
Scientific Data Systems
A XEROX COMPANY

XfCl5 51GMR 5/7 MACRO-SYMBOL

Reference Manuar

MACRO·SYMBOL
REF'ERENCE MANUAL

for

XDS SIGMA 5/7 COMPUTERS

PRELIMINARY EDITION

90 15 78A

October 1969

Pri ce: $2.75

Xerox Data Systems/701 South Aviation Boulevard/EI Segundo, California 90245

© 1969, Xerox Data Systems, Inc. Printed in U.S.A.

RELATED PUBLICATIONS

Title Publication No.

XDS Sigma 5 Computer Reference Manual 900959

XDS Sigma 7 Computer Reference Manua I 900950

XDS Sigma 5/7 Symbol/Meta-Symbol Reference Manual 90 0952

XDS Sigma 5/7 Real-Time Batch Monitor (RBM-2) Reference Manual 90 15 81

NOTICE

The specifications of the software system described in this publication are subject to change without notice. The availability or performance of some features may
depend on a specific configuration of equipment such as additional tepe units or larger memory. Customers should consult their XDS sales representative for details.

ii

CONTENTS

PREFACE v DOl 25
GOTO 25

l. INTRODUCTION TO MACRO-SYMBOL DO/ELSE/FIN 26
Symbol Manipulation 29

Programming Features EQU 29
Macro-Symbol Passes SET 29

Pass 1 LOCAL 29
Pass 2 DEF 30

REF 31
2. MACRO-SYMBOL LANGUAGE ELEMENTS SREF 31

AND SYNTAX 2 Data Generation 31
GEN 31

Language Elements 2 COM 33
Characters 2 CF 33
Symbols 2 AF 33
Constants 3 AFA 34
Literals 5 DATA 34
Expressi ons 6 TEXT 35

Syntax 8 TEXTC 36
Statements 8 Listing Control 36
Comment Lines 9 PAGE 36
Statement Continuation 10 SPACE 36

Processing of Symbols 10 TITLE 37
Defining Symbols 10

6. PROCEDURES 38
Symbol References 10
Classification of Symbols 11 Procedures 38
Symbol Table 11 Procedure Format 38
Absolute and Relocatable Values 11 CNAME 38

PROC 38
3. MACRO-SYMBOL ADDRESSING 12 PEND 39

Relative Addressing 12
Procedure Display 40
Intrinsic Functions 40 Addressing Functions 12

LF 40
$,$$ 12

CF 40
BA 12

AF 41
HA 13

AFA 41
WA 13

NAME 41 DA 13
NUM 41 Address Resolution 13

Sample Procedures 41 Location Counters 14
Setting the Location Counters 15 7. ASSEMBL Y LISTINGS 44

ORG 15
Macro-Symbol Assembly Listing 44

LOC 16
Equate Symbols Line 44

BOUND 17
Assembly Listing Line 44

RES 17
Ignored Source Image Line 44

Program Sections 18
Error Line 45

Program Section Directives 18
Li tera I Li ne 45

Absolute Section 18
Relocatable Control Sections 18 8. MACRO-SYMBOL OPERATIONS 46
Saving and Resetting the Location Counters _19

Rea I-Time Batch Monitor Control Commands 46
Returning to a Previous Section 20

JOB Control Command 46 Dummy Sections 22
ASSIGN Control Command 46 Program Sections and Litera Is 22
MACRSYM Control Command 46

4. INSTRUCTIONS 23 EOD Control Command 47

5. MACRO-SYMBOL DIRECTIVES 24
Updating a Compressed Deck 47
Program Deck Structures 47

Assembly Control 24 Error Messages 47
SYSTEM 24
END 25 INDEX 63

iii

APPENDIXES ILLUSTRATIONS

A. SUMMARY OF MACRO-SYMBOL
1. XDS Sigma Symbol ic Coding Form 8

DIRECTIVES 50 2. Flow Chart of DO/ELSE/FIN Loop 27

3. Macro-Symbol Listing Format 44
B. MACRO-SYMBOL COMPATIBILITY 53 4. Basic Deck Structures 48

C. SUMMARY OF SIGMA 5 iNSTRUCTiON TABLES
MNEMONICS 54 1. Macro-Symbol Character Set 2

D. SUMMARY OF SIGMA 7 INSTRUCTION
2. Macro-Symbol Operators 6

MNEMONICS 58 3. Macro-Symbol Error Flags 45

iv

PREFACE

Communication between the computer and the user in current high-speed systems can be improved greatly through
the use of highly discriminative programming languages. Such languages must be capable of expressing even intri­
cate problems in a brief, incisive, and readi Iy comprehensible form.

Ideally, a programming language should be machine-independent, easily learned, and universally applicable to the
problems of science, engineering, and business. None of the earlier programming languages had the capacity and
flexibility required for the efficient programming of all types of applications. Some languages were intended for the
solution of mathematical problems, while others were designed for business applications. Such programming lan­
guages are said to be "problem-oriented".

Other programming languages are said to be IJmachine-oriented lJ which, consequently, have numerous restrictions
and unduly complex syntax rules. Machine-oriented languages developed because the syntax rules for a given com­
puter were strongly influenced by the hardware characteristics of that machine. The syntax of any symbolic program­
ming language consists of the set of rules governing its sentence (that is, statement) structure; and the vocabulary
consists of the permissible names, literals, operators, and other symbols that may be used to express a symbolic
program.

Sigma 5/7 Macro-Symbol is neither a problem-oriented nor a machine-oriented language, and therefore there are
fewer rules to learn and programming flexibil ity is enhanced. Macro-Symbol is a superset of the Sigma 5/7 Symbol
language and a subset of the Sigma 5/7 Meta-Symbol language.

Chapters 1 through 6 of this manual describe the basic features of the Sigma 5/7 Macro-Symbol language; Chapter 7
explains the Macro-Symbol assembly listing; and Chapter 8 gives the various Macro-Symbol operating procedures
under Real-Time Batch Monitor control. The Macro-Symbol directives are summarized in Appendix A; the compati­
bilityof Macro-Symbol with Symbol and Meta-Symbol is discussed in Appendix B; and the Sigma 5 and Sigma 7
Computer instructions recognized by Macro-Symbol are given in Appendixes C and D, respectively.

v

1. INTRODUCTION TO MACRO-SYMBOL

PROGRAMMING FEATURES

The following I ist summarizes Macro-Symbol's more impor­
tant features for the programmer:

• The argument field can contain both arithmetic and
Boolean (logical) expressions, using constant or vari­
able quantities.

• The DO directive allows selective generation of areas
of code, with parametric constants or expressions de­
termined at the time of the assembly.

• Command procedures allow a macro-assembler capa­
bility of generating many units of codes for a given
procedure call line. Further sophistication provides
completely parameterized coding, with procedures
appl icable to many programs.

• The call line and its individual parameters can be tested
both arithmetically and logically.

• Nested procedures are used; that is, one procedure
may ca II another.

• Complete use of arithmetic and Boolean operators in
procedures is permitted.

MACRO-SYMBOL PASSES

Macro-Symbol is a two-pass assembler that runs under con­
tro I of the Rea 1-Ti me Batch Mon i tor.

PASS 1

Pass 1 reads the input program (which may be symbolic, com­
pressed, or compressed with symbol ic corrections), bui Ids the
symbol table, a 1I0cates space for each statement, generates
the intermediate file (which is a slightly modified copy of
the input program that will be read by Pass 2), and option­
ally outputs a new compressed deck.

PASS 2

Pass 2 is the final assembly pass that generates the object
code. It reads the intermediate file, and using the symbol
table produced by Pass 1, provides the correct addresses for
all symbols. During this pass, literals and forward refer­
ences are defined, and references to externa lIy defined sym­
bols are noted to be provided by the loade/. Pass 2 also
produces the assembly listing, the format for which is de­
scribed in Chapter 7.

tXDS loaders are routines that form and I ink programs to be
executed. A loader may be part of a Monitor system or may
be an independent program.

Introduction to Macro-Symbol

2. MACRO-SYMBOL LANGUAGE ELEMENTS AND SYNTAX

LANGUAGE ELEMENTS

Input to the assembler consists of a sequence of characters
combined to form assembly language elements. These lan­
guage elements {which include symbols; constants; expres­
sions, and I iterals} make up the program statements that
comprise a source program.

CHARACTERS

The Macro-Symboi character set is shown in Tabie i.

Table i. Macro-Symbol Character Set

Alphabetic: A through Z, and $, @, H, :, ~ (break
character - prints as "underscore ll

)

Numeric: 0 through 9

Special
Characters:

+

*

/

&

II

Blank

Add (or positive value)

Subtract {or negative value}

Multiply, indirect addressing
prefix, or comments I ine indicator

Divide

Decimal Point

Comma

Left Parenthesis

Right Parenthesis

Constant Delimiter (single quota­
tion mark)

Logical AND

Logical OR (vertical slash)

Logical Exclusive OR (vertical
slashes)

.., Logical NOT or Complement

< Less Than

> Greater Than

<=

Equal or introduces a literal

Less Than or Equal

>= Greater Than or Equal

1= Not Equal

Continuation Code

** Binary Shift

2 Macro-Symbol Language Elements and Syntax

The colon is an alphabetic character used in internal sym­
bols of standard XDS software. It is included in the names
of Monitor routines (M:READ), assembler routines (S:IFR),
and library routines (L:SIN). To avoid conflict between
user symbols and those employed bv XDS software, it is sug­
gested that the colon be excluded from user symbols.

SYMBOLS

Symbols are formed from combinations of characters. Sym­
bols provide programmers with a convenient means of iden­
tifying program elements so they can be referred to by other
elements. Symbols must conform to the following rules:

1. Symbols may consist of from 1 to 8 alphanumeric char­
acters: A-Z, $, @, H, :,~, 0-9. At least one of the
characters in a symbol must be alphabetic. No special
characters or blanks can appear in a symbol.

2. The characters $ and $$ may be used in the argument
field of a statement to represent the current value of
the execution and load location counters, respectively
(see Chapter 3); these characters must not be used as
label field entries.

The following are examples of valid symbols:

ARRAY
Rl
INTRATE
BASE
7TEMP
HCHAR
$PAYROLL
$ (execution location counter)

The following are examples of invalid symbols:

BASE PAY Blanks may not appear in symbols.

TWO = 2 Special characters {=} are not permitted
in symbols.

DEFINING SYMBOLS

A symbol is "defined II by its appearance in the label field
of any machine language instruction and of certain directives:

ASECT, CNAME, COM, CSECT, DATA, DO, DOl,
DSECT, END, EQU, GEN, LOC, ORG, RES, SET,
TEXT, TEXTC, and USECT.

Often the programmer may want to assign values to sym­
bols rather than having the assembler do it. This may
be accompl ished through the use of EQU and SET
directives. A symbol used in the label field of these
directives is assigned the value specified in the argument

field. The symbol is considered to be an address or
absolute term, depending on the value to which it is
equated.

REDEFINING SYMBOLS

Usually, a symbol may be defined only once in a program.
However, if its value is originally assigned by a SET or DO
directive, the symbol may be redefined by a subsequent SET
directive or by the processing of a DO loop. For example:

SYM SET

SYM DO

NOW SET

15 SYM is assigned to value 15.

3 SYM is changed to zero and is
incremented by 1 each time the
DO loop is executed.

SYM NOW is assigned the value SYM
had when the DO loop was com­
pleted; i. e., 3 not 15.

CONSTANTS

A constant is a self-defining language element. Its value
is inherent in the constant itself, and it is assembled as part
of the statement in which it appears.

Self-defining terms are useful in specifying constant values
within a program via the EQU directive (as opposed to enter­
ing them through an input device) and for use in constructs
that require a value rather than the address of the location
where that value is stored. For example, the Load Immedi­
ate instruction and the BOUND directive both may use self­
defining terms:

LI,2

BOUND

2, 57, and 8 are self-defining
terms

SELF-DEFINING TERMS

Self-defining terms are considered to be absolute (non­
relocatable) items since their values do not change when
the program is relocated. There are two forms of self­
defining terms:

1. The decimal digit string in which the constant is
written as a decimal integer constant directly in
the instruction:

LW, R HERE + 6 116 11 is a decimal
digit string

The maximum value of a decimal integer constant is
I imited to that which can be contained in two words
(64 bits).

2. The general constant form in which the type of constant
is indicated by a code character, and the value is writ­
ten as a constant string enclosed by single quotation
marks:

LW,R HERE + X'7AF' 117 AP is a hexa­
decimal constant
representing the
decimal value 1967

There are seven types of general constants:

Code

C
X
o
D
FX
FS
FL

Type

Character string constant
Hexadecimal constant
Octal constant
Decimal constant
Fixed-point decimal constant
Floating-point short constant
Floating-point long constant

C: Character String Constant. A character string constant
consists of a string of EBCDICt characters enclosed by single
quotation marks and preceded by the letter C:

C'ANY CHARACTERS'

Each character in a character string constant is allocated
eight bits of storage.

Because single quotation marks are used as syntactical char­
acters by the assembler, a single quotation mark in a char­
acter string must be represented by the appearance of two
consecutive quotation marks. For example,

represents the string

AB'C'

Character strings are stored four characters per word. The
descriptions of TEXT and TEXTC in Chapter 5 provide posi­
tioning information pertaining to the character strings used
with these directives. In all other usages, character strings
must not contain more than 16 characters. If the string con­
tains less than 16 characters, the characters are right­
justified and a null EBCDIC character{s) fills out the word.

Note: If any constant string enclosed by single quotation
marks appears in an object program without one of
the type codes I isted above, it is assumed to be a
character string constant and is processed as if type
code C had preceded the string.

t A table of Extended Binary-Coded Decimal Interchange
Codes can be found in the Sigma 5 and Sigma 7 Computer
Reference Manuals (90 09 59 and 90 09 50).

Language Elements 3

X: Hexadecimal Constant. A hexadecimal constant con­
sists of an unsigned hexadecimal number enclosed by single
quotation marks and preceded by the letter X:

X'9C01F'

The assembler generates four bits of storage for each hexa­
decimal digit. Thus, an 8-bit mask would consist of two
hexadecimal digits. The maximum value of a hexadecimai
constant is limited to that which can be contained in two
words (64 bits).

The hexadecimal digits and their binary equivalents are as
follows:

0-0000 8 - 1000
1 - 0001 9 - 1001
2 - 0010 A- 1010
3 - 0011 B-1011
4 - 0100 C - 1100
5 - 0101 D- 1101
6-0110 E-lllO
7 - 0111 F - 1111

Information concerning hexadecimal arithmetic and
hexadecimal-to-decimal conversions is included in the
Sigma 5 and Sigma 7 Computer Reference Manuals.

0: Octal Constant. An octal constant consists of an un­
signed octal number enclosed by single quotation marks and
preceded by the letter 0:

0'7314526'

The maximum value is limited to that which can be contained
in two words (64 bits). By impl ication, the size of the con­
stant in binary digits is 3 times the number of octal digits
specified, and the constant is dght-lustified in its field.

For example:

Constant Binary Value Hexadecimal Value

0'1234' 00 1 a 10 a 11 100 00 10 100 1 1100 (29C)

The octal digits and their binary equivalents are as follows:

0-000
1 - 001
2-010
3-011

4 - 100
5 - 101
6 - 110
7 - 111

D: Decimal Constant. A decimal constant consists of an
optionally signed value of 1 through 31 decimal digits,
enclosed by single quotation marks and preceded by the
letter D.

D'735698721, = D'+735698721,

The constant generated by Macro-Symbol is of the binary­
coded decimal form required for Sigma 7 decimal instructions.

4 Language Elements

In this form, the signt occupies the last digit position, and
each digit consists of four bits. For example:

Constant

D'+99'

Value

1001 1001 1100

A deci mal constant could be used in an instruction as follows:

Load (LW) as a literal (L) into register R the decimal con­
stant (D) 99.

The value of a decimal constant is limited to that which can
be contained in four words (128 bits).

FX: Fixed-Point Decimal Constant. A fixed-point decimal
constant consists of the following components in the order
listed, enclosed by single quotation marks and preceded by
the letters FX:

1. An optional algebraic sign.

2. d, d., d. d, or. d, where d is a decimal digit string.

3. An optional exponent:

the letter E followed optionally by an algebraic
sign, followed by one or two decimal digits.

4. A binary scale specification:

the letter B followed optionally by an algebraic
sign, followed by one or two decimal digits that
designate the terminal bit of the integer portion
of the constant (i. e., the position of the binary
point in the number). Bit position numbering be­
gins at zero.

Parts 3 and 4 may occur in any relative order:

The value of a fixed-point decimal constant is I imited to
that which can be stored in a single word (32 bits).

tA plus sign is a 4-bit code of the form 1100. A minus sign
is a 4-bit code of the form 1101.

Example 1. Storing Fixed-Point Decimal Constants.

Assume a halfword (16 bits) is to be used for two fields
of data; the first field requires 7 bits, and the second
field requires 9 bits.

The number FXI3. 75B41 is to be stored in the firstfield.
The binary equivalent of th is number is 11 1\ 11. The
caret represents the position of the binary point. Since
the binary point is positioned between bit positions 4
and 5, the number wou Id be stored as

Field 1 Field 2

10 1 2 3 4 5 61 Bit positions

1\
The number FXI. 0625B-2 1 is to be stored in the second
field. The binary equivalent of this number is 1\0001.
The binary point is to be located between bit positions
-2 and -1 of field 2; therefore, the number would be
stored as

Bit positions

1\
In generating the second number, Macro-Symbol con-
siders bit position -1 of field 2 to contain a zero, but
does not actually generate a value for that bit position
since it overlaps field 1. This is not an error to the
assembler. However, if Macro-Symbol were requested
to place a 1 in bit position -1 of field 2, an error would
be detected since significant bits cannot be generated
to be stored outside the field range. Thus, leading
zeros may be truncated from the number in a field, but
significant digits are not allowed to overlap from one
field to another.

FS: Floating-Point Short Constant. A floating-point short
constant consists of the following components in order,
enclosed by single quotation marks and preceded by the
letters FS:

1. An optional algebraic sign.

2. d, d., d. d, or. d where d is a decimal digit string.

3. An optional exponent: the letter E followed optionally
by an algebraic sign followed by one or two aecimal
digits.

Thus, a floating-point short constant could appear as

FS I5.5E-31

Refer to the XDS Sigma 5 Computer Reference Manual or
the Sigma 7 Computer Reference Manual for an explana­
tion of floating-point format.

The value of a floating-point short constant is I imited to
that which can be stored in a single word (32 bits).

FL: Floating-Point Long Constant. A floating-point long
constant consists of the following components in order,
enclosed by single quotation marks and preceded by the
letters FL:

1. An optional algebraic sign.

2. d, d., d. d, or. d where d is a decimal digit string.

3. An optional exponent: the letter E followed optionally
by an algebraic sign, followed by one or two decimal
digits.

Thus, a floating-point long constant could appear as

FL12987574839928. E-lll

The value of a floating-point long constant is I imited to
that which can be stored in two words (64 bits).

LITERALS

A I iteral is a constant or symbol enclosed by parentheses and
preceded by the letter L:

L(-185)

L(X I 5DP)

L(AB)

decimal value -185

hexadecimal value 5DF

an add ress va I ue

or a constant or symbol preceded by an equal sign:

= -185

= XI5DF 1

decimal value -185

hexadecimal value 5DF

= AB an address value

Literals are transformed into references to data values rather
than actual values. Literals may be used in any construct
that requires an address of a data value rather than the ac­
tual value. For example, the Load Word instruction requires
the address of the value to be loaded into the register, and
use of a I iteral wi II satisfy that requirement:

LW,7 L(768) The value 768 is stored in the
I Heral table and its address is
assembled as part of this
instruction.

A literal must not be used as a term in a multitermed ex­
pression; however, either I iteral form may be used in an ad­
dressing function expression. For example,

BA (HA(L(S + 1)))

is val id.

A literal preceded by an asterisk specifies indirect addressing:

(* = 10).

Language Elements 5

When a literal appears in a statement, Macro-Symbol pro­
duces the indicated value, stores the value in the literal
table, and assembles the address of that storage location
into the statement. The address is assembled as a word ad­
dress unless the programmer specifies a byte, halfword, or
doubleword address (see "Addressing Functions" in Chapter 3).
literals may be used anywhere a storage address value is a
val id argument field entry. However, I iterals may not be
used in directives that require previously defined symbols.

During an assembly Macro-Symbol generates each I iteral as
a 32-bit val ue on a word boundary in the I iteral table. The
assembler detects dupl icate values and makes only one entry
for them in the table. When Macro-Symbol encounters the
END statement, it generates all literals declared in the as­
sembiy. The iiterais are generated at the current iocation
(word boundary) of the current active program section.

Any of the previously discussed types of constants except
floating-point long (FL) may be written as literals:

L(1416)
L{CBYTE')
L(X'FOF01

)

L(O'77771)
L(D ' 378791)
L{FX' 78. 2E 1 BlO')
L(FS ' -8.93541OE-021)

integer literal
character string literal
hexadecimal literal
octal literal
decimal literal
fixed-point decimal literal
floating-point short literal

EXPRESSIONS

The Macro-Symbol language permits general expressions of
one or more terms combined by arithmetic and/or Boolean
(logical) operators. Table 2 shows the operators processed
by Macro-Symbol.

