
SJDlS SIGMA 5/7 FUNCTIONAL MATHEMATICAL PROGRAMMING SYSTEM

Reference Manual

SCIENTIFIC CATA SYSTEMS

FUNCTIONAL MATHEMATICAL
PROGRAMMING SYSTEM

REFERENCE MANUAL
for

SOS SIGMA 5/7 COMPUTERS

PRELIMINARY EDITION

90 16 09A

April 1969

Price: $3.50

SCIENTIFIC DATA SYSTEMS/701 South Aviation Boulevard/EI Segundo, California 90245

© 1969, Scientific Data Systems, Inc. Printed In USA.

RELATED PUBLICATIONS

Title Publication No.

SOS Sigma 5 Computer Reference Manual 900959

SOS Sigma 7 Computer Reference Manual 900950

SOS Sigma 5/7 Batch Processing Monitor (BPM) Reference Manual 900954

SOS Sigma 5/7 Batch Processing Monitor (BPM) Operations Manual 90 11 98

I~Vll\...J:

The specifications of the software system described in this publication are subject to change without notice. The avai labi lity or performance of some features may
depend on a specific configuration of equipment such as additional tape units or larger memory. Customers should consult their sDs sales representative for details.

ii

CONTENTS

l. INTRODUCTION ASSIGN 15
Valid ASSIGN Statements 15

Procedures 1 Invalid ASSIGN Statements 15
Control Language 2 GOTO 15
Communication Region 2 Valid GO TO Statements 16
Files 2 Inval id GO TO Statements 16
Input Data 2 IF 16
Output 2 Valid IF Statements 16
Selection Lists 3 Inva lid IF Statements 16

RETURN 16
EXIT 16

2. FMPS FUNDAMENTALS 4 WRITE 17
TITLE 17

Constants 4 STOP 17
Integer 4 END 17

Valid Integer Constants 4 Sample FMPS Program 18
Inval id Integer Constants 4

Floating-Point 4 4. BASIC FMPS PROCEDURES 19
Valid Floating-Point Constants 4
Invalid Floating-Point Constants 4 Operating Procedures Repertoire 19

Character 4 ENTER 19
Valid Character Constants 4 DEVICE 19
Inva lid Character Constants 4 Data Control Blocks 19

Variables 4 Device Argument 19
Integer 5 ATTACH 20

Valid Integer Variable Names 5 LOADLIST 20
Invalid Integer Variable Names 5

Floating-Point 5 5. DATA CARD FORMATS AND DECK
Valid Floating-Point Variable Names 7 ORGANIZA nON 22
Invalid Floating-Point Variable Names __ 7

Alphanumeric 7 Standard Card and Deck Formats for INPUT 22
Val id Alphanumeric Variable Names 7 Name Card 22
Invalid Alphanumeric Variable Names 7 Indicator Cards 22

Interrupt 7 Data Cards 22
Valid K-Type Variable Names 8 ENDATA Card 22
Invalid K-Type Variable Names 8 Data Deck Organization 22

Files 8 ROWS Data Cards 23
Internal Fi les 9 SPRICES Data Cards 23

Storage Requirements for Internal Fi les ___ 9 COLUMNS Data Cards 23
Communication Files 10 RHS Cards 24

Card Format Fi les 10 RANGES Data Cards 24
FORTRAN Format Fi les 11 BOUNDS Data Cards 24
Data Storage on Records 11 Nonstandard Card Formats for IN PUT 25

LP/90/94 Share Format 25
LP /90/94 Chapters 25

3. FMPS CONTROL LANGUAGE STATEMENTS 14 RHS Names 25
Basis Data Chapter 25

Introduction 14 Order of Input 25
Statement Types 14 Card Format 25
Card Format 14 UNIVAC 1108 Share Format 26
Control Language Statements 14 UNIVAC 1108 Chapters 26

CALL 14 RHS Names 26
Valid Procedure CALL Statements 14 Order of Input 27
Invalid Procedure CALL Statements 14 Card Format 27
Inval id Conti nuati on Cards for Procedure CDM4 Share Format 27

CALL Statement 15 CDM4 Chapters 27
Arithmetic 15 RHS Names 27

Valid Arithmetic Statements 15 Order of Input 27
Inval id Arithmeti c Statements 15 Card Format 28

iii

NAME and ENDATA Cards 28 Examples Using Separable Programming 46
Output 28 Nonl inear Object Function 46
Slack Indicator on ROWS Cards 28 Nonl inear Constraint 46

REVISE Data Cards 28 Input Phase 47
ROWS Cards for RE VI SE 29 INPUT 48

MODIFY 29 REVISE 49
DELETE 29 SE P Optimization Phase 49
BEFORE 29 OPTIMIZE 49
AFTER 29 INVERT 51

SPRICES Cards for REVISE 29 SETBOUND 51
MODIFY 29 Output Phase 52

COLUMNS Cards for REVISE 29 OUTPUT 52
MODIFY 29 SOLUTION 52
DELETE 29 ERRORS 53
BEFORE 29 CONDITION 54
AFTER 29 SEP Preservation/Restoration Phase 54

RHS Cards for REVISE 30 BASISOUT 54
RANGES Cards for REVISE 30 SAVE 54

MODIFY 30 BASISIN 54
DELETE 30 RESTORE 55

BOUNDS Cards for REVISE 30
MODIFY 30 8. OPERATING PROCEDURES 56 DELETE 30
BEFORE 30

BPM Control Commands Used in FMPS Runs 56 AFTER 30
ASSIGN and CALL Device Interaction 56 BASISIN/BASISOUT Data Cards 30
Efficient Use of FMPS 56 LOADLIST Data Cards 31

Organizing the Control Program 56
Indicator Cards 31

Multiple Attachments of Restart Tape 58
Data Cards 31

NAMES Data Cards 31
MASK S Data Cards 31

APPENDIXES

6. LINEAR PROGRAMMING OPERATING MODE 32 A. PARAMETRIC PROGRAMMING 59

Input Phase 32 RANGE 59
INPUT 32 PARAOBJ 61
REVISE 33 PARARHS 62

Optimization Phase 33
OPTIMIZE 34 B. FMPS ERROR MESSAGES 64

Degeneracy 35
Pivot Rejections 35 Control Language Compiler Diagnostics 64

INVERT 36 Input/Output Error Types 64
CRASH 36

Output Phase 37 C. FMPS Sample Runs 65
OUTPUT 37
SOLUTION 40 TABLES
ERRORS 42
CONDITION 42

l. FMPS Procedures
GET 42

Preservati on/Restorati on Phase 42
2. Types of Variables 4

BASISOUT 42
SAVE 43 3. Integer (I-TYPE) CR Variables 5
BASISIN 43
RESTORE 43 4. Floating-Point (F-Type) CR Variables 6

7. SEPARABLE PROGRAMMING OPERATING 5. Alphanumeric (A-Type) CR Variables 8
MODE 44

6. Interrupt (K-Type) CR Variables 8
General Description of SEP Mode 44

SEP Algorithm 45 7. lnternai and Communication Fiies 9
Piece-Wise Linear Approximation 45
Applicability of the SEP Algorithm 46 8. Procedures Using Communi cation Files 10

iv

9. FMPS Operating Procedures 19 23. Parametric Programming Procedures 59

10. Input Procedures 32 24. Output for Basic Variables 60

1l. Optimization Procedures 33 25. Output for Nonbasic Variables 60

12. Output Procedures 37 26. Input/Output Error Types 64

13. Parameters for OUTPUT 38
ILLUSTRATIONS

14. ROWS Chapter Column Description 40
l. FORTRAN Communication Fi Ie Record Structure 11

15. COLUMNS Chapter Column Description 41
2. Format of a NAME Record 11

16. Preservation/Restoration Procedures 42
3. Record Formats Produced by SOLUTI ON 12

17. SEP Input Procedures 47
4. Record Formats Produced for INPUT 13

18. SE P Optimization Procedures 49
5. Sample FMPS Control Language Program 18

19. SEP Output Procedures 52
6. Data Deck Organization for INPUT 23

20. SEP Preservation/Restoration Phase 54
7. Piece-Wise Linear Approximation to a

21. Consecutive-Sequential Fi Ie Assignments 56 Separable Function 44

22. Direct-Access Fi Ie Assignments 56 8. General FMPS Deck Structure 57

v

1. INTRODUCTION

This manual describes the Functional Mathematical
Programming System (FMPS) for SDS Sigma 5/7 computers.
FMPS is a mathematical programming system composed of
functions for solving linear programming (LP) problems.

Table 1. FMPS Procedures (cont.)

The manual is designed for the user who is familiar with
mathematical programming theory and application. Chap~
ter 1 provides general information about FMPS features.
These features include:

• Subroutines, called "procedures", for solving linear
programming problems.

• A user-oriented control language for sequencing oper­
ations, controlling exception conditions, and adjust­
ing tolerances.

• The flexible design of communication fHes and format
options, and the ability, at the level of each major
function, to direct the output stream to magnetic tape
(in addition to the printer), permitting FMPS to be
used as a free-standing package, or as part of a user­
designed optimization package.

Chapters 2 and 4 discuss basic concepts and basi c procedures,
respectively, of FMPS that are applicable to all operating
modes. FMPS control language statements are described in
detail in Chapter 3. Chapter 5 presents data formats and
data deck organization. Chapter 6 outl ines procedures used
in the I inear programming operating mode, and Chapter 7
describes procedures used in the separable programming
operating mode. When these procedures are identical in
both modes, they are repeated in Chapter 7 for user con­
venience. Appendix A describes parametric programming
and ranging procedures (an optional extension to the basic
systemh Appendix B is a list of error messages; and Appen­
dix C presents an FMPS LP mode sample run.

PROCEDURES

FMPS procedures and their functions are given in Table
below. (Basic FMPS operating procedures are given in
Chapter 4.)

Table 1. FMPS Procedures

Procedure Purpose

INPUT Reads matrix data from cards or tape in
standard FMPS format or in various
SHARE formats such as LP 90/94,
UNIVAC 1108 LP, or CDC CDM4.

OUTPUT Displays the input or current matrix in
various formats.

REVISE Reads correction data for modifying the
matrix.

Procedure

CRASH

OPTIMIZE,
INVERT

SOLUTION

ERRORS

CONDITION

GET

BASISOUT

SAVE

BASISIN

RESTORE

PARARHS,
PARAOBJ

RANGE

LOADLIST

Purpose

Creates an initial basis structure for
the current matrix and performs prelim-
inary validity checks on the matrix.

Performs the actual I inear programming
solution.

Displays the solution values in various
formats.

Displays the computation errors in-
curred during tbe solution process for
the primal and dual problems.

Prints out the communications region
contents.

Retrieves information about a row or
column and alters the strategy in the
control language.

Punches or fi les (FILE parameter) the
current basis structure and bounds
status.

Saves the contents of the commun ica-
tions region, the various internal work
areas, and all internal fi les (MATRIX,
INVERSE, etc.) on the tape file
RESTART.

Inputs a new basis or modifies the ex-
isting basis.

Restores (from file RESTART) the data
areas and internal fi les saved by SAVE.

Performs post-optimal parametric anal-
ysis of the solution with respect to the
right-hand-side and objective function.
(Refer to Appendix A.)

Performs post-optimal range analysis.
(Refer to Appendi x A.)

Loads a list of row labels and/or col-
umn labels to be used as selection lists
or masks during the OUTPUT, SOLU-
TION, and/or RANGE procedures when
selective output is desired.

Introduction

CONTROL LANGUAGE

The sequence of operations executed in an FMPS run is
controlled through statements, written in a user-oriented
control language, that

• Initialize and, if desired, modify tolerances during
execution.

• Assign input/output devices at the fMPS !evel.

• Preprogram action to be taken in case of exception
or error conditions.

In the following chapters of the manual, certain conven­
tions have been adopted for defining FMPS commands.
Capital letters indicate command words that are required
in the literal form shown. Lower case letters are figurative
representations of parameters. Command parameters en­
closed by braces (II) indicate a required choice. Brack­
eted ([]) parameters are optional. The format of the FMPS
control language closely resembles the FORTRAN language.
A procedure is activated by using the CALL statement as
shown below,

CALL procedure [(argument)]

where CALL is followed by the name of the procedure
and, if required, a list of arguments enclosed by paren­
theses to be used by the procedure. For example, the
statement

(CALL OUTPUT (BYROWS)

causes the input matrix to be i isted by rows.

Initialization and modification of tolerances are performed
by means of assignment statements. Reserved names have
been assigned to each tolerance available to the user. For
example, the statement

(FDJZT = 1. OD-6

assigns to the DJ zero tolerance the value 0.000001. Other
examples of tolerances available to the user are FMPIVT
(minimum pivot clearance during optimization) and ILINES
(number of lines to be printed per page).

Provision is made for user working-storage variables. The
language allows execution of simple arithmetic such as

(IF (FW03. L T. 1. 00-8) GO TO 325

(FWD3=FWD3/10.

where

FWD3 is a user working-storage vpriable.

325 is the label of a statement in the control pro-
gram as in a FORTRAN program.

Reserved variable names have been assigned for the han­
dling of exception interrupts. For example, the statement

(ASSIGN 460 TO KUBS

can be used to cause statement 460 to be executed if un­
boundedness occurs during optimization or parametric pro­
cedures. Assignments are dynamic and can be modified
under program control during the course of execution.

COMMUNICATION REGION

An area of computer memory called the communications
region (CR) contains all variables with reserved names
(such as FDJZT, ILINES, KUBS, etc.). FMPS initializes
these variables to standard values; therefore, it is not
necessary to initialize them in the control program if the
standard values are appropriate.

FILES

Data is carried in disc or tape fi les. Their purpose is to
hold FMPS data in a format allowing maximum processing
speed. The standard FMPS files are MATRIX, INVERSE,
UTILl, and UTIL2. These files carry the matrix, its in­
verse, and various intermediate information (UTIL 1 and
UTIL2). In addition, the RESTART file may be used for
intermediate dumping of the run status. The DEVICE and
A TTACH procedures must be used to define Data Control
Blocks (DCBs) through which files are to be used and to
assign these files to these devices. (See Chapter 4 for a
detailed description of these procedures.) The files are
internal to FMPS and are not intended to be used as input
or output files by user-designed programs.

INPUT DATA

Data can be input to FMPS from cards or tapes, in either
card image format, or FORTRAN unformatted WRITE format.
(FORTRAN unformatted WRITE format provides for better
data packing when using user-written matrix generators.)
Input data for FMPS is accepted by the following proce­
dures: INPUT, REVISE, LOADLIST, and BASISIN.

OUTPUT

Most FMPS procedures create printer output. The OUTPUT,
SOLUTI ON, and BASISOUT procedures write output on
magnetic tape in addition to the printer if the user so
chooses. The magnetic tape output for OUTPUT and

2 Control Language/Communication Region/Files/Input Data/Output

SOLUTION is in FORTRAN unformatted WRITE format,
which provides a compact data format for interface with
user-designed report writers. The BASISOUT procedure
produces either punched cards or card images on magnetic·
tape. Both are suitable for subsequent reloading by the
BASISIN procedure. As with input files, a symboHc unit
for each output file must be declared by means of the
ATTACH procedure.

Users need not be concerned with the format of the FMPS
internal files since INPUT and OUTPUT transfer data to or
retrieve data from them in a user-oriented format. How­
ever, note that the user must assign DCBs for the internal
files at the beginning of the run.

To provide a convenient method for abstracting the output
results (whether they are written on tape or printed), the
OUTPUT, SOLUTION, and RANGE procedures include
many optional parameters. For example, OUTPUT provides
for listing the matrix by rows, by columns, in matrix tab­
leau format, or in coded format. (In coded format, coef­
ficients are symbolized by letters showing the sign and
magnitude of the coefficients.) Similarly, the RANGE
procedure can be made selective with respect to the type
of variable printed, that is, printing only the basic, only
the nonbasic, or both. Furthermore, RANGE can select
individual items of information for printing.

All three procedures can be made selective with respect to
the individual rows and/or columns to be printed, that is,

1. Print only specified rows.

2. Print all rows except specified rows.

3. Print all rows which match specified masks.

4. Printall rows except those which match specified masks.

Similar options are available independently for columns.

SELECTION LISTS

Selection I ists consist of names (rows and/or columns) and/
or masks (rows and/or column names with an asterisk match­
ing any character in the row or column name in the corre­
sponding position in FMPS internal files). Since the same
selection list usually applies over an entire run, a single
procedure, LOADLIST, is used to load the rows-and­
columns selection lists.

Items selected are controlled by optional arguments. For
example

RCHAPTER,2,5,CCHAPTER,2,4,8,FILE, .
ISOLFILEI)

CALL SOLUTION (ROWS,LISTR,COLS,
EXCEPT,LISTC,

causes the solution to be written on the user fi Ie SOLFILE
as well as on the printer, outputting only the rows included
in row selection list LISTR, the columns not included in
column selection list LISTC, the row name and its slack
activity for rows, and the column name and its activity for
columns. One selection list may be used to control output
items during several procedures such as OUTPUT, SOLU­
TION, and RANGE. Such procedures have an optional
parameter indicating whether the information to be output
is to be controlled by the selection list. The list need be
loaded only once. In some procedures such as RANGE,
reduction of output and calculations will result in sizable
savings in execution time.

Selection Lists 3

2. FMPS FUNDAMENTALS

This chapter describes in detail some basic elements of FMPS
such as variables and constants available in the control lan­
guage, internal files, selection I ists, and the structure of
communication files.

CONSTANTS

The FMPS control language uses three types of constants in
Arithmetic statements and as parameters in procedural CALL
statements. They are: integer, floating-point, and
character.

INTEGER

A number written without a decimal point is called an inte­
ger constant. An integer constant is composed of one to
seven decimal digits. It may be preceded by a plus sign,
a minus sign, or a blank. If unsigned, it is assumed to be
positive. It may not conJain any embedded blanks. Sample
valid and invalid integer constants are shown in the tables
below.

VALID INTEGER CONSTANTS

o
100000
-54
+1

INVALID INTEGER CONSTANTS

-i735
100,000

Contains an embedded blank
Contains a comma

FLOA TING-POn'~T

A number with a decimal point, optionally followed by a
decimal exponent (written as the letter 0 followed by a
signed or unsigned one- or two-digit integer constant) is
called a floating-point constant. The magnitude of a real
constant must be compatible with that allowed by FORTRAN
for the machine being used. However, only eight signifi­
cant digits are allowed. A floating-point constant may be
preceded by a plus sign, a minus sign, ora blank. Embedded
blanks are not allowed. The first table shown below gives
correct floating-point constants and their real magnitudes.
The second table shows inval id representations of floating­
point constants.

VALID FLOATING-POINT CONSTANTS

-3.49
1. 47D3
-.23D-4
0.0
.2D+2

-~.49

1470.
-.000023
zero
20.

4 FMPS Fundamentals

INVALID FLOATING-POINT CONSTANTS

. 123456789D 1

1,217.2
1.7D 2

1.3E4

Will be truncated to eight
significant digits
Contains a comma
Contains a blank between
D and 2
E not val id - must use D

CHARACTER

A string of from one to eight characters, enclosed by single
quotation marks, is called a character constant. (The single
quotation mark is represented by a 5 - 8 punch on the card:)
Character constants, sometimes called literals, may be com­
posed of alphabetic, numeric, special, or blank characters.
The quotation marks are not part of the character constant,
but are used to del imit it-. -The quotation mark itself is the
only special character not allowed within the body of the
character constant. Correct character constants are shown
directly below, incorrect examples in the second table.

VALID CHARACTER CONSTANTS

'ROWS'
'THE ENOl
12+31

I DOG/CAT'

INVALID CHARACTER CONSTANTS

'OPERATION' Only eight characters are
allowed

IABD
INBC

Second quotation mark missing
Embedded quotation mark not
allowed

VARIABLES

Variables (storage references) are symbolic names of either
locations within the control program (user working-storage
variables), or locations in the FMPS communication region
(CR variables).

All storage within FMPS is identified by type. The four
types of variables, each identified by its leading char­
acter, are shown in Table 2 below.

Table 2. Types of Variables

Code I Type

I
Integer

F Floating-Point
I

A

I
Alphanumeric

K Interrupt

User-created variables are distinguished from CR variables
by their second character, which must be a W. Also, user­
created variable names may contain a maximum offour char­
acters, while CR variable names may contain a maximum of
eight characters. User-created variable names containing
more than four characters will be truncated to four. The
user may create a total of 50 integer and K-type variables
and a total of 50 floating-point and alphanumeric variables.
Each distinct type is discussed below.

VALID INTEGER VARIABLE NAMES

IFREQI
IWBG
IW3

CR variable for inversion iteration frequency
User working-storage variable
User working-storage variable

INVALID INTEGER VARIABLE NAMES

IU5 Not a val id CR variable name nor a val id
user working-storage name since second
character is not W

KROW Integer names must begin with I

INTEGER FLOA TING-POINT

Each integer (I-type) variable is a single precision word
containing a single precision integer value. Integer vari­
ables may assume any of the values of an integer constant.
An I-type variable may be used in an Arithmetic statement,
an IF statement, a WRITE statement, or as a parameter in a
procedure CALL statement. Table 3 contains a list of all
CR integer variables and an explanation of each.

Each floating-point (F-type) variable is a double precision
word and contains a double precision floating-point value.
A floating-point variable may assume any of the values of
a floating-point constant. It may be used in an Arithmetic
statement, an IF statement, a WRITE statement, or as a
parameter in a procedure CALL statement. Table 4 con­
tains a I ist of all floating-point CR variables and an expla­
nation of each.

Some sample integer variables are shown in the following
tables.

CR
Variables

IDNFSOL

IDULSTOP

IESWT

IFREQA

IFREQI

I1WGHT

ILOGC

ILOGP

ILOGSS

ILINES

INCAND

ININF

Initial ized
Value

a
a

a

a

a

a

a
a
a

50

a

a

Table 3. Integer (I-type) CR Variables

Explanation

Number of feasible solutions found for the integer problem.

Controls the brake on DUAL in MIP operating mode. If IDULSTOP is nonzero,
DUAL will run to a feasible solution to the (possibly reduced) problem every
IDULSTOP major iterations.

The console jump switch to interrogate. IESWT must be 0-8. If zero, no
switch is tested. If IESWT is 1 :- 8, and the jump switch is on, KESWT inter­
rupt will occur.

Iteration frequency interrupt for OPTIMIZE, PARAOBJ, and PARARHS. If
IFREQA is 0, no interrupt will occur. Otherwise, the KFREQA interrupt will
occur every IFREQA iterations.

Iteration frequency interrupt for inversion. In the iterating procedures OPTIMIZE,
PARAOBJ, and PARARHS, the KINV interrupt will occur every IFREQI iterations
(IFREQI > 0).

Infeasibil ity weighting switch. When IIWGHT is 1, the reciprocal of the amount
of infeasibil ity is used as a weighting factor. When IIWGHT is -1, the amount
of each infeasibil ity is used as a weighting factor. When IIWGHT is 0, all in­
feasibil ities are given equal weight.

Iteration logging frequency on console typewriter.

Iteration logging frequency on standard printing device.

On/Off switch for printing column selection messages during pricing of matrix.

Maximum number of I ines to be printed on a page.

Number of profitable candidates from which one is selected during pricing of the
matrix. For example, if INCAND is 5, then from each group of 5 profitable col­
umns, the most profitable is selected. If INCAND is 0, the system will attempt to
choose the optimum set.

Current number of infeasible variables in the basis.

Variables 5

CR
Variables

INVTIME

IPARAM

IPASS

IPFES

IPSOlTN

ITCNT

ITIME

CR
Variables

FABSZT

FCMPDJ

FDJZT

FEPSIlON

FINFZT

FMINVT

FMPIVT

FOBJVAl

FOBJWT

6 Variables

Initial ized
Value

o

o

2000

2000

o

o
o

Initial ized
Value

1. OD-12

0.5DO

1.0D-0?

0.0

1.0D-0?

1.0D-09

1.0D-OS

0.0

-1. 0

Table 3. Integer (I-type) CR Variables (cont.)

Explanation

Switch control I ing the KINV interrupt tim ing routine in the PRIMAL procedure.
If INVTIME is 0, the timing routine is active and causes KINV interrupts at times
such that the total optimization time tends to be minimum. If INVTIME is -1,
the timing routine is not active.

Parametric programming mode indicator. If IPARAM is -1, PARAOBJ is in effect,
if IPARAM is 1, PARARHS is in effect, and if IPARAM is 2, PARARIM is in effect.

Number of assignments allowed during solution of the integer subproblem in MIP
mode before the KASS interrupt occurs.

Number of feasible solutions allowed to the integer subproblem in the MIP mode
before the KPF ES interrupt occurs.

After solution of an integer subproblem in MIP operating mode, IPSOl TN will be
nonzero if there was a change in the integer solution and will be zero if the inte­
ger solution has remained the same.

Current iteration count.

The length of time, in minutes, before the KTIME interrupt will occur. The KTIME
interrupt does not occur if KTIME is set to zero. Whenever the KTIME interrupt
occurs, KTIME is set to zero. Time for KTIME is measured from the time of the
last initial ization of ITIME.

Table 4. Floating-Point (F-type) CR Variables

Explanation

Absolute zero tolerance. Any computed number is replaced by zero if its absolute
value is less than FABSZT.

Factor used in determining effective DJ when infeasible, that is,
DJE=FCMPDJ*DJ+(1.0-FCMPDJ)*DJI

where DJE is Effective DJ, DJ is True DJ of column, and DJI is DJ based on in­
feasibil ity removal qual ities of column.

DJ zero tolerance. If the absolute value of the reduced cost (DJ) is less than
FDJZT, it is considered zero.

The value used to replace zero right-hand-side elements of inequal ities on degen­
erate problems. If the constraint is of the less-than type, a zero RHS element is
replaced with FEPSIlON. If the constraint is of the greater-than type, a zero
RHS element is replaced with -FEPSIlON.

Infeasibility zero tolerance. If the absolute value of the amount of infeasibility
is less FINFZT, the variable is considered feasible.

Minimum inversion pivot tolerance. During INVERT, in the nontriangularized
portion, an element is not considered as potentially pivotal unless its absolute
value is greater than FMINVT.

Minimum pivot tolerance. During any optimization procedure (here, INVERT is
not considered an optimization procedure), an element is not considered as poten­
tially pivotal unless its absolute value is greater than FMPIVT.

Current objective function value.

Objective function weight: -1.0 for maximization, 1. 0 for minimization.

CR
Variables

FRDIFT

FRELZT

FSINF

FTHETAC

FTHETACM

FTHETACP

FTHETAR

FTHETARM

FTHETARP

Initial ized
Value

4096.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Table 4. Floating-Point (F-type) CR Variables (cont.)

Explanation

Relative difference tolerance. This tolerance represents a power of 2, that is,
2.0**12 is 4096. If the difference of two numbers is in the low-order twelve
bits, the numbers are considered identical. Any user-specified value must be
a power of 2, such as 8192.0 or 16384.0.

Relative zero tolerance. If the absolute value of the summation of a series of
numbers divided by the absolute value of the largest sum or number is less than
FRELZT, the summation is considered to be zero.

Current sum of infeasibility. Each infeasibility is summed in absolute terms.

Initial value of THETA for PARAOBJ.

Maximum value of THETA for PARAOBJ.

The incremental value for THETA during PARAOBJ for which the KSOLTN inter­
rupt will occur.

Initial value of THETA for PARARHS.

Maximum value of THETA for PARARHS.

The incremental value for THETA during PARARHS for which the KSOLTN inter­
rupt wi II occur.

Correct and incorrect floating-point variable names are
shown in the tables below.

AWLD

AW07

User working-storage variable

User working-storage variable

VALID FLOATING-POINT VARIABLE NAMES

FMPIVT

FW01

FW5D

CR variable for minimum pivot tolerance
for optimization

User working-storage variable

User working-storage variable

INVALID FLOATING-POINT VARIABLE NAMES

FDOG

AW07

Not a val id CR variable name nor a val id
user working-storage name since second
character is not W

Floating-point names must begin with F

ALPHANUMERIC

Each alphanumeric (A-type) variable is a double precision
word and contains up to eight characters. An alphanumeric
variable may assume any of the values of a character con­
stant. It may be used in a simple Arithmetic statement, in
an IF statement, in a WRITE statement, or as a parameter
in a procedure CALL statement. Table 5 contains a I ist of
all alphanumeric CR variables and an explanation of each,
followed by tables showing val id and inval id alphanumeric
variables.

VALID ALPHANUMERIC VARIABLE NAMES

ARHS CR variable for name of current right­
hand-side

INVALID ALPHANUMERIC VARIABLE NAMES

AMESS

NAME

Neither a val id CR variable name nor a
valid user working-storage name since
second character is not a W

Alphanumeric names must begin with A

INTERRUPT

During the execution of a mathematical programming sys­
tem, many conditions arise which require some form of cor­
rective action. Although much thought is generally given
to the corrective action to be taken, no particular action
is suitable under all circumstances. The interrupt processing
concept in FMPS has been developed to facilitate initiation
of appropriate corrective action when it is required.

For each condition requiring corrective action or for any
point where greater user flexibil ity is desired, a CR inter­
rupt variable is reserved. The function of each variable
is to serve as a pointer to a control language statement or
group of statements that will perform the corrective active
or procedural steps desired by the user and allow for the
resumption or exiting of the procedure causing the interrupt.

FMPS will initial ize all interrupt variables to perform stan­
dard recovery techniques. The user, through the use of the
ASSIGN command, may reset any interrupt variable to per­
form his own sequence of commands.

An interrupt (K-type) variable may assume the value of any
val id statement number. The user working-storage K-type

Variables 7

variable may be used in a GO TO statement, an ASSIGN
statement, or a WRITE statement. Conversely, a K-type
CR variable may only be referenced in a WRITE statement
or an ASSIGN statement. The K-type CR variable is a
single precision word containing a pointer to a control
language sequence of instructions to be executed if an
interrupt in a procedure occurs. Table 6 contains a list of
all interrupt variables and an explanation of each. Sample
K-type variables are shown in the tables below.

FILES

FMPS includes two types of files:

• INTERNAL FILES For intermediate storage during
FMPS procedures (magnetic
tape or disc)

VALID K-TYPE VARIABLE NAMES

KMAJER

KWST

CR major error interrupt variable used by
many procedures

User working-storage variable

• COMMUNICATION
FILES

For communication between
FMPS and user-designed
programs (magnetic tape)

INVALID K-TYPE VARIABLE NAMES

KQUIT

IWAL

CR
Variables

ADATA

AOBJ

APBNAME

APOBJ

APRHS

ARHS

CR
Variables

KFREQA

KINV

KIOER

KMAJER

KMINER

KNFS

KSOLTN

KTIME

KUBS

8 Files

Not a valid CR variable name nor a user
valid working-storage name since second
character is not a W

Table 7 lists required and optional files for operating in
the linear programming (LP) or separable programming
(SEP) operating mode. This table also indicates the input/
output device type (sequential such as tape, or random­
access such as disc) that is required, preferred, or optional. K-type names must begin with K

Initial ized
Value

None

None

None

None

None

None

Initial ized
Value

None

None

Terminate Run

Term inate Run

None

None

None

None

None

Table 5. Alphanumeric (A-Type) CR Variables

Explanation

Contains the name of the data deck for data reading procedures such as INPUT,
REVISE, etc. Also used by data-outputting procedures (such as BASISOUT) to
name output data deck. It specifies the name that appears on the NAME card
of image input. (Refer to Chapter 5 for general data formats).

Contains name of objective function row.

Contains name of problem.

Contains name of PARAOBJ change row.

Contains name of PARARHS change column.

Contains name of right-hand-side.

Table 6. Interrupt (K-Type) CR Variables

Explanation

Iteration frequency A interrupt. This interrupt will occur when IFREQA iterations
occur.

Inversion interrupt. This interrupt will occur when IFREQI iterations occur or
an inversion is required.

Input/output device error interrupt.

Major error interrupt.

Minor error interrupt.

No feasible solution interrupt.

SOLUTION print interrupt.

Elapsed time interrupt. This interrupt will occur when ITIME minutes have eiapsed.

Unbounded solution interrupt.

Table 7. Internal and Communication Files

Required Internal Files

File Name Device Type Description of File

MATRIX Sequential or Contains the internal representation ' of the matrix processed
Random-Access by INPUT.

INVERSE Preferably Contains the internal representation of the product form of
Random-Access the inverse.

UTILl Sequential or A utility file used by many procedures for scratch storage.
Random-Access

UTIL2 Sequential or A util i ty fi I e used by many procedures for scratch use.
Random-Access

Optional Internal Files

RESTART Sequential Used by the SAVE procedure for storing all fi les for later
resumption of run. Used by the RESTORE procedure for
restoring the machine to the state at the time the SAVE pro-
cedure prepared the file.

Optional Communication Files

'filename' Sequential

INTERNAL FILES

Within each operating mode of FMPS, a minimum number
of internal files is required. Each internal file has been
assigned a unique preempted name, and these names will
be referred to throughout this manual. The user is required
to attach the required files to appropriate DCBs (see
Chapter 4).

STORAGE REQUIREMENTS FOR INTERNAL FILES

The number of words of disc storage required by the MATRIX
file is specified by the following equation.

2.25 (5M + NSP +4N + NNZ + 4NRHS + NNZRHS)

where

M is the number of rows in the matrix.

N SP is the number of slack prices.

N is the number of columns in the matrix.

NNZ is the number of nonzero elements in
columns.

NRHS is the number of right-hand-sides.

NNZRHS is the number of nonzero elements in
right-hand-side{s).

Any user-defined file used for internal communication between
FMPS and user's programs. Several such fi les can be used. The
quote marks are part of the name of the fi I e.

The number of words of disc storage required by the
INVERSE file is specified by the following equation

4. 5 (M * 1 • 25 AN N Z)

where

M is the number of rows in the matrix.

ANNZ is the average number of nonzero elements
in a matrix column.

The number of words of disc storage required by files UTILl
and UTIL2 is the same as for the MATRIX file.

These estimates for disc storage may vary during certain
procedures. For example, during REVISE, the storage
requirement for the INVERSE file is generally twice that
of the MATRIX file.

For large problems, it may not be possible to assign all
files to disc storage during preliminary phases such as
INPUT and REVISE. Since it is desirable to have the
files on disc during the iterating procedures (OPTIMIZE,
INVERT, etc.), it is suggested that the user assign all files
to magnetic tape during the INPUT/REVISE phase. Fol­
lowing this, he may call the CONDITION and SAVE
procedures.

The CONDITION output will I ist the current storage re­
quirements (in words) for each file and the maximum storage
required to date. The current size of the MATRIX file can

Files 9

be used for its disc storage requirements as well as for UTIL 1
and UTIL2. The current storage requirements stated for the
INVERSE file cannot be used for disc estimating since the
iterating procedures have not yet been used.

For maximum efficiency, the following priority should be
given in assigning files to disc for the iterating procedures.

2

3

4

Procedure

INVERSE

MATRIX

UTIL1

UTIL2

COMMUNICATION FILES

Communication files are the means of communication be­
tween FMPS and user-written programs. FMPS input pro­
cedures accept data from a standard card reading device
or, optionally, from communication files. FMPS output
procedures retrieve data from internal files and prepare
printed reports. Optionally, the data may be written on
a commun ication file.

To provide a mutually-convenient form of communication,
such files are structured to be read or written with FOR­
TRAN READ or WRITE statements. By using FORTRAN input/
output as the basic means of communication, the user can
write his own specific matrix generators and report writers
in FORTRAN.

The following table identifies the FMPS procedures that in­
clude the option of accepting input from communication
files or of writing output on communication files.

iable 8. Procedures Using Communication Fiies

Procedure FORTRAN
(in LP mode) Card Format Format

LOADLIST Yes No
INPUT Yes Yes
OUTPUT No Yes
REVISE Yes No
SOLUTION No Yes
BASISOUT Yes No
BASISIN Yes No

The following paragraphs describe basic communication file
structure and the means by which FORTRAN READ and
WRITE statements may be used to access the data.

CARD FORMAT FILES

All data decks that may be read or written on a CARD
fil e are organ ized as described in Chapter 5, Each data
deck is preceded by a NAME card which identifies the
data, and each data deck is terminated with an ENDATA
card.

10 Files

Whenever a procedure requires input data, the input device,
whether card reader or CARD file, is searched for a NAME
card with an identification field (columns 15 to 22) that
matches the current contents of commun ication region vari­
able ADATA.

Whenever a procedure produces a data deck (that is, BASIS­
OUT), NAME and ENDATA cards are also produced. If the
output dev ice is other than the card punch, that is, a CARD
file, the card file is positioned to the logical end-of-file
and the new data deck is written. The logical end-of-file
is assumed to be a NAME card with zzzzzzzz in the identi­
fication field.

Procedures such as INPUT, REVISE, and LOADLIST require
data input. Whether the input is from cards, card images
on magnetic tape, or in FORTRAN unformatted WRITE for­
mat, the following conventions apply:

1. The data must be preceded by a name record identi­
fying the data record, and the data must be followed
by an ENDATA record.

2. In the control program, the CR variable ADATA must
be initial ized with the name of the data set to be
loaded before the procedure requiring input is called.
For example, the following sequence,

ADATA = 'MATRIX1'
CALL INPUT

causes the card data set with the name MATRIX 1 to be
loaded by the INPUT procedure.

3. The card data sets must be placed after the END state­
ment of the control program. The card data sets must
follow each other in the sequence of input.

4. Input records on magnetic tape can occur in any se­
quence. FMPS will rewind the input tape, if neces­
sary, to locate the desired set of data if the tape was
positioned beyond the record to be loaded.

5. For proper operation, it is necessary that all input files
include as the last record a NAME record with the
name zzzzzzzz and an EN DATA record. This con­
stitutes the logical end-of-file for FMPS.

6. When writing output on magnetic tape, FMPS auto­
matically suppl ies the NAME and ENDATA rec-
ords. The name is copied from the current CR
variable ADATA which must be initialized to the
desired name by the user before executing the out­
put. If the tape includes data prior to the out­
put operation, the new output data is appended to
the current data and a logical end-of-fil e (NAME
zzzzzzzz and ENDATA) is added. Decks punched
by FMPS also include the NAME and ENDATA
records.

7. The INPUT procedure includes the option of reading
card decks or magnetic tape reels prepared for other
I inear programming packages such as LP 90/94, 1108
LP, and CDM4. When reading such data from cards,
NAME and ENDATA must precede and follow the input
data. When reading from magnetic tape, the NAME
and ENDATA records must not be present on the tape.

FORTRAN FORMAT FILES

A FORTRAN format file consists of a series of unformatted,
FORTRAN-written records on tape. Each record contains
60 double precision (DP) words. The structure of each rec­
ord is shown in Figure 1. The first three DP words are used
to identify the record.

The first DP word contains the name of the procedure gen­
erating the record or the. name of the procedure for which
this record is input. N14, the left half of the first DP
word, contains the first four characters of the name, and
N58, the right half of the first DP word, contains the last
four characters of the name.

The second DP word contains the subname of the record.
SN14, the left half of the second DP word, contains the
first four characters of the subname. SN58, the right
half of the second DP word, contains the last four char­
acters of the subname.

The third DP word contains the record number and index of
the word last used in the record. RN, the left halfof the
third DP word, contains the record number. RN is used to
signal the end of a series of records.

As an example, if three 60-word records were required to
contain the information, RN in the first record would be
-1, in the second -2, and in the third 3. Therefore, if
RN is negative, it indicates that there is more of the same
kind of information in the next record. When RN is posi­
tive, it indicates that this is the end of records containing
the stated information. ILAST, the right half of the third
DP word, contains the index of the last item in the record.
ILAST is always less than or equal to 60. The fourth through
the sixtieth DP words contain the information in groups of
three DP words.

DATA STORAGE ON RECORDS

Conventions for storage of data on records are outl ined below.

1. All names (character strings of eight characters or less)
are stored with the first four characters of the name in
the left half of a DP word and the last four characters
in the right half of the DP word.

2. Floating-point values are stored as double precision
float i ng-po i nt.

3. Integers are stored in the left half (most significant) of
a DP word.

As with CARD communication files, all input data must be
preceded by a NAME record. In addition, output will be

preceded by a NAME record that contains the contents of
CR cell ADATA. The format ofa NAME record is shown in
Figure 2.

The last record on a communication file will be a NAME
record whose name is zzzzzzzz (suppl ied by the user).

Each time information is written on a FORTRAN communi­
cation file, the tape is positioned to the zzzzzzzz name
record and the zzzzzzzz record is overwritten with a new
NAME record containing the contents of CR cell ADATA.
The information is then written followed by a new NAME
zzzzzzzz record.

Record formats produced by SOLUTION are shown in
Figure 3. Record formats for the INPUT procedure are
shown in Figure 4.

(1)

(2)

(3)

(4)

(5)

(6)

(58)

(59)

(60)

- DOUBLE PRECISIO N -

N14 N58

SN14 SN58

RN ILAST

Figure 1. FORTRAN Communication File Record Structure

(1)

(2)

(3)

(4)

(60)

- DOUBLE PRECISIO N -

NAME -tsOts-!5

AAAA AAAA

1 3

Remainder

of

record unused

Figure 2. Format of a NAME Record

Files 11

"'TI

CD
en

Identify

I

2

3

4

5

6

7

8
9

10

II

12

13

14

15

16

17

18
19

20

21

22

23

24

25

60

SOLU

IDEN

IDEN

APBN

AAAA

IDEN --
STAT

AAAA

IDENT

FOBJ

IDEN

FUNC

IDEN

ARMS

AAAA
IDEN

AOBJ

AAAA
IDEN

ITER

nON

nFY

I 24

Tm

AME

AAAA

nsiJO
U~

AAAA

T-Il6i5

WT~

+1. 0

T-IStlO

TION
Co

TMts

~

AAAA
nst)!)
-t51%15

AAAA
TlSl%

-I%M

I

I

Rows

SOlU TION

2 ROWS -tlt>iSiS

3 RN IlAST

4 ROWN AMEI

5
} Contents of CR Cell 6 APBNAME

NUMB ERtllS

I Row Number

7 ROWN AMEI

8 AT-tlt> -I%6i5
} OPTIMAliS, UNBOUNDts

INFEAStSti, UNBOUNDt> 9 AA-I% iStstlts FR, EQ, ll, Ul,

10 ROWN AMEI

II ACTI VITY

12 Row Activity Value

13 ROWN AMEI

14 SlAC KiSiSf>
Objective Function Value 15 Slack Activity Time

16 ROWN AMEI

17 lllM ITU
Name of Right-Hand Side 18 None or lower

limit Value
19 ROWN AMEI

- ---
20 UlIM IT-ISf)

Name of Objective Row 21
None or Upper
limit Value

22 ROWN AMEI

23 DUAL ACT-Il

Iteration Count 24 Dual Activity Value

25

} •• ma'Od" al 26
record not used 27

28

ROWN AMEI

COST iSMts

ROWN AMEI

Slack Price Value

29 D~ -ISm
30 } Reduced Cost Value

of Slack
31 ROWN AME2

32 NUMB ERtliS
33 I Row Number

60

Figure 3. Record Formats Produced by SOLUTION

Columns

SOLU

2 COLU

3

4 COlN

5 NUMB

6

7 COlN

8 AT-t)£>

9 Mf>f>
10 COlN

11 ACTI

12

13 COlN

14 COST
15

16 COlN

17 lllM
18

19 COlN

20 UlIM

21
22 COLN
23 DJU

24

25 COLN

26 NUMB
27

60

nON

MN%

RN

AMEI

ERas

J

AMEI
-6fml)

M£>f)

AMEI

VITY

1;:1

AMEI
ITt)!)

