
Xerox Ass,embty Program (AP)
Xerox 550 I S~O and Sigma 5-9 Computers

Language and Operations
Reference Manual

AP DIRECTIVES
Pqge No.

Dabe!) ASECT 27

BOUND boundary 25

CLOSE (symbo 11 ' ... , symbo In] 41

label CNAME [list] 55

label COM[, field list] [va lue Iist1 47

(label] CSECT [express ion J 27

[labeO DATA[, f] (value 1" .. ,valuen] 49

DEF (symbol 1 ' ... ,symbol n] 42

DISP [I ist] 53

[label] DO [expression] 35

Dabei] DOl (expression] 34

label DSECT ~xpression] 27

ELSE 36

[Iabetl END [expression] 34

[labetl EQU(,sl OistJ 39

ERROR~ level[,c]] [', "] cS 1 , ... , cS
n

53

FIN 36

label FNAME Uist] 55

(labeO GEN[,fieid list] [value list] 45

GOTO(,k] 'abel 1[' ... , label nJ 35

LIST [,nJ [expression] 52

[Jabel] lOC[,nJ (location) 25

LOCAL [symbo I 1 ' ... , symbo In] 39

OPEN (symbol 1 , .•• , symboinJ 41

Uabel] ORG[,n] (locationJ 24

PAGE 54

PCC [expression] 52

PEND [list] 56

PROC 56

(label] PSECT . [expression] 27

PSR [express ion] 52

PSYS [expression] 52

REFG n] [symbol 1" .. , symbol n] 44

[label] RES~n] [expression] 26

Oabel] SET~ s] Oist] 39

label S:SIN, n ~xpression] 49

SOCW 51

SPACE [expression] 51

SREF~nj ~ymboll" .• , symbol n] 45

SYSTEM name 33

(labeO TEXT [, 1 ,,' cSl , ••• , cSn J 50

[label] TEXTC r' 'I] cS1 , .•• , cSn 51

TITLE e 1 'I] cS1 , ..• , cSn 51

j [label] USECT name 28

© Xerox Corporation, 1975

Xerox Assembly Program lAP)
Xerox 550/560 and Sigma 5-9 Computers

Language and Operations

Reference Manual·

90 30 OOC
90 30 OOC-l

June 1975

File No.: 1 X23
XP78, Rev. 0

Printed in U.S.A.

REVISION

This publication, Xerox Assembly Program (AP)/LN, OPS Reference Manual, Publication Number 90 30 OOC, dated
December 1973, has been revised to reflect the COO version of AP by incorporating revised replacement pages pro­
vided as Revision Package 90 30 00C-1 (6/75). Vertica I bars in the margin of pages labeled 90 30 00C-1 (6/75) iden­
tify portions of text changed to reflect COO version of AP. Vertical bars on pages not labeled as such but included
as backup pages reflect changes in the original C edition.

RELATED PUBLICATIONS

Title

Xerox Sigma 5 Computer/Reference Manual

Xerox Sigma 6 Computer/Reference Manual

Xerox Sigma 7 Computer/Reference Manual

Xerox Sigma 8 Computer/Reference Manual

Xerox Sigma 9 Computer/Reference Manual

Xerox 550 Computer/Reference Manual

Xerox 560 Computer/Reference Manual

Xerox Rea I-Time Batch Monitor (RBM)/RT, BP Reference Manual

Xerox Rea 1-Time Batch Monitor (RBM)/OPS Reference Manual

Xerox Real-Time Batch Monitor (RBM)/RT, BP User's Guide

Xerox Real-Time Batch Monitor (RBM)/System Technical Manual

Xerox Control Program-Five (CP-V)/TS Reference Manual

Xerox Control Program-Five (CP-V)/TS User's Guide

Xerox Control Program-Five (CP-V)/OPS Reference Manual

Xerox Control Program-Five (CP-V)/BP Reference Manual

Xerox Control Program-Five (CP-V)/RP Reference Manual

Xerox Control Program-Five (CP-V)/Common Index

Xerox Control Program for Real-Time (CP-R)/RT, BP Reference Manual

Xerox Control Program for Real-Time (CP-R)/OPS Reference Manual

Xerox Control Program for Real-Time (CP-R)/System Technical Manual

Xerox Control Program for Real-Time (CP-R)/RT, BP User's Guide

Publication No.

900959

90 17 13

900950

90 1749

90 17 33

90 30 77

90 30 76

90 15 81

90 16 47

90 16 53

90 1700

900907

90 16 92

90 16 75

90 1764

90 30 26

90 30 80

90 30 85

90 30 86

90 30 88

90 30 87

Manual Content Codes: BP - batch processing, LN - longuage, OPS - operations, RP - remote processing,
RT - real time, SM - system management, SP - system programming, TP - transaction
processing, TS - time-sharing, Ul- utilities.

The specifications of the software system described in this publication are subject to change without notice. The availability or performance of some features
may depend on a specific configuration of equipment such as additional tape units or larger memory. Customers should consult their Xerox sales representative
for details.

ii 90 30 00C-1 (6/75)

CONTENTS

1. INTRODUCTION Program Sections _____________ 26

Program Section Directives 26
Programming Features __________ _ Absolute Section 27
AP Phases Relocatable Control Sections 27

Phase 1 Returning to a Previous Section 28
Phase 2 Dummy Sections 30
Phase 3 Program Sections and Literals 30
Phase 4

4. DIRECTIVES 32

2.. LANGUAGE ELEMENTS AND SYNTAX 2
Assembly Control 33

SYSTEM (Include System Fi Ie) 33

Language Elements _____________ 2
Characters _____ ________ 2

Symbols 2
Constants _______________ 3
Addresses _____ 5
Li tera Is 5
Expressions _____ . _________ 6

Syntax 8
Statements _____ . _________ 8

Label Field ____ 9
Command iField _. ________ 9
Argument field _________ ___ 9
Comment Field _________ 9
Comment Lines ______________ 10
Statement Continuation __ 10

Processing of Symbols ____ 10
Symbol References ____ 11
Classification of Symbols._ 11
Symbol Table 11

Lists 12
Value Lists _ 12
Number of Elements in a List 17

END (End Assembly) 34
DOl (Iteration Control) 34
GOTO (Conditional Branch) 34
DO/ELSE/FIN (Iteration Control) 35

Symbol Manipulation 39
EQU (Equate Symbols) 39
SET (Set a Value) 39
LOCAL (Declare Local Symbols) 39
OPEN/CLOSE (Symbol Control) 41
DEF (Declare External Definitions) 42
REF (Declare External References) 44
SREF (Secondary External References) 45

Data Generation 45
GEN (Generate a Value) 45
COM (Command Definition) 47
CF (Command Field) 47
AF (Argument Field) 47
AFA (Argument Field Asterisk) 48
DATA (Produce Data Value) 49
S:SIN (Standard Instruction Definition) " ___ 49
TEXT (EBCDIC Character String)' 50
TEXTC (Text With Count) 51

Listing Control 51
SPACE (Space Listing) 51
TITLE (Identify Output) 51
LIST (List/No List) 52
PCC {Print Control Cards} 52

3. ADDRESSING 20
PSR {Print Skipped Records} 52
PSYS {Print System} 52

Relative Addressing ____ --,-____ 20
Addressing Functions ____ 20

BA (Byte Address) ___ 20
HA (Halfword Address) __ 20

DISP {Display Values} 53
ERROR {Produce Error Message or

Commentary} 53
PAGE {Begin a New Page} 54

WA {Word Address} ____ 21
DA (Doubleword Address) 21
ABSVAL (Absolute Value) 21

Address Resolution _ 22
Location Counters _____ 23 5. PROCEDURES AND LISTS 55
Setting the Location Counten. 24

ORG (Set IProgram Origin) 24 Procedures _______________ 55

LOC (Set Program Execution) 25 . Procedure Format 55
BOUND (Advance Location Counters to CNAME/FNAME {Procedure Name} 55

Boundary) ______________ 25 PROC {Begin Procedure Definition} 56
RES (Reserve an Area) __ 26 PEND {End Procedure Definition} 56

iii

Procedure References ___________ 56

Multiple Name Procedures 58
Procedure Levels 58
Intrinsic Functions 58

LF (Label Field) 58
CF (Command Field) 59
AF (Argument Field) 59
AFA (Argument Field Asterisk) 59
NAME (Procedure Name Reference) 60
NUM (Determine Number of Elements) 61
SCOR (Symbol Correspondence) 61
TCOR (Type Correspondence) 62
S:UFV (Use Forward Value) 63
S:IFR (Inhibit Forward Reject) 63
S: KEYS (Keyword Scan) 64
CS (Control Section) 67
S:N UMC (Number of Characters) 67
S:UT (Unpack Text) 68
S:PT (Pack Text) 68

Procedure Reference Li sts 69
Sample Procedures 72

6. ASSEMBLY LISTING 80

Equate Symbols Line 80
Assembly Listing Line 82
Ignored Source Image Line 82
Error Line 82
Literal Line 82
Summary Tables 83

7. AP OPERATIONS 84

AP Control Command 84
AC (ac1,ac2, ... ,acn) 84
BA 84
BO 84
CI 84
CO 84
DC 85
GO 85
LO 85
LS 85
LU 85
ND 85
NS 85
PD (sn 1, ... , snn) 85
SB, SC 85
SI 85
SO 85
SU 85

Input/Output Fi les 85

iv

8. UPDATING A COMPRESSED DECK 87

9. CONCORDANCE LISTING 88

10. PREENCODED FILES 89

11. ERROR MESSAGES 90

Error Flags 90
Operational and Irrecoverable Error Messages __ 91

INDEX 103

APPENDIXES

A. SUMMARY OF SIGMA INSTRUCTION
MNEMONICS 95

B. SIGMA STANDARD COMPRESSED LANGUAGE 102

FIGURES

1. Flowchart of DO/ELSE/FIN Loop 37

2. AP Listing Format 81

TABLES

1. AP Character Set 2

2. AP Operators 6

3. Reference Syntax for Lists 13

4. Valid Instruction Set Mnemonics 33

5. Operational and Irrecoverable Error Messages __ 91

1. INTRODUCTION

Xerox Assembly Program (AP) is a four-phase assembler that
reads source langu(Jge programs and converts them to object
language programs. AP outputs the object language pro­
gram, an assembly listing, and a cross reference (or concor­
dance) listing. The object languCige format is explained in
CP-V/SP Reference Manual or in CP-R System Technical
Manual; the format of the assembly listing is described in
Chapter 6 of this manual, and the format of the cross refer­
ence listing is desc:ribed in Chapter 9.

PROGRAMMING FIEATURES

The following I ist summarizes ApI!; more important features
for the programmer:

• Self-defining constants that facilitate use of hexa­
decimal, decimal, octal, floating-point, scaled fixed­
point, and text string values.

• The facility for writing large programs in segments
or modules. The assembler will provide information
necessary for the loader to complete the I inkage be­
tween modules; when they are loaded into memory.

• The label, command, and argument fields may contain
both arithmetic and logical expressions, using constant
or variable quantities.

• Full use of lists and subscripted elements is provided.

• The DO, DOl, andlGOTO directives allow selective
generation of areas of code, with parametric constants
or expressions evaluated at assembly time,

• Command procedures allow the capabi I ity of generating
many units of code for a given procedure call line.

• Function procedures return va lues to the procedure call
line. They al50 provide the capability of generating
many units of code for a given procedure call line.

• Individual pammeters on a procedure call I ine can be
tested both arithmetically and logically.

• Procedures may call other procedures, and may call
procedures recursively.

90 30 OOC-1 (6/75)

AP PHASES

AP is a four-phase assembler that runs under control of CP-V
or CP-R. The first three phases are assembly phases while
the fourth phase generates and prints the cross reference
listing.

PHASE 1

phase 1 reads the input program {which may be symbolic,
compressed, or compressed with symbol ic corrections} and
produces an encoded program for Phases 2, 3, and 4 to
process. If requested by the CO assembly option, Phase 1
wi II output the program in compressed format for subsequent
reassembly.

Phase 1 checks the program for syntactical errors. If such
errors are found, notification is placed in the encoded pro­
gram, and the assembly operation continues. Phase 1 al so
processes those directives concerned with manipulation of
symbols {SYSTEM, LOCAL, OPEN, and CLOSE}. Thus it
is Phase 1 in which designated SYSTEMs are incorporated
in the encoded program.

PHASE 2

Phase 2 reads the encoded program, builds the symbol dic­
tionary, and allocates storage for each statement to be
generated. The literal table is generated during this phase
so that the size of the entire program may be determined
prior to the start of Phase 3.

PHASE 3

phase 3 is the final assembly phase. The assembly listing
and object code are generated during this phase. All sym­
bols in the input program have been defined in Phase 2.
Source statements with assembly errors are marked, and
symbol and error summaries are produced at the end of
this phase.

PHASE 4

Phase 4 reads the encoded program and produces an alpha­
betical list of the symbols in the program with all the line
numbers on which each is referenced. This cross reference
I isting is requested by an AP control card option.

Introduction

2. LANGUAGE ELEMENTS AND SYNTAX

LANGUAGE ELEMENTS

Input to the assembler consists of a sequence of characters
combined to form assembly language elements. These lan­
guage elements (which include symbols, constants, expres­
sions, and literals) make up the program statements that
compose a source program.

CHARACTERS

AP source program statements may use the characters shown
in Table 1.

The colon is an alphabetic character used in internal sym­
bols of standard Xerox software. It is included in the
names of Monitor routines (M:READ), assembler routines
(S:UFV), and library routines (L:SIN). To avoid conflict
between user symbols and those employed by Xerox soft­
ware, it is suggested that the colon be excluded from user
symbols.

2

Alphabetic:

Numeric:

Special
Characters:

Table 1. AP Character Set

A through Z, $, @, #, and I..-J (break
character - prints as "underscore ").

{: is the reserved alphabetic character,
as explained above}.

o through 9.

Blank.

+ Add {or positive value}.

- Subtract {or negative value}.

*

I

II

,

Multiply, indirect addressing
prefix, or comments line indicator.

Divide.

Covered quotient.

Decimal point.

Comma.

Left parenthesis •.

Right parenthesis.

Constant delimiter {singlequotation
mark}.

Language Elements and Syntax

Table 1. AP Character Set (cont.)

Special
Characters
(cont.)

& Logical AND.

Logical OR {vertical slash}
(also [, left bracket).

II Logical exclusive OR (vertical
slashes) (also[[).

-, Logical NOT or complement
(also J, right bracket).

< Less than.

> Greater than.

Equa I to or introduces a literal.

<= Less than or equal to.

>= Greater than or equa I to.

-, = Not equal to (alsoJ =).

Continuation code.

** Binary shift.

TAB Terminates the label, command,
or argument field.

SYMBOLS

Symbols are formed from combination of characters. Sym­
bols provide programmers with a convenient means of iden­
tifying program elements so they can be~ referred to by
other elements. Symbols must conform to the following
rules:

1. Symbols may consist of from 1 to 63 alphanumeric
characters: A-Z, $, @, #, :, ~, 0-9. At least one
of the characters in a symbol must be alphabetic. No
special characters or blanks can appear in a symbol.

2. The symbols $ and $$ are reserved by the assembler to
represent the current value of the execution and load
location counters, respectively.

The following are examples of valid symbols:

ARRAY
R1
INTRATE
BASE
7TEMP
#CHAR
$PAYROLL
$ (execution location counter)

90 30 aOC-1 {6/75}

The following are examples of inval id symbols:

BASE PAY
TWO =2

Blanks may not appear in symbols.
Special charClcters (=) are not per­
mitted in symbols.

CONSTA~ITS

A constant is a self-defining language element. Its value
is inherent in the constant itself, and it is assembled as
part of the statement in which it appears.

Self-defining terms are useful in specifying constant values
within a program via the EQU directive (as opposed to
entering them through an input device) and for use in con­
structs that require a value rather than the address of the
location where that value is stored. For example, the Load
Immediate instruction and the BOUN D directive both may
use self-defining terms as follows:

LI,2

BOUND

2, 57, and 8 are self-defining
terms.

SELF-DEFIN ING TERMS

Self-defining terms are considered to be absolute (non­
relocatable) items since their values do not change when
the program is relocated. TherE) are three forms of self­
defining terms.

1.

2.

The decimal digit string in which the constant is
written as a decimal integ!::r constant directly in the
instruction. For example,

LW,R HERE + 6 6 is a decimal digit string.

The charactE~r string constant in which a string of
EBCDIC characters is enclosed by single quotation
marks, without a qualifying type prefix. A complete
description of C-type generul constants is given below.

3. The general constant form in which the type of con­
stant is indicated by a code character and the value
is written as a constant strin9 enclosed by single quota­
tion marks. For example,

LW,R HERE + X?B3' 7B3 is a hexadecimal
constant representing
the decimal value
1971.

There are seven t)'pes of general constants:

Code

C

X

o
D

!IT:::...
Character string constant

Hexadecimal constcmt

Octal constant

Packed decimal constant

90 30 OOC-l (6;75)

Code

FX

FS

FL

Type

Fixed-point decimal constant

Floating-point short constant

Floating-point long constant

C - Character Sfring Constant. A character string constant
consists of a string of EBCDIC characters enclosed by single
quotation marks and optiona Ily preceded by the letter C.

CANY CHARACTERS' or 'ANY CHARACTERS'

Each character in a character string constant is allocated
eight bits of storage.

Because single quotation marks are used as syntactical char­
acters by the assembler, a single quotation mark in a char­
acter string must be represented by the appearance of two
consecutive quotation marks. For example,

'AB"C'"

represents the string

AB'C

Character strings are stored four characters per word. The
descriptions of TEXT and TEXTC in Chapter 4 provide posi­
tioning information pertaining to the character strings used
with these directives. When used in other data-generating
directives, the characters are right-justified and a nu II
EBCDIC character{s) fills out the field.

X - Hexadecimal Constant. A hexadecimal constant con­
sists of an unsigned hexadecimal number enclosed by single
quotation marks and preceded by the letter X.

X'9C01F'

The assembler generates four bits of storage for each hexa­
decimal digit. Thus, an eight-bit mask would consist of
two hexadecimal digits.

The hexadecimal digits and their binary equivalents are
as follows:'

0-0000

1 - 0001

2 - 0010

3 - 0011

4 - 0100

5 - 0101

6-0110

7 - 0111

8 - 1000

9 - 1001

A-lOlO

B - 1011

C - 1100

D - 1101

E-lllO

F-ll11

0- Octal Constant. An octal constant consists of an un­
signed octal number enclosed by single quotation marks and
preceded by the letter O.

0'7314526'

The size of the constant in binary digits is three times the
number of octal digits specified, and the constant is right­
justified in its field. For example,

Constant Binary Value Hexadecimal Value

0'1234' 001 010 all 100 0010 1001 1100 (29C)

Language Elements 3

The octal digits and their binary equivalents are as follows:

0-000

1 - 001

2 - 010

3 - all

4 - 100

5 - 101

6 - 110

7 - 111

D - Packed Decimal Constant. A packed decimal con­
stant consists of an optionally signed value of 1 through
31 decima I digits, enc losed by single quotation marks and
preceded by the letter D.

D '735698721' = D' +735698721'

The constant generated by AP is of the binary-coded deci­
mal form required for decimal instructions. In this form, the
signt occupies the last digit position and each digit consists
of four bits. For example,

Constant

D' + 99'

Value

1001 1001 1100

A packed decimal constant could be used in an instruc­
tion as follows:

LW,R L(D'99' }

Load (LW), the packed decimal constant (D) 99, as a lit­
eral (L) into register R.

The value of a packed decima I constant is limited to four
words (128 bits).

FX - Fixed-Point Decimal Constant. A fixed-point deci­
mal constant consists of the following components in the
order listed, enclosed by sing Ie quotation marks and pre­
ceded by the I etters FX:

1. An optional algebraic sign.

2. d, d., d.d, or .d, where d is a decimal digit string.

3. An optional exponent,

the letter E followed optionally by an algebraic
sign, followed by one or two decimal digits.

4. A binary scale specification,

the letter B followed optionally by an algebraic
sign, followed by one or two decimal digits that
designate the terminal bit of the integer portion
of the constant (i .e., the position of the binary
point in the number). Bit position numbering
begins at zero.

tA plus sign is a four-bit code of the form 1100. A minus
sign is a four-bit code of the form 1101.

4 Language Elements

Parts 3 and 4 may occur in any relative order:

FX'.0078125B6'

FX ' 1 • 25 E - 1 B 1 7'

FX'13.28125B2E-2'

Example: Storing Fixed-Point Decimal Constants

Assume a halfword (16 bits) is to be used for two fields
of data; the first field requires seven bits, and the sec­
ond field requires nine bits.

The number FX'3. 75B4' is to be stored in the first field.
The binary equivalent of this number is 11 A 11. The
caret represents the position of the binary point. Since
the binary point is positioned between bit positions 4
and 5, the number would be stored as

Field 1 Field 2

Bit positions

The number FX'. 0625B-2' is to be stored in the second
field. The binary equivalent of this number is A 0001.
The binary point is to be located between bit posi­
tions -2 and -1 of field 2; there, the number woul d be
stored as

Field 1 Field 2

Bit positions

In generating the second number, AP considers bit
position -1 of field 2 to contain a zero, but does
not actually generate a value for that bit position
since it overlaps field 1. This is not an error to
the assemb I er • Howe ver , if A P were requested to
place a 1 in bit position -1 of field 2, an error
wou Id be detected since significant bits cannot be
generated to be stored outside the field range.
Thus, leading zeros may be truncated from the num­
ber in a field, but significant digits are not al­
lowed to overlap from one field to another.

FS - Floating-Point Short Consta_~ A floating-point short
constantt consists of the following components in order,
enclosed by single quotation marks and preceded by the
letters FS:

1. An optional algebraic sign.

2. d, d., d. d, or .d, where d is a decimal digit string.

3. An optional exponent,

the letter E followed optionally by an algebraic
sign followed by one or two decimal digits.

Thus, a floating-point short constant could appear as

FS'5.5E-3'

The value of a floating-point short constant is I imited to
that which can be- stored in a sin!gl e word (32 bits).

FL - Floating-Point Long Constar~.!i. A floating-point long
constant t consists of the following components in order,
enclosed by single quotation mClrks and preceded by the
letters FL:

1. An optional ulgebraic sign.

2. d, d., d.d, t:)r .d, where d is a decimal digit string.

3. An optional exponent,

the letter E followed optionally by un algebraic
sign, followed by one or two decimal digits.

Thus, a floating-point long constant could appear as

FL'2987574839928. E-ll'

The maximum size constants permitted by AP is as follows:

Constant Maximum
Designation Type Size

Decimal integer 64 hits (18 + digits)

C Character string 504 bits (63 characters)

X Hexadecimal 6;4 bits (16 digits)
number

t Refer to the appropriate Xerox Sigma Computer Reference
Manual for an explanation of floating-point format.

Constant Maximum
Designation Type Size

0 Octal number 64 bits (21 +digits)

D Packed Deci- 128 bits (31 digits +sign)
mal number

FX Fixed-point 32 bits
decimal
number

FS Floating-point 32 bits
short number

FL Floating -point 64 bits
long number

ADDRESSES

An address value is an element that is associated with a
storage location in the Sigma main memory. There are two
types of address values:

1. An absolute address has a value that corresponds ex­
actly with a storage location in memory. Absol ute ad­
dress va I ues wi II not be a I tered by the process of
loading (linking) the program. Although absolute ad­
dress values are invariant under the linking process,
they are not considered as constants by AP. It is nec­
essary to inform the loader of the difference between
constants and absolute addresses; for this reason, AP
treats both absolute and relocatable addresses as a sin­
g Ie type address.

2. A relocatable address has a value that consists of two
parts, control section base and offset from this base.
The base of any control section is determined by the
loader; thus, the only correspondence between a relo­
catable address value and an actual storage location is
the offset from a base section locatioh.

LITERALS

A I iteral is an expression enclosed by parentheses and pre­
ceded by the letter L,

L(-185*5)

L(X'5DF')

L(AB+3)

decimal value -925

hexadecimal value 5DF

an address expressi on

or an expression preceded by an equa Is sign,

=-185*5

=X'5DF'

=AB+3

decima I va lue -925

hexadecimal value 5DF

an address expression

Literals.are transformed into references to data values rather
than actual values. Literals may be used in any construct
that requires an address of a datu value rather than the
actual value. For example, the Load Word instruction

Language Elements 5

requires the address of the value to be loaded into the
register, and use of a literal will satisfy that requirement,

LW,7 L(768) The value 768 is stored in
the literal table and its ad­
dress is assembled as part of
this instruction.

A literal preceded by an asterisk ;;pecifies indirect addressing,

* = 10 or *L(lO)

When a literal appears in a statement, AP produces the
indicated value, stores the value in the literal table, and
assembles the address of that storage location into the state­
ment. The address is assembled as a word address, regardless
of the intrinsic resolution of the literal control section. This
address may be referenced, however, as a byte, ha If word,
or doubleword address (see "Addressing Functions" in Chap­
ter 3). Literals may be used anywhere a storage address
value is a valid argument field entry. However literals may
not be used in directives that require previously defined
expressions.

During an assembly AP generates each literal as a 32-bit
value on a word boundary in the literal table. The as­
sembler detects duplicate values and makes only one entry
for them in the table.

When AP encounters the END statement, it generates all
literals declared in the assembly. The literals are gen­
erated at the current location (word boundary) of the cur­
rently active program section.

Any of the previously discussed types of constants except
floating-point long (FL) may be written as literals:

L(l416) integer literal

L(C'BYTE') character string literal

L(X'FOFO') hexadecimal literal

L(0'7777 1
) octal literal

L(D '378791
) packed decimal literal

L(FX'78.2E1BlO') fixed-point decimal literal

L(FS'-8.935410E-02 1
) floating-point short literal

EXPRESSIONS

An expression is an assembly language element that repre­
sents a value. It consists of a single term or a combination
of terms (multitermed) separated by arithmetic operators.

The AP language permits general expressions of one or
more terms combined by arithmetic and/or Boolean (logi­
cal) operators. Table 2 shows the operators processed
by AP.

6 Language Elements

Table 2. AP Operators

Operator
Binding
Strengtht Function

tt

+ 7 Plus (unary)

- 7 Minus (unary)

--, 7 Logical NOT or complement
(unary)

** 6 Binary shift (logical)

* 5 Integer multiply

/ 5 Integer divide

// 5 Covered quotient
ttt

+ 4 Integer add

- 4 Integer subtract

< 3 Less than

> 3 Greater than

<= 3 Less than or equal to

>= 3 Greater than or equal to

= 3 Equal to

--,= 3 Not equal to

& 2 Logical AND

I 1 Logical OR i

II 1 Logical exclusive OR

tSee below, "Operators and Expression Evaluation".

tt All operators are binary (i. e. , require two operands)
except the first three, specifically indicated as unary.

ttt A//B is defined as (A + B-1)/B.

PARENTHESES WITHIN EXPRESSIONS

Multitermed expressions frequently require the use of paren­
theses to control the order of evaluation. Terms inside pa­
rentheses are reduced to a single value before being combined
with the other terms in the expression. For example, in the
expression

AlPHA*(BETA + 5)

the term BETA + 5 is evaluated first and that result is
multiplied by ALPHA.

Expressions may contain parenthesized terms within
parenthesi zed terms,

DATA+(HRS/8-(TIME*2*(AG + FG)) + 5)

The innnermost term (in this exomple, AG + FG) is evaluated
fJrst. Parenthesi zed terms may be nested to any depth.

OPERATORS AND EXPRESSION EVALUATION

A single-termed ,expression such as 36 or $ or SUM takes
on the value of ,·he term involved. A multi"termed expres­
sion such as INDEX + 4 or ZD'~(8+XYZ) is reduced to a
single value as follows:

1. Each term is evaluated and replaced by its internal
value.

2. Arithmetic operations are performed from left to right.
Operations at the same pClrenthetical level with the
highest "binding strength" are performed first. For
example,

A + B * C/D

is evaluated as

A + ((B * C) / D)

3. All arithmetic and logical operations in expressions
are carried out in double precision (64 bits) with the
following exceptions:

a. Multiplication allows only single precision oper­
ands (32 bits) but may produce a double precision
product.

b. Division allows a single precIsIOn divisor and a
double precisiot;! dividend and produces a single
precision quotient.

4. Division always yields an integer result; any fractional
porti on is dropped.

5. Division by zero yields a zero result and is indicated
by an error notification.

An expression may be preceded by an asterisk (*), which is
often used to denote indirect addressing. Used as a prefix
in this way, the (]sterisk does not affect the evaluation of
the expression. liowever, if an asterisk precedes a sub­
expression, it is interpreted as a multiplication operator.

Multitermed expressions may be <Formed from the following
operands:

1. Symbols representing absolute or relocatable addresses,
which may b49 previously defined, forward, or external
references.

2. Decimal integer constants (e. g., 12345) or symbols
representing them.

3. All other general constants, namely character string
(C), hexadecimal (X), octal (0), packed decimal (D),
fixed-point (FX), floating-point short (FS), and floating­
point long (FL), or symbols representing them.

The following should be noted with regard to expression
evaluation:

1. To allow for greater flexibility in generating and
manipulating C, D, FX, FS, and FL constants, the
assembl er treats them as integers when they are used
arithmetically in multitermed expressions and carries
the results internally as integers. Character constants
(C) so used are limited to eight bytes (64 bits), and
packed decimal constants (D) to 15 digits + sign.

2. All operators may be used, but only the + and - opera­
tors and the comparison operators may take an address
as an operand. An address operand is considered to be

a. Any symbol that has been associated with an ad­
dress in a relocatable or absolute section.

b. Any local symbol referenced prior to its definition.

c. Any symbol that is an external reference.

3. The sum of any two address operands is an address. The
difference of any two address operands is an address,
except for the case where both items are in the same
control section and of the same resolution; the result
then is an integer constant.

4. An address operand plus or minus a constant must use a
single precision constant. Combining a negative con­
stant with an address operand, however, wi II produce
an error only if the negative constant cannot be repre­
sented correctly in single precision form. For example,
externa I reference -1 is correct; externa I reference
-9,589,934,592 is incorrect.

5. AP carries negatives as double precIsion numbers and
will therefore provide for generated negative values of
up to 64 bi ts.

LOGICAL OPERATORS

The logical NOT (-'), or complement operator, causes a
one's complement of its operand,

Hexadecimal
Value Equivalent One's Complement

3 00 ... 0011 11 1100

10 00 ... 1010 11 0101

The bi nary logi ca I shi ft operator (**) determi nes the direc­
tion of shift from the sign of the second operand; a negative
operand denotes a right shift and a positive operand denotes
a left shift. For example,

5**-3

Language Elements 7

results in a logical right shift of three bit positions for the
value 5, producing a result of zero. A shift of more than
63 bits in either direction gives an answer of zero.

The result of any of the comparisons produced by the com­
parison operators is

a if false (or if operands are different types)

1 if true

so that

Expression

3>4

-.(3 ==4)

Resu I t

a

a

11. .• 11

3 is not greater than 4.

The 64-bit value ---,3 is
equal to 11. .. 1100 and
is not equal to 4; i. e. ,
00 ... 0100.

3 is not equal to 4.

3 is not equal to 4, so the
result of the comparison is
a which, when comple­
mented, becomes a 64-bit
value (all one's).

The logical operators & (AND), I (OR), and II (exclusive
OR) performs as follows:

AND

First operand: 0011

Second operand: 0101

Result of & operation: 0001

Fi rst operand: 0011

Second operand: 0101

Result of I operation: 0111

Exclusive OR

Fi rst operand: 0011

Second operand: 0101

Result of II operation: 0110

Expressions may not contain two consecutive binary oper­
ators; however, a binary operator may be followed by a
unary operator. For example, the expression

-A * --, B / - C - 12

8 Syntax

is evaluated as

(((-A) * (-, B)) / (-C)) - 12

and the expression

T + U * (V + -W) - (268 / -X)

is evaluated as

(T +- (U * (V + (-W)))) - (268/ (-X))

SYNTAX

Assembly language elements can be combined with computer
instructions and assembler directives to form statements that
compose the source program.

STATEMENTS

A statement is the basic component of an assembly language
source program; it is a Iso ca lied a source statement or a
program statement.

FIELDS

Source statements are written on a standard coding form.
The body of the coding form is di vided into four fie Ids:
label, command, argument, and comments. The coding
form is also divided into 80 individual columns. Columns 1
through 72 constitute the active line; columns 73 through BO
are ignored by the assembler except for listing purposes
and may be used for identifi cation and a sequence number.

The columns on the coding form correspond to those on a
standard BO-column card; one line of coding on the form
can be punched into one card.

AP provides for free-form symbolic lines; that is, it does
not require that each field in a staterpent begin in a
specified column. The rules for writing free-form symbolic
lines are

1. The assemb ler interprets the fi e Ids from left to right:
label, command, argument, comme;nts.

2. A blank column terminates any field except the com­
ments field, which is terminated at column 72 on card
input or by a carriage return or new line character on
terminal input.

3. One or more blanks at the beginning of a line specify
there is no label field entry.

4. The label field entry, when present, must begin in
column 1.

5. The command field begins with the first nonblank col­
umn following the label field, or in the first nonblank
column following column 1 if the label field is empty.

90 30 OOC-l (6/75)

6. The argument field begins with the fi rst nonblank
column following the command field. An argument
fi eld is designated as a blank in either of two ways:

a. Sixteen or more blank columns follow the com­
mand field.

b. The end ofthe active line (column 72) is encountered.

7. The comment field begins in the first nonblank column
following the argument' field, or after at least 16blank
columns following the command field when the argu­
ment field is empty.

ENTRIES

A source statement may consist of one to four entries writ­
ten on a coding sheet in the appropriate field: a label field
entry, a command field entry, Cin argument field entry, and
a comments field entry.

LABEL FIELD

A label entry is a symbol or a li:st of symbols that identifies
the statement in whi ch it appears. The label enables a pro­
grammer to refer to a specific statement from other state­
ments within the program.

A sing Ie label may appear in the label of any instruction
and of any directive except DSECT, whi ch must have one
and on Iy one label. A label felr some directives is not
meaningfu I and is ignored un less it is the target label of
a GOTO search.

The label on a procedure reference line may contain a list
of valid symbols, constants, or expressions (see Chapter 5).

A label used as c:m identifier mCIY have the same configura­
tion as a command, without conflict, since AP is able to
distinguish through context which usage is intended. For
example, the mnemonic code for the Load Word command
is LW. An instruction may be written with LW in the label
field without conflicting with the command LW.

The name of any intrinsic funcfion that requires parentheses
(ABSVAL, BA, CS, DA, HA, I., NUM, S:IFR, S:NUMC,
S:UFV, SCOR, and WA) may be used as a label in either a
main program or a procedure definition if the parentheses
are omitted. The intrinsic functions AF, AFA, CF, LF, and
NAME may be used as labels in ':I main program, butwithin a
procedure definition they are always interpreted as functions.

