Xerox ANS COBOL (for BPM/CP-V)

erox 550/ 560 and Sigma 5-9 Computers

Operations
Reference Manual

FROXEROXEROXEROXEROXEROXEROX
DXEROXEROXEROXEROXEROXEROXERC
ROXEROXEROXEROXEROXEROXEROXER(
ROXEROXEROXEROXEROXEROXEROXE
EROXEROXEROXEROXEROXEROXEROXE
IXEROXEROXEROXEROXEROXEROXERO
OXEROXEROXEROXEROXEROXEROXERC
ROXEROXEROXEROXEROXEROXEROXER
ROXEROXEROXEROXEROXEROXEROXE
KEROXEROXEROXEROXEROXEROXEROX
XEROXEROXEROXEROXEROXEROXERO
LOXEROXEROXEROXEROXEROXEROXER(
ROXEROXEROXEROXEROXEROXEROXETs
FROXEROXEROXEROXEROXEROXEROXE
XEROXEROXEROXEROXEROXEROXEROX
OXEROXEROXEROXEROXEROXEROXERC
OXEROXEROXEROXEROXEROXEROXER
ROXEROXEROXEROXEFROXEROXEROXE
EROXEROXEROXEROXEROXEROXEROXI

Xerox ANS COBOL (for BPM/CP-V]

Xerox 550/560 and Sigma 5-9 Computers

Operations
Reference Manual

90 15 01G

May 1976

rporation, 1973, 1975

XEROX

File No.: 1X23
XJ80, Rev, 0
Printed in U.S.A,

REVISION

This publication documents the EQ7 version of the Xerox ANS COBOL compiler for BPM and CP~V. This is the
G edition of the manual; it is identical to the F edition (90 15 O1F, dated September 1973) including all revision

packages (90 15 01F-1, 3/74; -2, 5/74; and =3, 6/75), and serves to consolidate them. Vertical lines in the outer
margin indicate changes made in the most recent revision,

RELATED PUBLICATIONS

Title Publication No.
Xerox 550 Computer/Reference Manual , 90 30 77
Xerox 560 Computer/Reference Manual 90 30 76
Xerox Sigma 5 Co‘mputer/Reference ‘Manual 90 09 59
Xerox Sigma 6 Computer/Reference Manual 90 17 13
Xerox Sigma 7 Computer/Reference Manual ' 90 09 50
Xerox Sigma 8 Computer/Reference Manual 90 17 49
Xerox Sigma 9 Computer/Reference Manual 90 17 33
Xerox Batch Processing Monitor (BPM)/BP,RT Reference Manual 90 09 54
Xerox Batch Processing Monitor (BPM)/OPS Reference Manual 90 11 98
Xerox Control Program-Five (CP-V)/TS Reference Manual 90 09 07
Xerox Control Program-Five (CP-V)/OPS Reference Manual 90 16 75
Xerox Control Program=Five (CP-V)/TS User's Guide . 90 16 92
Xerox Control Program-Five (CP-V)/SM Reference Manual 90 16 74
Xerox ANS COBOL (for BPM/CP-V)/LN Reference Manual 90 15 00
Xerox ANS COBOL On~-Line Debugger Reference Manual 90 30 60
Xerox Sort and Merge (for BPM/CP-V)/Reference Manual 90 11 99
Xerox Data Management System (DMS) (for BPM/CP-V)/Reference Manual 90 17 38
Xerox Extended Data Management System (EDMS)/Reference Manual 90 30 12

Manual Content Codes: BP — batch processing, LN — language, OPS — operations, RP — remote processing,
RT — real-time, SM — system management, SP — system programming, TP — transaction-
processing, TS — time=sharing, UT — utilities.

The specifications of the software system described in this publication are subject to change without notice. The availability or performance of some features

may depend on a specific configuration of equipment such as additional tape units or larger memory . Customersshould consult their Xerox sales representative
for details.

CONTENTS

PREFACE

1.

PROGRAMMING HINTS

Description of Numeric Data Items

Examples of a Decima! Add
Table Handling
OCCURS DEPENDING ON Clause _
Sort
1/0 Considerations
Report Writer
COBOL/FORTRAN Interfaces

COMPILER

Compilation Initiation
BO (Binary Object Deck)
CS(name) (COMMON-STORAGE SECTION) ___
DEBUG (Debugging Statements)
DIAG (Trivial Diagnostics)
DMAP (Data Division Map)
DQ (Double Quotation Mark)
CO (Compile and Ru~)
LIB (Library Accounts)
LO (Object Listing)
LS (Source Listing)
MAIN (Main Program)
MAPS (Both Data Division Map and

Procedure Division Map)
PMAP (Procedure Division Map) — ..
SEG (Priority Segments)
SEQCHK (Sequence Check)
SO (Source Output)
SRTx (Co-Resident Sort)
SUB (Subprogram)
SYN (Syntax Checking)
TEST (On=-Line Debugger)
XREF (Cross=Reference Listing)

INTER-PROGRAM COMMUNICATION

Introduction
Rules for Usage

OBJECT PROGRAM

Segmented Object Programs
Object Program Structure

PROGRAM COMPILATION AND EXECUTION

Compilation of Large Source Programs
COBOL Work Files
COBOL Library on Tape
Print File Handling

N0 00V OUONNNNNO o WWNNNDN—

—_—

12

12
12
12
13
13
13
13
13

14

14
14

16
16

18

18
8
18
18

Deck Structures 20
Basic Setups 20
Segmentation Feature 25
Inter-Program Communication (Subcompile

Feature) 31
ENTER Stotement Feature 37
Co=Resident Sort Feature) e 40
Debug Module Object Time Switch __________ 48
6. XEROX ANS COBOL COMPILER

DIAGNOSTICS 49

7. RUN-TIME SUBROUTINES, SERVICES AND
DIAGNOSTICS 65

Library Subroutines 65
Subprogram Calls 68
Special Interfaces to Hardware and

Monitor Services 68

COBOL Error Codes 72

INDEX 83
APPENDIX
REFERENCE TABLES 75

Standard Symbols and Codes 75

Standard Character Sets 75

Control Codes 75

Special Code Properties 75

Standard 8-Bit Computer Codes (EBCDIC) 76

Standard 7-Bit Communication Codes

(ANSCI! - 76

Standard Symbol-Code Correspondences 77

Hexadecimal Arithmetic 81
Addition Table 81
Multiplication Table 81

FIGURES
1. Sample Data Division Map Listing .] 8
2. Sample (Partial) Object Listing 10
3. Sample Source Program and Procedure
Division Map Listing n
4. Sample Cross~Reference Listing 13

eee
1"

13.

14,

Standard Control Section of g Root
Segment Module 17

Load Module Map 17

Basic Setup = Compilation Only 20

Basic Setup — Compilation and Execution 21
Basic Setup — Execution with Object Deck 24
Segmentation Feature — Compilation and

Execution 25
Segmentotion Feature — Load from BO File,

Execute, and Punch BOFile 27
Segmentation Feature — Execution from

Object Decks 29
Inter~Program Communication — Compilation

of Main or Calling Program 32

Inter-Program Communication — Compilation
of Subprogram or Called Program 33

Inter=Program Communication — Execution

with Object Decks 34

16.

]7'

19.

20.

2.

3.

Inter=Program Communication ~ Compilation
and Execution 35

ENTER Statement Feature — Compilation
and Execution - 37

EMNTER Statement Feature — Execution with
Object Decks 39

Co=~Resident Sort Feature — Compilation and

Execution (Sequential Sort Technique) 40

Co~Resident Feature — Compilation and
Execution (Random Sort Technique) — 42

TABLES

Xerox Buffered Line Printers Models 7440/7445

ond 7446 Vertical=Format Control Codes 19

Xerox ANS COBOL Compiler Diagnostics . 49
COBOL Object Program Subroutines 65

COBOL Error Codes 72

PREFACE

Thismanual describes the operations and characteristics of the Xerox ANS COBOL system (under BPM and CP-V)
including the compiler, library subroutines, and pertinent compiler and run~time diagnostics.

It is assumed that the reader has a good working knowledge of the COBOL. language as described in the Xerox ANS

COBOL (for BPM/CP-V) Reference Manual and of the operation of the Xerox Control Program~Five and/or the Xerox
Batch Processing Monitor,

1. PROGRAMMING HINTS

This chapter provides a number of useful hints for improving the efficiency of object programs.

Description of Numeric Data Items

Avoid Mixed-Mode Arithmetic Statements, An arithmetic statement involving data items of more than one mode
(binary, decimal, or floating) requires one or more relatively expensive conversions of the operands or the result.
These conversions, which require run-time subroutines, are not needed when mixed-mode arithmetic statements
are avoided.

Use Binary Rather Than Decimal Subscripts. The COBOL compiler requires that all subscripts be binary. The costly
conversions of subscripts can be avoided if they are defined as binary rather than decimal,

Minimize Exponentiation. Exponentiation involves floating=point calculation mode even when there are no floating -
point operands. .

Use Binary Calculations if Possible. Binary calculations are faster than decimal or floating=point calculations ud
much faster than mixed mode, However, since binary items cannot contain a decimal point, their use is [imited.
If counters (i.e., input and output record counters) and subscripts are defined as binary data items, and other
numeric data items as decimal, the number of costly conversions will generally be minimized without loss of the
efficiencies of binary ar’rhmetic,

Avoid Using Decimal Items Exceeding 15 Digits. Of the several ways to describe decimal items in COBOL, some

permit the compiler to generate fewer instructions than others, For example, a data item containing 16, 17, or
18 decimal digits may require a double precision subroutine amounting to over 20 extra instructions not needed with
items of 15 digits or less.,

Specify Odd-Size Decimal Display Fields, Sigma pack and unpack instructions do not operate on even-sized dec-
imal display fields, The compiler moves an even-sized display field to a work area in order to append a high-order
zero, creating an odd=-size field at a cost of three to six machine instructions. These extra instructions can be saved
each time the field is referenced if it is odd-size to begin with,

Specify Packed Decimal if Possible. Packed decimal items occupy less space than decimal display items of the same
size, Besides, they don't have to be packed and unpacked when used. Packed decimal, therefore, results in
fewer instructions being generated for a given arithmefic statement,

Specify Signed Rather Than Unsigned Decimal Display Fields. The compiler must generate three instructions fo get
rid of the sign when a decimal field is described as unsigned, This applies each time the field is stored into.

To summarize, a decimal data item should be less than 16 digits long and have an odd number of digits. It should
be described with a sign, and as packed decimal rather than decimal display.

Examples of a Decimal Add

Example 1:

77 A PIC 99.
77 B PIC 99.

ADD A TO B,

Seventeen instructions will be generated.

Programming Hints

2

Example 2:

77 A PIC S999 USAGE 1S COMP-3.
77 B PIC $999 USAGE IS COMP-3.

ADD ATO B.

Three instructions will be generated,

Table Handling

Use indexes rather than subscripts for referencing data items described with or subordinate to one or more OCCURS
clauses. With a subscript, the displacement into the table must be calculated (subscript x entry size — entry size)
each time the table item is referenced, With indexing, this calculation is made only once when the index is set.

In addition, when a table is described with an INDEXED BY clause, the SEARCH statement can be used on that
table, and the search routine generated by the compiler will be more efficient than one written by the programmer,

Subscripts, if used, should be in binary since decimal subscripts are converted to binary anyway.,

OCCURS DEPENDING ON Clause

Keep the use of this clause to a minimum. The OCCURS DEPENDING ON clause can be used effectively with
variable length records to reduce the physical size of files and save I/O time, However, the clause will increase
execution time because any reference to data item with an OCCURS DEPENDING ON clause requires that its size
be calculated each time it is referenced, On balance, therefore, it is recommended that the use of OCCURS
DEPENDING ON be kept to a minimum,

Sort

If a program has an input or output procedure, or both, either the co-resident or the linked sort can be re-
quested. The co-resident sort, which occupies core memory at the same time as the COBOL program, can signif-
icantly reduce the number of input/output operations and, hence, run-time, It should, therefore, be used when
core memory is available, '

When linked sort is used, the RELEASE statements in the COBOL input procedure build a ftle as an interface for the
linked sort. When the input procedure is finished, sort replaces the COBOL program in memory (i.e., the COBOL
object program is swapped out), and sorts the file created by the input procedure into a new file, whereupon the
COBOL program is brought back into core memory, replacing the sort. The RETURN statements of the output
procedure read the sorted file.

Co-resident sort avoids superfiuous reading and writing of the two files used by sort, When the SORT verb is en~
countered, control is transferred to sort. Then, when sort wants to read a record, it gives control to the COBOL
input procedure, which provides a record through the use of the RELEASE statement. When sort wants to write the
sorted file, it gives control to the COBOL output procedure, which accepts the sorted record with RETURN state-
ments, Thus, unnecessary input/output is avoided.

1/0 Considerations

Block Sequential Files. Blocking sequential files can shorten 1/O and CPU times by reducing the number of physical
records and increasing their size. It lessens start/stop times for tapes and compute time for setting up the 1/O oper-
ations. A block size of 5000 to 7000 bytes is recommended.

Table Handling/OCCURS DEPENDING ON Clause/Sort/1/0O Considerations

Use Unlabeled or ANS~Labeled Tapes Rather Than Labeled Tapes. The monitor attaches control information to
records written to labeled tape, but not to device tape or ANS-labeled tape. In addition, 1/O on device tape of
ANS-labeled tape is double-buffered. This allows 1/O operations and CPU operations to overlap.

Avoid the INTO Option of the READ Statementand the FROM Option of the WRITE Statement. Working from record
areas rather than moving the records to and from working storage reduces program run time. In some cases where a
master file is updated, moving the input master record to the output master record can be avoided. This is accom=
plished with the SAME RECORD AREA statement that allows a record to be read, updated, and written with no
record movement by the programmer. It also reduces the size of the program.

Block Relative Files. The monitor always reads or writes a minimum of one granule (512 words, 2048 bytes) from or
to a relative file.The BLOCK CONTAINS clause of COBOL should be used to obtain a physical record size which is
a multiple of granule size. This will insure optimum utilization of disk space and maximum speed. The COBOL 1/O
system will locate the proper granule/block and retrieve the user's record based on the relative record number
supplied.

Note: To remove a record from o relative file place a X'FF00' in byte 1 of the record. This will signal the
COBOL 1/O system that this record is a null or deleted one. All records not written when the file is
created are set to null by the system.

Report Writer

A report restart facility can be provided by programming around the OPEN statement for the report file which
is being restarted. No abort will occur. The programmer can accept a page start parameter from a control card,
count the pages skipped and when the start page is reached the logic can then go to the OPEN and start printing.
No other program logic rieeds to be altered.

The OPEN can also be circumvented for the case where there are multiple FDs for a given RD and the suppression of
its output to a file is desired.

COBOL/FORTRAN Interfaces
COBOL to FORTRAN

It is possible for COBOL to "call" FORTRAN subprograms by means of the ENTER verb. However, certain setup
routines must be called and temp variobles initialized before the FORTRAN library routines can be utilized. This
initialization process is triggered by the COBOL program having the statement:

ENTER FORTLINK
This is done prior to the first call to a FORTRAN subprogram.

In addition to the ENTER list of arguments, the COBOL program may contain a COMMON=-STORAGE SECTION.
This generates a DSECT which can be referenced in the FORTRAN subprograms by means of the statement:

COMMON/TALLY/TALLY,
Note that the first word of TALLY cannot be referenced in the COBOL program and is not initialized.

The COBOL CS option permits use of a name other than TALLY for the common=storage DSECT,

FORTRAN to COBOL

Calling COBOL programs from FORTRAN programs has some restrictions. First, no arguments may be specified, data
communication must be via named common, as indicated above. Second, COBOL does not have a verb equivalent
to RETURN in FORTRAN. Third, the CALL statement in FORTRAN will use register 15 for its linkage, therefore it
must be saved before the COBOL program starts executing.

Report Writer/COBOL/FORTRAN Interfaces

4

In order to achieve the FORTRAN to COBOL linkage it is necessary to use a METASYMBOL routine to save
register 15 upon entry into the COBOL routine and to exit from the COBOL routine. The entry point in the COBOL
routine that is used in the FORTRAN CALL statement must be DEFed by using it in an ENTER COBOL statement.
The METASYMBOL routine should be coded like this:

SYSTEM SIG7

DEF SAVEREG
DEF RETNREG
515 RES 1
SAVEREG STW, 15 515 SAVE REGISTER 15
B *11. RETURN TO COBOL
RETNREG B *S15 RETURN TO FORTRAN
END

To use the METASYMBOL routine GO TO statements are required in the COBOL routine to go to the two entry
points.

Demonstration Job

The following job has been written to illustrate COBOL/FORTRAN interfaces.

'JOB XEROX,COBOL,7 . COBOL/FORTRAN
'TITLE COBOL TO FORTRAN
!COBOL LS,L0,GO
IDENTIFICATION DEVISION,
PROGRAM-ID. COB:S.
DATE-WRITTEN. DEC 12, 1974,
DATE -COMPILED.
REMARKS. COBOL TO FORTRAN AND ENTRY FOR FORTRAN.

ENVIRONMENT DIVISION,
CONFIGURATION SECTION.
SOURCE -COMPUTER. XEROX-560,
OBJECT-COMPUTER. XEROX-560.
INPUT-OUTPUT SECTION,
FILE-CONTROL.

DATA DIVISION,

WORKING -STORAGE SECTION,
77 11 COMP VALUE 1.

77 12 COMP VALUE 2.

77 13 COMP VALUE 3,
COMMON -STORAGE SECTION.
77 J1 COMP VALUE 11.

77 J2 COMP VALUE 12,

77 J3 COMP VALUE 13,

PROCEDURE DIVISION.

s-1.
ENTER FORTLINK.
ENTER FTEST1 11,I2,13.
ENTER FTEST2.
STOP RUN.
ENTER COBOL CTEST.
CTEST.
GO TO SAVEREG.
DISPLAY 'CTEST ENTERED' UPON PRINTER.
GO TO RETNREG.

COBOL/FORTRAN Interfaces

'FORTRAN 1§,L0,GO0,S
SUBROUTINE FTEST1 (I1, 12, I3)

C THIS IS CALLED BY COBOL
COMMON /TALLY/TALLY,J1,J2,J3
OUTPUT 11,12,13,J1,J2,J3
RETURN
SUBROUTINE FTEST2

C THUTS CALLS COBOL
OUTPUT 'FTEST2 RUNNING'
CALL CTEST
OUTPUT 'RETURN FROM CTEST'
STOP

END

COBOL/FORTRAN Interfaces 5

2. COMPILER

This chapter describes various compilation options, the compiler outputs, and pertinent compile-time diagnostic
messages.

Compilation Initiation

A COBOL processor control command must initiate each Xerox ANS COBOL compilation jeb. The format of the

command is

1ICOBOL SprSgrSqreceaS,

where

S,
1

may specify any of the following output options:

BO Permanent copy of the object program via the BO (Binary Output) device.

CS(name) COMMON=-STORAGE SECTION name (see "Object Program Structure" in Chapter 4).

DEBUG Source program debugging statements (TRACE, EXHIBIT).

DIAG Trivial diagnostic messages.

DMAP Data Division Map.

DQ Double quotation mark.

GO Load=and=go copy of the object program via the GO device.

LIB(accounts) Library accounts.

LO An object program listing.

LS A source program listing.

MAIN Main program (see "Inter=Program Communication" in Chapter 3).

MAPS Both Data Division Map and Procedure Division Map.

PMAP Procedure Division Map.

SEG Priority segments (see "Segmented Object Programs" in Chapter 3 and "Segmentation
Feature" in Chapter 5). '

SEQCHK Sequence check.

SO Source output.

SRTx Co-resident sort.

sus Subprogram (suppresses generation of "END start"),

SYN Compilation for syntax checking only (no code generation).

TEST On-=line debugger.

XREF A cross-reference listing.

The processor control command may be written in free form. Any number of spaces may appear between |COBOL
and the specification string. Spaces are permitted before or after each option, but the option itself may not contain
embedded spaces.

Compiler

The specification string may be continued in one or more commands following the !COBOL control command.
Continuation is specified by placing a semicolon at any point where a blank is legal. Position 1 of the continuation
commands must be blank.

Specification sequence may vary. If no specifications are entered for the COBOL command, the options
Ls, BO

are assumed. If any option is specified, all desired options must be specified.

BO (Binary Object Deck)

This option specifies that relocatable object modules (ROMs) of the compiled program are to be produced in binary
form.

CS(name) (COMMON-STORAGE SECTION)

This option specifies the name to be used in the object program for the dummy program section that represents the
COMMON-STORAGE SECTION. If this option is not specified, the name TALLY is used. If a name is used it is

restricted to a maximum of 7 characters.

DEBU G (Debugging Statements)

This option specifies that debugging statements TRACE and EXHIBIT are to be included in the compilation. Absence
of this option enables debugging statements to be suppressed at compilation time. Thus it is not necessary to delete
these statements from the source program when it is recompiled to obtain an operational object program. For a com-
plete description of debugging statements refer to Chapter 12 of the Xerox ANS COBOL (for BPM/CP-V)/LN Refer-
ence Manual, 90 15 00.

DIAG (Trivial Diagnostics)

This option specifies that trivial (warning) diagnostics also are to be listed along with the other diagnostics. These
trivial diagnostics do not affect generation of the object program, but merely serve as warnings to the programmer.
Examples of trivia' diagnostics are

INCORRECT PUNCTUATICN

EXTERNAL REFERENCE GENERATED

RIGHTMOST AND/OR FRACTIONAL DIGITS TRUNCATED

LEFTMOST DIGITS/CHARACTERS TRUNCATED

INTEGER AND FRACTIONAL DIGITS TRUNCATED

DMAP (Data Division Map)

This option specifies that the Data Division Map is to be produced. This Map is an alphabetical list of the
data=names along with their sizes and relative locations. Figure 1 shows a sample Data Division Map listing. The
following information appears on the listing:

Line number Corresponds to the source line number where the data=name is defined.
Data=name The data=name as it appears in the DATA DIVISION.
Relative location The displacement from the origin of the base section in the object program.

