
,Xerox ANS COBOL
Sigma 5-9 Computers

On-Line Debugger
Reference Manual

903060A

Xerox' ANS COBOL
Sigma 5 .. 9 Computers

On-Line Debugger

Reference Manual

FIRST EDITION

90 3060A

September 1973

XEROX

File No.: 1 X53
XQ22, Rev. 0

Printed in U.S.A.

NOTICE

This publication applies to the EOO version of the Xerox ANS COBOL compiler for BPM and CP-V.

RELATED PUBLICATIONS

Title

Xerox Sigma 5 Computer/Reference Manual

Xerox Sigma 6 Computer/Reference Manual

Xerox Sigma 7 Computer/Reference Manual

Xerox Sigma 8 Computer/Reference Manual

Xerox Sigma 9 Computer/Reference Manual

Xerox ANS COBOL (for BPM/CP-V)/LN Reference Manual

Xerox ANS COBOL (for BPM/CP-V)/OPS Reference Manual

Xerox Control Program-Five (CP-V)/TS Reference Manual

Xerox Control Program-Five (CP-V)/OPS Reference Manual

Xerox Control Program-Five (CP-V)/TS User1s Guide

Xerox Control Program-Five (CP-V)/SM Reference Manual

Xerox Sort and Merge (for BPM/CP-V)/Reference Manual

Xerox Data Management System (DMS) (for BPM/CP-V)/Reference Manual

Xerox Extended Data Management System (EDMS)/Reference Manual

Publication No.

900959

90 17 13

900950

90 1749

90 17 33

90 1500

90 1501

900907

90 1675

90 16 92

90 16 74

90 11 99

90 17 38

90 30 12

Manual Content Codes: BP - batch processing, LN - language, OPS - operations, RP - remote processing,
RT - real-time, SM - system management, TS - time-sharing, UT - utilities.

The specifications of the software system described in this publication are subject to change without notice. The availability or performance of some features
may depend on a specific configuration of equipment such as additional tape units or larger memory. Customers should consult their Xerox sales representative

for details.

ii

CONTENTS

COMMAND SYNTAX NOTATION iv Data Display and Manipulation Commands 14
PRINT 14
PRINTX 14

l. INTRODUCTION SET 15
EQUATE 15

Summary of Debugging Capabilities DROP 15
DUMP 15

Execution Tracing Commands 16
2. DEBUGGER INTERFACING 3 STRACE 16

SLIST 16
Debugger Calls 3 PTRACE 16
Debug File 3 PLIST 16
Debugger I/O 3 Source Display and Manipulation Commands __ 17

SOURCE 17
REPLACE 17

3. DEBUGGER COMMAND LANGUAGE 4 INSERT 17
DELETE 17

General 4 Miscellaneous Commands 18
Typographica I Conventions Used in this SETFILES 18

Manual 4 LISTFILE 18
General Definitions 4 HELP 18

Identi fi ers _ 5 QUALIFY 18
Literals 5 END 18
Locations 5 Error/Abort Handling _ 18
Breakpoints 6

6. OPERATIONS 20
4. TYPICAL USE OF DEBUGGING COMMANDS 7

Compiling 20
SETFILES 7 Loading 20
GO 7 Execution 20
NEXT and NEXTP 7
PRINT and PRINTX ___ 8
SET 8
EQUA TE and DROP 8
AT and WHEN 9
IF 9 APPENDIXES
OFF, OFFP, OFFS, and OFFWN 10
SOURCE 10 A. DEBUGGER MESSAGES 23

Command Error Messages 23
5. DESCRIPTION OF COMMANDS 11 Informa tiona I Messages 23

Break Messages 24
Breakpoint Control Command:s 11 LISTFILE Message 24

AT 11 Error/Abort Messages 24
WHEN 11 PLIS T and S LIST Messages 25
STOP 12 Data Messages/Displays 25
IF 12
OFF 12 B. A SAMPLE DEBUGGING SESSION 27
OFFWN 12
OFFS 13
OFFP 13
LISTBRKS __ 13

··e - The Break Key 13
RUN _ 13 TABLES

Stepping and Branching Comrnands 13
NEXT 14 A-l. Command Error Messages 23
NEXTP 14
GO 14 A-2. Identifier Classes 25

iii

iv

COMMAND SYNTAX NOTATION

Notation conventions used in command specifications and examples throughout this manual are listed below.

Notation

lowercase letters

CAPITAL LETTERS

[]

{ }

Numbers and
special characters

Subscripts

Descri pti on

Lowercase letters identify an element that must be replaced with a
user-selected value.

CRndd could be entered as CRA03.

Capital letters must be entered as shown for input, and wi" be printed as shown
in output.

DPndd means "enter DP followed by the values for ndd ll
•

An element inside brackets is optional. Several elements placed one under the
other inside a pair of brackets means that the user may select anyone or none of
those elements.

[KEYM] means the term II KEYM II may be entered.

Elements placed one under the other inside a pair of braces identify a re­
quired choice.

{~} means that either the letter A or the value of id must be
entered.

The horizontal ellipsis indicates that a previous bracketed element may be re­
peated, or that elements have been omitted.

nameG name]. . . means that one or more name values may be entered,
with a comma inserted between each name value.

The vertical ellipsis indicates that commands or instructions have been
omitted.

MASK2 DATA,2 X'1Ef!

BYTE DATA,3 BA(L(59))

means that there are one or more state­
ments omitted between the two DATA
directives.

Numbers that appear on the line (i. e., not subscripts), special symbols, and
punctuation marks other than dotted lines, brackets, braces, and underlines
appear as shown in output messages and must be entered as shown when input.

(value) means that the proper value must be entered enclosed in
parentheses; e. g., (234).

Sybscripts indicate a first, second, etc., representation of a parameter that
has a different value for each occurrence.

sysid1, sysid2, sysid3 means that three successive values for sysid
should be entered, separated by commas.

1. INTRODUCTION

The COBOL On-line Debugger is designed to be used with Xerox ANS COBOL, and operates under CP-V.
The debugger is a special COBOL run-time library routine which is called by programs compiled in the TEST
mode. This routine allows the programmer to monitor and control both the execution of his program and the
contents of data-items during on-line execution. The debugger also allows the COBOL source program to be ex­
amined and modified.

The debugger can only be used during on-line execution; however, programs that have been compiled for use with
the debugger may be run in batch mode. This is not recommended, though, because of the increased program size
when the TEST mode is spEtcified.

Summary of Debugging Capabilities

1. Setting breakpoil1ts.

a. Statement breakpoints.

b. Procedure-name breakpoints.

c. Data changE~ breakpoints.

d. Conditional breakpoints - statement, procedure, or data changes.