Example: Label Field Entry

LABEl COMMAND

1 5 10 15

PAY~(fATr=

A(r-t-3,X)

fl3
C es,(pJ
, rr'FrEE'" I,. X'F'

90 30 OOC-l (6/75)

2C
ARGUMENT

25 30 35

r-~-r-r-..---.--r-r'~~~r-I

r-r"-"-~-

COMMAND FIELD

A command entry is requi red in every acti ve line. Thus,
if a statement line is entirely blank following the label
fi eld or if the command entry is not an acceptable in­
struction or directive, the assembler declares the state­
ment in error.

The command entry is a mnemonic operation code, an
assembler directive, or a procedure name. AP direc­
tives and valid mnemonic codes for machine operations
are listed in the Appendix. Procedures are discussed
in Chapter 5.

Example: Command Field Entry

LABEL COMMAND ARGUMENT

1 5 10 15 20 25 30 35

LV 5
I I'

LW,S
Li'vl I~ S-

I I

L'W.5
I I

flLPHfl LW.5 I I I I I

BETfi (rI~5 I

IBI
I (W:'? I I

J....eJep T tv! ~~ I I

I I I

ARGUMENT FIELD

An argument entry consists of one or more symbols, con­
stants, literals, or expressions separated by commas. The
argument entries for machine instructions usually repre­
sent such things as storage locations, constants, or in­
termediate values. Arguments for assembler directives
provide the information needed by AP to perform the des­
ignated operation.

Example: Argument Field Entry

COMMAND ARGUMENT

10 15 20 25 30 35 37 40

L.. 'W.5 ALPHR
11i''r/ ~ B/~
L.'I'J.J.' &'5 I

L'1,,j ,'J C'«lUNT
I I

,IE/p I' '81L A N'I(' 'A IR'GU/1ENT ,
LT'r/ 15 TANy I

" I I

1 I I
"

COMMENT FIELD

A comments entry may consist of any information the user
wishes to record. It is read by the assembler and output as
part of the source image on the as:;embly listing. Comments
have no effect on the assembly.

Syntax 9

COMMENT LINES

An enti re line may be used as a comment by wri ti ng an
asterisk in column 1. Any EBCDIC character may be
used in comments. Extensive comments may be writ­
ten by using a series of lines, each with an asterisk
in column 1.

The assembler reproduces the comment lines on the assem­
bly listing and counts comment lines in making line num­
ber assignments.

STATEMENT CONTINUATION

If a single statement requires more space than is avai lable
in columns 1 through 72, it can be continued onto one or
more following lines. When a statement is to be continued
on another line, the following rules apply:

1. Each line that is to be continued on another line must
be terminated with a semicolon. The semicolon must
not be within a character constant string. Anything
in the initial line following the seimcolon is treated
as comments. A semicolon within comments is not
treated as a continuation code.

2. Column 1 of each continuation line must be blank.

3. Comment lines may not be continued.

4. Comment lines may be placed between continuation
lines.

5. Leading blanks on continuation lines are ignored by
the assembler. Thus, significant blanks that must fol­
low label or command entries must precede the semi­
colon indicating continuation.

Example: Statement Continuation

BEGIN LW,3 A· , Continuation.
+B

NEW TEXT 'A;B' ; is not a contin-
uation character.

LOCAL A,START,R 1,;
D,RATIO,B12,; Continuation.
C,MAP

ANS LW,3 The blank that
SUM,1 terminates the

command fiel d
precedes the
semicolon.

10 Processing of Symbols

PROCESSING OF SYMBOLS

Symbols are used in the label field of a machine instruction
to represent its location in the program. In the argument
field of an instruction, a symbol identifies the location of
an instruction or a data value.

The treatment of symbols appearing in the label or argu­
ment field of an assembler directive varies.

DEFINING SYMBOLS

A symbol is "defined" by its appearance in the label field of
any machine language instruction and of certain directives.

ASECT, CNAME, COM, CSECT, DATA, DO, 001,
DSECT, END, EQU, FNAME, GEN, LOC, ORG,
PSECT, RES, SET, S:SIN, TEXT, TEXTe, and USECT.

For all other directives a label entry is ignored (except as
a target label of a GOTO directive); that is, it is not as­
signed a value.

Any machine instruction can be labeled; the label is as­
signed the current value of the execution location counter.

The first time a symbol is encountered in the label field of
an instruction, or any of the directives mentioned above, it
is placed in the symbol table and assigned a value by the
assembler. The values assigned to labels naming instruc­
tions, storage areas, constants, and control sections repre­
sent the addresses of the leftmost bytes of the storage fields
contai ning the named items.

Often the programmer will want to assign values to symbols
rather than having the assembler do it. This may be accom­
plished through the use of EQU and SET directives. A sym­
bol used in the label field of these direc~ives is assigned the
value specified in the argument field. The symbol retains
all attributes of the value to which it is equated.

REDEFINING SYMBOLS

Usually a symbol may be defined only once in a program.
However, if its value is originally assigned by a SET or
DO directive, the symbol may be redefined by a subsequent
SET directive or by the processing of a DO loop. For
example:

SYM SET

SYM DO

NOW SET

15 SYM is assigned the
value 15.

3 SYM is changed to zero
and is incremented by 1
each time the DO loop
is executed.

SYM NOW is assigned the
value SYM had when the
DO loop was completed;
i.e., 3 not 15.

90 30 00C-1 (6;75)

SYMBOL REFEnENCES

A symbol used in t-he argument field of a machine instruction
or directive is called a symbol reference. There are three
types of symbo I references.

PREVIOUSLY DEFINED REFERENCES

A reference made to a symbol thclt has already been de­
fined is a previously defined reference. All such references
are completely processed by the clssembler. Previously de­
fined references may be used in any machine instruction or
directive.

FORWARD REFERENCES

A reference made to a symbol that has not been defined is
a forward reference.

Forward references may be used in any machine language
instruction and in the operand field of the following
directives:

ERROR, GOTO, DATA, GEI'l, REF, SREF, DEF,
LOCAL, and OPEN.

Examples: Forward References

ALPHA DATA,R A,X

BETA DO X = 2

R SET 4

X EQU 3

A DATA,R R*X

R SET 7

Error; R is forward.

Error; X is a forward
reference.

Legal; generates
DATA 12.

The directive at ALPHA is in error because forward ref­
erences are not permitted in the command field of any direc­
tive. Thus, when the object code is generated, R wi" have
the last va lue assiigned to it during Phase 2, i. e., the
value 7. The forward references A and X in this directive
illustrate permissible usage. The statement at BETA is in
error because the DO directive mlust have an evaluatable
expression and Xis a forward reference.

---------------------~

AP permits the use of forward references in multitermed
expressi ons.

EXTERNAL REFERE NCES

A reference made to a symbol defirned in a'program other than
the one in which it is referenced h an external reference.

A program that defines external references must declare
them as external by use of the DEF directive. An external

definition is output by the assembler as part of the obiect
program, for use by the loader.

A program that uses external references must declare them
as such by use of a REF or SREF directive.

A machine instruction containing an external reference
is incompletely assembled. The obiect code generated
for such references a Ilows the externa I references and
their associated external definitions to be linked at load
time.

After a program has been assembled and stored in memory
to be executed, the loader automatically searches the pro­
gram library for routines whose labels satisfy any existing
externa I references. These routines are loaded automat­
ically and interprogram communication is thus completed.

AP permits the use of external references in multitermed
expressions. They are not permitted on directive state­
ments where a previously defined expression is required.

ClASSIFICATION OF SYMBOLS

Symbols may be classified as either local or nonlocal.

A local symbol is one that is defined and referenced within
a restricted program region. The program region is desig­
nated by the LOCAL directive, which also declares the
symbols that are to be local to the region.

A symbol not declared as local by use of the LOCAL direc­
tive is a non local symbol. It may be defined and referenced
in any region of a program, including local symbol regions.

The same symbol may be both nonlocal and local, in which
case the nonlocal and local forms identify different program
elements.

SYMBOL TABLE

The value of each defined symbol is stored in the assem­
bler's symbol table. Each value has a value type asso­
ciated with it, such as absolute address, relocatable
address, integer, or external reference. Some types re­
quire additional information. For example, relocatable
addresses, which are entered as offsets from a program sec­
tion base, require the intrinsic resolution of the symbol.

When the assembler encounters a symbol in the argument
field, it refers to the symbol table to determine if the sym­
bol has already been defined. If it has, the assembler ob­
tains from the table the value and attributes associated with
the symbol, and is able to assemble the appropriate value
in the statement.

If the symbol is not in the table, it is assumed to be a for­
ward reference. AP enters the symbol in the table but
does not assign it a value. When the symbol is defined
later in the program, AP assigns H a value and designates
the appropriate attributes.

Processing of Symbols 11

LISTS

A list is an ordered set of elements. Each element occupies
a unique position in the set and can, therefore, be identi­
fied by its position number. The nth element of list R is
designated as R(n}. An element of a list may also be
another list. Any given element of a list may be numeri c,
symbolic, or null (i.e., nonexistent).

A list may be either linear or nonlinear. A linear list is
one in which all non-null elements consist of a single
numeric or symbolic expression of the first degree (i .e.,
having no element with a sub-subscript greater than 1).
A non linear list has at least one compound element;
that is, a non-null element with a sub-subscript greater
than 1.

These definitions are explained in greater detail below.

Lists may be used in two ways: as value lists or as pro­
cedure reference lists. Value lists are discussed in this
chapter; see Chapter 5 for a description of procedure ref­
erence lists.

VALUE LISTS

LINEAR VALUE LISTS

A linear value list may consist of several elements or
of only a single non-null element having a specific
numeric value (e. g., a signed or unsigned integer, an
address, or a floating-point number). Thus, a single
value and a linear value list of one element are struc­
turally indistinguishable.

An example of a linear value list, named R, having the
four elements 5, 3, -16, and 17 is shown below.

R == 5, 3, -16, 17

(The symbol == means "is identical to".)

Reference Syntax. In the example given above, the
four elements of list R would be referred to as R(l),
R(2), R(3), and R(4).

A nu II value is not a zero value. An element having
a value of zero is not considered a nu II element, be­
cause zero is a specific numeric value. The null ele­
ments of a value list are those that have not been as­
signed a value, although they do have specific subscript
numbers. That is, all subscript numbers not assigned to

12 Lists

non-nu II elements may be used to reference impli cit nu II
elements. For example, the list R, as defined above,
consists of four elements:

R(l} = 5

R(2} = 3

R(3) = -16

R(4) = 17

and any number of implicit null elements:

R(5) ,= null

R(6) = null

R(n) = null for n > 4

A null value used in an arithmetic or logical operation has
the same effect as a zero value. Thus, if

LIST (a) = null

then

LIST(b) + LIST (a) = LIST(b}

also

0+ LIST (a) = 0

also

LIST(a) + null = 0

Example: Linear Value Listt

A SET 8,6,9

defines list A as

A(l) = 8

A(2) = 6

A(3) = 9

A(4} = null

A (n) = nu II for n ~ 4

The list could be altered by assigning additional
elements to list A:

A(4)

A(5}

SET

SET

-65

231

Thereby changing list A to

A 8,6,9, -65, 231

t List values are normally defined by SET or EQU directives,
which are described in Chapter 4.

When a list contains explicit null elements (i. e., those
followed by one or more non-null elements), they are
counted with the non-nu II elements in determining the
total number of elements in the list.

Examples of lists containing explicit null elements are
shown below.

A SET 5, 17, 10",114

B SET ,,6

defines lists A and B as

A = 5, 17, 10, null, null, 14

List A contains
six explicit
elements.

B = nu",nu"r 6

List B c()ntains
three exp Ii cit
elements.

A trailing comma in a list specifies a trailing explicit
nu" element. Thus, a list defined as

S SET 4,3,6,,2,

contains six explicit elements:

4, 3, 6, nu ", 2, nu II.

If Q is the name of an m-element value list, e is an
expression having the single value n, and no list having
more than 255 elements can be accommodated by the
assembler, then the reference syntax wi" give the va lues
shown in Table 3.

Generation. The syntax for defining a list is

name followed by directive followed by sequence

The name may be any symbol chosen by the programmer,
the directive may be either EQU or SET, and the sequence
is one or more elements establishing the list structure.

Note: A name is mandatory.

Each element in a list-defining sequence must be either
(1) the expression to be used as the next element of the

Table 3. Reference Syntax for Lists

Syntax of
Case Reference Range of n Meaning of the Reference Value(s) of the Reference

1 Q Reference to a" elements The m val0es of the ele-
of list Q. ments of list Q.

2 Q(e) l~n$m Reference to the nth ele- The value of the nth
ment of list Q. element of list Q.

3 Q(e) m < n $ 255 Reference to nonexistent Null. (Numeri c effect
(n is an integer) (nu II) element of list Q. equivalent to zero.)

(No error flag.)

- 1--<-- -

4 Q(e) n $ 0 or n> 255 Error: (Subscript out of The value of Q(l).
or n is not an range.) -
integer.

90 30 OOC-1 (6/75) lists 13

list, or (2) a reference (case 1 or 2) to an m-element list,
whose elements are to be copied as the next elements of
the list being defined. This is illustrated below, where the
effects of successive SET directives are to be considered
cumulative.

Example: Defining Linear Value Lists

Q SET

creates

Q == 4,9

R SET

creates

R == 4, 17,-6

S

creates

S =4,9

T

creates

SET

SET

T = 4, 9, 19,4, 9, -6

Q SET

redefines

Q == -6, 19,205

4,7 + 2

Q(1), 17,-6

Q

Q, 19, Q, R(3)

T(6), T(3), 205

Note: This SET line does not result in redefinition
of R, S, or T, although they were initially
defined in terms of elements of Q; only Q

wi" have new values after execution of
this directive.

T SET T(5)

redefines

T=9

Note: The evaluation of T(5) is performed before
redefinition of T. A" elements of T that
are of higher order than T(l) wi" be null
elements after execution of this directive
(i. e., T (n) = nu" for n > 1).

S SET S,6

redefines

S == 4, 9, 6

S SET 1, S

redefines

S=1,4,9,6

Manipulation. The SET directive can be used not only to
define or redefine an entire list, but also to define or re­
define any single element of a linear value list. The syntax
of the directive is still name fo"owedby directive followed

14 lists

by sequence, but the name is a subscripted symbol
identifying some particu lar list element; and the sequence
is only a single expression, representing either a specific
numeric value or the name of a previously defined element
having a single value.

In the example below, the effects of successive SET direc­
tives are to be consi dered cumu lative, but not retroactive.

Example: Redefining a Linear Va lue List

A
A(2)

redefines

SET
SET

5,6,4
17

A = 5, 17,4

A(3) SET A(3) + 6

redefines

A = 5, 17, 10

NON LINEAR VALUE LISTS

A nonlinear value list has at least one compound element;
that is, a non-nu II element having a sub-subscript greater
than 1. A compound element in a list is identified by en­
closure within parentheses. The following example i"us­
trates this notation.

Example: Parentheses in Nonlinear Value Lists

x = (4)

x = (4,7)

X == (A)

Redundant parentheses.

Not redundant.

If A has previously been equated to a sin­
gle value, the parentheses are redundant.

If A has previously been equated to a list of
va lues, the parentheses are not redundant.

In the example below, notice the use of parentheses in
specifying the level of the subelements. Z(l) consists of
one subelement: (2, 3, 4), which is composed of three sub­
subelements: 2, 3, 4, as compared with Z(2) which consists
of three subelements: 9, 8, 11, and no sub-subelements.
AP places no limit on the number oITevels that may be
specified for subelements.

Redundant parentheses frequently occur in lists. For
example, the list

A == ((((4 + 7) * (3 + 2)),6))

can be simplified as follows:

A == ((((11) * (5)),6))

A == (((55),6))

Example: Nonlinear Value List Notation

Z = «2,3,4)), (9,8, 11),7, (6, (5,4))

The elements ()f list Z are

Z (1) = (2, 3, 4)

Z(2)=9,8,11

Z(3) = 7

Z(4) = 6, (5,4)

Z(n)= null for n > 4

Subelements of list Z are identified by means of mu Itiple subscripts (i. e., sub-subscripts):

Z(l)" (2'3'4)~-­
Z(1,1)=2,3,4

L --- -- - Z(l, 2)= null

Z(2, 1) = 9

Z(2,2)=8

Z(2)=9,8,11

Z(2,3) = 11

I
L_ --- -- - Z(2,4) = null

Z(3)= 7----r--
Z(3, 1) = 7

L ___ , ___
Z(3,2)= null

Z(4) " 6, (5, 4)1

Z(4,1) =6

Z(4, 2) = 5,4

I
L ___ --:-_ Z (4, 3) = nu II

Z(1,1,1)=2

Z(l, 1,2) = 3

Z(1,1,3)=4

Z(l, 1,4)= null

-------r------ Z(2, 1, 1) = 9

L- _ - - - Z (2, 1, 2) = nu II

Z(2,2, 1) = 8

~- - - - Z(2,2,2)=. null

Z (2, 3, 1) = 11

~- - - - Z(2,3,2)= null

I
Z (3, 1, 1) = 7

L-. ____ Z(3, 1,2) = nu II

I
Z(4,1,1)=6

L-. ____ Z(4, 1,2)= null

Z(4,2, 1) = 5

I Z(4,2, 2) == 4

I L- ____ Z(4, 2, 3) == nu II

A number of implicit null elements could be identified as subelements. - In this example implicit null elements are
indicated with broken lines and only one such element is shown for each subdivision.

Lists 15

The pair of parentheses enclosing 55 is redundant, since
(55) and 55 are identi cal. However, the remaining two
sets of parentheses are not redundant since they specify
the level of the subelements. The use of redundant paren­
theses in lists is permitted in AP.

Reference Syntax. The reference syntax used with non­
linear va lu-;!~ is the same as that used with linear
value lists, except that multiple subscripts are used to
indi cote the subelement.

In addition to allowing the use of redundant parentheses,
the list-manipu lotion syntax allows lists to be defined
in terms of elements of other lists or even in terms of
elements of the list itself. For example, if list M is
defined as

M::::: -6,(4,7),3

then another list cou Id be defined as

N(2) SET M(2) making N (2) ::::: 4,7

or an entire list could be defined as

P SET M maki ng p::::: -6, (4,7),3

Furthermore, elements within a list can be redefined in
terms of list elements:

M SET -6,(4,7),9 making M == -6, (4,7),9

M(l) SET M(2,1) making M ::::: 4, (4,7),9

M(2,2) SET M(3) making M::::: 4, (4,9),9

M(3) SET M(3) making M ::::: 4, (4,9),9

M(3) SET 9 making M ::::: 4, (4,9),9

Notice that the last two declarations result in no change
in value for element M(3).

Assume that list R is defined as equal to element A(a)
of list A, that list S is defined as element R(b) of list R,

16 Lists

and :"lat list T is defined as elemen: S(c) of list S.
List T will then be equal to element A(a,b,c) of list A.
That :5r if

R SET A(a)

and

S SET R(b)

and

T SET S(c)

then

T == A(a, b, c)

Example: Defining Non linear Va lue Lists

Assume list A is defined as

A::::: 4, ((2,6),4,1),17

then the following definitions could be made

R SET A(2) making R ::::: (2,6),4, 1

S SET R(l) making S::::: 2,6

T SET S(2) making T == 6

The same definition for T could be achieved by writing

T SET A(2,1,2) makingT:::::6

Generation. The definition syntax for nonlinear value
lists is the same as that for linear lists, and either EQU or
SET directives may be used. In the next example the ef­
fects of successive SET directives are to be considered cum-
ulative, but not retroactive. Assume that all lists are
initially undefined.

Mani pu lotion. The SET directive may be used to de­
fine or redefine any single element or subelement of a
nonlinear value list. The name used with the di rective
is a subscripted symbol identifying some particu lor ele­
ment or subel ement, and the sequence may consist of
one or more expressions.

Example: Defining Nonlinear Vodue Lists

A SET (5,6),7

B SET 1 + 2 j, 3, 17, A(3, 1)

C SET A, (A), A(l), B(2)

defines A == ~,6), 7

thus A(l) == 5,6
A(2) == 7
A(3) == null

defines B = 7, 17, null

thus B(l) = 7
B(2) == 17
B(3) == null (explicit)

B(4) == null

defines C == (5,6),7, ((5,6),7),5,6, 17

thus C(l) == 5,6
C(2) == 7
C(3)== (5,6),7
C(4) == 5
C(5) = 6
C(6)= 17

Notice that the parentheses enclosing the second element in the definition of C are not redundant. They specify
that the entire list A is to be one element of list C.

D SET A,B

B SET A, (B)

defines D == (5,6),7,7, 17, null

thus D(l) = 5,6
D(2) == 7
D(3) = 7
D(4)= 17
D(5) == null (explicit)

redefines B == (5,6),7, (7, 17, null~

thusB(1)==5,6
B(2) = 7
B(3) == 7, 17, null

In the last SET line above, the original elements of list B are used to redefine an element of the list. This is possible
because the assembler evaluates the items on the righthand side of the directive SET before equating them with the
symbol (s) on the lefthand side.

In the next example the effects of successive SET directives
are to be considered cumu lative, but not retroactive.
Assume all lists are initially undefined.

NUMBER OF ELEMElnS IN A LIST

The number of explicit elements (i.e., non-null elements
plus explicit nu II elements) in a list can be determined
through the use of the intrinsic flJnction NUM. The syntax
for this function is

NUM(name)

The name specified may be that of a list, of an element, or
of a subelement of a list.

If a list is defined as equal to somegiven elementof another
list, the new I ist wi II have the same number of explicit­
elements as the original list. That is, if

Q SET P(a)

then

NUM(Q) = NUM(P(a))

Lists 17

Example: Manipulating Nonlinear Value Lists

A(1) 5ET 1,2,3 defines A = (1,2,3)

thus A(1) = 1,2,3
A(2)=-null

A(1,1)=1
A(1,2)= 2
A(1,3)= 3
A (2, 1) == nu II

A(1, 1, 1) = 1
A(1,1,2):::null
A(1,2, 1) = 2
A(1, 2, 2) = nu II
A(1,3, 1) = 3
A(1, 3, 2)= null

A(1, 1,2) 5ET 4 defines a previously null element: A(1, 1,2) = 4

B(1,2) 5ET

C(1) 5ET

making list A == ((1,4),2,3)

thus A(1) == (1,4),2,3 A(1, 1) == 1,4

A (1, 1), (A(1,2), A (1,3))

A(2)== null A(l, 2) == 2
A (1,3) == 3
A (2, 1) == nu II

defines B = (nu II, (1,4, (2,3)))
thus B(1)= null, (1,4, (2,3))

B(2) = nu II

A(1, 2), (A(1, 1, 1)) defines C == (2, 1)

thus C(1) == 2, 1
C(2)= null

C(1, 1) =2
C(1, 2) == 1

Notice that the parentheses around A(1, 1, 1) are redundant in this example.

B(1, 1) 5ET

Example: NUM Function

5 = A, (B, ((C, D)))
NUM(5) = 2

5(1)==A
NUM(5(1)) = 1

5(2) = B, ((C, D))
NUM(5(2)) = 2

5(3) = null
NUM(5(3)) = 0

18 Lists

C(1,2)

5(1,1)=A
NUM(5(1, 1)) = 1

5(1,2) = nu II
NUM(5(1, 2)) = 0

5(2, 1) == B
NUM(5(2, 1)) = 1

5(2,2) = (C, D)
NUM(5(2, 2)) = 1

5(2,3) = nu II
NUM(5(2, 3)) = 0

defines a previously null subelement:

thus B == (1, (1,4, (2,3)))
B(1) = 1, (1,4, (2,3))
B(2) == null

5(2, 1, 1) == B
NUM(5 (2, 1, 1)) = 1

5(2, 1,2) = null
NUM(5(2, 1,2)) = 0

5(2,2,1)==C,D
NUM(5(2,2, 1)) = 2

5(2,2,2) == null
NUM(5(2, 2,2)) = 0

B(1, 1) = null
B(1, 2) == 1,4, (2,3)

B(1,1)=1

B(1, 1) == 1
B(1, 2) = 1,4, (2,3)

5 (2, 2, 1, 1) == C
NUM(5(2,2, 1, 1)) = 1

5(2,2,1,2):=D
NUM(5(2,2, 1,2)) = 1

5(2,2, 1,3) := null
NUM(5(2,2, 1,3)) = 0

Example: NUM Function

Assume list Z is defined as

Z SET 3, , , 4, , ,

thus, NUM(Z):= 7

If

Z(4) SET Z(2)

NUM(Z) = 7

Note that NUM(Z(2)) = a

Example: NUM Function

Assume list A is defined as

A==4, ((2,6),4,1),17

If the following definitions are made:

R

S

T

SET

SET

SET

A(2)

R(l)

S(2)

Then the following statements are true:

NUM(A(2)) = 3

NUM(R) = NUM(A(2)) := 3

List Z consists of seven elements: 3, null, null, 4, null, null, null. (Note
that the last null element is specified by the final comma in the list.)

That is, the fourth element of Z is redefined as a nu II element.

List Z would still consist of seven elements: 3, null, null, null, null,
nu II, nu II.

making A (2) == (2,6),4, 1

making R == (2,6),4, 1

making S == 2, 6

making T == 6

NUM(S) = NUM(R(l)) == NUM(A(2, 1)) =2

NUM(T) = NUM(S(2)) == NUM(R(1,2))

== NUM(A(2, 1,2)) = 1

Lists 19

3. ADDRESSING

Most Si gma computer instructions require an argument
address. The programmer can write addresses in symbolic
form and the assembler wi II convert them to the proper
equivalents.

RELATIVE ADDRESSING

Relative addressing is the technique of addressing instruc­
tions and storage areas by designating their locations in
relation to other locations. This is accomplished by using
symbolic rather than numeric designations for addresses.
An instruction may be given a symbolic label suchas LOOP,
and the programmer can refer to that instruction anywhere
in his program by using the symbol LOOP in the argument
field of another instruction. To reference the instruction
following LOOP, he can write LOOP+l; similarly, to
reference the instruction preceding LOOP, he can write
LOOP-l.

An address may be given as relative to the location of the
current instruction even though the instruction being ref­
erenced is not labeled. The execution location counter,
described later in this chapter, always indicates the loca­
tion of the current instruction and may be referenced by
the symbol $. Thus, the construct $+8 specifies an address
eight units greater than the current address, and the con­
struct $-4 specifies an address four units less than the cur­
rent address.

ADDRESSING FUNCTIONS

Intri nsi c functions are functions bui It into the assembler.
Certa i n of these functi ons concerned wi th address reso I uti on
are discussed here.

Intrinsic functions, including those concerned with address
resolution, mayor may not require arguments. When an
argument is required for an intrinsic function, it is always
enclosed in parentheses.

A symbol whose value is an address has an intrinsic address
resolution assigned at the time the symbol is defined. Usu­
ally, this intrinsic resolution is the resolution currently
applicable to the execution location counter. The address­
ing functions BA, HA, WA, and DA (explained later) allow

. the programmer to specify explicitly a different intrinsic
address resolution than the one currently in effect.

Certain address resolution functions are applied uncondi­
tionally to an address field after it is evaluated. The choice
of functions depends on the instruction involved. For in­
structi ons that requi re va I ues rather than address (e. g., LI,

20 Addressing

MI, DATA), no final addressing function is applied. For
instructions that require word address (e. g., LW, STW,
LB, STB, LH, LD), word address resolution is applied.
Thus, the assembler evaluates LW,3 ADDREXP as if it were
LW,3 WA(ADDREXP). Simi larly, instructions that require
byte addressing (e. g., MBS) cause a final byte addressing
resolution to be applied to the address field.

BA (Byte Address)

The byte address function has the format

BA (address expression)

where "BA" i denti fi es the functi on, and "address expres­
sion II is the symbol or expression that is to have byte address
resolutio~ when assembled. If "address expression" is a
constant, the value returned is the constant itself.

Example: BA Function

z LI,3

AA LI,5

BA(L(48}) The value 48 is stored in the
literal table and its location
is assembled into this argu­
ment field as a byte address.

BA($) The current executi on loca­
tion counter address is evalu­
ated as a byte address for th i s
statement.

HA (Halfword Address)

The halfword address function has the format

HA (address expression)

where "HAil identifies the function, and "address expres­
sion" is the symbol or expression that is to have halfword
address resolution. If "address expression" is a constant,
the value returned is the constant itself.

Example: HA Function

z CSECT Declares control section Z.
Both location counters are
initialized to zero. Z is im­
plicitly defined as a word
resolution address.

Q EQU HA{Z+4) Equates Q to a halfword ad-
dress of 2:+4 (words).

WA (Word Address)

The word address function has the format

WA (address expression)

where "WA" identifies the function, and "address expres­
sion" is the symbol or expression that is to have word ad­
dress resolution when assembled. If "address expression"
is a constant, the value returned is the constant itself.

Example: WA Function

A ASECT

LW,3 2:1

B LW,4 Z2

C EQU BA{B)

F EQU WA(C)

Declclres absolute section A
and s.~ts its location counters
to zero.

Assembles instruction to be
stored in location O.

Assigns the symbol B the
value 1, with word address
resolution.

Equates C to the value of B
with byte address resolution.

Equa tes F to the va I ue of C,
with word address resolution.

DA (Doubleword Address)

The doubleword address function has the format

DA (address expression)

where "DA" identifies the function, and "address expres­
sion" is the symbol or expression that is to have doubleword
address resolution when assembled. If "address expression"
is a constant, the value returned is the constant itself.

90 30 00C-1 (6/75)

Example: DA Function

LI,5

ABSVAL

DA(L{ALPHA)) The symbol ALPHA is stored
in the I iteral table and its
location is assembled into th is
statement as a doubleword
address.

(Absolute Value)

This function converts a relocatable address into an abso­
lute value (i. e., address expression minus relocation bias).
It has the format

ABSVAL (address expression)

where "ABSVAL" identifies the function, and "address ex­
pression" is any val id expression containing only addresses
and integers combined by addition or subtraction (no exter­
na I or loca I forward references).

The absolute value of an address is evaluated according to
the resolution; thus, the absolute value of a relocatable
address, evaluated with word resolution, would result in a
17-bit address (the two bits specifying byte and ha If word
boundaries would be ignored). The absolute value of an
external reference, a blank field, a null field, an integer,
a character string, etc., is the same configuration as the
item itself; e. g., ABSVAL('AXY') is the value 'AXY'.

Example: ABSVAL Function

Q

R

CSECT o

EQU $+5

Declares control section
Q and sets location
counters to zero.

Equates R to the current value
of the execution location
counter plus 5 (i .e., to the
value 5 evaluated with
word resolution).

LI,2 ABSVAL(R) Loads register 2 with
ABSVAL(R), which is
the value 5.

12\2\21 0\0\0\0 \51
o ~

LI,2 ABSVAL(BA{R))

1212121010\0 \1\41
o ~

Addressing Functions 21

ADDRESS RESOLUTION

To the assembl er, an address represents an offset from the
beginning of the program section in which it is defined.

Consequently, the assembler maintains in its symbol table
not only the offset value, but an indicator that specifies
whether the offset va I ue represen ts bytes, words, ha If words,
or doublewords. This indicator is called the "address
resolution".

Address resolution is determined at the time a symbolic ad­
dress is defined, in one of two ways.

1. Explicitly, by specifying an address function.

2. Implicitly, by using the address resolution of the
executi on locati on counter. (The resol uti on of the
execution location counter is set by the ORG or

Example: Address Reso I uti on

Generated
Location Code

CSECT

00000 ORG 0
00000

00000 FFFB A GEN,16 -5

00000 2 0004 B GEN,16 4

00001 0000 GEN,16 BA(A)

00001 2 0002 GEN,16 BA(B)

00002 0001 GEN,16 HA(B)

00002 2 ORG,l $
00002 2

00002 2 FFFF F GEN,16 -1

00003 ooOA GEN,16 F

00003 2 OOOB GEN,16 F+l

00004 0002 GEN,16 WA(F)

00004 2 0002 GEN,16 WA(F+ 1)

LOC directives. If neither is specified, the address
resolution is word.)

The resolution of a symbolic address affects the arithmetic
performed on it. If A is the address of the leftmost byte of
the fi fth word, defi ned wi th word reso I uti on, then the ex­
pression A + 1 has the value 6 (5 words + 1 word). If A is
defined with byte resolution, then the same expression has
the value 21 (20 bytes + 1 byte). See the following example.

Local forward references with addends are considered to be
at word resolution when used without a resolution function
in a generative statement or in an expression. Thus a local
forward reference of the form

reference + 2

is implicitly

WA (reference +2)

Sets value of location counters to zero with
word resolution.

Defines A as 0 with word resolution.

Defines Bas 0 with word resolution.

Generates 0 with byte resolution.

Generates 2 with byte reso I ut ion.

Generates 1 with halfword resolution.

Sets valu'e of location counters to 10 with
byte resolution.

Defines F as 10 with byte resolution.

Generates 10 with byte resolution.

Generates 11 with byte resolution.

Generates 2 with word resolution.

Generates 2 with word resolution.

00005 0008 GEN,16 BA(WA(F+ 1)) Generates 8 with byte resolution.

00005 2 0003 GEN,16 WA(F)+ 1 Generates 3 with word resolution.

00006 ooOC GEN,16 BA(WA(F)+ 1) Generates 12 with byte resolution.

00006 2 ooOD GEN,16 BA(W A(F)+ 1)+ 1 Generates 13 with byte resolution.

22 Address Resolution 90 30 00C-1 (6/75)

L.OCATION COUNTERS

A location counter is a memory cell the assembler uses to
record the storage location it shou Id assign next. Each pro­
gram has two location counters as~,ociated with it during as­
sembly: the load location counter (referenced symboli cally
as $$) and the execution location counter (referenced sym­
bolically as $). The load location counter contains a loca­
tion value relative to the origin of' the source program. The
execution location counter contains a location value rela­
tive to the source program's execution base.

Essentially, the lood location counter provides information
to the loader that enables it to lood a program or subprogram
into a desired area of memory. On the other hand, the
execution location counter is used by the assembler to de­
rive the addresses for the instructions being assembled. To
express it another way, the execution location counter is
used in computing the locations and addresses within the
program, and the load location counter is used in computing
the storage locati ons where the program wi II be loaded pri or
to execution.

In the "normal" case both counters are stepped together as
each instruction is assembled, and both contain the same
location value. However, the ORG and LOC: directives
make it possible to set the two counters to different initial
values to handle a variety of programming situations. The
load location counter is a facility that enables systems
programmers to assemble a program that must be executed
in a certain area of core memory, load it into a different
area of core, and j"hen, when the program is to be executed,
move it to the proper area of memory without a I teri ng any
addresses. For eX(lmple, assume that a program provides a
choi ce of four di fferent output routi nes: one each for paper
tape, magnetic tape, punched cards, or line printer. In
order to execute properly, the program must be stored in
core as follows:

variable

2FFF

lFFF

0000

Output routine

Main program

To be used for data
storage during pro­
gram execution.