3ArEI

fTlSiS

I~:I
AME2

ERlSiS
J

IlAST

--
--

--

--

--

--

--

Column Number

BS, ll, Ul, FR, FX,

}
Column Activity
Value

Column Cost Value

} None or Lower
limit Value

}
None or Upper
Limit Value

}
Reduced Cost
Value of Column

Column Number

Rows

2

3

4
5

6

7

8

9

58

59
60

RHS

1

2

3

·4
5
6

7

8
9

58

59
60

INPU

ROWS

M>66
ROWN

A666

ROWN

Af)66

ROWN

INPU

RHSf>

RHSN

ROWN

RHSN

ROWN

RMSN

ROWN

T.fmf>

M6f>

RN

Mf>f>

AMEI

Ignored
frl%\)

AME2
Ignored

1~66
IAMEM

Ignored

T-IStSiS

-tJI5t%
RN

AMEl

AMEI
.t>.

I

AMEI

AMEI
-I)j

IAME5

IAMEM
-tS j

Sprices

2

ILAST 3

N, L, G, E, Row Type 4

Name of Row 5

6
7

8
9

58

59
60

Ranges

2

ILAST 3

RHS Nome 4

Row Name 5

RHS Value 6
7

8
9

58

59
60

INPU T-iSt%
SPRI CES.s

RN

SLKN AMEI

COST ROW
Cj

ALKN AME2

LOST ROWt)

SLKN IAMEM

COST I ROWiS
Cj

INPU H5l%

RANG ESi5i5

RN
RNGN AMEI

ROWN AMEI r------ -- --
Rj

RNGN AMEI

ROWN AME2
Rj

RNGN IAMEl

ROWN IAMEM
Rj

ILAST

ILAST

Name of Slack

Name of Cost Row

Slack Price

Range Col umn Name

Row Name

Range Value

Figure 4. Record Formats for INPUT

Columns

2

3

4

5

6

7

8
9

58

59
60

Bounds

1

2

3
4

5

6
7

8
9

58

59
60

Endata

2

3

INPU r-6i%
COLU MN%

RN

COLN AMEI

ROWN AMEI

Aij

COLN AMEI

ROWN AME2
Aij

COLN IAMEM

ROWN IAMEM
Aij

INPU lIS1515

BOUN DSiS6

RN
AAiS6 66615

COLN AMEI

B

AAtSts ~t%t)
COLN AME2

B

MiSIS ftsl5b15

COLN IAMEN
B

INPU T-!Sl%

ENDA TAfrl)

I

ILAST

ILAST

Column Name

Row Name

Element Value

}
LO, UP, FX, FR, PL
Type of Bound
Column Name

Bound Value

3. FMPS CONTROL LANGUAGE STATEMENTS

INTRODUCTION

An FMPS run always includes a set of cards that specify the
operations to be executed. These cards are grouped together
in a control program. Rather than using fixed-format con­
trol cards, FMPS uses control statements that are compiled
by FMPS at the beginning of the run.

STATEMENT TYPES

The control language for FMPS was designed to be a subset
of the FORTRAN -'anguage. There are five basic types of
statements:

1. The procedural CALL statement, which loads and trans­
fers control to one of the FMPS procedures. This type
of statement is analogous to a FORTRAN subroutine
call.

2. Arithmetic statements, which evaluate simple arithme­
tic expressions.

3. Program flow control statements, such as ASSIGN,
GO TO, EXIT, RETURN, and IF, which transfer con­
trol to a statement other than the next one in sequence.

4. The WRITE statement, which displays any user or
common-storage variable on the standard output de­
vice. The TITLE statement provides a heading for
each page of output.

5. Delimiting statements, which indicate the end of the
control program. The END statement is a message to
the compiler that there are no more statements to be
processed. It is not executable. The STOP statement
is executable and indicates that execution of the con­
trol program is to terminate.

CARD FORMAT

The card format for the FMPS control language is identical
to that of FORTRAN.

Column 1 is used to indicate a comment card. A C punched
in column 1 indicates that the rest of the card is a comment,
and is not processed. The comment card wi 1\ appear on the
I isting produced by the compiler. Comment cards may be
used freely to give information or improve readability.

Any statement, other than an END statement, may be given
a statement (step) number. A step number is any unsigned
integer between 1 and 9999. It may be placed anywhere
in columns 2-5 of the card.

Column 6 is reserved to indicate a continuation card. As
many continuation cards as are needed may be used, but

14 FMPS Control Language Statements

they can only be used to continue the parameter list of a
procedure CALL statement. They may not be used with
any other kind of statement. Any nonblank character
punched in column 6 will indicate that the card is a con­
tinuation of the parameter I ist from the previous card. A
statement may begin in column 7 or anywhere thereafter.

Columns 73-80 are ignored, and may be used for sequence
numbers if the user wishes. A summary of card format is
shown below.

r.] [] {nonblank} lC step· blank statement [sequence numbers]

CONTROL LANGUAGE STATEMENTS

CALL The procedure CALL statement causes the speci-
fied procedure to be loaded into memory, control to be
transferred to the procedure, and the set of parameters
specified in the argument list to be communicated to it.
The procedure CALL statement has the form

CALL pname [(parameter 1, parameter 2, •.•)]

where

pname is the name of the FMPS procedure to be
executed.

parameter 1, • • • represents the values to be
transm i tted to the procedure. Parameters may
be constants, voriables (either CR variables or
user working-storage variables), or keywords.
Some procedures have no parameters associated
with them. The parameters are always enclosed
by parentheses and separated by commas.

Correct and incorrect procedure CALL statements are
shown below.

VALID PROCEDURE CAll STATEMENTS

CAll OPTIMIZE
CALL ENTER (lP)
CALL ATTACH ('FllEl', 'F:Fl')

Note that the CAll ATTACH procedure above could be
written as

AWD4 = 'FIlEl'
AWOl = 'F:Fl'
CAll ATTACH (AWD4, AWOl)

INVALID PROCEDURE CAll STATEMENTS

ENTER(lP) CAll must be specified
CAll ENTER 'lP' Missing parentheses

CALL ATTACH (,PROBFILE' 'FILETAPE') Parameters
not separated by commas

The parameter I ist of a procedural CALL may make use of
a continuation card as in

CALL ATTACH ('PROBFILP,
X' FILETAPE', CARD, NEW)

Note that a field must not be broken in the middle, and
that the preceding card must end with a comma.

The examples shown below illustrate improper continua­
tion cards for procedure CALL statements.

INVALID CONTINUATION CARDS FOR PROCEDURE
CALL STATEMENT

CALL ATTACH
X('PROBFILE', I FILETAPE')

CALL ATTACH (,PROBFILE'
X,I FILETAPE', CARD NEW)

ARITHMETIC

At least one parameter
must be on first card

Preceding card must
end with a comma

The Arithmetic statement is used to initialize or set all
storage-reference variables (CR or user working-storage)
except interrupt (K-type) variables. The Arithmetic state­
ment has the form

(srsym = arithex

where

srsym is either a CR or user working-storage
variable.

arithex is an arithmetic expression of the form

variable

variable {j/ variable

and in which variable refers to either a CR or a user
working-storage variable.

Mixed mode is allowed between integer and floating-point
computations, but all alpha computations must not mix
modes. An arithmetic expression that contains a

floating-point number will be done in double precision
floating-point arithmetic.

Compare the following tables of val id and inval id Arith­
metic statements.

VALID ARITHMETIC STATEMENTS

ARHS = 'ALOY1 1

FW01 = FW01 + 1
IWNM = 79.0
FW01 = FW01 * IWNM
ILOGP = IWNM/79

INVALID ARITHMETIC STATEMENTS

KW01

ARHS

IWNM

100

FW01

K-type cells cannot be defined
with an Arithmetic statement

Mixed mode not allowed with
alpha type

FW01 * IW01 +4
Inval id form of arithmetic
expression

ASSIGN The ASSIGN statement is used to in ital ize
or set an interrupt (K-type) variable. It has the form

(ASSIGN stmtno TO kxxx

where

stmtno is any valid statement number (1-9999)
appearing in the control language program.

kxxx is a K-type CR or user working-storage
variable.

The following two statements are correct uses of ASSIGN.

VALID ASSIGN STATEMENTS

ASSIGN 100 TO KMAJER
ASSIGN 20 TO KW01

This list shows incorrect uses of the ASSIGN statement.

INVALID ASSIGN STATEMENTS

ASSIGN SEVEN TO KWD 1

ASSIGN 100 TO IW01

Statement number must
be an integer constant

Ass ignment must be
made to a K -type vari­
able only

GO TO The GO TO statement causes the uncondi-
tional transfer of control to the statement specified by the

Control Language Statements 15

statement number after GO TO. The GO TO statement
has the form

kxxx
(

GO TO {stmtno}

where

stmtno is any val id sTatement number (1-9999)
appearing in the control language program.

kxxx is a K-type user working-storage variable
that has been defined by an ASSIGN statement.

The two I ists below present correct and incorrect uses of
GO TO.

VALID GO TO STATEMENTS

GO TO 100
GO TO KW01

INVALID GO TO STATEMENTS

GO TO A A is not a K-type user working­
storage variable

GO TO KMAJER KMAJER is a K-type CR variable,
not a user working-storage variable

IF The IF statement makes a conditional transfer of con-
trol to the statement specified by a statement number. It
may be used in the construction of loops. IF has the form

{
srsym } IF (srsym .op.) GO TO stmtno
constant

where

srsym is either a CR or user working-storage
variable.

constant is a val id constant.

op enclosed by periods, is a two-letter code that
represents one of the following conditions.

Code

GT
GE
lT
lE
EQ
NE

Condition

Greater than
Greater than or equal
less than
less than or equal
Equal
Not equal

stmtno is any val id statement number (1-9999)
appearing in the control language program.

When IF is executed, the expression within the parentheses
is evaluated first. If it is true, control is transferred to the
specified statement number. If it is not true, control is
passed to the next statement in the program sequence.

16 Control language Statements

Mixed mode is allowed if integer and floating-point quan­
tities are involved. Mixed mode is not allowed if an alpha
quantity is used.

The sample IF statements below are correct.

VALID IF STATEMENTS

IF (FOBJWT • GT. IW41)GO TO 30

IF (ARHS • EQ. 'ROWS') GO TO 150

These IF statements are incorrect.

INVALID IF STATEMENTS

IF (ARHS • EQ. FW01) GO TO 20 Mixed mode is not
allowed if alpha quantity involved

IF (IWOl lT 7) GO TO 10 lT must be enclosed in
periods

IF (FW75) 10, 20, 30 This form of IF statement is not
allowed in this control language

RETURN The RETURN statement is used to return control
to a procedure that has created an interrupt. When an inter­
rupt occurs, control will be given to the statement whose
number has been assigned to the corresponding CR interrupt
(K-type) variable for that particular condition. After the
number, it may be desired to return to the procedure that
caused the interrupt. The RETURN statement has the form

(RETURN

An example of interrupt processing using a RETURN state­
ment is shown below.

ASSIGN 150 TO KINV
IFREQI = 50
CAll OPTIMIZE

150 CAll INVERT
RETURN

Note that OPTIMIZE will interrupt for an INVERT every
50 iterations. Control will be transferred to statement
150 which is a CAll for INVERT, and following the
INVERT, control will be transferred to OPTIMIZE via
RETURN.

EXIT The EXIT statement is a special type of statement
used in the FMPS control language. like the RETURN state­
ment, the EXIT statement is concerned with interrupt pro­
cessing. After receiving an interrupt, it may not be desir­
able to return to the procedure causing the interrupt. The
EXIT statement may be used to exit the procedure and to
continue processing with the statement following the

procedure CALL statement that triggered the interrupt.
EXIT has the form

(EXIT

An example of interrupt processing using an EXIT statement
is given below.

ASSIGN 200 TO KNFS
CAL L OPTIMIZE

200 CALL OUTPUT (BYROWS, ROWS, LISTI)
EXIT

Note that if no feasible solution condition is encountered
by OPTIMIZE, control is transferred to statement 200 to
output the infeasible rows, and the following EXIT state­
ment will cause control to be transferred to the statement
after CALL OPTIMIZE.

WRITE The WRITE statement (not to be confused with
the standard FORTRAN WRITE statement) may be used to
display the current value of any CR or user working-storage
variable on the system output device. The variable name
and its value are printed. The WRITE statement has
the form

(WRITE srsym

where

srsym is either a CR or user working-storage ref-
erence symbol.

Notice that only one symbol may be referenced on a
WRITE statement.

Some uses of WRITE are shown below.

AWOl = IEXAMPLE 1

WRITE AWOl

FW07 = .2365D3
WRITE FW07

Printout will contain
AWOl = EXAMPLE

Printout wi II contain
FW07 = 236.5

TITLE This statement, which is a special FMPS control
language statement, provides a page heading on each page
of the output produced by execution of the control program.
The TITLE statement has the form

(TITLE heading

where

heading is a string of I iteral alphanumeric char-
acters that terminate by column 72.

The title is printed out as shown below

TITLE THIS IS TH E TITLE.

STOP The STOP statement terminates execution of the
control program. The STOP statement has the form

(STOP

END The END statement is a nonexecutable statement
that defines the end of 0 source program for the compiler
and must be the last statement of every program. Since
the END statement is not executable, it should have a
statement number. END has the form

(END

SAMPLE FMPS PROGRAM

Figure 5 shows an example of a typical FMPS control
language program.

Control Language Statements 17

C DEFINE PAGE TITLE
TITLE FMPS CONTROL LANGUAGE EXAMPLE

C ENTER LINEAR PROGRAMMING OPERATING MODE
CALL ENTER(lP)

C INITIALIZE MAJOR AND MINOR ERROR INTERRUPTS
ASSIGN 1000 TO KMAJER
ASSIGN 1010 TO KMINER

CALL DEVICE(' DISC1',DISC, 'B')
CAll DEVICE(' DISC2',DISC, '(')
CALL DEVICE('DISC3',DISC,'D')
CALL DEVICE(' DISC4',DISC, 'E'}

C
C ATTACH INTERNAL FILES MATRIX, INVERSE,UTIl1, UTIL2 TO THE SYMBOLIC
C DISC UNITS DISC 1, DISC2, DISC3, DISC4

CALL ATTACH(MATRIX, 'DISC1'}
CAll ATTACH(INVERSE, 'DISC2')
CALL ATTACH(UTIl1,'DISC3')
CALL ATTACH(UTI12, 'DISC4)

C
C DEFINE NAME OF INPUT DATA DECK

ADATA = 'PLANTl'
C INPUT THE LP MATRIX

CALL INPUT
C DEFINE NAME OF RHS AND OBJECTIVE FUNCTION ROW

ARHS = 'RHS1'
AOBJ = 'COSTROW'

C OUTPUT BYROWS, THE NON-ZERO ELEMENTS OF INPUT MATRIX
CALL OUTPUT(BYROWS)

C
C INITIALIZE OPTIMIZE INTERRUPTS KINV, KNFS, KUBS

ASSIGN 2000 TO KINV
ASSIGN 2100 TO KNFS
ASSIGN 2200 TO KUBS

C SET INVERSION FREQUENCY TO 100
IFREQI = 100

C OPTIMIZE INPUT MATRIX
CALL OPTIMIZE

C OUTPUT THE OPTIMAL SOLUTION
CALL SOLUTION

C TERMINATE RUN
STOP

C
C PROCESS MAJOR ERROR INTERRUPT BY TERMINATING RUN

1000 STOP
C
C PROCESS MINOR ERROR INTERRUPT BY EXITING PROCEDURE CAUSING IT

1010 EXIT
C
C
C

C

2000

PROCESS INVERT INTERRUPT BY CALLING INVERT AND RETURNING TO
PROCEDURE REQUESTING IT.
CALL INVERT
RETURN

C PROCESS NO FEASIBLE SOLUTION INTERRUPT BY OUTPUTING THE INFEASIBLE
C ROWS, PUNCHING THE CURRENT BASIS STRUCTURE, AND TERMINATING RUN

2100 CALL OUTPUT(BYROWS, ROWS, LISTI)
2110 CALL BASISOUT

STOP
C
C PROCESS UNBOUNDED SOLUTION INTERRUPT BY OUTPUTING THE UNBOUNDED
C COLUMN, PUNCHING THE CURRENT BASIS, AND TERMINATING RUN.

2200 CALL OUTPUT(BYCOlS, COLS, LISTU)
GOT02110

C END OF CONTROL PROGRAM

18 Sample FMPS Program

0: ... ,1"\
L'''V

Figure 5. Sample FMPS Control Language Program

4. BASIC FMPS PROCEDURES

This chapter describes those FMPS procedures that are avail­
able under all FMPS operating modes. These operating pro­
cedures perform the following functions.

• Establ ish the operating mode.

• Define input/output devices.

• Assign files to input/output devices.

• Define selection lists.

FMPS operating procedures and their functions are given in
Table 9 below.

Table 9. FMPS Operating Procedures

Procedure Purpose

ENTER Establ ish the operating
mode.

DEVICE Defines storage media for
run.

ATTACH Attaches symbolic files to
DCBs.

LOADLIST Inputs names and/or masks to
be used as a selection list.

OPERATING PROCEDURES REPERTOIRE

Each of the procedures outl ined in Table 9 above will be
explained in detail in the following paragraphs.

ENTER The ENTER procedure establ ishes the operating
mode for FMPS. Therefore, it must be the first procedure
used. The mode may not be changed during a run. The
following I ist contains codes for parameters currentlyavail­
able for ENTER. One of the following parameters must be
specified.

Parameters

LP

SEP

Explanations

FMPS establ ishes the linear
programming operating mode.

FMPS establ ishes the separable
programming operating mode.

The following interrupt may occur through misuse of EN TER.

Interrupt

KMAJER

Causes

1. Unrecognizable parameter.

2. Operating mode al ready
establ ished.

DEVICE The DEVICE procedure defines magnetic tapes
and RAD files to be used as storage media during the FMPS
run. This procedure contains parameters informing FMPS

of the data control block (DCB) to be used with the file or
tape and the organization of the file (consecutive-sequential
or keyed direct-access). This data is given to BPM via the
! ASSI GN control commandi the D EVI CE procedure passes
it to FMPS.

Symbolic units must be defined by a call for DEVICE before
FMPS files can be attached to them. A symbol ic unit may
be defined only once during a run.

DATA CONTROL BLOCKS

The data control blocks for use with FMPS are included in
the system at installation. Nominally the system is bui It to
the maximum of 10 DCBs whose names are F: l,F:2, •.. ,F: 10.
Thus, !ASSIGN cards for a run are restricted to these DCBs.
In addition, the F:l DCB is preempted by FMPS in the stor­
age of the control language programs. However, any of
the remaining DCBs may be assigned to either tape or RAD.
RAD DCBs may be organized sequentiallyorasdirect-access.
The internal FMPS file INVERSE should always be a RAD
file and as such must be a keyed direct-access file. Note
that the !ASSIGN control command designates the physi­
cal location (RAD or tape) of the data transmitted via a
DCB.

DEVICE ARGUMENT

The DEVICE procedure requires three arguments, as in

CALL DEVICE ('symbolic unit l {;~is~IJ IDCB key')

where

Isymbolic unit l specifies the symbolic unit defined
by DEVICE to which internal and communication
files may be attached.

TAPE indicates that the file or tape was specified
as consecutive-sequential on the! ASSIGN card.

DISC Indicates that the file was specified as
keyed direct-access on the! ASSIGN card.

I DCB keyl is one of the following codes that
spec ify the DCB name to be used.

Code

IBI
ICI

DCB Name

DCB F:2
DCB F:3

DCB F:l0

For example, the procedural call CALL DEVICE (' INVSI,
1(') would define symbolic unit IINVS I to be a RAD file
with keyed direct-access organization, to be driven via
the F:3 DCB.

Basic FMPS Procedures 19

ATTACH The ATTACH procedure attaches symbolic
files to DCBs. There are two classes of files that must
be attached. The first class consists of files reserved for
internal use by FMPS. All internal files have preempted
names recognizable as keywords such as MATRIX, INVERSE,
etc. (refer to Table 7). The second class of fil es consists of
files used for communications between the user and FMPS.
The user assigns symbolic names (eight or less characters
enc losed by quotation marks) to communication files.

When attaching FMPS internal files to DCBs, ATTACH re­
quires the use of two parameters. For example,

CALL ATTACH (INVERSE,ISYMB11)

assigns internal file INVERSE to the symbol ic unit 1 SYMB 11.

When attaching communication files to symbolic units ATTACH
requ ires the use offour parameters. The thjrd parameter (which
is not required for internal FMPS files) describes the mode

of the file. The mode may be specified as CARD, imply-
ing 80-column card image format, or FORTRAN, implying
standard communication format. The fourth parameter,
OLD or NEW, specifies whether the tape has previously
been prepared by a program (or FMPS) and contains infor­
mation to be preserved (0 LD), or whether the tape is a
new tape without information to be saved on it (NEW). If
the NEW parameter is specified, FMPS writes a pseudo
end-of-file record at the beginning of the tape (NAME
zzzzzzzz, ENDATA). If it is an output file, it is de­
fined as NEW. It is imperative that, if a communication
file (whether CARD or FORTRAN) is defined, NEW or
OLD follow the file definition.

Symbolic files may be reattached to different DCBs during
a run. If the INVERSE file is reattached, an INVERT call
must be made following the latest ATTACH. A common
use of the reattach facility is in connection with the RE­
START file. For example

CALL ATTACH (RESTART, = IT APE 11)

CALL RESTORE

CALL ATTACH (RESTART,'TAPE21)

CALL SAVE

Also, the statement

CALL ATTACH('OUTFILE ', 'COMMTAPE', FORTRAN, NEW)

assigns communication file 'OUTFILE ' to DCB 'COMMTAPE'
in standard communication format.

The following interrupt may occur within ATTACH.

Interrupt

KMAJER

Causes

1. Symbolic unit not defined.

2. Internal FMPS file assigned as
communication file.

20 Operating Procedures Repertoire

Interrupt Causes

3. Unrecognizable parameter.

4. Internal random-access file assigned
to sequential-access device.

5. Communication file not specified
as OLD or NEW.

LOAD LIST The LOADLIST procedure is responsible for
the input of a list of names and/or masks from cards or com­
munication files to be used as a selection list during output
of procedures such as SO LUnO N; 0 UTPUT, etc.

The first parameter of the procedure defines which of two
lists, LISTR or LISTC, is to be loaded. LISTR is the list
used to contain the names and/or masks for row selection
or exception. LISTC is the I ist used to contain the names
and/or masks for column sel ection or exception.

The names in a list correspond to the name of a row or col­
umn in the matrix. Masks are used to represent classes of
rows or columns that have unique character configurations
in their names. A mask is composed of eight characters.
The characters in the mask are matched, position by posi­
tion, with a row or column name. If all positions match,
then that row or column name is considered part of the
selection list. If one or more characters within the mask
are an asterisk(*), that position(s) wi" match with the
corresponding position(s) of any row or column name. For
example,

CRUDE***

is a mask that considers any row or column name having
CRUDE as its first five characters as part of the selection
list.

Input to LOADLIST is from card images on the standard card
reading device unless the FILE parameter is specified, in
which case the third parameter must be the name of the file
on which the data resides. The data format for the LOAD­
LIST procedure is described in Chapter 5~

The communication region variable ADATA must be initial­
ized before the call for LOADLIST. It contains the name
of the data deck for data reading procedures such as INPUT,
REVISE, etc. ADATA is also used by data outputting pro­
cedures, such as BASISOUT, to name output data deck. It
specifies the name that appears on the NAME card of image
input. (Refer to Chapter 5 for general data formats.)

The parameters available to LOADLIST are:

Parameter

LISTR

LISTC

FILE

Explanation

Specifies that row selection list
is to be loaded. If LISTR is not
specified, LISTC must be.

Specifies that column selection list
is to be loaded. If LISTC is not
specified, LISTR must be.

Specifies that data is on file 'file­
name l (card format only).

Parameter

'filename'

Exp1anation

Symbolic name of file, including
quotation marks, on which data
resides.

The FILE and 'filename' parameters are optional.

The following interrupts may occur within LOADLIST.

Interrupt

KMAJER

Causes

1. Unrecognizable parameter.

2. Undefined 'filename'.

Interrupt

KIOER

KMINER

Causes

3. NAMES or MASKS data not
grouped together.

4. Unrecognizable data indicator.

Irrecoverable input/output error on
file.

Core memory area exceeded by
list. Remainder of data cards
ignored.

Operating Procedures Repertoire 21

5. DATA CARD FORMATS AND DECK ORGANIZATION

This chapter describes data card formats and data deck
organization appli cable for the various procedures (INPUT,
REVISE, BASISIN/BASISOUT, and LOADLIST) in all FMPS
operating modes. It also describes acceptable nonstandard
data formats.

STANDARD CARD AND DECK FORMATS FOR INPUT

The data file for the INPUT procedure contains four types
of cards ina II cases.

1. NAME card

2. Indi cator cards

3. Data cards

4. ENDATA card

Comment cards, identified by an asterisk (*) in column 1,
may be inserted anywhere in a data deck.

NAME CARD

The first card of a data deck is always a NAME card. The
NAME card gives a user-specified name to the data decks
so that the data may be uniquely identified from the con­
trol program. NAME has the following format.

Columns

1-4

5-14

15-22

23-80

Description

NAME: card identification.

Blank

User-assigned name: from one to eight
characters in length.

Blank

INDICATOR CARDS

The INPUT data deck consists of data cards grouped accord­
ing to the type of data they contain. A group of cards con­
taining the same type of data is ca lied a chapter. The first
card of a chapter is always an indicator card, which identi­
fi es the type of data in that chapter. The optiona 1 and
required types of data appearing in a data deck for the
INPUT procedure are:

Data Type

ROWS
SPRICES
COLUMNS
RHS
RANGES
BOUNDS

Status

Required
Optional
Required
Required
Optional
Optional

22 Data Card Formats and Deck Organization

The format of indicator cards is given below.

Columns

1-7

8-80

Description

Data type: one of the six types shown
above.

Blank

DATA CARDS

Data cards are divided into six fields. The type of data
card determines the content of each field, but all data cards
follow the same general format. The six fields of a data
card are outlined below.

Columns

2-3

5-12

15-22

25-36

40-47

50-61

Description

Blank or *. If asterisk is present, it indi­
cates that this is a comment card, which
may be inserted anywhere in the data
deck.

Field 1: code for type of. row constraint
or type of bound (see ROWS and
BOUNDS cards).

Field 2: name of from one to eight alpha­
numeri c and spec ia I characters.

Field 3: same as field 2 above.

Field 4: value of up to twelve characters,
including decimal point. Sign specifica­
tion is optional; if unspecified, it is
assumed positive.

Field 5: same as field 2 above.

Field 6: same as field 4 above.

ENDATA CARD

The ENDATA card, which simply indicates that the end of
the data deck has been reached, has the following format:

Columns Description

1-6 ENDATA

7-80 Blank

DATA DECK ORGANIZATION

Figure 6 shows the organization of a complete INPUT data
deck. Note that the dashed lines indicate optional cards
and decks.

ENDATA

RANGES ')

Figure 6. Data Deck Organization for INPUT

ROWS DATA CARDS

ROWS cards specify the name to be assigned to the rows of
the matrix, as well as the type of constraint {equality or
inequality} represented by the row. The ROWS data card
format is shown below.

Columns

2-3

Description

Field 1: type of constraint as specified
by the following codes:

Code Meaning

-iSN or NO

1>G or G'b

i>L or U)

bE or ED

No constraint {change or
objective row}

Greater than or equal to

Less than or equal to

Equal ity

I
I
I
I
I
I

Columns Description

5-12 Field 2: name of the row, where blanks
are considered part of the name.

15-22 Field 3: blank

25-36 Field 4: blank

40-47 Field 5: blank

50-61 Field 6: blank

SPRICES DATA CARDS

SPRICES {slack prices} cards specify the price or prices to
be associated with the slack vector of a row. The slack
prices must be specified by slack: that is, when one price
is given for a slack, any other prices for the same slack
must be entered before the next slack is referenced. The
slack prices must be entered in the same order as the slack
name appears in the rows section. The SPRICES data card
format is shown be I ow.

Columns

2-3

5-12

15-22

25-36

40-47

50-61

Description

Field 1: blank

Field 2: name of the slack vector, which
is identical to the name of the row with
which it is associated.

Field 3: name of the cost row to which
the price is associated.

Field 4: value of the slack price.

Field 5: optional and used like field 3.

Field 6: optional and used like field 4.

COLUMNS DATA CARDS

COLUMNS cards specify the names to be assigned to the
columns {structural variables} in the LP matrix and define
the actual values of the rrctrix elements in terms of column
vectors. The matrix elements must be specified by column;
that is, when one element is given, all other nonzero ele­
ments in that column must also be entered before another
column is mentioned. Zero entries should not be specified,
since they will be filled in automatically by the system.
The COLUMNS data card format is shown below.

Columns

2-3

5-12

Description

Field 1: blank

Field 2: name of the column that is to
contain the elements specified in the
field that follow.

Data Deck Organization 23

Columns

15-22

25-36

40-47

50-61

RHS CARDS

Description

Field 3: name of a row in which an elel,.
ment is to be entered.

Field 4: value of the element to be
entered in the row and in the column of
field 2.

Field 5: optional and used like field 3.

Field 6: optional and used like field 4.

RHS cards specify the names of the right-hand-side constraint
vectors or change vectors (used in parametric programming).
They define, in terms of column vectors, the values of these
elements. The right-hand-side elements must be specified
by RHSj that is, when one element is given, all other non­
zero elements in that RHS must also be entered before
another RHS is mentioned. The RHS data card format is
shown below.

Columns

2-3

5-12

15-22

25-36

40-47

50-61

Description

Field 1: blank

Field 2: name of the right-hand-side
(RHS) vectors or change vectors.

Field 3: name of the row in which an
element is to be entered.

Field 4: value of the element to be
entered in the row and in the RHS of
field 2.

Field 5: optional and used like field 3.

Field 6: optional and used like field 4.

RANGES DATA CARDS

Range constraints are used when a row is to represent both
a greater-than inequality and a less-than-or-equal-to
inequality. When none of the rows have such double limits,
range constraints are not used.

One of these I imits is given in the normal manner when both
upper and lower limits are desired. The type of row con­
straint is specified in the ROW data, and one limit (upper
or lower) is specified in the RHS data. The other limit
specified in this section of the data is the allowable magni­
tude by which the right-hand-side may vary from the value
previously specified.

If bi is the value given in the RHS section, the range ri is
specified as follows:

Resultant Upper Resultant Lower
Type Limit on Right- Limit on Right-
of Row Hand-Side Hand-Side

G b. + f. b.

L b. b. - r.
I I I

24 Data Deck Organization

The set of ranges is defined as a column vector with a name
specified by the user. Only one vector of ranges will be
loaded by the INPUT procedure. If more than one is pres­
ent, the additional vectors wi II be punched in REVISE
format.

The RANGES data card format is shown below.

Columns Description

2-3 Field 1: blank

5-12 Field 2: name of the column of ranges.

15-22 Field 3: name of a G or L row to which
this range is to be applied.

25-36 Field 4: value of the range (ri).

40-47 Field 5: optional and used like field 3.

50-61 Field 6: optional and used like field 4.

BOUNDS DATA CARDS

BOUNDS data cards impose limits on the values which the
activities, or "structural variables", may assume. If none
of the variables are bounded, this section of input is not
needed.

When bounds are desired, they are entered as a row vector
with a name specified by the user. Bounds are automati­
cally set at 0 and + co for all columns not specified in a
BOUNDS card. Only one vector of bounds will be loaded
by the INPUT procedure. However, if more than one is
present, the additional vectors will be punched in REVISE
format.

Within a given bounds row vector, the column (structural
variable) names must appear in matrix order (that is, the
same order in which column names appear in the COLUMNS
section).

The user may specify both an upper and a lower bound, a
lower bound only, or an upper bound only. When a single
bound is specified, the other bound will remain as + co or o.
When both upper and lower bounds on a single variable are
desired, they must be entered on separate cards. Possible
combinations are:

LO - UP

LO - PL

Since an upper bound of + co is automatically generated, PL
cards are ignored by INPUT.

To fix a variable at zero, the code FX with a value of zero
must be used.

Lower bound values may be positive or negative; upper
bound values must be positive.

The BOUNDS data card format is shown below.

Columns

2-3

5-12

15-22

25-36

40-47

50-61

Description

Field 1: type of bound as specified by
the following codes:

Code Meaning

LO Lower bound

UP Upper bound

FX Fixed value

FR Free variable (- co to + co)

PL Upper bound is + co

Field 2: name of the row of bounds.

Field 3: name of the column with which
the variable to be bounded is associated.

Field 4: value of the bound for an LO,
UP, or FX card; otherwise blank.

Field 5: blank.

Field 6: blank.

NONSTANDARD CARD FORMATS FOR INPUT

Three nonstandard input formats are acceptable to the
INPUT procedure when the parameter SHARE is used. They
are:

1 . LP /90/94 LP

2. UNIVAC 1108 LP

3. CDM4 LP

LP /90/94 SHARE FORMAT

The INPUT format when using LP /90/94 LP is

CALL INPUT (SHARE, 'LP90')

where the LP90 parameter must be enclosed by single quo­
tation marks.

LP/90/94 CHAPTERS

The following chapters of input information will be processed
when using LP /90/94.

ROW ID

BASIS

MATRIX

FIRST B

NEXT B,kkkk

EOF

RHS NAMES

FMPS assigns the RHS name from the contents of columns
7 to 12 of the data cards for the FIRST B or NEXT B chapter~
If these col umns are blank for the FIRST B chapter data
cards, the name *Blm (where n represents a blank) will be
assigned to this RHS. If columns 7 to 12 are blank for the
NEXT B chapter data cards, the RHS vectors will be named
* Bkkkk, where kkkk are characters copied from the NEXT
B,kkkk header card.

BASIS DATA CHAPTER

When the BASIS chapter header is encountered by the INPUT
procedure, its data is punched on cards in a format accept­
able to the BASISIN routine. No further processing of
BASIS data occurs, but the punched cards can be loaded as
a part of the FMPS input to a subsequent run. The BASIS
data chapter can appear in any order relative to the other
chapter headings in the input stream.

ORDER OF INPUT

The following data chapters are directly processed upon in­
put and must appear in the order listed.

Data Type Status

1. ROW ID Required

2. MATRIX Required

3. FIRST B Required

4. NEXT B,kkkk Optional

CARD FORMAT

ROW ID. The first card of the ROW ID chapter is a ROW
ID indicator card. The card format is shown below.

Columns

1-6

12

Description

ROWn ID: where the characters i> rep­
resent a blank. This parameter is pres­
ent on the first ROW ID card only;
columns 1 to 6 are blank on all other
ROW ID cards.

Row type: where the type is specified by
one of the following codes.

Code Row Type

+

o

Less than or equa I to

Greater than or equal to

Equal to

Indicates a Free Row (for
example, Cost Row)

Nonstandard Card Formats for INPUT 25

Columns Description

13-18 Row name.

24 Row type.

25-30 Row name.

36 Row type.

37-42 Row name.

48 Row type.

49-54 Row name.

60 Row type.

61-66 Row name.

A pair of fields is ignored if both the row type and the row
name are blank.

MATRIX. The first card of the MATRIX chapter isa MATRIX
indicator card. The MATRIX data is entered column by
column (all coefficients pertinent to one column must be
grouped together) as shown in the format outline below.
Note that only one coefficient can be defined per data
card.

Columns

1-6

Description

MATRIX. This parameter is present on
the first MATRIX card only; columns 1 to
6 are blank on all other MATRIX cards.

7-12 Column name.

13-18

19-30

Row name.

Coefficient value; assumed format is
F12.6.

FIRST B. The first card of the FIRST B chapter is a FIRST B
indicator card. This card has FIRSTnB punched in columns
1 to 7. The data format is identical to that for MATRIX.
If columns 7 to 12 are blank on the data cards, the column
(right-hand-side) wi II automatically be named *B Ifrl:'tb.

NEXT B,kkkk. The first card of the NEXT B,kkkk chapter
is a NEXT B,kkkk indicator card. This card has NEXT
B,kkkk punched in columns 1 to 11. The data format is
identical to that for MATRIX; if columns 7 to 12 are blank
on the data cards, the column (right-hand-side) is auto­
matically named *Bkkki, where the characters kkkk are
copied from the indicator card.

BASIS. The first card of the BASIS chapter is a BASIS indi­
cator card. BASIS data cards contain up to five pairs of
names, as shown below.

Columns

1-5

7-12

Description

BASIS. This parameter is present on the
flist BASIS CCiid only; columns 1 to 5 Ciie

blank on all other BASIS cards.

Variable to enter the basis.

26 Nonstandard Card Formats for INPUT

Columns Description

13-18 Variable to be excluded from the basis.

19-24 Variable to enter the basis.

25-30 Variable to be excluded from the basis.

31-36 Variable to enter the basis.

37-42 Variable to be excluded from the basis.

43-48 Variable to enter the basis.

49-54 Variable to be excluded from the basis.

55-60 Variable to enter the basis.

61-66 Variable to be excluded from the basis.

EOF. The EOF card has EOF punched in columns 1 to 3.

UNIVAC 1108 SHARE FORMAT

The INPUT format when using UNIVAC 1108 LP is

CALL INPUT (SHARE, III 081
)

where the 1108 parameter must be enclosed by single q':lo­
tation marks.

UNIVAC 1108 CHAPTERS

The following chapters of input information will be pro­
cessed when using UNIVAC 1108.

DELETE

ROW ID

BASIS

MATRIX

FIRST B

NEXT B,kkkk

SPRICES

EOF

ENDATA

A maximum of 100 column or row names may be input as
part of the DELETE data. A minor error interrupt will occur
if this number is exceeded, and only the first 100 names
wi II be used.

RHS NAMES

RHS names are formed in the same manner as described for
LP /90/94 data above.

ORDER OF INPUT

The following data chapters are directly processed upon
input and must appear in the order listed.

Data Type Status

1. DELETE Optional

2. ROW ID Required

3. MATRIX Required

4. FIRST B Required

5. NEXT B,kkkk Optional

6. SPRICES Optional

The BASIS chapter is optional and may appear anywhere in
the input deck. It is processed in the same manner described
for LP /90/94. If the SPRICES chapter is present in the in­
put data and is to be used, the argument ISPRICES I must be
present in the CALL INPUT argument list, as in

CALL INPUT (SHARE, 111081, ISPRICES I)

when the input source is the card reader, the SPRICES chap­
ter must be placed directly after the ROW ID chapter in the
data deck. When the input source is tape, the SPRICES
chapter may appear at the end.

If SPRICES is used, AOBJ must be set (through the control
language) to the name of the cost row for which the slack
prices apply. This must be done before the call to INPUT.

CARD FORMAT

DELETE. The first card of the DELETE chapter is a DELETE
indicator card. This card has DELETE punched in columns
1 to 6, and contains up to eleven name fields in columns
7-12, 13-18, ... ,67-72. All blank fields are ignored.

ROW ID, MATRIX, FIRST B, NEXT B,kkkk, and BASIS.
These data formats are identical to the corresponding data
formats for LP /90/94 SHARE.

SPRICES. The first card of the SPRICES chapter is a
SPRICES indicator card. This card has the format shown
below.

Columns Description

1-7 SPRICES. This parameter is present on
the first SPRICES card only; columns 1 to
5 are blank on all other SPRICES cards.

7-12 Row (slack) name.

19-30 Slack price: assumed format is F12. 6.

Pairs for which both fields are blank are ignored. Inclusion
of variable names which do not correspond to any variable
in the matrix will cause an error comment during subsequent
processing of the punched BASIS cards, but will not cause
this run to be discontinued.

EOF. The EOF card has EOF punched in columns 1 to 3.

ENDATA. The ENDATA card has ENDATA punched in
columns 1 to 6.

CDM4 SHARE FORMAT

The INPUT format when using CDM4 LP is

(CALL INPUT (SHARE, ICDM41)

where the CDM4 parameter must be enclosed by single quo­
tation marks.

CDM4 CHAPTERS

The following chapters of input information wi II be pro­
cessed when using CDM4.

ROW ID
MATRIX
FIRST B
RHS
BASIS
NEWRHS
SECOND
ENDRHS
EOR
EOF

RHS NAMES

FMPS will introduce a new RHS vector in the input matrix
for every redefinition of the RHS vector in the input data.
Upon input, the original RHS vector is automatically named
*B0001; the first revised RHS vector, *B0002; the second
revised vector, * B0003, etc. Any of the vectors can be
specified for solution by assigning its name to the ARHS
communi cation cell, for example, ARHS = I*B0002 1.

ORDER OF INPUT

The following data chapters are directly processed upon
input and must appear in the order listed.

Data Type Status

l. ROW ID Required

2. EOR Optional

3. MATRIX Required

4. EOR Optional

5. FIRST B OR RHS Required

Nonstandard Card Formats for INPUT 27

Data Type Status

6. EOR OR ENDRHS Optional

7. NEWRHS OR SECOND Optional

8. EOR OR ENDRHS Optional

9. EOI = ENDATA Required

The BASIS chapter is optiona I and is treated in the same
manner as it is in LP /90/94 format.

CARD FORMAT

All data formats for CDM4 SHARE are identical to those
specified for LP/90/94 except ROW ID.

The first card of the ROW ID chapter is the ROW ID indi­
cator card. This card has the format shown below.

Columns

1-6

12

13-18

24

25-30

36

37-42

48

49-54-

60

61-66

Description

ROWb ID: This parameter is present on
the first ROW ID card only; columns 1 to
6 are blank on all other ROW ID cards.

Row type: where the type is specified
by one of the following codes.

Code Row Type

+ Less than or equal to

Greater than or equal to

o Equal to

b Indicates a Free Row (for
example, Cost Row)

Row name.

Row type.

Row name.

Row type.

Row name.

Row type.

Row name.

Row type.

Row name.

Row types and names on ROW ID data cards are interpreted
as outlined below.

1. If columns 19 to 24 or columns 12 to 18, or both, of
the data card are blank, the card is ignored.

2. If columns 19 to 24 and columns 12 to 18 of the data
card are nonblank, the data is read as follows:

Column 12 Row type.

Columns 13-18 Row name.

28 REVISE Data Cards

NAME AND ENDATA CARDS

Data may be read from cards or tape. When read from cards,
the data must be preceded by a standard NAME card and
must end with an ENDATA card. When read from tape, no
NAME or E NDATA card is required.

OUTPUT

The input data mey include NAME cards oth~r than the ones
mentioned above. FMPS will ignore the NAME card and
its associated data. However, a listing of this ignored data
is produced on the output medium. It is listed shifted to the
right beginning in print position 30.

The chapter headings, but not the associated data, which
are processed by FMPS are listed on the output medium left­
justified as they are read from the input stream.

SLACK INDICATORS ON ROWS CARDS

The row type is coded as shown for the ROW ID indicator
card above. If cost rows are not specified with a blank
slack indicator, the REVISE procedure must be called fol­
lowing the INPUT procedure to define the cost rows as
nonrestraining.

REVISE DATA CARDS

In the control language program, a procedure REVISE modi­
fies data previously processed by INPUT.

Essentially, the REVISE data deck is identical to the INPUT
data deck. It is composed of the same six chapters of
data: ROWS, SPRICES, COLUMNS, RHS, RANGES, and
BOUNDS. However, only those chapters to be actually
changed are included. Within each chapter, four types of
revisions are possible:

MODIFY

DELETE

BEFORE

AFTER

These revisions are stated on data cards similar to those used
for INPUT. First, the chapter to be revised is identified by
a chapter indicator card. Kinds of changes to be made are
then specified by REVISE control cards (MODIFY, DELETE,
BEFORE, and AFTER) and by actual data cards comPosing
the changes. This sequence is repeated for each section to
be revised. The use of REVISE is subject to the following
conditions.

1. Modifications may be made in any order subject to
the rule forbidding splitting of modifications in a given
vector.

2. If an existing nonzero eiement is to be changed to
zero, it must be defined with the value of zero in
the REVISE data deck.

3. Any new vector to be added must be given a name that
is different from the name given to any old vector, even
if that vector is to be deleted.

