Xerox EASY

: Sigma 6/ 7/ 9 Computers

Lahguage and Operations
Reference Manual

FROXEROXEROXEROXEROXEROXEROX
DXEROXEROXEROXEROXEROXEROXERC
ROXEROXEROXEROXEROXEROXEROXER
ROXEROXEROXEROXEROXEROXEROXE
EROXEROXEROXEROXEROXEROXEROXE
IXEROXEROXEROXEROXEROXEROXERO
OXEROXEROXEROXEROXEROXEROXERC
ROXEROXEROXEROXEROXEROXEROXER
ROXEROXEROXEROXEROXEROXEROXE
KEROXEROXEROXEROXEROXEROXEROX
IXEROXFROXEROXEROXEROXEROXERO
LOXEROXEROXEROXEROXEROXEROXER(
ROXEROXEROXEROXEROXEROXEROXET:
FROXEROXEROXEROXEROXEROXEROXH
XEROXEROXEROXEROXEROXEROXEROX
UXEROXEROXEROXEROXEROXEROXERC
ROXEROXEROXEROXEROXEROXEFROXER
'ROXEROXEROXEROXEROXEROXEROXE
EROXEROXEROXEROXEROXEROXEROXE

D 1972, Xerox Corporation

Xerox EASY

Sigma 6/7/9 Computers

Language and Operations
Reference Manual

FIRST EDITION
90 18 73A

September 1972

XEROX

File No.: 1X23
XM29, Rev. 0
Printed in U.S.A.

NOTICE

This publication documents the AOO version of Xerox EASY for Sigma 6/7/9 computers.

RELATED PUBLICATIONS

Title Publication No.
Xerox Sigma 6 Computer/Reference Manual 90 17 13
Xerox Sigma 7 Computer/Reference Manual 90 09 50
Xerox Sigma 9 Computer/Reference Manual 90 17 33
Xerox Universal Time=-Sharing System (UTS)/TS Reference Manual 90 09 07
Xerox Universal Time-Sharing System (UTS)/OPS Reference Manual 90 16 75
Xerox Mathematical Routines/Technical Manual 90 09 06
Xerox FLAG/Reference Manual 90 16 54
Xerox Sigma Multipurpose Keyboard Display/Reference Manual (Models 7550/7555) 90 09 82

Xerox Sigma Message-Oriented Communications Equipment/Reference Manual
(Models 7601-7604) 90 15 68

Xerox Sigma Character-Oriented Communications Equipment/Reference Manual
(Models 7611-7620-7623) : 90 09 81

Manual Content Codes: BP —batch processing, LN — language, OPS —operations, RBP —remote batch processing,
RT —real-time, SM —system management, TS —time-sharing, UT — utilities.

The specifications of the software system described in this publication are subject to chonge without notice. The availability or perfarmaonce of some features
moy depend on a specific configuration of equipment such as additionol tape units or larger memory . Customersshould consult their Xerox sales representative
for details. ’

1.

2.

INTRODUCTION

EASY FILE SYSTEM

EASY COMMANDS

CONTENTS

w

NEwW
OLD

CATALOG

DM

DSMOFF
TAPE

KEY

SAVE

UNSAVE

RENAME

REPLACE

SCRATCH

SORT

LENGTH

LIST

EDIT DELETE

EDIT EXTRACT

EDIT FIND

EDIT REPLACE

EDIT INSERT

EDIT MERGE

EDIT PAGE

EDIT WEAVE

EDIT RESEQUENCE
SYSTEM

RUN

TIME

TTY

UTS and TEL

GOODBYE, BYE, HELLO, and RESTART

BEGINNING BASIC

Introduction

OO UMLULOLLOLLUOBAAAMLMDLADMLMADLDWWWWWW

~

Symbolic Nomes

Addition and Subtraction

Multiplication and Division
Exponentiation

Indexed Repetition

Print Formatting

Tabbing
Data Input from a Terminal

Error Messages

Program Modification

ELEMENTARY FEATURES OF BASIC

Elements of a BASIC Program

Line Numbers

6.

Number Ranges
Input

Output

Precision Control

Simple Constants
Simple Variables

Arithmetic Operators

Intrinsic Functions

Arithmetic Expressions
String Literal

Alphanymeric Constants

String Scalars

Assignment Statements
LET

Branching

IF...THEN

ON...GOTO
GOTO...ON

GOTO

Data Output

PRINT

Print Formats

PRINTUSING and :(Image)
PAGE

Data Input

DATA and READ

INPUT

Looping
Miscellaneous Statements

REM or *

PAUSE, STOP, or END

ADVANCED FEATURES OF BASIC

Other Elements of a BASIC Program
Subscripted Variables

Dimensioning

DIM

Vectors

Matrixes

Character String Manipulation
Referencing String Variables

String Expressions
Assigning Character Strings to
String Variables

String Length and Value Assignments

Conversion to a String

String Assignment and Concat- ~ation

String Comparison

String Input/Output

String Input Mode Contro!

Generation of Aconsts from Strings
String Expressions as File Identifiers

User-Defined Functions

DEF

Rereading Data

RESTORE

12
12
12
12
12
13
13
13
13
13
13
14
14
14
15
15
15
15
15
16
16
16
17
18
20
20
20
21
22
22
22

23

23
23
23
23
24
24
24
25
25

26
26
26
26
27
27
27
28
28
28
28
29
29

Branching to a Subroutine 29 Simuitaneous Equation Solution

GOSUB and RETURN 29 Accuracy of Inversion and Simultaneous
Charocter Conversion 29 Equation Solution
CHANGE 29 '
File Manipulation 30
File Nomenclature 30 7. BASIC MESSAGES
1/O Stream Numbers 30
Keyed and Sequential Access 30
Unkeyed 1/Q in the Update Mod 30
OPEN ‘ 31 APPENDIXES
Binary Input 31
Default Form for Binary Input 31 A. SUMMARY OF BASIC STATEMENTS
BCD Input : 3
Binary Qutput 31 B. BASIC INTRINSIC FUNCTIONS
Default Form for Binary Output 31
BCD Outpyt 31 C. FORMAT OF BINARY DATA FILES FOR
Binary File Update 31 BASIC (PUT AND GET OPERATIONS)
BCD File Update 32
ENDFILE 32 D. EASY ERROR MESSAGES
CLOSE 32
GET 32 E. FLAG ADDITIONS
PUT 32
INPUT 33 File Subroutines
PRINT 33 OPENF
PRINTUSING 34 CLOSEF
I/O Residue 34 Device Unit Numbers
1/0 Flushing 35 On-Line Operations
Running Consecutive Programs 35 Comments and Continuation Lines
CHAIN 35
CHAIN LINK 35
Matrix Operations 33
MAT GET 36
MAT PUT 3% FIGURES
xz; w‘%’; 332 1. Use of PAGE Statements
MAT READ 37 2, Nested Loops
3. INPUT Residue Exomple
MAT SIZE 37 4 C le Fil
Assignment Functions 37 - Contents of Sample File .
9 5. Program Used to Generate Figure 4
Zero 37
Constant 37
Identity Matrix 37
Copy 38
Scalar Multiplication _. 38 TABLES
Addition and Subtraction 38
Transposition 38 1. Order of Arithmetic Operations
Multiplication 38 2. Condition Operators
Inversion 39 3. Internal Formot of Data Files

39

44

47

51
53
53
53
53

53
53

19
22

49

13
15
49

1. INTRODUCTION

EASY is a shared processor operdting under the Universal
Time=Sharing System (UTS). It enables the user to create,
edit, execute, save, and delete program files written in
BASIC or FORTRAN. EASY also allows the user to create
and manipulate EBCDIC data files. Although intended
primarily for teletypewriter operations, EASY can be used
with any type of on-line terminal supported by UTS.

To log-on, the user dials the UTS computer and waits for
the log-on request

UTS AT YOUR SERVICE
ON AT 23:45 NOV 01, '72
LOGON PLEASE:

The user then types his account number, identifier, and ac-
count password (if any), followed by o carriage retum. If
automatic association with EASY has been established by
the UTS system, control passes directly to EASY, See the

Xerox UTS/SM Reference Manual, 90 16 74 for an ex~-

planation of automatic association with a processor, Other-

wise the user must call EASY by typing
EASY

followed by a carriage retumn, in response to the ! fromUTS,
When EASY takes control of the computer, it prints

NEW OR OLD--

at the terminal. The user then types NEW if he wants to
create a new file, OLD if he wants to work with an existing
file.

EASY normally interprets any line of terminal input as o
command if it begins with an alphabetic character, ond as
a program statement if it begins with a digit. Each input
line must end with a carriage return,

Depressing the RUBOUT key erases the last unerased char-
acter in the current input line. A backslash (\) is printed
to indicate each RUBOUT, Depressing the CONTROL and
X keys at the same time (or ESC and X in sequence) erases
the entire line; a left-arrow () or underscore () is then
printed, the carriage goes to the beginning of the next line,
and EASY waits for a new line to be typed by the user. De-
pressing the BREAK key at any time halts the operation in
progress; EASY prints STOP and READY, then waits for fur-
ther input,

The EASY file system is described in Chapter 2 of this

manual, EASY commonds are discussed in Chapter 3, and
Chapters 4 through 7 explain BASIC programming under

EASY. FORTRAN programming is covered in the Xerox
FLAG/Reference Manual, 90 16 54. The FORTRAN Ili-
brary routines OPENF and CLOSEF, added to allow FLAG
users to open, close, and delete files, ore explained in
Appendix E of this manual, Additional reference infor-
mation is presented in the appendixes.

Introduction 1

2. EASY FILE SYSTEM

Afile is o storage grea insecondary memory. [t may contain
a source program or data records. Eoch file must have o
unique name comprisingone to seven alphanumeric charoc~
ters, A file may also have an optional password of up to
four alphanumeric characters. The first charocter of a file
name or password must be alphabetic, and embedded blanks
are not allowed.

Files moy be permanent or temporary. A temporary file
exists only for the duration of the current session and
is destroyed when the user logs off, A permanent file
remains in secondary storage until its expiration date
(see "Disk File ASSIGN Command" in the UTS/BP Ref-
erence Manual, 90 17 64) for a discussion of the EXPIRE

2 EASY File System

parameter) or until deleted by the user (see "UNSAVE"
in Chapter 3).

A list of all EASY files in a given account is maintained by
the UTS system. This information con be listed on the user
terminal by means of the CATALOG command (see “CAT-
ALOG" in Chapter 3).

To assist the user in creating and editing his program and
data files, each user is provided with a temporary "work-
file", Program lines or data lines are stored in this area
as they are received from the user terminal or retrieved
from secondary storage. The contents of the workfile can
be listed, edited, executed, and/or copied and saved in
permanent file storage for future use.

3. EASY COMMANDS

The user may abbreviate any EASY command word (except
DSMOFF)to the first three letters. For example, CAT may
be substituted for CATALOG, Commands may be typed ot
the beginning of any line, unless EASY is in the data
storage mode (see "DSM" below), The syntax of EASY
commands is indicated in this chapter by the symbology
explained in Appendix A,

Wherever the term "file" is used in defining the syntax of
EASY commands, this should be understood to represent a
file identifier having the general form

[account:] filename[,password]

For example, the command format
OLD [file]
should be understood as though written

OLD [[occount] filename[,password]]

In addition to the other EASY commandls, nine editing com-
monds allow the workfile to be modified in a variety of
ways. In general, editing operations are performed in the
same way for any program file. However, resequencing a
BASIC program causes all references to a line number to be
changed, while the resequencing of ¢ FORTRAN program
changes only the line numbers themselves, None of the
editing commands automatically save files after editing;
this must be done by the user (see "SAVE"and "REPLACE",
below).

NEW The NEW command has the form

NEW [file]

If no file is specified, EASY prints
ENTER FILE NAME--

and the user must respond by specifying the file he wants to
create. EASY deletes the current workfile and creates a
new, empty workfile having the specified name.

Numbered program statements typed by the user are stored
in the workfile in ascending numerical order regardless of
the order in which they are typed. Line numbers must be
integers in the range of 1 through 99999. Numbers need
not be contiguous; that is, gaps may be left to allow for
future insertions. Lines are replaced by retyping, and
typing just the line numbers causes an existing line to be
‘deleted from the workfile.

Note that @ new file is not saved permanently unless a
SAVE command is given (see "SAVE", below),

oLD The OLD command has the form
OLD [Ffile]

If no file is specified, EASY prints
ENTER FILE NAME--

ond the user must respond by specifying on existing file.
The account and password must be specified, ifapplicable.
If the account is not specified, the user's own account is
assumed, EASY deletes the current workfile and loads the
specified file into the workfile area. The workfile may then
be modified by terminal input or via EASY commands. Note,
however, that o modified workfile does not replace an old
file unless o REPLACE command is given (see "REPLACE",
below).

CATALOG The CATALOG command has the form

CATALOG

EASY lists the names of all files saved in the UTS file sys-
tem under the user's account, with the exception of any
names not conforming to the rules for EASY files (e.g., more
than seven characters or nonalphanumeric characters).

DSM The DSM command has the form

DSM

EASY responds by entering the data storage mode, In this
mode, lines of data may be input without line numbers, Line
numbers are supplied by EASY, beginning with the next
ovailable line number in the workfile and incrementing
by 1. If data input is to be from paper tape, a TAPE com=-
mand must be given just before typing DSM (see "TAPE",
below). A return to the normal input mode is made by
depressing the BREAK key or by use of the DSMOFF com-
mand (see "DSMOFF", below).

DSMOFF The DSMOFF command has the form

DSMOFF

EASY responds by leaving the data storage mode. DSMOFF
is the only EASY command that may be usedin the data stor-
age mode. Note that unlike other EASY commands DSMOFF
may not be abbreviated.

TAPE The TAPE command has the form

TAPE

EASY Commands 3

This command must be given before activating the paper
tape reader, EASY responds by entering the paper tope

input mode. This mode is terminated by use of the KEY
command (see "KEY", below),

KEY The KEY command has the form
KEY

This command terminates the paper tape input mode (see
"TAPE", above). EASY returns to the normal keyboard
input mode.

SAVE The SAVE command has the form
SAVE [file]

EASY copies the current workfile into permonent storage.
If no file is specified, the name used is that currently

associated with the workfile (e.g., via o previous NEW
or RENAME command). The workfile is not affected.

The name of the permanent file must be unique within the
user's account, Otherwise EASY ignores the SAVE com-
mand and prints

FILE ALREADY SAVED-TYPE REPLACE TO
OVERWRITE

and the user must either rename the workfile (see "RE-
NAME", below) and give another SAVE commond, or use
the REPLACE command (see "REPLACE", below) to over=
write the existing file. SAVE cannot be used to create a
file in another account,

UNSAVE The UNSAVE command has the form

UNSAVE [file) ,

EASY deletes the specified file from the user's account, K

no file is specified, the name currently associated with the

workfile is assumed, The workfile is not affected. UNSAVE
cannot be used to delete a file from another account.

RENAME The RENAME command has the form

RENAME [filename)

EASY replaces the current name of the workfile with the
name specified. If no name is specified, EASY prints

ENTER FILE NAME=-~

and the user must specify a file name. This command
can be used to create multiple copies of a file. That
is, a file can be retrieved from secondary storage via
the OLD commond, modified as desired, renamed, and
saved under o new name with the SAVE command.

4 EASY Commands

REPLACE The REPLACE command has the form

REPLACE [filename][,[new password]][,0ld password

EASY replaces the specified file with the contents of the
workfile. If no file is specified, the name currently asso-
ciated with the workfile is assumed. The workfile is not
affected. The replaced file must be in the user'saccount.

If an old password exists, it must be specified. To delete
an old password without establishing a new one, the old
password is preceded by two commas. If the old password
is to be retained, it is preceded by a single comma.

SCRATCH The SCRATCH command has the form

SCRATCH

EASY deletes the contents of the workfile., The name asso~-
ciated with the workfile remains the same and any perma-
nent file of that name is not affected.

SORT The SORT command has the form
SORT [file]

If no file is specified, EASY sorts the workfile. Otherwise,
EASY deletes the current workfile and loads the specified
file into the workfile area. If duplicate line numbers exist
in the designated file EASY renumbers each duplicate line,
using the next available larger line number. The specified
file is not affected,

LENGTH The LENGTH command has the form

LENGTH

EASY prints the number of records currently in the workfile.

LIST The LIST command has the form

. line-line
LIST (NH) | line[,]
file

If no options are typed, EASY prints the contents of the cur-
rent workfile preceded by a header line containing the file
name, date, and time. The listing may be terminated at
any point by depressing the BREAK key. The NH option
can be used to supress the header line.

A designated block of lines moy be specified, or a
line at which listing is to begin (0 comma following
the line number causes that line only to be listed),

If o file is specified, the entire file is listed, Neither
the designated file nor the workfile are affected.

EDIT DELETE The EDIT DELETE command has the form
EDIT DELETE line [<ling][,. . .)

EASY deletes the specified lines or blocks of lines from
the workfile.

EDIT EXTRACT

form

The EDIT EXTRACT command has the

EDIT EXTRACT line[-line](,. .]

EASY deletes all but the specified lines or blocks of lines
from the workfile.

EDITFIND The EDIT FIND command has the form

EDIT FIND "string" [line-line][,column-column] ;. .]

EASY lists oll lines in the workfile that contain the speci=-
fied character string. Any pair of the characters | @ §
% # £ $ /may be used as string delimiters in addition to
the quotation marks shown above,

The question mark may be used to indicate embedded char-
acter positions that are to be ignored in the target string.
For example,

EDIT FIND "A?B"

would select all lines containing an A, followed two col=
umns later by a B (e.g., A+B, A=B, AAB, efc).

The user may specify a block of lines to be searched and/or
o block of columns to be searched. The colon may be used
as a delimiter to allow a combination of strings to be sel-
ected, For example,

EDI FIN "AB",7-8:"C?D", 14-16

would select all lines containing the string AB in columns 7
and 8 and characters C and D in columns 14 and 16 (e.g.,
150 Y=ABS(XHC*D),

EDIT REPLACE The EDIT REPLACE command has the form

EDIT REPLACE [limit]"string1" string2" —
I——[Iine-line][,coiumn-colum][:. .

EASY replaces stringl with string2. If no limit is speci-
fied, an unlimited number of replacements may be made
in each line.

The use of string delimiters and line and column speci-
fications is the same as for the EDIT FIND command,
above,

EDIT INSERT The EDIT INSERT command has the form

EDIT INSERT file[;file[,line]]. . .

EASY deletes the current workfile and loads the specified
files into the workfile area. From two to nine files moy be
combined, and o point of insertion may be specified for each
file. For example,

EDIT INS ONE;TWO,50

would cause file TWO to be inserted into the workfile fol-
lowing line 50 of file ONE. No resequencing of line num-
bers is done by this command, and only the workfile is
affected,

EDIT MERGE The EDIT MERGE command has the form

EDIT MERGE file[;file[,ling]]. . .

EASY deletes the current workfile and loads the specified
files into the workfile area. From two to nine files may be
combined, ond a point of insertion moy be specified for each

file (see "EDIT INSERT", above).

