5]

ENE
u\/_i |
1\ /

SCIENTIFIC DRTA SYSTEMS

—
P)_‘L
( ]—(r

A

{ ]—f ] )
D (
ElS|E|
« 1N

A SIEUA SIENE
\/

=
w
Tl
w
Y
w
O]
<
=
p=
<
o
&)
®)
oc
Q.
-
<
Q
<
=
T}
=
<
=
-
<
=
o
TI
&
z
-
Tl
~
~
n
c
=
(L]
mn
un|

( ]ﬂ(r jr\[ e J'"fr ] r —
UL J_\/__ UL ] JU L | ,
4 JI.\ |1 —] f ]—f( ] / ;
\/__ ' JuU\ U | J U Ju- | U

1 r ils
\/\/ | (= AL (S W\ A

1
5
Ju\ /U
1M —1
(]
s ]"(, ]—V"
SIS
L\ J/ U =
N3\

S
S|E




Price: $3.50

FUNCTIONAL MATHEMATICAL
PROGRAMMING SYSTEM

REFERENCE MANUAL

for

SDS SIGMA 5/7 COMPUTERS

PRELIMINARY EDITION
90 16 09A

April 1969

SDS

SCIENTIFIC DATA SYSTEMS/701 South Aviation Boulevard/El Segundo, California 90245

© 1969, Scientific Data Systems, Inc. Printed in U.S.A.



RELATED PUBLICATIONS

Title Publication No.,
SDS Sigma 5 Computer Reference Manual 90 09 59
SDS Sigma 7 Computer Reference Manual 90 09 50
SDS Sigma 5/7 Batch Processing Monitor (BPM) Reference Manual 90 09 54
SDS Sigma 5/7 Batch Processing Monitor (BPM) Operations Manual 90 11 98

The specifications of the software system described in this publication are subject to change without notice. The availability or performance of some features may
depend on a specific configuration of equipment such as additional tape units or larger memory. Customers should consult their SDS sales representative for details.



INTRODUCTION

Procedures

CONTENTS

Control Language

Communication Region

Files

Input Data

Output

Selection Lists

WNNNNDN -

FMPS FUNDAMENTALS

Constants

NS

Integer

Valid Integer Constants

Invalid Integer Constants

Floating=Point

Valid Floating=-Point Constants
Invalid Floating=-Point Constants
Character

Valid Character Constants

Invalid Character Constants

Variables

Integer

Valid Integer Variable Names
Invalid Integer Variable Names
Floating-Point

Valid Floating=Point Variable Names
Invalid Floating-Point Variable Names
Alphanumeric

Valid Alphanumeric Variable Names
Invalid Alphanumeric Variable Names
Interrupt

Valid K~Type Variable Names
Invalid K-Type Variable Names
Files

Internal Files

Storage Requirements for Internal Files
Communication Files

VN0V 0000 WONNNNNNOGOLUOG NSNS DMMMNDMN

o

Card Format Files

o

FORTRAN Format Files

—_—
C—

Data Storage on Records

p—
a—

FMPS CONTROL LANGUAGE STATEMENTS

Introduction

14
14

Statement Types

14

Card Format

14

Control Language Statements

14

CALL

14

Valid Procedure CALL Statements
Invalid Procedure CALL Statements

Invalid Continuation Cards for Procedure
CALL Statement

14
14

15

Arithmetic

5

Valid Arithmetic Statements
Invalid Arithmetic Statements

15
15

ASSIGN

15

Valid ASSIGN Statements

Invalid ASSIGN Statements

15
15

GO TO

15
16
16
16
16

16
16

Valid GO TO Statements
Invalid GO TO Statements
IF
Valid IF Statements
Invalid IF Statements
RETURN
EXIT
WRITE
TITLE
STOP
END
Sample FMPS Program
BASIC FMPS PROCEDURES
Operating Procedures Repertoire
ENTER
DEVICE

Data Control Blocks

Device Argument

ATTACH

LOADLIST

DATA CARD FORMATS AND DECK
ORGANIZATION

Standard Card and Deck Formats for INPUT
Name Card

Indicator Cards

Data Cards

ENDATA Card

Data Deck Organization

ROWS Data Cards

SPRICES Data Cards

COLUMNS Data Cards

RHS Cards

RANGES Data Cards

BOUNDS Data Cards

Nonstandard Card Formats for INPUT
LP/90/94 Share Format

LP/90/94 Chapters

RHS Names

Basis Data Chapter

Order of Input

Card Format

UNIVAC 1108 Share Format

UNIVAC 1108 Chapters

RHS Names

16
17
17
17
17
18

19
19
19
19
19
20
20

22

22
22
22
22
22
22
23
23
23
24
24
24
25
25
25
25
25
25
25
26
26
26

Order of Input

Card Format

CDM4 Share Format

CDM4 Chapters

RHS Names

Order of Input

Card Format

27
27
27
27
27
27
28

.es
i



NAME and ENDATA Cards

Output

Slack Indicator on ROWS Cards
REVISE Data Cards

ROWS Cards for REVISE

MODIFY

DELETE

BEFORE

AFTER

SPRICES Cards for REVISE

MODIFY

COLUMNS Cards for REVISE

MODIFY

DELETE

BEFORE

AFTER

RHS Cards for REVISE

RANGES Cards for REVISE

MODIFY

DELETE

BOUNDS Cards for REVISE

MODIFY

DELETE

BEFORE

AFTER

BASISIN/BASISOUT Data Cards

LOADLIST Data Cards

Indicator Cards

Data Cards

NAMES Data Cards

MASKS Data Cards

6. LINEAR PROGRAMMING OPERATING MODE

Input Phase

INPUT

REVISE

Optimization Phase

OPTIMIZE

Degeneracy.

Pivot Rejections

INVERT

CRASH

Output Phase

OQUTPUT

SOLUTION

ERRORS

CONDITION

GET

Preservation/Restoration Phase

BASISOUT

SAVE

BASISIN

RESTORE

7. SEPARABLE PROGRAMMING OPERATING
MODE

General Description of SEP Mode
SEP Algorithm

Piece~Wise Linear Approximation
Applicability of the SEP Algorithm

28
28
28
28
29
29
29
29
29
29
29
29
29
29
29
29
30
30
30
30
30

30
30
30
30
31
31
31

31

32

32

33
33
34
35

36
37
37
40
42
42

42
42
43
43

44
45
45
46

Examples Using Separable Programming
Nonlinear Object Function

Nonlinear Constraint

Input Phase

INPUT

REVISE

SEP Optimization Phase

OPTIMIZE

INVERT

SETBOUND

Output Phase

OUTPUT

SOLUTION

ERRORS

CONDITION

SEP Preservation/Restoration Phase
BASISOUT

SAVE

BASISIN

RESTORE

OPERATING PROCEDURES

BPM Control Commands Used in FMPS Runs
ASSIGN and CALL Device Interaction
Efficient Use of FMPS

Organizing the Centrol Program
Multiple Attachments of Restart Tape

APPENDIXES
PARAMETRIC PROGRAMMING
RANGE
PARAOBJ
PARARHS

FMPS ERROR MESSAGES

Control Language Compiler Diagnostics
Input/Qutput Error Types

FMPS Sample Runs

TABLES

FMPS Procedures

Types of Variables

Integer (I-TYPE) CR Variables

Floating=Point (F-Type) CR Variables
Alphanumeric (A-Type) CR Variables

Interrupt (K-Type) CR Varidbles

Internai and Communication Fiies

Procedures Using Communication Files

59
59
61
62
64

64
64

65



10.

11.

12.

13.

14.

18.

19.

20.

21.

22.

FMPS Operating Procedures

Input Procedures

Optimization Procedures

Output Procedures

Parameters for OUTPUT

ROWS Chapter Column Description

. COLUMNS Chapter Column Description

. Preservation/Restoration Procedures

SEP Input Procedures

SEP Optimization Procedures

SEP Output Procedures

SEP Preservation/Restoration Phase
Consecutive-Sequential File Assignments

Direct-Access File Assignments

19

32

33

37

38

40

41

42

47

49

52

54

56

23.
24,
25.

26.

Parametric Programming Procedures

Output for Basic Variables

Output for Nonbasic Variables

Input/Qutput Error Types

ILLUSTRATIONS

59

60

60

64

FORTRAN Communication File Record Structure 11

Format of a NAME Record

Record Formats Produced by SOLUTION
Record Formats Produced for INPUT
Sample FMPS Control Language Program
Data Deck Organization for INPUT

Piece-Wise Linear Approximation to a
Separable Function

General FMPS Deck Structure

11

12

13

18

23

44

57



1. INTRODUCTION

This manual describes the Functional Mathematical
Programming System (FMPS) for SDS Sigma 5/7 computers.
FMPS is a mathematical programming system composed of
functions for solving linear programming (LP) problems.
The manual is designed for the user who is familiar with
mathematical programming theory and application. Chap-
ter 1 provides general information about FMPS features.
These features include:

e Subroutines, called "procedures”, for solving linear
programming problems.

e A user-oriented control language for sequencing oper-
ations, controlling exception conditions, and adjust=
ing tolerances.

e The flexible design of communication files and format
options, and the ability, at the level of each major
function, to direct the output stream to magnetic tape
(in addition to the printer), permitting FMPS to be
used as a free-~standing package, or as part of a user-
designed optimization package.

Chapters 2and 4 discuss basic concepts and basic procedures,
respectively, of FMPS that are applicable to all operating
modes. FMPS control language statements are described in
detail in Chapter 3. Chapter 5 presents data formats and
data deck organization. Chapter 6 outlines procedures used
in the linear programming operating mode, and Chapter 7
describes procedures used in the separable programming
operating mode. When these procedures are identical in
both modes, they are repeated in Chapter 7 for user con-
venience. Appendix A describes parametric programming
and ranging procedures (an optional extension to the basic
system); Appendix B is a list of error messages; and Appen=
dix C presents an FMPS LP mode sample run.

PROCEDURES

FMPS procedures and their functions are given in Table 1
below. (Basic FMPS operating procedures are given in

Chapter 4.)

Table 1. FMPS Procedures

Procedure Purpose

INPUT Reads matrix data from cards or tape in
standard FMPS format or in various
SHARE formats such as LP 90/94,
UNIVAC 1108 LP, or CDC CDM4.
QUTPUT Displays the input or current matrix in
various formats.

REVISE Reads correction data for modifying the
matrix. :

Table 1. FMPS Procedures (cont. )

Procedure

Purpose

CRASH

OPTIMIZE,
INVERT
SOLUTION

ERRORS

CONDITION

GET

BASISOUT

SAVE

BASISIN

RESTORE

PARARHS,
PARAOBJ

RANGE

LOADLIST

Creates an initial basis siructure for
the current matrix and performs prelim-
inary validity checks on the matrix.

Performs the actual linear programming
solution.

Displays the solution values in various
formats.

Displays the computation errors in-
curred during the solution process for
the primal and dual problems.

Prints out the communications region
contents.

Retrieves information about a row or
column and alters the strategy in the
control language.

Punches or files (FILE parameter) the
current basis structure and bounds
status,

Saves the contents of the communica-
tions region, the various internal work
arecs, and all internal files (MATRIX,
INVERSE, etc.) on the tape file
RESTART.

Inputs a new basis or modifies the ex-
isting basis.

Restores (from file RESTART) the data
areas and internal files savedby SAVE.

Performs post-optimal parametric anal-
ysis of the solution with respect to the
right-hand-side and objective function.
(Refer to Appendix A.)

Performs post-optimal range analysis.
(Refer to Appendix A.)

Loads a list of row labels and/or col-
umn labels to be used as selection lists
or masks during the OUTPUT, SOLU-

TION, and/or RANGE procedures when
selective output is desired.

Introduction

1



CONTROL LANGUAGE

The sequence of operations executed in an FMPS run is
controlled through statements, written in a user-oriented
control language, that

o Initialize and, if desired, modify tolerances during
execution.

e Assign inpuf/oui'pui‘v devices at the FMPS level.

e Preprogram action to be taken in case of exception
or error conditions. :

In the following chapters of the monual, certain conven-
tions have been adopted for defining FMPS commands.
Capital letters indicate command words that are required

in the literal form shown. Lower case letters are figurative
representations of parameters. Command parameters en-
closed by braces ({}) indicate a required choice. Brack-
eted ([ 1) parameters are optional. The format of the FMPS

control language closely resembles the FORTRAN language.

A procedure is activated by using the CALL statement as
shown below,

CALL procedure [(argument)]

where CALL is followed by the name of the procedure
and, if required, a list of arguments enclosed by paren-
theses to be used by the procedure. For example, the
statement

CALL OUTPUT (BYROWS)

causes the input matrix to be listed by rows.

Initialization and modification of tolerances are performed
by means of assignment statements. Reserved names have
been assigned to each tolerance available to the user. For
example, the statement

FDJZT =1.0D-6

assigns tothe DJ zerotolerance the value 0.000001. Other
examples of tolerances available to the user are FMPIVT
(minimum pivot clearance during optimization) and ILINES
(number of lines to be printed per page).

Provision is made for user working~storage variables. The
language allows execution of simple arithmetic such as

( IF (FWD3.LT.1.0D-8) GO TO 325

FWD3=FWD3/10.

where
FWD3 is a user working-storage variable.
325 is the label of a statement in the control pro-

gram as in a FORTRAN program.

Reserved variable names have been assigned for the han-
dling of exception interrupts. Forexample, the statement

ASSIGN 460 TO KUBS

can be used to cause statement 460 to be executed if un-
boundedness occurs during optimization or parametric pro-
cedures. Assignments are dynamic and can be modified
under program control during the course of execution.

COMMUNICATION REGION

An area of computer memory called the communications
region (CR) contains all variables with reserved names
(such as FDJZT, ILINES, KUBS, etc.). FMPS initializes
these variables to standard values; therefore, it is not
necessary to initialize them in the control program if the
standard values are appropriate.

FILES

Data is carried in disc or tape files. Their purpose is to
hold FMPS data in a format allowing maximum processing
speed. The standard FMPS files are MATRIX, INVERSE,
UTIL1, and UTIL2. These files carry the matrix, its in-
verse, and various intermediate information (UTIL1 and
UTIL2). In addition, the RESTART file may be used for
intermediaie dumping of the run status. The DEVICE and
ATTACH procedures must be used to define Data Control
Blocks (DCBs) through which files are to be used and to
assign these files to these devices. (See Chapter 4 for a
detailed description of these procedures.) The files are
internal fo FMPS and are not intended to be used as input
or output files by user-designed programs.

INPUT DATA

Data can be input to FMPS from cards or fapes, in either
card image format, or FORTRAN unformatted WRITE format.
{(FORTRAN unformatted WRITE format provides for better
data packing when using user-written matrix generators. )
Input data for FMPS is accepted by the following proce-
dures: INPUT, REVISE, LOADLIST, and BASISIN.

OUTPUT

Most FMPS procedures create prinfer output. The CUTPUT,
SOLUTION, and BASISOUT procedures write output on
magnetic tape in addition to the printer if the user so
chooses. The magnetic tape output for OUTPUT and

2 Control Language/Communication Region/Files/Input Data/Output



SOLUTION is in FORTRAN unformatted WRITE format,
which provides a compact data format for interface with
user-designed report writers. The BASISOUT procedure
produces either punched cards or card images on magnetic
tape. Both are suitable for subsequent reloading by the
BASISIN procedure. As with input files, a symbolic unit
for each output file must be declared by means of the
ATTACH procedure.

Users need not be concerned with the format of the FMPS
internal files since INPUT and OUTPUT transfer data to or
retrieve data from them in a user-oriented format. How-
ever, note that the user must assign DCBs for the internal
files at the beginning of the run.

To provide a convenient method for abstracting the output
results (whether they are written on tape or printed), the

OUTPUT, SOLUTION, and RANGE procedures include

many optional parameters. For example, OQUTPUT provides

for listing the matrix by rows, by columns, in matrix tab-
leau format, or in coded format. (In coded format, coef-
ficients are symbolized by letters showing the sign and
magnitude of the coefficients.) Similarly, the RANGE
procedure can be made selective with respect to the type
of variable prinfed, that is, prinfing only the basic, only
the nonbasic, or both. Furthermore, RANGE can select
individual items of information for printing.

All three procedures can be made selective with respect to
the individual rows and/or columns to be printed, that is,
1. Print only specified rows.

Print all rows except specified rows.

2
3. Print all rows which match specified masks.

4

.

Print all rows except those whichmatch specified masks.

Similar options are available independently for columns.

SELECTION LISTS

Selection lists consist of names (rows and/or columns) and/
or masks {rows and/or column names with an asterisk match-
ing any character in the row or column name in the corre-
sponding position in FMPS infernal files). Since the same
selection list usually applies over an entire run, a single
procedure, LOADLIST, is used to load the rows-and-
columns selection lists,

Items selected are controlled by optional arguments. For
example

1 RCHAPTER,2,5,CCHAPTER,2,4,8,FILE,
'SOLFILE")

CALL SOLUTION (ROWS,LISTR,COLS,
EXCEPT,LISTC,

causes the solution to be written on the user file SOLFILE
as well as on the printer, outputting only the rows included
in row selection list LISTR, the columns not included in
column selection list LISTC, the row name and its slack
activity for rows, and the column name and its activity for
columns. One selection list may be used to control output
items during several procedures such as OUTPUT, SOLU~
TION, and RANGE. Such procedures have an optional
parameter indicating whether the information to be output
is to be controlled by the selection list. The list need be
loaded only once. In some procedures such as RANGE,
reduction of output and calculations will result in sizable
savings in execution time.

Selection Lists 3



2. FMPS FUNDAMENTALS

This chapter describes in detail some basic elements of FMPS
such as variables and constants available in the control lan-
guage, internal files, selection lists, and the structure of
communication files.

CONSTANTS

The FMPS control language uses three types of constants in
Arithmetic statements and as parameters in procedural CALL
statements, They are: integer, floating-point, and
character,

INTEGER

A number written without a decimal point is called an inte-
ger constant, An integer constant is composed of one to
seven decimal digits, It may be preceded by a plus sign,

a minus sign, or a blank, If unsigned, it is assumed to be
positive. It may not contain any embedded blanks. Sample
valid and invalid integer constants are shown in the tables
below,

VALID INTEGER CONSTANTS

0
100000
-54

+1

INVALID INTEGER CONSTANTS

-7 35 Contains an embedded blank
100, 000 Contains a comma

FLOATING-POINT

A number with a decimal point, optionally followed by a
decimal exponent (written as the letter D followed by a
signed or unsigned one- or two-digit integer constant) is
called a floating=-point constant, The magnitude of a real
constant must be compatible with that allowed by FORTRAN
for the machine being used. However, only eight signifi-
cant digits are allowed. A floating=point constant may be
preceded by a plus sign, a minus sign, or ablank. Embedded
blanks are not allowed. The first table shown below gives
correct floating=point constants and their real magnitudes.
The second table shows invalid representations of floating~
point constants,

VALID FLOATING-POINT CONSTANTS

-3.49 -3.49
1,47D3 1470.
-.23D-4 -, 000023
0.0 zero
.2D+2 20,

4 FMPS Fundamentals

INVALID FLOATING-POINT CONSTANTS

. 123456789D1 Will be truncated to eight

significant digits

1,217.2 Contains a comma
1.7D 2 Contains a blank between
D and 2
1.3E4 E not valid - must use D
CHARACTER

A string of from one to eight characters, enclosed by single
quotation marks, is called a character constant. (Thesingle
quotation mark is represented by a 5-8 punch on the card.)
Character constants, sometimes called literals, may be com-
posed of alphabetic, numeric, special, or blank characters.
The quotation marks are not part of the character constant,
but are used to delimit it. The quotation mark itself is the
only special character not allowed within the body of the
character constant, Correct character constants are shown
directly below, incorrect examples in the second table,

VALID CHARACTER CONSTANTS

'ROWS!
'THE END'
I2+3|
'DOG/CAT

INVALID CHARACTER CONSTANTS

'"CPERATION! Cnly eight characters are
allowed

'ABD Second quotation mark missing

'A'BC! Embedded quotation mark not
allowed

VARIABLES

Variables (storage references) are symbolic names of either
locations within the control program (user working-storage
variables), or locations in the FMPS communication region

(CR variables).

All storage within FMPS is identified by type. The four
types of variables, each identified by its leading char-
acter, are shown in Table 2 below.

Table 2. Types of Variables

Code | Type
I Integer
F Floating=Point
A Alphanumeric
K Interrupt




User-created variables are distinguished from CR variables
by their second character, which must be a W, Also, user-
created variable names may contain a maximum of four char-
acters, while CR variable names may contain a maximum of
eight characters. User-created variable names containing
more than four characters will be truncated to four. The
user may create a total of 50 integer and K-type variables
and a total of 50 floating~point and alphanumeric variables,
Each distinct type is discussed below,

INTEGER

Each integer (I-type) variable is a single precision word
containing a single precision integer value, Integer vari-
ables may assume any of the values of an integer constant.
An I-fype variable may be used in an Arithmetic statement,
an IF statement, a WRITE statement, or as a parameter in a
procedure CALL statement, Table 3 contains a list of all
CR integer variables and an explanation of each.

Some sample integer variables are shown in the following
tables,

VALID INTEGER VARIABLE NAMES

IFREQI CR variable for inversion iteration frequency
IWBG User working=storage variable
w3 User working-storage variable

INVALID INTEGER VARIABLE NAMES

U5 Not a valid CR variable name nor a valid
user working-storage name since second
character is not W

KROW Integer names must begin with 1

FLOATING-POINT

Each floating-point (F~type) variable is a double precision
word and contains a double precision floating-point value,
A floating=point variable may assume any of the values of
a floating=point constant, It may be used in an Arithmetic
statement, an IF statement, a WRITE statement, or as a
parameter in a procedure CALL statement. Table 4 con-
tains a list of all floating=point CR variables and an expla-
nation of each,

Table 3. Integer (I-type) CR Variables

CR Initialized

Variables Value Explanation

IDNFSOL 0 Number of feasible solutions found for the integer problem,

IDULSTOP 0 Controls the brake on DUAL in MIP operating mode, If IDULSTOP is nonzero,
DUAL will run to a feasible solution to the (possibly reduced) problem every

‘ IDULSTOP major iterations,

IESWT 0 The console jump switch to interrogate, I[ESWT must be 0-8, If zero, no
switch is tested, If IESWT is 1-8, and the jump switch is on, KESWT inter~
rupt will occur,

IFREQA 0 Iteration frequency interrupt for OPTIMIZE, PARAOBJ, and PARARHS, If
IFREQA is 0, no interrupt will occur, Otherwise, the KFREGA interrupt will
occur every IFREQA iterations,

IFREQI 0 Iteration frequency interrupt for inversion. In the iterating procedures OPTIMIZE,
PARAOBJ, and PARARHS, the KINV interrupt will occur every IFREQI iterations
(IFREGI > 0).

IIWGHT 0 Infeasibility weighting switch, When IIWGHT is 1, the reciprocal of the amount
of infeasibility is used as a weighting factor, When IIWGHT is =1, the amount
of each infeasibility is used as a weighting factor, When IIWGHT is 0, all in-
feasibilities are given equal weight,

ILOGC 0 Iteration logging frequency on console typewriter,

ILOGP 0 Iteration logging frequency on standard printing device,

ILOGSS 0 On/Off switch for printing column selection messages during pricing of matrix,

ILINES 50 Maximum number of lines to be printed on a page.

INCAND 0 Number of profitable candidates from which one is selected during pricing of the
matrix, For example, if INCAND is 5, then from each group of 5 profitable col-
umns, the most profitable is selected. If INCAND s 0, the system will attempt to
choose the optimum set,

ININF 0 Current number of infeasible variables in the basis.

Variables 5



Table 3. Integer (I-type} CR Variables (cont.)

CR Initialized

Variables Value Explanation

INVTIME 0 Switch controlling the KINV interrupt timing routine in the PRIMAL procedure.

If INVTIME is O, the timing routine is active and causes KINV interrupts at times
such that the total optimization time tends to be minimum, If INVTIME is -1,
the timing routine is not active,

IPARAM 0 Parametric programming mode indicator, If IPARAM is -1, PARAOBIJ is in effect,
if IPARAM is 1, PARARHS is in effect, and if IPARAM is 2, PARARIM is in effect,

IPASS 2000 Number of assignments allowed during solution of the integer subproblem in MIP
mode before the KASS interrupt occurs,

IPFES 2000 Number of feasible solutions allowed to the integer subproblem in the MIP mode
before the KPFES interrupt occurs,

IPSOLTN 0 After solution of an integer subproblem in MIP operating mode, IPSOLTN will be
nonzerc if there was a change in the integer solution and will be zero if the inte-
ger solution has remained the same.

ITCNT 0 Current iteration count,

ITIME 0 The length of time, in minutes, before the KTIME interrupt will occur. The KTIME
interrupt does not occur if KTIME is set to zero. Whenever the KTIME interrupt
occurs, KTIME is set to zero, Time for KTIME is measured from the time of the
last initialization of ITIME,

Table 4. Floating-Point (F-type) CR Variables

CR Initialized

Variables Value Explanation

FABSZT 1.0D-12 Absolute zero tolerance. Any computed number is replaced by zero if its absolute
value is less than FABSZT,

FCMPDJ 0.5D0 Factor used in determining effective DJ when infeasible, that is,

DJE=FCMPDJ*DJ+(1.0-FCMPDJ)*DJI
where DJE is Effective DJ, DJ is True DJ of column, and DJI is DJ based on in-
feasibility removal qualities of column,

FDJZT 1.0D-07 DJ zero tolerance, If the absolute value of the reduced cost (DJ) is less than
FDJZT, it is considered zero,

FEPSILON 0.0 The value used to replace zero right-hand-side elements of inequalities on degen- |
erate problems, If the constraint is of the less—than type, a zero RHS element is
replaced with FEPSILON, If the constraint is of the greater-than type, a zero
RHS element is replaced with -FEPSILON,

FINFZT 1.0D=-07 Infeasibility zero tolerance, If the absolute value of the amount of infeasibility
is less FINFZT, the variable is considered feasible,

FMINVT 1.0D-09 Minimum inversion pivot tolerance, During INVERT, in the nontriangularized
portion, an element is not considered as potentially pivotal unless its absolute
value is greater than FMINVT,

FMPIVT 1.0D-08 Minimum pivot tolerance, During any optimization procedure (here, INVERT is
not considered an optimization procedure), an element is not considered as poten-
tially pivotal unless its absolute value is greater than FMPIVT.

FOBJVAL 0.0 Current objective function vaiuve,

FOBJWT -1.0 Objective function weight: =1, 0 for maximization, 1,0 for minimization,

6

Variables




Table 4. Floating=Point (F-type) CR Variables (cont.)

CR Initialized

Variables Value Explanation

FRDIFT 4096.0 Relative difference tolerance, This tolerance represents a power of 2, that Is,
2.0%*12 is 4096, If the difference of two numbers is in the low-order twelve
bits, the numbers are considered identical. Any user-specified value must be
a power of 2, such as 8192,0 or 16384, 0,

FRELZT 0.0 Relative zero tolerance. If the absolute value of the summation of a series of
numbers divided by the absolute value of the largest sum or number is less than
FRELZT, the summation is considered to be zero,

FSINF 0.0 Current sum of infeasibility. Each infeasibility is summed in absolute terms,

FTHETAC 0.0 Initial value of THETA for PARAOBJ.

FTHETACM 0.0 Maximum value of THETA for PARAOBJ.

FTHETACP 0.0 The incremental value for THETA during PARAOBJ for which the KSOLTN infer-
rupt will occur,

FTHETAR 0.0 Initial value of THETA for PARARHS,

FTHETARM 0.0 Maximum value of THETA for PARARHS,

FTHETARP 0.0 The incremental value for THETA during PARARHS for which the KSOLTN inter-
rupt will occur.

Correct and incorrect floating-point variable names are
shown in the tables below,

VALID FLOATING-POINT VARIABLE NAMES

FMPIVT CR variable for minimum pivot tolerance
for optimization

FWO1 User working-storage variable

FW5D User working-storage variable

INVALID FLOATING-POINT VARIABLE NAMES

FDOG Not a valid CR variable name nor a valid
user working-storage name since second
character is not W

AW07 Floating-point names must begin with F

ALPHANUMERIC

Each alphanumeric (A-type) variable is a double precision
word and contains up to eight characters. An alphanumeric
variable may assume any of the values of a character con-
stant. It may be used in a simple Arithmetic statement, in
an IF statement, in a WRITE statement, or as a parameter
in a procedure CALL statement. Table 5 contains a list of
all alphanumeric CR variables and an explanation of each,
followed by tables showing valid and invalid alphanumeric
variables,

VALID ALPHANUMERIC VARIABLE NAMES

ARHS CR variable for name of current right-
hand-side

AWLD User working-storage variable
AWO07 User working-storage variable

INVALID ALPHANUMERIC VARIABLE NAMES

AMESS  Neither a valid CR variable name nor a
valid user working-storage name since
second character is not a W

NAME  Alphanumeric names must begin with A
INTERRUPT

During the execution of a mathematical programming sys-
tem, many conditions arise which require some form of cor-
rective action, Although much thought is generally given
to the corrective action to be taken, no particular action

is suitable under all circumstances. The interrupt processing
concept in FMPS has been developed to facilitate initiation
of appropriate corrective action when it is required,

For each condition requiring corrective action or for any
point where greater user flexibility is desired, a CR inter-
rupt variable is reserved. The function of each variable

is to serve as a pointer to a control language statement or
group of statements that will perform the corrective active
or procedural steps desired by the user and allow for the
resumption or exiting of the procedure causing the interrupt.

FMPS will initialize all interrupt variables to perform stan-
dard recovery techniques. The user, through the use of the
ASSIGN command, may reset any interrupt variable to per-
form his own sequence of commands,

An interrupt (K-type) variable may assume the value of any
valid statement number. The user working-storage K-type

Variables 7



variable may be used in a GO TO statement, an ASSIGN
statement, or a WRITE statement. Conversely, a K-type
CR variable may only be referenced in a WRITE statement
or an ASSIGN statement. The K-type CR variable is a
single precision word containing a pointer to a control
language sequence of instructions to be executed if an
interrupt in a procedure occurs. Table 6 contains a list of
all interrupt variables and an explanation of each. Sample
K-type variables are shown in the tables below.

VALID K-TYPE VARIABLE NAMES

FILES

FMPS includes two types of files:

®  INTERNAL FILES For intermediate storage during
FMPS procedures (magnetic

tape or disc)

KMAJER CR major error interrupt variable used by ® COMMUNICATION For communication between
many procedures FILES FMPS and user—designed
KWST User working-storage variable programs (magnetic tape)
INVALID K-TYPE VARIABLE NAMES
KQUIT Not a valid CR variable name nor a user chle‘ 7 lists required‘ and optional files for operaﬁng. in
valid working-storage name since second ﬂ:e linear programming (LP) or sepcnrc'ble. programming
character is not a W (SEP) operc.ﬁ'lng mode. This table also indicates the input/
output device type (sequential such as tape, or random-
IWAL K-type names must begin with K access such as disc) that is required, preferred, or optional.
Table 5. Alphanumeric (A=~Type) CR Variables
CR Initialized
Variables Value Explanation
ADATA None Contains the name of the data deck for data reading procedures such as INPUT,
REVISE, etc. Also used by data~outputting procedures (such as BASISOUT) to
name output data deck. It specifies the name that appears on the NAME card
of image input. (Refer to Chapter 5 for general data formats).
AOBJ None Contains name of objective function row,
APBNAME None Contains name of problem,
APOBJ None Contains name of PARAOBJ change row,
APRHS None Contains name of PARARHS change column,
ARHS None Contains name of right-hand-side.
Table 6. Interrupt (K-Type) CR Variables
CR Initialized
Variables Value Explanation
KFREQA None Iteration frequency A interrupt. This interrupt will occur when IFREQA iterations
occur,
KINV None Inversion interrupt. This interrupt will occur when IFREQI iterations occur or
an inversion is required.
KIOER Terminate Run Input/output device error interrupt,
KMAJER Terminate Run Major error interrupt,
KMINER None Minor error interrupt,
KNFS None No feasible solution interrupt.
KSOLTN None SOLUTION print interrupt,
KTIME None Elapsed time interrupt. This interrupt will occur when ITIME minutes have elapsed,
KUBS None Unbounded solution interrupt,

8 Files




Table 7. Internal and Communication Files

Required Internal Files

File Name Device Type

Description of File

MATRIX Sequential or
Random=-Access

INVERSE Preferably
Random-Access

UTIL1 Sequential or

Random=Access

UTIL2 Sequential or
Random=Access

Contains the internal representation - of the matrix processed

by INPUT,

Contains the internal representation of the product form of
the inverse.

A utility file used by many procedures for scratch storage.

A utility file used by many procedures for scratch use.

Optional Internal Files

RESTART Sequential

Used by the SAVE procedure for storing all files for later
resumption of run, Used by the RESTORE procedure for
restoring the machine to the state at the time the SAVE pro-
cedure prepared the file.

Optional Communication Files

'filename’ Sequential

Any user-defined file used for internal communication between
FMPS and user's programs, Several such files can be used. The
quote marks are part of the name of the file.

INTERNAL FILES

Within each operating mode of FMPS, a minimum number
of internal files is required. Each internal file has been
assigned a unique preempted name, and these names will
be referred to throughout this manual. The user is required
to attach the required files to appropriate DCBs (see
Chapter 4),

STORAGE REQUIREMENTS FOR INTERNAL FILES

The number of words of disc storage required by the MATRIX
file is specified by the following equation.

2.25 (5M + NSP +4N + NNZ + 4NRHS + NNZRHS)

where
M is the number of rows in the matrix.
NSP is the number of slack prices.
N is the number of columns in the matrix.
NNZ is the number of nonzero elements in

columns,
NRHS is the number of right-hand-sides.

NNZRHS is the number of nonzero elements in
right=hand-side(s).

The number of words of disc storage required by the
INVERSE file is specified by the following equation

4.5 (M * 1 .25 ANNZ)

where
M is the number of rows in the matrix.
ANNZ is the average number of nonzero elements

in a matrix column.

The number of words of disc storage required by files UTIL1
and UTIL2 is the same as for the MATRIX file.

These estimates for disc storage may vary during certain
procedures. For example, during REVISE, the storage
requirement for the INVERSE file is generally twice that
of the MATRIX file.

For large problems, it may not be possible to assign all
files to disc storage during preliminary phases such as
INPUT and REVISE. Since it is desirable to have the
files on disc during the iterating procedures (OPTIMIZE,
INVERT, etc.), it is suggested that the user assign all files
to magnetic tape during the INPUT/REVISE phase. Fol-
lowing this, he may call the CONDITION and SAVE

procedures,
The CONDITION output will list the current storage re-

quirements (in words) for each file and the maximum storage
required to date. The current size of the MATRIX file can

Files 9




be used for its disc storage requirements as well as for UTIL}
and UTIL2. The current storage requirements stated for the
INVERSE file cannot be used for disc estimating since the
iterating procedures have not yet been used,

For maximum efficiency, the following priority should be
given in assigning files to disc for the iterating procedures.

Priority Procedure
I— INVERSE
2 MATRIX
3 UTILI
4 UTIL2

COMMUNICATION FILES

Communication files are the means of communication be-
tween FMPS and user-written programs. FMPS input pro-
cedures accept data from a standard card reading device
or, optionally, from communication files. FMPS output
procedures refrieve data from internal files and prepare
printed reports, Optionally, the data may be written on
a communication file.

To provide a mutually-convenient form of communication,
such files are structured to be read or written with FOR-
TRAN READ or WRITE statements. By using FORTRAN input/
output as the basic means of communication, the user can
write his own specific matrix generators and report writers

in FORTRAN,
The following table identifies the FMPS procedures that in-
clude the option of accepting input from communication

files or of writing oufput on communication files.

Tabie 8. Procedures Using Communication Files

Procedure FORTRAN
(in LP mode) Card Format Format
LOADLIST Yes No
INPUT Yes Yes
OUTPUT No Yes
REVISE Yes No
SOLUTION No Yes
BASISOUT Yes No
BASISIN Yes No

The following paragraphs describe basic communication file
structure and the means by which FORTRAN READ and
WRITE statements may be used to access the data.

CARD FORMAT FILES

All data decks that may be read or written on a CARD
file are orgonized as described in Chapter 5. Each data

......

data, and each dota deck is terminated with an ENDATA
card.

10 Files

Whenever a procedure requires input data, the input device,
whether card reader or CARD file, is searched for a NAME
card with an identification field (columns 15 to 22) that
matches the current contents of communication region vari-

able ADATA,

Whenever a procedure produces a data deck (that is, BASIS-
OUT), NAME and ENDATA cards are also produced. If the
output device is other than the card punch, that is, a CARD
file, the card file is positioned fo the logical end-of-file
and the new data deck is written. The logical end-of-file
is assumed to be a NAME card with zzzzzzzz in the identi-
fication field.

Procedures such as INPUT, REVISE, and LOADLIST require
data input. Whether the input is from cards, card images
on magnetic tape, or in FORTRAN unformatted WRITE for~
mat, the following conventions apply:

1. The data must be preceded by a name record identi-
fying the data record, and the data must be followed
by an ENDATA record,

2. In the control program, the CR variable ADATA must
be initialized with the name of the data set to be
loaded before the procedure requiring input is called.
For example, the following sequence,

ADATA = '"MATRIX1'
CALL INPUT

causes the card data set with the name MATRIX]1 to be
loaded by the INPUT procedure.

3. The card data sets must be placed after the END state-
ment of the control program. The card data sets must
follow each other in the sequence of input,

4. Input records on magnetic tape can occur in any se-
quence, FMPS will rewind the input tape, if neces-
sary, to locate the desired set of data if the tape was
positioned beyond the record to be loaded,

5. For proper operation, it is necessary that all input files
include as the last record a NAME record with the
name zzzzzzzz and an ENDATA record. This con-
stitutes the logical end-of-file for FMPS,

6. When writing output on magnetic tape, FMPS auto-
matically supplies the NAME and ENDATA rec-
ords.  The name is copied from the current CR
variable ADATA which must be initialized to the
desired name by the user before executing the out-
put. If the tape includes data prior to the out-
put operation, the new output data is appended to
the current data and a logical end-of-file (NAME
zzzzzzzz and ENDATA) is added. Decks punched
by FMPS also include the NAME and ENDATA

records.



7. The INPUT procedure includes the option of reading
card decks or magnetic tape reels prepared for other
linear programming packages such as LP 90/94, 1108
LP, and CDM4. When reading such data from cards,
NAME and ENDATA must precede and follow the input
data. When reading from magnetic tape, the NAME
and ENDATA records must not be present on the tape.

FORTRAN FORMAT FILES

A FORTRAN format file consists of a series of unformatted,
FORTRAN-=-written records on tape., Each record contains
60 double precision (DP) words. The structure of each rec-
ord is shown in Figure 1. The first three DP words are used
to identify the record.

The first DP word contains the name of the procedure gen-
erating the record or the name of the procedure for which
this record is input. N14, the left half of the first DP
word, contains the first four characters of the name, and
N58, the right half of the first DP word, contains the last
four characters of the name,

The second DP word contains the subname of the record.
SN14, the left half of the second DP word, contains the
first four characters of the subname. SNS58, the right
half of the second DP word, contains the last four char-
acters of the subname,

The third DP word contains the record number and index of
the word last used in the record, RN, the left halfof the
third DP word, contains the record number. RN is used to
signal the end of a series of records.

As an example, if three 60-word records were required to
contain the information, RN in the first record would be
-1, in the second -2, and in the third 3, Therefore, if
RN is negative, it indicates that there is more of the same
kind of information in the next record, When RN is posi-~
tive, it indicates that this is the end of records containing
the stated information, ILAST, the right half of the third
DP word, contains the index of the last item in the record,
ILAST is always less than or equal to 60, The fourth through
the sixtieth DP words contain the information in groups of
three DP words,

DATA STORAGE ON RECORDS
Conventions for storage of data on records are outlined below.

1. All names (character strings of eight characters or less)
are stored with the first four characters of the name in
" the left half of a DP word and the last four characters
in the right half of the DP word.

2. Floating=point values are stored as double precision
floating=-point.

3. Integers are stored in the left half (most significant) of
a DP word.

As with CARD communication files, all input data must be
preceded by a NAME record, In addition, output will be

preceded by a NAME record that contains the contents of
CR cell ADATA, The format of a NAME record is shown in
Figure 2.

The last record on a communication file will be a NAME
record whose name is zzzzzzzz (supplied by the user),

Each fime information is written on a FORTRAN communi-
cation file, the tape is positioned to the zzzzzzzz name
record and the zzzzzzzz record is overwritten with a new
NAME record containing the contents of CR cell ADATA,
The information is then written followed by a new NAME
zzzzzzzzZ record,

Record formats produced by SOLUTION are shown in
Figure 3. Record formats for the INPUT procedure are
shown in Figure 4.

