
Xerox EASY
Sigma 6/ 7/ 9 Computers

Language and Operations
Reference Manual

9018 73A

~ 1972, Xerox Corporation

Xerox EASY
Sigma 6/1/9 Computers·

Language and Operations

Reference Manual

FIRST EDITION

90 18 73A

September 1972

XEROX

File No.: 1 X23
XM29, Rev. 0

Printed in U.S.A.

NOTICE

This publ ication documents the AOO version of Xerox EASY for Sigma 6/7/9 computers.

RELATED PUBLICATIONS

Xerox Sigma 6 Computer/Reference Manual

Xerox Sigma 7 Computer/Reference Manual

Xerox Sigma 9 Computer/Reference Manual

Xerox Universal Time-Sharing System (UTS)/TS Reference Manual

Xerox Universal Time-Sharing System (UTS)/OPS Reference Manual

Xerox Mathematical Routines/Technical Manual

Xerox FLAG/Reference Manual

Xerox Sigma Multipurpose Keyboard Display/Reference Manual (Models 7550/7555)

Xerox Sigma Message-Oriented Communications Equipment/Reference Manual
(Models 7601-7604)

Xerox Sigma Character-Oriented Communications Equipment/Reference Manual
(Models 7611-7620-7623)

Publication No.

90 17 13

900950

90 17 33

90 09 07

90 1675

90 09 06

90 16 54

9009 82

90 1568

9009 81

Manual Content Codes: BP - batch processing, LN - language, OPS - operations, RBP - remote batch processing,
RT - real-time, SM - system management, TS - time-sharing, UT - utilities.

The specifications of the software system described in this publication are subject to chonge without notice. The availability or perfc.rmance of some features
may depend on a specific configuration of equipment such as additional tope units or larger memory. Customersshould consult their Xerox sales representative
for details. .

ii

CONTENTS

1. INTRODUCTION Number Ranges 12
Input 12
Output 12

2. EASY FILE SYSTEM 2 Precision Control 12
Simple Constants 12
Simple Variables 13

3. EASY COMMANDS 3 Ari thmet i c Operators 13
Intrinsic Functions 13

NEW 3 Arithmetic Expressions 13
OLD 3 String Literal 13
CATALOG 3 Alphanumeric Constants 13
DSNt 3 String Scalars 14
DSNtOFF 3 Assignment Statements 14
TAPE 3 LET 14
KEY 4 Branching 15
SAVE 4 IF ••. THEN 15
UNSAVE 4 ON ••• GOTO 15
RENAME 4 GOTO ••• ON 15
REPLACE 4 GOTO 15
SCRATCH 4 Data Output 16
SORT 4 PRINT 16
LENGTH 4 Print Formats 16
LIST 4 PRINTUSING and :(lmage) 17
EDIT DELETE 5 PAGE 18
EDIT EXTRACT 5 Data Input 20
EDIT FIND 5 DA T A and READ 20
EDIT REPLACE 5 INPUT 20
EDIT INSERT 5 Looping 21
EDIT MERGE 5 Miscellaneous Statements 22
EDIT PAGE 5 REM or * 22
EDIT WEAVE 5 PAUSE, STOP, or END 22
EDIT RESEQUENCE 5
SYSTEM 6
RUN 6 6. ADVANCED FEATURES OF BASIC 23
TIME 6
TTY 6 Other Elements of a BASIC Program 23
UTS and TEL 6 Subscripted Variables 23
GOODBYE, BYE, HELLO, and RE:ST ART 6 Dimensioning 23

DIM 23

7
Vectors 24

4. BEGINNING BASIC Matrixes 24
Character String Manipulation 24

Introduction 7 Referencing String Variables 25
Symbo I ic Names 7 String Expressions 25
Addition and Subtraction 7
Multiplication and Division .8

Assigning Character Strings to
String Variables 26

Exponentiation 8 String Length and Value Assignments 26
Indexed Repetition 8 Conversion to a String 26
Print Formatting 9 String Assignment and Conca t , "'ation __ 26
Tabbing 10 Stri ng Comparison 27
Data Input from a Terminal 10 String Input/Output 27
Error Messages 11 Stri ng Input Mode Contro I 27
Program Modification 11 Generation of Aconsts from Stri ngs 28

String Expressions as Fi Ie Identifiers 28
5. ELEMENTARY FEATURES OF BASIC 12 User-Defined Functions 28

DEF 28
Elements of a BASIC Program 12 Rereading Data 29

Li ne Numbers 12 RESTORE 29

iii

Bronchi ng to a Subroutine 29 Simultaneous Equation Solution 3.9
GOSUB and RETURN 29 Accuracy of Inversion and Simultaneous

Character Conversion 29 Equation Solution 39
CHANGE 29

File Manipulation 30
File Nomenclature 30 7. BASIC MESSAGES 40
I/O Stream Numbers 30
Keyed and Sequential Acceu 30
Unkeyed I/O in the Update Mode 30
OPEN 31 APPENDIXES

Binary Input 31
Default Form for Binary Input 31 A. SUMMARY OF BASIC STATEMENTS 44
BCD Input 31
Binary Output 31 B. BASIC INTRINSIC FUNCTIONS 47
Default Form for Binary Output 31
BCD Output 31 C. FORMAT OF BINARY DATA FILES FOR
Binary Fi Ie Update 31 BASIC (PUT AND GET OPERATIONS) 49
BCD File Update 32

ENDFILE 32 D. EASY ERROR MESSAGES 51
CLOSE 32
GET 32 E. FLAG ADDITIONS 53
PUT 32
INPUT 33 File Subroutines 53
PRINT 33 OPENF 53
PRINTUSING 34 CLOSEF 53

I/O Residue 34 Device Unit Numbers 53
I/O Fluahing 35 On-Line Operations 53

Running Consecutive Programs 35 Comments and Continuation Lines 53
CHAIN 35
CHAIN LINK 35

Matrix Operations 3S
MAT GET 36 FIGURES MAT PUT 36
MAT INPUT 36

1. Use of PAGE Statements 19
MAT PRINT 36 2. Nested Loops 22
MAT READ 37 3. INPUT Residue Example 34 MAT SIZE 37 4. Contents of Sample Fi Ie 49
Assignment Functions 37 5. Program Used to Generate Figure 4 50 Zero 37

Constant 37
Identity Matrix 37
Copy 38
Scalar Multiplication 38 TABLES
Addition and Subtraction 38
Transposition 38 1. Order of Arithmetic Operations 1.3
Multipl ication 38 2. Cond i t ion Opera tors 15
Inversion 39 3. Internal Format of Data Files 49

iv

1. INTRODUCTION

EASY is a shared processor operdting under the Universal
Time-Sharing System (UTS). It enables the user to create,
edit, execute, save, and delete program files written in
BASIC or FORTRAN. EASY also allows the user to create
and manipulate EBCDIC data files. Although intended
primarily for teletypewriter operations, EASY can be used
with any type of on-line terminal supported by UTS.

To log-on, the user dials the UTS computer and waits for
the I09-on request

UTS AT YOUR SERVICE
ON AT 23:45 NOV 01, In
LOGON PLEASE:

The user then types his account number, identifier, and ac­
count password (if any), followed by a carriage return. If
automatic association with EASY has been established by
the U TS system, control passes diref:::tly to EASY. See the
Xerox UTS/SM Reference Manual, 90 16 74 for an ex­
planat.ion of automatic association with a processor. Other­
wise the user must call EASY by typing

EASY

followed by a carriage return, in response to the I from UTS.
When EASY takes control of the cornputer, it prints

NEW OR OLD--

at the terminal. The us"er then types NEW if he wants to
create a new file, OLD if he wants to work with an existing
file.

EASY normally interprets any line of terminal input as a
command if it begins with an alphabetic character, and as
a program statement if it begins with a digit. Each input
line must end with a carriage return.

Depressing the RUBOUT key erases the last unerased char­
acter in the current input line. A backslash (\) is printed
to indicate each RUBOUT. Depressing the CONTROL and
X keys at the same time (or ESC and X in sequence) erases
the entire line; a left-arrow (-) or underscore () is then
printed, the carriage goes to the beginning of the next line,
and EASY waits for a new I ine to be typed by the user. De­
pressing the BREAK key at any time halts the operation in
progress; EASY prints STOP and READY, then waits for fur­
ther input.

The EASY file system is described in Chapter 2 of this
manual, EASY commands are discussed in Chapter 3, and
Chapters 4 through 7 explain BASIC programming under
EASY. FORTRAN programming is covered in the Xerox
FLAG/Reference Manual, 90 16 54. The FORTRAN li­
brary routines OPENF and CLOSEF, added to allow FLAG
users to open, close, and delete fi les, are explained in
Appendix E of this manual. Additional reference infor­
mation is presented in the appendixes.

Introduction

2. EASY FILE SYSTEM

A file is a storage area insecondarymemory. It may contain
a source program or data records. Each file must have a
unique name comprising one to seven alphanumeric charac­
ters. A fi Ie may also have an optional password of up to
four alphanumeric characters. The first character of a file
name or password must be alphabetic, and embedded blanks
are not allowed.

Files may be permanent or temporary. A temporary file
exists only for the duration of the current session and
is destroyed when the user 1095 off. A permanent file
remains in secondary storage until il'$ expiration date
(see "Disk File ASSIGN Command" in the UTS/BP Ref­
erence Manual, 90 17 64) for a discussion of the EXPIRE

2 EASY File System

parameter) or until deleted by the user (see "UNSAVE"
in Chapter 3).

A list of all EASY fi les in a given account is maintained by
the U TS system. This information can be I isted on the user
terminal by means of the CATALOG command (see "CAT­
ALOG" in Chapter 3).

To assist the user in creating and editi ng his program and
data files, each user is provided with a temporary "work­
file". Program lines or data lines are stored in this area
as they are received from the user terminal or retrieved
from secondary storage. The contents of the workfi Ie can
be listed, edited, executed, and/or copied and saved in
permanent fi Ie storage for future use.

3. EASY COMMANDS

The user may abbreviate any EASY command word (except
DSMOFF)to the first three letters. For e)(Cmple, CAT may
be substituted for CATALOG. Commclnds maybe typed at
the beginning of any Ii ne, unless EASY is in the data
storage mode (see "DSM" below). Th., syntax of EASY
commands is indicated in this chapter by the symbology
expla ined in Appendi x A.

Wherever the term "file" is used in defining the syntax of
EASY commands, this shou Id be understood to represent a
file identifier having the general form

[account:] fi I ename[,password]

For e)(Cmple, the command format

OLD [file]

should be understood as though written

OLD [[account:] fi lename[,passwclrd]]

In addition to the otherEASYcommancls, nine editing com­
mands allow the workfile to be modified in a variety of
ways. In general, editing operations (:Ire performed in the
same way for any program file. However, resequencing a
BASIC program causes a" references to a line number to be
changed, whi Ie the resequencing of 01 FORTRAN program
changes only the line numbers themselves. None of the
editing commands automatically save files after editing;
this must be done by the user (see "SAVE" and "REPLACE",
below).

NEW The NEW command has the form

NEW [file]

If no file is specified, EASY prints

ENTER FILE NAME--

and the user must respond by speci fyi~1 the file he wants to
create. EASY deletes the current wflrkfi Ie and creates a
new, empty workfile having the specified name.

Numbered program statements typed by the user are stored
in the workfile in ascending numerical order regardless of
the order in which they are typed. line numbers must be
integers in the range of 1 through 99999. Numbers need
not be contiguous; that is, gaps may be left to allow for
future insertions. lines are replaced by retyping, and
typing just the line numbers causes an existing line to be
deleted from the workfile.

Note that a new fi Ie is not saved permanently unless a
SAVE command is given (see "SAVE", below).

OLD The OLD command has the form

OLD "[file]

If no file is specified, EASY prints

ENTER FILE NAME--

and the user must respond by specifying an existing file.
The account and password mus t be spec i fi ed, if appl i cab I e.
If the account is not specified, the user's own account is
assumed. EASY deletes the current workfile and loads the
specified file into the workfile area. The workfile may then
be modified by terminal inputor via EASY commands. Note,
however, that a modified workfi Ie does not replace an old
file unless a REPLACE command is given (see "REPLACE",
below).

CATALOG The CATALOG command has the form

CATALOG

EASY lists the names of all fi les saved in the UTS file sys­
tem under the user's account, with the exception of any
names not con formi ng to the rul es for EASY fi I es (e.g., more
than seven characters or nonalphanumeric characters).

DS M The DSM command has the form

DSM

EASY responds by entering the data storage mode. In this
mode, I ines of data may be input without line numbers. Line
numbers are supplied by EASY, beginning with the next
avai lable line number in the workfi Ie and incrementing
by 1. If data input is to be from paper tape, a TAPE com­
mand must be given just before typing DSM (see "TAPE",
below). A retumto the normal input mode is made by
depressing the BREAK key or by use of the DSMOFF com­
mand (see "DSMOFF", below).

DSMOFF The DSMOFF command has the form

DSMOFF

EASY responds by leaving the data storage mode. DSMOFF
is the only EASY command that may be used in the data stor­
age mode. Note that unlike other EASY commands DSMOFF
may not be abbreviated.

TAPE The TAPE command has the form

TAPE

EASY Commands 3

This command must be given before activating the paper
tape reader. EASY responds by entering the paper tape
input mode. This mode is terminated by use of the KEY
command (see IIKEY", below).

KEY The KEY command has the form

KEY

This command terminates the paper tape input mode (see
II TAPE II, above). EASY returns to the normal keyboard
input mode.

SAVE The SAVE command has the form

SAVE [file]

EASY copies the current workfile into permanent storage.
If no fi Ie is s.pecified, the name used is that currently
associated with the workflle (e.g., via a previous NEW
or RENAME command). The workfile is not affec:ted.

REPLACE The REPLACE command has the form

REPLACE lfilename][,[new password1J('old password~

EASY replaces the spec:ified file with the contents of the
workfile. If no file is specified, the name currently asso­
ciated with the workfile is assumed. The workfile is not
affec:ted. The replaced file must be in the user's account.

If an old password exists, it must be specified. To delete
an old password without establ ishing a new one, the old
password i.s preceded by two commas. If the old password
is to be retained, it is prec:eded by a single comma.

SCRATCH The SCRATCH c:ommand has the form

EASY deletes the .contents of the workfile. The name asso­
c:iated with the workfile remains the same and any perma­
nent fi Ie of that name is not affec:ted.

SORT The SOR Tc:ommand has the form
The name of the permanent file must be unique within the
userls ac:c:ount. Otherwise EASY ignores the SAVE c:om- SORT[file]
mand and prints

FILE ALREADY SAVED-TYPE REPLACE TO
OVERWRITE

and the user must either renome the workfile (see "RE­
NAME", below) and give another SAVE c:ommand, or use
the REPLACE c:ommand (see "REPLACE", below) to over­
write the existing file. SAVE cannot be used to c:reate a
fi lei n another ac:c:ount.

UNS.AVE The UNSAVE command has the form

UNSA VE [n Ie]

EASY deletes the spec:ified file from the user's ac:count. If
no file is specified, the name c:urrently assoc:iated with the
workfile is assumed. The workfile is not affec:ted. UNSAVE
c:annot be used to delete a file from another ac:count.

RENAME The RE NAME c:ommand has the form

RENAME [filename]

EASY replac:es the c:urrent name of the workfi Ie with the
name spec:ified. If no name is spec:ified, EASY prints

ENTER FILE NAME-

and the user must specify a file nome. This c:ommand
can be used to create multiple copies of a file. That
is, a file can be retrieved from sec:ondary storage via
the OLD command, modified as desired, renamed, and
saved under' a new name with the SAVE c:ommand.

4 EASY Commands

If no file is spec:ified, EASY sorts the workfile. Otherwise,
EASY deletes the current workfile and loads the specified
file into the workfile area. If duplicate line numbers exist
in the designated file EASY renumbers eac:h duplicote line,
using the next avai labl e larger I ine number. The speci fled
file is not affected.

LENGTH The LENGTH c:ommand has the form

LENGTH

EASY prints the number of rec:ords currently in the workfile.

LIST The LIS T command has the form

. [I ine-I ine]
LIST (NH)· 'line [,] .

file

If no options are typed, EASY prints the contents of the cur­
rent workfile preceded by a header line containing the file
name, date, and time. The listing may be terminated at
any point by depressing the BREAK key. The NH option
can be used to supress the header line.

A designated block of I ines may be specified, "I' a
line at which listing is to begin (a comma following
the line number causes that line on I y to be listed).

If a file is specified, the entire file is listed. Neither
the designated file nor the workfile are affected.

EDIT DELETE The EDIT DELETE command has the form

EDIT DELETE line [-lineJ[, ••• J

EASY deletes the specified lines or blocks of lines from
the workfi Ie.

EDIT EXTRACT
form

The EDIT EXTRACT command has the

EDIT EXTRACT line[-line][, ••. J

EASY deletes all but the specified lines or blocks of lines
from the workfi Ie.

EDITFIND The EOn F I NO commnnd has the form

EDIT FIND IIstringII [Ii ne-line][,cc:l.lumn-column][: ...]

EASY lists all lines in ,-he workfile thclt contain the speci­
fied character string. Any pair of thEt characters I @ $
% II i $ / may be used as string delimHers in addition to
the quotation marks shown above.

The question mark may be used to indi cote embedded char­
acter positions that are to be ignored in the target string.
For example,

EDIT FIND "A ?B"

would select all lines containing on A~ followed two col­
umns later bya B(e.g., A+B, A-B, AAB, etc).

The user may specify a block olf lines to be searched and/or
a block of columns to be searched. The colon may be used
as a delimiter to allow a combination of strings to be sel­
ected. For example,

EDI FIN IIAB", 7-B:"C ?O", 14-16

would select all lines containing the string AB in columns 7
and 8 and characters C and 0 in columns 14 and 16 (e.g.,
150 Y=ABS(X)+C*0).

EDIT REPLACE The EDIT REPLACE command has the form

EDIT REPLACE [I imit] "string 1 " string2"----..,

L[Jine-line][,column-column][: •.•]

EASY replaces stringl with string2. If no limit is speci­
fied, an unlimited number of replacements may be made
in each line.

The use of string delimiters and line and column speci­
fications is the same as for the EDIT FIND command,
above.

EDIT INSERT The EDIT) NSE RT command has the form

EDIT INSERT file(;file['line]J ...

EASY deletes the current workfile and loads the specified
files into the workfile area'. From two to nine files may be
combined, and a point of insertion may be specifi ed for each
file. For example,

EDIT INS ONEiTWO,50

would cause file TWO to be inserted into the workfile fol­
lowing line 50 of file ONE. No resequencing of line num­
bers is done by this command, and only the workfile is
affected.

EDIT MERGE The EDIT MERGE command has the form

EDIT MERGE file[ifile[,line]] ...

EASY deletes the current workfi Ie and loads the spec i fi ed
files into the workfi Ie area. From two to nine files may be
combined, and a point of insertion may be specified for each
file (see IIEDIT INSERT", above).

After the specified files have been loaded, the line numbers
in the workfile are resequenced (see "EDIT RESEQUENCE",
below). Only the workfile is affected.

EDIT PAGE The ED IT PAGE command has the form

EDIT PAGE [file[ipage][; ...]

If no file is named, EASY prints the contents of the workfile
in page format with each II-inch page containing 50 lines.

Up to nine files may be listed in the order specified. If no
page number is specified for a file, the first page printed
for that file is numbered as page 1.

EDIT WEAVE The EDIT WEA VE command has the form

EDIT WEAVE file[; ... J

EASY deletes the current workfile and interweaves the spec­
ified files into the workfile area. Up to nine files may be
specified. No resequencing of I ine numbers is done by this
command. If duplicate line numbers exist, the most recently
loaded lines replace the previous ones. Loading is done in
the order specified, and only the workfile is affected. The
name of the workfile is unchanged.

