
SIGMA SERIES COMMUNICATION

SUBJECT: Sigma 5/7 Multiprogramming System DOC. NO.: 384

AUTHOR: Tom Melton, Jim Gaines DATE: December 10, 1969

DISTRIBUTION: Sigma Notebook Hoi ders FILE NO.: 14

OBJECTIVE

The objective of the Sigma 5/7 Multiprogramming System is to
provide for the full solution to a user's data processing problems.
It stresses the availability of a spectrum of services--multiple
batch streams, remote job entry, real time and interactive
time-sharing. Even though the user may never attempt to use
all of these services, their availability guarantees him a growth
path regardless of which services satisfy his immediate needs.

GENERAL DESCRIPTION

The planned faci I ity for the Sigma 5/7 mul tiprogramming batch
system can be described as an unmapped, fixed partition system
supporting any given number of partitions as determined at
system generation. The maximum number of jobs that can be
run concurrently is fixed at system generation. The system is
describable in the same general terms as the MFT version of
OS/360.

Partitions wi II be general in nature. Processors, uti! ities, and
user programs alike will be executable in any partition large
enough to contain them. In practi ce, each program can be
formed to run specifically in one of the partitions (i. e., each
can have its own "home partition"). The design allows any
particular program to be directed toward its-home partition.
When schedu ling confl icts occur and the program can be
scheduled to run elsewhere, the system uses the program's
relocatable form to relocate it into another designated partition.
The user can be charged for this extra system facility; it is used
to his benefit within the rules set up by the DP manager at
system generation.

The multiprogramming facility will be available under BTM as
well as in a batch only version. Symbionts are an inherent
part of the system. It will be a completely compatible superset
of existing BPM or BTM batch facilities. That is, jobs prepared
fo~ batch operation under BPM/BT M can be run without
modification if they require only the default allocation of resources.
Additional resources will require additional control commands.
It will be a completely compatible subset of the UTS based Sigma
7 multiprogramming system. It will neither require nor be able
to use the map.

Monitor residency wi II require a minimum of 16K words and BT M
residency requirements will add to this at least another BK. The
high speed RAD will not be required. Additionally, the system
will support real time and remote batch, concurrently as required
by the user.

Principally, this system provides improved batch throughput due
to over-lapped use of the CPU during disk and tape I/O as well
as improved use of critical resources such as disk packs and
magnetic tapes. When one program is waiting for an I/O request
to be completed, the CPU will be directed to a program which
can use its services immediately.

Jobs entering the system will be selected for processing according
to "Classl! and priority, relative to available resources. The
relationship between "Class" (see details below) and physical
resources is determined at system generation. Class is added
to the schedul ing system to, provide the DP manager with the tool
needed to relate his needs to the total resources of the system.
A general point to be made is that once a job is scheduled and
begins execution, it will not be rolled out if a job of higher
priority enters the system. In a normal situation, once a job begins
it proceeds to completion.

Jobs will be scheduled on a job rather than on a job step basis.
Resources of a special nature that will be required for a given
lob must be specified at the beginning of the job and must
be the maximum of each such resource that the job will use.

2

It wi II not be poss i b I e to allocate added resou rces af te r job
initiation. Peripheral resources can be released for the
remainder of the job by user program and/or control command
between job steps.

All jobs input into the system (via BTM, Remote Job Entry, etc)
will be scheduled on the same basis regardless of their point of
entry. Preferences must be handled through assignment of class
and priority.

The job originator can specify that one or more other jobs must
have been completed with specified termination type before
this job is run. This IIpredicate ll relationship allows the breaking
up of iobs with widely varying resource requirements into more
economi cal processing un its.

Private volumes required for the execution of a job must be stated
so the scheduler can avoid otherwise unresolvable conflicts
among jobs which require exclusive use of the same private
volume(s}. Also, all files on public volumes for which a specific
job wi II require exclusive use must be specified so the scheduler
can avoid lockout conflicts. Job scheduling will include
consideration of exclusive file usage requirements complete with
fi I e names and perhaps mode of use. Jobs with the same account
number will not be scheduled concurrently.

Run-time tasking will not be supported.

The minimum configuration will be:

Sigma 5 or 7 CPU
40K of Core
6 Megabytes of RAD
And the remainder of a minimum BPM configuration.

The minimum core requirement of 40K yields a maximum
partition of 24K, satisfying the core requirements for any
standard processor currently available. A 32K system
(16K maximum partition) will be feasible for those
installations that only use processors which operate in 16K
or less (Fortran IV-H, Symbol, etc.).

3

PARTITIONS

The number of partitions and the characteristics of each are
specified at system generation. The number of partiti ons
that are defined determines the number of iobs that can be
concurrently executed. The attributes of a partition are
the specific area of core residence, the set of processors
that are biased within the core residence area, the number
of non-sharable resources that are guaranteed to jobs that
will execute in this partition, and a prioritized I ist of
II job cI asses" that are allowed to execute in it.

core consi derations

The size of a partition places it into
o"ne of two categori es -- schedu ling
or nonscheduling. If it is 8K or
larger, it can physically accommodate
the Job Scheduler (an expanded eel)
so" jobs can be scheduled for it at any
time; that is, it is a schedul ing
partition. If less than 8K (i. e;
nonscheduling), the partition must
wait unti I the next use of the job
scheduler in a scheduling partition.
Any time the Job Schedu ler becomes
active, all schedul able partitions,
I arge or small, wi II be servi ced by
it including the partition in whi ch
it resides. The minimum partition
size is 2K. The operator has the
facit ity to disable, enable and
append to partitions and can
reallocate peripheral resources. He
can, by disabling a partition, cause
it to accept no more jobs at the end
of the currently operating one.

4

He can, by enabling it, cause a partition to
begin accepting jobs. Those jobs that can
run onl y in a currently disabled partition are
"blocked. II The operator can reallocate the
core resource of a disabled partition by
appending it to the next lower partition. The
operator can I ater restore the partition and
return it to its former enabled condition. Any
number of contiguous, higher in core partitions
can be appended to a partition. More than
one enabled partition can be appended to in
the above manner. For example:

Parti ti ons Before

A

low core high core

If the operator were to append B, C to A and E,
F to D, the enabled partitions in the system would
be:

Partitions After

Only those classes and resources of A and D would now
be active. In particular, these facilities can be used
to build up the BTM partition from several smaller ones.
This allows a very flexible use of the BT M user space
when BT M has been activated.

5

biased processors

The system provi des for the processors to be bi ased
at more than one partition; this implies multiple
copies of the absolutized processors. When set up
to do so and when scheduled, relocatable versions
of the processors wi II be used in partitions for
which no absolute copy exists. The user may be
chargeable for the relocation time and resources
so the system must keep separate track of them
for accounti ng use.

non-sharable devices

A set of peripherals of each type available can be
dedicated to a partition. at system generation. This
is an assignment of the number of such devi ces
required, not the physical devices. Those devices
remaining (i. e., the total number of a type in the
system .minus the total number assigned to all
partitions) form a pool from which the scheduler
draws to satisfy additional peripheral requirements.