Example: If the origin of the base section in the object program was hexadecimal loca-
tion '03C00' and the relative location of the data=name was '0058 3', this
means the data-name begins in byte 3 of hexadecimal location '03C58'.

Size The size of the data=name in bytes.

Compilation Initiation

00015
00016
00017
nnn18
nnni9
00020
00021
nno22
00023
00024
nnn2s
00026
nnn27
0no2%
n00n29
nnnin
0nn3l
nne32
00033
00034
00035
0nn36
nnn37
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047

LINE-NO

00026
00039
00038
00046
00030
00023
00041
00042
00020
0017
00018
00035
00025
00037
00047
00029
00022
00028
00N40
00n48
00033
00034
0nnn21
00019

DATA-NAME

CHARGE
CONT
COUNT
D~-NAMES
D-REC
DATE

DEP
DEP~-NAMES
DEPP
IN-FILE
IN-REC
LABEL1
MINUTES
MONTH
NAME
PRINT-FILE
PROG
REP-FILE
SAVE-DEP
TALLY
TAPE-FILE
TAPEREC
TYPE-RUN
WEEK

000120 DATA DIVISION.
000130 FILE SECTION.
IN-FILE LABFT. RECORDS ARFE STANDARD DATA RECORD IS IN-REC.

000140
000150
000160
0ngL70
non1gn
000190
000200
nnn210
nnnz20
000230
nnn231
nnNN240
ann250
onNnN2en
000261
000262
000263
0Nn264
000265
000270
0nn28n
000290
000300
000310
000311
000320
000330
000340
000350
000360
00N370

FD
01

FD
N
N1
D

n1
ol

IN-REC.

02 WEEK PICTURE 9.

02 DEPP PICTURE 9.

02 TYPE-RUN PICTURE A(10).
02 PROG PICTURE X(4).
02 DATE PICTURE X(5Y.
02 FILLER PICTURT X(7).
02 MINUTES PICTURT nagwa,
12 CHARAT PICTUPE 9990v9,
02 FILLIR PICTURE ¥(43).

REP-FILF LABEL RECORDS ARE OMITTED REPNANT IQ USACT-REPANT,
PRINT-VILE LABEL RECORD OMITTED DATA RICNRD D=RFC,

D-REC PICTURE X(120),
TAPE-FILE

LABEL RECORD IS LABFL1
DATA RECORD IS TAPERFC.
TAPFREC PICTURE X(10).
LABELL PICTURE X(20).

WORKING-STORAGE SECTION.

77
77
77
77
77
0L

ol

COBOL DATA DIVISION MAP LISTING

MONTH PICTURF. X(9).

COUNT PICTURE 9 VALUE 1.

CONT PICTURE X(11).

SAVE-DEP PICTURE 9 VALUE 0.

DEP PICTURE 9.

DEP-NAMES , ,

02 FILLER PICTURE A(11) VALUF 'INGINEERING'.
02 FILLER PICTURE A(1l) VALUE 'SALES'.

02 FILLER PICTURE A€ll) VALUE *ACCOUNTING'.
D-NAMES REDEFINES DEP-NAMES,

02 NAME PICTURE A(11) OCCURS 3 TIMES.

21:42 MAR 12, 1975

REL-LOC SIZE RECORD-NAME
00008 5 IN-REC
00004 11

noo03 1

0000A 33

0n000 120

n0nn4 5 IN-REC
00008 1

0000A 33

00000 1 1 IN-REC
0000n 8n

00000 20

0nno7 4 IN-REC
00000 9

0NnoA 11 D-NAMES
nenn3 4 IN-REC
00007 1

00000 3

00000 10

00000 2 1n IN-PEC
0060 1 IN-REC

PAGE 1

BASE-NAME

IN-FILE
WORKING-STORAGE
WORKING~STORAGE
WORKING-STORAGE
PRINT-FILE
IN-FILE
WORKING-STORAGE
WORKING-STORAGE
IN-FILE

FD - FILE
IN-FILE
TAPE-FILE
IN~-FILE
WORKING-STORAGE
WORKING~STORAGE

FD - FILE
IN-FILE
FD - FILE

WORKING-STORAGE
COMMON-STORAGE
FD - FILE
TAPE-FILE
IN-FILE

IN-FILE

Compilation Initiation

Figure 1. Sample Data Division Map Listing

Record name The name of the record (level 01) to which the data~name belongs.

Base name The base section (corresponding to DSECTs in the object program) to which the data~name
belongs. A base section is created for WORKING=STORAGE and each file~name defined
in the source program.

DQ (Double Quotation Mark)

This option informs the compiler that the source program to be compiled uses the double quotation mark (")
exclusively, instead of the single quotation mark ('). If this option is not specified, the single quotation mark is
assumed, The Hollerith code for the double quotation mark is a multipunched 8~7 (hexadecimal 7F). The Hollerith
code for the single quotation mark is a multipunched 8-5 (hexadecimal 7D),

GO (Compile and Run)

This option specifies that the source program is to be compiled and then executed, The load-and-go copy of the
object program is transmitted to the monitor GO file. The GO option also must be specified on the monitor
ILOAD control command.

LIB (Library Accounts)

This option specifies optional account numbers which may contain library source files that are needed to satisfy
COPY statements in the source program, This permits library files of other accounts fo be accessed. Up to three
optional accounts may be specified.

Example: ICOBOL LS, LIB(ACC85011, TESTA, 90301)

This LIB option instructs the compiler to search accounts ACC85011, TESTA, or 90301 for those library files that do
not exist under the user's own account number,

Library files on labeled tope may also be accessed. (See "COBOL Library on Tape" in Chapter 3.)

LO (Object Listing)

+ This option specifies that a listing of the object program is to be output on the LO device. Figure 2 illustrates
a sample object listing, whlch is keyed to the source program by line number and resembles an assembly lan-
guage listing.

LS (Source Listing)

The source listing is output to the LO (Listing Output) device whenever the COBOL command specifies (explicitly
or implicitly) the LS option,

Figure 3 depicts a sample Xerox ANS COBOL source program and Procedure Division Map listing with diagnostics
immediately following the source lines containing errors. The COBOL processor control command is presented as
the initial line of the listing. Each subsequent line contains a line number appearing in two parts separated by a
period: the first number represents the position of the line in the source program as obtained from the SI (source
input) device; the second number (subnumber) denotes lines inserted into the source program as a result of library
retrieval statements (COPY or COPY REPLACING) in the source program.

Whenever the compiler detects an error in the source program, a diagnostic messoge and its message number are
printed on the source listing immediately following the line containing the error. If the COBOL control command
neither specifies nor implies the LS option, only the number of the line to which the diagnostic relates, the message
number, and the message itself are printed. The number of diagnostic messages issued and the highest diagnostic
severity level are printed at the end of the source listing. A complete listing of compiler diagnostics is shown in
Chapter 5 of this manual,

Compiiation Initiation 9

00000
00000

00000

00000
00000

00000
00001
00002
00003
00004
00005
00006
00000
00000
00000
00001
00002
00003
00004
00005
00006
0000A
00016
GOO1F
00022
00025

00069
0006A
0006B
0006C
00008
00008
0006D
0006E
0006F
00070
00025
00025
00071
00072
00073
00074
00075
00076
00009
00009
00077
00078
00079
0007A
00078
0007C
0007D
0007E
0007F
00026
00026
00080
00081
00082
00083
00084
00085
00086
00087

00040

00042

00043

00043

00047

00048

COBOL OBJECT CODE LISTING

00000008
02000000
00000000
00000000
00000000
00000000
00A00000

34000003
10020009
10000000
00A00000
00000000
80000011
0nnooo1e6
0000002C
01000008
02000002
03000002
04000002

77360000
72460001
49A00019
75460001

01000000
32300008
222005A8
61200000
EAB00025

onnooo71
22200001
76340000
7F00003E
76300016
7D00003E
6930007F

2BNONONO
32300009
222005A9
61200000
22400025
75A00003
32100003
61000061
6800007F
EAB00026

00000080
22E00001
22600000
6AB0O000N
6AB00000
35B00025
6AB00067
22E08002
22600000

21:42 MAR 12, 1975

wkk&% ROOT SEGMENT Akkih

DEF TALLY

DSECT O

ORG TALLY

DEF INPUT-DEVICE

DSECT 0

DEF I:INPUT-DEVICE

DSECT 0

ORG 1:INPUT-DEVICE

DEF F:INPUT-DEVICE

DATA,4 F:INPUT-DEVICE+X'00000000’
DATA,4 X'02000000°

DATA,4 X'00000000°'

DATA,4 X'00000000"*

DATA,4 X'00000000'

DATA,4 X'00000000'

DATA,4 INPUT-DEVICE+X'00ANN000*
DSECT 2

ORG F:INPUT-DEVICE
DATA,4 X'34000003°'
DATA,4 X'10020009'
DATA,4 INPUT-DEVICE+X'10000000'
DATA,4 C:ERA+X'00A00N00'

DATA,4 C:ABA+X'00000000"'

DATA,4 X'80000011'

DATA,4 F:INPUT-DEVICE+X'00000016"'
DATA,4 F:INPUT-DEVICE+X'0000002C'
DATA,4 X'01000008°

DATA,4 X'02000002°'

DATA,4 X'03000002"'

DATA,4 X'04000002°'

> >

> =

> >

UNPK, 3
LB,10
OR,10
X STB, 10
X

C:TLBL,3
C:TLBL+X'1',3
BASE+X'19"

C:TLBL4X'1',3

>

ORG
DATA, 4
IW,3 BASE+X'8!
LI,2 BA(BASE)+X'5A8'
A MBS,2 0
BAL,11 *BASE+X'25'
ORG
DATA, 4
A L1,2 1
X PACK,3 C:TLBL,2
DST,0 BASE+X'3F'
PACK,3 BASE+X'16'
DC,0 BASE+X'3E'
BNE $+9
ORG
DATA, 4
IW,3 BASE+X'9'
LI,2 BA(BASE)+X'S5A9'
MBS,2 0
L1,10 37
STB,10 3
w,l 3
MBS,0 BA(BASE)+X'61'
B $+1
BAL,11 *BASE+X'26'

> >

ORG
DATA, 4
A LI, 14 1

L1,6 1:INPUT-DEVICE
X BAL,11 C:OPN
X BAL,11 C:BBF

STW,11 BASE+X'25'

BAL,11 BASE+X'67'
A LI, 14 32770

L1,6 1:0UTPUTONE

SIZE 18 3

SIZE 1S 80

SIZE IS 28

SIZE IS 208

ZERO WORDS NOT PRINTED

BASE+X'8'
BA(C:TLBL)+X'01000000"'

BASE+X'25"
BASE+X' 00000071

BASF+X'9’
BA (OUTPUTHREE)+X ' 2B000000"

BASE+X'26'
BASE+X'00000080"

10 Compilation Initiation

Figure 2. Sample (Partial) Object Listing

F0O COBOL SOURCE, DIAGNOSTIC AND PROCEDURE-MAP LISTING 21:43 MAR 12, 1975

00000
00001
00002
0n0o03
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018

COBOL 1S,1.0,XREF,DIAG,PMAP

000010 IDENTIFICATION DIVISION,

000020 PROGRAM=ID. SEQUENTIAL-I-O-TEST.
AUTHOR. XEROX CORPORATION.

000040 DATE-WRITTEN. DECEMBER 7 1974,

NNNN50 ENVIRONMENT DIVISION.

N00060 CONFIGURATION SECTION.
SOURCE-COMPUTER. XFROX-560.
OBJECT-COMPUTER. XEROX-5A0.

000090 INPUT-OUTPUT SECTION.

000100 FILE-CONTROL.

000110 SELECT INPUT-DEVICE ASSIGN TO CARD-READER.

000120 SELECT OUTPUTONE ASSIGN TO MAGNETIC-TAPE,

000130 SELECT OUTPUTTWO ASSIGN TO DISC.

000140 SELECT OUTPUTHREE ASSIGN TO PRINTER.

000145 SELECT OPTIONAL OP-FILE ASSIGN TO MAGNETIC-TAPE RESERVE 2
000146 ALTERNATE AREAS,

000147 SELECT ERROR-FILE ASSIGN TO

000150 DATA DIVISION.

*kkk (022 *k%k NAME INVALID/OMITTED
*kkk 049 **«* SYNTACTICAL ERROR

00019
00020
00021
00022
00023
00024
00025
00026
00027
0nn28
00029
00030
00031
00032
00032.00001
00032.00002
00032.00003
00033
00034

000160 FILE SECTION.
000170 FD INPUT-DEVICE LABEL RECORD OMITTED DATA RECORD INP,
000180 01 INP PICTURE X(80).
000190 FD OUTPUTONE LABEL RECORD STANDARD DATA RECORD OUTL.
000210 01 OUT1 PICTURE X(80).
000220 FD OUTPUTTWO LABEL RECORD STANDARD DATA RECORD OUT2,
000240 Ol OUT2 PICTURE X(80).
000250 FD OUTPUTHREE LABEL RECORD OMITTED DATA RECORD OUT3.
000260 01 OUT3 PICTURE X(80).
000261 FD OP-FILE LABEL RECORD TS STANDARD DATA RECORD IS OP-REC,
000262 01 OP-REC PICTURE X(80).
000263 FD ERROR-FILE LABEL RECORD IS DATUM DATA RECORD IS FRROR-REC,
000264 01 ERROR-REC PTCTURE X(80).
000265 01 DATUM COPY LIBIL.
01 DATUM.

02 DATA-0 PICTURE X.

02 DATA-1 PICTURE 9(5).
000267 WORKING-STORAGE SECTION.
000268 . 77 DATA-2 PICTURE 9(5) VALUE 123456,

kkhk 107 **%kx VALUE TRUNCATED ON LEFT

00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
Rkkk ()02 Kk
kkkk ()02 Kk
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
Rhkk 260 hkkk
00062
00063
00064
00065
00066
00067

0005E
00067

00071
00077

00080
00083

0009B

000270 PROCEDURE DIVISION,

000271 DECLARATIVES,

000272 SEC-1 SECTION. USE AFTER STANDARD ERROR PROCEDURE ON ERROR-FILE,
000273 P1l. DISPLAY ERROR-REC.

000274 S2 SECTION. USE BEFORE BEGINNING FILE LABEL PROCEDURE ON OUTPUT.
000275 P1l. MOVE DATA-2 TO DATA-1. ™OVE ' ' TO DATA-0.

000276 S3 SECTION. USE AFTER BEGINNING FILE LABEL PROCEDURE ON INPUT.
000277 P1l. IF DATA-1 = DATA-2 MOVE ' TEST TO READ AND CHECK USER LABEL
000278~ 'SUCCESS' TO OUT3 ELSE EXHIBIT NAMED DATA-1 NATA-2.

000279 END DECLARATIVES.

000280 SEC-4 SECTION,

000281 START,

000290 OPEN INPUT INPUT-DEVICE.

000300 OPEN OUTPUT OUTPUTONE, OUTPUTTWO,

000310 OUTPUTHREE, ERROR-FILF,

000320 MOVE ' BEGIN SEQUENTIAL IO TEST ',TO OUT3.

INCORRECT PUNCTUATION
INCORRECT PUNCTUATION

000A2 000330 WRITE OUT3.
000331 CHECK-USE-VERB-FORMAT-2.
000A7 000332 MOVE ' TEST TO READ AND CHECK USER LABFL FATLURE' TO OUT3.
000AE 000333 MOVE ' THTS IS RECORD 1' TO ERROR-REC.
000B5 000334 WRITE ERROR~REC CLOSE ERROR-FILE.
000C3 000335 ADD 5 TO DATA~1 OPEN INPUT ERROR-FILE. WRITE OUT3.
000DB 000336 Pl. READ ERROR-FILE INTO OUT3 AT END GO TO GET-FIRST-INPUT,.
000E7 000337 WRITE OUT3. GO TO P1.
000340 GET-FIRST-INPUT.
000ED N00350 READ INPUT-DEVICE AT END GO TO CLOSE-INITIAL-INPUT.
000360 WRITE OUT1 FROM INPUT.
IDENTIFIER MISSING AFTER 'FROM'
000F2 000370 GO TO GET-FIRST-INPUT.
000380 CLOSE-INITIAL-INPUT.
000F3 000390 CLOSE INPUT-DEVICE, OUTPUTONE,
000F9 000400 OPEN INPUT OUTPUTONE.
000410 GET-SECOND-INPUT.
000FF 000420 READ OUTPUTONE AT END GO TO CLOSE-SECOND-INPUT.

Figure 3. Sample Source Program and Procedure Division Map Listing

Compilation Initiation

n

12

00068 00104 000430 WRITE OUT2 PROM OUTI.

00069 0010C 000440 GO TO GET-SECOND-INPUT.

00070 000450 CLOSE-SECOND-INPUT.

00071 0010D 000480 CLOSE OUTPUTONE, AND OUTPUTTWO.

*khk 049 *kk% SYNTACTICAL ERROR

00072 00110 000490 OPEN INPUT OUTPUTONE, OUTPUTTWO.

00073 000500 COMPARE~RECORDS.

00074 00llc 0060510 READ OUTPUTONE AT END GO TO TERMINAT.
#kd® 234 wxkk UNDEFINED PROCEDURE NAME -~ EXTERNAL REFERENCE GENERATED

00075 00121 000520 READ OUTPUTTWO AT END GO TO ERR.
00076 00126 000530 IF OUT1 = OUT2 GO TO COMPARE-RECORDS.

00077 0012B 000540 MOVE ' RECORD MISMATCH ' TO OUT3.

00078 00132 000550 WRITE OUT3.

00079 00137 000560 WRITE OUT3 FROM OUTI.

00080 0013F 000570 WRITE OUT3 FROM OUT2.

00081 000580 GOTO COMPARE-RECORDS.
*hAk 049 *iak SYNTACTICAL ERROR

00082 000590 ERR.

00083 00147 000600 MOVE ' PREMATURE EOF ON DEVICE-2 ' TO OUT3.
00084 O014E 000610 WRITE OUT3.

00085 000620 TERMINATE.
#hhk 049 kkkk SYNTACTICAL ERROR

#hdk 003 Adkk AREA A VIOLATION

00086 00153 000460 MOVE ' END SEQUENTIAL IO TEST ' TO OUT3.
00087 0015A 000470 WRITE OUT3.

00088 0015F 000630 CLOSE OUTPUTONE, OUTPUTTWO, OUTPUTHREE.
*ktk 159 wAkk EXTERNAL REFERENCE GENERATED

#*% NUMBER OF DIAGNOSTIC MESSAGES 12 ### HIGHEST SEVERITY LEVEL 7 Rkn

Figure 3. Sample Source Program and Procedure Division Map Listing (cont.)

MAIN (Main Program)

Two or more source programs can be compiled separately and their.object modules combined to form a single execut-
able program. The MAIN option specifies that the source program to be compiled is the main program; its inclusion
on the COBOL processor control command is for commentary purposes only.

MAPS (Both Data Division Map and Procedure Division Map)

This option specifies that both the Data Division Map and the Procedure Division Map are to be produced.

PMAP (Procedure Division Map)
This option specifies that the Procedure Division Map is to be produced. This Map appears as part of the Source Pro-

gram listing. The relative starting location of each sentence in the PROCEDURE DIVISION is listed following the
associated source line number. Figure 3 illustrates a sample source program and Procedure Division Map listing.

SEG (Priority Segments)
This option specifies that the source program to be compiled is a segmented program, i.e., it contains Priority

Segments. This option must be specified if a segmented object program is desired; otherwise, a nonsegmented ob-
ject program is produced.

SEQCHK (Sequence Check)
This option specifies that the sequence number field (columns 1 through 6) of the source program lines is tested for

ascending sequence. If an out-of-sequence condition accurs, the compiler issues the diagnostic "SOURCE PRO-
GRAM OUT OF SEQUENCE".

S0 (Source Output)

This option allows the user to write his source program out to a keyed file. The keys used are compatible with the
Edit processor. When using this option, an ASSIGN control command for the system DCB M:SO must be provided.

Compilation Initiation

SRTx (Co-Resident Sort)

This option specifies that the SORT verb will be compiled with the co-resident sort code and o tree structure
generated by the compiler. The proper element files must be loaded at load time o ensure execution of this code.
The COBOL object program and the Sort processor will be leaded together to form one load module, thus eliminating
the need for the COBOL program to be swapped in and out. (Refer to "Co-Resident Sort Feature" in Chapter 5.)
The x can be either an S or an R, indicating that the programmer desires the sequential (tape, mixed tape/disk) or
the Random (disk only) sorting technique to be used.

SUB (Subprogram)

This option specifies that the source program fo be compiled is o subprogram. No "END start" address will be gen-
erated by the compiler.

SYN (Syntax Checking)
This option provides only for syntactical checking of the COBOL source program; code generation is bypassed,
thereby saving machine time. It is recommended that this option be used for preliminary compilations, as most of

the errors in the source program are detected during this pass. For the final compilation (i.e., with the SYN option
deleted), remaining errors are detected during code generation.

TEST (On-Line Debugger)

This option specifies that the compiled program is to be tested using the on-line debugger. It causes the computer
to create all necessary files and linkages for the on-line debugger.

XREF (Cross-Reference Listing)

This option specifies that a cross-reference listing of the COBOL source program is to be produced on the LO device.

All nonreserved words defined in the source program are listed in alphanumeric order. Shown to the left of each
word is the source line number of the statement where the word is initially defined. To the right, overflowing if
need be to lines following, are the line numbers of statements in which references are made to the words. Figure 4
shows a sample cross-reference listing.

