
Xerox ANS COBOL (for BPM/CP-V)
Xerox 550 560 and Sigma 5-9 Computers

Language

Reference Manual

Xerox ANS COBOL (for BPM/CP-V)
Xerox 550/560 and Sigma 5-9 Computers

LalgUage

Reference Manual

90 15 000

May 1976

XEROX

REVISION

This edition mere Iy incorporates the 90 15 OOC-' revision package into the manual. It documents the E07 version
of the software.

RELATED PUBLICATIONS
Publication No.

Xerox 550 Computer /Referen ce Manual 9030 77

Xerox 560 Computer/Reference Manual 9030 76

Xerox Sigma 5 Computer/Reference Manual 90 09 59

Xerox Sigma 6 Computer/Reference Manual 90 17 13

Xerox Sigma 7 Computer/Reference Manual 900950

Xerox Sigma 8 Computer/Reference Manual 90 1749

Xerox Sigma 9 Computer/Reference Manual 90 17 33

Xerox Batch Processing Mon itor (BPM)/BP, RT Reference Manual 900954

Xerox Batch Processing Monitor (BPM)/OPS Reference Manual 90 11 98

Xerox Control Program-Five (CP-V)/TS Reference Manual 900; 07

Xerox Conti-ol Program-Five (CP-V)/OPS Reference Manual 90 1675

Xerox Control Program-Five (CP-V)/TS User's Guide 90 1692

Xerox Control Program-Five (CP-V)/SM Reference Manual 90 1674

Xerox ANS COBOL (for CP-V/BPM)/OPS Reference Manual 90 1501

Xerox ANS COBOL On- Line Debugger Reference Manual 9030 60

Xerox Sort and Merge (for CP-V/BPM)/Reference Manual 90 11 99

Xerox Data Management System (DMS) (for BPM/CP-V)/Reference Manual 90 17 38

Xerox Extended Data Management System (E DMS)/Reference Manual 9030 12

Manual Content Codes: BP - batch processing, LN - language, OPS - operations, RP - remote processing,
RT - real-time, SM - system management, SP - system programming, TP - transaction
processing, TS - time-sharing, UT - utilities.

Ti", spt'(-:f;c"ti,"ns of the softwore sy,tem desclihed in this publication are subject to change without notice. The availab;l;t, or perforn,,:nce of some features

"C I·. "'pel'" nn U specific conf;qurotion of eql.ipment such as additional tape units or lorger rnemorv. Customersshouldconsult theil Xelox sales leplesentoti.'e
:." oero. is

ii

CONTENTS

ACKNOWLEDGMENT vi INPUT -OUTPUT SECTION_ 17
FILE-CONTROL Paragraph 17

SELECT Sentence 18
PREFACE vii ASSIG N Clause 18

MUL TlPlE Clause 18

COMMAND SYNTAX NOTA T10t'-l RESERVE Clause 19 x
FILE-LIMITS Clause 19
ACCESS Clause 19

1. COBOL LANGUAGE STRUCTURE PROCESSING Clause 19
ACTUAL KEY Clause 19

In troduc ti on 1 I-O-CONTROL Paragraph 20
Character Set 1 RERUN Clause _ 20
Words 2 SAME AREA Clause 20

Definition and Application 2 MULTIPLE FILE Clause 21
Special Registers 4
Special Names 4
Reserved Words 4
Concept of Computer-Independent Data 5. DATA DIVISION 22

Description 5
Algebraic Signs ______ 6 General Description 22
Uniqueness of Data Reference 6 Physical and Logical Aspects of Data Format Notation ____ 8 Description 22 Reference Format 9

DATA DIVISION Organization 22
DATA DIVISION Structure 22

FILE SECTION 22

2. COBOL INPUT/OUTPUT PROCESSING 11
WORKIN G-STORAGE SECTION 24
LINKAGE SECTION 24
COMMON-STORAGE SECTION 24

Mon i tor- Formatted Fi I es 11
REPORT SECTION 24

File Organization _____ 11
File Description - Complete Entry Skeleton _ 25

BLOCK CO NT AINS Clause 25
File Access 11

.RECORD CONTAINS Clause 26 File-Handling Methods __ 12
.File Labels 12 LABEL RECORDS Clause 26

VALUE OF Clause 26
Input/Output Processing Summc]ry 12

DATA RECORDS Clause 26
REPORT Clause 27

Data Description Entries 27

3. IDENTIFICATION DIVISION 14 REDEFINES Clause 30
COPY Statement 31

General Description 14 PICTURE Clause 31
USAGE Clause 36

Organization 14
SYNCHRONIZED Clause 38

PROGRAM-ID Paragraph 14
BLANK WHEN ZERO Clause 38

DATE-COMPILED Paragraph 14 JUSTIFIED Clause 38
VALUE Clause 38
OCCURS Clause 40
RENAMES Clause 42

4. ENVIRONMENT DIVISION 15

General Description 15 6. PROCEDURE DIVISION 44

Configuration Section 15
SOURCE-COMPUTER Paragraph 15 General Description 44
OBJECT -COMPUTER Paragrclph 16 PROCEDURE DIVISION Elements 44
SPECIAL-NAMES Paragraph 16 PROCEDURE DIVISION Structure 45

Implementor-name Clause· 17 Arithmet ic- Expressions 45
CURRENCY SIGN Claus€' 17 Order of Computation in
DECIMAL-POINT Clause 17 Compound Condi ti ons 46

iii

7.

iv

CC'I1c!i t;n!)o I Staternents ____________ 47
Condi tions __ _ 47
Relations ________________________________ 47
Logical Operators (AND, OR, and NOT) __ 47
Order of Computation in

Arithmetic-Expressions _ 48
Other Conditions Tests 49
Campari son of Numeri c Items _______ 50
Comparision of Non-Numeri c Items 50
Abbreviated Relations ________________ 51
Condi ti anal Statements with Exception

Branches _____ ~ ____________ 52
Nested Conditional Statements ________ 52

Input/Output Statements 52
OPE N Statement ______ 52
READ Statement ______ 53
WR ITE Statement 54
C LOSE Statement 54
SEE K Statement 55
ACCEPT Statement ___ _ 55
DISPLAY Statement ____ 55

Ari thmeti c Statements 56
Rules for Arithmetic Verbs 56
ADD Statement 57
SUBTRACT Statement 59
MUL TIPL Y Statement 60
DIVIDE Statement 61
COMPUTE Statement 62

Data Manipulation Statements 63
EXAMINE Statement _ 63
INSPECT Statement 64
MOVE Statement 67
S TRIN G Statement 71
UNSTRING Statement 72

Sequence Control Statements 74
Normal Sequence Control 75
Loading of Priority Segments __ 75

Reference to Unnamed Procedures 75
GO TO Statement 75
AL TER Statement 76
PERFORM Statement 76
STOP Statement 80
EXI T Statement 80
IF Statement 80

Table-Handling Statements 82
SEARCH Statement 82
SET Statement 83

Compi ler-Directing Statements 85
NOTE Statement 85
USE Statement 85
COpy Statement 86

REPORT WRITER 87

Introduction 87
General Description 87
Control Groups 87
Page/Overflow Conditions 87
Specia I Counters 88

DA TA DIVISION 88
Entry Formats 88

FILE SECTION 88
REPORT SECTION 88

PROCEDURE DIVISION _____ _______ ____ 97
INITIATE Statement__________________________ _ 97
GENERATE Statement ___________________ 97
TERMINATE Statement ____________________ 98

USE BEFORE REPORTING Statement ______ 98

8. SORT Ff:.A TURE 99

General ____ ______ _________ ___________________ 99
Sort Feature Compunents _____________________ 99

E NVIRONME NT DIVISION Statements ___ 99
DA. T'A DIVISION Statements __________ 99
Sort Keys ______________________ 100
PROCEDURE DIVISIOI'-i Statements __ 100

9, COBOL LIBRARY 102

Introduction 102
COpy Statement ________________ 102

10. IN TER-PROGRAM COMMUNICA nON 104

LIN KAGE SECTION 104
Noncontiguous Linkage Storage 104
Linkage Records ____________________ 104
Initial Values _ -_________________ 104
PROCEDURE DIVISION Header 105
CALL Statement 105
EXIT PROGRAM Statement 106

Subcompi Ie Feature 106
Rules for Usage 107
EN TER Statement 108

11. PRIORITY SEGMENTATION 109

12. DEBUG GIN G FACI LITIES 110

DEBUG-ITEM 110
Compile Time Switch 110
Object Time Switch 110

WITH DEBUGGING MODE Clouse 110
USE FOR DEBUGGING Statement 111
Debugging Lines ____ 113
Extended Debugging Features 113

TRACE Statement 113
EXHIBIT Statement 114

INDEX 133

APPENDIXES

A. XEROX ANS COBOL RESERVED WORDS 115

B. SAMPLE XEROX ANS COBOL PROBLEM 116

C SLACK BYTES 120

D. EVAlUA TJON OF ARITHMETIC-EXPRESSIONS 122 E-l. SORT Program 127

Number Representation ___ 122 F-1. Report Writer Program __ 129
Numeric Conversion ____ 122
Intermediate Results ____ 123 F-2. Report Wri ter Generated Report 131
Decimal Scaling of Intermediate Results 124

COMPUTA TIONAl (Bino,ry Integer Mode) __ 124
COMPUTA TIONAl-1, C:OMPUTATIONAl-2

(Floating-Point Mode - Either Single
or Double Precision) 124 TABLES

COMPUTATIONAl-3 (Decimal Mode) 124
ROUNDED and SIZE ERROR Options 125 1. File Manipulation Statements 13

2. Combination of Characters in a PICTURE
E. SORT FEATURE SAMPLE PROGRAM 127 Clause 37

3. Rules for Constructing Arithmetic-Expressions_ 46
F. REPORT WRITER SAMPLE PROGRAM 129

4. Rules for Constructing Compound Conditions_ 4B

FIGURES 5. Valid Class Tests 50

1. DATA DIVISION Structure 23 6. Permissible Comparisons 51

2. Various Data Description Entries listing 2B 7. Rounding or Truncation of Calculations 57

3. PERFORM Statement (VARYIN G Option) __ 79 B. Permissible Moves 70

4. SEARCH Operation (Two WHEN Phrases) ___ 84 9. Contents of DEBUG-ITEM Register Fields ___ 113

5. Calling and Called Programs 106 D-1. I and D Values 125

B-1. Sample Xerox ANS COBOL. Program 119 D-2. ROUNDED and SIZE ERROR Options 126

v

vi

ACKNOWLEDGMENT

In compliance with the request of the Executive Committee of the Conference on Data System languages
(CODASYL), and specifically the CODASYl COBOL Committee, the following acknowledgment is extracted
from that contained in the publication COBOL, Edition 1965.

"Any organization interested in reproducing the COBOL report and specification/, in whole or in part, using ideas
taken from th is report as the basis for an instruction manual or for any other purpose is free to do so. However, al I
such organizations are requested to reproduce this section as part of the introduction to the document. Those using
a short passage, as in a book review, are requested to mention COBOL in acknowledgment of the source, but need
not quote this entire section.

"COBOL is an industry language and is not the property of any company or group of companies, or of any organization
or group of organizations.

"No warranty, expressed or implied, is made by any contributor or by the COBOL Committee as to the accuracy
and functioning of the programming system and language. Moreover, no responsibility is assumed by any contri­
butor, or by the Committee, in connection therewith.

"Procedures have been establ ished for the ma intenance of COBOL. Inqui ries concerni ng the procedures for
proposing changes should be directed to the Executive Committee of the Conference on Data Systems Languages
(CODASYl).

"The authors and copyright holders of the copyrighted material
tt

used herein have specifically authorized the use of
this material, in whole or in part, in the COBOL specifications. Such authorization extends to the reproduction
and use of COBOL specifications in programming manuals or simi lar publications."

tCOBOl, Edition 1965, produced by joint efforts of the CODASYL COBOL Committee and the European Computer
Manufacturers Association (ECMA).

ttFlOW-MA TIC (Trademark of Sperry Rand Corporation), Programming for the Univac (R) } and II, Data Automation
Systems copyrighted 1958, 1959 by Sperry Rand Corporation; IBM Commercial Translator Form No. F 28-8013, copy­
righted 1959 by IBM; FACT, DS} 27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell.

PREFACE

Xerox ANS COBOL is ba~)ed on the specification of the COBOL standard published by the American National
Standards Institute (formerly known as the United States of America Standards Institute) and contained in the pub­
lication USA Standard COBOL X3.23 - 1968. Certain features from the X3. 23 1974 American Notional Standard
Specifications for COBOL which were not a part of the 1968 standard are also included.

As its name implies, COBOL (COmmon Business Oriented Language) is especially efficient in the processing of
business problems. Such problems typically involve relatively little algebraic or logical processing; instead, they
most often manipulate largE~ files of basically similar records in a relatively simple way. This means that COBOL
emphasizes mainly the description and handling of data items and input/output records.

This publication explains Xerox ANS COBOL, which is compatible with American National Standard COBOL and
includes a number of Xerox extensions to it as well. The compiler supports the processing modules defined in the
standard. These processing modules include the following ten:

NUCLEUS defines the permissible character set and the basic elements of the language in each of the four
COBOL divisions: IDENTIfICATION DIVISION, ENVIRONMENT DIVISION, DATA DIVISION, PROCEDURE
DIVISION.

TABLE HANDLING allows the definition of tables of contiguous data items and accessing these items through
subscripts and indexes. A c:onvenient method for searching a table is provided.

SEQUENTIAL ACCESS (Jllows the records of a file to be accessed in an established sequence. It also provides
for the specifi cation of rerun points and the sharing of memory area among fi les.

RANDOM ACCESS allows the records of a mass storage fi Ie to be accessed in a random manner specified by the
programmer. Specifically defined keys, supplied by the programmer, control successive references to the fi Ie. It
also provides for the specifi<cation of rerun points and the sharing of memory area among fi les.

SORT provides the capability of sorting files in ascending and/or descending order according to a set of user-
specified 'keys within each record. Optionally, a user may apply some special processing which may consist of
addition, deletion, creation, altering, editing or other modification o'f the individual records by input or output
procedures.

REPORT WRITIER allows the programmer to describe the format of a report in the DATA DIVISION, thereby mini-
mizing the amount of PROCI:DURE DIVISION coding necessary.

SEGMENTATION allows the programmer to specify program overlay requirements. This enables large problem
programs to be split into segments that con then be designated as permanent or overlayable core storage, which as­
sures more effi cient use of core storage at object time.

LIBRARY allows the prog'rammer to specify text that is to be copied from a library. This supports the retrieval and
updating of prewritten source program entries from a user's library, for inclusion in a COBOL program at compile
time. The effect of the compilation of library text is as though the text were actually written as part of the source
program.

DEBUG allows the programmer to describe a debugging algorithm including the conditions under which data
items or procedures are to be monitored during the execution of the object program.

INTER-PROGRAM COMMUNICATION
more separate Iy compi led programs.

Principles of COBOL

provides a faci lity by which a program can communicate with one or

COBOL is one of a group of high-level computer languages. Such languages are problem oriented and relatively
machine independent, thus freeing the programmer from many of the restrictiol"s of assembler language and allowing
him to concentrate upon the logical aspects of his problem.

vii

viii

COBOL looks and reads much like ordinary business English. The programmer can use English words and conventional
ari thmetic symbols to direct and control the computer operations. A few typical COBOL sentences follow:

ADD NEW-PURCHASES TO TOTAL-CHARGES.

MULTIPLY QUANTITY BY UNIT-PRICE GIVING INVENTORY-VALUE.

PERFORM FEDERAL-TAX-CALCULA nONS.

IF ITEM-CODE IS NUMERIC GO TO CHECK-ACCOUNT-NUMBER.

Such COBO L sentences are easi Iy understandable, but they must be translated into machine language - the internal
instruction codes - before they can actually be used.

A special systems program, known as a compiler, is first entered into the computer. The COBOL program (referred
to as the source program) is then entered into the machine, where the compi ler reads Hand analyzes it. The COBOL
language contains a basic set of reserved words and symbols. Each combination of reserved words ·and symbols is
transformed by the compi ler into a definite set of machine instructions. In effect, the programmer has at his dis­
posal a whole series of "prefabricated" portions of the machine-language program he wishes the compi ler to construct.

When the programmer wri tes a COBO L program, he is actually directing the compi ler to bring together, in the desired
sequence, the groups of machine instructions necessary to achieve the desired resu It. From the programmer's i nstruc­
tions, the compiler creates a new program in machine language. This program is known as an object program.

Orlanlzatlon of "null

A COBOL source program consists of information in four divisions: the IDENTIFICA nON DIVISION, ENVIRON­
MENT DIVISION, DATA DIVISION, and PROCEDURE DIVISION. Taken together, these divisions constitute the
total program (including a description of the configuration needed, the forms of various data fi les, and the program­
ming steps necessary to perform these procedures), and are presented to the processor for compi lation into a corre­
sponding object program.

In this manual, Xerox ANS COBOL is described as follows:

• Chapter 1 describes the COBOL language structure. It presents the COBOL theory behind word formation,
the use of words to name elements in a program, and a discussion of the syntax of the language.

• Chapter 2 contains a discussion of the format and organization of data in fi les, together with methods used
to remove data from, or p lace data into, such fi les.

• Chapters 3 through 6 present a detai led description of the IDEN TIFICA nON, ENVIRONMENT, DATA, and
PROCEDURE DIVISIONs, respectively.

• Chapter 7 is a detailed description of the Report Writer, which has associated information that is neces­
saidy contained in more than one division.

• Chapter 8 describes the Sort feature. This feature also requires information contained in several divisions
for its implementation.

• Chapter 9 contains a description of the statements that affect the COBOL library.

• Chapter 10 presents information concerning Inter-Program Communication.

• Chapter 11 describes the COBOL Priority Segmentation feature.

• Chapter 12 is a discussion of the facilities provided for debugging COBOL programs.

The appendixes contain supplementary information: a list of Xerox ANS COBOL reserved words; a sample Xerox ANS
COBOL problem; a description of slack bytes; an evaluation of arithmetic expressions; sample programs illustrating
the use of the Report Writer and Sort feature; a list of Xerox ANS COBOL compiler diagnostics.

Xerox Extensions to the ANS COBOL Standard

Listed helow are Xerox extensions to the ANS COBOL Standard (both the 1968 and the 1974 versl':>ns). Although
these extensions do not conform to the ANS Standard, they may be compatible with language forms used by other
manufacturers. Wherever possible on attempt has been made to keep all extensions in conformance with generally
accepted industry usage.

lIngulge Concepts

Apostrophe is used as a d.efault value for quotation mark.

Identificltion Division

None.

Environment Division

Use of II integer" in the ASSIGN clause of the SELECT statement.

Dati Division

Use of COMPUTA TlONAL-l, -2, and -3 formats.
COMMON -STORAGE SECTION.

Procedure Division

ENTER statement formats 2 and 3.

PROCEDURE option of the USE FOR DEBUGGING statement.

R.port Writer

Overflow headings and fo()tings.

De ... F •• turel

On-line debugger.
TRACE and EXHIBIT debugging statements.

ix

x

COMMAND SYNTAX NOTATION

Notation conventions used in command specificatians and examples throughout this manual are listed below.

Notation

lowercase letters

CAPITAL LETTERS

[]

{ }

Numbers and
special characters

Subscripts

Description

Lowercase letters identify an element that must be replaced with a
user-selected value.

CRndd could be entered as CRA03.

Capital letters must be entered as shown for input, and wi II be printed as shown
in output.

DPndd means "enter DP followed by the values for ndd".

An element inside brackets is optional. Several elements placed one under the
other inside a pair of brackets means that the user may select anyone or none of
those elements.

[KEYM] means the term "KEYM" may be entered.

Elements placed one under the other inside a pair of braces identify a re­
quired choice.

{~} means that either the letter A or the value of id must be
entered.

The horizontal ellipsis indicates that a previous bracketed element may be re­
peated, or that elements have been omitted.

nameLname]... means that one or more name values may be entered,
with a comma inserted between each name value.

The vertical ellipsis indicates that commands or instructions have been
omitted.

MASK2 DATA,2 X' 1EF'

BYTE DATA,3 BA(L(59»

means that there are one or more state­
ments omitted between the two DATA
directives.

Numbers that appear on the line (i. e., not subscripts), special symbols, and
punctuation marks other than dotted lines, brackets, braces, and underlines
appear as shown in output messages and must be entered as shown when input.

(value) means that the proper value must be entered enclosed in
parentheses; e. g., (234).

Sybscripts indicate a first, second, etc., representation of a parameter that
has a different value for each occurrence.

sysid1, sysid2, sysid3 means that three successive values for sysid
should be entered, separated by commas.

1. COBOL LANGUAGE STRUCTURE

Introduction

COBOL (the COmmon Business Oriented Programming Language) consists of selected English words that impart
key meaningsto the COBOL co-;;'piler. The language-is arranged into statements, sentences, and paragraphs in a
manner similar to written English. The words of this language are selected English words (called "reserved words"
because they cannot be used in any other context), names of data and procedures, and numeric or non-numeric
"Iiterols". Punctuation is permitted, but the only meaningful punctuation is the period.

COBOL words are arronged into statements using the formats described in this manual in the separate discussion of
each stotement. One or melre statements compose a sentence, which is terminated by a period. One or more sen­
tences, in turn, constitute (] paragraph, which can be given a name so that control can pass to the paragraph by
referencing its name elsewhere in the program. Similarly, several paragraphs make up a section that can also have
a name and, in addition, cCln be loaded as an "overlay". Several sections constitute a division. There are four divi­
sions in a COBOL program, each describing a different, important part of the program.

Structural hierarchy of the COBOL programming language and the purpose of each level therein are

• The COBOL Program Contains all the information required to perform a given task on the computer.

• Division Describes a specific catE!gory of information essential to the compiler or, in the case
of the PROCEDURE DIVISION, specifies processing steps.

• Section In the PROCEDURE DIVISION, defines the smallest block of the program that can
be loaded at one time or as an overlay; in other divisions, groups a particular type
of information within a division.

• Paragraph Comprises one or more sentences forming the smallest block of the program that can
be referenced by name.

• Sentence Consists of one or more statements terminated by a period.

• Statement Consists of a group of words that perform only one operation or function in the
program.

• Word Consists of a group of characters and/or symbols that provide the structural basis of
a statement.

In addition, onother type of structure is permitted and fits into the hierarchy in place of "word". This is the structure
of mathematical notation and is discussed in detail in "Arithmetic-Expressions" in Chapter 6.

Character Set

The complete character setfelr Xerox ANS COBOL consist'S of the 51 characters listed below.

Character Meaning

0-9 digits

A-Z letten,

space (blank)

+ plus sign

minus sign (hyphen)

* asterisk

/ stroke (virgule, slash)

equal!i sign

$ currency sign

Character

>
<

Meaning

comma {decimal point)

semicolon

period (decimal point)

double quotation mark

left parenthesis

right parenthesis

greater than sign

less than sign

single quotation mark

COBOL Language Structure

Words

Definition and Application

The character set for words comprises 37 characters: the letters A through Z, the digits 0 through 9, and the
hyphen. A word is composed of a combination of not more than 30 such characters chosen from this set with the
following exceptions:

1. A word cannot begin or end with a hyphen.

2. The space (blank) is not on allowable character in a word and is used as a word separator. Where a space
(blank) is required, more than one may be used except for the restrictions stated in this chapter (see "Ref­
erence Format"). A word is ended by a space, period, right parenthesis, comma, or semicolon.

Rules for using punctuation characters in connection with words are

1. A space must follow a period, comma, or semicolon when one of these punctuation characters is used to
terminate a word.

2. A space must not immediately follow a left parenthesis or immediately precede a right parenthesis.

3. A space must not immediately follow a beginning quotation mark or precede on ending quotation mark un­
less a space is desired in the literal (which is enclosed in quotation marks).

Data-Nome

A data-name is a word with at least one non-numeric character that names a data item in the DATA DIVISIO N. A
space (blank) is not allowed within a data-nome, and ANS COBOL reserved words must not be used. (See Appen­
dix A, "Xerox ANS COBOL Reserved Words".)

Condition-Nome

A condition-nome is one assigned to a specific value, set of values, or range of values within the complete set of
values that a data-name may assume. The condition-nome must contain at least one alphabetic character and must
be unique or made unique through qualification. The data-name itself is called a conditional variable. A condi­
tional variable may be used as a qualifier for any of its condition-names. If references to a conditional variable
require indexing, subscripting, or qualifying, references to any of its condition-names 0150 require the same combi­
nation of indexing, subscripting, or qualifying. (Refer to "Uniqueness of Data Reference" later in this chapter.)

In addition to being described in the DATA DIVISION, condition-names may also be defined in the SPECIAL-NAMES
paragraph within the ENVIRONMENT DIVISION, where a condition-name can be associated with either or both
the ON or OFF status of hardware devices.

A condition-nome is also used in place of the "equal" relational operator in forming conditional tests. Such tests
determi ne whether a given conditional variable is equa I to one of the set of values to whi ch the condition-name is assigned.

Procedure- Name

A procedure-nome is either a paragraph-nome or a section-name. A procedure-name may be composed solely of
numeric characters. However, two numeric procedure-names are equivalent only when they are composed of
the same number of digits and have the some value: for example, 0023 is not equivalent to 23.

Literal

A literal is a string of characters whose value is defined by the set of characters composing the literal. Every literal
is one of two types: non~numeric or numeric.

A non-numeric literal is a string of any allowable Extended Binary Coded Decimal Interchange Code (EBCDIC)
characters (including reserved words but excluding the quotation mark character) up to 254 characters in length,
bounded by quotation marks. The single quotation mark (') is normally used by default, but the double quotation
mark (")may be specified if conformance with the ANS character set is desired. The value of a non-numeric literal
is the string of characters itself, excluding the quotation marks. Any spaces enclosed in the quotation marks are
part of the literal and therefore part of the value. All non-numeric literals are classed as alphanumeric.

2 Words/Definition and Application

A l1umel ic liteml is a string of characters selected fmm digits ° through 9 (to a maximum of 30 digits), the plus sign,
minus sign, and decimal point. The value of a numeric literal is the algebraic quantity represented by the char­
acters in the literal. If ,·he literal is used as a numeric operand in an arithmetic operation, it may not exceed 18
digits in length. Every numeric literal is classed as numeric.

Rules for the fonnation of numeric literals are

1. The literal must' contain at least one digit.

2. The literal mus" not contain more than one sign character. If a sign is used, it must appear as the leftmost
character of thE~ literal. If the literal is unsigned, it is positive.

3. The literal must not contain more than one decimal point. The decimal point is treated as an assumed deci­
mal point, and may appear anywhere within the literal except as the rightmost character. If the literal
contains no decimal point, it is an integer.

If a literal conforms to the rules for formation of numeric literals but is enclosed in quotation marks, it is a non­
numeric literal, i.e. I alphanumeric, and is treated as such by the compiler.

Figurati ve-Constants

Figurative-constants are certain constants to which fixed data-names are assigned. Such data-names must not be
bounded by quotation mClrks when used as figurative--constants. Singular and plural forms of figurative-constants
are equivalent and may be used interchangeably.

Fixed data-names and thE~ir meanings are:

ZERO
ZEROS
ZEROES

SPACE
SPACES

HIGH-VALUE
HIGH-VALUES

LOW-VALUE
LOW-VALUES

QUOTE
QUOTES

ALL literal

RE!presents the val ue 0, or one or more of the character 0, depending on context.

Represents one or more blanks or spaces.

Represents one or more characters that have the highest value in the Sigma collating
sequence.

Represents one or more characters that have the lowest value in the Sigma collating
sequence.

Represents one or more occurrences of the quotation mark character. The word QUOTE can­
notbe used in place of a quotation mark in a source program to bound a non-numeric literal.

Represents one or more of the string of characters comprising the literals. The literal must
be either a non-numeric literal or a figurative-constant other than ALL literal. When a
fiHurative-constant is used, the word ALL is redundant and is used for readability only.

When a figurative-constant represents a string of one or more characters, the compi ler determines the length of the
string from context in ac(:ordance with the following rules:

1. When a figurative-constant is associated with another data item, that is, w!1en the figurative-constant is
moved to or compared wi th another data item, the string of characters specified by the figurative-constant
is repeated - character by character on the right - until the size of the resultant string is equal to the size
(in characters) of the associated data item.

2. When a figurative-constant is not associated wi th another data item, that is, when the figurative-constant
appears in a DISPLAY or STOP statement, the length of the string is one character. The figurative-constant
ALL literal may not be used with DISPLAY or STOP.

A figurative-constant can be used wherever a literal appears in the format, except that whenever the literal is re­
stricted to having only numeric characters, the only figurative-constant permitted is ZERO (ZEROS, ZEROES).

Definition and Appl ication 3

Special Registers

DEBUG-ITEM

DEBUG-ITEM, is the name for a special register that is generoted automatically by the COBOL run-time package
that supports the debugg i ng faci Ii ty.

LINE-COUNTER

LINE-COUNTER is the fixed data-name for a line-counter used by the REPORT SECTION in the DATA DIVISION to
generate automatically PAGE HEADING and PAGE FOOTING report groups. One line-counter is automatically
suppl ied for each report described in the RE PORT SECTION if a PAGE LIMIT clause is written in the Report Descrip­
tion entry. LINE-COUNTER is represented as one binary word.

PAGE-COUNTER

PAGE -COUNTER is a fixed data-name for a page-counter generated by the REPORT SECTION for use as a source
data item to present page numbers within a report group. One page-counter is suppl ied for each report by the
REPORT SECTION if the word PAGE-COUNTER is given as a source data item in the Report Group Description
entry. PAGE-COUNTER is represented as one binary word.

Specil' Nimll

Special names provide a means of relating implementor-names with problem-oriented names and the status of hard­
ware switches with condition-names. (Refer to "SPECIAL-NAMES Paragraph" in Chapter 4.)

Reserved Words

Reserved words are used for syntactical purposes and cannot appear as user-defined words. (See Appendix A, "Xerox
ANS COBOL Reserved Words ll

.)

The three types of reserved words are key words, optional words, and connectives.

Key Words

A key word is required when the format in which the word appears is used in a source program. Within each format
such words are uppercase and underlined.

The three types of key words are

1. Verbs such as ADD, READ, ENTER.

2. Required words (in statement and entry formats) such as TO and GIVING.

3. Words that have a specific functional meaning such as NEGATIVE, SECTION, TALLY, etc.

Optional Words

Within each format, uppercase words that are not underlined are called optional words and can appear at user
discretion. The presence or absence of each optional word within a format does not al ter compiler translation.
Misspelling an optional word or its replacement by another word of any kind is not allowed.

Connectives

The two types of connectives are:

1. Qualifier connecti ves (used to associate a data-name or a paragraph-name with its qualifier)such as OF and IN.

2. Logical connectives (used in the formation of conditions) such as AND, OR, AND NOT, OR NOT.

4 Special Registers/Special Names/Reserved Words

Concept IIIf Computer-Independent Data Description

To make data as computer-independent as possible, characteristics or properties of the data are described in relation
to a Standard Data Format rather than an equipment-oriented format. This Standard Data FOrrT,"lt is oriented to gen­
eral data processing applications; it uses the decimal system to represent numbers (regardless of the radix used by
the computer) and the rE!maining characters in the COBOL character set to describe non-numeric data items.

logical Record and Fi Ie Concept

The following discussion defines file information by distinguishing between the physical aspects of the file and the
conceptual characteristics of the data contained within the file.

Physical Aspects of a File. The physical aspects of QI file describe data as it appears on the input or output media
and i~cT~de such featuresas

1. The mode in which the data fi Ie is recorded on the external medium.

2. The grouping of logical records within the physical limitations of the file medium.

3. Means by which the file can be identified.

Conceptucd Characteristics of a File. The conceptual characteristics of a file are the explicit definition of each
logical entity within the file itself. In a COBOL program, the input or output statements refer to one logical record.

It is important to disting'uish between a logical record and a physical record. A COBOL logical record is a group
of related information, uniquely identifiable and treated as a unit. A physical record is a physical unit of infor­
mation whose size and recording mode is convenient to a particular computer for the storage of data on an input or
output device. The size of a physical record is hardware-dependent and bears no direct relationship to the size
of the file contained on CI device.

A logical record can be contained within a single physical unit or it may require more than one physical unit to
contain it. There are several source language methods available for describing the relationship between logical
records and physical units. Once the relationship is established, control of accessibility of logical records as
related to the physical unit is the responsibility of the object program. In this manual, references to records are to
logical records unless the term "physical record" is specified.

The concept of a logica~ record is not restricted to file data but applies also to the definition of working and
common storage. Thus, working-storage and common·-storage items may be grouped into logical records and defined
by a series of Record Description entries.

Record Concepts

The Record Description entry consists of a set of Data Description entries that describe the characteristics of a
particular record. Each Data Description entry comprises a level-number followed by a data-name (if required)
and a series of independent clauses (as required).

Concept of Levels

A level concept is inherent in the structure of a logical record. This concept arises from the need to specify sub­
divisions of a record for the purpose of data reference. Once a subdivision is specified, it may be subdivided further
to permi t more detai led da:ta referenci ng.

The most basic subdivision:; of a record - that is, those not further subdivided - are called elementary items; con­
sequently, a record consists of a sequence of elementary items, or the record itself may be an elementary item.

For ease of reference, a set of elementary items is combined into a group. Each group consists of a named sequence
of one or more elementary items. These groups, in tum, may be combined into multiples of two or m6re; thus,
an elementary item may belong to more than one group. J

level-Numbers

A system of level-nurnbers shows the organization of elementary items and group items. Since records are the most
inclusive data items, level,-numbers for records start at 1 or 01. Less inclusive data items are assigned higher (not

Concept of Computer-Independent Data Description 5

I1f'CC550:ily succe$sive) level-numbers to 0 maximum of 49. Special level-numbers 66, 77, and 88 are exceptions
to this lule (see below), Separate entries are written in the source program for each level-numbe, used.

A group includes all group and elementary items following it until a level-number less than or equal to the level­
number of that group is encountered. The level-number of an item (either an elementary or a group item) immedi­
Cltely following the last elementary item of the previous group must be the same as that of one of the groups to which
the prior elementary item belongs.

Three types of data exist for which there is no true concept of level. These are

1. Names of elementary items introduced by a RENAMES clause.

2. Noncontiguous working-storage and common-storage items.

3. Entries that speci fy condi tion-names.

Data-names described by a RENAMES clause for the purpose of regrouping data items are assigned the special level­
number 66.

Noncontiguous working-storage and common-storage items that are not subdivisions of other items and are not
themselves subdivided are assigned the special level-number 77.

Entries that specify condition-names to be associated with particular values of a conditional variable are assigned
the spec ial level-number 88.

Ini tial Val ues of Tables

In the WORKING-STORAGE and COMMON-STORAGE SECTIONs, initial values of elements within tables are
specified in one of the following ways:

1. The table may be described as a record by a set of contiguous Data Description entries, eoch of which spec­
ifies the value of an element, or part of an element, of the table. In defining the record and its element
any Data Description clause (USAGE, PICTURE, etc.) may be used to complete the definition, where re­
quired. This form is necessary when the elements of the table require separate handling due to synchroniza-
tion, usage, etc. The hierarchical structure of the table is then shown by the use of the REDEFINES entry
and its associated subordinate entries; these subordinate entries, which are repeated due to OCCURS clauses,
must not contain VALUE clauses. .

2. When the elements of the table do not require separate handling, the value of the entire table may be
given in the entry defining the entire table. The lower level entries show the hierarchical structure of the
table; they must not contain VALUE clauses.

Initiol values may not be specified for items appearing in a LINKAGE SECTION.

Algebraic Signs

Algebraic signs are used (1) to show whether the value of an item involved in an operation is positive or negative,
and (2) to identify the value of an item as positive or negative on an edited report for external use.

Most forms of representation have a standard or normal manner of depicting an operational sign. Thus, an indication
that an operational sign is associated with an item is usually sufficient. Since some forms of representation allow
alternative methods for depicting operational signs, it is possible to describe certain types of operational signs that
deviate from the normal method. Editing sign control characters are used to display the sign of an item and are not
operational signs. These editing characters are available only through the use of the PICTURE clause.

• I
Umqueness of Data Reference

Qualification

Every name used in a COBOL source program must be unique, either because no other name has the identical spelling,
or because the name exists within a hierarchy of names so that it can be made unique by mentioning one or more of
the higher hierarchical levels. The higher levels are called qualifiers; the process that specifies uniqueness is called
qualification. Enough qualification must be specified, if needed, to make the name unique; however, it may not be
necessary to mention all levels of the hierarchy.

6 Algebrai c Signs/Uniqueness of Data Reference

The flame associated with a level indicator (FD, SO, and RD) is the highest level qualifier available for a data­
name. A 5ection-name j's the highest (and only) qualifier available for a paragraph-name. Thus, level indicator
llOmes and section-name!. must be unique in themselves, as they cannot be qualified. In the 'A'JRKING-STORAGE,
COMMON-STORAGE and LINKAGE SECTIONs, data-names associated with 77 levels and 01 levels must be unique.
Subscripted or indexed data-names and conditional variables, as well as procedure-names and data-names, can be
made unique by qualific<ltion. The name of a conditicmal variable can be used as a qualifier for any of its condition­
names. Regardless of thE~ available qual ification, no name can be both a data-name and procedure-name.

Qualification is accompHshed by following a data-name or a paragraph-name with one or more phrases composed
of a qualifier preceded by IN or OF. (IN and OF are logically equivalent.) Rules for qualification are

1. Each qualifier must be of a successive Iy higher leve I and wi thin the same hierarchy as the name it qualifies.

2. The same name t:annotappearattwolevels in a hierarchy so that the name appears to qualify itself.

3. If a data-name or a condition-name is assigned to more than one data item in a source program, the data­
name or condition-name must be qualified each time it is referenced in the PROCEDURE, E NVIRONME NT,
and DATA DIVISIONs (except REDEFINES where, by definition, qualification is unnecessary).

4. A paragraph-narne must not be duplicated wit'hin a section. When a paragraph-name is qualified by a
section-name, the word SECTION must not appear. A paragraph-name need not be qualified when refer­
enced within the same section.

5. A data-name cannot be subscripted when it is used as a qualifier.

6. A name can be clualified even though it does not need qualification. If there is more than one combination
of qualifiers that' ensures uniqueness, any set can be used.

Subscri pti ng

Subscripts can be used only when reference is made to an individual element within a list or table of like elements
that are not assigned individual data-names. (See nOCCURS Clause" under "Physical and Logical Aspects of Data
Description" in Chapter 5.)

The subscript can be reprE~sented by a numeric literal that is an integer, by the special register TALLY, or by a
data-name. The data-name must be a numeric elementary item that represents an integer. When the subscript
is represented by a data-name, the data-name can be qualified but not subscripted.

The subscript may contain a sign, but the lowest permissible subscript value is 1. The highest permissible subscript
value in any particular case is the number of maximum occurrences of the item as specified in the OCCURS clause.

The subscript, or set of subscripts, that identifies the tClble element is enclosed In parentheses immediately following
the terminal space of the table element data-name. The table element data-name appended with a subscript is
called a subscripted data-name or an identifier. When more than one subscript appears within a pair of parentheses,
the subscripts must be sepmated by commas. A space must follow each comma, but no space can appear between
the left parenthesis and the leftmost subscript or betweEln the right parenthesis and the rightmost subscript.

Indexing

References can be made to individual elements within a table of like elements by specifying indexing for that
reference. An index is assigned to that level of the table by using the INDEXED BY clause in the definition of a
table. A name given by the INDEXED BY clause is known as an index-name and is used to refer to the assigned
index. An index-name must be initialized by a SET statement before it is used as a table reference. (See "SET
Statement" under "Table-Handling Statements" in Chapter 6.)

Qirect indexing is specified by using an index-name in the form of a subscript. Relative indexing is specified when
the index-name is followed by the operator + or - followed by an unsigned, integral numeric literal, and all are
enclosed in parentheses immediately after the terminal space of the data-name.

The composite format is

data-nome (index-nOl11e-l [t±} integer-l] [index-name-2 [f±} integer-2]] [, index-name-3 [{l.~ integer-3]])

Uniqueness of Data Reference 7

Rest! i cti OIlS on Indexi ng, Subscripting, and Qual ifi cation

Tables may have one, two, or three dimensions. Therefore, references to an element in a table may require up to
three subscripts or indexes.

A data-name cannot be subscripted or indexed when it is used in table-element references as an index, subscript,
or qualifier.

When qualification, subscripting, or indexing is required for a given data item, the indexes or subscripts are stated
after all necessary qualification is given.

Subscripting and indexing must not be used together in a single reference. Where subscripting is not permitted,
indexing is also not permitted.

An index can be modified only by the SET, SEARCH, and PERFORM statements. Data items described by the USAGE
IS INDEX clause permit storage of the values of the index-names as data without conversion; such data items are
called index data items.

Forllllt Notation

The format of a COBOL statement is described in this manual using the uniform notations itemized below. See also
COMMAND SYNTAX NOTA nON, page x.

1. A COBOL reserved word, printed entirely in capital letters, is a word that is assigned specific meaning in
the CaBO L system. It must not be used in any context or posi tion other than that shown in the format de­
scription. SUBTRACT, FROM, and ROUNDED in the example below are reserved words.

2. One or more COBOL elements vertically stacked and enclosed in a set of square brackets [] indicate that
this portion of the syntax is optional and may be included or omitted at the discretion of the programmer.
Refer to the example below.

3. A pair of braces is used to enclose vertically stacked COBOL elements when one, and only one, of the
elements is required; the others are to be omitted. Refer to the example below.

4. The ellipsis ... denotes a succession of operands or repeated COBOL elements that may be used in the same
particular statement, even though the operands or elements are omitted in the text. An ellipsis is associated
with the last complete element preceding it, i.e., if a group of operands and key words are enclosed within
brackets and the right bracket is followed by the ellipsis, the group (and not merely the tast operand) may
be repeated in its entirety.

5. An underlined word is required unless the part of the format containing it is itself optional (enclosed
in brackets). If a required word is omitted or incorrectly spelled, it causes an error in the interpre­
tation of the program.

6. All COBOL words that are optional words (not underlined) may be included or omitted at the option of
the programmer. These words are used only for the sake of readability; misspelling, however, consti­
tutes an error.

7. Lowercase words represent information that is supplied by the programmer. The nature of the information
required is indicated in each case. In most instances the programmer is required to provide an appro­
priate data-name, procedure-name, literal, etc. Refer to the example below.

8. The period is the only required punctuation. Other punctuation, where shown, is optional.

9. Special characters (such as the equal sign) are essential where shown, although they may not be underlined.

10. The notation t indicates the position of an assumed decimal point in an item.
+

11. A numeric character with a plus or minus sign above it (n) indicates that the value of the item has an oper-
ational sign that is stored in combination with the numeric character.

12. Character posi tions in storage are shown by boxes I A I B I C I D I. An empty box means an unpredi ctable
resu It.

13. The symbol 6. indicates a space (blank).

The following example shows a typical COBOL statement and use of the notation described above.

SUBTRACT {'I,?entilfie
1
r-l} [, i

l
?enti

l
fie

2
r-2] . .. FROM identifier-m rROUNDED]

------ I tera - ,I tera - I.!

8 Format Notation

Reference Format

General Description

The reference format, which provides a standard method for describing COBOL source programs, is described in terms
of character positions or columns on an aO-column card. Rules for spacing given in the discussion of the reference
format take precedence over all other rules for spacing.

Division of a source program is ordered as follows: the! IDENTIFICATION DIVISION, then the ENVIRONMENT
DIVISION, then the DATA DIVISION, then the PROCEDURE DIVISION. Each division must be written according
to the rules for the reference format.

Reference Format Representation

Margin
l

2 3 4 5

I
Margin Margin

C A

6 7 a 9 10

Margin
B

11 12 13

Margin Margin
R I

72 73 ao
~~ __________ ~y~ _______ ~ ______ ~ ______ ~A' ___________ y~ ___________ A, ____ ----~r-------~I

Sequence Number Continuation Are~ A Area B Identifrcation
A~ A~ A~

where

Margin L

Margin C

Margin A

Margin B

Margin R

Margin H

Sequence Number Area

Continuation Area

Area A

Area B

Identification Area

designates the leftmost c:haracter position of a line, column 1.

designates the seventh character position relative to Margin l, column 7.

designates the eighth character position relative to Margin l, column a.

designates the twelfth character position relative to Margin l, column 12.

designates the rightmost character posit.ion of a line, column 72.

designates the seventy-third character position relative to Margin l, column 73.

occupies the six character positions beginning at Margin l, columns 1 through 6.

occupies one character position beginning at Margin C, column 7.

occupies four character positions beginning at Margin A, columns a through 11.

occupies sixty-one character positions beginning at Margin Bf columns 12 through 72.

occupies eight character positions beginning at Margin I, columns 73 through ao.

Sequence Numbers. A sequence number, consisting of six digits in the Sequence Number Area, may be used to
label a source program line.

Format Control. Margin C (column 7) may be used for format control.

*
/

I

means to treat the! I ine as comments.

means to start printing the source listing on a new page.

Thus, an asterisk in column 7 allows interspersing comments throughout the COBOL program. Its function is sim i lar to that
of the NOTE statement in the Procedure Division. A slash in column 7 forces a page ejection on the source listing.

Continuation of Lines. Any sentence or entry that requires more than one I ine is continued by starting subsequent
line(s) in Area B, thus forming continuation line(s). The line being continued is called the continued line. Any
word or literal may be broken so that part of it appears on a continuation line.

A hyphen in the Continuation Area of the continuation line indicates that the first nonblp.r).k character in Area B
of the continuation line is the continuation of the last word written in the continued line. "'If a hyphen does not
appear in the Continuation Area and the sentence or entry starts in Area B, it is assumed that the last character
in the continued line is followed by a space.

Reference Format 9

Continuationof Non-Numeric literals. When a non-numeric literal is continued from one line to another, a hyphen
i5-pi~~ed in th~Co~-ti-~~ati~~A-rea of the continuation line and a quotation mark is placed in Area B following the
hyphen. All spaces at the end of the continued line and any spaces following the quotation mark of the continuation
line and preceding the final quotation mark of the literal are considered part of the literal.

Continuation of Words and Numeric literals. When a word or numeric literal is continued from one line to another,
;l,yph~i-n the Continuation Area of the continuation line indicates that the first nonblank character in Area B
of the continuation line is to follow the last nonblank character on the continued line without an intervening space.

Program Identification. Columns 73 through 80 can be used to identify the program. Any character may be used.
The program identification code has no effect on the compi ler or the object program.

Division, Section, and Paragraph Formats

Division~ader. The division header must be the first line of a division reference format. The division header
starts in Area A with the division-name followed by a space, the word DIVISION, and a period. No other text may
appear on the same line as the division header.

Section Header. The section header begins on any line except the first line of a division reference format. The
sectio~ head-;':-starts in Area A with the section-name followed by a space, the word SECTION, a space followed
by a priority number (optional), and a period followed by a space. No other text may appear on the same line as
the section header except in the DECLARATIVES portion of the PROCEDURE DIVISION, in which case USE and
INC LUDE sentences may begin on the same line as the section header.

A section consists of paragraphs in the ENVIRONMENT and PROCEDURE DIVISIONs and Data Description entries
in the DATA DIVISION. Paragraph-names but not section-names are permitted in the IDENTIFICATION DIVISION.

Paragraph-Name and Paragraphs. The name of a paragraph starts in Area A of any line following the first line of a
division reference format (or section header if sections are used) and ends with a period followed by a space.

A paragraph consists of one or more successive sentences. The first sentence in a paragraph begins in Area B of either
the same line as the paragraph-name or the line immediately following. Successive sentences begin either in Area B
of the same line as the preceding sentence or in Area B of the next line.

A sentence co'nsists of one or more statements followed by a period and a spa,ce. When the sentences of a paragraph
require more than one line, they may be continued as described in "Continuation of Lines" above.

DATA DIVISION Entries. Each DATA DIVISION entry begins with a level indicator or a level-number followed by
at least one space, the name of a data item (except in the REPORT SECTION), and a sequence of independent clauses
describing the data item. Each clause, except the last clause of an entry, may be terminated by a semicolon
followed by a space; the last clause is always terminated by a period followed by a space.

There are two types of DATA DIVISION entries: those that begin with a level indicator and thpse that begin with a
level-number.

FD, SD, and RD are level indicators. In DATA DIVISION entries that begin with a level indicator, the level
indicator begins in Area A, followed by its associated file-name or report-name and appropriate descriptive in­
formation in Area B.

