Xerox Assembly Program (AP)

Xerox 550/560 and Sigma 5-9 Computers

Language and Operations
Reference Manual

EROXEROXEROXEROXEROXEROXEROX
OXEROXEROXEROXEROXEROXEROXERC
ROXEROXEROXEROXEROXEROXEROXERX
ROXEROXEROXEROXEROXEROXEROXE
FROXEROXEROXEROXEROXEROXEROXE
XEROXEROXEROXEROXEROXEROXERO
OXEROXEROXEROXEROXEROXEROXERC
ROXEROXEROXEROXEROXEROXEROXER

ROXEROXEROXEROXEROXEROXEROXE
KEROXEROXEROXEROXEROXEROXEROX
IXEROXEROXEROXEROXEROXEROXERO
{OXEROXEROXEROXEROXEROXEROXER(
ROXEROXEROXEROXEROXEROXEROXER
[EROXEROXEROXEROXEROXEROXEROXE
XEROXEROXEROXEROXEROXEROXEROX
OXEROXEROXEROXEROXEROXEROXERC
ROXEROXEROXEROXEROXEROXEROXER
- ROXEROXEROXEROXEROXEROXEROXE
KEROXEROXEROXEROXEROXEROXEROXE

ﬂabeﬂ

label
labe!
(label]
[label]

[label)
(label]
label

[labei]
(label]

label
[label]

[label]

llabel]

{label]

[label]
{label]
label

[1abel]
. (label]

' (label]

AP DIRECTIVES

ASECT
BOUND
CLOSE
CNAME
COM, field ist]
CSECT
DATA(,f]
DEF

DISP

DO

DO1
DSECT
ELSE

END
EQU([/s)
ERROR[, level[,c]]
FIN '
FNAME
GEN[, field list]
GOTO[, k]
LIST[,n)
Loc(,n]
LOCAL
OPEN
ORG[,n]
PAGE

PCC

PEND
PROC
PSECT

PSR

PSYS
REF[, n)
RES[,n]
SET[;s]
S:SIN, n
SOCW
SPACE
SREF[,n]
SYSTEM
TEXT
TEXTC
TITLE
USECT

boundary

[symbol ERRY symboln]
[|is1']

[value fist]

[expression]

[vulue], . ,vuluen]
[symbol 2R ,symboln]
[lisf]

[expression]

Eexpression]

[expression]

[expression]

[Hsf]

['cs]',. .. ,'csn‘]

[1ist)

[value list]

label][, een ,IubeInJ
[expression]

[locul'ion]

[symbol e ,symbo|n]
[symbol e ,symboln:l
[locafion)

[expression]

[lisi']

" [expression]

[expression]
[expression]

[symbol o ,symboln]
[expression]

[Iist]

[expression)

[expresﬁon]

[symbol 1 ,symboin]
name

[‘cs]', cee ,'csn']
[esy's... ,'csn']
['cs]',. .. ,'csn']

name

Pgge No.

27
25
41
55
47
27
49
42
53
35
34
27

34
39
53

55
45
35
52
25
39
41
24
54
52
56
56
27
52
52

26
39
49
51
51
45
33
50
51
51
28

© Xerox Corporation, 1975

Xerox Assembly Program (AP)

Xerox 550/560 and Sigma 5-9 Computers

Language and Operations
Reference Manual

90 30 00C
90 30 00C-1

June 1975

Fite No.: 1X23
XP78, Rev. 0
Printed in U.S.A.

REVISION

This publication, Xerox Assembly Program (AP)/LN, OPS Reference Manual, Publication Number 90 30 00C, dated
December 1973, has been revised to reflect the COO version of AP by incorporating revised replacement pages pro-
vided as Revision Package 90 30 00C-1(6/75). Vertical bars in the margin of pages labeled 90 30 00C-1(6/75) iden-
tify portions of text changed to reflect CO0 version of AP. Vertical bars on pages not labeled as such but included

as backup pages reflect changes in the original C edition.

RELATED PUBLICATIONS

Title

Xerox Sigma 5 Computer/Reference Manual

Xerox Sigma 6 Computer/Reference Manual

Xerox Sigma 7 Computer/Reference Manual

Xerox Sigma 8 Computer/Reference Manual

Xerox Sigma 9 Computer/Reference Manual

Xerox 550 Computer/Reference Manual

Xerox 560 Computer/Reference Manual

Xerox Real-Time Batch Monitor (RBM)/RT, BP Reference Manual
Xerox Real-Time Batch Monitor (RBM)/OPS Reference Manual
Xerox Real-Time Batch Monitor (RBM)/RT, BP User's Guide
Xerox Real-Time Batch Monitor (RBM)/System Technical Manual
Xerox Control Program=Five (CP-V)/TS Reference Manual
Xerox Control Program=Five (CP-V)/TS User's Guide

Xerox Control Program-Five (CP-V)/OPS Reference Manual
Xerox Control Program=Five (CP-V)/BP Reference Manual
Xerox Control Program=-Five (CP-V)/RP Reference Manual
Xerox Control Program=Five (CP-V)/Common Index

Xerox Control Program for Real-Time (CP-R)/RT, BP Reference Manual
Xerox Control Program for Real=Time (CP-R)/OPS Reference Manual
Xerox Control Program for Real-Time (CP-R)/System Technical Manual

Xerox Control Program for Real=Time (CP-R)/RT, BP User's Guide

Publication No.

90 09 59
90 17 13
90 09 50
20 17 49
90 17 33
90 30 77
90 30 76
90 15 81
90 16 47
90 16 53
90 17 00
90 09 07
90 16 92
90 16 75
90 17 64
90 30 26
20 30 80
90 30 85
90 30 86
90 30 88
90 30 87

Manual Content Codes: BP — batch processing, LN — language, OPS — operations, RP — remote processing,

RT — real time, SM — system management, SP — system programming, TP — transaction

processing, TS — time=sharing, UT — utilities.

The specifications of the software system described in this publication are subject to change without notice. The availability or performance of some features
may depend on a specific configuration of equipment such as additional tape units or larger memory . Customersshould consult their Xerox sales representative
for details.

.

90 30 00C-1(6/75)

INTRODUCTION

Programming Features

CONTENTS

AP Phases

Phase 1

Phase 2

Phase 3

Phase 4

LANGUAGE ELEMENTS AND SYNTAX 2
Language Elements 2
Characters 2
Symbols 2
Constants 3
Addresses 5
Literals 5
Expressions 6
Syntax 8
Statements 8
Label Field 9
Command Field 9
Argument Field 9
Comment Field 9
Comment Lines 10
Statement Continuation 10
Processing of Symbols 10
Symbol References 11
Classification of Symbols 11
Symbol Table 1
Lists 12
Value Lists 12
Number of Elements in a List 17
ADDRESSING 20
Relative Addressing 20
Addressing Functions . 20
BA (Byte Address) 20
HA (Halfword Address) 20
WA (Word Address) 21
DA (Doubleword Address) 21
ABSVAL (Absolute Value) 21
Address Resolution 22
Location Counters 23
Setting the Location Counters 24
ORG (Set Program Origin) 24
LOC (Set Program Execution) 25
BOUND (Advance Location Counters to
Boundary) 25
RES (Reserve an Area) 26

Program Sections
Program Section Directives

Absolute Section

Relocatable Control Sections
Returning to a Previous Section
Dummy Sections

Program Sections and Literals

DIRECTIVES

Assembly Control

SYSTEM (Include System File)
END (End Assembly)

DOI1 (Iteration Control)
GOTO (Conditional Branch)
DO/ELSE/FIN (Iteration Confrol)

Symbol Manipulation
EQU (Equate Symbols)

SET (Set a Value)

LOCAL (Declare Local Symbols)

OPEN/CLOSE (Symbol Control)

DEF (Declare External Definitions)

REF (Declare External References)

SREF (Secondary External References)
Data Generation

GEN (Generate a Value)

COM (Command Definition)
CF (Command Field)

AF (Argument Field)

AFA (Argument Field Asterisk)

DATA (Produce Data Value)
S:SIN (Standard Instruction Definition)
TEXT (EBCDIC Character String)'

TEXTC (Text With Count)
Listing Control

|

SPACE (Space Listing)

TITLE (Identify Output)

LIST (List/No List)

PCC (Print Control Cards)

PSR (Print Skipped Records)

PSYS (Print System)
DISP (Display Values)

ERROR (Produce Error Message or

Commentary)
PAGE (Begin a New Page)

PROCEDURES AND LISTS

Procedures

-Procedure Format

CNAME/FNAME (Procedure Name)
PROC (Begin Procedure Definition)
PEND (End Procedure Definition)

26
26
27
27
28
30
30

55

55
55
55
56
56

-
—_

-

Procedure References

Multiple Name Procedures

Procedure Levels

Intrinsic Functions

LF (Label Field)

CF (Command Field)

AF (Argument Field)

AFA (Argument Field Asterisk)

NAME (Procedure Name Reference)
NUM (Determine Number of Elements)
SCOR (Symbol Correspondence)

TCOR (Type Correspondence)

S:UFV (Use Forward Value)

S:IFR (Inhibit Forward Reject)
S:KEYS (Keyword Scan)

CS (Control Section)

S:NUMC (Number of Characters)
S:UT (Unpack Text)

S:PT (Pack Text)

Procedure Reference Lists

Sample Procedures

6. ASSEMBLY LISTING

Equate Symbols Line

Assembly Listing Line

Ignored Source Image Line

Error Line

Literal Line

Summary Tables

7. AP OPERATIONS

AP Control Command

AC (acy,acy,...,acy)
BA

BO

CI

Cco

DC

GO

LO

LS

LU

ND

NS

PD (sny,...,sn,)

SB, SC

SI
SO

SU

Input/OQutput Files

56
58

58
58
59
59
59
60
61
61
62
63
63
64
67
67
68
68
69
72

80

80
82
82
82
82
83

84

84
84
84
84

85

85
85
85
85
85
85

85
85
85
85

8. UPDATING A COMPRESSED DECK

9. CONCORDANCE LISTING

10. PREENCODED FILES

11. ERROR MESSAGES

Error Flags

87

88

89

90

90

Operational and Irrecoverable Error Messages

INDEX
APPENDIXES
A. SUMMARY OF SIGMA INSTRUCTION
MNEMONICS

B. SIGMASTANDARD COMPRESSED LANGUAGE

FIGURES
1. Flowchart of DO/ELSE/FIN Loop

2. AP Listing Format

921

103

95

102

37

81

TABLES

1. AP Character Set

2. AP Operators

3. Reference Syntax for Lists

4, Valid Instruction Set Mnemonics

5. Operational and Irrecoverable Error Messages

33

21

1. INTRODUCTION

Xerox Assembly Program (AP) is a four-phase assembler that
reads source language programs and converts them to object
language programs. AP outputs the object language pro-
gram, an assembly listing, and a cross reference (or concor-
dance) listing. The object language format is explained in
CP-V/SP Reference Manual or in CP-R System Technical
Manual; the format of the assembly listing is described in
Chapter 6 of this manual, and the format of the cross refer-
ence listing is described in Chapter 9.

PROGRAMMING FEATURES

The following list summarizes AP's more important features
for the programmer:

e Self-defining constants that facilitate use of hexa-
decimal, decimal, octal, floating~point, scaled fixed-
point, and text string values.

e The facility for writing large programs in segments
or modules. The assembler will provide information
necessary for the loader to complete the linkage be-
tween modules when they are loaded into memory.

e The label, command, and argument fields may contain
both arithmetic and logical expressions, using constant
or variable quantities.

o Full use of lists and subscripted elements is provided.

e The DO, DOT1, and GOTO directives allow selective
generation of areas of code, with parametric constants
or expressions evaluated at assembly time.

e Command procedures allow the capability of generating
many units of code for a given procedure call line.

e Function procedures return values to the procedure call
line. They also provide the capability of generating
many units of code for a given procedure call line.

e Individual parameters on a procedure call line can be
tested both arithmetically and logically.

e Procedures may call other procedures, and may call
procedures recursively.

90 30 00C-1(6/75)

AP PHASES

AP is a four-phase assembler that runs under control of CP~V
or CP=R. The first three phases are assembly phases while
the fourth phase generates and prints the cross reference
listing .

PHASE 1

Phase 1 reads the input program (which may be symbolic,
compressed, or compressed with symbolic corrections) and
produces an encoded program for Phases 2, 3, and 4 to
process. If requested by the CO assembly option, Phase 1
will output the program in compressed format for subsequent
reassembly.

Phase 1 checks the program for syntactical errors. If such
errors are found, notification is placed in the encoded pro-
gram, and the assembly operation continues. Phase 1 also
processes those directives concerned with manipulation of
symbofs (SYSTEM, LOCAL, OPEN, and CLOSE). Thus it
is Phase 1 in which designated SYSTEMs are incorporated
in the encoded program.

PHASE 2

Phase 2 reads the encoded program, builds the symbol dic-
tionary, and allocates storage for each statement to be
generated. The literal table is generated during this Phase
so that the size of the entire program may be determined
prior to the start of Phase 3.

PHASE 3

Phase 3 is the final assembly phase. The assembly listing
and object code are generated during this phase. All sym-
bols in the input program have been defined in Phase 2.
Source statements with assembly errors are marked, and
symbol and error summaries are produced at the end of
this phase.

PHASE 4

Phase 4 reads the encoded program and produces an alpha-
betical list of the symbols in the program with all the line
numbers on which each is referenced. This cross reference
listing is requested by an AP control card option.

Introduction 1

2. LANGUAGE ELEMENTS AND SYNTAX

LANGUAGE ELEMENTS

Input to the assembler consists of a sequence of characters
combined to form assembly language elements. These lan-
guage elements (which include symbols, constants, expres-
sions, and literals) make up the program statements that
compose a source program.

CHARACTERS

AP source program statements may use the characters shown

in Table 1.

The colon is an alphabetic character used in internal sym-
bols of standard Xerox software. It is included in the
names of Monitor routines (M:READ), assembler routines
(S:UFV), and library routines (L:SIN). To avoid conflict
between user symbols and those employed by Xerox soft-
ware, it is suggested that the colon be excluded from user
symbols.

Table 1. AP Character Set

Alphabetic: | A through Z, $, @, #, and L (oreak
character — prints as "underscore").
(: is the reserved alphabetic character,
as explained above).

Numeric: 0 through 9.

Special Blank.

Characters:

+ Add (or positive value).
- Subtract (or negative value).

* Multiply, indirect addressing
prefix, or comments line indicator,

/ Divide.

// Covered quotient.
Decimal point.

’ Comma.

(Left parenthesis. -

) Right parenthesis.

Constant delimiter (single quotation

mark).

2 Language Elements and Syntax

Table 1. AP Character Set (cont.)

Special & Logical AND.
Characters
(cont.) | Logical OR (vertical slash)

{also [, left bracket).

I Logical exclusive OR (vertical

slashes) (also[[) .

—1 Logical NOT or complement
(also], right bracket).

< Less than.
> Greater than.

= Equal to or introduces a literal.

<= Less than or equal to.

>= Greater than or equal to.
— = Not equal to (also] 3.

; Continuation code.

** Binary shift.

TAB Terminates the label, command,
or argument field,

SYMBOLS

Symbols are formed from combination of characters. Sym-
bols provide programmers with a convenient means of iden-
tifying program elements so they can beq referred fo by
other elements. Symbols must conform 'to the following
rules:

1. Symbols may consist of from 1to 63 alphanumeric
characters: A-Z, $, @, #, :,4, 0-9. At least one
of the characters in a symbol must be alphabetic. No
special characters or blanks can appear in a symbol.

2. The symbols $ and $$ are reserved by the assembler to
represent the current value of the execution and load
location counters, respectively.

The following are examples of valid symbols:

ARRAY

R1
INTRATE
BASE
7TEMP
#CHAR
$PAYROLL

$ (execution location counter)

90 30 00C-1(6,/75)

The following are examples of invalid symbols:

BASE PAY
TWO =2

Blanks may not appear in symbols.

Special characters (=) are not per-
mitted in symbols.

CONSTANTS

A constant is a self-defining language element. Its value
is inherent in the constant itself, and it is assembled as
part of the statement in which it appears.

Self-defining terms are useful in specifying constant values
within a program via the EQU directive (as opposed to
entering them through an input device) and for use in con-
structs that require a value rather than the address of the
location where that value is stored. For example, the Load
Immediate instruction and the BOUND directive both may
use self-defining terms as follows:

L1, 2 e 2, 57, and 8 are self-defining

terms.

BOUND 8

SELF-DEFINING TERMS

Self-defining terms are considered to be absolute (non-
relocatable) items since their values do not change when
the program is relocated. There are three forms of self-
defining terms.

1. The decimal digit string in which the constant is
written as a decimal integer constant directly in the
instruction. For example,

LW,R HERE +6 6 is a decimal digit string.

2. The character string constant in which a string of
EBCDIC characters is enclesed by single quotation
marks, without a qualifying type prefix. A complete
description of C~type general constants is given below.,

3. The general constant form in which the type of con-
stant is indicated by a code character and the value
is written as a constant string enclosed by single quota=
tion marks. For example,

LW, R HERE + X'7B3' 7B3 is a hexadecimal
constant representing
the decimal value

1971,

There are seven types of general constants:

Code Type

C Character string constant
X Hexadecimal constant

O Octal constant

D Packed decimal constant

90 30 00C-1(6/75)

FX Fixed=point decimal constant
FS Floating=point short constant
FL Floating=point long constant

C — Character String Constant. A character string constant
consists of a string of EBCDIC characters enclosed by single
quotation marks and optionally preceded by the letter C.

C'ANY CHARACTERS' or 'ANY CHARACTERS'

Each character in a character string constant is allocated
eight bits of storage.

Because single quotation marks are used as syntactical char-
acters by the assembler, a single quotation mark in a char-
acter string must be represented by the appearance of two
consecutive quotation marks. For example,

IAB IIC i
represents the string

AB'C'

Character strings are stored four characters per word. The
descriptions of TEXT and TEXTC in Chapter 4 provide posi-
tioning information pertaining to the character strings used
with these directives. When used in other data-generating
directives, the characters are right-justified and a null
EBCDIC character(s) fills out the field.

X — Hexadecimal Constant. A hexadecimal constant con-

sists of an unsigned hexadecimal number enclosed by single
quotation marks and preceded by the letter X,

X'9CO1F!

The assembler generates four bits of storage for each hexa-
decimal digit. Thus, an eight-bit mask would consist of
two hexadecimal digits.

The hexadecimal digits and their binary equivalents are
as follows:' -

0 - 0000 4-0100 8-1000 C-1100
1 -~ 0001 5-0101 9-=1001 D=-1101
2-0010 6-0110 A-1010 E=-1110
3-00M 7-0111 B -1011 F ~1111

O = Octal Constant. An octal constant consists of an un-
signed octal number enclosed by single quotation marks and
preceded by the letter O.

07314526’

The size of the constant in binary digits is three times the
number of octal digits specified, and the constant is right-

justified in its field. For example,
Constant Binary Value Hexadecimal Value

0O'1234' 001 010 011 100 0010 1001 1100 (29C)

Language Elements 3

The octal digits and their binary equivalents are as follows:

0 - 000 4 - 100

1 -001 5~ 101
2 -010 6-110
3 -011 7 -1

D —Packed Decimal Constant. A packed decimal con-
stant consists of an optionally signed value of 1 through
31 decimal digits, enclosed by single quotation marks and
preceded by the letter D.

D'735698721' = D'+735698721'

The constant generated by AP is of the binary=coded deci-
mal form required for decimal instructions. In this form, the
signf occupies the last digit position and each digit consists
of four bits. For example,

Constant Value

D' + 99 1001 1001 1100

A packed decimal constant could be used in an instruc-
tion as follows:

LW, R L(D'99")

Load (LW), the packed decimal constant (D) 99, as a lit-
eral (L) into register R.

The value of a packed decimal constant is limited to four
words (128 bits).

FX — Fixed-Point Decimal Constant. A fixed=point deci-
mal constant consists of the following components in the
order listed, enclosed by single quotation marks and pre-
ceded by the letters FX:

1. An optional algebraic sign.
2. d, d., d.d, or .d, where d is a decimal digit string.

3. An optional exponent,

the letter E followed optionally by an algebraic
sign, followed by one or two decimal digits.

4. A binary scale specification,

the letter B followed optionally by an algebraic
sign, followed by one or two decimal digits that
designate the terminal bit of the integer portion
of the constant (i.e., the position of the binary
point in the number). Bit position numbering
begins at zero.

A plus sign is a four-bit code of the form 1100. A minus
sign is a four-bit code of the form 1101.

4 [anguage Elements

Parts 3 and 4 may occur in any relative order:

FX'.0078125B6'

0000j0000}]00600|0100{0000{0000j0000(0000

0 1 2 314 5 b/\7 8 9 10 11112 13 14 15016 17 18 19120 21 22 23§24 25 26 27|28 29 30 31

FX'1.25E-1B17'

0000({0000j0000|0000/0000{1000]0000|00O00

0 1 2 314 5 6 718 9 IOI]12]3!4]51617/\18)‘?202!?2232425262728293031

FX'13.28125B2E-2"

0000j0100/0100{0000{0000/0000j0000j0000

0 2/\3 4 5 6 7FE8 9 10 11112 13 14 15816 17 18 19020 21 22 23124 25 26 27§28 29 30 31

Example: Storing Fixed~Point Decimal Constants

Assume a halfword (16 bits) is to be used for two fields
of data; the first field requires seven bits, and the sec-
ond field requires nine bits.

The number FX'3. 75B4' is to be stored in the first field.
The binary equivalent of this number is 11 A 11. The
caret represents the position of the binary point. Since
the binary point is positioned between bit positions 4
and 5, the number would be stored as

Field 1 Field 2

012 Bit positions
ofoJo l]]lll ll

The number FX'. 0625B-2' is to be stored in the second
field. The binary equivalent of this number is 0001.
The binary point is to be located between bit posi-
tions -2 and -1 of field 2; there, the number wouldbe
stored as

Field 1 Field 2

345678
o]o|o|1]1|||1|o|o|1 [ofo]o]o]o]o

Bit positions

In generating the second number, AP considers bit
position -1 of field 2 to contain a zero, but does
not actually generate a value for that bit position
since it overlaps field 1. This is not an error to
the assembler. However, if AP were requested tfo
place a 1 in bit position -1 of field 2, an error
would be detected since significant bits cannot be
generated to be stored outside the field range.
Thus, leading zeros may be truncated from the num-
ber in a field, but significant digits are not al-
lowed to overlap from one field to another.

FS — Floating—Point Short Constant. A floating~point short
constant! consists of the following components in order,
enclosed by single quotation marks and preceded by the
letters FS:

1. An optional algebraic sign.
2. d, d., d.d, or .d, where d is a decimal digit string.

3. An optional exponent,

the letter E followed optionally by an algebraic
sign followed by one or two decimal digits.

Thus, a floating-point short constant could appear as

FS'5. 5E-3

3 F 1 6 8 7 2 B

0 1 2 314 5 6 718 9 10 1111213 14150116 17 18 19120 21 22 23724 25 26 27128 29 30 31

The value of a floating-point short constant is limited to
that which can be stored in a single word (32 bits).

FL — Floating=Point Long Constant. A floating-point long
constant! consists of the following components in order,

enclosed by single quotation marks and preceded by the
letters FL:

1. An optional algebraic sign.
2. d, d., d.d, or .d, where d is a decimal digit string.

3. An optional exponent,

the letter E followed optionally by an algebraic
sign, followed by one or two decimal digits.

Thus, a floating-point long constant could appear as

FL'2987574839928. E-11'

4 2 1 D E 0 3 1

0 1 2 314 5 6 718 9 10 1N27 13774 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

0 C 0 E 6 E 9 4

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17718 19120 21 22 23124 25 26 27128 29 30 31

The maximum size constants permitted by AP is as follows:

Constant Maximum
Designation Type Size
Decimal integer 64 bits (18 +digits)
C Character string 504 bits (63 characters)
X Hexadecimal 64 bits (16 digits)

number

t . .
Refer to the appropriate Xerox Sigma Computer Reference
Manual for an explanation of floating=-point format.

Constant Maximum
Designation Type Size .
O Octal number 64 bits (21 +digits)
D Packed Deci- 128 bits (31 digits +sign)
mal number
FX Fixed-point 32 bits
decimal
number
FS Floating-point 32 bits
short number
FL Floating-point 64 bits

long number

ADDRESSES

An address value is an element that is associated with a
storage location in the Sigma main memory. There are two
types of address values:

1. An absolute address has a value that corresponds ex-
actly with a storage location in memory. Absolute ad-
dress values will not be altered by the process of
loading (linking) the program, Although absolute ad-
dress values are invariant under the linking process,
they are not considered as constants by AP, It is nec-
essary to inform the loader of the difference between
constants and absolute addresses; for this reason, AP
treats both absolute and relocatable addresses as a sin-
gle type address.

2, A relocatable address has a value that consists of two
parts, conirol section base and offset from this base.
The base of any control section is determined by the
loader; thus, the only correspondence between a relo-
catable address value and an actual storage location is
the offset from a base section location.

LITERALS

A literal is an expression enclosed by parentheses and pre-
ceded by the letter L,

L(~185*5) decimal value -925
L(X'5DF') hexadecimal value 5DF
L(AB+3) an address expression

or an expression preceded by an equals sign,

=-185*5 decimal value -925
=X'5DF' hexadecimal value 5DF
=AB+3 an address expression

Literals.are transformed into references to data values rather
than actual values. Literals may be used in any construct
that requires an address of a data value rather than the
actual value. For example, the Load Word instruction

Language Elements 5

requires the address of the value to be loaded into the
register, and use of a literal will satisfy that requirement,

LW, 7 L(768) The value 768 is stored in
the literal table and its ad-
dress is assembled as part of
this instruction,

A literal preceded by an asterisk specifiesindirect addressing,
*=10 or *L(10)

When a literal appears in a statement, AP produces the
indicated value, stores the value in the literal table, and
assembles the address of that storage location into the state-
ment. The address is assembled as aword address, regardless
of the intrinsic resolution of the literal control section. This
address may be referenced, however, as a byte, halfword,
or doubleword address (see "Addressing Functions" in Chap-
ter 3). Literals may be used anywhere a storage address
value is a valid argument field entry. However literals may
not be used in directives that require previously defined
expressions.

During an assembly AP generates each literal as a 32-bit
value on a word boundary in the literal table. The as-
sembler detects duplicate values and makes only one entry
for them in the table.

When AP encounters the END statement, it generates all
literals declared in the assembly. The literals are gen-

erafed at the current location (word boundary) of the cur-
rently active program section.

Any of the previously discussed types of constants except
floating-point long (FL) may be written as literals:

L(1416) integer literal
L(C'BYTE") character siring literal
L(X'"FOFQ') hexadecimal literal
L(O'7777") octal literal
L(D'37879") packed decimal literal

L(FX'78.2E1B10") fixed~point decimal literal

L(FS'-8. 935410E-02')

floating=~point short literal

EXPRESSIONS

An expression is an assembly language element that repre-
sents a value. It consists of a single ferm or a combination
of terms (multitermed) separated by arithmetic operators.

The AP language permits general expressions of one or
more terms combined by arithmetic and/or Boolean (logi-
cal) operators. Table 2 shows the operators processed
by AP.

6 Language Elements

Table 2. AP Operators

Binding "

Operator | Strength' | Function

+ 7 Plus (unary)

- 7 Minus (unary)
— 7 Logical NOT or complement

(unary)

*x 6 Binary shift (logical)

* 5 Integer multiply

/ 5 Integer divide

.t

// 5 Covered quotient

+ 4 Integer add

- 4 Integer subtract

< 3 Less than

> 3 Greater than

<= 3 Less than or equal to

>= 3 Greater than or equal to

= 3 Equal to
—_= 3 Not equal to

& 2 Logical AND

| 1 Logical OR |

Il 1 Logical exclusive OR

fsee below, "Operators and Expression Evaluation”.
Al operators are binary (i.e., require two operands)
except the first three, specifically indicated as unary.
"™ A//B is defined as (A + B - 1)/B.

PARENTHESES WITHIN EXPRESSIONS

Multitermed expressions frequently require the use of paren-
theses to control the order of evaluation, Terms inside pa-
rentheses are reduced to a single value before being combined
with the other ferms in the expression. For example, in the
expression

ALPHA*(BETA + 5)

the term BETA + 5 is evaluated first and that result is
multiplied by ALPHA,

Expressions may contain parenthesized terms within
parenthesized terms,

DATA+(HRS/8-(TIME*2*(AG + FG)) + 5)

The innnermost term (in this example, AG +FG)isevaluated
first, Parenthesized terms may be nested to any depth,

OPERATORS AND EXPRESSION EVALUATION

A single~-termed expression such as 36 or $ or SUM takes
on the value of the term involved, A multitermed expres-
sion such as INDEX + 4 or ZD*(8+XYZ) is reduced to a
single value as follows:

1. Each term is evaluated and replaced by ifs internal
value,

2. Arithmetic operations are performed fromleft to right.
Operations at the same parenthetical level with the
highest "binding strength" are performed first. For
example,

A+B *C/D
is evaluated as
A+ (B *C)/D)

3. All arithmetic and logical operations in expressions
are carried out in double precision (64 bits) with the
following exceptions:

a. Multiplication allows only single precision oper-
ands (32 bits) but may produce a double precision
product,

b. Division allows a single precision divisor and a
double precision dividend and produces a single
precision quotient.

4. Division always yields an integer result; any fractional
portion is dropped.

5. Division by zero yields a zero result and is indicated
by an error notification,

An expression may be preceded by an asterisk (*), which is
often used to denote indirect addressing. Used as a prefix
in this way, the asterisk does not affect the evaluation of
the expression. However, if an asterisk precedes a sub-
expression, it is interpreted as a multiplication operator,

Multitermed expressions may be formed from the following
operands:

1. Symbols representing absolute or relocatable addresses,
which may be previously defined, forward, or external
references,

2. Decimal integer constants {e.g., 12345) or symbols
representing them,

3. All other general constants, namely character siring
(C), hexadecimal (X), octal (O), packed decimal (D),
fixed-point (FX), floating=point short (FS), and floating-
point long (FL), or symbols representing them.

The following should be noted with regard to expression
evaluation:

1. To allow for greater flexibility in generating and
manipulating C, D, FX, FS, and FL constants, the
assembler treats them as integers when they are used
arithmetically in multitermed expressions and carries
the results internally as integers. Character constants
(C) so used are limited to eight bytes (64 bits), and
packed decimal constants (D) to 15 digits + sign.

2. All operators may be used, but only the + and - opera-
tors and the comparison operators may take an address
as an operand, An address operand is considered to be

a. Any symbol that has been associated with an ad-
dress in a relocatable or absolute section,

b. Any local symbol referenced prior to its definition.
c. Any symbol that is an external reference.

3. The sum of any two address operands is an address. The
difference of any two address operands is an address,
except for the case where both items are in the same
control section and of the same resolution; the result
then is an integer constant,

4. An address operand plus or minus a constant must use a
single precision constant. Combining a negative con-
stant with an address operand, however, will produce
an error only if the negative constant cannot be repre-
sented correctly in single precision form. For example,
external reference -1 is correct; external reference

-9,589,934,592 is incorrect.
5. AP carries negatives as double precision numbers and

will therefore provide for generated negative values of
up to 64 bits.

LOGICAL OPERATORS

The logical NOT (=), or complement operator, causes a
one's complement of its operand,

Hexadecimal

Value Equivalent One's Complement
00... 0011 11... 1100

10 00... 1010 11... 0101

The binary logical shiff operator (**) determines the direc-
tion of shift from the sign of the second operand; a negative
operand denotes a right shift and a positive operand denotes
a left shift, For example,

5%%-3

Language Elements 7

results in a logical right shift of three bit positions for the
value 5, producing a result of zero, A shift of more than
63 bits in either direction gives an answer of zero.

The result of any of the comparisons produced by the com-
parison operafors is

0 if false (or if operands are different types)
1if true

so that .

Expression Result

3>4 0 3 is not greater than 4.

—13=4 0 The 64-bit value — 3 is
equal to 11...1100 and
is not equal to 4; i.e.,
00. . .0100.

3—=4 1 3 is not equal to 4.

3 is not equal to 4, so the
result of the comparison is
0 which, when comple-
mented, becomes a 64-bit
value (all one's).

The logical operators & (AND), | (OR), and Il (exclusive
OR) performs as follows:

AND
First operand: 0011
Second operand: 0101

Result of & operation: 0001

OR
First operand: 0011
Second operand: 0101
Result of | operation: o1

Exclusive OR

First operand: 0011
Second operand: 0101
Result of Il operation: o110

Expressions may not contain two consecutive binary oper-
ators; however, a binary operator may be followed by a
unary operator. For example, the expression

-A*=B/-C-12

8 Syntax

is evaluated as
((-A) * (—B)) / (-C)) - 12

and the expression

T+U*(V+-W) - (268 /-X)

is evaluated as

(T+ (U *(V+ (-W))) - (268 / (-X))

SYNTAX

Assembly language elements can be combined with computer
instructions and assembler directivesto formstatements that
compose the source program.

STATEMENTS

A statement is the basic component of an assembly language
source program; it is also called a source statement or a
program stafement.

FIELDS

Source statements are written on a standard coding form.
The body of the coding form is divided into four fields:
label, command, argument, and comments. The coding
form is also divided into 80 individual columns. Columns 1
through 72 constitute the active line; columns 73 through 80
are ignored by the assembler except for listing purposes
and may be used for identification and a sequence number.

The columns on the coding form correspond to those on a
standard 80-column card; one line of coding on the form
can be punched into one card.

AP provides for free~form symbolic lines; that is, it does
not require that each field in a statement begin in a
specified column. The rules for writing free-form symbolic
lines are

1. The assembler interprets the fields from left to right:
label, command, argument, comments.

2. A blank column terminates any field except the com-
ments field, which is terminated at column 72 on card
input or by a carriage return or new line character on
terminal input.

3. One or more blanks at the beginning of a line specify
there is no label field entry. :

4. The label field entry, when present, must begin in
column 1,

5. The command field begins with the first nonblank col-
umn following the label field, or in the first nonblank
column following column 1 if the label field is empty.