~— DOUBLE PRECISION —
(1 N14 N58

(2) SN14 SN58

® RN ILAST
)
©)
©)

(58)

(59)

(60)

Figure 1. FORTRAN CommunicationFile Record Structure

~—DOUBLE PRECISION —
(1) NAME bbbb
(2) AAAA AAAA
3) 1 3
(4) Remainder
of
(60) record unused

Figure 2. Format of a NAME Record

Files 11



4}

so]14

Identify
1 [ sow TION
2 | IDEN TIFY
3 1 24
4 | 1DEN Thih
5 | APBN AME
6 | AAAA AAAA
7 | IDEN Thtb
8 | sTAT UStb
9 | AaaA AAAA
10 { IDENT ThES
11 {FoB) WTKS
12 +1,0
13 | IDEN TEKE
14 | FUNC TION
15 Co
16 | IDEN TH55
17 | ARMS (355
18 | AAAA AAAA
19 | IDEN TS
20 | AoB) Bbth
21 | AAAA AAAA
22 | IDEN TS
23 | ITER BB55
24 1
25
60 |

}
}

Contents of CR Cell
APBNAME

OPTIMALS, UNBOUND#
INFEASEb, UNBOUNDb

Obijective Function Value

Name of Right-Hand Side

Name of Objective Row

Iteration Count

Remainder of
record not used

Rows
1 SOLU TION
2 ROWS BH65
3 RN ILAST
4 ROWN AME1
5 NUMB ERBH
6 I
7 ROWN AME1
8 ATED bhtb
9 AABB bbb
10 ROWN AME1
11 ACTI VITY
12
13 ROWN AMEI
14 SLAC Ksbb
15
16 ROWN AMET
17 LLIM 1788
18
19 ROWN AME1
20 ULIM IT66
21
22 ROWN AME1
23 DUAL ACTh
24
25 ROWN AMEI
26 COsT B8
27
28 ROWN AME1
29 DJsb 568
30
31 ROWN AME2
32 NUMB ERBE
33 I
60 |

}
}

}

Row Number

FR, EQ, LL, UL,

Row Activity Value

Slack Activity Time

None or Lower
Limit Value

None or Upper
Limit Vt:lugp

Dual Activity Value

Slack Price Value

Reduced Cost Value
of Slack

Row Number

Columns

N ;AW -

SOLU TION
CcOoLwJ MNSH
RN ILAST
COLN AME]
NUMB ERED
J
COLN AME]
ATED okb
AABD 686
COLN AME1
ACTI vITY
COLN AME]
CosT bbb
COLN AME1
LLIM ITHH
COLN AME]
ULIM IT66
COLN AME1
DJE6 Bbtb
COLN AME2
NUMB ERED
J

Column Number

BS,LL, UL, FR,FX,

Column Activity
Value

Column Cost Value

} None or Lower
Limit Value

N U,
} None gr Jeper

Reduced Cost
Value of Column

Column Number

Figure 3. Record Formats Produced by SOLUTION




sofld

€l

Rows

1 INPU Tbbb
2 ROWS bbb
3 RN ILAST
4 AbBH bbb
5 ROWN AMEI
[ Ignored
7 AbBH bbb
8 ROWN AME2
9 Ignored
58 AbBD bbbb
59 ROWN AMEM
60 Ignored
RHS
1 INPU TBEE
2 RHS6 BHED
3 RN ILAST
-4 RHSN AME]
5 ROWN AME]
6 5
7 RHSN AME]
8 ROWN AME1
9 i
58 RMSN AMES5
59 ROWN AMEM
60 i

N, L, G, E, Row Type
Name of Row

RHS Name
Row Name
RHS Value

Sprices
1

VO N LA W N

58
59
60

Ranges

Ve N G AW N —

58
59

60

INPU Thbb
SPRI CESk
RN ILAST
SLKN AME1
COST ROW
G
ALKN AME2
LOST ROWH
SLKN AMEM
CcosT ROWE
G
INPU TH58
RANG ESB5
RN ILAST
RNGN AME1
ROWN  |amE!
R;
RNGN AME1
ROWN AME2
R
1
RNGN AME1
ROWN AMEM
i

Name of Slack
Name of Cost Row

Slack Price

Range Column Name
Row Name

Range Value

Columns
1 INPU THED
2 coLy MNSH
3 RN ILAST
4 COLN AME1
5 ROWN AME1
6 Aij
7 COLN AME1
8 ROWN AME2
9 ij
58 COLN AMEM
59 ROWN AMEM
60 Aij
Bounds
1 INPU THBH
2 BOUN DSkb
3 RN ILAST
4 AAED 65
5 COLN AME]
6 B
7 AABB 4593
8 COLN AME2
9 B
58 AABE Hbs
59 COLN AMEN
60 B
Endata
1 INPU TEEH
2 ENDA TAKS
3 [

}

Column Name
Row Name

Element Value

LO, UP, EX, FR, PL
Type of Bound
Column Name

Bound Value

Figure 4. Record Formats for INPUT




3. FMPS CONTROL LANGUAGE STATEMENTS

INTRODUCTION

An FMPS run always includes a set of cards that specify the
operctions to be executed. These cards are grouped together
in a contro! program, Rather than using fixed-format con-
trol cards, FMPS uses control statements that are compiled
by FMPS at the beginning of the run,

STATEMENT TYPES

The control language for FMPS was designed to be a subset
of the FORTRAN language. There are five basic types of
statements:

1. The procedural CALL statement, which loads and trans-
fers control to one of the FMPS procedures. This type
of statement is analogous to a FORTRAN subroutine
call.

2. Arithmetic statements, which evaluate simple arithme-
tic expressions.

3. Program flow control statements, such as ASSIGN,
GO TO, EXIT, RETURN, and IF, which transfer con=-
trol to a statement other than the next one in sequence.

4. The WRITE statement, which displays any user or
common-storage variable on the standard output de-
vice. The TITLE statement provides a heading for
each page of output,

5. Delimiting statements, which indicate the end of the
conirol program, The END statement is a message to
the compiler that there are no more statements to be
processed. It is not executable. The STOP statement
is executable and indicates that execution of the con-
trol program is to terminate,

CARD FORMAT

The card format for the FMPS control language is identical
to that of FORTRAN,

Column 1 is used to indicate a comment card. A C punched
in column 1 indicates that the rest of the card is o comment,
and is not processed. The comment card will appear on the
listing produced by the compiler, Comment cards may be
used freely to give information or improve readability,

Any statement, other than an END statement, may be given
a statement (step) number. A step number is any unsigned
integer between 1 and 9999. It may be placed anywhere
in columns 2-5 of the card,

Column 6 is reserved to indicate a continuation card, As
many continuation cards as are needed may be used, but

14 FRPS Control Language Statements

they can only be used to continue the parameter list of a
procedure CALL statement, They may not be used with
any other kind of statement. Any nonblank character
punched in column 6 will indicate that the card is a con-
tinuation of the parameter list from the previous card, A
statement may begin in column 7 or anywhere thereafter.

Columns 73-80 are ignored, and may be used for sequence
numbers if the user wishes, A summary of card format is
shown below,

[C)(step] {r;zln::liank} statement  [sequence numbers)

CONTROL LANGUAGE STATEMENTS

CALL The procedure CALL statement causes the speci-
fied procedure to be loaded into memory, control to be
transferred to the procedure, and the set of parameters
specified in the argument list to be communicated to it.
The procedure CALL statement has the form

CALL pname [(parameter 1, parameter 2, . . .)]

where

pname is the name of the FMPS procedure to be
executed,

parameter 1, , .. represents the values to be
transmitted to the procedure. Parameters may
be constants, variables (either CR variables or
user working-storage variables), or keywords,
Some procedures have no parameters associated
with them, The parameters are always enclosed
by parentheses and separated by commas,

Correct and incorrect procedure CALL statements are
shown below,

VALID PROCEDURE CALL STATEMENTS

CALL OPTIMIZE
CALL ENTER (LP)
CALL ATTACH ('FILEY', 'F:F1")

Note that the CALL ATTACH procedure above could be

written as

AWD4 = 'FILET
AWO1 ="'F:F1’
CALL ATTACH (AWD4, AWO01)

INVALID PROCEDURE CALL STATEMENTS

ENTER(LP) CALL must be specified
CALL ENTER 'LP Missing parentheses



CALL ATTACH (‘PROBFILE' 'FILETAPE') Parameters

not separated by commas

The parameter list of a procedural CALL may make use of
a continuation card as in

CALL ATTACH ('PROBFILE!,
X'FILETAPE', CARD, NEW)

Note that a field must not be broken in the middle, and
that the preceding card must end with a comma.

The examples shown below illustrate improper continua-
tion cards for procedure CALL statements,

INVALID CONTINUATION CARDS FOR PROCEDURE
CALL STATEMENT

CALL ATTACH

At least one parameter

X('PROBFILE', 'FILETAPE')

CALL ATTACH (‘PROBFILE"
X,'FILETAPE', CARD NEW)

must be on first card

Preceding card must
end with a comma

ARITHMETIC

The Arithmetic statement is used to initialize or set all
storage~reference variables (CR or user working-storage)
except interrupt (K-type) variables. The Arithmetic state-
ment has the form

srsym = arithex

where
srsym is either a CR or user working-storage
variable.
arithex is an arithmetic expression of the form
variable
constant
+
variable { .} constant
+
variable {,t variable

and in which variable refers to either a CR or a user
working-storage variable,

Mixed mode is allowed between integer and floating-point
computations, but all alpha computations must not mix
modes.  An arithmetic expression that contains a

floating-point number will be done in double precision
floating=point arithmetic.

Compare the following tables of valid and invalid Arith-
metic statements,

VALID ARITHMETIC STATEMENTS

ARHS = 'ALOYT
FWO1 = FWO1 + 1
IWNM = 79.0

FWO1 = FWOT * IWNM
ILOGP = IWNM/79

INVALID ARITHMETIC STATEMENTS

Kwolr = 100 K~type cells cannot be defined
with an Arithmetic statement

ARHS = FWO1 Mixed mode not allowed with
alpha type

IWNM = FWO01*IW01+4
Invalid form of arithmetic
expression

ASSIGN The ASSIGN statement is used to initalize

or set an interrupt (K-type) variable, It has the form

ASSIGN stmtno TO kxxx

where
stmtno is any valid statement number (1-9999)
appearing in the control language program.
kxxx is a K-type CR or user working-storage

variable.

The following two statements are correct uses of ASSIGN,

VALID ASSIGN STATEMENTS

ASSIGN 100 TO KMAJER
ASSIGN 20 TO KwO01

This list shows incorrect uses of the ASSIGN statement.

INVALID ASSIGN STATEMENTS

ASSIGN SEVEN TO KWD1

Statement number must
be an integer constant

ASSIGN 100 TO IwO01 Assignment must be

made to a K-type vari-
able only

GO TO The GO TO statement causes the uncondi-
tional transfer of control to the statement specified by the

Control Language Statements 15



statement number after GO TO, The GO TO statement
has the form

GO TO {s'rm'rno}

kXXX

where

stmtno is any valid statement number (1-9999)
appearing in the control language program.

kxxx is a K-type user working-storage variable
that has been defined by an ASSIGN statement.

The two lists below present correct and incorrect uses of
GO 1O,

VALID GO TO STATEMENTS

GO TO 100
GO TO KWO1

INVALID GO TO STATEMENTS

GO TO A

A is not a K-type user working~-
storage variable

GO TO KMAJER  KMAJER is a K-type CR variable,

not a user working-storage variable

W The IF statement makes a conditional transfer of con-
trol to the statement specified by a statement number, It
may be used in the construction of loops. IF has the form

IF (srsym . op. {f::z:;am} ) GO TO simtno

where
srsym is either a CR or user working-storage
variable.
constant is a valid constant.

op enclosed by periods, is a two-letter code that
represents one of the following conditions.

Code Condition
GT Greater than
GE Greater than or equal
LT Less than
LE Less than or equal
EQ Equal
NE Not equal
stmino is any valid statement number (1-9999)

appearing in the control language program.

When IF is executed, the expression within the parentheses
is evaluated first, If it is true, control is transferred to the
specified statement number. If it is not true, control is
passed to the next statement in the program sequence,

16 Control Language Statements

Mixed mode is allowed if integer and floating-point quan-
tities are involved. Mixed mode is not allowed if an alpha
quantity is used.

The sample IF statements below are correct,
VALID IF STATEMENTS

IF (FOBJWT . GT. IW41)GO TO 30
IF (ARHS .EQ. 'ROWS') GO TO 150

These IF statements are incorrect.
INVALID IF STATEMENTS

IF (ARHS .EQ. FWQ1) GO TO 20 Mixed mode is not
allowed if alpha quantity involved

IF (IWO1 LT 7) GO TO 10 LT must be enclosed in
periods

IF (FW75) 10, 20, 30 This form of IF statement is not
allowed in this control language

RETURN The RETURN statement is used to return control
to a procedure that has created an interrupt, When an inter-
rupt occurs, control will be given to the statement whose
number has been assigned to the corresponding CR interrupt
(K-type) variable for that particular condition. After the
number, it may be desired to return to the procedure that
caused the interrupt. The RETURN statement has the form

RETURN

An example of interrupt processing using a RETURN state-
ment is shown below.

ASSIGN 150 TO KINV
IFREQI = 50
CALL OPTIMIZE

150 CALL INVERT
RETURN

Note that OPTIMIZE wil! interrupt for an INVERT every
50 iterations. Control will be transferred to statement
150 which is a CALL for INVERT, and following the
INVERT, control will be transferred to OPTIMIZE via
RETURN,

EXIT The EXIT statement is a special type of statement
used in the FMPS control language. Like the RETURN state-
ment, the EXIT statement is concemed with interrupt pro-
cessing. After receiving an interrupt, it may not be desir-
able to return to the procedure causing the interrupt, The
EXIT statement may be used to exit the procedure and to
continue processing with the statement following the



procedure CALL statement that triggered the interrupt.
EXIT has the form

EXIT

An example of interrupt processing using an EXIT statement
is given below,

ASSIGN 200 TO KNFS
CALL OPTIMIZE

200 CALL OUTPUT (BYROWS, ROWS, LISTI)
EXIT

Note that if no feasible solution condition is encountered
by OPTIMIZE, control is transferred to statement 200 to

output the infeasible rows, and the following EXIT state-
ment will cause control to be transferred to the statement

after CALL OPTIMIZE.

WRITE The WRITE statement (not o be confused with
the standard FORTRAN WRITE statement) may be used to
display the current value of any CR or user working-storage
variable on the system output device. The variable name
and its value are printed. The WRITE statement has
the form

WRITE srsym

where

srsym is either a CR or user working-storage ref-
erence symbol,

Notice that only one symbol may be referenced on a
WRITE statement,

Some uses of WRITE are shown below.

AWO1 = 'EXAMPLE' Printout will contain

WRITE AWO01 AWO01 = EXAMPLE
FWO07 =, 2365D3 Printout will contain
WRITE FW07 FWO07 = 236.5

TITLE This statement, which is a special FMPS control
language statement, provides a page heading on each page
of the output produced by execution of the control program,
The TITLE statement has the form

TITLE heading

where

heading is a string of literal alphanumeric char-
acters that terminate by column 72,

The title is printed out as shown below

TITLE THIS IS THE TITLE.

STOP The STOP statement terminates execution of the
control program. The STOP statement has the form

STOP

END The END statement is a nonexecutable statement
that defines the end of g source program for the compiler
and must be the last statement of every program, Since
the END statement is not executable, it should have a
statement number. END has the form

END

SAMPLE FMPS PROGRAM

Figure 5 shows an example of a typical FMPS control
language program,

Control Language Statements 17



nonon

0 0 00

0

1000

o0 00 0O

1010

Nnnon

2000

o000

2100
2110

oOo0n

2200

DEFINE PAGE TITLE

TITLE FMPS CONTROL LANGUAGE EXAMPLE

ENTER LINEAR PROGRAMMING OPERATING MODE
CALL ENTER(LP)

INITIALIZE MAJOR AND MINOR ERROR INTERRUPTS
ASSIGN 1000 TO KMAJER

ASSIGN 1010 TO KMINER

CALL DEVICE('DISC1*,DISC,'B')
CALL DEVICE('DISC2",DISC,'C')
CALL DEVICE('DISC3',DISC,'D')
CALL DEVICE('DISC4',DISC,'E')

ATTACH INTERNAL FILES MATRIX, INVERSE,UTIL1, UTIL2 TO THE SYMBOLIC
DISC UNITS DISC1, DISC2, DISC3, DISC4

- CALL ATTACH(MATRIX, 'DISC1")

CALL ATTACH(INVERSE, 'DISC2')
CALL ATTACH(UTIL1, 'DISC3")
CALL ATTACH(UTIL2, 'DISC4)

DEFINE NAME OF INPUT DATA DECK

ADATA = 'PLANT"

INPUT THE LP MATRIX

CALL INPUT

DEFINE NAME OF RHS AND OBJECTIVE FUNCTION ROW

ARHS = 'RHS1'

AOBJ = 'COSTROW

OUTPUT BYROWS, THE NON-ZERO ELEMENTS OF INPUT MATRIX
CALL OUTPUT(BYROWS)

INITIALIZE OPTIMIZE INTERRUPTS KINV, KNFS, KUBS
ASSIGN 2000 TO KINV

ASSIGN 2100 TO KNFS

ASSIGN 2200 TO KUBS

SET INVERSION FREQUENCY TO 100
IFREQI = 100

OPTIMIZE INPUT MATRIX

CALL OPTIMIZE

OUTPUT THE OPTIMAL SOLUTION
CALL SOLUTION

TERMINATE RUN

STOP

PROCESS MAJOR ERROR INTERRUPT BY TERMINATING RUN
STOP

PROCESS MINOR ERROR INTERRUPT BY EXITING PROCEDURE CAUSING IT
EXIT

PROCESS INVERT INTERRUPT BY CALLING INVERT AND RETURNING TO
PROCEDURE REQUESTING 1T.

CALL INVERT

RETURN

PROCESS NO FEASIBLE SOLUTION INTERRUPT BY OUTPUTING THE INFEASIBLE
ROWS, PUNCHING THE CURRENT BASIS STRUCTURE, AND TERMINATING RUN
CALL OUTPUT(BYROWS, ROWS, LISTI)

CALL BASISOUT

STOP

PROCESS UNBOUNDED SOLUTION INTERRUPT BY OUTPUTING THE UNBOUNDED

COLUMN, PUNCHING THE CURRENT BASIS, AND TERMINATING RUN,
CALL OUTPUT(BYCOLS, COLS, LISTU)

GO TO 2110

END OF CONTROL PROGRAM

NIy
EI‘U

18

Sample FMPS Program

Figure 5. Sample FMPS Control Language Program




4. BASIC FMPS PROCEDURES

This chapter describes those FMPS procedures that are avail-
able under all FMPS operating modes, These operating pro-
cedures perform the following functions.

e  Establish the operating mode.
e Define input/output devices.
e Assign files to input/output devices.

o Define selection lists,

FMPS operating procedures and their functions are given in
Table 9 below.

Table 9. FMPS Operating Procedures

Procedure Purpose

ENTER Establish the operating
mode.

DEVICE Defines storage media for
run,

ATTACH Attaches symbolic files to
DCBs.

LOADLIST Inputs names and/or masks to

be used as a selection list.

OPERATING PROCEDURES REPERTOIRE

Each of the procedures outlined in Table 9 above will be
explained in detail in the following paragraphs.

ENTER The ENTER procedure establishes the operating
mode for FMPS, Therefore, it must be the first procedure
used. The mode may not be changed during a run.  The
following list contains codes for parameters currently avail-
able for ENTER. One of the following parameters must be
specified.

Parameters Explanations

LP FMPS establishes the linear
programming operating mode,

SEP FMPS establishes the separable

programming operafing mode,
The following interrupt may occur through misuse of ENTER.

Interrupt Causes

KMAJER 1. Unrecognizable parameter.

2. Operating mode already
established.

DEVICE The DEVICE procedure defines magnetic tapes
and RAD files to be used as storage media during the FMPS
run. This procedure contains parameters informing FMPS

of the data control block (DCB) to be used with the file or
tape and the organization of the file (consecutive~sequential
or keyed direct-access). This data is given to BPM via the
IASSIGN control command; the DEVICE procedure passes

it to FMPS,

Symbolic units must be defined by a call for DEVICE before
FMPS files can be attached to them. A symbolic unit may
be defined only once during a run.

DATA CONTROL BLOCKS

The data control blocks for use with FMPS are included in
the system at installation. Nominally the system is built to
the maximum of 10 DCBs whose namesare F:1,F:2,. . .,F:10.
Thus, !ASSIGN cards for a run are restricted to these DCBs,
In addition, the F:1 DCB is preempted by FMPS in the stor-
age of the control language programs, However, any of
the remaining DCBs may be assigned to either tape or RAD,
RAD DCBs may be organized sequentially or asdirect-access.
The internal FMPS file INVERSE should always be a RAD
file and as such must be a keyed direct-access file. Note
that the 1ASSIGN control command designates the physi-
cal location (RAD or tape) of the data transmitted via a
DCB.

DEVICE ARGUMENT

The DEVICE procedure requires three arguments, as in

TAPE
'DISC!,

CALL DEVICE (‘symbolic unit' { } 1B key)

where

'symbolic unit' specifies the symbolic unit defined
by DEVICE to which internal and communication
files may be attached.

TAPE indicates that the file or tape was specified
as consecutive-sequential on the ! ASSIGN card.

DIsSC Indicates that the file was specified as
keyed direct-access on the 'ASSIGN card,

'DCB key' is one of the following codes that
specify the DCB name to be used.
Code DCB Name
'B! DCB F:2
'c DCB F:3
at DCB F:10

For example, the procedural call CALL DEVICE ('INVS',
'C') would define symbolic unit 'INVS' to be a RAD file
with keyed direct-access organization, to be driven via
the F:3 DCB. '

Basic FMPS Procedures 19



ATTACH The ATTACH procedure attaches symbolic
files to DCBs, There are two classes of files that must

be attached, The first class consists of files reserved for
internal use by FMPS, All internal files have preempted
names recognizable as keywords such as MATRIX, INVERSE,
efc, (refer to Table 7). The second class of files consists of
files used for communications between the user and FMPS,
The user assigns symbolic names (eight or less characters
enclosed by quotation marks) to communication files,

When attaching FMPS internal files to DCBs, ATTACH re-

quires the use of two parameters, For example,
CALL ATTACH (INVERSE, 'SYMB1')
assigns internal file INVERSE to the symbolic unit'SYMBI1',

When attaching communication files to symbolic units ATTACH
requires the use of four parameters, The third parameter (which
is not required for internal FMPS files) describes the mode
of the file, The mode may be specified as CARD, imply-
ing 80-column card image format, or FORTRAN, implying
standard communication format, The fourth parameter,
OLD or NEW, specifies whether the tape has previously
been prepared by a program (or FMPS) and contains infor=-
mation to be preserved (OLD), or whether the tape is a
new tape without information to be saved on it (NEW), If
the NEW parameter is specified, FMPS writes a pseudo
end-of-file record at the beginning of the tape (NAME
zzzzzzzz, ENDATA). If it is an outputfile, it is de-
fined as NEW. It is imperative that, if a communication
file (whether CARD or FORTRAN) is defined, NEW or
OLD follow the file definition.

Symbolic files may be reattached to different DCBs during
a run, If the INVERSE file is reattached, an INVERT call
must be made following the latest ATTACH, A common
use of the reattach facility is in connection with the RE-
START file. For example

CALL ATTACH (RESTART, = 'TAPE1")

CALL RESTORE

CALL ATTACH (RESTART, 'TAPE2")

CALL SAVE
Also, the statement
CALL ATTACH('"OUTFILE', "COMMTAPE', FORTRAN, NEW)

assigns communication file 'OUTFILE' to DCB 'COMMTAPE!

in standard communication format,
The following interrupt may occur within ATTACH.

Causes

KMAJER 1.
2. Internal FMPS file assigned as

communication file,

Interrupt

Symbolic unit not defined.

20 Operating Procedures Repertoire

Interrupt Causes

3. Unrecognizable parameter.

4, Internal random=-access file assigned
to sequential-access device,

5. Communication file not specified
as OLD or NEW.

LOADLIST The LOADLIST procedure is responsible for
the input of a list of names and/or masks from cards or com-

munication files to be used as a selection list during output
of procedures such as SOLUTION, OUTPUT, etc.

The first parameter of the procedure defines which of two
lists, LISTR or LISTC, is fo be loaded. LISTR is the list
used to contain the names and/or masks for row selection
or exception, LISTC is the list used to contain the names
and/or masks for column selection or exception,

The names in a list correspond to the name of a row or col-
umn in the matrix, Masks are used to represent classes of
rows or columns that have unique character configurations
in their names, A mask is composed of eight characters,
The characters in the mask are matched, position by posi-
tion, with a row or column name. If all positions match,
then that row or column name is considered part of the
selection list, If one or more characters within the mask
are an asterisk(*), that position(s) will match with the
corresponding position(s) of any row or column name. For
example,

CRUDE***

is @ mask that considers any row or column name having
CRUDE as its first five characters as part of the selection
list,

Input to LOADLIST is from card images on the standard card
reading device unless the FILE parameter is specified, in
which case the third parameter must be the name of the file
on which the data resides. The data format for the LOAD=-
LIST procedure is described in Chapter 5.

The communication region variable ADATA must be initial-
ized before the call for LOADLIST, It contains the name
of the data deck for data reading procedures such as INPUT,
REVISE, etc. ADATA is also used by data outputting pro-
cedures, such as BASISOUT, to name output data deck. It
specifies the name that appears on the NAME card of image
input. (Refer to Chapter 5 for general data formats. )

The parameters available to LOADLIST are:

Parameter Explanation

LISTR Specifies that row selection list
is to be loaded. If LISTR is not
specified, LISTC must be.

LISTC Specifies that column selection list

is to be loaded. If LISTC is not
specified, LISTR must be.

FILE Specifies that data is on file 'file-
name' (card format only).



Parameter Explanation

filename' Symbolic name of file, including
quotation marks, on which data
resides,

The FILE and 'filename' parameters are optional.

The following interrupts may occur within LOADLIST,

Interrupt Causes

KMAJER 1. Unrecognizable parameter.
2, Undefined 'filename',

3. NAMES or MASKS data not
grouped together,

4. Unrecognizable data indicator.

Irrecoverable input/output error on

Interrupt Causes
KIOER

file,
KMINER

Core memory area exceeded by
list. Remainder of data cards
ignored.

Operating Procedures Repertoire

21



5. DATA CARD FORMATS AND DECK ORGANIZATION

This chapter describes data card formats and data deck
organization applicable for the various procedures (INPUT,
REVISE, BASISIN/BASISOUT, and LOADLIST) in all FMPS
operating modes. It also describes acceptable nonstandard
data formats.

STANDARD CARD AND DECK FORMATS FOR INPUT

The data file for the INPUT procedure contains four types
of cards in all cases.

1. NAME card
2. Indicator cards
3. Data cards

4, ENDATA card

Comment cards, identified by an asterisk (*) in column 1,
may be inserted anywhere in a data deck.

NAME CARD

The first card of a data deck is always a NAME card. The
NAME card gives a user-specified name to the data decks

so that the data may be uniquely identified from the con-

trol program. NAME has the following format.

Columns Description

1-4 NAME: card identification.

5-14 Blank

15-22 User-assigned name: from one fo eight
characters in length.

23-80 Blank

INDICATOR CARDS

The INPUT data deck consists of data cards grouped accord~
ing to the type of data they contain. A group of cards con-
taining the same type of data is called a chapter. The first
card of a chapter is always an indicator card, which identi-

fies the type of data in that chapter. The optional and
required types of data appearing in a data deck for the
INPUT procedure are:

Data Type Status

ROWS Required
SPRICES Optional
COLUMNS Required
RHS Required
RANGES Optional
BOUNDS Optional

22 Data Card Formats and Deck Organization

The format of indicator cards is given below.

Columns Description
1-7 Data type: one of the six types shown
above. v
8-80 Blank
DATA CARDS

Data cards are divided into six fields. The type of data
card determines the content of each field, but all data cards
follow the same general format. The six fields of a data
card are outlined below.

Columns Description

1 Blank or *. If asterisk is present, it indi-
cates that this is a comment card, which
may be inserted anywhere in the data
deck.

2-3 Field 1: code for type of row constraint
or type of bound (see ROWS and
BOUNDS cards).

5-12 Field 2: name of from one to eight alpha-
numeric and special characters.

15-22 Field 3: same as field 2 above.

25-36 Field 4: value of up to twelve characters,
including decimal point. Sign specifica-
tion is optional; if unspecified, it is
assumed positive.

40-47 Field 5: same as field 2 above.

50-61 Field 6: same as field 4 above.

ENDATA CARD

The ENDATA card, which simply indicates that the end of
the data deck has been reached, has the following format:

Columns Description
1-6 ENDATA
7-80 Blank

DATA DECK ORGANIZATION

Figure 6 shows the organization of a complete INPUT data
deck. Note that the dashed lines indicate optional cards
and decks.



_lENDATA

1 BOUNDS data

RANGES data

[ == —— — - -

I RANGES N

- ——————

RHS data

[ e L d

COLUMNS data
COLUMNS

ROWS data

NAME

Figure 6. Data Deck Organization for INPUT
ROWS DATA CARDS

ROWS cards specify the name to be assigned to the rows of
the matrix, as well as the type of constraint (equality or
inequality) represented by the row. The ROWS data card
format is shown below.

Columns Description

2-3 Field 1: type of constraint as specified
by the following codes:

Code Meaning

BN or Nb

No constraint (change or
objective row)

%G or Gb Greater than or equal to
bLor Lb Less than or equal to
6E or Eb Equality

Columns Description

5-12 Field 2: name of the row, where blanks
are considered part of the name.

15-22 Field 3: blank
25-36 Field 4: blank
40-47 Field 5: blank

50-61 Field 6: blank

SPRICES DATA CARDS

SPRICES (slack prices) cards specify the price or prices to
be associated with the slack vector of a row. The slack
prices must be specified by slack: that is, when one price
is given for a slack, any other prices for the same slack
must be entered before the next slack is referenced. The
slack prices must be entered in the same order as the slack
name appears in the rows section. The SPRICES data card
format is shown below.

Columns  Description

2-3 Field 1: blank

5-12 Field 2: name of the slack vector, which
is identical to the name of the row with
which it is associated.

15-22 Field 3: name of the cost row to which
the price is associated.

25-36 Field 4: value of the slack price.

40-47 Field 5: optional and used like field 3.

50-61 Field 6: optional and used like field 4.

COLUMNS DATA CARDS

COLUMNS cards specify the names to be assigned to the
columns (structural variables) in the LP matrix and define
the actual values of the matrix elements in terms of column
vectors. The mairix elements must be specified by column;
that is, when one element is given, all other nonzero ele-
ments in that column must also be entered before another
column is mentioned. Zero entries should not be specified,
since they will be filled in automatically by the system.
The COLUMNS data card format is shown below.

Columns  Description
2-3 Field 1: blank
5-12 Field-2: name of the column that is to

contain the elements specified in the
field that follow.

Data Deck Organization 23



Columns Description

15-22 Field 3: name of a row in which an ele~
ment is to be entered.

25-36 Field 4: value of the element to be
entered in the row and in the column of
field 2.
40-47 Field 5: optional and used like field 3.
50-61 Field 6: optional and used like field 4.
RHS CARDS

RHS cards specify the names of the right~hand-side consiraint
vectors or change vectors (used in parametric programming).
They define, in terms of columin vectors, the values of these
elements. The right-hand-side elements must be specified
by RHS; that is, when one element is given, all other non-
zero elements in that RHS must also be entered before
another RHS is mentioned. The RHS data card format is
shown below.

Columns Description

2-3 Field 1: blank

5-12 Field 2: name of the right-hand-side
(RHS) vectors or change vectors.

15-22 Field 3: name of the row in which an
element is to be entered.

25-36 Field 4: value of the element to be
entered in the row and in the RHS of
field 2.

40-47 Field 5: optional and used like field 3.

50-61 Field 6: optional and used like field 4.

RANGES DATA CARDS

Range constraints are used when a row is to represent both
a greater-than inequality and a less-than-or-equal-to
inequality. When none of the rows have such double limits,
range constraints are notf used.

One of these limits is given in the normal manner when both
upper and lower limits are desired. The type of row con-
straint is specified in the ROW data, and one limit (upper
or lower) is specified in the RHS data. The other limit
specified in this section of the data is the allowable magni-
tude by which the right-hand-side may vary from the value
previously specified.

If b; is the value given in the RHS section, the range ;s
specified as follows:

Resultant Upper Resultant Lower
Type Limit on Right- Limit on Right-
of Row Hand-Side Hand-Side
G bi tr bi
L b. b. -r,
1 ] 1

24 Data Deck Organization

The set of ranges is defined as a column vector with a name
specified by the user. Only one vector of ranges will be
loaded by the INPUT procedure. If more than one is pres-
ent, the additional vectors will be punched in REVISE
format.

The RANGES data card format is shown below.

Columns Description

2-3 Field 1: blank

5-12 Field 2: name of the column of ranges.

15-22 Field 3: name of a G or L row to which
this range is to be applied.

25-36 Field 4: value of the range (ri).

40-47 Field 5: optional and used like field 3.

50-61 Field 6: optional and used like field 4.

BOUNDS DATA CARDS

BOUNDS data cards impose limits on the values which the
activities, or "structural variables”, may assume. If none
of the variables are bounded, this section of input is not
needed.

When bounds are desired, they are entered as a row vector
with a name specified by the user. Bounds are automati-
cally set at 0 and + o for all columns not specified in a
BOUNDS card. Only one vector of bounds will be loaded
by the INPUT procedure. However, if more than one is
present, the additional vectors will be punched in REVISE
format.

Within a given bounds row vector, the column (structural
variable) names must appear in matrix order (that is, the
same order in which column names appear in the COLUMNS
section).

The user may specify both an upper and a lower bound, a
lower bound only, or an upper bound only. When a single
bound is specified, the other bound will remain as + @ or 0.
When both upper and lower bounds on a single variable are
desired, they must be entered on separate cards. Possible
combinations are:

LO - UP

LO - PL

Since an upper bound of + « is automatically generated, PL
cards are ignored by INPUT.

To fix a varioble af zero, the code FX with a value of zero
must be used.

Lower bound values may be positive or negative; upper
bound values must be positive.



The BOUNDS data card format is shown below.

Columns Description
2-3 Field 1: type of bound as specified by
the following codes:
Code Meaning
LO Lower bound
upP Upper bound
FX Fixed value
FR Free variable (- @ to + o)
PL Upper bound is +
5-12 Field 2: name of the row of bounds.
15-22 Field 3: name of the column with which
the variable to be bounded is associated.
25-36 Field 4: value of the bound for an LO,
UP, or FX card; otherwise blank.
40-47 Field 5: blank.
50-61 Field 6: blank.

NONSTANDARD CARD FORMATS FOR INPUT

Three nonstandard input formats are acceptable to the
INPUT procedure when the parameter SHARE is used. They
are:

1. LP/90/94 LP
2. UNIVAC 1108 LP

3. CDM4 LP

LP/90/94 SHARE FORMAT

The INPUT format when using LP/90/94 LP is

CALL INPUT (SHARE, 'LP90')

where the LP90 parameter must be enclosed by single quo-
tation marks.

LP/90/94 CHAPTERS

The following chapters of input information will be processed

when using LP/90/94.

ROW ID FIRST B
BASIS NEXT B,kkkk
MATRIX EOF

RHS NAMES

FMPS assigns the RHS name from the contents of columns

7 to 12 of the data cards for the FIRST B or NEXT B chapter.
If these columns are blank for the FIRST B chapter data
cards, the name *B1&6b6 (where b represents a blank) will be
assigned to this RHS. If columns 7 to 12 are blank for the
NEXT B chapter data cards, the RHS vectors will be named
*Bkkkk, where kkkk are characters copied from the NEXT
B,kkkk header card.

BASIS DATA CHAPTER

When the BASIS chapter header is encountered by the INPUT
procedure, ifs data is punched on cards in a format accept-
able to the BASISIN routine. No further processing of
BASIS data occurs, but the punched cards can be loaded as
a part of the FMPS input fo a subsequent run. The BASIS
data chapter can appear in any order relative to the other
chapter headings in the input stream.

ORDER OF INPUT

The following data chapters are directly processed upon in-
put and must appear in the order listed.

Data Type Status

1. ROW ID Required
2. MATRIX Required
3. FIRST B Required

4. NEXT B,kkkk Optional

CARD FORMAT

ROW ID. The first card of the ROW ID chapter is a ROW
ID indicator card. The card format is shown below.

Columns Description

1-6 ROWHID: where the characters 6 rep-
resent a blank.  This parameter is pres-
ent on the first ROW ID card only;

columns 1 to 6 are blank on all other
ROW ID cards.

12 Row type: where the type is specified by
one of the following codes.

Code Row Type

+ Less than or equal to

- Greater than or equal to
0 Equal to

<) Indicates a Free Row (for
example, Cost Row)

Nonstandard Card Formats for INPUT 25



Columns Description

13-18 Row name.
24 Row type.
25-30 Row name.
36 Row type.
37-42 Row name.
48 Row type.
49-54 Row name.
60 Row type.
61-66 Row name.

A pair of fields is ignored if both the row type and the row
name are blank. '

MATRIX. The first card of the MATRIX chapter isa MATRIX
indicator card. The MATRIX data is entered column by
column (all coefficients pertinent to one column must be
grouped together) as shown in the format outline below.
Note that only one coefficient can be defined per data
card.

Columns Description

1-6 MATRIX. This parameter is present on
the first MATRIX card only; columns 1 to
6 are blank on all other MATRIX cards.

7-12 Column name.

13-18 Row name.

19-30 Coefficient value; assumed format is

F12.6.

FIRST B. The first card of the FIRST B chapter is a FIRST B
indicator card, This card has FIRSTBB punched in columns
1 to 7. The data format is identical to that for MATRIX.
If columns 7 to 12 are blank on the data cards, the column
(right-hand~-side) wi!l automatically be named *Blbfb.

NEXT B,kkkk. The first card of the NEXT B,kkkk chapter
is a NEXT B,kkkk indicator card. This card has NEXT
B,kkkk punched in columns 1 to 11. The data format is
identical to that for MATRIX; if columns 7 to 12 are blank
on the data cards, the column (right-hand-~side) is auto~
matically named *Bkkki, where the characters kkkk are
copied from the indicator card.

BASIS. The first card of the BASIS chapter is a BASIS indi
cator card. BASIS data cards contain up to five pairs of
names, as shown below.

Columns Description

1-5 BASIS. This parameter is present on the
first BASIS card only; columns 1 to 5 are
blank on all other BASIS cards.

7-12 Variable to enter the basis.

26 Nonstandard Card Formats for INPUT

Columns Description

13-18 Variable to be excluded from the basis.
19-24 Variable to enter the basis.

25-30 Variable to be excluded from the basis.
31-36 Variable to enter the basis.

37-42  Variable to be excluded from the basis.
43-48 Variable to enter the basis.

49-54 Variable to be excluded from the basis.
55-60 Varial#le to enter the basis.

61-66 Variable to be excluded from the basis.

EOF. The EOF card has EOF punched in columns 1 to 3.

UNIVAC 1108 SHARE FORMAT

The INPUT format when using UNIVAC 1108 LP is

CALL INPUT (SHARE, '1108')

where the 1108 parameter must be enclosed by single quo~
tation marks.

UNIVAC 1108 CHAPTERS
The following chapters of input information will be pro-
cessed when using UNIVAC 1108,
DELETE
ROW ID
BASIS
MATRIX
FIRST B
NEXT B,kkkk
SPRICES
EOF
ENDATA

A maximum of 100 column or row names may be input as
part of the DELETE data. A minor error interrupt will occur
if this number is exceeded, and only the first 100 names
will be used.

RHS NAMES

RHS names are formed in the same manner as described for

LP/90/94 data above.



ORDER OF INPUT

The following data chapters are directly processed upon
input and must appear in the order listed.

Data Type Status

1. DELETE Optional
2. ROW ID Required
3. MATRIX Required
4. FIRST B Required
5. NEXT B kkkk Optional
6. SPRICES Optional

The BASIS chapter is optional and may appear anywhere in

the input deck. It is processedin the same manner described
for LP/90/94. If the SPRICES chapter is present in the in-
put data and is fo be used, the argument 'SPRICES® must be
present in the CALL INPUT argument list, as in

CALL INPUT (SHARE, '1108', 'SPRICES')

when the input source is the card reader, the SPRICES chap-
ter must be placed directly after the ROW ID chapter in the
data deck. When the input source is tape, the SPRICES
chapter may appear at the end.

If SPRICES is used, AOBJ must be set (through the control
language) to the name of the cost row for which the slack
prices apply. This must be done before the call to INPUT.

CARD FORMAT

DELETE. The first card of the DELETE chapter is a DELETE
indicator card. This card has DELETE punched in columns
1 to 6, and contains up to eleven name fields in columns

7-12, 13-18,...,67-72. All blank fields are ignored.

ROW ID, MATRIX, FIRST B, NEXT B, kkkk, and BASIS.
These data formats are identical to the corresponding data

formats for LP/90/94 SHARE.

SPRICES. The first card of the SPRICES chapter is a
SPRICES indicator card. This card has the format shown
below.

Columns Description

1-7 SPRICES. This parameter is present on
the first SPRICES card only; columns 1 to
5 are blank on all other SPRICES cards.

7-12 Row (slack) name.

19-30 Slack price: assumed format is F12.6.

Pairs for which both fields are blank are ignored. Inclusion
of variable names which do not correspond to any variable
in the matrix will cause an error comment during subsequent
processing of the punched BASIS cards, but will not cause
this run to be discontinued.

EOF. The EOF card has EOF punched in columns 1 to 3.

ENDATA. The ENDATA card has ENDATA punched in
columns 1 to 6.

CDM4 SHARE FORMAT

The INPUT format when using CDM4 LP is

CALL INPUT (SHARE, 'CDM4')

where the CDM4 parameter must be enclosed by single quo-
tation marks.

CDM4 CHAPTERS

The following chapters of input information will be pro-
cessed when using CDMA4.,

ROW ID
MATRIX
FIRST B
RHS
BASIS
NEWRHS
SECOND
ENDRHS
EOR

EOF

RHS NAMES

FMPS will introduce a new RHS vector in the input matrix
for every redefinition of the RHS vector in the input data.
Upon input, the original RHS vector is automatically named
*B0001; the first revised RHS vector, *B0002; the second
revised vector, *B0003, etc. Any of the vectors can be
specified for solution by assigning its name to the ARHS
communication cell, for example, ARHS = '*B0002".

ORDER OF INPUT

The following data chapters are directly processed upon
input and must appear in the order listed.