COBOL CROSS—-REFERENCE LISTING 21:43 MAR 12, 1975 PAGE 1

EXTERNAL C:ERR 00088

00052 CHECK~-USE~VERB~-FORMAT -2

00063 CLOSE~INITIAL-INPUT 00060

00070 CLOSE~SECOND-INPUT 00067

00073 COMPARE~RECORDS 00076

00032,00002 DATA-O 00040

00032.00003 DATA-1 00040 00042 00043 nnnsé

00034 DATA-2 00040 00042 00043

00032 DATUM

00082 ERR 00075

00030 ERROR-FILE 00037 00049 00055 00056 00057

00031 ERROR-REC nnG30 00038 00054 00055

00059 GET-FIRST~INPUT 00057 00062

00066 GET-SECOND-INPUT 00069

00021 INP 00020

00020 INPUT-DEVICE 00047 00069 00064

00028 OP-FILE

00029 OP-REC 00028

00026 OUTPUTHREE 00049 0088

00022 OUTPUTONE 00048 06064 0065 00067 00071
00072 00074 00088

00024 OUTPUTTWO 00048 00072 00075 00088

00023’ ouTl 00022 00068 60076 00079

00025 0UT2 00024 00068 00076 00089

00027 ouT3 00026 00043 00050 00051 00053
00056 00057 0nnss 00077 00078
00079 00080 00083 00084 00C86
00087

Figure 4. Sample Cross-Refarence Listing

Compilation Initiation

13

3. INTER-PROGRAM COMMUNICATION

Introduction

Any given COBOL source program may be subdivided into two or more parts, each of which can be compiled
independently. One of these subdivisions must be designated as the main or calling program at both compilation and
execution times. The remaining subdivisions are designated as subprograms or called programs. Each subdivision of

the total program, whether the calling program or a called program, has the format of a complete COBOL source
program. Each subdivision must contain IDENTIFICATION, ENVIRONMENT, DATA, and PROCEDURE DIVISIONS.

Rules for Usage

Successful usage of the feature requires observance of two alternative sets of rules. The first set is somewhat restric~
tive, but requires a minimal knowledge of the contents of the calling program and its subprograms and thus is less
susceptible to programmer error.

1. The ENVIRONMENT DIVISIONs must all be complete with regard to the total program, and shouid be
identical.

2. The FILE SECTIONs and REPORT SECTIONs must all be complete with regard to the total program, and
should be identical.

3. If the programmer wishes to have data referenced by both the main and subprograms he can do it in one of
two ways:

a. Provide a LINKAGE SECTION and a PROCEDURE DIVISION USING statement in the called program
and a CALL statement in the calling program. The LINKAGE SECTION will reference WORKING
STORAGE items in the main program.

b. Provide an identical COMMON=STORAGE SECTION in both the main and subprograms. Items in
COMMON-STORAGE can then be referred to by both programs and can also be used as parameters
in the ENTER statement when calling a Metasymbol or FORTRAN subprogram.

See the Xerox ANS COBOL/LN Reference Manual, 90 15 00, Chapter 10, for more detailed information
on this subject.

4, The PROCEDURE DIVISION of the calling program must contain all DECLARATIVES sectionsdesired in the
total program.

The second set of rules requires a careful and detailed analysis of the individual source programs but permit omission
of repetitious entries, thus reducing the size of the pregrams and improving compilation time.

1. ENVIRONMENT DIVISION
a. Calling Program
The complete ENVIRONMENT DIVISION for the total program must be written.
b. Subprograms
Each subprogram must contain SELECT sentences only for those files referenced in its PROCEDURE

DIVISION (and described in its DATA DIVISION).

Inter-Program Communication

2. DATA DIVISION
a. FILE SECTION
(1) Calling Program
The file and record descriptions for all files in the total program must be included.
(2) Subprograms

The file and record descriptions for all files referenced in the PROCEDURE DIVISION (and men-
tioned in an ENVIRONMENT DIVISION SELECT sentence) must be included.

b. REPORT SECTION
(1) Calling Program
The report descriptions of all reports used in the total program must appear.
(2) Subprograms

Each subprogram must contain only the descriptions of reports actually referenced therein. (The
file description of the file containing the associated REPORT IS clause must also be present.)

Memory space is allocated and Data Control Blocks generated for the files described in the FILE SECTION of e
main program. All subprograms making reference to reports or report data, when incorporated into the total pro=-
gram at run-time, refer to the areas reserved by the main program. Similarly, memory space is assigned in accord=
ance with the COMMON-=STORAGE SECTION description in the main program, and this area is shared by the main
program and all associated subprograms when combined at run~time. The main program and each subprogram may
have its own WORKING~STORAGE SECTION; data described therein is not shared, but is private to the program

in which it is defined. However, WORKING=STORAGE items in a main program may be referred to in a subprogram
by the use of a LINKAGE SECTION in the subprogram and the PROCEDURE DIVISION USING statement as men-
tioned previously in paragraph 3a above.

Program control can flow naturally between independent compilations employing the normal COBOL verbs GO TO
and PERFORM. Only one additional statement is introduced into the Xerox ANS COBOL language to provide this
natural flow. Any procedure point to which control may be passed by a separately compiled program must be de-
clared as an exiernal definition. The ENTER COBOL statement names those entry points (section=- and paragraph-
names) within the program that are to be visible to sequence control statements in other compilations.

Rules for Usage

15

16

4. 0BJECT PROGRAM

The object program produced by the COBOL compiler is in Xerox standard object language format. It is output

via the M:BO and/or M:GO system Data Control Blocks (DCBs) as directed by the options expressed in the COBOL
control command. The compiler assumes either that the appropriate DCB has been pre-conditioned by ASSIGN com-
mands to-reflect the media on which the object program is to appear and the file~-name(s) under which the object
module is to be cataloged, or that those options have been deliberately permitted to default to the standard system
conditions.

Segmented Object Programs

A single COBOL source program can be so large that its object-time storage requirements exceed available computer
memory. When such a situation occurs, the program may be partitioned into logical blocks called "overlays" or, in
COBOL terminology, "Priority Segments", The logical structure of a program segmented in this manner resembles a
simple tree. COBOL object programs employ the branch reference loading mode: each overlay is loaded into core
storage when control reaches a reference fo it during execution of the root or another overlay segment of the program.
The SEG option must be specified as a COBOL control command option in order to produce a segmented program.

During compilation of a segmented program, only the root segment module is output via the M:BO and/or M:GO
DCBsunder the file-name contained in the DCB. It is possible to create permanent relocatable object modules
(ROMs) by assigning the M:BO DCB to a file. The root and each overlay will then be output as permanent ROMs,
as described below. Since the computer uses the M:LI DCB to write out the overlay segments for the GO file, the
M:LI assignment should not be protected with a password. If it is, the user cannot access the overlays.

Overlay segment modules are output in individual files on disk; they are identified by the root segment module
name with a two=digit suffix. For example, if the root segment name is OBJPROG, overlay segments are named
OBJPROGO1, OBJPROGO2, OBJPROGO3, and so on. In addition, the tree structure is specified in a TREE control
command image, which is output on disk in a file that is also identified by the root segment module name with two
zeros added, e.g., OBJPROGO00. No tree structure is created for the BO output.

The TREE control command may be punched out by the PCL control command
COPY DC/OBJPROGOG TO CP

Similarly, each overlay segment module may be punched by the control command

COPY DC/CBJPROGHn TO CP(BIN)

where i is the two-digit identifier for the segment, as explained above. (See "Segmentation Feature" in Chapter 3.)

Object Program Structure

The object program is produced in one or more modules: one module comprises the entire program except for priority
segments; one additional module is created for each priority=number used between the specified SEGMENT-LIMIT
(or 50) and 99. A priority segment (overlay) module consists of a single (standard) control section and contains only
the procedure code and literals of the relevant PROCEDURE DIVISION sections. The root segment module comprises
multiple control sections. Figure 5 illustrates arrangement of the standard control section of the root segment module.

The root segment module may also contain a number of dummy program sections, which are created in the following
instances:

1. COMMON-STORAGE SECTION, The COMMON=-STORAGE SECTION of the DATA DIVISION of the source
program is represented in the object program by a dummy program section whose name is supplied by the
CS(name) control command option. If the CS(name) option is not specified, the name TALLY is used. The
Special Register TALLY is generated as the initial entry in the COMMON-STORAGE dummy section produced
by each COBOL compilation.

2. DCBs. A DCB (Data Control Block) appears in the object program for each file declared in the source program
by a File Description (FD) file=name entry in the FILE SECTION of the DATA DIVISION, and is output as a
dummy program section named F:file-name.

Object Program

3. File Record Areas. A record area the size of the largest record defined is reserved for each file declared by an
FD entry, and is represented in the object program by a dummy program section named file-name,

4. File Index Areas. Each file declared in the source program has associated with it one additional dummy pro-
gram section named I:file-name, wherein five words are assigned for file control purposes. One additional
word is allocated for each index-name mentioned in INDEXED BY options of the OCCURS clause in record
descriptions pertaining to the file.

5. Report Table Area. Each report declared by a Record Description (RD) report-name entry in the REPORT SEC~
TION of the DATA DIVISION of the source program is described in the object program by a table that is pro-
duced as a dummy program section named R:report-name.

6. Report Storage Area. The print lines, accumulators, control fields, and other data storage associated with each
report are represented in the object program by a dummy program section named report-name.

7. WORKING-STORAGE SECTION, The WORKING-STORAGE SECTION in the DATA DIVISION has a defini-
tion (DEF) associated with it that indicates its beginning location. This definition is labeled DEFSWK.

These dummy programsections are illustrated by the load module map in Figure 6. Circled numbers are keyed to the
itemized discussion above. Note that the map does not correlate with the sample object listing shown in Figure 2.

Low Core DSEC €302 0 TALLY-—————-—(:>
Miscellaneous Data 1 DSEC c304 0 INXFILE ———@
Storage DSEC €318 0 1:INXFILE —————{(4)

[T WORIING-STORAGE | DSEC 9016 0 F:INXFILE ———@
SECTION Data DSEC €320 0 I:REPXFILE
. o] DSEC 9048 0 F:REPXFILE
Condition-Name Values DSEC Cc328 0 PRINTXFILE
and Editing Masks DSEC €346 0 I:PRINTXFILE
- - = = = - = = DSEC 909C 0 F:PRINTXFILE
Procedure Exit Table DSEC C34E 0 USAGE -REPORT
] DSEC CS3E O R :USAGE -REPORT
UDEF COB6 O DEF$WK
Temporary Storage UDEF C064 0 BTG
L o o] CSEC co64 0
Procedure Branch Table LIB 8c3c 0 M:UC
LIB 8CF6 O M:XX
- - = = = = = = LDCB 90F0 0 M:DO
LIB c814 0 C :ERA
L1B c814 0 C:ABA
L1B CRO1 0O ¢ :RRK
LIB cces 0 C:TRP
Procedure Code L1B CB40 0 C:RRT
LIB CB42 0 C :RRS
LIB CB4L 0O C :RRR
LIB CB6E 0 C :RRQ
LIB CB63 0O C :RRE
LIB CBFD 0 C:RRC
L e - LIB CAl7 O C:CDB
LIB CBF5 © C:RRA
LIB CB8A O C:RRJ
LIB CBF9 0 C :RRB
Literals LIB CB79 0 C:RRF
LIB CB51 0 C :RRD
LIB €666 0 C:0PN
High Core : LIB C73D 0 C:RLR
Figure 5. Standard Control Section of a Root
Segment Module Figure 6. Load Module Map

Object Program

17

18

5. PROGRAM COMPILATION AND EXECUTION

Compilation of Large Source Programs

It is recommended that the following two monitor control commands be used for compilation of large source programs.
1. LIMIT control command

Compilation of large source programs requires a large amount of temporary disk storage. For this reason the
TSTORE option should be specified to allow the use of additional available disk storage.

Example: [LIMIT (TSTORE, 2000)

Also, temporary disk storage can be conserved by specifying that the compiler copy of the source program (from
which the source listing is built) be saved on magnetic tape rather than on disk. The following control com-
mand permits this alternative assignment:

IASSIGN F:W7, (LABEL, name), (SN, value), (OUTIN)

where
name specifies the name of the file.
value specifies the serial number of the tape reel to be used.

2. POOL control command
Compilation speed can be improved significantly by specifying additional buffers for use by the monitor.
Example: |POOL (FPOOL, 8), (IPOOL, 8)

Examples of both the LIMIT and POOL control commands are presented in the deck setup in Figure 8.

COBOL Work Files

The COBOL compiler uses 11 work files having the DCB names F:WO through F:W10. Toavoid confusion, the COBOL
source program should not use those DCB names. In any event, it is good practice to place the 1ASSIGN cards for
user files aofter the |COBOL card and source deck, as illustrated throughout this manual.

COBOL Library on Tape

Normally, library files are stored on disk. It is possible, however, to have library files on labeled tape. In this
case, an ASSIGN control command for M:L1 must be specified. For example,

YASSIGN M:LI, (LABEL, name, account), (SN, value)

where
name specifies the name of a labeled file.
account specifies the account under which the tape was created.
value specifies the serial number of the tape reel to be used.
Print File Handling

If the BEFORE and/or AFTER ADVANCING clause is used in a COBOL source program, the data control block must
indicate that the first position of the record is to be treated as a vertical-format-control character. If the file was
assigned to the printer in the COBOL source program, the DCB will be pre-set with the VFC option. This eliminates
the need for an ASSIGN control command.

Program Compilation and Execution

If the ADVANCING option is not specified in a WRITE instruction addressed to a print file, the user is assumed
to have indicated the vertical-format-control character at the source program level and stored this chapter in the
first byte of the record to be printed. The action indicated by the control character is performed, and then the rec-
ord is printed. The codes controlling the vertical format on the Xerox Buffered Line Printers, Models 7440/7445
and 7446, are shown in Table 1.

Table 1, Xerox Buffered Line Printers, Models 7440/7445 and 7446,Vertical-Format Control Codes

Code

(Hexadecimal) Meaning

40 Print, single space.

60 Print, inhibit automatic upspace after printing.

Co Print, single space (same as 40).

Cl Single space, print, single space.

C2 Space 2 lines, print, single space.

Cc3 Space 3 lines, print, single space.

CF Space 15 lines, print, single space.

pot Skip to channel 0 (bottom of page), print, inhibit automatic upspace.
DIt Skip to channel 1 (top of page), print, inhibit automatic upspace.
D2’ Skip to channel 2, print, inhibit automatic upspace.

D3 Skip to channel 3, print, inhibit automatic upspace.

p7' Skip to channel 7, print, inhibit automatic upspace.

EO Print, inhibit automatic upspace after printing (same as 60).
e Space 1 line, print, inhibit automatic upspace after printing.
g2 Space 2 lines, print, inhibit automatic upspace ofter printing.
EFf Space 15 lines, print, inhibit automatic upspace after printing.
FO Skip to channel O (bottom of page), print, single space.

F1 Skip to channel 1 (top of page), print, single space.

F2 Skip to channel 2, print, single space.

F7 Skip to channel 7, print, single space.

"Model 7446 only.

Program Compilation and Execution

Deck Structures :

Basic Setups

Figures 7, 8, and 9 show some of the ways in which COBOL program decks may be prepared for COBOL compilation
and execution.

4 | IFIN \

COBOL Source Deck

2 | 1cosoL AN

1 | 1JOB 1, JONES \

Card Parameter Description
1 1JOB Signals the beginning of a job stack.
1 ' Account number.
JONES Identifies the user.
2 ICOBOL Specifies that control is to be transferred to the COBOL processor.
3 COBOL source deck.
4 IFIN Signals the end of the job stack.

Figure 7. Basic Setup — Compilation Only

20 Deck Structures

19 | 1FrIN \

18 | Data Deck

17 | IDATA
16 | IRUN
15 | ILOAD (GO), (MAP), (UNSAT, (COBLIB))
14 | 1(SAVE)
13 [ILABEL, PROPMASTER), (SN, ANY), ;
12 | 1ASSIGN F:NEW-MASTER, ; -

11 41,1337) -

11] (SN, 741,1337) ' AN
10 | 1(LABEL, PROPMASTER), ; \
9 | 1ASSIGN F:OLD-MASTER, ; AN

8 | 1(DEVICE, MT), (SN, 643)
7 | IASSIGN F:TRANS-FILE, ;

6 | COBOL Source Deck
5 | 1ICOBOL LS, LO, XREF, GO
4 | 1POOL (FPOOL, 8), (IPOOL, 8)
3 [1(PSTORE, 400), (TSTORE, 1200)

2 [!LIMIT (TIME, 60), (LO, 3000), (PO, 500), ; \
1] 1JOB ACC85011,COBOLTESTS,7 . \

Card Parameter Description
1 1JOB Signals the beginning of a job stack.
ACC85011 Account number.
COBOLTESTS Identifies the user.
7 Indicates job priority.
2 TLIMIT Control command that speéifies the maximum values for various system

resources used by the job.

(TIME, 60) Specifies limit of 60 minutes execution time.

Figure 8. Basic Setup — Compilcation and Execution

Deck Structures 21

22

Card

Parameter

(LO,3000)

(PO, 500)

1(PSTORE, 400)

(TSTORE, 1200)

IPOOL

(FPOOL, 8)

(IPOOL, 8)

1COBOL

LS
LO
XREF

GO

IASSIGN

F:TRANS-FILE

I (DEVICE,MT)

(SN,643)

Description

Specifies limit of 3000 pages listing output.

Specifies limit of 500 cards punch output.

Signals that this LIMIT command is continued on the following card.
Specifies limit of 400 granules permanent disk storage. (This card is
part of the preceding LIMIT command.)

Specifies limit of 1200 granules temporary disk storage.

Control command that specifies additional buffers for use by the
monitor.

Specifies that 8 buffers are fo be assigned to file management use.
Specifies that 8 buffers are to be assigned to the file index pool.
Control command that specifies control is to be transferred to the
COBOL processor.

Specifies that the source program is to be listed.

Specifies that the object program is to be listed.

Specifies that the cross-reference listing is to be produced.

Specifies that the program is to be executed after compilation.

COBOL source deck.

Control command that specifies the file and physical peripheral
device to be used.

DCB name of TRANS=FILE file.

Signals that this ASSIGN command is continued on the following
card.

Specifies that the file is to be assigned to a magnetic tape unit.
(This card is part of the preceding ASSIGN command.)

Specifies that the input file is contained on reel number 643.

Figure 8. Basic Setup ~ Compilation and Execution (cont.)

Deck Structures

Card Parameter
9 IASSIGN

F:OLD-MASTER

10 I (LABEL, PROPMASTER)

N I(SN, 741, 1337)

12 IASSIGN
F:NEW-MASTER

13 I(LABEL, PROPMASTER)
(SN, ANY)

14 I(SAVE)

15 ILOAD
(GO)
(MAP)
(UNSAT, (COBLIB))

Description

Control command that specifies the file and physical peripheral
device to be used.

DCB name of OLD-MASTER file.
Signals that this ASSIGN command is continued on the following

card.

Specifies that the file is named PROPMASTER.
the preceding ASSIGN command.)

(This card is part of

Signals that this ASSIGN command is continued on the following
card.

Specifies that the input file is contained on two reels, numbers 741
and 1337. (This card is part of the preceding ASSIGN command.)

Control command that specifies the file and physical peripheral
device to be used.
DCB name of NEW-MASTER file.

Signals that this ASSIGN command is continued on the following
card.

Specifies that the output file is to be named PROPMASTER. (This
card is part of the preceding ASSIGN command.)

Specifies that the output file is to be written on any available reel.
Signals that this ASSIGN command is continued on the following

card.

Specifies that the file is to be saved. (This card is part of the pre-
ceding ASSIGN command.)

Control command that directs the resident loader to form a relocat-
able load module.

Specifes that data from the user temporary GO file is to be included
in the root of the load module.

Specifies that all external references and definitions for the load
module are to be listed.

Specifies that the COBOL library (identified by account number
COBLIB) is to be searched for external definitions required for the
load module. :

Figure 8. Basic Setup -~ Compilation and Execution (cont.)

Deck Structures

23

24

Card Parameter Description
16 IRUN Control command that specifies the program is to be executed.
17 IDATA Control command that specifies a data deck is to follow.
18 Data deck.
19 IFIN Signals the end of the job stack.
Figure 8. Basic Setup — Compilation and Execution (cont.)
7 | IFIN N\
6 | Data Deck
5 | IDATA \
4 | IRUN \
3 | Object Deck
2 ITLOAD (UNSAT, (COBLIB))
1 | 1JOB TESTA, Z
|
—
Card Parameter Description
1 1JOB Signals the beginning of a job stack.
TESTA Account number.
y4 Identifies the user.
2 ILOAD Control command that directs the resident loader to form a relocat-
able load module.
(UNSAT, (COBLIB)) Specifies that the COBOL library (identified by account number
COBLIB) is to be searched for external definitions required for the
load module.
3 Object deck.
4 IRUN Control command that specifies the program is to be executed.

Figure 9. Basic Setup — Execution with Object Deck

Deck Structures

Card Parameter Description

5 IDATA Control command that specifies a data deck is to follow,
6 Data deck.
7 IFIN Signals the end of the job stack.

Figure 9. Basic Setup — Execution with Object Deck (cont.)

Segmentation Feature

To combine segmented programs into a single executable program, the desired overlay structure must be communi-
cated to the loader. This may be done in the usual way by a TREE control command or semiautomatically by a
PTREE command, which references the files containing the TREE commands generated by individual compilations.

Refer to "Segmented Object Programs" in Chapter 2.