Table 2. Macro-Symbol Operators

Operator
Binding t
Strength

I tt
I

Function

+ 7
I

Plus (unary)

7 Mi nus (unary)

--, 7 Logical NOT or Comple-
ment (unary)

** 6 Binary Shift (logical)

* 5 Integer Multiply

/ 5 Integer Divide

+ 4 Integer Add

4 Integer Subtract

< 3 Less Than

> 3 Greater Than

<= 3 Less Than or Equa!

>= 3 Greater Than or Equal

3 Equal

6 Language Elements

Table 2. Macro-Symbol Operators (cont.)

Operator
Binding t
Strength Function

tt

...,= 3 Not Equal

& 2 Logical AND

I 1 Logical OR

" I
1 Logi cal Excl usive OR

t See below, "Operators and Expression Evaluation ".

tt All operators are binary (L e., require two operands)
except the first three, specifically indicated as unary.

PARENTHESES WITHIN EXPRESSIONS

Multitermed expressions frequently require the use of paren­
theses to control the order of evaluation. Terms inside pa­
rentheses are reduced to a single value before being com­
bined with the other terms in the expression. For example,
in the expression

ALPHA*{BETA + 5)

the term BETA + 5 is evaluated first, and that result is mul­
tipl ied by ALPHA.

Expressions may contain parenthesized terms within paren­
thesized terms:

DATA+{HRS/8-(TIME*2*(AG + FG)) + 5)

The innermost term (in this example, AG + FG) is evaluated
first. Parenthesized terms may be nested to any depth.

OPERATORS AND EXPRESSION EVALUATION

A single-termed expression, such as 36 or $ or SUM, takes
on the value of the term involved. A multitermed expres­
sion, such as INDEX + 4 or ZD*(8 + XYZ), is reduced to a
single value as follows:

1. Each term is eval uated and replaced by its internal value.

2. Arithmetic operations are performed from left to right.
Operations at the same parenthetical level with the
highest "binding strength" are performed first. For
example,

A+B*C/D

is evaluated as

A + ({B * C) / D)

3. Arithmetic operations are performed on the entire word
for all expressions; Macro-Symbol does not restrictarith­
metic operation to the low-order 19 bits for expressions
involving addresses.

4. Division always yields an integer result; any fractional
portion is dropped.

5. Division by zero yields a zero result and is indicated
by an error notification.

An expression may be preceded by an asterisk (*), used to
denote indirect addressing. Used as a prefix in this way,
the asterisk does not affect the evaluation of the expression.
However, if an asterisk precedes a subexpression, it is in­
terpreted as a multiplication operator.

In Macro-Symbol all arithmetic and logical operations in
expressions are carried out in single precision (32 bits).

Constant expressions may be formed with any of the opera­
tors in Table 2 and operands that are constants or symbols
previously equated to constants.

Operands that represent addresses may be combined only
with the plus (+) and minus (-) operators to form address
expressions subject to the following restrictions:

1: Two address expressions may not be added together.

2. An address expression may be subtracted from another
address expression only if both address expressions are
of the same resolution and section and if neither ad­
dress expression is external or a local forward reference.
If all of these requirements are met, the result is a con­
stant expression.

3. An address expression may be added to a constant ex­
pression, yielding an address expression.

The address functions (BA, HA, WA, and DA) may be ap­
pi ied to expressions without I imitation as long as the ex­
pression is not an address expression with a local forward
or external reference. When an address expression is a
local forward or external reference, the expression is re­
stricted to the following form:

where

af. are address functions.
I

ax is a local forward or external address expression.

cx is a constant expression.

LOGICAL OPERATORS

The logical NOT (-,), or complement operator, causes a
onels complement of its operand:

value

3
10

hexadecimal
equivalent

00 •.. 0011
00 ... 1010

onels complement

11 1100
11 0101

The binary logical shift operator (**) determines the direc­
tion of shift from the sign of the second operand: a negative

operand denotes a right shift and a positive operand denotes
a left shift. For example:

5**-3

results in a logical right shift of three bit positions for the
value 5, producing a result of zero.

The result of any of the comparisons produced by the com­
parison operators is

o if "false"
1 if "true"

so that

expression

3>4

-,3 =4

result

o
o

3 is not greater than 4

the 32-bit value 13 is
equal to 11 ... 1100 and
is not equal to 4; i. e. ,
00 •.. 0100

3 is not equal to 4 3-,=4

1(3 = 4) 11 ... 11 3 is not equal to 4, so the
result of the comparison is
o which, when comple­
mented becomes a 32-bit
value (all lis)

The logical operators & (AND), I (OR), and II (Exclusive
OR) perform as follows:

First Operand:
Second Operand:
Result of & Operation:

OR

Fi rst Operand:
Second Operand:
Resu I t of I Operati on:

Exclusive OR

First Operand:
Second Operand:
Result of II Operation:

0011
0101
0001

0011
0101
0111

0011
0101
0110

Expressions may not contain two consecutive binary opera­
tors; however, a binary operator may be followed by a
unary operator. For example, the expression

-A * iB / - C - 12

is evaluated as

«(-A) * (...,B)) / (-C)) - 12

and the expression

T + U * (V + -W) - (268 / -X)

is evaluated as

(T + (U * (V + (-W)))) - (268/ (-X))

Language Elements 7

SYNTAX
Assembly language elements can be combined with computer
instructions and assembler directives to form statements
that comprise the source program.

STATEMENTS

A statement is the basic component of an assembly language
source program; it is also called a source statement, a pro­
gram statement, or a symbolic line.

Source statements are written on the standard coding form
shown in Figure 1.

FIELDS

The body of the coding form is divided into four fields:
label, command, argument, and comments. The coding
form is also divided into 80 individual columns. Columns
1 through 72 constitute the active I ine; columns 73 through

~s

80 are ignored by the assembl er except for Ii sti ng purposes
and may be used for identification and a sequence number.

The columns on the coding form correspond to those on a
standard 80-column card; one line of coding on the form
can be punched into one card.

Macro-Symbol provides for free-form symbolic lines; that is,
it does not require that each field in a statement begin in c
specified column. The rules for writing free-form symbolic
I ines are as follows:

1. The assembler interprets the fields from left to right:
label, command, argument, comments.

2. A blank column terminates any field except the com­
ments field, which is terminated at column 72 on card
input or by a carriage return character on paper tape
input.

3. One or more blanks at the beginning of a line specifies
there is no label field entry.

PROBLEM _________ _
SIGMA

SYMBOLIC CODING FORM

Identification
PAGE ___ OF __ _

PROGRAMMER ________ _ 73 80 DATE ________ _
i I , i

LABEL COMMAND ARGUMENT COMMENTS
1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 72

I I I I I I
i ! I I I I I I I

I I i I i I I ; I I I I I I I

I
i I I I I I I I I I I I I I

I I I I I I I I I I I I I

I
t

I I I I I

I i I
I I I I I I I I I I I I

I ! i I I I I I I I I I I I I
I

I i I I I I I I I I I I I

I I I I I I I I I I I I I I I

I I I I I I I I I I I I I

I I I I I I I I I I I I I I

i I I I i I I I I I I I I I

i I I I I I I I I I I I I I

I I I I I I I I I I I I I

I I I I I I I I I I I I I I

I I I I I I I I I I I I I I

i I I I I I I I I I I I I I

i I I I I I I I I I I I I I

I I I I I I I I I I I I I I

I I I I I I I I I I I I I I

I I I I I I I I I I I I I I

I I I I I I I I I I I I I I

I I I I I I I . I I I I I I

I I I I , I , , , , I I I I

I I , I I I I I I I I I I I

Figure 1. XDS Sigma Symbolic Coding Form

8 Syntax

4. The label field entry, when present, must begin in
col umn 1.

5. The command field begins with the first nonblank col­
umn following the label field or in the first nonblank
column following column 1, if the label field is omitted.

6. The argument field begins with the first nonblank col­
umn following the command field. An argument field
is designated as blank in either of two ways:

a. Sixteen or more blank columns follow the command
field.

b. The end of the active I ine (column 72) is encountered.

7. The comments field begins in the first nonblank column
following the argument field or after at least 16 blank
columns following the command field, when the argu­
ment field is empty.

ENTRIES

A source statement may consist of one to four entries written
on a coding sheet in the appropriate fields: a label field
entry, a command field entry, an argument field entry, and
a comments field entry.

A label entry is a symbol that identifies the statement in
which it appears. The label enables a programmer to refer
to a specific statement from other statements within the
program.

The label of a statement may have the same configuration
as an instruction, a directive, or an intrinsic function with­
out conflict, since Macro-Symbol is able to distinguish
through context which usage is intended. For example, the
mnemonic code for the Load Word command is LW; LW may
also appear in the label field of a statement without con­
flicting with the command LW in the command field.

The name of any intrinsic function that requires parentheses
(BA, DA, HA, L, NUM, and WA) may be used as a label
in either a main program or a procedure definition, if the
parentheses are omitted. The intrinsic functions AF, AFA,
CF, LF, and NAME may be used as labels in a main pro­
gram, but within a procedure definition they are always in­
terpreted as functions.

Example 2. Label Field Entry

LABEL COMMAND ARGUMENT
1 5 10 15 20 25 30 35
p~yL..JR'ATE I I I I I I

R I I I I I I

A3
I I I I I I I

tSZT"@ I I I I I

I I I I I I I

I I I I I I I

I I I I I I I

I I 1 I I I I

The command entry is a mnemonic code representing a ma­
chine instruction, a procedure name, or an assembler func­
tion to be performed. A command entry is required in every

active statement. Thus, if a statement is entirely blank fol­
lowing the label field, the assembler declares the statement
in error, generates a word of all zeros in the object program,
and flags the statement in the assembl y I isting. The same
thing happens if the command entry is not an acceptable in­
struction, procedure, or directive. The mnemonic codes for
machine instructions and the assembler directives recognized
by Macro-Symbol are I isted in Appendixes A, C, and D.

Example 3. Command Field Entry

LABEL COMMAND ARGUMENT
1 5 10 15 20 25 30 35

I \..'w,6 I I I I r

LW) Sl I I I I I

I

L~) 15 I I I 1 I

I I I LW) 6
I I I

Al..p\tl\' L'Wl5 I I I I r

BETA 'LW) 5 I I I I I I

81 I
I LW') 51 I I I I

LO'd P 1
I

L~L5
I I I I

I I I 1 I I I

I I I 1 1 I

I I I I I 1 1

An argument entry consists of one or more symbols, constants,
I iterals, or expressions separated by commas. The argument
entries for machine instructions usually represent such things
as storage locations, constants or intermediate values. Ar­
guments for assembler directives provide the information
needed by Macro-Symbol to perform the designated operation.

Example 4. Argument Field Entry

COMMAND ARGUMENT

10 15 20 25 30 35 40

Lt,J~5 ALPHP. I I I I

B'U> "
I BllA I I I I

L'I"I4
I

I 85 I 1 1 1

L'W)i ~dL\ ~T I
I I I I

tJl(9p 1 I I SL'R\\K R'2 6 U 0'11:.1 t.\ -r
I L'lAS\ 5 'A\\'1 I I I 1

I I 1 I I I I

I I I I I I I

I I I I I I I

A comments entry may consist of any information the user
wishes to record. It is read by the assembler and output as
part of the source image on the assembly listing. Comments
have no effect on the assembly.

COMMENT LINES

An entire line may be used as a comment by writing an as­
terisk in column 1. Any EBCDIC character may be used in
comments. Extensive comments may be written by using a
series of I ines, each with an asterisk in column 1.

The assembler reproduces the comment lines on the assem­
bly listing and counts comment lines in making line num­
ber assignments (see Chapter 7 for a description of out­
put formats).

Syntax 9

STATEMENT CONTINUATION

If a single statement requires more space than is available in
columns 1 through 72, it can be continued onto one or two
following I ines. When a statement is to be continued on
another I ine, the following rules apply:

1. Each line that is to be continued on another line must
be terminated with a semicolon (i). The semicolon must
not be within a character constant string. Anything in
the initial I ine following the semicolon is treated as
comments. A semicolon within comments is not treated
as a continuation code.

2. Column 1 of each continuation line must be blank.

3. Comment lines may not be continued; that is, a semi­
colon at the end of a comment line is treated as regular
punctuation rather than as a continuation indicator.

4. Comment I ines may be placed between continuation
lines.

PROCESSING OF SYMBOLS

Symbols are used in the label field of a machine instruction
to represent its location in the program. In the argument
field of an instruction, a symbol identifies the location of
an instruction or a data value.

The treatment of symbols appearing in the label or argument
field of an assembler directive varies.

DEFINING SYMBOLS

A symbol becomes "defined" by appearing as a label entry
on machine ianguage instruction statements and certain
directives. "Defined" means that it is assigned a value.
The definition, assigned to the symbol by the assembler,
depends on assembly conditions when the symbol is en­
countered, the contents of the command field, and the
current contents of the execution location counter.

Any machine instruction can be labeled; the label is as­
signed the current value of the execution location counter.

The EQU, SET, CNAME, and COM directives require a
label entry. A label entry is optional for the following
directives: ASECT, CSECT, USECT, DATA, DO, DOl,
DSECT, END, GEN, LOC, ORG, RES, TEXT, and TEXTC.
For all other directives a label entry is ignored (except as
a target label of a GOTO directive); that is, it is not as­
signed a value.

The first time a symbol is encountered in the label field of
an instruction, or any of the directives mentioned above, it
is placed in the symbol table and assigned a value by the
assembler. The values assigned to labels naming instruc­
tions, storage areas, constants, and control sections repre­
sent the addresses of the leftmost bytes of the storage fields
containing the named items.

10 Processing of Symbols

Often the programmer wi II want to assign va lues to symbols
rather than having the assembler do it. This may be accom­
plished through use of EQU or SET. A symbol used in the
label field of such a directive is assigned the value speci­
fied in the argument field.

Note: The use of labe Is is a programmer option, and as many
or as few labels as desired may be used. However,
since symbol defin ing requires assembly time and stor­
age space, unnecessary iabeis should be avoided.

SY MBOl REFERENCES

A symbol used in the argument field of a machine instruc­
tion or directive is called a symbol reference. There are
three types of symbol references.

PREVIOUSLY DEFINED REFERENCES

A reference made toa symbol that hasalready been defined is
a previously defined reference. All such references are com­
pletely processed by the assembler. Previously defined refer­
ences may be used in any machine instruction or directive.

FORWARD REFERENCES

A reference made to a symbol that has not been defined is a
forward reference. A forward reference must not be used as
a term in a multitermed expression, with one exception. The
exception is that a forward reference may have a constant
addend, so that the reference is of the form: reference ± exp
or exp + reference. The term exp either must be a positive
integer value or an expression that resolves to a positive in­
teger value. Examples of such usage would be

LW,4 HERE-2

HERE EQU $

FLAG EQU $

LW,4 FLAG + 4 + SUM

SUM

Forward references may be used in any machine language
instruction and in the argument field of the following direc­
tives: COM, DATA, DEF, GEN, GOTO, LOCAL, REF,
and SREF.

EXTERNAL REFERENCES

A reference made to a symbol defined in a program other
than the one in which it is referenced is an external refer­
ence. An external reference must not be used as a term in
a multitermed expression, with one exception. The excep­
tion is that the external reference may have a constant
addend of the same kind and conforming to the same restric­
tions previously explained under "Forward References".

A pro~ram that defines external references must declare
th~m ~s external by use of the DEF directive. An external
definition is output by the assembler as part of the object
program, for use by the loader.

A program that uses externa I references must declare them
as such by use of a REF or SREF directive.

A machine instruction containing an external reference is
incompletely assembled. The object code generated for
such references allows the external references and their
associated external definitions to be linked at load time.

After a program has been assembled and stored in memory
to be executed, the loader automatically searches the pro­
gram library for routines whose labels satisfy any existing
external references. These routines are loaded automati­
cally, and interprogram communication is thus completed.

Any computer instruction may contain an external reference;
however, external references are not allowed in any Macro­
Symbol directives except REF, SREF, GEN, DATA, EQU,
and END.

CLASSIFICATION OF SYMBOLS

Symbols may be classified either as local or non local.

A local symbol is one that is defined and referenced within
a restricted program region. The program region is desig­
nated by the LOCAL directive, which also declares the sym­
bols that are to be local to the region.

A symbol not declared as local by use of the LOCAL direc­
tive is a nonlocal symbol. It may be defined and referenced
in any region of a program, including local symbol regions.

The same symbol may be both nonlocal and local, in which
case the nonlocal and local forms identify different program
elements.

SYMBOL TABLE

The value of each defined symbol is stored in the assembler1s
symbol table. Each value has a value type associated with
it; such as absolute address, relocatable address, integer,
external reference. Some types require additional informa­
tion. For example, relocatable addresses, which are entered
as 19-bit offsets from program section base, require the in­
trinsic resolution of the symbol (see Chapter 3 for a discus­
sion of intrinsic resolution and the section number).

When the assembler encounters a symbol in the argument
field, it refers to the symbol table to determine if the sym­
bol has already been defined. If it has, the assembler ob­
tains from the table the value and attributes associated
with the symbol, and is able to assemble the appropriate
va lue in the statement.

If the symbol is not in the table, it is assumed to be a for­
ward reference. Macro-Symbol enters the symbol in the
table, but does not assign it a value. When the symbol is
defined later in the program, Macro-Symbol assigns it a
value and designates the appropriate attributes.

ABSOLUTE AND RELOCAT ABLE VALUES

The value of a symbol or expression may be absolute or re­
locatable. An absolute value, which is assigned at assem­
bly time, is the same value that will be used by the program

at execution time. A relocatable value, on the other hand,
may be altered by the loader at execution time.

SYMBOL VALUES

A symbol is assigned an absolute value by one of the follow­
i ng methods:

1. By equating the symbol to an absolute numeric quantity:

SUM EQU 2

SUM is assigned the absolute value 2.

2. By equating the symbol to an absolute symbol:

A
ANSWER

EQU
EQU

-10
A

ANSWER is assigned the absol ute value -10.

3. By using the symbol as a label entry in an absolute pro­
gram or program section (see Chapter 3).

The va lue of an absolute symbol does not change, even if
it is part of a relocatable program (a program that can be
executed anywhere in memory).

A symbol has a relocatable value unless declared absolute
as described above. The value of a relocatable symbol may
be altered by the loader when the symbol is a part of a re­
locatable program.

EXPRESSION VALUES

An absolute expression may consist of either a single ab­
solute term or a combination of absolute terms. An abso­
lute term is a symbol defined in an absolute program sec­
tion or a hexadecimal, octal, or decimal integer. Note
that D, C, FX, FS, and FL constant types in a multiple­
term expression produce unpredictable results.

A relocatable expression may consist of either a single re­
locatable term or a combination of relocatable terms.

The mode of an expression combining absolute terms with
relocatable terms is determined as shown inExample 5.

When the assembler eva luates an expression, it determines
whether the expression value is relocatable or absolute.

Example 5. Expressions Using + and - Operators

Assume R1, R2, and R3 are relocatable terms and Aland
A2 are absolute terms.

Expressi on: R1±A1 Legal, relocatable

Expression: R1-R2-R3 Legal, re locatable

Expression: R1-R2+A1 Legal, absolute

Expression: R 1-R2+R3-A 1 +A2 Legal, relocatable

Expression: R1+R2 I lIega I, diagnostic
error

Expression: R1+R2-R3 Illegal, diagnostic
error

Expressi on: R 1 +(R2-R3) Legal, relocatable

Expression: A1±A2 Legal, absolute

Processing of Symbols 11

3. MACRO-SYMBOL ADDRESSING

Sigma 5/7 computer addressing techniques require a register
designation and an argument address which may specify in­
dexing and/or indirect addressing. The programmer may
write addresses in symbolic form, and the assembler will con­
vert them to the proper equivalents.

RELATIVE ADDRESSING

Relative addressing is the technique of addressing instruc­
tions and storage areas by designating their locations in re­
lation to other locations. This is accomplished by using
symbolic rather than numeric designations for addresses. An
instruction may be given a symbolic label such as lOOP,
and the programmer can refer to that instruction anywhere
in his program by using the symbol LOOP in the argument
field of another instruction. To reference the instruction
following LOOP, he can write LOOP+1; similarly, to ref­
erence the instruction preceding LOOP, he can write
LOOP-1.

An address may be given as relative to the location of the
current instruction even though the instruction being ref­
erenced is not labeled. The execution location counter,
described later in this chapter, always indicates the loca­
tion of the current instruction and may be referenced by the
symbol $. Thus, the construct $+8 specifies an address
eight units greater than the current address, and the con­
struct $-4 specifies an address four units less than the cur­
rent address.

ADDRESSING FUNCTIONS

Intrinsic functions are functions built into the assembler.
Certain of these functions concerned with address resolt:­
tion are discussed here. Literals were discussed in
Chapter 2, and other intrinsic functions are explained
in Chapters 5 and 6.

Intrinsic functions, including those concerned with address
resolution, mayor may not require arguments. When an
argument is required for an intrinsic function, it is always
enclosed in parentheses.

A symbol whose value is an address has an intrinsic address
resolution assigned at the time the symbol is defined. Usu­
ally this intrinsic resolution is the resolution currently ap­
plicable to the execution location counter. The addressing
functions BA, HA, WA, and DA {explained later} allow the
programmer to specify explicitly a different intrinsic address
resolution than the one currently in effect.