EDI T RESEQUENCE
has the form

The EDIT RESEQUENCE command

EDIT RESEQUENCE [Iinel][,[line2][-line3]-----,

L[, increment]]

EASY Commands 5

EASY resequences the workfi Ie. If line 1 is omitted, the new
starting line number is 100. If I ine2 is omitted, resequenc­
ing begins with the first line of the workfile. If I ine3 is
omitted, resequencing continues through the last line of the
workfi Ie. If no increment is specified, 10 is assumed. line
numbers must be in oscending order in the file.

SYSTEM The SYSTEM command has the form

SYSTEM [name]

If no system name is specified, EASY prints

NEW SYSTEM NAME--

and the user must type either BASIC or FORTRAN. EASY
assumes BASIC when called (e. g., following an I EASY
command). The SYSTEM command must be given prior to
a RUN command (see below) if the program to be e"ec.uted
is not written in the language currently assumed by EASY.

RUN The RUN command has the form

RUN(MOD][NH] [file]

If no options ar) specified, the contents of the workfile are
compiled by the current system (see "SYSTEM", above). A
header line is printed prior to running, and execution ter­
minates when the program halts or when the BREAK key is
depressed.

The MOD option causes EASY to weave the contents of
the workfile with those of the specified file before compila­
tion. In the event of duplicate line numbers, those of the
curr~nt workfile are retclined. The workfile is cleared when
program execution terminates.

The NH option inhibits the printing of the header line. If
a file is specified, the current workfile is cleared.

6 EASY Commands

TIME The TtME command has the form

TIME

EASY prints the current time.

TTY The TIY command has the form

TTY

EASY prints the current account number, current workHI.e
name, current system language, and elapsed terminal time.

UTS and TEL

These commands have the form

UTS

TEL

EASY exits to the UTS system, allowing the user to give
any TEL command such as a IPLATEN c.ommand to inhibit
UTS page headings. (See the Xerox UTS!rS Reference Man­
ual, 9009 07 for an explanation of TEL commands.) The
user may return to EASY by giving an I EASY command.

GOODBYE, BYE, HELLO, and RESTART
have the form

GOODBYE

BYE

HELLO

RESTART

These commands

EASY exits and the user is logged out of the system with the
option of loggi n9 in under a di fferent acco.unt or user name.

4. BEGINNING BASIC

INTRODUCTION

To use a computer, the user rnust I eOlrn a I anguage the
computer understands. Xerox Sigma 5-9 computers under­
stand several languages. Mos!t of these are meant for some
special purpose such as the solution of scientific, engineer­
ing, or business problems. BASIC is intended as an aI/­
purpose language. Although BASIC is often called a
"beginner's language II , the computational power of a given
BASIC program depends a great deal on the experience of
the user. An experienc:ed BASIC user should have no diffi­
culty in creating very powerful programs.

Because of its similarity to ordinary Engl ish, BASIC is a
good language for users who are not professional program­
mers and who may have no particular 'interest in the internal
workings of the computer. Many BASIC programmers never
see the computer they ore programmin!~, but communicate
by means of a teletypewriter terminal at a remote location.
To use a terminal, the user must dial the telephone number
of a Sigma 5-9 time-sharing computer and wait for a log-on
request to be printed on the teletypewriter. The user must
then type his account number, identifier, and account pass­
word (if any), followed by a carriage return. An example
is shown below.

UTS AT YOUR SERVICE
ON AT 12:10 NOV 03, '71
LOGON PLEASE: ACCT9876,ABERNATHY

12: 10 11/03;71 ACCT9876 ABERNATHY 388-8 [1]

!EASY

As shown above, the computer types a page heading and
then an exe/amation mark to indicate that it is ready for an
executive-level command. The user types the word EASY
to indicate that he wants to use the- EASY subsystem.
The computer is now ready to accept input from the user
terminal.

SYMBOUC NAMES

BASIC recognizes symbol ic names representing mathemati­
cal variables. Such names may consis't of a single letter
of the alphabet or a letter followed by' a single digit from 0
through 9:

x
Y
B4

The following are not valid names in BASIC:

XX
Y23
40

ADDITION AND SUBTRACTION

Suppose you want to add a series of numbers such as 27.3,
14.1, 6.0, 3.5, and 36.25. One way of doing this is by
typing a PRINT statement expressing the desired addition.
BASIC will respond by computing the indicated sum and
printing the total when Runnh is typed

100 PRINT 27.3+14.1+6+3.5+36.25
RUNNH

87.1500

Since BASIC statements cannot be continued from one line
to the next, this method wi" work onl y if all of the numbers
to be added can be typed on a single I ine of 132 charocters.
The consequences of this restriction can be avoided by let­
ting port of the sum be represented by a symbolic variable
such as the letter P:

100 LET P-27.3+14.1+6
110 PRINT P+3.5+36.25
RUNNH

87.1500

The symbolic variable P could have been redefined to rep­
resent the final sum before typing the PRINT statement

100 LET P-27.l+14.1+6
110 P=P+3.5+l6.25
120 PRINT P
RUNNH

87.1500

The statement

100 P-P+l.5+36.25

is not a mathematical equation in the usual sense. A LET
statement in BASIC is actually an "assignment" statement
specifying that the current value of the symbol to the left
of the "equals" sign is to be replaced by the value of the
expression to the right of the equals sign. Note that the
word LET in an assignment statement is optional.

Quantities can be subtracted by using a minus sign rather
than a plus sign

100 PRINT 10-13
RUNNH

-l

As in addition, symbols may be used to represent values in
Cln expression involving subtraction:

100 LET A-10, B=13
110 PRINT A-B
RUNNH

-3

Beginning Basic 7

Note that more than one val ue assignment may be made in
a single LET statement, os shown above, jf a comma is ')sed
to separate each such assignment. The above assignment
could have been written

100 LET B=A+3, A-10

In this case the value of B would be unpredictable, because
BASIC executes LET statements from left to right, and A is
not assigned the value 10 until the second assignment of the
LET statement is performed.

MULTIPLICATION AND DIVISION

Multiplication and division can be done in much the same
way as addition and subtraction. The asterisk is used to in­
dicate multiplication, and the slash is used to indicate di­
vision. Thus, the product of 2 and 4 could be obtained as
shown below.

100 PRINT 2.4
RUNNH

8

Parentheses can be used to group two or more quantities:

100 PRINT 3.(4+5)
RUNNII

27

Without the parentheses, the above PRINT statement would
have produced the value 17 rather than 27, because BAS1C
would then assume that the value 5 was to be added to the
product of 3 and 4. It would not be possible to avoid the
use of parentheses by a rearrangement of the above expres­
sion to put the addition to the left of the multiplication,
as in:

This statement would produce the value 19 rather than the
desired 27, since BASIC performs any indicated multiplica­
tion or division before doing addition or subtraction unless
the order of precedence is indicated explicitly by means of
parentheses.

Nested parentheses are evaluated from the innermost to the
outermost:

100 PRINT 2.(3+4.(5+6»/7
RunNH

13.4286

In the above example the "innermost ll subexpression is 5+6.
This sum is evaluated first and the result is multiplied by 4
and then added to 3 befo{e the multipl ication by 2 is per­
formed. The final operation before printing is the division
by 7. Note that the result is rounded to 6 sign ificant digits.

EXPONENTIATION
Exponentiation is indicated by use of the up-arrow operator
(1) or the doub Ie asteri sk {**):

100 PRINT 10 •• 2
RUNNH

100

Within the some level of parenthesization, exponentiation
tokes precedence over any other indicated operation. That
is, it is performed before multiplication, division, addition,
or subtraction unless this would confl ict with the grouping
indicated by parentheses:

100 PRINT 2 •• 2.3 •• (4-2)
RUNNH

36

In the above example, the first operation performed by
BASIC is the raising of 2 to the second power. The sum of 4
and -2 is then computed and the quantity 3 is raised to this
power. The final operation before printing is the multipl i­
cation of 4 (the square of 2) by 9 (the square of 3).

INDEXm REPETITION

Many applications of BASIC require a series of operations
to be performed more than once. To make this as easy as
possible, two special statements are provided: FOR and
NEXT. The FOR statement specifies the conditions under
which the repetition is to be done and the NEXT statement
indicates the end of the series of BASIC statements that is
to be repeated. Each line of the program must begin with
a unique number ranging from 1 to 99999. Line numbers
need not be contiguous, but lines are executed in ascend­
ing order. Many BASIC programmers prefer to begin each
program with line 100 and make each line number a multiple
of 10, allowing room for changes and additions to the pro­
gram at a later time.

In the program shown below, FOR and NEXT statements are
used to couse BA SIC to pri nt three lines.

10 FOR 1-1 TO 3
20 PRINT I
30 NEXT I
RUN

NAME

1
2
3

UTS/EASY 14:21 AUG 24,'72

In the above example, the indexed variable "I" in the FOR
statement is assigned on initial value of 1 (by the number 1
following the equals sign). Instead of the letter J, any

8 Multiplication and Division/Exponentiation/Indexed Repetition

lener Of rne alpnaoer could have been used, but the letters
r t~rough N have becorme traditional in FOR statements.
When the NEXT statement is executed following the print-
i n9 of the fi rst line, the va I ue of lis incremented by 1
automatically and the loop is executed again. Note that
~he FOR statement initiates executionl of the loop but is not
. part of it. When the NEXT statement is executed fol­

lowing the printing of the seccmd line, I is again incre­
mented by 1 and the loop is executed for the third time.
When the NEXT statement is executed following the print­
ing of the third line, I is again incrernented by 1, giving
I a value of 4. Since" is greater than 3, the limiting
value following the word TO, the loop is not executed
ogain. The message 30 HALT indicahls that line 30 was the
last I ine executed in the program.

Often in programming FOR and NEXT loops, one may take
advantage of the fact that the indexed variabl e changes in
value as the loop is repeatedly executed. This is illustrated
by the following example.

10 FOR III:1 TO 4
20 PRINT I**3
30 NEXT I
RUN

UAME

1
8
27
64

UTS/EASY ~4:22 AUG 24,'72

In the above exomple, the cube of th~~ indexed variable is
.Jrinted each time the loop is executed.

The values of symbolic variables used within a loop can be
changed during execution of the loop,. as illustrated by the
following program which prints the first 8 terms of a
Fibonacci series. Note thatthe statements within the loop
are typed indented, to make the extent of the loop more
readily apparent. This optional pract'ice is especially
recommended for nested loops.

10 LET J-O, K-:1
20 FOR I-K TO 8
30 PRINT J
40 M=J, J-K, K-K+M
50 NEXT I
RUN

NM1E

o
1
1
2
3
5
8
13

UTS/EASY 14:24 AUG 24,'72

,;~Ithough the value of K varies as the clbove program is exe­
.:uted, this does not affect I, since tht~ initial value of I is

determined only when the FOR statement is executed and
the loop is first entered. Note the use of an optional form
of the LET statement, without the word LET, in line 40 of
the program.

You may use a LET statement to alter the value of the
indexed variable within a loop, in addition to the incre­
ment added automatically whenever the NEXT statement
is executed.

10 FOR I-1 TO 10
20 LET I-2*I
30 PRINT I
40 NEXT I
RUN

NAf.tE

2
6
14

UTS/EASY 14:26 AUG 24,'72

In the above program, the initial value of I is 1, as specified
by the FOR statement. The LET statement doubles this value
and the NEXT statement adds 1 to it. Thus, I'has the value 3
at the beginning of the second execution of the loop and 7
at the start of the third execution of the loop. When the
NEXT statement has been executed for the third time, I has
the value 15. This exceeds the limit of 10 set by the FOR
stdtement, and loop execution stops.

PRINT FORMATTING

The statement

100 PRINT

causes BASIC to print a single blank I ine. The statement

100 PRINT X

causes the value of X to be printed, beginning in column 2.
Column 1 is reserved for 0 possible minus sign. The statement

100 PRINT X,Y

causes BASIC to print the value of X, beginning in column 2,
and the value of Y on the same line, beginning in column 16.

If closer spacing is wanted, a semi color :m be used in
pi ace of a comma. The statement

100 PRINT X:Y

causes BASIC to print the value of X, beginning in column 2,
followed by the value of Y with 3 or 4 columns separa­
ting the two, so that the value of Y will begin in an
even-numbered column •

Print Formatting 9

If a value is negative, a minus sign precedes it.

100 X-s, Y--10, Z-300, N4-20.s
110 PRINT X;Y;Z;N4
RUNNH

5 -10 300 20.5000

A combination of formats can be used.

110 PRINT X,Y;Z
RUNNH

5 -10 300

If the user does not want the first val ue to print in column 2
he can use a comma or semicolon following the word
PRINT.

110 PRINT , X: Y
RUNNH

The statement

5 -10

100 PRINT 'THESE WORDS'

could be used to print THESE WORDS beginning in column 1.

TABBING

The TAB function is used in PRINT statements to advance
the output device to a specified column. For example, the
statement shown below causes the teletypewriter to advance
to column 12 and print the word HERE.

100 PRINT TAB(12) "HERE"
RUNNI1

HERE

Note that HERE is a I iteral text string, identified as such
by enclosure in quotes. Either single or double q.uotes
(i. e., 'THIS' or "THIS") may be used to enclose a literal
text string.

A symbolic or literal value may be used in the same PRINT
statement as a I iteral text string (either with or without a
TAB expression). However, since an expression must not
follow another expression immediately, a symbolic or
literal value must not be used next to a TAB expression.
To avoid this difficulty, one can use an empty text string
(e. g., '''') to separate two expressions in a PRINT statement.

100 X-s
110 PRINT TAB(6)""X· APPLES"
RUNNll

5 APPLES
A TAB expression may con,ain symbolic as well as Ilteral
values, allowing great flexibility in line format. This
capability is very useful in programming for graphicoutput.

10 Tabbing/Data Input from a Terminal

For example, the following program produces a graphic plot
of a damped sine wave:

100 X-X+.7, K-EXP(-X/1s)
110 PRINT TAB{1s+1s.K.SIN{X»·*·
120 IF INT(X)-14 THEN 140
130 GOTO 100
140 STOP

READY
RUNNH

•
* •

• • • • • • • • • • • • • •
* • •

*
140 HALT

In this example, the EXP intrinsic function returns the value
of e (the quantity 2.7183 •••) raised to the power of the
argument. The IF statement couses BASIC to return to
statement 100 unless the current value of X is equal to or
greater than 15.

DATA INPUT FROM A TERMINAL

The INPUT statement is used to solicit input via the user
terminal. A question mark is printed by BASIC to prompt
the user.

100 PRINT "ENTER LENGTH & WIDTH"
110 INPUT L,W
120 PRINT 'AREA-'L*W
130 END
RUNNH

ENTER LENGTH & WIDTH
?5, 10
AREA- 50

130 HALT

In the above example BASIC prints a request to type' values
for !ength and width. The values 5 and 10 are typed fol­
lowing ~he prompt character. Note that the comma ofter
the value 5 is optional. A single blank would be sufficient
to separate the two values.

ERROR MESSAGr~

BASIC messages to the user are explained in Chapter 7.
Most of these messages inform the user of a syntax error in
a program line, a logical error in program structure, or a
pragmatic error in program execution. Syntax and logical
errors are detected at compile time, cmd pragmatic errors
are detected at run time.

The program shown below contains a FOR statement without
a corresponding NEXT statement.

100 FOR 1-1 '1'0 5
110 PRINT ,·X-'I,·Y-·I··3
120 END
RUNNH

MISSING NEXTSTMT

When the above program is compiled, BASIC prints the
message

MISSING NXTSTMT

The user can correct the program by typing

115 NEX'!' I

and then recompiling by typing another RUN command.

In executing the fol lowing program, CJ divisor becomes zero,
causing BASIC to print the menage shown below.

100 FOR X-1 TO 2
110 FOR Y-1 TO 4-X
120 Z-1/(X •• 2+3.X.Y-X-Y •• 2)
130 PRINT X,Y,Z
140 NEXT Y
150 NEXT X
RUNNH

1
1

1
2

120 DIV BY ZERO

.500000

.500000

The user can correct this by typing

115 IF X •• 2+3.X*Y-X-Y.*2-0 THEN 117
116 GOTe 120
117 Z-" INF."
118 GOTO 130

Note that line 116 above assigns a six-character literal text
string to the nome Z. Z then denotes on alphanumeric
constant, or "oconst", as discussed in Chapter 2.

PROGRAM MODIFICATION

A line in a program can be changed by retyping the entire
I ine. A new I ine can be added to a program by typing it,
giving it any unused line number within the desired area of
the existing program.

100 R-12, Y--12.5
110 Y-Y+1, X-SQR(R •• 2-Y.*2)
120 PRINT TAB(36-X) TAB(36+X) .. ••
130 IF INT(Y)-1' THEN '50
140 GOTO "0
150 STOP

The user could add a line between 110 and 120, using any
I ine number from 111 through 119.

If the user wanted to combine lines 110 and 115, in the
above example, he could do so by retyping line 110 and
deleting line 115 by typing the I ine number followed by a
carriage return.

'10 Y-Y+', X-'.7.SQR(R.*2-Y •• 2)
"5

Error Messages/Program Modification 11

In the following chapters, certain conventio.ns have been
adopted for defining the BASIC commands. Capital letters
indicate command words that are required in the literal form
shown. Lowercase letters are figurative representations of
constants, step numbers, etc. Command parameters enclosed
by braces (II) indicate a required choice. Paramete", en­
closed by brackets ([]) are optional. Ellipsis marks (•••)
signify optional repetitions of the preceding bracketed
parameter. BASIC recognizes the period as a decimal
point, not as a terminator.

ELEMENTS.Of A BASE PROGRAM

There are anum.ber of elements com.monto most BASIC
programs. These are: line numbers, simple constanf1.and
variables, arithmetic operators, expressions, and intrinsic
functions. In addition to these, ·BASIC programS involving
text manipulation often use aJphanumeric constants as well
as string literals, variables, and expressions.

lIIE· lUMBERS

Every line in a e..\SIC program must begin with a unique in­
teger. Li ne numbers may range from one through 99999 but
need not be contiguous, allowing for insertions. Lines are
executed in ascending sequence, except where the sequence
of execution is modified by branching or looping. Leadiog
zeros are permitted in line numbers but Qre not JCtquired.

lUMBER RAISES

Because BASIC converts all input values to an internal
double precision floating-point binary format, the appear­
ance of input values and output values may differ due to
rounding during input conversion.

INPUT

BASIC handles input numbers within a range of5 .398*10-79
through ?237*10t7S, and zero. Up to 16 significant deci­
mal digits can be input.

OUTPUT

Output numbers are printed .in fields of varying width. ,ac­
cross the page according to the following rules.

1. Numbers are left-justified in their fields.

2. Positive numbers are preceded by a blank, negative
numbers by a minus sign.

3. If the number is a whole number (integer) whOle mag­
nitude is less than l,ooo,ooo,ooo (109), it is printed
in from 1 through 9 positions after a blank or a minus.

i2 Elementary Features of BASIC

4. If the number is nonintegral or its magnitude is. greater
than or equal to 109 (for example, -10.5, .5, 123.45,
or 1012), its most significant part wi II be rounded to 6
or 16 digits according to the PRC function and will be
treated as follows:

a. If, after rounding, the absolute value of the num­
ber is gregter than or equal to O. 1 but less than
106 or ,10 16, the number is printed, in 8 or 18
print positions, in fixed-point notation; that is, its
form will be a blank or minus, a maximum of 6,.or
16 integer digits, followed bythedecimol point
and a maximum of 6 or 16 digits.

b. ·If,after rounding, the absolute value of thenum­
ber isJess than 0.1 or greater than 106 or 10 16
the number is printed in floating-point (scientific)
notation; that is, its form will.be Q:;blank.or ,minus,
the most significant integer digit, a decimal point,
5 or 15 decimal digits, followed bytheJetter f, a
plus or minus, and a 2-digit exponent.