90 30 00C-1(6/75)

6. The argument field begins with the first nonblank
column following the comrand field. An argument
field is designated as a blank in either of two ways:

a. Sixteen or more blank columns follow the com-
mand field.

b. Theendoftheactive line (column72)is encountered.

7. The comment field begins in the first nonblank column
following the argument field, or after at least 16 blank
columns following the command field when the argu-
ment field is empty.

ENTRIES

A source statement may consist of one to four entries writ-
ten on a coding sheet inthe appropriate field: alabel field
entry, a command field entry, an argument field entry, and
a comments field entry.

LABEL FIELD

A label entry is a symbol or a list of symbolsthat identifies

the statement in which it appears. The label enables a pro-
grammer to refer to a specific statement from other state-
ments within the program.

A single label may appear in the label of any instruction
and of any directive except DSECT, which must have one
and only one label. A label for some directives is not

meaningful and is ignored unless it is the target label of
a GOTO search.

The label on a procedure reference line may contain a list
of valid symbols, constants, or expressions (see Chapter 5).

A labe! used as an identifier may have the same configura-
tion as a command, without corflict, since AP is able to
distinguish through context which usage is intended. For

example, the mnemonic code for the Load Word command

is LW. An instruction may be written with LW in the labe!
field without conflicting with the command LW.

The name of any intrinsic function that requires parentheses
(ABSVAL, BA, CS, DA, HA, L, NUM, S:IFR, S:NUMC,
S:UFV, SCOR, and WA) may be used as a label in either a
main program or a procedure definition if the parentheses
are omitted. The intrinsic functions AF, AFA, CF, LF, and
NAME may be used as labels in @ main program, but within a
procedure definition they are always interpreted as functions.

Example: Label Field Entry

LABEL COMMAND ARGUMENT

1 5 1o 15 20 25 30 35

PAYLRATE| | | T (R L B

a(T+3, [' ' s '

e T T T T T T T

K S . — NI :

CosTE

TFLFTEEA LK [ARAREARREE
| T T - T L T

90 30 00C-1(6/75)

COMMAND FIELD

A command entry is required in every active line. Thus,
if a statement line is entirely blank following the label
field or if the command entry is not an acceptable in-
struction or directive, the assembler declares the state-
ment in error.

The command entry is a mnemonic operation code, an

assembler directive, or a procedure name. AP direc-
tives and valid mnemonic codes for machine operations
are listed in the Appendix. Procedures are discussed

in Chapter 5.

Example: Command Field Entry

LABEL COMMAND ARGUMENT
1 5 10 15 20 25 30 35
T T Llw,'5' T T T T T
L'wf'gr' T T T T T T T
i T T T T T T T

Liwla S
- T T ' : LM/-.S T o T -
T EIA"ACRAE § DDA R
BETA_LWyls| s il Y i]
Bl T T Lhs T T T T
LeoP LW, 5]
T T T T T LI T
T T T T T T T
ARGUMENT FIELD

An argument entry consists of one or more symbols, con-
stants, literals, or expressions separated by commas. The
argument entries for machine instructions usually repre-
sent such things as storage locations, constants, or in-
termediate values. Arguments for assembler directives
provide the information needed by AP to perform the des-
ignated operation.

Example: Argument Field Entry

COMMAND ARGUMENT
10 15 20 25 30 35 [37 40
Llqu T ﬁLIPHﬁ T LR B T T T T T
T T T T LN S T T
:y{' % a’ : T B'/ :gr > | N L | T LI
L|1'4vrv -1'85‘ T AL SRS B LA B
LW,/ CRUNT. _ e
Nep 4l -~ BLANK AIRGUMENT
T L|WAS IANY T T T T T
T T T T AL LA | T
COMMENT FIELD

A comments entry may consist of any information the user

wishes fo record. It is read by the assembler and output as
part of the source image on the assembly listing. Comments
have no effect on the assembly.

Syntax 9

COMMENT LINES PRCCESSING OF SYMBOLS

An entire line may be used as a comment by writing an Symbols are used in the label field of a machine instruction
asterisk in column 1. Any EBCDIC character may be to represent its location in the program. In the argument
used in comments. Extensive comments may be writ= field of an instruction, a symbol identifies the location of

ten by using a series of lines, each with an asterisk an instruction or a data value.

in column 1.

The treatment of symbols appearing in the label or argu-
The assembler reproduces the comment lines on the assem= ment field of an assembler directive varies,
bly listing and counts comment lines in making line num-
ber assignments.

DEFINING SYMBOLS

A symbol is "defined" by itsappearancein the label field of

STATEMENT CONTINUATION any machine language instruction and of certain directives.
If a single statement requires more space than is available ASECT, CNAME, COM, CSECT, DATA, DO, DO1,
in columns 1 through 72, it can be continued onto one or DSECT, END, EQU, FNAME, GEN, LOC, ORG,
more following lines. When a statement is to be continued PSECT, RES, SET, S:SIN, TEXT, TEXTC, and USECT.

on another line, the following rules apply:
For all other directives a label entry is ignored (except as
a target label of a GOTO directive); that is, it is not as—

1. Each line that is to be continued on another line must .
signed a value,

be terminated with a semicolon. The semicolon must
not be within a character constant string. Anything
in the initial line following the seimcolon is treated
as comments. A semicolon within comments is not
treated as a continuation code.

Any machine instruction can be labeled; the label is as-
signed the current value of the execution location counter,

The first time a symbol is encountered in the label field of
an instruction, or any of the directives mentioned above, it
is placed in the symbol table and assigned a value by the
assembler, The values assigned to labels naming instruc-
tions, storage areas, constants, and control sections repre-
sent the addresses of the leftmost bytes of the storage fields
containing the named items.

2. Column 1 of each continuation line must be blank.

3. Comment lines may not be continued.

Often the programmer will want to assign values to symbols

rather than having the assembler do it. This may be accom-
plished through the use of EQU and SET directives. A sym-
bol used in the label field of these directives is assigned the
value specified in the argument field, The symbol retains
all attributes of the value to which it is equated.

4, Comment lines may be placed between continuation
lines.

5. Leading blanks on continuation lines are ignored by
the assembler. Thus, significant blanks that must fol-
low label or command entries must precede the semi-

colon indicating continuation. REDEFINING SYMBOLS
Example: Statement Continuation Usually a symbol may be defined only once in a program.
. . However, if its value is originally assigned by a SET or
BEGIN Lw,3 A; Continuation. DO directive, the symbol may be redefined by a subsequent
B8 SET directive or by the processing of a DO loop. For
. example:
NEW TEXT 'A; B ; is not a contin-
. uation character. SYM SET 15 SYM is assigned the
. : value 15.
LOCAL A,STARTR1,; .
D,RATIO,B12,; Continuation. SYM DO 3 SYM s changed to zero
C,MAP . and is incremented by 1
each time the DO loop
ANS Lw,3 ; The blank that . is executed.
SUM,1 terminates the .
command field NOW SET SYM NOWis assigned the
precedes the value SYM had when the
semicolon. DO loop was completed;
- i.e., 3 not 15,

10 Processing of Symbols 90 30 00C-1(¢/75)

SYMBOL REFERENCES

A symbol used in the argument field of a machine instruction
or directive is called a symbol reference. There are three
types of symbol references.

PREVIOUSLY DEFINED REFERENCES

A reference made to a symbol that has already been de-
fined is a previously defined reference. All such references
are completely processed by the assembler, Previously de-
fined references may be used in any machine instruction or
directive.

FORWARD REFERENCES

A reference made to a symbol that has not been defined is
a forward reference,

Forward references may be used in any machine language
instruction and in the operand field of the following
directives:

ERROR, GOTO, DATA, GEN, REF, SREF, DEF,
LOCAL, and OPEN.

Examples: Forward References

ALPHA DATA,R A X Error; R is forward.

BETA DO X =2 Error; X is a forward

. reference.

R SET 4

X EQU 3

A DATA,R R*X Legal; generates
: DATA 12.

R SET 7

The directive at ALPHA is in error because forward ref-
erences are not permitted in the command field of any direc-
tive. Thus, when the object code is generated, R will have
the last value assigned to it during Phase 2, i.e., the
value 7. The forward references A and X in this directive
illustrate permissible usage. The statement at BETA is in
error because the DO directive must have an evaluatable
expression and X is a forward reference.

AP permits the use of forward references in multitermed
expressions.

EXTERNAL REFERENCES

Areference made to a symbol defined in aprogram other than
the one inwhich it is referenced is an external reference.

A program that defines external references must declare
them as external by use of the DEF directive. An external

definition is output by the assembler as part of the object
program, for use by the loader.

A program that uses external references must declare them
as such by use of a REF or SREF directive.

A machine instruction containing an external reference
is incompletely assembled. The object code generated
for such references allows the external references and
their associated external definitions to be linked at load
fime,

After a program has been assembled and stored in memory
to be executed, the loader automatically searches the pro-
gram library for routines whose labels satisfy any existing
external references. These routines are loaded automat-
ically and interprogram communication is thus completed.

AP permits the use of external references in multitermed
expressions. They are not permitted on directive state-
ments where a previously defined expression is required.

CLASSIFICATION OF SYMBOLS
Symbols may be classified as either local or nonlocal.

A local symbol is one that is defined and referenced within
a restricted program region, The program region is desig-

nated by the LOCAL directive, which also declares the
symbols that are to be local to the region.

A symbol not declared as local by use of the LOCAL direc-
tive is a nonlocal symbol. It may be defined and referenced
in any region of a program, including local symbol regions.

The same symbol may be both nonlocal and local, in which
case the nonlocal and local forms identify different program
elements. ‘

SYMBOL TABLE

The value of each defined symbol is stored in the assem-
bler's symbol table., Each value has a value type asso-
ciated with it, such as absolute address, relocatable
address, integer, or external reference. Some types re-
quire additional information. For example, relocatable
addresses, which are entered as offsets from a program sec—
tion base, require the intrinsic resolution of the symbol.

When the assembler encounters a symbol in the argument
field, it refers to the symbol table to determine if the sym-
bol has already been defined. If it has, the assembler ob-
tains from the table the value and attributes associated with
the symbol, and is able to assemble the appropriate value
in the statement,

If the symbol is not in the table, it is assumed to be a for-
ward reference. AP enters the symbol in the table but
does not assign it a value. When the symbol is defined
later in the program, AP assigns it a value and designates
the appropriate atiributes,

Processing of Symbols 11

LISTS

A list is an ordered set of elements. Each elementoccupies
a unique position in the set and can, therefore, be identi-
fied by its position number. The nth element of list R is
designated as R(n). An element of a list may also be
another list. Any given element of a list may be numeric,
symbolic, or null (i.e., nonexistent).

A list may be either linear or nonlinear. A linear list is
one in which all non-null elements consist of a single
numeric or symbolic expression of the first degree (i.e.,
having no element with a sub-subscript greater than 1).
A nonlinear list has of least one compound element;
that is, a non-null element with a sub-subscript greater
than 1.

These definitions are explained in greater detai! below.

Lists may be used in two ways: as value lists or as pro-
cedure reference lists. Value lists are discussed in this
chapter; see Chapter 5 for a description of procedure ref-
erence lists.

VALUE LISTS
LINEAR VALUE LISTS

A linear value list may consist of several elements or
of only a single non-null element having a specific
numeric value (e.g., a signed or unsigned integer, an
address, or a floating=point number). Thus, a single
value and a linear value list of one element are struc-
turally indistinguishable.

An example of a linear value list, named R, having the
four elements 5, 3, =16, and 17 is shown below.

R=S5, 3, =16, 17

(The symbol = means "is identical to".)

Reference Syntax. In the example given above, the
four elements of list R would be referred to as R(1),
R(2), R@3), and R(4).

A null value is not a zero value. An element having
a value of zero is not considered a null element, be-
cause zero is a specific numeric value. The null ele-
ments of a value list are those that have not been as-
signed o value, although they do have specific subscript
numbers. That is, all subscript numbers not assigned to

12 Lists

non-null elements may be used to reference implicit null
elements. For example, the list R, as defined above,
consists of four elements:

R(1)=5
R(2)=3
RE@)=~-16
R(4) =17

and any number of implicit null elements:

R(5) = null

R(6) = null

R(n)=null forn > 4
A null value used in an arithmetic or logical operation has
the same effect as a zero value. Thus, if

LIST(a) = null

then
LIST(b) + LIST(a) = LIST()

also

0+ LIST(a)=10

also

LIST(a) + null =0

Example: Linear Value Listt

A SET 8,6,9
defines list A as
A(1)=38
A@2)=6
AB)=29
A(4) = null
)

The list could be altered by assigning additional
elements to list A:

A4) SET =65

A(5) SET 231
Thereby changing list A to

A 8,6,9,-65,231

"List values are normally defined by SET or EQU directives,
which are described in Chapter 4.

When a list contains explicit null elements (i.e., those
followed by one or more non-null elements), they are
counted with the non-null elements in determining the
total number of elements in the list. '

Examples of lists containing explicit null elements are
shown below.

A SET 5,17, 10,,,14

B SET ,,6
defines lists A and B as

A =5, 17, 10, null, null, 14
List A contains
six explicit
elements.

B =null, null, 6

List B contains
three explicit

A trailing comma in a list specifies a trailing explicit
null element. Thus, a list defined as

S SET 4,3,6,,2,

contains six explicit elements:

4,3,6,null, 2, null.

If Q is the name of an m-element value list, e is an
expression having the single value n, and no list having
more than 255 elements can be accommodated by the
assembler, then the reference syntax will give the values
shown in Table 3.

Generation. The syntax for defining a list is

name followed by directive followed by sequence
The name may be any symbol chosen by the programmer,
the directive may be either EQU or SET, and the sequence
is one or more elements establishing the list structure.

Note: A name is mandatory.

Each element in a list-defining sequence must be either

elements. (1) the expression to be used as the next element of the
Table 3. Reference Syntax for Lists
Syntax of
Case Reference Range of n Meaning of the Reference Value(s) of the Reference
1 Q Reference to all elements The m valdes of the ele-
of list Q. ments of list Q.
2 Q(e) 1<n<m Reference to the nth ele~ The value of the nth
ment of list Q. element of list Q.
3 Qle) m<n<255 Reference to nonexistent Null. (Numeric effect
(n is an integer) (null) element of list Q. equivalent to zero.)
(No error flag.)
4 Q(e) n<0 or n>255 Error: (Subscript out of The value of Q(1).
or n is not an range.)
integer.

90 30 00C-1(6/75)

Lists

list, or (2) a reference {(case 1 or 2) to an m=element list,
whose elements are to be copied as the next elements of
the list being defined. This is illustrated below, where the
effects of successive SET directives are to be considered
cumulative.

Example: Defining Linear Value Lists

Q SET 4,7 +2
creates

Q=49

R SET Q) 17,-6
creates

R=4,17,-6

S SET Q
creatfes

S=4,9

T SET Q, 19,Q,RE)
creates

T=4,919,4,9,-6

Q SET T(6), T(3), 205
redefines

Q=-6,19,205

Note: This SET line does not result in redefinition
of R, S, or T, although they were initially
defined in terms of elements of Q; only Q
will have new values after execution of
this directive.

T SET T(5)
redefines
T=9

Note: The evaluation of T(5) is performed before
redefinition of T. All elements of T that
are of higher order than T(1) will be null
elements after execution of this directive
(i.e., TW)=null forn> 1).

S SET S, 6
redefines

$=4,96

S SET 1,S
redefines

$=1,496

Manipulation. The SET directive can be used not only to
define or redefine an entire list, but also to define or re-
define any single element of a linear value list. The syntax
of the directive is still name followed by directive followed

14 Lists

by sequence, but the name is a subscripted symbol
identifying some particular list element; and the sequence
is only a single expression, representing either a specific
numeric value or the name of a previously defined element
having a single value.

In the example below, the effects of successive SET direc-
tives are to be considered cumulative, but not retroactive.

Example: Redefining a Linear Value List

A SET 5,6,4

A(2) SET 17
redefines

A=5,17,4

A(@3) SET A@3) +6
redefines

A=5,17,10

NONLINEAR VALUE LISTS

A nonlinear value list has at least one compound element;
that is, a non=-nu!l element having a sub=subscript greater
than 1. A compound element in a list is identified by en-
closure within parentheses. The following example illus-
trates this notation.

Example: Parentheses in Nonlinear Value Lists

X =(4) Redundant parentheses.
X=(4,7) Not redundant.

X=(A) If A has previously been equated to asin-
gle value, the parentheses are redundant.

If A has previously been equated to a list of
values, the parentheses are not redundant.

In the example below, notice the use of parentheses in
specifying the level of the subelements. Z(1) consists of
one subelement: (2, 3, 4), which is composed of three sub-
subelements: 2, 3, 4, as compared with Z(2) which consists
of three subelements: 9, 8, 11, and no sub-subelements.

AP places no limit on the number of levels that may be
specified for subelements.

Redundant parentheses frequently occur in lists. For
example, the list

A=((((4+7)* (3+2),6))

can be simplified as follows:
A= ((((11) * (5)), 6))
A =(((55), 6))

Example: Nonlinear Value List Notation

Z()= (2, 3,4)

Z(2)=9,8, 11

Z(4)=6,(54)

Z(4)=6,(5,4)

Z(1) = (2,3, 4) —

Z2(2)=9,8, 11—

Z=((2,3,4)),(9,8,11),7,(6,(5,4))

The elements of list Z are

Z(n)=null forn > 4

zmz7“———f—m

z(1,1)=2,3,4

Subelements of list Z are identified by means of multiple subscripts (i.e., sub-subscripts):

—_—
b
L Z(1,2)=null
——— Z(2,)= 9 1
[
- 2(2,2)=8 =
|
I Z(2,3)=1 ﬁ‘—-‘
| B
e — Z(2,4)=null
Z3,H=7 ﬂJ—_——~
o
- — — — 7(3,2)= null
— Z(4,1) =6 !-———“
|
Z(4,2)=5,4
|
l__,__.'__. Z(4,3)5nu” ——

zZ(1,1,1)=2
z(1,1,2)=3
z(1,1,3)=4

Z(1,1,4)=null

Z(2,1,1)=9
2(2,1,2)=null
722,2,1)=8
2(2,2,2)= null
Z@2,3,1)=11

7(2,3,2) = null

zZ@,1,1)=7

Z(3,1,2)=null

Z4,1,1)=6
Z(4,1,2)= null
Z(4,2,1)=5
Z(4,2,2)=4

Z(4,2,3)=nul

A number of implicit null elements could be identified as subelements. - In this example implicit null elements are
indicated with broken lines and only one such element is shown for each subdivision.

Lists

15

The pair of parentheses enclosing 55 is redundant, since
(55) and 55 are identical. However, the remaining two
sefs of parentheses are not redundant since they specify
the level of the subelements. The use of redundant paren-
theses in lists is permitted in AP.

Reference Syntax. The reference syntax used with non-
linear value lists is the same as that used with linear
value lists, except that multiple subscripts are used to
indicate the subelement.

In addition to allowing the use of redundant parentheses,
the list-manipulation syntax allows lists to be defined
in terms of elements of other lists or even in terms of
elements of the list itself. For example, if list M is
defined as

M= -6, (41 7), 3

then another list could ke defined as

N(2) SET M(2) making N(2) = 4,7

or an entire list could be defined as

P SET M making P= -6, (4,7),3

Furthermore, elements within a list can be redefined in
terms of list elements:

M SET -6,(4,7),9 making M= -6, (4,7),9
M(1) SET M@, 1) making M=4,(4,7),9
M(2,2) SET M(@3) making M = 4, (4,9), 9
M@) SET M@) making M= 4, (4,9), 9

M(3) SET 9 making M =4, (4,9), 9

Notice that the last two declarations result in no change
in value for element M(3).

Assume that list R is defined as equal to element A(a)
of list A, that list S is defined as element R(b) of list R,

16 Lists

and that list T is defined as elemen: S(c) of list S.
List T will then be equal to element A(a,b,c) of list A.
That s, if

R SET Ala)
and

S SET R(b)
and

T SET S(c)
then

T=A(qg,b,c)

Example: Defining Nonlinear Value Lists

Assume list A is defined as
A=4,(2,6),4,1),17

then the following definitions could be made

R SET A(2) making R= (2, 6),4, 1
S SET R(1) making S=2,6
T SET S(2) making T=6

The same definition for T could be achieved by writing

T SET A(2,1,2) making T =6

Generation. The definition syntax for nonlinear value
lists is the same as that for linear lists, and either EQU or
SET directives may be used. In the next example the ef-
fects of successive SET directives are to be considered cum-
ulative, but not retroactive. Assume that all lists are
initially undefined.

Manipulation. The SET directive may be used to de-

fine or redefine any single element or subelement of a

nonlinear value list. The nome used with the directive
is a subscripted symbol identifying some particular ele-
ment or subelement, and the sequence may consist of
ohe or more expressions.

Example: Defining Nonlinear Value Lists

A SET 5,6),7
B SET 1+2%3,17,A3,1)
C SET A, (A), A1), B(2)

that the entire list A is to be one element of list C.

D SET A,B

B SET

symbol (s) on the lefthand side.

Notice that the parentheses enclosing the second element in the definition of C are not redundant.

In the last SET line dbove, the original elements of list B are used to redefine an element of the list. This is possible
because the assembler evaluates the items on the righthand side of the directive SET before equating them with the

defines A =(6,6),7

thus A(1) =
A@Q) =
A(3) = null

defines B =7, 17, null

thus B(1)
B(2)
B(3)

B(4)

defines C = (5, 6),7,

|| (explicit)
ull

N nepe

33—-\1

((5,6),7),5,6,17

thus C(1)=5,6
c@2)=7
C@)= (5,6),7
C@)=5
coy=6
Cy= 17

They specify

defines D= (5,6),7,7,17,null
thus D(1)=5,6
DR2)=7
DE)=7
D)= 17
)

D(5) = null (explicit)
redefines B = (5, 6),7, (7, 17, null)
thus B(1) =

B(2) =
B(3)=7, 17, null

In the next example the effects of successive SET directives
are to be considered cumulative, but not retroactive.
Assume all lists are initially undefined.

NUMBER OF ELEMENTS IN A LIST

The number of explicit elements (i.e., non=null elements
plus explicit null elements) in a list can be determined
through the use of the intrinsic function NUM. The syntax
for this function is

NUM(name)

The name specified may be that of a list, of an element, or
of a subelement of a list.

If a list is defined as equal to somegiven element of another
list, the new list will have the same number of explicit-
elements as the original list. That is, if

Q SET P(a)
then

NUM(Q) = NUM(P(a))

Lists 17

Example: Manipulating Nonlinear Value Lists

NUM(S(3)) = 0

A1) SET 1,2,3 defines A = (1,2, 3)
thus A(1) = 1,2, 3 A, 1) =1 A1, 1) =1
A@2) = null A(l,2)=2 A(1, 1,2) = null
A(1,3)=3 A(1,2, =2
A2,)= null A(1,2,2)=null
A(1,3,1)=3
A(1,3,2)= null
A(1,1,2) SET 4 defines a previously null element: A(1,1,2) =4
making list A =((1,4),2,3)
thus A(1) = (1,4),2,3 A(l,H=1,4
A@2)= null A(1,2) =2
A(1,3)=3
A2, 1)=null
B(1,2) SET A1, 1), (A1, 2),A(0,3))
defines B = (null, (1, 4, (2, 3)))
thus B8(1)= null, (1,4,(2,3)) B(1, 1) = null
B(Z)EHU” B(],Z)E 1141 (213)
c) SET A(1,2), (A(1,1,1)) defines C= (2, 1)
thus C(1)=2,1 c(,n=2
C@2)=null c(1,2)=1
Notice that the parentheses around A(1, 1, 1) are redundant in this example.
B(1, 1) SET Cc(1,2) defines a previously null subelement: B(1, 1) =1
thus B = (1, (1,4, (2,3)))
B(H=1,(1,4,(23) B(1,1) =1
8(2) =null B(1,2) =1,4,(2,3)
Example: NUM Function
S=A, (B ((C, D))
NUM(S) = 2
sM=A S(1,H=A
NUM@GS() =1 NUMGSO, 1) =1
S(1,2) = null
NUM(5(1,2)) =0
5(2) = B, ((C,D)) 5(2,1)=8B S(2,1,1)=8B
NUM(5(2)) = 2 NUM@GS(2, 1) =1 NUMG (2,1, 1) =1
$(2,1,2) =null
NUMG(2,1,2))=0
S(2,2)=(C,D) 52,2, 1)=C,D $(2,2,1,1)=C
NUM(5(2,2)) = 1 NUM(S(2,2, 1)) =2 NUM(S(2,2,1, 1)) =1
$(2,2,1,2)=D
NUM(GS(2,2,1,2) =1
S(2,2,1,3) =null
NUM(5(2,2,1,3))=0
S(2,2,2)=null
. NUM(S(2,2,2))=0
S(2,3) =null
NUM((2,3)) =0
S(38)=null

18

Lists

Example: NUM Function

Assume list Z is defined as

Z SET KR

thus, NUM(Z) =7

If
Z(4) SET Z(2)

NUM(Z) =7

Note that NUM(Z(2)) = 0

List Z consists of seven elements: 3, null, null, 4, null, null, null. (Note
that the last null element is specified by the final comma in the list.)

That is, the fourth element of Z is redefined as a null element.

List Z would still consist of seven elements: 3, null, null, null, null,

null, null.

Example: NUM Function

Assume list A is defined as

A=4, ((2,6),4,1),17

If the following definitions are made:

R SET AQ2)
S SET R(1)
T SET 5(2)

Then the following statements are true:

NUM(A@2)) = 3

NUMR) = NUM(A@)) =3

making A(2) =(2,6),4,1

moking R = (2, 6),4, 1
making $ =2, 6

making T=6

NUMGS) = NUMR()) = NUM(A(2, 1)) =2
NUM(T) = NUM(S(2)) = NUMR(, 2))

= NUM(A(2, 1,2)) = |

Lists

19

3. ADDRESSING

Most Sigma computer instructions require an argument
address. The programmer con write addresses in symbolic
form and the assembler will convert them to the proper
equivalents,

RELATIVE ADDRESSING

Relative addressing is the technique of addressing instruc-
tions and storage areas by designating their locations in
relation to other locations, This is accomplished by using
symbolic rather than numeric designations for addresses,
An instruction may be given a symbolic label suchas LOOP,
and the programmer can refer to that instruction anywhere
in his program by using the symbol LOOP in the argument
field of another instruction. To reference the instruction
following LOOP, he can write LOOP+I; similarly, to
reference the instruction preceding LOOP, he can write
LOOP-1.

An address may be given as relative to the location of the
current instruction even though the instruction being ref-
erenced is not labeled, The execution location counter,
described later in this chapter, always indicates the loca-
tion of the current instruction and may be referenced by
the symbol $. Thus, the construct $+8 specifies an address
eight units greater than the current address, and the con-
struct $-4 specifies an address four units less than the cur-
rent address.

ADDRESSING FUNCTIONS

Intrinsic functions are functions built into the assembler,
Certain of these functions concerned with address resolution
are discussed here.

Intrinsic functions, including those concerned with address
resolution, may or may not require arguments, When an
argument is required for an intrinsic function, it is always
enclosed in parentheses.

A symbol whose value is an address has an infrinsic address
resolution assigned at the time the symbol is defined. Usu-
ally, this intrinsic resolution is the resolution currently
applicable to the execution location counter, The address-
ing functions BA, HA, WA, and DA (explained later) allow
the programmer to specify explicitly a different intrinsic
address resolution than the one currently in effect,

Certain address resolution functions are applied uncondi-
tionally to an address field after it is evaluated. The choice
of functions depends on the instruction involved. For in-
structions that require values rather than address (e. g., LI,

20 Addressing

MI, DATA), no final addressing function is applied. For
instructions that require word address (e.g., LW, STW,

LB, STB, LH, LD), word address resolution is applied.
Thus, the assembler evaluates LW, 3 ADDREXP as if it were
LW, 3 WA(ADDREXP). Similarly, instructions that require
byte addressing (e. g., MBS) cause a final byte addressing
resolution to be applied to the address field.

BA (Byte Address)
The byte address function has the format
BA (address expression)

where "BA" identifies the function, and "address expres-
sion" is the symbol or expression that is to have byte address
resolution when assembled. If "address expression” is a
constant, the value returned is the constant itself.

Example: BA Function

Z L3 BA(L48)) The value 48 is stored in the
literal table and its location
is assembled into this argu-

ment field as a byte address.

The current execution loca-
tion counter address is evalu-
ated as a byte address for this
statement,

AA LIL,5 BA($)

HA (Halfword Address)

The halfword address function has the format

HA (address expression)

where "HA" identifies the function, and "address expres-
sion" is the symbol or expression that is to have halfword
address resolution. If "address expression" is a constant,
the value returned is the constant itself,

Example: HA Function

Z CSECT Declares control section Z.
Both location counters are
initialized to zero. Z is im-
plicitly defined as a word

resolution address.

Q EQU HA(Z+4) Equates Q to a halfword ad~
dress of Z2+4 (words).

WA (Word Address)
The word address function has the format

WA (address expression)

where "WA" identifies the function, and "address expres—
sion" is the symbol or expression that is to have word ad-
dress resolution when assembled, [If "address expression"

is a constant, the value returned is the constant itself.

Example: WA Function

A ASECT Declares absolute section A
and sets its location counters
to zero.

Lw, 3 Z1 Assembles instruction to be

stored in location 0.

B w,4 Z2 Assigns the symbol B the
value 1, with word address

resolution.

C EQU BA(B) Equates C to the value of B
. with byte address resolution.

F EQU WA(C) Equates F to the value of C,

with word address resolution.

DA (Doubleword Address)

-

The doubleword address function has the format

DA (address expression)
where "DA" identifies the function, and "address expres-
sion" is the symbol or expression that is to have doubleword

address resolution when assembled. If "address expression"
is a constant, the value returned is the constant itself.

90 30 00C-1(6/75)

Example: DA Function

LI, 5 DA(L(ALPHA)) The symbol ALPHA is stored
in the literal table and its
location is assembled into this
statement as a doubleword
address.

ABSVAL (Absolute Value)

This function converts a relocatable address into an abso-
lute value (i.e., address expression minus relocation bias).
It has the format

ABSVAL (address expression)

where "ABSVAL" identifies the function, and "address ex-
pression" is any valid expression containing only addresses
and integers combined by addition or subtraction (no exter-
nal or local forward references).

The absolute value of an address is evaluated according to
the resolution; thus, the absolute value of a relocatable
address, evaluated with word resolution, would result in a
17-bit address (the two bits specifying byte and halfword
boundaries would be ignored). The absolute value of an
external reference, a blank field, a null field, an integer,
a character string, etc., is the same configuration as the

item itself; e.g., ABSVAL('AXY"') is the value 'AXY".

Example: ABSVAL Function

.

Q &ISECT 0 Declares coﬁ’trol section

Q and sets location
counters to zero.

Equates R to the current value
of the execution location
counter plus 5 (i.e., to the
value 5 evaluated with

word resolution).

R EQU $+5

L1,2 ABSVAL(R) Loads register 2 with
ABSVAL(R), which is
the value 5.

212]2/0]0|0]0 |5

0 3

2 ABSVAL(BAR))

Addressing Functions 21

ADDRESS RESOLUTION

To the assembler, an address represents an offset from the
beginning of the program section in which it is defined.

Consequently, the assembler maintains in its symbol table
not only the offset value, but an indicator that specifies
whether the offset value represents bytes, words, halfwords,
or doublewords, This indicator is called the "address
resolution™,

Address resolution is determined at the time a symbolic ad-
dress is defined, in one of two ways,

1. Explicitly, by specifying an address function.

2. Implicitly, by using the address resolution of the
execution location counter, (The resolution of the
execution location counter is set by the ORG or

Example: Address Resolution

LOC directives, If neither is specified, the address
resolution is word.)

The resolution of a symbolic address affects the arithmetic
performed on it. If A is the address of the leftmost byte of
the fifth word, defined with word resolution, then the ex-
pression A + 1 has the value 6 (5 words + 1 word)., If A s
defined with byte resolution, then the same expression has

the value 21 (20 bytes + 1 byte). Seethe followingexample.

Local forward references with addends are considered to be
at word resolution when used without a resolution function

in a generative statement or in an expression. Thus a local
forward reference of the form

reference + 2

is implicitly

WA (reference +2)

Generated

Location Code
CSECT

00000 ORG 0 Sets value of location counters to zero with
00000 word resolution.
00000 FFFB A GEN, 16 -5 Defines A as 0 with word resolution.
00000 2 0004 B GEN, 16 4 Defines B as 0 with word resolution.
00001 0000 GEN, 16 BA(A) Generates 0 with byte resolution.
00001 2 0002 GEN, 16 BA(B) Generates 2 with byte resolution.
00002 0001 GEN, 16 HA(B) Generates 1 with halfword resolution.
00002 2 ORG, 1 $ Sets value of location counters to 10 with
00002 2 byte resolution.
00002 2 FFFF GEN, 16 -1 Defines F as 10 with byte resolution.
00003 000A GEN, 16 F Generates 10 with byte resolution.
00003 2 0008 GEN, 16 F+1 Generates 11 with byte resolution.
00004 0002 GEN, 16 WA(F) Generates 2 with word resolution.
00004 2 0002 GEN, 16 WA(F+1) Generates 2 with word resolution.
00005 0008 GEN, 16 BA(WA(F+1)) Generates 8 with byte resolution.
00005 2 0003 GEN, 16 WA(F)+1 Generates 3 with word resolution.
00006 000C GEN, 16 BA(WA(F)+1) Generates 12 with byte resolution.
00006 2 000D GEN, 16 BA(WA(F)+1)+1 Generates 13 with byte resolution.

22 Address Resolution

90 30 00C-1(6/75)

LOCATION COUNTERS

A location counter is a memory cell the assembler uses to
record the storage location it should assign next. Each pro-
gram has two location counters associated with it during as-
sembly: the load location counter (referenced symbolically
as $$) and the execution location counter (referenced sym-
bolically as $). The load location counter contains a loca-
tion value relative fo the origin of the source program. The
execution location counter contains a location value rela-
tive to the source program's execution base.