Data Type Status

1. ROW ID Required
2. EOR Optional
3. MATRIX Required
4. EOR Optional
5. FIRST B OR RHS Required

Nonstandard Card Formats for INPUT 27



Data Type Status

6. EOR OR ENDRHS Optional
7. NEWRHS OR SECOND Optional
8. EOR OR ENDRHS Optional
9. EOI = ENDATA Required

The BASIS chapter is optional and is treated in the same
manner as it is in LP/90/94 format.

CARD FORMAT

All data formats for CDM4 SHARE are identical to those
specified for LP/90/94 except ROW ID.

The first card of the ROW ID chapter is the ROW ID indi-

cator card. This card has the format shown below.

Columns Descriptian

1-6 ROWHID: This parameter is present on
the first ROW ID cardonly; columns 1 to
6 are blank on all other ROW ID cards.

12 Row type: where the type is specified
by one of the following codes.

Code  Row Type

+ Less than or equal to
- Greater than or equal to
0] Equal to

Indicates a Free Row (for
example, Cost Row)

13-18 Row name.
24 Row type.
25-30 Row name.
36 Row type.
37-42 Row name.
48 Row type.
49-54 Row name.
60 Row type.
61-66 Row name.

Row types and names on ROW ID data cards are interpreted
as outlined below.

1. If columns 19 to 24 or columns 12 to 18, or both, of
the data card are blank, the card is ignored.

2. If columns 19 to 24 and columns 12 to 18 of the data
card are nonblank, the data is read as follows:
Column 12 Row type.

Row name.

Columns 13-18

28 REVISE Data Cards

NAME AND ENDATA CARDS

Data may be read from cards or tape. When read from cards,
the data must be preceded by a standard NAME card and
must end with an ENDATA card. When read from tape, no
NAME or ENDATA card is required.

OUTPUT

The input data may include NAME cards other than the ones
mentioned above. FMPS will ignore the NAME card and
its associated data. However, a listing of this ignored data
is produced on the output medium. It is listed shifted to the
right beginning in print position 30.

The chapter headings, but not the associated data, which
are processed by FMPS are listed on the output medium left-
justified as they are read from the input stream.

SLACK INDICATORS ON ROWS CARDS

The row type is coded as shown for the ROW ID indicator

card above. If cost rows are not specified with a blank
slack indicator, the REVISE procedure must be called fol-
lowing the INPUT procedure to define the cost rows as

nonrestraining.

REVISE DATA CARDS

In the control language program, a procedure REVISE modi-
fies data previously processed by INPUT.

Essentially, the REVISE data deck is identical to the INPUT
data deck. It is composed of the same six chapters of
data: ROWS, SPRICES, COLUMNS, RHS, RANGES, and
BOUNDS. However, only those chapters to be actually
changed ore included. Within each chapter, four types of
revisions are possible:

MODIFY
DELETE
BEF ORE
AFTER

These revisions are stated on data cards similar to those used
for INPUT. First, the chapter to be revised is identified by
a chapter indicator card. Kinds of changes to be made are
then specified by REVISE control cards (MODIFY, DELETE,
BEFORE, and AFTER) and by actual data cards composing
the changes. This sequence is repeated for each section to
be revised. The use of REVISE is subject to the following
conditions.

1. Modifications may be made in any order subject to
the rule forbidding splitting of modifications inagiven
vector.

2. If an existing nonzero eiement is o be changed to
zero, it must be defined with the value of zero in
the REVISE data deck.



3. Any new vector fo be added must be given a name that
is different from the name given to any old vector, even
if that vector is to be deleted.

4. If an E-, L=, or G~type row is modified intoan N-type
row, range elements in the row are automatically
removed.

5. A modified row or bound element must be entirely re-
defined, that is, a row must have its type of constraint
specified. A bound element must have both its lower
and upper limits specified even if only one is modified.

6. To keep each individual modification in core, the
REVISE deck should not include more than 100 data
cards for any individual revision type (MODIFY,
DELETE, etc.) within a chapter. If the deck is too
large, the KMAJER interrupt is taken. If revisions are
extensive enough to require more than 100 data cards
for any individual revision type within a chapter, the
revision data should be separated into individual decks
of proper size, and one call for REVISE should be made
for each deck. NAME and ENDATA cards must be
inserted before and after each deck.

7. If a row is added by using BEFORE or AFTER in the
ROWS section, values are entered in this row for exist-
ing columns by using MODIFY.

ROWS CARDS FOR REVISE

MODIFY The MODIFY chapter indicator card signifies
that the row definition cards that follow redefine the exist-
ing type of row. The command word MODIFY is punched
in columns 2 to 7, as in

MODIFY

DELETE  The DELETE chapter indicator card signifies that
the data cards that follow contain the names of existing row
(punched in columns 5 to 12) are to be deleted. DELETE is
punched in columns 2 to 7, as in

DELETE

BEFORE  The BEFORE chapter indicator card signifies
that row definition cards that follow are tobe inserted before
the row named in the indicator card (specified in columns
15 to 22). If no row is specified, the rows will be inserted
before the first row. BEFORE is punched in columns 2 to 7.
Hence, the card takes the form

BEFORE name

AFTER  The AFTER chapter indicator card signifies that

row definition cards that follow are to be inserted after the

row named in the indicator card (specified in columns 15 to
22). 1f no row is specified, the rows will be inserted after
the last row. AFTER is punched in columns 2 to 7. Hence,
‘the card takes the form

AFTER name

SPRICES CARDS FOR REVISE

Slack prices for any new rows must be defined immediately
following the SPRICES chapter indicator. The format of the
data cards is the same as required by INPUT. Do not use
BEFORE or AFTER indicators.

MODIFY The MODIFY indicator card signifies that the
following data cards define new slack prices for existing
slacks. All prices for an existing slack must be redefined,
even if only one price is modified. MODIFY is punched in
columns 2 to 7, as in

MODIFY

COLUMNS CARDS FOR REVISE

MODIFY The MODIFY indicator card signifies that the
following data cards redefine coefficients in existing col-
umns and/or places coefficients in new rows of existing
columns. All modified coefficents for the same column
must be grouped together. The command word MODIFY is
punched in columns 2 to 7, as in

MODIFY

DELETE  The DELETE indicator card signifies that the fol-
lowing data cards contain the names (in columns 5 to 12) of
existing columns to be deleted from the matrix. DELETE is
punched in columns 2 fo 7, as in

DELETE

BEFORE The BEFORE indicator card signifies that the
following data cards define new matrix columns that are to
be inserted in the matrix before the existing column named
in the indicator card (specified in columns 15 to 22). If no
column is specified, the new columns will be inserted before
the first existing column. BEFORE takes the form,

BEFORE name

AFTER  The AFTER indicator card signifies that the follow-
ing data cards define new matrix columns that are to be
inserted in the matrix after the existing column named in

REVISE Data Cards 29



the indicator card (specified in columns 15 to 22). If col-
ums 15 to 22 are blank, the new columns will be inserted
after the last existing column. AFTER is punched in columns
2 to 6. The form of the AFTER command is

AFTER name

RHS CARDS FOR REVISE

Revisions to the RHS chapter are the same as for the
COLUMNS chapter with the exception that the name field
(columns 15 to 22) of the BEFORE and AFTER indicator card
refers to names of the RHS vectors.

RANGES CARDS FOR REVISE

Range values for new rows must be first. They may be intro-
duced by BEFORE or AFTER, but neither is necessary.

MODIFY The MODIFY indicator card signifies that the
following data cards redefine a range value on an existing
row. MODIFY is punched in columns 2 to 7, as in

MODIFY

DELETE The DELETE indicator card signifies that the fol-
lowing cards contain (in columns 5 to 12) the name of the
row that is to have its range value removed. DELETE is
punched in columns 2 to 7, as in

DELETE

BOUNDS CARDS FOR REVISE

MODIFY The MODIFY indicator card signifies that the
data cards that follow redefine the bounds on existing col-
umns. Note that the bounds on any column must be restated
completely. For example, if only the lower bound was
being changed, any upper bound on that column must be
restated. MODIFY is punched in columns 2 to 7, as in

( MODIFY

DELETE  The DELETE indicator card signifies that the fol-
lowing data cards confain (in columns 5 to 12) the name of
the existing column for which all bounds will be removed.
DELETE is punched in columns 2 to 7, as in

( DELETE

30 BASISIN/BASISOUT Data Cards

BEFORE  The BEFORE indicator card signifies that the
data cards that follow define the bounds for new columns.
The BEFORE card should be identical to the BEFORE card
that defined the new columns in the COLUMNS chapter.
BEFORE has the form

( BEFORE name

AFTER  The AFTER indicator card signifies that the data
cards that follow define the bounds for new columns. The
AFTER card should be identical to the AFTER card that de-
fined the new columns in the COLUMNS chapter.

BASISIN/BASISOUT DATA CARDS

Data for the BASISIN procedure is the same as the output
from the BASISOUT procedure. As with all data decks, the
data is preceded by a NAME card and terminated by an
ENDATA card. The general form of the data card is shown
below.

Columns Description
2-3 Field 1: two-letter indicator that speci-
fies one of the following actions.
Code Action
XU Remove the variable named in
Field 3 from the basis and set
it at upper bound. Put the
variable named in Field 2 in
the basis.
XL Remove the variable named in
Field 3 from the basis and set
it ot lower bound. Put the
variable named in Field 2 in
the basis.
UL Set the variable named in
Field 2 at upper bound.
Field 3 is ignored.
LL Set the variable named in
Field 2 at lower bound. Field
3 is ignored.
5-12 Field 2: name 1.
15-22 Field 3: name 2.
25-36 Field 4: not used.
40-47 Field 5: not used.
50-61 Field 6: not used.

LL indicators are not necessary if the MODIFY parameter

is not used on BASISIN since all variables will be auto-
matically initialized to lower bound. BASISOUT will not
output any LL indicators.



LOADLIST DATA CARDS

As with all data decks, LOADLIST data is preceded by a
NAME card and terminated by an ENDATA card.

INDICATOR CARDS

The LOADLIST data deck consists of data cards grouped
according to the type of data (names or masks) they con-
tain. A group of cards containing the same type of data is
called a chapter. The first card of a chapter is always an
indicator card which identifies the type of data in that
chapter. Indicator cards contain only one word (NAMES
or MASKS, beginning in column 1) which specifies the type
of data cards that follow.

DATA CARDS

Data cards are divided into ten 8-column fields. Field 1 is
always blank. The ten fields of a data card are outlined
below.

Columns Description

1-8 Field 1: blank

9-16 Field 2: name or mask.
17-24 Field 3: name or mask.

Columns Description

25-32 Field 4: name or mask.
33-40 Field 5: name or mask.
41-48 Field 6: name or mask.
49-56 Field 7: name or mask.
57-64 Field 8: name or mask.
65-72 Field 9: name or mask.
73-80 Field 10: name or mask.

NAMES DATA CARDS

NAMES cards specify the names of rows or columns in the
selection list. Each data card contains up to nine names
in Fields 2 to 10. Field 1 is always blank. If a field other
than 1 contains all blanks, it is ignored.

MASKS DATA CARDS

MASKS cards specify the masks for selecting rows or columns.
Each data card contains up fo nine masks in Fields 2 to 10.
Field 1 is always blank, If a field other than 1 contains
all blanks, it is ignored.

LOADLIST Data Cards 31



6. LINEAR PROGRAMMING OPERATING MODE

Use and operation of procedures in the linear programming
mode will be described in this chapter. The procedures
are presented in four logical phases.

1. Input

2. Optimization

3. Output

4, Preservation and Restoration

(Parametric programming, an optional procedure available
for use in the linear programming operating mode, is de-

scribed in Appendix A.)

INPUT PHASE

The input phase consists of two procedures, INPUT and
REVISE. An outline of each is given in Table 10 below.

Table 10. Input Procedures

Procedure Purpose

INPUT Initially states the LP
matrix.

REVISE Makes revisions to the
LP matrix.

INPUT The INPUT procedure specifies a linear pro-
gramming matrix to FMPS. This procedure reads the input
data and converts it into a compact internal representation
on file MATRIX, The following internal files (see Table 7)
must be defined before the call for INPUT,

1. MATRIX
2. INVERSE
3. UTIL1

4. UTIL2

Also, if INPUT's data are on file, the user'scommunication
file must be defined too.

The input file may consist of more than one reel of tape.
The primary input unit must be defined through the DEVICE
and ATTACH procedures. The second unit will be the next
reel specified in the BPM assign control command. The
occurrence of a tape end-of-file on the input tape causes
switching to the alternate input tape.

For example, consider the case where input consists of three
reels of tape, numbered 104, 59, and 73. The user pro-
vides ASSIGN statements to mount tapes 104, 59, and 73
on the primary input unit in that order. He also provides

32 Linear Programming Operating Mode

a DEVICE and ATTACH statement to define the primary
input unit, as in

IASSIGN F:6, (DEVICE, MT), (INSN, 104, 59, 73). ..
CALL DEVICE ('TAPE6', TAPE, 'F')
CALL ATTACH ("MYFILE', 'TAPE6', FORTRAN, OLD)

CALL INPUT (FILE, '"MYFILE")

The data deck setup for the INPUT procedure is shown in
Chapter 5.

The INPUT procedure will also accept input in the SHARE
formats of other LP systems. These include 1108 LP data,
LP/90/94 data, and CDM4 LP data. Chapter 5 contains
detailed information about SHARE input formats.

The following CR variables must be initialized before the

call for INPUT.
CR Variable
ADATA

Explanation

Contains the name of the data deck for
data reading procedures such as INPUT
and REVISE. Also used by data out-
putting procedures such as BASISOUT
to name output data deck.

APBNAME The name to be assigned to the LP

problem.

Optional parameters for INPUT are given below.

Parameter Explanation

SHARE Indicates that the input is in SHARE
format and not in standard FMPS format.
If this parameter is not present, stan-
dard FMPS format is assumed.

'1108' Inputisin UNIVAC 1108 LP SHARE for-
mat. The quotation marks are required.

'LP20" Input is in LP/90/94 SHARE format. The
quotation marks are required.

'CDM4! Input is in CDM4 SHARE format. The
quotation marks are required.

'SPRICES' Indicates that the slack prices chapter
is present in the input data and is to be
used. Used only with SHARE.

FILE Indicates that the input data are to be

found on file 'filename'. If the param-

eter is not used, INPUT data are as-
sumed to be on the standard card input
device.



Parameter Explanation

'filename' The symbolic name of the communica-

tion file on which the input data re-

side. The quotation marks are required.

The following interrupts may occur within INPUT.

Interrupt Causes

KMAJER 1.

Invalid parameter.
2. Input data not found.

3. Minimum required input not found

(ROWS, COLUMNS, and RHS).
4, Undefined files.

Rows chapter exceeds available
memory.

6. FILE 'filename' undefined.
KMINER 1. Duplicate columns. The duplicate
column is ignored.

2. Duplicate element. The duplicate
element is ignored.

3. Invalid indicator in ROWS or
BOUNDS chapter.

4, Invalid combination of indicators
in BOUNDS chapter.

5. Columns out of sort in BOUNDS
chapter,

KIOER 1. An irrecoverable input/output er=
ror has occurred.

2. Insufficient storage allocated for
internal files.

REVISE The REVISE procedure modifies a matrix ac-
cording to the input data from the standard card input
device or from an internal communication file. Any ele-
ment of the matrix can be modified, deleted, or inserted.

REVISE requires that the matrix to be revised be currently
loaded in the MATRIX file, and that all of the standard
FMPS internal files be defined. Initial loading of the
matrix may be performed by INPUT or RESTORE. Matrix
information is not destroyedor modified during execution
of any other procedure except for CRASH (see "Optimiza=
tion Phase" later in this chapter), which may alter the
bound status of certain variables and set certain equations
nonrestraining if the MODIFY parameter is used. CR vari-
able ADATA contains the name of the REVISE data deck
or identification record name if the data is on file.

Calling the REVISE procedure causes the problem to be
initialized to a slack basis. If REVISE is called at a
stage of the problem where the basis is not a slack basis,
it may be desirable to preserve the current basis (BASISOUT)
prior to the call for REVISE, and to reinstate the current
basis following the call for REVISE (BASISIN and INVERT).

The data card format is the same as for INPUT. Refer to
Chapter 5 for information about data deck setup.

Optional parameters for REVISE are given below.

Parameter Explanation

FILE Indicates that the input data for
REVISE are on the file 'filename'.

'filename’ The symbolic name of the communica-

tion file on which the input data
resides.

The following interrupts may occur within REVISE.

Interrupt Causes

KMAJER 1.

Invalid parameter.

2. Input data not found.
3. Undefined files.
4

ROWS chapter exceeds available
memory.

5. No matrix exists to REVISE.

KMINER 1. Duplicate columns. The duplicate

column is ignored.

2. Duplicate element. The duplicate
element is ignored.

3. Invalid indicator in ROWS or
BOUNDS chapter.

4. Invalid combination of indicators

in BOUNDS chapter.
5. Columns out of sort in BOUNDS
chapter.

KIOER 1. An irrecoverable input/output er-

ror has occurred.

2. Insufficient storage allocated for
internal files.

OPTIMIZATION PHASE

The optimization phase contains three procedures, OPTI-
MIZE, INVERT, and CRASH. An outline of each is

given in Table 11 below.

Table 11.  Optimization Procedures

Procedure Purpose

OPTIMIZE Attempts to find an optimal, feasible

solution to the existing matrix.

INVERT Restates the product form of the in=
verse in terms of the minimum num-
ber of transformation required to
state the basis.

CRASH Attempts to find a better initial
basis.

Optimization Phase 33



OPTIMIZE The OPTIMIZE procedure attempts to find
an optimal feasible solution to the linear programming
model. If the model has no feasible solution or the
solution is unbounded, OPTIMIZE causes the KNFS or
KUBS interrupts to occur.

While the model is infeasible, OPTIMIZE uses a composite
pricing (PI) vector. (Infeasibility is defined as the amount
by which a basis variable is below its lower bound or above
its upper bound.} The function of the composite PI vector
is either to maintain or to move toward optimality while
achieving feasibility. CR cell FCMPDJ is the compositing
factor which determines the balance between the drive for
optimality and/or feasibility. As an example, a value of
0.5 for FDMPDJ implies a balanced driving force between
optimality and feasibility, while avalue of 0.0 implies total
disregard for optimality. When a balanced driving force is
requested, OPTIMIZE systematically reduces FCMPDJ by
0.125 if the drive for feasibility is insufficient.

CR variable ITWGHT is used to weight individual infeasi-
bilities. The standard setting for IWGHT is 0, which im-
plies that all infeasibilities are given equal weight. If
IIWGHT isset to -1, individual infeasibilities are weighted
by the amount by which they are infeasible. If IIWGHT is
set to +1, individual infeasibilities are weighted by the re-
ciprocal of the amount by which they are infeasible.

Setting IIWGHT equal to =1 during part of the first phase
of OPTIMIZE (the phase which attempts to eliminate all
infeasibilities) may help reduce the number of iterations
required to arrive at a feasible solution. However, this
may also cause the problem to cycle. Therefore, it is
recommended that the use of IIWGHT = -1 be limited to
a given number of iterations or to a time period. This is
done by initializing CR variables IFREQA or ITIME and
setting IIWGHT to zero or to +1 for the remainder of this
phase of OPTIMIZE.

CR variable FEPSILON may be used to perturb zero RHS
elements on degenerate problems. For "less~than" con-
straints, zero RHS elements are replaced with FEPSILON,
For "greater-than" constraints, zero RHS elements are re-

placed with -FEPSILON.

Problems for which the OPTIMIZE iteration log shows a
zero ACTIVITY value for a large number of iterations may
benefit from such perturbation. This is effected by the
following control program statements.

FEPSILON = 1.0D-5
CALL OPTIMIZE
FEPSILON = 0.0
CALL OPTIMIZE

The communication region variables utilized by OPTIMIZE
are listed below. Of all the variables in the list, only
ARHS, AOBJ, and FOBJWT must be initialized by the user
prior to calling OPTIMIZE.

CR Variable Explanation
ARHS Name of the right-hand side.
AOBJ Name of the objective row.

34 Optimization Phase

The weight given to the objective
function. Must be +1. 0 for mini-
zation, -1.0 for maximization.

Factor used in determining effective
DJ when infeasible, as in

DJE=FCMPDJ * DJ + (1.0
-FCMPDJ) * DJI

DJE is the effective DJ of
the column,

DJ is the true DJ of the
column.

DJI is the DJ based on in-
feasibility removal qualities

of column.

Number of profitable candidates from
which one is selected during pricing
of the matrix. For example, if
INCAND is 5, then from each group
of five profitable columns, the most
profitable is selected. [If INCAND is
zero, the system will attempt to choose

Infeasibility weighting switch, ac-
cording to codes shown below.

-1 Weight by amount of
infeasibility.

0 All infeasibilities given
equal weight.

+1 Weight by reciprocal of
amount of infeasibility.

The value used to replace zero right-
hand-side elements of inequalities on
degenerate problems. If the constraint
is of the less=than type, a zero RHS
element is replaced with FEPSILON.
If the constraint is of the greater-than
type, a zero RHS element is replaced

DJ zero tolerance. If the absolute
value of the reduced cost (DJ) is less
than FDJZT, it is considered zero.

Infeasibility zero tolerance. If the
absolute value of the amount of in~
feasibility is less FINFZT, the vari-
able is considered feasible.

CR Variable Explanation
FOBJWT
FCMPDJ

where
INCAND

the optimum set.
[IWGHT

Code Meaning
FEPSILON

with =FEPSILON.
FDJZT
FINFZT
FMPIVT

Minimum pivot tolerance. During any
optimization procedure (here, INVERT
is not considered an optimization pro-
cedure), an element is not considered
as potentially pivotal unless its absol-
ute value is greater than FMPIVT,



CR Variable

Explanation

ILOGC

ILOGP

ILOGSS

IFREQI

IFREQA

ITIME

INVTIME

Iteration logging frequency on con-
sole typewriter,

Iteration logging frequency for stan-
dard printing device.

On/Off switch for printing column
selection messages during pricing of
matrix.

Iteration frequency interrupt for in-
version. The KINV interrupt will
occur every IFREQI iterations

(IFREQI 2 0).

Iteration frequency interrupt. If
IFREQA is 0, no inferrupt will occur.
Otherwise, the KFREQA will occur
every IFREQA iterations.

The length of time, in minutes, before
the KTIME interrupt will occur. The
KTIME interrupt does not occur if
KTIME is set to zero. Whenever the
KTIME interrupt occurs, KTIME is

set to zero. Time for KTIME is mea-
sured from the time of the last initial-
ization of ITIME.

Switch controlling the KINV inter-
rupt timing routine in the OPTIMIZE
procedure. If INVTIME is 0, the
timing routine is active and causes
KINV inferrupt at times such that the
total optimization time tends to be
minimum. If INVTIME is -1, the

timing routine is not active.

The following interrupts may occur within OPTIMIZE.

Interrupt

KMAJER

KIOER

KNFS
KUBS

KINV

Causes

1. AOBJ or ARHS undefined.

2. No matrix to optimize,

1. Unrecoverable 1/O error.

2. INVERSE file capacity
exceeded.

No feasible solution.
Unbounded solution.

1. Inversion frequency (IFREQI)
to be satisfied.

2. Correcting numerical errors.
3. Inverse exceeding file storage.
4. Clock control active. Cor-

rective action requires calling

the INVERT procedure.

Interrupt Causes
KFREQA User iteration frequency (IFREQA)
- satisfied.
KTIME User-specified time increment reached.

Some possible difficulties that may occur during optimiza-
tion, and some suggested cures are given below,

DEGENERACY

If many RHS coefficients are zero, the problem may be de-
generate. Degenerate problems are characterized by an
inability to reduce infeasibilities beyond a certain number
during phase one, or an excessive number of iterations to
arrive at the optimal solution.

The cure is crashing before calling for OPTIMIZE. Use of
the MODIFY parameter in the call for CRASH is recom-
mended. However, since this causes modification of the
matrix data, one may have to save (using the SAVE pro-
cedure) the current matrix before calling for CRASH
(MODIFY), preserve the optimal basis after optimization
(BASISOUT), reload the original matrix by means of
RESTORE, reload the optimal basis (BASISIN), and invert
to the optimal basis (INVERT). This in effect cancels any
changes made by CRASH to the matrix and allows subse-
quent execution of PARARHS or the use of an alternate
RHS vector.

Another cure is to use RHS perturbation (FEPSILON).
PIVOT REJECTIONS

Exception messages printed by the OPTIMIZE and INVERT
procedures indicate pivot rejections. Subsequently, the
problem may become pseudo-infeasible, or pseudo-unbounded,
or may become pseudo-optimal during phase two of
OPTIMIZE. Also, the numerical accuracy may be impaired.

Generally, occasional pivot rejections during the OPTIMIZE
procedure have no adverse effects. Pivot rejections during
INVERT may result in some of the abnormalities listed
above.

The following actions may correct pivot rejections:

1. Raise the value of the FABSZT and/or of the FRELZT
tolerances: this tends to eliminate small terms from
the matrix, thus making it more unlikely for a pivot
to be small enough to be rejected. During computa-
tions, round-off errors may cause certain zero ele-
ments in the transformed mairix to be computed as
very small values. Hence, the FABSZT and FRELZT
tolerances should be set large enough so that resulting
pseudo-values will not be chosen as pivot terms. Care
must be taken not to use too large a value; since this
could eliminate valid elements.

2. Lower the value of FMPIVT and FMINVT: during OPTI-

MIZE and INVERT, pivoting on very small elements may
cause loss of numerical accuracy. To avoid this, elements

Optimization Phase 35



smaller than FMPIVT and FMINVT are rejected as
pivot elements. Values that are too large for these
tolerances may result in ignoring valid pivot terms,
thereby causing unboundness or preventing feasibility.

3. Eliminate poor scaling of the matrix: scaling is ade-
quate when the mairix coefficients are within two or
three orders of magnitude of each other,

INVERT The INVERT procedure establishes the produci-
form inverse for the currently specified basis. To minimize
the number of elements in the inverse and, therefore, re-
duce numerical rounding error and computation time, IN-
VERT uses the most modern techniques in triangularization
and sub-triangularization, INVERT may be called either
explicitly by the user or as the result of the KINV
inferrupt.

Periodic calls to INVERT from OPTIMIZE help preserve
numerical accuracy and reduce total optimization time,

Such calls are automatically executed at suitable time

intervals. Setting CR variable INVTIME to a negative
value inhibits these automatic calls,

CR variable IFREQI, if set to a positive nonzero value,
controls the maximum number of iterations that can occur
between occurrences of the KINV interrupt., Exceptional
conditions, such as the INVERSE procedure exceeding
file storage, or loss of accuracy during OPTIMIZE,
PARARHS, or PARAOBJ procedures, may also cause the
KINV interrupt to occur.

In general, operating with INVTIME =0 and IFREQI =0
gives the best speed and accuracy. CR region variable
*FMINVT is used by INVERT as the minimum pivot toler-
ance, Elements are not considered pivotal if their value
is smaller than FMINVT, FMINVT should be initialized
to a value smaller than the value used for FMPIVT, the
minimum pivot tolerance for OPTIMIZE,

The following interrupts may occur within INVERT,

Interrupt Causes

KMAJER 1. No matrix defined.

2. No basis to invert to,

KIOER Irrecoverable input/output error.

CRASH The CRASH procedure attempts to find an initial
basis structure that reduces infeasibility, reduces degeneracy,
and that contains variables that must be basic at solution,
In addition, any row that has no feasible solution is pointed
out and a KNFS interrupt occurs,

In the following LP equation,
2A X, %S, =RHS,
oy i

the sign of the slack coefficient S; is positive for equa-
tions of the fype "less than" or "equdi to", and nega-
tive for equations of the type "greater than". Both A;:
and S; are referred to as elements. RHS; is the right-
hand-side coefficient,

36 Optimization Phase

The following messages may be printed during CRASH.

ROW xxxxxxxx DOMINATING. ROW SET NON-
RESTRAINING (FREE).

This message is produced when row xxxxxxxx has a zero
RHS and either no plus elements or no negative elements,
Since this equation constrains all of the columns having
elements in it to zero, CRASH will also fix all those col-
umns af lower bound. This is equivalent to having speci-
fied the row as N (nonrestraining) in the ROWS chapter
during INPUT.

SLACK ON ROW xxxxxxxx SET FREE.

This message is produced when the slack for row xxxxxxxx
is the only plus element in the row. Therefore, the slack
for this row must be basic. This is equivalent to having
specified the row as N (nonrestraining) in the ROWS chap-
ter during INPUT.

COLUMN yyyyyyyy SET FREE IN ROW xxxxxxxx.

This message is produced if the element in column yyyyyyyy
is the only plus element in equality row xxxxxxxx and the
RHS for this row is positive or zero, or if the element in
column yyyyyyyy is the only minus element if row xxxxxxxx
and the RHS for this row is zero. Column yyyyyyyy is
entered into the basis in row xxxxxxxx. This is equivalent
to having specified the column as FR (free) in the BOUNDS
chapter during INPUT.

COLUMN vyyyyyyyy FIXED AT LOWER BOUND.

This message is produced whenever a column has an element
in a dominating row implying that it must be nonbasic. This
is equivaient to having specified the column as FX (fixed at
lower bound) in the BOUNDS chapter during INPUT.

A summary line is printed stating the number of rows set free
(slack on rows must be basic), the number of columns set
free (columns that must be basic), the number of fixed col~
umns (columns that must be nonbasic), and the number of
rows that have no feasible solution.

INVERT is autematically called by CRASH fo invert to the
basis described by CRASH.

If it is desired to have the free and fixed status applied fo
the MATRIX, the parameter MODIFY on the call for CRASH
will effect this.

Crashing often results in a significant speed increase in the
OPTIMIZE procedure if the problem is degenerate and
MODIFY is specified. The CRASH execution time is gener-
ally negligible compared with the OPTIMIZE time.

If the right=hand-side parametric procedure is to be used

later in the run, or if a successive case is run which is ob-
tained from the current case by use of the REVISE pro-
cedure or by using other right-hand-sides, and the



MODIFY parameter is specified, the following sequence
of operations is necessary.

1. Save the problembefore callingfor CRASH (call SAVE).

2. Save the optional basis after reaching the solution
(CALL BASISOUT, FILE, 'filename’).

Restore the original matrix (call RESTORE).
4. Restore the optimal basis (CALL BASISIN, FILE,

filename').

Note that if parametric programming is to be used later in
the run or other right-hand-sides are to be used, MODIFY
should not be used since the free and fixed status assigned
by CRASH will not be valid for another right-hand=-side or
for PARARHS.

The optional parameter for CRASH is given below.

Parameter Explanation

MODIFY Indicates that the free and fixed

status of variables is to be made

permanent in the MATRIX.

The following communication region variables must be ini-
tialized by the user prior to the call for CRASH.

CR Variable Explanation
ARHS Name of the right-hand-side.
AOBJ Name of the cost row.

The following interrupts may occur within CRASH.

Interrupt Causes

KMAJER 1. AOBJ or ARHS undefined.

2. No matrix to optimize.

KIOER 1.

Irrecoverable input/output
error.

2. File capacity exceeded.

KNFS No feasible solution.

OUTPUT PHASE

The output phase contains five procedures, OUTPUT,
SOLUTION, ERRORS, CONDITION, and GET. An out-
line of each is given in Table 12.

Table 12. Output Procedures

Procedure Purpose

OUTPUT

Displays the matrix in various
forms.

SOLUTION

Reports the solution values.

Table 12. Output Procedures (cont. )

Procedure Purpose
ERRORS Examines errors in the solution.
CONDITION Displays the condition of vari-
ous FMPS regions and files.
GET Retrieves solution information
in the control language.
OUTPUT

The OUTPUT procedure displays the entire ma-
trix or a selected subset on the standard printing device, or
files on the internal communications device. OUTPUT
displays the entire original matrix in tabular form on the
standard printing device. Referring to the LP equation
formulations below,

A. X, S =RHS
ij i i
Ci X. — Maximum

The OUTPUT procedure displays the values of the following
elements:

Coefficients Aij

Coefficient Si (value of 1 for the slack variable)
Right-Hand-Side values RHS

Cost coefficient Ci

The options of OUTPUT (described in Table 13) control the
following display options:

1. Grouping of the coefficients: the coefficients can be
grouped and displayed for each variable (matrix col-
umn), or for each equation (matrix row), or can be
displayed on the printer form in such a way that they
form the entire matrix when the printer pages are sepa-
rated and reassembled together in acertain manner. The
grouping by rows is generally the most compact way of
displaying large LP matrices. The grouping in tableau
format is only practical for small problems (less than
200 variables).

2. Representation of the coefficient values (numerical
value) or symbol for order of magnitude.

3. Applicability of selection lists: output may be made to
include or exclude all coefficients for specified rows
or for rows the names of which match specified row
masks or both, or for specified columns or for columns
the names of which match specified column masks.
If desired, row and column selection lists may be
used in conjunction with each other to abstract
further the printed output. Two special selection
lists, LISTI and LISTU can also be used in this con-
nection. LISTI identifies the set of all infeasible
equations (rows) and LISTU identifies the set of all
unbounded variables (columns) at the time of the

call for OUTPUT.

Optimization Phase 37



4, Whether to display the original or current coefficients: those for the simplex tableau corresponding to the
referring to the simplex tableau, the original coeffi- current basis,
cients are the Coefficients, Right-Hand-Side Coeffi-
cients, Slack Coefficients, and objective Function .
coefficients for the initial tableau (all slack basis). Output Medium: the report prepared by OUTPUT is dir-
Contrasted with this, the "current" coefficients are ected to the standard printing device.

Table 13. Parameters for QUTPUT

Parameter Output Device Function of Parameter
(PRINTER)

CURRENT Optional The requested elements of the matrix are premultiplied by the in-
verse to bring them up to date with the current basis.

CODED Optional Provides a condensed, coded picture of matrix tableau,

BYROWS Optional The nonzero elements of the row along with the names of the col-
umn in which they reside are displayed. (Matrix displayed row
by row.)

BYCOLS Optional The nonzero elements of the column along with the names of the

rows in which they reside are displayed. (Matrix displayed col-
umn by column,)

COUNTS The name, type, and element count of each row, column, and
RHS is printed according to the following codes.

The type for a row is printed:
Row Type Meaning

N Nonrestraining

E Equality

G Greater than

GR Greater than with a range
L Less than

LR Less than with a range

The type for o column or RHS Is printed:
b

Row Type Meaning

FX Fixed
FR Free
LO Lower bounded
UpP Upper bounded
Ly Lower and upper bounded
MATRIX Outputs the matrix in card image form on the card punch or to a

CARD communication file if the FILE, 'filename' parameters are
specified. The contents of CR variable ADATA will be placed in
columns 15 to 22 of the generated NAME card.

ROWS Optional Indicates that row selection or exception lists are to be used.

COLS Optional Indicates that column selection or exception lists are to be used.

EXCEPT Optional Indicates that the following parameter is a list reference and
items in list are to be excepted from output.

LISTR Optional Used in connection with ROWS parameter to specify that LISTR
contains the row selection or exception list,

LISTC Cptional Used in connection with COLS parameter to specify that LISTC

contains the column selection or exception list,

38 Optimization Phase



Table 13. Parameters for OUTPUT (cont.)

Parameter Output Device Function of Parameter
(PRINTER)
LISTI Optional Used in connection with ROWS parameter to specify that the row

selection list is composed of all infeasible rows.

LISTU Optional Used in connection with COLS parameter to specify that the col-
umn selection list is composed of unbounded columns,

FILE Indicates that requested output be written on internal communi-
cation file (as well as printed).

'filename' Used in connection with FILE parameter fo specify 'filename' of
internal communication file.

Notes:

ROWS, LISTR
ROWS, LISTI
ROWS, EXCEPT, LISTR
ROWS, EXCEPT, LISTI

excluded from output.

COLS, LISTC
COLS, LISTU
COLS, EXCEPT, LISTC
COLS, EXCEPT, LISTU

output,

Either BYROWS or BYCOLS must be specified, but not both.
Element values displayed are the original ones as loaded by INPUT unless the parameter CURRENT is specified.
Unless BYROWS or BYCOLS is specified, the matrix is displayed in tableau format,

Parameter ROWS, if specified, must always be part of one of the following parameter sequences:

This parameter specifies that only those elements in the rows specified in LISTR or LISTI are to be output or to be

Parameter COLS, if specified, must always be part of one of the following parameter sequences:

This parameter specifies that elements in the columns specified in LISTC or LISTU are to be output or excluded from

The following control program statements are useful in
determining the cause of infeasibility or unboundedness if it
occurs during CRASH, OPTIMIZE, PARAOBJ, or PARARHS:

C INITIALIZE UNBOUNDEDNESS INTERRUPT
CELL TO TRANSFER TO 500
ASSIGN 500 TO KUBS

C INITIALIZE INFEASIBILITY INTERRUPT CELL
CELL TO TRANSFER TO 510
ASSIGN 510 TO KNFS

C ENTRY FOR UNBOUNDED PROBLEM INTERRUPT
500 CALL OUTPUT (BYCOLS, COLS, LISTU)
503 CALL SOLUTION
STOP
C ENTRY FOR INFEASIBLE PROBLEM INTERRUPT
510 CALL OUTPUT (BYROWS, ROWS, LISTI)
GO TO 505

In case of unboundedness, the matrix columns for the un-
bounded variables are output.

In case of infeasibility, the matrix rows for the infeasible
constraints are output.

The following example illustrates the use of OUTPUT to
display the original form of the elements in the rows speci-
fied in LISTR but not in the columns specified in LISTC.

CALL OUTPUT (BYROWS, ROWS, LISTR, COLS,
EXCEPT, LISTC)

The following interrupts may occur within OUTPUT

Interrupt Causes
KMAJER 1. No matrix has been processed
by INPUT.
2. There is no file with the name
'filename’.
KMINER 1. Noull selection list.

2. Invalid parameters.

3. Illogical combination of
parameters

KIOER Irrecoverable input/output error.

Optimization Phase 39



SOLUTION The OPTIMIZE procedure does not auto=~
matically print the solution values when an optimal solu-
tion is reached. Its only purpose is to produce the optimal
basis. Calling for the SOLUTION procedure allows the
user to output the actual solution report.

The same mode of operation applies for parametric program-
ming on the Right=Hand-Side and Costrow. Parametric pro-
cedures PARARHS and PARAOBJ create the basis for various
values of the parameter FTHETAR and FTHETAC but do not
print the solutions, this requires a call to SOLUTION.

Keeping the solution output function separate from the
optimization or parameiric procedures allows greater flexi-
bility in the use of these procedures. Also, since the
solution is called from the control program, tests may be
programmed in the control program, using the IF stafement
“to print the solution only under certain conditions. Addi-
tionally, several solution reports may be created for a
given problem using different selection lists.

SOLUTION may also be used after a call to RESTORE,
thereby printing the solution for a problem previously
saved on a RESTART file, or after the sequence CALL
BASISIN, CALL INVERT to output the solution pertaining
to a user-specified basis.

The normal mode of SOLUTION is to print the solution
on the standard printing device. If the optional parameter
FILE is specified, the specified information is also placed
on communication file 'filename'. 1In this case, the
RCHAPTER and/or CCHAPTER parameters must be used to
specify the columns of output fo be filed.

SOLUTION output is prepared in two chapters, ROWS and
COLUMNS. The ROWS chapter contains information on
the selected rows in the matrix. The report contains nine
columns of information. Table 14 describes each of the
nine columns for the ROWS chapter. The COLUMNS
chapter contains information on the selected columns in
the matrix. The columns report contains eight columns
which are described in Table 15.

If the FILE option is used, it is possibie to file the data
columns selectively in each chapter as well as select which
rows and columns to output. Each data column has been
assigned a number. Tables 14 and 15 list the numbers as
well as the headings in each chapter.

The data columns are selected for filing by using the
keyword parameters RCHAPTER and CCHAPTER, each
followed by the numbers of the data columns to be
filed.

Table 14, ROWS Chapter Column Description

Column Heading Description of Information in Column
1 NUMBER The internal serial number associated with the row,
2 ROW The name of the row (slack).
3 AT A two-character code indicating status of row.
Code Meaning
BS Slack variable in basis and feasible.
*x Slack variable in basis and infeasible.
EQ Artificial slack variable, nonbasic,
UL Row at upper limit,
LL Row at lower limit,
4 ACTIVITY Activity of row, that is, the original right-hand-side minus the activity of
the slack.
5 SLACK ACTIVITY Activity of slack variable,
6 LOWER LIMIT Lowest activity that row may have.
7 UPPER LIMIT Highest activity that row may have,
8 DUAL ACTIVITY Otherwise known as simplex multiplier, or PI value for row.
9 SLACK PRICE Slack price if specified during input.  If slack is priced, reduced cost of
slack is equal to the DUAL ACTIVITY + or - the SLACK PRICE, where + or
- refers to minimizing or maximizing, respectively.

40 Optimization Phase




Table 15. COLUMNS Chapter Column Description

Column Heading Description of Information in Column
1 NUMBER The internal serial number associated with column,
2 COLUMN The name of the column,
3 AT A two-character code indicating status of column.
Code Meaning
BS Column in basis and feasible,
*® Column in basis and infeasible.
FR Column basic and free.
EQ Column nonbasic and fixed.
UL Column nonbasic at upper limit,
LL Column nonbasic at lower limit,
4 ACTIVITY The value of the column in the solution,
5 INPUT COST The objective function coefficient of column,
6 LOWER LIMIT Lowest activity column may have,
7 UPPER LIMIT Highest activity column may have,
8 REDUCED COST The DJ of the column. The rate of change in the objective value per unit
change of the column, Note that the reduced cost of an upper-bounded
variable at upper bound will be negative. It may also be negative on a
fixed variable,

Chapter 2 describes the means of accessing the filed solu-
tion and the structure of each record.

