
Xerox Symbol
Sigma,s-9 Computers

Language and Operations

Reference Manual

90 17 90A

SYMBOL DIRECTIVES

Poge No.

[label] ASECT 19

BOUND boundary 16

name COM, field list value list 27

Uabel] CSECT l value] 19

I label] DATA[,f] value,[, ... ,value
n

] 28

DEF symbol 1 [, ... , symbol
n

] 25
(I abe I] DO' exp 22

END [e~p] 22

label EQU exp 24

[label] GEN, field list value list 26

GOTO[, k] lobe I, [, ... ,label n] 22

[label] LOC [, n] location 16

LOCAL [name" ... , nomen] 23

[label] ORG [, n] location '6
PAGE 30

REF symbol, [, ... ,symbol nJ 25

Dabel] RES[,n] u 18

SREF symbol, [, ... , symbol n] 25

SYSTEM name 2'
Dabel] TEXT 'cst . 30

[label] TEXTC 'cs' 30

Xerox Symbol
Sigma 5-9 Computers

Language and Operations

Reference Manual

FIRST EDITION

90 17 90A

June 1971

XEROX

Printed in U.S.A.

NOTICE

This publication, 90 17 90A, documents version HOO of Xerox Sigma 5-9 Symbol.

RELATED PUBLICATIONS

Title

Xerox Sigma 5 Computer/Reference Manual

Xerox Sigma 6 Computer/Reference Manual

Xerox Sigma 7 Computer/Reference Manual

Xerox Sigma 8 Computer/Reference Manual

Xerox Sigma 9 Computer/Reference Ma.nual

Xerox Basic Control Monitor (BCM)/BP, RT Reference Manual

Xerox Batch Processing Monitor (BPM)/BP, RT Reference Manual

Xerox Batch Time-Sharing Monitor (BTM)/TS Reference Manual

Xerox Batch Time-Sharing Monitor (BTM)/TS User's Guide

Publication No.

90 09 59

90 17 13

90 09 50

90 1749

90 17 33

90 09 53

90 09 54

90 1577

90 16 79

Manual Type Codes: BP - batch processing, LN - languag.e, OPS - operations, RBP - remote batch processing,
RT - real-time, SM - system management, TS - tim~-sharing, UT - utilities.

The specifications of the software system described in this publication are subject to change without notice. The availability or performance of some features may
depend on a specific configuration of equipment such as additional tape units or larger memory. Customers should consult their XDS sales representative for details.

ii

CONTENTS

1. INTRODUCTION Location Counters 14
Setting the Location Counters 16

ORG 16
Programming FeCitures _____ LOC 16
Error Detection BOUND 16
Program Operation ______ RES 18
Sigma Mathematical library __ Program Sections 18

ASECT 18
CSECT 18

2. LANGUAGE ELEMENTS AND SYNTAX 2

4. INSTRUCTIONS 20
Language Elements ______ 2

Characters 2
Symbols 2 5. SYMBOL DIRECTIVES 21
Constants 2

Self-Defining Terms 3
C 3 Assemb Iy Control 21
X 3 SYSTEM 21
0 4 END 22
D 4 DOl 22
FX 4 GOTO 22
FS 4 Symbol Manipulation 23
FL 5 LOCAL 23

Literals _________ 5 EQU 24
Ex press ions 6 DEF 25

Operators and Expression Evaluation 6 REF 25
Syntax 6 SREF 25

Statements 6 Data Generation 26
Fields 7 GEN 26
Entries 8 COM 27

Comments lines ------ 8 CF 27
Processing of Symbols --- 8 AF 28

Defining Symbols _____ 9 AFA 28
Symbol References ____ 9 DATA 28

Previously Defined Ref€!rences 9 TEXT 30
Forward References _- 9 TEXTC 30
Externa I References __ 9 listing Control 30

Classification of Symbols __ 10 PAGE 30
Symbol Table 10
Absolute and Relocatable Values 10

Symbol Values ___ 10
Expression Values ___ 10

6. ASSEMBLY LISTINGS 31

3. ADDRESSING 12 Symbol Assembly Listing 31
Equate Symbo Is Line 31
Assembly listing line 31

Relative Addressing _____ 12 Ignored Source Image li ne 32
Addressing Functions ___ 12 Error Line 32

$, $$ 12 X Error in Symbol 32
BA 12 Literal Listing Line 32
HA _______ 13 Symbo I Abort li ne 34
WA 13 Error Count li ne 34
DA 13 Symbol Dictionary 34

Address Resolution ____ 13 Symbol Cross-Reference Listing 34

iii

7. OPERATIONS 35 EXAMPLES

l. Storing Fixed-Point Decimal Constants 5

Assign Control Command 35 2. Label Field Entry _ 8

Symbol Control Command 35 3. Command Field Entry ~ Program Deck Structures 35 4. Argument Field Entry

Concordance Listing 35 5. EXj:)ressions Using + and - Operators 11

BTM Operations 35 6. $, $$ Functions 12

Input/Output Assignments 35 7. BA Function 13

Assembler Options 36 8. HA Function 13

Li s t i ng Formal 36 9. WA Function 13
10. DA Function 13
11. Address Resolution 14
12. ORG Directive 17
13. ORG Directive 17

APPENO;IXES 14. LOC Directive 17
15. BOUND Directive 17
16. RES Directive 18
17. Program Sectoning 19

A. SUMMARY OF SYMBOL DIRECTIVES 37 18. Program Sectioning 19
19. Sigma 5-7 Instructions 20
20. END Directive 22
21. 001 Directive 22

B. SUMMARY OF INSTRUCTION MNEMONICS 39 22. GOTO Directive 23
23. LOCAL Directive 23
24. LOCAL Directive 23
25. LOCAL Directive 24
26. LOCAL Directive 24

FIGURES 27. EQU Directive 25
28. DEF Directive 25
29. REF Directive 25

1. Xerox Sigma Symbolic Coding Form 7 30. REF Directive 25
31. GEN Directive 26

2. Symbol Listing Format 31 32. GEN Directive 264
33. GEN Directive 26
34. GEN Directive 27

TABLES
35. COM Directive and CF Function 27
36. COM Directive and AF Function 28
37. COM Directive and AFA Function 28

1. Symbo I Character Set 2 38. COM Directive's Error Notification 29
2. Symbol Operators 6 39. DAT A Directive 29
3. Symbol Error Codes 33 40. TEXT Directive 30
4. Input/Output Assignments 35 41. TEXTC Directive 30
5. Symbol Options 36 42. X Type Assembly Listing Errors 32

iv

1. INTRODUCTION

Xerox Symbol is a one-pass assembl er that reads source
language programs and converts them to object language
programs. Symbol outputs an object program and an assem-
bl y listing. The object language format is explained in
the BCM BP, RT Reference Manual, 90 09 53; the format of
the assembl y I isting is described in Chapter 6 of this manual.

PROGRAMMING FEATURES

Symbol provides such programming features as forward
references, I iterals, and external definitions. Since these
types of items cannot be defined by a single-passassembler,
Symbol produces information that enCibles the loader to
provide the appropriate linkages at lood time.

Other features of Symbol:

•

•

•

•

•

Self-defining const'ants that facilitate use of hexa­
decimal, decimal, octal, floatin!9-point, and fixed­
point values.

The faci I ity for writing large programs in segments or
modules. The assembler provides information neces­
sary for the loader to complete the I inkage between
modules when they are loaded in'~o memory at execu­
tion time.

Values that may be specified in byte, halfword, word,
and doubleword lengths.

Instructions that are automaticall y aligned on word
boundaries.

The COM directive, which allows the user to define
instructions and table areas.

•

•

Standard procedures that provide mnemon ic repertories
for processing instructions available with the various
hardware options.

TEXTC and TEXT directives, which simpl ify coding of
output messages and eliminate the need for character
counts.

ERROR DETECTION

During an assembly the source program is checked for
syntax errors. If any is found, an appropriate notification
is given, and the assembly operation continues. Although
an assembled program containing errors general! y cannot be
executed, the assembler continues to the end of the program
in order to locate any additional errors in the same run.

PROGRAM OPE'RATION

The Symbol assembler can operate as a stand-alone processor
or under control of the Xerox Sigma Basic Control Monitor
or Batch Processing Monitor. In either case object programs
produced by Symbol can be loaded for execution by the
Stand-Alone Loader (described in the Stand-Alone Systems
OPS Reference Manual, 9010 53) or by one of the Monitors.

SIGMA MATHEMATICAL LIBRARY

A library of mathematical routines isavailable to the assem­
bl y language programmer. These may be used as stand-a lone
routines or-under oneof the Xerox Monitor systems- as rou­
tines available at load time from a peripheral input device.
The Mathematical Routines/Technical Manual, 90 09 06,
provides a complete description of these routines.

Introduction

2. LANGUAGE ELEMENTS AND SYNTA~X

LANGUAGE ELEMENTS

Input to the assembler consists of a sequence of characters
combin~d to form assembly language elements. These lan­
guage elements (which include symbols, constants, expres­
sions, and I iterals) make up the program statements that
comprise a source program.

CHARACTERS

The Symbol character set is shown in Table 1.

Table 1. Symbol Character Set

Alphabetic: A through Z, and S, Cl * :, L.....J (break , ,
character - prints as "underscore")

Numeric: o through 9

;
Special
Characters: Blank

(Left parenthesis

) Right parenthesis

+ Add (or positive value)

- Subtract (or negative value)

* Indirect addressing prefix or com-
ments I ine indicator

, Comma

I Constant delimiter (single quota-
tion mark)

= Introduces a literal

Decimal point

The colon is an alphabetic character used in internal sym­
bols of standard Xerox software. It is included in the names
of Monitor routines (M:READ) and assembler routines (S:IFR).
To avoid conflict between user symbols and those employed
by Xerox software, it is suggested that the colonbeexcluded
from user symbols.

SYMBOLS

Symbols are formed from combinations of characters.
Symbols provide programmers with a convenient means

2 Language EI ements and Syntax

of identifying program el ements so they can be referredl,
to by other elements. Symbols must conform to the fol­
lowing rules:

1. Symbols,may consist of from l'to 8 alphanumeric char­
acters: A-Z, S, (l, #, :, L.....J, 0-9. At I east one of
the characters in a symbol must be alphabetic. No
special characters or blanks can appear in a symbol.

2. The characters Sand SS may be used in the argument
fiel d of a statement to represent the current val ue of
the execution and load location counters, respectivel'y
(see Chapter 3); these characters must not be used as
label field entries by themselves.

The following are exarnples of valid symbols:

ARRAY

R1

INTRATE

BASE

?TEMP

#CHAR

SPAYROLL

$ (execution location counter)

The following are examples of invalid symbols:

BASE PAY

TWO=2

Blanks may not appear in symbols.

Special characters (=) are not per­
mitted in symbols.

CONSTANTS

A constant is a self-defining language element. Its value
is inherent in the constant itself, and it is assembled as
part of the statement in wh ich it appears.

Self-defining terms are useful in specifying constant values
within a program via the EQU directive (as opposed to enter­
ing them through an input device)and for use in constructs
that require a value rather than the address of the location
where that value is stored. For example, the Load Immedi­
ate instruction and the BOUND directive both may use
self-defining terms:

LI, 2 5

8

7] 2, 57, and 8 are self-defining terms
BOUND

SELF-DEFINING TERMS

Sel f-defin ing terms are cons idered to be absol ute (non­
relocatable) items since their values do not change when
the program is relocated. There are two forms of self­
defining terms:

1. The decimal digit string in which the constant is
written as a decimal integer constant directly in the
instruction:

2.

LW, R HERE+6 "6" is a decimal digit string.

The maximum value of a decimal integer constant is
lim ited to that which can be contained in one word
(32 bits).

The general constant form in which the type of con­
stant is indicated by a code chmacter, and the value
is written as a constant string enclosed by si ngl e q'uo­
tation marks:

LW, R HERE+X'7AF' 17AF" is a hexadeci­
mal constant repre­
senting the decimal
value 1967.

There are seven types of general constants:

Code Type:.

C Character string constant

X Hexadecimal constant

a Octal constant

[) Decimal constant

FX Fixed-point decimc:d constant

FS Floating-point short constant

FL Floating -point lon9 constant

C: Character String Constant. A character string constant
consists of a string of EBC DICt characters enclosed by sin­
gle quotation marks and preceded by the letter C:

CANY CHARACTERS'

Each character in a character string constant is allocated
eight bits (one byte) of storage.

t A tabl e of Extended Binary-Coded Decimal Interchange
Codes can be found in the Sigma Computer Reference
Manuals.

Because single quotation marks are used as syntactical
characters by the assembler, a single quotation mark in a
character string must be represented by the appearance of
two consecutive quol'ation marks. For exampl e,

CIAB"C"I

re presen ts the stri ng

AB'C

Character strings are stored four characters per word. The
descriptions of TEXT and TEXTC in Chapter 5 provide posi­
tioning information pertaining to the character strings used
with these directi ves. In all other usages, character strings
must not contain more than sixteen characters. If the string
contains less than sixteen characters, the characters are
right-justified and a null EBCDIC character (s) fi lis out
the word.

Note: If any constant string enclosed by single quotation
marks appears in an object program without one of
the type codes I isted above, it is assumed to be a
character string constant and is processed as if type
code C had preceded the string.

X: Hexadecimal Constant. A hexadecimal constant con­
sists of an unsigned hexadecimal number enclosed by single
quotation marks and preceded by the I etter X:

X '9C01F'

The assembler generates four bits of storage for each hexa­
decimal digit. The maximum value of a hexadecimal con­
stant is limited to that which can be contained in one
word (32 bits).

The hexadecimal digits and their binary equivalents are as
follows:

0-0000 8 - 1000

1 - 0001 9 - 1001

2 - 0010 A-lOlO

3 - 0011 B - 1011

4 - 0100 C - 1100

5 - 0101 D- 1101

6-0110 E - 1110

7 - 0111 F - 1111

Information concerning hexadecimal arithmetic and hexa­
decimal to decimal conversions is included in the Com­
puter Reference Manuals.

Language EI ements 3

0: Octal Constant: An octal constant consists of an
unsigned octal number enclosed by single quotation morks
anel preceded by the letter 0:

0 17314526 1

The maximum value is lim ited to that which can be con­
tained in one wqrd (32 bits). The size of the constant in
binary digits is three times the number of octal digits speci­
fieq, and the constant is right-justified in its field. For
example:

Constant Binary Value Hexadecimql Value

0 112341 00 1 a 10 01 1 100 00 10 1001 1100 (29C)

Th,e octal digits and their binoryequivalents are as follows:

0-000 4 - 100

1 - 001 5 - 101

2 - 010 6 - 110

3 - all 7 - 111

D: Decimal Constant. A decimal constant consists of an
op,tionall y signeq val.ue of 1 through 31 decimal digits,
enclosed by singl e quotation marks and preceded by the
letter D.