2. Displaying data.

3. Replacing data.

4. Branching.

5. Tracing statements as they are executed.

6. Tracing procedure-names as they are executed.

7. Displaying statement execution history.

8. Displaying proc€ldure-name execution histor),.

9. Interrupti ng exec uti on.

10. Resuming execution.

11. Executing single statement.

12. Executing single paragraph.

13. Dumping areas of program on line printer.

14. Displaying the sl'atus of user's fi les {FDs}.

15. Executing a file of !ASSIGN commands.

16. Removi ng break poi nts.

17. Quitting the debugging run.

18. Displaying source lines.

19. Inserting source lines.

Introduction

20. Replacing source lines.

21. Deleting source lines.

22. Displaying active breakpoints.

23. Defining abbreviations for data-names.

24. Typing a summary of debug commands.

25. Recovering from exception conditions - traps, I/O errors.

2 Introduction

2. DEBUGGER INTERFACING

The debugger is the interfacE~ between the COBOL object program and the on-line user. The interface consists of
(1) ca lis to the debugger thaI' are added to the program when it is compi led in TEST mode; (2) a debug fi Ie that is
produced during the TEST mode compilation; and (3) debug commands entered by the user.

Debugger Calls

When a program is compi led 'in TEST mode, calls to the debugger are generated prior to each procedure-statement
and procedure-name. These <:alls are used to control the execution of statement and procedure-name tracing, break­
points, and brcmching commands.

Debug File

The debug file is generated by the compiler, and contains a record for each data-name defined in the source pro­
gram. These records contain ,the information which would be printed on the Data f'.Aap (base, displacement, size,
record-qualifier), plus information on number of subscripts and the subscripting factors. The compiler allows for up
to 255 occurrences of a data-name.

Debugger I/O

This section is included as an aid to understanding of how the debugger functions, and is of limited usefulness to
the casua I user.

The debugger does its I/O through the "monitor" DCBs listed below. These DCBs appear on a load map, and con­
tribute to the size of the load module being debugged.

DCB

M:BI

M:CI

M:DO

M:EI

M:SI

M:UC

For rt9ading REF/DEF stack of load module.

For rt~ading debug file.

For output from DUMP command.

For reading lASSIGN fi Ie used with SETFILES.

For accessing user's source program.

For c1:>mmunicating with the programmer; command input, data display, diagnostics.

Debugger Interfacing 3

3. DEBUGGER, COMMAND LANGUAGE

This chapter covers general rules for forming debugger commands, special symbols for describing debugger commands,
and definitions of the elements referred to in the commands. The actual syntax of the individual commands is given
in Chapter 5.

Genera~

Debugging commands are simple and readable, avoid artifical codes, and are intended to be COBOL-like to mini­
mize confusion on the part' of the programmer. The rules for names and operators are basically the same as for
COBOL. Names must be composed of the alphabetic characters (excluding blank), the digits 0 through 9, and the
hyphen (-), and must be preceded and followed by spaces. The allowable operators are EQ (or 1=1), LT (or 1<1),
and GT (or 4>1) and must also be surrounded by spaces.

The semicolon is used either as a command separator for attached commands or as a continuation indicator when it
occurs as the last character before the end of a I ine (see the AT and WHEN commands).

Typographical Conventions Used in This Manual

Chapter 5 describes the various debugging commands and their specifications. The following conventions are used
in explaining the format of the commands, and in examples.

1. Lowercase items indicate programmer-supplied data, to be replaced with actual names, literals, etc.

2. Capitalized items must be entered exactly as they appear.

3. All other symbols (except for brackets, braces, and elipses) are entered exactly as they appear.

4. Items enclosed in brackets [] are optional.

5. Items stacked inside braces { l indicate a choice must be made by the user.

6. Ellipses indicate repetition. For example,

[icommand] ..•

means that a semicolon followed by a command is optional, and that more than one semicolon-command
pair may occur.

7. The special symbol @ is used for a carriage return, new line, or line feed. All commands must be termi­
nated by @, or; 8.

8. Words and specifications are delimited by spaces. Words may also be terminated by commas, semicolons,
colons, periods, and @).

General Definitions

The following elements are referenced in debugger commands, and are explained here to avoid repetition of
the explanations.

1. Identifier - an item that exists in the Data Division.

2. Litera I - a self-defining symbol.

4 Debugger Command Language

3. Location - the specification of a statement, or procedure-name, within the Procedure Division.

4. Breakpoint - not a command element, but a basic concept for using the debugger.

Detai led explanations of the.'Se elements are given below.

Identifiers

An identifier is a COBOL data-name together with any necessary qua I ifiers or subscripts. The debugger recognizes
all data-names defined in the program except those that appear in the REPORT or LINKAGE sections. The debugger
expects identifiers to conform to the basic COBOL rules 'for uniqueness of data reference (refer to XEROX ANS
COBOL Reference Manual 90 1500). In addition, an identifier may be qualified by the program-id of the program
in which it occurs. In this C1::lse, the program-id must precede the subscripts (if any) associated with the identifier,
and must be prefixed with a colon. No space is required before the colon.

The debugger does no range-I::heck on subscripts, nor does it check for the occurrence of the maximum number of
subscripts. If 'fewer subscripts are given than required, all unspecified subscripts will be assumed to be equal to 1.
For instance, if three subscripts were required for a data name and none were given, a subscript of (1, 1, 1) would
be assumed.

Literals

The debugger recognizes three types of literals: numeric, alphanumeric, and hexadecimal.

A numeric literal consists of (I leading sign (+, -, or blank), and up to thirty numeric digits. No imbedded periods
or commas are allowed. Numeric literals may be used as operands only in SET or IF commands where the other oper­
and is display numeric, packE~d numeric, or integer binary. Numeric literals are always used as right-justified
numbers with leading zeroes or truncation, as dictated by the picture of the other operand.

Alphanumeric literals are formed by enclosing any string of characters within single quotes. An alphanumeric lit­
eral may be entered on multiple lines by ending all lines except the final one with the sequence ; 8. In this
case neither the semicolon nor the 8 will be included in the literal. If the programmer wants to include a 8 in
the literal, he can do so by terminating a line with a 8, not preceded by a semicolon, and continuing on the next
line. An alphanumeric literal must be terminated by a single quote mark. The maximum allowable size for alpha­
numeric literals is 250 characters. Alphanumeric literals are always treated as left-justified. If an alphanumeric
string contains fewer characters than an identifier to which it is being moved or compared, blanks are added to the
right of the literal to insure matching sizes.