The example shown below illustrates some uses of

SOLUTION,

CALL SOLUTION (ROWS, LISTR, COLS, LISTC,
FILE, 'SOLFILE',RCHAPTER, 2, 5, 8, CCHAPTER,
2,4,8)

In the example, SOLUTION is used to perform the fol-
lowing tasks.

1. File the output on communication file 'SOLFILE" as
well as on the printer.

2. File only the rows specified in row selection list LISTR.

File only the columns specified in column selection
list LISTC,

4. File only the row name, slack activity, and dual acti=
vity columns of the ROWS chapter. (All columns appear
on the printer report.)

5. File only the column name, activity, and reduced cost
columns of the COLUMNS chapter. (All columnsappear
on the printer report. )

The optional parameters available to SOLUTION are given
below.
Parameter Explanation

ROWS Indicates that row selection or
exception list follows.

Parameter Explanation

COLS Indicates that column selection or
exception list follows,

EXCEPT Indicates that following list reference
is exception list,

LISTR Used in connection with ROWS to
specify row selection or exception
list.

LISTC Used in connection with COLS to
specify column selection or exception
list,

FILE Indicates that requested output be
written on internal communication
file 'filename’,

'filename' Used in connection with FILE to specify
'filename'.

RCHAPTER Indicates ROWS chapter data column
selection numbers follow,

CCHAPTER Indicates COLUMNS chapter data

column selection numbers follow.

The following interrupts may occur within SOLUTION,

Interrupt Causes

KMAJER 1. No mairix defined.

2. There is nofile with name 'filename'.

Optimization Phase 41



Interrupt Causes

3. Data column selection indicated
but specifications missing.

KMINER 1. Invalid parameter.

2. Illogical combination of parameters.

KIOER Irrecoverable input/output error.

ERRORS The ERRORS procedure substitutes the current
primal and dual solutions into the original primal and dual
problems and computes and outputs any rounding error that
exists to the standard printing device. Any error less than
the tolerance FABSZT is considered zero, and no line of
print will occur.

The output is prepared in two sections. The first section
contains the dual errors and consists of the following
information.

1. Name of the basis variable.

2. Magnitude of error.

The second section contains the primal errors and consists
of the following information.

1. Name of the row.

2. Right-hand-side value of row.

3. Magnitude of error.
The following interrupts may occur in ERRORS,

Interrupt Causes

KMAJER No matrix defined.

KIOER Irrecoverable input/output error.

CONDITION The CONDITION procedure outputs to
the standard printing device the following information:

1. Contents of communication region,

2. Current status of all active files.

GET The GET procedure allows the user to retrieve in~-
formation about a row or column, and to alter his strategy

in the control language. All or any part of the following
items may be accessed on a call for GET,

Code _N_\enﬂ

uB Upper bound

LB Lower bound

cJ Objective function coefficient
BI Activity level

DJ Reduced cost

ZJ PI value

42 Preservation/Restoration Phase

The general form of a call for GET is

CALL GET (NAME, op, FWxx, OP, FWxx, —. —)

where
NAME is the name of a row or column,
op is one of the codes listed above.
FWxx is a user working cell,

In addition to placing requested information in the speci-
fied working cells, GET also prints information on the
standard printing device. The following example illus-
trates the use of GET to obtain the activity in FW01, the
input cost in FW02, and the upper bound in column
RUNCRUDE in FWO03.

CALL GET (‘RUNCRUDE',BI, FWO01, CJ,
Fw02,UB,FW03)

PRESERVATION/RESTORATION PHASE

The preservation/restoration phase contains four procedures,
BASISOUT, SAVE, BASISIN, and RESTORE, An outline of
each is given in Table 16 below.

Table 16. Preservation/Restoration

Procedures
Procedure Purpose
BASISOUT Preserves the basis structure.
SAVE Preserves the contents of data
areas and files,
BASISIN Restores a basis structure,
RESTORE Restores the contents of data

areas and files.

BASISOUT The BASISOUT procedures punches or files
(FILE parameter) the current basis structure and bounds
status. The punched or filed data deck is preceded by a
NAME card which contains (in columns 15 to 22) the con-
tents of CR cell ADATA. In addition, the data deck is
followed by an ENDATA card.

The data deck produced by BASISOUT is in the correct
format to be used as input data to the BASISIN
procedure,

Chapter 5 describes the format of data cards produced
by BASISOUT and required as input by BASISIN,



Optional parameters for BASISOUT are:

Parameter Explanation

FILE Indicates that the output is to be
written on communication file
'filename'. If FILE is not speci-
fied, the output will be produced
on the standard punch device.

The symbolic name of a communica-
tion file.

'filename'

The following interrupts may occur within BASISOUT:

Interrupt Causes
KMAJER 1. No mairix defined.

2. ‘filename’ undefined.
3. Invalid parameter,
KIOER Irrecoverable input/output error.

SAVE The SAVE procedure saves the contents of the
communication region, the various internal work areas,
and all internal files (MATRIX, INVERSE, etc.) on the
tape file RESTART, Only one problem may be saved on
the RESTART tape. Any number of SAVEs may be made
to the same restart tape, but the last one overlays pre-
vious ones. If several SAVE files are desired, the tape
unit for RESTART may be changed in the control program
by a new ATTACH statement preceding the SAVE. Note
that user working-storage and communication files are not
saved.

The following interrupts may occur within SAVE,

Interrupt Causes
KMAJER 1. RESTART file undefined.

2. RESTART file not on a tape unit.
KIOER Irrecoverable input/output error.

BASISIN The BASISIN procedure either inputs a new
basis, or modifies the existing basis. Provision is made
to allow both the specification of variables to be entered
into the basis and the removal of variables at upper or
lower bound. In addition, the user may specify which

nonbasic variables are to be placed at upper or lower bound,

If the MODIFY parameter is used, the current basis will be
used to process the input. Chapter 5 describes the format

of the input cards, If the MODIFY parameter is not used,
an all=slack basis will be used to process the input, and all
variables will initially be set at lower bound.

A call for the INVERT procedure must be made following
the BASISIN procedure.

The optional parameters for BASISIN are given below.

Parameter Explanation

MODIFY Indicates that the input data is to be
processed against the current basis
structure (instead of the slack basis).

FILE Indicates that the input is on file
'filename' instead of the normal card
reading device,

'filename’ The symbolic name of the input file.

The following interrupts may occur within BASISIN.

Interrupt Causes

KMAJER 1. Invalid parameter,
2. 'filename' undefined.

KIOER Irrecoverable input/output error.

RESTORE The RESTORE procedure restores the data
areas and internal files saved by SAVE from file
RESTART. Note that any intemal file restored by
RESTORE must be defined prior to the call for RESTORE,

The following interrupts may occur within RESTORE,

Interrupt Causes

KMAJER 1. RESTART file undefined.
2. Internal file undefined.

3. RESTART file not on a tape
unit.

4, Insufficient core available for
restoring data areas.

KIOER Irrecoverable input/output error.

Preservation/Restoration Phase 43



1. SEPARABLE PROGRAMMING OPERATING MODE

Use and operation of procedures in the separable program- The nonlinearities must comply with the following important
ming (SEP) operating mode will be described in this chapter. restrictions:

A general descriptionof this operating mode is provided fol-
lowed by descriptions of specific procedures. The procedures

. . 1. A nonlinear function in n variablesmustbe "separable"
are presented in four logical phases.

into the sum of n functions, each in terms of only one
1. Input of these variagbles, as in

2. Optimization

3. Output y= f(xn) = f] (x]) + f2 (x2) +...0t fn (xn)

4. Preservation and Restoration
2. Each of the n functions must be representable by a

GENERAL DESCRIPTION OF SEP MODE piece-wise linear approximation of that function. The
graph of the function in Figure 7 is shown insolid lines,
Separable programming provides the FMPS user with the a piece-wise linear approximation of the function is
capability of handling certain types of nonlinear functions. shown in broken line.

f(x)

Figure 7. Piece-Wise Linear Approximation to a Separcble Function

44 Separable Programming Operating Mode



SEP ALGORITHM

A full description of the delta-method algorithm, together
with a discussion of methods available to ensure that the
problem complies with the above conditions, is found in
Non-Linear and Dynamic Programming by G. Hadley.!
Some details of this algorithm are cutlined below.

1. Each variable x participating in a nonlinear function
f(x) has associated with it a set of special variables.
These special variables depict the piece-wise linear
approximation to f(x); each special variable represents
the distance progressed along some particular section of
the piece-wise linear approximation. That is, dx is
the kth of r special variables used to approximate f(x).
It may be written as

* T

X T k-1

dxk =

where X|..1 and x| are successive intercepts on the x
coordinate (see Figure 7).

2. Each of the special variables has a lower bound of zero
and an upper bound of 1. Their order specifies a direc-
tion along the x coordinate.

3. A special variable may become basic only if one of the
adjacent variables is basic or the preceding variable is
at upper bound. A bound shift is allowed only if the
preceding variable is af upper bound. No two special
variables in the same sef may be basic at a given
iteration.

4. The activity of the variable approximated is given by
a grid equation of the form

k=1
(See "Applicability of the SEP Algorithm" below.)

5. Any subset of the objective function and the problem
constraints may be separable functions. A variable x
may appear linearly in some functions and as a set of
special variables approximating it in other functions.
The user must only observe the requirements for estab-
lishing interrelationship.

PIECE-WISE LINEAR APPROXIMATION

Figure 7 shows a piece-wise linear approximation to some
function f(x). This function is to be included in a set of
equations for optimization. The function may be part of

tG. Hadley, Non-Linear and Dynamic Programming.
Reading, Massachusetts: Addison-Wesley Publishing
Company, 1964, Chapter 4.

the objective or of some constraint. Note that the function
is defined only over certain limits of x, that is,

XA S X=X
0 r

Special variablesdxq, dxg, ... dx;are now defined. These
variables collectively form the set of special variables re-
quired to approximate f(x). The special variable dx; de-
fines the interval between the two x intercepts x4 and xy;
dxy, the next interval between x| and x5, and so on. The
relationship is given by

x=x0+dx](x] -x )+dx2(x] - X

0 2)

+ ... F dxr(xr - xr_])

or, simply,

r
X=X, T sum Ax, . dx
0 k=1 k k

where
0= dxk <1
Axk are user-defined intervals along the x axis.

The Ax) may be as small or as large as required, and may
vary as necessary to obtain the user-required degree of
approximation to any section of f(x).

The value of f(x) at xq is f(x,), at x, it is f(x,), and so on
.0 0 1 1
to f(xr) at x . Defining

Af(xk) = f(xk) - f(xk_]),

the relationship for f(x) along the first interval of the piece-

wise linear approximation is obtained by equating

f(x) = f(xo) +Af(x]) . dx]

where
OSdX] <1
dx2=dx3=... =dxr=0

This relationship can be extended to any point on the ap-
proximation, as in

r
f(x) = f(xo) + ls<u:r.r|1 Af(xk) . dxk

This is a linear relationship in dxi. If the dx are vari-
ables in the linear program, then this function may be
included in the linear program as long as the following
restriction is observed:

for

dx0=dx1 =... dxk_1 =1

dxk+] =... =dxr=0

Separable Programming Operating Mode 45



The variable dx is the only variable in the set that may be
basic. All other variables in the set are at upper or lower
bound.

APPLICABILITY OF THE SEP ALGORITHM

There are two peints, A cnd B, on the piece-wise linear
approximation (Figure 7) from which the value of f(x) de-
creases irrespective of the direction along the x coordinate.
Assuming that f(x) is anobjective tobe maximized, it is ap-
parent that starting from [x, f(x)], the point A would be
reached and the optimum would be indicated. However,
A represents only a local optimum. The global optimum is
point B. By starting at x, and proceeding in the opposite
direction, point B is attained. The use of the SETBOUND
procedure can assist in finding the global optimum in such
cases, but there is no guarantee that an optimum attained
using separable programming is the global optimum unless
all functions have the appropriate properties of convexity
and concavity.

The problem of local optima is also raised by separable non-
convex constraints. If the objective for the problem for
which Figure 7 represents a constraint was z = x, then,
depending on the direction in which x is moving, the algo-
rithm may decide that A or B is the optimum.

EXAMPLES USING SEPARABLE PROGRAMMING

The following two problems illustrate the use of separable
programming to model nonlinearities in the objective func-
tion and in a constraint.

NONLINEAR OBJECT FUNCTION

Volume-related discounts on a certain petrochemical feed-
stock are to be applied to the objective function according
to the following table:

Volume,

Mbbl/Month $/bbl

0 - 50 $4.75
50 - 200 $4.25
200 - 500 $3.75

500 - 1000 $3.00

46 Separable Programming Operating Mode

The total cost of feed, which is the amount by which the
objective function should be decremented, varies with vol-
ume according to the following polygonal curve.

(@)
O""
(@]
<t
o 3500.0
o L
o
3(")
z
% —3—
QO
T ©
3T 2000.0
— N
o
o
S 4
- 875.0
237.5
} f f t f } } f |
100 200 300 400 500 600 700 800 900 1000
M/bbl/Month

The pseudo costs associated with the four special variables
entered into the problem are the difference in total cost
found on this curve divided by the range of volume associ-
ated with the special variable. Those differences are
$237.5, $637.5, $1125.0 and $1500 respectively. The
matrix fableau would appear as follows.

Purchase Feedstock
SPVART | SPVAR2 SPVAR3 | SPVAR4
-237.5 | -637.5 -1125.0 | -1500.0
Feedstock
Material
Balance -50 -150 -300 -500

Note that the scaling of the special variables must be done
manually and will affect all coefficients of the feed vector.

NONLINEAR CONSTRAINT

This example illustrates the use of separate programming to
model a nonconvex specification row. Two products, A
and B, are to be blended to meet a maximum pour-
point specification of 20°F.

The Pour Point versys Mix Curve is illustrated below. To
prepare the curve for modeiing, an arbiirary choice of
ranges is made for the separable segments. In this case,
ranges are 0-20%, 20-60%, 60-100% of Component B.



Pure A Pure B

Pour Point (°F)

% of Component B

It is assumed that we wish to make 10 Mbbls of the blend.
One vector is used to represent 100% A, and three "delta"
vectors are used to represent the addition of Component B,
as shown in the following tableau.

Separable Set
{(Unscaled)

100A | 80A | 40A OA | RHS
0B | 20B | 60B 1008

Upper
Bound Row 10 | 10 10 10

Material
Balance on A | +1.0 | -0.2 | -0.4 | -0.4

Material

Balance on B +0.2 | +0.4 | +0.4

Pour Point

Maximum o o o
Specification | 40° | -22°| -10° | +18° |=200°

Note: Pour Point Maximum Specification is equal to
specification multiplied by total volume, as
in 20° x 10° ==<200°.

Since the input requires the separable set to be scaled to
have upper bound of 1, multiply each vector by 10. This
results in the final tableau below as entered in the
problem.

Separable Set
(Scaled)

100A | 80A 40A 0A RHS
OB | 20B 60B 100B

Upper
Bound Row 1 1 1 1

Material
Balance on A | +10.0| -2.0 -4,0 |-4.0

Material
Balance on B +2.0 +4.0 | +4.0

Pour Point
Maximum
o

Specification | 400° | -220°| +100° | +180° | <200°

The separable programming operating mode requires differ-
ent internal treatments of the work matrix than the linear
programming operating mode. There, it is necessary to

set the mode of operation at the beginning of a run by
means of the ENTER procedure.

The procedures in the separable programming operating
mode are presented in four logical phases.

1. Input

2. Optimization

3. Output

4. Preservation and Restoration

Each phase will be explained in detail. Note that many
procedures in the separable programming operating mode
are identical to corresponding procedures in the linear pro-
gramming operating mode. Descriptions of these procedures
are repeated in this section for user convenience. A
note at the beginning of each procedure indicates whether
or not the procedure is identical to the corresponding linear
programming procedure.

INPUT PHASE

The input phase consists of two procedures, INPUT, and
REVISE. An outline of each is givenin Table 17 below.

Table 17. SEP Input Procedures

Procedure Purpose

INPUT Accepts the initial statement
of the SEP problem

REVISE Makes revisions to the SEP

problem

Input Phase 47



INPUT Except for the restrictions and conditions de-
scribed in the following paragraphs, the INPUT procedure
for the separable programming operating mode is the same
as the INPUT procedure for the linear programming oper-
ating mode.

The INPUT procedure specifies a separable programming prob-
lem to FMPS. INPUT processes input data (in standard data
card format only) and converts it into a compact internal
representation on internal file MATRIX. The following
internal files (see Table 7) must be defined before the call
to INPUT.

1. MATRIX
2. INVERSE
3. UTIL1
4. UTIL2

Also, if INPUT's data are on file, the user's communication
file must also be defined.

The data deck setup for the input procedure is shown in
Chapter 5.

The special variables may appear in any row in the problem.
They are identified as such in the COLUMNS chapter, and
this identification is the only difference between separable
and linear programming data. The '"MARKER' parameters
are used to bracket each set of special variables. (The
single quotation marks are included in the keywords.) There
are two types of '"MARKER' cards distinguished by the key-
words 'SEPORG' or 'SEPEND"' in columns 40 fo 47 of the
'"MARKER' data card. The format of a '"MARKER' data card
is shown below.

Columns Description

1-4 Blank.

5-12 Unique column name.
13-14 Blank.

15-22 'MARKER!'

23-39 Blank.

40-47 'SEPORG" or 'SEPEND'
48-72 Blank.

All of the special variables in a set must be contained be-
tween two "MARKER' cards. A set may be embedded any-
where within the body of the matrix columns. The begin-
ning of a new set is recognized when a 'SEPORG' type of
'MARKER' card is read. The name of the set is the name
in columns 5 to 12 of the 'SEPORC" card which precedes
the set. The end of a set is recognized when either a
'SEPEND' or 'SEPORG' type of 'MARKER' card with a
unique name in columns 5 to 12 is processed. Contiguous

48 Input Phase

sets do not require a 'SEPEND' type of 'MARKER' card as
a separator.

Data cards describing the special vectors in a set have the
same format as normal linear variables. The order of ap-
pearance of the variables in a set defines the required se-
quence dx], cee,dx .

r
Each of the separable special variables must have an upper
bound of 1. This bound is automatically assigned to each
of the special variables. The user may, if he so desires,
include these bounds in the BOUNDS chapter. However,
if any other bound besides this preempted bound is assigned,
it will be registered as a minor error.

The following CR variables must be initialized before the
call for INPUT.

CR Variabie

Explanation

ADATA

Contains the name of the data deck
for data reading procedures such as
INPUT, REVISE, etc. Also used by
data outputting procedures such as
BASISOUT to name output data deck.
APBNAME The name tfo be assigned to the SEP
problem.

Optional parameters for INPUT are

Parameter Explanation

FILE Indicates that the input data is to be
found on file 'filename'. If the pa~
rameter is not used, INPUT data is
assumed to be on the standard card
input device.

'filename' The symbolic name of the communica-

tion file on which the input data

resides.

The following interrupts may occur with INPUT.
Interrupt Causes

KMAJER 1. Invalid parameter.

2. Input data not found.

3. Minimum required input not
found (ROWS, COLUMNS, and
RHS).

4. Undefined files.

5. Rows chapter exceeds available
memory .

ILE ‘filenome’ undefined.

o
1

7. Invalid '"MARKER' card.



Interrupt Causes
KMINER 1. Duplicate columns. The dupli-
cate column is ignored.

2. Duplicate element. The duplicate
element is ignored.

3. Invalid indicator in ROWS or
BOUNDS chapter.

4. Invalid combination of indicators
in BOUNDS chapter.

5. Columns out of sort in BOUNDS
chapter.

6. Illegal bound for a special vari-
able. The illegal bound is
ignored.

KIOER An irrecoverable input/output error
has occurred.
REVISE This procedure is identical to the corresponding

procedure in the linear programming mode.

The REVISE procedure modifies a matrix according to the
input data from the standard card input device or from an
internal communication file. Any element of the matrix
can be modified, deleted, or inserted. REVISE requires
that the mairix fo be revised be currently input and that all
of the standard FMPS internal files be defined. Communi-
cation region variable ADATA contains the name of the
REVISE data deck or identification record name if data are
on file. New sets of special variables must be bracketed
by the required 'MARKER' cards.

It is mandatory (unless a slack starting basis is desired) that
a BASISIN procedure and an INVERT procedure follow

REVISE to resume from an advanced base.

The data card format is the same as for INPUT. Refer to
Chapter 5 for information about data deck setup.

Optional parameters for REVISE are given below.

Parameter Explanation

FILE Indicates that the input data for
REVISE is on the file 'filename'.

'filename’ The symbolic name of the communica-

tion file on which the input data
resides.

The following interrupts may occur within REVISE.

Interrupt Causes

KMAJER 1.
2. Input data not found.
3. Undefined files.

Invalid parameter.

Interrupt Causes

KMAJER (cont.) 4. ROWS chapter exceeds available

memory .
5. No matrix exists to REVISE.
6. Invalid '"MARKER" card.

KMINER 1. Duplicate columns. The dupli-

cate column is ignored.

2. Duplicate element. The dupli-
cate element is ignored.

3. Invalid indicator in ROWS or
BOUNDS chapter.

4. Invalid combination of indicators

in BOUNDS chapter.

5. Columns out of sort in BOUNDS
chapter.

6. Illegal bound for a special vari-
able. The illegal bound is
ignored.

KIOER An irrecoverable input/output error
has occurred.

SEP OPTIMIZATION PHASE

The optimization phase contains three procedures in the
separable programming operating mode, OPTIMIZE, INVERT,
and SETBOUND. An outline of each is given in Table 18
below.

Table 18. SEP Optimization Procedures

Procedure Purpose

OPTIMIZE Attempts to find optimal, feasible solu-
tion to the existing matrix while ensur-
ing that the special variables comply
with their basic entry rules.

INVERT Restates the product form of the inverse
in terms of the minimum number of
transformations required fo state the
basis.

SETBOUND Tries different solution paths by setting
the special variables in specified sets
to bound.

OPTIMIZE OPTIMIZE is similar to the LP OPTIMIZE,
except that in the SEP operating mode, the CR variable
INCAND is not available for user setting.

The OPTIMIZE procedure attempts to find a feasible opti-
mal solution to the separable programming matrix using the

SEP Optimization Phase 49



SEP algorithm. If the matrix has no solution, or if the solu-
tion is unbounded, OPTIMIZE will cause the KNFS or KUBS
interrupts to occur.

While the model is infeasible, OPTIMIZE uses a composite
pricing (PI) vector. The function of the composite PI vec-
tor is either to maintain or to move toward optimality while
achieving feasibility. Communication region cell FCMPDJ
is the compositing factor which determines the balance be-
tween the drive for optimality and/or feasibility. As an
example, a value of 0.5 for FCMPDJ implies a balanced
driving force between optimality and feasibility while a
value of 0.0 implies total disregard for optimality. When
a balanced driving force is requested, OPTIMIZE system-
atically reduces FCMPDJ by 0. 125 if the drive for feasibil-
ity is insufficient. FCMPDJ will be reduced if only one
candidate from the selected subset is chosen to enter the
basis, and the sum of infeasibilities is not decreasing.

Communication region variable IIWGHT is used fo weight
individual infeasibilities. The standard setting for IWGHT
is 0, whichimplies all infeasibilities are given equal weight.
If IIWGHT is set to -1, individual infeasibilities are
weighted by the amount by which they are infeasible. If
IIWGHT is set to +1, individual infeasibilities are weighted
by the reciprocal of the amount by which they are infeasible.

The communication region variables utilized by OPTIMIZE

are listed below. Of all the cells in the list, only ARHS,

AOBJ, and FOBJWT must be initialized by the user prior

to calling OPTIMIZE.
CR Variable

Explanation

ARHS Name of the right-hand side.
AOBJ Name of the objective row.

FOBJWT The weight given to the objective

function. Must be +1.0 for minimi-
zation, -1.0 for maximization.

FCMPDJ Factor used in determining effective

DJ when infeasible, as in

DJE = FCMPDJ* DJ + (1.0-FCMPDJ)
* DJI

where

DJE is the effective DJ of

the column.

DJ is the true DJ of the

column.

DJI is the DJ based on infea-
sibility removal qualities of
the column,

IIWGHT Infeasibility weighting switch, ac-

cording to codes shown below.

50 SEP Optimization Phase

CR Variable

Explanation

IIWGHT (cont.) Code  Meaning

-1 Weight by amount of
infeasibility.

0 All infeasibilities given equal
weight.

+1 Weight by reciprocal of
amount of infeasibility.

FDJZT DJ zero tolerance. If the absolute
value of the reduced cost (DJ) is less
than FDJZT, it is considered zero.
FINFZT Infeasibility zero tolerance. If the
absolute value of the amount of in-
feasibility is less than FINFZT, the
variable is considered feasible.
FMPIVT Minimum pivot tolerance. During any
opfimization procedure (here, INVERT
is not considered an optimization pro-
cedure), an element is not considered
as potentially pivotal unless its ab-
solute value is greater than FMPIVT.
ILOGP Iteration logging frequency for con-
sole printer.
ILOGSS On/Off switch for printing column
selection messages during pricing of
matrix.
IFREQI Iteration frequency interrupt for in-
version. The KINV interrupt will
occur every IFREQI iterations
(IFREQI > 0).
IFREQA Iteration frequency interrupt. If
IFREQA is 0, no interrupt will occur.
Otherwise, the KFREQA interrupt
will occur every IFREQA iterations.

ITIME The length of time, in minutes, before
the KTIME interrupt will occur. The
KTIME interrupt does not occur if
ITIME is set to zero. Whenever the
KTIME interrupt occurs, ITIME is set
to zero. Time for KTIME is measured
from the time of the last initializatior

of ITIME.
The following interrupts may occur within OPTIMIZE.

Interrupt Causes

KMA JER 1. AQBJ or ARHS undefined.

2. No matrix to optimize.



Interrupt Causes

KIOER 1. TIrrecoverable input/output error.
2. File capacity exceeded.

KNFS No feasible solution.

KUBS Unbounded solution.

KINV 1. Inversion frequency (IFREQI)

safisfied.

2. Correcting numerical errors.
3. Inverse exceeding file storage.
Corrective action requires calling the
INVERT procedure.

KFREQA User iteration frequency (IFREQA)
satisfied.

KTIME User-specified time increment
reached.

INVERT This procedure is identical fo the corresponding

procedure in the linear programming mode.

The INVERT procedure establishes the product-form inverse
for the currently specified basis. To minimize the number
of elements in the inverse and, therefore, reduce numerical
rounding error and computation time, INVERT uses the most
modern techniques in triangularization and subtriangulariza-
tion. INVERT may be either called explicitly by the user
or called as the result of the KINV interrupt.

Periodic calls to INVERT from OPTIMIZE help preserve
numerical accuracy and reduce total optimization time.
Such calls are automatically executed at suitable time in-
tervals, Setting CR variable INVTIME to a negative
value inhibits these automatic calls.

CR variable IFREQI, if set to a positive nonzero value,
controls the maximum number of iterations that can occur
between occurrences of the KINV interrupt. Exceptional
conditions such as the INVERSE procedure exceeding file
storage, or loss of accuracy during OPTIMIZE, PARARHS,
or PARAOBJ procedures may also cause the KINV interrupt
to occur,

Ingeneral, operating with INVTIME =0and IFREQI=0 gives
the best speed and accuracy. CR region variable FMINVT
is used by INVERT as the minimum pivot tolerance. Ele-
ments are not considered pivotal if their value is smaller
than FMINVT. FMINVT should be initialized to a value
smaller than the value used for FMPIVT, the minimum pivot
tolerance for OPTIMIZE.

The following interrupts may occur within INVERT.

Interrupt Causes
KMAJER 1. No matrix defined.
2. No basis to invert fo.
KIOER Irrecoverable input/output error.
SETBOUND The SETBOUND procedure may be called

at any stage of problem solution, provided that a matrix
exists on the file MATRIX. Due to the possibility of obtain-
ing a local optimum to a problem (depending on the solution
path taken), it is of inferest to examine the solutions ob-
tained by proceeding along different paths. SETBOUND
provides this capability.

Independent of problem status, SETBOUND will set all the
special variables in the sets specified to upper bound.

The two possible calls to SETBOUND are
CALL SETBOUND
and
CALL SETBOUND (LISTC)

The first of these calls will result in all the special variables
in all the sets being set to upper bound.

The second call will result in all the special variables in
those sets listed in a previously loaded column selection
list (see LOADLIST) being set to upper bound. The sets re=
quired are specified by including the column name given on
the ‘SEPORG' type of 'MARKER' card in the list of names
in the column selection list.

For example, if a set of special variables is preceded in the
INPUT data by a card with the format outlined below,

Columns Description
5-12 FIRSTSET
13-14 Blank.
15-22 ‘MARKER'
23-39 Blank.
40-47 'SEPORG'

and the name FIRSTSET is included in the LOADLIST data,
then the call

CALL SETBOUND (LISTC)

will set all the special variables in the set bracketed by the
above and the next 'MARKER' card to upper bound. All
other special variables will remain at their previous
bound setting.

SEP Optimization Phase 51



Note that if LISTC is specified and no list is set up, then
all special variables will be set to bound.

Optional parameters for SETBOUND are given below.

Parameter Explanation

LISTC Indicates that a previously estab-
lished column selection list should be
searched for the set names of the var-
iables to change bound.

The following interrupts may occur within SETBOUND.

Interrupt Causes

KMAJER No matrix setup.

KMINER No seieéfion list setup and optionai
parameter specified.

KIOER An irrecoverable input/output error

has occurred.

OUTPUT PHASE

The output phase contains four procedures, OUTPUT,
SOLUTION, ERRORS, and CONDITION.

An outline of each is given in Table 19 below.

Table 19. SEP Output Procedures

Procedure Purpose

OUTPUT Displays the mairix in various
forms.

SOLUTION Reports the solution values.

ERRORS Examines the errors in the solution.

CONDITION | Displays the condition of various

FMPS regions and files.

Note that, except where explicitly noted, the '"MARKER's
are not included in any of the output generated by the fol-
lowing procedures.

OUTPUT  This procedure is identical to the correspond-
ing procedure in the linear programming operating mode.

The OUTPUT procedure displays the entire matrix of a
selected subset on the standard printing device, or files on
the internal communications device. OQUTPUT displays the
entire original matrix in tabular form on the standard
printing device.

Parameters for OUTPUT make it possible to:

1. Display updated elements.

2. Select specific rows and/or columns.

52 Output Phase

3. Output nonzero elements only.
4. File results.

Table 13 in Chapter 6 contains a complete list of parameters
for OUTPUT.

The filed output consists of two logical records. The first,
the identification record, is labeled OUTPUT and is fol-
lowed by the second record containing the selected data.
Chapter 2 describes the basic means of accessing the filed
records in FORTRAN and lists the detailed structure of each
record.

The following interrupts may occur within QUTPUT.

Interrupt Causes

KMAJER 1.

No matrix has been processed by
INPUT.

2. There is no file with the name
'filename’.

KMINER 1. Null selection list.

2. Invalid parameter(s).
3. lllogical combination of parameters.
KIOER  Irrecoverable input/output error.

The following example illustrates the use of OUTPUT to
display the original form of the elements in the rows speci-
fied in LISTR but not in the columns specified in LISTC.

CALL OUTPUT (BYROWS,ROWS,LISTR,COLS,
EXCEPT,LISTC)

SOLUTION SOLUTION output for the separable pro-
gramming operating mode is prepared in three sections: the
IDENTIFIER section, the ROWS section, and the COLUMNS
section. The IDENTIFIER section is for display of problem
status and indicates the operating mode. The ROWS ond
the COLUMNS sections are the same as for the linear pro-
gramming operating mode with one addition in the COL-
UMNS section. The column names of the 'MARKER' cards
will be included in the column name list in the position
they had in the INPUT data column order. These names
mark off each set of special variables, and have no entries
against them. If the user requires the activity of the vari-
able x approximated by the dxy..., dx_, he must include
the grid equation (see "SEP Algorithm", above) in the
problem.

The SOLUTION procedure prepares the current solution of
the separable programming matrix for display. The normal
mode of SOLUTION is to print the solution on the standard
printing device. If the optionai parameier FILE is used,
the specified information is placed on internal communica-
tion file 'filename’'.



SOLUTION output is prepared in three chapters for the
separable programming operating mode. The first, the
IDENTIFIER chapter, is for display of problem status. The
second, the ROWS chapter, contains information on the
selected rows in the matrix. The report contains nine col-
umns of information. The COLUMNS chapter contains
information on the selected columns in the matrix. The
COLUMNS report contains eight columns.

If the FILE option is used, it is possible to file the data
columns selectively in each chapter, as well as to select
which rows and columns to output. Each data column has
been assigned a number.

Table 14 in Chapter 6 describes the nine columns of the row
report. Table 15 in the same chapter describes the 8 col-
umns of the columns report. These tables also indicate the
number and the heading assigned to each data column.

The data columns are selected for filing by using the key-
word parameters RCHAPTER and CCHAPTER, each followed
by the numbers of the data columns to be filed.

Chapter 2 describes the means of accessing the filed solu-
tion and the structure of each record.

The example shown below illustrates some uses of SOLUTION.,

1 CALL SOLUTION (ROWS, LISTR, COLS, LISTC,
FILE, 'SOLFILE', RCHAPTER,2,5,8, CCHAPTER,
2,4,8)

In the example, SOLUTION is used to perform the follow-
ing tasks:

1. File the output on communication file 'SOLFILE' as
well as on the prinfer.

2. File only the rows specified in row selection list LISTR.

3. File only the columns specified in column selection
list LISTC.

4. File only the row name, slack activity, and dual
activity columns of the ROWS chapter. All columns
appear on the printed report.

5. File only the column name, activity, and reduced
cost columns of the columns chapter. All columns
appear on the printed report.

The optional parameters available to SOLUTION are given
below.

Parameter Explanation

ROWS Indicates that row selection or excep-
tion list follows.

COLS Indicates that column selection or
exception list follows.

EXCEPT Indicates that following list reference

is exception list.

Parameter Explanation

LISTR Used in connection with ROWS to specify
row selection or exception list.

LISTC Used in connection with COLS to specify
column selection or exception list.

FILE Indicates that requested output be written
on internal communication file 'filename’.

'filename'  Used in connection with FILE to specify
'filename'.

RCHAPTER  Indicates ROWS chapter data column

selection numbers follow.

CCHAPTER  Indicates COLUMNS chapter data column
selection numbers follow.

The following interrupts may occur within SOLUTION.

Interrupt Causes

KMAJER 1. No matrix defined.
2. There is no file with name 'filename’.

3. Data column selection indicated but
specifications missing.

KMINER 1.

Invalid parameter.
2. lllogical combination of parameters.

KIOER Irrecoverable input/output error.

ERRORS This procedure is identical to the corresponding
procedure in the linear programming operating mode.

The ERRORS procedure substitutes the current primal and
dual solutions into the original primal and dual problems
and computes and outputs any rounding error that exists to
the standard printing device. Any error less than the toler-
ance FABSZT is considered zero, and no line of print will
oceur.

The output is prepared in two sections. The first section
contains the dual errors and consists of the following
information.

1. Name of the basis variable.

2. Magnitude of error.

The second section contains the primal errors and consists of
the following information.

1. Name of the row.
2. Right-hand-side value of row.

3.  Magnitude of error.

Ovutput Phase 53



The following interrupts may occur in ERRORS.

Interrupt Causes

KMAJER No matrix defined.

KIOER Irrecoverable input/output error.
CONDITION This procedure is identical to the corre-

sponding procedure in the linear programming operating
mode.

The CONDITION procedure outputs to the standard printing
device the following information.

1. Contents of communication region.

2. Current status of all active files.

3. Current status of all assigned input/output devices.
4. Amount of storage (words) in use by each file.

5. Maximum amount of storage used in the run by each
file.

SEP PRESERVATION/RESTORATION PHASE

The preservation/restoration phase contains four procedures,
BASISOUT, SAVE, BASISIN, and RESTORE. An outline of
each is given in Table 20 below.

Table 20. SEP Preservation/Restoration Procedures

Procedure Purpose

BASISOUT Preserves the basis structure.

SAVE Preserves the contents of data
areas and files.

BASISIN Restores a basis structure.

RESTORE Restores the contents of data areas
and files.

These procedures are identical to the corresponding pro-
cedures in the linear programming operating mode.

BASISOUT The BASISOUT procedure punches or files
(FILE parameter) the current basis structure and bounds
status. The punched or filed data deck is preceded by a
NAME card which contains (in columns 15 to 20) the con-
tents of CR cell ADATA. In addition, the data deck is
followed by an ENDATA card.

The data deck produced by BASISOUT is in the correct for-
mat to be used as input data to the BASISIN procedure.

54 SEP Preservation/Restoration Phase

Chapter 5 describes the format of data cards produced by
BASISOUT and required as input by BASISIN,

The optional parameters for BASISOUT are

Parameter  Explanation

FILE Indicates that the output is to be written
on communication file 'filename'. If
FILE is not specified, the output will be
produced on the standard punch device.

'filename'  The symbolic name of a communication

file.

The following interrupts may occur within BASISOUT.

Inferrupt Causes
KMAJER 1.  No matrix defined.
2. ‘filename' undefined.
3. Invalid parameter.
KIOER Irrecoverable input/output error,

SAVE The SAVE procedure saves the confents of the
communication region, the various internal work areas, and
all internal files (MATRIX, INVERSE, etc.) on the tape
file RESTART. Note that user working-storage, and com-
munication files are not saved.

The following interrupts may occur within SAVE,

Interrupt Causes
KMAJER 1. RESTART file undefined.
2. RESTART file not on a tape unit.
KIOER Irrecoverable input/output error,
BASISIN The BASISIN procedure either inputs a new

basis or modifies the existing basis. Provision is made to
allow both the specification of variables to be entered into
the basis and the removal of variables at upper or lower
bound. In addition, the user may specify which nonbasic
variables are to be placed at upper or lower bound.

If the MODIFY parameter is used, the current basis will be
used to process the input. Chapter 5 contains the format of
the input cards. If the MODIFY parameter is not used, an
all-slack basis will be used to process the input and all var-
fables will initially be set at iower bound. A cali for the
INVERT procedure must be made following the BASISIN
procedure.



The optional parameters for BASISIN are given below.

Parameter Explanation

MODIFY Indicates that the input data is to be
processed against the current basis
structure (instead of the slack basis).

FILE Indicates that the input is on file
'filename’ instead of the normal card
reading device.

'filename' The symbolic name of the input file.

The following interrupts may occur within BASISIN.

Interrupt Causes

KMAJER 1. Invalid parameter.

2. ‘'filename' undefined.

KIOER Irrecoverable input/output error.

Note that basis specifications which conflict with the rules
for basic and upper bounded variable (see "SEP Algorithm",
above) selection will be resolved by ignoring invalid

specifications.

RESTORE The RESTORE procedure restores the data areas
and internal files saved by SAVE from file RESTART. Note
that any internal file restored by RESTORE must be defined
prior to the call for RESTORE.

The following interrupts may occur within RESTORE.

Interrupt Causes
KMAJER 1. RESTART file undefined.
2. Internal file undefined.
3. RESTART file notf on a tape unit.
4. [Insufficient core available for
restoring data areas.
KIOER Irrecoverable input/output error.

SEP Preservation/Restoration Phase 55



8. OPERATING PROCEDURES

This chapter includes a description of the BPM control
cards necessary for FMPS runs, and the relationship
between BPM !ASSIGN control cards and FMPS con-
trol language CALL DEVICE statements. Also included
are guidelines for the efficient use of FMPS. The
user should reference the SIGMA 5/7 Batch Processing
Monitor Reference Manual for complete discussion of BPM
control cards. Error messages and error types are given
in Appendix B,

BPM CONTROL COMMANDS USED IN FMPS RUNS

Figure 8 illustrates the general deck sequence for an FMPS
run. The run deck always starts with a set of BPM control
cards. Following the !DATA control card are the user's
FMPS control language program terminated by an END
statement and input data decks. Each input data deck is
preceded by a NAME card and followed by an ENDATA
card, -

ASSIGN AND CALL DEVICE INTERACTION

The interrelationships between !'ASSIGN control card
parameters and the arguments in the CALL DEVICE con-
trol language statement are shown in the following
examples,

In the command
CALL DEVICE("EXAMPLE', TAPE,'E")

the keyword TAPE dictates an ASSIGN control card which
establishes a RAD file, labeled or unlcbeled tape, andspeci-
fies that file or tape organization be consecutive-sequential
(see Table 21).

In the command
CALL DEVICE ('"EXAMPLE2', DISC, 'C")

the keyword DISC dictates an !ASSIGN control card
which establishes a RAD file, and specifies that file or=
ganization be keyed direct-access (see Table 22).

The user should note that the compiled FMPS control lan-
guage statements are written to a file or tape using the

F:1 DCB, A BPM !ASSIGN control card must be in each
run deck for F:1, and the organization must be consecutive-
sequential, The control language compiler within FMPS
simulates the following pair of control language statements,

CALL DEVICE ('PREPDEVI', TAPE, 'A')
CALL ATTACH ('PREPOUT', 'PREPDEVT')

The (INOUT) clause should be included in !ASSIGN con-

trol cards for all FMPS internal files and user communica-
tion files to assure the ability to read and write the file.

56 Operating Procedures

Should the user wish to save the RESTART tape after using
the CALL SAVE procedure in an FMPS run, the (SAVE)
clause should be included on the !ASSIGN control card
associated with the tape.

Note that all FMPS internal files and user FORTRAN com-

munication files are binary files; the |ASSIGN control
card should have the (BIN) clause included.

Table 21, Consecutive-Sequential File Assignments

FMPS Control Language Statement

CALL DEVICE('EXAMPLE', TAPE, 'E')

Acceptable BPM TASSIGN Control Cards

RAD File IASSIGN F:5, (FILE, EXAMP),
( CONSEC), (SEQUEN). ..
Labeled Tape YASSIGN F:5, (LABEL, EXAMP),

(CONSEC), (SEQUEN). . .