The operator can change these assignments. He can
reallocate to and from any partition to any other
partition and/or the peripheral pool. These reallocations
are permanent as if they had been assigned during
system generation though they are not written to the
system devi ce to suppl ant the system generated copy.
In the event of a crash, an attempt is made to use the
current allocations. If this is not possible, a complete
system reboot returns the system to the system generated
version.

prioritized job classes

Fixed core partitions imply the need for scheduling iobs
into those partitions that fit as nearly as possible

6

-------_ ... _-_ _._---_.-

to avoid wasted resources. For example, if core
were partitioned into areas A(8000 words) and
B(4000 words), all large jobs (larger than 4000
words) should be run in A (a jobs) and all small
jobs in B (b jobs). If no a jobs were available,
it would be very efficient to run b jobs in
partition A. That is, in partition A, jobs should
be selected according to the priority; a jobs first,
b jobs second. In partition Bf only b jobs would
be selected.

In general, one cou I d say that though jobs of
the same type might have preference for one
partition, they should be executable in more
than one partition. This idea forms the basis
for providing job selection in this system from
a prioritized I ist of job cI asses that can be
executed.in a given partition. Class makes it
possible to group jobs having similar requirements.
By associating, at system generation, the
prioritized I ist of the job classes with each partition
in which they can be executed, the DP manager
has complete control of system efficiency in the
overall use of system resources. Additional
control is avail abl e with operator key-ins to
enable or disable a job class for a specific
partition.

JOB CLASS

Class is the qual ity assigned to a job that reflects how important
it is relative to all system resources. Though the operator has
many controls that affect class, its properities are principally
defined during system generation. The classes can be ordered
for selection priority across the whole system or within each
partition. The latter implies that for partition M with classes
a and b and partition N with classes a, b, c, class a could be
higher than b in partition M but lower than b in partition N,
or class a could be a very important class and be of highest
selection priority in both M and N. Service priority (i. e.,

7

which job gets CPU service next) between active jobs is class
dependent, too. So if class b jobs are the most urgent or if
they must be servi ced often because they produce frequent
I/O calls and thus help balance the system, then class b can
be assigned the highest service priority in the system. Then
no matter in which partition a class b job might be executing,
it has the highest service priority. The next most important
classes can be assigned priority as required.

Jobs are selected for execution with the ordered triple: (Class
Selection Priority, Job Priority, Time in the Queue). Class
Selection Priority is a number (as is Job Priority) that shows the
selection preference among schedulable jobs for a given
partition. Consider the unordered set of partitions, M and N,
and an unordered set of classes, a, b, c, associated with them
representing three kinds of jobs to be handl ed in the system. To
choose the class selection priority, the DP manager will assign
priorities for each class to be associated with each partition.

M a, 2; b, 1; c, 3
N a, 1; c, 2

In this case (assuming 1 of greater priority than 2), when partition
M becomes empty the next job selected is of class b if available,
a if b is not available and c if neither is available, job priority
and then time in the queue are determinants for schedul ing.

Once selected for execution, the service priorities of the executing
jobs determine the order in which they receive CPU service. The
run-time scheduling of the CPU will be on an I/O request to I/O
request basis. A maximum compute time quantum will be used to
force redirection of the CPU from compute bound jobs to maintain
peripheral util ization. If more than one job of equal priority is
awaiting CPU service, preference will be given to those jobs who
requested I/O during their last activity.

8

The system generation class parameters include:

o Job priority minimum level; time duration for
promotion considerations.

After any job above the specified priority
level has been in the schedul ing queue
for longer than the specified time duration,
it will be raised in priority during each
subsequent scheduling cycle until it is
scheduled or reaches the highest job
priority. At this time its condition will
cause the system to begin shutting down
an appropriate partition until it is the
only job that can be scheduled. The
shut down wi II be of the nature of tem
porarily removing all other classes from
the selected partition and so on. The
promotion parameters that wi II be used
are a function of the job class.

o Service Priority
o Compute Quantum

Associated with each class is a time limit
used to prevent the tieing up of system
resources by total I y compute bound jobs.
Exceeding the quantum causes a new,
normal service cycle to begin.

o Default and Maximum Limits for the Class

Maximum I imits g~ive the DP manager control
over the type of jobs that are allowed for a
given class. Default limits state the typical
demands made on the system by jobs of this
class.

Cards in, out
Pages out (La, DO, UO)

9

Job duration (sum of CPU and I/O time)
Devi ces required for dedi cated usage (magneti c

tapes, disk packs, etc.)
Core size
Blocking buffers (default only)
Public file granule usage

JOB SCHEDULING

Total space allocated
RAD
Disk packs

Permanent space used
RAD
Disk packs

Job schedul ing is initiated ,whenever the system finds a partition in
an enabled, inactive state. Job scheduling goes through th~ pro
cess of selecting the next iob that will be executed in an inactive
partition based on the following considerations:

1. Job class
2. Priority and age
3. Predi cates' status
4. Resources required
5. Confl i cts with currentl y executing jobs

Normally, job scheduling for a partition will be initiated by job
termination in that partition. Once service of the job scheduler
begins, jobs will be considered first on the basis of the job class
priority associated with this partition. If no jobs exist in the queue
for any of the job classes assigned to this partition, the partition
becomes inactive. If any jobs are available the first one considered
is the oldest job with the highest job priority (from the job command
or modified by promotion) and the highest job class available to this
partition. If this job cannot be scheduled because of resources
(dedicated peripherals, core, account number or volumes confl i ct
with current' jobs), then the next oldest job is considered for
execution. If none of the jobs in the highest job priority level can

10

be scheduled, then jobs of the next highest job priority level
are examined for a schedulable job. This process is continued
until all of the jobs in the highest job class priority associated
with the partition have been exhausted. The above search for
a job that can be scheduled will be repeated down the prioritized
list of allowable job classes for this partition.

Jobs wi II not be swapped out of core by the system to provi de
facilities for another, higher priority job. Consideration should
be given for making available, under operator control, core
roll out of specified partitions.

Jobs can be in one of the following categories:

Arriving Jobs

These are jobs which have been introduced into the system
since the last scheduler operation.

Jobs awaiting job predi cates

These jobs are awaiting the completion of predicate jobs.
Those jobs in this category are considered "blocked" if
one or more of their predicates are not currently in the system.

Jobs blocked by system

These jobs have core and peripheral requirements that are
within the allowable limits of their associated class but
cannot be satisfied by the system in its current configuration
without operator control.

Special priority jobs

Jobs in this category are those that have been promoted
(either by time or operator control) to the level that
resources are being collected for them at the expense of
system performance.

11

Schedulable Jobs

These jobs make up the normal selectable job mix for the
job scheduler.

Executing Jobs

These jobs represent the ongoing, concurrent workload in
the system. All of the necessary resources have been
allocated to each job in this category.

JOB PREDICATES

The predicate relationship between jobs is necessary to allow the entry
of two or more data related jobs into the job stream on an independent
basis and still assure a specific order of processing. An example of the
type of situation f>r which the facility is necessary is the weekly produc
tion of payroll checks which is dependent on the introduction of the
weekly time cards into the system. Another important use of the predi
cate relationship facility in this specific system will be to allow breaking
up of a job which is comprised of a number of job steps which require
very different resources for their execution. For example, a job which
consists of two seri al job steps, the fi rst of whi ch requi res a large amount
of computation and no magnetic tape units and 'the second of which
involves a small amount of computation and 8 magnetic tape units. The
reasonable thing to do would be to break the job into two job steps with
the second predicated on the fi rst, so that the magnetic tape units would
not have to be tied up during the processing of the compute bound job
step.