Hexadecimal literals are formed by entering the character X, followed by a hexadecimal string. A hexadecimal
string consists of a combination of the digits 0 through 9, and the letters A through F, enclosed in single quotes.
Each digit or letter represents half of an 8-bit byte. The leftmost character of the hexadecimal string corresponds
to the leftmost half-byte of the identifier to which the literal is related. If the literal is shorter than the identifier,
the I iteral wi II be extended with zeros.

Locations

A location is a symbol that refers to a particular point in the Procedure Division of a program. A location may be
either a procedure-name or a statement-identifier.

Procedure-names are the para~~raph or section names used 'in the program. Paragraph names may be qualified by the
section in which they appear, if necessary. All-numeric procedure-names must be preceded by the 1#1 character.
Note: 101 is an all-numeric procedure-name, but 100-01 is not - the hyphen makes the difference.

General Definitions 5

Statement-identifiers are generated for each statement in the Procedure Division. Procedure-names are considered
to be statements. Statement-identifiers have the format:

1111 [.sss][{vv))

where

,11J.1 is the sequential line-number assigned by the COBOL compiler

sss is the sub-line-number which is assigned to COPYed lines

vv is the statement number within the line.

Note that the first statement on a line is number zero, not number one.

Assuming that line 574 of the program is

PARA-37. IF A = B MOVE P TO Q.

then 574 r,efers to the paragraph name, 574(1) to the IF statement, and 574(2) to the MOVE statement.

Breakpoints

Breakpoints are those places in the program at which the programmer wishes to interrupt (or break) the normal exe­
cution flow of the program. Breakpoints may be used to display or alter data, perform branching to change the flow
of the program, or to halt program execution so that the programmer can enter debugger commands.

There are three kinds of breakpoints - procedure breakpoints, in effect only when program execution reaches a par­
ticular location; data breakpoints, in effect any time the contents of an identifier are changed; and immediate
breakpoints, in effect whenever the break key is depressed.

6 Genera I Defi n i ti ons

4. TYPICAL USE OF DEBUGGING COMMANDS

This chapter gives some simple examples of the usage of several of the more common debugger commands. Detailed
descriptions of all the commands are given in Chapter 5, olnd Appendix B contains a complete sample debugging
session. These command examples are intended to highlight some of the features of the debugger.

Commands may be entered whenever the debugger prompts with the> character. This wi II occur at the beginning
of the session, whenever a STOP command is encountered at a breakpoint, and whenever an abort condition is de­
tected (I/O error, trap, etc.),'

In general, commands are folklwed by a carriage return, line feed, or new line character. The symbol for these
characters he. In these examples each line is implicitly followed by@leven though it is not shown.

The commands illustrated in this chapter are

SETFILES PRIt-.lT DROP OFF SOURCE

GO PRIt-.JTX AT OFFP

NEXT SET WHEN OFFS

NEXTP EQUATE IF OFFWN

SETFILES

This command is used to instrw::t the debugger to access a file of lASSIGN commands, and use the information in
it to control the assignment of the FDs in the program. The command,

SET FILES PROGRAM-41O-A-ASSIG NS

tells the debugger to assign thl9 FDs as indicated in the filc~ PROGRAM-41O-ASSIGNS.

GO

This command instructs the debugger to begin (or resume) execution of the program. If a location is specified, ex­
ecution begins ot that location, otherwise execution begins at the current statement.

The command

GO READ-A-RECORD

instructs the debugger to begin execution of the program at procedure-name READ-A-RECORD.

The command

GO 1024(2)

instructs the debugger to begin execution of the program with the third statement on line number 1024.

NEXT and NEXTP

These commands instruct the debugger to begin executing the program, but only to execute a single statement or
procedure-name, respectively. As with l'he GO command, execution begins either at the referenced location, or
the current sta tement.

Typica I Use of Debugging Commands 7

The command

NEXT READ-A-CARD

instructs the debugger to execute the statement at procedure-name READ-A-CARD. This will only result in a branch
within the program, since the first statement of a procedure-name is just the procedure-name itself.

The command

NEXTP 792(1)

instructs the debugger to begin execution at statement two of line number 792, and continue executing until a
procedure-nclme is encountered.

In all cases, the debugger gives a standard break message and prompts for more commands when the next statement
or procedure-name is reached.

PRINT and PRINTX

These commands instruct the debugger to display the contents of an identifier. The PRINT command causes the data
in the identifier to be printed as it is described in the COBOL program. The PRINTX command causes the data to
be printed in hexadecimal notation.

The command

PRINT EMPLOYEE-NUMBER

would cause the debugger to print the current value of the identifier EMPLOYEE-NUMBER, which might be 010308.

The command

PRINTX EMPLOYEE-NUMBER

would cause the same data to be printed in hexadecimal, which would be FOFl FOF3FOF8.

SET

This command tells the debugger to change the contents of an identifier to that specified in the command.

The command

SET SUBSCRIPT-VALUE = 3

will move the number 3 into SUBSCRIPT-VALUE.

EQUATE and DROP

These commands cause the debugger to establish and discard, respectively, an abbreviation for an identifier. This
can save the programmer quite a few key-strokes and, consequently reduces the chances of error.

8 Typical Use of Debugging Commands

The commands

EQUATE SSNA SOCIAL··SECURITY-NUMBER IN RECORD-A

EQUATE SSNB SOCIAL-SECURITY-NUMBER IN RECORD-B

cause the debugger to put SSt'-lA and SSNB in the abbreviotion table, and the commands

DROP SSNA

DROP SSNB

cause SSNA and SSNB to be removed from the table.

AT and WHEN

These commands establish breakpoints. The AT command establishes a breakpoint at a particular location, and the
WHEN command establ ishes a data-change breakpoint. Either command may be followed by other debugger com­
mands which will be executed each time the breakpoint is reached. This allows the programmer to modify the exe­
cution of his program while he, is debugging. If no commands follow the AT or WHEN command, the debugger auto­
matically halts program execu'tion and prompts for a command when the breakpoint is reached.

The commands

AT LOGIC-ERROR; PRINT FIELD-1; PRINT FIELD-2; STOP

AT 3784

AT SEARCH-TABLE-1; SET TABLE-1-SUBSCRIPT = 1

AT 1401; GO 1401(2)

WHEN TABLE-ENTRY (14)

have the following effects on execution of the program:

IF

1. When ,the procedure··name LOGIC-ERROR is reached, the contents of FIELD-1 and FIELD-2 wi II be
printed out, and the debugger will prompt for a command. When line 3784 is reached, execution will
ha It, and the debuggl3r wi II prompt for a command.

2. When procedure-namla SEARCH-TABLE-1 is reached, TABLE-SUBSCRIPT will be set to 1, and execution
wi II continue.

3. When statement 1401 is reached, statements 1401 and 1401 (1) will be skipped, with execution continuing
with statement 1401 (2).