Each of the four output routi nes wou Id be assembl ed wi th
the same initial execution location counter val ue of 1 FFF
but different load location counter values. At run-time,
this would enable all the routines to be loaded as follows:

variable

5FFF

4FFF

3FFF

2FFF

0000

Line printer routine

Punched card routine

Paper tape routine

Magnetic tape routine

Ma i n program

.,

I}

To be used for data
storage during pro­
gram execution.

Execution area for
output routi ne.

When the main program has determined which output routine
is to be used during program execution, it moves the routi ne
to the execution area. No address modification to the rou­
tine is required since all routines were originally assembled
to be executed in that area. If the punched card output
routine were selected, storage would appear as:

variable

5FFF

4FFF

3FFF

2FFF

lFFF

0000

Line printer routine

Punched card routine

Paper tape routine

Magnetic tape routine

Punched card routine

Main program

.,

}

Data storage.

Execution area for
ou tput rout i ne •

The user should not assume from this example that the exe­
cution location counter must be controlled in the manner
indicated in order for a program to be relocated. By
properly controlling the loader and furnishing it with a
"relocation bias", any AP program, unless the programmer
specifies otherwise, can be relocated into a memory area
different than the one for which it was assembled. Most
relocatable programs are assembled relative to location
zero. To assemble a program relative to some other loca­
tion, the programmer should use or. ORG directive to desig­
nate the program origin. This directive sets both location
counters to the same va I ue.

Location Counters 23

Each location counter is a 19-bit value that the assembler
uses to construct byte, ha If word, word, and doubleword
addresses.

-doubleword ----... -1

--word

--- halfword ------..... -1

~ byte --------~.-I

Thus, if a location counter contained the value

it could be evaluated as follows:

Hexadeci ma I
Resolution Value

Byte 193

Halfword C9

Word 64

Doubleword 32

The address resolution option of the ORG and LOC direc­
tives allows the programmer to specify the intrinsic resolu­
tion of the location counters. Word resolution is used as
the intrinsic resolution if no specification is given. As
previously explained, address functions are provided to
overri de th i s reso I uti on.

Example: ORG Directive

SETTING THE LOCATION COUNTERS

At the beginning of an assembly, AP automatically sets the
va I ue of both location counters to zero. The user can reset
the location val ues for these counters during an assembly
with the ORG and LOC directives. The ORG directive
sets the value of both location counters. The LOC direc­
tive sets the value of only the execution location counter.

ORG (Set Program Origin)

The ORG directive sets both location counters to the loca­
tion specified. This directive has the form

label command argument

[label] ORG[, nJ [location]

where

label is a valid symbol. Use of a label is optional.

n

When present, it is defined as the value "location"
and is associated with the first byte of storage fol­
lowing the ORG directive.

is an evaluatable expression whose value is 1, 2,
4, or 8, specifying the address resolution for both
counters as byte, halfword, word, or doubleword,
respectively. If n is omitted, word resolution is
assumed.

location is an evaluatable expression that results
in an address or an integer. If location is an ad­
dress, a II attributes of location are substituted for
$ and $$, and the intrinsic resolution of $ and $$
are then set to n. If location is an integer, $ and
$$ remain in the current control section, but their
value is set to "location" units at "n" resolution.
If location is omitted, integer\O is assumed.

The address resolution option of ORG may be used to change
the intrinsic resolution specification to byte, halt'word, or
doubleword resolution. Thereafter, whenever intrinsic reso­
lution is applicable, it wi" be that designated by the most
recently encountered ORG directive. For example, when­
ever $ or $$ is encountered, the values they represent are
expressed according to the currently applicable intrinsic
reso I uti on.

AA ORG,2 8 Sets the location counters to eight halfwords (i. e., four words) and assigns that loca­
tion, with halfword intrinsic resolution, to the label AA.

LW,2 INDEX

24 Setting the Location Counters

This instruction is assembled to be loaded into the location defined as AA. Thus, the
effect is the same as if the ORG directive had not been labeled and the label AA had
been written with the LW instruction.

Example: ORG Directive (cont.)

z CSECT Designates a new section, sets the location counters to zero, and defines Z with
word resolution.

ORG Z + 4 Sets the location counters to Z + 4 with word resolution.

A LW,4 ANY Assembles ANY with word resolution, and defines A with word resolution.

MBS,O B Forces a byte address. The type of address required by the command overrides the
intrinsic resolution of the symbol.

LI,4 BA(ANY) Assembles the symbol ANY as a byte address.

LOC (Set Progrclm Execution)

The LOC directive sets the execution location counter ($)
to the location specified. It has the form

label command argument

[label] LOC [, n] [location]

where

label is a valid symbol. Use of a label is op-
tional. When present, it is defined as the value
of "location" and is associated with the first byte
of storage following the l.OC directive.

I

n is an evaluatable expression whose value is 1, 2,
4, or 8, specifying the address resolu,tion for the
execution location counter as byte, halfword,
word, or doubleword, respectively. If n is omit­
ted, word resolution is assumed.

location is an evaluatable expression that results
in an address or an integer. If location is an ad­
dress, all attributes of lo,cation are substituted for
$, and the intrinsic resolution of $ is then set
to n. If location is an integer, $ remains in the
current control section, but its value is set to
"location" units at "n" resolution. If location is
omitted, integer a is assumed.

The LOC directive is the same as ORG, except that it sets
only the execution location counter.

Example: LOC Directive

PDQ ASECT

ORG 100 Sets the execution location

LOC

counter and load location
counter to 100.

1000 Sets the execution location
counter to' 1000. The load
location counter remains at
100.

Subsequent instructions wi II be assembled so that the object
program can be loaded anywhere in core relative to the
ortgm of the program. For example, a relocation bias
of 500 will cause the loader to load the program at 600
(500 + 100). However, the program wi II execute prop­
erly only after it has been moved to location 1000.

BOUND (Advance Location Counters to Boundary)

The BOUND directive advances both location counters, if
necessary, so that the execution location counter is a byte
multiple of the boundary designated. The form of this
directive is

label command argument

BOUND boundary

where "boundary" may be any evcduatable expression
resulting in a positive integer value that is a power of 2
and ~32,768.

Setting the Location Counters 25

Halfword addresses are multiples of two bytes, fullword
addresses are multiples of four bytes, and doubleword
addresses are multiples of eight bytes.

When the BOU ND directive is processed, the execution
location counter is advanced to a byte multiple of the
boundary designated and then the load location counter is
advanced the same number of bytes. When the BOUND
directive results in the location counters being advanced,
zeros are generated in the byte positions skipped.

Example: BOUND Directive

BOUND 8 Sets the execution location
counter to the next higher
multiple of 8 if it is not al­
ready at such a value.

For instance, the value of the execution location coun-
• ter for the current section mi ght be three words (12 bytes).

This directive would advance the counter to four words
(16 bytes), which would allow word and doubleword
as well as byte and halfword addressing.

RES (Reserve an Area)

The RES directi ve enabl es the: uer to reserve an area of
core memory. The form of this directive is

-''''-
label command argum '.'nt

.-
[label] RES[, nJ [exp{f' $.ion]

where

label is a valid symbol. Use of a label is op-

n

tional. When present, the label is defined as the
current val ue of the execution locati on counter
and i denti fi es the fi rst byte of the reserved area.

is an evaluatable expression designating the size
in bytes of the units to be reserved. The value of
n must be a positive integer. Use of n is optional;
if omitted, its value is assumed to be four bytes.

Example: RES Directive

ORG 100 Sets location counters to 100.

expression is an evaluatable expression designating
the number of units to be reserved. The value of
expression may be a positive or negative integer.
If it is omitted, zero is assumed.

When AP encounters an RES directive, it modifies both
location counters by the specified number of units.

PROGRAM SECTIONS

An object program may be divided into program sections,
which are groups of statements that usually have a logical
association. For example, a programmer may specify one
program section for the main program, one for data, and
one for subrouti nes.

PROGRAM SECTION DIRECTIVES

A program secti on is dec lared by use of one of the program
section directives given below. These directives also de­
clare whether a section is absolute or relocatable. The list
gives only a brief definition of these directives; their use
wi II be made clear by successive statements and examples
in this chapter.

ASECT specifies that generative statements t wi II be assem­
bled to be loaded into absol ute locations. The
location counters are set to absolute zero.

CSECT declares a new control section (reloccltable). Gen­
erative statements wi II be assembled to be loaded
into this relocatable section. The location coun­
ters are set to relocatable zero.

DSECT declares a new, dummy control section (relocat­
able). Generative statements wi II be assembled
to be loaded into this relocatable section. The
location counters are set to relocatable zero.

t Generative statements are those that produce object code
in the assembled program.

A RES,4 10 Defines symbol A as location 100 and advances the location counters by 40 bytes (10 words)
changing them to 110 •.

LW,4 VALUE Assigns this instruction the current value of the location counters; i.e., 110.

26 Program Sections

PSECT declares a new control section (relocatable).
Generati ve statements wi II be assembled to be
loaded into this relocatClble section. The loca­
tion counters are set to I"elocatable zero. This
directive differs from C5ECT in that generated
code wi II be loaded starting at a page boundary.

USECT designates which previolJsly declared section AP
is to use in assembling generative statements.

The program section directives have the following form:

1----

label

[lobe IJ

[labelJ

label

[label]

command argument

ASECT
- -------------------------1

CSECT [expression]
-- ------ ------------------------------1

DSECT [expression]
---~---

PSECT [expression]
------~-- -----1- ------~---.---

[label] USECT name

where

label is a valid symbol. The label is assigned the
value of the execution location counter immedi­
ately after the directivE> has been processed. For
ASECT the value of the label becomes absolute
zero. For CSECT, DSECT and PSECT, the label
value becomes relocatable zero in the appropriate
program section. The lobel on a USECT directive
is defined as the value of the execution location
counter in the current control section. The label
on ASECT, CSECT, PSECT, and USECT may be ex­
ternal ized by appearing in a DEF directive so that
the label can be referred to by other programs.
For DSECT, label is implicitly an external defini­
tion, because dummy sections are usually set up so
that they can be referenced by other programs.
Labe Is may be passed as parameters from a proce­
dure reference line. These labe Is are referenced
via the intrinsic functions LF, CF 01' AF on the di­
rective line.

expression is an evaluatclble expression whose value
must be from 0 to 3. This value, applicable only
to CSECT, PSECT, and DSECT, designates the type
of memory protection to be applied to these sec­
tions. In the following list, "read" means a pro­
gram can obtain information from the section;
"write" means a program can store information into
a section; and "access" means the computer can
execute instructions stored in the section.

Value

o
1
2
3

90 30 OOC-1 (6;75)

Memory Protection Feature

read, write, and access permitted
read and acc:ess permitted
read on Iy permi tted
no access, read, or write permitted

The use of expression is optional. When it is
omitted, the assembler assumes the value 0 for the
entry. The expression may not contain an externa I
reference.

name is a label defined in a previously declared
section.

ABSOLUTE SECTION

Although ASECT may be used any number of times, the as­
sembler produces only one combined absolute section, using
the successive specifications of the ASECT directives.

RELOCATABLE CONTROL SECTIONS

A single assembly may contain from 1 to 127 relocatable
control sections, which AP numbers sequentially. At the
beginning of each assembly AP sets both the execution and
load location counters to relocatable zero, with word ad­
dress resolution, in relocatable control section 1. Control
section 1 is opened by generating values in, or referencing
or manipulating the initial location counters, or by de­
claring the first CSECT, PSECT or DSECT directive.

The execution of a CSECT, PSECT, or DSECT directive al­
ways opens a new section. Therefore, if control section 1
has been opened by generating values in, or referencing or
manipulating the initial location counters, the first CSECT,
PSECT or DSECT opens control section 2. For example,
these three program segments

DATA 5

CSECT

and
END

HERE

DEF

EQU

CSECT

END

SORT

$

and

ORG 500

CSECT

END

each produce two relocatable control sections, one implicit
(control section 1), and one explicit (control section 2);
whereas

VALUE EQU 5 INPUT

REF OUTPUT

CSECT and

END

CNAME

PROC

PEND

CSECT

END

each contain onlyone relocatable section (control section 1).
The statements preceding the CSECT do not open control
section 1 because they do not generate val ues in, or refer­
ence or manipulate the initial location counters.

Program Sections 27

Example: Program Sectioning

Current Location Counters SAVED $ SAVED MAX. $$
Program

$ Section $$ Section ABS CSl CS2 CSl CS2

0 ABS 0 ABS NUMBERS ASECT 0

300 300 ORG 300

350 350

0 CSl 0 CSl RANDOM CSECT 350

100 100

0 CS2 0 CS2 DUMMY DSECT 100 100

200 200 END 200

The ASECT directive sets both location counters to absolute zero; the ORG statement resets the counters to 300. Subse­
quent generative statements will be assembled to be loaded into absolute locations. When CSECT is encountered, AP
saves the value of the execution location counter. The value of the load location counter is not saved. AP then re­
sets the counters to relocatable zero in control section 1 and assembles generative statements to be loaded as part of
this section. The DSECT directive declares a new relocatable section. AP saves the counters for control section 1 in
the appropriate tables, resets the counters to relocatable zero in control section 2, and assembles generative state­
ments to be loaded in this section. The END directive causes AP to save the value of the load location counter for
control section 2. The saved values of $$ are used by the loader in allocating memory. Note that the use of ORG (and
LaC), when it changes the current section, also causes the current val ue of the execution location counter to be saved.
Additionally, ORG compares the current value of the load location counter with the saved value and saves the higher
value.

RETURNING TO A PREVIOUS SECTION

A programmer may write a group of statements for one sec­
tion, declare a second section containing various state­
ments, and then write additional statements to be assembled
as part of the first section. This capabi lity is provided by
the US ECT di recti ve.

Example: USECT Directive

Current Location Counters
Program

$ Section $$ Section

0 CSl 0 CSl CSECT
10 10 TRAP
100 100 LAST
0 CS2 0 CS2 DSECT

200 200
100 CSl 100 CSl USECT

END

This directive (see examples) specifies a previously de­
clared section that AP is to use in assembling generative
statements.

I
There is only one absolute section and although ASECT may
be used any number of times, the saved value of the abso­
lute section is always that of the last designated ASECT.

SAVED $ SAVED MAX. $$

ABS CSl CS2 CSl CS2

0

100 100

TRAP 200 200

When USECT TRAP is encountered, AP determines the control section from the table entry for TRAP, checks the saved I

execution location counter for CS 1, and copies this saved value (100) into both location counters.

28 Program Sections

Example: USECT Directive
--,--

Current Location Counteni
Program

SAVED $ SAVED MAX. $$

$ Section $$ Section ABS CS1 CS2 CS1 CS2

0 ABS 0 ABS ASECT 0

500 500 ORG 500

520 520 TABLE DATA 6

600 600

0 CS1 0 CS1 CSECT 600

100 100
0 ABS 0 ASS ASECT 0 100 100
700 700 ORG 700

800 800
0 CS2 0 CS2 CSECT 800

200 200
800 ABS 800 ASS USECT TABLE 200 200

When USECT TABLE is encountered, AP determines the control section from the symbol table entry for TABLE,
checks the saved execution locotion counter for the absolute section, and copies this saved value (800) into both
location counters.

Example: Program Sectioning

Current Location Counters
Program

SAVED $ SAVED MAX. $$
--

$ Section $$ Section ABS CS1 CS2 CS1 CS2

0 CS1 0 CS1 CSECT 0

1000 CS1 0 CS1 FILE LOC 1000

1100 CS1 100 CS1 LAST

0 CS2 0 CS2 CSECT 1100 100

200 CS2 200 CS2

1100 CS1 1100 CS1 USECT FILE 200 200

1200 CS1 1200 CS1

0 ABS 0 ABS ASECT 1200 1200

The LOC directive advances only the execution location counter. When USECT FILE is encountered, AP sets both
counters to the value of the saved execution location counter for CS 1 (1100). The ASECT directive causes AP to
save the value of the execution location counter for CSl (1200).

Program Sections 29

Example: Program Sectioning

Current Location Counters
Program

SAVED $ SAVED MAX. $$

$ Section $$ Section ABS CSl CS2 CSl CS2

a ABS a ABS CALL ASECT a
100 ABS 100 ADS ORG 100

200 ABS 200 ABS MAIN LW,4 6

a CSl a CSl CSECT 200

50 CSl 50 CSl HERE EQU $

100 CSl 100 CSl

a CS2 a CS2 CSECT 100 100

FF CS2 FF CS2

50 CSl 100 CS2 LOC HERE 100

300 CSl 350 CS2

200 ABS 200 ABS USECT MAIN 300 350

400 ABS 400 ABS

300 CSl 300 CSl USECT HERE 400

500 CSl 500 CSl

400 ABS 400 ABS USECT CALL 500 500

The statement HERE EQU $ defines HERE as the current value of the execution location counter (50). When the LOC
HERE statement in CS2 is encountered, AP sets the value of the execution location counter to 50 in CS 1. Sub-
sequent statements will be assembled to be executed as part of CSl but will be loaded as part of CS2. The USECT MAIN
statement saves the value of the execution location counter for CSl and the value of the load location counter for CS2.
The USECT HERE statement causes the counters to be set to the saved va lue of the execution location counter for CS(300).

DUMMY SECTIONS

In any load module, dummy sections of the same name must
have the same memory protection. Dummy sections provide
a means by which more than one subroutine may load the
same section. For example, assume that three subroutines
contain the same dummy constant section.

SUBR 1 SUBR 2 SUBR 3

CONST DSECT CONST DSECT CONST DSECT

END END END

30 Program Sections

Even though more than one of the subroutines may be re­
quired in one load module, the loader wi /I load the dummy
section only once, and any of the subroutines may reference

. the data.

PROGRAM SECTIONS AND LITERALS

When AP encounters the END statement, it generates all
literals declared in the assembly. The literals are gener­
ated at the current location (word boundary) of the currently
active program section (see example).

Example: Program Sections and Literals

Example

AREA CSECT

}
BAY CSECT

}
END

Example

GATE CSECT

}
ASECT
ORG 100
END

Example

REAL CSECT

}
LAST RES 0
LOOP CSECT

}
USECT REAL
END

Example

NOW DSECT

}
HERE RES 2'-,)

}
ORG HERE
END

Literals declared.

Literals declared.

Literals generated os part of section BAY.

Literals declared.

Literals generated beginning in absolute location 100.

Literals declared.

Literals declared.

Literals generated as part of section REAL immediately following the location
assigned to LAST.

Literals declared.

Literals declared.

Literals generated as part of section NOW, beginning at locadon HERE.

Program Sections 31

4. DIRECTIVES

A directive is a command to the assembler that can be
combined with other language elements to form statements.
Directive statements, like instruction statements, have four
fields: label, command, argument, and comments.

An entry in the label field is required for the following di­
rectives: C NAME, COM, FNAME, and S:SIN. The label
field entries identify the generated command or procedure.
The location counters are not altered by these directives.

Optional labels for the EQU and SET directives are defined
as the va lue of the evaluated argument field, which may be
any evaluatable expression.

Optional labels for the directives ORG and LOC are de­
fined as the value to which the execution location counter
is set by the directive.

If any of the directives DATA, GEN, RES, TEXT, or TEXTC
are labeled, the label is defined as the current value of the
execution location counter, and identifies the first byte of
the area generated. These directives alter the location
counters according to the contents of the argument field.

Labels for the directives ASECT, CSECT, DSECT, PSECT,
USECT, and DOl identify the first word of the area affected
by the directive. A label for DSECT is required.

A label for the END directive identifies the location imme­
diately following the last literal generated in the literal
table. This is explained further under the END directive
in this chapter.

A label on the following directives will be ignored unless
it is the target label of a GOTO search: BOUND, CLOSE,
DEF, DISP, ELSE, ERR~, FIN, GOTO, LIST, LOCAL,
OPEN, PAGE, PCC, PEND, PROC, PSR, PSYS, REF, SOCW,
SPACE, SREF, ~YSTEM, TITLE.

Labels for the DO directive are handled in a special manner
explained later.

The command field entry is the directive itself. If this field
consists of more than one subfield, the directive must be in
the first subfield, followed by the other entries.

Argument field entries vary and are defined in the indivi­
dual discussion of each directive.

A comments field entry is optional.

The END, LOCAL, OPEN, and CLOSE directives are the
only directives unconditionally executed. They are pro­
cessed even if they appear within the range of a GOTO
~earch or an inactive DO-loop.

32 Directives

The AP language includes the following directives:

Assembly Control

ASECT
t

LOC
t

GOTO

CSEcl BOUND
t

DOl

DSECT
t RESt DO

PSECT
t

SYSTEM ELSE

USECT
t

END FIN

ORG
t

Symbol Manipulation

EQU OPEN REF

SET CLOSE SREF

LOCAL DEF

Data Generation

GEN DATA TEXTC

COM TEXT S:SIN

SOCW

Listing Control

PAGE LIST ERROR

SPACE DISP PSYS

TITLE PCC PSR

Procedure Control (These directives are described in
Chapter 5.)

CNAME PROC PEND

FNAME

In the format diagrams for the various directives that follow,
brackets indicate optional items.

t Discussed in Chapter 3.

. 90 30 OOC-1 (6;75)

ASSEMBLY CONTROL

SYSTEM (Include System File)

SYSTEM directs the assembler to retrieve the indicated fi Ie
from the system storage medium and to include it in the pro­
gram being assembled. That fj Ie may be in either compressed
or source format. The SYSTEM directive has the form

label command argument

SYSTEM name

where "name" is either an actua I fi Ie name or one of the
special instruction set names discussed below. When an
actual file name is specified, AP reads the file from the
appropriate account (see the AC ()ption, Chapter 7) and
inserts it at that point in the source program. The fi Ie is
considered to be terminated when an END directive (dis­
cussed below) is encountered.

j

Any number of SYSTEM directive:; may be included in a
program. System files may conta;in additional SYSTEM di­
rectives, allowing a structured hierarchy of Ii brary source
files. AP does not protect against circular or repetitive
calls for the same system.

Definitions of the Sigma machine instructions are contained
in the system file, SIG7FDP. This file is invoked, by any
one of the mnemonics for a particular instruction subset, as
listed below. When a valid subset of SIG7FDP is specified,
AP assigns an identifying value to the intrinsic symbo I
S:IVAL, which is avai lable to the SIG7FDP file, as well as
to the main program. It then proc:esses the fi Ie as described
above.

The valid instruction set mnemoniics, their meaning, and the
corresponding va lues of S:IVAL are as shown in Table 4.

Table 4. Valid Instruction Set Mnemonics

Name Instruction Set S:IVAL

SIG9 BClsic Sigma 9. X'lE'

SIG9P Sigma 9 with Privi leged X'lF'
Instructions.

SIG8 Basic Sigma 8. X'le'

SIG8P Sigma 8 with Privi leged X'lD'
Instructions.

SIG7 Basic Sigma 7. X'08'

SIG7F Sigma 7 with Fbating- X'OC'
Point Option.

SIG7D Sigma 7 with Dedmal X'OA'
Option.

Table 4. Valid Instruction Set Mnemonics (cont.)

Name Instruction Set S:IVAL

SIG7P Sigma 7 with Privileged X'09'
Instructi on s.

SIG7FD Sigma 7 with Floating-Point X'OE'
and Decimal Option.

SIG7FP Sigma 7 with Floating-Point X'OD'
Option and Privi leged
Instructi ons.

SIG7DP Sigma 7 with Decimal Option X'OB'
and Privi leged Instructions.

SI G7FDP Sigma 7 with Floating-Point, X'OF'
Decimal Option, and
Pri vi I eged Instructi ons.

SIG6 Basi c Sigma 6. X'OA'

SIG6F Sigma 6 with Floating-,Point X'OE'
Option.

SIG6P Sigma 6 with Privi leged X'OB'
Instructi ons.

SIG6FP Sigma 6 with Floating-Point X'OF'
Option and Privileged
Instructi ons.

SIG5 Basic Sigma 5. X'OO'

SIG5F Sigma 5 with Floating-~oint X'04'
Option.

SIG5P Sigma 5 with Privi leged X'Ol'
Instructions.

SIG5FP Sigma 5 with Floating-Point X'05'
Option and Privi leged
Instructions.

Example: SYSTEM Directive

Assume a square root subroutine, identified as SQRT,
is on the system storage media, and that it is to be
assembled as part of the object program. The program
uses the basic instruction set. These directives would
appear in the source program:

SYSTEM SIG7

SYSTEM SQRT

Assembly Control 33

END (End Assembly)

The END directive terminates the assembly of a system
called by the SYSTEM directive as well as the assembly of
the main program. It has the form

label command argument

[label] ~ND [expression]

where

label is a val id symbol. When present in the main
program, the label is assigned (i. e., associated
with) the location immediately following the last
location in the I iteral table.

expression is an optional expression that designates
a location to be transferred to after the program
has been loaded. It may be external.

As explained under" Program Sections and Literals" in Chap­
ter 3, AP generates all literals declared in the assembly as
soon as it encounters the END statement. The litera I s are
generated in the location immediately following the cur­
rentlyactive program section (see example in Chapter 3).
If the END directive is labeled, the label is associated
with the first location immediately following the literal
table.

END is processed even if it appears within the range of a
GOTO search or a DO-loop.

Example: END Directive

SYSTEM SIG7

CONTROL CSECT

START LW,5 TEST

END START

001 (Iteration Control)

The DOl directive defines the beginning of a single state­
ment assembly iteration loop. It has the form

label command argument

[label] 001 [expression]

where

label is a val id symbol. Use of a label is optional.
When present, it is defined as the current value of
the execution location counter and identifies the
first bytegenerated as a result of the DOl iteration.

Assembly Control

expression is an optional evaluatable expression
that represents the number of times the statement
immediately following is to be assembled. There
is no I imit to the number of times the statement
may be assembled. If the expression is negative
or zero, the next statement is not assembled. If
it is omitted, zero is assumed.

If the expression in the DOl directive is not evaluatable,
AP produces an error notification and processes the DOl
directive as if the expression had been zero.

Example: DOl Directive

The statements

DOl 3
AW,4 C

at assembly time would generate in-line machine code
equivalent to the following lines:

AW,4 C
AW,4 C
AW,4 C

It is not possible to skip a LOCAL, SYSTEM, END, PROC,
PEND, OPEN, or CLOSE directive with a DOl; an attempt
to do so causes an error diagnostic.

If the iteration count of a DOl is greater than one, the
next I ine may not contain another DOl directive, nor a
SYSTEM, DO, ELSE, FIN, END, GOTO, PEND, or PROC
directive. Such a case causes an error diagnosti c, and
the DO 1 directive is ignored.

GOlO (Conditional Branch)

The GOTO directive anables the user to conditionally alter
the sequence in which statements are assembled. The GOTO
directive has the form

la~1 command argument

GOTOGk] label1 [, ••• , label n]

where

k is an absolute, evaluatable expression.. If k is
omitted, 1 is assumed.

label.
I

are forward reference symbols.

A GOTO statement is processed at the time it is encoun­
tered during the assembly. AP evaluates the expression k
and resumes assembly at the I ine that contains a label cor­
responding to the kth label in the GOTO argument field.
The labels must refer to lines that follow the GOTO

.. 90 30 OOC-l (6;75)

directive. If the value of k does not lie between 1 and n,
AP resumes assembly at the line irnmediately following the
GOTO directive. An error notification is given if the
value of k is greater than n.

The target label of' a GOTO search may be embedded in a
list of labels; it will be recognized and will terminate the
skip. A GOTO to a local symbol must find its target before
a PEND, END, or LOCAL directive is encountered; if not,
an error notification is given. Wi,thin a procedure, labeli
may be passed from the procedure reference I ine into the
GOTO argument field, but the tClrget label must physically
appear within the procedure definition; it may not be
passed from the refere nee line.

While AP is searching for the statement whose label corre­
sponds to the kth label in the GOTO list, it operates in a
skipping mode during which it ignores all procedure refer­
ences, machine-language instructions, and all directives
except END, LOCAL, OPEN, and CLOSE.

Skipped statements are produced on the assembly I isting in
symbol i c form, preceded by an *S *.

When AP encounters the first of (I logical pair of directivest

while in the skipping mode, it suspends its search for the
label until the other member of the pair is encountered.
Then it continues the search. Th'Js, while in skipping mode,
AP does not recognize labels tha'~ are within procedure defi­
nitions or iteration loops. It is, not possible, therefore,
to write a GOTO directive that might branch into a pro­
cedure definition or a DO/FIN loop. tt Furthermore, it is
not permissible to write a GOTO directive that might
branch out of a procedure defin ition. If such a case oc­
curred, AP would encounter a PEND directive before its
search was satisfied, produce an error notification, and
terminate the search for the label.

Example: GOTO Directive

A SET 3

GOTO,A H, K,M Be!~in search for label M.

H DO 5 Suppress search for label M.

t Certain directives must occur in pairs: SYSTEM/END,
PROC/PEND and DO/FIN.

ttIt is legal, however, to terminate a DO loop by branching
past the associated FIN.

90 30 OOC-1 (6/75)

/VI. EQU 5+8 This M is not recognized
because it is within an
iteration loop.

FIN Terminate suppression and
continue search.

M LW,A BETA Search is completed when
label M is found.

AP permits a GOTO directive to branch to a label outside
the DO/FIN loop that contains it. In this case, the DO
loop is terminated without error notification.

Example: GOTO Directive

A SET 3

DO 10

GOTO,A R,S,T Begin search for label T.

R SET Skipped.

S SET 17 Skipped.

FIN DO loop is terminated.

T LW,7 =X'44' Search is completed when
label T is found.

DO/ELSE/FIN (Iteration Control)

The DO directive defines the beginnin9 of an iteration loop;
ELSE and FIN define the end of an iteration loop. These
directives have the forms

label command argument

[label] DO [expression]
1-----

ELSE
1-----

FIN

where

label is a valid symbol. Use of a label is optional.
When present, it is initially assigned the value
zero and incremented by one each successive time
through the loop.

expression is an optiona! evaluatable expression
that represents the count of the number of times the
DO-loop is to be processed. If expression is zero

Assembly Control 35 .

or negative, assembly is discontinued until the
ELSE or FIN directive is encountered. If it is
omitted, zero is assumed.

Figure 1 illustrates the logical flow of a DO/ELSE/FIN
loop.

The assembler processes each DO-loop as follows:

1. Establ ishes an interna I counter and defines its value
as zero.

2. If a label is present on the DO line, sets its value to
zero.

3. Evaluates the expression that represents the count.

4. If the count is less than or equal to zero, discontinues
assembly until an ELSE or FIN directive is encountered.

a. If an ELSE directive is encountered, assembles
statements following it until a FIN directive is
encountered.

b. When the FIN directive is encountered, terminates
control of the DO-loop and resumes assembly at
the next statement.

5. If the count is greater than zero, processes the DO­
loop as follows:

a. Increments the i nterna I counter by 1.

b. If a label is present on the DO line, sets it to the
new value of the internal counter.

c. Assembles all lines encountered up to the first
ELSE or FIN directive.

d. Repeats steps 50 through 5c until the loop has been
processed the number of times specified by the
count.

e. Terminates control of the DO-loop and resumes
assembly at the statement following the FIN.

36 Assembly Control

In summary, there are two forms of iterative loops as shown
below.

Form 1. DO
block 1

ELSE

)
FIN

block 2

Form 2. DO
block 1

FIN

If the expression in a DO directive is evaluated as a posi­
tive, nonzero value n, then in either form block 1 is re­
peated n times and assembly is resumed following the FIN.

If the expression in the DO directive is evaluated as a neg­
ative or zero value, then in

Form 1:

Form 2:

block 1 is skipped, block 2 is assembled once,
and assembly is resumed following the FIN.

block 1 is skipped and assembly is resumed fol­
lowing the FIN.

If the expression in the DO directive is not evaluatable,
AP sets the label (if present) to the valpe zero, produces
an error notification, and processes the DO directive as if
the expression had been evaluated as zero.

An iteration block may contain other iteration blocks but
they must not overlap.

The label for the DO directive is redefinable and its value
may be changed by SET directives during the processing of
the DO-loop. Any symbols in the DO directive expression
that are redefinable may also be changed within the loop.
However, the count for the DO-loop is determined only
once and changing the value of any expression symbol within
the loop has no effect on how many times the loop will be
executed.

The processing of DO directives involves program levels.
The DO-loop must be completed on the same program level
on which it originates. That is, if a DO occurs in the main
program, the ELSE and FIN for that directive must also be
in the main program. Similarly, if a DO directive occurs
within a procedure definition, the ELSE and FIN for that
directive must also be within the definition.

IC+ 1 ----IC
IC ~'LABEL

Set flag to g~ ___ _
'------I following DO~ no

O------IC ::J o -LABEL
Evaluate expression-EXP

no yes

IC = Interna I counter.
LABEL = Label (if present on DO line).
EXP =: The result of evaluating expres-

sion on DO line.

Assembl e unti I FIN

Terminate loop

Figure 1. Flowchart of DO/ELSE/FIN Loop

Assembly Control 37

Example: DO/ELSE/FIN Directives

In this example, the dashed vertical lines indicate statements that are skipped; solid vertical lines indicate statements
that are assembled. The numbers 1, 2, 3, and 4 above the vertical I ines indicate which iteration of the DO-loop is
in process.

Iteration

2 3 4

If! I I DO 4

GO TO, 1-1 S, T, S I
I
I

I I ELSE
I I
I I

I I S

ELSE I
I
I

I I T
I
I

l FIN

When the DO directive is encountered, the DO expression has the value 4 so the loop will be executed four times.
When the GOTO directive is encountered the first time through the loop, 1-1 has the value 0, so the next statement
in sequence is assembled. Assembly continues in sequence until the ELSE directive is encountered, which ends the
first iteration and returns control to the DO directive.

When the GOTO directive is encountered the second time through the loop, 1-1 has the value 1, which selects the
first label in the argument field of the GOTO, S. AP will skip until it finds a statement labeled S. Starting with S,
AP assembles code unti I it encounters the ELSE, which terminates the second iteration of the loop and returns control
to the DO directive.

When the GOTO directive is encountered the third time through the loop, 1-1 has the value 2, which selects the
second label in the argument field of the GOTO,T. AP will skip until it finds a statement labeled T. Starting at T,
AP assembles code until it encounters the FIN directive, which terminates the third iteration of the loop and returns
control to the DO directive.

When the GOTO directive is encountered the fourth time through the loop, 1-1 has the value 3, which selects the
third label in the argument field of the GOTO,S. AP will skip until it finds a statement labeled S. Starting at S,
AP assembles code until it encounters the ELSE directive, which terminates the fourth-and-Iast-iteration of the loop.
Then, AP skips until it encounters the FIN directive. Assembly resumes at the first statement following FIN.