The predicate relationships will be indicated on a control command. A
unique identification must be supplied on any job that is a predicate to
another job. The control command wi II allow reference to the identi fj
cation of each job predicate and an option specifying the mode of com
pi eti on of th e pred i cate job that wi II be req ui red to sati sfy the re I ati on
ship.

The installation wi II be capable of setting a lim it to the length of time
that status on predicates will be maintained by the system. In addition,

12

the capability to delete the status information will be available by
either operator key-in or control command.

CONFLICTS WITH CURRENTLY EXECUTING JOBS

A job can require files, data or peripherals for exclusive use that
would conflict with the requirements of other jobs. The situation
with files is one in which a given job is going to update a file of
related information such that exclusive record use would not, in
general, allow logical, concurrent updating of the data base by
two or more independent programs. An example of this is the
possible independent updates of the same fi Ie by programs from
two sources, where a predicate relationship is important but simply
connot be implicitly determined ahead of time. Since there will
also be jobs which wi" legitimately wish to update the same file
concurrently, the discrimination between the cases wi" have to
be resolved by an explicit indication of the names of a" files
and volumes for which each job will be demanding exclusive
use. The scheduler will then avoid scheduling jobs with exclusive
use requirements for the same files and volumes. It would not
be possible to resol ve a" confl i cts as they occur at run-time
because of possible hooking problems, where each of two jobs
would require a file that the other already had.

In addition to the file access interference problem, two jobs that
require utilization of the same removable disk or tape volumes
obviousl y cannot be scheduled for simul taneous execution. The
same is true of any jobs whi ch uti! ize the same dedi cated specifi c
piece of hardware, such as a remote batch terminal or a specifi c
I ine printer.

These problems of conflict wi" a" be solved by requiring user
inputs on control cards.

ACCOUNTING

The accounting system will have to be expanded to take advantage
of the fact that different peripherals should be charged to the people

13

who keep them tied up, in order to allow installation control, by billing,
of conservatism in stating requirements and to improve the effi ciency
of uti I izati on of the system. The data that must be added to the exis
ting accounting information includes the product of core size used and
the time it was used, the length of time private disk pack and tape
vol urnes are requi red by a given user, and the total amount of CPU
time used. This information is all output information which will not
affect the user's program or iob stream in any way.

When the user-specified class priority causes the system to relocate
a processor, utility, or user module, this increment of system facilities
must be billable in the user's accounting charges if desired by the
installation.

OPERATOR CONTROl, SYSTEM CONTROL MESSAGES AND MONITOR CALLS

Because a multiplicity of iobs will be executed concurrently in the
multiprogramming system, all operator input and system output messages
will have to be iob oriented with iob identification included in the mes
sage. This will affect operator input message formats, but will not
affect user programs or iob streams in any way. All iob associated
control commands wi II have to be recogn ized as such by the system
whi ch will have to be able to cope with a vari ety of request sources
'for debug commands, assignments, etc. The system wi II also have to
cope with monitor calls which must be iob associated to be meaning-
ful, such as ABORT. '

SYMBIONTS

The symbiont catch up facility will have to be disabled in the multi
programming system. The facility under discussion involves the ability
of the symbionts to allow direct device I/O when the symbiont queues
are empty. That means that the symbionts try in the existing system to
output directly to the line printer, for example, while a iob is running
if the symbiont queue for the line printer is empty, rather than waiting
for the executing iob to complete the symbiont output fi Ie before any
thing goes out to the line printer. The capability to initiate the out
put of a running iob to a devi ce will be available only by operator'
key-in. This will allow the operator the ability to control peripheral
utilization over those iobs producing vol umi nous symbiont output.

14

In the multiprogramming system nothing should be automatically done
with other than complete symbiont files, and no direct I/O through the
symbionts should be provided. That statement is necessary because
in a mul tiprogramming system there are a number of sources for
the creation of output. Peripheral initiation for an arbitrari Iy
chosen job, because the queues are empty at one point, may mean
running at reduced output speed for the duration of that job. The
alternative is to do nothing until a file is complete and then run
the peripheral at full speed through that file, and then the next, etc.

In addition, it will be necessary to be able to define the destination
address of the output devi ce for a symbiont fi Ie, at I east in a
categorical manner. For example, in a hypothetical future system
the three line printers may be of different types with variations in
speed and pri nt qual ity . It wi II be necessary to allow a user to
optionally specify to which printer the symbiont output of his
program should be directed.

It will also be necessary to provide the facility within the system which
will allow the user program to specify that a given form be loaded into
the printer before a specific symbiont output file is printed. That
feature shou Id be implemented so that an operator message is generated
when the symbiont output fi Ie is selected for printing and assigned to
a given printer.

The normal mode of operation of the symbionts shoul d be to pool symbiont
output files and assign printers on an as available basis. A desirable
extra would be the schedul ing of output of the files in the pool based on
the priority of the program which created them.

The symbiont capability of the BPM system must be expanded to include
the facility to handle generation of output for the same device from
mul tiple sources concurrently without merging of the data. Each of the
sources would be in a separate job. An example of the facility required
is illustrated by the necessity to allow output through the symbionts to
a line printer from a number of jobs which are being processed concurrently.

15

FAILURE AND RECOVERABILITY FEATURES

The development of error detection and recoverabil ity features in
the BPM/BTM software (and UTS where applicable) must result in
the same facil ities being made available in the multiprogramming
system, including both the BT M and Batch-only systems.

REAL-TIME IN THE SYSTEM

Real-time jobs will have to be supported in the multiprogramming
system in the same way that they will be supported under BPM/BT M.
Such jobs will be pre-emptive in nature and can be introduced
only with the understanding by the installation manager that they
wi II have an effect on performance.

SCHEDULES AND MANPOWER

The multiprogramming system must be available to the field in the
second quarter of 1971.

16

TO

FROM

SUBJECT

1 •

Bob Spinrad DATE 21 April 1970

Dan Cota EXT 1441 WlAIL STA A1-02 REF ?R-70-1029

Multiprogramming

Introduction

This memo presents Programming Development's analysis of alternative ways of obtaining
a multiprogramming batch capabi lity for Sigma 7. There are several approaches, of
which no one is really "correct". But we must choose one, implicitly resolving several
important -- yet conflicting -- issues.

There are two major, competing views with respect to availability of some form of batch
multiprogramming. One view is that all we need is something called multiprogramming.
The other is that any system ca lied multiprogramming must satisfy a number of BD? re
quirements. There is such a thing as "scientific" multiprogramming. We can produce a
multiprogramming batch system rather quickly. But such a system will be absolutely use
less (and not salable) in any commercial environment. It will take much longer to produce
a multiprogramming system with even a modicum of customer acceptabi lity for BDP envi
ronments than it wi Il to produce one for a scientific environment. Also we must remember
that diverting resources to produce a scientific multibatch system wi II delay proportionately
the delivery of a BDP-oriented multibatch system.

Serious doubts exist about the need for scientific multiprogramming. The people who rea IIy
must have more than real-time (non-resident, operator initiated, externally scheduled
multiprogramming) plus batch -- which we currently have -- probably need the features and
capabilities that we ascribe to a BDP system. No quick and dirty multiprogramming system
is going to help us get into new markets. Such a system would have minimal value in solving
BDP problems posed by our current markets.