PRECISION CONTROL

Output precision can be controlled by use of the PRC intrinsic
function in d' PRINT statement. Used by itself or· embedded
in a series of other PRINT elements, PRC(l) sets: the, ,ou.tput
precision to 16 significant figures. This precision r:emai.ns
in effect until reset to the default value .of six by o·PRC(O).
An example is shown below.

100 LET 1-1/30
110 PRINT I
RUNNH

3.33333E-02

110 HALT

USED .3 SECS

READY
110 PRINT PRC(1),I
RUNNH

3.333333333333333E-02

SIMPLE CONSTANTS

A simple constant (that is, a nonvarying quanHty) is com­
posed of digits that stand alone, have an embedded decimal
point, or are preceded or followed by a decimal point. For
example, 2, 7.8, .5, and 12 are simple constants in BASIC.

Simple constants may be modified by floating-point notation,
as in 2 .SE-1S, where the E denotes that the number that pre­
cedes it is tobe multiplied by 10 to the plus or minus power
following the E. Accordingly, the number 2.5f-lSis

really the number .0000000000000025. The plus sign is
optional for positive powers.

SIMPlE VAIIABLES

A simple variable is denoted either by a single letter or by
a letter and a digit from 0 through 90 This convention al­
lows the programmer a total of 286 simple variables. For
example, A and W3 are simple varie/bles. Note that if the
letter-ond-digit combination is used, the letter must pre­
cede the number.

ARITHMEnC OPERATORS

BASIC uses common mathematical symbols to denote arith- 1

metic operations. These arithmetic operators are shown
in Table 1 below. Note that either the up-arrow (or cir­
cumflex) or double asterisk is a /lowed as an exponentiation
operator.

Table 1. Order of Arithmetic. Operations

Order Symbol Explanation

1 tor ** Exponentiate

2 * and / Multiply and Divide

3 + and - Add and Subtract

The table also shows the order of precedence of the various
operations. When no operation takes precedence over
another, the computer wi II perform operations from left to
right. The order of operations may be altered by use of
parentheses. Use of parentheses is advised if the sequence
of operations seems questionable.

Note that an operator of order 1 or 2 may be followed by
an operator of order 3, but that no other cases of consecu­
tive operators are permitted.

INTRINSIC fUNCnONS

BASIC provides a total of 34 intrinsic: functions. The func­
tions are listed in Appendix C. When a function is used in
a statement, the three-letter function name must be followed
by an expression or value enclosed in parentheses. This
expression or value is called the "argument ll of the function.
The value of the argument is either used directly in the
function calculation, or signals the computer to perform the
calculati on in a predetermined mannf!r. The purpose of
most of the functions is obviolJs and familiar. The INTfunc­
tion is often used to ac:quire the intefJer part of a calculated'
number. For exampl e, I NT(A), where A is computed to
be 2.675, would produce the number 2. The INT function

may also be used to obtain three significant digits (with
rounding) as in the following example:

50 LET S-INT«A*100)+.5)/100

When statement 50 is executed, S is assigned the value
2.68.

ARITHMETIC EXPRESSIONS

The term "expression", often abbreviated lIexprll, represents
a simple constant, simple or subscripted variable (see Chap­
ter 3), or function reference that may stand alone or may be
used in any combination when separated by the symbols for
addition, subtraction, multiplication, division, and exponen­
tiation. The components may also be enclosed by parenthe­
ses. The symbols + and - may also be the initial character
of an expression and may immediately follow a left paren­
thesis. Some typical expressions are

and

A+l
(B-X)/D

(2 tX) + SIN(Y)

STRING UTERAL

A string literal in a BASIC program is any sequence of text
characters, including blanks, enclosed by single or double
quotes. If a string literal is enclosed by single quotes, a
single quote must not appear in the string. A parallel rule
app/i.es to the use of double quotes. Examples of string
literals are shown below.

100 PRINT 'THIS IS A STRING LITERAL'
110 PRINT "THIS IS 'ANOTHER ONE'·
120 PRINT 'AND "THIS" IS A THIRD' ,

ALPHANUMERIC CONSTANTS

Besides the simple constants previously mentioned, BASIC
allows symbol ic names such as X, R, or K2 to be assigned
string I iterals of up to six characters. Such symbols are then
called lIalphanumeric constants" or lIaconsts". For example,

100 A·'ACONST'
110 Z."SPACE3"
120 X6-' X RAY'

An "aconst value" can be assigned via a LET, INPUT, READ,
GET, MAT READ, MAT INPUT, or MAT GET statement and
can be tested, for equality or inequal ity only, via an IF

. statement. Ii

100 IF A-='ALPHA' THEN 200
110 IF Z="OMEGA" THEN 300

Elements of a BASIC Program 13

An aconst va lue may occur in unquoted form as on ele­
ment of a DATA statement or in the response to an INPUT
request. If an element begins with a digit, plus or minus
sign, or decimal point it is assumed to be a number. If
it starts with any other character, or is enclosed in quotes,
it is assumed to be an aconst value.

Example:

100 OATA 5, '5', • S, "FIVE"

The first and third elements in the above example are
treated as numbers. The second and last are treated as
aconst va lues.

Simi lor ru les apply to elements entered in response to an
INPUT request, except that in UTS BASIC if the input is
assigned to string variables (see below) all elements are
interpreted as strings.

STRING SCALARS

String scalars are denoted by a letter and dollar sign. A
string scalar consists of up to 72 characters comprising a
single string •. \ string vector is a one-dimensional array,
each element of which is a single string. A string matrix
is a two-dimensional array of such elements. String vec­
tors and matrixes are discussed in Chapter 3. To avoid
confl ict, the same letter must not be used to designate a
string scalar and a string (or numeric) array.

Examples of string scalars are

100 A$-'A STRING'
1'0 B$-"ANOTHER STRING"

String scalars can be compared for relative magnitude cs
well as equality.

100 A$-'THIS'
110 B$-"THAT"
120 IF A$=B$ THEN 200

In this example, the comparison of A$ and B$ fails on the
th i I'd character. Thus, si nce the ch:Jracter II A II is lower in
the EBCDIC code than "I" (see the UTS/TS Reference Man­
ual, 900907, Appendix A)a branch to line 300 is taken.

ASSIGNMENT STATEMENTS

This section discusses the assignment of simple variables,
alphanumeric constants, and string scalars. The assignment
of values to vectors and matrixes is explained in Chapter 3.

LET The LET statement replaces the current value of the
variabie(s) on the left of the equals sign with that of the
expression on the right of the equals sign.

14 Assignment Statements

LET statement~ have the genera I form

line [lET]variable(,variable] ... = expression

Gvariable][,variable] ... = expression

where

variable is either a simple variable, an a Iphanu-
meric constant, or a string scalar.

expression is an arithmetic expression (see Arith-
metic Expressions, above) if the variable is a
simple variable. For alphanumeric constants, ex­
pressions are either string literals of up to six
characters or else string expressions assigning
strings of up to si x characters (see "Character
String Manipulation", Chapter 3).

For string scalars, expressions are either string ex­
pressions or string I iterols of up to 72 characters.
Strings of excess length are truncated to the max­
imum permitted.

Arithmetic operations can be performed by use of the LET
statement.

100 A-A+1
110 B-A •• 2

Lines 100 and 110 above could be combined into a single
statement.

100 A-A+1, B-A •• 2

Such serial assignments are executed from left to right.
Thus, if A is initia.\ly 2 then B will be assigned a value
of 9. Parallel assignments can also be made.

100 A,B,C-O.E
110 F,G-F+1

Note that line 110 above is equivalent to

110 F-F+1, G-F

Other examples of LET statements are shown below.

100 P,A1,Q3-4·ATN(1), A-1, B-S
1 1 0 C-' STRING'
120 O$-'A LONG STRING'
130 E$-C, F-O$

In executing line 130 above, aconst F is assigned the string
A LONG because of the aconst length limitation.

BRANCHING

Normally BASIC executes program lines in ascending order,
beginning with the lowest numbered line. The statements
discussed below couse BASIC to al,ter the normal order of
execution, either conditionally or unconditionally. (See
also, "Branching to a Subroutine", in Chapter 6.)

IF ••• THEN The IF .•• THEN statement provides a
conditional branching capability. If the test condition
specified in the IF ••• THEN statement is true, then the
next I ine executed is that specified in the IF ••• THEN
statement. Otherwise, the statement following the IF •••
THEN statement in the normal sequence is executed.

The form of the IF ••• THEN statement is

"

IF {THEN} I' Ine expr operator expr GOTO Ine

The condition to be tested is specified between the IF and
the TH EN (or GOTO) of the staternent. The line to which
BASIC is to branch on a true test i!. specified after THEN
(or GO TO) • An expression may be a simple constant,
variable, alphanumeric constant, literal string or string
scalar, or a compound arithmetic expression. The oper­
ators that may be specified are giv,en in Table 2.

Table 2. Condition Operators

Operator Explanation

= Equal to

>< or <> Not equal to

< Less than

> Greater than

< = or = < Less than or equal to

> = or = > Gr'eater than or equal to

Examples of IF ••• THEN st'atemenb are given below:

100 IF X-2 THEN 120
110 IF Y-"EUREKA" THEN 130
120 IF A$-Z$ THEN 140
130 IF SIN(X+J)-COS(X.K) THEN 100
140 IF B-C GOTO 110

ON ••• GOTO If many different branches are to be
taken according to the value of some expression, the use
of a separate IF ••. THEN statement (see above) for each
branch becomes unwieldy. To overcome this inconven­
ience, BASIC provides the ON ••. GOTO and GOTO •••
ON statements.

ON .. , GOTO takes the form

line ON expr{~H~~O} line,line, •••

where

expr is any arithmetic expression.

line,line, ••• is a list of program line numbers.

When the statement is executed, the expression is evalu­
ated and, if necessary, truncated to an integer. If the re­
suiting value is 1, a branch is made to the first line
specified in the list. If the value is 2, a branch is made
to the second line specified, and so on. If the value is less
than 1 or greater than the total number of lines specified
in the list, no branch is taken and the next statement in the
normal sequence is executed.

Example:

100 ON SGN(X)+2 GOTO 150,250,200

In the above example, if X is negative a branch to line 150
is taken, if X is 0 a branch to line 250 is taken, and if X is
positive a branch to line 200 is taken.

GOTO ••• ON This statement is identical in opera-
tion to ON ••• GOTO (see above). It has the form

line GOTO line,line, ••• ON expression

Examples:

100 GOTO 140,160,180 ON Y
110 GOTO 200,250,300 ON Z+3

GOTO The GOTO statement can be used to alter the
normal sequence of program execution unconditionally. The
GOTO statement has the form

line GOTO line

GOTO is generally used in conjunction with a conditional
branch such as IF ••• THEN (see above). An example is
shown below.

100 IF TIM(1)-12 THEN 120
110 GOTO 100
120 PRINT "LUNCHTIME"
130 IF TIM(1)-12 THEN 130
140 GOTO 100

Branching 15

DATA OUTPUT
PRINT The PRINT statement tells the computer to print
out the current value of a variable, the results of a calcu­
lation, a message, or any combination of these items. The
PRINT statement has the general form

[I ine] PRINT expression(s), or text string(s) with

commas or semicolons

where the word PRINT is usually followed by the name of
the item that is to be printed. Two sample PRINT state­
ments are

60 PRINT X1,X2
70 PRINT 'NO REAL ROOTS'

Line 60 will print out the calculated values of the vari­
ables X 1 and X2. Line 70 will cause the message enclosed
by single quotation marks to be printed out. Note that a
string of text must be enclosed by either single or double
quotation marks. Blanks, which usually enhance the
appearance of text, may be freely interspersed within the
string and will be reproduced in the output as presented.
More than one text string may be present in a PRINT state­
ment. Each separate string, however, must be enclosed by
quotation marks.

A PRINT statement may contain a reference to on intrinsic
function. For example

1220 PRINT SQR(X)

will calculate and print the square root of the variable X,
while

1230 PRINT X,SQR(X)

will print the current value of the variable, followed by its
square root.

PRINT can also contain variables, providing that the
variables have been defined in statements preceding the
PRINT. The following statement is an example of this use
of PRINT.

Similarly, the statement

1260 PRINT (7/8) •• 14

will give the value of the fraction 7/8 raised to the 14th
power.

16 Data Output

The word PRINT, used alone in a statement, causes the
printer to advance the paper by one line. An example is
shown below.

450 PRINT

PRINT FORMATS

Punctuation marks in the PRINT statement (commas and
semicolons) define the desired appearance, or format, of
the printed output. The punctuation marks tell the print
device at which position to start printing. BASIC has two
types of output format, regular and packed. Regular for­
mat is specified by using commas to separate elements in
the PRINT statement; packed format is specified by using
semicolons.

Regular Format. When the regular format is specified by
using commas to separate the elements in the PRINT state­
ment, the print I ine is thought of as consisting of a series
of 14-character fields. Each comma causes a shift to the
next field. For example,

4040 PRINT A,B,C

will cause the values of A, B, andC to be printed at
14-character intervals, as in

5 4

When the regular format option is specified, at least two
blanks follow the last printed character. In some cases,
this spacing may cause an extra field shift.

Packed Format. Packed format, which is specified by using
semicolons to separate the elements in the PRINT statement,
causes the pri nted output to be compressed on the page by
reducing the spacing between fields. Each semicolon
causes a field shift that is either two or three positions in
length, so that the shift reaches an even-numbered position.
For example, statement 4040 above could be written as

with the resultant output of

5 4

Additional Format Considerations. It is important to note
the difference between the TAB function and the output
format characters. TAB causes output to be printed ata
specified position, and is most useful in providing columnar
output. The output format characters (, and ;) cause the

output to be printed at intervals that depend on the number
of preceding (printed) characters.

If a PRINT statement terminates with a TAB to a column to
the left of the current print position, e.g., TAB(O), the
line is buffered but not printed unti I a subsequent PRINT
is executed. This allows effective continuation of PRINT
statements.

An expression may not follow another expression in a PRINT
statement, but a text string I iteral may be used anywhere.
Thus, a null string (two quotes) may be used to separate
two expressions. For example,

5 PRINT A(1)--B(2)

If a PRINT statement ends with a punctuation mark, the
appropriate field shift takes place and subsequent printing
starts at that point on the same print line. Otherwise,
subsequent printing starts on a new Iline. t All printing is
left-justified in its field. If a field shift places a field in
a position to extend beyond the last allowed print position,
a new I ine is generated and the field is printed on the new
line.

This procedure is modified when prilnting text. If a text
string overflows the last position, the string is truncated
at that point and the remainder is printed on the next
line.

Text strings may extend beyond any number of field
boundaries. If neither a comma nor a semicolon appear on
either side of a text string in a PRINT statement, no
spacing wi II occur before or after the string in the printed
output.

Format characters may be used alono in PRINT statements,
or they may be used in any numbor and combination to
cause appropriate field shifts.

PRINTUSING and :Umage) As all'l alternative to use of
the PRINT statement (see abc)ve), BASIC provides another
method of specifying the format of printed output. This
method makes use of a PRINTUSING statement and an
associated Image statement. The PRINTUSING statement
contains parameters to be inserted into the print positions
specified by the referenced Image statement.

PRINTUSING takes the general forn,

line PRINTUSING line (,exprEtssion(s) or text string(s»

where the line number that follows the command word desig­
nates the Image statement into whic:h this PRINTUSING's

tIn BASIC, a line ending with a punctuation mark is
buffered but is not printed until e;l(ecution of the next
PRINT statement that does not end with a punctuation
mark.

parameters will be embedded. A sample PRINTUSING
statement is shown below.

50 PRINTUSING 75,X,SQR(X),'SQ. ROOT'

The parameters of line 50, that is, the current value of X,
the square root of X, and the text string 'SQ. ROOT', will
be embedded, from left to right, in the designated fields of
line 75 (a field is a group of character positions that is
treated as a distinct unit). Note that commas are used to
separate parameters in PRINTUSING.

The Image statement (identified as such by a colon after
the line number) complements the PRINTUSING statement
in that Image statements depict the final printed appearance
of PRINTUSING parameters. An Image statement has
the form

line :[*s and/or characters to 132 max.]

where the characters that follow the required colon are
governed by the following rules.

1. Each digit position is designated by a * symbol. Also,
text strings to be derived from the PRINTUSING state­
ment are indicated by II symbols. For example, the
statements

50 PRINTUSING 75,X,SQR(X),'SQ. ROOT'
75 :IF X-', f IS ITS •• ff ••••

will generate the following output (assuming X is cur­
rently 4):

IF X-4, 2 IS ITS SQ. ROOT

2. If a field is preceded by a plus sign, positive values
are preceded by a plus sign and negative values by a
minus sign. On the other hand, if a field is preceded
by a minus sign, positive values are preceded by a
blank, negative values by a minus sign. For example,
the statements

5 :-f',. -tt, +tf, +.f, t.
14 PRINTUSING 5,-19,+20,-21,20,99

wi II generate

-19, 20, -21, +20, 99

3. The decimal point is denoted by a . ~/mbol. For ex­
ample, the statements

3 rf.f AND -.ff ALSO + ••••
23 PRINTUSING 3, 1.2, -1/4, 100.435

wi II generate

1.2 AND -.25 ALSO +100

Data Output 17

4. If a field contains a decimal point, the user may
also append four trailing exclamation points to
signify floating-point notation. (If more or fewer
than four exclamation points are shown, they will
be printed I iterally in the output.) BASIC deter­
mines the need for floating-point notation according
to the rules given for the PRINT statement. The
four I~s provide for a letter E, a plus or minus sign,
and a two-digit exponent. Note that a decimal
point may be placed anywhere in the field, but that,
on printing, it will follow the first digit. The 'position
of the floating-point notation remains unchanged.
For example, the statements

98 PRINTUSING 99, 1/30, 2/30
99 :VALUES ARE ,.,'1111 AND +"'.1111

will generate

VALUES ARE 3.33E-02 AND +6.67E-02

5. Except for the II, period, and I symbols, characters
that follow the colon will be printed exactly as shown,
with spacing as provided by blanks in the Image
statement.

6. Text strings may be inserted in fields containing deci­
mal points or specifying floating-point notation. In
addition, if the field is preceded by an algebraic
sign, its position will be preempted by the text string.
For example, the statements

11 :THE VALUE IS - •• 'f.f
47 PRINTUSING 11,'TOO BIG'

will generate

THE VALUE IS TOO BIG

If a text string is larger than its corresponding field, it
will be truncated on the right.

In addition to the above rules, printing is subject to the
following conventions.

1. If the field to the left of a decimal point is not large
enough to contain a numeric value, asterisks are in­
serted in the printed output as a warning to the pro­
grammer. For example, the statements

50 PRINTUSING 75, X, SQR(X), 'SQ. ROOT'
75 :IF X~i, I IS ITS IIt.f •• '

will generate, assuming an X value of 25,

IF X-., 5 IS ITS SQ. ROOT

Also, if a negative value is associated with a field
contoining no sign position, a minus will appear in

18 Dota Output

the first position, and any remaining field positions
will contain asterisks.

2. If an Image field is larger than necessary, the printed
output will show blanks. preceding expression values
and following text string values up to the required
number of positions in the field.