Unlabeled Tape | !ASSIGN F:5, (DEVICE, 9T),
(CONSEC), (SEQUEN). . .

Table 22. Direct-Access File Assignments

FMPS Control Language Statement

CALL DEVICE('EXAMPLE2', DISC, 'C')

Acceptable BPM 1ASSIGN Control Card

RAD File IASSIGN F:3, (FILE, EXAM2),
(KEYED), (DIRECT). . .

EFFICIENT USE OF FMPS
ORGANIZING THE CONTROL PROGRAM

For simplicity and in order to avoid sequence errors, it is
recommended that the control program always start with
the following statement order:

CALL ENTER

ASSIGN statements for KMAJER and KMINER
CALL DEVICE

CALL ATTACH

If standard tolerance settings are to be used, the user need
only be concerned with the following initializations:

CR Variable Explanation
ADATA Initialize prior to the call for

any procedure requiring input
data, or producing output on




Input Data Deck(s)

| User Control Program
5. [1DATA
4. [ IRUN (LMN, FMPS)
| 1(BIN), (KEYED), (DIRECT), (OUTIN)
3.| IASSIGNF:5,(FILE, Utility File 2), ;
1(BIN), (KEYED), (DIRECT), (OUTIN) w

3. | {ASSIGNIF:4, (FILE, UtilityFile 1), ;
[ 181N), (KEYED), (DIRECT), (OUTIN
3.] TASSIGN F:3, (FILE, Matrix File), ;
—| !(BIN), (KEYED), (DIRECT), (OUTIN)
3.| IASSIGNE:2, (FILE, Inverse File),;

[ 1(ouTIN)
[ 1(BIN), (CONSEC), (SEQUEN), ;
3. | IASSIGNF:1, (FILE, Cirl LangFile),;  \\
3. | IASSIGN F:106, (DEVICE,PO) '\
| 1(TsTORE, 990)

2. [ ILIMIT (TIME, mm), (UO, pppp),; _ \\

1. | 1JOB account number, name

Figure 8. General FMPS Deck Structure

Card types and their uses are explained below,

Card Type

1.
2.

Parameter Purpose
1JOB Identifies the account number and the user for the job.
ILIMIT Sets the maximum execution time, number of printer pages and number of temporary

RAD granules to be in effect for the run. This card is required only when the user
expects the job to exceed the default BPM limits defined during BPM system
generation.

IASSIGN Mandatory for the five standard FMPS files and also for any additional files or tapes
the job will require (for example RESTART). If the CALL BASISOUT procedure is to
be used, the assign card for F:106 must be included. Note that all the standard
FMPS files may be assigned to either RAD or tape; however, for improved execution
speed they should be assigned to RAD as keyed direct-access files. The control lan-
guage file (F:1) should always be a RAD file and must have consecutive-sequential
organization.

IRUN Causes BPM to load FMPS into core and commence execution.

IDATA Signals BPM that following cards are user datadecks to be read by FMPS,

Efficient Use of FMPS 57



CR Variable Explanation

ADATA (cont.)  tape or cards, except for SAVE,
RESTART, and INPUT when SHARE

is specified.

AOBJ, ARHS Initialize these two cells early in
the control program since they are
used by many procedures.

FOBJWT Initialize at =1.0 for maximization,

or 1.0 for minimization,

It is always necessary to initialize the KINV interrupt cell
and to program a sequence of action for that interrupt be-

cause the KINV interrupt may occur for reasons beyond the
user's control (such as the occurrence of excessive numeri-
cal errors). Also, the KINV interrupt may be activated by

the timing routine built into the OPTIMIZE procedure, when-

ever more frequent calls for INVERT would help reduce the
time per iteration within the OPTIMIZE procedure.

The SAVE procedure can be used for two purposes:

1. To preserve the probiem status on tape in order to be
able to restart from an advanced basis if it is neces-
sary to discontinue the run, or if hardware errors occur.

2. To create a working copy of a problem in a compact
format on magnetic tape; for instance, calling the
SAVE procedure after reading a large matrix from cards
allows use of the RESTART tape rather than the cards at
a later time,

Execution of the SAVE procedure several times during one
run causes the latest status to be preserved on tape.

58 Efficient Use of FMPS

Whenever a call for SAVE is executed, any information
written on tape by previous calls for SAVE is overlaid by
the new information being written. When restarting a run
by means of the RESTART procedure, care must be used in
the sequence of conitrol program statements. Any state-
ments that modify the communication region (CR) must
appear after the call for RESTART, since execution of the
RESTART procedure initializes the CR to the status at the
time the problem was saved. For this reason, it is recom-
mended that the CALL RESTART statement be placed im-
mediately after the calls for DEVICE and for ATTACH,

MULTIPLE ATTACHMENTS OF RESTART TAPE

If is sometimes desired to use different tapes for RESTART
and SAVE. In this case, it is permissible to ATTACH the
RESTART file several times as in. the following sequence.

CALL DEVICE('MATRIXIN', TAPE,'F')
CALL DEVICE('"MATRXOUT', TAPE, 'G'")
CALL ATTACH(RESTART, 'MATRIXIN')
CALL RESTART

CALL ATTACH(RESTART, 'MATRXOUT")

CALL SAVE

In the above sequence, the problem is restarted using RE-
START tape F; following the call for RESTART, tape G is
attached to the RESTART file, so that any information
saved during subsequent calculations is written on that
tape, rather than on tape F.



APPENDIX A. PARAMETRIC PROGRAMMING

This appendix describes three post-optimal procedures,
RANGE, PARAOBJ, and PARARHS, that are available
as options to FMPS, An outline of each is given in
Table 23 below,  Note that post-optimal procedures
are available only in the linear programming operating
mode.

Table 23, Parametric Programming Procedures

Procedure Purpose

RANGE Generates and outputs an
analysis of the current LP
solution,

PARAOBJ Performs parametric pro-

gramming on the objective
row after optimality.
PARARHS Performs parametric pro-
gramming on the RHS after
primal and dual optimality.

After an optimal solution has been obtained, the proce-
dures RANGE, PARAOBJ, and PARARHS may be used to
determine the sensitivity of the optimal solution in regard
to RHS and objective function values. The RHS range
computes how far the activity level of a given nonbasic
variable can be changed in either direction, while hold-
ing all other nonbasic variables at the current activity
level, before the optimal basis for the current RHS will
change. The COST range computes how far the cost coef-
ficient of a given basic variable can be changed in either
direction, while holding the cost coefficients of all other
variables constant, before the optimal basis for the cur-
rent cost coefficients will change. Parametric program-
ming is an extension of RANGES, and is used to determine
how the optimal basis will change when more than one co-
efficient moves over a special range of values. Before
performing parametric procedures, a change row or column
must have been defined. Depending upon which paramet-
ric procedure is requested, a matrix cost row or RHS s
changed continuously until the specified maximum change
has been obtained. The cost row or RHS is called a com-
posite because it consists of the original elements plus a
given amount of a change element. The function of para-
metric procedures is to retain optimality and feasibility as
the problem continues to change.

RANGE The RANGE procedure generates and outputs
an analysis of the current LP solution,

RANGE will produce two different types of reports de-
pending upon the optional parameters. The first param-
eter, BASIC, generates a report of 11 columns for the
variables currently basic or at intermediate levels., The

second parameter, NONBASIC, creates another report of
12 columns for the variables currently nonbasic or at limit
levels, Tables 24 and 25 list column numbers as well as

headings in each level, If neither BASIC nor NONBASIC

is specified, both outputs will be given.

The optional parameters available to RANGE are given
below,

Parameter Explanation
BASIC Indicates that output is to in-
clude only those columns cur~-
rently in the basis.
NONBASIC Indicates that output is to in-
clude only those constraint
rows whose slack variablesare
currently nonbasic and those
columns currently nonbasic.,

ROWS Indicates that row selection
or exception list parameter
follows,

COLS Indicates that column selection
or exception list parameter
follows

EXCEPT Indicates that following list
reference is for exception list,

LISTR Used in connection with ROWS
to specify row selection or ex-
ception list,

LISTC Used in connection with COLS
to specify column selection or
exception list,

The following interrupts may occur within RANGE,

Interrupt Causes
KMAJER No matrix defined.
KMINER 1. Invalid parameter,
2. llogical combination of
parameters.
KINV 1. Solution is primal or dual

feasible. Typical response
to this interrupt would be:

CALL INVERT
CALL OPTIMIZE
RETURN

KIOER Irrecoverable input/output error.

Appendix A 59



Table 24, Output for Basic Variables

Column Heading Description of Information in Column
1 NUMBER The internal number associated with the BASIC variable,
2 NAME Name of the basic variable.
3 AT A two-character code indicating the status of the BASIC variable.
Code Meaning
BS Basic variable
** Separator used to distinguish slack from nonslack
4 ACTIVITY Activity of the basic variable,
5 INPUT COST Input cost specified by the user,
6 LOWER PROCESS The name of the variable that would change its status (enter the basis) if the cost
coefficient of the basic variable in column 2 was decreased by more than the amount
in column 7,
7 LOWER The maximum amount of cost coefficient decrease for the basic variable in column 2
INCREMENT which would not change the status of any variable. If the cost coefficient is
_ changed beyond this amount, the variable in column 6 would change its status.
8 LOWER AT The current status (at upper limit [UL] or at lower limit [LL]) associated with the
process specified in column 6.
9 UPPER PROCESS The name of the variable that would change its status (enter the basis) if the cost
coefficient of the basic variable in column 2 was increased by more than the amount
in column 10,
10 UPPER The maximum amount of the cost coefficient increase for the basic variable which
INCREMENT would not change the status of any variable. If the cost coefficient was changed
beyond this amount, the status of the variable in 9 would be changed.
n UPPER AT The current status (at upper limit [uL] or at tower limit [LL]) associated with the vari-
able in column 9,
Table 25, Output for Nonbasic Variables
Column Heading Description of Information in Column
1 NUMBER The internal number associated with the NONBASIC variable.
NAME Name of the nonbasic variable.
AT A two-character code indicating the status of the NONBASIC variable.
Code Meaning
EQ Artificial variable,
UL Row at upper limit for slack variable, or column at upper
limit for nonslack variable.
LL Row at lower limit for slack variable, or column at lower
limit for nonslack variable.
* Separator to distinguish slack variables from nonslack
variables.
4 LOWER LIMIT The lower bound on row activity for slack variables, The lower bound on column
activity for nonslack variables,
5 UPPER LIMIT The upper bound on row activity for slack variables. The upper bound on column
activity for nonslack variables.
6 REDUCED The DJ of the variable in column 2,
COST

60 Appendix A




Table 25. Output for Nonbasic Variables (cont. )

Column Heading Description of Information in Column
7 LOWER The name of the basic variable that would leave the basis if the original activity
PROCESS tevel of the variable in column 2 was decreased beyond the amount in column 8,
8 LOWER The maximum amount of original activity decrease of the variable in column 2
INCREMENT which would not change the status of any variable, If the activity level decreased
beyond this amount, the basic variable in column 7 would leave the basis. (The
lower limit of the variable is ignored.)
9 LOWER AT A two-character code indicating the status at which the BASIC variable in column
7 would leave the basis.
Code Meaning
uL Variable leaves basis at upper limit,
LL Variable leaves basis at lower limit.
10 UPPER The name of the basic variable that would leave the basis if the original activity
PROCESS level of the variable in column 2 decreased beyond the amount in column 11,
11 UPPER The maximum amount of original activity increase of the variable in column 2
INCREMENT which would not change the status of any variable. If the activity level was in-
creased beyond this amount, the basic variable in column 10 would leave the
basis. (The upper limit of the variable is ignored. )
12 UPPER AT A two-character code indicating the status at which the BASIC variable in col-
umn 10 would leave the basis.
Code Meaning
uL Variable leaves basis at upper limit.
LL Variable leaves basis at lower limit.
PARAOBJ The PARAOBJ procedure is used to perform Parameter Explanation
parametric programming on the objective row after an LP FTHETACM Maximum value of THETA for
problem has reached optimally. From any LP program a PARAOB
series of related problems can be defined by replacing the :
objective row with the original row plus a multiple of a FTHETACP The incremental value for THETA

change objective row. This multiple, FTHETAC, is the
parameter commonly known as THETA, In PARAOBJ, each
value of FTHETAC defines a different problem with differ-
ent cost coefficients. The function of this procedure is to
trace the whole series of solutions, varying FTHETAC from
zero up to a maximum parameter of FTHETACM defined by
the user, FTHETAC is gradually increased while the solu-
tion is kept primal and dual feasible by changing the basis
when necessary, Solution printout may be obtained option-
ally at a basis change or at a chosen interval of FTHETAC,

PARAOBJ produces an iteration lob at each basis change
which is identical to that of OPTIMIZE with the exception
of the THETA column which represents the current value of
the parameter,

The following parameters must be defined, in addition to
those parameters requested by OPTIMIZE procedure, be-
fore PARAOBJ procedure is called.

Parameter Explanation

APOBJ Contains name of objective func-
tion row.

FTHETAC Initial value of THETA for PARAOBJ.

during PARAOBJ for which the
KSOLTN interrupt will occur.

PARAOBIJ will terminate at one of the following three
conditions,

1. The parameter is at its maximum value of FTHETACM,

The message

'MAXIMUM OF PARAMETER OF THETA AT
o XXXXXX!

is printed and FTHETAC is set to FTHETACM,

2. The problem becomes unbounded at the current value

of the parameter and no further basis change will
occur. The message

'PREMATURE MAXIMUM OF THETA AT
XXXXXX!

is printed and FTHETAC retains the current value.

Appendix A

61



3. The parameter has reached a value beyond which it

can be increased indefinitely without any basis change

to maintain optimality. The message

‘NO MAXIMUM FOR PARAMETER OF THETA AT
 XXXXXX!

is printed and FTHETAC is set to FTHETACM,

The following interrupts may occur within PARAOBJ,

Interrupt Causes
KMAJER ‘ 1. AOBJ, ARHS or APOBJ
undefined.

2. No matrix to parameterize,

KINV 1. Problem is initially primal
or dual infeasible.

2. Problem has lost primal or
dual feasibility due to num-
erical error.

3. Inversion frequency satisfied.

4. Inverse exceeding file stor-
age. Normal interrupt re-
sponse for KINV would be:

CALL INVERT
CALL OPTIMIZE

RETURN
KSOLTN Solution printing is requested. A
typical response to this interrupt
would be:
CALL SOLUTION
RETURN
KIOER 1. Irrecoverable input/output
error,

2. File capacity exceeded.

KFREQA User iteration frequency (IFREQA)
satisfied.

KTIME User-specified time increment
reached.

PARARHS The PARARHS procedure is used to perform
parametric programming on the RHS aofter a problem has
reached primal and dual optimality. From any LP problem
a series of related problems can be defined by replacing
the RHS with the original RHS plus a multiple of a change
RHS. Thismultiple, FTHETAR, isthe parameter commonly
known as THETA. In PARARHS each value of FTHETAR
defines a different LP problem with a different RHS. The
function of this procedure is fo trace the whole series of
solutions by varying FTHETAR from zero up to a maximum
parameter of FTHETAM defined by the user. FTHETAR is
gradually increased while the solution is kept primal and
dual feasible by changing the basis when necessary. Solu-
tion printouts may be obtained optionally at basis changes
or at a chosen interval of FTHETAR,

62 Appendix A

PARARHS produces an iteration log at each basis change
which is identical to that of OPTIMIZE with the exception

of the THETA column representing the current value of
FTHETAR,

The following parameters must be defined before PARARHS
is called.

Parameter Explanation

APRHS Name of the parametric RHS,

FTHETAR Initial value of THETA for
PARARHS.

FTHETARM Maximum value of THETA for
PARARHS,

FTHETARP The incremental value for THETA

during PARARHS for which the
KSOLTN interrupt will occur.

PARARHS will terminate for one of the following three
conditions.

1. The parameter is af its maximum value of FTHETARM,
The message

'MAXIMUM OF PARAMETER OF THETA AT
< XXXXXX!

is printed and FTHETAR is set to FTHETARM,

2. The problem becomes infeasible at the current value
of parameter and no further basis change can occur,
The message.

'PREMATURE MAXIMUM OF THETA AT . XXXXXX'

is printed and FTHETAR retains the current value,

3. The parameter has reached a value beyond which it
can be increased indefinitely without any basis
change to maintain feasibility. The message

'NO MAXIMUM FOR PARAMETER OF THETA AT
« XXXXXX!

is printed and FTHETAR is set to FTHETARM,
The following interrupts may occur within PARARHS,

Interrupt Causes
KMAJER 1. AOBJ, ARHS or APRHS
undefined.

2. No matrix to parameterize,

KINV 1. Problem initially primal or
dual infeasible.

2. Problem has lost primal or
dual feasibility due to num-
erical error,



Interrupt Causes

3. Inversion frequency satisfied.

Normal interrupt response for

KINV would be:

CALL INVERT
CALL OPTIMIZE

RETURN

KSOLTN Solution printing is requested.
A typical response to this in-
terrupt would be:

CALL SOLUTION

RETURN

Interrupt

KIOER

KFREQA

KTIME

Causes

1. Irrecoverable input/output
error,

2. File capacity exceeded.

User iteration frequency (IFREQA)
satisfied.

User-specified time increment
reached.

Appendix A 63



APPENDIX B. FMPS ERROR MESSAGES

CONTROL LANGUAGE COMPILER DIAGNOSTICS

The following list specifies the error messages that can be
produced by the control language compiler at compile
time. Any error during compilation precludes execution
of the control program. Note that all error lines are pre-
fixed with

ERROR*****.

Computer diagnostics are listed below, Note that in the
INVALID PARAMETER message, aaaaaaaa contfains the name,
in from one to eight characters, of the incorrect parameter.
ILLEGAL STATEMENT
STATEMENT NUMBER MUST BE NUMERIC
ASSIGN STATEMENT MUST REFER TO INTERRUPT CELL
REQUIRED FIELD MISSING

THE STATEMENT NUMBER OF A GO TO STATEMENT
MUST BE NUMERIC OR KTYPE

ARGUMENT ON LEFT OF EQUAL SIGN MUST BE
EITHER USER OR COMMON STORAGE VARIABLE

EQUAL SIGN MISSING
INVALID PARAMETER aaaaaaaa
MISSING LEFT PARENTHESIS

LOGICAL OPERATOR MUST BE ENCLOSED IN
PERIODS

ILLEGAL LOGICAL OPERATOR
MISSING RIGHT PARENTHESIS
INVALID PROCEDURE NAME
UNDEFINED STATEMENT NUMBER
DUPLICATE STATEMENT NUMBER

NOT ENOUGH CORE AVAILABLE TO PROCESS THIS
MANY STATEMENTS

MISSING TERMINAL QUOTE

64  Appendix B

INPUT/OUTPUT ERROR TYPES

The following table describes the input/output error mes-
sages that can occur during an FMPS run,

Table 26. Input/Output Error Types

Error Type Description

1. A file is referenced but no
ATTACH was made,

2. No DEVICE is attached to
a file.

Device read error,
4, Device write error,

5. Volume of storage for de-
vice exceeded during a
write operation,

6. Attempt to write on a file
in read or closed status.

7. Attempt to read on file in
write or closed status.

8. Attempt to read beyond
written information.

9. Dynamic core pointer for
a file buffer points o an
illegal core area.

10. Undefined type of device,
i.e., device not DISC or

TAPE.

11, Insufficient core available
to create even one file
buffer.




APPENDIX C. FMPS SAMPLE RUNS

J8B 326,S0MD

LIMIT (TIME»90)4(L6,1000),(UEs1000)s(D3,1000)

ASSIGN Fi106, (DEVICE,CPADS)

ASSIGN Fi1,(FILE2CLANG) 2 {BIN) s (WRITEsALL)s (CBNSEC) s {SEQUEN)S;
{OUTIN), (RECL#30000), (READSALL)

ASSIGN F12, (FILEAUTIL1)2(BIN) #(WRITESALL)» (KEYED) s (CIRECT) )y
(BUTIN), (RECL 230000, (READ2ALL)

ASSIGN F13,(FILE,UTIL2)2(BIN)2(WRITE2ALL) s (KEYED) s (DIRECT )4y
{OUTIN), (RECL#230000), (READSALL)

ASSIGN Fias (FILEsMTRX)2(BINT 2 (WRITESALL) 2 (DIRECT) s (KEYED)s;
(OUTINY» (RECL230000) s {READ2ALL)

ASSIGN Fi15,(FILE,IVSE)2(BINY ) (WRITEsALL) 2 (DIRECT) 2 (KEYED)2;
(BUTIN), {RECL230000), (READsALL)

ASSIGN F16, (DEVICELOT)a L INBUT) ) { INSN2U26) 2 IBIN) 2 (WRITESALLY S {SAVE)
RUN {LMNsFMPS)

DATA

THIS IS A COMMENT (PUNCHED C [N CSL 1)
DEFINE WEADING AND ENTER LoPe MBDE
TITLE SDS SIGMA 577 = SAMPLE FMPS LePe RUN

THIS BENCHMARK HAS BEEN PURPOSELY MADE QUITE COMPLEX T8 CEMONSTRATE
MANY BF THE OPTIONS AVAILABLE IN FMPSe USUALLY, CBNTROL PRBGRAMS
ARE MUCH SIMPLER AND THE STANDARD B8PTIONS ARE USEDs

CALL ENTER(LP)

INITIALIZE MAJUR ERROR INTERRUPT VARIABLE
ASSIGN 300 T8 KMAJER
INITIALIZE MINSR ERRGR INTERRUPT VARIABLE
ASSIGN 300 T8 KMINER
I?ETETlng LIMIT BF 5 MINUTES FRBM EXECUTION BF THIS STATEMENT
IME =
INITIALIZE TIME~BUT INTERRUPT VARIABLE
ASSIGN 45 TO KTIME
SPECIFY FOUR SYMBOLIC UNITS (WBRKING FILES) BN RAD

OO0 O O O 000 OO0 On 0o

CALL DEVICE('FILEL'sDISCs'B")
CALL DEVICE('FILE2',DISCs'CY)
CALL DEVICE('FILE3',DISCstDY)
CALL DEVICE('FILES',DISCs'EY)

SPECIFY A SYMBOLIC UNIT BN TAPE (LOGICAL NUMBER A)
CALL DEVICE('TAPEA',TAPE,'F!')

ATTACH THE FBUR STANDARC [ePe FMPS FILES T8 THE
PREVIBUSLY DEFINED FBUR SYMBBLIC UNITS {RAD)

naon 00

CALL ATTACHIMATRIXs'FILELY)
CALL ATTACH(INVERSE.'FILE2")
CALL ATTACH(UTILIe'FILE3")
CALL ATTACH(UTIL2s'FILES")

ATTACH THE RESTART FILE 76 LOGICAL TAPE A PREVIBUSLY DEFINED
CALL ATTACH(RESTART,'TAPEA!)

NBTE FOR THE ABOVEerATRIX, INVERSE,UTILIsUTIL2s AND RESTART
ARE INTERNAL FILES wHICH MUST ALWAYS BE ATTACHEC

EXCEPT RESTART [F NO SAVING BR RESTARTING [S PROBGRAMMED

SELECT DESIRED [NFYT DATA RECORC ANL SPECIFY PROALEM NAME

OO0 OO0

ADATA o TALLBYS!
APBNAME & '"FPUS]IEBN'

[aXs)

LBAD INPUT MATRIX FRBM CARDSs USING RECORD 'ALLOYS!

CALL INPUT

CALL INPUT(FILE,FILENAME) wBULD RESULT IN SEARCHING INPUT FILE
CALLED FILENAME FBR RECORD ALLOYS AND LOADING 1T AS INPUY MATRIX
IN THIS CASE BNE SHBULD FIRST DEFINE THWE FILE AND ATTACK IT

BY MEANS OF DEVICE AND ATTACH CALLSe

IDENTIFY RIGHT=HAND=SIDE COLUMN AND COST RBW T® BE USED

ARHS ¢ 'ALBYL!
ABBJ s 'VALUE!

OOoOOON00O00 O

VARIBUS BPTIONS TO DISPLAY MATRIX

[aXslaYaXaRala¥s)

OISPLAY ORIGINAL MATRIX [N STANDARD FARMAT

Appendix C

65



CALL ButPyT

DISPLAY ORIGINAL MATRIX IN CODED FORM
CALL 8yuTRyT(CODLD)

DISPLAY ORIGINAL MATRIX IN ROw BRDERK
CALL GUTPUT(BYRBWS)

DISPLAY ORIGINAL MATRIX IN COLUMN BRDER
CALL BUTPUT(BYCULS)

EXAMPLE BF SB8LUTI BN

VARIBUS INITIALIZATIONS FOR SOLLTION (SPYIMIZE)
SET TO INVERT Nt LESS FREGQUENTLY THAN AT INTFRVALS AF & [TERATIONS
IFREQ] » &

ASSIGN «EJGRT BF 1¢3 T8 BRJECTIVE ROW
(190 RESULTS IN MINIMIZATION, =1sC IN MAXIMIZATIBN)

FBBJWT w 140

OO O0NN OOO0DOONONON ONO ONO ONO O

SET TO PRINT ITLRATION _BG €ACK ITERATION (PRINTER BUTP_T)

LGP o 1
SET PRICING Te BE MADE FROM GROUPS OF TwO PROFITABLE VARIABLES

INCAND ¢ 2

SET INVERSISN INTERRUPT CELL TO TRANSFER T8 STATEMENT 200
ASSIGN 200 T8 KNV

NOW SET MINOR ERRER INTERRUPT T8 CAUSE CREATION BF RESTARY TAPE
IF IT wERE 70 9CCUR DURING THE BPTIMIZE PHASE

ASSIGN 400 T8 KMINER

SET OPTIMIZE Te DISREGARD OPTIMALITY DURING PHASE ONE
FCMPDJ « 090

SOLVE Le«Pe MATRIX

CALL BPTIMIZE

PRESERVE BASIS OF OPTIMAL SOLUTIBN

CALL SAVE

PRINT SBLUTION VALULS (COLUMNS AND ROWS!
CALL SoLUTIeN

PRINT PRIMAL AND DUAL ERRERS

CALL ERRORS
EXAMPLE OF RANGE CALCULLATIONS
CALL RANGE

EXAMPLE 8F COST PARAMETRICS

OO0 NOAOO OO0 0O 00 ONO OO0 OO0 000 N0 0

SET INJITIAL AND MAXIMUM THETA VALUES FBR CBST PARAMETRI(CS
FTHETAC » 0.0
FIHETACH s 10,

SET T8 PRINT SOLUTIONS AT THETA INTERVALS OF 05

FTHETACP o 05

IDENTIFY COST PARAMETRIC ROw (THE BNE T8 BE MULTIPLIED BY THETA)
APBBJ & 'DELCST!

INITIALIZE SBLUTION REQUEST INTERRUPT VARIABLE

ASSIGN 600 T8 KSOLTA

ASSIGN 700 18 KNV

c EXECUTE PARAMETRIC COST RuM

CALL PARABBY

O 0O 00

CALL SeLuUTIeN

C
c
c EXANPLE ofF RhS PARAMETRIC RUNMN
c
c
< RESTORE SpTIMAL BASIS
CALL RESTORE
c SET INITIAL AND MAXIMUM THETA VALUES FBR RHS PARAMETRICS

FTHETAR ®» 040
FTHEYARM » 10,0

66 Appendix C



o

O O OO0 0O 0O 0O 00O 6 0O 0 0000000 00

SET T8 PRINT SOLUTION AT THETA INTERVALS OF 1.0

FTHETARP s 140

IDENTIFY RHS PARAMETRIC BLUMN (THE 8NE T8 BE MULTIPLIED BY THETA)
APRHS « 'DELPROOC'

EXECUTE PARAMETRIC RHS RUN

CALL PARARMS

CALL SOLUTIGN

STaP
THE FOLLOWING STATEMENTS CONTRSL THE RESPBNSE T8 INTERR_PTS

ENTER WERE FOBR TIME«OUT INTERRUPT
PRESERVE PROBLEM STATUS BN RESTART TAPE

45 CALL SAVE

TERMINATE RUN
STeP
ENTER HERE WHEN INVERSIBN [NTERRUPT 8CCURS

200 CALL INVERY

RETURN T8 PRBCEDURE THAT CAUSED THE KINV INTERRUPT
RETURN

ENTER WERE IN CASE UF MAJBR OR MINBR ERRORS

DISPLAY COMMUNICATION REGJON VARIABLES AND FILE STATUS

300 CALL ConDITYION

TERMINATE FMPS EXLCLTION

STOP

ENTER HERE FOR MINSR ERROR INTERRUPT DURING @PTIMIZE PWASE
D1SPLAY FMPS STATUS

400 CALL COnDITION

DB SAME AS IF TIMEOUT OCCURED

G8 18 45

ENTER WERE WwHEN SOLUTION PRINTeBUT 1S REQUESTED (BASIS CHANGE
BR SBLUTIBN PRINT«BUT INTERVAL 6F THETA SATISFIED)

PRINT SalUTISN

600 CALL SeLUTION

PRINT VALUE BF [TLRATION COUNT
WRITE JTCNT

RETURN T8 PARAM.TRICS

RETURN

c ENTER WERE IF NUMLRICAL ACCURACY CAUSFS INFEASIRILITY DLRING PARAMETRICS
700 CALL INVERT
CALL 8PTIMIZE
RETURN
c END 8F (BNTROL PROGRAM
END
NAME ALLEYS
RBWS
N VALUE
£ viELD
L FE
L MN
L cu
L MG
G AL
L sl
N DELCST
COLUMNS
BINL VALUE 0403000
BINL Y]ELD 100000
8iN1 FE 0+15000
BIN1 cu 0403000
BINg MN 0002000
BINY MG 0.+02000
BINg AL 0470000
BiNy st 002000
BINg DELCST «10,0
BIN2 VALUE 0408000
BIN2 YIELD 1406000
BIn2 FE 0+04000
BINZ cu 005300
BIN2 MN 0+04000
Bin2 MG 0403000
8IN2 AL 0479000
BIN2 s1 006000
BIN3 VALLE 0017000
BIN3 Y]ELD 1.00000
BIN3 FE 0402000
BIN3 Cv 0408000
BIN3 MN 0.01000
BIN3 AL 880000
BIN3 S 0:08000
BINS VALUE 012000
BiNG YIELD 1.00000
BInG FE 0+08%000
BiN& Cu 003000
BING MN 0.+02000
BIN& AL 075000
BINa LR 0+12000
BINS VALUE Q+15000
BINS YIELD {00000
BINS FE 0.02000
BINS <1} 0406000
BINS MN 0402000
BINS MG 001000

Appendix C

67



BINS AL 04280000

BINS S1 002000

ALUM VALUE 0421000

ALUM YIELD 1.00000
ALUM FE 0401000
ALUM cu 001000
ALUM AL 0497000
ALUM Sy 0.,01608
SILCON VALUE 0.+38000
sSiLCeN YIELD 1.00000
SILCON FE 0+03000
siLcen st 092000

RKS
ALBYY YiELD 2000400000
ALOYY FE 6000000
ALayy (41} 10000000
ALOYY MN 40400000
ALOYY MG 30400000
aleyy AL 1500400000
ALsyy sI 300+00000
OELPRODC  YIELD 20000,0

RANGES
ALl s1 50000000

BOUNDS

UP PRED1 BIN1 20000000

UP PROD1 BIN2 2500400000

.6 PRGDL BIN3 400+00000

UP PRED1 BIN3 800+00000

L0 PROD1 BING 10000000

UP PROD1 BIN4 700+00000

UP PRED§ BINS 1500+00000

ENDATA

1113% FEB 12,'69 1Ds0000

J08 326,S0MD

LIMIT (TIME,90)s(L6,1000),(Uts1000)2(D8,1000)

ASSIGN Fi106, (OEVICE,CPAOS)

ASSIGN Fi1s(FILEsCLANG) s (BIN)» (WRITE2AL)s (CONSEC), (SEQUEN)Y )
(BUTIN) » (RECL»30000), (READsALL)

ASSION Fi12, (FILESUTILI) 2 (BIN) S (WRITESALL) s (KEYED) s (DIRECT) .
(OUTIN), (RECL»30000), (READsALL)

ASSIGN Fi134 (FILESUTIL2)a{BIN) 2 (WRITESALL) S (KEYED), (DIRECT) )
(BUTIN) , (RECL»30000), (READsALL)

ASS16N r.h;(FlLE:NTRx)a(BXNin(uRlTE:ALL)n(DlRECT)o(KEVED):;
(BUTIN), (RECL230000), (READSALL)

ASSIGN Fi5, (FILE)IVSE) 2 (BINY 5 (WRITESALL) 2 (DIRECT) s (KEYED) s
(BUTIN), LRECL230000), (READsALL)

ASSIGN Fles (DEVICE,IT)a (INBUT) S (INSNsO2E) s (BINYZ(WRITESALL )2 (SAVE)
RUN {LMN2FMPS)

68

12FEBEY Oe

INTERNAL STATEMENT NUMBEHK c TIME = 11334

[ THIS IS A COMMENT (PUNCHED C IN CBL 1)
C
C DEF iNE HEADING AND ENTER LoPe MEDE
C

1 e TITLE SDS SIGMA 5/7 « SAMPLE FMPS LePs RUN
C
C THIS BENCHMARK HAS BEEN PURPBSELY MADE GUITE COMPLEX T8 DEMONSTRATE
C  MANY BF THL OPTIONS AVAILABLE IN FMPSe USUALLY, CONTROL PREGRAMS
[« ARE MUCH SIMPLER AND THE STANDARD OPTIBNS ARE USEDe
C

2.9 CALL ENTER(LP)
3
C INITIALIZE MAJBR ERRBR INTERRUPT VARIABLE

3 e ASSIGN 300 T8 KMAJER
4 INITIALIZE MINOR ERRSR INTERRUPT VARIAALE

4 o0 ASSIGN 300 TG KMINER
c SET TIME LIMIT 6F 5 MINUTES FRBM EXECUTIBN BF THIS STATEMENT

LT} ITIME ¢ 5
C INITIALIZE TIME«BUT INTERRUPT VARIABLE

6 se ASSIGN 45 T8 KTIME
4 SPECJFY FOBUR SYMBULJC UNITS (WBRKING FILES) 8N RAD
C

7 v CALL DEVICE{'FILEL'»DISC,'BY)

8 *s CALL DEVICE('FILE2'sDISCs'C*)

9 se CALL DEVICE(FILE3',DISC,'CY)

10 #» CALL DLVICE('FlLﬁi'aDISCo'E‘)
C
C SPECIFY A SYMBOLIC UNIT ON TAPE (LOGICAL NUMBER A)

11 =e CALL ODEVICE('TAPEAY,TAPE, 'F
c
¢ ATTACH THE FBUR STANDARL LePe FMPS FILES T8 TH-
C PREVIgUSLY DEFINED FBUR SYMBBLIC UNITS {RAD}
4

12 #e CALL ATTACH(MATRIX,'FILEL")

13 »e CALL ATTACH{INVERSE,'FILE2")

i§ =0 cALL ATTACRLUTILL,'FILEIY)

i5 s CALL ATTACHILTILZ,TFILERY)
C
C ATTACH THE RESTART FILE T8 LBGICAL TAPE A PREV]USLY CEFINED
C

16 #a CALL ATTACH(RESTART, 'TAPEA")

Appendix C

O

1e



[aXaXalaXaKalal

NOTE FBR TrE AUBVEeMATRIX) INVERSESUTIL1,UTIL2, AND RESTART
ARE INTERNAL FILES WHICH MUST ALWAYS BE ATTACKLD
EXCEPT RLSTART IF N6 SAVING OR RESTARTING IS PRUGRAMMED

SELECY DLSIRED INPUT DATA RECARD AND SPECIFY PROBLLM NAME

12FEB6S O D) 2
17 s ADATA s 'ALLBYS'
18 se APBNAME s 'FUSION!
4
[+ LOAD INPUT MATRIX FROM CARDS, USING RECOGRD 'alLL8YS'
c
19 «» CALL INPUT
c
[ CALL INPUT(FILEsFILENAME) WBULD RESULY IN SEARCHING INPUT FILE
C CALLED FILENAME FBR RECBRD ALLOYS AND LBADING T AS INPUT MATRIX
4 IN THIS CASE ONE SHOULD FIRST DEFINE THE FILE AND ATTACH IT
C B8Y PEANS OF DEVICE AND ATTACH CALLSe
[
4 IDENTIFY RIGHTeHAND®SIDE COLUMN AND COST ROW T8 BE USED
¢
20 *» ARHS = 1ALBY1'
21 ABBJ s 'VALUE?
9
¢
C
c
< VAR]IOBUS 8PTIBNS TB DISPLAY MATRIX
c
C
4 DISPLAY BRIGINAL MATRIX IN STANDARD FORMAT
4
22 o CALL ouTPUT
C
[+ DISPLAY ORIGINAL MATRIX IN CODED FORM
4
23 oo CALL BUTPUT(CODED)
C
c DISPLAY ORIGINAL MATRIX IN ROW BRDER
C
24 we CALL BUTPUT(BYROWS)
C
< DISPLAY BRIGINAL MATRIX IN CBLUMN ORDER
C
25 «e CALL BUTPUT(BYCHLS)
C
C
c
C EXAMPLE 6F S8LUTYIBN
C
4
[«
c VARIOUS INITIALIZATIBNS FOR SOLUTIBN (OPTIMIZE)
c
4 SET T INVERT N8 LESS FREQUENTLY THAN AT INTERVALS OF 4 ITERATIBNS
[4
26 se IFREQ] = &
12FEB6Y Os Os 3.
C
C ASSIGN WLIGHT B8F 1¢0 78 BBJECTIVE RBW
C (160 RESULTS IN MINIMIZATION, ©1¢0 IN MAXIMIZATION)
C
27 e FOBBJWT s 140
[
c SET T6 PRINT ITERATIGN LBG EACH ITERATISBN (PRINTER BUTPUT)
[
28 &s 1LeGP & {
C SET PRICING T8 BE MADE FROM GROUPS OF Tw® PROFJTABLE VARIABLES
C
29 #» INCAND s 2
4
C SET INVERSIGN [NTERRUPT CELL TB TRANSFER T8 STATEMENY 200
C
30 ¢ ASSIGN 200 18 KINV
Cc
C NOw SET MINOR ERROR [NTERRUPT T8 CAUSE CREATION OF RESTART TAPE
c IF IT WERE T8 BCCUR DURING THE OPTIMIZE PMASE
31 e ASSIGN 400 T8 KMINER
C
< SET OPTIMIZE TO DISREGARD GPTIMALITY DURING PHASE ONE
32 se FCMPDJY & 0900
C
[4 SOLVE LePe MATRIX
c
33 s CALL OPTIMIZE
4
[« PRESERVE BASIS OF OPTIMAL SBLUTION
34 se CALL SAVE
4 PRINT SELUTIBN VALUES (CBLUMNS AND REWS)
35 o2 CALL SOLUTIGN
C
[+

PRINT PRIMAL AND DUAL CRRORS

Appendix C

69



[
36 s CALL ERRORS
¢
C EXAMPLE OF RANCGCE CALCULATLIEBNS
[
4
37 s CALL RANGE
C
c
C EXAMPLE O8F CHST PARAMETRICS
¢
4 SET INITIAL ANG MAXIMUM THETA VALUES FBR COST PARAMETRICS
38 = FYHETAC = Co0
39 »e FTHETACH & 104
12FEB6Y Os  Oe 4
c
4 SET T8 PRINT S6LUTIONS AT THETA INTERVALS BF +0%
80 se FTHETACP s 408
C IDENTIFY COST PARAMETRIC ROW (THE SNE T8 BE MULTIPLIED By THETA)
81 oo APBBJ « 'DELCST!
o INITIALIZE SOLUTION REQUEST INTERRUPT VARJABLE
42 e ASSIGN 600 T8 KSOLIN
43 * ASSIGN 700 TB KINY
c EXECUTE PARAMETRIC C6ST RUN
by o CALL PARAGBY
LU c CALL SoLUTIeN
4
g EXAMPLE BF RHS PARAMETRIC RUN
4
4 RESTORE OPTIMAL DASIS
46 s CALL RESTORE
d SET INITIAL AND MAXIMUM THETA VALUES FBR RHS PARAMETRICS
47 oo FTHETAR s G0
48 «a FYHETARM s 1040
4 SET TO PRINT SOLUTION AT THETA INTERVALS OF 1e0
49 e FTHETARP » 1¢0
c IDENTIFY RS PARAMETRIC BLUMN (THE ONE T8 BE MULTIPLIED BY THETA)
50 se APRHS o 'DELPREBODC!
c EXECUTE PARAMETRIC RHS RUN
5t e CALL PAHARKS
82 »e c CALL SoLuTIeN
c
53 & SToP
E
c THE FOLLOWING STATEMENTS CONTROL THE RESPENSE T8 INTERRUPTS
4
4
C ENTER MERE FOR TIME=BUT INTERRUPT
C PRESERVE PRBBLEM STATUS ON RESTART TAPE
54 #a a5 CALL SAVE
C TERMINATE RUN
55 e SToP
c ENTER uzae WHEN INVERSION INTERRUPT 8CCURS
56 e 200 CALL INVL
[4 RETURN T8 Paac:ounz THAT CAUSED THE KINV INTERRUPY
57 we RE TURN
C ENTER WERE IN.CASE OF MAJBR SR MINGR ERRBRS
C DISPLAY COMMUNICATION REGIBN VARIABLES AND FILE STATUS
S8 e» 300 CALL CONDITION
¢ TERMINATE FMPS EXECUTION
59 ee sTeP
12FED69 Os Qe Se
[4 ENTER HERE FOR MINOR ERRBR INTERRUPT DURING BPTIMIZE PHASE
[< OISPLAY FHPS STATUS
60 =» 400 CALL CONDITION
c 08 SAME AS IF TIMEBUT 8CCURED
61 o GO To 45
[4 ENTER HERE WHEN SOLUTION PRINT=BUT IS REQUESTED (BASIS CHANGE
4 oR SeLuTlBN PRINT-QUT INTERVAL OF THETA SATISFIED)
c PRINT SOLUTION
62 *» 600 CALL SOLUTION
c PRINT VALUE BF ITERATION COUNT
63 #e WRITE ITCNT
) 4 RETURN TO PARAHETRICS
64 o RETURN
c ENTER HERE [F NUMERICAL ACCURACY CAUSES INFEASIBILITY DURING PARAMETRICS
65 ss 700 CALL INVERT
66 »» CALL OPTIMIZE
67 ve RETURN
4 END OF CONTROL PROGRAM