4. When the contents of TABLE-ENTRY (14) are changed, execution wi II halt and the debugger wi" prompt for
a command.

This command provides the programmer with the capability of having the debugger make simple decisions for him.
This is especially useful when the IF command follows an AT command. This allows him to direct the debugger to
execute a series of commands only if a particular condition exists when a breakpoint is reached.

Typical Use of Debugging Commands 9

The command

AT 2741; IF NUMBER-OF-SAMPLES = 0; SET CALCULATED-AVERAGE = 0; GO CALCULATION-COMPLETED

tells the debugger to set the result of a series of calculations to zero, and skip the calculations whenever the oper­
and NUMBER-OF-SAMPLES is zero before statement 2741 is executed.

OFF, OFFP, OFFS, and OFFWN

These commands are used to remove breakpoints. OFF and OFFWN are used to remove a single breakpoint set by
the AT or WHEN commands, respectively. OFFP removes all breakpoints whose location is a procedure-name, and
OFFS removes all breakpoints whose location is a statement-ide

The commands

OFFWN INPUT -MAJ OR-CONTROL-FIELD

OFF COMPUTE-AVERAGES

OFF 7080(2)

cause the data-break on INPUT -MAJOR-CONTROL-FIELD, the procedure-name breakpointat COMPUTE-AVERAGES,
and the statement-id breakpoint at 7080(2) to be removed.

SOURCE

This command prints out a I ine or group of I ines from the source program. This enables the programmer to quickly
determine what fields are involved in a statement that causes a decimal trap, or some other error.

The command

SOURCE 7074,3

causes the debugger to print out lines 7074, 7075, and 7076.

10 Typic~1 Use of Debugging Commands

5. DESCRIPTION OF COMMANDS

This chapter describes the syntax and scope of each of the debugger commands. The conventions and definitions
given in Chapter 3 apply in <:111 command descriptions in this chapter.

For ease of reference the commands are divided into groups, based on the type of function performed by the com­
mand. These groups are Breakpoint Control, Stepping and Branchi ng, Data Display and Change, Source Manipu­
lation and Display, Execution Trace, and Miscellaneous.

Breakpoint Control Commands

This group of commands contclins the commands that establish and remove breakpoints, plus those that are of little
or no use except when attached to breakpoints. The commands in this group are

AT STOP OFF OFFP LISTBRKS RUN

WHEN IF OFFWN OFFS

AT

AT, the basic breakpoint command, establ ishes a breakpoint at a specific location in the program. The breakpoi nt
is effective just before execul'ion of the COBOL instructions at the referenced location. In the case where the ref­
erenced location is a procedure-name, the breakpoint is effective before any statements in the referenced procedure
are executed. Debug commands may be specified as part of the AT command. These commands would be automat­
ically executed each time the breakpoint is effective. If no additional debugger commands are specified for the
breakpoint, the debugger will halt execution of the program when the breakpoint is reached.

The general form of an AT command is

AT location [;commandJ ...

The optional commands may be any valid debugger commands. No syntax validation is done on these commands
until the breakpoint is reached. If the optional command list exceeds a single input line, a semicolon followed by
a @) entered at the end of a line continues it to the next. However, individual commands must be contained on a
single line.

WHEN

The WHEN command establishes a breakpoint that is effective whenever the contents of an identifier are changed.
The debugger wi II detect any change in the contents of the identifier, such as a move to a group item which con­
tains the identifier, or a move to an identifier which redefines the identifier. A move to the identifier which does
not change the value of the identifier - such as moving spaces to a field that is already blank - does not cause a
breakpoint.

A series of commands may be appended to the WHEN command. These commands may be any valid debugger com­
mands, and they wi II be executed whenever the breakpoint is effective. Command validation is not performed until
the breakpoint is effective.

The genera I form of the WHEN command is

WHEN identifier[;commandJ ..•

If the optional command list exceeds a single input line, entering a semicolon followed by a e at the end of the
line continues it to the next. The next line of commands will then be treated as a continuation of the command list

Description of Commands 11

to be executed at the time the data breakpoint associated with the WHEN command is effective. In the absence
of a command list, the debugger will halt execution of the program when the breakpoint is effective.

STOP

The STOP command is used to halt execution of the program at a breakpoint established by an AT or WHEN com­
mand. The STOP command must be the final command in the command list for the breakpoint. If no command list
is given for an AT or WHEN command, the debugger automatically inserts a STOP command.

The general form of a STOP command is

STOP

IF

The IF command is used to provide conditional execution of debugger commands at a breakpoint established by an
AT or WHEN command. All commands which follow the IF command are ignored and execution continues unless
the conditional expression in the IF command is true.

The genera I form of an IF command is

IF expression; command[;command] .•.

Valid expressions are of the form

identifier relation literal

The valid relations are equal to (EQ or =), less than (LT or <), greater than (GT or », not equal (NE), not less
(NL), and not greater (NG).

An IF command may follow another IF command; however, it must be understood that the second IF command will
only be evaluated when the expression in the first IF command is true. The debugger has no capability for handling
IF statement with an ELSE. ELSE NEXT SENTENCE is always implied.

OFF

The OFF command removes a breakpoint that has previously been established by an AT command. It also removes
any command list associated with the breakpoint.

The general form of the OFF command is

OFF location

OFFWN

The OFFWN command removes a breakpoint that was established by a WHEN command. It also removes any com­
mand list associated with the WHEN command.

The general form of the OFFWN command is

OFFWN identifier

12 Breakpoint Control Commands

OFFS

The OFFS command removes all breakpoints that (1) were establ ished with an AT command, and (2) have a
statement-id as thei r location.

The general form of the OFFS command is

OFFS

OFFP

The OFFP command removes all breakpoints that (1) were establ ished with an AT command, and (2) have a procedure­
name as their location.

The general form of the OFFP command is

OFFP

LlSTBRKS

The LISTBRKS command causes the debugger to print out all the breakpoints that are currently established. All
breakpoints established by AT (:ommands with procedure-names as their locations will be listed first, then those
established by AT commands with statement-ids as their location will be listed, and finally all breakpoints estab­
lished by WHEN commands will be listed. All breakpoints established by WHEN commands wi II be printed out pre­
ceded by thE! identification DATA BREAK. No command lists will be printed.

The general form of the LISTBRKS command is

LISTBRI<.S

8- The Break Key

The 8 command causes the debugger to establ ish a temporary breakpoint before the execution of the next COBOL
statement. No command list cem be established, however t'he debugger will halt program execution and prompt for
a command.

Pressing the break key gives the break command.