DI7356987211 :::: DI +7356987211

The constant generated by Symbol is of the binary-coded
decimal form required for Sigma 7 decimal instructions.
In this form, the signt occupies the IQst digit position, and
each digit consists of four bits. For example:

Constant

('+99 1

Value

1001 1001 1100

A decimal constant coul d be used in an instruction a~
follows:

LW,R L(D I 99 1
)

Load (LW) as a literal (L) into register R the decimal con­
stant (D)99.

The value of a decimal constant is I imited to that which
can be contained in four words (128 bits).

tA plus sign is a 4-bit code of the form 1100. A minus sign
is a 4-bit code of the form 1101.

4 Language Elements

FX: Fixed-Point D.ecimal Constant. A fixed-point decimal
constant consists of the following components in the order
listed, enclosed by singl e quotation marks and preceded
by the I etters FX: .

1. An optional algebraic sign.

2. d, d., d. d, or . d, where d is a decimal digit string.

3. An optional exponent:

The letter E followed optionally by an algebraic
sign, followed by one or two decimal digits.

4. A binary scale specification:

The letter B followed optionally by an algebraic
sign, followed by one or two decimal digits that
designate the to;minal bit of the integer portion
of the constan' (i. e., the pos ition of the binary
p?int in the 7umber). Bit position numbering be­
g inS at zero.

Parts 3 and 4 may occur in any relative order:

FX' .0078125B61

FX'1.25E-l B 171

FX'13.28125B2E-21

The value of a fixed-point decimal constant is limited to that
which can be stored inasingleword (32bits). See Example 1.

FS: Floating-Point Short Constant. A floating -point short
constant consists of the following components in order,
enclosed by single quotation marks, and preceded by the
letters FS:

1.. An optional algebraic sign.

2. d, d., d. d, or . d, where d is a decimal digit
stri ng.

3. An optional exponent.

The letter E followed optionally by an algebraic
sign followed by one or two decimal digits.

tThe impl ied binary· point may extend beyond the I imits on
single words (i. e., FX 11. 25B401).

Example 1. Storing Fixed-Point Dedmal Constants.

Assume a halfword (16 bits) is to be used for two fields
of data; the first field requires seven bits, and the sec­
ond field requires nine bits.

The number FX'3. 75B4' is to be stored in the first field. !

The binary equivalEmt of this number is 11 1\ 11. The
caret represents the position of th.~ binary point. Since i

the binary point is positioned between bit positions 4
and 5, the number would be stored as

Field 1 Field 2

1L-0-'--1..L....;..2..L..3.;...&....4~5-'--61 ______] Bit positions
i>10101l111111 J

A

The number FX'. 0625B-2' is to be stored in the second
field. The binary equivalent of this number is 0001.
The binary point is to be located between bit posi­
tions -2 and -1 of field 2; therefore, the number would'
be stored as

Field 1 Field 2

Bit positions

In generating the second number, Symbol considers bit
position -1 of field 2 to contain 01 zero, but does not
actually generate CI value for that' bit position since it
overlaps field 1. This is not an error to the assembler.
However, if Symbol were requestE~d to place a 1 in bit
position -1 of field 2, an error would be detected since,
significant bits cannot be generated to be stored out- '
side the field range. Thus, leading zeros may be trun­
cated from the number in a field, but significant digits
are not allowed to overlap from one field to another.

Thus, a floating-point short constant,t could appear as

FS'5.5E-3'

The value of a floa1"ing-point short constant is I imited to
that which can be stored in a single word (32 bits).

FL: Floating-Point Long Constant. A floating-point long
constant consists of the following components in order, en­
closed by single quotation marks and preceded by the letters FL:

1. An optional algebraic sign.

2. d, d., d. d, or . d, where d Is a decimal digit string.

t Refer to the appropriate Sigma Computer Reference Manu::!1
for an explanation of floating-point format.

3. An optional exponent:

The letter E followed optional I y by an algebraic
sign, followed by one or two decimal digits.

Thus, a floating-point long constant
t

could appear as

FL '2987574839928. E-l1'

The value of a floating-point long constant is I imited to
that which con be stored in two words (64 bits).

LITERALS

A literal i,s a constant or symbol enclosed by parentheses
and preceded by the letter L:

L(-185)

L(X'5DF')

L(AB)

decimal value -185

hexadecimal value 5DF

an address va I ue

or a constant or symbol preceded by an equals sign:

= -185 decimal value -185

=X'5DF' hexadecimal value 5DF

=AB an address value

Literals are transformed into references to data values rather
than actual values. Literals may be used in any construct
that requires an address of a data val ue rather than the
actual value. For example, the Load Word instruction re­
quires the address of the value to be loaded into the regis­
ter, and use of a literal will satisfy that requirement:

LW,7 L(768) The value 768 is stored in
the literal table and its
address is assembl ed as part
of this instruction.

A literal must not be used as a term in a multitermed ex­
pression; however, either literal form may be used in an
addressing function expression. For example,

BA (HA (L (S + 1)))

is valid.

A literal preceded by an asterisk specifies indirect
address i ng :

(* = 10),

Language Elements 5

When a literal appears in a statement, Symbol produces the
indicoted va.lue, sto,res the value in the literal table, and
assembles the oddress of that storage location into the state­
ment. The address is assembled as a word address unless the
programmer specifies a byte, halfword, or doubleword
address (se,e "Addressing Functions" in Chapter 3). Literals
moy be used aJ1ywhere a storage oddress value is a val id
argument field entry. However, literals may not be used
in directives that req!Jire previously defined symbols.

During an assembly Symbol generates each literal as a
32-bit value on a word boundary in the I iteral table. The
assembl er detects duplicate val ues and makes onl y one
entry for them in the tabl e. Symbol appends the literal
tabl e to the end of the assembl ed program.

Ary of the pr~viovsly discussed types of constants except
fl~ating-point long (FL) may be written as literals:

L(1416) integer literal

character string literal

hexadeclmal literal

L(O'77771) octal literal

L(D'378791) decimal literal

L(FX'78.2E1B10') fixed-point decimal literal

L (FS 1_8. 93541OE-021) floating-point short literal

EXPRES$IO~S

An expression is an assembly language element that repre­
sents a value. It consists of a single term or a combination
of terms (multite.rmed) separated by arithmetic operators.

A single-termed expression may be any valid symbol refer­
ence, a constant, or a I iteral (symbol references are de­
scribed later in this chapter).

A multitermed expression must be evaluatable; that is, it,
must contain onl y decimal integers, octal or hexadecimal
constants, and previously defined symbol references. It
ll)ust not contain literal,s, forward references, or external ref­
erences except for the specia,1 case noted later in this chap­
ter under "Forward References II and "External References".

OPERATORS AND EXPRESSION EVALUATION

A singl e-termed expression, such as 52 or S; or AB, takes on
the value of the term involved. A multitermed expression,
such as INDX+4, is reduced to a single value by the
assembler.

The operators that can appear in a Symbol expression are
shown in Table 2.

6 Syntax

Table 2. Symbo.l Operators

Binding
Operators Strength Function

+ 2 Unary plus

- 2 Unary minus

+ 1 Integer Add (binary)

- 1 Integer Subtract (binary)

In an expression, operations with the higher binding
strength are performed first; those with the same binding
strength are performed left to right.,

When an address is use' as a term in a mul titermed expres­
sion, the arithm~tic operation is restricted to the low-order
19 bits.

The assembler distinguishes between the unary operator (-)
and the binary operators in the fo! lowing manner:

1. An operator preceding an expression may onl y be a
unary operator, qs in -27 or +6.

2. The first operator following a term in a multitermed
expression must be a binary operator:

-~27n:. ;nory

Lbmary

unary

If ABLE represents the value 10, the expression woul d be
equivalent to -27-(-10)) = -27 + 10 == -17. If ABLE repre­
sents the value -10, the expression would be equivalent to
-27-(-10)) = -27-10 ::: -37.

SYNTAX

Assembl y language elements can be combined wi th computer
instructions and assembler directives to form statements that
comprise the source program.

STATEMENTS

A statement is the basic component of an assembly language
source program; it is also called a source statement, a
program statement, or a symbolic line.

Source statements are written on the standard coding form
shown in Figure 1.

Xerox Data Systems

Xerox Sigma Symbolic Coding Form XEROX

PROBLEM ALer#.I'A/ti: ____ ,
IDENTIFICATION

PAGE ___ 1,,--_ OF __ ..1'=-'_

PROGRAMMER __ A1,-,+...:cV-,K,-,,~ __ _ 73 80 ...-.-.--,--..--..--.-.-, DATE _-J,7-.;-----'-/-=:{)_-----'-:ij*~ __

LABEL COMMAND ARGUMENT COMMENTS

1 5 10 15 20=r~~2=5rr~~3~0rT~~3~5~3~7~r40~=r~4~5~~~5~0~rT~5~5=r~~6~Orr~~6=5rT~~70~n~
~ I I ; I I I I I I I I I I

'l{~ fJ I 'R t!JG R A /.I 1 ~ I'PI? [,' W./-r-,,/I''''--'-I t:>.,-"T'. H"'~. :::"""1"-'-"'1:,.,.....,....,..., -r-r......-r-r-+I"r-r--'--'Ir--r-"""-"""'--"I-.--....-.-......--r\-r-T-'-"-T"-r-I...,.....,.-,-,Ir--r-T-'!""-,---,I--r-~~I--.-I
~ I I I 1 I I 1 , , I I I I I

I 'D'A~ I N~r,I~+:nt~I~~~:~'ftl~TI~'-r~,I~~~Ir+~~~I~~,I-r~~~I~~TI~~~I~~~~I~~~I~
t'1lF:? I I V" 'A L t A ~ I 'P F<~II ,;, f p'r I I I I I I I I I

I ~~~i: ~I ~~r+I~~"~~~rTt,-rT'I-r~-r~I-r~~lrr~-rTI,-~,-I~~~TI~rT~rTl~~'I~

1 EIJ D I ;; riA R. T I I 1 1 1 I I I I
1 1 -rl~I~I~I~I~1 ~1",-~~I~~~~I~·~~~I-r~~~I~~-I~~~~I-r~~~'~~~~I~~~~I~

1 I 1 -I I , , , I I I I I I

1 I I I I I I I I I I I I I I I I I I

1 1 I I I I , III I 1 1

~-.-~~I-.~~~I-~,,-rTI,-r+~-"I-r~-rTI~"'I-.~-r~I~""-r~I-r~~~I~~-rTl~rT'I-r~-r~I~~~TI.-~.-~I~

1 I I -I 1 1 I 1 1 I I I 1 I

I 1 , -I 1 1 1 I I I I 1 I 1

~.-~'I-r~~~I-~,,-rTI~r+~TI~I-rI~I"-rI~I"~"~I~~~~I-+'~-r~I~~-r~I-r~-~I~~'I-r~r-T~I-r~-r~I-r~-rTI~

I I~ I , I I 1 , , I , , 1 1

1 , 1 1 1 I 1 1 ',1 1 I I

I I I I I I , , I I I I I I I I I I I I I I I 1 , I

III I I 1 1 II' I I I

~.-~~I-r~rr~I-,-~~TI~~.,.TI~I-rI~'~'-rI~I-~~-I~~~'1-+-~-r~I~~-rT'.-~~~I~~~I~~~'I-r~-rTI~"~TI~

Figure 1. Xerox Sigma Symbol ic Coding Form

FIELDS

The body of the coding form is divided into four fields:
label, command, argument, and comments. The coding
form is also divided into 80 individual columns. Col-
umns 1 through 72 constitute the active I ine; columns 73
through 80 are ignored by the assembler except for
listing purposes and may be used for identification and
a sequence number.

The columns on the coding form correspond to those on a
standard 80-column card; one linE~ of coding on the form
can be punched into one card.

Symbol provides for free-form symbol ic I ines; that is, it
does not require that each field in a statement begin in

a specified column. The rules for writing free-form
symbolic lines are:

1. The assembler interprets the fields from left to right:
label, command, argument, comments.

2. A blank column term inates any field except the comments
field, which is terminated at column 720n card input or
by a carriage return character on paper tape input.

3. One or more blanks at the beginning of a line specify
there is no label field entry.

4. The label field entry, when present, must begin in
column 1.

5. The command field begins with the first nonblank col­
umn following the label field or in the first nonblank
column following column 1, if the label field is
omitted.

Syntax 7

6. The argument field begins with the first nonblank
column following the command field. An argument
field is designated as blank in either of two ways:

a. Sixteen or more blank columns follow the com­
mand field.

b. The end of the active I ine (column 72) is encountered.

7. The comments field begins in the first nonblank col­
umn following the argument field or after at I east
16 blank columns following the command field,
when the argument field is empty.

ENTRIES

A source statement may consist of one to four entries
w.ritten on a coding sheet in the appropriate fields: a
label field entry, a command field entry, an argument
field entry, and a comments field entry.

A label entry (Example 2) is a symbol that identifies the
statement in which it appears. The label enables a pro­
grammer to refer to a specific statement from other state­
ments within the program.

The label of a statement may have the same configuration
as an instruction, directive, or intrinsic function without
confl ict, since Symbol is able to distinguish through con­
text which usage is intended. However, no two statements
may have the same label; otherwise, an ambiguous refer­
ence would be created. For example, the mnemonic code
for the Lood Word command is LW. An instruction may be
written with LW in the label field, without conflicting with
the command L W.

Example 2. Label Field Entry

LABEL COMMAND ARGUMENT
1 5 10 15 20 25 30 35
PAy~~IA7E' I I I I r I

fl
A3

I I I I , I I

C B5/(;;)
I I I I

I I I

-I -r I I I I

The command entry (Example 3) is a mnemonic code repre­
senting a machine instruction or assembler directive speci­
fying the machine operation or assembler function to be
performed. A command entry is required in every active
line. Thus, if a statement I ine is entirel y blank following
the label field or if the command entry is not an accept­
able instruction or directive, the assembler declares the
statement in error, generates a word of all zeros in the ob­
ject program, and flags the statement in the assembly listing.
The mnemonic codes for machine instructions and the assem­
bit, directives recognized by Symbol are listed in Appen­
dixes A and B.

8 Processing of Symbols

Example 3. Command Field Entry

LABEL COMMAND ARGUMENT

1 5 10 15 20 25 30 35
LIlt/,S I

L 'y.J~ S
I

I
i...1\<, ~ IS"

I I I 1 r

T
L'tJ.5 I

AL PH R LW.S I , , I

BETA (W.5 I I I I I

IB/
I {W .'S I , ,

Lt:Jep T
-I

t;;{~'5 I T I I , I I , I
-I T 1 I i Ii

An argument entry (Example 4) consists of one or more sym­
bols, constants, I iterals, or expressions separated by commas.
The argument entries for machine instructions usually repre­
sent such things as storaoe locations., constants, or inter­
mediate values. Argun ants for assembler directives provide
the informati on neede" by Symbol to perform the des ig­
nated operation.