68 %e END
INTERNAL STATEMENT NUMBER ¢ TIME = $1:35

70

Appendix C



12FEB63

INTERNAL STATEMENT NUMBER 1 TIME » 11135
INTERNAL STATEMENT NUMBER 2 TIME » 14135
INTERNAL STATEMENT NUMBER 3 TIME s 11:35
INTERNAL STATEMENT NUMBER & TIME » §1:35
NTERNAL, STATEMENY NUMBER & TIME » 11835
INTERNAL STATEMENT NUMBER 6 TIME = $1:35
NTERNAL STATEMENT NUMBER 7 TIME » 11135
INTERNAL STATEMENY NUMBER &8 TIME » $113%
INTERNAL STATEMENT NUMBER 9 TIME o £1135
INTERNAL STATEMENT NUMBER 10 TIME » {13135
INTERNAL STATEMENT NyMBER {1 TIME » 11335
NTERNAL STATEMENY NUMBER {2 TIME » 11135
NTERNAL STATEMENT NUMBER {3 TIME ¢ 11335
NTERNAL STATEMENT NUMBER 14 TIME » 11138
NTERNAL STATEMENT NUMBER 15 TIME » 11235
NTERNAL STATEMENT NUMBER 16 TIME » 18835
NTERNAL STATEMENT NuMBER {7 TIME « 11135
NTERNAL STATEMENT NUMBER I8 TIME s 11338
NTERNAL STATEMENT NUMBER I3 TIME v 11335

BUFFER SIZES (BYTES) AREee MATRIX s 648 {NVERSE s 10240
MATRIX STATISTICS

9
8

2
7037
7

ELEMENTSeo 00
LARGESTeeoee 00200000C+05

SMALLESTecoo 001?00000'01

MAJOR :aneas

MINGR ERRORS o

INTERNAL STATEMENT NUMBEH 20 TIME » 11335
INTERNAL STATEMENT NUMBER 21 TIME » 18135
INTERNAL STATEMENT NUMBER 22 TIME & 11235

J26EB69 . SDS SIGMA L/7 o SAMPLE F1PS LePe AULN ’ . : Os 20 . 2

SRIGINGL MATRIX

LOWER BBUND 000000 0400000 0400000 0+00000 0400000 000000 0400000 0+00000
UPPER BBUND 50400000
VALUE YIELD FE MN cu MG AL s
VALUE N 100000 0400000 0000000 0400000 0+00000 000000 0400000 0400000
YIELD E 0400000 1.00000 0400000 0.00000 000000 0.00000 0.00000 0000000
FE L 0400030 000000 {+00000 ©+0060060 0.00000 0400060 6+000060 0+50000
MN L 0000000 0.,00000 0400000 100000 0.00000 0400000 0.00000 0+00000
[=1] L 000000 0,00000 0400000 0400000 1.,00000 0+00000 0.00000 09+00000
MO L 0000000 0+06000 000000 0,00000 000000 100000 8.,00000 0400000
* AL G 0400030 0000000 0000600 0400000 60000605 0400000 «1.00000 0+00000
8] L 0+00000 0400000 0400000 0.,00000 0.00000 0400000 0400000 1+:00000
DELCST N 0406000 0+00000 0000600 0.000080 6,00008 0.00000 9+00000 0+00000
12FEB69  SD5 SIGMA 3/7 « SAMPLE FMPS LePe RUN Oe 3. le

BRIGINAL MATRIX

LBKWER BBUND 000000 0+00000 0400000 400,00000 100000000 000000 0.00000 0400000
UPPER BOUND 20000000 2500+00000 800000000 700400000 1500.00000
DELLCSTY BINL BIN2 BIN3 BIN& BINS ALUM stLCeN
VALUE N 000000 003000 0¢03000 017000 0412000 0+15000 0421000 033000
vIELD 3 0000000 100000 100000 1400000 1.00000 100000 1,00000 1+00000
FE L 000000 0015000 004000 0+02000 004000 002000 0+01000 0+030080
MN L 0400000 002000 0404000 0.01000 0402000 0402000 0400000 0#00000
cv L 0000000 003000 0405000 0+08000 002000 0+06000 0.01000 0400000
MG L 0400000 0402000 0403000 0.00000 000000 0401000 0+00000 0400000
. AL G 006030 0+70000 0475000 0.30000 0475000 0+80000 8497000 0400000
L 0400000 0002000 0005000 0.08000 0012000 0+02000 0.01000 0+97000
DELCST N 1400000 «10.00000 0400000 0.00000 0,00000 0400000 0.+00000 0400000
12FEB6Y  SDS SIGMA 5/7 « SAMPLE FMPS LePe RUN Os &¢ Lo

BRIGINAL MATRIX

LOBWER BBUND 0400000 0400000
UPPER BBUND
ALBY1 DELPRBDC
VALUE N 0000000 0400000
YIELD E 2000:00000 20000400000
FE L 60000000 0400000
MN Lt 40400000 0400000
cv L 10000000 0400000
MG L 3000000 0.00000
. AL G 1500+00000 0080000
s1 L 300000000 000000
CELCST N 0400060 0400000

Appendix C 71



12FEB6Y  SDS SIGMA /7 = SAMPLE FMPS LePe RUN Oe 5S¢ fe
INTERNAL STATEMENT NyuMBER 23 TIME = 11135
12FEB69  SDS SIGMA 5/7 = SAMPLE FMPS LePs RUN Os 60 1
SRIGINAL PICTURE
LEWER BBUND oo e s 0 000 g oL By ooy
UPPER BSUND B cCchccCPO
VYFRCMASDBBEBBASAD
AlENVGLIELITITITICILE
L E LNNNNNLGLOL
VL ci123as8sncCcyYP
ED S 1R
T N ®
o}
(4
VALUE N $ oo o2 essUUTTTTT on
YIELD E »f e o eseeerIil11YIIDE
FE L seleevsssrsrUOUUOUB .
MN L s ve s ee i UUUVUUU B,
[«4] L -ocn!ouog&ﬂUUUUoGo
Ma L ¢« o 0 00 ! 00 UesU©® o8B
AL ] e o v e 90l o s TTTTTTeD,
s1 ¢ sees s elsUUTUDTC,
DELCST N R EEEE L I BN
12FEB6S SpS SIGMA /7 = SAMPLE FMPS LsPs RUN O Te 1.
SYMBL SUMMARY OF “MATRIX W oues, N -
RANGE CBUNT { INCL.RHS)
E LESS THAN +000001 0 o
Y «000001 THRU +000009 [}
X +000010 2000099 [}
" +000100 +000999 ]
v 001000 +009999 0
v +010000 +09999% 27
T «100000 0999993 14
1 1 +000000 1000000 16
A 1+000001 10000000 1
b 10.000001 100+000000 4
C 100000001 1,0000000000 1
[} 120004000001 104000000000 2
€ 10,000.00000% 100,000+000000 1
F  100,000.000001 1,000,000+000000 [}
[} GREATER THAN 1,000,000+000000
12FEB6S  SpS SIGMA S/7 = SAMPLE FMPS LePe RUN Os 8¢ 1e
INTERNAL STATEMENT NUMBER 24 TIME » 11335
12FEB6Y SDS SIGMA 9/7 = SAMPLE FMPS LePe RUN Or 9e le
ROW VALUL NUMBER !
1+0000({VALUE ) 0+0300(BINS ) 0+0800(BIN2 ) 001700(BIN3 ) 0¢1200(BING b 0+§S00(BINS
002100 (ALUM ) 0+3800(SILCON )
ROW YIELD NUMBER 2
1+0000¢ YJELD ) 1+0000(BINS ) 1+0000(31IN2 ) 120000(BIN3 ) 1+0000(BINS ) 1+0000(BINS
140000 ¢ ALUM ) 1+0000(SILCEN ) 2000,0000(ALBYY ) 20000+0000{DELPRBDC) ’
ROW FE NUMBER 3
1+0000(FE ] 001500(8IN ) Qe0%00(BIN2 ) 0+0200(BIN3 ) 0¢0400(BINS ) 0+0200(BINS
02010001 Un ' 0+0300(SILCBN ) 60+0000(ALAY] )
ROW MN NUMBER &
1+0000(MN ) 0+0200¢(BINS ] 0+0400(BIN2 ) 0¢0100(BIN3 ) 0+0200(BINS ) 0¢0200¢(BINS

72

#40+0000(ALOYS )

Appendix C



ROW CU NUMBER 5
1.0000(CU ) 000300(B NS ) 0¢0500(BIN2 ) 0¢0800(BIN3 ) 0+¢0200(BIN& ) 0+0600({BINS )
000100 (ALUM ) 100+0000¢ALOYL )
ROW MG NUMBER 6
{+0000¢(MG ) 040200(BIN1 ) 0¢0300{RIN2 y 0¢0100(BINS ) 30+0000(ALBYL )
REW AL NUMBER 7
«140000¢AL ) 0¢7000(BIN1 ) 0¢7%00(BIN2 ) 098000(BIN3 ) 0s7500(BIN& ) 048000(BINS )
009700 ALUM ) 150000000¢ALEYY )
ROW S} NUMBER 8
140000151 ) 000200(BIN1 ) 0+0600(BIN2 ) 0+0800(BIN3 ) 0¢1200(BING ) 0+0200(BINS )
G+0£00(ALUM ) 0¢5700(SILCON 3 30040000(ALBY! )
RBW DELECST NUMBER 9
1+0000(0ELCST )  =10¢00Q0(BINI )
12FEB6I  SDS SIGMA 5/7 = SAMPLE FMPS LePe RUN Os 10¢ 1o
INTERNAL STATEMENT NUMBER 25 TIME & 11:35
12FEB6Y  SDS SIGMA 5/7 e SAMPLE FMPS LePs RUN Os ilv 1
COLUMN VALUE NUMBER 1 LBWER 0.0000 UPPER oNONE,
£00000(vALUE )
COLUMN YIELD NUMBER 2 LBWER 040000 UPPER 000000
1¢0000(YIELD
COLUMN FE NUMBER 3 LOWER 040000 UPPER ¢NONE,
1+0000(FE )
CBLUMN MN NUMBER 4 LO&ER 040000 UPPER «NBME«
100000 (MN )
COLUMN CU NUMBER 5 LOWER 00000 UPPER oNONE,
{+00001cy )
COLUMN MG NUMBER 6 LBWER 040000 UPPER ¢NONE,
{+0000(MG )
COLUMN AL NUMBER 7 LOWER 040000 LPPER «NONE,
«§00000¢AL )
COLUMN §] NUMBER 8 LOWER 040000 (PPER 5040000
{+0000¢81 )
CBLUMN DELCST  NUMBER 9 LOKER 040000 UPPER o¢NBNE,
1+0000(0ELCST )
COLUMN BINY NUMBER 10 LOWER 040000 YPPER 20040000
0¢0300(VALUE ) 1+0000(YIELD ) 0e1500(FE ) 040200 (MN ) 0+0300(CUL ) 000200(MG )
Qe7000¢AL ) 0+0200(S! ) =1040000(DELCST )
COLUMN BINZ NUMBER 11 LBWER 040000 UPPER 2500+0000
0e0B0C(VALVE ) 140000(YJELD ) 0e0400(FE ) 0s0800(MN 13 040500(CU ) 040300(MG )
0e7500¢AL ) 040600(5] )
COLUMN BIN3 NUMBER 12 L8#ER 40040000 UPPER 80040000
Oel700(VALUE ) 1¢0000(YIELD ) 040200(PE ) 0¢0100(MN ) 0+0800(CU ) 0¢8000(AL )
Oe.0800(s] )
COLUMN BIN® NUMBER 13 LOWER 10040000 (PPER 70040000
Qe1200(VALVE ) 100000(YIELD ) 0+0400(PE ) 0+0200(MN ) 0+0200¢CU ) 047500 (AL )
Oe1200¢81 )
COLUMN BINS NUMBER 14 LOWER 0+0000 UPPER 150040000
0+1500(VALUE ) 1¢0000(YIELD 0e0200(FE ) 040200 (MN ) 0+0600(CU ) G0100(MG )
0+8000(aL ) 0¢0200¢(S1 )
COLUMN ALUM NUMBEK 15 LBWER 0¢0000 LPPER «NAKE,
Ce2100(VALLE ) 1¢0000(YIELC ) 0+0100(FE ) 0+0100(CY ) 0¢9700 (AL ) 0+0100(S1 )
12FEB6ES SDS SIGMA 5/7 o SAMPLE FMPS LePs RUN Oe 11 2e
COLUMN SILCON  NUMBER 16 LOWER 040000 YPPER oNBNEs
Ge3800({VALUE ) 1+0000¢YIELD ) 0¢0300(FE ) 0+9700(S] )
COLUMN ALBY] NUMBER 17 LOWER 040000 UYPPER 040000
2000+0000(YIELD ) 6040000 (FE ) 4050000 (MN ) 100¢0000(CU ) 30¢0000(MG ) 1500.0000(AL )
300+0000(s! ) ’
CBLUMN DELPRYDC NUMBER 18 LOWER 040000 UPPER 0+0000

20000+0000(YIELD )

Appendix C

73



12FEBSY  SDS SIGMA 5/7 = SAMPLE FMPS L+Pe RUN O 12¢ 1.
INTERNAL STATEMENT NUMBER 26 TIME « 11135
INTERNAL STATEMENT NUMBER 27 TIME o 11135
INTERNAL STATEMENY NUMBER 28 TIME « 11335
INTERNAL STATEMENT NUMBER 29 TIME « 11335
INTERNAL STATEMENY NUMBER 30 TIME « 11135
INTERNAL STATEMENT NUMBER 31 TIME o 11335
INTERNAL STATEMENT NUMBER 32 TIME » 11335
INTERNAL STATEMENT NUMBER 33 TIME « 11138
NEGATIVE DJ COUNT = 7 SELECTEQ % VARIABLES BEST OJ ® «0+198000D+01
ITERT  SUM OF INF NINF  OBJECT VALUE V<IN MOVE™  REDUCED CBST ACTIVITY Ve8UT MOVE piver
1 0s281100000+0% 3 0+395000000+03 15 Le8  0¢210000000400 0¢190000000+0% "2 BeL  0¢30000000040%
0+191000000+03 1 0042882292D+03 16 L8 0¢170000000+00 0¢19835333D+03 8 B=U 0+960000000+00
SOLUTION FEASIBLE AT ITERATISN 2
NEGATIVE OJ COUNT o 5 SELECTED 3 VARIABLES BEST DJ » «001817710400
ITERT  SUM OF INF NINF~ BBJECT VALUE v=IN MOVE REOUCED COSY ACTIVITY VeBUT MBVE plver
o-oooooooouaoo 0 0e392468750403 10 LeU =0¢181770830+00 0+200000000+03 NeNE
+000000000+00 0 0¢388270680+03 13 (=8 =00109479170400 00383358650+02 3 Bel,  0e27708333D=0)
luvzﬂNAL STATEMENT uunatn 56 TIME e 11335 ’ : T
3 NON=BASIC SLACKSe COMPLETELY TRIANGULARIZED 0 REWS AND 6 COLSe
3 IN NONeCOMPLETELY TRIANGULAszzo "PARTs OF THESE 2 WHERE HOT TRIANGULARIZED AND 0 WERE REJECTED FOR T80 SMALL A PIVET.
MATRIX T8 BE INVERTED HAD 9 COBLS AND 23 ELEMENTSs INVERSE HAS 7 CBLS AND 21 ELEMENTS,
1800 MS FOR INVERY
INTERNAL STATEMENT NUMBER 57 TIME » 11335
INTERNAL STATEMENT NyMBER 33 TIME » 11135
NEGATIVE DJ COUNT & 4 SELECTED 2 VARIABLES BEST DJ ® »0+370564D+00

ITERs  SUM BF INF NINF OBJECT VALUE vy=IN MBVE REDUCED CBSY ACTIVITY VeBUT MBVE piver
$ 0+0000000004+00 0 0e38701713p+03 10 y=B «0¢370563910+00 0¢111325380+03 13 BeU 0.50451128D+0%
6  0+000000000+00 0 0032325701D+03 14 LeB <0+49038748D~0] 0.4845178490+03 7 6oL 0¢141691510400
NEGATIVE DJ COUNT = 2 SELECTED 1| VARIABLES BEST DJ » «0¢611770D=01
ITERS  SUM OF INF NINF 0BJECT VALUE veIN MOVE REDUCED COSY ACTIVITY VeBUT MBVE plver
7 0+000000000+00 0 0+30093128D+03 11 LB =~0061176966D=01 0+364936890+03 10 BeL  041%998685D+00
NEGATIVE OJ COUNT « 2 SELECTED 1 VARIABLES REST DJ s «0+1568020+01
ITERT  SUM 8F INF NINF' BBJECT VALUE VeIN MOVE REDUCED COSY ACTIVITY VeBLT MBVE plver
8 0000000000400 0 0028707244D+03 13 U=B 015680224001 0¢246095950403 4 Bel <0e14503836D-01
INTERNAL STATEMENT NUMBER 3¢ TIME s 11335
S NON=BASIC SLACKSe COMPLETELY TRIANGULARIZED O RBWS AND & COLS»
S5 IN NONeCBMPLETELY TRIANGULARIZED PARYs BF THESE 2 WHERE NBT TRIANGULARIZED AND 0 WERE REJECTED FOR TO8 SMALL A PIVOTs
MATRIX 16 BE INVERTED HAD 9 COLS AND 37 ELEMENTS, INVERSE HAS™ 10 COLS AND ~ ~ 238 ELEMENTS.
600 MS FOR INVERT
INTERNAL STATEMENT NUMBER 57 TIME « 11335
INTERNAL STATEMENT NUMBER 33 TIME « 11335
12FEB69  SDS SIGMA 5/7 « SAMPLE FMPS LePs RUN Oe 12¢ 2.
NEGATIVE OJ COUNT = 1 SELECTED 1 VARIABLES BEST Dy s =0948260D=02
ITER®  SUM §F INF NINF 8BJECT VALUE V<IN MBVE REDYCED COSY ACT1V VeBUT MBVE piver
9 0000000000400 0 0296216610403 12 L=8 +0¢94825964D=02 0.902527050002 16 Bel  0465145814D+00
NEGATIVE OJ COUNT » O SELECTED O VARJABLES BEST Dy ® 0+0000000+00
OPTIMAL SOLUTIONe OBJECTIVE VALUE e 0296216610403
INTERNAL STATEMENT NUMBER 34 TIME = 111357
INTERNAL STATEMENT NUMBER 35 TIME « 11133
12FEBE9  SDS SIGMA /7 = SAMPLE FMPS LePs RUN Os 13¢ 1.
JOENTIFIER SECTIGN
PRABLEMese NAMEee FUSION
MBDEse LP
CLASSs LP
STATUS BPTIMALe
FUNCTIONAL NAMEese VALUE
B8BJECT MINIMIZE
VALUEs 2964216553
RESTRAINT+ NAMEee ALOYI
ITERATION. COUNTS
12FEB63  SPS SIGMA 577 = SAMPLE FMPS LePs RUN Oe 13¢ 2

SECTION 1 = ROWS PRIMAL=DUAL OUTPYT

NUMBER  ooLABELe AT oo oACTIVITYeee SLACK ACTIVITY seLBWER LIMITe
1 VALUE FR 2960216553 *296,216797 NBNE
2 YIELD EQ 000+0 04000000 20004000000
3 FE UL 04006660 NONE
[ uL 40400000 04000000 NONE
S o BS 831967439 160032486 NENE
6 Mg as 1949602381 10+039714 NONE
7 AL L 1500000000 "0+000000 15004000000

74 Appendix C

e UPPER LIMITe
NONE

2900-000000
"85,500058
404000000

100+000000
30000000
"“RORE

*DUAL ACTIVITY
1000000
0013855
ce568231
Os584404
04000000
00000000

=0+251988

oo INPUT CBSTee
1.+000000
0,000000
£,0800085
0.000000
04000000
0000000
0000000

sREDUCED CO8Ts
04000000
0:013898
2.88403a7
0:5%3404
00080000

0.000000
0251938



& st LL 2904000000 504000000 2504000000 3004000000 =0¢485199 0.000000 «00485{9%
9 DELCST FR 80000000 00008000 NBNE NBNI 04000000 04086000 0.000000
12FEBET  SPS SIGMA 5/7 = SAMPLE FMPS LePs RUN Os 13¢ 3.
SECTION 2 » CBLUMNS PRIMAL=OUAL BUTPUT
NUMBER  ooLABELs AT seoACTIVITYoos ¢sINPUT COSTes oeLOWER LIMITe ¢sUPPER LIMITe oREDUCED COST.
10 BINg LL 0+000000 04030000 04000000 2004000000 0¢253624
il BIN2 8g 665:342773 00080000 04000000 2500.000000 00000000
{2 BiIN3 8s 4904252686 04176000 400000000 800000000 0000000
13 BN B§ 42%:187%00 00120000 100000000 700000000 00000000
I BINS LL 9+000000 0.150000 04000000 1500000000 04014856
i ALuM 8s 2994238916 0210000 00000000 NENE 04000000
16 SiLcunN. BS 120577606 04380000 00000000 NONE 04000000
{3 oeLPreDC €0 0+000000 0.000000 0¢000000 04000000 2710913330
12FEB69  SDS SIGMA 5/7 ¢ SAMPLE FMPS LePe RUN Os l4s 1e
INTERNAL STATEMENT NUMBER 36 TIME = 31335
12FEB69  SPS SIGMA 5/7 « SAMPLE FMPS LePe RUN TR VTR ¥}
PRIMAL ERRORS
NUMBER ooNAME e ERRBR RHS
1 VALUE 00790265630«10 0+000000000+00
3 FE 0021813662081 04600000000+02
& MN 0415138560081 0440000000p+02
S cu 04293667310<10 0,100000000+03
& MG 00236650730¢81 0,30000000p+02
7 AL De1722388860<50 0.150000000+04
8 sl 0.612203620-10 0.300000000+03
MAXIMUM ERRORS
DUAL oo 00000000000000
PRINALe 007902636301
INTERNAL STATEMENT NbHBER 37 TIME = 11236
12FEB69  SDS SIGMA 5/7 e SAMPLE FMPS LePe RUN O 17¢ 1,
RANGES FOR VARIABLES AT LIMIT LEVEL
esnsccacen| BUER L R
NUMBER AT oeNAMEes oLBWER LIMITes oUPPER LIMITes +REDUCED COSTe PRBCESSe oo INCREMENTseo AT PROCESSe -omcaznznr... AT
@ EG YIELD 20004000000 2000000000 0+013596 BIN3 44931386 L cu 14,034788 LL
I UL FE NONE ~$0+000000 24868231 BINA «43109840 LL BIN3 “20899783 LL
& Yyl MN NONE 404000000 0+544804 3ING «8:8756583 UL BIN3 14886909 LL
7Ll AL 1500000000 NBNE 04251986 CU »14:215780 LL BIN3 44921259 Li
8 (L sy asomooaoo 300+000000 00435198 CU ~14:671292 (L 8IN3 54060728 LL
(1]
10 LL BINE 04000000 2004000000 00253624 BING 284824753 UL BIN® 334880386 LL
I8 LL BINS 0#000000 1500+000000 00014855 BIN3 *2013787399 UL BIN3 58,795853 LC
12FEB69  SDS SIGMA 4/7 o SAMPLE FMPS LePe RUN Oe 18¢ 1o
RANGES FUR VARIABLES AT INTERMECIATE LEVEL
LBWER UPPER
NUMBER AT eoeNAMEes ¢eoACTIVITYeoe oo INPUT CQSYu PROCESS e -QINCREHENTu. AT PROCESSe o« INCREMENTooe AT
1 BS VALUE 2964216797 1000000 NEBNE FE 14000000 LL
S 85 Cy 164032486 00000000 BINS «0e214762 LL MN 00306131 LL
6 8BS MG 109039711 00000000 MN «0¢287567 LL BIN1 10796180 LL
9 85 DELCST "0:000000 04000000 BINL «04025362 LL NENE
(1]
11 8S BIN2 6650342773 00080000 BIN1 ©0¢062777 LL MN 04008627 LL
12 8S BIN3 490+252686 04170000 MN «04010175 LL BINS 04009483 LL
13 8S BING 4242187500 001200060 mN «00011007 LL BINY 04026506 LL
I3 8s aLum 29906348916 04210000 AL =0e021152 LL MN 0016215 LL
16 8S SILCaN 120877606 04380000 Si e0e231724 UL MN 04086667 LL
J2FEB6I  SDS SIGMA 5/7 = SAMPLE FMPS LePe RUN Os 19¢ 1,
INTERNAL STATEMENT NUMBER 38 TIME = 11336
INTERNAL STATEMENT NUMBER 39 TIME » 11338
INTERNAL STATEMENT NUMBER &0 TIME « 14336
INTERNAL STATEMENT NUMBER &1 TIME = 11133
INTERNAL STATEMENT NUMBER 42 TIME » 11338
INTERNAL STATEMENT NUMBER 43 TIME » §1338
INTERNAL STATEMENT NUMBER &4 TIME » 11338
ITERe  Sym oF INF NINF  OBJECT VALUE VsIN MBVE REOUCED C8ST ACTIVITY VeBUT MBVE PiveT THETA
10  0+000000000+00 0 00296216610+03 10 Le8  04233624850+00 00338804000402 13 Bel  0¢956359210¢01 0425362455001
11  0+000000000+00 0 0:29264818D+03 § LeB  0e58440433D+00 04%37091350+01 5 Bel  0¢253431430+401 0+35894891001
1& 0+0006000000+00 0 0028975138D403 14 LeB 0899270070208 0+534255730+03 11 Bel  0e115613650¢01 0+81023357D01

Appendix C

75



INTERNAL 'STATEMENT NUMBER 65  TIME » 11336

s NON=BASIC SLACKSe COMPLETELY TRIANGULARIZED
8 [N NON«COMPLETELY TRIANGULARIZED PARTs OF THESE™
MATRIX T8 BE INVERTED HAD 9 COLS AND

600 MS FOR INVERT
INTERNAL STATEMENT NUMBER 66 TIME » 11136

NEGATIVE OV COUNT = O SELECTED O VARIABLES BESY Dy ¢

OPTIMAL SBLUTION. OBJECTIVE VALVE s 0028975136D+03
IRTERNAL STATEMENT NUMBER 67 TIME = 11335
INTERNAL STATEMENT NUMBER & TIME = 11338

ITERe  SUM OF INF NINF  BBJECT VYALUE V=IN MOVE
13  0:00000000D+00 0 0257461480403 S LeB
18  0:000000000+00 0 0245748480403 7 Le8

NO MAXIMUM PARAMETER AT THETAs 0,7001060+01

INTERNAL STATEMENT NUMBER 35 TIME w 11136

C ROWS AND & COLSe

33 ELEMENTS. INVERSE HAS™ 10 COLS AND

00000000400

REDUCED cesT
00108619570+60
0¢370370370=01

ACTIVITY

3 WHERE NOT TR[ANGULAR!IED AND

0+133981070402
0876808510402

VeBUT MOVE
12 Bl
!U Bey

0024484934D402
=0449434357D+00

Plvet

0 WERE REJECTED FOR YO8 SMALL A PIVOTe
39 ELEMENTS,

THETA
0062518519001
0470010638001

12FEB69  SDS SIGMA 5/7 = SAMPLE FMPS LePe RUN

JOENTIFIER SECTION

PROBLEMoes NAME e
MODE oo
CLASS: L
STATUS
NAME o ¢
0BJECT
VALVES
NAME oo
COUNT
MBDE e+
NAME e ¢
VALUESs

FUSION
P
LP
OPTIMALe
VALUE
MINIMI2
-1961§-23§375
ALovl

cosY
DELCSTY
104000000

FUNCTIONAL

RESTRAINT,
ITERATION.
PARAMETRIC

14

Os 200 1

12FEB6S  SOS SIGMA 5/7 » SAMPLE FMPS LsPe RUN

§ECY!ON 1 « ROWS PRIMALeDUAL 8UTPUT

Os 20¢ 20

NUMBER  ooLABEL® AT +eoACTIV]Tyess SLACK ACTIVITY eoLOWER LIMITs oeUPPER LIMITe «DUAL ACTIVITY o+INPUT CBSTes oREDUCED COSTS
1 VALUE FR 3859765869 *3854766113 NONE NE 1000000 1000000 00000000
2 YIELD EQ 20002 0 0+000000 20004000000 2000 =0¢270000 +000000 *0e27
3 FE UL "60+000000 o.ooonoo NONE so.oooooo 60308810 0.000000 69308810
& MN 8s 12+170213 270829773 NONE 404000000 Os . 0¢000000
5 cu 8s 565468079 434531906 NONE 1004000000 0000000 04000000 00000000
& Mg 85 5.085308 240914886 NONE 30000000 00000000 04000000 04500080
7 AL as 1587680684 87.580857 15000000000 “RBRE 04000000 0000000 00000000
8 8] LL 2505000000 $0,000000 2504000000 3004000000 *04308811 04000000 =0+308513
9 DELCST FR  =2000.000000 1999.933786 NBNE NORE 104000000 184606000 04000000
12FEB69  SPS SIGMA S/7 = SAMPLE FMPS LsPe RUN O0s 20s 3
SECTION 2 » COLUMNS PRIMAL=DUAL OUTPUT
NUMBER  +oLABEL® AT «osACTIVITYess «¢INPUT COSTee ooLOWER LIMITe oeyPPER LIMITe REDUCED COST.
10 BINg UL 200000000 =99,970001 0000000 ~° 200000000 *99,299896
i1 egnNe LL 0+000000 00080000 04000000 2500,000000 0e043830
12 BIN3 LL 4004000000 00170000 400000000 800.000000 04003489
13 BINe L 100.000000 00120000 100,+000000 760.008000 0085319
Is BINS 8s io8+510635 0150000 04000000 1500,000060 04000000
Is ALum as 998,744629 04210000 00000000 T TTNSKE 0060000
Is Sitcon Bs 1954784675 04330000 0000000 NONE 04000000
18 DELPRODC EQ 04000000 0000000 0+000000 04000000 «54004003906
12FEB6I  SDS SIGMA /7 « SAMPLE FMPS LePe RUN O 21¢ 14
INTERNAL STATEMENT NUMBER %6 TIME » 1§336
INTERNAL STATEMENT NUMBER &7 TIME » 11136
INTERNAL STATEMENY NUMBER 48 TIME o 11336
INTERNAL STATEMENT NUMBER &9 TIME » 11136
INTERNAL STAYEMENT NUMBER S0 TIME o 11336
INTERNAL STATEMENT NUMBER 8% TIME = 11138
ITER:  SUM BF INF NINF  OBJECT VALUE VeIN MOVE REOUCED COSY ACTIVITY v-aut MBVE PIveY THETA
10  0+000000000+00 0 0029602579D+03 14 =8  0+145589570=01 0.000000000+00 S Bel =0467783394D-01 0¢701739420~03
11 04000000000+00 0 0¢303154330+03 7 LeB  0e979974440-02 04000000000+00 15 Bel  «0463272252D401 022399733002
42  0+000000000400 0 0+317018770+03 18 Lep  00154882150-02 0.000000000400 12 el =0.11350471D+01 0,513651880~02
INTERNAL STATEMENT NUMBER™ 68 TIME » 11136
S NONeBASIC SLACKSe COMPLETELY TRIANGULARIZED 0 ROWS AND & COLSe

S IN NBN-CDHPLET[LY YEIANGULAQIZED PART, OF THESE

MATRIX v8 Bf INVERTCD WAD 9 €ALS AND 37 ELEMENTS. INVERSE HAS™ 11 CSLS AND
600 MS FOR INVERT

INTERNAL STATEMENT NUMBER 66 TIME » 11136

76 Appendix C

2 WHERE NOT TRI&NGULARIZED AND

" 39 ELEMENTS,

0 WERE REJECTED FOR TO8 SMALL A pIVOT.



NEGATIVE DJ COUNT
OPTIMAL SOLUTION: OBJECTIVE VALUE s 0¢317018770+03

0 SELECTED

INTERNAL STATEMENT NUMBER &7
INTERNAL STATEMENT NUMBER 81

TIME » 11336
TIME s 11336

O VARIABLES BEST Dy =

0+0000000+00

ITERs  SuM OF INF NINF OBJECT VALUE VeIN MBvE REDUCED C8ST ACTIVITY VeBUT MOVE plver THETA
13  0:000000000+00 G 0¢447831290403 A LeB  00908284020+00 0,000000000+00 13 Bel =0+748820710402 0432162577003
1%  0+000000000+00 0 0¢390481490403 5 L=B 0307114620000 0+000000000+00 11 Bel =0+92885375D401 0+115388300400
PREMATURE MAXJMUM AT THETAs 0.1193880+00
INTERNAL STATEMENT NUMBER 852 TIME = 11836
12FEB6S  SDS SIAMA 5/7 = SAMPLE FMPS LePe RUN O 22¢ 1
JIDENTIFJER SECTION
PRUBLEMsee NAMEeo FUSION
MBDEss P
CLASSe LP
STATUS OPTIMALe
FUNCTIONAL NAMEss VALUE
OBJECT MINIMIZE
VALUE" 8904451406
RESTRAINTe NAMEos ALOY!
ITERATION. COUNTS 14
PARAMETRIC MODEss RHS
NAMEse DELPRODC
VALUE ¢ 0e119388
327:869 SDS SIGMA 5/7 e sA_HPLE FMPS L+Pe RUN O« 22! 20
SECTION 1 = RONS PRIMAL=DUAL SUTPYT
NUMBER  +oLABELs AT ¢ooACTIVITYooe SLACK ACTIVITY solLBWER LIMITe oeUPPER LIMITe oDUAL ACTIVITY ooINPUT COSTee oREDUCED COSTe
1 VALYE FR 8900441406 =890+ #41650 NONE NONE 14000000 1.000060 0000000
2 YJELD Eo  2000:000000 04000000 20004000000 . =0¢270000 0.0 *0+270000
3 FE UL 60+000000 04000000 - NONE 60000000 60308810 0,000000 6+308510
& MN 8s 17:528274 22,878714 NBNE 504500000 0+000000 +000000 0s 0
$ 8s 1000000000 0000000 NONE 1004000000 04000000 . 0.000000 04000000
6 MG Bs 8780638 244233389 NONE 3064600000 0+000000 040000060
? AL 8s 390511594234 24054159424 15004000000 NON 0+000000 0.000000 04000000
8 SI L " 2505000000 504000000 2504000000 3004000000 *0e¢308518 04000000 *04+308811
9 DELCST PR 04000000 0000000 NONE NONE 04000000 0.000000 04000000
12FEBSI  SPS SIGMA 5/7 « SAMPLE FMPS LePs RUN Ce 22¢ 3
SECTION 2 = COLUMNS PRIMAL=DUAL 8UTPUT
NUMBER  ooLABELe AT o0oACTIVITYoos osINPUT COSTee oeLOWER L IMITe soUPPER LIMITe +REDUCED COSTe
10 8INg L 04000000 04030000 04000000 2004000000 0700106
11 sIN2 L 0+000000 0,080000 0¢000000 2500,0000 00043830
12 BIN3 Ll 400000000 04170000 4004000000 8000008000 0+001489
i3 BINs LL 108+000000 0« 120000 1004000000 7000600000 0065319
14 BINS 8s 5765063721 04150000 ~ 04000000 1500000000 04000000
1S ALUM 8s 31430616943 04210000 0+000000 NONE 04000000
{6 siLcon BS 163+085098 04380000 04000000 NONE 0+000000
I8 OELprODC E0 0+000000 0+000000 04000000 04000000 *5400003908
12FEB69  SDS SIGMA 5/7 = SAMPLE FMPS LePs RUN De 230 1
INTERNAL STATEMENT NyMBER 33 TIME « 11:36
*EX]Te
YOTAL JOB TIME 1e30
PROCESSOR EXECUYION TIME 001
PROCESSOR [/8 TINME 7
PROCESSOR OVERHEAD TIME «07
USER Exzcumm TIME 038
USER 1/8 TIME o352
Usea OVERHEAD TIME 75
# OF CARDS READ 316
# 6F CARDS PUNCHED 0
# OF PROCESSBR PAGES OUT 2
# OF USER PAGES ouT 5
# 6F DIAGNOSTIC PAGES OUTY 0
# OF SCRATCH TAPES USED 0
# OF SAVE TAPES USED 0
# OF DISK READS AND WRITES 1594
# OF 018C READS AND WRITES 2957
TEMPORARY DISC SPACEL LSED 17
PERMANENT D]SC SPACE USED 0

ACCUM+ PERMe DISC SPACE USED

JOB 326,50Mp

LIMg? (YKHE:lO)J(LG:lOOO);tUBJIOOO)J(bﬁllooo)

Appendix C

77



ASSIGN F3106){DEVICE,CPADS)

ASSIGN Fi1s(FILESCLANG)#{BIN)» (WR]TESALL) 2 (CONSEC) (SEQUENYs)
{BUTIN) S (RECL230000), (READSALL)

ASSIGN Fi2,(FILEUTILIY2(BIN)2{WRITE,ALL)» IKEYED), (DIRECT),)
(BUTINY s (RECL230000), (READsALL)

ASSIGN Fi3p(FILE,UTIL2)2(BIN) 2 (WRITEsALL )5 (KEYED), (DIRECT) S
(BUTIN)Y » (RECL»30000) s tREAD2ALL)

ASSIGN Fias (FILEsMTRX)2(UINT s CWRITESALL) s (DIRECT) 2 (KEYED) 23
(OUTIN) » {RECL 230000) s (READ2ALL)

ASSIGN FIS)(FILEs Ivst)a(EIN) s (wRITEsALL) s (DIRECT),» {XEYED) 2
(BUTIN), (RECL»30000), (READ2ALL)

RUN (LMNsFMPY)

UATA

ann

ann

[aXaXals)

onn

o0on o6on o

O OO OOONN

DEFINE HEADING AND ENTER SEPERABLE PROGRAMMING MODE

TITLE NONe| [NEAR PROBLEM NO 6
CALL ENTER(SEP)

SPECIFY FOUR SYMBOLIC UNITS(WBRKING FILES) 8N RAD

CALL DEVICE{'FILEL',DISCs'B")
CALL DEVICE('FILE2'sDISCr'C))
CALL DEVICE('FILE3',DISC.'0Y)
CALL DEVICE('FILEA',DISCs'E")

ATTACH THE FOUR STANDARD FMPS FILES 7o THE FOUR
PREVIBUSLY DEFINED SYMBOLIC UNITS{RAD)

CALL ATTACH(MATRIXs'FILELY)
CALL AYTACH(INVERSE)'FILER2Y)
CALL ATTACH(UTIL1#'FILEIY)
CALL ATTACH{UTIL2a'FILE4Y)

INITIALIZE INTERRUPT VARIABLES

ASSIGN 100 10 KMAJER

ASSIGN 200 10 K]SER

ASSIGN 300 18 KNFS

ASSlaN 400 18 KBS

ASSIGN 500 T8 KINV

ADATA & 'NLPSTDOL'

LBAD INPUT MATRIX FRBM CARDS, USING RECBRD 'NLPSTDO1!
CALL INPUT

IDENTIFY RIGHT=HAND=SIDE COLUMN AND CBST ROW TB BE USED

ABBJ » '88JT !
ARHS » '1RHS '

SET YO INVERT No LESS FREQUENTLY THAN AT INTERVALS BF
SO ITERATIONS(NOTLI AUTOMATIC INVERT BN TIME IS BY DEFAULY
IN OPERATIBNe)»

sates
NBTE! TO TURN BFF THE AUTEMATIC INVERT ON TIME, THE FOBLLOAING

STATEMENT SHBULD BE USEDe
INYTIME » of

(2311}

IFREQI » SO
INITIALIZE ITERATION LOGGING FREGUENCY TO PRINT EVERY ITERATIBN

Qann o0 O00 o

[aX2Ta]