38 Assembly Control

SYMBOL MANIPULA liON

EQU (Equate Symbols)

The EQU directive enables the u!.er to define a symbol by
assigning to it the attributes of the value in the argument
field. This directive has the form

argument

[list]

where

label is a valid symbol or one of the intrinsic func-
tions AF, CF, or LF.

is an inl'eger-valued expression that identifies the
"type" of label. This expression is used in con­
junction with the SD option (see Chapter 7) to pro­
vide expl icit "type" information to a loader and,
subsequently to a run-time debugging program.
If s is omitted, labe I i are assumed to represent
hexadecimal values. The legal values for sand
the associated meanings are given below:

X'OO'
X'Ol'
X'02'
X'03'
X'06'

X'07'

X'09'
X'OA'
X'OB'
X'08'
X'lO'

Instruction
Integer
Short floating-point
Long floating-point
Hexade,cimal (also for packed
decimal)
EBCDIC text (also for unpacked
decimal)
Integer array
Short floating-point array
Long floating-complex array
Logical array
Undefined symbol

list is an optional list. The elements in the list
may contain only previously defined symbols or
external references ± addend, and evaluatable
expressions. If list is omitted, zero is assumed.

When list is an expression, label is set equivalent to the
value of the expression:

VALUE EQU 2*(8-5) + 1 mClkes VALUE == 7

ALPHA EQU XYZ - 10 makes ALPHA == XYZ - 10

(The symbol == means "is identicCiI to".)

When list is a list of more than ()ne element, label is set
equivalent to all individual elements in the list. This is
shown in various examples in Chapters 2 and 5. The va lue
or values in list appear on the assembly listing in a special
format that indicates the type of value to which label has
been equated. This format is explained under "Assembly
Listing" in Chapter 6.

90 09 OOC-l (6;75)

SET (Set a Value)

The SET directive, I ike EQU, enables the user to define a
symbol by assigning to it the attributes of the value in the
argument field. SET has the form

label command argument
~--- ---- --"-

[label] SET [,sl [list]

where label, s, and list are the same as for EQU.

The SET directive differs from the EQU directive in that any
symbol defined by a SET may later be redefined by means of
another SET. It is an error to attempt to do this with an
EQU. SET is particularly useful in writing procedures.

The value or values in list appear on the assembly listing in
a special format that indicates the type of value to which
label has been equated. This format is explained under
"Assembly Listing" in Chapter 6.

Example: SET Directive

A EQU X'FF'

M SET A M is set to the hexadecimal
value FF.

S SET M Thus, S = M = X'FF'.

M SET 263 Redefines symbol M.

\
S EQU M Error; does not redefi ne

symbol S.

LOCAL (Declare Local Symbols)

The main program and the body of each procedure called
during the assembly of the main program constitute the non­
local symbol region for an assembly. Local symbol regions,
in which certain symbols will be declared unique to the re­
gion, may be created within a main program or procedure
by the LOCAL directive. This directive has the form

label command argument

LOCAL eymboll , ... , symbolnJ

where symboli are declared to be local to the current
region. Local symbols are syntactically the same as non­
local symbols. The argument field may be blank, in which
case the LOCAL directive terminates the current local sym­
bol region without declaring any new local symbols.

Symbol Manipulation 39

The local symbol region begins with the first statement
(other than comments or another LOCAL) following the
LOCAL directive and is terminated by a subsequent LOCAL
directive, or by the END directive.

Within a local symbol region, a symbol declared as LOCAL
may not be used as a forward reference in an arithmetic pro­
cess other than addition, subtraction, or comparison. This
does not limit the use of defined local symbols in other
arithmetic processes.

The occurrence of the PROC directive suspends the current
local symbol region until the corresponding PEND is en­
countered. The suspended loco! symbols are then reac­
tivated. See example. (PROC and PEND define the
beginning and end, respectively, of a procedure definition.)
See Chapter 5.

When a LOCAL directive occurs between the PROC and
PEND directives, a procedure-local symbol region is cre­
ated, with local symbols that may be referenced only within
the specified region of the procedure being defined. When
the procedure is subsequently referenced in the program,
the currently active local or procedure-local symbols are
suspended until the corresponding PEND is encountered.
The suspended locul symbols are then reactivated.

Example: LOCAL Directive

*COMMENT

START

LOCAL
LOCAL

LOCAL
EQU

LOCAL

A, B,C
R, S, T, U

X,V,Z
$

The three LOCAL directives inform the assembler that
the symbols A, B, C, R, S, T, U, X, V, and Z are to be
local to the region beginning with the line START. The
final LOCAL directive terminates the local symbol re­
gion without declaring any new local symbols.

Example: LOCAL Directive

A EQU X'E1'

LOCAL A New A, not the same as A
above.

A EQU 89 Legal, since this is the local A.

B EQU A Defines B as the decimal
value 89.

LOCAL Z Terminates current local symbol
region and initiates a new region.

Z EQU A Z is equated to the hexadecimal
value El.

40 Symbol Manipulation

Example: LOCAL Directive

LOCAL B
LW,7 B*3 Illegal because B is a local

forward reference and mul-
tiplication is requested.

B EQU 9 Defines symbol B ..

LW,9 B*3 Legal.

AW,9 A/2 Legal because A is not a
local symbol.

A EQU X'F3A' Defines symbol A.

Example: LOCAL Directive

A EQU X'El'

LOCAL A New A, not the same as
A above.

A EQU 89 Legal, since this is the
local symbol A.

PROC A PROC suspends the range
of a LOCAL and reinstates
any prior nonlocol symbols.

B EQU A Defines B as the hexa-
decimal value El.

PEND Term i nates the procedure
and reinstates the prior
LOCAL symbols.

X EQU A<X'CF' Equates X to the val ue 1
because 89 is less than
X'CF'.

LOCAL Z Term i na tes curren t I oca I
symbol region and initiates
a new region.

Z EQU A=X'El' Equates Z to the value 1
because the nonlacal sym-
bol A has the hexadecimal
value E 1.

OPEN/CLOSE (Symbol Control)

OPEN and CLOSE control the scope of nonlocal symbols.
These directives have the forms

lobel command argument

OPEN [symbol] I ••• I symbol nJ

CLOSE [symbol] I ••• IsymbolnJ

where symbol i represent a list of nonlocal symbols that
are to be opened or closed for use as unique symbols.
The OPEN directive explicitly declares subsequent usage
of the designated symbolic name:> (until closed or opened
again) to be completely independent of any prior uses of
the same symbolic name.

The CLOSE directive declares that the designated, currently
opened nonlocal symbols are to be permanently closed for
all subsequent usage. Once a symbol has been closed, it
cannot be opened again. For example, in the sequence

A

A

EQU
CLOSE
LW,4
OPEN

15
A
ALPHA
A

the CLOSE directive informs AP that the current nonlocal
symbol A may not be used again" The label A in the next
statement is a valid symbol, different from the previous A.
The OPEN directive informs AP that a new symbol A is to
be used; this A is different from both of the previous A's.

If a symbol is not explicitly opened with an OPE N directive,
it is considered implicitly opened the first time it appears
in a program. The names of directives and intrinsic func­
tions are opened at the start of an assembly, but it is per­
missible to close them or to open a new symbolic name
having the Same configuration. Instructions in system in­
struction sets may also be opened and closed. However, it
is not permissible to use OPEN Clr CLOSE within a LOCAL
region if the referenced symbols are the same as LOCAL
symbols. The user may close any directive, function, or
system name that may conflict with names he has used. Pro­
grammers should be very careful in using OPEN and CLOSE
directives since misuse can result· in an erroneous assembly
or termination of assembly. In fact OPEN and CLOSE are/
used only in special application!); for example, communica­
tion between system procedure calls requiring nonlocal sym­
bols, because local symbols are purged at the end of each
procedure.

OPEN and CLOSE are processed completely by the en­
coding phase (Phase 1); they are treated as comments in the
two assembly phases. As such, they are unconditionally
executed at the time they are fil'st encountered within the
source program. Since a GOTO or DO directive is not
processed until theassemblyphase, it is not possible to skip
or repeat an OPEN or CLOSE directive. Also, since pro­
cedure references are not expanded unti I the assembly
phase, an OPEN or CLOSE dire·ctive within a procedure
definition is effective only when the definition is first pro­
cessed; not when the procedure is referenced.

90 30 OOC-1 (6/75)

OPEN and CLOSE control all forms of usage of the symbols
in a program, whether used as commands or as labels.

Example: OPEN/CLOSE Directives

OPEN A,B,C Declares A, B, and Copen
for use.

A EQU BETA Same A as above.

LW,2 A Same A as above.

OPEN A Opens a new A, different
from previous A.

A EQU ALPHA Legal because this A does
not have the same va I ue
that was equated to BET A.

CLOSE A Closes current A. This A
cannot be referenced again
(however, ALPHA can be).
The previously open A - the
one equated to BETA - is
now reinstated and any
references to A are to it.

STW,2 A Equivalent to STW,2 BETA.

OPEN A This is a new A, different
from both A's used above.

LW,3 B This is the B that was
opened at the beginning
of this example.

Example: OPEN/CLOSE Directives

SYSTEM

Z EQU

EQU LW,4

OPEN

SIG7FDP

F Legal. Equates symbol Z
to symbol F.

Z Lega I. Di recti ve names
may be used as label entries
without conflict.

EQU, LW Deciares EQU and LWopen
for use.

Symbol Manipulation 41

EQU EQU

LW,3

T

T

IIlega I • EQU has been
opened as a new symbol,
therefore, AP does not
recognize EQU as a
directive.

Illegal. LW has been
opsned as a new symbol;
therefore, AP does not re­
cognize LW as a command.

Example: OPEN/CLOSE/GOTO Directives

A SET 2

B SET

GOTO, A *B/2 X, Y, Z Begin search for label X.

OPEN X A new definition of X
will be made avai lable
to the assembler.

X DO K*Z Because of the OPEN
directive, this X is not
the same as the X for
which the search is be-
i ng made and there-
fore is ignored.

CLOSE X The new X is closed,
and the old X (i. e.,
X referenced in the
GOTO statement) is
again avai lable to the
assembler.

FIN

X Search is successfully
completed and assembly
resumes here.

y

Z

42 Symbol Manipulation

Example: OPEN/CLOSE/GOTO Directives

K

DEF

OPEN

EQU

GOTO, K

CLOSE

T

2

H, T, L

T

Open T as a new symbol.

Begin search for label T
{this is the same T that
was opened above}.

This directive closes the
symbol T for whi ch the
assembler is search­
ing. AP continues
searching until the end
of the program. It then
produces an error
message.

{Declare External Definitions}

The DEF directive declares which symbols defined in this
assembly may be referenced by other {separately assembled}
programs. The form of this directive is

label command argument

DEF [symbol], ••• ,symbolnJ

where symboli may be any non-local symbolic labels that
are defined within the current program. If there is no sym­
bol, the directive is ignored. Symbols may be passed as
parameters from a procedure reference I'~ne. These symbols
are referenced via the intrinsic functions LF, CF or AF on
the DEF line.

DEF directives may appear anywhere in a program. Symbols
may be declared as external definitions prior or subsequent
to their use in the program.

Section names for ASECT, CSECT, and PSECT may be ex­
ternal definitions and, if such is the case, their names
must be explicitly declared external via a DEF directive.
The name of a dummy section (DSECT) is implicitly an
external definition and should not appear in a DEF direc­
tive; otherwise, a IIdoubly defined symbol II error condition
wi II be produced.

The same symbol must not be declared an external definition
more than once in a program. Such a condition will nor­
mally be detected by the assembler, and diagnosed as a
"doubly defined symbol II. However, AP does not detect
identical symbol names that have been opened or closed;
this case will be diagnosed (if at all) only by the loader
used to load the assembled program.

As stated previously, all symbols declared as external defi­
nitions via a DEF directive must be defined within the same

903000C-1(6/75)

Example: DEF Directive

DEF TAN, SUM, SORT

program. However, there are restrictions on the va lues
assigned to DEFed symbols; they may be absolute or relocat­
able addresses, integer constants that may be correctly
represented in 32 bi ts, or any expression involving a com­
bination of such terms. They mCIY not be LOCAL symbols,
I ists, function names, nor forward va lues assigned by the
S:UFV function. it is permissible, however, to DEF a symbol
whose value has been defined by a REF or SREF directive.

This statement identifies the labels TAN, SUM, and SORT
as symbols that may be referenced by other programs.

All address values (absolute or relocatable) assigned to
DEFed symbols are generated inl'o the object language as
byte-addresses, in order to retain any pertinent lower-order
resolution (see description of REF and SREF). Example: DEF Directive

The first symbol in a DEF directive is output in the object
module first; all subsequent external (DEF, REF, and SREF)
symbols are output in alphabetic order.

DEF AF(l) In a procedure definition.

Example: DEF Directive

DEF X,Y,Z

Y EQU X'lF'

OPEN Y

Y EQU $+7

DEF Y

Example: DEF Directive

DEF O,S

o EQU X'lF'

5 EQU F L' .314 1519E l'

90 30 OOC-1 (6/75)

Declares symbols X, Y, and Z as external symbols that may be referenced by
other programs.

Defines symbol Y.

To AP, Y is now a completely new symbol.

Defines the new symbol, Y.

Unknown to AP, a second declaration and definition of the symbol, Y I will now
be produced. This may be diagnosed as a load-time error.

Declares symbols 0 and 5 as external symbols that may be referenced by other

programs.

Legal. Constants may be linked via external definitions.

Although this is a legal definition of 5, 5 cannot be properly DEFed because
it exceeds 32 bits in value (error).

Symbol Manipulation 43

Example: DEF Directive

The following DEF occurs in a root module of a large system:

DEF SUBROUTN 1

SUBROUTN 1 CSECT

The subsystems of this system are coded from a specification in which the above DEF was mistyped as SUBROUTIN,
and a II 27 subsystems were thus coded as:

REF SUBROUTIN

BAL, LN K SUBROUTIN

As an alternate to modifying any of the existing code, the following module can be loaded into the root segment of
the program. It is legal and resolves the naming conflict illustrated above:

SUBROUTIN

DEF
REF
EQU
END

SUBROUTIN
SUBROUTNl
SUBROUTN 1

REF (Declare External References)

The REF directive declares which symbols referenced in this
assembly are defined in some other separately assembled
program. The directive has the form

label command argument

REF[,n] [symbol], ••• ,symbol
n
]

where

n is an evaluatable expression whose value is 1, 2,
4, or 8, specifying the address resolution of the
associated symbols as byte, halfword, word, or
doubleword, respectively. If n is omitted, word
resolution is assumed.

symbol i are any symbolic labels that are to be sat-
isfied at load time by other programs. If there is
no symbol i reference, the directive is ignored.
Symbols may be passed as parameters from a pro­
cedure reference line. These symbols are refer­
enced via the intrinsic functions LF, CF, or AF
on the REF line.

REF directives may appear anywhere in a program. Symbols
may be declared as external references prior or subsequent
to their use in a program.

44 Symbol Manipulation

Symbols declared with REF directives can be used for sym­
bolic program linkage between two or more programs. At
load time these labels must be satisfied by corresponding
external definitions (DEFs) in another program.

Example: REF Directive

REF IOCONT, TAPE, TYPE, PUNCH

This statement identifies the labels IOCONT, TAPE,
TYPE, and PUNCH as symbols for which external defi­
nitions will be required at load time.

Example: REF Directive

REF Q Q is an external reference.

B GEN, 16, 16 Q, $ The value of an external
reference may be placed
in any portion of a word.

LW,2 Q Q is an externa I reference.

SREF (Secondary Externa I References)

The SREF directive is similar to REF and has the form

label command argument

I SREF[,n] [symbol], ••• ,symbol
n
]

where n and symbol i have the same mean ing as for REF.

SREF directives may appear anywhere in a program. Symbols
may be declared as secondary external references before or
after their use in the program. Symbols that are external
references may be modified by the addition and subtraction
of integers, relocatable symbols, cmd other external refer­
ences. See example.

SREF differs from REF in that REF causes the loader to load
routines whose labels it reference~" whereas SREF does not.
Instead, SREF informs the loader that if the routines whose
labels it references are in core, the loader should satisfy
the references and provide the interprogram linkage. If the
routines are not in core, SREF does not cause the loader to
load them; however, it does cause the loader to accept any
references within the program to the names, without con­
sidering them to be unsatisfied eX'rernal references.

Example: SREF Directive

REF Q Q is an externa I reference.

B EQU Q B is equated to a II attri butes
of Q.

LW,2 B Equivalent to LW,2 Q.

C EQU Q+2 Legal US(lge.

LW,2 c: Equivalent to LW,2 Q+2.

M EQU N

REF N, P It is lege" to declare N an exter-
nal reference after N has ap-
peared il'1 the program. In the
sequencE~ shown here, N is made
an external r~ference by the REF
directivE~.

DEF M,C Defines M and C as externals.
B is not an external, since
it did not appear on a· REF,
SREF, 01' DEF statement.

90 30 00C-1 (6/75)

DATA GENERATION

GEN (Generate a Value)

The GEN directive produces a value representing the speci­
fied bit configuration. It has the form

label command argument

[lobeD GENGfield list] [value list]

where

label is a valid symbol. Use of a label is op-
tional. When present, it is defined as the cur­
rent value of the execution location counter and
identifies the first byte generated. The location
counters are incremented by the number of bytes
generated.

field list is a list of evaluatable expressions that
define the number of bits composing each field.
The sum of the field sizes must be a non-negative
integer value that is a multiple of 8 and is less
than or equal to 128. If the fie Id I ist is omitted,
32 is assumed.

value list is a list of expressions that define the
contents of each generated field. This list may
contain forward references. The value, repre­
sented by the value list, is assembled into the field
specified by the field I ist and is stored in the de­
fined location (see the following example). If
value list contains fewer elements than field list,
zeros are used to pad the remaining fields.

I
Note: The intrinsic symbols $ and $$ always refer to the

first byte generated by the GEN directive.

Example: GEN Directive

GEN, 16, 16 -251,89

Example: GEN Directive

B EQU
GEN,64

XI FFFFFFFF'
B

Produces two 16-bi t
hexadecimal val ues:
FF05 and 0059.

Produces: 00000000
FFFFFFFF

There is a one-to-one correspondence between the entries
in the field list and the entries in the value list; the code
is generated so that the first field contains the first value,

Data Generation 45

the second field the second value, etc. The value produced
by a GEN directive appears on the object program listing
with a maximum of eight hexadecimal digits per line.

External references, forward references, and relocatable
addresses may be generated in any portion of a machine
word; that is, an address may be generated in a field that
overlaps word boundaries.

An asterisk preceding a field list element on the GEN dir­
ective line specifies that the absence of the corresponding
value I ist element is to be flagged as an error.

If a value list contains an expression that is negative, the
sign wi" be extended throughout the entire field.

Example: GEN Directive

BOUND

LAB GEN, 8, 8, 8

LW,5

LB,3

Example: GEN Directive

ALPHA
BETA

A

EQU
EQU

GEN,32

4

8,9, 10

L(2)

LAB, 5

ALPHA+BETA

Specifies word boundary.

Produces three consecuti ve bytes; the fi rst i.s i denti fi ed as LAB and
contains the hexadecimal value 08; the second contains the hexadecimal
value 09; and the third contains the hexadecimal value OA.

Loads register 5 with the literal value 2.

Loads byte into register 3. LAB specifies the word boundary at which the
byte string begins, and the value of the index register (that is, the value 2
in register 5) specifies the third byte in the string (byte string numbering
begins at 0). Thus, this instruction loads the third byte of LAB (the
value OA) into register 3,

Defines ALPHA as the decimal val ue 15.
. Defines BETA as the decimal value 12.

Defines A as the current location and stores the decimal value 27 in
32 bits.

In this case, the GEN directive results in a situation that is effectively the same as

A GEN,32 27

Example: GEN Directive's Error Notification

D GEN ,8,*8,*8,8 1,,2

46 Data Generation

Produces four consecutive bytes containing the hexadecimal values 01, 00,
02, 00; the first byte is identified as D. An error notification is produced
because the second element of the argument field is missing.

90 30 OOC-1 (6/75)

COM (Command Definition)

The COM directive enables the programmer to describe
subdivisions of computer words and invoke them simply.
This directive has the form

'abe' command argume
-.----.

'abel COM[,field list] [value
~-----~
. "

where

label is a val id symbol that identifies the com-
mand being defined. The label must not be a
I oca I symbol.

field list is a list of evaluatable expressions that
define the number of bits composing each field.
The sum of the elements in this I ist must be a non­
negative integer value that is a multiple of eight
bits and is less than or equal to 128. If the field
I ist is omitted, 32 is Clssumed.

value I ist is a list of expressions or intrinsic func-
tions (see below) thClt specify the contents of
each field. If the value list is omitted, zero is
assumed.

When the COM directive is encountered, the label, field
list, and value list specificati()ns are saved. When the
label of the COM directive subsequently appears in the
command field of a statement called a "COM reference
line", that statement will be generated with the configura­
tion specified by the COM directive.

An asterisk preceding a field list element on the COM
definition line specifies that the absence of a corresponding
parameter on the COM reference line is to be flagged as
an error.

LOCAL symbols must not appem anywhere on the COM di­
rective statement. When the COM directive is encountered,
the current LOCAL symbol table is suspended. It is re­
instated at the end of the COM directive statement.

The COM command definition must precede all references
to it or an errOl' notification will be produced.

Note: As with the GEN directive, the intrinsic symbols $
and $$ used on a COM reference line indicate the
first byte generated by the COM reference.

The COM directive differs from GEN in that AP generates
a value at the time it encounters a GEN directive,
whereas it stores the COM directive and generates a value
only when a COM reference line is encountered. If the

90 30 OOC-1 (6;75)

reference line is labeled, the generated value will be
identified by that value.

If a COM directive generates four bytes, it will be pre­
ceded at reference time by an implicit BOUND 4 when
referenced.

Certain intrinsic functions enable the user to specify in the
COM directive which fields in the reference lines will con­
tain val ues that are to be generated in the desired configu­
ration. These functions are

CF

AF

AFA

CF (Command Field)

This function refers to the command field list in a reference
I ine of a COM directive. Its format is

CF (element number)

where CF specifies the command field, and element number
specifies which element in the field is being referenced.

Example: COM Directive and CF Function

BYT COM, 8,8 CF(2), CF(3)

xx BYT, 35, X'3C
1213131 C I
o !15

The COMdirective defines a 16-bit area consisting of
two 8-bit fields. It further specifies that data for the
first 8-bit field will be obtained from command field
2(CF(2))of the COM reference line, and that data for
the second 8-bit field will be obtained from command
field 3(CF(3)). Therefore, when the XX reference line
is encountered, APgenerates a 16-bit value, so that the
first eight bits contain the decimal number 35, and the
second eight bits contain the hexadecimal number 3C.

AF (Argument Field)

This function refers to the argument field list in a reference
line of a COM directive. Its format is

AF (element number)

where AF specifies the argument field, and element number
specifies which element in the list of elements in that field
is being referenced.

t
See Chapter 5.

Data Generation 47

Example: COM Directive and AF Function

XYZ

ALPHA
ZZ

COM, 16, 16

EQU
XYZ

AF(l), AF(2)

XI 21 1

65, ALPHA+XI Fe'

lO\O\4\1\O\1\l\DI
o 15 16 31

AP stores the COM definition for later use. When it
encounters the ZZ reference I ine, it references the
COM definition in order to generate the correct con­
figuration. At that time, the expression ALPHA+X1Fe'
is evaluated. AF(l) in the XYZ line refers to 65 in the
ZZ line; AF(2) refers to ALPHA+X1 Fe'.

AFA (Argument Field Asterisk)

The AFA function determines whether the specified argument
in the COM reference line is preceded by an asterisk. The
format for this function is

AFA (element number)

where AFA identifies the function, and element num­
ber specifies which element in the argument field of
the COM reference I ine is to be tested. If el ement
number is omitted, AFA(l) is assumed. The function
produces a va lue of 1 (true) if an asterisk prefix exists
on the argument designated; otherwise, it produces a
zero value (false).

Example: COM Directive and AFA Function

STORE COM,1,7,4,4 AFA(l),XI351 ,CF(2),AF(l)

STORE,4 *TOTAL

The COM directive defines STORE as a 16-bit
area with four fields. The AFA(l) intrinsic func­
tion tests whether an asterisk precedes the first
element in the argument field of the reference
line. The first bit position of the area generated
will contain the result of this test. The next
seven bits of the area will contain the hexadecimal
value 35. The second element in the command
field of the reference line will constitute the third
field generated, while the first element in the
argument field of the reference line wi II constitute
the last field.

48 Data Generation

When the reference line is encountered, AP de­
fines a 16-bit area as follows:

Bit Positions Contents

o

1-7

8-11

The value 1 (because the
asterisk is present in argu­
ment field 1).

The hexadecimal value 35.

The value 4.

12-15 The 4-bit value associated
with the symbol TOTAL.

Example: COM Directive1s Error Notification

MAP COM, *16, *16 CF(2),AF(1)

R

x

MAP,3 7 Produces

MAP,5 Produces

10 0 0 510 0 0 01
o 15 16 31

When the first reference line is encountered, AP
defines a location R and generates a 32-bit word
with the values 3 and 7 in the left and right half­
words, respectively.

. When the second reference I ine is encountered,
an error notification is produced because the
argument field entry is missing. However, the
assembly is not terminated; AP will define a
location X and generate a 32-bit word wah the
values 5 and 0 (for the missing entry) in the left
and right halfwords, respectively.

DATA (Produce Data Value)

DATA enables the programmer to represent data conve­
niently within the symbol ic program. It has the form

label command argument

I -------
[label] DATA[,f] [value1,·· .,valuenJ

where

label is a valid symbol. Use of a label is opt;onal.
When present, it is defined as the current vallIe
of the execution location counter and is associated
with the first byte generated by the DATA direc­
tive. The location counters are increment'.;d by
the number of bytes generated.

is the field size specification in bytes, f may be
any evaluatable expression that results in an inte­
ger value in the range O~f ~ 16. If field size
is omitted, the value is assumed to be four bytes.

valuei are the list of values to Ie generated. A
value may be a multitermed E,;~pression or any sym­
bol. An addressing funl:::tion m':IY be used to spec­
ify the resolution other than tht:> intrinsic resolu­
tion of the execution location counter, if desired.
The sign of a multitermed expression is extended
throughout the entire field. If the value list is
omitted, a single zero \Jill be generated.

DATA generates each value in the list into a field whose
size is specified by f in bytes.

Example: DATA Directive

MASK1 DATA,l X'FF' Produces an 8-bit
value identified as
MASK1.

0!J
0 7

MASK2 DATA,2 X'lEF' Generates the hexa-
decimal value 01 EF
as a 16-bit quantity,
identified as MASK2.

lOll IE 10
0 15

BYTE DATA,3 BA(L(59)) Assembl es the byte
address of the literal
value 59 in a 24-bit
field, identified as
BYTE.

TEST DATA

DT4 DATA,l

Generates two 4-byte
quantities: the first
contains zeros and the
second, the l)exadec i­
mal value OOOOOOFF.
The first value is
identified as TEST.

101010 10 101~9.J
o 1516 31

I :) 10 10 10 10 10 IF IF I
o 1516 31

X'94' ,X' CF' ,X' AB'

Generates three 8-bi t
va I ues, the fi rst of
which is identifi ed as
DT4.

[9]41 (I FIA IB I
o 23

S:SIN (Standard Instruction Definition)

The S:S IN directive provides a direct mechanism for de­
fining the three main classes of Sigma machine instrllc­
ti ons. It has the form

.\'ObO'
label

--------------Jt :~:~:d ··-.-+-;-:-~~-'~--,~:-:-:n-J---~
where

label is a valid symbol that bec6me!:, the mnemonic
by which the instruction is referenced.

n is an expression that evaluates to one of the
integers 0, 1, or 2. This specifies a standard
instruction format and a standard reference line
assembly mode.

n = 0 implies the format 1, 7, 4/ 3, 17 and
specifies that a reference I ine is to be as­
sembled like an LW instruction. AF(l) of
any command defined via S: SIN, 0 wi II be
generated as WA(AF(l)).

n = 1 implies the format 1, 11, 3, 17 and
spec Hi es that a reference 'i ne is to be as­
sembled like a BAZ/BANZ instruction.
AF{l) of any command defined vicI S:SIN,I
will be generated as WA{AF{l)).

n = 2 implies the format 8, 4, 20 and speci-
fies that a reference line is to be assembled
like an LI instruction. Any command defined

Data Generation 49

via S:S IN, 2 is restricted to one argument
field, and this argument may not have an
asterisk prefix.

expression is an evaluatable expression that is used
as the operation code of the defined instruction.
Normally this is an explicit hexadecimal constant.
If expression is om i tterl / a zero is assumed.

Although the same definitions may be achieved by use of
procedures (Chapter 5) or the COM directive, S:SIN pro­
vides the fastest possible processing when AP is used to
assemble Sigma machine language instructions.

Example: S:SIN Directive

The following definitions of various instructions are
used in the SIG7FDP system file.

LW S:SIN,O X'321

AND S:SIN,O X' 4B'
B S:SIN,l X'680 '
LCF S:SIN,l XI 703 1

AI S:SIN,2 XI 201

CI S:SIN,2 X' 21 '

TEXT (EBCDIC Character String)

The TEXT directive enables the user to incorporate messages
in his program. It has the form

label command argument

[label] TEXT [lcs1 ',···,'cs
n

'] ,

where

label is a valid symbol. Use of a label is optional.
When present, a label is associated with the left­
most byte of the storage area assigned to the
assembled message.

cSi are evaluatable expressions that result in char-
acter string constants. Each character string must
fit on a single line, but the total number of char­
acters may be any length.

The character string is assembled in a binary-coded form
in a field that begins at a word boundary and ends at
a word boundary. The first byte contains the first char­
acter of the character string, the sec~nd byte contains the
second character, etc. If the character string does not
require an even multiple offour bytes for its representat'ion,
trailing blanks are produced to occupy the space to the
next word boundary.

When several character strings are present in the argument
field of a TEXT directive, the characters are packed in

50 Data Generation

contiguous bytes. This directive permits continuation lines,
but the continuf1tion indicator must occur between two char­
acter strings.

The TEXT directive enables the user to pass a character
string as a parameter from a procedure reference line to a
procedure. Thp character string must be written on the pro­
cedure reference line within single quotation marks. It is
referenced fron, within the procedure via the AF intrinsic
function in a TEXT directive. The AF function is not writ­
ten with single quotation marks.

If the last word generated contains fewer than four charac­
ters, trailing character positions are filled with blanks.

Example: TEXT Directive

COLl TEXT 'VALUE OF XI

generates

TEXT I A', 'BCDE', FGHI',;
'JKLM'

generates

mALU

E 0 F

X

A B C D

E F G H

I J K L

M

Example: TEXT Directive

TEXT

TEXT

PRINTl

PRINT2

AF(l) In a procedure
definition.

'SUM OF ',AF(l),; In a procedure
, AND I,AF(2) definition.

'RESULTS ='

IXI,IVI

Procedure refer­
ence line.

Procedure refer­
ence line.

Assume that the first TEXT directive is in the definition
of a procedure called PRINTl, that the second TEXT
directive is in the definition of a procedure called
PRINT2, and that the last two statements are procedure
reference lines that call these procedures. When

procedure PRINT 1 is referenced, the first TEXT
directive causes AP to generate

f.m~
fft±j

When procedure PR INT2 is referenced, the second
TEXT directive causes AP to generate

S U M

0 F X

A N D

Y

Thus, entire messages or portions of messages may be
used as parameters on procedure reference lines.

TEXTC (Text With Count)

The TEXTC directive enables the user to incorporate mes­
sages in a program where the number of characters in the
message is contained as the first byte of the message. This
directive has the form

where label and cSi have the same meaning as for TEXT.

The TEXTC directive provides a byte count of the total
storage space required for the mes~age. The count is placed
in the first byte of the storage areel and the character string
follows, beginning in the second byte. The count repre­
sents only the number of characters in the character string;
it does not include the byte it oc:cupies nor any trailing
blanks. The maximum number of characters for a single
TEXTC directive is 255.

In all other aspects, the TEXTC directive functions in the
same manner as the TEXT directiVE!.

Example: TEXTC Directive

ALPHA TEXTC 'VALUE OF XI, I SQUARED'

genorates 18 V A L

U E 0

F X

S Q U A

R E D

90 30 OOC-1 (6/75)

SOCW Suppress Object Control Words

The SOCW directive causes AP to omit all object control
bytes from the binary output that it produces during an as­
semb Iy. Th is directive has the form

~la_be_I _____ ~c_o_m_m_an_d ____ ~~_m_e_n_t ________________ ~
[label] SOCW =

If label is present, it identifies the first byte of the absolute
section imposed by the SOCW directive.

When AP encounters an SOCW directive, it sets the location
counters to absolute zero, processes the program as an abso­
lute section, and diagnoses any subsequent CSECT, DSECT,
PSECT, or USECT directives. AP produces appropriate error
messages if the directives that require control byte genera­
tion are used (REF, DEF, SREF, and LOCAL except in proce­
dures), if an illegal object language feature is subsequently
required (such as the occurrence of a local forward refer­
ence), or if the SOCW directive has been used subsequent
to the generation of any object code in the program.

Once the SOCW directive is invoked, it remains in effect
during the assembly of the entire program.

Normally, control words are produced to convey to the
loader information concerning program relation, externally
defined and/or referenced symbols, etc. In special cases,
such as writing bootstrap loaders and special diagnostic pro­
grams, the programmer does not want the control words
produced; he needs only the continuous string of bits that re­
su Its from an assembly of statements. The SOCW directive
enables the programmer to suppress the optput of these con­
trol words.

Use of the ORG and RES directives is allowed, although this
is a questionable practice (i .e., no code is generated for
these directives, but the assembler's location counters are
modified as directed).

When SOCW is specified, it is recommended that it be the
first statement in the program, or at least that it precedes the
first generat ive statement.

LISTING CONTROL

Listing control directives are used to format the assembly
listing and are only effective at as~embly time. No object
code is produced as a result of their use.

Listing Control 51

SPACE (Space Listing)

The SPACE directive enables the user to insert blank lines
in the assembly listing. The form of this directive is

label command argument

SPACE [expression]

where expression is an evaluatable expression whose value
specifies the number of lines to be spaced. The expression
must eva luate to an integer.

If the expression is omitted or is less than 1, its value is
assumed to be 1. If it is greater than 16, it is set to 16.
If the value of the expression exceeds the number of lines
remaining on the page, the directive will position the as­
sembly listing to top of form.

Example: SPACE Directive

A SET 2

SPACE 5 Space five lines.

SPACE 2*A Space four lines.

TITLE (Identify Output)

The TITLE directive enables the programmer to specify an
identification for the assembly listing. The TITLE directive
has the form

label command argument

TITLE ['cs,', ••• ,'cs
n

'] I

where cSi are character string constants. The total number
of characters must not exceed 68.

