
Xerox APL
Xerox 560 and Sigma 6/7/9 Computers

Language and Operations

Reference Manual

90193te

Xerox Corporation
701 South Aviation Boulevard
EI Segundo, California 90245
213679-4511

Xerox APL
Xerox 560 and Sigma 6/7/9 Computers

Language and Operations

Reference Manual

90 19 31C

June 1975

Price: $8.50

XEROX

Prlntea In U.S.A

REVISION

This publication, 90 19 31C, is a major revision of the Xerox APL LI"/OP5 Reference Manual, 90 19 31B, dated
October 1973. Additions to this edition of the manual include: Appendix 0, "Designing and Creating APL Indexed
Files"; Appendix E, "APVEDM5 Interface"; and Appendix F, "APL Symbols". Changes to the previous manual are
indicated by a vertical line in the margin of the affected page. These changes document the COO version of the
APL system for CP-V.

RELATED PUBLICATIONS

Title Publication No.

Xerox 560 Computer/Reference Manual 9030 76

Xerox Sigma 6 Computer/Reference Manual 90 17 13

Xerox Sigma 7 Computer/Reference Manua I 900950

Xerox Sigma 9 Computer/Reference Manua I 90 1733

Xerox Control Program-Five (CP-V)/TS Reference Manual 900907

Xerox Control Program-Five (CP-V)/TS User's Guide 90 16 92

Xerox Control Program-Five (CP-V)/BP Reference Manual 90 1764

Xerox Extended Data Management System (EDMS)/Reference Manual 9030 12

Xerox Extended Data Manageme~t System (EDMS)/User's Guide 903037

Manual Content Codes: BP - batch processing, LN - language, OPS - operations, RP - remote processing,
RT - real-time, SM - system management, TS - time-sharing, UT - utilities.

The specificatTons of the software system described in this publication are subject to change without notice. The availability or performance of some features
may depend on a specific configuration of equipment such as additional tape units or larger memory. Customers should consult their Xerox sales representative
for details.

it

CONTENTS

l. INTRODUCTION 5. APL OPERATORS 52

Scalar Operators 53
.A.r;thmetic Group 54

2. USiI-.JG APL 4
Re lational Group 63
I __ • ___ 1 r _ ~ .. _ 65

APL Log On/Log Off Procedures 4
LU811,;UI \JI uu!-'

Composi te Operators 68
Logging On 4

The d/Operator (Reduction) 68
Logging Off 6

The d\ Operator (Scan) 70
A PI Tor : ... ,.., I I(o"hr.rtrrl 6
r-ll L- 1'-"111111-- "'-',-__ '_ The d.d Operator (I nner Product) 7i
General APL Input 7

The o.d Operator (Outer Product) 73
Character Set 7

Mixed Operators 74
Names 7

The? Operator (Roll and Deal) 74
User Input Versus Computer Output 8

The 2 Operator (Index Generator and
Line Corrections During Input 8

Index Of) 74
Execution and Definition Modes 9

Prompts 9
The , Operator (Ravel and Catenation

and Lamination) 75
Comments 10

The p Operator (Dimension and Reshape) __ 77
Contra I Keys 11

The ct> Operator (Reversa I and Rotation) 78
Statements and System Commands 11

The is< Operator (Transposition) 79
Variables and Operators 11

The 4 Operator (Grade Up) 82
Defined Functions 12

The ~ Operator (Grade Down) 82
The .L Operator (Base Value or Decode) ___ 82
The T Operator (Representation or Encode) __ 83

3. COMMON ELEMENTS IN .ll.PL 13 The / Operator (Compression) 84

The \ Operator ~lxpans;onj 85
Constants 13 The t Operator (Take) 86

Numeri c Constants I..) I he + Operator \Urop) bb

T ext Constants 14 The E Operator (Membership and Execute) __ 87

Names 15 The tB Operator (Matrix Inversion and
Name Format 15 Matrix Divide) 90

Name Usage 15 I-Beam Functions 92

Variables 16 T -Bar Functions 93

Local and Globa I Variables 17

Arrays and Indexing 19

Operators and Arguments 24 6. APL STATEMENTS 95

Function References 39

Assignment 40 Comment Statements 95

Simple Assignment 40 Branch Statements 96

Mu I tiple Assignment 41 Statement Labels 98
Indexed Assignment 41 Assignment and Nonassignment Statements ___ 99

Input/Output 42 Compound Statements 100
Input/Output Devices 42

Genera I Input/Output 42

Types of Input 42 7. DEFI NED FUNCTIONS 101

Output 44

User-Defined Functions 101

Creating User-Defined Functions 101

Directives 105
4. EXPRESSION EVALUA lION 48 Editing User-Defined Functions 107

Issuing System Commands 115
Order of Evaluation ____ ~_~ _____________ 48 Function Execution 116

Right to Left 48 State Indicator ___ 118

Precedence of Operators 48 Locking Functions ______ 119

Parentheses 48 Intrinsic Functions 120

The Value of a Variable Versus Its Name ___ 48 f'.FMT, PAGE, NUNES, HEADER,

Syntax Considerations 49 VFC HAR, and f'.X L 120

Defau I t Term ina I Output 49 DELAY 120

Errors and Breaks -- _ ~~ 50 DI GITS, ORI GIN f TABS f and WIDT H 120

iii

SETFUZZ 120 Use of Resu It 157
SET LIN K 121 Error Exits 157

£10 121 Other Output Formatting Aids 157
flOE 121 ilXL 158
ERRN, ERRF, and ERRX 121
ilGRF 121
ilTE, t.CR, and ilWM 121 10. EXECUTION STOPS 159

Normal Stop 159
8. SYSTEM COMMANDS 122 Execution Break 159

Stop for User Input 159
Workspace Concept 123 Stop Control Vector 160

Active Workspace 123 Error Stop ___ 161
Saved Workspace 123
CONTINUE V/orkspoce 123
User Accounts 124
Passwords 124 1l. GRAPHICS 163

Commands 124
)CATCH 128 User Graphi c Functi ons 163
)CLEAR 130 Plotting Functions: DRAW, VS, INT 163
)CONTINUE and)CONTINUE HOLD 130 Scaling Functions: SCALE, NOSCALE,
)COPY 131 CENTER, WHATSCALE 164
)DIGITS 133 Window Functions: WINDOW,
)DROP 133 WHATWINDOW 165
)ERASE 134 Auxiliary Plotting Functions: AXES, BOX,
)FNS i34 DASH, SET, PUT, ERASE, HOME 165
)GROUP 135 Graphic Input Functi ans: ICHnput,
)GRP 136 WHATC HAR, WHATCOORD 165
)GRPS 136 Other Functions: SIN, COS, EXP, STRAPIS __ 166
}LIB 137 Direct Control of Graphic I/O 166
)LOAD 137 ~Output 166
)OBSERVE 138 ilGRF Intrinsic 167
)OFF and)OFF HOLD 139 Unsealed Graphic I/O 169
)OPR and)OPRN 140 Unsealed Output 169
)ORIGIN 140 Unsealed Input 170
)PCOPY 141
)QLOAD,)QCOPY, and)QPCOPY 141
)SAVE 141 12. WORKSPACE MANAGEMENT FUNCTIONS 171
)SEAL 142
)SET 142 Namelists and Linelists 171
)SYMBOlS 147 Canonical Representation 171
)TABS 148 Workspace Management 172
)TERMINAl 149 T ext Editing 175
)VARS 150
)WIDT H 150
\\Ale TI",\ 1 I:;: 1
JVV J 1 L.I I.J I

9. REPORT FORMATTING 152
INDEX 231

ilFMT 152
Format Specifications 152
Format Specifications Versus

Data Types 153
The Format Statement APPENDIXES

(left Argument) 153
The Data list (Right Argument) 153 A. ERROR MESSAGES 179
Operati on of llF MT 153

Scalar Arguments 153 Sidetracking on Errors and Breaks 184
Vector Arguments 154 Setting Sidetracks 186
Matrix Arguments 155 T he Dynamics of S idetracki ng 187

Forms of Output Values 155 Considerations After Gaining a Sidetrack __ 187
Qualifiers and Affixture Codes 156 Aids for Sidetrack Users 188

iv

B. NONSTANDARD IN PUT jOUTPUT 189 D. DESIGNING AND CREATING APL
INDEXED FI LES 217

Standard and Nonstandard Devices 189
Using Nonstandard Input/Output 189 Limits and Trade-Offs 217

Terminal Declaraction 189 Fi Ie Structure 218

C hangi ng T ermi na I Dec 10 rati on 189 Efficiency Considerations 219

Input/Output Translation 190 Procedure for Creating APL Indexed Fi les 220
T I. I I 10')
1 e lerype u~agt! I'L

ESCAPE Key Sequences and APL 192 E. APL/EDMS INTERFACE 223

Operationai Differences 193
Batch Operation 10') F. APL Syt-ABOLS 226 I'..J

Intended Usage 193

input/Output Device Assignments ,"A
17"1-

Card Input Format 194 FiGURES
Error Response 195

Operational Differences 195 l. Example of Logging On and

T ektron ix 4013 Usage 195 Logging Off APL System 5

ASCII Mode 195
2. APL Terminal Keyboard 7

APL Mode 195
Logging On 196 3. Example Showing Effect of Shadowing 19

Line Editing 196
4. Summary of Formats for Branching 98

Strapping Options 197
Data Transmission Rates 197 B-l. EBCDIC and APL Codes 191

Non-APL 2741 Terminals 197

Applications 197
Operational Considerations 197 TABLES

Blind I/O 198
Using Blind I/O 198 l. A PL Operators 25

Blind I/O on 0 Device _ _ ____ 198
7. l-Beorr! F,)nrti(jn~ 93

Biind i/O for Files 199
Fi Ie Input/Output 700 3. Examples of Qefined Fundiam __ __ ~ ________ 102

Creating the Set of Fi Ie VO Operators __ LOU
4. Displaying and Editing Defined

Structure of APL Fi les 201
Functions 108

Opening and Creating Fi les 202
Closing Files 203 5. Summary of System Commands 124

Maintaining Component Range and
Current Component Value 204 6. l'.GRF Calls 168

Key Values Versus Component Values 204
Writing APL Records 205 A-l. Error Messages 179

Writing Non-APL Records 205
Reading APL Records 206 A-2. Items Subject to Sidetracking 185

Reading Non-APL Records 207
De leting Records or Components 207 B-l. Xerox Line Printer Graphic Codes 192
Sequential Access to Existing APL Files __ 207
Sequential Access to Non-APL Files 208 B-2. Examples of Problems with False
Converting Data Types 208 Terminal Declaration 192
Controlling Access to Shared APL

Indexed Fi les _~ ___________ 209 B-3. Translation Equivalences for
Listing File Names and Numbers 209 Nonstandard Devices 211
Error Reporting ____________________ 210

Generati on of Fi Ie I/O Subsystems 211 E-l. EDMS Interface Functions 223

r INTRINSIC FUNCTIONS 216 F -1- ,A,PL Symbols and Names 226 '--.

v

1. INTRODUCTION

This manual describes Xerox's implementation of the APL language - hereafter referred to as Xerox APL, or simply
as APL. t It defines the language and the general operations of the processor under control of Xerox 560 and
Sigma 6/7/9 Control Program-V (CP-V). This manual is intended primarily for use as a reference document
by experienced APL programmers. Beginning APL users may find it useful to consult some good APL primerstt to aug
ment this manua I.

APL is an interpretive, time-sharing, problem-solving language. As an interpretive language, APL does not wait
until a program is completed to compile it into object code and execute it; instead APL interprets each line of input
as it is entered to produce code that is immediately executed. As a problem-solving language, APLrequires minimal
computer programming knovv!edge; a problem ;s entered into the computer and an answer is received; all in the
APL language.

Because APL is powerful, concise, easy to learn, and easy to use, it is widely used by universities, engineers, and
statisticians. It also has features that make it attractive for business applications where user interaction and rapid
feedback are key issues. One of APL' S major strengths is its ability to manipulate vectors and multidimensional
arrays as easily as it does scalar values. For example, a matrix addition that might require a number of statements
and several loops in other languages can be accompl ished as A+B in APL. This type of simpl ification exempl ifies
APL' S concise power.

Xerox APL is compatible with other APL systems (such as APL/360) and incorporates a broad range of improvements.
Many of these improvements are unavai lable on other APL systems.

• On-Line and Batch Operation - Complete flexibility of operation is provided. Programs may be developed
and executed in either mode. The batch mode is advantageous for either long execution times or volumi
nous output, while the on-I ine mode is more advantageous for interactive program development and
rnoderote arrHJunts of eXeCUt10n times and output.

• 8pc:,ut;vil f,uftl T2rrn:n~f.:, ~i~iJ TC!2t,pCS ;Y:~rlc,J~ I\P~ C~:::;'::C~2;'S AD' ~t~~~·::!c~c·~~ ''"''"'~/ he. .. ~.;::rncon4-Ari h i r

combinations of alphanumeric and special characters in order to allow programs to be created or modified
at any terminal or teletype supported by CP-V.

• Input/Output Assignment Control - An AP L system command,)SET, has been added to allow the assignment
of normal and 'blind ' (see below) I/o to files and devices such as the line printer or magnetic tapes, and
to establish format control of printed output.

• Fast Formatted Output - A user-specified format description can be used in lieu of the default automatic
formatting. This facilitates the preparation of reports and tables. ttt

• Fi Ie Input/Output - A program-controlled mechanism is offered for internal and external file input/output.
Any variable in an APL workspace may be written to a fi Ie and later retrieved for subsequent pro
cessing, permitting an APL program to operate on more data than can be contained in a workspace. APL
entities may also be written as data records without their APL attributes, and non-APL data records can
be read.

The APL fi Ie I/o system operates with either CP-V keyed fi les or I indexed I fi les (using CP-V random fi Ie
access). Keyed file access may be with numeric keys (compatible with Xerox EDIT, BASIC, etc.) or text
keys (allowing access to any CP-V keyed file). Indexed files may be accessed in shared update mode,
using the CP-V Enqueue-Dequeue feature to support shared access control.

tAPL is an acronym for A Programming Language, the language invented by Kenneth Iverson. -- -

ttTwo such publications are: APL/360 An Interactive Approach by Leonard Gilman and Allen Rose (John Wiley
and Sons Inc, New York, 1970); and APL User's Guide by Harry Katzan, Jr. (Van Nostrand Reinhold Company,
New York, 1971).

tttThis feature was invented and introduced by I.P. Sharp Associates Ltd, Toronto, Canada.

Introduction

• APl-EDMS Interface - Installations supporting Xerox Extended Data Management System may now access
structured shared EDMS data bases via APl. A workspace with a set of 57 user functions supports EDMS
operations via AP L.

• Compound Statements - More than one statement can be included on the line, using semicolons for separa
tion. Since an element of a compound statement can be a branch, this feature permits conditional execu
tion control within a single statement of a function.

• IBlind l Input/Output - Blind input/output is a form of terminal input/output that permits untranslated input
and output of character data. It is designed to facilitate the use of graphics terminals or other special
devices with APL. By the use of the)SET command, blind i/o may also be used to create or access
sequential fi les or routed to devices such as the line printer or magnetic tapes.

• Unequally Spaced Tabs - Tab settings can be unequally spaced as well as equally spaced.

• Easy Function Copying - An entire function can be copied simply by changing the name of an already
defined function.

• 51-Damage Protection - Limited protection is provided against 51 damage during function defin ition.

• Expansion of Identity Operator - The identity operator (that is, monadic +) is legal for all domains, not
just numeric domains.

• Expansion of Indexing - An indexed argument can itself be indexed.

• Easy Function Line Appendage - In a function edit directive that uses both line number and column num
ber, a column number of zero is taken to mean that the user wishes to append to that line. The line will
be displayed with the carrier positioned after the last character, awaiting further characters for that line.

• Enhancements to System Commands-

• The)SEAl command has been added, to provide protected workspaces. When)SEAl is executed, the
current workspace is saved in a special mode with all user functions locked. A sealed workspace can
not be saved or copied by APl and cannot be accessed by processors other than APl except by the
originator.

• The)SET command has been added for on-line control of normal and Iblind l I/o, described earlier.

• The)TERMINAL command has been expanded to allow independent setting of input and output terminal
translation tables.

• If the fol lowing commands are issued without a new value being specified, the current value (i. e., "IS
value ll) is displayed:

2 Introduction

)ORIGIN

)WIDTH

)DIGITS

)TABS

)WSID

)TERMINAl

Similarly, a)SYMBOlS command that does not specify a new value produces a display of the form
IIX UNUSED OF yll, where x is the number of unused entries in the symbol table whose size is y. The
)WIDTH command accepts a new width setting in the range from 30 to 254.

• Quiet load and copy commands)QlOAD,)QCOPY, and)QPCOPY have been added to Xerox APL.
These commands suppress the "SAVED" message when loading or copying successfully.

• Options have been added to)SI or)SIV commands to allow immediate clearing of the state indicator
and also to control function suspension due to errors.

• Tho \1="-.1, \\/fl.R' rlnrl \GRP, C:\Ic:t<>m rf"'lmmnnrk hnv<> hppn pxh:.ndpd to allow a ranae of names to be
I I "_ " , ". _ , I 't' • ... '" - , -. I - I - ... - - I _. - . . . - - _ .. - - . - -- . - -- - - . - - - - - - - - - _

listed.

• The)COPY and)PCOPY commands have been extended to al low copying a iist of objects as wei i as
a single object.

• Autostart. An option on the)SAVE command permits saving workspaces such that execution of speci
fied statement is initiated automatically when the workspace is loaded.

• Avai labi I ity of Other CP-V Faci I ities - Most competitive versions of APl are offered primari Iy as dedicated
APl-only time-sharing systems. A subscriber to Xerox APl may use other CP-V processors such as Edit,
PCl, and BASIC from the same terminal during the same run.

• The 'execute' Operator - Monadic E allows execution of text strings as though they were evaluated input.
The most significant aspect of this feature is that system commands may be formed and executed from within
a user-defined function.

• Function Editi ng in Eva luated Input and' Execute' Modes - Permits listing or modifying a function whi Ie
in evaluated input mode or in an 'execute' operation.

• Gr-=-phics Capabi!it/ - XeroxAPL supports the Tektrorix 4013 term!rol for str'lrdord APL proressing. In
addition, the APL processor contains teature:; and a tunction tor the specltlc purpose or accommoaatlng
the graphics input and output capability of that terminal.

• Observation of Intermediate Results - The)OBSERVE command has been added to Xerox APL. This permits
the user to view intermediate results while APl interprets a statement.

• Catching Assignments - A debugging aid, the)CATCH command, has been incorporated in Xerox APL.
This command permits the user to catch (or intercept momentari Iy) every assignment to a named variable
immediately following each assignment. The assignment is "caught" by means of a function defined by
the user according to his debugging requirements.

• Error and Break Control - Xerox APl has a facility to allow the user selective and dynamic control over
errors and breaks. Since this facility permits bypassing of standard APl handling of breaks and errors, it
is called the "sidetracking" capabi I ity.

• Text Editing Functions - A set of five functions has been added to faci litate manipulation of text strings in
APL.

• Canonical Representation Functions - Functions have been added to convert user-defined functions into
APL text strings and to convert text strings into user-defined functions. This foci litates program-controlled
display and editing of user functions. .

• Workspace Management Functions - A set of nine functions provides a wide variety of information concern
ing the user workspace in the form of APL results, which can be used to display and manage workspaces
under program control.

tThis feature was originally developed at the University of California, Irvine, under the direction of Dr. Alfred Bork.

Introduction 3

2. USING APL

APllog On/log Off Procedures

The procedures described in this chapter are for operation on a standard APL terminal (that is, a terminal with an
APL typeball). t See Appendix B for procedures on other terminals.

Logging On

Before the user can commun icate with APL, he must prepare the APL terminal for use i establ ish a connection with
CP-V, and then establ ish a connection with APL. He does this as follows:

1. Preparing the APL terminal for use:

a. Position the keyboard ON/OFF switch at ON. This switch is usually located in the lower right corner
of the keyboard (Figure 2).

b. Position the LOCAL/REMOTE switch at REMOTE. This opens the communications line between the
terminal and the computer. When this switch is positioned at LOCAL, the terminal is not connected
to the computer and functions as an ordinary typewriter.

c. Establish communications with the computer via a telephone line connected to the terminal as follows:

(1) If the telephone has an ON/OFF switch, position it at ON.

(2) Pick up the telephone receiver and listen for a normal dial tone. (Some telephones may have
a button labeled TALK; for these telephones, press the TALK button before picking up the
receiver.)

(3) D i a I the telephone n umber for the computer.

(4) When a high-pitched tone is heard, place the receiver in the receptacle provided. (Some tele
phones may have a button labeled DATA; for these telephones, press the DATA button and hang
up the receiver.)

These operating procedures apply to a typical APL terminal. Operating procedures for other terminal
models may differ sl ightly, and so may the names of the switches described above. In addition, some
terminal models do not have telephone equipment attached, and require only steps a and b above to
establ ish a direct-I ine communication between the terminal and the computer. For most terminal models,
however, connection with the computer is establ ished via a telephone line as described above.

2. Logging on to CP-V (refer to Figure 1 for an example of each of the following steps):

a. Type an asterisk and then strike the RETURN key. The computer responds by typing the following mes
sage at the terminal:

XEROX CP-V AT YOUR SERVICE
ON AT time and date
LOGON PLEASE:

where "time and date" are the actual time and date, and the last line is a prompt for the user to key
in identifying code words.

tThe APL typeball can be used with several terminal models. Among these are the IBM 2741, the DATEL 20-31, the
DURA 1021 and 1051, the NOVAR5-50, and the TST 707.

4 Using APL

XEROX CP-V AT YOUR SERVICE
ON AT 08:52 AUG 15,'72

The user calls the CP-V system.

LOG O~ fkEASE: 356256,REJ0734534218

The CP-V system identifies itself, states the
time and date, and requests that the user log
on. In iesponse, the user types in hls ac
count number (356256) and user identification
(REJ073453421). He does not use a password
in this example.

8:52 03/31/72 356256 18-36

~APL(,7}J
APL 07/27/73
CL8AR WS

)OFF~~

CPU .0124 CON :02 INT 5 CliG o

A page heading is printed by the system; the
items of information in the heading are, in
order: time, date, account number, and two
internal identifiers.

t
CP-V TEL types a prompt character, and the

user requests the APL processor. APL ac
knowledges control and prints the current
version of APL and the workspace status.

APL program

The user logs off both APL and CP-V. Any
information in active workspace is destroyed.
Also see the)OFF HOLD,)CONTINUE,
and)CONTINUE HOLD commands in Chap
ter 8.

Summary information for session: the user
has used . 0124 minutes of centra I processor
time (CPU = .0124); he has been connected
to the terminal (from dialing up to the end of
summary) two minutes (CON = :02); he has
interacted with the system five times
(INT = 5); the charge is 0 charge units, an
installation-dependent value (CHG = 0).

Note: All characters typed by the system are shown underlined. Everything else has been typed by the user.
In addition, the 8 symbol indicates the RETURN key.

tAn option is now provided for entering APL with a statement appended to the APL call, for examples:

~ APL

~APL

)QLOAD MYWORKSPACE

)TERMINAL 13

Loads the specified workspace (see Q LOAD, Chapter 8).

Identifies user terminal as type 13 (see "TERMINAL",
Chapter 8).

Figure 1. Example of Logging On and Logging Off APL System

APL Log On/Log Off Procedures 5

b. Type identifying code words - account number, user identification, and possibly a password, in that
order, separated by commas - and strike the RETURN key. The account is the bi lIing number, the
user identification is the personal or group identification, and the password is an account-protection
feature assigned by the system manager or the user (see the PASSWORD command in the Xerox CP-V /TS
User's Guide, 90 16 92). The account number and password (if present) each consist of from 1
to 8 alphanumeric characters (any combination of the letters A-Z and the numbers 0-9), and the
user identification consists of from 1 to 12 alphanumeric characters. (See the log-on example in
Figure 1, where 356256 is the account, and REJ073453421 is the user identification.) The code words
must be the same as in the computer's list of authorized users. If they are not the same, the computer
wi II request that the user reenter them. If the user's log-on code is accepted, the computer wi II print
a page heading, skip several lines, and then piint a 0 symbol to prompt for input (at the TEL level
of CP-V).

3. Call ing the APL system:

Type the command APL and strike the RETURN key to access the APL system. APL acknowledges con
trol by typing the message APL 07/27/73 (the version of APL being used), and a message indicating
whether a clear workspace is avai lable or the CONTINUE workspace has been loaded. The user is
now in the APL system and can enter any APL assignments, statements, function definitions, system
commands, etc. An example of calling APL is shown in Figure 1.

4. Calling from other load modules:

Logging Off

APL can a!so be called from other CP-V load modules, in which case, norma! exit hom APL is a retum
to the calling module. (See M:LINK in CP-V BP Reference Manual, 90 1764.)

The user can log off the APL system via any of the following APL system commands:

)OFF
)CONTINUE
)OFF HOLD
)CONTINUE HOLD

The first two commands,)OFF and)CONTINUE, end the terminal session. That is, they log the user off both APL
and CP-Vand printa summary-of-accounting message (a summary of the terminal and computer time for the session).
After this summary message the user may turn off the terminal and all associated equipment and hang up the tele
phone receiver.

The last two commands,)OFF HOLD and)CONTINUE HOLD, log the user off the APL system and return control to
theCP-VTELsubsystem (which prompts for input with the 0 symbol). To end the terminal session after returning con
trol to CP-V, enter the TELcommand OFF (which produces a summary-of-accounting message and disconnects the
terminal from the computer).

Both forms of the)OFF command cause any information in active workspace to be lost, while both forms of the
)CONTINUE command cause any information in active workspace to be saved under the name CONTINUE (in the
account number used when logging on). These commands are described in more detai I, with examples, in Chapter 8,
"System Commands".

APl Terminal Keyboard

The APL terminal keyboard arrangement is shown in Figure 2. This keyboard is similar to a standard keyboard in
that alphabetic and numeric characters are in the standard positions. (Alphabetic characters print in italic capital
letters.) Most of the remaining characters, however, are APL symbols and will not be the same as on a standard
keyboard. In addition, some familiar characters are located in different positions on an APL keyboard:

-+?'(); *=

6 APL Terminal Keyboard

~ n CJ GJ GJ IT] GJ rn rn ITJ lIJ IT] Q [IJ BACK

~:: I ~ rn ~ m CD 'GJ OJ rn Q rn m D ' BSPACE

RETURN

I ~ OJ OJ []] UJ rn rn [IJ GJ rn CD [JJ
"" I ISHIFT! I [JJ ITJ rn IT] IT] GJ rn CJ 0 OJ I ISH!"I I

I SPACE BAR I

Figure 2. APL Terminal Keyboard

The SHiFT key is used for uppercase characters the same as it is on standard terminals. The RETURN key indicates
that the user has entered something and is ready for the APL system to respond. Notice that most of the APL special
symbols are included as uppercase characters. Some even appear to have a relationship (often phonetic) to the
corresponding numeral or alphabetic letter (to facilitate remembering where they are). For example, a over A,
1. (for base) over B, E: over E, 1 (for index) over I, ' (for quote) over K, I (for magnitude) over M, 0 (for circle
symbol) over 0, * (for power) over p, ? (for query) over Q, p (for rho) over R, r (for ceiling) over S, and
w over W.

General APllnput

Character Set

One of APL's most unique characteristics is the richness of its character set. An APL keyboard (Figure 2) normally
has 88 printing graphics. All of these are legal characters. In addition, backspacing may be used to create the
following overstrikes, all of which are legal APL characters:

Other legal characters are blank (the space bar), tab (the TAB key, treated as one or more blanks), and carriage
return (the RETURN key). Two other characters are also accepted for control purposes: the INDEX key (present
on some terminal models) and the ATTN key discussed below under "Line Corrections During Input" and "Con
trol Keys".

Names

Names are used to identify certain APL constructs. All variables, functions, groups, workspaces, and statement
labels have names; the following restrictions apply to these names:

1. All names except workspace names can contain from 1 to 77 characters. Workspace names can contain
from 1 to 11 characters. More characters may be used, but they will be ignored.

2. Names may be composed of letters, numbers, 6., underlined letters, and underlined 6..

General APL Input 7

3. Names cannot begin with a number or Sfl or T fl.

4. There must be no blanks embedded within a name.

Some examples of names are

Bfl1 51234 'j'EMPERATURE

User Input Versus Computer Output

The user can enter input whenever a keyboard is unlocked. (One way to determine if the keyboard is unlocked is
to depress the SHIFT key; if it is unlocked, the typeball will rotate slightly.) As soon as the user has typed his
input and depressed the RETURN key, the APL system takes control and locks the keyboard. The keyboard remains
locked to the user until the APL system has processed the input, printed any result, and prompted for more input,
usually by indenting six spaces from the left margin. (A six-space indentation is an APL system prompt for user
input. See "Prompts" later in this chapter.)

User input and computer output are easi Iy distinguished. Computer output usually begins at the left margin whi Ie
user input is usually indented six spaces. For example:

)DIGIT5 2
WAS 10

379
0.33

2+2
4

472
2

Everything at the left margin in this example was typed by the APL system, whi Ie everything indented was typed by
the user.

Line Corrections During Input

A I ine can be corrected during input as long as the RETURN key has not been struck. Simply backspace to the error
{via the BACKSPACE key)t and strike the ATTN key. This produces an inverted caret below the character reached
by backspacing, and it signifies that everything from that point on has been deleted from system memory. The user
can then type the correction. For example, suppose the user mistakenly types 30.;.20 instead of 20+20. He can cor
rect this as follows:

40

30720
v
20+20

A variation of this scheme is available for terminals having the INDEX key (line-feed only). The procedure is to
backspace to the error and strike the INDEX key. The platen rolls up one line, and the user can immediately type
the correction. This is a quicker correction method than the ATTN key scheme. The computer does not need to
respond (that is, no inverted caret is displayed). An example follows:

40

20720
+20

t A word of caution about the BACKSPACE key: it should be struck gently since on some terminals it may repeat if
depressed fully. The repeat feature of this key is, of course, useful when desiring a lengthy backup; for instance,
when deleting an entire line.

8 General APl Input

Another correction method can be employed if the user discovers that he has omitted a character and that there is
room enough to insert it. As long as the RETURN key has not been struck, the user can simply backspace to where
he wants to insert the character and type it. For example, suppose the user types the following line and notices
that one left parenthesis is missing:

He can simply backspace and type the required left parenthesis:

This illustrates that it is not always necessary to enter characters in order. The user can leave blanks in a line
and then backspace and fill them in. As a rule, APL interprets what the uSer SeeS at the terminal; this rule is kno\'m

as visual fidel ity.

Execution and Definition Modes

From the user's viewpoint, the APL system operates in two modes - execution mode and definition mode. In execu
tion mode, the system responds to each line of input by taking a specified system action or by performing requested
calculations and printing a result. In the following printout, for example, the first line is a system command that
causes the system to take some action and to respond with a message, and the third line (3.;-9) performs a calcula
tion, printing the result on the fourth line:

)DIGI'l'S 2
WAS 10

0.J3

~ystem commands can be entered during execution mode or detinition mode. CaiculatlOns are performed only In

execution mode.

In definition mode, statements (that is, calculations) are saved as part of a defined function instead of being ex
ecuted immediately. System commands issued in this mode, however, are executed immediately. After functions
are defined, they can be referenced in other defined functions or in statements entered during the execution mode.
The user must type the del symbol V to begin definition mode, and another V to return to execution mode. See
Chapter 7, "Defined Functions", for a detailed description of definition mode.

Prompts

The APL system has four ways of prompting for (that is, requesting) input: direct line prompt, function line prompt,
evaluated input prompt, and quote-quad prompt. These are described below.

Direct-Line Prompt

When the APL system is ready for user input in execution mode, it automatically moves six spaces in from
the left margin. This is a signal to the user to enter a statement or system command. Direct-line prompts are shown
in the following example:

2+2
4

2

General APl Input 9

In this example, the APL system indented six spaces to prompt for user input, and the user entered the statement 2+2.
The system then printed the result of the calculation at the left margin, moved to the next line, and again indented
six spaces to prompt for more input.

Function-Line Prompt

Within definition mode (that is, when functions are being defined) the APL system prompts for user input by printing
a line number in brackets at the left margin. After printing the line number f it moves up to three spaces to the right
and waits for user input. As an example, look at the following portion of a function definition:

VSQUARE
[1] A-+-(BxB)
[2J

In this example, the user entered a function header (vSQUARE), and the APL system typed the [1] and moved three
spaces to the right to prompt for user input. The user then entered the statement A + (B x B), and the APL system
typed the [2J to prompt for more user input. This continues until the user ends the function definition with another
del symbol v.

Quad Prompt

The quad symbol 0 can be used in a statement to indicate evaluated input. When APL encounters the quad on ex
ecution of the statement, it halts and requests input by printing the symbols 0:, moving to the next line, indenting
six spaces, and unlocking the keyboard. The user can enter any valid APL expression, and this expression will be
evaluated and its value substituted for the quad (contained in the statement). Execution of the statement then re
sumes. Examples of the quad prompt are shown below:

A+Ut8
0:

7x2x4
A

7

ANSWER+O
0:

'YES'
A NSWJ!.'R

YES

Quote-Quad Prompt

The quote-quad symbol ~ (a quad symbol overstruck with a quote) is used to enter I iteral character data. It is
executed similarly to the quad symbol except that no input symbol is printed to signal the user and no six-space in
dentation takes place. The user enters his character data without enclosing it in quotes. For example:

A1+[!]
YES

A1
YES

c ... nts

Comments can be written on separate lines or can follow (that is, be tacked onto) statements. They may be included
on any line except a system command line or a function edit control line. To enter a comment, type the symbol PI

10 General APL Input

and follow it with the comment. This symbol is produced by typing a n symbol (upper shift C) and overstriking it
with a 0 symbol (upper shift J). Any valid APL characters may appear to the right of the A symbol. The A and any
characters to the right are ignored in APL expression evaluati on but will be printed if the I ine is displayed. Examples
of comments are shown below:

ATHIS IS A COMMENT.

_ "ntn A _ n (""fr'lT1A Dvn
1'10C.J. 1'1 - u-vIo(VN.lILJIJ.

[3] X+Y+5 ACOMMENT: X IS SeT TO Y+5

Control Keys

As mentioned earl ier, the APL system accepts two "characters" for control purposes - the ATTN key and the INDEX
key. The ATTN key is used to interrupt execution and to initiate editing. The INDEX key (present on some
terminal models) is used to initiate editing, as an alternate to the ATTN key.

Statements and System Commands

Each completed line of input in APL is classified as either a statement or a system command. Statements specify the
operations to be performed by the APL system, such as calculations, branching, and assignment of values or expres
sions. Some examples of statements are

4+2
!?+A f ?

VA PLUS B
[3 J 'l!:NTER VALUES FOR A'

System commands are used to communicate directly with the APL system itself. They are concerned primarily with
the mechanical aspects of the system, such as logging on and off, saving, loading, and deleting workspaces. Sys
tem commands always begin with a right parenthesis. A few examples of system commands follow:

)SAVE llEWJOB
)LOAD OLDJOB
)OFF IlOLD
)DIGITS

Statements and system commands are described in detail in Chapters 6 and 8, respectively.

Variables and Op erators

Data (numeric or literal) can be assigned a name and stored in the active workspace. The name and the associated
value are collectively known as a variable. The value may be a single data item (scalar) or a group of data items
(array), and may be changed as needed during the course of a program. Examples of assignments of variables are
shown be I ow:

A+5
B2+1 2 3
ABC+5+4
B3+A+B2

Some character symbols indicate that basic APL operations, such as addition or multiplication, are to be per
formed. These symbols are called operators. (Some APL programmers refer to these as "primitive functions", but

Statements and System Commands/Variables and Operators 11

such terminology is not used in this manual in order to avoid confusion with "defined functions" described in
Chapter 7.) Some operators can be monadic (have one argument) or dyadic (have two arguments). Some examples
of operators are

x

+
r

The domain and range of operator arguments and a i ist of all the operators are presented in Chapter 3 under "0per -
atoiS". Chaptei 5 is devoted to 0 detailed discussion of each operator.

Defined Functions

In addition to the mathematical functions included as APl operators, the APl system permits the user to define a
function, name it, and store it in his active workspace. The function can then be referenced by name in subsequent
statements, either as a program by itself or as a mathematical operation used in a formula. To define a function,
the user enters it statement by statement while the APl system is in the definition mode. This mode begins when
the user types a del symbol 'V and ends when he types another 'V. For a detai led description of defined functions,
see Chapter 7.

12 Defined Functions

3. COMMON ELEMENTS IN APL

Constants

Numeric Constants

Numeri c constants can take the form of integer or reai numbers. An integer is a whole number, requiring neither
decimal point nor exponentiai form. A reai number is a number, usually with a decimal point, expressed in either
exponential form or decimal form. The user need not generally be concerned with whether a number is integer or
real: or exponential or decimal, since the APL system automaticai iy takes Care of any necessary conversions and
alignment of decimal points. The representation of numeric data is accomplished with the foiiowing characters:

o 1 2 3 456 789. E

The numbers are the ordinary keyboard digits, and the decimal point is the keyboard period. The character, called the
negative sign, is found over the digit 2 on the standard APL keyboard and is used to indicate negative numbers. It
shou Id be distinguished from the - character, which is found over the + symbol and is used for subtraction. t The nega
tive sign is only valid for numeric constants; it is not valid in any other context. The E isthe letter Eon the keyboard
and is used to indicate an exponent. Embedded blanks, commas, and other punctuation are not allowed in APL numbers.

Practically any size number can be entered in decimal form (as opposed to exponential form), the only limit being
the length of an APL line. (Internal computations are carried out with at most 16 digits precision, however.) The
APL system ignores leading and trai ling zeros, so that the user need enter only the parts of numbers required for cal
culations. Thus there is no need for the user to enter data as all integer or all fractional. For example, the user
may enter the number one as 1.00, 001.0, 1, etc. Examples of numeric constants entered in decimal form are
shown be low:

5 + :J.55
10.55

6.8 f 20
o • 3'-1

The negati ve symbol (-) can be used on Iy with a numeri c constant to i ndi cate a negati ve number; it can never be
used with an identifier (or name). The symbol immediately precedes the applicable number; that is, no blanks are
allowed between the symbol and the number. The use of the negative symbol is shown below:

2
2

4 + 5
9

4 - 3
7

It is often easier to enter very large numbers in exponential form rather than decimal form. Exponential represen
tation is written as a number, followed by the letter E, followed by an integer indicating a power of 10. (E can be
interpreted as "times 10 to the following power".) The exponent - the number following the E - can be a positive
or negative number. Following are some examples of numeric data in exponential form:

t

APL Exponentia I Notation

-8.37E14

. 99E5

Mathemati ca I Notati on

-8.37 x 10
14

4.2 x 10-6

.99 x10
5

3.8 x 10-60

The negative sign and the minus sign should not be confused with another similar character the underscore, found
over the letter F on the keyboard. '

Common Elements in APL 13

The maximum and minimum representable numbers in Xerox APL, expressed in exponential form, are

7.237005577E75 t

7. 237005577E75

A numeric constant can consist of a single number (as already illustrated) or a vector of numbers with blanks sepa
rating each number. (One or more blanks may be used on input.) A vector of numbers used as a constant wi II be
treated as a single entity. Examples of numeric vectors are shown below:

1 2 3
1 2.5 726E12
2.71828 3.41416 .70714 0

It should be noted that noninteger values are handled internally as "double precision floating" numbers. Fractions
that are representable exactly in decimal notation, such as .1, are not exactly representable in this internal form.
In some instances this wi" cause results of operations to deviate from expected results, particularly if the anticipated
result is displayed to 16 decimal places or is a near-zero value.

Text Constants

Text constants - commonly called literals - are enclosed in quote symbols and can contain any keyboard character
including a legal overstrike and the space character. The quote symbols are used to distinguish a text constant
from a number, the name of something, or a construct in the language. They are not printed in the display of the
I iteral. For example:

A+'ABCDEF123456'
A

ABCDEF123456

In this example the name A has been assigned the value of the text constant. The next line is a request to display
the value of A.

If a quote character is used within a literal, it must be represented by a double quote. Use of the quote character
is shown below:

A+'THE "A" CHARACTER IS USED FOR COMMENTS'
A

THE 'A' CHARACTER IS USED FOR COMMENTS

One character enclosed in quotes is a scalar. More than one character in ,quotes is treated as a vector. Text vec
tors may be generated, compared for equality, indexed, and catenated just like numeric vectors. The characters
in a text vector are printed without spaces when the vector is displayed. Some more examples of the use of text
vectors are shown below (the operators used below are described in Chapter 5):

A+' ABCDEFGH'
B+' ABCCEEGH'
A=B

1 110 101 1
'SYMBOL'='SYMBOL'

1 1 110 1
Al+'ABCDEFGHIJKLM'
4pAl

ABCD
Al[2]

B

t If a number is created 'with magnitude greater than 7.23705469E75, comparison operations with that number wi II
give DOMAIN ERR because of the 'fuzz' concept in APL.

14 Constan ts

A text constant can contain one or more carriage returns. If a carriage return occurs before the closing quote is
given, APL "prompts" by accepting the next line of input beginning at the left margin. This occasionally confuses
the user who forgets to issue a closing quote; for example:

Names

A+'TEXT CONSTANT
WHY AM I AT THE LEFT MARGIN?
OH, FORGOT THE CLOSING'

A
TEXT CONSTANT
WHY AM I AT THE LEFT MARGIN?
OH, FORGOT THE CLOSING

Name Format

All of the following constituents of the APL language have names (sometimes known as identifiers) so that they may
be easily referenced: variables, functions, groups, statement labels, and workspaces. A name can only include
I etters, digits, and the !::. character, and except for digits these characters can be underscored. A name cannot
start with a digit or the combination S t:::. or T !::..

Lengths of names vary, depending on their use. The names of variablesj functions, groups, and statement labels can
be of any length up to 77 characters. t Workspace names - also known as fi lenames in Xerox APL - can be of any
length but oniy the first 11 characters are retained by APL.

Name Usage

The uses of APL names are described below:

1. A variable refers to the name given to scalar or array values by the assignment symbol (the character" +- ")

described later in this chapter under "Assignment".

2. Function names are treated briefly later in this chapter under "Function References", and in detail in
Chapter 7, "Defined Functions".

3. A collection of names can be referenced all at one time by giving the ~ a name. Included in the
group can be the names of variables, functions, and other groups. See the)GROUP command in Chap
ter 8.

4. A statement label is a name given to a statement within a user-defined function so that it may be refer
enced by other stateme~ts of that function. Statement labels are used mainly as branch reference points.

5. A workspace name is the name used to identify an active workspace so that it can be saved and later re
called. Workspace names are referenced in system commands which are described in Chapter 8. (Also
see item 8.)

tThe high limit on name lengths allows great latitude in naming items. The user should be aware, however, that long
names expend a user's workspace and should be avoided if space is a consideration. Names of four characters or
less require no space outside the user's symbol table.

Names 15

16

6. A password is assigned to a workspace to prevent other users from accessing that workspace. The password
must be used in order to access the workspace. Passwords are described in Chapter 8 (also see item 8, below).
Passwords need not be names.

7. An account is the identifier of a recognized user's account. The account must be specified when
logging on to UTS and when accessing a workspace in another user's account. The use of accounts is de
scribed inChapter 8 (also see item 8, next). Accounts may be, but are not restricted to, names or numbers.

8. In Xerox APL a saved workspace is treated as a logical fi Ie. A fi Ie identifier (FID) refers to the informa
tion needed in a system command to save a workspace or to reference it after it has been saved. A file
identifier can take either of the following forms:

[acctnum] workspace [:password]

[

. acct]

workspace .. password

. acct.password

where

acctnum is an integer specifying the number of a recognized user's account. It can consist of
up to eight digits and must be followed by a blank.

acct is the identifier of a recognized user's account. It can consist of up to eight characters.

workspace is the name assigned to the workspace, or fi Ie. It can consist of up to 11 characters.

password is assigned to a workspace, or file, in order to restrict user access. It can consist of
up to eight characters.

The bracketed items in the above forms indicate optional items. File identifiers are used in the following
system commands, all of which are described in Chapter 8:)LIB,)COPY,)DROP,)LOAD,)PCOPY,
)QCOPY,)QLOAD,)QPCOPY,)SAVE,)SET, and)WSID.

Account (acct) and Passwords may include any characters except the period, comma, semicolon, or em
bedded blanks. It is advisable, however, to avoid use of special APL characters.

Variables

A variable must be assigned a value before it can be used. The value assigned can be either numeric or ! iteral and
can be a scalar or an array (a vector, a matrix, or a higher-order array). The user can display the value of a vari
able at any time simply by typing the variable name. Examples of the assi gnment and use of variables are shown
below:

A+2
B+2 3 4 5
A+B

4 5 6 7
C+4 5P120
C

1 2 3 4 5
6 7 8 9 10

11 12 13 14 15
16 17 18 19 20

D+Bt2
D

1 1 .5 2 2.5

Variables

A variable can be respecified at any time simply by assigning a new value to the variable name. The most recent
value specification wipes out the previous value. For example, notice the following:

ABC+l
ABCxO 1 2 3 4 5

0 1 2 3 4 5
ABC~2

ABCxO 1 2 3 4 5

" 2 4 6 8 10 v

In this example, ABC is first assigned a value of 1 and calculations are performed with that value. The variable
ABC is then assigned a value of 2 and the calculations are performed using this new value.

Another way of respecifying a variable value is to decrease or increase its value by a certain amount. For example,
suppose variable A has a value of 5 and the user wants to increase this value by 1. This can be accomplished as
follows:

6

A+A+l
A

Notice that the calculation 5·1 is performed first, and then the result 6 is assigned to a variable A. This type of
operation is particularly useful for setting up a counter to test the number of occurrences of an event, such as the
number of passes throuqh a proqram loop. Each ti me thrau9h the loop the counter can be j ncreased or decreased
by 1 and then tested against a desired value to determine further action.

Local and Global Variables

Local variables exist while user-defined functions (Chapter 7) are active, that is, while the function is pendant or
suspended. Local variables, described below, are classified as follows:

Dummies
Result
Locals
Labels

Dummies, result, and locals are indicated by their presence in the header of a defined function. Labels are indi
cated on statements within a defined function.

At a given point in time if a variable is not local then it is global. It is possible (in fact useful) to allow global
variables to be identified by the same name as local variables (or local variables for one function to use the same
name as local variables for another functi on). This concept is useful in APL because it allows a defined function
to be formed without regard to name conflicts. Its local variables are totally independent of any previously assigned
variables. Furthermore, if the function calls itself, a new set of variables exist -independent of the original local
variables. As each such function call exits (that is, becomes inactive again), the current set of local variables
disappear and the earlier values associated with their names once more become accessible.

Variables 17

When a function call occurs, its local variables are said to "shadow" previous definitions for the names used by the
local variables. Shadowing can be repeated extensively as functions are called. As these functions exit, their
shadowing effect is removed. Only globals wi II exist when no function is active. Global variables also exist if
their names are not shadowed by any current active functions (for example, the local variables use unique names).
Shadowing is illustrated in Figure 3.

Local Variables

The following local variables are named in a function header: result, dummies, and locals. These are all optional;
a function is not required to use any local variables. Notice the following example:

'ilR+Y F X;A;B;C

In this example the function F names the following local variables in its header line:

R (result) - note that R is followed by a +- symbol, which designates that R is the result name.

X (dummy)- one name to the right of F, separated by blank(s), designates the right dummy. When F is called,
the right argument's value is automati cally assigned to local variable X.

Y (dummy)- one name to the left of F, separated by blank(s), designates the left dummy. When F is called,
the left argument's val ue is automati cally assigned to local variable Y.

A, B, and C (locals) - note that each local name is preceded by a semi colon.

The remaining type of local variable is the label. Its name appears in a function line as in the example below.

[3J L:ATHIS LINE IS LABELED.

Notice that the label's name, L, follows the line number, [3J, and is in turn followed by a colon. Although labels
are classified as local variables, it is more appropriate to consider them local constants. They cannot be assigned
values; that is, the following expression is a syntax error when L is a label:

L+4

The value of a label is the line number of its function line (which, of course cannot change during execution of the
function).

Shadowing

The example in Figure 3 illustrates the effect of shadowing as functions F1 and F2 become active and inactive.

18 Variables

) CLEAR
CLEAR WS

V+' V=GLOBAL '
W+'W=GLOBAL '
X+'X=GLOBAL '
Y+-'Y=CLOBAL 1

!;]Fl;X;Y
[1]
(2J
[3]
[4J
[5 J
[61
[7]

, •••••• P1 CALLED ••••• 0

V
~/

+X+'X=LOCAL (Pl)'
+Y+'Y=LOCAL (Pl)'
F2 ACALL P2
, .••.•• F1 EXITS •••••• '!;]
!;]F2;W;X
, .•.•.• F2 CALLED •••••• ,
V
+W+'W=LOCAL (F2)'
+X+'X=LOCAL (F2)'
Y

[lJ
[2J
[3J
[4J
[5 J
[6J ' .••••• F2 EXITS •••••• '!;]

V;W;X;Y
V=GLOBAL W=GLOBAL X=GLOBAL

P2
•••.•• P2 CALLED ••••••
V=GLOBAL
W=LOCAL (F2)
X= LOCAL (F2)
Y=GLOBAL
...... P'2 gXITS

V;W;X;Y

L' .L

•••.•. P1 CALLED ••.•••
V=GLOBAL
W=GLOBAL
X=LOCAL (Fl)
Y=LOCAL (F1)
.•.••• F2 CALLED •...••
V=GLOBAL
W= LOCAL (P2)
X=[,OCAL (F2)
Y=LOCAL (Fl)
.••••• F2 EXITS •.•••.
•••••• Fl EXITS ••••••

V;W;X;Y
V=GLOBAL W=GLOBAL X=GLOBAL

Y=GLOBAL

y = r; J,()R4 T,

Y=GLOBAL

} Set V, W, X, Y to be global variables.

1 Define Fl, naming X and Y as its locals.

J

Define F2, naming Wand X as its locals.

Verify V I W, X, Yare still global.

Call F2.

} V and Yare sti \I globa I .
Wand X are local to F2.

V! W, X, Yare global again.
Call Fl.

} V and Ware still global.
X and Yare local to Fl •

F 1 calls F2 •

} V is sti II globa I.
Wand X are local to F2.
Y is still local to Fl.

V, W I X, Yare again global.

Figure 3. Example Showing Effect of Shadowing

Arrays and Indexing

Description of Arrays

As mentioned earl ier, a variable may represent a scalar or an array. A scalar is always a single element - an element
being a character or number. One example of a scalar is

33

SCLR+33
SCLR

Variables 19

Although an array is usually made up of more than one element, it can also consist of a single element or even no
elements. An array with no elements is called an empty array.

In addition, arrays can be classified as vectors, matrices, or higher-order arrays. A vector is an array of one
dimension, and is displayed as a collection of elements arranged on one line. As a typical example, notice the
vector named VECT whi ch has four elements:

VECT
5 7 9 11

A matrix is an array with two dimensions
t
, and is displayed as a collection of elements arranged in a rectangular

pattern. An example of a two-dimensional matri x, named MAT, is shown below:

MAT
1 2
6 7

11 12

345
8 9 10

13 14 15

Notice that this matrix has three rows and five columns. It is two-dimensional because it is made up of rows and
columns.

A higher-order array is an array with three or more dimensions, displayed as a collection of elements in a set of
rectangular patterns. An example of a hi gher-order array is

CUBE
1 2 3 4 5
6 7 8 9 10

11 12 13 14 15

16 17 18 19 20
21 22 23 24 25
26 27 28 29 30

This hi gher-order array is three -dimensiona I. It has two planes, and each plane has three rows and five columns.

The user can find out if a variable is a scalar, a vector, a matrix, or a higher-order array by using the pp operation
to test for the rank (that is, number of dimensions) of the variable. For example, testing the previous variables
SCLR, VECT, MAT, and CUBE will give

ppSCLR
0

ppVECT
1

ppMAT
2

ppCUBE
3

A 0 indicates a scalar, a 1 indicates a vector, a 2 indicates a two-dimensional array, a 3 indicates a three
dimensional array, and so on, up to a maximum of 63 dimensions.

The user can also determine the size of each dimension in an array (that is, the "shape" of the array) by using the
p operator. For example, testing the same variables SCLR, VEcr , MAT, and CUBE wi /I give

pSCLR
pVECT

4
pMAT

3 5
pCUBE

2 3 5

t Note that a dimension is sometimes called a coordinate.

20 Variables

Since a scalar has no dimensions, p of a scalar produces an empty {vector} result; nothing is displayed (other than
the next input prompt). The above example confirms that SCLR is a scalar {no dimensions}; that VECT is a vector
with four elements; that MAT is a two-dimensional matrix with three rows and five columns (15 elements); and that
CUBE is a three-dimensional array with two planes, each with three rows and five columns. One other situation
shou Id be noted. An empty vector wi II return the va I ue zero, and an empty array wi II return one or more zeros
depending on which dimension or dimensions have length zero.

Indexi ng of Arrays

Referencing a Single Element. An element of an array is referenced by its position within the array, which is indi
cated by one or more numbers cai ied indices. One number is used as the index of an element in a vector array; t-NO

numbers, as the index of an element in a two-dimensional matrix array; three numbers, as the index of an element
in a three-dimensional array; and so on, with one number for each dimension.

The indices of all arrays start with 0 or 1, depending on the index origin. When the user first logs on to APL, the
index origin is 1 by default. It can be set to 0 with the system command)ORIGIN 0, and reset to 1 with command
)ORIGIN 1. An example of the effect of origin setting upon indexing follows.

V+-'ABCDE'
)ORIGIN 1

WAS 1 V[2]
B

)ORIGIN 0
rl AS 1 V[2]
C

V[1]
B

The indices of a two-dimensionai matrix aiso start with 0 or i, depending on the origin, but two numbers are uSed
in each index. The fir::.t nurnbel :;elec.t:> the elernent from a row, and the second number selects the element from a
column. The indices are ordered with the rightmost position varying the tastest, then the next rightmost, and so on.
For purposes of ill ustrati on, consi der the matri x named MA T3:

MAT3
3 1 11

13 15 4
6 10 7

2 12
8 14
9 5

The indices for this matrix, with index origin 1, will be

[1 ; 1 J
[2; 1]
[3 ; 1]

[1 ; 2]
[2; 2 J
[3; 2]

[1 ; 3 J
[2;3]
[3; 3]

[1;4]
[2;4]
[3;4]

[1 ; 5]
[2; 5]
[3; 51

ThusMAT3[1;1J is 3; MAT3C1;2J is 1; MAT3[1;3J is 11; Mat3C1;4] is 2; and so on. Notice that semicolons must be
used to separate the numbers of each dimension.

An element of an array of more than two dimensions is selected in the same way as an element of a two-dimensional
array, except that more numbers are included in the index. An index contains one number for each coordinate of
the associated array. For example, consider the following three-dimensional array:

MA'1'4
1 4 14 7

15 13 2 8

11 12 6 16
5 3 9 10

To reference the value 8 in this array, one uses the index MAT4Cl;2i4J; where 1 denotes the first plane, 2 denotes
the second row, and 4 denotes the fourth column. Notice that each additional coordinate always adds a number to
the beginni ng of an index. The ri ghtmost number of an index always refers to a col umn; the next ri ghtmost to a
row; the next rightmost to a plane; the next to a panel of planes; and so on.

Variables 21

22

Referencing More Than One Element. To reference more than one element of a vector, one simply includes the
index of each desired element in brackets after the array name. For example, notice the following vector:

A+5 4 1 3 9 2 7 4

To select the elements 5, 1, and 3 from this vector (assuming an index origin of 1), one uses the expression
A [1 3 4J as shown here:

A[l 3 4J
5 1 3

Other examples of referencing several elements of vector A are shown below. Notice in the second example that
indexing can be used to create larger and differently shaped arrays:

A[l 1 8 8 8J
5 5 444

5 1
3 4
2 9

A[3 2pl 3 4 2 6 5J

There are a variety of ways to reference several elements of a matrix. Consider the following matrix:

MATS
1 10 9 8 11
2 15 4 5 6

15 3 12 13 7

Examples of referencing several elements of this matrix are shown below. These examples assume an index origin
of 1.

MAT5 [1; 4 5 2J
8 11 10

MATS [1 2; J
1 10 9 8 11
2 15 4 5 6

MAT5[1 2; 1 2 3 4 5 J
1 10 9 8 11
2 15 4 5 6

MAT5 [1 2 3;4J
8 5 13

MAT5 [1 2;4 sJ
8 11
5 6

MAT5[;2 4J
10 8
is 5

3 13
MATS [1 2 3; 2 4J

10 8
15 5

3 13

Severa I elements of a three-dimensional array are referenced sim i larly to a matrix, except that the third coordinate
must also be added to the index. Consider the following three-dimensional array:

MAT6
1 2 3 4 5
6 7 8 9 10

11 12 13 14 15
16 17 18 19 20

Variables

Examples of referencing several elements of this array are shown be low. These examples assume an index origin of 1.

MAT6[1;2;5]
10

MAT6[;2;]
6 7 8 9 10

16 17 18 19 20
MAT6[;2;1 3]

6 8
16 18

MAT6 [1 1 2;1 2 1; 1 2 4]
1 2 1+
6 7 9
1 2 4

1 2 4
6 7 9
1 2 4

11 12 14
16 17 19
11 12 14

Assigning a Value to an Array. One or more elements of an already existing array can be assigned va lues via the
assi gnment symbol -+-. The user simply places the variable name and the index designation to the left of the symbol,
and the new value to the right. Examples follow, all of which assume an index origin of 1.