Figures 10, 11, and 12 show how a COBOL program with priority segments is set up for compilation and execution.
—

AN

13 | IFIN

12 lDato Deck
11 | IDATA
10 | IRUN
9 | 1TREE JOY-(JOYO1, JOY02)

8 | I(UNSAT, (COBLIB))

7 [1EF, (JoY), (JOYOI), (JOY02)), ;
[1LOAD (BREF,n), ;

6

5 | COBOL Source Deck
N [1cosoL Ls,80,GO, SEG
3 | IASSIGN M:BO, (FILE, COY)

2 | 1ASSIGN M:GO, (FILE, JOY) \

1 | 1JOB 1,SEGMENTTEST

Figure 10. Segmentation Feature — Compilation and Execution

Deck Structures 25

Card

Parameter

1JOB

1

SEGMENTTEST

IASSIGN

M:GO

(FILE, JOY)

IASSIGN

M:BO

(FILE, COY)

1COBOL

LS
BO

GO
SEG

ILOAD

(BREF,n)

I(EF, (JOY), (JOYO1),

(JOY02))

Description

Signals the beginning of a job. stack.

Account number.

Identifies the user.

Control command that specifies the file and physical periphéral
device to be used.

The file is the system GO file.

Specifies that the file is to be a disk file named JOY.

Control command that specifies the file and physical peripheral
device to be used.

The file is the system BO file.

Specifies the file is to be a disk file named COY.

Control command that specifies control is to be transferred to the
COBOL processor.

Specifies that the source program is to be listed.

Specifies that permanent relocatable object modules are to be
produced.

Specifies that the program is to be executed after compilation.

Specifies that the program contains priority segments.
COBOL source deck.

Control command that directs the resident loader to form a relocat-
able load module.

Specifies that the overlay structure is to be set up for the branch ref-
erencing loading mode. The parameter "n" (if present) is a decimal

value specifying the maximum number of interbranch references within
the program. If "n" is absent or zero, a total of 11 words per segment
arereserved in the reference |oading table (two words per reference).

Signals that this LOAD command is continued on the following card.

Specifies that the modules of the root segment (JOY) and the two
overlay segments (JOYO01 and JOYO02) are to be included in the load
module. (This card is part of the preceding LOAD command.)

Signals that the LOAD command is continued on the following card.

Figure 10. Segmentation Feature — Compilation and Execution (cont.)

Deck Structures

Card Parameter

8 I (UNSAT, (COBLIB))

9 ITREE

. JOY-(JOYO01, JOYO02)

10 IRUN
1 IDATA
12
13 IFIN

Description

Specifies that the COBOL library (identified by account number
COBLIB) is to be searched for external definitions required for the
load module. (This card is part of the preceding LOAD command.)

Control command that specifiesthe overlay structure of the load module.

Specifies that module JOY is the root segment and modules JOYO!
and JOYO02 are overlay segments.

Control command that specifies the program is to be executed.
Control command that specifies a data deck is to follow.
Data deck.

Signals the end of the job stack.

Figure 10. Segmentation Feature — Compilation and Execution (cont.)

14 [END AN

15 | IFIN AN

13 [cOPY DC/COY02 TO CP(BIN) \
12 | COPY DC/COYO1 TO CPBIN) \
11 [copy bc/COY TO CPBIN)
10 | tpcL
9 | 1EOD ||

7 | IDATA

8 rDofu Deck

6 | IRUN

5 [1TREE COY-(COY01,COY02)

4 [1(UNSAT, (COBLIB))

3 [!(EF,(COY),(COYO]),(COY02)),;

2 | ILOAD (BREF,n),;

1 | 1JOB 1, SEGMENTTEST

Figure 11. Segmentation Feature — Load from BQO File, Execute, and Punch BO File

Deck Structures

27

28

Card Parameter
] 1JOB
1
SEGMENTTEST
2 ILOAD
(BREF,n)
3 1(EF, (COY), (COYO01), (COY02))
4 I{UNSAT, (COBLIB))
5 {TREE
COY-(COYO01,COY02)
6 IRUN
7 IDATA
8
9 |1EOD
10 1PCL

A

COPY DC/COY TO CP(BIN)

Description

Signals the beginning of a job stack.
Account number.

Identifies the user.

Control command that directs the resident loader to form a
relocatable load module.

Specifies that the overlay structure is to be set up for the
branch referencing loading mode. The parameter "n" (if
present) is a decimal value specifying the maximum num-
ber of interbranch references within the program. If "n"
is absent or zero, a total of 11 words per segment are re-
served in the reference loading table (two words per reference).

Signals that this LOAD command is continued on the follow-

ing card.

Specifies that the modules of the root segment (COY) and
the two overlay segments (COY01 and COYO02) are to be
included in the load module. (This card is part of the pre-
ceding LOAD command.)

Signals that the LOAD command is continued on the follow-
ing card.

Specifies that the COBOL librory (identified by account
number COBLIB) is to be searched for external definitions
required for the load module. (This card is part of the pre-
ceding LOAD command.)

Control command that specifies the overlay structure of the
load module.

Specifies that module COY is the root segment and modules
COYO01 and COYO02 are overlay segments.

Control command that specifies the program is to be
executed. .

Control command that specifies a data deck is to follow.
Dato(deck.

Defines the end of the data deck.

Initiates the Peripheral Conversion Language (PCL) processor.

Punches a binary deck for root COY.

Figure 11. Segmentation Feature — Load from BO File, Execute, and Punch BO File {cont.)

Dack Structures

Card

Parameter Description

12
13
14
15

COPY DC/COYO01 TO CP(BIN) Punches a binary deck for first overlay segment.
COPY DC/COY02 TO CP(BIN) Punches a binary deck for second overlay segment.

END Terminates PCL operations.
IFIN Signals the end of the job stack.

Figure 11. Segmentation Feature — Load from BO File, Execute, and Punch BO File (cont.)

23 | IFIN

22 l Data Deck

21 | IDATA

20 | IRUN

19 | I1TREE COY~(COYO01,COY02)

18 | 1(UNSAT, (COBLIB))

17 [I(EF, (CQY), (COYO01), (COY02)),;

16 | ILOAD (BREF,n), ;

15 | END
14 | 1EOD
13 | IEOD_

Object Deck
11 | COPY CREBIN) TO DC/COY02

12 — Second Overlay

10 | IEOD

8 IOb]ecf Deck — First Overlay

7 | COPY CR(BIN) TO DC/COYO01

6 | 1EOD

5 | 1EOD

4 [Object Deck — Root
3 | copy cr(8IN) TO DC/COY \

2 | 1pcL \
1 | 1JOB 1,SEGMENTTEST \

Figure 12. Segmentation Feature — Execution from Object Decks

Deck Structures

29

Card Parameter
1 1JOB
1
SEGMENTTEST
2 IPCL
3 COPY CR(BIN) TO DC/COY
4
5 IEOD
6 IEOD
7 COPY CR(BIN) TO DC/COYOI1
8
9 IEOD
10 IEOD
11 COPY CR(BIN) TO DC/COY02
12
13 IEOD
14 IEOD
15 END
16 ILOAD
(BREF, n)

Description
Signals the beginning of a job stack.

Account number.

Identifies the user.

" Initiates the Peripheral Conversion Language (PCL) processor,

Copies object deck from card reader to disk file named
coy.

Object deck for root segment,
Signals PCL of the end of the root segment card deck,

Copies object deck from card reader to disk file named
CcoYo1.

Object deck for first overlay segment,
Signals PCL of the end of the overlay segment card deck,

Copies object deck from card reader to disk file named
COYo02.

Object deck for second overlay segment.
Signals PCL of the end of the overlay segment card deck.

Terminates PCL operations.
Control command that directs the resident loader to form a
relocatable load module,

Specifies that the overlay structure is to be set up for the
branch referencing loading module, The parameter "n"

Figure 12, Segmentation Feature — Execution from Object Decks (cont.)

30 Deck Structures

Card Parameter Description

(BREF, n) ~{cont.) (if present) is a decimal value specifying the maximum
number of interbranch references within the program. If
"n" is absent or zero, a total of 11 words per segment
are reserved in the reference loading table (two words per

reference),

: Signals that this LOAD command is continued on the fol-
lowing card.

17 1(EF,CQOY), (COY01),COY02)) Specifies that the modules of the root segment (COY) and
the two overlay segments (COYO01 and COY02) are to be
included in the load module. (This card is part of the pre-
ceding LOAD command.)

; Signals that the LOAD command is continued on the follow-
ing card.
18 I(UNSAT, (COBLIB)) Specifies that the COBOL library (identified by account

number COBLIB) is to be searched for external definitions
required for the load module. (This card is part of the pre-
ceding LOAD command.)

19 ITREE Control command that specifies the overlay structure of the
load module.

COY-(COYO01,C0OY02) Specifies that module COY is the root segment and modules
COYO01 and COYO02 are the overlay segments.

20 IRUN Control command that specifies the program is to be
executed.

21 IDATA Control command that specifies o data deck is to follow.

22 . Data deck.

23 IFIN Signals the end of the job stack.

Figure 12. Segmentation Feature — Execution from Object Decks (cont.)

Inter-Program Communication (Subcompile Feature)

A single logical problem solution expressed in COBOL may be subdivided into two or more source programs that can
be compiled separately and whose resultant object modules can be subsequently combined into a single executable
program. Rules for such program subdivision are explained in Chapter 3. Briefly stated, one of the subdivisions
must be designated as the main or calling program at both compilation and load times, and the remaining subdivisions
must be denoted as subprograms or called programs (SUB option) at compilation time.

Figures 13, 14, 15, and 16 show how two COBOL programs are compiled separately and how the resultant object
modules are then combined into a single executable program.

Deck Structures 31

32

2 | ICOBOL LS,BO,MAIN

3 rCOBOL Source Deck — Calling Program

1JOB 90301, SUBCOMP

Card Parameter
1 1JOB
20301
SUBCOMP
2 ICOBOL
LS
BO
MAIN
3
4 {FIN

Description

Signals the beginning of a job stack.
Account number.

Identifies the user.

Control command that specifies control is to be transferred to the
COBOL processor.

Specifies that the source program is to be listed.
Specifies that the binary object deck is to be produced.

Specifies that this program is to be compiled as the main or calling
program.

COBOL source deck of the main program.

Signals the end of the job stack.

Figure 13. Inter-Program Communication — Compilation of Main or Calling Program

Deck Structures

Card

3 I COBOL Source Deck — Subprogram
2 | 1cosoL Ls,BO, SUB

¥JOB 90301, SUBCOMP

Parameter

1JO8B

90301

SUBCOMP

ICOBOL

LS

BO

SuB

IFIN

Description

Signals the beginning of a job stack.

Account number.

Identifies the user.

Control command that specifies control is to be transferred to the
COBOL processor.

Specifies that the source program is to be listed.

Specifies that the binary object deck is to be produced.

Specifies that this program is to be compiled as the subprogram
or called program,

COBOL source deck of the subprogram.

Signals the end of the job stack.

Figure 14, Inter-Program Communication -- Comgilation of Subprogram or Called Program

Deck Structures

33

9 } Data ek

8 | IDATA

7 | IRUN

t Object Deck — Mam P rogram

b 4 [1LOAD uNSAT, (COBLI))

3 | I(LABEL,SEGDATA), (SN, ANY)

2 l IASSIGN F:TAPE-FILE, ;

T | 1108 90301, SUBCOMP

Deck Structures

Card Parameter Description
T +JOB Signals the beginning of a job stack.

9030F Account number,

SUBCOMP Idenfifies the user.

2 FASSIGIN Control command that specifies the file and physical peripheral
device to be used.

F:TAPE-FILE DCB name of TAPE-FILE file.

; Signals that this ASSIGN command is continued on the following card.

3 I(LABEL, SEGDATA) Spectfies that the file 18 to be named SEGDATA. (This card is part of
the precedling ASSIGN command.)

(SN, ANY) Specifies that the file is to be written on any available reel.

4 ILOAD Control command that directs the resident loader to form a relocatable
load module.

(UNSAT, (COBLIB)) Specifies that the COBOL library (identified by the account name
COBLIB) is to be searched for external definitions required for the load
module.

5 Object deck of the main program.

6 Object deck of the subprogrom.

7 IRUN Control command that specifies the program is to be executed.
Figure 15, Inter-Program Communication — Execution with Object Decks

Card Parameter Description

8 IDATA Control command that specifies a data deck is to follow.
9 Data deck.
10 IFIN Signals the end of the job stack.

Figure 15, Inter-Program Communicdtion — Execution with Object Decks (cont:)

14 I Data Deck
13 | IDATA
12 | IRUN
11 | L{UNSAT, (COBLIB))
10 | {LOAD(EF,(FMAIN), (FSUB)), ;
9 [1(LABEL, SEGDATA), (SN, ANY)

8 | IASSIGN F:TAPE-FILE,;

7 rCOBOL Source Deck — Subprogram
6 | 1COBOL LS, GO, SUB
5 | IASSIGN M:GO, (FILE, FSUB)

4 |cosoL
3 {ICOBOL LS, GO, MAIN \

2 [1ASSIGN M: GO, (FILE, FMAIN) AN
1JOB 90301, SUBCOMP AN

Source Deck —

p—

Card Parameter Description

1 1JOB Signals the beginning of a job stack.
90301 Account number.

SUBCOMP Identifies the user.

Figure 16, Inter-Program Communication — Compilation and Execution

Deck Structures 35

36

Card Parameter
2 {ASSIGN
M:GO
(FILE,FMAIN)
3 ICOBOL
LS
GO
MAIN
4
5 JASSIGN
M:GO
(FILE, FSUB)
6 ICOBOL
LS
GO
SuB
7
8 [ASSIGN
F:TAPE-FILE
9 I(LABEL, SEGDATA)
(SN,ANY)
10 ILOAD
(EF, (FMAIN), (FSUB))
11 I(UNSAT, (COBLIB))

Description

Control command that specifies the file and physical peripheral device
to be used.

The file is the system GO file.

Specifies that the GO file (containing the module of the main or calling
program) is to be a disk file named FMAIN.

Control command that specifies control is to be transferred to the COBOL
processor., :

Specifies that the source program is to be listed.

Specifies that the program is to be executed after compilation.

Specifies that this program is tobe compiled asthe main or ¢alling program.
COBOL source deck of the main program,

Control command that specifies the file and physical peripheral device

to be used.

The file is the system GO file.

Specifies that the GO file (containing the module of the subprogram
or called program) is to be a disk file named FSUB.

Specifies that control is to be transferred to the COBOL processor.
Spacifies that the source program is to be listed.
Specifies that the program is fo be executed after compilation.

Specifies that this program is to be compiled as the subprogram
or called program,

COBOL source deck of the subprogram.

Control command that specifies the file and physical peripheral device
to be used.

DCB name of TAPE-FILE file.
Signals that this ASSIGN command is continued on the following card.

Specifies that the file is to be nomed SEGDATA. (This card is part of
the preceding ASSIGN command.)

Specifies that the output file is to be written on any available reel.

Control command that directs the resident loader to form a relocatable
load module. ’

Specifies that modules of the main program (FMAIN) and the subpro-
gram (FSUB) are to be included in the load module.

Signals that this LOAD command is continued on the following card.

Specifies that the COBOL library (identified by account number
COBLIB) is to be searched for external definitions required for the
load module. (This card is part of the preceding LOAD command.)

Figure 16. Inter-Program Communication — Compilation and Execution (cont.)

Deck Structures

Card Parameter Description

12 IRUN Control command that specifies the program is to be executed.
13 IDATA Control command that specifies a data deck is to follow.

14 Data deck.

15 FFIN Signals the end of the job stack.

Figure 16, Inter-Program Communication —~ Compilation and Execution (cont,)

ENTER Statement Feature

The ENTER statement allows the COBOL program to enter any non-COBOL subroutine that the loader can lood at

object time: for example, a closed machine~language subroutine or a FORTRAN subroutine. The subroutine name
must be defined as an entry point.

Figures 17 and 18 show how the subroutine object deck is combined with the COBOL program for compilation and

execution.

14 I Data Deck
13 | IDATA
12 | IRUN
11 | I(UNSAT, (COBLIB))
10 | ILOAD (GO), (EF, (ABC)),;

9 | COBOL Source Deck

8 | 1cosolL Ls,Go AN

7 [END AN

6 | 1EOD AN
5 | 1EOD \
4 rSubroufine Object Deck
3 | COPY CR(BIN) TO DC/ABC \ |
2 | IpcL AN
1 | 1JOB 19, JONES \ —

=

Figure 17. ENTER Statement Feature — Compilation and Execution

Deck Structures

37

38

~ - Coard Parameter
1 1JOB
19
JONES
2 IPCL
3 COPY CR(BIN) TO DC/ABC
4
5 IEOD
6 IEOD
7 END
8 ICOBOL
LS
GO
9
i0 ILOAD
(GO)
(EF, (ABC))
1 I{UNSAT, (COBLIB))
12 IRUN
13 IDATA
14
15 IFIN

Description:

Signals the beginning of a job stack.
Account number.

Identifies the user.
Initiates Peripheral Control Language (PCL) processor.
Copies object deck from card reader to disk file name ABC.

Subroutine object deck.

Signals PCL of the end of the subroutine object deck.

Terminates PCL operations.

Control command that specifies control is to be transferred
fo the COBOL processor.

Specifies that the source program is to be listed.

Specifies that the program is to be executed after compilation.
COBOL source deck.

Control command that directs the resident loader to form a re-
locatable load moedule.

Specifies that data from the user temporary GO file is to be
included in the root of the load module.

Specifies that the module of file ABC is to be included in the
load module.

Signals that this LOAD command is conitinued on the follow-
ing eard.

Specifies that the COBOL library (identified by account number
COBLIB) is to be searched for external definitions required for
the load module. (This cord is part of the preceding LOAD
command.)

Control command that specifies the program is to be executed.
Control command that specifies a data deck is to follow.

Data deck.

Signals the end of the job stack.

Figure 17. ENTER Statement Feature — Compilation and Execution (cont.)

Deck Structures

8 | IFIN AN

7 I Data Deck
6 | IDATA
5 | IRUN

pA
4 l Object Deck — Subroutine

3 [Obie& Deck — COBOL Program

2 | ILOAD (UNSAT, (COBLIB))
1 | 1JOB 19, JONES \

Card Parameter Description
1 1JOB » Signals the beginning of a job stack.
19 - Account number.
JONES Identifies the user.
2 ILOAD Control command that directs the resident loader to form a relocatable
load module.
(UNSAT, (COBLIB)) Specifies that the COBOL library (identified by account number
COBLIB) is to be searched for external definitions required for the load
module.
3 Object deck of the COBOL program.
4 Object deck of the subroutine.
5 IRUN Control command that specifies the program is to be executed.
6 IDATA Control command that specifies a data deck is to follow.
7 Data deck.
8 IFIN Signals the end of the job stack.

Figure 18. ENTER Statement Feature — Execution with Object Decks

Deck Structures

39

40

Co-Resident Sort Feature

To use the co-resident sort feature, the namesof the Sortprocessor modules must be communicated to the loaderalong
with the sort TREE structure, The sort TREE structure is generated by the COBOL compiler and isstored in afile on disk
under the userprogram name with two zeros added (for example, ANY00). The user canaccess this compiler=built
TREE structure with a PTREE control command, orhe can bypass the compiler=built TREE file and actually supply the
same TREE structure with a TREE control command. (The TREE control command is especially useful in changing the
TREE structure.) The compilerdoes not build a TREE for asegmented program that uses the co-resident sort feature,

Figures 19 and 20 show how to compile, load, and execute a COBOL program using co-resident sort. Notice the PTREE
control command in this figure (see card 10). Instead of using this command to access the compiler-built TREE
structure, the user could have substituted the following TREE control commands to supply the same TREE structure —

(! TREE ANY=S:SRT-S:DCB1-SSP—(SSP0,SSP1,55P2,55P3)

if SRTS is specified on the COBOL control command, or if SRTR is specified:

KTREE ANY-5:SRT-S:DCB1-SRP-(SRPO,SRP1,SRP2,SRP3)

14 | IFIN \

13 l Data Deck
12 | IDATA
11 | IRUN
10 | IPTREE (ANY00)
9 [1(S5P2,SORTLIB), (SSP3,SORTLIB))

8 | 1(SSPO,SORTLIB), (SSP1,SORTLIB), ;

7 | 1(5:DCB1,SORTLIB), (SSP,SORTLIB), ; \
6 | I(EF,(ANY),(S:SRT,COBLIB), ; \
5 | ILOAD (MAP), (UNSAT, (COBLIB)),(BREF), ;

L 4 [COBOL Source Deck
3 | ICOBOL LS, GO, SRTS
2 | IASSIGN M:GO, (FILE, ANY)

1 | 1JOB 9777, SORTTEST

Card Parameter Description
1 1JOB Signals the beginning of a job stack.
9777 Account number.
SORTTEST Identifies the user.

Figure 19. Co-Resident Sort Feature — Compilation and Execution (Sequential Sort Technique)

Deck Structures

Card Parameter
2 TASSIGN
M:GO
(FILE, ANY)
3 ICOBOL
LS
GO
SRTS
4
5 ILOAD
(MAP)
(UNSAT, (COBLIBY))
(BREF)
6 1(EF, (ANY), (5:SRT,COBLIB)
7 1(S:DCB1,SORTLIB), (SSP,SORTLIB)
8 1(SSPO,SORTLIB), (S5P1,SORTLIB)
9 1(SSP2,SORTLIB), (SSP3,SORTLIB))
10 IPTREE (ANYO00)
1 IRUN
12 IDATA
13
14 IFIN

Description

Control command that specifies the file and
physical peripheral device to be used.

The file is the system GO file.

Specifies that the file is to be a disk file named
ANY,

Control command that specifies control is to be
transferred to the COBOL processor.

Specifies that the source program is to be listed.

Specifies that the program is to be executed
ofter compilation.

Specifies that co-resident sort code is to be
generated.

COBOL source deck.

Control command that directs the resident loader
to form a relocatable load module.

Cives complete listing of external references and
definitions for the load module.

Specifies that the COBOL library (identified by
account name COBLIB) is to be searched for ex-
ternal definitions required for the load module.

Specifies that the branch reference mode of load-
ing is to be used.

Signals that this LOAD command is continued on
the following card.