DATA DIVISION entries that begin with level-numbers are called Data Description entries. A level-number may be
one of the following set: 1 through 49, 66, 77, 88. Level-numbers less than 10 are written either as a single digit
or as zero followed by a digit. At least one space must separate a level-number from the word succeeding it. In
DATA DIVISION entries that begin with a Data Description entry, the first Data Description entry starts with a level­
number in Area A, followed by the descriptive information in Area B.

PROCEDURE DIVISION Declaratives. The key words DECLARA TIVES and EN D DECLARA TIVES that precede and
follow, respectively, the DECLARATIVES portion of the PROCEDURE DIVISION must each appear on a line by itself.
Each begins in Area A followed by a period and a space. Refer to "PROCEDURE DIVISION Structure" in Chapter 6.

10 Reference Format

2. COBOL INPUT/OUTPUT PROCESSING

Monitor-Formatted Files

Xerox ANS COBOL supports the file organizations, record formats, and access methods provided by Xerox Batch
Processing Monitor (BPM) and Control Program-Five (CP·-V) operating systems.

The COBOL term "file" can be considered equivalent in meaning to the use of the word "file" in the operating sys­
tem publ ications. A file i:s created upon be ing opened for output. Each file defined in a COBOL program is
described to the operating system by a Data Control Block (DCB) which consists of a group of contiguous fields that
supply information about the file to the operating system,. for the purpose of schedul ing and executing input/output
operations. These fields describe the characteristics of "he file (e.g., its organization) and its processing require­
ments (e.g., input or output). The COBOL compiler creates a "skeletal" DCB for each file defined in the source
program and places in it pertinent information provided by the E NVIRONME NT DIVISION and the File Description
(FD) entry. The name of the: DCB is the file-name specified in the FD entry, prefixed by the two characters "F:", de­
noting a user DCB to the opMating system. The DCBs for the files are part of the object program module produced
by the compilation of the COBOL program.

At execution time, the ASSI GN control command and the file label contribute additional information to the DCB.
This information may replacEt and override information originally provided by the compiler_ System control commands
are not required for COBOL files assigned to card punch, card reader, or printer (see ASSIGN Clause, Chapter 4),
but are required for all other files.

File Or.lniation

There are three types of COBOL file organizations: sequential, relative, and indexed. In the operating system
reference manuals, these organizations are referred to as consecutive, random, and keyed, respectively.

Sequential File Organizatior~

A sequential file is one whose records are organized in a sequential manner. There is no identifying key associated
with each record; therefore, records can be accessed only sequentially. Sequential files may be assigned to any type
of input/output device. SeCluential file organization is indicated when ACCESS M ODE IS SEQUE NTIAL is written
or when the ACCESS clause :is omitted.

Relative File Organ ization

A relative file is one in whi<~h records are accessed by using a one-word binary key containing the logical ordinal
position of the record in the file. Relative file organization is indicated in the COBOL language by the use of
DISC-R in the ASSIGN clawse of the SELECT statement. Only random access is allowed with this type of file
organization.

Indexed File Organization

Indexed files are those in which each record is associated with an identifying key_ Indexed files may be accessed
either randomly or sequentially; however, they must be (Jssigned to input/output devices capable of random access.
Indexed file organization is iindicated in the COBOL language by the statement ACCESS MODE IS RANDOO in the
FILE-CONTROL paragraph of the E NVIRONME NT DIVISION.

File Access

The two methods of accessing files are (1) sequential and (2) random access. In the operating system reference
manuals, these access methods are termed sequential and direct, respectively.

Sequential access is the techn ique of referencing records sEtrially within a file. The order in which records are read or
written is determined implicitly by relative physical position within the file. This access method is specified by the
ACCE 55 M ODE IS SE QUE NTIAL clause or is impl ied by the om ission of that clouse.

COBOL Input/Q.,tput Processing 11

Random access is the technique of reading and writing records of a file in an order dictated by the programmer. The
record to be referenced is indicated by the value of a key at the time that the input/output command is issued. This
access method is specified by the ACCESS M ODE IS RANDOM clause and the ACTUAL KEY clause spec ifies the key.

File-Hlntlling Methods

A file-handling method is the effect of the combination of access technique, file organization, and the manner in
which the file is opened.

Access Mode is Sequential

1. OPE N OUTPUT. This combination creates a sequential file.

2. OPE N INPUT. If the file organization is sequential, READ statements obtain records serially in the order
in which they were originally written. If the file organization is indexed, READ statements obtain records
serially in key value order (not necessarily the order in which they were written).

3. OPEN INPUT-OUTPUT. This OPEN statement allows a WRITE statement to follow a READ statement. This
replaces the record just read if the file organization is indexed. If the file organization is sequential, the
remainder of the file is deleted.

Access Mode is Random

1. OPE N OUTPUT. This combination creates an indexed file. An ACTUAL KE Y must be specified and its
contents consul ted upon each WRITE statement.

2. OPE N INPUT. Organization of the file must be indexed. An ACTUAL KEY must be specified and the
contents consulted for each READ statement to locate the desired record within the file.

3. OPE N INPUT-OUTPUT. The sole essential difference between OPE N INPUT and OPE N INPUT-OUTPUT
is t~at the latter permits the file to be updated instead of merely referenced; thus, WRITE statements are al­
lowed to address the file.

File Labels

All Xerox monitor-formatted disk and tape files are labeled. The Xerox monitor label contains such information as
which password account numbers are permitted to access the file, whether the file is keyed or consecutive, etc.
ANS standard tapes also have labels.

In addition to the standard label the user may, at his own discretion, write additional tape file labels that he him­
self specifies. The format of the user label is specified through the LA BE L RECORD clause in the FD entry. The
label is created (when writing the file) or checked (when reading) through a DECLARATIVES section associated with
the appropriate USE statement.

Input/Output PracI.lnl Su_..,
Table 1 summarizes the COBOL language file manipulation statements. Each file must be named in an E NVIRON­
MENT DIVISION SELECT sentence and defined by an FD entry in the DATA DIVISION. Each of the language ele­
ments concerned is described fully in succeeding chapters of this manual.

12 Input/Output Processing Summary

:;­
-u
c

~
c

.:0
~

" a
n

~.
:J

co
Vl
c
3
3
Q
....

'<

w

File
Organization

Sequential

Indexed

Indexed/
Relative

ACCESS Type of
MODE IS OPEN Statement

INPUT
lREVERSED]

SEQUENTIAL
(or unspecified) I I

OUTPUT

SEQUENTIAL INPUT
(or unspecified) [REVERSED]

INPUT

RANDOM IN PUT -OUTPUT

OUTPUT

Table 1. File Manipulation Statements

Permissible ACTUAL KEY Required Optional
I/O Statement Required Clauses Clauses

READ ...
No LABEL RECORD DATA RECORDS

AT END ASSIGN

WRITE ... RESERVE

rrBEFOREl ., D' .. , 'CINGJ] SAME RECORD ARE.A.
LlAFTER f LA VAN REPORTS ARE RERUN No

(if a report file) MULTIPLE FILE TAPE WRITE .••
LABEL RECORD USE (Format 1) INVALID KEY

USE (Format 2) (if file
is iabeled)

USE (Format 3) (if a
report fiI e)

BLOCK CONTAINS

ASSIGN
SAME RECORD AREA

READ ••. RERUN
No LABEL RECORD PROCESSING MODE AT END

USE (Format 1)
USE (Format 2) (if file

is labeled)

READ ••• ASSIGN
Yes SAME RECORD AREA INVALID KEY

PROCESS ING MODE
USE (Format 1)

READ ••• I
USE (Format 2) (if file

is labeled) INVALID KEY Yes LABEL RECORD BLOCK CONTAINS WRITE •••
INVALID KEY

WRITE •••
Yes INVALID KEY

3. IDENTIFICATION DIVISION

General Description

The format of the IDENTIFICATION DIVISION is

IDENTIFICA TION DIVISION.

PROGRAM-ID. program-name.

[AUTHOR. Comment-sentences.]

[INSTALLA TION. comment-sentences.]

[DATE-WRITTEN. comment-sentences.]

[DATE-COMPILED. comment-sentences.]

[SECURITY. comment-sentences.]

[REMARKS. comment-sentences.]

The IDENTIFICATION DIVISION specifies information essential to identification such as the name of the program,
the date the program was written, programmer's name, security, etc. The listing contains all information specified
in this division, but the specified information in no way affects the object program. Allowable information is pre­
sented in seven separate paragraphs: ane mandatory, the others optional. If the optional paragraphs are included
in the program, they must be in the order indicated above.

Organization

The IDENTIFICATION DIVISION header is always the first line in a source program and appears as shown above,
including the punctuation. This header and the fixed paragraph-name(s) must conform to COBOL Coding Sheet
specifications. Onl y the PROGRAM-ID paragraph is mandatory; all athers are optional. Comment-sentences for the
optional paragraphs cansist of any sentence or group of sentences.

PROGRAM-ID Paragraph

The PROGRAM-ID paragraph must always appear as the first paragraph in the IDENTIFICATION DIVISION. This
paragraph permits the programmer to declare the name of the source program.

DATE-COMPILED Paragraph

The DATE-COMPILED paragraph provides the compilation date in the source program I isting. During program com­
pi lation, the current date replaces the comment-sentences in the paragraph.

Example:

The IDEN TIFICA TION DIVISION of a typical program might be written

IDEN TIFICA TION DIVISION.

PROGRAM-ID. GOOD-NEWS.

AUTHOR. XEROX CORPORATION.

DATE-WRITTEN. MAY 6 1975.

DATE-COMPILED. JUNE 21 1975.

REMARKS. LISTING IS PRINTED USING FIRST RECORD DIGIT AS PAGE CONTROl.

14 Identification Division

4. ENVIRONMENT DIVISION

General Description

The format of the ENVIRONMENT DIVISION is

ENVIRONMENT DIVISION. ----
CONFIGURATION ~)ECTION.

SOURCE-COMPUTER. source-computer entry.

OBJECT-COMPUTER: object-computer entry.

[SPECIAL-NAMES. special-names entry.]

INPUT-OUTPUT SECTION.

FILE-CONTROL. filie-control entry.

[I-O-CONTROL. input/output control entry.]

The ENVIRONMENT DIVISION describes those aspects of the data processing program that depend on the physical
characteristics of a specific computer. The information presented in this division enables the compiler to link the
operations indicated in the DATA and PROCEDURE DIVISONs to the physical aspects of computer hardware and
the executive system that is to execute the object program. Thus, the ENVIRONMENT DIVISION is entirely
computer-oriented.

The ENVIRONMENT DIVISION is divided into the CONFIGURATION SECTION and the INPUT -OUTPUT SECTION.

The CONFIGURATION SECTION deals with the characteristics of the computi ng system on which the source program
is to be compiled and on which the object program is to operate. This section is divided into three paragraphs: the
SOURCE-COMPUTER paragraph describing the computer on which the COBOL compiler is to run; the OBJECT­
COMPUTER paragraph defining the computer on which the translated program is to run; and the SPECIAL-NAMES
paragraph relating implementor-names used by the compiler to mnemonic-names used by the source program.

The INPUT -OUTPUT SECTION provides information needed to control transmission and handling of data between
external media and the objE!ct program. There are two fixed paragraph';"names in this section: the FILE-CONTROL
paragraph naming and associating the files with external media, and the I-O-CONTROLparagraph specifying logical
points at which the object program should checkpoint itself and certain other file information.

CONFIGURATION SECTION

SOURCE-COMPUTER Paragraph

The formats of this paragraph are

Fonnat 1

SOURCE-COMPUTER. copy-statement.

SOURCE-COMPUTER. computer-name [WITH DEBUGGING MODE].

The SOURCE-COMPUTER paragraph enables the programmer to describe to the compi ler the computing system on which
source program translation i:s to take place. Format 1 is used when the COBOL library contains the entire description
of the SOURCE-COMPUTER configuration. See Chapter 9 for a complete description of the COBOL library. If the
WITH DEBUGGING MODE douse is specified, all USE FOR DEBUGGING statemenrs and debugging lines are compi led.

ENVIRONMENT DIVISION 15

OBJECT-COMPUTER Plr.gr.ph

The formats of th i s paragraph are

Format 1

OBJECT-COMPUTER. copy-statement.

Format 2

OBJECT -COMPUTER.

[! i nteger I~CTERsl
computer-name ,MEMORY SIZE MODULES

ADDRESS literal-2 THRU literal-3 [,

[, [Iiteral-6] implementor-name-O .••

L SEGMENT-LIMIT IS priority-number).

lilorol-4 THRU 1i18rol-5] ... J 1

Format 1 is used when the COBOL library contains the entire description of the OBJECT-COMPUTER configuration.

The ADDRESS clause of the OBJ ECT -COMPUTER paragraph is not signifi cant to the compiler and is treated as com­
mentary. The MEMORY SIZE clause can be used to communicate to Sort the amount of core available for its use;
WORDS specifies core size in terms of words, CHARACTERS specifies core size in terms of bytes, and MODULES
specifies core size in terms of 2048-byte pages.

The bulk of the contents of the OBJECT -COMPUTER paragraph, as with the entire contents of the SOURCE­
COMPUTER paragraph, is not significant to the compiler and is treated as commentary. In the case above, however,
the paragraph is examined by the compi ler so that the single item of pertinent information, the SEGMENT·-LIMIT
clause, can be located. Therefore, the programmer must observe the language format shown.

The computer-name may be any nonreserved word that conforms to the rules for data-name formation: for example,
XEROX-SIGMA-9. Each literal may be either numeric or nonnumeric, and any implementor-names written here
may be represented by any nonreserved words.

The priority-number introduced by the SEGMENT-LIMIT clause must be an unsigned numeric literal with an integral
value greater than 0 and less than 50. PROCEDURE DIVISION section bearing priority-numbers in the range 50
through 99 are considered independent overlayable program segments at execution time. The SEGMENT-LIMIT
clause enables the programmer to extend this range, thus making a greater proportion of the object program overlay­
able if he so desires. A detai led description of priority segmentation and the significance of the SEGMENT-LIMIT
clause are presented in Chapter 11, "Priority Segmentation".

SPECIAL-NAMES Plflgr.ph

The formats of this paragraph are

Format 1

SPECIAL-NAMES. copy-statement.

16 CONFIGURATION SECTION

SPECIAL-NAMES.

[!
IS mnemonic-name[ON STATUS l~ condition-name-1 [OFF STATUS .!i.condition_name_2]JI~

. ~mnemonic-name[OFF STATUS !.? condition-name-2 [ON STATUS IScondition-name-l]]
Implementor-name - ...

ON STATUS !1 condition-name-l [OFF STATUS !i condition-name-2]

OFF STATUS ~ condition-name-:2[ON STATUS IS condition-name-l]

[CURRENCY SIGN!.? literal][DECIMAL-POINT ~ COMMA]'

Note: In repetition, (J comma may precede implementor-name.

The SPECIAL-NAMES paragraph relates implementor-names or codes to programmer-specified mnemonic-names and
defines status conditions.

Format 1 is used when there is an element in the current COBOL source library that contains the special-names dec­
larations desired for this compi lotion. For additional information see Chapter 9, "COBOL library".

Implementor-name Clause. Implementor-names recognized by the Xerox ANS COBOL Compiler are

1. "character" 3. PRINTER

2. CONSOLE 4. SWITCH-1 through SWITCH-6

"Character" may be any sin~lle-character, nonnumeric literal (i. e., any EBCDIC character except the quotation
mark) enclosed by quotation marks. The associated mnemonic-name may be mentioned in the Report Writer CODE
clause or in the ADVANCING option of a WRITE statement. The six switches are provided so that sense switches
can be simulated. The status of a switch is specified by condition-names and interrogated by testing the condition­
names. Mnemonic names associated with the implementor-names CONSOLE and PRINTER may be used in ACCEPT
and DISPLAY statements. ON and OFF status applies only to switches.

CURRENCY SIGN Clause. The literal that appears in the CURRENCY. SIGN clause is used to represent the cur­
rency symbol in the PICTURE clause. The literal is limited to a single-character, nonnumeric literal and may not
be one of the characters that is assigned significance in the definition of the PICTURE clause character string. Thus
the characters may not be

1. Digits 0 through 9.

2. Alphabetic characters A, S, C, D, P, R, S, V, X, or Z.

3. Special characters asterisk, plus, hyphen (minus), comma, period, left parenthesis, right parenthesis,
quotation mark, spnce (blank), or semicolon.

DECIMAL-POINT Clause. The DECIMAL-POINT IS COMMA clause states that in the current compilation the func­
tions of the comma and period are interchanged in the PICTURE clause character-string and in numeric literals.

The purpose of both the CURRENCY SIGN and DECIMAt-POINT clauses is to render COBOL more acceptable in
countries where other conventions are observed.

INPUT -OUTPUT SECTION

FILE-CONTROL Paragraph

The formats of this paragraph are

Format 1

FILE-CONTROL copy statement.

INPUT-OUTPUT SECTION 17

Format 2

FIJ:_~-:C9NTROl.

{SE LEeT [OPTIONAL] file-name-1 [ASSIGN-clause] [MULTIPLE-clause]

[RESERVE-clause] [FILE-LIMITS-clause] [ACCESS-clause] [PROCESSING-clause] [ACTUAL KEY-clause].J ...

Format 1 is used when the complete FILE-CONTROL paragraph description desired exists in an element in the cur­
rent COBOL source library. For additional information see Chapter 9, "COBOL library". A discussion of format 2
follows.

SELECT Sentence

Each file defined in the FILE SECTION of the DATA DIVISION must be named once and only once as file-name-1
in a SELECT sentence. Each selected file must have a File Description entry in the DATA DIVISION. File­
name-2 must not be a Sort-File. The word OPTIONAL indicotes an input file that is not necessarily present
each time the object program is executed.

The following clauses that compose the SELECT sentence are all optional; except for the ASSIGN clause, they may
be written in any order.

ASSIGN Clause. The format of this clause is

[ASSIGN TO [integer] implementor-name-1L implementor-name-2] ..• [QR. implementor-name-n]]

The ASSIGN clause permits a file to be associated with a particular type of hardware device. For program execu­
tion, the actual device assignment is made via the Monitor ASSIGN control command.

Acceptable implementor-names are

1. CARD-PUNCH 5. IAAGNETIC-TAPE 8. PRINTER

2. CARD-READER 6. PAPER-TAPE-PUNCH 9. TYPEWRITER

3. DISC 7. PAPER-TAPE-READER 10. DISC-R

4. DRUM

Where multiple implementor-names are specified, only the last name is recorded by the compiler.

"Integer", if specified, refers to removable volumes, e. g., magnetic tapes. The compi ler provides space for
"integer" number of Volume Serial numbers (SNs) in the file Data Control Block (DCB). If not specified, the de­
fault value is three. For Sort-Files, this indicates the number of Sort work files to be used {must be in the range 3
to 17 for tape sorts, 6 to 17 for di sk sorts}.

MULTIPLE Clause. The format of this clause is

[FOR MULTIPLE {~E~rT}]

The MULTIPLE REEL clause enables the programmer to instruct the compiler when the number of tape units assigned
might be less than the number of reels in the file. Similarly, the MULTIPLE UNIT clause indicates when the num­
ber of mass storage devices assigned might be less than the number of mass storage units in the file.

18 I NPUT -OUTPUT SECTIO N

RESERVE Clouse. The format of this clouse is

~ RESERVE {integer} ALTERNATE [AREA]n
~ --- NO AREAS U

The RESERVE clause permits the programmer to modify the number of input/output buffer areas to be allocated by the
compi! er. The integer opti on speci fi es that a number (i nteger) of areas in addi ti on to the standard number are to be
reserved for the file.

If "integer" is specified, one alternate area is reserved to provide double buffering. If single buffering is desired,
the NO option must be specified so that this alternate area will not be reserved.

FILE-LIMns Clause. ThE~ format of this clause is

[{
FILE -LIMIT ~ } {data-name-l} THRU {data-name-2} [{d.ata-name-3} THRU {d.ata-name-4}] J

' FILE-LIMITS ARE literal-l -- literal-2 '1Iteral-3 -- Ilteral-4 ...

Each pair of operands associated with the word THRU represents a logical segment of the file. The logical end of a
moss storage file is that address represented by the last operand of the clause.

Allocation of hardware resources is solely a monitor system responsibility.

ACCESS Clause. The format of this clause is

[ACCESS MODE IS {SEQUENTIAL}]
'-- - RANDOM

SEQUENTIAL denotes tha~ records are obtained or placed sequentially: that is, the next logical record is available
from the file on a READ statement execution, or a spec:ific logical record is placed in the next position in the file
on a WRHE statement execution.

If RANDOM is specified the ACTUAL KEY entry (see below) must also be specified, and at execution time the file
must be assigned to a direct-access device. In this case, the specified logical record (located using ACTUAL KEY
data-name contents) is made available from the file on a READ statement execution, or is placed in a specific lo­
cation on the file (located using ACTUAL KEY data-name contents) on a WRITE statement execution.

Sequential access is assumed when this clause is omitted.

PROCESSING Clause. The format of this clause is

(, PROCESSING MODE ~ SEQUENTIAL]

The PROCESSING clause permits the programmer to signify whether synchronous or asynchronous processing of a
mass storage file is desired. The fixed, read/write he(ld-per-track design of the XDS Rapid-Access Data (RAD)
units eliminates the time delays associated with movable-head disc files. Thus, asynchronous processing is not
implemented in this COBOL compiler; only sequential processing exists.

ACTUAL KEY Clause. The format of this clause is

L ACTUAL KEY .Th data-name]

The ACTUAL KEY clause ~nust be specified if RANDOM access is specified; it is not meaningful to SEQUENTIAL
access. For fi les assigned to DISC-R, a key defined as COMPUTA TIONAl (binary) must be specified.

The contents of data-name are used by the SEEK, READ, and WRITE statements to locate a specific record in a mass
storage file. The symboli'c identity of the record to be read or written r.1ust be placed in data-nome before

INPUT-OUTPUT SECTION 19

tilt' uppropriate input/output statement is executed. This symbolic identify is transmitted to the Monitor system
cliid is used to determine the physical location from which the record is to be read or into which it is to
be written.

The Monitor system employs a key consisting of a character-string preceded by a byte containing the length of the
string. Data-name may be any data item: it need not exist in the COBOL program in the form required by the
Mon i tor, si nee the compi I er generates code that places the contents of data-name into the desi red form before pre­
senting it to the Monitor system for execution of the input/output operation. However, overall length of the data
item is limited to 31 characters. Data-name may not be dynamically subscripted.

I-O-CONTROL Par..,.,h

The formats of this paragraph are

Format 1

I-O-CONTROl. copy-statement.

Format 2

I-O-CONTROL. [RERUN-clause). . .[SAME AREA-clause] ... [MUl TIPlE FILE-clause]

Format 1 causes the library element to be retrieved from the current COBOL source library and inserted into the
source prgoram at this point. A discussion of Format 2 fonows. For additional information see Chapter 9, "COBOL
library".

RERUN Clause

The format of this clause is

{lEND OF {REEL} 1 } 1 -- UNIT OF file-name
EVERY integer-l RECORDS ..•

integer-2 CLOCK-UNITS
condi ti on-name

The RERUN clause of the I-O-CONTROL paragraph is not significant to the compiler and is treated as commentary.

SAME AREA Clause

The format of this clause is

~ SAME [~RD] AREA FOR file-name-l L file-name-2} .• .]. ..

When SAME RECORD AREA is written, the logical record areas for all of the fj les mentioned overlap. Thus, although
several of the files may be open at the same time, the logical record of only one of the files can exist in the record
area at one time. More than one SAME RECORD AREA clause may appear in a COBOL program, but no one fi le­
nome may appear in more than one such clause. Sort-Files may not be referenced in a SAME clause. Without the
RECORD option, this clause is treated as comment.

20 IN PUT-OUTPUT SECTION

The format of this clause is

[; MULTIPLE FILE TAPE CONTAINS file-name-l [POSITION integer-l]

[, file-name-2 [POSITION integer-21 ••• } .••

The MUL TIPLE FILE clauso enables the programmer to indicate the order and positioning of each fi Ie on a reel when
more than one fi Ie shares the same physical magnetic tape reel.

INPUT-OUTPUT SECTION 21

5. DATA DIVISION

General Description

The DATA DIVISION describes data that the object program accepts as input in order to manipulate, create, or
produce output. Data to be processed falls into three categories:

1. Data that is contained in fi les and enters or leaves the internal memory of the computer from a specified
area or areas.

2. Data that is developed internally and placed into intermediate or working storage, or into specific format
for output reporting purposes.

3. Constants that are defined by the use.

Physical and Logical Aspects of Data Description,

DATA DIVISION Ora.niZltion

The DATA DIVISION is subdivided into the FILE, WORKING-STORAGE, LINKAGE, COMMON-STORAGE, and
RE PORT SECTIONs.

The FILE SECTION defines the contents of data files stored on an external medium. Each file is defined by a file
description followed by a record description or a series of record descriptions. The WORKING-STORAGE SECTION
describes records and noncontiguous data items that are not part of external data files but are developed and processed
internally. The LINKAGE SECTION and the COVIMON-STORAGE SECTION contain records and noncontiguous
data items that may be used in common by two or more independently compiled programs operating together as a single
executable object-time program. Like the WORKING-STORAGE SECTION, the LINKAGE and COVIMON-STORAGE
SECTIONs may specify both logical records and noncontiguous items. The REPORT SECTION describes the content
and format of reports to be generated.

DATA DIVISION Structure

The DATA DIVISION is identified by and must begin with the header

DATA DIVISION.

Eoch of the sections of the DATA DIVISION is optional and may be omitted from the source program. The fixed
names of these sections in their required order of appearance as section headers in the DATA DIVISION are

FILE SECTION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.
COtVIMON-STORAGE SECTION.
RE PORT SECTION.

Section headers for the FILE SECTION and the REPORT SECTION are followed by one or more sets of entries com­
posed of file clauses, followed by associated Record Description entries. WORKING-STORAGE, LINKAGE, and
COMMON-STORAGE SECTION headers are followed by Data Description entries for noncontiguous items, followed
by Record Description entries. See Figure 1.

FILE SECTION

In a COBO L program the Fi Ie Description (FD) and Sort-File Description (SD) entries represent the highest level of
organization in the FILE SECTION. The FILE SECTION is composed of the section header FILE SECTION and a per­
iod, followed by a File Description entry consisting of a level indicator (FD or SO), a data-name, and a series of indepen­
dent clauses. These clauses specify the size of the physical records, the name of the user label record contained in the
file, and tf,e names of the data records and reports that compose the file. The entry itself is terminated by a period.

The Sort-File Description (SD) is a special type of file description that gives the names of data records in the Sort­
File. See Chapter 8, "Sort Feature" and Appendix E, "Sort Feature Sample Program".

22 DATA DIVISION

lEVELS

Division .~

Section oj

File {

iFI lE
SECTION

[
FILE I
SECTION

f

I
Fiie Discription

.c=.===...----A
~FD_J ,r---SD----'I)

I DAT.AI
DIVI~

WORKIN'G­
STORAGE
SECTION
rw:SI
UE..~

LINKAGE
SECTION

I LINKAGE J L SECTION

COMMON-
STORAGE REPORT
SECTION SECTION

I C-S I I REPORT J
SECTION SECTI ONtl

Report
Description

I RD I
Rec()rd Description Record Description

~====--A A~======~~======~
Record 004 1 Group] I Group f 1 Gr;] I Group I I Group I I Group r

I Elementar~ ~mentary I I Elementary I ~ Elementary -' I Elementary I I Elementary I
."'"=--------

FI L.E SECTI ON WORKING­
STORAGE
SECTION
'---~

LINKAGE
SECTION ,----------v---------------J

-~

tSections of the DATA DIVISION,
if present, appear in the SOlJlrce
program in the order shown "eading
from top to bottom.

ttlf the REPORT SECTION iSi

present, the report-name must
appear in an FD entry in t~,e·

FILE SECTION.

\ ..,.

DATA
DIVISION t

FILE
SECTlONtt

w-S
...

SECTION

LINKAGE ~
SECTION

c-S I 'Ii

SECTION

REPORT
.:

SECTION

-"

..

~I

~--.-------I

~--

Figure 1. DATA DIVISION Structure

.I

COMMON­
STORAGE
SECTION

'T
,

REPORT
SECTION

T

DATA DIVISION Structure 23

~_cord Description Structure. A record description consists of a set of Data Description entries that describe the
characteristics of a particular record. Each Data Description entry consists of a levE:l-number followed by a data­
nome, followed by a series of independent clauses, as required. A record description has a hierarchical structure;
therefore. the clauses used with on entry may vary considerably, depending upon whether or not it is followed by
subordinate entries. The structure of a record description is defined in "Concepts of Levels" in Chapter 1; elements
allowed in a record description are specified in II Data Deacription Entries" later in this chapter.

WORKING-STORAGE SECTION

The WORKING-STORAGE SECTION is composed of the section header WORKING-STORAGE SECTION and a
period, followed by Data Description entries for noncontiguous working-storage items and Record Description entries
(in that order). Each WORKING-STORAGE record-name (01 level) and noncontiguous data-name must be un ique,
since it cannot be qualified;subordinate data-names need not be unique if they can be made unique by qualification.

Noncontiguous Working-Stora~. Items in working-storage that bear no relationship to one CI10ther need not be
grouped into records provided ey do not need to be further subdivided; instead, they are classified and defined as
noncontiguous elementary items. Each of these items Is defined in a separate Data Description entry that begins with
the special level-number 77.

Data clauses required in each Data Description entry are

1. Level-number.
2. Data-name.
3. The PICTURE clause CI1d/or the USAGE clause.

Other record description clauses are optional and can be used to complete the description of the item if necessary.

Working-Storage Records. Data elements in working-storage that bear a definite relationship to one another must be
grouped into records according to the rules for formation of record description. All clauses that are used in normal
input or output record descriptions can be used in a worklng-storage record description.

Initial Values. The initial value of any item in the WORKING-STORAGE SECTION except an index data item is
specified by using the VALUE clause of the record description. The initial value of any index data item is deter­
mined at compile time.

LINKAGE SECTION

The LINKAGE SECTION defines records and noncontiguous data items used in common by independent compilations
when they are combined to form a single run-time program.

The LINKAGE SECTION is orgCl1ized exactly the same way as the WORKING-STORAGE SECTION, beginning with
a section header LINKAGE SECTION and a period, followed by Data Description entries for noncontiguous constants
and Data Description entries for contiguous constants, in that order. Each UNKAGE SECTION record-name must be
unique, since it cannot be qualified; subordinate data-names need not be unique if they can be made unique by qual­
ification. Initial values cannot be specified for items appearing In a LINKAGE SECTION.

COMMON-STORAGE SECTION

The COMMON-STORAGE SECTION provides an alternate means of defining records and noncontiguous data items
used in common by independent compilations when they are combined to form a single run-time program.

The COMMON-STORAGE SECTION is organized exactly the same way as the WORKING-STORAGE and LINKAGE
SECTIONs, beginning with a section header COMMON-STORAGE SECTION and a period, followed by Data De­
scription entries for noncontiguous constants and Data Description entries for contiguous constants, in that order. Each
COMMON-STORAGE SECTION record-name must be unique, since it cannot be qualified; subordinate data-names
need not be unique if they can be made unique by qualification. Initial values may be specified for items appearing
in a COMMON-STORAGE SECTION.

REPORT SECTION

The REPORT SECTION consists of two types of entries for each report:

1. Report Description (RD) entry.
2. Report Group Description entries.

The RD entry describes physical aspects of the report format. Report Group Description entries describe conceptual
characteristics of the items comprising the report and their relation to the report format.