Example of vector:

V
4 5 Ei 7 8 9 10 1 1 12 13

V[l 1 5]+: " 1
V

1 c; 0 7 9 10 1 1 1? 1 3
'rr '" ...i J ' .,
V L .I. , ;} J~' u

V
0 5 0 7 0 9 0 11 0 13

~/llOOPS+ V[]+2
V

2 2 2 2 2 2 2 2 2 2
(IHOOPS

2

Example of matrix:

MAT7
1 2 3 4 5
G 7 8 9 10

MAT7[2;5J+-O
MAT7

1 2 3 4 5
6 7 8 9 0

MAT7 [1 2; 3 5]+-- 1
,1;JAT7

1 2 1 4 1
6 7 1 9 1

I,J A l' 7 [;] ~ 2
MAT7

2 2 2 2 :.>

/ 2 2 2 2

Notice from examples above (MAT6[i 2i] , V[J+2, and MAT7[iJ+2) that if an index position is not filled, all index
values for that position are assumed to be applicable. Assigning a new value to an indexed variable doe~ot change
the rank or shape of the variable, it merely changes one or more elements of the variable.

The value that is assigned to a variable or indexed variable is also the "result" of the assignment. This is illustrated
by the example WHOOPS+V[]+-2. Since V was a lO-element vector, all 10 index values received the element
value 2. But the result, as far as the assignment operation is concerned, is still just the scalar 2. Thus, WHOOPS

Variables 23

becomes a scalar variable having the value 2. In analyzing APL expressions, it is helpful to imagine that assigments
are "invisible". For example,

3+M[;4]+5

can be analyzed as if the assignment were not present, i. e.,

3+ 5

maki ng the resu I t (8) apparent.

Indexing an Indexed Argument. In Xerox APL an indexed argument may itself be indexed. For examp!e:

A[1;][2]

which is equivalent to the expression (AU;])[2J and is interpreted as follows. Obtain the first row of matrix A.
This row temporad Iy forms a vector, call it T, whose length is the number of columns originally given for A. Select
the second element from vector T, and (in this case) display the value of that element.

Only arguments can be followed by multiple indices. Specifications and coordinates cannot; thus the following is
a syntax error:

A[l;][2]+X

The user instead is advised in this case to use

A[1;2]+X

Operators and Arguments

APL expressions are derived from two fundamental entities - functions and arguments. Functions are formed by the
user (see Chapter 7, "Defined Functions") or are included as an inherent part of the language. In the latter case
they are called operators (some programmers refer to them as primitive functions, but that term is not used in this
manual in order to avoid confusion with defined functions). Most operators are represented by a single character.
A general treatment of these operators is given in this section; for a detai led treatment, see Chapter 5, "APL
Operators" .

An argument is a value - the value of an expression. Arguments have certain attributes: domain, rank, and length
or shape. The domain of an argument may be text type or numeric type. There are three numeric type domains:
logical, integer, or real; however, the user seldom needs to be concerned with this distinction. Logical data rep
resents lis or OIS and is stored in bit form. Integer data represents positive and negati ve numbers (using neither
decimal point nor exponential form) whose ranges are limited to the size of one computer word. Real data is stored
in doubleword form (that is, in floating-point form). Text or character data is stored in byte form. An argument
cannot be of mixed domain; it is either all text, all logical, all integer, or all real. If a numeric argument con
tains numbers that could fit in more than one domain, it is made to uniformly contain numbers in the largest size
domain necessary. Thus the following vector argument has integer domain since that is necessary to represent the 2:

1 0 102

The rank of an argument is the number of its dimensions (or coordinates). A scalar has a rank of zero, a vector has
a rank of one, a matrix has a rank of two, and so forth. The maximum allowed rank is 63.

The length of a vector is its number of elements, or components (zero for an empty vector). The shape or dimension
of an array {including a vector} is an ordered vector - containing the lengths of its coordinates. Single-element
vectors and single-element arrays of higher order (for instance, all 1 reshape of 5 is a single-element three
dimensional array) are not equivalent to scalars but may be used interchangeably with scalars in many operations.
Vectors and arrays may also be lempti. This is the case when the length of any coordinate is zero.

Operators are classified as monadic or dyadic according to their number of arguments. A monadic operator has one
argument to the right of the operator. A dyadic operator has two arguments, one to the right of the operator and
one to the left.

In many cases the same operator symbol can be used both monadically and dyadically, but the resulting operations
are different, although usually related in a natural way. Each operation has its own domain, rank, and length or
shape requirements, and the result of an operation may have a new set of these characteristics.

24 Operators and Arguments

Certain operators are coordinate-dependent. For example, a matrix rotation can occur about the first coordinate
(rotation of rows) or about the second coordinate (rotation of columns). For such operations, the user has the option
of specifying this coordinate in the form of a bracketed expression to the right of the operator. The va lue of this
expression must be an integer of appropriate range. These coordinate specifi cations are considered to be part of
the operator - they are not arguments. The following operations may use a coordinate specification:

Reduction
Reversal
Rotation

Compressi on
Expansion
Catenation

Note: Catenation may also use a real-va lued coordinate specification. This form of catenation is cai ied iamination.

Tobie 1 is a summary treatment of the standard APL operators, indicating their dyadic and monadic operations, if
any, and giving simple examples. Notice that the operators in this table are divided into three categories:
standard scalar dyadic operators, other standard operators (that is, nondyadic scalar and mixed operators), and com
posite operators. For a detailed treatment of these operators see Chapter 5, "APL Operators".

Type of
Operator Operator

Scalar Dyadic +
Operators

I I --
I

*

Table 1. APL Operators

Monadi c Operati on

Identity: leaves argument unchanged.
Examples:

+10
10

+'ABC'
ABC ---r--------------------------

Mi nus: negates the argument that
folioVv~ It. LXOinp.e.

-(10+5) -15

Signum: returns a -1, 0, or 1, depending
on whether its argument is negative,
zero, or positive. Example:

-1

Reciprocal: divides 1 by the value of
its argument. Example:

+1 3 5
1 0.3333333333 0.2

Note that this is equivalent to the
dyadic use of 1;1 3 5.

Exponential: raises e (i. e., the base
of a natural logarithm, having the value
2. 71828 ...) to the power of its argu
ment. Examples:

*1
2.718281828

*10
22026.46579

*2.2
9.025013499

I

Dyadi c Operati on

Addition: adds two arguments. Example:

10+20
30

------------------- --- -----

Subtracti on: subtracts the ri ght argument
fr0n-, t(ie left .Jr~uiTie;-j~. !:xamp!c.

10-5
5

Multiplication: multiplies the left
argument by the ri ght argument.
Example:

10x15
150

Division: divides the left argument
by the right argument. Example:

10+5 2 1 0.5
2 5 10 20

Exponentiation: raises the left argument
to the power indicated by the right
argument. Examples:

10*2
100

10*10
lEla

2*3
8

Operators and Arguments 25

Type of
Operator

Scalar Dyadi c
Operators
(cont.)

Operator

26 Operators and Arguments

Table 1. APL Operators (cont.)

Monadi c Operati on

Natura I logarithm: computes the natura I
logarithm of its argument (that is, loge
of argument). Examples:

o
e2

0.6931471806
e3

1.098612289
elO

2.302585093

Floor: returns the greatest integer less
than or equal to its argument. Examples:

II 0.7
10

l2 4.1 8.9 2 - -2 4 9 2

Cei ling: returns the least integer greater
than or equal to its argument. Examples:

11 - 2
2 5

Absolute value: returns the absolute
value of its argument. Example:

10

Generalized factorial: for integer
arguments, returns the factorial of its
argument. The argument may not be a
negative integer. (See Chapter 5 for
explanation of ! with noninteger
arguments.) Examples:

! 3
6

!O 1 2
112

Dyadi c Operati on

Logarithm: computes the logarithm of
the ri ght argument to the base i ndi cated
by the left argument; that is, computes
the power to which the left argument
must be raised to equal the right argu
ment. Exampl es:

10el00
2

10el 10 100 1000
0 1 2 3

2e4
2

2el 2 4 8
0 1 2 3

Minimum: compares two arguments and
returns the value of the smallest argument.
Examples:

512
2

gl3 11 8 - 2 10 -3 9 8 2 9
S 4 3 213

3 3 3 2

Maximum: compares two arguments and
returns the value of the largest argument.
Examples:

Sr2
5

9r3 11 8 - 2 10
9 11 9 9 10

S 4 3 2r3
5 4 3 3

Residue: returns the remainder from dividing the
right argument by the left argument. Examples:

214
o

5115 16 17 18
012 3

2 317
1 1

Generalized combination: for pasitive integer
arguments, the right argument represents a
population size and the left argument repre
sentsa sample size. The result is the number of
different samples that can be drawn from the
population (see Chapter 5 for explanation of !
with noninteger arguments.) Examples:

13!52
6.350135596Ell

2:10
45

3!10
120

I
I

Table 1. APL Operators (cant.)

Type of
Operator Operator Monadic Operation

Scalar Dyadic

I
0 Pi times: multiplies the value of pi

Operators (3.14159265353589793) times its argu-
(cont.) ment. Examples:

I I I

I I 01 I
I I 3.141592654 I 02 1

6.283185307 0.3141592654

t
See Chapter 5 for effect of "fuzz" on relational operators.

Dyadi c Operati on

Circular: returns the result of any of a number
of tri gonometri c functi ons. The left argument
specifies the type of trigonometric function,
and must be one of the integers from -7
to 7, as follows:

-, - ___ .I. __ V
UI\..,UJlh "

-6 arc cosh X
-5 arcsinh X

AI 1-1, v*')* t;.
-~ \ IT" 'I
-3 arctan X
-2 arccos X
-1 arcsin X
0 (l-X*2)*.5
1 sine X
2 cosine X
3 tangent X
4 (1+X*2)*.5
5 sinh X
6 cosh X
7 tanh X

where X is the right argument, and may be a
scalar, a vector, or an array. For the sine,
cosine, and tangent functions, X must be
expressed in radians. In addition, the per
mitted value range of X is limited for various
circle functions (for !n~tnnCf>, with on arcsine;

X must be in the range -1 to 1). Examples:

20(10x2.5)
0.9912028119

102 4
0.9092974268 -0.7568024953

Less than/ tests if the left argument is less
than the ri ght argument. Returns a 1 if the
test is true, and a 0 if the test is false.
Examples:

2<3
1

3<4 1 2 5
1 0 0 1

Less than or equal to:t tests if the left
argument is less than or equal to the ri ght
argument. Returns a 1 if the test is true, and
a 0 if the test is false. Examples:

2:S:3
1

2:S:1 2 3 4
o 1 1 1

Operators and Arguments 27

Type of
Operator

Scalar Dyadic I

Operators
(cant.)

Operator

Table 1. AP L Operators (cant.)

Monadi c Operati on Dyadi c Opera ti on

Greater than: t tests if the left argument is
greater than the ri ght argument. Returns a 1
if the test is true, and a 0 if the test is false.
Examples:

2>3

L· 0 2>-2 0 1 2 3

1 1 100

-----+---+---------1

I Greater than or equa I to/ tests if the left
argument is greater than or equal to the right

tSee Chapter 5 for effect of "fuzz" on relational operators.

28 Operators and Arguments

argument. Returns ali f the test is true, and
a 0 if the test is false. Examples:

2~3

o
2~ 2 0 2 3 4

1 1 100

Equa I to/ tests if the left argument is equa I
to the ri ght argument. Returns a i if the test
is true, and a 0 if the test is false. Examples:

1=0
o

2=0 1 2 3
o 0 1 0

'A' =' CANADA'
o 1 010 1

Not equal to/ tests if the left and right
arguments are unequal. Returns a 1 if they
are unequal, and a 0 if they are equal.
Examples:

1
3,e-3 0 3 6

1 101
'A',e'CANADA'

1 010 1 0

And: tests if the left argument and the ri ght
argument each have a value of 1. (The argu
ments must be 0 or 1.) Returns a 1 if both argu
ments are 1, and a 0 for any other combi nati on
of arguments, as shown below:

~ I ~ ~
1 0 1

Examples:

OM
o

(1=2)1\(3<4)
o

(1<2)1\(3<1 3)
o 0

(1=1)1\(3<4)
1

Type of
Operator Operator

Scalar Dyadic v

Operators
(- --~ \
\,","VIII., I I

I I
I I

...

I I

I I

Table 1. APL Operators (cont.)

Monadi c Operati on

I

I
I

I

Dyadi c Operati on

Or: tests if either the left argument or the
right argument has a value of 1. Returns a 1
;f eHher or both arguments are 1; and a 0 if
neither argument is 1, as shown below:

v I 0 1

o 0

Examples:

OV1
1

(1=2)V(4<3)
o

(3<4)V(4<5)
1

Nand: tests if both arguments are 1. Returns
a 0 if both arguments are 1, and returns a 1
for all other combinations, as shown below:

u

o

Examples:

0*0
1

(2<1)*(5<1)
1

(1<2)*(1<5)
0

Nor: tests if bath arguments are O. Returns
a 1 if both arguments are 0, and returns a 0
for all other combinations, as shown below:

¥ 0 1

0 1 0

1 0 0

Examples:

O¥O
1

0¥1
0

(1=2)¥(2<1)
1

(1=1)¥(2<3)
0

I
I

Operators and Arguments 29

Type of
Operator

Nondyadic
Scalar and
Mixed
Operators

Operator

I I

Table 1. APL Operators (cant.)

Monadic Operation

Not: returns the value 0 if the follow
ing argument is 1, and returns a 1 if
the argument is O. Examples:

-0
1

-1
0

-(6)4)
0

-(6<4)
1

-1 0 1 0
0 1 0 1

Roll (also known as monadic random):
;:-eturns an integer pseudorandomly
selectedt from 1 through the integer
speci fi ed in the ri ght argument.
Examples:

?5
1

?3 3 3
3 2 2

?5 B 11 13
2 1 B 9

Dyadic Operation

Deal (also known as dyadic random):
returns the number of integers specified in
the left argument, each pseudorandomly
selected t from the integers specified in the
right argument, and with no repetition of
numbers in the result. Examples:

4?8
1 4 2 6

4?4
3 2 4 1

Note that this operator is modified by index origin. If the origin is 0, the pseudo
random selection is from zero to the argument minus 1. If the origin is 1, selection
is from 1 to the argument.

Index generator: generates a vector
whose length is the value of the argu
ment. If the origin is 1, the vector wi II
contain the positive integers 1 through
the va I ue of the argumen t. If the
the origin is 0, the vector wi II contain
the positive integers 0 through the
value of the argument minus 1.
Examples:

\5
1 2 3 If 5

) ORIGIN 0
WAS 1

\ 5
0 1 2 3 If

Index of: returns the position of the
right argument in the left argument.
If the ri ght argument is not found
in the left argument, it is given a
va I ue of the I ength of the left argument
plus 1. Examples:

6 If 3 2\6
1

6 .. 3 2\6 2 5 If 3
1 4 5 2 3

6 .. 3 2\1
5

)ORIGIN 0
WAS 1

6 .. 3 2\6 2 5 .. 3
0 3 4 1 2

t
Pseudorandomly selected means that numbers are chosen by means of an algorithm which eventually produces repeating

results. In other words, a random sequence is, at best, only approximated.

30 Operators and Arguments

Type of
Operator Operator

Nondyadic
Scalar and
Mixed

I
Operators I I

(cont.) I I
I I I
I I I

p

Table 1. APL Operators (cont.)

Monadic Operation

Ravel: generates a vector from either
a scalar or an array of higher dimen-
sion. Examples:

A
1 2
5 6

.A
1 2 3

B

ABeD
EFGH

• B
ABCDEFGH

3 4
7 8

4 5 6 7 8

Shape: returns an empty vector if the
argument is a scalar, the length (or
number or elements) if the argument
is a vector, and a vector containing
the length of each dimension if the
argument is a higher-order array.
Examples:

A+2
B+l 5 6 7
C+3 3p\9
pA
pB

't

pC

Grade up: ranks the components of its
argument in ascending order, and returns
the positions {i. e., indexes of the com
ponents}. If the origin is 0, the ranking
will start with 0. Similarly, if the origin
is 1, the ranki ng wi II start wi th 1. The
argument must be a vector. Examples:

A+l 4 1 2 3 1 5
~A

1 3 6 4 5 2 7
)ORIGIN 0

WAS 1
~A

0 2 5 3 4 1 6

Grade down: simi lar to grade up, except
that it returns the indexes in descendi ng
order. Example:

A+l 4 1 2 3 1 5
'fA

7 2 5 4 1 3 6
)ORIGIN 0

WAS 1
'fA

6 1 4 3 0 2 5

I

I
I
I

I

Dyadi c Operati on

Catenati on: chains together scalars or
arrays of conforming dimensions. Examples:

A+l 2 3
8+4 5 5 7
A.B

i 2 3 '+ 5 6 7
C+3
(Cfl).C x 3-2

3 3

Note: See Chapter 5 for further examples
{including "lamination"} .

Reshape (restructure): generates an array
whose dimensions are the left arguments and
whose elements are taken from the right
argument. Examples:

5pl
1 1 1 1 1

2 4p8
8 8 8 8
8 8 8 8

2 4p\8
2 3 4
E '7 8

Operators and Arguments 31

Type of
Operator

Nondyadic
Scalar and
Mixed
Operators
(cont.)

Operator

T

32 Operators and Arguments

Table 1. APL Operators (cont.)

Monadic Operation

I

Dyadi c Operati on

Base value: 01 lows the user to switch from
one number system to another. The ri ght
argument contai ns the numbers to be con
verted, and the left argument contains the
increments needed to convert from one unit
to another. The left argument, usually
ca lied the radi x vector, can be thought of
as the base of the number system. Examples:

10 10 10.15 6 5
565

0 60.110 20
620

2 2 2 2.11 0 0 1
9

2.11 0 0 1
9

Representation: converts a number to some
predetermined representation. It works in
reverse of the base vaiue operation above.
The following shows how to reconvert to the
initial arguments used above in the bose
value examples:

10 10 10T565
5 6 5

0 60T620
10 20

2 2 2 2T9
1 0 0 1

Take: selects the number of components
indicated by the left argument, from the
right argument. If the left argument is
positive, selects the components from the
beginning of the right argument. If the
left argument is negative, t selects the
components from the end of the ri ght
argument. Examples:

A-+-2 1+ 6 8 10
I+tA

2 1+ 6 8 - I+tA
4 6 8 10

Drop: simi lor to take except that the
indicated elements are dropped instead of
selected. Examples:

A-+-2 4 6 8 10
HA

6 8 10 - 2 .. A
2 4 6

Type of
Operator

Nondyadic
Scalar and

..I: rI ", .. xe~
Operators
(cont.)

Operator

I
I

E

I

Table 1. APL Operators (cant.)

Monadic Operation

Execute: treats its argument (a text
string) as if in response to an eval--uated Input request. txample.

5
£ i) CLEAR '

CLEAR WS

F

€'VF XV'
€' }FlIS'

£'VF[l]X+XV'
F \~

246 8

Inverse: used to invert matri xes.
Example:

A
4 2

2 iU
)DIGITS 2

WAS 10
lilA

0.17
0.26
0.043

0.072
0.17
0.0097

0.029
0.099
0.063

I

Dyadic Operation

Membershi ~: yields a 1 if a given element
to the ri ght is an element of a speci fj ed

d _ ._c. _t .'- _____ L ___ L~ ___ .~L...~I
vector ro Inc:: 1t:1I UI IfiC IIICIIIUCt.>llIt-' ~l"I""V',

and a 0 if it is not. The result will have the
sume di mensi ons as the left argument.
Examples:

1 1

100
1 0 1
000

A (1 '"\ 3 I, 5 5 L.

LJ~L 4 G 8
BEA
1 0
C+' AB CDEFGlII<JK'
D+3 3p 'HOWAREYOU'
DEC

Matrix Divide: used for solving systems of
linear equations. For example, suppose the
user wants to find the values of X, Y, and Z
in the following linear equation> (u:,ing
conventional algebraic notation):

4X + 2Y - 5Z = 22

5X - 4Y + 4Z = -7

2X + 2Y - 20Z = 80

He can set up the coefficients as matrix A
and the constants as vector B:

A
4 2 5
5 4 ~

2 2 20
B

22 7 80

and then obtain the solution by taking
B matrix divide A:

1 1
BffiA

4

Thus in the linear equations given above,
X has a value of 1, Y has a value of -1,
and Z has a value of -4.

Operators and Arguments 33

Table 1. APL Operators (cant.)

Type of
Operator Operator Monadi c Operati on Dyadi c Operati on

I

Nondyadic Q Monadi c trans~ose: performs row col umn D}"adi c trans~ose: returns an array simi lar
Scalar and transposi ti on on its matri x argument. to the ri ght argument except that the
Mixed Example: coordinates (dimensions) are changed
Operators according to the left argument (that is,
(cont.) A the left argument specified the new

1 2 3 4 5 positi ons of the original coordinates}.
6 7 8 <J 10 Example:

11 12 13 14 15
~A

1 G 11 B

2 7 12 1 2 3

3 8 13 4 5 6

4 9 111 7 8 9

5 10 15 10 11 12

13 14 15
16 17 18
19 20 21
22 23 24

2 1 3~B
1 2 3

I
13 14 15 I

l~ <; fi
16 17 18

7 8 9
19 20 21

10 11 12
22 23 24

--_._--_._------------------_ .. --------

G> Reversal: reverses the order of the com- Rotation: rotates the elements in the
ponents of a vector, or the components right argument as specified by the left
of each row of a matri x. Examples: argument (i. e., according to the number

of places specified in the left argument).

I Examples:
A+1 2 4 6
<I> A

6 4 2 1 A+1 2 4 6
<l>l5 1 <l>A

5 4 3 2 1 2 4 6 1
2 <I> A

O+MAT+3 4Pl12

I

4 6 1 2

1 2 3 4
5 6 7 8 O+MAT+3 4Pl12
9 10 11 12 1 2 3 4

¢>MAT 5 6 7 8
4 3 2 1 9 10 11 12
8 7 6 5

1~MAT
12 11 10 9 2 3 4 1

6 7 8 5
10 11 12 9

34 Operators and Arguments

Type of
Operator Operator

Nondyadic

I

e
Scalar and
Mixed

I Operators I I

(cont.) I I
I I I

Table 1. APL Operators (cont.)

Monadic Operation

Reversal along the first coordinate: same
as above, except along the first coordi-
nate instead of the last. This is equiv-
alent to 1$[1J. Example:

O+MAT+3 40112
1 2
5 6
9 10

9MAT
9 10
5 6

1 2

3
7

11

11
7
3

4

8
12

12
8
4

I

I
I

Dyadic Operation

Rotation along the first coordinate: same
as above, except along the first coordinate
instead of the last. This is equivalent
to ¢elJ. Examples:

O+MAT+3 4Pl12
1 2 3 4
5 6 7 8
9 10 11 . " ~,£

IBi-VjAT

5 6 7 8
9 10 11 12
1 2 3 4

29MAT
9 10 11 12
1 2 3 4
5 6 7 8

Compression: suppresses some elements of a
vector and retains others. Elements of the
ri ght argument correspondi ng to ali n the
left argument are retained, while those cor
responding to a 0 are dropped. If either argu
ment contains just one element, it applies to
all elements of the other argument. Examples:

A+-~ 7 9 11
R+'ABCD'

5 9 11
1 0 l/B

ACD

O+MAT+3 4Pl12
1 2 3 4

5 6 7 8
9 10 11 12

1 0 1 O/MAT
1 3
5 7
9 11

Compression can also be used as a logical
test and branch situation (like the IF state
ment in FORTRAN). In this case, if the argu
ment on the left returns a value of 1, APL
branches to the statement indi cated by the
argument on the ri ght. If the left argument
returns a 0, program flow falls through to
the next statement. Examples:

-+(2)3)/END

-+(2<3)/END

falls through
to the next
statement.

causes a branch
to statement
labeled END.

Operators and Arguments 35

Type of
Operator

Nondyadic
Scalar and
Mixed
Operators
kont.)

Operator

36 Operators and Arguments

Table 1. APL Operators (cont.)

Monadi c Operation Dyadi c Operation

Compression along the first coordinate:
same as above except that compression is
along the first coordinate instead of the
last. Equivalent to IllJ. Example:

O+MAT+3 4Pl12
1 2 3 4
5 6 7 8
9 10 11 12

0 1 Of MAT
5 6 7 8

Expansion: inserts additional elements into
an array. For each 0 in the left argument,
a blank (for literals) or a zero (for numbers)
is inserted in the result, which otherwise is
the same as the ri ght argument. Exa mpl es:

A+1 2 3 4
B+'ABCD'
1 0 1 0 1 0 l\A

1 0 2 0 304
1 0 1 0 1 0 l\B

ABC D

ABCD
EFGH
IJKL

O+M+3 4p'ABCDEFGHIJKL'

1 0 1 0 1 0 l\M
ABC D
E F G H
I J K L

Expansion along the first coordinate:
same as above, except expansion occurs along
the fi rst coordi nate rather than the last.
Examples:

ABCD
EFGH
IJKL

ABCD

EFGH

IJKL

O+M+3 4p'ABCDEFGHIJKL'

1 0 1 0 1,M

Type of
Operator Operator

I I

Composite I fI I Operator/ I I
I I

11

f.g

Table 1. APl Operators (cont.)

Monadic Operation

Reduction: inserts the symbol (APL
operator) specified to the left of the /
between each element of the right
argument, performs the operation
from ri ght to left, and returns a
single value. Examples:

+/1 2 3 4 5
15

-/1 2 3 4 5
3

O+N+3 4pl12
1 2 3 4
5 6 7 8
9 10 11 12

+/N
10 26 42

-/N
2 2 2

Red'.....::~.::;Y' -~ : +-h p +~ .. c+ ("'""'\nrrhnntp·

same as above except re'duction occurs
along the first coordinate rather than
the last (equivalent to f/LlJ). Examples:

O+N+3 4pl12
1 2 3 4
5 6 7 8
9 10 11 12

+fN
15 18 21 24

-IN
5 6 7 8

I

I
I
I

Dyadic Operation

Genera I i zed inner product: Th i s operator
is a generalized form of the inner product
of matrix multiplication. The particular
form that corresponds to traditi ona I matri x
multiplication is A+. xB, where the second
dimension of matrix A is the same as the
first dimension of B. The result has the
same first dimension as A and the same
second dimension as B.

In the conventional matrix inner product,
each element of the result is the sum of
products of elements from A and B (see
Chapter 5 for detai I ed description).
The APL generalized inner product allows
different forms such as the sum of equality

t
The letters f and g stand for any dyadi c scalar operator: + - x .. * e r L I ! 0 < ::;; 2 > = ~ 1\ V fY ¥

Operators and Arguments 37

Type of
Operator

Composite
Operators
(cont.)

Operator

o • f

38 Operators and Arguments

Table 1. APL Operators (cont.)

Monadic Operation Dyadi c Operati on

tests, the maximum of sums, etc.
Examples:

A+-2 3P16
B+-3 2P-16
A

1 2 3
4 5 6

B - -1 2 - -
3 4 - -5 6

A+.xB - -22 28 - -49 64
A+.=B

0 0
0 0

A r • +B -0 1
3 2

The general form is Af. gB, where f and g
represent any dyadic scalar operators. A
and B may be vectors, matri ces, or hi gher
order arrays, subject to conformabi lity
rules described in Chapter 5.

Generalized outer product: This operator is
a genera I i zati on of matri x outer product,
Ao.xB. The conventional form multip!ies
each element of A by each element of B.
The shape of the result is the catenation of
the shapes of Aand B. In the generalized
form, multiplication may be replaced by
any dyadic scalar operation. Examples:

-A+- 1+16
A o. +A

0 1 2 3 4 5
1 2 3 4 5 6
2 3 4 5 6 7
3 4 5 6 7 8
4 5 6 7 8 9
5 6 7 8 9 10

A o. xA
0 0 0 0 0 0
0 1 2 3 4 5
0 2 4 6 8 10
0 3 6 9 12 15
0 4 8 12 16 20
0 5 10 15 20 25

A o. <A
0 1 1 1 1 1
0 0 1 1 1 1
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 0

Type of
Operator

Composite
Operators I

(cont.) I
I
I

Table 1. APL Operators (cont.)

Operator

f\
I

I
I
I

Monadic Operation

Scan: returns va lue of same shape as
argument. For vectors, i ;th resuit eie-
ment is formed by taking the first i argu-
ment elements, placing f between them,
and evaluating right to left.
instance:

+\1 3 5 7 9
1 4 9 16 25

-\3 1 1 5
3 2 3 -2

For

A coordinate specification [K] may be
used; if omitted, the last coordinate will
be assumed.

+\[1] 2 3 p \6
123
579

fII Scan along the first coordinate: same
as f \ [1]. Thus, as above,

+~2 3 p \6
123
5 7 9

Dyadic Operation

I

I
I
I

Fur.ctiLn References

Functions are used in the same way as operators, but most functions must first be formed by the user instead of being
an inherent part of the language. Once a function has been formed, or "defined", it is referenced by its user
assigned name. (Naming conventions are described earl ier in this chapter under "Names".) A general treatment
of functions is given in this section; for a detai led treatment, see Chapter 7, "Defined Functions".

Like operators, defined functions can have arguments which in turn have attributes of domain, rank, length, and
shape (see "Operators and Arguments" above). Functions are classified as monadic, dyadic, or niladic, according
to their number of arguments. A monadic function has one argument to the right of the function name. A dyadic
function has two arguments, one to the right of the function name and one to the left. A ni ladic function has no
arguments; the function name is referenced by itself.

I

I
I

The right argument is the value of the largest, complete APL expression immediately to the right of a function. For
the exampie beiow, F is a function whose right argument is 2 + 13.

F 2+13; 'POUNDS'

In this case, the text vector 'POUNDS' is not included in the argument since the semicolon splits the example into
two distinct expressions.

The left argument is the value of the smallest complete APL expression immediately to the left of a function. In the
example below, D is a dyadic function whose left argument is (13).

2+ (t 3) D 4

Operators and Arguments 39

In this case, the parenthetical expression (13) is the smallest complete APL expression immediately to the left of D.
2+(13) is also an APL expression, but it is larger. Therefore, the above example is interpreted as

2+ result

where "result" is the result supplied by the function reference

(13) D 4

In addition, any of the classes of defined functions may specify an implicit or explicit result. Thus there are actually
si x types of defi ned functi ons:

With With
explicit no
result result

monadic function x x

dyadic function x x

ni ladic function x x

The class is determined by the way a function is defined (that is, the function header), and it affects the way a
function is referenced in an expression. Defined functions with explicit results may appear in compound expressions,
much like operators. Defined functions without results may appear alone; they cannot appear in compound expres-
si ons except as the last functi on to be executed.

A defined function may reference itself; that is, it may be recursive. A recursive function is one that references
itself in the process of its execution.

When a function is invoked, it may complete execution and return a result or it may become suspended or pendant
during execution. A suspended function is one in which execution has been stopped before completion (the reasons
for stopping execution are given under "Suspending Execution" in Chapter 7). A pendant function is usually one
that has referenced a suspended function and is unable to complete execution because of the suspended function.
Suspended functions are always stopped "between" lines, but a pendant function is stopped in the process of exe
cuting a line. A function can be both suspended (stopped at some point) and pendant (in execution at some point).
For instance, if a recursive function is stopped after it calls itself, it is suspended (at the stop) and pendant (where
it called itself).

Assignment

Simple Assignment

The assignment symbol, denoted by a left-pointing arrow, is used to assign values to named variables or to a quad.
(Some programmers may refer to this symbol as the specification symbol or the replacement symbol, but the term
assignment symbol wi" be used throughout this manual.) It is the assignment that causes a variable to be a scalar,
a vector, a matrix, or a higher-order array. The assignment of a value or an expression to a quad displays the
value. Examples of assignments are shown below.

8+1 2 3 4 5

8+15

40 Assignment

Assigns the value of the expression 5.;-2x4 to variable A.

Indicates that B is to be a vector with the values 1, 2, 3, 4, and 5.

Another way of assigning the numbers 1 through 5 to variable B.
(The 15 assumes an index origin of 1.)

C+-2 4p\8

D+2 3p5 6 1 2 8 9

E+-D

Multiple Assignment

Indicates that C is to be a matrix (with two rows and four columns)
and that it is to be made up of the values " through 8 (assuming an
index origin of 1), as shown here:

1 234
567 8

Indi cates that Dis to be a matri x (wi th two rows and three co I umns)
and that it is to be made up of the vai ues 5, 6, 1, 2, 8, and 9, as
shown here:

561
289

Indicates that the value of D is assigned to E.

APL allows repeated use of assi gnment, or mul tiple assi gnment, ina single statement. Examples of multiple assign
ment are shown below:

A+-5.lJ~6

A.B
5 6 6

7,+-2+ Y+-2+X-4-)

X,Y,Z
.., 7 ~

U'-C'I'2 3 4 ~

2 3 4 5

Indexed Assignment

One or more elements of an already established array may be assigned new values. This is done by placing the
variable name and the index designation(s) to the left of the operator, and the new value(s) to the right, as shown
below (these examples all assume an index origin of 1):

,_;+A+-l ') 4 '" 2
S It 3 2

;l[1 2 J'I<~ 3
II

'J :-i It 3
;,
L.

fH J+-O

!1
f\

" 0 0 () u

L.-(-- j; +- 2 3p 1 r,
') 3

"
::; b

:~ [1 ; 2 J +-1.

4 J
It S G

l ; J '1- ()

,,'
0 0 0

0 0 0

Assignment 41

Input/Output

Input/Output Devices

The Xerox APL system allows the user a choice of six input/output methods:

• Standard APL terminal input/output: a standard terminal with an APL typeball. t

• APLjASCII terminal input/output: a terminal with either of two APL/ ASCII character mappings.

• Nonstandard terminal input/output: a standard terminal with non-APL typeball, or a device equivalent
to a Teletype Model 33 to 37.

• Batch input/output.

• Fi Ie input/output.

• IBlind l input/output.

The input/output described in this chapter refers to terminals with the APL character set. Nonstandard terminal,
batch, blind, and file input/output are discussed in Appendix B.

General Input/Output

After logging on to the APL system, the user is in execution mode and can enter input whenever the keyboard is
unlocked. The fundamental item of input to APL is the line. A line is a collection of characters that does not
include the carriage return. Striking the RETURN key completes a line, and APL attempts to interpret it and per
haps output data. An incomplete line can be corrected as described in Chapter 2. User input and computer output
are easi Iy distinguished at the terminal; computer output usually begins at the left margin while user input
is usually indented six spaces from the left margin. An input line is limited to 130 characters, not counting the
carriage return (overstrikes count as single characters).

Types of Input

The Xerox APL system acknowledges four kinds of input: direct, evaluated, quote quad, and blind. Direct input
results when APL is not executing the user1s program, evaluated input results from quad execution, quote-quad
input results from quote-quad execution, and blind input results from quad-lor quad-2 execution. Direct input,
evaluated input, and quote-quad input are described below and are considered to exist only after input translation
and current-line editing. Blind input is covered in Appendix B. (See also Chapter 11 for discussion of graphics
Iquad-zero l input.)

Di rect Input

Direct input is entered during the execution mode. The APL system is ready to accept direct input whenever it
skips to a new line, indents six spaces, and unlocks the keyboard. Evaluation of direct input occurs immediately,
and the response is either printed at the left margin (if the input was a nonassignment statement) or assigned to a
variable (if the input was an assignment statement). Examples of direct input follow:

5"'2x4
0.625

A+A+-5
10

O+-B+- 3 4 p112
1 2 3 4
5 6 7 8
9 10 11 12

tAs noted in Chapter 2, the APL typeball can be used with any terminal model that is operationally equivalent to
an IBM 2741.

42 Input/Output

Evaluated Input

The quad symbol 0 can be used as an argument in a statement, todenote that input is desired. In this context it can
appear anywhere except to the immediate left of an assignment arrow. When APL encounters the quad during state
ment execution it halts execution and requests input by printing the symbols 0: at the left margin. A response of
any valid APL expression causes execution to continue, using the value obtained in response to the quad symbol.
Examples:

8fO
0:

2
4

5xO
0:

1 2 3 4
5 10 15 20

If the quad symbol is built into an input loop, the user can terminate the input request by entering the symbol -+ (not
followed by an argument). Simply entering nothing and pressing the RETURN key is not sufficient to terminate the
input request; it will merely cause the CJ: to reappear at the left margin. An example of escaping from an input
request is shown below:

'ilCUBE;A
[1] LOOP: A+O
[2] A+AxAxA
[:3 J A
[4j 7-L()()l-'

[') 1 'V

CUBE
0:

3
27
0:

4
64
0:

5
125
0:

-+

Enteri ng any of the following system commands wi" terminate an input request:)CLEAR,)LOAD,)OFF,)OFF HOLD,
)CONTINUE, or)CONTINUE HOLD. Entering other system commands merely causes the 0: to reappear after the
command is executed. Entering a)SAVE,)CONTINUE, or)CONTINUE HOLD command causes the workspace to
be saved in the n statei and causes a il: to be printed when that workspace is eventually loaded. This can be use
ful in attaching a message to a workspace. For example:

'NOTE: WORKSPACE HAS ORIGIN 0'; OpU
u:

)CONTINUE
CONTINUE SAVKD 18:07 JUN 27,'72

oAPL
APL 07/27/73
CONTINUE SAVED 18:07 JUN 27.'72
U:

1
NOTE: WORKSPACE HAS ORIGIN 0

Input/Output 43

Functions can be defined during evaluated input. This is similar to function definition during normal (direct) input
except that at the conclusion of the definition APL re-requests evaluated input. This is to be expected since when
APL originally requested evaluated input it needed a value, and defining a function provides no value. This en
hancement is not limited to just providing definition capability. The full range of function definition mode features
are available during evaluated input:

• Creating a new function.

• Revising an existing nonpendantt function: inserting a line, deleting a line, replacing a line, and editing
characters of a line.

• Displaying one or more lines of the open function.

Entering an)51 or)SIV command in response to an input request will cause the state indicator to contain a D. For
example:

D'

D
0:

5

10fn

)SI

2

Quote-Quad Input

The quote-quad symbol ~ (except when to the left of (In assignment arrow) denotes I iteral input. When A.PL en
counters this symbol during statement execution, it skips to the beginning of the next line, unlocks the keyboard,
and awaits user input (no symbol is printed to prompt for input). Literal character strings are entered without be
ginning and ending quote symbols, and a quote within a string is represented by one quote instead of two. Entering
no characters produces an empty vector, entering a single character produces a scalar, and entering a string of char
acters produces a vector. To terminate a request for literal input, enter the following sequence of characters:
o backspace U backspace T, which appears at the terminal as QJ. Examples of quote-quad input are

Output

pA
o

B+L'J
Q~OTES AREN'T NEEDED

B
QUOTES AREN'T NEEDED

X+'CALIFORNIA'E~
AB CDE FeNI .IK ['M

X
1 1 1 1 1 0 0 0 1

As previously mentioned, the display of most computer output begins at the left margin. Important output charac
teri sti cs are descri bed be low.

1. Width of I ine. Unless the user specifies otherwise, up to 120 characters can be displayed per line. The
user can change the number of characters displayed to any number from 30 to 254, via the)WIDTH system
command (see Chapter 9) or the WIDTH function (see Chapter 8). Output processing always assumes that
the left and right margin stops are placed full left and full right.

tIf a function makes an evaluated input request, the function becomes pendant. Therefore, that function cannot be
opened during the evaluated input request.

44 Input/Output

2. Fractionai number. A fractional number is displayed with one leading zero to the ieft of the decimal point,
even if the number was entered without the zero. Examples of fractional numbers are

.2 + .4
0.6

2.;.3
0.6666666667

.123
0.123

3. Exponential notation. The APL system usually uSeS exponential form for printing numbers less than 1 E-5,
or greater than lEn (where n is the number of significant digits displayed) or 231 _1. Decimal form is used
for other cases. Numbers printed in exponentiai form always have a magnitude between one and ten fol
lowed by an appropriate exponent.

A
'.

When a vector is displayed, some numbers may be printed in exponential form and some in decimal form,
depending on the size of each number. Numbers in a vector are printed with two spaces between each
number, as shown below:

1234567.89 1234567890 1.23456789El0

When a matri x is displayed, the numbers are printed all in exponential form or all in decimal form. One
number requiring exponential form wi II cause all the numbers to be printed in exponential form. Numbers
in a matrix are printed with decimal points aligned, as shown below:

A
0.0100003

12.3456703

A*11
1.000330050E-22
1.015456727E1:

251.8767434
-0.09873201

2.588622762E26
8.690359926E 12

1.99032
7.76767676

1.941565195E3
6.211587288£']

S:s~:f:~~:~~ .::!:~;~:. :!-:e -"-PL :"/2~e~ :~:-:<~,: 2 ~ ~!' ':'~!C~'!C1f-:,:;~~ ~.:- '7ppr':-~!::!0+-=~)f ~A t:;~Jn~f'~,...,...rt -~tJ;"<:

(i. e., to 16 digits to the right of a decimal point), and displays the result rounded off to 10 significant
digits. Any trailing zeros are suppressed in the display. Examples are shown below:

4t 3
1.333333333

5t2
'2. 5

The user can use the)DIGITS system command (see Chapter 8) to change the number of significant digits
displayed, with the number ranging from 1 to 16 digits. Examples are shown below:

)DIGITS 4
WAS 10

1.333
5t2

If)DIGITS 16 is selected (this is not recommended, however), decimal fractions will tend to be displayed
in forms such as .5999999999999999 because of roundoff in internal computations. With)DIGITS 15, this
value wi II print as .6. In performing some calculations {particularly tests of equality}, the user should re
member that the number of signifi cant digits printed may be less than that retained by the system, and that
the significant digits retained by the system may be less than the number originally entered by the user.

5. Fuzz. When comparing noninteger numbers, the question is how close the numbers must be to be considered
equal. This tolerance, known as fuzz, is approximately 1. OE-13. The results of some floor and ceiling
operations and comparison operations are affected by this fuzz. Examples of comparison tests illustrating
fuzz are shown below:

2.2222222222222222=2.222222222222222229
1

12

11

Input/Output 45

6. Numeric and character vectors. Numeric vectors are displayed with two blanks between elements, while
character vectors are displayed with no blanks between elements, as shown:

2+\6
3 4 5 6 7 8

'ABCXYZ'
ABCXIZ

7. Arrays of two or more dimensions. The components of a two-dimensiona I array (i. e., a matri x) are dis
played in a rectangular arrangement. The components of an array of more than two dimensions (i. e., a
higher-order array) are displayed as a set of rectangles. Numeric arrays of two or more dimensions are
indented two spaces. Character arrays of two or more dimensions are displayed with no spaces between
columns. In addition, arrays of more than two dimensions are displayed with extra blanks separating
planes. Examples are shown below:

1
4
9

5
9

13

17
21
25

NOWI
STHE
TIME

ABCDE
F GHI

JKL M
NOPQR

3 5p 2+\15
0 1 2 3
5 6 7 8

10 11 12 13

2 3 4p4+\24
6 7 8

10 11 12
14 15 16

18 19 20
22 23 24
26 27 28

3 4p'NOWISTHETIME'

2 2 5p'ABCDEF GHIJKL MNOPQR'

8. Empty arrays. An empty array - an array of no components - can take the form of a vector or an array of
two or more dimensions. An empty array produces no display (just another prompt for input). An empty
vector (also known as a null vector) can be entered in one of the following ways: 10 or II or Op2. Simi
larly, examples of entering empty arrays of two or more dimensions are 0 2p4 and 0 OOpO. The display
of an empty vector and an empty matrix are shown below:

\ 0
o 2p6
2+2

Note that an empty numeric vector is represented by the expression 10 and an empty character vector is
represented by the expression II. These expressions cannot always be used interchangeably. An example
is in their use as the right argument in an expansion operation:

0\ ' ,

0\\0
o

Empty vectors are useful in initializing vectors and in branching.

46 Input/Output

It should be noted that the use of an empty array as the argument of a scalar function wi II result in an
empty array:

34+pO
0;t2 Op5

9. Mixed output. Numeric and literal expressions can be intermixed for output, as long as they are sep
arated with semicolons. The output will be displayed on one line, unless one of the expressions is a
nonemptyarray. Display of a nonempty array value begins on a new line. Examples of mixed output are

'THE SUM OF 20+2+4 IS ';20+2+4
THE SUM OF 20+2+4 IS 26

'SUM IS ';5+10;'; PRODUCT IS ';5 x l0;'.'
SUM IS 15; PRODUCT IS 50.

'THE REPLY IS'; 1 0 0/[1] 3 5p'YES
THE REPLY IS
YES

NO UNSURE'

In this context, the semicolons are said to separate the "compound statement II into a series of substatements.
Any valid statement can be used as a substatement {even branches}; however, a compound statement cannot
contain system commands. Consider the following statements:

'AMT = ,
AMT

A+25xB+l00
, DOLLARS'

DOLLARS

Notice that the second statement (A+25xB+ 100) produced no display since it ended on an a:):)ignment
to A. Statement::. thut end (in un evul uutiull :.en~e) un 055; gnment:; are ca I led "assignment statements ".
Nonassignment statements automatically produce display, while assignment statements do not. Ihe same
is true for substatements in Xerox APL (unlike some other versions of APL). Thus if the above statements
are combined, the resulting mixed output is as shown:

'AMT = ';A+25 xB+l00;' DOLLARS'
AMT = DOLLARS

To make the second substatement into a nonassi gnment substatement is easy; simply insert a + {identity
operator} as its first character, as shown here:

'AMT = ';+A+25 xB+l00;' DOLLARS'
AMT = 2500 DOLLARS

The second substatement va lue {2500} is displayed because it is a nonassignment substatement now. It
ends on the identity operation (+), not on an assignment.

10. Blind output. Blind output - treated in Appendix B - is output as one record of text (literal) data.

11. Stopping a display. The user can stop display of output by depressing the ATTN key. This use of the
ATTN key is more fully described in Chapter 10, "Execution StopS". A sma!! amount of data may still be
output after depressing the ATTN key. This results because CP-V has already prepared to display that data
before APL is notified that ATTN was issued.

12. GraphiCS output. See Chapter 11 for discussion of graphics "quad-zero" output.

13. Quad output. When Ll appears immediately to the left of an assignment arrow, the value of the expression
to the right of the arrow is output. Example:

5

Input/Output 47

4. EXPRESSION EVALUATION

Order of Evaluation

Right to Left

The APL system evaluates compound expressions from right to left, not from left to right as in most programming
languages. Each function or assignment symbol in a compound expression operates on the entire expression to the
right of it, with the rightmost expression evaluated first, then the next rightmost, and so on. In illustration, notice
the following compound expression:

20x4+5f2
130

In this expression the result of 5~2 is added to 4, and the result of that is multiplied by 20, thereby yielding the
value 130.

Precedence of Operators

Unl ike most programming languages (and unl ike common algebrai c usage) no APL operator has precedence over
another operator. A division operation, for example, is not performed before an adjacent addition unless, of
course, the division appears to the right of the addition. Note that in the example cited above the conventional
algebraic operator hierarchy would have treated the expression as equivalent to (20 x 4) + (5~2), which would have
resulted in the value 82.5.

Parentheses

Parentheses can be used in a compound expression to depart from the right-to-Ieft rule for execution. They are used
just as they are in mathematics for grouping expressions. APL evaluates everything withina pair of parentheses
(from right to left) before evaluating the expression of which they are a part. There must be an equal number of
left and right parentheses. The beginning APL user will find parentheses convenient to avoid confusion over the
difference between APL and conventional algebraic notation. Some examples of the use of parentheses are
shown below:

(3+15)x2+1
12 15 18 21 24

((6f2)x5 x 4)f3 ... ·12
4

6f2x5x4f3+12
2.25

(20x4)+(5f2)
82.5

The Value of a Variable Versus Its Name

When Xerox APL encounters a variable name, it obtains the associated value immediately. This value becomes an
argument, and the argument will not change value even if the named variable is assigned a new value. The fol
lowing example illustrates this evaluation procedure:

3

K+1
(K+2)+K

48 Expression Evaluation

The K to the right of the plus sign was evaluated to the argument having, at that time, value 1. This argument did
not change even though K's value changed before the addition was completed. (Some APL systems retain the name
rather than the value of an argument. These systems would obtain a result of 4 in the above example.)

Syntax Considerations

Any two variables, constants, or quads cannot appear adjacent to each other. They must be separated by a dyadic
operator or a dyadic function reference. Some valid and invalid examples are shown beiow.

Valid Invaiid

(3t4)x2 (3t4)2

2xA 2A

- -4+ 1 4 1

1 2 3 (1 2) 3

Notice in the last example that"l 2 3" is actually only one constant-a numeric vector.

Two dyadic operators cannot appear next to each other, but a dyadic operator and a monadic operator can. Thus
the expression

is legal, since the * and r operators are used as monadic operators, and the I operator is dyadic. The following
expressi on is illegal/however, because v is a dyadi c-only operator preceded by an operator ~

Default Terminal Output

Default terminal output occurs when a nonassignment statement is evaluated. That is, the result defaults to the
terminal instead of being stored in memory. For example, 2x4 gives default output:

8

Default output is killed by assignment. For example, the expression A+-2x4 prints no output at the terminal:

A+2x4

Instead, the value 8 is assigned to variable A and stored in computer memory.

When a compound statement (Chapter 6) includes both nonassignment and assignment expressions, the nonassignment
expressions produce default output at the terminal while the assignment expressions do not. However, any assign
ment expression can be transformed into a nonassignment expression by placing a plus sign (that is; identity
operator) at its extreme left. Some examples are

4;4
44

4; , , ;4

4 4
4+2;A+5+2;4+2

66
X+\5;Y+2+4
tX+15;tY+2+4

1 2 3 4 56

Default Terminal Output 49

Notice from these examples that separating spaces must be designated by spaces within quotes (see the 4;1 1;4

example), or else the default output from several expressions will run together. Also notice in the following ex
ample that the monadic + may be used to force default output even if the result is not numeric:

+X+-'TEXT'
TEXT

Errors ami Breaks

If the user discovers an error in a statement before the RETURN key is depressed, the user can backspace to
the error, strike the INDEX key or the ATTN key, and retype the rest of the I ine as described in Chapter 2. An
example (using the ATTN key) is: t

10

A+-5xB+-8x
v
f4

A

If the user has entered a line and APL detects an error or break during statement execution, execution of the state
ment is terminated. If the statement in error contains multiple assignments or is a compound statement, the assign
ments and expressions to the right of the error (denoted by a caret) wi II be completed. The current expression and
any expressions to the left of the error, of course, wi II usually not be completed. If a dyadi c operator or function
is indicated, however, its left argument expression (possibly containing assignments) will have been completed
before the function or operator was invoked. Examples are shown below (it is assumed that sidetracking, see Ap
pendix A, is not applicable in these examples):

C+-4f(D+-O)xZ+-5
DOMAIN ERR

C+-4f(D+-0)xZ+-5
/I.

C
UNDEFINED

C
/I.

D
o

Z
5

EfF;E+-4f2+1;F+-O;4f2*.5
DOMAIN ERR

EfF;E+-4f2+1;F+-O;4f2*O.5
/I.

E
1.333333333

F
o

In both of these examples the user has attempted to divide by zero, thus producing a DOMAIN ERR message. In the
first example the error is detected before variable C is assigned a value, so C remains UNDEFINED as shown. In
the second example, both variables E and F have the values assigned to them before the error was detected.

tOn APL/ ASCII terminals, the standard CP-V input line editing devices are applicable. See CP-V Time-Shoring
Reference Manual, 90 09 07, Chapter 2.

50 Errors and Breaks

If the user has entered a line and APl detects a simple error before any part of the line is executed, APl returns
the following: the message LINE-SCAN ERR, a caret at the error point, and that portion of the line it found ac
ceptable. The user can then complete that portion in the usual manner (as if he were entering it for the first time),
correcting the problem. For example:

A+234+(13)U*3
LINE-SCAN ERR A

0:
A+234+(13)x[J*~

4

A
298 362 426

where the underl ining indi cates the portion of the I ine typed by APL.

Errors and Breaks 51

5. APL OPERATORS

An APL operator is a symbol indicating that a basic APL operation, such as addition or division, is to be performed.
A symbol denoting an APL operator is either a nonalphanumeric character or a combination of such characters. For
example, addition is denoted by the + symbol and division is denoted by the .;- symbol.

Some of the basic APL operations are "monadic" and others are "dyadic". That is, some require a single argumentand
others require two. For example, the reciprocal operation is monadic (e.g., .;-A) and the division operation is dy
adic (e.g., A.,.B). M>st of the symbols denoting APL operators are used for both monadic and dyadic operations.
APL distinguishes between the monadic and dyadic use of any given operator by testing for the absence or presence
of a I eft argument.

• Syntax Conventions

Syntax conventions used throughout this chapter are as follows:

R denotes the result of an operation.

+- denotes the replacement of any previous value of the symbolic variable to the left of the arrow.

A denotes a left argument.

B denotes a right argument.

m denotes a monadic operator.

d denotes a dyadi c operator.

Following are some examples of the use of these conventions:

R+-mB R+-AdB

• Argument Characteristics

In discussing operators, certain argument characteristics will be referenced frequently. The terms used are de
scribed below.

Domain - In general, the type of data element such as integer data, character data, floating-point data.
For some operators the domain of an argument may be especially restricted (see the example for the
circular operator later in this chapter).

Rank - The number of coordinates in an array argument. (A rank of zero indicates a scalar.)

Length - The number of elements in a coordinate of an argument.

Shape - The vector made up of the lengths of all coordinates of an argument.

• Domain Tables

In the tables listing the domains of the results for various types of argument data, the following symbology is
used:

N denotes numeric data.

C denotes character data.

L denotes logical data (lor 0).

52 APL Operators

denotes integer data.

F denotes floating-point data.

DE denotes a domain error.

RE denotes a rank error.

Scalar Operators

APL operators vary considerably in ho they reference the elements of array arguments and in the characteristics
(rank and dimensions) of the result compared with those of the arguments. A group of operators called scalar
operators foiiow a common seT of rules with respect to characteristics of arguments and results. These operators,
comprising the arithmetic group, the reiationai group, and the ioglcai group, are so named because they are defined
in terms of scalar arguments. Extensions of scalar operations to array arguments are equivalent to performing
component-by-component scalar operations.

• Monadic Scalar Operators

t

The argument used with a monadic scalar operator may have any rank and dimensions. The result has the rank
and dimensions of the argument. The domain of the result may be different than that of the argument.

• Dyadic Scalar Operators

If the rank and dimensions of the arguments used with a dyadic scalar operator are the same, the operation is
performed on corresponding components of the two arguments and the result has the same rank and dimensions.
If the arguments have different ranks or dimensions and both contain more than single elements, a rank or
length error will be reported.

If one argument has multiple elements and the other is a scalar or single element array, the operation is per-
C~r""",r! --'''' ~h0 c;""::;'",, ,.,Ip,"",pnt \,,;;.h "' rh rn'1"1;'("It"lPt"li- ,-,f th". "1.,dt;~I<> ple".,pnt arau!'Tlet"lt The result has the rar,k

and dimensions of the multiple element argument. If neither argument has multiple elements but they are not
both scalars, the result is given the shape of the higher ranking argument. The shapes of results of scalar oper
ations for various arguments are tabulated below.

Right Argument

S Vl Ml Hl V M H

S S Vl Ml Hl V M H

Vl Vl Vl Ml Hl V M H

Ml Ml Ml Ml Hl V M H

Left Argument Hl Hl Hl Hl Hl V M H Resul t

V V V V V V t RE RE

M M M M M RE Mt RE

H H H H H RE RE Htt

where

S denotes a scalar.

V denotes a vector.

M denotes a matrix.

H denotes a higher order array.

Dimensions of arguments must be identical.
tt

Rank and di mensions of arguments must be i denti cal.

Scalar Operators 53

RE denotes a rank error.

Vl denotes a single element vector.

Ml denotes a single element matrix.

H 1 denotes a single element higher order array.

Arithmetic Group

Each operator in the arithmetic group has a monadic and dyadic form. If any argument is in the character domain,
a domain error is reported. If an argument is in the logical domain, however, it is considered to be a special case
of the integer domain. Results are always in the numeric {integer or floating)domain. (An exception is the monadic +
which is valid for any argument, including character data. The result is unchanged in domain.)

The + Operator (Identity and Addition)

• The monadic + is the identity operator. It is essentially "no operator".

R+-+B

Domain Table:

L F

L F

Examples:

+5
5

+(-3 2 1.1)

3 2 1.1
+0 1 0

0 1 0
+ I A I

A

• The dyadic + is the addition operator.

R+-A+B

Domain Table:

~ C L I F

C DE DE DE DE

L DE I I F

I DE I 11Ft F

F DE F F F

tn,e sum of integers is floating-point if the result exceeds the integer range.

54 Scalar Operators

If a floating-point result exceeds the range of floating-point numbers, DOMAIN ERR is reported.

Examples:

2 3 1+5 1 0
'j 2 1

2.5+1 2 3
3.5 4.5 5.5

2.5 3.5+1 2 3
LENGTH ERR

2.5 3.5+1 2 3

The - Operator (Negation and Subtraction)

• The monadic - is the negation operator.

R+-B

Domain Table:

L F

F

Examples:

5
1 \

_ 0 ..l /

1 . 1

• The dyadic - is the subtraction operator.

R+-A - B

Domain Table:

~ C L I

C DE DE DE

L DE I I

I DE I I/F t

F DE F F

Examples:

2 3 1-5 1 0
3 4 1

2 5 -1 2 3
1 5 O. 5 0.5

1 2 3 - 2. 5
1 . 5 O. 5 0 .5

F

DE

F

F

F

t
The sum of integers is floating-point if the result exceeds the integer range.

Scalar Operators 55

The x Operator (Signum and Multiplication)

• The monadi c x is the signum operator.

R+-xB

If B is positive, R is 1. If B is zero, R is O. If B is negative, R is -1.

Domain Table:

Examples:

L F

x 2 3.5 0 .0001
110 1

• The dyadic x is the multiplication operator.