Next, there are questions regarding the levels of disc pack support and fi Ie management
enhancements that must be included in the first release of batch multiprogramming. Examples
are CRAM and removable disc pack support, the keyed file speed-up, and other major por-
ti ons of BT M/FOO or UT M/BOO. ' }

Finally, there is the question of undertaking a dead-ended development. Any short-term,
quick and dirty system will not be compatible with either future releases of UTS or with any
of the releases of XMS. Producing such a system inexorably forces us to continue its de
velopment. A dead-ended effort ought to be avoided, because we wi II have it forever.

Copy to: G. Boyd, E. Bryan, B. Doeppel, F. Haney, D. Heying, D. Keddy, B. Mallonee,

C. Martin, T. W. Martin, B. Reid, D. Reilly, B. Sharpe

Multiprogramming
Page 2

21 April 1970
PR-70-1029

The next four sections present four ways of obtaining multibatch capabi litYi each alter
native forces a resolution of the issues raised above. This exposition is concluded with
a specific recommendation.

2. Alternative One: . Quick and Dirty Multiprogramming

This is what we can cook-up in order to provide multiprogramming in the shortest possible
time. It is the absolute minimum form of multiprogramming that can be tacked onto UTS.

FEATURES:

a. No resol ution of fi I e contention.

b. Job (not job step) oriented.

c. . Only one job per account permitted in batch at one time.

d. 'Conflicts between batch and on-line use of files treated as they are now,
treated in both BTM and UTS (no shared access if update).

'e. Jobs that reference files that are logically unavailable are supplied an
abnormal return. (This occurs upon any OPEN of a fjle already opened l
in an update mode~\or upon an OPEN for update if the fj Ie is already open.~

f. Disc pack and file management support restricted to BTM/EOO level.

g. Jobs wi /I be aborted if disc space is requested but is not avai lable.

COMMENTS:

This is the quickest system that can be built. It is probably dead-ended. It diverges
from UTS and from XMS. It do~snlt offer removable disc pack support, and carries into
the field the UTS/AOO level of reliability. It also would extend UTS problems into the
batch domain, with concommitant pressure to extend, enhance and generally improve the
system. It delays XMS in whatever its first form will be by about half a year.

SCHEDULE:

Development would take about 14 weeks from project start to Q.A. turnover,. Earliest
start is August 1, inasmuch as the extensions must be built upon the final Development
turnover of UTS/AOO to Quality Assurance. We could, of course, delay all of UTS/AOO
by three or four months and release this as part of UTS/AOO. Adding a minimum of two
months for Quality Assurance, field delivery becomes January 1971 . ---

3. Alternative Two: ASeverely Restricted First Version of XMS

This is simi lar in scope to a Iternative one. However, it presumes that a minimum subset of
XMS can be defined with respect only to multiprogramming. It is undertaken on a "crash ll

basis, and is built upon UTM/AOO-. -

I.

I

Multiprogramming
Page 3

21 April 1970
PR-70-1029

4.

FEATURES:

a.

b.

c.

d.

e.

f.

g.

Resolution of file contention as required byXMS.

Clean operation of multiple jobs under a single account.

Job (not job step) orientation.

Clean handling of disc space allocation.

Disc pack fi Ie management support restri cted to BT M/EOO level.) .

No UTM/BOO reliability or functional enhancements. _

No symbiont or remote batch enhancements.

COMMENTS:

This is a terribly weak first version of XMS. In fact, since XMS must be advertized and
sold as a BDP monitor, this system cannot be labeled as XMS. With respect to the first
system, this one has the distinct advantage of not being dead-ended. It can evolve from
what it is -- UTS/AOO with multiprogramming -- into XMS. But it isn't what we's call
XMS. There are large drawbacks. If undertaken at all, the first release of the real XMS
is de layed by at least nine months. Since it is undertaken on a crash basis, no time can
be spent worrying about Xl, symbionts, and the like, which almost guarantees incompati
blities and obstacles which must be overcome when the initial syst~m is extended into XMS.

SCHEDULE:

Surprisingly, this project can be developed on roughly the same schedule as the first alter
native, but it would use more people. The .Q.A. effort would be significantly increased,
as would the Q.A. time. Development turnover to Q.A. would occur about January 1971,
and field delivery would occur in April 1971.

Alternative Three: Phase One of a Completely Specified XMS

This system is the release of phase one of XMS as interpolated from the extant draft planning
specification. The schedule assumes that the functional specification for all of XMS is
worried through and wdtten down and that then the releases are designed, built and deli
vered serially. It has the apparent advantage of having a complete specification which.
would govern an implementation effort spanning three years. It also pushes the first appear
ance of multiprogramming far into the future.

Multiprogramming
Page 4

COMMENTS:

21 April 1970
PR-70-1029·

This is a clean, first release of XMS whose desig~ accounts completely for future, planned
releases. The function and scope can be gleaned from the existing XMS planning document.
However, there is a great deal of evidence pointing to the unpredictability of product re
quirements that far in the future. We might lock ourselves into a product that could not be
made to meet market needs three years hence.

SCHEDULE:

The functional specification should be completed late in 1970, with Q.A. turnover occur
ing around January 1972, and field delivery oc.curing in the second quarter of 1972.

5. Alternative Four: Incremental Design and Implementation. of XMS

This approach differs from the one previously outlined in that first XMS release is trimmed
back in scope from that currently implied by the planning document. Further, this method
is based upon a series of incrementa I planning, specifi cation, design and implementation
tasks. We would not attempt to specify all of XMS before undertaking the first phase. We
would always specify and implement by extending a released product and would specifically
exclude any complete rewrite of keystone system elements .

. FEATURES:

The first release of this system would offer multiprogramming of jobs and provide services,
features and operationa I characteristics expected by BDP users. We would establish as a
necessary condition (without guaranteeing sufficiency) the abi I ity to satisfy some i dentifi
able total application{s) within Xerox. In other words, we would attempt to produce a
system for use by Commercia I Systems Integration. '

SCHEDULE:

Assuming a complete planning specification is published by 1 June, Q.A. turnover would
occur in April 1971, with field release in August. This further a~sumes that we permit
UTS and XMS to diverge into two systems, building XMS upon UTM/AOO with BTM/FOO
disc and file managem~nt enhancements. Alternatively, we could delay UTM/BOO by se'"
veral months as well as phase one of XMS, and satisfy our UT M/BOO requirements with this
first release of XMS. Because of external pressure, we will have to emphasize delivery of \
UTM/BOO with its reliability, real-time, and file management improvements (over UTM/ I

AOO). This forces the divergence of UTM and XMS until, perhaps, the second release of
XMS in 1972.

Multiprogramming
Page 5

6. Conclusion

21 April 1970
PR-70-1029

We prefer alternative four for a number of reasons. It gets a first release of XMS quickly.
It forces XMS to satisfy the known needs (or a known part of them) of a large BDP customer.
It is realistic, in that it recognizes our inability to predict future needs with precision. It
wi II admit of reasonably accurate scheduling because we wi II bui Id upon what we have in
hand. We will avoid any massive rewrite of the system.

This compromises both the features and the avai labi lity of our first multiprogramming system;
yet it gives a BDP oriented multiprogramming system expeditiously. Choosing this strategy
implicitly recognizes that our needs for multiprogramming are those of the BDP environment
and not those of a scientific or real-time one. If we must produce a multiprogramming batch
system for these latter uses, then we could use alternative one or, possibly the VanderbIlt
dual batch system. This assumes that we don't attempt to sell this system or use it in BPD'l

\ ,
environments. Either of these interim sol utions, however, commits us to even further product
enhancements, maintenance, etc., and wi II delay both XMS and UT M. This happens be
cause it uS,es resources that would otherwise be applied to these efforts. The long-term cost
of a quick and dirty multiprogramming system wi II be very large indeed, especia lIy when
measured by the resultant UTM and XMS slippages.

