
XEROX Competitive Report

A TIMESHARING COMPARISON - TSO vs.

The enclosed document is a detailed report on T50, IBM's Time Sharing Option. The report
exami nes TSO both from a system and a user's point of view. It traces TSO from the current
non-virtual implementation to the far more sophisticated release due in M,:srch 1974.

The report shows how TSO will be improving from its current BTM-like architecture to a much
more advanced system which resembles CP-Y. Like the CP-Y user, each on-line TSO user will
finally have his own virtual space. The only difference is that while the virtual space for CP-Y
is I imited by the size of the physi cal memory of the host computer, each virtual space on a T50
system may be as large as 16 million bytes. For the first time the on-line T50 user will be treated
exactly the same as a batch job. For the first time he will have full access to all system resources
such as tape drives, removable disk packs, and slow speed peripherals. In brief, it seems that IBM
has finally IIdiscovered" the CP-Y appro.:Jch to multi-use systems. As such we can expect IBM to
be even more competitive in the multi-use marketplace in the near future.

Yet, there are many reasons why CP-Y remains superior in the multi-use environment. These
include:

o Xerox processors are gen~rally more interactive.
o Response time with TSO is much slower than with CP-Y.
o TSO requires far more memory than does CP-Y.
o There is a high leve I of CPU interference between T50 and batch.
o TSO continues to be plagued with software bugs.
o TSO uses the extremely complex file structure of OS.
o TSO JCL is as complex as OS JCL.
o M.:my TSO processors have incompatible file formats.
o IBM's file preallocation can require excessive disk space when many users are

on-line.

In summary, TSO has come a long way but it has not caught CP-Y. TSO requires far more overhead -
both in terms of CPU time and memory - and is a for more complex system to use. Because TSO is
essentially identical to IBM batch processing, it has become a reasonable IBM so~tware development
tool, especially since the people who would be using the system for that type of application would
be well versed in the complexities of IBM systems. Yet, for the casual timesharing user - for the
majority of our prospects who want timesharing as an easy-to"tJse tool to solve his problems - the
the complexity, the performance, and the cost of T50 are still prohibitive.

The previous statements highlight the theme of the report which examines both the strengths
and weaknesses of TSO in much more detail. However, TSO, like all software packages, is a
constantly changi ng system, so this report must eventually become obsolete. If you are engaged
in a competitive opportunity and require updated information on T50 or if you encounter new
information about the system, please feel free to call Phil Becker on extension 4687.

\:~~~~===============~

I
I

/'
I ,...

~ .. '. '- J j
'-====='::.:.:::...:~:.::.~.:.: .. : _ ... :: :::.-.:-.. ::::.--.~::-.:.~

A TIMESHARING COMPARISON

IBM and XEROX

(TSO vs CP-V)

Phil Becker
Competitive Analysis
January 15, 1974
In Conjunction With
Sarah Jones
Los Angeles District

Table of Contents

Introduction

SECTION I: THE SYSTEM

(A) TSO and CP-V: A Systems Comparison
Use of Memory with TSO
The Timesharing Driver
The Timesharing Control Task
The Region Control Task
Other Control Programs

(B) TSO Operations
LOGON
Allocating CPU Time
Analyzing the Allocation Scheme

(C) SUMMARY

SECTION II: THE COSTS OF TSO

(A) Buying a TSO System
XEROX and IBM: Competitive Configurations

(B) Upgrading to TSO
Adding More Memory
Adding a Swapper
Adding Communications Gear
Adding TSO Software

(C) Summary of Costs

SECTION III: USER'S OVERVIEW

(A) Hardware Requirements
TSO Configuration
Terminal Support

(B) Using TSO
The Control Commands
TSO File Conventions
TSO and CP-V System Processors
TSO and CP-V Editors
TSO File and EDIT Summary
TSO and CP-V Interactive Debuggers
Debugger Summary

Table of Contents (Continued)

SECTION IV: TSO and VI RTUAL STORAGE

(A) TSO Under OS/VS2, Release 1
New F eatu res
Performance Questions
Summary

(8) TSO Under OS/VS2, Release 2
More New Features
Use of Memory
More Performance Questions

V Conclusions

VI Appendix - RESOURCE MANAGEMENT IN VS2

(A) The System Resources Manager
Managing the Workload
Service - the Measure of Performance
Performance Groups
Performance Objectives
Associating a Transaction With a Performance Objective

(B) Resource-Use Routines
I/O Load Balancing
CPU Load Balancing
Main Storage Occupancy
Page Replacement
Device Allocation
Automatic Priority Groups
ENQ/DEQ Algorithm
System Activity Measurement Facility

ii

INTRODUCTION

Although I BM currently offers a wide variety of 32-bit software and hardware combinations, any
detailed analysis will show that the primary attribute of all of them is to function as a very
competitive commercial batch processor. To satisfy the increasing demand for interactive
timesharing capabilities, IBM has introduced a series of timesharing subsystems of varying
sophistication. These have ranged from Conversational Remote Batch Entry, which is essentially a
terminal job entry capability through ITF (Interactive Terminal Facility), which gives an interactive
Basic and P L/1 capability to smaller systems, to TSO (Timesharing Option), which is a rather
complete timesharing system for use on I BM's larger systems. With the continued enhancement of
TSO, IBM is now becoming a formidable competitor to CP-V on its home ground. It becomes
important to understand and appreciate the capabilities and weaknesses of this "new" competitor in
order to sell successfu lIy against it.

The TSO that is discussed here is currently available and runs under OS/MVT and release one of
OS/VS2. Although TSO can be resident under the VS2 (virtual storage) operating system now used
by some I BM customers, it does not take particu lar advantage of the virtual memory or paging
techniques other than the fact that the region in which TSO resides becomes a virtual region instead
of a real one. It is the same TSO which runs on OS/MVT--a non-virtual system.

A more sophisticated TSO scheduled for release in 2nd quarter 1974 will run under Release 2 of
VS2. It will be a virtual timesharing option, and more similar in design philosophy to CP-V relative
to utilization of memory. Little information is available on this yet unreleased product; however,
because users have stated their reluctance and even refusal to go to the latter I BM operating system,
we can assume that TSO as we see it today will continue to be the timesharing system .most
frequently proposed by IBM. What is known about TSO under VS2, Release 2 is documented later
in this paper.

SECTION I: THE SYSTEM
TSO and CP-V: A Systems Comparison

TSO Operations
Summary

TSO AND CP-V: A SYSTEMS COMPARISON

Both OS/MVT and OS/VS2, Release 1 are region-oriented operating systems. What this means is
that each active job is assigned to a fixed region in memory and remains there until the job is
terminated. TSO, much like the BTM implementation, is activated in a region and continues to
occupy that region until it is deactivated. Since MVT does not require fixed partition sizes, when
TSO is turned off, the memory which it had been using is freed for other system functions. The
operating system treats the TSO region exactly like any other batch region and as such, TSO vies for
the system resources with the other partitions. Operator assigned priorities determine which region
will get access to a resource whenever there is contention.

Use of Memory With TSO

TSO looks a lot like BTM in its handling of on-line users. A foreground partition is assigned for the
users who share it in a round-robin fashion. Like BTM, each job occupies the partition for a time
slice and then is swapped out. Unlike BTM, TSO ~lIows multiple partitions, but each partition has
its own set of users assigned to it, so that there is rio load balancing between partitions. Figure 1 on
the following page shows how memory is assigned for TSO. This can lead to the situ~tion where one
or two jobs share one partition while a dozen or so share a second. Since each partition shares
system resources equally, the two jobs in the first partition will perfo"rm much better than will the
dozen in the second one. Note that this characteristic can make fora very nice demonstration. A
user can be shown a terminal which'is assigned to an empty partition and receive excellent response
even though there are many other users logged onto the system.

The number of foreground regions is a parameter which can be controlled by the operator when he
initiates TSO and represents the maximum number of timesharing users which can be concurrently
core resident since only one user per region is, in core at any given time. The region has a
predetermined size which does not vary with the size of the user and must exist in a contiguous area
of memory.

In contrast, CP-V is an operating system which supports both batch and timesharing users with the
same system routines; since once users are initiated into the system, there is essentially no
difference between batch and timesharing. The resi~ent portion of the CP-V monitor requires 48KW
of memory and does not grow with additional users. All of core is mapped through the use of
hardware implemented mapping registers and all users, processors, libraries, etc., need not be
contiguous in memory, thus making the ,most efficient use of the memory resource. The mapping
registers also allow service routines, language processors - all systems software - to be reentrant so
that any number of resident users may have access to a routine although only one copy of it exists
in core. A user only requires enough pages of core to contain his identification, his own code and
whatever processor data is particular to him. CP-V also makes the distinction between data and pure
procedure and does not swap out pure procedure unnecessarily.

To understand how memory is allocated for TSO, one should first understand how OS/MVT uses
memory. Basically, memory is divided into three areas:

Low main storage - contains the operating system and system queues.

2

TIS ONLY

TSO ARCHITECTURE
NON-VIRTUAL SYSTEM

:o+--UPPERMOST MEMORY LOCATION

SHARED O.S.
ROUTINES

HIGH MAIN CORE

TIS CONTROL
REGION

FOREGROUND
(TIS)

REGIONS

DYNAMIC AREA
BACKGROUND

(BATCH)
REGIONS

OPERATING
SYSTEM

SYSTEMS AREA

FIGURE 1

3

Use of Memory With TSO (Continued)

Dynamic Area - the middle portion of memory which contains the user jobs.

High main storage - contains the link pack area (system processors and I/O routines), the master
scheduler, and the time-sharing control region when TSO is actuated.

When an operator brings up TSO by entering START TS on his console, the operating system
obtains memory for the timesharing control region. The control region will then obtain one or more
foregound user partitions, depending on how the system was generated. This memory layout is
diagrammed in Figure 2.

As is indicated in the storage map, the timesharing control region is composed of a variety of
routines, each of which has a specific function.

The Timesharing Driver

The Timesharing Driver isolates in one component the decision-making algorithms for the division
of system resources among all the users of the system. By passing parameters to the Driver with the
START command or from the system parameter library, the installation controls the various
scheduling algorithms to gain the desired performance for its job mix. These "tuning" parameters
and the algorithms are discussed in the last section of this chapteL

The Driver has a unique relationship to the other control routines. It is used as a service program by
all the levels from the MVT supervisor down to the Terminal Monitor Program. The calling
programs inform the Driver of events throughout the system - time slice end, user waiting for
LOGON, job waiting for input, etc. From this stream of information, the Driver maintains a current
picture of the system load and activity. Based on this picture, the Driver orders actions such as
swapping, changes in priority, and assignment of a user to a particular region.

The Driver component itself is completely insulated from the rest of the system by the Timesharing
Interface Program, which accepts all calls to the Driver, then passes them through a standard
interface to the Driver itself. The Driver returns parameters to the Interface Program that request
various actions by the other control routines. Thus, an installation can modify or replace the Driver
- effectively, provide its own system scheduler - without modifying the system implementation
programs. The operator uses the START command to specify which Driver - the standard one or
an installation-written one - is to be used.