4. If an E-, L-, or G-type row is modified into an N-type
row, range elements in the row are automatically
removed.

5. A modified row or bound element must be entirely re­
defined, that is, a row must have its type of constraint
specified. A bound element must have both its lower
and upper limits specified even if only one is modified.

6. To keep each individual modification in core, the
REVISE deck should not include more than 100 data
cards for any individual revision type (MODIFY,
DELETE, etc.) within a chapter. If the deck is too
large, the KMAJER interrupt is taken. If revisions are
extensive enough to require more than 100 data cards
for any individual revision type within a chapter, the
revision data should be separated into individual decks
of proper size, and one call for REVISE should be made
for each deck. NAME and ENDATA cards must be
inserted before and after each deck.

7. If a row is added by using BEFORE or AFTER in the
ROWS section, values are entered in this row for exist­
ing columns by using MODIFY.

ROWS CARDS FOR REVISE

MODIFY The MODIFY chapter indicator card signifies
that the row definition cards that follow redefine the exist­
ing type of row. The command word MODIFY is punched
in columns 2 to 7, as in

(MODIFY

DELETE The DELETE chapter indicator card signifies that
the data cards that follow contain the names of existing row
(punched in columns 5 to 12) are to be deleted. DELETE is
punched in columns 2 to 7, as in

(DELETE

BEFORE The BEFORE chapter indicator card signifies
that row definition cards that followare tobe inserted before
the row named in the indicator card (specified in columns
15 to 22). If no row is specified, the rows wi II be inserted
before the first row. BEFORE is punched in columns 2 to 7.
Hence, the card takes the form

(BEFORE name

AFTER The AFTER chapter indicator card signifies that
row definition cards that follow are to be inserted after the

row named in the indicator card (specified in columns 15 to
22). If no row is specified, the rows will be inserted after
the last row. AFTER is punched in columns 2 to 7. Hence,

. the card takes the form

(AFTER name

SPRICES CARDS FOR REVISE

Slack prices for any new rows must be defined immediately
following the SPRICES chapter indicator. The format of the
data cards is the same as required by INPUT. Do not use
BEFORE or AFTER indicators.

MODIFY The MODIFY indicator card signifies that the
following data cards define new slack prices for existing
slacks. All prices for an existing slack must be redefined,
even if only one price is modified. MODIFY is punched in
columns 2 to 7, as in

(MODIFY

COLUMNS CARDS FOR REVISE

MODIFY The MODIFY indicator card signifies that the
following data cards redefine coefficients in existing col­
umns and/or places coefficients in new rows of existing
columns. All modified coefficents for the same column
must be grouped together. The command word MODIFY is
punched in columns 2 to 7, as in

(MODIFY

DELETE The DELETE indicator card signifies that the fol­
lowing data cards contain the names (in columns 5 to 12) of
existing columns to be deleted from the matrix. DELETE is
punched in columns 2 to 7, as in

(DELETE

BEFORE The BEFORE indicator card signifies that the
following data cards define new matrix columns that are to
be inserted in the matrix before the existing column named
in the indicator card (specified in columns 15 to 22). If no
column is specified, the new columns wi II be inserted before
the first existing column. BEFORE takes the form,

(BEFORE name

AFTER The AFTER indicator card signifies that the follow-
ing data cards define new matrix columns that are to be
inserted in the matrix after the existing column named in

REVISE Data Cards 29

the indicator card (specified in columns 15 to 22). If col­
ums 15 to 22 are blank, the new columns will be inserted
after the last existing column. AFTER is punched in columns
2 to 6. The form of the AFTER command is

(AFTER name

RHS CARDS FOR REVISE

Revisions to the RHS chapter are the same as for the
COLUMNS chapter with the exception that the name field
(columns 15 to 22) of the BEFORE and AFTER indicator card
refers to names of the RHS vectors.

RANGES CARDS FOR REVISE

Range values for new rows must be first. They may be intro­
duced by BEFORE or AFTER, but neither is necessary.

MODIFY The MODIFY indicator card signifies that the
following data cards redefine a range value on an existing
row. MODIFY is punched in columns 2 to 7, as in

(MODIFY

DELETE The DELETE indicator card signifies that the fol-
lowing cards contain (in columns 5 to 12) the name of the
row that is to have its range value removed. DELETE is
punched in columns 2 to 7, as in

(DELETE

BOUNDS CARDS FOR REVISE

MODIFY The MODIFY indicator card signifies that the
data cards that follow redefine the bounds on existing col­
umns. Note that the bounds on any column must be restated
completely. For example, if only the lower bound was
being changed, any upper bound on that column must be
restated. MODIFY is punched in columns 2 to 7, as in

(MODIFY

DELETE The DELETE indicator card signifies that the fol-
lowing data cards contain (in columns 5 to 12) the name of
the existing column for which all bounds wi II be removed.
DELETE is punched in columns 2 to 7, as in

(DELETE

30 BASISIN/BASISOUT Data Cards

BEFORE The BEFORE indicator card signifies that the
data cards that follow define the bounds for new columns.
The BEFORE card should be identical to the BEFORE card
that defined the new columns in the COLUMNS chapter.
BE F ORE has the form

(BEFORE name

AFTER The AFTER indicator card signifies that the data
cards that follow define the bounds for new columns. The
AFTER car-d should be identical to the AFTER card that de­
fined the new columns in the COLUMNS chapter.

BASISIN/BASISOUT DATA CARDS

Data for the BASISIN procedure is the same as the output
from the BASISOUT procedure. As with all data decks, the
data is preceded by a NAME card and terminated by an
ENDATA card. The general form of the data card is shown
below.

Columns

2-3

5-12

15-22

25-36

40-47

50-61

Description

Field 1: two-letter indicator that speci­
fies one of the following actions.

Code Action

XU

XL

UL

LL

Field 2:

Field 3:

Field 4:

Field 5:

Field 6:

Remove the variable named in
Field 3 from the basis and set
it at upper bound. Put the
variable named in Field 2 in
the basis.

Remove the variable named in
Field 3 from the basis and set
it at lower bound. Put the
variable named in Field 2 in
the basis.

Set the variable named in
Field 2 at upper bound.
Field 3 is ignored.

Set the variable named in
Field 2 at lower bound. Field
3 is ignored.

name 1.

name 2.

not used.

not used.

not used.

LL indicators are not necessary if the MODIFY parameter
is not used on BASISIN since all variables will be auto­
matically initialized to lower bound. BASISOUT will .not
output any LL indicators.

LOADLIST DATA CARDS

As with all data decks, LOADLIST data is preceded by a
NAME card and terminated by an ENDATA card.

INDICATOR CARDS

The LOADLIST data deck consists of data cards grouped
according to the type of data (names or masks) they con­
tain. A group of cards containing the same type of data is
called a chapter. The first card of a chapter is always an
indicator card which identifies the. type of data in that
chapter. Indicator cards contain only one word (NAMES
or MASKS, beginning in column 1) which specifies the type
of data ca~ds that fC;;-llow.

DATA CARDS

Data cards are divided into ten 8-column fields. Field 1 is
always blank. The ten fields of a data card are outlined
below.

Columns Description

1-8 Field 1: blank

9-16 Field 2: name or mask.

17-24 Field 3: name or mask.

Columns Description

25-32 Field 4: name or mask.

33-40 Field 5: name or mask.

41-48 Field 6: name or mask.

49-56 Field 7: name or mask.

57-64 Field 8: name or mask.

65-72 Field 9: name or mask.

73-80 Field 10: na me or mask.

NAMES DATA CARDS

NAMES cards specify the names of rows or columns in the
selection list. Each data card contains up to nine names
in Fields 2 to 10. Field 1 is always blank. If a field other
than 1 contains all blanks, it is ignored.

MASKS DATA CARDS

MASKS cards specify the mcisks for selecting rows or columns.
Each data card contains up to nine masks in Fields 2 to 10.
Field 1 is always blank. If a field other than 1 contains
all blanks, it is ignored.

LOADLIST Data Cards 31

6. LINEAR PROGRAMMING OPERATING MODE

Use and operation of procedures in the linear programming
mode will be described in this chapter. The procedures
are presented in four logical phases.

1. Input

2. Optimization

3. Output

4. Preservation and Restoration

(Parametric programming, an optional procedure available
for use in the linear programming operating mode, is de­
scribed in Appendix A.)

INPUT PHASE

The input phase consists of two procedures, INPUT and
REVISE. An outline of each is given in Table 10 below.

Table 10. Input Procedures

Procedure Purpose

INPUT Initially states the LP
matrix.

REVISE Makes revisions to the
LP matrix.

INPUT The INPUT procedure specifies a linear pro­
gramming matrix to FMPS. This procedure reads the input
data and converts it into a compact internal representation
on file MATRIX. The following internal files (see Table 7)
must be defined before the call for INPUT.

1. MATRIX

2. INVERSE

3. UTILl

4. UTIL2

Also, if INPUT's data are on file, the user's communication
fi Ie must be defi ned too.

The input file may consist of more than one reel of tape.
The primary input unit must be defined through the DEVICE
and ATTACH procedures. The second uni t will be the next
reel specified in the BPM assign control command. The
occurrence of a tape end-of-fi Ie on the input tape causes
switching to the alternate input tape.

For example! consider the case where input consists of three
reels of tape, numbered 104, 59, and 73. The user pro­
vides ASSIGN statements to mount tapes 104, 59, and 73
on the primary input unit in that order. He also provides

32 Linear Programming Operating Mode

a DEVICE and ATTACH statement to define the primary
input unit, as in

!ASSIGN F:6, (DEVICE, MT), (INSN, 104,59,73) •••

CALL DEVICE ('TAPE6', TAPE, 'F')

CALL ATTACH ('MYFILE', 'TAPE6', FORTRAN, OLD)

CALL INPUT (FILE, 'MYFILE')

The data deck setup for the INPUT procedure is shown in
Chapter 5.

The INPUT procedure wi II also accept input in the SHARE
formats of other LP systems. These include 1108 LP data,
LP /90/94 data, and C DM4 LP data. Chapter 5 contains
detailed information about SHARE input formats.

The following CR variables must be initial ized before the
call for INPUT.

CR Variable Explanation

ADATA Contains the name of the data deck for
data reading procedures such as INPUT
and REVISE. Also used by data out­
putting procedures such as BASISOUT
to name output data deck.

APBNAME The name to be assigned to the LP
problem.

Optional parameters for INPUT are given below.

Parameter

SHARE

'1108'

'LP90'

'CDM4'

'SPRICES'

FILE

Explanation

Indicates that the input is in SHARE
format and not in standard FMPS format.
If this parameter is not present, stan­
dard FMPS format is assumed.

Input is in UNIVAC 1108 LP SHARE for­
mat. The quotation marks are required.

Input is in LP/90/94 SHARE format. The
quotation marks are required.

Input is in CDM4 SHARE format. The
quotation marks are required.

Indicates that the slack prices chapter
is present in the input data and is to be
used. Used only with SHARE.

Indicates that the input data are to be
found on file 'filename'. If the param­
eter is not used, INPUT data are as­
sumed to be on the standard card input
device.

Parameter

'filename'

Explanation

The symbolic name of the communica­
tion fi Ie on which the input data re-
side. The quotation marks are required.

The following interrupts may occur within INPUT.

Interrupt Causes

KMAJER l. Invalid parameter.

2. Input data not found.

3. Minimum required input not found
(ROWS, COLUMNS, and RHS).

4. Undefined fi les.

5. Rows chapter exceeds avai lable
memory.

6. FILE 'fi lename' undefined.

KMINER 1. Duplicate columns. The duplicate
column is ignored.

2. Duplicate element. The duplicate
element is ignored.

3. Invalid indicator in ROWS or
BOUNDS chapter.

4. Invalid combination of indicators
in BOUNDS chapter.

5. Columns out of sort in BOUNDS
chapter.

KIOER 1. An irrecoverable input/output er-
ror has occurred.

2. Insufficient storage allocated for
internal fi les.

REVISE The REVISE procedure modifies a matrix ac-
cording to the input data from the standard card input
device or from an internal communication file. Anyele­
ment of the matrix can be modified, deleted, or inserted.

REVISE requires that the matrix to be revised be currently
loaded in the MATRIX file, and that all of the standard
FMPS internal fi les be defined. Initial loading of the
matrix may be performed by INPUT or RESTORE. Matrix
information is not destroyed-or modified during execution
of any other procedure except for CRASH (see 1I0ptimiza­
tion Phase ll later in this chapter), which may alter the
bound status of certain variables and set certain equations
nonrestraining if the MODIFY parameter is used. CR vari­
able ADAT A contains the name of the REVISE data deck
or identification record name if the data is on fi Ie.

Call ing the REVISE procedure causes the problem to be
initialized to a slack basis. If REVISE is called at a
stage of the problem where the basis is not a slack basis,
it may be desirable to preserve the current basis (BASISOUT)
prior to the call for REVISE, and to reinstate the current
basis following the call for REVISE (BASISIN and INVERT).

The data card format is the same as for INPUT. Refer to
Chapter 5 for information about data deck setup.

Optional parameters for REVISE are given below.

Parameter

FILE

'filename'

Explanation

Indicates that the input data for
REVISE are on the fi Ie 'fi lename' •

The symbol ic name of the communica­
tion fi Ie on which the input data
resides.

The following interrupts mayoccur within REVISE.

Interrupt Causes

KMAJER 1. Invalid parameter.

2. Input data not found.

3. Undefi ned fi I es.

4. ROWS chapter exceeds available
memory.

5. No matrix exists to REVISE.

KMINER l. Duplicate columns. The duplicate
column is ignored.

2. Duplicate element. The duplicate
element is ignored.

3. Invalid indicator in ROWS or
BOUNDS chapter.

4. Invalid combination of indicators
in BOUNDS chapter.

5. Col umns out of sort in BOUN DS
chapter.

KIOER 1. An irrecoverable input/output er-
ror has occurred.

2. Insufficient storage allocated for
internal fi les.

OPTIMIZATION PHASE

The optimization phase contains three procedures, OPTI­
MIZE, INVERT, and CRASH. An outline of each is
given in Table 11 below.

Table 11. Optimization Procedures

Procedure Purpose

OPTIMIZE Attempts to find an optimal, feasible
solution to the existing matrix.

INVERT Restates the product form of the in-
verse in terms of the minimum num-
ber of transformation required to
state the basi s.

CRASH Attempts to find a better initial
basis.

Optimization Phase 33

OPTIMIZE The OPTIMIZE procedure attempts to find
an optimal feasible solution to the linear programming
model. If the model has no feasible solution or the
sol ution is unbounded, OPTIMIZE causes the KNFS or
KUBS interrupts to occur.

While the model is infeasible, OPTIMIZE uses a composite
pricing (PI) vector. (Infeasibility is defined as the amount
by which a basis variable is below its lower bound or above
its upper bound.) The function of the composite PI vector
is either to maintain or to move toward optimality while
achieving feasibility. CR cell FCMPDJ is the compositing
factor which determines the balance between the drive for
optimality and/or feasibility. As an example, a value of
0.5 for FDMPDJ implies a balanced driving force between
optimalityand feasibility, while a value of 0.0 implies total
disregard for optimality. When a balanced driving force is
requested, OPTIMIZE systematically reduces FCMPDJ by
0.125 if the drive for feasibility is insufficient.

CR variable IIWGHT is used to weight individual infeasi­
bilities. The standard setting for IIWGHT is 0, which im­
plies that a" infeasibilities are given equal weight. If
IIWGHT is set to -1, individual infeasibi lities are weighted
by the amount by which they are infeasible. If IIWGHT is
set to + 1, individual infeasibilities are weighted by the re­
ciprocal of the amount by which they are infeasible.

Setting IIWGHT equal to -1 during part of the first phase
of OPTIMIZE (the phase which attempts to eliminate a"
infeasibilities) may help reduce the number of iterations
required to arrive at a feasible solution. However, ~his
may also cause the problem to cycle. Therefore, it is
recommended that the use of IIWGHT = -1 be limited to
a given number of iterations or to a time period. This is
done by initial izing CR variables IFREQA or ITIME and
setting IIWGHT to zero or to + 1 for the remainder of this
phase of OPTIMIZE.

CR variable FEPSILON may be used to perturb zero RHS
elements on degenerate problems. For IIless-than ll con­
straints, zero RHS elements are replaced with FEPSILON.
For IIgreater-thanll constraints, zero RHS elements are re­
placed with -FEPSILON.

Problems for which the OPTIMIZE iteration log shows a
zero ACTIVITY value for a large number of iterations may
benefit from such perturbation. This is effected by the
following control program statements.

FEPSILON = 1. OD-5
CALL OPTIMIZE
FEPSILON = 0.0
CALL OPTIMIZE

The communication region variables utilized by OPTIMIZE
are listed below. Of all the variables in the list, only
ARHS, AOBJ, and FOBJWT must be initialized by the user
prior to calling OPTIMIZE.

CR Variable Explanation

ARHS Name of the right-hand side.

AOBJ Name of the objective row.

34 Optimization Phase

CR Variable

FOBJWT

FCMPDJ

INCAND

IIWGHT

FEPSILON

FDJZT

FINFZT

FMPIVT

Explanation

The weight given to the objective
function. Must be +1. 0 for mini­
zation, -1.0 for maximization.

Factor used in determining effective
PJ when infeasible, as in

DJE = FCMPDJ * DJ + (1. 0
-FCMPDJ) * DJI

where

DJE is the effective DJ of
the column.

DJ is the true DJ of the
column.

DJI is the DJ based on in-
feasibility removal qualities
of column.

Number of profitable candidates from
which one is selected during pricing
of the matrix. For example, if
INCAND is 5, then from each group
of five profitable columns, the most
profitable is selected. If INCAND is
zero, the system wi II attempt to choose
the optimum set.

Infeasibility weighting switch, ac­
cording to codes shown below.

Code Meaning

-1 Weight by amount of
infeasibility.

o All infeasibilities given
equal weight.

+ 1 Weight by reciprocal of
amount of infeasibility.

The value used to replace zero right­
hand-side elements of inequalities on
degenerate problems. If the constraint
is of the less-than type, a zero RHS
element is replaced with FEPSILON.
If the constraint is of the greater-than
type, a zero RHS element is replaced
with -FEPSILON.

DJ zero tolerance. If the absolute
value of the reduced cost (DJ) is less
than FDJZT, it is considered zero.

Infeasibi I ity zero tolerance. If the
absolute val ue of the amount of in­
feasibility is less FINFZT, the vari­
able is considered feasible.

Minimum pivot tolerance. During any
optimization procedure (here, INVERT
is not considered an optimization pro­
cedure), an element is not considered
as potentially pivotal unless its absol­
ute value is greater than FMPIVT.

CR Variable

ILOGC

ILOGP

ILOGSS

IFREQI

IFREQA

ITIME

I NVTIME

Explanation

Iteration logging frequency on con­
sole typewriter.

Iteration logging frequency for stan­
dard printing device.

On/Off switch for printing column
selection messages during pricing of
matrix.

Iteration frequency interrupt for in­
version. The KINV interrupt wi II
occur every IFREQI iterations
(IFREQI 2! 0).

Iteration frequency interrupt. If
IFREQA is 0, no interrupt wi II occur.
Otherwise, the KFREQA will occur
every IFREQA iterations.

The length of time, in minutes, before
the KTIME interrupt wi II occur. The
KTIME interrupt does not occur if
KTIME is set to zero. Whenever the
KTIME interrupt occurs, KTIME is
set to zero. Time for KTIME is mea­
sured from the time of the last initial­
ization of ITIME.

Switch controlling the KINV inter­
rupt timing routine in the OPTIMIZE
procedure. If INVTIME is 0, the
timing routine is active and causes
KINV interrupt at times such that the
total optimization time tends to be
minimum. If INVTIME is -1, the
timing routine is not active.

The following interrupts may occur within OPTIMIZE.

Interrupt

KMAJER

KIOER

KNFS

KUBS

KINV

Causes

1. AOBJ or ARHS undefined.

2. No matrix to optimize.

1. Unrecoverable I/O error.

2. INVERSE fi Ie capacity
exceeded.

No feasible solution.

Unbounded solution.

1. Inversion frequency (IFREQI)
to be satisfied.

2. Correcting numerical errors.

3. Inverse exceeding file storage.

4. Clock control active. Cor­
rective action requires call ing
the INVERT procedure.

Interrupt

KFREQA

KTIME

Causes

User iteration frequency (IFREQA)
satisfied.

User-specified time increment reached.

Some possible difficulties that may occur during optimiza­
tion, and some suggested cures are given below.

DEGENERACY

If many RHS coefficients are zero, the problem may be de­
generate. Degenerate problems are characterized by an
inability to reduce infeasibilities beyond a certain number
during phase one, or an excessive number of iterations to
arrive at the optimal solution.

The cure is crashing before calling for OPTIMIZE. Use of
the MODIFY parameter in the call for CRASH is recom­
mended. However, since this causes modification of the
matrix data, one may have to save (using the SAVE pro­
cedure) the current matrix before calling for CRASH
(MODIFY), preserve the optimal basis after optimization
(BASISOUT), reload the original matrix by means of
RESTORE, reload the optimal basis (BASISIN), and invert
to the optimal basis (INVERT). This in effect cancels any
changes made by CRASH to the matrix and allows subse­
quent execution of PARARHS or the use of an alternate
RHS vector.

Another cure is to use RHS perturbation (FEPSILON).

PNOT REJECTIONS

Exception messages printed by the OPTIMIZE and INVERT
procedures indicate pivot rejections. Subsequently, the
problem may become pseudo-infeasible, or pseudo-unbounded,
or may become pseudo-optimal during phase two of
OPTIMIZE. Also, the numerical accuracy may be impaired.

Generally, occasional pivotrejections during the OPTIMIZE
procedure have no adverse effects. Pivot rejections during
INVERT may result in some of the abnormalities listed
above.

The following actions may correct pivot rejections:

1. Raise the value of the FABSZT and/or of the FRELZT
tolerances: this tends to eliminate small terms from
the matrix, thus making it more unl ikely for a pivot
to be small enough to be rejected. During computa­
tions, round-off errors may cause certain zero ele­
ments in the transformed matrix to be computed as
very small values. Hence, the FABSZT and FRELZT
tolerances should be set large enough so that resulting
pseudo-values will not be chosen as pivot terms. Care
must be taken not to use too large a value; since this
could eliminate valid elements.

2. Lower tbe value of FMPIVT and FMINVT: during OPTI­
MIZE and INVERT, pivoting on very small elements may
cause loss of numerical accuracy. To avoid this, elements

Optimization Phase 35

smaller than FMPIVT and FMINVT are rejected as
pivot elements. Values that are too large for these
tolerances may result in ignoring valid pivot terms,
thereby causing unboundness or preventing feasibil ity.

3. EI iminate poor scal ing of the matrix: scal ing is ade­
quate when the matrix coefficients are within two or
three orders of magnitude of each other.

INVERT The INVERT procedure establishes the product­
form inverse for the currently specified basis. To minimize
the number of elements in the inverse and, therefore, re­
duce numerical rounding error and computation time, IN­
VERT uses the most modern techniques in triangularization
and sub-triangularization. INVERT may be called either
explicitly by the user or as the result of the KINV
interrupt.

Periodic calls to INVERT from OPTIMIZE help preserve
numerical accuracy and reduce total optimization time.
Such calls are automatically executed at suitable time
intervals. Setting CR variable INVTIME to a negative
value inhibits these automatic calls.

CR variable IFREQI, if set to a positive nonzero value,
controls the maximum number of iterations that can occur
between occurrences of the KINV interrupt. Exceptional
conditions, such as the INVERSE procedure exceeding
fi Ie storage, or loss of accuracy during OPTIMIZE,
PARARHS, or PARAOBJ procedures, may also cause the
KINV interrupt to occur.

In general, operating with INVTIME = 0 and IFREQI = 0
gives the best speed and accuracy. CR region variable

'FMINVT is used by INVERT as the minimum pivot toler­
ance. Elements are not considered pivotal if their value
is smaller than FMINVT. FMINVT should be initialized
to a value smaller than the val ue used for FMPIVT, the
minimum pivot tolerance for OPTIMIZE.

The following interrupts may occur within INVERT.

Interrupt

KMAJER

KIOER

Causes

1. No matrix defined.

2. No basis to invert to.

Irrecoverabl e input/output error.

CRASH The CRASH procedure attempts to find an initial
bas is structure that reduces i nfeasibi Ii ty, reduces degeneracy,
and that contains variables that must be basic at solution.
In addition, any row that has no feasible solution is pointed
out and a KNFS interrupt occurs.

In the following LP equation,

L:A .. X. ± S. = RHS.
IJ J 1 1

the sign of the slack coefficient Si is positive for equa­
tions of the type "less than" or !l equal to", and nega­
tive for equations of the type II greater than". Both Aij
and Si are referred to as elements. RHSi is the right­
hand-side coefficient.

36 Optimization Phase

The following messages may be printed during CRASH.

ROW xxxxxxxx DOMINATING. ROW SET NON­
RESTRAINING (FREE).

This message is produced when row xxxxxxxx has a zero
RHS and either no plus elements or no negative elements.
Since this equation constrains all of the columns having
elements in it to zero, CRASH will also fix all those col­
umns at lower bound. This is equivalent to having speci­
fied the row as N (nonrestraining) in the 'ROWS chapter
during INPUT.

SLACK ON ROW xxxxxxxx SET FREE.

This message is produced when the slack for row xxxxxxxx
is the only plus element in the row. Therefore, the slack
for this row must be basic. This is equivalent to having
specified the row as N (nonrestraining) in the ROWS chap­
ter during INPUT.

COLUMN yyyyyyyy SET FREE IN ROW xxxxxxxx.

This message is produced if the element in column yyyyyyyy
is the only plus element in equality row xxxxxxxx and the
RHS for this row is positive or zero, or if the element in
columnyyyyyyyyis the only minus element if rowxxxxxxxx
and the RHS for this row is zero. Column yyyyyyyy is
entered into the basis in row xxxxxxxx. This is equivalent
to having specified the column as FR (free) in the BOUNDS
chapter during INPUT.

COLUMN yyyyyyyy FIXED AT LOWER BOUND.

This message is produced whenever a column has an element
in a dominating row implying that it must be nonbasic. This.
is equivaient to having specified the column as FX {fixedat
lower bound} in the BOUNDS chapter during INPUT.

A summary line is printed stating the number of rows set free
(slack on rows must be basic), the number of columns set
free (columns that must be basic), the number of fixed col­
umns (columns that must be nonbasic), and the number of
rows that have no feasible solution.

INVERT is automatically called by CRASH to invert to the
basis described by CRASH.

If it is desired to have the free and fixed status applied to
the MATRIX, thE;l parameter MODIFY on the call for CRASH
wi II effect this.

Crashing often results in a significant speed increase in the
OPTIMIZE procedure if the problem is degenerate and
MODIFY is specified. The CRASH execution time is gener­
ally negligible compared with the OPTIMIZE time.

If the right-hand-side porometrit:: procedure is to be used
later in the run, or if a successive case is run which is ob­
tained from the current case by use of the REVISE pro­
cedure or by using other right-hand-sides, and the

MODIFY parameter is specified, the following sequence
of operations is necessary.

1. Save the problem before calling for CRASH (call SAVE).

2. Save the optional basis after reaching the solution
(CALL BASISOUT, FILE, lfi lename I).

3. Restore the original matrix (call RESTORE).

4. Restore the optimal basis (CALL BASISIN, FILE,
lfi lename I).

Note that if parametric programming is to be used later in
the run or other right-hand-sides are to be used, MODIFY
should not be used since the free and fixed status assigned
by CRASH will not be valid for another right-hand-side or
for PARARHS.

The optional parameter for CRASH is given below.

Parameter

MODIFY

Explanation

Indicates that the free and fixed
status of variables is to be made
permanent in the MATRIX.

The following communication region variables must be ini­
tialized by the user prior to the call for CRASH.

CR Variable

ARHS

AOBJ

Explanation

Name of the right-hand-side.

Name of the cost row.

The following interrupts may occur within CRASH.

Interrupt

KMAJER

KIOER

KNFS

Causes

1. AOBJ or ARHS undefined.

2. No matrix to optimize.

1. Irrecoverable input/output
error.

2. File capacity exceeded.

No feasible solution.

OUTPUT PHASE

The output phase contains five procedures, OUTPUT,
SOLUTION, ERRORS, CONDITION, and GET. An out­
line of each is given in Table 12.

Table 12. Output Procedures

Procedure Purpose

OUTPUT Displays the matrix in various
forms.

SOLUTION Reports the solution values.

Table 12. Output Procedures (cont.)

Procedure Purpose

ERRORS Examines errors in the solution.

CONDITION Displays the condition of vari-
0us FMPS regions and fi les.

GET Retrieves solution information
in the control language.

OUTPUT The OUTPUT procedure displays the entire ma-
trix or a selected subset on the standard printing device, or
files on the internal communications device. OUTPUT
displays the entire original matrix in tabular form on the
standard printing device. Referring to the LP equation
formulations below,

A.. X. ± S. = RHS
I J I I

C. X. - Maximum
I J

The OUTPUT procedure displays the values of the following
elements:

Coefficients A..
I J

Coefficient S. (value of 1 for the slack variable)
I

Right-Hand-Side values RHS

Cost coefficient C.
I

The options of OUTPUT (described in Table 13) control the
following display options:

1. Grouping of the coefficients: the coefficients can be
grouped and displayed for each variable (matrix col­
umn), or for each equation (matrix row), or can be
displayed on the printer form in such a way that they
form the entire matrix when the printer pages are sepa­
rated and reassembled together in a certain manner. The
grouping by rows is generally the most compact way of
displaying large LP matrices. The grouping in tableau
format is only practical for small problems (less than
200 variables).

2. Representation of the coefficient values (numerical
value) or symbol for order of magnitude.

3. Applicability of selection lists: output may be made to
include or exclude all coefficients for specified rows
or for rows the names of which match specified row
masks or both, or for specified columns or for columns
the names of which match specified column masks.
If desired, row and column selection lists may be
used in conjunction with each other to abstract
further the printed output. Two special selection
lists, LISTI and LISTU can also be used in this con­
nection. LISTI identifies the set of all infeasible
equations (rows) and LISTU identifies the set of all
unbounded variables {columns} at the time of the
call for OUTPUT.

Optimization Phase 37

those for the simplex tableau corresponding to the
current basis.

4. Whether to display the original or current coefficients:
referring to the simplex tableau, the original coeffi­
cients are the Coefficients, Right-Hand-Side Coeffi­
cients, Slack Coefficients, and objective Function
coefficients for the initial tableau {all slack basis}.
Contrasted with this, the IIcurrentll coefficients are

Output Medium: the report prepared by OUTPUT is dir­
ected to the standard printing device.

Table 13. Parameters for OUTPUT

Parameter Output Device Function of Parameter
(PRINTER)

CURRENT Optional The requested elements of the matrix arepremultiplied by the in-
verse to bring them up to date with the current basis.

CODED Optional Provides a condensed, coded picture of matrix tableau.

BYROWS Optional The nonzero elements of the row along with the names of the col-
umn in which they reside are displayed. (Matrix displayed row
by row.)

BYCOLS Optional The nonzero elements of the column along with the names of the
rows in which they reside are displayed. (Matrix displayed col-
umn by column.)

COUNTS The name, type, and element count of each row, column, and
RHS is printed according to the following codes.

The type for a row is printed:

Row Type Meaning

N Nonrestraining
E Equality
G Greater than
GR Greater than with a range
L Less than
LR Less than with a range

I

The type for a column or RHS is printed:

Row Type Meaning

FX Fixed
FR Free
LO Lower bounded
UP Upper bounded
LU Lower and upper bounded

MATRIX Outputs the matrix in card image form on the card punch or to a
CARD communication file if the FILE, 'filename' parameters are
specified. The contents of CR variable ADATA will be placed in
columns 15 to 22 of the generated NAME card.

ROWS Optional Indicates that row selection or exception I ists are to be used.

COLS Optional Indicates that column selection or exception I ists are to be used.

EXCEPT Optional Indicates that the following parameter is a I ist reference and
items in I ist are to be excepted from output.

LISTR

I
Optional

I
Used in connection with ROWS parameter to specify that LISTR

I contains the row selection or exception list.

IleTr I 1""_ .. : ___ 1 I Used iii cOiiiiectioii with eOlS parameter to specify that LISTC I
LoJ.""" I '- '-"!-,"V"U'

I
contains the column selection or exception list.

38 Optimization Phase

Table 13. Parameters for OUTPUT (cont.)

Parameter Output Device
(PRINTER)

Function of Parameter

LISTI Optional Used in connection with ROWS parameter to specify that the row
selection I ist is composed of all infeasible rows.

LISTU Optional Used in connection with COLS parameter to specify that the col­
umn selection I ist is composed of unbounded columns.

FILE Indicates that requested output be written on internal communi­
cation file (as well as printed).

'filename' Used in connection with FILE parameter to specify 'filename' of
internal communication file.

Notes:

Either BYROWS or BYCOLS must be specified, but not both.

Element values displayed are the original ones as loaded by INPUT unless the parameter CURRENT is specified.

Unless BYROWS or BYCOLS is specified, the matrix is displayed in tableau format.

Parameter ROWS, if specified, must always be part of one of the following parameter sequences:
ROWS, LISTR
ROWS, LISTI
ROWS, EXCEPT, LISTR
ROWS, EXCEPT, LISTI

This parameter specifies that only those elements in the rows specified in LISTR or LISTI are to be output or to be
excluded from output.

Parameter COLS, if specified, must always be part of one of the following parameter sequences:
COLS, LISTC
COLS, LISTU
COLS, EXCEPT, LISTC
COLS, EXCEPT, LISTU

This parameter specifies that elements in the columns specified in LISTC or LISTU are to be output or excluded from
output.

The following control program statements are useful in
determining the cause of infeasibi lity or unboundedness if it
occurs during CRASH, OPTIMIZE, PARAOBJ, or PARARHS:

C

C

INITIALIZE UNBOUNDEDNESS INTERRUPT
CELL TO TRANSFER TO 500
ASSIGN 500 TO KUBS
INITIALIZE INFEASIBILITY INTERRUPT CELL
CELL TO TRANSFER TO 510
ASSIGN 510 TO KNFS

C ENTRY FOR UNBO UNDED PROBLEM INTERRUPT
500 CALL OUTPUT (BYCOLS, COLS, LISTU)
503 CALL SOLUTION

STOP
C ENTRY FOR INFEASIBLE PROBLEM INTERRUPT

510 CALL OUTPUT (BYROWS, ROWS, LISTI)
GO TO 505

In case of unboundedness, the matrix columns for the un­
bounded variables are output.

In case of infeasibility, the matrix rows for the infeasible
constraints are output.

The following example ill ustrates the use of OUTPUT to
display the original form of the elements in the rows speci­
fied in LISTR but not in the col umns specified in LISTC.

CALL OUTPUT (BYROWS, ROWS, LISTR, COLS,
EXCEPT, LISTC)

The following interrupts may occur within OUTPUT

Interrupt

KMAJER

KMINER

KIOER

Causes

1. No matrix has been processed
by INPUT.

2. There is no fi Ie with the name
'filename'.

1. Null selection list.

2. Inval id parameters.

3. Illogical combination of
parameters

Irrecoverable input/output error.

Optimization Phase 39

SOLUTION The OPTIMIZE procedure does not auto-
matically print the solution values when an optimal solu­
tion is reached. Its only purpose is to produce the optimal
basis. Calling for the SOLUTION procedure allows the
user to output the actual solution report.

The same mode of operation applies for parametric program­
ming on the Right-Hand-Side and Costrow. Parametric pro­
cedures PARARHSand PARAOBJ create the basis for various
values of the parameter FTHETAR and FTHETAC but do not
print the solutions, this requires a call to SOLUTION.

Keeping the solution output function separate from the
optimization or parametric procedures allows greater flexi-
bi�ity in the use of these procedures. Also, since the
solution is called from the control program, tests may be
programmed in the controi program, using the IF statement
to print the solution only under certain conditions. Addi­
tiona��y, several solution reports may be created for a
given problem using different selection lists.

SOLUTION may also be used after a call to RESTORE,
thereby printing the solution for a problem previously
saved on a RESTART file, or after the sequence CALL
BASISIN, CALL INVERT to output the solution pertaining
to a user-specified basis.

The normal mode of SOLUTION is to print the solution
on the standard printing device. If the optional parameter
FILE is specified, the specified information is also placed
on communication file 'filename ' . In this case, the
RCHAPTER and/or CCHAPTER parameters must be used to
specify the columns of output to be filed.

SOLUTION output is prepared in two chapters, ROWS and
COLUMNS. The ROWS chapter contains information on
the selected rows in the matrix. The report contains nine
columns of information. Table 14 describes each of the
nine columns for the ROWS chapter. The COLUMNS
chapter contains information on the selected columns in
the matrix. The columns report contains eight columns
which are described in Table 15.

If the FILE option is used, it is possibie to file the data
columns selectively in each chapter as well as select which
rows and columns to output. Each data column has been
assigned a number. Tables 14 and 15 list the numbers as
well as the headings in each chapter.

The data columns are selected for filing by using the
keyword parameters RCHAPTER and CCHAPTER, each
followed by the numbers of the data columns to be
filed.

Table 14. ROWS Chapter Column Description

Column Heading

1 NUMBER

2 ROW

3 AT

4 ACTIVITY

5 SLACK ACTIVITY

6 LOWER LIMIT

7 UPPER LIMIT

8

I
DUAL ACTIVITY

I 9 SLACK PRICE

40 Optimization Phase

Description of Information in Column

The internal serial number associated with the row.

The name of the row (slack).

A two-character code indicating status of row.

Code Meaning --
BS Slack variable in basis and feasible.

** Slack variable in basis and infeasible.

EQ Artificial slack variable, nonbasic.

UL Row at upper limit.

LL Row at lower limit.

Activity of row, that is, the original right-hand-side minus the activity of
the slack.

Activity of slack variable.

Lowest activity that row may have.

Highest activity that row may have.

Otherwise known as simplex multiplier, or PI value for row.

Slack price if specified during input. If slack is priced, reduced cost of
slack is equal to the DUAL ACTIVITY + Or - the SLACK PRICE, where + or
- refers to minimizing or maximizing, respectively.

Table 15. COLUMNS Chapter Column Description

Column Heading Description of Information in Column

1 NUMBER The internal serial number associated with column.

2 COLUMN The name of the column.

3 AT A two-character code indicating status of column.

Code Meaning
--
BS Column in basis and feasible.

** Column in basis and infeasible.

FR Column basic and free.

EQ Column nonbasic and fixed.

UL Column nonbasic at upper limit.

LL Column nonbasic at lower limit.

4 ACTIVITY The value of the column in the solution.

5 INPUT COST The objective function coefficient of column.

6 LOWER LIMIT Lowest activity column may have.

7 UPPER LIMIT Highest activity column may have.

8 REDUCED COST The DJ of the column. The rate of change in the objective value per unit
change of the column. Note that the reduced cost of an upper-bounded
variable at upper bound will be negative. It may also be negative on a
fixed variable.

Chapter 2 describes the means of accessing the filed solu­
tion and the structure of each record.

The example shown below illustrates some uses of
SOLUTION.

CALL SOLUTION (ROWS, LISTR, COLS, LISTC,
FILE, 'SOLFILE', RCHAPTER, 2, 5, 8, CCHAPTER,
2,4,8)

In the example, SOLUTION is used to perform the fol­
lowing tasks.

1. File the output on communication file 'SOLFILE' as
well as on the printer.

2. File only the rows specified in row selection list LISTR.

3. File only the columns specified in column selection
list LISTC.

4. File only the row name, slack activity, and dual acti­
vity columns of the ROWS chapter. (All columns appear
on the pri nter report.)

5. File only the column name, activity, and reduced cost
columns of the COLUMNS chapter. (All columns appear
on the printer report.)

The optional parameters available to SOLUTION are given
below.

Parameter

ROWS

Explanation

Indicates that row selection or
exception I ist follows.

Parameter

COLS

EXCEPT

LISTR

LISTC

FILE

'filename '

RCHAPTER

CCHAPTER

Explanation

Indicates that column selection or
exception I ist follows.

Indicates that following I ist reference
is exception list.

Used in connection with ROWS to
specify row selection or exception
list.

Used in connection with COLS to
specify column selection or exception
list.

Indicates that requested output be
written on internal communication
file 'filename' •

Used in connection with FILE to specify
'filename ' •

Indicates ROWS chapter data column
selection numbers follow.

Indicates COLUMNS chapter data
column selection numbers follow.

The following interrupts may occur within SOLUTION.

Interrupt Causes

KMAJER 1. No matrix defined.

2. There is no file with name 'filename' •

Optimization Phase 41

Interrupt

KMINER

KIOER

Causes

3. Data column selection indicated
but specifications missing.

1. Inval id parameter.

2. Illogical combination of parameters.

Irrecoverable input/output error.

ERRORS The ERRORS procedure substitutes the current
primal and dual solutions into the original primal and dual
problems and computes and outputs any rounding error that
exists to the standard printing device. Any error less than
the tolerance FABSZT is considered zero, and no I ine of
print will occur.

The output is prepared in two sections. The first section
contains the dual errors and consists of the following
information.

1. Name of the basis variable.

2. Magnitude of error.

The second section contains the primal errors and consists
of the following information.

1 . Name of the row.

2. Right-hand-side value of row.

3. Magnitude of error.

The following interrupts may occur in ERRORS.

Interrupt

KMAJER

KIOER

Causes

No matrix defined.

Irrecoverable input/output error.

CONDITION The CONDITION procedure outputs to
the standard printing device the following information:

1. Contents of communication region.

2. Current status of all active files.

GET The GET procedure allows the user to retrieve in-
formation about a row or column, and to alter his strategy
in the control language. Allor any part of the following
items may be accessed on a call for GET.

Code Meaning

UB Upper bound

LB Lower bound

CJ Objective function coefficient

BI Activity level

DJ Reduced cost

ZJ PI value

42 Preservation/Restoration Phase

The general form of a call for GET is

CALL GET (NAME, op, FWxx, 0 P, FWxx, -. -)

where

NAME is the name of a row or column.

op is one of the codes I isted above.

FWxx is a user working cell.

In addition to placing requested information in the speci­
fied working cells, GET also prints information on the
standard printing device. The following example illus­
trates the use of GET to obtain the activity in FW01, the
input cost in FW02, and the upper bound in column
RUNCRUDE in FW03.

CALL GET ('RUNCRUDEI,BI, FW01, CJ,
FW02, UB, FW03)

PRESERVATION/RESTORATION PHASE

The preservation/restoration phase contains four procedures,
BASISOUT, SAVE, BASISIN, and RESTORE. An outl ine of
each is given in Table 16 below.

Table 16. Preservation/Restoration
Procedures

Procedure Purpose

BASISOUT Preserves the basis structure.

SAVE Preserves the contents of data
areas and files.

BASISIN Restores a basis structure.

RESTORE Restores the contents of data
areas and files.

BASISOUT The BASISOUT procedures punches or files
(FILE parameter) the current basis structure and bounds
status. The punched or filed data deck is preceded by a
NAME card which contains (in columns 15 to 22) the con­
tents of CR cell ADATA. In addition, the data deck is
followed by an ENDATA card.

The data deck produced by BASISOUT is in the correct
format to be used as input data to the BASISIN
procedure.

Chapter 5 describes the format of data cards produced
by BASISOUT and required as input by BASISIN.

Optional parameters for BASISOUT are:

Parameter

FILE

'filename '

Explanation

Indicates that the output is to be
written on communication file
'filename' . If FILE is not speci­
fied, the output will be produced
on the standard punch device.

The symbol ic name of a commun ica­
tion file.

The following interrupts may occur within BASISOUT:

Interrupt Causes

KMAJER 1. No matrix defined.

2. 'filename ' undefined.

3. Inval id parameter.

KIOER Irrecoverable input/output error.

