 6
expressions, 6,7
external

F

definition, 46
definition summary, 89
reference, 12,48

FDISP directive, 62
fi e I d lis t, 50, 51
fields, 8

118 Index

FI N directive, 35-42
FI N control command, 93
fixed-point decimal constant, 4
floating-point long constant, 5
floating-point short constant, 5
FNAME, 59
forward references, 11,69
function procedure, 59,61

G
GE N directive, 50
generate a va lue, 50
GO option, 92, 110
GOTO directive, 34

H
HA function, 21
halfword address, 21
hexadecimal constant, 3

identify output, 56
ignored source image line, 86
include system fi Ie, 33
inhibit forward reject, 68
instruction set mnemonics, 33
intrinsic

address resolution, 20
functions, 63-74
symbols, 67

I/O concordance command, 99
iteration control, 34,35
iterative loops, 38

J
JOB control command, 90

K
keyword scan (S:KEYS function), 69

L
L (literal designator), 5
Jabel field, 9,8,63
labeled magnetic tapes, 96
LF function, 63
LIMIT control command, 90
linear value lists, 12
LIST directive, 56

Note: For each entry in this index, the number of the most si:gnificant page is listed first. Any pages thereafter are listed in
numer i ca I sequence.

list/no list, 56
listing

control, 55-58,32
format, 85
of sk i pped records, 56
of system fi I es, 57

lists, 12-19
in procedures, 74-77

literal line, 86
literals, 5,31
La option, 92, 110
load location counter, 28
LaC directive, 25,23
LOCAL directive, 43
local symbol region, 43
location counter, 23,20,55
logical operators, 7
LS option, 92, 110
LU option, 92, 110

M
memory protection feature, 27
METASYM

control command, 91, 110
contro I command error message!), 106

mnemonics, 117-121,33
mon i tor error messages, 107
multiple

labels, 9
name procedures, 62

N
NAME function, 65
I'JO option, 92
nonlinear value lists, 15
NS option, 92, 110
null value, 13
NUM function, 17,66
number of characters, 72
number of elements in a list, 17

o
octa I constant, 3
OL option, 111
OPEN directive, 44-46
operating procedures, 90-112
operational labels, implicitly assi~,ned, 109
operators, 6
ORG directive, 23,24
OS concordance command, 100

p

pack text, 73
PAGE directive, 58
parentheses, 6,9, 16, 70
Pass 0, 1
Pass 1, 1
Pass 2, 1
PCC directive, 56
PO option, 92
PE NO directive, 60
previously defined references, 11
primary external reference summary, 89
print

contro I cards, 56
sk i pped records, 56
system, 57

PROC directive, 60
procedure

control, 32
display, 62
format, 59
levels, 63
name reference, 65
reference lists, 74-77
references, 60

procedure-defining procedure, 84
procedure-local symbol region, 43
procedures and lists, 59-84
processing of symbols, 10
program

deck structures, 94, 112
section directives, 26
sections, 26-31

PSECT directive, 27
PSR directive, 56
PSYS directive, 57

Q

quotation marks, 3,54

R
recursive

command procedure, 81
function procedure, 78

redefining symbols, 11
redundant parentheses, 16
REF directive, 48
reference syntax for lists, 14
relative addressing, 20
release procedure definitions, 62
relocatable

address, 5
control sections, 27

RES directive, 25

Index 119

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

reserve an area, 26
restrictions on forward references, 69
returning to a previous section, 28
run decks, examples of, 108, 109

s
S:AAD, 67
S:C, 67
S:D,67
S:DPI, 67
S:EXT, 67
S:FL, 67
S:FR, 67
S:FS, 67
S:FX, 67
S:IFR, 68
S:INT, 67
S:KEYS, 69,70
S:LFR, 67
S:lIST, 67
S:NUMC, 72
S:PT, 73
S:RAD, 67
S:RE LP, 62
S:SIN, 53
S:SUM, 67
S:UFV, 68
S:UND, 67
S:UT, 73
sample procedures, 77-84
sample stack, 84
saving and resetting the location counters, 28
SB option, 92
SC option, 92
SCaR function, 66
SD option, 93, 111
secondary external references, 48,89
self-defining terms, 3
semicolon, 9
SET directive, 43
set

a value, 43
program execut ion, 25
program origin, 24
location counter, 24

51, 93, 111
skip flag ($$$), 86,61
sk i pped records, 56
skipping mode, 35
SO, 93, 111
SOCW directive, 55
source statement, 8
SPACE directive, 55
space listing, 55
5REF directive, 48
55 concordance command, 100
standard instruction definition, 53
statement continuation, 10

120 Index

statements, 8
SU option, 93, 111
suppress object control words, 55
symbol

control, 44
correspondence, 66
manipulation, 42-50,32
references, 11
table, 12,22
va lue summary, 88

symbols, 2, 10, 12
syntax, 8
syntax errors, 10 1
SYSTEM directive, 33

T
TCOR function, 67
terminal errors, 101
TEXT directive, 54
text with count, 55
TEXTC directive, 55
TIME option (LIMIT command), 90
TITLE directive, 56
trailing blanks, 54,55
type correspondence, 67

u
undefined symbol summary, 89
unlabeled magnetic tapes, 96
unpack text, 73
updating a compressed deck, 93
updating a compressed file, 111
use forward va I ue, 68
USECT directive, 27

v
value lists, 12-17,50,51

w
WA function, 21
WHILE directive, 35-38
WHILE-loop, 35-38
word address, 21

x
XOS control commands, 109
XOS operations, 109

XEROX

Reader Comment Form
We would appreciate your comments and suggestions for improving this publication

1--
Publ ication No. tOV• Lotto,to I Current Date

I
~-

How did you use this publication? Is the m,aterial presented effectively?

0 Learning 0 Installing 0 Sales o Fully Covered DWell o Well organized o Clear o Reference o Maintaining 0
Illustrated

Operating

What is your overall rating of this publication? What is your occupation?

o Very Good o Fair o Very Poor

o Good o Poor

Your other comments may be entered here. Please be specific and give page, column, and line number references where
applicable. To report errors, please use the Xerox Software Improvement or Difficulty Report (1188) instead of this form.

I
~-

--
~-

f--.

--
_.

~.

r--'

_.

_.

_.
_.

Your name & Return Address

~.

Thank You For Your Interest. (fold & fasten as shown on back. no postage needed if mailed in U S.A)

PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not del iver stapled forms

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 59153 LOS ANGELES,CA 90045

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
5250 W. CENTURY BOULEVARD
LOS ANGELES, CA 90045

ATTN: PROGRAMMING PUBLICATIONS

Honeywell

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

w
z
:J
t)
z
o
-J
«
....
::::>
u

I
I
I
I
I
I W

I ~
I t)

I Z
~g

«
o
-J
o
u..

W
z
:::i
(!)
z

~o
-J

IJ
I
I
I
I
I
I
I
I

«
o
...J
o
u..

· Honeywell Information Systems
In the U.S.A.. 200 Smith Street, MS 486, Waltham, Massachusetts 02154
In Canada: 2Q25 Sheppard Avenue East. Willowdale, OntarIO M2J 1 W5

In MexIco: AveOida Nuevo leon 250, Mexico 11, OF

21506, 5C878, Printed I'; U.S.A. XG48, Rev. 0

	00001
	00002
	0001
	0002
	0003
	0004
	0005
	0006
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	replyA
	replyB
	xBack