These cards are all continuation of the LOAD com~
mand. They specify that the modules of the root seg-
ment ANY, the module S:SRT, and the Sort modules
S:DCB1, SSP, SSPO, SSP1, SSP2, and SSP3 are to be
includedin the load module. S:SRT can be found in
account COBLIB, and the Sort module can be found in
account SORTLIB.

Control command that is used to obtain the TREE
control command from the user's file (homed
ANYO00, which is the name of the program with
00 appended to it).

Control command that specifies the program is to
be executed.

Control command that specifies a data deck is to
follow.

Data deck.

Signals the end of the job stack.

Figure 19. Co-Resident Sort Feature — Compilation and Execution (Sequential Sort Technique) (cont.)

Deck Structures

41

42

25 IFIN
24 [\

RUN
23 | !ASSIGN F:INTRAN, (DEVICE, 9T} \\
22 [{RANDOM), RSTORE, 100), FILE,F) \
21 | IASSIGN F:SCRFé, (DEVICE,DP), SN, 16), ; \
20 | IRANDOM), RSTORE, 100), (FILE, E)
19 [1ASSIGN F:SCRFS5, (DEVICE, DP), (SN, 15), ; -

18 [!RANDOM), RSTORE, 100), (FILE, D)
17 | 1ASSIGN F:SCRF4, (DEVICE, DP), (SN, 14),; il

16 | |RANDOM), RSTORE, 100), (FILE, C) \
15 | IASSIGN F:SCRF3, (DEVICE,DP), 6N, 13), ;
14 | {RANDOM), RSTORE, 100), (FILE, B) \\
13 | !ASSIGN F:SCRF2, (DEVICE, DP), BN, 12), ; \
N\

——12 [IRANDOM), RSTORE, 100), FILE,A)
11 | IASSIGN F:SCRF1, (DEVICE, DP), SN, 1), ;

10 | IPTREE (MINEOD)
9 [1(SRP1,SORTLIB), (SRP2,SORTLIB), (SRP3,SORTLIB)) \W B
}-—-—4

g | !(SRPO,SORTLIB),; AN
7. | 1(s:DCB1,SORTLIB), (SRP,SORTLIB), ; \
6 | !(EF,(MINE),(S:SRT,(COBLIB), ; \
5 | ILOAD (MAP), (UNSAT,(COBLIB),(BREF),; AN

4 | COBOL SOURCE DECK

3 [ICOBOL LS, GO, SRTR AN
2 | 1ASSIGN M:GO, (FILE, MINE) AN
1| 1JOB 9888, SORTIOB AN

Figure 20. Co-Resident Sort Featyre — Compilation and Execution (Random Sort Technique)

Deck Structures

Card Parameter

NV 0 N O

10

11

12
13

14
15

16

1JOB

JASSIGN

M:GO
(FILE,MINE)

ICOBOL

LS
GO

SRTR

ILOAD
(MAP)
(UNSAT,COBLIB)

(BREF)

(EF, (MINE), (S:SRT,C OBLIB)
(S:DCB1,SORTLIB), (SRP,SORTLIB)
(SRPO,SORTLIB)

(SRP1,SORTLIB), (SRP2,SORTLIB),
(SRP3,SORTLIB))

IPTREE (MINECO)

IASSIGN,,F:SCRF1,(DEVICE,DP),
(SN,11)

1(RAN DOM), (RSTORE, 100) (FILE,A)

1ASSIGN F:SCRF2,(DEVICE,DP),
(SN,12)

1(RAN DOM),(RSTORE, 100),(FILE B)

IASSIGN F:SCRF3,(DEVICE,DP),
(SN, 13)

I(RANDOM,(RSTORE, 100),
(FILE,C)

Description

Signals the beginning of the job stack.

Controls command that specifies files
characteristics.

The device is the system GO file.
This file is a disk file called MINE.

Call and transfer Control to the COBOL
compiler.

List the source program.

Build a load module of the object program on
the GO file.

Specifies that co-resident sort code is to be
generated.

The COBOL source program deck.

Directs the resident loader to form a relocatable
load module.

List the external references and definitions for
the foad module.

Satisfy external references from COBCL run-
time library.

Specifies that the branch reference mode of load-
ing is to be used.

Signals that the load command continues on the
next card.

These cards are all a continuation of the LOAD
command. They specify that the modules of the
root segment MINE, the module S:SRT, and Sort
modules S:DCB1, SRP, SRPO, SRP1, SRP2, and
SRP3 are to be included in the load modules. The
module S:SRT can be found in account COBLIB,
and the Sort modules can be found in account
SORTLIB.

This command will obtain the TREE command from
the user's file named MINEQO.

These cards assign the first six of the 17 Sort work
file DCBs to six private disk pack files. These files
are assigned to RANDOM storage, using 100 gran-
ules on each pack.

Figure 20. Co=Resident Sort Feature — Compilation and Execution (Random Sort Technique) (cont.)

Deck Structures

43

44

Card

Parameter

17

18

19

20

21

22

23

24

25

'ASSIGN F:SCRF4,(DEVICE,DP),
(SN ,14),

I(RANDOM), (RSTORE, 100), (FILE, D)

IASSIGN F:SCRF5,(DEVICE,DP),
(SN,15),

| (RANDOM), (RSTORE, 100), (FILE, E)
IASSIGN F:SCRF6,(DEVICE,DP),(SN,16),
1(RAN DOM),(RSTORE , 100),(FILE,F)

1ASSIGN F:INTRAN,(DEVICE,9T)

IRUN

IFIN

Description

The input data file for this program is called
INTRAN and can be found on an unlabeled
9-track device tape.

This command requests that the compiled object
program be executed.

Signals the end of the job stack.

Deck Structures

Figure 20. Co=Resident Sort Feature — Compilation and Execution (Random Sort Technique) (cont.)

The three examples shown below illustrate the use of the co-resident sort with a segmented COBOL program.

Example 1:

Tree structure

SEGO1

SEG02

SEGO03

SEG04

SEG00

S:SRT S:DCBI1 SSP

where:

SEG00 is the COBOL root program (section 1) that contains the references to the various overlay segments

SSPO

SSP1

SSP2

SSP3

as well as the section (section 2) that contains the SORT verb and the Input and Qutput procedure

sections.

SEGOI1 to SEG04

Job Control Cards

are the overlay segments (section numbers above 49).

ISEG03, SEGO04, SSPO, SSP1, SSP2, SSP3)

ITREE SEGOO - S:SRT - S:DCB1 - SSP - (SEGO1, SEGO02, ;

ILOAD. . ., (BREF)

Deck Structures

45

Example 2:

Tree Structure

SEGO1

SEG02

SEGO03

SEG04

SEGO00
SSPO
SSP1
SEGO05 S:SRT S:DCB1 SSP
SSP2
SSP3
where
SEGO00 is the COBOL root program (section 1) that contains all the references to the various overlay
segments.

SEGO] to SEG04 are the overlay segments (section numbers above 49).

SEGO5 is the overlay segment (section 80) that contains the SORT verb and the Input and Output proce-
dure sections.

Job Control Cards

15:DCB1 - SSP - (SSPO, SSP1, SSP2, SSP3)

ITREE SEGO0 - (SEGO1, SEG02, SEG03, SEG04, SEGO5 - S:SRT~;

ILOAD. . ., (BREF)

Deck Structures

Example 3:

Tree Structure

SEGO1
SEGO02 SRPO
SEG00 S:SRT SRP1
S:DCBI SRP SEGO03
SRP2
SEG04
SEGO05
SRP3
SEG06
where
SEGO00 is the COBOL root program (section 1) that contains references to the various overlay segments as
well as the section (section 2) that contains the SORT verb and the Input and Output procedure section.
SEGOT - 02 are overlay segments (section numbers above 49).

SEGO03 - 04 are overlcy segments in the Input Procedure (SRP2 of SORT) (section numbers above 49).

SEGO05 - 06 are over.|c1y segments in the Oufput Procedure (SRP3 of SORT) (section numbers above 49).

Job Control Cards

1-(SEGO03, SEG04), SRP3-(SEG 05, SEG06)))

ITREE SEGO00 - S:SRT - (SEGO1,SEG02, S:DCB1-SRP-(SRPO, SRP1, SRP2, ;

ILOAD. . ., (BREF)

Deck Structures

47

48

Debug Module Object Time Switch

The object time switch dynamically activates the debugging code inserted by the compiler. If the switch is on, all
the effects of the debugging language written in the source program are permitted. If the switch is off, all the
effects described in the COBOL Reference Manual are inhibited. Recompilation of the source program is not required
to provide or eliminate this facility.

The object time switch is normally in the ON position. In order to deactivate the debug code (turn switch to
OFF position), the following option in the IRUN control command should be used:

IRUN (START,NOSDBG)

Deck Structures

6. XEROX ANS COBOL COMPILER DIAGNOSTICS

Table 2 lists all diagnostic messages produced by the COBOL compiler. Certain diagnostics are associated with a
Strength Code having the following significance:

P — Precautionary These diagnostics, which are produced only when the DIAG control command option is
specified, indicate that a trivial error (or possibility of an error) unaffecting program

execution has been detected.

F — Fatal A serious error has been detected. Compilation is not completed and no object program
is produced.

The object program severity level (in hexadecimal) associated with each diagnostic is also shown. Execution of o
program bearing a severity level of 7 or greater is not recommended.

Table 2. Xerox ANS COBOL Compiler Diagnostics

Message : Severity |
Number Message Strength Level
001 SOURCE PROGRAM OUT OF SEQUENCE 4

The sequence number field (columns 1 through 6) of the source program !
lines is tested for ascending sequence only when the SEQCHK control l
command option is specified.

002 INCORRECT PUNCTUATION P 0
003 AREA A VIOLATION N
004 NAME/NUMERIC LleRAL EXCEEDS 30 CHARACTERS — TRUNCATED 4
005 INVALID CHARACTER(S) 4
006 QUOTE MARK OMITTED 4

Either the terminating quote of a non-numeric literal has been omitted or
a nonblank character has occurred prior to a quote on a continuation line.

007 NON-NUMERIC LITERAL EXCEEDS 255 CHARACTERS — TRUNCATED 4

008 RESERVED WORD USED INCORRECTLY — TREATED AS A NAME 2

A reserved word has been encountered in a COBOL division within which
it is inapplicable. It receives preliminary treatment as a name.

009 DIVISION HEADER INCORRECT OR OMITTED 2
010 PERIOD OMITTED 2
011 REQUIRED SECTION OMITTED 4
012 SECTION OUT OF ORDER 2
013 SECTION DUPLICATED 2
014 REQUIRED PARAGRAPH OMITTED 2
015 | PARAGRAPH OUT OF ORDER 2

Xerox ANS COBOL Compiler Diagnostics

50

Table 2. Xerox ANS COBOL Compiler Diagnostics (cont.)

Message Severity
Number Message Strength | Level
016 PARAGRAPH DUPLICATED 2
017 REQUIRED CLAUSE OMITTED — COMPILATION ABORTED F
018 CLAUSE DUPLICATED 2
019 PROCEDURE DIVISION STRUCTURED INCORRECTLY 1

A section header has not preceded the initial PROCEDURE DIVISION

statements but has occurred later. This condition conflicts with rules that

govern structuring of the PROCEDURE DIVISION, but is harmless in itself.
020 REQUIRED WORD MISSING 2
021 MISSING COBOL DIVISION(S) — COMPILATION ABORTED F
022 NAME INVALID/OMITTED 7
023 INVALID LITERAL 7
024 INVALID SUBSCRIPT 7
025 CLOSING PARENTHESIS OMITTED 4
026 INVALID NUMBER ‘ 7
027 ILLEGAL CURRENCY SIGN 4
028 ILLEGAL PRIORITY ~-NUMBER 4
029 INCORRECT SWITCH-NAME 4
030 INVALID 'ALL' LITERAL 7
031 CONDITION-NAME OMITTED 7
032 INCOMPLETE 'SAME' CLAUSE 7
033 INVALID/OMITTED QUALIFIER 7
034 UNSELECTED FILE 4

An FD or SD entry has no corresponding SELECT sentence in the FILE-

CONTROL paragraph. This is a violation of COBOL rules but is harmless

in this implementation if an ASSIGN command is provided for the file at

execution time.
035 INVALID LEVEL-NUMBER 7
036 INVALID/OMITTED DATA-NAME 7
037 SECTION HEADER INCORéECT 4
038 SOURCE WORDS BYPASSED 7
039 INVALID INDEXING ‘7

Xerox ANS COBOL Compiler Cragnostics

Table 2. Xerox ANS COBOL Compiler Diagnostics (cont.)

Message Severity
Number Message Strength Level
040 FD REPORT CLAUSE REQUIRED — COMPILATION ABORTED F

An RD entry has not been associated with any file via a REPORT clause

on an FD entry. Thus, it is impossible to produce the report.
041 INVALID PICTURE 7
042 'TYPE' AND/CR 'NEXT GROUP' OMITTED OR WRITTEN IMPROPERLY 7
043 CLAUSE WRITTEN ILLEGALLY 7
044 EXCESSIVE REPETITION COUNT IN PICTURE 7
045 INVALID REPETITION COUNT 7
046 ILLEGAL CHARACTER(S) IN PICTURE — ‘B' SUBSTITUTED 7
047 ILLEGAL COMBINATION OF PICTURE SYMBOLS — DISCARDED 7
048 EXCESSIVE SIZE SPECIFIED FOR EDITED FIELD — TRUNCATED 7
049 SYNTACTICAL ERROR 7
050 CONDITIONAL STATEMENT INVALID IN CONTEXT 7

A conditional statement has been written at a point where only imperative

statements are permissible, e.g., following AT END.
051 INCORRECT SUBSCRIPTING/INDEXING 7
052 INCORRECT CLASS TEST 7
053 INCORRECT SIGN TEST 7
054 INCORRECT ARITHMETIC OR LOGICAL EXPRESSION 7
055 CONDITION TOO LIBERAL FOR THIS FORMAT QOF 'SEARCH' STATEMENT 7
056 INCORRECT ARITHMETIC-EXPRESSION 7
057 SECTION-NAME OMITTED P 0
058 PARAGRAPH-NAME OMITTED P 0
059 NULL PROCEDURE i
060 PREMATURE END OF PROCEDURE DIVISION 2

A period has not been encountered as the last source language element

preceding the end of the source program.
061 STATEMENT TOO COMPLEX FOR ANALYSIS 7

Too many levels of nested conditions and/or levels of parenthetical group-

ings and/or logical connectors have been specified for the statement. A

set of simpler statements should be provided to accomplish the desired effect.
062 EXCESSIVE NEGATION 6

Xerox ANS COBOL Compiler Diagnostics

51

52

Table 2, Xerox ANS COBOL Compiler Diagnostics (cont.)

Message Severity
Number Message Strength Level
063 NEGATIVE INTEGER — MUST BE UNSIGNED OR POSITIVE 7
064 INTEGER VALUE TOO GREAT 7
065 MNEMONIC-NAME SYNONYM 2
A mnemonic-name and a data-name have been given identical names.
This condition is a violation of COBOL rules, but is harmless unless
the name has been employed in an ambiguous reference.
066 SPECIFICATION CONFLICT 4
Either conflicting USAGEs or an illegal combination of USAGE and
BLANK WHEN ZERO or JUSTIFIED RIGHT has been specified. The first
specification encountered is used; others are discarded.
067 MULTIPLE VALUE CLAUSES 4
More than one VALUE clause has been specified in a data entry; the first
is used, others are discarded.
068 ILLEGAL USE OF 'REDEFINES' 7
The level-number of the data entry bearing the REDEFINES clause has not
corresponded to any level-number within the potential redefinition scope.
The REDEFINES clause is ignored.
069 INCORRECT QUALIFICATION 7
An incorrect qualification in conjunction with a REDEFINES or RENAMES
clause has been encountered. The REDEFINES clause is obeyed, since the
data-name is not essential to its resolution. The scope of the RENAMES is
set arbitrarily to 1 byte and its origin is assumed fo be the base of the cur-
rent record.
070 ILLEGAL DATA HIERARCHY 7
Level-66 entries have not been specified as the last entries in a data
hierarchy. All entries between the last level-66 entry ond the beginning
of the next record are discarded.
071 INVALID 'RENAMES' SCOPE 7
The extent of a RENAMES scope has been indeterminable; 1 byte is
assumed.
072 MISPLACED 'RENAMES' CLAUSE 7
The RENAMES clause has not been associated with level-number 66. The
RENAMES declaration is ignored,
073 CONDITION-NAME ENTRY LACKS 'VALUE' CLAUSE 7
No VALUE clause has been specified on a level-88 entry. The entry
is deleted.
074 CONDITION-NAME ENTRY BEARS INVALID CLAUSE(S) 7

Clauses other than the VALUE clause have been encountered on a level-88
entry. These clauses are ignored.

Xerox ANS COBOL Compiler Diagnostics

Takle 2. Xerox ANS COBOL Compiler Diagnostics (cont.)

Message Severity
Number Message Strength Level
075 MISPLACED 'REDEFINES' CLAUSE 7
The REDEFINES clause has appeared before the occurrence of any legiti-
mate potential redefinition point in the current data hierarchy. The clause
is ignored.
076 ILLEGAL USE OF 'OCCURS . . . DEPENDING ON!' 7
On vatiable-tength records the variable portion of the record must follow
the fixed portion. If this rule is violated (that is, if a fixed item or group
follows the last variable group of the record), any reference to the fixed
item or group will be unpredictable.
077 NESTING OF 'OCCURS' EXCEEDS 3 LEVELS 7
An attempt to define o table of more than three dimensions has been
detected. The OCCURS clause is ignored.
078 MISPLACED 'OCCURS' CLAUSE 7
079 USAGE CONFLICT BETWEEN GROUP AND SUBORDINATE ITEMS 6
A conflict has occurred between the stated USAGE of a group and a sub-
ordinate data entry. The description of the subordinate item isaccepted.
080 MISPLACED 'PICTURE' CLAUSE P 0
A PICTURE has been specified in conjunction with one of the USAGE
types having predetérmined characteristics, e.g., COMPUTATIONAL,
COMPUTATIONAL-1, COMPUTATIONAL-2, and INDEX. The PICTURE
clause is discarded.
081 ILLEGAL 'BLANK WHEN ZERO' CLAUSE 6
A BLANK WHEN ZERO clause has been found to be in conjunction with
a PICTURE that precludes it, i.e., that is not unsigned numeric DISPLAY
or numeric edited. The BLANK WHEN ZERO clause is ignored.
082 ILLEGAL 'JUSTIFIED RIGHT' CLAUSE 6
A JUSTIFIED RIGHT clause has been specified on a group item or an
elementary item that is not alphanumeric. The JUSTIFIED RIGHT clause
is ignored.
083 '"WALUE' CLAUSE WITHIN SCOPE OF 'REDEFINES' 6
The VALUE is accepted and used in the object program.
084 NESTED 'VALUE' CLAUSES 6
The VALUE is accepted and used in the object program.
085 '"VALUE' CLAUSE INCONSISTENT WITH CLASS OF ENTRY 7
The VALUE is not accepted.
086 '"OCCURS . . . DEPENDING ON' ILLEGAL WITHIN SCOPE OF 7
'REDEFINES'
087 '"PICTURE' CLAUSE ILLEGAL ON GROUP ENTRY 6

The PICTURE is ignored.

Xerox ANS COBOL Compiler Diagnostics

53

54

Table 2. Xerox ANS COBOL Compiler Diagnostics (cont.)

Message Severity
Number Message Strength Level
088 NON-UNIQUE DATA REFERENCE 7
089 NON-UNIQUE PROCEDURE-NAME 7
090 INVALID 'DEPENDING ON' FIELD 7
The 'GO TO . . . DEPENDING ON!' data item has not been specified
as a numeric field. The statement is discarded.
091 NON-CONTIGUOUS DATA ITEM FOLLOWING DATA STRUCTURE 4
Level 77 is cho'nged to level O1.
092 LEVEL 66 ILLEGAL FOLLOWING LEVEL 77, OR 01 7
093 INVALID DATA USAGE 7
094 MAXIMUM SIZE EXCEEDED FOR NUMERIC OPERAND 7
095 UNDEFINED DATA REFERENCE 7
096 INVALID DATA REFERENCE 7
A condition-name or mnemonic-name has been referenced where a data
item is expected.
097 VALUE ILLEGAL WITHOUT COLUMN NO. 7
The value is discarded.
098 NUMERIC VALUE ILLEGAL IN REPORT SECTION 7
The value is discarded.
099 PRIORITY SEGMENTATION IS NOT HONORED IN THIS COMPILATION 2
Priority segmentation has been indicated in the source program without
specification of the SEG control command option.
100 ILLEGAL LEVEL-NUMBER SEQUENCE 2
The level-number is accepted.
101 UNDEFINED KEY 7
No data entry has been specified to satisfy a KEY clause reference.
The key name is disregarded.
102 SIZE OF DATA ENTRY INDETERMINATE 7
Sufficient information has not been provided to determine the size of
a data entry.
103 SIZES OF REDEFINING AND REDEFINED AREAS UNEQUAL 7
The size of the largest of these areas is used.
104 RENAMES DATA-NAME MISSING 7
No valid RENAMES clause has been specified on alevel-66data entry.
105 VALUE LITERAL CONFLICTS WITH CLASS OF DATA ENTRY 7

The value is ignored.

Xerox ANS COBOL Compiler Diaanostics

Table 2, Xerox ANS COBOL Compiler Diagnostics (cont.)