After the specified files have been loaded, the line numbers
in the workfile are resequenced (see "EDIT RESEQUENCE",
below), Only the workfile is affected.

EDIT PAGE The EDIT PAGE command has the form

EDIT PAGE [file[;page])(;. . .

If no file is named, EASY prints the contents of the workfile
in poge format with each 11=~inch page containing 50 lines.,

Up to nine files may be listed in the order specified. If no
page number is specified for a file, the first page printed
for that file is numbered as page 1.

EDIT WEAVE The EDIT WEAVE command has the form

EDIT WEAVE file[;. .]

EASY deletes the current workfile and interweaves the spec -
ified files into the workfile area. Up to nine files may be
specified. No resequencing of line numbers isdone by this
command. If duplicate line numbers exist, the mostrecently
loaded lines replace the previous ones. Loading is done in
the order specified, and only the workfile is affected, The
name of the workfile is unchanged.

EDIT RESEQUENCE The EDIT RESEQUENCE command

has the form

EDIT RESEQUENCE [nne1][,[nne2][-|ines]-——-j
L—[, incremenr]]

EASY Commands 5

EASY resequences the workfile. If line 1 isomitted, the new
starting line number is 100, [f line2 is omitted, resequenc-
ing begins with the first line of the workfile. If line3 is
omitted, resequencing continues through the last line of the
workfile, If no increment is specified, 10 is assumed. Line
numbers must be in ascending order in the file.

SYSTEM The SYSTEM command has the form

SYSTEM [name]
If no system name is specified, EASY prints
NEW SYSTEM NAME--

and the user must type either BASIC or FORTRAN. EASY
assumes BASIC when called (e.g., following an 1EASY

command). The SYSTEM command must be given prior to
a RUN command (see below) if the program to be executed
is not written in the language currently assumed by EASY,

RUN The RUN command has the form
RUN[MOD][NH] [file]

If no options ar: specified, the contents of the workfile are
compiled by the current system (see "SYSTEM", above). A
header line is printed prior to running, and execution ter-
minates when the program halts or when the BREAK key is
depressed.

The MOD option causes EASY to weave the contents of
the workfile with those of the specified file before compila-
tion. In the event of duplicate line numbers, those of the
current workfile are retained. The workfile is cleared when
program execution terminates.

The NH option inhibits the printing of the header line. If
a file is specified, the current workfile is cleared.

() EASY Commands

TIME The TIME command has the form
TIME

EASY prints the current time.

TTY The TTY command has the form
Y

EASY prints the current account number, current workfile
name, current system language, and elapsed terminal time.

UTS and TEL
These commands have the form

uTs
TEL

EASY exits to the UTS system, allowing the user to give
any TEL command such as a |PLATEN commond to inhibit
UTS page headings. (Seethe Xerox UTS/TS Reference Man-
val, 90 09 07 for an explanation of TEL commands.) The
user may return to EASY by giving an |EASY command.

GOODBYE, BYE, HELLO, and RESTART
have the form

These commands

GOODSBYE
BYE

HELLO
RESTART

EASY exits and the user is logged out of the system with the
option of logging in under adifferentaccount or user name.

4. BEGINNING BASIC

INTRODUCTION

To use a computer, the user must lecrn a language the
computer understands. Xerox Sigma 5-9 computers under-
stand several languages. Most of these are meant for some
special purpose such as the solution of scientific, engineer-
ing, or business problems. BASIC is intended as an all-
purpose language. Although BASIC is often called a
"beginner's language", the computational power of a given
BASIC program depends a great deal on the experience of
the user. An experienced BASIC user should have no diffi-
culty in creating very powerful programs.

Because of its similarity to ordinary English, BASIC isa
good language for users who are not professional program-
mers and who may have no particular interest inthe internal
workings of the computer. Many BASIC programmers never
see the computer they are programming, but communicate
by means of a teletypewriter terminal at a remote location,
To use a terminal, the user must dial the telephone number
of a Sigma 5~9 time=sharing computer and wait for a log-on
request to be printed on the teletypewriter. The user must
then type his account number, identifier, and account pass-
word (if any), followed by a carriage return. An example
is shown below.

UTS AT YOUR SERVICE
ON AT 12:10 NOV 03, '71
LOGON PLEASE: ACCT9876 ABERNATHY

12:10 11/03/71 ACCT9876 ABERNATHY 388-B [1]
IEASY

As shown above, the computer types a page heading and
then an exclamation mark to indicate that it is ready for an
executive-level command. The user types the word EASY
to indicate that he wonts to use the EASY subsystem.
The computer is now ready to accept input from the user
terminal.

SYMBOLIC NAMES

BASIC recognizes symbolic names representing mathemati-
cal variables. Such names may consist of a single letter

of the alphabet or a letter followed by a single digit from 0
through 9:

X
Y
B4

The following are not valid names in BASIC:
XX

Y23
4D

ADDITION AND SUBTRACTION

Suppose you want to add o series of numbers such as 27. 3,
14.1, 6.0, 3.5, and 36.25. One way of doing this is by
typing a PRINT statement expressing the desired addition.
BASIC will respond by computing the indicoted sum ond
printing the totoal when Runnh is typed

100 PRINT 27.3+14.146+3,.5+36.25
RUNNH

87.1500

Since BASIC statements cannot be continued from one line
to the next, this method will work only if all of the numbers
to be added can be typed on a single line of 132 characters.
The consequences of this restriction can be avoided by let-
ting part of the sum be represented by a symbolic variable
such as the letter P:

100 LET P=27.3+14.1+6

110 PRINT P+3.5+36.25

RUNNH

87.1500

The symbolic variable P could have been redefined to rep-
resent the final sum before typing the PRINT statement

100 LET P=27,3+14,.1+6
110 P=P+3.5+36.25

120 PRINT P

RUNNH

87.1500
The statement

100 P=pP+3.5+36.25

is not a mathematical equation in the usual sense. A LET
statement in BASIC is actually an "assignment" statement
specifying that the current value of the symbol to the left
of the "equals" sign is to be replaced by the value of the
expression to the right of the equals sign. Note that the
word LET in an assignment statement is optional.

Quantities can be subtracted by using @ minus sign rather
than a plus sign

100 PRINT 10-13
RUNNH

-3

As in addition, symbols may be used to represent values in
an expression involving subtraction:

100 LET A=10, B=13
110 PRINT A-B
RUNNH

-3

Beginning Basic 7

Note that more than one value assignment may be made in
a single LET statement, os shown cbove, if a comma is used
to separate each such assignment. The above assignment
could have been written

100 LET B=A+3, A=10

In this case the value of B would be unpredictable, because
BASIC executes LET statements from left to right, and A is
not ossigned the value 10 until the second assignment of the
LET statement is performed.

MULTIPLICATION AND DIVISION

Multiplication and division can be done in much the same
way as addition and subtraction. The asterisk is used to in-
dicate multiplication, and the slash is used to indicate di-
vision. Thus, the product of 2 and 4 could be obtained as
shown below.

100 PRINT 2*4
RUNNH

8

Parentheses can be used to group two or more quantities:

100 PRINT 3*(4+5)
RUNNI

27

Without the parentheses, the above PRINT statement would
have produced the value 17 rather than 27, because BASIC
would then assume that the value 5 wos to be added to the
product of 3 and 4. It would not be possible to avoid the
use of parentheses by a rearrangement of the above expres~
sion to put the addition to the left of the multiplication,
as in:

100 PRINT 445%3

This statement would produce the value 19 rather than the
desired 27, since BASIC performs any indicated multiplica-
tion or division before doing addition or subtraction unless
the order of precedence is indicated explicitly by means of
porentheses.

Nested parentheses are evaluated from the innermost to the
outermost:

100 PRINT 2*(3+4%*(5+6))/7
RUNNH

13.4286

In the above example the "innermost" subexpression is 5+6.
This sum is evaluated first and the result is multiplied by 4
and then odded to 3 before the multiplication by 2 is per-

formed. The final operation before printing is the division

by 7. Note that the result is rounded to 6 significant digits .

EXPONENTIATION

Exponentiation is indicated by use of the up-arrow operator
(t) or the double asterisk {**):

100 PRINT 10%**2
RUNNH

100

Within the same level of parenthesization, exponentiation
takes precedence over any other indicated operation. That
is, it is performed before multiplication, division, addition,
or subtraction unless this would conflict with the grouping
indicated by paréntheses:

100 PRINT 2%%2%3*% (4-2)
RUNNH

36

In the above example, the first operation performed by
BASIC is the raising of 2 to the second power, The sum of 4
and -2 is then computed and the quantity 3 is raised to this
power. The final operation before printing is the multipli-
cation of 4 (the square of 2) by 9 (the square of 3).

INDEXED REPETITION

Many applications of BASIC require a series of operations
to be performed more than once. To make this as easy as
possible, two special statements are provided: FOR and
NEXT. The FOR statement specifies the conditions under
which the repetition is to be done and the NEXT statement
indicates the end of the series of BASIC statements that is
to be repeated. Each line of the program must begin with
a unique number ranging from 1 to 99999. Line numbers
need not be contiguous, but lines are exacuted in ascend=
ing order. Many BASIC programmers prefer to begin each
program with line 100 and make each line number o multiple
of 10, allowing room for changes and additions to the pro-
gram at a later time.

In the program shown below, FOR and NEXT statements ore
used to cause BASIC to print three lines.

10 FOR I=1 TO 3
20 PRINT I

30 NEXT I

RUN

NAME UTS/EASY 14321 AUG 24,'72

In the above example, the indexed voriable 1" in the FOR
statement is assigned an initial value of 1 (by the number 1
following the equals sign). Instead of the letter I, any

8 Multiplication and Division/Exponentiation/Indexed Repetition

rerrer of rne aiphaber could have been used, but the letters
I through N have become traditional in FOR statements.
When the NEXT statement is executed following the print-
ing of the first line, the value of I is incremented by 1
automatically and the loop is executed again. Note that
*he FOR statement initiates execution of the loop but is not
, . part of it. When the NEXT statement is executed fol=-
lowing the printing of the second line, I is again incre-
mented by 1 and the loop is executed for the third time.
When the NEXT statement is executed following the print=
ing of the third line, I is again incremented by 1, giving

I a value of 4. Since 4 is grecter than 3, the limiting
value following the word TO, the loop is not executed
again. The message 30 HALT indicates that line 30 was the
last line executed in the program.

Often in programming FOR and NEXT loops, one may take
advantage of the fact that the indexed variable changes in
value as the loop is repeatedly executed. This is illustrated
by the following example.

10 FOR I=1 TO 4
20 PRINT I**3
30 NEXT I

RUN

NAME UTS/EASY T4:22 AUG 24,'72

9

8
27
64

'n the above exomple, the cube of the indexed variable is
rinted each time the loop is executed.

The values of symbolic variables used within o loop can be
changed during execution of the loop, as illustrated by the
following program which prints the first 8 terms of a
Fibonacci series. Note that the statements within the loop
are typed indented, to make the extent of the loop more
readily apparent. This optional practice is especially
recommended for nested loops.

10 LET J=0, K=1

20 FOR I=K TO 8

30 PRINT J

40 M=J, J=K, K=K+M

50 NEXT I

RUW

NAME UTS/EASY 14:24 AUG 24,'72

S OUTWN = =20

3

Although the value of K varies as the above program is exe-
cuted, this does not affect I, since the initial vaolue of 1is

determined only when the FOR statement is executed and
the loop is first entered. Note the use of an optional form
of the LET statement, without the word LET, in line 40 of
the program.

You may use a LET stotement to olter the value of the
indexed varicble within a loop, in addition to the incre-
ment odded outomatically whenever the NEXT statement
is executed.

10 FOR I=1 TO 10
20 LET I=2*I
30 PRINT I

40 NEXT I

RUN

NAME UTS/EASY 14:26 AUG 24,'72

14

In the above program, the initial value of 1is 1, as specified
by the FOR statement. The LET statement doubles this value
and the NEXT statement adds 1 to it. Thus, I'has the value 3
ot the beginning of the second execution of the loop and 7
ot the start of the third execution of the loop. When the
NEXT statement has been executed for the third time, I has
the value 15. This exceeds the limit of 10 set by the FOR
stdtement, and loop execution stops.

PRINT FORMATTING
The statement
100 PRINT
causes BASIC to print a single blank line. The statement
100 PRINT X

causes the value of X to be printed, beginning in column 2.
Column 1 is reserved for a possible minus sign. The statement

100 PRINT X,Y

causes BASIC to print the value of X, beginning in column 2,

- and the value of Y on the same line, beginning in column 16.

If closer spacing is wanted, a semicolor can be used in
place of o comma. The statement

100 PRINT X;Y
causes BASIC to print the volue of X, beginning in column 2,
followed by the volue of Y with 3 or 4 columns separa-

ting the two, so that the value of Y will begin in an
even-numbered column.

Print Formatting 9

If o value is negative, a minus sign precedes it.

100 X=5, Y==10, Z=300, N4=20,5
110 PRINT X;Y;Z;N4
RUNNH

5 =10 300 20,5000

A combination of formats can be used.

110 PRINT X,Y;2
RUNNH

5 =10 300

If the user does not want the first value to print in column 2
he can use a comma or semicolon following the word
PRINT.

110 PRINT ,X;Y
RUNNH

The statement
100 PRINT 'THESE WORDS'®

could be used to print THESE WORDS beginning in column 1.

TABBING

The TAB function is used in PRINT statements to advance
the output device to a specified column. For example, the
statement shown below couses the teletypewriter to advance
to column 12 and print the word HERE.

100 PRINT TAB(12)“HERE"
RUNNH

HERE

Note that HERE is o literal text string, identified as such
by enclosure in quotes. Either single or double quotes
(i.e., 'THIS' or "THIS") may be used to enclose a literal
text string.

A symbolic or literal volue may be used in the some PRINT
statement as a literal text string (either with or without a

TAB expression). However, since an expression must not
follow another expression immediately, a symbolic or
literal value must not be used next to a TAB expression.
To avoid this difficulty, one can use an empty text string
(e.g., "")to separate two expressions in a PRINT statement.

100 X=5

110 PRINT TAB(6)""X" APPLES"

RUNNH

5 APPLES

A TAB expression may contain symbolic as well as literal
values, allowing great flexibility in line format. This
capability is very useful in programming for graphicoutput.

10 Tabbing/Data Input from a Terminal

For example, the following program produces o graphic plot
of a damped sine wave:

100 X=X+,7, K=CXP(=X/15)

110 PRINT TAB(15+15*K*SIN(X))"*"
120 IF INT(X)=14 THEN 140

130 GOTO 100

140 STOP
READY
RUNNH
*
*
»
.
»
"
»*
-
.
*
]
*
-
*
*
*
]
*
*
L]
™
140 HALT

In this example, the EXP intrinsic function returns the value
of e (the quantity 2.7183...) raised to the power of the
argument. The IF stotement causes BASIC to return to
statement 100 unless the current value of X is equal to or
greater than 15,

DATA INPUT FROM A TERMINAL

The INPUT statement is used to solicit input via the user
terminal. A question mark is printed by BASIC to prompt
the user.

100 PRINT "ENTER LENGTH & WIDTH"
110 INPUT L,W

120 PRINT 'AREA='L*W

130 END

RUNNH

ENTER LENGTH & WIDTH
?5, 10
AREA= 50

130 HALT

In the above example BASIC prints a request to type values
for 'ength and width, The values 5 and 10 are typed fol-
lowing the prompt character. Note that the comma ofter
the value 5 is optional. A single blank would be sufficient
to separate the two values.

ERROR MESSAGES

BASIC messages to the user are explained in Chapter 7.
Most of these messages inform the user of a syntax error in
a program line, a logical error in program structure, or a
pragmatic error in program execution. Syntax and logical
errors are detected at compile time, and pragmatic errors
ore detected at run time.

The program shown below contains @ FOR statement without
o corresponding NEXT statement.

100 FOR I=1 70 5

110 PRINT ,'X='I;'Y=‘I*#3
120 END

RUNNH

MISSING NEXTSTMT

When the above program is compiled, BASIC prints the
message

MISSING NXTSTMT
The user can correct the program by typing
115 NEXT I
and then recompiling by typing another RUN command.

In executing the following program, o divisor becomes zero,
causing BASIC to print the message shown below.

100 FOR X=1 TO 2

110 FOR Y=1 TO 4=X

120 Z=1/(X**243%X$YaX=YP*2)
130 PRINT X,Y,Z

140 NEXT Y

150 NEXT X

RUNNH

1 1 «500000
1 2 «500000

120 DIV BY ZERO

The user can correct this by typing

115 IF X**243%X*Y-X-Y**2=0 THEN 117
116 GOTO 120

117 2=" INF,"

118 GOTO 130

Note that line 116 above assigns o six-character literal text
string to the name Z. Z then denotes an alphanumeric
constant, or "oconst", as discussed in Chapter 2,

PROGRAM MODIFICATION

A line in a program can be changed by retyping the entire
line. A new line can be added to a program by typing it,
giving it any unused line number within the desired area of
the existing program.

100 R=12, Y==12,5

110 Y=Y+1, X=SQR(R**2-Y**2)

120 PRINT TAB(36-X)"*"TAB(36+X)"*"
130 IF INT(Y)=11 THEN 150

140 GOTO 110

150 STOP

The user could odd a line between 110 ond 120, using any
line number from 111 through 119.

115 X=1,7%X

If the user wanted to combine lines 110 and 115, in the
above example, he could do so by retyping line 110 and
deleting line 115 by typing the line number followed by o
carriage return.

110 Y=Y+1, X=1,7%SQR(R**2-Y**2)
115

Error Messages/Program Modification n

In the following chapters, certain conventions have been
adopted for defining the BASIC commands. Capital letters
indicate command words that are required in the literal form
shown., Lowercase letters are figurative representations of
constants, step numbers, etc. Command parameters enclosed
by braces (|1) indicate a required choice. Porameters en-
closed by brackets ([]) are optional. Ellipsis marks (...)
signify optional repetitions of the preceding bracketed
parameter. BASIC recognizes the period as a decimal
point, not as a terminator.

ELEMENTS.OF A BASIC PROGRAM

There are o number of elements common to most BASIC
progroms. These are: line numbers, simple constants and
variables, arithmetic operators, expressions, and intrinsic
functions. In addition to these, BASIC programs involving
text manipulation often use alphanumeric constants as well
as string literals, variables, and expressions.

LINE: NUMBERS

Every line in o BASIC progrom must begin with a unique in-
teger. Line numbers may range from one through 99999 but
need not be contiguous, allowing for insertions. Lines are
executed in ascending sequence, except where the sequence
of execution is modified by branching or looping. Leading
zeros are permitted in line numbers but are not required.

Because BASIC converts all input values to an internal
double precision floating~point binary format, the appear-
ance of input values and output values may differ due to
rounding during input conversion.

INPUT

BASIC handles input numbers within a range of 5.398*10 -79
through 7.237*10175, and zero. Up to 16 significant deci-
mal digits can be input.

OUTPUT

Output numbers are printed in fields of varying widths ac~
cross the page according to the following rules.