SAVE The SAVE procedure saves the contents of the
communication region, the various internal work areas,
and all internal files (MATRIX, INVERSE, etc.) on the
tape file RESTART. Only one problem may be saved on
the RESTART tape. Any number of SAVEs may be made
to the same restart tape, but the last one overlays pre­
vious ones. If several SAVE files are desired, the tape
unit for RESTART may be changed in the control program
by a new ATTACH statement preceding the SAVE. Note
that user working-storage and communication files are not
saved.

The following interrupts may occur within SAVE.

Interrupt Causes

KMAJER 1. RESTART file undefined.

2. RESTART file not on a tape unit.

KIOER Irrecoverable input/output error.

BASIS IN The BASISIN procedure either inputs a new
basis, or modifies the existing basis. Provision is made
to allow both the specification of variables to be entered
into the basis and the removal of variabl es at upper or
lower bound. In addition, the user may specify which
nonbasic variables are to be placed at upper or lower bound.

If the MODIFY parameter is used, the current basis will be
used to process the input. Chapter 5 describes the format

of the input cards. If the MODIFY parameter is not used,
an all-slack basis will be used to process the input, and all
variables will initially be set at lower bound.

A call for the INVERT procedure must be made following
the BASISIN procedure.

The optional parameters for BASISIN are given below.

Parameter

MODIFY

FILE

'filename '

Explanation

Indicates that the input data is to be
processed against the current basis
structure (instead of the slack basis).

Indicates that the input is on file
'filename' instead of the normal card
reading device.

The symbolic name of the input file.

The following interrupts may occur within BASISIN.

Interrupt Causes

KMAJER 1. Inval id parameter.

2. I filename ' undefined.

KIOER Irrecoverable input/output error.

RESTORE The RESTORE procedure restores the data
areas and internal files saved by SAVE from file
RESTART. Note that any internal file restored by
RESTORE must be defined prior to the call for RESTORE.

The following interrupts may occur within RESTORE.

Interrupt

KMAJER

KIOER

Causes

1. RESTART file undefined.

2. Internal file undefined.

3. RESTART file not on a tape
unit.

4. Insufficient core available for
restoring data areas.

Irrecoverable input/output error.

Preservation/Restoration Phase 43

7. SEPARABLE PROGRAMMING OPERATING MODE

Use and operation of procedures in the separable program­
ming (SE P) operating mode will be described in this chapter.
A general description of this operating mode is provided fol­
lowed by descriptions of specific procedures. The procedures
are presented in four logical phases.

1. Input

2. Optimization

3. Output

4. Preservation and Restoration

GENERAL DESCRIPTION OF SEP MODE

Separable programming provides the FMPS user with the
capability of handling certain types of nonlinear functions.

f{x)

The nonl inearities must comply with the following important
restri cti ons:

1. A nonl inear function in n variables must be "separable"
into the sum of n functions, each in terms of only one
of these variables, as in

2. Each of the n functions must be representable by a
piece-wise linear approximation of that function. The
graph of thefunction in Figure 7 is shown in solid lines,
a piece-wise iinear approximation of the function is
shown in broken line.

B

Figure 7. Piece-Wise Linear Approximation to a Separable Function

44 Separable Programming Operating Mode

SEP ALGORITHM

A full description of the delta-method algorithm, together
with a discussion of methods available to ensure that the
problem compl ies with the above conditions, is found in
Non-Linear and Dynamic Programming by G. Hadley.t
Some details of this algorithm are outlined below.

1. Each variable x participating in a nonl inear function
f(x) has associated with it a set of special variables.
These special variables depict the piece-wise linear
approximation to f(x); each special variable represents
the distance progressed along some particular section of
the piece-wise linear approximation. That is, dXk is
the kth of r special variables used to approximate f(x).
It may be written as

where xk-l and xk are successive intercepts on the x
coordinate (see Figure 7).

2. Each of the special variables has a lower bound of zero
and an upper bound of 1. Their order specifies a direc­
tion along the x coordinate.

3. A special variable may become basic only if one of the
adjacent variables is basic or the preceding variable is
at upper bound. A bound shift is allowed only if the
preceding variable is at upper bound. No two special
variables in the same set may be basic at a given
iteration.

4. The activity of the variable approximated is given by
a grid equation of the form

r
x Xo + sum .6.x

k
. dX

k
k=l

(See IIApplicability of the SEP Algorithm ll below.)

5. Any subset of the objective function and the problem
constraints may be separable functions. A variable x
may appear I inearly in some functions and as a set of
special variables approximating it in other functions.
The user must only observe the requirements for estab­
lishing interrelationship.

PIECE-WISE LINEAR APPROXIMATION

Figure 7 shows a piece-wise I inear approximation to some
function f(x). This function is to be included in a set of
equations for optimization. The function may be part of

tG . Hadley, Non-Linear and Dynamic Programming.
Reading, Massachusetts: Addison-Wesley Publ ishing
Company, 1964, Chapter 4.

the objective or of some constraint. Note that the function
is defined only over certain limits of x, that is,

Special variables dXl, dX2, ..• dxrare now defined. These
variables collectively form the set of special variables re­
quired to approximate f(x}. The special variable dXl de­
fines the interval between the two x intercepts Xo and xli
dX2' the next interval between xl and x2, and so on. The
relationship is given by

x = Xo + dX 1 (xl - xO) + dx2 (x1 - x
2

)

+ . .. + dx r (\ - \-1)

or, simply,

r
x = Xo + sum .6.x

k
. dX

k
k=l

where

o :5 dX
k

:5 1

.6.x
k

are user-defined intervals along the x axis.

The .6.xk may be as small or as large as required, and may
vary as necessary to obtain the user-required degree of
approximation to any section of f(x).

The value of f(x) at Xo is f(x
O

)' at xl it is f(x
1
), and so on

to f(x) at x. Defining
r r

the relationship for f(x} along the first interval of the piece­
wise linear approximation is obtained by equating

f(x) = f(x
O

) + .6.f(x
1
) • dX

1

where

0:5 dXl :5 1

dX2 = dX3 = . •. = d\ = 0

This relationship can be extended to any point on the ap­
proximation, as in

r
f(x) = f (x

O
) + sum .6. f (x

k
) . dX

k
k=l

This is a linear relationship in dXk. If the dXk are vari­
ables in the I inear program, then this function may be
included in the linear program as long as the following
restriction is observed:

for

dxo = dX
1

= .•• dX
k

_
1

= 1

dxk+ 1 = . .• = dx r = 0

Separable Programming Operating Mode 45

The variable dx is the only variable in the set that may be
basic. All other variables in the set are at upper or lower
bound.

APPLICABILITY OF THE SEP ALGORITHM

There are two points, A and B, on the piece-wise linear
approximation (Figure 7) from which the value of f(x) de­
creases irrespective of the direction along the x coordinate.
Assuming that f (x) is an objective to be maximized, it is ap­
parent that starting from [x, f(x)], the point A would be
reached and the optimum would be indicated. However,
A represents only a local optimum. The global optimum is
point B. By starting at xr' and proceeding in the opposite
direction, point B is attained. The use of the SETBOUND
procedure can assist in finding the global optimum in such
cases, but there is no guarantee that an optimum attained
using separable programming is the global optimum unless
all functions have the appropriate properties of convexity
and concavity.

The problem of local optima is also raised by separable non­
convex constraints. If the objective for the problem for
which Figure 7 represents a constraint was z = x, then,
depending on the direction in which x is moving, the algo­
rithm may decide that A or B is the optimum.

EXAMPLES USING SEPARABLE PROGRAMMING

The following two problems illustrate the use of separable
programming to model nonlinearities in the objective func­
tion and in a constraint.

NONLINEAR OBJECT FUNCTION

Volume-related discounts on a certain petrochemical feed­
stock are tobe applied to the objective function according
to the following table:

Volume,
Mbbl/Month $;bbl

0 - 50 $4.75

50 - 200 $4.25

200 - 500 $3.75

500 - 1000 $3.00

46 Separable Programming Operating Mode

The total cost of feed, which is the amount by which the
objective function should be decremented, varies with vol­
ume according to the following polygonal curve.

o
o o
~

o o o
~(Y)

5
..... e
u
o 0
-0 g
I- N

o o
o

100 200 300 400 500 600 700 800 900 1000

M;bbl/Month

The pseudo costs associated with the four special variables
entered into the problem are the difference in total cost
found on this curve divided by the range of volume associ­
ated with the special variable. Those differences are
$237.5, $637.5, $1125.0 and $1500 respectively. The
matrix tableau would appear as follows.

Purchase Feedstock

SPVARl SPVAR2 SPVAR3 SPVAR4
-237.5 -637.5 -1125.0 -1500.0

Feedstock
Material
Balance -50 -150 -300 -500

Note that the scaling of the special variables must be done
manually and will affect all coefficients of the feed vector.

NONLINEAR CONSTRA~NT

This example illustrates the use of separate programming to
model a nonconvex specification row. Two products, A
and B, are to be blended to meet a maximum pour-
poi nt specifi cation of 200 F.

The Pour Point versus Mix Curve is illustrated below. To
prepare the curve for modeiing, an arbitrary choice of
ranges is made for the separable segments. In this case,
ranges are 0-20%, 20-60%, 60-100% of Component B.

Pure A Pure B

40
0

40
0

w::-
0

~ 30
0

30
0

·0 /
0- / ... /
:) /
~ 20

0 / 20
0

/
/

,/

10
0 12

0

10
0

20 40 60 so

% of Component B

It is assumed that we wish to make 10 Mbbls of the blend.
One vector is used to represent 100% A, and three "delta"
vectors are used to represent the addition of Component B,
as shown in the following tableau.

Separable Set
(Unsealed)

100A SOA 40A OA RHS
OB 20B 60B 100B

Upper
Bound Row 10 10 10 10

Material
Balance on A +1.0 -0.2 -0.4 -0.4

Material
Balance on B +0.2 +0.4 +0.4

Pour Point
Maximum
Specification 40

0 _220 _100
+lS

o
::;200

0

Note: Pour Point Maximum Specification is equal to --
specification multipl ied by total vol ume, as
in 200 x 100 = ::;2000

•

Since the input requires the separable set to be scaled to
have upper bound of 1, multiply each vector by 10. This
results in the final tableau below as entered in the
problem.

Separable Set
(Scaled)

100A SOA 40A OA RHS
OB 20B 60B 100B

Upper
Bound Row 1 1 1 1

Material
Balance on A +10.0 -2.0 -4.0 -4.0

Material
Balance on B +2.0 +4.0 +4.0

Pour Point
Maximum
Spec ifi cati on 400

0
-220

0
+100

0
+lS0

0
::;200

0

The separable programming operating mode requires differ­
ent internal treatments of the work matrix than the linear
programming operating mode. There, it is necessary to
set the mode of operation at the beginning of a run by
means of the ENTER procedure.

The procedures in the separable programming operating
mode are presented in four logical phases.

1. Input

2. Optimization

3. Output

4. Preservation and Restoration

Each phase will be explained in detail. Note that many
procedures in the separable programming operating mode
are identical to corresponding procedures in the linear pro­
gramming operating mode. Descriptions of these procedures
are repeated in this section for user convenience. A
note at the beginning of each procedure indicates whether
or not the procedure is identical to the corresponding linear
programming procedure.

INPUT PHASE

The input phase consists of two procedures, INPUT, and
REVISE. An outline of each is given in Table 17 below.

Table 17. SEP Input Procedures

Procedure Purpose

INPUT Accepts the initial statement
of the SEP problem

REVISE Makes revisions to the SEP
problem

Input Phase 47

INPUT Except for the restrictions and conditions de-
scribed in the following paragraphs, the INPUT procedure
for the separable programming operating mode is the same
as the INPUT procedure for the linear programming oper­
ating mode.

The INPUT procedure specifies a separable programming prob­
lem to FMPS. INPUT processes input data (in standard data
card format only) and converts it into a compact internal
representation on internal file MATRIX. The following
internal files (see Table 7) must be defined before the call
to INPUT.

1. MATRIX

2. INVERSE

3. UTiLl

4. UTIL2

Also, if IN PUPs data are on fi Ie, the user's communication
file must also be defined.

The data deck setup for the input procedure is shown in
Chapter 5.

The special variables may appear in any row in the problem.
They are identified as such in the COLUMNS chapter, and
this identification is the only difference between separable
and linear programming data. The 'MARKER' parameters
are used to bracket each set of special variables. (The
single quotation marks are included in the keywords.) There
are two types of 'MARKER' cards distinguished by the key­
words 'SEPORG' or 'SEPEND' in columns 40 to 47 of the
'MARKER' data card. The format of a 'MARKER' data card
is shown below.

Columns Description

1-4 Blank.

5-12 Unique column name.

13-14 Blank.

15-22 'MARKER'

23-39 Blank.

40-47 'SEPORG' or 'SEPEND'

48-72 Blank.

All of the special variables in a set must be contained be­
tween two 'MARKER' cards. A set may be embedded any­
where within the body of the matrix columns. Thebegin­
ning of a new set is recognized when a 'SEPORG' type of
'MARKER' card is read. The name of the set is the name
in columns 5 to 12 of the 'SEPORG' card which precedes
the set. The end of a set is recognized when either a
'SEPEND' or 'SEPORG' type of 'MARKER' card with a
unique name in columns 5 to 12 is processed. Contiguous

48 Input Phase

sets do not require a 'SEPEND' type of 'MARKER' card as
a separator.

Data cards describing the special vectors in a set have the
same format as norma I I inear variables. The order of ap­
pearance of the variables in a set defines the required se­
quence dx

1
, ••• , d\.

Each of the separable special variables must have an upper
bound of 1. This bound is automatically assigned to each
of the special variables. The user may, if he so desires,
include these bounds in the BOUNDS chapter. However,
if any other bound besides this preempted bound is assigned,
it wi II be registered as a minor error.

The following CR variables must be initialized before the
call for INPUT.

CR Variabie

ADATA

APBNAME

Expianation

Conta ins the name of the data deck
for data reading procedures such as
INPUT, REVISE, etc. Also used by
data outputting procedures such as
BASISOUT to name output data deck.

The name to be assigned to the SEP
problem.

Optional parameters for INPUT are

Parameter

FILE

'fi lename'

Explanation

Indicates that the input data is to be
found on file 'filename'. If the pa­
rameter is not used, INPUT data is
assumed to be on the standard card
input device.

The symbolic name of the communica­
tion file on which the input data
resides.

The following interrupts may occur with INPUT.

Interrupt

KMAJER

Causes

1 • Inva.! id parameter.

2. Input data not found.

3. Minimum required input not
found (ROWS, COLUMNS, and
RHS).

4. Undefined fi les.

5. Rows chapter exceeds avai lable
memory.

6. FilE :fiiename! undefined.

7. Invalid 'MARKER' card.

Interrupt

KMINER

KIOER

Causes

1. Duplicate columns. The dupli­
cate column is ignored.

2. Duplicate element. The duplicate
element is ignored.

3. Invalid indicator in ROWS or
BOUNDS chapter.

4. Invalid combination of indicators
in BOUNDS chapter.

5. Columns out of sort in BOUNDS
chapter.

6. Illegal bound for a special vari­
able. The illegal bound is
ignored.

An irrecoverable input/output error
has occurred.

REVISE This procedure is identical to the corresponding
procedure in the linear programming mode.

The REVISE procedure modifies a matrix according to the
input data from the standard card input device or from an
internal communication file. Any element of the matrix
can be modified, deleted, or inserted. REVISE requires
that the matrix to be revised be currently input and that all
of the standard FMPS internal files be defined. Communi­
cation region variable ADATA contains the name of the
R~VISE data deck or identification record name if data are
on file. New sets of special variables must be bracketed
by the required 'MARKER I cards.

It is mandatory (unless a slack starting basis is desired) that
a BASISIN procedure and an INVERT procedure follow
REVISE to resume from an advanced base.

The data card format is the same as for INPUT. Refer to
Chapter 5 for information about data deck setup.

Optional parameters for REVISE are given below.

Parameter

FILE

'filename '

Explaration

Indicates that the input data for
REVISE is on the file 'filename ' .

The symbolic name of the communica­
tion file on which the input data
resides.

The followi ng interrupts may occur within REVISE.

Interrupt Causes

KMAJER 1. Invalid parameter.

2. Input data not found.

3. Undefined files.

Interrupt Causes

KMAJER (cont.) 4. ROWS chapter exceeds available
memory.

5. No matrix exists to REVISE.

6. Invalid 'MARKER' card.

KMINER 1. Duplicate columns. The dupli-
cate column is ignored.

2. Duplicate element. The dupli-
cate element is ignored.

3. Invalid indicator in ROWS or
BOUNDS chapter.

4. Inval id combination of indicators
in BOUNDS chapter.

5. Columns out of sort in BOUNDS
chapter.

6. Illegal bound for a special vari-
able. The illegal bound is
ignored.

KIOER An irrecoverable input/output error
has occurred.

SEP OPTIMIZATION PHASE

The optimization phase contains three procedures in the
separable programming operating mode, OPTIMIZE, INVERT,
and SETBOUND. An outline of each is given in Table 18
below.

Table 18. SEP Optimization Procedures

Procedure Purpose

OPTIMIZE Attempts to find optimal, feasible solu-
tion to the existing matrix while ensur-
ing that the special variables comply
with their basic entry rules.

INVERT Restates the product form of the inverse
in terms of the minimum number of
transformations required to state the
basis.

SETBOUND Tries different solution paths by setting
the special variables in specified sets
to bound.

OPTIMIZE OPTIMIZE is similar to the LP OPTIMIZE,
except that in the SEP operating mode, the CR variable
INCAND is not avai lable for user setting.

The OPTIMIZE procedure attempts to find a feasible opti­
mal solution to the separable programming matrix using the

SEP Optimization Phase 49

SEP algorithm. If the matrix has no solution, or if the solu­
tion is unbounded, OPTIMIZE will cause the KNFS or KUSS
interrupts to occur.

While the model is infeasible, OPTIMIZE uses a composite
pricing (PI) vector. The function of the composite PI vec­
tor is either to maintain or to move toward optimality while
achieving feasibility. Communication region cell FCMPDJ
is the compositing factor which determines the balance be­
tween the drive for optimality and/or feasibility. As an
example, a value of 0.5 for FCMPDJ implies a balanced
driving force between optimality and feasibility while a
value of 0.0 implies total disregard for optimality. When
a balanced driving force is requested, OPTIMIZE system­
atically reduces FCMPDJ by 0.125 if the drive for feasibil­
ity is insufficient. FCMPDJ will be reduced if only one
candidate from the selected subset is chosen to enter the
basis, and the sum of infeasibilities is not decreasing.

Communication region variable IIWGHT is used to weight
individual infeasibi lities. The standard setting for IIWGHT
is 0, which implies all infeasibi litiesare given equal weight.
If IIWGHT is set to -1, individual infeasibi lities are
weighted by the amount by which they are infeasible. If
IIWGHT is set to +1, individual infeasibilities are weighted
by the reciprocal of the amount by which they are infeasible.

The communication region variables utilized by OPTIMIZE
are listed below. Of all the cells in the list, only ARHS,
AOSJ, and FOSJWT must be initialized by the user prior
to calling OPTIMIZE.

CR Variable

ARHS

AOSJ

FOBJWT

FCMPDJ

IIWGHT

Explanation

Name of the right-hand side.

Name of the objective row.

The weight given to the objective
function. Must be +1. 0 for minimi­
zation, -1.0 for maximization.

Factor used in determining effective
DJ when infeasible, as in

DJE = FCMPDJ * DJ + (1. 0 - FCMPDJ)
* DJI

where

DJE is the effective DJ of
the column.

DJ is the true DJ of the

DJI

column.

is the DJ based on infea­
sibility removal qualities of
the column.

Infeasibility weighting switch, ac­
cording to codes shown below.

50 SEP Optimization Phase

CR Variable Explanation

IIWGHT (cont.) Code Meaning

FDJZT

FINFZT

FMPIVT

ILOGP

ILOGSS

IFREQI

IFREQA

ITIME

-1 Weight by amount of
infeasibil ity.

o All infeasibilities given equal
weight.

+1 Weight by reciprocal of
amount of infeasibility.

DJ zero tolerance. If the absolute
va I ue of the reduced cost (D J) is less
than FDJZT, it is considered zero.

Infeasibility zero tolerance. If the
absolute value of the amount of in­
feasibility is less than FINFZT, the
variable is considered feasible.

Minimum pivot tolerance. During any
optimization procedure (here, INVERT
is not considered an optimization pro­
cedure), an element is not considered
as potentially pivotal unless its ab­
solute value is greater than FMPIVT.

Iteration logging frequency for con­
sole printer.

On/Off switch for printing column
selection messages during pricing of
matrix.

Iteration frequency interrupt for in­
version. The KINV interrupt will
occur every IFREQI iterations
(IFREQI > 0).

Iteration frequency interrupt. If
IFREQA is 0, no interrupt wi II occur.
Otherwise, the KFREQA interrupt
will occur every IFREQA iterations.

The length of time, in minutes, before
the KTIME interrupt wi II occur. The
KTIME interrupt does not occur if
ITIME is set to zero. Whenever the
KTIME interrupt occurs, ITIME is set
to zero. Time for KTIME is measured
from the time of the last initializatior
of ITIME.

The following interrupts may occur within OPTIMIZE.

Interrupt Causes

KMAJER 1, AOBJ or ARHS undefined,

2. No matrix to optimize.

Interrupt

KIOER

KNFS

KUBS

KINV

KFREQA

KTIME

Causes

1. Irrecoverable input/output error.

2. Fi Ie capacity exceeded.

No feasible solution.

Unbounded solution.

1. Inversion frequency (IFREQI)
satisfied.

2. Correcting numerical errors.

3. Inverse exceeding fi Ie storage.

Corrective action requires calling the
INVERT procedure.

User iteration frequency (IFREQA)
satisfied.

User-specified time increment
reached.

INVERT This procedure is identical to the corresponding
procedure in the linear programming mode.

The INVERT procedure establishes the product-form inverse
for the currently specified basis. To minimize the number
of elements in the inverse and, therefore, reduce numerical
rounding error and computation time, INVERT uses the most
modern techniques in triangularization and subtriangulariza­
tion. INVERT may be either called explicitly by the user
or called as the result of the KINV interrupt.

Periodic calls to INVERT from OPTIMIZE help preserve
numerical accuracy and reduce total optimization time.
Such calls are automatically executed at suitable time in­
tervals. Setting CR variable INVTIME to a negative
value inhibits these automatic calls.

CR variable IFREQI, if set to a positive nonzero value,
controls the maximum number of iterations that can occur
between occurrences of the KINV interrupt. Exceptional
conditions such as the INVERSE procedure exceeding file
storage, or loss of accuracy during OPTIMIZE, PARARHS,
or PARAOBJ procedures may also cause the KINV interrupt
to occur.

In general, operating with INVTIME = 0 and IFREQI =0 gives
the best speed and accuracy. CR region variable FMINVT
is used by INVERT as the minimum pivot tolerance. Ele­
ments are not considered pivotal if their value is smaller
than FMINVT. FMINVT should be initialized to a value
smaller than the value used for FMPIVT, the minimum pivot
tolerance for OPTIMIZE.

The following interrupts may occur within INVERT.

Interrupt Causes

KMAJER .1. No matrix defined.

2. No basis to invert to.

KIOER Irrecoverable input/output error.

SETBOUND The SETBOUND procedure may be called
at any stage of problem solution, provided that a matrix
exists on the file MATRIX. Due to the possibility of obtain­
ing a local optimum to a problem (depending on the solution
path taken), it is of interest to examine the solutions ob­
tained by proceeding along different paths. SETBOUND
provides this capabil ity.

Independent of problem status, SETBOU ND wi II set all the
special variables in the sets specified to upper bound.

The two possible calls to SETBOUND are

CALL SETBOUND

and

CALL SETBOUND (LISTC)

The first of these calls will result in all the special variables
in all the sets being set to upper bound.

The second call will result in all the special variables in
those sets I isted in a previously loaded column selection
list (see LOADLIST) being set to upper bound. The sets re­
quired are specified by including the column name given on
the 'SEPORG' type of 'MARKER' card in the list of names
in the column selection list.

For example, if a set of special variables is preceded in the
INPUT data by a card with the format outlined below,

Columns Description

5-12 FIRSTSET

13-14 Blank.

15-22 'MARKER'

23-39 Blank.

40-47 'SEPORG'

and the name FIRSTSET is included in the LOADLIST data,
then the call

CALL SETBOUND (LISTC)

wi II set all the special variables in the set bracketed by the
above and the next 'MARKER' card to upper bound. All
other special variables wi II remain at their previous
bound setting.

SEP Optimization Phase 51

Note that if LISTC is specified and no list is set up, then
all special variables wi II be set to bound.

Optional parameters for SETBOUND are given below.

Parameter

LISTC

Explanation

Indicates that a previously estab­
lished coll..!mn selection list should be
searched for the set names of the var­
iables to change bound.

The following interrupts may occur within SETBOUND.

Interrupt

KMAJER

KMINER

KIOER

Causes

No matrix setup.

No selection i ist setup and optionai
parameter specified.

An irrecoverable input/output error
has occurred.

OUTPUT PHASE

The output phase contains four procedures, OUTPUT,
SOLUTION, ERRORS, and CONDITION.

An outline of each is given in Table 19 below.

Table 19. SEP Output Procedures

Procedure Purpose

OUTPUT Displays the matrix in various
forms.

SOLUTION Reports the solution values.

ERRORS Examines the errors in the solution.

CONDITION Displays the condition of various
FMPS regions and fi les.

Note that, except where explicitly noted, the 'MARKER's
are not included in any of the output generated by the fol­
lowing procedures.

OUTPUT This procedure is identical to the correspond­
ing procedure in the linear programming operating mode.

The OUTPUT procedure displays the entire matrix of a
selected subset on the standard printing device, or fi les on
the internal communications device. OUTPUT displays the
entire original matrix in tabular form on the standard
printing device.

Parameters for OUTPUT make it possible to:

1. Display updated elements.

2. Select specific rows and/or columns.

52 Output Phase

3. Output nonzero elements only.

4. File results.

Table 13 in Chapter 6 contains a complete list of parameters
for OUTPUT.

The filed output consists of two logical records. The first,
the identification record, is labeled OUTPUT and is fol­
lowed by the second record containing the selected data.
Chapter 2 describes the basic means of accessing the filed
records in FORTRAN and lists the detailed structure of each
record.

The following interrupts may occur within OUTPUT.

Interrupt

KMAJER

KMINER

KIOER

Causes

1. No matrix has been processed by
INPUT.

2. There is no file with the name
lfi lename I.

1. Null selection list.

2. Invalid parameter{s}.

3. Illogical combination of parameters.

Irrecoverable input/output error.

The following example illustrates the use of OUTPUT to
display the original form of the elements in the rows speci­
fied in LISTR but not in the columns specified in LISTC.

CALL OUTPUT (BYROWS,ROWS,LISTR,COLS,
EXCEPT,LISTC)

SOLUTION SOLUTION output for the separable pro-
gramming operating mode is prepared in three sections: the
IDENTIFIER section, the ROWS section, and the COLUMNS
section. The IDENTIFIER section is for display of problem
status and indicates the operating mode. The ROWS and
the COLUMNS sections are the same as for the linear pro­
gramming operating mode with one addition in the COL­
UMNS section. The column names of the 'MARKER' cards
will be included in the column name list in the position
they had in the INPUT data column order. These names
mark off each set of special variables, and have no entries
against them. If the user requires the activity of the vari­
able x approximated by the dX1' •. , dxr, he must include
the grid equation {see II SEP Algorithm'~ above} in the
problem.

The SOLUTION procedure prepares the current solution of
the separable programming matrix for display. The normal
mode of SOLUTION is to print the solution on the standard
printing device. If the optionai parameter FiLE is used,
the specified information is placed on internal communica­
tion file Ifilename l.

SOLUTION output is prepared in three chapters for the
separable programming operating mode. The first, the
IDENTIFIER chapter, is for display of problem status. The
second, the ROWS chapter, contains information on the
selected rows in the matrix. The report contains nine col­
umns of information. The COLUMNS chapter contains
information on the selected columns in the matrix. The
COLUMNS report contains eight columns.

If the FILE option is used, it is possible to fi Ie the data
columns selectively in each chapter, as well as to select
which rows and columns to output. Each data column has
been assigned a number.

Table 14 in Chapter 6 describes the nine columns of the row
report. Table 15 in the same chapter describes the 8 col­
umns of the columns report. These tables also indicate the
number and the heading assigned to each data column.

The data columns are selected for fi I ing by using the key­
word parameters RCHAPTER and CCHAPTER, each followed
by the numbers of the data columns to be filed.

Chapter 2 describes the means of accessing the fi led solu­
tion and the structure of each record.

The example shown below illustrates some uses of SOLUTION.

CALL SOLUTION (ROWS, LISTR, COLS, LISTC,
FILE, 'SOLFILE I, RCHAPTER,2,5,8,CCHAPTER,
2,4,8)

In the example, SOLUTION is used to perform the follow­
ing tasks:

1. File the output on communication file 'SOLFILE ' as
well as on the printer.

2. File only the rows specified in row selection list LISTR.

3. File only the columns specified in column selection
list LISTC.

4. File only the row name, slack activity, and dual
activity columns of the ROWS chapter. All columns
appear on the printed report.

5. File only the column name, activity, and reduced
cost columns of the columns chapter. All columns
appear on the printed report.

The optional parameters avai lable to SOLUTION are given
below.

Parameter

ROWS

COLS

EXCEPT

Explanation

Indicates that row selection or excep­
tion list follows.

Indicates that column selection or
exception list follows.

Indicates that following list reference
is exception list.

Parameter Explanation

LISTR Used in connection with ROWS to specify
row se I ecti on or exception list.

LISTC Used in connection with COLS to specify
column selection or exception list.

FILE Indicates that requested output be written
on internal communication file 'filename ' .

'filename ' Used in connection with FILE to specify
'fi lename I.

RCHAPTER Indicates ROWS chapter data column
selection numbers follow.

CCHAPTER Indicates COLUMNS chapter data column
selection numbers follow.

The following interrupts may occur within SOLUTION.

Interrupt

KMAJER

KMINER

KIOER

Causes

1. No matrix defined.

2. There is no file with name 'filename ' .

3. Data column selection indicated but
specifications missing.

1. Invalid parameter.

2. Illogical combination of parameters.

Irrecoverable input/output error.

ERRORS This procedure is identical to the corresponding
procedure in the linear programming operating mode.

The ERRORS procedure substitutes the current primal and
dual solutions into the original primal and dual problems
and computes and outputs any rounding error that exists to
the standard printing device. Any error less than the toler­
ance FABSZT is considered zero, and no line of print will
occur.

The output is prepared in two sections. The first section
contains the dual errors and consists of the following
information.

1. Name of the basis variable.

2. Magnitude of error.

The second section contains the primal errors and consists of
the following information.

1 . Name of the row.

2. Right-hand-side value of row.

3. Magnitude of error.

Output Phase 53

The following interrupts may occur in ERRORS.

Interrupt Causes

KMAJER No matrix defined.

KIOER Irrecoverable input/output error.

CONDITION This procedure is identical to the corre-
sponding procedure in the linear programming operating
mode.

The CONDITION procedure outputs to the standard printing
device the following information.

1. Contents of communication region.

2. Current status of all active fiies.

3. Current status of all assigned input/output devices.

4. Amount of storage (words) in use by each fi Ie.

5. Maximum amount of storage used in the run by each
file.

SEP PRESERVATION/RESTORATION PHASE
The preservation/restoration phase contains four procedures,
BASISOUT, SAVE, BASISIN, and RESTORE. An outline of
each is given in Table 20 below.

Tab I e 20. SE P Preservati on/Restorat i on Procedures

Procedure Purpose

BASISOUT Preserves the basis structure.

SAVE Preserves the contents of data
areas and fi I es.

BASISIN Restores a basis structure.

RESTORE Restores the contents of data areas
and files.

These procedures are identical to the corresponding pro­
cedures in the linear programming operating mode.

BASISOUT The BASISOUT procedure punches or fi les
(FILE parameter) the current basis structure and bounds
status. The punched or filed data deck is preceded by a
NAME card which contains (in columns 15 to 20) the con­
tents of CR cell ADATA. In addition, the data deck is
followed by an ENDATA card.

The data deck produced by BASISOUT is in the correct for­
mat to be used as input data to the BASISIN procedure.

54 SEP Preservation/Restoration Phase

Chapter 5 describes the format of data cards produced by
BASISOUT and required as input by BASISIN.

The optional parameters for BASISOUT are

Parameter

FILE

'filename'

Explanation

Indicates that the output is to be written
on communication fi Ie 'fi lename'. If
FILE is not specified, the output will be
produced on the standard punch device.

The symbolic name of a communication
file.

The following interrupts may occur within BASISOUT.

Interrupt Causes

KMAJER 1. No matrix defined.

2. 'filename' undefined.

3. Invalid parameter.

KIOER Irrecoverable input/output error.

SAVE The SAVE procedure saves the contents of the
communication region, the various internal work areas, and
all internal fi les (MATRIX, INVERSE, etc.) on the tape
fi Ie RESTART. Note that user working-storage, and com­
munication files are not saved.

The following interrupts may occur within SAVE.

Interrupt Causes

KMAJER 1. RESTART fi Ie undefined.

2. RESTART file not on a tape unit.

KIOER Irrecoverable input/output error.

BASISIN The BASISIN procedure either inputs a new
basis or modifies the existing basis. Provision is made to
allow both the specification of variables to be entered into
the basis and the removal of variables at upper or lower
bound. In addition, the user may specify which nonbasic
variables are to be placed at upper or lower bound.

If the MODI FY parameter is used, the current basis wi II be
used to process the input. Chapter 5 contains the format of
the input cards. If the MODIFY parameter is not used, an
a I ! -s I ack bas is wi!! be used to process the input and a!! var­
iabies wii i initiai iy be set at iower bound. A cai i for the
IN VE RT procedure must be made fo II owi ng the BASI SI N
procedure.

The optional parameters for BASISIN are given below.

Parameter

MODIFY

FILE

'fi~ename'

Explanation

Indicates that the input data is to be
processed against the current basis
structure (instead of the slack basis).

Indicates that the input is on file
'filename ' instead of the normal card
reading device.

The symbolic name of the input file.

The following interrupts may occur within BASISIN.

Interrupt Causes

KMAJER 1. Invalid parameter.

2. 'filename ' undefined.

KIOER Irrecoverable input/output error.

Note that basis specifications which conflict with the rules
for basic and upper bounded variable (see II SEP Algorithm'~
above) selection will be resolved by ignoring invalid
specifications.

RESTORE The RE STORE procedure restores the data areas
and internal files saved by SAVE from file RESTART. Note
that any internal file restored by RESTORE must be defined
prior to the call for RESTORE.

The following interrupts may occur within RESTORE.

Interrupt

KMAJER

KIOER

Causes

1. RESTART file undefined.

2. Internal file undefined.

3. RESTART file not on a tape unit.

4. Insufficient core available for
restoring data areas.

Irrecoverable input/output error.

SEP Preservation/Restoration Phase 55

8. OPERATING PROCEDURES

This chapter includes a description of the BPM control
cards necessary for FMPS runs, and the relationship
between BPM !ASSIGN contrQI cards and FMPS con­
trollanguage CALL DEVICE statements. Also included
are guidel ines for the efficient use of FMPS. The
user should reference the SIGMA 5/7 Batch Processing
Monitor Reference Manual for complete discussion of BPM
control cards. Error messages and error types are given
in Appendix B.

BPM CONTROL COMMANDS USED IN FMPS RUNS

Figure 8 illustrates the general deck sequence for an FMPS
run. The run deck always starts with a set of BPM control
cards. Following the! DATA control card are the user's
FMPS control language program terminated by an END
statement and input data decks. Each input data deck is
preceded by a NAME card and followed by an ENDATA
card.

ASSIGN AND CALL DEVICE INTERACTION

The interrelationships between !ASSIGN control card
parameters and the arguments in the CALL DEVICE con­
trol language statement are shown in the following
examples.

In the command

CALL DEVICE(' EXAMPLE', TAPE, IE')

the keyword TAPE dictates an !ASSIGN control card which
establ ishes a RAD file, labeled or unlabe!ed tape, and speci­
fies that file or tape organization be consecutive-sequential
(see Table 21).

In the command

CAll DEVICE('EXAMPlE2I, DISC, Ie')

the keyword DISC dictates an !ASSIGN control card
which establishes a RAD file, and specifies that file or­
ganization be keyed direct-access (see Table 22).

The user should note that the compiled FMPS control lan­
guage statements are written to a file or tape using the
F:1 DCB. A BPM !ASSIGN control card must be in each
run deck for F:1, andtheorganizationmustbeconsecutive­
sequential. The control language compiler within FMPS
simulates the following pair of control language statements.

CALL DEVICE (,PREPDEVI ' , TAPE, 'A')
CALL ATTACH (,PREPOUT', 'PREPDEVI')

The (INOUT) clause should be included in !ASSIGN con­
trol cards for all FMPS internal files and user communica­
tion files to assure the ability to read and write the file.

56 Operati ng Proced ures

Should the user wish to save the RESTART tape after using
the CALL SAVE procedure in an FMPS run, the (SAVE)
clause should be included on the !ASSIGN control card
associated with the tape.

Note that all FMPS internal files and user FORTRAN com­
munication files are binary files; the! ASSIGN control
card should have the (BIN) clause included.

Table 21. Consecutive-Sequential File Assignments

FMPS Control Language Statement

CALL DEVICE('EXAMPLP, TAPE, lEI)

Acceptable BPM !ASSIGN Control Cards

RAD File !ASSIGN F:5, (FILE, EXAMP),
(CONSEC), (SEQUEN) •••

Labeled Tape !ASSIGN F:5, (LABEL, EXAMP),
(CONSEC), (SEQUEN) •.•

Unlabeled Tape !ASSIGN F:5, (DEVICE, 9T),
(CONSEC), (SEQUEN) •••

Table 22. Direct-Access File Assignments

FMPS Control Language Statement

CALL DEVICE('EXAMPLE2I, DISC,'C)

Acceptable BPM !ASSIGN Contr"ol Card

RAD File !ASSIGN F:3, (FILE, EXAM2),
(KEYED), (DIRECT) •••

EFFICIENT USE OF FMPS

ORGANIZING THE CONTROL PROGRAM

For simplicity and in order to avoid sequence errors, it is
recommended that the control program always start with
the following statement order:

CALL ENTER
ASSIGN statements for KMAJER and KMINER
CALL DEVICE
CALL ATTACH

If standard tol erance setti ngs are to be used, the user need
only be concerned with the following initial izations:

CR Variable

ADATA

Explanation

Initialize prior to the cal! for
any procedure requiring input
data, or producing output on

1.

4.

! (BIN), (KEYED), (DIRECT), (OUTIN)

3. !ASSIGNF:5,(FILE,Utility File 2),;

! (BIN), (KEYED), (DIRECT), (OUTIN)

2.

Figure 8. General FMPS Deck Structure

Card types and their uses are explained below.

Card Type

1.

2.

3.

4.

5.

Parameter

!JOB

!LIMIT

!ASSIGN

!RUN

!DATA

Purpose

Identifies the account number and the user for the job.

Sets the maximum execution time, number of printer pages and number of temporary
RAD granules to be in effect for the run. This card is required only when the user
expects the job to exceed the default BPM limits defined during BPM system
generation.

Mandatory for the five standard FMPS files and also for any additional files or tapes
the job will require (for example RESTART). If the CALL BASISOUT procedure is to
be used, the assign card for F: 1 06 must be included. Note that all the standard
FMPS files may be assigned to either RAD or tape; however, for improved execution
speed they should be assigned to RAD as keyed direct-access files. The control lan­
guage file (F:l) should always be a RAD file and must have consecutive-sequential
organization.

Causes BPM to load FMPS into core and commence execution.

Signals BPM that following cards are user data decks to be read by FMPS.

Efficient Use of FMPS 57

CR Variable

ADATA (cont.)

AOBJ, ARHS

FOBJWT

Explanation

tape or cards, except for SAVE,
RESTART, and INPUT when SHARE
is specified.

In itial ize these two cells early in
the control program since they are
used by many procedures.

Initial ize at -1. 0 for maximization,
or 1.0 for minimization.

It is always necessary to initial ize the KINV interrupt cell
and to program a sequence of action for that interrupt be­
cause the KINV interrupt may occur for reasons beyond the
user's control (such as the occurrence of excessive numeri­
cal errors). Also, the KINV interrupt may be activated by
the timing routine built into the OPTIMIZE procedure, when­
ever more frequent calls for INVERT would help reduce the
time per iteration within the OPTIMIZE procedure.

The SAVE procedure can be used for two purposes:

1. To preserve the problem status on tape in order to be
able to restart from an advanced basis if it is neces­
sary to discontinue the run, or if hardware errors occur.

2. To create a working copy of a problem in a compact
format on magnetic tape; for instance, call ing the
SAVE procedure after reading a large matrix from cards
allows use of the RESTART tape rather than the cards at
a later time.

Execution of the SAVE procedure several times during one
run causes the latest status to be preserved on tape.

58 Efficient Use of FMPS

Whenever a call for SAVE is executed, any information
written on tape by previous calls for SAVE is overlaid by
the new information being written. When restarting a run
by means of the RESTART procedure, care must be used in
the sequence of control program statements. Any state­
ments that modify the communication region (CR) must
appear after the call for RESTART, since execution of the
RESTART procedure initializes the CR to the status at the
time the problem was saved. For this reason, it is recom­
mended that the CALL RESTART statement be placed im­
mediately after the calls for DEVICE and for ATTACH.

MULTIPLE ATTACHMENTS OF RESTART TAPE

It is sometimes desired to use different tapes for RESTART
and SAVE. In this case, it is perm issible to ATTACH the
RESTART file several times as in the following sequence.

CALL DEVICE('MATRIXIN', TAPE,'F')
CALL DEVICE('MATRXOUT', TAPE, IGI)
CALL ATTACH(RESTART, 'MATRIXIN')
CALL RESTART

CALL ATTACH(RESTART, 'MATRXOUT')

CALL SAVE

In the above sequence, the problem is restarted using RE­
START tape F; following the call for RESTART, tape G is
attached to the RESTART file, so that any information
saved during subsequent calculations is written on that
tape, rather than on tape F.

APPENDIX A. PARAMETRIC PROGRAMMING

This appendix describes three post-optimal procedures,
RANGE, PARAOBJ, and PARARHS, that are available
as options to FMPS. An outl ine of each is given in
Table 23 below. Note that post-optimal procedures
are available only in the linear programming operating
mode.

Table 23. Parametric Programming Procedures

Procedure Purpose

RANGE Generates and outputs an
analysis of the current LP
solution.

PARAOBJ Performs parametric pro-
gramming on the objective
row after optimality.

PARARHS Performs parametric pro-
gramm ing on the RHS after
primal and dual optimality.

After an optimal solution has been obtained, the proce­
dures RANGE, PARAOBJ, and PARARHS may be used to
determine the sensitivity of the optimal solution in regard
to RHS and objective function values. The RHS range
computes how far the activity level of a given nonbasic
variable can be changed in either direction, while hold­
ing all other nonbasic variables at the current activity
level, before the optimal basis for the current RHS will
change. The COST range computes how far the cost coef­
ficient of a given basic variable can be changed in either
direction, while holding the cost coefficients of all other
variables constant, before the optimal basis for the cur­
rent cost coefficients will change. Parametric program­
ming is an extension of RANGES, and is used to determine
how the optimal basis will change when more than one co­
efficient moves over a special range of values. Before
performing parametric procedures, a change row or column
must have been defined. Depending upon which paramet­
ric procedure is requested, a matrix cost row or RHS is
changed continuously until the specified maximum change
has been obtained. The cost row or RHS is called a com­
posite because it consists of the original elements plus a
given amount of a change element. The function of para­
metric procedures is to retain optimal ity and feasibil ity as
the problem continues to change.