RUN

The RUN command removes all breakpoints established by AT or WHEN commands, and continues execution of the
program. If a location is specifred in the RUN command, the debugger wi II resume execution of the program at that
location. If no location is given, execution resumes with the next statement.

The genera I form of the RUN command is

RUN[location]

Stepping and Branching Commands

These commands provide a great deal of power and flexibility to the programmer by allowing him to step through the
program, checking for correct operation as he proceeds and giving him the option of changing the execution flow
of the program without recompi ling.

The steppi ng and branching commands are

NEXT NEXTP GO

Stepping and Branching Commands 13

NEXT

The NEXT command causes the debugger to execute a single statement of the program. If a location is given in the
NEXT command, the statement at the referenced location is executed, otherwise the next statement in the program
is executed. Note that the debugger considers procedure-names to be statements, so that no actual program instruc­
tions will be executed if execution is currently stopped at a procedure-name, or if the location given in the NEXT
command is a procedure-name.

The general form of the NEXT command is

NEXT [location]

NEXTP

The NEXTP command causes the debugger to resume execution of the program until the next procedure-name is en­
countered. If a location is given in the NEXTP command, execution resumes at the referenced location, otherwise
execution proceeds with the next statement of the program. Note that if the location given in the NEXTP command
is a procedure-name, or the statement-id of a procedure-name, no actual program instructions will be executed.

The genera I form of the NEXTP command is

NEXTP[location]

GO

The GO command causes the debugger to begin execution of the program. If no location is given, execution begins
with the current statement of the program. If a location is given, control is transferred to that location before ex­
ecution begins.

Data Display and ,Manipulation Commands

These commcmds are useful for checking for correct results from executing a portion of the program, and for correct­
ing results that are not as expected. Since COBOL identifiers tend to be rather lengthy and difficult to key in, a
facility for defining abbreviations is included in this group of commands. For those occasions when nothing more
can be done on line, a high-volume data dump to the line printer (or a file) is also provided.

The commands in the group are

PRINT

PRINTX

PRINT

SET

EQUATE

DROP

DUMP

The PRINT command causes the contents of an identifier to be displayed on the terminal. The display is in the nat­
ural mode of the identifier. The types of identifiers and their natural modes are given in Appendix A.

The genera I form of the PRINT command is

PRINT identifier

PRINTX

The PRINTX command displays the contents of an identifier in hexadecimal mode. This is useful for detecting non­
printing invalid characters in a field.

The general form of the PRINTX command is

PRINTX identifier

14 Data Display and Manipulation Commands

SET

The SET command places a specified value in an identifier. It can be used for initializing and correcting the con­
tents of identifiers. The debugger does not provide decimal point alignment or accept decimal points in numeric
literals. It will not accept a numeric literal as a value for a nonnumeric identifier. The debugger will detect and
diagnose attempts to SET an identifier to a literal that exceeds the size of the identifier.

The general form of the SET command is

SET identifier = literal

EQUATE

The EQUATE command enters (:In abbreviation for an identifier into the abbreviation table. The debugger checks
that the proposed abbreviation has not a Iready been used, either as an abbreviation or a data-name. A diagnostic
is issued if a duplicate is detected, and no abbreviation is entered.

The debugger determines the actual memory address of the identifier at the time the EQUATE command is issued.
This means that if the identifier contains a subscript, the value of the subscript when the EQUATE is executed will
determine where the debugger thinks the first occurrence of the identifier is in memory. In general, it is best to
ignore the subscripts when defining the abbreviation, and to remember them when using the abbreviation.

Abbreviations are limited to Sl;lven characters, and may be~ formed from any combination of letters, digits, and the
hyphen, except that an abbreviation cannot begin with a hyphen.

The general form of an EQUATE command is

EQUATE abbreviation [TO] identifier

DROP

The DROP command removes <m abbreviation from the table.

The general form of the DROP command is

DROP abbreviation

DUMP

The DUMP command provides a hexadecimal dump through the M:DO DCB. This dump is in the standard format
provided by the! PMD control card during batch runs. The specifications for the dump, including commentary, are
written out as a separate line preceding the actual dump.

The DUMP command must be the last command if it is part of a command I ist associated with a breakpoint.

From-identifier and to-identifier define the lower and upper limits of the dump. If no to-identifier is given, the
from-identifier wi 11 be dumpE~d. If the to-identifier has em actua I memory address which is lower than that of the
from-identifier, only the contents of the from-identifier will be dumped.

In all cases, the dump will consist of whole words of core memory, and the programmer is cautioned that both the
first and last words of the dump may contain data not contained in the from- or to-identifiers.

The general form of the DUMP command is

DUMP from-identifier TO to-identifier commentary (~

Data Display and Manipulation Commands 15

Execution Tracing Commands

This group of commands provides the user with the ability to trace the execution flow of the program at either the
statement level or the procedure-name level, or both. Tracing can be done as the program executes, or a trace
of the previous execution flow can be requested while program execution is halted.

The commands in this group are

STRACE SUST PTRACE PUST

STRACE

The STRACE command controls statement execution trace mode. When statement execution trace mode is on, the
statement-id of each statement is printed out just before the statement is executed. Statement trace mode is nor­
mallyoff. If on, using the word OFF in the STRACE command turns the statement trace mode off.

The general form of the STRACE command is

STRACI: [OFF]

SLiST

The SUST command is used to display the history of statement execution. The display will consist of the statement­
ids of the lost n statements executed, in reverse order. That is, the current statement-id wi II be displayed first,
then the OnE! just previously executed, etc. If no value n is specified, the entire trace table will be displayed in
forward ordm. The size of this table is given in Appendix A.

The genera I form of the SLIS T command is

SLIST [,n]

PTRACE

The PTRACE command controls the procedure-name execution trace mode. When the procedure-trace mode is on,
each procedure-name is printed out prior to execution of the procedure. Procedure-trace mode is norma lIy off. If
on, using the word OFF in the PTRACE command turns the procedure-trace mode off.

The general form of the PTRACE command is

PTRACE [OFF]

PLiST

The PLIST command lists the contents of the procedure-name execution history table. If the parameter n is given,
the last n procedure-names in the table are listed in reverse order, i. e., most recently executed first. If no n is
given, the entire table is listed, with the oldest entry first. The size of the table is given in Appendix A.

The general form of the PUST command is

PLlST[, n]

16 Execution Tracing Commands

Source Display and Miscellaneous Commands

The commands in this group enable the programmer to examine and modify his COBOL source program whi Ie debug­
ging the program.

The commands in this group am

SOURCE REPLACE INSERT DELETE

SOURCE

The SOURCE command prints o>ut one or more source I ines on the programmer's terminal. This enables the programmer
to look at the statement being executed when, for instance, a decimal data error occurs. From the source state­
ment he can determine which data items might be causing the error. Then he can use the PRINT command to deter­
mine which data item is actually the problem, and he can correct it with the SET command.