24 DATA DIVISION Structure


~~~~t_J2escription Entry. The Report Description entry contains information pertaining to the overall format of a 
report named in the FILE SECTION and is uniquely identified in the REPORT SECTION by the level indicator RD. 
Characteristics of the report page are provided by describing the number of physical lines r-er page and limits for 
specified headings, footings, and details within page structure. Data items that act as contro' factors during pre­
sentation of the report are specified in the RD entry. Each report named in an FD entry in the FILE SECTION must 
be defined by an RD entry. 

Report Group Description Entry. A report may be divided into report groups. A report group is a set of data items 
that are to be presented as an individual unit, irrespective of physical format structure. This unit may consist of 
several report lines containing many data items or of one report line containing a single data item. Three categor­
ies of report group definitions are provided: Heading Groups, Footing Groups, and Detail Groups. 

The data items comprising a rfeport group must be identified by the level-number 01 and a TYPE clause. Reportgroup 
names are required when reference is made in the PROCEDURE DIVISION to 

1. A TYPE DETAIL repolrt group by a GENERATE statement. 
2. A TYPE HEADING or FOOTING report group by a USE statement. 

Description of the report group, analogous to that of the data record, consists of a set of entries defin ing character­
istics of the elements: placement of an item in relation tj:) the entire report group and to the overall report format, 
format description of all items, and any control factors associated with the group. 

, 
File Descriamon - Complete ElI1try .. tan 

The general formats of this enf'ry are 

Format 1 

FD file-name copy-statement. 

Format 2 

FD file-name 

[ 
. [ ] 2 {RECORDS } ] ; BLOCK CONTAINS integer-l TO integer- CHARACTERS 

[; RECORD CONTAINS [integer-3 TO] integer-4 CHARACTERS] 

{ 
RECORD IS } {STAN DARD . } 

'; LABEL RECORDS ARE OMITTED 
data-name-l~ data-name·-2] .•. 

[ {
data-name-4} [ {data-name-6l] ] 

; VALUE Of data-name-·3 IS literal-l ' data-name-5 IS literal-2 ... 

[ {
RECORD IS } ] ] ; DATA RECORDS ARE data-name-7~ data-name-8 ... 

r {REPORT IS 1 ] ] t REPORTS AREJ report-name- 1[, report-name-2 •• ~ • 

The File Description entry furn ishes information concerning the physical structure, identification, and record names 
pertaining to a given file. In Format 1 the COpy clause enables a prewritten File Description entry to be included 
in the DATA DIVISION; this entry is contained in the COBOL library. For additional information see Chapter 9, 
"COBOL library". A description of Format 2 follows. 

BLOCK CONTAINS Clause. The format of this clause is 

l BLOCK CONTAINS [integer-l TO] integer-2{~~~O~~~ERS}J 
The BLOCK CONTAINS clausE~ specifies to the compiler the block size of the file. This information is conveyed 
either directly in CHARACTERS or indirectly by providing the blocking factor (i. e. I the number of logical records 
per block) via the RECORDS option. If neither CHARACTERS nor RECORDS is written, CHARACTERS is assumed. 
"Integer-l" and linteger-2" refer to the minimum and maximum size of the block, respectively. 

File Description ~ Complete Entry Skeleton 25 



RECORD CONTAINS Clause. The fonnat of this clause is 

[; R~~ORD CONTAINS [integer-3 TO ] integer-4 CHARACTERS] 

The RECORD CONTAINS clause specifies the size of data records. Since the size of each dato record is completely 
defined within the Record Description entry, thh clause is not required. 

If only "integer-4" is specified, it represents the exact number of characters in the data record. If both "integer-3" 
and "integer-4I1 are specified, they refer to the minimum number of characters in the smallest size data record and the 
maximum number of characters in the largest size data record, respectively. 

Variable length records may be described by the OCCURS DEPENDING ON clause. The Record Description may 
contain up to 15 variable groups. These variable groups must follow the fixed portion of the record. No fixed items 
or groups are permitted following the variable groups. The length of each variable group is determined at execution 
time. For further information, see "OCCURS Clause", later in this chapter. 

LABEL RECORDS Clause. The format of this clause is 

I

RECORD IS IISTANDARD I 
; LABEL RECORDS ARE OMITTED 

data-name-l [,data-name-2] •.. 

This clause is required in every File Description entry. 

The OMITTED option specifies that no explicit labels exist for the file or the device to which the file is assigned. 

The STANDARD option specifies that standard system labels exist for the file or the device to which the file is as­
signed. Such labels are written when the file is opened for output and checked automatically by the operating 
system when the file is opened for input or input/output. 

The data-name option specifies that user labels exist. Data-nome-I, data-name-2, etc., are the names of 
user label records that (1) must not appear in the DATA RECORDS clause, and (2) must be the subject of a 
Record Description associated with the file. The contents of user labels can be accessed via USE statements in the 
DECLARATIVES SECTION. All Procedure Division references to data-name~ 1, or to any items subordinate to data­
name-I, must appear within USE procedures. 

VALUE OF Clause. The format of this clause is 

r {data-name-4}f {data-name-6 }ll ] t VALUE OF data-name-3 IS literal-l ~ data-name-5 IS Iiteral-2 U'" 

Sigma Monitor systems perform label-checking services, hence this clause is treated as documentation. 

DATA RECORDS Clause. The fonnat of this clause is 

r. {RECORD IS } ] t! DATA RECORDS ARE data-name-7G data-name-8] ••• 

The DATA RECORDS clause cross-references the description of data records with their associated file description. 
Each logical record in the file must be named in this clause; the order of listing the names is not significant. 

The appearance of multiple data-names means that the file contains a corresponding number of different types of 
records. These records may be of differing sizes and fonnats. The order in which they are listed in the c1uuse is 
not important. It must be remembered that no two records of the same file are available for processing at the same 
time; in other words, if one record is read from a file and then another record is read from the same file, the sftcond 
record replaces the first. 

26 File Description - Complete Entry Skeleton I 



REPORT Clause. The fomlat of this clause is 

r {REPORT IS } . ] t REPORTs ARE relPort-name-1L report-name-2] .•.. 

r\-"-. .... . 

The REPORT clause cross-references the description ,Jf ~port Description entries with their associated Fi Ie Descrip­
tion entry. Each report-name listed in the FD entry mUst be the subject of a Report Description (RD) entry in the 
REPORT SECTION. 

The REPORT clause is required in the File Description entry if the file is an output report file or is to contain output 
report records. The presenlce of more than one report-name indicates that the file contains more than one report; 
the order of presentation iSi not significant. 

General Format: 

{
data-ncJme}[ H~ ] level-number FILLER REDEFINES-ciauseJ lCOPY statement 

[PICTURE-clause] [USAGE-clause] [SYNCHRONIZED-clause] 

[BLANK -clause] [JUSTIFIED-clause] [VALUE-clause] 

[OCCURS-clause] [RENAMES-clause]. 

A Data Description entry (see Figure 2) describes charac:teristics of each item within a data record. Each item is 
accorded a separate entry that must appear in the order in which the item occurs in the record, since the relative 
location of each entry is cc.mmunicated to the compiler by its position in the record description. Each entry con­
sists of a level-number, dall'a-namer and series of clauses terminated by a period. 

The reserved word FILLER may be substituted for a programmer-defined data-name when an unused portion of a logi-
cal record or a data item that is not referenced directly is defined. • 

Specific formats for individual types of data items are shown below. In each of these formats, clauses that do not 
appear are categorically forlbidden in that data type, whi Ie clauses that are mandatory are depicted without brackets. 

Detai led Formats of Data Items: 

Group Item 

level-number {~7~~~;ame}[REDEFINES-ciause] [OCCURS-clause] 

[USAGE-clause] 

[VALUE is non-numeric-literal]. 

Example: 

01 GROUP-ITEM. 

02 FIELD-l PICTURE X. 

02 FIELO-2 PICTURE X. 

Alphabetic Elementary Item 

{
datIl-name} [ 1 [ .1 level-number FILLER REDEFINES-ciauseJ OCCURS-clauseJ 

{
PICTURE} ri ] PIC-- IS alpha-type LUSAGE IS DISPLAY 

• • i1 [(JUSTIFIED} ] [VALUE IS non-numerlc-Iltera~ . ~ RIGHT. 

Example: 

05 CLIENT-NAME PICTURE A(35) USAGE IS DISPLAY. 

Data Description Entries 27 



01 VARIOUS-DATA-DF.Sr. 
02 ALPHABETIC-TYPES. 

03 Al PICTURE AAAAAAAA. 
03 A2 REDEFINES Al PICTURE A(8). 
03 A3 PICTURE A(4) OCCURS 4 TIMES. 
03 A4 PICTURE A(6) VALUE IS 'XYZ A'. 
OJ AS PICTURE A(2) USAGE IS DISPLAY. 
03 A6 PICTURE A(8) JUSTIFIED RIGHT. 
03 A7 REDEFINES A6 PICTURE A(2) USAGE DISPLAY 

JUSTIFIED RIGHT OCCURS 4 TIMES. 
02 ALPHANUMERIC-TYPES REDEFINES ALPHABETIC-TYPES. 

03 ANI OCCURS 8 TIMES PICTURE IS X9A. 
03 AN2 PICTURE X(16) JUSTIFIED RIGHT USAGE IS DISPLAY. 
03 AN3 REDEFINES AN2 PICTURE X(4) OCCURS 4 TIMES. 

02 ALPHA-EDITED-TYPES. 
03 AEI PICTURE XXBxv.BXX VALUE IS '010168'. 
OJ AE2 PIC IS XXXXBXX99BOOBXXX JUSTIFIED RIGHT. 
03 AEJ REDEFINES AE2 PIC X(10)B09AAX DISPLAY JUST RIGHT. 

02 NUMERIC-EDITED-TYPES. 
OJ NEI PICTURE IS ZZ.999+ BLANK WHEN ZERO. 
OJ NE2 REDEFINES NEI PICTURE **.**9- BLANK WHEN ZE~O. 
OJ NEJ OCCURS 4 TIMES PICTURE ZZZ9 BLANK ZERO. 

02 NUMERIC-TYPE-I-ZONED. 
OJ NI PICTURE 9999 OCCURS S TIMES USAGE DISPLAY. 
03 N2 PIC S9999 VALUE IS -1234. 
OJ N3 REDEFINES N2 PICTURE S99V99. 

02 NUMERIC-TYPE-2-PACKED OCCURS 4 TIMES COMPUTATIONAL-3. 
03 N4 PICTURE S999 OCCURS 2 TI~S. 

02 NUMERIC-TYPE-COMP. 
OJ NS USAGE IS COMPUTATIONAL VALUE IS ZEROS. 
03 N6 REDEFINES NS USAGE IS COMPo 
03 N7 USAGE IS COMPUTATIONAL OCCURS 2 TIMES. 

02 NUMERIC-TYPE-4-COMP-I-2-INDEX. 
03 N8 USAGE COMP-2. 
03 N9 REDEFINES N8 USAGE IS INDEX OCCURS 2 TI~S. 

66 RENAMES-TYPE RENAMES NUMERIC-EDITED-TYPES 
TH~U NUHERIC-TYPE-I-Z0NED. 

Figure 2. Various Data Description Entries Listing 

Alphanumeric Elementary Item 

{
data-name} [ .1 r; .1 level-number FILLER REDEFINES-clauseJ LOCCURS-c1auseJ 

{~TURE} IS an-type [USAGE IS DISPLAY] 

• ] fI{JUSTIFIED} 1 [VALUE IS non-numeric-literal V Am' RIGHTJ 

Example: 

04 U-NAME PICTURE X(21) DISPLAY. 

04 ERROR-DATA PIC X(45) JUST RIGHT. 

Alphanumeric Edited Elementary Item 

{data-name} [ S I 1 [ S I 1 level-number FILLER REDEFINE -c auseJ OCCUR -c auseJ 

{~TURE} IS ae-type [USAGE IS DISPLAY] 

• ] fI{JUSTIFIED} J [VALUE IS non-numeric-literal V JUST RIGHT . 

28 Data Description Entries 



Example: 

05 DATE I)ICTURE XXBXXXBXXXX VALUt '19AUG 1%81
• 

Numeric Edited Elementary Item 

b {
datcl-name} r. .:1 r. level-num er f.lJJ&B. LREDEFINES-clausf!l lOCCURS-clause) 

{ PIC~} IS {numeric-type BLANK WHEN ZERO} 
PIC. ne-type BLANK WHEN ~ERQ 

[USAGE IS PISPLAY). 

Example: 

02 W-RECORD-COUNT PIC 999 BLANK ZERO. 

02 W-INVIENTORY-VALUE PICTURE $Z, ZZZ, ZZZ, ZZZ. 99-. 

: Zoned Decimal Elementcny Item 

{
data-name} [ .1 level-number .E.!WER REDEFINES-clauseJ (OCCURS-clause] 

Example: 

{~rURE} IS numeric-type [USAGE IS PISPLAY] 

[VALUE IS numeric-literal). 

02 UNIT -PftlCE PICTURE 9(4)V99 VALUE 1280. ,,~. 

Packed Decimal Elementcuy I~em 

{
data .• name} fi :1 r. :1 level,-number . FILL!;! lREDEFINES-clauseJ lOCCURS-clauseJ 

{eKIU!§IS . • _ USAGE IS {COMPUTATIONAL-3} 
PIC J numeric type. COMP-3 

[VAl.UE IS numeric-literal). 

Example: 

02 INVENTORY-VALUE PICTURE 9(10)V99 COMPU1ATIONAL-3 OCCURS 5 TIMES. 

Binary Elementary Item 

{
data-name} Ii ~ r , level-number FILLER. LREDEFINES-clauseJ lOCCURS-clauseJ 

USAC'E IS {COMPUTATIONAL} 
7 COMP 

[VALUE IS numertc-type] • 

Data Description Entries 29 



Example: 

77 SU"8SCRIPT -1 COMP VALUE 8. 

Floating-Point Elementary Item 

level-number {data-name} (REOEFINES-clau~ {O<;CURS-clause] 
FILLER 

Example: 

{

COMPUTA T10NAL-l} 
COMP-l 

USAGE IS COMPUTATIONAL-2 
COMP-2 

(VALUE IS numeric-type]. 

06 FP-FIELD-l COMPUTATIONAL-l VAWE -36.2584. 

Index Elementary Item 

level-number {~7~~E;ame} [REDEFINES-clause] [OCCURS-clause; 

USAGE IS INDEX 

[VALUE IS numeric-type]. 

Example: 

n IND USAGE IS INDEX VALUE IS 16. 

Condition Name Item 

{VALUE IS} [{" THROUGH} ] 88 condition-name; "AWES ARE IIteral-l."nw,L : IIteral-2 

~ IItoraJ-3 [G:~GHJ IlteraJ-"]]. .• 

Examplez 

01 GROUP-ITEM 

02 FIELD-l PICTURE XX. 

88 COND VALUE IS 'ON'.!! 

REDEFINE'S Clause. The format of this clause is 

level-number data-name-1 REDEFINES data-name-2 

30 Data Description Entrie. ", 



The REDEFINES clouse overlaps items in storage (allocates the same storage space for different items at different 
times) or provides on alternate grouping or description of the some data (redefines on elementary item or a group item). 

The level-numbers of dato-name-1 and data-name-2 must be identical but must not be 66 or 88. 

The REDEFINES clouse is not used at the record 01 level in the FILE SECTION. The DATA RECORDS clouse inthe FD 
entry indicates the existence of more than one type of record; thus, on implied redefinition exists at the 01 level. 

Redefinition begins at data-name-2 and continues until a level-number whose value is equal to or less than data­
name-2 is encountered; therefore, between data-names,-l and -2 there must not be a level-number lower than thatof 
data-names-1 and -2. D(lta-name-1 must follow data-'name-2 such that, if data-name-2 is a group entry, the entry 
for data-name-1 must appear immediately after the entries for all items in that group. However, additional entries 
that redefine the some area may intervene. 

Data-name-1 may be a group or an elementary item irrespective of the nature of the dota-name-2 item. If it is a 
group, the data-name-2 entry is followed by all the entries in that group, since such entries are port of the redefini­
tion; if it is on elementary item, it completely redefines data-name-2. A REDEFINES clouse may be specified for on 
item within the scope of on area being redefined; that is, REDEFINES clauses may be specified for items subordinate 
to items containing REDEFINES clauses. 

When the REDEFINES clause is used with certain other clauses, entries (except for condition-nome entries) contain­
ing or subordinate to the REDEFINES clouse must not contain VALUE clauses. 

When on area is redefined, all descriptions of that area remain in effect for the entire program. The one that is 
selected depends on the pnrticular reference mode to the area. For example, if items A and B shore the same area, 
MOVE X TO A moves X t() the area according to the description of A; MOVE Y TO B moves Y to the some area ac­
cording to the description of B.. These statements could be executed anywhere in a program; final contents of the 
area depend on the order in which they are executed. A table of constant items is redefined so that any item in the 
table can be referenced by position rather than by individual nome. This does not redefine the area according to dif­
ferent patterns, but simply permits the some pattern of items to be considered in a different way. 

COpy Statement. The format of this clouse is 

level':'number data-name-l [; REDEFINES data-name-21 copy-statem.ent. 

The COPY statement enab~es prewritten Record Descripf'ion entries to be included in the DATA DIVISION. These 
entries are from the COBOL library, eliminating the need for specifying the entries each time they are needed. In­
formation being copied is iinserted at the point in on entry where the COpy statement appears; thus data-name-l and 
its level-number are not replaced by the information being copied, nor is the REDEFINES clouse if it is present. 

For additional information see Chapter 9, "COBOL library". 

PICTURE Clouse. The format of this clouse is 

{~TURE} IS charact,er-string 

The PICTURE clouse describes the general characteristics and editing requirements of elementary items. 

The character-string consists of certain allowable combinations of characters in the COBOL character set used as 
symbols. These allowable combinations determine the category of the item. The five categories of data that can be 
described with a PICTURE ,clouse are 

1. Alphabetic 

2. Alphanumeric 

3. Numeric 

4. Alphanumeric Edited 

5. Numeric Edited 

Data Description Entries 31 



The following ru les apply to use of the PICTURE clause. 

1. General 

The number of occurrences of any of the characters indicates the sizeof an item described by the PICTURE clause. 
Size may be indicated either by repeating the character or, in a shorthand way, by writing the character once 
and putting the number of its occurrences in parentheses. Thus, P(10)9(2) is equivalent to PPPPPPPPPP99. 

A maximum of 30 characters is allowed in a PICTURE clause. This limit does not refer to the number of charac­
tefs in the item itself, but only to the number of characters (including parentheses) used in the PICTURE speci­
fying the item. For example, the same item may be described by a PICTURE containing 12 characters, 
PPPPPPPPPP99, or by a PICTURE containing only 9 characters, P(10)9(2). In either case, the actual size of the 
item is only 2 characters. An item containing 75 alphabetic characters may be specified by the PICTURE A(75), 
whi ch only uses 5 characters, but the same item may not be specified by a PICTURE in which A is repeated 75 times. 
The size of an alphabetic or alphanumeric item described by the PICTURE is lim i ted to a maximum of 65,535 characters; 
other classes of data items are limited to 255 characters except for numeric display items, which are limited to 
31 digits. However, numeric operands in arithmetic operations are limited to a maximum of 18 digits only. The 
size of an entire Group Item is also limited to 65,535 characters. 

2. Categories of Data 

a. Alphabetic (alpha-type) 

The PICTURE of an alphabetic item contains only the character A. The number of As in the character­
string denotes the size of the data item, and each A represents one character that at execution time may 
contain one of the twenty-six letters of the English alphabet or the space character. 

b. Alphanumeric (an-type) 

The PICTURE of an alphanumeric item may contain only the character X or a combination of the characters X, 
A, and 9. An X indicates that the corresponding character position of the data item may contain anyone 
of the characters in the EBCDIC set. When the PICTURE is described with a combination of characters, each 
character is treated as though it were an X, since no examination of the data placed in the item is made at 
execution time. Thus, this type of PICTURE description may have documentary significance only to the 
programmer. 

c. Numeric (numeric-type) 

The PICTURE of a numeric data item may contain only the characters 9, P, 5, and V. 

The character 9 represents a digit position containing a numeral and is counted in the size of the item. 

The character P indicates an assumed decimal scaling position and specifies the location of an assumed 
decimal point when the point is not within the number that appears in the data item. The character P is not 
counted in the size of the data item and can appear only to the left or right a:; a continuous string of Ps. 
Since the scaling position character P implies an assumed decimal point (to the left of the Ps if Ps are left­
most PICTURE characters, and to the right of the Ps if Ps are rightmost PICTURE characters), the character 
V is redundant as either the leftmost or rightmost character with such a PICTURE (see below). 

The character S indicates the presence of an operational sign and must be written as the leftmost character 
in the PICTURE. 

The character V indicates the position of the assumed decimal point and may occur only once in the 
character-string. The V does not represent a digit position and therefore is not counted in the size of the 
item. When a V is written as the last (rightmost) character in the PICTURE, it is redundant. 

d. Alphanumeric Edited (ae-type) 

The PICTURE of an alphanumeric edited item contains any combination of the characters X, A, and 9 
together wi th one or more occurrences of the insertion characters 0 (zero) or B. Each 0 represents a char­
acter position into which the character 0 is to be inserted; each B representsa character position into 
which the space character is to be inserted. Thus, an alphanumeric edited field is one that contains 
certain character positions into which insertion characters are forced whenever data is stored in the item 
at execution time. 

32 Data Description Entries 



e. Numeric Edited (ne-type) 

Editing alters th'l!t format and punctuation of data in an item; characters can be suppresse-:loradded. Editing 
is accomplished by moving a data Item to an hem described as containing editing symbols. Movement may 
be direct or indirect: the programmer can spoclfy a MOVE statement or he can specify arithmetic state­
ments in which the result of computation is stol'ed In such an item. 

Characters that may be used in a PICTURE of Q numerIc 'dited Item are 

9 P V $ + - . , 0 B CR DB Z 11 

The characters 9" P, and V are discussed above; their use is exactly the same as in numeric items. The 
remainder are insertion and replacement characters (see below). 

3. Insertion Characters 

When an insertion chmacter is specified in the PICTURE,'it appears in the edited data item; therefore, the size 
of the item must refle'ct these additional characters. Insettion characters and their characteristics are 

$ When a sing!/e dollar sign is specified as the leftmost symbal, it appears as the leftmost character in 
the size of the item. A special currency signm1ay replace the $ sign, but must be defined in the 
SPECIAL-NAMES paragraph. 

+ When a plus sign is specified as the first or last symbol, a plus sign is inserted in the indicated charac­
ter position ()f the edited data item provided the data is positive (contains a positive operational sign) 
or is unsigned. If the data is negative, a minus sign is inserted in the indicated character position. 
This sign is c:ounted in the size of the item. 

When a minus sign is specified as the first or last symbol, a minus sign is inserted in the indicated 
character po:sition of the edited data item provided the data is negative (contains a negative operational 
sign). If the· data is not negative, a blank is inserted in the indicated character position. This sign or 
blank is counted in the size of the item. 

The period character represents an actual decimal point as differentiated from an assumed decimal 
point. When used, a decimal point appears in the edited data item as a character in the indicated 
character position; therefore, the decimal ~ oint is counted in the lIize of the item. A PICTURE can 
never contain more than one decimal point; actual or assumed. 

When a comma is used, a comma is inserted in the corresponding character position of the edited data 
item. It is counted in the size of the item. 

o When a zero is used, a zero is inserted in th.~ corresponding character position in the edited data item. 
It is counted in the size of the item. 

B When a charucter B is used, a space is insert ,cJ in the corresponding character position in the edited 
data item. It is counted in the size of the i .... m. 

CR The credit symbol CR may be specified only a 'the right end of the PICTURE character-string. It is 
inserted in the last two character positions of the edited data item provided the value of the data is 
negative; if the data is positive or unsigned, 'ilese last two character positions are set to spaces. Since 
this symbol always results in two characters (CI or spaces), it h included as two characters in the size 
of the item. 

DB The debit symbol DB may be specified onl>, at tht. right end of the PICTURE. It functions in the same 
manner as thE~ credit symbol. 

Data Description Entries 33 



Examples af Insertion Characters: 

Source Data Edi ting PIC1\JRE .. Edited Item 

4 8 $99 $ 4 8 

4 8 t 3 4 $99.99 S 4 8 3 4 
I 

4 8 3 4 9,999 4 , 8 3 4 

2 9 2 +999 + 2 9 2 

2 9 2 +999 + 2 9 2 

2 9 2 +999 - 2 9 2 

2 9 2 999- 2 9 2 -
+ 

2 9 2 -999 ~ 2 9 2 

2 9 2 999- 2 9 2 f:j, 

2 4 3 t 2 1 $88999.99 $ ~ ~ 2 4 3 2 1 

2 4 3 t 2 1 $00999.99 $ 0 0 2 4 3 2 1 

1 1 t 3 4 99.99CR 1 1 3 4 C R 

1 1 t 3 4 99.99CR 1 1 3 4 ~ f:j, 

2 3 t 7 6 99.9908 2 3 7 6 0 8 

2 3 t 7 6 99.9908 2 3 7 6 ~ f:j, 

4. Replacement Characters 

A replacement character suppresses leading zeros In data and replaces them with other characters in the edited 
data item. Only one replacement character may be used in a PICTURE, although Z or * may be used with any 
one of the insertion characters. Replacement characters and their characteristics are 

Z One character Z is specified at the left end of the PICTURE character string for each leading zero that 
is to be suppressed and replaced by blanks in the edited data item. Zs may be preceded by one of the 
insertion characters $ + or - and interspersed with any of the. , 0 or 8 insertion characters. 

* 

Only the leading zeros that occupy a position specified by Z are suppressed and replaced with blanks. 
No zeros are suppressed to the right of the first nonzero digit whether or not a Z is present, nor are 
any zeros to the right of an assumed or actual decimal point suppressed unless the value of the data is 
zero and all the character positions in the item are described by a Z. In this special case, even an 
actual decimal point is suppressed and the edited item consists of all blanks. 

If a $ + or - is present preceding the Zs, it is inserted in the far left character position of the item 
even if succeeding zeros in the item are suppressed. In the special case where the value of the data 
is zero and all the character positions following the $ + or - are specified by Zs, the $ + or - is re­
placed by a blank. 

If a 0 or 8 or, in the PICTURE is encountered before zero suppression terminates, the character is not 
inserted in the edited data item but is suppress.p, and a blank inserted in its place. 

The asterisk replaces the leading zeros it edits by an asterisk instead of a blank. It is specified in the 
same way as the editing character Z and follows the same rules, except that an actual decimal point 
is never replaced. 

34 Data Description Entries 



$ When the dollar sign is used as a replacement character to suppress leading zeros, it acts as a floating 
dollar sign and is inserted directly preceding the first nonsuppressed character. One more dollar sign 
must be specified than the number of zeros to be suppressed. This dollar sign Is al.vays present in the 
edited dat,CJ whether or not any zero suppression occurs. The remaining dollar signs .:Jct in the same way 
as Z to effect the suppression of leading zttros. No other editing character may precede the initial dol­
lar sign. Each dollar sign specified in a picture Is counted in determining the size of the report item. 
A special Icurrency sign may replace the $ but must be defined in the SPECIAL-NAMES paragraph. 

t- When a plus sign is used as a replacement character, it is a floating plus sign. The plus sign is speci­
fied one more time than the number of leading zeros to be suppressed. It functions in the same way as 
the floating dollar sign: a plus sign is placed directly preceding the first nonsuppressed character if 
the edited data is positive or unsigned, and a minus sign is placed in this position if the edited data is 
negative. 

When a minus sign is used as a replacement character, it is a floating minus sign. The minus sign is 
specified one more time than the number of leading zeros to be suppressed. It functions in the same 
way as the floating plus sign, except that a blank is placed directly preceding the first nonsuppressed 
character if the edited data is positive c)r unsigned. 

Examples of Replacement Characters: 

Source Data Editing PICTURE Edited Item 

0 0 9 2 3 ZZ999 A A 9 2 3 

0 0 9 2 3 ZZZ99 A A 9 2 3 

0 0 0 o to 0 ZZZZ.ZZ A A A A A A A 

0 0 9 t 2 3 $***.99 $ * * 9 2 3 

0 0 0 8 t 2 4 $$$$9.99 A A $ 8 2 4 

0 0 5 t 2 6 ---9.99 A A - 5 2 6 

3 2 t 6 5 S$$.99 $ 3 2 6 5 

Examples of PICTURE Editing: 

Data to Be Edited 
PICTURE of 

Edited Item 
Report Item 

0 1 2 3 4 5 t ZZZ,999.99 A 1 2 , 3 4 5 0 0 

0 0 1 2 t 3 4 Z99,999.99 A 0 0 , 0 1 2 3 4 

0 0 0 1 t 2 3 $ZZZ,ZZ9.99 $ 6. A 6. A A A 1 2 3 

0 0 0 o t 1 2 $ZZZ,ZZZ.99 $ 6. fj. A A A A A 1 2 

0 0 1 2 3 4
t 

$*** ,**9.99 $ * * 1 2 3 4 0 0 I 

1 2 3 4 5 6 t 
$**"", *"·*.99 $ 1 2 3 , 4 5 6 0 0 

1 t 2 3 4 5 6 $***,***.99 $ * * * * * * 1 2 3 

+ 
0 0 0 0 1 2 t +999,999 + 0 0 0 , 0 1 2 

0 a 0 0 1 2 t -ZZZ,ZZZ - 6. 6. A 6. 6. 1 2 I 

Data ,a..criptlon Entries 35 



Examples of PICTURE Editing (cont. ): 

Data to Be Edi ted PICTURE of 
Edited Item 

Report Item 

1 2 3 4 5 6, $ zzz, ZZ 9. 99CR $ 1 2 3 , 4 5 6 0 0 C R 

+ 
0 0 0 1 t 2 3 $ZZZ,ZZ9.99DB $ t:. t:. t:. t:. t:. t:. 1 2 3 t:. b. 

0 0 1 2 3, 4 $(4),$$9.99 t:. A t:. A $ 1 2 3 4 0 

0 0 0 0,0 0 $(4),$$$.99 A A A A t:. A A S 0 0 

0 0 0 o t 1 ~ ----,---.99 A A A t:. t:. t:. A - 1 2 

+ 
0 0 0 o t 1 2 ----,---.99 A A A A A A A t:. 1 2 

0 0 0 o ,0 1 $$$$,$ZZ.99 
. -

Illegal PICTURE 

5. Summary 

a. Only one of the characters of the set Z * $ + and - can be used within a single PICTURE as a replacement 
character, although it may be specified more than once. 

b. If one of the replacement characters Z or * is used with one of the insertion characters $ + or -, the plus 
or minus signs may be specified as either the leftmost or rightmost character in the PICTURE. 

c. A plus sign and a minus sign may not be included in the same PICTURE. 

d. A leftmost plus sign and a dollar sign may not be included in the same PICTURE. 

e. A leftmost minus sign and a dollar sign may not be included in the same PICTURE. 

f. The ~haracter 9 may not be specified to the left of a replacement character. 

g. Symbols that may appear only once are V S • CR and DB. 

h. The decimal point may not be the rightmost character in a PICTURE. 

Table 2 shows the possible legal combinations of characters in a PICTURE clause. Diagnostic tests are made for most 
of the conditions represented in the table. Refer to the COBOL Operations manual for a listing of diagnostics. 

USAGE Clause. The format of this clause is 

[USAGE IS] 

DISPLAY 
INDEX 
COMPUTATIONAL 
COMP 
COMPUTATIONAL-l 
COMP-l 
COMPUTATIONAL-2 
COMP-2 
COMPUTATIONAL-3 
COMP-3 

The USAGE clause specifies the form in which data is represented in the computer. It can be written at any level. 
If the USAGE clause is written at a group level, it applies to each elementary item in the group; in addition, the 
USAGE clause of an elementary item cannot contradict the USAGE clause of a group to which the item belongs. 

This clause specifies the manner in which a data item is represented in the storage of the computer. It does not affect 
the use of the data item, although the specifications for some statements in the PROCEDURE DIVISION may restrict 
the USAGE clause of the referent operands. 

36 Data Description Entries 



Table 2. Combination of Characters In a PICTURE Clause 

Character Legal Anywhere to Right 

~ I + 
] '"0 ] Given 

Q) 

0 '0 l Character &. &. 
in PICTURE A X 9 S V P Z * $ B 0 C D R 

Q) Q) Q) , - + c.::: c.::: c.::: 

A Yes Yes Yes No No No No No No No No Yes Yes No No No No No No No No 

X Yes Yes Yes No No No No No No No No Yes Yes No No No No No No No No 

9 Yes Yes Yes No Yes Yes No No No Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No 

S No No Yes No Yes Yes No No No No No No Yes No No No No No No No No 

V No No Yes No No Yes 2 2 No Yes No Yes Yes Yes Yes Yes Yes Yes 2 2 2 
1----

P No No Yes No Yes Yes Yes Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
1-----

Z No No Yes No Yes Yes Yes No No Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No 

* No No Yes No Yes Yes No Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No 

$ No No Yes No Yes Yes Yes Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

, No No Yes No Yes Yes Yes Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
f---

No No Yes No No No 2 2 No Yes No Yes Yes Yes Yes Yes Yes Yes 2 2 2 
f--------- ....... -

B Yes Yes Yes No Yes Yes No No No Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No 
. 

0 Yes Yes Yes No Yes Yes No No No Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No 

leading - No No Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No No No Yes Yes No 

leading + No No Yes No Yes Yes Yes Yes V's Yes Yes Yes Yes No No No No No Yes No Yes 
f--------

C No No No No No No No No No No No No No No No No No Yes No No No 

D No No No No No No No No No No No Yes No No No No No No No No No 
--

R No No No No 1 No No No No No No No No No No No No No No No No 

Trailing - No No No No 1 No No No No No No No No No No No No No No NQ No 

Trailing + No No No No 1 No No No No No No No No No No No No No No No No 

1 Permissible if a II digits to the right are the same. 

2permissible if all digits both to the right and left are the same. 

Data Description Entries 37 



DISPLAY denotes that the item is carried in the EBCDIC format. DISPLAY mode is assumed when a USAGE clause 
is not written. One character is stored in each byte of the item; if the item is numeric, the rightmost byte can con­
tain an operational sign in addition to a digit, i.e., zoned decimal format. 

An elementary Item described with the USAGE IS INDEX clause is called an index data item and contains a value 
that corresponds to an occurrence number of a table element. like a COMPUTATIONAL item, an index data item 
is carried in binary in a computer word. Index data Items are discussed fully under "Table-Handling Statements" in 
Chapter 6. 

COMPUTATIONAL defines a one-word (32-bit) binary Item. The item may contain integral values only, ranging 
from _231 to +23L 1. 

COMPUTATIONAL-1 defines a single precision, floating-point data Item occupying one 32-bit word. 

COMPUTATIONAL-2 defines a double precision, floating-point data item that resides in a doubleword. 

COMPUTATIONAL-3 identifies a packed decimal data Item whose length is specified by the accompanying PICTURE 
clause. 

SYNCHRONIZED Clause. The format of this dause is 

{
SYNCHRONIZED} [LEFT ] 
SYNC RIGHT 

Since the XeroxANSCOBOLcompilerautomaticallyalignsthosedata items (COMPUTATIONAL, COMPUTATIONAL-1, 
COMPUTATIONAL-2, and INDEX) requiring alignment at appropriate machine storage boundaries, the ability to 
specify such alignment (synchronization) is not extended into the language. 

BLANK WHEN ZERO Clause. The format of this clause is 

BLANK WHEN ZERO 

The BLANK WHEN ZERO dause may be supplied only in conjunction with a numeric edited item. It specifies that 
when the source item has a value of zero, the edited data item is to contain all spaces. If a combination of check 
protection and BLANK WHEN ZERO is specified, the latter is overridden. . 

JUSTIFIED Clause. The format of this clause is 

{JUSTIFIED} RIGHT 
JUST --

This dause is applicable only to alphabetic or alphanumeric items. Normally, when data is moved into an alpha­
betic or alphanumeric field, the source data is aligned at the leftmost character position of the receiving data item 
and moved with space fill or truncation on the right. 

When the receiving data item is described with the JUSTIFIED clause and the sending data item is larger than the 
receiving data item, the l'eftmost characters are truncated. When the receiving data item is described with the JUS­
TIFIED clause and is larger than the sending data Item, the data is aligned at the rightmost character positi.on in the 
data item with other characters space-filled. 

VALUE Clause. The formats of this clause are 

Format 1 

VALUE IS literal 

Format 2 

{~SI~RE} Iiteral-1 (lliIW Iiteral-2] [, literal-3 [I.I::I&J literal-4]] ... 

Note: A figurative-constant may be substituted in both Format 1 and Format 2 wherever a literal is specified. 

38 Data Description Entries 



The VALUIE clause defines the value of constants, the initial value of working-storage items, or the values associated 
with a condition-name. This clause must not conflict with other clauses in the data description of the item or in the 
data description within the hierarchy of the form. Th. following rules apply: 

1. General 

a. If t~ category c.f the Item Is nu~erlc, all 11t.~ls in th.~ VALUE clause must be numeric literals. The lit­
eral is aligned according to the alignment rules except that the literal must not have a value requiring 
truncation of nonzero digih. 

b. If the category of the item is alphabetic or alphanumeric, all literals In the VALUE clause must be non­
numeric literals. The literai is aligned according to the alignment rules (see "JUSTIFIED Clause" above) 

'except that the number of characten in the literal must not exceed the size of th .. ·item. 

c. All numeric literals in a VALUE clause of an item must have a value within the range of values indic!lted 
by the USAGE olr PICTURE clause; for exampije, for PICTURE PPP99 the literal must be within the range 
0.00000 through 0.00099. 

d. The function of clny editing clauses or editing characters in a PICTURE clause is ignored in determining the 
initial appearanc:e of the item described. However, editing characters are included in determining the size 
of the item. 

2. Condition-Name Rules 

a. The VALUE clauSle is required in a condition-name entry and is the only clause permitted in that entry. 
The characteristics of a condition-name are implicitly those of its conditional variable. 

b. Format 2 can be used only in connection with condition-names. Wherever the THRU entry is used, literal-
1 must be less them literal-2, literal-3 less them Iiteral-4, etc. 

3. Data Description Entries Other than Condition-Nomu 

a. Rules govemlne the use of the VALUE clause differ with the respective section of the DATA DIVISION: 

(1) In the FILE SECTION, the VALUE clause is meaningful only in condition-name entries, and is consid­
ered m.r.ly docum.ntation in other Data·D.scription entries. 

(2) In the WORKING-STORAGE and C~MON-STORAGE SECTIONs, the VALUE clause may be used 
in condition·-nam •• ntries and also may be used to specify the initial value of any data item. It causes 
the it.m to (lSsume the specified value at the start of the object program. If the VALUE clause is not 
used in an iflom description, the initial value may be unpredictable. 

(3) Use of the VALUE clause is not permitted in the LINKAGE SECTION. 

(4) In the REPORT SECTION, the VALUE clause causes the report data item to assume the specified value 
each tim. its report group Is presented. This clause may be used only at the elementary level in the 
REPORT SECTION. 

b. The VALUE claus·e must not be stated in a Record Description entry containing an OCCURS clause or in an 
entry subordinate to an entry containing an OCCURS clause. This rule does not apply to condition-name 
entries. 

c. The VALUE claus,! must not be stated in a Record Description entry containing a REDEFINES clause or in an 
entry subordinate to an entry containing a REDEFINES clause. This rule does not apply to condition-name 
entries. 

d. If the VALUE claluse is used in an entry at the group level, the literal must be a figurative constant or a 
non-numeric literal, and the group area is initialized without consideration for the individual elementary 
or group items contained within that grc:-;;p. Also, the VALUE clause cannot be stated at subordinate levels 
within the same group. 

~ta Description Entries 39 



OCCURS Clause. The formats of this clause are 

Format 1 

OC S f;{ASCENDING } ] ] CUR integer-2 TIMES U DESCENDING KEY IS data-name-2 [, data-name-3 ••.... 

UNDEXED BY Index-name-l [, Index-name-2] .•• J 
Format 2 

OCCURS integer-l TO integer-2 TIMES [DEPENDING ON data-name-l] 

[l~~~~~~b7~G} Key IS data-name-2 [, data-name-3] •. .J ... 
&N DEXED BY Index-name-1 [, Index-name-2] .. J 

The OCCURS clause eliminates the need for separate entries of repeated data and supplies information required for 
the application of subscripts or indexes. This clause cannot be specified in a Data Description entry that has a 01 
or a 77 level-number. 

The OCCURS clause is used in defining tables and other homogeneous sets of repeated data; when it is used, the 
data-name that is the subject of this entry must either be subscripted or indexed whenever it is referenced in a state­
ment other than SEARCH. Furthermore, if the subject of this entry is the name of a group item, all data-nClmes be­
longing to the group must be subscripted or indexed whenever they are used as operands. 

The data description clauses associated with an item whose description includes an OCCURS clause apply to each 
repetition of the item described. 

The OCCURS clause may not be specified in a data description entry that 

1. Has an 01 or a 71 level-number. 

2. Describes an i!em whose size is variable. The size of an item .is variable if the data description of any 
subordinate item contains an OCCURS clause with the DEPENDING ON option. Therefore, nesting of 
variable items is not permitted. 

Also the VALUE clause must not be stated in a data description entry that contains an OCCURS clause or in an 
entry that is subordinate toan entry containing an OCCURS clause. Condition-name entries, however, are permitted. 

In Format 1, integer-2 represents the exact number of occurrences of the data item. Format 2 specifies that the 
subject of this entry has a variable number of occurrences. Integer-1 represents the minimum number of occurrences, 
and integer-2 represents the maximum number of occurrences. The value of integer-l must be less than integer-2. 
The value of integer-l may be zero, but integer-2 may not be zero. 

For the DEPENDING ON option, the data description ofdata-name-l must describe a positive integer. Data-name-l 
may be qualified, when necessary, but it must not be subscripted. The value of data-name-l is the count of the 
actual number of occurrences of the subject at any given time during execution; therefore, its value must not exceed 
integer-2. Reducing the value of data-name-l makes inaccessible the contents of data items whose occurrence 
numbers now exceed the value of data-name-l. 

If data-nClme-l is an entry in the same record as the current data description entry, the data description entry for 
data-name-1 must be before a data description entry containing the OCCURS clause in which data-name-1 appears. 
A record description may contain up to 15 variable groups, and these variable groups must follow the fixed portion 
of the record. No fixed items or groups are permitted following the variable groups (see Example 3 below), 

Unused character positions resulting from use of the DEPENDING ON option will not appear in the external media. 

If the DEPENDING ON option is specified for a table referenced by a SEARCH statement, thecontentsofdata-name-l 
is interrogated at execution time in order to determine the extent of the table. 

An INDEXED BY clause is required if the subject of this entry, or an item within it if it is a group item, is to be 
referenced by indexing. The index-name identified by this clause is not defined elsewhere; the compiler allocates 
storage for it un associated with any data hierarchy, 

40 Data Description Entries 



The KEY IS option is used to indicate that repeated data is arranged in ascending or descending order according to 
the values contained in data-ncme-2, data-name-3, otc. Data-names are listed in descending "rder of significance. 
If data-nal'l1e-2 is not the subject of this entry. 

1. All of the entries identified by the data-names in the KEY IS phrase must be within the group item that is 
the subject of this entry. 

2. None of the datc::.-names in the KEY IS phrase can contain an entry containing an OCCURS clause or be 
subordinate to an entry containing an OCCURS clause, other than the subject of this entry. 

If the DEPENDING ON option of the OCCURS clause is used, certain rules must be observed. If the value of data­
name-1 changes during pr,ogram execution, the followJng results accur: 

1. The size of any group described by or containing the related OCCURS clause will be recomputed to re­
flect the new value of data-name-1. 

2. Compilation of the location of any items following the item described with the OCCURS clause wi II be 
affected by the new value of data-name-l. If the user wishes to refer to these following (nonsubordinate) 
items, he should provide procedural statements to accomplish the proper adjustments: 

a. Before the change in data-name-l, the nonsubordinate items should be moved to a work area. 

b. After the change in data-name-l, these Hems should be moved back. Therefore, the user is respon­
sible for pro!~ecting nonsubordinate items when a variable item is added, and "squeezing" them down 
when a variCible item is deleted. 

Example 1: 

Assume that the Data Divi!iion of a program contains the following record desc~iption: 

01 RECORD-l. 
02 FIXED-PORTION. 

02 A PICTURE 5999 COMP-3. 
02 B PICTURE 5999 COMP-3. 
02 VAR-GROUP-A PICTURE X(4) OCCURS 1 TO 20 TIMES DEPENDING ON A. 
02 VAR-GROUP-B PICTURE X(5) OCCURS 5 to 10 TIMES DEPENDING ON B. 

VAR-GROUP-A is a variable item since it contains the DEPENDING ONoption. Since VAR-GROUP-B is not sub­
ordinate to VAR-GROUP-A, the location of VAR-GROUP-Bwi II be affected by a change in the value of A. Assuming 
that work-b is a work area with the same data structure as VAR-GROUP-B, the fol lowing procedural coding should , 
be used to preserve the contents of VAR-GROUP-B: 

1. MOVE VAR-GROUP-B TO work-b. 

2. Change the value of A. 

3. MOVE work-b TO VAR-GROUP-B. 

Example 2: 

Assume the fol lowing record description: 

01 RECORD-2. 
02 SIZE-C PIC 9. 
02 SIZE-D PIC 9. 
02 SIZE- EPIC 9. 
02 C PIC X(3) OCCURS 1 TO 4 DEPENDING ON SIZE-C. 
02 0 PIC X(4) OCCURS 1 TO 2 DEPENDING ON SIZE-D. 
02 EPIC X(9) OCCURS 1 TO 3 DEPENDING ON SIZE- E. 

Data Description Entries 41 



Assume that the values of SIZE-C, SIZE-D, and SIZE-E are a" equal to 1. The record wi" t~en be packed in 
memory as follows: 

u a w 

,~ I I: I C(l ), 0(1) E(1) ~ w w 
N !::! v: V; va I . I I I I I L I . 

If the record is output onto external media (e. g., WRITE RECORD-2), a 19-character record will be output since 
the unused character positions wi" not appear in the ext.rnal media. .. 

Example 3: 

Assume the following record description: 

01 RECORD-3. 
02 FIXED-PORTION. 

02 A PICTURE S999 COMP-3. 
02 VAR-GROUP-A OCCURS 10 TIMES. 
03 ITEM-8 PICTURE X(4) OCCURS 1 TO 20 TIMES DEPENDING ON A. 
03 ITEM-C PICTURE X(4). 

02 GROUP-D. 
03 ITEM-E PICTURE X(4). 

This description is i"egal because it violates Rule 2 which states that the OCCURS clause may not be specified in a 
data description entry that describes an item whose size is variable. In the example above, ITEM-8 is a variable 
item; thus, VAR-GROUP-A may not contain an OCCURS clause. Also, another violation has occurred in that both 
ITEM-C and GROUP-D are fixed items or groups. This is illegal because fixed items or groups may not follow a 
variable group~ All variable groups must be at the end of the record. 

Example 4: 

The data description below is valid since GROUP-A, GROUP-8, and GROUP-C are not variable items. 

01 Ri:CORD-4. 
02 FIXED-PORTION. 

02 A PICTURE S999 COMP-3. 
02 VAR-GROUP-A OCCURS 1 TO 10 TIMES DEPENDING ON A. 

03 GROUP-A PICTURE X(10) OCCURS 5 TIMES. 
03 GROUP-8 PICTURE X(20) OCCURS 10 TIMES. 
03 GROUP-C PICTURE X(30) OCCURS 15 TIMES. 

RENAMES Clause. The format of this clause is 

66 data-name-1; RENAMES data-name-2 THRU data-name-3 • 

The RENAMES clause permits alternative - possible overlapping - groupings of elementary items. All RENAMES 
entries associated with a given logical record must immediately follow the last Data Description entry of that record. 

Data-name-2 and data-name-3 must be names of elementrary items or groups of elementary items in the associated 
logical record, and cannot be the same data-name. A 66-level entry cannot rename or,other 66-level entry nor can 
it rename a n-, or 01-level entry. 

42 Data Description Entries 



Data-name-l cannot be ",I sed as a qualifier, and can only be qualified by the names of the 01- or FD-Ievel entries. 
Data-name-2 and data-nclme-3 may not have an OCCURS clause in a Data Description entry or be subordinate to on 
item that has an OCCURS clouse in its Data Description entry. Dato-name-2 must have a smaller displacement from 
the base of the logical re.eord than data-name-3. 

When data-name 3 is spec:ified, data-name-l is treated as a group item which includes all elementary items starting 
with data-name-2 (if data-name-2 is an elementary item) or the first elementary item in data-name-2 (if data-name-2 
is a group item), and concluding with data-name-3 (if data-name-3 is an elementary item) or the last elementary 
item in data-name-3 (if dl:lJta-name-3 is a group item). 

When data-name-3 is not' specified, data-name-l is treated either as a group item or as on elementary item. 
It is treated as a group item if data-name-2 is a group item, or as an elementary item if data-name-2 is an 
elementary item. 

Data Description Entries 43 



6. PROCEDURE DIVISION 

General Description 

The PROCEDURE DIVISION ofa COBOL source program specifies the procedures - the precise sequence of processing 
operations - needed to solve a given problem. These operations (computations, logical decisions, input/output, etc.) 
are expressed in meaningful statements, similar to English. 

PROCEDURE DIVISION Elements 

Statements 

A statement consists of a COBOL verb followed by appropriate operands (data-names or literals) and reserved words. 
The three types of statements are 

1. Compiler-directing 

2. Imperative 

3. Conditional 

Compiler-Directing Statement. A compiler-directing statement directs the compiler to take certain actions at com­
pilatio~:;-IT~e~--tompiler-directing statements are COPY, USE, and NOTE. 

Imperative Statement. An imperative statement specifies an action to be taken unconditionally by the object pro­
gram. An imperative statement may consist of a series of imperative statements. 

Conditional Statement. A conditional stotement describes a condition that is tested to determine which of alternate 
paths of progra":Jmed processing flow is to be taken. Conditional statements are 

1. READ and RETURN statements thot have the AT END or INVALID KEY options. 

2. WRITE statements with the INVALID KEY option. 

3. SEARCH with AT END option. 

4. Arithmetic statements with the SIZE ERRCR option. 

5. IF statements. 

Sentences 

A sentence is a single statement or series of statements terminated by a period. A single semicolon may be used as 