R+AxB

Domain Table:

~ C L I F

C DE DE DE DE

L DE I I F

I DE I I/F t F

F DE F F F

Examples:

5xl 1 7
5 5 35

1 2 Oxl.5 2.5 3.5
1.5 5 0

2.5 3xl.7 12 .01
LENGTH ERR

2.5 3x1.7 12 0.01

"

The .;- Operator (Reciprocal and Division)

• The monadic .;- is the reciprocal operator.

tThe product of integers is floating-point if the result exceeds the integer range.

56 Scalar Operators

Domain Tab!e:

L F

F F F

If B is zero, the error DOMAIN ERR is reported.

Examples:

f1 2 5
1 0.5 0.2

f.01
100

• The dyadic -i- is the division operator.

Domain Table:

~ C L

C DE DE DE

DE F F

DE F F

F DE F F

F

DE

1
F i t K

F I J

If B is zero and A is other than zero, the error DOMAI N ERR is reported. If B and A are both zero, R is 1.
If R exceeds the range of floating-point number, DOMAIN ERR is reported.

Examples:

7 8 9f2 10 18
3.5 0.8 0.5

Of12
o

1

The * Operator (Exponential, Exponenti ation)

• The monadic * is called the exponential operator. The monadic * is the equivalent of the dyadic form
with e (base of natural logarithms) supplied as a left argument. The value used for e is approximately
2.7182818284590451.

R~*B

Domain Table:

L F

F F F

If B exceeds 174.6730895; DOMAIN ERR is reported. If B is less than -179.8716889, R is O.

Scalar Operators 57

Examples:

*1 .5 0 190
2.718281828 1.648721271 1 0

• The dyadic * is the exponentiation operator.

Domain Table:

~ DE L I F

C DE DE DE DE

L DE F F F
R

I DE F F F

F DE F F F

If both A and B are zero, R is 1. If A is zero and B is less than zero, DOMAIN ERR is reported. If A is less
than zero and B is not an integer, DOMAIN ERR is reported. If R exceeds range of floating-point numbers,
DOMAIN ERR is reported.

Examples:

o 1 2 2*0 5.3 0.5 3
1 1 1.414213562 8

2*-.3
DOMAIN ERR

2* 0.3
A

The ~ Operator (Natural Logarithm, Logarithm)

• The monadic ~ is the natural logarithm (base e) operator.

R ... eB

Domain Table

L F

F F F

If B is not a postiive number, a DOMAIN ERR is reported.

Example:

~2.7182818284 1 .04978706837
1 0 3

• The dyadice is the generalized logarithm (base A) operator.

R+-AsB

If A or B is not a positive number, a DOMAIN ERR is reported. If A is 1 and B is other than 1, a
DOMAIN ERR is reported.

58 Scalar Operators

Domain Table:

~ C L F

C DE DE DE DE

l L DE F F F
R

DE F F F

F DE F F F I J ,

Examples:

2 3 161'1 27 ,25
0 3 0.5

101'10 .1 250
1 1 2.397940009

The L and I Operators {Floor and Ceiling, Minimum and Maximum}

• The monadic L and I are the floor and ceiling operators.

R+-LB

For L, R is the algebraically greatest integer such that Rs;B+FUZZ.

R+-IB

For r, R is the algebraically smallest integer such that R~B-FUZZ.

FUZZ is approximately lE-13 unless modified by SETFUZZ intrinsic function.

Domain Table:

B C L I F

R DE I I It/F

Examples:

L 2.9 2.99 2.99 2.99999999999999
2 2 3 3

I 2.1 2.01 2.01 2.00000000000001
3 3 2 2

• Dyadic Land r are the minimum and maximum operators.

R+AlB R+-ArB

For each element pair of A and B, R is the algebraic minimum or maximum.

t
Result is floating-point if the value exceeds the range for the integer domain.

Scalar Operators 59

Domain Table:

~ C L I F

C DE DE DE DE

L DE i I F

I DE I I F

F DE F F F

Examples:
5 L 12

5
5r12

12
5L - 1 5 7

1 5 5
(-1 5 7)f5

5 5 7
1 2 3.5r-3 2 7.1

1 2 7.1

The 1 Operator (Absolute Value and Residue)

• The monadic 1 is the absolute value operator.

R+-IB

Domain Table:

L F

F

Examples:

2.15
1-2 4.3 5 7.2

2 4.3 5 7.2

• The dyad ic 1 is the resi due operator.

R+-AIB

The result is B modulo A expressed as a nonnegative value; that is, the smallest nonnegative value R such
that R=B+nxA for an integer n.

Domain Table:

~ C L I F

C DE DE DE DE

L DE I I F

I DE I I F

F DE F F F

If A is zero and B is less than zero, DOMAIN ERR is reported. If A is zero and B is greater than or equal to
zero, B is assigned to R. DOMAIN ERR is also reported if the ratio of B to A or either value is too large for
meaningful modulo operation within the precision range used in computing real values.

60 Scalar Operators

Examples:

2 3 -415 -7 6
122

3.216.57.4 17
0.1 1 1

The o Operator (Pi Times and Circular)

• The monadic 0 is the pi times operator.

R+-oB

The result is 3.141592653589793 times B.

Domain Table:

Examples:

01
3.141592654

02 .5

L

F

F

F F

6.283185307 1.570796327

• The dyadic 0 is the circular operator.

R+-AoB

The value of A determines the computed function of B according to the following convention.

A

-7
-6
-5
-4
-3
-2
-1
o
1
2
3
4
5
6
7 I

R

Arctanh
Arccosh
Arcsinh
C1+B*2)*.5
Arctan
Arccos
Arcsin
(l-B *2)*.5
Sine
Cosine
Tangent
(l+B *2) *.5
Sinh
Cosh

I Tanh

Domain of Bt

IB=o;l
ls:B::;Max *. 5tt

IB=o;Max*.5tt

hlB

IB=o;l
IB~l

IB::;l
IB::;7.074237752E 15
IBs7.074237752E 15
IB::;7 .07 4237752E 15ttt

IB::;175.3662366
iB=o;175.3662366

Range of Rt

-18.36840028 to 18.36840028
o to 88.02969193
-88.02969193 to 88.02969193

- rr/2 to rr/2
o to rr
- rr /2 to rr /2
o to 1
-1 to 1
-1 to 1
-2.86708057E15 to 1.146832228E16

I
tt

1 to Max

i -1 to 1

tThe domains of B and ranges of R are narrower than those theoretically possible. The limitations
reflect the precision with which real number data are represented and with which computations are
made in the computer.

tt
Max = 7 .237005577E75.
Max *.5 = 8.507059173E37.

ttt
For tangent, DOMAIN ERR results if B is indistinguishable from an odd integer multiple of rr /2.

Scalar Operators 61

The value of B is in radians for the trigonometric functions. For the inverse trigonometric functions, the value
of R is in radians. The domain of the result is always floating-point.

Examples:

1002
1.046360549E-15

304 5 6
1.157821282 3.380515006

70.5
0.5493061443

0.2910061914

Notice in the first example that the result (the sine of 2lT) should actually be zero. The actual result reflects
the effect of computing with approxi mately 16 decimal-place precis ion.

The! Operator (Factorial and Combination)

• The monadic ! is the generali zed factorial operator.

•

R+!B

The result is B factorial for nonnegative integral values of B. If B is not an integer, the result is the gamma
function of B+ 1.

Domain Table:

I
B

I

c L F

R DE F

Examples:

! 7
5040

! .66 .75 0
0.9016683712 3.625609908 1

The dyadic is the generalized combination operator.

R+A!B

If the arguments are positive integers and A is less than or equal to B, the result is the number of combinations
of B things taken A at a time:

R=(!B)-;-(!A)x !B-A

The generalized form A! B is related to the Beta function as follows. j3(A,B) is

-i-Bx (A-i) !A+B-1

Domain Tobie:

~ C L I F

C DE DE DE DE

L DE I I F

I DE I I/F F

F DE F F F

62 Scalar Operators

Examples:

1 ! 2
2

1. 5! 2
1.697652726

1.5! 2 0 5
2.5

5! 52
2S989nO

Relational Group

The six relational operators are used to compare two values and return a value of 1 if the relation is true or a value
of 0 if the relation is false. The truth value can be used in calculations in the sameway asany other value of 1 orO.
The relational operators are strictly dyadic, requiring a I eft argument.

The < Operator (Less Than)

R+-A <8

The result is 1 if (A-B)::::-FUZZxiB, and is 0 otherwise.

Domain Table:

~. C L

I c I DE DE DE

L DE L L

DE L L

F DE L L

Examples:

2 <4.5
1

1 2 3<3 2 1
100

The:::: Operator (Less Than or Equal To)

R+A::;B

F

DE 1
L

JR L

L

The result is 1 if (A-Bh;FUZZxIB, and is 0 otherwise.

Domain Table:

~ C L I F

C DE DE DE DE

L DE L L L
R

I DE L L L

F DE L L L

Scalar Operators 63

Examples:

1

1 1

1:0;2

1 2 3:0;3 2 1
1""\
V

The = Operator (Equals)

R+A=B

The result is 1 if (!A-B}:o;FUZZx!B if A and B are numeric, and is Oother .. vise. If A and B are characters, R is 1
where A and B are the same, and 0 where they are not. If one argument is character and theother numeric, R is O.

Domain Table:

~ C L I F

C L L L L

L L L L L

I L L L L

F L L L L

Examples:

1 2 3=3 2 1

0 1 0
'THIS'='THAT'

1 1 0 0
'A'=5

0

The ~ Operator (Greater Than or Equal to)

R+A~B

The result is 1 if (A-B»-FUZZxIB, and is 0 otherwise.

Domain Table:

~ C L I

C DE DE DE

L DE L L

I DE L L

F DE L L

Examples :

1~2

o
1 2 3~3 2 1

011

64 Scalar Operators

F

DE

L

L

L

The> Operator (Greater Than)

R+-A>B

The result is 1 if (A-B»FUZZxIB, and 0 otherwise.

Domain Tobie:

I L I DE

DE

F DE

Examples:

2>3.4
a

L

DE

L

L

L

DE

L

L

L

1 2 3>3 2 1
a a 1

The ~ Operator (Not Equal To)

F

DE

I
L

L

L

!r ,A" :~:;:::! ~. T~ n'_' ~r;r, the rpC'll~ :, 1 :f (it.._Rl',1=i_i77 iR, -,n.-i ic n ,"",thor-wi,,,, it A nnr! R "frp rh"mch"rc; R i~ (I

where A and B are the same, 1 where they are not. If one argument is character and the other numeric, R is 1.

Domain Table:

~ C L I F

C L L L L

L L L L L

I L L L L

F L L L L

Examples:

1 2 3~3 2 1
1 0 1

'THIS'~'THAT'
A A 1 1 v v

'A';.e5
1

Logical Group

The five logical operators are used to perform logical operations, returning a result of 0 or 1. The first four oper
ators are strictly dyadic, and the last (the "not" operator) is strictly monadic.

Scalar Operators 65

The 1\ Operator (And)

R+-AI\B

The result is 1 if A and B are both 1, and is 0 otherwise.

Domain Table:

K c l I F

C DE DE DE DE

l DE l l l

I DE l l l

F DE l l l

A domain error results if both A and B are not equal to either 1 or 0 (within FUZZ limits).

Examples:

11\1

(1<2)1\(3=4)
o

1 1 0 01\1 0 1 0
1 0 0 0

The v Operator (Or)

R+-A vB

The result is 1 if A or B, or both, are 1, and is 0 otherwise.

Domain Table:

~ C l F

C DE DE DE DE

L l DE l l l

DE l l l /1 F DE l l l

A domain error results if both A and B are not equal to either 1 or 0 (within FUZZ limits).

Examples:

1 vl
1

(1<2)V(3=4)
1

1 1 0 Ov1 0 1 0
1 110

66 Sea I ar Opera tors

The fy Operator (Nand)

R+-A1'<B

The result is 0 if A and B are both 1, and is 1 otherwise.

Domain Table;

P1l C L F

11 DE DE DE DE

I L I DE L L L I I

I I
DE L L L If F DE L L L

A domain error occurs if both A and B are not equal to either 1 or 0 (within FUZZ limits).

Examples:

11'<1
0

(1<2)1'«3=4)
1

1 1 0 01'<1 0 1 0
0 1 1 1

The result is 0 if A or B, or both, are 1, and is 1 otherwise.

Domain Table:

~ C L I F

C DE DE DE DE

L DE L L L

I DE L L L

F DE L L L

A domain error results if both A and B are not equal to either 1 or 0 {within FUZZ limits}.

Examples:

1¥1
0

(1)2)'\1'(3=4)
1

~1 1 0 0¥1 0 1 0
0 0 0 1

Scalar Operators 67

The ~ Operator (Not)

R+--B

The result is 1 if B is 0, and is 0 if B is 1.

Domain Table:

l F

l l l

A domain error results if B is not equal to either 1 or 0 (within FUZZ limits).

Examples:

o

1
-(2.5-1.5)

o

Compos ite Operators

The three composite operators extend dyadic scalar operations to arrays. In the following descriptions of these
operations, the bracketed value K represents that coordinate of the argument array along which the specified oper
ator is to act. If K is unspecified, the last coordinate of the array is assumed. The symbol d represents anydyadic
scalar operator.

The d/ Operator (Reduction)

R+-d/[KJB

The result is an array having a dimension vector equal to that of array B except that the Kth component is not present.
If f is used instead of I, the first coordinate is assumed and [KJ may not be speci fi ed.

For a vector argument, the value of the result is that produced by placing the operator d between each pair of ad
jacent components of vector B. A minus reduction results in an alternating sum and a divide reduction results in an
alternating product.

For a scalar or an array comprising a single component the result has the same value as B. For an empty array the
result has the value of the identity element of operator d, as sho\vn in the table belovJ.

Identity Identity
d Element Comment d Element Comment

x 1 ¥ None
+ 0 ! 1 Left identity only.
.. 1 Right identity only. I Minimum -7.237005469E75
- 0 Right identity only. L Maximum 7.237005469E75

* 1 Right identity only. > 0 Right identity only.
I 0 left identity only. ~ 1 Right identity only. I

~ None < 0 left identity only.
0 None ~ 1 left identity only.
v 0 = 1
1\ 1 ~ 0
'f'(None

68 Composite Operators

Domain restrictions for operator d apply. If B includes more than one element, the domain of the result is the same
as indicated in domain tables for the dyadic scalar operators.

Examples:

20

4

10

1
5

10

6 8

36

1
5
9

13
17
21

10
58

15
51

14
22
30

78

300

300

1 1
1 1
1 0

0 0

1 0

2
6

26

O+R++/2

0+11'+-/2

O+R+!/10

A+2
A

3
7

+/A

.....
10

4p t 8

4
8

12
+/+/A

4 6

4 6

B+2 3 4p 124
B

2 3 4
6 7 8

10 11 12

14 15 16
18 19 20
22 23 24
+/B
26 42
74 90
+ / [2 JB
18 21 24
54 57 60
+fB
16 18 20
24 26 28
32 34 36
+/+/B

222
+i+i+iB

+I.B

C+-3 4 pi 1
C

1 0
0 0
0 0

"iC
0
"fC
0 0

8

8

1 0 1 1 0 0 1 0 0 0

Composite Operators 69

70

The d \ Operator (Scan)

R+d\[K]B

The result has a dimension vector the same as that of B. If \ is used instead of \ I the first coordinate is assumed
and [KJ may not be specified.

For a vector argument, the result wi II be a vector of the same length with values as follows:

R[1]+B [1]
R [2] +B [1] d B [2]
R[3J+B[lJ d R[2J d B[3J

Thus the last component of the result will equal d/B.

For a scalar or a one-component array, the result is the same as B. For an empty argument, the result will be empty.

Domain restrictions for operator d apply. If B has more than one element, the result domain is that indicated in the
domain table for d.

Examples:
+\1 3 5 7

1 4 9 16
+\-5 0 7 0 1

5 5 2 2 3
-\3 9 5 1

3 6 1 2
x\l 2 3 4 5

1 2 6 24 120
7\1 2 3 4 5

1 o .5 1.5 0.375 1.875
$\7 9 5 - 4

7 1 0 0

Scan generalizes to higher ranked arguments in the same way reduction does, by doing the operation along the k'th
coordinate as shown by the example below:

B+2 3 4 p \24
B

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16
17 18 19 20
21 22 23 24

+\B
1 2 3 4
5 6 7 8
9 10 11 12

14 16 18 20
22 24 26 28
30 32 34 36

+ \ [2]B
1 2 3 4
6 8 10 12

15 18 21 24

13 14 15 16
30 32 34 36
51 54 57 60

+ \B
1 3 G 10
5 11 18 26
9 19 30 42

13 27 42 58
17 35 54 74
21 43 66 90

Composite Operators

The d.d Operator (Inner Product)

The result is an array having a dimension vector equal to all except the last dimension of array A catenated with
all except the first dimension of array B. The dimension of the last component of A must be the same as that of the

first compcment of B,. or o~e .of thos~ dimen~ion~_ must .be 1. The dom~in of the. resu~t ~s in~ic?ted ~y the oper?tors, d 1
and d2. Operators d 1 and d2 may be any dyadic scalar operators. t-or example, K+A+.xlj gIves tne conventIonal

matrix inner product.

For vector arguments, the result is

For example:

4+.x56
224

+/4><56
224

1 2 3+.x4 5 6
32

+/1 2 3x4 5 6
32

1 0 1 0+.1\1 1 0 0
1

0 1 0+.v1 1 0 0
3

If A is a vector and B a matrix, the Ith component of the result is

For example:

26

3

2

6

8

26

20

48

32

42

A+2 4
B+2 4p3 2 6 8 5 4 9 4
B

326 8
549 4

A+.xB
20 48 32

B[; 1 J
5

B[; 2 J
4

B[;3J
9

B[; 4 J
4

+/A x 3 5

+/Ax2 4

+/ A x 6 9

+/AxB[;4J

1 2 3 +. ! 3 3 p 19
68 102

Composite Operators 71

If A is a matrix and B is a vector, the Ith component of the result is

For example:

C+1 2 3 4
B+. xC

57 56
B[1; J

3 2 6 8
B[2;J

5 4 9 4
+/B[l;JxC

57
+/B[2;J xC

56

For matrix arguments, the IiJth component of the resu It is

For example:

(2 4pl8)+.x4 2p l8
50 60

114 140

X+3 3p 'CANDIDATE'
Y+3 3 p , DR.4 MA T I Z E '
XA. =Y

0 0 0
0 0 0
0 0 1

X
CAN
DID
ATE

Y
DRA
MAT
IZE

XV.=Y
0 1 0
1 0 0
0 0 1

XA.~Y

1 0 1
0 1 1
1 1 0

72 Composite Operators

Inner product also applies to higher order arrays. For the example below, the arguments are each three dimensional
and the result has four dimensions. The IiJiKiLth element of the result is +/ACIiJi]xB[iKiLJ

A~2 23p112
A

1 2 3
456

789
10 11 12

O+-B+3 2 2p12+112
13 14-
15 16

17 18
19 20

21 22
23 24

A+. xB
110 116
122 128

263 278
293 308

416 440
464 488

635 668
+ / A! 1 ~ 1 ~ I x /5 f ~ 1 ~ 1

110
+/A[1;1;JxB[;1;2]

116
+/A[1;2;]xB[;2;2]

308

The o.d Operator (Outer Product)

The result is an array having a dimension vector equal to that of A catenated with that of B. The scalar dyadic
operation d is performed for each component of A with respect to a II components of B. The domain of the resul t
is determined by the rules for the operator d.

For vector arguments, the IiJth component of the result is

A[lJdB[J]

For example:

1 2 30 • xl 2 3 4
1 2 3 4
2 4 6 8
3 6 9 12

Composite Operators 73

Outer product is valid for arguments of higher rank. If, for example, A has rank 3 and B has rank 2, the elements
of the result are defined by:

R[I;J;K;L;M] is A[I;J;K]dB[L;M]

Mixed Operators

Operators not categorized previously as monadic or dyadic scalars or composite operators are called mixedoperators.
Rules for shapes and domains of the arguments and results vary and are described for the individual operators.

The? Operator (Roll and Deal)

• The monadic ? is the roll operator.

R+?B

B must be in the integer domain (maximum value of 2, 147,483,647). Each element R[I] of the result is an integer
selected pseudorandomly from 1 B. The range of the result depends on the value of the index origin (see the deal
operator below). The shape of the result is the same as that of the right argument.

Examples:

75
4

?2 4 6
1 4 5

?3 3 3 3
3 3 3 2

• The dyadic ? is the deal operator.

R+A?B

The resu I t is a vector of integers comprising A components pseudorandomly selected from 1B without replacement,
preventing the duplication of integers in R. The range of the result depends on the index origin. If the origin
is 0, the range is 0 through B-1. If the origin is 1, the range is 1 through B.

A may not exceed B, and both must be single numeric elements.

Examples:

2?4
1 2

6 ?6
4 2 3 6 5 1

A[4?S];A+l0 20 30 40 50 60 70 80
30 60 40 SO

The t Operator (Index Generator and Index Of)

• The monadic 1 is the index generator operator.

R+tB

B must be a single numeric element, within FUZZof an integer. The result is a vector comprising B components,
beginning with the index origin and incremented monotonically by 1. Normally the index origin is 1, but the
command)ORIGIN 0 can be used to change the origin to O. If B is 0, the result is the empty vector.

74 Mixed Operators

Examples:

D+-R+-t4
1 2 3 4

)ORIGIN 0
WAS 1

D+-R+-t4
0 " 2 3 .l.

• The dyadic t is the index of operator.

R+-A 1B

The value of each element of the result is the smallest index I such that ACIJ equals the corresponding element
in B. The left argument must be a vector. The right argument may have any rank. If no match for an element
of B is found in A, then that element of the result is set to __ --;- .. l r~'-. The shape of the result is the same as the
shape of the right argument. The resul tis in the integer domai n.

Note that A may be an empty vector but must not be a scalar, and the value of the result depends on whether the
index origin is 1 (the default case) or O. A and B may be of any domain. Note, however, that if A is character
data, for example, and B is numeric, the result will be entirely "no match" values.

Examples:

2 4 6 813
5

'DOG'l'COT'

The, Operator (Ravel,Catenation and Lamination)

• The monadic. is the ravel operator.

R+-,B

The result is a vector comprising the components of the argument B in index sequence. The argument can have
any shape and dimensions.

Examples:

B+-2 2p t 4
B

1 2
3 4

,B
1 2 3 4

O+-C+-24p'SfGMASIX'
SIGM
ASIX

,C
SIGMASIX

• The dyadic, is the catenation and lamination operator.

R+-A . • B

If A and B are vectors or scalars t the result is a vector comprising all components of A followed by all components
of B. Both A and B must be either numeric or text.

Mixed Operators 75

Examples:

A+1 2 3
B+4 5 6
A,B

1 2 3 4 5 6
C+'Sl'R'
D""'-'AND'
C,D

STRAND

Catenation - If A and B have conformable shapes and one or both are of higher rank than vector, catenation
joins A and B along an existing coordinate. If no coordinate is specified, catenation occurs along the last
coordinate. Scalar arguments are extended for catenation in this case.

Examples:

O+M+4 7p'M'
MMMMMMM
MMMMMMM
MMMMMMM
MMMMMMM

X+27p'X'
Y+'1231~567'

Z+'1234'
W+'o'
M, [1 JX

MMMMMMM
MMMMMMM
MMMMMMM
MMMMMMM
XXXXXXX
XXXXXXX

M, [1 JY
MMMMMMM
MMMMMMM
MMMMMMM
MMMMMMM
1231~567

M,Z
MMMMMMM1
MMMMMMM2
MMMMMMM3
MMMMMMM4

M,[lJW
MMMMMMM
MMMMMMM
MMMMMMM
MMMMMMM
0000000

M,W
MMMMMMMo
MMMMMMMo
MMMMMMMo
MMMMMMMo

Lamination - If a noninteger coordinate value is indicated in catenation, and its value, relative to current
origin, is within 1 of a val id coordinate, the operation performed is termed lamination. In this case the vari
abies A and B are joined on a new coordinate. The length of the new coordinate is always 2.

In the following examples, origin is 1. If a coordinate of zero or less, or three or more, were specified, RAN K
ERR would be reported.

76 Mixed Operators

Examples~

N,L.5]W
MMMMMMM
MMMMMMM
MMMMMMM
MMMMMMM

0000000

0000000

0000000

0000000

M,[1.25]W
MMMMMMM
0000000

MMMMMMM
0000000

MMMMUMM
0000000

MMMMMMM
0000000

Mo
Mo
Mo
Mo
Mo
Mo
Mo

"'10

Mo
Mo
Mo
Mo

Mo
Mo
Mo
Mo
Mo
;:.10
Mo

Mo
Mo
Mo
Mo
Mo
Mo
Mo

4

2

4

4

;if, [2 • J] II

pM
7

pM,[.5]W
4 7

pM.[1.5]W
2 7

pM,L2.5JW
7 2

The p Operator (Dimension and Reshape)

• The monadic p is the dimension operator.

R+pJ:'

Mixed Operators 77

The resu I tis an integer vector comprisi ng the number of components each index 0 f B contai ns. That is, R contains
the highest index in each coordinate of B. Thus, the expression ppB, represents the rank of B, assuming an in
dex origin of 1. If B is a scalar, pB results in the empty vector.

Examples:

4

2 3

B+2 4 6 8
pB

C+2 3p'PIPFLE'
pC

• The dyadic p is the reshape operator.

R+ApB

The result is an array of the dimensions specified by vector A and the contents of B, if any, in index sequence.
Elements of A may be positive integers or zero. If any component of A is zero, R is empty. If A is empty, R is
a scalar. If B is empty, it may not be reshaped except to an empty result. If the reshape requires fewer ele
ments than B contains, only the required elements are in the result. If the result requires more elements than B
contains, B is reused as required. B may be of any rank or domain.

Examples:

2p 3 4 5 6
3 4

2 4P15
123 4
5 1 2 3

The <I> Operator (Reversal and Rotation)

• The monadic ~ is the reversal operator.

R+<HKJB

The result is a reversal along the Kth coordinate of B. If K is omitted, the last coordinate is assumed. (If e
is used instead of~, the first coordinate is assumed and [KJ may not be specified.)

Examples:

~!EMIT!

T1ME
¢[lJ3 3p 19

7 8 9
4 5 6
1 2 3

¢3 3P19
3 2 1
6 5 4
9 8 7

• The dyad ic ~ is the rotation operator.

R+A¢[KJB

The result is a cyclic rotation of B by the number of components determined by A. If A is positive, rota
tion is to the left; if A is negative, rotation is to the right. Rotation is performed along the Kth coordinate
of B. If K is omitted, the last coordinate is assumed. (If e is used instead of~, the first coordinate is as
sumed and [KJ may not be specified.)

78 Mixed Operators

Examples:

3¢>'LEAP'
PLEA

2¢>3 4p 112
3 4 1 2
7 8 5 6

11 12 9 10
lq>3 4Pl12

4 1 2 3
8 5 6

..,
I

12 9 10 11
1e3 4p 112

5 6 7 8
9 10 11 12
1 2 3 4

The ~ Operator (Transposition)

• The monadic transposition operation has the following syntax.

The result is an array comprising the elements of B with the order of all coordinates reversed. For any
B, (p ¢ B) = Q pB. If B is a matrix, for example, the result is a matrix whose rows are the columns of Band
whose columns are the rows of B. Monadic transpose of a scalar or vector yields R+B.

Examplec; :

AGENT
V~GOR

AGONY

AVA
GTG
ZGO
NCN
TRY

1
5
9

101
105
109

4 3

1
5
9

2
6

10

3
7

11

4
8

12

O+A+J 5p'AGENTVIGORAGONY'

QA

O+-B+-2 3 4p(112),100+112
2 3 4
6 7 8

10 11 12

1(12 103 104
106 107 108
110 111 112

PQB
2
~B

101
105
109

102
lOG
110

103
107
111

104
108
112

Mixed Operators 79

80

• Dyadic transposition operations have the following syntax.

R+-A~B

The result is an array simi lar to B except that the coordinates of B are permuted according to A. The
shape of A and B must be related by

(pA)=ppB

There are two cases or dyadic transposi tion:

Case 1: A is a permutation of 1ppB (the coordinates of B). A is then described as the inverse permutation
vector. The ACIJth component of pR is the Ith component of pB, and thus the ACIJth coordinate of
the resu It is the Ith coordi nate of B. Exampl es:

2 1~2 3P16
1 4
2 5
3 6

3 2 1~2 2 3p'EXASPERATION'
ER
SI

XA
PO

AT
EN

Case 2: A satisfies the relationship (ll/A}EA; that is, A is a dense set of the first k coordinates of B, per
muted, with some coordinates duplicated. If B is a matrix, the only possible form for A is (1 1), and
the result is the principal diagonal of the matrix. Example:

GET
EAR
TRY

GAY

O+-X+-3 3p'GETEARTRY'

1 1~X

If B has rank 3 or more, the rule is that the rank of R equals the highest value in A. If l<+/ACIJ=A and
N+ (AU]EA)/lPA, then the ACNCIJ] th c:)ordinate of R is made up of those components of B whose Nth
coordinate indices are the same. All other coordinates of the result are structured as in Case i.

For higher order arrays, the general i zed lid iagonal" case of dyadic transpose is vari ed and somewhat
difficult to visualize. The examples below show some forms for Case 2:

z
ABeD
EFGH
IJKL

MNOP
QRST
UVWX

pZ
2 3 4

A+-1 1 1~Z

A
AR

pA
2

Mixed Operators

Exampl es: (cont.)

B+1 2 2~Z
B

AFK
MRW

pB
2 3

r'f _ ~ 1 l~Z v"-":

C
AH

rtl rl

FR
KW

pC
3 2

D+2 1 2~Z
D

AN
ER
IV

pD
3 2

E+1 2 l~Z
E

AEI
NRV

pE
2 3

F+2 2 l~Z

F
AQ
BR
Cs

pF

C+1 1 2~Z

C
ABCD
QRST

pC
2 4

X+2 3 4 5P1120

1
1 1 1 l~X

87
1 1 1 2~X

1 2 3 4 5
86 87 88 89 90

2 2 2 l~X

1 86
2 87
3 88
4 89
5 90

1 1 2 2~X
1 7 13 19

81 87 93 99
2 2 1 l~X

1 81
7 87

13 93
19

1
26
51

99
1 2

2
27
52

62
87

61
86

111 112

2 3~X

3
28
53

63
88

113

4
29
54

64
89

114

5
30
55

65
90

115

Mixed Operators 81

Examples: (cont.)

3 2 2 1~X
1 61

26 86
51 111

2 62
27 87
52 112

3 63
28 88
53 113

4 64
29 89
54 114

5 65
30 90
55 115

The ~ Operator (Grade Up)

R+-~B

The result of the grade up operation is a vector of indexes (relative to the index origin) of components of B ranked in
ascending order of magnitude. B is a numeric vector. Identical components are ranked in index order. Note that
the result of BC~BJ is a "sort" of B in ascending sequence. Thus, "grade up" provides indices for sorting.

Examples :

,f,5 10 15 20
1 2 3 4

,f,5 10 10 15
1 2 3 4

,f,3 1 4 1
2 4 1 3

The, Operator (Grade Down)

R+-'fB

The result of the grade down operation is a vector of indexes of components of B ranked in descending order of mag
nitude. B is a numeric vector. _ Identical components are ranked in index order. The values of the result
depends on the index origin. (BC'fBJ is a "sort" of B in descending sequence.)

Examples:

'f5 10 15 20
4 3 2 1

'f5 10 10 15
4 2 3 1

1'3 1 4 1
3 1 2 4

The 1 Operator (Base Value or Decode)

R+-A loB

The argument A is referred to as the radix or radix vector. If A is a scalar, it is conceptually expanded to a
vector. A and B must be numeric, and R is numeric.

82 Mixed Operators

The argument A is used internally to generate a set of weights, W, to operate on B as follows, Let I be the length
ofB. Then:

v/[I]+-1
WrI-1]+-A[I]xW[I]
W[I-2]+-A[I-1]xW[I-1J
W[1]+-A[2]xW[2]

Note that A[lJ has no effect on the result.

Example:

A+-O (:JJ 60.Ll 2 3
W[3J is 1
W[2J is lxA[3J, or 60
W[lJ is W[2JxA[2J, or

The result is formed by W+. xB:

WxB is

A is 3723

!~~~
3600

~~2Q

120

3(:JJ0

3x1

3

If A is a vector and B is an array, uA must be the same as the length of the first coordinate of B. If B is a matrix,
for example, B must have the same number of rows as the length of A. Each column of B is decoded to provide one
element of the result. If A is also an array, each row of A represents a different radix vector. The shape of R is
the catenation of the shape of all but the lost coordinate of ,A, with all but the first coordinate of B. (Structure rules

for A, B, and R are the same as for inner product.)

Examples:

11

228

987

560

o
o

21.1 0 1 1

41.3 2 1 0

101.9 8 7

1 2 31.45 67 89

R K IS A TABLE OF TIMES REPRESENTED IN DAYS(ROW 1),
R HOURS(ROW 2),MINUTES(ROW 3),AND SECONDS.
K

o
o

o
o

o
2

1 11
3 13

a 1 16 46 46 46
10 40 40 40 40 40

R EACH COLUMN OF K REPRESENTS A TIME VALUE.
R IF K IS OPERATED ON BY THE 'BASE VALUE' OPERATOR,
R THE RESULT IS A VECTOR OF TIMES IN SECONDS.
R THE RADIX VECTOR IS-- 365 24 60 60
365 24 60 601.K

10 100 1000 10000 100000 1000000

The T Operator (Representation or Encode)

R+-ATB

R is a IIbase All representation of B. R satisfies the relationship ((x/A)IB-A.LR)=O. A and B must be numeric, and R
is numeric. Note that the T and 1. operators are lIopposites li

• Note also that since Encode carries out a modulus
operation, it is subject to the DOMAIN ERR conditions for that operation.

Mixed Operators 83

If vector A contains too few elements for B to be represented, the most significant digits of the result are truncated.
If A[lJ is 0, any unencodable portion of B will be displayed as RCl] rather than being truncated. Note that A and
B may be negative or noninteger values. In this case the result is as well defined but not as intuitively clear as for
positive integer values.

B may be an array rather than a scalar, and the dimension of the result will be the catenation of the shapes of the
arguments. (The structure rules for R, A, and B are the same as for outer product.)

Examples:

A BINARY REPRESENTATION
(Sp2)T75

o 1 0 0 1 0 1 1
A OCTAL REPRESENTATION
(3pS)T75

1 1 3
A DECIMAL REPRESENTATION
(5pl0)T31415

3 1 4 1 5
A VARIED UNIT REPRESENTATION
24 60 60T75432

20 57 12

1 5

A EXAMPLE OF TRUNCATION
10 10T31415

A THE ARGUMENTS FOR REPRESENTATION NEED NOT BE INTEGERS:
(Spl.5)T32.75

1 0.5 1 0 0 0.5 0 1.25
A H IS A VECTOR OF TIME VALUES IN SECONDS.
H

10 100 1000 10000 100000 1000000
A H CAN BE ENCODED IN TERMS OF DAYS,HOURS,MINUTES, AND SECONDS.
365 24 60 60TH

o 0 0 0 1 11
o 0 0 2 3 13
o 1 16 46 46 46

10 40 40 40 40 40
A IN THE RESULT, EACH COLUMN REPRESENTS ONE ELEMENT OF H.
A ROW 1 IS DAYS, ROW 2 IS HOURS, ROW 3 IS MINUTES, AND ROW 4 IS
A SECONDS.

The / Operator (Compression)

R+-AI[KJB

The result includes all components of B that correspond to a 1 in A. Those corresponding to a 0 are suppressed. If
either argument is scalar, it is applied to all components of the other operand.

Compression is performed along the K th coordinate of B. If K is omitted, the last coordinate is assumed. (If t is
used instead of /, the first coordinate is assumed and [KJ may not be specified.)

A may be a logical scalar or vector, and B may be of any rank or domain. If A consists of more than one element,
its length must be the same as that of the coordinate of B being compressed.

Examples:

1
3

B+-2 2P14
1 01.13

84 Mixed Operators

The \ Operator (Expansion)

R+-A\[KJB

A must be a vector of lis and Dis and must include the same number of lis as the I ength of the coordi nate to be ex
panded. B may be of any rank and domain. Expansion occurs along the Kth coordinate of B. If K is omitted, the
last coordinate is assumed. If, is used instead of \, the first coordinate is assumed and [KJ may not be specified.
Thus ,he difference between \ and \ is

R+-A \ B expands along the last coordinate of B.

R~A\B expands along the first coordinate of 8.

Expansion consists of extending the length of the affected coordinate of B by insertion of zeros (or blanks if B is
text) in positions indicated by zeros in the argument A. The process is best described by example.

1 0 1 0 1\l3
1 0 203

1 2
3 4

o 0
o 0

5 6
c

')

0 0
3 4

5 6
0 0
7 8

1 0
3 0

5 0
7 0

A THE FOLLOWING EXAMPLES SHOW EXPANSION ON EACH OF THE
A COORDINATES FOR A RANK 3 ARRAY.
B+-2 2 2Pl8
1 0 l\B

1 0 1\[2:1B

1 0 l\B
2
4

6
8

A+-2 2 2p'ABCDEFGH'

AB
CD

EF
GH

AB

CD

EF

GH

A B
C D

E F
G H

1 0 l\A

1 0 1\[2JA

:l 0 1 \A

Mixed Operators 85

The t Operator (Take)

R+AtB

A must be an integer scalar or vector, and the length of A must equal the rank of B! Each element of A controls the
"take" from a coordinate of B. R has the same rank as B. The dimension vector of R is IA.

If AUJ;::O, then the Ith coordinate of R is the first AU] elements of the Ith coordinate of B. If ACIJ<O, the last ACIJ
elements are used. if AU] indicates more eiements than are present in the coordinate of B, R is padded with OIS

(or blanks if B is text).

Examples:

3t15
3 4 5

7 t 1 5
1 2 3 4 5 a a

B
1 2
3 4

5 6
7 8

1 2 3tB
1 2 0
3 4 a

The i- Operator (Drop)

R+A+B

A must be an integer scalar or vector, and the length of A must equal the rank of Bt. Each element of A controls
the IIdropll from a coordinate of B. R has the same rank as B. The dimension vector of R is (pB)-IA. If a dimension
in the result thus created would be negative it is set to zero.

If A[IJ~O, then the Ith coordinate of R is all but the first AD] elements of the Ith coordinate of B; that is, the
first AU] elements are dropped. If A[I]<O, the last A[IJ elements of the Ith coordinate of B are dropped.

Examples:

3 + 15
1 2

3 + 1 5
4 5

B
1 2

3 4

5 6
7 8

1 2 2+B (No te: Resu I t may be an empty array)

2 2 1+B
1 1 1+B

8

tlf B is a scalar it is treated as though it were a 1 element array whose rank is the length of A.

86 Mixed Operators

The E Operator (Membership and Execute)

• The dyadic E is the membership operator.

R+AEB

If a given component of A is contained in B, the corresponding component of R is equal to 1; otherwise, it is O.
The result has the same shape as A and is in the logic domain. B may have any rank. If A and B are numeric,
FUZZ is used in the equality test.

Examples:

A • , Jj T Tl T7 A n r;r m ,
J-l"-"J-lLJrnI-lDlJ.J..

B+'ABCDE'
C+2 4Pl8
AEB

1 000 1 110
1 5 10EC

110
ANOTE THAT MEMBERSHIP MAY BE USED WITH NUMERIC VERSUS
A TEXT ARGUMENTS--THE RESULT IS ALWAYS ZEROS.
AEC

o 0 0 0 000 0
CEA

o 0 0 0
o 0 0 0

1 2 3E'l 2 3'
000

• The monadic is the execute operator.

B must be a scalar or vector whose length does not exceed 512. The domain of B must be character type unless B is
an empty vector. Ordinarily, the argument B will be a small text vector.

Once the argument has met the above requirements, an execute operator departs from the mold of the other operators.
An execute operation becomes a variation of evaluated input. That is, the characters in its argument, if any, are
treated much as if they were input after an evaluated input prompt.

Thus, it is possible to execute system commands within a function or even in the midst of an arithmetic expression.
Execute operations can be applied so that an APL workspace can define or revise functions, create its own variable
names, or compose new formulas and evaluate them.

The execute operator is a powerful tool. It can, however, be costly in execution time. The cost stems from the
translation process when accepting its argument as if freshly input. This translation is repeated each time the same
execute operation is performed; a function line, on the other hand, is translated only once regardless of the number
of times it is invoked. Thus, lexecute l should be used sparingly in iterative or recursive processes.

As stated previously, the execute operator permits formula evaluation, function definition, or system command
execution in the midst of an arithmetic expression. As with evaluated input, the result of executing a formula is
the value resulting from evaluating that formula. The following examples illustrate this:

4

4

AB

7

7

E '2+ 2'

E'Z+2+2'

E I , 'AD' , ,

3+e:'2+2'

X+' 7+'
Y+'2'
3+ EX t Y

Note: Since branching is not permitted in evaluated input, the form £ '-li' is not allowed.
, .. , ,

"- is permitted.

Mixed Operators 87

Executing an empty vector yields an empty {numeric} vector result.

o
0\ € ' ,

o

An empty numeric vector also results when executing most system commands.

WAS 10
0.3333

73.€')DIGITS 4'

As far as the execute operation is concerned, a system command either yields an empty result or it yields no result
whatsoever. For example, the following commands yield no result:)OFF,)OFF HOLD,)CLEAR, and)LO.A.D.

Also no result occurs wnen executing a suspension-clear. This corresponds to the use of a suspension-clear during
evaluated input. As illustrated below, the state indicator has the same appearance for an execute operation as for
eva I uated input.

4.0
0:

)SI
U
FUNX[2] *
:J:

\ a
4

4.E')SI'
Ll
FUNX[2] *
4

U:

)SI
FUNX[2] *

6. € t -1-'
lSI

FUNX[2] *

The execute operator can also be used to access function definition mode, but certain limitations are imposed. A
basic limitation exists since only one IIstatement ll (text string) can be the argument of an execute operator. This
means that if a function is opened by such a statement it must also be closed by the same statement. In other words,
only IIsingle-linell function definition operations are possible with the execute operator. (All or any portion of a
function can be created or revised by utilizing multiple execute operations.)

To enter function definition mode via an execute operator, the operator's argument (text vector) must have a del
(or locked del) as its first nonblank character. Since only single-line definitions are possible, APL does not
require the closing del. However, the argument can include a closing del if the user so desires, except on line
deletions. (The line deletion feature is described below). As usual for function definition, the opened function
cannot be locked or pendant. This means that a function cannot modify itself, since the functi on is pendant when
it performs an execute operation. It is possible for one function to modify another.

An execute operation produces a result, if successful. The result of executing function definition mode is always
an empty integer vector. This is the same result produced when executing system commands.

If an error (for example, DEFN ERROR) is detected during an lIexecuted ll function definition, the original definition
remains intact with one excepti oni SI DAMAGE errors perform the revision dictated by the execute operator's argu
ment. In a II other error cases, the functi on is not changed.

Executing function definition mode consumes substantial execution time. When can this capabi I ity be used to
best advantage? The optimum candidate for an executed function revision is a highly iterative or recursive
function. Based on initial conditions (or input supplied by a user), a new function line can be embedded in the
heart of a loop. The time consumed in making the change can be inconsequential if this allows the loop to run

88 Mixed Operators

faster than would have been possible v/ithout the function change capability. The primary characteristic to watch
for is a very repetitive loop containing a process that may vary for different runs of that loop.

The ability to enter function definition mode via an execute operation is not limited to revising a function line.
Any definition statement that could include an opening and closing del can also be used as the argument of an ex
ecute operator. This covers every definition statement except those that allow deleting a line or editing characters
of a line. An APL program can effectively edit characters of a line by altering theargumentofan executed replace
ment line. Line deletion is easily accompiished by catenating the iNDEX character to the line number designation
(see example below).

Simple examples illustrate various features of executed function definition mode. Note that the closing del shown
in the examples is optional except for line deletion, where it must be omitted.

Function Creation

€' VF X v'
€'VF[lJX+XV'
€'VF[2JX-XV'

Line Replacement

€' VF [2] X t X V'

Line Insertion

€ ' VF [1 • 5] X x X v'

Display All Lines

r -"I ...,

L'" .J

[2J
[3]

c:: : vi' L u j 'V"
V F X

;.; f ;:

XxX
XtX

Display Starting at Line 2

€ ' \7F[;J2] V'
[2J xxx
[3J XtX

Display Old Line and Replace

€ t VF[2U]X*X v'
[2J XxX

Display Single Line

€ t VF[2.JJ V'
[2J X*X

Line Deletion

Ii.JDEI¥+2T32
€ ' VF [2 J ' ,I IV D E X

To verify the deletion, the function is displayed below

\F[l! J v
V F X

[lJ X+X
[2J XiX

"

Mixed Operators 89

tv'Iodifi cation of a Character in a Line

A +' vF r 2] X - X '
EA
'VF[U] 'iJ

'iJ F X
[lJ X+X
[2] X-X

A[6]+'il'
EA
'VF[LJ J 'iJ

'iJ F X
[1] X+X
[2] F-X

v

The foregoing discussion indicates things that can be done using the execute operator. Things that cannot be done
include

• An executed argument cannot contain an unbalanced quote mark (the error message "OPEN QUOTE" is issued
in such cases).

• The executed argument cannot translate into a "super long" line (despite the fact that the argument can con
tain 512 characters). If the translated "input" exceeds 130 columns, the "TRUNCATED" error message is issued.

Error handling is unique in the case of the execute operation. Recall that for evaluated input, the user is prompted
to reissue a correct version of the erroneous input. This is not possible for an execute. Furthermore, the argument of
one execute operator may contain another, and so on. For the sake of clarity in such cases, after a diagnostic
message (such as "DOMAIN ERROR "), the path leading to that diagnostic is displayed until a normal suspension
point is reached. The following example illustrates error handling during an involved execute operation.

V'Z+Y F X
[1] A+' Y+'
[2] B+'X'
[3] C+'EA,B'
[4] Z+100+EC
[5] v

5 F 4
109

5 F 'FOUR'
DOMAIN ERR

Y+X

" EAt B

" F[4] Z+100+€C

"

The til Operator (Matrix Inversion and Matrix Divide)

This operator is used to solve systems of linear equations and to invert matrixes. The monadic form is equivalent to
the dyadic form with an identity matrix as a left argument, and the operation can best be explained in terms of the
dyadic form. The right argument must be a matrix with at least as many rows as columns; that is, l=PipB). The
first coordinate of the left and right arguments must have the same length; that is, (ltpA) = 1tpB. A vector argu
ment is treated as though it were a one-column matrix, and a scalar is treated as though it were a one-by-one
matrix, in terms of validity tests and computations. The shape of the result is (DR) = (h-DB). Note that if A or B
is a vector or scalar, the true shape is used to determine the shape of the result. For example, if A is a scalar and
B is a 1 element vector, R is a scalar. R+Af±lB produces R such that the expression +/(,A-B+. xR)*2 is minimized, that
is, a least-squares solution (or solutions) to a system (or systems)of linear equations.

If B is a nonsingular square matrix, the minimum is (except for computational round-off errors) zero, and R is the
solution of a set of simultaneous equations. If, in addition, A is an identity matrix, R is the inverse of B. That is

90 Mixed Operators

equivalent to R---fBB. If A is a vector, R is the solution to one system of simultaneous equations. If A is a matrix,
each column of A represents the constants for a linear system with coefficient matrix B, and each column of R is the
corresponding solution.

If B is nonsquare, the minimum of +/(,A-B+. xR)*2 is not generally zero, and R represents a solution in the least
squares sense.

If B is singular, that is, has fewer linearly dependent rows than columns, SING ERR is reported.

If B is nonsquare and A is an identity matrix, the result is a left inVeiSe of A and the operation is equivalent
to R---GlB.

Examples:

AINVERSE OF A SQUARE MATRIX

O+B+3 3p3 1 4 1 5 9 2 6 5
314
159
2 6 5

[J+-R+f!lB
0.3222222222
0.1444444444
0.04444444444

0.2111111111
0.07777777778
0.1777777778

0.1222222222
0.2555555556
0.1555555556

WAS
)DIGITS 5

10

35

A VERI FY THAT
AESSENTIALLY

THE INNER PRODUCT OF RAND B IS
THE IDENTITY MATRIX

R+.xB
1.0000£0
5.5511E-17 1.00 OEO

ALEFT INVERSE OF A NONSQUARE MATRIX

U+B+5 303 1 4 1 5 8 2 7 4 3 5 9 8 7 6
314
158
274
359
876

~J+R+[!]B
0.074106
0.10492
0.061261

0.082157
0.011612
0.06862

0.072245
0.17084
0.073814

0.015323
0.048546
0.085902

0.13129
0.013386
0.04531

AAGAIN. VERIFY THAT THE INNER PRODUCT OF RAND B IS
ATliE IDENTITY MATRIX

R+.xB
1.0000EO
1.2490E-16
1.5266E-16

4.1633E-17
1.0000EO
3.8598E-16

1.2490g-16
1.6653£-16
1.0000EO

ASOLUTION OF A SINGLE LINEAR SYSTEM
A B IS THE COEFFICIENT MATRIX
A A IS TVE VECTOR OF CONSTANTS

Lj+-a"] 303 1 4 1 5 9 2 6 5
3 1 4

1 5 9
2 6 5

[J+A +- 3 5 89 79
89 79

,j. H·-A~B
2.1444 8.2111 5.0889

Mixed Operators 91

Examples: (cont.)

'" VERI FY THAT (B+. xR) APPROXIMATELY=A

A-B+.xR
1.0658E-14 2.4869E-14 7.1054E-15

",SOLUTION OF A SET OF LINEAR SYSTEMS
'" B IS A COEFFICIENT MATRIX.
A A IS A MATRIX; EACH COLUMN IS A SET
'" OF CONSTANTS FOR B.
A EACH COLUMN OF R, WHICH IS A MATRIX, IS THE SOLU
A TION FOR THE CORRESPONDING COLUMN OF A.

O+A+3 2p35 36 89 88 79 75
35 36
89 88
79 75

R+AOOB
R
2.1444
8.2111
5.0889

2.1889
7.1222
5.5778

ACHECKING THE RESULT:

A-B+.xR
1.0658E-14
2.4869E-14
7.1054E-15

1.0658E-14
2 c 4869E-14
7.1054E-15

AA LEAST+SQUARES SOLUTION

0+B+6 2pl 1 1 2 1 3 1 4 1 5 1 6
1 1
1 2
1 3
1 4
1 5
1 6

A+12.03 8.78 6.01 3.75

R+AOOB
R

14.941 2.9609

.31 2.79

ATHE RESULT GIVES THE INTERCEPT AND SLOPE OF THE LINE
ATHAT IS THE LEAST-SQUARES BEST FIT TO THE POINTS OF A.

B+.xR
11.98 9.0196 6.0588 3.0979 0.13705 2.8238

A-B+.xR
0.049524 -0.23962 0.048762 0.6521 0.44705 0.03381

I-Beam Functions

The I-beam functions are a group of system-dependent functions providing information about the workspace or system
env ironment.

The I symbol is formed by the T overstruck with the 1.. The argument must be a single integer element in the range
19 through 29, or -1 through -3. The result is as indicated in Table 2.

92 I-Beam Functions

B

19

20

21

22

23

24

25

26

27

28

29

T -Bar Functions

Table 2. I-Beam Functions

Information Given

Session connect time, in 60ths of a second.

Ti me of day, in 60ths of a second.

APL execution time (CPU time since APL was invoked), in 60ths of a second.

Remaining avai lable workspace, in bytes.

Numbe of on-line users.

User's log-on time, in 60ths of a second.

Todais date, mmddyy, in base 10 (where mm is month, dd is day, and yy is yeCir).

Current value of line counter. In executing a defined function, this is the number of
the line being executed.

Vector of line numbers in the state indi cator.

Terminal type (value set by TERMINAL command.):

Standard APL (on-I ine defau It)

2 Non-APL 2741

3 Teletype

4 Card reader and/or line printer (off-line default)

13 Tektronix 4013

User's account as a character vector.

Shows overhead time (starting from the point at which APL was invoked) in 60ths of a
second. This is primarily an indication of the time taken by the monitor to process
input and output.

Resu Its in an integer scalar whose value is the number of unused entri es in the symbol
table. This represents the maximum number of new names acceptable for the current
workspace.

Results in an integer scalar whose value is 1 if this is an on-line APL operation, or
o if this is a batch run.

The T-bar operator, T (the encode operator, T, overstruck by the negative sign, -) is provided for certain system in
terfaces. Most of these interface functions are of concern only to installation personnel, and should be avoided by
APL users. (Indiscriminate use of the T-bar operator is likely to cause damage to the user's workspace - see the SYS
ERR message in Appendix A.)

The monadic use of T-bar results in an integer code for the type of its argument:

code

2

3

4

5

6

type of argument

Logical

Text (i. e., character data)

Integer

Real

Index Sequence

list

T -Bar Functions 93

The first four types are fami liar to APL users and were discussed in Chapter 3. An index sequence (code 5) represents
integer data; it is a compact representation of a regularly spaced sequence of integers whose fundamenta I source
is the index generator (monadic iota). List type data (code 6) results when parentheses enclose two or more APL ex
pressions that are separated by semicolons. A list has length (the number of such expressions), but instead of values
a list has pointers (pointing to the value of each expression in that list). The use of lists is restricted to certain spec
ified intrinsic functions in Xerox ,.6.,PL. Their use in other contexts wi II result in a SYNTAX ERR or LIST ERR message.

The T -bar operator is also used dyadi cally. Installation personnel use dyadi c T -bar operations when generating
workspaces that contain intrinsic functions (such as WSFNS). Essentially, this associates a name, such as DELAY,
with a portion of the APL processor (see also Appendix C). Subsequent use of the name DELAY is interpreted as a
function reference to that part of the processor. Users need not be concerned with this use of T -bar; usuai iy they
will copy or load workspaces having intrinsic functions.

There is one dyadic use of T -bar that is of interest to many APL users; this is the charactergeneratorfunction. It con
verts integer data into corresponding character data, and thus allows the user to generate special characters, pos
sibly unrecognized by APL. The relationship between an integer (between 0 and 255) and the generated character
can be determined by examining Figure B-1 in Appendix B. The integer n corresponds to the nth character in the
table of APL Codes. A word of caution, however; the table shows characters in their hexadecimal position; the user
must remember to convert this to a decimal position. For example, the INDEX character corresponds to the decimal
integer 32 (the hexadecimal value is 20) according to the table.

To generate the nth character, the following form is used.

2Tn

The left argument must be the scalar integer 2; this designates that the T-bar operator is to be used for character
generation. The right argument may have any shape, but its domain must be integer, with values between Oand 255.
The result has a shape identical to the right argument, but is text data.

For convenience, users may assign generated characters to an easily remembered name. A common example is

INDEX+2T32

Another character that is commonly generated is the backspace. In the following example, this is created and then
used to display overstrike characters not recognized by APL:

A

ABC

TEST

94 T -Bar Functions

BKSP+2T8
'A ' .BKSP. ' .. ,

'ABC'.BKSP,BKSP.'""'

'TEST' .BKSP ,BKSP ,BKSP. ,

6. APl STATEMENTS

As mentioned in Chapter 2, each completed I ine of input is classified as either a statement or a system command.
Statements specify the operations to be performed by the APL system, such as calculations, branching, and assign
ment of values or expressions. System commands - treated in Chapter 8 - are concerned with the mechanical
aspects of the systerfl, such uS logging Oii ciiid off, and :;av;ng, !ceding, and deleting workspC!ceso Statements con
be entered when the system is in either execution mode or function definition mode. The user indicates the end of
a statement by depressing the RETURN key. In execution mode, the computer then interprets and executes the
operations contained in the statement. In definition mode, the computer stores the statement until the entire
function is executed. Blanks may appear anywhere in a statement except embedded within a number or a name.
in generai, an APL statement cannot be continued On another line. A text constant, however, may include one or
more carriage returns, thus allowing multiline statements. The user is cautioned that if he opens a text constant
with a quote and forgets the closing quote, APL considers all subsequent input to be part of that text constant until
an ending quote is reached. For example:

A
A
)CLEAR

A+'LONG COMMENT. CLOSING QUOTE FORGOTTEN

A
LONG COMMENT. CLOSING QUOTE FORGOTTEN
A
A
)CLEAR

)CLEAR
CLEAR WS

In this example the first two requests to display A and the first)CLE.AR command were ignored because APL
considered them to be part of the text aSSigned to A. The ending quote allowed resumption or normal input. Tne
display of A now shows the multi! ine text vector, and the)CLEAR command now works.

For all practical purposes there are four kinds of statements in Xerox APL: comment, branch, assignment and non
assignment, and compound.

Comment Statements

To enter a comment statement, the user types the symbol ~ at the beginning of a line and follows it with his
comment. The ~ symbol is produced by typing a n symbol (upper shift C) and overstriking it with a 0 symbol (up
per shift J). This symbol signals APL that the I ine is a comment and is not to be executed. Any val id APL
characters may be included in a comment; invalid APL characters will produce an error message. If a com
ment extends over several I ines, each I ine must begin with the ~ symbol. Some examples of comments are shown
below:

A ROOM AREA ROUTINE.
III

III

III EACH LINE OF A MULTIPLE-LINE
III COMMENT MUST BEGIN WITH A Ill.