Example 4. Argument Field Entry

COMMAND ARGUMENT

10 15 20 25 30 35 37 40
J..IW .. S ALPHA
\P'W ;t /3(:;'

-.
L'l 'J./ is

, I I ,

L\J " C eUNI-r I , I

Hie!> I , r elL fi H I('A Ir{G u 11'[NT
L'loi p 'ANy I , I ,

',/ I I , ,
I I T

A comments entry ~ay consist of any information the user
wishes to record. It is read by the assembl er and output as
part of the source image on the assembly listing. Comments
have no effect on the assembly.

COMMENTS LINES

An entire I ine may be used as a comment by writing an
asterisk in col umn 1. Any EBCDIC character may be used
in comments. Extensive comments may be written by using
a series of lines, each with an asterisk in column 1.

The assembl er reproduces the comment I ines on the assembl y
I isting and counts comment I ines in making I ine number
assignments (see Chapter 6 for a description of output
formats).

PROCESSING OF SYMBOLS

Symbols are used in the label field of a machine instruction
to represent its location in the program. In the argument
field of an instruction, a symbol identifies the location of
an instruction or a data value.

The treatment of symbols appearing in the label or argument
field of an assembler directive varies.

DEIFINING SYMBOLS

A symbol becomes "defined" by appeclring as a lelbel entry.
"Defined" means that it is assigned a value. The definition,
assigned to the symbol by the assembl er, depends on assem­
bly conditions when the symbol is encountered, the contents
of the command field, and the current contents of the exe­
cution location counter,

Any machine instruction can be labeled; the label is as­
signed the current value of the execution location counter.

The EQU and COM directives require a label entry; the
entry is assigned the value of the symbol or constant in
the argument field. A label entry is optional for the fol-
lowing directives: ASECT, CSECT, DATA, DOl, GEN,
LOC, ORG, RES, TEXT, and TEXTC. If specified, it is
assigned the current value of the execution location counter.
For all other directives a label entry is ignored.

The first time a symbol is encountered in the label field of
an instruction, or any of the directives mentioned above, it
is placed in the symbol table and assigned a value by the
assembler. The values assigned to kIbeis naming instruc­
tions, storage areas, constants, and control sections repre­
sent the addresses of the I eftmost bytes of the storage fiel ds
containing the named items.

Often the programmer will want to Clssign values to symbols
rather than having the assembler do it. This maybe accom­
pi ished through use of the EQU directive. A symbol used
in the label field of an EQU directive is assigned the value
specified in the argument field.

Note: The use of labels is a progmmmer option, and as
many or as few labels as desired may be used.
However, since symbol defin ing requires assembl y
time and storage space, unnecessary labels should
be avoided.

SYMBOL REFERUICES

A symbol used in the argument field of a machine instruc­
tion or directive is called a symbol reference. There are
three types of symbol references.

PREVIOUSLY DEFINED REFERENCES

A reference made to a symbol that has al ready been de-
fined is a previously defined referEiI1ce. All such refer-
ences are completely processed by the assembler. Previously
defined references melY be used in any machine instruction
or directive.

FORWARD REFERENCES

A reference made to a symbol that has not been defined is
a forward reference. A forward rElference must not be used
as a term in a multitermed expression, with one exception.
The exception is that a forward reference may have a

constant addend, so that the reference is of the form:
reference ± exp or exp + reference. The term exp must
be either a positive integer value or an expression that
resolves to a positive integer value. Examples of such
usage wou Id be

LW,4 HERE-2

HERE EQU S

FLAG EQU

LW,4 FLAG+4+SUM

SUM

It should be noted that the negative of a forward reference
must not be created by such usage, nor maya forward refer­
ence with an addend be used as a literal. For example, if
HERE is a forward reference, the. usage L(HERE + 2) is
illegal.

Any computer instruction may use a forward reference, but
only the GOTO, LOCAL, REF, SREF, DEF, GEN, and
DATA directives may use forward references. Other direc­
tives do not permit the use of forward references.

The argument field entries for most directives must be
"evaluatable" expressions; i. e., those that can be eval u­
ated when the assembler encounters them. By definition,
such expressions cannot contain forward references.

EXTERNAL REFERENCES

A reference made to a symbol defined in a program other
than the one in which it is referenced is an external refer­
ence. An external reference must not be used as a term in
a mul titermed expression, with one -;;ception. The excep­
tion is that the external reference may have a constant
addend of the same kind and conforming to the same restric­
tions previousl y expl ained under "Forward References ".

A program that defines external references must decl are
them as external by use of the DEF directive. An external
definition is output by the assembler as part of the object
program, for use by the loader.

A program that uses external references must declare them
as such by use of a REF or SREF directive.

A machine instruction containing an external reference is
incompletely assembled. The object code generated for
such references allows the external references and their
associated external definitions to be I inked at load time.

After a program has been assembl ed and stored in memory
to be executed, the loader automatically searches the

Processing of Symbols 9

program I ibrary for routines whose I abels satisfy any existing
external references. These routines are loaded automat­
ically, and interprogram communication is thus completed.

Any computer instruction may contain an external refer­
ence; however, external references are not allowed as
directive arguments except for REF, SREF, GEN, DATA,
and END.

CLASSfFfCATION OF SYMBOLS

Symbols may be classified as either local or nonlocal.

A local symbol is one' that is defined and may be referenced
within a restricted program region. The program region is
designated by the LOCAL directive, which also declares
the symbols that are to be local to the region.

A symbol not declared as local by use of the LOCAL direc­
tive is a non local symbol. It may be defined and referenced
in any regi'on of a program, including local symbol regions.

The same symbol may be both nonlocal and local, in which
case the nonlocal and local forms identify different program
e'lements.

SYMBOL TABLE

The value of each defined symbol is stored in the assem­
bler's symbol table. Each value has a value type associated
with it, such as relocatable address, integer, external ref-
erence. Some types require additional information. For
example, relocatable addresses, which are entered as
19-bit offsets from the program section base, require the
intrinsit resolution of the symbol (see Chapter 3 for a
discussion of intrinsic resolution).

When the assembler encounters a symbol in the argument
field, it refers to the symbol table to determine if the sym­
bol has al ready been defined. If it has, the assembler ob­
tains from the table the value and attributes associated with
the symbol, ahd is abl e to assembl e the appropriate val ue
in the statement.

If the symbol is not in the table, it is assumed to be a for;..
ward reference. Symbol enters the symbol in the table,
but does not assign it a value. When the symbol is defined
later in the program, Symbol assigns it a value and desig­
nates the appropriate attributes. If any undefined symbols
remain in the symbol table after assembly is completed,
Symbol considers them to be unknown and produces an
appropriate error message.

ABSOLUTE AND RElO'eATABlE VALUES

The value of a symbol or expression may be absolute or
relocatable. An absolute value, which is assigned at as­
sembly time, is the same value that will be used by the pro­
qram at execution 'time. A relocatabl e value, on the other
ho,d, may be altered by the loader at execution time.

10 Processing of Symbols

SYMBOL VALUES

A symbol is assigned an absolute value by one of the
following methods:

1. By equating the symbol to an' absolute numeric
quantity:

2.

3.

SUM EQU 2

SUM is assigned the absolufe val ue 2.

By equating the symbol to an absol ute symbol:

A EQU -10

ANSWER EQU A

ANSWER is assigr,dd the absol ute value -10.

By equating the symbol to the difference of two
relocatable symbols:

TAB DATA 1,2,3

ENDTAB RES o

LTAB EQU ENDTAB-TAB

The value of an absolute symbol does not change, even if
it is part of a relocatable program (a program that can be
executed anywhere in memory).

A symbol has a relocatable value unless declared absolufe
as described above. The value of a relocatable symbol may
be al tered by the loader when the symbol is a part of a
relocatable program.

EXPRESSION VALUES

An absolute expression may consist of either a singl e
absolute term or a combination of absolute terms. An ab­
solute term is a hexadecimal, octal, or decimal integer.
Note that D, C, FX, FS, and FL constant types are not
permitted in expressions.

A relocatable expression may consist of either a single
relocatable term or a combination of relocatable terms.

The mode of an expression combining absolute terms with
relocatable terms is determined as shown in Example 5.

When the assembler evaluates expression, it determines
whether the expression value is relocatable or absolute.
Each term in the expression has a relocatabl e or absol ute
status value: 1 = relocatable; 0 = absolute. The assembler
scans the expression from left to right combining status

values according to the operators in~he expression. Symbol
allows only two operators in express,ions: + and -. At no
time during the scan may the accumulation of status values
exceed 1.

The resulting status value at the end of the scan indicates
whether the expression is relocatable or absolute. An abso­
lute expression is unaffected by the relocation of a program
at execution time. A relocatable e><:pression, however, may
be altered by the loader at execution time.

Example 5. Expressions Using + and - Operators

Assume R1, R2, and R3 are relocatable terms and A1
and A2 are absol ute terms.

Expression:

Status:

Accumulation:

Expression:

Status:

Rl±A1

o

R1-R2-R3

Accumulation: 0 -1

Legal, relocatabl e

III egal, diagnosti c
error

Expression:

Status:

Accumulation:

Expression:

Status:

Accumu lation:

Expression:

Status:

Accumulation:

Ex press ion:

Status:

Accumul ation

Expression:

Status:

Accumulation:

R1-R2+A 1

o Legal, absolute

o 0

R 1-R2+R3-A 1 +A2

o

R1+R2

2

R1+R2-R3

2

Al±A2

0 0

0

o 0 Legal, relocatable

III egal, diagnosti c
error

Illegal , diagnostic
error

Lega I, abso I ute

Processing of Symbols 11

3~ ADDRESSING

Sigma computer addressing techniques require a register
designation and an argument address which may specify
indexing and/or in'direct aadressing. The programmer may
write addresses in symbol ic form, and the assembler will
convert them to the pr6pe'j" equivalents.

RELATIVE ADDR'ESSING
Rei ative addressing is the technique of addressing instruc­
tions and storage areas by designating their locations in
relation fo other locations. This is accomplished by using
symbol i c rather fhan numeri c designations for addresses.
An instruction may be given a symbol ic label such as LOOP,
and the programmer can refer to that instruction anywhere
in his program by using the symbol LOOP in the argument
field of another instruction. To reference the instruction
following LOOP, he cdn write LOOP+t; similarly, to
reference the instruction preceding LOOP, he can write
LOOP-l.

An address may be given as relative to the location of the
current instruction even though the instruction being ref­
erenced is not labeled. The execution location counter,
described later in this chapter, always indicates the loca­
tion of the current instruction and may be referenced by
the symbol $. Thus, the construct $+8 specifies an ad­
dress eight units greater than the current address, and the
construct $-4 specifies an address four un its less than
the current address.

ADDRESSING FUNCTIONS
Intrinsic functions are functions built into the assembler.
Certain of these functions concerned with address resolu­
tion are discussed here. Literals, another intrinsic function,
were discussed in Chapter 2; other intrinsic functions are
explained in Chapter 5.

Intrinsic functions, including those concerned with address
resolution, mayor may not require arguments. When <;m
argument is required for an intrinsic function, it is always
enclosed in parentheses.

A symbol whose value is an address has an intrinsic address
resolution assigned at the time the symbol is defined.
Usually this intrinsic resolution is i'he resolution currently
appl icabl e to the execution location counter. The address­
ing functions BA, HA, WA, and DA (explained later) al­
low the programmer to specify expl icitly an intrinsic address
resolution other than the one currently in effect.

Certain address resolution functions are appl ied uncondition­
ally to an address field after it is evaluated. The choice
of functions depends on the instruction invol ved. For
instructions that require values rather than addresses (e.g.,
! ~ I MI, DAT A), no final addressing function is appl ied.
For instructions that require word addresses (e.g., LW, STW,

12 Addressing

LB, STB, LH, LD), word address resotution is appl ied. Thus,
the assembler evaluates LW,3 ADDREXP as if it were LW,3
WA(ADDREXP). Simi larl y, instructions that require byte
addressing (e.g., MBS) cause a final byte addressing reso­
lution to be appl ied to the address field.

More information on address resolution is given after the
explanation of int.insic addressing functions, which
follows.

$,$$ Location Counters

The symbols $ (current \I~lue of execution location counter)
and $$ (current value ,f load location counter) indicate
that the current value of the appropriate location counter
is to be generated for the field in which the symbol
appears (see Example 6).

The current address resolution of the counter is also ap-
plied to the generated field. This resolution may be
changed by the use of an addressing function.

Example 6. S, $S Functions

A EQU $

z EQU S5

Equate A to the current
value of the execution
location counter.

Equate Z to the current
value of the load loca­
cat ion counter.

.. "

TEST BCS,3 $+2 Branch to the location
specified by the current
execution location counter
+2 if the condition code
and value 3 compare lis
anyplace.

SA Byte Addr ess

The byte address function (Exam pi e 7) has the format

BA(address expression)

where II BAli identifies the function, and "address expres­
sion II is the symbol or expression that is to have byte ad­
dress resolution when assembled. If lIaddress expression II
is a constant, the value returned is the constant itself.

Example 7. BA Function

Z LI,3 BAL(L(48))

AA Ll,5 BA($)

HA Hal fword Address

The value 48 is stored
in the literal tabl e
and its location is as­
sembled intothisargu­
ment field as a byte
address.

The current execution
location counter ad­
dress is evaluated as
a byte address for th i s
statement.

The halfword address function (Example 8) has the format

HA(address expression)

where "HA" identifies the function, and "address expres­
sion" is the symbol or expression that is to have halfword
address resol ution. If "address expression" is a constant,
the value returned is the constant il'self.

Example 8. HA Function

Z CSECT

Q EQU HA(Z+4)

WA Word Address

Declares control sec­
tion Z. Both location
counters are in itial ized
to zero. Z is impl i­
citly definedasaword
resol ution address.

Equates Q to a half­
word address of Z +4
(words).

The word address function (ExClmple 9) has the format

WA(address expression)

where "WA" identifies the functiion, and "address ex­
pression" is the symbol or expression that is to have
word address resol ution when assembl ed. If "address
expression" is a constant, the vCllue returned is the con­
stant itself.

Example 9. WA Function

A ASECT

LW,3 Zl

B LW,4 Z2

C EQU BA(B)

F EQU WA(C)

DA Doubl eword Address

Declares absolute sec­
tion A and sets its loca­
tion counters to zero.

Assembl es instruction to
be stored in location O.

Assigns the symbol B the
value 1, with word ad­
dress resol ution.

Equates C to the va I ue of
B with byte address
resol ution.

Equates F to the val ue of
C, with word address
resol ution.

The doubleword address function (Example 10) has the format

DA (address express ion)

where "DA" identifies the function, and "address expres­
sion" is the symbol or expression that is to have double­
word address resolution when assembled. If "address ex­
pression II is a constant, the value returned is the constant
itself.