Essentially, the load location counter provides information
to the loader that enables it to load a program or subprogram
into a desired area of memory, On the other hand, the
execution location counter is used by the assembler to de-
rive the addresses for the instructions being assembled. To
express it another way, the execution location counter is
used in computing the locations and addresses within the
program, and the load location counter is used in computing
the storage locations where the program will be loaded prior
to execution.

In the "normal" case both counters are stepped together as
each instruction is assembled, and both contain the same
location value. However, the ORG and LOC directives
make it possible to set the two counters to different initial
values to handle a variety of programming situations, The
load location counter is a facility that enables systems
programmers fo assemble a program that must be executed
in a certain area of core memory, load it into a different
area of core, and then, when the program is to be executed,
move it fo the proper area of memory without altering any
addresses. For example, assume that a program provides a
choice of four different output routines: one each for paper
tape, magnetic tape, punched cards, or line printer, In
order to execute properly, the program must be stored in
core as follows:

variable 1

To be used for data
» storage during pro-
gram execution.

2FFF Output routine
1FFF Main program
0000

Each of the four output routines would be assembled with
the same initial execution location counter value of 1FFF
but different load location counter values. At run-time,
this would enable all the routines to be loaded as follows:

variable
1
To be used for data
5FFF Line printer routine Y storage during pro-
Punched card routine gram execution.
4FFF
3FFF Paper tape routine
Magnetic tape routine
2FFF 7 Executionarea for
} output routine.
Main program
0000

When the main program has determined which output routine
is to be used during program execution, it moves the routine
to the execution area. No address modification to the rou-
tine is required since all routines were originally assembled
to be executed in that area. If the punched card output
routine were selected, storage would appear as:

variable N

Line printer routine ® Data storage.

5FFF

AFFF Punched card routine

3FFF Paper tape routine

2FFF Magnetic tape rou'fine Exacutionarea for

1FFF Punched card routine] output routine.
Main program

0000

The user should not assume from this example that the exe-
cution location counter must be controlled in the manner
indicated in order for a program to be relocated. By
properly controlling the loader and furnishing it with o
"relocation bias", any AP program, unless the programmer
specifies otherwise, can be relocated into a memory area
different than the one for which it was assembled. Most
relocatable programs are assembled relative to location
zero. To assemble a program relative fo some other loca-
tion, the programmer should use an ORG directive to desig-
nate the program origin. This directive sefs both location
counters to the same value.

Location Counters 23

Each location counter is a 19-bit value that the assembler
uses to construct byte, halfword, word, and doubleword
addresses,

0 12 314 5 6 778 9 10 W1NZ 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

~—doubleword ————

word

~«—— halfword —————————

- byte

Thus, if a location counter contained the value

00|000000 oft1j00(10l0|1(1

0 v 2 314 5 6 718 910 11213 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

it could be evaluated as follows:

Hexadecimal

Resolution Value
Byte 193
Halfword c9
Word 64

Doubleword 32

The address resolution option of the ORG and LOC direc-
tives allows the programmer to specify the intrinsic resolu-
tion of the location counters. Word resolution is used as
the intrinsic resolution if no specification is given. As
previously explained, address functions are provided to
override this resolution.

Example: ORG Directive

SETTING THE LOCATION COUNTERS

At the beginning of an assembly, AP automatically sets the
value of both location counters to zero. The user can reset
the location values for these counters during an assembly
with the ORG and LOC directives. The ORG directive
sefs the value of both location counters., The LOC direc-
tive sets the value of only the execution location counter.

ORG (Set Program Origin)

The ORG directive sefs both location counters to the loca-
tion specified. This directive has the form

label command argument

[locoﬁon]

[label] | ORG[,n]

where

label is a valid symbol. Use of a label is optional.
When present, it is defined as the value "location"
and is associated with the first byte of storage fol-
lowing the ORG directive.

n is an evaluatable expression whose value is 1, 2,
4, or 8, specifying the address resolution for both
counters as byte, halfword, word, or doubleword,
respectively. If n is omitted, word resolution is
assumed.

location is an evaluatable expression that results
in an address or an integer, If location is an ad-
dress, all attributes of location are substituted for
$ and $$, and the intrinsic resolution of $ and $$
are then set to n. If location is an integer, $ and
$$ remain in the current control section, but their
value is set to "location" units at "n" resolution.
If location is omitted, integer|0 is assumed,

The address resolution option of ORG may be used to change
the intrinsic resolution specification to byte, haltword, or
doubleword resolution. Thereafter, whenever intrinsic reso-
lution is applicable, it will be that designated by the most
recently encountered ORG directive. For example, when-
ever $ or $$ is encountered, the values they represent are
expressed according fo the currently applicable intrinsic
resolution.

AA ORG,2 8

LW,2 INDEX

24 Setting the Location Counters

Sets the location counters to eight halfwords (i.e., four words) and assigns that loca-
tion, with halfword intrinsic resolution, to the label AA,

This instruction is assembled to be loaded into the location defined as AA, Thus, the
effect is the same as if the ORG directive had not been labeled and the label AA had
been written with the LW instruction.

Example: ORG Directive (cont.)

Z CSECT

word resolution.

ORG Z+4

A Lw, 4 ANY

MBS, 0 B

LI, 4 BA(ANY)

Designates a new section, sets the location counters to zero, and defines Z with

Sets the location counters to Z + 4 with word resolution.

Assembles ANY with word resolution, and defines A with word resolution.

Forces a byte address. The type of address required by the command overrides the
intrinsic resolution of the symbol.

Assembles the symbol ANY as a byte address.

Loc (Set Program Execution)

The LOC directive sets the execution location counter ($)
to the location specified. It has the form

label command argument
[label] LOC [,n] [Iocation]
where
label is a valid symbol. Use of a label is op-

tional, When present, it is defined as the value
of "location" and is associated with the first byte
of storage following the LOC directive.

n is an evaluatable expression whose value is 1, 2,
4, or 8, specifying the address resolution for the
execution location counter as byte, halfword,
word, or doubleword, respectively. If nis omit-
ted, word resolution is assumed.

location is an evaluatable expression that results
in an address or an integer. If location is an ad-
dress, all attributes of location are substituted for
$, and the intrinsic resolution of $ is then set
to n. If location is an integer, $ remains in the
current control section, but its value is set to
"location" units at "n" resolution, If location is
omitted, integer O is assumed.

The LOC directive is the same as ORG, except that it sets
only the execution location counter.

Example: LOC Directive

PDQ ASECT
ORG 100 Sets the execution location
counter and load location
counter to 100.
LOC 1000 Sets the execution location

counter to'1000. The load
location counter remains at

100.

Subsequent instructions will be assembled so that the object
program can be loaded anywhere in corerelative to the
origin of the program. For example, a relocationbias
of 500 will cause the loader to load the program at 600
(500 + 100). However, the programwill execute prop~
erly only after it has been moved to location 1000.

BOUND (Advance Location Counters to Boundary)

The BOUND directive advances both location counters, if
necessary, so that the execution location counter is a byte
multiple of the boundary designated. The form of this
directive is

label command argument

BOUND boundary

where "boundary" may be any evcivatable expression
resulting in a positive integer value that is a power of 2
and <32,768.

Setting the Location Counters 25

Halfword addresses are multiples of two bytes, fullword
addresses are multiples of four bytes, and doubleword
addresses are multiples of eight bytes,

When the BOUND directive is processed, the execution
location counter is advanced to a byte multiple of the
boundary designated and then the load location counter is
advanced the same number of bytes. When the BOUND
directive results in the location counters being advanced,
zeros are generated in the byte positions skipped.

Example: BOUND Directive

BOUND 8 Sets the execution location
counter to the next higher
multiple of 8 if it is not al-

ready at such a value.

For instance, the value of the execution location coun-

» terfor the current section might be three words (12 bytes),
This directive would advance the counter to four words
(16 bytes), which would allow word and doubleword
as well as byte and halfword addressing.

RES (Reserve an Arec)

The RES directive enables the uvser to reserve an area of
core memory. The form of this directive is

label command argument

[lcbe |] RES[, n:]

[expression]

where
label is a valid symbol. Use of a label is op-
tional. When present, the label is defined as the
current value of the execution location counter
and identifies the first byte of the reserved area,
n is an evaluatable expression designating the size

in bytes of the units to be reserved. The value of
n must be a positive integer, Use of n is optional;
if omitted, its value is assumed to be four bytes,

Example: RES Directive

expression is an evaluatable expression designating
the number of units to be reserved. The value of
expression may be a positive or negative integer.
If it is omitted, zero is assumed.

When AP encounters an RES directive, it modifies both
location counters by the specified number of units,

PROGRAM SECTIONS

An object program may be divided into program sections,
which are groups of statements that usually have a logical
association, For example, a programmer may specify one
program section for the main program, one for data, and
one for subroutines.

PROGRAM SECTION DIRECTIVES

A program section is declared by use of one of the program
section directives given below, These directives also de-
clare whether a section is absolute or relocatable. The list
gives only a brief definition of these directives; their use
will be made clear by successive statements and examples
in this chapter.

ASECT specifies that generative statements’ will be assem-
bled to be loaded into absolute locations. The
location counters are set to absolute zero.

CSECT declares a new control section (relocatable). Gen-
erative statements will be assembled to be loaded
into this relocatable section. The location coun-
ters are set to relocatable zero.

DSECT declares a new, dummy control section (relocat-
able). Generative statements will be assembled
to be loaded into this relocatable section. The
location counters are set to relocatable zero.

t
Generative statements are those that produce object code
in the assembled program.

.
.

ORG 100 Sets location counters to 100.

A RES, 4 10
changing them to 110..

Defines symbol A as location 100 and advances the location counters by 40 bytes (10 words)

LW, 4 VALUE Assigns this instruction the current value of the location counters; i.e., 110.

26 Program Sections

PSECT declares a new control section (relocatable).
Generative statements will be assembled to be
loaded into this relocatable section. The loca~
tion counters are set to relocatable zero. This
directive differs from CSECT in that generated
code will be loaded starting at a page boundary.

USECT designates which previously declared section AP
is fo use in assembling generative statements,

The program section directives have the following form:

label command argument

[label] ASECT

{label] CSECT [expression]

label DSECT

[label] PSECT

[expression]

[expression]

(label] USECT name

where

label is a valid symbol. The label is assigned the
value of the execution lncation counter immedi-
ately after the directive has been processed. For
ASECT the value of the label becomes absolute
zero. For CSECT, DSECT and PSECT, the label
value becomes relocatable zero in the appropriate
program section. The lobel on a USECT directive
is defined as the value of the execution location
counter in the current control section. The label
on ASECT, CSECT, PSECT, and USECT may be ex-
ternalized by appearing in a DEF directive so that
the label can be referred to by other programs.
For DSECT, label is implicitly an external defini-
tion, because dummy sections are usually set up so
that they can be referenced by other programs.
Labels may be passed as parameters from a proce=
dure reference line. These labels are referenced
via the intrinsic functions LF, CF or AF on the di~
rective line.

expression is an evaluatable expression whose value
must be from 0 to 3. This value, applicable only
to CSECT, PSECT, and DSECT, designates the type
of memory protection to be applied to these sec-
tions. In the following list, "read" means a pro-
gram can obtfain information from the section;
"write" means a program can store information into
a section; and "access" means the computer can
execute instructions stored in the section.

Value Memory Protection Feature
0 read, write, and access permitted
1 read and access permitted
2 read only permitted
3 no access, read, or write permitted

90 30 00C~1(6/75)

The use of expression is optional. When it is
omitted, the assembler assumes the value O for the
entry. The expression may not contain an external
reference.

name is a label defined in a previously declared
section.

ABSOLUTE SECTION

Although ASECT may be used any number of times, the as-
sembler produces only one combined absolute section, using
the successive specifications of the ASECT directives.

RELOCATABLE CONTROL SECTIONS

A single assembly may contain from 1 to 127 relocatable
control sections, which AP numbers sequentially. At the
beginning of each assembly AP sets both the execution and
load location counters to relocatable zero, with word ad-
dress resolution, in relocatable control section 1. Control
section 1 is opened by generating values in, or referencing
or manipulating the initial location counters, or by de-

claring the first CSECT, PSECT or DSECT directive.

The execution of a CSECT, PSECT, or DSECT directive al-
ways opens a new section. Therefore, if control section 1
has been opened by generating values in, or referencing or
manipulating the initial location counters, the first CSECT,
PSECT or DSECT opens control section 2, For example,
these three program segments

DATA 5 DEF SORT ORG 500

CSECT HERE EQU $ CSECT

and CSECT and

END : END
iEND

each produce two relocatable control sections, one implicit
(control section 1), and one explicit (control section 2);
whereas

VALUE EQUS5 INPUT CNAME
REF OUTPUT PROC
CSECT and
: PEND
END CSECT
END

each contain only one relocatable section (control section 1),
The statements preceding the CSECT do not open control
section 1 because they do not generate values in, or refer-
ence or manipulate the initial location counters.

Program Sections 27

Example: Program Sectioning

Current Location Counters SAVED $ SAVED MAX. $$
Program
$ Section $$ Section ABS CS1 CS2 CS CS2
0 ABS 0 ABS NUMBERS ASECT 0
300 300 ORG 300
350 350
0 CS1 0 CS1 RANDOM CSECT 350
100 100
0 CS2 0 CS2 DUMMY DSECT 100 100
200 200 END 200

value.

The ASECT directive sets both location counters to absolute zero; the ORG statement resets the counters to 300, Subse-
quent generative statements will be assembled to be loaded into absolute locations. When CSECT is encountered, AP
saves the value of the execution location counter, The value of the load location counter is not saved. AP then re-
sefs the counters to relocatable zero in control section 1 and assembles generative statements fo be loaded as part of
this section. The DSECT directive declares a new relocatable section. AP saves the counters for control section 1 in
the appropriate tables, resets the counters to relocatable zero in control section 2, and assembles generative state-
ments to be loaded in this section. The END directive causes AP to save the value of the load location counter for
control section 2. The saved values of $$ are used by the loader in allocating memory. Note that the use of ORG (and
LOC), when it changes the current section, also causes the current value of the execution location counter to be saved.
Additionally, ORG compares the current value of the load location counter with the saved value and saves the higher

RETURNING TO A PREVIOUS SECTION

A programmer may write a group of statements for one sec-
tion, declare a second section containing various state-
ments, and then write additional statements to be assembled
as part of the first section. This capability is provided by
the USECT directive.

Example: USECT Directive

This directive (see examples) specifies a previously de-
clared section that AP is fo use in assembling generative
statements,

There is only one absolute section and although ASECT may
be used any number of times, the saved value of the abso-
lute section is always that of the last designated ASECT.

Current Location Counters Program SAVED $ SAVED MAX. $$
$ Section $$ Section ABS Ccs1 CS2 CS1 CS2
0 Cs1 0 CSsi CSECT 0
10 10 TRAP .

100 100 LAST .
0 Cs2 0 CS2 DSECT 100 100
200 200 .
100 | CS1 100 cst o USECT TRAP 200 200
END
When USECT TRAP is encountered, AP determines the control section from the table entry for TRAP, checks the saved l
execution location counter for CS1, and copies this saved value (100) into both location counters.
Fy

28 Program Sections

Example: USECT Directive

Current Location Counters SAVED % SAVED MAX. $%
Program
$ Section $$ Section ABS CS1 CS2 Ccs1 CS2
0 ABS 0 ABS ASECT 0
500 500 ORG 500
520 520 TABLE DATA 6
600 600 .
0 CS1 0 cs CSECT 600
100 100 :
0 ABS 0 ABS ASECT 0 100 100
700 700 ORG 700
800 800 .
0 CS2 0 CS2 CSECT 800
200 200 :
800 | ABS 800 ABS USECT TABLE 200 200

location counters.

When USECT TABLE is encountered, AP determines the control section from the symbol table entry for TABLE,
checks the saved execution location counter for the absolute section, and copies this saved value (800) into both

Example: Program Sectioning

Current Location Counters P SAVED $ SAVED MAX. $$
rogram
$ Section $$ Section ABS CSsl1 CSs2 Ccs1 CS2
0 CcS1 0 Cs1 CSECT 0
1000 | CS1 0 cs1 FILE LOC 1000
1100 | CSY 100 Cs1 LAST .
0 CS2 0 CS2 CSECT 1100 100
200 | CS2 200 CS2 .
1100 | CS1 1100 | CS1 USECT FILE 200 200
1200 | CS1 1200 | CS1
0 ABS 0 ABS . ASECT 1200 1200
The LOC directive advances only the execution location counter. When USECT FILE is encountered, AP sets both
counters to the value of the saved execution location counter for CS1 (1100). The ASECT directive causes AP to
save the valuve of the execution location counter for CS1 (1200).

Program Sections

29

Example: Program Sectioning

Current Location Counters P SAVED $ SAVED MAX. $$
rogram
$ Section $$ Section ABS Ccs1 CS2 Cs1 CS2
0 ABS 0 ABS CALL ASECT 0
100 | ABS 100 ABS ORG
200 |ABS 200 | ABS MAIN Lw, 4
0 Csi 0 csl CSECT 200
50 Cs1 50 Cs1 HERE I‘SQU
100 | CSl 100 (&)
0 CS2 0 CS2 CSECT 100 100
FF Cs2 FF CS2 :
50 Cs1 100 CS2 LOC HERE 100
300 | CSt 350 CS2 .
200 | ABS 200 ABS USECT MAIN 300 350
400 | ABS 400 | ABS .
300 | Cs1 300 CS1 USECT HERE 400
500 | CS1 500 CS1 .
400 | ABS 400 | ABS USECT CALL 500 500
The statement HERE EQU $ defines HERE as the current value of the execution location counter (50). When the LOC
HERE statement in CS2 is encountered, AP sets the value of the execution location counter to 50 in CSI. Sub-
sequent statements will be assembled to be executed as part of CS1 but will be loaded as part of CS2. The USECT MAIN
statement saves the value of the execution location counter for CS1 and the value of the load location counter for CS2.
The USECT HERE statement causes the counters to be set to the saved value of the execution location counter for CS(300).

DUMMY SECTIONS

In any load module, dummy sections of the same name must
have the same memory protection. Dummy sections provide
a means by which more than one subroufine may load the
same section. For example, assume that three subroutines
contain the same dummy constant section,

SUBR 1 SUBR 2 SUBR 3
CONST DSECT CONST DSECT CONST DSECT

END END END

30 Program Sections

Even though more than one of the subroutines may be re-
quired in one load module, the loader will load the dummy
section only once, and any of the subroutines may reference

_the data,

PROGRAM SECTIONS AND LITERALS

When AP encounters the END statement, it generates all
literals declared in the assembly. The literals are gener-
ated at the current location (word boundary) of the currently
active program section (see example),

Example: Program Sections and Literals

Example

AREA

BAY

Example
GATE

Example

REAL

LAST
LOOP

Example
NOW

HERE

CSECT

CSECT

.

END

CSECT

ASECT
ORG
END

CSECT

RES
CSECT

USECT
END

DSECT

RES
ORG
END

100

o

REAL

25

HERE

Literals declared.

Literals declared.

Literals generated as part of section BAY.

Literals declared.

Literals generated beginning in absolute location 100.

Literals declared.

Literals declared.

Literals generated as part of section REAL immediately following the location
assigned to LAST.

Literals declared.

Literals declared.

|
Literals generated as part of section NOW, beginning at location HERE,

Program Sections

31

4. DIRECTIVES

A directive is a command to the assembler that con be The AP language includes the following directives:
combined with other language elements to form statements,
Directive statements, like instruction statements, have four Assembly Conftrol
fields: label, command, argument, and comments. ; ¢

ASECT LOC GOTO
An entry in the label field is required for the following di- t t
rectives: CNAME, COM, FNAME, and S:SIN. The label CSECT BOUND DOl
field enfries identify the generated command or.proc.edure. DSECT' rRes’ DO
The location counters are not altered by these directives.

PSECT' SYSTEM ELSE
Optional labels for the EQU and SET directives are defined ¢
as the value of the evaluated argument field, which may be USECT END FIN
any evaluatable expression. ¢

ORG
Optional labels for the directives ORG and LOC are de~
fined as the value to which the execution location counter
is set by the directive, Symbol Manipulation
If any of the directives DATA, GEN, RES, TEXT, or TEXTC EQU OPEN REF
are labeled, the label is defined as the current value of the
execution location counter, and identifies the first byte of SET CLOSE SREF
the area generated. These directives alter the location LOCAL DEF

counters according to the contents of the argument field.

Labels for the directives ASECT, CSECT, DSECT, PSECT, Data Generation

USECT, and DO1 identify the first word of the area affected

by the directive. A label for DSECT is required. GEN DATA TEXTC

COM TEXT S:SIN
A label for the END directive identifies the location imme-
diately following the last literal generated in the literal SOCW
table. This is explained further under the END directive

in this chapter. Listing Control

A label on the following directives will be ignored unless PAGE LIST ERROR
it is the target label of a GOTO search: BOUND, CLOSE,

DEF, DISP, ELSE, ERROR, FIN, GOTO, LIST, LOCAL, SPACE DISP PSYS
OPEN, PAGE, PCC, PEND, PROC, PSR, PSYS, REF, SOCW,

SPACE, SREF, SYSTEM, TITLE. TITLE PCC PSR

Labels for the DO directive are handled in a special manner

ined later, . . .
explained later Procedure Control (These directives are described in

Chapter 5.)

The command field entry is the directive itself. If this field
consists of more than one subfield, the directive must be in
the first subfield, followed by the other entries. CNAME PROC PEND

FNAME

Argument field entries vary and are defined in the indivi-

> - . . In the format di ms for th jous directi that foll
dual discussion of each directive. © format diagrams for the various directives that tollow,

brackets indicate optional items.

A comments field entry is optional.
The END, LOCAL, OPEN, and CLOSE directives are the
only directives unconditionally executed. They are pro-

cessed even if they appear within the range of a GOTO R
search or an inactive DO-loop. Discussed in Chapter 3.

32 Directives _ 90 30 00C-1(6/75)

ASSEMBLY CONTROL

SYSTEM (Include System File)

SYSTEM directs the assembler to retrieve the indicated file

from the system storage medium and to include it in the pro-
gram being assembled. That file may be in either compressed
or source format. The SYSTEM directive has the form

label command argument

SYSTEM name

where "name" is either an actual file name or one of the
special instruction set names discussed below. When an
actual file name is specified, AP reads the file from the

appropriate account (see the AC option, Chapter 7) and

inserts it at that point in the source program. The file is
considered to be terminated when an END directive (dis-
cussed below) is encountered.

Any number of SYSTEM directives may be included in a
program. System files may contain additional SYSTEM di-
rectives, allowing a structured hierarchy of library source
files. AP does not protect against circular or repetitive
calls for the same system.

Definitions of the Sigma machine instructions are contained
in thesystem file, SIG7FDP, This file is invoked, by any

one of the mnemonics for a particular instruction subset, as
listed below. When a valid subset of SIG7FDP is specified,
AP assigns an identifying value fo the intrinsic symbol

S:IVAL, which is available to the SIG7FDP file, as well as
to the main program. It then processes the file as described

above.

The valid instruction set mnemonics, their meaning, and the
corresponding values of S:IVAL are as shown in Table 4.

Table 4. Valid Instruction Set Mnemonics

Name Instruction Set S:IVAL

SIG9 Basic Sigma 9. X'TE'

SIG9P Sigma 9 with Privileged X'1F
Instructions.

SIG8 Basic Sigma 8, X"c

SIG8P Sigma 8 with Privileged X"1D!
Instructions.

SIG7 Basic Sigma 7. X'08'

SIG7F Sigma 7 with Floating- X'0C'
Point Option.

SIG7D Sigma 7 with Decimal X'0A'
Option.

Table 4. Valid Instruction Set Mnemonics (cont.)

Name Instruction Set S:IVAL

SIG7P Sigma 7 with Privileged X'09!
Instructions.

SIG7FD Sigma 7 with Floating=Point X'0E!
and Decimal Option.

SIG7FP Sigma 7 with Floating=-Point X'0D!
Option and Privileged
Instructions.

SIG7DP Sigma 7 with Decimal Option X'08B'
and Privileged Instructions.

SIG7FDP Sigma 7 with Floating=Point, X'OF"
Decimal Option, and
Privileged Instructions.

S1G6 Basic Sigma 6. X'0A'

SIG6F Sigma 6 with Floating~Point X'0E'
Option.

SIG6P Sigma 6 with Privileged X'0B'
Instructions.

SIG6FP Sigma 6 with Floating=Point X'OF
Option and Privileged
Instructions.

S1G5 Basic Sigma 5. X'00'

SIG5F Sigma 5 with Floating-Boint X'04'
Option,

SIG5P Sigma 5 with Privileged X001
Instructions.

SIG5FP Sigma 5 with Floating-Point X'05'
Option and Privileged
Instructions,

Example: SYSTEM Directive

SYSTEM

SYSTEM

SIG7

SQRT

Assume a square root subroutine, identified as SQRT,
is on the system storage media, and that it is to be

assembled as part of the object program.
uses the basic instruction set.
appear in the source program:

The program
These directives would

Assembly Control

33

END (End Assembly)

The END directive terminates the assembly of a system
called by the SYSTEM directive as well as the assembly of
the main program, It has the form

label command argument
(label] ZND [expression]
where
label is a valid symbo!, When present in the main

program, the label is assigned (i.e., associated
with) the location immediately following the last
location in the literal table.

expression is an optional expression that designates
a location to be transferred to after the program
has been loaded. It may be external.

As explained under "Program Sections and Literals" in Chap-
ter 3, AP generates all literals declared in the assembly as
soon as it encounters the END statement, The literals are
generated in the location immediately following the cur-
rently active program section (see example in Chapter 3).
If the END directive is labeled, the label is associated
with the first location immediately following the literal
table,

END is processed even if it appears within the range of a
GOTO search or a DO-loop.

Example: END Directive

SYSTEM SIG7
CONTROL CSECT

START W, 5 TEST

END START
Dol (Iteration Control)

The DOI1 directive defines the beginning of a single state-
ment assembly iteration loop. It has the form

label command argument
(label] | DO [expression)
where
label is a valid symbol. Use of a label is optional.

When present, it is defined as the current value of
the execution location counter and identifies the
first bytegenerated as a result of the DOI iteration.

34 Assembly Control

expression is an optional evaluatable expression
that represents the number of times the statement
immediately following is to be assembled. There
is no limit to the number of times the statement
may be assembled. If the expression is negative
or zero, the next statement is not assembled. If
it is omifted, zero is assumed.

If the expression in the DO1 directive is not evaluatable,
AP produces an error notification and processes the DO1

directive as if the expression had been zero.

Example: DO1 Directive

The statements

DO1 3
AW, 4 C

at assembly time would generate in-line machine code
equivalent to the following lines:

C
AW, 4 C
AW, 4 C

It is not possible to skip a LOCAL, SYSTEM, END, PROC,
PEND, OPEN, or CLOSE directive with a DOJ1; an attempt
to do so causes an error diagnostic.

If the iteration count of a DOI is greater than one, the
next line may not contain another DO1 directive, nor a
SYSTEM, DO, ELSE, FIN, END, GOTO, PEND, or PROC
directive. Such a case causes an error diagnostic, and

the DO1 directive is ignored.
|

GOTO (Conditional Branch)

The GOTO directive anables the user to conditionally alter
the sequence in which statements are assembled. The GOTO
directive has the form

label command argument
GOTO[k] label; [reees Iabeln]
where
k is an absolute, evaluatable expression. If k is

omifted, 1 is assumed.
Iabeli are forward reference symbols.

A GOTO statement is processed at the time it is encoun-
tered during the assembly. AP evaluates the expression k
and resumes assembly at the line that contains a label cor-
responding to the kth label in the GOTO argument field.
The labels must refer to lines that follow the GOTO

.. 90 30 00C-1(6/75)

directive. If the value of k does not lie between 1 and n,
AP resumes assembly at the line immediately following the
GOTO directive. An error notification is given if the
value of k is greater than n.

The target label of a GOTO search may be embedded in a
list of labels; it will be recognized and will terminate the
skip. A GOTO to a local symbol must find its target before
a PEND, END, or LOCAL directive is encountered; if not,
an error notification is given. Within a procedure, label;
may be passed from the procedure reference line into the
GOTO argument field, but the target label must physically
appear within the procedure definition; it may not be
passed from the reference line.

While AP is searching for the statement whose label corre-
sponds to the kth label in the GOTO list, it operates in a
skipping mode during which it ignores all procedure refer-
ences, machine-language instructions, and all directives
except END, LOCAL, OPEN, and CLOSE.

Skipped statements are produced on the assembly listing in
symbolic form, preceded by an *S*.

When AP encounters the first of a logical pair of directives!

while in the skipping mode, it suspends its search for the
label until the other member of the pair is encountered.
Then it continues the search. Thus, while in skipping mode,
AP does not recognize labels that are within procedure defi-
nitions or iteration loops. It is not possible, therefore,
to write a GOTO directive that might branch into a pro-
cedure definition or a DO/FIN |oop.f'r Furthermore, it is
not permissible to write a GOTC directive that might
branch out of a procedure definition. If such a case oc-
curred, AP would encounter a PEND directive before its
search was satisfied, produce an error notification, and
terminate the search for the label.

Example: GOTO Directive

A SET 3
GOTO,A H,K,M Begin search for label M.

H DO 5 Suppress search for label M.

TCertain directives must occur in pairs: SYSTEM/END,
PROC/PEND and DO/FIN.

it
It is legal, however, to terminate a DO loop by branching
past the associated FIN.

90 30 00C-1(6/75)

M EQU 5+8 This M is not recognized
because it is within an
iteration loop.

FIN Terminate suppression and
. continue search.

M LW,A BETA Search is completed when

label M is found.

AP permits a GOTO directive to branch to a label outside
the DO/FIN loop that contains it. In this case, the DO
loop is terminated without error notification.

Example: GOTO Directive

A SET 3
DO 10

GOTO,A R,S,T Begin search for label T.

R :SET 1 Skipped.
S :SET 17 Skipped.
I::IN DO loop is terminated.
T |:.W,7 =X'44' Search is completed when

label T is found.

DO/ELSE/FIN (Iteration Control)

The DO directive defines the beginning of an iteration loop;
ELSE and FIN define the end of an iteration loop. These
directives have the forms

label command argument
[label] : DO [expression]
ELSE
FIN
where
label is a valid symbol. Use of a label is optional.

When present, it is initially assigned the value
zero and incremented by one each successive time
through the loop.

expression is an optional evaluatable expression
that represents the count of the number of times the
DO-loop is to be processed. If expression is zero

Assembly Control 35 -

or negative, assembly is discontinued until the
ELSE or FIN directive is encountered. If it is
omitted, zero is assumed.

Figure 1 illustrates the logical flow of o DO/ELSE/FIN
loop.

The assembler processes each DO-loop as follows:

1. Establishes an internal counter and defines its value
as zero.

2. If a label is present on the DO line, sets its value to
zero.

3. Evaluates the expression that represents the count.

4. If the count is less than or equal to zero, discontinues
assembly until an ELSE or FIN directive is encountered.

a. If an ELSE directive is encountered, assembles
statements following it until a FIN directive is
encountered.

b. When the FIN directive is encountered, terminates
control of the DO=-loop and resumes assembly af
the next statement.

5. If the count is greater than zero, processes the DO-
loop as follows:

a. Increments the internal counter by 1.

b. If a label is present on the DO line, sets it to the
new value of the internal counter.

c. Assembles all lines encountered up to the first
ELSE or FIN directive.

d. Repeats steps 5a through 5¢ until the loop has been
processed the number of times specified by the
count.

e. Terminates control of the DO-loop and resumes
assembly at the statement following the FIN.

36 Assembly Control

In summary, there are two forms of iterative loops as shown
below.

Form 1. DO
. block 1
ELSE
. block 2
FIN

Form 2. DO
.] block 1
FIN

If the expression in a DO directive is evaluated as a posi-
tive, nonzero value n, then in either form block 1 is re-
peated n times and assembly is resumed following the FIN.

If the expression in the DO directive is evaluated as a neg-
ative or zero value, then in

Form 1: block 1 is skipped, block 2 is assembled once,
and assembly is resumed following the FIN.
Form 2: block 1 is skipped and assembly is resumed fol~

lowing the FIN.

If the expression in the DO directive is not evaluatable,
AP sets the label (if present) to the valpe zero, produces
an error notification, and processes the DO directive as if
the expression had been evaluated as zero.

An iteration block may contain other iteration blocks but
they must not overlap.

The label for the DO directive is redefinable and its value
may be changed by SET directives during the processing of
the DO-loop. Any symbols in the DO directive expression
that are redefinable may also be changed within the loop.
However, the count for the DO-loop is determined only
once and changing the value of any expression symbol within
the loop has no effect on how many times the loop will be
executed.

The processing of DO directives involves program levels.
The DO-loop must be completed on the same program level
on which it originates. That is, if a DO occurs in the main
program, the ELSE and FIN for that directive must also be
in the main program. Similarly, if a DO directive occurs
within a procedure definition, the ELSE and FIN for that
directive must also be within the definition.

IC = Internal counter.

LABEL = Label (if present on DO line).

EXP = The result of evaluating expres-
sion on DO line.

START |
DO/ELSE/
FIN loop

0 —IC
0 —LABEL

Evaluate expression—EXP

EXP < 0?

no yes

IC+1 ——1IC
IC —— LABEL

Next line ELSE?

Assemble until FIN

Terminate loop

Is it FIN?

———I Assemble 1

Set flag to get line) _ 5
following DO no IC = EXP?

yes

Terminate loop

Resume assembly | o
after FIN

Figure 1. Flowchart of DO/ELSE/FIN Loop

Assembly Control 37

Example: DO/ELSE/FIN Directives

In this example, the dashed vertical lines indicate statements that are skipped; solid vertical lines indicate statements
that are assembled. The numbers 1, 2, 3, and 4 above the vertical lines indicate which iteration of the DO-loop is
in process.

Iteration

1 2 3 4

I »I _’I 1 DO 4
i : " GOTO,I-1 5,1,
I | :
—'_ l . | .
1 : | ELSE
| | | ;
: ! i
! s
— , ELSE
[} [:
i |
I i T
[}
| :
— t FIN

When the DO directive is encountered, the DO expression has the value 4 so the loop will be executed four times.
When the GOTO directive is encountered the first time through the loop, I-1 has the value 0, so the next statement
in sequence is assembled. Assembly continues in sequence until the ELSE directive is encountered, which ends the
first iteration and returns control to the DO directive.