A comment statement can be entered as a direct I ine (during execution mode) or it can be entered as part of a de
fined function. If a comment statement is entered as a direct line, it is not retained in the user's workspace. If
a comment statement is used in a function definition I however, the statement will have a I ine number, will occupy
workspace, and will be displayed like any other function line. A function cannot be closed on a comment line,

APL Statements 95

because the closing 'V symbol will be treated as just another symbol in the comment. An example of a comment in
a function definition is shown below:

VA+H TRIAREA B
[1] ACALCULATES AREA OF TRIANGLE.
[2] A+HxB+2
[3] V

In Xerox APL any executable statement may include a comment to its right. Everything to the left of a A character
is considered executable. Everything to the right is considered comment. Some examples are

[10]
[15]

COST+HOURSxRATE ACOST FOR STRAIGHT-TIME LABOR.
OCOST+l.5xHOURSxRATE A COST FOR OVERTIME LABOR.

There is also another way for a user to enter remarks at his terminal. Instead of first typing the A symbol, the user
can type the comment and then backspace to the beginning of the line and strike the ATTN key. This method
allows the user to type remarks (including illegal overstruck characters) for his own annotation. In effect, an empty
line is produced. An example of this method is shown below:

THIS IS A K&. REMARK.
v

Branch Statements

Branch statements are generally used within function definitions to alter the sequential execution of statements. t
A branch statement has the general form

-+ exp

where exp stands for an integer value. The value determines the statement number of the statement to be executed
next, as follows:

1. If the value is a statement number of a statement within the current function, then that statement will be
executed next. Thus the statement

[5] +(2)A)x3

where A has a value of zero, will cause a branch to statement 3 of the current function. (The value 3 is
derived as follows: the expression (2)A) returns a value of 1; and this value is multiplied by 3.)

2. If the value is a statement number outside the function being executed, then execution of that function
terminates. For example, the statement

[4] +0

indicates a branch to statement 0, which is outside the function. Since functions begin with statement 1,
branching to statement ° is an effective way to terminate a function.

t Another form of branch statement is covered later - the branch arrow that is not followed by an expression. A
branch arrow by itself can be used to terminate execution of a suspended function and the functions that invoked it,
thus effectively clearing the state indicator to the next suspension (if any). This application of the branch arrow is
described in Chapter 7.

96 Branch Statements

3. If the value is an empty vector, then no branch occurs and the next sequential line is executed. If there
are no more lines, execution of the function is terminated. An empty vector can be created in any of the
following ways:

O/s
Ops
SX10

INhere 0 is the resuit of a comparison expression, and s represents a statement nulftbel. (If the result of the
comparison statement is 1 instead of 0, the next statement executed wi II be the one indicated by the state
ment number.) Substituting the comparison expression A=4, which produces a value of 0 or i, and the
statement number 2 in the above expressions iiiustrates the simpiicity of this type of branching:

[5J -.(A=4)/2
(5] -+(A=4)p2
[5] -+2x 1 (A=4)

In each case if the value of A equals 4 (that is, the comparison expression returns a 1), then line 2 is
executed next. If A is any other value, then the comparison expression returns a 0, yielding an empty
vector, and statement 6 will be executed next if it exists; otherwise execution of the function terminates.

The expression indicating the statement numbers can be a scalar or a vector. In other words, the user can specify
branching to one statement, to one of two statements, or to one of any number of statements. Branching to one
statement is described above. Branching to one of two statements can take either of the following forms:

.. (s 1, s2)[1 +x op yJ

.. ((x op y),~x op y)/sl,s2

where

51 is the I ine number to be branched to if the comparison expression yields a O.

52 is the line number to be branched to if the comparison expression yields a 1.

x op Y is a comparison expression; x and yare the values to be compared, and op is any of the tollowing
operators: < S = ~ > ;Ie v " ¥ frt £

Both of these forms cause execution to branch to the first line number if the comparison operation yields a 0, or
to the second line number if the comparison operator yields a 1. In illustration, the second form is used in a func
tion definition and then executed with values for x and y:

VX F Y
[1] -+«X<Y),-X<Y)/Al,A2
[2] Al: 'STEP Al'
[3] -+0
[4] A2:'STEP A2'
[5] -+0
[6] V

1 F 2
STEP A 1

2 F 1
STEP A2

Ciearly the second form can be expanded to include more statement numbers. Similarly, a branch to one of several
statements can also take the form

.. i¢v

where

is a counter.

¢ is the rotation function.

v is a vector of statement numbers, the first of which must be a positive integer or zero.

Branch Statements 97

In this case the branch function selects statement i¢v as the next one to be executed. The following illustration
shows how this branch function is carried out (see line number 3):

'1/ i' Ui: j; J
[1] 0 ; 'i} U ;," ; ::, x 1 12:4

[2] --+ n ; t t"'! r (~' ~~!' ; -+ 3 x t I ~ c
[3J ""'(I-4)¢ I~ 5 f,

[4J ~n; 'FOUR'
[5 J 0 ; , F I V.'":' '
[GJ ""'0; 'SIX'V

/} l/t~L/ 3
LOr]

if UlJi3 4
FOUR

NUMB 5
FIVE

iiUMlJ 6
SIX

!lUnD 7
JlIC!l

See Figure 4 for a summary of some branch functi on formats that can be used; of course, AP L offers many other
forms of branching - too numerous to detail in this manual.

Statement Labels

Branch to line s or to next line:

..... (x op y)/s
..... (x op y)ps
~SxlX op Y

Branch to line s 1 or line s2:

..... (s 1, s2)[1 +x op yJ
..... «x op y),~x op y)/sl,s2

Bran ch to one of severa I lines:

..... «x op y),(x op y),x op y)/sl,s2,s3
-+i¢v

Figure 4. Summary of Formats for Branching

Instead of referencing a I ine number in a branch statement, the user can assign a statement labe I to the branch
point and then reference that label. To assign a label to a statement, precede the statement with a variable name
and a colon, as shown:

[5] END: A+-8f2

98 Branch Statements

The label END can now be used in a branch statement to transfer execution to this statement. For example, the
statement

[3] -+(A<l)/END

will cause a branch to line 5 if A is less than 1, or a branch to line 4 if A is 1 or more.

The vaiue of a label is the line number with which it is associated at the close of function definition. If nevI lines
are inserted via function editing (see Chapter 7), then the values of the labels are automatically respecified at the
closing of the function definition. The value of a label cannot be respecified by an assignment; any attempt to do
so will produce a syntax error message.

Like local variables (Chapter 3), the integer values of labeis in one function can be accessed in other functions in
voked by the function.

Use of a statement label in a branch statement is preferable to use of a I ine number, since any function editing
may change the original line number. If any lines are inserted or deleted during function editing, all lines will
be renumbered at the close of a function definition mode. For example, consider the following statement which
specifies a branch to statement 5:

[3] -+5

If two new statements are inserted between lines 3 and 4, the old line 5 will be renumbered as line 7 at the close
of function definition. However, the branch statement will still cause a branch to statement 5 instead of line 7 as
now desired. This problem can be avoided if labels are used instead of statement numbers as branch points. (See
"Changing Suspended Functions II in Chapter 7 for other considerations about labels.)

Assignment and Nonassignment Statements

An assignment statement is one that assigns an expression or value to a variable name. It has the general form

name +- expression

where name can be any variable name and expression can be any APL expression. Three examples of assignment
statements are

B+6
A+B~2

Z+(8<1)+3 x 5

A nonassignment statement is similar to an assignment statement except that it doesn't have the assignment arrow
and the variable name to the left of it; however, a nonassignment statement can contain embedded assignments.
Exampl es are

Bt2
3

(B<1)+3 x 5
15

2x4+A+2
12

+A+1
1

+C+'BID'
BID

Notice the differences between assignment and nonassignment statements: (1) execution of an assignment ends on
the assignment, and (2) an assignment statement produces no display, while a nonassignment statement displays the
resultant value of the interpreted statement.

Assignment and Nonassignment Statements 99

Compound Statements

Using semicolons for separation, all of the preceding kinds of statements can be combined in IIcompound II statements.
Compound statements have the fo! lowing characteristi cs:

1. A series of nonassignment statements produces the display action described in Chapter 3 (see the mixed
output statement). Example:

W+10
L+20
'DIMENSIONS ARE' ;W;' BY' ;L;'; AREA IS t ;WxL

DIMENSIONS ARE 10 BY 20; AREA IS 200

2. An assignment statement produces no display. Note, however, that any assignment statement becomes a
nonassignment statement by simply placing a plus sign (that is, identity operator) at its extreme left.
Example:

3.

5 X1H2 ;A+~
10

5 x 4t2;+A+4
104

Notice in the last example that the results of a compound statement are printed without intervening spaces
unless the spaces are specifically designated. Spaces are designated as shown below:

10
5 x 4f2;'
4

, ; +A+4

A comment statement can have no statement to its right.
the end of the I ine are considered to be commentary.
tional. Example:

All characters from the comment symbol PI up to
The semicolon preceding a comment is op-

3r2 3 ~SHnws MAX OPFRAT0R; rHJS J~ STJ~~ A COMMENT.

4. A branch statement implies no special display. In the no-branch case, statements to the left of the branch
will be interpreted; they are ignored if a branch occurs. This provides conditional execution capability.
Example:

VVERACITY X
[lJ ~O;'TRUE';~2x\X~1
[2] ~0;'FALSE';~3x\X~O

[3J 'NEITHER TRUE NOR FALSE'V

VERACITY 4=2+2
TRUE

VERACITY 2+2=4
NEITHER TRUE NOR FALSE

2+2=4
2

VERACITY (2+2)=4
TRUE

5. Suppose a branch statement has one or more nonassignment statements to its right. If a branch occurs, the
appropriate display is produced before control is passed to another line. In the no-branch case, the display
remains pending until completion of the compound statement. Example:

100 Compound Statements

'VLOGIC X
[lJ 'NOT ';~OxlX=O;'ZERO OR ';~Ox\X=l;'ONE'V

LOGIC 1~2

ONE
LOGIC 3>4

ZERO OR ONE
LOGIC 2+2

NOT ZERO OR ONE

7. DEFINED FUNCTIONS

As mentioned in Chapter 3, defined functions are used in the same way as operators, but most defined functions must
first be formed by the user instead of being an inherent part of the APL language. In addition, there are some de
fined functions in Xerox APL that are intrinsic to the processor; that is, they calion code that exists in the pro
cessor. Both user-defined functions and intrinsic functions are referenced by naiiie and are rreated in the same v.:cy,
but intrinsic functions are usually faster than functions that the user can define. (Intrinsic functions are always
locked; the user can neither modify nor display them.)

User-Defined Functions

The following tasks are handled in function definition mode:

Creating user-defined functions
Displaying user-defined func tions
Editing user-defined functions

Once created, most functions can be edited and displayed. Once a locked function is created, however, it cannot
be edited or displayed (see "Locking Functions II later in this chapter). Locked function I ines cannot even be dis
played for error diagnosis. It is possible, however, to erase a locked function.

Function definition mode begin:> Y'ihen a fUI1ction is opelled and continues unt;~ a function is closed or abandoned,
(It is possible to close a different function than was originally opened by revising the name ot the tunction.) A
function may be "opened" during direct input or evaluated input (see Chapter 3), and it may be opened briefly
during execution (see the "execute" operator, monadic (:, Chapter 5). A function cannot be opened during any other
form of input, such as quote-quad input or blind input; and a different existing function cannot be opened while
still in function definition mode. Until a function is closed during function definition mode, APL execution is im
possible except for system commands (which are executed and do not become part of the function being defined).
Most system commands leave the currently open function intact and return the user to definition mode; however,
some system commands cause a function definition to be abandoned (see "Issuing System Commands" later in this
chapter).

Creating User-Defined Functions

A del symbol, v, followed by a function name specifies a change from the execution mode to the function definition
mode. A second v symbol ends function definition mode and declares a change back to execution mode. No exe
cution of statements occurs during function definition, and no errors are reported except for line-scan errors, char
acter errors, and definition errors. Instead, each statement is stored as part of the function.

Each defined function has a header and a body. The function header is the opening line of a function and declares
the name (the identifier used to reference the function) and type of a function. The body of a function is the rest
of the function. After the user enters a function header, APL responds with a statement number as follows:

VC!)BE

[1 J

The line number [lJ signifies that the first line of the function program may be entered. Each line thereafter is
numbered sequentially unti I the function is completed. The statements are stored and are not executed unti I the
entire function is ca lied and executed.

Defined Functions 101

Syntax of Defi ned Functions

A defined function can be niladic, monadic, or dyadic; that is, it can have zero, one, or two arguments. In addi
tion, a defined function may return an explicit result or no result. Thus, there are actually six types of defined
functions as illustrated by the following function header syntax possibi liti es:

Function Header Syntax

No Explicit Result Expl icit Resu It

Ni ladi c function Vname Vr +- name

Monadic function Vname y Vr +- name y

Dyadic function Vx name y Vr +- x name y

where

name is the user-assigned function name.

is a variable to whi ch the result is returned.

x and y are dummy variable names.

The syntax of the function header affects the way a function is referenced in a statement; that is, whether the func
tion requires zero, one, or two arguments for execution. Defined functions with expl icit results may appear in com
pound expressions, much like operators. Defined functions with implicit results must appear alone; they cannot
appear in compound expressions except as the last function to be executed. Examples of the creation and use of
each function type are shown in Table 3.

Table 3. Examples of Defined Functions

Function Type Header Syntax Examples of Definition and Use

Niladic function with Vr +- name VRESULT+-PI
explicit result [1] RE8ULT+-o1

[2] V

PI
3.141592654

VRESULT+-TRIANGLE
[1] AREA+-0.5 x BASExHEIGHT
[2] DIAGONAL+-«HEIGHT*2)+BASE*2)*0.5
[3] RESULT+-AREA.DIAGONAL
[4] V

BASE+-5
HEIG!!T+-8
TRIANGLE

20 9.433981132

102 User-Defined Functions

Function Type

Niladic function with
no explicit result

Monadic function with
explicit result

Monadic function with
no explicit result

I

I
I
I

Table 3. Examples of Defi ned Functions (Cont.)

Header Syntax

Ilname

I

I
I
I

'Jr * name y

Ilname y

Examples of Definition and Use

'iJPI
[1 J X+ol
[2] X
[3J 'iJ

PI
3.141592654

'iJTRIANGLE
[lJ AREA+0.5xBASExHEIGHT
[2] DIAGONAL+«HEIGHT*2)+BASE*2)*0.5
[3] 'AREA IS ';AREA
[4] 'DIAGONAL IS ';DIAGONAL
[5] 'iJ

BASE+5
HEIGllT+8
TRIANGLE

AREA IS 20
DIAGONAL IS 9.433981132

[1]
[2]

'iJRETURN+EXPAND INPUT
RETURN+«2xpINPUT)pl O)\INPUT
V

EXPAND 'COpy COMMAND'
COP Y COM MAN D

'iJRETURN+DESCENDINGSORT INPUT
[1] RETURN+INPUT['INPUTJ
[2] 'iJ

DESCENDINGSORT -5 -3 10 5 6 8
10 8 6 5 -3 -5

[1]
[2]
[3]

'iJEXPAND INPUT
X+«2 x pINPUT)p1 O)\INPUT
X
'iJ

EXPAND 'COPY COMMAND'
COP Y COM MAN D

'iJDESCENDINGSORT INPUT
[1] X+INPUT['INPUT]
[2] X
[3] 'iJ

DESCENDINGSORT -5 -3 10 5 6 8 - -10 86535

User-Defined Functions 103

Table 3. Examples of Defi ned Functions (Cont.)

Function Type

Dyadic function with
explicit result

Dyadic function with
no explicit result

Header Syntax

vr +- x name y

'lx name y

Variables Loca I to a Defined Function

Examples of Definition and Use

[1]
[2]
[3]
[4]

'lRESULT+BASE TRIANGLE HEIGHT
AREA+0.5xBASExHEIGHT
DIAGONAL+«HEIGHT*2)+BASE*2)*0.5
RESULT+AREA,DIAGONAL
V

5 TRIANGLE 8
20 9.433981132

[1]
[2]
[3]
[4]
[5]

'lBASE TRIANGLE HEIGHT
AREA+0.5xBASExHEIGHT
DIAGONAL+«HEIGHT*2)+BASE*2)*0.5
'AREA IS ';AREA
'DIAGONAL IS ';DIAGONAL
V

5 TRIANGLE 8
AREA IS 20
DIAGONAL IS 9.433981132

'lX PLUS Y
[1] ANS+X+Y
[2] ANS
[3] V

2 PLUS 5 10 15 20
7 12 17 22

Three types of variables that can be local to a defined function are

Dummies
Locals
Labels

Dummies and iocais are named in the function header, whiie labels are named in the body of the function.

Dummies. Dummies are used in the header of a defined function to indicate the syntax of a function. For example,
notice the header of the following simple function (this function calculates the area of a triangle):

'lA+H TRIA REA B
[1] A+HxBT2'l

The dummies A, H, and B in the function header indicate that the function named TRIAREA returns an explicit result
and that the function operates on two arguments which must be furnished by the user. For example, suppose the user
calls this function with the statement

AREA+10 TRIAREA 5

The dummy H in the function is assigned the value 10, and the dummy B is assigned the value 5. The result is re
turned in the dummy A, and is finally assigned to the variable AREA in the calling statement. Dummies possess
values only within the function. That is, the use of A, H, and B as dummies does not affect their use as variables
outside the function. If variables A, H, and B had values assigned to them before the function was called, they

104 User-Defined Functions

will have the same values after the function is executed. For example, suppose the variable A (with value 21) had
existed in the program before function TRIAREA was called. A display of variable A after the execution of function
TRIAREA will demonstrate that A still has the value 21:

25

21

A+-21
AREA+-l0 TRIA REA 5
AREA

A

Body of a Function. After the opening statement, in which the user creates the function header, the process of
creating a function consists of inputting function statements and .. finally .. closing function definition. The user is
prompted with a function line number each time the system is ready for further input. The process is ended by typing
a closing IJ followed by a RETURN key.

Locals. Locals are variables that retain their values only within the function in which they are defined. While a
function is active, its local variables take precedence over any externally defined variables of the same name. A
list of a function's local variables are added to the end of the function header, with each variable in the list pre
ceded by a semicolon. For example, the function header

VR+-A CIRCLE B;X;Y;Z

indicates that the function named CIRCLE has locals X, Y, and Z. The values for these variables are assigned within
the function; if these variables are referenced without having a value assigned within the function, an UNDE

FINED message wi II be produced. If variables X, Y, and Z had values assigned to them before the function was
called, they will revert to those values after the function is executed.

Lube 1:;. Function lines may bt:' labe!ed to nllow "ymholic:ally controlled branching (if a function is edited, line
numbers may change). A labeled line has the form

[n J name: statement

where n is the line number, name is the label, and statement is the content of the line. For example,

[4] ERREXIT: +O;'ERROR EXIT'

In this example, the label ERREXIT has the value 4. If an attempt is made to assign a value to ERREXIT during func
tion execution, a syntax error message will be reported. If the function is edited and the line number changes
to [5J, ERREXIT will then have the value 5.

Changing Suspended Functions. APL permits the user to change a function while it is in one or more suspended
states (but never while pendant). This is seldom advisable. It is almost always preferred practice to clear out such
suspensions before modifying the function to avoid possible confusion.

At the time a function is suspended, its (current) local variables have been determined by APL, and its labels have
already been assigned their values. Changing the suspended function does not alter these determinations. Re
suming execution of a suspended function will cause the determined items to take effect again - regardless of how
the function was altered.

Directives

During function editing the user issues directives to transfer APL control to a line or to display one or more lines.
A directive may take any of the following forms:

[1 J Directs APL to a line - here line 1.

[10J Directs APL to display a line and then to stay at that line for further editing - here line l.

[02J Directs APL to display from a line to the end of the function - here beginning at line 2.

[OJ Directs APL to display an entire function.

[106 J Directs APL to a line to edit, starting (approximatel y) at a given column -here line 1 at col umn 6.

User-Defined Functions 105

A directive always starts with a left bracket and ends with a right bracket. Only quads, digits, and decimal points
are acceptable within the brackets, and no directive can have more than one decimal point and one quad. In addi
tion, blanks are not allowed. The following are examples of illegal directives:

[1 2]
[1.21.J
[JILl]
[lEl]

The last directive, which may appear as 10 to someone fami liar with constants, is in error; E is not allowed within
a directive. Any erroneous directive will cause an error message to be printed. In addition, any characters to the
right of the error detection point are disregarded - even a closing del.

Several directives may be used on one line, with the rightmost directive overriding any directives to the left of it.
For example, notice the following portion of a function:

VFF
[1 J X+Y
[2J [lJ Y+X
[2J [5J A+B

The [1 J directive on the second-to-Iast line overrides the [2 J directive to its left and causes the statement on line 1
to be replaced with Y+-X; notice that the next line prompt is [2J. (It should be obvious by now that a function line
prompt is a form of a directive.) Similarly, the [5J directive on the last line overrides the [2J directive to its left
and causes the expression A B to be assigned to line 5; the next line prompt will be [6J.

Displaying User-Defined Functions

Once the user has defined a function, he can display it in any of the following ways:

Display all lines of the function.
Display one line.
Display from a specified line to the end of the function.

To display a function, the user opens the function with a del symbol, names the function, and specifies what he
wants displayed, all on the same line. He can then either close the function with another del symbol (if no editing
is to be done) or leave the function open for further editing.

If the user wants to display all of a function - say function TRIANGLE for example - the procedure is as follows:

'VTRIANGLE [o]V
V BASE TRIANGLE HEIGHT

[1] AREA+O.5xBASExHEIGHT
[2] DIAGONAL+«HEIGHT*2)+BASE*2)xO.5
[3] 'AREA IS ';AREA
[4] 'DIAGONAL IS ';DIAGONAL

'V

If the user wants to display only one I ine of a function - say line 3 of function TRIANG LE - the procedure is

'VTRIANGLE [30]"1
[3] 'AREA IS ';AREA

rinal'y, if the user wants to display from one line to the end of a function - say from line 2 on of function
TRIA NG LE - the procedure is

'VTRIANGLE [02]"1
[2] DIAGONAL+«HEIGHT*2)+BASE*2)xO.5
[3] 'AREA IS ';AREA
[4] 'DIAGONAL IS ';DIAGONAL

106 User-Defined Functions

The user can stop the display of lengthy functions at any point by pressing the A TTN key. This is especially usefu I
when the user wants a range of lines displayed. For example, suppose he wants to display lines 10 through 15 of a
20-line function. He can request the display to start at line 10 and then press the ATTN key after line 15 has been
displayed. If the display command was closed with a del symbol, APL will be in the execution mode after the inter
ruption; if the closing del was omitted, APL will be in the function definition mode after the interruption.

Notice that the display commands in a" of the above examples were closed with a del symbol. This symbol causes
controi to be returned to the execution mode CiS soon CiS the display is complete. If the user wants instead to remain
in function definition mode and edit the function, he merely omits the closing del in the display command. See
how the above examples appear without a closing del in each display command.

'ilTRIANGLE [OJ
V EASE TRIANGLE HEIGHT

[1] AREA+O.5xBASExHEIGHT
[2J DIAGONAL+«HEIGHT*2)+BASE*2)xO.5
[3] 'AREA IS ';AREA
[4J 'DIAGONAL IS ';DIAGONAL

[5 J

'lJTRIANGLE [3DJ
[3 J 'AREA IS ';AREA
[3 J

'lJTRIANGLE [U2J
[2J DIAGONAL+«HEIGHT*2)+BASE*2)xO.5
[3J 'AREA IS ';AREA
[4] 'DIAGONAL IS ';DIAGONAL
[~ J

Notice that after a single-line display, APL reprompts with the same line number; and that atter a multiple-line
display, APL prompts with the next available line number. The user can then edit the function as described below
or he can type another del symbol to close the function. Closing the function definition with a del symbol does
not alter the content of that line. For example, the following operation does not change the value of line 3; it
wi" still be 'AREA IS ';AREA:

'ilTRIANGLE [3D]
[3] 'AREA IS ';AREA
[3] 'il

In summary remember that

[0] displays a" of a function.

[2U] displays a single line (here 2).

[U2] displays from a line (here 2) to the end of the function.

Editing User-Defined Functions

The editing of user-defined functions is oriented to line-at-a-time editing capabilities:

Deleting a line
Inserting a line
Replacing a line
Modifying a line

The first three capabil ities can be performed as shown in Table 4. The last capabi lity - modifying a line - permits
character editing (that is, deletion, insertion, and replacement of characters), adding to a line, and overstriking
existing characters on a I ine. All of these capabi Ii ties are detai led below.

User-Defined Functions 107

Table 4. Displaying and Editing Defined Functionst

I Pecfacm A,';an and Sto, Perform Action and lEa," I O""n Fon";on, Pecfocm Open Function, Perform
in Definition Mode - Definition Mode - Action, and Stay in Action, and Leave

Action to be Taken I Function Already Open Function Already Open I Definition Mode Definition Mode

Display a" of a function [2] [OJ [2] [DJ9 9F[DJ 9F[DJ9
9 F 9 F-- 9 F--- 9 F---

[1] A [1] A [1] A [1] A
[2] B [2] B [2] B (2) B
[3] C [3] c [3] c [3) C

9 9 9 9
[4] [4]

I I I
Display a line [4] [2[J] [4] [20]v 9P[20J VF[2OJV

[2] B-- [2] B [2] B [2] B---
[2] [21

~----~

Display a line and change it [4] [2U]B+X+Y [4] [20]B+X+YV VF[2DJB+X+Y VF[2OJB+X+YV
[2] B l2] B r 2] p [2] B
[3 J [3]

Display a function, beginning with [4] [02] [4] [02]9 VF[02] 9 F[[]2]V
a specified line [2] B+X+Y [2] B+X+Y [2] B+X+Y [2] B+X+Y

(3) C

I
l 3 J C [3] c

I
[3] c

[4) [4]

Delete a line [4] [2]~ [4] [2]<§y IlF[2]<§B:> VF[2]<§0

~ ~ 1"!'1 ~
Note: The user cannot delete line [3) [3] ~

-"- [3] - [3] ~

zero. Also note that the
A TTN, INDEX, and RET or ~ or or
symbols in the examples stand

-

for the ATTN, INDEX, and [4] [2]8 [4] [2]8 VF[2]<¢3 VF[2]@
RETURN keys respectively. v --v- v v

(~~) ~ ~
[3] [3] ~

- [3] [3] ~

--

Insert a line [3]
[0.6]
~ [3] [0.5] xv VP[a.5]

[0.6]
x VFra.~~

Replace a line [4] ~ [4] [2] Z9 VF(2)Z 9F[2]ZV
[3] [3]

Override a line number
I

[4] W I
[4] [2]

I

VF(4)[2] IlF[4][2]

I
[2]

!
[2] 'i [2] [2] ~

Change the function header (this

I
[4] [0] F;B I [4] [0] F;BIl I 9F[a] F;B 9F[a] F;B9

example adds a local variable to [1]
I I

[1]

the function header)

Erase the current function [4])ERASE F

Erase another function [4J)ERASE G [4])ERASE G
[4] [4] ~

tUser input has been underlined throughout this table ta distinguish it from APL output. The underlining does not actually appear at the terminal. In
addition, a simple three-line function named F has been assumed in the examples in this table (see the first display entry in the table for the original
content of function F).

108 User-Defined Functions

Deleting a Line

A statement in a defined function can be deleted by striking the ATTN key followed by the RETURN key, or by
striking the INDEX key followed by the RETURN key immediately to the right of the line number. (See also the
notes following Table B-3 concerning terminals other than the standard ones assumed in this section.) Use of the
INDEX and RETURN keys, however, is a faster and more convenient delete sequence because the computer does
not have to react by printing a caret symbol. As an example, suppose the user wants to delete line 2 of the fol
low!ng function:

VBASE TRIANGLE HEIGHT
[1] ATHIS PUNCTION CALCULATES AREA AND HEIGHT OF TRIANGLE
[2] ABASE AND HEIGHT CANNOT EXCEED 5 AND 15 RESPECTIVELY
[3] AREA+O.5xBASExHEIGHT
[4] DIAGONAL+«HEIGHT*2)+BASE*2)xO o 5
[5] 'AREA IS ';AREA
[6] 'DIAGONAL IS ';DIAGONAL
[7] V

First the user opens the function and directs the system to line 2

VTRIANGLE [2]

APL responds with a [2J, indicating that control is at line 2. The user strikes the INDEX key and then the RETURN
key to delete the line, and APL responds with the next line number as shown:

[2]

[3]

Notice that the INDEX and RETURN keys do not cause anything to be printed at line 2. If the ATTN and RETURN
keys are used instead, the sequence appears at the terminal as

[2]
1\

[3]

The user can now either close the definition mode with a del symbol or proceed with further editing (including de
leting the next line). t A display of the function at this point illustrates that line 2 has been deleted:

[3] [0]
V BASE TRIANGLE HEIGHT

[1] ATHIS FUNCTION CALCULATES AREA AND HEIGHT OF TRIANGLE
[3] AREA+O.5xBASExHEIGHT
[4] DIAGONAL+«HEIGHT*2)+BASE*2)xO.5
[5] 'AREA IS ';AREA
[6] 'DIAGONAL IS ';DIAGONAL

V
[7]

The definition mode can now be closed with a del symbol

[7] V

Once definition mode is closed, APL renumbers the lines in sequential order, as illustrated by another display of
the function

VTRIANGLE [o]v
V BASE TRIANGLE HEIGHT

[1] ATHIS FUNCTION CALCULATES AREA AND HEIGHT OF TRIANGLE
[2] AREA+Oo5xBASExHEIGHT
[3] DIAGONAL+«HEIGHT*2)+BASE*2)xO.5
[4] 'AREA IS ';AREA
[5] 'DIAGONAL IS ';DIAGONAL

V

tHe can also press the RETURN key if he doesn't want to do anything to the line. APL will simply respond with
the line number - in this case [4J. Another RETURN key wi II cause APL to prompt with [51, and so on.

User-Defined Functions 109

Inserting a Line

A new line can be inserted in a defined function simply by reopening the function and entering the statement as
described below. The user reopens the function by typing a del and the function name, to which APL responds by
printing the line number of the next statement to be entered. If the new line is to be inserted at the end of the
function, the user can now enter the new statement and c lose the function as shown:

VTRIANGLF:
[6] ATHIS FUNCTION IS USED IN ROUTINES 1 AND 20
[7J V

If the new line is to be inserted between any two lines, however, the user must specify a I ine number between those
two lines -any line number as long as it is between the two line numbers (see "Line Numbers" below). APL re
sponds with that line number and the user can enter the new statement. For example, suppose the user had wanted
to add a comment as the first line of function TRIA NG LE instead of as the last line. He could have done this as
follows:

VTRIANGLE
[6] [005J
[0.5] ATHIS FUNCTION IS USED IN ROUTINES 1 AND 2.
[006J

Notice the [0.6J prompt in this example. After an insert statement is entered, the APL system adds a 1 to the last
place of the number chosen for the insert, and prompts with the new number. (The next prompt after [0.6J will be
[0.7J; the next, [0. 8J; and so on.) This allows the user to insert several lines.

A display of function TRIANG LE illustrates that line 0.5 has been added

[O.6J
V

[O.5J
[1 J
[2J
[3 J
[4]
[5J

[O]V
BASE TRIANGLE HEIGHT
ATHIS FUNCTION IS USED IN ROUTINES 1 AND 20
ATHIS FUNCTION CALCULATES AREA AND HEIGHT OF TRIANGLE
AREA+0.5xBASExHEIGHT
DIAGONAL+«HEIGHT*2)+BASE*2)xO.5
'AREA IS 'iAREA
'DIAGONAL IS 'iDIAGONAL

After the function is closed, APL automatically renumbers the lines, as illustrated by the following display:

VTRIANGLE [O]V
V BASE TRIANGLE HEIGHT

[1] ATHIS FUNCTION IS USED IN ROUTINES 1 AND 20
[2J ATHIS FUNCTION CALCULATES AREA AND HEIGHT OF TRIANGLE
[3] AREA+O o 5xBASExHEIGHT
[4J DIAGONAL+«HEIGHT*2)+BASE*2)xO.5
[5] 'AREA IS 'iAREA
[6J 'DIAGONAL IS 'iDIAGONAL

V

Line Numbers. APL allows the user to type a line number with up to four numbers to the left of the decimal point
and up to three numbers to the right. As noted above, after each insert line is entered, APL adds a 1 to the last
place of the insert. As illustrated in the following portion of a printout, the next prompt after an .88 insert will
be L89J;thenext, L9J;thenext, [1J;andsoon:

VF
[7] [.88]
[O.88J
[0.89]
[0.9J
[lJ

110 User-Defined Functions

The highest integer line number printed by APL is [9999J; thus the highest possible line number is [9999. 999J. If
the user is prompted with [9999. 999J and he issues a legal statement (say X+-Y), APL will prompt him with the same
line number since it cannot go any higher.

Replacing a Line

A line in a defined function can be replaced simply by reopening the function, directing control to the statement
that is to be repiaced, and entering the desired statement. For example, suppose the uSer wants to replace line 1
of function TRiANG lE with another statement. He reopens the function by typing a de! and the function name and
directs control to line 1 by typing that line number in brackets. After the RETURN key has been struck, APL re
sponds to this entry by printing the specified line number at the left margin, as shown:

'iJTRIANGLE [1]
[1]

Any statement the user enters at this point will replace what previously existed at that line. Suppose he now enters
the following comment statement:

[1] AINPUT MUST BE IN FEET
[2]

Noti ce that the next prompt is at line 2. If the user does not want to do any more ed iting, he can close the func
tion by entering another de I

[2] 'iJ

Notice that this action has no effect on line 2; it merely closes the function once more, The following display of
function TRIANGLE illustrates the change to line I:

'iJTRIANGLE [O]'iJ
'iJ BASE TRIANGLE HEIGHT

[1] AINPUT MUST BE IN FEET
[2] ATHIS FUNCTION CALCULATES AREA AND HEIGHT OF TRIANGLE
[3] AREA+O.5xBASExHEIGHT
[4] DIAGONAL+«HEIGHT*2)+BASE*2)xO.5
[5] 'AREA IS ';AREA
[6] 'DIAGONAL IS ';DIAGONAL

V

Doing Several Things at Once

APL allows the user to open a function, change a line, and close the function all on one line. For example,

'iJG[1][2]2.2V

In this case the user opens function G, issues a directive to line 1, notices he really wanted to change line 2,
changes the directive to line 2, replaces whatever exists on that I ine with the value 2.2, and then closes the func
tion. This shortcut operation allows the user to change a function without having to interact extensively with the
computer. Another examp!e is shavm be!av.':

VG[1[JJL11V
[1] 101

VG[O]V
V G

[1] 1. 11
[2] 202

V

User-Defined Functions 111

The first line requests that line 1 of function G be displayed, and the contents of that line changed to the value 1.11.
The display of function G shows that line 1 has indeed been changed from 1. 1 to 1.11. It should be noted that the
user can display one line and change it at the same time, but he cannot display an entire function and change some
thing at the same time.

Modifying a Line

As mentioned earlier, modifying a I ine involves character editing (that is, deletion, insertion, and replacement of
characters), adding to a line, and overstriking existing characters in the line. Modifications to a line can be speci
fied by overriding the present line number with the expression

[n 0 c]

where n is the number of the line to be edited (0 for a function header), and c is the approximate column at which
to begin editing (the column position is the number of spaces from the left margin). APL wi II normally display the
specified line, return to the next line, and space to the designated column. t If the typing element is still not in
the proper position, the user can backspace or space forward until the desired position is reached.

Deleting Characters. To delete characters, type a slash beneath each character to be de leted

vG
[3] [208]
[2] 202

/

In this case the user is deleting the decimal point. After the RETURN key is depressed, APL will display the cor
rected line, squeezing out any blanks left by the correction

[2] 22

Since APL waits at the end of the displayed line, the user can continue editing this line as if he had just typed it in
or he can depress the RETURN key to end the line.

Inserting Characters. To insert one or more characters between two adjacent chararacters, type a single digit below
the second character, indicating the number of blanks to be inserted (from 1 to 9) between the two characters. For
example,

[3] [208]
[2] 22

3

This example inserts three spaces between the two characters on line 2. After the RETURN key is depressed, APL
will display the edited line with the blanks and will backspace to the leftmost blank and wait for the user to insert
something. An insertion of 0 ... 1 will appear at the terminal as

[2J 20f12

where 0 -;. 1 has been typed by the user.

tUnless the designated line happens to be a line that does not fit on a single line of paper, in which case no char
acter editing can be done. APL will simply display the line and then reprompt the user with the same line. The
following is an example of such a line:

[2] 'A
BI

112 User-Defined Functions

If the user wants to insert more than nine characters, he can type any of the letters A through Z instead of a digit
to indicate the number of blanks to be inserted. The letter A inserts 5 blanks; the letter B, 10 blanks, and
so forth.

The user is cautioned to leave enough room for an insertion. Not leaving enough room may result in illegal over
struck characters as shown below:

[3] [2[J81
[2] 22

2
[2J 20fl
BAD CHAR
[2] 20+

Any mistakes made in typing an insertion can be corrected with the BACKSPACE-A TTN key sequence ordinari Iy
used for correcting errors. This sequence will erase everything from the point of correction to the end of the line,
and the user can then enter the rest of the line as it should be. For example, suppose the user wants to insert the
expression 01 x in statement 2 and instead types the expression 01 x (notice that the first expression means "pi times ",
while the second expression means "l times "). He can correct this as shown below:

[3] [2010]
[2] 20+12

3
[2] 20+01)(12

1\

01)(12
[3 J

,t.. display of line 2 illustrate,; that the correction has been made

r ""' '-~,
L J J L "- Lj J

[2] 20f01)(12

Replacing Characters. To replace one character with one or more other characters, type a slash below the character
and a digit or letter to the right of the slash indicating the number of characters in the replacement. After the
RETURN key is depressed, APL will type the line with the specified number of spaces and will then backspace to
the leftmost blank and wait for the user to type the replacement. For example, suppose the user wants to replace
the leading character of statement 2 with the expression A+-3. This operation will appear at the terminal as

[3J [207J
[2J 20f01 x 12

/3
[2J A+-30fOlx12

where A+-3 is the replacement typed by the user.

Adding Characters to End of Line. To add one or more characters to the end of a line, specify a zero as the column
at which to begin editing. APL will then display the line unaltered and wait at the end of the line for the user to
add something. An example of adding local variables to a function header is shown below:

[3J [0001
[OJ RETURN+-FUNC X;A;B
[1]

In this case APL typed the header as RETURN+-FU~-.lC X and waited at the end of the line, and the user typed the
expressi on ;A; B.

User-Defined Functions 113

Overstriking a Character. To edit a line and create a legal overstrike, specify a zero as the column at which to
begin editing. APL will display the line and wait at the end of it; the user can then backspace to the character
to be overstruck, and type the second character. An example of overstriking a character is shown below:

[8J [500J
[5J A+~

In this case the first line caused statement 5 - consisting of the expression A +- 0 - to be displayed and APL to wait
at the end of the line. The user then backspaced to the quad and typed an apostrophe, thus creating the legal
overstrike ~.

Another method of creating a legal overstrike is shown below:

[8J [509J
[5J A+o

o
[5J A+~

Th is method directs APL to just below column 9 instead of to the end of the line. The user then types a zero below
the letter to be overstruck, and then depresses the RETURN key. APL displays the line, backspaces to where the
zero was typed, and waits for the user to type something. Typing an apostrophe will now create the legal
overstrike ~.

Editing a Line Number. Line numbers may be edited in the same way that the content of a line is edited. One
application of editing line numbers is in repeating a statement at several different lines. For example; the follow
ing procedure can be used to repeat the contents of line 2 at line 4. 1:

VC[202J
[2J A+30+o1x12

13
[4.1J A+30+o1x12

In this case the user directs that line 2 is to be displayed and that editing is to beg in at column 2. In response to
the user entry of ;/.3, APL displays the line, with three spaces replacing the line number, and then backspaces to the
leftmost space where the user types the new I ine number 4. 1. Now both lines 2 and 4. 1 wi /I contai n the same
statement.

Quitting Line Editing. To terminate line editing, simply type a period or any other unexpected (but valid) charac
ter, as shown below:

[1] ABFC
[2] [llJ7]
[lJ ABFC

1/.
[1 J [0]

'V F
[1] ABFC

'V
[2 J

Changing a Function Header

There are four changes the user can make to a function header (that is, to line zero).

1. Change the name of the function. Suppose the user reopens an existing function called FF 1 and changes
only the name of the function to G 1 as shown below:

VFF1[OJ
[oJ RETURN+C1 ARC
[lJ

This example assumes that G 1 does not already exist. (If it did, a DEFN ERR message would occur.)

114 User-Defined Functions

Changing the function name has no effect on function FFl - the function still exists as it did before the
reopen. Of course, FF 1 is no longer the open function - G 1 is. G 1 is effectively a copy of FF 1 with
any modifications that the user may have made while function definition mode was in effect. This feature
even allows synonymous function names as long as only the header is revised. It is possible for a user to
make a locked version of an unlocked function in this manner, retaining the unlocked version only until
he is satisfied that the locked version is error-free. Erasing the original function will not affect a synon
ymous function, nor wi" subsequent revision of the original. A synonymous function will retain the stop
and trace vector supplied with the original function when it was copied.

2. Change the name of the result, change a function with a resu It to a no-resul t function, or change a no
result function to a function with a result. The following illustrates the change of function FFlls result
from RETURN to R:

VFF1[oJ
[oJ R+-FF1 ARC
[lJ

3. Change the name of the argument. An example is shown below, where function FF lIs argument is changed
to X:

VFF1[OJ
[oJ R+-FF1 X
[lJ

4. Chonge the names of locals, insert !oca!si or delete locals,

Xerox APL does not allow the user to delete a function header. Any user attempt to do so will cause APL to print
an error message and reprompt the user with I ine zero. If the user wants to get rid of the function he is working
on, he must issue an)ERASE command.

Issuing System Commands

Xerox APL allows the user to enter any system command while he is in function definition mode. Most system com
mands keep the user in function definition mode, whi Ie some system commands (descri bed be low) return'the user to
execution mode or even take the user out of the AP L system. After commands that keep the user in defin iti on mode,
the APL system will prompt with the same line number at which the command was given. For example, suppose the
user is at line 5 of a function and wants to find out the names of variables in the workspace:

[5]) VARS
AAA BAT DDD
[5]

The system commands that take the user out of function definition mode are)CLEAR,)LOAD,)COPY,)PCOPY,
)QLOAD,)QCOPY,)QPCOPY,)CONTINUE,)CONTINUE HOLD,)OFF,)OFF HOLD,)5AVE, and an)ERASE
of the current function. All of these commands force a close of the definition mode as though the user had closed
it himself, but the resulting disposition of that function depends on the command. The)CLEAR,)LOAD,)QLOAD,
)ERASE,)OFF, and)OFF HOLD commands, of course, cause the function to be destroyed; the)SAVE,)COPY,) PCOPY,
)QCOPY,)QPCOPY,)CONTINUE, and)CONTINUE HOLD commands cause the function to be automatically re
opened by APL after the command action has been taken. In the last situation, as soon as the work on these com
mands is finished, APL signals the user of the reopening by printing the function name (with an opening del) and
prompting him with the next available line number. With the)CONTINUE and)CONTINUE HOLD commands, of
course, the function is not opened until the next terminal session. The user should probably display the function
before doing any more editing since renumbering may have occurred because of the forced close.

User-Defined Functions 115

Function Execution

Recursi ve Function

Xerox APL permits recursive functions - a recursive function being a function that references itself in the body of
its definition. As an example, notice the following function which returns the factorial of its argument:

VZ+FAC N
[1] Z+NxFAC N-l;-+OX1Nsl;Z+lV

FAC 0
1

FAC 1
1

FAC 4
24

Tracing Execution

Function execution can be traced by displaying the values of statements (some or all) as execution of the function
progresses. The user specifies the trace of a function by typing an expression of the form

T t. name +- line

where

name is the name of the function to be traced.

line is an integer or vector of integers that specify the line numbers for which values are to be displayed.
Only the integers that correspond to line numbers in the named function are significant.

When any of the specified line numbers is executed, the value of its statement is printed. If the specified line con
tains a branch statement, the value of the expression to the right of the branch arrow is printed. Specifying a trace
vector of 0 or lO discontinues the trace; for example, T t. FAC+-O or T t::. FAC+-lO wi II stop a trace of function FAC.

Shown below is an example of tracing the execution of a function. Notice that all output resulting from a trace is
identified by function name and I ine number.

VZ+FAC N
[1] Z+l
[2] -+-Oxllvsl
[3] Z+NxFAC N-l
[4] V

'.1'6FAC+l 2 3
FAC 0

FAC[l] 1
FAC[2] 0
1

FAC 1
FAC[l] 1
FAC[2] 0
1

FAC 4
FAC[l] 1
FAC[l] 1
FAC[l] 1
FAC[l] 1
FAC[2] 0
FAC[3] 2
FAC[3] 6
FAC[3] 24
24

T6FAC+O

116 User-Defined Functions

The same function written as a compound statement will produce the following trace output:

'YZ+-FAC N
[lJ Z+-NxFAC N-l;~OX1N~1;Z+-1'Y

T~FAC+-1

FAC 0
FAC[lJ 01
1

FAC 1
FAC[lJ 01
1

FAC 4
FAC[1] 01
M /I ,...,r .. , ')1
rHl"L..LJ ,.1.
FAC[lJ 61
FAC[lJ 241
24

Tf).FAC+-O

A trace vector can also be included as part of a defined function. For example, if the statement T f).FAC-+-l is in
cluded within the above function, line 1 will also be traced each time the function is invoked. Of course, more
complex expressions can be used to produce conditional tracing. In such cases, the condition produces one or more
values (line numbers) that are assigned to T f). FAC. This general ization also applied to the stop vector described
below.

The)OBSERVE command, described in Chapter 8, extends the tracing facility. It permits the user to see not only
the final result of a traced statement, but every intermediate result occurring as APL interprets a traced statement.

Stopping Execution

A planned Suspcr15ion of function exec.ution - cailed a function sf·op - can be e5t·ab~ished \:"-1 G ~rop ~ordfof y':':C!'~!
Th is vector is set in the <;I)me way that a trace contrnl vector is set for a function trace (see IITracing Execution II
Ubove). The user speci fles a funcrion ~top oy ryping Ull expre:':'lull Uf rile lUI III

St,name-+-line

where

name is the name of the function.

line is an integer or vector of integers that specify the line numbers at which the function is to stop. Of
course, only the integers that correspond to line numbers in the named function are significant.

When each specified line number is reached, APL stops function execution, does a line feed, prints the line number,
and unlocks the keyboard. Function execution is now in a normal suspended state, and can be terminated or re
sumed by appropriate branching (see IISuspending Execution II below). Specifying a 0 or a lO discontinues the stop
control vector; for example, S 6. FAC-+-O or Sf). FAC -+-lO discontinues any function stops on function FAC.

Shown below is an example of stopping execution of a function named CIRCLE:

Sf).CIRCLE+2 5
CIRCLE

CIRCLE[2]

13
10

suspension activities
~2

30
CIRCLE[5]

Like the trace control vector, the stop control vector can also be used within a defined function - to stop execution
after a certain number of loops, for instance. Editing a line that has a trace or stop control set for it removes the
control for that line. Deleting a function also deletes trace control and stop control vectors associated with that
function.

User-Defined Functions i 17

Suspending Execution

Execution of a function will be stopped before completion if any of the following occurs: the ATTN key is de
pressed, an error is encountered (unless sidetracking occurs, see Appendix A), or a user-set stop control is reached
(see "Stopping Execution" above). When a suspension occurs, the APL system prints the name of the suspended
function and the line number at which the stop applies r and then unlocks the keyboard. At this pointr APL is in
execution mode. Anything can be done during function suspension that can be done in the execution mode. As
long as a function is suspended r its local variables are active and can be examined.

The user can resume execution of a suspended function byspecifying a branch: entering a branch arrow followed by
a RETURN key will clear that suspension, while specifying a branch to a particular line will resume execution at the
beginning of that line (that is, at the right end of that line). Branching to a line outside a functions' range of line
numbers wi" terminate the execution of that function.

As a general rule it is best not to leave a function suspended, because the information about that function occupies
space which is precious to the APL user (see "State Indicator" below). In addition, each time the user attempts to
execute an already suspended function, even more information about that function is added to computer memory.
Thus, if the user has no specific reason to leave a function suspended, he shou Id c lear it before proceeding with the
rest of his program. (See also the)SI CLEAR command in Chapter 8.)

State Indicator

The APL system contains a "state indicator" that gives a list of all suspended and pendant functions (that is, all
"active" functions). A suspended function is one where execution is stopped before completion (see "Suspending
Execution" above). A function is pendant unless specifically suspended. Most commonly, this is observed when one
(pendant) function has called a suspended function. As a rule, suspended functions are stopped between lines r while
pendant functions are stopped in the middle of a line. Note, however, when a function is suspended due to an
error, the error marker may indicate the middle of the line; nevertheless, the function is stopped between that iine
and its predecessor. A display of pendant and suspended functions can be obtained via the system command)SI,
with the most recent active function displayed first.

)SI
Z[2] *
X[4] *
1[3]
Z[2] *
X[2]
W[S] *

An asterisk after an entry indicates a suspended function; absence of an asterisk indicates a pendant function. The
bracketed number after a function name is the number of the next I ine to be executed. If there are no suspended or
pendant functions in the state indicator, no report will result from the }SI command. The number of items in the
state indicator can be determined by typing the expression PI27.

Unlike suspended functions, pendant functions cannot be erased, copied over, or edited. As an example, look at
the state indicator list shown above. Functions Z and W can be edited but functions X and Y cannot. Notice that
function X is I isted as both pendant and suspended; it cannot be edited because it is pendant in one of its states.
Also notice that function Z has been suspended twice.

There is one instance in which a pendant function will not be listed in the state indicator. Suppose a dyadic func
tion is about to be executed, pending resolution of its left argument. Assume that argument is obtained as the result
of some function, say F, and F is suspended. Then the dyadic function is pendant, because it is ready to execute as
soon as F is resumed. But the dyadic function is not listed in the state indicator because it has not yet entered a
state of execution. Fortunately, this situation is rare and seldom will confuse the user.

118 User-Defined Functions

The system command)SIV lists the contents of the state indicator, including a list of variables local to pendant and
suspended functions. Using the command)SIV might give the following:

)SIV
Z[2] * A B
X[4] * AA
Y[3]
Z[2] * A B
X[2] .4.4
W[S] *

As with the)51 command, the most recent active function is displayed first. This example indicates that variables A
and B are local to function Z and that variable AA is local to function X. Only the local variables of the most
recent active functions can be accessed by the user _ Thus, the user can access local variables A and B of the last
invocation of function Z or local variable AA of the last invocation of function X, but not local variables A and B
of the first invocation of function Z or local variable AA of the earlier invocation of function X (see X[2J).

The user can clear the state indicator by using the branch arrow (that is, -+). Each branch arrow clears one suspended
function and its associated pendant functions; thus, to clear the entire state indicator, the user enters a branch
arrow for each asterisk in the list. For example, the user can clear the previous state indicator like this:

-+

)SIV
X[4] * AA
1[3]
Z[2] * A B
X[2] AA
W[S] *

-+
)SIV

2[2] * A B
X[2] AA
W[5] *

-+

)SIV

The)SIV commands in this example show what is left in the state indicator after each branch arrow. The user cou Id
also have cleared the same state indicator by entering four successive branch arrows.

)SIV

In this case, the)SIV command shows that nothing is left in the state indicator. The easiest way to clear the state
indicator is to issue an)SI CLEAR command.

Xerox APL provides limited protection against "51 DAMAGE". As an example, suppose the user opens function F
and modifies the header, changing the function's type (e.g., monadic to dyadic, result to no-result). He then
attempts to close function F. If F is not suspended, the close occurs as usual. If F is suspended~ APL issues a warn
ing (to the effect that references in the state indicator will be damaged by the change to the header) and requests
a response from the user. The user can either order the close to occur with 51 DAMAGE or cancel the close in order
to revise the function further, hopefully correcting the header. Only a type change requires this protection. It is
perfectly permissible to make other changes to the header, such as adding locals or renaming the result or dummy
arguments; however, this is seldom advisable (see "Changing Suspended Functions" above).

Locking Functions

A function can be locked during definition or editing by using an opening or closing 'It (7 overstruck with a ~,) in
stead of a 'V. A locked function can be executed, copied, or erased, but it cannot be displayed or altered. After a
function is locked, any associated trace control or stop control cannot be changed. Examples of locki ng functions are

[8]
1f;HH
V [8J

'VHH
1f; [8]

User-Defined Functions 119

Intrinsic Functions

Xerox APL provides the following set of special intrinsic functions (that is, predefined functions that exist in the
A P L processor):

llFMT WIDTH PAGE llWM
DELAY FlO NUNES
DIGITS FlOE HEADER
ORIGIN ERRN VFCHAR
SETFUZZ ERRF L'.XL
SETLINK ERRX aTE
TABS llGRF 6CR

These special functions exist in a locked state, normally in workspace WSFNS, (6GRF normally exists in workspace
GRAF) under account 1. (If the user does not find them under account 1, he should check with the installation man
ager to determine the correct account). As locked functions, they can be copied, executed, or erased from the
user's program, but they cannot be altered or displayed. (See also Appendix C for information about associating a
particular name with an intrinsic function.)

6FMT, PAGE, NUNES, HEADER, VFCHAR, and 6XL

These functions are used to format output reports and are described in Chapter 9.

DELAY

Function DELAY delays execution for a designated number of seconds. It has the syntax

DELAY x

where x is the approximate number of seconds execution is to be delayed. The DELAY function may be interrupted
by a break; this is treated as an ordinary break in execution.

DIGITS, ORIGIN, TABS, and WIDTH

Functions DIGITS, ORIGIN, TABS, and WIDTH are each similar to the system command of the same name, except
that each is a function rather than a command and may therefore be used with other functions. The arguments for
the functions are subject to the same restrictions as for the corresponding commands; for example, ORIGIN may only
be set to 1 or O. Each function has an explicit result that is the previous value of the relevant system parameter.
For instance, consider the following function:

VF X
[lJ X+ORIGIN X
[2J G
[3] X+ORIGIN Xv

This example will cause APL to execute function G with whatever index origin is specified by the argument of F, and
to restore the index origin to the va lue that it had before the execution of F.

SETFUZZ

Function SETFUZZ specifies the fuzz value to be used in comparisons (that is, the number of low-order bits to be
ignored in comparisons). It has the syntax

y+-SETFUZZ x

where

y is the previous value of fuzz.

x sets the current value of fuzz and can be an integer between 0 and 31.

120 Intrinsic Functions

SETLINK

Function SETLINK sets the value of the link in the chain of numbers generated in the use of the roll and deal func
ti ons. It has the syntax

y~-SETLINK x

where

y is the previous value of the link.

x sets the current value of the link and must be a positive integer (if even, it is also converted to an odd
number).

The results produced by the roll and deal functions are not the links themselves, but rather some function of them.
The length of the chain (before repetition) is 231.

flO

Function ~IO is a file input/output primitive; a detailed description is given in Appendix B under "Fi Ie Input/
Output".

flOE

Function FlOE is an alternate fi Ie input/output primitive (see a Iso Appendix B, "Fi Ie Input/Output"). Unl ike FlO,
the APL Processor deals with errors encountered when using FlOE. This means that certain standard file I/O er;-or
messages result or that sidetracking (see Appendix A) is possible.

ERRN,ERRF, ami ERRX

ERRN, ERRF, and ERRX are niladic functions. They are discussed in Appendix A under "Sidetracking on Errors or
Breaks". Briefly, they return the following results:

ERRN latest error number and line number of that error (2-element integer vector).

ERRF name of the function containing the error indicated by ERRN (text vector).

ERRX hexadecimal value of the latest I/O error or abnormal condition (4-element text vector).

llGRF

lIGRF is the graphic-services primitive used,for instance, to set scaling and window. See the description in Chap
ter 11 of Xerox APL graphics capability for details.

6 TE, 6CR, and 6WM

These intrinsic functions have varied use in workspace management and are described in detail in Chapter 12.

I:; TE - performs text editing functions.

I:;CR - permits conversion of user functions to text form and the reverse process.

6WM - provides varied information about the user's workspace in the form of APL results.

Intrinsic Functions 121

8. SYSTEM COMMANDS

System commands allow the user to control the mechanical aspects of the APL system, and can be divided into three
categories:

1. Workspace Control Commands - commands that affect the state of active and saved workspaces.

2. Inquiry Commands - commands that supply information about the active workspace.

3. Communications Commands - commands that send messages to the computer operator and commands that
log the user off the A PL system.

System commands always begin with a right parenthesis and can be entered when the system is in execution mode or
definition mode. By using the Execute operator (see Chapter 5), system commands can be embedded in APL expres
sions and can be embedded in a function line. Thus, a system command can be placed under the control of such ex
pressions or functions. Only the first four letters of command names are significant. Name characters after the
fourth are ignored. Thus ")CLEA" and ")CLEAVAGE" are both interpreted to be the ")CLEAR" command. Note
that a blank must separate the command name and any following parameters; for example,)WIDTH 30 is not the
same as)WIDTH30. A number of conventions are used in this chapter to describe the command formats.

1. Uppercase letters and special symbols must be typed exactly as they appear (except that only the first four
letters of a command are required, as noted above).

2. Lowercase letters are employed to indicate where in a command to substitute a name or numerical value.
The meanings of the notations in lowercase letters are as follows:

account

fname

grpname

Ii st

message

n

objname

password

string

vname

wsname

User account.

Name of a function.

Name of a group.

List of names (of functions, variables, groups).

Actual message to computer operator.

An integer value.

Name of a function, vari able, or group.

Assigned to a workspace name to restrict user access to the workspace; can consist of from
one to eight characters.

Any sequence of characters not including a blank or carriage return. If a string in-
cludes more than 80 characters, those past the 80th are ignored. Stri ngs are used for
range demarcation in certain commands.

Name of a variable.