We argue, therefore, for an all-out effort focused upon conversion opportunities within
Xerox as the best avai lable strategy to drive our mul tiprogramming development. , -

Dan Cota

bb

11 "j~IYld Iii ~J' ~L~. /7' /'t M't1uEH'Q;'uCQ)IT'~(8j8~'U(LrjlldJOlrl1 ,.·,DC:t.1AY
Ij. lr -~// .. '
~~=~ ~"r":<,,<-:1-"~~~ G C7?'7=-~"?~~,"~ =<'O-z:=;:w····T ,p;=r..-mFn--: -'=~=':'n" -;Sq-

4.j970.

TO

FROM

SUBJECT'

REF:

"7 George Boyd V .

1952
641- WAll STA 'Ron Thomas EXT

Marketing's Response to Xerox Multiprogramming
System (XMS) ~lanning Specification

......

C7-33

Memo'from George Boyd, PP-GB-1496) dated Mar. 18, 1970

. DATE
;

'.Apr. f7) 1970
I

. !
REF'" R..T(T-058

&, .. jJ:'. -.... ~.'.:. ~.: !.tlC:t.7.-,.
I ··ZkJ.t:~ ..

~u...l··/-e1-
~LU., .
~1hlcl ..
·Y"JllLL.[r!1-.t-L

, (YJ " d;~ t-/!t . 'l' .lJ~tt;:1 C The Marketing. Division is) in general) enthusiastic about the XMS'as " : I, (,.J~ i.) . . described in the preliminary specific~tion. Because of our near term: '1' I
needs) we would like to reques t that some consideration be given to '. l!,;c~(l.t.)
adjusting the priority of implementation. We are also offering some ·, S .{. ,t·Lrf-·,,;!,...·,

I
comments in the functional aspects of the XY~ specification and hope.
that they are considered in your· final product specification •.

I. Priority of implementation.

A •. The following is a list of the functional' capabilities Marketing
. feels is needed in the time. frame approximately coinciding with
the first phase of the XMS ,development. If the development
resource is a constraint) Marketing feels that the fail soft
may be postponed in the later phase of the development as a
trade-off.

"

'1.' ·.Basic multi-programming facilities:
.~: .. :.:;:. a •. priority job scheduling. . .
:,:>.':' .. b. ; resource requirements specification in control langu~ge.
:;~>.-:;.: C e', resource pre-allocation at beginning of job step,.'

:. ',-::: d •. memory management ~.
·.'··; . ."e.:· job step predicate (for process sequencing). :': '. . .

2.: File management:
a. complete disk 'pac'k support.
b~ ... multi-volume file and multi-file
c. ANSI standard labels.

volume facilities e":

'd •..... current file sharing capaoilities ~ .:-.
·e. file concatenation.
~.~:default peripheral assignment~
g.·.····user defined standard label. '.' .. :'.
h.·~user error disposition.

·To.George Boyd.
Sl.lbj, .. :.: Marketing I s Response to Xerox Multip~og~aUl.-ning

;.: System '(XMS) Planning Specif.~cation . '.
.. : <6.:. ..,.

' .. :

~. . . .
.. retention cycle) not expira~iondat~.·

j~:~.relaxation of limits: for: ~>, ,.. DeB .

..
. buffers

file size
file number per vo~ume') etc.'
serial ~umbers) etc'.

, " .
'. ~.. .

. ,.'

,'::'

. ",' .'
...

. . , .
general) file manage~ent must be designed ~ to accommodate.'

\the cOtThuercial use:rswith,'large ~at~ . files.' :. ,>:;.',: ,' .

.... ::;'-:',::; d.. operator control of schedul~ng.
·.!,,>.e •. devl.,ce independence. '.': . . .'.
. ~. .' - ... ,

'::: '4 ~:;~:'Remote Batch: ," ;'.'
.·X::".><~.;··· a. ", log on/off. ' .
::<~:;~\;j:;:b. ::'~ .central accounting.' : . ~ .. ' , .' '

~:';.:.,.,;;",!;/l';,. c.. form control. .,'
";~/.~~~<·(,.·'i:·. d.. automatic dial.

:; ';'.').: e. error recovery •

. :,:T' f. full/half duplex •
. ~ .: ~ ~
···i:·::

.. ' :<5 •. ~:· Checkpoint/Restart:
":, '.~,\'~'. a. symbiont checkpoint/restart.'
. ! ;l:. b. . COBOL checkpoint/restart'.

'~ .. ;.~. :

::,~ >:'6 .~: r~':Ac~ou n t i ng:

, " '. ~ .
" .

'.' ...

.;

. ' .. ' :

,',
-: .

:.'

.:··;:r.8..:;a< ~~::~::e::~s ~etween batch, remote batch and time-

:":,': .. :.:)\'.:~~;~.:-' b."~.". ~ithin a user account) separate usage accounting for'
;(/~y::}h·:·:·:<. ; chargeable processors such as COBOL and FMPS,.::·· .
:. ". ',; .. -:-.' I',,' ... , '.'

,·:·~·,;;:.;':~T.;:.C • .', fl~xibility for installation o,p~i~:n,s~::'",,;,:,~':,~:: ;, "

To: :Geo~ge Boyd
. Subj :" :.'. Marketing IS R.esponse to Xerox Mul tiprograU'.Uling

'./.' '.- System (XY~) Planning Speci::icat:ion " .
. .' •.. :. • .•• '1. • • • :'. • •..•

".,' ',.'

• I • : ~ .: •

i.,,"

:·.B. " .. Phase II. ': ..

'.~,>." :::.1'.' >, Mui ti':'prograw:ning Extension:
:::: .. ' ~": .. ·a.'·· job control language as described in t:h~ preliwinary
.'.'. . . specifi~ation:
. ~ : .

r', : ~ . 'conditional execution
," . '.

... ";>' ' .. cataloged procedures
'forked job step generation

..... :. ',:

,},I:. ", b.' . dynamic resource allocation.

2 .• ': Fi~e Managewent:
..
" .. :,;' a. full file sharing:

::.'~:';'(.::.<'>~ b •. ' cataloging.
.'./>., c. sequential sub- file •

.. ·::·':Yd. 'full user label support.

:.> 3 e': 'Basic Communication Managewent:

,~ . : '":

.,

• ~ .r

, I:· .. · a. symbiont contro~ of remote
f,ile manipulation.

terminals •. , .

b •
.. ,

: .. . """:."

";-,'

...

. ~ ". . :

'.\ ··:::}:~\·4 •. ·.: Checkpoint/R.estart to include progr'a~er i'nitiated' che·ckpoint.
':' :' ' .' '. ~.. . . . : :' .. ~

. ';'. '" '.

'; ~ .·: ... ·Phase· III,;
:: :: ':><:" .' :<·X"

.. > >·l.<':.Full Data. Management •

':: . ':

".!t .• o ",

. '.~.':"~.:' .. ~;:..~ :." ' ..

;'·i,;{:t2.~"FU 11 Communication Management. ..

: ;::. \:.3 .:~.~ Program Fragmentation •. :'
::. '" -~.~ ... '... ",.: ~':" ~ . . .

'. ·:~···I· . . t •• t .