3. If a PRINTUSING statement specifies more values
than there are fields in the compl'ementary Image
statement, the Image statement is repeatedly used
until all PRINTUSING v,Jlues are printed. For ex­
ampl e, the statements

8 :N-"",
90 PRINTUSING 8, 1, 4, 90, 81777

wi n generate

N- 1
N- 4
N- 90
N-81777

4. If a PRINTUSING statement specifies fewer values
than there are fields in the complementary Image
statement, the printout wi 1\ be terminated at the
·first unused field of the Image statement. For example,
the statements

9 :."."f. CASES 'f.' RESULTS
103 PRINTUSING 9, 'NO MORE'

wi II generate

NO MORE CASES

Whenever a PRINTUSING statement is executed, printing
starts at the left of a new line. Values are rounded approx­
imately prior to printout. Although the programmer may
specify numeric fields greater than 16 characters in lengfh,
only 16 significant digits are output (with trailing zeros to
fill out the field) for the fractional part of values.

Note that PRINTUSING will accept up to 132 character
positions.

PAGE The PAGE statement can be used to advance the
paper to the top of the next page. The following example
shows how PAGE and PRINT statements might be used to
produce a page of tabular dota (see Figure 1).

Note that before EASY is called, a PLATEN command is
used to set the poge I ength to 18 lines rather than the
standard 54 lines per page. A PLATEN, 0 command given
prior to call ing EASY would have caused both PAGE
statements to be ignored.

ll?LATEN ,18

1 EASY

NEW OR OLD--NEW EXAMPLE

READY
1 00 PA~:;E

1'10 PRINT " X', 'X SQUARED', 'X CUBED'
120 PRINT
1 :30 X-X+1
140 PRINT ,X, X •• 2, X •• 3
150 IF X-10 THEN 170
160 Go~ro 130
170 PAGE
RTJNNH

10:33 08/25/72 356101 2F-35 (13)

x X SQUARED

1 1
2 4
3 9
4 16
5 25
6 36
7 49
8 64
9 81
10 100

10:34 08/25/72 356101 2F-35 (14)

170 HAI~T

X CUBED

1
8
27
64
125
216
343
512
729
1000

Fi gure 1. Use of PAG E Statements

Data Output 19

DATA INPUT
DATA and READ The data values used in the execution
of a program may be contained in 0 DATA statement. They
are called into use at appropriate times by the READ state­
ment. READ and DATA ore used in combination with each
other.

DATA statements form a chained I ist of constants that the
READ statement acceSses from left to right, top to bottom. t
D AT A takes the form

I ine DATA [constant] ~ [constant]] •••

Simple constants may be preceded by a plus or minus sign,
an empty field after DATA, as in

1250 DATA

or an empty field between commas or after a terminating
comma, as in

1260 DATA 1,2,3,,5
1270 DATA 6,7,8

imply a value of zero. DATA statements may appear any­
where in a BASIC ptogram, and da not have to be con­
secutive. However, it is good practice to group the DATA
statements at the end of the program, thereby making it
possible to add as many statements as are needed to contain
the data values without disrupting the order of the preced­
ing statements.

READ assigns (in consecutive order) the values in the DATA
statement(s) to the variables listed in the READ statement.
The form of the READ statement is

line READ variable[,variable] •••

There is no comma following the final variable in the list.

Example:

555 READ B,C,D

If a READ statement requests data after the list of constants
in the DATA statement has been exhausted, execution of
the program ceases and a message is output to the program­
mer advising him of the out-of-data condition.

The I ist of variables following a READ statement may in­
clude either of two special entities. A single asterisk means
to take an error exit if the current DATA statement list has
not been completely read. A double asterisk means to skip
any unread elements in the current DATA statement.

Examples:

500 READ X,Y, ••
510 READ A,B,C,.,D,E,F

tThe DATA statement may also contain alphanumeric con­
stants or text stri ngs.

20 Data Input

Suppose the program includes these DATA statements:

1000 DATA 1,2,31.5
1010 DATA 3,4,5,6
1020 DATA 7,8,9

When line 500 is executed, 1 is read into X, 2 is read
into y, and the 31. 5 is skipped. When 510 is executed, 3 is
reod into A, 4 into B, and 5 into C. The single asterisk
is encountered with 6 left in statement 1010 and the error
message EXTRA INPUT results.

INPUT The INPUT statement requests data from a source
that is external to the program, that is, teletype unit,
or other input device. (INPUT differs from READ in that
when using READ, the DATA statement and its data values
are contained within the program itself.) Data may be
stored in an external medium for two reasons: either the
data is unknown when the program is written but will be
suppl ied when the program is run, or the amount of data is
too large for inclusion in the body of the program. The
INPUT statement takes the form

line INPUT variable[,variable] ...

There is no comma following the final variable in the list.
When the INPUT statement is executed, data values are
read into the computer from the external storage medium
and are assigned, one at a time, to the variables designated
in the INPUT statement. It should be emphasized that data
is stored as it is received, and that the variables are satis­
fied (that is, associated with the data) in the order in
which they are specified. Some sample INPUT statements
are shown below.

100 INPUT X
110 INPUT A,B,Z,Y,R3
120 INPUT B(1,N), C(N), N
130 INPUT N, B{1,N), C{N)

In the above example, every time statement 100 is ex­
ecuted, the computer will supply a data value to the
variable X. Statement 110 will supply data values to A,
B, Z, Y, and R3, in that order, from the I ist of data
supplied by the programmer. Statements 120 and 130
will very probably not be equivalent, even though the
same variables are specified in both. They will not be
equivalent even if the data values are supplied in the
same order as the variables were given, unless the value
of N is not changed by execution of either of the INPUT
statements.

When data input is required, the user is signaled by a "?"
character.

The data values that satisfy the variables in INPUT are
contained in a I ist of data separated by commas or blanks.
If the I ist begins with a comma (or in the case of commas
with no intervening nonblank characters), the computer

understands that a zero value precedes the comma. For
example, the computer interprets

,5,3 4

as meaning the values 0,5,3, and ·4. Similarly, if the list
ends with a comma, as in

1 2 3,

the computer will a:ssign the variables in the INPUT state­
ment the data values 1,2,3, and 0. Finally, the list

5 ,1 ,,5 1 2

will be interpreted as data values 5,1,0,5,1, and 2.

After the entire list of variables in an INPUT statement is
satisfied, control passes to the next program statement. If
at the time, the current I ine of input values has not been
exhausted, the remaining values will be accessed by the
next INPUT statement executed.

The list of variables in an INPUT statement may include the
special entities, asterisk and double asterisk, used to act
on unused fields in lines entered for input. The double
asterisk means skip any unused fields. The single asterisk
means take an error exit if unused fields remain in the line
of input.

Examples:

200 INPUT A,B, •• ,C,D

means input to A and B, skip anything left in the current
input I ine, and input to C ,and 0 fwom the next line.

210 INPUT A,B,.

means input to A and B. Error exi't if the input line is not
exhausted.

If the input I ines shown above are entered in response to
statement 100, etc., and N = 2 prOor to executing state­
ment 100, the result is as follows:

x-O

B(1,2)-3 C(2)-0 N-5

N-1 B(1,1)-0 C(1)-5

The values 1 and 2 (]re pending for any subsequent INPUT
statement.

LOOPING

FOR and NEXT BASIC provides the programmer with
still another method for specifying data values for variables.
This method defines a loop using FOR and NEXT statements.
A loop is a portion of a program written in such a way that
it will execute repeatedly until same test condition is met.
A FOR and NEXT loop causes execution of a set of steps
for successive values of a variable until a limiting value
would be exceeded. Such values are specified by establish­
ing an initial value for a variable together with a limit
value, and an increment or decrement that is used to modify
the variable each time the loop is executed. When the
limit is exceeded, an exit condition built into the loop
allows the computer to proceed to the following body
of the program. FOR and NEXT loops, therefore, have
three main components.

1. An initial value expression for the variable used by
the formu I a.

2. A limit value expression beyond which the variable
may not be incremented (or decremented).

3. An optional increment or decrement expression value
to be added to (or subtracted from) the value of the
variable for each pass through the loop (except the
last).

The FOR statement defines loop parameters. It gives the
initial value of the variable, the expression for the limit
value that the variable may not exceed and that cause the
loop to terminate, and (optionally) the increment or decre­
ment expression. If the step increment or decrement is not
expressly given in the FOR statement, it is assumed to
be +1. The F OR statement takes the form

line FOR simple variable = expression TO ~

Lexpression [STEP expression]

The expression preceding TO specifies the initial value of
the variable, the expression following TO gives the limit­
ing value, and the expression following STEP gives the in­
crement or decrement. The computer evaluates the initial
value expression only once, when the FOR statement is
executed. The other two expressions are also evaluated
when FOR is executed, but, additionally, are reevaluated
every time the NEXT statement is executed. A sample FOR
statement is shown below in the discu)slon of NEXT.

The NEXT statement returns program execution to the be­
ginning of a FOR and NEXT loop after the indexed simple
variable has been incremented. NEXT has the form

line NEXT simple variable

Note that the simple variable in the NEXT statement must
be specified exactly as it appeared in the FOR statement.

Looping 21

The easiest way to understand a FOR and NEXT loop is to
tollow one through its entire sequence of operations, as in
the following statements.

50 FOR X-2 TO 11 STEP 3
60 PRINT X, 2 •• X
70 NEXT X

Statement 50 sets the initial value of X to 2 and specifies
that X thereafter will be incremented by 3 each time the
loop is performed until X has the limiting value 11.

Statement 60 causes the computer to print out the current
value of the variable X and the result of 2X. Statement 70
causes the computer to return to statement 50, where
it picks up the next value of X, that is, +5. The computer
then prints 5 and 32 and again goes to NEXT which returns
it to FOR. When X attains the I imit value of 11, state­
ment 60 will be executed and control will pass to 70. The
computer wi II again try to increment X by 3, but as the
upper I imit of variable X will have been reached, the com­
puter will "fall through" statement 70 and control will pass
to the next statement. At this point, X will have the
value 11, the last value that does not exceed the terminal
value.

Fractional values may be used in FOR-NEXT loops. When
this is done, there is the chance that an expected iteration
may not occur because of rounding, as in the following
statements:

10 FOR 1-.1 TO .4 STEP .1

50 NEXT I

This loop will be executed only for I = .1, .2, and .3 be­
cause the rounded value of I is slightly over .4 on the last
try. To get four iterations in this example, use

10 FOR 1-.1 TO .41 STEP .1

loops may be contained within other loops (nested), but
the loops may not "cross". This exclusion is illustrated in
Figure 2.

.....----- FORW

correct -----1----1.---- F OR X

'---- NEXT X

incorrect

Figure 2. Nested loops

22 Miscellaneous Statements

FOR Y

FOR Z

NEXT Y

NEXT Z

NEXTW

BASIC allows loop nesting to 26 levels, that is, the BASIC
program may contain no more than 26 FOR statements whose
corresponding NEXT statements have not yet been encoun­
tered in compilation.

MISCELLANEOUS STATEMENTS

REM or· The REM (Remarks) statement allows the pro­
grammer to interject commentary anywhere in the program
without affecting its execution. REM may be used to iden­
tify the complete program, or, more important, the function
or purpose of various sections of the program. REM tokes
the form

line REM [commentary]

The commentary portion of the statement may include any
characters up to the end of the line. If commentary is
omitted, REM will produce a dummy line in the program.

An alternate form for REM is indicated by an osterisk.

Example:

110 .THIS IS A REMARK

Branching to a REM statement is 01 lowed and is recommended
when branching to a closed subroutine. Such use of a REM
statement serves to identify the subroutine. It olso allows
statements to be inserted at the beginning of the su.broutine,
if unused line numl:ers exist between the REM stotement and
the first executable stotement of the subroutine.

PAUSE, STOP, er END PAUSE, STOP, or END .con
be used to holt progrom execution at any point. The
line number of the halt is printed when progrom termination
occurs.

PAUSE, STOP, ond END have the form

line PAUSE

line STOP

line END

Any number of these may be used in a program, or none at
all. If none is used, the program will normally holt after
the highest numbered line has been executed. If a branch
into an infinite loop occurs, as shown in the example below,
the BREAK key can be used to halt execution.

100 INPUT A
110 PRINT A
120 GOTO 100

6. ADVANCED FEATURES OF BASIC

For simplicity, explanations in previous chapters have
covered only the e:ssential featun~s of BASIC program
elements. This chapter contains additional information
on these elements clnd explains advanced features of
BASIC.

OTHER ELEMENTS OF A ElASK: PROGRAM

The additional program elements presented below give the
user greater flexibil ity in using the statements explained in
Chapter 2, and also augment the cClpabil ities of the new
statements described in this chapter.

SUBSCRIPTED VAR~ABLES

In addition to simple variables, BASIC also provides for
subscripted variables. A subscripted variable denotes an
element of an array, that is, a I ist or table of data. The
individual values within the arrc'Y are called array
elements. We refer to on array element by specifying the
name of the array (always a single letter) and the posi­
tion of the element in the array. For example, the
fourth element in the array named L is denoted by L(4).
The value inside the parentheses is called the subscript,
and is represented by an expression that can be reduced
by the computer to a single integer value. (Subscript ex­
pressions are evaluated to integer vulue after adding 2- 12.)
Subscripts range from 1 through the maximum allowed
dimensioned value.

Arrays can have either one or two dimensions. A one­
dimension array is called a vector and is characterized
by a single subscript. The subscript denotes the position
of the desired array element in the I ist of data. Sample
vector array elements are A(l) and B(J + 3).

When an array has two dimensions.! it is called a ma­
trix. Data in a matrix is thought of as being arranged
in rows and columns. Each element in a matrix is iden­
tified by two subscripts separated from each other by
a comma. The first subscript specifies the row number
and the second specifies the coluflnn number. For ex­
ample, C(K, L) and D(M+2, N+3) denote matrix array
elements.

As a further example of matrix notation, consider the
following table, which lists expenses for a four-day car
trip.

Row

2

3

4

5

Column

~ Item

Gas, oil

Tolls

Food

Lodging

Misc.

June 5

21.29

1.32

11.18

10.05

1.35

2 3 4

June 6 June 7 June 8

20.84 19.42 6.08

.86 .40 .07

12.83 14.39- 5.06

12.78 10.35 .00

.44 .90 .10

If we consider the table to be a matrix called E, the amount
($10.05) spent for lodging on June 5 would be represented
by E(4, 1), and the amount ($5.06) spent for food on June 8
would be represented by E(3,4).

DIMENSIONING

A dimension is the largest value that a subscript may
attain for a given subscripted variable (array). This limit
tells the computer how many storage units of the com­
puter's memory to allocate for the array. Dimensions
are specified explicitly in the DIM statement, but the
user may make array references without corresponding
DIM statements. In such cases, implicit dimensions are
used. Implicit dimensions are: 10 storage units for a
vector and 100 storage units for a matrix (that is, a 10
by 10 matrix). If the program uses MAT statements (ex­
plained later), the dimensions of all arrays referred to
in these statements must be expl icitly defined in DIM
statements.

DIM There are three reasons for explicitly specifying
the dimensions of an array.

1. The user may wish to allocate more space for his array
than allowed by impl icit dimensions. Thus, DIM A(18)
would reserve 18 storage units for the vector A.

2. The user may wish to restrict the reserved storage space
for each array to its exact dimensions, thereby con­
serving space. For example, - DIM B(3,4) reserves
12 storage units for matrix B, thereby leaving for other
use the remaining 88 units that would have been allo­
cated by impl icit dimensions.

3. The user may wish to use a given array in a MAT
statement.

Advanced Features of BASIC 23

The DIM statement tokes the form

I ine DIM name(dimx[,dimx]) [,name(dimx[,dim)] .••

where

nome is the name of the array being dimensioned.

dimx is a dimension expression that denotes the
maximum number of row or column elements in
the array.

Dimension expressions may not contain user-defined func­
tions, array references, or letter digit variables, and are
evaluated during compilation (not during execution) by
truncating to an integer value after adding 2- 12• If di­
mensions for more than one array are specified in a DIM
statement, they are separated by commas. A given array
may be dimensioned only once in a BASIC program via
a DIM statement. DIM statements may appear anywhere
in a BASIC program. A sample DIM statement is given
below.

10 DIM M(3,3), V(128)

VECTORS

Numeric Vectors. A numeric vector is a one-dimensional
orray containing numeric or aconst data elements. The
name of a numeric vector consists of a single alphabetic
character. An element is referenced by 0 subscript expres­
sion denoting the relative position of the desired element
(see "Subscripted Variables", above).

100 A(1)-3.14, B(A(1»-'LARGER'
110 A(2)-SIN(A(1)-1), B(2)-1
115 IF A(1)-A(B(A(1)-B(2»+1) THEN 150
120 PRINT B(A(B(2»)

String Vectors. A string vector is a one-dimensional array
containing text string elements. The name of a string
vector consists of an alphabetic character followed by a
dollar sign. An element is referenced by a subscript ex­
pression denoting the relative position of the desired ele­
ment. The subscript expression may be followed by a
substring expression specifying the beginning and length
of the desired substring (see "Character String Manipula­
tion", below).

100 DIM A$(3)
110 A$(1)-'ABCDEFGH'
120 A$(2)-A$(1:2)
130 A$(3)-A$(2:3,4)

24 Other Elements of a BASIC Program

In the above example, vector element AS(2) is assigned
the string BCDEFG Hand AS(3) is assigned DEFG. Note
that all string arrays must be dimensioned via a DIM
statement.

MATRIXES

Numeric Matrixes. A numeric matrix is a two-dimensionol
array containing numeric or aconst data elements. The
name of a numeric matrix consists of a single alphabetic
character. Are element is referenced by a pair of sub­
script expressions, separated by a comma, denoting the
row and column of the desired element (see "Subscripted
Variables", above):

100 A(1,1)-1, A(1,2)-2
110 A(1,3).'THREE', A(2,7).5
120 IF A(1,1).A(1,2) THEN 155
130 PRINT A(1,A(2,7)-A(1,2»

String Matrixes. A string matrix is a two-dimensional
array containing text string data elements. The name of
a string matrix consists of an alphabetic charocter followed
by a dollar sign. An element is referenced by a pair of
subscript expressions, separated by a comma, denoting the
row and column of the desired element. The subscript poir
may be followed by a substring expression specifying the
beginning and length of the desired substring (see "Char­
acter String Manipulation", below):

100 DIM A$(2,2)
110 A$(1,1).'ZEITGEIST'
120 A$(1,2)-A$(1,1:3,6)
130 A$(2,1:1,2)-A$(1,2:3)

In the above example, A$(1,2) is assigned the string ITGEIS
and A$(2,1) Is assigned GE. Note that all string arrays
must be dimensioned via a DIM statement.

CHARACTER STRING MANIPUlAnON

BASIC permits strings up to 72 characters long and provides
capabil ity for

1. Referencing string variables.

2. • Using string expressions.

3. Assigning a character string variable.

4. Assigning length or numeric value of a string variable
to a simple or subscripted variable.

5. Converting a numeric value to string format.

6. Concatenating strings.

7. Comparing strings.

8. Using strings in input/output sta1rements.

9. Generating cllphanumeric constants from strings for file
identi fi cat ion.

REFERENCING STRING VA~IABLES

Strings are identified by a letter and dollar sign followed
by a further identification of the type of string specified:
string scalar, string array, string arrCly element, or sub­
string. Examples of eoch of these arl~ given at the end of
this discussion. Strings may also be combined in expres­
sions for the purpc)se of string concatenation.

String scalars have the form

letter$ or $IEttter

A string scalar mCIY not appear in a dimension statement.
To avoid confl ict,. the same letter mCIY not be used for both
a string scalar and a string array or numeric array.

String array eleml!nts ore subscripted variables. They have
the form

letter$ (expr[,expr))

where the optioncil expression denotes a matrix element. A
string with only one e)cpression is a vector element.