When the GOTO directive is encountered the second time through the loop, I-1 has the value 1, which selects the
first label in the argument field of the GOTO,S. AP will skip until it finds a statement labeled S. Starting with S,
AP assembles code until it encounters the ELSE, which terminates the second iteration of the loop and returns control
to the DO directive.

When the GOTO directive is encountered the third time through the loop, I-1 has the value 2, which selects the
second label in the argument field of the GOTO,T. AP will skip until it finds a statement labeled T. Starting at T,
AP assembles code until it encounters the FIN directive, which terminates the third iteration of the loop and returns
control to the DO directive.

When the GOTO directive is encountered the fourth time through the loop, I1-1 has the value 3, which selects the
third label in the argument field of the GOTO,S. AP will skip until it finds a statement labeled S. Starting at S,
AP assembles code until it encounters the ELSE directive, which terminates the fourth-and-last-iteration of the loop.
Then, AP skips until it encounters the FIN directive. Assembly resumes at the first statement following FIN.

38

Assembly Control

SYMBOL MANIPULATION
EQU (Equate Symbols)

The EQU directive enables the user to define a symbol by
assigning to it the aftributes of the value in the argument
field. This directive has the form

label command argument
{label] EQU[,s) [1ist]
where

label is a valid symbol or one of the intrinsic func-
tions AF, CF, or LF,

s is an integer-valued expression that identifies the
“type" of label. This expression is used in con-
junction with the SD option (see Chapter7)to pro-
vide explicit "type" information to a loader and,
subsequently to a run-time debugging program.
If s is omitted, label; are assumed to represent
hexadecimal values. The legal values for s and
the associated meanings are given below:

X'00' Instruction

x'on' Integer

X'02' Short floating=point

X'03' Long floating=point

X'06" Hexadecimal (also for packed
decimal)

X'07' EBCDIC text (also for unpacked
decimal)

X'09' Integer array

X'0A" Short floating=point array

X'0B' Long floating=complex array

X'08' Logical array

X'10' Undefined symbol

list is an optional list. The elements in the list

may contain only previously defined symbols or
external references * addend, and evaluatable
expressions. If list is omitted, zero is assumed.

When list is an expression, label is set equivalent to the
value of the expression:

VALUE EQU 2*(8-5) + 1 makes VALUE =7
ALPHA EQU XYZ - 10 makes ALPHA = XYZ - 10

(The symbol = means "is identical to".)

When list is a list of more than one element, label is set
equivalent to all individual elements in the list. This is
shown in various examples in Chapters 2 and 5. The value
or values in list appear on the assembly listing in a special
format that indicates the type of value to which label has
been equated. This format is explained under "Assembly
Listing" in Chapter 6.

90 09 00C-1(6/75)

SET (Set a Value)

The SET directive, like EQU, enables the user to define a
symbol by assigning to it the attributes of the value in the
argument field. SET has the form

label command

argument

[label] SET [,s} [Iist]

where label, s, and list are the same as for EQU.

The SET directive differs from the EQUdirective in that any
symbol defined by a SET may later be redefined by means of
another SET. It is an error to attempt to do this with an
EQU. SET is particularly useful in writing procedures.

The value or values in list appear on the assembly listing in
a special format that indicates the type of value to which
label has been equated. This format is explained under
"Assembly Listing" in Chapter 6.

Example: SET Directive

A EQU XFF

M éET A M is set to the hexadecimal

value FF,

S éET M Thus, S =M = X'FF',

M SET 263 Redefines symbol M.
S iEQU M Error; does not redefine
symbol S.

LOCAL (Declare Local Symbols)

The main program and the body of each procedure called
during the assembly of the main program constitute the non-
local symbol region for an assembly. Local symbol regions,
in which certain symbols will be declared unique to the re-
gion, may be created within a main program or procedure
by the LOCAL directive. This directive has the form

label command argument

LOCAL [symbol | roees symboln]

where symbol; are declared fo be local to the current
region. Local symbols are syntactically the same as non-
local symbols. The argument field may be blank, in which
case the LOCAL directive terminates the current local sym=
bol region without declaring any new local symbols.

Symbol Manipulation 39

The local symbol region begins with the first statement
(other than comments or another LOCAL) following the
LOCAL directive and is terminated by a subsequent LOCAL
directive, or by the END directive.

Within a local symbol region, a symbol declared as LOCAL
may not be used as a forward reference in an arithmetic pro=
cess other than addition, subtraction, or comparison. This
does not limit the use of defined local symbols in other
arithmetic processes.

The occurrence of the PROC directive suspends the current
local symbol region until the corresponding PEND is en-
countered. The suspended loca! symbols are then reac~
tivated. See example. (PROC and PEND define the
beginning and end, respectively, of a procedure definition.)
See Chapter 5.

When a LOCAL directive occurs between the PROC and
PEND directives, a procedure=local symbol region is cre-
ated, with local symbols that may be referenced only within
the specified region of the procedure being defined. When
the procedure is subsequently referenced in the program,
the currently active local or procedure-local symbols are
suspended until the corresponding PEND is encountered.
The suspended locul symbols are then reactivated.

Example: LOCAL Directive

LOCAL A,B,C
T

LOCAL R,S,T,U
*COMMENT

LOCAL X,Y,Z
START EQU $

LOCAL

The three LOCAL directives inform the assembler that
the symbols A, B,C,R,S,T,U, X,Y, and Z are to be
local to the region beginning with the line START, The
final LOCAL directive terminates the local symbol re-
gion without declaring any new local symbols.

Example: LOCAL Directive

.
.

A EQU X'ET
LOCAL A New A, not the same as A
. above.

A EQU 89 Legal, since this is the local A,

B EQU A Defines B as the decimal

. value 89.
LOCAL Z Terminates current local symbol

. regionand initiates a new region.
z EQU A Z is equated to the hexadecimal
: value E1.

40 Symbol Manipulation

Example: LOCAL Directive

LOCAL B
LW, 7 B*3
B EQU 9
LW, 9 B*3
AW, 9 A/2
A EQU X'F3A"

Illegal because B is a local
forward reference and mul-
tiplication is requested.

Defines symbol B.
Legal.

Legal because A is not a
local symbol.

Defines symbol A,

Example: LOCAL Directive

A EQU X'ET’

LOCAL A
A EQU 89

PROC

B EQU A

PEND

X EQU A<X'CF
LOCAL Z
Z EQU A=X'E1"

New A, not the same as
A above,

Legal, since this is the
local symbol A,

A PROC suspends the range
of a LOCAL and reinstates

any prior nonlocal symbols.

Defines B as the hexa-
decimal value El.

Terminates the procedure

and reinstates the prior
LOCAL symbols.

Equates X to the value 1
because 89 is less than

X'CF'.

Terminates current local
symbol region and initiates
a new region,

Equates Z to the value 1
because the nonlocal sym-
bol A has the hexadecimal
value E1.

CPEN/CLOSE (Symbol Control)

OPEN and CLOSE control the scope of nonlocal symbols.
These directives have the forms

label command argument
OPEN [symbol],...,symboln]
CLOSE [symboll seee ,symboln]

where symbol. represent a list of nonlocal symbols that
are to be opened or closed for use as unique symbols.
The OPEN directive explicitly declares subsequent usage
of the designated symbolic names (until closed or opened

again) to be completely independent of any prior uses of

the same symbolic name.

The CLOSE directive declares that the designated, currently
opened nonlocal symbols are to be permanently closed for
all subsequent usage. Once a symbol has been closed, it
cannot be opened again. For example, in the sequence

A EQU 15
CLOSE A

A LW, 4 ALPHA
OPEN A

the CLOSE directive informs AP that the current nonlocal
symbol A may not be used again. The label A in the next
statement is a valid symbol, different from the previous A.
The OPEN directive informs AP that a new symbol A is to
be used; this A is different from both of the previous A's.

If a symbol isnot explicitly opened withan OPEN directive,
it is considered implicitly opened the first time it appears

in a program. The names of directives and intrinsic func-
tions are opened at the start of an assembly, but it is per-
missible to close them or to open a new symbolic name
having the same configuration. Instructions in system in-
struction sets may also be opened and closed. However, it
is not permissible to use OPEN or CLOSE within a LOCAL
region if the referenced symbols are the same as LOCAL
symbols. The user may close any directive, function, or
system name that may conflict with names he has used. Pro-
grammers should be very careful in using OPEN and CLOSE
directives since misuse can result in an erroneous assembly
or termination of assembly. In fact OPEN and CLOSE are-
used only in special applications; for example, communica-
tion between system procedure calls requiring nonlocal sym-
bols, because local symbols are purged at the end of each
procedure.

OPEN and CLOSE are processed completely by the en=
coding phase (Phase 1); they are treated as comments in the
two assembly phases. As such, they are unconditionally
executed at the time they are first encountered within the
source program, Since a GOTO or DO directive is not
processed until the assembly phase, it is not possible to skip
or repeat an OPEN or CLOSE directive. Also, since pro-
cedure references are not expanded until the assembly
phase, on OPEN or CLOSE directive within a procedure
definition is effective only when the definition is first pro-
cessed; not when the procedure is referenced.

90 30 00C-1(4/75)

OPEN and CLOSE control all forms of usage of the symbols
in a program, whether used as commands or as labels.

Example: OPEN/CLOSE Directives

OPEN

A EQU
LW, 2

OPEN

A EQU

CLOSE

STW, 2
OPEN

LW, 3

A,B,C

BETA

ALPHA

Declares A, B, and C open
for use.

Same A as above.

Same A as above.

Opens a new A, different
from previous A,

Legal because this A does
not have the same value
that was equated to BETA,

Closes current A, This A
cannot be referenced again
(however, ALPHA can be).
The previously open A — the
one equated to BETA —is
now reinstated and any
references to A are to it.

Equivalent to STW, 2 BETA.

This is a new A, different
from both A's used above.

This is the B that was
opened at the beginning
of this example.

Example: OPEN/CLOSE Directives

SYSTEM
Z EQU
EQU LW, 4

OPEN

z

EQU, LW

SIG7FDP

Legal. Equates symbol Z
to symbo! F,

Legal. Directive names
may be used as labe! entries
without conflict.

Deciares EQU and LW open
for use.

Symbol Manipulation 41

EQU EQU T

w,3 T

lllegal .
opened as a new symbol,
therefore, AP does not
recognize EQU as a
directive.

Illegal.
opened as a new symbol;

therefore, AP does not re-
cognize LW as a command,

EQU has been

LW has been

Example: OPEN/CLOSE/GOTO Directives

Example: OPEN/CLOSE/GOTO Directives

A

SET 2

SET 1

GOTO,A*B/2 X,Y,Z Beginsearch for label X.

OPEN X
DO K*Z
CLOSE X

FIN

A new definition of X
will be made available
to the assembler.

Because of the OPEN
directive, this X is not
the same as the X for
which the search is be-
ing made and there~
fore is ignored.

The new X is closed,
and the old X (i. e.,
X referenced in the
GOTO statement) is
again available to the
assembler,

Seorch is successfully
completed and assembly
resumes here.

42

Symbol Manipulation

bPEN T

Open T as a new symbol.
K EQU 2
GOTO,K H,T,L Begin search for label T
(this is the same T that
was opened above).
tLOSE T This directive closes the

symbol T for which the
assembler is search-
ing. AP continues
searching until the end
of the program. It then
produces an error
message.

DEF

The DEF directive declares which symbols defined in this
assembly may be referenced by other (separately assembled)
programs. The form of this directive is

(Declare External Definitions)

label command argument

DEF [symboll,.‘..,symboln]

where symbol; may be any non-local symbolic labels that
are defined within the current program. If there is no sym-
bol, the directive is ignored. Symbols may be passed as
parameters from a procedure reference line. These symbols
are referenced via the intfrinsic functions LF, CF or AF on
the DEF line.

DEF directives may appear anywhere in a program. Symbols
may be declared as external definitions prior or subsequent
to their use in the program.

Section names for ASECT, CSECT, ond PSECT may be ex-
ternal definitions and, if such is the case, their names
must be explicitly declared external via a DEF directive.
The name of a dummy section (DSECT) is implicitly an
external definition and should not appear in a DEF direc-
tive; otherwise, a "doubly defined symbol" error condition
will be produced.

The same symbol must not be declared an external definition
more than once in a program. Such a condition will nor-

mally be detected by the assembler, and diagnosed as a

"doubly defined symbol". However, AP does not detect

identical symbol names that have been opened or closed;
this case will be diagnosed (if ot all) only by the loader
used to load the assembled program.

As stated previously, all symbols declared as external defi-
nitions via a DEF directive must be defined within the same

90 30 00C-1(6/75)

program. However, there are restrictions on the values Example: DEF Directive

assigned to DEFed symbols; they may be absolute or relocat-

able addresses, integer constants that may be correctly
represented in 32 bits, or any expression involving a com-
bination of such terms. They may not be LOCAL symbols,
lists, function names, nor forward values assigned by the
S:UFV function. It is permissible, however, to DEF a symbol

DEF

TAN, SUM, SORT

This statement identifies the labels TAN, SUM, and SORT
as symbols that may be referenced by other programs.

whose value has been defined by a REF or SREF directive.

All address values (absolute or relocatable) assigned to
DEFed symbols are generated into the object language as
byte-addresses, in order to retain any pertinent lower-order
resolution (see description of REF and SREF).

The first symbol in a DEF directive is output in the object

Example: DEF Directive

module first; all sul?sequent exremal (DEF, REF, and SREF) DEF AF(1) In a procedure definition.
symbols are output in alphabetic order.
Example: DEF Directive
DEF X, Y, Z Declares symbols X, Y, and Z as external symbols that may be referenced by
. other programs.
Y EQU X'1F! Defines symbol Y.
OPEN Y To AP, Y is now a completely new symbol.
Y EQU $+7 Defines the new symbol, Y.
DEF Y Unknown to AP, a second declaration and definition of the symbol, Y, will now
be produced. This may be diagnosed as a load-time error.

Example: DEF Directive

DEF o,S Declares symbols O and S as external symbols that may be referenced by other
programs.
®) EQU X'1F Legal. Constants may be linked via external definitions.
S EQU FL'.314159E1" Although this is a legal definition of S, S cannot be properly DEFed because
it exceeds 32 bits in value (error).

90 30 00C-1(6/75)

Symbol Manipulation

43

Example: DEF Directive

The following DEF occurs in a root module of a large system:

DEF SUBROUTN 1

SUBROUTNI CSECT 1

The subsystems of this system are coded from a specification in which the above DEF was mistyped as SUBROUTIN,
and all 27 subsystems were thus coded as:

REF SUBROUTIN

BAL,LNK SUBROUTIN

As an alternate to modifying any of the existing code, the following module can be loaded into the root segment of
the program. It is legal and resolves the naming conflict illustrated above;

DEF SUBROUTIN
REF SUBROUTNI1
SUBROUTIN EQU SUBROUTNI
END
REF (Declare External References) Symbols declared with REF directives can be used for sym-
bolic program linkage between two or more programs. At
The REF directive declares which symbols referenced in this load time these labels must be satisfied by corresponding
assembly are defined in some other separately assembled external definitions (DEFs) in another program.

program. The directive has the form

label command argument ExamPIE: REF Directive
REF[,n] [symboly , +.. ,symbol] REF IOCONT, TAPE, TYPE, PUNCH
N This statement identifies the labels IOCONT, TAPE,
where TYPE, and PUNCH as symbols for which external defi-
iti ill b i tl time.
n is an evaluatable expression whose value is 1, 2, nitions will be required at load fime

REF directives may appear anywhere in a program. Symbols
may be declared as external references prior or subsequent

4, or 8, specifying the address resolution of the
associated symbols as byte, halfword, word, or
doubleword, respectively. If n is omitted, word

resolution is assumed. Example: REF Directive

symbol; are any symbolic labels that are to be sat- BEF Q Q is an external reference.
isfied at load time by other programs. If there is .
no symbol; reference, the directive is ignored. B .GEN 16,16 Q.$ The value of an external
Symbols may be passed as parameters from a pro- e ! reference may be placed
cedure reference line. These symbols are refer- in any portion of a word.

enced via the intrinsic functions LF, CF, or AF
on the REF line.

LW, 2 Q Q is an external reference.

to their use in a program. i —

44

Symbol Manipulation | : .

SREF (Secondary External References)

The SREF directive is similar to REF and has the form

label command argument

SREF[,n) [symboll,...,symboln]

where n and symbol; have the same meaning as for REF.

SREF directives may appear anywhere in aprogram. Symbols
may be declared as secondary external references before or
after their use in the program. Symbols that are external
references may be modified by the addition and subtraction
of integers, relocatable symbols, and other external refer-
ences. See example.

SREF differs from REF in that REF causes the loader to load
routines whose labels it references, whereas SREF does not.
Instead, SREF informs the loader that if the routines whose
labels it references are in core, the loader should satisfy
the references and provide the interprogram linkage. If the
routines are not in core, SREF does not cause the loader to
load them; however, it does cause the loader to accept any
references within the program to the names, without con-
sidering them to be unsatisfied external references.

Example: SREF Directive

REF Q

Q is an external reference.
B EQU Q B is equated to all attributes
of Q.
LW,2 B Equivalent to LW, 2 Q.

C EQU Q+2 Legal usage.

Lw,2 C Equivalent to LW, 2 Q+2.

M EQU N
REF N, P Itis legal to declare N an exter-
nal reference after N has ap-
peared in the program. In the
sequence shown here, N is made

an external reference by the REF
directive.

DEF M, C Defines M and C as externals.
B is not an external, since
it did not appear on o REF,

SREF, or DEF statement,

90 30 00C-1(6/75)

DATA GENERATION

GEN (Generate a Value)

The GEN directive produces a value representing the speci-
fied bit configuration. It has the form

label command argument

(label] GEN[,field |isf] [value |isf]

where

label is a valid symbol. Use of a label is op~
tional. When present, it is defined as the cur-
rent value of the execution location counter and
identifies the first byte generated. The location
counters are incremented by the number of bytes
generated.

field list is a list of evaluatable expressions that
define the number of bits composing each field.
The sum of the field sizes must be a non-negative
integer value that is a multiple of 8 and is less
than or equal to 128. If the field list is omitted,
32 is assumed.

value list is a list of expressions that define the

contents of each generated field. This list may
contain forward references. The value, repre-
sented by the value list, is assembled into the field
specified by the field list and is stored in the de-
fined location (see the following example). If
value list contains fewer elements than field list,
zeros are used to pad the remaining fields.

Note: The intrinsic symbols $ and $$ always refer to the

first byte generated by the GEN directive.

Examplé: GEN Directive

Produces two 16-bit
hexadecimal values:

FFO5 and 0059.

GEN, 16, 16 -251, 89

Example: GEN Directive

B EQU X FFFFFEFF'
GEN,64 B Produces: 00000000

FFFFFFFF

There is a one~to~one correspondence between the entries
in the field list and the entries in the value list; the code
is generated so that the first field contains the first value,

Data Generation 45

the second field the second value, etc. The value produced External references, forward references, and relocatable
by a GEN directive appears on the object program listing addresses may be generated in any portion of a machine
with a maximum of eight hexadecimal digits per line. word; that is, an address may be generated in a field that

overlaps word boundaries.

An asterisk preceding a field list element on the GEN dir-
ective line specifies that the absence of the corresponding If a value list contains an expression that is negative, the

value list element is to be flagged as an error.

Example: GEN Directive

sign will be extended throughout the entire field.

BOUND 4

LAB GEN,8,8,8 89,10
LW, 5 L(2)
(8,3 LAB, 5

Specifies word boundary.

Produces three consecutive bytes; the first is identified as LAB and
contains the hexadecimal value 08; the second contains the hexadecimal
value 09; and the third contains the hexadecimal value 0A.

Loads register 5 with the literal value 2.

Loads byte into register 3. LAB specifies the word boundary at which the
byte string begins, and the value of the index register (that is, the value 2
in register 5) specifies the third byte in the string (byte string numbering
begins at 0). Thus, this instruction loads the third byte of LAB (the

value 0A) into register 3.

Example: GEN Directive

ALPHA EQU X'

BETA EQU X'Cr
A GEN, 32 ALPHA +BETA

A GEN, 32 27

"Defines BETA as the decimal value 12.

In this case, the GEN directive results in a situation that is effectively the same as

Defines ALPHA as the decimal value 15.

Defines A as the current location and stores the decimal value 27 in
32 bits.

"Example: GEN Directive's Error Notification

D GEN,8,*8,*8,8 1,,2

Produces four consecutive bytes containing the hexadecimal values 01, 00,
02, 00; the first byte is identified as D. An error notification is produced
because the second element of the argument field is missing.

46 Data Generation

90 30 00C-1(6/75)

com (Command Definition)

The COM directive enables the programmer to describe
subdivisions of computer words and invoke them simply.
This directive has the form

label command argument

label [COM[,field list] | [value list]

where

label is a valid symbol that identifies the com-
mand being defined. The label must not be a
local symbol.

field list is a list of evaluatable expressions that
define the number of bits composing each field.
The sum of the elements in this list must be a non-
negative integer value that is a multiple of eight
bits and is less than or equal to 128. If the field
list is omitted, 32 is assumed.

value list is a list of expressions or intrinsic func-
tions (see below) that specify the contents of
each field. If the value list is omitted, zero is
assumed.

When the COM directive is encountered, the label, field
list, and value list specifications are saved. When the
label of the COM directive subsequently appears in the
command field of a statement called a "COM reference
line", that statement will be generated with the configura-
tion specified by the COM directive.

An asterisk preceding a field list element on the COM
definition line specifies that the absence of a corresponding
parameter on the COM reference line is to be flagged as
an error.

LOCAL symbols must not appear anywhere on the COM di-
rective statement. When the COMdirective is encountered,
the current LOCAL symbol table is suspended. It is re-
instated at the end of the COM directive statement.

The COM command definition must precede all references
to it or an error notification will be produced.

Note: As with the GEN directive, the intrinsic symbols §
and $% used on ¢ COM reference line indicate the
first byte generated by the COM reference.

The COM directive differs from GEN in that AP generates
a value at the time it encounters a GEN directive,

whereas it stores the COM directive and generates a value
only when a COM reference line is encountered. If the

90 30 00C-1(6/75)

reference line is labeled, the generated value will be
identified by that value.

If a COM directive generates four bytes, it will be pre-
ceded at reference time by an implicit BOUND 4 when
referenced.

Certain intrinsic functions enable the user to specify in the

COM directive which fields in the reference lines will con-
tain values that are to be generated in the desired configu-
ration. These functions are

CF Let
AF NuUmf
AFA

CF (Command Field)

This function refers to the command field list in a reference
line of a COM directive. Its format is

CF (element number)

where CF specifies the command field, and element number
specifies which efement in the field is being referenced.

Example: COM Directive and CF Function

CF(2), CF(3)

0 s

BYT COM,8,8

XX BYT,35, X'3C’

The COMdirective defines a 16-bit area consisting of
two 8-bit fields. It further specifies that data for the
first 8~bit field will be obtained from command field
2(CF(2))of the COMreference line, and that data for
the second 8-bit field will be obtained from command
field 3(CF(3)). Therefore, when the XX reference line
is encountered, APgenerates a 16=bit value, so that the
first eight bits contain the decimal number 35, and the
second eight biis contain the hexadecimal number 3C.

AF (Argument Field)

This function refers to the argument field list in a reference
line of a COM directive. Its format is

AF (element number)

where AF specifies the argument field, and element number
specifies which element in the list of elements in that field
is being referenced.

*See Chapter 5.

Data Generation 47

Example: COM Directive and AF Function

XYZ COM,16,16 AE(1), AF(2)
ALPHA EQU X'21"
65, ALPHA+X'EC’

ZZ XYZ

GEXNOnOG

3

AP stores the COM definition for later use. When it
encounters the ZZ reference line, it references the
COM definition in order fo generate the correct con-
figuration. At that time, the expression ALPHA+X'FC'
is evaluated. AF(1)in the XYZline refers to 65 in the
Z2Z line; AF(2) refers to ALPHA+X'FC'.

AFA (Argument Field Asterisk)

The AFA functiondetermines whether the specified argument
in the COMreference line is preceded by an asterisk. The

format for this function is
AFA (element number)

where AFA identifies the function, and element num-
ber specifies which element in the argument field of
the COM reference line is to be tested. If element
number is omitted, AFA(1) is assumed. The function
produces a value of 1 (true) if an asterisk prefix exists
on the argument designated; otherwise, it produces a
zero value (false).

Example: COM Directive and AFA Function

When the reference line is encountered, AP de-
fines a 16-bit area as follows:

Bit Positions Contents
0 The value 1 (because the

asterisk is present in argu-
ment field 1).

1-7 The hexadecimal value 35.
8-11 The value 4,
12-15 The 4~bit value associated

with the symbol TOTAL.

Example: COM Directive's Error Notification

STORE COM,1,7,4,4 AFA(1),X'35',CF(2),AF(1)

STORE,4 *TOTAL

The COM directive defines STORE as a 16-bit
area with four fields. The AFA(1) intrinsic func-
tion tests whether an asterisk precedes the first
element in the argument field of the reference
line. The first bit position of the area generated
will contain the result of this test. The next
seven bits of the area will contain the hexadecimal
value 35. The second element in the command
field of the reference line will constitute the third
field generated, while the first element in the
argument field of the reference line will constitute
the last field.

48 Data Generation

MAP COM,*16,*16 CF(2), AF(1)

R MAP, 3 7 Produces
00030007
0 5116 6
X MAP, 5 Produces

00050000

0 15716 3

When the first reference line is encountered, AP
defines a location R and generates a 32-bit word
with the values 3 and 7 in the left and right half-
words, respectively.

-When the second reference line is encountered,
an error notification is produced because the
argument field entry is missing. However, the
assembly is not terminated; AP will define a
location X and generate a 32-bit word with the
values 5 and O (for the missing entry) in the left
and right halfwords, respectively.

DATA

(Produce Data Value)

DATA enables the programmer to represent data conve-
niently within the symbolic program. It has the form

label

command argument

[label]

DATA[,f]

[value,,.. .,voluen]

where

label

value;

is a valid symbol. Use of a label is optional.
When present, it is defined as the current value

of the execution location counter and is associated
with the first byte generated by the DATA direc-
tive. The location counters are incrementwd by
the number of bytes generated.

is the field size specification in bytes; f may be
any evaluatable expression that results in an inte-
ger value in the range 0<f < 16. If field size

is omitted, the value is assumed to be four bytes.

are the list of values to !'2 generated. A
value may be a multitermed expression or any sym-
bol. An addressing function may be used to spec-
ify the resolution other than the intrinsic resolu-
tion of the execution location counter, if desired.
The sign of a multitermed expression is extended
throughout the entire ficld. If the value list is
omitted, a single zero v+ill be generated.

DATA generates each value in the 1ist into a field whose
size is specified by f in bytes.

Example: DATA Directive

BYTE

MASK

MASK2 DATA,2 X'1EF'

Produces an 8-bit
value identified as
MASKT.

[FF]

0 7

DATA,1 X'FF'

Generates the hexa-
decimal value O1EF

as a 16-bit quantity,
identified as MASK 2.

GIETF)

0

Assembles the byte
address of the literal
value 59 in a 24-bit
field, identified as
BYTE.

DATA,3 BA(L(59))

TEST DATA

DT4

Generates two 4-byte
quantities: the first
contains zeros and the
second, the hexadeci-
mal value O00000FF.
The first value is

identified as TEST.

0,X'FF"

B2a0aaY

[2lofofofojo F |

DATA,1 X'94' X'CF',X'AB'
Generates three 8-bit
values, the first of
which is identified as

DT4.

[o[4[c[F[as]
0 2

S:SiN

(Standard Instruction Definition)

The S:SIN directive provides a clirect mechanism for de-
fining the three main classes of Sigma machine instruc-

tions.

It has the form

label

command arg.ment

label

S:SIM, n [exprassion]

where

label

n

is a valid symbol that becdmes the mnemonic
by which the instruction is referenced.

is an expression that evaluates to one of the
integers 0, 1, or 2. This specifies a standard
instruction format and a standard refarence line
assembly mode.

n=0 implies the format 1, 7, 4, 3, 17 and
specifies that a reference line is to be as-
sembled like an LW instruction. AF(1) of
any command defined via S:SIN, 0 will be
generated as WA(AF(1)).

n=1 implies the format 1, 11, 3, 17 and
specifies that a reference line is to be as-
sembled like a BAZ/BANZ instruction.
AF(1) of any command defined via S:SIN, |
will be generated as WA(AF(1)).

n=2 implies the format 8, 4, 20 and speci-

fies that a reference fine is to be assembled
like an LI instruction. Any command defined

Data Generation 49

via S:SIN, 2 is restricted to one argument
field, and this argument may not have an
asterisk prefix.

expression is an evaluatable expression that is used
as the operation code of the defined instruction.
Normally this is an explicit hexadecimal constant.
If expression is omitted, a zero is assumed.

Although the same definitions may be achieved by use of
procedures (Chapter 5) or the COM directive, S:SIN pro-
vides the fastest possible processing when AP is used to
assemble Sigma machine language instructions.

Example: S:SIN Directive

The following definitions of various instructions are
used in the SIG7FDP system file.

Lw S:SIN, 0 X'32'
AND S:SIN,0 X'4B
B S:SIN, 1 X'680"
LCF S:SIN, 1 X'703'
Al S:SIN, 2 X'20
ClI S:SIN, 2 x2n

TEXT (EBCDIC Character String)

The TEXT directive enables the user to incorporate messages
in his program. It has the form

label command argument
(chelJ TEXT ['cs]',...,'cs 3|
. n
where
label is a valid symbol. Use of a label is optional.
When present, a label is associated with the left-
most byte of the storage area assigned to the
assembied message.
cs; are evaluatable expressions that result in char-

acter string constants. Each character string must
fit on a single line, but the total number of char-
acters may be any length.

The character string is assembled in a binary-coded form
in a field that begins at a word boundary and ends at
a word boundary. The first byte contains the first char-
acter of the character string, the second byte contains the
second character, etc. If the character string does not
require an even multiple of four bytes for its representation,
trailing blanks are produced to occupy the space to the
next word boundary.

When several character strings are present in the argument
field of a TEXT directive, the characters are packed in

50 Data Generation

contiguous bytes. This directive permits continuation lines,
but the continuation indicator must occur between two char-
acter strings.

The TEXT directive enables the user to pass a character
string as a parameter from a procedure reference line to a
procedure. The character string must be written on the pro-
cedure reference line within single quotation marks. It is
referenced fror: within the procedure via the AF intrinsic
function in a TEXT directive. The AF function is not writ-
ten with single quotation marks.

If the last word generated contains fewer than four charac-
ters, trailing character positions are filled with blanks.

Example: TEXT Directive

coul TEXT '"WVALUE OF X'
generates |V|A|L |U
E Ol F
X
TEXT 'A','BCDE', FGHI', ;
"KLMY
generates | A[B| C
E|F H
I1JIK(L
M
I

Example: TEXT Directive

TEXT AF(1)

In a procedure
definition.

TEXT 'SUM OF ',AF(1),; In a procedure
' AND ', AF(2) definition.

Procedure refer~
ence line.

PRINTI 'RESULTS =

i’RINT2 XLy Procedure refer-

ence line.

Assume that the first TEXT directive is in the definition
of a procedure called PRINT1, that the second TEXT
directive is in the definition of a procedure called
PRINT2, and that the last two statements are procedure
reference lines that call these procedures. When

procedure PRINT1 is referenced, the first TEXT
directive causes AP to generate

RIE}IS|U
LIT}S

When procedure PRINT2 is referenced, the second
TEXT directive causes AP to generate

uiM
OfF X
A INI|D

wv

Y

Thus, entire messages or portions of messages may be
used as parameters on procedure reference lines.

TEXTC (Text With Count)

The TEXTC directive enables the user to incorporate mes-
sages in a program where the number of characters in the
message is contained as the first byte of the message. This
directive has the form

label command argument

[label] ' TEXTC

['cs] Yeees 'csn']

where label and cs; have the same meaning as for TEXT.

The TEXTC directive provides a byte count of the total
storage space required for the message. The count is placed
in the first byte of the storage area and the character string
follows, beginning in the second byte. The count repre-
sents only the number of characters in the character string;
it does not include the byte it occupies nor any trailing
blanks. The maximum number of characters for a single
TEXTC directive is 255.

In all other aspects, the TEXTC directive functions in the
same manner as the TEXT directive.

Example: TEXTC Directive

ALPHA TEXTC '"VALUE OF X',' SQUARED'

generates |18V | A |L
U|(E O
F X
S|QJUJA
RIE|D

%0 30 00C~1(6/75)

socw Suppress Object Control Words

The SOCW directive causes AP to omit all object control
bytes from the binary output that it produces during an as=
sembly. This directive has the form

label command argument

[label} SOCW

If label is present, it identifies the first byte of the absolute
section imposed by the SOCW directive.

When AP encounters an SOCW directive, it sets the location
counters to absolute zero, processes the program as an abso=
lute section, and diagnoses any subsequent CSECT, DSECT,
PSECT, or USECT directives. AP produces appropriate error
messages if the directives that require control byte genera-
tion are used (REF, DEF, SREF, and LOCAL except in proce-
dures), if an illegal object language feature is subsequently
required (such as the occurrence of a local forward refer-
ence), or if the SOCW directive has been used subsequent
to the generation of any object code in the program.

Once the SOCW directive is invoked, it remains in effect
during the assembly of the entire program.

Normally, control words are produced to convey to the
loader information concerning program relation, externally
defined and/or referenced symbols, etc. In special cases,
such as writing bootstrap loaders and special diagnostic pro-
grams, the programmer does not want the control words
produced; he needs only the continuous string of bits that re~
sults from an assembly of statements. The SOCW directive
enables the programmer to suppress the output of these con-
trol words.

Use of the ORG and RES directives is allowed, although this
is a questionable practice (i.e., no code is generated for
these directives, but the assembler's location counters are
modified as directed) .

When SOCW is specified, it is recommended that it be the
first statement in the program, or at least that it precedes the
first generative statement,

LISTING CONTROL

Listing control directives are used to format the assembly
listing and are only effective at assembly time. No object
code is produced as a result of their use.