The general form of the SOURCE command is

SOURCE line-number[, nJ

where line-number is the line-number assigned by the compiler, and n is the number of lines to be printed. Note
that source lines that are copied into the program do not exist as part of the source file, and cannot be printed.

REPLACE

The REPLACE command allows the programmer to replace an existing source statement. The replacement has no
effect on the current debuggin~~ run. This enables the programmer to make a correction to a line at the time an
error is discovered.

The genera I form of the REPLACE command is

REPLACE line-number

INSERT

The INSERT command allows the programmer to add new lines to the source file. The added lines have no effect on
the current debugging run. If em attempt is made to INSERT a line that already exists, the debugger reportsan error.
A series of lines may be inserted by specifying an increment in the INSERT command. The debugger will then prompt
for more lines until either a nulll line (@ only) is entered, or the addition of the increment to the line number of the
last line entered would result in the next line not following the last line entered.

The genera I form of the INSERT command is

INS ERT line-number [, increment]

DELETE

The DELETE command deletes a I ine from the source fi Ie.

The genera I form of the DELETE command is

DELETE line-number

Source Display and Manipulation Commands 17

Miscellaneous Commands

These commands do not fall conveniently into any of the other groups. The commands in this group are

SETFILES LISTFILE HELP QUALIFY END

SETFILES

The SETFILES command allows the programmer a quick and easy method for ensuring that all his DCBs are correctly
assigned. It not only saves him the time and effort involved in keying in a series of ISET commands before he be­
gins debugging a program, it also allows him to minimize any differences that exist between IASSIGN and ISET
commands.

The debugger analyzes the fi Ie specified by the SETFILES command, ignoring all commands except for IASSIGNs.
The IASSIGN commands are analyzed, and the DCBs are assigned as specified.

The general form of the SETFILES command is

SETFILES filename

LlSTFILE

The LISTFILE command displays the status of an FD in the program.

The general form of the LISTFILE command is

LISTFILE fd-name

HELP

The HELP command lists the debugger commands, with a short description of each.

The general form of the HELP command is

HELP

QUALIFY

The QUALIFY command is used to change the default value of program-id, the name of the source-file to be used
in source manipulation commands, or the debug file to be used. This is only useful when the load module being ex­
ecuted is composed of two or more COBOL programs that were compiled with the TEST option.

The general form of the QUALIFY command is

QUALIFY [program-id] [, [source-fi Ie] [, debug-fi Ie]]

END

The END command terminates the debugging session, and returns control to the monitor.

Error/ Abort Messages

Errors are' detected by any or all of the following:

Debugger

COBOL run-time library routines

Monitor

18 Miscellaneous Commands/Error/Abort Messages

When errors are detected by the monitor, it notifies either the debugger or the COBOL run-time library. When
errors are detected by the run-time routines, they notify the debugger. The debugger always notifies the program­
mer and gives him a chance to continue debugging whenever it detects or is informed of an error by the monitor or
the run-time routines.

Errors detected by the COBOL run-time routines are generally reported to the user before they are reported to the
debugger. The debugger does, not gain control until after the run-time routine has attempted to abort the job.

Errors detected by the debugger are confined to errors in command specifications. These errors are diagnosed as
shown in Appendix B, and the debugger prompts for another command.

Errors detected by the monitor result in the monitor's passing control to the debugger. The debugger wi II then issue
an appropriate diagnostic message, and prompt the user for another command.

Monitor-detected errors include decimal data exceptions, memory protect violations, and user aborts or end of job.

Run-time-detected errors include I/O errors and improper transfers of control.

When attempting to resume execution of the program, the user should remember that the debugger will resume ex­
ecution with the statement thclt caused the error. Unless I·he cause of the error, say bad decimal data, has been
corrected, this will result in clnother occurrence of the same error.

Error/Abort Messages 19

6. OPERATIONS

The COBOL On-line Debugger is designed for use with the CP-V monitor. This chapter explains the steps involved
in compiling, loading, and debugging a COBOL program on-line.

The emphasis in this chapter is on what commands are used to accomplish various results, not on explaining all op­
tions of every command. More detailed explanations for all commands shown (except for ICOBOL and debugger
commands) can be found in the Xerox CP-V Time-sharing Reference Manual, 900907.

Compiling

When compiling a COBOL program for use with the debugger, the programmer must be sure to do the following

1. Specify the TEST option on his COBOL control command. This directs the compiler to build a keyed source
output fi Ie (SO) and a debug fi Ie for the program.

2. Use IASSIGN or ISET commands to inform the compiler on what files to write the SO and debug files.

The compilation can be done either on-line, or in the batch mode. Any valid COBOL control command options
may be used in addition to the TEST option. Either the GO or BO option must be used, with the appropriate DeB
assignment, so that the compiler will create an object-module (ROM) for the program.

Loading

The compiled program, the COBOL run time library routines it requires, and the debugger must be combined to form
an executable load module (LMN) before any debugging can proceed. Either the batch loader (I LOAD) or the on­
line loader (LINK) can be used for this purpose. The batch loader must be used if the resulting load module is to
be overlaid.

Whichever loader is used, to include the debugger, the loader is instructed to search the special library account
CDBGLIB before searching the normal library account COBUB in order to satisfy external references in the ROM.
The option used to do this when using the batch loader is written as

(UNSAT, (CDBGUB), (COBUB))

When using the on-line loader, the libraries are referenced as

BUB:. CDBGUB, BUB:. COBUB.

An example of an on-line load command is given below.

! LINK MYROM, X23;BUB:. CDBGLlB, BUB:. COBLIB OVER MYLMN

This instructs the on-line loader to form a load module named MYLMN, which will replace any existing LMN with
the same name. To bui Id the LMN, the loader is instructed to use the object modules named MYROM and X23, and
to satisfy external references that occur in these two ROMs by using the two on-line libraries, BUB: in account
CDBGLlB, and BUB: in account COB LIB.

Execution

The programmer begins execution of a debug run by typing in the name of the LMN he has formed, followed by a
period and a8. This tells the system to fetch and begin execution of the specified LMN in the logon account.

20 Operations

As soon as the system starts exec uti on of the LMN, the debugger takes control of program exec uti on, and prompts
the user with

SOURCE FXLE=

This requests that the programmer enter the name of the fi Ie to which he assigned the M:SO DCB at compi Ie time,
followed by 8.

The debugger then prompts wif'h

DEBUG FIL.E=

This requests the programmer to enter the name of the file to which he assigned the M:EO DCB at compile time, fol­
lowed by 8. The debugger is then ready to accept debugging commands, and will prompt with the> character for
each command.