String arrays may be explicitly dimemioned. The form for
dimensioning a string array is

DIM letter$ i(dim[,dimx])

Substrings are marked by a colon preceding an expression.

letter$ (:expl' l[,expr 2])

where

expr 1 indicates the position of the first character
of the substri ng.

expr 2 indicates the length of the substring in num-
ber of ch"racters. If expression 2 is omitted, the
substring includes all characters from the indexed
character to the encl.

If a string is an element of a vector or a matrix, then the
form of the substring is

letter$ (expr l[,expr 2] : [expr 3][,expr 4])

where

expr 1 and expr 2
element.

are the indexes of a string array

expr 3 . is the index, or string position, or the first
character of the substring.

expr 4 is the length, or number of characters
in the substring •. Again, if expression 4 is omitted
the string consists of all characters from the in­
dexed character to the end of the string.

String examples are

P$

H$(l)

8$(2,3)

A$(:4)

A$(:4, 1)

B$(2, 3:5, 2)

String scalar.

String vector element.

String matrix element.

Substring consists of all chc.. Clcters
from the fourth to the last charac­
ter of A$.

Substring consists of fourth character
of A$.

Substring consists of the fifth and
sixth characters of string matrix ele­
ment B$(2,3).

STRING EXPRESSIONS

String expressions may be used as arguments for string
functions; PUT, PRINT, and PRINTUSING statements;
string concatenations; string comparisons; and as file identi­
fiers in OPEN and CHAIN statements. They must be ex­
plicitly stated in the PUT, PRINT, and PRINTUSING
statements, but may be in either implicit or explicitformat
in all other cases.

Other Elements of a BASIC Program 25

The impl icit string expression (strexp) has the form

{

string }
tstring
var'
STR(expr~rstring]} . t {string }] + tstring

;~~I(expr [,rstring]) •••

where var' is a variable containing an alphanumeric constant.

Impl icit string expressions are always to the right of the
relation operator in string assignment statements and
comparisons.

Explicit string expressions (xstrexp) are required to avoid
ambiguity on whether or not string processing is called for.
The form of this expression is

{
$(strexp) }
string + strexp

where the dollar sign resolves the ambiguity that arises if
the first character is a letter character (as in STR or in a
variable). An implicit expression may be used only in a
statement where the syntax is unambiguous in indicating
string processing.

Examples:

LET Z$ = B {2,3} + A$(:5)

PRINT 5(B(2,3} + A$(:5»

PRINT B (2,3) + A${:5)

PRINT "ABC" + A$

impl icit string expression

expl icit string expression

ILLEGAL I ambiguous
syntax

ILLEGAL

ASSIGNING CHARACTER STRINGS TO STRING VARIABLES

Simple variables provide storage for just one doubleword;
therefore, a simple variable is limited to representing an
alphanumeric constant (maximum of six characters).

Character strings more than six characters long must be as­
signed to string variables ~Ietter$). Strings up to six char­
acters are considered alphanumeric constants and may be
assigned to simple or subscripted variables.

STRING LENGTH AND VALUE ASSIGNMENTS

For these assignments, BASIC provides two intrinsic func­
tions: LEN (for length) and VAL (for value). LEN and VAL

26 Other Elements of a BASIC ?rogram

may only be used in assignment statements. The assignments
are made to simple or subscripted (not string) variables and
hove the form

I ine LET var [,var] • •. =sfunct(strexp)

where sfunct is LEN or VAL. Both assignments con be made
in one statement, separated by a comma os in the example

2S K1-LEN(W$(2,3», K2-VAL(W$(2,3»

in which the length of the matrix string element WS{2, 3) is
assigned to the simple variable Kl, and its numerical value
to K2. The arguments for both functions must be string ex­
pressions. If the character string specified for VAL does
not represent a correctly formatted decimal constant, on
error message is generated and execution terminates.

CONVERSION TO A STRING

The output conversion routine automatically converts an ex­
pression to string fromat, but in manipulating text it may be
desirable to have the same conversion performed internally,
for example to store an evaluated expression· in a file or
embedded as a substring within a text string. The string­
conversion routine is available for this purpose. It has the
form

[line] LET string = STR (expr[,rstring)

where STR is the string-conversion function.

The replaceable-string (rstring) argument is optionally used
to indicate the image of the desired format. If the rstring
option is not used, format is that for print output conversion.

Like the output conversion, string-conversion is governed
by the setting of the precision flag. The string will have a
leading blank if it is nonnegative, but will not contain
trail ing blanks. The minimum length for a string is two
bytes; maximum length is 22 bytes for long precision and
12 bytes for short precision.

Examples of STR (conversion-to-string) statements are

10 A$-STR(3.S,#.#)
20 H$(1:9)-STR(SQR(X»
30 LET W$(2,3)-STR(A1+B1.COS(X»

STRING ASSIGNMENT AND CONCATENATION

Another string, an alphanumeric constant I a string convert'ed
expression (see above), or a concatenation of any or all of

these may be assigned to a string. The form of the
string-assignm«mt and concatenatkm statement is

line [LElr]strin = {strexp } [+ {strexp }J ...
9 xstrexp. xstrexp

where strexp is, an implicit string Etxpression and xstrexp an
expl icit string expression (see "String Expressions", above).

Examples:

100 DIM,A$(2)
110 A$(1)=oONE', A$(2)-'TWO'
120 B$-A$(1)+' AND '+A$(2)
130 B$=B$+'.'

The left string is given a value and a length consistent with
the items to the right of the equals sign. If the right
contains only one term, the statement performs string assign­
ment. If the right side contains two or more terms, con­
catenation occ:urs in the order given. If the maximum
string length is exceeded, the string is truncated.

If assignment is; to a substring who~5e current length is less
than n-1, where n is the first character of the target sub­
string, then thf~ gap to character n-1 is filled with blanks.
If target-substring length is specified and the number of
characters tran~5ferred is less than this specified length, then
the gap from the last character transferred to the specified
length is also filled with blanks. Characters in excess of
spec i fi ed I engtih are not transferred.

STRING COMPARISON

Strings are compared for identity or "magnitude" in IF •••
THEN or GOTO statements. The form of the statement is

I• IF· {strexp } {THEN} I· Ine string oper xstrexp ,GOTO Ine

where oper is a condition operator (stexp and xstrexp were
explained under "String Expressions"). Examples are

1 0 IF W~H: 1) - , 1 W, GOTO 99
20 IF W~~-STR (X1.Y1 +3) THEN 40
30 IF R~~-STR (0) GOTO as
40 I F A~~ - , DOG' + B$ (1 : 9) THEN 1 20

Strings are compared from left to right as character pairs.
In comparing characters, the EBCD IC collating sequence is
followed. A blank is the lowest character, followed by
nonalphanumeric characters. Alphabetic letters are next,
in the order ABC ••• YZ. Digit'S are the highest ele­
ments in the collating sequence. If one string is shorter
than another, the shorter string is "extended" with blanks
for comparison.

STRING INPUT/OUTPUT

Expl icit string expressions and text strings may be used in
input/output statements in tlee form used for expressions and
alphanumeric constants" subject to the general rules govern­
ing strings. That is, a run-time error results if a text
string (more than six characters) is provided as input
to a nonstring variable; or nonstring input (neither a
text string nor an alphanumeric constant) is provided
to a string. The statements used are INPUT, PUT, READ,
GET, DATA, PRINT, MAT PUT, MAT GET, MAT READ,
PRINTUSING, and MAT INPUT.

Examples:

140 MAT GET :3, A$(2,3), B$
500 DATA 'ONCE UPON', wA TIME w

885 PUT V$, W$(1), X$(1,A)+'?'
910 READ H$(1), H$(2), H$(3)
700 GET :31K,W$(A1,A2), X$
750 PRINT $(WIT'S w+STR(A)+B$)
760 PRINT USING 100, H$(1), C$
800 PRINT :4,A$(1,1),A$(1,2)
400 MAT PUT A$, B$, C$
410 MAT GET A$(2,3), V$
420 MAT READ F$(4), G$
430 MAT INPUT W$, X$
440 MAT GET A$, B
445 PRINT :1,B$(2,3:4,5)1A··2

Line 440 requires that the data file have the correct number
of string array 'ements to fill AS, immediately followed by
numeric data to t.:! numeric array B.

The examples above show cases of string input/output only.
The forms are similar to those described earlier for nonstring
input/output. In BASIC, statements may mix (with ap­
propriate caution) string and nonstring items in the same
statement, as shown in Appendix A.

STRING INPUT MODE CONTROL

Normally, when a string is reached in the I ist for an INPUT
statement, the next data field in the record is accessed.
Blanks and commas are treated as field separators unless
they occur within quoted fields. An alternate form is pro­
vided in which an entire input line, or record, is treated
as a single field.

The form for switching string INPUT mode is

line INPUT ={$ }
any other character

INPUT = $ switches to ful! record input mode. Each input
referenced to a string accesses a full record and treats it
as a single string (as though it were enclosed in quotes).
If a record has been partially input (for numeric assign­
ment) and a reference to a string follows, the remainder
of the record is treated as a single field.

Other Elements of a BASIC Program 27

INPUT = X (any character but $) switches back to normal
input mode, which is the default.

String input mode is changed only by these explicit state­
ments and remains as set through successive operations
within BASIC until explicitly reset.

GENERATION OF ACONSTS FROM STRINGS

A string or string expression may be assigned to a simple or
subscripted variable, but only six characters will be trans­
ferred and the rest truncated. If the string contains fewer
that six characters, trailing nulls are generated to satisfy
the aconst format.

Examples:

10 A1-P$
20 A2-B$(~4)
30 A3-$('NO. '+C$(A4»

This provides an indirect means to assign strings as external
names or file identifiers by first assigning strings to simple
variables.

STRING EXPRESSIONS AS FILE IDENTIFIERS

In BASIC, string expressions may be used to designate
the name, password, and account for file identification in
OPEN and CHAIN statements. The string expressions ",ust
not result in text strings exceeding 11 characters for name
or 8 characters for account and password.

Examples:

120 OPEN 'FILE'+A$ TO :1,INPUT
340 CHAIN B$(N):'ABC';'SECRET'

In line 120 above, if AS = '1234567' and 1=3 then 'FILE3'
is opened.

USER-DEFINED FUNCTIONS

DEF If the programmer wants to make use of a function
that is not included in the set of BASIC intrinsic functions,
or if he intends to make repeated use of an involved ex­
pression, he may define the function in a DEF statement

28 Other Elements of a BASIC Program

and make reference to it according to a name he designates.
The form of the D EF statement is

line DEF FN letter(simpls variable[,simple ~

Lvariable] •••) = expression

where

letter provides a unique name for the function.

simple variable is a dummy argument appearing in
parentheses to the left of the equals sign. These
only serve to identify which of the simple VQri.,.
abies in the expression to the right of the equQI
sign are arguments. These must be at least one
such argument, although it is not necessary that
any or all of the arguments appear in the expres­
sion. Each time the function is evaluated, c",-rrent
argument values will be substituted for thes~ terms
in the expression. There is no comma follQwing
the final simple variable in the list. '

The following examples illustrate typical DEF formats:

65 DEF FNA(X)-X+B.X
100 DEF FNB(X)-X.SIN(FNA(X+C»
120 DEF FNX(XO,X1,X2)-XO.X1.X2/K
550 X-FNX(1,2.3)+FNB(Y+3.14)

Line 500 is an example of how the functions defined in lines
100 and 120 might be used later in the program. The vari­
able X to the left of the equals sign is a different entity from
the dummy variables X in the DEF statements.

DEF statements may appear anywhere in the BASIC program,
including those cases in which the function is referenced
prior to its definition.

BASIC checks DEF statements for identical simple variables
in the list of dummy arguments, undefined functions, multi­
defined functions, and consistency between the number of
arguments suppl ied by the programmer when the function is
called (referred to) and the number of arguments in the
DEF statement. However, it is the responsibility of the
programmer to avoid circular definitions in and among the
DEF statements. Improper uses of DEF are shown below.

Case 1. Circular definition within statement:

1200 DEF FNA(X)-X+FNA(X)

Case 2. Circular definition among statements:

1400 DEF FNA(X)-X+FNB(X)
1450 DEF FNB(X)-X.FNC(X)
1500 DEF FNC(X)-FNA(X)/X

REREADING DATA

RESTORE The RESTORE statem~nt alters the normal
sequence of OAT A statement accession. DATA statements
are normally alccessed as the preceding DATA statement is
exhausted. For example, of the following set of DATA
statements,

1 00 DA'l~A 1,2,3,4
11 0 DA'l'A 5,6, 7 , 8
1 20 DA'l'A 9, 1 0 , 11 , 1 2

statement 110 will be accessed only after data value <4 in
statement 100 has been assigned tel a variable, and state­
ment 120 will be ac:cessed after data value 8 in the
preceding statc,ment is assigned. RESTORE allows the
programmer to alter this sequence by directing the com­
puter (via a I ine number) to a specified DATA statement
from which data accession will proceed in the normal
manner.

The RESTORE :statement is frequell"ltly used for accessing
data that will be used several times in the program, and
eliminates the Ineed for writing duplicate DATA statements
when the same data is to be accessed more than once. The
form of the RESTORE statement is

line IRESTORE [line]

where the secol,d "line" must be the line number of a valid
DA TA statement in the program. Some sample RESTORE
statements are !~iven below.

740 RESTORE 125
900 RESTORE

If the I ine number is omitted in the RESTORE statement (as
in line 90 above), the computer will return to the first
DA TA statement in the program.

BllANCHING TO A SUBROUTINE

GOSUB and RETURN The GOS-UB and RETURN state-
ments provide subroutine capability in BASIC. A subroutine
is a section of I-he main program that completes a specific
task. GOSUB, in the main body of the program, directs
the computer (via a line number) to the first statement of
the subroutine. After the subroutine has been executed,
RETURN direct!; the computer to the statement following
GOSUB, where- the main program c:ontinues. The form of
GOSUB and RETURN are

line GOSUB line

line RETURN

where RETURN is the last executed statement of. the
subroutine.

Some sample GOSUB and RETURN statements are shown
below.

10 GOSUB 500

.
525 RETURN

The RETURN statement does not contain the I ine number of
the statement following GOSUB. BASIC remembers its
place in the program.

An attempt to execute a RETURN statement before a
GOSUB statement is executed causes output of an appro­
priate error message. Execution of too many GOSUBs
before a RETURN also causes an error message to be printed.
The program may execute up to 20 GOSUB statements before
a RETURN is needed.

CHARACTER CONVERSION

CHANGE The CHANGE command can be used to con-
vert string characters to equivalent EBCDIC values and vice
versa. To convert a string to EBCDIC, the command has
the following form:

line CHA~ _·E TO letter _ {string }
xstrexp

Examples:

10 CHANGE A$ TO B
50 CHANGE $(t246 t +C$) TO D

The string characters are converted to EBC ,Iues stored
in the vector specified by the letter. The lettdl IInJst repre­
sent a vector dimensioned by a DIM statement. The current
dimension of the vector is set to the number of string char­
acters converted.

Assuming that A$ = 'Al' when line 10 above is executed,
the decimal equivalent of 'A' (i.e., 193) is stored in B(1)
and the equivalent of '1' (i.e., 241) is stored in B(2).

To convert a vector to a string, the following form is used:

line CHANGE letter TO string

The elements of the specified vector are converted to char­
acters and placed in the specified strin,.. or substring. The
current dimension of the vector is used. If a value has a
fractional part, it is truncated.

Example:

15 CHANGE X TO Y$

Assuming X has the elements 193, 241, 90, and 87, the
characters' A I, '1', 'J I, and 'bell' wi II be stored in Y$.

Rereading DATA/Branching to a Subroutine/Character Conversion 29

FILE MANIPULATION

A file is a collection of items assigned a name and treated
as a single unit. It is the principal device for manipulation
of blocks of data too large to process as a unit in computer
memory and for storage and data. Fi I es are mode up of rec­
ords, each of which may contain one or more data elements.
A file may be organized as a consecutive sequence of rec­
ords or as a set of records arranged according to sort keys.
The data in files may exist in a "print" form (BCD) or in the
form used within the computer (binary). BASIC allows op­
erations on BCD and binary files,with sequential or keyed
access. Files are also used to store and fetch BASIC pro­
grams. The BASIC statements OPEN, CLOSE, GET, PUT,
ENDFILE, and special forms of PRINT and INPUT provide
file manipulating capability.

FILE NOMENClATURE

Files may have names of up to 7 characters. Names ma)'
be enclosed in quotes (single or double) or may be aconsts
(limited to six characters) stored in simple variables. In
BASIC a nome may also be any string expression of up to
7 characters.

The name may be optionally followed by a password of up
to four character and/or on account identifier of up to
eight characters. An account should not be specified for
output operations, since output will not be permitted on
other users I accounts.

The general form for file identification in an OPEN
statement is

nome [;password]&account]

Examples:

"FILEONE"
A1,'PASS':'123QS67S'

In the second example, the simple variable A 1 must contain
a name as on aconst.

Passwords are used for file security, and the account is used
to input data created in other users I accounts. A password
is preceded by a semic!olon and an account number is pre­
ceded by a colon. If both account and password are speci­
fied, the order of their appearance is optional.

The term 'fileid ' will be used for name [;password][:accountJ
in describing forms of the OPEN and CHAIN statements.

30 File Manipulation

110 STREAM NUMBERS

Files are opened to specified input/output stream numbers.
BASIC permits four streams. Only one file can be opened
on a given stream number at one time, but the some stream
number may be used to open another file later, closing the
currently open file. The stream number is specified in the
OPEN statement and may be any expression which evaluates
to a legitimate stream number. Fractional values are trun­
cated to integers, and expressions which do not result in in­
teger values should generally be avoided.

KEYED AND SEQUENTIAL ACCESS

BASIC allows file access in either sequential or keyed form.
All files created by BASIC are actually keye.d but they may
be sequentially written and read without expl icit references
to keys. Sequential files created without keys may only be
read sequentially. This means that files created by EASY
can only be read by BASIC, not updated.

The keys used in BASIC are numbers in the range 0.001 to
9999.999. Sequential files are created with keys 1.000,
2.000, ••• (these keys are compatible with the keys, or
"sequence numbers", used in the Xerox ED IT processor).

The key value for a given I/O operation can be set by ex­
plicit reference to the key, using any arithmetic expression.
If a subsequent operation on the same file does not reference
an explicit key, the key value is incremented by one for
each record accessed.

If an output statement with an explicit key creates more
than one record, the subsequent records have keys in'cre­
mented by one per record. If an input statement with an
explicsit key requires more than one record of data, records
are read sequentially starting at the record with the refer­
enced key.

UN KEYED I/O IN THE UPDATE MODE

When a stream is opened in the update mode, file position­
ing is not separately maintained for input and output opera­
tions. For example, if a PUT is followed by a GET and the
GET is unkeyed, unused data read from the last record is
used. Then the record accessed is the next one, in ascending
key sequence, after the last record PUT. An unkeyed PUT
following a GET replaces the last record accessed. An
un keyed PRINT following an INPUT replaces the last rec­
ord accessed. An unkeyed INPUT following a PRINT
accesses the next record after exhausting all data in a
previously INPUT record.

In general, it is advisable to specify keys in all UPDATE
operations.

OPEN The OPEN statement perf()rms the following file
management functions:

1. Designates that the named file is to be opened for 8'cD
or binary input, C)utput, or updclte.

2. Assigns the file to an I/O stream number.

3. Closes a file if the file is to be opened for output and
a file of the same name is currel'1Jtly open. Closes a
file if the fille is to be opened fc)r input and a file of
the same name is currently open for output.