When a TITLE directive is encountered, the assembly listing
is advanced to a new page and the character string is
printed at the top of the page and each succeeding page
until another TITLE directive is encountered. A TITLE di­
rective with a blank argument field causes the I isting to be
advanced to a new page and output to be printed without a
heading.

The first TITLE directive in a program will appear at the top
of the first page of the listing regardless of where it appears
in the program.

52 Listing Control

Example: TITLE Directive

TITLE 1 CARD READ/PUNCH ROUTI NE'

TITLE 'MAG TAPE I/O ROUTINE'

TITLE

TITLE '" CONTROLLER'"

The first TITLE causes AP 1'0 position the assembly list­
ing to the top of the form and to print CARD READ/
PUNCH ROUTINE there and on each succeeding page
until the next TITLE directive is encountered. The
next directive causes a skip TO a new page and out­
put of the title MAG TAPE I/O ROUTINE. The third
TITLE directive causes a skip to a new page but no
title is printed because the argument field is blank.
The last TITLE directive specifies the heading
'CONTROLLER' .

LIST (List/No List)

The LIST directive enables the user to selectively suppress
and resume the assembly listing. The form of the directive is

label command argument

uST[, n] [expression]

where

n is an evaluatable integer-valued expression. It
is used to control the printing or non-printing of
lines in the assembly listing which contain only ob­
ject code (no source line is present). If n is pres­
ent, and has a value other than zero, printing of
subsequent non-source I ines is suppressed on the
assembly listing unti I a later LIST directive with
an explicit value of zero for n is assembled. If n
is omitted, it does not alter the state set by the
last explicit n on a LIST directive.

expression is an evaluatable expression resulting in
an integer that suppresses or resumes assembly list­
ing. If the value of the expression is nonzero, a
normal assembly listing will be produced. If the
value of the expression is zero, all listing follow­
ing the directive will be suppressed until a subse­
quent LIST directs otherwise. If the expression is
omitted, zero is assumed.

Used inside a procedure, the LIST directive will not suppress
printing of the procedure reference (call) line. However,
LIST wi II suppress pri,nting of the object code associated
with the call line if the LIST directive was encountered prior
to any code generation within the procedure.

Until a LIST directive appears within a source program, the
assembler assumes a default convention of LIST ,0 1,allowing
a normal assembly listing.

90 30 OOC-1 (6/75)

PC,C (Print Control Cards)

The PCC directive controls the assl~mbly listing of directives
PAGE, SPACE, TITLE, LIST, PSR, PSYS, and any subsequent
PCC. The form of the directive is

label command argum
f--

pee [expre"

---~ ent

.sion]

where expression is an evaluatable expression resulting in
an integer that suppresses or enabl,es assembly I isting of the
aforementioned directives. If the value of the expression is
nonzero when PCC is encountered, all subsequent listing
control directives mentioned above will be listed. This will
continue in effect until canceled by a subsequent PCC di­
rective in wh ich the expression is zero.

Until a PCC directive appears within a source program, the
assembler assumes a default condition of PCC 1, allowing
assembly listing of the list control directives.

PSR (Print Skipped Records)

The PSR directive controls printinSJ of records skipped. The
form of the directive is

tabel command
----- ~----~~--~-.---.--

PSR

argument

[expression]

where expression is an eva luatable expression resulting in
an integer that suppresses or enables assembly I isting of
skipped records. If the value of the expression is non­
zero, records skipped will be lis·ted; if the expression is
zero when PSR is encountered, r,ecords skipped {not as­
sembled}, subsequent to the PSR directive, will not be listed
until another PSR directs otherwise. If expression is omitted,
zero is assumed.

Until a PSR directive appears within a source program, the
assembler assumes a default condition of PSR 1, allowing as­
sembly listing of skipped records.

PSYS {Print System}

The PSYS directive controls the a!isembly listing of system
fi les. The form of the directive i!i

label command a'9"meo' !
PSYS [expressi on:~

where expression is an evaluatable expression resulting in

I
an integer that suppresses or enables the assembly I isting of
files called by the SYSTEM directive. If the value of the
expression is nonzero, the symbol ic records obtained during
all subsequent SYSTEM calls will be printed on the assembly
I isting. This will continue in effect until canceled by a
subsequent PSYS directive in which the expression is zero.
If the expression is omitted, zero is assumed.

90 30 00C-1 (6/75)

Until a PSYS directive appears within a program, the
assembler assumes a default condition of PSYS 0, suppressing
assembly listing of system files.

PSYS does not suppress the listing of lines with errors or
lines produced by the ERROR directive. PSYS has no effect
on pre-encoded SYSTEM fi les; they are not listed.

OISP (Display Values)

The DISP directive produces a special display of the values
specified in its argument list, one per I ine on the assembly
listing. The form of the directive is

label command argument

DISP [list]

where I ist is any I ist of constants, symbols, or expressions
that are to be displayed at that point in the assembly I ist­
ing. The values of the argument list will be displayed
one per' ine, beginning at the DISP directive line.

If a DISP directive is used inside a procedure, it wi II not
display values until the procedure is called on a procedure
reference line.

A DISP directive used within a SYSTEM will not display
values unless a PSYS directive is in effect to allow the
SYSTEM I ines to be printed.

The value or values in Ilist" appear on the assembly listing
in a special format that indicates the type of value{s)
being displayed. This format is explained under "Assembly
Listing" in Chapter 6.

ERROR (Produce Error Message or Commentary)

The ERROR directive conditionally generates an error mes­
sage or commentary in the assembly listing and commu­
nicates, in the case of an error message, the specified
severity level to the assembler. This directive has the form

label command argument

ERROR[, level[,c]) ['cs]', ••• ,'cs
n

']

where

level is an evaluatable expression with a hexa-
decimal value from X10' through X1F 1, denoting
the error severity level. If level is omitted, zero
is assumed. If level is preceded by an asterisk,
AP omits the error line prefix C****I in columns 1
through 4) and the message starts in column 1 of
the assembly listing. In addition, a level of zero
preceded by an asterisk is treated as solely com­
mentary; for example, it does not appear in the
error summary.

Listing Control 53

c is a conditional expression whose value determines
whether the message is to be produced.

If c is true (c > 0), the message is produced.

If c is false (c ~ 0), the message is not produced.

If c is omitted, the message is un~onditionally
produced.

c may be forward reference.

cS i are character string constants. The total num-
ber of characters must not exceed 108.

Each time an error message is generated, the assembler com­
pares the severity level with the previously saved severity
level and retains the higher value. AP communicates to
the Monitor this ~aved severity level. This enables the
programmer to control the aborting of assemb le-and-execute
jobs via control messages to the Monitor. Any error mes­
sage generated via the ERROR directive is treated exactly
the same as a line with an assembler-detected error, i.e.,
they appear in the AP error summary. Messages in the form
of commentary (level is * or *0) do not appear in the error
summary nor are they output on the DO device.

The messages generated via this directive appear on the as­
sembly listing in the following format:

error messages - 1****" in columns 1-4 followed by the
message starting in column 6, unless level was
nonzero and preceded by an asterisk in which case
the message starts in column 1.

commentary - message starts in column 1.

If an ERROR directive appears within a SYSTEM, the error
message or commentary wi II be produced without regard to
the last PSYS directive.

The primary purpose of ERROR is to provide the procedure
writer with the capability of flagging possible errors in the
use of the procedure.

54 Listing Control

Examples: ERROR Directive

ERROR,3, ALPHA>5 ;
'ARGUMENT OUT OF RANGEl

When AP encounters this directive, it will determine
whether the value of ALPHA is greater than 5. If it is,
the result is true (value of 1); therefore, the severity
level (3) is compared with current highest severity
level, the higher of the two is saved, and the message
ARGUMENT OUT OF RANGE is generated for the as­
sembly listing.

ERROR, * ;
'THIS IS COMMENTARY'

When AP encounters this directive, it wi II uncondi­
tionally generate in the form of commentary, the mes­
sage THIS IS COMMENTARY.

The ERROR directive allows the user to specify a character
string as a parameter from a procedure reference line to a
procedure {or a symbol whose value is a character string}.
The character string must be written on the procedure ref­
erence line within single quotation marks. It is referenced
within the procedure via the AF intrinsic function on the
ERROR directive.

Example: ERROR Directive

A SET 'ARGUMENT'

ERROR, 1, 1 A, lOUT OF RANGE"

When AP encounters this directive, it will produce the
message ARGUMENT OUT OF RANGE on the assembly

; listing.

PAGE (Begin a New Page)

The PAGE directive causes the assembly I isting to be ad­
vanced to a new page. This directive has the form

I ,ommood

PAGE

lo",umeot

The PAGE directive is effective only at assembly time. No
code is generated for the object program as a result of its use.

5. PROCEDURES AND LISTS

PROCEDURES
Procedures are bodies of code analogous to subroutines,
except that they are processed at O!ssembly time rather than
at execution .time. Thus, they primari Iy affect the assem­
b�y of the program rather than its execution.

Using procedures, a programmer cOIn cause AP to generate
different sequences of code as determined by conditions
existing at assembly time. For example, a procedure can
be written to produce a specified number of ADD instruc­
tions for one condition and to produce a program loop for
a different condition.

There are two types of procedures: command procedures
and function procedures. In gener,al, either type can per­
form any function that the main program can perform, i. e.,
any machine instruc1'ion and most AF' directives can be used
within a procedure. A command procedure is referenced
by its name appearing as the first edement of the command
field. A function procedure is refl;!renced by an attempt
to evaluate its name. Th9 major difference in the two
procedure types is that a function procedure returns a val ue
to the procedure reference line (the line that ca II s the
procedure); a command procedure does not.

Much of the creative power of AP comes from three direc­
tives: GEN, DO, and PROC. The GEN and DO direc­
tives were described in Chapter 4; how they are used in
procedures is illustrated in the vmious examples in this
chapter. The directives that identify procedures, and those
that designate the beginning and end of each procedure
are discussed in this chapter. The intrinsic functions com­
monly used in writing procedures eire also discussed.

In this chapter, the descriptions of various directives make
frequent mention of "I ists ". Lists ,are most useful in hand­
ling procedures. Value lists were described in Chapter 2;
procedure referenc(~ lists are discussed in detai I later in
this chapter after procedures have been introduced.

PROCEDURE FORMAT

A procedure declaration consists of three parts; the proce­
dure prologue, the procedure definition, and the procedure
end. The procedure prologue precedes the procedure defi­
nition, and the end terminates it. Procedure declarations
may appear anywhere within a program prior to their use.

During an assembly, AP reads the procedure declaration and
stores the encoded symbolic lines of the procedure in core
memory. When AP later encounters the procedure refer­
ence line, it locates the procedure it has stored and as­
sembles those lines.

The procedure prologue consi sts of one or more names
(CNAME and/or FNAME directives) bywhich the procedure
is identified, followed by a single PROC line.

CNAME/FNAME (Procedure Name)

A procedure may be invoked by a command or function ref­
erence. The names that wi II be used to invoke a command
procedure must first be designated by the CNAME directive,
which has the form

label command argument

label (NAME I [list]

where

label is a val id symbol by which the next proce-
dure to be encountered is identified. Symbols
dec lared to be LOCAL may not be used as a label
of a CNAME directive.

list is an optional list of values that is associated
with the label. Elements in this list will be eval­
uated when referenced via the NAME intrinsic
function.

The names that wi II be used to invoke a functi on procedure
must first be designated by the directive FNAME, which
has the form

label command argument
. r-

label FNAME [I ist]

where label and I ist have the same meaning as for CNAME.

LOCAL symbols may not appear anywhere on CNAME/
FNAME directive statements. When a CNAME/FNAME
directive is encountered, the current LOCAL symbol table
is suspended; it is reinstated at the end of the CNAME/
FNAME directive statement.

A procedure may be both a command procedure and a func­
tion procedure. It may have a single name declared with
both CNAME and FNAME directives, or it may have dif­
ferent names, one for command references and another for
function references. There is no limit to the number of
CNAME and/or FNAME directives that may be given for
a single procedure.

The applicable CNAME/FNAME directives must precede the
procedure definition; however, the definition need not fol­
low immediately after the name lines. CNAME and FNAME
directives are associated with the first procedure definition

Procedures and Lists 55

encountered following these directives. This means that one
cannot put all CNAME/FNAME directives before all proce­
dure definitions. If such a case occurred, all the "labels"
would be associated with the first procedure definition, and
the remaining procedure definitions would be discarded.

The intended purpose of procedures is to allow the program­
mer to create new instructions and functions. However,
using procedures to redefine exj~ting AP directives and in­
trinsics is a questionable practice frequently leading to as­
sembly errors • Consequently, when an AP directive name
(GEN, ORG, etc.) is encountered in the label field of a
CNAME directive, AP will not clefine a new procedure for
the directive (except as noted below), and will produce an
error message on the assemb Iy listing.

A directive or intrinsic function can b~ redefined, howcver
if its name is first opened with the OPEN directive or dosed
with the CLOSE directive. OPEN and CLOSE were ex­
plained in Chapter 4.

There is no limit to the number of procedures contained
in a program.

PROC (Begin Procedure Definition)

The PROC directive terminates the procedure prologue and
begins the procedure definition. It has the form

['obe' I ,om mood

PROC

I o',omeot

The first line encountered following the PROC directive be­
gins the procedure definition. Nonlocal symbols are not
unique to a procedure unless they are specifically opened
and closed.

PEND (End Procedure Definition)

The PEND directive terminates the procedure definition.
It has the form

label command argument
~--------------------t--

PEND [list]

The list in the argument field of a PEND directive is mean­
ingful only for procedures referenced as functions, in which
case I ist represents the resultant value of the function;
that is, the value which wi II be substituted for the original
function reference. When a procedure is called as a com­
mand, the argument field of the PEND directive is ignored;
i.e., it is not evaluated. If a procedure that has an empty
argument field in its PEND line is called as a function, the
resu Itant value is null.

Generally, the format of a command p~ocedure appears as

name CNAME list Procedure prologue.
PROC

Procedure definition.

PEND Procedure end.

56 Procedures

and the format of a function procedure: appears ,as

name FNAtv'E 1 ist Procedure prologue.
PROC

PEND I ist Procedure end.

PROCEDURE REFERENCES

J. procedure reference is a statement within a program that
Ct'uses AP to assemble the procedure definition.

Cor nand Procedure Reference. The command procedure
;:-efer-;~~If~-;;:~~)nsists of a label field, a command field,
a:"l argument field, and optionall/ a comments field:

label field command field argument field

a list cpr, b list c list

LF
, 1 C ~ --A"YT

F
--"

Lprocedure name

Within the procedure definition, the contents of the label
field of the procedure reference line are referred to by the
intrinsic function LF; the contents of the command field are
referred to by the intrinsic function CF; and the contents of
the argument field are referred to by the intrinsic func­
tion AF.

The LF, CF, and AF lists, if present, consist of one or
more elements, where an element can be a symbol, a
constant, an expression, or a sublist. ,A sub list is de­
noted by surrounding the item with a set of parentheses.
Thus, the following are legal lists: I

SYMBOLl
X'125'

($-100}+2
A, B,C

750, (BUF, BASE)

One element, a symbol.
One element, a constant.
One element, an expression.
Three elements, all symbols.
Two elements, a constant followed

by a list of two symbols.

An entire list is referenced within a procedure by its in­
trinsic name, LF, CF, or AF. Individual elements in each
list are referenced by subscripting the intrinsic name. For
example, AF(2) references the second element in the argu­
ment field. If that element is a sublist, the individual ele­
ments in the sublist are referenced by a second subscript.
In the above example, BUF is referenced as AF{2, 1) and
BASE as AF(2, 2).

Subscripts for list elements may be written to any depth.
They must be evaluatable expressions between 1 and 255 or
AP will report an error and use the value 1.

90 30 OOC-1 (6/75)

The programmer must specify in th(~ procedure reference
statement the arguments required by the procedure definition
and the order in which the arguments are processed. For
example, a command procedure could be written to move
the contents of one area to another area of core storage.
Assume that the procedure is called MOVE, and that the
procedure reference I ine must spec:ify in the command field
which register the procedure may IJse. In the argument field
it must specify the word address olf the beginning of the
current area, the word address of the beginning of thearea
into which the information is to be moved, and the number
of words to be moved. Such a procedure reference line
could be written:

ANY MOVE, 2 HERE, THERE, 16

Example: Command Procedure

The command procedure SUM produces the sum of two
numbers and stores that sum in a specified location.
The procedure reference I ine must consist of:

1. label field

2. command field

3. argument field

4. comments field

Use of a labe I is optional.

The name of the procedure
(SUM) followed by the
number of the register that
the procedure may use.

Th.e word address of the
fir~;t addend, followed by
the word address of the
second addend, followed
by the word address of the
sto·rage location.

Use of the comments field
is "pti ona I.

The procedure definition appears as

SUM CNAME

PROC

LF LW,CF(2) AF(l)

AW,CF(2) AF(2)

STW,CF(2) AF(3)

PEND

and the procedure reference line appears as

NOW SUM,3 EARNINGS, PAY
YRTODATE

The resultant object code is equivalent to

NOW LW,3

AW,3

STW,3

90 30 OOC-l (6/75)

EARNINGS

PAY

YRTODATE

AP defines (assembles procedure code) only for those pro­
cedure names actually referenced in the command field of
command procedure reference I ines. Any C NAME directive
containing a procedure name not subsequently referred to
by a command procedure reference I ine wi" have a skip
flag (*S*) printed beside it on the assembly listing. Ifnone
of the names associated with a procedure are referenced,
the same skip flag wi" print beside each I ine of the proce­
dure as well, indicating that it has been skipped by the
assembler.

The use of a label on a procedure reference I ine is optional.
When a label is present, the procedure definition must con­
tain the LF function in order for the label to be defined.
Conversely, if a procedure reference line is not labeled,
the LF function within a procedure definition is ignored by
the assembler.

Function Procedure References. A function procedure
reference is different from a command procedure reference:

label field command field argument field

P list c list,fpr(d list),e list

l: procedure

a list

LF CF

name

Within the procedure definition, the contents of the label
field are referred to by the intrinsic function LF, and the
contents of the command field are referred to by the func­
tion CF. The arguments (referred to by the intrinsic func­
tion AF) of a function procedure reference consist of only
those items that are enclosed by a set of parentheses and
that immediately follow the name of the function proce­
dure. Other elements may appear in the argument field
of the function procedure reference I ine, but they are not
function arguments, and cannot be referenced by the func- '
tion procedure.

The programmer must specify in the procedure reference
statement what arguments are required and in what order
they are processed. For example, a function procedure
could be written that wi II return Ci val ue of the number of
bit positions a given value must be shifted to right-justify
it within a 32-bit field.

Procedures 57

Example: Function Procedure

The function procedure SHIFT produces a val ue that
indicates how many bit positions a number must be
shifted in order to right-justify it within a 32-bit
field. The procedure requires one argument: The
rightmost bit position of the number to be shifted.

The procedure appears as

SHIFT FNAME
PROC
PEND AF-31

The function reference could appear as

RT SAS,5 SHIFT(17)

MULTIPLE NAME PROCEDURES

The val ue I ist that appears on a particular CNAME or FNAME
I ine can be referenced within the procedure definition via the
intrinsic function NAME. This rrakes it possible for ;]
procedure that can be invoked by several different names
to determine which name was acf'ually used and to modify
procedure action accordingly.

Example: Multiple Name Procedur~
r----------------------- -------------------,

ALPHA
BETA

LF

LF

A

B

CNAME
CNAME
PROC
DO
GEN,32
ELSE
GEN,16
FIN
PEND

ALPHA

BETA

1 , 1 00 Id .. f· L d o 50 enlr res tne proce ure. ,

NAME(1)
NAME (2)

NAME (2)

Vv'hen this procedure is called by ALPHA at state­
ment A, the intrinsic function NAME is set to the
value 1 because 1 is the value of the first element in
the argument field of the CNAME directive labeled
ALPHA. When the procedure is called by BETA,
NAME is set to the value O. The DO directive will
cause the line

LF GEN,32 NAME(2)

to be executed if the procedure is called by ALPHA,
or the line

LF GEN,16 NAME(2)

to be executed if the procedure is called by BETA.

58 Procedures

PROCEDURE LEVELS

AP assemblies involve various IIlevels ll of execution. The
main program is arbitrari Iy defined as level O. A procedure
referenced by the main program is designated as level 1; a
procedure referenced from a level 1 procedure is designated
as level 2; and so forth.

For each assembly a maximum of 32 levels is allowed.
They are numbered 0 through 31.

INTRINSIC FUNCTIONS

Intrinsic functions are functions that are built into the
assembler. The intrinsic functions BA, HA, WA, DA,
concerned with address resolution were discussed in Chap­
ter 3. The functions CF, AF, and AFA were introduced
in Chapter 4, therefore, only the extended features that
are applicable to procedures are described here. The
AP addressing function ABSVAL was also discussed in
Chapter 3.

The intrinsic functions discussed in this section inc lude

LF
CF
AF
AFA
NAME

NUM
SCaR
TCOR
S:UFV
S:IFR

S:KEYS
CS
S:NUMC
S:UT
S:PT

I

Intrinsic functions may appear in any field of any instruc­
tion or assembler statement.

LF (label Field)

This function refers to the label field in a COM directive
or a procedure reference line. Its format is

LF (subscript list)

where LF specifies the label field, and subscript list speci­
fies which element in that field is being referenced. If

I subscript I ist is omitted, the function references the entire
label field.

Each LF reference causes AP to process the designated
argument. That is, if the designated argument is an
expression, it will be evaluated when it is used and at
each point it is used, not at the time of call.

Example: LF Function

A SET

TEST TOTAL,SLJM<5

LF

(7*XYZ/SUM+57);
,(.5*XYZ/SUM+57)

Assume that line A is a statement within a procedure
definition and that line TEST is ':I procedure reference
line. The SET directive define:; the symbol A as the
value of the label field of the reference line. In
this example, therefore, the result would be the
same as

A SET TEST

CF (Command Field)

This function refers to the command field list in a COM di­
rective or a procedure reference line. Its format is

C F(subscript list)

where CF specifies the command field, and subscript list speci­
fies which element in that field is being referenced. If sub­
script list is omitted, the function references the entire
command field.

As for LF, each CF reference causes A P to process the des­
ignated argument. That is, if thE! designated argument is
an expression, it will be evaluated when it is used and at
each point it is used, not at the time of the call.

Example: CF Function

CFVALUE SET CF (3)

ALPHA STORE,3,Z*Y HOLD ,4* (A/C+8)

Assume that line CFVALUE is within a procedure defi­
nition and that line ALPHA is a reference to that pro­
cedure. When the CFVALUE line is executed, APwili
evaluate command field three of the reference line and
equate CFVALUE to the resultant value.

AF (Argument Field)

This function refers to the argument field list in a COM di­
rective or a procedure reference line. When used within a
procedure definition referenced as; a function, AF applies

90 30 OOC-l (6/75)

lonly to the argument field list (if any) of the function
reference itself. Its format is

I AF(subscript list)

) where AF specifies the argument field, and subscript list
'specifies which element in that field is being referenced. If
subscript list is omitted, the function references the entire
argument field.

Example: AF Function

AA DATA AF

xx AOP 50, BETA/SUM

Assume that statement M is within a procedure defini­
tion and that the XX statement is the procedure refer­
ence line. In the argument field of the procedure
reference line is a list of two elements. The first
element consists of the value 50 and the second ele­
ment consists of the value BETA/SUM. In state­
ment AA the construct AF refers to the entire argument
field list because no specific element is designated.

AFA (Argument Field Asterisk)

The AFA function determines whether the specified argu­
ment in a COM directive or procedure reference line is

. preceded by an asterisk. The format for this function is

AFA(subscript list)

where AFA identifies the function, and subscript list speci-
: fies which element in the argument field list is to be tested.
i If subscript list is omitted, AFA(l) is assumed.

In the case where an argument may be passed down several
procedure levels, any occurrence of the argument with an
asterisk prefix wi II satisfy the existence of the prefix.

Example: AFA Function

XYZ

BOUND
GEN,8

STORE,5

4
AFA(l)

*ADDR,3

Assume that the BOUNDandGENdirectives are within
a procedure definition and that the XYZ statement is
a procedure reference line. The GEN directive wi II
generate the value 1 if the first element in the argu­
ment field of the procedure reference line (i.e., ADDR)
is preceded by an asterisk. If an asterisk is not present,
the GEN directive will generate a zero value.

Procedures 59

NAME (Procedure Name Reference)

This function enables the programmer to reference (from
within the orocedure) the entire I ist or I ist elements on the
CNAME or FNAME I ine. Its format is

NAME (subscript list)

where NAME identifi es the func~ion, and subscript list
specifies which element in the CNAME or FNAME list is
being referenced. If subscript list is not specified, NAME
refers to the entire list.

A programmer can write a procedure with several entry
points and assign the procedure several names via CNAME
or FNAME directives. Each name may be given a unique
value in the argument field of the CNAME or FNAME di­
rective. Then, within the procedure definition the pro­
grammer can use the NAME function to determine which
entry point was referenced.

The value on the CNAME/FNAME line is evaluated each
time the NAME function is processed. When the CNAMEI
FNAME I ine contains a redefinable symbol, the value of
the NAME expression may differ for successive references
to the same procedure.

Example: NAME Function

B
BGE
BLE

X'68',0
X'68',1
X'68',2

Example: NAME Function

SINE FNAME
COSINE FNAME

1
2

GOTO,NAME SINE,COSINE

SINE

COSINE

Assume this represents a function procedure with two entry
points: SINE and COSINE. The NAME function is set to
the value 1 when the procedure is referenced as SINE and
to the value 2when the procedure is referenced as CO­
S IN E. Thus, different code wi II be produced depending
onwhich name is used to reference the procedure.

Declares three names for the fol­
lowing command procedure, each
with an associated value list.

CNAME
CNAME
CNAME
PROC
BOUND 4 Bound on a fu Ilword boundary.

LF GEN, 1,7,4,3,17 A.FA(l), NAME(l), NAME(2), AF(2), WA(AF(l)) Generate a 32-bit word with
the configuration for a Branch,
Branch if Greater Than or Equal
to, or Branch if Less Than or
Equal to instructi01.

PEND

NOW BLE RETRY

End of procedure definition.

Procedure reference line. If
condition codes contain the
"Iess than" setting (as the re­
sult of a prior operation),
branch to location RETRY.

When the procedure reference line is encountered, AP processes the procedure. In this instance, the label NOW
is defined and AP generates a 32-bit word as follows:

Bit Positions

o

1-7

8-11

12-14

15-31

60 Procedures

Contents

The value 0 because ',no asterisk precedes the first element in the argument field of the procedure
reference line ..

The hexadecimal value 68.

The value 2.

The value 0 because there is no second argument field element (i. e., no indexing).

The first argument field element in the procedure reference line, evaluated as a word address.

NUM (Determine Number of Elements)

The NUM function yields the number of elements in the
designated list. Its format is

NUM(list name)

where N UM identifies the function, and I ist name identifies
the I ist whose elements are to be counted. List name en­
closed by parentheses is required.

The NUM function may also be used to determine the num­
ber of subfi elds in the label, command, and argument fields
of a procedure reference line (as in NUM(LF), NUM(CF),
and NUM(AF)). NUM(NAME) may be used to determine
the number of elements on the CNAME or FNAME directive.

Example: NUM Function

A SET 8, 16, 19" 28

DO NUM(A)

List A is composed of the elements 8, 16, 19 and 28.
Because there are four elements in I ist A, the count
for the DO-loop will be 4.

SCOR (Symbol Correspondence)

This function enables the programmer to test for the pres­
lance of a specified symbol on a procedure reference line.
The format of this function is

SC OR (symbol, test l' test 2' ••• , test n)

where SCOR identifies the function, symbol is the symbol
to be tested, and the testi are the ijtems with which symbol
is to be compared.

Symbol can be an explicit symbol name or one of the in­
trinsic functions designating an element on the procedure
reference line. The testi can likewise be explicit symbol
names or intrinsic functions.

SCOR compares the symbol with each of the test items.
The result of the comparison is the value k, where the kth
test item is identical to symbol. The result of the compari­
son is zero if there is no correspondence.

Example: SCOR Function

J DO SCOR(AF (3), MIN, LIMIT,MAX)

A TALLY,2,3 HOLD,TEMP,LIMIT

Assume line J is within a procedure definition and that
line A is a reference line to that procedure. When
line J is processed, AP compares the third element
in the argument field of the reference line (LIMIT)
with the symbols MIN, LIMIT, and MAX. The re­
sultant value is 2 since LIMIT is the second symbol
listed for the SCOR function, and the DO-loop will
be executed twice.

SCOR has many possible applications in procedures. To
fully understand its use it is important to note that AP
first substitutes designated items from the procedure ref­
erence line for any intrinsic functions used as SCOR
arguments, and then evaluates the SCOR function. This
is made clea~er by the following example:

Example: SCOR Function

SUM CNAME
PROC

X SET SCOR(C,AF)

Y SET SCOR(LF(2),AF)

z SET SCOR(AF)

PEND

K,A SUM A,B,C,D

Lines X, Y, and Z are within the definition of pro­
cedure SUM, and line K is a reference to that pro­
cedure. When the procedure is called and I ine X is
subsequently processed, its argument field will have
the internal configuration

SCOR(C, A, B,C, D)

SCOR will therefore produce the value 3, since C
corresponds to the third test item, and X wi II be set
to 3. When line Y is processed, its argument field
wi II have the internal configuration

SCOR (A, A, B, C, D)

Procedures 61 (

SCOR will produce the value 1, since A corresponds
to the first test item, and Y wi II be setto 1. When

line Z is processed, its argument field will have the
internal configuration

SCOR(A, B, c, D)

SCOR will produce the value zero, since A does not
correspond to any of the test items, and Z will be
set to zero.

TeOR (Type Correspondence)

The TCOR function compares the value type of a specified
item with the value types of a given list of test items.
The format of this function is

TCOR(item,test
1
,test

2
, ••• , test

n
)

where TCOR identifies the function, item designates which
item is to be compared, and the testi are elements whose
value types are to be compared with that of the designated
item. Item and test may be any symbol, I ist, constant,
evaluatable expression, any element on a procedure ref­
erence I ine, or any of the following value type intrinsic
symbols:

Symbol Type

S:RAD Relocatable address

S:LIST List

S:AAD Abso I ute address

S:EXT External reference

S:FR Forward reference to global
symbol or undefined

S:LFR Forward reference to local symbol

S:SUM Expression involving relocatable
addresses, externals, or forward
references

S:INT Integer constant

S:DPI Double precision integer constant

S:C Character constant

S:D Packed decimal constant

S:FX Fixed decimal constant

S:FS Floating short constant

S:FL Floating long constant

62 Procedures

TCOR is most commonly used to determine the value type of
an item by comparing it with one or more of ,the above list
of value type intrinsic symbols. If the value type of the
item corresponds to the type of one of the given symbols,
TCOR returns the value k, where the kth symbol's type is
the same as that of the item. If there is no correspondence,
a zero value is produced by the function.

It is important to note, however, that TCOR is not restricted
to using only the value type intrinsic symbols as testi. Any
symbol, constant, or evaluatable expressions may be given,
and TCOR will return a value indicating which one corre­
sponds in type to "i tem II •

Example: TCOR Function

A CNAME
PROC

K DO TCOR(AF,S :FL,S :DPI»O
L DATA, 8 AF

ELSE
M DATA AF

FIN
PEND

N A FL'5'
P A 16

Lines K, L, and M are within the definition of proce­
dure A, and lines Nand Pare referehces to the proce­
dure. When line N is processed, AP compares its
argument field (FL'5') with the list of value type in­
trinsic symbols on line K. The argument FL'5' is a
floating long constant and corresponds to intrinsic sym­
bol S:FL. The TCOR function therefore produces the
value 1 (since the correspondence is to the first test
item on line K). This value is then compared against
zero, and since the result of this logical operation (1)0)
is "true ", line L is processed. Line L produces a 64-bit
(8-byte)dataword containing the value5asafloating­
point long constant.

AP performs the same kind of operation when line P is
processed. But since 16 is a decimal integer constant
corresponding to neither S:FL nor S:DPI, TCOR returns
a value of zero, the result of the logical operation
o > 0 is "false ", and line M is processed instead of
line L. Line M produces a 32-bit data word containing
the value 16 as a decimal integer constant.

Example: TCOR Function

A CNAME
PROC

B SET TCOR(AF(l), $,5, 'A')

PEND

C A 17, 'PDQ'

D A FL'75'

Line B is within the definition of command procedure A,
and lines C and D are references to the procedure.
When line C is processed, its fir:;t argument field is
compared against the I ist of test items on line B. Since
17 corresponds in type to the second test item (both
are integer constants), TCOR produces the value 2,
and B is SET to 2. When line D is processed, its first
argument fi eld does not correspond to any of the text
items on line B; B is therefore SET to zero.

Example: S:UFV Function

S:UFV (Use Forward Value)

or

S:IFR (Inhibit Forward Reject)

The S:UFV function overrides the assembler's restrictions
on the use of forward references. Its format is

S:UFV(item) or S:IFR(jtem)

where S:UFV or S:IFR identifies the function, and item
represents an intrinsic function, a symbol, or an expres­
sion. S:UFVand S:IFR are simply alternate names for the
same function; their actions are identical.

In order to maintain identical address assignments in both
passes of the assembler, forward references are not allowed
in certain contexts (such as the argument field of a RES,
EQ U, or DO directive). In certain cases, it may be de­
sirable to allow a forward reference when it is known that
the value will not affect address assignment. The S:UFV
function is used to achieve this.

During pass one of the assembler (i. e., Phase 2), S:UFV
returns the value zero if its argumentisa forward reference;
otherwise, its value is the argument itself. During pass two
(i.e., Phase 3), S:UFV returns the valueassigned by pass
one, and inhibits the error reporting that would occur if the
forward reference were used in a normally illegal context.

Extreme care should be exercised in the use of this function
as its misuse can easily cause the two assembler passes to
get out of synchronization with each other. Also, since ex­
ternal definitions (DEFs) are output to the object module at
the end of assembler pass one, this function should not be
used to assign a forward value to a DEFed symbol. If S:UFV
is used, the DEFed symbol will have the value zero and
there wi II be no error notifi cation.

At a point prior to the definition of SWITCH, it is desired to generate a data word in one of three formats, depending
on the value of SWITCH. SincE~ only one word will be generated in any case, the correct format should be selected
during Pass 2 (i.e., phase 3). The S:UFV function makes this simple to accomplish.