1. Numbers are left-justified in their fields.

2. Positive numbers are preceded by a blank, negative
numbers by a minus sign.

3. If the number is @ whole number (ml’eger) whose mag~

nitude is less than 1,000,000,000 (10), it is printed
in from 1 through 9 positions after a blank or a minus.

i2 Elementary Features of BASIC

4. If the number is nomntegml or its magnitude is greater

than or equal to 107 (for example, -10.5, .5, 123.45,
or 1012), ‘its most significant part will be rounded to 6
or 16 digits according to the PRC function and will be
treated as follows:

a. If, after rounding, the absolute value of the num-
ber is gre?ter than or equal to 0.1 but less-than
0% or 1016 , the number is printed, in 8 or:18
prmf positions, in fixed=point notation; that is, its
form will be a blank or minus, a - maximum of 6.or
-16 integer digits, followed by the decimal point
.and a maximum of 6 or 16 digits.

b. If, after rounding, the absolute vqlue of the.num-
‘ber is.less than 0.1 or greater than 106 or 1016
‘the number is printed in floating=point (scientific)
notation; that is, its form will be a-blank.or-minys,
.the most significant integer digit, a decimal point,
-5 or 15 decimal digits, followed by theletter E, a
plus or minus, and a 2-digit exponent.,

PRECISION CONTROL

Output precision canbe controlled by use of the PRC intrinsic
function in o PRINT stotement. Used by itself or.embedded
in a series of other PRINT elements, PRC(1) sets:the. output
precision to 16 significant figures. ' This precision: remains
in effect until reset to the default value of six by oPRC(0).
An example is shown below.

100 LET I=1/30

110 PRINT I
RUNNH
3.33333E~02

110 HALT
USED «3 SECS
READY
110 PRINT PRC(1),I
RUNNH

3.333333333333333E-02

SIMPLE CONSTANTS

A simple constant (that is, a nonvorying quantity) is com-

posed of digits that stand alone, have an embedded decimal
point, or are preceded or followed by o decimal point. For
example, 2, 7.8, .5, oand 12 cre simple constants in BASIC.

Simple constants may be modified by floating-point notation,
as in 2,5E-15, where the E denotes that the number that pre-
cedes it istobe multiplied by 10 to the plus or minus power
following the E. Accordingly, the number 2.5E-15.is

really the number .0000000000000025. The plus sign is

optional for positive powers.

SIMPLE VARIABLES

A simple variable is denoted either by a single letter or by
a letter and a digit from O through 9. This convention al-
lows the programmer a total of 286 simple variables. For
example, A and W3 are simple variables. Note thot if the
letter-and-digit combination is used, the letter must pre-
cede the number.

ARITHMETIC OPERATORS

BASIC uses common mathematical symbols to denote arith- '
metic operations. These orithmetic operators are shown

in Table 1 below, Note that either the up-arrow (or cir-
cumflex) or double asterisk is allowed as an exponentiation
operator,

Table 1. Order of Arithmetic Operations

Order Symbol Explanation

1 tor *» Exponentiate

2 * and / Multiply and Divide
3 + and - Add and Subtract

The table also shows the order of precedence of the various
operations. When no operation takes precedence over
another, the computer will perform operations from left to
right. The order of operations may be altered by use of
parentheses. Use of parentheses is advised if the sequence
of operations seems questionable.

Note that an operator of order 1 or 2 may be followed by
an operator of order 3, but that no other cases of consecu=
tive operators are permitted.

INTRINSIC FUNCTIONS

BASIC provides a total of 34 intrinsic functions. The func~
tions are listed in Appendix C. When a function is used in
a statement, the three=letter function name must be followed
by an expression or value enclosed in parentheses. This
expression or value is called the "argument" of the function,
The value of the argument is either used directly in the
function calculation, or signals the computer to perform the
calculation in o predetermined manner. The purpose of
most of the functions is obvious and familiar, The INT func-

tion is often used to acquire the integer part of a calculated

number, For exomple, INT(A), where A is computed fo
be 2.675, would produce the number 2, The INT function

may also be used to obtain three significant digits (with
rounding) as in the following example:

50 LET S=INT((A*100)+.5)/100

When stotement 50 is executed, S is assigned the value
2.68.

ARITHMETIC EXPRESSIONS

The term "expression", often abbreviated "expr", represents
a simple constant, simple or subscripted variable (see Chap-
ter 3), or function reference that may stand alone or may be
used in any combination when separated by the symbols for
addition, subtraction, multiplication, division, and exponen-
tiation. The components may also be enclosed by parenthe-
ses, The symbols + and - may also be the initial character
of an expression and may immediately follow a left paren-
thesis. Some typical expressions are

A+
(B-X)/D

and
(21X) + SIN(Y)

STRING LITERAL

A string literal in a BASIC program is any sequence of text
characters, including blanks, enclosed by single or double
quotes. If a string literal is enclosed by single quotes, a
single quote must not appear in the string. A parallel rule
applies to the use of double quotes. Examples of string
literals are shown below.

100 PRINT 'THIS IS A STRING LITERAL'
110 PRINT "THIS IS ‘ANOTHER ONE'"
120 PRINT 'AND "THIS™ IS A THIRD"

s

ALPHANUMERIC CONSTANTS

Besides the simple constants previously mentioned, BASIC
allows symbolic names such as X, R, or K2 to be assigned
string literals of up to six characters. Such symbols are then
called "alphanumeric constants" or "aconsts". For example,

100 A='ACONST'
110 Z="SPACE3"
120 X6=' X RAY'

An "aconst value" can be assigned via a LET, INPUT, READ,
GET, MAT READ, MAT INPUT, or MAT GET statement and
can be tested, for equality or inequality only, via an IF

‘ statement.

100 IF A='ALPHA' THEN 200
110 IF Z="OMEGA" THEN 300

Elements of a BASIC Program 13

An aconst value may occur in unquoted form as an ele-
ment of a DATA statement or in the response to an INPUT
request. If an element begins with a digit, plus or minus
sign, or decimal point it is assumed to be a number. If
it starts with any other character, or is enclosed in quotes,
it is assumed to be an aconst value.

Example:
100 DATA 5, 'S', .5, "FIVE"

The first and third elements in the above example are
treated as numbers. The second and lost are treated as
aconst values.

Similar rules apply to elements entered in response to an
INPUT request, except that in UTS BASIC if the input is
assigned to string variables (see below) all elements are
interpreted as strings.

STRING SCALARS

String scalars are denoted by a letter and dollar sign. A
string scalar consists of up to 72 characters comprising a
single string. A string vector is a one~dimensional array,
each element of which is a single string. A string matrix
is a two-dimensional array of such elements. String vec-
tors and matrixes are discussed in Chapter 3. To avoid
conflict, the same letter must not be used to designate a
string scalar and a string (or numeric) array .

Examples of string scalars are

100 A$='A STRING'
110 B$="ANOTHER STRING"

String scalars can be compared for relative magnitude cs
well as equality.

100 A$='THIS'
110 B$="THAT"
120 IF A$=B$ THEN 200

In this example, the comparison of A$ and BS$ fails on the
third character, Thus, since the character "A" is lower in
the EBCDIC code than "I" (see the UTS/TS Reference Man-
val, 90 09 07, Appendix A)a branch to line 300 is taken.

ASSIGNMENT STATEMENTS

This section discusses the assignment of simple variables,
alphanumeric constants, and string scalars. The assignment
of values to vectors and matrixes is explained in Chapter 3.

LET The LET statement replaces the current value of the

variabie(s) on the left of the equals sign with that of the
expression on the right of the equals sign.

14 Assignment Statements

LET statements have the general form
line [LET}variable[,variable]... = expression

[variable][,variable]... = expression

where
variable is either o simple variable, an alphanu-
meric constant, or a string scalar,
expression is an arithmetic expression (see Arith=-

metic Expressions, above) if the variable is a
simple variable. For alphanumeric constants, ex-
pressions are either string literals of up to six
characters or else string expressions assigning
strings of up to six characters (see "Character
String Manipulation", Chapter 3).

For string scalars, expressions are either string ex-
pressions or string literals of up to 72 characters.
Strings of excess length are truncated to the max-
imum permitted.

Arithmetic operations can be performed by use of the LET
statement.

100 A=A+1
110 B=a*%2

Lines 100 and 110 above could be combined into a single
statement.

100 A=A+1, B=a**2

Such serial assignments are executed from left to right.
Thus, if A is initially 2 then B will be assigned a value
of 9. Parallel assignments can also be made.

100 A,B,C=D*E
110 F,G=F+1

Note that line 110 above is equivalent to

110 F=F+1, G=F

Other examples of LET statements are shown below.

100 P,A1,03=4%ATN(1), A=1, B=5
110 C='STRING'

120 D$='A LONG STRING'

130 E$=C, F=D$

In executing line 130 above, aconst F is assigned the string.
A LONG because of the aconst length limitation,

BRANCHING

Normally BASIC executes program lines in ascending order,
beginning with the lowest numbered line. The statements
discussed below cause BASIC to olter the normal order of
execution, either conditionally or unconditionally. (See
also, "Branching to a Subroutine", in Chapter 6.)

IF ... THEN The IF ... THEN statement provides a
conditional branching capability. If the test condition
specified in the IF ... THEN statement is true, then the
next line executed is that specified in the IF ... THEN
statement. Otherwise, the statement following the IF ...
THEN statement in the normal sequence is executed.

The form of the IF ... THEN statement is

Ii IF ex t [THEN } line
ine pr operator expr{ ~ ~r~| lin

The condition to be tested is specified between the IF and
the THEN (or GOTQ) of the statement. The line to which
BASIC is to branch on a true test is specified after THEN
{or GOTO). An expression may be a simple constant,
variable, alphanumeric constant, literal string or string
scalar, or a compound arithmetic expression. The oper-
ators that may be specified are given in Table 2.

Table 2. Condition Operators

Operator Explanation

= Equal to

><or <> Not equal to

< Less than

> Greater than

<=or =< Less than or equal to
>=or=> Greater than or equal to

Examples of IF ... THEN statements are given below:

100 IF X=2 THEN 120

110 IF Y="EUREKA" THEN 130

120 IF A$=Z$ THEN 140

130 IF SIN(X+J)=COS(X*K) THEN 100
140 IF B=C GOTO 110

ON...GOTO If many different branches are to be
taken according to the value of some expression, the use
of a separate IF ... THEN statement (see above) for each
branch becomes unwieldy. To overcome this inconven-
ience, BASIC provides the ON ... GOTO and GOTO ...
ON statements.

ON ... GOTO tokes the form

line ON expr{?HcéLo} line,line, ...

where

expr is any arithmetic expression.

line,line,... is a list of program line numbers.

When the statement is executed, the expression is evalu-
ated ond, if necessary, truncated to an integer. If the re-
sulting value is 1, a bronch is made to the first line
specified in the list. If the value is 2, a branch is mode

to the second line specified, and so on. If the value is less
than 1 or greater than the total number of lines specified

in the list, no branch is taken and the next statement in the
normal sequence is executed.

Example:
100 ON SGN(X)+2 GOTO 150,250,200

In the above example, if X is negative a branch to line 150
is taken, if X is 0 a branch to line 250 is taken, and if X is
positive a branch to line 200 is taken.

GOTO ... ON This statement is identical in opera-
tion to ON ... GOTO (see above). It has the form

line GOTO line,line,...ON expression

Examples:

100 GOTO 140,160,180 ON Y
110 GOTO 200,250,300 ON Z+3

GOTO The GOTO statement can be used to alter the
normal sequence of program execution unconditionally. The
GOTO statement has the form

line GOTO line

GOTO is generally used in conjunction with a conditional
branch such as IF ... THEN (see above). An example is
shown below.

100 IF TIM(1)=12 THEN 120
110 GOTO 100

120 PRINT "LUNCHTIME"

130 IF TIM(1)=12 THEN 130
140 GOTO 100 :

Branching 15

DATA OUTPUT

PRINT The PRINT statement tells the computer to print
out the current value of a variable, the results of a calcu=-
lation, o message, or any combination of these items. The
PRINT statement has the general form

[line] PRINT expression(s), or text string(s) with

commas or semicolons

where the word PRINT is usually followed by the name of
the item that is to be printed. Two sample PRINT state-
ments are

60 PRINT X1,X2
70 PRINT 'NO REAL ROOTS®

Line 60 will print out the calculated values of the vari-
ables X1 and X2. Line 70 will cause the message enclosed
by single quotation marks to be printed out. Note that a
string of text must be enclosed by either single or double
quotation marks. Blanks, which usually enhance the
appearance of text, may be freely interspersed within the
string and will be reproduced in the output as presented.
More than one text string may be present in a PRINT state-
ment. Each separate string, however, must be enclosed by
quotation marks.

A PRINT statement may contain a reference to an inirinsic
function. For example

1220 PRINT SQR(X)
will calculate and print the square root of the variable X,
while

1230 PRINT X;SQR(X)

will print the current value of the variable, followed by its
square root.

PRINT can also contain variables, providing that the
variables have been defined in statements preceding the
PRINT. The following stotement is an example of this use
of PRINT.

1250 PRINT B¥*B=U*p*C

Similarly, the statement

1260 PRINT (7/8)**14

will give the value of the fraction 7/8 raised to the 14th
power.

16 Data Output

The word PRINT, used olone in o statement, causes the
printer to advance the paper by one line. An example is
shown below.

450 PRINT

PRINT FORMATS

Punctuation marks in the PRINT statement (commas and
semicolons) define the desired appearance, or format, of
the printed output. The punctuation marks tell the print
device at which position to start printing. BASIC has two
types of output format, regular ond packed. Regular for-
mat is specified by using commas to separate elements in
the PRINT statement; packed format is specified by using
semicolons.

Regular Format. When the regular format is specified by
using commas to separate the elements in the PRINT state-
ment, the print line is thought of as consisting of a series
of 14=character fields. Each comma causes a shift to the
next field. For example,

4040 PRINT A,B,C

will cause the values of A, B, and C to be printed ot
14-character intervals, as in

1 5 4

When the regular format option is specified, at least two
blanks follow the last printed character. In some cases,
this spacing may couse an extra field shift.

Packed Format. Packed format, which is specified by using
semicolons to separate the elements in the PRINT statement,
causes the printed output to be compressed on the page by
reducing the spacing between fields. Each semicolon
causes a field shift that is either two or three positions in
length, so that the shift reaches an even-numbered position.
For example, statement 4040 above could be written as

4040 PRINT A;B;C

with the resultant output of

1 5 4

Additional Format Considerations. It is important to note
the difference between the TAB function and the output
format characters. TAB couses output to be printed ot o
specified position, and is most useful in providing columnar
output. The output format characters (, and ;) couse the

output to be printed at intervals that depend on the number
of preceding (printed) characters.

If a PRINT statement terminates with a TAB to a column to
the left of the current print position, e.g., TAB(0), the
line is buffered but not printed until a subsequent PRINT

is executed. This allows effective continuation of PRINT

statements.

An expression may not follow another expression in a PRINT
statement, but a text string literal may be used anywhere.
Thus, a null string (two quotes) may be used to separate
two expressions. For example,

5 PRINT A(1)*""B(2)

If a PRINT statement ends with a punctuation mark, the
appropriate field shift takes place and subsequent printing
starts at that point on the same print line. Otherwise,
subsequent printing starts on a new line.t All printing is
left-justified in its field. If a field shift places a field in
o position to extend beyond the last allowed print position,
a new line is generated and the field is printed on the new
line.

This procedure is modified when printing text. If o text
string overflows the last position, the string is truncated
at that point and the remainder is printed on the next
line.

Text strings may extend beyond any number of field
boundaries. If neither a comma nor a semicolon appear on
either side of a text string in a PRINT statement, no
spacing will occur before or ofter the string in the printed
output.

Format characters may be used alone in PRINT statements,
or they may be used in any number and combination to
cause appropriate field shifts.

PRINTUSING and :(Iimage) As an alternative to use of
the PRINT statement (see above), BASIC provides another
method of specifying the format of printed output. This

method makes use of a PRINTUSING statement and an

associated Image statement. The PRINTUSING statement
contains parameters to be inserted into the print positions
specified by the referenced Image statement.

PRINTUSING takes the general form
line PRINTUSING line [,expression(s) or text string(s))

where the line number that follows the command word desig-
nates the Image statement into which this PRINTUSING's

'In BASIC, o line ending with o punctuation mark is

buffered but is not printed until execution of the next
PRINT statement that does not end with a punctuation
mork.

porameters will be embedded. A sample PRINTUSING
statement is shown below.

50 PRINTUSING 75,X,SQR(X),'SQ. RoOT'

The parameters of line 50, that is, the current value of X,
the square root of X, and the text string ‘SQ. ROQOT', will
be embedded, from left to right, in the designated fields of
line 75 (a field is a group of character positions that is
treated as o distinct unit). Note that commas are used to
separate parameters in PRINTUSING.

The Image statement (identified as such by o colon ofter
the line number) complements the PRINTUSING statement
in that Image statements depict the final printed appearance
of PRINTUSING parameters. An Image statement has
the form

line :[#s and/or characters to 132 max.)

where the characters that follow the required colon ore
governed by the following rules.

1. Each digit position is designated by a # symbol. Also,
text strings to be derived from the PRINTUSING state-
ment are indicoted by # symbols. For example, the
statements

50 PRINTUSING 75,X,SQR(X),'SQ. ROOT'
75 :IF X=§, # IS ITS #E#3484¢

will generate the following output (assuming X is cur-
rently 4):

IF X=4, 2 IS ITS SQ. ROOT

2. [If o field is preceded by a plus sign, positive values
are preceded by o plus sign and negative values by a
minus sign. On the other hand, if a field is preceded
by a minus sign, positive values are preceded by a
blank, negative values by a minus sign. For example,
the statements

5 :=#%, -##, +8%, +48, &4
14 PRINTUSING 5,-19,+20,-21,20,99

will generate

-19, 20, =21, +20, 99

3. The decimal point is denoted by a . ., mbol. For ex~
ample, the statements

3 :#.% AND ~-.## ALSO +##¢#.
23 PRINTUSING 3, 1.2, -1/4, 100.435

will generate

1.2 AND -.25 ALSO +100

Data Output 17

4, If a field contains a decimal point, the user may
also append four trailing exclamation points to
signify floating=point notation. (If more or fewer
than four exclamation points are shown, they will
be printed literally in the output.) BASIC deter-
mines the need for floating=-point notation according
to the rules given for the PRINT statement. The
four I's provide for a letter E, a plus or minus sign,
and a two-digit exponent. Note that a decimal
point may be placed anywhere in the field, but that,
on printing, it will follow the first digit. The position
of the floating=point notation remains unchanged
For example, the statements

98 PRINTUSING 99, 1/30, 2/30
99 :VALUES ARE #.##!1!1 AND +##¢#.111!

will generate

VALUES ARE 3.33E-02 AND +6.67E-02

5. Except for the ¥, period, and | symbols, characters
that follow the colon will be printed exactly as shown,
with spacing as provided by blanks in the lmage
statement.