Example 10. DA Function

LI,5 DA(L(ALPHA)) The symbol ALPHA is
stored in the literal tabl e
and its location is assem­
bled into this statement
as a doubleword address.

ADDRESS RESOLUTION

To the assembl er an address represents an offset from the
beginning of the program section in which it is defined.

Consequently, the assembler maintains in its symbol table
not only the offset value, but an indicator that specifies
whether the offset value represents bytes, words, half­
words, or doublewords. This indicator is called the "ad­
dress resolution".

Address Resol ution 13

Address resolution is determined at the time a symbolic
address is defined, in one of two ways:

1. Expl icitl y, by specifying an addressing function.

2. Implicitly, by using the address resolution of the exe-
cution location counter. (The resolution of the
execution location counter is set by the ORG or LOC
directives. If neither is specified, the address
resol ution is word.)

The resolution of a symbolic address affects the arithmetic
performed on it. If A is the address of the I eftmost byte of
the fifth word, defined with word resolution, then the
expression A + 1 has the value 6 (5 words + 1 word). If A
is defined with byte resolution, then the same expression
has the value 21 (20 bytes + 1 byte). See Example 11.

Forward and external references with addends are cons idered
to be of word resolution when used without a resolution
function in a generative statement or in an expression.
Thus, a forward or external reference of the form

reference + 2

is impl icitly

WA(reference + 2)

Example 11. Address Resolution

Location

00000

00000

00000 2

00001

00001 2

00002

00002 2

00002 2

00003

00003 2

00004

00004 2

00005

00005 2

00006

00006 2

Generated
Code

FFFB

0004

0000

0002

0001

FFFF

OOOA

OOOB

0002

0002

0008

0003

OOOC

0000

14 Location Counters

A

B

F

CSECT
ORG

GEN,16

GEN,16

GEN,16

GEN,16

GEN,16

ORG,l

GEN,16

GEN,16

GEN,16

GEN,16

GEN,16

GEN,16

GEN,16

GEN,16

GEN,16

a

-5

4

BA(A)

BA(B)

HA(B)

S

-1

F

F+1

Symbol restricts the number of nested resol ution functions
and addends that may be appl ied to a forward or external
reference with an addend. Only one such change of
address resolution may be made. For example, the fol-
lowing usage of a forward reference is permissible:

BA(2+WA(reference))

while the following usage cannot be processed by Symbol
and will be flagged as an error:

WA(BA(2 + WA(reference)))

Similarly, once a forward or external reference has been
given an addend followed by a change of resolution, it may
not be given another addend. For example, the following
forward reference usaf''' will also be flagged as an error:

(BA(2 + WA(reference)) + 1

LOCATION COUNTERS

A location counter is a memory cell the assembler uses to
record the storage location it assigned last and, thus, what
location it shoul d assign next. Each program has two
location counters associated with it during assembly: the

Sets value of location counters to
zero with word resolution.

Defines A as Owith word resolution.

Defines B as a with word resolution.

Generates a with byte resolution.

Generates 2 with byte resolution.

Generates 1 with halfword resolution.

Sets va I ue of I ocat i on counters to 10
with byte resol ution.

Defines F as 10 resol ution.

Generates 10with byte resolution.

Generates 11 with byte resol ution.

WA(F) Generates 2 with word reso I uti on.

WA(F+1) Generates 2 with word resolution.

BA(WA(F+l)) Generates 8 with byte resolution.

WA(F)+l Generates 3 with word resolution.

BA(WA(F)+l) Generates 12 with byte resol ution.

BA(WA(F)+ 1)+ 1 Generates 13 with byte resol ution.

load location counter (referenced symbol ically as $$) and
the execution location counter (referenced symbol icall y
as $). The load location counter cont<lins a location value
relative to the origin of the source program. The execu­
tion location counter contains a location value relati ve to
the source program's execution base.

Essentially, the load location counter provides information
to the loader that enabl es it to load a program or sub-
program into a desired area of memory. The execution
location counter, on the other hand, is used by the assem­
bler to derive the addresses for the instructions being as­
sembled. To express it another way, the execution location
counter is. used in computing the locaf'ions and addresses
within the program, and the load locotion counter is used in
computing the storage locations when:.- the program will be
loaded prior to execution.

In the "normal II case both counters are stepped together as
each instruction is assembled, and both contain the same
location value. However, the ORG and LOC directives
make it possible to set the two counters to different initial
values to handle a variety of programming situations. The
load location counter is a faci I ity th<lt enables systems pro­
grammers to assemble (] program that must be executed in
a certain area of core memory, load it into a different
area of core, and then, when the pro!~ram is to be executed,
move it to the proper mea of memory without altering any
addresses. For exampl e, assume that a program provides a
choice of four different output routines: one each for paper
tape, magnetic tape, punched cards, or I ine printer. In
order to execute proper! y, the program must be stored in
core as follows:

variabl e

2FFF

lFFF

0000

output routine

main program

to be used for
data storage dur­
ing program
execution

Each of the four oul'put routines would be assembled
with the same initial execution location counter value
of lFFF but with different load location counter values.
At run time this would enable all the routines to be
loaded as shown below.

variable

5FFF

4FFF

3FFF

2FFF

1FFF

0000

I ine printer routine

punched card routine

paper tape routine

magnetic tape routine

main program

}

to be used for data
storage during pro­
gram execution

execution area for
output routine

When the main program has determined which output rou­
tine is to be used, during program execution, it moves
the routine to the execution area. No address modifi­
cation to the routine is required since all routines were
originally assembled to be executed in that area. If the
punched card output rout1ne were selected, storage would
appear as:

variable

5FFF

4FFF

3FFF

2FFF

lFFF

0000

I ine printer routine

punched card routine

paper tape routine

magneti c tape routine

punched card routine

main program

data storage

execution area for
output routine

The user shoul d not assume from this exampl e that the exe­
cution location counter must be controlled in the manner
indicated in order for a program to be relocated. By prop­
erly controlling the loader and furnishing it with a "reloca­
tion bias", any Symbol program, unless the programmer
specifies otherwise, can be relocated into a memory area
different from the one for which it was assembl ed. Most
relocatable programs are assembled relative to location zero.
To assemble a program relative to some other location, the
programmer should use an ORG directive to designate the
program origin. This directive sets both location counters to
the same value. More information on program sectioning
and relocatability is given at the end of this chapter.

Location Counters 15

Each location counter is a 19-bit value that the assembler
uses to construct byte, halfword, word, and doubleword
addresses:

----doubleword ---

----'-- word ------1

----halfword ------1

-----byte

Thus, if a location counter contained the value

it could be evaluated as follows:

Hexadecimal
Resolution Value

Byte 193

Halfword C9

Word 64

Doubleword 32

The address resolution option of the ORG and LOC direc­
tives allows the programmer to specify the intrinsic resolu­
tion of the location counters. Word resolution is used as
the intrinsic resolution if no specification is given. Address
functions, as previously explained, are provided to over­
ride this resolution. .

SETTING THE LOCATION COUNTERS

At the beginning of an assembly, Symbol automatically sets
the val ue of both location counters to zero. The user can
reset the location values for these counters during an assem­
b�y with the ORG and LOC directives. The ORG directive
sets the value of both location counters. The LOC directive
sets the val ue of on I y the execution location counter.

ORG Set Program Orj.gin

The ORG directive (Examples 12 and 13) sets both location
counters to the location specified. This directive has the form

label command argument

[lobe IJ ORG[, nJ location

where

label may be any val id symbol. Use of a label is
optional. When present, it is definedas the value

16 Location Counters

n

"Iocation II and is associated with the first byte
of storage following the ORG directive.

may be a constant, symbol, or expression whose
value is 1, 2, 3, 4, or 8, specifying the address
resolution for both counters as byte, halfword,
word, or doubleword, respectively. If n is
omitted, word resolution is assumed.

location may be relocatable or an evaluatable
expression resulting in a positive integer value.

The address resolution option of ORG may be used to change
the intrinsic resolution specification to byte, halfword, or
doubl eword resol ution. Thereafter, whenever intrinsic reso­
lution is applicable, it will be that designated by the most
recently encountered ORG directive. For example, when­
ever $ or $$ are enco'Jntered, the 'values they represent
are expressed accor· ing to the currently appl icabl e in­
trinsic resolution.

LOC Set Program Execution

The LOC directive (Example 14) sets the execution 10catiC'11
counter ($) to the location specified. It has the form

label command argument

[label] LOC [, n] location

where

label is any val id symbol. Use of a label is
optional. When present, it is defined as the val ue
of "Iocation" and is associated with the first byte
of storace following the LOC directive.

n may be a constant, symbol, or expressi on whose
value is 1, 2, 4, or 8, specifying the address reso­
lution for the execution location counter as byte,
halfword, word, or doubleword, respectively. If
n is omitted, word resolution is assumed.

location may be relocatable or an evaluatable
expression resulting in a positive integer value.

Except that it sets onl y the execution location counter I the
LOC directive is the same as ORG.

BOUND Advance Location Counters to Boundary

The BOU ND directive (Example 15) advances both location
counters, if necessary, so that the execution location coun­
ter is a byte multiple of the boundary designated. The form
of this directive is

label command argument

BOUND boundary

where "boundary" may be any evaluatable expression re­
sulting in a positive integer value that is a power of 2.
Halfword addresses are multiples of two bytes, fullword ad­
dresses are multiples of four bytes, and doubleword addressa
are multiples of eight bytes. '

Example 12. ORG Directive

AA ORG 8

LW,2 INDEX

Example 13. ORG Directive

z CSECT

ORG Z + 4

A LW,4 ANY

MBS,O B

LI,4 BA(ANY)

Example 14. LOC Directive

PDQ ASECT

ORG 100

LOC 1000

This directive sets the location counters to 8 and assigns that location to the
label AA.

This instruction is assembled to be loaded into the location defined as AA.
Thus, the effect is the same as if the ORG directive had not been labeled and
the label AA had been written with the LW instruction (i. e., AA LW,2 INDEX).

Designates section Z and sets the location counters to zero.

Sets the location counters to Z + 4 with word resolution.

Assembles ANY with word resolution, and defines A with word resolution.

Forces a byte address. The type of address required by the command overrides
the intrinsic resolution of the symbol.

Assembles the symbol ANY as a byte address.

Sets the execution location counter and load location counter to 100.

Sets the execution locaf'ion counter to 1000. The load location counter
remains at 100.

Subsequent instructions will be assembled so that the object program can be loaded anywhere in core relative to the
original origin of the program. For example, a relocation bias of 500 will cause the loader to load the program at
600 (500 + 100). However, the program will execute properly only after it has been moved to location 1000.

Example 15. BOUND Directive

BOUND 8 Sets the execution location counter to the next higher multiple of 8 if it
is not already at such a value.

For instance, the value of the execution location counter for the current section might be 3 words (12 bytes).
This directive would advance the counter to 4 (16 bytes), which would allow word and doubleword, as well as
byte and hal fword, address ing.

Location Counters 17

When the BOUND. directive is processed, the execution
location counter is advanced to a byte multiple of the
boundary designated and then the load location counter is
advanced the sam~ number of bytes. When the BOU ND
directive results in the location counters being advanced,
zeros are generated in the byte positions skipped.

RES Reserve an Area

The RES directive (Example 19) enables the user to reserve
an area of core memory.

label command argu,ment

[lobe IJ RES[, nJ U

where

label is any val id symbol. Use of a label is op-

n

tional. When present, the label is defined as
the current value of the execution location coun­
ter and identifies the first byte of the reserved
area.

is an eval,uatable expression designating the size
in bytes of the units to be reserved. The value of
n must be a po~iti ve integer. Use of n is optional;
if omitted, its value is assumed to be four bytes.

u is an evaluatable expression designating the num-
ber of units to be reserved. The value of u may be
a positive or negative integer.

When Symbol encounters a RES directive, it modifies both
location counters by the specified number of units.

Example 16. RES Directive

ORG 100 Sets location counters to 100.

A RES,4 10 Defines symbol A as location
100 and advances the 10,ca-
tion counters by 40 bytes
(10 words) changing them
to 110.

LW,4 VALUE Assigns this instruction the
current value of the location
counters; i.e., 110.

PROGRAM SECTIONS

A Symbol object program may consist of one or two pro­
;)I"nm sections: one relocatable and/or one absolute sec­
tion. Sectioning is the arbitrary grouping of areas of a

18 Program Sections

program into logical divisions, such as specifying one
section for the main program and one for subroutines
or data.

It is usually desirable to assemble a symbolic program s~c­
tion without allocating it to a parti cui ar memory area of
starting location. When a program section can be exe­
cuted independently of its origin, that is, independently
of where it is physical I y located within the computer, it
is called a relocatable program section. Relocatable pro­
gram sections are frequently assembled relative to location
zero; the:: is, they are assembled as if the first instruction
woul d be stored at location zero. Subsequent instructions
are assembled relative to the beginning location of the
program.

When a rei ocatable section is loaded into core to be exe­
cuted, the user ma: "pecify the beg inn ing location of the
area where the sec ,on is to be stored, and an appropriate
value {called a relecation bias} is added to the address por-
tion of each relocatable instruction in the program. For
example, a relocatable section assembled relative to loca­
tion zero may be loaded beginning at location 1000; then,
the value 1000 is the relocation bias for that section. T"
illustrate, assume a section is assembled relative to zero:

Location

100

120

Instruction

B ALPHA

LW,4 BETA

Branch to I ocati on
ALPHA.

Load register 4 with
contents of BETA.

When these instructions are assembled, the branch in­
struction in location 100 will specify a transfer to lo­
cation 120. If this program is loaded with a relocation
bias of 1500, the branch instruction would be stored at
1600 and would specify a transfer to location 1620,.

Programs are general I y relocatable; however, provision is
made for an absolute or nonrelocatable section which is
useful for such purposes as storing instructions to be e~ecuted
in the event of an interrupt.

ASECT

CSECT

Absolute Section

Control Section

ASECT and CSECT are the two directives provided for pro­
gram sectioning. ASECT declares an absolute control
secti on so that generati ve statements will be assembl ed for
loading into absolute locations. The location counters are
set to absolute zero. CSECT declares a relocatable control
section so that generative statements will be assembled for
loading into relocatable locations. The location counterS!
are set to rei ocatabl e zero.

The program section directives have the form

label command argument

[lobeD ASECT

OabeO (SECT [value]

where "label" is the name by which the section is identi­
fied. For both ASECT and CSECT a label is optional, and
any val id symbol may be used. ThE~ "I abel" must not be
an external reference.

The "value", if specified, must be between 0 and 3. This
val ue indicates the type of memory protection to be associ­
ated with the control section. If "vcdue" is omitted, zero
is assumed.