START CSECT

GOTO, S::UFV(SWITCH) X, Y
GEN,3, 10, 19 SWITCH, X'13', BA($)-START Assembled on Pass 1
GOTO Z

X BOUND 1
GEN,3, 11, 18 SWITCH, X'7', HA($)-START
GOTO Z

Y BOUND 1
GEN,3, 12, 17 SWITCH, X'3', WA($)-START Assembled and generated on Pass 2

Z BOUND 1

SWITCH EQU 2

90 30 OOC-l (6/75) Procedures 63

Example: S:UFVand TCOR Functions

Normally, the TCOR function will match any non-local forward reference with S:FR. Use of S:UFV allows the actual
type to be found during Pass 2 assembly.

CSECT

DATA TCOR(X, S:FR, S:RAD)

DATA TCOR(S:UFV(X), S:FR, S:RAD)

x EQU $

S:KEYS (Keyword Scan)

This intrinsic function, which may be used only within
procedures, permits one to easily scan a procedure refer­
ence argument field for the presence of specified keywords.
This scan can return information specifying how many and
which keywords are present as well as where in the argu­
ment field each keyword appears. The value returned by
S: KEYS is a I inear I ist of two or more elements. The first
element contains the number of keywords found. The sec­
ond element is a parameter/flag presence word that indi­
cates which keywords (up to a maximum of 32) were found.
The remaining elements are indexes that specify where in
the reference line argument field the various parameter key­
words occurred. The form of the function is

l {[*JK }
S:KEYS,ode, [*J; I' [*J(~II' ••• ' KIm)

where

mode is an expression that evaluates to 0~mode!s7.

(mode&l»O specifies that AF(1) of the PROC ref-
erence argument field should not be scanned.

(mode&2»O specifies use of NUM(AF)+l as a
default index for parameters not found.

(mode&4) > 0 specifies suppression of "unrecog-
nized key" error reporting.

64 Procedures

Generates DATA 1

Generates DATA 2

[*~lik is an explicit integer (0 :5ik) which specifies
that the ikth bit of the parameter/flag presence
word is to be associated with the keyword Kk or
the keywords (Kk1,Kk2," .,Kkm)' If ik> 31, sub­
sequent keywords wi 1\ not affect the parameter/flag
presence word.

If ik is preceded by an asterisk, then any sub­
sequent keyword occurring prior to [*]ik+ 1 is
considered a parameter, in which case a match
on the first or any subsequent keyword causes the
specified bit in the parameter/flag presence word
to be set to one and causes the addition of an
element to the S:KEYS list. That element speci­
fies which subfield in the reference I ine contained
the specified word.

If ik is not preceded by an asterisk, then any sub­
sequent keyword occurring prior to [*]ik+ 1 is con­
sidered a flag, in which case only the specified
bit of the parameter/flag presence word and match
count are affected. If more than one keyword is
specified for a given presence, bit, then a match
on the first keyword sets the presence bit to one
whi Ie a match on any other leaves it zero.

[*]Kk and ~*J(Kk1,"" Kkm} are any legal sym-
bols. These are the keywords associated with
the specified bit position. A leading asterisk in­
dicates that a match is required.

ABBREVIATED SYNTAX

If [*Ji
1
, is omitted, *0 is assumed.

If [*Ji
k

+
1

is omitted, [*]i
k

+1 is assumed.

Example: S:KEYS Abbreviated Syntax

S:KEYS(l, *0, A, ~, (B, C), *17, D, 18, E, 19, F)

may be abbreviated

S:KEYS(l, A, (B, C), *17, D, 18, E, F)

90 30 OOC-l (6/15)

SYNTAX OF THE SCANNED ARGUMENT FIELD

S:KEYS, evaluated within a PROC,. causes a scan of the
argument field of the PROC reference. That argument
field is expected to have the form

[AF(l),] (keywocd 1 [, e::tml]) ~

[[••• , (keyword n ~ t:::tml])]

where

AF(l) is not scanned if (nlode& 1) >0; hence its
structure is not significa1'r to S:KEYS.

keyword is a keyword thct wi II be looked at by
S:KEYS and compared with the Kn and Knm in the
S:KEYS argument field.

item/list is any item or \ist of items that are to be
associated with a given keyword. When present,
the keyword is normally used as a parameter
rather than a flag. The term "item" is used be­
cause there are no restrictions, other than syn­
tactic, on what an item may be.

Notice that S:KEYS interrogates only the first subelement
of each subfield of the scanned ar~Jument field.

If a given argument of the scanned argument field contains
a keyword without an associated item (or I ist), then as far
as S:KEYS is concerned, the parentheses around that argu­
ment fi e I d are redundant.

That is,

(KEY1, 25), (KEY2), (KEY3, 17,42)

could be written

(KEY1, 25), KEY2, (KEY3, 17,42)

USAGE EXAMPLES

Example: S:KEYS Usage Example

Assume a PROC reference line (IS follows:

HERE PROC$REF (D, 9), (A)

Equivalent notation is

HERE PROC$REF (D,9),A

Assume PROC$REF contains the line

then

P SET S:KEYS(O, 26, A, 27, B, 28, C, 29, D, 30,
E, 31, F)

mode = 0

a II keywords are flags

a match occurs on A and D

P will be defined as the list of two elements
formed by S :KEYS

P(l) = 00000002 (no. of matches)

P(2) = 00000024 (in binary 0000 .•• 0010 0100)

1 L 29

bit 26

Equivalent notation is

P SET S:KEYS(0,26,A,B,C,D,E,F)

Example: S:KEYS Usage Example

Suppose PROC$REF from the previous example con­
tained the line

Q SET S :KEYS(O, *26, A, *27, B, *28, C,
*29, D, *30, E, *31, F)

then

mode = 0

a II keywords are parameters

a matc h occurs on A and D

Q wi II be defi ned as the list of four elements

Q (1) == 00000002 }
Q (2) == 00000024
Q (3) == 00000002
Q (4) == 00000001

same as P(l) and P(2) above

parameter A is in AF(2)
parameter D is in AF(l)

Note the power gained by having this list. Without
knowing where in the scanned argument field the key­
word D is written, references to the keyword asso­
ciated value, 9, can be parameterized asAF(Q(4), 2).

Equivalent notation is

Q SET S:KEYS(O, *26, A, B,C, D, E, F)

Procedures 65

Example: S:KEYS Usage Example

Suppose PROC$REF from the previous example con'"
tained the line

R SET S:KEYS(2, *26, A, B, C, D, E, F)

then

mode = 2 (use defau It indexes for parameters not found)

a II keywords are parameters

a match is found fot A and D

no match is found for B, C, E, and F

R wi II be defined as the list of eight elements

R(l) = 00000002}
R(2) = 00000024
R (3) = 00000002
R (4) := 00000003

R(5) = 00000003
R (6) = 00000001
R(7) = 00000003
R (8) = 00000003

same as P and Q above

A - found in AF(2)
B - not found, pointatnullargu­
ment which evaluates to 0
C - not found
D - found in AF(l)
E - not found
F - not found

An advantage of default parameter indexes is that
they permit a less complex parameterization since,
for example, R(5) may always be associated with
the parameter C, regardless of how many and which
parameters are found. If NUM(AF(R(5))»0 (i. e., not
null), then C is present. It is also true, since C is
a parameter, that bit 28 of R(2) wi II be one if and only
if C is present.

Example: S:KEYS Usage Example

66

Assume the function PROC reference line

NOW SET SUMTHIN((H, (4,3)), K,
(L, F:THERE), (M,4), N)

where the function PROC SUMTHIN contains the line

then

Z SET S:KEYS(O, *17, L, H,4, N, *(A, K),
*8, (S, D), M)

mode = 0

the keywords L, H, S, D, and M are parameters

the keywords N, A, and K are flags (a match on
either A or K is required)

a match is found for L, H, N, K and M

Zwill be defined as the list of five elements

Procedures

Z(l) = 00000005 (no. of matches)
A(2) = 08406000 (in binary 0000 10000100

0000 0110 .•.) t
t bit 9
bit 18 (M)

(H)

bit 17
(L)

bit 5
(K)

bit 4
(N)

Note that bit 5 is zero. K is not the first flag
listed for this bit.

Z(3) = 00000003 the parameter L is in AF(3)
Z(4) = 00000001 the parameter H is in AF(l)
Z(5) = 00000004 the parameter M is in AF(4)

Note that the order in which the indexes appear in
list Z is not the bit-number order of Z(2), but instead
the order of left-to-right occurrence of the parameter
keywords in the S:KEYS argument field.

Examp Ie: 5: K EY5 Usage Examp I e

Suppose the PROC 5UMTHIN from the previous example
contained the line

then

T SET S:KEY5(1, *17, L, H, 4, N, *(A, K),
*8, (5, D), M)

mode = 1 (AF (1) shou I d not be sIan ned)

the keywords L, H, S, D, and M are parameters

the keywords N, A, and K are flags

a match is found for L, N, K, and M but not for H

T wi II be defined as the I ist of four elements.

T(l) = 00000004 (no. of matches)
T(2) = 08404000 (In binary 0000 1000 0100 0000

°t OO
•••) ~it 5

bit 17 (K)

(L)
bit 4
(N)

bit 9
(M)

T(3) = 00000003 the parameter L is in AF(3)
T(4) = 00000004 the parameter M is in AF(4)

90 30 OOC-1 (6;75)

Example: S:KEYS Usage Example

Suppose the PROC SUMTHIN from the previous ex,­
amp I e conta i ned the line

then

Y SET S:KEYS(3, *17, L, H, 4, N, *(A, K),
*8, (S, [»), M)

mode = 3 (AF (1) should not be scanned; and de­
faul t indexes are to be used for parameters not
found.

the keywords L, H, S, Dj' and M are parameters

the keywords N, A, and K are flags

a match occurs for L, N, K, and M

no match occurs for H, A, S, and D

Y wi II be defined as the I ist of six elements

Y (1) = 00000004}
Y(2) = 08404000
Y(3) = 00000003
Y(4) = 00000006

Y (5) = 00000006
Y(6) = 00000004

same as T(l) and T(2) above

L - found in AF(3)
H - notfound, pointto AF(6),
a null
S or D - not found
M - found in AF(4)

Example: S:KEYS Usage Example

Assume the PROC Definition

A$PROC

P

CNAME
PROC
SET S:KEYS(2, W,X, Y,Z)
DATA AF(P(3),2),AF(P(4),2),

AF(P(5), 2),AF(P(6), 2)
PEND

Now assume the PROC reference line

A$PROC (Z, 7), (X, -1)

P wi II be defined, for this reference of A$PROC, as
the list

PO) = 00000002
P(2) = 50000000
P(3) = 00000003
P(4) = 00000002
P(5) = 00000003
P(6) = 00000001

Th is reference to A $PR OC wi II cause four words of
data to be generated as follows:

00000000
FFFFFFFF
00000000
00000007

90 30 00C-1 (6;75)

(AF(3,2) is null)
(AF(2,2) is -1)
(AF(3,2) is null)
(AF(l,2) is 7)

CS (Control Section)

This function returns the control section number of any item
whose value is a previously defined address. The format of
this function is

CS(item)

where CS specifies control section, and item is the element
whose control section is to be determined. If the va lue of
the item given is not previously defined as an address, a
zero va lue is returned.

Example: CS Function

A

B

C

CSECT
DATA
CSECT
DATA

DATA

7

14

CS(A), CS(B), CS(-85)

When line C is processed, the first CS function returns
a value of 1 because item A is a relocatable address
within control section 1; AP generates a 32-bit data
word containing the val ue 1. The next CS function is
evaluated and returns a value of 2 because item B is a
relocatable address within control section 2; AP gener­
ates a 32-bit data word containing the value 2. The
last CS function is evaluated and returns a value of
zero because item -85 is not an address; AP generates
a 32-bit data word containing the valu~ zero.

S:NUMC (Number of Characters)

This function returns an integer count of the total number of
characters found in its evaluated argument. Its format is

S:NUMC(jtem)

where S:NUMC identifies the function, and item designates
the element or list for which a character count is to be cal­
culated. Any element in the evaluated argument other than
a character string is ignored in calculating the total count.
Note that an element in the list which is itself a list (i. e.,
a sublist) is thus ignored in the count.

If no character constants are found in the evaluated argu­
ment,S:NUMC returns a count of zero. No restriction is
imposed on the magnit'ude of the final count, although no
one character stri ng may have a character count greater
than 255.

Procedures 67

Example: S:NUMC Function

If A is defined as

A SET ITHESE I, IARE I, ISTRINGS I

then

0 SET S:NUMC(A)

assigns the value 15 to O.

However, if A were defi ned as

A SET ITHESE I, (,ARE', ISTRINGSI)

then

o SET S:NUMC(A)

R SET S:NUMC (A(l), A(2))

assigns the value 5 to Q and the value 15 to R.

S:UT (Unpack Text)

This function provides the facility for manipulating char­
acter strings of arbitrary length. It unpacks a character
string into a sequence of single-character elements. Its
format is

S:UT(argument list)

where S:UT identifies the function, and argument list de­
signates the element or list which is to have its text-valued
el ements "unpacked ". Any el ement in the argument list
other than a character constant remains unchanged,although
its relative position in the value list may change as a result
of the unpacking. Note that an element in the argument
list which is itself a list (i.e., a sublist) is thus left
unchanged.

Care should be taken that no more than 255 elements
are created as the result of unpacking several text
elements.

Note that, for a given list, 0, the relationship
NUM(S:UT(Q)) = S:NUMC(Q):holdsonly if Q is a linear
list composed entirely of character constants.

68 Procedures

Example: S:UT Function

If A is defined as

A SET

then

0 SET

ITHIS I, IISI, IAI, ISTRING I

S:UT(A(l),A(2),A(3), INEWI,;
A(4))

creates a string 0 as if Q had been defined as

o SET II',IHI,III,ISI,III,ISI,IA I,;
IN I, lEI, IWI, lSI, IT I, IR I, III, IN I, IG I

Suppose that A had been defi ned as

A SET (,THIS I, I lSI, IAI), ISTRING I

then

o SET S:UT(A)

creates a string Q as if 0 had been defined as

o SET (,THIS I, IISI, IN),;
lSI, II', IR I, III, IN I, IGI

S:PT (Pack Text)

This function transforms sequences of character constants
and nulls into a single character string. Its format is

S:PT(argument list)

where S:PT identifies the function, and argument list des­
ignates the elementor listto be "packed ". During packing,
null elements are discarded. After all nulls are el iminated,
any contiguous character constants are concatenated to
form a single character string, provided that the resultant
string contains no more than 255 characters. If it does
contain more, an error message is given, and only the left­
most 255 characters are used. This does not terminate
packing; the remaining characters are simply discarded.

Any element in the argument list other than a character
constant or a null is left unchanged, al though its relative
position in the value list may change as a result of the
packing. Note that an element in the list which is itself a
list (i.e., a sublist) is thus left unchanged.

If the argument consists only of a null or a list of nulls, the
value of S:PT is a single null.

90 30 OOC-l (6/75)

Example: S:PT Function

Assume that the following definitions are made:

then

A
B
C

SET
SET
SET

'THIS'
, IS A

'STRING'

Q SET S:PT(A,B, 'BIGGER ',C)

assigns the same value to QasifO had been defined as

Q SET 'THIS IS A BIGGER STRING'

Example: Character String Functions

This function procedure is called with three arguments.
The first argument is a string that is to be searched for
occurrences of the character in the second argument.
If such a match is found, that character in the string is
replaced by the character in the third argument. The
value of the function is the new string after substitu­
tion. The definition is

REPL

Q

Q(I)

FNAME
PROC
LOCAL I,Q

SET S:UT(AF(l))

DO NUM(Q)

DOl Q(I)=AF(2)

SET AF(3)

FIN

PEND S:PT(Q)

Now, if A is defined as

Defi nes functi on REPL

Forms character list

Substi tutes on match

Returns new string

A SET '- THIS IS A STRING -'

a ca lion the functi on such as

STRl TEXT REPL(A,' ','. ')

generates the text string

'-. THIS. IS. A. STRING.-'

while the following call

STR2 TEXT REPL(REPL(A,'-', '$'),' ','-')

generates the text stri ng

'$-THIS-IS-A-STRING-$'

Notice that, in the above example, had the function
nesting been reversed, as

STR3 TEXT REPL(REPL(A,", '-'), '-', '$')

the resulting text string would have been

, $$THISISA$STRING$$'

PROCEDURE REFERENCE LISTS

A list composed only of elements that are evaluated when
AP encounters the I ist in a statement is referred to as a
"value list", as discussed in Chapter 2. A list having at
least one element that cannot be evaluated when first en­
countered is called a "procedure reference list ". For ex­
ample, the directives SET, EQU, GEN, and COM require
value lists, because the elements must be evaluated before
the assembler can process the directives. Command and
function procedure reference lines require procedure ref­
erence lists, because the list elements are not evaluated
at the time the reference I ine is encountered, but are acted
upon within the procedure.

A list used in a procedure reference line cannot be distin­
guished from a value list merely by appearance. That is,
the I ist may be either a procedure reference I ist or a
value I ist depending on its use in a program. If it appears
in a directive such as SET or G EN

R SET 5,A

GEN, 16, 16 5, A

the list is a value list and is evaluated by AP at the
time it is encountered. However, if the list appears
in a command or function procedure reference I ine, it is a
procedure reference list. For example, if there were a
command procedure name SUM, the reference line could
appear as

NOW SUM TABLE, 15*(TABLE2+;

TABLE)/4

When AP encounters this line, it will process the SUM pro­
cedure, and the el ements of the named I ists will be eval­
uated depending on their use within the procedure. That
is, if LF is referenced within the procedure, NOW be­
comes a defined symbol and is stored in the symbol table.
If LF does not appear within the pr.JCedure, the label on
the reference line is lost. The same principle applies to the
elements of command field and argument field lists.

Procedure Reference Lists 69

Example: Procedure Reference Lists

ALL SET AF Assumes these statements

Notice, however, that the functions AF(l), AF(2)(and
AF(3) apply only to the symbols that actually appear
on the procedure reference line (i. e.(A(B, and C)
and not to the values that have been equated to them.
Thus(the statement .

AF(l) SET AF(2,2)

AF(3) SET ALL(2,2)

A SET (11, 12, 13)

B SET (21,22,23)

C SET (31,32,33)

are within a procedure
definition called LST.

Main program.

AF(l) SET AF(2,2)

results in Ar(l) - which is A - being set to null
because there is no element AF(2(2) on the proce­
dure reference line.

On the other hand(the statement

LST A, B, C Procedure reference line. ALL SET AF

The three elements (A, B, C) on the procedure reference
I ine may be referred to within the procedure as

causes AP to evaluate the symbols A(B(and C(and
to assign ALL as

AF(l) = A

AF(2) = B

AF(3) = C

Exampl e: Procedure Reference lists

ALL SET (11,12,13),(21,22(23),(31(32,33)

Therefore, the element AF(3) - which is C - can be
set to ALL(2, 2) which has the value 22.

The procedure OUT generates a 32-bit value equal to the number of elements in the list of the procedure reference line:

OUT CNAME

PROC

LF GEN,32

PEND

NUM(AF)

Declares the command name of the procedure to be OUT.

Identifies a procedure.

Generates 32 bits containing the number of elements in the argu­
ment field of the procedure reference line.

Signifies the end of the procedure.

The following reference I ines could call the procedure:

FIRST

A

B

TWO

OUT

SET

SET

OUT

3,6, (4,7)

3,6

(4,7)

A,B

Generates 00000003 (hexadec i ma I).

Generates 00000002 (hexadec i ma I).

The list in I ine FIRST consists of three elements: 3,6, and (4,7); therefore, the procedure OUT generates the value 3.
Next, A is defined as a value list of two elements: 3 and 6; and B is defined as a value list of one element: (4,7). The
list in line TWO consists of two elements: A and B. AP does not determine what values A and B have because there is
no statement within the procedure that causes AP to evaluate the argument field list.

OUT CNAME

PROC

LOCAL

COUNT SET

LF GEN,32

70 Procedure Reference Lists

COUNT

AF

NUM(COUNT)

Declares COUNT to be a local symbol within this procedure.

COUNT is SET to the value of the list in the argument field of the
procedure reference line.

Since COUNT is declared to be a local symbol within this procedure, it cannot be confused with any previously defined
symbol "COUNT". When the SET directive is executed, AP must evaluate the list in the argument field of the
procedure reference line in order to assign a value to COUNT. With this procedure, the reference lines

FIRST

A

OUT

SET

SET

OUT

3,6, (4,7) Generates 00000003 (hexadecimal).

B

TWO

3,6

(4,7)

A, B Generates 00000003(hexadecimal).

now generate the same value. When the procedure is called at line TWO, the list consists of A, B. The directive

COUNT SET AF

executed within the procedure l causes AP to evaluate A and B and to assign COUNT as

COUNT::: 3,6, (4,7)

Thus, NUM(COUNT) yields the value 3.

Notice that although NUM(COUNT) now equals 3, NUM(AF) still equals 2. This is true because the elements A and B
in the reference line are not replaced by their values (3,6, and (4,7)). Thus a procedure can refer to the elements
that actuall y appear on the procedure reference line as well as the va I ues of the el ements.

Example: Procedure Reference Li!;ts

Assume the command procedure C H EC K

CHECK CNAME
PROC
LOCAL

CNT SET

H DO

J DO

is called as follows:

UPPER SET
LOWER SET
LIMIT SET

FIELD CHECK

CNT
AF

NUM(CNT)

NUM(AF)

16,24,32
9,11,13
12, 118

UPPER,LOWER,LIMIT

In the CHECK procedure CNT is defined as

CNT = 16,24,32,9, 11, 13, 12, 18

Therefore, the DO directive at line H has a count of 8
because CNT is a I ist of eight elements. On the other
hand, the DO directive at linE~ J has a count of 3
because N UM (AF) determi nes how many el ements are
in the argument field list of the reference line, and
there are three~ UPPER,LOWER, and LIMIT.

The use of procedure reference I ists is not I imited to the
argument field. A I ist appearing in any field in a proce­
dure or function reference I ine is a procedure reference list.

Example: Procedure Reference Lists

The statement

A,C,D TABSIZ, S, T, U X,Y,Z

could be a reference I ine for a command procedure
that adds the items identified in the label field to those
identified in the command field and sltores the results
in the locations identified in the argJment field: i.e.,

A+S-X, C+T -V,

All three lists are evaluated inside the procedure
when the actual addition occurs:

TABSIZ CNAME
PROC

I DO NUM(LF)
AF(I) SET LF (I)+C F (1+ 1)

FIN
PEND

The loop is to be executed NUM(LF) or 3 times. Each
time through the loop, I is incremented by 1, so AF(I)
references element X, Y, and Z; LF(I) references ele­
ment A, C, and D; and CF(I + 1) references element
S, T, and U. Therefore, the SET directive is equiva­
lent to

X
Y
Z

SET
SET
SET

A+S
C+T
D+U

Procedure Reference Lists 71

PROCs are frequently used to define machine instructions.
In this manner, a programmer can use any mnemonic code
he wishes for an instruction by writing a procedure defini­
tion that wi II generate the appropriate bit configuration.
This is another instance when it is necessary for the pro­
grammer to remember that lists in procedure reference lines
are not eva I uated at the ti me they are encountered but
rather at the time they are used inside the procedure.

Example: Lists 'in Procedures

Assume a procedure LOAD is to be written that pro­
duces the same bit configuration as a Load Word in­
struction. The procedure definition could be
written

LOAD CNAME X'32 1

PROC
LOCAL P

P SET AF
LF GEN, 1,7,4,3, 17 AFA(1),NAME;

, CF(2),P(2),P(l)
PEND

If the procedure is called by

LOAD, 4 *Z,5

the procedure functions as follows:

1. P is declared a local symbol.

2. P is SET to the value of the argument field of the
procedure reference line; i. e.,

P = Z,5

3. In the GEN directive

a. LF causes AP to determine whether a label
exists on the procedure reference I ine and,
if one does, to define it.

b. AFA(l) tests to determine whether an asterisk
appeared as the first symbol in the argument
field of the reference line. If an asterisk did
appear, a 1 is generated for bit position zero
of the instruction word; if an asterisk did not
appear, a 0 is generated for that bit position.

c. NAME causes AP to place the value X'32 1

(from the argument field of the CNAME
directive) in bits 1 through 7 of the word
being formed.

d. CF(2) specifies that the second entry in the
command field of the reference line is to be
assembled into the next four bits (i. e., bit
positions 8 through 11).

72 Sample Procedures

e. P(2) disignates the second element of list P.
Since P = Z,5, its second element is 5. This
value is assembled into bit positions 12
through 14 of the word.

f. P(1) designates the first element of list P,
i.e., Z. This valueisassembledasa 17-bit
address.

The same procedure will operate properl y when ca II ed
in this fashion:

Q EQU
LOAD, 4

Z,5
*Q

because inside the procedure the directive

P SET AF

forces AP to evaluate the argument field of the pro­
cedure reference I ine and, therefore, to SET P:

p:= Z,5

If the procedure were written

LOAD

LF

and called by

Q

CNAME
PROC

X '32 1

GEN, 1,7,4,3, 17 AFA(1), NAME;

PEND

EQU

LOAD, 4

, CF(2), AF(2),AF(1)

Z,5

*Q

it would not operate properly. There is no directive
within this procedure definition to cause AP to eval­
uate the argument field of the procedure reference.
Thus, when the GEN directive is processed, the
asterisk, the NAME entry, and the command field
item are handled correctly, but there is no AF(2)
entry on the procedure reference line since the argu­
ment field consists only of *Q.

Thus, it can be seen that lists in procedure reference lines
are conditional in that AP evaluates them only if there is
an instruction or directive within the procedure that causes
it to do so; otherwise, the I ists are passed directly from
the reference line to the procedure.

SAMPLE PROCEDURES

The following examples illustrate various uses of procedures,
such as how one procedure may call another, and how a
procedure can produce different object code depending on
the parameters present in the procedure reference.

Example: Conditional Code Generation

This procedure tests element N in the procedure reference I ine to determine whether straight iterative code or an indexed
loop is to be generated. If N is less than 4, straight code wi II be generated; if N is equal to or greater than 4, an in­
dexed loop will be generated. In either case, the resultant code will sum the elements of a table and store the result in
a specified location.

The procedure definition is

ADDEM

LF
IND

CNAME
PROC
SW,AF(3)
DO
AW,AF(3)
ELSE
LW, AF(5)
AW,AF(3)
BIR, AF(5)
FIN
STW, AF(3)
PEND

AF(3)
(AF(2)<4)*AF(2)
AF (1) + IN D -1

L(-AF(2))
AF(l) + AF(2), AF(5)
$ - 1

AF(4)

The genera I form of the procedure reference is

ADDEM ADDRS, N, AC, ANS, X

where

ADDRS represents the address of the initial value in the I ist to be summed.

N is the number of elements to sum.

AC is the register to be used for the summation.

ANS represents the address of the location where the sum is to be stored.

X is the register to be used as an index when a loop is generated.

For the procedure reference

XYZ ADDEM ALPHA, 2, 8, BETA, 3

machine code equivalent to the! following lines would be generated in-line at assembly time.

XYZ SW,8 8 Clear the register.

AW,8 ALPHA Add contents of ALPHA to register 8.

AW,8 ALPHAt1 Add contents of ALPHA + 1 to register 8.

STW, 8 BETA Store answer.

If the procedure reference were

ADDEM ALPHA, 5, 8, BETA, 3

I'he generated code would be equivalent to

SW,8 8 Clear the register.

LW,3 L(-5) The value -5 would be stored in the literal table and its address
would appear in the argument field of this statement. Thus, load
index with the value -5.

AW,8 ALPHA+5,3 Register 3 contains -5, ALPHA+5-5= ALPHA.

BIR,3 $ - 1 Increment reg ister 3 by 1 and branch.

STW,8 BETA Store answer.

Sample Procedures 73

Example: Use of SCOR for Testing Procedure Parameters

This procedure tests an optional parameter for being a condition on which to exit from a subroutine. The return address
is in the register designated by AF(l). If the return register is 0 through 7, an indexed branch is generated; otherwise
an indirect branch is generated.

The procedure definition is

EXIT

LF

CNAME
PROC
DO
SET
DO
SET
ERROR, 3, I=X '690 '
FIN
ELSE
SET
FIN
GEN, 1, 11, 3, 17
PEND

NUM(CF)=2
SCOR(CF(2), GE, LE, EQ)+X ' 680 '
I=X '680'
SCOR(CF (2), LT, GT, N E)+X ' 690 '
'UNDEFINED CONDITION I

X'680 '

AF(1) > 7, I,AF(1)*(AF(1) < 8),AF(l)*(AF(1) > 7)

The general form of the procedure reference is

EXIT[,COND] REG

where

COND is the (optional) condition. If specified, it must be either EQ, NE, LT, GT, LE, or GE.

REG is the register containing the return address.

For the procedure reference

EXIT 7

machine code equivalent to

B 0,7

would be generated at assembly time.

For the procedure reference·

EXIT, EQ 15

machine code equivalent to

BE *15

would be generated.

74 Sample Procedures

Example: Function Procedures

Assume that a 32-bit element of data consists of three fields: Field A occupies bits 0 through 6, field B occupies bits 7
through 17, and field C occupres bits 18 through 31. The program that uses this data will frequently need to alter the
contents of the fields. Two function procedures could be written to facilitate this process: SHIFT and MASK. The pro­
cedure SHIFT returns a value equal to the number of bit positions that a quantity must be shifted to right-justify it within
its field. The procedure MASK produces a field of all l's thClt occupy the required number of bits to mask a given field.

SHIFT

SYM

MASK

ARG
VAL

A
B
C

FNAME
PROC
LOCAL
SET
PEND

FNAME
PROC
LOCAL
SET
SET
PEND

EQU
EQU
EQU

SYM
AF
31-SYM(2)

VAL,ARG
AF
(1 **(ARG(2)-ARG(1)+ 1)·-1)**(31-ARG (2))
L(VAL)

0,6
7, 17
18,31

Defines fields A, B, and C.

procedure definitions

sequence of code
needed to reference
these procedures

LW,4
SAS,4
LW,5
STS,4

L(5)
SHIFT(B)
MASK(B)
Q

Stores the value 5 into field B of data area Q.

The EQU directives define the bits that bound each of the three data fields.

The first Load Word instruction uses a literal constant for thE~ value 5. The Arithmetic Shift instruction references the
SHIFT procedure, using as its clrgument the list B (defined as 7, 17). The SHIFT function procedure will return the value 14,
because an integer must be shifted 14 bit positions in order to right justify it in the B field (i. e., in bits 7 through 17).

The second Load Word instructron references the MASK procedure with an argument of B. The MASK prlcedure first
determines the number of bits in the specified field: ARG(2) - ARG(l) + 1 == 17 - 7 + 1 = 11. Then, the number 1 is
shifted left that number of bit positions. Next, the value 1 is subtracted from the shifted value, forming the desired mask
of eleven 1-bits. To position the mask for the correct data fi aid requires shifting it left 14 positions. This is determined
by subtracting the value ARG(2) (i.e., 17) from 31. The correctly positioned mask is assigned to the label VAL. On
the PEND line, VAL appears as a literal, so the mask is stored in the literal table and its address is returned to the
procedure reference. Thus, the second Load Word instructicm loads a mask for the B data field into register 5.

The Store Selective instruction stores the contents of register 4 into location Q under the mask in register 5.

Because AP allows one procedure to call upon another procedure, the MASK procedure could have been written to call
upon the SHIFT procedure to p,)sition the mask it developed. The MASK procedure could have been written:

MASK

ARG
VAL

FNAME
PROC
LOCAL
SET
SET
PEND

VAL,ARG
AF
'(1 **(ARG(2)-ARG(1) + 'I)-1)**SHIFT(ARG)
L(VAL)

which would produce the same result.

Sample Procedures 75

Example: Recursive Function Procedure

As pointed out in the previous example AP allows one procedure to call another. AP also allows recursion; that is,
a procedure may call itself. This is illustrated in the following function procedure that produces the factorial of the
argument.

FACT FNAME
PROC
LOCAL S,R

S SET AF
DO S(l) > 1

R SET S * (FACT(S - 1))
ELSE

R SET
FIN
PEND R

Because the explanation of a recursive procedure necessarily refers to procedure levels and the use of identical symbols
on various levels, subscript notation is used to denote levels: S 1 refers to level 1 symbol S; S2 to level 2 symbol S; etc.

The procedure reference in the main program could be

Q SET 8

LI,4 FACT(Q-5)

Within the procedure, SI and Rl are declared to be local symbols. Next, SI is set to the value of the argument field at
level 0; therefore, Q -5 is evaluated and 51 is SET to 3. The DO directive determines whether the first element of list 51
is greater than 1. Since SI consists of only one element and it is greater than I, the statement following the DO
directive is processed. The statement on line R 1 calls the FACT procedure. So, the process begins again.

The symbols 52 and R2 are declared to be local symbols. (This time, they are local to the level 2 procedure and will not
be confused with the 5 and R that were local to the level 1 procedure.) 52 is set to the value of the argument field,
which is 51 - 1 (3 - 1); that is, 52 is set to the value 2. The DO sta.tement determines whether the firstelementoflist 52
is greater than 1. Because 52 consists of only one element and that element is greater than I, the I ine following the
DO directive is processed. The statement on line R2 calls the FACT procedure again - this time at level 3.

The LOCAL directive declares S3 and R3 to be local symbols. Next, 53 is set to the value of the argument field. This
time the argument field is 52 - I, which is the value 1. The DO directive determines whether the first element of list 53
is greater than 1. 53 consists of only one element and it is not greater than I, so control passes to the statement fol­
lowing the EL5E directive. R3 is set to the value 1. The FIN directive terminates the DO-loop. The PEND directive
terminates the procedure at level 3 and returns control to the procedure reference at level 2. Then, the processing of
line R2 is completed. The value I, returned by the FACT procedure, is multiplied by 52(2) and equated to the label R2.
The EL5E directive terminates the DO-loop, and control passes to the statement following the FIN directive. The PEND
directive terminates the procedure at level 2 and returns control to the procedure reference at level 1.

The value of R2(2) is returned to level I, where it is multiplied by 51 (3), and the product 6 is equated to the label R 1.
The ELSE directive terminates the DO-loop, and control passes to the statement following the FIN directive. The PEND
directive terminates the procedure at levelland returns control to the. procedure reference in the main program.

Thus, the Load Immediate instruction loads the value 6 into register 4.

76 Sample Procedures

Example: Recursive Command Proc'8dure

Recursion can also occur in command procedures. This SUM procedure produces the sum of the values of the elements
of a list.

SUM CNAME
PROC
LOCAL R, I

R SET AF
LF SET 0
I DO NUM(R)

DO NUM(R(I) > l-:=J 1 ~ Outer R(I) SUM R(I) nner
Loop FIN Loop

LF SET R(I.)+LF
FIN
PEND

Assume the procedure reference is

Q SET 5, (3,4), (3, (7,8),4)

z SUM Q Procedure Reference (I evel 00)

(As in the previous example, subscript notation is used to denote levels.) The resulting code is equivalent to

level 01

SET

SET

DO

DO

FIN

SET

FIN

DO

R1 (2) SUM

level 02

R2 SET

R1 (2) SET

12 DO

DO

FIN

5, (3,4), (3, (7,8),4)

0

NUM(R
1
)

NUM(R
1

(1)) > 1

R1(1) + Zl

NUM(R
1

(2)} > 1

R1 (2)

3,4

0

NUM(R
2

)

N UM (R
2

(1)) > 1

Equate locol symbol R1 to list.