The capability to change the timesharing driver can be either a liability or an asset, depending on
the situation. On the plus side, it offers extreme flexibility to tailor the system to a given T /S load.
This is especially valuable when the load is considerably different from the "typical" environment
for which TSO was designed. The interface is clean and very well documented and the switch has
actually been implemented by several large installations which are well staffed by sophisticated
system analysts.

4

TSO: TYPICAL MAIN STORAGE MAP.

HIGH MAIN
STORAGE

DYNAMIC AREA

LOW MAIN
STORAGE

SYSTEM QUEUE AREA

MVT NUCLEUS

{

LINK PACK AREA
KEY = 0 t---------I

MASTER SCHEDULER

MESSAGE CONTROL
PROGRAM AND BUFFERS KEY'I'O {

~~----------------------------~

KEY=O

TS CONTROL REGION
TIMESHARING CONTROL TASK
REGION CONTROL TASKS
DRIVER
EXTENDED LINK PACK AREA
BUFFERS

FIGURE 2

5

FOREGROUND REGION

LOCAL SYSTEM
QUEUE AREA

BACKGROUND REGION

The Timesharing Driver (Continued)

However well documented the interface may be, it is still a very complex operation. The analyst
who elects to write his own driver must fully understand the subtleties of TIS scheduling; he must
be aware of what effect his changes will have on the rest of the system. Even a slight error can
severely impact performance. I BM will be the first to warn the installation that a new driver should
only be installed by a very experienced team of programmers.

Because the design of the scheduler is so closely tied to the overall performance of the system, the
designers of CP-V have elected not to permit its modification. The feeling is that considerable effort
has been devoted to optimizing the scheduler for CP-V's architecture and any major changes would
have to damage the system.

The Timesharing Control Task

The Timesharing Control task, as shown in Figure 4 handles all functions affecting the entire
timesharing portion of the system. This includes responding to the START, MODIFY, and STOP
operator commands, and handling the swapping of foreground jobs into and out of main storage.

When the operator enters the START command for TSO, the initialization module of the
Timesharing Control is given control. The initialization module calculates the size of the
Timesharing Control region that will be needed and obtains it from the main storage management
routines of MVT. In thi,s region, the Timesharing Control task builds the control blocks and buffers
the system will need, and invokes a Region Control task for each foreground region.

The installation may override the calculated TSC region size by specifying the size it wants in a
parameter list or on the START command. This may be necessary if an installation written Driver
has greater main storage requirements than the Driver supplied with TSO.

While the timesharing system is operating, the major function of the Timesharing Control task is the
swapping of foreground jobs into and out of main storage. Swapping is handled at this level so it can
be optimized on a system-wide basis when multiple foreground regions are active. A swap out is
scheduled whether a channel is free or not. This means that on a multi-partition system there could
be significant swapping interference.

The Timesharing Control task maintains an input queue and an output queue for swap requests (one
of each set if parallel swapping is being used). Seek time is minimized by attempting to swap jobs
out to the direct access area from which the last job swapped in, or if this is not possible, by using
the free space closest to the current arm position.

In determining what portion of a foreground region to swap out, the Timesharing Control task uses
a map of the foreground job created by the Region Control task. Each entry in the map identifies
the starting address and length of a section of the region that the job is using. The number of entries
in this map is the same for every job and is specified by the installation in the system parameter
library. If there are too few entries, inactive main storage must be included (and swapped). A large
number of entries cuts down on the amount of inactive storage that has to be swapped, but adds to
processing overhead.

6

The Timesharing Control Task (Continued)

When the operator enters a STOP command to shut down the timesharing operation, the
Timesharing Control task initiates a logoff for each active user. When all users are disconnected, the
Timesharing Control task ensures that all the system resources that had been assigned to it are
returned; the Timesharing Control task then terminates, returning its main storage region to the
system.

If any users cannot be logged off, the Timesharing Control task cannot terminate. The operator is
given the facility to "force" TSO to terminate even if it appears that normal STOP processing
cannot be completed.

The Region Control Task

A major function of the Region Control Task is quiescinq and restoring foreground job activity
before' and after swapping. Conceptually, there is one Region Control task for each active
foreground region, invoked by the Timesharing Control task; although only one copy exists in the
TSC region.

Before a foreground job can be swapped out of main storage, any activity associated with it must be
brouqht to an orderly halt, or set up to be handled by some supervisor routine that will be
remaining in main storage. This includes removing control blocks associated with the job from
system queues, or flagging them as inactive.

Quiescing of I/O activity is initiated by the Region Control task (at the request of the Driver),
which issues the Purge Supervisor Call for each task associated with the foreground job. The Purge
routine removes I/O requests from the I/O Supervisor's queues of pending requests if they have not
yet been initiated. If a request has been started, that is, if data transfer is already taking place, it is
allowed to complete before the job is marked ready for swapping. The control blocks associated
with unstarted requests are stored in the foreground region where they will be swapped out of main
storage along with the job.

I/O requests that address the terminal are an exception to the quiescinq procedure because of their
long completion time. These requests are handled through the TSO interface with the
Telecommunications Access Method routines which process all terminal I/O requests. The requests
are buffered in supervisor main storage, not in the foreground region. Data can be written or read to
these buffers whether the job is present in its main storage region or not.

Many control blocks, like the I/O requests mentioned above, reside in the foreground region. For
background jobs, these control blocks would be created and maintained in the System Queue Area,
a section of main storage set aside for this purpose during nucleus initialization. Foreground regions,
however, each contain a Local System Queue Area to hold control blocks. As part of quiescing, the
Region Control task removes pointers to these control blocks from system queues. The blocks can
then be swapped out of main storage along with the foreground job. The only control blocks for
foreground jobs that are assigned in the System Queue Area (and remain in main storage) are
requests for timer interruptions, operator replies, and assignment of resources through ENQ.

7

The Region Control Task (Continued)

When a job is swapped into main storage by the Timesharing Control task, the Region Control Task
receives control to restore the I/O requests it intercepted at swap out time, and to return the
control blocks associated with the job to the appropriate system queues.

The Region Control Task is the only reentrant TSO system processor and resides in the TSC region.
Note - no such module e~ists in CP-V because the system does not remove a user queued for I/O.
The overhead is eliminated by placing him in a special state queue and allowing another user to
execute until the I/O is completed.

Other Control Programs

The remaining TSO control programs are in the foreground region; The most important are
LOGON/LOGOFF which is invoked by the RCT when a user wants to log on or off of the system
and the Terminal Monitor Program (TMP) which takes care of user functions subsequent to logon -
i.e., connects the user to processors he wishes to use, translates his commands for that purpose, and
handles abnormal termination of command processors or problem programs. Neither LOGON nor
TMP are sh~red. A copy of LOGON/LOGOFF must be maintained on secondary storage for each
region and the TMP must always be resident with the user no matter what function he is executing!
This means additional swap time to bring in extra copies of the processor, and also means that extra
memory is required to maintain the redundant copies in a multi-partition system.

Control Logic-On Overview

An overview of the control logic which connects these various TSO modules is shown in Figure 3,
titled TSO -- a system overview.

8

START

TIMESHARING
CONTROL TASK

ATTACH

REGION
CONTROL TASK

ATTACH

LOGON/LOGOFF

SCHEDULER

TSO - A SYSTEM OVERVIEW

MVTCONTROLPROGRAM

TIMESHARING
INTERFACE PROGRAM

BELOW THIS LINE ROUTINES
ARE IN THE .FOREGROUND
(SWAPPED) REGION

ATTACH THROUGH
MVT JOB MGT.

TERMINAL
MONITOR
PROGRAM

ATTACH

COMMAND
PROCESSOR

OR USER
PROGRAM

FIGURE 3

9

START

TCAM
MESSAGE
CONTROL
PROGRAM

TERMINAL
I/O

TSO OPERATIONS

LOGON

When a new user is first recognized by TSO he is potentially assigned to a region and the LOGON
scheduled associated with that region begins to check his authorization and set up the
predetermined Data Control Block (DCB) assignments for him. This may include some dummy
DCB's, but since the number of DCB's required varies widely, dependent upon what the user does
during his terminal session, this individual user default (as opposed to system wide in CP-V) is an
inflexible restraint which may force the user to interrupt his session of some point then log off and
then back on under a different set of logon JCL (if he is so authorized) in order to gain enough
DCB's to do his tasks in a multi-step session.

If LOGON discovers that the user is too big for the region he has been assigned to, it reports to the
region control program which calls the timesharing control task and he is reassigned to a bigger
region.

The Terminal Monitor Program (TMP) is usually the processor invoked by LOGON. TMP is the
equ ivalent to TE L in CP-V. TMP is not reentrant and a copy of TMP will be swapped with each user
throughout his session. TMP must remain with the user to handle attention characters and program
and processor errors and termination.

During the terminal session under TSO, a user is swapped in and out of core and is allotted
execution time in this manner.

Allocating CPU Time

The Timesharing Driver interfaces between MVT and the various timesharing modules. It is an event
recorder and is front-ended by an interface program (TSIP) which acts as an interface between the
Driver and the rest of the system. I n order to go further we must define some. terms.

CYCLE - The time required for all users assigned to a particular region to get an
execution time slice. This happens one user at a time on a round-robin
basis.

MAJOR TIME SLICE - The length of time each user in a region will be resident in memory.

MTS
CYCLE - overhead

Users

MI NOR TI ME SLICE - The available execution time for an individual user.

The job of the Timesharing Driver is to parcel out the execution time not allocated to batch jobs
(which are not swapped) among the jobs in various regions as they are swapped in and out. TSD
uses one of several algorithms, taking cognizance of installation parameters. Although a region can
have more than one queue for the jobs assigned to it, the parameters used for queue assignment are
size and interactiveness, the latter being measured by historical data on that job's past executions.
The collection and maintenance of these statistics constitute overhead which does not exist in CP-V.
Under TSO if too many users are assigned to a queue the major time slice gets so small that the
system spends all of its time swapping and no useful work is accomplished. To make sure this

10

Allocating CPU Time (Continued)

doesn't happen, the installation must specify a minimum major time slice for each queue in each
region, an additional complexity for the system manager. The system manager is allowed to specify
some nine parameters which influence the calculation of the major time slice - e.g.,

maximum number of users logged on
number of foreground regions
number of queues per region
queue weighting (preference for jobs in one queue over those in another).

With CP-V, the system manager controls global features rather than attempting to run the system by
controlling detailed regional parameters. He can vary such things as number of on-line users, number
of simultaneous batch users (and their sizes, etc.), amount of resources to be allotted to batch and
on-line users (memory, time, drives, etc.), terminal responsiveness desired, etc., and he may change
all these dyna~ically.

The minor time slice is the result of dividing the available execution time among the regions of main
storage containing a ready foreground or background job. This calculation is made each time a
major slice expires and one or more swaps occur. Remember, swapping and scheduling are both
done by region. The installation can calculate this execution time slice in one of three ways -

1. Simple dispatching -- the job at the top of the ready list (the one most recently swapped in)
gets all the time available until the next scheduled swap. i.e.

MS = AT

(where MS is the minor time slice and AT is the available execution time)

2. Even dispatching - when there is more than one foreground region the available execution
time can be divided evenly among foreground regions containing a job ready to run. i.e.