Once a program section has been specifi ed, it is effecti ve
until another is specified. If a program section is not
specifi ed when the assembl y begins, Symbol arbitrari I y
designates an unlabeled, relocatable section and assembles
the program accord i ng I y.

At the time a program section (Examples 17 and 18) is origi­
na��y declared, both location counters are set to zero and
their address resolution specifications are word addressing.
The address value for ei ther or both of the counters may be
al tered by an ORG or LOC directi VEl. Thus, ASECT and
CSECT directi ves are often followed immediatel y by an
ORG and/or LOC directive to specify the location of the
first byte of the section (see ExamplE~s 13 and 14).

Example 17. Program Sectioning

INTERPT 1 ASECT

This statement indicates that subsequent instructions
are to be assembled with absolute addresses. The
section is identified as INTERPTl. An ORG direc­
tive should follow the ASECT statement to designate
the absolute address to which the location counter
is set if it is to be a value other than zero.

Example 18. Program Sectioning

TEST CSECT

LAST

NEW ASECT

ORG LAST

Declares a relocatable section
identified as TEST.

Instructions assembled as part
of section TES T.

Last instruction in section TEST.

Declares a different section,
identified as ~IEW and assem­
bled with absolute addresses.

Instructions assembl ed as part
of section NEW.

Resumes assembl ing section TEST.

Program Sections 19

4. INSTRUCTIONS

Sigma computer instructions (see Example 19) may bewritten
in symbol ic code and comb ined w.i th other assembly lan­
guage elements to form symbolic instruction statements.

The four fields of a symbol ic instruction statement are:

Field

label

command

argument

comments

Contents

Any val id symbol. Use of a label entry is
optional; when present, the label symbol
may al~o appear in the argument field of
other instructions and directives.

Any mnemonic operation code listed in
Appendix B. The entry may consist of
severa I subfields, the first of which is
always the operation mnemonic code. The
subsequent subfields may be a register
expression, a count expression, or a value
expression, depending on the requirements
of the particular instruction.

One or more subfields such as an address
expression, an indirect addressing
designator, or a displacement expression,
depending on the requirements of the
spe~jfic instruction.

Any remark explaining the specific purpose
of the statement of the overall function of
the program.

Machine language instructions Qre automatically aligned
on word boundaries by the assembler. The address expres­
sions in the argument fields of these instructions are assem­
bled according to the dictates of the specific instruction
and the dictates of any addressing functions in the argument.
(See Example 13 in Chapter 3.)

Appendix B contains a summary of machine language in­
struction mnemonics specifying the requ irements of each

20 Instructions

field. The Xerox Sigma Computer Reference Manuals
contain complete descriptions of these instructions.

Example 19. Sigma 5-7 Instructions

label command argument comments

Ll LW,4

L2 LW,4

L3 LW,4

L4 LI,3

L5 AW,12

L6 B

HOLD Load Word from loca­
tion HOLD into reg­
ister 4.

HOLD, 2 Indexed Load Word in-
struction using register

, 2 as an index register.

*HOLD, 2 A Load Word instruc­
tion that specifies
both indexing and
indirect addressing.

X'F3E' Load the hexadecimal
val ue F3E from the
argument field into
register 3.

L(32) Add the decimal value
32 to the contents of
reg ister 12.

LOOP Branch uncondition-

ally to location J
LOOP.

Although the general registers and index registers are
specified only by digits in these examples, they may be
arithmetic expressions whose values are 0-15 for gen-
eral registers and 0-7 for index registers. They also
may be symbols that have been assigned values within
that range (i. e., Xl EQU 1).

5. SYMBOL DIRECTIVES

A directive is a command to the assembl er tha"t can be
combined with other language elements to form statements.
Directive statements, like instruction statements, have four
fi el ds: I abel, command, argument, cmd comments.

An entry in the label field is required for two directives:
EQU and COM. EQU equates the symbol in the I abel
field to the value of the expression in the argument field.
The label field entry for COM identifies the command that
COM generates.

Optional labels for the directives ORG and LaC are
defined as the value to which the execution location coun­
ter is set by the directive.

If any of the directives DATA, GENt RES, TEXT, or TEXTC
are labeled, the label is assigned the current value of the
execution location counter and identifies the first word of
the area generated or specified by the directive. These
directives also alter both location counters, according to
the contents of the argument field.

Labels for the directives ASECT, CSECT, and DOl identify
the first word of the area affected b)1 the directives. These
directives are nongenerative and do not alter the location
counters.

For the directives BOU N D, DEF, Et~ D, GOTO, LOCAL,
PAGE, REF, SREF, and SYSTEM, a label field entry is
ignored. The symbol in the label field is not defined, and,
therefore, may not be referenced unless it is the target
label in a GOTO search.

The command field entry is the direc:tive itself. For some
directives this field may consist of two subfields (e.g.,
GOTO ,k), in which case the directive must be in the
first subfield, followed by the other entry.

Argument field entries vary and are defined in the dis­
cussion of each directive.

A ~omments fiel d entry is optional.

The Symbol assembly language includes these directives:

~ssembl y Contro!

SYSTEM ORG
t

ASECT
t

END LOC
t

CSECT
t

DOl BOUND
t

GOTO RESt

t Discussed in Chapter 3, "Addressing".

Symbol Manipulation

LOCAL REF

·EQU SREF

DEF

Data Generation Listing Control

GEN TEXT PAGE

COM TEXTC

DATA

In the formats that follow, brackets indicate optional
items.

ASSEMBLY CONTROL

SYSTEM Call System

SYSTEM directs the assembler to define the subset of com­
puter instructions that are to be valid during this portion of
the assembly. This directive has the form

label command argument

SYSTEM name

where IIname" identifies the instruction set, and must be
one of the following:

Name

SIG7

SIG7F

SIG7D

SIG7P

SIG7FD

SIG 7FP

SIG7DP

SIG 7FDP

Instruction Set

Basic Sigma 7.

Sigma 7 with Floating-Point Option.

Sigma 7 with Decimal Option.

Sigma 7 with Privileged Instructions.

Sigma 7 with Floating-Point and Deci­
mal Option.

Sigma 7 with Floating-Point Option
and Privileged Instructions.

Sigma 7 with Decimal Option and
Privileged Instructions.

Sigma 7 with Floating-Point, Decimal
Option, and Privileged Instructions.

Symbol Directives 21

Name

SIG6

SIG6F

SIG6P

SIG6FP

SIG5

SIG5F

SIG5P

SIG5FP

Instruction Set

Basic Sigma 6 (decimal instructions
are included).

Sigma 6 with Floating-Point Option.

Sigma 6 with Privileged Instructions.

Sigma 6 with Floating-Point Option
and Privi leged Instructions.

Basic Sigma 5.

Sigma 5 with Floating-Point Option.

Sigma 5 with Privileged Instructions.

Sigma 5 with Floating-Point Option
and Privil eged Instructions.

None of the instruction sets omits any of the intrinsic com­
mands or functions. Symbol assumes a default specification
of S IG 7FDP when SYS TEM is not specified.

END End Assembly

The END directive (Example 20) terminates the assembly of
the source program. It has the form

label command argument

END [exp]

A label field entry is ignored unless it is the target label
of a GOTO search. The optional expression in the argu­
ment field designates a location to be transferred to after
the program has been loaded. Normall y, that location
contains the first machine language instruction in the
program. The expression may be an externally defined
symbol (explained later in DEF and REF), in which case the
location represented by the symbol exists in a separately
assembl ed program.

As explained later under GOTO, the END directive is
processed even when it appears within the range of a
GOTO search.

Example 20. END Directive

SYSTEM SIG7

CONTROL CSECT

START LW,5 TEST

END START

22 Assembly Control

001 Iteration Control

The DOl directive (Example 21) defines the beginning of a
single statement assembly iteration loop. Ithas the form

label command argument

[label] DO] exp

where

label is any val id label. Use of a label is optional.
When present, it is defined as the current value
of the execution location counter and identifies
the first byte generated as a result of the DO 1
iteration.

exp is an evaluntable expression resulting in a
positive integf ~ that represents the number of times
the I ine immediately following is to be assembled.
There is no I imit to the number of times the line
may be assemb I ed.

If the expression in the DO 1 directive is not evaluatable,
Symbol produces an error notificaOtion, and processes the
DO 1 directive as if the expression had been evaluated
as zero.

Example 21. DO 1 Directive

The statements

DOl 3
AW,4 C

at assembly time would generate in-I ine machine code
equivalent to the following lines:

AW,4 C
AW,4 C
AW,4 C

GOlO Conditional Branch

The GOTO directive (Example 22) enables the user to con­
ditionally alter the sequence in which statements are as­
sembled. Th is directive has the form

label

where

k

command argument

GOTOG k] label] [, ... , label n]

is an absolute, eval uatabl e expression whose value
refers to the kth label in the argument field. If k
is omitted, 1 is assumed.

are forward references.

A GOTO statement is processed at the time it is encountered
during the assembly. Symbol evaluates the expression k
and resumes assembl y at the I ine that contains a label
corresponding to the kt·h label in the GOTO argument field.
The labels must refer to lines that follow the GOTO direc­
tive. If the value of k does not lie between 1 and n, Sym­
bol resumes assembly at the line immediately following the
GOTO directive. An error message is generated if k is
greater than n.

Although a label on BOUND, DEF, END, GOTO, LOCAL,
PAGE, REF, SREF, and SYSTEM is normally ignored by the
assembler, it will be recongnized if it is the target label of
a GOTO search.

While Symbol is seclrching for the statement whose label
corresponds to the kth label, it operates in a skipping mode
during which it ignores all machine language instructions
and directives except END and LOCAL. Skipped state­
ments are produced on the assembl >' listing in symbol i c form,
preceded by *S *.

If Symbol encounters the END directive before it finds the
target label of a GOTO search or if it encounl'ers a LOCAL
directive while searching for a loced label, it produces an
error notification and terminates the assembly.

Example 22. GOTO Directive

A EQU 2

GOTO,A+2 B,C,D,E,F,G

F

B

E

G

Since the expression A + 2 has j'he value 4, Symbol
locates the fourth label in the argument field and re­
sumes assembly at the statement labeled E.

SYMBOL MANIPULATION

LOCAL Declare Local Symbols

As mentioned in Chapter 2, most symbols in a program are
"nonlocal" symbols becuase they occur within an implicit
nonlocal region. The implicit nonlocal symbol region in a

program can be terminated and a new region begun by the
LOCAL directive, which has the form

label command argument

LOCAL [name], name
2

, •• al nomen]

where the namei are symbols that are to be loca I to the cur­
rent region. Local symbols are syntactically the same as
nonlocal symbols. The argument field may be blank, in
which case the LOCAL directive (see Example 23) termi­
nates the current local symbol region without declaring
any new loca I symbols.

A label field entry is ignored by the assembler unless it is
the target label of a GOTO search.

Any symbols that do not appear in the argument field of
this directive retain their original meaning. That is, within
a local symbol region only the symbols declared in the
LOCAL directive are unique to that region (see Examples 24,
25, and 26).

The local symbol region begins with the first statement
(other than comments or another LOCAL) fo 1I0wing the
LOCAL directive and is terminated by a subsequent use
of the LOCAL directive. .

Example 23. LOCAL Directive

*COMMENT

LOCAL
LOCAL
LOCAL

START EQU

LOCAL

A, B, C
R, S, T, U
X,Y,Z

s

The three LOCAL directives inform the assembl er that
the symbols A, B, C, R,5, T, U, X, Y, and Z are to
be local to the region beginning with the I ine START.
The final LOCAL directive terminates the local sym­
bol region without declaring any new local symbols.

Example 24. LOCAL Directive

SYSTEM SIG 7

A CSECT

START LW,5 TEST

LOCAL TEST Declaresa local symbol
reg ion where TEST is loca I
and a II others a re non loca I .

LW,5 TEST This TEST does not have
the same va I ue as in the
statement labeled ST ART.

Symbol Manipulation 23

Example 25. LOCAL Directive

A EQU X'E l'

LOCAL A New A, not the same
as A above.

A EQU 89 Legal I since this is
the local A.

B EQU A Defines B as the
decimal value 89.

LOCAL Z Terminates current
local symbol region
and initiates a ne\v
region.

Z EQU A Z is equated to the
hexadecimal value E 1.

Example 26. LOCAL Directive

ALPHA ASECT
ORG 100

S EQU T T and Z must be pre-
X EQU Z viousl y defined.

LOCAL X,Y,Z Begin a local symbol
region where X, Y ,
and Z are local and
all others are nonlocal.

Y EQU Z This Z does not have
the same value as the
one in the EQU state-
ment above.

LW,2 T Same T as above, i.e.,
a nonlocal symbol.

24 Symbol Manipulation

LOCAL A, B,X End current local sym-
bol region and begin
a new one where on I y
A, B, and X are local. j

LW,4 Z This has the same
value as the Z that cp-
pea red in statement
X prior to the first
LOCAL directive.

X EQU N New definition of X,
different from either
of the XS that ap-
pea red before.

__ ..-..-, -:"=-:L...-:C;:-

EQU Equate Symbols

The EQU directive (Example 27) enables the user to define
a symbol by assigning to it the attributes of the expression in
the argument field. This directive has the form

label command argument !
label EQU exp

I

where

label is a val id symbol.

exp is an evaluatable expression whose value is
to be associated with "Iabel ". The mode (ab-
solute or rei ocatable) of "exp II is assigned to label.

When EQU is processed by Symbol, "label" is defined as
the value of "exp". For example, the statement

VALUE EQU 8+5

assigns the absolute value 13 to VALUE, and

ALPHA EQU $ - 10

assigns the relocatable value S - 10 to ALPHA.

A symbol defined with an EQU cannot be redefined:

A EQU X'F' Legal

A EQU 0'2' Illegal because A has already
been equated to a value.

A symbol appearing in a REF directive (explained belc''''
cannot be used in the argument field of an EQU directi\

because the value of such a symbol 1'5 not available to
the assembler: it is contained (defined) in some other,
separatel y assembl ed program

Example 27. EQU Directive

A EQU 10 A=lO

B EQU A +4 B = 14

LW,A DELTA Loads the contents of
location DELTA into
r,agister 10.

DEF Declare External Definitions

The DEF directive (Example 28) declmes which symbols
defined in this assembly may be referenced by other,
separately assembled programs. The form of th is directive is

label command argument

DEF symbol] ~ symbol2, ... 1 symbol nJ

where "symbol" may be any symbol ic: labels defined with in
the current program.

A I abel fie Id entry is ignored unl ess it is the target label of
a GOTO search.

DEF-declared symbols can be used for symbolic program
I inkage between two or more programs. Such symbols pro­
vi de access to a program from another program; "access II
may be a transfer of control via a branch instruction, or
some reference to data storage.