a separator between statements within 0 sentence. 

Paragrophs 

A paragraph consists of one or more sentences identified by a beginning parograph-nome. 

Sections 

A section comprises one or more successive paragraphS, and must begin with a section header. A section header 
consists of a section-name followed by the word SECTION, an optional priority-number, and a period. 

Paragraph and Section Naming 

Every paragraph or section has a programmer-supplied name that is given in the header entry. This name is used for 
reference (as, for example, when specifying a GO TO paragraph-name or GO TO section-name). 

44 PROCEDURE DIVISION 



PROCEDURE DIVISI~tN IStructure 

The formats of the PROCEDURE DIVISION are 

Format 1 

PROCEDURE DIVISION. 

OECLARA TlVES" 

fsection-name SECTION. declaratlve ... entence. 

lparagraph-name •• fsentence.J •.• J ••. J ••• 

£ND DECLARATIVES. 

Isection-name ~~ [priority] • 

f paragraph-name., t sentence.J ... J •.. J •.• 

Format 2 

PROCEDURE DIVISION. -----
1 pci·ragr'a~h-narhe. f sentence.J •.• J ••• 

If the program contains; declaratives, the DECLARATIVES sections must be grouped at the beginning of the PROCE­
DURE DIVISION preceded by the key word DECLARATIVES and followed by the key phrase END DECLARATIVES. 

The sections in the DECLARATIVES portion are executed when exceptional conditions are encountered during input/ 
output operations or in the course of writing a report. A USE statement must identify the conditions under whi ch 
each section is execuhtd. for further discussion refer to "USE Statement" under "Compiler-Directing Statements" 
at the end of this chapl~er. 

Executi~n of the progrclm begins at the first statement of the first nond~clarative section. 

Arlthmltlc - EXpreSlloRS 

An arithmetic.;.expression Is a combination of numeric literals and data item identifiers (data-names) joined by one or 
more arithmetic operatc)rs in such a way that the entire expression can be reduced to a single numeric value. I An 
arithmetic operator is Cl symbol representing addition, subtraction, etc. Spaces must be left on either side of an op­
erator included In an arithmetlo-expresslon. The operators are 

+ Addition 

Subtract ion 

* Multipl icatiorl 

/ Division 

** ExponentlatiOfll 

Also, the operator I_I May be used as a unary - to indicate logical negation. In this case, the unary operator must 
not be plreceded by a space when it follows a left parenthesis. 

The following are exom\ples of arithmetic-expressions: 

1. (HOURS + (OVERTIME * 1.5» * WAGE-RATE 

2. PI * RADIUS ** 2 * HEIGHT / 3 

3. WEEKL V-SAlLES * +. ().5 

PROCEDURE DIVISION Structure/Arithmetic-Expressions 45 



Note that each of the above expressions is a combination of identifiers or literals joined by arithmetic operators. 
At object time each identifier represents a value and, in each of the above examples, one numeric value results 
from the specified computation. Thus, if WEEKLY-SALES has the value 574.20, the third example would reduce 
to the value of 28.71. An arithmetic-expression may b. used in the COMPUTE statement or in conditional ex­
pressions (see below). It is therefore possible to test a given arithmetic-expression to see whether it reduces to a 
specific value. 

The method of evaluation of an arithmetic-expression can be specified by parentheses. Thus the expression A * B + C 
might be considered ambiguous, because (A * B) + C or A * (B + C) are possible. If porentheses are not written to 
specify the order of computation, COBOL evaluates an arithmetic-expression using the following rules: 

1. The unary - is performed first. 

2. Then, exponentiation is performed. 

3. Then, multiplication and division are perfonned. 

4. Finally, addition and subtraction are performed. 

5. In each of the four steps above, computation starts at the left of the expression and proceeds to the right. 
Thus A * B / C is computed as (A * B) / C and A / B * C is computed as (A / B) * C. 

6. When parentheses are present, computation begins with the innermost set and proceeds to the outermost. 
Items grouped in parentheses are evaluated in accordance with the above rules, and the result is then 
treated as if the parentheses were removed. 

Ru les for specifying operators, left and right parentheses, and a variable (data-name, literal, figurative-constant) 
are given in Table 3. 

Table 3. Rules for Constructing Arithmetic-Expressions 

Second Symbol 

Fi rst Symbo I Variable * or / - or + ** ( 
) or End of 

unary - Expression 

Variable - P P P - 2 P 

* or / p - 1 - P P -
- or + P - 1 - P P -

** p - 1 - P P -
unary - P - - - - p -
( or Beginning P - P - P P -
or Expression 

) - p p P - - P 

1 This is pennitted when + or - indicates the sign of a numeric literal, in which case no space 
is allowed between the sign and the number. 

2 Parentheses immediately following a data-name indicate the presence of a subscript. The 
subscript is considered part of the variable. 

P A specified pair of symbols is pennitted. 

- A specified pair of symbols is not pennitted. 

Note that the use of a complex arithmetic-expression may require the computer to compute intermediate results that 
overflow on the high-order end or truncate on the low-order end. Exact rules covering treatement of this situation 

46 Arithmetic-Expressions 



and conversion from one COMPUTATIONAL form to another are discussed separately in Appendix 0, "Evaluation 
of Arithmetic-Expressions". 

Conditional Statemints, 

A conditional statement describes a condition that os tested to determine selection of alternate paths of programmed 
processing flow. The If)rogrammer can accomplish this branching using the following types of statements: 

1. The GO TO ••• DEPENDING ON ••• , which branches to one of several procedure-ncmes. 

2. Statements wHh exception branches: AT END, INVALID KEY, and ON SIZE ERROR. 

3. The IF, PERFORM, and SEARCH, in which the condition is explicitly stated. 

CI •• iti .. 

Several kinds of condition tests are at the disposal of the programmer, and COBOL allows combination of these tests 
using logical operators AND, OR, and NOT. Condition tests allowed are 

1. Class tests 

2. Switch-status tests 

3. Relation tests between arithmetic-expressions 

4. Condition-name tests (effectively equivalent to relation tests) 

5. Sign tests (a special case of relation tests) 

Relational-operators In the COBOL language are 

IS [MQI] {LESS J~AN} 

IS [NOT] {EQU~l. TO} 

Underlinedwordsinthecbove list must be present when the relational-operator is used. Words not underlined may 
be omitted if the programmer desires, with no effect on the meaning of the relational-operator. 

Relational-operators are combined with identifiers, literals, or arithmetic-expressions to create relation conditions. 
The general format is 

pdentifier-l 1 lidentifier-2 J 
~ literal-l frelational-operatorJ literal-2 
larithmetic-expression-l arithmetic-expression-2 

LogiCIl Operatlrl (AND,OR, ..... lOT) 

The three logical operatlJrs are AND, OR, and NOT. AND and OR are used to create a "compound condition" 
when two or more tests are specified in the same expression. NOT is used to specify the negation of a condition. 

Consider the following example: 

IF MARRIED AND A.GE NOT GREATER THAN 21 ADD A TO B. 

Noti ce how AN 0 and NOT are used to augment the two basic tests. Because the tests are connected by AN 0, they 
both must be true for A toO be added to B. 

Conditional Statements 47 



Consider the following: 

IF NOT IMRRIED OR AGE GREATER THAN 21 ADD C TO D. 

This time the logical operator OR specifies that C is to be added to D if either or both conditions are fulfilled. 

NOT can be used in two ways with a simple relational condition: in the relational-operator as in AGE NOT 
GREATER THAN 21, or preceding the entire condition as in NOT AGE GREATER THAN 21. AGE NOT GREATER 
THAN 21 and NOT AGE GREATER THAN 21 are exactly equivalent in meaning. If NOT precedes a simple rela­
tional condition that contains NOT in the relational-operator, a double negative results and causes a diagnostic mes­
sage at compile time. See Appendix G, .. Xerox ANS COBOL Compiler Diagnostics". 

Onler of eo ...... tion In AritII ..... -bInIII-

The way in which a compound condition is evaluated can be specified by parentheses. Thus, the compound condition 

A + 2 = B OR NOT A - C = 3 AND 0 = 4 

might be considered ambiguous because 

(A + 2 = B OR NOT A - C = 3) AN D 0 = 4 ' or A + 2 = B OR NOT (A - C = 3 AND 0 = 4) 

are both among possible Interpretations. 

If parentheses are not written to specify the order of computation, COBOL evaluates a compound condition using the 
following rules: 

1. Arithmetic-expressions are evaluated first. 

2. Relationals and other condition tests are evaluated next. 

3. NOT, AND, and CR are then evaluated, in that order. 

Evaluation begins with the innermost pair of parentheses and proceeds to the outermost. If the order of evaluation is 
not specified by parentheses, the expression is evaluated in the following way: the conditions surrounding all ANDs 
are evaluated 'first, starting at the left of the expression and proceeding to t~e right; then the ORs are evaluated, 
also working from left to right. Thus the correct interpretation of the compound condition above is neither of those 
given but is 

A + 2 = B OR «NOT A - C = 3) AND 0 = 4). 

Table 4 indicates the allowable relationships between logical connectors and simple conditions. 

Table 4. Rules for Constructing Compound Conditio~lS 

Second Symbol 

Simple ) or End of 
First Symbol ( OR AND NOT Condition Compound Condition 

( or Beginning of P - - p p -
Compound Condition 

OR p - - p p -
AND P - - p p -
NOT P - - - p -
Simple Condition - P P - - p 

) - p p - - p 

P A permitted relationship. 

- A relationship that is not permitted. 

48 Conditional Statements 



Other Conditi ... r .... 

Condition-Name Test 

The format of this test is 

[NQI] condition'~nome 

A condition-name test determines whether or not the value of a conditional variable is equal to the value specified 
for a condition-name associated with it. It is, in effect, a special case of relation testing wherein the relation is 
equality, and the data item and value to be compared are specified by a level-SS entry in the DATA DIVISION ra­
ther than being explicitly stated in the PROCEDURE DIVISION. 

A condition-name is a name given to a value or ran{~e of values of a data-name. In the DATA DIVISION a condition­
name is assigned to a particular value or range of values of a particular data-name. For example, the data item 
MARITAL-STATUS might be a code indicating whether an employee is married, divorced, or single. Assume that if 
MARITAL-STATUS has ,the value 1, the employee is single; if it has the value 2, he is married; and if it equals 3, 
he is divorced. To determine whether or not an employee is married, the condition might be tested by using a rela­
tional test in a conditicm statement such as IF MARITAL-STATUS = 2 SUBTRACT MARRIED-DEDUCTION FROM 
GROSS. 

However, in the DATA DIVISION a condition-name can be associated with each value that MARITAL-STATUS might 
assume; thus, the condition-name SINGLE might be associated with the "condition" that the data-name MARITAl­
STATUS has a value of L MARRIED might be similarly associated with 2, and DIVORCED with 3. 

For exampl e, 

02 MARITAL-STATUS PICTURE 9. 
88 SINGLE VALUE 1. 
88 MARRIED VALUE 2. 
88 DIVORCED VALUE 3. 

Then, as a shorthand for'm of the simple relational condition MARITAL-STATUS = 2, the programmer could write the 
single c~ndition-name MARRIED. Therefore, identical results would be produced by 

IF MARITAL-STATUS = 2 SUBTRACT MARRIED-DEDUCTION FROM GROSS. 

IF MARRIED SUBTRACT MARRIED-DEDUCTION FROM GROSS. 

Thus the condition-namEt is another form of a relation. It is an alternative way of expressing the same tests. Details 
of specifying'condition··names in the DATA DIVISION are given in the "VALUE Clause" paragraph under "Data 
Description Entries" in Chapter 5. 

Sign Test 

The format of this test is 

IF data-na'!'e • IS [NOT] ZERO IPOSITIVE I 
{arithmetic-expression} -- NEGATIVE 

The sign test is also effectively a special case of relation testing equivalent to testing whether an expression is 
GREATER THAN, LESS THAN, or EQUAL TO ZERO. The data-name must be a numeric value that, if unsigned and 
not equal to zero, is assumed to be positive. The value zero is considered neither positive nor negative. The state­
ment GROSS IS NEGATIVE is equivalent to GROSS IS LESS THAN 0; GROSS IS POSITIVE is equivalent to GROSS 
IS GREATER THAN, O. Any condition that can be expressed as a sign condition can be expressed as a simple rela­
tional condition; the sigll condition is merely a convenient way of expressing certain situations. 

Class Test 

The format of this test is 

J{NUMERIC } lE. data-name IS [~)TALPHABETIC 

Conditional Statements 49 



The data-name must be defined in the DATA DIVISION as USAGE DISPLAY. 

Table 5 lists cases where the class test is valid and meaning of the results. 

Switch-Status Test 

The format of this test is 

[NOT] switch-status-name 

With the switch-status test it is possible to test the two positions (ON and OFF) of a pseudoswitch by associating a 
switch-status-name with either the ON or the OFF position. Switch-status-names are assigned in the ENVIRON­
MENT DIVISION using the SPECIAL-NAMES paragraph. Refer to IICONFIGURATION SECTIONII in Chapter 4. 

For numeric items a relation test determines that the value of one of several items is less than, equal to, or greater 
than the others, regardless of the length. Numeric items are compared algebraically after alignment of decimal 
points. Zero is considered a unique value regardless of length, sign, or implied decimal··point location of an item. 

COII,.riIon of lon-Iu.nc h_ 

For non-numeric items a comparison determines that one of the items is less than, equal to, or greater than the other 
with respect to the binary collating sequence of characters in the Sigma EBCDIC set. 

If the non-numeric items are of equal length, the comparison proceeds by comparing characters in corresponding 
character positions starting from the high-order position and continuing unti I either a pair of unequal characters or 
the low-order position of the item is compared. 

If the non-numeric items are of unequal length, comparison proceeds as described for items of equal length. If this 
process exhausts the characters of the shorter item, the shorter item is less than the longer unless the remainder of the 
longer item consists solely of spaces, in which case the items are equal. 

Table 6 ind~cates characteristics of the compared items and the type of comparison made. 

Table 5. Valid Class Tests 

PICTURE 

Must May 
Contain Contain Allowable Characters Valid Tests Meaning 

A B Alphabetic (A-Z and space) [NOT] ALPHABETIC I(Not) Only characters 
A-Z and space appear. 

fNOTJ ALPHABETIC (Not) Only characters 

A9 X B 0 } 
A -Z and space appear. 

X A9BO 
Alphanumeric (any character) 

[NOT] NUMERIC (Not) Only characters 
0-9 appear. 

S 9 OVP Zonod decimal with [NOT] NUMERIC (Not)Only characters 
operational sign 0-9 appear In al I 

positions except the 
low-order position, 
which can contain 
zone bit. 

9 OVP Zoned decimal without sign IN oiJ NUMERIC i(Not) Only characters 
0-9 appear. 

50 Conditional Statements 



Table 6. Permissible Comparisons 

Item Charoc:teristics GR X ND C I 
Group Item GR A A A A 

Alphabetic, Alphanumeric, X A A A 
and Edited 

Numeric Diliplay ND A A 9 9 

Computational, Index C A 9 9 

Figurative-Constants FC A A1 A2 91 

A Alphanumeric or byte comparison, byte-by-byte from left to right. 

A 
1 

Alphanumeric comparison permitting any figurative-constants and ALL 'character'. 

A 
2 

Alphanumeric comparison permitting the figurative-constants ZERO and ALL 
'digitl, where digit is a numeric character. 

9 Numerice comparison. 

91 Numerk~ comparison permitting the figurative-constant ZERO. 

Note: A blank box indicates the test is not permitted. 

Abbreviated ..... ti ... 

FC 

A 

A1 

A2 

91 

In compound conditions consisting of relation conditions, it is permissible to omit the subject (the first identifier, 
literal, or arithmetic-expression) or the relationaJ...operator according to the following situations. 

Implied 'Subjects 

A conditional expression may contain several, consecutive, simple relational conditions that may have common sub­
jects. For example, the conditional expression AGE GREATER THAN 21 AND AGE LESS THAN 65 contains the 
common subject AGE. AGE can be "implied", that is, stated in the first simple relational condition and omitted in 
the second. Thus, if the second occurrence of AGE were implied, the expression would appear as AGE GREATER 
THAN 21 AND LESS THAN 65. The expression AGE GREATER THAN 21 AND LESS THAN 65 OR = 16 OR = 18 
would be interpreted as AGE GREATER THAN 21 AND AGE LESS THAN 65 OR AGE = 16 OR AGE = 18. 

The following rules specify the use of implied subjects: 

1. Only relational conditions may have implied subjects. Sign conditions and class conditions can never 
have implied subjects. 

2. Within a compound condition, the first of a series of simple relational conditions must always consist of 
a subject, relatiional-operator, and object, 011 of which must be explicitly stated. 

3. Subjects may be implied on Iy in a series of consecutive simple relational conditions connected by AND 
and/or OR. 

4. When the subjec:t of a simple relational condition is implied, the subject used is the first subject to the 
left that is explicitly stated. For example, A = B OR = CORD = E AND = F is interpreted as A = B OR 
A = C OR D = E AND D = F, since D is the first stated subject to the left of = F. 

Implied Relational-Operators 

In some cases relational-olperators may also be impl ied in a series of consecutive simple relational conditions in much 
the same way as subjects can be implied. Thus the expression AGE = 16 OR AGE = 18 OR AGE = 21 could be 
written AGE = 16 OR 18 .oR 21. Not only is the subject AGE implied in the last two conditions, but the relational­
operator = is also implied. 

Conditional Statements 51 



The following rules specify the use of implied operators: 

1. A relational-operator can be implied only in a simple conditional relation where the subject isalso impl ied. 

2. When an operator is implied, the operator of the nearest simple relational condition to the left is taken. 

Impl ied Logical Connectors 

If in a consecutive sequence of relation conditions separated by logical operators the subjects are identical, the 
relational-operators are identical, and the logical connectors are identical, the sequence may be abbreviated. For 
example, A GREATER B OR A GREATER C OR A GREATER 0 can be abbreviated A GREATER B C OR D. Only the 
first occurrence of the subject and relational-operator is written. The logical operator is written only once and ap­
pears immediately preceding the last object. 

Conditi .... S ..... _ with E.llltion BrI ..... 

The format of these statements is 

IAT ~ I 
INVALID KEY timperative-statements} ... 
ON SIZE ERROR -----

The READ, RETURN, WRITE, SEARCH, ADD, SUBTRACT, MULTIPLY, DIVIDE, and COMPUTE verbs specify the 
exception branch as either an optional or a required part of the statement. When the exception branch is present, 
the verb in whose format it is written is considered to be a conditional statement. Normally, control bypasses the 
exception branch to the first statement in the next sentence or the first statement beyond the next ELSE (within an 
IF statement), but when the exception condition is met, control is given to the imperative-statement following the 
AT END, INVALID KEY, or SIZE ERROR. None of the statements up to the next period or ELSE (within an IF 
statement) may be a conditional statement: thus "nesting" of exception branches is not allowed •. 

Nested Conditio ... StIII._ 
The IF statement may have conditional statements in either of the branches taken because of the outcome of the con­
dition test. Furthermore, the conditional statement can be another IF; thus it is possible to "nest" IFs {in other words, 
IFs may be contained within IFs}. Refer to the "IF Statement" discussion later in this chapter. 

Input/Output Statements 

OPEN Stlte.at 

The general format of this statement is 

[ !. [REVERSED Jil] 
OPEN INPUT tile-name WITH NO REWIND If' .. 

[OUTPUT {file-name [WITH NO REWIND]} •• J 
~~PUT -OUTPUT} tfile-name} •. .J 

The OPEN statement initiates processing of the files named in thE" statement. When applicable during the execution 
of an OPEN statement, standard label checking is performed for input and output files and label creation is done for 
output fi les. In addition, when a user label is specified, the associated DEC LARA TIVES section is executed as a 
subroutine. 

At least one of the INPUT,. OUTPUT, or INPUT-OUTPUT (I-O) options must be specified; options may appear in any 
order, but each must be used only once. The INPUT-OUTPUT or 1-0 option pertains only to files on random access 
media when ACCESS IS RANDOM is specified. 

The OPE N statement must not be applied to Sort-Files. The OPE N statement may be circumvented for th...,se FDs 
which contain RDs if the repart generation is to be suppressed or partially suppressed (report restart); refer to Chap­
ter 1, "Programming Hints", in the ANS COBOL OPS Reference Manual (90 1501). For all other files, an OPEN 
statement must be executed prior to any other input/output statement. A second OPE N statement for a given file 

52 Input/Output Statements 



cannot be exec:uted prior to the execution of a CLOSE statement for that file. The OPE N statement itself does not 
obtain or dispatch data; a READ or WRITE statement must be executed to obtain or release, respectively, the first 
data record. 

The INPUT option institutes standard label-checking procedures upon ANS and Xerox monitor-formatted tape files; 
permits label-checking in the DEClARATIVES section if a user label is specified; and permits subsequent reading of 
the file. The OUTPUT option in itiates creation of files. Execution of an OPE N OUTPUT statement causes the ANS 
or Xerox monitor label to be written, and when a user labol is specified, the DECLARATIVES section that creates 
that label is called as a subroutine. Label checking procedures are performed by the monitors on private disk packs 
but the action is transparent to the user. Conventional label checking is not appl icable to publ ic disk storage. 

The REVERSED option should be specified only for input files with sequential access that are assigned to devices on 
which backward reading is implemented. This option causes the file to be positioned at the end-of-file point during 
the execution of the OPE N steltement, so that the first READ statement execution obtains the last record in the fi Ie. 
The NO REWIND option should be specified only in connec:tion with files assigned to devices on which rewinding 
is implemented. 

READ S ..... na 

The formats of th is statement are 

Fonnat 1 

READ file-name RECORD [INTO identifier] ; AT END imperative-statement 

Format 2 

READ file-name RECORD [INTO identifier] ; INVALID KEY imperative-statement 

Functions of the READ verb a ret 

1. Sequential file access; (Format 1) makes available the next logical record from an input file and allows 
execution of a specified series of imperative-statements when the end-of-file is detected. 

2. Random file access (Format 2) makes available a specific record from a relative or indexed file and allows 
execution of a specifi'ed series of imperative-statements if the contents of the associated ACTUAL KEY data 
item are found to be inval id. 

Immediotely following executi()n of a READ statement, the next logical record in the fi Ie is accessible in the logical 
record area associated with the file as defined by the Record Description entry. When multiple record descriptions 
follow a File Description (FD) entry, it is the responsibility of the programmer to recognize which record is present 
in the area at any given time. The record is available in the logical record area until another READ statement or 0 

CLOSE statement for that file is executed. 

The INTO option is equivalent to a READ statement followed by a MOVE, and results in the record obtained by 
execution of the READ becoming available in both the record area for the file and in the location indicated by the 
identifier. The record is moved from the record area into the identifier in accordance with the rules for the MOVE 
statement without the CORRESPONDING option. In the case where the file contains records of varying lengths, 
the size of the longest record h; assumed for the input record for the purpose of executing the MOVE. 

The AT END clause is required for files that are accessed sequentially. The statements introduced by this clause are 
executed when end-of-file is encountered, at which time subsequent CLOSE and OPEN statements for that file must 
be executed before any further attempt to READ can be honored. 

The INVALID KEY clause must be written for files for which ACCESS IS RANDOM is specified. The imperative­
statements are executed if a record corresponding to the contents of the ACTUAL KEY cannot be located in the file. 
The contents of the ACTUAL KEY data item must be appropriately established prior to execution of the READ state­
ment itself. 

Input/CNtput Statements 53 



WRITE St.te.nt 

The formats of this statement are 

Format 1 

[{ 
BEFORE} [identifier-2 LINESI~ 

WRITE record-name [FROM identifier-l] AFTER ADVANCING integer ~INES 
--- mnemonic-name 

Format 2 

WRITE record-name [FROM identifier-l] i INVALID KEY imperative-statement 

The WRITE statement releases a logical record to an output file. For files being accessed randomly the statement 
also allows execution of a specified series of imperative-statements if the contents of the associated ACTUAL KEY 
data item are found inval ide 

An OPEN OUTPUT or OPEN INPUT -OUTPUT must be executed before a WRITE statement can be executed for a file. 
Once the WRITE is executed there is no guarantee that the logical record released thereby still exists in the logical 
record area for the file. 

A WRITE statement bearing the FROM option is equivalent to a MOVE identifier-l TO record-name statement fol­
lowed by WRITE record-name. Moving takes place in accordance with rules for the MOVE statement without the 
CORRESPONDING option. 

Format 1 relates to files opened for sequential access. The ADVANCING option applies to files containing output 
destined to be printed. It is assumed that the first byte of the logical record is a carriage-control character, and 
the ADVANCING option causes information to be stored in this byte that instructs the printer to space the indicated 
number of lines. If the ADVANCING option is not specified in a WRITE statement addressed to a print file, the pro­
grammer is presumed to have produced the desired carriage-control character employing other source language state­
ments and placed it in the first byte. Integer should be an unsigned integer, and identifier-2, sfmilarly, should 
contain a non-negative integer. The I ine is printed BEFORE or AFTER the specified number of I ines is spaced. 
Mnemonic-name should represent a single character that is the desired print order code to be supplied with the line. 
(The mnemon,ic-name is defined in "SPECIAL-NAMES Paragraph" under "CONFIGURATION SECTION" in Chapter 4.) 

Format 2 is used for relative and indexed files. Statements following the INVALID KEY clause are executed when 

1. No space exists on the storage media ta accommodate the record. 

2. The file is open for output and a record corresponding to the contents of the ACTUAL KEY already exists 
in the file. 

When the INVALID KEY condition arises, no data transfer takes place, and the information in the record area remains 
available. 

CLOSE Stlt •• at 

The format of this statement is 

The CLOSE statement terminates the processing of reels, units, and files. Execution of a CLOSE statement causes 
the standard monitor file closing procedures to be carried out on the file named. An OPEN statement must be ex­
ecuted before a CLOSE can be honored for a file; once closed, a file may not be referenced again until another 
OPEN statement is executed for that file. 

The REEL or UNIT option instructs the monitor system to advance to the next volume of the file immediately instead 
af doing so automatically upon encountering the end of the current volume. The NO REWIND and LOCK options, 
although specifiable for language standard compatibility reasons, are ineffective in conjunction with the REEL/ 
UNIT option and are treated as comments. 

54 Input/Output Statements 



The LOCK option specifies that the processing of this file is complete and that the file is to be added to the monitor 
master file and the file-name is to be added to the system file directory. Normally, when a magnetic tape file is 
closed, the tape is rewound and a message Is typed requesting the operator to dismount the reel. The NO REWI ND 
option specifies that these actions are not to be taken, and the file is not repositioned. 

The format of this statement is 

SEEK fi Ie-name RECORD 

The SEEK statement initiatt.s the access of a record in a relative or Indexed file for subsequent reading or writing. 
However, Xerox monitor systems combine the seek and read or write operations Into one continuous function, there­
fore the SEEK statement is~reated as a comment and has no effect on the operation of the users program. 

ACCEPT Stat ..... 

The format of this statement' is 

ACCEPT identifier [FROM {CONS~LE }] 
--- mnemonic-name 

The ACCEPT statement spec:ifies acceptance of data from the console keyboard; it allows the entering of low-volume 
data such as information ne,eded to initialize program switches, balance totals, or serial numbers. Mnemonic-name 
may be used to identify the hardware device. This identification is made in the SPECIAL-NAMES paragraph of the 
ENVIRONMENT DIVISION. If mnemonic-name is specified, it must refer to CONSOLE. 

Identifier must be an unedited DISPLAY data item whose length is not greater than 255 characters. If the keyed-in 
message is shorter than the length of the identifier, the Iremaining character positions on the right are space fi lied. 

DISPLAY S1a ... nt 

DISPLAY {i~entifier-l}[ {i~entifier-2}J ... [UPON I ~~~i~LE' lJ 
Iiteral-l '1Iteral-2 --- . 

mnemonic-name 

The DISPLAY statement enables low-volume data such as exception records or mellsages to be written on the operator 
console or the printer. If mnemonic-name is specified, it must refer to either CONSOLE or PRINTER in the SPECIAL­
NAMES paragraph. literal·,l or identifier-l may be one of the figurative-constants; if so, only a single occurrence 
of the constant is displayed. When a DISPLAY statement contains more than one operand, the characters comprising 
the items named and any litenlls specified in the statement are displayed consecutively, with no spaces between characters 
unless they are specified ch(]racters. Any remaining positions on a line at the end of the data transfer are left blank. 

The maximum number of characters that may be displayed at anyone time (the sum of the characters in the specified 
data items, literals, and figurative-constants in one DISPLAY statement) is 254 characters. Any number of literals 
and figurative-constants ma}, be specified, up to one line. The data-name may be that of a group or.an elementary 
item and may also be subscripted. A literal in a DISPLAY statement may be numeric or non-numeric. 

Data items with USAGE DISPLAY, literals, and figurative-constants are displayed without modification. Data items 
with other USAGEs are converted to EBCDIC representation and displayed as 

1. COMPUTATIONAl. and INDEX: sign plus 10 digits, i. e., ±9999999999 

2. COMPUTA TIONAL-l: sign, 8-digit number with decimal point, E (exponent), 2-digit signed exponent, 
i. e., ±9.9999999E:f:99 

3. COMPUTA TIONAL.-2: same as COMPUTA TIONAL-1, but with 16-digit number 

4. COMPUTATIONAL.-3: 1 to 31 zoned decimal digits 

The programmer is cautioned not to use DISPLAY UPON PRINTER to request operator action. CONSOLE should be 
specified for this purpose. 

Input/Output Statements 55 



Arithmet ic Statements 

The basic arithmetic operations are specified by the four verbs ADD, SUBTRACT, MULTIPLY, and DIVIDE. Using 
the fifth verb, COMPUTE, the user may specify any of the basic arithmetic operations with arithmetic-expressions. 

The following general rules apply to all five arithmetic verbs: 

1. All literals specified in arithmetic statements must be numeric. Wherever it is legal to specify a literal, 
the figurative-constant ZERO(S)(ES) may be used. Other figurative-constants (including ALL any-literal) 
may not be used, since they are considered alphanumeric. 

An identifier used in an arithmetic statement must be an elementary item and must be numeric except when 
it is the operand of a CORRESPONDING option. 

2. The maximum size of an operand is 18 decimal digits. If the entry for an operand in the DATA DIVISION 
specifies a size greater than 18 digits or if a literal contains more than 18 nonzero digits, an error is indi­
cated at compilation time. 

3. The items in an arithmetic statement may be mixed in usage as long as they are all numeric. Any necessary 
conversions are performed by the compiler, and decimal-point alignment is supplied automatically through­
out computati ons. 

4. No item used in computations may contain editing symbols. If such an item is used, a compilation-time 
diagnostic results. Operational signs and assumed decimal points are not editing symbols. An item used 
to receive results may contain editing symbols if it is not used in subsequent computations as an operand. 
When an item used to receive results contains editing symbols, the result is edited according to editing 
specifications before it is moved to the item. 

ROUNDED and SIZE ERROR options apply to all arithmetic statements. The GIVING option applies to all arithmetic 
statements except COMPUTE. 

GIVING Option 

If the GIVING option is written, the value of each identifier that follows the word GIVING is made equal to the 
calculated result of the arithmetic operation. Each identifier that follows GIVING is not used in the computation, 
and may contain editing symbols. 

If the GIVING option is not written, each operand following the words TO, FROM, BY, and INTO in the ADD, 
SUBTRACT, MULTIPLY, and DIVIDE statements, respectively, must be an identifier (not a literal). Each identifier 
is used in the computation, and also receives the result. 

ROUNDED Option 

If the ROUNDED option i5 not specified, truncation occurs when the number of places calculated (after decimal­
point alignment) for the result is greater than the number of places in the data item that is to be set equal to the 
calculated result. When the ROUNDED option is specified, the least significant digit of the resultant data-name 
increases in value by 1 whenever the most significant digit of the excess is greater than or equal to 5. 

Rounding of a computed negative result is performed by rounding the absolute value of the computed result and then 
making the final result negative. Table 7 illustrates the relationship between a calculated result and the value 
stored in an item that is to receive the calculated result. 

56 Arithmetic Statements 



Table 7. Rounding or Truncation of Calculations 

Item to Receive Calculated Result 
-

Calculated 
PICTURE Value After Value After 

Result Rounding Truncating 

-12.36 S99V9 -12.4 -12.3 

8.432 9V9 8.4 8.4 

35.6 99V9 35.6 35.6 

65.6 99V 66 65 

0.00.55 V999 0.006 0.005 

SIZE ERROR Option 

An arithmetic statement, if written with a SIZE ERROR option, is not an imperative-statement. Rather, it is a con­
ditional statement and is prclhibited in contexts where only imperative-statements are allowed. 

Whenever the number of intoger places in the calculated result exceeds the number of integer places specified for 
the resultant item, a size error condition arises. If the SIZE ERROR option is specified and a size error condition 
arises, the value of the resultant item is not altered and the series of imperative-statements specified for the condi­
tion is executed. If the SIZE ERROR option is not specifOed and a size error condition arises, no assumption should 
be made about the correctness of the final result even though the program flow is not interrupted. 

The formats of this statement are 

Format 1 

ADD {identifier-l} [, identifier-2] 'd tT [ROUNDED' [; ON SIZE ERROR imperative-statement] literal-l , literal-2 •.• , I en I ler-n 'J 

Format 2 

ADD {;~t:~~it~~r-1} ~ :1t:~~it~;r-2] •.• LQ identifier-m [ROUNDED] 

G identifier-n [~)UNDED]] ••• [; ON SIZE ERROR imperative-statement] 

Format 3 

ADD {i?entifier-1} {i~entifier-2} [, i?entifier-3] ••• GIVING identifier-m [ROUN DED] 
-- IIteral-1 ' IIteral-2 , IIteral-3 

C identifier-n [ROUNDED]] ••• [i ON SIZE ERROR imperative-statement] 

Format 4 

ADD [CORRESPONDING] identifier-l TO identifier-2 [ROUNDED] [; ON SIZE ERROR imperative-statement] 
- CORR 

The ADD statement sums the values of two or more numeric items and/or literals and sets one or several items equal 
to the resultant value. Operands used in an ADD statement must conform to 'lRules for Arithmetic Verbs" above in 
addition to specific rules applying to this individual statement. Use of the SIZE ERROR and ROUN DED options is 
a I so discussed in the referenced paragraph. 

When Format 1 is used the values of all the operands including identifier-n are added together and the result is 
stored as the new value of idcmtifier-n, the resultant-identifier. 

Arithmetic Statements 57 



Example: 

Given the statement ADD A, 8, C, the values of A, 8, and C before and after execution are 

A 8 C 

8efore 5 6 8 

After 5 6 19 

Note that the value of A and 8 do not change as a result of the addition. 

Format 2 adds the values of the operands (identifier-lor Itteral-1 and identifier-2 or Iiteral-2) preceding the re­
served word TO, and this intermediate result is added to the data items specified by identifier-m, identifier-n, etc. 

Example: 

Given the statement ADD W, X, V TO Z, A, the values of W, X, V, Z, and A before and after execution are 

W X Y Z A 

8efore 2 7 8 12 10 

After 2 7 8 29 27 

Note that the value of all operands participates in the addition. 

Format 3 adds the values of the operands (identifier-lor literal-1 and identifier-2 or Iiteral-2, etc.) preceding the 
reserved word GIVING, and this Intermediate result is placed in identlfler-m, identifier-n, etc. 

Example: 

Given the statement ADD A, 8, C, GIVING 0, the values of A, B, C, and 0 before and after execution are 

.A 8 C 0 

Before 2 3 5 

After 2 3 6 

Note that the intermediate result replaces the value of 0 and is not added to D. 

Format 4 adds the values of one or more selected elementary Items within a group to the values of one or more selected 
elementary items within another group. For the pair of groups, the values of a selected pair of elementary items are 
odded, and the result is placed in the selected item in the second group (identifier-2). 

Selection of Pairs of Groups 

A pair of items from a pair of groups Is selected for addition If 

1. Their names are identical. 

2. The names of all higher level items in each group (the qualifier for each item), up to but not including 
the names of the groups, are Identical. 

3. Both items are numeric elementary items. 

4. Both level-numbers are less than SO. 

5. Neither of two otherwise matching items contains a REDEFINES or OCCURS clause. 

6. When either of the groups from the pair of groups is described with an OCCURS clause, it is subscripted 
or indexed by the compiler. 

58 Arithmetic Statements 



Addition of Matched Pair!i 

After a pair meets the abctve requirements, operation Is Identical to that for Format 2. The rul .. ·s that apply to the 
addition of items specified directly, as in Formats 1, 2, and 3 above, apply also to the addition of selected pairs. 

Example: 

Consider the PROCEDURE DIVISION statement 

ADD CORRESPONDING CAL TO NY ON SIZE ERROR PERFORM ERROR-ROUTINE 

where the DATA DIVISION contains the following entries: 

01 CAL. 01 NY. 

02 LUX. 02 LUX. 

03 COSM PIC 9V99 VALUE 0.04. 03 JEWEL PIC 9V99 VALUE 0.05. 

03 JEWEL PIC 9V99 VALUE 0.07. 03 COSM PIC 9V99 VALUE 0.02. 

02 PROP PIC 9V99 VALUE 0.03. 02 PROP , PIC 9V99 VALUE 0.08. 

02 TYPEX PIC X(5) VALUE 'LARGE", 02 TYPEX PIC X(5) VALUE 'SMALL I. 

The value of the elementary items in CAL and NY before and after execution would be 

COSM JEWEL PROP TYPE COSM JEWEL PROP TYPE 
OF OF OF OF OF OF OF OF 
CAL CAL CAL CAL NY NY NY NY 

Before 0.04 0.07 0.03 LARGE 0.02 0.05 0.08 SMALL 

After 0.04 0.07 0.03 LARGE 0.06 O. 12 0.11 SMALL 

SIZE ERROR and ROUNDED Options 

When SIZE ERROR is used in conjunction with CORRESPONDING,' the size error test is made only after the 
completion of all ADD op,erations. If any of the additions produce a size error condition, the resultant field 
for that addition remains unchanged and the imperative-statements specified in the SIZE ERROR clause are 
executed. When the ROUNDED option is used in conjunction with CORRESPONDING, it applies to all ADD 
operati ons. 

SUBTRACT State.1It 

The fonnats of this statement are 

Format 1 

SUBTRACT {I?entiner-l}[, identifier-2] FROM'd 'f' rROUNDED' 
IIteral-1 ,literal-2 ... -- I entl ler-m I.! ~ 

~ identifier-n [ROUN OED]] ... [; ON SIZE ERRQ8 imperative-statement] 

Format 2 

SUBTRACT {i?entifier-I} [, i?entifier-2] ... FROM {i~entifier-m} GIVING identifier-n [ROUNDED] 
---- Iiteral-l , Ilteral-2 -- Iiteral-m ---

[, identifier-o [ROUNDED]] ..• LON SIZE ERROR imperative-statement] 

Arithmetic Statements 59 



Format 3 

SUBTRACT [~ESPONDING] Identlfier-1 FROM Identifler-2 [ROUNDED] 

L ON SIZE ERROR imperative-statement] 

The SUBTRACT statement subtracts the value of one or the sum of two or more numeric items from one or more items 
and stores the result(s} in one or more items. 

Format 1 subtracts the sum of the operands preceding the word FROM from identifier-m, placing the result in 
identifier-m: then from identifier-n, placing the result in identifier-n, etc. 

Format 2 subtracts the sum of the operands preceding the word FROM from identlfier-m {literal-m} without changing 
the contents of identifier-m, placing the result in each of the items following GIVING. 

Format 3 (SUBTRACT CORRESPONDING) allows subtraction of corresponding items in different groups in one opera­
tion, similar to the ADD statement with a CORRESPONDING option. 

Example: 

Given the statement SUBTRACT A, 20 FROM B GIVING C, 0, the values of the operands before and after execu­
tion are 

Before 

After 

A 

10 

10 

MUlTIPlY .... _ 

B 

80 

80 

C. 

90 

SO 

The formats of this statement are 

Format 1 

D 

100 

SO 

MU L TIPL Y t:~~'::.it~~r-l} BY identlfler-2 [~OUN OED] [, Identlfier-3 [ROUN OED]] ••• 

[; ON SIZE ERROR imperative-statement] 

Format 2 

MU L TIPL Y {i?entifier-1} BY {i?enttfler-2} GIVING identifier-3 [ROUNDED] 
hteral-1 - hteral-2 

~ identifier-4 [ROUNPED]] ••. [j ON ~ lli.QR imperative-statement] 

The MUL T1PL Y statement can be used to specify one or more multiplications per statement or multiplication with the 
va lue of several items set to the same product. Operands used in a MULTIPLY statement must conform to .. Ru les for 
Arithmetic Verbs" above, in which the SIZE ERROR and ROUNDED options are also discussed. 

Format 1 allows the multiplicand (jdentifier-1 or Iiteral-1) to be multiplied by the multiplier (identifier-2) und the 
value of identifier-2 to be set to the product. Another product is formed by multiplying the multiplicand (identifier-l 
or literal-1) by the multiplier (identifier-3), and the value of identifjer-3 is set to the product (and so on for every 
item named in the statement). A literal cannot be used in place of identifier-2 or -3. 

60 Arithmetic Statements 



Example: 

G,ven the s+atement MUL TlPL Y A BY 8, C, the valu •• of the operands before and after executi,.,n are 

lk:fore 

After 

A 

10 

10 

B 

20 

200 

C 

30 

300 

Note thaI t!'e values of operands Band C change to reflect the multiplication. 

Format 2 allows the multiiplicand (identifier-lor literal-I) to be multiplied by the multipl ier (jdentifier-2 or 
I iteral-2) (ind the value of identifier-3 and identifler-4 (and any other following identifiers) to be set to the product. 
Identifiers to the right of t'he reserved word GIVING may be numeric edited items. 

Example: 

Given the statement MUL l'IPL Y A BY B GIVING C, 0, the values of the operands before and after execution are 

Before 

After 

A 

5 

5 

8 

10 

10 

C 

20 

50 

o 
30 

50 

Note that the values of operands A and B remain the sarne, while values of operands C and 0 change. 

DIVIDE St8te.nt 

The formats of this statement are 

Format 1 ----

DIVIDE {i?entifier-l} INTO identifjer-2 [ROUNDED'~ identifier-3 [ROUNDED]~ .•• 
-- ',tera'-l ~~ U 

[; ON ~ZE ERROR imperative-statement] 

Format 2 

DIVIDE {;1~~:it~~r-l} INT0.f:1t:r;:it~;r-2} GIVING identifier-3 [ROUNDED] 

[ , identifier-4 [ROUNDED]]. •. [;; ON SIZE ERROR imperative-statement], 

Format 3 

DIVIDE J :1t:~:it~~r-l} BY {:1t:~~it~;r-2} GIVING identifier-3 [ROUNDED] 

[, identifier-4 [ROUNDED]]. .. [; ON SIZE ERROR imperative-statement] 

Format 4 

REMAINqER identifier-4[; ON ~IZE ~RROR imperative-statement] 

Arithmetic Statements 61 



REMAINDER identifier-4 [; ON SIZE ERROR imperative-statement] 

The DIVIDE statement divides the value of one numeric item into the value of one or more numeric items and sets 
the value of one or more items to the quotient. Operands used in a DIVIDE statement must conform to "Rules for 
Arithmetic Verbs" above in addition to specifice rules applying only to this individual statement. Use of the 
SIZE ERROR and ROUNDED options is also discussed in the referenced paragraph. 

Format 1 allows one or more different divisions, with different quotients stored as the values of the different items 
following INTO. The dividends (jdentifier-2, identifier-3, etc.) are each divided by the divisor (identifier-lor 
I iteral-1) and the values of each of the dividends set to the value of the associated quotient. Literals cannot be 
used in place of identifiers-2, -3, etc. The size error condition results when the divisor is zero or the quotient 
contains more integer positions than are available. 

Formats 4 and 5 are used when a remainder from the division operation is desired, namely identifier-4. A remainder 
in COBOL is defined as the result of subtracting the product of the quotient and the divisor from the dividend. If 
the ROUNDED option is specified, the quotient is rounded after the remainder is determined. 

~xample: 

Given the statement DIVIDE A INTO B, C, 0, E, the values of the operands before and after execution are 

A B 

Before 5 10 

After 5 2 

C 

15 

3 

o 

20 

E 

25 

5 

Formats 2 and 3 allow the single quotient resulting from a division to be stored in one or more items. If Format 2 is 
used, th~ dividend (jdentifier-2 or literal-2) is divided by the divisor (identifier-lor literal-I), and the value of 
the resultant quotient becomes the new value of identifiers-3, -4, etc • .If Format 3 is used, the dividend (jdentifier-l 
or literal-I) is divided by the divisor (jdentifier-2 or literal-2), and the value of the resultant quotient becomes the 
new value of identifiers-3, -4, etc. Literals cannot be used in place of identifiers-3, -4, etc. Identifiers to the 
right of the reserved word GIVING may be numeric edited items. 

Example: 

Given the statement DIVIDE A INTO B GIVING C, 0, E, the values of the operands before and after execution are 

A B C o E 

Before 5 10 15 20 25 

After 5 10 2 2 2 

COMPUTE S....... ' 

The format of this statement is 

COMPUTE identifjer-l [R0UNPER] ~ identlfier-2 (kOUNDED~ ... = {;1t:~it~~r-n } 
ari thmeti c-expression 

~ ON SIZE ~ Imperative-statemen6 

62 Arithmetic Statements 



The COMPUTE statement specifies computation that combines the individual processing of the ADD, SUBTRACT, 
MUl TlPl Y, and DIVIDE statements by the use of an arithmetic-expression and stores the results -in one or more items, 
editing the results to conform with the receiving item PICTURE. This statement can also dupliccte a MOVE state­
ment when the arithmetic-expression is replaced by a literal or identifier. 

The arithmetic-expression con consist of any meaningful combination of data-names, numeric literals, and the 
figurative-constant ZERO, joined by the arithmetic operators. (Refer to "Arithmetic Expressions" at the beginning 
of this chapter.) The arithmetic-expression is evaluated and the resulting numeric value replaces the contents of 
identifier-1 and any other Utems named before the =. All identifiers in the statement (including those in the 
arithmetic-e)(pression) must be described in the DATA DIVISION as elementary numeric items. 

The arithmetic-expression may be simple or complex. If it consists of one identifier (an elementary numeric item), 
the COMPUTE statement is equivalent to a MOVE statement, and the identifier-1 item is set to the value of this 
single item. Similarly, the arithmetic-expression may consist solely of a numeric literal. 

Examples: 

1. COMPUTE QTY-ON-HAND = STOCK + RECEIPTS + RETURNS - ORDERS-FILLED. 

2. COMPUTE D = A + B + C ON SIZE ERROR GO TO EXCESS-D. 

3. COMPUTE VOLUME = 4 / 3 * PI * R ** 3. 

ROUNDED and SIZE ERROR options are discussed under "Rules for Arithmetic Verbs" above • 

. Data Manipulation Stat"nents I 

EXAM.IE Ita ..... 

The format of this statement iis 

TALL YlNG 'iiAoING literal-l [REPLACING BY Iiteral-2] jALL I . 
UNTIL FIRST 

EXAMINE tdentifier-l 

{

ALL } 
REPLACING ~~~~ST Iiteral-3 BY literal-4 

FIRST 

The EXAMINE statement replaces certain occurrences ofa given character and counts the number ofsuch occurrences 
in the specified data item. Each literal in the EXAMINE statement must consist of only one character. The USAGE 
of the identifier must be DISF»LAY. EXAMI NE is a subset of the INSPECT statement. 

When the TALLYING option of this statement is used, a count is made at object time of the number of occurrences 
of the specified character in identifier-1; this count is placed in the special data-name TALLY, which may then be 
used as a data-name in other procedural statements. (Refer to "Special Registers" in Chapter 1.) 

The count at obJect time depctnds on which TALLYING option is specified: 

1. ALL counts all occurrences of I iteral-l in the data item (identifier-l). 

2. LEADI NG counts thl!t number of occurrences of I it'eral-l prior to encountering a character other than I iteral-l 
in the data item. E:lCamination proceeds from left to right. 