MS = AT
N

(where N is the number of foreground regions containing jobs ready to run)

3. Weighted dispatching - for this option the system keeps running statistics on the amount of
time each user spends waiting - usually because of pending I/O requests. Then jobs which
historically have given up large parts of their minor time slices are given less CPU time (than
those which have not), i.e., the minor time slice is computed in the following algorithm:

MS = this job's Ewt% X (AT)
sum of EWT%

(where EWT% is the Estimated Wait Time percentage and AT is the available execution time
for this minor time slice.)

11

Analyzing the Allocation Schemes

The multiplicity of va~iables which can be set by the systems manager does not seem to be an
advantage in any way. Rather it seems to complicate that person's job unnecessarily and increase
system overhead because of the backlog of statistics which must be kept and massaged on a regular
basis. Even if everyone gets his part right and if this scheme works, the system will wind up being
"tuned" on a regional level and through an averaging process to an operating environment which
existed fifteen minutes ago!

The major negative design flaw of TSO is that it works on the basis of regional activity .rather than
on the basis of individual users. Once a user has been assigned to a region (during the LOGON
process) he stays there for his entire session, regardless of what he is doing or what his memory
requirements are. The assignment to region is balanced to sorTie extent either by an attempt to keep
the number of users in each region equal or through a calculation yielding average amount of
activity per region. But when a bad mixture occurs there is nothing to be done and users in one
region may get poor service while those in another get good service. In CP-V there are no
multi-regional queue considerations. CP-V knows through one set of queues in which entries are
made by logical and physical interrupts just what each user did last, and is responsive to each user as
well as on the basis of overall resources. When all the system resources (and that includes memory)
are in one pool, and resources are allocated as required with no fixed partitions or regional
considerations, those resources can obviously be managed more efficiently.

CP-V is an operating system which was designed to handle both batch and timesharing users in a
stand-alone environment, not as a subset of some other existing operating system with built-in
overheads and design constraints. From a design standpoint there are similarities between CP-V and
TSO - in that both systems' terminal users need not be in core while doing terminal I/O, and
probably won't be. I n both, users are swapped in their entirety not partially. Both have a user
interface processor, a swapper, a scheduler, and special handler for terminal I/O - as opposed to
other types of I/O. However, there are many features incorporated into CP-V which show that it
was designed specifically for timesharing and multi-use.

In CP-V the Scheduler is the heart of the operating system. It controls approximately 30 state
queues which contain at all times one entry for each user in the system. The user moves from state
queue to state queue based on events which happen as a direct result of user action or some system
occurrence.

Users are scheduled for execution and swapping based on the state queue they are in. The order in
which the queues are searched gives priority to users who are interactive and need quick response. A
similar algorithm is used to search the queues in a different order for users who are not using, or
likely to use, the CPU in the near future. These users are candidates for being sV\Bpped out. Samples
of state queues are:

The queue of all terminal users W10 have hit the breck key
the queue of all users W10se terminals are inputting
the queue of users having I/O in progress
The queue of compute-bound users

Since all users and processors run mapped and most system processors including the Terminal
Executive Language (TE L) are reentrant or shared, a user may be swapped out but a system
processor never need be. If the processor pages are needed they are overwritten, and should the

12

Analyzing the Allocation Schemes (Continued)

processor be required again it is copied in from secondary storage and associated with the user
through his map (in his Job Information Table, JIT). Users and processors can always be swapped
into core without an outswap if enough free pages exist even though those pages are not contiguous.
This is of course transparent of the user. In CP-V there need not be unused core because a user is
assigned to a partition larger than he requires. There never need be two copies of EDIT, or TEL, or
FORTRAN resident and this code is not taking up swapper storage space.

SUMMARY

• TSO is an option under MVT requiring well over 150KB additional storage. Batch and on-line
users are treated differently.

• CP-V is an integrated timesharing and batch system where the on-line user receives the full
capabilities afforded the batch user.

• TSO allocates memory on a contiguous region basis, with memory (which is the critical
resource in a timesharing system) wasted. The number of regions is fixed and hence, the
maximum number of users is also fixed. Memory tied up by a user does not vary with his
changing requirements as he goes from step to step. It must be sufficient to hold his largest
step.

• CP-V has no restructive region concept. Users employ only as much memory as is required.
'There is no maximum to the number of users that may be resident at a given time. The
important difference is that CP-V has a much better memory utilization; thus more users can
be in memory at any given time; thus, a better opportunity of having someone in memory who
can utilize the CPU.

• TSO has introduced all sorts of system parameters in an attempt to control which users go into
a particular region, priorities and number of queues per region, size of major and minor time
slices. It does running calculations to keep track of activity in each region, interactiveness of
users, amount of minor time slice not used by a user etc., in an historical manner. All of this is
because the designers were aware of the challenge of being responsive to terminals while making
constant progress on all users. The complexity of this approach is such that it is improbable
that the system is ever adjusted properly for the current load at any given instant. There must
be considerable overhead in keeping the running statistics and calculating "who gets how much
and when". Once again, there problem is fixed regions, with users assigned to a particular
reg'ion for an entire s~ssion.

• CP-V features a superior scheduler. Due to the use of state queues, it always knows what is
happening right,now and it can pick the appropriate user or users to swap in or out at any time
quickly. CP-V knows, for example when a user has 10 seconds worth of terminal output and
can get him out of memory immediately rather than waiting for the end of his minor time slice
as TSO must.

• TSO has no concept of shared processors, pure procedure, etc. The entire user and whatever
processors he is using swap out and in.

• CP-V has shared processors, libraries, debuggers, etc., which are shared by mUltiple users
thereby conserving memory. Share processors are never swapped while in use out conserving
swaptime. CP-V also recognizes when it is not necessary to swap out a users pure procedure.

13

SECTION II: THE COSTS OF TSO

Buying a TSO System
Upgrading to TSO
Summary of Costs

BUYING A SYSTEM

There are two ways for a potential user to acquire a TSO capability - either acquire a new 370 or
upgrade the existing system if one al ready exists in house. I n the former case a user would have to
acquire at least a 512KB 370/145. A minimal system to support sixteen lines and very little batch
should cost $1,146,330 or lease for $25,254 per month. A more realistic system which supports
thirty-two lines and two or three batch partitions would be a 1.5MB 370/158 which would lease for
$57,966 per month or sell for $2,645,100. The complete configuration for each case is shown on
the next two pages.

Xerox and IBM: Competitive Configurations

As a basis for comparison with the two I BM configurations, consider the two Sigma CP-V
configurations on the page following the two I BM configurations. The first is a minimal system
designed to support sixteen timesharing lines and some batch work. It should perform at least as
well as the 512 KB 370/145 in a concurrent batch and timesharing environment. Likewise, the
128KW Sigma 9 system shown in the second Sigma 9 configuration should match the performance
of the 370/158 in a multi-use environment when all thirty-two timesharing lines are active.

14

IBM SYSTEM 370
MINIMAL TSO CONFIGURATION
(512KB 370/145 Running OS/MVT)

Monthly
Qty Device Lease Purchase

1 3145-12 CPU with 512KB Memory $16,605 $ 797,000
1 3047 Power Unit 350 16,800
1 3333 Disk Controller with 2-1 OOM B Spindles 1,627 65,000
1 3210-1 Operator's Console (15 Chars/Sec) 175 5,600
1 7844 Console Printer Adapter 189 9,070
1 4660 I ntegrated Storage Control for 333 2,025 81,000
1 3420-5 Tape Drives (1600 bpi; 125 ips) 475 18,170
1 6631 Single Density Feature for Tape Drive 85 3,260

3803 Tape Controllers 675 25,820
6631 Single Density Feature for Tape Controller 85 3,260

1 2501, 500 CPM Card Reader with Controller 510 25,460
1 1403-2, 600 LPM Printer 750 28,030
1 2821-2 Printer Control Unit 600 23,040
1 3704-A 1 Communications Controller 646 26,000
1 Type 1 Line Interface Bases 24 960
8 Type 1 A Line Sets (Each Handles 2 Lines) at 35/1450 280 11,600
1 Type 1 Line Scanner (Program Controller Character 24 960

Assembly)
Communications Channel Adapter 129 5,300

Total cost $25,254 $1,146,330

15

IBM SYSTEM 370
TYPICAL 32 LINE TSO SYSTEM

(1.5MB 370/158 Running OS/MVT)

Monthly
Oty Device Lease Purchase

1 3158-JI 1.5MB 370/168 CPU $38,500 $1,845,000
1 4650 I ntegrated Storage Control for 3333 2,200 106,800
1 3333 Disk Controller with 2-1 OOMB Disk Drives 1,627 65,000
1 3330-1 100MB Additional Disk 770 31 000
1 2305-2 11.2M B Swapping Drum 3,900 155,810
1 2835-2 Drum Controller 2,500 99,880
6 3420-5 1600BPI; 1251PS Tape Drives 2,850 109,020
6 3550 Dual Density. Features for Tape Drivers 660 25,260
1 3803 Tape Controller 675 25,820
1 3550 Dual Density Feature for the Controller 110 4,210
1 2540 Card Reader-Punch (1000/300 CPM) 710 32,930
1 2821-1 Unit Record Controllers 970 37,180
1 1403-N 1, 1100 LPM Printer 875 33,970
1 3704-A2 Communications Controller 764 31,000
2 Type 1, Line Interface Bases 48 1,920

16 Type 1 A Line Sets 560 23,200
1 Type 2 Line Scanner 118 4,800
1 Communications Channel Adapter 129 5,300

Total cost $57,966 $2,645,100

16

XEROX SIGMA SYSTEM
Minimal CP-V Configuration

(Supports 16 lines and some batch)

Monthly
Oty Device Lease Purchase

64 KW Sigma 9, Mod 2 $ 7,800 $275,000
1 7012 Keyboard and controller 150 6,000
1 7122 400-CPM card reader 400 12,000
1 7270 Controller and (2) 49MB disk drives 1,600 65,000

7315 Controller and 800 bpi tape drive 600 16,000
7440600 LPM printer 875 35,000
7630 Comm. controller and 8 lines 350 14,000
7631 8 line expansion 145 5,800

Total cost $11,920 $428,000

XEROX SIGMA SYSTEM
Typical CP-V Configuration

(Supports 32 lines and batch)

Monthly
Oty. Device Lease Purchase

1 8610E 128KW Sigma 9 $16,500 $525,000
1 7012 Keyboard/printer & controller 150 6,000
1 7270 Controller and (2) 49MB disk drives 1,600 65,000
4 7271 Add-on 49M B disk drives 2,200 90,000
1 7231 Extended performance RAD controller 350 . 14,000
1 7232 6.2MB extended performance RAD 1,250 50,000
1 7330 1600 BPI tape controller 710 28,400
6 7332 1600 BP I tape drives 2,610 111,000
1 7441 1000 LPM printer 1 150 46,000
1 7630 Comm. controller + 8 lines 350 14,000
3 7631 8 line expansion 435 17,400

7160 300CPM card punch 800 32,000

Total cost $28,105 $998,800

17

UPGRADING TO TSO

If a batch shop wishes to upgrade to TSO, it is going to encounter some significant hardware and
software costs. While these costs can vary widely from installation to installation, consider a typical
example in an attempt to quantify the expense. Since the same level of peripherals and memory are
needed for TSO, no matter what I BM system is really expanded, these costs are an accurate estimate
for any TSO upgrade. Assume a 370/158 with one megabyte of core running OS/MVT, release 21.6.
We shall add the capability to support thirty-two timesharing terminals, each using a 20K word
program. Extra resources will be added as needed to keep the impact on the current system to a
minimum.