Symbol requires that DEF directives precede any state­
ments that cause code to be generated; this includes all
machine-language instructions and the directives BOU N D,
DATA, DOl, END, GEN, TEXT, cmd TEXTC. Further­
more, all DEF directives must precede any REF and/or
SREF directi ves.

Example 28. DEF Directive

DEF TAN,SUM,SORT

This statement identifies the labels TAN, SUM, and
SORT as symbols that may be referenced by other programs.

REF Declare External Reference

The REF directive (Examples 29 and 30) declares which
symbols referred to in this assembly are defined in some

other, separately assembled program. The directive has
the form

label command argument

REF symbol 1 G symboI2/ "" symbolnJ

y./here "symbolj" may be any labels that are to be satisfier.!
at load time by other programs.

A label field entry is ignored unless it is the target label
of a GOTO search.

Symbols declared with REF directives can be used for sym­
bolic program linkage between two or more programs. At
load time these labels must be satisfied by corresponding
external definitions (DEFs) in another program.

REF directives must precede any statements that cause code
to be generated; this includes all machine language in­
structions and directives BOUND, DATA, DOl, END,
GEN, TEXT, and TEXTC. REF directives must not precede
DEF directives.

Example 29. REF Directive

REF IOCONT, TAPE, TYPE, PUNCH

This statement identifies the label s IOCONT, TAPE,
TYPE, and PU NCH as symbols for which external defi­
nitions will be required at load time.

Example 30. REF Directive

B

SREF

REF Q

GEN, 16,16 Q,$

LW,2 Q

Q is an external reference.

The value of an external
reference may be pi aced
in any portion of a ma­
chine's word.

Q is an external reference.

Secondary External References

The SREF directive is similar to REF and has the form

label command argument

SREF symbol]~ symbol2 ' ... 1 symbol nJ

where the "symbol i II have the same meaning as for REF.

A label field entry is ignored unless it is the target label
of a GOTO search.

Symbol Manipulation 25

SREF differs from REF in that REF causes the loader to load
routines whose labels it references whereas SREF does not.

Instead, SREF informs the loader that if the r'outines whose
labels it references are in core, then the loader should
satisfy the references and provide the interprogram linkage.
If the routines are not in core, SREF does not cause the
loader to load them; however, it does cause the loader to
accept any references within the program to the symbols
without considering them to be unsatisfied external
references.

Like REF, SREF directives must precede any statements that
cause code to be generated and must follow all DEF
directives.

DATA GENERATION

GEN Generate a Val ue

The GEN directive (Examples 31 through 34) produces a
hexadecimal value representing the specified bit configu­
ration. It has the form

label command argument

[labeO GEN, field list value list

where

label is any valid symbol. Use of a label is
optional. When present, it is defined as the
current value of the execution location counter
and identifies the first byte generated. The loca­
tion counters are incremented by the number of
words generated.

field list is a list of evaluatable expressions that
define the number of bits comprising each field.
The sum of the fiel d sizes must be a positive
integer value that is a multiple of eight and is
less than or equal to 128.

Example 33. GEN Directive

val ue I ist is a I ist of expressions that define the
contents of each generated fiel d. Th is I ist may
contain forward references. The value, repre­
sented by the val ue list, is assembled into the
field specified by the field list and is stored in
the defined location (see Exampl e 33).

There is a one -to -one correspondence between the entr i es
in the field I ist and the entries in the value I ist; the code is
generated so that the first field contains the first value,
the second field the second value, etc. The value produced
by a GEN directive appears on the obiect program listing
as eight hexadecimal digits per line.

External references, forward references, and relocatable
addresses may be generated in any portion of a machine
word; i. e., an addre",; may be gen'erated in a field that
overlaps word bound~jries.

A forward reference that does not have a resolution func­
tion applied to it is generated with word resolution when it
appears in a G EN directive, a DATA directive, or a COM
reference line.

Example 31. GEN Directive

GEN, 16, 16 -251,89 Produces two 16-bit hexa­
decimal values: FF05 and
0059.

Example 32. GEN Directive

B EQU
GEN,64

X'FFFFFFFF'
B Produ ces: 00000000

FFFFFFFF

BOUND 4 Specifies word boundary.

LAB GEN, 8, 8, 8

LW,5

LB,3

26 Data Generation

8,9, 10

L(2)

LAB,5

Produces three consecutive bytes; the first is identified as LAB and
contains the hexadecimal value 08; the second contains the hexadeci­
mal value 09; and the third byte contains the hexadecimal value OA.

Load register 5 with the I iteral value 2.

Load byte into register 3. LAB specifies the word boundary at which
the byte string begins, and the value of the index register (i.e., the
value 2 in register 5) specifies the third byte in the string (byte string
numbering begins at 0). Thus, this instruction loads the third byte of
LAB (the val ue OA) into register 3.

Example 34. GEN Directive

ALPHA EQU X'F'

BETA EQU XICI

A G EN,32 ALPHA -f BETA

Defines ALPHA as
the decimal val ue
15.

Defines BETA as
the decimal val ue
12.

Defines A as the
current location
and stores the
decimal value 27
in 32 bits.

In this case, the GEN line is equivalent to

A GEN,32 27

COM Command Definition

The COM directi ve (Examples 35 through 38) enables the
programmer to describe subdivisions of computer words and
invoke them simply. This directive has the form

label command argument
--

name COM/field list value list

where

I

name ' is any valid symbol and identifies the com­
mand being defined. The "name" must not be a
local symbol nor the samEl as a Sigma machine
instruction or Symbol directi ve.

field I ist is a I ist of evalu(:Jtable expressions that
define the number of bits comprising each field.
The sum of the el ements in this I ist must be a
positive integer value that" is a multiple of eight
bits and is less them or equol to 128.

value I ist is a I ist of consi'ants or intrinsic func-
tions (see below) that specify the contents of each
field.

When the COM directive is encounl'ered, the label, fiel d
list, and value list specifications are saved. When the
label of the COM directive subsequently appears in the
command field of a st'atement call ed a "COM reference
line", that statement will be generClted with the configura­
tion specified by the COM directiv(e.

In Symbol, an asterisk preceding a Field list el ement on the
COM defin ition line specifi es that the absence of a corres­
ponding parameter on the COM reference I ine is to be
flagged as an error. See Example 218.

The use of commands defined by a COM is referenced as
follows: the COM command definition must precede all
references to it.

The COM direc tive differs from GE N in that Symbol gen­
erates a value at the time it encounters a GEN directive,
whereas it stores the COM directive and generates a val ue
onl y when a COM reference I ine is encountered. If the
reference I ine is labeled, the generated value will be
identified by that value.

In Symbol, if a COM directive is to produce four bytes, it
will be preceded at reference time by an implicit BOUND,4.

Certain intrinsic functions enable the user to specify in the
COM directive which fields in the reference I ines will
contain val ues that are to be generated in the desired
configuration. These functions are

CF

AF

AFA

CF Command Field

This function (Example 35) refers to the command field list
in a reference line ofa COM directive. Its format is

CF(element number)

The "CF" specifies the command field, and "element num­
ber" specifieswhich element in the field is being refer­
enced. "Element number" enclosed in parentheses is re­
quired. Since a mach ine language instruction mnemon i c or
assembler directive must be the first element in the com­
mand field on the COM reference I ine, the element num­
ber for the CF function must be two or greater.

Example 35. COM Directive and CF Function

BYT COM,8,8 CF (2), CF (3)

xx BYT, 35, X '3C
1213131CI
o 15

The COM directive defines a 16-bit area consisting of
two 8-bit fields. It further specifies that data for the
first 8-bit field will be obtained from command field
2(CF(2)) of the COM reference line, and that data for
the second 8 .. bit field will be obtained from command
field 3(CF (3)). Therefore, when the XX reference line
is encountered, Symbol generates a 16-bit value, so
that the first eight bits contain the binary equivalent of
the decimal number 35 and the second eight bits con-
tai n the binary equ ivalent of the hexadecimal number 3C.

Data Generation 27

AF Argument Field

This function (Example 36) refers to the command field list
in a reference I ine of a COM directive. Its format is

AF(element number)

The IIAFII specifies the argument fjeld, and lIelement num­
ber II specifies which element in the I ist of elements in
that field is being referenced. IIElement numberll enclosed
in parentheses is required.

Example 36. COM Directive and AF Function

XYZ

ALPHA
ZZ

COM, 16, 16

EQU
XYZ

AF (1), AF (2)

X'21'
65,ALPHA+X'Fe'

\oloI411\OI111IDI
o 1516 31

Symbol stores the COM definition for later use. When
it encounters the ZZ reference I ine, it references the
COM definition in order to generate the correct con­
figuration. At that time, the expression ALPHA+X' Fe'
is evaluated. AF (1) in the XYZ line refers to 65 in the
ZZ line; AF (2) refers to ALPHA+X' Fe',

Example 37. COM Directive and AFA Function

AFA Argument Field Asterisk

The AFA function (Example 37) determines whether the
specified argument in the COM reference line is preceded
by an asterisk. The format for this function is

AFA(element number)

where II AFA II identifies the function, and lIelement number II
specifies which element in the argument field of the COM
reference line is to be tested. IIElement number II is re­
quired, and must be ericlosed in parentheses. The function
produces a value of 1 (true) if an asterisk prefix exists on
the argument designated; otherwise, it produces a zero value
(false),

DATA Produce Data VallIe

DAT A (Example 39) enables the programmer to represent data
convenientlywithinthesymbolicprogram. It has the form

label command argument

[label] DATA['fJ value] [value2' ... ,valuen]

where

label is any valid symbol. Use of a label is op-
tional. When present, it is defined as the cur­
rent value of the execution location counter and
is associated with the first byte generated by the
DATA directive. The location counters are in­
cremented by the number of words generated.

STORE COM, 1,7,4,4 AFA(l), X '35', CF (2), AF(l)

STORE,4 *TOTAL

The COM directive defines STORE as a 16-bit area with four fields. The AFA(l) intrinsic function tests whether an
asterisk precedes the first element in the argument field of the reference line. The first bit position of the area gen­
erated will contain the result of this test. The next seven bits of the area will contain the hexadecimal value 35. The
second element in the command field of the reference line will constitute the third field generated, while the first ele­
ment in the argument field of the reference I ine wi II constitute the last fie I d.

When the reference line is encountered, Symbol defines a 16-bit area as follows:

Bit Positions Contents

o The value 1 (because the asterisk is present in argument field 1).

1-7 The hexadecimal value 35.

8-11 The value 4.

12-15 The 4-bit value associated with the symbol TOTAL.

28 Data Generation

Example 38. COM Directive's Error Notification

MAP COM, * 16, * 16 CF(2),AF(l)

R MAP,3 7

10\0\0\3\01010\71
o ~

x MAP,S
10101 0 15 1010101 0 1
o 31

When the first reference I ine is encountered, Symbol defines a location R and generates a 32-bit data word with the
values 3 and 7 in the left and right halfwords, respectively.

When the second reference line is elncountered, an error notification is produced because the argument field entry is
missing. However, the assembl y is not term inated; Symbol will define a locatian X and generate a 32-bit data word
with the values 5 and 0 (for the missing entry) in the left and right halfwords, respectively.

Example 39. DATA Directive

MASKI DATA, 1

MASK2 DATA, 2

BYTE

TEST DATA

DT4 DATA, 1

X'FF'

X'IEF'

BA(L(59))

O,X'FF'

Produces an 8-bit value i dentifi ed as MAS K 1.

Generates the hexadecimal value 01EF as a 16-bit quantity,
identified as MASK2.

r<ITTIilil
o 15

The byte address of the I iteral val ue 59 is assembl ed in a
24-bit field, identified as BYTE.

Generates two 4-byte quantities; the first contains zeros, and
the second, the hexadecimal value OOOOOOFF. The first value
is identified as TEST.

~1010\0\0\0\01
o 1.5 16 31

X'94', X'CF', X'AB'

Generates three 8-bit values, the first of which is identified
as DT4.

19141c1FIAIB)
o 23

Data Generation 29

is the field size specification in bytes; f may be
any evaluatable expression that results in an
integer value in the range 1 ~ f S; 16.

valuei are the list of values to be generated. A
value may be a multitermed expression or any
symbol. An addressing function may be used to
specify the resolution of a value when an address
resolution other than the intrinsic resol ution of
the execution location counter is desired.

DATA generates each value in the list into a field whose
size is specified by f in bytes. If f is omitted, four bytes
are assumed.

Constant values must not exceed those specified under
"Constants" in Chapter 2.

TEXT EBC DIC Character String

The TEXT directive (Example 40) enables the user to incorpo­
rate messages in h is program to be output on some device other
than the typewriter via the Monitor's standard output sub­
routines, or output on the typewriter by some routine other
than the Monitor's standard one. This directive has the form

label command argument

[label] TEXT 'cs'

where

label is any val id symbol. Use of a label is op-
tional. When present, it is defined as the current
value of the execution location counter and iden­
tifies the first byte of the character string gener­
ated by the TEXT directive.

ICS I is a character string constant (see Chapter 2).

The character string is assembl ed in a binary-coded form in
a field that begins at a word boundary and ends at a word
boundary. The first byte contains the first character of the
character string, the second byte contains the second char­
acter, etc. If the character string does not require an even
multiple of four bytes for its representation, trailing blanks
are produced to occupy the space to the next word boundary.

Example 40. TEXT Directive

Call TEXT CVALUE OF XI

generates mAlU

E a F

X

30 Data Generation

TEXTC Text with Count

The TEXTC directive (Example 41) enables the user to incor­
porate messages in a program to be output on the type­
writer via the Monitor's standard typewriter output sub­
routine. This directive has the form

label command argument

[Jabel] TEXTC 'cst

where "label" and "cs II have the same meanings as for
TEXT.

The TEXTC directive provides a byte count' of the storage
space required for the message. The count is placed in the
first byte of the stormv '" area and the character string
follows, beginning in 'he second byte. The count repre-
sents only the number of characters in the character string;
it does not include the byte it occupies nor any trailing
blanks. The maximum number of characters for a single
TEXTC directive is 63.

In all other aspects, the TEXTC directive functions in the
same manner as the TEXT directive.

Example 41. TEXTC Directive

ALPHA TEXTC CVALUE OF X SQUARED'

18 V A l

U E a
F X

S Q U A

R E D

LISTING CONTROL

PAGE Begin a New Page

The PAGE directive causes the assembly I isting to be ad­
vanced to a new page. This directive has the form

,'abe' I camma"d
PAGE

I a",ume"'

A label field entry is ignored by the assembler unless it is
the target label of a GOTO search. An argument field
entry is always ignored.

The PAGE directive is effective only at assembly time.
No code is generated for the ob i ect program as a resu I t
of its use.

6. ASSEMBLY LISTINGS

The Symbol assembler can operate as a stand-alone processor
or under control of one of the XDS Monitors - BCM, BPM,
or BTM. In all cases the format of the assembly listing is
the same.