Listing Control 51

SPACE (Space Listing)

The SPACE directive enables the user to insert blank lines
in the assembly listing. The form of this directive is

label command argument

SPACE [expression]

where expression is an evaluatable expression whose value
specifies the number of lines to be spaced. The expression
must evaluate to an integer.

If the expression is omitted or is less than 1, its value is
assumed to be 1. If it is greater than 16, it is set to 16.
If the value of the expression exceeds the number of lines
remaining on the page, the directive will position the as~
sembly listing to top of form.

Example: SPACE Directive

A SET 2
Space five lines.

SPACE 5

SPACE 2*A Space four lines.

TITLE (Identify Output)

The TITLE directive enables the programmer to specify an
identification for the assembly listing. The TITLE directive
has the form

label command argument

TITLE ['cs]',...,'csn']|

where cs; are character string constants. The total number
of characters must not exceed 68.

When a TITLE directive is encountered, the assembly listing
is advanced to a new page and the character string is
printed at the top of the page and each succeeding page
until another TITLE directive is encountered. A TITLE di-
rective with a blank argument field causes the listing to be
advanced to a new page and output to be printed without a
heading.

The first TITLE directive in a program will appear at the top

of the first page of the listing regardless of where it appears
in the program.

52 Listing Control

Example: TITLE Directive

él'ITLE '"CARD READ/PUNCH ROUTINE'
'iI'ITLE ‘MAG TAPE 1/0 ROUTINE'
%I'ITLE

'iI'ITLE "'CONTROLLER""

The first TITLE causes AP to position the assembly list-
ing to the top of the form and fo print CARD READ/
PUNCH ROUTINE there and on each succeeding page
until the next TITLE directive is encountered. The
next directive causes o skip io a new page and outf-
put of the title MAG TAPE 1/O ROUTINE. The third
TITLE directive causes a skip to a new page but no
title is printed because the argument field is blank.
The last TITLE directive specifies the heading
"‘CONTROLLER'.

LIST (List/No List)

The LIST directive enables the user to selectively suppress
and resume the assembly listing. The form of the directive is

label command argument
LIST [, n] [expression)
where
n is an evaluatable integer-valued expression. It

is used to control the printing or non=printing of
lines in the assembly listing which contain only ob-
ject code (no source line is present), If n is pres-
ent, and has a value other than zero, printing of
subsequent non-source lines is suppressed on the
assembly listing until a later LIST directive with

an explicit value of zero for n is assembled. If n

is omitted, it does not alter the state set by the

last explicit n on a LIST directive.

expression is an evaluatable expression resulting in
an integer that suppresses or resumes assembly list=
ing. If the value of the expression is nonzero, a
normal assembly listing will be produced. If the
value of the expression is zero, all listing follow-
ing the directive will be suppressed until a subse=
quent LIST directs otherwise. If the expression is
omitted, zero is assumed.

Used inside a procedure, the LIST directive will not suppress
printing of the procedure reference (call) line. However,
LIST will suppress printing of the object code associated
with the call line if the LIST directive was encountered prior
to any code generation within the procedure.

Until a LIST directive appears within a source program, the

assembler assumes a default convention of LIST,0 1,allowing |
a normal assembly listing.

90 30 00C-1(6/75)

PCC (Print Control Cards)

The PCC directive controls the assembly listing of directives
PAGE, SPACE, TITLE, LIST, PSR, PSYS, and any subsequent
PCC. The form of the directive is

label command argument

PCC {expression]

where expression is an evaluatable expression resulting in
an integer that suppresses or enables assembly listing of the
aforementioned directives. If the value of the expression is
nonzero when PCC is encountered, all subsequent listing
control directives mentioned above will be listed. This will
continue in effect until canceled by a subsequent PCC di-
rective in which the expression is zero.

Until a PCC directive appears within a source program, the
assembler assumes a default condition of PCC 1, allowing
assembly listing of the list control directives.

PSR (Print Skipped Records)

The PSR directive controls printing of records skipped. The
form of the directive is

label command argument

PSR [expression]

where expression is an evaluatable expression resulting in
an integer that suppresses or enables assembly listing of
skipped records. If the value of the expression is non-
zero, records skipped will be listed; if the expression is
zero when PSR is encountered, records skipped (not as-
sembled), subsequent to the PSR directive, will not be listed
until another PSR directs otherwise:. If expression is omitted,
zero is assumed.

Until o PSR directive appears within a source program, the
assembler assumes a default condition of PSR 1, allowing as-
sembly listing of skipped records.

PSYS (Print System)

The PSYS directive controls the assembly listing of system
files. The form of the directive is

label command argument

PSYS [expression)

where expression is an evaluatable expression resulting in
an integer that suppresses or enables the assembly listing of
files called by the SYSTEM directive. If the value of the
expression is nonzero, the symbolic records obtained during
alt subsequent SYSTEM calls will be printed on the assembly
listing. This will continue in effect until canceled by a
subsequent PSYS directive in which the expression is zero.
If the expression is omitted, zero is assumed.

90 30 00C~1(6/75)

Until a PSYS directive appears within a program, the
assembler assumes a default condition of PSYS 0, suppressing
assembly listing of system files.

PSYS does not suppress the listing of lines with errors or
lines produced by the ERROR directive. PSYS has no effect
on pre~encoded SYSTEM files; they are not listed.

DISP (Display Values)

The DISP directive produces a special display of the values
specified in its argument list, one per line on the assembly
listing. The form of the directive is

label command argument

DISP [tist]

where list is any list of constants, symbols, or expressions
that are to be displayed at that point in the assembly list-
ing. The values of the argument list will be displayed
one per line, beginning at the DISP directive line.

If a DISP directive is used inside a procedure, it will not
display values until the procedure is called on a procedure
reference line.

A DISP directive used within a SYSTEM will not display
values unless a PSYS directive is in effect to allow the
SYSTEM lines to be printed.

The value or values in "list" appear on the assembly listing
in a special format that indicates the type of value(s)
being displayed. This format is explained under "Assembly
Listing" in Chapter 6.

ERROR (Produce Error Message or Commentary)

The ERROR directive conditionally generates an error mes-
sage or commentary in the assembly listing and commu-
nicates, in the case of an error message, the specified

severity level to the assembler. This directive has the form

labe! command argument

ERROR[, fevel[,c 1) ['cs] Y ,'csn‘]

where

level is an evaluatable expression with a hexa-

decimal value from X'0' through X'F’, denoting
the error severity level. If level is omitted, zero
is assumed. If level is preceded by an asterisk,
AP omits the error line prefix ("****' in columns 1
through 4) and the message starts in column 1 of
the assembly listing. In addition, a level of zero
preceded by an asterisk is treated as solely com-
mentary; for example, it does not appear in the
error summary .

Listing Control 53

¢ is a conditional expression whose value determines
whether the message is to be produced.

If c is true (c > 0), the message is produced.
If ¢ is false (c < 0), the message is not produced.

If ¢ is omitted, the message is unconditionally
produced.

c may be forward reference.

cs. are character string constants. The total num-
ber of characters must not exceed 108,

Each time an error message is generated, the assembler com-
pares the severity level with the previously saved severity
level and retains the higher value. AP communicates to
the Monitor this saved severity level. This enables the
programmer to control the aborting of assemble-and-execute
jobs via control messages to the Monitor. Any error mes-
sage generated via the ERROR directive is treated exactly
the same as a line with an assembler-detected error, i.e.,
they appear in the AP error summary. Messages in the form
of commentary (level is * or *0) do not appear in the error
summary nor are they output on the DO device.

The messages generated via this directive appear on the as~
sembly listing in the following format:

error messages — ',..,." in columns 1-4 followed by the
message starting in column 6, unless level was
nonzero and preceded by an asterisk in which case
the message starts in column 1,

commentary — message starts in column 1,

If an ERROR directive appears within a SYSTEM, the error
message or commentary will be produced without regard to
the last PSYS directive.

The primary purpose of ERROR is to provide the procedure
writer with the capability of flagging possible errors in the
use of the procedure,

54 Listing Control

Examples: ERROR Directive

ERROR,3, ALPHA>S ;
'ARGUMENT OUT OF RANGE'

.
.
.

When AP encounters this directive, it will determine
whether the value of ALPHA is greater than 5. If it is,
the result is true (value of 1); therefore, the severity
level (3) is compared with current highest severity
level, the higher of the two is saved, and the message
ARGUMENT OUT OF RANGE is generated for the as-
sembly listing.

ERROR, * ;
'THIS IS COMMENTARY"

When AP encounters this directive, it will uncondi-
tionally generate in the form of commentary, the mes-
sage THIS IS COMMENTARY.

The ERROR directive allows the user to specify a character
string as a parameter from a procedure reference line to a
procedure {or a symbol whose value is a character string).
The character string must be written on the procedure ref-
erence line within single quotation marks. It is referenced
within the procedure via the AF intrinsic function on the
ERROR directive.

Example: ERROR Directive

A SET 'ARGUMENT!

ERROR, 1,1 A, ' OUT OF RANGE'

When AP encounters this directive, it will produce the
message ARGUMENT OUT OF RANGE on the assembly

i listing.
L

PAGE (Begin a New Page)

The PAGE directive causes the assembly listing to be ad-
vanced to a new page. This directive has the form

? lebel command argument

[PAGE

The PAGE directive is effective only at assembly time. No
code is generated for the object program as a resultof ifs use.

9. PROCEDURES AND LISTS

PROCEDURES

Procedures are bodies of code analogous to subroutines,
except that they are processed at assembly time rather than
at execution.time. Thus, they primarily affect the assem-
bly of the program rather than its execution.

Using procedures, a programmer can cause AP to generate
different sequences of code as determined by conditions
existing at assembly time, For example, a procedure can
be written to produce a specified number of ADD instruc-
tions for one condition and fo produce a program loop for
a different condition.

There are two types of procedures: command procedures
and function procedures, In general, either type can per-
form any function that the main program can perform, i.e.,
any machine instruction and most AP directives can be used
within a procedure, A command procedure is referenced
by its name appearing as the first element of the command
field, A function procedure is referenced by an attempt
to evaluate its name, The major difference in the two
procedure types is that a function procedure returns a value
to the procedure reference line (the line that calls the
procedure); a command procedure does not.

Much of the creative power of AP comes from three direc-
tives: GEN, DO, and PROC. The GEN and DO direc-
tives were described in Chapter 4; how they are used in

procedures is illustrated in the various examples in this

chapter. The directives that identify procedures, and those
that designate the beginning and end of each procedure

are discussed in this chapter. The intrinsic functions com-

monly used in writing procedures are also discussed.

In this chapter, the descriptions of various directives make
frequent mention of "lists", Lists are most useful in hand~
ling procedures. Value lists were described in Chapter 2;
procedure reference lists are discussed in detail later in
this chapter after procedures have been introduced.

PROCEDURE FORMAT

A procedure declaration consists of three parts; the proce-
dure prologue, the procedure definition, and the procedure
end. The procedure prologue precedes the procedure defi-
nition, and the end terminates it. Procedure declarations
may appear anywhere within a program prior fo their use.

During an assembly, AP reads the procedure declaration and
stores the encoded symbolic lines of the procedure in core
memory. When AP later encounters the procedure refer-
ence line, it locates the procedure it has stored and as-
sembles those lines,

The procedure prologue consists of one or more names
(CNAME and/or FNAME directives) by which the procedure
is identified, followed by a single PROC line.

CNAME/FNAME (Procedure Name)

A procedure may be invoked by a command or function ref-
erence. The names that will be used to invoke a command

procedure must first be designated by the CNAME directive,

which has the form

label command argument
label CNAME Tist]
where
label is a valid symbol by which the next proce-

dure to be encountered is identified. Symbols
declared to be LOCAL may not be used as a label
of a CNAME directive.

list is an optional list of values that is associated
with the label. Elements in this list will be eval-
vated when referenced via the NAME intrinsic
function.

The names that will be used to invoke a function procedure
must first be designated by the directive FNAME, which
has the form

label command argument

label FNAME [1ist]

where label and list have the same meaning as for CNAME.

LOCAL symbols may not appear anywhere on CNAME/
FNAME directive statements. When a CNAME/FNAME
directive is encountered, the current LOCAL symbol table
is suspended; it is reinstated at the end of the CNAME/
FNAME directive statement.

A procedure may be both a command procedure and a func-
tion procedure. It may have a single name declared with
both CNAME and FNAME directives, or it may have dif-
ferent names, one for command references and another for
function references. There is no limit to the number of
CNAME and/or FNAME directives that may be given for

a single procedure.

The applicable CNAME/FNAME directives must precede the
procedure definition; however, ths definition need not fol-
low immediately after the name lines. CNAME and FNAME |
directives are associated with the first procedure definition

Procedures and Lists 55

encountered following these directives. This means that one
cannot put all CNAME/FNAME directives before all proce~
dure definitions. If such a case occurred, all the "labels"
would be associated with the first procedure definition, and
the remaining procedure definitions would be discarded.

The intended purpose of procedures is to allow the program-
mer to create new instructions and functions. However,
using procedures to redefine existing AP directives and in-
trinsics is a questionable practice frequently leading to as-
sembly errors. Consequently, when an AP directive name
(GEN, ORG, etc.) is encountered in the label field of a
CNAME directive, AP will not define a new procedure for
the directive (except as noted below), and will produce an
error message on the assembly listing.

A directive or intrinsic function can be redefined, however
if its name is first opened with the OPEN directive or ciosed
with the CLOSE directive. OPEN and CLOSE were ex-
plained in Chapter 4.

There is no limit to the number of procedures contained
in a program.

PROC (Begin Procedure Definition)

The PROC directive terminates the procedure prologue and
begins the procedure definition. It has the form

label command argument

PROC

The first line encountered following the PROC directive be-
gins the procedure definition. Nonlocal symbols are not
unique to a procedure unless they are specifically opened
and closed.

PEND (End Procedure Definition)

The PEND directive terminates the procedure definition.
It has the form

label command argument

PEND {iist]

The list in the argument field of a PEND directive is mean=~
ingful only for procedures referenced as functions, in which
case list represents the resultant value of the function;
that is, the value which will be substituted for the original
function reference. When a procedure is called as a com=
mand, the argument field of the PEND directive is ignored;
i.e., it is not evaluated. If a procedure that has an empty
argument field in its PEND line is called as a function, the
resultant value is null.

Generally, the format of a command procedure appears as

name CNAME list Procedure prologue.

PROC
. Procedure definition.
PEND Procedure end.

56 Procedures

and the format of a function procedure appears as

name FNAME list Procedure prologue.
PROC
i’END list Procedure end,
PROCEDURE REFERENCES

4 procedure reference is a statement within a program that
couses AP to assemble the procedure definition,

reference line consists of a label field, a command field,
an argument field, and optionall/ a comments field:

fabel field command field argument field

a list cpr, b list c list

\ v v N v v N ~ J
LF CF AF

procedure name

Within the procedure definition, the contents of the label
field of the procedure reference line are referred to by the
intrinsic function LF; the contents of the command fieldare
referred to by the intrinsic function CF; and the contents of
the argument field are referred to by the intrinsic func-
tion AF,

The LF, CF, and AF lists, if present, consist of one or
more elements, where an element can be a symbol, a
constant, an expression, or a sublist. ' A sublist is de-
noted by surrounding the item with a set of parentheses.
Thus, the following are legal lists: |

SYMBOLI1 One element, a symbol.
X'125' One element, a constant.
($-100)+2 One element, an expression.
A,B,C Three elements, all symbols.
750, (BUF, BASE) Two elements, a constant followed

by a list of two symbols.

An entire list is referenced within a procedure by its in-
trinsic name, LF, CF, or AF. Individual elements in each
list are referenced by subscripting the intrinsic name. For
example, AF(2) references the second element in the argu-
ment field. If that element is a sublist, the individual ele -
ments in the sublist are referenced by a second subscript.

In the above example, BUF is referenced as AF(2, 1) and
BASE as AF(2, 2).

Subscripts for list elements may be written to any depth.
They must be evaluatable expressions between 1 and 255 or
AP will report an error and use the value 1.

90 30 00C-1(6/75)

The programmer must specify in the procedure reference
statement the arguments required by the procedure definition
and the order in which the arguments are processed, For
example, a command procedure could be written to move
the contents of one area to another area of core storage.
Assume that the procedure is called MOVE, and that the
procedure reference line must specify in the command field
which register the procedure may use. Inthe argument field
it must specify the word address of the beginning of the
current area, the word address of the beginning of the area
into which the information is to be moved, and the number
of words to be moved. Such a procedure reference line
could be written:

ANY MOVE,2 HERE, THERE, 16

Example: Command Procedure

The command procedure SUM produces the sum of two
numbers and stores that sum in a specified location.
The procedure reference line must consist of:

1. label field Use of a label is optional.

2. command field The name of the procedure
(SUM) followed by the
number of the register that
the procedure may use.

The word address of the
first addend, followed by
the word address of the
second addend, followed
by the word address of the
storage location.

3. argument field

Use of the comments field
is optional.

4. comments field

The procedure definition appears as

SUM CNAME
PROC

LF LW,CF(2) AF(1)
AW,CF(2) AF(2)
STW,CF(2) AF(3)
PEND

and the procedure reference line appears as

NOW SUM,3 EARNINGS, PAY

YRTODATE

The resultant object code is equivalent to

NOW Lw,3 EARNINGS
AW,3 PAY
STW,3 YRTODATE

90 30 00C-1(6/75)

AP defines (assembles procedure code) only for those pro-
cedure names actually referenced in the command field of
command procedure reference lines. Any CNAMEdirective
containing a procedure name not subsequently referred to
by a command procedure reference line will have a skip
flag (*S*) printed beside it on the assembly listing. Ifnone
of the names associated with a procedure are referenced,
the same skip flag will print beside each line of the proce-
dure aswell, indicating that it has been skipped by the
assembler,

The use of a label on a procedure reference line is optional.
When a label is present, the procedure definition must con-
tain the LF function in order for the label to be defined.
Conversely, if a procedure reference line is not labeled,
the LF function within a procedure definition is ignored by
the assembler.

Function Procedure References, A function procedure
reference is different from a command procedure reference:

label field command field argument field
a list b list c list, for(d list), e list
LF CF AF
procedure
name

Within the procedure definition, the contents of the label
field are referred to by the intrinsic function LF, and the
contents of the command field are referred to by the func-
tion CF. The arguments (referred to by the intrinsic func-
tion AF) of a function procedure reference consist of only
those items that are enclosed by a set of parentheses and
that immediately follow the name of the function proce-
dure, Other elements may appear in the argument field
of the function procedure reference line, but they are not
function arguments, and cannot be referenced by the func-"
tion procedure.

The programmer must specify in the procedure reference
statement what arguments are required and in what order
they are processed, For example, a function procedure
could be written that will return @ value of the number of
bit positions a given value must be shifted to right=justify
it within a 32-bit field.

Procedures 57

Example: Function Procedure PROCEDURE LEVELS

The function procedure SHIFT produces a value that AP assemblies involve various "levels" of execution. The
indicates how many bit positions a number must be main program is arbitrarily defined as level 0. A procedure
shifted in order to right-justify it within a 32-bit referenced by the main program is designated as level 1; a
field, The procedure requires one argument: The procedure referenced from a level 1 procedure is designated
rightmost bit position of the number to be shifted. as level 2; and so forth,

The procedure appears as

SHIFT FNAME For each assembly a maximum of 32 levels is allowed.
PROC They are numbered 0 through 31.
PEND AF-31

The function reference could appear as

RT SAS, 5 SHIFT(17)

INTRINSIC FUNCTIONS

MULTIPLE NAME PROCEDURES . . o
Intrinsic functions are functions that are built into the

. . assembler. The intfrinsic functions BA, HA, WA, DA,
| The value list that appears ona particutar CNAME or FNAME concerned with address resolution were discussed in Chap-

line can be referenced within the procedure definition viathe ter 3. The functions CF, AF, and AFA were introduced

intrinsic function NAME. This makes it possible for a in Chapter 4, therefore, only the extended features that

procedure that can be invoked by several different names are applicable fo procedures are described here. The

to determine which name was actually used and fo modify AP addressing function ABSVAL was also discussed in
procedure action accordingly. Chapter 3

Example: Multiple Name Procedurs

ALPHA CNAME 1,100

BETA CNAME 0,50 Iderniifies the procedure. The intrinsic functions discussed in this section include
PROC
DO NAME(1)
LF NUM S:KEYS
LF SLZ IEI ,32 NAME (2) CF SCOR cs
AF TCOR S:NUMC
LF CENIS NAMER) AFA S:.UFV S:UT
PEND NAME S:IFR S:PT |
. |
. i
A ALPHA Intrinsic functions may appear in any field of any instruc-
: tion or assembler statement.
B BETA

When this procedure is called by ALPHA at state- LF (Label Field)

ment A, the intrinsic function NAME is set to the
value 1 because 1 is the value of the first element in -
the argument field of the CNAME directive labeled
ALPHA, When the procedure is called by BETA,
NAME is set to the value 0. The DO directive will
cause the line

This function refers to the label field in a COM directive
or a procedure reference line. Its format is

LF(subscript list)

where LF specifies the label field, and subscript list speci-

LF GEN,32 NAME(2) fies which element in that field is being referenced, If
‘ !subscripl' list is omitted, the function references the entire
to be executed if the procedure is called by ALPHA, label field.
or the line
LF GEN,16 NAMEQ) Each LF reference causes AP to process the designated

argument. That is, if the designated argument is an
expression, it will be evaluated when it is used and at

to be executed if the procedure is called by BETA. each point it is used, not at the time of call.

58 Procedures

Example: LF Function

A SET LF

.

TEST TOTAL,SUM<5 (7*XYZ/SUM+57);

L(B5*XY Z/SUM+57)

Assume that line A is a statement within a procedure
definition and that line TEST is a procedure reference
line. The SET directive defines the symbol A as the
value of the label field of the reference line. In
this example, therefore, the result would be the
same as

A SET TEST

CF (Command Field)

This function refers to the command field list in a COM di-
rective or a procedure reference line. Its format is

CF(subscript list)

where CF specifies the command field, andsubscript list speci-
fies which element in that field is being referenced, If sub-
script list is omitted, the function references the entire
command field,

As for LF, each CF reference causes AP to process the des-
ignated argument. That is, if the designated argument is
an expression, it will be evaluated when it is used and at
each point it is used, not at the time of the call.

Example: CF Function

.

CEVALUE SET CF (3)
ALPHA STORE,3,Z*Y HOLD 4*(A/C+8)

.

Assume that line CFVALUE is within a procedure defi-

nition and that line ALPHA is a reference to that pro~

cedure. When the CFVALUE line is executed, APwill
evaluate command field three of the reference line and
equate CFVALUE to the resultant value.

AF (Argument Field)
This function refers to the argument field list in a COM di-

rective or a procedure reference line. When used within a
procedure definition referenced as a function, AF applies

90 30 00C-1(6/75)

"only to the argument field list (if any) of the function
reference itself, Its format is

' AF(subscript list)

|where AF specifies the argument field, and subscript list
"specifies which element in that field is being referenced. If
subscript list is omitted, the function references the entire
argument field.

Example: AF Function

AA DATA AF

XX AOP 50,BETA/SUM

Assume that statement AA is within a procedure defini-
tion and that the XX statement is the procedure refer-
ence line. In the argument field of the procedure
reference line is a list of two elements. The first
element consists of the value 50 and the second ele-
ment consists of the value BETA/SUM. In state-
ment AA the construct AF refers to the entire argument
field list because no specific element is designated.

AFA (Argument Field Asterisk)

The AFA function determines whether the specified argu=
ment in a COM directive or procedure reference line is
. preceded by an asterisk. The format for this function is
1]

I AFA(subscript list)

. where AFA identifies the function, and subscript list speci-
| fies which element in the argument field list is to be tested.
i If subscript list is omitted, AFA(1) is assumed.

In the case where an argument may be passed down several

procedure levels, any occurrence of the argument with an
asterisk prefix will satisfy the existence of the prefix.

Example: AFA Function

.BOUND 4
GEN,8 AFA(1)

XYZ STORE,S *ADDR,3

Assume that the BOUND and GEN directives are within
a procedure definition and that the XYZ statement is
a procedure reference line. The GEN directive will
generate the value 1 if the first element in the argu-
ment field of the procedure reference line (i.e., ADDR)
is preceded by an asterisk. If an asterisk is not present,
the GEN directive will generate a zero value.

Procedures 59

NAME (Procedure Name Reference)

This function enables the programmer to reference (from
within the nrocedure) the entire list or list elements on the
CNAME or FNAME line, lts format is

NAME (subscript list)

where NAME identifies the function, and subscript list
specifies which element in the CNAME or FNAME list is
being referenced, If subscript list is not specified, NAME
refers to the entire list.

A programmer can write a procedure with several entry
points and assign the procedure several names via CNAME
or FNAME directives, Each name may be given a unique
value in the argument field of the CNAME or FNAME di-
rective. Then, within the procedure definition the pro-
grammer can use the NAME function to determine which
entry point was referenced.

The value on the CNAME/FNAME line is evaluated each
fime the NAME function is processed, When the CNAME/
FNAME line contains a redefinable symbol, the value of
the NAME expression may differ for successive references
to the same procedure,

Example: NAME Function

Example: NAME Function

—

SINE FNAME

COSINE FNAME 2
fGOTO,NAME SINE,COSINE

SINE

COSINE

Assume this represents a function procedure with two entry
points: SINEand COSINE. The NAME function is set to
the value 1 when the procedure is referenced as SINE and
to the value 2 when the procedure is referenced as CO-
SINE. Thus, differentcode will be produced depending

onwhich name is used to reference the procedure.

is defined and AP generates a 32-bit word as follows:

B CNAME X'68',0 Declares three names for the fol-
BGE CNAME X'68', 1 lowing command procedure, each
BLE CNAME X'68', 2 with an associated value list.
PROC
BOUND 4 Bound on a fullword boundary.
LF GEN,1,7,4,3,17 AFA(1), NAME(T), NAME(2), AF(2), WA(AF(1)) Generate a 32-bit word with
the configuration for a Branch,
Branch if Greater Than or Equal
to, or Branch if Less Than or
Equal to ins'rruc’rior].
PEND End of procedure definition.
NOW BLE RETRY Procedure reference line. If

condition codes contain the
"less than" setting (as the re-
sult of a prior operation),
branch to location RETRY.

When the procedure reference line is encountered, AP processes the procedure. In this instance, the label NOW

Bit Positions Contents

0 The value 0 because ‘no asterisk precedes the first element in the argument field of the procedure
reference line.-

1-7 The hexadecimal value 68,

8-11 The value 2.

12-14 The value 0 because there is no second argument field element (i.e., no indexing).

15-31 The first argument field element in the procedure reference line, evaluated as a word address.

60 Procedures

NUM (Determine Number of Elements)

The NUM function yields the number of elements in the
designated list, Its format is

NUM(list name)

where NUM identifies the function, and list name identifies
the list whose elements are to be counted. List name en-
closed by parentheses is required,

The NUM function may also be used to determine the num-
ber of subfields in the label, command, and argument fields
of a procedure reference line (as in NUM(LF), NUM(CF),
and NUM(AF)). NUM(NAME) may be used to determine
the number of elements on the CNAME or FNAME directive,

Example: NUM Function

A SET 8,16,19,28
I DO NUM(A)

List A is composed of the elements 8, 16, 19 and 28,
Because there are four elements in list A, the count
for the DO-loop will be 4,

Example: SCOR Function

DO SCOR(AF(3), MIN, LIMIT,MAX)

e

A TALLY,2,3 HOLD,TEMP, LIMIT

Assume line J is within a procedure definition and that
line A is a reference line to that procedure. When
line J is processed, AP compares the third element
in the argument field of the reference line (LIMIT)
with the symbols MIN, LIMIT, and MAX. The re-
sultant value is 2 since LIMIT is the second symbol
listed for the SCOR function, and the DO-loop will
be executed twice.

SCOR (Symbol Correspondence)

This function enables the programmer to test for the pres~
ence of a specified symbol on a procedure reference line.
The format of this function is

SCOR(symbol, test,, fest fesrn)

ore e e

where SCOR identifies the function, symbol is the symbol
to be tested, and the test; are the items with which symbol
is to be compared,

Symbol can be an explicit symbol name or one of the in-
trinsic functions designating an element on the procedure
reference line, The test; can likewise be explicit symbol
names or intrinsic functions,

SCOR compares the symbol with each of the test items.
The result of the comparison is the value k, where the kth
test item is identical to symbol, The result of the compari-
son is zero if there is no correspondence,

SCOR has many possible applications in procedures. To
fully understand its use it is important to note that AP
first substitutes designated items from the procedure ref-
erence line for any intrinsic functions used as SCOR
arguments, and then evaluates the SCOR function. This
is made clearer by the following example:

Example: SCOR Function

SUM CNAME

PROC
: |
X SET SCOR(C, AF)
Y SET SCOR(LF(2), AF)
z SET SCOR(AF)
PEND
K,A SUM A,B,C,D

Lines X, Y, and Z are within the definition of pro-
cedure SUM, and line K is a reference to that pro-
cedure. When the procedure is called and line X is
subsequently processed, its argument field will have
the internal configuration

SCOR(C, A, B,C,D)

SCOR will therefore produce the value 3, since C
corresponds to the third test item, and X will be set
to 3." When line Y is processed, its argument field
will have the internal configuration

SCOR(A,A,B,C,D)

Procedures 61 /

SCOR will produce the value 1, since A corresponds

to the first test item, and Ywill be setto 1, When
line Z is processed, its argument field will have the
internal configuration

SCOR(A, B, C, D)

SCOR will produce the value zero, since A does not
correspond to any of the test items, and Z will be
set fo zero,

TCOR (Type Correspondence)

The TCOR function compares the value type of a specified
item with the value types of a given list of test items,
The format of this function is

TCOR(item, test, ,test fesi‘n)

1’ o1 eeer
where TCOR identifies the function, item designates which
ifem is to be compared, and the test; are elements whose
value types are to be compared with that of the designated
item, Item and test may be any symbol, list, constant,
evaluatable expression, any element on a procedure ref-
erence line, or any of the following value type intrinsic
symbols:

Symbol Type

S:RAD Relocatable address

S:LIST List

S:AAD Absolute address

S:EXT External reference

S:FR Forward reference to global

symbol or undefined

S:LFR Forward reference to local symbol

S:SUM Expression involvingrelocatable
addresses, externals, or forward
references

S:INT Integer constant

S:DPI Double precision integer constant

S:C Character constant

S:D Packed decimal constant

S:FX Fixed decimal constant

S:FS Floating short constant

S:FL Floating long constant

62 Procedures

TCOR is most commonly used to determine the value type of
an item by comparing it with one or more of the above list
of value type intrinsic symbols, If the value type of the
item corresponds to the type of one of the given symbols,
TCOR returns the value k, where the kth symbol's type is
the same as that of the item. If there is no correspondence,
a zero value is produced by the function,

It is important to note, however, that TCOR is not restricted
to using only the value type intrinsic symbols as test;. Any
symbol, constant, or evaluatable expressions may be given,
and TCOR will return a value indicating which one corre-
sponds in type fo "item".

Example: TCOR Function

A CNAME
PROC
K DO TCOR(AF,S:FL,S:DPI)>0
L DATA,8 AF
ELSE
M DATA AF
FIN
PEND
N A FL'5"
P A 16

Lines K, L, and M are within the definition of proce-
dure A, and lines N and P are references to the proce-
dure. When line N is processed, AP compares its
argument field (FL'5') with the list of value type in-
trinsic symbols on line K, The argument FL'5' is a
floating long constant and corresponds to intrinsic sym-
bol S:FL. The TCOR function therefore produces the
value 1 (since the correspondence is to the first test
item on line K), This value is then compared against
zero, and since the result of this logical operation (1>0)
is "true", line L isprocessed. Line Lproducesa 64-bit
(8-byte) data word containing the value 5as a floating-
point long constant,

AP performs the same kind of operation when line P is
processed, But since 16 is a decimal integer constant
corresponding to neither S:FL nor S:DPI, TCOR returns
a value of zero, the result of the logical eperation

0> 0is "false", and line M is processed instead of
line L. Line M produces a 32-bit data word containing
the value 16 as a decimal integer constant.

Example: TCOR Function

A CNAME
PROC
B fSET TCOR(AE(), $, 5, 'A")
C A 17, 'PDQ
D A FL'75'

Line B is within the definition of command procedure A,
and lines C and D are references to the procedure,
When line C is processed, its first argument field is
compared against the list of test items on line B. Since
17 corresponds in type to the second test item (both

are integer constants), TCOR produces the value 2,

and B is SET to 2, When line D is processed, its first
argument field does not correspond to any of the text
items on line B; B is therefore SET to zero.

Example: S:UFV Function

S:UFV (Use Forward Value)

or

S:IFR (Inhibit Forward Reject)

The S:UFV function overrides the assembler's restrictions
on the use of forward references, Its format is

S:UFV(item) or S:IFR(item)

where S:UFV or S:IFR identifies the function, and item
represents an intrinsic function, a symbol, or an expres-
sion. S:UFV and S:IFR are simply alternate names for the
same function; their actions are identical.

In order to maintain identical address assignments in both
passes of the assembler, forward references are notallowed
in certain contexts (such as the argument field of a RES,
EQU, or DO directive). In certain cases, it may be de-
sirable to allow a forward reference when it is known that
the value will not affect address assignment. The S:UFV
function is used to achieve this.

During pass one of the assembler (i.e., Phase 2), S:UFV
returns the value zero if its argument isa forward reference;
otherwise, its value is theargument itself. During pass two
(i.e., Phase 3), S:UFV returns the valueassigned by pass
one, andinhibits the error reporting that would occur if the
forward reference were used in a normally illegal context.

Extreme care should be exercised in the use of this function
as its misuse can easily cause the two assembler passes to
get out of synchronization with each other. Also, since ex~
ternal definitions (DEFs) are output to the object module at
the end of assembler pass one, this function should not be
used to assign a forward value to a DEFed symbol. If S:UFV
is used, the DEFed symbol will have the value zero and
there will be no error notification.