6. Text strings may be inserted in fields containing deci~-
mal points or specifying floating=point notation. In
addition, if the field is preceded by an algebraic
sign, its position will be preempted by the text string.
For example, the statements

11 :THE VALUE IS —-#.8%#$
47 PRINTUSING 11,'TOO0 BIG'

will generate

THE VALUE IS TOO BIG

If a text string is larger than its corresponding field, it
will be truncated on the right.

In addition to the above rules, printing is subject to the
following conventions.

1. If the field to the left of a decimal point is not large
enough to contain a numeric value, asterisks are in-
serted in the printed output as a warning to the pro-
grammer. For example, the statements

50 PRINTUSING 75, X, SQR(X), 'SQ. RoOT'
75 :IF X=#, # IS ITS ##4#4444

will generate, assuming an X value of 25,

IF X=%*, 5 IS ITS SQ. ROOT

Also, if o negative value is associated with a field
containing no sign position, a minus will appear in

18 Data Output

the first position, and any remaining field posmons
will contain asterisks.

2. If an Image field is larger than necessary, the printed
output will show blanks preceding expression values
and following text string values up to the required
number of positions in the field.

3. If o PRINTUSING statement specifies more values
than there are fields in the complementary Image
statement, the Image statement is repeatedly used
until all PRINTUSING values are printed. For ex-
ample, the statements

8 :N=#84#4
90 PRINTUSING 8, 1, 4, 90, 81777

will generate

N= 1
N= 4
N= 90
N=81777

4. If o PRINTUSING statement specifies fewer values
than there are fields in the complementary Image
statement, the printout will be terminated at the
first unused field of the Image statement. For example,
the statements

9 :¢##44444 CASES ##.% RESULTS
103 PRINTUSING 9, 'NO MORE'

will generate

NO MORE CASES

Whenever a PRINTUSING statement is executed, printing
starts at the left of a new line. Values are rounded approx-
imately prior to printout. Although the programmer may
specify numeric fields greater than 16 characters in length,
only 16 significant digits are output (with trailing zeros to
fill out the field) for the fractional part of values.

Note that PRINTUSING will accept up to 132 character
positions.

PAGE The PAGE statement can be used to advance the
paper to the top of the next page. The following example
shows how PAGE and PRINT statements might be used to
produce a page of tabular data (see Figure 1).]
Note that before EASY is called, a PLATEN command is
used to set the page length to 18 lines rather than the
standard 54 lines per page. A PLATEN, 0 command given
prior to calling EASY would have caused both PAGE
statements to be ignored.

IPLATEN ,18
1EASY
NEW OR OLD--NEW EXAMPLE

READY
100 PAGE

110 PRINT ,'X', 'X SQUARED?,

120 PRINT

130 X=X+1

140 PRINT ,X, X*%2, X**3
150 IF X=10 THEN 170

160 GOTO 130

170 PAGE

RUNNH

10:33 08/25/72 356101 2F=35

b

S OWOJANTEWN=

10:34 08/25/72 356101 2F=35

170 HALT

‘X CUBED'
(13)
X SQUARED X CUBED
1 1
4 8
9 27
16 64
25 125
36 216
49 343
64 512
81 729
100 1000
(14)

Figure 1. Use of PAGE Statements

Data Qutput

19

DATA INPUT

DATA and READ The data values used in the execution
of a program may be contoined in o DATA statement. They
are called into use ot appropriate times by the READ state-
ment. READ and DATA are used in combination with each
other.

DATA statements form a chained list of constants that the
READ statement accesses from left to right, top to bottom. !
DATA tokes the form

line DATA [constant] [, [consfcnf]]...

Simple constants moy be preceded by a plus or minus sign,
an empty field after DATA, as in

1250 DATA

or an empty field between commas or after a terminating
comma, as in

1260 DATA 1,2,3,,5
1270 DATA 6,7,8

imply a value of zero. DATA statements may appear any-
where in a BASIC program, and do not have to be con-
secutive. However, it is good practice to group the DATA
statements at the end of the program, thereby making it
possible to add as many statements as are needed to contain
the data values without disrupting the order of the preced-
ing statements.

READ assigns (in consecutive order) the values in the DATA
statement(s) to the variables listed in the READ stotement.
The form of the READ statement is

line READ variable[,variable]. ..

There is no comma following the final variable in the list.

Example:
555 READ B,C,D

If a READ statement requests dato after the list of constants
in the DATA statement has been exhausted, execution of
the program ceases and a messoge is output to the progrom-
mer advising him of the out-of-data condition.

The list of variables following a READ statement may in-
clude either of two special entities. A single asterisk means
to take an error exit if the current DATA statement list has
not been completely read. A double asterisk means to skip
any unread elements in the current DATA statement.

Examples:

500 READ X,Y,**
510 READ A,B,C,*,D,E,F

t
The DATA statement may also contain alphanumeric con=-
stants or text strings.

20 Data Input

Suppose the program includes these DATA statements:

1000 DATA 1,2,31.5
1010 DATA 3,4,5,6
1020 DATA 7,8,9

When line 500 is executed, 1 is read into X, 2 is read
into Y, and the 31.5 is skipped. When 510 is executed, 3 is
read into A, 4 into B, and 5 into C. The single asterisk

is encountered with 6 left in statement 1010 and the error
message EXTRA INPUT results.

INPUT The INPUT statement requests data from a source
that is external to the program, that is, teletype unit,
or other input device. (INPUT differs from READ in that
when using READ, the DATA statement and its data values
are contained within the program itself.) Data may be
stored in an external medium for two reasons: either the
data is unknown when the program is written but will be
supplied when the program is run, or the amount of data is
too large for inclusion in the body of the program. The
INPUT statement takes the form

line INPUT variable[,voriable]. ..

There is no comma following the final variable in the list.
When the INPUT statement is executed, dota values are
read into the computer from the external storage medium
and are assigned, one at a time, to the variables designated
in the INPUT statement. It should be emphasized that dato
is stored as it is received, and that the variables are satis-
fied (that is, associated with the data) in the order in
which they are specified. Some sample INPUT statements
are shown below.

100 INPUT X

110 INPUT A,B,2,Y,R3

120 INPUT B(1,N), C(N), N
130 INPUT N, B(1,N), C(N)

In the above example, every time statement 100 is ex-
ecuted, the computer will supply a data value to the
variable X. Stotement 110 will supply data values to A,
B, Z, Y, and R3, in that order, from the list of data
supplied by the programmer. Statements 120 and 130
will very probably not be equivalent, even though fhe
same voriables are specified in both. They will not be
equivalent even if the data values are supplied in the
same order as the variables were given, uniess the value
of N is not changed by execution of either of the INPUT
statements.

When data input is required, the user is signaled by a " ?"
character. .

The data vaolues that satisfy the variables in INPUT are
contained in a list of data separated by commas or blanks.
If the list begins with a comma (or in the case of commas
with no intervening nonblank characters), the computer

understands that a zero value precedes the comma. For
example, the computer interprets

5,3 4

as meaning the values 0,5,3, and 4. Similarly, if the list
ends with a comma, as in

123,

the computer will assign the variables in the INPUT state-
ment the data values 1,2,3, and 0. Finally, the list

5,1 ,,512

will be interpreted as data values 5,1,0,5,1, and 2.

After the entire list of voriables in an INPUT statement is

satisfied, control passes to the next program statement. If
at the time, the current line of input values has not been

exhausted, the remaining values will be accessed by the

next INPUT statement executed.

The list of variables in an INPUT statement may include the
special entities, asterisk and double asterisk, used to act
on unused fields in lines entered for input. The double
asterisk means skip any unused fields. The single asterisk
means take an error exit if unused fields remain in the line
of input.

Examples:
200 INPUT A,B,**,C,D

means input to A and B, skip anything left in the current
input line, and input to C and D from the next line.

210 INPUT A,B,*

means input to A ond B. Error exit if the input line is not
exhausted.

If the input lines shown above are entered in response to
statement 100, etc., and N = 2 prior to executing state~
ment 100, the result is as follows:

X=0

A=5 B=3 Z=l4 ¥Y=1 R3=2
B(1,2)=3 C(2)=0 N=5
N=1 B(1,1)=0 C(1)=5

The values 1 and 2 are pending for any subsequent INPUT
statement.

LOOPING

FOR and NEXT BASIC provides the programmer with
still another method for specifying data values for variables.
This method defines a loop using FOR and NEXT statements.
A loop is a portion of o program written in such a way that
it will execute repeatedly until some test condition is met.
A FOR and NEXT loop causes execution of a set of steps

for successive values of o variable until a limiting value
would be exceeded. Such values are specified by establish-
ing an initial value for a variable together with a limit
value, and an increment or decrement that is used to modify
the variable each time the loop is executed. When the
limit is exceeded, an exit condition built into the loop
ollows the computer to proceed to the following body

of the program. FOR and NEXT loops, therefore, have
three main components.

1. An initial volue expression for the voricble used by
the formula.)

2. A limit value expression beyond which the variable
may not be incremented (or decremented).

3. An optional increment or decrement expression value
to be added to (or subtracted from) the value of the
variable for each pass through the loop (except the
last). »

The FOR statement defines loop parameters. It gives the
initial value of the variable, the expression for the limit
value that the variable may not exceed and that cause the
loop to terminate, and (optionally) the increment or decre-
ment expression. If the step increment or decrement is not
expressly given in the FOR statement, it is assumed to
be +1. The FOR statement takes the form

line FOR simple variable = expression TO —

E—expression [STEP expression]

The expression preceding TO specifies the initial value of
the variable, the expression following TO gives the limit=-
ing value, and the expression following STEP gives the in-
crement or decrement. The computer evaluates the initial
volue expression only once, when the FOR statement is
executed. The other two expressions are also evaluated
when FOR is executed, but, additionally, are reevaluated
every time the NEXT statement is executed. A sample FOR
statement is shown below in the discussion of NEXT.

The NEXT stotement returns program execution to the be-
ginning of a FOR and NEXT loop ofter the indexed simple
variable has been incremented. NEXT has the form

line NEXT simple variable
Note that the simple variable in the NEXT statement must
be specified exactly as it appeared in the FOR statement.

Looping 21

The easiest way to understand a FOR and NEXT loop is to
follow one through its entire sequence of operations, as in
the following statements.

50 FOR X=2 TO 11 STEP 3
60 PRINT X, 2**X
70 NEXT X

Statement 50 sets the initial value of X to 2 and specifies
that X thereafter will be incremented by 3 each time the
loop is performed until X has the limiting value 11,

Statement 60 causes the computer to print out the current
value of the variable X and the result of 2X. Statement 70
causes the computer to return to statement 50, where

it picks up the next value of X, that is, +5. The computer
then prints 5 and 32 and again goes to NEXT which returns
it to FOR. When X attains the limit value of 11, state-
ment 60 will be executed and control will pass to 70. The
computer will again try to increment X by 3, but as the
upper limit of variable X will have been reached, the com-
puter will "fall through" statement 70 and control will pass
to the next statement. At this point, X will have the
value 11, the last value that does not exceed the terminal
value.

Fractional values may be used in FOR-NEXT loops. When
this is done, there is the chance that an expected iteration
may not occur because of rounding, as in the following
statements; :

10 FOR I=.,1 TO .4 STEP .1

50 NEXT I

This loop will be executed only for I =.1, .2, and .3 be-
cause the rounded value of 1 is slightly over .4 on the last
try. To get four iterations in this example, use

10 FOR I=.1 TO .41 STEP ,1
Loops may be contained within other loops (nested), but

the loops may not "cross". This exclusion is illustrated in
Figure 2.

FOR W
FOR X
NEXT X
FOR Y
FOR Z
NEXT Y
NEXT Z
NEXT W

correct <

incorrect <

A1

Figure 2. Nested Loops

22 Miscellaneous Statements

BASIC allows locp nesting to 26 levels, that is, the BASIC
program may contain ro more than 26 FOR statements whose
corresponding NEXT statements have not yet been encoun=-
tered in compilation.

MISCELLANEQUS STATEMENTS

REM or * The REM (Remarks) statement allows the pro-
grammer to interject commentary anywhere in the program
without affecting its execution. REM may be used to iden-
tify the complete program, or, more important, the function
or purpose of various sections of the program. REM tokes
the form

line REM [commentary]

The commentary portion of the statement may include ony
characters up to the end of the line. If commentary is
omitted, REM will produce a dummy line in the program.

An alternate form for REM is indicated by an asterisk.

Example:

110 *THIS IS A REMARK

Branching to o REM statement is ollowed and is recommended
when branching to a closed subroutine. Such use of a REM
statement serves to identify the subroutine. It also allows
statements to be inserted at the beginning of the subroutine,
if unused line numters exist between the REM statement and
the first executable statement of the subroutine.

PAUSE, STOP, or END PAUSE, STOP, or END con
be used to halt progrom execution at any point. The
line number of the halt is printed when program termingtion
occurs.

PAUSE, STOP, and END have the form

line PAUSE
line STOP
line END

Any number of these may be used in o program, or none at
all. If none is used, the program will normally halt after
the highest numbered line has been executed. If a branch
into an infinite loop occurs, as shown in the example below,
the BREAK key can be used to halt execution.

100 INPUT A
110 PRINT A
120 GOTO 100

6. ADVANCED FEATURES OF BASIC

For simplicity, explanations in previous chapters have
covered only the essential features of BASIC program
elements. This chapter contains additional information
on these elements and explains advanced features of

BASIC.

OTHER ELEMENTS OF A BASIC PROGRAM

The additional program elements presented below give the
user greater flexibility in using the statements explained in
Chapter 2, ond also augment the copabilities of the new
statements described in this chapter.

SUBSCRIPTED VARIABLES

In addition to simple variables, BASIC also provides for
subscripted variables. A subscripted variable denotes an
element of an array, that is, a list or table of data. The
individual values within the array are colled array
elements. We refer to an array element by specifying the
name of the array (always a single letter) and the posi-
tion of the element in the array. For example, the
fourth element in the array named L is denoted by L(4).
The value inside the parentheses is called the subscript,
ond is represented by an expression that can be reduced
by the computer to a single integer value. (Subscript o
pressions are evaluated to integer value after adding 27 2.)
Subscripts range from 1 through the maximum allowed
dimensioned value.

Arrays can have either one or two dimensions. A one-
dimension array is called a vector and is characterized
by a single subscript. The subscript denotes the position
of the desired array element in the list of data. Sample
vector array elements are A(1) and B(J + 3).

When an array has two dimensions, it is called a ma-
trix. Data in a mairix is thought of as being arranged
in rows and columns. Each element in o matrix is iden=
tified by two subscripts separated from each other by

a comma. The first subscript specifies the row number
and the second specifies the column number. For ex-
ample, C(K,L) and D(M+2,N+3) denote matrix array
elements.

As o further example of matrix notation, consider the
following table, which lists expenses for o four-day car
trip.

Column 1 2 3 4
Row | Item Date June 5 June 6 June 7 | June 8
1 | Gas, oil 21,29 20.84 19.42 6.08
2 | Tolls 1.32 .86 .40 .07
3 | Food 11.18 12.83 14.39 5.06
4 | Lodging 10,05 12.78 10.35 .00
5 | Misec. 1.35 .44 .90 .10

If we consider the table to be a matrix called E, the amount
($10.05) spent for lodging on June 5 would be represented
by E(4,1), ond the amount ($5.06) spent for food on June 8
would be represented by E(3, 4).

DIMENSIONING

A dimension is the largest value that o subscript may
attain for a given subscripted voriable (array). This limit
tells the computer how many storage units of the com-
puter's memory to ollocate for the orray. Dimensions
are specified explicitly in the DIM statement, but the
user may moke orray references without corresponding
DIM statements. In such cases, implicit dimensions are
used. Implicit dimensions are: 10 storage units for a
vector and 100 storage units for a matrix (that is, o 10
by 10 matrix). If the program uses MAT statements (ex-
plained later), the dimensions of oll orrays referred to
in these statements must be explicitly defined in DIM
statements.

DIM There are three reasons for explicitly specifying
the dimensions of an array.

1. The user may wish to allocate more space for his array
than allowed by implicit dimensions. Thus, DIM A(18)
would reserve 18 storage units for the vector A.

2. The user may wish to restrict the reserved storage space
for each array to its exact dimensions, thereby con-
serving space. For example, - DIM B(3, 4) reserves
12 storage units for matrix B, thereby leaving for other
use the remaining 88 units that would have been allo-
cated by implicit dimensions.

3. The user may wish to use a given array in a MAT
statement.

Advanced Features of BASIC 23

The DIM statement takes the form

Iine DIM name(dimx[,dimx]) [,nome(dimx[,dim})]. .

where
name is the name of the array being dimensioned.

dimx is a dimension expression that denotes the
maximum number of row or column elements in
the array.

Dimension expressions may not contain user-defined func-
tions, array references, or letter digit variables, and are
evoluated during compilation (not during execution) by
truncating to an integer value after adding 27'4. If di-
mensions for more than one array are specified in a DIM
statement, they ore separated by commas. A given array
may be dimensioned only once in a BASIC program via
a DIM statement. DIM statements may appear anywhere
in o BASIC program. A somple DIM statement is given
below.

10 DIM M(3,3), V(128)

VECTORS

Numeric Vectors. A numeric vector is a one~dimensional
array containing numeric or aconst data elements. The
name of a numeric vector consists of a single alphabetic
character. An element is referenced by o subscript expres-
sion denoting the relative position of the desired eiement
(see "Subscripted Variables”, above).

100 A(1)=3,14, B(A(1))="LARGER'

110 A(2)=SIN(A(1)=1), B(2)=1

115 IF A(1)=A(B(A(1)=B(2))+1) THEN 150
120 PRINT B(A(B(2)))

String Vectors. A string vector is a one=dimensional array
containing text string elements. The nome of a string
vector consists of an alphabetic character followed by a
dollar sign. An element is referenced by a subscript ex-
pression denoting the relative position of the desired ele-
ment. The subscript expression may be followed by o
substring expression specifying the beginning and length
of the desired substring (see "Character String Manipula-
tion", below).

100 DIM A$(3)

110 A$(1)='ABCDEFGH'
120 A$(2)=A$(1:2)
130 A$(3)=A$(2:3,4)

24 Other Elements of a BASIC Program

In the above example, vector element AS(2) is assigned
the string BCDEFGH and AS$(3) is assigned DEFG. Note
that all string arrays must be dimensioned via o DIM
statement.

MATRIXES

Numeric Matrixes. A numeric matrix is a two-dimensional
array containing numeric or aconst dota elements. The
name of a numeric matrix consists of a single alphabetic
character. Ar. element is referenced by o pair of sub~
script expressions, separated by a comma, denoting the
row and column of the desired element (see "Subscripted
Variables", above):

100 A(1,1)=1, A(1,2)=2

110 A(1,3)='THREE', A(2,7)=5

120 IF A(1,1)=A(1,2) THEN 155
130 PRINT A(1,A(2,7)=-A(1,2))

String Matrixes. A string matrix is a two-dimensional
array containing text string data elements. The name of
a string matrix consists of an alphabetic character followed
by a dollar sign. An element is referenced by a pair of
subscript expressions, separated by o comma, denoting the
row and column of the desired element. The subscript pair
may be followed by a substring expression specifying the
beginning and length of the desired substring (see "Char~
acter String Manipulation”, below):

100 DIM A$(2,2)

110 A$(1,1)='ZEITGEIST'
120 A%$(1,2)=A%$(1,1:3,6)
130 A%(2,1:1,2)=A%(1,2:3)

In the above example, A$(1,2) is assigned the string ITGEIS
and A$(2,1) is assigned GE. Note that all string arrays
must be dimensioned via a DIM statement.