4. Indicates whether an existing file may be written over
if a file of the same name is to be open for output.

5. Positions the opened file at its starting point. (A file
opened for output is initial ized as an empty file.)

6. Declares a file as a TFILE if the OPEN statement so
indicates. TFILES are released at the end of a terminal
session or, il'l batch operations, at the end of the JOB.
The TFILE directive is ignored if the file has a
password.

BINARY INPUT

The OPEN statement for binary inpu't has the form

line OPEN fileid[,]TO :stream, GET[[,JTFILE]

Example:

120 OPEN 'OATA' TO :3, GET

This opens the file on I/O stream 3 (md does not declare
the file temporary.

DEFAULT FORM FOR BINARY INPUT

An abbreviated form may be used for' binary input.

line OPEN fil e id[,] I[any charclcters]

This is equivalent to

I ine OPEN fileid TO : 1, GET

BCD INPUT

The OPEN staternent for BCD input has the form

line OPEN fileid[,]TO :streaml, INPUT[[,] TFILE]

BINARY OUTPUT

The OPEN statement for binary output has the form

line OPEN fileid[,J TO :stream, PUT ,{g~ER}[(JTFILE]

Example:

130 OPEN 'OUTF' TO :A(I),PUT,OVER,TFILE

If A(I) =4, this opens "OUTF" to stream 4 for binary output
(PUn. OVER indicates that an old file named OUTF is to
be written over if present. TFILE indicates this is a tempo­
rary fj Ie, to be released at end of job.

DEFAULT FORM FOR BINARY OUTPUT

An abbreviated form may be used for binary output.

line OPEN fileid[,] 0 [any characters]

This is equivalent to

line OPEN fileid TO :2,PUT ,OVER,TFILE

BCD OUTPUT

The OPEN statement for BCD output has the f ."

line OPEN fileid[.)TO :stream, PRINT[.) Ig~ER}-::J

L [[,]TFILE]

Example:

140 OPEN 'SCDOUT' TO :4, PRINT ON

The 'ON' directive means if an old file exists with name
BCDOUT, it is not to be overwitten.

BINARY FILE UPDATE

To update a binary file, vse the form

line OPEN fileid[,]TO :stream, GET, UPDATE--,

L [[,]TFILE]

This opens an existing binary file in the update mode,
allowing input (GET) and output (PUT) on the file.

File Manipulation 3'

BCD FILE UPDATE

To update a BCD file, use the form

line OPEN fileid[,]TO :stream, INPUT,UPDATE--,

L[[,]TFILE]

This opens an existing BCD file in the update mode, allow­
ing input (INPUT) and output (PRINT) on the file.

ENDFI LE The ENDFILE statement allows the user to
branch to a designated line number in his program when an
out-of-data condition occurs or a specified key is not found.
The form af the ENDFILE statement is .

line ENDFILE :stream,{E
I
· b } ane num er

The "stream" may be any expression. If the expression
evaluates to a legitimate stream number, the OUT OF DATA
control will be applied to any GET or INPUT: viathat
stream. If the expression evaluates to zero, OUT OF DATA
control is appl ied for READ statements.

The "stream" expression is followed by a "line number"
(not an expression) or the letter "E". E indicates reset to
normal error exit. A "line number" indicates the location
(in the user's program) to transfer to on the out-of-data
condition.

Example:

100 OPEN -FILE- TO z1, INPUT
'10 ENDFILE :1, 150
120 INPUT :1, A$
130 PRINT A$
1"0 GOTO 120
150 CLOSE :1

CLOSE The CLOSE statement closes the file on the
indicated I/O stream.

line CLOSE :stream

This closes the open file, if any, on the indicated stream
number.

Example:

200 CLOSE :N

If N =3, stream 3 is closed.

The following forms may also be used.

line CLOSE I[any characters](equivalent toCLOSE :1)

I ine CLOSE O[any characters] (equivalentto CLOSE :2)

Files may also be implicitly closed by an OPEN statement
and are closed when leaving BASIC.

32 File Manipulation

GET The GET statement retrieves binary data from files
created by PUT statements. Data is assigned to specified
variables as it is received from the file vio the indicated
I/O stream. Access may be .. equential or keyed. GET has
the form

line GET[:stream[;key],] variable[,variable] •..

A defau I t form can be used

GET variable ••.

This is equivalent to

GET: l,variable •.•

The variables may be simple or subscripted. There is no
comma following the final variable in the list. As in READ
and INPUT, the variable list may include either of the
special entities * or **. The single asterisk causes an error
exit if the current record has not been exhausted of data.
The double asterisk causes any unused data in the current
record to be discarded.

Attempts to GET on an I/o stream which is not open for
binary input or to use an illegal I/O stream number will
terminate the run with an appropriate error message.

The specification of a nonexistent key ar an attempt to read I
beyond end-of-file gives an OUT OF DATA error exit and
message. This exit may be modified by the user (see
"ENDFILE", above).

A GET statement may require reading more than one record
to satisfy the variable list. If the GET statement has the
key value n, the records read are accessed sequentially
starting with n.

If a keyed GET is followed by a non keyed GET, records
are accessed sequentially starting with the keyed record.

Example:

PUT

100 OPEN -PUTFILE- TO :3, GET
110 ENDFILE :3, 150
120 GET :3, A1, B4, C7
130 PRINT A1.(B"-C7)
1"0 GOTO 120
150 CLOSE :3

The form of the PUT statement is

This statement writes data into a file in internal (binary)
format. The expression following the colon indicates the
I/O stream (thus, because of an OPEN statement, the
file to be written on). The optional expression preceded
by a semicolon designates the key. If a key is designated,

the first items written will be to 0 record with that key
value. A PUT statement may generate mare than ane rec­
ord. If so, arid if the statement contains the explicit
key n, the records generated wi II have keys of val ue n,
n + 1, •••

A defau I t form can be used

line PUT{c3xpr } r, {expr }]
Clconst ~ aconst

This is equivalE~nt to

. {expr } [{expr '}~ line PUT ::2, t' .•• aeons aconst

The data values to be entered into the file may take the
form of an expression or an alphanumeric constant. There
is no comma foillowing the final expression or oconst in the
list. Some sample PUT statements are shown below.

880 PUT ·ERICEL",55,72
881 PUT :1,TIM(X),DAY(X),YER(X)
882 PUT FNH(A1)+P.O

The FNH in statement 882 is an example of a user-defined
function. These are explained uncler "User-Defined Func­
tions", earlier in this chapter.

PUT statements can be used to WrH te on fil es opened for
PUT or opened for GET, UPDATE. In the case of updates,
records can be inserted or replaced using the key option.
In newly creatEld files, the key option can also be used to
write records in a nonsequential order and to replace pre­
viously written records by repeating a PUT with the same
key.

The form of PUl' and GET records is described in Appendix E.
These records generally include 14 data values, but short
records may be created by use of keyed PUT statements or
as the last record written before closing the file or using
the flushing tec:hnique (see "I/o Flushing" below).

Example of keyed PUT statement:

300 PUT :4,121,A,B,C,n,E,F, "-J

c= G,H1,I,J ,K,L,M,N,O"P

This statement wi II cause BASIC to write a record via 1/0
stream number ·4 with the key 121 and the values con­
tained in the simple variables A to N. The values in 0
and P will be the first two values written on record 122.

, If the next PUT statement does not include a key, writing
will continue cln record 122. (This example was chosen to
indicate the cOlution that should be used in mixing keyed
and nonkeyed ()utput statements.)

If a PUT statement does not fill th{~ current output record,
that record is nlot normally output until it is later filled, a
keyed PUT is c3xecuted,' or a CLOSE is executed. Short
records may be forced out by using the special expression
11**11 (see III/O Flushing", below) ..

A PUT statement may result in on error message if the
selected I/O stream is not open in the proper mode, on
illegal stream number is selected. or an out-of-range key
is selected.

INPUT The action of an INPUT statement for file input
is analogous to that of a normal INPUT statement (see
"INPUT", Chapter 2) except the BCD input is routed from
an open file through a specified I/O stream rather than
from the terminal. Sequential or keyed access is permi tted.
The form of a file INPUT statement is

line INPUT :stream ;key I input list

Example:

250 INPUT :3,A(1),A(2), ••

The lIinput list" is the same as for normal INPUT statements.
One I ine constitutes one record and a singl e IN PUT state­
ment may access several records sequentially. If the INPUT
statement specifies a key I reading starts at the beginning
of the keyed record.

Attempts to input a specific keyed record that does not
exist, (if no ENDFILE is in effect) or to use an I/O stream
not open for BCD input or an illegal I/o stream will re­
sult in an error exit and message.

An attempt to INPUT beyond the end-of-file gives an OUT
OF DATA error exit. This exit may be modified by the
user by means of an ENDFILE statement (see above).

PRINT The action of the PRINT statem~ ; "'Ir file out-
put is analogous to that of a normal PRINT statement
(see "PRINT", Chapter 2) except the BCD output is routed
to an open file via a specified I/O stream. Sequential or
keyed output is permitted. The form of the file PRINT
statement is

I ine PRINT :stream&key] ,print list

The first expression is the I/O "stream" number. The op­
tional second expression is the O'key" value. The "print
list" allows any arguments acceptable in a normal PRINT
statement.

A record is generated for each I ine of print, thus one
statement may generate more than one record. If the
print I ist ends with punctuation, a partial record is formed.
The record is output if a full line is formed, a PRINT
on the same stream ends without punctuation, or any
PRINT is executed on a different I/O stream (or to the
terminal). In general, it is bad practice to end a file
PRINT statement with punctuation (comma or semicolon)
or a TAB(O).

File Manipulation 33

If a PRINT statement generates more than one record, the
key is incremented by 1 for each record. This should be
particularly noted if files are generated with later updates
in mind or when in the update mode. If it is likely that
multirecord PRINT statements will be used, the file should
be created as a keyed file with key increments large enough
to allow insertions and replacements without inadvertent
overwrites.

Example:

400 PRINT :4,1,1,2,3,4,5,6,7,8
410 PRINT :4,1+1,9,10,11,12

In the above example, statement 400 generates two records
with keys 1 and 1+1. Then statement 410 generates a new
record with key 1+1.

If the file is created with a key interval of 10 records, it
might be generated or updated as follows.

400 PRINT :4,10·1,1,2,3,4,5,6,7,8
410 PRINT :4,10·(1+1),9,10,11,12

1 EASY

NEW OR OLD--oLD LISTF

READY
LIST FILE

FILE UTS/EASY 14:21 AUG 25,'72

"EHPL NO. NAME SOC SEC NO.
10712 JACK 468-54-234 123GTR 876-0987
76540 MIKE 654-87-932 321KIU 654-6543
87654 TED 432-22-876 987PIP 876-6789

READY
LIST

LISTF UTS/EASY 14a21 AUG 25,'72

10 DIf.1 E$ (5)
20 OPEN "FILE" TO :1, INPUT
30 INPUT N$
40 INPUT :1, B$
50 INPUT :1, E$(1)
60 IF E$(1)-N$ THEN 90
70 INPUT :1, ••
80 GOTO 50
90 PRINT B$
100 INPUT :1,E$(2),E$(3),E$(4),E$(5)
110 PRINT E$(1),E$(2),E$(3),E$(4),E$(5)

READY
RUNNH

?76540
EMPL NO.
76540

110 HALT

NAME
MIKE

SOC SEC NO.
654-87-932

In this case, statement 400 generates records with keys 101
and 101+ 1. Statement 410 generates a record with key 101+10.

PRINTUSING The action of the PRINTUSING statement
for file output is analogous to that of a normal PRINTUSING
statement (see "PRINTUSING and :(lmage)", Chapter 2)
except the BCD output is routed to an open file via a speci­
fied I/O stream. Sequenticl or keyed output is permitted.
The form of the file PRINTUSING statement is

rl. ,]. [{expression}ll
LhneJPRINT :stream[;key ,USING line, text string U· ..

Example:

100 PRINT :1,K, USING 200, X, Y4

110 RESIDUE

In executing GET, INPUT, or READ statements the current
record mayor may not be exhausted of data, depending on

ADDRESS

ADDRESS
321KIU

PHONE
654-6543

Figure 3. INPUT Residue Example

34 File Manipulation

the amount of data contained in that record. Normally,
any residual delta remaining in a record is retained for use
by a subsequent GET, INPUT, or READ. The use of a
single asterisk in a GET, INPUT, or READ causes BASIC
to take an error exi~ if residue occ:urs. A double asterisk
causes any residue to be discarded.

In the example shown in Figure 3, the user loads, lists, and
runs a program named LISTFILE. This program opens FILE
to stream 1 and prompts the user to type an employee
number. It then inputs a header n~cord to B$ and inputs
the first field olf each subsequent r·ecord to E$(l) until it
finds one beginning with 76540. The INPUT: 1, ** state­
ment in line 701 causes unwanted residue to be discarded.
Line 100 inpuh the remaining dato from the selected record.

I/O FLUSHINCI

If a PUT statement does not fill thEt current output record,
that record is not normally output IJntil it is filled by a
subsequent PUT, a keyed PUT is executed, or a CLOSE is
executed.

The writing of !ihort recordco can bEt forced by use of the
double asterisk (see Figure 8, Appendix E). This capabil ity
is usefu I pri mari I yin the update mexfe.

Examples:

320 PUT :4,N,A(1),A(2),A(3), ••

This ensures tholt a three-element record with a key value
of 4 is immediately output.

440 PUT :1, •• ,A,B,C,.~,D,E,F, ••

This ensures tholt two short records are output, with three
elements each. In this case, if a portial record was pend­
ing prior to exe'cuting the statemen,t, it is output first as a
short record.

RU.INING CONSECUTIVE PROGRAMS

CHAIN CHAIN directs the computer to acquire and
run another pro!gram of a series of programs without future
action by the pl'ogrammer. The format of the C HA IN state­
ment is

line CHAIN name[;paS5wordJ [:acct no]

where name (and, optionally, password and acct no) is the
identity of a prl)gram as defined il1 the discussion of the
OPE N statement.

When executed, CHA IN produces the following results:

1. The current program is discarded, but the va I ues of its
simple variables are retained,

2. The named program is obtained, compiled. and exe­
cuted if possible.

Note that only the simple variables computed by the pro­
gram are retained when CHAIN is executed; all array values
and dimension information are lost. A sample CHAIN state­
ment is shown below.

950 CHAIN ·PART2· :A:P

CHAIN LINK The CHAIN LINK statement differs from
the CHAIN statement in that it preserves array and string
values. The CHAIN statement retains only the simple vari­
ables and discards the rest of the program.

The form of the statement is

line CHAIN [LINK]file identification

An example is

960 CHAIN LINK -PART3- :A:P'

where

II PART3 II is the name of the chained program.

:A is account A.

;P is the password.

A and P contain alphanumeric constants. The ILlNK" port
of the statement is optional. Without it, the array context
of the oid program would simply be discarded. With it,
context is retained.

Although C HA IN LIN K preserves array context, array
dimensioning is not preserved. Therefore any array used in
a program that is chained to must be redimensioned in that
program, via a DIM statement, if explicitly dimensioned
in the first program.

MATRIX OPERATIONS

Matrix operations in BASIC are controlled through use of a
special set of MAT statements. In addition to the usual set
of allowed matrix manipulations, BASIC provides options
for input of matrixes via console or file, copying of matrixes,
and the solution of simultaneous equations. Some of the

Running Consecutive Programs/Matrix Operations 35

matrix operations apply to vectors as well as to matrixes.
At times, vectors are treated as either row or column
matrixes.

MAT statements may be specified to use variable dimen­
sions, as long as these are within the dimension limits
specified in DIM statements. In some cases, dimensions will
vary because of the operations that are performed on them
(for example, multiplication of non square matrixes). Thus,
there is current dimensioning {the result of the latest matrix
operations, or as specified by the user in MAT SIZE state­
ments}, and absolute dimensioning (given in DIM statements).

:very array that is named in a MAT statement must be di­
mensioned in a DIM statement. This assures that absolute
dimensions exist, sets initial current dimensions, and dif­
ferentiates between vectors and matrixes. (Note that use
of a letter to designate an array does not preclude the use
of the same letter to designate a simple variable.) Current
dimensioning may not exceed absolute dimensioning. Ma­
trix operations and their corresponding MAT statements are
presented be I ow.

MAT GET The MAT GET statement reads array values
from the currently open input file. It complements the
MAT PUT statement, but can also read data prepared by
ordinary PUT statements. MAT GET takes the form

line MA T GET [:stream[;key],] adescr[,adescr] •••

The default form

MA T GET adescr[,adescr] •••

is equivalent to

MAT GET : 1 ,adescr[,adescr] •••

where adescr is an array descriptor of the following format:

aname[(dimx[tdimx])]

In the array descri ptor, the terms aname and d i mx present
the single letter array designator and dimension (subscript)
expression, respectively, of the array. As shown in the
general form above, therefore, on adescr term may indicate
a single letter array designator, a designator followed by
one subscript (a vector), or a designator followed by two
subscripts (a matrix). The dimx expressions in on adescr
term constitute variable dimensions; they provide a simple
method for varying current dimensions during execution
(not during compilation).

One example ofa MAT GET statement is

1008 MAT GET A(3,3), B(4,8)

MAT PUT The MAT PUT statement enters arrays into the
currently open output file. It tokes the form

line MAT PUT [:stream[;key J,] adescr[,adescr] •••

36 Matrix Operations

The default form

MAT PUT adescr[,adescr] •••

is equivalent to

MAT PUT :2,adescr[,adescr] •••

There is no comma following the final array nome in the
I ist. In the sample statement

1002 MAT PUT A,B

array A will be completely output before arrayS is output.
Current dimensions determine how much data is output from
a given" array. Current dimensions may beset as port of the
adescr, which is described above for MAT GET. Ma.trixes
are entered into output files in row major sequence, that
is, with the last'subscript varying most rapidly.

Note that one MAT PUT may create several records. The
key for the first record may be sel ected. but later re~ords
will have keys incremented by 1 per record. See "I/o
Flushing", above, for treatment of partial records.

MAT INPUT The MAT INPUT statement is the array
counterpart of the variable-oriented INPUT statement de­
scribed earlier in this chapter. Format and a sample state­
ment are shown below.

line MAT INPUT[:stream[;key],]adescr[,adescr] •••

If ":stream" is included, input is from an open SCD input
file assigned to that stream.

Example:

1007 MAT INPUT A(3,4), 'B

When statement 1007 is executed, 12 va I ues must be su.p­
plied for the 3 x 4 matrix A. These values are then fol­
lowed by input for array S. Note that the number of values
input to arrayB must match the current dimensiQns forB.

The rule for the use of commas and empty fields in the data
list read by MAT INPUT is the same as described for the
INPUT statement.

MAT PRINT The MAT PRINT statement prints arrays in
regular or pocked format. The form of the MAT PRINT
statement is

line MAT PRINT [:stream[;key].J onome~; }1]
L [aname] •.. [;]

where aname is the letter designation of an ,array that has
been dimensioned in a DIM statement. Some sample MAT
PRINT statements are shown below.

1000 HAT PRINT A, B; C
1010 MAT PRINT 0;

There are two types of print formats, regular, or packed.
An aname param1eter followed by a semicolon causes the
named array to be printed in packed format. Otherwise,
regular format is used. Statement 1000 will cause array A
to be completely printed before any element of array 8 is
printed. Array A will be printed in regular format, array 8
in packed format, and array C in re~~ular format. Current
dimensions are u!;ed to determine how much dato is printed
from an array. Statement 1001 will cause array 0 to be
printed out in packed format.

Vectors are printed in row fashion. lEach row of a matrix
is printed as one or more consecutive print-rows with a
blank line betwelen successive matrix-rows. Column 1 of
a matrix always occurs in the leftmo!lt print field.