Certain address resolution functions are applied uncondi­
tionallyto an address field after it is evaluated. Thechoice
of functions depends on the instruction involved. For in­
structions that require values rather than addresses (e.g.,
LI, MI, DATA), no final addressing function is applied.
For instructions that require word addresses (e.g., LW, STW,
LB, STB, LH, LD), word address resolution is applied. Thus,

12 Macro-Symbol Addressing

the assembler evaluates LW,3 ADDREXP as if it were
LW,3 WA(ADDREXP). Similarly, instructions that require
byte addressing (e.g., MBS) cause a final byte addressing
resolution to be applied to the address field.

More information on address resolution is given after the
explanation of intrinsic addressing functions, which follows.

$,$$ Location Counters

The symbols $ {current value of execution location counter}
and $$ (current val ue of load location counter) indicate that
the current value of the appropriate location counter is to
be generated for the fieid in which the symbol appears.

The current address resolution of the counter is also applied
to the generated field. This resolution may be changed by
the use of an addressing function.

Example 6. $, $$ Functions

A EQU $

Z EQU $$

TEST BCS,3 $+2

BA Byte Address

Equate A to the current value
of the execution location
counter.

Equate Z to the current value
of the load location counter.

Branch to the locati on speci­
fied by the current execution
location counter + 2 if the
condition code and value 3
compare lis anyplace.

The byte address function has the format

BA(address expression)

where "BN' identifies the function, and "address expression"
is the symbol or expression that is to have byte address res­
olution when assembled. If "address expression lJ is a con­
stant, the value returned is the constant itself.

Example 7. BA Function

Z LI,3 BA(L(48)) The value 48 is stored in the
literal table and its location
is assembled into this argu-
ment field as a byte address.

AA LI,5 BA($) The current execution loca-
tion counter address is evalu-
ated as a byte address for this
statement.

HA Halfword Address

The halfword address function has the format

HA(address expression)

where "HA" identifies the function, and "address expres­
sion" is the symbol or expression that is to have halfword
address resolution. If "address expression" is a constant,
the value returned is the constant itself.

Example 8. HA Function

Z CSECT

Q EQU HA(Z+4)

WA Word Address

Declares control section Z.
Both location counters are
initialized to zero. Z is im­
pi icitly defined as a word
resolution address.

Eq uates Q to a ha I fword ad­
dress of Z +4 (words).

The word address function has the format

WA(address expression)

where "WA" identifies the function, and "address expres­
sion ll is the symbol or expression that is to have word ad­
dress resolution when assembled. If lIaddress expression" is
a constant, the value returned is the constant itself.

Example 9. WA Function

A ASECT Declares absolute section A
and sets its location counters
to zero.

LW,3 Zl Assembles instruction to be
stored in location O.

B LW,4 Z2 Assigns the symbol B the
va I ue 1, wi th word add ress
reso I uti on.

C EQU BA(B) Equates C to the val ue of B
with byte address resol ution.

F EQU WA(C) Equates F to the value of C,
with word address resolution.

DA Doubleword Address

The doubleword address function has the format

DA(address express ion)

where II DAII identifies the function, and "address expres­
sion ll is the symbol or expression that is to have doubleword
address resolution when assembled. If "address expression"
is a constant, the value returned is the constant itself.

Example 10. DA Function

LI,5 DA(L(ALPHA)) The symbol ALPHA is stored
in the literal table and its
location is assembled into this
statement as a doubleword
address.

ADDRESS RESOLUTION

To the assembler an address represents an offset from the
beginning of the program section in which it is defined.

Consequently, the assembler maintains in its symbol table
not only the offset value, but an indicator that specifies
whether the offset value represents bytes, words, halfwords,
or doublewords. This indicator is called the "address
resolution" .

Address resolution is determined at the time a symbolic ad­
dress is defined, in one of two ways:

1. Explicitly, by specifying an addressing function.

2. Implicitly, by using the address resolution of the exe­
cution location counter. (The resolution of the exe­
cution location counter is set by the ORG or LOC
directives. If neither is specified, the address resolu­
tion is word.)

The resolution of a symbolic address affects the arithmetic
performed on it. If A is the address of the leftmost byte of
the fifth word, defined with word resol ution, then the ex­
pression A+l has the value 6 (5 words +1 word). If A is
defined with byte resolution, then the same expression has
the value 21 (20 bytes + 1 byte). See Example 11.

Forward and external references with addends are consid­
ered to be of word resol ution when used without a resolution
function in a generative statement or in an expression. Thus,
a forward or externa I reference of the form

reference + 2

is impl icitly

WA(reference + 2)

Macro-Symbol restricts the number of nested resolution
functions and addends that may be applied to a forward or
external reference with an addend. Only one such change
of address resolution may be made. For example, the fol­
lowing usage of a forward reference is permissible:

BA(2+WA(reference))

whi Ie the following usage cannot be processed by Macro­
Symbol and wi II be flagged as an error:

WA(BA(2 + WA(reference)))

Simi larly, once a forward or external reference has been
given an addend followed by a change of resolution, it may
not be given another addend. For example, the following
forward reference usage wi II again be flagged as an error:

BA(2 + WA(reference)) + 1

Address Resolution 13

Example 11. Address Resolution

Generated
Location Code

CSECT

00000 ORG 0 Sets val ue of location counters to zero with
word resolution.

00000 FFFB A GEN,16 -5 Defines A as 0 with word resolution.

00000 2 0004 B GEN,16 4 Defines Bas 0 with word resolution.

00001 0000 GEN,16 BA(A) Generates 0 with byte resolution.

00001 2 0002 GEN! 16 BA(B) Generates 2 with byte resolution.

00002 0001 ~I="I lA. HA(B) Generates 1 v/ith halfword resolution., '" I'"

00002 2 ORG, 1 $ Sets value of location counters to 10 with byte
resolution.

00002 2 FFFF F GEN,16 -1 Define F as 10 with byte resolution.

00003 OOOA GEN,16 F Generates 10 with byte resolution.

00003 2 OOOB GEN,16 F+l Generates 11 with byte resolution.

00004 0002 GEN,16 WA(F) Generates 2 with word resolution.

00004 2 0002 GEN,16 WA(F+l) Generates 2 with word resolution.

00005 0008 GEN,16 BA(WA(F+1)) Generates 8 with byte resolution.

00005 2 0003 GEN,16 WA(F)+1 Generates 3 with word resolution.

00006 ~ OOOC GEN,16 BA(WA(F)+ 1) Generates 12 with byte resol ution.

00006 2 0000 GEN,16 BA(WA(F)+ 1)+ 1 Generates 13 with byte resolution.

LOCATION COUNTERS

A location counter is a memory cell the assembler uses to
record the storage location it assigned last and, thus, what
location it should assign next. Each program has two loca­
tion counters associated with it during assembly: the load
location counter (referenced symbol ically as $$) and the
execution location counter (referenced symbol ica Ily as $).
The load location counter contains a location value rela­
tive to the origin of the source program. The execution
location counter contains a location value relative to the
source program1s execution base.

Essentially, the load location counter provides information
to the loader that enables it to load a program or subprogram
into a desired area of memory. The execution location
counter, on the other hand, is used by the assembler to
derive the addresses for the instructions being assembled.
To express it another way, the execution location counter
is used in computing the locations and addresses within the
program, and the load location counter is used in comput­
ing the storage locations where the program wi II be loaded
prior to execution.

In the !!normal!! case both counters are stepped together as
each instruction is assembled, and both contain the same
location value. However, the ORG and LOC directives
make it possible to set the two counters to different initial

14 Location Counters

values to handle a variety of programming situations. The
load location counter is a faci I ity that enables systems
programmers to assemble a program that must be executed
in a certain area of core memory, load it into a different
area of core, and then, when the program is to be executed,
move it to the proper area of memory without altering any
addresses. For example, assume that a program provides a
choice of four different output routines: one each for paper
tape, magnetic tape, punched cards, or line printer. In
order to execute properly, the program must be stored in
core as

variable _______

2FFF

lFFF

0000

~--------------~~

output routine

main program

to be used for data
storage during pro­
gram execution

Each of the fouroutputroutines would be assembled'with the
same initial execution location counter value of 1FFF but
different load location counter values. At run time this
would enable all the routines to be loaded as follows:

variable

5FFF

4FFF

3FFF

2FFF

1FFF

0000

line printer routine

punched card routine

paper tape routine

magnetic tape routine

main program

,,,,,

>-

I}

to be used for data
storage during pro­
gram execution

execution area for
output routine

When the main program has determined which output routine
is to be used, during program execution, it moves the rou­
tine to the execution area. No address modification to the
routine is required since all routines were originally assem­
bled to be executed in that area. If the punched card out­
put routine were selected, storage would appear as:

variable

5FFF

4FFF

3FFF

2FFF

1FFF

0000

I ine printer routine

punched card routine

paper tape routine

magnetic tape routine

punched card routine

main program

..

~

}

data storage

execution area for
output routine

The user should not assume from this example that the exe­
cution location counter must be controlled in the manner in­
dicated in order for a program to be relocated. By properly
controlling the loader and furnishing it with a IIrelocation
bias", any Macro-Symbol program, unless the programmer
specifies otherwise, canbe relocated intoa memory area dif­
ferent than the one for which it was assembled. Most relo­
catable programs are assembled relative to location zero.
To assemble a program relative to some other location, the
programmer should use an ORG directive to designate the
program origin. This directive sets both location counters
to the same va lue. More information on program sectioning
and relocatability is given at the end of this chapter.

Each location counter is a 19-bit value that the assembler
uses to construct byte, halfword, word, and doubleword
addresses:

----doubleword---

-----word ------1

----halfword ------1

-----byte -------1

Thus, if a location counter contained the value

it could be evaluated as follows:

Hex.
Resolution Value

Byte 193

Halfword C9

Word 64

Doubleword 32

The address resolution option of the ORG and LOC directives
allows the programmer to specify the intrinsi c resolution of
the location counters, Word resolution is used as the intrin­
sic resolution if no specification is given. Address func­
tions, as previously explained, are provided to override this
resol ution.

SETTING THE LOCATION COUNTERS

At the beginning of an assembly, Macro-Symbol automati­
cally sets the value of both location counters to zero. The
user can reset the location values for these counters during an
assembly with the ORG and LOC directives. The ORG di­
rective sets the value of both location counters. The LOC
directive sets the va lue of only the execution location counter.

ORG Set Program Origin

The ORG directive sets both location counters to the loca­
tion specified. This directive has the form

label command argument

[label] ORG[, nJ location

where

label may be any val id symbol. Use of a label is
optional. When present, it is defined as the value
IIlocation ll and is associated with the first byte of
storage following the ORG directive.

Setting the Location Counters 15

n may be a constant, symbol, or expression whose
value is 1, 2, 4, or 8, specifying the address reso­
I ution for both counters as byte, halfword, word,
or doubleword, respectively. If n is om itted,
word resolution is assumed.

location may be relocatable or an evaluatable ex-
pression resulting in a positive integer value.

The address resolution option of ORG may be used to change
the intrinsic resolution specification to byte, halfword, or
doubleword resolution. Thereafter, whenever intrinsic reso­
lution is applicable, it will be that designated by the most
recently encountered ORG directive. For example, when­
ever $ or $$ are encountered, the vaiues they represent are
eXpiessed accoiding to the currently app!icable intrinsic
resol ution.

LOC Set Program Execution

The LOC directive sets the execution location counter ($)
to the location specified. It has the form

Example 12. ORG Directive

label command argument

[label] LOC [,n] location

where

label is any valid symbol. Use of a label is op-
tional. When present, it is defined as the value
of ==iocation B and is associated with the first byte
of storage following the LOC directive.

n may be a constant, symbol, or expression whose
value is 1, 2, 4, or 8, specifying the address reso­
lution for the execution location counter as byte,
halfword, word, or doubleword, respectively. If
n is omitted, v-lord resolution is assumed.

location may be relocatable or an evaluatable ex-
pression resulting in a positive integer value.

Except that it sets only the execution location counter, the
LOC directive is the same as ORG.

AA ORG 8 This directive sets the location counters to 8 and assigns that location to the label AA.

LW,2 INDEX

Example 13. ORG Directive

Z CSECT

ORG Z+4

A LW,4 ANY

MBS,O B

Li,4 BA(ANY)

This instruction is assembled to be loaded into'the location defined as AA. Thus, the
effect is the same as if the ORG directive had not been labeled and the label AA had
been written with the LW instruction.

Designates section Z and sets the location counters to zero.

Sets the location counters to Z+4 with word resolution.

Assembles ANY with word resolution, and defines A with word resolution.

Forces a byte address. The type of address required by the command overrides the
intrinsic resolution of the symbol.

Assembies the symboi ANY as a byte address.

16 Setting the Location Counters

Example 14. LOC Directive

PDQ ASECT

ORG

LOC

100

1000

Sets the execution location
counter and load location
counter to 100.

Sets the execution location
counter to 1000. The load
location counter remains at
100.

Subsequent instructions will be assembled so that the
object program can be loaded anywhere in core relative
to the original origin of the program. For example,
a relocation bias of 500 wi II cause the loader to load
the program at 600 (500 + 100). However, the program
will execute properly only after it has been moved to
location 1000.

BOUND Advance Location Counters to Boundary

The BOUND directive advances both location counters, if
necessary, so that the execution location counter is a byte
multiple of the boundary designated. The form of this di­
rective is

label command argument

BOUND boundary

where "boundari' may be any evaluatable expression re­
sulting in a positive integer value that is a power of 2
and :s 32. Halfword addresses are multiples of 2 bytes, full­
word addresses are multiples of 4 bytes, and doubleword
addresses are multiples of 8 bytes.

When the BOUND directive is processed, the execution
location counter is advanced to a byte multiple of the
boundary designated and then the load location counter is

Example 16. RES Directive

ORG 100 Sets location counters to 100.

advanced the same number of bytes. When the BOUND
directive results in the location counters being advanced,
zeros are generated in the byte positions skipped.

Example 15. BOUND Directive

BOUND 8 Sets the execution location
counter to the next higher
multiple of 8 if it is not al­
ready at such a value.

For instance, the value of the execution location coun­
ter for the current section might be 3 words (12 bytes).
This directive would advance the counter to 4 (16 bytes),
which would allow word and doubleword, as well as byte
and halfword, addressing.

RES Reserve an Area

The RES directive enables the user to reserve an area of core
memory.

label command argument

[label] RES[, nJ u

where

label is any valid symbol. Use of a label is optional.
When present, the labe I is defined as the current
value of the execution location counter and iden­
tifies the first byte of the reserved area.

n is an evaluatable expression designating the size
in bytes of the units to be reserved. The value of
n must be a positive integer. Use of n is optional;
if omitted, its value is assumed to be four bytes.

u is an evaluatable expression designating the num­
ber of units to be reserved. The value of u may be
a positive or negative integer.

When Macro-Symbol encounters an RES directive, it modi­
fies both location counters by the specified number of units.

A RES,4 10 Defines symbol A as location 100 and advances the location counters by 40 bytes (10 words)
changing them to 110.

LW,4 VALUE Assigns this instruction the current value of the location counters; that is, 110.

Setting the Location Counters 17

PROGRAM SECTIONS

An object program may be divided into program sections,
which are groups of statements that usually have a logical
association. For example, a programmer may specify one
program section for the main program, one for data, and
one for subroutines.

PROGRAM SECTION DIRECTIVES

A program section is declared by use of one of the program
section directives given below. These directives also declare
whether a section is absolute or relocatable. The I ist gives
only a brief definition of these directives; their use will be
made dear by successive statements and exampies in this
chapter.

ASECT

CSECT

DSECT

USECT

specifies that generative statement/ will be as­
sembled to be loaded into absolute locations.
The location counters are set to absolute zero.

declares a new control section (relocatable).
Generative statements will be assembled to be
loaded into this relocatable section. The loca­
tion counters are set to relocatable zero.

declares a new, dummy control section (relocat­
able). Generative statements will be assembled
to be loaded into this relocatable section. The
location counters are set to relocatable zero.

designates which previously declared section
Macro-Symbol is to use in assembl ing genera­
tive statements.

The program section directives have the following form:

label command argument

[label] ASECT

Dabel] CSECT [exp]

[label] DSECT [exp]

Dabel] USECT name

where

label is any valid symbol. The label is assigned
the value of the execution location counter immed­
iately after the directive has been processed. For
ASECT the value of the label becomes absolute
zero. For CSECT and DSECT the label value be­
comes relocatable zero in the appropriate program
section. For USECT the label value is the saved

t Generative statements are those that produce object code
in the assembled program.

18 Program Sections

value of the execution location counter for the
specified section. The label on ASECT, CSECT,
and USECT may be external ized by appearing in
a DEF directive so that the label can be referred
to by other programs. For DSECT, IIlabel ll is im­
plicitly an external definition, because dummy
sections are usually set up so that they can be re­
ferred to by other programs.

exp is an expression whose value must be from 0
to 3. This value, applicable only to CSECT and
DSECT, designates the type of memory protection
to be applied to these sections. In the following
list, IIread ll means a program can obtain informa­
tion from the protected section; "write ll means a
program can STore information into a protected sec­
tion; and "access II means the computer can execute
instructions stored in the protected section.

Value Memory Protection Feature

o read, write, and access permitted

read and access permitted

2 read only permitted

3 no access, read, or write permitted

The use of lIexpll is optional. When it is omitted,
the assembl er assumes the val ue 0 for the entry.
The expression lIexpll may not contain an external
reference.

name is a label defined in a previously declared
section.

ABSOLUTE SECTION

Although ASECT may be used any number of times, the
assembler produces only one, combined, absolute section,
using the successive specifications of the ASECT
directives.

RELOCA TABLE CONTROL SECTIONS

A single assembly may contain from 1 to 127 relocatable
control sections, which Macro-Symbol numbers sequentially.
At the beginning of each assembly, Macro-Symbol sets
both the execution and load location counters to relocat­
able zero, with word address resolution, in relocatable
control section 1. Control section 1 is opened by gene­
rating values in, or referencing or manipulating the ini­
tial location counters, or by declaring the first CSECT or
DSECT directive.

The execution of a CSECT or DSECT directive always opens
a new section. Therefore, if control section 1 has been
opened by generating values in, or referencing or manipulating

the initial location counters, the first CSECT or DSECT
opens control section 2. For example, these three program
segments

DATA 5

CSECT

END
and

DEF

HERE EQU

CSECT

END

SORT

$

and

ORG 500

CSECT

END

each produce two relocatable control sections, one implicit
(control section 1) and one explicit (control section 2);
whereas,

VALUE EQU 5

REF

CSECT

END

OUTPUT

and

INPUT CNAME

PROC

PEND

CSECT

END

each contain only one relocatable section (control section 1).
The statements preceding the CSECT do not open control
section 1 because they do not generate values in, or refer­
ence or manipulate the initial location counters.

SAVING AND RESETTING THE LOCATION COUNTERS

Since there is only one pair of location counters, Macro­
Symbol does the following when a new section is declared
(ASECT, CSECT, or DSECT):

Example 17. Program Sectioning

Current Location Counters

$ Section $$ Section

a ABS a ABS

300 300

350 350

a CSl a CS1

100 100

a CS2 a CS2

200 200

NUMBERS

RANDOM

DUMMY

Program

ASECT

ORG

CSECT

DSECT

END

1. Saves the current value of the execution location
counter ($) in the SAVED $ TABLE, and

2. Compares the val ue of the load location counter ($$)
with the value previously saved for the section in the
SAVED MAXIMUM $$ TABLE, if assembling a relocata­
ble control section, and saves the higher value.

The control section to which the saved values are associated
is determined from the location counters. The counters have
the format:

Execution Location Counter

RS I CSH I ADDR VALUE

Load Location Counter

RS CS# ADDR VALUE

where

RS specifies the resolution (BA, HA, WA, DA).

CS# specifies the control section number and the
type of section (0 = absolute, X l l 1

- X?F =
relocatableJ.

ADDR specifies that the value is an address.

VALUE is the value of the counter for the section.

After Macro-Symbol has saved the value of the execution lo­
cation with the val ue in the SAVED MAX $$ TABLE, it re­
sets both location counters to zero in the new control section.

SAVED $ SAVED MAX.$$

ABS CSl CS2 CS1 CS2

a
300

350

100 100

200

The ASECT directive sets both location counters to absolute zero; the ORG statement resets the counters to 300. Subse­
quent generative statements wi II be assembled to be loaded into absolute locations. When CSECT is encountered, Macro­
Symbol saves the value of the execution location counter in the SAVED $ TABLE. The value of the load location counter
is not saved. Macro-Symbol then resets the counters to relocatable zero in control section 1 and assembles generative
statements to be loaded as part of this section. The DSECT directive declares a new relocatable section. Macro-Symbol
saves the counters for control section 1 in the appropriate tables, resets the counters to relocatable zero in control section 2,

Program Secti ons 19

and assembles generative statements to be loaded in this section. The END directive causes Macro-Symbol to save the
value of the load location counter for control section 2. The values in the SAVED MAX. $$ TABLE are used by the
loader in allocating memory. Note that the use of ORG (and LOC) when it changes the current section also causes the
current value of the execution location counter to be saved. Additionally, ORG compares the current value of the load
location counter with the value in the SAVED MM. $$ TABLE and saves the higher value.