START CSECT

.GOTO, S:UFV(SWITCH) XY

At a point prior fo the definition of SWITCH, it is desired fo generate a data word in one of three formats, depending
on the value of SWITCH, Since only one word will be generated in any case, the correct format should be selected
during Pass 2 (i.e., phase 3). The S:UFV function makes this simple to accomplish.

GEN,3,10,19 SWITCH, X'13", BA($)-START

GOTO z
X BOUND 1
GEN, 3,11,18 SWITCH, X'7', HA($)-START
GOTO z
Y BOUND 1
GEN, 3,12,17 SWITCH, X'3', WA($)-START
z BOUND 1
SWITCH EQU 2

Assembled on Pass 1

Assembled and generated on Pass 2

90 30 00C-1(6/75)

Procedures 63

Example: S:UFV and TCOR Functions

type to be found during Pass 2 assembly.
.CSECT
i)ATA TCOR(X, S:FR, S:RAD)
;:)ATA TCOR(S:UFV(X), S:FR, S:RAD)

Normally, the TCOR function will match any non-local forward reference with S:FR. Use of S:UFV allows the actual

Generates DATA 1

Generates DATA 2

SIKEYS (Keyword Scan)

This intrinsic function, which may be used only within
procedures, permits one to easily scan a procedure refer-
ence argument field for the presence of specified keywords.
This scan can return information specifying how many and
which keywords are present as well as where in the argu-
ment field each keyword appears. The value returned by
S:KEYS is a linear list of two or more elements, The first
element contains the number of keywords found. The sec-
ond element is a parameter/flag presence word that indi-
cates which keywords (up to a maximum of 32) were found.
The remaining elements are indexes that specify where in
the reference line argument field the various parameter key-
words occurred. The form of the function is

. (9K,
S:KEYS mode, ()i, Ky eee K [T

L [,
seenr i,

n
[*] (Knl’ .t "Knm)

where

mode is an expression that evaluates to 0Smode=7.

(mode&1)>0 specifies that AF(1) of the PROC ref-
erence argument field should not be scanned,

(mode&2)>0 specifies use of NUM(AF)+1 as a
default index for parameters not found,

(mode&4) > 0 specifies suppresﬁ on of “unrecog-
nized key" error reporting.

64 Procedures

[*]ik is an explicit integer (0 <iy) which specifies
that the ith bit of the parameter/flag presence
word is to be associated with the keyword Ky or
the keywords (Ky 1,K2/se« «/Kin) o IF i > 31, sub-
sequent keywords will not affect the parameter/flag
presence word,

If i) is preceded by an asterisk, then any sub-
sequent keyword occurring prior to [*]ik+l is
considered a parameter, in which case a match
on the first or any subsequent keyword causes the
specified bit in the parameter/flag presence word
to be set to one and causes the addition of an
element to the S:KEYS list, That element speci-
fies which subfield in thereference line contained
the specified word,

If i) is not preceded by an asterisk, then any sub-
sequent keyword occurring prior to [*]ik+l is con—
sidered a flag, in which case only the specified
bit of the parameter/flag presence word and match
count are affected, If more than one keyword is
specified for a given presence bit, then a match
on the first keyword sets the presence bit to one
while a match on any other leaves it zero.

& Ky and ':*j(Kk], «eerKgm) are any legal sym-
bols, These are the keywords associated with
the specified bit position. A leading asterisk in-
dicates that a match is required.

ABBREVIATED SYNTAX
If [*]il, is omitted, *0 is assumed,

If [*]ik+l is omitted, [*]ik+l is assumed,

Example: S:KEYS Abbreviated Syntax

S:KEYS(1, *0, A, *1,(B,C), *17,D, 18, E, 19, F)
may be abbreviated

S:KEYS(1, A, (B, C), *17, D, 18, E, F)

. 90 30 00C-1(6/75)

SYNTAX OF THE SCANNED ARGUMENT FIELD

S:KEYS, evaluated within a PROC, causes a scan of the
argument field of the PROC reference. That argument
field is expected to have the form

(ar)] topwora, [, {1}) ——

B [ceesteopword, [{15)]

where

AF(1) is not scanned if (niode&1)>0; hence its
structure is not significaat to S:KEYS,

keyword is a keyword thet will be fooked at by
S:KEYS and compared with the K, and Ky in the
S:KEYS argument field.

item/1ist is any item or list of items that are to be
associated with a giveri keyword. When present,
the keyword is normally used as a parameter
rather than o flag. The term "item" is used be-
cause there are no resirictions, other than syn-
tactic, on what an item may be.

Notice that S:KEYS interrogates only the first subelement
of each subfield of the scanned argument field.

If a given argument of the scanned argument field contains
a keyword without an associated item (or list), then as far
as S:KEYS is concerned, the parentheses around that argu-
ment field are redundant.

That is,
(KEYT, 25), (KEY2), (KEY3, 17, 42)
could be written

(KEY1, 25), KEY2, (KEY3, 17, 42)

USAGE EXAMPLES

Example: S:KEYS Usage Example

Assume a PROC reference line as follows:

HERE PROCSREF (D, 9), (A)
Equivalent notation is
HERE PROCS$REF (D, 9),A

Assume PROC$REF contains the line

P SET S:KEYS(0,26,A,27,B,28,C,29D,30,
£, 31,F)

then
mode = 0
all keywords are flags
a match occurs on A and D

P will be defined as the list of two elements
formed by S:KEYS

P(1) = 00b00002 (no. of matches)
P(2) = 00000024 (in binary 0000...0010 0100)
b9
bit 26

Equivalent notation is

P SET S:KEYS(O,26,A,8,C,D,E,F)

Example: S:KEYS Usage Example

Suppose PROCSREF from the previous example con=-
tained the line

Q SET S:KEYS(0, *26, A, *27, B, *28,C,
%29, D, *30, E, *31, F)

then l
mode = 0

all keywords are parameters

a match occurs on A and D

Q will be defined as the list of four elements

Q(1) = 00000002

Q@) = 00000024} same as P(1) and P(2) above
Q(3) = 00000002 parameter A is in AF(2)
Q(4) = 00000001 parameter D is in AF(1)

Note the power gained by having this list, Without
knowing where in the scanned argument field the key-
word D is written, references to the keyword asso-
ciated value, 9, can be parameterized as AF(Q(4), 2).

Equivalent notation is

Q SET S:KEYS(0, *26, 4, B,C, D, E, F)

Procedures 65

Example: S:KEYS Usage Example

Suppose PROC$SREF from the previous example con=-
tained the line

R SET S:KEYS(2, *26,A,8,C,D, E, F)
then
mode =2 (use default indexes for parameters not found)
all keywords are parameters
a match is found for A and D
no match is found for B, C, E, and F

Rwill be defined as the list of eight elements

EE;; ;gggggggi} same as P and Q above

R(3) = 00000002 A - found in AF(2)

R(4) = 00000003 B - not found, pointatnullargu-
ment whichevaluates to 0

R(5) = 00000003 C - not found

R(6) = 00000001 D - found in AF(1)

R(7) = 00000003 E - notfound

R(8) = 00000003 F - not found

An advantage of default parameter indexes is that

they permit a less complex parameterization since,

for example, R(5) may always be associated with

the parameter C, regardless of how many and which
parameters are found. If NUM(AF(R(5)))>0 (i.e., not
null), then C is present, It is also true, since C is

a parameter, that bit 28 of R(2) will be one if and only
if C is present.

Example: S:KEYS Usage Example

Assume the function PROC reference line

NOW SET SUMTHIN((H, (4, 3)), K,
(L, F:THERE), (M, 4), N)

where the function PROC SUMTHIN contains the line

Z SET S:KEYS(0, *17,L, H, 4, N, *(A, K),

*8, (S, D), M)
then
mode =0
the keywords L, H, S, D, and M are parameters
the keywords N, A, and K are flags (a match on
either A or K is required)
a match is found for L, H, N, K and M
Zwill be defined as the list of five elements
66 Procedures

Z (1) = 00000005 (no. of matches)
A(2) = 08406000 (in binary 0000 1000 0100
0000 0110...)

bit 9
bit 18 (M)
(H)
bit 5
(K)
bit 17
L
bit 4
(N)

Nofe that bit 5 is zero. K is not the first flag
listed for this bit,

Z(3) = 00000003 the parameter L is in AF(3)
Z(4) = 00000001 the parameter H is in AF(1)
Z(5) = 00000004 the parameter M is in AF(4)

Note that the order in which the indexes appear in
list Z is not the bit-number order of Z(2), but instead
the order of left~to-right occurrence of the parameter
keywords in the S:KEYS argument field.

Example: S:KEYS Usage Example

Suppose the PROC SUMTHIN from the previous example
contained the line

T SET S:KEYS(1, *17,L, H, 4, N, *(A, K),
*8, (S, D), M)

then
mode = 1 (AF(1) should not be s?anned)
the keywords L, H, S, D, and M are parameters
the keywords N, A, and K are flags
a match is found for L, N, K, and M but not for H
T will be defined as the list of four elements.
T(1) = 00000004 (no. of matches)

T(2) = 08404000 (In binary 0000 1000 0100 0000
0100...)

bit 5
bit 17 (K)
(L)
bit 4
(N)
bit 9

M)

* T(3) = 00000003 the parameter L is in AF(3)
T(4) = 00000004 the parameter M is in AF(4)

90 30 00C-1(6/75)

Example: S:KEYS Usage Example

Suppose the PROC SUMTHIN from the previous ex=
ample contained the line

Y SET S:KEYS(@, *17,1,H,4, N, *(A, K),
*8, (S, D), M)
then

mode = 3 (AF(1) should not be scanned; and de-
fault indexes are to be used for parameters not
found.

the keywords L, H, S, D, and M are parameters
the keywords N, A, and K are flags

a match occurs for L, N, K, and M

no match occurs for H, A, S, and D

Y will be defined as the list of six elements
Y(1) = 00000004}

Y(2) = 08404000 same as T(1) and T(2) above

Y(3) = 00000003 L - found in AF(3)

Y(4) = 00000006 H - notfound, pointto AF(6),
a null

Y (5) = 00000006 S or D - not found

Y(6) = 00000004 M - found in AF(4)

(] (Control Section)

This function returns the control section number of any item
whose value is a previously defined address. The format of
this function is

CS(item)
where CS specifies control section, and item is the element
whose control section is to be determined. If the value of

the item given is not previously defined as an address, a
zero value is returned.

Example: CS Function

Example: S:KEYS Usage Example

Assume the PROC Definition

A$PROC CNAME
PROC
p SET S:KEYS(2,W,X,Y,Z)

DATA AF(P(3), 2),AF(P(4), 2),
AF(P(5), 2),AF(P(6), 2)
PEND

Now assume the PROC reference line
ASPROC (Z,7), (X,-1)

P will be defined, for this reference of A$PROC, as
the list

P(1) = 00000002
P(2) = 50000000
P(3) = 00000003
P(4) = 00000002
P(5) = 00000003
P(6) = 00000001

This reference to ASPROC will cause four words of
data to be generated as follows:

00000000 (AF(3,2) is null)
FFFFFFFF (AF(2,2) is =1)
00000000 (AF(3,2) is null)
00000007 (AF(1,2) is 7)

| ates a 32-bit data word containing the value 2. The

CSECT

A DATA 7
CSECT

B DATA 14

C DATA CS(A), CS(B), CS(-85)

When line C is processed, the first CS function returns
a value of 1 because item A is a relocatable address
within control section 1; AP generates a 32-=bit data
word containing the value 1. The next CS function is
evaluated and returns a value of 2 because item B is a
relocatable address within control section 2; AP gener-

last CS function is evaluated and returns a value of
zero because item -85 is not an address; AP generates
a 32-bit data word containing the value zero.

90 30 00C-1(6/75)

StNUMC (Number of Characters)

This function returns an integer count of the total number of
characters found in its evaluated argument, Its format is

S:NUMC (item)

where S:NUMC identifies the function, and item designates
the element or list for which a character count is to be cal-
culated. Any element in the evaluated argument other than
a character string is ignored in calculating the total count.
Note that an element in the list which is itself a list (i.e.,
a sublist) is thus ignored in the count,

If no character constants are found in the evaluated argu-
ment, S:NUMC returns a count of zero, No restriction is
imposed on the magnitude of the final count, although no
one character string may have a character count greater
than 255,

Procedures 67

Example: S:NUMC Function

Example: S$:UT Function

If A is defined as
A SET 'THESE', 'ARE', 'STRINGS'
then
Q SET S:NUMC(A)

assigns the valve 15 to Q.

However, if A were defined as

A SET 'THESE®, ("ARE’, 'STRINGS")
then

Q SET S:NUMC(A)

R SET S:NUMC(A(1), A(2))

assigns the value 5 to @ and the value 15 to R,

S:UT (Unpack Text)

This function provides the facility for manipulating char-
acter strings of arbitrary length, It unpacks a character
string into a sequence of single-character elements, Its
format is

S:UT(argument list)

where S:UT identifies the function, and argument list de-
signates the element or list which is to have its text-valued
elements "unpacked". Any element in the argument list
other than a character constant remains unchanged, .although
its relative position in the value list may change as a result
of the unpacking, Note that an element in the argument
list which is itself a list (i.e., asublist) is thus left
unchanged,

Care should be taken that no more than 255 elements
are created as the result of unpacking several text
elements,

Note that, for a given list, Q, the relationship
NUM(S:UT(Q)) = S:NUMC(Q).holdsonly if Q is a linear
list composed entirely of character constants,

68 Procedures

If A is defined as

A SET 'THIS', 'IS', ‘A", 'STRING'

then

Q SET S:UT(A(1),A(2),A(3), NEW', ;

A(4))

creates a string Q as if Q had been defined as

Q SET ITI’lHl'lll,|SI’III’lSI,lAl,;

'NYEL WIS, TR TN G
Suppose that A had been defined as
A SET ('THIS','IS', 'A"), 'STRING'
then
Q SET S:UT(A)
creates a string Q as if Q had been defined as

Q SET (‘THIS', 'IS*, 'A"), ;

ISI, ITI, IRI, III, INII IGI

S:PT (Pack Text)

This function transforms sequences of character constants
and nulls into a single character string, Its format is

S:PT(argument list)

where S:PT identifies the function, and argument list des-
ignates the element or list to be "packed". During packing,
null elements are discarded, Afteralinullsare eliminated,
any contiguous character constants are concatenated to
form a single character string, provided that the resultant
string contains no more than 255 characters, If it does
contain more, an error message is given, and only the left-
most 255 characters are used. This does not terminate
packing; the remaining characters are simply discarded,

Any element in the argument list other than a character
constant or a null is left unchanged, although its relative
position in the value list may change as a result of the
packing. Note that an element in the list which is itself a
list (i.e., a sublist) is thus left unchanged.

If the argument consists only of a null or a list of nulls, the
value of S:PT is a single null.

90 30 00C-1(6/75)

Example: S:PT Function

Assume that the following definitions are made:

A SET 'THIS'
B SET '"ISA !
C SET 'STRING'
then
Q SET S:PT(A,B, 'BIGGER *,C)

assigns the same value to Qasif Q had been defined as

Q SET 'THIS 1S A BIGGER STRING'

Example: Character String Functions

This function procedure is called with three arguments.
The first argument is a string that is to be searched for
occurrences of the character in the second argument,
If such a match is found, that character in the string is
replaced by the character in the third argument. The

value of the function is the new string after substitu-

tion. The definition is

REPL FNAME Defines function REPL
PROC
LOCAL 1,Q

Q SET S:UT(AF(1)) Forms character list

I DO NUM(Q)

DOI1 Q(I)=AF(2)
Q) SET AF(3) Substitutes on maich
FIN

PEND S:PT(Q) Returns new string

Now, if A is defined as
A SET '~ THIS IS A STRING -!
a call on the function such as
STR1 TEXT REPL(A,' ','.")

generates the text string

‘=, THIS. IS, A, STRING. -

while the following call

STR2 TEXT REPL(REPL(A, ‘=','$")," ', '=")

generates the text string
'$=THIS-1S-A-STRING~-§'

Notice that, in the above example, had the function
nesting been reversed, as

STR3 TEXT REPL(REPL(A,'','="),'=','$")
the resulting text string would have been

'$STHISSISSASSTRING $$'

PROCEDURE REFERENCE LISTS

A list composed only of elements that are evaluated when
AP encounters the list in o statement is referred to as a
"value list", as discussed in Chapter 2, A list having af
least one element that cannot be evaluated when first en-
countered is called a "procedure reference list". For ex-
ample, the directives SET, EQU, GEN, and COM require
value lists, because the elements must be evaluated before
the assembler can process the directives, Command and
function procedure reference lines require procedure ref-
erence lists, because the list elements are not evaluated

at the time the reference line is encountered, but are acted
upon within the procedure,

A list used in a procedure reference line cannot be distin-
guished from a value list merely by appearance. That is,
the list may be either a procedure reference list or a
value [ist depending on its use in a program. If it appears
in a directive such as SET or GEN

R SET 5,A
GEN, 16, 16 5,A

the list is a value list and is evaluated by AP at the
time it is encountered, However, if the list appears

in a command or function procedure reference line, it is a
procedure reference list. For example, if there were «
command procedure name SUM, the reference line could
appear as

NOW SUM TABLE, 15*(TABLE2+;

TABLE)/4

When AP encounters this line, it will process the SUM pro-
cedure, and the elements of the named lists will be eval-
uated depending on their use within the procedure. That
is, if LF is referenced within the procedure, NOW be-
comes a defined symbol and is stored in the symbol table.
If LF does not appear within the procedure, the label on
the reference line is lost. The same principle appliesto the
elements of command field and argument field lists.

Procedure Reference Lists 69

Example: Procedure Reference Lists

ALL SET AF
AF(1) SET AF(,2)
AF@) SET ALL(,2)

Assumes these statements
are within a procedure
definition called LST,

A SET (11,12,13)
SET (21,22,23) Main program,
C SET (31,32,33)

oo

LST A,B,C

Procedure reference line,

The three elements (A, B, C) on the procedure reference
line may be referred to within the procedure as

AF(1) =A
AF(2)=8
AF@) =C

Example: Procedure Reference Lists

Notice, however, that the functions AF(1), AF(2), and
AF(3) apply only to the symbols that actually appear
on the procedure reference line (i.e., A, B, and C)
and not to the values that have been equated to them.
Thus, the statement
AF(1) SET AF(2, 2)
results in AT'(1) — which is A — being set to null
because there is no element AF(2, 2) on the proce-
dure reference line,

On the other hand, the statement
ALL SET AF

causes AP to evaluate the symbols A, B, and C, and
to assign ALL as
ALL SET (11,12,13),(21,22,23),(31,32,33)

Therefore, the element AF(3) — which is C —can be
set to ALL(2, 2) which has the value 22,

70

The procedure QUT generates a 32-bit value equal to the number of elements in the list of the procedure reference line:

ouTt CNAME Declares the command name of the procedure fo be OUT,
PROC Identifies a procedure,

LF GEN, 32 NUM(AF) Generates 32 bits containing the number of elements in the argu-
. ment field of the procedure reference line,
PEND Signifies the end of the procedure.

The following reference lines could call the procedure:

FIRST out 3,6,(4,7)
A SET 3,6

B SET “,7)
WO ourt A,B

Generates 00000003 (hexadecimal).

Generates 00000002 (hexadecimal).

The list in line FIRST consists of three elements: 3,6, and (4,7); therefore, the procedure OUT generates the value 3,

Next, A is defined as a value list of two elements: 3 and 6; and B is defined as a value list of one element: (4,7). The
list in line TWO consists of two elements: A and B, AP does not determine what values A and B have because there is

no statement within the procedure that causes AP to evaluate the argument field list,

Declares COUNT to be a local symbol within this procedure,

COUNT is SET to the value of the list in the argument field of the

procedure reference line.

out CNAME

PROC

LOCAL COUNT
COUNT SET AF
LF GEN, 32 NUM(COUNT)

Procedure Reference Lists

Since COUNT is declared to be a local symbol within this procedure, it cannot be confused with any previously defined
symbol "COUNT", When the SET directive is executed, AP must evaluate the list in the argument field of the
procedure reference line in order to assign a value to COUNT. With this procedure, the reference lines

FIRST OouT 3,6,(4,7) Generates 00000003 (hexadecimal).
A SET 3,6

B SET 4,7)

WO ouTt A,B Generates 00000003 (hexadecimal).

now generate the same value. When the procedure is called at line TWO, the list consists of A, B, The directive
COUNT SET AF

executed within the procedure, causes AP to evaluate A and B and to assign COUNT as
COUNT =3, 6,(4,7)

Thus, NUM(COUNT) yields the value 3.

Notice that although NUM(COUNT) now equals 3, NUM(AF) still equals 2, This is true because the elements A and B

in the reference line are not replaced by their values (3,6, and (4,7)). Thus a procedure can refer to the elements
that actually appear on the procedure reference line as well as the values of the elements,

Example: Procedure Reference Lists The use of procedure reference lists is not limited to the
argument field. A list appearing in any field in a proce-
dure or function reference line is a procedure reference list,

Assume the command procedure CHECK
Example: Procedure Reference Lists

CHECK CNAME

PROC The statement
LOCAL CNT
CNT SET AF A,C,D TABSIZ S, T,U XVY,Z

. could be a reference line for a command procedure

H DO NUM(CNT) that adds the items identified in the label field to those
. identified in the command field and sfores the results
in the locations identified in the argument field: i.e.,

.

J DO NUM(AF)
. A+S—X, C+T —Y, q+U——Z
is called as follows: All three lists are evaluated inside the procedure
when the actual addition occurs:
UPPER SET 16, 24, 32
LOWER SET 9,11,13 TABSIZ - CIME
LIMIT -SET 12,18 I DO NUM(LF)
. AF(I) SET LF(I)+CF(I+1)
FIELD CHECK UPPER,LOWER,LIMIT FIN
. PEND

The loop is to be executed NUM(LF) or 3 times. Each
time through the loop, I is incremented by 1, so AF(I)

_ references element X, Y, and Z; LF(I) references ele~
CNT=16,24,32,9, 11,13, 12,18 ment A, C, and D; G:‘Id ,CF(I + 1) references element
S, T, and U, Therefore, the SET directive is equiva-
lent to

In the CHECK procedure CNT is defined as

Therefore, the DO directive at line H has a count of 8
because CNT is a list of eight elements, On the other
hand, the DO directive at line J has a count of 3

because NUM(AF) determines how many elementsare X SET A+S
in the argument field list of the reference line, and Y SET C+T
there are three: UPPER, LOWER, and LIMIT. z SET D+U

Procedure Reference Lists 71

PROCs are frequently used to define machine instructions,
In this manner, a programmer can use any mnemonic code
he wishes for an instruction by writing a procedure defini~
tion that will generate the appropriate bit configuration,
This is another instance when it is necessary for the pro-
grammer to remember that lists in procedure reference lines
are not evaluated at the time they are encountered but
rather at the time they are used inside the procedure,

Example: Lists in Procedures

Assume a procedure LOAD is to be written that pro-
duces the same bit configuration as a Load Word in-
struction. The procedure definition could be
written

LOAD CNAME X'32"
PROC
LOCAL P
P SET AF
LF GEN,1,7,4,3,17 AFA(1), NAME;
, CF(2),P(2),P(1)
PEND

If the procedure is called by

LOAD, 4 *7,5
the procedure functions as follows:
1. P is declared a local symbol,

2. P is SET to the value of the argument field of the
procedure reference line; i.e.,

P=2,5
3. In the GEN directive

a. LF causes AP to determine whether a label
exists on the procedure reference line and,
if one does, to define it.

b. AFA(1) tests to determine whether an asterisk
appeared as the first symbol in the argument
field of the reference line. If an asterisk did
appear, a 1 is generated for bit position zero
of the instruction word; if an asterisk did not

e. P(2) disignates the second element of list P,
Since P=Z,5, its second element is 5. This
value is assembled into bit positions 12
through 14 of the word.

f. P(1) designates the first element of list P,
i.e., Z. This valueisassembledasa 17-bit
address,

The same procedure will operate properly when called
in this fashion:

Q EQU Z,5
LOAD, 4 “Q

because inside the procedure the directive
P SET AF

forces AP to evaluate the argument field of the pro-
cedure reference line and, therefore, to SET P:

P=2,5

If the procedure were written

LOAD CNAME X'32'
PROC

LF GEN,1,7,4,3,17 AFA(1), NAME;

. CF(2), AF(2),AF(1)
PEND
and called by

Q EQU Z,5

LOAD, 4 *Q

it would not operate properly. There is no directive
within this procedure definition to cause AP to eval-
uate the argument field of the procedure reference.
Thus, when the GEN directive is processed, the
asterisk, the NAME entry, and the command field
item are handled correctly, but there is no AF(2)
eniry on the procedure reference line since the argu-
ment field consists only of *Q.

appear, a 0 is generated for that bit position.

c. NAME causes AP to place the value X'32'
(from the argument field of the CNAME
directive) in bits 1 through 7 of the word
being formed.

d. CF(2) specifies that the second entry in the
command field of the reference line is to be
assembled into the next four bits (i.e., bit
positions 8 through 11),

Sample Procedures

Thus, it can be seen that lists in procedure reference lines
are conditional in that AP evaluates them only if there is
an instruction or directive within the procedure that causes
it to do so; otherwise, the lists are passed directly from
the reference line to the procedure,

SAMPLE PROCEDURES

The following examples illustrate various uses of procedures,
such as how one procedure may call another, and how a
procedure can produce different object code depending on
the parameters present in the procedure reference.

Example: Conditional Code Generation

dexed loop will be generated.
a specified location.

The procedure definition is

ADDEM CNAME
PROC

LF SW, AF(3)

IND DO
AW, AF(3)
ELSE
LW, AF(5)
AW, AF(3)
BIR, AF(5)
FIN
STW, AF(3)
PEND

For the procedure reference

XYz ADDEM

XYZ SW, 8
AW, 8
AW, 8
STW, 8

If the procedure reference were

ADDEM

SwW, 8

LW, 3

AW, 8
BIR, 3

STW, 8

AF(@3)

This procedure tests element N in the procedure reference line to determine whether straight iterative code or an indexed
loop is to be generated, If N is less than 4, straight code will be generated; if N is equal to or greater than 4, an in-
In either case, the resultant code will sum the elements of a table and store the result in

(AF(2)<4)*AF(2)
AF(1) + IND -1

L(-AF(2))

AF(1) + AF(2), AF(5)

$-1

AF(4)

The general form of the procedure reference is

ADDEM ADDRS, N, AC, ANS, X
where
ADDRS represents the address of the initial value in the list to be summed.
N is the number of elements to sum,
AC is the register to be used for the summation.
ANS represents the address of the location where the sum is to be stored,
X is the register to be used as an index when a loop is generated.

ALPHA, 2, 8, BETA, 3

8

ALPHA
ALPHA+1
BETA

machine code equivalent to the following lines would be generated in-line at assembly time.

Clear the register.
Add contents of ALPHA to register 8.
Add contents of ALPHA + 1 to register 8,

Store answer,

ALPHA, 5, 8, BETA, 3

the generated code would be equivalent to

8

L(=5)

ALPHA+5, 3
$-1

BETA

Clear the register.

The value -5 would be stored in the literal table and its address
would appear in the argument field of this statement, Thus, load
index with the value -5,

Register 3 contains =5, ALPHA+5-5 = ALPHA,

Increment register 3 by 1 and branch.

Store answer,

Sample Procedures

73

Example: Use of SCOR for Testing Procedure Parameters

This procedure tests an optional parameter for being a condition on which to exit from a subroutine. The return address
is in the register designated by AF(1). If the return register is 0 through 7, an indexed branch is generated; otherwise
an indirect branch is generated.

The procedure definition is

EXIT CNAME
PROC
DO NUM(CF)=2

I SET SCOR(CF(2), GE, LE, EQ)+X' 680"
DO [=X'680"

I SET SCOR(CF(2), LT, GT, NE)+X'690"
ERROR, 3, 1=X'690" '"UNDEFINED CONDITION'
FIN
ELSE

I SET X'680"
FIN

LF GEN, 1, 11,3, 17 AF(1)> 7,1, AF(1)*(AF(1) < 8), AF(1)*(AF(1) > 7)
PEND

The general form of the procedure reference is

EXIT{,COND] REG

where

COND is the (optional) condition. If specified, it must be either EQ, NE, LT, GT, LE, or GE.

REG is the register containing the return address.
For the procedure reference
EXIT 7

machine code equivalent to

B 0,7
would be generated at assembly time.
For the procedure reference’
EXIT,EQ 15

machine code equivalent to

BE *15

would be generated.

74 Sample Procedures

Example: Function Procedures

Assume that a 32-bit element of data consists of three fields: Field A occupies bits 0 through 6, field B occupies bits 7
through 17, and field C occupies bits 18 through 31, The program that uses this data will frequently need to alter the
contents of the fields, Two function procedures could be written to facilitate this process: SHIFT and MASK, The pro-
cedure SHIFT returns a value equal to the number of bit positions that a quantity must be shifted to right=justify it within
its field. The procedure MASK produces a field of all 1's that occupy the required number of bits to mask a given field.

SHIFT FNAME
PROC
LOCAL SYM
SYM SET AF
PEND 31-SYM(2)
MASK I;NAME procedure definitions
PROC
LOCAL VAL, ARG
ARG SET AF
VAL SET (1**(ARG(2)~ARG(1)+1)-1)**(31-ARG(2))
PEND L(VAL)
A EQU 0,6
B EQU 7,17 Defines fields A, B, and C.
C EQU 18, 31
. sequence of code
I..W 4 L(5) needed to reference
: these procedures
ECVSI54 wgl((%)) Stores the value 5 into field B of data area Q.
STS, 4 Q

The EQU directives define the bits that bound each of the three data fields.

The first Load Word instruction uses a literal constant for the value 5. The Arithmetic Shift instruction references the
SHIFT procedure, using as its argument the list B (defined as 7, 17), The SHIFT function procedure will return the value 14,
because an integer must be shifted 14 bit positions in order to right justify it in the B field (i.e., in bits 7 through 17).

The second Load Word instruction references the MASK procedure with an argument of B, The MASK pr!)cedure first
determines the number of bits in the specified field: ARG(2) - ARG(1) +1=17 =7 + 1 =11, Then, the number 1 is
shifted left that number of bit positions. Next, the value 1 is subtracted from the shifted value, forming the desired mask
of eleven 1-bits. To position the mask for the correct datafield requiresshifting it left 14 positions, This is determined
by subtracting the value ARG(2) (i.e., 17) from 31. The correctly positioned mask is assigned to the label VAL, On
the PEND line, VAL appears as a literal, so the mask is stored in the literal table and its address is returned to the
procedure reference. Thus, the second Load Word instruction loads a mask for the B data field into register 5.

The Store Selective instruction stores the contents of register 4 into location Q under the mask in register 5.
Because AP allows one procedure to call upon another procedure, the MASK procedure could have been written to call
upon the SHIFT procedure to position the mask it developed. The MASK procedure could have been written:

MASK FNAME
PROC
LOCAL VAL, ARG

ARG SET AF

VAL SET (1%*(ARG (2)-ARG (1) + 1)=1)**SHIFT(ARG)
PEND L(VAL)

which would produce the same result.

Sample Procedures 75

Example: Recursive Function Procedure

As pointed out in the previous example AP allows one procedure to call another. AP also allows recursion; that is,
a procedure may call itself, This is illustrated in the following function procedure that produces the factorial of the

argument.

FACT FNAME
PROC
LOCAL S,R

S SET AF
DO S(M>1

R SET S * (FACT(S - 1))
ELSE

R SET 1
FIN
PEND R

.
.

Because the explanation of a recursive procedure necessarily refers to procedure levels and the use of identical symbols
on various levels, subscript notation is used to denote levels: S] refers to level 1 symbol S; 52 to level 2 symbol §; etc.

The procedure reference in the main program could be

Q SET 8

LI, 4 FACT(Q-5)

Within the procedure, S1 and Ry are declared to be local symbols, Next, Sy is set fo the value of the argument field at
level 0; therefore, Q =5 is evaluated and Sy is SET to 3. The DO directive determines whether the first element of list Sy
is greater than 1. Since S} consists of only one element and it is greater than 1, the statement following the DO
directive is processed, The statement on line Ry calls the FACT procedure. So, the process begins again.

The symbols $2 and Ry are declared to be local symbols. (This time, they are local to the level 2 procedure and will not
be confused with the S and R that were local to the level 1 procedure.) So is set to the value of the argument field,
which is S} = 1 3 - 1); that is, Sy is set to the value 2, The DO statement determines whether the first element of list Sp
is greater than 1, Because S2 consists of only one element and that element is greater than 1, the line following the
DO directive is processed, The statement on line R2 calls the FACT procedure again — this time at level 3.

The LOCAL directive declares 53 and R3 to be local symbols. Next, S3 is set to the value of the argument field. This
time the argument field is S - 1, which is the value 1. The DO directive determines whether the first element of list Sy
is greater than 1. S3 consists of only one element and it is not greater than 1, so control passes to the statement fol-
lowing the ELSE directive, R3 is set tothevalue 1. The FINdirective terminates the DO-loop. The PEND directive
terminates the procedure af level 3 and returns control to the procedure réference at level 2, Then, the processing of
line R2 is completed. The value 1, returned by the FACT procedure, is multiplied by $2(2) and equated to the label R2.
The ELSE directive terminates the DO-loop, and conirol passes to the statement following the FIN directive. The PEND
directive terminates the procedure at level 2 and returns control to the procedure reference at level 1.

The value of Rp(2) is returned to level 1, where it is multiplied by S1(3), and the product 6 is equated to the label Ry.
The ELSE directive terminates the DO-loop, and control passes to the statement following the FIN directive, The PEND

directive terminates the procedure at level 1 and returns control to the procedure reference in the main program,

Thus, the Load Immediate instruction loads the value 6 into register 4.