SYMBOL ASSEMBLY LISTING

The XDS Symbol assembler produces I isting I ines according
to the format sh own in Fi gure 2.

EQUATE SYMBOLS LINE

Each source image line that contains the equate symbols
(EQU) directive contains the following information:

NNNNN

LLLLL

B

or

XXXXXXXX

SSS ...

Print

Source image line number in decimal.

Value of argument field as a hexa­
decima I word address.

Blank 1, 2, or 3, specifying the byte
displacement from word boundary.

Value of argument field as a 32-bit
value.

Source image.

ASSEMBLY LISTING LINE

Each source image line containing a generative statement,
a statement that causes the assembler to generate object
code, contains the following information:

NNNNN

LLLLL

B

xx
XXXX,
XXXXXX,
XXXXXXXX

A

Source image line number in decimal.

Current execution location counter to
word level in hexadecimal.

Blank 1, 2, or 3, specifying the byte
displacement from word boundary.

Object code in hexadecimal listed in
groups of 1 to 4 bytes.

Address classification flag:

blank denotes a relocatable ad­
dress field.

A

F

denotes an abso I ute address
field.

denotes an address fi e I d
containing a forward
reference.

Position 1234567891011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

Equate {NNNNN L L L L L B S S S ...
symbols or
line NNNNN X X X X X X X X S S 5 ...

Assembly NNNNN L L L L L B X X X X X X X X A S S S ...
listing line

Ignored
source
image line NNNNN * S * S S S ...

Error line ***ERROR

Li tera I
L L L L. L X X X X X X X X X

I isting line

Symbol
S A

abort line

Error
E C N N N

count line

Figure 2. Symbol Listing Format

Assembly Listings 31

SSS ...

X denotes an address field
containing an external
reference.

N indicates that the object code
produced for the source line
contains a relocatable item
(e. g., an address, a forward
reference, or external refer­
ence) in some field other than
the address field.

Source image

IGNORED SOURC-E IMAGE LINE

The confi gurati on

*S *

is printed in columns 33-35 for each statement skipped by
the assembler during a search fora GOTO label. NNNNN
and S55 ... have the same meaning as in an assembly listing
line.

ERROR LINE

When an error is detected in a source image line, the line
immediately following begins with

***ERROR

and contains one or more error codes beneath the portion of
the source image line that is erroneous. Up to four error
codes may be given for a single line. Table 3 lists the error
codes and the severity level and significance of each code.

X ERROR IN SYMBOL

In most object languages, it is necessary for a processor to
communicate values to the loader, in addition to generating
object code to be placed in memory. Such values might be
load origins, transfer addresses, or external values. It is a
characteristic of the Sigma Standard Object Language that
these values are not associated with physical record formats,
but rather are passed as items of the language. A descrip­
tion of the Sigma Standard Object Language may be found
in any of the XDS Monitor reference manuals.

The X error is generated when the symbol assembler is re­
quired to generate an object language expression containing
a term which is not one of the following four types:

1. Integer

2. Address

32 Symbol Assembly Usting

3. External

4. Forward reference

The assembler generates an object language expression
whenever it needs to communicate to the loader one of the
following:

1. Load origin

2. Transfer address

3. DEF value

4. Nonstandard n,,10cation

5. Satisfaction of forward reference

Example 42 illustrates several X type errors.

Example 42. X Type Assembly Listing Errors

DEF A improper DE F va I ue

REF B

A EQU I ABCDEF'

GEN, 16, 16 C, B

C EQU

END

FS ' 1.5 1

'A'

improper forward value

improper transfer address;
but notice that END B is
permi 5sibl e.

LITERAL LISTING LINE

Any literals evaluated during assembly are listed immedi­
ately following the END line or following the error line(s)
containing the G and U codes, if they appear. Literals
are listed in the order in which they were evaluated, and
the listing line contains

LLLLL

XXXXXXXX

A

Current va I ue of load I ocati on counter
to word level in hexadecimal.

Value of literal as a hexadecimal
memory word.

Address classification flag.

Code Severityt

A 7

C 7

D 7

G C

7

L 7

M 7

o 3

P 7

S 7

T 3

U 7

v 7

x 7

Table 3. Symbol Error Codes

Arithmetic error caused when + or - operator is applied to items for which arithmetic operations
are undefined (e. g., - address, L(value) + 1, BA(address - HA(address), etc.).

Constant stdng error caused when an explicit constant string contains an invalid character.
This error also occurs when a decimal or floating-point constant occurs in a source line in a
stand-alone environment and the BC specification has been given in the CMP control message
(see XDS 90 10 53). The generated constant has an unpredictable value.

Duplicate definition error caused by an attempt to redefine a symbol that has already been
defined in the symbol table. The first definition is retained and all subsequent definitions
are flagged.

GOTO label has not been encountered prior to the END directive. All lines between the
GO TO and END directives are ignored when the GOTO label is missing. In this case, the
error line is printed after the END line.

Nonexistent instruction encountered in the command field of the symbolic line. A word of all
zeros is generated for the instruction.

Label errol' caused by the absence of a label from a field that requires one. The position of
the code indicates whether the flag applies to the label or argument field. This error code is
also given for symbols having more than eight characters.

Mandator>' fi eld is not present.

Overflow (loss of significance) occurred during the conversion of a constant.

Parameter or usage error in a directive reference line (e. g., DEF, REF, or SREF out of order,
no labe I on EQU, or noncharacter-constant for TEXT).

Syntax error encountered during expression evaluation (e. g., unpaired parentheses, illegal
operation,. etc.). A zero is returned for the expression value.

Truncation (loss of significance) occurred when a value was edited into a field.

Undefined symbol encountered in command or argument field of a source line (i. e., forward
reference undefined at the end of locol symbol region or at the end of the program). When
this error occurs, the error line occurs after the END line, and it contains the error identifier,
the error code, and the undefined symbol (s).

Invalid instruction error caused by a reference to an instruction that does not fall within the
scope of 'rhe current SYSTEM directive (e. g., use of a floating-point instruction when only
the basic instruction set was specified). The instruction is assembled correctly.

Object expression type is other than integer, address value, external reference, or forward
reference!. In this case, a zero value is generated for the invalid expression. For example,
the source line END 'START' is invalid because 'START' is a character string constant and
cannot be evaluated as the acceptable expression type for this directive.

tThe highest severity code encountered during the assembly is passed to the loader as the second byte of the Module
End load item for the object module. See BCM BP, RT Reference Manual, 900953.

Symbol Assembly Listing 33

SYMBOL ABORT LINE

If an assembly requires more working space than is avai lable
in core memory, the assembler aborts the assembly and
prints the message

SA

on the listing output. The assembler then reads the next
source image line as the first line of a new assembly and
continues to the next END directive.

ERROR COUNT LINE

If at least one error is encountered during an assembly, the
last line of the listing output for that assembly contains the
message

EC NNN

where NNN is the decimal number of source lines that
contain errors.

SYMBOL DICTIONARY

At the end of each assembly listing, Symbol outputs a
dictionary of all nonlocal symbols defined and/or referenced
within the program. Local symbols are not included in the
dictionary.

34 Symbol Assembly Listing

Nonlocal symbols are output in alphabetic order, sorted on
the first four characters, and in ascending order of sequence:
A-Z, 0-9, special characters.

The dictionary includes the following information arranged
as ill ustrated:

Column 5 19

SYMBOL DICTIONARY

SSSSSSS DDDDDD

where

SSSSSSSS is the one- to eight-character symbol
name.

DDDDDD is nne of the following:

1. The value of the symbol in either address or
cons tan t format, accordi ng to its type.

2. X indicating an external reference (REF).

3. U indi eating an undefined symbol.

SYMBOL CROSS-REFERENCE LISTING

An optional cross-reference (concordance) listing of all
symbols used in the program can be produced along with
the symbol dictionary. The cross-reference listing is pro­
duced by including the "CN" option on the Symbol
Monitor control card. The format of this card and of the
listing is explained in Chapter 7, "Symbol Operations".

7. OPERATIONS

Symbol has been designed to run under control of the
Sigma Basic Control Monitor (BCM), Batch Processing
Monitor (BPM), or Batch Time-Sharing Monitor (BTM).
This chapter presents a brief discussion of Symbol operations
under the BPM system. Assemblies under the BCMand BTM
systems are processed in a simi lar manner, but the reader
is advised to consult the appropriate Monitor reference
manua I for addi tional cletai Is.

ASSIGN CONTROL COMMAND

Appearing next in the run deck are any ASSIGN cards
relating to the assembly. Normally, ASSIGN cards will
not be needed, since the system has the following standard
default assignments.

Logical Device or File Physical Device

BO Card punch

GO Magnetic disk

LO Line printer

SI Card reader

BO, LO, and SI may be reassi gned, by using the appro­
priate ASSIGN card.

SYMBOL CONTROL COMMAND
The Symbol control command has the following format:

J SYMBOL option... ,option

where the options are

BO specifies binary output.

CN specifies a concordance listing.

GO specifies an output GO fi Ie.

LO specifies listing output.

BA specifies batch-assembly mode.

The opti ons may be speci fi ed in any order. If none are
specifi ed, BO and LO are assumed. Source input (S1) is
always assumed.

PROGRAM DECK STRUCTURES

The Symbol assembler accepts only source images. If source
input is from magnetic tape and the BA option has been
specified, Symbol reads and assembles successi ve fi les unti I

it encounters two successive end-of-file sentinels. Ifsource
input is from cards and the BA option has been specified,
Symbol reads and assembles successi ve fi I es unti lit en­
counters either two successive IEOD cards or any Monitor
control card other than an IEOD card.

CONCORDANCE LISTING

A concordance (cross-reference) listing of all symbols used
in the program is produced when the CN option is given on
the Symbol control command. The I isting is produced by
modifying the standard symbol dictionary listing, which
prints for every assembly.

The information printed is symbol name, val ue, and refer­
ence line numbers. A sample entry might appear as

ALPHA 00000005 10 17 22* 30

which means that symbol ALPHA has the hexadecimal value
5 and appears on source program I ine numbers 10, 17, 22,
and 30. The asterisk following line 22 means that ALPHA
appeared in the label field.

Concordance information is memory resident and increases
space requirements by one word per reference.

BTM OPERATIONS

Input is typed directly at the user's terminal or from a fi Ie.
Output is a program I isting and/or an assembled object pro­
gram which may be loaded and executed by the Loader sub­
system (see BTM User's Guide, 90 16 79).

INPUT/OUTPUT ASSIGNMENTS

Prior to calling the Symbol subsystem, it is possible to make
input/output assignments by use of the Executive ASSIGN
command. Input/output assignments are I isted in Table 4.

Table 4. Input/Output Assignments

Symbol Description

M:SI Source language input. The default
assignment is to the user's terminal. An
alternative is for the user to specify a
fi Ie previously created by use of the
EDIT subsystem.

Listing output. Default assignment is to
the user's terminal.

Operations 35

Table 4. Input/Output Assignments (cont.)

Symbol Descri pti on

M:BO Binary output of assembled object pro-
gram. By default this goes into temporary
fi Ie BOTEMPx, where "x" is the special
ID for the user's terminal. The user may
also specify a fi Ie of his own. This is the
file to be specified to the Loader when it
is desired to run the program.

ASSEMBLER OPTIONS

The subsystem is called followi ng the Executive prompt
character by typing SY. The Executive will then type the
rest of the word and turn control over to the Symbol Sub­
system, which then requests a list of options. The operator
may specify options listed in Table 5, separating them
with commas. If no opti ons are specified (carriage return
on I y), a II the opti ons I isted are assumed. If the operator
~pecifies any options, he gets only those options.

Table 5. Symbol Options

Symbol Option

BO Binary output of an assembled object
program.

LO Output a program I isti ng.

CN Incl ude a cross-reference list in the pro-
gram I isti ng. This must be used in con-
junction with the LO option; CN is
meaningless if used alone.

SD Incl ude special symbol tables for use by
the Loader subsystem's debuggi ng feature
at run-time.

36 BTM Operations

The following is an example of a Symbol assembly with
source input from a file on the disk, and listing output to
a file on the disk. All options are selected with the excep­
tion of the debugging feature symbol tables (SD).

!ASSIGN M:LO, (FILE, CMPLO) - ---

!ASSIGN M:SI, (FILE, CMPS) - --

!SYMBOL

OPTIONS: 80, LO, CN

* * END OF AS S E M B L Y * *

LISTING FORMAT

If the program listing :s typed on the user's terminal, it will
automaticallybe refoi,natted to fit the carriage width. Each
listing line wi II be typed as two lines:

1. The first I ine wi II contain the source image.

2. The second line will contain the line number and ob­
ject code portion of the normal listing. In addition,
if the source file was on disk in EDIT format, the EDIT
file sequence number will be typed in decimal format.

If the assembly listing is not displayed at the terminal, any
errors found in the assembly are displayed both at the ter­
minal and in the listing file. Three lines are typed at the
terminal:

1. The offending source line.

2. The normal Symbol error indicator (*****) and a letter
positioned under the image.

3. The line number, object code produced, and sequence
number of the record.

· ~APPENDIX ·A: SUMMARY OF SYMBOL DIRECTIVES

In this summary brackets are us.ed to indicate optional items.

Form

[label] ASECT

BOUND boundary

name COM, field list value list

[Iabe 11 CSECT [val ue]

Uabel] DAT A [, fJ

DEF symbol, r, ... , symbol
n

]

[label] DOl exp

END [expJ

label EQU exp

[labe I] GEN, field list value list

GOTO[, kJ labe I, [, ... , labelnJ

(label] LOC ~ nJ location

LOCAL

label ORG [, nJ location

PAGE

REF

Function

Declares program section" label" as an absolute section
with no memory protection and sets I ocati on counters to
abso I ute zero.

Advances the execution location counter to a byte mul­
tiple of "boundary" and advances the load location
counter the same number of bytes.

Describes a command skeleton; "vi" specifies the contents
of each "field"; "label" is the symbol by which the com­
mand skeleton is referenced.

Declares program section "label" as a relocatable control
section.

Generates each value in the list of Vi into a field whose
size is specified by f in bytes. If f is omitted, a field
si ze of 4 bytes is assumed.

Declares that the "symbol i" may be refe,"enced by other
separotely assembled programs.

If the value of "exp" is greater than zero, processes the
one statement following the DOl, "exp" times, then
continues the assembly at the next statement. If "exp"
<0, skips the statement following DOl and resumes the
~sembly.

Page

19

16

27

19

28

25

22

Terminates the program. Optionally provides the starting 22
address of the program.

Sets "label" equal to the value of "exp".

Produces a hexadecimal value representing vi in the
number of bits specified by each field in "field list".

Resumes assembly at the statement whose label corre­
sponds to the kth "I abe I" .

Sets the execution location counter (S) to the val ue
"Iocotion" and sets its resolution specification to n,
where the value of n is 1, 2, 4, or 8.