CHARACTER STRING MANIPULATION

BASIC permits strings up to 72 choracters long and provides
capability for

1. Referencing string variables.
2. * Using string expressions.
3. Assigning a charocter string variable.

4. Assigning length or numeric value of a string variable
to a simple or subscripted variable.

5. Converting a numeric value to string format.
6. Concatenating strings.

7. Comparing strings.

8. Using strings in input/output statements.

9. Generating alphanumeric constants from strings for file
identification.

REFERENCING STRING VARIABLES

Strings are identified by a letter and dollar sign followed
by o further identification of the type of string specified:
string scalar, string array, string orray element, or sub-
string. Examples of each of these are given at the end of

this discussion. Strings may also be combined in expres-
sions for the purpose of string concatenation.

String scalars have the form
letter$ or $letter

A string scolar may not appear in a dimension statement.
To avoid conflict, the same letter may not be used for both
a string scalar and a string array or numeric array.

String array elements are subscripted variables. They have
the form

letter$ (expr[,expr])

where the optional expression denotes a matrix element. A
string with only one expression is a vector element.

String arrays moy be explicitly dimensioned. The form for
dimensioning a string array is

DIM letter$ (dim[,dimx])

Substrings are marked by a colon preceding an expression.
letter$ (zexpr 1[,expr 2))

where

expr 1 indicates the position of the first character
of the substring.

expr 2 indicates the length of the substring in num-
ber of characters. If expression 2 is omitted, the
substring includes oll characters from the indexed
charocter to the end.

If a string is an element of o vector or @ matrix, then the
form of the substring is

letter$ (expr 'I[,expr 2] [expr 3)[.expr 4))

where

expr 1 and expr 2 are the indexes of a string array

element.

expr 3 - is the index, or string position, or the first
character of the substring.

expr 4 is the length, or number of characters
in the substring. Again, if expression 4 is omitted
the string consists of all characters from the in=~
dexed character to the end of the string.

String examples are

P$ String scalar.

H$(1) String vector element.

B$(2,3) String matrix element.

A$(:4) Substring consists of all cha. acters
from the fourth to the last charac-
ter of AS$.

A$(:4,1) Substring consists of fourth character

of AS.

B%(2,3:5,2) Substring consists of the fifth and

sixth characters of string matrix ele-

ment B$(2,3).

STRING EXPRESSIONS

String expressions may be used as arguments for string
functions; PUT, PRINT, and PRINTUSING statements;
string concatenations; string comparisons; and as file identi~
fiers in OPEN and CHAIN statements. They must be ex-
plicitly stated in the PUT, PRINT, and PRINTUSING
statements, but may be in either implicit or explicit format
in all other cases.

Other Elements of o BASIC Program 25

The implicit string expression (strexp) has the form

string string

tstring +] tstring

var' var' o
_STR(expr[,rstring]) STR(expr [rstring])

where var' is a variable containing an alphanumeric constant.

Implicit string expressions are always to the right of the
relation operator in string assignment statements and
comparisons.

Explicit string expressions (xstrexp) are required to avoid
ambiguity on whether or not string processing is called for.
The form of this expression is

{S(sfrexp) }

string + strexp

where the dollar sign resolves the ambiguity that arises if
the first character is a letter character (as in STRor ina

variable). An implicit expression may be used only in a

statement where the syntax is unambiguous in indicating

string processing.

Examples:

LET Z$ =B (2,3) + A$(:5) implicit string expression

PRINT $(B(2,3) + A$(:5)) explicit string expression

PRINT B (2, 3) + A$(:5) ILLEGAL | ambiguous

syntax

PRINT "ABC" + A$ ILLEGAL

ASSIGNING CHARACTER STRINGS TO STRING VARIABLES

Simple variables provide storage for just one doubleword;
therefore, o simple varioble is limited to representing an
alphanumeric constant (maximum of six choracters).

Character strings more than six characters long must be as-
signed to string variables {letter$). Strings up to six char-

acters are considered alphanumeric constants and may be
assigned to simple or subscripted variables.

STRING LENGTH AND VALUE ASSIGNMENTS

For these assignments, BASIC provides two intrinsic func=
tions: LEN (for length) and VAL (for value). LEN and VAL

26 Other Elements of a BASIC Program

may only be used in assignment statements. The assignments
are made to simple or subscripted (not string) variobles ond
have the form

line LET var[,var]... =sfunct(strexp)

where sfunct is LEN or VAL. Both assignments can be made
in one statement, separated by a commao as in the example

25 KT1=LEN(W$(2,3)), K2=VAL{W$(2,3))

in which the length of the matrix string element WS(2, 3) is
assigned to the simple voriable K1, ond its numerical value
to K2. The arguments for both functions must be string ex-
pressions. [f the choracter string specified for VAL does
not represent a correctly formatted decimal constant, an
error message is generated and execution terminates.

CONVERSION TO A STRING

The output conversion routine automatically converts an ex-
pression to string fromat, but in manipulating text it may be
desirable to have the same conversion performed internally,
for example to store an evaluated expression in a file or
embedded as a substring within a text string. The string-
conversion routine is available for this purpose. It has the
form

[Vine] LET string = STR (expr[,rstring])
where STR is the string-conversion function.

The replaceable=string (rstring) argument is optionally used
to indicate the image of the desired format. If the rstring
option is not used, format is that for print output conversion.

Like the output conversion, string-conversion is governed
by the setting of the precision flag. The string will have a
leading blank if it is nonnegative, but will not contain
trailing blanks. The minimum length for a string is two
bytes; maximum length is 22 bytes for long precision and
12 bytes for short precision.

Examples of STR (conversion-to-string) statements are
10 A$=STR(3.5,%.%)

20 H$(1:9)=STR(SQR(X))
30 LET W$(2,3)=STR(A1+B1*COS (X))

STRING ASSIGNMENT AND CONCATENATION

Another string, an alphanumeric constant, a string converted
expression (see above), or a concatenation of any or all of

these may be assigned to a string. The form of the
string-assignment and concatenation statement is

line [LEWI’]string = {strexp l‘l{strexp] .

xstrexp) | Uxstrexp

where strexp is an implicit string expression and xstrexp an
explicit string expression (see "String Expressions", above).

Examples:

100 DIM A$(2)

110 A$(1)="ONE', A$(2)='TWO"'
120 B$=A$(1)+' AND '+A$(2)
130 B$=B$+*,"

The left string is given a value and a length consistent with
the items to the right of the equals sign. If the right
contains only one term, the statement performs string assign-
ment. If the right side contains two or more terms, con-
catenation occurs in the order given. If the maximum
string length is exceeded, the string is truncated.

If assignment is to a substring whose current length is less
than n=1, where n is the first character of the target sub-
string, then the gap to character n-1 is filled with blanks.
If target-substring length is specified and the number of
characters transferred is less than this specified length, then
the gap from the last character transferred to the specified
length is also filled with blanks. Characters in excess of
specified length are not transferred.

STRING COMPARISON

Strings are compared for identity or "magnitude” in IF ...
THEN or GOTQ statements. The form of the statement is

line IF string oper {sfrexp] {THEN } line
xstrexp) {GOTO

where oper is a condition operator (stexp and xstrexp were

explained under "String Expressions"). Examples are

10 IF W$(:1)="1W' GOTO 99

20 IF W$=STR(X1*Y1+43) THEN 40
30 IF R$=STR(0) GOTO 85

40 IF A$='DOG'+B$(1:9) THEN 120

Strings are compared from left to right as character pairs.
In comparing characters, the EBCDIC collating sequence is
followed. A blank is the lowest character, followed by
nonalphanumeric characters. Alphabetic letters are next,
in the order ABC ... YZ. Digits are the highest ele-
ments in the collating sequence. If one string is shorter
than another, the shorter string is "extended” with blanks
for comparison,

STRING INPUT/OUTPUT

Explicit string expressions and text strings may be used in
input/output statements in the form used for expressions and
alphanumeric constants, subject to the general rules govern-
ing strings. That is, a run-time error results if o text
string (more than six characters) is provided as input

to a nonstring varioble; or nonstring input (neither a
text string nor an alphanumeric constant) is provided

to a string. The statements used are INPUT, PUT, READ,
GET, DATA, PRINT, MAT PUT, MAT GET, MAT READ,
PRINTUSING, and MAT INPUT.

Examples:

140 MAT GET :3, AS$(2,3), BS
500 DATA 'ONCE UPON', "A TIME"
885 PUT V$, W$ (1), X$(1,A)+'?’
910 READ H$(1), H$(2), H$(3)
700 GET :3;K,W$(A1,A2), X$
750 PRINT $("IT'S "+STR(A)+BS$)
760 PRINT USING 100, H$(1), C$
800 PRINT :4,A$(1,1),A$(1,2)
400 MAT PUT A$, B$, C$

410 MAT GET A$(2,3), V§$

420 MAT READ F$(4), G$

430 MAT INPUT W$, X$

440 MAT GET A$, B

445 PRINT :1,B$(2,3:4,5);A%*2

Line 440 requires that the data file have the correct number
of string array 'ements to fill A$, immediately followed by
numeric data to ti.| numeric array B.

The examples above show cases of string input/output only.
The forms are similar to those described earlier for nonstring
input/output. In BASIC, stotements may mix (with ap-
propriate caution) string and nonstring items in the same
statement, as shown in Appendix A.

STRING INPUT MODE CONTROL

Normally, when a string is reached in the list for an INPUT
statement, the next data field in the record is accessed.
Blanks and commas are treated as field separators unless
they occur within quoted fields. An alternate form is pro-
vided in which an entire input line, or record, is treated
as a single field.

The form for switching string INPUT mode is

line INPUT ={5 }

any other character

INPUT = $ switches to full record input mode. Each input
referenced to a string accesses a full record and treats it
as a single string (as though it were enclosed in quotes).
If a record has been partially input (for numeric assign-
ment) and a reference to a string follows, the remainder
of the record is treated as a single field.

Other Elements of a BASIC Program 27

INPUT = X (any character but $) switches back to normal
input mode, which is the default.

String input mode is changed only by these explicit state~
ments and remains as set through successive operations
within BASIC until explicitly reset.

GENERATION OF ACONSTS FROM STRINGS

A string or string expression may be assigned to a simple or
subscripted variable, but only six characters will be trans=-
ferred and the rest truncated. If the string contains fewer
that six characters, trailing nulls are generated to satisfy
the oconst format.

Examples:

10 A1=P$
20 A2=B$ (3l)
30 A3=${'NO. '+C$(A4))

This provides an indirect means to assign strings as external
names or file identifiers by first assigning strings to simple
variables.

STRING EXPRESSIONS AS FILE IDENTIFIERS

In BASIC, string expressions may be used to designate
the nome, password, and account for file identification in
OPEN and CHAIN statements. The string expressions must
not result in text strings exceeding 11 characters for name
or 8 characters for account and password.

Examples:

120 OPEN 'FILE'+A$ TO :1,INPUT
340 CHAIN B$(N):'ABC';'SECRET'

In line 120 above, if A$ ='1234567' and I = 3 then 'FILE3’
is opened.

USER-DEFINED FUNCTIONS

DEF If the programmer wants to make use of a function
that is not included in the set of BASIC intrinsic functions,
or if he intends to make repeated use of an involved ex-
pression, he may define the function in a DEF statement

28 Other Elements of a BASIC Program

and make reference to it according to a name he designates.
The form of the DEF statement is

line DEF FN letter(simple variable[,simple —

l—-vv::ricd:»le].. .+) = expression

where

letter provides a unique nome for the function.

simple variable is a dummy argument appearing in
parentheses to the left of the equals sign. These
only serve to identify which of the simple vari-
ables in the expression to the right of the equal
sign are arguments. These must be ot least one
such argument, although it is not necessary that
any or all of the arguments appear in the expres-
sion. Each time the function is evaluated, current
argument values will be substituted for these terms
in the expression. There is no comma following
the final simple variable in the list. '

The following examples illustrate typical DEF formats:

65 DEF FNA(X)=X+B*X

100 DEF FNB(X)=X*SIN (FNA(X+C))
120 DEF FNX(X0,X1,X2)=X0*X1%*X2/K
550 X=FNX(1,2,3)+FNB(Y+3.14)

Line 500 is an example of how the functions defined in lines
100 and 120 might be used later in the program. The vari-

able X to the left of the equalssign is a different entity from
the dummy variables X in the DEF statements.

DEF statements may appear anywhere in the BASIC program,
including those cases in which the function is referenced
prior to its definition.

BASIC checks DEF statements for identical simple variables
in the list of dummy arguments, undefined functions, multi-
defined functions, and consistency between the number of
arguments supplied by the programmer when the function is
called (referred to) and the number of arguments in the
DEF statement. However, it is the responsibility of the
programmer to avoid circular definitions in and among the
DEF statements. Improper uses of DEF are shown below.

Case 1. Circular definition within statement:

\
1200 DEF FNA (X)=X+FNA (X)

Case 2. Circular definition among statements:

1400 DEF FNA (X)=X+FNB (X)
1450 DEF FNB (X)=X*FNC (X)
1500 DEF FNC(X)=FNA(X)/X

REREADING DATA

RESTORE The RESTORE statement alters the normal
sequence of DATA statement accession. DATA statements
are normally accessed as the preceding DATA statement is
exhausted. For example, of the following set of DATA
statements,

100 DATA 1,2,3,4
110 DATA 5,6,7,8
120 DATA 9,10,11,12

statement 110 will be accessed only after data value 4 in
statement 100 has been assigned to o variable, and state-
ment 120 will be accessed ofter data value 8 in the
preceding statement is assigned. RESTORE allows the
programmer to alter this sequence by directing the com-
puter (via a line number) to a specified DATA statement
from which data accession will proceed in the normal
manner.

The RESTORE statement is frequently used for accessing
data that will be used several times in the progrom, and
eliminates the need for writing duplicate DATA statements
when the same data is to be accessed more than once. The
form of the RESTORE statement is

line RESTORE [line)

where the second "line" must be the line number of a valid
DATA statement in the program. Some somple RESTORE
statements are given below.

740 RESTORE 125
900 RESTORE

If the {ine number is omitted in the RESTORE statement (as
in line 90 above), the computer will return to the first
DATA statement in the program.

BRANCHING TO A SUBROUTINE

GOSUB and RETURN The GOSUB and RETURN state-
ments provide subroutine capability in BASIC. A subroutine
is a section of the main program that completes a specific
task. GOSUB, in the main body of the program, directs
the computer (via a line number) to the first statement of
the subroutine. After the subroutine has been executed,
RETURN directs the computer to the statement following
GOSUB, where the main program continues. The form of
GOSUB and RETURN ore

line GOSUB line
line RETURN

where RETURN is the last executed statement of. the
subroutine.

Some sample GOSUB and RETURN statements are shown
below.

10 GOSUB 500

525 RETURN

The RETURN statement does not contain the line number of
the statement following GOSUB. BASIC remembers its
place in the program.

An attempt to execute a RETURN statement before a
GOSUB statement is executed causes output of an appro-
priate error message. Execution of too many GOSUBs
before a RETURN also causes an error message to be printed.
The program may execute up to 20 GOSUB statements before
a RETURN is needed.

CHARACTER CONVERSION

CHANGE The CHANGE command can be used to con-
vert string characters to equivalent EBCDIC values and vice
versa. To convert a string to EBCDIC, the command has
the following form:

string
xstrexp.

line CHAN 2E { } 10 tetter

Examples:

10 CHANGE A$ TO B
50 CHANGE $('246'+C$) TO D

The string characters are converted to EBC: alues stored
in the vector specified by the letter. The letter st repre-
sent a vector dimensioned by a DIM stotement. The current
dimension of the vector is set to the number of string char-
acters converted.

Assuming that A$ = 'Al' when line 10 above is executed,
the decimal equivalent of ‘A’ (i.e., 193) is stored in B(1)
and the equivalent of '1* (i.e., 241) is stored in B(2).

To convert a vector to a string, the following form is used:
line CHANGE letter TO string

The elements of the specified vector are converted to char-

acters and placed in the specified strine or substring. The

current dimension of the vector is used. If a value has o

fractional part, it is truncated.

Example:

15 CHANGE X TO Y$

Assuming X has the elements 193, 241, 90, and 87, the
characters 'A', '1', '1', and 'bell' will be stored in Y§$.

Rereading DATA/Branching to a Subroutine /Character Conversion 29

FILE MANIPULATION

A file is a collection of items assigned a name and treated
as a single unit. It is the principal device for manipulation
of blocks of data too large to process as a unit in computer
memory and for storage and data. Files are made up of rec-
ords, each of which may contain one or more data elements.
A file may be organized as a consecutive sequence of rec~
ords or as a set of records arranged according to sort keys.
The data in files may exist in a "print" form (BCD)or in the
form used within the computer (binary). BASIC allows op-
erations on BCD and binary files with sequential or keyed
access. Files are olso used to store and fetch BASIC pro-
grams. The BASIC statements OPEN, CLOSE, GET, PUT,
ENDFILE, and special forms of PRINT and INPUT provide
file manipulating capability.

FILE NOMENCLATURE

Files may have names of up to 7 characters. Names may
be enclosed in quotes (single or double) or may be aconsts
(limited to six characters) stored in simple variables. In
BASIC a name may also be any string expression of up to
7 characters.

The name may be optionally followed by a password of up
to four character and/or an account identifier of up to
eight characters. An account should not be specified for
output operations, since output will not be permitted on
other users' accounts.

The general form for file identification in an OPEN
statement is

name [;password][:account]

Examples:

"FILEONE"
Al1;'PASS':'12345678"

In the second example, the simple variable Al must contain
a name as an aconst.

Passwords are used for file security, and the account is used
to input data created in other users' accounts. A password
is preceded by a semidolon and on account number is pre-
ceded by a colon. If both account and password are speci-
fied, the order of their appearance is optional.

The term 'fileid’ will be used for name [;password][:account]
in describing forms of the OPEN and CHAIN statements.

30 File Manipulation

1/0 STREAM NUMBERS

Files are opened to specified input/output stream numbers.
BASIC permits four streams. Only one file can be opened
on a given stream number at one time, but the same streom
number may be used to open another file later, closing the
currently open file. The stream number is specified in the
OPEN statement ond may be any expression which evaluates
to a legitimate stream number. Froctional values are trun-
cated to integers, and expressions which do not result in in-
teger values should generally be avoided.

KEYED AND SEQUENTIAL ACCESS

BASIC allows file access in either sequential or keyed form.
All files created by BASIC are actually keyed but they may
be sequentially written and read without explicit references
to keys. Sequential files created without keys may only be
read sequentially. This means that files created by EASY
can only be read by BASIC, not updated.