:::.:. :':'::>' .. 4/': Multi-processing.
j' I·,

.:

:. :

.. 3;

.. ' .. '

:. i

", ,',

...... '. :. ~

.,
. -

To: George Boyd
·::.~ubj:·.;:·'Marketing's Respo;:1se to Xerox Mul~iprograr1.wing.,

' .. ' :;' ~ystem(XMS~ Pla.nnir.g Sp~~i£icat~~!-1' ..
. ,

",
,:".' .

", - ", . ~

. :.

<.:-, II~. '. Functional Considerations •
. ~"': " ": :;'

, .. A.~ ". Dynamic' Resource Allocatior..

'. ,. ,' In conjunction with job class and priority scheduling} more
::· ... f·':: .. ·::·:. ;·:< .. ~:·:.overlap usage of system resources ... ay be achieved if the

.,' ',: ., resources are allocated at the actual time: of attachment •
....) :.:.,::./ A system with this alloca~ion method is knm'ln to have been,

" " .. "
.. "\:,],:.: '.: : implemented with the two. following fundamental allocation

.. ;., '.:" rules: ". '.'
.• - ~ :., = .• '

.'; .;-

" {.:. ~'. - -; ...
l'-::.the: remaining resource' requireme::lts of a requesting ..

. job. must all be available at the time of allocation.
. .: ! ':~'.:: ~".'. '. .' ..
:. ,::,~:,;:,>,,: . 2.'. the specific resource being requested is free at the

'. ' .. ', .time of allocation.
" : . ,', .

.~::, This system is known to be system-jaQ proof under' normal
::." .'

; .. ':'

::" ~ • I •
.. ;., ',. ",= .. :

. ~. :' .
: ,- ',',. .

:. '. !., " 'i:' B.:·:; Command Language Enhancement •
.. . ; '; . ';'.,:.:: .. ~.::~.:.' .

. ':'.:' .. :, '··;····Additional control commands should be added' to 'the ·.curren~·
... :. ~:':',<;:' ;command repertoire in the 'fo llowing areas: ., :;:. ' ...
. " . '".' " '.

. ... ,' .
., . f:: " . ,

:,"i .:. resources allocation REQU IRE a:-.d FREE.

f··:;'·'
~ .'

, .. ",

'<2.;:· file management -. RENAI.V..E to allow renaming of file:'.
,:',Videntificat~on withou.t copying t~e file. . .

.. ::' .:~ . ,'",
. . . ,

.•.• ! .; ... ~.' fail soft. ~ give user some ilexibilities in -file
.... ;. . .: (.

checkpoint and backup .., ~ ·1, .,',::

": ;. ': .. >:~~~ '. Mult;:i-task{ng. :
1" .•.•

, • " .: ! • .~." •• '". • . '.

:.. ,The complexity of this problem is a:ppreci~ted •. However)' .
:; ;'<'i'; :.i· we reques~ you reevaluate . ~his capabi.lity. for :the' following

.. ! : .• :.i. : ... : .. ::· ... ~J •• r. ~~son.s •... : .. ' : ... ~ ",... \. " '::'
•• .' • . I -. ~ • '" :. • • • . ~ :;" • • • 0"

"

To: George Boyd
.' .Subj : .. ·~·' .. Marketing' s 'Response to Xe-;:ox Mt;ltip-;:ogra'rr~"11ing
" .. '<"~':: ~ystem (XMS) Planning S?eciiica~ion ',.' .

..
:'-" :

. OS/'KV't. has this capability~. HO\'l competitive can .
. we be without it thirty-six co~:hs from. now? .

:ANSI COBOL specifies multi-tasking.
'I',

..

:'.3. :.: If we ever have a full PL-l) we need multi-tasking.

. .'
i "

. ',;' ~.. . ' . :.:~.

·:·":.;::'···~·,::·.:;~.~':4.:<·User level scheduling (using wonitor as a host. system)
::J: .. :'. .::.:' : requires mUl ti- t'~skingj 'espec ia lly in teleprocessing

;. "::.'<';;': applications' •.. '~ ',' " ' '. . : .. '

. "

, .

,Ronald K. Thomas) Manager
:MAR.~ET REQUIREMENTS PLAh1NING

'!PREPARED BY:

· : Edward S. Keh
· 'Software Spec·ial·ist

· RKT:ESK:bbw
. ' :t
! :.:

:' ,', : ': .. -,':.

."

..... ' ...

• '~" .:. 0" •

"-', .

. :,:.

~: .-
" "

f 0' ,j •

. ,!,'

..
"~ •• ~. • l :.~

. ~ : .. :. ' .

' .. :' .. '. APPROVED: .

. .' ~ . '. .
: .\

B~ Perillo
Vice' President -Mark.e~ing

. ...

xc:M.: ,Gingri~h,,··J.· Hargrave) C .• Hoffman) L.Miller". D. Shaw,,' F. 'Yee .
•. .".'.: ;, •. ~ •••• .'.' I, • ',' .' •

.'

TO

FROM

SUBJECT

I

I

Bob Spinrad DATE May 1, 1970

Shel Klee EXT 1927 MAIL STA, A3-33 REF APD70-73

MULTIPROGRAMMING - COMMENTS ON COTAIS MEMO

live just reviewed Cotals memorandum on multiprogramming and felt some comments
were in order. Since late 1967, (the earl iest my chrono file reflects any data) the
marketing forces of this company have been asking for a multiprogramming capabil ity
for Sigma 7. Two and one-half years later, the situation appears to be the same with
one significant difference -- in late 1967 our competition by and large had only an
nounced multiprogramming software, whereas now in 1970, virtually all of them have
some form of this software in operation. Marketing is still asking for multiprogramming,
but now their pleas are desperate because it may mean survival.

Wa must have an operational multiprogramming in short order and must announce one
almost immediately. There are a number of procurements from government and industry
(as'iJe started seeing in late 1967) which we simply must IIno bidll • With multi-batch
we might have a crack at some of this business. There is no question our market has
changed somewhat since 1967; we are gravitating toward the heavier BOP usage. Our
present market for Sigma 7 1s is not the scientific real-time market, but rather the gen-
eral purpose market where there is a good mix of compute hound and 'I/O dominated jobs that
are processed daily. W'e recog'nize that the requirements of some of the larger 100% .
BOP users: in the area of multiprogramming may demand the equivalent of an OS-MYT
system, b~t we donlt bel ieve this to be a necessity to satisfy either our present market
or the major part of the BOP market. In these considerations, it is extremely important
to note that the vast maiority of IBM users util izing multiprogramming techniques use
MFT and not the MYT we appear .to be trying to emulate in our XMS specification.
In any event, it is folly to believe that a multiprogramming system alone, no matter
how advanced and efficient, will del iver to us a segment of the BOP market' save per
haps internal Xerox applications. We need other things as well: additional hardware,
commercially oriented support people, applications software, to name iust a few. Since
many of these are long lead items, I suggest we address ourselves to two problems: the
immediate one of providing our present market the desired capabil ity and a second one
of meeting the challenges of the IItotal BOpll market we choose to pursue.

Just a little aside about II qu ick and dirtyll systems, a g-ood example of which is RAO-75.
This system, bootlegged in AP in early 1967, saved,SOS a good deal of business while
we struggled to get BPM working in any acceptable manner. We are now phasing this
system out since RBM-2 has been released and BPM enhanced to the point where both
these products are functional supersets of it. W'a will not be forced into supporting a
short range multiprogramming system forever as long as the ultimate system we are plan
ning can do everything the initial one could.