100

one

200

300

on o0

78

ILeGP = 1

SPECIFY MINIMIZATION
FOBUWT o 1o

SOLVE SEPERABLE MATRIX
CALL OPTIMIZE

DISPLAY PROBLEM SOLUTIBN

CALL SaLUTION
SToP

ENTER HERE FOR mMAJSR ERRBR CONDITIONS
CALL ConDITION
SToP

ENTER HERE FOR [/80 ERROR CONDITION
CALL ConDlT]ION
ST0P

ENTER MERE FOR NO FEASIBLE SOLUTION CONDITION
CALL ConDITION
ENTER HERE FOR UNBOUNDED SOLUTION CBNDITION

Appendix C



4
400 CALL SBLUTION
STeP

C
¢ ENTER HERE FOR INVERSIBN INTERRLPT CENDITIEN
500 CALL INVERT
RETURN
END
NAME NLPSTDOY
ROWS
N 8BJT
E ROW1
E ROW2
€ RBW3
E ROWA
E ROWS
E ROWe
E R6W7
E ROnS
E ROuS
COLUMRS
x5 RoWé 200,
UBBUNDY  "MARKER! YSEPBRG'
ul 8By7 9
vl Rowi 30,
e 08y 3.1
ve RBWY 10,
UBBUND2  'MARKER! 'SEFBRG'
ud esJ1 L2 1% ]
V3 RgW2 10
vé 88J7 o249
vé ROW2 10
V] 88JT 28
us RowW2 80,
S3BOUND  "MARKER! 1SEPORG!
351 Rowl *0179619
351 ROW3 *3e88670
381 ROWS =350732
31 ROW6 «150732
34 ROwW? «950732
81 ROWS 050732
361 ROW9 »e50732
38 2 ROW1 »e181719
2 ROW3 *1430277
82 ROWS »¢562080
s 2 ROW6 =e502080
s 2 Row? = 502080
s 2 ROWS «+502080
3 2 RoW9 « 552080
s 3 Row}l =,18382
35 3 ROW3 1493084
S 3 ROWS *0496350
333 ROW6 498350
35 3 Rew? 0498350
38 3 RowWs «0438350
%3 REWY *0 496350
35 & ROMY e188921
35 4 ROW3 149529
IS & ROWS «+490730
35 ROWG 490730
35 & ROW7 «e490730
35 4 ROWE «4490730
S s ROWI «4490730
R RoW} *9188022
S5 ROW3 «1037497
$S ROWS 1485250
35S RONG o 485250
s ROW? 2435250
385 ReW8 =+ 485250
a5s Row9 e 438290
356 ROW] 21237982
%6 RBW3 2449974
3% 6 ROWS =45330%0
356 ROW6 *e5990&0
) Row? *¢59%040
356 ROWS 4599040
6 ROWI *4599040
87 RoWL we2d{133
387 R8W3 »2¢53422
s RawWS «+590830
3 7 ROWS =+590880
87 ROW? =+590880
37 RoWS =2590880
37 ROWI «:1590880
S s ROW] «s288547
ss ROW3 288870
s s ROWS *588960
3$ 8 ROW6 * 582960
358 ROW? = ¢382960
kLN ROWS *9882940
3§ 8 ROWS =e582960
39 ROW1 0247829
359 ROW3 «2+60312
39 RONS «e575230
359 ROWS 575230
s 9 ROW? «2575230

Appendix C

79



35 9 ROWS 575230

35 9 ROW9 575230
3sio Rowl #0301728
3Si0 ReW3 3414933
asio ROWS =2680370
3540 ROW6 «:680370
3510 ROW? «2680370
35i0 RoWd *e680370
3si0 ROWY «680370
3511 RoMW] *0308455
asty RoW3 3421898
3511 REWS 0669880
3511 ROwé =669380
3511 RoW? 0689880
3511 ROWS *+669880
3514 ROW9 «6869880
3siz ROWi =+3i1181
3s12 Row3 =3¢26863
3si2 ROWS «e659700
3512 ROW6 *+659700
stz ROW? 4659700
3512 RoW8 =+659700
3812 ROWI 2659700
3513 RowW1 «1315908
3513 ROW3 »3e31828
3513 RBWS *+639830
35‘3 ROWS -!6.9830
3513 ROW7 1649830
3613 RowWa *e689a30
3§13 ROW9 »1649830
351 ROWI 0320635
3514 RoW3 =3436793
351 ROWS *06402%0
351 ROW6 .e640250
3514 ROW? «»6402%0
3514 ROWS =0640250
3514 ROW9 2640250
3515 ROW1 =0270807
3515 ROW3 e2+884453
3815 ROWS =1526420
3515 ROWG 528420
3s1% ROW? =e528420
3315 ROWS 526420
3515 ROWI «1528420
3516 RoW *3278089
3816 RowW3 2¢8790)
3516 ROWS «0520120
3518 RoWe =1520120
Isi6 ROW? »e520120
3516 ROWS =520120
3516 ROW9 *e520120
S4HOUND  'MARKER' 'SEFORG!
451 RowW2 *e179619
4S 1 ROWS «1:88670
4S 1 ROWS =e537320
45 1 ROW6 »e507320
4S 1 ROW? *507320
as 1 RBWS =507320
L ROW9 »¢507320
a2 Rew2 *v181719
as 2 ROWA ie30a77
4S5 2 ROWS *+502080
s 2 ROW6 =+502080
AS 2 ROW? «+502080
4§ 2 Rows =¢502080
as 2 RBW9 «e502080
45 3 Row2 =y 183820
4S 3 Rews =1¢9308s
45 3 RONWS =+498350
a3 RawWé =+4986350
48 3 Rew? =¢49635¢
84S 3 ROWE «0496350
a5 3 ROWI =+4953%0
[N RBW2 ee185924
A5 & ROWs »1¢95290
AN} RewS =e490370
45 & RONG »e450370
(33 Y ROW? =+430370
(3" RewWa «e450370
45 & Row9 *¢490370
48 S RoOW2 »e188022
48 5 ROWS 197497
as 5 ROWS = e 485250
AS 5 ROW6 =14852%0
4§ 5 ReW? 0485250
¥ 5 Rawd =8852%0
(1 ROW9 =1 488250
(13 ROW2 1237982
4S ¢ ROW& *2e49974
S 6 ROWS «e539040
a§ 6 RgWé =1599040
45 6 ROW7 »9399040
S 6 RoWS «599040
- RAOWY *45990%0
a5 7 RowW2 «e24{133
8 7 ROW& 2453422
¥ 7 ROWS =¢590880
45 7 ROW6 =+590880
¥ 7 ROW7 s590880

80 Appendix C



a8 7 ROWS =+590880
45 7 ROWY *4590880
4S 8 ROW2 01264547
«$ 3 ROw4 =2456870
A4S 8 ROWS ©+582960
45 8 REWG =e582960
4S 8 ROW? «¢532960
(-3 ROWS =4582960
4S 8 ROWS «+582960
A9 ROW2 we2k7829
4 9 ROWA »2480318
4S9 RONWS =4576230
45 9 REW6 «s575230
4S 9 ReW? =¢57%8230
a5 9 ROWS 4575230
43 9 ROW9 *4575230
4510 Row2 *0301728
4S10 ROW# ©3,16933
asio ROWS =+680370
4510 ROWS «1680370
4510 RYW? 2680370
4slo RBWS *v680370
4510 ROW9 =¢680370
4541 REw2 ©¢306455
4511 ROWS «3.21898
4511 ROWS =+669380
453114 ROW6 «1669380
4514 ROW? «e669830
4511 RowW8 *+669880
4511 ROWI «4663880
512 ROW2 »e311184
4812 ROWe 328863
4§12 ROWS *¢659700
as12 ROW6 *4659700
4512 ROW? «0659700
asg2 ROWS 0659700
4512 ROWS *4659700
4813 REW2 =e315908
4$13 REW4 3031828
4513 R&wS «1689830
4513 REwé 649830
4513 ROW? =o649330
4513 Row8 0683830
4813 ROWS =¢689330
4514 ROW2 «0320635
4514 ROWS ©3035793
4514 ROWS =1640250
4S14 ROW6 1680250
4514 ROW7 *0640250
1 ROWS =0640250
#S14 REWY 1680250
4515 Row2 *9270807
4515 ROWA 2088453
4515 ROWS =e525420
4515 RBW6 526420
4515 ROW? =e828420
4515 ROWS *0526420
4518 RONI *9526420
4516 RoW2 »9274089
4516 ROWS *2¢87901
4516 ROWS *2520520
A516 ROW6 »+520120
asie ROW? *s520120
4516 RowWs *e520120
4516 ROWS =e520120
S$SBOUND  "MARKER!' 'SEPBRG?
85 1 ROWS *2005043
55 1 Rewé +18343
§S 1§ ROW? 015

55 1 ROWS «s0i824
8S 2 ROWS 2469876
88 2 ROW6 129853
55 2 RGW? +02352
85 2 RBW3 *e01993
§S 3 ROWS «2453943
s$ 3 RoW6 125816
85 3 ROW? 023399
55 3 ROWS *e01846
S5 & RBWS *2939774
8S & ROW6 *25981
55 & ROW7 02847
55 & ROWS =001899
§S 8§ ROWS =2430899
s$ 5 ROW6 1286

88 5 RBW? 102844
85 5 REWS *e01578
8 & ROWS 2e18475
sS 6 RONE 26318
55 6 ROW? +02945
55 6 ROWS «s01403
5§ 7 ROWS 24081438
85 7 ROW6 128486
85 7 ROW? 03093
55 7 ROWS «e0i257
55 8 ROWS *149%7583
85 8 REBW6 026656
55 8 ROW? 003242
5§ 8 ROWS =e01110

Appendix C

81



58 9 ROWS 182169
85 9 ROWS 026827
85 9 Rew? +03390
55 9 ROWS »:00964
5510 ROWS =1+79295
5$10 ROW6 026999
5810 ROW7 «03%39
5810 ROWS »e00818
8511 ROWS *$e7%951
5511 ROWS 27643
5514 ROW? «03753
5511 REW8 *e00682
5812 ROWS «1488237
5512 ROW6 27351
5812 ROW? 103840
8512 ROWR 000823
8513 ROWS 159038
5513 ROWs 027527
5§13 ROW7 +03990
5513 ROWS =00377
5518 RONWS =1:53279
85514 ROWO +27705
8518 ROW? *04140
5514 ROW8 200231
8515 ROWS oied7912
5515 Rowe 127834
8815 ROW7 104290
551§ ROWR =300084
8516 ROWS =1+42898
8516 RoWé «28064
5516 RewW? 08841
5516 ROwW; +00062
8517 ROWS CIRLLINYY
8517 Rowe +28734
%517 RoW? 08672
8517 ROWE «00212
5818 RAWS =1+99022
5518 ROWE w2217
5S18 Row? 07478
8518 Rows +00889
5519 REWS =148998¢
5819 ROW6 43134
8519 ROW? 07518
5819 ROWE 200918
5520 ROWS =181706
5520 ROW6 «4 3886
£520 ROw? 107858
8520 ROWS 001247
5821 ROWS =1¢18856
5821 ROW6 29780
55214 ROW? «05524
8824 ROWE +01033
5522 ROWS ei¢65248
8822 ROW6 48275
§$22 ROW7 +08435%
S22 RowWs +01800
5523 ROWS *1e62601
83823 ROWG ad24g
8s23 ROWY «08781
8s2 RoW8 102129
5524 ROWS =1e5841a
8524 ROWS 045152
8524 ROW? «09128
8528 RoWS +02459
8525 ROWS «19523%9
8528 ROW6 46128
8525 ROW? +09888
5529 ROWS 002823
8526 ROWS «1¢92509
88a¢ ROW6 41809
5526 R8W? 013186
5526 ROWS v042339
5827 ROWS «§e837%6
5527 ROW6 062327
5527 RoW? 13312
5827 ROWS 204828
5528 RGNS «le77235
5528 RBW6 063708
5528 ROW? 014870
5528 ROWS 103468
8529 ROWS 1468293
8529 Rew6 68019
5529 ROW? +15083
5529 RoWs «06015%
5530 ROWS =1+61451
8830 ROWS 68877
8530 ROW? 015722
5530 REWS +06609
5834 ROWS »1e58610
5531 RBWG +66326
5831 ROW? +16809
L1 ROK3 £07269
8632 /SRS =1:8854%
8532 ReWs 08386%
8532 ROW? 121377
5532 ROWS 109852
8533 ROWS «2+12703
5533 ROWG 1002643
82 Appendix C



5533 ROW? 27463
5533 ROWS 043140
5534 ROWS 2416054
5534 ROWé 1e12664
‘8834 ROW? 30864
5534 ROWS 015647
8535 ROWS w2e17017
5535 ROW6 1422682
5535 ROW? 034774
8535 ROWS +18400
5536 RAWS «2+0%030
8536 ReW6 1425659
5538 ROW? +36806
5836 ROWS 20223
5537 ROWS5 wied94125
5537 ROW6 1.2876¢
5537 ROW? 138873
5837 Rows 022063
8538 ROWS «f85183
5538 ROW6 1031989
8538 ROW? 140978
8538 REWS 23922
8539 ROWS ©1474993
5539 ROWS 1435337
8539 ROW? +83122
5539 ROWS 25802
5540 ROWS =] 066542
5540 ROWS 1438819
8540 ROWY +45310
5540 ROWS 27704
5541 ROWS «243831s
5541 ROW6 21507
5S4y ROW? 172168
5S4 ROWA 045176
5542 ROWS *2019504
8542 ROW6 ze23763
5642 ROW7 177364
5542 Rows +49603
5543 ROWS «2+0521%
5543 ROW6 2033544
5543 RBW? 82749
5543 RBWA 54131
8S44 RBWS *}488943
8548 ROWS 2433320
5544 ROW? «84790
SS4a ROW3 056394
S6BBUND  'MARKER! 'SE PRG!
65 1 ROW1 073245
65 1 ROWS 4400720
6S 2 ROWY o8

65 2 REWS 3499174
65 3 RoWl 89
65 3 REWS 4404816
65 & Rewy 9

6S & ROWS 3074265
5 s ROW1 {40

65 5 ROWS 3481205
65 6 ROW1 {ef

65 6 ROWS 3083964
65 7 ROW] 1

65 7 ROWS 3452757
6 8 ROW] o3

65 8 REWS 3483016
88 9 ROW1 {od

65 9 ROWS 3477886
6510 ROWL 5
6510 ROWS 371418
4511 ROWL {e6”
6514 ROWS 3064020
6s12 ROW1 o7
6512 ROWS 3456007
£513 ROW! 1087
6513 ROWS 3e47621
6514 RowW{ 9
6514 ROWS 3439046
6515 REW1 0
6515 ROWS 3430424
&S1e ROW1 2¢f
6516 ROWS 3e21847
6517 RowWl o2
6547 REWS 3413398
6518 ROW1 N

és18 REWS 3005126
6519 REwW} 3
6519 ROWS 2497C63
6520 Rewl 5’
6520 ROWS 2089251
6521 ROW1 257
6521 ROWS 2e71184
6522 Row1 207
6522 ROWS 2471076
6523 ReW1 207
6523 REWS 262592
6524 RBWL 248
65S2% REWS 2452883
6525 RBW] o8
6S25 ROWS 2038965
6526 ReWl 248

Appendix C

83



84

6526 REWS 2026499
6527 ROW1 3407
6527 ROWS 2430245
6528 ROW{ 0
4528 ROWS 2418651
6529 ROW1 3e27
6529 ROWS 2+21698
6530 ROW1 3e2
6530 ROWS 2010928
6531 ROW} 3
6531 ROWS 2407295
6532 RO} 3e3°
6332 ROWS {e91584
6533 ROWL 340832
6533 RBWS {e78590
S?7BOUND  'MARKER! YSEPORG'
7$1 RowW2 149973
75 1 ROW6 1097803
52 ROW2 7
52 ROWG 2062592
75 3 ROW2 o8

78 3 ReWé 2052883
75 & ROW2 2087

7S & ROW6 2438965
75 5 RowW2 2487

7% 5 ROWS 2026499
75 6 ROWZ 3407

7S 6 ROWE 2+30245
7 RewW2 o0
%7 ROws 2412652
75 8 ROW2 3e2

7S 8 ROW6 2421698
759 ROW2 3e2
759 ROW6 2410928
7510 ROW2 o3
7510 Rowé 2407295
7511 ROW2 302
7511 ROW6 1291984
7542 ROW2 3.0832
7842 REBW6 1+785%0
7513 ROW2 23308
7513 ROWS 1458692
7514& ROW2 3e116
751a RaWs 1064182
7815 ROW2 3407
7518 RBW6 1e54204
7516 RBW2 3407
7516 RowWe 1448915
7817 ROW2 3407
7517 ROW6 1043978
7si8 ROW2 3.0°
7518 ROWS {+39358
7519 ROW2 3.0
7519 ROW6 1+3502%
7520 ROW2 3.0
7520 ROWS {30983
7524 ROW2 307
7524 ROWG 127119
7522 ROWZ 360
7522 ROMW6 1.2350%
7523 ROW2 3407
7523 ROWG 120089
7524 ROwZ 3.0 °
7524 ROWE lel6as?
7825 Row2 340
7588 RoW6 1013796
7526 ROW2 3.0
7526 ROWe {+10890
7827 Row2 3.0
7827 ROWS 1.08128
7528 ROWZ 3067
7528 ROWE 108502
7529 ROW2 3.0
7529 LTS 1+03000
7530 ROW2 307
7530 ROWG {00613
7531 Rewg 1682
7531 ROW6 +58393
S8BBUND  'MARKER!' 1SEPBRG!
35 1 RoM3 106936
85 1 ROW? 1+00549
85 2 ROW3 3.0832
8s 2 ROW7 1475590
8s 3 ROW3 248308
&8s 3 ROW7 1458692
85 & REW3 3eile
8S & ROW? 1e68182
[ ROW3 o0

8S 5 ROWY 154204
8 6 ROWI 340~

85 6 REW7 1s88915
85 7 ROW3 0

85 7 ROW? {83978
85 8 Row3 00°

85 8 REW7 i¢39358
[T ROW3 3007

85 9 ROW? 1635025
8510 ROu3 3¢0
8sio ROW? 1030953
8S11 ROW3 0"

Appendix C



8511 RuW? 1,27119

8342 ROW3 3.0
8512 RoW7 1+23505
8513 ROW3 3.0°
8513 RowW? 1.20089
8514 REW3 3407
851a Rex? 1e16857
8§15 RowW3 3.0
8515 Raw? {01379
8Sie6 RaW3 3407
8516 ROW7 1.1089
88{7 ROW3 3.0
8817 ROW? fe08128
85is REWI 346
8518 ROW? {.08502
8549 ROW3 3.0
859 ROW7 1403
8520 RoW3 3.0
8520 ROW7 1.00613
8521 ROW3 34078
as21 ROW7 100885
S§98BUND  'MARKER! 'SEPBRG'
95 1 RowWs Jells
95 1 ROWS 1e88182
9 2 ROWS 3.0
95 2 REW3 1054204
9$ 3 REWs 3.0
95 3 RGW8 1448915
95 & ROWS 3407 -
95 & Rows 1e43978
95 5 ROWA 3.0
95 S ROWS 1439358
95 6 ROWs 3.0°
95 6 ROWS {e35025
95 7 ROWe 3.0
95 7 ROWS 1430953
9s 8 ROW4 3.0
9S & ROWS ie27119
95 9 ReWs 340
95 9 ROWS 1423505
9510 ROWS 3407
9s10 LLLE] 1420049
9541 ROWS 30
9511 ROWS 1e168%7
9512 ROW4 3407
9812 ROWS 1013796
9s13 ROWS 3,07
9513 ROWS 1410890
9514 REWA 300
9514 Row8 1408128
9515 HOWS 3¢0
9515 Row8 1405502
9s16 ROW& 3.9
9516 ROWSE 1403
9517 RoWé 340
‘9517 RUWS 1400613
9si8 ROW4 3.079°
9518 REW8 1.0088s
9519 REWG 897
9519 ROWS +148090
S10B8UND  'MARKER! YSEPARG!
15 1 ROW2 @51
1§ 1 ROWY 027814
1§ 2 ROW2 =3e{6
18 2 REWI 1066182
1§ 3 ROW2 *3,0°
1§ 3 ROWY 1054204
15 » ROW2 «340°
15 & ROWY 1e48315
1§ 5 ROW2 *340°
16 5 ROWI 1e83978
1S 6 ReOW2 3407
1S 6 ROWI 1439358
1$ 7 Rawz 340"
15 7 ROWY 1935025
1§ 8 ROW2 340
15 8 ROW9 {¢30953
1S 9 ROW2 *3.0
15 9 ROWS 1027119
1810 RowW2 ®3¢0
P31 ROw9 1023505
1541 ROW2 =340
{511 ROWS 1020089
1si2 ROW2 340
1§12 1T 1ei6857
1613 ROW2 *3.0°
1813 ROWI 1¢1379¢
1S1s ROWZ 3.0
1614 ReWI 1.1089¢
1618 ROW2 «2eil9
1515 ROWI «76843
SEPEND YMARKER! 1SEPEND'
RHS
1RHS RowWY 3040166
1RHS RoW2 44095945
1RHg ROW3 27+4145
1RHS RBw4 9948369

Appendix C 85



1RKHS ROWS +0082

1RKS ROW6 31480104
1RHS ReW7 8046602
1RNS Rews sel377y
iRWS ROW9 +001
BUUNDS
uP BRD Ut 1,
UP BND u? i.
uP 8RO u3 1.
UP BND Uk ie
UP BND us i
P BND 35 1 1,
UP BND 35 2 1,
UP BND 3 3 i
UP BND 3s & ie
uP 8ND 35 i,
(9] 4 B[‘D 35 6 {.
UP BND 3 7 1,
uP BND 3 8 N
uP BND 3s 9 .
uP BRD 3s10 .
uP BNO 3511 .
upP 8ND 3st2 .
yP BND 3s43 {e
UP BND 3sie 1,
UP BND 3515 .
up BND 3sie .
UP BAND LIt .
uP BND 4s 2 .
UP BND &s 3 e
uP BND a5 & .
uP BRD &S 5 .
uP BAD s 6 .
uP BND 45 7 .
LUP BAD 4s 8 .
VP BND 45 9 .
P BND 4510 .
UP BND 4g14 1,
P BND asi2 i,
uP BND 4513 1.
uP BND 351 1.
uP BN as1S 1.
WP BND 4516 1.
UP BND 8s 4 s
uwp BND 55 2 1,
UP BND 55 3 i
WP BND 55 4 i
UP BND 55 § i,
UP BND 55 6 i
uP BRC 5s 7 1.
uP BND 5s 8 1.
P BRD 5s 9 1,
UP BAD 55190 i,
w 8ho 5511 i,
WP BRD 5si2 .
uP BND 5513 1.
P BND 5514 {.
uP BND 5s15 1.
UP BRD 5516 1,
uP BND 8517 1e
uP BRD 5518 ie
LP BND 5513 1.
UP BNC 5520 1,
UP BAD 5321 e
UP BND 5s22 1,
up BRD 8523 1.
P BND 5524 1.
uP B8ND 5525 1,
UP BND 5526 1,
wP BRD 5527 1.
UP BMND $s28 .
uP BND 6529 i,
UP BND 8530 1.
UP BND 5531 i,
uP BND 5g32 {s
UP BND 8533 i,
UP BAD 3534 .
LP BND §535 i,
upP BND 5536 1
uP BND 5537 1.
ue B@D 5538 i,
uP BND 5539 i,
UP BND 5540 .
uP BND -1 3% 1,
uP BND 5542 1.
uP BND 5543 i,
UP BND Ss4s ie
UP BND 65 1 i,
uP BND 6s 2 {,
UP BND 6s 3 i,
UP BND 6S & i.
v® BAD 6s 5 1.
uP BND 6S 6 i
UP BND 6s 7 i,
UP BMD 6s 8 ie
uP BND 8s 9 i,
UP BND 6510 1,
uP BND 6s14 .

86 Appendix C



UP BND 6si2 i,
VP BND 6513 .
UP BND 6514 .
UP 8hD 6315 .
JP BND 6516 .
VP BND 6517 .
UP BND 6318 .
UP BND 63519 .
UP BND 6520 .
UP BND 6521 .
P BRD 6s22 1.
UP BND 6523 .
uP BND 6524 .
P BND 6525 .
UP BND 6526 .
UP BAD 6527 i,
uP BND 6528 {.
P B8N0 6529 i.
uP BND 6530 1.
UP BND 6531 .
UP 8ND 6332 .
UP BAD 6533 .
uP BRC s 1 .
UP BND 75 2 .
UP BND 7s 3 .
P 8RD 7S & Te
UP BND 7S5 i
yP B8N0 75 6 .
WP BND s 7 .
uP BND 7S 8 .
UP BND 789 .
UP 8ND 7810 ’
WP BAD 7511 .
P BND 7812 1o
VP BND 7513 {e
uP BND 7514 i,
uP BAD 7815 {e
uP BND 7516 1o
P 8RD 7547 0
UP BND 7518 N
uP BND 7519 .
UP BND 7820 .
UP BND 7824 i,
uP BND 7522 i,
LP BANC 7823 .
UP BND 7s24 .
P BND 7528 .
UP BND 7526 ’
UP BND 7827 .
P BND 7528 .
UP BND 7s29 .
WP BND 7830 .
UP BND 753t .
UP BND 8s 1 i,
UP BND 83 2 i
UP BND 8s 3 i.
UP 8AD 8s 4 1,
UP BND 8s 5 i,
uP BAD 8s 6 Lo
uP BND 83 7 i,
uP BND 8s 3 i{.
uP BND 8s 9 i,
UP 8ND 8s10 1.
uP BND 8si} 1o
P BRD 3512 ie
UP BRC 8s13 1.
UP BND asts 1.
uP BND 8515 1,
WP BND 8516 1.
uP 8ND 8s17 1.
uP B8N0 8518 ie
UP BND 8s19 1,
VP BND 8520 1,
uP BRD 3s21 1,
UP BND 9s 1§ 1,
P BAD 9s 2 1.
uP BND 9s 3 i,
UP BAC 9S & 1,
UP BND 95 5 {e
UP BND 9s 6 i
P BND 9s 7 i.
UP BND 9s 8 i,
yP BND 9s 9 i,
wP BAD 9510 e
uP BND 9si4 i.
vP BNO 9si2 1.
uP BAD 9513 i{.
UP BND 9s14 1.
uP 8RD 9518 e
P BAD 9816 1e
UP BND 9s17? i,
WP BND 9513 i.
UP BND 9519 1.
UP BND 1s 1 i,
uP anp is 2 ie
LP BND 15 3 1.
UP BND 15 & {.
UP BND 15 5 {.

Appendix C

87



UP BND is 7 1,
uP BND 15 8 i
UP BAD 1s 9 {

UP BND 1510 1.
UP BNG isig 1o
UP BND 1812 i
P BND 1513 {.
uP BND 1514 i,
P BND is1s H

ENDATA

11137 FEB 12.'59 1Ds0001

JOB 326,SpM

LMt (TINE:?O;JKLGJXOOO’&(UB}IOOU)J 0821000}

ASSIGN F1106,{DEVICE,CPAOS)

ASSIGN FSi:(FXLEoCLANGI:(EIN):(HRITE:ALL)p(CBNSEC)J(SEOUEN)tl
(BUTIN), (RECL230000) » (READJ ALL

ASSIGN Ft?n(F!LE;UT]L!l:(BIN):(NRIYE:ALL):(KEYED):(OIREcT)aj
(6UTIN), (RECL 230000}, (READIALL)

ASSIGN F13, (FILE,UTIL2) 2 (BIN)» (WRITEsALL )2 (KEYED) s (DIRECT) 4y
(BUTIN), (RECL#30000), (READSALL)

ASSIGN Fia,(FILE,MTRXYS(BINY, IWRITESALL) »(DIRECT}S(KEYED) s}
{OUTIN), (RECL230000), (READSALL)

ASSIGN F35, (FILEsIVSE)a(BINY, (WRITESALL) s (DIRECT) s (KEYED) 43
{OUTIN) , (RECL230000), (READsALL)

RUN {LMNsFMPS)

12FEB6S O O le
INTERNAL STATEMENT NUMBEK O TIME w 11:37
C
C DEF INE HEACING AND ENTER SEPERABLE PROGRAMMING MBDE
4
1 e TITLE NONeLINEAR PROBLEM N8 6
2 e c CALL ENTER(SEP)
c SPECIFY FOUR SYMBOLIC UNITS(WORKING FILES) ON RAD
c
3 e CALL DEVICE{'FILE1',DISCh'B")
4 0e CALL DLVICE(TFILER2'»DISCoC")
L CALL DEVICE(YFILE3,DISCs'0D")
& se CALL DEVICE(YFILEA'»DISCH'E")
4
C ATTACH THE FOUR STANDARD FMPS FILES T8 THE FOUR
4 PREVIOUSLY DEF INED SYMBOLIC UNITS(RAD)
[4
7 % CALL ATTACH(MATRIXs 'FILEL")
8 e CALL ATTACK(IRVERSE,'FILE2')
9 o CALL ATTACH(UTILL,'FILEI')
10 »» CALL ATTACH(UTIL2,'FILER?)
C
4 INITIALIZE INTERRUPT VARIABLES
4
11 »e ASSIGN 100 T8 KMAJER
12 »» ASSIGN 200 T8 KIOER
13 »» ASSIGN 300 T8 KNFS
14 se ASSIoN 400 TO KUBS
15 == ASSIGN 500 T8 KNV
C
16 os ADATA & 'NLPSTCOL!
4
C LOAD INPUT MATRIX FRBM CARDS, USING RECSRD 'NLPSTDO1?
4
17 s CALL INPUT
c
C IDENTIFY RIGHT=HAND«SIDE COBLUMN AND COST RBW T® BE USED
4
18 »» ABBJ s 18BUT '
19 o ARHS s '1RHS '
C
c SET T8 INVERT NO LESS FREQUENTLY THAN AT INTERVALS OF
C 50 ITERATIONS(NOTE! AUTOMATIC INVERT oN TIME IS B8Y DEFAULT
c IN BPERATIONe) .
C
C assss
C NBTE: T TURN OFF ThHi AUTBMATIC INVERT 8N TIME, THE FOLLBWING
C STATLMENT SHULD BE USED.
C INVTIME » =)
C  sasss
12FEB69 Os O¢ 2¢
C
20 s {PREQ] » SO
4
[4 INJTIALIZE ITERATION LBGGING FREQUENCY T8 PRINT EVERY ITERAYIBN
c
21 o JLOGP » 3
c
C SPECIFY MINIMIZATION
t
22 oo FOBUNY s 19
c
C S8LVE SEPERABLE MATRIX
c

88 Appendix C



23 e CALL OPTIMIZE
C
g OISPLAY PROBLEM SOLUTIBN
24 oo CALL SOLUTION
25 ee ST8P
4
4 ENTER WERE FBR MAJOR ERRBR CONDITIBNS
c
26 #s 100 CALL CONDITION
27 e sSTOP
C
C ENTER WERE FOBR 1/8 ERRBR CONDITION
c
28 s» 200 CALL CONDITION
29 oo STOP
[«
E ENTER HERE FOR No FEASIBLE SGLUTION CONOITION
30 #» 300 CALL CONCITION
[4
C ENTER HERE FOR UNBOUNDEL SBLUTIBN CONDITION
4
31 ss 400 CALL $BLUTJON
32 o sTePr
4
c ENTER WERE FOR INVERSION INTERRUPT CONDITISN
c
33 e» 500 CALL INVERT
34 ee RETURN
38 s END
INTERNAL STATEMENT NUMBER O TIME » 11337
12FEBSI Ce 1¢ 1o
INTERNAL STATEMENT NYMBER 1 TIME o 31137
INTERNAL STATEMENT NUMBER 2 TIME » 11137
INTERNAL STATEMENY NUMBER 3 TIME » 11837
INTERNAL STATEMENT NUMBER & TIME o 11137
INTERNAL STATEMENY NUMBER 5 TIME = §3837
INTERNAL STATEMENT NUMBER 6 TIME o 11337
INTERNAL STATEMENT NUMBER 7 TIME = {1237
INTERNAL STATEMENY NUMBER 8 TIME o 8337
INTERNAL STATEMENT NUMBER 9 TIME » 11337
INTERNAL STATEMENT NUMBER 10 TIME s 11337
INTERNAL STATEMENY NUMBER {1 TIME s 11337
INTERNAL STATEMENT NUMBER {2 TIME o 11137
INTERNAL STATEMENT NUMBER 13 TIME & 11337
INTERNAL STATEMENT NUMBER 14 TIME w §1137
INTERNAL STATEMENT NUMBER IS TIME = 11137
INTERNAL STATEMENT NUMBER {6 TIME » 11137
INTERNAL STATEMENT NUMBER 17 TIME o 35137
BUFFER S]2ZES (BYTES) AREes MATRIX o 7160 INVERSE s 10240
MATRIX STATISTICS
RONGesoooesse 10
COLURNSeveee 213
RHSvessecoes 1
DENSITYeseoe 30489
ELEMENTSs00 0 658
LARGESTesses 002000000403
SMALLESTeeee 006200000+03
MAJOBR ERRORS 0
MINGR ERRORS [}
SETSeesscnee 10
INTERNAL ‘STATEMENT NUMBER 18 TIME = 11137
INTERNAL STATEMENT NUMBER 1S TIME » 11138
JNTERNAL STATEMENT NUMBER 20 TIME = 11133
INTERNAL STATEMENT NyMBER 21 TIME » 11138
INTERNAL STATEMENT NUMBER 22 TIME o 11138
INTERNAL STATEMENT NUMBER 23 TIME » 11138
NEQATIVE OJ COUNT & 7 SELECTED 1 VARIABLES BEST Dy » «0¢2000000+03
ITERy  SUM OF INF NINF  OBJUECT VALUE veIN MBVE REDUCED COST ACTIVITY VeBUT MBVE plver
1 00246438420403 9 0000000000400 11 LeB  04000000000+00 0¢49918450D0+00 5 Be=lL  0¢20000000D+03
NEGATIVE DJ COUNT s 6 SELECTED 2 VARJABLES BEST Dy ® =0¢3000000+02
ITERe  SUM oF INF NINF  BBJECT VALUE veIN MOVE REDUCED CBST ACTIVITY VeSUT MOBVE piver
0+146601520+03 8 «0+300000000+01 13 LU <04300000000+01 0¢10000000D+01 NANE
3 0116608520403 8 =0+900000000+01 133 L=y 0+000000000+00 0.100000000+01 NaNE
NEGATIVE Dy COUNT « 6 SELECTED & VARIABLES BEST OJ » «0.1000000+02
ITERs  SUM oFf INF NINF BBJECT VALUE VeIN MavE REDUCED CAST ACTIVITY Ve8UT MBVE plver
¥ 00112626130403 8 =0+900514600401 14 L-B =0+310000000+01 04186000000+02 2 B=L  0+100000000402
12FEB6T  NONSLINEAR PROBLEM NB 6 Os  le 2
5 0s112609590403 7 «0+11805146D+02 16 L=y =0+280000000+01 0¢100000000+01 NENE
6 0102609590403 7 =0s311805148D402 134 Ley 0000000000400 0300000000401 NaNE
7 0972836700402 7 =0+118048510+02 99 (vB  00227059500+00 00129758320-02 6 BelL  0+400720000+0%
& 0972784700402 6 =0011804851D+02 168 Ley  00000000000+00 0.f{00000000+01 NanE
5 0+9457938004+02 6 *0011504851De02 187 Ley 0+000000000+00 0¢100000000401 NanE
NEGATIVE DJ COUNT o 5 SELECTED S VARJABLES BEST Dy » 001000000402
ITERe  SUM OF INF NINF  88JECT VALUE veIN MBVE REDUCED CBST ACTIVITY Ve8UT MBVE piveY

10 0+92917560D+02 6

*0¢14704851D402 17 Ley

*0+290000000+01 0¢100000000401 NBNE

Appendix C

89



11 0isp9175600+02 6 =014704851D402 138 Loy 0000000000400 0.150000000+01 NoNE
12 0+77%588730D+02 6 =0+147048510402 166 L=y 00000000000400 0100000000401 NeNE
13 0727796300402 6 =0e14704351D+02 $88 L=y  0000000000+00 0.100000000.01 NONE
1% 0¢712375%00+02 6 =0+147000000402 54 LeB 0+116183270+00 0.417580370-01 14 Bel 0037478475001
NEGATIVE DJ COUNT » 6 SELECTED 6 VARJABLES BEST DJ = =0+8000000402
ITERs  SUM OF INF NINF'  BBJECT VALUE VeIN MOVE REDUCED COST ACTIVITY Ve8UT MOVE river
15 0¢712298990+02 6 =00199386450+02 18 (=B =0¢240000000+02 0.218276870+00 3 BeL  0+80000000D+02
16 0:537677490402 5 =0+198309040+02 13 y=8  0+900000000+01 0¢119711760.01 S4 BeU  0.300459%6D+02
17 0535912500402 5 =0¢198309040402 167 L=y  00000000000+00 0.100000000+01 NaNE
18 0+491935300+02 5 =0¢1899090%0402 136 L=y  0.340000000+00 0.150000000+01 NenE
15 0+468038800+02 5 «0¢189909080402 189 L=B 0000000000400 0¢637338750+00 9 BelL  0e¢148915000+01
NEGATIVE DJ COUNT e 4 SELECTED % VARJABLES BEST DJ v «0¢4777820+01
ITER:  SUM oF INF MINF'  BBJECT VALUE VeIN Meve REDUCED COSY ACTIVITY VeBUT MOVE piver
20 0458547900402 & *0018990904D+02 168 Loy 0000000000400 00100000000+01 NONE
21 0+41076970D+02 » =0+1815090%0402 137 Lwy  0¢8340000000+00 0+15000000D+01 NenE
22 0+388119800+02 4 =0¢18043890D+02 S5 LeB  0¢14798663D+00 0.723135810400 99 Gey =0¢67347774D400
23 0+386094660402 4 «0+18044240D402 207 L=B =0+153000000+00 0435953117002 10 8oL  0027814000D+00
NEGATIVE pJ COUNT = 5 SELECTED 5 VARIABLES BEST DJ » «0¢454204D+01
ITERe  SUM BF INF NINF BBJECT VALUE VeIN MOVE REDUCED C8SY ACTIVITY VeBUT MOVF piver
2% 0+386084660402 3 »0¢180444400402 169 Loy  0+000000000+00 04100000000+01 NONE
25 0+340664260+02 3 =0017144440De02 138 L=y  0+900000000+00 0+100000000+01 NeNE
26 0¢31763976D402 3 =0+17099518D+02 100 LB  0+240000000+00 0+187133040+00 55 BeU =0e¢14791015040%
NEGATIVE DJ COUNT = 3 SELECTED 3 VARIABLES BEST DJ » «0s4439150+01
[TERy  SUM @F INF NINF'  OBJECT VALUE veIN MOVE REDUCED COSY ACTIVITY VeBUT MOVE pivey
27  0+316364400402 3 »0¢170995160402 170 (=B  0¢000000000+0C 0¢600563080+00 8 Bel  Cs14891300D+0¢
28 00289904180+02 2 *0016199516D402 139 Ley  0+200000000+00 0410000000041 Nent
29 0+268039080+02 2 »0016046835D402 €6 Loy 0:1%52681090400 04100000000401 NaNE
NEGATIVE DJ COUNT o 5 SELECTED 5 VARIABLES BEST DJ s 002216980401
ITERe  SUM oF INF NINF' @BJECT VALUE veIN MOVE REDUCED CBST ACTIVITY Ve8UT MBYE plver
30 0265960920402 2 =02150868350402 140 Ley 0+960000000+00 0100000000401 N8NE
31 0e243791120+02 2 =00152520590+02 37 LB =0+30245146D+00 0+546282330+00 207 ey =0+182397350401
32 0+240979330402 2 =0+182263270+02 57 Leg  0e¢18416209D¢00 0178453080400 100 BeU =0¢600675390400
SEP VARe 169 REJECTED
SEP VARe 371 REJECTED
NEGATIVE DJ COUNT = S SELECTED 5 VARIABLES BEST Dy = =0e¢210928D+01
L2FEB69  None| INEAR PROBLEM NS 6 Os ' 3¢
ITERs  SUM OF INF NINF OBJECT VALUE V=IN MOVE RECUCED COST ACTIVITY VeUT MBVE plvey
33 0424061077002 2 »0e14266327D402 141 ey  0¢960000000+00 00100000000+01 NoNE
3% 0+21951797D+02 2 =0e1ah185060+02 208 L~ =0+311131250401 00134237230400 189 BsU <=0+11080%46D+01
35 04217845790402 2 =0¢142615100402 101 Leg 00286319220+00 0+53788929D+00 57 BeU <=0+170037170408
NEGATIVE DJ COUNT » 3 SELECTED 3 VARJABLES BEST DJ s »0¢207295D404
ITERs  Sum oF INF NINF BBJECT VALUE V<IN MOVE REDUCED COST ACTIVITY VegUT MOVE plvet
36 0+215716050+02 2 *00141016390402 142 LB  00990000000+00 0s+156148534D+00 18 BeL  0412500000-01
37 0s212388%4D+02 2 =001410014860+02 190 LB 00929619730-01 0.13728625001 37 B-u =00283801i%0401
38 0.211821820402 2 =0013973245D402 58 Le8 0+15229149D0+400 0+800485220400 101 BeU «0¢570380120+00
NEGATIVE DJ COUNY o 7 SELECTED 7 VARIABLES BEST DJ = =006231670+01
ITERs  SyM OF INF NINF  BBJECT VALUE Vv=IN MOVE REDUCED COSY ACTIVITY V=8UT MBVE plver
39 0+210151250402 2 =00131904220¢02 17 UsB  0+290000000401 00271663140400 132 BeU  0,30303030D+0%
40 0.192086280402 2 =0013294040D+02 38 Lep =0032%71218D+00 0318190{80+00 170 BeU =0e¢341311590400
41 0:19{609830402 2 =0¢132537020402 102 (=8 00240458590400 0¢1678409704+00 58 BeU +0016011816D+01
NEGATIVE DJ COBUNT » 2 SELECTED 2 VARIABLES BEST Dy » «0+1919840401
[TERs  SuM OF INF NINF BBJECT VALUE VsIN MOVE REDUCED COS1 ACTIVITY VedUT MBVE plvay
82 01130971800+02 2 *0012325702D+02 143 Lsy  0+928000000+09 0+ 100000000401 NeNE
43 04171773000402 2 =0¢1218723%0402 59 LeU 00138466270+00 0+10000000D+01 NenE
NEGATIVE DJ COUNT = 2 SELECTED 2 VARIABLES BEST Dy » =041755900401
ITERe  SUM OF INF  NINF  OBJECT VALUE VeIN MBYE  REDUCED COST  ACTIVITY V=0UT MOVE  pIVeY
4% 0+169435700+02 2 «0+113018070+02 144 Loy 0+885423000+00 Ce¢100000000+0% NENE
45 0¢15187670D+02 2 =00§12434390402 60 LeB 0013016288D+00 0446732390400 102 BeU «0¢55639988D+00
NEGATIVE DJ COUNT 4 SELECTED % VARIABLES BEST Dy » «0e¢156692D+01
ITERs  SUM oF INF NINF BBJECT VALUE VeIN MBVE REDUCED CBST ACTIVITY VeBUT MOBVE plvey
46 0:150831660402 2 =0010808245D402 145 Leg  00820932000400 0+530390180400 17 8oL 0+283080000+00
47 0142520870402 2 =0+107175750402 103 L=8 0+300000000+00 0+302233715+00 60 ey <*0.183055530+0%
NEGATIVE DJ COUNT = 6 SELECTED 5 VARIABLES BEST DJ v =0,553526D401
ITERs  SUM OF INF NINF OBJECT VALUE VeIN MOVE REDUCED C8SY ACTIVITY VeBUT MOVE plver
48 0181014720402 2 =0+103560690+02 16 U=B  0+280000000+01 0129109090400 135 gey  0+353257030+01
43 0+133848200+02 2 =00102197710s02 61 Loy 00136298260+00 00100000000+01 NoNE
NEGATIVE DJ COUNT & 2 SELECTED 2 VARJABLES BEST DJ ¢ »0e1661820+03
1TERe  SyM oF [NF NINF OBJECT VALUE VeIN MOVE REDUCED COST ACTIVITY Va8UT MBVE plver
50 0131526800402 2 «09334729120401 146 LeU 0+87248000D400 0100000000401 NoNE