A workspace name; can consist of up to 11 characters (letters, underlined letters, numbers,
and b. and /1), as long as the first character is not a number. If longer names are used,
the characters after the first 11 are ignored.

The actual system commands are detailed later in this chapter, but first it is necessary to describe the concept of a
workspace in order to understand how certain commands are used.

122 System Commands

Workspace Concept

Active Workspace

Each terminal hooked up to the APL system is considered to be active. Associated with each active terminal is
o storage area in the cenhal cumputer known CiS Ciii active vv'orkspcce. Thl$ active workspace cantedn" thp.
following:

i. Aii controi information entered by the user during the terminal sessIon.

2. The variables, functions, and groups entered for calculations during the terminal session.

3. A state indicator that keeps track of the names of suspended and pendant functions and at what point they
were in terru pted .

4. Parameters that control several features of the APL system, such as indexing origin, seed for random num
ber generation, line width, and number of significant digits (decimal places) printed. These parameters
all assume default values when the user first signs on to the APL system, but he can respecify most of them
with certain system commands.

When the user first signs on to the APL system, the active workspace is clear (that is, there is nothing in it except
the default values of the parameters mentioned above in item 4. An active workspace can also be cleared with the
system command)C LEAR.

Saved Workspace

The user can save - or rather, store - his active workspace for future use (via a SAVE command). A workspace can
be saved only in the account in which the user logged on under UTS. Once a workspace has been saved, any user
who knows its name, account, and password (if present) can load it as an active workspace (via a LOAD command);
copy its variables, functions, and groups into active workspace {via a COpy command}; ordrop it from his own account
(via a DROP command). (It should be noted that a user cannot drop a workspace from another user's account.) In
addition, the user can list all of the names of saved workspaces in his or other accounts (via a LIB command).

CONTINUE Workspace

An inadvertent line disconnect or any of the following commands causes the user's active workspace to be saved
under the name CONTINUE in his account:

)SAVE CONTINUE
)CONTINUE
)CONTINUE HOLD

The CONTINUE workspace is automatically loaded as an active workspace the next time the user logs on, unless
it was created with a)SAVE CONTINUE command. In general, the CONTINUE workspace can be used almost
like any other named workspace. It can be saved, copied, loaded, etc. However, it should only be used
for temporarily saving a workspace, since another)CONTINUE command or line disconnect will save the then
active workspace over what was previously saved. That is, the previous CONTINUE workspace will be wiped out.

Since the CONTINUE workspace is part of the user's account, it is subject to the granule restrictions imposed by an
installation. If the user's account is near that limit, the COI'HINUE workspace may not be saved, and the informa
tion in the active workspace may be lost (see "User Accounts ", next).

WorkspaCe Concept 123

User Accounts

Each APL user is assigned an account in which workspaces can be saved. The capacity of this user account depends
on the granule restrictions imposed by an installation. If near that limit, the user may not be able to save an addi
tional workspace without dropping something else. When a save is disallowed, the APL system will print a diagnos
tic, if possible. The user specifies the account when logging on (to CP-V) and when accessing information saved in
another user's account. He does not have to specify the account when accessing information in his own account.
The names of saved workspaces in an account can be listed with the)UB command.

Passwords

The user account number and a workspace name offers some protection against other users accessing a workspace.
To provide even greater protection, a user can assign a password to a workspace when it is saved with the)SAVE
command. The password assigned to a workspace must be specified each time the user references that workspace in
a system command. A password may contain up to eight characters without blanks, semicolons, periods, or commas.

Commands

The system commands are detailed below in alphabetical order, and are summarized by category in Table 5.

Table 5. Summary of System Commands

Command Meaning
I-------------------~ ___ c ___ • ___ +_-----------------------__ -I

Workspace Control Commands

)CATCH

)CATCH vname VIA fname

)CLEAR

)COpy wsname

)COpy wsname objname

)DIGITS

)DIGITS n

)DROP wsname

)ERASE objname

124 Commands

Removes any current catches (i. e., intercepts of assign
ments to specified variable names).

Designates that assignments to vname are to be IIcaught II
(intercepted immediately after the assignment) and that
the test function fname, a niladic function with no re
sult, is to be entered. This is a debugging aid.

Clears acti ve workspace and restores defau It width, digits,
origin, fuzz, random number link, etc.

Copi es a II functions, variables, and groups from saved
workspace. Any password must be included, and so must
the account if different than the user account.

Copies named object(s) - function(s), variable(s),
group(s) - from saved workspace. Any password must be
included, and so must the account if di He rent than the
user account. If more than one object is named, the
object names are separated by blanks.

Displays current setting for signifi cant digits for output
(i. e., number of decimal places).

Specifies significant digits for output (i .e., number of
decimal places), where n can range from 1 through 16.
Also displays the old value of n.

Removes a saved workspace from the user's account. Any
password must be included after the workspace name.

Removes named object - function, variable, or group
from active workspace. More than one object can be
specified, with blanks used as separators.

Table 5. Summary of System Commands (cont.)

Command

Workspace Control Commands (cont.)

)GROUP grpname list

)GROUP grpname

)LOAD wSname

)OBSERVE

)ORIGIN

)ORIGIN n

)PCOpy

)QCOPY

)QLOAD

)QPCOPY

t
)SA VE wsname

t
)SEAL wsname

)WI DTH

)WIDTH n

)WSID

)WSI D wsname

)WSI D wsname •• password

t May include on AUTOSTART statement.

Meaning

Groups objects and names the group.

Disperses the named group.

~lloves a icp!icc of saved \l/orkspcce into active \A!ork

space. If the workspace name is protected with a pass
word, that password must be specified. Also, if the
saved vvorkspace is in another account i that account
must be specifi eo.

Specifies that the next (direct input) statement and any
traced function statements executed thereby are to be
lIobserved II. This displays a number of observations -
showing intermediate results as APL interprets those
statements.

Displays the current index origin (either 0 or 1).

Sets the index origin, where n can be 0 or 1, and dis
plays the previous index origin.

Same as)COPY, except that on object is not copied if
active workspace contains on object with the same nome.

Same as)COPY, except that the IISAVED II message is
suppressed, i. e., qui et copy.

Same as)LO,~\D, except that the IISA.\/EDII rnessoge :s
suppressed, i. e.! quiet load.

Some as)PCOPY, except that the "SAVE D" message is
suppressed, i.e., quiet protected copy.

Saves active workspace that already has on assigned
name (see)WSI D).

Saves active workspace under the specified name. To
save a workspace and protect it with a password, follow
the workspace name with two periods and the password
name (i. e.,)SAVE wsname •• password).

Saves current workspace as a sealed 'execute-only' work
space with the designated name. All functions in the
workspace are locked and the workspace is saved on file
with the attributes, READ access, NON E, WRITE access,
NON E, EXECUTE access, ALL, under APL.

Displays the current width of a I ine of output.

Changes the width of a line of output, and displays the
old width. The width parameter, n, can range from 30
to 254; however, values above 130 are meaningless for
normal operations on a standard APL terminal.

Displays the name and account (if different than current
user account) of active workspace.

Assigns a name to active workspace, or changes the name
if one already exists and displays the old name.

A password may also be designated.

Commands 125

T obi e 5. Summary of System Commands (cont.)

Command

Inquiry and Communications Commands

)CONTINUE

)CONTINUE HOLD

)FNS

)FNS string

)FN S string string

)GRP name

)GRPS

)GRPS string

)GRPS string string

)LIB

)LIB account

)OFF

)OFF HOLD

)OPR message

)OPRN message

f
device IDl
file ID .

)SET I/O stream l :;: II~ J [;opt1on] •••

)SI

)SI CLEAR

Meaning

I Ends terminal session, and saves active workspace under
the name CONTINUE.

Returns control to CP-V TEL subsystem, and saves active
workspace under the name CONTINUE.

Alphabeti cally I ists all defined function names in acti ve
workspace. t

Alphabetically lists the defined function names that
- I I _I _. ..

match or exceed the string. I

Alphabetically lists the defined function names that
match or I ie between the strings. t

Lists objects in named group.

Alphabetically lists all group names in active workspace.t

Alphabetically lists the group names that match or
exceed the string. t

Alphabetically lists the group names that match or lie
between the strings. t

Lists names of saved workspaces in current user's account.

Li sts names of saved workspaces in another accoun t.

Ends the terminal session and clears active workspace
(information is lost).

Returns control to CP-V TEL and clears active work
space (information is lost).

Sends message to computer operator, with reply ex
pected; locks keyboard unti I the user stri kes the ATTN
key.

Sends message to computer operator, with no reply
expected.

Allows routing of regular output, input, and/or 'blind'
I/O channels to files or various devices, and specifica
tion of formatting options for device output. Anaiogous
to the SET command in CP-V TEL.

Lists the contents of the state indicator - a list of
suspended and pendant functions.

Clears the entire state indicator.

t Xerox APl uses the following collating sequence in the process of alphabetizing:

blank or end of name

6
'6
underlined alphabetic letters (A through 1.)
alphabetic letters without underlines (A through Z)
digits

126 Commands

Table 5. Summary of System Commands (cont.)

Command

Inqui ry and Communi cations Commands (cont.)

)SI OFF

)SION

)SIV

)SIV CLEAR

)SIV OFF

)SIV ON

)SYMBOLS

)SYMBOLS n

)TABS

)T ABS n

)TERMINAL n

)TERMINAL IN PUT n

)TERMINAL OUTPUT n

Meaning

Prevents an error from suspending an active function
___ .L.-.:_: __ a.L.. ____ •• ,.. ,."'_"' ____ "
\"'UIIIUIIIIII~ 111-';;:;; 't:OIIVln;;;;;vu~ ~IUI"';;';III'f;iIII.

Restores normal state indicator control. If an error
occurs in an active function line, APL suspends the
function at that line (assuming sidetracking does not
",.,., , r "t:>t:> 1:J. nnt:>nrliv 1:J. \ ~ ----°1 --- '.1""'(""'_ •• _0' .. ~.,-

Lists the contents of the state indicator - a list of
suspended and pendant functions and the local vari
ables named by those functions.

Same as)SI CLEAR.

Same as)SI OFF.

Same as)SI ON.

Displays the current length of the symbol table (that is,
the number of names allowed in it) and the number of
unused entri es.

Sets the length of the symbol table to no less than the
number of names indicated by n (the maximum n allowed
is 2001). Also displays old value. This command will
be executed only if the current workspace is clear.

Displays the current tab settings.

Sets tabs. The n parameter indicates column positions
and can be a scalar (for equally spaced tab settings) or
a vector of up to 16 numbers in increasing order (for un
equally spaced tab settings).

Identifies to the APL system the input/output devices
being used, where n can be any of the following
values:

for 2741 terminal (or equivalent) with standard
APL typebo II.

2 indicates 2741 terminal (or equivalent) with
non-APL typeball.

3 for Teletype Model 33 or equivalent.

4 for I ine printer format output or card reader
format input.

13 for typewriter-paired APL/ASCII terminals
(e.g., Tektronix 4013).

14 for bit-paired APL/ASCII terminals.

Commands 127

Table 5. Summary of System Commands (cont.)

Command Meaning

)VARS

)VARS string

)VARS string string

A Iphabeti cally lists all global vari able names in
active workspace. t

Alphabetically lists the global variable names that
match or exceed the string. t

Aiphabetically lists the global variable names that
match or Ii e between the strings. t

tXerox APL uses the following collating sequence in the process of alphabetizing:

)CATCH

blank or end of name
t1

t1

underlined alphabeti c letters (~ through~)
alphabeti c letters without underlines (A through Z)
digits

Debugging Aid for Intercepting Assignments

The)CATCH command is primari Iy a debugging tool. It permi ts the programmer to "catch" (or intercept) each as
signment to a specified variable name, immediately after that assignment has been executed. The format of the com
mand invoking a catch is

)CA TCH vname VIA fname

where vname is the name of the variable (which may be local or global) and fname is the name of a "test ll func
tion. The test function is defined by the user according to his debugging needs. The only restriction is that this
function must be ni ladic with no result. This restriction isolates the test function from the statement or statements
assigning values to the specified variable. If the fname is undefined or does not indicate a niladic, no-result func
tion, no error message occurs - the catch is simply ignored (this can be used to advantage - see Example 3).

Suppose the programmer has invoked the following catch,

)CATCH V1 VIA F 1

then all assignments to the name V1 cause test function Fl to be called. This includes indexed assignments. Fl is
called regardless of whether V1 is a local or global variable. The programmer can modify this catch whenever he
wishes to enter a different test function. For example,

)CATCH V1 VIA FTWO

After the above modification, assignments to Vl cause test function FTWO to be called (instead of Fl).

The programmer can also invoke a second catch. For instance,

)CATCH VAR2 VIA FOTHER

He cou Id have both catches enter the same test function as in the next example.

)CATCH VAR2 VIA FSAME
)CATCH Vl VIA FSAME

He cannot, however, invoke a third catch; this attempt produces a IIBAD COMMAND" error.

The programmer can remove any current catches by issuing the command.

)CATCH

Following this removal, he is free to invoke one or two new catches.

128 Commands

Catches are not saved when a workspace is saved, so loading a workspace does not automati cally reinstall catches.
The)CLEAR command also removes any current catches.

The simplicity of the catch command may obscure its power as a debugging aid. This power is brought to bear by
the test function. A few hypothetical examples are given below to suggest the potential of catch capability.

Example i. Using a catch TO display values assigned to vnam€.

)CATC11 X VIA SHOWX
vSiiOi1 X

[lJ 'X IS ';Xv

As long as this catch is in effect, eV€i)l assignment to X 'vv:!! cause the ne\v 'lottie of X to be displayed.

Example 2. Using a catch to stop execution when a particular value is assigned to vname.

(Assume that X is a scalar and 77 is the value of interest.)

) C.4 T C II X V I A C HE C K
Il C!IECK

[lJ Ox\X~77
[2] Sf.. C!-lECK+STOP
[3 J STOP: V

As long as this catch is in effect, each assignment to X will be tested at line 1 of the CHECK function. If X is
not 77, line 1 resumes execution (branching to line 0, causing CHECK to exit). When X receives the value 77,
line 2 is executed. Line 2 sets the stop-vector for the CHECK function so that when the line labeled STOP is
reached, CHECK will suspend execution.

Example 3. Using a catch to change the value of vname.

(Note that this does not affect the value used by the statement making an assignment to vname; the catch is isolated.)

)CATCH X VIA CHANCE
IlCHANCg ;CHANCE

[lJ X~OV

As long as this catch is in effect, each assignment to X that occurs "outside II the CHAN GE function wi II cause X to
be set to O. The assignment at line 1 of the CHAN GE function wi II not be "caught II because calling the function
temporari Iy declares the name CHANGE to be a local variable (shadowing the definition of CHANGE as a test func
tion); see the function header line.

Suppose the following statement is executed with the above catch in effect.

X + 100 + X+55

The answer of 155 results in the following way.

1. The value 55 is obtained.

2. X is assigned the value 55.

3. The catch occurs.

4. X is set to 0 by the CHANGE function.

5. Execution of the original statement resumes, undisturbed (so far, at least) by the catch. This means that the
value 55 is the right argument of the next addition.

6. 100 plus that argument yields 155.

Commands 129

7. This value, 155, becomes the right argument of the next addition.

8. The value of X is obtained; it is now O.

9. 0 plus 155 yields the final result.

)CLEAR Clearing Workspace

This command deletes all groups, functions, variables, and the state indicator from active workspace. Furthermore,
it resets:

• Random number link.

• Fuzz setting.

• Origin (l).

• Width (120 for terminals equivalent to an IBM 2741; otherwise, 72).

• Significant digits (10).

• Symbol table size (261).

• Workspace identification (CLEAR VIS).

• State indicator control (ON); see also the)SI or)SIV command description.

• Current catches (none), see the)CATCH command description.

• Error number (0); see "Sidetracking on Errors and Breaks II in Appendix A.

• Error location (line number 0 and function name an empty text vector); see also Appendix A.

It does not change the latest tab setting that was specified by the user during the current APL session. (When an APL
session begins, an initial tab setting of zero is assumed.) The form of this command is

}CLEAR

The APL system responds to this command by printing the message CLEAR WS.

Example

)CLEAR
CLEAR W8

>CONTINUE and)CONTINUE HOLD Signing Off and Saving Active Workspace in CONTINUE

These commands are similar to the)OFF and }OFF HOLD commands described later in this chapter, except that the
active workspace is saved in workspace CONTINUE instead of being deleted. This workspace is automatically
loaded the next time the user logs on. The active workspace is also automatically saved in workspace CONTINUE
if the phone is accidentally disconnected of if a }SAVE CONTINUE command is given.

The)CONTINUE command saves the user's active workspace in a workspace named CONTINUE, and ends the ter
minal session. Its form is simply

)CONTINUE

A successfu I)CONTINUE command wi II produce a save report (time and date saved) and the UTS log-off
messages. If not enough room remains in the user's account to save the workspace, the system prints an error

130 Commands

message. If this happens, the user will have to delete some workspaces or other files before any APL workspaces
may be saved.

The)CONTINUE HOLD command saves the user's active workspace in a workspace named CONTINUE and returns
control to the CP-V Terminal Executive Language (TEL). The form of this command is

)CONTINUE HOLD

Note: If a user's workspace is passworded, the password is retained in the saved fi ie. in this case, CONTIt"-iUE is
--- not automati ca i iy ioaded the next ti me the user logs on.

Caution: If an account already contains a passworded CONTINUE workspace, any subsequent CONTINUE will fail
unti I the passworded version is deleted. Sealed workspaces <..:annot be saved with CONTINUE.

A successful save results in a save report and in CP-V printing a 0 prompt character. (This is the same asthe ! prompt
character shown in CP-V documentation; it's just that the APL typeball prints a 0 instead of a I.) The user is then
free to enter any other C P-V commands at the TEL leve I. If the save is unsuccessfu I (because not enough fi Ie space
is left in the user's account), an error message wi II be printed and the user will have to delete some savedworkspaces
or other fi les before saving any APL workspaces.

If either form of the)CONTINUE command is given during function definition mode, the currently open function
is closed by APL. When the CONTINUE workspace is loaded later, APL automatically reopens the function and
prompts the user to continue function definition.

The CONTINUE workspace can be used almost like any other named workspace. It can be saved, copied, loaded,
etc. However, it should only be used for temporarily saving a workspace since an}' previous CONTINUE workspace
will be wiped out by a new CONTINUE workspace save.

Examples

)CONTINUE
CONTINUE SAVED 10:57 JUN 30,'72

CPU = .0193 CON= :06 INT = 14 CRe = 0

)CONTINUE HOLD
CONTINUE SAVED 10:56 JUN 30,'72

}

}

Saves active workspace in CONTINUE and
ends termina I session after printing save re
port and CP-V log-off messages.

Saves active workspace in CONTINUE and
returns control to TEL after printing save
report. TEL prompts for commands with
the 0 character.

)COPV Copying Information from Saved Workspace to Active Workspace

The copy command enables the user to copy information from a saved workspace to the active workspace. The in
formation can consist of one, several, or all of the functions, global variables, and groups in the saved workspace.
This command may take any of the following forms:

where

wsname

)COpy wsname
)COpy wsname objname
)COPY wsname. account
)COPY wsname. account objname
)COpy wsname .. password
)COPY wsname .. password objname
)COPY wsname. account. password
)COPY wsname.account.password objname

is the name of the saved workspace.

objname is a variable name, function name, or group name. More than one object can also be specified,
with blanks used as separators between the objects.

Commands 131

132

account is the user account under which the workspace was saved. This option is used to access a workspace
in another account; it is not necessary when accessing a workspace in the current user's account.

password is a user-assigned password. If a password was used when the workspace was saved, that password
must be used to access the workspace.

)COPY cannot be used to access a sealed workspace.

Note that if a workspace is saved with a password, that password must be included in the copy command. Also, if
a workspace is being copied from another user's account, the account must be specified in the copy command.

When all of a saved workspace is copied, only functions, global variables, and groups are copied. If copied func
tions had sidetracks (see Appendix A), stop vectors, or trace vectors set, then these settings also apply to the active
workspace. All referents of a copied group are themselves copied into the active workspace. For instance, suppose
group G 1 is copied, where G 1 contains A, B, and G2 with G2 being another group containing X, Y, and Z. Then
the following are co pi ed into active workspace: G 1, G2, A, B, X, Y, and Z. The digits, iine width, origin, ran
dom seed, and state indi cator are not copi ed.

A copy attempt may fail if there is not enough room in the active workspace or if there are too many new symbols.
After issuing the appropriate error message, APL restores the original active workspace (as it existed prior to the
copy command). An infrequent error message of this type is "TOO BIG TO LOAD". This happens when copying
from a different account in which two conditions are met. First, the workspace being copied from is large (so large
that it cannot even be loaded by the current user). Second, the referenced account was allocated more computer
memory than is avai lable to the current user's account (memory allocations are specified by the installation manager).
This difficulty can be circumvented with the cooperation of the owner of the larger account. He can copy portions
of the large workspace, forming one or more smaller workspaces. After this cooperative activity, the current user
can copy requ ired obj ects out of those sma II er workspaces.

Note: Due to extensive input/output processing, a copy command may take a long time to complete. This is par
ticularly true if either the active or copied workspace is relatively large.

If a copy command is issued during function definition mode, the currently open function is temporarily closed.
When the copy is completed, the function is automatically reopened. The copy may have replaced the cu rrent
function. If the copy command names functions that are pendant in the active workspace, they are not replaced.
Suspended functions may be replaced and may cause an SI DAMAGE error message tobe issued. Use of the)PCOPY
command precludes this possibi I ity.

The)PCOPY command, the protected copy command, functions the same as the)COPY command except that an ob
ject is not copied if active workspace already contains an object with the same name.

A group of objects can be copied even though the group definition is not. This happens if the group name matches
a current pendant function or if the name matches any object in the case of)PCOPY. Alternatively, a group
definition may be copied but some of its objects not copied.

Examples

)COPY HENRY.ACCT33.SECRET
HENRY SAVED 10:56 JUN 30,172

)COpy HENRY
HENRY SAVED 10:56 JUN 30,'72

)COPY HENRY COS NAT
HENRY SAVED 10:56 JUN 30,'72

)COPY HENRY •• SECRET
HENRY SAVED 10:56 JUN 30, '72

Commands

}

}

1

Copies all of a saved workspace named HENRY, which
was saved with the password SECRET in another user's
account (account ACCT33); and produces a save re
port giving the time and date HENRY was saved.

Copies an entire saved workspace named HENRY from
the user's own account and produces a save report
giving the time and date HEN RY was saved.

Copies a function named COS and a group named
MAT from a saved workspace named HENRY in the
user's own account; and produces a save report giving
the time and date HENRY was saved.

Copies all of a saved workspace named HENRY, which
was saved with the password SECRET in the current
user's account; and produces a save report giving the
time and date HENRY was saved.

lDiGITS Specifying Number of Sign ifi cant Digits

The digits command allows the user to set the number of significant digits in noninteger numerical output to some
number between 1 and 16 inclusive. Without this command the A PL system wi II display a maximum of 10 sign ifi cant
non integer digits. On Iy displayed output is affected by this command; interna I calcu lations are not affected. The
command has two forms

)DTGITS
)DIGITS n

where n indicates the number of significant noninteger digits to output and can be any number from 1 through 16.
The first command form,)DIGITS, simpiy causes the APL system to print the current setting for singificant digits.
The second command form,)DIGITS n, changes the significant digits to be output and causes the APL system to print
the previous setting for singificant digits. It should be noted that internai precision of the computer provides a max
imum of 16 digits for some simple operations, 15 or less for more complex operations. if)DIGITS 16 is used, at least
the last digit is subject to error; for this reason 16 is not a recommended setting.

Examples

)DIGITS
IS 10

)DIGITS 15
WAS 10

4f9
0.444444444444444

WAS 15

)4f9
0.44444

}

}

}

}

}

User requests significant digits be displayed, and APL responds with
current setting.

User sets significant digits to 15, and APL responds with previous
setting.

User requests calculation, and APL responds, showing 15 significant
digits.

~J5cr sets signif:ccnt digits to 5, r",c:nnnrlc: """'''',-' , --1l,PL previOI... .. ''S

setting.

User requests calculation, and APL responds showing 5 significant
digits.

The number of significant digits to be output can also be changed with the DIGITS function described in Chapter 7,
"Defined Functions".

)DROP Dropping a Saved Workspace

This command allows the user to remove a saved workspace from his account. It has two forms - one for removing un
protected workspaces and another for removing workspaces protected with a password. These two command forms are

)DROP wsname
)DROP wsname •. password

where

wsname is the workspace name to be dropped.

password is the password that was saved along with the workspace.

If the workspace is not found or if a proper password is not provided, APL returns the message WS NOT FOUND. If
the workspace is deleted, APL returns a message identifying the workspace and the time it was last saved.

Examples

)DROP PAYROLL •. SAVINGS

PAYROLL SAVED 10:37 JAN 30,'75

)DROP DANEE'N
WS NOT FOUND)

Removes workspace PAYROLL, saved with the password
SAVINGS, from the user's account.

Attempts unsuccessfully to drop workspace named
DANEEN. Either the workspace does not exist or a
needed password has not been provided.

)DROP may not be used to delete files other than APL workspaces. If an attempt is made to delete an existing file
which is not an APL workspace, BAD FILE REF is reported.

Commands 133

)ERASE Removing Objects From Active Workspace

The erase command allows the user to delete one or more named objects - functions, global variables, groups - from
the active workspace. This command has the form

ERASE objname

where objname is the name of the object - function, variable, or group - to be erased. Note that it is the object
that is erased; its name remains in the symbol tab!e. More than one object name can also be specified in the erase
command, with blanks used as separators between the names. Including the names of global variables and functions
in an erase command causes the actual variables and functions to be erased. If a group is named in the erase com
mand, that group definition is erased along with any functions or variables named in the group; however, if it also
names other groups, they are dispersed (group definitions are deleted, but not their referents). For example, sup
pose G 1 is a group conta ini ng variab Ie names A and B plus group name G2. Further suppose that G2 contai ns var
iable names X and Y. Then erasing G 1 deletes G 1, A, B, and G2; but variables X and Yare retained. Pendant
functions cannot be erased. During function definition, if the function being defined is erased, its current definition
is abandoned (equivalent to closing the function and then erasing it).

Examples

)ERASE MATHFUNCTIONS

)ERASE PAYROUTINE GROSS INS

Note:)ERASE wi II not remove local variables.

)FNS Listing Function Names

)
Erases a group named MATHFUNCTIONS and the func
tions and variables it names. It disperses any group
named within the group MATHFUNCTIONS.

Erases a function named PAYROUTINE and two vari
ables named GROSS and INS.

This command allows the user to list alphabetically the names of functions in the active workspace. Three forms
are acceptab Ie:

)FNS
)FNS string
)FNS stringl string2

The first form displays all function names. The second form displays all function names that match or exceed the
"string"t in an alphabetic ordering. The third form displays all function names that match or exceed "stringl" and
are also less than or match I string2". Alphabetic ordering is i Ilu~rated in the examples below. Note particularly
the first)FNS command since it indicates where each name character lies in alphabetic order.

Examples

)FNS
F Ftl F6 FE. FF FX FXY FO F1 S

)FNS FF
FF FX FXY FO F1 S

)FNS F FF
F Ftl F6 FE. FF

)FNS FFF FX
FX

)FNS FXY FXY
FXY

)FNS tl S4
F Ftl F6 FE. FF FX FXY FO F1 S

tWhere "string II is any sequence of characters not including a blank or carriage retum. If a string includes more
than 80 characters, those past the 80th are ignored. Strings are used for range demarcation.

134 Commands

lGROUP Defining a Group

This command allows the user to reference a group of names - variables, functions, other groups, or just
names - collectively. Group definitions can be used in erase and copy commands to faci I itate erasing and copying
a group of related objects. The command to define a group is

)GROUP grpname list

where

grpname is the name of the group . .A. group name follows the some formation rules as a variable or function
name, except that a group name cannot be the Same as a function or global variable in the workspace.

iist is a iist of the names that make up the group.

Names can be added to an already existing group by merely repeating the group name in any of the command forms

)GROUP grpname grpname list
)GROU P grpname list grpname
)GROUP grpname list grpname list

A group can be dispersed with the command form

)GROUP grpname

This form disperses the group; that is, removes the name references previously associated with grpname. The names
and their references are not themselves erased - only the group identity is lost. An erase command could have been
used to remove the group, but the erase command removes the group and deletes the qroup referents (the actual fun<...
tions or variables) from active workspace.

Examples

)GROUP PROBl COS TAN A B

)GROUP PROB1 PROB1 D ST

)GROUP PROB1

}

}

}

Defines a group named PROB 1, consisting of the vari
able and function names COS, TAN, A, and B.

Adds the variables D and ST to the already existing
group named PROB1.

Deletes the group named PROBl from the active work
space. The referents of PROBl are not deleted.

Note that the last example disassociates the function and variable names from the group, but does not delete actua I
functions and variab les from the active workspace. The)GRPS command can be used to verify that the group named
PROB 1 has been deleted, and the)F NS and)VARS command can be used to verify that the named functions and
variables still remain in the active workspace.

)GRPS
)FNS

COS TAN
) VARS

A B D ST

Also see the)GRP and)GRPS commands below, which list the members of a group and the names of groups in active
workspace respectively.

Commands 135

)GRP Listing the Members of a Group

Th is command a lIows the user to list ob ject names mak i ng up a group. It has the form

)GRP name

where name is the group name. The APL system responds by pri nti ng the names of the ob jects in the named group.

Examples

)GROUP Gl ABC
)GRP Gl

A B C
)GROUP Gl Gl D
)GRP Cl

A B C D
)GROUP Gl X Y Z Gl G2
)GRP Gl

X Y Z A B C D C2
)GROUP G2 X A Fl
)GRP G2

X A Fl
)GRPS

Gl G2
)GROUP Gl
)GRPS

G2
)GRP Gl
)GRP G2

X A Fl

)GRPS Listing Group Names

This command allows the user to list alphabetically the names of groups in the active workspace. Three forms are
acceptab Ie:

)GRPS
)GRPS string
)GRPS string 1 string2

The first form displays all group names. The second form displays all group names that match or exceed the "string"t
in alphabetic ordering. The third form displays all group names that match or exceed "stringl" and are also less than
or match "string2". Alphabetic ordering is illustrated in the examples below. Note particularly the first)GRPS
command since it indicates where each name character lies in alphabetic order.

Examples

)GRPS
G Gll Gt:. Gr;. GG GH GHI GO Gl H

)GRPS GG
GG GH GHI GO Cl H

)GRPS G GG
G Gll Gt:. Gr;. GG

)GRPS GGG GH
GH

)GRPS CHI CHI
GIll

)GRPS II H8
G Gll Gt:. Gr;. GG GH GHI GO Gl H

tWhere "string" is any sequence of characters not including a blank or carriage return. If a string includes more
than 80 characters, those past the 80th are ignored. Strings are used for range demarcation.

136 Commands

lUB listing Names of Saved Workspace

This command allows the user to list the names of workspaces saved in his own account or another user's account.
If a password was saved with a \Norkspace, the workspace name is listed, but not the password. To list names of the
current user's saved workspace, use the command

)LIB

To list names of saved workspaces in another account, use a command of the form

) LIB account

) liD Will only list workspaces saved by APL release AO 1 or later.
APl processors such as PCl, they may not be listed by)UB.

1~ _____ L ____________ .. L ___ .. __ LI.. ___ :_...1 L .• __ _
JI WUIK.:'fXH.;t:::. Ult:: :'UU:.t::LjUt::IIIIY \,OutJ.t::u uy "U'I-

Examples

)£IB
APLQUIZ
APLS1DH
PROB1
PROB2

)L18 R2,'[07207

FACTOR
T1.1VPI'}'f

lLOAD Retrieving a Saved Workspace

}

1
f

Lists names of saved workspaces in the current user's
account.

lists names of saved workspaces in another account
,. nrTA,I'")",<
\'-t'-'-VUll! r'.L1UILU! j.

This command allows the user to load a replica of a saved workspace into his active workspace. The saved work
space may be retrieved from a user's own account or another account. This command may take any of the following
forms:

)LOAD wsname
) lOAD wsname .account
) LOAD wsname •. password
)lOAD wsname .account. password

where

wsname is the name of the saved workspace.

account is the account under which the workspace was saved. This option is necessary only when accessing
a workspace saved in another account; it is not necessary when accessing a saved workspace in the current
user's account.

password is a user-assigned password. if a password was saved with a workspace, that password must aiso
be used to access the workspace.

Note that if a saved workspace is being retrieved from another account, the account must be specified in the load
command. Also if the workspace was saved with a password, that password must be included in the load command.
In response to a successful load, the APl system prints a message giving the time and day that the workspace was
saved. If the workspace is not found or if a proper password has not been used, APL pri nts the message WS NOT
FOUt'~D.

If a workspace has been saved using the AUTOSTART option (Pages 130-131), execution will start automatically
after the load.

Commands 137

If a workspace was saved during function definition mode, the)LOAD command causes APL to automatically reopen
that function and prompt the user to continue function definition or editing. (He may choose to close the function
immediately.)

Examples

HENRY SAVED 15:28 JUL 01,'72
)LOAD HENRY 1

HENRY

HARRY

SAVED 15:28 JUN 01,'72
)LOAD HENRY.oSECRET }

)LOAD HARRY.ACCT33.SECRET
SAVED 15:28 JUN 01,'72

Loads workspace HENRY into active workspace and
prints a save report. Workspace HENRY was previously
saved in the current user's account.

Loads workspace HE NRY into acti ve workspace and
prints a save report. Workspace HENRY was previously
saved with password SECRET in the current user's
account.

Loads worbpace HARRY into active workspace and
pri nts a save report. Workspace HARRY was previously
saved with password SECRET in account ACCT33.

)OBSERVE Observing Intermediate Results as APL Interprets a Statement or Traced Function Statements

The)OBSERVE command allows the user to observe intermediate resu Its developed by APL as it interprets a statement.
This could be thought of as a "super-trace" capability. The command format is

)OBSERVE

Following an)OBSERVE command, the succeeding statement is observed along with any traced function lines that
are encountered. Subsequent direct statements are not observed unless the user precedes each of them by a new
)OBSERVE command. Thus, an)OBSERVE command is short-Ii ved - applicable to on Iy one di rect statement. By
setting trace-vectors for functions to be encountered during an execution, however, the user can observe arbitrarily
selected statements unti I he issues another direct input line.

While an)OBSERVE command is in effect, Xerox APL displays a series of observations. An observation consists of
displaying: the current line being executed, a marker (error caret) beneath some character in that line, and the
value resulting at that point in execution (empty results, as usual, cause no value to be displayed). The observa
tion marker often marks the leftmost point reached, so far, during APL interpretation of the line; however, when an
operator yields its result, the marker is placed below the operator for clarity. (The only exception is the execute
operator, in which case the "leftmost" ru Ie applies.)

For "observed" lines, observations occur for:

• Each operator resu I t
• Each function result
• Arguments that have not already been observed on this line
• Indexed arguments

Observations are not made for assignments since the assigned value has already been observed prior to the assign
ment. Observations are also not made for the full variable when it is used as an indexed variable; this eliminates
lengthy displays in cases such as the following sample)OBSERVE command.

5

G

138 Commands

A+l000P'GORP'
) OBSERVE
B+A [5]
B+A[5]

A

B+A [5]
A

}
}

This is the observed line.

Observation of the argument 5.

Observation of the indexed argument A[5J.

Note in the above sample that A was not displayed. This is fortunate since its display wou Id produce lOOOcharacters,
most of which contribute nothing to the observed statement.

The)OBSERVE command has three valuable usages: for debugging, for learning how a calculation is performed, and
for developing better APL functions. Its value in debugging is obvious. Suppose a complicated APLstatement pro
duces a LEN GTH ERR. By using the)OBSERVE command and reissuing that statement, the programmer can vi ew de
velopment of va lues leading up to the error and readi Iy see what caused the problem.

Usage of the)OBSERVE command as a learning tool can be a tremendous timesaver. When presented with a new
APL statement or function, the user can spend a great deal of time analyzing how it accomplishes its result. By
observing a sample run, the interpretation path and values can be readi!y inspected, simplifying analysis greatly.
The reader might apply this process to the following function.

VPRTMP.';T1P'T'n N· p. T·.T

[1 J (~ f (-0 ~ (1 ~ if) 0 -~ i J) ~ ('(R-+- 1 L lJ * 0 • 5) o. = I)) I J -+- 1 + 1+-1 N -lV

This function produces the prime numbers existing up to the positive integer specified as its argument. To observe
this function in a sample case, the user might proceed as follows:

'l'fj, PRIMESUPTO-+-l
)OBSERVE
PRIMESUPTO 15

Set to trace line 1 of the function.
Request observations.
Call the function.
About 30 observations are made; then the)OBSERVE

command "disappears ".

There are at least two ways in which the)OBSERVE command can be used to develop better APL functions. First,
redundant calculations are made obvious and the programmer can then eliminate such redundancies. The following
function is an inefficient version of the PRIMESUPTO function. The reader might try observing the function to dis
cover how apparent such redundancies become under the)OBSERVE command.

VPPIMESUPTO N
L .l. J "I \ T \ U ". \.J.. T l L J.~ J\ U • J) • j ..l T l 1'- - ..L.)) y \ \ ~ L It J\ U • -..J ;1 • w J I / I ...L. t . i..r ...L,

The PRIMESUPTOO function takes considerably more execution time {and produces more observations} than the
PRIMESUPTO function shown previously.

The second way in which)OBSERVE is useful for developing better APL functions is not obvious. It depends upon
the creativity and imagination of the user. By viewing the manner in which a calculation is carried out, the cre
ative user may recognize patterns that can be more easily produced by other calculations. In other words, observa
ti ons can suggest a Iternate approaches to so Iving a given problem.

One final note about the)OBSERVE command should be presented. Suppose the user suspends execution during an
observed run by hitting the break key, for instance. This removes the)OBSERVE command. Subsequent execution
will not be observed unless the user issues a fresh)OBSERVE. As stated earlier, this command is short-lived. At
times its short life can be inconvenient, but considering the voluminous output possible with the)OBSERVE command
this is more often a convenience.

}OFF and }OFF HOLD Signing Off

These commands provide two ways for the user to sign off the APL system. The)OFF command deletes the active
workspace and logs off both A:L and CP-V (producing the CP-V log-off messages). Its form is simply

)OFF

The)OFF HOLD command also deletes the active workspace, but logs the user off APL and returns control to the
Terminal Executive Language (TEL) subsystem. The form of this command is simply

)OFF HOLD

In response to the)OFF HOLD command, the TEL subsystem prints a 0 prompt character to signal that it has con
trol. (This is the same as the! prompt character shown in CP-V documentation; it's just that an APL typeball prints
a 0 instead of a !.) The user is then free to enter any other TEL commands.

Note: If APL has been called from a load module, not directly from TEL,)OFF HOLD returns to the calling load module.

Commands 139

140

Examples

)OFF

CPU .0095 CON= :01 INT

)OFF HOLD

4 CHC

}

Logs the user and produces the CP-V log-off mes
sages. (See Figure 1 in Chapter 2 for a description of
the log-off messages.)

Ends APL system communication and returns control to
TEL.

}OPR and)OPRN Communicating With Computer Center Operator

These commands allow the user to communicate with the operator in the computer center. The)OPR command allows
the user to send messages to the operator and request a reply; it has the form'

)OPR message

where message is the actual message to the operator; it cannot exceed 120 characters. The APL system responds by
printing the word SENT and by locking the keyboard unti I the user depresses the ATTN key. Note that the operator's
console wi" not include special APL characters, so messages shou Id be limited to ordinary alphanumeric characters.

The)OPRN command is simi lar to the)OPR command except that no reply is expected from the computer operator.
This command has the form

) OPRN message

where message is the same as described above. The APL system responds to this command with message SENT and
then unlocks the keyboard.

Examples

)OPR CP-V UP SUNDAY?
SENT

YES,FOR AWHILEo

)OPRN TRIAL MESSAGE.
SENT

)ORIGIN Setting Index Origin

}

DON'T REPLY. }

Illustrates sending message to operator and
rece iving reply.

Illustrates sending message to operator, with
no reply expected.

This command allows the user to set or display the origin for indexing on arrays and for operators related to indexing.
There are two origins available -0 and 1. The operators affected are index of and index generator (t), indexing
([J), grade up (4), grade down ('4'), and random (?). To set the origin to lor 0, the command form is

)ORIGIN n

where n is either 0 or 1. This command causes the APL system to reset the index origin and to print a message indi
cating the previous index orig in. If the user does not supply parameter n when issu ing this command, the current
index origin wi" be displayed. Note that the)ORIGIN command affects the active workspace and is saved
along with a workspace. The index origin can also be changed with the ORIGIN function described in Chap
ter 7, "Defined Functions ".

Examples

)ORIGIN
IS 1

) ORIGIN a
WAS 1

)ORIGIN 1
WAS a

Commands

)PCOPV Copying Information from Saved Workspace to Active Workspace

This command, the protected copy command, functions the same as the copy command except that an object is not
copied if the active workspace already contains an object with the same name. See the)COPY writeup earlier in
this chapter.

)QLOADJQCOPV! and)QPCOPV Qui et Load and Copy Commands

)QLOAD,)QCOPY, and)QPCOPY are slight variants of)LO.~D,)COPY, and)PCOPY. The IIQ II stands for quiet
the IISAVEDII message normally shown at the conclusion of a load or copy is suppressed on a quiet load or copy. No
other message (i. e., error diagnostic) is suppressed by the quiet commands.

,... •• Ani I- I. I r.1 r IL ___ e_ L _~~ _________ I ____________ .1.1 ___ .1. •• __ ~. ___ •• .I. _ _____ L!_...-_.l._ , __ -' __
~errOin At'L appliCaTiOn programs oeneTlr Trom rne qUieT communu:) - plOylUfll~ IIIUI u~t:: t::Jl.t::I..UIt::-Opt::IUIIOII;) 10 10UU 01

copy without user intervention. Since the user is unaware that such load or copy commands are executed, he would
be puzz led by IISAVED II messages.

The quiet commands should be inserted in programs only after the application is well checked out. In the event of
an error subsequent to a quiet load or copy, it may be difficult to isolate the problem for lack of knowledge about
the workspace envi ronment.

lSAVE Saving Active Workspace

This command saves a copy of the active workspace in the current userls account. It does not allow the user to save
the active workspace in another account. This command may take any of the following forms:

)SAVE
)SAVE wsname
\r A \ Ir I
)JI~ V r.: vvsname. or paS5\A/Oi a

)SAVE ;expression
}Jt-\ V L W~IIUlllt ; tJl.pl t~~IOII

)SAVE wsname •• password; expression

The first form saves a workspace that already has a name; that is, one that was named with the)WSID command or
that was previously saved with a name and then loaded into the active workspace.

The second form saves a workspace and assigns a name to it (where wsname is the name of the workspace). Like
other APL names, the workspace name can consist of one or a combi nation of letters (A to Z, or ~ to"!:), numbers,
and /I. or il, with the restriction that the first character cannot be a number or the combination Tll or SL'l. Unlike
other APL names, a workspace name is limited to 11 characters; more characters can be used but the APL system will
ignore them. It is strongly recommended that only letters and digits be used in workspace names. The other char
acters can lead to confusion if those names are presented to subsystems of UTS other than APL.

The third form saves a workspace and assigns a name and a password to it (where wsname is as described above). A
word of caution is necessary about using passwords in the save command. If a saved workspace a Iready exists with a
given name and password, specifying the same name with a new fXlssword in the save command will not change the
password. Instead it results in the error message BAD FILE REF. The previous passworded workspace must be deleted
before a new version can be saved. To delete the prior workspace, use)DROP with the name and password.

A sealed workspace may not be saved. If the current workspace was loaded as a sealed workspace or the)SEAL com
mand has been issued, the workspace can no longer be saved by)SAVE or)CONTINUE. Attempts to do so will re
sult in BAD FILE REF error.

AUTOSTART. The fourth, fifth, and sixth forms are similar to the first three except that the expression to the right
of the semicolon is saved with the workspace, and execution of that expression occurs automatically each time the
workspace is loaded. The expression must fit on the same line as the)SAVE command and may be any executable
APL expression. Typically it will be a call to a user-defined function which initiates processing and requests user
interaction. The lautostart l form of)SAVE may be issued only in direct input mode {not in evaluated input, func
tion definition, or execute mode}.

When a workspace is successfully saved, the APL system prints a save report giving the name of the workspace and
the time and date of the save. This is printed on the line following the save command. The)SAVE command also

Commands 141

updates the current workspace identification, i. e., WSI D. The name of the saved workspace along with its password
(if any) becomes the WSI D for the active workspace. If the workspace cannot be saved - because it exceeds the
available space in the user account - the system prints an error message. In this case the user will have to delete
some workspaces or other fi les from his account before he can save any APL workspaces.

If a save command is issued during function definition mode, the currently open function is temporarily closed. The
saved workspace carries an indication that a function should be reopened on)LOAD. After the save command, APL
reopens the function and prompts the user to continue function definition or editing.

Examples

)$AVE
CONTINUE SAVED 15:28 JUL 01.'72

)SAVE KAWA
KAWA SAVED 15: 28 JUL 01,'72

)SAVE SANDY. oPAT
SANDY SAVED 15:28 JUL 01,'72

)SAVE FILEOPS; FIODESCRIBE

)SEAL Saving a 'Sealed' Execute-Only Workspace

This command may take any of the following forms:

}SEAL wsname
)SEAL wsname •• password
)SEAL wsname; expression
}SEAL wsname •• password; expression

1
}

}

Saves copy of an active workspace that already has a
workspace name (CONTINUE), and produces a save
report.

Saves copy of active workspace with the name KAWA,
and produces a save report.

Saves copy of active workspace with name SANDY and
password PAT, and produces a save report.

FIODESCRIBE, in this case, may be a function which
identifies the nature of the workspace and permits the
user to request detailed descriptions of file I/O func
tions. When FILEOPS is loaded, FIODESCRIBE wi II
be called automatically.

SEAL first locks all functions in the current workspace and identifies the workspace as sealed. The workspace is then
saved with the attributes: READ access, NON E, WRITE access, NON E, EXECUTE access, ALL, via APL only. The
saved workspace thus may not be accessed by any processor other than the current official version of APL. Any APL
user may execute the workspace, but may not display user functions or resave the workspace.

A candidate for a sealed workspace should be a thoroughly tested, self-sufficient, application package in APL. The
originator should maintain a backup unsealed version, passworded, to allow for unforeseen error corrections or other
changes.

A sealed workspace is protected from any form of inspection which will divulge the contents of functions in that work
space. Displays of other workspace information, such as names of variables, are also prohibited. Normal operation
can only be resumed after the sealed information is removed by a command such as)CLEAR or)LOAD.

If the save is not successful, BAD FI LE REF, FILE SPACE TOO LOW, or other relevant error messages may be issued.
The active workspace will not be sealed in this case.

)SET Changing Assignments of Input/Output Streams

The)SET command applies to four input/output streams as follows:

• INPUT - Source input for APL. Normally assigned to user's console for on-line users; card reader for off
line users.

• OUTPUT - Normal terminal or printer output stream. Normally assigned to user's console for on-line users;
line printer for botch users.

• [j] or [2J 'blind input/output streams (Appendix B).

142 Commands

Syntax of)SET

The following opl'ions are available:

logical device
DC/fid

f
UC 1

)SET INPUT Dproackidl/fid r;dootr;doptl ••• 1
, 19T~apeidTt;fid] - ~

BT fit 'd] r If'dn
I

L.:apel l'.1 J

I.. MT[tapeid] [/fid]j

rue I. , • L , __
logical aevlce

LP

)SET OUTPUT
DC/fid
DP[packid] /fid
9T[tapeid] [ffid]
BT[tapeid] [lfid]
M T[tapei d] [/fi d]

[;dopt[;dopt] ••.]

)SET {~}

where

BCD
BIN
NODRC
DRC

f~~OUTl OUTIN
lOUT J

UC is users console.

DC is disk.

DP is disk pack.

9T is 9 track tape, 800 BPI.

r

UC
logical devi ce
LP
DC/fid
Dprpackidl/fi d

I
I 9T[tapeid] [/fid] II

BT[tapei d][/fid]
l M T[tapeidJ [/fidJJ

BT is 9 track tape, 1600 BPI.

MT is 9 track tape, system default density.

[;dopt[;doptJ ••• 1 [;SIZE =NJ

If 9T, BT, or MT is not followed by Tapeid and input mode is selected, an I/O error will result. If output mode is
selected without Tapeid, a scratch tape is generated.

Logical Devices are installation-dependent name designations for devi ces such as the Remote Batch Termi-
nai, card reader, etc.

Packid is private pack serial no., of form # serial no.

Tapeid if not followed by /fid, refers to external serial number of a free-form tape. In this case the tape is
considered a device.

Tapeid/fid specifies a labeled tape with SN equal to the designated number.

Tapeid has the form # serial no.

Commands 143

Serial Numbers are 1 to 4 alphanumeric characters.

Fid is the standard CP-V file identification format.

'dopt' includes COUNT=C (C = 1 to 140)
DATA =C (C = 1 to 144)
LINES =N (N = 1 to 32,767) If LP (N = 1 to 255) If UC
SPACE =N (N = 1 to 255)
VFC
NOVFC

[

• account ~
name • account. password

•• password

where

SIZE = N sets the byte count for reads through rn or [2) • N = 1 to 32,767. Default is 512.

COUNT = C turns on page control and initializes the page count, which will appear at column C at the top
of each page.

DATA = C sets the leftmost column at which output will appear (line printer only).

LINES = N sets the number of lines per page. If a large value is used, this means no header output.

SPACE = N sets line spacing if mode is NOVFC.

VFC sets Vertical Format Control On.

NOVFC sets Vertical Format Control Off.

BCD BCD device read-write mode.

BIN Binary device read-write mode.

NODRC Monitor special formatting On.

DRC no special formatting of read-write records.

)SET functions analogously to !SET in TEL (CP-V TS.t"'Reference Manual, 900907). There are, however, some re
stri ctions and differences.

Syntactic Differences between)SET and ISET

• Names and APl symbols are used instead of DCB names.

• For rn and [2] , IN, INOUT, aUTIN, or OUT must precede the file/device designation. It is not an
option.

• For output operations, the mode is automatically output and SAVE. There is no provision to create tempo
rary files.

• No explicit file mode options are permitted. Access is always sequential. Output files are
consecuti ve.

144 Commands

Operation of)SET

There are operational differences between !SET and)SET. ISET operates only between job steps with the relevant
DeBs closed.)SET may be executed while a DeB is open and active.

If)SET is executed and the relevant DeB is open, the DCB is closed with SAVE prior to executing the changes in the
DeB. It is then reopened.

The close is executed with a 'remove' option; thus, whenever magnetic tape has been specified and a new)SET is
issued, the tape reel currently in use will be rewound and a dismount message issued to the operator.

The availability of input/output devices, particularly magnetic tope and private disc volumes, is subject to instal
!ation control. APL users who access such devi ces should be ewere of such controls and local conventions on opei=
ator requests for tape mounts.

Default Devi ce Settings

The following are considered default device settings. Any time on I/O stream is given a device assignment which
differs from its prior assignment, the defaults arereestablishedunlessother options are specified in the)SET command.

DATA = 1
LINES = 32767
SPACE = 1
NOVFC
BCD
NODRC

J-\UUlflonUI inrurrnurlon concerning Hle uevlce opTion~ Tor ,)[.1 ana mel! u~e In rormattlng OUTpUT ;~ conTalnea In rne
CP-V TS/Reference Manual, 900907, particularly Tables 5 and 40.

User Prompts

If either output or input is diverted from the terminal, the prompts normally issued to the user will be omitted. On
2741 equivalent terminals, the user can determine readiness for input by the terminal lock-unlock status. On tele
type and ASCII terminals with full duplex, the echoing of characters indicates input is being accepted.

Break and Error Response

Errors on [j] and (2]. There is no essential change in the handling of errors in OJ and ~ input/output. The in
clusion of)SET within APL permits error action by the user or, if error control is used, in APL functions.

Errors on INPUT or OUTPUT. If normal input or output has been reassigned from the 'home' device by)SET and an
I/O error occurs, control is returned to the home device{s). This is user's console for on-line users, cord reader and
line printer for off-line. If error control is not in effect, an I/O error message is then output. If control is in effect
for I/O errors, no error message is output. The user's error control function should note that input and output have
been restored 'home' from their)SET assignments.

In order to avoid I/O translation problems, APL will also revert to 'home')TERMINAL type if the input or output
terminal type has been individually modified. The CP-V Time-Sharing Reference Manual, Appendix B, includes
tables of CP-V error codes for input/output errors.

Break Response. If normal input or output has been reassigned from the home device by)SET, it is restored ta the
home device by a Break. Translate tables will be restored to 'home')TERMINAL type. If the user has taken break
control, the function which manages break control should note that input and output have been restored to the 'home'
device and terminal.

Commands 145

)SET and VFC

In addition to modifying the DeB to indicate Vertical Format Control, VFC modifies APL output routines to
automatically prefix a vertical format character to each output line. Provision, described in Chapter 9, is added to
APL to permit user control of output spacing with format control characters.

BCD/BIN and NODRC/DRC

These device options affect device read-write formatting control exercised by CP-V.

Default is BCD;NODRC.

BIN; DRC provides 'transparent' input/output, with no translation or special treatment of characters by CP-V.

SIZE Option for ill and ~ Input

The SIZE option allows relief of the restriction on the size of records input via OJ or [2]. Two benefits are thus
derived:

• Large records can be read.

• In 'transparent' mode via user's console, the SIZE can be reduced as desired to avoid 'waiting for input'
conditions. (In this mode on input record is not processed by CP-V until the SPecified byte count has been
reached.)

)51 and)SIV Listing or Controlling the State Indicator

The following commands allow the user to find out what functions have been suspended during execution and where.
They hove the forms

)51
)SIV

The)SI command displays the contents of the APL system state indicator, which is a list of suspended and pendant
functions. For example,

)SI
..4r?l *
XY[5J
pr3] *

The most recent suspended function is listed first. An asterisk after an entry indicates a suspended function; no as
terisk indicates a function that is pendant. In the above example, function A has been suspended just before line
number 2, and function B just before line number 3. Function XY is pendant because it referenced function A at
line number 5. If)SI is issued when on input quad is pending, the input request will also be displayed, using the
o character. If)SI is issued when an 'execute' is pending, the execute call will be displayed, using the E character.

The)SIV command lists the some information as the)51 command except that. it also lists the local variable names
appearing in the suspended and pendant functions. For example,

)SIV
Ar?] * HE CC Df)
XVrS]
?[11 * PAY TI A L

where BB, CC, and DD are local variables appearing in function Ai and PAY and VAL are local variables
appearing in functian B. Errors causing suspended functions shoo Id be corrected as soon as possible. Sus
pended functions can be cleared from the state indicator with the branch arrow (.). (Remember that the
state indicator with its list of suspended and pendant functions and local variables may take up a lot of work
space. Each branch arrow clears the most recent suspended function and all pendant functions associated with

146 Commands

it. This can be repeated until all suspended and pendant functions have been cleared; that is, until the)SI
command returns a blank line. Applied to the above example, this would give

) ,'; J

BC3] *

),r;I

['A'l VAL

A more convenient method for clearing the state indicator is to issue an)SI CLEAR command, see below.

For a discussion of the state indicators and suspended and pendant functions, see IIState Indicators II and IIFunction
Execution II in Chapter 7.

Three options are avai lable with an)SI command: CLEAR, OFF, and ON. These may also be used with an)SIV
command, with identical resu Its. The options provide control over the state indi cator.

The CLEAR option simply removes every entry in the state indicator. This often frees a substantial amount of work
space and is a valuable tool for recovering from WS FU LL errors. The usua I syntax is

)SI CLEAR

As with other command syntax, there must be at least one blank between the command and the option. This also
applies to the ON and OFF options described below. Only the first four letters, CLEA, are necessary, but others
may be supplied (as described for system command names).

The ON and OFF options set state indicator control for errors that ma)' occur r:luring subsequent execution of func-
11011:' In me aCTive WOIK:.pace fL 1l01l1lUliy ~ine vi'>J ::.eiilng) ::.u::.peIILl::) ille exe\..uling fUIH.:;riull II Ull t:UUi U\..\..Ui::'.

This is usefu I when debugging the workspace since it allows access to loca I variables for the suspended function.
Suspending the function, however, expends a certain amount of the active workspace, and this can be a disadvan
tage. Use of the command

)SI OFF

sets state indicator control to avoid suspending a function when an error occurs. Note that the OFF setting applies
only to errors. It has no influence over execution breaks or stop vectors; these may still cause function suspension.

To restore normal state indicator control, the command

)SI0N

may be issued. This setting also occurs automatically if a)CLEAR command is issued.

The ON or OFF state indicator control is saved when the active workspace is saved and loaded when the workspace
is loaded. Copying does not alter the control of the active workspace.

)SYMBOLS Altering Length of Symbol Table

This cOfnrnand allows the user to display or change the current length of the internal symbol table. (The default is
261 possible names.) It has two forms

)SYMBOLS
)SYMBOLS n

The first form of this command,)SYMBOLS, causes the APL system to print the current allocation and the number of
unused entries at present. The second form,)SYMBOLS n, causes APL to change the symbol table allocation and to
print the previous allocation. The n parameter is the number of names the user wants to be allowed to use. If this
number is reasonable, he gets at least the requested allocation, generally a little more; however, n may not

Commands 147

exceed 2001. The)SYMBOLS n command is allowed only when the active workspace is empty. Usually the user
wi II issue a)SAVE,)CLEAR, and)SYMBOLS sequence, and then issue a)COPY command - not a)LOAD - to make
use of the new allocation.

Examples

)5YMBOL5
250 UNUSED OF 261 }

Indicates that 250 more names can be entered in a
workspace whose symbol table allows 261 names;
therefore the workspace presently contains 11 names.