Note: If MAT PRINT :stream is used, each line of output
creates one record. In general, more than one
record will be created. A record containing one
blank byte is created after the last MAT PRINT
record is written.

MAT READ The MAT READ statement is similar to the
READ statement dlescribed in Chapter 2, except that it
acquires whole arrays of data, rather than just single data
items. MA T READ has the form

line MAT READ adescr[,adescr] •••

where adescr is 0'1 arroy descriptor of the same format pre­
viously explained under "GET", namely

aname ((dim>:[,dimx])]

If dimension exprf!ssionsare included in the array descriptor,
they specify curretnt array dimensions. If they are omitted,
current dimensioning results from previous conditions. Some
samples are shownl belc)w.

1005 l~T READ A(K/L+M,7)
1006 MAT READ B, C(3,4)
1007 MAT REA!) 0

MAT SIZE ThE! MAT SIZE statemElnt redefines current
dimensions of the named array. MAT SIZE has the form

line MAT SIZE aname (dim;lC[,dimx]) ~

L [,aname(dimx[,dimx))]. ••

Examples:

1003 MAT SIZE A(X+Y,Z)
1004 MAT SIZE 0(4,5), B(3)

where

aname is the single letter designator of an array.

dimx is ainy expression representing a legal
subscript.

ASSIGNMENT FUNCTIONS

The matrix assignment functions resemble the LET statement
in form and function. An a!'ray name (aname) always ap­
pears immediately to the left of the equals sign and the
named array is assigned values according to the specifica­
tions to the right of the equals sign.

ZERO

This statement zeros those elements of the named array that
fall within the range of current dimensions. Its format is

line MAT aname = ZER[(dimx(,dimx]~

The optional dimx terms have the same meaning described
previously under MAT GET; that is, they are dimension ex­
pressions specifying new current dimensions (subscripts) of
the array, and as such constitute variable dimensions. For
example, assuming the array 8(5,5), that is, a 5 x 5 matrix
named B, the following statement,

1010 MAT B-ZER(3,2)

will zero elements (1, 1), (1,2), (2, 1), (2, 2), (3, 1), and
(3,2), leaving the remainder of the matrix unchanged.
Other exampl es are

1 020 lofAT c.. - Z l:.: R (1 0)
1030 -MAT O-ZER

CONSTANT

This statement is analogous to that discussed above, except
that is sets matrix elements to 1 (instead of 0). Its format
is given below.

line MAT ana me = CON [(dimx(,dimx))]

Example:

2250 MAT L-CON(3,5)

IDENTITY MATRIX

This statement forms an identity matrix. ~;nce the array
must be a square matrix, new current dimensioning may
have to be pro v i ded . Two forms are shown be I ow.

I ine MAT anon me = JON [(dimx)]

line MAT ana me = JDN[(dimx, any characters ""]

L to end of line]

Matrix Operations 37

The first form, which gives the current dimension for therow
value only, is sufficient to define the square matrix. The
second form is provided for those users who wish to clearly
indicate that the array is a square matrix. However, it may
stand alone. Appropriate samples Qre shown.

1011 MAT Z-IDN
1012 MAT B-IDN(4)
1013 MAT C-IDN(3,3)
1014 ~~T D-IDN(X+Y)

COpy

The copy statement copies arrays, and sets current dimen­
sioning of the array copied into to that of the array copied
from. The form of the copy statement is

line MAT aname = aname

In the sample copy statement below,

1015 MAT A-B

matrix B is copied into matrix A. Assume that B is a 4 x 4
matrix with current dimensioning (3,3). Only elements
(1,1), (1,2), (1,3) ••• (3,3) from B are copied into A.
Further, any remaining elements in array A are not changed,
and the current dimensioning of A becomes (3,3).

SCALAR MULTIPLICATION

The scalar multiplication operation multiplies an array by
a scalar quantity. The form of the statement is

line MAT aname = (expr) * aname

where expr is an expression representing the scalar multi­
pi i er, and the parentheses are requ ired. In sampl e state­
ment 1016, below,

1016 MAT A-(A).A
1017 MAT B-(SIN(X+H».C

the parenthesized A is interpreted by BASIC as a simple
variable, not as an array name.

ADD ITION AND SUBTRACTION

Array addition and subtraction are performed through use
of the statement shown below.

line MAT aname = aname{~}aname

38 Matrix Operations

This statement adds or subtracts the corresponding elements
of the two arrays named on the right of the equals sign and
stores the results in the array named on the left. A sample
is given for reference.

1018 MAT Z-B+C

The ambiguity introduced by allowing addition or subtrac­
tion of two vectors with storage in a matrix, or copying,
transposition, and scalar multiplication of a vector into a
matrix is resolved by considering the vectors as row vectors.
Current dimensions of both arrays named to the right of the
equals sign must be equal for addition and subtraction. The
current dimensions of the array named on the left side of the
equals sign are set equivalently.

TRAN SPOS ITION

It is not necessary to transpose a vector array; the result is
an exact copy of the argument vector. Matri xes are trans­
posed by use of the statement shown below.

line MAT aname = TRN(aname)

Sample statements are shown below

1019 MAT A-TRN(A)
1020 MAT B-TRN(C)

Current dimensioning of the m.trix named on the left side
of the equals sign is set consistent with current dimensioning
of the matrix named on the right.

MULTIPLICATION

In the multiplication operation, vectors are taken to be row
or column matrixes as appropriate. If a vector is multiplied
by a vector, the scolar (dot) product results. The form of
the multiplication statement is

line MAT aname = aname * aname

The following is a sample multipl ication statement.

1021 MAT Z-B.C

Notes: 1. Current dimensioning must be consistent with
the usual rules of matrix multiplication.

2. The same array nome may not appear on both
sides of the equals sign.

]NVERS]ON

The inverse of (I sqU(lre matrix is specified as shown below.

line MAT aname = INV(anarTIe[,simple variable])

where the inclusion of the simple variable (in which to store
the computed dt~terminant of the argument matrix) is a user
option. Some sample statements are

1 022 MA~r A-INV (H)
1 023 MA~r B-INV (I, D)

In cal culating the inverse of the square (by current dimen­
sioning) argument matrix, the target matrix is initially set
to an identity matrix. Then the target is converted by
those elementary row operations thot reduce the argument
matrix to the identity matrix. Upon completion of the con­
version, the taq~et matrix is approximately the inverse of
the argument mntrix. The values of the argument matrix
are destroyed; both matrixes have current dimensioning
originally applicable to the argument matrix.

Notes: 1. The' argument matrix must be square (according
to its current dimensions).

2. Results Clre approximatE!, not exact.

3. At the user's option, the computed determinant
of t'he argument is storE!d in a simple variable.

4. The contents of the argument matrix are
destroye~ but current dimensions remain.

5. The same array name may not appear on both
sidE!S of the equals sign ..

SIMULTANEOUS EQUATION SOLUTION

Solution of simultaneous equations iis accomplished via the
statement shown belo,w.

I ine MAT aname = SIM(anamt~[,simple variable])

where the simplt~ variable modification is a user option.

Some sample statements are shown below.

1024 MA'r' M-SIM(E)
1025 MAT' S-SIM(H,D2)

The target array contains one or more sets of I inear equa­
tion constant column vectors. The dimensions of this array
must be compatible with the square argument matrix. For
example, if the argument matrix has current dimension of
(n, n), the target' array must be eithf~r an n-dimension vector
(one solution, or else an n x m matrix (m solutions). The

argument matrix contains the coefficient matrix. The
solution of the simu: tar.eous equations is arrived at by con­
verting the target array by those elementary row operations
that reduce the argument matrix to the identity matrix.
Upon completion of the conversion. the values of the
argument matrix are destroyed. but current dimensions for
both the target and the argument arrays are unchanged. The
target array contains the appropriate values that are com­
puted by taking

(argument)-l x (target)

This result is equivalent to solving one or m sets of simulta­
neous I inear equations having the same coefficient matrix,
that is, the argument matrix.

Notes: 1.

2.

3.

The argument matrix must be square (according
to its current dimensions).

Results are approximate, not exact.

At the user's option, the computed determinant
of the argument is stored in a simple variable.

4. The contents of the argument matri x are
destroyed, but current dimensions remain.

5. The same array name may not appear on both
sides of the equals sign.

ACCURACY OF INVERSION AND SIMULTANEOUS
EQUATION SOLUTION

The results of matrix inversion will vary in accuracy because
of precision losses during the conversion r SSe If, during
conversion, a pivotal element is smaller in magnitude than
1013 , it is considered to be zero and the matrix is con­
sidered singular. If all elements of a matrix are of small
magnitude (e. g., 10-6 or less), it should be scaled upward
so the greatest magnitude of any element is near unity. If
a matrix consists of elements of large magnitude, it should
be scaled down again to near unity for the maximum
element.

When a determinant cal culation is requested in using the
inversion or simultaneous equation functions, the following
special situations may occur:

1. If the determinant value calculation results in a magni­
tude greater than 7.234 x 1075 , the value of the simple
variable will be the alphanumeric value OVERFL.
This does not affect the calculation of the inverse or
simultaneous equation solution.

2. If the matrix is singular, the simple variable is given
a value of zero; the values of the argument and target
arrays are destroyed.

Matrix Operations 39

7. BASIC MESSAGES

This chapter lists BASIC error messages and other messages
in alphabetical order. In the messages, xxxxx represents
I ine number and x represents array nome, function letter,
or declared letter. Except as noted in comments, an error
causes termination of program execution.

xxxxx ACONST EXPECTED

A variable contains numeric data when it sho ... ld contain
an aconst.

xxxx ARG NO. ERR FNx

Conflict between the number of arguments defined and the
number of arguments used with the function.

ARRAY CLASS CONFLICT

The indicated letter is used for more than one type of array.
Example: B used for a string vector but dimensioned as a
numeric vector.

xxxxx ASN-ACS ARG ERROR

The argument is outside the allowable limits :1.

BAD BYTE

In executing a CHANGE statement, a value was not in the
range 0-255.

xxxxx BAD CHAR

Statement xxxxx contains an illegal character (for example,
I, ?,@, etc.). Note, however, that all characters having
the EBCDIC value of blank or greater are allowed in Image
statements, text strings, and alphanumeric constants.

xxx xx BAD CONST I '----____ ----1

Line xxxxx contains on improperly formed numeric or
alphanumeric constant. Probable causes are

Numeric

1. Extra decimal points.

2. More than two digits in exponent fields (for example,
• 001 E 100).

40 Basic Messoges

3. Underflow or overflow in conversion to floating-point
form.

4. Missing operator after the constant.

Alphanumeric

1. Missing quotation mark.

2. Single (or double) closing quotation mark does not
match double (or single) opening quotation mark.

3. More than six characters between quotes.

4. Contains a character having an EBCDIC value less
than that of the blank character (for example, the
o character).

xxxx BAD FORMAT

This message covers a wide range of syntax errors~ The
user should reexamine statement definition if the error is
not obvious.

xxxxx BAD FORMU LA

An arithmetic expression error has been detected. This
message covers a wide range of error situations such as
missing operators, missing operands, misspelled function
names, misspelled keywords, etc.

BAD STEP II AFTER STMT xxxxx

A line number contains a nonnumeric character or more
than five digits.

xxxxx BAD STMT

The type of statement is not recognizable; most frequently,
the command keyword has been misspelled.

xxxxx BAD STREAM NO.

An I/o stream number is outside of the legal range (1-4).

xxxxx BAD SUBSCR

A known subscript value is too small •

BAD SUBSTRING PARAM

Run-timer error. A substring index is nonpositive or starts
beyond the max i mum stri ng length.

xxx xx BAD TEXT

A text string either contains a t"ew Line character (user
probably forgot the end-quote mark), or has an unmatching
quote (as in 1~!3 PRINT IIDOUBLE QUOTE'), or contains a
character having an EBCDIC valu(! lower than 15.

CANNOT OPEN

Unable to OPE:N a file

DATA MIX-UP, $STRING VS NUMERIC

Either numeric: dato is being input to a string, or text
exceeding aconst length is being ~nput to a simple or sub­
scripted variable (via READ, INPUT, GET, MAT READ,
MAT INPUT, e)r MAT GET).

xxxxx DEFD ·~WICE

A function defined in DEF statemEint xxxxx was also defined
by an earlier DEF statement.

L ~xxxx DIM ERR
. -----------'

A DIM statemEint formula contains one of the following:

1. User funcl'ion (:01 I •

2. 'Simple variable that is not SET to some value.

3. SubscriptEld variable reference.

)CXXXX DIMD TWICE x

Multiple-dimensioning has been attempted. Revise DIM
statements.

DIM TOO EnG

Run-time error. A dimension is too large in a matrix
operation.

xxxxx D IV BY ZER 0

Run-time or c()mpile error. A zel"O denominator was en­
countered in e·xpression evaluatioll1.

xxxxx ERROR IN KEYED I/O

Reference to illegal key or :lttempt to access an un keyed
file in the keyed mode.

xxxxx EXP OVERFL

Floating-point overflow during exponentiation.

xxxxx EXTRA COMMA

Error indirectly associated with bad comma. Examples:

Syntax

X + (Y, Y)

SIN (A, B)

M(X,y,Z)

Explanation

Array reference without array designator.

Too many arguments in intrinsi.; function.

Too many subscripts in array reference.

xxxxx EXTRA INPUT

Contents of input record not exhausted when check symbol
'*' encountered.

xxxxx FILE I/o ERROR

Monitor indication of error in attempting to write or read
on file •

xxxxx FILE NOT OPEN IN PROPER MODE

I/O operation attempted on file which is closed, or open
in a conflicting mode, on the I/O stream in use.

xxxxx FOR-NEXT ERR

Message covers FOR-NEXT errors illustrated below:

Case 1. Wrong Variable Reference

FOR A
NEXT B error

Case 2. Improperly Sequenced Statements

FOR I
FOR J
NEXT I
NEXT J

error
error

Case 3. No Corresponding FOR Statements

NEXT A error

Basic Messages 41

These messages may be compounded as in

FOR A
FOR B
FOR C
NEXT B
NEXT C
NEXT A

error, FOR C is cancelled
error, FOR B is cancelled

or alternatively

FOR A
FOR B
FOR C
NEXt B
NEXT C

END

error
error

error, MISSING NEXTSTMT

xx xxx HALT

Normal message at termination of run.

xxxxx HAS BAD STEP NO.

A GOTO, GOSUB, IF, ON, PRINTUSING, or RESTORE
contains a step number having more than five digits.

xxxxx HSN-HCS OVERFL)

Hyperbolic sine or hyperbolic cosine overflow.

ILLEGAL FILE ID

File name, password, or account identifier too long.

ILLEGAL INPUT FROM FILE

Illegal input from a file.

xxxxx INCOMPAT DIMS

Dimensions not compatible in matrix operation. Examples:
matrix identity or inversion on nonsquare matrix, wrong
dimensioning for matrix multipl ication or addition, etc.

xxxxx INPUT DATA LOST

An input record is too big or has a parity error and has
been discarded.

xxxxx KEY NOT FOUND

A keyed read was attempted on a file not containing a rec-
ord with the specified key. (

42 Basic Messages

xxxxx LINE /I ERR

An illegal line number (>99999) occurred immediately
after the statement at xxxxx. If the first I ine is incorrect,
xxxxx is zero.

xx xxx LOG OF NON-paS ARG

The argument in a logarithmtic operation os not greater than
zero.

MISSING NEXT STMT

At least one FOR statement occurred without a matching
NEXT statement; that is, there were more FORs than
NEXTs.

MISSING STEPS

No list of line numbers was found in a GOTO ••. ON or
ON ••• GOTO statement.

xxxxx NEG BASE TO NON-INTEGER POWER

Fractional exponentiation was indicated but the number is
negative.

NO DIMSTMT ARRAY x

An array is used in MAT statement or string statements, but
not dimensioned.

NON-EXISTENT LINE II I
In the execution mode, a direct statement references a line
number that is not in the compiled program.

xxxxx NON-NUMERIC VAL

A VAL function orgument (string expression) does not repre­
sent a number.

xxxxx NON-POS DIM

Run-time error. A zero or negative dimension was en­
countered in a matrix operation.

xxxxx OUT OF RANGE REF. TO ARRAY x

A matrix operation compiled in the "safe" mode has refer­
enced on index greater than the maximum dimension for
array x.

xxxxx OVERFLOW J
Floating-point c1verflow.

xxxxx PAREN ERR

This message indicates a parenthesis. imbalance.

POWER OVERFLOW

Overflow in exponentiation.

XX)CXX PROG TOO BIG

The program exceeds available memory.

xxxxx RECORD NOT IN ·-GET-FORMAT

An attempt to GET has encountered a record not in the
proper format (seie Appendix E).

XXX): RESTORE A NON·mDATA LINE

A RESTORE staternent indicates a I inei other than a DATA line.

xxxxx RESTORE A NON-EXISTENT LINE

A RESTORE statement indicates a nonexistent line number.

XX:KXX RETURN BEFORE GOSUB

A RETUR N statement was reached but the return stack
is empty. Indicates improper nesting or branching on
GOSUB-RETURNs.

XXXXX RUN INTERRUPTED

This message is issued ofter a II break II (not an error condition).

:KXXXX SEC-CSC OVERFL

Secant or cosecant operation overflc~w.

[xxxxx SHOULD BE DATA STMT

line xxxxx was referenced in a READ or RESTORE statement
but was not a recognizable DATA statement.

xxxxx SHOULD BE IMAGE STMT

line XXXXX was referenced in a PRINTUSING statement but
was not a recognizable Image statement.

XXXXX SIN GULAR MA TR IX

An inversion or simultaneous equation solution was at­
tempted on a s i ngu I ar matri x.

xxxxx SQR ROOT OF NEG ARG

The argument of a square root function is negative.

xxxxx $TRING EXPR ERR

An i ncorrectl y forma tted stri ng express i on has been detected.

xxxxx TOO MANY GOSUBS BEFORE A RETURN

The return stacK for GOSUB-RETURN logic is full and
a GOSUB has beer. encountered.

xxxxx UNABLE TO OPEN xxxxx

An attempt to open the named file failed. The file is prob­
ably not present or has another account numt· . or name.

xxxxx UNDEF FNx

No DEF statement appeared for user function FNx.

xxxxx ZERO TO NEG POWER

An exponentiation operation attempted to raise zero to a
negative power.

Basic Messages 43

APPENDIX A. SUMMARY OF BASIC STATEMENTS

The complete set of BASIC statements is shown below. Capital letters indicate syntax that is required as shown. lowercase
letters designate general items. Command parameters enclosed by braces (t I) indicate a required choice. Parameters en­
closed by brackets ([1) are optional. Ell ipsis marks (...) denote multiple occurrences of the preceding parameter. Unless
otherwise noted, "variable" means either a simple or a subscripted variable.

Statement

line:[#s and/or characters to end of line]

line C HA IN xname [[;password] ~acet no]]
:acct no ; password

line CHAIN LINK xname r[;possword]&acct no]]
L~acct no] (;password)

l

:stream }
line CLOSE I . {a} [characters to end of line]

t
[:f:]constant} [[[±]constanj]

I ine DATA aco.nst , aco.nst •••
tstrlng tstrlng

line DEF FN letter (simple variable ~simple variable] •••) = expression

line DIM{::~::~ (dimx[.dimx]) ~{::::$} (dimx[.d1mxJ>]."

line END

• {'ine} lIMe ENDFIlE:stream, E

I ine FOR simple variable = expression TO expression STEP expressIon

· [r. .11 {Variable} [{Variable] I Ine GET etreamlikeYJ] string , string •••

line GOSUB line

line GOTO line

line GOTO line [,Iine] ••. ON expression

l
ex} t

expr

1 · pr aconst THEN •
IIOe IF ~:~st I operator I 'trexp { G eTC} I, ne

g xstrexp

· [[;:l 1 {Variable} [{Variablel] I Ine INPUT :stream ·keYJ ~ string , string •.•

line INPUT = {$ }
any other character .