76 Sample Procedures

Example: Recursive Command Procedure

of a list,

SUM

level 01
R] SET
Z] SET
Il DO
DO
FIN
Z.I SET
FIN
DO
R] 2) SUM
level 02
R2 SET
R](Z) SET
l2 DO
DO
FIN

Recursion can also occur in command procedures. This SUM procedure produces the sum of the values of the elements

CNAME

PROC

LOCAL R, 1

SET AF

SET 0

DO NUM(R)

SDL(J)M L\](IU)M(R(I)) o1 |I-nner Outer
FIN oop Loop
SET R(D+LF

FIN

PEND

Assume the procedure reference is

SET 5,3,4),3,7,8),4)
.SUN\ O Procedure Reference (level 00)

5, 3,4),3,7,8),4)
0

NUM(RI)

NUMR, (1)>1

1

R](l)+Z]

NUM(R] 2)>1

R, 2)

3,4
0

NUM (R2)

NUM(R2(1 N>1

(As in the previous example, subscript notation is used to denote levels.) Theresulting code is equivalent to

Equate local symbol R, to list,

1

Do the loop 3 times; increment counter of outer DO=loop by 1;
l] = counter; l] =1.

False; R](]) =5; NUM(R](I)) =1, so skip to FIN,
Terminate inner loop.

Z,=5+0=5

Increment counter of outer DO-loop by 1 and set 1
1, =2,
1

True; R] (2)=3, 4;NUM(R](2))> 1.

= counter;

1

Procedure Reference (level 02),

Equate local symbol R2 to sublist,

Do this loop 2 times; increment counter of outer DO-loop by 1;
12 = counter; 12 =1,

False; R2(]) =3; NUM(RZ(I)) =1, so skip to FIN,

Terminate inner loop.

Sample Procedures

77

R](2) SET
FIN
DO
FIN
R](Z) SET
FIN
PEND
level 01
FIN
Z] SET
FIN
DO
R](3) SUM
level 02
R2 SET
R](3) SET
Ip DO
DO
FIN
RI(3) SET
FIN
DO
R2(2) SUM
level 03
R3 SET
R2(2) SET
13 DO
DO
FIN
R2(2) SET

R2(I)+ R](Z)

NUM(R2(2))> i

R2(2) + R](2)

NUM(R] @N>1

R, @)

3,(,8),4

0
NUM(R2)

NUMER2(1))>1

Rz(l) + R](3)

NUM(R2(2))> 1

R,2)

7,8
0

NUM (R3)

NUM(R3(]))> 1

R3(l) + R, (2)

ol

78 Sample Procedures

RI(2)=3+0=3

Increment counter of outer DO-loop by 1 and set 12 = counter;

12:2,

False; R2(2) =4; NUM(RZ(Z)) =1, so skip to FIN,
Terminate inner loop.

R] 2)=4+3=7

Terminate outer DO-loop.

Terminate level 02 procedure and return to level 01,

Terminate inner loop.

Z]=7+5:|2

Increment counter of outer DO-loop by 1 and set 13 = counter;
I,=3
5= 3.

True; R, (3) =3, (7,8), 4 NUMR, (3)) =3.

1

Procedure Reference (level 02),

Equate local symbol R to list. Note that R2 is a new symbol; if is

not to be confused with the previous level 2 symbol R.

Do this loop 3 times; increment DO-loop counter by 1; Iy = counter;
Ir=1.

False; Ro(1) = 3; NUM(R2(1)) =1, so skip to FIN.
Terminate inner DO-loop.

RI(3)=3+0=3

Increment counter of outer DO-loop by 1 and set 12 = counter;
I,=2
2 .

True; R2(2) =7,8; NUM(R2(2))>I.

Procedure Reference (level 03).

Equate local symbol R3 to list.

Do this loop 2 times; increment DO-loop counter by 1; I, = counter;
L,=1

3
False; Rs(l) =7; NUM(R3(1)) =1, so skip to FIN,

Terminate inner loop.

R2(2)=7+0=7

FIN

DO NUM(R3(2))>1
FIN

R2(2) SET R,(2) + R2(2)
FIN
PEND

level 02
FIN

R,G) SET R,(2)+R,()

FIN

DO NUM(R2(3))>1
FIN
R](S) SET R2(3) + R](3-)
FIN
PEND
level 01
FIN
z SET R] (3) + Zl
FIN
PEND
Thus, the main program statement
Z SUM Q

results in the value 34 being assigned to label Z.

Increment counter of outer DO-loop by 1 and set 13 = counter;

13:2.

False; R,(2) = 8; NUM(R3(2)) =1, so skip to FIN,

3
Terminate inner DO-loop.
R2(2) =8+7=15

Terminate outer DO-loop.

Terminate level 03 procedure and return to level 02,

Terminate inner DO-loop.
R](3)= 15+3 =18

Increment counter of outer DO-loop by 1 and set 1, = counter;
I,=3
5 = 3.

False; R2(3) =4, NUM(R2(3)) =1, so skip to FIN,
Terminate inner DO~loop.

R,@) =4+ 18 =22

Terminate outer DO-loop,

Terminate level 02 procedure and return to level 01,

Terminate inner DO-loop.
Z] =22+12=34

Terminate outer DO-loop.

Terminate level 01 procedure and return to main program at level 0.

Sample Procedures

79

6. ASSEMBLY LISTING

AP produces listing lines according to the format shown in
Figure 2. The page count, a decimal number, appears in
the upper right-hand corner of each page.

EQUATE SYMBOLS LINE

Each source line that contains an equate symbol or dis-
play directive (EQU, SET, or DISP) contains the following
information:

EEE Up to three error code characters.

NNNNND Source image line number in
decimal, followed by the line
designator. If this is an update
line, the line designator is an
asterisk. If the line is within a
SYSTEM file, the designator will
contain the letter A through H,

for system levels 1-8. Otherwise
the line designator is blank.

and

XXXXXXXX

Value of argument field as a
32-bit value.

or

ccC Control section number in hexa-
decimal. Thefirst control section
of an assembly is arbitrarily as-
signed the value 1, and subse-
quent sections are numbered
sequentially.

LLLLL Value of the argument field as a
hexadecimal word address.

B Blank, 1, 2, or 3 specifying the
address's byte displacement from
a word boundary.

or

1717 A one- to four-character value
type indicator when the value of
the item in the argument field is
other than an address or a single
precision integer. This is dis-
cussed below.

and

SSS... Source image.

80 Assembly Listing

and

<PPPPP. QQQQQ™ This field represents an error link
that consists of the line number
of the previously encountered
error line (blank if none). The
PPPPP is the major line number
and QQQQQ is the minor line
number if any, i.e., an update
line.

When the argument field of an EQU, SET, or DISP directive
specifies a value that is neither a single precision integer
nor an address that is evaluatable when the directive is en-
countered, the assembly will print a one- to four-character
value type indicator in the value field of the listing (print
positions 18=25). If the argument field of the DISPdirective
specifies more than one value, the values or value type

indicators will be printed singly beginning with the value
field of the directive line and continuing for successive
lines. The information listed in the value field for various
kinds of EQU, SET, and DISP arguments is shown in the
following listing:

SET, EQU, DISP
Argument Type

Display in Listing
Value Field

Single precision integer Value of integer

Address Value of address
Fixed decimal constant FX
Floating short constant FS
Floating long constant FLI
Packed decimal constant D
Character string constant TEXT
Local forward reference LFR
External reference EXT
Double precision integer DPI
Undefined reference : UND
+ expression involving a Value of integer
sum of relocatable items portion S
List, i.e., LIST followed by:
value], e ,v¢:||uen value] only for
DISP
: directive
value,
*kkk

Note: Any of the list items might itself be a list. In that
case LISTand **** will print to define the elements
of such a sublist.

90 30 00C-1(6/75)

Print

Position 1234567891011 1213 141516171819 20 21 22 23 24 25 26 27 28 29 30 31 3233 34 35

Equate EE ENNNNND ccC L LLLL B

symbols EE ENNNNND XXX X X X X X /

line EE ENNNNND TTT T

Assembly

listing line EE ENNNNND C C L L L L L B XXX XX XXX A

Ignored

source /

image line EE ENNNNND * g %

Literal

listing line EEE cC L LLLL B XX XX X X XX A

Print

Position 363738 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
|

Equate S S..

symbols S S...

line S S... ... S < P P P P P . Q@ Q@ Q Q@ Q@ >

Assembly

listing line S S .5 S < P P P P P Q@ Q @ Q@ Q@ >

Ignored

source

image S S S S < P P P P P Q Q @ @ Q@ >

Literal ‘

listing line < P P P P P Q Q@ Q@ @ @ >

Figure 2, AP Listing Format

Equate Symbols Line

81

-ASSEMBLY LISTING LINE

Each source image line containing a generative statement
prints the following information:

82

EEE

NNNNND

CcC

LLLLL

XX

XXXX
XXXXXX
XXXXXXXX

A

Up to three error code characters.

Source image line number in dec-
imal, followed by the line desig-
nator. If this is an update line,
the line designator isan asterisk.
If the line is within a SYSTEM
file, the designator will contain
the letter A through H, for sys-
tem levels 1-8. Otherwise the
line designator is blank.

Current section number in hexa-
decimal. See CC under "Equate
Symbols Line".

Current value of execution loca-
tion counter to word level in
hexadecimal.

Blank, 1, 2, or 3, specifying
the byte displacement from word
boundary.

Object code in hexadecimal
listed in groups of one to four
bytes.

Address classification flag.

blank

denotes an address
field in control

section CC.

A denotes an absolute
address field.

F denotes an address

field containing a
forward reference.

X denotes an address
field containing an
external reference.

N indicates that the ob-
ject code produced
for the source line
containsarelocatable
item (i.e., an ad-
dress, aforward refer-
ence, or external
reference) in some
field other than the
address field.

S denotes an address

with a negative off~__

set from the base of
a relocatable con-
trol section.

SSS...

<PPPPP. QQQQQ>

NN specifies an address
in control section NN
(where NN #CC).

Source image.

This field represents an error link
that consists of the line number of
the previously encountered error
line (blank if none). The PPPPP
is the major line number and

QQQQQ is the minor line num-
ber if any, i.e., an update line.

IGNORED SOURCE IMAGE LINE

A skip flag indication

S

is printed in columns 33-35 for each statement skipped by
the assembler during a search for a GOTO label or while
processing a DO or DO1 directive with an expression value

of zero. NNNNND, SSS. ..

and <PPPPP. QQQQQ> have

the same meanings as in an assembly listing line.

The *S* flag is also printed in columns 33-35 beside any
CNAME directive containing a procedure name that was
not subsequently referred to in a command procedure ref-

erence line.

If none of the names for a procedure are re-

ferred to, the entire procedure will be skipped and so
indicated on the assembly listing.

ERROR LINE

When an error is detected in the source imoge line, the
line begins with up to three error code characters. The
error codes and their meaning are listed'in Chapter 11,

LITERAL LINE

Any literals evaluated during an assembly are printed imme-
diately following the END statement. Literals are listed in
the order in whichthey were evaluated, and the listing line

contains

EEE
CcC

LLLLL

Assembly Listing Line/Ignored Source Image Line/Error Line/Literal Line

Up to three error code characters.

Current section number in hexa=
decimal. See CC under "Equate
Symbols Line". -

Current value of execution loca-
tion counter to word level in
hexadecimal.

Must be blank since all literals
are generated ona word boundary.

XXXXX XXX Value of literal as a hexadecimal
memory word.
A Address classification flag. See

"Assembly Listing Line".

<PPPPP.QQQQQ> Error link. See Assembly Listing
Line for description.

SUMMARY TABLES

Immediately following the literal table, the following sum-
maries are printed as a standard part of the assembly listing.
Each summary is preceded by an identifying heading.

1.

Control Section Summary. Shows the section number,

size, and protection type of all control sections in the
program. A typical item has the form

01 005B4 2 PT 1

where 01 is the control section number and 005B4 is
the number of words in the section, plus two additional
bytes. PT 1 means that protection type 1 is assigned to
this section. Protection type, an integer from O to 3,
is specified by a CSECT, PSECT, or DSECT directive
(see Chapter 3). The control section summary is listed
four items per line, and reflects the values assigned by
phase 2 (see Summary 8, below).

A page eject follows the control section summary and
the following summaries then print. Items 2 and 3
below, may be omitted by including the option NS
(no summaries) on the AP control card. Items 4
through 6, the error summaries, always print, however.

Symbol Value Summary. Shows all symbols in the pro-

gram, except those designated as LOCAL or closed.
A typical item has the form

SCALE/01 00185

where SCALE is a symbol name, 01 is its control sec-
tion, and 001B5 is the hexadecimal word address at
which it is defined. In place of a contro! section and
word address, some symbols will have a 32-bit value

displayed as an -eight-digit hexadecimal number or may
have a one- to four-character value type indicator.

90 30 00C-1(6/75)

In other words, the information following a symbol
name may have the same format as described previously
under "Equate Symbols Line™". On some items, the slash
is replaced by an asterisk if the SD option has been
specified in the AP control command. The SD option
specifies that symbolic debugging code (i.e., a symbol
table) is to be included in the relocatable object mod-
ule. When a symbol appears in o DEF statement, the
form is as described above except that the slash or as=
terisk is replaced by a dash.

The symbol values are printed four per line except
where an entry is too long for its allotted print field
and overflows into the field to its right.

External Symbols Summary. Shows all symbols in the
program declared to be external definitions and refer-
ences. Symbol names are listed followed by the decla-
ration type. This summary is formatted at six per line
where possible. The first DEF symbol is indicated by
*DEF instead of =DEF after the symbol name.

Undefined Symbol Summary. Shows all symbols used
but not defined or declared to be external references.

Error Severity Level. This line shows the highest error
severity level encountered in the program (note that the
ERROR directive may be used to obtain other severity
levels) .

Severity Level Error
0 None.
3 All assembly errors.
5 Update errors.
7 Control section size errors.

Error Line Summary. Shows the nymber of error lines

encountered during the assembly jand gives a line
number link to the last error liné. Each error line
pointed to, in turn, points to the previously encoun-
tered error line (see Figure 2).

Update Error Summary. This line indicates the numbers
of error lines encountered within an update packet. If
there are no update errors, this line is not printed.

Control Section Error Summary. This summary lists all
control sections whose total size in phase 2 differs from
its total size in phase 3. The format is the same as the
Control Section Summary above, but indicates the
number of words assigned by phase 3. This summary
is omitted if there are no control sections with size
inconsistencies.

Summary Tables 83

1. AP OPERATIONS

To assemble an AP program, a deck containing the necessary
monitor commands must first be prepared. The first such
command is the AP control command, described in this chap-
ter. Many other monitor commands can be used; these are
described in the appropriate monitor reference manual (see
"Related Publications" at the beginning of this manual).

AP CONTROL COMMAND

The AP control command has the following format:

'AP option 1, option 2, ..., option n

where any number of options, or none, may be specified.
The options and their meanings are given below.

Options may be specified in any order. Except for AC, SB,
and SC, repetitions of the same option are ignored; that is,
the effect is that of a single occurrence. If no options are
specified, the following options are assumed:

SI, LO, GO

The AP control command is free-form; blanks are ignored
except within the parentheses of the AC, SB, or SC options.
Continuation is specified by placing a semicolon anywhere
a blank is permitted. Processing of the AP card is then re-
sumed at the first nonblank in the next card. AP continua-
tion cards must not have an ! in column one. There is no
limit on the number of continuation cards used with the AP
card. A period may be used to terminate the last AP con=
trol card option. All characters following the period (or
the semicolon of a continued card) are ignored.

The meanings of the various options are as follows:

AC (acl,acz.....acn) where n £15. This option is
used in conjunction with the SYSTEM directive of AP.
With this option, the user can specify what accounts or
areas on the RAD to search for system files. Accounts are
searched in the order specified, followed by the "system
account" if the file has not been found. The "system ac~
count" is the DI area for CP=-Rand RBM; it is:SYS for CP=V,

If the AC option is specified and AP later encounters a
SYSTEM directive, it will instruct the Monitor to search for
the system name in the Monitor's account and name table,
under the accounts given in the AC option. The search will
be performed according to the order specified in the AC
option, from left to right, until the specified system is found
or the accounts are exhausted. If the system is not found
under the user-specified accounts, the "default accounts"
are then searched. If the AC option is not specified, the
system specified by the SYSTEM directive is searched for

84 AP Operations

only under the "default accounts". For CP-R and RBM,
"default accounts" are only the system account; for CP=V,
the current job account, followed by the "system account"
constitute the "default accounts". Since all standard sys-
tems are filed under the "system account", they will be
found correctly even when the AC option is not used. If
more than one AC option is specified, the search is per-
formed from left to right across the card.

Thus,

IAP AC(1),...,AC(2,3), ...,AC(4), ...

is equivalent to
IAP AC(1,2,3,4), ...

and both will cause a system search to be performed, first
under account 1, then 2, 3, 4, and, finally, under the "sys-
tem account".

A system is identified by the name under which it is entered
on the disk. This name must correspond to the name speci-
fied on the SYSTEM directive line used to reference the
system. Further, a system name must constitute a legal
"symbol" according to the AP syntax rules.

BA Selects the batch assembly mode. In this mode, suc-
cessive assemblies may be performed with a single AP card.
The assembler will read and assemble successive programs
until a double end-of-file is read. In the batch mode, cur-
rent device assignments and options on the AP card are ap-
plied to all assemblies within the batch.:

A program is considered terminated when an END directive
is processed. Successive programs may optionally have a
single end-of-file indicator separating them.

With input from the card reader, an end-of-file is indicated
by an EOD card. Two successive EOD cards or any other
Monitor control card terminates the job.

When batch assemblies consist of successive updates from
the card reader, to compressed programs from disk or tape,
the update packets are considered terminated by a +END
card, and may optionally be separated by single EOD cards.
There must be a one-to~one correspondence of update
packets to compressed programs. End of job is signaled by
two consecutive end-of-files following either the last CI
program or the last update packet, whichever occurs first.

BO This option specifies that binary output is to be pro-
duced on the BO device.

cl This option specifies that compressed input is fo be

taken from the CI device.

90 30 00C-1(6/75)

CN This option specifies that a concordance, or
symbolic name cross~reference listing, is to be produced on
the LO device. One or more concordance control com=
mands will follow the AP control command on the C device.
These commands specify the set of symbols to be included
in the concordance (see "Concordance Control Commands
and Listing" in Chapter 9). Requesting a concordance does
not require a full assembly of the program.

co This option specifies that compressed output is to be
produced on the CO device.

1M This option specifies that a "standard" concordance
is to be produced on the LO device. The DC option differs
from the CN option in that no attempt is made to read the
C device for concordance control commands. If both DC
and CN are specified, the DC option takes priority, and the
CN option is ignored.

GO This option specifies that the binary object program
is to be placed in a temporary file from which it can later
be loaded and executed. The resultant GO file is always
temporary and cannot be retained from one job to another.
To retain the binary object program for a subsequent job,
the BO option (with BO assigned to disk or magnetic tape)
must be used.

Lo This option specifies that a listing of the assembled
object program is to be produced on the LO device.

LS This option specifies that a listing of the source pro-
grams is to be produced on the LO device. This listing
consists of an image of columns 1 to 80 of each input line
(after updates have been incorporated) with its line number.

LY This option specifies that a listing of fheﬁupdqfe
deck (if any) is to be produced on the LO device. This
listing consists of an image of each update line and its line
number in the update deck.

ND This option specifies that no standard definition file
is to be input for this assembly. Note that PD implies the
ND option, so that ND is redundant if PD is also specified.

NS This option specifies that summaries following the
assembly listing are tobe omitted for symbol values, external
definitions, and primary and secondary external references.

PD (styyuasyShy) This option specifies that a standard
definition file is to be produced. The file will be written
through the F:STD DCB, which contains a built-in file name
of $:STDDEF. Thus, if F:STD is not reassigned, the PDoption
will cause creation (or overwriting) of a file, $:STDDEF.
For CP-R and RBM, this file will be written in the area
specified by a :ALLOT command. A file name other than
$:STDDEF may be created by use of the appropriate monitor
ASSIGN command for F:STD.,

90 30 00C-1(6/75)

The optional sn; are names by which the standard definition
file is identified. Since thisfile is included in any assembly
that does not specify ND, reference fo the sn; names on a
SYSTEM directive is redundant.

SB,SC These options specify, respectively, that binary
and compressed fileswillbe output with EBCDIC identifica-
tion and/or sequence numbers in bytes 109 through 120.
When the files are punched on cards, this information ap-
pears in columns 73 through 80. The form is SB(id(seq)) or
SC(id(seq)), where id represents astring of 0 to 8 characterst
of identification, and seq is the beginning sequence number.

If (seq) is omitted, sequence numbers begin at zero. If SB
or SCis specified with no id parameter, no id field is output..

If SB or SC is specified, the corresponding output option

(BO or CO, respectively) is not required; the corresponding
output file is unconditionally produced. If GO and SB are
specified, GO will be sequenced as well as the BO output.

Sequence numbering begins at zero or at the number speci-
fied as seq, and increases by one for each successive output
record. The sequence number occupies 8-n card columns,
where n is the number of characters in the ID specification.
If the number cannot be represented in that many columns,
the mostsignificant digits are lost with no error indication.
When used with the BA option, the ID remains constant and
sequencing is continuous for all programs.

SO This option specifies that symbolic debugging code
(i.e., a symbol table) is to be included in the relocatable
object module produced by the assembler. Inclusion of this
symbol table allows a debug subsystem to associate symbolic
names and type information with specified memory cells.
This allows run=time debugging and modification of a pro-
gram in a symbolic format similar to the actual assembly
listing .

When a symbol value summary is produced at the end of the
assembly listing, any symbols entered into the object code

will be identified in the summary by an asterisk (*) instead

of a slash (/) preceding their value, word address, or type
indicator.

SI This option specifies that symbolic input is to be
taken from the SI device.

S0 An EBCDIC card image representation of the input
program is to be produced after updates have been in-
corporated. The symbolic records will be written on the
SO device.

fanl alphanumeric characters are permitted, as well as blank
and all printing characters from X'4A" through X'7F' except
left or right parentheses.

AP Control Command 85

su This option specifies that the update control com-
mands (see "Updating a Compressed Deck") within any
update deck are in sequential order. The order of such
commands is actually immaterial, since AP orders them as
required; but if SU is specified, any out-of-sequence com-
mands are listed on the LU and DO devices.

INPUT/OUTPUT FILES

AP explicitly opens Input/Output files after reading the AP
control card. All files are closed before AP returns to the
monitor; they are not closed and reopened for each program
assembled with the BA option.

AP always opensthe LO and DO files. Other files are opened
only if required, as determined by control card options.

85-1 Input/Output Files

For CP-R and RBM, additional file manipulations occur for
certain output files when opened, afte:r each assembly (with
BA), and when the files are closed:

After
Each
File Open Assembly Close

BO None None None
CO None WEOF WEOF, PFIL(REV,2),PFIL(FWD)
DO None WEOF WEOF, PFIL(REV,2),PFIL(FWD)

GO PFIL None WEOF(2),PFIL(REV, 2),PFIL(FWD)

(FWD)
LO None WEOF WEOF, PFIL(REV,2),PFIL(FWD)

SO None WEOF WEQF, PFIL(REV,2),PFIL(FWD)

90 30 00C-1(6/75)

8. UPDATING A COMPRESSED DECK

By the use of the CO option on the AP card, AP may be
directed to produce a compressed deck of a source program
which can then be used as input during a later assembly,
Since a fypical compressed deck contains one-fourth to
one-fifth as many cards as the corresponding source deck,
the use of compressed decks offers significant operating
advantages in both manageability and speed, The following
discussion explains how to update a compressed deck with
an "update packet". An update packet is considered to be
the set of cards between the first + (update) command and
the compressed deck. If symbolic lines precede the first

+ command, they are freated as if they werepreceded by a
+0 (see +k below); that is, they are inserted before the
first line of the program.

AP recognizes four update control commands,

+k where k is a line number corresponding to a line
number on the source or assembly listing produced
from the compressed deck. The +k control card
designates that all cards following the +k card,
up to but not including the next update control
card, are to be inserted after the kth line of the
source program. The command +0 designates an
insertion before the first line of the program.

+, k where j and k are line numbers corresponding
to line numbers on the source or assembly listing
produced from the compressed deck, and j <k.
This form designates that all cards following the
+j, k card, up fo but not including the next update
control card, are to replace lines | through k of
the source program. The number of lines to be
inserted does not have to equal the number of
lines removed; in fact, the number of lines to be

86 Updating a Compressed Deck

inserted may be zero. In this case, lines j through
k are deleted,

+* designates an update packet comment card, That
is, this card is listed (if the LU option is specified)
but is not entered into the program. If an error is
defected in an update control card, comment cards
are skipped along with other noncontrol cards,

+END designates the physical end of an update
packet. This card must be the last card in any up-
date packet.

The + character of each update control command must be
in column 1, followed immediately by the control infor-
mation, with no embedded blanks, The control command
is terminated by the first blank column encountered, Op-
tionally, the blank may be followed by comments.

If the SU option is specified, update control cards must be
in ascending sequence. If they are not, a sequence error
message will be produced for each control command out of
order, and AP will order them as required. If the SU option
is not specified, AP will order update commands without
error notification,

The ranges of successive insert and/or delete control com-
mands must not overlap, except that the following case is
permissible: +j,k followed by +k, where j<k.

Overlapping or otherwise erroneous control commands will

cause the erroneous command and all subsequent cards up to
the next control command, to be deletéd from the update
packet. These cards are output on the LO file regardless of
the LU assembler option.

9. CONCORDANCE CONTROL COMMANDS AND LISTING

When the CN option is included on the AP control card,
the assembler will access the C device for additional con-
trol records describing the data to be included in the con-
cordance (symbolic name cross=reference) listing.

An alphanumeric string, such as R2, B, or RES is considered
to be an operation code when used in the first command
field of a statement. When used elsewhere in a statement
it is considered to be a symbol.

If desired, a "standard" concordance can be produced by
entering the DC option on the AP control command and
omitting all concordance control records on the C device.

The "standard " concordance listing does not inciude opera~-
tion code names, but otherwise includes all symbol refer-

ences, including function and command procedure names

and intrinsic functions such as §, L, AFA, etc.

LOCAL symbols or symbols appearing as arguments of a
SYSTEM directive do not appear on any concordance list-
ing. Except for this restriction, all symbols and operation
codes used in o program can be listed by selective use of
the concordance control commands.

CONCORDANCE CONTROL COMMANDS

The concordance subsystem provides the following commands
for specifying the contents of a concordance listing:

10 Include all or a selected set of operation codes.
SS Suppress all or a selected set of symbols.
oS Include only a selected set of symbols.

DS Produce a modified 1S listing, displaying only
lines that reference a selected set of names.

END Terminate concordance control commands,

The control records must have a period (.) in column 1 and
the selection code (i.e., command name) in columns 2-4,
After a space of one or more blanks, a name list of the form
nameq(, namey, ... may follow the selection code. Em-
bedded blanks between names in the list are not allowed.
The name list may be continued for several physical records
by using the AP semicolon contiruation convention. Fur-
thermore any number of records contaihing the same selec~
tion code may be used.

Symbols specified on concordance control commands are

implicitly OPENed when the command is processed. The
symbols may subsequently be OPENed and CLOSEd within
the program and the command will control all such symbols

90 30 00C-1(6/75)

with the same name. However, if a CLOSE balances the
initial implicit OPEN, that symbol is effectively removed
from further concordance control at the point of the CLOSE.

Concordance control records are printed, as read, on the

LO device.

10 This command specifies that all operation codes, or
only those given, are to appear on the concordance listing.
The form of the command is

10 [nqme],nqme2, . .,nomen]

If the name list is given, only the operation codes it speci-
fies will be listed. If the name list is absent, all operation
codes will be listed. (The brackets do not appear on the
control record; they are shown above only to indicate that
the name list is optional.)

SS This command specifies that all symbols, or only those
given, are to be suppressed on the concordance listing.
The form of the command is

.SS [name],namez, vens namen]

If the name list is given, only the symbols it specifies will
be suppressed. If the name list is absent, all symbols will
be suppressed. The 5S and OS commands (explained below)
may not both be used in a given set of concordance control
commands. (The brackets do not appear on the control rec-
ord; they are shcwn above only to indicate that the name
list is optional.)

0s This command specifies that only a given list of
symbols is to appear on the concordance listing. The form
of the command is

.0OS name,,name,, ... name

The name list is mandatory. Only the symbols it specifies
will appear on the concordance listing. The SS and OS
commands may not both be used in a given set of con-
cordance control commands.

Concordance Control Commands and Listing 87

DS This command specifies that a given list of symbols
is to be displayed by producing a modified LS listing. (The
LS option was explained previously under "AP Control Com-
mand".) The format of the DS command is

.DS name,,name,, ...,name
1 200 n

The name list is mandatory. Only the symbols it specifies
will appear on the modified LS listing. Instead of the en-
tire source program, the LS listing will display only lines
containing names — in any coitext — specified in the DS
name list, The DS command is independent of the 10, SS,
and OS commands. The DS command overrides a request
for a full LS listing.

END This command identifies the end of a set of con-
cordance control commands. Its format is

.END

The END command is mandatory if the CN option is speci-
fied. If only the END command appears on the C device,
a "standard" concordance listing will be produced.

CONCORDANCE LISTING

The concordance listing follows the regular assembly list-
ing. Names are printed on the concordance listing in al-
phabetical order, followed by one or more name reference
items. The general format of each name reference item is

- op. code
reference line number|$

/op. code [*¥]
where

reference line number is the source program line
. . .
number in which the name appears. The largest

87-1 Concordance Listing

reference line number that may be correctly pro-
cessed is 32767, If update records appear in the
concordance in the form "M.N", the largest up-
date record number ".N") that may be correctly
processed is also 32,767.

~op. code indicates that the name occurs in the
label field of the reference line, and op. code is
the operation code name used on that line.

$ indicates that the name occurs in the first com-
mand field of the reference line. In this case, $
terminates the reference item.

/ op. code[*] indicates that the name occurs in
other than the label or first command field of the
reference line, and op. code is the operation
code name used on that line. The operation code
name may be followed by an asterisk if the name
specified occurred in argument field 1 and was in-
directly addressed.

A sample name might appear on the concordance listing as

A 372 - DATA 459/LW*

This display means that symbol A was used at line 372 in the
label field of a DATA statement, and at line 459 of an in-
directly addressed Load Word instruction.

Reference line numbers can appear in the form "M" or
"M.N", depending on the form of the source program. The
form M. N appears only for those lines that are in an update
record format and for which a new comiressed file has not
been produced.

The reference items following each name are formatted up
to eight per line and are sorted by reference line number.
Unusually long operation code names will cause fewer ref-
erence items per line to be printed.

90 30 00C-~1(6/75)

10. PREENCODED FILES

AP contains the provision for including a preencoded version
of a previously assembled "standard definitions" file in
each assembly, This file is most useful when it contfains in-
formation normally contained in standard SYSTEM files, like
SIG7FDP. It is necessary to assemble this "standard defini=-
tions" program with options that cause AP to write the as-
sembled program on a standard definition file, This program
will reside on a random access device (disk or RAD) in an
internal format most quickly processed by AP. The source
for preencoded files is discarded when the preencoded file
is created. Therefore, a preencoded file cannot be listed
by the PSYSdirective when that file is referenced by a sub-
sequent assembly.

If a preencoded standard definitions file exists, AP will read
this file prior to reading the source program being assembled.
Then, when a SYSTEM directive is encountered, AP first
determines whether that SYSTEM is included in the standard
definitions file and, if it is, does not access the SYSTEM
normally, Instead, that information is assumed to be in the

88 Preencoded Files

standard definitions file. This considerably speeds up the
assembly of small to medium size assemblies, with no opera=-
tional change apparent to the user.

If the ND control card option is specified, AP will not at-
tempt to read a standard definitions file, If ND is not
specified, AP will first attempt to open the F:STD DCB in
the "system account" under the name $:STDDEF. If the
OPEN is successful, the names previously assigned to this
file by the PD option are saved and the assembly continues.
If no such file exists, the assembly proceeds as if the ND
option had been specified.

A preencoded file may be created by assembling a program
with the PD control card opfion. This option is optionally
followed by a list of names, enclosed in parentheses, by
which the preencoded file will be identified. The name
SIG is reserved for all SIG7FDP names listed in Table 4
(see SYSTEM directive). Thus the control card option
PD(SIG) must be used to create a standard definition file
consisting only of the Sigma instruction set.

90 30 00C-1(6/75)

11. ERROR MESSAGES

AP outputs two types of error messages: flags and error
messages pertaining to the assembled program, and opera-
tional and irrecoverable error messages.

ERROR FLAGS

C Constant string error. A constant contains an illegal
character or is improperly formed. For example,

X'ABCDEFG' (The 'G' is not a hex digit.)

D Duplicate symbo! or command. This error message is
caused by one of the following conditions:

1. The assembler has detected a duplicate definition
for a program symbol.

2. The assembler has encountered an instruction or
directive in which a doubly defined program sym-
bol is used.

3. The assembler has encountered a CNAME, COM,
or S:SIN statement label that is identical to the
label of another CNAME, COM, or S:SIN

statement.

4. An attempt has been made to redefine an AP in-
- trinsic function or directive with a CNAME,
COM, S:SIN, or FNAME statement.

E Illegal Expression. This error message is caused by one
of the following conditions:

1. The argument field for BOUND contains other than
a power-of-two\ integer between 1 and 32,768.

2. The argument field for DO, DO1, RES, or SPACE,
or the command field for COM contains other than
an integer.

3. The argument field for ORG, LOC, or END con-

tains other than an integer or an address.

4. The argument field for USECT contains other than
an address.

5. The argument field for CSECT, DSECT, or PSECT
contains other than an integer between 0 and 3.

6. The argument field or the command field (for class
0 or 2) of a standard instruction is blank.

7. The constant string for TITLE contains more than
68 characters.

8. The command field for ERROR contains other than
one or two integers.

90 30 00C-1(6/75)

9. The command field for ORG or LOC contains other
than the integer 1, 2, 4, or 8.

10. The command field for DATA contains other than
an integer in the range 0 to 16, or the command
field for RES contains a negative integer.

11. The command field for S:SIN isnot 0, 1, or 2.

12. Asymbol was used in a directive in such a way that
core allocation could not be determined at the time
that the directive was processed (e.g., a forward
reference in the field list of a GENdirective or in
the command or argument field of a RES directive).

13. A forward reference was used in a SET or EQU
directive.

14, Arithmetic was performed on two incompatible
quantities.