Message Severity
Number Message Strength Level
106 VALUE TRUNCATED ON RIGHT 4
Insufficient storage space has been allocated to the value.
107 VALUE TRUNCATED ON LEFT 4
Insufficient storage space has been allocated to the value.
108 DUPLICATE DATA-NAMES WHICH CANNOT BE UNIQUELY REFERENCED 2
109 EXCESSIVE NESTING OF LIBRARY RETRIEVAL STATEMENTS — F
COMPILATION ABORTED
110 PICTURE INCOMPATIBLE WITH USAGE 6
A PICTURE (possibly containing editing characters) incompatible with
USAGE COMPUTATIONAL-3 has been specified. The USAGE is
discarded.
m INCORRECT 'GO TO' STRUCTURE 7
112 'USE' STATEMENT OMITTED FROM DECLARATIVES SECTION 7
113 POSSIBLE MISUSE OF RESERVED WORD 4
114 NO COPRESPONDING DATA ITEMS IN A 'CORRESPONDING' 7
STATEMENT
115 IDENTIFIER IN 'CORRESPONDING' STATEMENT IS AN ELEMENTARY 7
ITEM :
116 COMPILER LIMITATION EXCEEDED — STATEMENT INCOMPLETELY 7
COMPILED
This message occurs when a PERFORM statement (format 4) is too
lengthy in its entirety to be compiled.
117 INVALID LIBRARY RETRIEVAL STATEMENT — COMPILATION ABORTED F
The library file does not exist. ,
118 NUMBER OF RENAMED FILES EXCEEDS COMPILER CAPACITY B
119 ASSEMBLY PHASE TABLE OVERFLOW — COMPILATION ABORTED F
There are probably too many section and paragraph definitions.
120 FILLER MEANINGLESS ON LEVEL 77 — ACCEPTED 4
121 CONFLICT BETWEEN 'BLOCK CONTAINS' CLAUSE AND RECORD 7
SIZE
122 CANNOT PROCESS DATA STRUCTURE IN CORE AVAILABLE — F
COMPILATION ABORTED
This is a general message indicating that a compiler data storage area
has overflowed.
123 REPORT FIELD OVERLAP — DATA ITEM TRUNCATED 4
The report line probably contains conflicting COLUMN NUMBER
assignments.
124 REPORT STATEMENTS BYPASSED 7

Xerox ANS COBOL Compiler Diagnostics

55

56

Table 2. Xerox ANS COBOL Compiler Diagnostics (cont.)

Message : Severity

Number Message Strength Level

125 CONFLICT BETWEEN 'RECORD CONTAINS' CLAUSE AND RECORD
SIZE 4
The computed record size is used.

126 VACUOQUS'ROUNDED' OPTION — IGNORED P 0
Arithmetic operation has not developed digits of lesser significance than
the rightmost digit position of the result data item. Thus, rounding is not
effected.

127 'SELECT'SENTENCES DUPLICATED 4

128 ILLEGAL NUMERIC-EDITED USAGE P 0
A usage conflict has occurred. A warning is issued.

129 ILLEGAL FLOATING-POINT USAGE FOR INTEGER P 0
An integer value has been used. A warning is issued.

130 ILLEGAL BINARY/FLOATING POINT USAGE P 0
A usage conflict has occurred. A warning is issued.

131 ILLEGAL INDEX DATA USAGE P 0
This is treated as a binary (COMPUTATIONAL) data item. A warning
is issued.

132 ILLEGAL NON-INTEGER USAGE 4
An integer portion of the data item is used.

133 ILLEGAL COMPUTATIONAL-3 USAGE P 0
A usage conflict has occurred. A warning is issued.

134 ILLEGAL ALPHANUMERIC USAGE P 0
A usage conflict has occurred. A warning is issued.

135 ILLEGAL ALPHANUMERIC-EDITED USAGE P 0
A usage conflict has occurred. A warning is issued.

136 MAXIMUM OF 3 IDENTIFIERS ONLY MAY BE VARIED — ENTIRE
"PERFORM" STATEMENT DELETED 7

137 ILLEGAL ELEMENTARY ITEM USAGE 7

138 ILLEGAL INDEX-NAME USAGE 7
This is treated as a binary (COMPUTATIONAL) data item.

139 PARAGRAPH BOTH ALTERED AND PERFORMED 6
The ALTER and PERFORM statements have been generated. This is a
warning of high error probability.

Xerox ANS COBOL Compiler Diagnostics

{

Table 2. Xerox ANS COBOL Compiler Diagnostics (cont.)

Message Severity
Number Message Strength Level
140 ALTERED PARAGRAPH NOT 'GO TO' 4
A GO TO statement has not been specified as the sole contents of a para-
graph that is the subject of an ALTER statement. The termination point of
the paragraph is preset to transfer control to C:ERR. If control reaches the
paragraph subsequent to the execution of the ALTER statement, control is
transferred as specified by the ALTER statement following execution of the
statements contained in the paragraph (assuming that no single statement
has caused transfer of control).
141 INVALID PROCEDURE REFERENCE 7
In most cases, the statemenet is deleted. In some instances a reference to
C:ERR is substituted for the incorrect procedure-name.
142 INVALID SECTION-NAME REFERENCE 7
A section-name has been referenced in an ALTER statement, where only
paragraphs may be mentioned. The statement is deleted.
143 EXTERNAL NAME ALTERED TO PROCEED TO OVERLAY 7
An undefined procedure-name, which is therefore presumed-to be an
external definition, has been altered to proceed to a point in an over-
lay segment. Unless the ALTER statement itself is in the same overlay
segment, C:ERR is substituted for the target procedure-name.
144 INVALID PARAGRAPH~NAME REFERENCE 7
A paragraph-name has occurred where only a section-name is permissible,
e.g., as the INPUT or OUTPUT PROCEDURE of a SORT. This is a warn-
ing of the probability of error. The requested action is taken.
145 INTEGER VALUE ILLEGAL IN CONTEXT 7
146 'SET' USED WITH NON-INDEXED FIELD 7
147 'GO TO' INITIALIZED AT C:ERR P 0
Comment only. GO TO statements are preset to transfer control to C:ERR
if an ALTER statement has not provided a legitimate transfer point prior to
its execution.
148 INVALID FILE-NAME B
A file-name has not appeared as the operand of a statement requiring one.
The statement is deleted.
149 INVALID RECORD-MNAME 7
A record-name has not appeared as the operand of a statement requiring
one. The statement is deleted.
150 LABEL/ERROR CHECK IN DECLARATIVES SECTION 7

An input-output statement that requires execution of a DECLARATIVES
procedure has occurred within a DECLARATIVES procedure. The statement
is generated, but may yield erroneous results (e.g., a loop) at execution
time.

Xerox ANS COBOL Compiler Diagnostics

57

58

Table 2. Xerox ANS COBOL Compiler Diagnostics (cont.)

Message
Number

Message

Strength

Severity
Level

151

152

153

154

155

156

157

158

159

160

161

162

163

INVALID REVERSED/NO REWIND OPTION

Specified input/output statement options are incompatible with the
access mode of the file. The options are deleted.

AT END/INVALID KEY OPTION INCOMPATIBLE WITH ACCESS MODE

Specified input/output statement options are incompatible with the access
mode of the file. A warning is issued. The statement is generated as
written.

'SEEK* USED WITH UN-KEYED FILE

Specification of the SEEK statement is incompatible with the organiza-
tion and access mode of the file. The statement is deleted.

INVALID KEY

The ACTUAL KEY has been undefined, defined twice, or judged incom=
patible with the access mode of the file.

MAXIMUM DISPLAY SIZE EXCEEDED

The aggregate size of operands in a DISPLAY, EXHIBIT, ACCEPT, or
STOP 'literal' statement has exceeded 254 characters. The display line
is truncated.

ILLEGAL SUBSCRIPTED 'DEPENDING ON' FIELD

Subscripts are ignored.

NON-TABLE ITEM SEARCH

The statement is deleted.

'SEARCH ALL' UNORDERED TABLE ILLEGAL

A warning is issued. A serial search of the entire table is generated.

EXTERNAL REFERENCE GENERATED

This message is commentary only and indicates generation of a reference
to an assuméd external definition.

UNDEFINED PARAMETER-NAME

The presence of qualification indicates that this external reference is not
intentional. . A reference to C:ERR is substituted.

CONDITION-NAME USED AS PARAMETER

Areference to the conditional variable issubstituted for the condition-name.

DIMENSIONED PARAMETER

Parameters are not permitted to be subscripted/indexed. Subscripts are
ignored and a reference to the first occurrence is generated.

INDEX~-NAME USED AS PARAMETER

A warning is issued. Reference to the index-name in generated.

Xerox ANS COBOL Compiler Diagnostics

Table 2. Xerox ANS COBOL Compiler Diagnostics (cont.)

Message Severity
Number Message Strength Level
164 SUBSCRIPTS/INDICES APPLIED TO UNDIMENSIONED DATA ITEM -7
The subscripts/indices are ignored.
165 INVALID SUBSCRIPTS/INDICES 7
The subscripts/indices are ignored and reference is made to the first
occurrence.
166 EXCESSIVE SUBSCRIPTS/INDICES 7
The excess subscripts/indices are discarded.
167 MAXIMUM SUBSCRIPT SIZE EXCEEDED 7
The offending subscript is replaced by a value of 1 so that the first occur-
rence is referenced.
168 FRACTION USED AS SUBSCRIPT 7
A data item, which bears fractional places only, has been used as a sub-
script. - The offending subscript is replaced by a value of 1 so that the
first occurrence is referenced.
169 SIGNIFIC ANCE |.LOST WHEN ALIGNED 7
A data item whose PICTURE contains trailing Ps has been employed as a
subscript. The scaled value is used.
170 INCORRECT SUBSCRIPT/INDEX 7
171 FLOATING POINT SUBSCRIPT — INTEGER VALUE ONLY USED 6
172 SUBSCRIPTED TABLE ITEM 4
Subscripting has been specified where indexing should be employed. The
subscripted reference is generated.
173 SUBSCRIPT INCREMENT/DECREMENT USED 6
The increment/decrement has been applied to the subscript and a sub-
scripted reference is generated.
174 INEFFECTIVE DIGITS TRUNCATED 4
A decimal item used a subscript of sufficient size that insignificant
digits may be truncated by the subscript calculation.
175 NON-INTEGER SUBSCRIPT — INTEGER VALUE USED 4
176 DIMENSIONED SUBSCRIPT 7
The value in the first occurrence of the array whose name has been given
as a subscript is employed in the subscript calculation.
177 INSUFFICIENT SUBSCRIPTS/INDICES 7
A value of 1 is assumed for each missing subscript/index.
178 DIMENSIONED DATA NOT SUBSCRIPTED/INDEXED 7

A value of 1 is assumed for each missing subscript/index.

Aerox ANS COBOL Compiler Diagnostics

59

Table 2. Xerox ANS COBOL Compiler Diagnostics (cont.)

Message Severity

Number Message Strength Level

179 MAXIMUM SORT KEY LENGTH EXCEEDED — 255 CHARACTER USED 7

180 INVALID CS NAME — IGNORED B
The CS (COMMON-STORAGE) control command parameter has been
written incorrectly.

181 INVALID CONTROL COMMAND OPTION — IGNORED 6
An unrecognizable control command option has been encountered and is
ignored.

182 ILLEGAL RELATION TE.ST. ONLY CONDITION-NAME TEST
GENERATED 7
A relation test involving a condition-name test has been written improperly.
The condition-name test is generated but the balance of the conditional
statement is deleted.

183 ILLEGAL OPERAND IN COMPARISON —~ COMPARISON DELETED 7
An illegal comparand (object) has been detected. The comparison is
deleted.

184 ILLEGAL SUBJECT IN RELATION TEST. STATEMENT DELETED 7
An illegal subject has been detected. The entire conditional statement
is deleted.

185 ILLEGAL RELATION TEST 7
An illegal implication has been detected. The entire conditional state-
ment is deleted.

186 RELEASE/RETURN NOT AN INPUT/QUTPUT PROCEDURE 7
The RELEASE/RETURN statement is deleted.

187 SORT STATEMENT WITHIN INPUT/OQUTPUT PROCEDURE — DELETED B

188 SORT KEY NOT IN SORT-FILE RECORD DESCRIPTION B
The incorrect SORT key specification is ignored.

189 NO SORT KEYS B
The SORT statement is deleted.

190 EXCESSIVE SORT KEYS B
Excessive SORT keys (the maximum is 16) are ignored.

191 INVALID REPORT RECORD B
The GENERATE statement has not referenced a report-name or a report
record-name. The statement is deleted.

192 INVALID DATA REFERENCE — EXPRESSION DELETED B
An expression operand has not been defined. The expression is deleted.

60 Xerox ANS COBOL Compiler Dicgnostics

Table 2. Xerox ANS COBOL Compiler Diagnostics (cont.)

Message Severity
Number Message Strength Level
193 INVALID EXPRESSION OPERAND — EXPRESSION DELETED B
An illegal arithmetic operand has occurred within an expression. The
expression is deleted.
194 INVALID EXPRESSION — DELETED B
An expression has been malformed and is deleted.
195 UNBALANCED EXPRESSION — DELETED 8
An imbalance of operators and operands has been detected in an ex-
pression. The expression is deleted.
196 SUM ADDENDS NOT DEFINED IN A DETAIL OR OTHER SUM ITEM B
The undefined SUM clause operands are deleted.
197 INCOMPATIBLE LINE NUMBERS GIVEN IN 'PAGE LIMITS' CLAUSE B
Compilation is continued in accordance with the dictates of the source
program, but erroneous results are likely if the object program is
executed.
198 NO FD, SD ENTRY ASSOCIATED WITH A 'SELECT' CLAUSE — F
COMPILATION ABORTED
199 'DUPLICATE FD/SD ENTRIES B
200 CONFLICT BETWEEN "ACCESS MODE" AND "ACTUAL KEY" —
RANDOM ACCESS ASSUMED 6
201 CONFLICT BETWEEN "ACCESS MODE" AND "ACTUAL KEY" —
SEQUENTIAL ACCESS ASSUMED 6
202 MAXIMUM ACTUAL KEY SIZE EXCEEDED - 255 CHARACTERS USED 6
203 "END DECLARATIVES" STATEMENT MISSING B
204 MAXIMUM NUMBER OF SELECT STATEMENTS EXCEEDED —
COMPILATION ABORTED F
205 MORE THAN 3 FD'S ASSOCIATED WITH 1 RD — IGNQRED 7
206 VALUE CLAUSE NOT ALLOWED — COMPILATION ABORTED F
207 LEVEL 66 DATA ENTRY BEARS INVALID CLAUSE(S) 7
208 EXCESSIVE CHARACTERS IN PICTURE STRING — TRUNCATED 7
209 A "RENAMING" STATEMENT CANNOT BE HONORED B
210 RIGHTMOST AND/OR FRACTIONAL DIGITS TRUNCATED P 0
2n LEFTMOST DIGITS/CHARACTERS TRUNCATED P 0
212 INTEGER AND FRACTIONAL DIGITS TRUNCATED P 0
213 LEVEL 77 ILLEGAL IN FILE SECTION — DATA ENTRY DISCARDED 7
214 DUPLICATE OR INVALID RD NAME —~ COMPILATION ABORTED F

Xerox ANS COBOL Compiler Diagnostics

61

62

Table 2, Xerox ANS COBOL Compiler Diagnostics (cont.)

Message - Severity
Number Message | Strength Level
215 VALUE CLAUSE WITHIN SCOPE OF OCCURS 7
The VALUE clause is not permitted within the scope of an OCCURS
clause.
216 OCCURS ILLEGAL ON LEVEL 01 OR 77 7
217 DECLARATIVE IS NOT APPROPRIATE ON FILE WITH LABEL RECORDS
| OMITTED 7
218 ILLEGAL CONTINUATION CHARACTER — IGNORED 4
An illegal character in cotumn 7 was encountered.
219 DECLARED DATA STORAGE EXCEEDS AVAILABLE CORE STORAGE 7
220 DUPLICATE DECLARATIVES HAVE BEEN SPECIFIED 7
221 INTEGER PERFORM COUNT LIMIT OF (2**19)-1 EXCEEDED —~ VALUE
TRUNCATED 7
222 COMPILER LIMIT OF 9 REPORT CONTROL FIELDS EXCEEDED —~
COMPILATION ABORTED F
223 USAGE NOT SPECIFIED — NUMERIC DISPLAY ASSUMED 4
224 KEYED FILE BLOCKING PRE-EMPTED BY MONITOR — CLAUSE
IGNORED ‘ 3
The BLOCK CONTAINS clause may not be specified for a keyed file.
225 SIZE IN NUMERIC PICTURE GREATER THAN 31 — RESULTS ARE
UNPREDICTABLE 2
Numeric items may not exceed PICTURE 9(31). If this is a filler item,
change to PICTURE X(n).
226 CAUTIONNORECORD DESCRIBED — VALID IF REPORT CLAUSE PRESENT P 0
227 WARNING — PROCEDURE NAME PASSED IN ENTER STATEMENT IN AN P 0
OVERLAY SEGMENT
228 OPTION OF DEBUGGING MISSING/INVALID 7
229 COPY REPLACING STATEMENT INCORRECTLY STRUCTURED 7
230 DEVICE NOT SPECIFIED — CONSOLE ASSUMED 2
The ACCEPT statement did not specify a device.
231 IDENTIFIER NOT SPECIFIED FOR "ACCEPT" STATEMENT 7
232 USAGE NOT SPECIFIED — DISPLAY ASSUMED 1
DISPLAY was not specified in a USAGE clause in a report group entry.
233 MAXIMUM DCB SIZE EXCEEDED ~ 3 INSN/OUTSNS GENERATED 8

The value of "integer" in a SELECT statement is too large; the value
of 3 is used.

Xerox ANS COBOL Compiler Diagnostics

Table 2. Xerox ANS COBOL Compiler Diagnostics (cont.)

Message Severity
Number Message Strength Level
234 UNDEFINED PROCEDURE NAME — EXTERNAL REFERENCE GENERATED 7
235 SOURCE INPUT EXCEEDS 72 CHARACTERS — TRUNCATED 7
236 REMAINDER NOT ALLOWED ON DIVIDE WITH MULTIPLE RECEIVING

FIELDS 7
237 SUBSCRIPTED 'DEPENDING ON' DATA-NAME — COMPILATION

ABORTED F

The data-name in an OCCURS DEPENDING ON clause may not be

subscripted,
238 'OCCURS DEPENDING ON' ENTRIES EXCEEDED LIMIT 15 -

COMPILATION ABORTED F

A maximum of 15 variable groups is allowed for each record description.
239 OPTION OF DELIMITED MISSING/INVALID 7
240 IDENTIFIER MISSING/INVALID AFTER 'IN'/' OF' 7
24] REQUIRED WORD 'RUN' OR LITERAL MISSING AFTER 'STOP' 7
242 REQUIRED WORD 'INTO' OR 'BY' MISSING 7
243 FILE-NAME OR REQUIRED WORD(S) 'REVERSED'/'NO REWIND'

MISSING : 7
244 REQUIRED WORD(S) MISSING AFTER 'TALLYING' OR 'REPLACING' 7
245 REQUIRED WORD 'TALLYING' OR 'REPLACING' MISSING 7
246 REQUIRED WORD 'TO' MISSING 7
247 REQUIRED WORD 'DEPENDING' MISSING ‘7
248 REQUIRED WORD 'TIMES'/'UNTIL'/'VARYING' MISSING 7
249 REQUIRED WORD 'INTO'/'END'/'INVALID' MISSING 7
250 REQUIRED WORD 'FROM' MISSING 7
251 REQUIRED WORD 'UNTIL' MISSING 7
252 REQUIRED WORD 'ELSE' MISSING 7
253 REQUIRED WORD '"WHEN' MISSING 7
254 REQUIRED WORD(S) 'LOCK' OR 'NO REWIND' MISSING 7
255 REQUIRED WORD(S) 'TO'/*UP BY'/'DOWN BY' MISSING 7
256 REQUIRED WORD 'INPUT'/*OUTPUT'/*1-O' MISSING 7
257 FILE-NAME MISSING 7
258 LITERAL MISSING AFTER 'ALL'/'LEADING'/'FIRST' 7

Xerox ANS COBOL Compiler'Diognosfics

63

54

Table 2. Xerox ANS COBOL Compiler Diagnostics (cont.)

Message Severity
Number Message Strength | Level
259 LITERAL MISSING AFTER 'BY' 7
260 IDENTIFIER/INTEG ER/MNEMONIC-NAME MISSING AFTER 'BEFORE/

AFTER ADVANCING'
261 RECORD-NAME MISSING AFTER 'WRITE'
262 IDENTIFIER/LITERAL /IMDEX-NAME MISSING AFTER 'FROM'/

TO/BY! 7
263 IDENTIFIER MISSING AFTER 'TO! 7
264 IDENTIFIER MISSING AFTER 'TO'/'GIVING' 7
265 IDEMTIFIER MISSING AFTER 'COMPUTE' 7
266 IDENTIFIFR MISSING AFTER 'INSPECT! 7
267 IDENTIFIER t41SS1MIG AFTER 'DEPENDING ON! 7
268 IDENTIFIER MISSING AFTER 'INTO' 7
269 IDENTIFIER MISSING AFTER 'FROM' 7
270 IDENTIFIER MISSING AFTER 'SEARCH! 7
271 IDENTIFIER MISSING AFTER 'ACCEPT! 7
272 PROCEDURE-NAME MISSING 7
273 MISSING /INCORRECT STATEMENT AFTER 'AT END'/'INVALID

KEY'/'SIZE ERROR’ 7
274 REQUIRED WORD(S) 'NEXT SENTENCE' MISSING 7

275 SUBROUTINE-NAME MISSING AFTER 'ENTER' 7

276 IDENTIFIER/LITERAL INVALID OR MISSING 7
277 IDENTIFIER/INDEX-NAME MISSING AFTER 'VARYING'/'SET'/'AFTER' 7
278 IDENTIFIER/LITERAL MISSING AFTER 'INTO'/'FROM'/'BY" 7
279 NUMBER OF USE STATEMENTS EXCEEDS 64—COMPILATION ABORTED F
280 SIZE FOR THIS SECTION HAS EXCEEDED 65K 7
281 UNDEFINED/IINVALID REPORT NAME 2
282 NOT ENOUGH DYMNAMIC MEMORY--COMPILATION ABORTED F B
283 SOURCE IMAGE EXCEEDED 80 CHARACTERS — TRUNCATED P 0
284 SOURCE IMAG ¢ EXCFEDED 140 CHARACTERS=~COMPILATION ABORTED F B
285 INVALID/MISSING REPORT RECORD--COMPILATION ABORTED F B
286 UNDEFINED CONTROL FIELD, IGNORED 7
287 INVALID DATA USAGE IN CLASS TEST 4

Xerox ANS COBOL. Compiler Diag ostics

7. RUN-TIME SUBROUTINES, SERVICES AND DIAGNOSTICS

Library Subroutines

Table 3 shows subroutines contained in the system library that may be referenced by COBOL object programs.