RETURNING TO A PREVIOUS SECTION

A programmer may write a group of statements for one sec­
tion, declare a second section containing various statements,
and then write additional statements to be assembled as part
of the first section. This capability is provided by the
following:

1. The SAVED $ TABLE, which contains the most recent
value of the execution location counterforeach section.

2. The symbol table entiy, which specifi es a control section
number for symbols defined as addresses. The entry has
the same format as the location counters:

RS CS# ADDR VALUE

Example 18. USECT Directive

Current Location Counters
Program

$ Section $$ Section

0 CSl 0 CSl CSECT
10 10 TRAP
100 100 LAST
0 CS2 0 CS2 DSECT

200 200
100 CSl 100 CSl USECT

END

where

RS indicates the resolution (BA, HA, WA, DA).

CS# indicates the control section in which the
label is defined {O=absolute, X'P -X'7F' =
relocatable}.

ADDR specifies that the value is an address.

VALUE is the assigned symbol val ue.

3. The USECT directive, which specifies a previously de­
clared section that Macro-Symbol is to use in assembling
generative statements.

SAVED $ SA VE D MM. $$

ABS CSl CS2 CSl CS2

0

100 100

TRAP 200 200

When USECT TRAP is encountered, Macro-Symbol determines the control section from one symbol table entry for TRAP'

I WA
I

1
I

ADDR
I

10 I
checks the SAVED $ TABLE for CS 1, and copies this saved value (100) into both location counters.

There is only one absolute section and although ASECT may be used any number of times, the SAVED $ value of the absolute
section is always that of the last designated ASECT.

Example 19. USECT Directive

Current Location Counters SAVED $ SAVED MM. $$
Program

I $ Section $$ Section ABS CSl CS2 CSl CS2

0 ABS 0 ABS ASECT 0

I
I

500 500 ORG 500 I
I I I I I I I

I I I I
520 520 TABLE DATA 6

I
I

I I I I 600 600

20 Program Sections

I

I

a CS1 a CS1 CSECT 600

100 100
a ABS a ABS ASECT a 100 100
700 700 ORG 700

800 800
a CS2 a CS2 CSECT 800

200 200
800 ABS 800 ABS USECT TABLE 200 200

When USEC T TABLE is encountered, Macro-Symbol determines the control section from the symbol table entry for TABLE,

I WA
I

a
I

ADDR I 520 I
checks the SAVED $ TABLE for the absolute section, and copies this saved value (800) into both location counters.

Example 20. Program Sectioning

Current Location Counters SAVED $ SAVED MAX. $$
Program

$ Section $$ Section ABS CS1 CS2 CS1 CS2

a CS1 a CS1 CSECT a
1000 CS1 a CS1 FILE LOC 1000

1100 CS1 100 CSl LAST

a CS2 a CS2 CSECT 1100 100

200 CS2 200 CS2

1100 CS1 1100 CS1 l:JSECT FILE 200 200

1200 CS1 1200 CS1

a ABS a ABS ASECT 1200 1200

The LOC directive advances only the execution location counter. When USECT FILE is encountered, Macro-Symbol sets
both counters to the value of the saved execution location counter for CS1 (1100). The ASECT directive causes Macro­
Symbol to save the valueoftheexecution location counter for CSl and to replace the SAVED MAX. $$ value (100) with 1200.

Example 21. Program Sectioning

Current Location Counters SAVED $ SAVED MAX. $$
Program

$ Section $$ Section ABS CS1 CS2 CS1 CS2

a ABS a ABS CALL ASECT a
100 ABS 100 ABS ORG 100

200 200 MAIN LW,4 6

a CS1 a CSl CSECT 200

50 50 HERE EQU $

100 100

a CS2 a CS2 CSECT 100 100
I

FF CS2 FF CS2 I

Program Sections 21

I I
50 CSl 100 CS2 lOC HERE 100

300 CS1 350 CS2

200 ASS 200 ABS USECT MAIN 300 350

400 400

300 C51 300 I C51 USECT HERE 400

500 500
I

400 ABS 400 ASS USECT CALL 500 500

The statement HERE EQU $ defines HERE as the current value of the execution location counter (50). When the LOC I
HERE statement in CS2 is encountered, Macro-Symbol sets the val ue of the execution location counter to 50 in CS1. Sub-

s~q.uent s.tateme~~s wil! be ~s~~mbled t~.be ~xec.~ted as p~rt ~f C';;. but :-v.i," be ,Ioad:d.,as ~art. ~f CS~. The USE~T ~~IN I
sTaTemenr saves me value OT me execuTion lOCaTiOn counter Tor '-:::> I and the value ot the load location counter tor L~L. I
The USECT HERE statement causes the counters to be set to the saved value of the execution location counterfor CS 1 (300).

DUMMY SECTIONS

In any load module dummy sections of the same name must
be the same size and have the same memory protection.
Dummy sections provide a means by which more than one
subroutine may load the same section. For example, assume
that three subroutines contain the same dummy constant
section:

SUSR1 SUSR2 SUBR3

CONST DSECT CONST DSECT CONST DSECT

END END END

Even though more than one of the subroutines may be re­
quired in one load module, the loader will load the dummy
section only once, and any of the subroutines may reference
the data.

PROGRAM SECTIONS AND LITERALS

When Macro-Symbol encounters the END statement, it
generates a" litera I s decl ared in the assembl y. The Ii t­
erals are generated at the current location (word boundary)
of the currently active program section. See Example 22.

Example 22. Program Sections and literals

Example 22a:

AREA CSECT

}
BAY CSECT

}
END

22 Program Sections

literals declared

literals declared

literals generated as
part of section BAY.

Exampl e 22b:

GATE CSECT

}
ASECT
ORG 100
END

Example 22c:

REAL

LAST

LOOP

Example 22d:

NOW

HERE

CSECT

RES
}

CSECT
1
J

USECT
END

DSECT

}

REAL

RES 25

}
ORG HERE
END

literals declared

literals generated be­
ginning in absolute lo­
cation 100.

literals declared

o

Uterals declared

literals generated as part
of section REAL immedi­
ately following the loca­
tion assigned to LAST.

literals declared

literals generated as part
of section NOW, begin­
ning at location HERE.

4. INSTRUCTIONS

Sigma 5 and Sigma 7 computer instructions may be written
in symbolic code and combined with other assembly lan­
guage elements to form symbolic instruction statements.

The four fields of a symbolic instruction statement are

Field Contents

label Any valid symbol. Use of a label entry is op­
tional; when present, the label symbol may
also appear in the argument field of other in­
structions and directives.

command Any mnemonic operation code listed in Appen­
dixes C and D. The entry may consist of sev­
eral subfields, the first of whi ch is always the
operation mnemonic code. The subsequent
subfields may be a register expression, a count
expression, or a value expression, depending
on the requirements of the particular instruction.

argument One or more subfields such as an address ex­
pression, an indirect addressing designator, or
a displacement expression, depending on the
requirements of the specific instruction.

comments Any remark explaining the specific purpose of
the statement of the overall function of the
program.

Machine language instructions are automatically al igned on
word boundaries by the assembler. The address expressions
in the argument fields of these instructions are assembled
according to the dictates of the specific instruction and
the dictates of any addressing functions in the argument.
(See Example 13 in Chapter 3.)

Appendixes C and D contain a summary of machine language
instruction mnemoni cs specifying the requirements of each

field. The XDS Sigma 5 and Sigma 7 Computer Reference
Manuals (90 09 59 and 90 09 50) contain complete decrip­
tions of these instructions.

Example 23. Sigma 5 and Sigma 7 Instructions

label command argument comments

L1 LW,4 HOLD Load Word from loca-
tion HOLD into reg-
ister 4.

L2 LW,4 HOLD,2 Indexed Load Word in-
struction using register 2
as an index register.

L3 LW,4 *HOLD,2 A Load Word Instruc-
tion that specifies
both indexing and in-
direct addressing.

L4 LI,3 X 1F3E 1 Load the hexadecimal
va I ue F3E from the ar-
gument field into reg-
ister 3.

L5 AW,12 L(32) Add the decimal
value 32 to the con-
tents of register 12.

L6 B LOOP Branch unconditionally
to location LOOP.

Although the general registers and index registers are speci­
fied only by digits in these examples, they may be arith­
metic expressions whose values are 0-15 for general registers
and 0-7 for index registers. They a Iso may be symbols that
have been assigned values within that range.

Instructi ons 23

5. MACRO-SYMBOL DIRECTIVES

A directive is a command to the assembler that can be com­
bined with other language elements to form statements.
Directive statements, like instruction statements, have four
fields: label, command, argument, and comments.

An entry in the label field is required for four directives:
CNAME, COM, EQU, and SET. EQU and SET equate the
symbol in the label field to the value of the expression in
the argument field. The label field entries for COM and
CNAME identify the generated command procedure. The
location counteis are not alteied by these diiectives.

Optional labels for the directives ORG and LOC are de­
fined as the value to which the execution location counter
is set by the directive.

If any of the directives DATA, GEN, RES, TEXT, or TEXTC
are labeled, the label is defined as the current value of the
execution location counter, and identifies the first byte of
the area generated. These directives alter the location
counters according to the contents of the argument field.

Labels for the directives ASECT, CSECT, DSECT, USECT,
and DOl identify the first word of the area affected by the
directive.

A label for the END di~ective identifies the location imme­
diately following the last literal generated in the literal
table. This is explained further under the END directive
in this chapter.

A label on the following directives will be ignored unless it
is the target label ofa GOTO search: BOUND, DEF,
ELSE, FIN, GOTO, LOCAL, PAGE, PEND, PROC, REF,
SPACE, SREF, SYSTEM, TITLE.

A label for the DO directive is handled in a special manner
that will be explained later.

The command field entry is the directive itself. If this field
consists of more than one subfield, the directive must be in
the first subfield, followed by the other required entries.

Argument field entries vary and are defined in the individual
discussion of each directive.

A comments field entry is optional.

The END end LOCAL directives are the only directives
unconditionally executed. They are processed even if they
appear within the range of a GOTO search or an inactive
DO-loop.

24 Macro-Symbol Directives

The Macro-Symbol language includes these directives:

Assembly Control

ASECT
t

LOC
t

GOTO

CSECT
t

BOUND
t

DOl

DSECT
t RESt DO

USECT
t

SYSTEM ELSE

" ORG' END FIN

Symbol Manipu!ation

EQU LOCAL REF

SET DEF SREF

Data Generation

GEN DATA TEXTC

COM TEXT

Listing Control

PAGE SPACE TITLE

Procedure Control

CNAME
tt

PROC
tt

PEND
tt

In the format diagrams for the various directives that follow,
brackets indicate optional items.

ASSEMBLY CONTROL

SYSTEM Defi ne System

SYSTEM directs the assembler to define the subset of com­
puter instructions that are to be valid during this portion of
the assembly. This directive has the form

I label I :::: I a~~nt
name

where "name" identifies the instruction set, and must be
one of the following:

Name

SIG7

SIG7F

SIG7D

Instruction Set

Basic Sigma 7

Sigma 7 with Floating-Point Option

Sigma 7 with Decimal Option

tDiscussed in Chapter 3.

tt Discussed in Chapter 6.

Name

SIG7P

SIG7FD

SIG7FP

Instruction Set

Sigma 7 with Privileged Instructions

Sigma 7 with Floating-Point and Decimal
Option

Sigma 7 with Floating-Point Option and
Privileged Instructions

SIG7DP Sigma 7 with Decimal Option and Privi leged
Instructi ons

SIG7FDP Sigma 7 with Floating-Point, Decimal Option,
and Privi leged Instructions

SIG5

SIG5F

SIG5P

SIG5FP

Basic Sigma 5

Sigma 5 with Floating-Point Option

Sigma 5 with Privi leged Instructions

Sigma 5 with Floating-Point Option and
Privi leged Instructions

None of the instruction sets omits any of the intrinsic com­
mands or functions. Macro-Symbol assumes a default speci­
fication of SIG7FDP when SYSTEM is not specified.

END End Assembly

The END directive terminates the assembly of the object
program. It has the form

label command argument

[label] END [exp]

where

label is any valid symbol. When present, the label
is assigned (i. e., associated with) the location
immediately following the last location in the lit­
eral table.

exp is an optional expression that designates a lo-
cation to be transferred to after the program has
been loaded.

As explained under "Program Sections and Literals ll at the
end of Chapter 3, Macro-Symbol generates all literals de­
clared in the assembly as soon as it encounters the END
statement. The I iterals are generated in the location im­
mediately following the currently active program section
(see Example 22). If the END directive is labeled, the
label is associated with the first location immediately fol­
lowing the literal table. Thus, in Example 22c, a label
on the END statement would be associated with the same
location identified as LOOP, the first location in control
section 2.

END is processed even if it appears within the range of a
GOTO search or an inactive DO-loop.

DOl Iteration Control

The DOl directive defines the beginning of a single state­
ment assembly iteration loop. It has the form

label command argument

[label] DOl exp

where

label is any valid label. Use of a label is optional.
When present, it is defined as the current value of
the execution location counter and identifies
the first byte generated as a result of the DOl
iteration.

exp is an evaluatable expression resulting in a posi-
tive integer that represents the number of times the
line immediately following is to be assembled.
There is no limit to the number of times the line
may be assembled.

If the expression in the DOl directive is not evaluatable,
Macro-Symbol produces an error notification, and processes
the DOl directive as if the expression had been evaluated
as zero.

Example 24. DOl Directive

The statements

DOl
AW,4

3
C

at assembly time would generate in-line machine code
equivalent to the following lines:

AW,4
AW,4
AW,4

C
C
C

GOTO Conditional Branch

The GOTO directive enables the user to conditionally alter
the sequence in which statements are assembled. This direc­
tive has the form

label command argument

GOTOGk] label 1[, lobe 12' ... , label
n
]

where

k is an absolute, evaluatable expression whose
value refers to the kth label in the argument field.
If k is omitted, 1 is assumed.

label. are forward references.
I

Assembly Control 25

A GOTO statement is processed at the time it is encountered
during the assembly. Macro-Symbol evaluates the expres­
sion k and resumes assembly at the line that contains a label
corresponding to the kth label in the GOTO argument field.
The labels must refer to I ines that follow the GOTO direc­
tive. If the value of k does not lie between 1 and n,
Macro-Symbol resumes ass~mbly at the line immediately
following the GOTO directive.

Although a label on BOUND, DEF, GOTO, LOCAL, PAGE,
REF, SREF, and SYSTEM is normally ignored by the assem­
bler, it will be recognized if it is the target label of a
GOTO search.

While Macro-Symbol is searching for the statement whose
label corresponds to the kth label, it operates in a skipping
mode during v"hich it ignores a!! machine language instruc­
tions and directives except END and LOCAL. Skipped
statements are produced on the assembly listing in symbolic
form, preceded by an *S*.

If Macro-Symbol encounters the END directive before it
finds the target label of a GOTO search, it produces an
error notification and terminates the assembly. If a LOCAL
directive is encountered while searching for a local label,
then an error notification is produced and the search is
terminated.

When Macro-Symbol encounters the first of a logical pair of
directivest while in the skipping mode, it suspends its search
for the label until the other member of the pair is encoun­
tered. Then it continues the search. Thus, while in skip­
ping mode, Macro-Symbol does not recognize labels that
are within procedure definitions or iteration loops. It is not
possible, therefore, to write a GOTO directive that might
branch into a procedure definition or a DO/FIN loop. Fur­
thermore, it is not permissible to write a GOTO directive
that might branch out of a procedure definition. If such a
case occurred, Macro-Symbol would encounter a PEND di­
rective before its search was satisfied, would produce an
error notification, and would terminate the search for the
label.

Example 25. GOTO Directive

A SET 3

GOTO,A H, K, M Begin search for label M.

H DO 5 Suppress search for label M.

M EQU 5+8 This M is not recognized
because it is within an
iteration loop.

FIN Terminate suppression and
continue search.

M LW,A BETA Search is completed when
label M is found.

tc t' d' t' t .• er arn Jrec Ives mus occur In paIrs: PROC/PEND and
DO/FIN.

26 Assembly Control

DO/ELSE/FIN Iteration Contro~

The DO directive defines the beginning of an iteration IOOPi
ELSE and FIN define the end of an iteration loop. These
directives have the form

label command argument

[label] DO exp

ELSE

FIN

where

label is any valid symbol. Use of a label is op-
tional. When present, it is initially assigned the
value zero and incremented by one each succes­
sive time through the loop.

exp is an evaluatable expression that produces
an integer. This integer represents the count
of the number of time the DO-loop is to be
processed.

Figure 2 illustrates the logical flow of a DO/ELSE/FIN
loop.

The assembler processes each DO-loop as follows:

1. Establishes an internal counter and defines its value as
zero.

2. If a label is present on the DO line, sets its value to
zero.

3. Evaluates the expression that represents the count.

4. If the count is less than or equa I to zero, discontinues
assembly until an ELSE or FIN directive is encountered.

a. If an ELSE directive is encountered, assembles
statements following it until a FIN directive is
encountered.

b. When the FIN directive is encountered, terminates
control of the DO-loop and resumes assembly at
the next statement.

5. If the count is greater than zero, processes the DO­
loop as follows:

a. Increments the internal counter by 1.

b. If a label is present on the DO line, sets it to the
new value of the internal counter.

c. Assembles a II lines encountered up to the first
ELSE or FIN directive.

d. Repeats steps 5a through 5c unti I the loop has been
processed the number of times specified by the

IC+l -IC
IC -LABEL

L-_-t Set flag to get line 14-----<
following DO

O-IC
o -LABEL
Evaluate expression-EXP

no yes

IC = Internal Counter
LABEL = Label (if present on DO line)
EXP = The result of evaluating expres-

sion on DO line

Assemble until FIN

Terminate loop

Figure 2. Flow Chart of DO/ELSE/FIN Loop

Assembly Control 27

count. (The repeat count must not exceed one if
the number of I ines to be repeated exceeds one
and the loop is not within a procedure.)

e. Terminates control of the DO-loop and resumes
assembly at the statement following the FIN.

In summary, there are two forms of iterative loops as shown
below.

Form 1. DO

} block 1

ELSE

} block 2

FIN

Form 2. DO

} block 1

FIN

If the expression in a DO directive is evaluated as a posi­
tive, nonzero value n, then in either form block 1 is re­
peated n times and assembly is resumed following the FIN.

Example 26. DO/ELSE/FIN Directives

If the expression in the DO directive is evaluated as a neg­
ative or zero value, then in

Form 1: block 1 is skipped, block 2 is assembled once,
and assembly is resumed following the FIN.

Form 2: block 1 is skipped, and assembly is resumed
following the FIN.

If the expression in the DO directive is not evaluatable,
Macro-Symbol sets the label (if present) to the value zero,
produces an error notification, and processes the DO direc­
tive as if the expression had been evaluated as zero.

An iteration block may contain other iteration blocks but
they must not overlap.

The label fer the DO directive is redefinab!e and its value
may be changed by SET directives during the processing of
the DO-loop. Any symbols in the DO directive expression
that are redefinable may also be changed within the loop.
However, the count for the DO-loop is determined only
once and changing the value of any expression symbol
within the loop has no effect on how many times the loop
wi II be executed.

The processing of DO directives must be completed on the
same program level on which they originate. That is, if a
DO directive occurs in the main program, the ELSE and/or
FIN for that directive must also be in the main program.
Similarly, if a DO directive occurs within a procedure defi­
nition, the ELSE and/or FIN for that directive must also be
within the definition.

In this example, the dashed vertical lines indicate statements that are skipped; solid vertical lines indicate statements
that are assembled. The numbers 1, 2, 3, and 4 above the vertical lines indi cate which iteration of the DO-loop is in
process.

Iteration
2 3 4

II! I I DO 4

GOTO, 1-1 S, T, S I
I
I

I I ELSE
I I
I I

I I
S

ELSE
I
I

1
I T I
I
I

FIN

l
When the DO directive is encountered, the DO expression has the value 4 so the loop will be executed four times.
When the GOTO directive is encountered the first time through the loop, I has the value 1. The expression for the
GOTO has the value zero, so the next statement in sequence is assembled. Assembly continues in sequence unti I the
ELSE directive is encountered, which ends the first iteration and returns control to the DO directive.

28 Assembly Control

When the GOTO directive is encountered the second time through the loop, I has the value 2. Thus, the expression
for GOTO has the value 1 so Macro-Symbol will skip until it finds a statement labeled S. Starting with S, Macro­
Symbol assembles code until it encounters the ELSE which terminates the second iteration of the loop and returns control
to the DO directive.

When the GOTO directive is encountered the third time through the loop, I has the value 3. Thus, the expression for
GOTO has the value 2 so Macro-Symbol wi II skip unti I it finds a statement labeled T. Starting at T, IVIacro-Symbol
assembles code unti I it encounters the FIN directive which terminates the third iteration of the loop and returns control
to the DO directive.

When the GOTO directive is encountered the fourth time through the loop, I has the value 4. Thus, the expression for
GOTO has the value 3 so Macro-Symbol will skip until it finds a statement labeled S. Starting at S, Macro-Symbol
assembles code unti I it encounters the ELSE directive which terminates the fourth - and last - iteration of the loop.
Then, Macro-Symbol skips until it encounters the FIN directive. Assembly resumes at the first statement following
the FIN.