To: Bob Spinrad

From: Shel Klee Page 2

May 1, 1970

Reference: APD70-73

The question of resources not being available, we presume, is based on UTS
knowledgeable personnel. W'a bel ieve it would be a serious mistake to provide
our first multiprogramming system on a UTS base. An estimated field release of
January or Apri I '71 is a dream. Our experience with UTS thus far makes us wary
about the status of a non-multi-botch system in the first quarter of '71. We all
should recognize from our experiences with BPM/BT M what it wi II take to obtain
a reliable, maintainable system. UTS is much too complex and six months just
won't do it. BDP users, whether on their own machine or the engineering depart
ment's, demand this reliability. They get it from IBM.

We are just beginn ing to see the I ight in the BPM/BT M area. The system is reason
ably solid now and most of the previous reliability problems seem well in hand. We
believe building on a solid base to be essential to our ability to deliver and, there
fore, recommend the company provide a fixed partition multiprogramming system
utilizing a BTM base. The hardware memory map could possibly be utilized to'
handle the multiple batch portion of the system.

From our knowledge of the BTM system and'the status of UTS, we believe this to be
the most realistic, reliable way to achieve a multiprogramming capability in short
order. We must have this for Sigma 6.

In summary, we do bel ieve a multiprogramming system can be provided quickly and
will be acceptable to the present and short range future (1 - 2 years) markets. We do
not believ,e this system.will be with us forever or would be dead-ended but rather a
product which will be functionally superseded by our ultimate system. We agree with
Cota that (implementing XMS, if we do, should be in small steps with periodic reviews.
This is the best approach eve~ if it may initially seem to take longer to get to the end
point in our development.

We have procrastinated long enough. Let's do something!

.Sheldon Klee, Manager
Applied Programming

SK/sc

/
cc: G. Boyd, A. Bongarzone, E. Bryan, D. Cota, B. Doeppel, Go. Eckley, F. Haney,

D. Heying, D. Keddy, E. Kinney, B. Mallonee,- C. Martin, T. W.Martin"
M. Micheletti, B. Reid, D. Reilly, J. Romey, B. Sharpe

TO

FROM

SUBJECT

Distribution

Dan Cota EXT 1441 MAIL STA A 1-02

More on Multiprogramming

DATE

REF

7 May 1970

PR-70-1033

The attached points out the consequences of restoring the multibatch capabi lity that
now exists ,;,.- but which has been disabled -- in UTS. UTS in its present form pro
vides batch multiprogramming, although not without problems. These problems can
be overcome by relatively simple installation-controlled operating procedures and
policies. These restrictions are similar to those which we have adopted on the Sigma
7T. They are not unreasonable.

We still predict that UTS will be available by the end of August. If we can sell around
the existing difficulties by providing operating procedures to our customers, then we
can offer a basic multiprogramming capability with EOO disc pack support and all the
other features of UTS release by the end of August.

As pointed out in my earlie'r memo on multiprogramming, this is not a BDP monitor. It
will not help us enter new markets or replace IBM 360's. But ifmultiprogramming is
important to our present customers and in our traditional market, then perhaps we al
ready have what we need.

Dan Cota

bb

Attachment

Distributi on: A'. Bongarzone
G. Boyd
~Bryan

B. Doeppel
W. Gable
W. Glavin
F. Haney
D. Keddy

S. Klee
W. Mallonee
C. Martin
D. McGurk
B. Reid
D. Reilly
B. Sharpe
R. Spinrad

I ~

f
}~I[gl~

TO

FROM

SUBJECT

I
"W Ii:tL46J.!5ftW $LWE ::m::4::.u~~

M~ ruCQ)[fCfE) [fU(GJ OJ] m
I l

f

Dan Cota DATE 7 May 1970

E. Bryan, B. Doeppel, EXT 1421 MAIL STA A1-02 REF PR-70-3017
F. Haney, B. Sharpe

UTS MULTIBATCH

The UTS multibatch capability is currently disabled by several tests and switches in
the code.

If we enable the multibatch code, the following difficulties can arise:

1 ! File Contention

Turning on the UTS multibatch switch in'creases the number of job aborts caused
by fi Ie confl icts.

UTS has three types of fi les: 1) temporary fj les known throughout a job, 2) scratch
files known within a 'job step, and 3) permanent files which can be shared by users.
With minor variations for the different fi Ie types, the fi Ie contention problems in a
single-batch UTS system are as follows:

a. If on-line user A tries to use a file that is unavailable because it is being
used by on-line user B or by a batch program, on-line user A is notified of
the conflict. He can do something else, or he can wait until the file is
available.

b. If a batch program tries to use a file that is not available because it is being'
used by an on-line user, an error condition is returned to the program. The
program may be able to do something else, or wait to avoid a conflict. If
the program does not check the "in use" condition, the program is aborted.

If the multibatch switch is turned on, the timesharing - timesharing conflicts
remain the same. The incidence of timesharing - batch conflicts may increase,
since there will be more than one batch program in execution. The possibility'
of batch - batch conflicts is introduced. These are handled like the case
where a batch program tries to use a file being used by an on-line user. The
first program to use the fi Ie retains it. A second program trying for access to
the file gets an error condition. Unless the program tests the error condition,
it is aborted.

UTS Multibatch
Page 2

2. Tape Contention

7 May 1970
PR-70-3017

In single-batch UTS if a job tries to use more tapes than are available, the fob is
aborted. If one job uses all available tapes, then as each new job executes it will
abort if it requests a tape. Turning on the multibatch switch aggravates the prob
lem since more programs compete for tapes.

Another consideration related to enabling UTS multibatch is the fact that execution
of batch programs is under control of an algorithm designed for on-line users. Sched
uling is based on assumptions about response time for on-line users, think-time, etc.
Programs are held in memory from the beginning of an I/O operation until its comple
tion. This does not result in the type of device-use optimization normally associated
with multiprogramming. A similar inefficiency can occur if a job occupies almost all
of available memory. If the job does I/O it is held in core until I/O completion, at
which time, if the quantum is completed, the entire job is swapped out if the other
batch job is reapyto run and core is needed. In this case, multibatch does not result
in parallel use of devices. Only one I/O stream operates and normal batch "efficiency
is degraded by swap I/O. Of course, with sufficient core storage to hold all active .
jobs multiple I/O streams and concurrent CPU use wi" occur and no swaps wi II occur.

3. Operating Procedures

When the UTS multibatch code is enabled, the tape and file conflicts can be practically
eliminated by the following operating procedures and restrictions:

a. Every batch job in the job queue must have a unique account nun:tber if it uses
CaBO L or Manage. This may also apply to other processors produced outside
of PDD: FLAG, S L/I, FMPS, etc. This is being investigated by Shel Klee.

b. The"number of tapes required at one time must be" regulated by the tape limit
associated with each on-line user and by operator supervision of tapes for batch
programs. The tota I number of tapes that the system wi" require must be no
greater than the sum of tapes used by on-line users and batch programs. The
operator can tell by the! UMIT card how many tapes are required by a batch
job. As he puts jobs in the queue, he must guarantee that the tapes required
by all jobs that can run concurrently, plus tapes used by on-line programs, do
not exceed the total available. Suppose, for example, that a system has eight
tapes, that two are being used by on-line programs, and that the maximum num
ber of jobs is four. Six tapes are available for batch. Suppose the job queue
contains only jobs requiring one tape. If a new job is submitted the operator
must assume that three of the six tapes may be in use when the new job is exe
cuted. Therefore, the new job may use one, two, or three' tapes but no more.