Terminates existing local symbol region and initiates a
new region where the "name." are local symbols.

I

Sets both the load location counter (SS) and the execu­
tion location counter (S) to the value "location" and sets
their resolution specifications to n, where the value of
n is 1, 2, 4, or 8.

Upspaces assembly listing to the top of form.

Declares that the "symbol." are references to externally
I

defined symbols.

24

26

22

16

23

16

30

25

Appendix A 37

Form Function Page

(label] RES [, ri] u Advances both location counters ($ and $S) by u n""sized 18
units. If n is omitted, a size of 4 bytes is assumed.

SREF syr1ibol
1

[, ... , symbo In] Declares that the IIsymbol. II are secondary external 25
references. I

SYSTEM ridme Indicates which instruction set is correct for the assembly. 21

[label] TEXT 'cs' Assembles IICS II (character string constant) in binary- 30
coded format for use as on o'utput message.

[labelJ TEXTC 'cs' Assembles "CS" (character string constant) in binary- 30
coded format, preceded by a byte count, fot use as an
output message.

38 Appendix A

APPENDIX EL SUMMARY OF SIGMA INSTRUCTION MNEMONICS

Required syntax items are underlined whereas optional items
are not. The following abbreviations are used:

m

v

a
x

d

mnemonic
register expression
value expression
indirect designator
address expressi on
index expression
displacement expression

Codes for required options are

7
P
D
F
L
MP
SF

Sigma 6 or 7
Privi leged
Decimal Option
Floating-Point Option
Lock Option
Memory Map Opti on
Special Feature - not implemented

on all machines

Required
Mnemonic Syntax Function Equivalent To: Options

LOAD/STORE

LI ~ v
LB ~ *~ x
LH ~ *~x
LW ~ *a, x
LD ~ *-;, x
LCH ~ *;-, x
LAH ~ *;-,x
LCW ~ *;;-, x
LAW ~ *-;,x
LCD ~

<ka, X

LAD ~
<ka, X

LS ~ *-;,x
LM ~ *'0 x

-' LCFI m ;:., v
LCI m v -
LFI m v
LC m *a x

-'
LF m *~x
LCF m *~ x
LAS !!!L r *~x
LMS m, r *~,x
XW ~ *~ x
STB ~ *~,x
STH ~ *~ x
STW ~ *~,x
STD ~ *~,x
STS ~ *5:, x
STM ~ *5:, x
STCF m *5:, x

ANALYZE AND INTERPRET

ANLZ ~ *a, x
INT ~ *~, x

FIXED-POINT ARITHMETIC

AI ~ v
AH ~ *a, r
AW ~ *a,x
AD ~ *'0, x
SH ~ *'0 x

-'

Load Immediate
Load Byte
Load Half'word
Load Word
Load Doubleword
Load Complement Halfword
Load Absolute Halfword
Load Complement Word
Load Abso I ute Word
Load Complement Doubleword
Load Absolute Doubleword
Load Selective
Load Multiple
Load Conditions and Floating Control Immediate
Load Conditions Immediate
Load Flooting Control Immediate
Load Conditions
Load Floating Control
Load Conditions and Floating Control
Load and Set
Load Memory Status
Exchange Word
Store Byte
Store Halfword
Store Word
Store Doubleword
Store Selective
Store Multiple
Store Conditions and Floati ng Control

Analyze
Interpret

Add Immedi ate
Add Halfword
Add Word
Add Doubleword
Subtract Halfword

SF
SF

Appendix B 39

Mnemonic Syntax

FIXED-POINT ARITHMETIC (cont.)

SW
SD
MI
MH
MW
DH
DW
AWM
MTB
MTH
MTW

COMPARISON

Cl
CB
CH
CW
CD
CS
CLR
CLM

LOGICAL

OR
EOR
AND

SHIFT

S
SLS
SLD
SCS
SCD
SAS
SAD
SF
SFS
SFL

CONVERSION

CVA
CVS

*a, x
*0' x
-'

v
*a,x
*0', x
*o',x
*0, x
*0', x

*0', x

*0', x

*0' x
-1

v

*a,x
*0', x

*;, x
*;,x
*0', x
*0', x
*; x
-1

*a, x
*0', x

*0' x
-'

*~,x

'!..,x
'!..,x
'!.., x
'!.., x
'!..' x
v, x
*a x

-1
'!..,x
'!..,x

*a, x
*0' x
-1

FLOA TIN G-POI NT ARITHMETIC

FAS
FAL
FSS
FSL
FMS
FML
rDS
FDL

40 Appendix B

*a, x
*o',x
*0', x
*0', x
*0', x
*0', x

*0, x
*~,x

Function

Subtract Word
Subtract Doubleword
Multiply Immediate
Multiply Halfword
Multiply Word
Divide Halfword
Divide Word
Add Word to Memory
Modify and Test Byte
Modify and Test Halfword
Modify and Test Word

Compare Immedi ate
Compare Byte
Compare Halfword
Compare Word
Compare Doubleword
Compare Selective
Compare with Limits in Register
Compare with Limits in Memory

OR Word
Exclusive OR Word
AND Word

Shift
Shift Logical, Single
Shift Logical, Double
Shift Circular, Single
Shift Circular, Double
Shift Arithmetic, Single
Shift Arithmetic, Double
Shift Floating
Shift Floating, Short
Shift Floating, Long

Convert by Addition
Convert by Subtraction

Floating Add Short
Floating Add Long
Floating Subtract Short
Floating Subtract Long
Floating Multiply Short
Floating Multiply Long
Floating Divide Short
Floati ng Divide Long

Required
Equivalent To: Options

7
7

F
F
F
F
F
F
F
F

0nemoni.:.. Syntax Function

DECIMAL (Decimal instructions are standard on Sigma 6.)

DL
DST
DA
DS
DM
DD
DC
DSA
PACK
UNPK

BYTE STRING

m, v
m, v
m,v
m, v
m, v
m, v
m, v
m
m,v
m, v

MBS ~
CBS ~
TBS ~
TTBS ~
EBS ~

PUSH DOWN ------

PSW ~
PLW ~
PSM ~
PLM ~
MSP ~

EXECUTE/BRANCH

EXU m
BCS m, v
BCR m,v
BIR ~
BDR ~
BAL ~
B m

BE m
BG m
BGE m
BL m
BLE m
BNE m
BAZ m
BANZ m
BEZ m
BNEZ m
BGZ m
BGEZ m
BLZ m
BLEZ m

*~,x
*a, x
*;,x
*;, x
*;,x
*;, x
-A-;' x
*;, x
*;,x
*-; x
-'

d
d
d
d
d

*a, x
*;,x
*-;, x
*;, x
*;,x

*a, x
*;, x
*;,x
*;, x
*;,x
*-;,x
*; x
.-!

*a, x
*-;, x
*-;, x
*;,x
*;,x
*;,x
*-;,x
*;,x
*;, x
*a~x
*;, x
*0, x
*-;,x
-A-~, x

For Use After
Comparison
Instructions

Decimal Load
Decima I Store
Decimal Add
Decimal Subtract
Decimal Multiply
Decimal Divide
Decimal Compare
Decimal Shift Arithmetic
Pack Decimal Digits
Unpack Decimal Digits

Move Byte String
Compare Byte String
Translate Byte String
Translate and Test Byte String
Edit Byte String

Push Word
Pull Word
Push Multiple
Pull Multiple
Modify Stack Pointer

Execute
Branch on Conditions Set
Branch on Condi ti ons Reset
Branch on Incrementing Register
Branch on Decrementing Register
Branch and Link
Branch

Branch if Equal
Branch if Greater Than
Branch if Greater Than or Equa I to
Branch if Less Than
Branch if Less Than or Equa I to
Branch if I"-Iot Equa I

t
Branch if Implicit AND is Zero
Branch if Implicit AND is Nonzero
Branch if E..Jual to Zero
Branch if Not Equa I to Zero
Branch if Greater Than Zero

t

Branch if Greater Than or Equa I to Zero
Branch if Less Than Zero
Branch if Less Than or Equa I to Zero

t See CW instruction in Xerox Si gma Computer Reference Manua I.

Required
Equiva lent To: Options

BCR,O

BCR,3
BCS,2
BCR,l
BCS,l
BCR,2
BCS,3
BCR,4
BCS,4
BCR,3
BCS,3
BCS,2
BCR,l
BCS,l
BCR,2

*~ x

*a, x
-ka, x
*;,x
*;,x
*0, x
*0, x
*0, x
*;,x
*0, x
*0, x
*0, x
*0, x
*0, x
*0, x

D
D
D
D
D
D
D
D
D

7
7
7
7
D

Appendix B 41

Required
Mnemonic Syntax Function Eguiva lent To: °etions

EXECUTE/BRANCH (cont.)

BOV m *a, x Branch if Overflow BCS,4 *a, x
BNOV m *0, x

For Use After
Branch if No Overflow BCR f 4 *;;- x

.-J
BC m *0, x

Fixed-Point
Branch if Carry BCS,8 *a, x

BNC m *0, x
Arithmetic

Branch if No Carry BCR f 8 *;;-,x
BNCNO m *0, x

Instructions
Branch if No Carry and No Overflow BCR,12 *;;-, x

BWP m *0, x Branch if Word Product BCR,4 "'"a, x
BDP m *~,x Branch if Doubleword PrOc1'Jct BCS,4 *0 X

-'

For Use After
BEV m *a, x Fixed-Point {BronCh if Even (number of 1 's shifted) BCR,8 *a, x
BOD m *~, x Shift Instruc- Branch if Odd (number of lis shifted) BCS,8 *~ x

tions

BID *a, x For Use After { B h Of III I DOl DO BCS,8 *a, x m D . I ranc 1 ega eClma Ig'
BLD *~,x eClma B h 'f LID . I D' . BCR, 8 *;;- x m It' ranc 1 ega eClma Iglt ns ructions .-J

BSU m *a, x Branch if Stack Underflow BCS,2 *a, x
BNSU m *0, x Branch if No Stack Underflow BCR, 10 *;;-,x
BSE m *0, x

For Use After
Branch if Stack Empty . BCS, 1 *;;-,x

BSNE m *0, x
Push Down

Branch if Stack Not Empty BCR, 1 *0, x
BSF m *0, x

Instructions
Branch if Stack Fu II BCS,4 *;;-,x

BSNF m *0, x Branch if Stack Not Full BCR, 15 *;;-, x
BSO m *0, x Branch if Stack Overflow BCS,8 *o,x
BNSO m *0 x

-'
Branch if No Stack Overflow BCR, 8 *0 x

.-J

BIOAR m *a, x Branch if I/O Address Recognized BCR,8 *a, x
BIOANR m *0, x Branch if I/O Address Not Recognized BCS,8 *a,x
B10DO m *0, x

For Use After
Branch if I/O Device Operating BCS,4 *;, x

BIODNO m *0, x
Input/Output

Branch if I/O Device Not Operating BCR,4 *0 x
.-J

BIOSP m *0, x
Instructions

Branch if I/O Start Possible BCR,4 *a, x
BIOSNP m *0, x Branch if I/O Start Not Pf"5sible BCS,4 *0, x
BlOSS m *0, x Branch if I/O Start Successful BCR,4 *0, x
BIOSNS m *0 x

-' Branch if I/O Start Not Successful BCS,4 *;;- x
.-J

CALL

CALl m,v *a, x Call 1
CAL2 m,v *a,x Cal12
CAL3 m, v *0, x Cal13
CAL4 m, v *~, x Cal14

CONTROL

LPSD ~ *a, x Load Program Status Doubleword P
XPSD ~ *0, x Exchange Program Status Doubleword P
LRP m *; x Load Register Pointer P

-'
MMC ~ v Move to Memory Control P
LMAP ~ Load Map 7MP
LPC ~ Load Program Control 7MP
LLOCKS ~ Load Locks LP
WAIT m *a, x Wait P
RD ~ *0, x Read Direct P
WD ~ *0, x Write Direct P
NOpt m *0, x No Operation
PZE m *~ x Pos i ti ve Zero

t
Equivalent to a BCS instruction with r = O.

42 Appendix B

Required
Mnemonic Syntax Function Equivalent To: Options

IN PUT/OUTPUT

SIO ~ *a,x Start Input/Output P

HIO ~ *a,x Hal t Input/Output P

no ~ *0, x T est Input/Output P

TDV ~ *a, x Test Device P

AIO ~ *a, x Acknowledge Input/Output Interrupt P

Appendix B 43

~

XEROX

Reader Comment Form
We would appreciate your comments and suggestions for improving this publ ication.

, ''''''''''''00 No, --=r'w' \.,"'''' I r,'"

~'IOW did you use this public<ltlOn? Is the material presented effectively? !

o IY,l1!llnq [J Irhtdll1nq 0 Sales 0 I' o ~LJiIV Cuvered 0 Well Illustrnted WeIIOrg,1I1'/('(1 0 C't~ If D R{'fl"'~!H t' 0 M.JIIlLlll1ln(l 0 Oper(ltlnq I
--------------------------~~--------------- -----------.------+---~!

Wildt is your overall rating of thiS publication') What is your occupation? I
D V,'IV (,ll"c! 0 F,l'r 0 Very PCl()t

D (,ood 0 Poor

Your other comments may be entered here. Please be specific and give page, column, and line number references where
applicable. To report errors, Please use the Xerox Software Improvement or Difficulty Report (1188) instead of this form.

--------------------~I
>--~

f--~

f---__ ------------------________ ~

f-.--~

---.---~

--

--

--

--

--

>--
Your N arne & Return Address

f--

..... -

2190(12 72)

Thank You For Your Interest. (fold & fasten as shown on back, no postage needed if mailed in U.S.A.)

PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms

ATTENTION: PUBLICATIONS, MS 486

Business Reply Mail
Postage Stamp Not Necessary if Mailed in the U n.ited State$

Postage Will Be Paid By:

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

FIRST CLASS
PERMIT NO. 3953.
WALTHAM, MA
02154

CJ
Z
o
...J

<1:
I­
::)
U

I
I >t~
I :.:J

1 c;

I .~ .;- ~

I 0

I cS
i LL

J
1

I
I
I
I
1

I
I
I

I
I
I
I
I
I
I w
I z
I ...J

I ~
--~-------------- ~.~

1"<1:

Honeywell

I g
1

·0 .J..
I '
I
I
I
I
J
I
I
I
I
I
I
I
I

Honeywell Information Systems
In the U.SA. 200 Smith Street. MS 486. Waltham. Massachusetts 02154
In Canada: 2025 Sheppard Avenue East. Wlliowdale. Ontario M2J 1 W5

In MexIco: Avenida Nuevo Leon 250. MexIco 11. O.F

16514, 3C976. Printed in U.S.A. XM06, Rev. 0

	0001
	0002
	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	replyA
	replyB
	xBack