The keys used in BASIC are numbers in the range 0.001 to
9999.999. Sequential files are created with keys 1.000,
2.000,... (these keys are compatible with the keys, or
“sequence numbers", used in the Xerox EDIT processor).

The key value for a given 1/O operation can be set by ex-
plicit reference to the key, using any arithmetic expression.
If a subsequent operation on the same file does not reference
an explicit key, the key value is incremented by one for
each record accessed.

If an output statement with an explicit key creates more
than one record, the subsequent records have keys incre-
mented by one per record. - If an input statement with an
explicit key requires more than one record of data, records
ore read sequentially starting at the record with the refer-
enced key.

UNKEYED 1/0 IN THE UPDATE MODE

When a stream is opened in the update mode, file position-
ing is not separately maintained for input and output opera-
tions. For example, if a PUT is followed by a GET and the
GET is unkeyed, unused data read from the last record is
used. Then therecord accessed is the next one, in ascending
key sequence, ofter the last record PUT. An unkeyed PUT
following a GET replaces the last record accessed. An
unkeyed PRINT following an INPUT replaces the last rec-
ord accessed. An unkeyed INPUT following @ PRINT
accesses the next record after exhausting all data in o
previously INPUT record.

In general, it is odvisable to specify keys in oll UPDATE
operations.

OPEN The OPEN statement performs the following file
management functions:

1. Designates that the named file is to be opened for BCD
or binary input, output, or update.

2. Assigns the file to an 1/0O stream number.

3. Closes a file if the file is to be opened for output and
a file of the some name is currently open. Closes a
file if the file is to be opened for input and a file of

the same name is currently open for output.

4. Indicates whether an existing file may be written over
if a file of the same name is to be open for cutput.

5. Positions the opened file at its starting point. (A file
opened for output is initialized as an empty file.)

6. Declares o file as a TFILE if the OPEN statement so
indicates. TFILES are released at the end of aterminal
session or, in botch operations, at the end of the JOB.

The TFILE directive is ignored if the file has a
password.

BINARY INPUT
The OPEN statement for binary input has the form

line OPEN fileid[JTO stream, GET[[JTFILE]
Exomple:
120 OPEN 'DATA' TO :3, GET

This opens the file on 1/0 stream 3 and does not declare
the file temporary.

DEFAULT FORM FOR BINARY INPUT
An abbreviated form may be used for binary input.

line OPEN fileid[,]1[any characters]

This is equivalent to

line OPEN fileid TO :1, GET

BCD INPUT
The OPEN statement for BCD input has the form

line OPEN fileid[,]TO sstream, INPUT|[,] TFILE]

BINARY OUTPUT

The OPEN statement for binary output has the form

line OPEN fileid[,] TO :stream, PUT,[g'\;'ER}[[,]THLE]

Example:

130 OPEN 'OUTF' TO :A(I),PUT,OVER,TFILE
If A(I)=4, this opens "OUTF" to stream 4 for binary output
(PUT). OVER indicates that an old file nomed QUTF is to

be written over if present. TFILE indicates this is a tempo-
rary file, to be released at end of job.

DEFAULT FORM FOR BINARY OUTPUT

An abbreviated form may be used for binary output.
line OPEN fileid[,] O [any characters)

This is equivalent to |

line OPEN fileid TO :2,PUT,OVER,TFILE

BCD OUTPUT
The OPEN statement for BCD output has the f =

line OPEN fileid[,]TO :stream, PRINT[,] {8\7@]——]

L [Careie]

Example:
140 OPEN 'BCDOUT' TO :4, PRINT ON

The 'ON' directive means if an old file exists with name
BCDOUT, it is not to be overwitten.

BINARY FILE UPDATE
To update a binary file, use the form
line OPEN fileid[,]TO :stream, GET, UPDATE —

(- [[,]TFILE]

This opens an existing binary file in the update mode,
allowing input (GET) and output (PUT) on the file.

File Manipulation 31

BCD FILE UPDATE
To update o BCD file, use the form
line OPEN fileid,]TO :stream, INPUT, UPDATE —

l——[[,]TF]LE]

This opens an existing BCD file in the update mode, allow=
ing input (INPUT) and output (PRINT) on the file.

ENDFILE The ENDFILE statement allows the user to
branch to a designated line number in his program when an
out-of-data condition occurs or a specified key isnot found.
The form of the ENDFILE statement is

line ENDFILE :streum,{E. }
line number

The “"stream" may be any expression. If the expression
evaluates to a legitimate stream number, the OUT OF DATA
control will be applied to ‘any GET or INPUT: via that
stream. If the expression evaluates to zero, OUT OF DATA
control is applied for READ statements.

The “stream" expression is followed by a "line number"
(not an expression) or the letter "E". E indicates reset to
normal error exit. A "line number" indicates the location
(in the user's program) to transfer to on the out-of=data

condition.

Example:

100 OPEN “FILE" TO :1, INPUT
110 ENDFILE :1, 150

120 INPUT :1, A$

130 PRINT A$

140 GOTO 120

150 CLOSE :1

CLOSE The CLOSE statement closes the file on the
indicated 1/O stream.
line CLOSE :stream

This closes the open file, if any, on the indicated stream
number.

Example:

200 CLOSE

N

If N =3, stream 3 is closed.

The following forms may also be used.
line CLOSE Ifany characters)(equivalent to CLOSE ;1)
line CLOSE Ofany characters)(equivalent to CLOSE :2)

Files may also be implicitly closed by an OPEN statement
and are closed when leaving BASIC.

32 File Manipulation

GET The GET statement retrieves binary data from files
created by PUT statements. Data is assigned to specified
varigbles as it is received from the file via the indicated
I/O stream. Access may be sequential or keyed. GET has
the form

line GET[:stream[;key],] variable[,voriable]. ..

A default form can be used

GET variable. ..

This is equivalent to

GET :1,variable. ..

The variables may be simple or subscripted. There is no
comma following the final variable in the list. As in READ
and INPUT, the variable list may include either of the
special entities * or **. The single asterisk causes an error
exit if the current record has not been exhausted of data.
The double asterisk causes any unused data in the current
record to be discarded.

Attempts to GET on an 1/O stream which is not open for
binary input or to use an illegal 1/O stream number will
terminate the run with an appropriate error message.

The specification of a nonexistent key or an attempt to read |
beyond end-of-file gives an OUT OF DATA error exit and
message. This exit may be modified by the user (see
"ENDFILE", above).

A GET statement may require reading more than one record
to satisfy the variable list. If the GET statement has the
key value n, the records read are accessed sequentially
starting with n.

If o keyed GET is followed by a nonkeyed GET, records
are accessed sequentially starting with the keyed record.

Example:

100 OPEN "PUTFILE" TO :3, GET
110 ENDFILE :3, 150

120 GET :3, A1, B4, C7

130 PRINT A1*(B4=C7)

140 GOTO 120

150 CLOSE :3

PUT The form of the PUT statement is

line PUT |:stream(;key) ,] {::z;sf} E{::‘:"f}] ces

This statement writes data into a file in internal (binary)
format. The expression following the colon indicates the
1/0 stream (thus, because of an OPEN statement, the
file to be written on). The optional expression preceded
by a semicolon designates the key. If a key is designated,

the first items written will be to o record with that key
value. A PUT statement may generate more than one rec-
ord. If so, and if the statement contains the explicit
key n, the records generated will have keys of value n,
n+l,...

A default form can be used

line PUT{""P’ }[,{e"P' }]
aconst aconst

This is equivalent to

line PUT ::2,{3"*"][,[”P’]
aconst aconst

The data values to be entered into the file may take the
form of an expression or an alphanumeric constant. There
is no comma following the final expression or aconst in the
list. Some sample PUT statements are shown below.

880 pPuT “"ERICEL",55,72
881 PUT :1,TIM(X),DAY(X),YER(X)
882 PUT FNH(A1)+P*Q

The FNH in statement 882 is an example of a user-defined
function. These are explained under "User-Defined Func-
tions", earlier in this chapter.

PUT statements can be used to write on files opened for
PUT or opened for GET,UPDATE. In the case of updates,
records can be inserted or replaced using the key option.
In newly created files, the key option can also be used to
write records in a nonsequential order and to replace pre-
viously written records by repeating a PUT with the same

key.

The form of PUT and GET records is described in Appendix E.
These records generally include 14 data values, but short
records may be created by use of keyed PUT statements or
as the last record written before closing the file or using
the flushing technique (see "1/0 Flushing" below).

Example of keyed PUT statement:
300 PUT :4;121,A,B,C,D,E,F, =

L G,H,1,J3,K,L,M,N,0,P

This statement will cause BASIC to write a record via 1/0
stream number 4 with the key 121 and the values con-
tained in the simple variables A to N, The volues in O
and P will be the first two values written on record 122.
“1f the next PUT statement does not include a key, writing
will continue on record 122. (This example was chosen to
indicate the caution that should be used in mixing keyed
and nonkeyed output statements.)

If a PUT statement does not fill the current output record,

that record is not normally output until it is later filled, a
keyed PUT is executed, or a CLCSE is executed. Short

records may be forced out by using the special expression
ne*t (see "1/O Flushing"”, below).

A PUT stotement may result in an error message if the
selected 1/O stream is not open in the proper mode, an
illegal stream number is selected. or an out-of-range key
is selected.

INPUT The action of an INPUT statement for file input
is onalogous to that of a normal INPUT statement (see
“INPUT", Chapter 2) except the BCD input is routed from
an open file through a specified 1/0 stream rather than
from the terminal, Sequential or keyed access is permitted.
The form of a file INPUT statement is

line INPUT stream ;key , input list
Exomple:

250 INPUT :3,A(1),A(2),**

The "input list" is the some as for normal INPUT statements.
One line constitutes one record and a single INPUT stote-
ment may access several records sequentially. If the INPUT
statement specifies a key, reading starts at the beginning

of the keyed record.

Attempts to input a specific keyed record that does not
exist, (if no ENDFILE is in effect) or to use an 1/O stream
not open for BCD input or an illegal 1/0 stream will re-
sult in an error exit and message.

An attempt to INPUT beyond the end-of-file gives an OUT
OF DATA error exit. This exit may be modified by the
user by means of an ENDFILE statement (see above).

PRINT The action of the PRINT statem.' = -r file out-
put is analogous to that of a normal PRINT statement
(see "PRINT", Chapter 2) except the BCD output is routed
to an open file via a specified 1/O stream. Sequential or
keyed output is permitted. The form of the file PRINT
statement is

line PRINT :stream[;key],print list

The first expression is the /O "stream" number. The op-
tional second expression is the "key" value. The "print

list" allows any arguments acceptable in a normal PRINT
statement.

A record is generated for each line of print, thus one
statement may generate more thon one record. If the
print list ends with punctuation, o partial record is formed.
The record is output if a full line is formed, a PRINT
on the same stream ends without punctuation, or any

" PRINT is executed on a different 1/0 stream (or to the

terminal). In general, it is bad proctice to end a file
PRINT statement with punctuation (commo or semicolon)

or a TAB(0).

File Manipulation 33

If o PRINT statement generates more than one record, the
key is incremented by 1 for each record. This should be
particularly noted if files are generated with later updates
in mind or when in the update mode. If it is likely that
multirecord PRINT statements will be used, the file should
be created as o keyed file with key increments large enough
to allow insertions and replacements without inadvertent
overwrites.

Example:
400 PRINT :4:;I1,1,2,3,4,5,6,7,8
410 PRINT :4;I+1,9,10,11,12

In the above example, statement 400 generates two records
withkeys I and I+1. Then statement 410 generates a new
record with key 1+1.

If the file is created with a key interval of 10 records, it
might be generated or updated as follows.

400 PRINT :4;10*I1,1,2,3,4,5,6,7,8
410 PRINT :43;10%(I+1),9,10,11,12

In this case. statement 400 generates records with keys 101
and 101+1. Statement 410 generates a record with key 101+10.

PRINTUSING The acticn of the PRINTUSING statement
for file output is analogous to that of a normal PRINTUSING
statement (see "PRINTUSING and :(Image)", Chapter 2)
except the BCD output is routed to an open file via a speci-
fied 1/O stream. Sequentic| or keyed output is permitted.
The form of the file PRINTUSING statement is

[line] PRINT :stream{;key],USING |ine[, {f:f: ';’::g}] ..

Example:

100 PRINT :1;K, USING 200, X, Yu

1/0 RESIDUE

In executing GET, INPUT, or READ statements the current
record may or may not be exhausted of data, depending on

{EASY

NEW OR OLD=--OLD LISTF

READY

LIST FILE

FILE UTS/EASY 14:21 AUG 25,'72
"EMPL NO. NAME SO0C SEC NO.
10712 JACK 468-54-234 123GTR 876-0987
76540 MIKE 654=-87~932 321KIU 654-6543
87654 TED 432-22-876 987PIP 876-6789
READY

LIST

LISTF UTS/EASY 14:21 AUG 25,'72

10 DIM E$(5)

20 OPEN “FILE" TO :1, INPUT

30 INPUT N$

40 INPUT :1, BS$

50 INPUT :1, E$(1)

60 IF E$(1)=N$ THEN 90

70 INPUT :1, **

80 GOTO 50

90 PRINT B$

100 INPUT :1,E$(2),E$(3),ES$(4),E$(S)
110 PRINT E$(1),E$(2) ,E$(3),E$(4) ,ES$(5)

READY

RUNNH

276540

EMPL NO. NAME SOC SEC NO.

76540 MIKE 654-87-932
110 HALT

ADDRESS PHONE"
ADDRESS PHONE
321K1IU 654-6543

Figure 3. INPUT Residue Example

34 File Manipulation

the amount of data contained in that record. Normally,
any residual dato remaining in o record is retoined for use
by a subsequent GET, INPUT, or READ. The use of o
single asterisk in a GET, INPUT, or READ causes BASIC
to take an error exit if residue occurs. A double asterisk
causes any residue to be discarded.

In the example shown in Figure 3, the user loads, lists, and
runs o program named LISTFILE. This program opens FILE
to stream 1 and prompts the user to type an employee
number. It then inputs a header record to B$ and inputs
the first field of each subsequent record to E$(1) until it
finds one beginning with 76540. The INPUT :1, ** state-
ment in line 70 causes unwanted residue to be discarded.
Line 100 inputs the remaining data from the selectedrecord.

1/0 FLUSHING

If o PUT statement does not fill the current output record,
that record is not normally output until it is filled by a
subsequent PUT, o keyed PUT is executed, or o CLOSE is
executed.

The writing of short records can be forced by use of the
double asterisk (see Figure 8, Appendix E). This capability
is useful primarily in the update mode.

Examples:
320 PUT :43N,A(1),A(2),A(3),**

This ensures that o three-element record with o key value
of 4 is immediately output.

440 PUT :1,**,A,B,C,*¥,D,E,F,**

This ensures that fwo short records are output, with three

elements each. In this case, if a partial record was pend-
ing prior to executing the statement, it is output first as a
short record.

RUNNING CONSECUTIVE PROGRAMS

CHAIN CHAIN directs the computer to acquire and

run another program of a series of programs without future

action by the programmer. The format of the CHAIN state-

ment is '
line CHAIN name(;password] [:acct no)

where name (and, optionally, password and acct no) is the

identity of o program as defined in the discussion of the
OPEN statement.

When executed, CHAIN produces the following results:

1. The current program is discorded, but the values of its
simple variables ore retained.

2. The nomed program is obtained, compiled. and exe-
cuted if possible.

Note that only the simple variobles computed by the pro-
gram are retained when CHAIN is executed; all array values
and dimension information are lost. A sample CHAIN state~
ment is shown below.

950 CHAIN “PART2" :A;P

CHAIN LINK The CHAIN LINK statement differs from
the CHAIN statement in thot it preserves array and string
values. The CHAIN statement retains only the simple vari-
ables and discards the rest of the program.

The form of the statement is

line CHAIN [LINK]file identification

An example is

960 CHAIN LINK "PART3" :A;P’

where

"PART3" is the name of the chained program.

A is account A.
iP is the password.

A and P contain alphanumeric constants. The "LINK" part
of the statement is optional. Without it, the array context
of the old program would simply be discarded. With it,
context is retained.

Although CHAIN LINK preserves array context, array
dimensioning is not preserved. Therefore any array used in
a program that is chained to must be redimensioned in that
program, via a DIM statement, if explicitly dimensioned
in the first program.

MATRIX OPERATIONS

Matrix operations in BASIC are controlled through use of o
special set of MAT statements. In addition to the usual set
of allowed matrix manipulations, BASIC provides options
for input of matrixes via console or file, copying of matrixes,
and the solution of simultaneous equations. Some of the

Running Consecutive Programs/Matrix Operations 35

matrix operations apply to vectors as well as to matrixes.
At times, vectors are treated as either row or column
matrixes.

MAT statements may be specified to use variable dimen-
sions, as {ong as these are within the dimension limits
specified in DIMstatements. In some cases, dimensions will
vary because of the operations that are performed on them
(For example, multiplication of nonsquare matrixes). Thus,
there is current dimensioning (the result of the latest matrix
operations, or as specified by the user in MAT SIZE state-
ments), and absolute dimensioning (given in DIM statements).

Every array that is named in a MAT statement must be di-
mensioned in a DIM statement. This assures that absolute
dimensions exist, sets initial current dimensions, and dif-
ferentiates between vectors and matrixes. (Note that use
of a letter to designate an array does not preclude the use
of the same letter to designate a simple variable.) Current
dimensioning may not exceed absolute dimensioning. Ma=
trix operations and their corresponding MAT statements are
presented below.

MAT GET The MAT GET statement reads array values
from the currently open input file. It complements the
MAT PUT statement, but can also read data prepared by
ordinary PUT statements. MAT GET takes the form

line MAT GET {:sfream[;key] ,] adescrf,adescr]. . .

The default form
MAT GET adescr[,adescr]. . .
is equivalent to
MAT GET :1,adescr{,adescr]. . .
where adescr is an array déscriptor of the following format:

aname[(dimx[,dimx])]

In the array descriptor, the terms aname and dimx present
the single letter array designator and dimension (subscript)
expression, respectively, of the array. As shown in the
general form above, therefore, an adescr term may indicate
a single letter array designator, a designator followed by
one subscript (a vector), or o designator followed by two
subscripts (o matrix)., The dimx expressions in an adescr
term constitute variable dimensions; they provide a simple
method for varying current dimensions during execution
(not during compilation).

One example of a MAT GET statement is
1008 MAT GET A(3,3), B(4,8)

MAT PUT The MAT PUT statement enters arrays into the
currently open output file. It takes the form

line MAT PUT [:sfrecm[;key],] adescr[,adescr] . ..

36 Matrix Operations

The default form
MAT PUT adescr[,adescr]. . .
is equivalent to
MAT PUT :2,adescr[,odescr]. ..

There is no comma following the final array name in the
list. In the sample statement

1002 MAT PUT A,B

array A will be completely output before.array B is output.
Current dimensions determine how much data is output from
a given array. Current dimensions may be set as part of the
adescr, which is described above for MAT GET. Matrixes
are entered into output files in row major sequence, that
is, with the last subseript varying most rapidly.