)CLEAR
CLEAR W5

)SYMBOLS 300
WA5 261

lTABS Setting Tabs

}
Changes the symbol table allocation to 300 or more,
and prints the previous allocation (i. e., 261).

This command can be used to display the current tab settings or as part of the procedure in setting new tabs for
input/output. To display the current tab settings, the command is simply

)TABS

to which APL responds with a message giving the current tab settings. To set new tabs, the user must follow
these steps:

1. Clear existing tabs, using the CLR portion of the CLR/SET key at the left side of the keyboard.

2. Set tabs at desired positions, using the SET portion of the C LR/SET key.

3. Type a command of the form

)TABS n

where n indicates the tab settings, and can consist of a scalar (one integer)or a vector (a series of integers)
as follows:

scalar indicates that tab settings are to be equally spaced or (if zero) that the APL tab feature is to
be turned off. Specifying an integer in the range 3 to 127 indicates that tabs are to be equally
spaced that size (integer) apart. For example, the command)TABS 15 sets tabs at columns 15,
30, 45, 60, etc.

vector indicates unequally spaced tab settings. The numbers must be in increasing order and must
start at a value of 3 or more. The highest number permitted is 127. For example, the command
)TABS 5 25 35 40 sets tabs at columns 5, 25, 35, and 40. Up to 16 tab settings can be speci
fied in this way.

The APL system responds to this command with a message giving the previous tab settings. If this command
is not specified, the APL system assumes a tab setting of zero by default.

Note that setting tabs is advantageous for speeding output on a standard APL terminal with true physical tabbing
capabi I ity. The use of the tabs command is discouraged on terminals without physical tabs (such as a teletype) be
cause tab simulation uses computer time without providing any real advantage. Tabs can also be set with the TABS
function described in Chapter 7, IIDefined Functions II.

148 Commands

Examples

)TABS
IS 5 25 37

)TAHS 10 } WAS 0

)TABS 5 25 37 } WAS 10

lTERMINAL Specifying Input/Output Device

Indicates that current tab settings are at columns 5, 25,
and 37.

Sets tabs at columns 10, 20, 30, 40, etc. The previous
setting was 0, i.e., no tabs were recognized.

Sets tabs at columns 5, 25, and 37. The previous tab
settings were 10, 20, 30, 40, etc.

This command is used to identify to the APL system the input/output device being used. It has the forms

)TERMINAL n
)TERMINAL INPUT n
)TERMINAL OUTPUT n

where n indicates the device to be assumed by the APL system and can be any of the following values:

indicates 2741 terminal (or equivalent) with APL typebaIJ - this is the standard APL terminal.

2 indicates 2741 terminal (or equivalent) with non-APL typeball.

3 indicates Teletype Model 33.

4 indicates line printer format output or card reader format input.

13 indicates a typewriter-paired APL/ASCII terminal, such as Tektronix 4013; the user must !:l.ot falsely de-

14 indicates a bit-paired APL/ASCII terminal.

This command is not required for users operating on a standard APL terminal or submitting batch runs for card input
and line-printer output (type 1 and type 4, respectively, are assumed by default). New terminal declarations are
acceptable at any time during an APL run, but the user should be aware of the consequences (such as error message
discrepancies and input/output translation problems). See Appendix B for more about this command and the sign-on
protocol on nonstandard terminals. I-beam 28 also results in the integer n; this may be useful for APL programs that
are sensitive to terminal type.

The form)TERMINAL INPUT or)TERMINAL OUTPUT modifies only the specified (input or output) translation table.
This form is useful when normal input or output has been diverted to an alternate device by the)SET command.

Examples

WAS 1

IS 2

WAS 1

)TERM 2 }

)TERM }

)TERM OUTPUT 4 }

Indicates that a 2741 terminal (or equivalent) with a
non-APL typeball is being used.

Shows that the non-APL 2741 terminal was most re
cently declared.

Sets output translation for line printer. Does not change
input translation.

As extended, APL now recognizes three separate parameters for input/output character translation.

'Home' terminal type is the sign-on default. It may be changed by the)TERM n command, for example, a
Tektronix 4013 user starts with home terminal type 3 and will normally issue)TERM 13 to use the APL character set.

Home terminal type is the one returned to on break or input/output error. Input terminal type is changed by either
)TERM INPUT n or)TERM n. Output terminal type is changed by either)TERM OUTPUT n or)TERM n.

Commands 149

Use of)TERM with)SET

The combination of)TERM and)SET permits a variety of I/O operations with devices and files. The user should be
warned that some choices, particularly changes to 'home' terminal, can result in inability to carryon further terminal
communication. In general,)TERM OUTPUT 4 should be used for line printer output, but not for filed output which
may be later used for input (such as function displays). Output which will be filed and reread by the same user should
preferably use home terminal type. If several users with different terminals will want to access the file, a common
type, probably 1, should be agreed on.

)VARS Listing Giobai Variabie Names

This command allows the user to list alphabetically the names of global variables in the active workspace. Three
forms are acceptable:

)VARS
)V ARS string
)VARS string 1 string2

The first form displays a" global variable names. The second form displays all global variable names that match or
exceed the "string"t in alphabetic ordering. The third form displays all global variable names that match or exceed
"stringl" and are also less than or match "string2". Alphabetic ordering is illustrated in the examples below. Note
particularly the first)VARS command since it indicates where each name character lies in alphabetic order.

Examples

}VARS
A A~ A6 Ad AA AB ABC AO A1 B

}VARS AA
AA AB ABC AO A1 B

}VARS A AA
A A~ A6 Ad AA

} VARS AAA AB
AB

}VARS ABC ABC
ABC

}VARS ~ B3
A A~ A6 Ad AA AB ABC AO A1 B

lWIDTH Setting Line Width

In a clear workspace the width of a line of output is set at 120 characters (or 72 characters if a non-2741 type termi
nal was initially recongized by APL). The)WIDTH command allows the user to change this width or to display the
current width, and has two forms

)WIDTH
)WIDTH n

where n is the number of spaces in a line of output and can be any number ranging from 30 to 254. The first com
mand form,)WIDTH causes the APL system to print the current line width setting. The second command form,
)WIDTH n, causes the APL system to change the line width setting and to print the previous line width setting. This
command is saved along with a workspace. The width of a line of output can also be changed with the WIDTH func
tion described in Chapter 7, "Defined Functions".

It shou Id be noted that a width greater than 130 is improper for normal operations on a standard APL terminal. A Iso
note that if the PLATEN command, at the CP-V leve I, has been used to set a shorter width than dec lared by)WIDTH,
then the PLATEN command overrides WIDTH. In this case lines may be spl it in the middle of individual values.

tWhere "string" is any sequence of characters not including a blank or carriage return. If a string includes more than
80 characters, those post the 80th are ignored. Strings are used for range demarcation.

150 Commands

Examples

)WIDTH
is 12u

)WIDTH
WAS 120

}

50

Displays the current width of a iine of output (i ,e"
120 spaces),

Changes the width of an output I ine to 50 spaces, The
previous line width setting was 120,

}WSID Identifying Active Workspace or Changing Its Name

This command allows the user to identify the active workspace or to change its name. To identify the active work
space, use the command

)WSID

and APL will return the name and account (if different than the current user account) of the active workspace. To
change the name of the active workspace, use the command form

)WSID wsname
)WSID wsname •• password

where wsname is the new name of active workspace. The APL system responds with a message showing the pre
vious workspace name. This name can be from 1 to 11 characters. A password may be specified, but a pre
vious password is never displayed.

)WSI D cannot be used to change the name of a sealed workspace.

Example:;

H/SID } Lists the name (CONTINUE) of the active workspace.
IS CONTINUE

);\' SID } Lists the name (J ON ES) and account (RE 107207) of
IS R[;I07207 JO:JES acti ve workspace.

)WSID SMITH } Changes name of active workspace from JONES to
WAS JONES SMITH.

Commands 151

9. REPORT FORMATTING

Xerox APL provides a formatted output capability by means of a set of fast intrinsic functions. They reside in a
designated "public" workspace (WSFNS), may be copied by any user, and occupy a negligible amount of the user's
workspoce since the functions are actually implemented as part of the APL processor. (See Appendix C.)

LlFMTt

The formatted output function, called ~FI~vH, utilizes a set of format control phrases thot are applied to a list of APL
expressions. The content of the APL expressions may evaluate to numeric or character scalars, vectors, or matrices.
The format control phrases, called format specifications, are described below.

Format Specifications

~FMT recogni zes six data format codes:

A Alphanumeric specification.

E Floating-point with exponent (scientific format).

F Floating-point to fixed decimal position.

Decimal integer.

X Blank insertion.

[!] TEXT [!] Text insertion.

Format specifications may be in any of the following forms:

[r] Aw

[r] Ew.s

[r][q] Fw.d

[r][q] Iw

[r] Xw

[r] [lJ TEXT [lJ

where

is an optional unsigned integer constant indicating the specification is to be repeated r times. When r is
omitted it is taken as 1.

w is an integer constant indicating the total field width, or number of print positions occupied by the for-
matted value (or blanks, for X type).

is an integer constant indicating the number of significant digits to be printed in E formats; s must be less
than w-5.

q is an optionalllqualifier ll or lIaffixture ll code used to position and affix characters to the results of I and F
output forms. The avai lable codes and their uses are described later in this chapter.

d is an integer constant indicating the number of digits to the right of the decimal point in F formats;
d must be I ess than w.

tThis feature was invented and introduced by I.P. Sharp Associates Ltd., Toronto, Canada.

152 Report Formatting

Format Specifications Versus Data Types

Format A may be applied to character data only. Formats E, F, and I may be applied to numeric data and logical
values only.

Arrays with rank above 2 (matrix) cannot be processed. If a value cannot meaningfully be expressed in the format
and field width specified, the field is filled with asterisks.

The Format Statement (left Argument)

A foriTlCit statement is the left argument of ~F~Y~T, opeioting on data values in the right argument. The format state=
ment consists of a character vector made up of one or more format specifications separated by commas. The left
argument of llFMT must always be a valid format statement. For example,

'3IS,2E8.2,X12,I3' 6FHT •••

The Data list (Right Argument)

The right argument of 6FMT must be a list of APL variables or expressions, separated by semicolons or a variable
formed by assigning such a list to a name. The expressions may represent scalars, vectors, and arrays. For example,

••• llFMT (VARIABLE1;VARIABLE1+VARIABLE2;'SUM')

If the list contains only one expression, the parentheses may be omitted.

Operation of L\FMT

llFMT uses the format specifications in its left argument (the format statement) to control printing of its data list
(right argument) in one or more columns. The syntax is

format stmt llFMT expr

or

format stmt llFMT list

The result of executing llFMT is one or more "lines" of formatted character data. A line may be as long as work
space allows. In printing, long lines are broken up according to the)WIDTH setting. If more than one line is pro
duced (as will be the case if the data list includes vectors or arrays with more than one row) all lines are of the same
length. The result, then, is a character matrix.

If llFMT is not used within a larger expression, the amount of temporary workspace required is only the length of one
line. Thus, formatted output may be used to process output that would overflow available workspace if assigned or
used in its entirety. If llFMT is used within a larger expression, the result is always a matrix, even if only one line,
and space for the full matrix is required.

The operation of llFMT on various right arguments is described below.

Scalar Arguments

If the data I ist consists exclusively of scalars, a single I ine is created. Format specifications are used in turn to pro
cess elements of the data list in left to right order. Blank insertion and text insertion specifications do not "use up"
elements of the data list, however. A repetition indicator will cause a particular specification to be applied the
designated number of times to successive elements of the data list. If there are fewer format specifications (counting
repetition indicators) than values to be formatted, the list of format specifications is reused as necessary until the
data list is exhausted.

Format Specificati ons Versus Data Types/Format Statement {left Argument)/Data list {Right Argument)/Operation of llFMT 153

Examples:

, 13. AS. X5' 6FMT (100;' A ' ; 200; , R ')
100 A 200 B

'5F502' 6FMT (1;10;100;-10;-1)
1 0 0010000********** 1.00

This last example illustrates the use of the repetition indicator. Aiso note the asterisks indicating that the values
100 and -10 would not fit in the specified format.

Vector Arguments

If the data list includes vector and scalar arguments (or vectors only), the number of lines generated equals the length
of the vector with the most elements. Each vector creates a "column" in the resulting character array. The columns
of shorter vectors or scalars are extended by blanks.

Examples:

'EI0.4' 6FMT 3.1 .123 1.234 5678
3.100EO
1.230El
l o 234EO
5.67BE3

'2I5.A2' 6FMT (1 2 3 4;10.4 10.6;'ABCDEF')
1 10 A
2 11 B
3 C
4 D

E
F

In the last example, note the rounding off of values as required for I format specifications, and also note the di ffer
ent column lengths.

Formatting a Vector on One line

The normal result of tl FMT on vector arguments is columnar formatting, but it is often desirable to create row formats
for vectors. There are two ways this can be done:

• Ravel the result of tlFMT. This method is appropriate if the result would contain a single column.

Examples:

.'A2' 6FMT 'DOUBLE SPACE'
D 0 U B L ESP ACE

o

154 Operation of tlFMT

• '15'
1

6FMT .14 1.4 14 140 1400
14 140 1400

• Reshape the vector as a 1 by N matrix. (This method uses a property of the operation of liFMTon matrices,
as discussed below.)

V+' TRIPLE+8PACE'
'A3' liFMT (l.pV)pV

T RIP L E + SPA C E

Matrix Arguments

If the data list includes a matrix argument, each column of the matrix 'lvill create a IIcolumn" in the forrnatted output.

Each row of the matrix will create an entry on a "line" of output. Note that a 1 by N matrix creates a row ofa col
umn, and an ~~ by 1 motri x creates the SOfne output forrn as an N el ernent vector.

In essence, li FMT outputs matrices in the same shape as unformatted output would, but permits control of decimal
placement, column positioning, etc.

Examples:

IOTA-+-3 5Pl15
'FS.l' liFMT IOTA

1.0 2.0 3 00 4.0 5.0
6.0 7.0 8 00 9.0 10.0

11.0 12.0 13.0 14.0 15 00

.r 1{ L+ , "T .1{ L '
;::; 001.'+

VECT-+-l 2 3 4
MAT-+-2 2p 01 2.0 30
'A1.F6.3.I5.2F6.1'

J 3.140 1 001 2.0
K 2 30 0 0 4.0
L 3

4

Forms of Output Values

4
liFMT (JKL;PI;VECT;MAT)

The following rules determine spacing and content of output fields for various format specifications.

• Right justification. For A, I, and F specifications, the value is right justified in the field and preceded
by blanks where appropriate to fill out the field.

• E format. The letter E always occupies the fourth space from the right in the field. Three spaces are
reserved for the exponent val ue and exponent sign. If I ess than three spaces are needed, the rightmost space
or spaces are blank. In this format there will be columnar alignment of the decimal points and letter E.

• ['J TEXT ['J format. Characters between the quote-quads are inserted directly into the output line.
There will be as many insertions as there are lines of output. No data list elements are expended by
text insertion.

• Significance of results. The)DIGITS setting is ignored in liFMT output; a maximum of 16 significant
posi ti ons wi II be displayed, however. If a format speci fi cation requests more than 16 signi fi cant digi ts,
digits beyond the sixteenth and to the left of the decimal point are replaced by underscores. Excess digits
to the right of the decimal point are replaced by blanks.

• Field width. If field widths are too small to hold formatted values according to the specification, the fields
are filled with asterisks.

Forms of Output Va lues 155

Qualifiers and Affixture Codes

I and F format specifications may be immediately preceded by one or more qualifier or affixture codes.

• Qualifier codes

B leaves the field blank if the result would otherwise be zero.

C inserts commas between triads of digits in the integer part of the result.

L left justifies the value in the result field.

Z fills unused leading positions in the result with zeros (and commas if C is also used) instead of blanks.

• A ffi xture codes

M(!] TEXT (!] prefixes negative results with the text instead of the negative sign.

N(!] TEXT (!] postfixes negative results with the text.

P(!] TEXT [!) prefixes posi tive results with the text.

Q(!] TEXT [!) postfixes positive results with the text.

R(!] TEXT [!] presets the field to the text, which is used as many times as necessary to fill the field.
The text will be replaced in parts of the field filled by the result.

Note: If Band R are both specified, R overrides B.

Qualifier and affixture code do not extend field widths. The modified result must fit in the field width specified or
asterisks will be substituted.

Nand Q affixtures, since they postfix the text, shift results to the left by the number of characters to be

postfixed.

Examples:

V+128 0 .25 64 12345.67
'BF10.1,X2,BI8,X2,CI10,X2,LI9' ~FMT (V;V,V,V)

128.0 128 128 128
o 0

0.3 0 0
64.0

12345.7
64

12346
64

12,346
64
12346

'ZF10.2,X2,MI!J**I!JF10.1,X2,PI!J+[!]I8' ~FMT (1',ViV)
0000128.00 128.0 +128
0000000.00 0.0 +0
-000000.25 **0.3 +0

000064.00 **64.0 64
012345.67 **12345.7 12346

'Q[!)+++[!)I9,X2,RI!J*[!)I8' ~FMT (V,V)
128+++ *****128

0+++ *******0
0+++ *******0

64 *****-64
12346 **-12346

156 Qualifiers and Affixture Codes

Combinations of qualifiers and affixtures may be used together to provide various output forms as shown below.

'M~-$~P~$~CF12.2' ~FMT (12345.67;-9.98)
$12,345.67 -$9.98

Use of Result

The principal use of AFMT is to provide lines of formatted output to the user's console. However; if 6FMT is used
as part of a larger APL expression, the result of executing 6FMT is a character matrix which may be manipulated
and used just as any other character matri x.

Error Exits

If the right argument includes an array of higher order than matrix, or the left argument is not a vector, a RAN K
ERR results.

If the left argument is numeric rather than character data, or contains no format specifications, or contains a format
specification with inconsistent parameters (such as d greater than w, or w = 0), a DOMAIN ERR results.

If there is incorrect syntax in the right argument, a SYNTAX ERR results. If there is incorrect syntax in the left
argument, a FORMAT SYNTAX ERR results.

If the line length of the result is too big for the remaining workspace, or in the case that 6FMT is included in a
larger expression and the total result exceeds the workspace, WS FULL results.

Other Output Formatting Aids

In addition to 6FMT, the following intrinsic functions may be used to aid in output formatting. These functions are
also kept in WSFNS or may be created as described in Appendix C. The)SET and)TERMINAL commands, described
in Chapter 8, may also be used in the overall process of output report generation.

PAGE is a niladic function with an empty vector result. When executed, if output is to a printing device, the cur
rent page will be ejected. If output is to the user's console and LINES has been established by)SET, a standard
header line will also be produced, unless the option DRC was indicated.

N LINES

NLINES is a niladic function with an integer result. If output is to a device, with line count applicable, the result
is the number of lines remaining. If not, the result is zero.

HEADER

HEADER is a monadic function with empty vector result. The right argument must be a text vector length 127 or
less. This function establishes the output header line which will be issued at the start of each page if output is via
a printing device. This intrinsic function uses a CP-V facility which is not cognizant of special APL characters. If
special characters or overstrikes are included, HEADER will not produce correct headings.

VFCHAR

VFCHAR is a monadic function with empty vector result. Right argument must be a single text character. When
VFCHAR is executed, the character in the right argument becomes the vertical format control character for the next
print line. A.fter that line is printed, the default blank character is restored as the vertical format control character.

Use of Result/Error Exits 157

The following characters have meaning as right arguments to VFC HAR:

•• Inhibit space after printing {not possible on some terminals}

'A' Space additional line before printing

IB' 2 lines

tl' 9

2 T 202 10

2 T 203 11

2 T 207 15

'0' Skip to bottom of poge before printing

'1' Skip to top of page before printing

VFCHAR is effective only when VFC mode is on (see SET command, Chapter 8).

Example:

Line 5 of function FORM is to print a title which is spaced 3 lines below the preceding output line. VFC mode has
been set.

FORM[5] 'PART TWO: COSTS VS PRODUCT'; VFCHAR 'C'

b.XL

The translate operator, 6XL, facilitates special character set translations within APl. The form is

R - A 6XL B

The left argument must be a character vector of length 256. The right argument may be any text entity. The result
has the same shape as the right argument and consists of a transiation of the right argument based on the left argu
ment, as follows: The value of a right argument element determines the offset into the left argument. The result
element is the character at that offset in the left argument. Figure B-1, in Appendix B, shows the collating order of
the full EBC DIC and APL character sets.

This feature is designed for sophisticated users, to overcome problems encountered in character set differences be
tween various devices and processors. It allows any character mapping, including mapping several characters to the
same result character. An example of this use might be to map all 'illegal' characters to some unique character.
Another example is as follows:

L+-1+1256
L[128+\9]+192+\9
L[144+19]+208+\9
L[161+\8]+225+18

This value of L, used as left argument of 6XL, will convert underscored letters in the right argument to similar
letters, not underscored, in the result.

158 Use of Result/Error Exits

10. EXECUTION STOPS

Execution is stopped if any of the following conditions occurs:

1. Execution is completed (a normal stop).

2. Execution break occurs (ATTN key is struck), and sidetracking (see Appendix A) does not occur.

3. USei input is iequiied (quad or quote~quad input).

4. Stop control vector is encountered.

5. Error is encountered, and sidetracking (see Appendix A) does not occur.

Normal Stop

Execution comes to a normal stop after any action indicated by direct input has been completed. It should
be noted, however, that a direct input prompt does not necessari Iy mean that all pending execution is com
pleted. The user can determine whether any execution is pending via the)SI or)SIV commands described in
Chapter 8.

Execution Break

An execution break (that is, the ATTN key) can be issued by the user at any time except during terminal input
(when ATTN becomes an editing signal). There may be a variable delay - sometimes several seconds for a
fully loaded system - until output stops. Sidetracking (see Appendix A) can be used to gain break control within
an APL function; in this case execution does not stop, but is IIdiverted ll

•

APLls reaction to ATTN also depends on whether the key is struck during execution mode or definition mode. If
ATT N is used during (nonfunction) execution, APL wi II stop any output and wi II skip to the next line and indent six
spaces to prompt for new input. If ATTN is used during execution of a defined function, APL prompts the user with
the function name and the line number being executed; the line being executed may have been partially completed.

If ATTN is used during display of a function, APL will exit from function definition mode if a closing del was in
cluded in the display command; if the display command did not have a closing del, APL will remain in function def
inition mode and will prompt with the next line number to be assigned to a statement.

Execution breaks are usually not allowed to interrupt the execution of a system command. However, those that pro
duce lengthy display can be stopped:)FNS,)GRPS,) LIB,)SI,)SIV, and)VARS. ATTN is also used to break out
of the)OPR system command.

Stop for User Input

Execution may be stopped by a pending input request in a line. The normal response to a quad or quote-quad
input request is a line of input. While input is pending, ATTN is not considered an execution break and thus

Execution Stops 159

does not cause an exit from the input request. If the user's program contains a loop such that he is repeatedly
prompted for input, he may escape as follows:

1. For quad input, type a branch arrow (-+) followed by a RETURN key. An example is shown below:

- [1]
[2]

0:

V'PITIMES[OJ'V
'V PITIMES

00
-+1

PITIMES

1
3.14159'2654
0:

1
3.141592654

0:
)SI

o
PITIMES[lJ
0:

)SI

In this example the user has defined a function, PITIMES, that repeatedly requests input and provides a re
sult. The first)SI command shows that an input request and line 1 of PITIMES are pendant. After the -+,
the input request is no longer repeated. The second)SI command shows that the loop has been broken and
PITIMES is no longer in use.

2. For quote-quad input, type the following sequence of characters and then strike the RETURN key: 0 back
space U backspace T. This sequence appears at the terminal as fD.

Stop Control Vector

As described in Chapter 7 (under "Stopping Execution"), a stop control vector can be used to specify the exact place
a function suspension is to occur. The user can set a stop control vector by typing the symbols SlI fol lowed by the
function name, an assignment arrow, and the line numbers at which function execution is to be suspended. For ex
ample, suppose the user wants to suspend execution of function HH at lines 2 and 4; he wi II type the expression

S6HH+2 4

APL will then suspend function execution just before each specified line number is reached, print the function name
and line number at which suspension occurred, and skip to the next line and indent six spaces to prompt for user
input.

HH
HH[2]

'------carrier is here

The user may then operate as desired, in direct mode, with the function suspended. He can resume or terminate
function execution at any time. Function execution can be resumed by appropriate branching; for example, an
entry of -+3 will resume execution of the suspended function at statement 3. Termination can be accomplished by
a branch to a nonexistent line number (-+O is a convenient choice). The function suspension can also be abandoned
by a suspension clear statement, which is a branch arrow without any line number.

160 Stop Control Vector

A stop control vector can be specified during execution mode, or during function execution as one of the statements
of a defined function. To· discontinue an active stop control vector, assign an empty vector or a nonexistent Ii ne
number (such as 0) to that stop control vector; for example, SllHH+Owi" turn off the stop control for function HH.

Error Stop

As soon as APL detects an error in a statement, execution of that statement is terminated and any partial result is
lost - unless an assignment was completed before the error was detected, in which case the assignment is effective.
Unless sidetracking occurs (see Appendix A); APL prints a message indicating the type of error, types the erroneous
statement with a caret below the place the error was detected t, and prompts for user input. The user can then re
enter the statement correctly. An example of error detection is shown here:

Xl+4fO
DOMAIN ERR

Xl+4fO
A

If a statement contains more than one error, only the first (rightmost) one detected by APL will result in an error
report. The next error wi II not be detected unti I the user has corrected the first error, as illustrated here:

Xl+(4fO)x(2fO)
DOMAIN ERR

Xl+(4fO)x(2fO)
A

Xl+(4fO)x(2fl)
DOMAIN ERR

Xl+(4fO)x(2fl)
A

If an error is detected in a compound statement or in a statement with multiple specifications, any assignments or
statements to the right of the error v'!ill be completed, as illustrated hele;

4fC+B xO;B+5
DOMAIN ERR

4fC+B xO;B+5
A

H
5

C
o

During function definition some types of errors are detected immediately while other types are not detected until
later when the function is executed. Definition errors, and character errors are detected immediately and must be
corrected as soon as an error report is printed.

[1]
[2]
[3]

[4J
DEFN

[0.5]

VR+B 1'RI H
ARHA+0.5xBxH
DIAGONAL+«H*2)B*2)*0.5
R+ARHA;DIAGONAL
[0.5 TRI CALCULATES AREA AND DIAGONAL OF TRIANGLE
ERR A
",mnr
M.Lll.L AND DIAGONAL OF TRIANGLEo

[0.6J V

Line-scan errors are detected immediately and may be corrected immediately by function editing or its correction
may be deferred. All other errors in a defined function are detected when the function is executed. When APL en
counters each error during function execution, it suspends execution and prints an error report containing the fol
lowing information: the type of error and the function name and offending line and statement (with a caret marking

tSee also the discussion of error messages for the Execute operator in Chapter 5.

Error Stop 161

the place the error was detected). For example, the following error message is produced because a multiplication
sign has been omitted after the right parenthesis:

5 TRI 8
SYNTAX ERR
TRI[3] DIAGONAL+«H*2)B*2)*O.5

"
An error that causes suspended execution can be corrected during the suspension or after termination of execution.

1. To correct an error during suspended execution, the user can follow normal function editing procedures (see
Chapter 7). For example,

SYNTAX ERR
TRI[3] DIAGONAL+«H*2)B*2)O.5

"

After correcting an error, the user can resume execution at the point it was suspended by specifying a
branch to that line number. Thus, the expression -*3 will resume execution at line 3 (starting at the
right, as usual for APL).

2. To correct an error with termination of execution, the user enters a branch arrow to terminate function
execution, edits the function as necessary, and then reexecutes the function. For example,

SYNTAX ERR
TRI[3] DIAGONAL+«H*2)B*2)*O.5

"
VTRI[3] DIAGONAL+«H*2)xB*2)*O.5V
5 TRI 8

Each branch arrow removes the most recent suspension from the state indicator list. Thus if several suspen
sions have occurred since the last suspension clear, more than one branch arrow (suspension clear) wi II be
required to clear the state indicator. A convenient method for clearing the entire state indicator is to issue
an)51 CLEAR command.

162 Error Stop

11. GRAPHICS

When the user is on-line with a Tektronix 4013 graphics terminal, and has declared)TERMINAL 13, he may make
use of the graphics capabilities described below. These facilities are implemented in terms of a graphic I/o prim
itive lQand an intrinsic function 6GRF, described later in this chapter. However, most users will find it more con
venient to employ the Qraphic functions defined in a workspace named GRAF described below. These features were
originaiiy de~ei;ped at U~iversity of Caiifornia Irvine und~r the direction of Dr. Aifred Bork.

The Qraphics capability may also be used on a Tektronix 4015, which APL accesses in 4013 mode, or on a 4010. The
4010- d~es not s~pport the APL character set (see "Teletype Usage", Appendix B).

User Graphic Functions

The following functions are available in workspace GRAF:

DRAW
INT
VS

SCALE
NOSCALE
CENTER
WHATSCALE

WINDOW
WHATWINDOW

AXES
B("'Y

DASH
SET
PUT
ERASE
HOME

I Plotting Functions

} Scaling Functions

} Window Functions

j Auxiliary Plotting Functions

Plotting Functions: DRAW, VS, INT

WHATCOORD
WHATCHAR

SIN
COS
EXP
STRAPIS

} Graphic Input Functions

} Other Functions

DRAW produces a curve on the screen, working from one-dimensional, two-dimensional, or three-dimensional data,
and determines where the curve is to appear. The left argument of DRAW specifies a IIwindow ll

, a rectangular por
tion of the screen in which the curve is to appear. The window argument is a four-element vector giving, in inches,
the x (horizontal) and y (vertical) window limits. Thus, 2 6 1 5 would specify the 4-inch square window positioned
as shown:

4"

If the left argument of DRAW is a scalar, the current window remains in effect; the value of the scalar is ignored.

Graphics 163

The data to be plotted is given by the right argument of DRAW, which is taken as a collection of one-dimensional,
two-dimensional, or three-dimensional points. For an argument composed of N two-dimensional (2D) points (i .e.,
the argument is 2-by-N or N-by-2), the plotted curve consists of N-1 straight line segments, each joining one
given (x, y) point to the next. For one-dimensional data (i.e., the argument is a vector, or N-by-1, or 1-by-N),
the data is taken as y values and plotted against X = N (which depends on the index origin). Three-dimensional
(3D) data (N-by-3 or 3-by-N) are projected on the two-dimensional (2D) window and plotted as (x, y, z) points.

After a DRAW, the cursor is returned to the next writable line. DRAW does not erase the screen, so it can be used
to overplot curves.

The right argument for DRAvV is often set up by use of the VS and INT (interval) functions. iNT A, B, N produces a
vector of N equally spaced values between A and B. Thus, if

X+INT-6 6 100

X contains 100 values, equally spaced from -6 to 6.

VS is used to "glue together" sets of values to form two-dimensional or three-dimensional groups suitable for use as
DRA W's right argument. Thus

o DRAW Y VS X

uses VS to form a 2-by-N matrix from the two N-vectors X and Y. For three-dimensional (3D) plotting, the corre
sponding call is

o DRAW Z VS Y VS X

The following statement produces a curve of the function Y =COS X for 0~x~6.28 (in radians):

o DRAt.; was X) vs a+INT 0.6.28.40)

Scaling Functions: SCALE, NOSCALE. CENTER. WHATSCALE

SCALE, NOSCALE, and CENTER determine the placement of the picture within the window; i.e., the limits of
x, y, (and z) values represented by the edges of the window. To set these limits to particular values, use SCALE as
follows:

SCALE xmin, xmax, ymin, ymax

for 2D scal ing, or

SCALE xmin, xmax, ymin, ymax, zmin, zmax

for 3D scaling.

In the absence of a fixed scaling specification, "automatic scaling" is in effect: In this mode, each DRAW finds the
minima and maxima of its data along each coordinate, and scales the data to occupy the entire window. NOSCALE
(with no arguments) may be used to restore automatic scaling once an explicit scaling has been set by SCALE.
CENTER (with no arguments) also establ ishes automatic scaling, but in such a way that the origin is placed at the
center of the window, and the data is scaled to fit the window. Center-scal ing is the defaul t sca ling rule in effect
before any scal ing functions are called.

To find out what scaling is currently in effect, or what scaling was established by the last DRAW if automatic scaling
is in effect, use WHATSCALE:

S+WHATSCALE

sets S to either a 4-vector or a 6-vector scale:

S = xmin, xmax, ymin, ymax
or

5 = xmin, xmax, ymin, ymax, zmin, zmax

164 User Graphi c Functions

Sca I ing and window data is saved as part of the workspace, so a DRAW command just after a) LOAD wi II draw the
same curve it did just before the workspace was saved.

Window Functions: WINDOW, WHATWINDOW

The window limits may be set by the left argument of a DRAW command, as seen above, or by a WINDOW com
mand. Thus, either

2 6 1 5 DRAW Y VS X

or WINDOW 2615

Vvi!1 establish the vvindovv as shovvn in the diagram above. \A/indovv limits ara clvvays set by a four--vector (Ix, ux,
Iy, uy) where the lis and uls are lower and upper limits, respectively, in inches from the lower left corner of the
screen.

The function WHATWINDOW returns this four-vector as its value.

Window and scaling data is saved as part of a workspace and restored by)LOAD.

Auxiliary Plotting Functions: AXES, BOX, DASH, SET, PUT, ERASE, HOME

AXES. Draws axes according to the current scaling and window conventions, outputs the end-values, and returns
the cursor to the next writable line.

BOX. Draws a box displaying the current window limits and returns the cursor to the next writable line.

SET x,y or SET x, y, z. Places the cursor at the given point in the window. The original cursor position is re
membered; it may be subsequently restored by a set with an empty right argument, e.g., SET II.

(x, y) PUT value or (x, y, z) PUT value. Places the cursor at the specified point in the window, then outputs IIvalue II,
whether it is character or numeric. Thus,

0.1 3.14 PUT 'CURVE AI

will put the words CURVE A on the screen starting at the point x=O.l, y=3.14. PUT returns the cursor to the next
writable line.

ERASE. Erases the screen and automatically puts the cursor at its "home" position near the upper left corner of
the screen.

HOME. Places the cursor at its "home" position near the upper left corner of the screen.

Graphic Input Functions: mnput, WHATCHAR, WHATCOORD

The graphics input facility allows the user to locate a position on a screen and to communicate the coordinates of
that position to his program. The expression A +- fa causes the 4013 to display the "crosshair cursor", a pair of lines
one horizontal, one vertical. The user can then move these lines, via two knobs on the terminal, to locate any
point on the screen. When he then types a character, the crosshairs disappear and the coordinates of the intersec
tion of the crosshairs become the result ofta. In the above expression, A would be set to the value of the coordi
nates. The result is a two-element numeric vector. The first element is the X, and the second element the Y
coordinate of the intersection, relative to current scaling. After the input, the alphanumeric cursor returns to the
next line.

User Graphic Functions 165

The input character and the coordinates are saved internally and may be accessed by the functions WHATC HAR,
which gives the character as a result, and WHATCOORD, which gives the coordinates as a result.

If scaling is in effect (which is normally the case) and a crosshair intersection is selected that is not in the currently
defined WINDOW, the crosshairs are turned back on and the user must retry, selecting some point inside the window,
or "break" to escape graphic input mode.

If scaling is not in effect (see "unscaled graphic I/O later in this chapter) coordinates are returned in raster units
and current window and scale parameters are ignored.

Other Functions: SIN, COS, EXP, STRAPIS

For the user's convenience, the GRAF workspace also contains the following functions:

SIN X equivalent to loX

COSX equivalent to 20X

EXP X equivalent to *X

STRAPIS is a function to allow changing the response of APL graphics software to accommodate different "strapping"
options for particular 4013 terminals. APL graphics assumes that the user1s 4013 is set to deliver 7 characters in
response to graphics input requests. Some terminals are set to deliver 5 or 6 characters. In this case, if the user
executes a function such as BOX, the terminal wi" not respond until one or two characters are input. If this occurs,

STRAPIS 6

or

STRAPIS 5

can be used so that APL will only try to read 6 or 5 characters.

Note: If STRAPIS 5 or 6 is used when the actual strapping is for 7 characters, functions such as WHATCOORD will
provide incorrect results. The STRAPIS function should be used with caution.

Direct Control of Graphic I/O

The more sophisticated user may wish to exercise more control over the graphics I/O facility than is possible with
the functions described above. He may do so by making direct use of the graphic I/o symbol iJ and the intrinsic
function II GRF, as described below.

D Output

The expression C +- A (where A is not a scalar) performs the same function as 0 DRAW A; that is, it takes A as an
ordered set of points which it scales according to the current scaling rule, and plots in the window. If A is a scalar,
C +- A sends one ASCII character to the terminal; in this case, A is the integer value of the character.

Caution: Scalar output should only be attempted with thorough knowledge of the terminal operating characteristics.

166 Direct Control of Graphic I/o

The following table shows the legal possibilities for the shape of A, with the resulting interpretations:

pA

(empty)

N 1 or

~~ J
2N

M2

3N

M3

o
or
OK
or
KO

Meaning

A is scalar: send as ASCII character

data is lD; plot X =it~,

data is 2D; plot X =A [1;] , Y =A [2;]

. r.' " . r "', data is 2D; piot X =AL; 'J, Y =AL; LJ

data is 3D; plot X =A [1;] , Y =A [2;] , Z =A [3;]

data is 3D; plot X =A[; 1], Y =A [;2], Z =A [;3]

data is empty; plot nothing

where N ;c 1, M ~ 4, and K;c O.

The data is processed as follows:

• Data i:. scaled accordiny to the current ,-u!F.:

• ~ ._~!.,_. ',_'r--r:-.'-.J<!r-'
aulurnatll.... ::'1....011118 \1~'-'.J'-r\LL.)

• centered automati c seal ing (CENTE R)

•
•

• Three-dimensional (3D) data is reduced to two-dimensional (2D) data by planar projection.

• Data that falls outside the window (possible only under the fixed scaling rule) is suppressed; where the data
crosses the window boundary, the curve is extended to the boundary by I inear interpolation. If the "reen -
trance lJ mode is..Q!l (via 10 liGRF 2), curve plotting resumes at the point where the data reenters the window;
if the "reentrance" mode is off (via 10 liGRF 1), curve plotting stops when the first out-of-range point is
encountered.

• If a preceding DASH command has been given, the curve is broken up into short pieces, one per point;
otherwise, it is drawn continuously. DASH applies only to the plotting of this one curve.

• The resulting picture is drawn on the screen in the position specified by the current window parameters.

• After drawing the curve, the cursor is restored to its original position at the beginning of the next APL in
put line.

li GRF Intrinsic

liGRF is a dyadic intrinsic function used to control graphic I/O. It is declared in the GRAF workspace as follows:

DGRF - 14 T 3

Direct Control of Graphic I/O 167

The name for this function could be any name assigned to 14 T 3, but is assumed here to be ilGRF. The form of the
function is

f l'.GRF P

The left argument, f, is an integer specifying which action is to be performed: O:s f :s 11. The right, p, consists of
any parameters the selected action may require; p is often empty, in which case any type of empty vector will do,
such as •• or 10. l'.GRF returns a result: it is usually the empty integer vector la, but (11 l'.GRF k) returns a numeric
vector of length 2, 4, or 6 (see Table 6 below), or a character scalar.

Table 6 shows all of the actions that l'.GRF can perform, together with the corresponding user functions where the
latter have been provided.

Table 6. ~GRF Calls

Correspondi ng
GRF Call Function Call Action Taken

a ~GRF 1 Turns off Dl input scaling

a l'.GRF 2 Turns on !linput scaling (default)

1 l'.GRF 3 Sets terminal device type .:..c 4013

2 l'.GRF • • WINDCW' • Sets default window (default)

2 6GRF XI,X 2'YI'Y2 WINDOW xp x2' Yl' Y2 Sets up given window params

3 l'.GRF • • SCALE • • Sets 'transparent' ~ output scal ing and full-screen
window

3 LGRF Xli X2 ' Yl' Y2 SCALE Xl' X2' Yl' Y2 Sets X and Y limits for fixed 2D scaling

3 l'.GRF Xli X2, Yl 'Y2' Zl' Z2 SCALE Xli X2, Yl' Y21 Zl' Z2 Sets X, Y, and Z limits for fixed 3D scaling

4l'.GRF • • SET' • Restores cursor loe saved by SET x, ...

4 6GRF x,Y SET x, Y Saves cursor loc; moves it to (x, Y)

4 l'.GRF x, Y, Z SET X, y, Z Saves cursor loc; moves it to (x, y, z)

5 l'.GRF • • AXES Draws axes according to current sca ling

6 t1GRF i NOSCALE Sets noncentered automatic scaiing

6 ilGRF 2 CENTER Sets centered automatic scaling (default)

6 l'.GRF 3 Fixes current sca ling

7 !\GRF • • DASH Specifies next curve to be dashed

8 6GRF • • Erases screen and homes cursor

8 6GRF 1 ERASE Erases screen (cursor homes automatically)

8 l'.GRF 2 HOME Homes cursor

9 t,GRF • • BOX Draws box according to current window

10 6GRF 1 T urns off curve reentrance mode

168 Direct Control of Graphic I/O

Table 6. L'lGRF Calls (cont.)

GRF Call

10 L'lGRF 2

11 L'lGRF 1

11 AGRF 2

11 L'lGRF 4

11 L'lGRF 5,6,07

Unsealed Graphic I/O

Corresponding
Function Call

WHATSCALE

WHATWINDOW

\A/IIA Trr"\l"""'nr"\~
vvnM'\....VVI\LJJ

WHATCHAR

STRAPIS

.
Action Taken

Turns on reentrance mode (default)

Returns scaling params as result; result is 4-vector

Returns the current window params (in inches) as

a 4-vector (Xl' x2, Yl' Y2)

D_J.. ____ .a.L ___ ... '- _____ .. n1 ! __ .. I- ___I: __ ... oI"!'It.r rt~ ,...

1'\t::IUIII;) lilt:: IIIV;)1 I.::: CIII M II'PUI ,""VVI\..rlIII\"olI,,",~ "-'I~

2-vector (X, y)

Returns the most recent C input character as a
scalar

Sets program to read 5, 6, or 7 characters on
graphic input requests. Used to accommodate
different "strappings" at the 4013. Default is 7.

Ordinarily, the x, y (and possibly z) coordinates of the points given as arguments of SET and DRAW are interpreted
in conjunction with current scaling and window parameters: Scaling determines where in the window a given point
will lie, and the window parameters locate the window on the screen. If desired, however, one may circumvent
these actions and deal with the screen as a "direct!; addressab!e" entity; in this mode no scaling or vv';ndo'"v;ng ;s

done (the "window" is the entire screen), and point locations are specified by X and y coordinates in raster-point

o :0; x :0; 1023,

o :0; y:o; 789.

Unsealed Output

Output scal ing may be ki lied by

SCALE I I

This command establishes the IItransparent scaling" (i .e., no scaling) rule, and sets the window to full-screen. There
after, point data supplied as right arguments of DRAW or SET commands should have coordinates in the ranges indi
cated above. Three-dimensional points will be projected on the xy plane, as usual; for 3D data, the x and y ranges
are as given above, and the z-range is the same as the x range.

Ordinary output scal ing may be resumed via

NOSCALE
or

CENTER
or

SCALE x ,x ! •••

A smaller window may be reestablished by

or

the default window may be restored by

WINDOW I I

Unsealed Graphic I/o 169

Unsealed Input

Input scaling is turned off by

o t,GRF 1

This command does not alter the existing scaling and window parameters, but it does eliminate dependence on them
by lQinput. While in this mode, a character struck anywhere on the screen will be accepted, and its raster-point
coordinates (in the ranges given above) will be those returned by WHATCOORD.

To resume ordinary input scaling (using the existing scaling and window information), input

o t,GRF 2

170 Unsealed Graphic I/O

12. WORKSPACE MANAGEMENT FUNCTIONS

Xerox APL provides a set of intrinsic functions, l1CR, l1 WM, and l1TE to aid in user workspace management and
display. The functions may be copied from workspace WSFNS or created as described in Appendix C.

Namelists and Unelists

The introduction of two concepts is usefu I to allow abbreviated descriptions of arguments and resu Its associated with
the following intrinsic functions. Namelists and linelists are particular forms of character arrays, usefui for storing
text data with minimal waste for blank padding.

A namelist is any text vector or matrix for which each row consists of one or more valid APL names separated
by blanks, embedded carriage returns, or embedded line feed characters.

When namelists are created by the intrinsic functions, they will always be vectors. Individual names will be sep
arated by embedded line feed characters. The purpose of interspersing line feeds is to avoid the arbitrary splitting
of names in terminal displays of namelists. For this reason, it is advisable for users to create namelists while using
the smallest width setting which will be encountered during their use.

Namelists which are character matrixes may be used as arguments of functions which call for namelists. In this case,
each row of the matrix must satisfy the rules for a vector namelist. Matrix namelists have been allowed to satisfy
circumstances in which users find it advantageous to build rectangular arrays of names.

A I inel ist is a text vector consisting of character strings separated by embedded carriage returns. In use, the first
'line' must consist of appropriate text for a user function header, and all subsequent 'lines' must consist of text which
would be valid function lines. This includes line length limitations.

l in€' Feed and Carriage Return

The line feed character is hexadecimal 15 (or decimal, 21). Carriage return is hexadecimal 00 (or decimal, 13).
On terminal output, either character generates the line feed-carriage return combination of physical action.

When APL input lines with open quotes are extended, the line separator used internally by APL is the line feed char
acter. The carriage return was selected as the separator for linelists to distinguish this separator from the I ine feed
character which occurs in open quote line extensions.

Error Reporting for Namelists and Linel ists

If a function requires a namelist or linelist as an argument, the argument will first be checked for rank of 1 or 2 and
character data type. DOMAIN ERR will be reported if these checks fail. Namelists are checked for the presence
of forms other than valid APL names. If this test fails, DOMAIN ERR is reported.

Linelists may generate any of the errors which would be encountered in regular input of the individual 'lines' includ
ing LENGTH ERR for I ines of excessive length.

Canonical Representation

The l1CR intrinsic function is used for conversion of user functions to text form, for program-controlled function def
inition, and to lock existing functions. The intrinsic is created by l1CR+-14T5.

Function to Text

R+-1 l1CRA

If A is not a text vector representing a valid name in APL, DOMAIN ERR is reported.

Workspace Management Functions i71

If A contains a name which does not represent a user-defined function in the dynamic environment, DEFN ERR is
reported. This may occur, for example, if the name represents a function at global level but is currently shadowed
by a local use as a variable. Functions which will use 6CR should avoid the use of common names for dummy or lo
cal variables.

If no error is indicated, R is a linelist, that is, a text vector consisting of lines of the defined function with embed
ded carriage returns as separators. The text vector does not include opening or closing dels or line numbers (it is not
the display form). If A is the name of a locked function, R is the empty text vector. The form of R is the internal
APL character representation, in which valid overstrikes are mapped as single characters. This fact is noted for users
of non-APL keyboards. Mnemonics are not created internally, so indexing by visual position will be misleading.
Note that the separator for function lines is the carriage return (hexadecimal OD), which can be distinguished in
editing operations from I ine feed.

Text to Function

R-+-2 6CR LL

If LL is not a linelist, DOMAIN ERR results.

If any 'line' of LL exceeds the maximum length for APL input lines, LENGTH ERR is reported. If the linelist does
not contain at least one line in addition to the function header line, DOMAIN ERR is reported. DEFN ERR is re
ported if the 'header' line is not in the proper format for a function definition or if the function name has an active
referent which is not a user function or is a locked user function.

DEFN ERR also occurs if the body of the linelist includes constructs including the colon character, not in a quote
string, other than valid line labels.

Errors which would give BAD CHAR or LINESCAN ERR in normal input are accepted and detected later as SYNTAX
ERR during function execution.

If no errors occur, a user function, with the name specified by A, is created. If the new function name is currently
a local symbol, the function will exist as a local entity.

R is a text vector indicating the name of the function created.

Locking Functions

R-+-3 6CR NL

NL must be a namelist. For each name in NL, if the current referent is a function, it is locked. If not, the name
is included in R.

R is a namel ist consisting of any names in NL which were not current function names. If no such names were in NL,
R is empty.

Workspace Management

The workspace management function, 6WM -+- 14T6, is a dyadic intrinsic function providing a variety of operations de
scribed below.

Expunge, Local {Active}

R-+-1 6WM NL

NL must be a namelist. The active referents of names found in NL are erased. R is a namelist of any names for
which referents were found but not erased (e.g., pendant functions). Note that a current active referent may be
{and often is} the global referent.

172 Workspace Management

Expunge, Global

R*-2 tc.WM NL

Same as 1 tc.WM NL except that only global referents of names are erased.

List Workspace Named Items

R*-3 tc.WM

The value of I must be an integer from 1 to 6. R is a namelist. The entities named depend on I.

2

3

4

5

6

Category Listed

Labels.

Active variables.

Active functions.

Groups.

Global variables.

Global functions.

List Elements of a Group

R*-4 tc.WM A

A must be a text vector containing one name. If A is not the name of a group, DOMAIN ERR is reported.

R is a namelist with names of the elements grouped by A.

List Workspace Parameters

The value of I must be an integer from 1 to 8. R depends on the value of I.

I ~

WSID as text vector.

2 State indicator as text vector with embedded I ine feeds.

3 Origin as integer.

4 Width as integer.

5 Digits as integer.

6 Tabs as integer scalar or vector.

7 Symbo I tab Ie size.

8 Number of symbols still available.

Worksapce Management 173

Identify Local Use of Names

R+-6 6WM NL

The namelist, NL, is scanned for current use of the names. R is a numeri c vector. Values are as indicated.

o No current referent.

Logical variable.

2 Character variable.

3 Integer variab Ie.

4 Real variable.

5 Index sequence. (This is an integer vector with equally spaced elements. It is functionally an integer
variable; but is compressed in storage.)

6 List (used by lIFMT, liTE).

7 Label.

8 User-defined function, niladic, no resu It.

9 User-defined function, niladic, with result.

10 User-defined function, monadic, no result.

11 User-defined function, monadi c, with resu It.

12 User-defined function, dyadic, no result.

13 User-defined function, dyadic, with result.

14 Intrinsic function, dyadic.

15 Intrinsic function, monadic.

16 Intrinsic function, niladic.

17 Group.

Note: Intrinsic functions are analogous to locked user functions in that they cannot be displayed.

Identify Global Use of Names

R+-7 lIWM NL

Similar to 6 lIWM except that global use of names is indicated.

List Storage Requirements for Named Active Items

R+-8 lIWM NL

NL is a namelist. R is a numeric vector. NL is scanned for active referents of names. If there is no active referent
for a given name, that element of R will be O. Each element of R is the number of bytes of workspace occupied by
the active referent.

174 Workspace Management

List Storage Requirements for Named Global Items

R+-9 tlWM NL

NL is a namelist. R is a numeric vector. NL is scanned for global referents of names. If there is no global referent,
that element of R will be o. If a name is a group, only the group overhead is listed (to get space requirement for the
members of a group, use 9 6. WM 4 6. WM G, where G is the group name). Each element of R is the number of
bytes of workspace occupied by the global referent of the corresponding name.

Note: Storage requirements cited by use of 8/1,WM or 9 /l,WM do not include the storage required by long names.
Such names may be shared by local and global referents and are thus not unambiguously accountable.

Text Editing

The text editing function, tlTE+-14T7, provides five capabilities, described below, to facilitate the examination and
modification of text variables in APL.

APL has suffered a limitation, in handling text, in that most primitive functions work on single characters and that
extensive text variables must be managed as rectangular arrays. This poses problems in wasted space and, much
worse, a very awkward form for modification. In a rectangular array, an edit operation cannot alter the length of
any row without altering the lengths of all rows by the; same amount.

The use of embedded carriage returns in text vectors is a solution allowing better packing of text variables and making
text substitutions of unequal length a more straightforward operation • liTE faci I itates use of such text vectors.

Text Index Function

R--l 6TE L

L +- (TV;DV)

TV may be any text vector.

DV is a text scalar or vector of Idelimitersl. Typically, delimiters will be blanks, carriage returns, line feeds, com
mas, or combinations thereof. Any character may be used as a del imiter.

R is an n by 2 mumeric matrix. Each row contains the index and length of a string of non-del imiter characters in TV.
The values of column 1 of R are ORIGIN dependent. R is null if TV is a null text vector or includes only delimiter
characters.

Example:

TV is a namelist, NL. DV is DV+-I I, LF, where LF is the line feed character and the quotes enclose a blank.

R ~ 1 tl TE (NL;DV) provides the indi ces and lengths of the names in NL.

DOMAIN ERR is reported if L is not a two-element list, with text elements. LENGTH ERR is reported if DV is an
empty text vector. RANK ERR is reported jf TV is a text scalar.

Substring Search

R+-2 tlTE L

L must be a list with 2, 3, or 4 elements

R+- (TV;SS)

TV may be any text vector.

Text Editing 175

SS may be any text scalar or vector not longer than TV.

l +- (TV;SS;FCOl)

FCOl may be any integer scalar value such that FCOl + (number of elements in SS) -1 is less than or equal to the
highest index value of TV. FCOl may also be null. FCOl indicates the first column in TV at which search is to
start or

l +- (TV;SS;FCOl;lCOl)

leOl may be any integer scalar value less than or equal to the highest index value of TV and greater than or equal
to FCOl-1 + (number of elements in SS). lCOl is the last column of TV involved in the search.

R is a numeric vector with the beginning indices of occurrences of SS in TV, starting at position FCOl and ending at
lCOl. If there are no occurrences, R is empty. 10ccurrences i may not overlap; that is, successive values in Rare
a Iways separated by the length of SS.

Example:

TV is a name list, Nl, whose length is 100. SS is SS +-IBOBI•

R +- 2 6 TE (Nl;SS) provides the starting indices of a II occurrences of IBOBI in Nl.

R+- 2 6 TE (Nl;SS;30) provides the starting indices of all occurrences of IBOBI in Nl from Nl[30] to the end
of Nl.

R+-2 liTE (Nl;SS;;30) provides the starting indices of all occurrences of IBOBI lying within the subset of Nl
from the beginning through Nl[30].

R+- 2 liTE (Nl;SS;30;60) provides the starting indices of all occurrences of IBOB I lying within the subset of
Nl from Nl[30] through Nl[60].

DOMAIN ERR is reported if l is not a 2, 3, or 4 element list with TV, a text vector and SS text scalar or vector, or
FCOl and lCOl not integer values.

lENGTH ERR is reported if the length of SS is greater than the length of TV, or FCOl and lCOl are not scalars.

INDEX ERR is reported if the length of SS is greater than the length of TV with FCOl or lCOl specified, or FCOl
and lCOl specify indices outside the range of TV.

RANK ERR is reported if TV is a scalar.

Since R is a vector of indices, it is ORIG IN dependent. FCOl and LCO L are index positions of TV and, therefore,
are ORIG IN dependent.

Substring Search and Replacement

R +- 3 6TE L

l must be a list of 3, 4, or 5 elements.

l +- (TV;SS;RS)

TV may be a text scalar or vector.

SS may be a text scalar or vector not longer than TV.

176 Text Editing

RS may be any text scalar or vector not longer than 255 elements, including the empty vector.

R is a text vector formed by replaced occurrences of SS, in TV, by RS. Replacement is on a non-overlap basis.

or

l + (TV;SS;RS;FCOl)

FeOl may be any integer scalar value such that FCOl + (number of elements in 55) -1 is less than or equal to the
highest index value of TV. FCOl may also be null.

or

lCOl may be any integer scalar value less than or equal to the highest index value of TV and greater than or equal
to FCOl-l + (number of elements in SS).

Example:

Nl is a namel ist with the blanks and embedded carriage returns. Several names may print on one line. BlAN K
has been assigned the blank character, and CR the carriage return.

VNl -+- 3 Ll TE (N liBlAN KiCR)

VNl has all blanks replaced by CR, and prints one name per line.

VNL +- 3 11 TE (NL;BLANKiCR;20)

VNL has all blanks from NL[20] to the end of NL replaced by CR.

VNl +- 3 Ll TE (Nl;BlANK;CR;20;30)

VNl has all blanks from NL[20] through NL[30] replaced by CR.

VNl +- 3 Ll TE (Nl;BlANK;CR;;30)

VNl has all blanks from the beginning of Nl through Nl[30] replaced by CR.

VNl -+- 3 t:. TE (Nl;BlANK;NULL)

VNl has all the blanks in Nl removed. (NULL is the empty vector.)

DOMAIN ERR is reported if l is not a 3, 4, or 5 element I ist with TV, SS, and BS text elements, or FCOl and
LCOl not integer values, or the length of RS is greater than 255.

lENGTH ERR is reported if the length of SS is greater than the length of TV, or FCOL and lCOL are not scalars.

INDEX ERR is reported if the length of SS is greater than the length of TV with FCOL or lCOL specified, or FCOl
and LCOl specify indices outside the range of TV.

Substring Replacement (Without Search)

R+-4 t:.TE l

L is a list with 4 elements.

L +- (TV;RS;FCOL; LCOL)

TV must be a non-empty text vector.

Text Editing 177

RS must be a text vector or sca lar. It may be empty.

FCOl must be an integer scalar representing a valid index of TV.

lCOl must be an integer scalar representing a valid index of TV. lCOl must be greater than or equal to FCOL.

R is formed by replacing that portion of TV bounded by FCOL and LeOl by the string RS. If RS is empty, this con
stitutes deletion of a specified subset of TV.

FCOl and lCOl are index positions of TV, thus ORIGIN dependent.

DOMAIN ERR is reported if l is not a 4-e lement list, if TV is not a non-empty text vector, if RS is not a text vector
or a scalar, or if FCOl and lCOl are not integer scalars.