INTERNAL STATEMENT NUMBER 33

TIME » 11138

7 NON®BASIC SLACKSe COMPLETELY TRIANGULARIZED 1
0 IN NONCOMPLETELY TRIANGULARIZED PART. OF THESE

MATRIX 1O BE INVERTLD
1200 M§ FBR INVERT

INTERNAL STATEMENT NUMBER 34
INTERNAL STATEMENT NUMBER

HAQ 10 COLS aND

23

TIME = 11338
TIME » 11138

21 ELEMENTS. INVERSE HAS™

ROWS AND 9 CBLS»
O WHERE NOT TRIANGULARIZED AND
7 COLS AND

0 WERE REJECTED FOR TOO SMALL A PIlVOT.
18 ELEMENTS,

90 Appendix C



12FEB63  NeNe_ INEAR PROBLEM N8 o Qe 1e 4o

NEGATIVE DJ COUNT s 3 SELECTED 3 VAR[ABLES BEST Dy © «041%6022D+01
ITERe  SUM BF INF NINF  OBJECT VALUE veIN MOVE REDUCED COST ACTIVITY VesiT MBVE pivet
5 0314508600402 2 =00947973870408 171 LB =0+788507020+00 001679978904+00 38 8oy «0¢286763070D+01
52 0¢11228746D402 2 «0089285761D+01 147 LeB  0+840000000+00 0063616975D+00 7 BeL  0+15420%00D+01
NEGATIVE DJ CBUNT » 4 SELECTED 4 VARJABLES BEST Dy s «0¢1034220+01
ITERy  SUM BF INF NINF  OBJECT YALUE VeIN MOVE REDUCED COST ACTIVITY YeB8UT MBVE

pIvet
83 0010216906D4+02 1 =0¢893083650+01 39 |+B <0126208076D=02 0862475080400 103 Bey =0.,130205530+00
S5  009324935904+01 1 =0+893150550401 61 U=B ~0+19§85388D°01 0¢34870475D=01 39 geU  043943850§0+01
SEP VARe 170 REJECTED
SEP VARs 172 REJECTED

NEGATIVE DJ COUNT » 2 SELECTED 2 VARIABLES BEST Dy » «0+303868D+01
ITERs  SyM BF INF NINF  BBJECT VALUE veIN MOVE REDUCED COST ACTIVITY Ve8UT MBVE plver

85 0¢913033030+01 1 *0¢893177050401 40 L =B <=0¢60144084D=02 044072817001 137 BeU «0+36130351D+00
NEGATIVE pJ COUNT o & SELECTEQ 4 VARIABLES BEST DJ # «04277622D401
ITERs  SyM OF INF NINF®  OBJECT VALUE veIN MBVE REDUCED COST ACTIVITY V=8UT MOVE plver

86 0913455260401 1 =0089284077D401 148 LeB 0012735461001 0026405516D400 190 BeU =0+905167060+00
NEGATIVE DJ COUNT o 2 SELECTED 2 VARIAELES BEST DJ ®= =0:296866D+04
ITERe  SyM OF INF NINF  OBJECT VALUE veIN MOVE REDUCED CBST ACTIVITY Ve8UT MBYE plvery

57 0+840147820+01 1 =00892777120401 191 LeB  (0013618262D=01 O¢46740380001 208 BeU <0+343363860+00
58 0826272200401 1 =0e893051750+01 {03 yeB <0¢718994800-02 00381952450+00 51 BeL =0s194737760+08

NEGATIVE DJ COUNT » 2 SELECTED @ VARIABLES BEST DJ s 03213070401

ITERs  SUM oF INF NINF - @BJECT VALUE VveIN MOVE REDUCED C8ST ACTIVITY VeBUT MBVE piver
89 04821247510+01 1 +00893098130¢01 209 (=B =~0+12514221D=01 04370677800+01 40 Bel 0314464590401
60 0¢80933736D401 1 =0¢834302600+01 60 Usl =0+12044714D001 0+100000000+01 NoNE

NEGATIVE DJ COUNT o 2 SELECTED 2 VARIABLES BEST Dy » «0e¢1011090+0%
ITERs  SuM oF INF NINF @BJECT VALUE VeIN HOVE REDUCED C8SY ACTIVITY Ve8UT MBVE pIver

61 00302892620401 3 =0¢89%457050401 41 L=8 +0¢506980320=02 0¢304647030400 171 Bey <04337030660+00
NEGATIVE DJ COUNT » 0 SELECTED O VARJABLES BEST DJ * 040000000400

INTERNAL STATEMENT NUMBER 33 TIME » 11338
8 NON=BASIC SLACKSe COMPLETELY TRIANGULARIZED 1 ROWS AND 9 COLSe

QO IN NONeCOMPLETELY TRIANGULARIZED PARTs OF THESE' O WHERE NOT TRIANGULARIZED AND O WERE REJECTED FOR T88 SMALL A PIVOTs

MATRIX T8 BE INVERTED mAD 10 COLS AND 22 ELEMENTSe INVERSE HAS 8 COLS AND 20 ELEMENTS,

600 M§ FOR INVERY
INTERNAL STATEMENT NUMBER 34 TIME. v 11338
INTERNAL STATEMENT NUMBER 23 TIME o 11138

NEGATIVE DJ COUNT o 1 SELECTED 1 VARIABLES BEST Dy = «0¢3000000+01
ITERY Sum oF INF NINF OBJECT VALUE v=IN MBVE REDUCED CBSTY ACTIVITY V=8UT MBVE plvet
62 0477209000040} 1 =0+894809580+01 172 L8 *0¢145598690=01 04242124500400 41 Bey <=04287123050+01

12FEB69  NOnw INEAR PRBELEM N8 & O 1. Se
NEGATIVE DJ CBUNT » & SELECTED 4 VARIABLES BEST DJ e «0¢1289570401
JTERs  SUM OF INF NINF OBJECT VALUE VeIN MBVE REDUCED COSTY ACTIVITY VegUT MBVE

pIvet
63 0¢699452620+01 1 =0+89483064D+04 42 LeB ~0¢790205780-02 0.2664256280«01 138 Bey =0,402269750+00
SEP VARe 171 REJECTED
SEP VARs 173 REJECTED

NEGATIVE DJ COUNT 2 SELECTED @2 VARIABLES BEST Dy » -0-3099660¢01

ITERy  SUM 8F INF NINF  BBJECT VALUE VveIN MBVE REDYCED COST g veauT MBVE piver

6%  00696016860+01 1 =0e89447198D401 1849 L8 00888620920-02 O bsrasaoooo §2 BeU =0¢280347890+04
NEGATIVE DJ COUNT » 2 SELECTED 2 VARIABLES BEST DJ s «0+1272000+01
ITERs  SUM BF INF NINF BBJECT VALUE V<IN MBVE REDYCED COST ACTIVITY Ve8UT MOVE piver

65 0570495550401 1 *0¢834407100401 43 L=B  0¢18443854D=02 0351712700400 131 Bey =00¢424001490D+00
66 0¢528757530+401 1 =0¢895642020+01 S§9 (*8 ©00159351900=01 0772538470600 103 Be| «0+56156861p+00

NEGATIVE DJ COUNT » 2 SELECTED 2 VARIABLES BEST DJ » «0¢296576D¢01

ITERs  SUM 8F INF NINF  BBJECT VALUE V=IN MOVE REDYCED COSY ACTIVITY Ve8UT MBVE rIver
67 0+5138526360+01 1 =00895720560+01 192 L<B <=0¢586743460=02 0133861690400 209 Bey =0¢381364530+00
68 0047882639040} 1 «0¢895747760+01 102 y=B <+0¢330286020=02 082348069D-01 89 el «0¢173693000+01

NEGATIVE DJ COUNT » 2 SELECTED 2 VARIABLES BEST DJ s =00320574D+01
ITERs SUM 8F INF NINF BBJECT VALUE ve=IN MOVE REDUCED C8ST ACTIVITY V=8UT MOVE piver

69 0+477919590404 1 #00395809450¢01 210 =B =0+339256450-01 00131848710-01 172 BeU +0+10685788D4+04
NEGATIVE Dy COUNT o O SELECTED O VAR[ABLES BEST DJ s 0¢0000000+00

INTERNAL STATEMENT NyUMBER 33 TIME « $1:338
8 NONeBAS|C SLACKSe COMPLETELY TRIANGULARIZED 1 ROHS AND 9 COLS,

0 IN NONeCOMPLETELY TRIANGULAR[ZED PARTs OF THESE O WHERE NOT TRIANBULARIZED AND 0 WERE REJECTED FBR 788 SMALL A PIVOT.

HAYRIX T8 BE INVERTED hAD 10 C3LS AND 22 ELEMENTSe INVERSE HAS 8 20 ELEMENTS.

600 M§ FOR INVERT
INTERNAL STATEMENT NUMBER 34 TIME = 31133
INTERNAL STATEMENT NUMBER 23 TIME = $1:38

NEGATIVE DJ COUNT » 1 SELECTED 1 VARIABLES BEST DJ s =0¢3000000+01
1TER. SUM oF INF NIN QBJECT VALUE vVveIN MOVE REDUCED COST ACTIVITY VeaUT MEVE plver
70 0472090000+01 1 =0+89618127D+01¢ 173 LB =0¢307612410°01 0+12087391D+00 43 Bel «0¢228515100+0%
NEGATIVE DJ COUNT « & SELECTED % VARJABLES BEST DJ » (0e1235230+0%
ITERe  SyM OF INF NINF BBJECT VALUE V<IN MOVE REDUCED COS?Y ACTIVITY VeOUT MBVE

piver
71 0435827830401 1 *089618813D+01 &4 LeR =0+15141831D=01 0e¥52861260D«02 149 Bey =0+4048395190+00
SEP VARe 172 REJECTED
SEP VARe 174 REJECTED

Appendix C

91



WEGATIVE DJ COUNT » 2 SELECTED

2 VARIABLES BEST DJ s »003096270401

ITERs  SUM OF INF NINF  BBJECT VALUE V=IN MOVE REDUCED CBSY  ACTIVITY VegUT MBVE plver
72 0e435241270+08 1 *0e89626458D401 150 LB =00924279650=02 0+827150220+01 102 Be=U =0+37235114C0+00
12FEBGF  NONsLINEAR PROBLEM No 6 e 10 60
NEGATIVE DJ COUNT o 2 SELECTED 2 VARIABLES BEST DJ » «0e846965:+01
ITERe  SuM oF INF NINF BBJECT VALUE vVv=IN MAVE REDUCED COST ACTIVITY Ve=8UT MBVE plver
73 0¢4096304604+01 1 «00896268120401 103 =B <=0+289698430=03 0012199573000 $4% BeU =0+653912790+01
7§ 04306305150+01 1 «0+896698570+01 58 UeB +0¢213772130=01 0+201408410+00 103 Be[ 0605708210400
NEGATIVE DJ CBUNT 2 SELECTED 2 VARJABLES BEST Dy ®© «0¢129379De0}4
ITER:  SUM BF INF NINF BBJECT VALUE veIN MOVE REDUCED COST ACTIVITY VeaUT MBVE rlvery
75  0¢305032480+01 { =0+897204330+01 A5 LB <«0¢719624780=02 0070267649000 192 Bey =00423105930+00
76 00214120610+01 1 *0039760298D401 102 UeB <0+10434214D<01 0.382055500+00 58 BelL *04163205720+01
NEGATIVE DJ COUNT « 2 SELECTED 2 VARIABLES BEST DOJ ® =0¢2909530+0%
ITERy  SUM BF INF NINF OBJECT VALUE VveIN MBVE REDUCED COST ACTIVITY VegUT MBVE pivey
77 04207998460+01 1 «00897733650401 193 «B «0.128443550-01 00101731160+00 150 BeU <=0+93968771D+00
NEGATIVE DJ COUNT » 2 SELECTED 2 VARIABLES BEST Dy = 043000000401
[TERe  SUM OF INF NINF  OBJECT VALUE VeIN MBVE REDUCED COST ACTIVITY VeBUT MOVE pIver
78 (4178398500404 1 =00897706980¢01 151 LeB 0+12873013D=01 0¢207146820+01 5 Bey =00234732190404
NEGATIVE DY ceuNY . 2 SELECTED 2 VARIABLES BEST DJ ¢ «0+151165D+01
1TERs ? NINF  @BJECT VALUE veIN MOVE REDYCED COST ACTIVITY VedUT MBYE plvery
75 Qe 72131090003 i =0+857706730401 46 LB  0o80T872160702 (0c£02613280-03 173 Rel «0¢503833470400
NEGATIVE DJ COUNT » 0 SELECTED O VARIABLES BEST DJ = 040000000400
INTERNAL STATEMENT NUMBER 33 TIME = 11338
8 NON=BASIC SLACKSe COMPLETELY TRIANGULARIZED 1 ROWS AND 9 CBLS.
0 IN NONeCOMPLETELY TRIANGULARIZEC PARY. OF THESE O WHERE NBT TRIANGULARIZED AND 0 WERE REJECTED FBR T80 SMALL A PIVOTe
MATRIX T8 BE INVERTED hAD 10 COLS AND 22 ELEMENTS. INVERSE Has 8 COLS AND 20 ELEMENTS.
600 MS FOR INVERT
INTERNAL STATEMENT NUMBER 34 TIME o 11138
INTERNAL STATEMENT NUMBER 23 TIME » 11:38
NEGATIVE DOJ COUNT » 1 SELECTED 1 VARIABLES BEST Dy = «0¢3000000+0%1

ITER:  SUM 6F INF NIMF OBJECT VALUE VeIN MOVE REDUCED COST ACTIVITY V=BUT MOVE plver
80 0+172090000+01 1 «0e897622650+401 174 =B  0+785044660=02 0'167107130000 210 R=yU <=0:87938085D+00
NEGATIVE DJ COUNT = & SELECTED % VARIABLES BEST Dy » «0+329839D+01
ITERT  SUM OF INF NINF ™ BBJECT VALUE VeIN MavE REDUCED COST ACTIVITY V-guUT MBVE plveT
81 0:13995786D+01 1 =0e89834301D401 211 LR «0¢19217362D=01 0¢37484894D+00 %6 Bey <=0e211617210401
SEP YARe 173 REJECTED
SEP VARs 175 REJECTED
JTERe  SyM BF INF NINF  BBJECT VALUE V=IN MBVE REDUCED COST ACTIVITY V=pUT MBVE pIver
82 0+163180820+00 1 =0+899477680+01 §7 y=| =0011346689D-01 0¢100000000+01 NoNE
NEGATIVE DJ COUNT o 2 SELECTED 2 VARIABLES BEST Dy » .0-153¥63D¢ol
ITERe  SUM OF INF NINE  OBJECT VALUE Vv=IN_MBVE REDUCED COBST I VesUT MBVE PIVOT
83 0¢10254074D+00 1 =0¢89955397D+01 47 =B «0¢11567315D0°01 046 axsoaeo-ox 4 Bel  0e153462690+01
SBLUTION FEASIBLE AT ITERATION a3
L1BFEBS9  NONe| INEAR PROBLEM N8 6 O» 1 7e
NEGATIVE DJ COUNT « 8 SELECTED 8 VARIABLES BEST DJ * 01000000400
SEP VARs 14 REJECTED
SEP YARs {7 REJECTED
SEP VARe 210 REJECTED
SEP VARe 212 REJECTED
ITERs  SUM OF INF NINF  BBJECT VALUE VeIN MEVE REQUCED COST ACTIVITY Ve8UT MOVE rlvet
8%  0+000000000+00 0 =0¢300247530+01 56 JeB =00221633600-01 003123800%0+00 102 Bel =0¢685{83300400
85  0+000000000400 0 =0¢300848970+01 20 LeB <+0¢102400520-01 0:294373820+00 151 Bey =00665392300+00
SEP VARe 46 REJECTED
SEP VARe 48 REJECTED
NEGATIVE DJ COUNT o 4 SELECTED * VARIABLES BEST DJ s »0¢1133480-01
SEP VARs 55 REJECTED
SEP VARe 57 REJECTED
ITERY  SUM OF INF NINF  OBJECT VALUE V-IN MEVE REDUCED COST ACTIVITY Ve8UT MBVE plver
8%  0:000000000+00 0 =00900784670401 101 U=B +0+57516848D=N2 0+209798060+00 86 BeL =0¢14470169D+01
SEP VARe 21 REJECTED
NEGATIVE DJ COUNT o 0 SELECTED O vAaerL:s BEST DJ » 000000000400
INTERNAL STATEMENT NUMBER 33 TIME » 11138
9 NON=BASIC SLACKSs COMPLETELY TRIANGULARIZED 0 ROWS AND 7 CBLS.

3 IN NON«CBMPLETELY YRXANGULARlZEO
nATalx T8 BE INVERTED hAC

0 coLs A
1200 M§ FOR INVERY
INTERNAL STATEMENT NUMBER 3 TIME
INTERNAL STATEMENT NUMBER 23 TIME
NEGATIVE DJ COUNT = 8 SELECTEC
SEP VAR, 14 REJRCTED
SEP VAR, 17 REJECTED.
SEP VARs 210 REJECTED
SEP VARy 212 REJECTED
ITERs SUuM 6F INF NINF  BBJECT V

87 +00000000D+00 0 =0+¢9014791

SEP VARe 46 REJECTED
SEP VARs 48 REJECTED
92 Appendix C

PART. OF THESE

ND 28 ELEMENTS, INVERSE HAS 1
v 11138

e 1413%

8 VARIABLES BEST py v »0+1000000+400

ALUE
20+01

VeIN MOVE
55 Ueg

REDUCED CBSTY
«0+15%5337460D-01

1 WHERE NOT TRIANGULARIZED AND

1 COLS AND

ACTIVITY

0044706210D400

VeBUT MOVE

O WERE REJECTED FOR TOO SMALL A PIVOTe

28 ELEMENTS,

piver

20 BeL *=0¢28292903D+00



NEGATIVE DJ COBUNT » 5 SELECTED S VARIABLES BEST DJ s «Ce7503300+01

ITERY SUM BF INF NINF'  BBJECT VALUE VveIN MOVE REDUCED C8ST ACTIVITY VegUT MBVE plver
88 0.000000000400 0 «0+90200293D+01 152 |.=p «0+75032995D=01 0,698095080+01 101 B« 0377934040401
SEP VARe 86 REJECTED
SEP VARe  Ss REJECTED
NEGATIVE DJ COUNT » 0 SELECTED O VARIABLES BEST Dy s 0+0000000+00
INTERNAL STATEMENT NUMBER 33 TIME » 118138
{2FEB69  NONe_ INEAR PROBLEM NO & Os i 8
9 NON*BASIC SLACKSe COMPLETELY YRIANGULARIZED 1 RBWS AND 7 COLSe
2 IN NONeCSMPLETELY TRIANGULAR]ZED PART. BF THESE 1 WHERE NOT TRIANGULARIZED AND 0 WERE REJECTED FBR TGS SMALL A PIVEBTe
MATRIX T8 BE INVERTED MAD 10 CBLS AND 25 ELEMENTSs INVERSE HAS™ 11 COLS AND 26 ELEMENTS,

1200 Mg POR INVERT
INTERNAL STATEMENT NUMBER 34

TIME » 11338
INTERNAL STATEMENY NUMBER 23

TINE » 11238

N:aATIVE DJ COUNT » 8 SELECTED & VARIABLES BEST OJ = «0,1000000+00
Re  §& REJECTED

SEP OAR. 17 REJECTED

SEP YARe 210 REJECTED

SEP VAR, 212 REJECTED

SEP VARe 86 REJECTED

SEP VARe 54 REJECTED

SEP VARe 46 REJECTED

SEP VARe 48 REJECTED

NEGATIVE DJ COUNT » 0 SELECTED O VARJABLES BEST DJ ® 000000000400

LBCAL BPTIMUM ENCBUNTERED

SPTIMAL SOLUTIONe OBJECTIVE VALUE 2+0¢90200293D¢01
INTERNAL STATEMENT NUMBER 24 TIME » 31139

12FEB69  NONeLINEAR PROBLEM NO ©

IOENTIFIER SECTION

PROBLEMess NAME®e

MODEse SEP

CLASSs 8EP

STATUS BPTIMAL#
FUNCTIONAL NAME«s 08ByY

OBJECT MINIMIZE

V‘LUE’ 94020030
RESTRAINTe NAMEse 1RHS
ITERATIONe COUNT» 1]

o1}

2e 1e

12FEB6Y  NON=_INEAR PROBLEM NB 6

SECTION 1 » REnS PRIMALeDUAL 8UTPUT

Os

NUNBER ool ABELe At eesACTIVITYeoe SLACK ACTIVITY ooLOWER LIMITe oeUPPER LIMITe oDUAL ACTIVITY soINPUT CBSTes +REDUCED COSTe
1 o8yt «9¢020030 94020029 NBNE NenE 1+000000 14000000 04000000
2 Rowi Ec 307016886 0,000000 304016586 300016588 0+300000 0.00 043
3 Row2 EQ shoolgasz 0,860000 440959442 b40955442 04280000 04000000 0280000
4 RowW} EQ 27414430 00800080 270414490 239414450 00003934 046006000 0003935
S ROWS EQ 99i836899 04000000 99836899 99836899 04000000 04000000 04000000
6 ROWS EQ 0+005200 0000000 04005200 000%200 «0+061052 8,00 0061052
7 RewWé EQ 31:601028 0,000000 314601028 310801028 w0e541452 0.000000 «0s881452
8 Row? EQ 8:466020 0.000000 84466020 84436020 *00009013 0005000 «0+509013
9 Rews EQ 4e437710 0000000 44137710 4137710 04000000 04000000 0+000000
10 Row9 1] 02001000 0.000000 04004000 00001000 0+583422 0000000 0883822

12FEB69  NaN<LINEAR PROBLEM Ng o Os 20 3.

SECTION 2 » COLUMNS PRIMAL=DUAL BUTPUT

NUMBER ool ABEL AT eooACTIVITYeee ooINPUT COSTes ool BWER LIMITe ooUPPER LIMITs +REDUCED COSTe
11 x5 0514710 04000000 0+000000 NONE 04000000
12 usouuox zo 04000000 0+000000 04000000 04000000 04000000
13 Os989472 «9,000000 04000000 14000000 04000000
is z LL 0+000000 *3.100000 04000000 14000008 *0¢100000
I8 useunpz EQ 0:000000 04000000 04000000 04000000 04000000
i6 u3 BS 0189566 »2+4506000 04000000 1.0006060 0000000
17 us L 0+000000 =2¢300001 00000000 1.000000 «04100000
is us L 8+000000 «24 4000000 04000000 1'900990 L2} 0600009
I3 s3seunp Eo §s000000 00006000 00000000 00006003 0000000
80 35§ Ll $+000000 04060600 04000000 1 ,0006060 00003676
2l 352 LL 0+000000 0000000 04000000 1000000 04002288
22 353 L 04000000 0000000 04000000 14000000 00000837
23 3s & LL 0000000 04000000 04000000 14000000 =04000600
2% 35 8§ (X8 0:000000 0.000000 0000000 1.000000 «0+002013
25 35 & 41 0.000000 0000000 04000000 1,000000 =04004496
26 3s? (A8 $+000000 0.006000 04000000 1000000 =0,006622
27 35 8 tL 00000000 0000000 0+000000 1.000000 =04008797
28 3s 9 L §.000000 0,560030 04000000 1.0000060 =D¢030907

Appendix C 93



29 3s10 L 0+000000 0.000000 0000000 1000000 «04015836
30 3siy LL b+0000 0,000000 00000000 1.,000000 *0e018794
31 dsg2 L 0+000000 0,600000 0+000000 1000000 =0.021711
32 3513 LL 0+000000 0,000000 04000000 1.000000 »0+024588
33 3sis L 04000000 04000000 04000000 1.,000000 =0+027429
34 3518 L 94000000 0+000000 04000000 {+000000 =0.025002
38 3516 L 0000000 04000000 00000000 1.000000 =0+026929
36 SaBeundD EQ 8s000000 0,000000 0+000000 04000000 0+000000
37 45 g uL 1.0060000 0.000600 04000000 1+000000 0:014691
38 ¥ 2 uL 1000000 04000000 0+000000 1,000000 0013432
39 4s 3 uL {+000000 0000000 0000000 1.0000600 0+012110
40 &g & uL 1+000000 04000000 0+000000 1,000000 04010755
8 ks S UL {+000000 0,000000 04000000 14000000 04009511
32 g ¢ UL 1000000 04000000 04000000 1,000000 0.0100928
33 457 ul 12000000 0000000 04000000 1000000 04008171
ITINTY u 1+000000 0800060 0+000000 1.000000 00006200
¥ a5 9 uL 1+000000 040600060 04000000 1000600 0004251
6 4s10 U 1000000 0+000000 0000000 1o 04002667
37 asit 8s 00000043 04000000 04000000 1+000000 04000000
A8 512 L 04000000 04000000 04000000 1,000000 «0,002627
39 4513 L 09000000 0.000000 0000000 1+000000 *04005215
50 asia L 0+000000 0.000000 04000000 14000000 *0007766
51 asis e 0+000000 04000000 0000000 1,000000 =04008395
52 asis LL . 04000000 0+0060800 04000000 1.000000 =0,010121
53 S$sBauND EQ 0+000000 04000000 0+000000 04000000 04000000
54 Sg 1 uL 1000000 0000000 04000000 1.000000 0,00737%
5% 55 2 8s 0+160604 04000000 04000000 1000000 04000000
56 Ss 3 LL 0+000000 0000000 04000000 1.,000000 «04010782

12FEB69  NON=LINEAR PROBLEM N8 6 Os 2o b

SECTION 2 « GOLUMNS PRIMALeDUAL BUTPUT

NUMBER  oeLABEL® AT ¢oeACTIVITYose ooINPUT COSTes oolLBWER LIMITe eUPPER LIMITe +REDUCED COSTe
S7 5 & (A8 0000000 0,000000 00000000 1000000 «0.020808
58 8§ 5 8 04000000 0,000000 00000000 «0+029915
59 S5 6 LL 02000000 0,000000 04000000 1+000000 =0+037532
&0 55 7 Oe 0000000 00000000 1000000 0044928
5 55 8 (N8 0+000000 0,000000 04000000 1000000 «0+051767
62 5s 9 L 04000000 0,000000 04000000 19000000 «0,088118
63 5s10 LL 6+000000 0,500000 04000000 10000666 “0e064042
B4 581y LL 0:+000000 0,000000 04000000 1000000 ©0070844
65 5si2 LL 60060000 0006000 04000000 1.060000 =04074910
&6 5513 L 8000000 0,000000 04000000 «0+079837
E7 Ssia L 05000000 0.000000 04000000 14000000 =0¢084508
68 Ssi18 T8 0+000000 0+000000 04000000 1000000 =0+¢0889%6
&9 58316 LL 0:000000 04000000 0000000 { 4000000 *0¢093176
76 8s17 (R 0+0 0,000000 Os 1000000 =00098929
71 Ssis LL 04000000 04000000 0+000000 14000000 *0¢153149
72 58319 L 0+000000 04000000 04000000 +000000 =De161372
73 5sz20 L 8000000 0,003000 04000000 1.00600060 *0e169165
7% 5821 (s b«000000 Os 04000000 000 =0e118939
7% ss22 LL 02000000 04000000 04000000 1000000 *0ei81422
76 tgp3 L 8+080000 0,0000300 04000000 1+806000 *0¢188320
77 ss2s LL 6+000080 0.000000 0000000 1000000 »0e194958
78 Sg28 LL 02000000 0.000000 04000000 +000000 »04203716
79 5s26 L b+000000 0,000000 04000000 1000000 *0¢278209
60 5s27 ‘L 0+000000 0. 00 04000000 «0e28838%4
81 b5s28 LL 8.000000 0,000000 04000000 1000000 =0¢301764
82 5s29 (18 04000000 04000000 04000000 1000000 =0¢30923¢
83 5530 L 0+000000 0+300000 04000000 1000000 =0e¢319003
8% sg31 L 07000000 0,000000 04000000 1,0006000 «0+331 445
88 5832 (Y 0+000000 0.000000 04000000 1,000000 «0e424036
86 5s33 L 04000000 0+000000 04000000 {+000000 «0+530995
87 S5s3a 4N 8+000000 04000000 0000000 1,000000 «0e593545
88 5838 [ 04000000 0+000000 04000000 1000000 *00657459
89 5536 L 0:000000 0.000000 04000000 1.000000 =0e684185
S0 5837 08 04000000 04000000 04000000 1000000 =04710959
91 8533 L 0+000000 0.000000 0000000 14000000 0737911
92 5§39 L 04000000 Oe 04000000 1,000000 *0e765172
93 s5SAQ [ 02000000 0,000000 00000000 1,000000 *0e792864
9% Sgay L Be000000 0,566030 04000000 1.0800060 14242437
95 ssa2 L 04000000 0000000 04000000 1.000000 ={+30829%
96 Ssa3 LL 8+000000 0.000030 04000000 10800060 ©10377035
87 Ssas (R 04000000 04000000 0+000000 1,000000 *1+391363
98 SeBeuND EO 04000000 0,000000 04000000 0,000000 04000000
99 65 1§ uL 1.000000 0,800000 00000000 10006060 06024911
100 és 2 uL 1000000 0000000 0000000 1,000000 =0.003702
101 65 3 tL 04000000 04000000 04000000 1000000 04019853
102 é&s » iy 04000000 0000000 0+000000 1,000000 04041805

12FEB63  NON<LINEAR PROELEM No & O 2¢ S5

SECTION 2 » CBLUMNS PRIMAL=DUAL BUTPYT

NUMBER  ¢oLABELs AT +eeACTIVITYoro oeINPUT CBSTee oo @WER LIMITe «oUPPER LIMITe <REDUCED COSTe
103 65 5 LL 0400000 «000000 04000000 1.000000 De067268
104 63 6 L 030 04000000 Oe 1000000 00095584
108 és 7 e 0:000000 0,0300000 0000000 1,000000 Oe114636
il6 63 & i 5+000006 0+,00000¢ ©+000000 +000000 00186463
i07 85 § i $i800000 ©40C0000 £4000000 1000000 00189295
108 s6si0 L 8+000000 0,0060060 04000000 1000000 04223243
109 &siy L 0000000 0,000000 04000000 1.000000 04257760
110 &si2 L 0:000000 0,000000 04000000 1,000000 0e292652
111 ¢si3 LL b+000000 0.000000 04000000 1,000000 04327772

94 Appendix C



112 ésis tL 0+000000 04000000 00000000 1,000000 0363007
1i3 6s1s Ly 8+000000 04000000 0000000 140060600 0398273
114 8816 L 03000000 04000000 00000000 14000000 0¢433507
{is és17 LL 6+060030 00000000 04000000 1,000000 0e468666
116 ésis (AN 04000000 04000000 04000000 1+000000 04503715
117 6s1y LL 5000000 0,060030 0¢000000 1000060 0538635
118 6s20 LL 0:000000 0+000000 0,000000 14000000 0+573808
il9 ese1 L 6+060000 0300000 04000000 1000030 0e584438
120 6522 LL 0+000000 04000000 0000000 14000000 Cebb4804
124 6523 L 04000000 04000000 04000000 1 000000 00649683
122 6324 LL 0+.000000 04000000 04000000 14003000 04685611
123 6s2% L 5030000 040000600 04000000 1400606000 04694108
124 656 LL 0000000 04000000 0000000 100000 0+701719
125 6527 LL 0+000000 00000000 04000000 1000060 Oe759432
126 6528 L 03000000 04000000 04000000 +000000 04766510
127 6s29 Lt 04000000 04000000 04000000 1000000 0¢824650
128 46S30 LL 00000000 00006000 04000000 1600000 0e831028
129 6s3g L 0000000 0000000 04000000 1.006000 0eB863443
130 6s32 L 0000000 04000000 04000000 1.000000 0e842791
131 és33 L 02000000 04060000 04000000 1.000008 04308760
132 $780UND EQ 0000000 04000000 04000000 0000000 04000000
133 75 4 uL 1000000 04000000 04000000 14000000 «04709566
134 7’5 2 UL 15000000 0000000 0000000 000000 =00928400
138 75 3 UL 14000000 0+000000 04000000 14000000 =0+838§22
136 75 & u 1+000000 04000000 04000000 *0¢ 748845
137 7s 5 uL 1:000000 04000000 04000000 1000000 *0¢668881
138 75 ¢ UL {+000000 04000000 04000000 14000000 *0¢634910
139 7s 7 UL 14000000 04000000 04000000 1000000 =04562540
130 75 8 uL 14000000 04000000 04000000 14000000 »0+526085
131 75 9 L 1+000000 0000000 04000000 1000000 =0¢457003
132 7849 uL 14000000 00000000 0+000000 1000000 =0¢405697
183 7s11 Ui 1¢000000 04000000 04000000 1000000 =0e335484
184 7si2 uL 12000000 04000000 04000000 1,000000 »0e271429
138 7513 uL 14000000 0.000000 04000000 1.000000 =0e212479
136 7514 i 14000000 04000000 00000000 14000000 *0¢193497
187 7sis uL 15000000 0000000 0+000000 1+000000 *0e149144
148 7516 uL 14000000 04000000 04000000 1.000000 *0¢115218

12FEB69  NoN=| INEAR PROBLEM Ng 6 Qs 2+ 6¢

SECTION 2 « COLUMNS PRIMAL«DUAL BUTPUT

NUMBER  ooLABEL® AT +ooACTIVITYoes ssINPUT COSTee ooLBWER L IMITe eoUPPER LIMITe +REDUCED C8ST.
149 7si17 L 14000000 01000000 04000000 1000000 *0¢083%549
150 7s1s uL 1+000000 04000000 0+000000 1000000 *0+053914
151 7sis uL 14000000 0000000 04000000 1000000 *0:026120
152 7Jseo B8S 02069809 04000000 00000000 14000000 04000000
153 7s2y LL 0000000 04060600 0000000 1.666606 04024533
154 7g2p (X% 05000000 0.000000 0000000 1+000000 04047775
155 7s23 LL 0000000 0.060000 04000000 1000600 04069687
156 7324 LL 0+000000 0000000 04000000 +000000 04090419
157 7s2s L 00000000 04000600 04000000 1000000 0¢110054
158 7s26 L 04000000 04000000 04000000 1000000 0e12869%
159 7s27 L 04000000 0+000000 04000000 1000000 Deldball
160 7s2s L 09000000 0,0000600 04000000 1.005000 04163256
i61 7sa9 LL 9+000000 0800000 0+000000 1.,000000 00179305
162 7530 kL 04000000 0,005000 04000000 1000000 04194616
183 7s3g L 8000000 040006000 04000000 10000660 Oe115641
186  S3BeUND Eg 0+000000 04000000 04000000 0.000000 04000000
163 &8s uL 1+000000 04000000 0000000 146006660 =0+002359
186 8s 2 uL 1000000 04000000 04000000 1000000 *0+00381%
167 8s 3 uL 1+000000 0+000000 00000000 1000000 =0+002986
188 85 & UL 1+000000 0+006000 0+000000 1000000 *00002713
189 8s s uL 14000000 0000000 04000000 1,000000 «0+002096
170 8s ¢ uL 1000000 0000000 04000000 1000000 «0.001619
171 8s 7 uL 15000000 0000000 04000000 1.000000 «0¢001174
172 s 8 uL { 000000 0+000000 04000000 10000060 =0¢000758
173 85 9 UL 1000000 04000000 04000000 1+000000 «0,000367
176  8sie 8§ 60573633 0300000 0000000 { +000000 02000000
175 8si1 [AR §+000000 04000000 04000000 1000000 04000346
176 8si2 LL 04000000 0000000 04000000 1+000000 00000671
177 8si3 LL 0+000000 00000000 04000000 1000000 04000979
178 8sia L 0+000000 0,000000 04000000 1+000000 04001270
179 8si1s L 04000000 0.800000 00000000 1.+000000 0001546
180 8&sie L 04000000 04000000 0000000 14000000 04001808
181 817 L 0+000000 0000000 04000000 1000000 04002057
182 3sis LL 9000000 0000000 0000000 1.000080 00002294
183 s8si9 [NR 04000000 04000000 0000000 1000000 00002519
184 8520 Ll 04000000 0,000000 04000000 1000000 00002735
185 8s2i LL 0+000000 04000000 04000000 14000000 0.003021
186 S9BauND EQ 0+000000 00000000 00000000 0+000000 04000000
187 9s ¢ UL 14000000 0,000060 00000000 1.,0000060 00000000
188 395 2 UL 1000000 0000000 04000000 1000000 0+000000
189 95 3 uL 1+000000 04000000 04000000 1,000000 04000000
190 55 & uL 1-000000 04000000 04000000 1,000000 04000000
151 95 8 UL 14000000 0000000 0000000 1.000000 04000000
152 95 6 UL 14000000 04000000 04000000 1000000 04000000
133 393 7 BS 0e602818 04000000 01000000 1000000 0+000000
194 355 8 L 0+000000 04000000 0+000000 1,000000 04000000

Appendix C

95



12FEB63  NON=L INEAR PROELEM M8 6 Os 20 74

SECTIBN 2 = COLUMNS PRIMAL=DUAL BUTPYT

NUMBER  +oLABEL® AT sooACTIVITYsus ooINPUT COSTee ooLBWER LIMITe eoyPPER LIMITe <REDUCED COBTe
195 95 9 L 0+000000 04000000 04000000 1+000000 0000000
196 35si10 L 0000000 0000000 04000000 1.,000000 0000000
197 9s1t L 04000000 0+000000 0+000000 1,000000 0+000000
198 9si2 LL 04000000 00060000 0+000000 1000000 04000000
199 9si3 L 03000000 0,000000 04000000 1.,000000 04000000
200 9sis L 0.000000 00000000 0000000 i.oooooo 04000000
201 ssis t 0000000 04000000 0+000000 +000000 0+000000
202 9sie LL 0+000000 04000000 04000000 0006000 Oe
203 9siy tL 0+000000 0.000000 04000000 1000000 04000000
204 983 L ¢ 0 00000000 04000000 0+000000
208  9si9 LtL 0000000 0,000000 04000000 1+000000 04000000
206 siossunD EQ 0s 0 0000000 0+000000 04000000 00000000
207 is t 1+0U0000 04000000 04000000 1000000 0+019473
208 s 2 uL 14000000 00000000 04000000 1,000000 04097063
208 is 3 uL 1+080000 0000000 0¢000000 1000000 0059661
210 1s & UL 15000000 04000000 04000000 1.,000000 0028804
2il is % 8s 0374368 04000000 0+000000 1000000 04000000
2i2 s e LL 0+000000 04000000 0+000000 «0+026954
el3 s 7 L 02000000 0000000 04000000 1,000000 *0s052234
214 158 L . 0+006000 04000000 1e =04075991
218 1s 9 tL 0+000000 0,00000C 00000000 1,0600000 =0+098359
216 1s10 L 0+000000 0.000000 04000000 140000/ ©0el19444
217 isiy L 04000000 0,000000 0+000000 1.,000000 *0¢13937%
218 isi2 LL 0+000000 04000686 04000000 100006000 =0s$58230
219 isi3 Ll 0+000000 04000000 04000000 1.000000 *0¢176089
220 1sia Lt 0+000000 04000000 04000000 1,000000 =0+193043
221 is1s LL 04000000 04000000 04000000 1000000 “0e146168
222 SEPEND EQ 5+000000 040060000 04000000 0,000000 040060000

12FEB69  NONe=| INEAR PROBDLEM N@ 6 Ge 3 1e

INTERNAL STATEMENT NUMBER 25

SEX1T#

TIME » 11339

TOTAL J6B TIME

PROCESSOR EXECUTION TIME
PROCESSOR [/8 TIME
PROCESSOR OVERMEAD TIME
USER EXECUTION TIME

USER 1/0 TIME

USER OVERMEAD TIME

BRBEE RS NN
(-]
b

oF

CARDS READ

CARDS PUNCHED
PROCESSOR PAGES B8UT
USER PAGES ouT
DIAGNEBSTIC PAGES OUTY
SCRATCH TAPES USED
SAVE TAPES ySED

DISK READS AND WRITES
DISC READS AND WRITES

TEMPORARY DISC SPACE USED
PERMANENT DISC SPACE USED
ACCUMy PERMe DISC SPACE USED

2003

96

Appendix C