Adding More Memory

Since TSO requires its own region (or regions depending on the number of users), more memory
;;"lust be added to the system if we are not going to sacrifice memory which is currently devoted to
batch processing. TSO requires incremental storage of the following magnitude for a variety of
modules, not including the users area.

Module

Addition to nucleus
Master Schedu ler
Link Pack (SVC's)
Message Control Program (TCAM)
Timesharing Control Region
Foreground LSQA and Control Blocks

Total to Support One Region

Additional Bytes

4,000
4,000

16,000
52,000

100,000
12,000

188 ,000 Bytes

Although the above numbers are the ones published by I BM, actual user interviews have shown
memory requirements range from 140KB to 300KB purely for the TSO system modules needed to
support a single TSO region. Each additional region requires about 15KB for system tables and
scheduler enhancements. For this example we will use the I BM figures: 188KB plus 15KB per
additional region. Since I BM strongly discourages more than twenty -active terminals per region
(fifteen or sixteen is a better upper limit) the proposed system will require two TSO regions.

It is interesting to note that in almost any situation there is no way to avoid adding this memory. Of
all the features which are listed above, only TCAM has any reasonable chance to already be resident
on the system. This would happen if the installation were already using some sort of on-line system
such as transaction processing or ATS.

18

Adding More Memory (Continued)

The incremental memory requirements for the TSO system are:

TSO support for first region
First Region
Additional TSO system requirements for

second region
Second Region

Total Additional Memory Requirements
for 32K User TSO

188,000 Bytes
80,000 Bytes

15,000 Bytes
80,000 Bytes

363,000 Bytes

On an IBM 370/158, the next memory increment is 1.5MB. This results in an increase in the
monthly rental for CPU and memory from $35,900 to $38,500 giving a jump of $2,600 per month.
The purchase price goes up to $1,845,000 from $1,730,100 for an increase of $114,900.

Adding a Swapper

Upgrading to the TSO option will also require the addition of a swapping device. Either a 3330 type
disk system or a 2305 fixed head drum will work. The former would be chosen when cost is a
controlling factor, but this will sacrifice timesharing performance. The most likely choice will be the
fixed head device. The cost and performance of both devices are summarized below:

Average Monthly Monthly
Access Transfer Rent Rent Purchase Purchase

Device Capacity Time Rate (Device) (Controller) (Device) (Controller)

2305-2 11.2MB 5MS 1.5MB/sec. $3,900 $2,500 $155,810 $99,880
3333 200MB 30MS 806KB/sec. 1 627 included 65,000 included

Adding Communications Gear

Normally, a pure batch system will include no communications equipment, so it too must be added.
The least-cost way to add a flexible system to support thirty-two lines would be to use a 3704
Model A 1 communications subsystem. The rest of a 3704 and related equipment is shown on the
following page.

19

Item

3704-A 1 Communications Controller
Type 1 Channel Adapter
Type 2 Communications Scanner
Type 1 Line I nterface Bases (one per 8 line sets) (2)
Type 1 A Line Sets (one per 2 lines) (16)

Total Communications Costs For 32 Lines

Monthly
Lease

646
129
118
48

560

1,501

Purchase

26,000
5,300
4,800
1 920

23,200

61 220

If an installation wishes to increase to more than 32 lines, the 3704 must be upgraded to a much
more expensive 3705. Also, note that these costs for communications gear are only approximate;
the actual list of available features and options for the 3704 and 3705 is quite forbidding and costs
can vary greatly depending on line type and speed and the type of terminal to be attached.

Adding TSO Software

Since I BM is almost completely unbundled, all non-systems software has a monthly charge which
must be a serious consideration to potential users. Although each installation has its own software
needs, a TSO installation which takes full advantage of all the compilers that are supported on TSO
would require the items shown below:

System

TSO Assembler prompter
TSO Fortran IV prompter
TSO Cobol prom pter
TSO ITF BASIC
TSO ITF PL/1 (CALC is included)

TSO Data Utilities (copy, list, format, Merge)
TESTCOB Cobol I nteractive Debug
TESTFORT Fortran Interactive Debug
*Code and Go Fortran
*PL/1 Optimizing Comp~ler with TSO prompter
*PL/1 C Checkout Compiler with TSO prompter
PL/1 Transient Library

Total TSO Software Cost

Monthly Cost

$ 30
30
30

120
60 ($120 if BASIC is

not already on
system)

145
220
150
275
185
340

40

$1,625 Per Month

*indicates that this software may already be installed on a batch system

20

Adding TSO Software (Continued)

Combining all of the above figures, the cost to add a thirty two user TSO system to an IBM
370/158 comes out to:

Item

512KB Memory
2305-2 Fixed Head Device
1835-2 Controller
3704 Communications Controller System
TSO Software

Total Cost to Add TSO

Purchase

114,900
155,810
99,880
61,320

$431,910 Plus
$1,625 Per

Month for
Software

Monthly Rental

2,600
3,900
2,500
1,501
1,625

$12,.126 Per Month

Even if an installation wished to add only a minimal timesharing capability (as in the 16 line
example used previously) many of the costs would not vary much. The installation might be able to
avoid additional direct access devices but the memory increment would still be the same. The
communications needs would include:

Item

3704-A 1 Communications Controller
Type 1 line interface base
Type 1 A line Sets (8)
Type 1 Line Scanner
Communications Channel Adapter

Total Cost for 16 Lines

Monthly Lease

$ 646
24

280
24

129

$1,103

Purchase

$26,000
960

11,600
960

5,300

$44,820

Combining all costs will result in the following total expense to add a minimal sixteen line
capability to an.existing 370/158:

Item Monthly ,Lease Purchase

512KB Memory. $2,600 $114,900
3704 Communications System 1 103 44,820
TSO Software 1,625·

Total Cost to add a minimal TSO $5~328 $159,720

21

Adding TSO Software (Continued)

Note that this cost of adding TSO to an existing system does not take into account the possible
degradation of batch processing which can occur when a timesharing load is added t9 an already
busy CPU. "Fortunately" for 18M, their CPU's are frequently idle so the system may be able to
support significant additional work as long as the critical resources (memory and peripherals) are
available. Since we had added both resources it is possible that the batch performance may not
degrade noticeably. However, if the CPU is already "well" utilized (60% - 80%), we can expect the
batch capability of the system to degrade when TSO is brought up. Thus, a difficult-to-measure, but
very real cost in degraded performance can result from adding TSO to an existing system. However,
the cost depends both on the current job mix and the timesharing load to be 'added. Since there is
no fair way to make a general statement about the magnitude of the cost, it has not been added into
the above numbers, but all potential TSO installations should be aware of it.

SUMMARY OF COSTS

A summary of relative costs emphasizes how Sigma and CP-V compare with 18M, when buying or
leasing a timesharing capability.

Acquire a new Upgrade an Acquire a
System 370 existing 370/158 Sigma system

Lease Buy Lease Buy Lease Buy

Minimal System $25,254 $1,146,330 $ 5,328 $159,720 $11,920 $428,000
Larger System $57,966 $2,645,100 $12,126 $431,910 $28,105 $998,800

22

SECTION III: USER'S OVERVIEW

Hardware Requirements
Using TSO

HARDWARE REQUIREMENTS

TSO Configuration

To run TSO, a user must first have access to the proper sized computer. The minimum TSO
configuration consists of a System/360 Model 50 or larger, or a System 370, Model 145 or larger.
At least 512K bytes of memory is needed to provide concurrent batch and timesharing operation. A
360/50 with 384KB will support a limited set of TSO functions but will not support batch and
timesharing operations at the same time. Anyone of a series of direct access devices (2301, 2303 or
2305 drum or 2314, 2319, or 3330 disks) may be used for a swapping device. Additional direct
access space is normally required for library storage, with the size requirement as a function of the
given installation.

Terminal Support

The following terminals, or their equivalents, are supported by the two systems:

TSO

IBM 1050 Data Transmission System
IBM 2741 Communications Terminal
Teletype Models 33 and 35
2260 Display Station
2265 Display Station

USING TSO

The Control Commands

CP-v

Xerox Model 7015 Keyboard/Printer
Teletype Models 33, 35, 37, and 38
IBM 2741 Terminals
Tektronix Models 4010 and 4013
Datapoint 3300

To begin operation with TSO a user must first logon in a process similar to the logon for CP-V. The
user specifies a user I D, optional password, a file containing the JCL to control the logon procedure,
and a specification of user space for the session. The latter two parameters have system assigned
defaults. A successful logon connects the user to the Command Language Processor, which is quite
similar to TEL in CP-V. The user may then invoke any of a series of processors to build files,
manipulate them, and use them. A list of acceptable commands and a short description of each, for
each operating system, folio \1\.6:

23

COM MAN DS arranged in Xerox (CP-V) alphabetical sequence

CP-V Command

BACKUP

BATCH

BUILD

BYE

CANCEL

COMMENT

CONTINUE

COpy

DELETE

DELTA

DISPLAY

DO NT COMMENT

DONT LIST

DONT OUTPUT

EDIT fid

END

FORT4

*No direct equivalent

TSO Equivalent

NDE*

SUBMIT

EDIT

LOGOFF

CANCEL

NDE*

(CR)

COpy

DELETE

TEST

NDE*

NDE*

NDE*

NDE*

EDIT

END

FORT

24

DESCRIPTION

Saves the specified file on a system tape. In
case of a crash in which files are lost, files
on the tape will be restored.

Enters the specified file(s) in the batch job
stream.

Accepts a new file from the terminal.

Disconnects the terminal from the system
and provides an accounting summary.

Cancels a previously submitted batch job.

Directs error commentary to the specified
device, or counteracts the preceding DONT
COMMENT command.

Continues processing from the point of
interruption.

Copies a file or device input to the
specified file or device.

Deletes the specified fi les.

Calls the on line debugging subsystem.

Lists the current values of various system
parameters.

Stops error commentary o~tput.

Stops listing output.

Stops object output.

Calls EDIT to modify a file.

Terminates the current job step.

Compiles a FORTRAN IV source program.

CP-V Command

GET fid

GO

JOB jid

LIST
LIST (A)

LINK

LIST

load module name

MESSAGE text

META

OFF

OUTPUT

PASSWORD xxxx

PLATEN

PRINT

PROCEED

QUIT

*No direct equivalent

TSO Equivalent

NDE*

(CR)

STATUS

L1STDS
L1STCAT

LINK.

NDE*

CALL

SEND

ASM

LOGOFF

NDE*

Not a user privilege

PROFI LE

OUTPUT

(CR)

(ATTN)

25

o ESCRtPTION

Restores the previously saved core image.

Continues processing from the point of
interruption.