Table 3. COBOL Object Program Subroutines

Element Entry
File Points Function
C:ALT ALTER of an overlay segment handler
C:ALT
C:BIS Binary search subroutine
C:BIS
C:CBP Alphanumeric comparison overlap handler
C:CBP
-
C:CHKPT Checkpoint routines
C:CKP Record checkpoints
C:INT IINT key=-in entry point
C:MIN CLOCK=UNITS (minutes) value
C:TIM Timer interrupt routine
C:CONV Data conversion subroutines
C:CBD Binary to packed decimal
C:CDB Packed decimal to binary
C:CDE Packed decimal to floating=point short format
C:CDF Packed decimal to floating=peint long format
C:CED Floating=-point short format to packed decimal
C:CFD Floating-point long format to packed decimal
C:DBD Binary to unpacked decimal
C:DED Floating=-point short format to unpacked decimal
C:bFD Floating-point long format to unpacked decimai
C:DECL /O label declaratives handler
C:ABF After beginning file label
C:ABR After beginning reel label
C:AEF | After ending file label
C:AER After ending reel label
C:BBF Before beginning file label
C:BBR Before beginning reel label
C:BEF Before ending file label
C:BER Before ending reel label
C:CLD Close

Run~Time Subroutines Services and Diagnostics

65

Table 3. COBOL Object Program Subroutines (cont.)

Element Entry

File Points Function

C:DECL C:ERD Error declaratives

(cont.) C:OPD Open
C:RLD Read
C:WLD Write

C:DPD Double precision division
C:DPD

C:DPM Double precision multiplication
C:DPM

C:ERR Illegitimate control transfers handler
C:ERR

C:EXP Interface for exponentiation routines
C:EXP

C:INS Run~time routine for INSPECT
C:INS

C:LIO Input/output handlers
C:ABA Abnormal return
C:CIB Close input buffer
C:CLS Close a DCB
C:ERA Error return
C:OPN Open a DCB
C:RLR Read
C:WLR Write
C:WOB Write output block

C:NTS | Run-time routine for UNSTRING
C:NTS

C:NCRS Bypassing co-resident sort
C:SRT

, C:RND Arithmetic rounding subroutine

C:RND

C:STN Run-time routine for STRING
C:STN

C.SZT Size error testing
C:SZT

66 Library Subroutines

Table 3. COBOL Object Program Subroutines (cont.)

Element Entry
File Points Function
C:TRC Trace control subroutine
C:TRC
C:TRX
C:TRP Trap hc!mdler
C:TRP Trap processor
C:TRN Abort suppression flag
C:RRG Report Writer subroutines
C:RRA Return point from Declarative routine and GROUP INDICATE presetting
C:RRB Return point from summing {(control footing level)
C:RRC Return point from print line formation
C:RRD Return point from SUM counter resetting
C:RRE Return point from control field preservation
C:RRF Return point from summing (detail level)
C:RRG GENERATE entry point
C:RRH TERMINATE entry point
C:RRI INITIATE entry point
C:RRJ Return point from GROUP INDICATE clearing
C:RRK Entry point for erroneous use of report with no prior INITIATE statement
C:RRQ Return point from control break testing — no break
C:RRR Return point upon control break at level 1
C:RRS - Return point upon control break at level 2
C:RRT Return point upon control break at level 3
C:RRU Return point upon control breck at level 4
C:RRV Return point upon control break at level 5
C:RRW Return point upon control break at level 6
C:RRX Return point upon control break at level 7
C:RRY Return point upon control break at level 8
C:RRZ Return point upon control break at fevel 9
C:VPL Variable records handler
C:VPL

Library Subroutines

67

68

Subprogram Calls

The ENTER subroutine-name statement as implemented in the Xerox ANS COBOL language causes generation of a
calling sequence to the external definition subroutine-name. All such calling sequences are issued in the form of
Xerox Standard Calling Sequences:

1. The number of arguments is passed in register 14.

2. The linking register is 15.

Each parameter is represented in the pointer word vector by a single word whose format is

0 Code Must Address
be zero
0 1 89 12 13 31

where -

Bit O indicates whether the Address field is indirect. (COBOL issues direct references only; thus, this bit
is always zero.)

i::feziefliild] are filled as follows:
Data COBOL Bit Value of Contents of
Type Description Code Field Address Field
Binary INDEX or 00000010 WA (parameter)
COMPUTATIONAL

Floating short COMPUTATIONAL-1 00000100 WA (parameter)
Floating long COMPUTATIONAL-2 00001000 WA (parameter)
Packed decimal COMPUTATIONAL-3 100xxxx0t BA (parameter)
EBCDIC DISPLAY 10100000 BA (parameter)
DCB (Data Control Block) file-name 10100011 WA (parameter)
Program location) procedure-name 00000001 WA (parameter)
Fexxx (bits 4 through 7) indicates decimal length is in the same format as the Decimal Instructions.

Special Interfaces to Hardware and Monitor Services

The cababilities described in this section are implemented in the form of assembly language routines that can
be added to the run-time library at the user's option. Each routine is independent and any combination of
services can be elected for a given installation. 1n general, these routines contain Xerox defined entry points which
the user programmer cites by symbolic name in an ENTER verb in his COBOL syntax. The ENTER for each routine
must generally contain a string of data names which (at run-time) contain parameter values defining the nature of
the service to be provided. The order of the parameters is strictly defined and it is the user's responsibility to pro-
vide the correct values. In effect, these routines are "super-macros” for providing services not available in the
Xerox ANS COBOL language. ' /

Library Subroutines

The specifications below define the service to be provided and the anticipated ENTER syntax required, Some of
the individual services may be implemented, as subsections of one run-time routine, thereby requiring a somewhot
smaller total number of machine language programs in the run-time library.

The services provided are

1.

Delete a record from a keyed file,
The user's file must have been the subject of an "OPEN INPUT-OUTPUT" statement. In this case,

the value to be used as the monitor key will be picked up from the user’'s data area and used in an
M:DELREC call,

User Syntax:

ENTER DELETER file-name, data-name-1, data-name-2[, procedure-name]

where
DELETER is the entry point in the run-time routine.
file~nome is the appropriate FD name,
data-name-1 contains the monitor record key (DISPLAY).
data-name -2 contains the length of data-name-1 (COMPUTATIONAL).
procedure-name is to be executed if the specified key is not found in the file. This parameter
is optional.
Get the monitor key and actual record size of the last processed record in a file,

The required values are abstracted from the KBUF and ARS areas of the DCB.

User Syntax:

ENTER LASTKEY file~-name, data-name-1, data~name-2[, data~name-3]

where
LASTKEY is the entry point in the run~time routine,
file-name is the appropriate FD name.

data~name-1 is the area into which the monitor key of the [ast record read or written will be

inserted (DISPLAY).

data-name -2 isthe area into which the length of the monitor key wili be inserted (COMPUTATIONAL).
This value will be zero if no key was found,

data-name-3 is the area into which the actual size, in bytes, of the last record read or written
will be inserted (COMPUTATIONAL), This porameter is optional,

Set a file to keyed sequential access and position to a specified key value. The user who wishes to process
a keyed file sequentially is required to specify "ACCESS IS SEQUENTIAL", The user is expected to open
the file as sequenfial and then call upon this routine to redefine it as "keyed sequential”. The file will
then be positioned to the specified key value and o reiurn will be made to the user program where reading
will proceed sequentially., If a record exists whose key matches the specified value, it will be the first
record accessed by the next sequential read. If the sgacified key is not in the file, the next sequential
read will access the first record with a higher key velue,

Library Subroutines 69

70

User Syntax:

ENTER START file-nome, data~name~1, data-name=~2

where

START is the entry point in the run-time routine,

file-name is the gpropriate FD name (SEQUENTIAL),

data-name-1 contaiﬁs the monitor record key (DISPLAY).

data-name-2 contains the length of data-name-1 (COMPUTATIONAL).
Note that the redefinition of the consecutive file to keyed sequential occurs by executing an M:CLOSE
and then an M:OPEN,

4, Skip nrecords in a file,

Uses the monitor PRECORD routine to skip forward over the specified number of records. If the file is mon-
itor formatted, n logical records will be bypassed; if user formatted, n physical records will be skipped.
This routine does not allow skipping from the middle of a physical record in a user-formatted file,
nor does it account for blocks already in memory due to double buffering. The user is responsible for re-
ducing his skip count in such a situation,

User Syntax:

ENTER SKIP file=name, data-nome-1{, procedure~name]

where
SKIP is the entry point in the run-time routine,
file-name is the appropriate FD name,

data-name-1 contains the number of records to skip (COMPUTATIONAL). A negative number
indicates reversed skipping. The number of records yet to be skipped will be stored in data-name-1
upon completion.

procedure~name is to be executed if either of the following abnormal conditions occurs: end-of-file,
end-of-tape (user-formatted file). The number of records yet fo be skipped is placed in the actual
record size field (ARS) of the associated DCB. This parameter is optional.

5. Close and release disk file to the monitor.
This routine closes and releases disk files to the monitor when the COBOL programmer is through using them.

. User Syntax:

ENTER RELFILES file-name-1, file~name-2, ..., file-name-n

where
RELFILES is the entry point in the run~time routine,

file=name-1 is an appropriate FD nams.

file=name-n is the last of multiple files to be closed and released.

Library Subroutines

Get current date, time, and sense switch settings.

This routine picks up the current date, time, and sense switch settings, and makes them available to the
user program. The routine optionally picks up the current number of lines per page from a printer DCB.
This value is set by the (LINES, value) parameter in the !ASSIGN card.

User Syntax:

ENTER GETCOM data-name=1[, print-file-name]

where

GETCOM is the entry point in the run~time routine.

data-name-1 is a 26-byte area (DISPLAY) into which will be inserted the following information:
bytes 1-6 the pseudo-switch settings; O is off, 1 is on.
bytes 7-8 blank.

bytes 9-24 time and date, in the monitor form HH:MM MON DD, 'YY (hours, minutes,
month, day, year),

bytes 25-26 number of lines per page in the printer DCB.
print-file-name is the appropriate FD name corresponding to the printer DCB.
Transform data to new collating sequence.
Allows the user to translate up to 255 bytes of data to any specified collating sequence. The user is
responsible for constructing a 256-byte table containing the target collating sequence. The run~time rou-
tine uses the Translate Byte String instruction to accomplish the transformation. The target translation
table is defined by the user in much the same way that key translation is specified in the Sigma Sort.

User Syntax:

ENTER TRANSFORM data-name-1, data-name=-2, data-name-3

where

TRANSFORM is the entry point in the run-time routine.
data-name-1 contains up to 255 bytes of data to be transformed (DISPLAY).
data-name-2 . contains the actual length of the byte string to be transformed (COMPUTATIONAL).

data-name-3 is a 256-byte translation table containing the target collating sequence. Data-name-1
and data-name=-3 must start on word boundaries.

Set a data area to zero.
Allows the user to background large data areas to EBCDIC zero ('FO').
User Syntax:
ENTER SETZERO data-name-1, data-name-2
where

SETZERO is the entry point in the run-time routine.
data~name=-1 is the area to set to zero (DISPLAY).

data-name=2 is the byte length of the area to be set to zero (COMPUTATIONAL). Maximum
value is 32,767,

Library Subroutines

71

9. Set a data area to blanks.

Allows the user to background large data areas to EBCDIC blank ('40').
User Syntax:

ENTER SETBLANK data-name=1, data~name-2

where
SETBLANK is the enfry point in the run-time routine.
data-name-1 is the area to be set to blanks (DISPLAY).

data=name-2 is the byte length of the area to be set to blanks (COMPUTATIONAL). Maximum
value is 32,767.

10. Signal operator to change printer form or punch card stock.
Allows the user to request a change in the form used on the specified output device (card punch or line
printer). Any message, up to 255 bytes long, may be inserted into the output symbiont stream. The mes-
sage, generally directions to the computer operator, is automatically intercepted at actual print (or punch)
time, directed to the operator's console, and the output symbiont is suspended. Upon performance of the
action specified in the user programmer's message, the symbiont can be restarted and printing or punching
continved. Note that a second message is required later to cause restoration of o "standard" form for the
next job.
User Syntax:
ENTER FORMESS file=name, dota-name-1, data-name-2
where
FORMESS is the entry point in the run-time routine.
file~name is the appropriate output FD name.
data~name-1 is the message to be inserted in the print or punch output symbiont (DISPLAY).
data=name-2 is the length of the message (COMPUTATIONAL). Maximum value is 255.
COBOL Error Codes

In addition to the error and abnormal returns documented in the appropriate BPM/CP=V monitor reference manuals,
code numbers 80 through 9F (hexadecimal) are reserved for the COBOL compiler and object programs. Table 4 de-

fines these codes.

Table 4, COBOL Error Codes

72 COBOL Error Codes

Code Procedure
{Hexadecimal) Name Meaning
01 OPEN Opening a DCB with insufficient information,
03 OPEN Nonexistent name.
04 PRECORD Beginning of file.
READ
07 READ Lost data (buffer size smaller than recard read).

Table 4. COBOL Error Codes (cont.)

Code Procedure
(Hexadecimal) Noame Meaning
0A CLOSE Closing an unopened file,
13 WRITE Requested key not found on an UPDATE file,
DELREC

14 OPEN Insufficient information to identify o file.

15 WRITE lilegal sequence of operations on an INOUT file,
DELREC
16 WRITE NEWKEY option specified on already existing key,
17 WRITE NEWKEY option not specified on key for OUT or QUTIN
files.
18 WRITE KEY not in proper sequence,
1C READ End of tape.
WRITE
PRECORD

1D READ Beginning of tape.
PRECORD

2E OPEN Opening an open file,

80 READ/WRITE Request to READ/WRITE an unopened file,

82 OPEN Unable to obtain dynamic area for blocking/deblocking.

86 READ Logical Record read is larger than maximum size (MAXSIZE)
specification in COBOL program,

87 READ The sum of the record prefix count is not equal to the block
prefix count,

88 READ The block prefix count does not agree with the actual record
size read by the system (ARS).

89 WRITE User is aitempting to write a logical record that is too large
for his blocking buffer (a logical record cannot be greater
than eight bytes smaller than maximum blocksize).

8C Gep ! Common page not available,

8D Object Pro~ Sort error.

gram Sort 2
8F OPEN Opening a locked file,
90 Report Writer ? Report not initiated.
GENERATE
TERMINATE
2 Report Writer 3 Report already initiated.

INITIATE

COBOL Error Codes

74

Table 4. COBOL Error Codes (cont.)

Code Procedure

(Hexadecimal) Name Meaning

92 Report Writer? Incompatible line spacing.

99 C:VPL Value of data=name in OCCURS DEPENDING OM clause

exceeds the maximum specified.

9A Object Program Invalid calling sequence for run-time library subroutine.
ENTER

9E Object . Erroneous transfer of control .
Program*

9F Compiler Internal 1/O errors.

Notes:

1 SR1 contains zero.

2 Ré contains one of the following values:

0! (Sort error — in and out record count out of balance)
02 (Sort aborted — 1/O error)

03 (Sort aborted — specification error)

04 (Sort aborted — registers give reason)

05 (Sort aborted = memory overflow)

06 (Sort aborted — illegal own=-code action request)

07 (Reserved for future use)

08 (Sort aborted — illegal decimal key)
09 (Sort error — sequence error in output file)

3 SR1 contains location of call to C:RRG; SR3 (bytes 1 through 3) contains address of Report Table
(R:report=name) .

« No register settings are significant.

The only COBOL run=time diagnostic is of the form
PROGRAM ABORTED--ERROR CODE nn nn
xxxxx IS FD=-INAME

REL. INST. LOCATION IS yyyyyyyy

where
nn nn is the appropriate 4-digit error code and subcode number.
XXXXX is the name of the file.
YYYYYYYY is the relative location of the instruction causing the error.

In each case that an error is incurred, the action taken is to abort the current job. The STEP condition code is set

to 6. (Refer to the CP-V Batch Processing Reference Manual, 90 17 64, for the STEP command.)

The error code is contained in byte 0 of SR3. Except where footnoted above, the DCB address is contained in bytes

1 through 3 of SR3 and the location following the associated CALT instruction is communicated in SR1,

COBOL Error Codes

APPENDIX. REFERENCE TABLES

This appendix contains the following reference material:

Title

Standard Symbols and Codes

Standard 8-Bit Computer Codes (EBCDIC)
Standard 7-Bit Communication Codes (ANSCII)
Standard Symbol~Code Correspondences
Hexadecimal Arithmetic

Addition Table
Multiplication Table

Table of Powers of Sixteenig
Table of Powers of Tenyg

Hexadecimal-Decimal Integer Cornversion Table
Hexadecimal-Decimal Fraction Conversion Table
Table of Powers of Two

Mathematical Constants

STANDARD SYMBOLS AND CODES

The symbol and code standards described in this publication
are applicable to all Xerox computer products, both hard-

ware and software. They may be expanded or altered from
time to time to meet changing requirements.

The symbols listed here include two types: graphic symbols
and control characters, Graphic symbols are displayable
and printable; control characters are not. Hybrids are SP,
the symbo! for a blank space; and DEL, the delete code,
which is not considered a control command,

Three types of code are shown: (1) the 8-bit Xerox Standard
Computer Code, i.e., the Extended Binary-Coded-Decimal
Interchange Code (EBCDIC); (2) the 7-bit American National
Standard Code for Information Interchange (ANSCII); and
(3) the Xerox standard card code.

STANDARD CHARACTER SETS
1. EBCDIC

57-character set: uppercase letters, numerals, space,
anrd & - / . < > ()Y + 1 §
s, % @ v =
63-character set: same as obove plus £ | ?
" -

—

89~character set: same as 63-character set plus
lowercase letters

2, ANSCII
64~character set: uppercase letters, numerals, space,
and | " $§ % & ' () * + , -
./ N\ ; = < > 7?2 @& []
A~ # '

95-character set: same as above plus lowercase letters
[}
and { } } ~

CONTROL CODES

In addition to the standard character sets listed above, the
symbol repertoire includes 37 control codes and the hybrid
code DEL (hybrid code SP is considered part of all ¢charac-
ter sets). These are listed in the table titled Standard

Symbol-Code Correspondences.