Execution 21

APPENDIX A. DEBUGGER MESSAGES

The debugger issues three kinds of messages: Command error messages, informational messages, and data messages.
This appendix describes these t'hree classes of messages, giving examples where appropriate.

Command Error Messages

The debugger issues a command error message whenever it iis unable to successfully fulfill a command request. This
may occur because the command instructs "the debugger to perform an illegal action - such as INSERT a line-number
that already exists - or because the command references some nonexistant line-number, location, or identifier, or
because of a syntactical error in the command specification.

In all cases the debugger indicates the position in the command line at which the error was detected, by typing a
dollar sign at that position. It then issues a brief explanatory message. The messages and their meanings are given
in Table A-'I.

Informational Messages

These messages inform the progwmmer of changes of status during a debug run. An informational message is gener­
ated at each breakpoint, at ea1ch entry to a procedure-name or statement if PLIST or SLIST are specified, and any
time an error or abort condition occurs during the run.

Table A-l. Command Error Messages

Message Meaning

BAD DATA NAME A nonexistent data-name was referenced.

INVALID QUALIFICATION Either lIN I is missing from a command, or a qualifying section
does not exist.

BAD VALUE An alphanumeric literal is larger than the identifier in the
command.

BAD NUMBER A source line-number either exists when a request to insert it is
given, or doesnlt exist when it is given in a SOURCE, DELETE,
or REPLACE: command.

INVALID DATA TYPE FOR An attempt has been made to use a numeric I iteral with non-
NUMERIC MOVE numeric dat'a.

Note: The debugger considers floating-point data (comp-l,
comp-2) to be nonnumeric.

NO ROOM IN TABLE The break table for the type of break being set (data, statement,
or procedure-name) is full. An existing break must be removed.

TOO MANY COMMANDS." . The table of commands associated with breaks is full. The current
TABLE OVERFLOW break is rejected. Another break must be deleted to make room.

BAD COMMAND The debugger is unable to recognize the command.

Appendix A 23

Break Messages

A break message is output each time program execution reaches a breakpoint. A break message consists of two parts:
First, the breakpoint identification which informs the programmer that a particular breakpoint has occurred; and
second, any commands associated with the breakpoint are typed out before they are executed.

The breakpoint identification consists of an identification as to type of break, followed by the name of the last para­
graph or section entered, and the statement-id of the current statement. For data breaks, the identifier consists of
the words 'DATA BREAK', followed by the name of the identifier which caused the break. For statement and pro­
cedure breaks the identification consists of the words 'BREAK AT'.

Commands associated with breakpoints are typed out one-per-line.

LlSTFILE Message

The message output after a L1STFILE command follows the form

DEVICE device-id
ASSIGhlED TO ANS serial-number

[

FILE {file-id)

LABEL
UNASSIG NED

{ {
INPUT l}

CURREt'-lTLY OPEN OUTPUT
CLOSED I/O

Error/Abort Handling

Error and abort messages are issued to notify the user of some unusual condition which requires programmer interven­
tion. In all cases, the error/abort message is issued to inform the programmer what has occurred, and then a break­
point message is issued to notify him of the current program status.

If the program is halted or aborted by either a STOP RUN, a non-COBOL I/o error, or an illegal transfer of con­
trol, a message of the form

EXIT DUE TO

{

STOP VERB 1
M:XXX OR M:ERR
NON-COBOL I/O ERROR

is issued.

One of three messages will be issued if a trap occurs. If the trap is due to bad decimal data, the message will be

DECIMAL TRAP

24 Appendix A

If the trap occurs while processing a debugger command, I'he message will be

TRAP IN DEBUGGER

All other traps receive the message

UNIDENTIFIED TRAP

If the break key is depressed while the debugger is executing, the message

BRK IN DEBUGGER

wi II be issued. This will be the case if an I/o error occurs that is not handled by the COBOL run-time I/o routine.

PLiST and SLiST Messages

When PLIST or SLIST are on, the messages output consist of the procedure-names or statement-ids, respectively. No
qualification is supplied for pClragraph-names. A statement-id is output in the same form as it should be entered:

line-number[.copy line number] [(verb number)J

A maximum of 20 procedure-nome and 40 statement-ids wi II be displayed.

Data Messages/Displays

These messages are simply the outputs from PRINT or PRINTX commands. The format of the message depends on the
class of the identifier as definEld in the COBOL program. The debugger classifies all identifiers as either alpha­
numeric, numeric-display, numeric-packed, numeric-binary-integer, or miscellaneous.

Alphanumeric data is presented to the programmer with no conversion, sixty characters per line.

Numeric-display data is presented with no conversion, except that the sign of the data wi II be shown as a trai ling
character rather than an overpunch.

Numeric-packed data is presented in hexadecimal format. This avoids unnecessary decimal data exceptions that
might occur if the identifier were not initialized.

Numeric-binary-integer data is presented as a 9-digit integer, preceded by a sign.

Miscellaneous data is presented in hexadecimal format, sixty characters per line.

Table A-2 shows the debugger classification given to all types of identifiers.

Table A-2. Identifier Classes

Identifier Type in Program Debugger Data Class

GROUP ITEM Miscellaneous

ALPHANUMERIC (PIC X) Alphanumeric

ALPHABETIC (PIC A) Alphanumeric

NUMERIC EDITED Alphanumeric

Appendix A 25

Table A-2. Identifier Classes (cont.)

Identifier Type in Program Debugger Data Class

NUMERIC (PIC 9)

DISPLAY Numeric-display

PACKED (COMP-3) Numeric-packed

INTEGER (COMP) Numeric-binary-integer

INDEX Numeric-bi nary-i nteger

FLOA TING-POINT -SHORT
(COMP-l) Miscellaneous

FLOA TING-POINT -LONG
(COMP-2) Miscellaneous

26 Appendix A

APPENDIX B. A SAMPLE DEBUGGING SESSION

This example shows some of the steps involved in actually debugging a small COBOL program. The sample program
is a small edit-and-batch-balance program, assumed to exist in a file named EDIT-PROGRAM. Also assumed is that
a file named EDIT-ASSIGNMENTS contains the IASSIGN commands necessary to run the job, and that all the input
files for the program exist.

To keep the explanations fairly straightforward, while still giving enough examples to provide a base starting point
for a first-time debugger user, the following conventions are used:

1. Each line of terminal input and output is shown with a line number to its left. These numbers are not part
of the input or outpuj', but serve as reference numbers for the explanations.