RANGE The RANGE procedure generates and outputs
an analysis of the current lP solution.

RANGE will produce two different types of reports de­
pending upon the optional parameters. The first param­
eter, BASIC, generates a report of 11 columns for the
variables currently basic or at intermediate levels. The

second parameter, NO NBASIC, creates another report of
12 columns for the variables currently nonbasic or at limit
levels. Tables 24 and 25 I ist column numbers as well as
headings in each level. If neither BASIC nor NON BASIC
is specified, both outputs will be given.

The optional parameters available to RANGE are given
below.

Parameter

BASIC

NONBASIC

ROWS

COlS

EXCEPT

LISTR

LISTC

Explanation

Indicates that output is to in­
clude only those columns cur­
rently in the basis.

Indicates that output is to in­
clude only those constraint
rows whose slack variables are
currently nonbasic and those
columns currently nonbasic.

Indicates that row selection
or exception I ist parameter
follows.

Indicates that column selection
or exception I ist parameter
follows

Indicates that following list
reference is for exception list.

Used in connection with ROWS
to specify row selection or ex­
ception list.

Used in connection with COlS
to specify column selection or
exception list.

The following interrupts may occur within RANGE.

Interrupt

KMAJER

KMINER

KINV

KIOER

Causes

No matrix defined.

1. Inval id parameter.

2. Illogical combination of
parameters.

1. Solution is primal or dual
feasible. Typical response
to this interrupt would be:

CAll INVERT
CAll OPTIMIZE
RETURN

Irrecoverable input/output error.

Appendix A 59

Column

1

2

3

4

5

6

7

8

9

10

11

Column

1

2

3

4

5

6

I

Heading

NUMBER

NAME

AT

ACTIVITY

INPUT COST

LOWER PROCESS

LOWER
INCREMENT

LOWER AT

UPPER PROCESS

UPPER
INCREMENT

UPPER AT

Heading

NUMBER

NAME

AT

LOWER LIMIT

UPPER LIMIT

REDUCED
COST

60 Appendix A

I

Table 24. Output for Basic Variables

Description of Information in Column

The internal number associated with the BASIC variable.

Name of the basic variable.

A two-character code indicating the status of the BASIC variable.

Code Meaning

BS Basic variable

** Separator used to distinguish slack from nonslack

Activity of the basic variable.

Input cost specified by the user.

The name of the variable that would change its status (enter the basis) if the cost
coefficient of the basic variable in column 2 was decreased by more than the amount
in column 7.

The maximum amount of cost coefficient decrease for the basic variable in column 2
which would not change the status of any variable. If the cost coefficient is
changed beyond this amount, the variable in column 6 would change its status.

The current status (at upper limit [UL] or at lower limit [LL]) associated with the
process specified in column 6.

The name of the variable that would change its status (enter the basis) if the cost
coefficient of the basic variable in column 2 was increased by more than the amount
in column 10.

The maximum amount of the cost coefficient increase for the basic variable which
would not change the status of any variable. If the cost coefficient was changed
beyond this amount, the status of the variable in 9 would be changed.

The current status (at upper I im it [UL] or at lower I im it [LL]) associated with the vari­
able in column 9.

Table 25. Output for Nonbasic Variables

Description of Information in Column

The internal number associated with the NON BASIC variable.

Name of the nonbasic variable.

A two-character code indicating the status of the NONBASIC variable.

Code Meaning --
EQ Artificial variable.

UL Row at upper I imit for slack variable, or column at upper
I imit for nonslack variable.

LL Row at lower limit for slack variable, or column at lower
I imit for nonslack variable.

** Separator to distinguish slack variables from nonslack
variables.

The lower bound on row activity for slack variables. The lower bound on column
activity for nonslack variables.

The upper bound on row activity for slack variables. The upper bound on column
activity for nonslack variables.

The DJ of the variable in coiumn 2.

Table 25. Output for Nonbasic Variables (cont.)

Column Heading Description of Information in Column

7 LOWER
PROCESS

The name of the basic variable that would leave the basis if the original activity
level of the variable in column 2 was decreased beyond the amount in column 8.

8 LOWER
INCREMENT

The maximum amount of original activity decrease of the variable in column 2
which would not change the status of any variable. If the activity level decreased
beyond this amount, the basic variable in column 7 would leave the basis. (The
lower limit of the variable is ignored.)

9 LOWER AT A two-character code indicating the status at which the BASIC variable in column
7 would leave the basis.

Code

UL

LL

Meaning

Variable leaves basis at upper limit.

Variable leaves basis at lower limit.

10 UPPER
PROCESS

The name of the basic variable that would leave the basis if the original activity
level of the variable in column 2 decreased beyond the amount in column 11.

11 UPPER
INCREMENT

The maximum amount of original activity increase of the variable in column 2
which would not change the status of any variable. If the activity level was in­
creased beyond this amount, the basic variable in column 10 would leave the
basis. (The upper limit of the variable is ignored.)

12 UPPER AT A two-character code indicating the status at which the BASIC variable in col­
umn 10 would leave the basis.

Code

UL

LL

PARAOBJ The PARAOBJ procedure is used to perform
parametric programming on the objective row after an LP
problem has reached optimally. From any LP program a
series of related problems can be defined by replacing the
objective row with the original row plus a multiple of a
change objective row. This multiple, FTHETAC, is the
parameter commonly known as THETA. In PARAOBJ, each
value of FTHETAC defines a different problem with differ­
ent cost coefficients. The function of this procedure is to
trace the whole series of solutions, varying FTHETAC from
zero up to a maximum parameter of FTHETACM defined by
the user. FTHETAC is gradually increased while the solu­
tion is kept primal and dual feasible by changing the basis
when necessary. Solution printout may be obtained option­
ally at a basis change or at a chosen interval of FTHETAC.

PARAOBJ produces an iteration lob at each basis change
which is identical to that of OPTIMIZE with the exception
of the THETA column which represents the current value of
the parameter.

The following parameters must be defined, in addition to
those parameters requested by OPTIMIZE procedure, be­
fore PARAOBJ procedure is called.

Parameter

APOBJ

FTHETAC

Explanation

Contains name of objective func­
tion row.

Initial value of THETA for PARAOBJ.

Meaning

Variable leaves basis at upper limit.

Variable leaves basis at lower limit.

Parameter

FTHETACM

FTHETACP

Explanation

Maximum value of THETA for
PARAOBJ.

The incremental value for THETA
during PARAOBJ for which the
KSOL TN interrupt will occur.

PARAOBJ will terminate at one of the following three
conditions.

1. The parameter is at its maximum value of FTHETACM.
The message

'MAXIMUM OF PARAMETER OF THETA AT
.XXXXXX'

is printed and FTHETAC is set to FTHETACM.

2. The problem becomes unbounded at the current value
of the parameter and no further basis change will
occur. The message

'PREMATURE MAXIMUM OF THETA AT
.XXXXXX'

is printed and FTHETAC retains the current value.

Appendix A 61

3. The parameter has reached a value beyond which it
can be increased indefinitely without any basis change
to maintain optimality. The message

'NO MAXIMUM FOR PARAMETER OF THETA AT
.XXXXXX'

is printed and FTHETAC is set to FTHETACM.

The following interrupts may occur within PARAOBJ.

I,nterrupt

KMAJER

KINV

KSOLTN

KIOER

KFREQA

KTIME

Causes

1. AOBJ, ARHS or APOBJ
undefined.

2. No matrix to parameterize.

1. Problem is initially primal
or dual infeasible.

2. Problem has lost primal or
dual feasibil ity due to num­
erical error.

3. Inversion frequency satisfied.

4. Inverse exceeding file stor­
age. Normal interrupt re­
sponse for KINV would be:

CALL INVERT
CALL OPTIMIZE
RETURN

Solution printing is requested. A
typical response to this interrupt
would be:

CALL SOLUTION
RETURN

1. Irrecoverable input/output
error.

2. File capacity exceeded.

User iteration frequency (IFREQA)
satisfied.

User-specified time increment
reached.

PARARHS The PARARHS procedure is used to perform
parametric programming on the RHS after a problem has
reached primal and dual optimal ity. From any LP problem
a series of related problems can be defined by replacing
the RHS with the original RHS plus a multiple of a change
RHS. This multiple, FTHETAR, is the parameter commonly
known as THETA. In PARARHS each value of FTHETAR
defines a different LP problem with a different RHS. The
function of this procedure is to trace the whole series of
solutions by varying FTHETAR from zero up to a maximum
parameter of FTHETAM defined by the user. FTHETAR is
gradual iy increased while the solution is kept primal and
dual feasible by changing the basis when necessary. Solu­
tion printouts may be obtained optionally at basis changes
or at a chosen interval of FTHETAR.

62 Appendix A

PARARHS produces an iteration log at each basis' change
which is identical to that of OPTIMIZE with the exception
of the THETA column representing the current value of
FTHETAR.

The following parameters must be defined before PARARHS
is called.

Parameter

APRHS

FTHETAR

FTHETARM

FTHETARP

Explanation

Name of the parametric RHS.

Initial value of THETA for
PARARHS.

Maximum value of THETA for
PARARHS.

The incremental value for THETA
during PARARHS for which the
KSOL TN interrupt will occur.

PARARHS will terminate for one of the following three
conditions.

1. The parameter is at its maximum value of FTHETARM.
The message

'MAXIMUM OF PARAMETER OF THETA AT
.XXXXXX'

is printed and FTHETAR is set to FTHETARM.

2. The problem becomes infeasible at the current value
of parameter and no further basis change can occur.
The message.

'PREMATURE MAXIMUM OF THETA AT • XXXXXX'

is printed and FTHETAR retains the current value.

3. The parameter has reached a value beyond which it
can be increased indefinitely without any basis
change to maintain feasibil ity. The message

'NO MAXIMUM FOR PARAMETER OF THETA AT
.XXXXXX'

is printed and FTHETAR is set to FTHETARM.

The following interrupts may occur within PARARHS.

Interrupt

KMAJER

KINV

Causes

1. AOBJ, ARHS or APRHS
undefined.

2. No matrix to parameterize.

1. Problem initially primal or
dual infeasible.

2. Problem has lost primal or
dual feasibil ity due to num­
erical error.

Interrupt Causes Interrupt Causes

3. Inversion frequency satisfied.
KIOER l. Irrecoverable input/output

Normal interrupt response for error.
KINV would be:

CALL INVERT 2. File capacity exceeded.
CALL OPTIMIZE
RETURN

KSOLTN Solution printing is requested.
KFREQA User iteration frequency (IFREQA)

A typical response to this in-
satisfied.

terrupt would be:

CALL SOLUTION KTIME User-specified time increment
RETURN reached.

Appendix A 63

APPENDIX B. FMPS ERROR MESSAGES

CONTROL LANGUAGE COMPILER DIAGNOSTICS

The following I ist specifies the error messages that can be
produced by the control language compiler at compile
time. Any error during compilation precludes execution
of the control program. Note that all error lines are pre­
fixed with

ERROR***** .

Computer diagnostics are I isted below. Note that in the
INVALID PARAMETER message, aaaaaaaa contains the name,
in from one to eight characters, of the incorrect parameter.

ILL EGAL STATEMENT

STATEMENT NUMBER MUST BE NUMERIC

ASSIGN STATEMENT MUST REFER TO INTERRUPT CELL

REQUIRED FIELD MISSING

THE STATEMENT NUMBER OF A GO TO STATEMENT
MUST BE NUMERIC OR KTYPE

ARGUMENT ON LEFT OF EQUAL SIGN MUST BE
EITHER USER OR COMMON STORAGE VARIABLE

EQUAL SIGN MISSING

INVALID PARAMETER aaaaaaaa

MISSING LEFT PARENTHESIS

LOGICAL OPERATOR MUST BE ENCLOSED IN
PERIODS

ILLEGAL LOGICAL OPERATOR

MISSING RIGHT PARENTHESIS

INVALID PROCEDURE NAME

UNDEFINED STATEMENT NUMBER

DUPLICATE STATEMENT NUMBER

NOT ENOUGH CORE AVAILABLE TO PROCESS THIS
MANY STATEMENTS

MISSING TERMINAL QUOTE

64 Appendix B

INPUT /OUTPUT ERROR TYPES

The following table describes the input/output error mes­
sages that can occur during an FMPS run.

Table 26. Input/Output Error Types

Error Type Description

l. A file is referenced but no
ATTACH was made.

2. No DEVICE is attached to
a file.

3. Dev i ce read error.

4. Device write error.

5. Vol ume of storage for de-
vice exceeded during a
write operation.

6. Attempt to write on a file
in read or closed status.

7. Attempt to read on file in
write or closed status.

8. Attempt to read beyond
written information.

9. Dynamic core pointer for
a file buffer points to an
illegal core area.

10. Undefined type of device,
i. e., device not DISC or
TAPE.

ll. Insufficient core avai lable
to create even one fi I e
buffer.

APPENDIX C. FMPS SAMPLE RUNS

,J8B 326,l:i(JMD
LIMIT (TIME,90),(L6,1000),IUt,1000),(Oa,10001
ASSIGN F:l06,(OEVIC~,CPA041
ASSIGN F:l,(FILE,CLANG)'(BlN)'(w~ITE,ALL)'ICBNSECI,(SEQUEN),~
(8UTINI,(RECL,30000),(READ,ALLI .
ASSIGN FI2,(FILE,UTIL1),IBINI.(wRITE,ALL),(KEYEO),(CIRECT)"
CeUTIN),CRECL,30000),CR£AD,A~LI
ASSIGN FI3,(FILE,UTIL21,IBIN),(wRITE,ALL),IKEYEO),(CIRECTI"
C8UflNI,CRECL,30000),(REAOiALLI
ASSIGN FI4,(FILE,MTRXI,(8INJ,(wRITE,ALLI,ICIRECTI,(KEYEC)':
C8UTINI,CRECL,30000),CREAD,ALLI
ASSIGN FI~'CFILE,lv~EI'CdINS,(wRITE,ALL)'(DIRECT)'(KEVEC)':
ceUTIN),CRECL,30000),(READ,ALLI
ASSIGN FI6,(O[VIC£"T),(IN8UT),(INSN,026),ISINI,(wRITE,ALL),1SAVE)
RUN CLHN,FMPSI
DATA

~ THIb IS A C6MH~NT (PUNCMED C IN CSL 11

C DEFINE HEADING AND ENTER L,P, He DE
C

TITLE SOS SIGMA 5/7 • SAHPLl FHPS L,P, RUN
C
C THIS BENCHMARK HAS BEEN PURP6SELY MADE QUITE C8MPLEX f6 CEM6NSTRATE
C MANV 6r THE 6pTI8NS AVAILABLE IN FMPS, USUALLY, C~NTRSL PR6GRAMS
CARE HUCH SIMPLER AND THE STANDAAD 6PTI8NS ARE USED.
C

C
C

CALL ENTERCLP)

C INITIALIZE MAJUR ERR8R INTERRUPT VARIA8LE
ASSIGN 300 T6 KMAJER

C INITIA~IZE MINeR ERReR INTERRUPT VARIABLE
ASSIGN 300 T6 KMlhER

C SET TIME LIMIT Sf 5 MI~UTES rRBM E~EcuTteN 6F T~IS STATEMENT
IUME • 5

C INITIA~IZE TIME-OuT INTERRUPT VARIABLE
ASSIGN ~5 Ta KTIME

C SPECIFY FeUR SYMB6LIC UNITS (W6RKINr, FILES) eN RAC
C

C

CALL OEVlcEC'FlLE1',DISC,IB')
CALL DEVICEC l FILE2',DrSC"Cl)
CALL DEVICE('FILEJ',OISC,'Ct)
CALL OEVICE(~FILE.',OlSC"E~)

C SPECIFy A SYHBD~I' uNIT eN TAPE CLeGICAL NU~BER A)
CALL DlVICE('TAP£A',TAPE,'F')

C
C ATTAC~ THE r8uk STA~DARC L'P' F~P5 FILES T& THE
C PREVJ&USLY DEFlhEO reOR SYHS8LIC UNITS (RAD)
C

c

CALL ATTACH(HATRIX,'FILE1'1
CALL ATTAC~(INV~RSE"FILE2'1
CALL ATTAC~(UTIL1,'rILEJ'1
CALL ATTAC~(UTIL2"FILE4')

C ATTAtH THE RESTAkT FILE Ta LeGIC~L TAPE A PREVIBUSLV DE~INED
C

C
C NOTE reR THE A~OV~.~ATRIX,INVERSE'UTIL1,uTIL2, AND RESTART
C ARE INTERNAL FILLS wHiCH MUST ALWAYS BE ATTACHED
C E~CEPT REsTART l' N~ SAvIhG SR RESTARTI~G IS PReGRAM~EO
C
C SlLECT DESIRED IhFUT DATA RECORD AND SPECIFY PR6BLE~ NA~E
C

c
AOATA • 'ALLevS'
APBNAME • 'FUSle~'

C LeAD INPUT MATRIX FR8H CARDS, USING RECBRC 'ALLeys'

C
CALL INPUT

C
C CALL INPUTCFILE,FILENAHE) w6ULD RE9ULT IN SEARC~ING I~P~T FILE
C CALLED FILENAME FeR REceRD ALLeYS AND LeACING IT AS INPuT MATRIX
C I~ THIS CASE-8NE SHeULD FIRST DEFINE THE FILE AND ATTAC~ IT
C By MEANS e' DEVlCE AND ATTACH CALLS.
e c IDENTIFY RrGHT.~AND·SIDE ce~UHN AND ceST Rew Te BE USED
C

C
C
C
C

AAHS • 'A~eyll
Aeej • IVALut'

C V A R I & U soP TIe N S T 8 DIS PL. Y HAT R I X
C
C
C DISPLAY 8RIGINAL MATRIx IN STANDARD F~R~AT

Appendix C 65

c
c
C DIsPLAY eRlGINAL MATRIX Ih teDED rORH
C

c
C DIsPLAY IRIGINAL ~ATRIX IN RO~ ORDE~
C

c
C DIsPLAY eArGINAL t1ATRIl(. I,. t8LU"'" ItRDER
C

c
c
c
C E X A ~ P L [a' S e L uTI 6 ~
C
C
C
C VARIous INITIALIZATI8NS F8R SaLu!18~ (OPTIMIZE!

E SET TO INVERT N~ LESS FREQUENTLY THAN AT INTfRvALS aF _ ITERATIB~S
c

IfREQI • it

C
C ASSIGN .EIO~T 8~ 1.0 T8 abJECTIVF ROw
C (1.0 RESULTS IN ~lNI~IZATION, -l.C IN MAXIMIZATI6N)
C

F8BJwT • 1.0
C
C SET Ta PRINT ITlRATION ~dG (AC~ ITERATIHN (PQI~TER BUTP~T)

C
ILOGP • 1

C SET PRICING TO SE "ADE FRD" GR6UP~ 6F T~O PR8FITABLE VARIABLES
C

INCAND • 2
C
C SET INVERSION INTERRUPT CELL T6 !RANSFER TO STATEMENT 200
C

ASSIGN 200 T8 KJNV
c
C NOW SET ~IN8R EAA6R INTERRUPT T6 CAUSE CREATION OF RESTART TAPE
C IF IT _lRE TO UCCUA DURING T~[6PTI~lzr PHASE

ASSIGN _00 TO KMINER
C
C SET OPTIMIZE TO DISREGARD OPTIMALITY DURING PHASE 6NE

'C"PO.) • 0.0
C
C SOLVE L'P, MATRIx
C

CALL 6PTIMI1E
C
C PRESERvt ~ASIS 6F 6PTIMAL SOLUTION

CALL SAvE
C PRINT S6LuTI6N vALUES (C6LUMNS A~D RawSI

CALL SOLUTION
C
C PRINT PRIMAL AND OUAL ERR6A~
C

c
c

CALL ERRBRS

C l X AMP LEu F R A ~ G E CAL C L L A TIe ~ 5
C
C

C
C

CALL RANGE

C l X A H P L E 6 F C 6 5 T PAR A H E T RIC S
C
C
C StT INITIAL AfooO MAXIMUM THETA VALUES F6R COST pARAMETRlcS

FTHET At • 0.0
F'THETACI" • 1~.

c
C SET T6 PRINT SOLUTIONS AT THETA INTERVALS BF .05

FTHEUCP •• 05
C IOE~TIFY CBS' PA~AHETRIC RB~ (ThE ON[TO BE ~uLTIPLIED 8Y THETAI

APaBJ • 'OELtST'
C INITIALIZE SOLUTION REQuEST INTERRUPT VARIABLE

ASSIGN 600 T6 K~OLT~
ASSIGN 700 T8 KINV

C EXECUTE PARAMlT~IC C6ST R~h
CALL PARAa8J

C
C

CALL SOLUTION

C E x AMP LEu F H h SPA R A ~ E T RIC R U h
C
C
C RESTeRE ePT!~lL BA!!S

CALL RESToRE
C SET INlTIAL AND MAXIHU" THETA VALUES FeR RHS PARAMETRICS

FTHETAR • 0.0
FTHETARM • 10.0

66 Appendix C

C SET T6 PRINT SO~UTI6N AT T~ETA I~TERVALS OF 1.0
FTHETARP • 1.0 -

C IDENTIFY RHS-PARAMETRIC BLUMN CT~E ONE T6 BE MULTIPLIED BY THETA)
APRHS • 'DE~PRODC'

C EXECUTE PARAMETRIC R~S RUN
CALL PARARHS

C
C

c
C

CALL SO~UTI8N

STep

C THE FallOwING STATEMENTs ceNTReL THE RE~P6NSE T6 INTERR~PTS
C
C
C ENTlR HERE FOR TIME-aUT INTERRUPT
c PkESERVE PR8BlEM STATUS 6N RESTART TAPE

45 CALL SAVE
C TERMINATE RUN

STep
C ENTER HERE wHEN JNVERSI6N INTERRUPT 8CCURS

200 CALL INVERT
C R(TURN T8 PR6ClDURE THAT CAUSED THE KINV INTERRuPT

RETURN
CENTER H£RE IN CASE UF HAJ8R OR MIN8R [RReRS
C DIsPLAY C8HHUNICATl8N AEGleN VARIA8LES AND FILE STATU~

300 CALL CONOITI8N
C TERHINATE 'HPS EXLCuTIe~

STOP
C ENTER HERE FeR HINeR ERReR INTERRUPT DURING 8PTIHIZE PHASE
C DISPLAY FMPS STATUS

400 CALL CONDITION
C 06 ~AHE AS IF TIMl8vT 8CCUREe

G8 18 i!~
C ENTER HERE ~HEN seLvTl8~ PRINT_aUT IS REQUESTEC (BASIS C~AN~F
C 8R S6LUTl8N PRINT-OUT I~TERVAl 6F ThfTA SATISFIED)
C PRINT SOLuTI8N

600 CALL S6LUTION
C PRI~T VALUE OF ITLRATIO~ ceu~T

WRITE. !TeNT
C RETURN Te PARAML TRIC5

RETURN

C ENTlR HERE IF ~u~[RICAL ACCURACY CAusrs I~rEAsr~IlITY O~~ING ~ARAMETRIC5
700 CALL INVERT

CALL 6PTIM%ZE
RETURN

C END 6F C8NTROL PR5GkAM
END

~AME ALLeYS Rews
ftc VALUE
l yIELD
L FE
L MN
L -CV
L MG
G AL-
l SI

N DlLeST
C6LUMNS

81N1 VALUE 0.03000
BINl YIELD 1.00000
BtNI FE 0.15000
BIN1 Cu 0.03000
BINI HN 0.02000
BINI MG O~02000
atHI AI. 0.70000
BINI SI 0.02000
81Nl OELCST -10.0
BIN2 VALUE 0.08000
BIN2 YIELD liooOoo
BIN2 FE. 0.04000
811112 CU 0.05000
BINi' ""N 0.04000
alN2 ""0 0.03000
6IN2 AI. 0.75000
81N2 SI 0.06000
Bl"'J VALIJE 0.11000
BI1113 YIELD 1.00000
8IN1 rE 0,02000
BIN1 CU o.oaooo
BIN3 MN 0.01000
81N3 AL 0.&0000
BIN3 51 0.08000
B1N_ VALUE 0.12000
BIN_ YIEI.D 1.00000
81N4 FE 0.04000
8iNi! CU 0.02000
811\14 ""N 0.02000
BIN4 Al 0.75000
a1Ni! 81 0.12000
81N5 VALUE 0.15000
B1N5 YIELD 1.00000
BIN5 F"E. 0.02000
BINS CU 0.06000
BiNS MN 0.02000
BIN5 MG 0.01000

Appendix C 67

ell'll5 AL. 0.150000
BIN5 51 0.02000
ALUM VAL.uE 0.21000
ALuM YIELD 1.00000

ALUM FE 0.01000
ALUM CU 0.01000
ALuM AL 0.9,000
ALUM SI 0.01000
SlLCON VALUE 0.3&000
SiLCON VIELD 1.00000
SILeeN FE 0.03000
SiLCON 51 0.9'000

.... S
ALeY1 ViELD 2000.00000
ALeV1 'E ·,0.00000
ALOYl CU 100.00000
ALOVl !'IN _0.00000
AL.OYl MG 30.00000
ALeV1 AL 1500iOOOOO
AL8V1 51 ·300.00000
OELPR6DC YIELD 20000.0

RANGES
AL.l 51 50.00000

BOUNDS
uP pAOOl BINl zoo.ooooo
UP PRODl 81N2 2500-00000
Lit PRGOl BINJ 1100.00000
UP PRODI BIN] 800.00000
LO pROOl BIN_ 100.00000
UP PROOI BIN~ 100.00000
UP pReD1 BINS 1500.00000

ENDATA

1113- FEB 12,'69 10,0000
",ee l26,SOI'lD
LIMIT (TIHE,90I,cL6,10001,CUU,1000ItC06,10001
ASSION ,Il0"COEvICL,CPAO_)
ASSIGN Fll'C'ILE,ClANG),CBIN)"~~ITE,ALLI,(CeNSEc),CfiEQUEN)"
CeUTIN),CRECL,30000J,(REAOiALLI
ASSIGN ,JZ"'ILE,UTIL1I,CBIN)'ChRITE,ALLI,CKEVEDI,CDIRECTI,,
ceUT!N),CRECL,30000),CR£ADiALL)
ASSIGN '13'CFILE,OTIL21,C8IN)'C~RITE,ALL)'CKEVED),CCIRECTI"
CeUTIN), (RECL,30000), (READ,ALL)
ASSIGN ':_'CFILE,HTRX),CBINj,C~RITE,AlL)'(DIRECTI'(KEVED)"
CeUTINJ,CRECL,30000J,CRE~D;ALL)
ASSIGN F:5'(FI~E,lvst),CeINl'CWRITE,All)'(DIRECTI,C~EYED)"
C&~TIN)'(RECL,30000J,CREAD,4LL)
ASSIGN FI6,COEvlc£,tT).CINeUT),CINSN,Oc6),(BIN).(wRITE,AlL),(SAVE)
RUN (LMN,,"PS)

12F'Eb69

INTEHNAL STATEMENT NUMBEh C TIME, 11:3-
C THIS IS A COHMENT (PUNC~ED C I~ eel 11
C
C DEFiNE HEADING AND ENTER ~.P9 Me DE
C

1 •• TITLE 50S SIGMA 5/7 • SAMPLE F~PS l.P. RUN
C
C THIS 9ENC~MARk HAS BEEN PURPOSELY MADE CulTE ce~PLEX T8 DEMeNSTRATE
C MANY e, THl 6PTIe~s AVAILABLE IN F"'PS. USUALLY, ce~TReL PR6GRAHS
C ARE MUCk 51HPLER AND T~E STANDARD 8PTIeNS ARE USED.
C 2... CALL ENTERCLP)

3 ••

4J ••

! ••

6 ••

7 ••
a •• , ..

10 ••

11 ••

12 ••
II ••
14 ••
15 ••

16 ..

C
C
C

C

C

C

C
C

C
C

C ,
C
c:

c
c
c

INITIALIZE MAJeR ERROR INTERRUPT VARIABLE
ASSIGN 300 Te-K"A"'ER
1~ITIALizl HINeR [RReR INTERRUPT VARIAijLF

ASSIGN 300 T8 k!'llNlR
SET TIM[LIMIT OF 5 !'II~UTES FReM EXECUTI8N 8F THIS STATEMENT

ITIPIE , 5
INITIALIZE TIME.OUT INTERRUPT VARIABLE

ASSIGN 45 Te-KTIME -
SPECIFY FOUR SYHBULJC UNITS (~8RKING FILES) 8N RAU

CALL DEVICEC'FILE1',DISC,'B'1
CALL OlVICEC i FILE2 i ,DISC,'C'1
CALL OlVICE(lFILE3 l ,OISC,'D'1
CALL DlVICE(~FILE_r'DISC"E')

SPECIFY A SVMB8LIC UNIT eN TAPE (LeGICAL NUMAE~ AI
CALL ulVICE(~TAPEA"TAPE"F' I

ATTACH THE FSUR STANOA~D LtP. FMPS FILES T6 TH~
PREVleuS~Y DEFINEC F6UR SYMB6LIC U~ITS (RAO)

CALL ATTACH(MATRIX,'FILEt'l
CALL ATTAC~(lNVERSE"FI~E2'1
CALL ATTAC~(UTIL11'r!L(3')
CAL~ A1rAC~(~r:~Ziir:~E~'!

ATTAC~ T~E RESTAHT FILE T6 L6GICAL TAPE A PREVI1USlY cEFINED

CALL ATTAC~(HESTAR1,'lAPEA' I

68 Appendi x C

o. o. 1.

12~Ea69

17 ••
11 ••

l' ••

20 ••
21 ••

22 ••

23 ••

24 ••

25 ••

26 ••

12F'Eti69

27 ••

21 ••

2' ••

30 ••

31 ••

32 ••

33 ••

n ••

35 ••

c
C N~TE FeR T~l AtieVE.~ATRlx,INVERSE,UTILt'UTIL2, AND ~ESTART
CARE INTlRNAL ~IL(S WHICH HUST AL~AYS 8£ ATTACHtO -
C [XCEPT RlSTART IF N~ SAYIN~ OR RESTARTINQ IS PR6GRAMM[D
C
C SELECT orSIRED INPUT DA!A R£cnRD A~D SPECIfY PQaaL(H N~HE
C

c
C
C

C
C
C
C
C
C
C
C

to
C·
C
C
C
C
C
C
C

(;

C
C

C
C
C

c
C
C

c:
c
c
c
C
c
C
C
C
C
C

c:
C
C
C

C
c:
C

c
C

c
C
C

C
C
C

c
c
c
C
C

C
c

C

C

ADATA • 'ALLeYs'
APBNAME • '~USI8N'

LeAD INPUT MATRIx FROM CARDS, USING REceRD 'ALLeyS'

CALL IfIIPUT

CALL INP~T(FILE'FILENA~E) weULD RESULT IN SEARCHING INPUT FILe
CALLED FILENAME ~eR RECBRD ALLeys ANO LeADING IT AS INPUT MATRIX
IN THIS CASE·aNE SHOULD FIRST DEFINE T~E FILE AND ATTACH IT
BY MEANS OF DEvICE AND ATTAC~ CALLS.

IDENTIFY RIGHT.HAhO.SID~ CBLUM"" AND ceST Rew T8 BE USED

ARHS • 'AL6Yl'
AOSj • 'VALU{l

Y A R I U usa P T ION S T Bel S P LAY MAT R J X

DISPLAY ORIGI~AL MATAIX IN STANDARD FeRHAT

CALL OUTPUT

DISPLAY ORIGINAL MATRIX IN CBDED ,aRH

CALL OVTPUTCCeDED)

DISPLAY ORIGINAL MATRIX IN Rew BROER

CALL ouTPUTCBYR8wS)

DISPLAY 8RIGINAL MATRIX IN C8LUHN eRDER

CALL euTPUTCBYCOLS)

EXAMPL-E OF S6LUTI8N

VARleus INITIALJZATJ8NS F6R SSLUTIBN (BPTtMrZE)

SET T6 IhVERT ~6 LlSS FREQUl~TLY THAN AT INTERvALS BF 4 ITERAT[6NS

JFAEtll ••

ASSIGN WLIGHT 6F 1.0 T8 BBJECTIVE R8_
Cl.~ R~S~LTS-IN MINIHrZ~TI~NI -1.0 IN ~AXIMIZATrBN)

FeBJWT • 1.0

SET T8 PRI~T ITERATISN L8G EAC~ IT[RATISN CPRI~TER eUTPUT)

ILeGP • 1
SET PRIC1~G TO BE MADE FRSH GR6UPS eF Twe PRBFJTABLE VARIABLES

INCAND • 2

SET INvtRSleN INTERRUPT CELL T8 TRANSFER TB STATEMENT 200

ASSIGN 2~~ TB KJNY

NeW SET MI~eR ERRBR INTERRUPT T8 CAUSE CREATION SF RESTART TAPE
IF IT wEHE TO OCCUR DURING THE-ePTIMIZE PHASE
ASSIGN _00 Te KMINER .

SET ePTIMIZE Ta DISREGARD BPTIMALITY DURING PHASE 6NE
F'CHPDJ • 0.0

SeLYE L'P, MATRIx

CALL BPUH JZE

PRESERVE BASIS OF' ePTIHAL S8Lu TIeN
CALL SAYL .
PRINT ~eLUTI8N VALUES (COLUMNS AND RawS)
CALL seLUTIeN

C PRINT PRIMAL A~D DUAL LRReRS

0. O. 2.

o. o. J.

Appendix C 69

36 ••

:l7 ••

38 ••
39 ••

l2FES69

47 ••
41 ••

1t9 ••

50 ••

51 ••
&2 ••

c
C
C

CALL ERRtRS

C [X AMP ~ E a F R A ~ GEe ALe U L AT! S N S
t
C

c
C
C
C
C
C

C
C

t

C

C

t
C
t
C
C
C

C

t

t

t

C
C

CALL RANGE

l x AMP LEe F C 9 5 T pAR A ~ E T RIC S

SET INITIAL AN~ MA~tMUM T~[TA VALUES F"~ ceST PARA~ETRICS
FT~ETAC. • 090
FTHETACM • 10!

SET Ta PRI~T S6LuTI6h5 AT T~ETA INTERyALS 6F .05
F'TIotETACP •• 05
IDENTIFY casT' PARAMETRIC Rew (THE 6NE !6 BE MULTIPLIED By THETA)
AP68J • 'DELCST'
INITIALIZE se~vTIIN REQUEST INTERRUPT YARIABLE
AssiGN 600 TO KSOLTN
ASSiGN 700 TB KINY
tXECUTE PARAMETRIC ceST RU~
CALL PARAi8J
CAL~ SbLlITiaN

E X A ~ P L E 8 F R ~ SPA RAM r T RIC RUN

REST~l 8PTJMAL BASIS
CALL R£STe"E
SET INITIAL ANO MAXIMUM THETA VALUES FeR RHS PARA~(TRICS
FTkETAR • 0.0
FTHETARH • 10.0
SET Ta PRlhT-SBLUTleh AT THETA INTERYALS 6F 1.0
FTHETAHP • 1.0 -
IDENTIFY RkS'PARAKETRIC 8LUHN (THE 6NE T6 BE MULTIPLIED BY THETA)
APRHS • 'D~LPR6Dc'
EXECUTE PARAMETRIC RHS RUN
CALL PAHAA"S
CALL SOUJT IBN

53 •• ST"P

55 ••

56 ••

57 ••

51 ••

59 ••

12FEB69

C
c;
C
(.

C
C
C

C

C

t

t
C

c

TM(FeLL~JNG STATEMENTS C6NTRal TkE RESPONSE Te INTERRUPTS

ENTER HERE rOR TI~E-6uT INTERRUPT
PRESERvE '~8BLE" STATUS eN RESTART TAPE

0\5 CAL.L $AVl
TERI'tINATl RUN
STap
ENTER HERE WHEN INVERsreN INTERRuPT 6CCUAS

200 CALL IIIiVlAT
RETURN T8 PRBCEDUAE THAT CAUSED THE KINV INTERRUPT
RETURN
ENTER ~lRE IN·CASE 6r MAJOR &R MINOR ERRORS
DISPLAY CO~"~NICATl"N R[GI6N VARIABLES AND rlLt STAT~S

300 CALL C6NOITION .
T£R~INATE FHPS ExEC~TICI\j
STOP

C ENTER ~ERE FOR "lh6R ERROR INTERRUPT DURING OPTIMIZE PHASE
C DIsPLAY F"PS STATUS

60.. 400 CALL C6NOITIO~
C oe SAHE AS IF TIHE6UT eCCURED

61 •• a6 To 45
C ENTER ~ERE WHEN SeLUTI6N PRINT-OUT IS REQUESTED (BASIS CHANGE
t OR SOLuTl6N PRINT-OuT INTERVAL OF THETA SATISFIEDI
C PRINT SOLUTION

62.. 600 CALL SOLUTi6N
C PRINT VALUE 8F ITERATION ceUNT

63 •• wRITE ITCNT
C RETURN TO PARAMETRICS 6" •• RETURN
CENTER kERE IF NUMERICAL ACCURACY CAUSES INFEASIBILITY ~URING PARAMETRICS

65.. 700 CAL.L INVERT
66 •• CALL ePTIHIZE
67 •• RETURN

C EHD OF CONTROL PRlaRA"
61 •• EHD .

iNTERNAL STATEMENT NUMBER 0 TIME = 11135

70 Appendi x C

o. O. 5.

12FEB69

INTERNAL STATEMENT N~M8E" 1 TIME. 11:35
INTERNAL STATEMENT NUMBER 2 TIME • 11135
INTERNAL STATEMENT NUMBER J TIHE • 11:35
INfE~NAL STATEMENT NUMBER .. TIME • 11135
INtERNAL STATEMENT NUMBER ~ TIME • 11:35
INTIRNAL STATEMENT NUMBER 6 TIME • 11135
INTERNAL STATEMENT NUHBER 7 TIME. 11135
INfERNAL STATEMENT NuMBER 8 TIME • 11.3S
INfERNAL STATEMENt NUMBER ~ TIME • 11135
INTERNAL STATEMENT NUMBER 10 TI~E • 11.35
INtERNAL STATEMENT NUMBER 11 TIME • 11135
INTERNAL STATEMENT NuMBER 12 TIME • 1113!
INfERNAL STATEMENT NVMBER 13 TIME • 11135
lNT[~NAL STATEMENT NuMBER 14 ""E • 11135
INTERNAL STATEMENf NuMBER 15 TlHE 11:35
INTERNAL STATEMENT NUMBER h TIME 11135
iNtERNAL STATEMENf NuMBER 17 TIME • 11 Z3!5
INfERNAL STATEHENT NUMBER Ie TIME. 11135
INTERNAL STATEHEN! NUMBER !9 TlHE • ~lIl5

BUFFER SIZES (BVTES) ARE •• MATRIX. "8 INVERSE • 102'0

MATRIX STATISTICS Rewl........ 9
CeLU~Ns..... 8 AMI......... 2
DENsltv.;... 70.37
ELEMtNTI.... 57
LAROEST..... 0.2000000.05
SMALLEST.... 0-10ooo0D-01
I1AJefi (RReRS . 0
"tHeR ERReRS a
INTERNAL STATEMENT NuHB£H 20
INTERNAL STATEMENT NUMBER il
INTERNAL 5TATEHE~T NuMBER 22

LI"ER BeUND 0.00000
UPPEN SeUNO

VALUE
YALUE N 1.00000
VIELD E 0.00000
FE L 0.00000
HN L 0.00000
CU L 0.00000
HO L 0.00000

• AL G 0.00000
II L 0.00000
DELCST N 0.00000

TlHE • 11:35
TIME. 11 135
Tl'1E • 11:35

0.00000

vIELe
0.00000
1.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

12FES69 so~ SIGMA ~/7 • SAMPLE rMP~ L.P. R~~

0.00000

F'E
0.00000
0.00000
1.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

0.00000

MN
0.00000
0.00000
0.00000
1.00000
0.00000
0.00000
0.00000
0.00000
0.00000

8RfOlNAL MATRIX

LithER 88UNO 0.00000 0.00000 0.00000 .-00.00000
UPPER BeUNO 200.00000 2500.00000 !l00.00000

elL.CST BINl BIN2 AINl
VAL.UE N 0.00000 O.OlOOO 0.08000 0.17000
vlELD E 0.00000 1.00000 1.00000 1.00000
FE L 0.00000 0.15000 o.oliooO 0.02000
MN L 0.00000 0.02000 0.04000 0.01000
CU L 0.00000 0.03000 0.05000 0.08000
1"0 L 0.00000 0.02000 0.03000 0.00000

• AI. G 0,00000 0.70000 0.75000 o.soooo
51 L. 0.00000 0.02000 0.06000 0.08000
DE~CST N 1.00000 -10.00000 0.00000 0.00000

12F'ES69 90S SIGMA ~/7 • SAMPLE ~MPS L.P. RuN

etRIOINAL MATRIX

Le"'ER bftUNO 0.00000 0.00000
uPPER BDuND

ALeYl DELPRetoC
YAL.UE N 0.00000 0.00000
VIELD E 2000iOOOOO 20000.00000
FE L 60.00000 0.00000
MN L .. 0.00000 0.00000
CU L 100.00000 0.00000
1"0 L 30.00000 0.00000

• AL G 1500.00000 0.00000
51 L lOOiOOOOO 0.00000
CELCST N 0.00000 0.00000

0.00000 0.00000 0.00000 0.00000
50.00000

CU MG "L 51
0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000
1,00000 0.00000 0.00000 OiOOOOO
0.00000 1.00000 0.00000 0.00000
0.00000 0.00000 .1.00000 0.00000
0.00000 0.00000 0.00000 1_00000
0.00000 0.00000 0.00000 a.OooaO

O. 3- 1e

100.00000 0.00000 0.00000 0.00000
700.00000 1500.00000

BIN" BINS ALUM SlLC6N
0.12000 0.15000 0.21000 0.3aooo
1.00000 1.00000 1.00000 1.00000
0.04000 0.02000 0.01000 0,03066
0.02000 0.02000 0.00000 OiOOOOO
0.02000 0.06000 o~oiooo 0-00000
0.00000 0.01000 0.00000 0.00000
0,'5DOO 0.&0000 0.97000 0.00000
0,12000 0.02000 0.01000 0.!7000
0.00000 0.00000 0.00000 0.00000

O. ... 1.

Appendix C 71

12FE869 50S SIGMA ~/7 • SAMPLE FMPS L.P. RUN

INTERNAL STATEMENT NUH~ER 23 11 ME. • 11: 35

l2FEB69 50S 510MA 5/7 • SAMPLE FHPS LIP. RUN

eRIGINAL PICTURE

LaMER BIUNO,
UflPER 8IUND

• • • C B , • • • •
B . C 0 ceo

v Y F ~ C " A 5 ~ B B e B e A SAD
A lEN ~ G Ll E I I I I I L I L E
L E L N N N N N ~ L e L
U L C 1 2 l - 5 " C , P
ED 5 8-1R

T N - e
D
c

_ALU£ .. •••• ! ••• U U T 'f T T t .--.
YIELD £ • 1 • • • ~ • • .- I 1 1 1 1- i 1 D E

• • 1. ..,. l U U U U U U B • , . ,~ i... U U U U U • , B •
FE L
t1N L
tu L , ••• ~ , •• ! -AU U U U U , , •

• •••• 1. • ~u •• u • • B • Mel L
AL G • • •• !-1.. t t T t T t • D •

• •• , " 1 • U ~u T U 0 T C • · 1-. . . , , ~ . . . 51 L
DELeST N

1

.,
x

..

U

T

1

A

at

C

o
E

SUM"ARY Or'"ATRlx

kAHG[

LEq TMti

.ooaool TtiRl,i

.000010

.000100

.001000

.Qloooo

.100000

1.000001

10.000001

100.000001

1,000.000001

10,000.000001

,0Q0001

.0Q0009

.0000"

.OOO99!