SYMBOL MANIPULATION

EQU Equate Symbols

The EQU directive enables the user to define a symbol by
assigning to it the attributes of the expression in the argu­
ment field. This directive has the form

label command argument

label EQU exp

where

label is a valid symbol.

exp is an evaluatable expression whose value is to
be associated with IIlabel li

• The expression may
not contain forward references. Only previously
defined or external reference ± addend expressions
are legal. The mode (absolute or relocatable) of
lIexpll is assigned to label.

When EQU is processed by Macro-Symbol, "Iabel ll is de­
fined as the value of "expll. For example, the statement

VALUE EQU 8+5

assigns the absolute val ue 13 to VALUE, and

ALPHA EQU $ -10

assigns the relocatable value $ -10 to ALPHA.

A symbol defined with an EQU cannot be redefined:

A EQU

A EQU 0 121

Legal

Illegal because A has already
been equated to a value.

Example 27. EQU Directive

A EQU

B EQU

LW,A

10

A+4

DELTA

A=lO

B=14

Loads the contents of loca­
tion DELTA into register 10.

SET Set a Value

The SET directive, like EQU, enables the user to define a
symbol by assigning to it the attributes of the expression in
the argument field. SET has the form

label command argument

label SET exp

where II label II and lIexpll are the same as for EQU, except
that the expression may not be externa I reference ± addend.

The SET directive differs from the EQU directive in thatany
symbol defined by a SET may later be redefined by means of
another SET. It is an error to attempt to do this with an
EQU. SET is particularly useful in writing procedures.

Example 28. SET Directive

A EQU X'FF '

M SET A M is set to the hexadecimal
value FF.

S SET M Thus, S = M = X'FF'.

M SET 263 Redefines symbol M.

S EQU M Error; does not redefine
symbol S.

LOCAL Declare Local Symbols

The main program and the body of each procedure called
during the assembly of the main program constitute the non­
local symbol region for an assembly. Local symbol regions,
in whi ch certain symbols wi II be declared unique to the

Symbol Manipulation 29

region, may be created within a main program or proc~dure
by the LOCAL directive. This directive has the form

label command argument

LOCAL symboI 1,· •• , symbol n

where the "symbol." are declared to be local to the current . ,
region.

Within a local symbol region a symbol declared as LOCAL
may not be used as a forward reference in an arithmetic
process other than addition or subtraction. Th is does
not limit the use of defined local symbols in arithmetic
processes.

The occurrence of the PROC directive suspends the current
local symbol region until the corresponding PEND is en­
countered. The suspended local symbols are then reacti­
vated. See Example 30. (PROC and PEND define the
beginning and end, respectively, of a procedure definition.
See Chapter 6.)

When a LOCAL directive occurs between the PROC and
PEND directives, a procedure-local symbol region is cre­
ated, with local symbols that may be referenced only within
the specified region of the procedure being defined. When
the procedure is subsequently referenced in the program,
the currently active local or procedure-local symbols are
suspended until the corresponding PEND is encountered.
The suspended local symbols are then reactivated.

Example 29. LOCAL Directive

LOCAL B
LW,7 B*3

B EQU 9

LW,9 B*3

AW,9 A/2

A EQU X'F3A '

30 Symbol Manipulation

Illegal because B is a local
forward reference and mul­
tiplication is requested.

Defines symbol B.

Legal.

Legal because A is not a
local symbol.

Defines symbol A.

Example 30. LOCAL Directive

A EQU X 'E1 1

LOCAL A

A EQU 89

PROC

B EQU A

PEND

X EQU A<X'CF '

LOCAL Z

Z EQU A=X ' E1 1

New A, not the same as
A above.

Legal, since this is the
local symbol A.

A PROC suspends the
range of a LOCAL and
reinstates any prior non­
local symbols.

Defines B as the hexa­
decimal value E 1.

Terminates the procedure
and reinstates the prior
LOCAL symbols.

Equates X to the va I ue 1
because 89 is less than
X'CF'.

Terminates current loca I
symbol region and initi-
ates a new region.

Equates Z to the va I ue 1
because the non I oca I
symbol A has the hexa-
decimal value E 1.

DEF Declare External Definitions

The DEF directive declares which symbols defined in this
assembly may be referenced by other (separately assembled)
programs. The form of this directive is

label command argument

DEF symbol 1 ~ .•• , symbol n]

where the II symbo I. II may be any symbolic labels that are
defined within the' current program.

DEF directives must precede any statement that causes code
to be generated; this includes all machine language instruc­
tions and directives BOUND, DATA, GEN, TEXT, and
TEXTC. DEF directives must precede all REF and SREF
di rectives.

Section names for ASECT and CSECT may be external defi­
nitions and, if such is the case, their names must be

explicitly declared external via a DEF directive. The name
of a dummy section (DSECT) is impl icitly an external defini­
tion and should not appear in a DEF directive, otherwise a
"doubly defined symbol" error condition will be produced.

Example 31. DEF Directive

DEF TAN,SUM,SORT

This statement identifies the labels TAN, SUM, and
SORT as symbols that may be referenced by other
programs.

REF Declare External References

The REF directive declares which symbols referred to in this
assembly are defined in some other, separately assembled
program. The directive has the form

label command argument

REF symbol1 [t symbo~, .•• , symbolnJ

where IIsymbol i
ll may be any labels that are to be satisfied

at load time by other programs.

A label field entry is ignored unless it is the target label of
a GOTO search.

Symbols declared with REF directives can be used for sym­
bolic program linkage between two or more programs. At
load time these labels must be satisfied by corresponding
external definitions (DEFs) in another program.

REF directives must precede any statements that cause code
to be generated; this includes all machine language instruc­
tions and directives BOUND, DATA, GEN, TEXT, and
TEXTC. REF directives must not precede DEF directives.

Example 32. REF Directive

REF IOCONT, TAPE, TYPE, PUNCH

This statement identifies the labels IOCONT, TAPE,
TYPE, and PUNCH as symbols for which external defi­
nitions will be required at load time.

Example 33. REF Directive

REF Q Q is an external reference.

B GEN, 16, 16 Q,$ The va I ue of an externa I
reference may be placed
in any portion of a machine's
word.

LW,2 Q Q is an external reference.

SREF Secondary Externa I References

The SREF directive is similar to REF and has the form

label command argument

SREF symbollEsymbo~, ••• , symbolnJ

where the IIsymbol. " have the same meaning as for REF.
I

A label field entry is ignored unless it is the target label of
a GOTO search.

SREF differs from REF in that REF causes the loader to load
routines whose labels it references whereas SREF does not.
Instead, SREF informs the loader that if the routines whose
labels it references are in core, then the loader should
satisfy the references and provide the interprogram link­
age. If the routines are not in core, SREF does not
cause the loader to load them; however, it does cause the
loader to accept any references within the program to the
symbols without considering them to be unsatisfied external
references.

Like REF, SREF directives must precede any statements that
cause code to be generated and must follow all DEF
directives.

DATA GENERATION

GEN Generate a Value

The GEN directive produces a hexadecimal value repre­
senting the specified bit configuration. It has the form

label command argument

OabeO GEN, field list value list

where

label is any valid symbol. Use of a label is op-
ti ona I. When present, it is defi ned as the cur­
rent value of the execution location counter and
identifies the first byte generated. The location
counters are incremented by the number of words
generated.

field list is a list of evaluatable expressions that
define the number of bits comprising each field.
The sum of the field sizes must be a positive in­
teger value that is a multiple of eight and is less
than or equal to 128.

value I ist is a I ist of expressions that define the
contents of each generated field. This list may
conta i n forward references. The va I ue, repre­
sented by the value list, is assembled into the
field specified by the field list and is stored in
the defined location (see Example 34).

Data Generation 31

There is a one-to-one correspondence between the en­
tries in the field list and the entries in the value list;
the code is generated so that the first field contains the
first value, the second field the second va-iue, etc.
The value produced by a GEN directive appears on the
object program listing as eight hexadecimal digits per
line.

External references, forward references, and relocatable
addresses may be generated in any portion of a machine
word; that is, an address may be generated in a field that
overlaps word boundaries.

Exampie 36. GEN Directive

Example 34. GEN Directive

GEN, 16, 16 -251,89

Example 35. GEN Directive

B EQU
GEN,64

X 'FFFFFFFF I
B

BOUND 4 Specifies word boundary.

Produces two 16-bit
hexadecimal values:
FF05 and 0059.

Produces: 00000000
FFFFFFFF

LAB GEN,8,8,8 8,9,10 Produces three consecutive bytes; the first is identified as LAB and contains
the hexadecimal value 08; the second contains the hexadecimal value 09;
and the third byte contains the hexadecimal value OA.

LW,5

LB,3

Example 37. GEN Directive

ALPHA
BETA

A

EQU
EQU

GEN,32

L(2)

LAB,5

ALPHA+BETA

Load register 5 with the literal value 2.

Load byte into register 3. LAB specifies the word boundary at which the
byte string begins, and the value of the index register (that is, the value 2
in register 5) specifies the third byte in the string (byte string numbering
begins at 0). Thus, this instruction loads the third byte of LAB (the value OA)
into register 3.

Defines ALPHA as the decimal value 15.
Defines BETA as the decimal value 12.

Defines A as the current location and stores the decimal value 27 in
32 bits.

In this case, the GEN directive results in a situation that is effectively the same as:

A GEN,32 27

32 Data Generation

COM Command Definition

The COM directive enables the programmer to describe sub­
divisions of computer words and invoke them simply. This
directive has the form

label command argument

name COM,field list value list

where

name is any valid symbol and identifies the com-
mand being defined. The "name ll must not be a
local symbol nor the same as a Sigma 5/7 machine
instruction or Macro-Symbol directive.

field list is a list of evaluatable expressions that
define the number of bits comprising each field.
The sum of the elements in this list must be a posi­
tive integer value that is a multiple of eight bits
and is less than or equal to 128.

value list is a list of constants or intrinsic func-
tions (see below) that specify the contents of
each field.

When the COM directive is encountered, the label, field
list, and value list specifications are saved. When the
label of the COM directive subsequently appears in the com­
mand field of a statement called a IICOM reference line ll ,
that statement wi II be generated with the configuration
specified by the COM directive.

In Macro-Symbol, an asterisk preceding a field list element
on the COM definition I ine specifies that the absence of a
corresponding parameter on the COM reference line is to be
flagged as an error. See Example 41.

The use of commands defined by a COM is restricted as
follows: the COM command definition must precede all
references to it.

The COM directive differs from GEN in that Macro-Symbol
generates a value at the time it encounters a GEN directive,
whereas it stores the COM directive and generates a value
only when a COM reference line is encountered. If the
reference line is labeled, the generated value will be iden­
tified by that value.

In Macro-Symbol, if a COM directive is to produce four
bytes, it wi II be preceded at reference time by an im­
plicit BOUND,4.

Certain intrinsic functions enable the user to specify in the
COM directive which fields in the reference lines wi II

contain values that are to be generated in the desired con­
figuration. These functions are

CF
AF
AFA

CF Command Field

This function refers to the command field list in a reference
line of a COM directive. Its format is

CF (element number)

The IICF II specifies the command field, and lIelement num­
ber ll specifies which element in the field is being refer­
enced. IIElement numberll enclosed in parentheses is
required.

Example 38. COM Directive and CF Function

BYT COM,8,8 CF(2),CF(3)

xx
1213131 C I
o 15

The COM directive defines a 16-bit area consisting
of two 8-bit fields. It further specifies that data for
the first 8-bit field will be obtained from command
field 2(CF(2)) of the COM reference line, and that
data for the second 8-bit field will be obtained from
command field 3(CF(3)). Therefore, when the XX
reference line is encountered, Macro-Symbol gener­
ates a 16-bit value, so that the first eight bits contain
the binary equivalent of the decimal number 35 and
the second eight bits contain the binary equivalent of
the hexadecimal number 3C.

AF Argument Field

This function refers to the argument field list in a reference
line of a COM directive. Its format is

AF (element number)

The IIAFII specifies the argument field, and lIelement num­
berll specifies which element in the list of elements in that
field is being referenced. "Element numberll enclosed in
parentheses is required.

t
See Chapter 6.

Data Generation 33

Example 39. COM Directive and AF Function

XYZ

ALPHA
ZZ

COM,16,16

EQU
XYZ

AF(1),AF(2)

X '21 1

65,ALPHA+X 'Fe

lolol41i IOlililDI
o 15 16 31

Macro-Symbol stores the COM definition for later use.
When it encounters the ZZ reference line, it references
the COM definition in order to generate the correct con­
figuration. At that time, the expression ALPHA+X 'Fe
is evaiuated. AF(1) in the XYZ iine refers to 65 in the
ZZ line; AF(2) refers to ,lI.,LPHlHX'FC'.

AFA Argument Field Asterisk

The AFA function determines whether the specified argu­
ment in the COM reference line is preceded by an asterisk.
The format for this function is

AFA(element number)

where "AFA" identifies the function, and "element number"
specifies which element in the argu'ment field of the COM
reference line is to be tested. liE lement number" is required,
and must be enclosed in parentheses. The function pro­
duces a value of 1 (true) if an asterisk prefix exists on the
argument designated; otherwise, it produces a zero va lue (false).

Example 40. COM Directive and AFA Function

STORE COM,l,7,4,4 AFA(l),X 1351 ,CF(2),AF(1)

STORE,4 *TOTAL

The COM directive defines STORE as a 16-bit area with
four fields. The AFA(1) intrinsic function tests whether
an asterisk precedes the first element in the argument
field of the reference I ine. The first bif position of the
area generated will contain the result of this test. The
next seven bits of the area will contain the hexadecimal
value 35. The second element in the command field of
the reference line wi II constitute the third field gener­
ated, whi Ie the first element in the argument field ofthe
reference line will constitute the last field.

When the reference line is encountered, Macro-Symbol
defines a 16-bit area as follows:

Bit Positions

o

1-7

8-11

12-15

Contents

the value 1 (because the asterisk is
present in argument fj e Id 1)

the hexadecimal value 35

the vaiue 4

the 4-bit value associated with the
symbol TOTAL

34 Data Generation

Example 41. COM Directive's Error Notification

MAP COM, *16,*16 CF(2),AF(l)

R MAP,3 7

1
0 o 0 31 0 0 o ?I

0 31

x MAP,5
1
0 o 0 51 0 o 0 01

0 31

When the first reference I ine is encountered, Macro­
Symbol defines a location R and generates a 32-bit

I d~ta word with the values 3 and 7 in the left and right
halfwords, respectively.

When the second reference line is encountered, an error
notification is produced because the argument field
entry is missing. However, the assembly is not termi­
nated; Macro-Symbol will define a location X and gen­
erate a 32-bit data word with the values 5 and 0 (for
the missing entry) in the left and right halfwords,
respectively.

DATA Produce Data Value

DATA enables the programmer to represent data conveniently
within the symbolic program. It has the form

label command argument

Dabel] DATA(,f] value1 [tvalue2' ••• ,valuen]

where

label is any valid symbol. Use of a label is op-
tional. When present, it is defined as the current
value of the execution location counter and is
associated with the first byte generated by the
DATA directive. The location counters are in­
cremented by the number of words generated.

f is the field size specification in bytes; f may
be any evaluatable expression that results in an
integer value in the range 1 :::: f:::: 16.

valuei are the list of values to be generated.
A value may be a multitermed expression or any
symbol. An addressing function may be used to
specify the resolution of a value when an address
resolution other than the intrinsic resolut,ion of
the execution location counter is desired.

DATA generates each value in the list into a field whose
size is specified by f in bytes. If f is omitted, four bytes
are assumed.

Constant values must not exceed those specified under
"Constants" in Chapter 2.

Example 42. DATA Directive

MASK1

MASK2

BYTE

TEST

Produces an 8-bit value
identified as MASK 1.

mJ
o 7

DATA,2 X' 1EF ' Generates the hexa­
decimal value 01 EF as
a 16-bit quantity,
identified as MASK2.

10 11\ E I FI
o 15

DATA,3 BA(L(59)) The byte address of the

DATA

literal value 59 is as­
sembled in a 24-bit
field, identified as
BYTE.

O,X'FF ' Generates two 4-byte
quantities; the first
contains zeros and the
second, the hexadeci­
mal value OOOOOOFF.
The first value is iden­
tified as TEST.

\01 01 01 01 01 0 1010 I
o 1516 31

\0 \ 0 1 01 0\ 0 10 I F I F I

o 1516 31

DT4 DATA,l X'94',X'CF',X 'AB'

TEXT

Generates three 8-bit
va I ues, the fi rst of
which is identified as
DT4.

\9141 CI F 1 AI B I
o 23

EBCDIC Character String

The TEXT directive enables the user to incorporate messages
in his program that are to be output on some device other
than the typewriter via the Monitor's standard output subrou­
tines or output on the typewriter by some routine other than
the Monitor's standard one. This directive has the form

label command argument

Dabel] TEXT 'CS1'~· •• , 'csn ']

where

label is any valid symbol. Use of a label is op-
tional. When present, the label is associated with
the leftmost byte of the storage area assigned to
the assembled message.

'cs l are character string constants. The total num-
ber of characters must not exceed 255.

When several character strings are present in the argument
field of a TEXT directive, the characters are packed in con­
tiguous bytes. See Example 43. This directive permits con­
tinuation lines, but the continuation indicator must occur
between two character strings. The characters are assembled
in a binary-coded form in a field that begins at a word
boundary and ends at a word boundary. If the character
string does not require an even multiple of four bytes for its
representation, trailing blanks are produced to occupy the
space to the next word boundary.

The TEXT directive enables the user to pass a character
string as a parameter from a procedure reference I ine to a
procedure. The character string must be written on the pro­
cedure reference line within single quotation marks. It is
referenced from within the procedure via the AF intrinsic
function in a TEXT directive. The AF function is not writ­
ten with single quotation marks. See Example 44.

Example 43. TEXT Directive

COLl TEXT

TEXT

'VALUE OF XI

generates

~
ALU

E 0 F

X

lA', IBCDE I, 'FGHI', ;
'JKLM'

generates A

E

I

M

B

F

J

C D

G H

K L

Example 44. TEXT Directive

TEXT AS(l) In a procedure
definition

TEXT 'SUM OF' ,AF(l), ;
I AND',AF(2) In a procedure

definition

PRINTl IRESULTS =' Procedure refer-
ence line

PRINT2 I XI' yl Procedure refer-,
ence line

Assume that the first TEXT directive is in the definition
of a command procedure called PRINTl r that the second
TEXT directive is in the definition of a command

Data Generation 35

procedure called PRINT2, and that the last two state­
ments are procedure reference I ines that call these pro­
cedures. When procedure PRINTl is referenced, the
first TEXT directive causes Macro-Symbol to generate

~_SU
tl

When procedure PRINT2 is referenced, the second
TEXT directive causes Macro-Symbol to generate

Thus, entire messages or portions of messages may be
used as parameters on procedure reference lines.

TEXTC Text With Count

The TEXTC functions essentially the same as the TEXT direc­
tive except that a byte count of the data bytes is generated
prior to the first text byte. The count represents only the
number of characters in the character string; it does not in­
clude the byte it occupies nor any trailing blanks. The form
of the TEXTC directive is

label command argument

[rabel] TEXTC . .[',j cS
1

, ••• , cS
n

where "label." and
TEXT. I

IIICS. 11I

I
have the same meaning as for

Example 45. TEXTC Directive

ALPHA TEXTC

36 listing Control

IVALUE OF Xli
I SQUAREDI

generates 12 V A

U E

F X

S Q U

I R I 1= I f) I
In I" I I

L

0

A

LISTING CONTROL

PAGE Begin a New Page

The PAGE directive causes the assembly listing to be ad­
vanced to a new page. This directive has the form

I com~nd
PAGE

l°,""ment

A label field entry is ignored by the assembler unless it is
the target label of a GOTO search. An argument field
entry is always ignored.

The PAGE directive is effective only at assembly time.
No code is generated for the object program as a result of
its use.

SPACE Space listing

The SPACE directive enables the user to insert blank lines
in the assembly listing. The form of this directive is

where u is an expression whose value specifies the number
of lines to be spaced. The expression u must not contain
any externa I references.

If u is omitted, its value is assumed to be 1. If u is greater
than 15, u is set to 15. If the value of u exceeds the num­
ber of lines remaining on the page, the directive will posi­
tion the assembly listing to the top of the form.

The SPACE directive is effective only at assembly time.
No code is generated in the object program as a result of
its use.

Example 46. SPACE Directive

A SET 2

SPACE 5 space five lines

SPACE 2*A space four lines

TITLE Identity Output

The TITLE directive enables the programmer to specify an
identification for the assembly listing. The TITLE directive
has the form

label command argument

TITLE ['character string']

where "character string" is a character string constant and
may include 1-75 EBCDIC characters.

When a TITLE directive is encountered, the assembly list­
ing is advanced to a new page and the character string
is printed atthetopofthe page and each succeeding page
until another TITLE directive is encountered. A TITLE
directive with a blank argument field causes the list­
ing to be advanced to a new page and output to be printed
without a heading.