Requests the status of remotely entered
jobs.

Lists file names and optionally, attributes
from the account dictionary, tape, or disk
pack.

Forms the load modules as specified.

Directs the listing output to the specified
device, or counteracts the preceding DONT
LIST command.

Initiates execution of a load module.

Sends the specified message to the
operator.

Assembles the specified source program.

Disconnects the terminal from the system
and provides an accounting summary.

Directs object output to the specified
device, or counteracts the previous DONT
OUTPUT command .

. Assigns a new logon password for the user.

Sets the value of the terminal platen width
and page length.

Sends print output to the line printer and
punch output to the punch.

Continues processing from the point of
interruption

Terminates the current job step.

CP-V Command

RESET

RESTORE fid

RUN

SAVE

SET

START

STATUS

STOP

Subsystem Calls

APL
BASIC
COBOL
DELTA
EDIT
FLAG
FORT4
META
PCL
TEXT

TABS

TERMINAL type

TERMINAL STATUS

U

*No direct equivalent

TSO Equivalent

NDE*

NDE*

CALL

NDE*

ALLOCATE and
ATTRIB

LINK & CALL

TIME

END

Not available under TSO
BASIC
COBOL
TEST
EDIT·
GOFORT
FORT

. ASM
COpy
Not available under TSO

PROFILE

PROFILE

PROFILE

TEST

26

DESCRIPTION

Resets all DCB's back to their system
default values ..

Restores the previously saved core image.

Loads the specified module and starts
execution.

Saves the current core image on the
designated file.

Assigns file or device to a DCB or sets DCB
parameter.

Loads a load module into core and starts
execution of the program.

Displays the current accounting values.

Terminates the current job step.

Sets the simulated tab stops at the
terminal.

Sets the terminal type for proper I/O
translate

Lists the terminal type and the current
values parameters associated with its
operation.

Associates on-line debugger.

TSO
Command

ACCOUNT

ALLOCATE

*ASM

ATTRIB

*CALC

CALL

CANCEL

*COBOL

*CONVERT

*COpy

DELETE

EDIT

EXEC

*FORMAT

*FORT

FREE

HELP

LINK

*LIST

COM MAN DS arranged in IBM (TSO alphabetical sequence)

CP-V Equivalent

SUPER

SET

META

not required

BASIC

(load module name)

CANCEL

COBOL

not needed

PCL

DELETE

EDIT

none

TEXT

FORT4

not required

none

LINK

COpy

FUNCTION

Add, modify or delete a users authorization.

Define files that user plans to execute.

I nvoke the assembler.

Build list of attributes for data sets.

Execute statements in desk calculator mode.

Start execution of a load module.

Cancel a previously submitted batch job.

Invoke the Cobol compiler.

Change file formats so that files may be passed
between processors.

I nvoke the processor which copies a file or input
data to a specified file or device.

Delete the specified file(s).

Build or edit a file.

Execute a cataloged JCL procedure.

Format a page of ~utput as determined by a
series of control words.

I nvoke the Fortran compiler.

De-allocate data sets.

Obtain information about function and syntax
of TSO commands.

Build load modules.

Prints all or selected records from a sequential
file.

*Means that this capability is available only as an extra cost I BM Program Product. All TSO
commands may be entered in IJfree format" - there are no required starting columns. If a
command has a required subcommand which is not entered, TSO will request it.

27

TSO
Command

LlSTALC

LlSTBC

LlSTCAT

LlSTDS

LOADGO

LOGOFF

LOGON

MERGE

OPERATOR

OUTPUT

*PL 1

*PL1C

PROFILE

PROTECT

RENAME

RUN

SEND

STATUS

SUBMIT

TERMINAL

CP-V Equ ivalent

none needed

COpy MESSAGES

LIST

LIST(A)

compile, run

OFF, BYE

LOGON

MERGE (under EDIT)

none

COPY file name

none

none

several (TERMINAL,
PLATEN, etc.)

special command not
required

COpy A over B

F LAG (for Fortran)

MESSAGE

JOB

BATCH

several (TERMI NAL,
PLATEN, etc.)

FUNCTION

List all allocated data sets.

List all messages sent to user.

List all cataloged data sets.

List attributes of all data sets.

Compile and execute a program.

Logoff.

Sign on to system.

Merge files.

To define a terminal as an operator's console.

Direct output of a batch job to a terminal.

PL/1 compile.

Invoke the PL/1 checkout compiler.

Establish terminal defaults.

Establish passwords and access restrictions.

Change the name of a file.

Compile load and go.

Send a message to the operator or another user.

Discover status of batch jobs.

Submit jobs to the batch stream.

Define operating characteristics of the user's
terminal.

*Means that this capability is available only as an extra cost I BM Program Product. All TSO
commands may be entered in "free format" - there are no required starting columns. If a
command has a required subcommand which is not entered, TSO will request it.

28

Command CP-V Equivalent

TEST DELTA

TIME STATUS

PROC none

WHEN none

END none

TSO File Conventions

FUNCTION

Interactive debugging routines.

Display connect and execution times.

Starts a JCL procedure file.

In JCL procedure allows conditional jobstep
execution.

Terminates a JCL procedure file.

TSO file names are composed of three segments, separated by periods. The first segment is the users
I D which was entered at LOGON, the second is any set of one to eight alphanumeric characters, and
the last is one of eighteen descriptive qualifiers which tells what sort of processor will eventually use
the data file. For example an ASM qualifier would mean that the data is to be used for assembler
input, while CLIST would mean that the file is a command list of JCL statements. The descriptive
qualifier is necessary because the TSO language and service processors are not compatible in terms
of input format. The qualifier permits the system to select automatically the proper file format for
the appropriate processor. I BM BASIC requires that each record contain a statement number in the
first five locations, but COBOL will not accept such a format. Most processors will accept only
upper case data, but certain TEXT processors as well as many user written programs may deal with
upper or lower case. Different processors expect different input record lengths. To accommodate
this selection of file formats, TSO uses the qualifiers as a guide to construct the file in the proper
format. The qualifier also allows the file to be used quite readily. The user says IIRUN filename"
and the operating system automatically selects the proper combination of compiler and loader.

Although the filename consists of three parts it usually only need be referenced by the middle
name. TSO will automatically prepend the account number specified at logon. There can be some
confusion if two files have been built with the same middle name but different qualifiers. For
example if a user had built both PROG RAM ASM and PROG RAM FORT and then gave the
command IIRUN PROGRAM" it is impossible to tell which would run. Likewise "DELETE
PROG RAM" causes both files to be deleted.

Some other awkward problems arise because of this naming convention. If the user wants to use the
file for something other than that for which it was originally built, he must change the name. Since
the operating system makes its own decision on when to convert lower case input to upper case and
what length and format of record to work with, the user must be quite careful in his dealings with
this file system.

TSO files maintain compatibility with OS/MVT batch file formats. This is both a benefit, because of
the great flexibility offered the user, and a problem, because of the reSUlting JCL required to
control this flexibility. The complexity is apparent in the way a given file is assigned to a job. In

29

TSO File Conventions (Continued)

CP-V the user has a DCB in his program which is referred to by a single SET statement at the users
terminal. The SET statement points the DCB to the appropriate file or device. To accomplish the
same step with TSO requires two commands. The first is ATTR I B which defines a list of attributes
to be later associated with a file. Entries can include blocksize, record size, number of buffers,
length key length for keyed files, input or output file, expiration date, error processing and record
format. A second statement, ALLOC, ties the file and allocation list to a particular file and also
specifies the device on which that file is located and its eventual disposition. While most of these
options have system defaults, the defaults can vary with different circumstances so the user must be
aware of how and under what conditions the file will be used. It has become very difficult to use
TSO without fu lIy understanding the complex I BM/OS file structure.

Because TSO uses the OS file structures, it must share the strengths and, weaknesses of those
structures. A most significant consideration is the preallocation of direct access space on IBM
systems. OS requires a user to specify the size of his file before it is OPENed. At OPEN time the
operating system will then allocate that space as a contiguous block on the direct access device. The
major advantage is that there is no chaining between logically sequential granules, as there is in CP-V
files, so large data transfers or a series of sequential reads or writes will be very fast on IBM gear.
Since the records are contiguous there is little excess head movement or rotational delay between
successive accesses.

As nice as this file structure is, there are some significant drawbacks. First, once a file space is
allocated, none of it is available to another user, no matter how much is actually used by the
allocating program.

Second, the user must be pretty sure of how big his file is going to be before he starts. If he guesses
too high, he will waste disk space by reserving unneeded space. If he guesses too low, his program
will abort unless he also specified how to handle the overflow. I n the latter case the system will
allocate up to twenty-four additional file segments - one at a time - to the program as needed. The
length of these overflow segments must be specified by the user. These segments will not normally
be contiguous but will be chained as they are in CP-V, thereby eliminating any performance
advantage attributed to a contiguous data file.

The third problem arises when the user starts to release old files and build new ones of different
sizes. Since the OS file structure requires that the initially-requested space be allocated
contiguously, the disk equivalent of memory fragmentation will occur. To alleviate this problem the
disk pack must frequently be reorganized (the files moved around so that no gaps are left between
them), a time-consuming process which tie's up both a disk and tape drive as well as some CPU time.

The primary argument for using such a file structure and living with the limitations is increased
performance: since .the file is contiguous, additional seeks are not required to get to subsequent
records. This is fine in a batch system where the relatively low number of active jobs will just about
guarantee that a given user will not have to share a drive with another active user, and the read/write
arm on the drive will not be moved to a second file qy another concurrently active job between
accesses by the first user. However~ in a timesharing environmentwhere there are many more active

30

TSO File Conventions (Continued)

users than there are direct access devices, each device will usually be shared by several active users.
I n this envi ronment the chance is small that the arm will not be repositioned by another user
between successives reads or writes by the first user. Thus, most reads or writes will require a
complete seek routine, obviating the primary advantage of the I BM file structure.

One significant advantage of I BM's technique is that since they are not limited to granule-sized
records on the direct access device, they can transfer up to 8,000 words on a single physical read or
write. CP-V requires sixteen physical I/O's to accomplish the same transfer. Because of this,
programs with large block or record sizes will tend to run faster on I BM equipment.

TSO & CP-V System Processors

Both CP-V and TSO make available to the user a fairly complete line of software. Both offer an
interactive, interpretive BASIC which, while not fully compatible with each other, are both quite
complete. TSO supports ITF: PL/1 which is an interactive implementation of PL/1 that has been
done as an interpretive processor. It is a subset of the full IBM PL/1 compiler but lacks some of the
more sophisticated PL/1 capabilities, especially in the I/O area. However, it does include a CALC
subsystem that allows the user's terminal to act like a hand calculator. CALC essentially causes each
PL/1 statement to be interpreted and executed as soon as it is entered. A significant problem with
both ITF:BASIC and ITF:PL/1 is that their data files must be processed by the CONVERT
subsystem of TSO before they can be used with other OS-based processors. ITF: PL/1 source
statements also must be run through CONVE RT before the regular PL/1 compilers will accept
them.