3. UNTIL FIRST counts the number of characters othl!tr than literal-l encountered prior to the first occurrence 
of literal-l in the data item. Examination proceeds from left to right. 

Data Manipulation Statements 63 



Replacement of characters depends on which REPLACING BY option is specified: 

1. ALL substitutes I iteral-2 for each occurrence of 1 iteral-1. 

2. LEADING terminates the substitution of literal-2 for literal-l when a character other than literal-l is en­
countered, or when the right-hand boundary of the data item is reached. Examination proceeds from left 
to right. 

3. UNTIL FIRST terminates the substitution of Ilteral-2 when the first literal-l is encountered or when the 
right-hand boundary is reached. Examination proceeds from left to right. 

4. FIRST replaces only the first occurrence of literal-l by I iteral-2. Examination proceeds from left to right. 

INSPECTS ....... 

The INSPECT statement provides more comprehensive capabilities than EXAMINE. It has three formats: format 1 
provides the ability to count, fonnat 2 to replace, and format 3 to count and replace occurrences ofsinglecharacters 
or groups of characters In a data item. 

Format 1 

INSPECT identifier-l TALLYING 

' identifier-2 FOR, LEADING IIteral-l {AFTER 1 INITIAL I iteral-2 ... 
{ { I 

{ALL } {identlfier-3l) [ BEFORE {identifier-4 1] } 
CHARACTERS· --

} ... 

Format 2 

INSPECT identifier-l REPLACING 

CHARACTERS BY {i?entifier-6} [{ BEFORE }INITIAL {i?entifier-7}] 
. Ilteral-4.Afll.R. Ilteral-5 

{ I~ING)I {i?entifier-5} BY {i?entif~er-6} [{ BEFOR~} INITIAL 
, FIRST ' Itteral-3 - Itteral-4 AFTER { 

identifier-7 }~ ) 1 
Iiteral-5 ~. • • . •. 

Format 3 

INSPECT identlfler-l TALLYING 

{ II{
ALL } {ldentlfler-3}) [{BEFORE} {'d tT -4}]) } 

, identifier-2 FOR , C~~~~RS literal-l Mill INITIAL :i:~all~;r ••• 

REPLACING 

CHARACTERS BY {i?entifier-6} [{BEFORE} INITIAL {i?entifier-4}] 
~-------- - Itteral-4 AFTER Itteral-2 

j {fekDING) { {identifier-5} BY {:?entit~r-6} [{=E } INITIAL {;?entiti;r-7}] ). •. ) ... 
, FIRST ' Iiteral-3 - Itera F Itera -

64 Data Manipulation Statements 



Identifier-l must referenc«~ either a group item or any category of an elementary item, described implicitly or ex­
plicitly as USAGE IS DISPLAY. Identifier-3 through identifier-n must reference an elementary alphabetic, alpha­
numeric, or numeric item described implicitly or explic:itly as USAGE IS DISPLAY. Literals must be non-numeric 
and may be any figurative constant except ALL. 

In level 1, literal-1 throu!~h literal-5 and the data items referenced by identifier-3 through identifier-7 must be one 
character in length. Identifier-2 (formats 1 and 3 only) must reference an elementary numeric data item. The size 
of the data referenced by I iteral-4 or identifier-6 (in formats 2 and 3 only) must be equal to the size of the data 
referenced by literal-3 or identifier-5. 

When the CHARACTERS phrase is used, literal-4, Iiteral-5, or the data item referenced by identifier-6 or identifier-7 
must be one character in IEtngth. Likewise, when a figurative constant is used as literal-3, the data referenced by 
literal-4 or identifier-6 mllst be one character in length. In the context of the following rules, a figurative constant 
refers to an implicit one-character data item whose USAGE IS DISPLAY. 

Rules Applicable to All Formats 

Inspection begins at the leftmost character position of the data referenced by identifier-1, regardless of its class, 
and proceeds on a character-by-character basis to the rightmost character position. The contents of the data item 
referenced by identifier-1, identifier-3, identifier-4, identifier-5, identifier-6, or identifier-7 is treated subject 
to whether the identifier is described as alphanumeric, unsigned numeric, or signed numeric: 

1. Alphanumeric - identifier treated as a character string. 

2. Unsigned numeric - inspected as though it had been redefined as alphanumeric and the INSPECT statement 
had been written to reference the redefined data. 

3. Signed numeric - i~nspected as though the data item had been moved to an unsigned numeric data item of 
the same length, subject to the rules set forth above (see also MOVE statement, below). 

Rules Applicable to Format 1 

1. The contents of thEI data item referenced by identifier-2 is not initialized by the execution of the INSPECT 
statement. 

2. The rules stated below for the ALL, LEADING, CHARACTERS, and BEFORE/AFTER phrases options apply 
to each iteration of the TALLYING phrase and to each permissible iteration of the phrase therein. 

3. If ALL is specified,. the data referenced by identifier-2 is increased by 1 for each nonoverlapping occur­
rence of literal-l ()r the data referenced by identifier-3 within the data referenced by identifier-1. 

4. If LEADING literal-1 or LEADING identifier-3 is used, the data referenced by identifier-2 is increased 
by 1 for each contiguous nonoverlapping occurrence of litera 1-1 or the data referenced by identifier-3 
within the data referenced by identifier-1, provided that the leftmost such occurrence is at the point where 
counting begins (see Rule 5). 

5. If the CHARACTERS phrase is used, the data referenced by identifier-2 is increased by 1 for each character 
in the data referenc:ed by identifier-1. 

6. If the BEFORE/AFTER phrase is absent, the process described in Ru!es 2 to 4 above begins at the leftmost 
character position ()f the data referenced by identifier-l and proceeds to the rightmost character position 
of the data referen<:ed by identifier-1. 

Data Manipulation Statements 65 



7. If the BEFORE phrase is used, the counting begins at the leftmost character position and terminates at, but 
not including, the first occurrence of literal-2 or the data referenced by identifier-4 that occurs within the 
data referenced by identifier-1. If no occurrence of literal-2 or the data referenced by identifier-4 is en­
countered within the data referenced by identifier-l, then counting terminates ai' the rightmost character 
position of the data referenced by identifier-l. 

8. If the AFTER phrase is used, the counting begins at, but not including, the first occurrence of literal-2 01 

the data referenced by identifier-4 that occurs within the data referenced by identifier-l, and continues to 
the rightmost character position. 

Rules Applicable to Format 2 

1. Rules governing format 2 apply as appropriate to each phrase in the INSPECT statement following the key 
word REPLACING, and to each iteration of those phrases. 

2. The rules for replacement are as follows: 

a. When literal-3 is a figurative constant, each character in the data referenced by identifier-l that is 
equal to the figurative constant is replaced by the single character referenced by literal-4 or 
identifier-6. 

b. When Iiteral-4 is a figurative constant, each character in the data referenced by identifier-1 that 
is equal to the character referenced by literal-3 or identifier-5 is replaced by the character refer­
enced by the figurative constant. 

c. When literal-3, literal-4 or the data referenced by identifier-5, identifier-6 refer to character­
strings, each nonoverlapping occurrence of the character-string referenced by literal-3 or identifier-5 
is replaced by the character-string referenced by literal-4 or identifier-6. 

d. When the CHARACTERS phrase is used, any character encountered in the data item referenced 
by identifier-l will be replaced by literal-4 or the character referenced by identifier-6. 

e. Once replacement has occurred in a given character position of the data referenced by identifier-l, 
no further replacement may be made in that character position by the same INSPECT statement. 

3. If the CHARACTERS phrase is used, each character encountered wil.l be replaced by literal-4 or the char­
acter referenced by identifier-6 from the point where replacement begins to the point where replacement 
ends. 

4. The required words ALL, LEADING, and FIRST are adjectivesthatapplytoeach succeeding BY phrase until 
the next adjective appears: 

a. If ALL identifier-5/literal-3s are to be replaced, this is done according to the replacement rules 
specified in paragraph 2, above, and as described in paragraph 5, which follows. 

b. If the adjective LEADING is used, all contiguous, nonoverlapping occurrences of the character string 
referenced by literal-3 or identifier-5 are replaced by the character string referenced by litera 1-4 or 
identifier-6, provided that the leftmost such occurrence, in the data referenced by identifier-l, is at 
the point where replacement begins. See paragraph 5, below, for the BEFORE/AFTER case. 

c. If the adjective FIRST is used, the leftmost occurrence, to the right of the point where replacement 
of the character string referenced by literal-3 or identifier-5 begins (see paragraph 5, below), is re­
placed, in the data referenced by identifier-l, by the character string referenced by literal-4 or 
i dent i fi er-6. 

5. If the BEFORE/AFTER phrase is absent, the replacement process begins at the leftmost character position 
of the data referenced by identifier-l and proceeds to the rightmost character position of the data refer­
enced by identifier-l. 

a. If the BEFORE phrase is used, replacement begins at the leftmost character position and terminates 
at, but not including, the first occurrence of literal-5 or the data referenced by identifier-7 that is 
found within the data referenced by identifier-l. If no occurrence of literal-5 or the data referenced 

66 Data Manipulation Statements 



by identifier-7 is encountered within the data referenced by identifier-1, then replacement terminates 
at the rightmost character position of the data referenced by identifier-I. 

b. If the AFTIER phrase is used, replacement begins after, but not including, the fLst occurrence of 
literal-5 or the data referenced by identifier-7 that occurs within the data referenced by identifier-1, 
and continues to the rightmost character position. 

Ru I es App Ii cabl e to Formtat 3 

Format-1 rules apply to ,-he TALLYING phrase of format 3, and format-2 rules to the REPLACING phrase. However, 
all tallying takes place before any replacing. 

Examples: 

INSPECT word TALLYING count FOR LEADING ILl BEFORE INITIAL IAI, count-1 FOR LEADING 
IAI BEFORE INITIAL ILl. 

Where word = LARGE, count = 1, c:ount-1 = o. 
Where word = ANALYST, count = (), count-1 = 1. 

INSPECT word TALLYING count FOR ALL ILl, REPLACING LEADING lA' BY lEI AFTER INI­
TIAL IL'. 

Where word = CALLAR, count = 2, word = CALLAR. 
Where word = SALAMI, count = 1, word = SALEMI. 
Where word = LATTER, count = 1, word = LETTER. 

INSPECT word REPLACING ALL lA' BY 'G' BEFORE INITIAL 'X'. 

Where word = ARXAX, word = GRXAX. 
Where word = HANDAX, word = HGNDGX. 

INSPECT word TALLYING count FOR CHARACTERS AFTER INITIAL 'JI REPLACING ALL 'AI 
BY'B'. 

Where word = ADJECTIV~, count = 6, word = BDJECTIVE. 
Where word = JACK, count = 3, war~ = JBCK. 
Where word = JUJMAB, count = 5, word = JUJMBB. 

INSPECT word REPLACING ALL IX' BY IY', IBI BY IZ', IW' BY IQI AFTER INITIAL IR'. 

Where 'Word = RXXBQWY, word = RVYZQQY. 
Where 'Word = YZACDWBR, word = YZACDWZR. 
Where 'Word = RAWRXEB, word = RAQRYEZ. 

INSPECT word REPLACING CHARACTERS BY IBI BEFORE INITIAL 'A'. 

Word blBlfore: 1 2 X Z ABC D 
Word after: B B B B B ABC D 

MOVE S .......... 

The format of this statemel'1lt is 

I[ CORRESPONDING]'d tT 1] 
MOVE CORR ---- I en 'Ier- TO identifier-2[, identifier-3] .•• 

literal-l 

The MOVE statement movEts data from one area of main storage to another. It edits the data (inserts, deletes, or 
replaces characters) if the PICTURE of the receiving item so requires. When the CORRESPONDING option is used, 

Data Manipulation Statements 67 



selected items within identifier-l are moved, together with any required editing, toselected areas within identifier-2. 
Items ore selected by matching data-names of areas defined by identifier-l with like data-names of areas de-
fi ned by identifier-2. 

This statement moves data in identifier-l (or the specified literal) to identifier-2. Literal-1 may be a numeric lit­
e,al, an alphanumeric literal, or a figurative-constant. Figurative-constants, with the exception of ZERO(S)(ES), 
are treated as alphanumeric items. The same information may be moved simultaneously to additional areas as speci­
fied by identifier-3, etc. i such movement does not destroy the original data in identifier-l but copies it in the desig­
nated areas. Identifier-1 or literal-1 is the source item; identifier-2, identifier-3, etc., are the receiving items 
or areas. Both the source and receiving items can be elementary or group items. (For purposes of the MOVE state­
ment, a literal is considered an elementary item.) The manner in which the MOVE is performed depends not only 
on the type of source and receiving items but also on their classes. 

The two types of MOVE statements are discussed in the following paragraphs. 

Alphanumeric Moves 

Source data is stored left-justified in the receiving area unless the receiving item is an elementary item that specifies 
JUSTIFIED RIGHT. If a group is moved, left justification is standard, and any specification to the contrary is over­
ridden. If the receiving area is not completely filled by data, remaining positions are filled with spaces. If the 
receiving item is alphabetic, it is treated as alphanumeric. 

Exam~les: 

PICTURE of 
Source Data Receiving Item Receiv'na Item 

IA 8 C D I A(4) or X(4) IA 8 C D 

IA 8 C DI A(5) or X(5) IA 8 C D 61 

IA 8 C DI 1 21 31 X(8) IA B C D 1 I 21 31 ~ 1 

11 2 3 X(8) 11 2 3 t:::.. t:::..1t:::..1t:::..1~1 

fA B C DI A(3) or X(3) IA B C 

If the receiving item is alphanumeric, the literal may be any literal or figuratlve-constant. If the figurative-constant 
takes the form of ALL any-literal, the literal must be enclosed in quotation marks and is considered an alphanumeric 
item. The size of an ALL any-literal item is determined by the size of the receiving item, with characters repeated 
from left to right. 

Examples: 

Source Data 

'123' 

ALL 123 

123 

[ALL] QUOTES 

68 Data fv4.anipulation Statement 

PICTURE of 
Receiving Item 

X(4) 

X(7) 

X(2) 

X(7) 

X(7) JUSTIFIED RIGHT 

X(7) 

X(5) 

X(5) 

Receiving Item 

IA I 81 C I D 1 A 1 81 C I 
[IT] 
11121 3 1 1 1213111 

13 11 I 2 13 I 1 2 1 3 I 
Illegal 

11 1213 1 t:::..1 6 1 

I· ,. I · I I I · I 



Numeric Moves 

When the source data is movl!ld into the receiving area, it is aligned according to its decimal pdnt and the decimal 
point in the receiving area. If there is no decimal point in either the source or receiving item, ,')ne is assumed at 
the right end of the item. Alignment by decimal points may result in the loss of leading or trailing digits, or both. 
Any positions in the receiving area not filled with data are auto'matically filled with zeros. Such a situation could 
arise because of decimal-point alignment, difference In sizes between source and receiving items, or both. Any 
necessary conversion from one USAGE to another, together' with any editing, tokes place during the move. 

Examples: 
PICTURE of 

Source Data Receiving Item Recelvl~ Item 

0ITpJ 99V9 0ITpJ 
0ITpJ 999 V 99 1011121~lol 

rIrilli 9999 101112131 

0ITpJ 9999 101011121 

-1.23 (literal) S9V99 rrprn 
[IpJIl 9V9 DiI1 
0ITpJ ,9V9 rqTI 

If the receiving item format speciftes edlttng, the source data is edited concurrently with data movement. Editing 
occurs after decimal-point alignment. Editing symbols in the receiving item (currency signs, commas, etc.) make 
this item alphanumeric; if It is subsequently referenced as a source item in a MOVE statement, it is moved tn ac­
cordance with the rules for alfmanumerlc Items. 

Examples: 

Source Data 

(112131415] 

0121314,15] 

[010101112] 

PICTURE of 
Receiving Item 

$**9.99 

999.9 

$**9.99 

Receiving Item 

If the receiving item is numeric or numeric edited, the literal can be any numeric literal or the figurative-constant 
ZERO(S)(ES). The point location and size of the literal are determined by the actual literal in the source statement. 
Further examples of editing art! given in "PICTURE Clouse" under "DATA DIVISION Structure" in Chapter 5.' 

Data Manipulation Statements 69 



Examples: 
PICTURE of 

Source Data Receiving Item Receiving Item 

+1.23 SW99 f4illJ 
+1.23 SW9 

~ 1 2 

123 9(5) 00 1 2 3 

ZEROS S99999 10 10 10 10 I ri I 
QUOTES 9999 Illegal 

+37 S99W99 1013171°161 
All 37 S99W99 Illegal 

All '37' S99W99 Illegal 

03737.3 $***9.9 1$ 13 17 13 17 1 . 13 1 
! Permissible Moves 

I Permissible moves are listed in Table S. 

Table 8. Permissible Moves 

Receiving Field 

Source Item GR X NO 

Group GR A A A 

Alphabetic, Alphanumeric, X A A 9
1 

or Edited 

Numeric Display NO A . A 1 
9 

Computatlona I C A A1 9 

F igurative-Constan t A A1 A2 

Numeric LIteral A A1 9 

Non-numeric literal A A 9
1 

A Alphanumeric or byte move, byte-by-byte from left to right with blank fill. 

A 
1 

Permissible if source is an integer. In this case the integer is converted to numeric 
display, moved byte-by-byte into the field, and left justified with space fill (unless 
RIGHT JUSTIFIED is specified in DATA DIVISION). 

C 

A 

9 

9 

A 
2 

Only the figurative-constant ZERO and All 'digit', where digit is a numeric character, 
are allowed. 

9 Numeric MOVE. 

9
1 

Any non-numeric characters in the source field cause unpredictable data. 

9
2 

Only the figurative-constant ZERO is allowed. 

Note: A blank box indicates the test is not permitted. 

70 Data Manipulation Statements 



CORRESPONDING Option_ 

The CORRESPONDING option in the MOVE statement moves one or more items within one group to the location of 
selected items within one or more other groups. The items moved depend on the names of the ih'ms within the source 
and receiving groups. 

The rules stated for the simple MOVE statement apply to each pair of corresponding items in the MOVE COR­
RESPONDING statement; thus, the effect of a MOVE CORRESPONDING statement is equivalent toa series of simple 
MOVE statements. Each selected item is moved from the !Source area to the corresponding item in the receiving 
area; editing according to the format of the receiving area takes place concurrently with the move. 

An item is selected for movement if 

1. There is a like-named item in the receiving areCJJ. 

2. The names of all hif~her level items in each area (the qualifiers for the pair of items), up to but not includ­
ing identifier-l andl identifier-2, identifier-3, otc., are also identical. 

3. At least one of the items of a pair of matching items is an elementary item. 

4. Identifier-I, identifier-2, etc., are group items. 

5. Neither identifier-lI nor identifier-2 are data items with level-numbers of 66, n, or 88. 

6. It does not include a data item subordinate to identifier-l or identifier-2 that contains a REDEFINES or 
OCCURS clause in iits description. However, items designated by identifier-l and identifier-2 may be 
described with REDEFINES or OCCURS clauses or be subordinate to items described with REDEFINES or 
OCCURS clauses. 

7. Either identifier-l elr identifier-2, when described with an OCCURS clause, is subscripted; each data item 
that corresponds is subscripted by the compiler. 

STRIIG State.at 

The form of this statement is 

{ 
'd 'f' I} [. 'd 'f' 2] I identifier-3j STRING I, entl ler- '11'tent'l~e2r- ••. DELIMITED BY literal-3 
hteral-l .' I era SIZE 

[ { 
'd 'f' ... } ['d 'fl 5] I identifier-6]J 

' ;u~~~I:.:r.... : :i:~:II_;r- ••• DELIMITED BY ~t~~al-6 • , , 

INTO identifier-7 [WITH POINTER identifier-8] 

_; ON OVERFLOW imperative-statement] 

The STRING statement allows juxtaposing the partial or complete contents of two or more data items so that they 
form a single data item. Each literal may be any figurative constant, without the optional word ALL, and all lit­
erals must be described as nonnumeric literals. Identifier-·3 and identifier-6 must reference a fixed-length data 
item, and the usage of all identifiers, except identifier-S, must be described implicitly or explicitly as DISPLAY. 
Identifier-7 must represent an elementary data item without editing symbols; identifier-8 must represent an elemen­
tary numerlc integer data item of sufficient size to contain a value equal to the size plus one of the area referenced 
by identifier-7. 

All references to identifier-I, identifier-2, identifier-3, laeral-l, literal-2, literal-3 apply equally to identifier-4, 
identifier-5, identifier-6, litl~ral-4, literal-5 and literal-6, respectively, and all recursions thereof. 

Identifier-I, I iteral-l, identifier-2, Ii teral-2, represent the sendi ng items, Identifier-7 represents the receiving item. 

Data Manipulation Statements 71 



Literal-3, identifier-3, indicate the character{s} delimiting the move. If the SIZE phrase is used, the complete data 
item defined by identifier-l, literal-l, identifier-2, literal-2, is moved. When a figurative constant is used as the 
delimiter, it stands for a single-character non-numeric literal. 

When a figurative constant is specified as literal-l, literal-2, literal-3, it refers to an implicit one-character data 
item whose usage is display. 

When the STRING statement is executed, the transfer of data is governed by the following rules: 

1. Characters from literal-l, literal-2, or from the contents of the data item, referenced by identifier-l, 
identifier-2, are transferred to the contents of identifier-7 in accordance with the rules for alphanumeric 
to alphanumeric moves, except that no space-filling will be provided {see "MOVE Statement"}. 

2. If the DELIMITED phrase is specified without the SIZE phrase, the contents of the data item referenced 
by identifier-l, identifier-2, or the value of literal-l, literal-2, are transferred to the receiving data 
item in the sequence specified in the STRING statement beginning with the leftmost character and con­
tinuing from left to right until the end of the data item is reached, or until the character{s} specified by 
literal-3 or by the contents of identifier-3 are encountered. The character{s} specified by literal-3 or by 
the data item referenced by identifier-3 are not transferred. 

3. If the DELIMITED phrase is specified with the SIZE phrase, the entire contents of literal-l, literal-2, or 
the contents of the data item referenced by identifier-l, identifier-2, are transferred, in the sequence 
specified in the STRING statement, to the data item referenced by identifier-7 unti I all data has been 
transferred or the end of the data item referenced by identifier-~ has been reached. 

If the POINTER phrase is specified, identifier-8 is explicitly available to the programmer, and he is responsible for 
setting its initial value. The initial value must not be less than 1. If the POINTER phrase is not specified, an ini­
tial value of 1 is assumed. 

When characters are transferred to the data item referenced by identifier-7, the moves behave as though the char­
acters were movedoneatatimefrom the source into the character position of the data item referenced by identifier-7, 
designated by the value associated with identifier-8, and increased by one prior to the move of each next character. 
This is the only way in which the value associated with identifier-8 is changed during execution of the STRING 
statement. 

At the end of execution of the STRING statement, only the portion of the data item referenced by identifier-7 
that was referenced during the execution of the STRING statement is changed. All other portions of the data item 
referenced by identifier-7 will contain data that was present before this execution of the STRING statement. 

If at any point at or after initial ization of the STRING statement, but before execution of the STRING statement is 
completed, the value associated with identifier-8 is either less than one or exceeds the number of character positions 
in the data items referenced by identifier-7, no (further), data is transferred to the data item referenced by identifier-7 
and the imperative statement in the ON OVERFLOW phrase is executed, if specified. 

If the ON OVERFLOW phrase is not specified, control passes to the next executable statement as written, or to the 
return mechanism of a PERFORM or a USE statement. 

UNSTRIIG ........ 

The form of this statement is 

UNSTRING identifier-l 

[ DELIMITED BY [ALL] {i~entifier-2} r OR (ALL] {i~entifier-3}ll .•• J 
' -- IIteral-l l' - -- Ilteral-2 J 

INTO identifier-4 [, DELIMITER IN identifier-S] [, COUNT IN identifier-6] 

[, identifier-7 [, DELIMITER IN identifier-8] [, COUNT IN identifier-9] 

[WITH POINTER identifier-l 0] [TALLYING IN identifier-ll] 

[; ON OVERFLOW imperative-statement] 

72 Data Manipulation Statements 



The UNSTRINGstatementcalJsescontiguous data in a sending field tobeseparated and placed into multiple receiving 
fields. Each literal must be CI non-numeric literal and may be any figurative constant without the optional word ALL. 

Identifier-l, identifier-2, iclentifier-3, identifier-5, and identifier-8 must be described, impli:':itly or explicitly, 
as an alphanumeric data item. Identifier-4 and identifier-7 must be described as either alphabelic (except that the 
symbol 'B' may not be used in the PICTURE character-string), alphanumeric, or numeric (except that the symbol 'P' 
may not be used in the PICTURE character-string), and must be described as USAGE IS DISPLAY. 

Identifier-6, identifier-9, identifier-10, and identifier-ll must be described as elementary numeric integer data 
items. No identifier may name a level 88 entry. The DELIMITER IN phrase and the COUNT IN phrase may be 
specified only if the DELIMITED BY phrase is specified. 

All references to identifier-2, literal-l, identifier-4, Identifier-5 and identifier-6, apply equally to identifier-3, 
Iiteral-2, identifier-7, identifier-8, and identifier-9, repsectively, and all recursions thereof. 

Identifier-l represents the sending area. Identifier-4 represents the data receiving area, and identifier-5 rep­
resents the receiving area for delimiters, specified by literal-lor the data item referenced by identifier-2. When 
a figurative constant is used elS the delimiter, it stands for a single-character non-numeric literal. 

Identifier-6 represents the c()unt of the number of characters within the data item referenced by identifier-l, 
isolated by the delimiters for the move to identifier-4. This value does not include a count of the delimiter 
character(s) . 

The data item referenced by identifier-10 contains a value that indicates a relative character position within the 
area defined by identifier-l; the data item referenced by identifier-ll is a counter that records the number of data 
items acted upon during the execution of an UNSTRING statement. 

When the ALL phrase is specified, one occurrence or two or more contiguous occurrences of literal-l (figurative 
constant or not) or the contents of the data item referenced by identifier-2 are treated as if it were only one occur­
rence, and this occurrence is moved to the receiving data item according to the rules applicable to the DELIMITER 
IN phrase, below. When an examination encounters two contiguous delimiters, the current receiving area is either 
space-filled or zero-filled according to the description of the receiving area. 

Literal-l and the data item referenced by identifier-2 each represent one delimiter. When a delimiter contains two 
or more characters, all of the characters of the sending item must be present in contiguous positions and in the order 
given to be recognized as a d,elimiter. Literal-lor the contents of the data item referenced by identifier-2 can 
contain any character in the e:omputer's character set. 

When two or more delimiters (Ire specified in the DELIMITED BY phrase, an 'OR' condition exists between them. 
Each delimiter is compared to the sending field. If a match occurs, the character(s) in the sending field is considered 
to be a single delimiter. No character{s) in the sending field can be considered a pc;rt of more than one delimiter. 
Each delimiter is applied to the sending field in the sequence specified in the UNSTRING statement. 

When the UNSTRING statement is initiated, the current receiving area is the data item referenced by identifier-4. 
Data is transferred from the dClta item referenced by identifier-l to the data item referenced by identifier-4 accord­
ing to the following rules: 

1. If the POINTERphra!le is specified, the string of characters referenced by identifier-l is examined beginning 
with the relative cholracter position indicated by the content of the data item referenced by identifier-10. 
If the POINTER phrase is not specified, the string of characters is examined beginning with the leftmost 
character position. 

2. If the DELIMITED BY phrase is specified, the examination proceeds left to right until either a delimiter 
specified by the value of literal-lor the data item referenced by identifier-2 is encountered. If the 
DELIMITED BY phras'l!l is not specified, the number of characters examined is equal to the size of the cur­
rent receiving area. However, if the sign of the receiving item is defined as occupying a separate char­
acter position, the nlumber of characters examined is one less than the size of the current receiving area. 

If the end of the do tel item referenced by identifielr-l is encountered before the delimiting condition is met, 
the examination terminates with the last character examined. . 

3. The characters thus examined (excluding the delimiting character(s), if any) are trooted as an elementary 
alphanumeric data item and are moved into the current receiving area according to the rules for the MOVE 
statement (see above). 

Data Manipulation Statements 73 



4. If the DELfMITER IN phrase is specified, the delimiting character{s) is treated as an elementary alpha­
numeric data item and is moved into the data item referenced by identifier-5 according to the rules for 
the MOVE statement (see above). If the delimiting condition is the end of the data item referenced by 
identifier-l, then the data item referenced by identifier-5 is space-filled. 

5. If the COUNTER IN phrase is specified, a value equal to the number of characters thus examined (exlud-
i ng the delimiter character{s), if any) is moved into the area referenced by identifier-6 according to the 
rules for an elementary move. 

6. If the DELIMITED BY phrase is specified, the string of characters is further examined beginning with the 
. first character to the right of the delimiter. If the DELIMITED BY phrase is not specified, the string of 

characters is further examined beginning with the character to the right of the last character transferred. 

7. After data is transferred to the data item referenced by identifier-4, the current receiving area is the data 
item referenced by identifier-7. The data transfer is repeated as described until either all the characters 
are exhausted in the data item referenced by identifi er-1 or unti I there are no more recei vi ng areas. 

Initial ization of the contents of the data items associated with the POINTER phrase or the TALLYING phrase is the 
responsibility of the user. The contents of the data item referenced by identifier-10 will be incremented by one for 
each character examined in the data item referenced by identifier-l. When the execution of an UNSTRING state­
ment with a POINTER phrase is completed, the contents of the data item referenced by identifier-10 wi II contain a 
value equal to the initial value plus the number of characters examined in the data item referenced by identifier-1. 

When the execution of on UNSTRING statement with a TALLYING phrase is completed, the contents of the data 
item referenced by identifier-ll contains a value equal to its initial value plus the number of receiving items acted 
upon. 

Either of the following situations causes an overflow condition: 

1. An UNSTRING is initiated, and the value in the data item referenced by identifier-lO is less than 1 or 
greater than the size of the data item referenced by identifier-l. 

2. All receiving areas have been acted upon during execution of an UNSTRING statement and the data item 
referenced by identifier-l contains characters that have not been examined. 

When an overflow condition exists, the UNSTRING operation is terminated. If an ON OVERFLOW phrase has been 
specified, the imperative statement included in the ON OVERFLOW phrase is executed. If the ON OVERFLOW 
phrase is not specified, control is transferred to the next executable sentence. 

Evaluation of subscripting and indexing for the identifiers is as follows: 

1. Any subscripting or indexing associated with identifier-l, identifier-10, identifier-11 is evaluated only 
once, immediately before any data is transferred as the result of the execution of the UNSTRING statement. 

2. Any subscripting or indexing associated with identifier-2, identifier-3, identifier-4, identifier-5, identifier-6 
is evaluated immediately before the transfer of data into the respective data item. 

Sequence Control Statements 

COBOL provides the programmer with the following commands that control the order in which statements are 
executed: 

1. GO TO permanently releases control to the first statement in the procedure named. 

2. ALTER changes the procedure-name in a GO TO elsewhere in the program so that sometime later, when 
that GO TO is encountered, it will release control to that location. 

3. PERFORM causes statements in a remote procedure to be executed and control returned to the statement 
following the PERFORM. 

74 Sequence Control Statements 



4. STOP allows the program to terminate in an ord.rly mann.r. 

5. IF caus.s control to branch into eith.r a "true" or "false" path, d.pending on the outcom. of a condition 
test written in the program. The paths rejoin CIt the beginning of the next sent.nc. unl.sl a GO TO branch 
is uled in on. or both paths. 

6. EXIT merely d.cle" .. that the paragraph in which it is contained is a transf. point that may be r.f.r.nc.d 
by other sequence control statements. 

7. ENTER allows the execution of non-COBOL subroutine.. Paragraph and section names Identify procedures 
so that they may b. ref.enced by sequence control statements • 

..... I.~ ••••• Celllril 

The starting location for the- program is at the first stat.m.nt of the PROCEDURE DIVISION, excluding the DECLAR­
ATIVES section. Control then proceeds to subsequent succ.ssiv. statements until the .nd of paragraph or section is 
reached. Un/.ss the paragn::aph or s.ction is execut.d und.r control of a PERFORM stat.m.nt, control then passes to 
the first stat.m.nt In the n.xt paragraph or section. Ex.cution of a sequ.nc. control stat.m.nt, of cours., alt.rs 
the normal s.qu.nc. of control. 

Sections that have a priorit)ll.onumber .qual to or exceeding the SEGMENT -LIMIT are automatically loaded into the 
overlay area when control is given to them either by s.quence control statements or by normal control flow from the 
preceding paragraph. GO TO statements chang.d by the ALTER statement are completely unaffected by loading of 
priority segments. It is permisslbl. for PERFORM to name a procedure beginning in one priority segment and ending 
in another. The second and successive priority segments are automatically loaded when needed, and the location of 
the controlling PERFORM steltem.nt Is retained ev.n if It is within yet anoth.r priority segm.nt. Refer to Chapter 11, 
"Priority Segm.ntatlon", for additional discussion of this f.atur •• 

Ref ••• 1 t. U ............... 

Any sequ.nc. control stat.mlents r.f .... ncing prOCedur •• und.fined in the COBOL program being compiled are diag­
nos.d as und.fin.d, but linkag. is gen.rated so that the procedure can be d.fined in a s.parately compiled COBOL 
program and the cross-ref •• nc. handled by the linkage Editor of the Monitor syst.m. To do this, the procedure in 
the separately compiled COBOL program must be declared as on .ntry point by an ENTER COBOL statem.nt. 
Ref.r to "ENTER Stat.m.nt" lat.r in this chapt.r for additional description of this featur •• 

The formats of this statement are 

Format 1 

~ tQ IProcedur.-nam.-0 

Format 2 

GO TO procedure-name -1 ~ proc.dure-nam.-2] ••• ,proc.dure-nam.-n PEPEN pING ON identifi.r-l 

The GO TO statement permanently transfers control, conditionally or unconditionally, to another point in a program. 

Format 1 represents the unconditional GO TO statement: control is transferred to another paragraph or section of the 
PROCEDURE DIVISION as specified by procedure-name-l. GO TO can appear as the last of several statements in 
a series of statements. If proc:edure-name-1 is not specified, the GO TO statement must occupy a paragraph by it­
self and be assigned a paragroph-name. Procedure-nome-I is then supplied - using the assigned paragraph-name as 
a reference - by an ALTER sto'tement prior to the first execution of the GO TO statement. If the execution of an 

Sequence Control Statements 75 



ALTER statement docs lIot assign n pr0ccdure-name to the GO TO statement before statl.'rT1t:nt execution, the object­
time diagnostic is issued. 

Examples: 

1. GO TO TEST-ROUTINE. 

2. IF A = B GO TO SINE-ROUTINE ELSE ADD:A TO B GO TO START-ROUTINE. 

Format 2, referred to as the conditional GO TO, can constitute a multiple branch point. These branch points may 
be paragraphs or sections as specified by procedure-name-1, -2, etc. Since the branch is predicated on certain 
conditions, the value of a particular data item, identifier-1, is tested at the time the statement is executed to deter­
mine which branch point to take. 

When the GO Tf) statement is executed, control is transferred to the paragraph or section specified by procedure­
name-I, -2, at -n, depending on whether the data item value is equal to 1, 2, or n. Identifier-l must be an ele­
mentary integra; numeric item. The USAGE of identifler-l is either DISPLAY , COMPUTATIONAL, or 
COMPUTATIONAL-3, and can be subscripted if necessary. If the value of identifier-l is not within the range 
I through n, no transfer transpires; control passes to the next statement following the GO TO statement. A max-
imum of 100 prccedure-names may be used in one GO TO statement. -

Example: 

GO TO FEDERAL-TAX, STATE-TAX, LOCAL-TAX DEPENDING ON GROSS-SALARY-CODE. 

ALTEIISIa'I._ 

The format of this statement Is 

ALTER procedure-name-l IQ[PROCEED IQ1procedure-name-2 

L procedure-name-3 IQ[PROCEED IQ]procedure-name-4] .•• 

The ALTER statement modifies the branch point in an unconditional GO TO statement by supplying an alternate 
branch point, thus setting up a predetermined sequence of operations. A GO TO statement that is to be altered 
must be unconditional and must be the only statement contained within a paragraph, preceded by a paragraph­
name. Procedure-names-l, -3, etc., are the names of paragraphs that contain only GO TO statements that are 
to be altered; when executed, these GO TO statements cause control to be transferred to procedure-namei-2, 
-4, etc. 

Example: 

Assume GO TO and ALTER statements 

ALTER SWITCH-S TO PROCEED TO WRITE-IT -OUT. 

SWITCH-S. GO TO PRINT -IT -OUT. 

The effect would be to change the GO TO statement to 

SWITCH-S. GO TO WRITE-IT -OUT. 

PERFOII ........ 

The formats of this statement are 

Format I 

PERFORM procedure-name-l ():J:f&J. procedure-name-2] 

76 Sequence Control Statemenh 



Format 2 

[ i1 {identifier-I} PERFORM procedure-name-l Il:iB.U procedure-name-2J I t 1 I.lM.ES n eger-

Format 3 

PERFORM procedure-name-l [;r.tl&u procedure-nome-2] LLtUlL. conditlon-l 

format 4 

PERFORM procedure-name-l [;r.tl&u procedure-name-2] 

VARYINr! In ex-name- CDl"'\u Id t'f' -2 RV entl ler- II .... ITJI d' • 1 ~ d 
1} tindex-name-2} {id 'f' } 

~ 'd t'f' 1 ~ en 1 ler IU. lit I 3 ~ con Itlon-
1 en 1 ler- IIteral-2 era -

ndex-name-4 Identlfler-6 •. ~ ~ } {

,ndex-name-s} {. • } 
AFTER identifier-4 FROM :~t:~!it~;r-S B.Y Iiteral-6 u.til.l.L. condltlon-2 

The PERFORM statement causes a departure and return from normal procedures execution to another part of the 
program to execute one or more procedures. These procedures are executed a predetermined number of times or 
until a specified condition Is satisfied, after which normal procedures execution resumes. In its simplest format 
the PERFORM provides a branch, execution of the procedure, and a return i in the more complex formats a branch 
is mode, but the number of e),ecutions is contingent upon a condition controlled and tested by the statement. Thus, 
the PERFORM statement permits repetitive execution or looping using one statement, that is, it initializes and 
maintains loop criterion (varillble), tests the criterion, and performs operations. 

The return point for the PERFORM statement is determined by whether the procedure to which it branches is a para­
graph or sect~on. When the instructions compiled from a PERFORM statement are executed, they transfer control to 
the first statement of the spec:ified procedure. Instructions that provide return to the statement following PERFORM 
are set up as follows: 

1. If procedure-name-l is a paragraph-name and a procedure-name-2 is not specified, control is returned 
after the last statement of the procedure-name-l paragraph. 

2. If procedure-name-l is a section and a procedure-name-2 is not specified, control is returned after the 
last statement of the last paragraph of the procedure-name-l section. 

3. If procedure-name-2' is specified and is a paragraph-name, control is returned after the last statement of 
the procedure-name··2 paragraph. 

4. If procedure-name-2 is specified and is a section··name, control is returned after the last statement of the 
last paragraph of the procedure-name-2 section. 

Note: The "last statement" referenced in each of the above cases must not be an unconditional GO TO 
statement. 

When procedure-name-2 is specified, the only required relationship between procedure-name-l and procedure­
name-2 is that of logical sequence, that is, execution sequence must proceed from procedure-name-l to the lost 
statement of the procedure-name-2 paragraph or section. GO TO statements and other PERFORM statements are 
permi tted between procedure-name-l and the lost statement of procedure-name-2 provided that the sequence ul ti­
mately returns to the final statement of procedure-name-2. 

If the logic of a procedure recluires a conditional branch prior to the final sentence, the EXIT statement may be used 
to satisfy the foregoing requimments. In this case, procedlJre-name-2 must be the name of a paragraph consisting 
solely of the EXIT statementi elll paths must eventually lead to this point. (See the "EXIT Statement" discussion 
below. ) 

Sequence Control Statements 77 



It is not necessary for procedures to be referenced by a PERFORM statement before they can be executed. Procedures 
can also be executed in normal sequence from the preceding statement, in which case return of control does not 
apply after execution of the last sentence in a particular procedure. 

"Nested" PERFORM Statements 

If a sequence of statements referred to by a PERFORM statement includes another PERFORM statement, the sequence 
of procedures associated with the included PERFORM m~st itself be either totally included in, or totally excluded 
from the logical sequence referred to by the first PERFORM. Thus, an active PERFORM statement whose execution 
point begins within the range of another PERFORM must not contain within its range the exit point of the other active 
PERFORM statement. 

TIMES Option 

In Format 2 the procedure is executed repetitively a certain number of times. The number of executions may be 
specified explicitly as an integer or implicitly as the value of an elementary data item. 

If an identifier is used it may be of any numeric usage, and it may be subscripted. When this option is included, a 
counter is set up with a value equal to the value of the identifier-1 item or integer-l. Before each execution of the 
specified procedure, the counter is tested to see if it is negative or zero. If it is neither negative nor zero, the pro­
cedure is executed and the va I ue of the counter decreased by one; when the va I ue of the counter is negati ve or zero, 
the procedure has been executed the specified number of times and control transfers to the statement following the 
PERFORM statement. 

UNTIL Option 

In Format 3, the number of times the procedure is executed is dependent on the truth or falsity of a condition 
(condition-1) rather than a stated value. Condition-1 can be any simple or compound conditional expression that is 
evaluated before the specified procedure is executed. If it is found to be false, the procedure is executed and the 
expression is evaluated again (values of the items may be altered by execution of the procedure) and tested for truth 
or falsity; this process is repeated until the conditional expression is found to be true, at which point control trans­
fers to the statement following the PERFORM statement. If the conditional expression is found to be true when the 
PERFORM statement is first encountered, the specified procedure is not executed. (Refer to "Conditional Statements" 
at the beginning of this chapter.) 

VARYING Option 

In Format .. fthe VARYING option makes it possible to PERFORM a proced~re repetitively, increasing or decreasing 
the value of one to three dota items once for each execution until one to three conditional expressions are "satisfied. 

The flowcharts in Figure 3 illustrate the logic of the PE"RFORM statement when one, two, or three identifiers are 
varied. Let 

1. 

2. 

3. 

4. 

Example: 

Each d. represent an identifier or index-name. 
I 

Each I. represent a I i tara I. 
I 

Each c. represent a condition. 
I 

Each p. represent a procedure-name. 
I 

To help clarify use of the VARYING subscript-name option, assume that a rate table is employed in a billing pro­
cedure and that the table requires periodic updating. This hypothetical rate table is three-dimensional:" divided 
into five regions, each of which includes ten states, each of which contains rates for twelve cities. It is assumed 
further that an appropriate rate-updating procedure is available elsewhere in the program. Such a procedure might 
appear as 

RATE-UPDATING. MULTIPLY RATE (REGION, STATE, CITY) BY ADJUST-FACTOR GIVING RATE (REGION, 
STATE, CITY). 

It is desired to execute this RA TE-UPDA TING procedure once for each city of each state in each region, using the 
current rate for a given city and producing an adjusted rate for that city. Accordingly, the programmer employs a 
PERFORM statement varying these items: 

PERFORM RA TE-UPDA TING VARYING REGION FROM 1 BY 1 UNTIL REGION IS GREATER THAN 5 AFTER 
STATE FROM 1 BY 1 UNTIL STATE = 11 AFTER CITY FROM 1 BY 1 UNTIL CITY IS GREATER THAN 12. 

78 Sequence Control Statements 



~=---1"( EX IT ) 
EXIT 

Execute 
p 1 through P2 

Augment 
d

1 
by d

3 
(or 1

3
) 

Figure 3. PERFORM Statement (VARYING Option) 

Sequence Control Statements 79 



When the PERFORM is executed at object time, the RATE-UPDATING procedure is executed for the first city of the 
first state in the first region, then for the next city, etc. The PERFORM is complete when the procedure is executed 
tor the twelfth city of the tenth state of the fifth region, by which time the procedure has been executed 600 times. 

The format of this statement is 

STOP {I iteral} 
-- RUN 

The STOP statement temporarily or permanently suspends execution of the object program. STOP RUN generates an 
end-of-program exit to the Monitor that terminates program execution permanently. If STOP is followed by a literal, 
the literal is typed out and execution is suspended until the operator takes steps to restore control after the STOP 
statement. Any literal or any figurative-constant except ALL may be used. . 

It is recommended that the programmer include a message for the operator to press the NEW LINE key to continue 
the run. 

The format of this statement is 

paragraph-name. EXIT. 

The EXIT statement ends a procedure to be executed by a PERFORM statement. EXIT must be the only statement in 
a paragraph; it is equivalent to a paragraph with no sentences or to a NOTE paragraph, and generates no code, 

IF SUt •• nt 

The format of this statement is 

,. Jstatement-l } ~ Jstatement-2 }] 
If condition ~ SENTENCE rLSE ~ SENTENCE 

The IF statement causes alternate sequences of operations to be followed, depending on whether the description of 
a data condition is found to be true or false when the data is evaluated. IF is followed by the description of the 
condition, then by the actions to be taken if the description of the condition is true. The word ELSE may be used, 
followed by the operations to be performed if the description of the condition is fa Ise, 

The condition may be a simple condition as represented by the format below or a compound condition as described 
under "Conditional Statements ll at the beginning of this chapter. The format of a simple condition is 

tldentifier-} 
literal-l IS [NOT] 
formula-l {

'dentifier-2} 
literal-2 
formula-2 

jidentifier-3}IS (k10'" J~~21~~E} 
lformula-3 l'~.!J 1~ERO 

r;d 'f' ... 1 IS ""10]') JNUMERIC 
L! entl ler-tJ ll~-- lALPHABETIC 

[NO]') {condition-name } 
-- switch-status-name 

80 Sequence Control Statements 



Evaluation of the Condition~ 

The condition is evaluated before any action is taken. If the condition is true, either statement-lor NEXT 
SENTENCE is executed. When NEXT SENTENCE is specified, control is transferred to the next sentence, and the 
ELSE part of the statement is ignored. If the condition is false, either statement-2 or NEXT SENTENCE is executed. 
Control is transferred to the succeeding sentence when NEXT SENTENCE is specified. 

Statement-lor statement-2 may be a series of statements and each may be terminated by a period or ELSE. 

Nested Conditional Statements 

Statements-l and -2 can be imperative-statements or imperative-statements followed by a conditional statement. 
When either statement-lor statement-2 or both contains a conditional statement, the conditional statement becomes 
nested. Nested conditional statements may also contain conditional statements. Nested conditional statements are 
analogous to the use of parentheses for combining subordinate arithmetic-expressions so that the expressions become 
part of a larger arithmetic unit. 

Evaluation of Nested IF Statements 

Conditional statements contained within conditional statements (IFs within IFs) must be considered as paired IF and 
ELSE combinations, proceeding from left to right. Therefore, any ELSE encountered applies to the immediately pre­
ceding IF that is n'ot already paired with an ELSE. 

In essence, the number of oc:currences of ELSE in any conditional statement must be equal to the number of occur­
rences of IF, regardless of the complexity caused by nesting, with the following exception: when ELSE or NEXT 