I ine [lET] {variable ,variable ••. = l:~~~~:s:onll
xstrexp

string = strexp [{ I expreSSiOn} J]
variable ,.variable ••• = aconst •••

, xstrexp
string = strexp

44 Appendix A

I ine MAT olneme = (expression)*eneme

line MA T aneme = eneme

line MAT aneme :: eneme ± enome

line MAT aname = aname * enome

line MAT aname = CON [(dim><[,dimx])]

• (dimx')
line MAT aname = rON • . •]

(dlmx , [any characters to end of line

I ine MAT aname = INV (aname[,simple variable])

I ine MAT aname = SIM (aname[,simple variable])

I ine MAT aneme = TRN (aname)

line MAT aname = ZER[(dimx[.dimx])]

I' MAT GET [0 t [.k]] {letterS[vardim]} r{letterS[vardim]}O
Ine '05 ream, ey, adescr t adescr U· . •

line MAT INPUT [:stream[;key],] {::=~ [verdi m]} ~ {:::;~[vardim] ~ .•

line MAT PRINT [:stream[;keY]f] aname[{;Janame] •••

line MAT PUT [:stream[;key],] {ledtterS[vardim]} [.{ledtterS[vardim]J~ •••
a eser a escr U

line MAT RIEAD {letterS[vardi~]} r {letterS[vardim]}U •••
adescr t adescr U

line MAT SIZE{letterS}(dimx[,climx]) [,{letterS}(dimx&dimX]~'"
ename aneme ~

line NEXT !.imple variable

line OPEN fileicl , I~
TO:stream,

I
~~~UT [UPDATE] 1 

[,] [[IJ 
PUT {ON } 
PRINT OVER 

line PAGE 

line PAUSE 

Appendix A 45 



~ t] expression 
line PRINT [:stream[;key],] .[:]IXstrexp] [xstrexp• ] .•....... 

I . text'strlng 

[ I 
xstrexp IJ 

line PRINT [:stream(;key],] USING line .. ' express!on ••• 
text string 

I expresSiOn}. [ f·expreSSiOn}] 
line PUT [:stream [;key J,J .. aeonst. ., ' aeonst •••• 

xstrexp . xstrexp 

line {;EM}[eharaeters to end of line} 

line REAO{vm:iobfe'}: ({VtrCU:i.able}~: ••• 
string . Ks m9 ~. 

line RESTORE[line] 

line RETURN 

line STOP 

t Must not begin with a '+'. 

46 Appendi x A 



APPENDIX B. BASIC INTRIN SIC FUNCTIONS 

Function Result 

SIN(org) Colculates sine of argument in radians. 

COS(arg) Calculates cosinc~ of argument in radians. 

TAN(arg) Calculates tangel'1lt of argument in radians. 

ATN(arg) Calculates arctangent of unitless argument in radians. 

EXP( arg) C I I . If' h' (argument) a cu ates exponentla unctions, t at IS e . 

ABS(arg) Calculates absolute value of argument. 

LOG(arg) Calculates natured logarithm (base e) of the argument. 

LGT(arg) Calculates common logarithm (base 10) of the argument. 

SQR(arg) Calculates square root of argument. 

INT(arg) Acqu i res the integer part of the argument, 
argument. 

that is, the greatest integer that is less than or equal to the 

SGN(arg) Idemtifies algebrclic sign of argument, and produces a -1 for negative arguments, a 0 for 0, and a +1 
for positive arguments. 

RND(arg) Produces, for each call, the next element of a sequence of uniformly distributed random numbers that are 
greater than 0 but less than 1. Ifarg is 0 for the first RND call of a program, the identical sequence of 
random numbers wi II be generated if the program is rerun and arg is not changed. Otherwise, on unre-
peotable sequenc'e will be generated. 

DAY(arg) Supplies the calendar day. If the argument is 0, the BTM output form is mm/dd (as in 03. 'r March 7) 
and the BPM and UTS output form is mon/dd (as in MAR 07). If the argument is nonzero, the wvrput form 
is a flooting-point number whose integer part represents the month, and whose fractional part represents 
the day of the month divided by 100. For example, 3. 07EO represents March 7. 

TIM (arg) Supplies the time of day. If the argument is 0, the output form is hh:mm, as in 15:09. If the argument is 
nonzero, the autF)ut form is a flooting-paint number whose integer part represents the hour and whose 
fractional part rei~resents the minutes divided by 60. For example, 15. 15EO represents 3:09 PM. 

YER(arg) Supplies the year. If the argument is 0, the output form is 19yy, as in 1969. If the argument is nonzero, 
the output form is. a floating-point number whose value is equal to the year, as in 1969.0EO. 

MAX(arg ) 
n 

Se~ects the maximum value in the list of arguments. 

MIN(arg ) 
n 

Se~ects the minimum value in the list of arguments. 

TAB(arg) Advances the print device to the column designated by the argument, and shou Id only be used in a PRINT 
statement. TAB c:annot be used to backspace the print device. 

PRC(arg) Specifies the number of significant digits in printed output, and is used only in a PRINT statement. An 
argumeht of 0 specifies 6-significant-digi't output format, and a nonzero argument specifies 16-
significant-digit output. 

Appendix B 47 



Function Result 

CSC (arg) Calculates cosecant of an argument in radians. Overflow results in an error message and termination of 
execution. 

SEC(arg) Calculates secant of an argument in radians. Overflow results inan error messageand .. termination.of 
execution. 

COT(arg) Calculates cotangent of an argument in radians. Overflow results. inan error messQge and termination 
of execution. 

ASN(arg) Calculates arcsine of a unitl.ss Q,rgument, in radians. If the absolute value, of the argumenti~ greater 
than 1.0, an error message is printed and execution is terminated. Resolution of results is restricted to 
the two quadrants from - 11/2 to Tr/2. 

ACS(arg) Calculates the arccosine ofa unitless argument, in radians. If the abso.lute value of the,: argument is 
greater than 1.0, an error message is printed and execution is terminated. Resol ut i on of re.s,,1 ts. i 5·re-
stricted to the two quadrants from ° to Tr. 

HSN(arg) Calculates hyperbolic sine of an argument. Overflow results in an error mes50geand terminat.ion of 
execution. 

HCS(arg) Calculates hyperbolic cosine of an argument. Overflow results in an error message and termination of 
execution. 

HTN(arg) Calculates hyperbolic tangent of an argument. 

L TW (a rg) Calculates logarithm, base two, of an argument. 

DEG(arg) Converts argument to degrees, from radians. 

RAD(arg) Converts argument to radians, from degrees. . 

LE N (strexp) Gets current number of characters in string expression, as floating-point number. 

VAL (strexp) Gets numeric value of string expression as floating-point value. Error exit if string expression not numeric 

STR(expression Converts numeric value of expression to string format. Optional rstring argument permits spe.eificformat-
[, rstring]) tinge If second argument is not used, standard print output format is used. 

KEY(arg) Returns the value of the key most recently accessed on the I/O stream· spec ified by the argument. 

48 Aooendix B 



APPENDIX Cm FORMAT OF BINARY DATA FILES FOR BASIC (PUT AND GET OPERATIONS) 

The PUT and MAT PUT operations in BASIC create data 
files in the internal format described in Table 3 with a 
physical record size I)f 120 bytes. 

Table 3;. Internal Format of Data Files 

Byte Cc)ding Meaning 

0 X'3C' Phys i co I record. 

1 Checksum Sum of bytes in record, not 
counting checksum byte. 

2,3 Retcord size Number of bytes used 
(120 or less), including 
control bytes. 

4 ... n Delta Eith~~r doubleword 
floal'ing-point or aconst 
doubleword or both. 

n+1 X"3C' End of physical or 
log i e:a I record. 

KEY" X'001000' 120 

00000 3C090078 41100000 
00004 00000000 41300000 
00008 00000000 41500000 
OOOOC 00000000 41700000 
00010 00000000 41900000 
00014 00000000 00000000 
00018 00000000 41800000 
0001C 00000000 3CBDOOOO 

KEY'''' X' 002000' 120 

00000 3CA60070 . 41600000 
00004 00000000 41400000 
00008 00000000 41200000 
OOOOC 00000000 0001C1C2 
0001.0 C9D1D2D3 0001D4DS 
00014 E4ESE6E7 0001E8E9 
00018 F3F4F5F6 0001F7F8 
OOOIC 00000000 3CBDOO01 

Table 3. Internal Format of Data Files (cont.) 

Byte Coding Meaning 

n+2 X'BD' 

n+3, n+4 Physical In numeri co I order, 
record number from O. 

Normally a record contains 112 noncontrol bytes (14 floating­
point values or aconsts). The lost record in a fj Ie may con­
tain fewer used bytes but still contains 120 total bytes. The 
control word - bytes n+ 1 to n+4 - is repeated in this case as 
bytes 116 to 119. 

Figure 4 shows a file containing three records of numeric 
and aconst data, with the record contents given in hexo­
deci ma I format. The va I ues were created wi th the program 
shown in Figure 5. In Figure 4, the value 1 occupies words 1 
and 2 of record 1000, the acanst ABCDEF occupies words 13 
and 14 of record 2000, and the aconst 7890 occupies words 25 
and 26 of the some record but followed in word 27 by on end­
of-record control word forced there by the fl ush operation. 

BYTES 

00000000 41200000 
00000000 41400000 
00000000 41600000 
00000000 41800000 
00000000 00000000 
00000000 41900000 
00000000 41700000 

BYTES 

00000000 41500000 
00000000 41300000 
00000000 41100000 
C3C4C5C6 0001C7C8 
D6D7D8D9 0001E2E3 
00000000 0001F1F2 
F9FOOOOO 3CBDOOOl 

Figure 4. Contents of Sample Fi Ie 

Appendix C 49 



50 Appendix C 

KEY- X'003000' 120 BYTES 

00000 3C030028 41100000 00000000 
00004 00000000' 41300000 00000000 
00008 00000000 3CBDOOO2 00000000 
OOOOC 00000000 0001C1C2 C3C4C5C6 
00010 C9D1D203 00010405 06070809 
00014 E4E5E6E7 0001E8E9 00000000 
00018 F3F4F5F6 0001F7F8 F9FOOOOO 
0001C 00000000 3CBOOO02 

Figure 4. Contents of Sample File (C:Orit. ) 

100 OPEN 'PUT',O 
1io PUT 1,2,3,4,5,6,7,8,9,0 
120 PUT 0,9,8,7,6,5,4,3,2,1 

41200000 
41400000 
41100000 
0001C7C8 
Od01EZE3 
00OlF1F2 
3CBOOO01 

130 PUT 'ABCOEF', 'GHIJKL' ,'MNOPQR' ,'STUVWX', 'YZ' 
140 PUT '123456','7890' 
150 PUT** 
160 PUT 1,2,3,4,** 
170 CLOSE 0 
180 ENO 

Figure 5. Program Used to Generate Figure 4 



APPENDIX D. EASY ERROR MESSAGES 

ACCOUNT NUMBER ILLEGAL 
IN THIS COMMAND. 

The parameter ntt)ted is illegal in th:is command. 

BAD PARAMETER -- TR~ AGAIN 

Incorrect syntax -- check and retry., . 

CA,NNOT ACCESS NEXT FILE 

The CA TALOG c:ommand cannot be completed because of 
bad file structuro. 

CANNOT LOAD BINA.RY FILES 

You have issued an OLD command for a binary fi Ie. 

DELIMITER MISSING •. RETYPE 

Omitted delimitetr in an EDIT FIND or REPLACE command. 

_____ D_IS_C_IS SATURATED: DATA LOST 

The last command saturated secondary storage. 

ERROR IN TARGET WORD 

The target word in an EDIT FIND or REPLACE command 
is not valid. 

FILE ALREADY SAVED .• TYPE 
R.EPLACE TO OVERWRITE 

A SAVE command has been given but the fi Ie already exists. 

FILE IN USE - TO TRY AGAIN, RETYPE 
COMMAND 

An attempt has b4!en made to access a file that someone is 
currently updatin:g. 

FILE: I/O ERROR: DATA LOST 

. There was an I/O error -- retry the c:ommand. 

FILENAME ACCOUNT OR PASSWORD 
TOO LONG 

The parameter entered is too long. 

FILE NAME ILLEGAL IN THIS COMMAND. 

The parameter noted is illegal in this command. 

FILENAMES AND PASSWORDS MUST BEGIN 
WITH AN ALPHA CHARACTER 

Self explanatory. 

FIRST NUMBER OF PAIR MUST BE 
SMALLEST 

You have used a pair of numbers to spec ify a range but 
have incorrectly entered the larger number first. 

INSUFFICIENT INFORMATION TO OPEN FILE 

Check to make sure you have suppl i ed a password if needed 
and retry the commane---__ _ 

INVALID PASSWORD 

The password you have used is not correct. 

LINE NUMBER EXCEEDS 99999 

An EDIT RESEQUE NCE command has attempted to generate 
a line number greater than 99999. 

LI NE TABLE FULL - CUT FILE SIZE 

There is no more core available to put file keys into. 

LINE TOO LONG 

An EDIT REPLACE command has tried to increase a line 
beyond 132 characters. 

Appendi x 0 51 



LINE TOO LONG: DATA LOST 

A read. operation has failed because the record was longer 
than 132 characters. 

LINE TOO LONG -- RETYPE 

The line entered is longer than 132 characters. 

NO FILE 

You have tried to run or edit an empty file. 

NONE OF THE FILES EXIST 

An EDIT MERGE, INSERT, or WEAVE command has not 
specified any existing files. 

NO SUCH FILE: xxx 

The fi Ie named does not exist. 

NUMBER MISSING - RETYPE 

You have not entered a number where one is required. 

PARAMETER CONFLICT: TRY AGAIN 

Illegal syntax -- check the command and try again. 

52 Appendi x 0 

I 

PASSWORD ILLEGAL IN THIS C0MtA;~:D: 

The parameter rioted is illegal in this command. 

THE NEXT AVAILABLE LINE NUMBER 
IS TOO LARGE 

A DSM, EDIT WEAVE, INSERT, MERGE 'or RESEQUENCE 
command has attempted to assign a line number la'rger 
than 99999. 

I, 

--e5b'· 

You have spec i fi ed more fi I enames in a commdnd than is 
allowed. 

WHAT? 

EASY cannot interpret whot was just typed in; check the 
syntax and try again. 

I 

r 

xx ERROR .4! yyWY'!X! ......,_, __ :,' ,.1 
xx is an error code explained in the UTS Reference Mdn" 
ual (90 1764), Appendix B. yyyyyyyy is the hexadecimal 
location at which the error occurred. 



,: APPENDIX E. FLAG ADDITIONS 

FILE SUBROUTINES 
Two new subroutines, OPENF and CLOSEF, have been 
added to FLAG. 

OPENF Thi!; subroutine allows '~e FLAG user toaccess 
a specified file j:n his account in UTS secondary storage. 
The form of the c:all i:s 

CALL OPENF(u, 'name'[,org[,mode[,granules]]]) 

where 

u specifies a device unit number in the range 1-7. 

Iname l !;pecifi es a fi Ie name of 1-7 characters. 
A trai li:ng blank is required if the name has fewer 
than 5 characters. 

org specifies file aganizat'ion (1 = consecutive, 
3 = random). The default is consecutive. 

mode specifies the file function mode (1 = read, 
2 = wri te, 4 = update, 8 =: wri te then read). The 
mode must be 8 for random files. The default is 4 
(read or write on old file). 

granules specifies the number of granules to allo-
cate for a random file. The default is 12. This 
parameter is meaningful only if org = 3. 

CLOSEF This subroutine allows '!'he FLAG user to close 
a specifi ed fi Ie. The form of the celli is 

CALL CLOSEF (u[, dis]) 

where 

u specifies a device unit number in the range 1-7. 

dis specifies file disposition (O=save, nonzero=re-
lease). The default is savle 

DEVICE UNIT NUMBERS 

Unit numbers for FORTRAN I/O are 1-7, However,S, 6, 
and 7 are defaults for FORTRAN II type statements, format­
free I/O, and INPUT and OUTPUT statements. Unit num­
ber 105 is mapped into 5, 108 into 6, and 106 into 7, Uni t 
numbers 5, 6, and 7 default to the user terminal. A CALL 
OPENF(6, 'fileone ' ) followed by an OUTPUT, k statement 
will cause output to go to a file rather than the terminal. 
A CALL CLOSEF(6) will close unit 6, Subsequent use of 
unit 6 wi II default to the tenninal. 

ON-UNE OPERATIONS 

Since Botch processing is not done under EASY, the FLAG 
user need not be concerned with DCB assignments or job 
deck considerations. EASY provides all thedefaultoptions 
listed in the FLAG Reference Manual, except that DB (de­
bug mode) is assumed rather than NODB. 

COMMENTS AND CONTINUATION LINES 

Comment lines in FORTRAN programs must begin with the 
letter C in the first column following the line number. Con­
tinuation lines must begin with an & character in the first 
nonblank column following the I ine number. 

Appendix E 53 



XEROX 

'''eader Comment Form 
W. would .ppreci.te your comments .nd SUlVllltions for improving this publication 

Publication No. IR ... L .... r:: I Curr.nt Oat. 

How did you u .. this p,ubliCDtion1 Is the m.teri.1 presented effectively7 

o Learning [] Installing o Sales o FuliV Covered Owe .. IIlustrat.d o Well organized o Clear o Ret.r.nc. o Maintaining o Operating 

What is your ov.rall r.lting IOf this publicatio,n? What is your occup.tion7 

o Very Good o Fair o Very Poor 

o Good ~poor 

Your other comments may be 'Intered her •. Pl .... be specific and give page. column. and line number ,.f.renc .. where 
applicabl •• To report .rrors, pi, .... use the XerOJ( Softw.re Improvement or Oifficulty Report (1188) instead of this form. 

Your name & Return Address 

Thank You For Your Interest (told 8. tasten as shown on back. no postage needed If mailed In USA) 



PLEASE FOLD AND TAPE -
NOTE: U.S. Postal Service will not deliver stapled"forms 

111111 

BUSINESSA-EPLY MAIL 
FIRST CLASS PERMIT NO. 59163 LOS ANGELES;CA 90046 

POSTAGE WILL BE PAID BV ADDRESSEe 

HONEYW-E'LL INFORMATION SYSTEMS 
5250 W. CENTURY BOULEVARD 
'LOS ANGELES, CA 90046 

ATTN: PROGRAMMING PUBLICATIONS 

Honeywell 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

I 
I 
I 
I 
I 
I 
I 

IoU 
Z 
:::i 
~ z 
o 
...J 
4( 

I­
;:) 
U 

I 
I 
I 
I 
I 
I ~ 
I :::i 
I ~ 
I 0 

... ...J 
4( 

o 
...J 
o 
lAo. 

IoU 
Z 
:J 

'" z 
.... 0 

...J 
4( 

o 
...J 
o 
lAo. 



Honeywell Information Systems 
In the U,S.A, 200 Smith Street. MS 486. Wahham. Massachusetts 02154 
In Canada: 2025 Sheppard Avenue East. Willowdale. OntariO M2J 1 W5 

In Australia: 124 Walker Street. North Sydney. N,S.w, 2060 
In MexICO Avenida Nuevo Leon 250. Mexico 11. OF 

26025, 1.25C1179, Printed in U.S.A. XM29, Rev. 0 