SPECIAL CODE PROPERTIES

The following two properties of all standard codes will be
retained for future standard code extensions:

1. All control codes, and only the control codes, have
their two high-order bits equal to "00", DEL is not
considered a control code,

2. No two graphic EBCDIC codes have their seven low-
order bits equal,

Appendix 75

STANDARD 8-BIT COMPUTER CODES (EBCDIC)

Most Significont Digits NOTES:
Hexadecimal 0 | 2 3 4 5 6 7 8 9 A B C D F
eradecimo s N U P e E 1 The characters =~ \{ } [] are ANSCII
Binary 0000}0001 { 0010{0011{0100{0101 {0110} 011} | 1000} 1001 |1010 [1011| 1100|1101 | 1110|1111 characters that do not appeor in any of the
7 EBCDIC-based charocter sets, though they
o | 0000 NUL|DLE | ds ! . % 0 are shown in the EBCDIC table.
T T v y/ [) 2 The characters ¢ | =o i
. ppear in the 63- ond
' R OAogl.,_ - SOH, DCl| s ///A///// ,% I \ A ! ! 89~character EBCDIC sets but not in either
2, boio ST 10€2) 6 ///////W b k s i ! B K S 2 of the ANSCli-based sets. However, Xerox
SR S, VA;// // /V /4 ; software translates the charocters ¢
. . into ANSCII characters os follows:
EREL ETX |DC3]| si 74/4//%/4 e[feffr]s
4 1 0100 EOT | DC4 ////%// dlm|lv] o|m|ula4
§ o o T _ 5,,,/, /777777777 S ; EBCDIC ANSCIH!
5 l 0101 HT | L L Will notbe assigned] ¢ | n | v 1| € N| VIS5 / ' (6-0)
z [0 DU SRS S 1.0 I IIVIX IV VIVIIIIFYI . -
& : 7 ///
o ACK|S |
af e 010 JACK|IYN] _;A;/Ay/dyé el Flopwlse | L (7-12)
c
7 : ~ (7-14
IR CALINE ¢ NN - 0
'é, 8 1000 EOMCAN //V////‘// h q y Q Y 8) The EBCDIC control codes in columns O
- T S L . LA 7770777 S and | and their binary representation ar
- 7 7/, // 7 ry rep! a e
gl 9 1001 ENQ| EM / ////// i r z 1 R 4 9 exactly the same as those in the ANSCII
M £ 4 I’ 7 7 7 V table, pt for two interch : LF/NL
A | 1010 NAK| SUB { -~ // ith NAK, and HT with ENQ.
/ 2,77/l
B 1011 VT LESC $. ' /A.//V 7 4 Characters enclosed in heavy lines are
u] A Ao et included only in the standard 63- and
C | 1100 FF | FS < . % | @ ¢ Will not be assigned 4 89-character EBCDIC sets.
}1// }11/ ,11// yry.
D | ti01 CR | GS () | ////7// 5 These characters are included only in the
/// 7/ % % dard B9-character EBCDIC set.
£ nio SO\ RS T P O / /
- T ,’//AV////% /A
Fiumn Si| Us P = 2 | on
i // /A/ 7/ DEL
L — — v e\ e —
E] 4 §
Most Significant Digits NOT
Decimal NOTES:
rows) (col's.) — 0 ! 4 3 4 5 6 7
| | Binary 1 <000 | x001 | x010 | x011 | x100 1x101 | x110|x111 1 Most significant bit, added for 8-bit format, is either O or even parity.
o | 000¢ NUL| OLE | sP 0 @| p . p 2 Columns 0-1 are control codes.
o 5 3 Columns 2-5 correspond to the 64-character ANSCII set.
' ooot SOH|bCly ! ! AlQ ° 9 Columns 2-7 correspond to the 95-character ANSCII set.
2 | oo0to STX | DC2[" 2 8 R b r
4 On many current teletypes, the symbol
3| oon ETX | DC3| # 3 C S c s ~
: is f (5-14)
4 0100 EQOT| DC4| § 4 D T d t i — (5-15)
s 0101 NG NAK] % 5 £ U e v -~ is ESC or ALTMODE control (7-14)
5 T P R
g N A YN F v and none of the symbols appearing in columns 6-7 are provided. Except for the three
? - ..E_I_O_A._ —_ Sf ,S. &:‘N 46 f M symbol differences noted above, therefore, such teletypes provide all the choracters in
§ 7 o BEL |ETB ' T 7 G W 9 w the 64-character ANSCII set. (The)Sarox 7015 Remote Keyboard Printer provides the
< R RN SRS BN R . R b4-character ANSCII set also, but prints N as A.)
5| 8 ' 1000 85 |CAN| (8 | H| X | h| x
AL RS U S S— § On the Xerox 7670 Remote Batch Terminal, the symbol
31 9 i 1000 ‘HT JEM |) |9 [t | Y |
k4 Sha—- T - . S N A toois | (2-1)
il T ol R S G I L (s 4 N0
1 oon vilesc| « | 5 | k][oy i] s i (5-13)
1 -] ~ - 5-14
12 | 1100 FELRS |, [« LN |1 N e
5 and none of the symbols appearing in columns 6-7 are provided. Except for the four symbol
]_3_ ol CR 1 GS | - | 7M J m } differences noted above, therefore, this terminal provides all the characters in the 64-
14 110 so | RS) b) N 4~5 n 4 character ANSCII set.
15| 1 sifus| /| 2] 0o _*o |DEL
[———T N 7
2 3
76 Appendix

STANDARD SYMBOL-CODE CORRESPONDENCES

Escoic! "
“Hex.] Dec. Symbol Card Code ANSCIH Meaning Remarks
00 0 NUL 12-0-9-8-1 0-0 null 00 through 23 and 2F are control codes.
01 i SOH 12-9-} 0-1 start of header
02 2 STX 12-9-2 0-2 start of text
03 3 ETX 12-9-3 0-3 end of text
04 4 EOT 12-9-4 0-4 end of transmission
05 5 HT 12-9-5 0-9 horizontal tab
06 6 ACK 12-9-¢ 0-6 acknowledge (positive)
07 7 BEL 12-9-7 0-7 bell
08 8 BSor EOM 12-9-8 0-8 backspace or end of message EOM is used only on Xerox Keyboard/
09 9 ENQ 12-9-8-1 0-5 enquiry Printers Models 7012, 7020, 8091,
0A |10 NAK 12-9-8-2 1-5 negative acknowledge and 8092.
08 N VT 12-9-8-3 0-11 vertical tab
oC |12 FF 12-9-8-4 0-12 form feed
ob |13 CR 12-9-8~5 0-13 carriage return
OE 14 SO 12-9~8-6 0-14 shift out
OF 115 St 12-9-8-7 0-15 shift in
10 {16 DLE 12-11-9-8-1 1-0 data link escape
11 17 pley 11-9-1 1-1 device control |
12 18 DC2 11-9-2 1-2 device control 2
13 19 DC3 11-9-3 1-3 device control 3
14 |20 DC4 11-9-4 1-4 device control 4
15 121 LF or NL 11-9-5 0-10 line feed or new line
16 22 SYN 11-9-6 1-6 sync
17 123 ETB 11-9-7 1-7 ‘end of transmission block
18 |24 CAN 11-9-8 1-8 cancel
19 25 EM 11-9-8~1 1-9 end of medium
1A |26 suB 11-9-8-2 1-10 substitute Replaces characters with parity error.
18 |27 ESC 11-9-8-3 1-11 escape)
1C 128 FS 11-9-8-4 1-12 file separator
1D 129 GS 11-9-8-5 1-13 group separator
1€ 30 RS 11-9-8-6 1-14 record separator
1F 31 uUs 11-9-8-7 1-15 unit separator
20 |32 ds 11-0-9-8-1 digit selector 20 through 23 are used with
21 33 ss 0-9-1 significance start Sigma EDIT BYTE STRING (EBS)
22 134 fs 0-9-2 field separation instruction — not input/output con-
23 |35 si 0-9-3 immediate significance start trol codes.
24 |36 0~9-4 24 through 2€ are unassigned.
25 (37 0-9-5
26 38 0-9-6
27 39 0-9-7
28 40 0-9-8
29 4] 0-9-8-1
2A | 42 0-9-8-2
28 43 0-9-8-3
2C |44 0-9-8-4
2D |45 0-9-8-5
2E 46 0-9-8-6
2F |47 0-9-8-7
30 |48 12-11-0-9-8-1, 30 through 3F are unossigned.
31 49 9-1
32 |50 9-2
33 |51 9-3
34 |52 9-4
35 |53 9-5
36 54 9-6
37 55 9-7
38 |56 9-8
39 57 9-8-1
3A |58 9-8-2
38 59 9~-8-3
3C |60 9-8-4
3D {61 9-8-5
3B |62 9-8-6
3F 163 9-8-7

t . . .
Hexadecimal and decimal notation.

1 . .
Decimal notation (column-row).

Appendix

77

STANDARD SYMBOL-CODE CORRESPONDENCES (cont,)

EBCDIC! Symbol Card Code ansci'! Meaning Remarks
Hex. | Dec.
40 64 SP blank 2-0 blank
41 65 12-0-9-1 41 through 49 will not be assigned.
42 66 12-0-9-2
43 67 12-0-9-3
44 68 12-0-9-4
45 69 12-0-9-5
46 70 12-0-9-6
47 71 12-0-9-7
48 72 12-0-9-8
49 73 12-8-1
4A 74 ¢ or 12-8-2 6-0 cent or accent grave Accent grave used for left single
48 75 . 12-8-3 2-14 period quote. On model 7670, * not
4C 76 < 12-8-4 3-12 less than available, and £ = ANSCII 5-11,
4D 77 (12-8-5 2-8 left parenthesis
4t | 78 * 12-8-6 2-11 plus
4F 79 | or | 12-8-7 7-12 vertical bar or broken bar On Model 7670, not available,
ond | = ANSCIHI 2-1,
50 80 & 12 2% ampersand
51 81 12-11-9-1 51 through 59 will not be assigned.
52 82 12-11-9-2
53 83 12-11-9-3
54 84 12-11-9-4
55 85 12-11-9-5
56 86 12-11-9-6
57 87 12-11-9-7
58 88 12-11-9-8
59 | 89 11-8-1 :
5A 90 | 11-8-2 2-1 exclamation point On Model 7670, 1 is 1.
58 91 $ 11-8-3 2-4 dollars
5C 92 * 11-8-4 2-10 osterisk
50 93) 11-8-5 2-9 right parenthesis
SE 94 ; 11-8-6 3-1 semicolon ‘
5F 95 ~o0r = 11-8-7 J7-14 tilde or logical not On Model 7670, ~is not available,
. and ™ = ANSCII 5-14,
60 96 - R 2-13 minus, dash, hyphen
61 97 / 0-1 2-15 slash
62 98 11-0-9-2 62 through 69 will not be assigned.
63 99 11-0-9-3
64 100 11-0-9-4
65 1101 11-0-9-5
66 (102 11-0-9-6
67 {103 11-0-9-7
68 |104 11-0-9-8
69 {105 0-8-1
6A 1106 - 12-11 5-14 circumflex On Model 7670 ~is =, On Model
68 |107 , 0-8-3 2-12 comma 7015 " is A (caret).
6C | 108 % 0-8-4 2-5 percent
6D 109 - 0-8-5 5-15 underline Underline is sometimes colied "break
6E 110 > 0-8-6 - 3-14 greater than character"; may be printed olong
6F 111 ? 0-8-7 3-15 question mark bottom of character line.
70 |12 12-11-0 70 through 79 will not be assigned.
71 113 12-11-0-9-1
72 114 12-11-0-9-2
73 115 12-11-0-9-3
74 1116 12-11-0-9-4
75 (17 12-11-0-9-5
76 (18 12-11-0-9-6
77 119 12-11-0-9-7
78 120 12-11-0-9-8
7% N2 8-1
7A 122 : 8-2 3-10 colon
78 {123 4 8-3 2-3 number
7C 124 @ 8-4 4-0 at .
70 {125 ' 8-5 2-7 apostrophe (right single quote)
78 |126 = 8-6 3-13 equals
JF 1127 " 8-7 2-2 quotation mark
'Hexadecimal ond decimal notation.
"Decimol notation (column~row),

78 Appendix

STANDARD SYMBOL-CODE CORRESPONDENCES (cont,)

EBCDIC! t
Hex. | Dec. Symbol Card Code ANSCHI Meaning Remarks
80 128 12-0-8-1 80 is unassigned.
81 129 a 12-0-1 6-1 81-89, 91-99, A2-A9 comprise the
82 130 b 12-0-2 6-2 lowercase alphabet. Available
83 [131 c 12-0-3 6-3 only in standard 89- and 95~
84 1132 d 12-0-4 6-4 character sets.
85 133 e 12-0-5 6-5
86 (134 f 12-0-6 6-6
87 135 g 12-0-7 6-7
88 136 h 12-0-8 6-8
89 137 i 12-0-9 6-9
8A |138 12-0-8-2 8A through 90 are unassigned.
88 139 12-0-8-3
8C | 140 12-0-8-4
8D | 141 12-0-8-5
8E 142 12-0-8-6
8F 143 12-0-8-7
90 144 12-11-8-1
91 145 j 12-11-1 6-10
92 146 k 12-11-2 6-11
93 1147 | 12-11-3 6-12
94 148 m 12-11-4 6-13
95 149 n 12-11-5 6-14
96 150 ° 12-11-6 6-15
97 151 p 12-11-7 7-0
98 152 q 12-11-8 7-1
99 153 r 12-11-9 7-2 .
9A 1154 12-11-8-2 9A through Al are unassigned.
98 155 12-11-8-3
9C 156 12-11-8-4
9D (157 12-11-8-5
9E 158 12-11-8-6
9F 159 12-11-8-7
A0 [160 11-0-8-1
Al 161 11-0-1
A2 162 5 11-0-2 7-3
A3 163 t 11-0-3 7-4
A4 {164 v 11-0-4 7-5
A5 |165 v 11-0-5 7-6
A6 | 166 w 11-0-6 7-7
A7 1167 x 11-0-7 7-8
A8 |168 y 11-0-8 7-9
A9 169 z 11-0-9 7-10
AA | 170 11-0-8-2 AA through B0 are unassigned.
AB | 171 11-0-8-3
AC |172 11-0~8-4
AD | 173 11-0-8~5
AE 174 11-0-8-6
AF 175 11-0-8-7
BO (176 12-11-0~-8-1
Bl 177 \ 12-11-0-1 5-12 backslash
B2 [178 { 12-11-0-2 7-11 left brace
B3 179 } 12-11-0-3 7-13 right brace
B4 180 12~11-0-4 5-11 left bracket On Model 7670, 5 isg.
B5 181 g 12-11-0-5 5-13 right bracket On Model 7670,] is 1.
B6 |182 - 12-11-0-6 B6 through BF ore unassigned.
87 183 12-11-0-7
B8 184 12-11-0-8
B9 185 12-11-0-9
BA (186 12-11-0-8-2
BB 187 12-11-0-8-3
BC 188 12-11-0-8-4
8D 189 12-11-0-8-5
BE 190 12-11-0-8-6
BF 193 12-11-0-8-7

t . . .
Hexadecimal and decimal notation.

144 . .
Decimal notation (column=-row).

Appendix

79

80

STANDARD SYMBOL-CODE CORRESPONDENCES (cont.)

EBCDIC! | sypol | Card Code ANSCHI" | Meaning Remarks
Hex.| Dec.
co [192 12-0 CO is unassigned.
c1 | 193 A 12-1 4-1 C1-C9, D1-D9, E2-E9 comprise the
C2 | 194 B 12-2 4-2 uppercase alphabet.
c3 195 C 12-3 4-3
C4 196 D 12-4 4-4
c5 | 197 E 12-5 4-5
Cé6 | 198 F 12-6 4-6
C7 {199 G 12-7 4-7
c8 | 200 H 12-8 4-8
c? | 200 I 12-9 4-9
CA | 202 12-0-9-8-2 CA through CF will not be assigned.
CB | 203 12-0-9-8-3
CC | 204 12-0-9-8-4
CD | 205 12-0-9-8-5
CE | 206 12-0-9-8-6
CF | 207 12-0-9-8-7
DO {208 11-0 DO is unassigned.
D1 209 J 11-1 4-10
D2 | 210 K 11-2 4-11
D3 {21 L 11-3 4-12
D4 | 212 M -4 4-13
D5 | 213 N 11-5 4-14
D6 | 214 (0] 11-6 4-15
D7 215 P 11-7 5-0
D8 | 216 Q 11-8 5-1
D9 | 217 R 11-9 5-2
DA 218 12-11-9-8-2 DA through DF will not be assigned.
DB | 219 12-11-9-8-3
DC | 220 12-11-9-8-4
DD | 221 12-11-9-8-5
DE | 222 12-11-9-8-6
DF | 223 12-11-9-8-7
E0 1224 0-8-2 EOQ, E1 are unassigned.
EV | 225 11-0-9-1
E2 |226 S 0-2 5-3
E3 | 227 T 0-3 5-4
E4 | 228 U 0-4 5-5
£5 .| 229 " 0-5 5-6
E6 | 230 w 0-6 5-7
E7 (231 X 0-7 5-8
E8 232 Y 0-8 5-9
E9 1233 z 0-9 5-10
EA | 234 11-0-9-8-2 EA through EF will not be assigned.
£EB | 235 11-0-9-8-3
EC | 236 11-0-9-8-4
ED | 237 11-0-9-8-5
EE 238 11-0-9-8~4
EF 239 11-0-9-8-7
FO | 240 0 0 3-0
Fi 241 1 1 3-1
F2 |242 2 2 3-2
F3 |243 3 3 3-3
F4 | 244 4 4 3-4
F5 245 5 5 3-5
Fé 246 6 6 3-6
F7 247 7 7 3-7
F8 248 8 8 3-8
F9 249 9 9 3-9
FA | 250 12-11-0-9-8-2 FA through FE will not be assigned.
FB | 251 12-11-0-9-8-3
FC | 252 12-11-0-9-8-4
FD | 253 12-11-0-9-8-5
FE | 254 12-11-0~-9-8-6
FF | 255 DEL 12-11-0-9-8-7 delete Special — neither graphic nor con-
trol symbol.

t R . .
Hexadecimal and decimal notation.

tt . .
Decimal notation (column-row).

Appendix

HEXADECIMAL ARITHMETIC

ADDITION TABLE

0 1 2 3 4 5 6 7 8 9 A B C D E F
1 02 03 04 05 06 07 08 09 0A 0B 0C 0D 3 OF 10
2 03 04 05 06 07 o8 09 0A 0B te oD OE OF 10 N
3 04 05 06 07 08 0 0A 0B oC oD OF OF 10 n 12
4 05 06 07 08 09 0A 0B oC 0D OE OF 10 1 12 13
06 07 08 09 0A 08 oC oD OE OF 10 1 12 13 14
6 07 . 08 09 0A 0B oC 0D OE OF 10 n 12 13 14 15
08 04 0A 0B oC 0D OE OF 10 11 12 13 14 15 16
8 09 0A 08 oC 0D OE OF 10 LR 12 13 14 15 16 17
9 0A 0B 0C 0D OE OF 10 n 12 13 14 15 16 17 18
A 0B oC 0D OE OF 10 B 12 13 14 15 16 17 18 1?9
B 0oC oD OE OF 10 1 12 13 14 15 16 V7 18 19 1A
C 0D OE OF 10 n 12 13 14 15 16 17 18 19 1A 8
OE OF 10 n 12 13 14 15 16 17 18 19 1A 1B 1C
E OF 10 1 12 13 14 15 16 17 18 19 1A 18 1C 1D
F 10 11 12 13 14 15 16 17 18 19 1A B iC 1D 1E
MULTIPLICATION TABLE
! 2 3 4 5 6 7 8 4 A B C D E F
2 04 06 08 0A oC OE 10 12 14 16 18 1A ic 1E
3 06 09 0C OF 12 15 18 18 13 3 24 27 2A 2D
4 08 0OC 10 14 18 1C 20 24 28 2C 30 34 38 3C
0A OF 14 19 13 23 28 2D 32 37 3C 41 46 48
6 0Cc 12 18 1E 24 2A 30 36 3C 42 48 4E 54 5A
OE 15 1C 23 2A 31 38 3F 46 4D 54 58 62 69
8 10 18 20 28 30 38 40 48 50 58 60 68 70 78
9 12 1B 24 2D 36 3F 48 51 5A 63 6C 75 7E 87
A 14 1E 28 32 3C 46 50 S5A 64 6E 78 82 8C 96
B 16 21 2C 37 42 4D 58 63 -1 79 84 8F 9A AS
C 18 24 30 3C 48 54 60 6C 78 84 90 9C AB B4
1A 27 34 41 4 58 48 75 82 8F 9C A9 86 C3
E IC 2A 38 46 54 62 7¢ 7t 8C 9A A8 Bé Cc4 D2
F 1E 2D 3C 48 S5A. 69 78 87 926 AS B4 c3 D2 El

Appendix

81

INDEX

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in

numerical sequence.

A

ADVANCING clause, 18
ANS=-labeled tapes, 3

basic setups, 20
binary calculations, 1
BO option, 7

C

character sets, 75
co-resident sort feature, 40
COBOL

error codes, 72

library on tape, 18

object program subroutines, 65

work files, 18
COMMON-STORAGE, 7,14
communication codes (ANSCII), 76
compilation

initiation, 6

of large source programs, 18
compiler diagnostics, 49
computer codes (EBCDIC), 76
control codes, 75
CS option, 7

data division map listing, 7

DCB (data control block), 16

debug module object time switch, 48
DEBUG option, 7

decimal display fields, 1

deck structures, 20

DIAG option, 7

DMAP option, 7

DQ option, 9

dummy program sections, 16

E

ENTER
DELETER, 69
FORMESS, 72
GETCOM, 71
LASTKEY, 69

RELFILES, 70
SETBLANK, 72
SETZERO, 71
SK1IP, 70
START, 70
statement feature, 37
subroutine~name statement, 68
TRANSFORM, 71
error codes, COBOL, 72
exponentiation, |

F

file index areas, 17
file record areas, 17
FROM option of WRITE statement, 3

GO option, 9

hexadecimal arithmetic, 81

1/O considerations, 2
inter=program communication, 14,31
INTO option of READ statement, 3

L

labeled tapes, 3

LIB option, 9

library subroutines, 65
LIMIT control command, 18
LO option, 9

load module map, 17

LS option, 9

MAIN option, 12
MAPS option, 12
mixed=mode arithmetic statements, 1

Index

83

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in

numerical sequence.

numeric data items, 1

object
listing, 9
program, 16

OCCURS DEPENDING ON clause, 2

output options, 6

P

packed decimal, 1

PMAP option, 12

POOL control command, 18
print file handling, 18

report areas, 17
root segment module, 17

run-time subroutines, services and diagnostics, 65

)

SAME RECORD AREA statement, 3
SEG option, 12

segmentation feature, 25
segmented object programs, 16
SEQCHK option, 12

sequential files, 2

SO option, 12

84 Index

sort, 2

SRTx option, 13

source program and procedure division map fisting, 11
special code properties, 75

special interfaces to hardware and monitor services, 68
SUB option, 13

subcompile feature, 31

subprogram calls, 68

subscripts, 1

symbol=code correspondences, 77

symbols and codes, 75

SYN option, 13

T

table handling, 2
TEST option, 13
TREE control command, 16

unlabeled tapes, 3

v

vertical=format-control codes, 19

WORKING=-STORAGE SECTION, 15,17

X

XREF option, 13

Reader Comment Form

0X

We would appreciate your commaents and suggestions for improving this pubiication

Publication No.

Aev. Letter| Title

Currani Date

[:] Learning
D. Reterence

How did you use this publication?

D Instaliing

D Maintaining

[:] Sales

D Operating

is the material presented effectively?

D Fully Covered E] Well tlustrated E] Well organized :r‘j Claar

What is your overall rating of this publication?

D Very Good

E_] Good

D Fair
|:] Poor

D Very Poor

What is your occupation?

Your other comments may be entered here. Please be specific and give page, column, and lina numbar refergnces whara
applicable. To report errors, please use the Xerox Software Improvement or Ditficuity Report {(1388) instead of this form.

¥our nama & Rewurn Address

-

Thank You For Your Interest (fold & fasten as shown on back, no postage needed W mailed m U S A)

PLEASE FOLD AND TAPE--
MOTE: U. S. Postal Service will not deliver stapled forms

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO, 59153 LOS ANGELES,CA 90045

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
5250 W. CENTURY BOULEVARD
LOS ANGELES, CA 90045

ATTN: PROGRAMMING PUBLICATIONS

Honeywell

FOLD ALONG

e CUT ALONG LINE — = e e e

s
LINE

FOLD ALONG LINE

22228, 3C1178, Printed in US. ~.

XJ80, Rev, 0

	000
	001
	002
	003
	004
	005
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	replyA
	replyB
	xBack