: SENTENCE directly precedes the terminal period of a sentence, the entire phrase may be omitted and the period 
specified at the end of the previous phrase. This rule is extended to resulting sentences, etc. For each ELSE, the 
associated statement is executed only when the conditional expression in the corresponding IF is found to be false. 
If there are more IFs than ELSEs in a statement, it is assumed that ELSE NEXT SENTENCE phrases at the end of the 
sentence are omitted. 

Example: 

The sentence in the foliowinSJ paragraph contains two independent nests of conditional statements. The first nest 
ends after the statement PERFORM procedure-name-2; the second nest ~onsists of the remainder of the sentence and 
has an implied ELSE NEXT SENTENCE before the period. Each uppercase letter of the alphabet corresponds to a 
conditiona I expression. 

IF A IF B PERFORM proc:edure-name-l ELSE NEXT SENTENCE ELSE IF C NEXT SENTENCE ELSE PERFORM 
procedure-name-2 IF 0 PERFORM procedure-name-3 IF E PERFORM procedure-name-4 IF F PERFORM 
procedure-name-5 ELSE PERFORM procedure-name-6 ELSE STOP RUN. 

Table-Handling Statements 81 



The ENTER COBOL statement (Format 3) makes the locations of the named procedures avai lable to the loader as 
entry points. Procedure-names are paragraph-names or section-names to which control may pass. 

Tab le-Handlinl Statements 

The structure of a table is defined by the use of an OCCURS clause (refer to "OCCURS Clause" under II Data Descrip­
tion Entries" in Chapter 5). Entries in a table may be referenced by a subscript, which contains a number indicating 
a particular occurrence of the elements within a table. Location of the particular item desired is obtained by multi­
plying the value of the subscript by the length of the previous element and adding the product to the address of the 
table base. The programmer provides for execution of statements ensuring that subscripts contain the proper values 
to permit current table elements to be referenced. 

Indexing is a technique similar to subscripting but has the advantage in efficiency that no address computation is 
involved; an index contains a direct painter to an individual element in a table rather than a mere occurrence num­
ber. Two statements, SEARCH and SET, facilitate the correct setting of indexes. 

SEARCHs...nt 

The formats of this statement are 

Format 1 

SEARCH identifier-1 rVARYING J!dndex.-f~ame2-ill [; AT ~ imperative-statement-g l 1. entl ler- 1] 

. WHEN d"" -1 {impeiative-statement-21 [. \AlI..II:I\.1 d·t· -2 {;rxitive-statement-:lll 
, -- con ltion NEX SENTENCE f' 1.l..L.1IaL3 con I Ion SENTENCE fJ· .. 

Format 2 

r. . i1 • • {;.;;;iative-statement-2l SEARCH 8.LL identifier-1 li AT lli.Q imperatlve-statement- b i Vil:illi condltlon-1 SENTENCE f 

The SEARCH statement searches a table for a table element that satisifies the specified condition and adjusts the 
associated index-name to indicate that table element. In both Formats 1 and 2, identifier-1 may not be subscripted 
or indexed, but its description must contain an OCCURS and an INDEXED By clause; in addition,' the description of 
identifier-1 in Format 2 must also contain the KEY IS option in its OCCURS clause. Identifier-2, when specified, 
must be described as USAGE IS INDEX or as the name of a numeric elementary item described without any positions 
to the right of the assumed decimal point. Identifier-2 is incremented by the same amount and at the same tiine as 
the occurrence number represented by the index-name associated with identifier-1. 

In Format 1, condition-1, condition-2, etc., may be any condition described under IICondi tional Statements II at 
the beginning of this chapter. In Format 2, condition-l may consist of a relation condition incorporating the rela­
tion EQUAL TO, or a condition-name condition where the VALUE clause that describes the condition-name contains 
only a single literal. Alternatively, condition-l may be a compound condition formed from simple conditions of the 
type just mentioned, with AND as the only connective. Any data-name that appears in the KEY clause of identifier-l 
may appear as the subject or object of a test, or be the name of the conditional variable with which the tested 
condition-name is associated. All data-names in the KEY clause must also be tested within condi tion-1: no other 
tests may appear within condition-1. 

If Format 1 is used, a serial search operation takes place starting with the current index setting and following either 
of two procedures: 

1. If, at the start of execution of the SEARCH statement, the index-name associated with identifier-l contai ns 
a value that corresponds to an occurrence number greater than the highest permissible occurrence number 
for identifier-l, the SEARCH is immediately terminated. If the AT END clause is specified, imperative­
statement-l is exocuted; if not, control passes to the next sentence. 

2. If, at the start of execution of the SEARCH statement, the index-name associated with identifier-l con­
tains a value that corresponds to an occurrence number less than the highest permissible occurrence 
number for identifier-l, the SEARCH statement operates by evaluating the conditions sequentially as 
written, making use of index settings (wherever specified) to determine the occurrence of those items to 

82 Table-Handling Statements 



be tested. If nonE~ of the conditions is satisfiedi, the index-name for identifier-l is incremented to obtain 
reference to the next occurrence. The process is then repeated using the new index-name settings, unless 
the new value of the index-name settings for identifier-l corresponds to a table elemel't exceeding the 
last element of thEI table by one or more occurrences, whereby the search terminates as 'ndicated in 1. 
above. If one of ,·he conditions is satisfied upon evaluation, the search immediately terminates and the 
imperative-statememt associated with that condUtion is executed; the index-name remains set at the occur­
rence that caused ,the condition to be satisfied. 

If Format 2 is used, a binary search operation is performed wherein the initial setting of the index-name for 
identifier-l is ignored and its setting is varied during search in the manner dictated by the binary search technique, 
with the following restrictions: At no time is the index-name set to a value exceeding that which corresponds to the last 
element of the table, or to (l value less than that which corresponds to the first element of the table. If condition-l 
cannot be satisfied for any setting of the index within this permitted range, control is passed to imperative­
statement-l when the AT Ef'.1 D clause appears or to the next sentence when this clause does not appear; in either 
case, the final index setting is not predictable. If condition-l can be satisfied, the index indicates an occurrence 
that allows condition-1 to b,e satisfied and control passes to imperative-statemen't-2. 

If any of the specified imperative-statements do not terminate with a GO TO statement, control passes to the next 
sentence after execution of t'he imperative-statement. 

In the VARYIN G option, if index-name-1 appears in the INDEXED BY clause of identifier-I, that index-name is 
used for this search; otherwhie, the first {or only} index-nam'9 given in the INDEXED BY clause of identifjer-l is 
used. If index-name-l appe'ars in the INDEXED BY clause of another table entry, the occurrence number repre­
sented by index-name-1 is incremented by the same amount and at the same time as the occurrence number repre­
sented by the index-name anociated with identifier-1. 

If identifier-1 is an item in (I group or a hierarchy of groups each of whose description contains an OCCURS clause, 
each of those groups must also have an index-name associated with it; the settings of these index-names are used 
throughout thE~ execution of :the SEARCH statement to refer to identifier-lor items therein. These index settings 
are not modified by the execution of the SEARCH statement (unless stated as index-name-l); only the index-name 
associated with identifier-1 (and the item identifier-2 or index-name-l) is incremented by the SEARCH. 

A diagram of the Format 1 SEARCH operation containing two WHEN phrases is shown in Figure 4. 

The formats of this statement are 

Formgt 1 

SET ~'ndex-nome-1} [, ondex-name-2] IQ ti~de~~~am;-} 
- 'lde""t'lf'ler-1 , 'd t'f' 2 . , , I entl ler-

10 I en I ler- IIteral-1 

Format 2 

The SET statement establ ishes reference points for table-handling operations by setting index-names associated with 
table elements. 

All identifiers must be either index data items or numeric elementary items described without any positions to the 
right of the assumed decimal point, except that identifier··4 must not be an index data item. When a literal is used, 
it must be a positive integer, Index-names are considered related to a given table and are defined by specification 
in the INDEXED BY clause, 

All references to index-name-1, identifier-1, and index-name-4 apply equally to index-name-2, identifier-2, and 
index-name-5, respectively. 

Table-Handling Statementl 83 



Increment Index-name for 
Identifier-l (Index-name-l 
if applicable) 

Increment Index-name- 1 
(for a different table) or 
Identifier-2 

tThese operations are only included 
when called for in the statement. 

tt Each of these control transfers is to 
the next sentence unless the Imperative­
statement ends with a GO TO statement. 

Imperative­
statement- 1 

Imperotlve­
statement-2 

Imperati ve­
statement-3 

Figure 4. SEARCH Operation (Two WHEN Phrases) 

In Format 1 the following action occurs: 

\ 
\ 

tt 

1. Index-name-l is set to a value corresponding to the same occurrence number to which either index-name-3, 
identifier-3, or literal-l corresponds. If identifier-3 is an index data item or if index-name-3 is related 
to the same table as index-name-l, no conversion takes place. 

2. If identifier-l is an index data item, it may be set equal to either the contents of index-name-3 or 
identifier-3 where the latter is also an index data item); literal-l cannot be used. 

3. If identifier-l is not an index data item, it may be set only to an occurrence number corresponding to the 
value of index-name-3; neither identifier-3 nor literal-l can be used. 

In Format 2 the value of index-name-4 is incremented (UP BY) or decremented (DOWN BY) by a value correspond­
ing to the number of occurrences represented by the value of literal-2 or identifier-4. 

84 Table-Handling Statements 



Compiler-Oirectinl Statements 

IOTE Stat ..... 
The format of this statemelnt is 

t!OTE comment. 

The NOTE statement permits the writing of explanatory comments in the PROCEDURE DIVISION of a source program; 
such comments are printed on the program listing, but do not affect compilation. NOTE, when used, must begin a 
sentence. If NOTE is not the first word in a paragraph, the comment ends with a period followed by a space; if 
NOTE is the first word ofa paragraph, any subsequent sentences within that paragraph are also considered notes. 
Proper format rules for par10graph structure and word composition must be observed. 

The NOTE statement may be used only in the PROCEDURE DIVISION. However, comments may be written anywhere 
in the source program by p~acing an asterisk in column 7. The asterisk causes the complier to treat the entire source 
line as comments. 

USE State ... 

The formats of this statement are 

Format 1 

USE AFTER STANDARD ERROR PROCEDURE ON OUTPUT 
{

file-name-l [, file-name-2] ••• } 
INPUT 

IN PUT-OUTPUT 
. 1-0 

Format 2 

file-name-l [, file-name-2]"J 
REEL INPUT 

USE {BEFORE} STANIDARD [BEGINNING][FILE ] LABEL PROCEDURE ON OUTPUT 
- AFTER ENDING UNIT INPUT-OUTPUT 

. -- 1-0 

Format 3 

USE BEFORE REPORTING data-name. ----
A USE statement is valid only when written as the first statement in a section within the DECLARATIVES portion of 
the source program. USE is not an executable statement; rather, it defines the conditions under which the associated 
procedure, the DECLARATIVES section itself, is to be executed. 

Format 1 specifies proceduros to be followed if an input/c~utput error occurs during fi Ie processing. The user-specified 
procedures are performed after the standard Monitor input/output error procedure is executed. A CLOSE statement 
may be written but no oth~tr input/output statements addressed to the offending file may appear within the error 
procedure. 

Format 2 enables the user to create or examine his own file labels; it is effective only when a user label (LABEL 
RECORD IS record-name) is indicated for the file. 

If the BEFORE option is spElcified, the DECLARA TIVES section is performed before the label procedure is executed. 
Likewise, if the AFTER option is specified, the DECLARATIVES section is performed after the label procedure is 
executed. 

BEGINNING labels refer 1'0 header labels, and ENDING labels refer to trailer labels. If neither BEGINNING nor 
ENOl NG is specified, the designated procedures are executed for both beginning and ending labels. 

If neither UNIT, REEL, nor FILE is included, the designated procedures are executed for both REEL or UNIT, which­
ever is appropriate, and FILE labels. The REEL option is not applicable to mass storage files. The UNIT option is 
not app I i cab I e to fi I es in the random access mode. 

Compi ler-Directing Statements 85 



Format 3 specifies PROCE DURE DIVISION statements to be executed prior to the reporting group named in the 
REPORT SECTION of the DATA DIVISION, i.e., it designates a procedure to be performed by the Report Writer 
before the repclrt group indicated by the data-name is produced. The data-name may name a report group of any 
type except DETAIL. No Report Writer verbs may occur within procedures associated with this type of USE statement. 

General Rules 

1. When the conditions are met which cause the associated procedure to be executed that is defined by a USE 
statement, then a PERFORM is implied of the section containing the USE. After execution of a USE pro­
cedure, control is returned to the invoking routine. 

2. Within a USF. procedure, there must not be any reference to any nondeclarative procedures. Conversely, 
in the nondeclarative portion there must be no reference to procedure-names that appear in the declarative 
portion, except that PERFORM statements may refer to a USE statement or to the procedures associated with 
such a USE statement. 

COpy Stat •• at 

The format of this statement is 

{
paragraph-name. } t t t 
section-name ~~~TION (priority-number]. copy-s a emen . 

The COpy statement incorporates previously coded library source program statements from a user program into the 
PROCEDURE DIVISION of a source program. These statements must comprise a complete paragraph or section. The 
paragraph or section is copied from the library during compilation, and the result is the same as if the library state­
ments were actually a part of the source program being compiled. In the PROCEDURE DIVISION, the verb INCLUDE 
may be used in place of the verb COPY. See Chapter 9, "COBOL Library", for a more detailed description. 

86 Compiler-Dir.ecting Statements 



7. REPORT WRITER 

Introduct ion 

The Report Writer allows the user to indicate the format of printed reports to be produced by the XDS ANS COBOL 
program. Each printed report is defined in the REPORT SECTION of the DATA DIVISION using the formats described 
in this chapter. Statements in the PROCEDURE DIVISION cause the report to be written on a file in the specified 
format. More than one report can be produced by a single source program. 

If a report is to be defined, the REPORT SECTION must be included as the last section of the DATA DIVISION, and 
one or more File Description (FD) entries in the FILE SECTION must contain the names of the reports to be produced. 

In describing a report both the data and the format of the data must be described. The format must be planned in 
terms of page width and length, and the organization of data on the page. 

The concept of levels is used in organizing a report. Each report is divided into report groups, which may be further 
divided into group items and elementary items. A report group is a set of related data within a report presented on 
one or more I ines of print. Any group or item within a report group that contains subordinate items is referred to as 
a group item; an item that contains no subordinate items is an elementary item. The highest level is the report itself, 
which is denoted by the level indicator RD followed by the report name. Next are report groups at 01 level; these 
contain lower level group or elementary items with level-numbers from 2 through 49. Each group at the 01 level is 
defined according to type: heading group, footing group, or detail group. The user may refer to the report-name 
and to DETAIL report groups from the main body of the PROCEDURE DIVISION. He may refer from the DECLARATIVES 
area to other report groups. , He may also refer to elementary items if they are named and contain a SUM clause. 

Every report description must contain a Report Description (RD) entry and a Report Group Description. The RD entry 
specifies the overall format: characteristics of the pagej limits for the page and for heading, detail, and footings 
information within the page. This entry also specifies data items that control the printing of summary data or CON­
TROL FOOTINGs. Each report must be associated with an output file by being defined by a REPORT IS clause in 
an FD. 

Each report group consists of one or more data items arranged in one or several I ines. A report group must have a 
01 level-number and contain a TYPE clause. The data-name is optional; however, it must be specified with any re­
port group if it is referenced by statements in the PROCEDURE DIVISION. The order in which report groups are 
specified is not important (unless the Subcompile featUre is used), since the position of a group in the report is de­
termined by the TYPE clause. 

Control Group. 

It may be desirable to provide summary information within the body of a report. The concept of a control hierarchy 
makes it possible to produce ,'equired summary information automatically together with any heading and footing in­
formation for a control group.; Control fields are specified in the RD in the same order as the control hierarchy. 
Any change in the contents of a control field produces a control break. Changes are recognized at each execution 
of a GENERATE statement and set in motion the automatic production of CONTROL HEADING and FOOTING re­
port groups. The set of COI\ITROL HEADING, associated DETAIL report groups, and CONTROL FOOTING consti­
tute a control group for a given CONTROL field. Within the hierarchy, lower level heading and f,ooting report 
groups are included in a higher level control group. 

P.ge/Overflow Conditions 

PAGE HEADING and PAGE fOOTING clauses, if specified in a report, are mutually exclusive for anyone page. 
When, following the rules associated with "Iast detail line", a control group is completed on one page and the next 
control group is to be started on the next page, a "page" fcondition exists. 

The PAGE FOOTING group is printed following the LAST DETAIL or CONTROL FOOTING group if the PAGE 
condition exists. TYPE PAGE HEADING report groups, if specified, are produced at the beginning of 

Report Writer 87 



"<Jeb P09t' JcgOldle;s of the condition that prompted the new page. Likewise, the absence of a TYPE OVERrLUVv' 
FUOTING t ntry indicatl'~ that TYPE PAGE FOOTING report groups, if specified, are produced at the bottol11 llf 

l'och page regordless of the conditions that ended the current page. If no control group exists or if the LAST DLT 1\1 L 
option of PAGE LIMIT is omitted, no overflow can occur and only the PAGE HEADING and/or FOOTING report 
groups are printed. 

Special Count.r. 

Fixcd data iterT's LINE-COUNTER and PAGE-COUNTER are generated automatically by the Report Writer for each 
report. When a program contains more than one report, any reference to either of these items must be qualified by 
the report -na ne . 

LINE-COUt-JTER is used by the Report Writer to control spacing inform"ation on the page and to detcrminc when a 
PI\GEjOV'.RFLOW HEADING or FOOTING report group is to be presented. One LINE-COUNTER is supplied fOI 

each repo't. The LINE-COUNTER may be referenced by PROCEDURE DIVISION statements; however, if the L1NE­
COUNTE ~ is changed by a PROCEDURE DIVISION statement, page format control may be unpredi ctable. Ini tia II Y I 

the LINE -COUNTER is set to zero by the Report Writer. It is automatically tested and incremented during exccu­
tion acc)rding to the PAGE LIMIT clause and the values specified by LINE NUMBER and NEXT GROUP. The L1Nt­
COUNTER is reset to zero when PAGE LIMIT is exceeded during execution. Value of the LINE-COUNTER durinu 
l~,<ecutiJn rcpresents the number of the last line of the previous report group or the number of the last I ine skipped 
by NE" <T GROUP specification; this value of the LINE-COUNTER is tested from the PROCEDURE DIVISION. 

PAGE-COUNTER is a special register automatically generated by the Report Writer for use as a data item to numbcl 
the pages within a report. One PAGE-COUNTER item is supplied for each report, and may be referenced by PRO­
CEDURE DIVISION statements. 

The PAGE-COUNTER is automatically set to one when the Report Writer begins a report. The user may set the 
PAGE-COUNTER to an initial value other than one with a PROCEDURE DIVISION statement immediately following 
the INITIATE statement. The Report Writer automatically increments the PAGE-COUNTER by one at each page 
break (after any PAGE or OVERFLOW FOOTING or before any PAGE or OVERFLOW HEADING). 

DATA DIVISION 

Entry For.1I 

Formats used by the Report Writer are specified below in the order of appearance in an XDS ANS COBOL program 
The report must be named in the FILE SECTION and described in the REPORT SECTION of the DATA DIVISION. 
Statements that generate a report are specified in the PROCEDURE DIVISION. 

FILE SECTION 

An output fi Ie upon which the Report Writer is to be produced must be defined by a File Description entry in the 
DATA DIVISION. Refer to "The File Description - Complete Entry Skeleton" under "Physical and Logical Aspects 
of Data Description" in Chapter 5 for a complete discussion of the format of the Fi Ie Description entry. The FD 
entry must name the reports in the REPORT IS clause: 

REPOIIT IS 1 
REPORTS AREf report-name-l L reporf -name-2] •.. 

A report-name is specified in exactly the same way as a data-name. If more than one report-name is included in an 
FD entry, the file contains more than one report. If separate files are required for each report, a separate FD entry 
must be defined for each file. 

REPORT SECTION 

Each report named in an FD entry must be defined in a Report Description entry in the REPORT SECTION, which 
must be the last section in the DATA DIVISION. The header REPORT SECTION followed by a period must precede 

88 Dota Division 



any report dE~scriptions. This section specifies the layout of each page. The Report Description entry (level indi­
cator RD) is required, and Report Group Description entries (level-number 01) are required to divide the report 
into groups. 

Report Description Entry 

The formats of this entry are 

Format 1 

RD report-nome [WITH COO£ mnemonic-namE:l copy-statement. 

Format 2 

RD report-nome 

[WITH CODE mnemonic:-name] 

[

CONTROL IS l{FINAL 
; CONTROLS ARE[ data-name-l [. data-name-2] •.. 

jFINAL, data-name-l [, data-name-2] .. J] 

[ 

rUMIT IS 1. J~} . ; eAl:il l!-IMITS AREJ mlege,-1 ~ [. HEADING ,nlege,-2] 

[, FIRST DETAIL integer-3] [, LAST DETAIL integer-4] [, FOOTING inleger_5]1. 

Format 1 is used when the RD entry is contained in the COBOL library (subordinate report groups are not copied by 
a COPY in the RD). For additional information see Chapter 9, "COBOL Library". 

In both formats the RD level indicator is required; it storts in Area A and precedes the report-name, which must 
start in Area B. The unique report-name must be specified here and ,in a REPORT clause in at least one FD entry in 
the FILE SECTION. All clalJses following report-name in this entry are optional. 

CODE Clauses. The format of this clause is 

[WITH CODE mnemonic-name] 

The CODE clause is used whl~n more than one report is generated and stored on the same fi Ie for subsequent printing. 
It specities a unique charach!tr that identifies this report. The mnemonic-name must be equated to a non-numeric 
literal in the SPECIAL-NAMES paragraph of the ENVIRONMENT DIVISION. The literal must be a single character. 
This is a unique identifier so that, following execution, a report selection program can inspect a file and print only 
the reports required. 

CONTROL Clause. The format of this clause is 

; CONTROLS ARB d(~ta-name-l G data-name-2] .•. ~ {
CONTROL IS llBNAL 

~, data-name-l [, data-name-2] .. .I] 
The CONTROL cia-use specifies data-names associated wah the control hierarchy within a report; therefore, such 
data-names must be listed in order from major to minor. FINAL is the highest control, data-name-l is the major 
control, data-name-2 is nex!- in order, and the last data-name is the minor control. Data-names must be defined 
in the FILE, WORKING-STORAGE, or COMMON-STORAGE SECTIONs of the DATA DIVISION. 

This clause must be included when the TYPE clause specifies CONTROL FOOTING or CONTROL HEADING. Con­
trol footings and headings am printed automatically as a result of control brpoks defined in this clause. A control 
break occurs whenever the vCllue of a dal-a-name specified in this clause changes. The CONTROL clause must also 
be included when the RESET clause is specified. 

Data Division 89 



PAGE LIMIT gE~ The format af this clause is 

[ 

[ LIMIT IS ]. {LINE} .] ] ; PAGf LIMITS ARE Integer-1 LINES [, tt~t.QL~Q Integer-2 

[, E!RST ~~It.IL integer-3] [, !-A~T QETAIL integer-4] [, F()OJI_~§ integer-S] 

The PAGE LIMIT clause is required if PAGE HEADING or PAGE FOOTING is specified in the TYPE clause or if 
LINE NUMBER or NEXT GROUP is specified for an item. The PAGE LIMIT clause may be omitted if no automatic 
positioning of report groups on the page is desired. 

Only 01H' PAGE LIMIT clause may be specified for each RD entry; it gives specific line control for positioning re­
ports on a page. All the integers must be positive nonzero numbers. Integer-l (LINES) specifies the depth of the 
Il'port. The depth of the page mayor may not be equal to the physical perforated continuous-form often associated 
in a report with the page length. Integer-2 through integer-S each must not be greater than integer-1. 

HEADING specifies the number of the first line on which the heading can appear; it must be greater than or equal 
to 1. If HEADING is not specified, the h'eading starts on line 1. 

fIRST DETAIL specifics the number of the first line on which a DETAIL report group can start. If a heading extends 
I)(·yond the lile specified by FIRST DETAIL, the DETAIL group follows the last heading line. FIRST DETAIL must be 
cquol to 1,,)1' gleCiter than HEADING. If FIRST DETAIL is omitted, the detail line may begin on the first line follow­
inS] the heading or, if no heading is specified, it begins on the first line. 

LAST DETAIL specifies the number of the last line on which the last line of a DETAIL report group can be printed. 
LAST DETA1L must not be less than FIRST DETAIL. If LAST DETAIL is not specified, the last line on which detail 
information can appear is either the last line an which a CONTROL FOOTING group (FOOTING) can appear or, 
if FOOTING is not specified, the last line of detail information may be the same as the last line of the page 
(PAGE LIMIT). 

FOOTING specifies the number of the last line on which part of a CONTROL FOOTING group can appear. It 
must be equal to or greater than FIRST DETAIL. No control footing may begin before the line specified for the first 
line of detail information (FIRST DETAIL) or extend beyond the line specified by FOOTING. Page and overflow 
footings may start following the line specified by FOOTING, but they must not start on the same line or extend 
beyond the last line on the page (PAGE LIMIT). ')-

If absolute line spacing is desired for all groups in the report, and if neither PAGE HEADING nor FOOTING is 
wanted, only, PAGE LIMIT need be specified. 

Example: 

REPORT SECTION. 

RD RATIO-REPORT 

PAGE LIMIT IS 55 LINES. 

The following chart represents the limits of page format when all options of the PAGE LIMIT clause are specified. 

HEADING 

FIRST DETAIL 

LAST DETAIL 

FOOTING 

PAGE LIMIT 

Repart 
Heading 
& Footing 

Report Group Description Entry 

The formats of this entry are 

Format 1 

Page 
Heading 

01 [riata-name-1] copy-statement. 

90 Data Division 

Detail & 
Control 
Heading 

Control 
Footing 

~ 

Page 
Footing 



r ormat 2 

U I lPota-name- Q 

Format 3 

nn [data-name- ~ 

; TYPE IS 1--

RE PORT HEADI NG 
RH 
PAGE HEADI NG 

{&NTROL HEADIN<j-~j'~~~me-2 } 
DETAIL 
DE 
J~NTROL FOOTlN~tdlta-name-3} 
1Cf F NAL 
fM&FOOIlNQ. 
ff. 
REPORT FOOTING 
RF 

1

- ] nteger-·l ; ~ NUMBER 'SLLUS integer-2l 
1~EXT fAGE J 

[~(USAGE IS] DISPLAY] 

[ titeger-:3}] 
; NEXT GROUP IS PLUS integer-4 • 

X PAGE 

[
[: :,::U::~:7jr~~;~r-°3l1 

1NEXTt~ T 
(.;( USAGE IS] DISPLAY] 

[; GROUP INDICATE] 

{

; SOURCE IS ~ELECTEQ]data-name-2 

; SUM data-name-3 ~ data-'I1ame-4] 

; VALUE IS I iteral- 1 

[; RESET ° ~~~~~me-6}] 
[; {~:~TURE IS}character-string] [; BLANK WHEN ZERO] 

[; {~~~~IFIED}RIGHT J 

Data Division 91 



rhe Keport Group Descri ption entry defines the characteristics of each report group and of any group or el ementary 
items within the report group. 

rl)rmat 1 is used only when the entry is on element in the COBOL library. See Chapter 9, "COBOL Library". 

rormat 2 indicates a report group, which includes all items between this entry and the next level-01 entry. The 
data-nome is optional but must be included if it is referenced from the PROCEDURE DIVISION. The TYPE clouse is 
required for all report groups. 

Format 3 indicates on elementary item or group item within a report group. If a report group consists of only one 
elementary entry, Format 3 may include the TYPE and NEXT GROUP clauses in order to specify the report group 
and elementcary item In the same entry. 

The following clauses, which have the same meanIng for a Report Group Description entry as for a Record Descrip .. 
tion entry, are discussed under "Data DescrIptIon Entr,es"ln,Chapter S. 

PICTURE 

BLANK WHEN ZERO 

JUSTIFIED 

VALUE 

TYPE Clause. The format of this clause is 

REPORT HEADING 
~HEADING 

CONTROL HEADING 

; TYPE IS DETAIL 

CONTROL FOOTING 

PAGE FOOTING 
REPORT FOOTING 

or.Btt 
or PH 
C~data'!!ftCIme-~ 

or - PINAII. f 
or DE 

Idata-name-~ 
orCF~ f 
orPF 
or .BE 

The TYPE clause specifies the type or the usage of" rllpOrt group within the format of the report, and is required for 
every report group. A report consists of a title or heifmg for the whole report, headings and/or footings for each 
page, and at least one line or group (repeated as oft8f! as required) containing the detail information. Summary in­
formation can be printed at control breaks in the form of control headings or footings. Each type of report group 
must be specified in a TYPE cICiUM. 

The INITIATE statement in the PROCEDURE DIVISION doe. not produce the REPORT HEADING group, if one ;. 
specified. The GENERATE statement causes the TYPE DETAIL report group to be produced. GENERATE also pro­
duces specified PAGE HEADINGs and FOOTINGs, and the ClflllPepriate CONTROL HEADINGs or FOOTINGs when 
the specified control breaks occur. The TERMINATE statement produces the REPORT FOOTING, if specified, pre­
ceded by the CONTROL FOOTING groups from minor to major control level up to CONTROL FOOTING FINAL, 
if specified. 

Types of report groups and their applications are 

1. REPORT HEADING/REPORT FOOTING 

Only one REPORT HEADING may be speciftwd for a report; it is printed once at the beginning of the report. 
Similarly, only one REPORT FOOTING may be specified; it is printed once at the end of the report. If 
SOURCE is specified in the description of a REPORT HEADING, it refers to the value of the items at the 
time INITIATE is executed. A SOURCE for a REPORT FOOTING group refers to the value of the items at 
the time TERMINATE is executed. 

2. PAGE HEADING/PAGE FOOTING 

PAGE HEADING is a report group printed at the beginning of a page. PAGE FOOTING is a report group 
printed at the end of each page following a page condition. A report may hove only one PAGE HEADING 
report group and one PAGE FOOTING report group. 

92 Data Division 



3. CONTROL HEADING/CONTROL FOOTING 

A CONTROL FOOTING report group is printed following the control break specified bv data-name-3 or 
any higher level ccmtrol break; a CONTROL HEADING report group is printed to start o'f the next control 
group. Only one pair of report groups may be specified as a CONTROL HEADING and CONTROL FOOT-
1NG for each data·-name in the CONTROLS clause. 

CONTROL HEADING FINAL specifies a report group to be printed between the REPORT HEADING and 
the first CONTROL HEADING group. A CONTROL FOOTING FINAL report group is printed between 
the end of a report and the REPORT FOOTING; a SOURCE clause in a CONTROL FOOTING FINAL re­
port group refers to the item value at the time the TERMINATE statement is executed. 

4. DETAIL 

A DETAIL report gr()up is. printed each time a GENERATE statement referring to that group is executed. A 
DETAIL type report group must have a unique data-name at the 01 level in order to be referenced by 
GENERA TE, which automatically prints any applicable headings and footings. 

If all the above report group types are specified, the Report Writer prints them in the following order. 

1. REPORT HEADING (once only) 

PAGE HEADING 

2. CONTROL HEADING 

DETAIL 

CONTROL FOOTING 

3. PAGE FOOTING 

4. REPORT FOOTING (once only) 

CONTROL HEADING report !~roups are presented in the fo,lIowing order: 

Final Control Heading 

Major Control Heading 

Minor Control Heading 

CONTROL FOOTING report groups are presented in the following order: 

Minor Control Footing 

Major Conltrol Footing 

Final Control Footing 

Data Division 93 



LINE NUMBER (louse. The format of this clause is 
_ .. ----- -_._ .. _--

[ ~. nteger- 1 }] 
; LINE NUMBER IS PLUS integer-2 

NEXT PAGE 

The LINE NUMBER clause indicates the line number on which the report group is to be printed. It must be specified 
at or before the first elementary item in the group. 

When LINE NUMBER specifies an absolute number, the LINE-COUNTER register is set to the value of integer-l and 
all items within the report group are printed on this line until a new value for LINE-COUNTER is specified. If 
integer-l is equal ta ar less than the previously specified value of LINE-COUNTER, the report group is printed on 
the next page after any PAGE FOOTINGs and HEADINGs. 

When LINE NUMBER specifies a relative value, the LINE-COUNTER is incremented by integer-2 for this item and 
remains the same for subsequent items within the report group until a new LINE NUMBER clause resets the lINE­
COUNTER. When LINE NUMBER is specified for an elementary item, all subsequent elementary items appear on 
the same line until a new LINE NUMBER clause is encountered. LINE NUMBER for an elementary item may not 
contradict that specified for a group item. Within a report group, entries must be assigned I ine numbers in ascending 
order; therefore, an absolute line number (integer-1) cannot be preceded by a relative line number (PLUS integer-2). 

NEXT PAGE specifies the item to be printed first on the following page. (PAGE HEADINGs are assumed to be 
on NEXT PAGE.) 

Example: 

01 TYPE IS DE LINE NEXT PAGE. 

03 LINE 1 ••• • 

03 LINE PLUS 1 ••• • 

NEXT GROUP Clause. The format of this clause is 

[ 1Integer-3}] 
; NEXT GRQU.f IS PLUS integer-4 

NEXT PAGE 

Note: Integer-3 and integer-4 must be positive and nonzero. 

The NEXT GROUP clause may appear only at the 01 level. It forces spacing between report groups. The lINE­
COUNTER is set to the value of integer-3 after the last line of the preceding report group is printed. Note that the 
NEXT GROUP cannot be printed on this line, since it must specify a LINE NUMBER of at least PLUS 1; this value is 
a line preceding the line on which the next report group is to be printed. If integer-3 is less than or equal to the 
previous value of the LINE-COUNTER register, a page change takes place with PAGE FOOTING and PAGE 
HEADING. 

Example: 

01 DE-TAIL 

TYPE DE 

LINE PLUS 1 ••• 

NEXT GROUP PLUS 3 • 

DE- TAIL is printed on the I ine following the preceding group, and is followed by three blank I ines before the next 
group is printed if the next report group specifies LINE PLUS 1. 

94 Data Division 



COLUMN NUMBER Clause. The format of this clause is 

~ COLUMN NUMBER IS integer- 0 

The COLUMN NUMBER clause indicates the column number of the leftmost character of the space reserved on the 
printed page for the elementary item. This clause must be included in the description of every elementary item to 
be presented, unless the elementary item is to be suppressed when the report is produced at object time. Integer-l 
must be a number 1 through 132. For a particular report uroup, COLUMN NUMBER entries must be presented in the 
order in which the items are to appear on the page, from left to right and top to bottom. When COLUMN NUMBER 
is specified, the elementary item description must also contain a PICTURE clause and one of the clauses SOURCE, 
SUM, or VALUE, or a PICTURE clause subordinate to a SOURCE SELECTED clause specified at the group level. 

Example: 

01 DE-TAIL 

TYPE DE LINE PLUS 1. 

03 COLUMN 1 PICTURE X(lO) SOURCE NAME. 

03 COLUMN 13 PICTURE ZZZZ9 SOURCE QUANTITY. 

03 COLUMN 25 PICTURE ZZZZ9 SOURCE LOCATION. 

03 COLUMN 33 PICTURE Z9.99 SOURCE RATE" 

03 COLUMN 44 PICTURE Z(5)9 SOURCE PRICE. 

03 COLUMN 57 PICTURE ZZZ9.99 SOURCE NEW-RATE. 

GROUP INDICATE Clause •. The format of this clause is 

~ GROUI? INDICATE] 

The GROUP INDICATE clause indicates the elementary item is to be produced only once: at the first occurrence of 
the report group following a <:ontrol break, or at the beginning of a new page. This clause must be specified onl y at 
the elementary item level wif'hin a DETAIL report group. 

SOURCE, SUM, VALUE Clauses. The formats of these clauses are 

t' SOURCE IS [SELECTED] data-name-2 } 
; SUM data-name-3 ~ data-name-4) ••• [UPON data-name-.1J 
; VALUE IS I iteral-l 

The SOURCE, SUM, and VAL.UE clauses define the purpose and indicate the source of data for an item within the 
report group; one of these clauses must be included in the description of each elementary item. 

Data-name indicates (1) an item appearing in another section of the DATA DIVISION; or (2) the name specified as 
a SUM counter in the same report; or (3) the LINE-COUNTER or PAGE-COUNTER. The literal specified in the 
VALUE clause may be non-numeric or a figurative constant, but the PICTURE of an item having a VALUE cannot 
specify editing. 

SOURCE (without the SELECTED options), SUM, and VALUE clauses may appear only at the elementary level; 
SOURCE IS SELECTED may appear only at· the group level. SUM specifies an item to be summed and may appear 
on/ y upon an item in a CONTROL FOOTING report group. SOURCE, SUM, or VALUE must be specified for every 
elementary item unless SOURCE IS SELECTED is specified in the entry for the group containing the elementary item. 

SOURCE and SUM are described below; VALUE is described in "VALUE Clause" under "DATA DIVISION Structure" 
in Chapter 5. 

1. SOURCE Clause 

The SOURCE clause indicates a data item to be used as the source for the report item. PICTURE must also 
be specified in the entry for the report item; the value of the SOURCE data item is moved to the report item 
and edited according to the PICTURE in the item description. 

Data Division 95 



Data-name-2 is an item in the FILE, WORKING-STORAGE, or COMMON-STORAGE SECTION whose 
value at object time is the effective value to be used in the report item. If LINE-COUNTER is specified, 
the current value of the line-counter is the source; this value is the number of the last line printed or skip­
ped. If PAGE-COUNTER is named as the source, the current value of the page-counter is used. 

When SOURCE IS SELECTED, data-name-2 must be a group item. This option is simi lar to a PROCEDURE 
DIVISION MOVE CORRESPONDING statement. The elementary level items within data-name-2 are 
matched against the data-names specified at the elementary level within the report group. Matching data 
items are selected as source items to be presented within the report group according to the PICTURE speci­
fications given for the data items in the report group entry. 

2. SUM Clause 

The SUM clause indicates values to be accumulated until a control break occurs at object time. SUM may 
appear only in a CONTROL FOOTING report group at the elementary level. An entry containing a SUM 
clause defines a SUM counter. The data-names specified with SUM indicate items to be summed. These 
data-names must appear as operands of a SOURCE clause in a DETAIL report group or must appear as the 
name of a SUM clause at an equal or lower level of the control hierarchy. A PICTURE must be specified 
for each SUM counter; editing characters or BLANK WHEN ZERO may be specified. Any editing occurs 
as the contents of the SUM counters are moved to the pri nt line. 

The data-names specified in a SUM clause are added to the SUM counter at each execution of a GEN­
ERA TE statement (unless the UPON option is used or the data-name represents another SUM counter). The 
UPON option is used for selective summation. Data-name-3, data-name-4, etc., must be SOURCE data 
items in data-name-5. Data-name-5 must be the name of a DETAIL report group. The values of data­
name-3, dato-name-4, etc., are added to the SUM counter only when data-name-5 is referenced by a 
GENERA TE statement. When GENERATE is executed for a DETAIL report group. All summing takes place 
automatically as follows: 

a. The CONTROL data-names specified in the CONTROL FOOTING report group are tested. If the 
data-names are unchanged, each SOURCE item in the DETAIL report group is added to each SUM 
counter in any CONTROL FOOTING report group that names the SOURCE item. Then the DETAIL 
line is produced. 

b. .If a data-name changes, a control break has occurred. Each SUM counter in the lowest level report 
group is added to each SUM counter in the some report group that names the SUM counter as an 
operand. Then the CONTROL FOOTING report group is produced, and the SUM counters are reset 
to zero. 

c. If RESET is specified, adding the SUM counter into higher level SUM counters and resetting to zeros 
are postponed until the CONTROL FOOTING for the level indicated by the RESET is produced. How­
ever, the current contents of the SUM counter can be printed. This feature allows printing of cumu­
lative totals. 

The last two steps are repeated as necessary for each level CONTROL FOOTING until the level of the 
original control break is reached. 

RESET Clause. The format of this clause is 

r. RESET ONJdata-name-6l1 t -- 1fINAl fJ 
The RESET clause may be used in an elementary item in a CONTROL FOOTING report group to override the auto­
matic resetting of the SUM counter following the associated control break •. It can be used only at an elementary 
item level in conjunction with the SUM clause. Data-name-6 must be one of the data-names described in the CON­
TROL clause in the RD entry for the report, and it must be a higher level data-name than the CONTROL data-name 
associated with the CONTROL FOOTING report group containing the SUM and RESET clauses. 

When RESET is not specified, the SUM counters are automatically reset after presentation of the CONTROL FOOTING 
report group to which the SUM item is subordinate. RESET prevents automatic resetting of the SUM counters until 
the CONTROL FOOTING report group associated with data-name-6 is presented. This clause permits the progres­
sive totaling of data while presenting subtotals at lower levels of the control hierarchy. 

96 Data Division 



Example: 

RD RREPORTT 

CONTROLS ARE FINAL, DEPT, SECTN, GRUP, MAN. 

01 GRUP-TOTALS TYPE CF GRUP 

LINE PLUS 2. 

02 COLUMN 35 PICTURE 9(12) 

SUM GRUP-HRS RESET ON SECTN • 

GRUP-HRS are summed for this CONTROL FOOTING group and the subtotal continues to accumulate until the 
CONTROL FOOTING group presented at the SECTN level of the control hierarchy is produced. 

PROCEDURE DIVISION 

To produce a report defined in the REPORT SECTION, three PROCEDURE DIVISION statements are required: 
INITIATE, GENERATE, and TERMINATE. A USE BEFORE REPORTING statement may introduce a DECLARATIVES 
section through which the user may manipulate, alter, or inspect data immediately before it is printed. 

INITIATE StataMIIt 

The format of this statement is 

INITIATE{::~rt-name-l ~ report-name-2] •• } 

The INITIATE statement initial izes all counters and controls prior to producing a report, and begins the processing 
of a report. Report-names arE~ the reports to be initiated. Each name must be defined by a Report Description (RD) 
entry in the REPORT SECTION. ALL specifies that all report-names defined by RD entries in the REPORT SECTION 
of this program are to be initi(lted. 

A second INITIATE statement for a particular report-name may not be executed unless a TERMINATE statement is 
executed for that report-name subsequent to the first INITIATE statement. The INITIATE statement does not open 
the file with which the report is associated; an OPEN statement for the file must be executed prior to the INITIATE. 
The INITIATE statement does nothing if the report file is not open. 

I NIT lATE performs Report Writ'er functions for individually described reports analogous to the input/output functions 
that OPEN performs for individually described files: 

1. Sets all SUM counters to zero. 

2. Sets up the initial vOllues to be used for comparison in the control hierarchy. 

3. Sets the PAGE-COUNTER; if some other initial v(llue is desired, the user may reset this counter following 
execution of INITIAlrE. 

4. Sets the LINE-COUNTER to zero. 

GENERATE State.nt 

The format of th is statement is 

GENERAT~ data-name-l 

The GENERATE statement links the PROCEDURE DIVISION to the Report Writer at object time: it presents a DETAIL re­
port group (under PROCEDURE DIVISION control) to the Report Writer. If data-name-l names a DETAIL report group, 
GENERATE hondles all relevant automatic operations and produces a DETAIL report. This is called detail reporting. 

If data-narne-l names a report-name, GENERATE handles all the relevant \lutomat;c operations and updates the 
FOOT ING report groups in the report without producing any DETAIL report groups. This is called summary reporting. 

Procedure Divis ion 97 



If the report includes more than one DETAIL report group, all SUM counters except SUM UPON counters are incre­
mented each time GENERATE is executed. 

A GE NERATE statement, impl icit in both detail and summary reporting, produces the following automatic operations 
as needed: 

1. Recognizes any specified control breaks to produce CONTROL HEADING and CONTROL FOOTING re­
port groups. 

2. Accumulates all specified data-names into th., SUM~~nttt.r.;~ Resets the SUM counters at control breaks. 
Performs a "rolling forward" of each set of SUM counters betWeen control break levels. 

3. Executes any specified routines defined by USE before generation of report groups. 

During execution of the first GENERATE statement, all CONTROL HEADING report groups specified for the report 
are produced in order: FINAL and major through minor, Immediately followed by any DETAIL report group spec­
ified in the statement. If a control break is recognized when a GENERATE statement is executed, all CONTROL 
FOOTING report groups specified for the report are produced from the minor report group up to and including the 
report group specified for the data-name that caused the control break. The CONTROL HEADING report groups 
specified for the report, from the report group specified for the data-name that caused the control breakdown to the 
minor report group, are then produced in that order. The DETAIL report group specified in the GENERATE statement 
is produced last. When data is moved to a report group, it is edited according to the rul es described in "MOVE 
Statement" under "Data Manipulation Statements" in Chapter 6. 

TERMINATE Stat .... 

The format of this statement is 

TERMINATEJreport-name-l (, report-name-2] ••• } 
tALL 

The TERMINATE statement ends processing of a report. Report-names are the reports to be terminated. ALL specifies 
that all report names defined in the program are to be terminated. 

TERMINATE produces all the CONTROL FOOTING report groups associated with the report as ij,g..control break has 
just occurred at the highest level (FINAL), and completes the Report Writ~r functions for the !WImed reports. If 
SOURCE clauses are included in the FINAL CONTROL FOOTING or REPORT FOOTING groul~/' values for the 
SOURCE data-names are the values of the data items upon execution of the TERMINATE statement. 

A second TERMINATE for a particular report may not be executed unless an intervening INITIATE is executed for 
that report. TERMINATE does not close the file with which the report is associated: the CLOSE statement for the 
file must be specified by the user. 

USE BEFORE REPORTING 118tI ... 

The format of this statement is 

USE BEFORE REPORTING data-name. 

The USE BEFORE REPORTING statement may follow a section header in the DEC LARA TIVES section. It introduces 
procedures to be performed immediately before the specified report groups are produced. 

The data-name may be of any type report group (01 level) except DETAIL, and must not appear in more than one USE 
BEFORE REPORTING statement. The Report Writer verbs GENERATE, INITIATE, and TERMINATE may not be used 
in any procedure introduced by USE BEFORE REPORTING. 

The USE BEfORE REPORTING impl ies a PERFORM of the section containing the USE statement for each report group 
specified by the data-names. This section is executed immediately before the report group is produced, i. e., after 
any summing but before data is moved into the line image and before the LINE-COUNTER is incremented. 

98 Procedure Di vi,lo" 



8. SORT FEATURE 

General 

The Sort feature is comprised of the SORT verb in the PROCEDURE DIVISION and descriptions of the records to be 
sorted provided by the Sort··File Description in the DATA DIVISION. The Sort orders records based on sort keys 
given in the SORT statement, each key being a data item defined in a record description associated with the Sort­
File to which the SORT statement is directed. Records may be arranged by the Sort in ascending or descending se­