Example 47. TITLE Directive

TITLE ICARD READ/PUNCH ROUTINE I

TITLE IMAG TAPE I/o ROUTINE I

TITLE

TITLE ICONTROLLER I

The first TITLE causes Macro-Symbol to position the assem­
bly I isting to the top of the form and to print CARD READ/
PUNCH ROUTINE there and on each succeeding page
until the next TITLE directive is encountered. The next
directive causes a skip to a new page and output of the
title MAG TAPE I/o ROUTINE. The third TITLE direc­
tive causes a skip to a new page but no title is printed
because the argument field is blank. The last TITLE di­
rective specifies the heading ICONTROLLER I.

listing Control 37

6. PROCEDURES

PROCEDURES must first be designated by the CNAME directive, which
has the form

Procedures are bodi es of code ana logous to subroutines,
except that they are processed at assembly time rather than
at execution time. Thus, they primarily affect the assembly
of the program rather than its execution.

Using procedures, a programmer can cause Macro-Symbol to
generate different sequences of code as determined by con­
ditions existing at assembly time. For example, a procedure
can be written to produce a specified number of ADD instruc-
tions for one condition and to produce a program loop for a
different condition. A procedure is referenced by its name
appearing as the first element of the command field.

Procedures allow a program written in the assembly language
of one computer (e.g., XDS 9300) to be assembled and exe­
cuted on another computer (e.g., XDS Sigma 7). If a pro­
cedure is written for each 9300 machine instruction, Macro­
Symbol treats each instruction as a procedure reference, and
calls in the associated procedure, thus generating Sigma 7
machine language code.

Much of the creative power of Macro-Symbol comes from
three directives: GEN, DO, and PROC. The GEN and
DO directives were described in Chapter 5; how they are
used in procedures is illustrated in the various examples in
this chapter. The directives that identify procedures and
the directives that designate the beginning and end of each
procedure are discussed in this chapter. The intrinsic func­
tions commonly used in writing procedures are also discussed.

All procedure definitions must appear prior to the first gen­
erative statement (GEN, DATA, TEXT, TEXTC, or machine
instruction).

PROCEDURE FORMAT

A procedure consists of two parts: the procedure identifi­
cation (names) and the procedure definition. The procedure
names must precede the procedure definition, and the defi­
nition in turn must precede all references to it. For this
reason, procedure definitions must be placed at the begin­
ning of the source program; this ensures that the definitions
wi II precede a II refe rences to them.

During an assembly, Macro-Symbol reads the procedure defi­
nition and stores the symbolic lines of the procedure in core
memory. When Macro-Symbol later encounters the pro­
cedure reference line, it locates the procedure it has stored
and assembles those lines.

CNAME Procedure Name

A procedure may be invoked by a command reference. The
names that wi II be used to invoke a command procedure

38 Procedures

label command argument

labei (NAME [expj

where

label is the symbol by which the next procedure to
be encountered is identified. Symbols declared
to be LOCAL may not be used a's labels for a
CNAME directive.

exp is an optional value that is evaluated and
associated with the label. The expression may
not contain forward references. Only previously
defined or external reference ± addend expressions
are legal. The use of the value is explained
later in this chapter under "Multiple Name
Procedures II •

There is no limit to the number of CNAME directives that
may be given for a single procedure.

The applicable CNAME directives must precede the pro­
cedure definition and the definition must follow immedi­
ately after the name lines. CNAME directives are
associated with the first procedure definition encountered
following these directives. This means that one cannot put
all CNAME directives before all procedure definitions.
If such a case occurred, all the "Iabels" would be associ­
ated with the first procedure definition, and an error noti­
fication would be produced each time another procedure
definition was encountered.

Procedures allow the programmer to create new instruc­
tions and directives. The programmer is not permitted to
redefine the existing assembly language instructions and
directives.

PROC Begin Procedure Definition

The PROC directive indicates the beginning of a procedure
definition and has the form

I label I a'!!umeo' command

PRO(

A label field entry is ignored by the assembler unless it is
the target label of a GOTO search. An argument field
entry is always ignored.

The first line encountered following the PROC directive
begins the procedure body. Nonlocal symbols are not
unique to a procedure. A procedure may not contain other
procedure definitions.

PEND End Procedure Definition

The PEND directive terminates the procedure definition.
I t has the form

command

PEND

A label field entry is ignored unless it i"s the target label of
a GOTO search.

Generally, the format of a command procedure appears as

name CNAME exp
PROC

PEND

identifies the procedure

procedure definition

PROCEDURE REFERENCES

A procedure reference is a statement within a program that
causes Macro-Symbol to assemble the procedure definition.

Command Procedure Reference. The command procedure
reference line consists of a label field, a command field,
an argument field, and optionally a comments field:

label field command field argument field

label cpr, b list c list

LF L CF

procedure name

AF

Within the procedure definition, the contents of the label
field of the procedure reference line are referred to via the
intrinsic function LFi the contents of the command field are
referred to via the intrinsic function CFi and, the contents
of the argument field are referred to via the intrinsic func­
tion AF.

The programmer must specify in the procedure reference
statement the arguments required by the procedure defini­
tion and the order in whi ch the arguments are processed.
For example, a command procedure could be written to move
the contents of one area to another area of core storage.
Assume that the procedure is called MOVE, and that the
procedure reference line must specify in the command field
which register the procedure may use. In the argument field
it must specify the word address of the beginning of the cur­
rent area, the word address of the beginning of the area into
which the information is to be moved, and the number of
words to be moved. Such a procedure'reference line cou Id
be written:

ANY MOVE,2 HERE, THERE, 16

Example 48 illustrates a command procedure and reference
line.

Example 48. Command Procedure

The command procedure SUM produces the sum of two
numbers and stores that sum in a specified location. The
procedure reference line must consi st of:

1. label field

2. command field

3. argument field

4. comments field

Use of a label is optional.

The name of the procedure
(SUM)followed by the number
of the register that the pro­
cedure may use.

The word address of the fi rst
addend, fol lowed by the word
address of the second addend,
followed by the word address
of the storage location.

Use of the comments field is
optional.

The procedure definition appears as

SUM

LF

CNAME

PROC

LW,CF(2)

AW,CF(2)

STW,CF(2)

PEND

AF(l)

AF(2)

AF(3)

and the procedure reference I ine appears as

NOW SUM,3 EARNINGS,PAY,YRTODATE

The resultant object code is equivalent to

NOW LW,3

AW,3

STW,3

EARNINGS

PAY

YRTODATE

The use of a label on a procedure reference line is optional.
When a label is present, the procedure definition must con­
tain the LF function in order for the label to be defined.

Conversely, if a procedure reference line is not labeled,
the LF function within a procedure definition is ignored by
the assembler.

MULTIPLE NAME PROCEDURES

The expression that appears on a particular CNAME line can
be referred to within the procedure definition via the
intrinsic function NAME. This makes it possible for a pro­
cedure that can be invoked by several different names to
determine which name was actually used and to modify
procedure action accordingly. Example 49 illustrates this
concept.

Procedures 39

Example 49. Multiple Name Procedure

ALPHA
BETA

LF

LF

A

CNAME
CNAME
PROC
DO
GEN,32
ELSE
GEN,32
FIN
PEND

ALPHA

BETA

0
1 } Identifies t~e procedure

NAME
100

50

When this procedure is called by ALPHA at statement A,
the intrinsic function NAME is set to the value 1 be­
cause 1 is the value in the argument field of the
CNAME directive labe led ALPHA. When the procedure
is called by BETA, NAME is set to the value O. The
DO directive wi II cause the line

LF GEN,32 100

to be executed if the procedure is called by ALPHA,
or else the line

LF GEN,32 50

to be executed if the procedure is called by BETA.

PROCEDURE DISPLAY

When a procedure definition is encountered, Macro-Symbol
produces on the assembly I isting the symbol i c code and the
line numbers, but it does not output the hexadecimal equiv­
alent of the instructions that comprise the procedure until
it encounters a procedure reference line.

When a procedure reference line is encountered, Macro­
Symbol produces the line number and the symbolic code
for the reference line, and follows this line with the hexa­
decimal equivalent of the results produced by the procedure.
The symbolic code defining the procedure is not shown on
the assembly listing.

INTRINSIC FUNCTIONS

Intri nsi c functi ons are functi ons that are bu i It into the as­
sembler. The intrinsic functions SA, HA, WA, and DA, con­
cerned with address resolution, were discussed in Chapter 3,
and are valid for Macro-Symbol.

The intrinsic functions discussed in this section include

LF
CF
AF

AFA
NAME
NUM

40 Procedures

Intrinsic functions may appear in any field of any instruction
or assembler statement with the following exception: they
must not be used in the argument field of the DEF, REF, and
SREF.

LF Label Field

This function refers to the label field in a COM directive
or a procedure reference line. Its format is

LF(subscript)

or

LF

If present, the subscript must be 1 i whether or not the sub­
script is present, the reference is to the symboi or expression
in the !abel field. More than one label is not permitted.

Each LF reference causes Macro-Symbol to process the desig­
nated argument. That is, if the designated argument is an
expressi on, it wi II be eva I uated when it is used and at each
point it is used, not at the time of call.

Example 50. LF Function

A SET

TEST TOTAL,SUM<5

LF

(7*XYZ/SUM+57) i
, (5*XYZ/SUM+57)

Assume that line A is a statement within a procedure
definition and that line TEST is a procedure reference
line. The SET directive defines the symbol A as the
value of the label field of the reference line. In this
example, therefore, the result would be the same as

A SET TEST

CF Command Field

This function refers to the command field list in a COM
directive or a procedure reference I ine. Its format is

CF{subscript)

The "CF" specifies the command field, and "subscript"
specifies which element in that field is being referenced.
"Subscript" enclosed in parentheses is required.

As for LF, each CF reference causes Macro-Symbol to pro­
cess the designated argument. That is, if the designated
argument is an expression, it will be evaluated when it is
used and at each point it is used, not at thetimeof the call.

Example 51. CF Function

CFVALUE SET CF(3)

ALPHA STORE,3,Z*Y HOLD,4*(A/C + 8)

Assume that line CFVALUE is within a procedure defini­
tion and that line ALPHA is a reference to that pro­
cedure. When the CFVALUE line is executed, Macro­
Symbol will evaluate the third expression in the command
field of the reference line and equate CFVALUE to the
resultant value.

AF Argument Field

This function refers to the argument field I ist in a COM
directive or a procedure reference line. Its format is

AF(subscript)

The "AF" specifies the argumentfield, and "subscript" speci­
fies which element in that field is being referenced. "Sub­
script" enclosed in parentheses is required.

Example 52. AF Function

AA SET AF(2)

xx AOP 50,BETA/SUM

Assume that statement AA is within a procedure defini­
tion and that the XX statement is the procedure refer­
ence line. In the argument field of the procedure
reference line is a list of two elements. The first ele­
ment consists of the value 50 and the second element
consists of the value BETA/SUM. In statement AA the
construct AF(2) refers to the second element ofthe argu­
ment field.

AFA Argument Field Asterisk

The AFA function determines whether the specified argu­
ment in a COM directive or procedure reference line is pre­
ceded by an asterisk. The format for this function is

AFA(subscript)

where "AFA" identifies the function, and "subscript" speci­
fies which element in the argument field list is to be tested.
"Subscript" enclosed by parentheses is required.

In the case where an argument may be passed down severa I
procedure levels, any occurrence of the argument with an
asterisk prefix wi II satisfy the existence of the prefix.

Example 53. AFA Function

XYZ

BOUND
GEN,8

STORE,5

4
AFA(l)

*ADDR,3

Assume that the BOUND and GEN directives are within
a procedure definition and that the XYZ statement
is a procedure reference line. The GEN directive
will generate the value 1 if the first element in the
argument field of the procedure reference line (that
is, ADDR) is preceded by an asterisk. If an asterisk
is not present, the GEN directive wi II generate a
zero value.

NAME Procedure Name Reference

This function enables the programmer to reference (from
within the procedure) the expression in the CNAME argu­
ment field. Its format is

NAME

where "NAME" identifies the function.

A programmer can write a procedure with several entry
points and assign the procedure several names via the
CNAME directives. Each name may be given a unique
value in the argument field of the CNAME directive. Then,
within the procedure definition the programmer can use the
NAME function to determine which entry point wi II be ref­
erenced (see Example 54).

NUM Determine Number of Elements

The NUM function yields the number of elements in the
designated field. Its format is

NUM(AF), NUM(LF), or NUM(CF)

The NUM function is thus used to determine the number of
subfields in the label, command, and argument fields of
a procedure reference line (as in NUM(LF), NUM(CF),
and NUM(AF)).

SAMPLE PROCEDURES

Example 55 illustrates various uses of procedures, such as
how one procedure may ca II another, and how a procedure
can produce different object code depending on the param­
eters presen tin the procedure reference.

Sample Procedures 41

Example 54. NAME Function

B CNAME
BGE CNAME
BLE CNAME

PROC
BOUND

LF GEN,l,7,4,3,17

PEND

NOW BLE

4

o
1
2

AFA(l),X'68 I ,NAME,AF(2),WA(AF(1»

RETRY

Declares three names for the following com­
mand procedure, each with an associated
value.

Bound on a fu!! word boundary.
Generate a 32-bit word with the configura­
tion for a Branch, Branch if Greater Than or
Equal, or Branch if Less Than or Equal
instruction.
End of procedure definition.

Procedure reference line. If condition codes
contain the :: less than ll setting (as the result
of a prior operation), branch to location
RETRY.

When the procedure reference line is encountered, Macro-Symbol processes the procedure. In this instance, the label
NOW is defined, and Macro-Symbol generates a 32-bit word as follows:

Bit Positions

o

1-7

8-11

12-14

15-31

Contents

The value 0 because no asterisk precedes the first element in the argument field of the procedure
reference line.

The hexadecimal value 68.

The hexadecimal value 2.

The hexadecimal value 0 because there is no second argument field element (that is, no indexing
spe ci fi ed) .

The first argument field element in the procedure reference I ine, evaluated as a word address.

Example 55. Conditional Code Generation

This procedure tests element N in the procedure reference line to determine whether straight iterative code or an
indexed loop is to be generated. If N is less than 4, straight code wi" be generated; if N is equal to or greater than 4,
an indexed loop will be generated. In either case, the resultant code will sum the elements of a table and store the
result in a specified location.

The procedure definition is

ADDEM

LF
IND

CNAME
PROC
SW,AF(3)
DO
AW,AF(3)
ELSE
LW,AF(5)
AW,AF(3)
BIR,AF(5)
FIN
STW,AF(3)
PEND

42 Sample Procedures

AF(3)
(AF(2) <4)*AF(2)
AF(1)+IND-1

L(-AF(2»
AF(l) + AF(2),AF(5)
$ - 1

AF(4)

The general form of the procedure reference is

wherE.

ADDRS
N
AC
ANS
X

ADDEM ADDRS,N,AC,ANS,X

represents the address of the initial value in the table to be summed.
is the number of elements to sum.
is the register to be used for the summation.
represents the address of the I ocati on where the sum is to be stored.
is the register to be used as an index when a loop is generated.

For the procedure reference

XYZ ADDEM ALPHA,2,8,BETA,3

machine code equivalent to the following lines would be generated in-line at assembly time.

XYZ SW,8
AW,8
AW,8
STW,8

8
ALPHA
ALPHA+1
BETA

I f the procedure reference were

Clear the register.
Add contents of ALPHA to register 8.
Add contents of ALPHA+1 to register 8.
Store answer.

ADDEM ALPHA,5,8,BETA,3

the generated code would be equivalent to

C lear the register. SW,8

LW,3

8

L(-5) The value -5 would be stored in the literal table and its address would
appear in the argument field of this statement. Thus, load index with

AW,8

BIR,3

STW,8

the value -5.

ALPHA+5,3 Register 3 contains -5,.· .ALPHA+5-5=ALPHA.

$-1 Increment register 3 by 1 and branch.

BETA Store answer.

Sample Procedures 43

7. ASSEMBLY LISTINGS

MACRO-SYMBOL ASSEMBLY LISTING

The XDS Macro-Symbol assembler produces listing lines ac­
cording to the format shown in Figure 3. The page count,
a decimal number, appears in the upper right-hand corner
of each page.

EQUATE SYMBOLS LINE

Each source line that contains an equate symbol (EQU or
SEn contains the following information:

NNNNN Source image line number in decimal.

and

XXXXXXXX Value of argument field as a 32-bit value.

or

CC

LLLLL

B

and

SSS ••.

Current section number in hexadecimal.
The first control section of an assembly is
arbitrarily assigned the value 1, and sub­
sequent sections are numbered sequentially.

Value of the argument field as a hexa­
dec ima I word address.

Blank, 1, 2, or 3 specifying the current
byte displacement from a word boundary.

Source image.

ASSEMBLY LISTING LINE

Each source image I ine containing a generative statement
prints the following information:

NNNNN

CC

Source image line number in decimal.

Current section number in hexadecimal.
See CC under II Equate Symbols Line ll

•

LLLLL

B

Current value of load location counter to
word level in hexadecimal.

Blank, 1, 2, or 3 specifying the byte dis­
placement from word boundary.

XXXX, Object code in hexadecimal listed in xx, }
XXX XXX , groups of 1 to 4 bytes.
XXXXXXXX

A Address classification flag:

blank

A

F

x

N

NN

I I I. I I ,.. I I aenores a relocaraole T1ela.

denotes an absolute address
field.

denotes an address field con­
taining a forward reference.

denotes an address fi e Id con­
taining an external reference.

indicates that the object code
produced for the source line
contains a relocatable item
(i. e. , an address, a forward
reference, or external refer­
ence) in some field other than
the address field.

specifies intersection reference
number.

SSS .•• Source image.

IGNORED SOURCE IMAGE LINE

A skip flag indication

S

is printed in columns 33-35 for each statement skipped by
the assembler during a search for a GOTO label or whi Ie

Print
Position 12345678 910 1112131415161718192021222324252627282930313233343536373839

Equate
symbols
line

Assembly
listing line

Ignored
source
image line

Error line

~iteral . I I listing line I

{
NNNNN
NNNNN
NNNNN

NNNNN

NNNNN

* * * *

44 Assembly Listings

C C L L L L L B S 5 5 .. .
X X X X X X X X 5 5 5 .. .
T T T T 5 S 5 •..

C C L L L L L B X X X X X X X X A 5 S 5 ...

* 5 * 5 5 5 ...

me s sage

C C L L L L L X X X X X X X X A

Figure 3. Macro-5ymbol Listing Format

processing a DO directive with an expression value of zero.
N N N N Nand SSS. • • have the same mean i ngs as in an as­
sembly listing line.

ERROR LINE

When an error is detected in the source image line, the
line begins with up to three error code characters (any
three of the codes listed in Table 3).

LITERAL LINE

Any literals evaluated during an assembly are printed imme­
diately following the END statement. Literals are listed in
the order in which they were evaluated, and the listing line
contains

CC

LLLLL

Current section number in hexadecimal.
See CC under II Equate Symbols Line ll

•

Current value of load location counter
to word level in hexadecimal.

XXXXXXXX Value of literal as a hexadecimal mem­
ory word.

A Address classification flag. See II Assembly
Listing Line".

Table 3. Macro-Symbol Error Flags

Code Severity Significance

C 3 Constant string error. A constant con­
tains an illegal character or is improp­
erly formed.

D 3 Duplicate symbol or command.

E 3 Expression error. The statement con­
tains an expression that cannot be
properly evaluated or that does not
have a legal value.

F 3 Illegal system name.

I 3 Illegal or unknown command.

K 7 Program structure error.

L 3 Label is missing or an external name
exceeds 63 characters.

M

N

S

T

U

3

3

3

3

3

A required field is missing from the
statement.

A DO or DO 1 nesti ng error has
occurred.

A general violation of syntax structure
was encountered in the statement.

Truncation error.

Undefined symbol.

Macro-Symbol Assembly Listing 45

8. MACRO-SYMBOL OPERATIONS

REAl-TIME BATCH MONITOR CONTROL COMMANDS

To assemble a Macro-Symbol Program, a run deck contain­
ing certain Monitor commands must be prepared. These
commands are described in this chapter. (Other Monitor
commands that are not needed for Macro-Symbol are de­
scribed in the Sigma 5/7 Real-Time Batch Monitor Refer­
ence Manual.)

JOB CONTROL COMMAND

The first card in each J'.Ac:cro~Symbo! run deck
JOB card, which has the following format:

account number ,name

where

must be a

account number is an optional alphanumeric string,
from 1 to 8 characters, that identifi es the account
or project to which the run is to be charged.

name is an optional alphanumeric string, from 1 to
12 characters, that identifies the user.

ASSIGN CONTROL COMMAND

Appearing next in the run deck are any ASSIGN cards re­
lating to the assembly. ASSIGN cards normally are not
needed, because the system assumes the standard default
assignments that are specified at SYSGEN. (For a descrip­
tion of the ASSIGN format, see the Sigma 5/7 Real-Time
Batch Monitor Reference Manual.)