It-..JDEX ERR is reported if FCOl and lCOl are not value indices of TV, with current ORIGIN setting, or if LeOL is
less than FCOL.

Example:

ORIGIN is 1
TV+-'THE PRICE OF PRODUCT-NAME SHOULD BEl
RS+- 'WHEATIES'
R+-4 6TE (TV;RS;14;25)
R

THE PRICE OF WHEA TIES SHOULD BE

Stri ng Comparison

R+-5 6TE l

l must be a list with two elements:

l +- (A;B)

A and B must be text vectors of length 1 to 255 characters or text scalars. (Text scalars are treated as one-element
vectors.)

R is a two-element numeric vector describing the comparison of A and B. Comparison is based on the collating
sequence of Figure B-1, Appendix B, which is the EBCDIC collating sequence as modified to support the full APl
character set.

The first element of R indicates which element of l should be first in left to right sorted order.

o means the text vectors are identicai.

1 means A shou Id sort first.

2 means B should sort first.

The second element of R indicates the lowest index position i at which A(i] and B[iJ differ.

If A and B are identical, the second element of R is -1. Thus R is 0 -1.

If B is longer than A but each AD] = B(i], that is B differs from A only by being longer, then A is considered first in
sorting order and R is 1 -1.

If A is longer than B, but each BD] = A 0] then R is 2 - 1 •

DOMAIN ERR is reported if l is not a two-element list or if A or B is not a text vector or scalar.

lENG TH ERR is reported if A or B has a length of less than one or more than 255.

178 Text Editing

APPENDIX A. ERROR MESSAGES

Table A-l is an alphabetic I isting of possible APL error messages. The first column contains the message and the
second column contains explanatory detai Is and recovery procedures where appropriate. The effects of error detec-
tion on APL processing are described in more detail in Chapter 10; see also nSidetracking on Errors and Breaks" fol
lowing Table A-l.

Message

name t'JOT COPIED

name NOT ERASED

name NOT FOUN D

ABORTED BY BRK OR CTRL-Y

BAD CHAR

BAD FILE REF

COMPo ALREADY HELD

COMPo NOT HELD

DAMAGED WS, ERROR TYPE: *n*

DEFN ERR

Table A-I. Error Messages

Description

The item named has the same name as a pendant function

in active workspace.

The item named in an)ERASE command was not erased
because it was a pendant function.

The item named in a)COPY command was not found (the
item may have been a local variable).

An enqueue request has been aborted by user (pertains to
shared APL indexed fj les).

A bad input character was detected. This is usua Ily the
result of a transmission error or the input of an illegal
overstrike. In the case of nonstandard I/O devices, the
message can also indicate the input of a character which
is nillega!" for that device.

A bad reference to an existing file name was made during
a)SAVE command. This could occur, for example, if the
workspace name specified in the)SAVE referenced some
existing workspace that was protected by a password. The
)SAVE should be respecified using a different workspace
name. This message will also result on)CONTINUE if a
passworded CONTINUE workspace already exists.

An attempt was made to enqueue a record already enqueued
in a shared APL indexed fj Ie.

An error was detected on attempting to dequeue an unheld
record in a shared APL indexed fi Ie.

Workspace damage has been detected in executing)LOAD,
)SAVE, or)COPY. In any case, the filed version of the
damaged workspace exists. The error type is a number
indicating the type of damage detected. This message,
and the name and account of the damaged workspace,
should be reported to your time-sharing service. The in
formation may be used by Xerox to correct an error in the
APL processor. If the error occurred during a LOAD or
SAVE, a COpy of the damaged workspace may allow re-
trieving the global data and functions. --

This message is output for any sort of error in function def
inition, such as a misplaced de I symbol (v), improper syn
tax of a function header as a result of header editing, or
an attempt to edit a pendant function.

Appendix A 179

Message

DMS ERR

DOMAIN ERR

ENQ FULL

ENQ UN AUTHORIZED

FILE ACCESS ERR

FILE DAMAGE

FILE IN USE

FILE INDEX ERR

FILE I/O ERR xxxx

FILE NAME ERR

180 Appendix A

Table A-1. Error Messages (cont.)

Description

An error was detected during a DMS operation in a
system supporting interface between APL and EDMS
data bases.

The indicated argument is of the wrong type or out of the
proper range for this specified operator or for the other
argument. Examples are character data input for a nu
meric operation, or numbers input for a logical operation
which do not reduce to 0 or 1. See the domain tables in
Chapter 5 for examples of acceptable types of argument
data for each APL operator.

The CP-V Enqueue stack is full (pertains to shared APL
indexed fi les).

User is not authorized for Enqueue operations on APL
shared fi les.

This file I/O error often means a password is missing or is
inaccurate.

This file I/O error indicates some damage, but not nec
essari Iy to every record or component in the fi Ie. Recovery
is often possible by copying undamaged material to a new
file, replacing damaged items.

The file named in a)SAVE command is currently in use,
i. e., another user may be simultaneously executing a load
of that file. Since this situation is a momentary timing
conflict, the user should retry the command after a short
wait. This type of timing conflict may also occur when
exercising file I/O.

This file I/O error may mean that an index (record identi
fier, sometimes called a key) is incorrect, or an attempt
has been made to read beyond the limits of a file.

This is a general fi Ie I/O error message. The "XXXX" stands
for a hexadecimal error or abnormal condition, with the
first pair of digits indicating a code and the second pair
a subcode. A code 00 indicates that APL has detected an
error (see Appendix B, Fi Ie Input/Output). Other codes
indicate errors detected by the monitor and correspond to
I/o error codes shown in monitor reference manuals, for
example the CP-V Reference f.Aanual, 900907.

This file I/o error may mean that a file identifier is im
properly formatted, an attempt has been made to use a
file that doesn't exist, or an attempt has been made to
create a file that already exists.

Message

FILE SPACE TOO LOW

FILE TBL FULL

FILE TIE ERR

FORMAT SYNTAX ERR

I/O ERR

L '0 ERR xxxx

INDEX ERR

LENGTH ERR

Ut-~ ESCAN ERR

Table A-l. Error Messages (cont.)

Description

Either the user's or the system's file granule limit is sur
passed. This can occur when workspaces are be ing saved
or during file I/o operations. Recovery is usua Ily possi ble;
the user drops unneeded fi les from his account and retries
the aborted step.

This file I/O error means that the maximum permissible
number of fiies have been Htied H (designated).

This fi Ie I/O error may mean either that the fi Ie has not
yet been tied (designated to an input or output stream), or
that the file being tied has already been tied, or that an
attempt has been made to write into a file owned by an
other user.

A syntax error was detected in the left argument of a t.FMT
expression. See Chapter 9 for an explanation of correct
t.FMT syntax.

This message indicates that an irrecoverable system I/O
error occurred and an error exit has been made from the
APL processor. A system I/o error shou Id be reported to
the user's field representative along with the conditions
under which it occurred (see also SYS ERR).

If blind I/O was being used, this message indicates that
the requested bl i nd write cou Id not be executed for some
reason. The 'ISP" mov retrv the I /(i or f"'Itherwisp rontinup

operation.

This general I/O error includes hexadecimal error or ab
normal condition "XXXX". The first pair of digits indicates
a code and the second pair a subcode. These correspond
to I/O error codes shown in the Xerox CP-V reference
manuals.

The index subscript specified in an expression is out of the
range of the particular array to which it is applied. For
example, if A is a four-element vector, the expressi on
A[6J would generate an INDEX ERR since the requested
sixth element does not exist.

The length{s) of the indicates argument(s) are not conform
able or are incorrect for the operator used. For example,
the expression 978 + 5 3 results in a LENGTH ERR because
the two vectors do not have the same number of elements.

An obvious error in form (lecding right bracket I misplaced
colon, line ending with an operator, etc.) was detected
in the scan of a line input for execution or function de
finition. No part of the I ine is executed. On direct in
put, the user is prompted wi th the partia I line for correc
tion unless the device is nonstandard, in which case he
must retype the entire line. In function definition mode,
the incorrect line is entered as part of the function and
may then be replaced or edi ted.

Appendix A 181

Table A-l. Error Messages {cont.}

Message

NO RESULT

NOT APL FILE

NOT ENQ SYSTE/v'\

NOT GROUPED

NOT SAVED, THIS WS IS name

OPEN QUOTE

PRIVATE PACK UNAVAIL, CALL aPR.

RANK ERR

REQ. WOULD CREATE DEADLOCK

SEALED WS

SI DAMAGE

SI DAMAGE WILL RESULT: TYPE'GO'TOCLOSE

SING. MATRIX

182 Appendix A

Description

A user-defined function which generated no result was
used in a syntax which requires a result.

This file I/o error means that a component read failed
because it did not have the structure required by APL.

An attempt was made to use shared file enqueue feature j

which is not supported by the local installation.

The group name specified in a }GROUP or }GRP command
already references an item which is not a group. A dif
ferent group name must be used.

If "name" = CLEAR WS, either there is nothing to save
or the SAVE command did not specify a name for the saved
workspace. Otherwise, the save command named an ex
isting saved workspace when the active workspace name is
different. Change the name or drop the saved workspace.

The Execute operator has been used on an argument that
has an odd number of quotes before the end of I ine (or
first embedded carriage return).

This fi Ie I/o error usually means that the user has refer
enced a private disk pack that has not yet been mounted
by the computer operator. A message should be sent to
the operator to mount the correct disk pack.

The rank of the indicated argument is incompatible with
the operator or wi th that of the other argument.

An enqueue request has been made, pertaining to APL
shared files, which, if honored, would create a dead
lock stopping further activity of two or more users.

Attempt was made to save or display functions of a sealed
workspace.

A suspended function has been erased or replaced, and the
state indicator has been modified to delete all calls to it
from its active iist. This may occur in function definition,
or upon execution of an)ERASE or a)COPY command.

This warning message is output in function definition when
the header of an existing active function is changed. It
indicates that references to this function in the state indi
cator list wi II be damaged if the header change is imple
mented. In order to avoid SI damage, the user may restore
the header to the old form or change the function name in
the header before closing the function. If he wishes to
close the function and accept the SI damage, he may do
so by typing GO in reply to the warning message.

The right argument of a matrix divide operation (ill) is a
singular matrix, i. e., it has no inverse.

Message

SYM TBl FUll

SYNTAX ERR

SYS ERR

TOO BIG

TOO BIG TO lOAD

TOO MANY SYMBOLS

TRAP

TRUNCATED INPUT

UNDEFINED

WRONG TERMIN AL

WS FULL

WS NOT FOUND

Table A-1. Error Messages (cont.)

Descri pti on

The internal symbol table is full. This may occur during
execution, in function definition, or because of a)GROUP
command. If the user wishes to extend the symbol table at
this point, he must)SAVE the workspace, issue a)C lEAR
command I use the)SYMBOLS command to request an ex

tended allocation, and then issue a)COPY, not a)lOAD,
to restore the workspace. Further information on the use
of the)SYMBOLS command may be found in Chapter 8.

Improper syntax was detected in the executed iine. Ex
amples of improper syntax are unbalanced parenthesis, two
variables not separated by an operator or by a function,
or an attempt to assign a value to a label.

An irrecoverable system error of indeterminate origin has
occurred and an error exit has been made from the APL pro
cessor. IfAPL is reaccessed, it starts again witha clear
workspace and should operate correctly unless the con
ditions which led to the SYS ERR reoccur. Error should be
reported to field representatives with accompanying data.

A)COPY command accessed more material than would fit
in the current workspace; no items were copied.

The workspace specified in a)lOAD command was saved
by a user wi th larger memory a Ilocation than the present
user, and there is insufficient space for the workspace to
be loaded (i n some cases it cannot even be copi ed). See
also the description of the)COPY command, Chapter 8.

The symbol table would have overflowed if the requested
)COPY command were performed; no items were copied.

Similar to SYS ERR except error was detected via machine
trap rather than by the APl system. See description of
SYS ERR, above.

The input line was too long.

The indicated symbol has not been assigned a value.

The user has attempted to perform graphics input, graphics
output, or graphics service (,6. GRF) with a terminal type
not appropriate to graphic I/O. Terminal type 13 should
be used for Tektronix 4013 or 4015. Terminal type 3
should be used for Tektronix 4010.

The active workspace is full. This may occur during ex
ecution, in function definition, or because of a)GROUP
command. Depending on his particular situation, the user
may choose to)ERASE unneeded objects from the work
space, clear the state indicator, or)ClEAR the entire
workspace in order to free up space.

The workspace file specified in a)LOAD or a)COPY
command was not found.

Appendix A 183

Sidetracking on Errors and Breaks

In some APL applications, the programmer would like to bypass APL' s standard error and break procedure. He May,
for instance, wish to substitute his own messages or institute corrective actions. Computer-assisted learning pro
grams and commercial business aids are applications where this may be desired. Users of such applications may have
little knowledge of APL, and messages such as DOMAIN ERR or WS FULL frustrate rather than help.

Xerox APL has been enhanced to allow the programmer to overcome this problem. This enhancement is called "side
tracking"; also the term "error control" is sometimes used (with an understanding that break control is included).

Suppose a DOMAIN ERR has been detected by APL. Under the enhancement, Xerox APL starts looking back through
the state indicator searching for active functions for which the programmer has designated sidetracking. If a side
tracking function wants control over DOMAIN ERR, then APL sidetracks (branches) to the line in the function speci
fied for DOMAIN ERR. If no active function wants such control, then APL issues the standard diagnostic message.

Sidetracking isboth flexible and dynamic. Different errors can be sidetracked to distinct lines of a function. Certain
sidetracking functions may control some errors while other sidetracking functions control others. Sidetracking func
tions can also compete for control of the same error. In this case, the most recently invoked function gets control,
and its competing predecessors never become aware that the error occurred. Sidetrack specifications can be changed
at wi II. They can be turned on and off, the error selection can be altered, and the sidetrack branches can be
changed; the application program itself can modify sidetracking specifications throughout its execution. This cap
ability permits a simple or comprehensive treatment at the programmer's discretion.

Table A-2 shows errors that are subject to sidetracking. Errors not listed in the table include:

SYS ERR, **TRAP**, *BAD WS*, and (irrecoverable) I/O ERR.

Since recovery from these errors is impossible for an applications program, APL retains exclusive control. See the
discussion following Table A-2 for details concerning certain unique errors.

Associated with each item in Table A-2 is an error number. Error numbers are informally grouped by common classi
fications: statement execution errors, input-translation errors, command errors, file input/output errors, etc. Gaps
are provided in the error number sequence to accommodate future diagnostics. It should be pointed out that in the
case of input/output errors two conditions must exist. One, the error must be recoverable. Two, APL must acknow
ledge the error - if a file I/O subsystem uses the file primitive 141"2, APL will acknowledge file I/O errors. If
file primitive141"l is used, however, the error data is passed on to the file I/O subsystem (as a scalar integer), and
APL wi II nei ther display a standard diagnostic nor attempt a sidetrack.

The items in Table A-2 contain four cases in which APL gives up control somewhat grudgingly:

SI DAMAGE
name NOT COPIED
name NOT FOUND
name NOT ERASED

These cases, in which command processing or function definition is in effect, must reach an ordeily conclusion to
avoid workspace damage. Therefore, APL uni laterally displays the messages and proceeds to conclusion. (Never
theless, sidetracking is still possible, and an application program might issue explanatory messages after the APL
messages, as one alternative.) As APL proceeds in these four cases, a series of such messages could be displayed
(but this would be unusual). APL permits sidetracking only with regard to the latest error known at the conclusion
of this kind of processing. Using the execute-operator, for example, suppose a)COPY command occurs while side
tracking is in effect. Suppose also that some object, X, is missing - X NOT FOUND is displayed; furthermore,
suppose that the data found will not fit in the active workspace. Then the)COPY command concludes without copy
ing anything and would ordinarily issue a TOO BIG message. Sidetracking would then apply to this example to the
TOO BIG error and, the NOT FOUND error would be "forgotten" .

Note in the foregoing example that copying was attempted by means of an execute-operation. This was a necessity.
A function can obtain sidetracking only while it is actively in execution. Thus command and function definition
errors can be sidetracked only when the function (or some function invoked by the sidetracking function) actua Ily
executes a command or function definition. Evaluated-input might seem to provide another way in which a func
tion could, indirectly, invoke command or function definition activity. However, for the reason given below,
evaluated input is not considered capable of being sidetracked (except while that input has itself invoked a side
track i ng functi on).

184 Appendix A

Table A-2. Items Subject to Sidetracking

Error Number Standard Error Message or Break Error Number Standard Error Message or Break

1 WS FULL 46 TOO BIG

2 SYNTAX ERR 47 TOO MANY SYMBOLS

I I I I

3 I UNDEFINED I 48 I name NOT C OPIE D

I I I I
I 4 I DOMAIN ERR I 49 I name NOT FOUND

5 RANK ERR 50 nome NOT ERASED

6 LENGTH ERR 51 NOT GROUPED

7 INDEX ERR 55 COMPo NOT HELD

8 NO RESULT 56 COMPo ALREADY HELD

9 SYM TBL FULL 59 ABORTED BY BRK OR CTRL-Y

15 SING. MATRIX 61 REQ. WOULD CREATE DEADLOCK

16 FORMAT SYNTAX ERR 62 ENQ FULL

20 BAD CHAR 64 ENQ UNAUTHORIZED

21 LINE SCAN ERR 65 NOT ENQ SYSTEM

22 TRUNCATED INPUT 70 FILE SPACE TOO LOW

23 OPEN QUOTE 71 FILE I/O ERR xxxx

30 I/O ERR xxxx 72 FILE DAMAGE

31 WRONG TERMINAL 73 FILE NAME ERR

35 DEFN ERR 74 NOT APL FILE

36 SI DAMAGE 75 FILE TBL FULL

40 BAD COMMAND 76 FILE ACCESS ERR

41 NOT SAVED, THIS WS IS name 77 FILE TIE ERR

42 FILE I N USE 78 PRIVATE PACK UNAVAIL, CALL OPR.

43 BAD FILE REF 79 FI LE INDEX ERR

44 WS NOT FOUND 99 DMS ERR

45 TOO BIG TO LOAD 100 Break

Appendix A 185

In Xerox APL, the execute-operator makes it possible to execute via quote-quad input anything that could be
entered via evaluated-input. Quote-quad input has an advantage from the standpoint of error recovery. The in
put text can be assigned to a variable before it is executed. Thus, a sidetrack function can analyze this text to
determine correct recovery action. Evaluated-input is not susceptible to this analysis; it is immediately interpreted
by APL.

Setting Sidetracks

A sidetrack setting resembles setting a stop vector. The similarity is so strong that it must be noted that they are
totally independent of one another. The syntax for setting sidetracking in a function is

Sfmame + table

where:

name is the name of the function and

table is the 2-column matrix in which the first column contains line numbers and the second contains error
numbers.

The function must be defined when this syntax is executed; it could be a statement in the function. Sidetracks can
be set even when a function is locked.

In effect, the sidetrack table becomes part of the function's definition and is copied or loaded if the function is
copied or loaded. Function editing has no influence on the sidetrack setting. Since the sidetrack table contains
line numbers, the following precaution should be observed. If editing a sidetracking function alters the position
of a line specified by the sidetrack table, a correct setting must be reissued. This is necessary to ensure that the
proper line will be branched to if the sidetrack does take place.

Erasing a sidetracking function erases its sidetrack setting. A sidetrack setting can also be removed by being re
placed with an empty matrix, as in the following example.

S6 FUN+O 2 pO

Note: Assigning an empty vector removes the stop vector, but not a sidetrack setting. Only matrix assignments
affect sidetracking.

When a (nonempty) table is assigned for sidetracking, it consists of one or more rows. Each row contains a pair of
integers - a line number and an error number. The line number designates which line of the function is to be side
tracked to (branched to) if the indicated error occurs. The following sample sidetrack setting specifies a branch
to line number 9 in case of a DOMAIN ERR (error 4 in Table A-2).

SI:. FUN+l 2p9 4

A new sidetrack setting for a function entirely replaces any previous setting. Thus, the following example would
remove FUN's control over DOMAIN ERR.

Sf::. FUN+2 2p9 3 9 2

In this example, FUN sidetracks to line 9 for UNDEFINED or SYNTAX ERR. This illustrates that a sidetrack table
can contain duplicate line numbers; however, it is useless to duplicate an error number in the same table. Only
the first such number would be effective.

In the above example, FUN sidetracks on only two of the possible errors. If other errors occur, APL handles them
in the standard manner unless some other function has specified sidetracking for those errors.

A special error number, 0, exists for sidetracking on all items in Table A-2 except the break (number 100). In
the following example, FUN sidetracks:

• to line 8, if a break is detected

• to line 7, if WS FULL occurs

• to line 9, for any other error subject to control.

SI:.FUN+3 2p8 100 7 1 9 0

Error number 0 should always be the last number in the table, anything after it would be ignored.

186 Appendix A

Breaks are sidetracked only if the sidetrack explicitly includes error number 100.

The following example shows a compact way of setting several different error numbers to the same line:

Suppose ERR LAB is the labe I of the desired line and sidetracking is set within the function FCN contain
ing ERR LAB.

SllFCN+-ERRLAB~ [1.5J2 3 5 8 21

sets the indicated error no sidetracks to ERR LA.S (see II Lamination II),

The above examples illustrate how to set si~etracks. This does not imply that the function (FUN) immediately
receives control if an error occurs, If FUN is not actively in execution, its sidetracking is disregarded. Even if
FUN is being executed, it tflOY still not be given contro!' The error may have occurred in evaluated-input; or
FUN may have called another function which has a competing sidetrack.

The Dynamics of Sidetracking

A step-by-step outl ine revea Is significant aspects of sidetracking dynamics. Assume a controllable error or break
has occurred and APL is ready to check for sidetracking.

Step 1: APL designates and saves the current error number, replacing any previously recorded error number. For
the moment, it initializes the error location to be line zero and an empty function name. APL points to
the top (latest) entry in the state indicator.

Step 2: The state entry is examined. If it is a pendant function, APL proceeds to Step 3. If it is an execute
operation state, APL points to the next entry and repeats Step 2. Otherwise, sidetracking is not applicable;
so APL issues the standard diagnostic.

Step 3: (Pendant function state.) The ellvi location is tested. If sti!! initialized (see Step lL the line number
and name of the pendant function are recorded. The function's definition is tested tor sidetrack setting. it

it features some sidetracking, APL proceeds to Step 4. Otherwise, APL points to the next state indicator
entry and repeats Step 2, attempting to find a function with a sidetrack setting.

Step 4: (Sidetrack setting present.) The sidetrack table is tested sequentia Ily versus the recorded error number. If
a match is found or the table has a zero error number, APL proceeds to Step 5. Otherwise, APL points
to the next state entry and repeats Step 2, attempting to find a function interested in the current error.

Step 5: (Sidetrack acknowledged.) APL removes from the state indicator any entries it bypassed in reaching Step 5.
This puts the sidetracking function at the top of the state indicator. APL then branches to the specified
line number (which mayor may not actually exist in the function).

Considerations After Gaining a Sidetracks

Once APL performs a sidetrack, it has no further interest in handling the break or error. Responsibility falls to the
application programmer, depending on the line number dictated and statements supplied for the sidetracking func
tion. Caution is advised.

If a mistake occurs in statements entered via a sidetrack, a new error may confuse the intended recovery procedure.
It is possible for that statement to generate the error being considered, leading to the same sidetrack, the same
mistake, and so on indefinitely. WS FULL can be particularly troublesome. In some cases, the statement reached
by the sidetrack will itself cause another WS FULL. There is no general solution to this potential problem t but it is
a rare difficulty for two reasons. First, intermediate results may be discarded after any error, freeing up sufficient
workspace for recovery. Second, more workspace may become available if state indicator entries are removed in
reaching the sidetrack (see Step 5 above).

The application programmer should also be cognizant of the monitor's role in handling breaks. If the monitor de
tects four consecutive breaks between two terminal input requests, it abandons APL processing and enters the TEL
subsystem. Thus it is recommended that when sidetracking on breaks, some input from the uSer should be requested.
This clears the monitor's break count before the threshold is reached.

Appendix A 187

Aids for Sidetrack Users

Three niladic intrinsic functions have been added toAPLwhichareofparticularinterest aftera sidetrack has occurred:

ERRN+16TO
ERRF+16Tl
ERRX+16T2

ERRN produces a 2-element integer vector; the first element is the latest error number recorded and the second is
the line number for the error location (see Step 3 above). ERRF produces a text vector containing the name of the
function for the error location (it might not be the same as the sidetracking function). Initial values are zero for
error number and line number, and the function name is an empty vector. These are re-initialized by a)LOAD or
)CLEAR command.

ERRX produces a 4-character text vector containing the latest" I/o uerrorll information available to APL. These
characters are hexadecimal digits. They represent input-output error (or abnormal) codes and subcodes as shown
in monitor reference manuals or, in the case of file I/O, APL file I/O error subcodes. The latter case is distin
guished by two zero characters in the II code" fi eld (i. e., the first two of the four characters).

Note: APL sometimes expects error or abnormal I/O codes. Thus, the value reported when using ERRX does not
necessarily indicate erroneous processing.

188 Appendix A

APPENDIX B. NONSTANDARD INPUT jOUTPUT

Standard and Nonstandard Devices

As defined in Chapter 3, standard APL input/output refers to the use of the APL typeball with the IBM 2741, or a
functionally equivalent terminal such as the DATEL 20-31; the DURA 1021 and 1051; the NOVAR 5-50; and the
TST 707. 'vVithout attempting a truly comprehensive I/o capacity, APL nevertheless accommodates certain other
devices. These include Tektronix 40131 Teletype Model 33, non-APL equipped 2741 terminals for on-line pro
cessing, and card reader format input or line printer format output for batch processing.

Blind I/o and File I/o are also discussed in this appendix since they are considered to be modes of nonstandard I/O.

Using Nonstandard Input/Output

Nonstandard input/output provides the user with a set of substitute characters and mnemonics as replacements for
APL characters which are either illegal or missing on his particular input or output device. In some cases the sub
stitution is one-to-one (APL ex is input or output as @ on nonstandard devices), but most substitutions for APL symbols
involve mnemonics of one, two, or three characters preceded by a dollar sign key. Standard APL operators and their
substitute character mappings for each nonstandard device are listed in Table B-3 at the end of this Appendix.

Terminal Declaration

The character mapping to be used for a particular I/O device is determined by the user's terminal declaration. This
declaraction is made by means of the ,ystem command)TERMINAL n where n can hove the following values:

1 - 27-11 (or equivalent) with ,A.PL typebc!!.

2 - 2741 (or equivalent) with non-APL typeball.

3 - Teletype Model 33 {or equivalent}.

4 - Line printer format output and cord reader format input.

13 - Tektronix 4013 or other typewriter-paired APL/ASCII terminal.

14 - APL/ASCII bit-paired mapping terminals.

Type 1 is the standard terminal. In on-line runs the APL processor assumes a default terminal declaration of Type 1
if no declaration is made by the user. Type 2 typically features both uppercase and lowercase letters, although
special-purpose typeballs are also avai lable. These can be used, but translation correspondences are the responsi
bi�ity of the user. Type 3 indicates Teletype Model 33, but this declaration may be used for compatible terminals,
such as Teletype Models 35 and 37 (restricted usage), Type 4 is primarily applicable to batch jobs and is the default
declaration in CP-V batch runs. Type 13 is strictly applicable to the graphics terminal, Tektronix 4013, and must
not be declared for any other device.

If the input/output device is nonstandard, the user should make the proper terminal declaration immediately after
calling APL. He may then proceed with normal APL processing, using substitute characters and mnemonics as re
quired for his particular device.

Changing Terminal Declaration

The importance of making the correct terminal declaration should be evident to the user. In addition to character
mapping differences among the various devices, certain operational idiosyncracies exist for each device, as will be
discussed later. A false terminal declaration will very likely result in output discrepancies. However, new terminal
declarations are acceptable at any time during an APL run as long as the user can tolerate the consequences. One
example of these consequences is error message discrepancies. A diagnostic message (e. g., LENGTH ERR) wi" usually
display correctly, but the offending APL statement may appear badly garbled - in fact, some characters may even
be omitted. For the sophisticated user, however, there may be legitimate applications in which a false terminal
declaration can be useful. The following discussion of translation processes is intended to aid this type of user.

Appendix B 189

Input/Output Translation

It is vital that the user correctly identify his terminal to the CP-V communications handler at log-on time. All input
and output, whether standard or nonstandard, is ultimately constrained by the communications handler and the
input/output equipment. The initial translation on input and the final translation on output are always made by CP-V
according to the code set corresponding to the type of terminal indicated at log-on time. In the case of 2741 or
equivalent terminals, this translation is complicated by the fact that two fundamental code sets are avai lable for
these terminals - Selectric® and EBCD. In addition there are APL and non-APL versions for both of these code sets.
Unless deceived, the communications handler reconci les the different code sets; otherwise the confusion between
EBCD and Selectric codes can be a considerable problem. Whatever the device, this level of translation wi I I occur
regardless of the terminal declaration applied by APL. Thus APL exercises only second-level control in the transla
tion process.

The actual effect of the APL terminal declaration is to cause translation tables called Input/Output Mapping
Tables to be brought into memory. The particular set of tables is determined by the }TERMINAL command. Each
character input from the communications handler is then translated according to the resident Input Mapping Table.
Certain one-character translations are made at this point - converting an @ to AP L internal a for Type 2, 3, and 4
tables for example.

Illegal characters and certain key characters wi II be detected by APL for any terminal declaration. The backspace
key character indicates that overstrikes follow, and the $ key character indicates that mnemonic equivalents to
APL characters may follow. Once an overstrike has been accumulated, it is compared to a table of valid overstrikes.
This either results in the proper translation to internal APL form or the detection of an illegal overstrike character.
When a $ is detected as a single input character, the next three characters are acquired if availab!e. These are
compared to a table of three-character mnemonics. If no match is found, the rightmost test character is ignored
and the remainder is compared to a table of two-character mnemonics. Again if no match is found, only the char
acter following the $ is used for comparison to a table of one-character mnemonics. If a match occurs in any of the
above comparisons, the proper translation to internal form takes place. If no match is found, the $ itself is trans
lated to internal APL form. Thus, if a sequence of characters following a $ looks like a mnemonic, it is translated
accordingly.

The overstrike and mnemonic tables reside permanently within the APL processor and are unaffected by the terminal
declaration. This means that the Teletype user could actually input overstrikes, assuming he could simulate the
backspace and "strange" characters. This flexibility is not possible for output, however. The Output Mapping
Table determines the resulting display regardless of the manner of input.

Output processing is similar to input processing. For each internal character, one of four possible translations will
occur:

• Conversion to a Single EBCDIC character.

• Conversion to an overstrike triplet (character-backspace-character) given in the overstrike table.

• Conversion to a mnemonic form given in the mnemonic table.

• No conversion (for instance, when the character is not a known internal APL character).

Final output translation wi" then be made by the CP-V communications handler, again according to the type of ter
minal indicated at log-on time.

The following code tables may be of some interest to the user. Figure B-1 illustrates standard EBCDIC codes and
APL codes. Table B-1 shows Xerox line printer graphic codes.

False Terminal Declaration

As noted earlier, false terminal declaration does have potential applications. A batch user, for example, may wish
to create a file for later on-line output. He may declare a Type 1 terminal in this case in order to avoid having
the output file cluttered with mnemonics.

®Registered trademark of the IBM Corporation.

190 Appendix B

XEROX STANDARD a-BIT COMPUTER CODES (EBCDIC)

APL CODES

Most Significant Digits

Hexadecimal o A C D

Binary 000000010010 00110100 01010110 0111 1000 10011010 1011 1100 11011110 1111

0000 Index SP a

1 0001 A

2 0010 K

3 0011 o , c !:.- C

4 0100 EOT D M U D M U 4

5 0101 HT NL N v

gr-6-+ __ o_11_o ____ -i __ -i_ID_L_E~--~--~-.~~O~r_w~r_~~~~~.~=Q~~~~~@~~F __ ~O~~W~~6~
~~-7~-0-1-11----~r-~--~----~-~~~~~.~~--'~-~--~-G--r---p-+---X~_m_l-+_G __ +

1
__ P-+ __ X-+ __ 7-+

!r-_8~_I_ooo ______ ~_B_S~--~--~--~-~~~~~~e~~¥--~1-{~~g--~L~~0~~H~~Q~~Y~+-8~
~ 9 1001 R z
~~--~---------+---+----r---r----r---r---~-- --- I-- ----1-----+-----+---+------+---+---+---1

A 1010

B 1011

~-C~-I-IOO------~--+--+----+----1 < I __ *_+ __ p-+ __ a_-+ __ -r __ -r __ -+ __ -r __ -+ __ -+ __ ~-+ __ +~
CR r~T) D 1101 I .. ----------C----, I + -r~-- ---- ---- ----f---- ---r---

I ID

-- -- ----

1110

Filii

~.!~_: Characters bounded by heavy lines are
overstrike combinations in APL.

Figure B-1. EBCDIC and APL Codes

NOTES:

1 The characters ~ \ { f [] are ANSCII

<;.~c;~:~er.s tha~ dlQ not .appe~r i~, any ,O~,the
l:O\.....UIL-UU:lt!U cnurUl:ler)t;!'I), IrlUUyfl Int::y

are shown in the EBCDIC table.

The characters ,.- i, appear in the 63- and
89-character EBCDIC sets but not in either
of the ANSCII-based sets. However, Xerox
software translates the characters { I ..,
into ANSCII characters as follows:

EBCDIC ANSCII

i \ (6-0)

I (7-12)

- (7-14)

The EBCDIC control codes in columns a
and 1 and their binary representation are
exactly the same as those in the ANSCII
table, except for two interchanges: LF/NL
with NAK, and HT with ENQ.

Characters enclosed in heavy lines are
included only in the standard 63- and
89-character EBCDIC sets.

5 These characters are included only in the
standard 89-character EBCDIC set.

The CP-V communications handler ignores
codes for the unmarked positions in the
tables.

2 EaT is input when ATTN key is used in
input mode.

3 The CP-V communications handler converts
both upper and lowercase letters to APL
(capitol) letten on output.

4 The 0, 1-, -i, I , and I characters are valid
only for the Tektronix 4013 terminal.

Appendix B 191

Table B-1. Xerox Line Printer Graphic Codes

Character 6-Bit Code Hex. Code Character 6-Bit Code Hex. Code Character 6-Bit Code Hex. Code

Blank 000000 40 I 00 1001 C9 < 00 1100 4C
0 11 0000 FO J 010001 Dl (00 1101 4D
1 11 0001 Fl K 01 0010 D2 + 00 1110 4E
2 11 0010 F2 L 010011 D3

I
I 00 1111 4F

3 11 0011 F3 M 01 0100 D4 & 01 0000 50
4 11 0100 F4 N 01 0101 D5 $ 01 1011 5B
5 11 0101 F5 0 01 0110 D6 * 01 1100 5C
6 11 0110 F6 P 010111 D7) 01 1101 5D
7 110111 F7 Q 01 1000 D8 ; 01 1110 5E
8 11 1000 F8 R 01 1001 D9 - 10 0000 60
9 11 1001 F9 S 10 0010 E2 / 10 0001 61
A 000001 C1 T 10 0011 E3 , 10 1011 6B
B 000010 C2 U 10 0100 E4 % 10 1100 6C
C 000011 C3 V 100101 E5 > 10 1110 6E
D 000100 C4 W 10 0110 E6 : 11 1010 7A
E 00 0101 C5 X 10 0111 E7 # 11 1011 7B
F 00 0110 C6 y 10 1000 E8 @ 11 1100 7C
G 000111 C7 Z 10 1001 E9 I 11 1101 7D
H 00 1000 C8 00 1011 4B = 11 1110 7E

As an example of the potential mix-ups when a false terminal declaration is made, however, consider the on-line
2741 user who issues the line printer declaration)TERMINAL 4. Suppose he requests display of a function contain
ing the characters shown in the first column of the Table B-2. APL will transmit the characters shown on the second
column, since APL thinks it is outputting to a line printer. The CP-V communications handler then transmits data
according to the translation codes for a 2741. The results are shown in the remaining columns based on the type
of 2741 used.

Table B-2. Examples of Problems with False Terminal Declaration

Character Character Sent Result
in Function to Handler APL Non-APL (EBCD) Non-APL (Selectric)

x # ~ # #

% p % %

$ $ u $ $

/\ & n & &

I I I ignored ignored

< < < < ignored
, "- : -r-red > > / I~ IV

Teletype Usage

ESCAPE Key Sequences and APL

An important consideration for Teletype users is that standardCP-VESCAPEkey sequences willstill beeffectiveduring
APL runs. These should generally be used with caution, since some of the ESCAPE sequence capabilities may have
strange effects on APL input. Applications and restrictions for the more useful sequences are described below.

Li ne Editi ng

The ESC RUBOUT sequence for erasing the last character input, and the ESC X sequence for erasing the entire input
line are the recommended APL line editing procedures for Teletype users.

192 Appendix B

For Teletype terminals with true backspacing capability, the CONTROL L key combination (Form Feed) will be
accepted as an alternate input editing signal. The response will be to generate a line feed and continue accepting
I ine input. CONTROL L (followed by carriage return) is used to delete a function line.

Tab Usage

Since Teletype ~.,"odel 33 does not perform true tabbing, CP-V provides tab simulation. ,L\,PL then 0110'.'/5 input and
outout of TAB characters on the assumotion that the user has invoked tab simulation mode. However; APL wi II
al~ays replace input TAB characters v:.ith one or more spaces, depending on whether or not tab settings have been
specified via the)TABS command.

Teletype users should generally avoid the)TABS command, however, because its effect is nullified by CP-V tab
simulation. On output, for example, when)TABS have been specified, APL replaces strings of spaces with actual
TAB characters where appropriate. On detecting the TAB characters CP-V wi II change them back to spaces in order
to simulate mechanical tabulation. The net result is slower output than would have resulted if)TABS had not been
used.

Operational Differences

Prompt Character

The Teletype disp!oys u duuble colon in place of the quad~coion sequence ro indicate evaluated input prompt.
Quote-quad prompt is indicated by a single colon.

III egal Character

The uppercase (shift) N is considered to be an illegal input character on Model 33 Teletypes because of the poten
tial confusion for APL users. On some keyboards this key represents an up-arrow (the APL "take" operator), while
on other keyboards it represents a caret (the AP L "and II operator). Mnemonics wi II have to be used to represent
either of these characters.

Error Marker

The ampersand will be output on Teletypes as APL' S error marker.

Batch Operation

Intended Usage

The batch mode in Xerox APL is provided for the operation of programs with either extensive output or long execution
times. Its usage is not intended for simulation of on-line operations. The anticipated operation is to load extant
workspaces or copy functions and data from extant workspaces and execute them. Below is an example of a typical
card sequence whi ch would follow the Monitor control cards.

Appendix B 193

In this example the workspace MYWORK contains the master function MYREPORTER which drives the APL processing.
Quad input will access data cards as appropriate.

Input/Output Device Assignments

In CP-V batch processing mode, input (DCB = F:APL) and output (DCB = F:OUT) that would normally go to the user's
terminal are defaulted to the card reader and line printer, respectively, unless otherwise assigned by a Job Control
card. Xerox APL wi II then assume a character mapping default of)TERMINAL 4 for card reader input and line printer
output. The)TERMINAL command can be used to modify character mappings if desired.

The F:APL DCB is used for APL source input, and F: OUT is used for output of results and diagnostic messages. Either
or both of these may be reassigned via the Monitor ! ASSI GN card prior to entering APL. For example,

!ASSIGN F:APL, (FILE,APLINPUT), (IN)

This card wi II cause APL input to be read from a user's fj Ie. That fi Ie should normally start with a)T ERM command,
unless the user wishes to use the default terminal type 4, and should end with one of the)OFF or)CONTINUE
commands. If the following card is also used, the output wi" be routed to the fi Ie APLOUT rather than to the line
printer:

!ASSIGN F:OUT, (FILE, APLOUT), (OUT), (SAVE)

See the Xerox CP-V/BP Reference Manual, 90 1764, for use of the !ASSIGN card and batch deck setups.

Card Input Fonnat

When)TERMINAL 4 is used, the following wi II be observed:

• When input is via records other than cards (e. g., F:APL assigned to a file), APL automatically inserts a
new-line character fotJowing the last actual character read.

• When input is via cards (or, in !BATCH runs with F:APL not assigned to a file), all input lines consist of
80 columns, including trai ling blanks.

• Each card or record represents an individual line of APL input; there is no provision for continuation.

194 Appendix S

Error Response

Xerox APL batch operation is necessarily success-oriented. APL normally expects any input errors to be corrected
as they are detected, which is not possible in this mode of operation. Therefore, any error wi II terminate the run.
If a run is aborted, however, the processor will attempt to save the user's workspace by simulating the)CONTINUE
HOLD command, if appropriate. Sidetracking (see Appendix A) of errors can be used in batch runs, which wi II con
tinue unti I a non-sidetracked error occurs.

Operational Differences

Prompt Character

The line printer displays a double colon in place of the quad-colon prompt character to indicate evaluated input
prompt. Quote-quad input is indicated by a single colon. The card reader is accessed for the actual input data
in both cases, unless otherwise assigned by a Job Control card.

Error Marker

When output is to the line printer, the ampersand is used in place of the caret for APL's error marker.

Tektronix 4013 Usage

The Tektronix 4013 terminal is used in conjunction with the on-line curve plotting faci lities described in Chapter 1l.
It employs a keyboard for input and a storing CRT display tube for output. Character I/O may be performed in
either of two modes selectable at the terminal: ASCII or APL.

ASCII Mode

In ASCII mode, recommended for use in communicating with CP-V outside of APL, the 4013 acts like a Model 33
teletype with a true backspacing capabi lity. The character set and keyboard layout is simi lar to that of the
Model 33. Characters that differ from the AP L characters shown on the key tops are indic~ted on the fronts of the
keys. ASCII mode is established by (1) placing the 'ASCII-APL'/,APL' switch in the 'ASCII-APL' position,
(2) illuminating the TTY LOCK switch, and (3) depressing SHIFT and RESET simultaneously to activate the ASCII
character set. This procedure should be done initially, before logging on, and whenever leaving APL to use other
CP-V facilities.

APL Mode

This mode provides a full APL character set with a keyboard layout similar to a 2741, as indicated by the key tops.
This, therefore, is the mode recommended for use in APL. A ")TERMINAL 13" command identifies the 4013 to th;
APL processor. Since this command will ordinarily be issued immediately upon entering APL, with the terminal
sti" in ASCII mode, it will be necessary for the user to switch to APL mode after typing ")TERMINAL 13". The
user does this by turning the TTY LOCK switch illumination off. Thereafter, I/O is done with the APL character
set shown on the key tops. In addition, the specification of terminal type 13 permits use of the terminal's graphics
capabilities via fa I/o and the t.GRF intrinsic, as described in Chapter 11.

Appendix B 195

Logging On

The log-on procedure is quite similar to that described for ordinary terminals at the beginning of Chapter 2. With
reference to the steps there listed, the procedure is as follows:

1. Preparing the 4013 terminal for use:

a. As shown - no change.

b. As shown - no change.

c. As shown - no change.

d. Set the term i na I to ASC II mode as follows:

(1) Position the ASCII-APL/APL switch to ASCII-APL.

(2) Depress the TTY LOCK key to illuminate that key (each depression of this key reverses the TTY
LOC K state).

(3) Press the SHIFT and RESET keys simultaneously.

2. Logging on to CP-V:

a. As shown, except it is not necessary to type * @l. Once communication has been established, CP-V
initiates the dialog by typing the Jog-on message.

b. As shown, except the prompt symbol is ! instead of o.

c. As shown, except the prompt symbol is ! instead of o.

All input characters are ASCII and are shown on the key fronts, if different from the APL characters on the
key tops.

3. Calling APl:

As sho\A/n. \¥hen ,A .. PL prompts for its first input, type the command

)TERMINAL 13

(using the ASCII right parenthesis located over the 0), then switch to APL-mode by depressing the TTY
LOCK key once to turn off its illumination. Thereafter, all characters indicated on the key tops are in
cluded in the APL set.

Line Editing

Line editing is done with the standard BACKSPACE-ATTN sequences, where the function of the nonexistent ATTN
key is supplied by DC (i. e., the CTRL and D keys depressed simultaneously). A function line may be deleted by
striking DC followed by RETURN. In addition, the standard ESCAPE key sequences wi II be effective, but should
be used wi th caution.

196 Appendix B

Strapping Options

The APL graphics software defaults to expect the terminal to transmit seven characters in "gin-model!. If a terminal
is strapped for five or six characters, users of APL graphics must invoke the STRAPIS function for proper response
(see Chapter 11). Unless conflicts with other operations preclude seven-character strapping, it is recommended
that the 4013 terminal be set in this mode.

Data Transmission Rates

The 4013 is avai!able with interfaces to operate at several data transmission (baud) rates. The slowest rate,
110 baud, is compatible with Model 33 Teletype. If higher baud rates are used, different phone numbers are re
qui red. Check ith !ocal insta IIation management on transmission rate capabi IHies and corresponding phone line.
(Note that the higher baud rates, such as 300, are preferred for graphics work.)

Non-APL 2741 Terminals

Applications

For normal users, the addition of the standard APL typeball to the 2741 terminal is highly recommended. Non
standard I/O imposes a considerable overhead on the user because of the additional input and output characters
required for any operation. Furthermore, there are only certain applications in which nonstandard I/o capability
would be useful on the 2741. For example, standard APL might be used to generate output intended to be run with
a specialized typeball with dots and lines for plotting, or with a typeball which could output lowercase letters.
The common case, however, involves input and output on the same terminal, and standard I/O use is much more
practi co i here.

Operational Considerations

Functions such as tabbing and backspacing can always be performed on the 2741 terminal regardless of the typeball
used. The prompt for quote-quad input - unlocking the keyboard with the carrier at the left margin - is the same
for both APL and non-APL terminals. The BACKSPACE-ATTN sequence for current line editing is also used for both
types. Operational differences are described below.

Illegal Characters

The following characters are considered to be illegal because they are not standard on all non-APL 2741 keyboards.
Mnemonics must be used in place of each.

< Less than

> Greater than

Vertical bar

Exclamation point

Not sign

Right bracket

Left bracket

Degree

The cent sign (/.) is also considered illegal because it has no reasonable APL interpretation.

Appendix B 197

Quad Input Prompt

A double colon is displayed in place of the quad-colon prompt character to indicate evaluated input prompt.

Error Marker

The ampersand is output in place of the caret as APL's error marker on nonstandard 2741 terminals.

Blind I/O

Blind I/o is a specialized capability which may be of value to the advanced APL user. Essentially, it provides a
means by which characters may be input and output either to a specific device or to a file without undergoing any
sort of translation or validity check by the APL processor. Blind I/o could enable the user to generate special
characters which would otherwise be illegal under APL, for example, and route them to or from a unique device
such as a CRT or a plotter.

Using Blind lID

APL provides two DCBs - F:Q1 and F:Q2 - to be used for blind I/O, but performs no special set-up on them. It is
assumed that the user will assign F:Q1 or F:Q2 to devices or files, according to his needs, using the)SET command
(Chapter 8).

Within the APL processor, the special input/output characters OJ and [2] (quad overstruck with 1 and 2) supplement
the quad and quote-quad characters. They ore used to access the F:Q 1 and F:Q2 DCBs when blind input or output
is desired.

The default limit on record size for blind input is 512 bytes. This limit can be modified to any value from 1 to
32,767 by the SIZE option of the)SET command. Values higher than 512 may be needed for file input, and very
small values are useful to control input from special devices. Input from OJ or III always creates a text vector
result. If the source data is actually logic values, integer values, or double-precision floating point values, then
file I/O operator 25, 26, or 27 may be used to correct the erroneous data type after input.

Blind output may be used to output any data. It should be noted, however, that large output records routed to
physical devices with maximum length constraints will be truncated on output. In particular, records output to the
user's console should be limited to 140 bytes, and records output to a line printer to 132 bytes. Note also that
blind output of non-character data to a printing device will lead to useless results.

APL bypasses gJ! translation sequences and legality checks for blind input and output - overstrikes are not even
resolved, for instance. If an end-of-file condition is encountered by a blind-input request, APL returns an empty
integer vector result.

Blind I/O on a Device

In the following examples, [2] is assigned to the user's console prior to calling APL, as follows:

)SET [2] IN OUT UC

Quad 2 is then used for blind input and for blind output. In the example below, the blind input functions mych the
same as a quote-quad input, since the terminal itself is the blind input device.

A+r;:I
NOW IS THE TIME FOR ALL GOOD MENo

A
NOW IS THE TINE FOR ALL GOOD NEN.

Consider the next example, however, in which blind input is used to input illegal overstrike characters, which can
not be done with quote-quad input.

c+ra

c

198 Appendix B

The examples below illustrate blind output to the terminal. Note that the data to be output was specified as a
literal. When the RETU RN key is struck, the data is output to the terminal exactly as it was input.

~+'1234567890+xQWERTYUIOP+ASDFGHJKL[]ZXCVBNM,o/'
1234567890+ xQWERTYUIOP+ASDFGHJKL[]ZXCVBNM, 0/

~+ ' •• - < S = ~ >;tV 1\ - t? WE: p- t + \ O*+a r L _ V 11 0 0 () C~ n U J. T I ; : , '
--<s=~>~vA-t?WE:p-t+\o*+arl_Vl100()c~~UJ.TI ;:\

f2j+iASDFi
ASDF

The user should note that the CP-V communications handler still performs its normal translation at the level of the
I/o device. Bypassing the APL translation routines can result in the output of characters which are unrecogniz
able to the handler. For example, the handler maps most overstrikes as bad characters (/ on the 2741) as shown
below.

The SET command may also be used to bypass character translation at the CP-V level by using the options BIN and
DRC. These options should be used only by a user with detailed knowledge of the characteristics of the particular
I/o device.

Blind I/O for Files

In the following examples, [j] is assigned to a test input file which was built using the CP-V EDIT subsystem:

oEDIT
EDIT HERE
*BUILD BLINDIN

1.000 BLINDIN, RECORD 1.
2.000 RECORD 20 TEST BACKSPACING.
3.000 LAST RECOBRD.
40000

*END

Record 2 of the file contains a series of blanks and backspaces such that the total number of characters in the record
is considerably more than the example shows. Record 3 contains an "illegal" overstrike character.

After APL is called:

)SET rn IN DC/BLIND IN

In the next example, blind input is used to input the file records to the processor. Note that an attempt to use
blind I/o to access the nonexistent fourth record results in empty integer vector.

A+[I
B+[I
C+[I
D+[J

Appendix B 199

A, B, C, and D now contain the data from the fi Ie records, as shown below. Note that the length of B reflects the
blanks and backspace characters that were a part of the file record. C contains the illegal overstrike character
just as it was originally entered.

pA
18

A
BLINDIN. RECORD 10

pB
57

B
RECORD 2. TEST BACKSPACING.

pC
15

C
LAST RECO~RD.

pD
o

When bl ind output to a file is used, records are output as text data - scalar, vector, or array - without any sort of
header data such as the record keys output by CP-V EDIT when it bui Ids a fi Ie.

File Input/Output

The Xerox APL processor provides a set of intrinsic operators for fi Ie I/O. Normally, each installation pro
vides its users with a file I/O system made up of locked functions using these operators. These systems may
vary with the installation and are documented at the installation level. The fi Ie I/O operators used in such
systems are described below. Direct use of these operators by programmers who have no prior I/o programming ex
perience is discouraged. A workspace, FILEIO, containing a set of user file I/O functions is distributed to each
Xerox APL installation. This workspace includes a user function, DESCRIBE, which describes the contents of the
workspace.

Creating the Set of File I/O Operators

The fi Ie I/O operators are a set of 29 "operators" defined by one of three dyadic functions. These functions are
created with the forms

fname +- 14 T 1

fname +- 14 T 2

fname +-14 T 4

where "fname" is the function name (fname will be used in all succeeding format examples in this section to indicate
that a function name is to be supplied). The first two forms produce identical processing in successful usage. They
differ only in the method of handling errors. The first type transmits error data (in the form of a scalar integer) back
to the statement using that type of fname. The second type is used to have APL acknowledge an error; this permits
sidetracking on file I/o errors or else APL will display one of the file I/o error messages (see Appendix A). The
second type is preferred. The first type has been retained primari Iy to avoid incompatibi lities in workspaces that
used that type in the past.

For operators 14 T 1 and 14 T 2, the fi les bui It and accessed by APL are CP-V keyed fi les. Usually, they are bui It
and accessed with a particular key system common to Xerox EDIT, BASIC, and APL.

An a Iternate form of fi Ie can be accessed if the fi Ie I/o operator is the third form. These fj les are bui It using the
CP-V random file capability, and are referred to as APL indexed files. A file I/O package using the 14 T4, form
of operator can access either keyed or indexed files and the indexed files have been designed to appear essentially
the sal"ne as the keyed files to the end user. The indexed file capability has been added principally to increase file
access efficiency and to a II ow for shared access to fi les, for large data bases.

200 Appendix B

Appendix D contains information concerning the creation of APL indexed files, the design of indexing structures,
end trade-offs between indexed end keyed files. New APL indexed files cannot be created directly within APL.
Check with your installation for availability of, and initiation of, indexed files.

The following usage allows executing sequences of these operations in order in a single line (each use of this form
yields an empty vector as a result unless otherwise specified):

A fnome B

where

A is the I/O operator number (ranging from 1 to 29).

B is the argument applicable to the I/O operation.

Structure of APL Files

Xerox APL uses two forms of CP-V file structure, keyed files and random files. The random file use by APL simulates
keyed access, with certain restrictions and certain additional capabilities.

Keyed files normally use a numeric key system, which is essentially that used by Xerox EDIT. Provision is also made
for accessing text keys of up to 31 characters in length.

Files created by or accessed by APL can be considered in three categories:

• APL companent fi les. A component consists of two physi cal records, an ID record and a data record. Nu
meric keys are used. The key of a data record is aiways one pius the key of its iD record. tach Clara
record consists of one APl variable, including the information required to indicate its shape and type. No
records which are not parts of 'components' may be included.

A Pl indexed fi les are a I ways component fi I es.

Component files relieve the user of concern for housekeeping items such as record size, and carry infor
mation concerning when and by whom each component was created or most recently changed. The cost is
in the extra file storage and I/O accesses for the ID record of each component. APL indexed files reduce
I/O accesses but not space required for ID information.

• APL non-component files. These files are similar to component files in that data records are APl variables
and numeric keys are used. ID records are omitted. The user must maintain information concerning max
imum record size, and no information is maintained concerning the source or time of creation of individual
records.

Non-component files reduce I/O access by half compared with component files, and eliminate file space
requirements for ID records. They should be preferred for use when file structure will be fairly simple and
detailed ID information on individual records is not valuable.

• Non-APL files. Provision is made to access any keyed or sequential file created outside APL. Such files
may be accessed sequentially, or by key. If keyed access is used, two forms are permitted. Numeric keys
are appropriate for accessing numeri c keyed fi les created by EDIT, BASIC, or FORTRAN. For these fi les,
the key as seen by the originating user is multiplied by 1000 to form the reel key.

Example:

EDIT record 1. 25 has a real key of 1256. APL file functions accessing such records should apply this con
version factor. Text keys are required to access some fj les created by processors such as COBOL.

If APl is used to create non-APL files, two modes are allowed: numeric keys or text keys. Numeric keys
shou Id be used if the fi les are to be accessed by EDIT, BASIC, or FORTRAN. In this case, the mu Itiple
of 1000 should be applied to the key value as noted above. Numeric keys are 3-byte keys. If text keys
of more than 3 bytes are to be used in creating a new fi Ie, the maximum key length must be specified.

Appendix B 201

Opening and Creating Files

Following are the forms for the set of operators required to establish parameters prior to opening a DCB to a file and
to carry out the open CAL:

• Establishing "fi Ie number":

1 fname B

where B is a positive integer specifying the file number to be used for subsequent file operations. Up to
eight file numbers may be in use (OPEN) at any time.

• Establishing fi Ie name:

2 fname B

where B is a character vector specifying the file name for the currently set file number. A file name may
contain up to 11 characters. If B is not a character vector, DOMAIN ERR is reported. If B is more than
11 characters, LEN GT H ERR is reported.

• Establishing or resetting account:

3 fname B

where B is either zero or a character vector specifying the account for the currently set fi Ie number. An
account can contain up to eight characters. Using a zero for the B argument resets the assignment to the
user's account.

• Establishing or resetting password:

4 fname B

where B is either zero or a character vector specifying the password for the currently set fi Ie number, con
sisting of up to eight characters. Using the number zero for the B argument resets the password control to
indicate no password. In the above cases, if B is neither an integer of value 0 or a text vector of letters
and digits, DOMAIN ERR is reported. If the length exceeds eight characters, LENGTH ERR is reported.

• Establishing fi Ie identifi cation as a sing Ie primitive:

21 fname B

where B is a character vector up to 40 characters in length specifying fi Ie ID for the currently set fi Ie num
ber in the same formats permitted for system commands such as)LOAD. The permitted forms are:

name

account name

name:key

account name:key

name. account

name. account. password

name .. password

• Assigning serial numbers for private pack utilization (check with local installation for availability of
private pock use) or setting maximum key length:

20 fname B

where B is a text vector of up to 12 characters, the numeric value 0, or a positive integer from 3 to 3l.
Other forms give a rank, length, or domain error. Zero resets the pack control authorization, and should
be issued, after a private pock has been opened, before opening public files. Numeric values of 3 to 31
set maximum key length (appl icable on Iy to new output fi les).

202 Appendix B

If B is a character vector, it is used to set the serial number field of the user's DCB for private pack use.
If B is zero, it resets serial number control. The form 20 fname B applies to the currently set file number.

• Opening DCB in indicated mode:

5 fname B

where B is an integer specifying the mode of DeB for the currently set fi Ie number, as foi iows:

indicates IN.