quence or in a combination ()f ascending and descending sequences, since the individual sort keys may be specified 
as ascending or descending quite independently of each other; the final order reflects the combination indicated. 

Sort Feature Components 

In order to employ the Sort capability, certain information must be provided in all of the active divisions of the 
source programs. 

The ENVIRONMENT DIVISION must contain SELECT sentences for the Sort-File itself and for the files that act as 
input and output for the Sort when USING or GIVING options are written (see "SORT Statement ll below). 

The DATA DIVISION must contain file descriptions of the Sort-File and of all files that contain input to and output 
from the Sort. 

The PROCEDURE DIVISION contains the SORT statement itself and, when the programmer indicates that special 
input or output processing is to be performed, the PROCEDURE DIVISION must contain such procedures. 

ENVIRONMENT DIVISION State.nt. 

The format of this statement is 

SE L~CT sort-file ASSIGt~ TO (integer-l]implementor-name-l [, implementor-name-2]. .. 

The FILE-CONTROL paragraph must include SELECT sentences for the Sort-File and for files named in the USING 
or GIVING options, when specified. Because the Sort-Fi Ie is not a true fi Ie, the ASSIG N portion of the SELECT 
sentence need not be written unless restriction of Sort work file assignments is desired (see ASSIGN Clause, 
Chapter 4). 

DATA DIVISION Stltemenu 

A Sort-File Description entr~' and related Record Description entries must be supplied for each Sort-File in the source 
program together with the normal File Description entries for the input and output files. 

Sort-File Description - Complete Entry Skeleton 

The formats of this entry are 

Format 1 

SD file-name copy-statement. 

Format 2 

SD file-nameG DATA {~~i~Rd data-name-ll, data-name-21 ... J 
[; ~ECORD CONTAINS [integer-l TO]integer-2 CHARACTERS]' 

The Sort-File description furnishes information concerning the physical structure, identification, and record-names 
of the file to be sorted, unless the USING and/or GIVING options cf the sort are employed. When the USING 
and/or GIVING options are specified, the record sizes and descriptions of the file being sorted are taken from the 
record descriptions of the files named in the USING/GIVING clauses. 

Sort Feature 99 



Record Descriptions 

Sort record descriptions do not differ in any way from other record descriptions. 

Sort Keys 

Sort keys must have a fixed length, must not be subscripted, and must be one of the types of data items listed below. 
Corresponding to each data item type are its maximum length and a collating sequence used for sorting. 

Data Item Collating Seguence Maximum length (B~tes) 

Computational or Index (Binary) Algebraic 4 

Computational-l (Floating-Point) Algebraic 4 

Computational-2 (Floating-Point) Algebraic 8 

Computational-3 (Packed Decimal) Algebraic 16 

Numeric Display (Zoned Decimal) Algebraic 31 

Alphabetic EBCDIC 255 

Alphanumeric EBCDIC 255 

Group EBCDIC 255 

Records to be sorted may contain 1 to 16 key fields with maximum length as indicated above. 

When assigned to sort keys, data-names may be qualified but must be unique. Also, once a data-name is assigned 
to a sort key, it is assumed that the key appears in the same I ocati on in every record to be sorted. Data-name sort 
keys may not contain or be subordinate to entries that contain an OCCURS clause. 

PROCEDURE DIVISION State._ 

A SORT statement is required for each sorting operation. In addition, INPUT or OUTPUT PROCEDUREs must be 
provided to SpE cify any processi ng to be executed before or after the Sort .. 

SORT Statemer~ 

The format of t'~is statement is 

. IASCENDING 1 r {ASCENDING } ] 
SORT f,le-name-l ON 1DESCENDIN~J KEY data-name-l .•• ~ ON DESCENDING KEY data-name-2... • .. 

{
INPUT PROCEDURE IS section-name-l [THRU section-name-~l 
USING file-name-2 :r 

JOUTPUT PROCEDURE IS section-name-3 [THRU section-name-4]1 
1GIVING file-name-3 J 

The SORT statement yields information that controls the Sort feature. This information (1) obtains records for sorting 
from either an INPUT PROCEDURE or an existing file; (2) sorts the records on a set of specified keys; and (3) either 
makes individual records avai lable in sorted order to an OUTPUT PROCEDURE or creates an ordered output fi Ie. 

The SORT statement provides 

1. The appropri ate Sort-Fi Ie • 

2. Names of any INPUT or OUTPUT PROCEDUREs to be invoked. 

3. Names of the sort keys and, for each key, indication of ascending or descending sequence. 

4. Names of the input or output fi les. 

100 SORT Feature Components 



Fi Ie -name-l is the name given in the Sort-File Description entry describing the records to be ordered. ASCE ND ING 
and DESCENDING indica~e the order in which the records are to be sorted, based on one or more keys; at least one 

. KEY clause must be specified, but both types may be ~ritten in the same statement. The data-I'ames are the names of 
the sort keys. Keys must be specified in the logical order of comparison during the sorting opelotion. 

USING implies that file-n,ame-2 contains all of the records to be sorted and that .control of this file passes directly 
to the Sort upon execution of the SORT statement. This file is opened, read, and closed automatically by the Sort 
program. Sequential acceiSS should be specified for this fi Ie. 

GIVING names a file into which Sort deposits sorted records; Sort automatically opens, writes into, and closes this 
file. Consecutive organizution and sequential access must be specified for file-name-3. 

INPUT PROCEDURE Optior~ 

The IN PUT PROCEDURE option names a programmer-supplied input procedure in the form of one or more sections 
that process the input records and pass them to the Sort program. The INPUT PROCEDURE contains procedural 
statements required to sele<:t, create, or modify records. Control should not be passed to the procedure except 
during execution of the SORT statement, as RELEASE statements are not meaningful unless a SORT is in process. 
An INPUT PROCEDURE may not contain a SORT statement, since SORTs cannot be nested. The INPUT PROCEDURE 
accomplishes the following functions: 

1. It bui Ids the records to be sorted singly in the record area assigned to the Sort-Fi Ie. If the input originates 
from on existing file, on OPEN statement must be executed prior to execution of the SORT statement or 
within the INPUT PROCEDURE. 

2. It submits a processed record to the Sort by execution of a RELEASE statement (see below}, after which the 
record is no longer avai lable. 

3.' After the lost reco'rd has been released to the Sort, control is trai'lSferred to the Sort process by executi on of 
the final statement' in the INPUT PROCEDURE. 

RELEASE Statement. The fClrmdt of this statement is 

RE LEASE record-nome [FROM identifier] 

The RELEASE statement tramfers one logical record (record-nome) belonging to the Sort-File to the sorting operation. 
It is meaningless outside of fan INPUT PROCEDURE; conversely, each IN PUT PROCEDURE must contain at least one 
RELEASE statement. 

If the FROM option is used, the contents of the identifier data area are moved to record-nome, and then the con­
tents of record-nome are released to the Sort-File. Moving is performed according to the rules specified for the 
MOVE statement without thl! CORRESPONDING option. 

OUTPUT PROCEDURE Op.tic,n 

The OUTPUT PROCEDURE option names a programmer-supplied output procedure composed of one or more distinct 
sections for processing sorted records. The OUTPUT PROCEDURE contains the procedural statements required to 
select, modify, or copy the records that are being returned singly, in order, from the Sort. Control should not be 
passed to an OUTPUT PROCEDURE except in the course of the sorting operation to which it applies. An OUTPUT 
PROCEDURE may not contain a SORT statement. The 'OUTPUT PROCEDURE accomplishes the following functions: 

1: It acquires sorted rEI cords singly from the Sort program through execution of a RETURN statement (see below). 

2. It processes the record just returned by referring to the Sort-Fi Ie record area. If records are to be trans­
ferred to an output fi Ie, on OPEN statement addressed to that fi Ie must be executed prior to execution of 
the SORT statemen'~ itself or within the OUTPUT PROCEDURE. 

J. When all sorted rec:ords are obtained, it executes the AT END statement of the RETURN verb. In order to 
terminate the OUTPUT PROCEDURE and thereby resume the program after the SORT statement, control must 
be directed through the end point of the OUTPUT PROCEDURE. 

~ETURN Statement. The format of this statement is 

~ETURN sort-file RECORD [INTO identifier] ; AT ·~ND imperative-statement 

The RETURN obtains sorted records from the final phase of a Sort operation. The INTO option causes the record just 
obtained also to be moved into the area indicated by the identifier. Movi,..,g is perfurmed according to the rules 
specified for the MOVE statement without the CORRESPONDING option. (Refer to "MOVE Statement" under 
"Data Manipulation Statements" in Chapter 6.) 

SORT Feature Components 101 



9. COBOL LIBRARY 

Introduction 

The COBOL library contains groups of source program card images that are available for inclusion in a COBOL 
program at compile time. The effect of the compilation of I ibrary text is the same as if the text were actually writ­
ten as part of the source program. The library facility enables standard files, record descriptions, and procedures 
to be created and made readily accessible to multiple users, thus avoiding duplication of effort and possibilities of 
error. 

Each group of lines, or elements, in the library is a file (in the Monitor sense rather than in COBOL terms) residing 
in the user complex. A library element is incorporated into a source program by the compiler in response to a COpy 
statement. 

The COpy statement causes a search within the user library for a file named "library-name". The file is expected 
to contain a series of card images that are inserted into the input stream to the compiler immediately following the 
line containing the COpy request. 

The text contained on the library must not contain any COpy statements. 

COpy StII_.nt 

The format of this statement is 

COpy library-name [REPLACING word-1 BY 1~:~t~~er-11 [, word-3 BY 1~:~t~~er-21]···J 
Iiteral-1 Iiteral-2 

A 'word' in this format may represent one of the following and must conform to the definition of words: data-name, 
procedure-name, condition-name, mnemonic-name, or file-name. 

If the REPLACING phrase is used, each occurrence of word-1, word-3, etc.", in the text being copied from the 
library is replaced by the word, identifier, or literal associated with it in the REPLACING phrase. Use of the 
REPLACING option does not alter the material as it appears on the library. 

The COpy statement may be written in any of the following forms: 

1. In the ENVIRONMENT DIVISION 

SOURCE-COMPUTER. Copy-statement. 

OBJECT-COMPUTER. Copy-statement. 

SPECIAL-NAMES. "Copy-statement. 

ALE-CONTROL. Copy-statement. 

I-O-CONTROL. Copy-statement. 

2. In the FILE SECTION 

FO fi Ie-name copy-statement. 

SO sort-fi Ie-name copy-statement. 

01 data-name copy-statement. 

01 data-name copy-statement. 

102 COBOL library 



3. In the WORKING··STORAGE SECTION 

01 data-name cop)l-statement. 

4. In the REPORT SEC:T10N 

RD "eport-name cOI~y-statement. 

01 data-name copy-statement. 

5. In the PROCEDURE DIVISION 

{
paragraph-name. } 
section-name SECTION [priority-number]. copy-statement. 

In case 1 above, the COpy :statement is replaced by the un formation identified by I ibrary-name. This information 
should constitute the entire contents of the appropriate paragraph. In the remaining cases, the entire entry is re­
placed by the source I ines identified by I ibrary-name, except that information preceding the COpy statement is not 
overridden. Thus the originCiI level indicator and (when applicable) data-name, CODE and REDEFINES information 
are retained, and any confl ic:ting information occurring in the copied sequence is discarded. 

In the Procedure Division (COIse 5 above), the verb INCLUDE may be used in place of the verb COpy. When the 
library routine is composed of one paragraph it is copied nnto the source program in place of the COpy statement, 
with the procedure-name of the COpy statement automatically replacing the procedure-name of the routine. The 
name of the section (in the source program) containing the routine becomes the only qualifierfor the procedure-name{s) 
within that routine. Procedure-name references in the routine must be unique with respect to the section containing 
the routine. 

When the library routine is composed of one section it is c:opied into the source program in place of the COpy sec­
tion, with the section-name clnd priority of the COpy section automatically replacing the section-name and priority 
of the section being copied f!'om the library. Also, all references to the section-name of the routine from within the 
routine are automatically replaced by references to the section-name associated with the COpy statement. 
Procedure-name references in the routine need be unique only with respect to the routine containing them. 

Examples: 

1. FD MASTER-FILE COpy FILEA. 

FILEA is the I ibrary·-name of the COBOL !Durce I ibrary element containing a complete File Description 
entry to b. copied into the source program as the description of the file named MASTER-FILE. 

2. 01 SUM-DATA COpy SUMMARY-A REPLACING COUNT BY G-COUNT. 

If SUMMARY-A is the name of a library element whose sole contents is a Record Description entry of the form 

01 SUMMARY~A. 

02 COUNT PICTURE 9(3)" 

02 G-TOTAL PICTURE 9(5)V99. 

020-TOTAL PICTURE 9(6)V99. 

02 G-DEVIATION PICTURE 9(4)V99. 

02 0-DEVIA TI 0 N PICTURE 9 (4)V99 . 

then the data description copied into the !Durce program in place of the line bearing the COpy clause is 

01 SUM-DATA. 

02 G-COUNT PICTURE 9(3). 

02 G-TOTAL PICTURE 9(5)V99. 

020-TOTAL PICTURE 9(6)V99. 

02 G-DEVIA T10N PICTURE 9(4)V99. 

02 O-DEVlA T10N PICTURE 9(4)V99. 

COBOL LIbrary 103 



10. INTER-PROGRAM COMMUNICATION 

The Inter-Program Communication module provides a facility by which a program can communicate with one or more 
programs. This communication is provided by the ability to transfer control from one program to another within a run 
unit and let both programs have access to the same data items. 

LINKAGE SECTION 

The LIN KAGE SECnON in a pragram is meaningful only if the object program is to function under the control of a 
CAll statement, and the CALL statement in the calling program contains a USIN G phrase. 

The section is used for describing data that is available through the calling program but is to be referred to in both 
the calling and the called programs. No space is allocated in the program for data items referenced by data-name 
in the UN KAGE SECTION of that program. PROCEDURE DIVISION references to these data items are resolved at 
object time by equating the reference in the called program to the location used in the calling program. In the case 
of index-names, no such correspondence is established. Index-names in the called and calling programs always refer 
to separate indexes. 

Dota items defined in the LIN KAGE SECnON of the called program may be referenced within the PROCEDURE DI­
VISION of the called program only if they are specified as operands of the USING phrase of the PROCEDURE DIVI­
S10N header or are subordinate to such operands, and the object program is under the control of a CALL statement 
that specifies a USIN G phrase. 

The structure of the LINKAGE SECnON is the same as that previously described for theWORKIN G-STORAGE SEC­
TlON, beginning with a section header, followed by Data Description entries for noncontiguous data items, Record 
Description entries, or both. 

Each LINKAGE SECTION record-name and noncontiguous item name must be unique within the called program since 
it cannot be qualified. Data items defined in the LIN KAGE SECTION of the called program must not be associated 
with data items defined in the REPORT SECTION of the calling program. 

Of those item~ defined in the LINKAGE SECTION, only identifier-l, identifier-2, data items subordinate to these 
identifiers, and condition-names or index-names associated with such identifiers or subordinate data items may be 
referenced in the PROCEDURE DIVISION. 

The name used in a PROGRAM-ID is output as a DEF for programs that use the LINKAGE SECTION. The name is 
prefixed by an "L:". (Example: for "PROGRAM-ID. FCLOSE. ", COBOL generates a DEF L:FCLOSE.) 

Noncontiguoul Unb •• St.,. •• 
Items in the LINKAGE SECn-ON that bear no hierarchic relationship to one another need not be grouped into records 
and are classified and defined as noncontiguous elementrary items. Each of these data items is defined in a separate 
Data Description entry which begins with the special level-number 77. 

The following data clauses are required in each Data Description entry: 

• Level-number n 
• Data-name 

• The PICTURE clause 

Other Data Description clauses are optional and can be used to complete the description of the item if necessary. 

Unk ... RIc ... 

Data elements in the LIN KAGE SECTION that bear a definite hierarchic relationship to one another must be grouped 
into records according to the rules for formation of record descriptions. Any clause used in an input or output 
record description can be used in a LINKAGE SECTION. 

Initill Vlluu 

The VALUE clause must not be specified in the LIN KAGE SECTION except in condition·-name entries (level 88). 

104 Inter-Program Communication 



PROCEDURE DIVISION H"I~. 

The PROCE DURE DIVISION is identified by and must begun with the header 

PROCEDURE DIVISION [USING identifier-l [,identifier-2] ••• ]. 

The USING phrase is present if, and only if, the object program is to function under the control of a CALL statement 
and the CALL statement in the colling program contains a USING phrase. 

Each of the operands in the USIN G phrase of the PROCEDURE DIVISION header must be defined as a data item in 
the LINKAGE SECTION of the program in which this header occurs, and it must have a 01 or 77Ievel-number. 

Within a called program, LIN KAGE SECTION data items are processed according to their data descriptions given in 
the called program. 

When the USIN G phrase is prellent, the object program operatesas if identifier-l of the PROCEDURE DIVISION header 
in the called program and identifier-2 in the USING phrase of the CALL statement in the colling program refer to a 
single set of data that is equully avai lable to both the called and calling programs. Their descriptions must define 
an equal number of character positions; however, identifier-l and identifier-2 need not be the same name. In like 
manner, there is an equivalent relationship between identifier-2, ... , in the USIN G phrase of the called program 
and identifier-3, •.. , in the USING phrase of the CALL statement in the calling program. An identifier must not 
appear more than once in the USING phrase in the PROCEDURE DIVISION header of the called program; however, a 
given identifier may appear more than once in the same USING phrase of a CALL statement. 

CALL State •• 

The form of this statement is 

CALL {;~:~:t~~r-l} [USING identifier-2 [,identifiel'-3] •.• ] 

The CALL statement causes control to be transferred from one object program to another within the run unit. 

Identifier-l must be defined a!, an alphanumeric data item whose value can be a program-name. Literal-l must be 
a non-numeric literal. 

The USIN G phrase is included in the CALL statement only if there is a USIN G phrase in the PROCEDURE DIVISION 
header of the called program. The number of operands in each USING phrase must be identical, and each of the 
operands must have been definled as a data item in the FILE SECTION, WORKING-STORAGESECnON, or LINKAGE 
SECTION, and have a level-number of 01 or 77. 

The program whose name is specified by the value of literal-lor identifier-l is the called program; the program in 
which the CALL statement appc~ars is the calling program. Execution of a CALL statement causes control to pass to 
the called program, which is in its initial state the first time it is called within a run unit. On all other entries, the 
state of the called program remains unchanged from its state when last exited. This includes all data fields, the 
status and positioning of all fHes, and all alterable switch settings. 

Called programs may contain CALL statements. However, a called program must not contain a CALL statement that 
directly or indirectly calls the calling program. 

The identifiers specified by the USING phrase of the CALL statement indicate those data items available to a calling 
program that may be referred tel in the called program. The order of appearance of the identifiers in the USING 
phrase to the CALL statement and the USIN G phrase in the PROCEDURE DIVISION header is critical. Corresponding 
identifiers refer to a single set of data avai lable to the called and calling programs. The correspondence is posi­
tional, not by name. In the cOise of index names, no such correspondence is established. Index names in the called 
programs always refer to separate indexes. 

The CALL statement may appealr anywhere within a segmented program. Therefore, when a CALL statement appears 
in a section with a segment number greater than or equal to 50, that segment i~ in its last used state when the EXIT 
PROG RAM statement returns control to the calling program. 

linkage Section 105 



EXIT PROGRAM Stllte_nt 

The form of this statement is 

EXIT PROGRAM 

The statement marks the logical end of a called program. It must appear in a sentence by itself and must be the 
only sentence in the paragraph. 

Execution of an EXIT PROGRAM statement in a called program causes control to be passed to the calling program. 
Execution of an EXIT PROGRAM statement in a prOQram that is not called behaves as if the statement were an EXIT 
statement (see "EXIT Statement"). Examples of a calling and a called progrom are shown in Figure 5 below. 

Example of a Colling Program 

IDENTIFICATION DIVISION. 
PROGRAM.,.ID. LK-IF-MOVE .. 
AUTHOR. XEROX CORPORATION. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. XEROX-560. 
OBJECT-COMPUTER. XEROX-560. 
INPUT-OUTPUT SECTION. 
FI I.E -CONTROL. 
DATA DIVISION. 
FILE SECTION. 
WORKING-STORAGE SECTION. 
01 Rl. 

O~ RG. 
03 RGI 
03 RG2 
03 RG3 

02 RN. 
03 RNI 
03 RN2 
,03 RN3 
03 RN4 
03 RN5 
03 RN6 
03 RN7 

COMPo 
COMP-I. 
COMP-2. 
COMP-3 

PROCEDURE DIVISION. 
START. 

PIC X(8). 
PIC X(8). 
PIC X(7). 

PIC S9(3). 
PIC 9(4). 
PIC XBXXBBXX. 
PIC $$99.99. 

CALL 'LD-IF-MOVE' USING RI. 
STOP RUN. 

Example of a Called Program 

IDENTIFICATION DIVISION. 
PROGRAM-ID. LD-IF-MOVE. 
AUTHOR. XEROX CORPORATION. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. XEROX-SIGMA-7. 
OBJECT-COMPUTER. XEROX-SIGMA-7. 
INPUT-OUTPUT SECTION. 
FI LE -CONTROL. 
DATA DIVISION. 
LINKAGE SECTION. 
01 L1. 

02 LG. 
03 LGI 
03 LG2 
03 LG3 

02 LN. 
03 LNI 
03 LN2 
03 LN3 
03 LN4 
03 LN5 
03 LN6 
03 LN7 

COMPo 
COMP-I. 
COMP-2. 
COMP-3 

PROCEDURE DIVISION USING Ll. 
START. 

MOVE 789.56 TO LN7. 
DISPLAY LN7 UPON PRINTER. 

LNK-EXIT. 
EXIT PROGRAM. 

PIC X(8). 
PIC X(8). 
PIC X(7). 

PIC S9(3). 
PIC 9(4). 
PIC XBXXBBXX. 
PIC $$99.99. 

Figure 5. Coiling and Called Programs 

Subcompile Feature 
The Subcompile feature is not port of the ANS COBOL language, but is a language extension implemented in Xerox 
ANS C~OL only. The Subcompile feature enables a single, logical problem solution expressed in Xerox ANS 
COBOL to be subdivided into two or more separate source programs that can be compiled independently and sub­
sequently combined inta a single executable progrom. The advantages of smaller, more manageable compilations are 
obvious: for example, maintenance is simplified and the distribution of problem-solving effort among a number of 
programmers is facilitated. The Subcompile feature yields these benefits with virt:~ally no impairment of operating 
efficiency and only modest increase in total compilation time. 

Any given COBOL source program may be subdivided into two or more ports, each af w~ich con be compiled :nde­
pendently. One of these subdivisions must be designated as the main program at both compi lotion and execuk.w. 
times. The remaining subdivisions are called subprograms. Each subdivision of the t)k,1 program, whether the ri101n 

program or a subprogram, has the format of a complete COBOL source program. E \ subdiv" ~~r. must conr(J,r) 
IDENTIFICATION, ENVlRONMENT, DATA, and PROCEDURE DIVISIONs. 

106 linkage Section 



Rul •• for U .... 

Successful usage of the Subcompile feature requires observance of two alternative sets of rules. The first set is some­
what restrictive, but requires a minimal knowledge of the contents of the moin program and its So .bprograms and thus 
is less susceptible to programmer error. 

1. The ENVIRONMENT DIVISIONs must all be complete with regard to the total program, and should be 
identical. 

2. The FILE SECTION!I, COMMON-STORAGE SECTIONs and REPORT SECTIONs must all be complete with 
regard to the total program, and should be identi cal. 

The second set of rules requi,.es a careful and detailed anarysis of the individual source programs but permits omission 
of repetitious entries, thus reducing the size of the programs and improving compi lation time. 

1. ENVIRONMENT DIVISION 

a. Main Program 

The complete E!NVIRONMENT DIVISION for the total program must be written. 

b. Subprograms 

Each subprogram must contain SELECT sentences only for those files referenced in its PROCEDURE 
()IVISION (and described in its DATA DIVISION). 

2. DATA DIVISION 

a. FILE SECTION 

(1) Main Program 

The file and record descriptions for all files in the total program must be included. 

(2) Subprograms 

The file and record descriptions for all files referenced in the PROCEDURE DIVISION (and men­
tioned in an ENVIRONMENT DIVISION SELECT sentence) must be included. 

b. COMMON -STORAGE SECTION 

The COMMON -STORAGE SECTIONs must be identical within all elements composing the total 
pll'ogram. 

c. REPORT SECTION 

0) Mai n Progrclm 

The Report Descriptions of a" reports used in the total program must appear. 

(2) Subprogramsi 

Each subprogram must contain only the descriptions of reports actually referenced therein. (The 
file description of the file containing the associated REPORT IS clause must also be present.) 

3. PROCEDURE DIVISION 

The main program mU!lt contain all DECLARATIVES sections desired in the total program. 

Memory space is allocated and Data Control Blocks generated for the files described in the FILE SECTION of the 
main program. All subprograms making reference to reports or report data, when incorporated into the total program 
at run-time, refer to the arecls reserved by the main program. Similarly, memory spacP. is assigned in accordance 
wi th the COMMON -STORAGE SECTION description in the main program, and this area is shared by the main 

Linkage Section 107 



program and a" associated subprograms when combined at run-time. The main program and each subprogram may 
have its Own WORKING-STORAGE SECnON; dato described therein is not shared, but is private to the program in 
which it is defined. However, WORKING-STORAGE items in a main program may be referred to in a subprogram 
by the use of a LIN KAGE SECnON in the subprogram and the PROCEDURE DIVISION USIN G statement. 

The Subcompile feature enables program control to flow naturally between independent compi lations employing the 
normal COBOL verbs GO TO and PERFORM. Only one additional statement is introduced into the XeroxANS COBOL 
language to provide this natural flow. Any procedure point to which control may be passed by a separately compi led 
program must be declared as an external definition. The ENTER COBOL statement names those entry points (section­
and paragraph-names) within the program that are to be visible to sequence control statements in other compilations. 

EilER S .. II._. 
The formats of this statement are 

Format 1 

ENTER language-name routine-name. 

Format 2 

ENTER (language-name] routine-name [, parameter-name] ••• 

Format 3 

ENTER COBOL procedure-name-1 [, procedure-name-2] ••• 

The ENTER statement (Formats 1 and 2) allows entry into a closed, machine-language routine. The acceptable 
language-name is METASYM. Routine-name is an entry. point in the routine to be entered. Parameter-name may be 
a data-name, a procedure-name, or a file-name. These parameter-names are supplied to the routine in the COBOL­
generated cal·ling sequence by listing the core memory location of these items. Data-names may not be subscripted. 

The ENTER COBOL statement (Format 3) makes the locations of the named procedures available to the loader as entry 
points. Procedure-names are paragraph-names or section-names to which control may pass. 

Only the ENTER statement can be used to call Extended Data Management System (EDMS) service routines. The CAll 
statement cannot be used to perform this function (see the EDMS Reference Manual, 90 30 12). 

While both the LINKAGE SECnON and the COMMON-STORAGE SECnON can appear in the same program, they 
can only be referred to by their proper associated statements (PROCEDURE DIVISION USING statements in the case 
of the LINKAGE SECTION, or the ENTER statement in the case of COMMON -STORAGE). An EN TER statement 
cannot refer to items in a LIN KAGE SECnON and, conversely, a CAll statement or PROCEDURE DIVISION USIN G 
statement cannot refer to data items in COMMON -STORAGE. 

108 Linkage Se,ctron 



11. PRIORITY SEGMENTATION 

Segmentation is a facility that provides a means of communicating object program overlay requirements to 
the compiler. 

Although it Us not mandatory, the PROCEDURE DIVISION of a source program is usually written as a succession of 
sections, each of which embraces a series of closely related operations involved in accomplishing a particular task. 
When all sections of the program are defined it is possibile to classify them in accordance with their importance, 
frequency of use, and interr'elationships. Each section is classified as belonging to either the fixed portion, which 
is always in memory during Elxecution, or to one of the independent overlayable segments of the object program. 
An overlayable segment is a program segment that, although logically treated as permanent in memory, is capable 
of being overlaid by another such segment to optimize memory utilization. Only one priority segment may be in 
memory at a time; the amount of object space reserved for the nonfixed portion of the object program is the size 
of the largest priority segment. 

Sections are classified by priiority-numbers included in the section header 

section-name SECTION [priority-number] . 

,md must be an integer ranging in va lue from 0 through 99. If the priority-number is omi tted a value of zero is 
assumed. 

All sections of the same priority-number are grouped together to form a program segment with that priority. Normally, 
segments with priority-numbfn 0 through 49 belong to the fixed portion and segments with priority-number 50 through 
99 are overlayable. This arbitrary separation can be adjusted by employing the SEGMENT -LIMIT clause in the 
OBJECT -COMPUTER paragruph of the ENVIRONMENT DIVISION to enable more overlayable segments to be 
created. When the SEGMENT -LIMIT clause is used, those segments having priori ty-numbers ranging from the speci­
fied value through 99 are pr<>duced as overlayable segments. 

Segmentation does not alter the logical structure of the program in any way. The logical sequence is the same as 
the physical sequence except for specific transfers of control; this pertains in spite of any effective reordering of 
the program occosioned by t'he grouping of procedure sections (possibly scattered throughout the source program) 
by priority-number to form a segment. Segmentation in nc) way affects the need for qualification of procedure names 
to ensure uniqueness. 

The following points should be remembered when segmentation of a COBOL program is considered: 

1. Determinatian of the need for segmentation is a programmer responsibi Ii ty. Indiscriminate use of segmenta­
tion may degrade object program efficiency severe Iy, and the compi ler has no means of controlling the use -
or pointing out pO!lslble misuse - of segmentation. 

2. Sections required for reference at all times or referred to frequently should be allocated to the fixed 
portion. 

3. Sections used less frequently (e.g., initialization or closeout routines) or executed in a chronological 
series are suitable c:andidates for segmentation. 

4. Sections that communicate frequently with each other should be assigned to ,the same segment. 

Priority Segmentation 109 



12. DEBUGGING FACILITIES 

The Debug module provides a means by which the user can describe his debugging algorithm including the conditions 
under which data items or procedures are to be monitored during the execution of the object program. 

The features of the COBOL language that support "'e Debug module are 

• A compile time switch - WITH DEBUGGING MODE. 

• An object time switch. 

• A USE FOR DEBUGGING statement. 

• A special register - DEBUG-ITEM. 

• Debuggi ng lines. 

DEBUG-ITEM 

The reserved word DEBUG-ITEM is the name for a special register generated automatically by the compiler code that 
supports the debugging facility. Only one DEBUG-ITEM is allocat~d per program. The names of "'e subordinate 
data items in DEBUG-ITEM are also reserved words. 

The WITH DEBUGGING MODE clause is written as part of "'e SOURCE-COMPUTER paragraph. It serves as a com­
pile time switch over the debugging statements written in "'e program. 

When the WITH DEBUGGING MODE clause is specified in a program, all debugging sections and all debugging lines 
are compi led as specified in this section. When the WITH DEBUGGING MODE clause is not specified, all debugging 
lines and all debugging sections are compiled as if they were comment lines,. 

Object n_ Switch 

An object time switch dynamically activates the debugging code inserted by the compiler. This switch cannot be ad­
dressed in the program; it is controlled outside "'e COBOL environment. If the switch is on, all the effects of the 
debugging language written in "'e source program are permitted. If the switch is off, all the effects described under 
IJSE FOR DEBUGGING statement are inhibited. Recompilation of the source program is not required to provide or 
take away this facility. 

The object time switch has no effect on debugging lines nor on the execution of the object program if the WITH 
DEBUGGING MODE clause was not specified in the source program at compile time. 

WITH DEBUGGING MODE Clause 

The WITH DEBUGGING MODE clause indicates that all debugging sections and all debugging lines are to be com­
pi led. If this clause is not specified, all debugging lines and sections are compi led as if they were comment lines. 

SOURCE-COMPUTER. computer-name [WITH DEBUGGING MODE ]. 

If theWITH DEBUGGING MODE clouse is specified in the SOURCE-COMPUTER paragraph of the CONFIGURAllON 
SECTION of a program, all USE FOR DEBUGGING statements and debugging lines are compiled. 

If the WITH DeBUGGING MODE clause is not specified in the SOURCE-COMPUTEP paragraph of the CONFTS­
URA TION SeCTION of a program, any use FOR DEBUGGIN G statements and all 0 ""iated otloJugging sections, 
and any debugging lines are compiled as if they were comment lines. 

110 Debugging Facflities 



USE FOR DEBUGGING Statement 

The form of this statement is 

section-name SECTION. 

( 

[~LL REFERENCES OF] identifier-I] [[~LL REFERENCES OF] identifier-2] 
USE FOR DEBUGGING ON fde-name-l fde-name-2 
-- 'PROCEDURE procedure-name-l PROCEDURE procedure-name-2 

ALL PROCEDURES ALL PROCEDURES 

The USE FOR DEBUGGING statement identifies the user items that are to be monitored by the associated debugging 
section. 

All references to identifier-], procedure-name-l, and fi le-nane-l applyequally to identifier-2, procedure-name-2, 
and file-name-2, respective~y. 

Debugging section(s), if spedfied, must appear immediately after the DEC LARA TIVE S header and except in the USE 
FOR DEBUGGING statement' itself, there must be no reference to any nondeclarative procedure within the debug­
ging section. 

Statements appearing outside of the set of debugging sections must not reference procedure-names defined within the 
set of debugging sections. Statements appearing within a given debugging section, except for the USE FOR DEBUG­
GING statement itself, may reference procedure-names defined within a different USE procedure only with a 
PERFORM statement. Procedure-names defined within debugging sections must not appear within USE FOR DE­
BUGGING statements. 

Any identifier, file-name, or procedure-name can appear in only one USE FOR DEBUGGING statement, and the 
ALL PROCEDURES phrase cani appear only once in a program. When the ALL PROCEDURES phrase is specified, 
procedure-name-l must not he specified in any USE FOR DEBUGGING statement. 

Identifier-l must not be a dat'a item defined in the REPORT SECTION except sum counters. If the data description of 
identifier-:- 1 contains an OCCURS clause or is subordinate to a data item that contains an OCCURS clause, identifier-l 
must be specified wi thout the subscripting or indexing normally required., 

References to the special register DEBUG-ITEM are restri cted to references from within a debugging section. 

Execution of a debugging secNon depends on the USE FOR DEBUGGING specification. 

When fi le-name-l is specified, execution takes place after one of the following: 

1. The execution of an)' OPEN or CLOSE statement that references fi le:"name-1. 

2. After the execution elf any READ statement (after any other specified USE procedure) not resulting in the 
execution of an assodated AT END or INVALID KEY imperative statement. 

When a procedure-name-l is specified, execution takes plelce 

1. Immediately before 01 GO TO, PERFORM, or SORT statement that transfers control to procedure-name-l. 

2. Immediately before procedure-name-l is executed because of transfer of control implicit from the previous 
paragraph. 

3. Immediately after thEt execution of an ALTER statement that alters procedure-name-l. 

4. Immediately before a USE procedure (procedure-name-l) is executed" 

5. Immediately before the named procedure is executed for the first time if it is the first procedure in the non­
declarative portion of the program. 

The ALL PROCEDURES phrase causes these effects to occur for every procedure-name in the program, except those 
appearing within a debugging section. 

Use For Debugging Statement 111 



When the ALL REFERENCES OF identifier-l phrase is specified, that debugging section is executed immediately after 
every statement that explicitly references identifier-l. If identifier-l is specified in a phrase that is not executed 
or eva luated, the associated debugging section is not executed. 

When identifier-1 is specified without the ALL REFERENCES OF phrase, that debugging section is executed both 

1. Immediately after the execution of any COBOL statement that explicitly references and replaces the con­
tents of the data item referenced by identifier-1. 

2. Immediately before the execution of any WRITE statement that explicitly references identifier-l. 

Again, if identifier-1 is specified in a phrase that is not executed or evaluated, the associated debugging section is 
not executed. 

The debugging section associated with a specific operand is not executed more than once as a result of the execution 
of a single statement regardless of the number of times that operand is explicitly specified. 

Within an imperative statement, each individial occurrence of an imperative verb identifies a separate statement for 
the purpose of debugg i ng • 

A reference to file-name-l, identifier-l, or procedure-name-l as a qualifier does not constitute reference to that 
item for the debugging described above. 

The special register DEBUG-ITEM is associated with each execution of a debugging section. The register fields are 
updated automatically - in accordance with the rules of the MOVE statement - immediatety before control is passed 
to the debugging section to provide information about the conditions that caused the execution of a debugging sec­
tion. DEBUG-ITEM has the following implicit description: 

01 DEBUG-ITEM. 

02 DEBUG-LINE PICTURE IS X(6). 

02 FILLER PICTURE IS X VALUE SPACE. 

02 DEBUG-NAME PICTURE IS X(30). 

02 FILLER PICTURE IS X VALUE SPACE. 

02 DEBUG-SUB-l PICTURE IS 9999. 

02 FILLER PICTURE IS X VALUE SPACE. 

02 DEBUG-SUB-2 PICTURE IS 9999. 

02 FILLER PICTURE IS X VALUE SPACE. 

02 DEBUG-SUB-3 PICTURE IS 9999. 

02 FILLER PICTURE IS X VALUE SPACE. 

02 DEBUG-CON TEN TS PICTURE IS X (n). 

Contents of the register fields vary in accordance with USE FOR DEBUGGING specifications, as set forth in Table 9, 
below. In general terms, DEBUG-LINE contains information identifying a particular source statement. DEBUG-
NAME contains the first 30 characters of the name that caused the debugging section to be executed. All 
qualifiers of the name are separated by the word IINI or 'OFI. Subscripts or indexes, if any, are not entered 
into DEBUG-NAME. 

DEBUG-SUB-1, DEBUG-SUB-2, and DEBUG-SUB-3 contain spaces if the item that caused the debusging section to 
be executed is not subscripted or indexed. Otherwise, the occurrence number of each level is entered as necessary. 

DEBUG-CONTENTS will be large enough to contain the required data. 

112 Use For Debugging Statement 



Table 9. Contents of DEBUG-ITEM Register Fields 

---
'~ntenh Condition 

~'--. 
-.----- -- ----- ---

Field I 2 3 .. 5 

DEBUG-LINE Identifies source Identifies previous Identifies statement Identifies source Identi fies source 
statement thotref- statement. that caused exe- statement that statement that 
erenced procedure- cution of USE referenced fi le- referenced 
name-I. procedure. name-I. identifier-I . 

-----. ---.-- .. -
DEBUG-NAME Contains name Name of Name of Name of fi le- Name of 

of procedure- procedure-nome-I. procedure-nome-I. name-I. identifier-I. 
name-I. 

r-------- --------1----._---

DEBUG-CON TEN TS Spaces, except after 'FALL THROUGH'. 'USE PROCEDURE'. Entire record Contenh of 
on ALTER statement, read, or spaces. identifier-I after 
when it contains name the execution of 
of procedure-name-2 statement that 
of the ALTER. referenced it. 

Condition causing debugging section to be executed: 

I - Reference to procedure-name-·I. 
2 - Implicit control transfer from previous sequential paragraph to procedure-nome-I. 
3 - Procedure-nome-I is a USE pl'locedure that is to be executed • 
.. -' References to fi Ie-nome-I. 
5 - Reference to identi fier-I. 

Debuaaina Lines 

A debugging line is any line 'with a 10 1 in the continuation indicator area of the line. The contents of a debugging 
line must be such that a syntactically correct program is formed with or without the debugging lines being con­
sidered as comment lines. A debugging line wi" be considered to have all the characteristics of a comment line 
if the WITH DEBUGGING MODE clause is not specified in the SOURCE-COMPUTER paragraph. Any debugging 
line that consists solely of spclces from margin A to margin R is considered the same as a blank line. 

Successive debugging lines are allowed. Continuation af debugging lines is permitted subject to two constraints: 

1. Each continuation line must contain a 101 in the continuation ·indicator area. 

2. Character-strings mCIY not be broken across two lines. 

Debugging lines are permitted in the program only after the OBJECT-COMPUTER paragraph and may not be used 
with the COpy REPLACING function. 

Extended Debullinl Featnues 

The Xerox ANS COBOL language includes two debugging statements - TRACE and EXHIBIT - that are an extension 
of the ANS COBOL language and can be inserted anywhere in a COBOL source program. Use of these statements 
greatly reduces the time requilred to debug the logic of successfully compiled programs. 

Omitting the DEBUG option in a COBOL processor control command containing other specified options suppresses 
these debugging statements at compilation time. This means that a debugged COBOL program need not be changed 
but merely recompiled to obtclin an operational object program. 

TRACE Stete.at 

The format of this statement ill 

{ READY} TRACE 
RESET --

The TRACE statement is used iin two forms: READY TRACE starts the TRACE precess in which a message is output on 
the system listing output devi ce each time the execution of a new paragraph or section of the program begins; 
RESET TRACE terminates the notification of processing progress started by the preceding READY TRACE statement. 

90 15 OOC-1(6/75} Debugging Lines 113 



EXHIBIT Stilimant 

The format of this statement is 

I NAMED II I data-name 
EXHIBIT CHANGED NAMEP t Itt I ••• 

CHANGED non-numer c- era 

Note: The sum of the sizes of the operands of an EXHIBIT statement cannot exceed the maximum logical record 
length for the system listing output device. 

The EXHIBIT NAMED statement causes a formatted display of the data-names (or non-numeric-literals) listed in the 
statement; the system listing output device is used. Output format for each data-name listed in the NAMED or 
CHANGED NAMED form of an EXHIBIT statement is 

1. Blank 

2. Original data-nome (including qualifiers, if written) 

3. Blank 

4. Equal sign 

5. Blank 

6. Value of data-nome 

When displayed, literals listed in the statement are preceded by a blank. 

The CHANGED form of the EXHIBIT statement provides for display of on item when it changes value (compared to 
the value at the previous time the EXHIBIT CHANGED statement was executed). The first time such a statement is 
executed, a value is considered to have changed; it is displayed and saved for purposes of comparison. 

Only one data-nome can be listed in on EXHIBIT CHANGEDstatement. Note that iftwo distinct EXHIBIT CHANGED 
data-nome st~tements appear in a program, changes in data-nome are associated with the two separate statements. 
Depending on the path of program flow, the values of data-nome saved for- comparison may differ for the two state­
ments. If the list of operands in on EXHIBIT CHANGED statement includes literals, they are printed as remarks 
and are preceded by a blank. 

The CHANGED NAMEDform of the EXHIBIT statement causes a printout of each changed value for items listed in 
the statement. Only those values representing changes in their identifying names are printed. A fixed columnar 
format for the data to be displayed cannot be created with EXHIBIT CHANGED NAMED. 

114 Debugging lines 



APPENDIX A. XEROX ANS COBOL RESERVED WORDS 

ACCEPT DATE-WRITTEN INCLUDE
t 

OR St"CURITY 
ACCESS DE INDEX OUTPUT SEEK 
ACTUAL DEBUG-CONTENTS INDEXED SEGMENT-LIMIT 
ADD DEBUG-ITEM INDICATE PAGE SELECT 
ADDRESS DEBUG-LINE INITIAL PAGE-COUNTER SELECTED 
ADVANCING DEBUG-SUBl INITIATE PERFORM SENTENCE 
AFTER DEBUG-SUB2 INPUT PF SEQUENTIAL 
ALL DEBUG-SUB3 INPUT··OUTPUT PH SET 
ALPHABETIC DiEBUG-NAME INSPECT PIC SIGN 
ALTER DEBUGGING I NSTAllA TION PICTURE SIZE 
ALTERNATE DECIMAL-POINT INTO PLUS SORT 
AND DIECLARA TIVES INVALID POINTER SOURCE 
ARE DELIMITED IS POSITION SOURCE-COMPUTER 
AREA DI:lIMITER JUST POSITIVE SPACE 
AREAS DEPENDING JUSTIFIED PROCEDURE SPACES 
ASCENDING DESCENDING PROCEDURES SPECIAL-NAMES 
ASSIGN DE:TAIL KEY PROCEED STANDARD 
AT . DISPLAY KEYS PROCESSING STATUS 
AUTHOR DIVIDE 

LABEL PROGRAM STOP 

BEFORE 
DIVISION 

LAST PROGRAM-ID STRING 
DOWN SUBTRACT 

BEGINNING LEADING SUM 
BLANK ELSE LEFT QUOTE 

SYNC 
BLOCK END LESS QUOTES 

SY NCHRONIZED 
BY ENDING LIBRARY 

CALL 
ENTER LIMIT RANDOM 

TALLY 
Ef\IVIRONMENT LIMITS RD 

CANCEL 
EGtUAL LINE READ TALLYING 

CF ERROR LINE-COUNTER READY TAPE J 
CH 

EVERY LINES RECORD 
TERMINATE 

CHANGED
t 

EXAMINE
t 

LINKAGE RECORDS THAN 
CHARACTERS EXHIBITt LOCK REDEFINES THROUGH 
CLOCK-UNITS 

EXIT LOW-VALUE REEL THRU 
CLOSE 

LOW-VALUES REFERENCES 
TIMES 

COBOL FD TO 
CODE FIL.E MEMORY 

RELEASE 
TRACE 

COLUMN FIL.E-CONTROL MODE 
REMAINDER 

TYPE REMARKS 
COMMA FIL.E-LIMIT MODULES RENAMES 
COMMON-STORAGE FILE-LIMITS MOVE 

RENAMING
t UNIT 

COMP FILLER MULTIPL.E REPLACING UNSTRING 
COMP-l FINAL MULTIPLY UNTIL 
COMP-2 FIRST 

REPORT 
UP 1/ NAMED REPORTING COMP-3 FOOTING 

NEGATIVE REPORTS 
UPON 

COMPUTA TIONAl FOR USAGE 
COMPUTA TIONAL-l FROM 

NEXT RERUN 
USE 

COMPUTA TIONAL-2 NO RESERVE 
USING GENERATE NOT RESET 

COMPUTA TIONAL-3 
GIVING NOTE RETURN COMPUTE VALUE 

CONFIGURA TION GO NUMBER REVERSED 
VALUES GREATER NUMERIC REWIND CONTAINS 

GROUP RF VARYING 
CONTROL 
CONTROLS HEADING 

RH WHEN 
COpy HIGH-VALUE OBJECT -COMPUTER RIGHT WITH 
CORR HIGH-VALUES OCCURS ROUNDED 

WORDS 
CORRESPONDING OF RUN WORKING-STORAGE 

1-0 OFF COUNT I-O-CONTROL OMITTED SAME 
WRITE 

CURRENCY IDENTIFICA TION ON SD ZERO 
DATA IF OPEN SEARCH ZEROES 
DATE-COMPILED IN OPTIONAL SECTION ZEROS 

t Although sti" operational, these language fonns have been made obsolete by changes to the COBOL standard. 

Appendix A 115 



APPENDIX B. SAMPLE XEROX ANS COBOL PROBLEM 

In Figure B-1 a master tape fi Ie {each record consisting of a 5-digit account number, 21-character name, 6-digit 
quantity-on-hand, 6-digit unit price, and 6-digit date-record-established} is to be updated by a card file contain­
i n9 three types of cards. The program must ascertain the type of card and then branch to one of three routines to 
update the master file. The cards are the same format as the tape fi Ie except for the oddi tion of the cord code in 
the character following the date field. Codes that identify card type are 

Code 1 

Code 2 

Code 3 
{header card} 

Adds the quantity on the card to the quantity field of the master and reestablishes date of 
record. 

Subtracts the quantity on the card from the quantity field of the master and reestablishes 
date of record. 

Changes all data fields in the master record or establishes a new master record. Date of 
record must again be established. 

Any other code is treated as an error condition. Multiple transactions of types 1 and 2 are allowed for any accounts 
already established in the master tape file. All input master records, plus new masters added, are written on an 
output master tape. 

Various checks detect error conditions in the input card file that would cause a card to be punched. The following 
~rror flags indicate the type of error. 

Card Flag 5 

Card Flag 6 

Card Flag 7 

Card Flag 8 

Card Flag 9 

A card type other than 1, 2, or 3. 

The input card file not in sequence by account number. 

No matching master record for card types 1 or 2. 

The quantity in the input card to be subtracted from the master record balance causes a 