.0aH"

.0","

,,,,,,,
11000000

10.000000

100.000000

11000.000000

10,000.000000

100,000,000000

CIUNT C INCL.RIoISJ

°
o
o
o
o

27

1-

~6

2

, 100,000.000001 1,000,000.000000 0

o GREATER TkAN 1,000,000.000000 0

12F[86' SOS SIGHA b/7 • SAMPLE 'MPS l'P- RUN

INTERNAL STATEMENT ~uMeER 2_ TIME • 11:35-

12FEe6' sos SIGMA ~/7 • SAMPLE FMPS L-P, AU~

Raw yAlUl NUHBEH
i.OOOO(VALUE
O.2100UI.,UM

ROW YIELD NUMBER
1_0000(YIE\..D
~ .0000 C AL,UM

ROW FE NUMBER
1.00001'£)
Ot0100!M.!.!~

ROW MN ~U~BER
1.0000(MN I

_o.OOOOCAL8Yl I

72 Appendix C

1

2

J

O.OJOO(clld
0.3800(SILC6N

1.0000(91",1
1.0000(SILCIJN

O.lS00CtHld
Q;gJClon~!!.ce~

II
·O.OiOOCElINl

O.0800CB(N2

1.0000(BIN2
2000.0000CAL8\'1

O.OltOOCBIN2
60.00oo1A68V1

o. 1.

O. 6. 1.

O. 7. 1.

O. a-

O.1700CBIN~ O.1200(BIN __ 0-150D(BIN5

1·00DOCB(N3)
20000 !0000 CDELPRSOCI

1.0000(BIN!i

O.0200CB1NJ 0.OZOOCBIN5

O.0100caIN~ 0.0200 C e h~5

Raw CU NUMBER 5
l.ooooccu
O.OlOOCALUM

0.0300C61 1
100.0000CALeVl

O.0500CBIN2 o.oaooe B H~3 O.0200CBIN .. O.0600IBI~5

ROW MG NUMBER 6
;.OOOOCMG) 0.0200CtHN1 O.0300CQIN2 0.0100CB1N5 30.0000CALevl

Raw "I. NUMBER 7
-I·ooooul.) 0.7000CBJN1 O.7!500CBIN2 0·8000(SIN3 0.7500CBIN4 0.aOOOCBIN5
~.9700CAI.UH) 1500.0000(AI.OVl

Raw Sl UMBER a
1.0000esl 0.0200CBINl 0.0600(BIN2 0,oaOO(BIN3 0.1200(BIN .. 0.0200(BIN5
O.0100C"I.UM o.9700eSILce~ JOQ.QOOO(ALaYl

Raw DELtST NUI'I8ER 9
~.000O(Dll.C8T ·10.0000eBI~1

12H869 Sos SIGM" ':117 • SAMPLE F'MPS L.P. RU~ O. 10. I.

INTERNAL STATEMENT N~MBER 25 TIME • 11 :35

12FE669 SDS SIGMA b/7 - SAMPLE F'MPS L.P. q~~ O. 11. 1.

CtLUMN VALUE UMBE~ LOWER 0.0000 UPPER .N8"'E.
I·OOooIYALUE)

C8LUMN YIELD NUMBER 2 L8WER 0.0000 UPPER 0.0000
~.oooOeY1ELD

C8LU"N ,E NUMBER 3 Lt"ER 0.0000 UPPER .N8hE.
1,0000(F£)

ClI.UMN MN NUMBER - L8111ER 0.0000 UPpER .N8f\;E.
!.OOoo".N »

COL.UMN tU IIIUMBER I) LtWER 0.0000 UPPER .NaNE.
!.ooooecu)

C8LU"N M(i UI1BER 6 L810iER 0.0000 UPPER .N8""E.
;'0000("0 ,

Cel.UMN AL NUMBiR 7 LewER 0.0000 UP,ER .NaNE.
.i.ooooul. »

caLU"N SI NUMBER 8 LalliER 0.0000 UPPER 50.0000
1·0000e81 l

C8LUt1N DELtST NUMBER
1.0000CDlLCST

9 LtWER 0.0000 UPPER .NeNE.

CtLUMN BINI NUMBlR 10 LawER 0.0000 UPPER 200.0000
O.0300eVALut 1,OOOOCYIELO 0'1!500(FE I 0.0200(MIIj 0.0300CCli 0.0200(MO
O.7000CAL 0.0200e&1 -10.000010EI.C5T)

taLU"N BIN2 NUMBER ~1 LalliER 0.0000 UPPER 2500.0000
o,O.OOCYALUE 100000 (Y IELC O.O-OOIF'E I O·O_OOCMN 0.0500CCLi o.O~OO(MG

9'75(JOCAL Oi0600CSl

COLUMN BIN3 NUMBER 12 L8i01ER 400.~000 UPPER 800.0000
O.1700CVALU[hOOOOCYI£LO I 0.0200C'E I 0.0100CHN 0.0800CCU O.IOOO(Al
Q.oaOOCSI

COLUMN BIN" NUI"IB~R 13 LOwER 100.~OOO UPPER 700.0000
O.1200(VALIJE 1oOO()O(YIELC) O.O-OOCFE) 0.0200(MN 0.0200cCU 0.7500(AL
9·1200151

ceLUMN BIN5 I\;UMBlH lit L8WER 0.0000 UPPER 1500.0000
.O.1500IVALuE ItOOOOCYIELO 0.02001F'E I 0'()200CMN 0.0600CCU o.0100(MQ
O.aOOOCAL 0.0200(SI

CDLUMN ALUM I\;UM8~1< ~5 LeloER 0.0000 ~PPER .NA~E.
O.2100IVALuE 1.0000CYlELC 0'0100('E I 0.0100CCU 0'9700(AL 0.0100C5[

12F[869 50S SIGMA ~/7 • SAMPLE FHP5 L.P' R~N O. 11· 2.

COLUMN IILCeN NUHBlR 16 L8IIIER 0.0000 UPPER .NeNE.
O'JlOOCYALIJE 1·0000(VIELO 0.0300(F'E) 0.9700(S1

ceLUMN "L8YI NUMBER 17 LawER 0.0000 UPPER 0.0000
2000.oo00evIELD 60.0000e,£ ",O.OOOO'I"IN I 100.oo001CU 30.0000CMG 150().000OCAL

300.0000CSI

caLUMN DELPR6CC IIIUI1B(R 18 LawER 0.0000 UP,ER 0.0000
20000.00D0CYIELD)

Appendi x C 73

12FE869 50S SIGMA ';)/7 - SAJ:1PLE F'MPS L.P. RUN

INTERNAL STATEMENT NUM~ER 26 TIME. 11135
INTERNAL STATEMENT N~H8ER 27 TIME. 11135
INTERNAL STATEKENT N~"BER 28 TIME -. 11135
lNTERNAL STATEMENT NUMBER 29 TII1E 11135
INfERNAL STATEH£NT NUMBER 30 TIME 11135
INfERNAL STATEMENT NUMBER 31 TIME • 11135
INTERNAL STATEMENT NUM8ER 3Z TIME. 11135
INTERNAL STATEMENT NUMBER 33 TIME • ~1I3!!5

NEGATIVE OJ CIUNT • 7 SELECTED • VARIABLES BEST DJ • -0.1,80000.01
ITEA, SUM 6' I~' NI~' OBJECT VALUE v-IN 118V[- RE~UCED CIST ACTIVITY V-OUT MeVE
- 1 0'21110000D+o- :I 0.3'5000000+03 -15 L-e 0.110000000+00 0.1.0000000.0. -2 eel

2 0-191000000+03 1 0._28822920+03 16 L-e 0.!70oo0000+00 0.191958330+03 1 B-U
se~utlaN-'EAsJ8LE AT ,T[RATleN a"

~EOATlvE OJ CIUNf • 5 SELECTED l VARIABLES BElT OJ • -0.1117710+00
ITER. SUH a' IN' hlhF- OeJECT VALUE v-IN HeVE REOUCEO caST ACTIVITY V-IUT MeVE

3 0.000000000+00 0 0.3'2_61750+03 10 L-U -0.181770130.00 0.200000000.03 NaNE
- 0.000000000+00 0 0'318270680+03 13 L-e .0.~09479170+00 0.313458650.02 3 B-L

INTEANAL-STATEHEN! NV"B£R- 56- -TIH£-. 11135 -

O. 12.

plyaT
o.I0000000D+Ol
0.'60000000+00

PlveT

I,

3 NeN-BASIC SLACKS. ce~LETELY TRIANGULARIZED 0 Rews AhD 6 caLS.
3 IN NeN_ceMPL£TELY TRIANGULARlZEO-PART. 8F THESE- 2 WH[RE NttT TRIANOULARIZED AND 0 ~ERE REJECTED FeR Teo SMALL A PIVeT.

MATRIX T8 BE INVERT£O hAD , eOLS AND ~3 ELEMENTS. INVERSE HAS- 7 eeLS AND 21 ELEMENTS.

1100 MI FaR INYERT
INTEANAL STATEHENT NUHBER 51
INtERNAL STATEHEN! NUMBER 33

TIP"E • 11 135
TJME • 11135

~GATIVE OJ ceUNT • ~ sELECTEO 2 VARIABLES BEST OJ • -0.37056.0+00
ITER; SU~ OF IhF hlhF OBJECT VALUE V-IN ~6VE- REOUCEO C8ST ACTIVITY V-OUT MOVE

5 0-000000000+00 0 0.3.70171 40.03 10 u-a -0.370563910+00 0.11132&380+03 13 B-U
~ 0.000000000+00 0 0'323257010+03 1~ L-e eO.1I90387,.80-0i 0.0\8 .. 517.90+03 -7 e-L

NEGATIVE OJ ceUNT • Z SELECTEo 1 VARIABLES BEST OJ • -0.6117100-01
ITER. SUM 0' INF NI~F- OBJECT VALUE V-IN HeVE REDUCED COST ACTIVITY v-eUT HevE

? 0'00009~D+00 0 0'300931280+03 1~ Lee .0.611169660-0~ 0.36,.936890+03 ~D B-L

pIVOT
0.50.511210+01
0.141691510+00

pIveT
0.1""86850+00

hEGATIVE OJ C8UNT • 2 SELEcTEe 1 VARIABLES aEST OJ • -0.1568020-01
ITER' SUM 0' IN' Nlh'- aBJECT VALUE Y-IN HOVE REDUCED ceST" ACTIVITY V-OLT HeVE pIV8T

8 0.000000000+00 0 0'2'1072'.0+03 13 u-e -0,1568022'0-0; 0.246095'50+03 -, B-L -0.149088360-01
INTEANAL STAT£H£hT NUHBER 56 TIME-. il135

5 NON-BASIC SLACKS. CeMPLETELY TRIANGULARIZED 0 Rews ANO ,. C8LS.
5 IN NON-CeMPLETELY TRIANQULARIZED-PAhT, 6F THESE ? WH[RE N8T TRIANGULARIZEO AND 0 ~ERE REJECTEO FeR T08 SH~LL ~ PIVGT!

HATRIX TO BE INVERTED ~Ao 9 COLS AND 37 ELEME~TS. INVERSE HAS- 10 ceLS AN~ - - 38 ELEMENTS.

600 M8 FaR INYERT
INTE~NAL STATEMENT N~MeE" 57
INTERNAL STATEMENT NUMBER ~l

TIME. 11:35
TII1[- 11:35

O. 12. 2.

NEOATIVE OJ C8UNT • 1 SELECTED 1 VARIABLES BEST DJ • -0.9.82600-02
ITERI SUM OF I~F NlhF- DeJECT VA~U£ v~IN HevE" REOUCEO ceST- ACTIVITY v-eUT HOVE plveT
- ~ 0.000000000.00 - 0 0.2,62166(0.03 12 L-a .0.9.12!96.0-0? 0.,02527010.02 1. B-L 0.651.511_0+00

NEGA!IYE OJ caUNT • o ~ELECTEe 0 VARIABLES BEST OJ. 0.0000000+00

ePTI~AL SOLUTION. aBJECTIVE yALUE • 0!2'6216610.03
INTERNAL STATEMENT NUMBtR 3' TIME. 1113S-
INTERNAL STATE",NT NUHBER ~5 TIME. 1113~

12FE869 50S SIGMA b/7 • SAMPLE FHPS L.P. RU~

100N!IFIER SECTleN

PAD!LEH! •• N~ •• FUSION
H80E.' LP
CLASS. I,.P
STATUS OPTIMAL-

FUNCTleNAL NAME •• VALUE
eiJECT HINIMUE
YALUE' 296.216553

RESTRAINT. NAME •• ALaYl
ITERATleN. CBUNT! 9

12FE869 SOS SIGHA ~/7 • SAMPLE FMPS L.P, RuN

8ECT~aN ~ • RlwS PRIMAL-DUAL OUTPUT

hUMBER .. LABEL' AT .. ,ACTIVIty ... SLACK ACTIVIT\' ··LeWER LIMIT.
1 VALuE FR 29'.216553 -296.216797 NeNE
2 YIELD EQ 2000.000000 0.000000 2000.000000
3 FE UL -60.000000 0.000000 NDNE

- I1N UL .0.000000 0.000000 NeNE
5 cu BS i~;967_;9 16.032486 NeNE
6 110 8S 19.960241 10.039'U NeNE
7 AL LL 1500.000000 -O,QOOOOO 1500.000000

74 Appendix C

"uPPER LIMIT.
NItN£

2000.000000
";'0.000000
40.000000

106.660000
30.000000

--AlAE

O. 13. 1.

O. 13~ z.

.DUAL ACTIvITY .. I NPUT ceST ..
11000000 1.000000
0.0131596 0,000000
2.5621231 0.000000
0.54,._0", 0.000000
0.000060 6.660060
0.000000 0.000000

-0,251986 0.000000

,REDUCED CIlTe
0.000000
0,0131M
:,!l8a3i
0,""04
0.060600
o.oooooa
0.25111'

8 51 LL 250.000000 50.000000 280.000000 300,000000 -0.-85199 0.000000
9 DELCST FR 0;000000 0.000000 Ne~E

" - --N8N£ 0.000000 0.000000

12FEB69 SOS SIGMA ~/7 • SAMPLE rMPS L.P. RUN O. 13. 3.

&ECT~ON 2 - ceLUMNS PFHMA~-OUAL eUTPUT

NUM8ER •• LABEL· AT ... ACTIVITY ... '! INPUT ceST •• .. UWER LIMIT. ! 'UPPER LIMIT. .REDUCED C8IT •
10 ~INl i.L 0.000000 0.030000 0.000000 200.000000 0.25362-
11 BIN2 as 665-342773 0.010000 0.000000 2500.000000 0.000000
12 BIN3 as -90.262686 0.170000 _00.000000 800.000000 0.000000
U BIN_ es '2411'7500 0.120000 100.000000 700.000000 0.000000
h BINS LL " 0_000000 0.150000 0.000000 1500.000000 0.01_SS6
15 ALUM BS 2,'.631116 0.210000 0.000000 -- --N&Nr 0.000000
16 SILC~N BS 120_517606 0.380000 0.000000 N8NE 0.000000
~8 DELPR8DC EQ - 0;000000 0.000000 0.000000 0.000000 2~1.913330

12FE~69 50S SIG"'A 5/7 • S~MPLE FMPS L.P. RUN O. 14. I,

INTERNAL STATE",ENT NuMBER ~6 TIME. ~1:35

~2FEB69 50S SIGMA 5/7 • ~AMPLE FMPS L,P. RUN O. 16. 1.

PRIM~L ERRORS

~UMBER •• NAME ••
1 yALUE
l FE
- I'1N !5 CU
6116
., AL
• 11

MA)Clt1UM EARSAI

ERRSR
0.790265630-10
0.218136620-11
0.151245600.11
0.293667310.10
0.236610130.1,
0.172aU56D·!0
0"1220l620-~0

DUAL;', 0.000000000+00
PRIMA,. O.7to26S,ID-l0
INfERNAL·STATEHEN! N~M8ER ~7

RHS
0.000000000+00
0.600000000+02
0._00000000+02
0.100000000+03
0.300000000+02
0.150000000+0_
0.30000000D+03

TIME. 11:36

12FEB69 50S SIGMA 5/7 • SAMPLE 'MPS L.P. RUN O. 17. 1.

NUMIEA AT •• NAM' ••
I EO YIELD
3 UL FE
4 ul Mto!
, LL AI.
• Lt. 51

••
10 LL BINI
~- LL BI S

.LelitER L.IMIT ..
2000.000000

~SNE
NeNE

1500.000000
"250;000000

0.000000
OiOOOOOO

RANGES FeR VARIABLES AT LIMIT LEVEL

• UPPER LIMIT ..
2000.000000
--&0.000000

.0.000000
N8NE

300.000000

200.000000
1500.000000

· •• ···--·.LewER······· •. ·• ··········UPPEA·.· ••.•..• ·
.REDUCEO cesT. PReCESS ••• INCRE",NT ••• AT PReCESS. "INCREHENT ••• AT

" 0.013596 SIN3 ••• 931356 LL CW "1_.034788 LL
2.561231 BIN4 -4iIO,.40 LL 81N3 -2.6t'713 LL
0.5_._04 8IN- -5.5166'3 UL aIN3 1.686909 Lt.
0.251'16 CU '14ii15780 LL BIN3 4.;21259 L~
0.-85198 cu -14.611292 L~ alN3 5.060128 L~

33.880386 LL
51.795153 Ll

l2FEB69 50S SIGMA ~/7 • SAMPLE FMPS L.P. R~N 0.18. 1.

RAhGES FdR VARIABLES AT INTERMEclATE LEVEL

•• ····.··.LBWER •• ••••••••• .-.--·····UpPER·.·· •• ·-.··
NUMIER AT •• NAME ••

1 as VALUE -
5 IS Cu

... ACTIVITY ...
-296,216'"

" 16i031U6

•• INPUT ceST,. PReCESS ••• INCREMENT ••• AT PReCESS, "INCREMENT ••• AT
1.000000 N6NE FE" 1.000000 LL

6 8S "'0
, IS DEI.CST •• n 85 BIN2 sa 8S BIN3

U IS 81N­
ts 1$ ALUM
~6 85 SILceN

ioi03;111
-O!~O~oo~

665,3_2773
.90.252616
4hi18'500
299.63'916
120.571606

INTERNAL STATEMENT NUMSE~ 38 TIME
INTERNAL STATEMENT NUHBER 39 TI"E
INT[RNAL STATEMENT NUMBER 40 TIME

• •

0.000000 BINS .0.21 41.2 LL HN 0.306131 LL
0.000000 MN .0.281S61 LL. BINI 1.796180 LL
0.000000 BINI .O.02S~62 LL HeNE

0.0.0000 BIfiil
0.110000 MN
0.120000 MN
0.210000 AL
0.310000 SI

11136
11.36

.0.062171 LL I1N
-0.010175 LL SIN5
-0.011007 LL BtNl
-0.021152 LL M~ -
-0.23172_ UL MN

0.001621 LL
0.009483 LL
0.026506 LL
0.016215 LL
0.086667 LL

O. l!h 1.

• 11136
INTE~NAL STATEMENT NUMBER 41 TIME • 11135

~2 • 11:36 INTERNAL STATEMENT NUMBER TII'IE
INTERNAL ITATEMENT NUMBER 43 TI"E • 11136
INrE~NAL STATEMENT N~MBER h TIHE • l1U~
ITER. SUM 0' INF NIh' 8B~ECT VALUE V'IN ",8VE REDUCED COST ACTIYITY v-eUT MevE PIVOT THETA

-o,.i51';
0.000000

10 O.OOOOOOOOD+OO 0 0.2,62-16610.03 - 10 L-e 0.25362_550+00 0.33a80~OOD.02 13 B-L
It OiOOOOOOOOO+OO 0 0-2'264.110+03 ~ L-a 0.5 ___ 0_330+00 0.~3709135D+Ol -5 e-L
11 O.OOOOOOOOD+OO 0 O'2"7513~D.03 1_ L-e 0 •• ,t!10010-g2 O.5~.25S13D+03 ~1 B-l

0.'56.5'21D+Ol O.25362-55D-Ol
0,253.31.3D+Ol 0.)58'_8'10-01
0.11561'65D+Ol O.4102~451D'O~

Appendix C 75

IN!t~NAL-stATfHtNT HUMBER!5 -TIME - ~lll~

5 NIN-BASIC SLACKS. COMPLETELY TRIANGULARIZED 0 ROWS A~D ~ eeLS'
I IN NtN-CIM'LETELY TAIAHQULARIZEO-'ART. 0, THESE- 3 WHERE NIT TAIANOULARIZEO AND 0 WERE REJECTED FIR TIl SHALL A PIYIT.

"ATR,. TI BE INVERTED hAC - 9 COLS A~D 38 ELEMENTS. INVERSE HAS- 10 elL! AND 39 ELEMENT~. - - -

600 H' FIR INVERT
I~!£ANAL STATEMENT NUMBER 66 TlHE • ~1I3!

NEOA!IVE OJ CIUNT • o ~LECTED 0 VARIABLES BEST DJ - 0.0000000+00

IPTIHAL SILUTIIN. I8JECTIVE yALUE • o.za,751360+03
1~1[HNAL'STATEHENT HUHBER 67- TIH£-- 11136
IN!IRNAL STATEMENT NUHBER 4. TIME. ~113~

ITER. SUM I' INF NIh' IBJECT VALUE V-IN HIvE V.IUT HIVE PlveT THETA
13 O.OOOOOOOOD+OO 0 0.2S7.al~8D+o3 - 5 Lea
"0,000000000+00 0 0,2_57 •• ,10+03 7 L-e

NI HAXIMUM PA~AHET[R AT THETA- 0.7ooI06D-01

REDuCED CIST ACTIVITY
0.10_619570+00 0.133981070+02
0.37037037D-Ol 0.876801510.02

12 eeL Oo2 •••• 93~O+02 0.6251151'0-01
~O e-u -0 •• '.341570+00 0.~001D63'0-0~

IN!ERHAL lTATEM'N! Nu"8ER '5 -1IH£-. 1113~

12rE~' SOS SIGMA ~/7 • SAMPLE FMPS L.P. RU~

I~"!IFIER SECTle~

PReBLEH- •• NAMl •• FUSleN
HOO£, •• LP
CI.A5S. LP
STATuS OPTIMAL-

FUNCTIONAL NAME •• VALUE
OBJECT 1'1I IHIZ£
VAL~Ei -1'61 •• 23_375

RE~TRAINT, NAME •• ALOyi
ITERATIS"" ClUhT- 1-
PARAHETRIC HIDE •• ceST

NAME •• DELCST
VALUE- 10.000000

12fE869 50S SIGMA 5/7 • ~~~PLE FMPS L,P. A~~

SECT.I ~ • ROWS PRIMA~.OUAI. OUTPUT

NUMBER ~'LA8EL· AT ... ACTlVITy ••• SLACK ACTIVITY !!LeWEA LIMIT·
1 VALUE FR 3IS.765169 - .315.766113 NeNE
2 VIELO EO 1000 .000000 '-0.000000 !DqO.OOOOOO
3 FE UL -,0.000000 0.000000 NeN£
4 HN as 12.1'0.ll 27.1""3 NINE
5 CU Bs 5' •• '80" _3.S31906 NINE
6 I1G BS i.0'5106 Z4.;hIl6 NeNE
7 AL 85 15.7.,1066_ 87.680147 1500.000000
I 81 LL -250,000000 50.000000 250.000000
; DELCST FR -2000.000000 ~"9.?'''!6 NINE

12FE869 50S SIGHA 5/7 - SAMPLE FMPS L.P. R~~

SECT~8N 2 - CILUMNS PRII"IAL-OUAL IUTPUT

NUHBER "LABEL' AT ... ACTlVITy .. • • ! INPUT ceST •• ~'LIWEA LII"IIT.
10 91Nl UL cOO.OOOOOO -99.970001 0.000000
IS BIN2 LL 0.000000 0.080000 0.000000
12 BIN3 LL ~OO.OOOOOO 0,170000 ~00.000000
h BIN_ LL 100.000000 o.i2aooo 100.000000
h BIN! BS 101.510635 0.1150000 0.000000
IS ALUM 81 115.74_62' o.hOOOO 0.00000C)
16 SlLC6N BS 1,,,,4_675 0.380000 0.000000
~I OELPRIOC EQ ' 0.000000 0.000000 0.000000

12FEB6' 50S SIGMA ~/7 • ~AMPLE FMPS L.P. R~~

INTE~N4L STATEMENT ~~I"IBER ~6 TIHE - UU6
INTERN4L STATEMENf NUMBEH 47 TIME • 11136
INTERNAL STATEHENT NUMBER .8 TIME 11136
,NtERNAL STATEMENT NUHBER 4, TlHE 11136
INtERNAL STATEMENT NUMBER So TII"IE - 11136
,N!ERNAL STATEHENT NUHBER ~1 TIME • 1113~

O. 20. ~.

!!UPPER LIMI~! !OUAL ACTlVITY "I NPUT CIST" .REDUCED CtI"
NINE 1.000000 - 1.000000 - 0.000000

2000 .000000 -0.270000 0.000000 ·0.17DDOO
-60.000000 6.308510 0.000000 6,301110
~O.OOOOOO 0.000000 0.000000 0,000000

100.000000 0.000000 0.000000 0.000000
30.000000 0.000000 0.000000 0.066006 -- -NIAE 0.000000 0.000000 0.000000

300.000000 .0.30.I5U 0.000000 -0.301'11 -- --NINE ~O.ooooOO 10.000000 Oi~~

• 'UPPER LII"IITt ,REDUCED CIST.
-- 200.000000 ·99.2".9,

2500.000000 0.0_3.30
100.000000 0.001U9
700.060000 0.065319

1500.000000 0.000000
-- --HINt: 0.000000

NIfoIE 0.000000
o.~ ·5.00.003,06

ITER. IV" IF IN' NIHF IB~ECT VALUE V-IN H'vE REDUCED ceST ACTIVITY V.BUT MIVE PlveT THETA
10 0.000000000.00 0 0,2'6025790+03 - 14 1.-8 0.1_55e957D-Ol 0.000000000.00 5 e-L -0.6771339.D.Ol 0.701739.,0-03
11 0.000000000.00 0 0.30315.3'0.03 'L-' 0.97"' ••• 0-02 0.000000000.00 15 a-L -0.'32711620.01 0.21",,110-01
12 O-ooooOooOD+oo 0 0-31'011"0+03 15 L-e O.~!5.18215D·O? o.oooOOOOOO+o~ ~2 S-L -0.113.04710.01 0.S1365'IIO-02

INrERNAL'STAT£HtNT NUHBEA- 6S '-TIMt-.11136 '

I NIN-BAI'C ILACKS, CIHPLETELY TRIANQULARIZEO 0 Rews AND _ CILI.
e !N NeN-C81"1'LETLLY TRIANGULARIZEO-PART, DF THES[- 2 WHeRE NeT TRIANGULARIZEO AND 0 wEAE REJECTED FeR T8e SMALL A plveT.

~~Tft!X T! !£ !~YEP.T£O kAQ - 'C'l~ .NQ 37 (~[MINT$. INVERSE HAS- 11 CIL~ AND '39 ELEMENTS,

600 HI''''' INVERT
INttANAL STAT£HENT NUMBER 66 TIME - 11136

76 Appendi x C

hEGA!IVE OJ COUNT • ~ ~ELECTEO ~ VARIABLES BEST OJ. 0.0000000+00

aPTIMAl SOLUTION. OBJECTIVE VALUE. 0.317018770+03
INTERNAL STATEMENT NUMBER.7 TIME-."1113'
INTERNAL STATEMENT NUMBER ~1 TIME. 11136

ITE~. SUM a' INF NIh, aBJECT VALUE V-IN ~evE REO~CEO ceST ACTIVITY V_BUT HeVE PiveT T~ETA
13 oiooooooooo+oo 0 0 ••• 71312;0+03 • L-e
S' 0.000000000+00 0 Oi.,0 __ 1_90+03 5 L-e

'AEMATURE MAxIMUM AT T~ETA. 0.11'3180+00

0,90128.02D+00 0.000000000+00
0.40711_6ao.o~ o.OOOOOOOOD.OO

13 e-l -0.74.520710+02 0.321625770-01
!1 e-L -0.928853750+01 0.1193.a30D+0~

INTERNAL STATEMEN! NUMBER 52" -TIME. 11136

12FE~69 50S SlaMA ~/7 - SAMPLE FMPS L.P' RUN

10EN!JFIER SECT IaN

PRUBLEM NAME •• rusI6N
M80E.' LP
CLAsa' loP
sTATUS "PTIMAL-

FUNCTIONAL NN1E .. VALUE
"BJECT MINIMIZE
vALUE. .90.-41406

RESTRAINT. NAME •• AL8Yl -
ITERATION. CIUNT' 1.
PARAMETRIC MeOE •• RHS

NAftE.' OEL,ROOC
VALUE- 0'~1'388

12FEa69 SDS SIGMA ~/7 - SAMPLE FMPS L.P. RUN

SECT,ON 1 - ROWS PRIMA~-DUAL OUTPUT

HU"'IER .. LAbEL' AT ... ACTlVlTy ... SLACK ACTIVITY .. LeWER lIMIT-
1 VALUE FR " UO'_~1.06 - -890.4"1650 NeNE
I YIELD EQ 1000.000000 0.000000 2000.000000
3 FE UL "- '0.000000 0.000000 - NeNE
• MN as 171521271 22.'11714 NONE
5 CU as 100.000000 0.000000 NeNE
6 MO as - 1.,60631 2 •• 23t3i~ NONE
7 AL BS 390~.lb.24 2405.15,.24 1500.000000
I 51 LL " 250iOoooOo- 50.000000 250.000000
; OELCST FR 0;000000 0.000000 . NONE

llrE869 SDS SIGMA ~/7 • SA~PLE FMPS l.P. ~UN

SECT~IN Z - CILUMNS PRIMA~-CUAL eUTPUT

NUMIER "LA8EL' AT ... ACTlvITy ... !!INPUT COST ..
10 BINI L.L 0.000000 0.030000
II BINI LL 0.000000 0.080000
12 BINl LL -00.000000 0.170000
13 BIN_ LL 100.000000 0.120000
14 BINS as 571i063721 0.150000
is AL.u.. as 31d;6i6tu 0.210000
16 SILCON as 161.015098 0.380000
II OELPRIIDC EQ . O.ollOOOO 0.000000

12F[ij69 SDS SIGMA ~/7 • SAMPLE FMPS l.P, RUh

INTERNAL STATEMENT NyMBER 53
-ExIT-

TeTAL JeB TIME
PROCESS8R EXECUTIO~ TIME
PROCESSOR 1/8 TIME
PRaClSSOR 8VER~EAD TIME
USER EXECUTIeN TIME
USER 110 TIM!
YSEA 6VERH[AD TIME

, IIF CARDS REAO
; SF CARDS PUNCHED
• IF "PROCEsseR PAGES SUT
, IF USER PAGES UuT -
, IF OIAGHIIST{.t PAGfS OUT
, eF SCRATt~ TAP~5 uSED
, OF SAVE TA'E$ USED
• IF OISK READS AND ~RITES
• OF OSIC READS AhD ~RITES
TEMPORARy DISC SPACE vSED
'lRHANENT D I Ie SPACE ~SED
ACtUM. PERM. DISC SPACE USED

TIME. 11:36

1.:JO
.01
.1)7
.07
.i+8
.52
.75
316

-0
2

35
'0
o
o

159.
2957

17
-0
o

.Jee J26,~OMD
LIMIT C T II1E,')O I, (LB, 1000), (UO, 1000), ([;5,1000)

"UWER LIMIT.
- 0.000000

0.000000
-00.000000
100.000000

-0.000000
0.000000
0.000000
0.000000

O. 22· 1.

O. 22. 2.

"UPPER LUlIT. • DUAL ACTIVITY .. INPUT COST .. .REDUCED CIIIT • -- " NeNE 1.000000 1.000000 o,ooGOoO
2000 .000000 -0.270000 0.000000 -0.270000

-&0.000000 6.308510 0.000000 6.l08510
~0.000000 0.000000 0,000000 0.000000

100.000000 0.000000" 0.000000 0.000000
30.000000 0.000000 0.000000 0.000000

-NtNE 0.000000 0.000000 0.000000
300.000000 -0.301111 0.000000 -O.lOlln -- --NDNE 0.000066 0.000000 0.000006

C. 22. 3.

"UPPER LIMIT' .REDUCED ceST. - 200.000000 0.700106
2500.000000 0.043130

800.000000 0.001489
700.000000 0,065319

1500.000000 0.000000
-- '-NiNE 0.000000

NONE 0.000000
0.000000 _'.00.003,06

O. 23. 1.

Appendix C 77

ASSIUH Fll06,(DEVIC~,CPAO.)
ASSIGN F:l'(fI~E,CLA~G',iBl~)'C_HITE,ALL).CCDNSEe)'CSEQUE~)"
ceUT 1"", (HEeL,JOOOO), (HEAD, ALL) -
ASSI~N f:2'CFILE,UTIL1),CBI~)'(.RITE,ALL)'IKEYEO),(CIRECT)"
(eUTIN),CREc~,30000',CREAD,ALL'
ASSIGN r:3'(fILE.UTIL2),(8IN)'(~RITE,ALL)'(KEVED),(DIAECT),'
CeUTINJ,(RECL,30000J,(READ,ALL)
ASSIGN r:.,(flLE,MTRX),(tlIN),(WRIT[,ALL),(OIRECT),(KEVEO'"
CO~TIN).(RECL,30000),(REAO'ALL)
ASSIGN r:~'(fILE,iV~l)'(blN),(wRITE,ALL)'IOlRECT)'(KEYEO),'
(8UTIN1'(RECL,JOOOO),(~EAO,ALL)
RUI'o (LMN,FMPa)
tlATA

c
C DEFINE "EADING AND EH!ER SEPERABLE PR8G~A""ING ~8DE
C

c
TITLE N8N_LINEAR PA6BLEM He 6
CALL ENTtA(S£P)

C SPECIFY 'BUR SYMBOLIC UNITICwlRklNG FILES, 8N RAO
C

C

CALL DEVIC£('FILE1',DI8C,'",
CALL DEVICEC'fILE2 t ,DISC,'C"
CALL D(vlC[('flL,U',DISc, '0"
CALL DEvICEClrILE.',DltC"E')

C ATTACH THE reURSTAhOARO '"PS FILES Te THE F'eUR
C PREYl8USLY DEfiNED 'nNen.iC UNITSClUDh-
C

C

C

CALL ATTACHC"ATRIX,"ILE1'J
CALL ATTACHCINV[RS[i'FILt2')
CALL ATTACHCUTIL1,'FILEJ')
CALL ATTAC~(UT1L2' 'FlLU r I

ASSIGN 100 TD KMAJER
Asal GN 200 '" K I O£R
ASSION Joo 18 KNFS
AISloN .00 T8 KuBS
ASSION ~oo re KINV

AOATA • 'NLPSTD01'

C L8AO I~PUT "ATHIX FR8M CARDS, US~NG REtDRD 'N~PST001'
t

CALL INPUT
C
C IDENTIFY RIGHT.HA~O-SIDE CeLUMN AND cesT R8w Te BE uSrD
C

C
C
C
C
C

AetBJ • '8SJT
ARHS • 'iRMS

SET TD INVERT Net LESS FREQUENTLY THAN AT INTERVALS 8F
50 ITERATl8NSCNDTLI AUTDMATIC IhYERT eN-TIME IS BY DEFAULT
IN 8P[RATl81IIeh

C.···. C NOTEI Te TURN err ThE AUTBHATIC IhVERT eN TIME, T~E ,eLLe~ING
C STATEMENT SH8~LD BE USED.
C }NyTI"E • -I
C
C

c

•••••
IFRlQI • 50

C INITIALIZE ITERAT18~ Le~GING FREQUENCY ~e PRI~T EVERY ITERATION

c
lL8<iP e

C
C SPECIFy MINIHIZATI8h
C

FDI.".,T • 1.
c
C S8LVE SEPERABLE MATRIX
C

CALL epTiHUE
c
C DISPLAy PRee~EM SDLuTIDh
C

C

CALL S8",UT!8N
STIP

C ENTER HERE FeR MAJeR [RRIR CaNDI!IDNS
c

c
100 CALL CONDITIDN
. STap

C ENTER HERE FDR 110 EAReA CaNOITle,..
c

C

200 CALL CINDITleN
SHIP

C ENTER HERE FIR NO FEASIBLE S8LUTl8N CDNDiTleN
c

300 CALL C&HDITraN
c
C ENTtR HERE FeR UNBI~ND[D SILUTleN CDNDI!leN

78 Appendi x C

C
~OO CALL SO~UTleN

STOP
C
C ENTER HERE F8R INVERSI8N INTERR~PT C6NDITI8N
C

500 CALL INVERT
RETURN
EIIIO

NAME
ROlfS

NLPSTOOl

N 18"'T
E R8W1
E R8W2
E ReW3
E "eW~
£ ReWS
E ROW6
E "e.7
E "e ••
E "ew,

(0,,_1
xS ROW. 20~.
U&IUND1 'HARICER' 'SEP8RG'
1.11 a8",T ." 1.11 ROWl 30.
u2 OS",T ·3,1
1.12 Rowl ~~.
UBaUND2 'HARKER' 'SEP8RG'
uJ OB"" -2 ••
1.13 R8W2 10.
1.14 OI",T -I.,
U· ReW2 10.
uS a8..1T -I~.
u$ R,,"2 ao.
1311UND 'HARICER' 'S[peRG'
3S 1 R""l ·.179619
3$ 1 Rew3 ·1""'0
3S 1 ROWS ·;50132
3S 1 R,W' -.50732
3S 1 Raw7 -.50112
39 1 R'W' ·.5013l
35 1 Raw' ·.50732
3S 2 ROWI -.11171,
3$ 2 RaW3 ·1.'Oa17
3S 2 Raw5 ·.502010
35 2 ROW6 .;S020'0
3$ 2 Row7 ·.502010
3S 2 RewS •• !:t020'0
3$ 2 Rew, .i5020'0
3$ 3 "8wl -.18382
3$ 3 Raw3 ·l.93oa.
3$ 3 Re .. 5 •• .,6350
3$ 3 ROW6 •• ';1350
35 3 Rew7 ••• 96350
3$ 3 RoWS • •• 9'350
3S 3 ROWI) •• d6l50
3$ • Rowi ·;US,al
3$ • "8W3 -1.9529
3$ • ROWS .i.90730
3$ • R8W6 • •• 90730
3S • Rew7 -.,90730

35 • R8W8 • '0730
3S • Rew' - •• 90730
3& 5 RoWl ·.188012
3$ 5 ROWl -1,""7
3$ 5 Row5 ••• S5250
3S 5 ROlf6 ••• 3$250
3$ 5 Rlttc7 ••• 15250
3S 5 Rowa S250
3$ 5 AIW' •••• 5250
35 6 Rowt ·.231'82
3S 6 Row3 -2,'991.
3$ 6 Row5 ·,59t040
3$ 6 ROW6 ·.5t9040
3$ 6 Row7 -,599040
3$ 6 RawS .,599040
3$ 6 ROW' ·.599040
3$ 7 ROWl -.241133
3$ 7 Row3 .2,53-'2
3S 7 ROW5 ·.5,o180
35 7 Raw6 ·.s90.ao
3$ 7 Row7 ·'5tO •• O
3$ 7 Rewa ·,590180
3$ 7 ROw' ·'590a'0
3$ • Rawl -,2445.7
3S a Row3 -2.56"0
3$ 8 ROWS -.512,60
3$ • Row6 -.5829'0
3$ a Row7 ·.512960
35 a RIwl ·,512'60
3$ 8 ROw' ·.582960
3S , ROWt ·'141S2,
3$, Rew] -2.6031a
3$, ROWS ·.57S230
3$, Rew6 -i515230
35 , Rew7 ·.516230

Appendi x C 79

35 9 Aowa ·.515230
3$, AOW' ·.515230
3510 AOW1 •• 30172s
3S10 ActWl ·3.U933
3$10 AOW5 .,610370
3~10 ROW6 ·.610370
3510 ROW7 ·.610370
3iSl0 Rowa .,610370
3510 AOW;' •• 660370
3S11 Aowl .,306,55
3S11 Aew3 ·3,21898
3511 AOWS .,669810
3511 AO.6 ·.669880
3S11 Al)W7 .,669110
3511 AOWS .,669810
3S11 AOW9 •• 669880
:;$12 1(6W1 ·.311181
3$12 AOW3 .3.2~8~3

3512 R8WS ·.659700
3512 R""6 ·.659700
3S12 AOW7 •• 659700
3S12 R8wa ·.659700
3S12 ROW9 •• 659100
3St3 ROWl ·.315908
3S13 ROW3 .3.31828
3S13 R8""5 ·'6U830
3S13 Rew6 .'6.tllo
3$13 ROW7 .'6·\ts30
3$13 Rewa ·,649830
3513 ROW9 ·.60\9830
3Sh ReWI ·,320635
3$14 RD .. 3 .3.3679]
3Sh ROW! ·.6~02S0
3Sh ROW6 •• 6-0250
3SH ROW7 •• 6~Ol50
3SH Aowa ·.6_0250
3SH RoW' •• 640250
3~1S ROWl ·,210s0?
1515 ROW3 .2,i44&3
3~15 ROWS ·.526420
3$15 AOW6 .,526_20
1515 AOW7 ·,SZido
3$15 ADtill •• 526UO
3$15 RttN9 .,521420
3516 Rowl ·.2'''0.'
3S16 RO",,3 ·2.87901
3S16 ROWS .,Si0120
3S16 Rew6 ·.520120
3516 ROW? .i520120
3516 Rowa ·.520120
3S16 Rewt .,520120
S4BOUNO 't1AAI(ER' 'SEPeRG'
,,9 1 AOWl ·.179619
"S 1 ROW. ·1.&1670
oIis 1 AOW5 ·.507320
.. S 1 ROW6 ·.501320
4S 1 ROW? •• 501320
"S 1 Aowa .,507320
.8 1 Rew' ... !»O1320
.. 5 2 ROWe ·.181719 _s 2 ROW_ ·i.908'7
.. ~ 2 ReW5 .;502010
,,$ 2 ReW6 •• 5020&0
.. S 2 ReW7 ·.502010
,,~ 2 Rowa •• !l02010
.. S 2 RDW9 ·.S02010
.. S 3 ReW2 ·,1Udo .. s 3 Ra ·1.930h
.. $ 3 Rew5 .,496350
,$ 3 ROW6 ••• 96350
.. S 3 ReW7 .i .. 96350

"s 3 Aewa • ... 96350
"6 3 R8W9 '6350
,,~ " Rew2 ·.1.5921
.. & .. ReW4 ·1.95290
,,$.. RO'W5 90370
.. S .. ROW6 •• 490310
.. S - ReW7 .,"90310
,,$.. Rewa •• ,,;0370
o\S • Rew9 ..,,'0310
oIiS 5 ROW2 .,181022
.$ 5 Rew .. ·1,'7"'7
.. S 5 Rews • ... 85250
,,$ 5 ReW6 a52eO
,,$ 5 Rew? aS250
.. S 5 Rewa ••• aS2eO
"S 5 Rew9 ••• 1i5250
.. S 6 ROW2 ·,2379'2
,,$ 6 Hew" ·2 • .-991.
.. $ 6 Aews .,5990.0
.. S 6 AeW6 .,599040
d6 ROW7 .,5;9040
"s 6 ReWl ·,599040 ..s,. RoW9 ·,5t9040
d7 AOW2 ·.24h33
,,$ 7 ROW" .2,5h22
.. s 7 NOWS ·.590,80
"5 7 ReW6 ·,590"0
.. S 7 R~W7 .,590880