CP-V and TSO both feature interactive debugging capabilities for FORTRAN and COBOL.
CaBO L-EOO under CP-V contains a flexible series of commands that allow the user to trace,
interrupt, or breakpoint process, then display values and alter them if necessary. I BM offers a
similar capability under TSO with the TESTCOB command. The Xerox FORTRAN Debug Package
and the IBM TESTFORT capability give similar power to on-line FORTRAN users.

The above processors are the only interactive compilers/application programs available under TSO.
The rest of the systems are purely batch-oriented, although they have been interfaced with TSO.
Due to the complex JCL required to set up and initialize the various temporary and permanent files
under OS, a series of interfaces, called prompters, (even though the only prompting they perform is
to ask the user for file descriptors) have been developed to perform this overhead for the more
common systems. Due to the far more direct operation of the CP-V compilers, such initiators are
not required and the processors may be called directly. The following prompters are currently
available under TSO:

31

TSO & CP-V System Processors (Continued)

TSO prompter

ASM
COBOL
FORT
GOFORT
PL 1
PL1C

CP-Vequivalent

META
COBOL
FORT4
FLAG
none
none

Function

Initiates the assembler
Initiates the ANS COBOL compiler
Initiates the FORTRAN IV (G level) compiler
Initiates the FORTRAN code and go processor
Initiates the PL 1 optimizing compiler
Initiates the PL 1 checkout compiler

It is worth remembering that as with the ITF files, GOFORT source files must be run through
CONVE RT before they can be compiled under the FORTRAN IV compiler. Also, even though the
above-mentioned compilers are actuated from a terminal, they retain their batch characteristics,
including the requirement for fixed-format source input. Finally, none of the above compilers are
reentrant.

TSO lacks several of the interactive processors that are currently available under CP-V. APL and
TEXT both run in the same interactive environment that supports the other on-line processors on
Xerox equipment, but the I BM equivalents (AP Land ATS) each require their own regions. The
additional memory requirements to support these additional regions are significant. An ATS system
which can support ten terminals will require a 45KB partition. An, APL system to support two
concurrent workspaces will require a 170KB region. I BM has not yet committed itself to supporting
either of the above processors under their new virtual operating systems, although we expect that
such support will be automatic.

Other Xerox processors have no interactive equivalent under TSO, although there are usually similar
I BM batch processors which can be run on-line:

. Similar IBM
CP-V Processor batch processor

GPDS GPSS/360, GPSS-V

CIRC ECAP-II

SL/1 CSMP III

TOM RPG-II

Comments

GPDS and GPSS-V both complete supersets
of GPSS/360

No AC analysis under ECAP

SL/1 is the only superset of the industry std:
C3SL

RPG-II is more powerful but less convenient
to use

In summary both I BM and Xerox offer a wide selection of processors. While I BM offers a much
wider selection of batch compilers and applications programs, Xerox offers the superior choice of
interactive processors which enable the on-line user to take full advantage of his real-time

32

TSO & CP-V System Processors (Continued)

connection to the system. Also, I BM has some strange compatibility, problems which are not
present with CP-V. I n some cases files are not directly sharable between different versions of the
same processor (ex. ITF: PL 1 and full PL 1 or GOFORT and FORTRAN IV), in some other cases
interactive processors not run under TSO but require their own private regions. Both I BM's lack
of coordination between processors and the lessor number of interactive processors seem to reflect a
lack of full consideration for the multi-use concept, a crucial selling point for potential buyers in
th is marketplace.

TSO and CP-V Editors

One of the most frequently used facilities of TSO is EDIT. Like the CP-V version, TSO's EDIT is
used both to build and to manipulate files. Whereas CP-V EDIT always builds the same file format
- keyed sequential with the key being the line number - the TSO version operates in either of
two fashions depending on whether line numbers are legal for the given file qualifier. If line
numbers are not valid for the file type all line references are made relative to a current line pointer,
as in IIcurrent line minus two". This is known as "context mode". With context mode, the current
line pointer can be moved relative to the current location or to the beginning or end of a document,
but editing without a line number has some obvious problems. For example, instead of just inserting
a line 2.5 between existing lines 2 and 3, a TSO user operating in context mode must first set the
current line pointer to the line corresponding to line 1 which matches a special character string and
then use the "insert after" subroutine. If the user is not extremely carefu I in his specification of the
contents which identify line 2, he can wind up pointed at another line and update the wrong section
of his file.

TSO's EDIT has some very nice features not available with CP-V. the SCAN command involves the
appropriate syntax scanner as indiCated by the file name qualifier. PL/l, BASIC and FORTRAN
scanners are currently available; curiously, there is no COBOL scanner. The RUN command will
compile load and exe'cute the source file which was being built or modified by EDIT.

The FORMAT command invokes a Program Product which can be used to format text output, and
be compared to a subset of Xerox Text. Commands permit FORMAT to print headings on each
page, center text on a page, left and right justify margins, indent paragraphs and preselect page size.
However TSO/EDIT should not be equated to Xerox TEXT, as the latter contains much more
sophisticated editing and output capabilities and is comparable to ATS, a product not available
under TSO.

Even considering the above features, the CP-V version of EDIT would seem superior. TSO/EDIT
lacks most of the intra-record capabilities of CP-V /ED IT. The former has only a simple
string-for-string substitution capability; the latter features a variety of intra-record operations
including insert commentary, delete string, insert string, replace string, delete record containing
string, overwrite string, and shift string. TSO/EDIT contains no capability to move lines within the
file wnile CP-V offers both " move and keep" and " move and delete" factors.

TSO/E.DIT's use of blanks and TAB is also weak. All tabs are converted to an equivalent number of
blanks so subsequent listings cannot take advantage of tabbing on the output device. There is no
equivalent of CP-V blank suppression which saves file storage space.

33

TSO and CP-V Editors (Continued)

A summary of all TSO/EDIT commands and their CP-V/EDIT equivalent with their function is
shown as follows:

EDIT/TSO
Command

BOTTOM

CHANGE

DELETE

DOWN

END

FIND

*FORMAT

INPUT

INSERT

i nsert/repl ace/de lete

LIST

*MERGE

PROFILE

RENUM

RUN

SAVE

SCAN

EDIT/CP-V
Equivalent

not needed

E,F,O,P,S

DE

not needed

END

FT,FD,FS

none

BUILD

IN, IS

IN, IS, DE

TS, TY

MERGE

**none

*none

none

not requ ired

none

FUNCTION

Used in context editing to set point or to last
I ine of file.

Modify a sequence of characters in one or
more lines.

Delete one or more records.

Used in context editing to point to
subsequent lines.

Terminate EDIT processing.

Locate a character string.

Formats and lists data.

Prepares for data input.

I nserts records.

Alternate method to insert, replace, or delete
a line.

List one or more I ines of data.

Combine all or parts of files.

Define characteristics of terminal.

Renumber a file.

Compile, load, and execute a file.

Save a data set permanently

Request syntax checking on input.

*Means that this capability is available only as an extra priced program porduct
**Individual, i.e., PLATEN

34

TSO and CP-V Editors (Continued)

EDIT/TSO
Command

TABSET

TOP

UP

VERIFY

EDIT/CP-V
Equivalent

TA

not requ ired

not required

TY

FUNCTION

Set tabs.

Used in context editing to set point or to the
first record in the file.

Used in context editing to point to previous
lines.

Type any line which has been modified.

TSO/ED IT contains many capabilities similar to those found in CP-V IEDIT. The former also
contains some capabilities not found in the latter, although some features such as context editing
are there only because TSO must be able to build files that are not numbered, something not
necessary with CP-V.

TSO File and EDIT Summary:

• Files'are compatible with batch files.

• Processors require different input file formats.

• DCB assignment is not simplified, nor flexible as it is in CP-V.

• Context mode of TSO Editor is not as easy to use as the Keyed method always available in
CP-V.

• TSO SCAN syntax scanner is convenient and has no EDIT counterpart in CP-V.

• Intra-record capabilities are weak compared to CP-V/EDIT, and in TSO whole lines cannot be
moved.

• CP-V IE D IT contains a more complete and flexible set of editing commands.

TSO & CP-V Interactive Debuggers

Both CP-V and TSO contain powerful interactive debugging tools which are especially helpful in
testing and correcting assembly language programs. In TSO the debugging program is called TEST;
in CP-V it is DELTA. Both TEST and DELTA contain many of the same features. With either
system the user can involve the debugger at any time and then go into his program to set

35

TSO & CP-V Interactive Debuggers (Continued)

breakpoints, display and change specific locations in memory, and step through programs to trace
their execution. The two systems have similar addressing capabilities: symbolic, relative, or
absolute hexadecimal addressing may be accepted as input and displayed at the terminal.

Each debugger has some capabilities not found in the other. TEST permits multilevel indirect
addressing in a single command, a very nice feature when the user is trying to find his way through a
series of address tables. TEST will recognize zoned or packed decimal data formats. TEST has a
COpy command which permits the user to copy strings of data from one place to another within
the program.

The LIST DCB command will print the contents of a specified DCB in a special, easy to interpret
format. Similar commands format and print data extent blocks, task control blocks, and the user
storage map. However, these functions can essentially be duplicated by the "address,address/" in
DE L T A command which displays the contents of successive memory locations and these locations
can be DCB's etc. TEST also allows the user to list his Program Status Word directly, while the
DE L TA user must use separate commands to display the instruction counter, condition codes and
floating controls in order to get similar data.

A complete list of the commands available under TEST the equivalent DE L TA command and its
function follows:

36

TSO TEST
Command

VALUE
ASSIGNMENTS (=)

. AT

CALL

COpy

DELETE

DROP

END

CP-V DELTA
Equivalent

location/

location; B

location; G or
liS program U"

none

DELETE in EDIT

symbol; K

esc Y

EQUATE

FREEMAIN

symbol!
vok<~b-e~)

none

GET MAIN address\

GO ;P

HELP none

LIST address;address/

LlSTDCB none

LlSTDEB none

LlSTMAP none

LlSTPSW none

LIST TCB none

LOAD START

OFF ;B

QUALIFY ;R

RUN esc Y GO

WHERE symbol =

37

FUNCTION

Modifies values in main storage.

Set breakpoints.

Initialize and start a program.

Move data string.

Delete a load module.

Remove symbols from a symbol table.

Terminates debugging.

Add a symbol to a symbol table.

Release a specified portion of main storage.

Get a specified portion of main storage.

Restarts an interrupted program.

List and explain the various subcommands of
TEST.

Display a portion of main storage.

List the contents of a data control block.

List the contents of a data extent block.

Displays a map of storage.

Displays the current program sta.

Lists the contents of a task control block.

Brings a program into memory.

Removes breakpoints.

Establishes a base for relative addresses.

Terminates debugging and completes
execution of the program.

Displays ~fes(of a symbol.
ll~l.v

TSO & CP-V Interactive Debuggers (Continued)

DE L T A both includes several functions not available in. TEST and also allows much more flexibility
in many seemingly equivalent functions. DE L TA can be set to display output of memory in terms
of machine statements, hexadecimal or decimal numbers, EBCD IC characters, or floating point
numbers. TEST output cannot be set to such a variety of formats but will chose a format selected
by I BM as most appropriate. TEST has no equivalent of many other DE L TA features including the
evaluation (=) command, the tracing or tracing breakpoint capability (;Y), memory searches
(;W, ;N, ;M, and ;L), memory initialization (;Z), and the printer output (;0 and ;J) directives.