Do the loop 1 times; increment counter of outer DO-loop by 1;
11 = counter; 11 = 1,

False; R1 (1) = 5; NUM(R
1
(1)) = 1, so skip to FIN. ~

Terminate inner loop.

Z =5+0=5
1

Increment counter of outer DO-loop by 1 and set 11 = counter;
11 = 2.

True; R1 (2) = 3, 4;NUM(R
1

(2)) > 1.

Procedure Reference (level 02).

Equate loc:al symboJ R2 to subl ist.

06 this loop 1. times; increment counter of outer DO-loop by 1;
12 = counter; 12 = 1.

False; R
2

(1) = 3; NUM(R
2

(1)) = 1, so skip to FIN.

Terminate inner loop.

Sample Procedures 77

Rl (2) SET R
2

(1) + Rl (2) R 1 (2) = 3 + 0 = 3

FIN Increment counter of outer DO-loop by 1 and set 12 = counter;

12 = 2.

DO NUM(R
2

(2))> 1 False; R
2

(2) = 4; NUM(R
2

(2)) = 1, so skip to FIN.

FIN Terminate inner loop.

R
1

(2) SET R2 (2) + Rl (2) Rl (2) = 4 + 3 = 7

FIN Terminate outer DO-loop.

PEND Terminate level 02 procedure and return to level Ol.

level 01

FIN Term i nate inner loop.

ZI SET Rl (2) + ZI Z = 7 + 5 = 12
1

FIN Increment counter of outer DO-loop by 1 and set 13 = counter;

13 = 3.

DO NUM(R
1

(3))> 1 True; Rl (3) = 3, (7,8),4; NUM(R
1

(3)) = 3.

Rl (3) SUM Rl (3) Procedure Reference (level 02).

level 02

R2 SET 3, (7,8),4 Equate local symbol R2 to list. Note that R2 is a ~ symbol; it is
not to be confused with the previous level 2 symbol R.

Rl (3) SET 0

12 DO NUM(R2) Do this loop ~ times; increment DO-loop counter by 1; 12 = counter;
12 = 1.

DO NUM(R2(1)) > 1 False; R2(1) = 3; NUM(R2(1)) =1, so skip to FIN.

FIN Terminate inner DO-loop.

Rl (3) SET R
2

(l) + Rl (3) R 1 (3) = 3 + 0 = 3

FIN Increment counter of outer DO-loop by 1 and set 12 = counter;
12 = 2.

DO NUM(R
2

(2))> 1 True; R
2

(2) = 7,8; NUM(R
2

(2))> 1.

R
2

(2) SUM R
2

(2) Procedure Reference (level 03).

level 03

R3 SET 7,8 Equate local symbol R3 to list.

R
2

(2) SET 0

13 DO NUM(R
3

) Do this loop 1 times; increment DO-loop counter by 1; 13 = counter;
13 = 1.

DO N UM (R3 (1)) > 1 False; R
3
(l) = 7; NUM(R

3
(1)) = 1, so skip to FIN.

FIN Terminate inner loop.

R
2

(2) SET R
3

(l) + R
2

(2) R2 (2) = 7 + 0 = 7

78 Sample Procedures

FIN

DO

FIN

R
2

(2) SET

FIN

PEND

level 02

FIN

Rl (3) SET

FIN

DO

FIN

Rl (3) SET

FIN

PEND

level 01

FIN

Zl SET Rl (3) + Zl

FIN

PEND

Thus, the main program statement

Z SUM Q

results in the value 34 being assigned to label Z.

Increment counter of outer DO-loop by 1 and set 13 = counter;
13 = 2.

False; R
3

(2) := 8; NUM(R
3

(2)) = 1, so skip to FIN.

Terminate inner DO-loop.

Terminate outer DO-loop.

Terminate level 03 procedure and return to level 02.

Terminate inner DO-loop.

R 1 (3) = 15 + 3 :c: 18

Increment counter of outer DO-loop by 1 and set 12 = counter;
12 = 3.

False; R2(:~) :0: 4; NUM(R
2

(3)) = 1, so skip to FIN.

Terminate inner DO-loop.

R
1
(3) =4 + 18 =22

Terminate outer DO-loop.

Terminate level 02 procedure and return to level 01.

Terminate inner DO-loop.

Z 1 = 22 + 12 = 34

Terminate outer DO-loop.

Terminate level 01 procedure and return to main program at level O.

Sample Procedures 79

6. ASSEMBLY LISTING

AP produces listing lines according to the format shown in
Figure 2. The page count, a decimal number, appears in
the upper right-hand corner of each page.

EQUATE SYMBOLS LINE

Each source line that contains an equate symbol or dis­
play directive (EQU, SET, or DISP) contains the following
information:

EEE

NNNNND

and

XXXXXXXX

or

CC

LLLLL

B

or

TTTT

and

SSS ...

80 Assembly Listing

Up to three error code characters.

S;)urce image line number in
decimal, followed by the line
designator. If this is an update
line, the line designator is an
asterisk. If the line is within a
SYSTEM fi Ie, the designator wi \I
c;)ntain the letter A through H,
for system level s 1-8. Otherwi se
the I ine designator is blank.

Va I ue of argument fi eld as a
32-bit value.

Control section number in hexa­
decimal. Thefirst control section
of an assembly is arbitrarily as­
signed the value 1, andsubse­
quent sections are numbered
sequentially.

Value of the argument field as a
hexadecimal word address.

Blank, 1, 2, or 3 specifying the
address's byte displacement from
a word boundary.

A one- to four-character value
type indicator when the value of
the item in the argument field is
other than a'n address or a si ng I e
precision integer. This is dis­
cussed below.

Source image.

and

"'::'PPPPP. QQQQQ" This field represents an error link
that consi sts of the I ine number
of the previously encountered
error line (blank if none). The
PPPPP is the major I ine number
and QQQQQ is the minor line
number if any, i. e., an update
line.

When the argument field of an EQU, SET, or DISP directive
specifies a value that is neither a single precision integer
nor an address that is evaluatable when the directive is en­
countered, the assembly wi II pri nt a one- to four-character
value type indicator in the value field of the listing (print
positions 18-25). If the argument field of the DISPdirective
specifies more than one value, the values or value type
indicators will be printed singly beginning with the value
field of the directive I ine and conti nuing for successive
lines. The information listed in the value field for various
kinds of EQU, SET, and DISP arguments is shown in the
following listing:

SET, EQ U, DISP
Argument Type

Single precision integer

Address

Fixed decimal constant

Floating short constant

F loati ng long constant

Packed decimal constant

Character stri ng constant

Local forward reference

External reference

Double precision integer

Undefi ned reference

± expression involvi ng a
sum of relocatable items

List, i. e. ,

Display in Listing
Value Field

Value of integer

Value of address

FX

FS

FL/

D

TEXT

LFR

EXT

DPI

UND

Value of integer
portion S

LIST followed by:

ValUe 1) I f on y or
: DISP
• I directive
va uen

Note: Any of the list items might itself be a list. In that
case LIST and **** wi II print to define the elements
of such a sublist.

90 30 OOC-l (6/75)

Print
Position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Equate EEENNNNND C C L L L L L B
symbols EEENNNNND X X X X X X X X
line EEENNNNND T T T T

Assembly
listing line EEENNNNND C C L L L L L B X X X X X X X X A

Ignored
source
image line E E ENNI'-INND * 5 *

Li teral
listing line E E E C C L L L L L B X X X X X X X X A

Print
Position 36 37 38 .•. ... 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132

I
Equate S S •••
symbols S S ••.
line S 5 ••. ... 5 5 < P P P P P Q Q Q Q Q >

Assembly
listing line S S •.• ••• S S < P P P P P Q Q Q Q Q >

.
Ignored
source
image S S ••• • •• S S < P P P P P Q Q Q Q Q >

Literal
listing line

I

< P P P P P Q Q Q Q Q >

Figure 2. AP Listing Format

Equate Symbols Une 81

; ASSEMBLY LlST!NG LINE

Each source image line containing a generative statement
prints the following information:

EEE

NNNNND

CC

LLLLL

B

xx
xxxx
xxxxxx
XXXXXXXX

A

Up to three error code characters.

Source image line number in dec­
imal, fo IIowed by the I ine desig­
nator. If this is an update line,
the line designator isan asterisk.
If the I ine is within a SYSTEM
file, the designator will contain
the I etter A through H, for sys­
tem levels 1-8. Otherwise the
line designator is blank.

Current section number in hexa­
decimal. See CC under II Equate
Symbols Line ll

•

Current value of execution loca­
tion counter to word level in
hexadecimal.

Blank, 1, 2, or 3, specifying
the byte displacement from word
boundary.

Object code in hexadecimal
listed in groups of one to four
bytes.

Address classification flag.

blank

A

F

x

N

S

denotes an address
field in control
section CC.

denotes an absolute
address field.

denotes an address
field containing a
forward reference.

denotes an address
field containing an
external reference.

indicates that theob­
ject code produced
for the source line
containsa relocatable
item (i. e., an ad­
dress, a forward refer­
ence, or external
reference) in some
field other than the
address fi eld.

denotes an address
with a negative off­
set from the base of -­
a relocatable con­
trol section.

SSS ...

NN specifies an address
in control section NN
(where NN fCC).

Source image.

<PPPPP. QQQQQ> This field represents an error link
that consists of the line numberof
the previously encountered error
line (blank if none). The PPPPP
is the major line number and
QQQQQ is the minor line num­
ber if any, i.e., an update line.

IGNORED SOURCE IMAGE LINE

A skip flag indication

S

is printed in columns 33-35 for each statement skipped by
the assembler during a search for a GOTO label or while
processing a DO or DOl directive with an expression value
of zero. NNNNND, SSS •.. and <PPPPP. QQQQQ> have
the same meanings as in an assembly listing line.

The *S* flag is also printed in columns 33-35 beside an)'
CNAME directive containing a procedure name that was
not subsequently referred to ina command procedure ref­
erence line. If none of the names for a procedure are re­
ferred to, the entire procedure wi II be skipped and so
indicated on the assembly listing.

ERROR LINE

When an error is detected in the source image line, the
I ine begins with up to three error code characters. The
error codes and their meaning are listed lin Chapter 11.

LITERAL LINE

Any literals evaluated during an assembly are printed imme­
diately following the END statement. Literals are listed in
the order in which they were evaluated, and the listing line
contains

EEE

CC

LLLLL

B

Up to three error code characters.

Current section number in hexa­
decimal. See CC under II Equate
Symbols Li nell •

Current value of execution loca­
tion counter to word ievel in
hexadecimal.

Must be blank since all literals
are generated ona word boundary.

82 Assembly listing Line/lgnored Source Image Line/Error Line/Literal Line

xxxxxxxx

A

Value of literal as a hexadecimal
memory word.

Address classification flag. See
"Assembly Listing Line".

<PPPPP.QQQQQ> Error link. See Assembly Listing
Line for description.

SUMMARY TABLES

Immediately following the literal table, the following sum­
maries are printed as a standard p'Jrt of the assembly listing.
Each summary is preceded by an identifying heading.

1. Control Section Summary. Shows the section number,
size, and protection type of all control sections in the
program. A typical item has the form

01 005B4 2 PT 1

where 01 is the control section number and 005B4 is
the number of words in the section, plus two additional
bytes. PT 1 means that protection type 1 is assigned to
this section. Protection type, an integer from a to 3,
is specified by a CSECT, PSECT, or DSECT directive
(see Chapter 3). The control section summary is listed
four items per line, and refl€!cts the values assigned by
phase 2 (see Summary 8, below).

A page eject follows the control section summary and
the fo 1I0wing summaries then print. Items 2 and 3
below, may be omitted by including the option NS
(no summaries) on the AP control card. Items 4
through 6, the error summaries, always print, however.

2. Symbol Value Summary. Shf)wS all symbols in the pro­
gram, except those designated as LOCAL or closed.
A typical item has the form

SCALE/O 1 001 B5

where SCALE is a symbol name, 01 is its control sec­
tion, and 001B5 is the hexcldecimal word address at
which it is defined. In place of a control section and
word address, some symbols will have a 32-bit value
displayed as an eight-digit hexadecimal number or may
have a one- to four-charac:ter value type indicator.

90 30 OOC-l (6/75)

In other words, the information following a symbol
name may have the same format as described previously
under "Equate Symbo Is Line". On some items, the slash
is replaced by an asterisk if the SD option has been
specified in the AP control command. The SD option
specifies that symbolic debugging code (i.e., a symbol
table) is to be included in the relocatable object mod­
ule. When a symbol appears in a DEF statement, the
form is as described above except that the slash or as­
terisk is replaced by a dash.

The symbol values are printed four per I ine except
where an entry is too long for its allotted print field
and overflows into the fie Id to its right.

3. External Symbols Summary. Shows all symbols in the
program declared to be external definitions and refer­
ences. Symbol names are listed followed by the decla­
ration type. This summary is formatted at six per line
where possible. The first DEF symbol is indicated by
*DEF instead of -DEF after the symbol name.

4. Undefined Symbol Summary. Shows all symbols used
but not defined or dec lared to be externa I references.

5.

6.

Error Severity Level. This line shows the highest error
severity level encountered in the program (note that the
ERROR directive may be used to obtain other severity
levels) •

Severity Level

o
3
5
7

Error

None.
All assembly errors.
Update errors.
Control section size errors.

Error Line Summary. Shows the n~mber of error lines
encountered during the assembly iand gives a line
number link to the last error lint Each error line
pointed to, in turn, points to the previously encoun­
tered error I ine (see Figure 2).

7. Update Error Summary. This line indicates the numbers
of error lines encountered within an update packet. If
there are no update errors, this line is not printed.

8. Control Section Error Summary. This summary lists all
control sections whose total size in phase 2 differs from
its total size in phase 3. The format is the same as the
Control Section Summary above, but indicates the
number of words assigned by phase 3. This summary
is omitted if there are no control sections with size
inconsistencies.

Summary Tables 83

7. AP OPERATIONS

To assemble an AP program, a deck containing the necessary
monitor commands must first be prepared. The first such
command is the AP control command, described in this chap­
ter. Many other monitor commands can be used; these are
described in the appropriate monitor reference manual (see
"Related Publications" at the beginning of this manual).

AP CONTROL COMMAND

The AP control command has the following format:

! AP option 1, option 2, .•. , option n

where any number of options, or none, may be specified.
The options and their meanings are given below.

Options may be specified in any order. Except for AC, SB,
and SC, repetitions of the same option are ignored; that is,
the effect is that of a single occurrence. If no options are
specified, the following options are assumed:

SI, LO, GO

The AP control command is free-form; blanks are ignored
except within the parentheses of the AC, SB, or SC options.
Continuation is specified by placing a semicolon anywhere
a blank is permitted. Processing of the AP card is then re­
sumed at the first nonblank in the next card. AP continua­
tion cards must not have an ! in column one. There is no
limit on the number of continuation cards used with the AP
card. A period may be used to terminate the last AP con­
trol card option. All characters following the period (or
the semicolon of a continued card) are ignored.

The meanings of the various options are as follows:

AC (acl,ac2, ... ,acn) where n S 15. This option is
used in conjunction with the SYSTEM directive of AP.
With this option, the user can specify what accounts or
areas on the RAD to search for system fi les. Accounts are
searched in the order specified, followed by the "system
account" if the fi Ie has not been found. The IIsystem ac­
count" is the D1 area for CP-Rand RBM; it is :SYS for CP-V.

If the AC option is specified and AP later encounters a
SYSTEM directive, it will instruct the Monitor to search for
the system name in the Monitor's accol!nt and name table,
under the accounts given in the AC option. The search will
be performed according to the order specified in the AC
option, from left to right, unti I the specified system is found
or the accounts are exhausted. If the system is not found
under the user-specified accounts, the "default accounts II
are then searched. If the AC option is not specified, the
system specified by the SYSTEM directive is searched for

84 AP Operations

only under the "default accounts". For CP-R and RBM,
"defau It accounts" are only the system account; for CP-V,
the current job account, followed by the "system account"
constitute the "default accounts". Since all standard sys­
tems are filed under the "system account", they will be
found correctly even when the AC option is not used. If
more than one AC option is specified, the search is per­
formed from left to right across the card.

Thus,

!AP AC(l), •.. ,AC(2,3), ... ,AC(4), ...

is equivalent to

! AP AC(l ,2,3,4), .•.

and both will cause a system search to be performed, first
under account 1, then 2, 3, 4, and, finally, under the "sys­
tem account" .

A system is identified by the name under which it is ente~ed
on the disk. This name must correspond to the name specI­
fied on the SYSTEM directive line used to reference the
system. Further, a system name must constitute a legal
"symbol II according to the AP syntax rules.

8 A Sel ects the batch assemb Iy mode. In th is mode, suc-
cessive assemblies may be performed with a single AP card.
The assembler wi II read and assemble successive programs
unti I a double end-of-fi Ie is read. In the batch mode, cur­
rent device assignments and options on t~e AP cCird are ap­
plied to all assemblies within the batch.!

INd' . A program is considered terminated when an E Directive
is processed. Successive programs may optionally have a
single end-of-fi Ie indicator separating them.

With input from the card reader, an end-of-file is indicated
by an EOD card. Two successive EOD cards or any other
Monitor control card terminates the job.

When batch assemblies consist of successive updates from
the card reader, to compressed programs from disk or tape,
the update packets are considered terminated by a +END
card, and may optionally be separated by single EOD cards.
There must be a one-to-one correspondence of update
packets to compressed programs. End of job is signa led by
two consecutive end-of-files following either the last CI
program or the last update packet, whichever occurs first.

80 This option specifies that binary output is to be pro-
duced on the BO device.

CI This option specifies that compressed input is to be
taken from the CI device.

90 30 OOC-l (6/75)

CN This option specifies thClt a concordance, or
symbolic name cross-reference list'ing, is to be produced on
the LO device. One or more concordance control com­
mands will followthe APcontrol command on the C device.
These commands specify the set of symbols to be included
in the concordance (see "Concordance Control Commands
and Listing" in Chapter 9). Requtesting a concordance does
not require a fu II assembly of the program.

CO This option specifies that compressed output is to be
produced on the CO device.

DC This option specifies that .:1 "standard" concordance
is to be produced on the LO device. The DC option differs
from the CN option in that no attempt is made to read the
C device for concordance control commands. If both DC
and CN are specified, the DC opf'ion takes priority, and the
CN option is ignored.

GO This option specifies that the binary object program
is to be placed in a temporary file from which it can later
be loaded and executed. The res.ultant GO file is always
temporary and cannot be retained from one job to another.
To retain the binary object progrom for a subsequent job,
the BO option (with BO assigned to disk or magnetic tape)
must be used.

LO This option specifies that a listing of the assembled
object program is to be produced on the LO device.

LS This option specifies that (I listing of the source pro-
grams is to be produced on the LO device. Th is listing
consists of an image of columns 1 to 80 of each input line
(after updates have been incorporated) with its line number.

...
LU This option specifies that a I isting of the update
deck (if any) is to be produced on the LO device. This
listing consists of an image of ea,::h update line and its line
number in the update deck.

NO This option specifies that no standard definition file
is to be input for ,this assembly. Note that PD implies the
ND option, so that ND is redundant if PD is a Iso specified.

NS This option specifies that summaries following the
assembly listing aretobe omitted for symbol values, external
definitions, and primary and secondary externa I references.

PID (5nl, ... ,5nn) This option specifies that a standard
definition file is 1'0 be produced. The file will be written
through the F:STD DCB, which cc'ntairis a built-in file name
of $:STDDEF. Thus, if F:STDis n()t reassigned, thePDoption
will cause creation (or overwriting) of a fi Ie, $:STDDEF.
For CP-R and RBM, this file will be written in the area
specified by a :ALLOT command., A file name other than
$:STDDEF may be created by use of the appropriate monitor
ASSIGN command for F:STD.

90 30 OOC-l (6/75)

The optional sni are names by which the standard definition
file is identified. Since this file is included in any assembly
that does not specify ND, reference to the sni names on a
SYSTEM directive is redundant.

SB,SC These options specify, respectively, that binary
and compressed fileswill be outputwith EBCDIC identifica­
tion and/or sequence numbers in bytes 109 through 120.
When the fi les are punched on cards, th is information ap­
pears in columns 73 through 80. The form is SB(id(seq)) or
SC(id(seq)), where id represents a string of 0 to 8 characterst
of identification, and seq is the beginning sequence number.

If (seq) is omitted, sequence numbers begin at zero. If SB
or SC is specified with no id parameter, no id field is output.

If SB or SC is specified, the corresponding output option
(BO or CO, respectively) is not required; the corresponding
output fi Ie is unconditionally produced. If GO and SB are
specified, GO will be sequenced as well as the BO output.

Sequence numbering begins at zero or at the number speci­
fied as seq, and increases by one for each successive output
record. The sequence number occupies 8-n card columns,
where n is the number of characters in the ID specification.
If the number cannot be represented in that many columns,
the mostsignificant digits are lostwith no error indication.
When used with the BA option, the ID remains constant and
sequencing is continuous for all programs.

~D This option specifies that symbolic debugging code
(i .e., a symbol table) is to be included in the relocatable
object module produced by the assembler. Inclusion of this
symbol table allows a debug subsystem to associate symbolic
names and type information with specified memory cells.
This allows run-time debugging and modification of a pro­
gram in a symbolic format similar to the actual assembly
listing •

When a symbol value summary is produced at the end of the
assembly listing, any symbols entered i~to the object code
wi II be identified in the summary by an asterisk (*) instead
of a slash (/) preceding their value, word address, or type
indicator.

SI This option specifies that symbolic input is to be
taken from the SI device.

SO An EBCDIC card image representation of the input
program is to be produced after updates have been in­
corpora ted. The symbo I i c records wi II be wri tten on the
SO device.

tAli alphanumeric characters are permitted, as well as blank
and all printing characters from X '4A' through X?F' except
left or right parentheses.

AP Control Command 85

SU This option specifies that the update control com-
mands (see "Updating a Compressed Deck") within any
update deck are in sequentia I order. The order of such
commands is actually immaterial, since AP orders them as
required; but if 5U is specified, any out-of-sequence com­
mands are listed on the LU and DO devices.

INPUT /OUTPUT FILES

AP explicitly opens Input/Output files after reading the AP
control card. All files are closed before AP returns to the
monitor; they are not closed and reopened for each program
assembled with the BA option.

AP always opens the LO and DO fi les. Other fi les are opened
only if required, as determined by control card options.

85-1 Input/Output Files

For CP-R and RBM, additional file manipulations occur for
certain output fi les when opened, afte:- each assembly (with
BA), and when the files are closed:

After
Each

File Open Assembly Close

BO None None None

CO None WEOF WEOF, PFIL(REV,2),PFIL(FWD)

DO None WEOF WEOF, PFIL(REV,2),PFIL(FWD)

GO PFIL None WEOF(2) ,PFIL(REV ,2) ,PFIL(FWD)
(FWD)

LO None WEOF WEOF, PFIL(REV,2),PFIL(FWD)

50 None WEOF WEOF, PFIL(REV,2),PFIL(FWD)

90 30 00C-1 (6/75)

8. UPDATING A COMPRESSED DECK

By the use of the CO option on the AP card, AP may be
directed to produce a compressed deck of a source program
which can then be used as input during a later assembly.
Since a typical compressed deck contains one-fourth to
one-fifth as many cards as the corresponding source deck,
the use of compressed decks offers significant operating
advantages in both manageabi I ity and speed. The following
discussion explains how to update a compressed deck with
an "update packet". An update packet is considered to be
the set of cards between the fi rst + (update) command and
the compressed deck. If symbolic lines precede the first
+ command, they are treated as if they were preceded by a
+0 (see +k below); that is, they are inserted before the
first line of the program.

AP recognizes four update control ~ommands.

+k where k is a line number corresponding to a line
number on the source or assembly listing produced
from the compressed deck. The +k control card
designates that all cards following the +k card,
up to but not including the next update control
card, are to be inserted after the kth line of the
source program. The command +0 desi gnates an
insertion before the first line of the program.

+j, k where j and k are line numbers correspondi ng
to line numbers on the source or assembly listing
produced from the compressed deck, and j ~ k.
This form designates that all cards following the
+j, k card, up to but not including the next update
control card, are to replace lines j through k of
the source program. The number of lines to be
inserted does not have to equal the number of
lines removed; in fact, the number of lines to be

86 Updati ng a Compressed Deck

inserted may be zero. In this case, lines j through
k are deleted.

+* designates an update packet comment card. That
is, this card is I isted (if the LU option is specified)
but is not entered into the program. If an error is
detected in an update control card, comment cards
are skipped along with other noncontrol cards.

+END designates the physical end of an update
packet. This card must be the last card in any up~
date pac ket .

The + character of each update control command must be
in column 1, followed immediately by the control infor­
mation, with no embedded blanks. The control command
is terminated by the first blank column encountered. Op­
tionally, the blank may be followed by comments.

If the SU option is specified, update control cards must be
in ascending sequence. If they are not, a sequence error
message wi II be produced for each control command out of
order, and AP will order them as required. If the SU option
is not specified, AP will order update commands without
error notification.

The ranges of successive insert and/or delete control com­
mands must not overlap, except that the following case is
permissible: +j,k followed by +k, where j<k.

Overlapping or otherwise erroneous control commands will
cause the erroneous command and all subsequent cards up to
the next control command, to be delet$d from the update
packet. These cards are output on the L6 fi I e regardl ess of
the LU assembler option.

9. CONCORDANCE CONTROL COMMANDS AND lISTIMG

When the CN option is included on the AP control card,
the assembler will access the C device for additional con­
trol records describing the data to be included in the con­
cordance (symbolic name cross-reference) listing.

An alphanumeric string, such as R2, B, or RES is considered
to be an operation code when used in the first command
field of a statement. When used elsewhere in a statement
it is considered to be a symbol.

If desired, a "standard" concordClnce can be produced by
entering the DC option on the .A,P control command and
omitting all concordance control records on the C device.

The "standard" concordance listing does not include opera­
tion code names, but otherwise includes all symbol refer­
ences, including function and command procedure names
and intrinsic functions such as $, L, AFA, etc.

LOCAL symbols or symbols appearing as arguments of a
SYSTEM directive do not appear on any concordance list­
ing. Except for this restriction, all symbols and operation
codes used in a program can be listed by selective use of
the concordance control commands.

CONCORDANCE CONTROL COMMANDS

The concordance subsystem provides the following commands
for specifying the contents of a concordance listing:

10 Include all or a selected set of operation codes.

SS Suppress all or a selected set of symbols.

OS Include only a selected set of symbols.

DS Produce a modified LS listing, displaying only
lines that reference a se lected set of names.

END Terminate concordance control commands.

The control records must have a period (.) in column 1 and
the selection code (i.e., command name) in columns 2-4.
After a space of one or more blanks, a name list of the form
name l' name2' ••• may follow the selection code. Em­
bedded blanks between names in the list are not allowed.
The name list may be continued for several physical records
by using the AP semicolon contirluation convention. Fur­
thermore any number of records containing the same selec­
tion code may be used.

Symbols specified on concordance control commands are
implicitly OPENed when the command is processed. The
symbols may subsequently be OPENed and CLOSEd within
the program and the command wi II control all such symbols

90 30 OOC-l (6;75)

with the same name. However, if a CLOSE balances the
initial implicit OPEN, that symbol is effectively removed
from further concordance control at the point of the CLOSE.

Concordance control records are printed, as read, on the
LO device.

10 This command specifies that all operation codes, or
only those given, are to appear on the concordance listing.
The form of the command is

([0 [name 1 ,name2, 0 0 0 ,name n]

If the name I ist is given, only the operation codes it speci­
fies will be listed. If the name list is absent, all operation
codes wi II be listed. (The brackets do not appear on the
control record; they are shown above only to indicate that
the name list is optional.)

SS This command specifies that all symbols, or only those
given, are to be suppressed on the concordance listing.
The form of the command is

(055 [name 1,name2, 000, nomen]

If the name list is given, only the symbols it specifies will
be suppressed. If the name list is absent, all symbols will
be suppressed. The SS and OS commands (explained below)
may not both be used i'1 a given set of concordance control
commands. (The brackets do not appear on the control rec­
ord; they are shewn above only to indicate that the name
list is optional.)

OS This command specifies that only a given list of
symbols is to appear on the concordance listing. The form
of the command is

(005 name 1 ,name2, 0 0 0 ,name n

The name list is mandatory. Only the symbols it specifies
wi II appear on the concordance listing. The SS and OS
commands may not both be used in a given set of con­
cordance control commands.

Concordance Control Commands and Listing 87

DS This command specifies that a given list of symbols
is to be displayed by producing a modified LS listing. (The
LS option was explained previously under "AP Control Com­
mand ".) The format of the DS command is

(DS name 1 ,name2, • • • ,name n

The name I ist is mandatory. Only the symbols it specifies
will appear on the modified LS listing. Instead of the en­
tire source program, the LS listing will display only lines
containing names - in any ccntext - specified in the DS
name list. The DS command is independent of the 10, SS,
and OS commands. The DS command overrides a request
for a full LS listing.

END This command identifies the end of a set of con-
cordance control commands. Its format is

The END command is mandatory if the CN option is speci­
fied. If only the END command appears on the C device,
a "standard" .concordance listing wi II be produced.

CONCORDANCE LISTING

The concordance listing follows the regular assembly list­
ing. Names are printed on the concordance listing in al­
phabetical order, followed by one or more name reference
items. The general format of each name reference item is

1
-Ope code I

reference line number $
lop. code [*]

where

reference line number is the source program line
number in which the name appears. The largest

87-1 Concordance listing

reference I ine number that may be correctly pro­
cessed is 32767. If update records appear in the
concordance in the form "M. N ", the largest up­
date record number ". Nil) that may be correctly
processed is a Iso 32,767.

- op. code i nd i ca tes tha t the name occu rs in the

$

label field of the reference line, and Ope code is
the operation code name used on that line.

indicates that the name occurs in the first com­
mand field of the reference line. In this case, $
terminates the reference item.

lop. code[*] indicates that the name occurs in
other than the label or first command field of the
reference I ine, and op. code is the operation
code name used on that line. The operation code
name may be followed by an asterisk if the name
specified occurred in argument field 1 and was in­
direct Iy addressed.

A sample name might appear on the concordance listing as

A 372 - DATA 459/Lw*

This display means that symbol A was used at line 372 in the
label field of a DATA statement, and at line 459 of an in­
direct Iy addressed Load Word instruction.

Reference line numbers can appear in the form "M" or
"M.N", depending on the form of the source program. The
form M. N appears only for those lines that are in an update
record format and for which a new com~ressed file has not
been produced.

The reference items following each name are formatted up
to eight per line and are sorted by reference line number.
Unusually long operation code names wi II cause fewer ref­
erence items per line to be printed.

90 30 OOC-1 (6/75)

10. PREENC'ODED FILES

AP contains the provision for including a preen coded version
of a previously assembled "standard definitions" fi Ie in
each assembly. This file is most useful when it contains in­
formation normally contained in standard SYSTEM files, like
SIG7FDP. It is necessary to assemble this "standard defini­
tions" program with options that cause AP to write the as­
sembled program on a standard definition fi Ie. This program
wi II reside on a random access device (disk or RAD) in an
internal format most quickly processed by AP. The source
for preencoded files is discarded when the preencoded file
is created. Therefore, a preen coded fi Ie cannot be listed
by the PSYS directive when that fi Ie is referenced by a sub­
sequent' assembly.

If a preencoded standard definitions fi Ie exists, AP wi II read
this fi Ie prior to reading the source program being assembled.
Then, when a SYSTEM directive is encountered, AP first
determines whether that SYSTEM is included in the standard
definitions fi Ie and, if it is, does not access the SYSTEM
normally. Instead, that information is assumed to be in the

88 Preencoded Fi les

standard definitions file. This considerably speeds up the
assembly of small to medium size assemblies, with no opera­
tional change apparent to the user.

If the ND control card option is specified, AP will not at­
tempt to read a standard definitions file. If ND is not
specified, AP will first attempt to open the F:STD DCB in
the IIsystem account II under the name $: STDDEF. If the
OPEN is successful, the names previously assigned to this
file by the PD option are saved and the assembly continues.
If no such file exists, the assembly proceeds as if the ND
option had been specified.

A preen coded fi Ie may be created by assembling a program
with the PD control card option. This option is optionally
followed by a list of names, enclosed in parentheses, by
which the preencoded fi Ie wi II be identified. The name
SIG is reserved for all SIG7FDP names listed in Table 4
(see SYSTEM directive). Thus the control card option
PD(SIG) must be used to create a standard definition fi Ie
consisting only of the Sigma instruction set.

90 30 OOC-l (6/75)

11. ERROR MESSAGES

A P outputs two types of error messages: flags and error
messages pertain ing to the assembled program, and opera­
tional and irrecoverable error me~isages.

ERROR FLAGS

C Constant string error. A constant contains an illegal
character or is improperly formed. For example,

X'ABCDEFG' (The 'G' is not a hex digit.)

D Duplicate symbol or command. This error message is
caused by one of the following conditions:

1. The assembler has detec1"ed a duplicate definition
for a program symbo I.

2. The assembl er has encountered an instruction or
directive in which a doubly defined program sym­
bol is used.

3. The assembler has encountered a CNAME, COM,
or S:SIN statement label that is identical to the
label of another C NAME, COM, or S: SIN
statement.

4. An attempt has been made to redefine an A P in­
trinsic function or directive with a CNAME,
COM, S:SIN, or FNAME statement.

E Illegal Expression. This error message is caused by one
of the following conditions:

1. The argument field for BOUND contains other than
a power-of-two, integer between 1 and 32,768.

2. The argument field for DO, DO 1, RES, or SPACE,
or the command field for COM contains other than
an integer.

3. The argument field for ORG, LOC, or EN D con­
tains other than an inteHer or an address.

4. The argument field for USECT contains other than
an address.

5. The argument field for C SECT, DSECT, or PSECT
contains other than an integer between 0 and 3.

6. The argument field or the command field {for class
o or 2} of a standard instruction is blank.

7. The constant stri ng for TIT LE conta i ns more than
68 characters.

8. The command field for ERROR contains other than
one or two integers.

90 30 00C-1 (6/75)

9. The command field for ORG or LOC contains other
than the integer 1, 2, 4, or 8.

10. The command field for DATA contains other than
an integer in the range 0 to 16, or the command
field for RES contains a negative integer.