2. Explanations are givem following groups of input land output lines, rather than after each line.

XEROX CP-V AT YOUR SERVICE

2 ON AT 09:29 JUL 27, '73

3 LOGON PLEASE: TESTING, SEYMORECLEA

4 lSET M:EO DC/EDIT-DEBUG

5 lSET M:SO DC/EDIT-PROGRAM

6 .l,COBOL EDIT-PROGRAM OVER EDIT-ROM,LP

7 EOO COBOL

8 OPTIONS?

9 iCOBOL TEST,GO

10 misce llaneous campi ler output

Lines 1 through 3, up to the colon following LOGON are output by the CP-V monitor when the pro­
grammer is connected to the system. On line 3, the programmer enters his account, TESTING, and
his name, SEYMORECLEA, to log on to the system. On lines 4 and 5, the programmer enters the SET
commands needed so that the COBOL compiler will know where to write the debug fi Ie and the source
output file. Note that to conserve file space, the programmer has chosen to make the source output
file replace the source input file. Line 6 tells the monitor to call in the COBOL processor, with
source input from the file EDIT -PROGRAM, with the object module being placed on the file EDIT­
ROM, and with any listings generated by the compiler directed to the line printer. Lines 7 and 8 are
output by the COBOL compiler. The COBOL compiler prompts for its control command with the dollar
sign ($) on line 9, and the programmer then responds by entering a COBOL control command that speci­
fies that this is () TEST mode compilation, that an object module is to be produced through the M:GO
DCB, and that CI data map is to be written through the M:LO DCB. The compiler output referenced
on line 10 consists of a heading, a copy of the COBOL control command, any diagnostics issued, and
a summary of number of diagnostics and severity level.

11 lLINK EDIT-RON; BLIB: .CDBGLIB, BLIB: .COBLIB OVER EDIT-LMN

12 LINKING EDIT-ROM

13 LINKING BLIB:

14 LINKING BLIB:

On line 11 the programmer enters a LINK command, instructing the loader to form a load module from
the object module named EDIT-ROM, satisfying external references (REFs) in the object module from
the two libraries named BLlB: in the accounts CDBGLlB, and COBUB, and to put the output load

Appendix B 27

module in the file named EDIT -LMN, replacing any file previously named EDIT -LMN. Lines 12
through 14 are information messages from the LINK processor. Link also will report the error severity
level of each control section (CSECT) and dummy control section (DSECT) it processes. Since the
number and position of these messages is unpredictable without a detai led knowledge of the program
structure, they are not shown here.

15 lEDIT-LMN.

16 COBOL DEBUG HERE

17 SOURCE FILE=EDIT-PROGRAM

18 DEBUG FILE=EDIT-DEBUG

Line 15 tells the system to start execution of the load module named EDIT -LMN. On line 17 the debugger
requests the name of the source fi Ie, and the programmer enters EDIT-PROGRAM. On line 18 the debugger
asks for the name of the debug-file for this program, and the programmer replies with EDIT-DEBUG.

19 >SETFILES EDIT-ASSIGNMENTS

20 >AT WRITE-OUTPUT;PRINT EDITED-HOURS;STOP

21 >GO

The programmer tells the debugger to make the DCB assignments as specified in the fi Ie EDIT­
ASSIGNMENTS. He then sets a breakpoint at the procedure name WRITE-OUTPUT, with a printout
of the data item EDITED-HOURS, and a program halt to be executed when he reaches the breakpoint.
He then instructs the debugger to begin executing his program.

22 DECIMAL TRAP

23 BREAK AT ADD-TO-TOTALS 683

A decimal trap occurs whi Ie the program is executing. The last procedure entered was ADD-TO­
TOTALS, and the statement being executed when the trap occurred was on Ii ne 683.

24 >SOURCE 683

25 ADD 1 TO RECORD-COUNT

26 >PRINT RECORD-COUNT

27 D1E4D5D240

28 >SET RECORD-COUNT 0

29 >GO

The progra mmer looks a t line 683 of his progra m a nd dec ides tha t the trap must be due to bad da ta in
RECORD-COUNT. He prints RECORD-COUNT, and discovers that the data is indeed bad. He then
sets RECORD-COUNT to zero, and continues.

30 BREAK AT WRITE-OUTPUT 987

31 >PRINT EDITED-HOURS;

32 9999

33 >STOP

28 Appendix B

The program reaches the breakpoint set at WRITE-OUTPUT and executes the commands associated with
the break. The programmer then looks at the printout of EDITED-HOURS, and decides that no error
has been made.

34 >RUN

35 EXIT DUE TO STOP RUN

36 >END

37 lOFF

The programmer tE~lls the debugger to remove all breakpoints and continue executing the program. The
program runs to c()mpletion, the debugger notiifies the programmer. The programmer terminates the
debug run, and logs off the computer.

Appendi x B 29

XEROX

i Reader Comment Form
We would .appreclate your comments and suggestions for improving this publication

Publication No. I Rev. LO"oT:: I Current Dato

How did you use this public:ation? Is the material presented effectively?

0 Learning 0 Installing 0 Sales o Fully Covered DWell o Well organized o Clear o Reference o Maintaining 0
Illustrated

Operating

What is your overall rating of this publicatil)n? What is your occupation?

o Very Good o Fair o Very Poor

D Good o Poor

Your other comments may bEl entered here. Please be specific and give page, column, and line number references where
appl icable. To report errors, please use the Xerox Software I mprovement or Difficulty Report (1188) instead of th is form.

~-

~- -

~-

~----

f---

,...-

Your name & Return Address

Thank You For Your Interest. (fold & fasten as shown on back, no postage needed if mai led in U.S.A.)

PLEASE FOLD AND TAPE -
NOTE: U. S. Postal Service will not deliver stapled forms

I
I
I
I ..

UJ
z
::J
l?
Z
o
-.J
«
I­
:J
U

I
I
I
I
I
I ~
I -.J

I ~'

--------------·--1- s
I 6
I c5

ATTENTION: PUBLICATIONS, MS 486

Business Reply Mail
Postage Stamp Not Necessary if Mailed in the United States

Postage Will Be Paid By:

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

FIRST CLASS
PERMIT NO. 39531
WALTHAM,MA
02154

I u..

J
I
I
I
I
I
I
I

UJ

I z
I··~
I z

-- ~S

Honeywell

I «
I g
I ~,
I
I
I
I
I
J
I
I
I
I
I
I
I'

Honeywell Information Systems
In the U.S.A.: 200 Smith Street, MS 486, Waltham, Massachusetts 02154
In Canada: 2025 Sheppard Avenue East, Willowdale, Ontario M2J 1 W5

In Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F.

22021, 2C1078, Printed in U.S.A. XQ22. Rev. 0

	000
	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	replyA
	replyB
	xBack