MACRSY M CONTROL COMMAND

The next card in the run deck will be the MACRSYM card,
which has the following format:

! MACRSYM option l,option2, ... ,option n

where any number of options, or none, may be specified.
The options available are listed below:

BA Batch assembly mode

BO Binary output

CI Compressed input

CO Compressed output

GO Output GO fi Ie

LO List assembly output

SI Source input

LU Li st updates

46 Macro-Symbol Operations

Options may be specified in any order. If the same option
occurs more than once, only the first option has any effect;
that is, repetitions are ignored. If no options are specified,
the following options are assumed: SI, CI, LU, LO, and BO.

The MACRSYM control command obeys the format rules for
Monitor control commands, except that a semicolon is not
allowed. {See the Sigma 5/7 Real-Time Batch Monitor
Reference Manual for the format rules.}

If the program is on cards, these cards must immediately
follow the "AACRSY"v~ caid. The ,A.AaciO-Symbol piOgiam
deck is terminated by the first card that has an END direc­
tive in the command field. Any cards after the END direc­
tive are ignored by the Macro-Symbol assembler, except
in the batch mode where the cards are treated as successive
programs {see II EOD Control Command"}.

A sample MACRSYM card is shown below: I MACRSYM SI,LO,CI,BO

The various options are as follows:

BA selects the batch assembly mode. In this mode,
successive assemblies may be performed with a
single MACRSYM card. The assembler reads and
assembles successive programs until a double end­
of-data (! EOD) is encountered. In the batch
mode, current device assignments and options on
the MACRSYM card are applied to all assemblies
within the batch. A program is terminated when
an END directive is processed. Successive pro­
grams mayor may not have an end-of-data indi­
cator separating them. With input from the card
reader, an end-of-file is indicated by an EOD
card . Two successive EOD cards or any other
Monitor control card terminates the job. With
input from magnetic tape, standard tape end-of-
fi les provide job termination. When batch assem­
blies consist of successive updates from the card
reader to compressed programs from disc or tape,
the update packets are terminated by a + END card
and they should not be separated by EOD cards.
There must be a one-to-one correspondence of up­
date packets to compressed programs. The end of
a job is signaled byend-of-fi Ie conventions applied
to the CI device.

BO specifies that binary output is to be produced
on the BO device.

CI specifies that compressed input is to be taken
from the CI device.

CO specifies that compressed output is to be pro-
duced on the CO device.

GO specifies that the binary object program is to be
placed in a temporary file from which it can later
be loaded and executed. The resultant GO fi Ie is
always temporary and cannot be retained from one
job to another. To retain the binary object pro­
gram for a subsequent job l the BO option (with BO
assigned to disc or magnetic tape) must be used.

LO specifies that a listing of the assembled object
program is to be produced on the LO device.

LU specifies that a listing of the update decks (if
any) is to be produced on the LO device. This
listing consists of the image of each update line
with the number of the line in the update deck.

SI specifies that symbol ic input is to be taken from
the SI device.

EOD CONTROL COMMAND

An EOD card is required only with a symbolic deck and is
placed immediately after the END directive. If the BA
(batch mode) option is not specified l then any cards between
the END directive and the EOD card are ignored. In the
batch model EOD cards are optional between successive
symbolic program decks. The END directive terminates
each assembly. If EOD cards separate successive assemblies l

then any cards between an END directive and an EOD card
are assembled as the next program. If an EOD card is not
preceded by an END directive l Macro-Symbol automatically
provides an END directive. The EOD card has the follow­
ing form

UPDATING A COMPRESSED DECK
The use of the CO option on the MACRSYM card directs
Macro-Symbol to produce a compressed deck from a source
program l which can then be used as input during a later
assembly. Because compressed decks contain one-fourth to
one-fifth as many cards as the source deck l they are signif­
icantly more manageable and faster to handle.

Compressed decks can be updated via an II update packetll
I

which is the set of cards between the first + (update) com­
mand and the compressed deck. If any symbol ic cards (a
IIsymbolic deck") precede the first + commandl they are
treated as if they were preceded by an a + a card (see +k
below); that iS I they are inserted before the first line of
the program.

Macro-Symbol recognizes three update control commands:

+k where k is a line number corresponding to a line
on the source or assembly listing produced from
the compressed deck. The +k control card desig­
nates that all cards following the +k cardl up to
but not including the next update control cardl

are to be inserted after the kth line of the source
program. The command +0 designates an insertion
before the first line of the program.

+j/k where j and k are line numbers corresponding
to line numbers on the source or assembly listing
produced from the compressed deck l and j is less
than or equal to k. This form designates that all
cards following the +j/k card l up tobut not includ­
ing the next update control cardl are to replace
lines j through k of the source program. The num­
ber of lines to be inserted does not have to equa I
the number of lines removed; in fact I the number
of lines to be inserted may be zero. In this case,
lines j through k are deleted.

+END where END designates the physical end of an
update packet. If the SI and CI devices are the
same/this command is optional, since Macro-Symbol
terminates the update packet automatically on en­
countering the first compressed card. If the SI and
CI devices are different, this command is necessary.

The + character of each update control command must be in
column 1, followed immediately by the control information,
with no embedded blanks. The first blank column terminates
the control command, and comments may optionally follow
the blank. The update control commands, with their asso­
ciated update records, must occur in numeric sequence.

The ranges of successive insert and/or delete control com­
mands must not overlap, except that the following case is
permissible: +j Ik followed by +k, where j < k. Overlapping
control commands cause an abort error.

PROGRAM DECK STRUCTURES

Macro-Symbol accepts two basic types of input decks: sym­
bolic decks and compressed decks preceded by optional up­
date packets. Five basic deck structures are possible (see
Figure 4).

ERROR MESSAGES

Macro-Symbol outputs two types of error messages: (1) flags
and error messages pertaining to the assembled program and
(2) operational error messages. The error flags are described
in Table 3. If Macro-Symbol encounters an undefined local
symbol, the following error message is output:

UNDEFINED LOCAL II SYMBOL"

The operational error messages are as follows:

ILLEGAL OPTION '0000' This error message indi­
cates that the unknown
opMon '0000' has been
specified in the Macro­
Symbol command. The
option is ignored.

Updating a Compressed Deck/Program Deck Structures/Error Messages 47

1. Symbolic Only

2. Compressed Only

3. Compressed With Update

4. Symbolic and Compressed

48 Program Deck Structures

5. Symbolic and Compressed With Update

If the SI and CI devices are different, and it is de­
sired to read compressed input from the CI device,
then the only permissible structure is

(SI)

(CI)

Figure 4. Basic Deck Structures

NO INPUT SPECIFIED
MACRO-SYMBOL ABORT ERROR

This error message indi­
cates that neither SI
nor CI has been spec i­
fied in the Macro­
Symbol command.

10 ERROR CODE XX FILE AA This error message indi-
MACRO-SYMBOL ABORT ERROR cates that the Monitor

has signaled I/O error
XX on fi Ie AA.

UPDA-TE DECK ERROR This error message in-
MAC RO-SY MBOL ABORT ERROR dicates that the last

COMPRESSED DECK ERROR
MACRO-SYMBOL ABORT ERROR

SPACE OVERFLOW
MACRO-SYMBOL ABORT ERROR

output update control
command is incorrect.

This error message indi­
catesa sequence, check­
sum, or format error in
the compressed deck.

This error message indi­
cates the program being
assembled is too large
to assemble in the core
memory available.

Error Messages 49

APPENDIX A. SUMMARY OF MACRO-SYMBOL DIRECTIVES

In this summary brackets are used to indicate optional items.

Form

[label] ASECT

BOUND boundary

label CNAME [exp]

label COM,field list

[label] CSECT [exp]

[Jabel] DATA [,f]

DEF symbol1 ~ ••• ,symbol n]

[label] DO exp

[label] 001 exp

[label] DSECT [exp]

50 Appendix A

Function

Declares generative statements wi II be assem­
bled to be loaded into absolute locations.

Advances the execution location counter to a
byte multiple of llboundary" and advances the
load location counter the same number of bytes.

Designates a command name ("!abe!lI) for the
next procedure definition and specifies the
value ("exp") associated with nlabel ll .

Describes a command skeleton; vi specifies
the contents of each IIfield"; "label II is the
symbol by which the command skeleton is
referenced.

Declares program section IIlabel ll as a relo­
catable control section with memory pro­
tection specified by lIexpll where 0 ::; exp ::; 3.
If "expll is omitted, the va lue 0 (no memory
protection) is assumed.

Generates each value in the list of vi into
a field whose size is specified by f in bytes.
If f is omitted, a field size of 4 bytes is
assumed.

Dec lares that the II symbo I i II may be refer­
enced by other separately assembled programs.

If the DO is within a procedure and the
value of lIexp" is greater than zero, pro­
cesses the code from DO to ELSE or FIN
(if ELSE is absent) lIexp" times. If the DO
is outside a procedure and the va I ue of
"expll is equal to one, processes the code
from DO to ELSE or FIN (if ELSE is absent)
once. If the DO is outside a procedure and
the value of "expll is greater than one, pro­
cesses the statement following DO "exp"
times. Then continues assembly at the state­
ment following FIN. If "exp" ::;0, skips all
code from DO to ELSE or FIN (if ELSE is
absent); resumes assembly at that point.

If the value of "exp" is greater than zero,
processes the one statement following the
001, lIexpll times, then continues the assem­
bl y at the next statement. If lIexpll ::; 0, skips
the statement following 001 and resumes
assembly.

Declares a dummy program section IIlabel ll

with memory protection specified by lIexpll

18

17

38

31

18

34

30

26

25

18

Form

ELSE

[label] END [exp]

label EQU [expJ

FIN

[label] GEN,fieid list

GOTO[,k] label 1 ~ ... , label
n

]

[label] location

LOCAL [symbol l' ... ,symbol n]

[label] ORG~n] location

PAGE

PEND

PROC

REF [symbol 1 ' ... ,symbol n]

[label] RES [,n] u

Function

where 0 =s exp=s 3. If lIexpll is omitted,
the value 0 (no memory protection) is
assumed.

Terminates the range of an action DO
loop, or identifies the beginning of the
alternate sequence of code for an in­
active DO loop.

Terminates a program. Optionally pro­
vides the starting address of the program.
If a label is given, associates it with the
location immediately following the literal
table, which is generated at the end of the
currently active program section.

Equates IIlabel ll to the value of lIexpll
(nonredefinable) .

Terminates a DO loop.

Produces a hexadecimal value represent­
ing Vi in the number of bits specified by
"field ll in llfield list ll .

Resumes assembly at the statement whose
label corresponds to the kth IIlabel ll .

Sets the execution location counter ($) to
the value "Iocation" and sets its resolution
specification to n, where the value of n
is 1,2,4, or 8.

Terminates existing local symbol region
and initiates a new region where the
IIsymbol. 1I are local symbols.

I

Sets both the current load location
counter ($$) and the current execution
location counter ($) to the value "Ioca­
tion ll and sets their resolution specifica­
tions to n, where the value of n is 1,
2, 4, or 8.

Upspaces assembly listing to the top of
form.

Terminates procedure definition.

Identifies the beginning of a procedure
definition.

Dec lares that the IIsymbol i II are references
to externally defined symbols.

Advances both location counters ($ and $$)
by un-sized units. If n is omitted, a size
of 4 bytes is assumed.

Page

26

25

29

26

31

25

16

29

15

36

39

38

31

17

Appendix A 51

Form Function Page

label SET [exp1 Equates "Iabel ll to the value of lIexpll 29
(redefinable) .

SPACE [u] Upspaces the assembly listing u lines. 36
If u is omitted, 1 is assumed.

SREF symbol, r, ... ,symbol] Declares that the II symbol. " are secondary 31
IL. n

externa I references.
;

SYSTEM name Defines system as "name". 24

[label] TEXT ICS11[, ... ,lcSnl] Assembles the "csi" (character string con- 35
stant) in binary-coded format for use as an
1""\1 I+nl.+ rnOCCrt"o
~It"''''' •• '"''''_~_.

[label] TEXTC I I IJ Assembles the "csi" (character string con- 36 cS
1

[, ... , cS
n

stant) in binary-coded format, preceded by
a byte count, for use as an output message.

TITLE [ICS I] Prints IICS" (character string constant) as a 37
heading on each page of assembly listing.

[label] USECT name Specifies that the control section of which 18
label "name ll is part is to be used in assem-
bl ing subsequent statements.

52 Appendix A

APPENDIX B. MACRO-SYMBOL COMPATIBILITY

Macro-Symbol is designed to be compatible with Symbol
and Meta-Symbol. However, minor differences do exist,
and these differences are discussed below.

1 • In a procedure, the statements

LF EQU exp

or

LF SET exp

cause a label error if the procedure reference state­
ment does not contain a label field.

2. DO/ELSE/FIN and DOl loop processing does not con­
sider comment I ines to be statements. The following in­
put causes the DATA statement to be repeated n times:

DOl n

*COMMENT

DATA

90 15 78A-l (1/70)

3. An illegal argument field expression for a RES, ORG,
or LOC directive generates a RES, ORG, or LOC O.

4. The listing line for a USECT directive contains the con­
trol section number and the value of the execution and
load location counters in the new control section.
Macro-Symbol and Meta-Symbol assign this value to
the label field of the USECT statement. Meta-Symbol,
however, prints the section number and the saved value
of the execution locati on counter of the previ ous section.

5. The listing lines for an ORG or LOC directive contain
the value of the load location counter followed by the
value of the execution location counter. This is the
reverse order of the Meta-Symbol format.

6. The evaluation of an expression involving explicit
address resolution functions applied to an external or
loca I forward reference ± addend, assumes that at load
time the reference is an address and not a constant.

Appendix B 53

APPENDIX C. SUMMARY OF SIGMA 5 INSTRUCTION MNEMONICS

Required syntax items are underl ined whereas optional items
are not. The following abbreviations are used:

Codes for required options are

P Privileged

m mnemonic

register expression

v value expression

* indirect designator

Mnemonic Syntax

I r'\ A 1'"'\ Ic"Tr'\DI:
LVI-\LI/ ,J I V,,"L.

LI m,r v
LB m,r *a,x
LH ~ *~,x
LW m,r *~,x
LD m,':.. *~,x
LCH m,r *~,x
LAH m,r *~,x
LCW ~ *~,x
LAW ~ *~,x
LCD m,r *~,x
LAD m,r *~,x
LS ~ *~,x
LM m,r *~x
LCFI m '!.!v
LCI m v
LFI m v
LC m *a,x
LF m *0, x
LCF m *0, x
LAS ~,r *;-,x
LMS ~r

-k-
a,x

XW m,r *~x
STB ~ *0, x
STH m,r *0, x
STW m,r *o,x
STD ~ *~,x
STS ~ *0, x
STM m,r *o,x
STCF m *~x

ANALYZE AND INTERPRET

ANLZ m,r *a,x
INT m,r *~x

FIXED-POINT ARITHMETIC

AI m,r v
AH m,r *a,x
AW ~ *0, x
AD m,r *~,x
SH m,r *~ v

.... ,'"
SW m,r *o,x
SD m,r *~x
MI m,r v

a

x

address expression
F Floating-Point Option

index expressi on
L Lock Option

SF Special Feature - not implemented on
all machines

Function

Load Immediate
Load Byte
Load Ha I fword
Load Word
Load Doubleword
Load Complement Halfword
Load Absolute Halfword
Load Complement Word
Load Absolute Word
Load Complement Doubleword
Load Absolute Doubleword
Load Selective
Load Multiple
Load Conditions and Floating Control Immediate
Load Conditions Immediate
Load Floating Control Immediate
Load Conditions
Load Floating CQntrol
Load Conditions and Floating Control
Load and Set
Load Memory Status
Exchange Word
Store Byte
Store Hal fword
Store Word
Store Doubl eword
Store Selective
Store Multiple
Store Conditions and Floating Control

Analyze
Interpret

Add Immediate
Add Halfword
Add Word
Add Doubleword
Subtract Hal fword
Subtract Word
Subtract Doubl eword
Multiply Immediate

Equiva lent to:
Required
Options

SF
SF

54 Appendix C 90 15 78A-l (1/70)

Required
Mnemonic Syntax Function Equivalent to: Options

FIXED-POINT ARITHMETIC (cont.)

MH m,r *a,x Multiply Halfword
MW m,r *~,x Multiply Word
DH m,r *~,x Divide Halfword
DW m,r *~,x Divide Word
AWM m,r *~,x Add Word to Memory
MTB m,v *~,x Modify and Test Byte
MTH m,v *~,x Modify and Test Halfword
MTW m,v *~,x Modify and Test Word

COMPARISON

CI m,r v Compare Immediate
CB m,r *a,x Compare Byte
CH m,r *~,x Compare Hal fword
ON m,r *~,x Compare Word
CD ~ *a,x Compare Doubl eword
CS m,r *a,x Compare Selective
ClR m,r *a,x Compare with Limits in Register
elM m,r *~ x -' Compare with Limits in Memory

lOGICAL

OR m,r *a,x OR Word
EOR m,r *~,x Exclusive OR Word
AND m,r *~ x -' AND Word

SHIFT

S m,r *~,x Shift
SlS m,r :!..,x Shift logical, Single
SlD m,r :!..,x Shift Logical, Double
SCS m,r :!.Ix Shift Circular, Single
SCD m,r :!..,x Shift Circular, Double
SAS m,r :!..,x Shift Arithmetic, Single
SAD m,r v,x Shift Arithmetic, Double
SF m,r *a x -' Shift Floating
SFS m,r :!.Ix Shift Floating, Short
SFL m,r :!.Ix Shift Floating, Long

FLOA TING-POINT ARITHMETIC

FAS ~ *a,x Floating Add Short F
FAL ~ *a,x Floating Add long F
FSS m,r *~,x Floating Subtract Short F
FSl m,r *a,x Floating Subtract Long F
FMS m,r *a,x Floating Multiply Short F
FML m,r *a,x Floating Multiply Long F
FDS m,r *a,x Floating Divide Short F
FDL ~ *0' x

-' Floating Divide Long F

PUSH DOWN

PSW m,r *a,x Push Word
PLS ~ *a,x Pull Word
PSM m,r *a,x Push Multiple
PLM m,r *a,x Pull Multiple
MSP m,r *a,x Modify Stack Pointer

Appendix C 55

Required
Mnemonic Syntax Function Equivalent to: Options

EXECUTE/BRANCH

EXU m *a,x Execute
BCS m,v *~,x Branch on Conditions Set
BCR m,v *~,x Branch on Conditions Reset
BIR ~ *~,x Branch on Incrementing Register
BDR ~ *~,x Branch on Decrementing Register
BAL ~ *~,x Branch and Li nk
B m *~ x Branch BCR,O *~x ...!

BE m *a,x r Branch if Equal BCR,3 *a,x
BG m *~,x Branch if Greater Than BCS,2 *~,x
Q~J: m *;,x I Branch if Greater Than or Equa! BCR,l *~;x L.I~'"

BL m *~,x Branch if Less Than BCS,l *~,x
BLE m *~,x Branch if less Than or Equal BCR,2 *~,x
BNE m *~,x

For Use After
Branch if Not Equal BCS,3 *~,x

BEZ m *~,x
Comparison

Branch if Equal to Zero BCR,3 *-;,x
BNEZ m *-;,x

Instructions
Branch if Not Equal to Zero BCS,3 *-;,x

BGZ m *~,x Branch if Greater Than Zero BCS,2 *~,x
BGEZ m *~,x Branch if Greater Than or Equal to Zero BCR,l *~,x
BLZ m *0, x Branch if Less Than Zero BCS,l *0, x
BlEZ m *a,x Branch if Less Than or Equal to Zero BCR,2 *~,x
BAZ m *~,x Branch if Impl icit AND is Zerot BCR,4 *~,x
BANZ *~ x Branch if Implicit AND is Nonzero t BCS,4 *~x m -'
BOV m *a,x Branch if Overflow BCS,4 *a,x
BNOV m *~,x

For Use After
Branch if No Overflow BCR,4 *~,x

BC m *a,x
Fixed-Point

Branch if Carry BCS,S *0, x
BNC m *~,x

Arithmetic
Branch if No Carry BCR,S *~,x

BNCNO m *~,x
Instructions

Branch if No Carry and No Overflow BCR,C *~,x
BWO m *0, x Branch if Word Product BCR,4 *0, x
BDP m *0 x -' Branch if Doubleword Product BCS,4 *~ x ...!

For Use After
BEV m *a,x Fixed-Point f Branch if Even (number of lis shifted) BCR,S *a,x
BOD m *~x Shift , Branch if Odd (number of 1's shifted) BCS,S *~,x

Instructi ons

BSU m *a,x Branch if Stack Underflow BCS,2 *a,x
BNSU m *~,x Branch if No Stack Underflow BCR,A *~,x
BSE m *~,x

For Use After
Branch if Stack Empty BCS,l *0, x

BSNE m *~,x
Push Down

Branch if Stack Not Empty BCR,l *~,x
BSF m *~,x

Instructi ons
Branch if Stack Fu II BCS,4 *~,x

BSNF m *~,x Branch if Stack Not Full BCR,F *a,x
BSO m *~,x Branch if Stack Overflow BCS,S *~,x
BNSO m *~x Branch if No Stack Overflow BCR,S *0 x ...!