11. The command field for S: SIN is not 0, 1, or 2.

12. A symbol was used in a directive in such a way that
core allocation could not be determined at the time
that the directive was processed {e. g., a forward
reference in the field list of a GEN directive or in
the command or argument field of a RES directive}.

13. A forward reference was used in a SET or EQU
directive.

14. Arithmetic was performed on two incompatible
quantities.

15. Division by zero was attempted.

16. The syntax of an S:KEYS intrinsic function was
incorrect.

Illegal or unknown command. This error message is
caused by one of the following conditions:

1. The assembler has encountered a command contain­
ing an unrecognized name.

2. A command that would create more than 127 relo­
eatable control sections has bern encountered.

3. A SOCWdirective was encountered after a relocat­
able control section was opened, or a directive is
illegal after SOCW has been specified.

K Program structure error. This error message is caused
by one of the following conditions:

1. The assembler has detected an unterminated DO
loop (i. e., a PEND or END directive was en­
countered before the FIN directive that should
have terminated the loop).

2. The assembler has detected an unterminated pro­
cedure (i. e., an EN D directive was encountered
before the PEND directive that should have ter­
minated the procedure).

3. The assembler has detected an extra ELSE directive
in a DO loop.

4. The assembl er has detected an extraneous FIN
directive outside of a DO loop or an extraneous
PEND directive outside of a procedure.

Error Messages 89

5. The assembler has encountered a LOCAL directive
whi Ie a GOTO search was being made for a local
symbol.

6. The command field contains other than an integer
or a blank, or the selection argument field ele­
ment was not a symbol on a GOTO directive.

7. An extraneous PROC or PEND directive has been
encountered within a PROC definition.

8. The assembler has detected an unterminated skip
in a conditional assembly sequence in a procedure
(i.e., a PEND or END directive was encountered
before the termination condition was satisfied).

9. A 001 directive caused multiple execution of a
DO, 001, ELSE, FIN, END, GOTO, PEND,
PROC, or SYSTEM directive.

L Labe I error. Th is error message is caused by one of the
following conditions:

1. The label field for CNAME, COM, S:SIN, or
FNAME contains other than a symbol.

2. The label field for an instruction or a directive
that enters values into the symbol table contains
other than a blank, a symbol, or a single list
element.

S Syntax error. A genera I violation of syntactic struc­
ture has been encountered. For example,

1. The argument field of one of the directives DEF,
GOTO, LOCAL, OPEN, CLOSE, REF, or SREF,
contains other than a well-formed AP symbol.

2. The assembler has encountered an intrinsic function
as the argument of an OPEN, CLOSE, or LOCAL.

3. The assembler has encountered an OPEN/CLOSE
within a LOCAL region that attempted to reference
a symbol that has the same configuration as a
LOCAL symbol.

4. A continuation line contains a character other than
blank or asterisk in column one.

5. An arithmetic expression is malformed (a missing
operand, an unknown operator, etc.).

6. Unbalanced parenthesis.

7. An apparent constant qualifier other than C, 0,
FL, FS, FX, 0, or X has bee: encountered.

8. A character not in the recognized character set
has been encountered outside a constant string.

T Truncation error. This error message is caused by one
of the following conditions:

1. The assembler has encountered a generated data
value that is too long for the specified field.

2. A text string contains more than 255 EBCDIC
characters.

3. A subscript is not an integer between 1 and 255.

4. The assembler has encountered an arithmetic op­
eration in which the precision of one or more of
the operands exceeds the I im its allowed ..

5. A symbol contains more than 63 characters (char­
acters beyond 63 are ignored).

6. A list was created with more than 255 elements.

7. The argument of a DO is greater than 65,535.

8. A value cannot be expressed in the standard object
language.

U Undefined symbol. This error message is caused by one
of the following conditions:

1. The assembler's symbol table contained an unde­
fined symbol at the completion of assembly.

2. A symbol declared to be local was used, but not
defined, within the previous Icpcal region. (This
message appears at the end of b loca I region.)

3. A keyword non-match was found in an S:KEYS
reference list.

OPERATIONAL AND IRRECOVERABLE
. ERROR MESSAGES

The messages resu Iting from operational and irrecoverable
error conditions are described in alphabetical order in
Table 5.

Table 5. Operational and Irrecoverable Error Messages

Message Description

BAD ENCODED TEXT An error has been encountered in the assembly phase.
PROCESSING SYSTEM - system nam~ (if in system)
AP ABORT ERROR

BAD INSTRUCTION TRAP, PSD = xxxxxxxx yyyyyyyy A bad instruction has caused a trap. The x's and y's
PROCESSING SYSTEM - system name (if in system) are the hexadecimal representation of the first and sec-
AP ABORT ERROR ond words of the Program Status Doub leword (PSD).

90 Operational and Irrecoverable Erro'r Messages 90 30 OOC-1 (6/75)

TClble 5. Operational and Irrecoverable Error Messages (cont.)

Message

CHECKSUM ERROR ON CI RECORD # xxxx
COMPRESSED RECORD ID/SEQUENCE/CHECKSUM/BYTECOUNT

IS ww/xx/),y/zz
PROCESSING SYSTEM - system name (if in system)
AP ABORT ERROR

CI CODE ERROR ON RECORD ;# xxxx
PROCESSING SYSTEM - system name (if in system)
AP ABORT ERROR

COMPRESSED OR BINARY RECORD FOUND IN SI FILE
PROCESSING SYSTEM - system name (if in system)
AP ABORT ERROR

CONTROL CARD ERROR
AP ABORT ERROR

Description

During processing of a compressed input file, a check­
sum error was found on a compressed record. The char­
acters xxxx represent the record number in hexadecimal;
and ww, xx, yy, and zz represent the hexadecimal
values for compressed record identifier, sequence num­
ber, checksum, and byte count, respectively.

An error has been encountered during processing of a
compressed input file. While reading a compressed in­
put or system fi Ie, a compressed record was encountered
with an erroneous control byte. The characters xxxx
represent the record number in hexadecimal.

An illegal symbolic record has been encountered during
processing of a symbolic input file. An SI record with
the first byte of X'18', X'38', X'lC' or X'3C' has been
read.

A syntax error or illegal AC option has been encoun­
tered on the AP control card. In addition to this mes­
sage, a colon is printed just below the error in the AP
card.

For example,

!AP/SI,LO,GO

CONTROL CARD ERROR
AP ABORT ERROR

The colon in this example indicates t~at the slash is a
syntax error (a space or comma is allowed between AP
and the first option). I

~--~---~

DEF/GEN SPACE OVERFLOW
PROCESSING SYSTEM - system name (if in system)
AP ABORT ERROR

ENCODER SPACE OVERFLOW
PROCESSING SYSTEM - system name (if in system)
AP ABORT ERROR

ERROR OR ABN ON FILE yy xxxx
PROCESSING SYSTEM - system name (if in system)
AP ABORT ERROR

ERROR OR ABN WHEN OPENING F:SYS
PROCESSING SYSTEM - system name
AP ABORT ERROR

90 30 OOC-1 (6/75)

The assembly phase does not have enough core to
continue.

The encoder phase does not have enough core to
continue.

A Monitor-detected I/O error has occurred during pro­
cessing of fi Ie yy. The error code (and subcode if ap­
plicable) is specified as xxxx in hexadecimal.

During an attempt to open a system fi Ie, the Monitor
detected an error or abnormal condition. The system
name displayed is the outermost system (that is, the
one called by the source program, not one called from
within a system).

Operational and Irrecoverable Error Messages 91

Table 5. Operational and Irrecoverable Error Messages (cont.)

Message

EXPECTED CI MISSING
PROCESSING SYSTEM - system name (if in system)
AP ABORT ERROR

EXPECTED SI MISSING
AP ABORT ERROR

ID ERROR ON CI RECORD # xxxx
COMPRESSED RECORD ID/SEQUENCE/CHEC KSUM/BYTECOUNT

IS ww/xx/yy/zz
PROCESSING SYSTEM - system name (if in system)
AP ABORT ERROR

*** IGNORED ***

ILLEGAL OPTION IGNORED: xx

record no. erroneous contro I record
ILLEGAL UPDATE SEQUENCE

record no. *** IGNORED *** erroneous control record

ILLEGAL UPDATE SYNTAX

MEMORY PROTECTION TRAP, PSD = xxxxxxxx yyyyyyyy
PROCESSING SYSTEM - system name (if in system)
AP ABORT ERROR

MONITOR TRAP, PSD = xxxxxxxx yyyyyyyy
PROCESSING SYSTEM - system name (if in system)
AP ABORT ERROR

NO INPUT SPECIFIED
AP ABORT ERROR

92 Operational and Irrecoverable Error Messages

Description

A symbol ic record or end-of-file has been encountered
during processing of a compressed file before having en­
countered the compressed end-of-file byte. Typically,
this error occurs when cards have been lost from the end
of a compressed deck.

During processing of an input file, an end-of-file error
has been encountered. Typically, a double end-of-file
is missing when the BA option has been request-ed.

During processing of a compressed input file, an illegal
compressed record has been encountered. The first byte
of the compressed record is neither X'3S' nor X'lS'.
The characters xxxx represent the record number in
hexadecimal; and ww, xx, yy, and zz represent the
hexadecimal values for compressed record identifier, se­
quence number, checksum, and byte count, respectively.

See the message titled ILLEGAL UPDATE SYNTAX,
below.

An unknown option (represented by xx) has been en­
countered on the AP control card. The unknown option
is ignored and processing continues. This error message
is printed on the I ine following the erroneous AP con­
trol card.

An error has been encountered during processing of an
update packet. The update control records displayed
are not in sequential order and the SU option has been
specified. AP will put the records in correct sequence
and continue processing.

A syntax error has been encountered fUring processing
of an update packet. The update control record dis­
played has a syntax error in the position indicated by
the colon. The position of the erroneous record in the
update packet is indicated by the record number. For
example,

100 *** IGNORED *** +5,Z

ILLEGAL UPDATE SYNTAX

All subsequent update records will be ignored up to the
next plus card control record.

A memory protection error has caused a trap. The XIS and
y's are the hexadecimal representation of the first and
second words of the Program Status Doubleword (PSD).

An error has caused a Monitor trap. The XIS and y's
are the hexadecimal representation of the first and
second words of the Program Status Doubleword (PSD).

During processing of the AP control card, it is dis­
covered that no input option (SI or cn is spedfied
but other options are specified.

Table 5. Operational and Irrecoverable Error Messages (cont.)

Message

record no. 1 erroneou~; contro I record 1
record no. 2 erroneous control record 2
OVERLAPPING SEQUENCE NUMBERS. LAST UPDATE

GROUP IS IGNORED

Description

An error has been encountered during processing of an
update packet. The update control records displayed
are overlapping illegally. For example,

10 +13,26
27 +3,15
OVERLAPPING SEQUE NCE NUMBERS. LAST

UPDATE GROUP IS IGNORED

The second plus card in this example, and any subse­
quent cards up to the next plus card, wi II be ignored.

~--r---~

SEQUENCE ERROR ON CI RECORD # xxxx
COMPRESSED RECORD ID/SEQUENCE/CHECKSUM/BYTECOUNT

IS ww/xx/yy/zz
PROCESSING SYSTEM - system name (if in system)
AP ABORT ERROR

STD DEF FILE DOES NOT EXIST
AP ABORT ERROR

During processing of a compressed inputfile, a sequence
number error has been encountered on a compressed rec­
ord, The characters xxxx represent the record number in
hexadecimal; and ww, xx, yy, and zz represent the
hexadecimal values for compressed record identifier, se­
quence number, checksum, and byte count, respectively.

The standard definition fi Ie ($:STDDEF) cannot be
opened. F:STD has been assigned and the ND option
has not been specified.

r--+--~

STD DEF FILE INCOMPATIBLE
AP ABORT ERROR

SYSTEMS NESTED TOO DEEPLY
PROCESSING SYSTEM - system name
AP ABORT ERROR

TOO MANY ACCOUNT AREAS SPECIFIED
AP ABORT ERROR

UNABLE TO FIND SYSTEM - sy tem name
PROCESSING SYSTEM - system name (if in system)
AP ABORT ERROR

UPDATE CONTROL NUMBERS EXCEED COMPRESSED FILE

UPDATE FILE IS IN COMPRESSED OR BINARY FORMAT
AP ABORT ERROR

90 30 OOC-1 (6/75)

The standard definition file ($:STDDEF) has not been
reassembled subsequent to reassembly of an AP module.
It contains information inconsistent with existing en­
coder memory allocation.

An error has been encountered during processing of a
system fi Ie. More than eight levels of systems are
nested. This may be caused by recursive SYSTEM calls.

The account number or area specified in the AC option
of the AP control card exceeds the aqcount number
limit. This error message is printed o~ the line follow­
ing the erroneous AP control card image.

An error has been encountered during the opening or
processing of a system fi Ie. A SYSTEM directive speci­
fies the system name displayed, but there is no system
fi led with th is name under any of the account numbers
or data areas specified by the AC option (if any) or
under the IIsystem account II,

An error has been encountered during processing of an
update packet. A line number specified in an update
control record is greater than the number of I ines in
the program. The erroneous update card is ignored,
and normal processing continues.

An error has been encountered during processing of an
update packet. A record in the update packet is in
compressed or binary format. (Note: A +END card i

may be missing from the previous assembly.)

Operational and Irrecoverable Error Messages 93

APPENDIX·A. SUMMARY OF SIGMA INSTRUCTION MNEMONICS

Requi red syntax items are under! i ned whereas opti ona I items
are not. The following abbreviations are used:

Codes for required options are

560 Xerox 560

m mnemonic 9 Sigma 9

register expression 7 Sigma 7

v value expression P Privi leged

* indirect designator D Decima I Option

a address express i on F Floating-Point Option

x index expression L Lock Option

d displacement expression M Memory Map Option

Mnemoni c Syntax Function

LOAD/STORE

LI ~ v Load Immediate

LB ~ olr~,x Load Byte

LH ~ *::, x Load Ha I fword

LW ~ *~,x Load Word

LD ~ *~, x Load Doubleword

LCH ~ *::, x Load Complement Halfword

LAH ~ *::, x LOCld Abso I ute Ha I fword

LCW ~
olr:y x Load Complement Word

LAW ~ olr~x Load Abso I ute Word

LCD ~ *~,x Load Complement Doubleword

LAD ~ *~,x Load Absolute Doublleword

LAS m, r *~,x Load and Set

LS ~ *~,x Load Selective

LM ~ *~x Load Multiple

,LCFI m Y-, v Load Conditions and Floating Control Immediate

LCI m v Load Conditions Immediate

ILFI m v Load Floating Control Immediate

LC m *~,x Load Conditions

90 30 OOC-l (6/75)

Equivalent to
Required
Options

9

Appendix A 95

Required
Mnemoni c Syntax Function Equivalent to Options

LOAD/STORE (cont .)

LF m *~,x Load Floating Control

LCF ~ *~,x Load Conditions and Floating Control

LVAW ~ Load Virtual Address Word 560

XW m, r *~x Exchange Word

STB m, r *~x Store Byte

STH ~ *~x Store Ha I fword

STW m, r *~,x Store Word

STD ~ *~x Store Doubleword

STS m, r *~,x Store Selective

STM m, r *~,x Store Multiple

STCF ~ *£!.,x Store Conditions and Floating Control

ANAL YZE AND INTERPRET

ANLZ ~ *~,x Analyze

INT m, r *£!.,x Interpret

FIXED-POINT ARITHMETIC

AI ~ v Add Immediate -
AH ~ *~r Add Halfword

AW ~ *~x Add Word

AD ~ *~x Add Doubleword

SH ~ *~x Subtract Halfword

SW ~ *~x Subtract Word

SD ~ *~x Subtract Doubleword

MI m, r v Multiply Immediate -
MH m, r *~,x Multiply Helfword

MW m, r *~x Multiply Word

DH ~ *~x Di vi de He I fword

DW m,r *~x Divide Word

AWM ~ *~x Add Word to Memory

96 Appendix A 90 30 OOC-l (6/75)

Required
Mnemoni c Syntax Function Equivalent to Options

fIXED-POINT ARITHMETIC (con·~.)

MTB m,v *~x Modify and Test Byte

MTH m,v *~/X Modify and Test Halfword

MTW m,v *~/X Modify and Test Word

COMPARISON

CI ~ v Compare Immediate

CB ~ *~,x Compare Byte

CH ~ *~, x Compare Halfword

CW ~ *~, x Compare Word

CD ~ *~,x Compare Doubleword

CS ~ *~x Compare Selective

ClR ~ *~,x Compare with Limits in Register

ClM ~ *~,x Compare wi th Limits in Memory

LOGICAL

OR ~ *'~, x OR Word

EOR ~ *'~x Excl usi ve OR Word

AND ~ *~x AND Word

SHIFT

S ~ *~x Shift

SlS ~ '!.Ix Shift Logical, Single

SlD ~ '!..,x Shift logical, Double

SCS ~ '!.! x Shift Circular, Single

SCD ~ '!.Ix Shift Circular, Double

SAS ~ '!.! x Shift Arithmetic, Single

SAD m"r '!.Ix Shift Arithmetic, Double

SSS m, r ~-' x Shift Searching, Single 9

SSD ~ ~y x Shift Searching, Double 9

SF ~ *a,x Shift Floating

SFS ~ '!.Ix Shift Floating, Short

SFl ~ '!.Ix Shift Floating, long

Appendix A 97

Required
Mnemoni c Syntax Function Equivalent to Options

CONVERSION

CVA ~ *~,x Convert by Addi ti on 7

CV5 ~ *~,x Convert by Subtracti on 7

FLOA TING-POINT ARITHMETIC

FAS ~ *~x Floati ng Add Short F

FAL ~ *~,x Floating Add Long F

FSS ~ *~x Floating Subtract Short F

FSL ~ *~,x Floating Subtract Long F

FMS ~ *~, x Floating Multiply Short F

FML ~ *~,x Floating Multiply Long F

FDS m,!:. *~,x Floating Divide Short F

FDL ~ *~x Floating Divide Long F

DECIMAL

DL m,v *~,x Decimal Load D

DST m,v *~,x Decimal Store D

DA m,v *~x Decimal Add D

DS m,v *~,x Decimal Subtract D

DM m,v '*~x Decimal Multiply D

DD m,v *~x Decimal Divide D

DC m,v *~x Decimal Compare D

DSA m *~x Decimal Shift Arithmetic D

PACK m,.v *~,x Pack Decimal Digits D

UNPK m,v *~,x Unpack Decimal Digits D

BYTE STRING

MBS m, r d Move Byte String 7

CBS m, r d Compare Byte Stri ng 7

TBS m, r d Translate Byte String 7

TTBS ~ d Translate and Test Byte String 7

EBS m, r d Edit Byte String D

98 Appendix A

Mnemoni c Syntax

PUSH DOWN

PSW !!!L!. *£!, x

PlW m, r *£!, x

PSM m, r "I.~,x

PLM m,r *9.' x

MSP m, r *~,x

PSS m,v *~,x

PLS m,v

EXECUTE/BRANCH

EXU m *~, x

BCS m, v *~, x

BCR m, v *~,x

BIR ~ *~! x

BDR ~ .k~X

BAL ~ .k~X

B m k~,X

BEZ m k~, x

BNEZ m *~x

BGZ m *~x

BGEZ m *~,x

BLZ m *~,x

BLEZ m *~,x

BE m *~,x

BG m *~x

BGE m *~x

BL m *~x

BLE m *::,x

BNE m *::,x

BAZ m *~x

BANZ m *~x

For Use After
Compari!son
Instructkms

Function

Push Word

Pull Word

Push Multiple

Pull Multiple

Modify Stack Pointer

Push Status

Pull Status

Execute

Branch on Conditions Set

Branch on Conditions Reset

Branch on Incrementing Register

Branch on Decrementing Register

Branch and Link

Branch

Branch if Equa I to Zero

Branch if Not Equa I to Zero

Branch if Greater Than Zero

Branch if Greater Than or Equal to Zero

Branch if Less Than Zero

Branch if Less Than or Equal to Zero

Branch if Equal
I

·Branch if Greater Than

iBranch if Greater Than or Equa I to

IBranch if less Than

:Branch if Less Than or Equa' to

Branch if Not Equal to

Branch if Implicit AND is Zerot

Branch if Implicit AND is Nonzerot

tSee CW instruction in Xerox Sigma 7 Computer Reference M:mual.

90 30 OOC-l (6/75)

Equivalent to

BCR,O *.£,x

BCR,3 *£!.,x

BCS,3 *~x

Bcs,21*~x
BCR,l *~,x

BCS,l *£,x

BCR,2 *~,x

BCR,3 *~,x

BCS,2 *~,x

BCR,l *£!, x

BCS,l *~,x

BCR,2 *.£!,x

BCS,3 *9.' x

BCR,4 *9.' x

BCS,4 *~,x

Required
Options

560P

560P

Appendix A 99

Required
Mnemonic Syntax Function Equivalent to Options

EXECUTE/BRANCH (cont.)

BOV m *~x Branch if Overflow BCS,4 *,S!.,x

BNOV m *~,x Branch if No Overflow BCR,4 *~x

BC m *~,x Branch if Carry BCS,8 *!:!"x
For Use After

BNC m *~x Fixed-Point Branch if No Carry BCR,8 *~x
Arithmetic

BNCNO m *~, x Instructi ons Branch if No Carry and No Overflow BCR, 12 *~x

BWP m *~,x Branch if Word Product BCR,4 *~x

BDP m *~x Branch if Doubfeword Product BCS,4 *~x

BEV m *~x For Use After { Branch if Even (number of lis shifted) BCR,8 *~,x
Fixed-Point
Shift

BOD m *~x Instruct ions Branch if Odd (number of lis shifted) BCS,8 *~x

BID m *~,x For Use After { Branch if Illegal Decimal Digit BCS,8 *~x
Decimal

BLD m *~x Instructi ons Branch if Legal Decimal Digit BCR, 8 *~,x

BSU m *~x Branch if Stack Underflow BCS,2 *~x

BNSU m *~x Branch if No Stack Underflow BCR, 10 *~x

BSE m *~x Branch if Stack Empty BCS, 1 *~x

BSNE m *~x For Use After Branch if Stack Not Empty BeR,l I *0, x
Push Down I -
Instructi ons

BSF m *~, x Branch if Stack Full BCS,4 *~x

BSNF m *~,x Branch if Stack Not Full BCR, 15 *~x

BSO m *~,x Branch if Stack Overflow BCS,8 *~x

BNSO m *~, x Branch if No Stack Overflow BCR, 8 *~x

BIOAR m *~x Branch if I/O Address Recognized BCR,8 *~x P

BIOANR m *~x Branch if I/O Address Not Recognized BCS,8 *9t x P

BIODO m *~x Branch if I/O Device Operating BCS,4 *a,x P

BIODNO m *~x For Use After
Input/Output

Branch if I/O Device Not Operating BCR,4 *~x P

BIOSP *~x
I nstructi ons

Branch if I/o Start Possible BCR,4 *~x P m

BIOSNP m *~x Branch if I/O Start Not Possible BCS,4 *~x P

BlOSS m *~x Branch if I/O Start Successful BCR,4 *2,.t x P

BIOSNS m *~,x Branch if I/O Start Not Successful BCS,4 ,*~x P

100 Appendix A 90 30 OOC-l (6/75)

Required
Mnemoni c Syntax Function Equivalent to Options

CALL

CAll m,V *~x Call 1

CAL2 m,v *~,x Call 2

CAL3 m,v *~,x Cal13

CAL4 m,v *~,x Cal14

CONTROL

LPSD m, r *~x Load Program Status Doubleword P

XPSD !:!2! *~x Exchange Program Status Doubleword p

LRP m *2.t x Load Register Pointer P

MMC !:!2! v Move to Memory Control P

LMAP m, r Load Map 7MP

LMAPRE m, r Load Map (Real Extended) 9MP

LPC m,r Load Program Control 7MP

LLOCKS ~ Load Locks LP

LLOCKSE m, r Load Locks (Extended) 560P

LRA m, r *2.t x Load Rea I Address 9P

LMS m, r *~x Load Memory Status 9P

WAIT m *~x Wait P

RD m, r *:!.,x or (v,v),x Read Direct P

WD !:!2! *:!.!x or (v, v),x Write Direct P

NOpt m *c:!L x No Operation

PZE !:!!. *~x Positive Zero

INPUT/OUTPUT

SIO ~ *a, x or (v, v), >t: St'Ort Input/Output P
-or (v, v, v), x

HIO ~ *a,x or (v, v),): Ha I t Input/Output P
or (v, v, v), x

no ~ *a, x or (v, v),)(Test Input/Output P
-or (v, v, v), x

TDV ~ *a,x or (v,v),x Test Device P
-or (v, v, v), x

AIO ~ *~x Acknowledge Input/Output Interrupt P

RIO ~ *~x Reset Input/Output 9P

POLP ~ *~,x Po II Processor 9P

POLR ~ *~x Poll and Reset Processor 9P

t Equivalent to a LCFI instruction with r=O.

90 30 OOC-l (6/75) Appendix A 101

APPENDIX B. SIGMA STANDARD COMPRESSED LANGUAGE

The Sigma Standard Compressed Language is used to represent
source EBCDIC information in a highly compressed form.

AP (along with several of the uti lity programs) accepts this
form as input or output, wi II accept updates to the compressed
input and wi II regenerate source when requested. No in­
formation is destroyed in the compression or decompression.

Records may not exceed 108 bytes in length. Compressed
records are punched in the binary mode when represented
on card media. Therefore, on cards, co lumns 73 through
80 are not used and are avai lable for comment or identifi­
cation information.

The first four bytes of each record are for checking purposes.
They are as follows:

Byte 1 Identification (OOL 11000) L = 1 for each record
except the last record, where L = O.

Item Function

a Ignore
1 Not assigned
2 End of line
3 End of fi Ie
4 Use 8-bit character that follows
5 Use n + 1 blanks (next 6-bit item is n)
6 Use n +65 blanks (next 6-bit item is n)
7 Blank
8 a
9 1

10 2
11 3
12 4
13 5
14 6
15 7
16 8
17 9
18 A
19 B
20 C
21 D
22 E
23 F
24 G
25 H
26 I
27 J
28 K
29 L
30 M
31 N

102 Appendix B

Byte 2

Byte 3

Byte 4

Sequence number (0 to 255 and recycles).

Checksum, which is the least significant
8 bits of the sum of a II bytes in the record
except the checksum byte itself. Carries
out of the most significant bit are ignored.

Number of bytes contained in the record
including the checking bytes ($ 108)

The rest of the record consists of a string of 6-bit and 8-bit
items. Any partial item at the end of a record is ignored.

The following 6-bit items (decimal number assigned) com­
prise the string control:

Item Function

32 0
33 P
34 Q
35 R
36 S
37 T
38 U
39 V
40 W
41 X
42 y
43 Z
44
45 <
46 (
47 +
48 I
49 &
50 $
51 *
52)
53 ;
54 .-,
55 -
56 /
57 ,
58 %
59 L.J

60 >
61 :
62 I

63 =

INDEX

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

+ character, 86
$, 2,25,45,47
$$, 2,45,47
S, 35
****, 53

A
absolute address, 5
absolute section, 27
ABSVAL function, 21
AC option, 84
address resolution, 22
addresses, 5
addressing functions, 20
AF function, 48,59
AFA function, 48,59
AP character set, 2
AP control command, 84
AP listing format, 81
AP operations, 84
AP phases, 1
argument field, 9
assembly control, 33
assembly listing, 80
assembly listing line, 82
asterisk, 6, 7,47,48,50,53

B

BA function, 20
BA option, 84
blanks, 2,8, 10,86
BO option, 84
BOUND directive, 25-26
byte count, 51

c
CF function, 47,59
character set, 2
character string, 50,51
character string constant, 3
character string functions, 69
Cloption, 84
CLOSE directive, 41
CNAME directive, 55
CO option, 84
colon, 2
COM directive 47-48

command field, 9
command procedure, 56,57
comment field, 9
comment lines, 10
compressed deck, 86
compressed language, 102
concordance listing, 87
conditional code generation, 73
constants, 3
continuation, 10
control section error summary, 83
control section summary, 83
CS function, 67

I
DA function, 21
DATA directive, 49
data generation, 45
DC option, 85
DEF directive, 42-44
defining symbols, 10
directive,

BOUND, 25-26
CLOSE, 41
CNAME, 55
COM, 47-48
DATA, 49
DEF, 42-44
DISP, 53
DO, 35
DOl, 34
ELSE, 36
END, 34
EQU, 39
ERROR, 53
FIN, 36
FNAME, 55
GEN, 45-46
GOTO, 35
LIST, 52
LOC, 25
LOCAL, 39-40
OPEN, 41
ORG, 24
PAGE, 54
PCC, 52
PEND, 56
PROC, 56
PSR, 52
PSYS, 52
REF, 44
RES, 26
S:SIN, 49-50

Index 103

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

SET, 39
SPACE, 51
SREF, 45
SYSTEM, 33
TEXT, 50
TEXTC, 51
TIT LE, 51-52
USECT, 28

directives, 32
DISP directive, 53
division by zero, 7
DO directive, 35
DO loop, 35
DO-loop, 36
001 directive, 34
doubly defined symbol, 42
dummy sections, 30

E
ELSE directive, 36
END directive, 34
entries, 9
EQU directive, 39
equals sign, 5
equate symbols line, 80
ERROR directive, 53
error flags, 89
error line, 82
error line summary, 83
error messages, 89
error severity level, 83
explicit null, 13
expression evaluation, 7
expressions, 6
external reference, 44,45
externa I references, 11
external symbols summary, 83

F
fields, 8
FIN directive, 36
fixed-point decimal constant, 4
floating-point long constant, 5
floating-point short constant, 5
FNAME directive, 55
forward references, 11
function,

ABSVAL, 21
AF, 48,59
AFA, 48,59
BA, 20
CF, 47,59
CS, 67
DA, 21

104 Index

HA, 21
LF, 58-59
NAME, 60
NUM, 61
S:IFR, 63
S:KEYS, 64-67
S:NUMC, 67-68
S:PT, 68-69
S:SIN, 49-50
S:UFV, 63
S:UT, 68
SCOR, 61
TCOR, 62
WA,21

function procedure, 57,58

G

GEN directive, 45-46
GO option, 85
GOTO directive, 35

H
HA function, 21
hexadecimal constant, 3

ignored source image line, 82
implicit null, 12
input/output fi les, 85
instruction set mnemonics, 33
intrinsic functions, 20,58
iteration block, 36

L
label field, 9
language elements, 2
LF function, 58-59
linear value lists, 12
LIST directive, 52
listing control, 51
lists, 12
literal line, 82
literals, 5
LO option, 85
LaC directive, 25
LOCAL directive, 39-40
local symbol, 11,40,41
location counters, 2,23, 24, 25, 28

Note: For each entry in this ind«~x, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

logical operators, 7,8
loop, 35,36
LS option, 85
LU option, 85

M
multiple name procedures, 58

N
NAME function, 60
ND option, 85
nonlinear value lists, 14
NS option, 85
null value, 12
NUM function, 61
number of elements, 61
number of elements in a list, 17

o
octal constant, 3
OPEN directive, 41
operational and irrecoverable error messages, 90
operators, 6, 7
option,

AC,84
BA, 84
BO,84
CI, 84
CO, 84
DC, 85
GO, 85
LO, 85
LS, 85
LU, 85
ND,85
PD, 85
SB, 85
SC, 85
SI, 85
SO, 85
SU, 85,86

ORG directive, 24

p

packed decimal constant, 4
PAGE directive, 54
parentheses, 16
parentheses within expressions, 6

PCC directive, 52
PD option, 85
PEND directive, 56
preencoded fi les, 88
previously defined references, 11
PROC directive, 56
procedure levels, 58
procedure reference lists, 69-71
procedure references, 56
procedures, 55
program level, 36
program sections, 26
programming features,
PSR directive, 52
PSYS directive, 52

•
recursive command procedure, 77
recursive function procedure, 76
redefining symbols, 10
REF directive, 44
reference syntax for lists, 13
relative addressing, 20
relocatable address, 5
relocatable control sections, 27
RES directive, 26
returning to a previous section, 28

s
S:IFR function, 63
S: KEYS function, 64-67
S:NUMC function, 67-68
S:PT function, 68-69
S:SIN directive, 49-50
S:UFV function, 63
S:UT function, 68
sample procedures, 72
SB option, 85
SC opti on, 85
SCOR function, 61
self-defining terms, 3
semicolon, 10
SET directive, 39
SI option, 85
Sigma instruction mnemonics, 95
ski pped statements, 35
SO option, 85
SPACE directive, 51
speci a I characters, 2
SREF directive, 45
statement continuation, 10
statements, 8
SU option, 85-86
subscri pt, 12
summary tables, 83

Index 105

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

symbol manipulation, 39
symbol references, 11
symbol table, 11
symbo I va I ue summary, 83
symbols, 2, 10
SYSTEM directive, 33

T
TCOR function, 62
TEXT directive, 50
TEXTC directive, 51
TITLE directive, 51-52
trai ling character positions, 50
trai ling comma, 13

106 Index

u
undefined symbol summary, 83
update control commands, 86
update error summary, 83
USECT directive, 28

v
value lists, 12

w
WA function, 21

XEROX

Reader Comment Form
We would appreciate your comments and suggestions for improving this publication

r--' I Rev, Le .. et"e I Current Date r'ublication No.

~ ...

; low did you use this publication? Is the material presented effectively?

I D Learning 0 Installing 0 Sales o Fully Covered DWell o Well organized o Clear Illustrated o Reference o Maintaining 0 Operating

What is you r overall rating of this publication? What is your occupation?

o Very Good o Fair D Very Poor

[J Good o Poor

Your othel" comments may be entered here. Please be specific and give page, column, and line number references where
applicable. To report errors, please use the Xerox Software Improvement or Difficulty Report (1188) instead of this form.

f--.

f--.

f--.

1---.

I

-

1---.

1---. ----

Your name & Return Address

b.. .. •. ____ '\,·c

Thank You For Your Interest. (fold & fasten as shown on back, no postage needed if mailed in U.S.A.)

PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms

Attn: Programming Publications

Fold

BUSINESS REPLY MAIL
No postage stamp necessary if mailed in the United States

Postage wi II be paid by

Honeywell Information Systems
5250 W. Century Boulevard
Los Angeles, CA 90045

First Class
Permit No. 59153
Los Angeles, CA

Honeywell
Hone~ell Information Systems

In the U.S.A.: 200 Smittl Street, MS 486, Waltham, Massachusetts 02154
In Canada: 2025 Sheppard Avenue East, Willowdale, Ontario M2J 1 W5

In Mexico: Avenida Nuevo Leon 250, Mexico 11, O.F.

24492, 5C979, Printed in U.S.A. XP78, Rev. 0

	00001
	00002
	0001
	0002
	0003
	0004
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085-0
	085-1
	086
	087-0
	087-1
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	replyA
	replyB
	xBack