UTS Multibatch
Page 3

7 May 1970
PR-70-3017

These rE7strictio,ns will cause some revision of UTS installation operating procedures,
but with some simple operator guidelines, installations should obtain improved
throughput and device utilization because of the multibatch facility.

bb

xc: D. Keddy
c. Martin

JPE. Doeppe .

R. A. Sharpe

TO

FROM

SUBJECT

George Boyd DATE 5/7/70

Paul Hibbs EXT 2410 MAIL STA Al-77 REF CCD-70-8146

XEROX MULTIPROGRAMMING SYSTEM
:

(XMS) PLANNING SPECIFICATION

I -_ ... _--------- ---- _._--_. --.. -------- --- - }- -- ----------_. __ .- ._--_._._---- . - _. __ ... _ _--_.- -- ----- .. - . - -

The XMS Planning Specification h~s been reviewed by the Management Information
System Section and Utility Development Programming Group. In general, all con
cerned were of the opinion that this was a positive step toward our goal of competing
in the business data processing field. The individuals who participated in this review
are closely ossociated with the current 360 to Sigma 7BDP conversion effort and have
worked extensively with IBM's OS or DOS. The following comments arose from the
review.

----------1. ----The last sentence of the second paragraph on page nine specifies that
II Jobs with the same account number wi II not be schedul ed concurrently. II
It is felt that this is an unr.easonable restriction and the system should be ... /
able to identify jobs by some other method. For example, to make our
own bu~iness production scheduling a simpler task, all of our business
programs are executed under the same account.

I

2. The forkec.: job concept will provide a powerful capability to the user.
However, i. is felt that this capability should be expanded. Ideally, it
would be desirable to be able to create a job fork that would sort a file
that would be used by the main job at a later step. This means that now
the execution of a job step would be conditional on the completion of
a forked job step, and that forked jobs could pass files to a job step.

3. In the area of resource allocation, it is feasible that a high priority
job could tie up enough resources waiting for an additional device
that the machine would be processing only"the job utilizing that device.
During this time period it is p,?ssible that there are resources available
to run jobs that would complete before the high priority job would have
all necessary resources available to run. It is felt that the scheduler
should be abl~ to determine from a job execution time limit whether or
not to utilize some devices out of the high priority job device pool for
execution of shorter jobs.

For Exampl e:

Job I A I needs three. tape drives for execution but cannot execute
because there are only two available.

Scientific Data Systems A XEROX COMPANY

5/7/70

Reference#: CCD-70-8146 Page 2.'

. -
Job IBI is using the third drive anqwil.f not complete. execution for.
ten minutes. . . . ri; ..

Job ICI is a 'five minute jo~w~ifi..r~g: to execut~' whi ch requires one
_Japedrive. ___ _ ! ~ .. ~ •. >__ __ ._ .. _.

Rather tha~ wait for jobs IA'·and·. IB"t6 complet"e, start job ICI since
itw!, I be done before job I BI c~n .reledsethe. thirdtape drive necessary'

. for the execution of job IAI •. : '. ..'

4. The portion of the specification cfealing with the symbionts generated a
number of comments and suggest·ions~ ..' .

-A. " From this department's investig'atio~, it· ~ppears that-key-boa'rd to tape
equipment (i.e., CMC, Mohqwk, etc~). is becom"ing quite PbPular in

. installations which have a large volume~of keypunching .. It is therefore"

. recommended that the symbionts be abl'e to process unit record input
tapes. This should be implemented such that the' data is read off the
tape and stored as a part of the sy~bionf 'stream as opposed to waiting "
for the job to request the data.' . . "

B. Considering the volume of¢utput generated by most business a'pplicati~nsi
the output should be processed at end,of job step and not retained until .

. ' 'total job ~ompletion.. ,. '. .' , .

C. 'The user should be provided'with the obit ity to communi cote form' n;~quire~
ments to the symbiont system. ;'The symbiont system should then recict by:"
IIbatching ll all jobs requiringjh~'same form, thereby eliminating as much

D~

E.

forms change as possible. '" . . ,,'

The operator shou.ld have t~~'~bil ity to ki IIspecifi c symbiont output~y .
DCB assignment. This w~u'I'd,:'enable the user to kill the printi,ng of
program output but sti II receive di?gn~sti cs and post mortem du~ps •.. '

The user should be provided, vyiththe abiiity'to as'sign symbiont DCB(.s to
separate {even non-existent,}, printers so that a sep~.rafe symbiont file,

. will be created for each bCB~:'iThis :would en~ble concurrent generation
, of separate reports,by the sa~,~:Iob~tep .or fork. At present the nu~ber '
of concurrent reports that ·cci.fl;,be generated is a function of the number
of I,ine printers availabl~< ", ;.'~j: :~,.:" .

. ,"

5/7/70 : ..
t . - .. -""--.--.. - ----.-'-------.-- .. - . .:.----:--------- - -... - . -.--. ----. ---

'j Reference#: CCD-70~8146

___ A •• •• ______ ·_· __ •• __ ··_· __ ···_·_·· _, __ •••• ,, _______ • ___ •• _____ .;-__ ----- ---.-- ••• -.----- - -- •• -.--.-. -

Page 3.

~. The fifth paragraph on page 25 see~s to suggest that the symbiont
files should be created and accessed via,the file management portion
of the monitor. We feel that this may slow the symbiont processing
time. There is also an ~dvantage to this method, in that it would no

_ : .. ____ Jonger ~~e necessary to, allocate symbiont disc space at..SYSGENtime,
but rather ,obtain' this space dynamically.~ If it is not intended that
the symbionts work through the monitor, ··it is felt that the monitor
'and the symbiont ,system should w~rk'out of a common gra,nule pool.

G. The solution presented for the problem 'of "what to do when the symbiont
storage area is filled to capacity'" looks a bit messy. We weren't able
to come l!P with an ~Iternative solution, but felt that the idea of spilling
symbiont data off to' tape presented operator intervention probl ems that
could prove disasterous. 1: ---'-.----------.. -----.--.-------------.,---....... --- .. -- .------ ---.. -.

If you desire to discuss any of the points outl~ned in this memo, please feel free to call.

PEH:tt

xc: A. Bongarzone
E. Bryon
D. Cota '
'V. DeVine
G. Dobbs
B. Doeppel
P. England
R. Evans
B. Gable
R. Gold
F. Haney
R. Keddy
J. Mendelson
L. Miller
G.' Myers
L. 'Perillo
.V. Porizky

B.' Se,ith,
R. Sharpe
D. Shaw
R.· Spangler
S.' Spiegel
R. Spinrad
W.Todd·
B. Wilson

	19691210_01
	19691210_02
	19691210_03
	19691210_04
	19691210_05
	19691210_06
	19691210_07
	19691210_08
	19691210_09
	19691210_10
	19691210_11
	19691210_12
	19691210_13
	19691210_14
	19691210_15
	19691210_16
	19700421_1
	19700421_2
	19700421_3
	19700421_4
	19700421_5
	19700427_1
	19700427_2
	19700427_3
	19700427_4
	19700427_5
	19700501_1
	19700501_2
	19700507_1
	19700507_2
	19700507_3
	19700507_4
	19700507_5
	19700507_6
	19700507_7