15. Division by zero was attempted.

16. The syntax of an S:KEYS intrinsic function was
incorrect.

Illegal or unknown command. This error message is
caused by one of the following conditions:

1. The assembler has encountered a command contain-
ing an unrecognized name.

2. A command that would create more than 127 relo-
catable control sections has ban encountered.

3. A SOCWdirective was encountered after a relocat-
able control section was opened, or a directive is
illegal after SOCW has been specified.

Program structure error. This error message is caused
by one of the following conditions:

1. The assembler has detected an unterminated DO
loop (i.e., a PEND or END directive was en-
countered before the FIN directive that should
have terminated the loop).

2. The assembler has detected an unterminated pro-
cedure (i.e., an END directive was encountered
before the PEND directive that should have ter-
minated the procedure).

3. The assembler has detected an extra ELSE directive
in a DO loop.

4. The assembler has detected an extraneous FIN

directive outside of a DO loop or an extraneous
PEND directive outside of a procedure.

Error Messages 89

5. The assembler has encountered a LOCAL directive
while a GOTO search was being made for a local

symbol.
6. The command field contains other than an integer
or a blank, or the selection argument field ele-

ment was not a symbol on a GOTO directive.

7. An extraneous PROC or PEND directive has been
encountered within a PROC definition.

8. The assembler has detected an unterminated skip

in a conditional assembly sequence in a procedure

(i.e., a PEND or END directive was encountered
before the termination condition was satisfied).

9. A DOT directive caused multiple execution of a
DO, DOI1, ELSE, FIN, END, GOTO, PEND,
PROC, or SYSTEM directive.

7. An apparent constant qualifier other than C, D,
FL, FS, FX, O, or X has bee : encountered.

8. A character not in the recognized character set
has been encountered outside a constant string.

Truncation error. This error message is caused by one
of the following conditions:

1. The assembler has encountered a generated data
value that is too long for the specified field.

2. A text string contains more than 255 EBCDIC
characters.

3. A subscript is not an integer between 1 and 255.
4. The assembler has encountered an arithmetic op-

eration in which the precision of one or more of
the operands exceeds the limits allowed.

L Label error, This error message is caused by one of the
following conditions: 5. A symbol contains more than 63 characters (char-
acters beyond 63 are ignored).
1. The label field for CNAME, COM, S:SIN, or
FNAME contains other than a symbol. 6. A list was created with more than 255 elements.
2. The label field for an instruction or a directive .
that enters values into the symbol table contains 7. The argument of a DO is greater than 65,335.
Z:::er:rqn a blank, a symbol, or a single list 8. A value cannot be expressed in the standard object
: language.
S Syntax error. A general violation of syntactic struc= Undefined symbol. This error message is caused by one
ture has been encountered. For example, n tes
of the following conditions:
1. The argument field of one of the directives DEF, , .
GOTO, LOCAL, OPEN, CLOSE, REF, or SREF, I+ The assembler's symbol table confained an unde-
contains other than a well-formed AP symbol. fnec symool at The completion ot assembly «
2. The assemblerhas encountered an intrinsic function 2. ': fs.ym:o| q::.lm;id fo be. |occ;| WTS us.ed, b(l;.th.mf
as the argument of an OPEN, CLOSE, or LOCAL. etfined, within fhe previous tca region. is
message appears at the end of a local region.)
3. TI-.ne ?ssembler has et\counfered an OPEN/CLOSE 3. A keyword non-match was found in an S:KEYS
within a LOCAL region that attempted to reference .
bol X X reference list.
a symbol that has the same configuration as a
LOCAL symbol.
4. A continuation line contains a character other than OPERATIONAL AND IRRECOVERABLE
blank or asterisk in column one. 'ERROR MESSAGES
S ':ne:;;?m::t:l:(:;:::'zne':arotlfc;mce? (a missing The messages resulting from operational and irrecoverable
P ! P ! o error conditions are described in alphabetical order in
6. Unbalanced parenthesis. Table 5.
Table 5. Operational and Irrecoverable Error Messages
Message Description

BAD ENCODED TEXT .
PROCESSING SYSTEM — system name (if in system)
AP ABORT ERROR

An error has been encountered in the assembly phase.

BAD INSTRUCTION TRAP, PSD = xxxxxxxx
PROCESSING SYSTEM — system name (if in system)
AP ABORT ERROR

yyyyyyyy

A bad instruction has caused a trap. The x's and y's
are the hexadecimal representation of the first and sec-
ond words of the Program Status Doubleword (PSD).

90 Operational and Irrecoverable Error Messages

90 30 00C~1(6/75)

Table 5. Operational and Irrecoverable Error Messages (cont.)

Message

Description

CHECKSUM ERROR ON CI RECORD # xxxx

COMPRESSED RECORD ID/SEQUENCE/CHECKSUM/BYTECOUNT

IS ww/xx/yy/zz
PROCESSING SYSTEM — system name (if in system)
AP ABORT ERROR

During processing of a compressed input file, a check-

sum error was found on a compressed record. The char-
acters xxxx represent the record numberin hexadecimal;
and ww, xx, yy, and zz represent the hexadecimal

| values for compressed record identifier, sequence num=

ber, checksum, and byte count, respectively.

CI CODE ERROR ON RECORD # xxxx
PROCESSING SYSTEM — system name (if in system)
AP ABORT ERROR

An error has been encountered during processing of a
compressed input file. While reading a compressed in-
put or system file, a compressed record was encountered
with an erroneous control byte. The characters xxxx
represent the record number in hexadecimal.

COMPRESSED OR BINARY RECORD FOUND IN SI FILE
PROCESSING SYSTEM — system name (if in system)
AP ABORT ERROR

An illegal symbolic record has been encountered during
processing of a symbolic input file. An S record with

the first byte of X'18', X'38', X'1C' or X'3C" has been
read.

CONTROL CARD ERROR
AP ABORT ERROR

A syntax error or illegal AC option has been encoun-

tered on the AP control card. In addition to this mes-
sage, a colon is printed just below the error in the AP
card.

For example,
1AP/S1,LO,GO

CONTROL CARD ERROR
AP ABORT ERROR

The colon in this example indicates that the slash is a
syntax error (a space or comma is allowed between AP
and the first option). ‘

DEF/GEN SPACE OVERFLOW
PROCESSING SYSTEM = system name (if in system)
AP ABORT ERROR

The assembly phase does not have enough core to
continue.

ENCODER SPACE OVERFLOW
PROCESSING SYSTEM — system name (if in system)
AP ABORT ERROR

The encoder phase does not have enough core to
continue.

ERROR OR ABN ON FILE yy XXXX
PROCESSING SYSTEM — system name (if in system)
AP ABORT ERROR

A Monitor-detected /O error has occurred during pro-
cessing of file yy. The error code (and subcode if ap~-
plicable) is specified as xxxx in hexadecimal.

ERROR OR ABN WHEN OPENING F:SYS
PROCESSING SYSTEM — system name
AP ABORT ERROR

During an attempt to open a system file, the Monitor
detected an error or abnormal condition. The system
name displayed is the outermost system (that is, the
one called by the source program, not one called from
within a system).

90 30 00C-1(6,/75)

Operational and Irrecoverable Error Messages 91

Table 5. Operational and Irrecoverable Error Messages (cont.)

Message

Description

EXPECTED CI MISSING
PROCESSING SYSTEM — system name (if in system)
AP ABORT ERROR

A symbolic record or end-of-file has been encountered
during processing of a compressed file before having en-
countered the compressed end-of-file byte. Typically,
this error occurs when cards have been lost from the end
of a compressed deck.

EXPECTED SI MISSING
AP ABORT ERROR

During processing of an input file, an end-of-file error
has been encountered. Typically, a double end~of-file
is missing when the BA option has been requested.

ID ERROR ON CI RECORD # xxxx

COMPRESSED RECORD ID/SEQUENCE/CHECKSUM/BYTECOUNT
IS ww/xx/yy/zz

PROCESSING SYSTEM — system name (if in system)

AP ABORT ERROR

During processing of a compressed input file, an illegal
compressed record has been encountered. The first byte
of the compressed record is neither X'38' nor X'18'.
The characters xxxx represent the record number in
hexadecimal; and ww, xx, yy, and zz represent the
hexadecimal values for compressed record identifier, se-
quence number, checksum, andbyte count, respectively.

*** IGNORED ***

See the message titled ILLEGAL UPDATE SYNTAX,

below.

ILLEGAL OPTION IGNORED: xx

An unknown option (represented by xx) has been en-
countered on the AP control card. The unknown option
is ignored and processing continues. This error message
is printed on the line following the erroneous AP con-
trol card.

record no. erroneous control record

ILLEGAL UPDATE SEQUENCE

An error has been encountered during processing of an
update packet. The update control records displayed

are not in sequential order and the SU option has been
specified. AP will put the records in correct sequence
and continue processing.

record no. *** IGNORED *** erroneous control record

ILLEGAL UPDATE SYNTAX

A syntax error has been encountered during processing
of an update packet. The update control record dis-
played has a syntax error in the position indicated by
the colon. The position of the erroneous record in the
update packet is indicated by the record number. For
example,

100 *** IGNORED *** +5,2

ILLEGAL UPDATE SYNTAX

All subsequent update records will be ignored up to the
next plus card control record.

MEMORY PROTECTION TRAP, PSD = xxxxxxxx
PROCESSING SYSTEM — system name (if in system)
AP ABORT ERROR

Yyyyyyyy

A memory protection error has caused a trap. The x's and
y's are the hexadecimal representation of the first and
second words of the Program Status Doubleword (PSD).

MONITOR TRAP, PSD = xxxxxxxx YYYYYYYY
PROCESSING SYSTEM — system name (if in system)
AP ABORT ERROR

An error has caused a Monitor trap. The x's and y's
are the hexadecimal representation of the first and
second words of the Program Status Doubleword (PSD).

NO INPUT SPECIFIED
AP ABORT ERROR

During processing of the AP control card, it is dis-
covered that no input option (Sl or CI) is specified
but other options are specified.

92 Oper;qfional and Irrecoverable Error Messages

Table 5. Operational and Irrecoverable Error Messages (cont.)

Message

Description

record no. 1 erroneous control record 1

record no. 2 erroneous control record 2

OVERLAPPING SEQUENCE NUMBERS. LAST UPDATE
GROUP IS IGNORED

An error has been encountered during processing of an
update packet. The update control records displayed
are overlapping illegally. For example,

10 +13,26

27 +3,15

OVERLAPPING SEQUENCE NUMBERS. LAST
UPDATE GROUP IS IGNORED

The second plus card in this example, and any subse-
quent cards up to the next plus card, will be ignored.

SEQUENCE ERROR ON CI RECORD # xxxx

IS ww/xx/yy/zz
PROCESSING SYSTEM — system name (if in system)
AP ABORT ERROR

COMPRESSED RECORD ID/SEQUENCE/CHECKSUM/BYTECOUNT

During processing of a compressed input file, a sequence
number error hasbeen encounteredon a compressed rec-
ord. The characters xxxx represent the record number in
hexadecimal; and ww, xx, yy, and zz represent the
hexadecimal values for compressed record identifier, se-
quence number, checksum, and byte count, respectively.

STD DEF FILE DOES NOT EXIST
AP ABORT ERROR

The standard definition file ($:STDDEF) cannot be
opened. F:STD has been assigned and the ND option
has not been specified.

STD DEF FILE INCOMPATIBLE
AP ABORT ERROR

The standard definition file ($:STDDEF) has not been
reassembled subsequent to reassembly of an AP module.
It contains information inconsistent with existing en-
coder memory allocation.

SYSTEMS NESTED TOO DEEPLY
PROCESSING SYSTEM — system name
AP ABORT ERROR

An error has been encountered during processing of a
system file. More than eight levels of systems are
nested. This may be caused by recursive SYSTEM calls.

TOO MANY ACCOUNT AREAS SPECIFIED
AP ABORT ERROR

The account number or area specified in the AC option
of the AP control card exceeds the agcount number
limit. This error message is printed oh the line follow-
ing the erroneous AP control card image.

UNABLE TO FIND SYSTEM — system name
PROCESSING SYSTEM — system name (if in system)
AP ABORT ERROR

An error has been encountered during the opening or
processing of a system file. A SYSTEM directive speci-
fies the system name displayed, but there is no system
filed with this name under any of the account numbers
or data areas specified by the AC option (if any) or
under the "system account".

UPDATE CONTROL NUMBERS EXCEED COMPRESSED FILE

An error has been encountered during processing of an
update packet. A line number specified in an update
control record is greater than the number of lines in
the program. The erroneous update card is ignored,
and nomal processing continues.

UPDATE FILE IS IN COMPRESSED OR BINARY FORMAT
AP ABORT ERROR

An error has been encountered during processing of an
vpdate packet. A record in the update packet is in
compressed or binary format. (Note: A +END card
may be missing from the previous assembly.)

90 30 00C-1(6/75)

Operational and Irrecoverable Error Messages 93

APPENDIX A. SUMMARY OF SIGMA INSTRUCTION MNEMONICS

Required syntax items are underlined whereas optional items

are not. The following abbreviations are used:

m mnemonic

r register expression
v value expression
indirect designator
a address expression
x index expression

d displacement expressior

Mnemonic Syntax

LOAD/STORE

L mroy

LB m,r *a,x
LH m,r *a,x
LW m,r *a,x
LD m,r *a,x
LCH m,r *a,x
LAH m,r *a,x
LCW m,r *a,x
LAW m,r o, x
LCD m,r o *a,x
LAD m,r *a,x
LAS m,r *a,x
LS m_,i *a, x
M m,r *a,x

iLCFI m v,V

LCI m v
LFI mov
LC m *a, x

90 30 00C-1(6/75)

Function

Load Immediate

Load By'fe

Load Halfword

Load Word

Load Doubleword

Load Complement Halfword
Load Absolute Halfword
Load Complement Word

Load Absolute Word

Codes for required options are

560 Xerox 560

9

7

Load Complement Doubleword

Load Absolute Doubleword
Load and Set
Load Selective

Load Multiple

Sigma 9

Sigma 7

Privileged

Decimal Option
Floating=Point Option
Lock Option

Memory Map Option

Equivalent to

Required
Options

Load Conditions and Floating Control Immediate

Load Conditions Immediate

Load Floating Contro! Immediate

Load Conditions

Appendix A 95

Required
Mnemonic Syntax Function Equivalent to Options

LOAD/STORE (cont.)

LF m *a,x Load Floating Control

LCF m *a, x Load Conditions and Floating Control
LVAW m,r Load Virtual Address Word 360
XW m,r *a,x Exchange Word

STB m,r *a,x Store Byte

STH m,r *a,x Store Halfword

STW m,r *a,x Store Word

STD m,r *a,x Store Doubleword

STS m,r *a,x Store Selective

STM m,r *a,x Store Multiple

STCF m *a, x Store Conditions and Floating Control

ANALYZE AND INTERPRET

-

ANLZ m,

‘a, X Analyze

INT m,r *a,x Interpret

FIXED-POINT ARITHMETIC

Al mro v Add Immediate

AH m,r *a,r Add Halfword

AW m,r *a,x Add Word

AD m,r *a,x Add Doubleword

SH m,r *a,x Subtract Halfword
SW m,r *a,x Subtract Word

SD m,r *a,x Subtract Doubleword
MI mr v Multiply Immediate
MH m,r *a,x Multiply Halfword
MW m,r *a,x Multiply Word

DH m,r *a,x Divide Halfword

DW m,r *a,x Divide Word

AWM m,r *a,x Add Word fo Memory

96 Appendix A 90 30 00C=1(6/75)

Mnemonic Syntax

FIXED-POINT ARITHMETIC (cont.)

MTB m,v *a,x

MTH m, v *a,x

MTW m, v *a,x

COMPARISON

<l mroy
CB m,r *a,x
CH m,r *a,x
CwW m, 1 *a,x
CcD m,r *a,x
CS m,r *a,x
CLR m,r *a,x
CLM m,r *a,x
LOGICAL

OR m,r *a,x
EOR m,r *a,x

SHIFT

S m,r *a,x
SLS mroov,X
SLD mroov, X
SCS mroov,x
SCD mroov,x
SAS mroov,x
SAD mr v, x
SSS m,roa,x
SSD m,r a,x
SF m,r *a,x
SFS mroov,x
SFL m,r v, X

Function

Equivalent to

Required
Options

Modify and Test Byte
Modify and Test Halfword

Modify and Test Word

Compare Immediate

Compare Byte

Compare Halfword

Compare Word

Compare Doubleword

Compare Selective

Compare with Limits in Register

Compare with Limits in Memory

OR Word
Exclusive OR Word

AND Word

Shift

Shift Logical, Single
Shift Logical, Double
Shift Circular, Single
Shift Circular, Double
Shift Arithmetic, Single
Shift Arithmetic, Double
Shift Searching, Single
Shift Searching, Double
Shift Floating

Shift Floating, Short

Shift Floating, Long

Appendix A 97

Required

Mnemonic Syntax Function Equivalent to Options
CONVERSION

CVA m,r *a,x Convert by Addition 7

Cvs m,r *a,x Convert by Subtraction 7

FAS m,ro *a,x Floating Add Short F
FAL m,r *a,x Floating Add Long F
FSS m,r *a,x Floating Subtract Short F
FSL m,r *a,x Floating Subtract Long F
FMS m,r *a,x Floating Multiply Short F
FML m,r *a,x Floating Multiply Long F
FDS m,r *a,x Floating Divide Short F
FDL m,r *a,x Floating Divide Long F
DECIMAL

DL m,v *a,x Decimal Load D
DST m,v *a,x Decimal Store D
DA m, v *a,x Decimal Add D
DS m, v *a,x Decimal Subtract D
DM m,v “*a,x Decimal Multiply D
DD m,v *a, x Decimal Divide D
DC m, v *a,x Decimal Compare D
DSA m *a, x Decimal Shift Arithmetic D
PACK m. v *a,x Pack Decimal Digits D
UNPK m, v *a,x Unpack Decimal Digits D
BYTE STRING

MBS mr d Move Byte String 7
CBS mr d Compare Byte String 7
TBS mr d Translate Byte String . 7
TT8S mr d Translate and Test Byte String 7
EBS m,r d Edit Byte String D

98 Appendix A

Required

Mnemonic Syntax Function Equivalent to Options

PUSH DOWN

PSW m,r *a,x Push Word

PLW m,r *a,x Pull Word

PSM m,r *a,x Push Multiple

PLM m,r *a,x Pull Multiple

MSP m,r o *a,x Modify Stack Pointer

PSS m,v *a,x Push Status 560P

PLS m,v Pull Status 560P

EXECUTE/BRANCH

EXU m *a, x Execute

BCS m, v *a,x Branch on Conditions Set

BCR m, v *a,x Branch on Conditions Reset

BIR m,r *a,x Branch on Incrementing Register

BDR m, 1 *a,x Branch on Decrementing Register

BAL m,r *a,x Branch and Link

B m *a, x Branch BCR,0 *a,x

BEZ m *a, x Branch if Equal to Zero BCR,3 *a,x

BNEZ m *a,x Branch if Not Equal to Zero BCS,3 *a,x

BGZ m *a, x Branch if Greater Than Zero BCS, 2 l*g,x

BGEZ m *a, x Branch if Greater Than or Equal to Zero BCR, 1 *a,x

BLZ m *a, x Branch if Less Than Zero BCS,1 *ag,x

BLEZ m *i,x Branch if Less Than or Equal to Zero BCR,2 *a,x

BE m *g,x r Branch if Equal BCR,3 *a,x
|

BG m *a, x Branch if Greater Than BCS,2 *a,x

BGE m *a, x Branch if Greater Than or Equal to BCR,1 *a,x

BL m *a,x For Use After Branch if Less Than BCS, 1 *a,x

Comparison

BLE m *a,x Instructions Branch if Less Than or Equal to BCR,2 *a,x

BNE m *a, x Branch if Not Equal to BCS,3 *a,x

BAZ m *a, x A Branch if Implicit AND is Zero® BCR,4 *a,x

BANZ m *a, x L Branch if Implicit AND is Nonzero! BCS,4 *a,x

fSee W instruction in Xerox Sigma 7 Computer Reference Manual.

90 30 00C-1(6/75) Appendix A 99

Mnemon

ic Syntax

EXECUTE/BRANCH (cont.)

BOV

BNOV

BC

BNC

m fox
motax
mo o
m *a, x

BNCNO m *a, x

BWP

BDP

BEV

BOD

BID

BLD

BSU

BNSU

BSE

BSNE

BSF

BSNF

BSO

BNSO

BIOAR

*,

m o tex
*,

m o ex
*,

m ex
*

mo tex

m *a, x
*,

m o tax
*,

m ex
*,

m *ax
*

m o *a,x
*,

mo Yo
*,

m *a,x
*,

LI
*,

m ex
*,

moYax
*,

m a, x

BIOANR m *a, x

BIODO

BIODNO m *a, x

BIOSP

BIOSNP m *a,x

BIOSS

BIOSNS

100

Appendix A

For Use After
Fixed=Point
Arithmetic
Instructions

For Use After
Fixed-Point

Shift 1
Instructions

For Use After
Decimal
Instructions

For Use After
Push Down 4
Instructions

For Use After

Input/Output {
Instructions ~

Function

Branch if Overflow

Branch if No Overflow

Branch if Carry

Branch if No Carry

Branch if No Carry and No Overflow
Branch if Word Product

Branch if Doubleword Product

f Branch if Even (number of 1's shifted)

Branch if Odd (number of 1's shifted)

Branch if Illegal Decimal Digit

Branch if Legal Decimal Digit

Branch if Stack Underflow
Branch if No Stack Underflow

Branch if Stack Empty
Branch if Stack Not Empty

Branch if Stack Full

Branch if Stack Not Full

Branch if Stack Overflow

Branch if No Stack Overflow

Branch if I/O Address Recognized
Branch if 1/O Address Not Recognized

Branch if 1/O Device Operating
Branch if 1/O Device Not Operating

Branch if 1/O Start Possible
Branch if 1/O Start Not Possible
Branch if 1/O Start Successful

Branch if 1/O Start Not Successful

Required

Equivalent to Options
BCS,4 *a,x
BCR,4 *ag,x
BCS,8 *g,x
BCR,8 *a,x

BCR, 12 *a,x

BCR, 4 *E,x
BCS,4 *a,x
BCR,8 *a,x
BCS,8 *a,x
BCS,8 *a,x
BCR,8 *a,x
BCS,2 *a,x

BCR, 10 *a,x

BCS, 1 *a,x

BCR, 1, *a,x

\] -

BCS,4 *a,x

BCR, 15 *a,x
BCS,8 *a,x
BCR,8 *a,x
BCR,8 *a,x P
BCS,8 *a,x P
BCS,4 *a,x P
BCR,4 *a,x P
BCR,4 *a,x P
BCS,4 *a,x P
BCR,4 *a,x P
BCS,4 *a,x P

90 30 00C-1(6/75)

Mnemonic Syntax

CALL

CALl m, v
CAL2 m,v
CAL3 m, v
CAL4 m,v
CONTROL
LPSD m,r
XPSD m,r
LRP m
MMC m,r
LMAP m,r
LMAPRE m,r
LPC m,r
LLOCKS m,r
LLOCKSE m,r
LRA m,r
LMS m,r
WAIT m
RD m, r
WD m,r
NoP' m
PZE m
JNPUT/OUTPUT
SI1O m,r
HIO m,r
T1O m,r
DV m,r
AIO m,r
RIO m,r
POLP m,r
POLR m,r

e
x

12
x

e
%

2 |8
X X

[e]
~
X

or (v, v),x

1

18
%

or (v, v),x

*
12
x

18
x

*a, x or (v, v), x

or (v, v, v), x

or (v, v, V), x

*a, x or (v, v),
or (v, v, V), x

*a, x or {v,v), x
or (v, v, v), X

F_un_cfion
Call 1
Call 2
Call 3
Call 4

Load Program Status Doubleword
Exchange Program Status Doubleword
Load Register Pointer

Move to Memory Control

Load Map

Load Map (Real Extended)

Load Program Control

Load Locks

Load Locks (Extended)

Load Real Address

Load Memory Status
Wait

Read Direct

Write Direct

No Operation

Positive Zero

Start Input/Output

Halt Input/OQutput

Test Input/Output

Test Device

Acknowledge Input/Output Interrupt
Reset Input/Output
Poll Processor

Poll and Reset Processor

quuivclent to a LCFI instruction with r=0.

90 30 00C-1(5/75)

Required
Equivalent to Options

W W U T

7MP
IMP
7MP
LP
560P
9P

9P

9P
P

9pP

Appendix A

101

APPENDIX B. SIGMA STANDARD COMPRESSED LANGUAGE

The Sigma Standard Compressed Language is used to represent
source EBCDIC information in a highly compressed form.

AP (along withseveral of the utility programs)accepts this
form as input or output, will acceptupdates to the compressed
input and will regenerate source when requested. No in-
formation is destroyed in the compression or decompression.

Records may not exceed 108 bytes in length. Compressed

records are punched in the binary mode when represented

on card media. Therefore, on cards, columns 73 through

80 are not used and are available for comment or identifi-
cation information,

The first four bytes of each recordare for checking purposes.
They are as follows:

Byte 1 Identification (O0L11000)L =1 for each record
except the last record, where L=0.

Byte 2 Sequence number (0 to 255 and recycles),

Byte 3 Checksum, which is the least significant
8 bits of the sum of all bytes in the record
except the checksum byte itself, Carries
out of the most significant bit are ignored.

Byte 4 Number of bytes contained in the record
including the checking bytes (< 108)

The rest of the record consists of a string of 6-bit and 8-bit
items, Any partial item at the end of a record is ignored.

The following 6~bit items (decimal number assigned) com-
prise the string control:

Item Function Item Function
0 Ignore 32 O
1 Not assigned 33 P
2 End of line 34 Q
3 End of file 35 R
4 Use 8-bit character that follows 36 S
5 Use n+ 1 blanks (next 6-bit item is n) 37 T
6 Use n +65 blanks (next é-bit item is n) 38 U
7 Blank 39 \%
8 0 40 W
9 1 41 X

10 2 42 Y

11 3 43 Z

12 4 44 .

13 5 45 <

14 6 46 (

15 7 47 +

16 8 48 |

17 9 49 &

18 A 50 $

19 B 51 *

20 C 52)

21 D 53 :

22 E 54 -

23 F 55 -

24 G 56 /

25 H 57 ,

26 1 58 %

27 J 59 [

28 K 60 >

29 L 61 . :

30 M 62 !

31 N 63 =

102 Appendix B

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereoffer are listed in

numerical sequence.

+ character, 86
$, 2,25,45,47
3, 2,45,47
S 35

****' 53

A

absolute address, 5
absolute section, 27
ABSVAL function, 21
AC option, 84

address resolution, 22
addresses, 5

addressing functions, 20
AF function, 48,59
AFA function, 48,59
AP character set, 2

AP control command, 84
AP listing format, 81

AP operations, 84

AP phases, 1

argument field, 9
assembly control, 33
assembly listing, 80
assembly listing line, 82
asterisk, 6,7,47,48,50,53

BA function, 20

BA option, 84

blanks, 2,8, 10, 86

BO option, 84

BOUND directive, 25-26
byte count, 51

C

CF function, 47,59
character set, 2

character string, 50, 51
character string constont, 3
character string functions, 69
Cl option, 84

CLOSE directive, 41
CNAME directive, 55

CO option, 84

colon, 2

COM directive 47-48

command field, 9

command procedure, 56,57
comment field, 9

comment lines, 10

compressed deck, 86
compressed language, 102
concordance listing, 87
conditional code generation, 73
constants, 3

confinuation, 10

control section error summary, 83
control section summary, 83

CS function, 67

DA function, 21
DATA directive, 49
data generation, 45
DC option, 85
DEF directive, 42-44
defining symbols, 10
directive,
BOUND, 25-26
CLOSE, 41
CNAME, 55
COM, 47-48
DATA, 49
DEF, 42-44
DISP, 53
DO, 35
DO1, 34
ELSE, 36
END, 34
EQU, 39
ERROR, 53
FIN, 36
FNAME, 55
GEN, 45-46
GOTO, 35
LIST, 52
LOC, 25
LOCAL, 39-40
OPEN, 41
ORG, 24
PAGE, 54
PCC, 52
PEND, 56
PROC, 56
PSR, 52
PSYS, 52
REF, 44
RES, 26
S:SIN, 49-50

Index

103

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in

numerical sequence.

SET, 39
SPACE, 51
SREF, 45
SYSTEM, 33
TEXT, 50
TEXTC, 51
TITLE, 51-52
USECT, 28
directives, 32
DISP directive, 53
division by zero, 7
DO directive, 35
DO loop, 35
DO-loop, 36
DOI1 directive, 34
doubly defined symbol, 42
dummy sections, 30

E

ELSE directive, 36

END directive, 34
entries, 9

EQU directive, 39
equals sign, 5

equate symbols line, 80
ERROR directive, 53
error flags, 89

error line, 82

error line summary, 83
error messages, 89

error severity level, 83
explicit null, 13
expression evaluation, 7
expressions, 6

external reference, 44, 45
external references, 11
external symbols summary, 83

F

fields, 8
FIN directive, 36
fixed-point decimal constant, 4
floating~point long constant, 5
floating=point short constant, 5
FNAME directive, 55
forward references, 11
function,

ABSVAL, 21

AF, 48,59

AFA, 48,59

BA, 20

CF, 47,59

cs, 67

DA, 21

104 Index

HA, 21

LF, 58-59

NAME, 60

NUM, 61

S:IFR, 63

S:KEYS, 64-67

S:NUMC, 67-68

S:PT, 68-69

S:SIN, 49-50

S:UFV, 63

S:UT, 68

SCOR, 61

TCOR, 62

WA, 21
function procedure, 57,58

G

GEN directive, 45-46
GO option, 85
GOTO directive, 35

HA function, 21
hexadecimal constant, 3

ignored source image line, 82
implicit null, 12
input/output files, 85
instruction set mnemonics, 33
intrinsic functions, 20, 58
iteration block, 36

L

label field, 9

language elements, 2

LF function, 58-59
linear value lists, 12
LIST directive, 52
listing control, 51

lists, 12

literal line, 82

literals, 5

LO option, 85

LOC directive, 25
LOCAL directive, 39-40
local symbol, 11, 40, 41
location counters, 2,23, 24, 25, 28

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in

numerical sequence.

logical operators, 7,8
loop, 35,36

LS option, 85

LU option, 85

multiple name procedures, 58

NAME function, 60

ND option, 85

nonlinear value lists, 14

NS option, 85

null value, 12

NUM function, 61

number of elements, 61

number of elements in a list, 17

octal constant, 3
OPEN directive, 41
operational and irrecoverable error messages, 90
operators, 6,7
option,

AC, 84

BA, 84

BO, 84

Cl, 84

CO, 84

DC, 85

GO, 85

LO, 85

LS, 85

LU, 85

ND, 85

PD, 85

SB, 85

SC, 85

Si, 85

SO, 85

SU, 85,86
ORG directive, 24

P

pocked decimal constant, 4
PAGE directive, 54

parentheses, 16

parentheses within expressions, 6

PCC directive, 52

PD option, 85

PEND directive, 56
preencoded files, 88

previously defined references, 11
PROC directive, 56

procedure levels, 58

procedure reference lists, 69-71
procedure references, 56
procedures, 55

program level, 36

program sections, 26
programming features, 1

PSR directive, 52

PSYS directive, 52

recursive command procedure, 77
recursive function procedure, 76
redefining symbols, 10

REF directive, 44

reference syntax for lists, 13
relative addressing, 20
relocatable address, 5
relocatable control sections, 27
RES directive, 26

returning to a previous section, 28

S

S:IFR function, 63
$:KEYS function, 64-67
S:NUMC function, 67-68
S:PT function, 68-69
S:SIN directive, 49-50
S:UFV function, 63

S:UT function, 68

sample procedures, 72

SB option, 85

SC option, 85

SCOR function, 61
self-defining terms, 3
semicolon, 10

SET directive, 39

S option, 85

Sigma instruction mnemonics, 95
skipped statements, 35
SO option, 85

SPACE directive, 51
special characters, 2
SREF directive, 45
statement continuation, 10
statements, 8

SU option, 85-86
subscript, 12

summary tables, 83

Index

105

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in

numerical sequence.

symbol manipulation, 39
symbol references, 11
symbol table, 11

symbol value summary, 83
symbols, 2,10

SYSTEM directive, 33

T

TCOR function, 62

TEXT directive, 50

TEXTC directive, 51

TITLE directive, 51-52
trailing character positions, 50
trailing comma, 13

106 Index

undefined symbol summary, 83
update control commands, 86
update error summary, 83

USECT directive, 28

v

value lists, 12

WA function, 21

Reader Comment Form

XEROX

We would appreciate your comments and suggestions for improving this publication

Publication No. Rev. Letter| Title

Current Date

}iow did you use this publication?

D Learning D Installing

D Reference [:] Maintaining

D Sales

D Operating

Is the material presented effectively?

(] Fully covered [] well ilustrated [_] Well organized [] Clear

What is your overall rating of this publication?

E] Very Good D Fair
[] Good [:] Poor

[:] Very Poor

What i3 your occupation?

Your other comments may be entered here. Please be specific and give page, column, and line number references where
applicable. To report errors, please use the Xerox Software Improvement or Difficuity Report (1188) instead of this form.

Your name & Return Address

Thank You For Your interest. (fold & fasten as shown on back, no postage needed if mailed in U.S.A.)

PLEASE FOLD AND TAPE —
NOTE: U. S, Postal Service will not deliver stapled forms

First Class
Permit No. 59153
Los Angeles, CA

BUSINESS REPLY MAIL
No postage stamp necessary if mailed in the United States

Postage will be paid by

Honeywell Information Systems
5250 W. Century Boulevard
Los Angeles, CA 90045

Attn: Programming Publications

Honeywell

Honeywell Information Systems
In the U.S.A.: 200 Smith Street, MS 486, Waltham, Massachusetts 02154
In Canada: 2025 Sheppard Avenue East, Willowdale, Ontario M2J 1W5
In Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F.

24492, 5C979, Printed in U.S.A.

XP78, Rev. O

	00001
	00002
	0001
	0002
	0003
	0004
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085-0
	085-1
	086
	087-0
	087-1
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	replyA
	replyB
	xBack