BIOAR m *a,x Branch if I/o Address Recognized BCR,S *a,x
BIOANR m *~,x Branch if I/o Address Not Recognized BCS,S *~,x
BIODO m *;'x

For Use After
Branch if I/o Device Operating BCS,4 *~,x

BIODNO m *~,x
Input/Output

Branch if I/o Device Not Operating BCR,4 *~,x
BIOSP m *~,x Branch if I/O Start Possible BCR,4 *~,x
BIOSNP *~,x Instructions

Branch if I/O Start Not Possible BCS,4 *~,x m
BlOSS m *~,x Branch if I/o Start Successful BCR,4 *~ x ::;t
BIOSNS m *~ x Branch if I/O Start Not Successful BCS,4 *~,x -f

tSee CW instruction in XDS Sigma 5 Computer Reference Manual.

56 Appendix C

Mnemonic Syntax

CALL

CAll m,v *a,x
CAL2 m,v *~,x
CAL3 m,v *~ x

-f
CAL4 m,v *:yx

CONTROL

LPSD ~ *a
XPSD .':!2L *~
LRP m *~ x

-' MMC ~ v
WAIT m *a,x
RD ~ *a,x
WD ~ *~,x
NOpt m *~,x
PZE m *a,x

INPUT/OUTPUT

SIO ~ *a,x
HIO ~ *~,x
no ~ *~,x
TDV ~ *~,x
AlO ~ *~ x

-f

tEquivalent to LCFI instruction with r = O.

Function

Call 1
Call 2
Call 3
Call 4

Load Program Status Doubleword
Exchange Program Status Doubleword
Load Register Pointer
Move to Memory Control
Wait
Read Direct
Write Direct
No Operation
Positive Zero

Start Input/Output
Halt Input/Output
Test Input/Output
Test Device
Acknowledge Input/Output Interrupt

Equiva lent to:
Required
Options

P
P
P
P
P
P
P

P
P
P
P
P

Appendix C 57

APPENDIX D. SUMMARY OF SIGMA 7 INSTRUCTION MNEMONICS

Required syntax items are underlined whereas optional items
are not. The following abbreviations are used:

m mnemonic

v
*

Codes for required options are

7 Sigma 7
P Privi leged
D Decimal Option
F Floating-Point Option
L Lock Option
MP Memory Map Option a

x

register expression
value expression
indirect designator
address expression
index expression
dispiacement expression

SF Special Feature - not implemented on
d

Mnemonic Syntax

LOAD/STORE

LI ~ v
LB ~ *a,x
LH ~ *~,x
LW ~ *~,x
LD ~ *~,x
LCH ~ *~,x
LAH ~ *~,x
LCW ~ *~,x
LAW ~ *~,x
LCD ~ *~,x
LAD ~ *~,x
LS ~ *~,x
LM ~ *~ x

-!
LCFI m '!..tv
LCI m v
LFI m v
LC m *a,x
LF m *~,x
LCF m *~,x
LAS ~ *~,x
LMS ~ *~,x
XW ~ *~,x
STB ~ *~,x
STH ~ *~,x
STW ~ *~,x
STD ~ *~,x
STS ~ *~,x
STM ~ *o,x
STCF m *0 x

-!

ANALYZE AND INTERPRET

ANLZ ~ *a,x
INT ~ *~ x

-!

FIXED-POINT ARITHMETIC

AI ~ v
AH ~ *a,x
.A.W m,r *;-,x
AD ~ *o,x
SH ~ *o,x
SW ~ *0 x

-!

58 Appendix D

Function

Load Immediate
Load Byte
Load Ha I fword
Load Word
Load Doubleword
Load Complement Halfword
Load Absolute Halfwaord
Load Complement Word
Load Absolute Word
Load Complement Doubleword
Load Absolute Doubleword
Load Selective
Load Multiple

all machines

Load Conditions and Floating Control Immediate
Load Conditions Immediate
Load Floating Control Immediate
Load Conditions
Load Floating Control
Load Conditions and Floating Control
Load and Set
Load Memory Status
Exchange Word
Store Byte
Store Halfword
Store Word,
Store Doubleword
Store Selective
Store Multiple
Store Conditions and Floating Control

Analyze
Interpret

Add Immediate
Add Ha I fword
Add Word
Add Doub leword
Subtract Halfword
Subtract Word

Equiva lent to:
Required
Options

SF
SF

90 15 78A-1(1/70)

MACRO-SYMBOL DIRECTIVES

[label] ASECT

BOUND boundary

label CNAME [expression]

label COM,field list value1 [, ... ,valuen]

[label] CSECT [expression]

[label] DATA [,f] value l [, ... ,valuen]

DEF symbol 1 [, .. '1 symboln]

[label] DO expression

Dabel] DOl expression

Dabel] DSECT [expression]

ELSE

Dabel] END [address]

label EQU [expression]

FIN

Dabel] GEN/field list value l [, .• "valuen]

GOTO[,k] label l [, .. "Iabeln]

[label] LOc[~ 1 location

LOCAL [symbol 1 ' ... ,symboln]

Dabel] ORGnl location

PAGE

PEND

PROC

REF symbol 1 [, ... ,symboln]

[label] RES [,k] number of locations

label SET [expression]

SPACE [number of spaces]

SREF symbol 1 [, ... ,symboln]

SYSTEM instruction set

[label] TEXT 'character string
l ' [, ... ,character string

n
]

[label] TEXTC 'character string
l ' [, ... ,character string

n
]

TITLE [' character string I]
[label] USECT name

Required
Mnemonic Syntax Function Equivalent to: Options

FLOA TING-POINT ARITHMETIC (cont.)

FDS ~ *a,x Floating Divide Short F
FDL ~ *a x Floating Divide Long F!

DECIMAL

DL !!!i! *£,x Decimal Load D
DST m,v *a,x Decimal Store D
DA m,v *a,x Decimal Add D
DS m,v *a,x Decimal Subtract D
DM m,v *a x! Decimal Multiply D
DD m,v *a,x Decimai Divide D
DC ril,v *~ v Decimal Compere D ,"
DSA m *a,x Decimal Shift Arithmetic D
PACK m,v *a,x Pack Decimal Digits D
UNPK m,v *a x! Unpack Decimal Digits

BYTE STRING

MBS m,r d Move Byte String 7
CBS ~ d Compare Byte String 7
TBS ~ d Translate Byte String 7
TTBS ~ d Translate and Test Byte String 7
EBS m,r d Edit Byte String D

PUSH DOWN

PSW ~ *a,x Push Word
PLW ~ *a,x Pull Word
PSM m,r *a,x Push Multiple
PLM ~ *a,x Pull Multiple
MSP ~ *a x Modify Stack Pointer!

EXECUTE/BRANCH

EXU m *a,x Execute
BCS m,v *a,x Branch on Conditions Set
BCR m,v *a,x Branch on Conditions Reset
BIR ~ *a,x Branch on Incrementing Register
BDR ~ *a,x Branch on Decrementing Regi ster
BAL ~ *a,x Branch and Link
B m *a x Branch BCR,O *~x!

BE m *a,x Branch if Equa I BCR,3 *a,x
BG m *a,x Branch if Greater Than BCS,2 *a,x
BGE m *a,x Branch if Greater Than or Equal BCR,l *a,x
BL m *a,x Branch if Less Than BCS,l *a,x
BLE m *a,x Branch if Less Than or Equal BCR,2 *a,x
BNE m *a,x

For Use After
Branch if Not Equal BCS,3 *a,x

BEZ m *a,x
Comparison

Branch if Equa I to Zero BCR,3 *a,x
BNEZ m *~x Instructions

Branch if Not Equal to Zero BCS,3 *a,x
BGZ m *a,x Branch if Greater Than Zero BCS,2 *a,x
BGEZ m *a,x Branch if Greater Than or Equa I to Zero BCR,l *a,x
BLZ m *a,x Branch if Less Than Zero BCS,l *a,x
BLEZ m *a,x Branch if Less Than or Equal to Zero BCR,2 *a,x
BAZ m *a,x Branch if Implicit AND is Zerot BCR,4 *a,x
BANZ m *a x Branch if Implicit AND is Nonzerot BCS,4 *a x!!

t See CW instruction in XDS Sigma 7 Computer Reference Manual

60 Appendix D

Required
Mnemonic Syntax Function Equivalent to: Options

EXECUTE/BRANCH (cont.)

BOV m *a,x Branch if Overflow BCS,4 *a,x
BNOV m *a,x

For Use After
Branch if No Overflow BCR,4 *-;;-,x

BC m *-;;-,x
Fixed-Point

Branch if Carry BCS,8 *-;;-,x
BNC m *-;;-,x

Arithmetic
Branch if No Carry BCR,8 *-;;-,x

BNCNO m *-;;-,x
Instructions

Branch if No Carry and No Overflow BCR,C *-;;-,x
BWP m *-;;-,x Branch if Word Product BCR,4 *-;;-,x
BDP m *-;;- x

-f
Branch if Doubleword Product BCS,4 *-;;- x

-f

For Use After
BEV m *a,x Fixed-Point {Branch if Even (number of lis shifted) BCR,8 *a,x
BOD m *-;;- x Shift Instruc- Branch if Odd (number of lis shifted) BCS,8 *-;;- x

-' -f
tions

BID *a,x
For Use After

{ Branch if I"egal Decimal Digit BCS,8 *a,x m
Decimal

BLD m *-;;- x
Instructions

Branch if Legal Decimal Digits BCR,8 *-;;- x
-f -f

BSU m *a,x Branch if Stack Underflow BCS,2 *a,x
BNSU m *-;;-,x Branch if No Stack Underflow BCR,A *-;;-,x
BSE m *-;;-,x

For Use After
Branch if Stack Empty BCS,l *-;;-,x

BSNE m *-;;-,x
Push Down

Branch if Stack Not Empty BCR,l *-;;-,x
BSF m *-;;-,x

Instructions
Branch if Stack Fu" BCS,4 *-;;-,x

BSNF m *-;;-,x Branch if Stack Not Fu" BCR,F *-;;-,x
BSO m *-;;-,x Branch if Stack Overflow BCS,8 *-;;-,x
BNSO m *-;;- x

-f Branch if No Stack Overflow BCR,8 *-;;- x
-f

BIOAR m *a,x Branch if I/O Address Recognized BCR,8 *a,x
BIOANR m *-;;-,x Branch if I/o Address Not Recognized BCS,8 *-;;-,x
BIODO m *-;;-,x

For Use After
Branch if I/o Device Operating BCS,4 *-;;-,x

BIODNO m *(;",x
Input/Output Branch if I/O Device Not Operating BCR,4 *-;;-,x

BIOSP m *-;;-,x Branch if I/O Start Possible BCR,4 *-;;-,x
BIOSNP *-;;-,x

Instructi ons
Branch if I/o Start Not Possible BCS,4 *;;-,x m

BlOSS m *-;;-,x Branch if I/O Start Successful BCR,4 *-;;-,x
BIOSNS m *-;;- x

-f Branch if I/O Start Not Successful BCS,4 *-;;- x
-f

CALL

CAll m,v *a,x Call 1
CAL2 m,v *-;;-,x Call 2
CAL3 m,v *;;-,x Call 3
CAL4 m,v *;;- x

-f
Cal14

CONTROL

LPSD ~ *a Load Program Status Doubleword P
XPSD m,r *;;- Exchange Program Status Doubleword P
LRP m *;;- x

-f
Load Register Pointer P

MMC ~ v Move to Memory Control P
LMAP ~ Load Map 7MP
LPC ~ Load Program Control 7MP
LLOCKS ~ Load Locks LP
WAIT m *a,x Wait P
RD ~ *a,x Read Direct P
WD m,r *;;- x Write Direct P -f

Appendix D 61

Required
Mnemonic Syntax Function Equivalent to: Options

CONTROL (cont.)

NOpt m *a,x No Operation
PZE m *a,x Positive Zero

INPUT/OUTPUT

SIO ~ *a,x Start Input/Output P
HIO ~ *~,x Halt Input/Output P
no ~ *a,x Test Input/Output P
TDV ~ *~,x Test Device P
AIO m,r *0 x Acknowledge Input/Output Interrupt P

-1

tEquivalent to an LCFI instruction with r = o.

62 Appendix D

INDEX

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

+ (update command), 47
$ {execution location counter}, 14, lS, 2, 12
$ functi on, 12
$$ (load location counter), 14, lS, 2, 12
$$ function, 12

A
absolute address, 11
absol ute expression, 11
absolute section, 18
absolute symbol, 11
absolute value, 11, 3
address functions, 7
address resolution, 13, 14, 12, lS, 16
addressing functions, 12, 13,4
AF function, 33,41, 39
AFA function, 34,41
AND {logical operator}, 7
argument field, 9, 1,8, 11,23,24,41
argument field asterisk, 34,41
argument field list, 33
arithmetic operators, 6
ASECT directive, 18, 19, 10,24, SO
assembly control directives, 24-28
assembly listing line, 44
assembly listings, 44,4S
ASSIGN control command, 46
asterisk in argument field, 34,41

B
BA function, 12
BA MACRSYM option, 46
binary operator, 7
binary-coded decimal, 4
BO MACRSYM option, 46
BOUND directive, 17,24, SO

c
C (character string constant), 3
CF function, 33,40,39
character set, 2
character string constant, 3
character string literal, 6
CI MACRSYM option, 46
CNAME directive, 38,24, SO
CO MACRSYM option, 46
cod i ng form, 8
colon, 2
COM directive, 33, 10,24,34,40,41, SO
command field, 9,8,23,24,40
command field list, 33

command procedure, 38, 39
command procedure reference, 39
comment lines, 9, 10
comments field, 9, 8, 23, 24
compati bil ity, S3
compressed decks, 47
compressed programs, 46
computer instructions, 23
conditional code generation, 42
constant string, 3
constants, 3, 4
control commands, 46,47

ASSIGN, 46
EOD, 47
JOB, 46
MACRSYM, 46

control section, 18
CSECT directive, 18, 10,24, SO

o
D (decimal constant), 4
DA function, 13, 12
DATA directive, 34,3S, 10,24, SO
data generation directives, 31-36,24
decimal integer constant, 3
decimal literal, 6
deck structures, 47,48
DEF directive, 30,31, 10, 18,24, SO
defining symbols, 10,2,29
directive, definition of, 24
directives, 24-27

ASECT, 18, 19, 10,24, SO
BOUND, 17,24, SO
C NAME, 38, 24, SO
COM, 33, 10,24,34,40,41, SO
CSECT, 18, 10,24, SO
DA TA, 34, 3S, 10, 24, SO
DO, 26-28, 1, 3, 10, 24, SO
DO 1, 2S, 10,24, SO
DSECT, 18, 10, 19, 24, SO
ELSE, 26-28,24, Sl
END,2S, 10,24,47, Sl
EQU, 29, 3, 10,24, Sl
FIN, 26-28,24, Sl
GEN, 31,32, lO,24,Sl
GOTO, 2S,26, 10,24,29, Sl
LOC, 16, 17, 10, 13-1S, 24, Sl
LOCAL, 29,30, 10, 11,24, Sl
OR, 14
ORG, lS, 16, 10, 13,24, Sl
PAGE, 36,24, Sl
PEND, 39,24,30, Sl
PROC, 38, 24, 30, Sl

Index 63

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numeri cal sequence.

REF, 31, 10,24,51
RES, 17, 10,24,51
SET, 29, 3, 10,24,52
SPACE, 36,24,52
SREF, 31, 10,24,52
SYSTEM, 24, 52
iEXT, 35, 10,24,52
TE XTC, 36, 10, 24, 52
TITLE, 37, 24, 52
USECT, 18, 10,20,24,52

directives, summary of, 50-52
di rectives, types of

assembiy controi, 24-28
data geneiiJtion, 31 =36, 24
I isting control, 36,37,24
Macro-Symbol, 24-37
procedure control, 24
symbol manipulation, 29-31,24

DO directive, 26-28, 1,3, 10,24,50
DO-LOOP, 26
DO/ELSE/FIN loop, 27
DO 1 directive, 25, 10,24,50
DSECT directive, 18, 10, 19,24,50
dummy sections, 22

E

EBCDIC, 3
ELSE directive, 26-28,24,51
END directive, 25, 10,24,47,51
EOD control command, 47
EQU directive, 29,3, 10,24,51
equate symbols line, 44
error flags, 45
error line, 45
error messages, 47, 49
error notification, 34
exclusive OR (logical operator), 7
execution location counter, 14-17,2, 10, 12
expression evaluation, 6
expression values, 11
expressions, 6,7
extended binary-coded decimal interchange codes, 3
external references, 11, 13
externally defined symbols,

F
field list, 31,32,33
fields, 8
FIN directive, 26-28,24,51
fixed-point constant, 4, 5
fixed-point literal, 6
FL (floating-point long constant), 5
floating-point constant: 5
floating-point literal, 6
forward references, 10, 1, 11, 13, 30

64 Index

free-form symbolic lines, 8
FS (floating-point short constant), 5
FX (fixed-point decimal constant), 4,5

G

GEN directive, 31,32, 10,24,51
general registers, 23
generative statements, 18
GO MACRSYM option, 47
GOTO directive, 25,26, 10,24,29,51

H

HA functi on, 13, 12
hexadecimal constant, 4
hexadecimal digits, 4
hexadecimal literal, 6

ignored source image line, 44
index registers, 23
indirect addressing, 4
instruction mnemonics (Sigma 5), 54-57
instruction mnemonics (Sigma 7), 58-62
integer, 11
integer literal, 6
intrinsic functions, 12,40

$, 12
$$, 12
AF, 33,41,39
AFA, 34,41
BA, 12
CF, 33,40,39
HA, 13, 12
LF,40,39
NAME, 41, 42, 39
NUM, 41
WA, 13, 12

intrinsic resolution, 12, 11, 15, 16
iteration loop, 28,26

J

JOB control command, 46

L
label field, 9,8,23,24,40
labels, 10
language elements, 2
LF function, 40, 39
list, 31

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

listing control directives, 36,37,24
literal listing line, 45
literals, 6,7,1,4,22,45
LO MACRSYM option, 47
load location counter, 14-17,2, 12
loader, 1
LOC directive, 16, 17, 10, 13-15,24,51
LOCAL directive, 29,30, 10, 11,24,51
local symbol, 11
location counters, 14-17, 12, 19

genera I descri pti on, 14
resetting, 19
saving, 19
setting, 15

logical operators, 7
LU MACRSYM option, 47

M

Macro-Symbol,
Macro-Symbol assembly listing, 44
Macro-Symbol compatibility, 53
Macro-Symbol directives, 24-37,50-52
Macro-Symbol operations, 46
MACRSYM control command, 46
memory protection, 18
Meta-Symbol, 53
mnemonics (Sigma 5), 54-57
mnemonics (Sigma 7), 58-61
multiple name procedures, 39,40
multitermed expression, 6,5, 10

N

NAME function, 41,42, 39
nonlocal symbol, 11
NOT operator, 7
NUM function, 41

o
o (octal constant), 4
object program 18,25
octal digits, 4
octal literal, 6
operators, 6, 7
OR directive, 14
OR (logical operator), 7
ORG directive, 15,16,10,13,24,51

p
PAGE directive, 36,24,51
parentheses within expressions, 6
PEND directive, 39,24,30,51
previously defined references, 10

PROC directive, 38,24,30,51
procedure control directives, 24
procedure definition, 38-40,42
procedure display, 40
procedure identification, 38
procedure name, 38
procedure name reference, 41
procedure reference line, 39,40,42
procedure references, 39
procedures, 38-42
program deck structures, 47,48
program section directives, 18
program sections, 18-22

Q

quotation marks, 3

R

redefining symbols, 3
REF directive, 31, 10,24,51
relative addressing, 12
relocatable address, 11
relocatable control section, 18
relocatable expression, 11
relocatable term, 11
relocatable value, 11
relocation bias, 15, 17
RES directive, 17, 10,24,51
resetting location counters, 19

s
saving location counters, 19
self-defining terms, 3
sequence of statements, 25
SET directive, 29, 3, 10,24,52
SI MACRSYM option, 47
single-termed expression, 6
SPACE directive, 36,24,52
SREF directive, 31, 10,24, 52
statement continuation, 10
statements, 8
Symbol, 53
symbol decks, 47
symbol definition, 10
symbol manipulation directives, 29-31,24
symbol references, 10
symbol table, 11
symbol val ues, 11
symbol ic instruction statement, 23
symbols, 2, 10, 11

defining, 2
redefining, 3

syntax, 8
SYSTEM directive, 24,52

Index 65

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

T V
TEXT directive, 35, 10,24,52
TEXTC directive, 36, 10,24,52
TITLE directive, 37,24,52

u
unary operator, 7
update control commands, 47
update packets, 4
USECT diieCtiVe, 18, 10,20,24,52

66 Index

value list, 31,52

w
WAfunction,13,12

x
X (hexadecima! constant), 4

Publication Revision Sheet

CORRECTIONS TO XDS SIGMA 5/7 MACRO-SYMBOL REFERENCE MANUAL,

PUBLICATION NO. 90 1578, OCTOBER 1969

February 1970

Replacement pages for pp 53-54 and 57-58 are attached. Lines that have been changed in the manual are indi­
cated by revision bars in the margin of the page. Pages 54 and 58 have been altered to indicate that the LAS and
LMS instructions do not apply to all machines. Item 7 has been deleted from page 53 in the interest of compatibil­
ity between Macro-Symbol and Meta-Symbol.

90 15 78A- 1 (1/70)

	000
	001
	002
	003
	004
	005
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	_01