Note that one MAT PUT may create several records. The
key for the first record may be selected. but later records
will have keys incremented by 1.per record. See "1/O
Flushing", above, for treatment of partial records.

MAT INPUT The MAT INPUT statement is the array
counterpart of the variable-oriented INPUT statement de-
scribed earlier in this chapter. Format.and a.sample state-
ment are shown below.

line- MAT INPUT [:streom[;key],] adescr[,adescr]. . .

If ":stream” is included, input is from an open BCD input
file assigned to that streom.

Example:

1007 MAT INPUT A(3,4), B

When statement 1007 is executed, 12 values must be sup-
plied for the 3 x 4 matrix A. These values are then fol-
lowed by input for array B. Note that the number of values
input to array B must match the current dimensions- for B.

The rule for the use of commas and empty fields in the data
list read by MAT INPUT is the same as described for the
INPUT statement.

MAT PRINT The MAT PRINT statement prints arrays in
regular or packed format. The form of the MAT PRINT
statement is

line MAT PRINT[:sfream[;key]b,] oname[{;}]—i
(I [aname]. .. ["]

where aname is the letter designation of an array that has
been dimensioned in a DIM statement. Some sample MAT
PRINT statements are shown below.

1000 MAT PRINT A, B; C
1010 MAT PRINT D;

There are two types of print formats, regular, or packed.
An aname parameter followed by a semicolon causes the
named array to be printed in packed format. Otherwise,
regular format is used. Statement 1000 will cause array A
to be completely printed before any element of array B is
printed. Array A will be printed in regular format, array B
in packed format, and array C in regular format. Current
dimensions are used to determine how much dato is printed
from an array. Statement 1001 will cause array D to be
printed out in packed format.

Vectors are printed in row fashion. Each row of a matrix -
is printed as one or more consecutive print-rows with a
blank line between successive matrix-rows. Column 1 of
a matrix always oceurs in the leftmost print field.

Note: If MAT PRINT :stream is usec, each line of output
creates one record. In general, more than one
record will be created. A record containing one
blank byte is created ofter the last MAT PRINT
record is written.

MAT READ The MAT READ statement is similar to the
READ statement described in Chapter 2, except that it
acquires whole arrays of data, rather than just single data
items. MAT READ has the form

line MAT READ odescr[,udescr] cee

where adeser is an array descriptor of the same format pre-
viously explained under "GET", namely

aname [(dimx[,dimx])]

If dimension expressionsare included in the array descriptor,
they specify current array dimensions. If they are omitted,

current dimensioning results from previous conditions. Some
samples are shown below.

1005 MAT READ A(K/L+M,7)
1006 MAT READ B, C(3,4)
1007 MAT READ D

MAT SIZE The MAT SIZE statement redefines current
dimensions of the named array. MAT SIZE has the form

line MAT SIZE aname (dimx[,dimx]}) —

- [,ancme(dimx[,dimx])]. ..

Examples:

1003 MAT SIZE A(X+Y,Z)
1004 MAT SIZE D(4,5), B(3)

where .
aname is the single letter designator of an array.
dimx is any expression representing a legal

subseript.

ASSIGNMENT FUNCTIONS

The matrix assignment functions resemble the LET statement
in form and function. An array name (oname) always ap-
peors immediately to the left of the equals sign and the
nomed array is assigned values according to the specifica-
tions to the right of the equals sign.

ZERO

This statement zeros those elements of the named array that
fall within the range of current dimensions. Its format is

line MAT aname = ZER[(dimx[,dimx])]

The optional dimx terms have the same meaning described
previously under MAT GET; that is, they are dimension ex-
pressions specifying new current dimensions (subscripts) of
the array, and as such constitute variable dimensions. For
example, assuming the array B(5,5), that is, a 5 x 5 matrix
named B, the following statement,

1010 MAT B=ZER(3,2)

will zero elements (1,1),(1,2),(2,1),(2,2),(3,1), and
(3,2), leaving the remainder of the matrix unchanged.
Other examples are

1020 MAT (- ZER(10)
1030 .MAT D=ZER

CONSTANT
This statement is analogous to that discussed above, except
that is sets matrix elements to 1 (instead of 0). Its format
is given below.

line MAT aname = CON [(dimx[,dimx])]

Example:

2250 MAT L=CON(3,5)

IDENTITY MATRIX
This statement forms an identity matrix. Since the array
must be a square matrix, new current dimensioning may
hove to be provided. Two forms are shown below.

line MAT ananme = IDN [(dimx)]

line MAT aname = IDN[(dimx, any characters -

L to end of line]

Matrix Operations 37

The first form, which gives the current dimension for therow
value only, is sufficient to define the square matrix. The
second form is provided for those users who wish to clearly
indicate that the array is a squore matrix. However, it may
stand alone. Appropriate samples are shown.

1011 MAT Z=IDN
1012 MAT B=IDN(4)
1013 MAT C=IDN(3,3)
1014 MAT D=IDN(X+Y)

COorY
The copy statement copies arrays, and sets current.dimen-
sioning of the array copied into to that of the array copied

from. The form of the copy statement is

line MAT aname = aname

In the sample copy statement below,

1015 MAT A=B
matrix B is copied into matrix A. Assume that B isa 4 x 4
motrix with current dimensioning (3,3). Only elements
1,1, (1,2), (1,3) ... (3,3) from B are copied into A.

Further, any remaining elements in array Aare not changed,
and the current dimensioning of A becomes (3, 3).

SCALAR MULTIPLICATION

The scalar multiplication operation multiplies an array by
a scalar quantity. The form of the statement is

line MAT aname = (expr)* aname
where expr is an expression representing the scalar multi-

plier, and the parentheses are required. In sample state-
ment 1016, below,

1016 MAT A= (A)*A
1017 MAT B=(SIN(X+H))*C

the parenthesized A is interpreted by BASIC os a simple
variable, not as an array name.

ADDITION AND SUBTRACTION

Array addition and subtraction are performed through use
of the statement shown below.

line MAT aname = anome{t}aname

38 Matrix Operations

This statement odds or subtracts the corresponding elements
of the two arrays named on the right of the equals sign and
stores the results in the array named on the left. A somple
is given for reference.

1018 MAT Z=B+C

The ambiguity introduced by allowing addition or subtrac-
tion of two vectars with storage in a matrix, or copying,
transposition, and scalar multiplication of a vector into a
matrix is resolved by considering the vectors as row vectors.
Current dimensions of both arrays named to the right of the
equals sign must be equal for addition and subtraction. The
current dimensions of the array named on the left side of the
equals sign are set equivalently.

TRANSPOSITION

It is not necessary to trdnspose a vector array; the result is
an exact copy of the argument vector. Matrixes are trans-
posed by use of the statement shown below.

line MAT aname = TRN(aname)

Sample statements are shown below

1019 MAT A=TRN(A)
1020 MAT B=TRN(C)

Current dimensioning of the matrix named on the left side
of the equals sign is set consistent with current dimensioning
of the matrix named on the right.

MULTIPLICATION

In the muitiplication operation, vectors are taken to be row
or column matrixes as appropriate. If a vector is multiplied
by a vector, the scalar (dot) product results. The form of
the multiplication statement is

line MAT aname = aname*anome

The following is a sample multiplication statement.
1021 MAT Z=B*C

Current dimensioning must be consistent with
the usual rules of matrix multiplication.

Notes: 1.

2. The same array name may not appear on both
sides of the equals sign.

INVERSION
The inverse of a square matrix is specified os shown below.
line MAT aname = INV(aname[simple variable])

where the inclusion of the simple variable (in which to store
the computed determinant of the argument matrix) is a user
option. Some sample statements are

1022 MAT A=INV(H)
1023 MAT B=INV(I,D)

In caleulating the inverse of the square (by current dimen-
sioning) argument matrix, the target matrix is initially set
to an identity matrix. Then the target is converted by
those elementary row operations that reduce the argument
matrix to the identity matrix. Upon completion of the con-
version, the target matrix is approximately the inverse of
the argument matrix. The values of the argument matrix
are destroyed; both matrixes have current dimensioning
originally applicable to the argument matrix.

Notes: 1. The argument matrix must be square (according
to its current dimensions).

2, Results are approximate, not exact.

3. At the user's option, the computed determinant
of the argument is stored in a simple variable.

4. The contents of the argument matrix are
destroyed, but current dimensions remain.

5. The same array name may not appear on both
sides of the equals sign.

SIMULTANEOUS EQUATION SOLUTION

Solution of simultaneous equations is accomplished vio the
statement shown below.

line MAT aname = SIM(aname[,simple variable])
where the simple variable modification is a user option.

Some sample statements are shown below.

1024 MAT M=SIM(E)
1025 MAT S=SIM(H,D2)

The target orray contains one or more sets of linear equa~
tion constant column vectors. The dimensions of this array
must be compatible with the square argument matrix. For
example, if the argument matrix has current dimension of
(n,n), the target array must be either an n-dimension vector
(one solution, or else an n x m matrix (m solutions). The

argument matrix contains the coefficient matrix. The
solution of the simuitaneous equations is arrived at by con-
verting the target array by those elementary row operations
that reduce the argument matrix to the identity matrix.
Upon completion of the conversion. the values of the
argument matrix are destroyed. but current dimensions for
both the target and the argument arrays are unchanged. The
target array contains the appropriate values that are com-
puted by taking

(argumenr)" x (torget)
This result is equivalent to solving one or m sets of simulta=-
neous linear equations having the same coefficient matrix,

that is, the argument matrix.

Notes: 1. The argument motrix must be square (according

to its current dimensions).
2. Results are approximate, not exact.

3. At the user's option, the computed determinont
of the argument is stored in a simple variable.

4. The contents of the argument matrix are
destroyed, but current dimensions remain.

5. The same array name may not appear on both
sides of the equals sign.

ACCURACY OF INVERSION AND SIMULTANEOUS
EQUATION SOLUTION

The results of matrix inversion will vary in accuracy because
of precision losses during the conversion 1 ss. If, during
conversion, a pivotal element is smaller in magnitude than
1013, it is considered to be zero and the matrix is con-
sidered singular. If all elements of a matrix are of small
magnitude (e.g., 1076 or less), it should be scaled upward
so the greatest magnitude of any element is near unity. If

a matrix consists of elements of large magnitude, it should
be scaled down again to near unity for the maximum
element.

When a determinant calculation is requested in using the
inversion or simultaneous equation functions, the following
special situations may occur:

1. If the determinant value calculationresults in a magni-
tude greater than 7.234 x 1073, the value of the simple
variable will be the alphanumeric value OVERFL.
This does not affect the calculation of the inverse or
simultaneous equation solution.

2. If the matrix is singular, the simple variable is given

a value of zero; the values of the argument and target
arrays are destroyed.

Matrix Operations 39

1. BASIC MESSAGES

This chapter lists BASIC error messages and other messages
in alphabetical order. In the messages, xxxxx represents

line number and x represents array name, function letter,

or declared letter. Except as noted in comments, an error
causes termination of program execution.

xxxxx ACONST EXPECTED

A variable contains numeric data when it should contain
an aconst.

xxxx ARG NO. ERR FNx

Conflict between the number of arguments defined and the
number of arguments used with the function.

ARRAY CLASS CONFLICT

The indicated letter is used for more than one type of array.

Example: B used for a string vector but dimensioned as o
numeric vector.

xxxxx ASN=-ACS ARG ERROR

The argument is outside the allowable limits £1.

BAD BYTE

In executing a CHANGE statement, a value was not in the
range 0-255.

xxxxx BAD CHAR

Statement xxxxx contains an illegal character (for example,
1, 7,2, etc.). Note, however, that all characters having
the EBCDIC value of blank or greater are allowed in Image
statements, text strings, and alphanumeric constants.

xxxxx BAD CONST

Line xxxxx contains an improperly formed numeric or
alphanumeric constant. Probable causes are

Numeric
1. Extra decimal points.

2. More than two digits in exponent fields (for example,
.001E100).

40 Basic Messages

3. Underflow or overflow in conversion to floating-point
form.

4. Missing operator after the constant.

Alphanumeric

1. Missing quotation mark.

2. Single (or double) closing quotation mark does not
match double (or single) opening quotation mark.

3. More than six characters between quotes.

4. Contoins a character having an EBCDIC value less
thon that of the blank character (for example, the
O character).

xxxx BAD FORMAT

This message covers a wide range of syntax errors. The
user should reexamine statement definition if the error is
not obvious.

xxxxx BAD FORMULA

An arithmetic expression error has been detected. This
message covers a wide range of error situations such as
missing operators, missing operands, misspelled function
names, misspelled keywords, etc.

BAD STEP # AFTER STMT xxxxx

A line number contains a nonnumeric character or more
than five digits.

xxxxx BAD STMT

The type of statement is not recognizable; most frequently,
the command keyword has been misspelled.

xxxxx BAD STREAM NO.

An 1/O stream number is outside of the legal range (1-4).

xxxxx BAD SUBSCR

A known subscript value is too small.

BAD SUBSTRING PARAM

Run=timer error. A substring index is nonpositive or starts
beyond the maximum string length.

xxxxx BAD TEXT

A text string either contains a New Line character (user
probably forgot the end-quote mark), or has an unmatching
quote (as in 123 PRINT "DOUBLE QUOTE'), or contains a

character having an EBCDIC value lower than 15.

CANNOT OPEN

Unable to OPEN a file

DATA MIX-UP, $STRING VS NUMERIC

Either numeric data is being input to a string, or text
exceeding oconst length is being input fo o simple or sub-
scripted variable (vio READ, INPUT, GET, MAT READ,
MAT INPUT, or MAT GET).

xxxxx DEFD TWICE

A function defined in DEF statement xxxxx was also defined
by an earlier DEF stotement.

xxxxx DIM ERR

A DIM stotement formula contains one of the following:
1. User function call.
2. ‘Simple variable that is not SET to some value.

3. Subscripted variable reference.

xxxxx DIMD TWICE x

Multiple-dimensioning has been attempted. Revise DIM
statements.

DIM TOO BIG

Run-time error. A dimension is too large in a matrix
operation.

xxxxx DIV BY ZERO

Run-time or compile error. A zero denominator was en-
countered in expression evaluation.

xxxxx ERROR IN KEYED 1/0O

Reference to illegal key or attempt to access an unkeyed
file in the keyed mode.

xxxxx EXP OVERFL

Floating~point overflow during exponentiation.

xxxxx EXTRA COMMA

Error indirectly associated with bad comma. Examples:

Syntax Explanation

X+ (Y,Y) Array reference without array designator.
SIN (A, B) Too many arguments in intrinsic function.
M(X,Y,Z) Too many subscripts in array reference.

xxxxx EXTRA INPUT

Contents of input record not exhausted when check symbol
'*! encountered.

xxxxx FILE 1/0 ERROR

Monitor indication of error in attempting to write or read
on file.

xxxxx FILE NOT OPEN IN PROPER MODE

I/O operation attempted on file which is closed, or open
in a conflicting mode, on the 1/O stream in use.

xxxxx FOR-NEXT ERR

Message covers FOR-NEXT errors illustrated below:

Case 1. Wrong Variable Reference

FOR A
NEXT B error

Case 2. Improperly Sequenced Statements

FOR I
FOR J
NEXT 1 error
NEXT J error

Case 3. No Corresponding FOR Statements

NEXT A error

Basic Messages 41

These messages may be compounded as in

FOR A
FOR B
FOR C
NEXT B
NEXT C
NEXT A

error, FOR C is cancelled
error, FOR B is cancelled

or alternatively

FOR A

FOR B

FOR C

NEXT B error

NEXT C error

END error, MISSING NEXTSTMT

xxxxx HALT

Normal message at termination of run.

xxxxx HAS BAD STEP NO.

A GOTO, GOSUB, IF, ON, PRINTUSING, or RESTORE
contains a step number having more than five digits.

xxxxx HSN-HCS OVERFL)

Hyperbolic sine or hyperbolic cosine overflow.

ILLEGAL FILE ID

File name, password, or account identifier too long.

ILLEGAL INPUT FROM FILE

Illegal input from a file.

xxxxx INCOMPAT DIMS

Dimensions not compatible in matrix operation. Examples:
matrix identity or inversion on nonsquare matrix, wrong
dimensioning for matrix multiplication or addition, etc.

xxxxx INPUT DATA LOST

An input record is too big or has a parity error and has
been discarded. .

xxxxx KEY NOT FOUND

A keyed read was attempted on a file not containing a rec-
ord with the specified key. /

42 Basic Messages

xxxxx LINE # ERR

An illegal line number (>99999) occurred immediately
ofter the statement ot xxxxx. If the first line is incorrect,
XXXXX is zero. i

xxxxx LOG OF NON=-POS ARG

The argument in o logarithmtic operation is not greater than
zero.

MISSING NEXT STMT

At least one FOR statement occurred without a matching
NEXT statement; that is, there were more FORs than
NEXTs.

MISSING STEPS

No list of line numbers was found in a GOTO...ON or
ON...GOTO statement.

xxxxx NEG BASE TO NON-INTEGER POWER

Fractional exponentiation was indicated but the number is
negative.)

NO DIMSTMT ARRAY x |

An array is used in MAT statement or string statements, but
not dimensioned.

NON=-EXISTENT LINE #

In the execution mode, o direct statement references a line
number that is not in the compiled program.

xxxxx NON-NUMERIC VAL

A VAL function argument (string expression) does not repre~
sent @ number.

xxxxx NON=-POS DIM

Run=-time error. A zero or negative dimension was en-
countered in o matrix operation.

xxxxx OUT OF RANGE REF. TO ARRAY x

A matrix operation compiled in the "safe” mode hos refer-
enced an index greater than the maximum dimension for
array x.

xxxxx OVERFLOW

xxxxx SHOULD BE DATA STMT

Floating-point overflow.

xxxxx PAREN ERR

Line xxxxx was referenced in a READ or RESTORE statement
but was not o recognizable DATA statement.

This message indicates a parenthesis imbalance.

xxxxx SHOULD BE IMAGE STMT

POWER OVERFLOW

Line xxxxx was referenced in a PRINTUSING statement but
was not a recognizable Image statement.

Overflow in exponentiation.

xxxxx SINGULAR MATRIX

xxxxx PROG TOO BIG

The program exceeds available memory.

An inversion or simultaneous equation solution was at-
tempted on a singular matrix.

xxxxx SQR ROOT OF NEG ARG

xxxxx RECORD NOT IN ~-GET-FORMAT

An attempt to GET has encountered a record not in the
proper format (see Appendix E).

xxxx RESTORE A NON-DATA LINE

ARESTORE statement indicates a line other than a DATA line.

xxxxx RESTORE A NON-=-EXISTENT LINE

A RESTORE statement indicates a nonexistent line number.

xxxxx RETURN BEFORE GOSUB

A RETURN statement was reached but the return stack
is empty. Indicates improper nesting or branching on
GOSUB-RETURN:Ss.