2 indicates OUT.

4 indicates INOUT.

8 indicates OUTIN.

17 indicates INABN, which means OPEN in IN mode but take error exit if file is found. It is used
to verify that a file to be opened for OUT or OUTIN does not replace an existing file.

20 indicates INOUT, shared, and applies to APl indexed files only.

Unless otherwise indicated, files are created as private files, with read and write access by user only.
When opening new files (OUT or OUTIN), they may be declared public for READ access by adding 32
to the argument and for WRITE access by adding 64 to the argument. For example,

5 fname 8+32+64

This example opens the specified file as OUTIN, with public access for READ and WRITE. If the value
of B is not consistent with stating a specified I/o mode, DOMAIN ERR is reported. The result of "5 fname B"
is an ernpty vector unless on error or abnormal return resuits frorn the CP-'v' i'y'\:OPEr" caii. Error reporting

is covered later in this section.

As an example of fj Ie creation, suppose for function F that N contains the fi Ie number, NAM contains the
fi Ie name, A contains zero (indicating the user's own account), and P contains a password.

5F 8, 5F 17, 4F P, 3F A, 2F NAM, 1F N

This example opens a private, passworded fi Ie to the user's account, or detects an error if the fi Ie already
exists. The file is open for output and input. Note that several operations are carried out in a single line.
The result of each (except for error conditions) is an empty vector, which is catenated to the argument of
the next operation.

APL indexed files may be opened only in IN or INOUT mode. IN mode is used for input only. INOUT
may be in exc lusive or shared mode. See operators 28 and 29 for control of shared update access.

Closing Files

• C losing and saving fi Ie for indicated file number:

6 fname B

where B is an integer specifying the file number. The result is an empty vector.

• Closing and releasing the file for indicated file number:

7 fname B

where the argument B is the same as above. (This form is used to de lete fi les. A fi Ie is opened for input,
using 5 fname, and then closed for release.) The result is an empty vector.

APL indexed fi les may not be released by using 7 fname B.

Appendix B 203

Maintaining Component Range and Current Component Value

When files are created by APL or accessed in other than sequential mode, primitives are required to find the key
range of an existing file, to change the range as the fi Ie is appended, and to set keys for access or creation of
specific records. Keys are usually numeric but may be text. It is very inadvisable to mix the forms in a single file
(text keys may of course consist of text numerals, but such keys are not handled as numeric keys). When a file is
opened in OUT or OUTIN mode, values for the 'first component' and 'last component' are initialized to artificial
values which will be updated when the first record is written. These keys will be numeric unless a maximum key
length greater than 3 has been set. APL indexed files do not use true keys but simulate numeric keyed operation
from the user's viewpoint.

• Returning the value of a designated key for the currently set file number:

8 fname B

where B is 1, 2, or 3, specifying which key the value is to be returned for (the key returned will be that
for the currently open file, if any, of the most recently referenced file number):

indicates that the value of the first keyin the file is to be returned as anintegerscalarortext
vector.

2 indicates that the value of the current key is to be returned as an integer scalar or text vector.

3 indicates that the value of the highest key is to be returned as an integer scalar or text vector.

• Getting highest index number or index to component ratio.

8 fnome B

where B is 4 or 5. Used only if APL indexed files are in use.

4 indicates highest permitted index (or real key) value. For keyed files, returns 9,999,998.

5 indicates ratio of index number to component number for a particular indexed file. Returns 0
if not an APL indexed file. fV\ay be used to test if current file is indexed.

• Setting the value of the current key for the currently set fi Ie number:

9 fnome B

where B is an integer or text vector specifying the value for the current key. The key value is established
for the next record to be read or written on the most recently referenced "file number". The result is the
empty vector. If B is numeric and not in the range 1 to 9,999,998, DOMAIN ERR is reported. If B is a
text vector and its length is not in the range 3 to 31, LEN GT H ERR is reported. If the key length is too
great for the current output fi Ie, an error wi II occur when the next record write is attempted.

Key Values Versus Component Values

In order to permit record insertion into existing numerically keyed files in APL, the 'component number' is generally
chosen as a multiple of the real key value used. This is accomplished by the user functions which set and examine
keys. A typical form of such a system is to use a multiple of 1000. As noted earlier, this provides the same kind
of numbers, from the user's viewpoint, as Xerox EDIT, BASIC, or FORTRAN numerically keyed fi les.

If the APL fi Ie is a 'component fi Ie', such a system allows component numbers of up to 9999.998 and the insertion
of components down to the .002 leve I.

Example:

'Component' 1. 106 consists of an ID record with key 1106 and a data record with key 1107.

If the file is a non-component APL file or non-APL file, insertion to the. 001 level is allowed, as in EDIT and BASIC.
Note that FORTRAN wi II provide keyed access only for records whose true keys are multiples of 1000.

204 Appendix B

In the case of APL indexed fi les, the ratio of component number to index (corresponding to true key) is set at the
time the file is created. User functions must use that ratio to relate component to 'key' values. The ratio may be
found using 8 fname 4 as noted earlier. The ratio will generally be much lower than the 1000 used for the keyed
file examples here. Providing that extensive an insert capability causes prohibitive file storage costs for APL in
dexed files.

Writing APL Records

• Writing a record containing the value of an expression:

10 fname expression

Th~ rll,. .. ~n.l\I <:.~. L-~\I \lnlll~ nnrl fil~ nllmh~,. n,.~ 1I<:.",rI_ Th", r"'<:'lIh i<: nn pmntv vprtnr IInlp<:<:. nn prrnr i<: rlp-... - -_ .. _ , -_. "-, ._._- _ .. - ... - .. _ ... _-. _.- ----- _ .. - .--- ... - - .. -"'r" .--.-. - ... --- - .. - .. _ .. ---

tected.

Not permitted for APL indexed fi les.

• Writing a component:

11 fname expression

The first record is an identification record containing the time, the user's account, and the size of the
data block associated with that identification record. The currently set key value and DeB number are
used. The remaining record is as would be written by the "10 fname expression" form above, and has a
key value of one greater than that of the identification record. The result is an empty vector unless an
error is detected.

As an example, suppose that a function named WRITE exists to write a component, and that the function call has
the form

l1 WRITE X

where A is the value to be fi led, X[lJ is the fi Ie number, and X[2J is the component number (there is no checking
for length errors in the function call or for prior existence of the record to be written). The function consists of
the single line

[1] llfname A, 9fname r 1000xX[2J, lfname XU J

which sets the file number, generates the key, and writes the identification and data records. It is assumed that
the DeB has been opened for output.

A function similar to WRITE but adding to the end of the file might be the function APPEND,

[1] llfname A, 9fname 1 OOOx 1 +r(8fname 3) .;- 1000, lfname X

The fi Ie number is set to X. The highest key is found, the next multiple of 1000 is created, and the new key is set.
The identifi cation and data records are then written.

Writing Non-APL Records

Data records may be written that do not retain the APL internal attributes of 'shape ' and other internal reference
data. Such records may not be written as 'components' with paired ID records, and may not be written on APL
indexed files.

• 22 fnome B

where B is any APL expression. The data represented by B is written as a single record in ravel order. If
B is a logic vector the length is rounded up to a multiple of 8 bits, since the smallest I/O unit is one byte
(8 bits). Data is not converted on output but APL header information is excluded. The purpose of this
primitive is to allow writing records and files for use by processors other than APL. The record is written
using the current key setting and file number.

Append i x B 205

Reading APL Records

Reading records in APl requires that the record size be known, in order to permit allocating space or indicating
WS FULl. If the user has created files with records of known fixed length, the read may be made directly,
specifying length. If records of variable length are used, the data records should be preceded by identifica
ti on records, or a 'safe' length used for reads.

• Reading a data record:

12fnameB

where B is an integer specifying the size of the data record in bytes. The data record is read, if space is
avai lable, using current key and fi Ie numbers. If the record size is larger than specified or if the read
results in an error or abnormal return, the result is an error (see Error Reporting in this section). If the
record is smaller, the operation is completed. In this case, the unused portion of space reserved for the
data is made avai lable for other use.

Not permitted for APl indexed files.

• Reading an identification record and a data record:

13 fname B

where B is an integer specifying the key value. The identification record is read; and if space is avai 1-
able; the data record is read using size information from the identification record As an example, sup
pose that function READ is called with A READ X and that it consists of a single line:

[1] A + 13fname r 1 OOOxX[2 J, lfname X [1]

This example sets the DeB number and the key value and then reads the identification and data records
The data block is assigned to dummy variable A.

• Reading an identification record into a data block:

14 fname B

where B is an integer specifying the key value. The identification record is read in the form of a numeric
integer vector with fixed format:

word 1

word 2

I
Year I Day I

6 71s 9 101111213 I. 15 16 17 18 19120 21222312425262712829 30 31

word 3

word 4

word 5

10 11112 13 I. 15 16 17 18 19120 21 22 23 2. 25 26 27128 29 30 31

where

year is a binary value; for example, 1970 is represented as X '46'.

206 Appendix B

day is the Julian day of the year represented in binary; for example, September 14 is represented
as X'lOl'.

hour is the hour of day (0-23).

min is the minute of hour (0-59).

TMS is the number of two millisecond units since the last 1/1000 of a minute (0-29).

account is the form contained in DCBs, left-justified, blank-filled to the right, even though it is
delivered as two words of an integer vector. The following APL expression may be used to convert
the integer values into a character vector. Assume the TD record has been read into variable X.

R+.02'f (4P256)T X[4 5J

Reading Non-APL Records

• 23 fname B

Reads a non-APL record using currently set key and file number. B is an integer specifying the record size
in bytes. The data is arbitrarily treated as a text vector and an appropriate APL data block is formed. If
the record is larger than indicated by B, an error results. If the record is smaller, unused space is mode
available. Separate primitives (25 to 27) may be used to change the data type of the result to logical,
integer, or real numbers.

Not permitted for APL indexed files.

Deleting Records or Components

• Deleting a specified record:

15 fname B

where B is an integer specifying the key value. The current DCB number is used in deleting the record.
The result is an empty vector unless an error is detected.

Not permitted for APL indexed files.

• Deleting identification and data records:

16 fname B

where B is an integer specifying the key value. This primitive allows construction of functions for the de
letion of selected components or ranges of components. The result is an empty vector unless an error
is detected.

Sequential Access to Existing APL Files

If a fi Ie has been created and modified such that there are gaps and inserts in the range of "component" values, it
may be difficult to read the file in a keyed form without excessive errors for missing components or without inad
vertently skipping existing records. The following operations cause sequential reads:

• 17 fname B

where B is an integer specifying the size of the record in bytes. Records are read sequentially, using the
current fi Ie number. After each read, the current key value is updated and may be accessed. If an
integer of zero is specified, the record is accessed but data is not read, regardless of actual record size.
If the integer specified is greater than zero and the record size is larger than that specified, an error
is reported.

Not permitted for APL indexed files unless B = 0 (skip record).

Appendix B 207

• 13 fname 0

This is simi lar to 1113 fname BII except that it reads the next identification record and associated data rec
ord. If the next record is not an identification record, records are skipped unti I an identification record
is reached. At end of read, the current key is set to that of the last record read. If no identification rec
ord is found, an error is reported.

• 14 fname 0

This is simi lar to 1114 fname BII except that it skips forward to next identification record. The current key
is updated. If no identification record is found, an error is reported.

Sequential Access to Non-APL Files

• 24 fname B

where B is an integer specifying size of record in bytes. Records are read sequentially, using the current
file number. Operation is analogous to 23 fname B except that the read is sequential rather than keyed.

Not permitted for APl indexed fi les.

Converting Data Types

Primitives 23 and 24, for reading non-APl records, arbitrari Iy create text vector results. The records read may, in
fact, be logic values, character, integer, or real (double-precision floating point) values.

• Convert character to logical vector.

25 fname B

where B is a character vector. The result is a logic vector consisting of the actual data in B. The length
value is multiplied by B and the data type is switched to logic.

If B is an expression rather than a named variable, this operator does not require that a copy of B be
created. This primitive would typically be used in conjunction with a keyed or sequential read of a non
APl data record.

Example: C +- 25 fname 23 fname 100

If, in this example, the record read consists of 100 bytes, C is an BOO-element logic vector.

• Convert character to integer vector.

26 fname B

where B is a character vector. The length must be a multiple of 4. The result is an integer vector consist
ing of the actual data in B. The length value is divided by 4 and the data type switched to integer. If B
is an expression, the operator does not require that a copy of B be created.

• Convert character to real (double-precision floating point) vector.

27 fname B

where B is a character vector. The length must be a multiple of B. The result is a real-number vector
consisting of the actual data in B. If B is an expression rather than a named variable, the operator does
not require that a copy of B be created.

20B Appendix B

ControHing Access to Shared APL Indexed Files

If an APL indexed file is opened in the shared mode, multiple updates are permitted concurrent access. The following
features are provided to permit the user to lock out portions of such a fi Ie for purposes of reading a set of records
without other intervening updates or completing a set of updates without interference. These features use the CP-V
Enqueue-Dequeue facility, and an installation supporting these features must have reserved queue space.

• Locking out a record or block of records.

28 fname B

B is an index (key) value. Causes the designated record to be enqueued for exclusive use. Operates only
if file i5 in shared INOUT mode. Successive use of 28 fname B can be made to enqueue a contiguous set
of iSCOids, but not to enqueue records not in a contiguous block.

• Releasing a blocked record.

29 fname B

B is an index value. If a block of records is queued, they must be released in sequence from the ends,
that is, release of a record may not be used to split a contiguous block of held records into two blocks.

If B = 9999999, all records are released.

Error Conditions Unique to Enqueue-Dequeue Operations

The following error conditions may be reported on attempting to use Enqueue-Dequeue features. (These errors may
be sidetracked.)

Message

DOMAIN ERR

COMPo NOT HELD

COMPo ALREADY HELD

ABORTED BY BRK OR CTRL-Y

REQ. WOULD CREATE DEADLOCK

ENQ. FULL

ENQ. UN AUTHORIZED

NOT ENQ. SYSTEM

Listing File Names and Numbers

Code-Subcode VallJ~s (CP-'!l~~~_Cause

No code-subcode. File is not shared or result would create non
contiguous blocks of held records.

3100

3101

3104

5800

5801

5803

AEOO

Tried to dequeue an unheld record.

Tried to enqueue a held record.

User aborted queue request.

Queuing would dead lock access.

CP-V queue stack is full.

User not authorized for Enqueue.

Enqueue-Dequeue not supported.

These operations may be used in functions designed to list fj Ie components by number, with or without contents of
the records.

• Fi Ie names in a specified account

18 fname B

where B is a text vector specifying a user account. Result is a character matrix. Each row has account in
columns 1 through 10 and a fi Ie name in columns 12 through 24. The matrix is a list of fi les in the speci
fied account. Because of the general file I/o capability in CP-V, these files will not all be the result of
APL file I/o and the matrix may include other passworded or protected files. Non-APL files and APL
workspaces that are not passworded or read-protected wi II not be reported in the result.

Appendix B 209

• Names or numbers of currently open fi les

19 fname B

where B is an integer specifying the structure of the result as follows:

indicates a character matrix with names of currently open files, one fi Ie per row.

2 indicates a numeric vector with the currently open fi Ie numbers.

If B is not 1 or 2, DOMAIN ERR is reported.

Error Reporting

The use of file I/o primitives may lead to a variety of errors, which are reported similarly to errors for other APL
operations. The following common errors are of course included: DOMAIN, LENGTH, RAN K, WS FULL, and
SYNTAX. Errors are also reported for inability to open specified files or find specified records, to read or write
records on a DCB that is closed or not open in the appropriate mode, or to use fi les and DCB in an inconsistent
combination. The error codes returned by the monitor are listed in the Xerox CP-V/BP Reference Manual, 90 17 64.
The error code in the AP L fi Ie I/O subsystem is an integer scalar, related to monitor error codes as follows:

resu It = (l28xcode) + sub code

The subcode and code may be separated for checking by using the encode operator. For example; if the result
is 2561, the expression

V-+-O 128 T result

gi ves the two-e lement vector where

V[lJ = 20 and V[2J = 1

Notice that the code is 20 (hexadecimal 14) and the subcode is 1. (An attempt is made to open for output when the
fi Ie is currently open to another user or DCB.)

If the code value is zero (that is, the result is less than 128), the subcodes are as follows:

o

2

3

4

5

6

7

8-9

10-17,
22-24

20

21

indicates INABN set and OLD FILE found.

on read of identification record, indicates invalid record format.

on read of data record, indicates record is not a valid APL data block.

indicates fi Ie tie table is full. No new fi Ie numbers may be used unti I an open fi Ie is closed.

indicates attempt was made to release file from an account other than the user's.

indicates attempt was made to open a fi Ie with a tie number not in the fi Ie tie table.

indicates attempt was made to release a fi Ie with a number not in the fi Ie tie table.

indicates attempt was made to close and save a fi Ie with a number not in the fj Ie tie table.

indicates attempt was made to query or set key values for a file that is not currently open.

indicates attempted I/O operation on a fi Ie not currently open. Error number is same as primitive
number.

indicates attempt to delete record when fi Ie not in update mode.

indicates bad fj Ie ID format.

In general these operations will be used in locked functions and the error report will only indicate the type of error
and the line number of the function.

The above form of error reporting applies only when the 14 1'1 intrinsic function is used; the error code is pro
duced as a scalar integer result to be analyzed solely by the file I/O subsystem using that intrinsic. (If 141'2 is
applicable, the subsystem may use sidetracking to process the error - see Appendix A -otherwise APL will handle

210 Appendix B

the error in the standard manner. The latter case relieves the subsystem from any responsibility for analyzing errors,
and it can be designed largely as if only successful operation were possible.)

A list of standard file I/O error messages with corresponding code-subcode value (hexadecimal) follows:

Message Code-Subcode Values

FILE I/O ERR xxxx

FILE NAME ERR

FILE DAMAGE

NOT APL FILE

FILE TBL FULL

FILE ACCESS ERR

FILE IN USE

FILE SPACE TOO LOW

FILE IN DEX ERR

PRIVATE PACK UNAVAIL, CALL OPR.

FILE TIE ERR

Any values not specified below

0000, 0015, 0300

0001, 7500, 7501, 7502, 7503, 7504, 7505, 7506

0002

0003

0004, 0014, 1400

1401

5600, 5700

0600, 0000, 4200, 4300

2001, 2002, 2003, 2004

0005, 0006, 0007, 0008, 0009, OOOA, 0008, OOOC, 0000, OOOE,
OOOF, 0010, 0011, 2EOO, 4400, 5100, 2500, 0016, 0017, 0018

Corresponding error messages for Enqueue-Dequeue features are listed in the section on controlling access to shared fi les.

Generation of File I/O Subsystems

A file I/O subsystem is not included as an integral module in the APL processor. File I/O subsystems may be tai
iure~ i"u un ;n~tol!ut~un!;) nc;c;J~, within tht:: c.~pubiIlt;e~ 0f the piuviJaJ fi!t.. l/'e pl:rnit':y~ 0peratof~. i~\ ~(]rnpI8 ,v0rk

space, FILEIO, is distributed to APL insta Ilations.

Table 8-3. Translation Equivalences for Nonstandard Devices

2741 APL 2741 non-APL TTY Model 33 Line Printer Output (Card Read Form Input)

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

5 5 5 5

6 6 6 6

7 7 7 7

8 8 8 8

9 9 9 9

0 0 0 I 0

+ + + +

x # # #

Q Q Q Q

W W W W

E E E E

R R R R

T T T T

Appendix 8 211

Table B-3. Translation Equivalences for Nonstandard Devices (cont.)

2741 APL 2741 non-A PL TTY Model 33 Line Printer Output (Card Read Form Input)

Y Y Y Y

U U U U

I I I I

0 0 0 0
p p P P

+-or $IS +- - -
A A A A

S S S S

D D D D

F F F F

G G G G

H H H H

J J J J

K K K K

L L L L

[$([$(

] $)] $)

Z Z Z Z

X X X X

C C C C

V V V V

B B B B

N N N N

M M M M

, , , ,

/ / / /
" ctnD<: ctnD<: ctnD<:

41 ""'I\..J -"""",,..J ..JI VI'''''''
-

- - - (Negative Sign)

< $LT < <
< $LE $LE $LE

= = = =

2: $GE $GE $GE

> $GT > >

! $NE $NE $NE

v $OR $OR $OR

" & & &

- $- $- $- (Subtract Operator)

.- % % %

212 Appendix B

Table B-3. Translation Equivalences for Nonstandard Devices (cant.)

2741 APL 2741 non-A PL TTY Model 33 line Printer Output (Card Read Form Input)

? ? ? $RND

w $W $W $W

E $E $E $E
I

I I p I $R $R ,$R

~ I $NOT I $NOT I $NOT

t I $TAK I $TAK I $TAK

,;. d'" "nn "' nn "' nn .)LJl'\r .l)LJl'\r .l)LJl\r

$1 $1 $1

a $0 $0 $0

* * * *

-+ $GO $GO $GO

a @ ~a) @

r $MAX $MAX $MAX

$MIN $MIN $MIN

$U $U $U (Underscore)

11 $DEL

t::. SDLT $DL T $DLT

$SC $SC $SC

0 $Q $Q $Q

(((

c $CPL $CPL $CPL

:J $CPR $CPR $CPR

n $CAP $CAP $CAP

u $CUP $CUP $CUP

T $ECD $ECD $ECD

1. $DCD $DCD $DCD

$ABS $ABS

\ $XPD \ $XPD

SPACE SPACE SPACE SPACE

TAB TAB TAB $TAB

BACKSPACE BACKSPACE $BS $BS

RETURN RETURN NL,CR NL,CR

INDEX INDEX LF LF (See also Notes at the end of Table B-3)

$ $ $ $

<t> $REV $REV $REV

Appendix B 213

Table B-3. Translation Equiva lences for Nonstandard Devices (cont.)

2741 APL 2741 non-A PL TTY Model 33 Line Printer Output {Card Read Form Input)

~ $TPS $TPS STPS

8 $RVl SRVl $RV1

e $LOG $LOG $LOG

~ $GD $GD $GD

4 $GU $GU $GU

! $FCT ! $FCT

I $IB $IB $IB

~ $QQ $OQ
I

$OQ

EH $MDV $MDV $MDV

~ $COM $COM $COM

¥ $NOR $NOR $NOR

'IY $NND $NND $NND

'" $LOK $LOK $LOK

f $RD1 $RD1 $RDl , $XP1 $XP1 $XPl

OJ f} $OUT $OUT

A a SUA SUA -
B b SUB SUB -
e c $ue $UC -
D d SUD SUD -
E e SUE SUE -
F f $UF $UF -
G 9 $UG $UG -
H h $UH $UH -
I i SUI SUI -
J i $UJ

I

$UJ -
K k $UK $UK -
I I (nil Itlll
L. I .pVL. J)VL -
M m SUM SUM -
N n SUN SUN -
0 0 SUO SUO --
P p SUP SUP -
Q q $UQ $UO -
R r SUR SUR -
S s SUS SUS -
T t $UT $UT -
U u $UU $UU -
V v $UV $UV -
W w $UW $UW -

214 Appendix B

I
I

Table B-3. Translation Equivalences for Nonstandard Devices (cont.)

2741 APL 2741 non-APL TTY Model 33 Line Printer Output (Card Reader Form Input)

X -
Y -
Z
-
6-
-
-
T

[QJ
r:J
L!J

rn

I

I
I

x

y

z:

$UDL

tTR 't' . ..,R

$QO

$Qi

$Q2

I

I
I

$UX

$UY

$UZ

$UDL

tT 't'.BR

$QO

$Qi

$Q2

I

I
I

$UX

$UY

$UZ

$UDL

tT BR

$QO

$Qi

$Q2

Notes:

• For TTY terminal the INDEX character is equivalent to LF only for output; for input the Form-Feed
(Control-L) is equivalent to INDEX. This is most useful when desiring to delete a function line.

• For the Tektronix 4013, there is no INDEX or ATTN key. In order to delete a function line, the
user may substitute Control-D for an ATTN.

•

•

•

The Tektronix 4013 features five unique characters: 0, 1-, -I, I ,I. There are no translation
equivalents for these characters.

As normally provided. Xerox APL accepts only Iol, Ill, and f2l and their mnemonic equivalents.
Individual 'i~stallatio~s may modify their APL 'pr~~ess;;:; to allo; ~ through ~; they c~uld also
nlinw only n <;uhset nf th",sE' n"d it i<; Dossihlp to niiow "o,,~ of the hl,,,d-I'luods

For TTY operation, APL assumes that the terminal has been designated as a Model 33 TTY at TEL
level. Some installations default to other types, such as 7015. CP-V maps the bracket characters
differently in this case and they may then not be used in APL. It is advisable for TTY users to be
sure that they are identified as terminal type 33 at monitor level.

Appendix B 215

APPENDIX C. INTRINSIC FUNCTIONS

The intrinsic functions described in Chapter 7 can be created by using the dyadic T -Bar operator. Used dyadically,
this operator creates a special data block that identifies a particular intrinsic function (coded within the APL pro
cessor). The data block may be assigned to any name, which then wi II be the name for the intrinsic function. In
the examples below, the names selected are the standard names for the existing intrinsic functions (other names
could be used).

The foiiowing intrinsic function assignments aiready exist in the WSFNS or GRAF (for .6GRF) workspaces \whiCh
accompany the Xerox APL processor when it is delivered to an installation - see the installation manager).

fl.FM'F'-14 TO
E10'-14T;.
f.IOE'-~4T2
fl.GRF'-1413
f 101'-14 T4
fl.CR 4T~
t,WM'-14 T6
fl.! 6''-14 T';
l1XL'-14 ;:8
tJ.DMS.-j 4 T9

ORjG1N'-1~TO
WIDTH'-: 5 Tl.
IJl GllS 1 ~ 1'2
TABS'-1~T3
PET :.INK ~) T4
SETFUZ?'+-l S 1~
D6'LAY- J:- ;:6
IIL'AVER 1 ~ 17
ilFCHAR'-15 ;:8

f<:RRN'-16 TO
ERRF+-:6 Tl
i::RRX~:612
PAGE'-:6 T3
NLINES 16T4

The left argument of the T -bar operator indicates the type of the resulting intrinsic function:

14 for dyadi c function,

15 for monadic function, and

16 for ni ladic function.

216 Appendix C

APPENDIX D. DESIGNING AND CREATING APL INDEXED FILES

The following material describes how to design an APL indexed fi Ie for a proposed data base and how to originate
such a file. Indexed files are created using the CP-V random file capability. Their availability is subject to in
dividual installation control.

Limits and Trade-Offs

Several characteristics of the keyed AtJL ti led system, ot Lt"-V random ti les, and ot sampie uses of APL fi ies, have
been considered in designing APL indexed fi les. Some of these characteristics should also be noted in designing
appl ications. For many data bases, keyed access may be better than indexed fi les.

• T ota I Secondary Storage Occupancy

Since indexed fi les are CP-V random fi les, they require dedication of a fixed block of contiguous secon
dary storage from the time of creation. When such fi les are fi lied, they cannot be dynamically expanded.
Indexed files are thus suitable only for data bases with a reasonably predictable total size, and occupancy
of a reasonable fraction of that space soon after creation.

• Component Identification and Size

Since indexed files are to look, to the user, like current APL keyed files, each 'component' includes five
words of identity information -size, date, time, and account (2 words). Each APL variable also includes
o minimlJm of 2 words of I hp.orlp.r , informotion In hoth the keyp.rl and the indexed fi Ie systems there is

considerable overhead associated with small records.

Several design decisions for indexed files have been made to minimize the overhead cost of small records.
It is still true, however, that applications using small records are relatively inefficient compared to those
using primarily large records.

• Record Size vs. Secondary Storage Granularity

The smallest addressable unit in secondary storage is the 'granule' of 512 words (2048 bytes). All reads
and writes start on granule bounds. If records are not aligned on granule bounds, the impact is as follows:
Reads must be buffered in core and the relevant data moved to its target location. Writes must be preceded
by reads so that the new data is merged, in a core buffer, with the old data. The full granule is then
written. It would clearly be advantageous to restrict data records to start on granule bounds. This is im
practicable, however, if a fi Ie includes many small records. The design of APL indexed fi les compromises
on the granule bound question. Records which approach or exceed one granule in size are written on gran
ule bounds. Smaller records are packed.

• Sca lars and 'Empty' Components

Existing applications of APL fi les make extensive use of 'empty' components - records with keys but oc
cupied by 'empty' APL variables. These components each require an identification record (5 words) and a
data record (4 words). In the indexed file system, each index entry consists of 8 words. Any APL variable
which requires a 4-word data record in the keyed fi Ie system is stored directly in the index in the new
system. Records stored directly in the index include

Empty vec tors

Empty matrixes

Scalars

Logic vectors of length 32 or less

Appendix D 217

Text vectors of length 4 or less

Integer vectors of length 1

This approach increases the size of the file index but significantly speeds treatment of empty and 'very
smal I' components.

• Insertion Capability vs. Index Size

In keyed APl fi les, the design encouraged the use of key values which were a multiple of 'component'
numbers. The 'standard' described in the reference manua I is 1000 to 1 and a flows component numbers to
the.002 level. The ratio is actually dependent on user-defined functions and may be varied by individual
installations and users. For keyed files, there is no particular extra overhead in allowing extended inser
tion between components. For indexed files, there is the fixed overhead of the index itself. If M is the
maximum number of records allowed and IG is the number of granules used for the index:

IG = M .;. 64

It is impractical, for indexed fi les, to use a high ratio of component number to index number because of
the fixed index granule overhead that would be incurred. This is particularly the case if the average record
size is small. A realistic maximum is probably 10 to 1 - assuming that some significant number of insertions
may be made.

File Structure

The indexed file capability employs standard CP-V random fi les. Structural aspects of these fi les are described
below:

Granule Zero

The first granule (offset zero) has the following fixed structure:

Word 0 TEXT 'APLI' Identifies as APl indexed fi Ie.

Word 1 M N umber of index entries.

Word 2 R Ratio of component number to index number.

Word 3 0 Granule offset to start of index.

Word 4 l lowest index number in use.

Word 5 H Highest index number in use.

Words 6-11 Spares (set to zero).

Words 12-511 Free segment chain.

Free Segment Chain

The free segment chain is a variable length table, or tables, of unused fi Ie space. The table starts in granule zero.
Each entry requires two words as follows:

Word 1 Size, in words, of unused block.

Word 2 Offset, in words, from start of fi Ie.

218 Appendix 0

If word 2 = 0, this is the last entry in the table.

If word 2 = 0 and word 1 is not zero, word 1 is the granule offset to another table of free segments.

If word 2 < 0, entry is currently not in use.

Index Granules

The fi Ie index begins at a granule offset specified by word 3 of granule O. The index occupies contiguous granules
and all entries are initialized to zero when the fi Ie is created. Each entry consists of eight words.

Case 1.

Case II.

Case III.

Distinguishing Cases I, II, and III.

Data Granules

No record with this index number.

Word 1 Zero.

Words 2-8 Unused.

Records of APL variables requiring 4 words or less in primary storage.

Words 1-4

Words 5-8

APL variable, including header.

Date-Time-Account in same format as for keyed fi Ie
ID records.

Records of APL variables requiring more than 4 words in primary storage.

Word 1

VVord 2

Word 3 First word of data block header.

Word 4 Unused.

Words 5-8 Same as for Case II.

For Case I, Word 1 equals O.

For Case II, Word 1 (bits 16-31) equals 4.

For Case III, Word 1 (bits 16-31) greater than 4.

Each data record in the file is a copy of the core image of an APL variable. Records which are 400 words or longer
always start at granule bounds. Shorter records may start mid-granule but may not cross granule bounds. Note that
the physical size of records may exceed the data block size. This is because physical size for larger records is
always rounded up to a multiple of 512 v ords and because small records may be rounded up to avoid leaving 'free
segments' smaller than 6 words.

Efficiency Considerations

This addition to APL file I/o has b~en motivated by specific needs which relate to extensive resource demands, and
require explicit concern for optimization. The file structure has been designed primarily to minimize the number of
disc accesses required to read and write APL file components. A second consideration has been to minimize in-core
data transfers.

Appendix D 219

In particular, the design choice of placing the component ID data in the index rather than with the data block was
dictated by the desire to allow direct moves of the APL data blocks between core and secondary storage. The ad
ditional increase of index entry size to allow direct access of lemptyl and scalar variables was dictated by the fact
that existing data bases of potential users contain a high proportion of lempty' values.

The design goal of minimal disc access has been compromised for records of sizes between 6 and 400 words. These
records may start in mid-granule and require read-merge prior to write. They also require in-core data transfer fol
lowing reads.

Fixed Overhead

The fixed overhead in granules associated with an APL indexed file is 1 + M ~ 64, where M is the number of index
entries.

Strictly speaking, this is not all overhead. The index includes identification data for all occupied entries and com
plete data for empty and scalar values.

Variable Overhead

As a file is modified, particularly by record deletions and replacements of records by larger or smaller versions, the
free segment chain may grow and a number of unusable small segments of granules may accumulate. Each 255 entries
in the free segment chain will require one granule (after the 249 'free ' entries in granule zero). An extensive free
segment chain slows processing associated with writing or deleting records but has no timing impact on reads. If a
file has become badly fragmented, it should be transferred to a new file, copying in index order, to create a clean
version.

Estimating Granule Requirements

An approximate formula for estimating granule requirements for an AP L indexed fj Ie is:

G = JG + DG + 2.

IG = M ~ 64 (index granules).

M = number of index values.

DG = (1 ~ E) x NR x ARS ~ 512 (data granules).

E = efficiency of packing. Depends on record sizes.

If record sizes unpredictable, assume E = .75.

NR = number of non-empty, non-scalar records when fi Ie is fully occupied, including anticipated inserts.

ARS = average record size, in words, including data block header.

Procedure for Creating APL Indexed Files

APL indexed files are created by the following procedure:

1. Execute APL workspace, SETPARS. This workspace requests information on the following parameters:

Number of granules

Number of index entries

Ratio of index number to component number

Offset to first index granule

220 Appendix D

If the inputs are logically consistent, SETPARS creates a file, APLIPARS, which will be used to initialize
the random fi Ie.

2. Build a job file, similar to APLISAMP, shown below, specifying file name, and number of granules. This
job file may optionally, as shown, specify READ accounts, WRITE accounts, SN (for private packs), and
a password. The file may be created by the TEL BUILD command or by copying and editing APLISAMP,
using EDIT.

This job consists of an ASSIGN card, with extensions, followed by a RUN of APLIlMN, which create and
initialize the file. APLllMN was created from APLISI, also shown below.

APLISNvW sample of job to create APL indexed fi Ie:

1. !JOB
2. ! LIMIT (TIME,5), (CORE, 10)
3. !PCL
4. DE LETE DC/fid
5. END
6. 'ASSIGN M:BO, (RANDOM), (OUT), (SAVE),;
7. (FILE, fid),;
8. (READ, I ALL1

),;

9. (WRITE, INONE I),;
10. (PASS, name),;
11. (SN, serial number(s)),;
12. (RESTORE, limit)
13. .RUN (lMN, APLllMN)
14. !EOD

Notes:

Lines 3 to 5 are to delete any prior fi Ie with the name of that being created.

Lines 8 and 9, as shown, are default Read-Write access. Up to 16 individual accounts can be specified for
read access and write access.

Line 10 is optional, for passworded fi les.

Line 11 is optional, for private packs. If private packs are used, the! LIMIT card should also include a
MOUNT option specifying the serial numbers to be used.

Standard CP-V error diagnostics will be issued if this job fails to create the specified random file.

V SETPARS
[1] ~+'HOW MANY GRANULES?'
[2] ~ERROR1X\(NG~rNG}v(1~p.NG}v(NG+D}<6

[3] ~+'HOW MANY INDEX ENTRIES?'
[4] +ERRORlx\(NIE~rNIE}v(l~p.NIE}V(NIE+O}<l

[5] ~+'RATIO OF INDEX NO. TO COMPONENT NO. (INTEGER RATIO}=?'
[6] +ERRORlx\(RIC~rRIC}v(l~p.RIC)V(RIC+D}<l

[7] ~+'OFFSET TO FIRST INDEX GRANULE=?'
[8] +ERRORlx\(IO~rIO)v(l~p.IO)v(IO+D)<l
[9] LIG+IO+NIG+rNIEf64
[10] +ERROR2x\LIG>NG
[11] +ERROR3x\NIG>NGf4
[12] +IOEQl x \IO=l
[13] 01+512;Sl+512xIO-l
[14] 02+512 xNIG+IO;S2+(512 xNG-NIG+l}-Sl
[15] +CATENx\S2~0

[16J 02+0
[17] +CATEN
[18] IOEQ1:01+512 xNIG+l;Sl+512 xNG-NIG+l
[19] 02+S2+0
[20] CATEN:GRANO+(26 F'APLI').NIE.RIC.IO.NIE,(7pO),Sl,01,S2,02.(496pO)NIG.I0
[21J 5 F 2.21 F'APLIPARS'.l F 1

Appendix D 221

[22] 6 F 1,22 F GRANO,9 F 1
[23] ~

[24] ERROR1:'INPUT PARAM. NOT SINGLE ELEMENT ,NON-INTEGER, OR OUT OF RANGE'
[25] ~

[26] ERROR2:'INDEX OFFSET TOO HIGH'
[27] ~

[28] ERROR3:'TOO MANY INDEX ENTRIES'
V

*
* APLISI-SOURCE FOR APLILMN,WHICH WILL CREATE AN APL INDEXED FILE

* ASSEMBLED BY APLIMETA,WHICH CREATES APLIBO
APLILOAD CREATES APLILMN

* SEE SETPARS, AN APL WORKSPACE, WHICH CREATES THE FILE 'APLIPARS'
* USED BY APLILMN.
* SEE ALSO APLISAMP, WHICH IS AN EXAMPLE OF THE JOB FILE,USING

APLILMN, TO CREATE AN APL INDEXED FILE

*

GRANO
ZEROS

START

WRITEZ

222 Appendix D

SYSTEM
SYSTEM
REF
REF
CSECT
RES
RES
DOl
DATA
CSECT
M:OPEN
U:OPEN
M:READ
M:WRITE
LW,l
LW,2
M:WRITE
AI,2
BDR t l
M:CLOSE
M:EXIT
END

BPM
SIG7F
M:BO
M:SI
a
514
a
32
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
1
M:SI,(IN),(FILE,'APLIPARS')
M:BO,(OUT) ,(SAVE)
M:SI,(BTD,O),(BUF,GRANO),(SIZE t 2056),(WAIT)
M:BO,(BLOCK,O>,(BTD,O).(BUF,GRANO),(SIZE.2048)
GRANO+512 NUMBER OF INDEX GRANULES
GRANO+513 INDEX OFFSET
M: BO. (BLOCK. * 2) .(BTD. a) • (B U F • ZEROS) • (SI ZE .2 a 48)
1
WRITEZ
}.1: BO • (SA VE)

START

APPENDIX E. APLjEDMS INTERFACE

Installations which support the Xerox Extended Data Management System (EDMS) may also support a version of APL
which provides an interface to EDMS data bases. Xerox EDMS is described in the EDMS Users Guide (90 30 37)
and EDMS Reference Manual (9030 12). The EDMS Reference Manual includes a complete description of the APL/
EDt-AS Interface.

Table E-l is a summary of the EDtl,S interface function call formats. These functions are contained in the DMSFNS
... ,orkspace, which normally resides in the DMSLIB account. Table E-1 is ordered alphabetica"y by function name.

Tabie E-i.

Function Call Format

BERRCODE

BGRPNO

BREFCODE

CLOSAREA 'area-name'

CLOSEDB

r"" .. jl'"' or.,. ,... L-

CUIVO Inrerrace runcTlons

Action/Result

Result is contents of CCB ERR-CODE
cell.

Result is contents of CCB GRP-N 0
cell.

Result is contents of CCB REF-CODE
cell.

Named area is closed.

All areas are closed.

CREA.TE 'area-name [.[accolJnt] [, [password][' cipher-key]]]' Named area is opened in create mode. I
Result is contents of current-of-type
cell for named group.

CURRGRP 'group-name'

CURRS~T 'set-name'

DCDREF encoded -reference -codes

DELETANT 'group-name'

DELETE 'group-name'

DELETSEL 'group-name'

'group-name' DELIN K 'set-name'

DMSABORT 'function-name'

DMSCHKPT

DMSEND

DMSERCOD

Result is contents of set table for
named set.

Result is matrix of decoded reference
codes.

DBM buffers are flushed and lockout
bit is reset.

Dynamic memory is released and
EDMS public library is disassociated.

Result is code of most recent APL
level EDMS error.

t
No explicit result is returned. See EDMS reference manual for a description of the action taken.

Appendix E 223

Table E-l. EDMS Interface Functions (cont.)

Function Ca II Format

DMSLOCK 'function-name'

DMSPASS I password ,

DMSPKSN 'serial-numbers'

DMSRECV

DMSRLSE

DMSSUB 'subschema-name[. [account]G password]]'

DMSTRACE

EC DREF decoded -reference -codes

ENDTRACE

FIN DC 'group-name'

FINDD

FIN DDUP 'group-name'

FINDFRST 'group-name'

FINDG 'group-name'

FIND LAST 'group-name'

FIN DM 'set-name'

FIN ON {'group-name'}
'set-name'

FINDP {'group-name'}
'set-name'

FINDS

FIN DSI

FINDX 'item-name [{~ } group-name]'

FRSTREF encoded-reference-code

Ac ti on/Resu It

Password is placed into CCB
PASSWORD ce II.

Serial numbers are placed into most
recently referenced DCB.

Named subschema is identified for
subsequent use.

Procedural trace is initiated.

Result is vector of encoded reference
codes.

Procedural trace is terminated.

Result is contents of item working
storage.

CCB FRST-REF cell is set to the value
of the argument.

tNo explicit result is returned. See EDMS reference manual for a description of the action taken.

224 Appendix E

Table E-l. EDMS Interface Functions (cont.)

Function Call Format

GET 'group-name'

HEAD 'set-name'

LASTREF f~ncoded -reference-code 1
lmteger scalar J

'group-name' LIN K 'set-name'

MODIFY 'group-name'

{

OPENRET }

g~~~T~~~ 'area-name[. [account]G[password]G cipher-key]]]

OPUPDSHD

REFCODE encode-reference-code

'group-name' RELIN K 'set-name'

REMOVE 'group-name'

REMOVSEL 'group-name'

RESETERR integer-sca lar-or-vector

integer-scalar-or-vector SETERR 'function-name'

STORE 'group-name'

I TODMS ,. [{OF}{group-name }J' va ue Item-name IN _ set-name

Action/Result

CCB LAST-REF cell is set to the
value of the argument.

Named area is opened in indicated
mode.

CCB REF-CODE cell is set to the
value of the argument.

Error control for indicated data
dependent errors is reset.

Error control for indicated data
dependent errors is set to
function-name.

Item working storage is set to argu
ment value.

tNo explicit result is returned. See EDMS reference manual for a description of the action taken.

Appendix E 225

APPENDIX F. APL SYMBOLS

Table F-l. APL Symbols and Names

Symbol Name{s) Page (s)

Identity 54

+ or

Pddition 54

Signum 56

x or

Multiplication 56

-+- Specification Arrow 40

[Left Bracket 21, 68

] Right Bracket 21, 68

Rave! 75

or

. Catenation 75

or

Lamination 76

Period 71, 73

Reduction 68

/ or

Compression 84

.. Dieresis 7

-
Negative Sign 13

< Less Than 63

s Less Than or Equa I 63

= Equal 64

~ Greater Than or Equal 64

> Greater Than 65

~ Not Equal 65

v Or 66

1\ And 66

Negation 55

- or

Subtraction 55

226 Append i x F

Table F-l. APL Symbols and Names (cont.)

Symbol Name(s) Page (s)

Reciprocal 56

.- or

Division 57

? Random 74

w Omega 7

lA __ L ___ L!_ 87 ,Vlt:II IlJel :'111 P

or

Execute 87

Dimension 77

p or

Restructure 78

Not 68

t Take 86

+ Drop 86

7A

I
t:A ,"-",It:I_.UI

I
' .

I 1. or

Index Of 75

Pi Times 61

0 or

Circular Functions 61

Exponentia I 57

* or

Exponentiation 58

-+ Branch Arrow 96

a Alpha 7

Ceiling 59

r or

Maximum 59

Floor 59

l or

Minimum 59
r--

- Underscore 7

V Del 101

6 Delta 7

0 Small Circle 73

Appendix F 227

Table F-l. APL Symbols and Names (cont.)

Symbol Name(s) Page (s)

,
Quote 14

0 Quad 43, 47

(Left Parenthesis 48

) Right Parenthesis 48, 122

c Left Cap 7

:::> Right Cap 7

n Cap 7

u Cup 7

T Encode 83

l. Decode 82

Absolute Value 60

I or

Residue 60

; Semi-Colon 21, 47, 93

: Colon 105

Scan 70

\ or

Expansion 85

$ Dollar Sign 212-215

Reversal 78

¢ or

Rotation 78

~ Transpose 79

Reversal 78

e or

Rotation 78

Natural Logarithm 58

• or

Logarithm 58

• Grade Down 82

• Grade Up 82

228 Appendix F

Table F-1. APL Symbols and Names (cont.)

Symbol Name(s) Page(s)

Factorial 62

!
or

Combination 62

I I-Beam 92

[!] Quote-Quad 44

"A ~. , Q() , •• 0 I ii X Ai"iVers:on . -
iii or

Matrix Division 90

A Comment 10

"" Nor 67

Iv Nand 67

¥ Locked Function 119

Reduction 68

r or

I Compression 84

7() an ~ , or

Expansion 85

~ Underscored Delta 7, 15

T T-Bar 93

D Quad-Zero 166

III Quad-One 198

fa Quad-Two 198

Appendix F 229

INDEX

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

A
absolute value operator, 60
account, 17
active workspace, 123
adding characters to end of line, 113
addition operator, 54
affixture codes, 156
ampersand, 198
and operator, 66
APL codes, 191
APL exponential notation, 13
APL features, 1
APL operators, 25,52
APL terminal keyboard, 6,7
argument characteristics, 52
arguments, 24
arithmetic group (operators), 54
arrays, 19
arrays of two or more dimensions, 46
assigning a value to an array, 23
assignment, 40
assignment statement; 99
asterisk after an entry, 118
ATTN key, 159
autostart, 2
AUTOSTART, 141
auxi liary plotting functions, 165

B
base value or decode operator, 82
batch operation, 193
blind I/o, 198,2
bl i nd I/o for fi les, 199
blind I/o on a device, 198
blind output, 47
branch statements, 96
breaks, 50

c
canonical representation, 171
card input format, 194
CATCH command, 128
catching assignments, 3
catenation, 76
catenation and lamination operator, 75
CENTER function, 164
changing a function header, 114
changing suspended functions, 105
changing terminal declaration, 189
character set, 7
circular operator, 61
CLEAR command, 130

CLEAR option, 147
closing files, 203
combination operator, 62
command statements, 95
commands, 124
comments, 10
communications commands; 122
composite operators, 68
compound statements, 2, 100
compression operator, 84
constants, 13
CONTINUE command, 6, 130
CONTINUE HOLD command, 6, 130
CONTINUE workspace, 123
control keys, 11
converting data types, 208
COPY command, 131
COS function, 166
~CR function, 171, 120, 121
creating the set of file I/O operators, 200

o
da~a list (right argument) i 1 "3
data transmission rates, 197
default terminal output, 49
defined functions, 101, 12
defined functions, displaying and editing, 108
defined functions, examples, 102
defined functions, syntax, 102
DELAY, 120
deleting a line, 109
deleting characters, 112
deleting records or components, 207
devices, standard and nonstandard, 189
DIGITS, 120
DIGITS command, 45, 133
dimension operator, 77
direct control of graphic I/O, 166
direct input, 42
direct-line prompt, 9
directives, 105
display function, 89
displaying and editing defined functions, 108
displaying user-defined functions, 106
division operator, 57
domain, 52
double colon, 198
DRA W function, 163
DROP command, 133
drop operator, 86
dummies, 104
dyadic function, 40
dyadic scalar operators, 53
dyadic transposition operation, 80

Index 231

Note: For each entry in this index, the number of the most significant page is I isted first. Any pages thereafter are listed in
numerica I sequence.

E
EBCDIC codes, 191
editing a line number, 114
editing user-defined functions, 107
empty arrays, 46
empty vectors, 46
equals operator, 64
ERASE command, 134
ERRN, ERRF, and ERRX, 121
error and break control, 3
error ex its, 157
error marker, 193, 195, 198
error messages, 179
error reporting, 171,210
error response, 195
error stop, 161
errors, 50
ESCAPE key sequences and APL, 192
evaluated input, 43
execute operator, 2, 87
execution and definition modes, 9
execution break, 159
execution stops, 159
EXP, 166
expansion operator, 85
exponential notation, 45
exponential operator, 57
exponentiation operator, 58
expression evaluation, 48
expunge, 172, 173

F
factorial operator, 62
false terminal declaration, 190
false terminal declaration, problem examples, 192
fast formatted output, 1
file I/o subsystems, 211
fi Ie identifier (FlO), 16
file input/output, 200, 1
FlO, 121
FlOE, 121
floor and ceiling operators, 59
.6FMT, 152,216
FMT operation, 153, 157
FNS command, 134
format specifications, 152
format statement (left argument), 153
formats for branching, summary, 98
formatted output function (FMT), 152
formatting aids, 157
fractional number, 45
function copying, 2
function creation, 89
function definition mode, 88
function editing, 105
function editing in evaluated input and execute mode, 3
function execution, 116

232 Index

function I ine appendage, 2
function name, 15
function references, 39
function-line prompt, 10
functions, 12
fuzz, 45

G
general input/output, 42
general ized logarithm (base A) operator, 58
gin-mode, 197
global variables, 17
grade down operator, 82
grade up operator, 92
GRAF workspace, 167
graphic functions, 163
graphic I/O, 166
graphic input functions, 165
graphics capability, 3
greater than operator, 65
greater than or equal to operator, 64
GRF calls, 168
.6GRF intrinsic function, 167
GROUP command, 135
group name, 15
GRP command, 136
GRPS command, 136

H
HEADER function, 157, 120
higher-order array, 20
home terminal, 149

I-beam functions, 92
identity operator, 54
ii legal character, i93
illegal characters, 197
index generator operator, 74
index of operator, 74
indexed assignment, 41
indexing, 19
indexing an indexed argument, 24
indexing of arrays, 21
inner product operator, 71
input scaling, 170
input/output, 42
input/output device assignments, 194
input/output devices, 42
input/output translation, 190
inquiry commands, 122
inserting a line, 110
inserting characters, 112
INT (interval) function, 163

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerica I sequence.

intrinsic functions, 120,216
issuing system commands, 115
items subject to sidetracking, 185

K
key values versus component values, 204

L
labels, 105
lamination, 25,76
left argument, 153
length, 52
less than operator, 63
less than or equal to operator, 63
LIB command, 137
line corrections during input, 8
I ine deletion, 89
I ine editing, 192, 196
line insertion, 89
line numbers, 110
line printer graphic codes, 192
I ine replacement, 89
iineiist, i71
listing fi Ie names and numbers, 209
LOAD command, 137
local variables, 17, 18
locals, 105
locking function, 119
log on/log off procedures, 4
logging off, 6
logging on, 4, 196
logging on and logging off APL system, example, 5
logical operator, 65

M
maintaining component range and current

component value, 204
mathematical notation, 13
matrix, 20
matrix arguments, 155
matrix divide operator, 90
matrix inversion operator, 90
membersh ip operator, 87
minimum and maximum operators, 59
mixed operators, 74
mixed output, 46
modification function, 90
modifying a line, 112
monadic function, 40
monadic scalar operators, 53
monadic transposition operation, 79
multiple assignment, 41
multipl ication operator, 56

N
name format, 15
name usage, 15
namelist! 171
names, 7, 15
nand operator, 67
natural logarithm (base e) operator, 58
negation operator, 55
negative symbol; 13

-I .- ,. _ I ~ An
nllaalC fUnCTiOn, ~

NUNES function, 157, 120
non-APL 2741 terminals, 197
nonassignment statement, 99
nonstandard input/output, 189
nor operator, 67
norma I stop, 159
NOSCALE function, 164
not equal to operator, 65
not operator, 68
numeric and character vectors, 46
numeric constants, 13

o
observation of intermediate results, 3
OBSERVE command, 138
OFF command, 6, 139
OFF HOLD command, 6, 139
OFF option, 147
ON option, 147
on-line and batch operation,
opening and creating fi les, 202
operation without APL characters,
operators, 11,24,25
OPR command, 140
OPRN command, 140
or operator, 66
order of evaluation, 48
ORIGIN, 120
ORIGIN command, 140
outer product operator, 73
output, 44
output sca ling, 169
output va I ue forms, 155
overstriking a character, 114

p
PAGE function, 157, 120
parentheses, 48
password, 17
passwords, 124
PCOpy command, 141
pendant function, 118
pi times operator, 61
plotting functiGns, 163
precedence of operators, 48

Index 233

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

primitive functions (see "APL operators ")
prompt character, 193, 195
prompts, 9

Q
QCOPY command, 141
QLOAD command, 141
quad input prompt, 198
quad or quote-quad input, 44
quad output, 47
quad prompt, 10
quad zero input, 165
quad zero output, 166
qualifiers, 1.56
quiet load and copy commands, 2, 141
quitting line editing, 114
quote-quad input, 44
quote-quad prompt, 10

R
rank, 52
rave I operator, 75
reading APL records, 206
reading non-APL records, 207
reciprocal operator, .56
recursive function, 116
reduction operator, 68
referencing a single element, 21
referencing more than one element, 22
replacing a line, 111
replacing characters, 113
report formatting, 152
representation or encode operator, 83
reshape operator, 78
residue operator, 60
reverse I operator, 78
right argument, 153
right parenthesis, 122
roll operator, 74
rotation operator, 78

s
SAVE command, 141
saved workspace, 123
sca lar arguments, 153
sca lar operators, 53
sca lar output, 166
SCALE function, 164
scal ing functions, 164
scan operator, 70
SEAL command, 142
sequential access to existing APL fi les, 207
sequential access to non-APL files, 208
SET command, 142

234 Index

SETFUZZ, 120
SETLINK, 121
shadowing, 18
shape, 52
SI CLEAR command, 119
SI command, 118, 146
SI-damage protection, 2
sidetrack setting, 186
sidetracking considerations, 187
sidetracking dynamics, 187
sidetracking on error and breaks, 184
sidetracking, aids for users, 188
sidetracking, items subject to, 185
significant digits, 45
signum operator, 56
simple assignment, 40
SIN function, 166
SIV command, 119, 146
standard 8-bit computer codes (EBCDIC), 191
standard file I/o error messages, 211
state indicator, 118
statement labe I, 15
statement labels, 98
statements, 11, 95
stop control vector, 160
stop of user input, 159
stopping a display, 47
stopping execution, 117
STRAPIS, 166
strapping options, 197
subtraction operator, 55
suspended function, 118
suspending execution, 118
SYMBOLS command, 147
syntax considerations, 49
syntax conventions, 52
system commands, 11, 115, 122
system commands, summary, 124

T
T -bar functions, 93
tab usage, 193
TABS, 120
TABS command, 148
take operator, 86
6. TE function, 171, 121
Tektronix 4013 graphics terminal, 163
Tektronix 4013 usage, 195
teletype usage, 192
TERMINAL command, 149
terminal declaration, 189
text constants, 14
text editing functions, 175
tracing execution, 116
translation equivalences for nonstandard devices, 211
transparent scal ing, 169
transposition operator, 79
types of input, 42

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

u
unequally spaced tabs, 2
unscaled graphic I/o, 169
user accounts, 124
user input versus computer output, 8
user-defined functions, 101

v
value of variable versus its name, 48
variable, 15
variab les, 11, 16
variables local to defined function, 104
VARS command, 150
VCHAR function, 157, 120
vector, 20
vector arguments,
VS function, 163

w

154

WHA TCHAR function, 165
WHATCOORD function, 165

WHATSCALE function, 164
WHATWINDOW function, 164
WIDTH, 120
WIDTH command, 150
width of line, 44
window functions, 164
6. WM function, 171 j 172; 121
wordspace control commands, 122
workspace concept, 123
workspace management functions, 171
workspace name, 15
workspace WSFNS, 120
writing APL records, 205
writing non-APL records, 205
WSID command, 151

x
£::. XL function, 158, 120

Index 235

Xerox Corporation
701 South Aviation Boulevard
EI Segundo, California 90245

Reader Comment Form

XEROX

We would appreciate your comments and suggestions for improving this publ ication.

Publ icatlon No. Current Date

How did you use ihis pubiication? Is the materia! presented effectively?

o Learning 0 !nsta!linn

o Reference o Maintaining

o Sales

o Operating
U Fully Covered U Well Illustrated U Well Organized U Clear

What is your overall rating of this publication') What is your occupat ion?

0 Very Good 0 Fair o Very Poor

I 0 Good 0 Poor

Your other comments may be entered here. Please be specific and give page, column, and line number references where
applicable. To report errors, Please use the Xerox Software Improvement or Difficulty Report (1188) instead of this form.

I

I
L __ ~ ____ ~_.~_. __ . __ ,._" ..

Your Name & Return Address

2190(12172)

Thank You For Your Interest. (fold & fasten as shown on back, no postage needed if rnailed in U.S.A.)

Staple

Fold

Attn: Programming Publications

Fold

BUSINESS REPLY MAIL
No postage stamp necessary if mailed in the United States

Postage will be paid by

Xerox Corporation
701 South Aviation Boulevard
EI Segundo, California 90245

Staple

First Class
Permit No. 229

EI Segundo,
California

701 South Aviation Boulevard
EI Segundo, California 90245
213679-4511

XEROX

XEROX® is a trademark of XEROX CORPORATION.

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	replyA
	replyB
	xBack