DE L TA seems to be better engineered than TEST for ease of use. Almost all DE L TA directives are
single letters or special characters, while the TEST commands are often whole words plus additional
operands. This can result in much faster, easier user interaction with DE L T A. For example, a
common operation with this sort of debugger is to look at a memory cell to learn what instruction
it contains, and then look at the contents of the data cell which the instruction is using. With
DE L TA this is straight forward and requires two commands: "address/" (DE L TA responds with
the contents of that address) and then either a single "TAB" or another" I" to display the contents
of the effective data field.

With TEST, the user must first "LIST address" which displays the contents of the instruction at
that address. The user must then calculate the effective absolute address of the data by listing the
active base register and adding its contents to the hexadecimal value of the instruction operand
field. He then "LISTs" the contents of resulting address., This second step of figuring in a base
register may be avoided only if the user knows the symbolic representation of the operand. He then
can use the WH ERE directive to translate the symbol to an effective absolute address and avoid the
awkward base register calculation, but he still must also use both list commands.

TEST breakpoint capabil ity also is much weaker than in DE L T A. All TEST can do is set instruction
breakpoints. Yet a very frequent debugging problem to be solved is "how did the contents of a
memory location get changed?". With DE L TA the user simply sets a data breakpoint at memory
location in question and then runs the program. DE L T A will halt processing when the memory cell
is about to be modified and point to the guilty instruction! There is no reasonable way to do this
with TEST.

Most of the other DELTA commands are equally more powerful than their TEST counterpart. In
summary then, both TEST and DE L TA are similar tools designed to do similar tasks. Each contains
features not available on the other, but overall, DE L T A appears to be the more powerful yet easier
to use assembler debugging tool.

Debugger Summary

• DELTA displays memory in a variety of formats - TEST does not.
• ,DE L TA commands are abbreviated - fast and easy to use.
• TEST permits multi-level indirect addressing in a single command.
• TEST allows copying of data strings form one place in the program' to another.
• TEST can only get instruction breakpoints - with DELTA we can halt on memory access.

38

SECTION IV: TSO AND VI RTUAL STORAGE

TSO under OS/VS2, Release 1
TSO under OS/VS2, Release 2

TSO UNDER OS/VS2, RELEASE 1

New Features

The introduction of OS/VS2, the virtual storage implementation of OS/MVT, has a significant
impact on TSO. Release one of OS/VS2, which has been in the field for several months now, is
almost identical in format to OS/MVT, except that the total size of effective memory is a single
vertical space of 16MB. This very large pseudomemory is "squeezed" into a much smaller real
memory by using a demand paging algorithm. As is the case with OS/MVT, the effective memory is
sectioned into specific regions for foreground (timesharing) and background work. There are also
low and high portions of memory assigned to the non-pageable monitor and to pageable portion
respectively.

This implementation alleviates one of the critical problems associated with the original TSO - the
large memory requirement to support even a few on-line users. With the advent of virtual memory,
the TSO requirement is for a large virtual (as opposed to real) memory. The demand paging
algorithm will bring the required portions of the TSO routines into real memory only when they are
needed, which should not be often when there are only a few on-line users. As the number of active
users grows, there will be an increasing demand 'for the TSO service routines. Real memory must
increase in order to keep a higher percentage of the routines in memory at one time or the system
will enter a non-productive thrashing condition in which it spends most of the time swapping the
required routines into memory and little time doing useful work. An overview of how both virtual
and real storage is shown in Figure 4.

Performance Questions

Much has been said about the problems associated with the performance of virtual memory. The
problem is that when the ratio of virtual to real memory exceeds 1 1/2 to 1 in a batch environment,
thrashing begins and performance falls apart. The ratio for a system supporting TSO is not so clear
cut; it depends on the number of on-line users (as is described above) and how active they are. As
their number and activity increase, the requirement for real memory will increase even though the
size of the virtual system remains constant. Selection of the proper memory size is a most critical
factor for both TSO and batch performance in a virtual environment, because there is not the
smooth degradation in service when the overload level is reached as there is in CP-V. I nstead, when a
virtual system reaches a thrashing state, there is a sudden, dramatic and nearly complete
disintegration of performance for batch and on-line users alike.

This means that TSO users have a unique problem. Memory size is a critical factor - something
which should be used to tune the system if that were possible, but obviously it is not. The system is
essentially pre-tuned to a given environment by the selection of memory size and if the anticipated
number of users or even their anticipated activity level proves incorrect, TSO performance will be
miserable.

A classic example has been in a New York city bank which underestimated the amount of time its
TSO users would spend executing large programs (as compared to building and debugging them).
The on-line users are experiencing a one to three minute response time during prime shift, even

39

TIS ONLY

TSO ARCHITECTURE

VIRTUAL SYSTEM UNDER OS/VS2 - RELEASE 1

SHARED AND
PAGEABLE

OP.SYS.

TIS CON,TROL
REGION

FOREGROUND
(TIS)

REGIONS

BACKGROUND
(BATCH)

REGIONS

RESIDENT

OPERATING
SYSTEM

VIRTUAL
SYSTEM

1\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\
\

\
\
\
\ -------

- - - - - -'-------.....

FIGURE 4

40

RESIDENT

PHYSICAL
SYSTEM

......-- UPPER PHYSICAL
MEMORY

PAGED MEMORY

NON-PAGED
MEMORY

Performance Questions (Continued)

though the number of active users is controlled by the number of available lines. Because of the
complexity of the process and the number of I/O calls and system subroutines which must be paged
in, a simple LOGON requires five minutes. While this may be an extreme case, it does illustrate the
pitfalls of incorrectly sizing a TSO system.

I BM was not unaware of the severe impact of thrashing on its virtual systems. To try to control
thrashing they build into the operating system a paging monitor to keep track of the paging rates.
Whenever this rate exceeds a certain level the monitor starts suspending jobs, lowest priority first,
until the paging rate is reduced to a more reasonable level. When the crisis has passed the jobs are
automatically resumed. Normally batch jobs are suspended first, but it can happen that thrashing
can 'occur when only timesharing is active. This means that an active on-line user can suddenly find
himself suspended in the middle of processing for periods of time ranging from a few seconds to
several minutes. While this procedure may control the performance of the overall system, it
obviously will result in some very irate users.

Summary

I n summary OS/VS2 - Release 1 can help in the solution of TSO's requirement for a lot of
memory. However, performance becomes suspect with thrashing being the culprit. It is hard to
forecast exactly when thrashing will occur, but when it does performance disintegrates. To control
thrashing OS suspends jobs, a viable approach for batch but not for timesharing. Such disintegration
does not occur with CP-V; instead an increasing overload condition results in a more predictable and
far more gentile degradation in performance. Again, we come back to the fact that I BM has
designed a very good batch system and treats TSO as an add-on. This results in some strange
performance problems which can seriously impede the on-line user.

TSO UNDER OS/VS2, RELEASE 2

While Release 1 of OS/VS2 is merely a direct conversion of OS/MVT to virtual memory, Release 2,
which is due in March 1974, is a major modification to the basic architecture of the operating
system. Since I BM has let it be known that Release 2 has about 70% new code (some cynics who are
familiar with the way operating systems grow wonder if that just means 70% additional code), it
appears that Release 1 is only a stop gap measure until the "real" VS2 is available.

More New Features

In any case Release 2 contains major enhancements including:

• Each user has his own virtual region.
• TSO resources is an integral portion of the system.
• A sophisticated new System Management Facility schedules all system resources.
• Multiprocessing for 370/158 and 370/168 installations.

41

More New Features (Continued)

The first two enhancements shown above seem to reflect a very important shift in the traditional
I BM approach to large scale on-line processing. For the first time they have accepted the
timesharing user as equivalent to a batch user and they have given each user, batch or timesharing,
access to all system resources. Gone is the concept of treating TSO as an add on, gone is the
memory-region concept; instead I BM has suddenly embraced the basic design goals of CP-V. This of
course is going to make I BM a much tougher competitor in the traditional Xerox CP-V marketplace.

Probably the most significant enhancement to Release 2 is giving to each batch or timesharing user
(and several of the monitor service routines) its own private address space. The approach is
essentially the same as in CP-V where each user appears to have the whole system to himself. One
significant improvement over the current Xerox implementation is that with VS2 each user is not
restricted to physical memory size but instead has its own 16M B virtual memory.

Each user has complete access to all system resources. After LOGON a TSO user is treated by the
operating system exactly as if it is another batch job. Because of this the TSO driver and several
related system features can be eliminated; all job scheduling is controlled through the redesigned
System Resources Manager. This System Resources Manager is quite complex, very powerful and
may be a big user of CPU time; it is the subject of the next part of this report. I n any event, since all
jobs look the same to the operating system an on-line user can for the first time change his allocated
number of active DCB's, can ask for tapes or disk packs to be mounted, and can access the slow
speed peripherals. Output can be sent to other remote printers or timesharing terminals. As is the
case with CP-V the actual complement of devices which are available to a given TSO user depend on
his particular authorization which has been set by the management of the computer center.

Use of Memory

Figure 5 on the next page shows the architecture of the Release 2 memory requirements. Note that
even with a virtual system the requirement for real memory with Release 2 is significant. The
resident, non-pageable portion of the monitor by itself requires 512KB. This space is used only by
the operating system and can never be freed for other users. Compare that to the fact that CP-V
uses only that much memory for a complete system.

On top of that there is a 5 1/2 MB virtual memory reserved for pageable operating system functions.
While this is pageable material and does not need to reside in memory except when referenced, it is
obvious that there could be a significant demand on real memory due to this portion of the
operating system. The only thing that saves TSO from even more serious problems is that the upper
portion is all sharable code so each user does not have to have his own copy. Nevertheless when you
consider that this discussion has not even considered the space requirements for the users' programs
and we are already allocating 512KB of real memory for the resident operating system and another
5 1/2 MB of virtual memory for the pageable portion, we are discussing a very large memory
requirement.

42

16MB

10.5MB

512KB

,\

PAGEABLE
O.S.

USER
PROGRAM

AREA

RESIDENT
O.S.

USER 1
(VIRTUAL SPACE)

TSO ARCHITECTURE

VIRTUAL SYSTEM UNDER OS/VS2 - RELEASE 2

\
\
\
\
\
\
\
\
\
\
\
\

\

PAGEABLE
O.S.

\

RESIDENT
O.S.

USER 2
(VIRTUAL SPACE)

\
\
\
\

FIGURE 5

43

\
\
\
\
\
\
\
\

\

PAGEABLE
O.S.

\

RESIDENT
O.S.

USER N
(VIRTUAL SPACE)

\
\
\
\
\
\.
\
\
\
\

RESIDENT
O.S.