80 Appendix C

49 , ROWI ·.590880
4$, Rew' ·.590110
ItS a Row2 -'2·US'-7 .s a Ae,," ·c.S&a'o
"S a Raws ·.512"0
,,~ 8 AeW6 ·.S8~960
.-S & ReW7 ·.582960
4S a Rew8 ·.582960
45 a ReW9 ·.512960
,,$ 9 Rew2 ·.24'829
0\$9 Raw • -2.60318
• s 9 Hews ·.575230 .-s , ROW6 ·.515230
.s 9 ROW7 ·.515230
.$, Rowa ·.S15230
.s 9 RO"'9 •• 575230
.S10 Rew2 ·.301728
,-S10 Raw4 -3,16933
.510 Rews -.680310
.~10 NeW6 •• 680370
.S10 R~W7 ·,680370
.$10 Raw8 -'680370
"S10 ROW9 -.6&0370
.$11 Rewa -.306455
.-511 ReW4 -J,21898

.S11 R6w5 -.669080

.S11 Rew6 -.669a80
"S11 ROW7 ·.669880
4$11 ReW8 -.6li9a80
4511 ROW9 ·.669880
4S12 Rew2 ·.311181
4S12 ROWIf .3,26863
4S12 Rew5 ·.659700
4S12 Row6 ·.659700
.$12 Rew7 ·.659700
"'512 AeW& ·.65'700
.S12 Rew9 ·.659700
If 913 Rew2 ·.31590&
Ifsi3 ROw. ·3.31828
,,913 Rews .i6U830
,,$13 Re.6 ·.649830
d13 R8W7 ·.6Udo
'-513 Rewa -,60\9830
4S13 ReW9 ·.649830
.Sll1 Aewa ·.320635
"Sllf ROWIf ·3,36793
"S14 Rews ·.6.0250
4Sllt R8W6 ·.6"0250
"Slit RO"'7 -.640250
45H Rawa •• 640250
liS lit ASW9 ·.640250
.S15 Rew2 ·,2'0807
"SIS ROw. .~.a4.5J
"S15 ROWS -.526.20
.S15 Rew6 -.526420
If SIS ROW7 -.521420
IIS15 Rewa ·.526"'20
.S15 ROW9 ·.526do
.S16 Row2 ·,27li089
4516 Aew • .2.81901
• S16 ROWS ·.520120
4S16 Rew6 ·.520120
~S16 ROW7 ·.52(3120
4516 AOW8 ·.520120
1f516 A6W9 ·.520120
ssaOUND 'HAAKER' 'SEPORG'
5S 1 ROW5 ·c.0!501t3
S$ 1 Aew6 .1U/tl
5$ 1 R6W' .016 .
5S 1 Aewa ·.0152.
55 2 Rews -2.69876
5S 2 ReW6 .25653
5$ 2 Rew' .02352
55 2 R6Wo ·.0i§9:3
55 3 ReW5 ·c.5391t3
5$ 3 R6W6 .2s816
5S 3 Raw' .O2~99
55 3 Rewa ·.0181.6

5S It ReW5 -2.3977 ..
5S .. ReW6 .25981
55 • RaW7 .026117
5$ 4 Rewa •• oUig9
55 5 Raws ·2.30899
5$ 5 ReW6 .266
5S 5 ROW' .02h'"
5S 5 Rewa .i01578
5S 6 Aow5 ·2.15"'5
5S 6 ReW6 .26318
55 6 ROW7 .02945
55 6 A8W8 .;01403
5S 7 ROWS -2.051-8
5$ 7 ReW6 .26486
5S 7 Rew7 .03093
55 7 Rewa • io1257
5S 8 RaW5 .1,95753
55 a RaW6 .26656
5S a ROW' .03242
5$ 8 Rewa ·.01110

Appendix C 81

18 9 RaWS -1.&h6, as , ROW6 -26&21
55 , Rew7 .03390
55 9 Rewa .,oat6'
5S10 Rew5 -1.19295
5S10 Rew6 .26999
5&10 ROW7 ,ol539
5510 R8wa -.00118
5$11 ROWS -1.7~,!51
5fJll RaW6 .21643
5511 Rew' .03753
5SH Rowa -.00682
5512 Rews -1.65231
5512 RaW6 i213~1
5S12 Rew7 .03 .. 0
5S12 ReW8 .'00!23
I$n R8W5 -1.5'031
5513 ReW6 el7521
55n Aew7 .03'90
5S13 Aawa -.00377
5S1' Rews -1.5321,
5SH RDw6 .27705
IS14 ReW7 .0~hO
5S14 Rews -'00h1
5S15 Raws -1.47912
5S15 ROW6 ;218a4
5515 RaW7 .o~bo
5S15 Rews -,00084
5S16 RDw5 -1-4289a
5S16 RaW6 .2806"
5~16 R8W7 .O·H .. 1
5S16 Mewt} .00062
5517 Aaw5 .1.40~48

5517 ROW6 '2873"
5517 ROW' .04672
5Si? ReW8 .00212
5518 Rews -1.99022
5&11 Rew6 •• 2117
5511 ReW7 .0117'
5S11 Re.., .oGSd
5519 A8W5 -1.at'&6
5519 ReW6 •• 3134
5S19 ROW7 .01515
5$19 Aowa .00'11
5S20 Ra~ -1.81706
5$20 ReW6 i.lS5'
5S20 Raw? .07858
1520 Rewa .01h7
5S21 Aaws .1.18856
5S21 RaW6 t29780
5S21 R8W' t0552"
5S21 Rewa .01033
5522 Raws -i.692'8
5S22 Rew6 ,'''215
5S22 ReW7 .08435
5$22 Rew8 .01100
5S23 RO"5 -1.62601
1523 RaW6 -'4111
5S23 ROW7 .081al
5523 Aewa .0212;
552. ROWS -1.5hh
5SZ. ltelll6 •• 5152
5SZ. AOW7 .09128
5$2' Rewa .0245!
5525 Rews -1.52359
5SZ! ReW6 ;_6.125
5525 Raw7 .09588
5SiS ReWI .02123
5$26 Rew5 -1.92509
!Sa6 ReW6 -,150;
5S26 R81117 .13186
55.!6 ROWI .0-239
5521 ROWS -1.83776
5$27 ROW' .,2321
S$27 A81117 .13412
5$27 ROWI ,04121
S$28 A t)III 5 -1.77235
1$28 AOW6 i6310'
5528 Relll1 .14570
5528 Raws .OS'61
5$29 R6WS -1.68293
5929 Rew6 i64015
5$29 ROw7 .15083
5S29 RewiS .06015
5530 Rt)w5 -1,6i_51
5930 A6W6 '6itl17

5Sl0 ROW7 .15722
5S30 ROW8 .06609
5$31 Rews -hS6Uo
5S31 Rew6 i66:J26
5$31 Aalll7 .16509
5$31 Rewa 001269
!$32 Rcw5 "'!;!!5lt!5
5$32 Rew6 ia3'65
5$32 AeW7 .21377
5S32 Newa .09852
5533 AalllS -2.12103
5S33 RaW6 1.026"3

82 Appendix C

5$33 ADW7 -21163
5$33 ADW8 .1311.0
55J. RD .. 5 -2.16051
s!in ADW6 1.12661
·SSl. ADW7 _3086_
5$3. AeWa il!6lt'
5$35 Raws -2.11017
5$35 AD .. 6 1.22662
5$35 RaW7 .34174
5535 Rewa ;18400
5$36 lItews -2.05030
5S36 ReW6 1.i!5659
5$36 Rew7 .36106
5S36 Rewa .20223
5S37 Aews -1.94125
5S37 Rew6 i.i!8766
5537 ROW7 .3a'73
5537 Rews e22063
5Sla ROWS -1.a4153
5S38 AeW6 1.3198,
5Sla Aaw7 •• oj,s
5538 AeW8 .23922
5S39 RalliS -1.'4'93
55)' Rew6 1.35337
5U, AeW7 id122
55]' AOWS .25802
5540 AOWS -1,66542
5~-O Rew6 1.38s19
5S40 Rew7 .45310
55.0 Rewa '27'O~
5641 Raws -2.35315
5S.t Raw6 2.1501_
5S-1 Mew7 .72168
5541 RewS •• si76
5S-2 Mews -2.1950.
5542 RltW6 2.23763
5542 Aew7 .7136-
5S-2 Rowe ,.9603
5S43 Rews -Z.05215
5S.] Atlw6 2.33:J~1t
as-3 Rew7 .8214'

5543 R6Wti ,51t1J1
55._ Rews -1.84949
5$4. Rew6 2,33320
5$ •• HltW7 .a4190
5S-. Rew8 .S6391t
s&eeur-.o 'I1ARI(ER' 'SFP6RG'
6S 1 Rew1 .73c?S
6$ 1 Hews ,.,00720
6S 2 ROW1 .i
65 2 Rew~ 3.'9171;
6$ 3 Rew1 .• 89
6$ 3 Rews •• 04616 6$ _

Raw1 .. ,- -

6S • Rews 3.74,65
6S 5 Rowl 1.0 - ..
6S 5 ROWS 3,81205
68 6 RltW1 1.e
6$ 6 Rews 3.8~964
6S 7 Aewl 1.1
6$ 7 Rews 3.52757
6$ a ReW! 1.3
65 8 Rews 3.83016
6S , ROW1 1.4-
6S .g Rew5 3.77886
6S10 RaW1 I.S·
6S10 RewS 3.711+18
6511 Rowi 1.6 - -
6S11 ROW!) j.6-020
6$12 R8W1 1.'-
6512 Rews 3.56007
6S13 ROWI 1.8- -
6S13 ROWS 3.47621
6S1_ ROW1 1.9·
651-\ ROWS 3,390~6
6S15 Rewl a.o-
6515 Rew5 3.30421
6S16 Rowi 2.1··
6S16 Rews 3.218~7
6$17 Rewl ~.2-
6517 Rews 3.13398
'511 ROW1 Z.3- -
6S18 Rews 3.05126
6519 Rew1 2 ••
6$19 !leW5 2.97C69
6$20 Relll1 2.S· -
6$20 Rew5 2.89251
6S21 Rewl a.s-
6521 Rews 2.71114
6S22 ReWI 2.r
6S22 ROWS 2.71076
6S23 Raw1 2.'·
6S23 Rew5 2,62592
6S24 HO'11 2.8

652. Rews 2.52883
6525 Rewl 2.8
6525 ReW5 e.lS96S
6526 ReWI 2.8

AppendixC 83

6S26 ROWS 2.260119,
6527 Rew1 3.0-
6SZ7 Raws 2.302~5
6528 Rawl 3.0
6SZ1 Rews 2.11651
6529 Relit 1 3.2-
6529 Raws 2.216"
6530 ReN1 3.2
6S30 RaW5 2.10921
6S31 ROW1 3.3"-
6Sll Raws 2.07295
6$32 Row1 3.2 -
6$32 ROWS 1-9198.
6633 ROW1 3.0532
6533 RaWS 1.15590
S1Bf)UNO 'MAAKER' 'SEPORG'
75 1 RaW2 1.9173
7$ 1 "eW6 1.91103
7S 2 ROW! 2.,·
7S 2 ReW6 2.'2S~2
75 1 ROW2 2 •• ·
75 3 ROW6 Z.S28~3
7$. ROW2 2.8·
7S • !leW6 2.31965
7$ 5 Raw2 2.'- -
7~ 5 ROW' ~.Z""9
75 6 RewZ 3.0-
1S 6 Raw6 2.302-5
7$ 7 AeW2 3.0-
7S 7 RaW6 2.i1651
75 8 Raw2 3.2-
1S 8 ReW6 2.21698
15 , ReW2 3.i(
7S , RaW6 Z.1092s
7510 ROW2 3.l
7$10 ROIt6 2.07295
7511 ROM2 3.2
7511 ROW6 1.919h
7S12 ROW' 3.0532
7~12 A8W6 1.'5590
7$13 ROW2 2.830'
7$13 Relll6 1.56692
7Sa ROW2 3.U,
7Sh ROW6 i.66182
7S15 ROW2 3.0- "
1S1S R8-.6 i.Slt20.
7S16 R8W2 3.0-
7S16 Rew6 1.-8915
7~17 ROW2 3.0··

7St7 RCW6 1.1t3978
7S18 RetW2 3.0-
7511 ROW6 1.3'358
7519 RaWi 3.0-
7519 "«tN6 1.35025
1~0 ReW2 j.O
1$20 ReN6 1.30953
7521 Row2 3.0-
7$21 RaW6 1.27119
7522 ReW! j.O" "
7$22 Rew, 1.23505
7523 AOW2 j.O-
7523 RctW6 i.zool,
7Silt ROW2 3.0- .-
7S2,. RaW6 1.16857
1S25 Rew2 j,6-
1$25 Aaw6 i.137~6
7$26 Row2 3.0-
1526 RCtW6 1.101'0
7527 Rew2 3.0-
1$27 ReW6 1.01128
7528 R6W2 3.0- .
7$21 liIe", 1.05502
7529 Rewa 3.0 -
7SU Raw6 1.03000
7$30 R6"2 3.0-
7S30 RltW6 1.00613
1$31 Row2 i.tiI2-
7531 flOW6 -.55393
s8BaU fllO 'MARKER' 'SEPORG'
IS 1 ReW3 1,6936
as 1 R6W7 1.b05~9
IS 2 ROW] 3.0532
as 2 ROW7 1.15590
IS 3 ReW3 2.830a
8$ 3 R&W7 1.56692
IS • ReW3 3.U,
8S ,. R&IoI7 1.66182
IS 5 ROW3 3.0-
IS 5 ReW7 1.51t20 ..
,$ 6 ROlll3 3.0-
8S 6 Rew7 i.~1915
IS 7 ROW] 3.0- -
8S 7 Rew? 1.'3978
'S 8 ROWl 3.0-
as 8 Aew? ,.39358
is 9 Rew] 3.0-
1$ 9 Rew7 1.35025
IS10 ROW.l 3.0
&S10 ReW? 1.30953
1511 ROW3 3.0-

84 Appendix C

8S11 Ruw7 1.27119
IS12 RaW3 3.0

1&12 R6W7 1.23505
1513 ReW3 3.0·
ISll ReW7 1.200a~
ISH ReW3 3.0·
ISh Reno 1.16857
ISls R6w3 3.0·
1$15 ReW7 1.13"6
aS16 Rew3 3.0·
IS16 Raw7 1.10890
IS17 ReW3 3.0·
IS17 AOW7 1.01UI
.Sla ROWl ~.O-
ISla ReW7 1.05502
ISi9 Rew3 j.O
IS19 Aew7 1.03
IS20 ROW3 3.0·
IS20 ASW7 1.00613
8$21 ReW3 j.O'9
IS21 Rew7 1.00815
s9seUhO 'MARICER' 'SEPeRG'
,S 1 Aew .. .hU6
9$ 1 Rewa 1.66182
,S 2 ROW .. 3.0
95 2 Rewa i.5'-2<;1"
,S 3 Asw. 3.0·
,S 3 ReW8 1,'-1915 ,s .. Re .. " 3.0-
'S .. Rewa i 3978
9S 5 AOW. j.o·
9$ 5 Rewa i.l9358
,S 6 AOW. 3.0·
's 6 Rews 1.35025
9S 7 ROW. 3.0
,~ 7 RSW8 i.l09S3
'5 8 Rew. 3.0·
,S 8 ReWs 1.27119
9$ 9 Aew. 3.0
9$ 9 Hew8 1.23505
9s10 Aew. 3.0·
9510 Relli8 i.200H9
9S11 ASW. l.O·
'Sl1 Rewa 1.16857
9S12 R/JW4 3.0-
,$12 Rewa 1.13796
'513 Rew. 3.0-
9513 R6WH i.l0cSo
9SH Relil" j.O .
9S1" Rews 1.0allS
9S15 Fiew," j,o·
9S15 Rewa 1.05502
9516 ROW. 3.0
9$16 ReW& 1.03
9~17 R6WII 3.0·

·9517 RUW8 1.00613
9518 Rew. 3.079-
9S18 Rewa 1.00a~5
9519 Raw" • .\97
9S19 ReW8 .~~O90
SioaevNO 'MARI(ER' 'SlF>aRG'
IS 1 AeW2 -.51
1$ 1 ReW9 .2'81~
lS2 AeW2 ·~.U6
1$ 2 ROW9 i.66182
IS 3 Aew2 -3.0-
1$ 3 ReN9 i.S~20"
1$.. ROW2 -3.0
1S It ROW9 1.1t8915
1$5 ReNe! -3.0-
IS 5 AaW9 1 • .-3978
IS 6 ReW2 .3.0·
15 6 RaW9 1.39358
1$7 ReW2 -3.0··
1& 7 Rew9 1.35025
lSa RaN2 -3.0
1$ 8 Relli9 1.30953
1$ 9 AOW2 .3.0·
1$ 9 R/JW9 i .271 ~9
1$10 ROWe! .3.0
lS10 Row9 1.23bOs
ls11 ReW2 -1.0·
1$11 ROW9 i.20089
lS12 RSW2 ·3.0·
1512 ROWS 1.168~7
1$13 R5W2 -3.0-
1513 Mew9 1.137%
ISh ReW2 ·j.O·
1fih Rew9 1.10890
lS1! ReW2 .2.119
1S1S Aew9 .7661.3
Se.PE~O 'MARKER' 'S[PEND'

RI1S
lRIolS Rewl 30.0166
lRIolS RIJW2 959 .. 5
lRJoIS ROW3 2""145
1RHS Raw .. 99.a369

Appendix C 85

tRMS ROWS .0052
lRJ.;S R6\o16 Jl.6010_
lRHS ROW7 ·8~ii6602
lRMS Re\ol8 't13171
lRMS ROW9 '~O~

eUUNOS
UP eNO U1 1.
liP alito Uil 1.
UP 8"'0 U3 I.
uP e~o lilt i.
liP e,;,o US ~.

\,IP al'oo 3!,; 1 1.
UP aNO 3::; 2 1.
UP 8hO 35 l I ...
UP af-lo lS It 1.
UP 8hO 35 5 1,
UP 8"0 3S 6 1.
UP 8ND 35 7 I.
UP 8hO 3S 8 1.
UP 11;'0 3S 9 1.
UP aliic 3510 1.
UP 81110 3s11 i.
liP 8hO 3512 I.
uP a~o 3513 1.
UP 8hO 3S11t 1,
UP 8hO 3515 1.
UP SNO 351& 1.
uP SNO 4S 1 1.
UP SNO ItS 2 1.
UP SNO 45 3 1.
uP SNO 45 ,. i.
UP B~O 45 5 1.
UP B;"O -5 6 1.
UP BhO 45 7 1.
~ 8"0 ItS 8 1.
UP 81'00 45 9 1.
liP Bt-C -s10 1.
UP 8NO -S11 1.
U" B"'O 11512 1.
~ 8NO 4513 I.
\.IP 8"'0 4514 ~.
UP ShO -515 1.
UP S"'O IIs16 1.
UP ShO 55 1 I.
UP SNC 55 2 1,
UP SNO 55 3 i.
vP BI\tO 5S It i.
UP Blite 55 5 1.
UP S"'O 55 to 1.
i"IP S;'C 55 7 1.
UP ShO 5s 8 1.
uP 8hO 55 9 1.
UP S;;'O 5510 1.
UP shO 5511 1.
vP BhO 5s12 1.
UP atilo SS13 1.
I..P 8"'0 5514 1.
UP 8"'0 5515 1.
UP 8"'0 5!;i16 1.
UP SI>oC 5517 1.
UP BI-;O SSlB ..
!wP st-oc 5S13 1.
UP aND 5S20 1.
UP 8"0 5$21 1.

UP 8hO 5522 1.
UP 8NO 5S2l 1.
uP ShO 5S2_ i.
liP Siiio 5&25 1.
UP 81\tC 5526 1.
UP SNO 5527 1.
UP a;:.o 5528 I.
liP 8NO 5529 1.
UP SND 5530 1.
\oJP S"'O 5531 i •
UP BIi4D 5532 1.
UP BNO 5533 1.
\oiP Biioo 5s3_ I,
UP 8NO 5535 1,
UP 8NO 5536 1.
UP S';'O 5537 1.
UP aND 5538 1,
UP ShO 5539 1.
UP BND 55_0 1.
vP BND 55_1 1.
UP BhD 5542 1.
UP B;:'O 5S_3 i.
UP aND 55'-_ 1.
UP BNO 6S 1 1.
UP 8P11D 6S 2 1.
UP 8NO 65 3 1.
UP 8"'0 65 It 1.
\,;P B"-O 65 5 1.
UP B~O 65 6 i.
UP B"-D 65 7 i.
UP 8"0 65 8 1.
UP e~o 65 9 1.
UP ahO 6510 1.
UP et'.o 6511 1.

86 Appendix C

UP 8hC 6512 1.
UP S~C 6513 1.
UP 8ND 6514 1.
\.iP 8hO 6SI~ 1.
UP 8ND 6516 1.
uP 8t-0 6517 1.
uP 8ND 6S18 1.
UP 8ND 6$19 1.
UP 8ND 6S20 1.
UP 8f"D 6521 1.
uP af.lD 6522 1.
IJP 8ND 6523 1.
UP 8ND 6S24 1.
UP BND 6525 1.
UP 8ND 6526 1.
UP St-O 6527 1.
UP 8ND 6528 1.
UP ehD 6529 1.
UP 8ND 6530 1.

UP 8~D 6S31 1.
lJP 8ND 6S32 1.
UP 8hD 6533 i.
UP 8NC 7S 1 1.
UP aND 7S 2 1.
I,iP aND 75 j i.
UP 8ND 75 _

1.
UP 8NC 75 5 i.
UP Sf.lO 75 6 1.
UP sliiD 75 7 i.
lJP IND 75 8 1.
uP 8NO 7S 9 1.
IJP SND 7510 1.
,",P sf-o 7511 1.
UP 8hD 7512 1.
IJP 8hD 7S1l 1.
UP SND 75H 1.
UP sf-o 7515 1.
IJP 8ND 7516 i.
UP 8hD 7517 1.
UP SND 7S18 1.
UP SND 7519 1.
UP 8ND 7S20 1.
UP 8ND 7S21 1.
IJP 8ri10 7822 1.
\.iP 8i-C 7S2l i.
UP 8ND 75211 1.
UP 8tooD 7525 1.
UP ShD 7526 1.
UP 8""D 7527 1.
UP aND 7S2a 1.
UP ShD 7529 1.
UP 8ND 7$30 1.
UP aND 7531 1.
UP 81i;D as 1 1.
\.iP eND 8S 2 1.
UP 8hD 85 3 1.
UP 81\;0 85 4 1.
UP 8ND as 5 1.
UP 8ND 8S 6 1.
UP 8ND as 7 1.
IJP 8ND 85 8 1.
UP 8ND as 9 1.
UP e"'D 8510 1.
UP 8hD 8s11 1.
UP a';'o 3512 i.
UP 8t-C 8913 I.
UP aND 851' i.
UP BhD 8515 1.
IJP a"'o 8s16 1.
IJP aND 8S17 1.
UP ahO Ss18 1.
UP 8ND 8519 1.

VP ahD 8s20 1.
uP ahD 8S21 1.
UP ahD 95 1 1.
UP s C 95 2 I.
UP BND 95 3 1.
UP 8he 9S ,. 1.
IJP 8hD 's S 1.
UP 8hO 9S 6 1.
UP BND 95 7 1.
UP aND 95 8 1.
UP aND 's , I.
uP BND 9S10 1.
UP all.lD 9511 I.
uP 8hD 9512 i.
UP ShD '513 I.
UP 8;'C 95 lit 1.
UP afoiD '515 1.
UP aftD 9S16 1.
UP aND '517 1.
IJP aNO 9S1~ 1.
UP 8ND 9S19 I.
UP arilo IS 1 1.
UP aho 15 2 1.
\.iP at-D 15 3 1.
UP aNO Is ~ 1.
UP a"'D 1s 5 1.

Appendix C 87

UP BJ;D
UP eNa
UP e,:.o
\if' BND
I"lP e;.o
I"lP B';'C
uP a ... o
VI' ahO
UP B~ "p B~O

ENDATA

15 6
15 7
15 8
ls 9
1510
1s11
1912
lS13
isH
1S15

11137 FEB 12,'69 10_0001
,JeB 326.5D"'0
LIMIT ! TIt1£,!lOJ, (le, 1000h (Ue, 100016 t06, 1000!
ASSIOw Fll06,COEvlCE,CPAO.)
ASSIGN Fll,(FllE,CLANG),CBIN),(WHITE,ALL),(C6NSEC),(SEQUEN)"
CeUTIN),CRECL,lOOOO),CREAOiALL)
ASS IGN F 12, (F lLE,OTIL! h (BIN), (~R ITE, ALL), (ICEYED), (0 IRECT), I
CeUTIN),CRECL,3000Dt,CREAO,ALL)
ASSIGN FI3'CFILE,UTIL2)'(BIN)'(~RITE,ALLl'(ICEYED)'(DIRECT)"
CeUTIN),CRECL,30000),CREAD,ALL)
ASSIGN F:.,CFILE,HTwX),(BlN),CWRITE,ALL),COJRECT),(ICEVEDl"
(eUTIN),CRECL,30000),(REAO,ALL)
ASSIGN F :5, (F' II.E, lviE h (BIN), (wR I TE,ALL), (DIRECT), OCEYED l, J
ceuTIN),CRECL,30000),(REAO.ALL)
RUN (LMN,'MPS) .

12F'£B69

INTERNAL STATEMENT NvM8Ek 0 TIME - 11:37
C

1 ••
2 ••

3 ••
.. ..
!5 ••
6 ••

7 ••
a •• , ..

10 ••

11 ••
12 ••
II ••
10\ ••
15 !!e

16 ••

17 ••

18 ••
l' ••

12f[869

20 ••

21 ••

22 ••

C DEfINE HEACINO AND EhTER SEPERABLE PReGRAHMIlliG HeDE
C

c
C
C

C
C
C
C

C

C
C
C

C
C
C

c:
c
C
C
C

TITLE r..eh-LJNEAR PReBLEM N8 6
CALL [... TERCIl')

SPECIFY F~R SYH8eLIC UNITscweRKING ~I~ES) eN RAO

CALL DEVICE("lLE1',DISC,'B'1
CALL OLVIC£(i~JLE2l'OJst,'c')
CALL. O£VlCEClFlLU' ,DISC, '0')
CALL ()EV ICE C '·FILE4 t ,DISC,' E I)

ATTACH THE FeUR STANDARD fMPS FILES Te THE ~eUR
PREVIOuSLY DEFINED SYM80LIC UNITS(RAD).

CALL ATTAC~(MATRIX"~llE1')
CALL ATTAC~clNVERSE"~IL£2'1
CALL ATTAC~CUTIL1"FILE3't
CALL ATTACHcufIL2"'ILE~'1

INITIALIZE INTERRUPT VARIABLES

ASSIGN 100 TO K~AJER
ASSIGN 200 TO KIeER
ASSIGN JOO Te KNFS
ASSIGN .. 00 TO KU8S
ASSIGN 500 T6 ~INV

AOATA _ 'NLPSTC01'

LeAD INPuT MATRIx FReM CARDS, USJNG REceRD 'NLPST001'

CALL llliPUT

IDENTI~Y RIGHT.HAND-SIDE ceLUMN ANO ceST Rew TO BE USED

AeaJ • '08.JT
ARHS • 'lRt-IS

SET TO INVlRT llie L~SS FREQUENTLY THAN AT INTERvALS eF
~o ITlRATJ6NSCN8Tl: A~TUMATIC INVERT e~ TIME IS By DEFAULT
IN epl,HATlON,).

c •••••
C NOTEI TO TuRIIi OFF T~L AUTOMATIC INVERT 611i TIME, THE FellOwING
C STATlMENT SHOuLD BE USEO.
C INvTIML • -1
C

c:

C
C
C

C
C
C

C
C
C

•••••

"REQI _ !So

INITIALIZE ITERATION LeGGING FREQUENCY Te PRINT EVERY ITERATION

ILeOP • 1

SPECI'Y ~INI"IZATION

,ea,JWT • 1t

SOLVE SEPERA8LE MATRIX

88 Appendi x C

o. O. 1.

O. O. 2.

23 •• CALL OPT '1'1 IlE
t
C DISPLAY PROBLE" seLUTION
C

I. •• CALL ,8LUT18N
215 •• STOP

C
C ENTER HERE FeR MAJOR ERROR C8NOITI8NS
C

26.. 100 CALL CSNOITION
27 •• STap

c;
C ENTER ~ER£ ,aR III ERReR CINOITIeN
C

II.. 100 CALL CO~OITleN
2' •• STep

C
C ENTER ~ERE FeR Ne FEASIBLE SSLUTleN CONDITION
C

30.. 300 CALL COHelTION
C
C ENTER ~ERE FeR UNBOUNOEO SOLUTION ceNOITIaN
C

31.. -00 CALL wOLUTlaN
32 •• STall

c
C ENTER ~R£ "R INVERSION INTERRUPT CONDITION
C

33 •• !Sao CALL INVERT
3_ •• RETURN
35 •• END

INTERNAL STATEMENT NvMBEH 0 TIME. lU37

12FEB69

INTERNAL STATEMENT NUMBER 1 TIME 11137
INTERNAL STATEHENT NUMBER 2 TIME 1113'
INTERNAL STATEMENT NUMBER 3 TIME • 1113'
INTERNAL STATEMENT NUMBER • TIME • 1113'
INTERNAL STATEMENT NUMSER 5 TIME • 11&31
INTERNAL ITATEHENT NUMBER 6 TIME • U131 INTERNAL STATEMENT NUMBER 7 TIME • 1113' INTERNAL ITATE",NT NUMBER 1 TIME. 11131
INTEANAL STATEMENT NUMBER 9 TIME. 1113'
INTERNAL STATEHENT NUMBER 10 TIME. 11131
INTERNAL STATEMENT NUMBER 11 TIME • 1113'
INTERNAL STATEMENT NUMBER Ii TII'1E • 1113'
INTERNAL STATEMENT NUMBER 13 TIME • 1113'
INTERNAL STATlMENT NUMBER h TU1E • 11137
INTERNAL STATEMENT NUMBER 15 TIME • 1113'
I~T'RNAL STATlMENT NUMBER 16 TIME • 11131
INTERNAL STATEMENT N~MBER 17 TIME • U831

BUFFER SIZES (BYTES) ARE •• MATRIx. 7160 INVERSE. 102.0

MATRIx STATISTICS Rew......... 10
CtLuANS..... 213
~I......... 1
CEN.ITY..... 30.89
'L'"t~TS.... 651
LARG~ST..... 0.2000000+03
~ALLE'T.... 0.6;00000-03
MAJeR ERReRS 0
MINeR ERRIRI 0
SETS·........ 10
INTERNAL STATEMENT NUMBER 18
INTERNAL STATEMENT NUMBER 19
INfEMNAL STATEMENT NUMBER 20
INTERNAL STATEMENT NUMBER 21
lNfEMNAL STAT[MEN' NUMBER 22
JNTEHNAL STATEMENT NUMBER 23

TIME. U837
TIME. 11138
TIME • 11131
TIME. 11&38
TIME. 11138
TIME. 11138

O. 1·

NEQATIVE OJ CeUNT • 1 SELECTEO 1 VA~IAeLES BEST OJ • -0.2000000.03
ITER. SUM 6' INF NINF tBJECT VALUE V-IN MevE REOUCEO ceST ACTIVITY V-8UT MOVE ~IVtT

1 0.2.6438.20+03 9 0'000000000+00 11 L-e 0.000000000+00 0.4991a~500+00 5 B-L 0.200000000+03

NEGATIVE OJ ctUNT • 6 SELECTED 2 VARIABLES BEST OJ • -0.3000000+02
ITER. SUM a' INF NlhF eBJ~CT VALUE v-IN HevE REOUCEO ceST- ACTIVITY V-aUT MOVE pIveT

2 0.146601520+03 8 -0'900000000+01 13 L-U -0.300000000+01 0.100000000+01 N"NE
l 0.116601520+03 8 -0.'00000000+01 133 L-U 0.000000000+00 0.100000000+01 Ne~E

NEGATIVE OJ ceUNT •
ITER; SUM e' INF

~ 0·112626190+03

5 0.112609590+03
6 0.10260'!S90+03
, 0.'7283670D+Oc
8 0"727a.70D+oa
9 O"4579310D+Oi

6 SELECTED 6 VARIABLES BEST OJ • -0.1000000+02
~I~F aBJECT VALUE V-IN ~eVE REDUCED ceST ACTIVITY V-eUT HBVE

a -0'90051460D+Ol 14 L-B -O.310000000+0~ 0.166000000-02 2 e-l

1 -O'118051~60+02
7 -O'118051~6D+02
7 -0'1180.8510+02
6 -0-1180415!0.02
6 -0.1180.8510+02

16 L-U
13" L-U

99 Lee
165 L.U
187 L-U

-0.280000000.01 0.100000000.01 N8NE
0.000000000+00 o.iOOOOOOOD.oi N8NE
0.221059500+00 0.129766420-02 6 B-L
0.000000000+00 0.100000000+01 NeNE
0.000000000.00 0.100000000+01 Ne~E

NEGA!lVE DJ caUNT • 5 SELECTEO 5 VARIABLES BEST DJ • -0.1000000.02
ITER. SUM 0' IN' NIH' aBJECT vALUE v-IN MaVE REDUCED ceST ACTIVITY v-aUT MtVE

10 0"2'175600+02 6 -0.1_70.8510+02 17 L-U -0.290000000+01 0.100000000+01 N8N£

pIVeT
0.100000001)+02

0.400720000+01

1.

Appendix C 89

11 0.129175600+02 6 -0.,.7041510+02 U5 L-U 0.000000000+00 0.100000000.0 I N"N[
12 0.775817300+02 6 -0.147041510+02 166 L-U 0.000000000+00 0.100000000+01 NeNE
U 0.727796300+02 6 -0-1.704.510.02 1&1 L-U o .00000000D+OO 0.100000000+01 NeNE
H 0.712375900+02 6 -0.1.'000000+02 -5" L-e o.! 16183270+00 0."17560370-01 !4 a-I.. 0.37.78.750-01

f!ft:QAT I 'IE OJ ceUHT • 6 SELECTED 6 VARIABLES eEST OJ • -0.8000000+02
ITER. SUM IIF I NF hi""" "&"IECT V~LUE v-IN HOVE REDUCED ceST ACTIVITY V-"UT ""VE IIIIV"T

15 0;7122989'0+02 6 -O'1"3864!0+02 18 L-e -0.2.0000000+02 0.211216170.00" -3 B-l 0.800000000+02
16 0.537677490+02 5 -0-1'&30,040+02 13 u-e 0.900000000+01 0.IU711740.01 " B-U 0.100'51460+01
17 0.535912S00.02 5 -01198309040+02 167 L-U 0.000000000+00 0.10000000D+Ol NeNE
sa 0 •• 91931300+02 5 -0-11;909040+02 U6L-U o.hoOOOOOO+OO 0.100000000+01 HeNE
19 0.4"031100+02 5 -0.1'99090~0+O2 189 L-e 0.000000000+00 0.63733&nD+00 , B-l O. H891 15000+01

NEGA!IVE OJ teuNT • 4 SELECTEO - VARIABLES eEST OJ • -0 •• 777820+01
ITER, SUI'! eF INF NIh' - ISJECT YAI.UE 'I-IN HeVE- REOUcEO ,eST ACTIVITY V-OUT ",eVE pIVOT

20 0 •• 5150\7900+02 4 -0'18'909040+02 161 L-U 0.000000000+00 0.100000000+01 NeN!
21 0.410769700+02 4 -0-111509040+02 137 L-U 0.1.0000000+00 0.100000000+01 NoNE
22 0" 388 11 9100+02 4 -0.110431900+02 55 L-e 0.10\7986630+00 0.123135110+00 99 t;-U -0.673_77740+00
a3 0.3160;_"o.02 - -0'1'044.400+02 207 L-e -0.153000000+00 0.3,,531110-02 ~o a-L 0.211~40000.00

NEGATIVE OJ caUNT • 5 SELECTED , VARIABLES 8EST OJ • -0._5~20_~+01

ITER. SU", S, INF hIh'- e8~ECT yALUE V-IN ",eYE REOUCEO ceST ACTIVITY V.sUT Mev, plVBT
24 0.31601_660+02 3 -0.110_44_00.02 169 L-U 0.000000000+00 0.100000000+01 NeNE
25 0.340664260+02 3 -0.171.44.00+02 131 L-U O,goooooooo+oo 0.100000000+01 NeNE
26 0.317639760+02 3 -oiI709'5160+02 100 L-e 0.240000000.00 0.117114040.00 55 s-u -0.1479'01150+01

NEGATIVE OJ COUNT • 3 SE~ECTEO 3 VARIABLES eEST OJ • -0 •• _89150+01
ITEA; SU'" OF INF hl~F" eB~ECT YA~UE v-Ih ~~YE" RE~UCED COSt ACTIVITY V.eUT "'BVE piVOT

21 0-316164400+0Z 3 -O.170"~i60+02 110 L-e 0.000000000+00 0.600564080+00 8 eeL 0.1 •• '1&000+01
28 0.28990~1ID+02 2 -0-161995160+02 ii9 L-U 0.900000000+00 0.100000000+01 NaNt
29 0-261039080+02 2 -0.160461350+02 -56 L-U 0.152681090+00 0.100000000+01 NeNE

5 SELECTED 5 VARIABLES BEST OJ • -0.2216980+01 NEGATIVE OJ ,eUNT •
ITEA; 5UM of INF ~IhF" 8BJECT yALUE V-Ih MeYE REDUCED COST ACTIVITY V-aUT HBVE plveT

2 -0'150868350+02 1_0 L-U 0,960000000+00 0.lbooooaoO+01NeNE 30 0.265960'20+02
31 0.243791120+02
3Z 0~2'097933D+02

2 -0'152520590+02 "37 L-B -0.302451.60+00 0.S46282'3D+00 207 a-u -0. 1823973S0.01
2 -0-182263210+02 57 L-e 0.i_4162090+00 0.i71~9j08D+00 100 B-U -0.60067~390+00

SEP VAR. 169 REJECTED
SEP VAR. 171 R[~ECT~O

NEGATIVE OJ CBUNT • 5 SELECTEO 5 VARIABLES BEST OJ • -0.2109210+01

O. 1. 3.

ITER. SUM of I~F hINF OB~ECT VALUE V-IN ~evE REOUCEO C85T ACTIVITY V-eUT "'BVE plV8T
3l 0.240610770+02 2 -0.142663270+02 HI L-U 0.960000000+00 0.160000000+"01 NO~
3~ 0'21,si7970+0~ 2 -0'1'.155060+02 20a L-e -0.111131250+01 0.1342~'220+00 189 B-U -0.110a04~60+01
3~ 0.217446790+02 2 -0.142615100+02 101 L-e 0.216319220+0~ 0.537.49290+00 57 a-u -0.110037170+01

NEGATlV[OJ CBUNT • 3 KLEeTEO 3 VARIABLES BEST OJ • -0.2072950+01
ITEt. ~ sF IN' ~INF" eSJEeT vl~UE V.IN He 'IE REDUCED COST ACTIVITY V-eUT ~eVE plveT

36 0.215716050+02 2 -0'1410163'0+02 142 I.-a 0,'90000000+00 0.1&1_15340+00 II eeL 0.412500000-01
j} 0.212361540+02 2 -OiI4ioOI460+02 i90 L-a 0.9.9619730-01 0.iS72~625D-01 37 B-U -0.213101150+01
JI 0.211821120+02 2 -0-139'82450+02 -51 L-e 0.152291490+00 0.100.'5220+00 101 a-u -0.5103801ID+00

N£OATIYE OJ CIUNT • 7 S[LECTEO 7 VARIABLES BEST OJ • -0.6281670+01
ITEAi SUH OF INF Nih' OSJECT YALUE V-IN MeYE REOUCEO ceST ACTIVITY V-eUT "'BVE PIveT

39 0.21015111D+02 I -0.131'04220.02 17 U-S 0.290000000+01 0.2116631.0+00 1'2 a-u 0.303030300+01
40 0,193016280+02 2 -O'13~94066D+02 31 L-e -0.325712180+00 0.jiI190faO+OO 170 S-U -0.341311590+00
41 0;1'1609130+02 2 -0-132537020+02 102 L-e 0.240458590+00 0.167840970+00 'I e-u -0.160111160+01

NEGATlv[OJ caUNT • 2 SELECTED ~ YARIA~LES eEIT OJ • -0.19191_0+01
ITEA. SUM eF INF hIh, eeJECT YALUE V-Ih ~eYE RE~UCED cos, ACTIVITY V-aUT HeVE

42 0.lt0971'DD.02 2 -0.12325702D+02 143 L-U 0.921000000+00 0.100000000+01""NONE
4) Oi171713000+02 2 -0'1218723eo+02 -59 L-U 0.131466270+00 0.100oooo0D+01 NONE

PlveT

NEGATIVE OJ COUNT. 2 SELECTED 2 VARIABLES BEST OJ • -0.1755900+01
ITER. SUM eF IN' NIN, OBJECT vALUE V-IN -HeVE REDUcED ceST"" ACTIVITY V-OUT HOYE III I V8T

.~ 0-16,_35100+02 2 -0-113018010.02 1~. L-U 0,185428000+00 0.100000000+01 NeN£

.5 0'151876700+02 2 -0.112.36590+Q2 -60 L-e 0.130162880.00 0.446732390+00 102 B-U -0.556399110+00

NEOATIVE OJ CtuNT • 4 SELECTED 4 VARIABLES eE8T OJ • -0.1566920+01
ITER. SUM of INF NIh' eBJECT YA~UE V-IN MOYE REOUCED ceST ACTIVITY V-euT HOVE piVOT

,6 0.150831660.02 2 -0,108082450+02 1.5 L-e 0.120932000+00 0.~30390110+00 17 8-~ 0.283010000+00
-, 0;142~2087D+02 2 -0'107175750+02 103 L-e 0.300000000+00 0.302233110+00 &0 a-u -0.18305'530+01

NEGATIVE OJ COUNT. 'SELECTED 6 VARI_BlES BEST OJ • -0_55J5260+01
lTE." SUM eF IN' hI""" eBJECT yi~UE V-IN MeVE REDUCED ceST ACTIVITY V-aUT HeVE plveT

48 o.I~101.72D+02 2 -0.103560690+02 16 U-B 0.280000000+01 0.129109090+00"" 1-5 a-u 0.353257030+01
.9 0.1331'1100+02 2 -0-102197710.02 61 L-U 0.1362'8260+00 o.loooo000D.OI NONE

rcGA!IVE OJ caUNT • l SELECTEo 2 VARIABLES 8EST OJ • -0,1661820+01
ITER. SU'" OF IN' hlN, ee~lCT VA~UE V-IN HOVE REDUcEO COST" ACTIVITY V-euT HeVE pIVOT

so 0-131526100+02 2 -0.'3~72'120.01 146 L-U 0.172_80000+00 0.100000000+01 HeN[
INTERNAL STATEMENT N~MBER 33 TIME". 11138-

7 NaN-SASIC SLACKS. COHPLlTELY TRIANGULARIZEO 1 Rews ANO , ceLS'
o IN NeN-ca",LETELY TRIA~GULARIZEO-PART. 0, T~ESE- 0 ~HERE NOT TRIANQULARIZEO 4NO 0 WERE REJECTED FaR Tae S"ALL A IIIlylT.

MATRIX T6 BE INV£ATlD ~AO " 10 eeLS .ND 21 ELEMENTS, I~VERSE ~AS- 1 ealS AND 18 ELEMENTS.