negative balance. 

The quantity in the input card plus the master record balance overflows into the next field 
if not detected. 

The format of these error cards is identical to that of the update cards with the addition of the card flag in the next 
available position following the card code. A record tally for the new master file is maintained together with the 
value of the inventory in the new master file. These items are printed on the standard system listing output device. 

116 Appendix B 



00000 
00001 
00002 
00003 
00004 
00005 
00006 
00007 
00008 
00009 
00010 
00011 
00012 
00013 
00014 
00015 
00016 
00017 
00018 
00019 
00020 
00021 
00022 
00023 
00024 
00025 
00026 
00027 
00028 
00029 
00030 
00031 
00032 
00033 
00034 
00035 
00036 
00037 
00038 
00039 
00040 
00041 
00042 
00043 
00044 
00045 
00046 
00047 
00048 
00049 
00050 
00051 
00052 
00053 
00054 
00055 
00056 
00057 
00058 
00059 
00060 
00061 
00062 
00063 
00064 
00065 

rOBOL SOURCE, DIAGNOSTIC AND PROCEDURE-"1AP LI~TING 

COBOlL LS 
000010 IDENTIFICATION DIVISION. 
0000:20 PROGRAM-ID. SAMPLE XDS COBOL PROGRAM. 

AUTHOR. XEROX CORPORATION. 
000040 DATE-WRITTEN. DECEMBER 7 1974. 

UPDATE 
urDATE 

000050 REMARKS. THE PURPOSE OF THIS PROGRAM IS TO SHOtv THE ORGANIZATIONUPDATE 
000060 OF A TYPICAL COBOL PROGRAM. UPDATE 
000070 ENVIRONMENT DIVISION. lWOATE 
000080 CONFIGURATION SECTION. UPDATE 

SOURCE-COMPUTER. XEROX-560. 
OBJECT-COMPUTER. XEROX-560 

0001RO MEMORY SIZE 24000 WORDS. 
000120 INPUT-OUTPUT SECTION. 
000130 FILE-CONTROL. 
0001l.0 SELECT UPDATE-TRANSACTIONS ASSIGN TO CARD-READER. 
0001~iO SELECT OLD-MASTER-FILE ASSIGN TO MAGNETIC-TAPE. 
000160 SELECT NEW-MASTER-FILE ASSIGN TO MAGNETIC-TAPE. 
000170 SELECT ERROR-TRANSACTIONS ASSIGN TO CARD-PUNCH. 
000180 SELECT SUMMARY-PRINT ASSIGN TO PRINTER. 
000190 DATA DIVISION. 
000200 FILE SECTION. 
00021.0 FD OLD-MASTER-FILE 
000220 LABEL RECORDS ARE STANDARD DATA RECORD IS OLD-MASTER. 
000230 01 OLD-MASTER. 
000240 02 ACCOUNT PICTURE 9(5). 
000250 02 NAME PICTURE X(21). 
000260 02 QUANTITY PICTURE S9(6). 
000270 02 UNIT-PRICE PICTURE 9(4)V99. 
000280 02 DATE PICTURE 9(6). 
000290 FD NEW-MASTER-FILE 
000300 LABEL RECORDS ARE STANDARD DATA RECORD IS NEW-MASTER. 
000310 01 NEW-MASTER. 
000320 02 FILLER PICTURE X(44). 
000330 FD UPDATE-TRANSACTIONS 
000340 LABEL RECORDS ARE OMITTED DATA RECORD IS UPDATE-DATA. 
000350 01 UPDATE-DATA. 
000360 02 U-ACCOUNT PICTURE 9(5). 
000370 02 U-NAME PICTURE X(21). 
000380 02 U-QUANTITY PICTURE 9(6). 
000390 02 U-UNIT-PRICE PICTURE 9(4)V99. 
000400 02 U-DATE PICTURE 9(6). 
000410 02 U-CARD-CODl PICTURE 9. 
000415 02 FILLER PICTURE X(35). 
000420 FD ERROR-TRANSACTIONS 
000430 LABEL RECORDS ARE OMITTED DATA RECORD IS ERROR-LECORD. 
000440 01 ERROR-RECORD. 
000450 02 ERROR-DATA PICTURE X(45). 
000460 02 ERROR-FLAG PICTURE 9. 
000470 FD SUMMARY-PRINT 
000480 LABEL RECORDS ARE OMITTED DATA RECORD IS SUMMARY-DATA. 
000490 01 SUMMARY-DATA. 
000500 02 CARRIAGE-CONTROL 
000510 02 SUMMARY-DATA-ITEM 

PICTURE X. 
PICTURE x(l32). 

000520 WORKING-STORAGE SECTION. 
000530 77 PREVIOUS-ACCOUNT PICTURE 9(5) VALUE O. 
000540 77 NEW-QUANTITY PICTURE S9(7). 
000550 77 RECORD-COUNT PICTURE 9(6) VALUE O. 
000560 77 INVENTORY-VALUE PICTURE 9(10)V99 VALUE O. 
000570 01 W-UPDATE-DATA. 
000580 02 W-ACCOUNT 
000590 02 W-NAME 
000600 02 W-QUANTITY 
000610 02 W-UNIT-PRICE 
000620 02 W-DATE 
000630 02 W-CARD-CODE 
000640 01 W-UPDATE-DATA-X 

PICTURE 9(5). 
PICTURE X(21). 
PICTURE 9 (6) ,. 
PICTURE 9(4)V99. 
PICTURE 9(6). 
PICTURE 9. 

REDEFINES W-UPDATE-DATA. 

Figure B-1. Sample Xerox ANS COBOL Program 

UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
lwnATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPOATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPOATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
JPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 

Appendix 8 117 



00066 
000('7 
00068 
00069 
00070 
00071 
00072 
00073 
00074 
00075 
00076 
00077 
00078 
00079 
00080 
00081 
000A2 
00083 
000R4 
00085 
00086 
00087 
00088 
00089 
00090 
00091 
00092 
00093 
00094 
00095 
00096 
00097 
00098 
00099 
00100 
00101 
00102 
00103 
00104 
00105 
00106 
00107 
00108 
00109 
00110 
00111 
00112 
00113 
00114 
00115 
00116 
00117 
00118 
00119 
00120 
00121 
00122 
00123 
00124 
00125 
00126 
00127 
00128 
00129 
00130 
00111 
00132 
00133 

118 Appendix B 

000650 02 W-UPDATE-DATA-RCD 
000660 02 FILLER 
000670 01 TOTAL-RECORDS. 

PICTURE X(44). 
PICTURE X. 

UPDATE 
UPDATE 
UPDATE 

000680 02 FILLER PICTURE 9 VALUE 1. UPDATE 
000690 02 FILLER PICTURE X(33) VALUE IS 'RECORD COUNT OF NEW MASTERlJPDATE 
000700- 'FILE UPDATE 
000710 02 W-RECORD-COUNT PICTURE ZZZ.ZZ9. 
000720 01 TOTAL-INVENTORY. 
000730 02 FILLER PICTURE 9 VALUE O. 
000740 02 FILLER PICTURE ~(36) 
000750 VALUE 'INVENTORY VALUE OF NEW MASTER FILE 
000760 02 W-INVENTORY-VALlJE PICTURE $Z.ZZZ.ZZZ.ZZZ.99. 
000770 PROCEDURE DIVISION. 
000780 BEGIN SECTION. 
000790 OPEN-FILES. 
000800 OPEN INPUT OLD-MASTER-FILE UPDATE-TRANSACTIONS OUTPUT 
000810 NEW-MASTER-FILE ERROR-TRANSACTIONS SUMMARY-PRINT. 
000820 READ-MASTER-FILE. 
000830 READ OLD-MASTER-FILE AT END GO TO END-OF-MASTER. 
000840 READ-UPDATE-CARD. 
000850 READ UPDATE-TRANSACTIONS INTO W-UPDATE-DATA AT END GO TO 
000860 END-OF-CARDS. 
000870 
000880 UPDATE-MASTER-FILE SECTION. 
000890 CHECK-SEQUENCE-NUMBER. 
000900 IF W-ACCOUNT IS LESS THAN PREVIOUS-ACCOUNT 
000910 MOVE 6 TO ERROR-FLAG; GO TO PUNCH-ERROR-CARD. 
000920 MOVE W-ACCOUNT TO PREVIOUS-ACCOUNT. 
000930 
000940 
000950 

NOTE **SAVE ACCOUNT NUMBER FOR SEQUENCE CHECK. 

000960 TEST-CARn-CODE. 
000970 IF W-CARD-CODE - 0 OR GREATER THAN 3 
000980 MOVE 5 TO ERROR-FLAG; GO TO PUNCH-ERROR-CARD. 
000990 COMPARE-ACCOUNT-NUMBERS. 
001000 IF W-ACCOUNT - ACCOUNT NEXT SENTENCE 
001010 ELSE GO TO ACCOUNT-NUMBERS-UNEQUAL. 
001020 
001030 
001040 

NOTE CHECK CARD CODE AND UPDATE ~~STER FILE. 

001050 ACCOUNT-NUMBERS-EQUAL. 
001060 GO TO CARD-CODE-1. CARD-CODE-2. CARD-CODE-3 DEPENDING ON 
001070 W-CARD-CODE. 
001080 CARD-CODE-1. 
001090 ADD W-QUANTITY. QUANTITY GIVING NEW-QUANTITY. 
001100 IF NEW-QUANTITY IS GREATER THAN 999999 ~tOVE 9 TO ERROR-FLAG; 
001110 GO TO PUNCH-ERROR-CARD; 
001120 ELSE GO TO UPDATE-MASTER-RECORD. 
001130 CARD-CODE-2. 
001140 SUBTRACT W-QUANTITY FROM QUANTITY GIVING NEW-QUANTITY. 
001150 IF NEW-QUANTITY IS NEGATIVE MOVE 8 TO ERROR-FLAG; 
001160 GO TO PUNCH-ERROR-CARD; 
001170 ELSE GO TO UPDATE-MASTER-RECORD. 
001180 CARD-CODE-3. 
001190 PERFORM WRITE-NEW-MASTER~FROM-CARD. 
001200 READ OLD-MASTER-FILE AT END GO TO END-OF-MASTER-1. 
001210 GO TO READ-UPDATE-CARD. 
001220 UPDATE-MASTER-RECORD. 
001230 MOVE NEW-QUANTITY TO QUANTITY; MOVE W-DATE TO DATE; 
001240 GO TO READ-UPDATE-CARD. 
001250 ACCOUNT-NUMBERS-UNEQUAL. 
001260 IF W-ACCOUNT LESS THAN ACCOUNT NEXT SENTENCE 
001270 ELSE GO TO ACCOUNT-NUMBER-GREATER. 
001280 ACCOUNT-NUMBER-LESS. 
001290 IF W-CARD-CODE - 3 PERFORM WRITE-NEW-MASTER-FROM-CARD; 
001300 GO TO READ-UPDATE-CARD; 
001310 ELSE MOVE 7 TO ERROR-FLAG; GO TO PUNCH-ERROR-CARD. 
001320 ACCOUNT-NUMBER-GREATER. 

Figure B-1. Semple Xerox ANS COBOL Progrcm (cont.) 

lTPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
upnATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UFn.t.TE 



00134 
0013') 
001% 
00137 
00138 
00139 
00140 
00141 
00142 
00143 
00144 
00145 
00146 
00147 
00148 
00149 
00150 
00151 
00152 
00153 
00154 
00155 
00156 
00157 
00158 
00159 
00160 
00161 
00162 
n0163 
00164 
00165 
00166 
00167 
00168 
00169 
00170 
00171 
00172 
00173 
001.74 
00175 
00176 
00177 
00178 
00179 
00180 
00181 
00182 
00183 
00184 
00185 

001330 PERFORM WRITE-NEW-MASTER. 
001340 READ OLD-MASTER-FILE AT END GO TO END-OF-MASTF.R. 
001350 GO TO COMPARE-ACCOTTNT-NUMBERS. 
001360 PUNCH-ERROR-CARD. 
001370 MOVE W-UPDATE-DATA TO ERROR-DATA. 
001380 WRITF. ERROR-RECORD. 
001390 GO TO READ-UPDATE-CARD. 
00140CI WRITE-NEW-MASTER. 
0014101 ADD 1 TO RECORD-COUNT; 
0014201 COMPUTE INVENTORY-VALUE • INVENTORY-VALUE 
0014301 + QUANTITY * UNIT-PRICE; 
0014401 WRITE NEW-MASTER FROM OLD-MASTER. 
0014501 WRITE-NEW-MASTER-FROM-CARD. 
0014601 ADD 1 to RECORD-COUNT; 
0014701 COMPUTE INVENTORY-VALUE - INVENTORY-VALUE 
001480 + W-QUANTITY * W-UNIT-PRICE; 
001490. WRITE NEW-MASTER FROM W-UPDATE-DATA-RCD. 
001500 
001510 
001520 
001530 
001540 
001550 
001560 
001570 
001580 
001590 

NOTE PROCESS REMAINING MASTER RECORDS. 

END-OF-CARDS. 
PERFORM WRITE-NEW-MASTER. 
READ OLD-MASTER-FILE AT END (;0 TO END-OF-JOB. 
GO TO END-OF-CARDS. 

NOTE ** PROCESS REMAINING INPtTT CARDS. 

001600 END-OF-MASTER. 
001610 IF W-CARD-CODE - 3 PERFORM WRITE-NEW-MASTER-FROM-CARD ELSE 
001620 MOVE 7 TO ERROR-·FLAG; MOVE W-UPDATE-DATA TO ERROR-DATA; 
001630 WRITE ERROR-RECORD. 
001640 END-OF-MASTER-1. 
001650 READ UPDATE-TRANSACTIONS AT END GO TO END-OF-JOB. 
001655 MOVE UPDATE-DATA TO W-UPDATE-DATA. 
001660 IF U-ACCOUNT IS LESS THAN PREVIOUS-ACCOUNT 
001670 MOVE 6 TO ERROR-·FLA(;; HOVE UPDATE-DATA TO ERROR-DATA; 
001680 WRITE ERROR-RECORD; GO TO END-OF-MASTER-1. 
001690 MOVE U-ACCOUNT TO PREVIOUS-ACCOUNT. 
001700 IF U-CARD-CODE - 0 OR GREATER THAN 3 MOVE 5 TO ERROR-FLAG; 
001710 MOVE UPDATE-DATA TO ERROR-DATA; WRITE ERROR-RECORD; 
001720 GO TO END-QF-MASTER-1. 
001730 GO TO END-OF-MASTER. 
001740 END-OF-JOB. 
001750 MOVE RECORD-COUNT TO W-RECORD-COUNT. 
001760 MOVE INVENTORY-VALUE TO W-INVENTORY-VALUE. 
001770 MOVE TOTAL-RECORDS TO SUMMARY-DATA-ITEM. 
001780 WRITE SUMMARY-DATA AFTER ADVANCING 0 LINES. 
001790 MOVE TOTAL-INVENTORY TO SUMMARY-DATA-ITEM. 
001800 WRITE SUMMARY-DATA AFTER ADVANCING 3 LINES. 
001810 CLOSE OLD-MASTER-FILE, NEW-MASTER-FILE, UPDATE-TRANSACTIONS, 
001820 ERROR-TRANSACTIONS, SUMMARY-PRINT. 
001830 STOP RUN. 

*** NUMBER OF DIAGNOSTIC MESSAGES o *** HIGHEST SEVERITY LEVEL o *** 

Figure B-1. SClTlpie Xerox ANS COBOL Program (cont.) 

lWflATf 
UPDATE 
UrnATF 
UPDATE 
UPDAT'" 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 

tTPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 
UPDATE 

Appendix B 119 



APPENDIX C. SLACK BYTES 

Although the smallest individually addressable unit in the Xerox computing systems is the byte or the character, 
the basic unit of information is the word and many computer operations address computer words and even double­
words. COBOL is a character-oriented programming language, but efficiency demands that certain data types 
expressoble in COBOL be positioned on the appropriate boundary to render the data readily accessible to the ad­
dressing capabil i ties of the computer. 

Accordingly, the compiler assures that logical records originate upon doubleword boundaries at object time. Within 
records, the compiler assumes that each data item is positioned at the boundary, relative to the base of the record, 
that is appropriate to its type. 

If the programmer specifies a USAGE of COMPUTATIONAL, COMPUTATIONAL-1, COMPUTATIONAL-2, or IN­
DEX within a data hierarchy, it may become necessary to insert bytes between adjacent data items in order to ensure 
correct boundary alignment of all data items within the hierarchy. These bytes contain no information: their sole 
purpose is to effect proper boundary al ignment of data items, when necessary. Bytes of this nature may be termed 
"slack bytes". Consider the example 

01 A. 

02 B PICTURE X. 

02 C USAGE COMPUTATIONAl. 

If A is considered the origin of the record, data-name B occupies the first byte within the record. The next avail­
able storage space for data-name C, therefore, begins at the second byte within the record. However, Xerox ANS 
COBOL dictates that all data entries with USAGE COMPUTATIONAL occupy one word (4 bytes) of storage. Since 
the manipulation performed on a COMPUTATIONAL data entry word is word-oriented, any COMPUTATIONAL 
data entry must be aligned on a word boundary. To achieve this desired effect the compiler introduces slack bytes 
between data-names Band C, thereby causing C to be aligned on a word boundary. The example above then trans­
forms effectively to 

01 A~ 

02 B PICTURE X. 

02 SLACK-BYTES PICTURE XXX. 

02 C USAGE COMPUTATIONAl. 

Note that an actual data entry is never generated for slack bytes; they are introduced merely by adjusting the dis­
placement counter relative to the origin of the record. The form used in the example is given onl y to hel p clarify 
location of the slack bytes. 

Actually, when data-name B is encountered its relative byte displacement within the record is assigned a value of O. 
Since B is one byte in length, the displacement counter is incremented by 1. When C is scanned and it is determined 
that a word boundary al ignment is required, the displacement counter is set forward to the nearest word boundary: in 
this case, 4. Bytes 1, 2, and 3 then become slack bytes. 

Another case of particular interest appears when an OCCURS clause exists on a group data-name and a data-name 
within the group is of USAGE COMPUTATIONAL, COMPUTATIONAL-1, COMPUTATIONAL-2, or INDEX. For 
example, 

01 A. 

02 B OCCURS 5 TIMES. 

03 C USAGE COMPUTATIONAl. 

03 D PICTURE X. 

120 Appendix C 



For till' lirst occurrence of group B, data-name C is 01 igned on a word boundary and occupies the first 4 byte, 01 till' 
record. Data-name D occupies the 5th byte. For the second occurrence of group B, however, it appears that data­
flarne C begins on the 6th byte of the record; this is not allowable, since the 6th byte of the record is not a word 
boundary. Therefore, slack bytes must be introduced at the end of group Bto ensure that each \. ccurrence of C with­
in B falls on a word boundary. The example then transforms to 

01 A. 

02 B OCCURS 5 TIMES. 

03 C USAGE COMPUTATIONAL. 

03 D PICTURE X. 

03 SLACK-BYTES PICTURE XXX. 

A summary of USAGEs and theur appropriate boundary alignments follows. 

USAGE Type of AI ignment Byte Multiple 

COMPUTATIONAL Word 4 

COMPUTATIONAL-) Word 4 

COMPUTA T10NAL-2 Doubleword 8 

INDEX Word 4 

Values in the third column represent the byte modulus util ized in computation of the data entry boundary under con­
sideration. For example, the displacement counter currently has a value of 5. It is designed to align the next data 
entry on a word boundary. In order to determine the next available word boundary, the current displacement is di­
vided by the byte modulus. If the remainder of the division is 0, no adjustment of the displacement is required, as 
the displacernent is already at I'he correct boundary; otherwise, the remainder from the division is subtracted from 
the byte mpdulus and the resultant number of slack bytes must be generated. For this example, displacement = 5 and 
the byte modulus = 4. The division 5/4 yields a remainder of 1. Subtracting 1 from the byte modulus 4 gives the final 
answer of 3. To restate: 

Upon dividing the displac€'ment by the byte modulus (hm), 

if remainder = 0, no action required; 

if remainder,. 0, bm - remainder = number of slack bytes to be generated. 

Appendix C 121 



APPENDIX D. EVALUATION OF ARITHMETIC-EXPRESSIONS 

Arithmetic-expressions in the Xerox ANS COBOL moy be performed in integer binary (fixed-point), decimal, or 
floating-point (either single or double precision). The mode is chosen by the USAGE of operands and, to some extent, 
the final result items (i. e., when the operand USAGE differ5, the result may determine the mode). With certain ex­
ceptions, as much significance is retained as the available arithmetic instructions in the chosen modes themselves 
provide; sometimes additional operations are performed to obtain more precision. 

Number Representation 

All arithmetic operations, comparisons, and data movements use instructions that require the pair of operands 
involved to be of the same USAGE; thus the compiler must insert code to convert data from one USAGE to another. 
The USAGEs are 

1. INDEX/COMPUTATIONAL: binary integer 

These index or data items are carried as signed 31-bit integer quantities; maximum absolute value is 2
31

_1 
or approximately 2. 15 x 109• 

2. COMPUTATIONAL-1: single precision floating-point 

These data items consist of a sign bi t and a 7-bi t biased hexadecimal exponent, and cover a normalized 
range from 16-65 to (1 - 16-6 ) x 1663 or approximately 5.4 x 10-79 to 6.5 x 1063. 

3. COMPUTA TIONAL-:2: double precision floating-point 

These data items consist of a sign bit, a 7-bit chNracteristic, and 56 bits of significance and cover a nor­
malized range from 16-65 to (1 - 16- 14) x 166 or approximately 5.4 x 10-79 to 7.2 x 1075. 

4. COMPUTA TIONAL-3: packed decimal 

These data items consist of a maximum of 30 digits (the numbers 0 through 9, in 4-bit code) and a decimal 
sign character X'A' - X'F' (X'B' and X'D' are negative; all others positive) occupying the right half of the 
rightmost byte. Unsigned fields are always positive. Addition~1 truncation may be needed before the con­
version if the desired internal format required it. 

5. DISPLAY: zoned (unpacked) decimal 

These data items consist of the numbers 0 through 9 in a-bit EBCDIC. The left half of the rightmost byte 
contains the 4-bit decimal sign. Although there are no limitations placed on these items as to "size ", the 
maximum for conversion to other USAGEs is 30 digits. 

Numeric Conversion 

Loss of accuracy can result when it is necessary to convert from one USAGE to another. The following discussion 
indicates the accuracy of the conversion and the manner in which truncation is effected as data is converted. 

1. INDEX/COMPUTATIONAL 

a. To COMPUTATIONAL-I: 24 bits are retained; the least significant bits in groups of4bits (maximum 
of a bits) are lost if truncation is necessary. 

b. To COMPUTATIONAL-2: All 31 bits are retained. 

c. To COMPUTATIONAL-3: All 31 bits are converted; truncation is possible when result is decimal­
point aligned if decimal field size to left of decimal point is S10 digits. 

d. To DISPLAY: (Same as 1.c. except unpacking is necessary.) 

122 Appendix 0 



2. COMPUTATIONAL-) 

a. To INDEX/COMPUTATIONAL: Extension to double precision floating-point is pE.l"formed first. The 
integer value, consisting of a maximum of 24 bits, is retained. The most significant bits are lost if 
the value 231. Zero fill takes place on the right if truncation is necessary to obtain an integer. 

b. To COMPU1ATIONAL-2: Extension to double precision floating-point; least significant 32 bits are 
zero fi lied. No loss of signifi cance. 

c. To COMPUTATIONAL-3: (Same as 2.b .. , then conversion to packed decimal. Truncation loss may 
result due to point alignment after conver'sion.) 

d. To DISPLAY:: (Same as 2. c. except unpacking is required.) 

3. COMPUTA TIONAL-2 

a. To INDEX/COMPUTATIONAL: (Same as 2.a. except extension to double precision is unnecessary. 
A maximum of 31 bits of significance is retained.) 

b. To COMPUTATIONAL-I: Least significant half (word 2) of double precision floating-point number 
is discarded. 

c. To COMPUTA TlONAL-3: (Same as 2. c. except extension to double precision is unnecessary. ) 

d. To DISPLAY: (Same as a.c. except unpacking is required.) 

4. COMPUTA TIONAL-3 

a. To INDEX/COMPUTATI~NAL: Fractional digits are discarded; maximum value retained is 231 -lor 
approximately ~. 15 x 10 • 

b. To COMPUTA TIONAL-l: Maximum of 30 decimal digi ts are converted to a double precisi on floating­
point value. The characteristic is adjusted and the value normalized. Only the most significant half 
(word 1) of the converted value is retained. 

c. To COMPUTATIONAl-2: (Same as 4.b. except the entire double precision floating-point number 
formed is used.) 

d. To DISPLAY: Unpack; no loss of accuracy. 

5. DISPLAY 

a. To INDEX/COMPUTATIONAL, COMPUTATIONAL-I, and COMPUTA TIONAL-2: Same as 4.a., 4.b., 
and 4.c., respectively, except preliminary packing is required. 

b. To COMPUTATIONAL-3: Pack; no loss of accuracy. 

intermediate Results ' 

When the aril'hmetio-expression contains only a pair of operands, intermediate results are not generated. The oper­
ands may require conversion to the internal representation suitable to the chosen mode of operation; point alignment 
procedures may be performed either before or after execution of the arithmetic operation, or both. If multiple re­
ceiving items are specified, the final result is converted and aligned as required for each result item. 

An intermediate result is generated when the arithmetic-expression contains a series of operands or arithmetic 
operations as in 

1. An ADD or SUBTRACT statement with multiple operands. 

2. A COMPUTE statement comprised of a series of arithmetic operations. 

3. Arithmetic-expressions contained within conditions in IF, PERFORM, or SEARCH statements. 

The mode of computation remains the same when the operands and result are all of the same USAGE, requiring 
possible additional instructions only for point alignment and added precision, when required. However, with 
multiple operands, a change in the mode of computation is required if there is different USAGE. Such a change 
in mode requires conversion of the intermediate result to ,the proper USAGE. 

Appendi x D 123 



Decimal Scalin& of Intermediate Results 

The following abbreviations are used in discussion of the compiler algorithms for determining the number of integers 
and decimal place composing the intermediate result in the three modes of operation. 

Ope 1 

Op.2 

IR 

11, 12, I 

D1, D2, D 

D max 

First operand in arithmetic statement. 

Second operand in arithmetic statement. Specifically, for DIVIDE (I), the divisor and for 
exponentiation, the exponent. 

In termed i ate resu It. 

Number of integer places in the Ope 1, Ope 2, and IR, respectively. 

Number of decimal (fractional) places in Ope 1, Ope 2, and IR, respectively. 

Maximum number of decimal (fractional) places defined for any operand or receiving field. 

COMPUTATIONAL (lillll" I ..... r ..... ) 

All operations are carried out in single precision arithmetic when both Ope 1 and Ope 2 are binary (i. e., USAGE 
COMPUTATIONAL). Thus the maximum value of IR is 231 - 1, maximum value of I is 10, and 0 is always zero. 

COMPUTATIONAL-l, COMPUTATIONAL-2 (fluting-Paint ..... -Eit ... r Sinll. or Doubl. Precision) 

If both Ope 1 and Ope 2 are COMPUTATIONAL-lor single precision, the operation is carried out in "short" floating­
point arithmetic where up to 24 bits of precision are retained in IR. Otherwise, Il0ng" floating-point arithmetic is 
used and 56 bits of precision are retained. 

The value of I and 0 are not meaningful except during conversion to or from floating-point. 

COMPUTATIONAL-3 (Decimll M .... ) 

In this mode I + 0 consists of a maximum of 30 digits. If the value of I + 0 exceeds 30, the intermediate result must 
be computed differently to avoid the need for using more than 30 digits of precision. 

The number of integer places (I) contained in IR is obtained by determining the number of integers constituting the 
resul t produced if the arithmetic statement were performed using the worst possible values in each operand. 

1. If the operand is a data-name, the maximum value of the data-name as defined by the PICTURE \I .e., 
maximum value of PICTURE 9V99 is 9.99) is used. 

2. If the operand is an intermediate result, the maximum value that can be placed in the number of positions 
chosen for the previous arithmetic result is used. 

3. If the operation is division, the minimum nonzero value of the digit in the PICTURE for the data-name 
(i.e., minimum value for the PICTURE 9V99 is 0.01) is used as the divisor. If Op.2 is an intermediate 
result, the minimum nonzero value of the PICTURE that represents the intermediate result is used. 

The number of decimal (fractional) places contained in IR is calculated for the different arithmetic operations 
as follows: 

Operation 

ADD (+) or SUBTRACT (-) 

MULTIPLY (*) 

DIVIDE (I) 

Exponentiation (**) 

124 Appendix 0 

Number of Decimal Places 

Max (01, 02) 

01 + 02 

Max (01 - 02, 0 max) 

o max if Ope 2 is a nonintegral or a data-name, or D 1 * Ope 2 if Ope 2 is an 
integral literal 



Table D-1 illustrates the value of I and 0 carried in IR foil' the number of integer (i) and decimal (d) places obtained 
by the methods described above under these exceptional circumstances. 

Table 0-1. I and 0 Values 

Value Value of Value of Value of Value of 
i+d d i + 0 max I in IR o in IR 

:s 30 any value any value i d 

> 30 :s 0 max any vailue 30 - d d 
(truncate i) 

> 0 max :s 30 i 30 - i 
(truncate d) 

> 30 30 - 0 max D max 
(truncate i) 

In case part of the intermediiate result must be truncated lilt some time during computation, the compiler issues a 
compile-time diagnostic. 

ROUNDED Ind SIZE ERROR Options 

The USAGEs of the final result and of the receiving item determine the manner in which rounding is accomplished 
and the SIZE ERROR condifi.on is detected (see Table 0-2). In all cases, overflow conditions detected earl ier in the 
arithmetic-expression while intermediate results were being obtained or converted are also considered a SIZE ERROR. 
The overflow conditions detf~~ted during the execution of arithmetic instructions and the process or point al ignment 
for either intermediate or final results are also recognized as SIZE ERROR conditions. If the SIZE ERROR statement 
is not used and the computat'ion produces overflow, the result item receives an unpredictable value. 

Appendi x 0 125 



Table 0-2. ROUNDED and SIZE ERROR Options 

Type Final Result Receiving Item Rounding Size Error 

1 COMPUTATIONAL COMPUTA 1I0NAl None If ~ 2 31 

2 COMPUTATIONAL COMPUTA T10NAl-I None If ~ 2 31 

3 C OMPUT A TlONAl C OMPUT A T10NAl-2 None If ~ 2
31 

i 

If ~ 2 31 
or if there is 4 i COMPUTA T10NAl COMPUTA TIONAl-3 After conversion 

I to decimal left decimal overflow 
after converting 

t-··_----

5 COMPUTATIONAL-I COMPUTA TIONAl None Floating-iint overflow 
I 

I or if ~ 2 3 

I 
Floating-point overflow 6 

I 

COMPUTATIONAL-I C OMPUT A TIONAl- 1 None 

7 COMPUTATIONAL-I COMPUTATIONAl-2 None Floating-point overflow 
I 

8 COMPUTATIONAL-I COMPUTATIONAl-3 After conversion Floating-point overflow 
to decimal or if there is I eft deci-

mal overflow after con-
verting, rounding, and 

I 01 ignment --------r--
9 I COMPUTATIONAL-2 COMPUTATIONAL None Same as 5 

10 COMPUTATIONAL-2 COMPUTATIONAL-I None Same as 6 

11 COMPUTA T10NAL-2 COMPUTA TlONAL-2 None Floating-point overflow 

12 COMPUTATlONAl-2 COMPUTA T10NAL-3 After conversion Same as 8 
to decimal 

f---

13 COMPUTA TlONAL-3 COMPUTATIONAL None If ~ 2
31 

14 COMPUTA T10NAL-3 COMPUTATIONAL-l None Same as 6 

15 COMPUTATIONAL-3 COMPUTA TIONAL-2 None Same as 6 

16 COMPUTA T10NAL-3 COMPUTATIONAL-3 If point location If there is I eft decimal 
of final result is overflow after rounding 
to left of that of and a I i gnment 
receiving item 

126 Appendi x 0 



APPENDIX E. 'SORT FEATURE SAMPLE PROGRAM 

The program in Figure E-l i !lustrates the Sort feature, which sorts and adds information to records deal ing with com­
puter usage. The format of the cards to be sorted is Week, Column 1; Department, Column 2; Type-Run, Columns 3 
through 12; Program, Columns 13 through 16; Date, Columns 17 through 21; Compilation Time, Columns 22 through 
24; and Execution Time, Columns 25 through 28. . 

The ~rder of sort as specifiod by the ASCENDING KEY and DESCENDING KEY clauses is 

1. By Department, Ic.west first. 

2. By Week, lowest ~irst. 

3. By Type-Run, highest first (T before P). 

4. By Program Identification, lowest first. 

5. By Date, lowest first. 

USING CARDFILE automatically causes CARDFILE to be opened, read, passed to the SORTFILE, and closed when 
the SORT statement is execlJted. 

The sorted records are avai lable from the SORTFI LE by use of the RETURN statement during the OUTPUT PROCEDURE. 
The OUTPUT PROCEDURE (COMP-CHARGE SECTION) computes the total charge and outputs the data on tape. 

00000 
00001 
00002 
00003 
00004 
00005 
00006 
00007 
00008 
00009 
00010 
00011 
00012 
00013 
00014 
00015 
00016 
00017 
00018 
00019 
00020 
00021 
00022 
00023 
00024 
00025 
00026 
00027 
00028 
00029 
00030 
00031 
00032 
00033 
00034 
00035 
00036 

COBOL SOURCE, DIAGNOSTIC AND PROCEDURE~ LISTING 

COBOL LS 
IDENTIFICATION DIVISION. 
PROGRAM-ID. SORT-PROG. 
AUTHOR. XEROX CORPORATION. 
REMARKS. THIS PROGRAM USES THE SORT FEATURE. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. XEROX-560. 
OBJECT-COMPUTER.. XEROX-560 •. 
INPUT-oUTPUT SECTION. 
FILE-CONTROL. 

SELECT CARD-FILE ASSIGN TO CARD-READER. 
SELECT SORT-FILE. 
SELECT TAPE-FILE ASSIGN TO MAG~~TIC-TAPE. 

DATA DIVISION. 
FILE SECTION. 
SD SORT-FILE DATA RECORD SORT-REC. 

01 SORT-REC. 
02 WEEK-S PICTURE 9. 
02 DEP-S PICTURE 9. 
02 TYPE-RUN-S PICTURE A(10). 
02 PROG-S PICTURE X(4). 
02 DATE-S 'PICTURE X(5). 
02 COMP-S PICTURE 99V9. 
02 EXEC-S PICTURE 999V9. 
02 TOT-S PICTIJRE 999V9. 
02 CUARGE-S PICTURE 9999V99. 
02 FILLER PICTURE X(42). 

FD CARD-FILE LABEL RECORDS OMITTED DATA RECORD CARD-REC. 
01 CARD-REC. 

02 WEEK 
02 DEP 
02 TYPE-RUN 
02 PROG 
02 DATE 
02 COMPP 
02 EXEC 

PICTURE 9. 
PICTURE 9. 
PICTURE A(10). 
PICTURE X(4). 
PICTURE X(5). 
PICTURE 99V9. 
PICTURE 999V9. 

Figure E-1. SORT Progrcrn 

Appendix E 127 



00037 
00038 
00039 
00040 
00041 
00042 
00043 
00044 
00045 
00046 
00047 
00048 
00049 
00050 
00051 
00052 
00053 
00054 
00055 
00056 
00057 
00058 
00059 
00060 
00061 
00062 
00063 
00064 
00065 
00066 
00067 
00068 
00069 

02 TOT PICTURE 999V9. 
02 CHARGE PICTURE 9999V99. 
02 FILLER PICTURE X(42). 

FD TAPE-FILE LABEL RECORDS STANDARD DATA RECORD TAPE-REC. 
01 TAPE-REC. 

02 WEEK PICTURE 9. 
02 DEP PICTURE 9. 
02 TYPE-RUN PICTURE A(10). 
02 PROG PICTURE X(4). 
02 DATE PICTURE XeS). 
02 COMPP PICTURE 99V9. 
02 EXEC PICTURE 999V9. 
02 TOT-T PICTURE 999V9. 
02 CHARGE-T PICTURE 9999V99. 
02 FILLER PICTURE X(42). 

PROCEDURE DIVISION. 
SORT-DATA SECTION. 
SORT-PAR. 

SORT SORT-FILE ASCENDING KEY DEP-S WEEK-S DESCENDING KEY 
TYPE-RUN-S ASCENDING KEY PROG-S DATE-S USING CARD-FILE 
OUTPUT PROCEDURE COMP-CHARGE. 
STOP RUN. 

COMP-CHARGE SECTION. 
BEGIN-PAR. 

OPEN OUTPUT TAPE-FILE. 
COMPUTE-CHARGE. 

RETURN SORT-FILE INTO TAPE-REC AT END GO TO EtID-PAR. 
COMPUTE TOT-T • COMP-S + EXEC-S. 
MULTIPLY TOT-T BY 5 GIVING CHARGE-T. 
WRITE TAPE-REC. 
GO TO COMPUTE-CHARGE. 

END-PAR. 
CLOSE TAPE-FILE. 

••• NUMBER OF DIAGNOSTIC MESSAGES o ••• HIGHEST SEVERITY LEVEL o ••• 

Fi gure E-l. SORT Progrcm (cont.) 

123 Appendi x E 



APf)ENDIX F. REPORT WRITER SAMPLE PROGRAM 

Fi gure F -1 is an e)(ample of a progran using the Report Writer feature • Figure F -2 shows a ReportWritergenerated report. 

00000 
00001 
00002 
00003 
00004 
00005 
00006 
00007 
00008 
00009 
00010 
00011 
00012 
00013 
00014 
00015 
00016 
00017 
00018 
00019 
00020 
00021 
00022 
00023 
00024 
00025 
00026 
00027 
00028 
00029 
00030 
00031 
00032 
00033 
00034 
00035 
00036 
00037 
00038 
00039 
00040 
00041 
00042 
00043 
00044 
00045 
00046 
00047 
00048 
00049 
00050 
00051. 
00052 
00053 
00054 
00055 
00056 
00057 
00058 
00059 
00060 
00061 
00062 

COBOL SOURCJ~. DIAGNOSTIC AND PROCEDURE-MAP LISTING 
COBOL LS.GO 
000010 IDENTIFICATION DI:VISION. 
000020 PROGRAM-ID. REPORT-TEST-2. 

AUTHOR. XEROX CORPORATION. 
000030 REMARKS. THIS PROGRAM USES THE REPORT WRITER FEATURE. 
000040 ENVIRONMENT DIVISION. 
000050 CONFIGURATION SECTION. 

SOURCE-COMPUTER. XEROX-560. 
OBJECT-COMPUTER.XEROX-560. 

000080 INPUT-oUTPUT SECTION. 
000090 FILE-CONTROL. 
000100 SELECT IN-FILE ASSIGN TO CARD-READER. 
000110 SELECT REP-FILE ASSIGN TO P~INTER. 
000115 SELECT PRNT-FILE ASSIr.N TO PRINTER. 
000120 DATA DIVISION. 
000130 FILE SECTION. 
000140 FD IN-FILE LABEL RECORDS ARE STANDARD DATA RECORD IS IN-REC. 
000150 01 IN-REC. 
000160 02 WEEK PICTURE 9. 
000170 02 DEPP PICTURE 9. 
000180 02 TYPE-RUN PICTURE A(10). 
000190 02 PROG PICTURE X(4). 
000200 02 DATE PICTURE X(5). 
000210 02 FILLER PICTURE X(7). 
000220 02 MINUTES PICTURE 999V9. 
000230 02 CHARGE PICTURE 9999V9. 
000231 02 FILLER PICTURE X(43). 
000240 FD REP-FILE LABEL, RECORDS ARE OMITTED REPORT IS USAGE-~EPORT. 
000250 FD PRNT-FILE LABEL RECORD OMITTED DATA RECORD D-REC. 
000260 01 D-REC PICTURE X(120). 
000270 WORKING-STORAGE SECTION. 
000280 77 MONTH PICTURE X(9). 
000290 77 COUNT PICTURE 9 VALUE 1. 
000300 77 CONT PICTURE X(ll). 
000310 77 SAVE-DEP PICTURE 9 VALUE '0. 
000311 77 DEP PICTURE 9. 
000320 01 DEP-NAMES. 
000330 02 FILLER PICTURE A(ll) VALUE 'ENGINEERING'. 
000340 02 FILLER PICTURE A(ll) VALUE 'SALES'. 
000350 02 FILLER PICTURE A(ll) VALUE 'ACCOUNTING'. 
000360 01 D-NAMES REDEFINES DEP-NAMES. 
000370 02 NAME PICTURE A(ll) OCCURS 3 TIMES. 
000380 REPORT SECTION. 
000390 RD USAGE-REPORT CONTROLS ARE FINAL, DEP. WEEK, TYPE-RUN 
000400 PAGE 62 LINES HEADING 1 FIRST DETAIL 1 LAST DETAIL 39 
000410 FOOTING 57. 
000420 01 TYPE REPORT HEADING. 
000430 02 LINE 1 COLUMN 55 PICTURE A(ll) VALUE 
000440 'ABC COMPANY'. 
000450 02 LINE 2 COLUMN 45 PICTURE A(25) VALUE 
000460 'COMPUTER USAGE REPORT FOR'. 
000470 02 COLUMN 71 PICTURE X(9) SOURCE MONTH. 
000480 01 PAGE-HEAD TYPE PH NEXT GROUP PLUS 1. 
(100490 02 LINE 5 COLIDfN 48 PICTURE A (11) JUSTIFIED RIGHT 
000500 SOURCE NAME (DEP). 
000510 02 COLUMN 61 PICTURE A(11) VALUE 'DEPARTMENT'. 
000520 02 COLUMN 72 PICTURE A(II) SOURCE CONT. 
000530 02 LINE PLUS 2 COLUMN 24 PICTURE X(54) VALUE 
000540 'WEEK TYPE-RUN PROGRAM DATE MINUTES CHARGE'. 
000550 01 DET-TEST TYPE DETAIL LINE PLUS 1. 
000560 02 COLUMN 26 PICTURE 9 SOURCE WEEK GROUP INDICATE. 
000570 02 COLUMN 31 PICTURE A(10) SOURCE TYPE-Rtm GROUP INDICATE. 
000580 02 COLUMN 45 PICTURE '(4) SOURCE PROG. 

Figure F-l. Report Writer Program 

Appendi)( F 129 



00063 000590 02 COLUMN 53 JUSTIFIED RIGHT PICTURE XeS) Sf'lTJRCE nATE. 
OOOh4 000600 02 COLUMN 63 PICTURE ZZ9.9 SOURCE MINUTES. 
OOObS 000610 02 COLUMN 71 PICTURE ZZZZ.99 SOURCE CHARGE. 
00066 000620 02 PICTURE 99 SOURCE COUNT. 
00067 000630 01 DET-PROD TYPE DETAIL LINE PLUS 1. 
00068 000640 02 COLUMN 26 PICTURE 9 SOURCE WEEK GROUP INDICATE. 
00069 000650 02 COLUMN 31 PICTURE A(10) SOURCE TYPE-RUN GROUP INDICATE. 
00070 000660 02 COLUMN 4S PICTURE X(4) SOURCE PROG. 
00071 000670 02 COLUMN 53 JUSTIFIED RIGHT PICTURE XeS) SOURCE DATE. 
00072 000680 02 COLUMN 63 PICTURE ZZ9.9 SOURCE MINUTES. 
00073 000690 02 COLUMN 71 PICTURE ZZZZ.99 SOURCE CHARGE. 
00074 000700 02 PICTURE 99 SOURCE COtmT. 
00075 000710 01 TYPE CONTROL FOOTING WEEK NEXT GROUP PLUS 1. 
00076 000720 02 LINE PLUS 2 COLt~ 26 PICTURE A(13) VALUE 'TOTAL CHARr.ES'. 
00077 000730 02 COLUMN 64 PICTURE A(4) VALUE 'WEEK'. 
00078 000740 02 CHARGES COLUMN 70 PICTURE $ZZZ9.99 SUM CHARGE. 
00079 000750 02 COLUMN 80 PICTURE A(10) VALUE 'CUMULATIVE'. 
00080 000760 02 COLUMN 92 PICTURE $$$$$.99 SUM CHARGE RESET ON DEP. 
00081 000770 02 LINE PLUS 2 COLUMN 24 PICTURE X(77) VALUE ALL '-'. 
00082 000780 01 TYPE CF DEP. 
00083 000790 02 LINE 46 COLUMN 23 PICTURE A(11) JUSTIFIED RIGHT SOURCE 
00084 000800 NAME (DEP). 
00085 000810 02 COLUMN 34 PICTURE A(19) VALUE' DEPARTMENT SUMMARY'. 
00086 000820 02 LINE PLUS 2 COLUMN 38 PICTURE A(35) VALUE 
00087 000830 'NUMBER RUNS TIME-IN-MIN COST'. 
00088 000840 02 LINE PLUS 2 COLUMN 25 PICTURE A(7) VALUE 'TESTING'. 
00089 000850 02 COLUMN 42 PICTURE Z99 
00090 000860 SUM COUNT UPON DET-TEST. 
00091 000870 02 COLUMN 54 PICTURE ZZZZZ.9 SUM MINUTES UPON DET-TEST. 
00092 000880 02 COLUMN 66 PICTURE $ZZZZZ.99 SUM CHARGE UPON DET-TEST. 
00093 000890 02 LINE PLUS 1 COLUMN 25 PICTURE A(lO) VALUE 'PRODUCTION'. 
00094 000900 02 COLUMN 42 PICTURE ZZ9 SUM COUNT UPON DET-PROD. 
00095 000910 02 COLUMN 54 PICTURE ZZZZZ.9 SUM MINUTES UPON DET-PROD. 
00096 000920 02 COLUMN 66 PICTURE $ZZZZZ.99 SUM CHARGE UPON DET-PROD. 
00097 000930 02 LINE PLUS 1 COLUMN 25 PICTURE A(5) VALUE 'TOTAL'. 
00098 000940 02 COLUMN 42 PICTURE ZZ9 SUM COUNT. 
00099 000950 02 COLUMN 54 PICTURE ZZZZZ.9 SUM MINUTES. 
00100 000960 02 CHARGE-TOT COLUMN 66 PICTURE $ZZZZZ.99 SUM CHARGES. 
00101 000970 01 TYPE CF FINAL LINE 56. 
00102 000980 02 COLUMN 24 PICTURE A(16) VALUE 
00103 000990 'TOTAL CHARGE FOR'. . 
00104 001000 02 COLUMN 41 PICTURE A(9) SOURCE MONTH. 
00105 001010 02 COLUMN 52 PICTURE $ZZZZZZ.99 SUM CHARGE-TOT. 
00106 001020 01 TYPE REPORT FOOTING LINE 60 COLUMN 58 
00107 001030 PICTURE X(l3) VALUE 'END OF REPORT' . 
00108 001040 01 TYPE PAGE FOOTING. 
00109 001050 02 LINE 58 COLUMN 61 PICTURE A(4) VALUE 'PAGE'. 
00110 001060 02 COLUMN 66 PICTURE 9 SOURCE PAGE-COUNTER. 
00111 001070 PROCEDURE DIVISION. 
00112 00]080 DECLARATlVES. 
00113 001090 INSERT SECTION. USE BEFORE REPORTING PAGE-HEAD. 
00114 001100 PAR. 
00115 001110 IF DEP - SAVE-DEP MOVE '(CONTINUED)' TO CONT ELSE 
00116 001120 MOVE SPACES TO CONT. MOVE DEP TO SAVE-DEP. 
00117 001130 END DECLARATIVES. 
00118 001140 REP SECTION. 
00119 001150 OPEN-PAR. 
00120 001160 OPEN INPUT IN-FILE OUTPUT REP-FILE PRNT-FILE. 
00121 001161 READ IN-FILE AT END GO TO END-PAR. MOVE DEPP TO DEP. 
00122 001162 MOVE TYPE-RUN TO MONTH. 
00123 001170 MOVE ' BEGIN REPORT-TEST-2 TEST ' TO D-REC WRITE D-REC. 
00124 001180 INITIATE USAGE-REPORT. 
00125 001190 READ-PAR. READ IN-FILE AT END GO TO END-PAR. MOVE DEPP TO DEP. 
00126 001200 IF TYPE-RUN - 'PRODUCTION' GENERATE DET-PROD ELSE 
00127 001210 GENERATE DET-TEST. 
00128 001220 GO TO READ-PAR. 
00129 001230 END-PAR. TERMINATE USAGE-REPORT. 
00130 001240 MOVE ' END OF REPORT-TEST-2 TEST' TO D-REC WRITE D-REC. 
00131 001250 CLOSE IN-FILE REP-FILE PRNT-FILE. STOP RUN. 

*** NUMBER OF DIAGNOSTIC MESSAGES 0 *** HIGHEST SEVERITY LEVEL *** 
--------------------~ Figure F-l. Report Writer Progrcm (cont.) 

130 Appendix F 



." 

ABC COMPANY 
COMPUTER USAGE REPORT FOR JANUARY 

ENGINEERING DEPARTMENT 

WEEK TYPE-RUN PROGRAM DATE MINUTES CHAllGE 

1 TESTING AllO 01-03 2.4 12.00 
A120 01-04 12.8 64.00 
C612 01-04 2.6 13.00 

1 PRODUCTION AllO 01-05 2.5 12.50 
Cll8 01-05 50.7 253.50 

TOTAL CHARGES WEEK $ 355.00 CUMULATIVE $355.00 

------------._--------_._------------------------------------------------------
2 TESTING 

2 PRODUC:TION 

TOTAL CHARGES 

3 TESTING 

3 PRODUCTION 

A211 
A211 
BIll 
B214 
B214 
C812 
A110 
A112 
C118 
C518 
C526 

A212 
B411 
B411 
C809 
A110 

01-08 
01-10 
01-08 
01-11 
01-12 
01-09 
01-11 
01-09 
01-12 
01-08 
01-11 

01-18 
01-15 
01-15 
01-19 
01-18 

PAGE 1 

1.6 
1.6 
5.4 
2.0 
2.0 
3.5 
2.4 
1.1 

20.0 
22.5 
17.9 

WEEK 

1.7 
1.9 
1.9 
1.4 
2.4 

8.00 
8.00 

27.00 
10.00 
10.00 
17.50 
12.00 
5.50 

100.00 
112.50 
89.50 

$ 400.00 

8.50 
9.50 
9.50 
7.00 

12.00 

Figure F-2. Report Writer Generated Report 

CUMULATIVE $755.00 

Appendix F 131 



ENGINEERING DEPARTMENT (CONTINUED) 

WEEK TYPE-RUN PROGRAM DATE MINUTES CHARGE 

3 PRODUCTION A112 01-19 1.1 5.50 
B425 01-18 80.3 401.50 

TOTAL CHARGES WEEK $ 453.50 CUMULATIVE $1208.50 

4 TESTING Bll1 
C812 
C911 

01-22 
01-24 
01-26 

5.4 
3.5 
4.3 

27.00 
17.50 
21.50 

TOTAL CHARGES WEEK $ 66.00 CUMULATIVE $1274.50 

5 TESTING B411 01-30 1.9 9.50 
C911 01-29 3.8 19.00 

5 PRODUCTION All0 01-29 8.5 42.50 
BI00 01-30 510.7 2553.50 
C812 01-30 76.9 384.50 

TOTAL CHARGES WEEK $3009.00 

ENGINEERING DEPARTMENT SUMMARY 

NUMBER RUNS TIME-IN-MIN COST 

TESTING 
PRODUCTION 
T9TAL 

18 
13 
31 

59.7 
797.0 
856.7 

$ 298.50 
$ 3985.00 
$ 4283.50 

PAGE 2 

CUMULATIVE 

Figure F-2. Report Writer Generated Report (cont.) 

132 Appendix F 

$4283.50 



WE!IC TYPE-RUN 

1 PRODU(:TION 

TOTAL CHARGES 

2 PRODUCTION 

TOTAL CHARGES 

3 PRODUCTION 

TOTAL CHARGES 

4 PRODUCTION 

TOTAL CHARGl!S 

5 PRODUctION 

TOTAL CHARGES 

ACCOUNTING DEPARTMENT 

P1t.OG1Wt . DATI 

XI00 
X150 

XI00 
X150 

XI00 
XlS0 

XI00 
X150 

XI00 
X150 

01-05 
01-05 

01-12 
01-12 

01-19 
01-19 

01-26 
01-26 

01-31 
01-31 

MINUTES CHARGE 

52.3 
27.1 

261.50 
135.50 

WEEK $ 397.00 CUMULATIVE $397.00 

52.0 
27.0 

260.00 
135.00 

WEEK $ 395.00 CUMULATIVE $792.00 

53.5 
26.8 

267.50 
134.00 

WEEK $ 401.50 CUMULATIVE $1193.50 

52.3 
26.6 

261.50 
133.00 

WEEK $ 394.50 CUMULATIVE $1588.00 

52.8 
26.9 

264.00 
134.50 

WEEK $ 398.50 CUMULATIVE $1986.50 

ACCOUNTING DEPARTMENT SUMMARY 

TESTING 
PRODUCTION 
TOTAL 

NUMBER RUNS TIME-IN-MIN COST 

00 
10 
10 

.0 
397.3 
397.3 

$ 6270.00 

$ .00 
$ 1986.50 
$ 1986.50 

PAGE 3 

END e)l" REPORT 

Figure F-2. Report Writer Generated Report (cont.) 

Appendix F 133 





INDEX 

Note: For each entry in this indux, the number of the most significant page is listed first. Any pages thereafter are listed in 
numeri co I sequence. 

A 
abbrev iated re lations, 51 
ACCEPT statement, 55 
ACCESS clause, 19 
ACTUAL KEY clause, 19 
ACTUAL KEY data item, 53-55 
ADD statement, 57 
ADVANCING option, 54 
AFTER phrase, 66 
algebraic signs, 6 
ALL option, 64 
ALL PROCEDURES phrase, 111 
ALL REFERENCED OF phrase, 112! 
alphabetic (alpha-type) data category, 32 
alphabetic elementary item, 27 
alphanumeric 

(an-type) data category, 32 
edited (ae-type) data category, 32 
elementary item, 28 
moves, 68 

ALTER statement, 76,74 
arithmetic statements, 56,44-
ari thmeti c-expression, 45,46,48 
arithmetic-expressions, evaluation of, 122 
ASCENDING option, 101 
ASSIGN clause, 18 
AT END 

B 

clause, 53-
option, 44-
statement, 47 

BEFORE option, 86 
BEFORE/AFTER phrase, 65,66 
binary elementary item, 29 
BLANK WHEN ZERO clause, 38 
BLOCK CONTAINS clause, 25 

c 
CALL statement, lOS, 104 
character set, 1 
characters in a PICTURE clause, 3:7 
CHARACTERS phraM, 65,66 
c lass tests, 50,49 
C LOCK-U NITS option, 20 
CLOSE statement, 54 
COBOL library, 102 
CODE clause, 88 
COLUMN NUMBER clause, 94 
COMMON-STORAGE SECTION, 24 

compile time switch, 110 
compi ler-directing statements, 85,44-
compound conditions, 46,48 
COMPUTATIONAL, 122, 123,38,47,55 
COMPUTE statement, 63,56 
condition name item, 30 
condition statement, 44-
condition-name, 2 

option, 20 
rules, 39 
test, 49 

conditional statements, 47 
CONFIGURATION SECTION, 15 
connectives, 4 
consecutive fi Ie organization, 11 
continuation area, 9 
CONTROL 

clause, 89 
FOOTING specifTcation, 92 
groups, 87 
HEADING specification, 92 
HEADING FINAL specification, 93 
HEADING/FOOTING specification, 93 

COPY statement, 86,31, 101 
CORRESPONDING option, 70,53,56 
COUNT IN phrase, 72 
COUNTER IN phrase, 73 
counters, 88 
CURRENC;:Y SIGN clause, 17 

D 
data/DATA 

categories, 32 
description,S 
description entries, 27 
description entries listing, 28 
DIVISION, 22,87 
DIVISION entries, 10 
DIVISION statements, 99 
manipulation statements, 6'­
RECORDS clause, 26 

data-name, 2 
DATE-COMPILED paragraph, 14 
DEBUG-ITEM, 110-112,4 

reg ister fie Ids, 112 
debugging 

facilities, 109 
lines, 112 

decimal scaling of intermediate results, 124 
DECIMAL-POINT clause, 17 
DEC LARA TIVES 

header, 111 
section, 26,45,53 

Index 135 



Note: For each entry in this index, the number of the most signIfIcant page is listed first. Any pages thereafter arc listed in 
numerical sequence. 

DELIMITED BY phrase, 71-73 
DELIMITER IN phrase, 72,73 
DEPENDING ON 

option, 40 
statement, 47 

DESCENDING option, 100 
DETAIL report group, 92,25 
DISPLAY 

mode, 38 
statement, 55 

D IVIDE statement, 62,56 
division format, 10 

E 
editing, 69 
ELSE option, 80 
END OF REEL/UNIT option, 20 
ENTER statement, 108 
environment division, 15 
ENVIRONMENT DIVISION statements, 99 
evaluation of arithmetic-expressions, 122 
EXAMINE statement, 63 
EXHIBIT statement, 114 
exception branches, 52 
EX IT statement, 80,75 
EXIT PROGRAM statement, 106 

F 
figurative-constants, 3 
file 

access, 11 
concept, 5 
description, 25 
handli ng methods, 12 
labels, 12 
manipulation statements, 13 
organization, 11 
section, 88,22 

FILE-CONTROL paragraph, 17 
FILE-LIMITS clause, 19 
FILLER (reserved word), 27 
fixed data-names, 3 
floating-point elementary item, 30 
footing group, 25 
format 

control, 9 
notation, 8 

FROM option, 54 

G 
G E N ERA TE statement, 97,25 
GIVING option, 56,99, 101 

136 Index 

GO TO statement, 75,47,74 
GROUP INDICATE clause, 95 
group Item, 27 

H 
heading group, 25 

I and D values, 125 
1-0 CONTROL paragraph, 20 
identification 

area, 9 
division, 14 

IF statement, 80,43,47,75 
imperative statement, 44 
implementor-names, 18 
implied 

log i ca I connectors, 52 
operators, 52 
re lationa I-operators, 51 
subjects, 51 

INDEX/COMPUTATIONAL usage, 55 
index elementary item, 30 
INDEXED BY clause, 40,83 
indexing, 7 
initial values, 104 

of tables, 6 
INITIA TE statement, 97 
INPUT 

option, 53 
PROCEDURE option, 101, 100 

INPUT-OUTPUT SECTION, environmental division, 17 
Input/output 

processing, 11 
processing summary, 12 
statemenh, 52 

insertion characters, 33 
INSPECT statement, 64 
INT key-In, 20 
Inter-Program Communication, 104 
intennedlate results, 123 

decimal scaling of, 124 
INTO option, 53 
INVALID KEY, 47 

clause, 53 
condition, 54 
option, 44 

J 
JUSTIFIED clause, 38 



Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in 
numerical sequence. 

I 
KEY IS option, 41 
key words, 4 
keyed fi Ie organization, 11 

L 
LABEL RECORDS dause, 26 
LEADING option, 64 
level-numbers, 5 
LINE NUMBER clause, 94 
LINE-COUNTER, 4 

reg ister, 94 
linkage 

records, 104 
section, 104,24 

Uteral, 2 
lOCK option, 54 
logical operators, 47 

.. 
matched pairs, 59 
MOVE statement, 67 
MULTIPLE 

clause, 18 
FILE clause, 21 

MULTIPLY statement, 56,60 

N 
names, special, 4 
nested 

conditional statements, 52,80 
IF statements, 80 
PERFORM statement, 76 

NEXT GROUP clause, 94 
NEXT PAGE, 94 
NO REWIND option, 53,54 
noncontiguous 

linkage storage, 104 
working-storage, 24 

nonnumeric items, 50 
NOTE statement, 85 
number representation, 122 
numeric 

(numeric-type) data category, :32 
conversion, 122 
edited (ne-type) data category, 33 
edited elementary item, 29 
items, 50 
moves, 69 

o 
oblect time switch, 110 
OBJECT-COMPUTER paragraph, 16 
OCCURS clause, 40,27, 111 
OCCURS DEPENDING ON clause, 26 
OMITTED option, 26 
ON 

data-name, 21 
OVERFLOW phrase, 72,74 
SIZE ERROR, 47 

OPEN 
FILE, 12 
INPUT-OUTPUT, 54 
OUTPUT statement, 53,54 
statement, 52, 54 

optional words, 4 
OUTPUT PROCEDURE option, 101, 100 

p 

packed decimal elementary item, 29 
PAGE 

HEADING/FOOTING, 92,94 
LIMIT clause, 90 

PAGE-COUNTER, 4 
page/overflow conditions, 86 
pairs of groups, 58 
paragraph and section naming, 44-
paragraph format, 10 
paragraphs, 44-
PERFORM statement, 47,74,76 
permissible 

comparisons, 51 
moves, 70 

PIC/PICTURE clause, 27,31 
editing, 35 

POINTER phrase, 72-74 
priority 

segmentation, 109 
segments, 75 

PROCEDURE DIVISION, 44-,97 
declarations, 10 
elements, 44 
header, 105 
section, 16 
statements, 100 
structure, 45 

procedure-name, 2 
PROCESSING clause, 19 
program identification, 10 
PROGRAM-IO paragraph, 14 

Q 

qualification of names, 6 

Index 137 



Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in 
numerical sequence. 

R 
random file access, 12 
READ statement, 53,44 
record concept, 5 
RECORD CONTAINS clause, 26 
record description structure, 24 
REDEFINES clause, 27,30 
REE L option, 54 
reference format, 9 
reference to unnamed procedures, 75 
registers, special, 4 
relational-operators, 47,52 
re lative fi Ie organization, 11 
RELEASE statement, 101 
REMARKS paragraph, 14 
RENAMES clause, 6,42 
replacement characters, 34 
REPLACING 

option, 66 
phrase, 102 

report/REPORT 
clause, 27 
description entry, 24,88 
group description entry, 25 
HEADING group, 92 
SECTION, 88,24,27 
writer, 86 

RERUN clause, 20 
RESERVE clause, 19 
RESERVED option, 53 
reserved words, 4, 115 
RESET clause, 95 . 
RETURN statement, 44, 101 
ROUNDED option, 56,59,62, 125 
rounding, 123 
rounding or truncation of calculations, 57 

s 
SAME AREA clause, 21 
sample problem, 116 
SEARCH statement, 82,44,47 
section format, 10 
sections, 44 
SEEK statement, 55 
SEGMENT-LIMIT clause, 16 
segmentation, 109 
SELECT sentence, 18 
sentences, 44 
sequence control statements, 74 
sequence number area, 9 
sequential access, 11 
sequentia I file access, 12 
SET statement, 83 
sign test, 49 
SIZE ERROR option, 44,57,59,125,126 
SIZE phrase, 70 
slack bytes, 120 

138 Index 

sort/SORT 
feature, 99 
keys, 100 
sample program, 127 
statement, 100 

SOURCE clause, 95 
SOURCE-COMPUTER paragraph, 15 
special 

names, 4 
reg isters, 4 

SPECIAL-NAMES paragraph, 16,20 
STANDARD option, 26 
STOP statement, 80,75 
STRING statement, 71 
Subcompile feature, 106 
IUbscripting, 7 
SUBTRACT statement, 56,59 
SUM clause, 96 
switch-status test, 50 
SY NCHRONIZED clause, 38 

T 
table-handling statements, 82 
TALLYING phrase, 64,65,74 
TERMINA TE statement, 98 
TIMES option, 78 
TRAC E statement, 113 
TYPE clause, 92 
TYPE DETAIL report group, 92 

u 
uniqueness of data reference, 6 
UNIT option, 54 
unnamed procedures, reference to, 75 
UNSTRING statement, 72 
UNTIL option, 78 
USAGE 

clause, 36,27 
IS DISPLAY, 55,64 
IS INDEX clause, 38 

USE 
BEFORE REPORTING statement, 98 
FOR DEBUGGING statement, 111 
procedure, 26 
statement, 25, 85 

USING option/phrase, 99, 105, 106 

v 
VALUE clause, 38,6 
VALUE 

IS clause, 27 
OF clause, 26 

VARYING option, 77,83 



Noti!:_ For each entry in this inde)(:, the number of the most significant page is listed first. Any pages thereafter are listed in 
numerical sequence. 

w 
WITH DEBUGGING MODE clause l • 110 
words, 2 

key, 4 
optional, 4 
reserved, 4 

WORKING-STORAGE SECTION, 24 
WRITE statement, 54,44 

l 
zoned decimal elementary item, 29 

Index 139 



XEROX 

Reader Comment Form 
We wC:IIuld appreciate yOur comments a"ld sugg .. tions for improving this publication 

Publication No. IR ... L· .. ·t"· I Current Date 

-
How did you use thIS publication' Is the material presented effectively7 

o Learning o Installing 0 Sales o Fully Covered DWell DWell organ lIed o Clear o Reference o Maintaining o Operating 
Illustrated 

What IS your overall rating of this publication? What is your occupation7 

o Very Good o Fair o Very Poor 

LJ Good o Poor 

Your other comments mliy be entered here. Please be speciffic and give page. column. and line number references where 
applicable. To report e"o,rs. plea.e use the Xerole Software Improvement or Difficultv Report (11881 instead of this form. 

L------- ---

...... 

1-. 

~. 

1-. 

....-" 

~. 

~. 

.-

~-. 

~ 

i Your name It "eturn Address 

t 
Thar* YOU For Your tnterest ,fold & fasten as shown on back. no postage needed 'f maIled In lJ SA) 



PLEASE FOLD AND TAPE-
NOTE: U. S. Postll Service will not deliver stapled forms 

I II II I 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 59153 LOS ANGELES,CA 90046 

POSTAGE WILL BE PAID BV ADDRESSEE 

HONEYWELL INFORMATION SYSTEMS 
5260 W. CENTURY BOULEVARD 
LOS ANGE LES, CA 90046 

ATTN: PROGRAMMING PUBLICATIONS 

Honeywell 

NO POSTAGE 
NECESSARV 
IF MAILED 

IN THE 
UNITED STATES 

'" z 
:; 

" z o 
..I 
C ... 
:l 
U 

.' I I 

I 
I I 

I ; 
~~ 

Yo 

! 

~ 
~o 
I c 
! c 
Ie 
~ .... 

, , 
I 
I 
I 
I 
I 
I 
I 
I 



Honeywell Information Systems 
In the U.S.A.: 200 Smitl1 Street. MS 486. Waltham. Massachusetts 02154 
In Canada: 2025 Sheppard Avenue East. Willowdale. Ontario M2J 1 W5 

In Mexico: Avenida Nuevo Leon 250. Mexico 11. D.F. 

24779, 6C1079, Printed in U.S.A. XJ78, Rev. 0 


	00000
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	replyA
	replyB
	xBack