The argument of a squore root function is negative.

xxxxx $STRING EXPR ERR

Anincorrectly formatted string expression has been detected.

xxxxx TOO MANY GOSUBS BEFORE A RETURN

The return stack for GOSUB-RETURN logic is full and
a GOSUB has beer encountered.

xxxxx UNABLE TO OPEN xxxxx

An attempt to open the named file failed. The file is prob-
ably not present or has another account nume.- - or name.

xxxxx UNDEF FNx

xxxxx RUN INTERRUPTED

This message is issued ofter a "break" (not an error condition).

xxxxx SEC-CSC OVERFL

Secant or cosecant operation overflow.

No DEF statement appeared for user function FNx.

xxxxx ZERO TO NEG POWER

An exponentiation operation attempted to raise zero to a
negative power.

Basic Messages 43

APPENDIX A. SUMMARY OF BASIC STATEMENTS

The complete set of BASIC statements is shown below. Capital letters indicate syntax that is required as shown. Lowercase
letters designate general items. Command parameters enclosed by braces ({1} indicate a required choice. Parameters en-
closed by brackets ([1) are optionol. Ellipsis marks (...) denote multiple occurrences of the preceding parameter. Unless
otherwise noted, "variable" means either a simple or a subscripted variable.

Statement

line:[*s and/or characters to end of line]

line CHAIN xnaome [spassword] acet no)
:acct no ;password

line CHAIN LINK xname [[;pclssword] [acet no]]
ftacet no](;password]

:stream

line CLOSE []C)} [characters to end of line)

(i]constonf [i]constonf
line DATA{aconst ,| aconst ces
tstring tstring

line DEF FN letter (simple varioble [simple variable]...) = expression

line DIM{'e"erS} (dimx[,dimx]) [,{|eﬂer$} (dimx [,dimx])]. .

letter letter

line END

line ENDFILE:smam,['E'"e}

line FOR simple variable = expression TO expression STEP expression

line GET[:srream[;key-]] {::;:.Zble} [’{::::;b'e]

line GOSUB line
line GOTO line

line GOTO line [,line]...ON expression

expr aeonst | (THE
line IF{aconst { {operator} aconst { GH N }line

string strexp oT0

| xstrexp
. 7 (veriabley [[variable
line INPUT [.strecm[,key],_ {string } ['{sfring }] .
. _{3 }
line INPUT {ony other character
expression expression
line [LET) variable ,variable ... ={aconst variable , variable... ={ aconst .-
ine |LET xstrexp ‘ xstrexp
string = strexp string = strexp

44 Appendix A

line MAT ancme = (expression}*aname
line MAT aname = aname

line MAT ename = anome * aname

line MAT aname = aname * aname

line MAT aname = CON/[(dimx[,dimx])]

(dimx)
(dimx ,[any characters to end of line)

line MAT aname = IDN
line MAT aname = INV (aname[,simple variable])
line MAT aname = SIM (aname[,simple variable])

line MAT aname = TRN (aname)

line MAT aname = ZER[(dimx[.dimx])]

adescr adescr

line MAT GET [istream[skey]] {lefter$[vardim]} [{leﬂeﬁ[vardim]}]. ..

line MAT INPUT [sstream[skey]] {'e"ef$["°fdim]} [{'effers[wfd‘m]]], ..

adescr adescr

line MAT PRINT [:stream[;key]ﬂ] aname [{f}anome] cee

line MAT PUT [sstream[skey]] {LZ’::?["""""‘]} [,{L:'::;f["wd‘m]}], .

letter$ [vardim]} [’ { letter ${vardim]] ..

line MAT READ {adescr adescr

line MAT SIZE{ ™"} dim.cims) [,{'e"”s}(dimx[,damx])]. .

aname aname

line NEXT simple variable

line ON expression [TG H%LO} step[,step]. . .

I GET
line OPEN fileid , |O INPUT [UPDATE]
TO:stream, [] N {[,] TFILE]
PUT o
PRINT {OVER}
line PAGE
line PAUSE

Appendix A

45

expression'
line PRINT [:stream(key],] [f]-[:Xs-trexp][)cﬁ'exp] '
J1 text string

xstrexp
line PRINT [:stream[;key],] USING line ,{expressionl]- .
L. text string

expression) [expression
line PUT [istream[;key]) [aconst][, 'aconst]] e

xstrexp ‘xstraxp
" * .
fine {RE M}[ch’orocfers to end of line]

fine READ{;’:';;";’""} [{;’:::’g“’}]

line RESTORE([line]
line RETURN

line STOP

fMusf not begin with a '+,

46 Appendix A

APPENDIX B. BASIC INTRINSIC FUNCTIONS

Function Result

SIN(arg) Calculates sine of argument in radians.

COS{arg) Calculates cosine of argument in radians.

TAN(arg) Calculates tangent of argument in radians.

ATN(arg) Calculates arctangent of unitless argument in radians.

EXP(arg) Calculates exponential functions, that is e(crgument).

ABS(arg) Calculates absolute value of argument,

LOG(arg) Calculates natural logarithm (base e) of the argument.

LGT(arg) Calculates common logarithm (base 10) of the argument,

SQR(arg) Calculates square root of argument.

INT(arg) Acquires the integer part of the argument, that is, the greatest integer that is less than or equal to the
argument,

SGN(arg) Identifies algebraic sign of argument, and produces o -1 for negative arguments, a 0 for 0, and a +1
for positive arguments, :

RND(arg) Produces, for each call, the next element of o sequence of uniformly distributed random numbers that are
greater than 0 but less than 1. 1f-arg is O for the first RND call of o program, the identical sequence of
random numbers will be generated if the program is rerun and arg is not changed. Otherwise, an unre-
peatable sequence will be generated.

DAY(arg) Supplies the calendar day, If the argument is 0, the BTM output form is mm/dd (as in 02 'r March 7)
and the BPM and UTS output form is mon/dd (as in MAR 07). K the argument is nonzero, the urput form
is a floating-point number whose integer part represents the month, and whose fractional part represents
the day of the month divided by 100. For example, 3.07EQ represents March 7.

TIM(arg) Supplies the time of day. If the argument is 0, the output form is hh:mm, as in 15:09. If the argument is
nonzero, the output form is a floating=point number whose integer part represents the hour and whose
fractional part represents the minutes divided by 60. For example, 15. 15E0 represents 3:09 PM,

YER(arg) Supplies the year. If the argument is 0, the output form is 19yy, as in 1969. If the argument is nonzero,
the output form is a floating=point number whose value is equal to the year, as in 1969.0E0.

MAX(argn) Selects the maximum value in the list of arguments.

MlN(argn) Selects the minimum value in the list of arguments.

TAB(arg) Advances the print device to the column designated by the argument, and shoulid only be used in o PRINT
statement. TAB cannot be used to backspace the print device.

PRC(arg) Specifies the number of significant digits in printed output, and is used only in a PRINT statement. An

argument of O specifies 6=-significant-digit output format, and a nonzero argument specifies 16-
significant=digit output.

Appendix B 47

Function Result

CSC (arg) Calculates cosecant of an argument in radians, Overflow results in an error message: and. termination of
execution,

SEC(arg) Calculates secant of an argument in.radians. Overflow results in-an error message .and .terminotion of
execution,

COT(arg) Calculates cotangent of an argument in radians, Owerflow results.in.an-error messoge and termination

of execution.

ASN(arg) Calculates arcsine of a unitless argument, in rodians, If the absolute value of the argument is greater
. than 1.0, an error message is printed and execution is terminated. - Resolution of results.is restricted to
the two quadrants from =1/2 to /2,

ACS(arg) Calculates the arccosine of.a unitless argument, in radians, : If the absolute. value of the.argument s
greater-than 1.0, an error message is printed and execution .is-terminated. Resolution. of results.is.re=
stricted to the two quadrants from 0 to .

HSN({arg) Calculates hyperbolic sine of an argument, Overflow results in an error- message.and termination of
execution,

HCS(arg) . | Calculates hyperbolic cosine of an argument, Overflow results in an-error message and -termination of
execution,

HTN(arg) Calculates hyperbolic tangent of an argument,

LTW(arg) Calculates logarithm, base two, of an argument.

DEG(arg) Converts argument to degrees, from radians,

RAD(arg) Converts argument to radians, from degrees.

LEN(strexp) Gets current number of characters in string expression, as floating=point number.

VAL(strexp) Gets numeric value of string expression. as floating-point value, Error exit if string expression not numeric,

STR(expression | Converts numeric value of expression to string format, Optional rstring argument permits specific format-
[rstring]) ting. If second argument is not used, standard print output format is used.,

KEY(arg) Returns the value of the key most recently accessed on the 1/O stream specified by the argument.

48 Aoppendix B

APPENDIX C. FORMAT OF BINARY DATA FILES FOR BASIC (PUT AND GET OPERATIONS)

The PUT and MAT PUT operations in BASIC create data

files in the internal format described in Table 3 with a
physical record size of 120 bytes.

Table 3. Internal Format of Data Files

Byte Coding Meaning

0 X'3¢C’ Physical record.

1 Checksum Sum of bytes in record, not
counting checksum byte.

2,3 Record size Number of bytes used
(120 or less), including
control bytes.

4...n Dato Either doubleword
floating~point or aconst
doubleword or both,

m1 X'3C! End of physical or
logical record.

Table 3. Internal Format of Data Files (cont.)

Byte Coding Meaning

n+2 X'BD'

n+3,n+4 | Physical In numerical order,
record number | from 0.

Normally a record contains 112noncontrol bytes (14 floating~
point values or aconsts), The last record in a file may con-
tain fewer used bytes but still contains 120 total bytes. The
control word — bytes n+1 to n+4 —is repeated in this case as
bytes 116 to 119,

Figure 4 shows a file containing three records of numeric
and aconst data, with the record contents given in hexa-
decimal format, The values were created with the program
shown in Figure 5. In Figure 4, the value 1occupies words |
and 2 of record 1000, the oconst ABCDEF occupies words 13
and 14 of record 2000, and the aconst 7890 occupies words 25
and 26 of the same record but followed inword 27 by on end-
of-record control word forced there by the flush operation.

KEY= X'001000' - 120 BYTES

00000 3€090078 41100000 00000000 41200000
00004 00000000 41300000 00000000 41400000
00008 00000000 41500000 00000000 41600000
0000C 00000000 41700000 00000000 41800000
00010 00000000 41900000 00000000 00000000
00014 00000000 00000000 00000000 41900000
00018 00000000 41800000 00000000 41700000
0001C 00000000 3CBD000O

KEY= X'002000' - 120 BYTES

00000 3CA60070 41600000 00000000 41500000
00004 00000000 41400000 00000000 41300000
00008 00000000 41200000 00000000 41100000
0000C 00000000 0ooicicz C3C4C5C6 0001C7C8
00010 C9D1h2D3 0001D4D5 D6D7D8DY 0001E2E3
00014 E4ESE6E7 0001E8E9 00000000 0001F1F2
00018 F3F4F5F6 0001F7F8 F9F00000 3CBDO0O1
0001c 00000000 3CBD0001

Figure 4. Contents of Sample File

Appendix C 49

KEY= X'003000' - 120 BYTES

00000 3€030028 41100000 00000000 41200000
00004 00000000 41300000 00000000 41400000
00008 00000000 3CBDQ002 00000000 41100000
0000C 00000000 0001C1C2 C3c4es5Ce 0001C7C8
00010 C9D1D2D3 0001D4D5 D6D7D8DY 0001EZE3
00014 E4ESE6E7 0001E8E9 00000000 0001F1F2
00018 F3F4F5F6 O0O1F7F8 FIF00000 3CBDO0OL

0001C 00000000 3CBDO002

Figure 4. Contents of Sample File (conit.)

100
110
120
130
140
150
160
170
180

OPEN 'PUT',0

puUT 1,2,3,4,5,6,7,8,9,0

pPUT 0,9,8,7,6,5,4,3,2,1

PUT 'ABCDEF', 'GHIJKL','MNOPQR','STUVWX','YZ'
PUT '123456','7890'

PUTH*

PUT 1,2,3,4,**

CLOSE 0

END

50

Appendix C

Figure 5. Program Used to Generate Figure 4

APPENDIX D. EASY ERROR MESSAGES

ACCOUNT NUMBER ILLEGAL FILENAME ACCOUNT OR PASSWORD
IN THIS COMMAND, TOO LONG
The parameter noted is illegal in this command. The parameter entered is too long.
BAD PARAMETER =~ TRY AGAIN FILE NAME ILLEGAL IN THIS COMMAND,
Incorrect syntax == check and retry, - The parameter noted is illegal in this command,
CANNOT ACCESS NEXT FILE FILENAMES AND PASSWORDS MUST BEGIN

WITH AN ALPHA CHARACTER

The CATALOG command cannot be completed because of

bad file structure. Self explanatory.

CANNOT LOAD BINARY FILES
FIRST NUMBER OF PAIR MUST BE
SMALLEST

You have issued an OLD command for a binary file.

DELIMITER MISSING =« RETYPE You have used o pair of numbers to specify a range but

have incorrectly entered the larger number first.

Omitted delimiter in an EDIT FIND or REPLACE command.

INSUFFICIENT INFORMATION TO OPEN FILE

DISC IS SATURATED: DATA LOST

Check to make sure you have supplied a password if needed

The last command saturated secondary storage. and retry the comma
i
ERROR IN TARGET WORD INVALID PASSWORD
The target word in an EDIT FIND or REPLACE command The password you have used is not correct.
is not valid.
FILE ALREADY SAVED - TYPE LINE NUMBER EXCEEDS 99999

REPLACE TO OVERWRITE

An EDIT RESEQUENCE command has attempted to generate

A SAVE command hasbeen given but the file already exists. a line number greater than 99999

FILE IN USE = TO TRY AGAIN, RETYPE
' COMMAND

LINE TABLE FULL - CUT FILE SIZE

An attempt has been made to access a file that someone is

currently updating. There is no more core availoble to put file keys into.,

FILE 1/O ERROR : DATA LOST LINE TOO LONG

An EDIT REPLACE command has tried to increase a line

-There was an 1/C error == retry the command, beyond 132 characters.

Appendix D 51

LINE TOO LONG: DATA LOST

PASSWORD ILLEGAL IN THIS COMMAND.,

A read operation has failed because the record was longer
than 132 characters.

The parameter noted is illegal in this command.

LINE TOO LONG -- RETYPE

The line entered is longer than 132 characters.

THE NEXT AVAILABLE LINE NUMBER
IS TOO LARGE

NO FILE

You have tried to run or edit an empty file.

A DSM, EDIT WEAVE, INSERT, MERGE or RESEQUENCE
command has attempted to assign a line number larger
than 99999.

NONE OF THE FILES EXIST

TOO MANY FILES SPECIFIED _

An EDIT MERGE, INSERT, or WEAVE command has not
specified ony existing files.

NO SUCH FILE: xxx

You have specified more filenames in a comimdnd than is
allowed,

WHAT?

The file named does not exist.

NUMBER MISSING - RETYPE

You have not entered a number where one is required.

EASY cannot interpret what was just typed in; chieck the
syntax and try again.

- xx ERROR AT yyyyyyyy

PARAMETER CONFLICT : TRY AGAIN

Illegal syntax ~- check the command and try again.

52 Appendix D

xx is an error code expldined in the UTS Reference Man-
ual (90 17 64), Appendix B. yyyyyyyy is the hexadecimal
location at which the error occurred.

 APPENDIX E. FLAG ADDITIONS

FILE SUBROUTINES

Two new subroutines, OPENF and CLOSEF, have been
added to FLAG.
OPENF This subroutine allows the FLAG user toaccess
a specified file in his account in UTS secondary storage.
The form of the call is

CALL OPENF (u, 'name'[, org[, mode[, granules]]])
where

v specifies a device unit number in the range 1-7,

'name’ specifies a file name of 1-7 characters.
A trailing blank is requires if the name has fewer
than 5 characters.

org specifies file organization (1 = consecutive,
3 =random). The default is consecutive.

mode specifies the file function mode (1 =read,
2 = write, 4 = update, 8 = write then read), The
mode must be 8 for random files. The default is4
(read or write on old file),

granules specifies the number of granules to allo~-
cate for a rondom file. The default is 12, This
parameter is meaningful only if org = 3.

CLOSEF This subroutine allows the FLAG user to close
a specified file. The form of the call is

CALL CLOSEF (u[, dis])

where
] specifies o device unit number in the range 1-7.
dis specifies file disposition (0=save, nonzero=re-

lease). The default is save

DEVICE UNIT NUMBERS

Unit numbers for FORTRAN 1/0O are 1-7. However, 5, 6,
and 7 are defaults for FORTRAN II type statements, format-
free 1/0, and INPUT and QUTPUT statements. Unit num~
ber 105 is mapped into 5, 108 into 6, and 106 into 7. Unit
numbers 5, 6, and 7 default to the user terminal. A CALL
OPENF 6, ‘fileone') followed by an QUTPUT, k stotement
will cause output to go to a file rather than the terminal,

A CALL CLOSEF(6) will close unit 6. Subsequent use of
unit 6 will default to the teminal,

ON-LINE OPERATIONS

Since Batch processing is not done under EASY, the FLAG
user need not be concerned with DCB assignments or job
deck considerations, EASY provides all the default options
listed in the FLAG Reference Manual, except that DB (de~
bug mode) is assumed rather than NODB.

COMMENTS AND CONTINUATION LINES

Comment lines in FORTRAN programs must begin with the
letter C in the first column following the line number, Con-
tinvation lines must begin with an & character in the first
nonblank column following the line number,

Appendix E 53

Reader Comment Form

ROX

We would sppreciste your comments and suggestions for improving this publication

Pubtication No. Rev. Letter | Title

Current Date

How did you use this publication?

(O Lesrning [1nstaiting

D Sales

Is the mataerial presented effectively?

[Fulty covered] weit tiiustratea [weit orgenizea [ciear

D Good D Poor

D Reference E] Maintaining D Operating
What is your overall rating of this publication? What is your occupation?
D Very Good D Fair D Very Poor

Your other commaents may be entered here. Please be specific and give page, column, and line numbar references where
applicable. To report errors, please use the Xerox Software Improvement or Ditficulty Report (1188) instead of this form.

Your name & Return Address

Thank You For Your Interest

(told & tasten as shown on back. no postage needed If mailed in U S A)

PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapied forms

‘NO:-POSTAGE
NECESSARY
IF MAILED
IN THE

UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO, 59163 LOS ANGELES,CA 90045

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
5250 W. CENTURY BOULEVARD
'LOS ANGELES, CA 90045

ATTN: PROGRAMMING PUBLICATIONS

Honeywell

e e ——_————————— e j -~ —— = — — — — . CUT ALONG LINE — — — — — — =

FOLD ALONG LINE

FOLD ALONG LINE

Honeywell Information Systems
In the U.S.A.. 200 Smith Street, MS 486, Waltham, Massachusetts 02154
In Canada: 2025 Sheppard Avenue East, Willowdale, Ontario M2J 1W5
In Australia. 124 Walker Street, North Sydney, N.S. W. 2060
in Mexico: Avenida Nuevo Leon 250, Mexico 11. D.F.

26025, 1.256C1179, Printed in U.S,A,

XM29, Rev. 0