1200 HS reR INVERT
INTERNAL STATEMENT NU"'BER 3~
INT[ANAL STATEMENT NUMBER 23

90 Appendix C

TlHE • un8
TIME. 11:38

O. 1. ...

NEGATIVE OJ ceUNT • J iE~ECTEO ~ VARIABLES BEST DJ • -0.1560220+01
ITERt SU~ e, INF hINF eBJECT VALUE v-I~ MevE REDUCED COST ACTIvITY V-e~T MavE pIVOT

51 Oi114908600+02 2 -0.,.1'75870+01 171 L-a -0.7885070Z0+00 0.167991190+00 38 a-u -0.286763070+01
52 0.112287-60+02 2 -0.192857610+01 1_' L-a 0.840000000+00 0.656169750+00 -7 e-L 0.15_204000+01

NEGATIvE OJ COUNT. 4 SELECTED 4 VARIABLES BEST OJ • -0.103-220+01
ITER. SUM aF I~F hlNF OBJECT YAL~E V-IN MOVE REDUCED COST ACTIVITY Y-eUT HaYE PIVOT

53 0.10216,060+02 1 -0.893083650+01 39 L-B -0.262080760-02 O.862U5080+00 103 a-u -0.130205530+00
5- 0.932.;IS9D+Ol 1 -0,,'3150550+01 61 u-e -0.19185388D-oi 0.3.,704750-01 39 a-u 0.39.385010+01

SEP VAR.· 170 RE~ECTEO
SEP VAR. 172 REJECTED

NEGATIVE OJ COUNT • 2 SELECTED 2 VARIABLES BEST DJ • -0.1038680+01
ITER. SUM 0' INF hlNF eaJECT VALUE V-IN MevE REDUCED ceST ACTIVITY V-OUT MBVE pIYOT

55 Oi91.033010+01 1 -0.893177060+01 .0 L-a -0.601 •• 0.-0-02 0.44072.170-01 1.7 B-U -0.361303510+00

NEGATIVE OJ COUNT • • SELECTEe - VARIABLES BEST OJ • -0.2776220+01
ITER. SUI'1 elF I~F hINF- eB~ECT VALUE V-Illi P'!avE REDUCED CltST ACTIVITY v-aUT HeVE pIveT

.. 56 Oi'13.S5160+01 1 -0,"2"0710+01 1_8 L-a 0.12735.610-01 0.2'.055160+00 190 a-u -0,905167060+00

NEGATIYE DJ CeUNT • c SELECTED Z VARIABLES BEST OJ • -0.2968660+01
ITER. SUM aF INF hlhF eBJECT VALUE V-IN MeVE REDUCED caST ACTIVITY V-eUT MaVE pIV6T

. 57 O"'Ol.7'2D+Ol 1 -0."2777120+01 1'1 L-a 0.136182620-01 0.-'7.03'00-01 208 a-u -0"'3361860+00
58 Oi826Z72200+01 1 -0.8'3051;~0+OI 103 u-s -0.71899.800-02 0.31196~'60+00 61 e-L -0.19.73"60+01

hEGATIVE OJ caUNT • 2 SELECTED 2 VARIABLES BEST OJ • -0.3213070+01
ITERi SUM 8' IN' hlhF OSJECT VALUE V-IN MeVE REDUCED ceST ACTIVITY v-eUT MeVE pIveT

59 0.8212-7510+01 1 -0.89309.130+01 209 L-B -0.12514Z210-01 0.370677800-01 .0 s-U -0.31 •• 6.590+01
60 0.80'33736D+Ol 1 -0 •• 9.302600+01 60 U-L -0.120 •• 7140-01 0.100oo000D+Ol N8Nt

NEOATlvE OJ caUNT •
ITER~ SUM aF INF

2 SELECTED 2 VARIABLES BEST OJ • -0.1011090+01

. 61 OiI02"2620+01
hINF· eBJECT vALUE V-IN ~OVE REDucED caST ACTIVITY v-aUT M6VE pIVOT

. 1 -0'19.'57050+01 '1 L-e -0.506980320-02 0.30.6.7090.00 171 a-u -0.337030660+00

NlG.TlvE OJ COUNT • 0 SEL(CTED 0 VARIABLES BEST DJ. 0,0000000+00
INTERNAL STATEMENT NUMBER 33 TIME-. 11138

8 NeN-SASIC SLACKS. CelMPLETELV TRIA~GULARllED 1 RltwS A~O 9 ceLS'
o IN NON_COI1'L£TtLY TRIANGULARIZEO-PART. eF T~ESE- 0 wHERE NeT TRIANGULARIZEO AND 0 wERE REJECTED FltR Tee SMALL A PlvaT.

MAT~IX T8 BE INVERTEO ~AO 10 CBLS AND 22 ELEMENTS. INVERSE HAS'- a ceLS AND 20 ELEMENTS.

600 MS FeR INVERT
INTERNAL STATEMENT NUMBER 3.
INTERNAL STATEMENT NUM8E" i3

TlME_ • 11138
TIME. 11 138

NEGATIVE DJ caUNT • 1 SELECTED 1 VARIABLES BEST OJ • -0.3000000+01
ITER. SUM~' I~F ~I~F- OBJECT V~LUE v-I~ MevE REDUCED ceST ACTIVITY v-eUT MOVE pIVOT

6~ 0.772090000+01 1 -O.89~809580+01 172 L-H -0.145598690-01 0.2~212.600+00 41 e-u ·o.2871~805D+Ol

O. 1. 5.

NEGATIVE OJ caUNT • • SELECTED 4 VARIABLES BEST OJ • -0.1289570+01
ITEA, SUM B' INF hlNF aBJECT VALUE v-IN MaVE RE~UCED caST ACTIVITY V-aUT MaVE pIVOT

63 Oi69t.SZ62D+Ol 1 -0.89-8306.0+01 .2 L-B -0.790205780-02 0.2&6.26280-01 14. B-U -0 •• 0226'750+00
SEP 9AR, 171 REJECTlO
SEP VAR. 173 REJECTED

2 SELECTED ~ VARIA~LES BEST OJ • -0.3099'60+01 hEOATlvE OJ caUNT •
ITER, SUM aF INF

64 0.696016'60.01
hlhr aaJECT V~LuE v·I~ ~eVE REDUCED cest ACTIVITY Y-auT MavE plyeT

1 -0,a".7198D+Ol 1.9 L-a 0.88!620'2D-02 0 •• 0.91154D+00 42 B-U -0.2.03.71'0+01

~EGATIVE OJ caUNT •
lTE~, SUM sF INF

2 SELECTED 2 VARIABLES BEST OJ • -0.1272000+01
hlhF eSJECT vALUE V~IN ~OVE REDUCED ceST ACTIVITY V-eUT HaVE pIVOT

65 0.570.'$550+01
" oi525757530+01

1 -0,"4.07100+01 .3 L-a 0.18 •• 515.0-02 0,3$1712700+00 191 a-u -0 •• 2.001490+00
1 -01'9$6.2020+01 59 U-B -0.159851900-01 0.77253 •• 70+00 103 S-L -0.561566610+00

NEGATIVE OJ COUNT • 2 SELECTED 2 VARIABLES 8EST OJ • -0.29&5760+01
ITER. SUM 0' IN' NINF eBJECT yALUE v-IN MltYE REDUCED CeST- ACTIVITY v-aUT MavE plveT

67 Oi518526560+01 1 -0,'95720560+01 192 L-e -0.5867.3.60-02 0.133861690+00 209 a-u -0.881364530+00
6i 0,.71.26390+01 1 -0"957.7760+01 102 U-B -0.33028602D-02 0.823~106gb-Ol 59 B-L -0,173693000+01

c SELECTED 2 VARIABLES aEST OJ • -0.32057.0+01
hIhF aB~ECT VALUE V-IN ~evE REDUCED ceST ACTIvITY v-eUT MevE PIver

hEQATIVE OJ caUNT •
ITER. SUM aF INF

69 0 •• 77919590+01 1 -0.,,5809.50+01 210 L-e -0.339256.50-01 0.1118 •• 710-01 172 B-U -0.106157880+01

NEGATIVE DJ COUNT • 0 SELECTED 0 VARIABLES BEST OJ. 0.0000000+00
INTERNAL STATEMENT NUMBER -33 TIME. 11:38

8 Ne~-eASIC SLACKS. COMPLETELY TRJANGuLARJZED 1 R8wS A~O 9 CBLS,
o IN NeN-COMPLETELY TRIANGULARIlEO-PART. eF THESE 0 ~HERE NeT TRIANGULARIZEO AND 0 WERE REJECTED FeR Tee SMALL A PlyaT.

MATRIX Ta BE INVERTEO ~AO 10 ceLS A~O 22 ELEMENTS. INVERSE MAS 8 celS ANO 20 ELEMENTS.

600 MS rOR INVERT
INTERNAL STATEMENT NUMBER 3_
INTERNAL STATEMENT NUMBER 23

TIME. 11 rn
TIME. 11138

hEGATIVE OJ COUNT. 1 SELECTED 1 VARIABLES BEST OJ • -0,3000000+01
ITER, SUM 0' I~' ~I~F aBJECT VALUE V-IN'MOVE- REOUCEO ceST· ACTIVITY y-eUT HaVE PiveT

70 0 •• 72090000+01 1 -0.8'6181270+01 173 L-e -0.307612.10-01 0.120873910+00 .3 a-u -0.228515100+01

NEGATIVE OJ CltUNT •
ITE", SUM e' INF

71 0 •• 35827830+01
SEP YAR. 172 REJECTED
SEP VAR. 17. REJECTED

- SELECTED ~ VARIABLES erST OJ • -0.123523D+Ol
NIN, eB~ECT VALUE V-IN MeVE· REDUCED ceST ACTIVITY v-eUT MeVE pIyeT

1 -0.896188130+01 __ L-~ -0.IS1_t8310-0! 0 •• S2861Z60-02 149 s-u -0.40.19519D+00

Appendix C 91

hEGATtvE DJ CDUNT •
ITERe SUM D' INF

72 0.4352\1270+01

C SELECTED 2 VARIA8LES BEST OJ • -Oe309627D+Ol
~IN' aBJECT VALUE V-IN ~evE REOUCEO ceST' ACTIVITY V-euT "DVE

1 -0.896264580+01 150 L-a -0.92427965D-02 0.827150220-01 102 a-u

NtGAlIvt OJ caUNT • 2 SELECTED 2 VARIABLES BEST OJ • -0.a .. 6965D+Ol

pIveT
-0.37?3!>114C+OO

O. 1. 6.

ITER, SUH eF INF NlhF DBJECT VALUE V-IN HevE REDUCEO ceST ACTIVITY V-euT HeVE plveT
, 73 0-40,,30"0+01 1 -0."6261120+01 103 L-e -0.28'698 .. 30-03 OeI2199~73D.DO \4 a-u -0.653'127'0+01
7~ 0.306305150+01 1 -0-8'66'86'0+01 58 u-a -0.213772130-01 0.201\08 .. 10+00 103 B-L -0.605708210+00

NEGATIVE OJ tBuNT • c SELECTED 2 VARIABLES BEST OJ • -0.1293190+01
!TER. SUM e' IN' NIN, aeJECT VALUE V-IN HBVE REDUCEO ceST ACTIVITY V-eUT HeVE PlveT

75 0-305032480+01 1 -0,"7204330+01 _5 L-a -0.719,2.780-02 0.102676_'0.00 1'2 e-u ·0,"23105930+00
16 0.214120'10+01 1 -Oe.t76029iO+Ol 102 u-a -0.10.3421"0-01 0~3i205550D+OO s, e-L -0.163105720+01

NEGATIvE DJ ceUNT • 2'SELECTEO 2 YARIABLES 8EST DJ • -0.2'0'530+01
ITER_ SUM 8' INF NI~F 8BJ~CT vALUE v·l~ HBvE REDUCED CeST ACTIVITY V-aUT H8VE plveT

77 0'2079,,'6D+01 1 -0 •• ,7733650+01 193 L-e .0.12 35'D·O~ 0.101731160+00 150 a-u -0.939687710+00

NEGATIVE DJ caUNT • 2 SELECTED 2 VARIABLES 8EST DJ • -0.3000000+01
ITER. SUH eF IN' hlhF a~JECT VALUE V-I~ ~eVE REDUCED ceST ACTIVITY V.eUT HaVE plveT

78 0.17.39550D+01 1 -0."770'9ID+Ol 151 L-B 0.1217401lD-O~ 0.2071 ... 20_01 '5 e-u ·0.23,'32190+01

NlGATIVE DJ CBUNT • 2 SELECTED 2 VARIABLES BEST OJ • -0.1511650+01
ITERt SUM eF IN' hlh' eBJECT VALUE V~lh'~eVE REDUCED ceST ACTIVITY V-8UT HeVE pIVDT

"0.172181090.01 1 -0""706730+01 '6 L-a 0.'01.72160·02 0_602613280-03 113 e-u -0,5031'-'7D+00

NEOATIVE OJ ceUNT • 0 SELECTED 0 VAHIABLES aEIT DJ. 0.0000000+00
INTERNAL STATEHENT NUMBER '33 TIHE. 11138

1 NeN-SASIC SLACKS. CCHPLETELY TRIA~OULARIZED 1 RewS AND 9 C8LS.
o IN NaN-C8HPL£T£LY TRIANGULARIZEO-PART. e, THESE' 0 WHERE N8T TRIANGULARIZEO AND 0 WERE REJECTED F8R Tee SMALL A pIVIT.

HATRIX T8 BE INVERTED hAO 10 ceLS AND 22 ELEMENTS. INVERSE HAS- 8 C8LS AND 20 ELEMENTS.

600 MS FeR INVERT
INTEANAL sTATEHENT NUMBER 3\ TIME. 11138
INTERNAL STATEHE~T NUM8£R 23 TIHE. 11138

NEGATIVE OJ ceUNT • 1 SELECTED 1 VARIABLES BEST OJ • -0.3000000+01
ITER. SUH B' INF NIh(eBJECT VALUE V-IN HeVE' REDucED ceST ACTIVITY V-BUT HeVE ,IvaT

10 0.172090000+01 1 -0 •• '7622650+01 174 L-e 0.78504'660-02 0.107107130+00 210 R-U ·0.879380850+00

NEGATIVE OJ CBUNT •
ITER. SUM eF INF

4 SELECTED • VARIABLES BEST OJ • -0.3298390+01
~IN" IBJECT VALUE V-IN HevE REDUCED ceST- ACTIVITY V·eUT HBVE plvBT

1 -0"'83"3010+01 211 L-A -0.192173620·01 0.3'48 .. 8940+00 -6 ~-u ·0.211617210+01 81 0.139957860+01
IEP VAR. 173 REJ'CT~D
SEP VAH. 175 REJECTEu
ITER. SUM 6' INF ~IN'

82 0-163180820+00 1
DBJECT vALUE v-IN HBVE

-0.8".77660+01 57 ~.L
REOUCEO ceST

-0.11]466890-01
ACTIVITY V-BUT HevE

0.100000000+01 NeN£
PIVOT

NEGATIVE OJ ceUNT • c SELECTED 2 VARIABLES BEST OJ • -C.1534630+01
ITEAt SUM 6' INF NlhF 8BJECT vALUE V-IN ~ev£ REDUcED ceST ACTIVITY V-aUT HeVE pIVOT

83 O.102~40'\0+OO 1 ·0'899554970+01 .7 L·B -0.115673150-01 0.6681!0260·01 - bel 0,153462690+01
SILUTleN 'EAslaLE AT ITERATleN 83'

O. 1. 7.

NEGATIVE DJ COUNT. • SELECTED ! VARIABLES aEST DJ • -0,1000000+00
SEP VAR. 14 REJECTiD
S£P VAR, 17 REJECnD
SEP 9AR. 210 REJECTED
IEP VAR. 212 REJECTED
ITER. SUH aF INF hI~' aBJECT VALUE V·IN ",eVE REDUCED ceST ACTIVITY V-eUT HeVE ,IVBT

I' OiOOOOOOOOO+OO 0 -0.tOO21t7530+01 56 U-B -0.221633600-01 0.312'1oo4D+00 102 B-L -0''''51'1300.00
.5 o.oooooooob+oo 0 -0.9005419'0+01 20 L-e -0,102400520·01 0.~i,,3'31~O+OO 151 a-u -0"'53,2300+00

BEP YAR. U REJECTED
~EP 9AA. Ita REJECTED

NEGATIVE OJ CIUNT • 4 SELECTED 4 VARIABLES BEST OJ • -0.11334aO-Ol
IEP VAR, 55 REJECTED
SEP vAR. 57 REJECTED
ITEAi SUM 8' INF NINF BBJECT VALUE V-IN MeVE REDUCED ceST ACTIVITY V-IUT HBVE PIVeT

1& 0-000000000+00 0 -0.9007 •• 6'0+01 101 u-a -0.575t68 .. 80-n2 0.40979&060+00 ~6 B-L -0,14"701690+01
iEP YAR, 21 REJECTED

NEGATIVE OJ CBUNT • 0 SE~ECTED 0 VARIABLES BElT OJ. 0.0000000+00
INTE~NAL STATEMENT NUHBEA 33 TIHE. 11138 '

, NeN-BAsIC SLACKS. CeHPLETELY TRIANaU~ARIZED 0 RewS AND 7 e8LS.
3 IN NeN-C'",LETlLY TRIANGULAR11ED PART. OF THESE 1 WHERE NeT TRIANGULARIZED AND a WERE REJECTED FeR Tee IHALL A PlveTt

MATRIx Te 8£ INVERTED ~AC 10 eBLS AND 28 ELEMENTS. INVERSE HAS 11 ceLs AND 28 ELEMENTS.

1200 HI FeR INVE.RT
I~TtRNAL STATEHENT NUMBER 3\
INTERNAL STATEMENT NUMBER 23

TU1£ • 11138
TIHE • 11138

NEGATIVE OJ ceuNT • ~ SELEcTEe 8 VARIABLES BEST OJ ' -0.1000000+00
SEP vAR. 14 REJECTED
SEP YAR. 17 REJECTED
SEP VAR. 2iO REJECTED
SEP VAR. 212 REJECTED
ITER. SUH 8' IN' NIN' eBJECT VALUE V-IN MeV[REDUcED C8ST ACTIVITY V-euT HIVE plYeT

8' 0.000000000+00 a -0'901479120+01 55 u.s .0.155337160-01 0."'7062100+00 20 e-L -0.28292'030+00
IEP VARe .6 A£JECTEO
SEP YAR. 48 REJECTEO

92 Appendi x C

NEGATIVE OJ CDUNT •
ITEA' SUM eF INF

aa 0.000000000.00
SEP YAR. ~6 R£JECTtO
SEP VAR. ~~ REJECTlO

5 SE~ECTED ~ VARIABLES BEST OJ • -0.7503300-01
hlh'- DBJECT VALUE V~IN M8VE REOUCED ceST ACTIVITY V-aUT MBVE

o -0'902002930.01 152 L-e -0.750329950-01 0.6iaOgS080-01 101 R-L

hEGATlv£ OJ C8UNT • V SE~ECTEO 0 VARIABLES BEST OJ. o.OOOOOOD+OO
INTERNAL STATEMENT NUMBER 33 TIME. 11138

12FEB69 NeN-LINEAR PRBBLEM Ne b

, NeN-BASIC SLACKS. CeM'LETELY TRIANGULARIZED 1 ReWS AND 7 ceLS'

pIVeT
0.37793404D+Ol

O. 1. 8.

2 IN NeN-CBM'LETELY TRIANGVLARllEO-PART. 8F THESE 1 wHERE NeT TRIANGULARIZED AND 0 wERE REJECTED F8R T8e SMALL A PlveT.
MATRIX Te BE INVERTEO hAD 10 ceLS AND 2! ELEMENTS. INVERSE HAS- 11 eeLS AND 26 ELEMENTS.

1200 H' ,IR INYERT
INTERNAL STATEMENT NUMBER 34
INTERNAL STATEMENT NUMBER 21

TIME. 11138
TlME • una

NEGATIVE OJ ceUNT • a SELECTED a VARIABLES BElT OJ • -0.1000000+00
SEP VAR. 1. REJECTEO
SEP VAR. 17 REJECTED
SEP VAR. 210 REJECTEO
IEP VAR. 212 REJECTED
SEP VAR. 56 REJECTED
5[' VAR. S. REJECTED
SEP VAR. 46 REJECTEO
IEP YAR. 4' REJECTED

NEGATIVE DJ CtUNT • a SELECTED 0 VARIABLES BEST OJ. 0.0000000+00
LeCAL tPTIHUM ENCBUNTEREO

8PTIMAL seLUTI8N. eaJECTIVE vALUE .-0.902002930.01
IN,,ANAL ITATEHINT NUMB£R 24 TIHE. 11139

12FEB69 NeN-LINEAH PROBLEM Ne 0

IDENTIFIER SECTleN

PReB~EH'" NAME ••
MIDEe' SEP
CLASS. IEP
sTAtuS 8PTlMAL-

FUNCTIONAL NAME •• 8BJT
OBJEcT MINIMIZE
VA~U£. _,,020030

RESTRAINT. NAME •• lRHS
ITERATItN. CIUNT' 18

lIFEB69 NeN·~INEAR PReblEM N6 6

SECT liN 1 .. RewS PRIMAL-DUAL

NUMBER '.LABEL· AT ... ACTIvITY". SLACK ACTIvITY
1 BBJT ;R -'.020030 9.020029
2 RtWl EQ 3QiOI6l16 0.000000
3 Row2 EQ 4~.9h~o\2 0.000000

- ReW3 EO 2""t"do 0.000000
IS ROW4 Ea "i8361" 0.000000
6 Rtw5 Ea 0.005200 0.000000
7 RaW6 EQ 31.,01028 0.000000
I RIW7 Ea 1._66020 0.000000
9 Rowa Ea oi.137710 0.000000

10 ROW' £0 0.001000 0.000000

l1FEB6' NON-LINEA~ P"8BLEM He 0

SECTION 2 - ceLUMNs PRIMAL-OUAL

hUHBER .. UBEL. ~T .. ,ACTIViTyINPUT ceST ..
H X6 as 0.514710 0.000000
12 uetuNDl Eel 0.000000 0.000000
13 Ul as 0.9"90\72 -9.000000
i4 U2 LL 0.000000 -3.100000
n ue8UN02 EQ OiOOoOOO 0.000000
16 U3 BS 0.1"566 -21800000
17 U_ LL OiOOOOOO -2.900001
la UB LL 0.000000 -2_.000000
19 S3BIJU~O EQ aiooooOo 0.000000
20 3& 1 LL 0.000000 0.000000
21 35 2 Ll OiOOOOOO 0.000000
22 35 3 LL OiOOOOOO 0.000000
i!3 3S • LL 0;000000 0.000000
2_ 35 !5 LL 0.000000 0.000000
25 35 6 LL 0.000000 0.000000
2' :is , LL 0.000000 0.000000
27 3S a LL 0.000000 0.000000
C!I 3S , LL 0.000000 0.000000

tUTPUT

"LeWER LIMIT. ..uPPER LIMIT'
NeNE N8Nt

30.016516 30.016516
~4.9!94~2 4'-.9S9~.2
t7.'U4"0 2,.'-14490
",836899 9,.836199

0.005200 -0.005200
3h601028 31.601021
a._66020 -•• "'6020
_.137710 it. 131110
0.001000 0.001000

OUTPUT

• 'LewER LIMIT. "UPPER LIMIT'
0.000000 'NONt
0.000000 0.000000
0.000000 1.000000
0.000000 ,,000000
0.000000 0.000000
0.000000 1.000000
0.000000 1.000000
0.000000 1.000000
0.000000 0.000000
0.000000 1.000000
0.000000 1.000000
0.000000 1.000000
0.000000 1.000000
0.000000 1.000000
0.000000 1.000000
0.000000 1.000000
0.000000 1.000000
0.000000 1.000000

O. 2. 1.

O. 2~ 2.

.DUAL ACTIvITY "INPUT ceST .. .REDUCED CIIT-
1tOOOOOO 1.000000 0.000000
0.300000 0.000000 0,300000
0.280000 0.000000 o.a.oooo
0.003,34 0.000000 0,003134
0.000000 0.000000 0.000000

-0.061052 0.000060 -o.06io5t
-0.6·\1452 0.000000 -oa41452
-0.00'013 0.000000 -0,00;01)

0.000000 0.000000 0.000000
0.513422 0.000000 0.513422

o. 2. 3.

.REDUCED celT.
0.000000
0.000000
0.000000

-0.100000
0.000000
0.000000

-0.100000
-1.600000
0.000000
0.003,'6
0.002288
0.000137

-0.000600
-0.002019
-0.00-.96
-0.006622
-0.008797
-0.010,01

Appendix C 93

19 3510 LL 0.000000 0.000000 0.000000 1.000000 -0.015836
lO 3511 LL 0.000000 0.000000 0.000000 1.000000 -0.0117;.
31 3ti12 LL 0.000000 0.000«)00 0.000000 1.000000 -0.02171i
32 lSn LL 0.000000 O.Ooc)oOO 0.000000 1.000000 -0.oe'5il
33 351. LL 0.000000 0.000000 0.000000 1.000000 -0.027_29
3. 3S15 LL 0.000000 0.000000 0.000000 1.000000 -0.025002
35 3S16 LL 0.000000 0.000000 0.000000 1.000000 -0.026929
j6 i-BIUNe EQ 0.000000 0.000000 0.000000 0.000000 0.000000
3; -5 1 UL i.oooooo 0.006000 0.000000 1.000000 0.OH691
38 48 2 UL 1.000000 0.000000 0.000000 1.000000 0.013.32
19 itS 3 UL 1.000000 0.000000 0.000000 1.000000 0.012110
0\0 .s .- UL 1.000000 0.000000 0.000000 1.000000 0.010755
41 ~S !5 UL. 1.000000 0.000000 0.000000 1.000000 0.009511
"2 0\5 • UL 1.000000 0.000000 0.000000 1.000000 0.010098

-3
~5 7 IJL 1.000000 0.000000 0.000000 1.000000 0.008171

4_ -S I UL 1.000000 0.000000 0.000000 1.000000 0.006200
~S -S , UL i.oooooO 0.000000 0.000000 1.000000 0.00_291
U 4510 U1. 1.000000 0.000000 0.000000 1.000000 0.002667
~7 4511 as 0.0000~1 0.000000 0.000000 1.000000 0.000000
~i .S12 LL 0.000000 0.000000 0.000000 1.000000 -0.002627
'9 "S13 LL OeOOOOOO 0.000000 o.OOCOOO 1.000000 -0.005215
50 45,", LI. 0.000000 0.000000 0.000000 1.000000 -0.007766
51 "S15 LL. 0.000000 0.000000 0.000000 1.000000 -0.008395
!»2 .S16 I.L 0.000000 0.000000 0.000000 1.000000 -O.OloUt
53 S5BftUND EQ 0.000000 0.000000 0.000000 0.000000 0.000000 s_ 5& 1 UL 1.000000 0.000000 0.000000 1.000000 0.0073'"
b$ 5S Z BS 6.160604 0.000000 0.000000 1.000060 0.000000
56 55 3 LL 0.000000 0.000000 0.000000 1.000000 -0.01078ft

une6' NeN-LINEAR PReBLE" NO 6 O. 2. -.
S[CTleN 2 • OBlU"NS PRIMAL-DUAL eUTPUT

..ut18£A "L.ABEL· AT ... ACTlVITy INPUT ceST .. IIuwER LIHIT. • 'UPPER LIMIT' .REDUCED ceST.
57 55 • L.L 0.000000 0.000000 0.000000 1.000000 .0.020508
51 5$ 5 LL 0.000000 0.00000G 0.000000 1.000000 -0.02HI5 S, 5S 6 L.L 0.000000 0.000000 0.000000 1.000000 -0.037532
60 55 7 LL 0.000000 0.000000 0.000000 1.000000 -o.o"",t,
51 55 I LL 0.000000 0.000000 0.000000 1.000000 -0.051767
62 55 , '-I. 0.000000 0.000000 0.000000 1.000000 -0.05IU&
h 5510 LL 0.000000 0.000000 0.000000 leOOOOOO -0.06_0"~
54 SSU LL OiooooooO 0.000000 0.000000 1.000000 -0.07014.
6S 5512 LL 0;000000 0.000000 0.000000 1.000000 -0.07.910

" &S13 LL 0;000000 0.000000 0.000000 1.000000 -0.07,.37
67 551. LI. OiOOOOOO 0.000000 0.000000 1.000000 -0.01_508 'I 5S15 LL 0.000000 0.000000 0.000000 1.000000 -0.0'''~6 6; 5516 LL 0.000000 0.000000 0.000000 1.000000 -0.0931'6
'70 8S17 LL 0.000000 0.000000 0.000000 1.000000 -0.0,.,29
11 ssn LL 0.000000 0.000000 0.000000 1.000000 -0.1531·'
12 Silt Ll 0.000000 0.000000 0.000000 hoooooo -0.161312
13 5S20 LL 0.000000 0.000000 0.000000 1.000000 -0.169165 1_ 5&21 LI. O.oboOOo 0.000G00 0.000000 1.000000 -o.U,",
15 5522 LL OiOOooOo 0.000000 0.000000 1.000000 -0. 18 lit 22
'6 5&23 LL 0.000000 0.000000 0.000000 1.000000 -0.111320
1'1 552" LL 0.000000 0.000000 0.000000 1.000000 -0,19.,58
7. 5S!! LL OioOOOOOO 0.000000 0.000000 hOOOOoo -0.203116

" 5526 LL 0.000000 0.000000 0.000000 1.000000 -0.278209 ao 5527 LL. 0.000000 0.000000 0.000000 1.000000 -0.211.,h
81 bS28 LL 0.000000 0.000000 0.000000 1.000000 -0.30176-
12 5S2' LL 0.000000 0.000000 0.000000 1.000000 -0.30'239
83 5&30 LL 0;000060 0.000000 0.000000 1.000000 -0.319003 a- 5531 LL 0.000000 0.000000 0.000000 1.000000 -O.33l1t46 as 5532 l.L 0.000000 0.000000 0.000000 1.000000 -0._2_036
16 5$33 LL 0.000000 0.000000 0.000000 1.000000 -0.530995
87 553. LL 0.000000 0.000000 0.000000 hooOOOO -0.5935.5 ,. 5S35 LL 0.000000 0.000000 0.000000 1.000000 -0.657459 It SS36 Ll 0.000000 0.000000 0.000000 1.000000 -0.681t185 ;0 5&37 LL 0.000000 0.000000 0.000000 1.000000 -0.710,59
91 5Sl1 LL OiOOOOOO 0.000000 0.000000 1.000000 -0.737,11
91 513' lL OiooooOO 0.000000 0.000000 1.000000 -0.765172
93 55-0 LL 0.000000 0.000000 0.000000 1.000000 -0.79216-
h 5S"1 l.L 0-000000 0.000000 0.000000 1.000000 -1.2_2"37
95 55"2 LL 0.000000 0.000000 0.000000 1.000000 -1.30829_
H 5$-3 Ll 0.000000 0.000000 0.000000 1.060000 -1.317036
91 55 •• (.1. 0.000000 0.000000 0.000000 1.000000 -11391363
98 S6BeUNO ECI 0.000000 0.000000 0.000000 0.000000 O.OOOODO
99 6S 1 UL 1.000000 0.000000 0.000000 i .000000 -0.02_,11

100 65 2 UI. 1.000000 0.000000 0.000000 1.000000 -0.003702
101 65 I LL 6.000000 0.000000 0.000000 1.600000 0.019153
102 65 • LL 0.000000 0.000000 0.000000 1.000000 0.0.1505

12FEB69 NeN-LINEAR PRe&LE~ Ne 6 o. 2. 5.

SECT liN 2 - CBLUMN$ PRIMAL.-DUAL. eUTPUT

NUP1I£R "LABEL' AT ... ACTIVITY INPUT ceST .. "LeWER I.IMlTe "UPPER LIHn. -REDUCED celT.
103 65 5 LL 0.000000 0.000000 0.000000 i.COooOO 0.067268
104 61 6 LI. OiOOOOOO 0.000000 0.000000 ,.000000 0.0'511" lOS 65 7 lL 0.000000 0.000000 O.ooODOO 1.000000 0.SU636
106 6S I t.L- 0.000000 0.000000 0.000000 1.000000 0.156163
iOi 6S , "'~ OiOOOOOO 0.000000 0,000000 !.:ooooOQ IhU,,95
lOa 6S10 L.L 0.000000 0.000000 0.000000 1.000000 0.2231':' lOt &$11 I.L OiOOooOO 0.000000 0.000000 1.000000 0.257760
110 6512 LL 0.000000 0.000000 0.000000 1.000000 0.2'265!
111 6513 LL 0.000000 0.000000 0.000000 1.000000 0.327772

94 Appendix C

&12 6Sh LL 0.000000 0.000000 0.000000 1.000000 0.363007
til 6515 LL 0;000000 0.000000 0.000000 1.000000 0.398273 u. 6516 LL OiOoooOO 0.000000 0.000000 1t000000 0.433507
HIS 6S17 LL 0.000000 0.000000 0.000000 1.000000 0.U8666
116 6811 LL 0.000000 0.000000 0.000000 1.000000 0.503716
111 6Sit LL 0.000000 0.000000 0.000000 1.000000 0.5386j5
11' 6S20 LL 0.000000 0.000000 0.000000 1.000000 0.573,.08
it; 6521 LL O'oaoOOo 0.000000 0.000000 "000000 0.5844j8
120 6sU LL 0.000000 0.000000 0.000000 1.000000 0.644S04
121 6523 LL 0.000000 0.000000 0.000000 1.000000 0.64'683
la2 6S2. LL 0.000000 0.000000 0.000000 1.000000 0.685611
III 6525 LL 0.000000 0.000000 0.000000 1.000000 0."4108
lh 6S26 LL OiOOOOOO 0.000000 0.000000 1.000000 0.70171,
115 6527 LL 0.060000 0.000000 0.000000 11000000 0.759432
126 6S2. LL OiOOOOOO 0.000000 0.000000 ~.~~~ 0.766510
Il7 6529 LL 0.000000 0.000000 0.000000 1.000000 0.824650
12' 6S30 LL 0.000000 0.000000 0.000000 1.000000 0.831225
U9 6$31 LL 0.000000 0.000000 0.000000 1.000000 0.863 •• 3
130 6$32 (.L 0.000000 0.000000 0.000000 1.000000 0.842191
131 6533 LL 0.000000 0.000000 0.000000 1.000000 0.808760
132 S780UNO EQ 0.000000 0.000000 0.000000 0.000000 0.000000
133 75 1 UL 1.000000 0.000000 0.000000 1.000000 -0.109566
134 75 2 UL 1.000000 0.000000 0.000000 ,,000000 -0.92UOO
135 7S 3 UL 1.000000 0.000000 0.000000 1.000000 -0.838122
136

1& _
UL 11000000 0.000000 0.000000 1.000000 -0.741845

131 15 5 UL 1iOOOOOO 0.000000 0.000000 1.000000 -0.668881
131 15 6 UL 1,000000 0.000000 0.000000 1.000000 -0.636,10
139 75 7 UL i.oooooO 0.000000 0.000000 i.eooooo -0.5625;'0
HO 15 I UL 1.000000 0.000000 0.000000 1.000000 -0.526085
HI 75 9 UL 1.000000 0.060000 0.000000 1.600000 -0.457001
142 7S10 UL i.oOooOo 0.000000 0.000000 1.000000 -0.405691
H3 7S11 UL 1iOOOOOO 0.000000 0.000000 1.000000 -0.33548i1
1~. 7512 UL i;060000 0.000000 0.000000 1.000000 -0.271429
H5 7S13 UL 1.000000 0.000000 0.000000 1.000000 -0.212419
1-6 7SlIt _UL 1;000000 0.000000 0.000000 1.000000 -0.193497
147 1S1S UL 1.000000 0.000000 0.000000 1.000000 -0.1491H 1.' 7S16 UL ~~OOOOOO 0.000000 0.000000 1.000000 -0.1152i~

UF£B69 NON-LINEAR PROBLEM N6 6 O. 2' 6.

SECTION 2 - COLUMNS PRIMAL-OUAL aUTPUT

NUMB£R ~'LABEL' AT ... ACTIYITy· INPUT caST .. "LawER LIMIT. "UPPER LIMIT. .REDUCED caST.
lIt9 7S17 UL 1.000000 0.000000 0.000000 i.oooooo -0.083549
150 1511 UL 1.000000 0.000000 0.000000 1-000000 -0.0539H
151 7519 UL 1-000000 0.000000 0.000000 1.000000 -0.026120
Ui2 7520 BS Oi069109 0.000000 0.000000 1.000000 0.000000
153 7S21 LL 0;000000 0.000000 0.000000 1.000000 0.024593
154 7S22 LL 0.000000 0.000000 0.000000 ltOOOOOO 0.047775
155 7523 LL 6;000000 0.060000 0.000000 1.000000 0.069687
lS6 1S2. LL 0.000000 0.000000 0.000000 1.000000 0.090_19
157 7S25 LL 0.000000 0.,000000 0.000000 1.000000 0.110054
151 7526 LL 0.000000 0.000000 0.000000 1.000000 0.128".
1S' 7527 LL 01000000 0.000000 0.000000 1.000000 0.1It6_U
160 752. LL 0.000000 0.000000 0.000000 1.000000 0.163256
Hil 7529 LL 0.000000 0.000000 0.000000 1.000000 0.179305
lli2 1530 LL 0.000000 0.000000 0.000000 1.000000 0.194616
163 7S31 LL !hooooOo 0.000000 0.000000 1.000000 0.11564i
1511 SlaOUNO EQ 0.000000 0.000000 0.000000 0.000000 0.000000
165 8S 1 UL 1.000000 0.000000 0.000000 1.000000 -0.002399
1&6 as 2 UL 1.000000 0.000000 0.000000 1t000000 -0.003In
161 8S 3 UL 1,000000 0.000000 0.000000 1.000000 -0.002986
1lia

85 _
UL 1,000000 0.000000 0.000000 1.000000 -0.0027l'

1l)9 8s 5 UL 1.000000 0.000000 0.000000 1.000000 -0.002096
170 85 6 UL i~oooooo 0.600000 0.000000 1tOOOOOO -0.001619
171 8& 7 UL 1.000000 0.000000 0.000000 1.000000 -0.001114
1'2 115 I UL 1.000000 0.000000 0.000000 1toOoOoO -0.000758
173 8S 9 UL 1.000000 0.000000 0.000000 1.000000 -0.000367
11. 8510 BS 6.513633 Q.OOooOO 0.000000 1.000000 0.000000
1'5 8511 LL 0.000000 0.000000 0.000000 1.000000 0.000346
176 8S12 LL 0-000000 0.000000 0.000000 1.000000 0.000611
177 8513 LL 6;060000 0.600000 0.000000 1.006600 0.000979
171 8Sh LL 0.000000 0.000000 0.000000 1.000000· 0.001270
1'9 8515 LI,.. 0.000000 0.000000 0.000000 1.000000 0.OO15~6
180 8s16 LL OiOOOOOO 0.000000 0.000000 1.000000 0.001108
liS1 8S17 LL 0.060000 0.000000 0.000000 1.000000 0.002057
liiz aS18 LL 0.000000 0.000000 0.000000 1.000000 0.002294
183 8S19 LL 0.000000 0.000000 0.000000 1.000000 0.002519
18- 8520 LL 0,000000 0.000000 0.000000 1.000000 0.002735
lti5 8521 LL O~OOOOOO 0.006000 0.000000 1.000000 0.003021
186 S9BOUNO EQ 0.000000 0.000000 0.000000 0.000000 0.000000
187 9S 1 UL 1.000000 0.000000 0.000000 1.000000 0.000000
181 9S 2 UL 1.000000 0.000000 0.000000 1.000000 0.000000
189 95 3 UL i,oooooo 0.000060 0.000000 1.060000 0.000000
190 95 4 UL 1.000000 0.000000 0.000000 1.000000 0.000000
191 9s 5 UL 1.000000 0.000000 0.000000 1.000000 0.000000
192 95 6 UL 1.000000 0.000000 0.000000 1.000000 0.000000
193 3S 7 as Qi6028i8 0.000000 0.000000 1.000000 0.000000
I~~ 9s 8 LL 0.000000 0.000000 0.000000 1.000000 0.000000

Appendix C 95

l1FEB6' NDh-LJ~EAR PReeLEM h6 6

SECTION 2 • ceLUMNS PRIMAL-DUAL eUTpuT

NUMBER !.LABEl... AT ... ACTlVITy J NPUT CeST .. uUWER LIMIT.
1'5 9s , LL 0.000000 0.000000 0.000000
196 9S10 LI.. 0.000000 0.000000 0.000000
I" 9S11 LL 0.000000 0.000000 0.000000
l;a 9512 LL 0-000000 0.000000 0.000000
199 9513 LL 0.000000 0.000000 0.000000
200 9SH Ll.. 0.000000 0.000000 0.000000
201 9s1S LL 0.000000 0.000000 0.000000
102 ;816 LL 0.000000 0.000000 0.000000
203 9517 I..L 0.000000 0.000000 0.000000
to. !S11 1..1.. 0.000000 0.000000 0.000000
205 9S19 LL 0.000000 0.000000 0.000000
106 S10lfJUNO EQ 0.000000 0.000000 0.000000
207 15 1 U\. i-ouoooo 0.000000 0.000000
20a 15 2 UL 1.000000 0.000000 0.000000
20' is 3 UL i.ooooQo 0.000000 0.000000
2!0 IS • UL liOOOOOO 0.000000 0.000000
211 IS !5 as 6;3711.61 0.000000 0.000000
212 1s • L'- 0.000000 0.000000 0.000000
213 ls 7 LL 0.000000 0.000000 0.000000
2h IS a LL 0.000000 0.000000 0.000000
215 15 9 LL 0.000000 0.000000 0.000000
216 lS10 LL 0.000000 0.000000 0.000000
211 1511 LL 0.000000 0.000000 0.000000
Iii 1512 LL 0.000000 0.0006(;0 0.000000
2U lS13 LL 0.000000 0.000000 0.000000
220 15111 LL 0.000000 0.000000 0.000000
2Z1 ls1S LL o~0600oo 0.000000 0.000000
222 S[PEND EQ 0.000000 0.000000 0.000000

12F[869 NSN-LINEAR PRadLE" ~e 6

INTERNAL STATEMENT NVf'l8ER 25 TIME • 11 :39
.£)(IT*

TeTAL J6e TIME
PROCEsseR EXECUT16h TIME
PRaClsseR 1/6 TIME
PRactS'eR eVERHEAD TI/1£
USER EXECUTleN TIHE
USER Jle T,"E
USER eVERHEAD TIME

," SF' CAROS READ
• ef CARDS PUNCH~O
, OF PReCESSeR PAGES eUT
, SF USER PAGES e~T -
, OF DIAQNeSTIC PAGES SUT
• OF SCRATCH TAPES USED
, OF SAVE TA~ES usED
; or DISK READS AND WRITES
, OF DISC READS A~D WRITES
TEMPORARy DISC·SPACE USED
PERHANlNT DISC "ACE USED
ACCUH' PERM, OiSC SPACE USEe

96 Appendi x C

2.03
.00
.07
.08
.S6
.60
.'2 ,911

o
2

18
o
o
o

11136
21111

311
-0
C

o. 2. 7.

• .UPPER l..1111T • .REOUCEO ceST.
1.000000 0.000000
1.000000 0.000000
1.000000 0.000000
1.000000 0.000000
1.000000 0.000000
1.000000 0.000000

.000000 0.000000
1.000000 0.000000
1-000000 0.000000
1.000000 0.000000
1.000000 0.000000
0.000000 0.000000
£.000000 0.0191173
1.000000 0.097063
1.000000 0.059661
1.000000 0.021104
1.000000 0.000000
1.000000 -0.026954
1.000000 ·0.0!5223~
1.000000 -0.075,;1
1.000000 -0.098359
1.000000 -0.119' ••
1.000000 -0.139374
l.oOOOOC -C.UI1230
1.000000 -0.176089
1.000000 -0.1930.3
1.000000 -0.1116168
o.CJOOOOO 0.000000

o. 3. ie