REAL
SYSTEM

Use of Memory (Continued)

In keeping with I BM's new-found concept, demand paging, the concept of swapping a complete user
has been eliminated. The demand paging algorithm is responsible for keeping the proper pages, and
hence the active user, in memory. This raises the ugly spectre of performance of Release two. As
mentioned earlier problems with virtual memory performance have already appeared whenever the
virtual is real ratio for a system with a single address space exceeds 1 1/2 to 1. Now we are
contemplating a system which permits not one but many (would you believe up to 15367) address
spaces, each as large as the single address space allowed on the previous systems.

More Performance Questions

Curiously, I BM has refused to tell even its preferred customers what to expect in the way of
performance from Release 2. This may stem from the bad publicity that resulted when their original
virtual memory systems failed to live up to the promises given in the new product announcements.

There is another performance question which arises from I BM's decision to page out instead of swap
timesharing jobs. Demand paging and its "Least-Recently-Used" (LRU) algorithm work on the
strategy of keeping the most recently used portions of a program or programs in memory. This is
based on the assumption that most jobs will tend to continue to use the portion of the program
which they just finished using. To use I BM's terminology most programs have a well-defined section
which is by far the most frequently used portion of the program. This is called the "working set" of
pages, and is usually much smaller than the overall program. As long as the sum of the working sets
of all the active programs does not exceed the size of available memory, all of the working sets may
reside in memory at one time. In this case there will be little requirement for other pages and the
system will not approach a thrashing condition. However, as more programs become active the total
working set of the system will increase accordingly. (Note that if the timesharing users are swapped,
they are effectively inactive when not in memory and do not affect the working set. However,
timesharing users which are not swapped out do add to the working set.) Hence as more users log on
or as more batch jobs are initiated the requirement for real memory increases accordingly. As was
mentioned earlier, a virtual system is extremely sensitive to memory, so we have that same
problem: if the system is not configured for precisely the actual load, the overall performance of
the system will disintegrate.

TSO under Release 2 still contains many other problems which have been associated with it since it
was first released. It remains cumbersome to use due to the complex I/O structure and the
complicated JCL. There is no indication that the file and data incompatibilities have been resolved.
Most important there is every indication that system overhead will increase as it always seems to
when new features are added.

Summary

In summary then TSO under OS/VS2, Release 2 is a significant architectural improvement over
earlier versions. It is like going from BTM to CP-V. But problems still remain and performance is a
major question mark. Until I BM can demonstrate that TSO performance under VS2, Release 2 far
exceeds both that of earlier releases and all expectations of future ones CP-V remains the superior
timesharing system, although the gap has certainly narrowed a great deal.

44

CONCLUSIONS

A customer will probably make a decision for TSO under the following conditions:

1) He is already a user of large I BM machines.

2) His programmers are familiar with I BM job control language.

3) His primary interactive use will be to develop, checkout and maintain programs to be run in
the batch mode on his I BM equipment.

4) He doesn't need to support more than 32 terminals.

5) He does not consider an additional monthly charge of $12,000 for this option to be outside his
budget.

When a customer wants a complete timesharing system which offers a full multi-use capability with
upward expansion to 128 on-line users, even though points 1) and 2) above are true, CP-V is a
logical choice.

45

APPENDIX: RESOURCE MANAGEMENT IN VS2

The System Resources Manager
Resource-Use Routines

THE SYSTEM RESOURCES MANAGER

A major feature includ~d in Release 2 of OS/VS2 is a new System Resources Manager (SRM) whose
function is to solve the problem of an equitable distribution of system resources. While SRM is not
intrinsic to the operation of TSO, it is closely associated so it will be discussed in detail here. The
SRM provides facilities to:

• Predict and control the response or execution time of any particular job in relation to the
system workload.

• Handle various users differently, at certain times allowing some jobs to be favored over others.

• Assure an acceptable level of performance to important jobs.

The objective of the system resources manager is to keep in real storage those address spaces that
both best use the system resources and meet installation-specified performance objectives, at any
instant of time and under any workload in the system. To meet its objective, the system resources
manager has two major functions:

• Managing the workload according to installation-specified performance objectives.
• Managing the use of system resources.

Managing the Workload

In VS2 Release 2 an installation can specify, in measurable terms, the performance that any
member of any subset of its users is to receive, under any system workload conditions and during
any period in the life of a job. The system resources manager is responsible for tracking and
controlling the rate at which resources are provided to users in order to meet the installation's
requirements.

The installation sets up an installation performance specification (IPS). Optionally, the system can
define more than one IPS, although only one can be used at a time. In the IPS, the installation
defines:

• Performance groups - subsets of users that should be managed in distinguishable ways.

• Performance objectives - distinct rates, called service rates, at which CPU, I/O, and real
storage resources are provided to users in a performance group at a certain workload level in
the system.

Service rate is the number of service units per second a user should receive; a service Unit IS a
measure of processing resources. The system resources manager monitors the rate at which service is
supplied to a user in order to ensure that the installation performance specification is met.

46

Managing the Workload (Continued)

The average user is not concerned with the activity of the system resources manager or with the IPS.
To take advantage of the system resources manager, he simply identifies the performance group in
which he is to be included, as prescribed by the installation.

The following paragraphs describe in greater detail the concepts of service, performance groups, and
performance objectives.

Service - The Measure of Performance: Service units are used to measure the amount of processing
resources provided to each address space. They are computed as a combination of the three basic
processing resources:

• CPU execution, where one unit is the execution of 10,000 instructions.
• I/O measure; i.e., the SMF I/O event count unit.
• Real storage occupancy; i.e., one frame occupied for some mUltiple of CPU execution units.

The installation supplies coefficients which give a weighting to the relative criticality of each factor.
The coefficients are then multiplied by their factors, as illustrated by A, B, and C in the following
formula:

service units = A(CPU) + B(I/O) + C(frames)

When an installation specifies performance objectives, it specifies one or more service rates, wh ich
mean how many service units per second a user should receive. The installation is not specifying any
particular amount of the individual resources that a user is to receive; it is assumed that different
users will use CPU, I/O, and real storage resources in different proportions. However, by supplying
coefficients to be mu Itiplied by each resource, the installation can adjust the relative importance of
CPU, I/O, or real storage resources within the service definition. For example, if real storage is a
critical resource, the installation can increase the value of C in the service formula. Therefore, a job
that uses a great deal of real storage will accumulate more service units. Likewise, if real storage is
not a critical resource, C can be assigned the value 0, and a user will not accumulate service units at
all by using real storage - the real storage factor will drop out of the service definition. Defaults will
be supplied for each of the coefficients.

Once the installation has determined the service definition (supplied the coefficients or accepted the
defaults), the installation should normally be interested only in the number of service units and the
service rates each user receives, not in particular amounts of CPU, I/O, or real storage used. System
management facilities (SMF) will record service unit measurements. From SMF reports, the
installation can interpret service unit measurements in terms of response or turnaround time.

Performance Groups: The pu rpose of performance groups is to group user transactions that the
installation considers to have similar performance require.ments. Basically, a user transaction in a
batch environment is a job or job step; in a timesharing environment, a single user interaction. The
installation can define as many as 255 performance groups, each identified by a distinct
performance group number.

47

THE SYSTEM RESOURCES MANAGER (Continued)

Each performance group can further be divided into as many as eight periods. By dividing a
performance group into periods, an installation can associate different performance objectives with
different periods in the life of a transaction. The duration of a period can be specified either as a
number of real-time seconds or as a number of accumulated service units. For example, one
performance group might be defined for short compile-load-go jobs that should have a very rapid
turnaround time. The installation divides the performance group into two periods. The first period
is associated with a high service rate and lasts until N number of service units are accumulated.
Where N has previously been determined to be sufficient service units to complete a short
compile-load-go job. If a job in the group is not complete after N service units are accumulated, it
enters the second period, which can specify a lower service rate for the duration of the job.

Performance Objectives: A performance objective states service rates, how many service units per
second an associated transaction should receive under different system workload conditions. The
installation can define as many as 64 performance objectives, each identified by a distinct number
from 1 to 64. Note that these numbers are only arbitrary labels and have no intrinsic meaning.

The motive for specifying different performance objectives is to give certain users better service at
the expense of other users. However, the relative importance of this motive depends on the size of
the system workload (the degree to which the demand for resources exceeds the supply). If the
system workload is very I ight so that the demand for resources does not exceed the supply, all users
can be assured satisfactory service rates. However, if the system workload is heavy, the installation
will want to assure an acceptable service rate to high priority users and lower the service rate for low
priority users. Under very heavy workload conditions, the installation might completely sacrifice
the service rate of low priority users by assigning a service rate of 0 in order to continue to provide
acceptable service to the high priority users. By defining workload levels, which essentially means
the sum of all current demands upon the system, the installation can express the varying service
relationships between groups of users at different system workload levels.

The installation can define as many as 32 workload levels, identified by integers from 1 to 128. The
numbers on installation chooses to identify the workload levels it defines are arbitrary. A higher
workload level number, however, must always indicate a higher system workload and all workload
levels defined must have a corresponding service rate included in each performance objective.

For example, an installation defines four performance objectives, numbered 3, 6, 9, and 12. When
the system workload is light, each performance objective should assure a satisfactory service rate to

. the users associated with it; the installation assigns the number 10 to this workload level and assigns
corresponding service rates to each performance objective, as illustrated in Figure 6 titled
"Performance Objectives" on the following page.

Under very heavy workload conditions, the installation wants to completely sacrifice the service
rates for objectives 3 and 6, lower the service rate for objective 12, but still assure acceptable service
to users associated with objective 9. This workload level is assigned the number 40; the
corresponding service rates associated with each objective are illustrated in Figure 7. The two
intermediate workload levels shown in Figure 7 are established to reflect the changing relationships
between the performance objectives as the vI/orkload level increases from 10 to 40.

The system resources manager tracks both the service rates to maintain the relationships between
the performance objectives (and therefore between the users associated with the objectives) that the
installation has defined.

48

PERFORMANCE SERVICE RATE
OBJECTIVE FOR WORKLOAD

NUMBER LEVEL 10

3 40
6 30

9 50

12 70

Figure 6. Performance Objectives

USER TRANSACTION -­
PER FORMANCE

GROUP NUMBER =

2

SERVICE RATE
FOR WORKLOAD

LEVEL 20

20
15
45
50

SE RVI CE RATE SERVICE RATE
FOR WORKLOAD FOR WORKLOAD

LEVEL 30 LEVEL 40

10 0
0 0

40 30
35 15

INSTALLATION PERFORMANCE SPECIFICATION (IPS)

PERIOOPj

Figure 7 . Associating a User With a Performence Objective

49

Associating a Transaction with a Performance

Objective: User transactions are associated with performance objectives by means of performance
groups and periods within each performance group: each period of a performance group definition
includes a performan~e objective number.

For example, performance group 2 includes timesharing student users; it is divided into two p,eriods.
The first period lasts until 200 service units are accumulated and is associated with performance
objective 3 in the illustration titled II Associating a User with a Performance Objectiv~~'. At
workload level 10, the user transaction will receive 40 service units per second. As the system
workload level increases the -service rate, for the job drpps in accordance with the perfofmance
objective. I n this case,_ we can see that at the heaviest workload level- level number 40. -:- the job
will not be allocated any system services. -

Since the performance group specified for this job has two periods associated with it, when the job
enters the second period it becomes associated with performance objective six. Normally th'e new
performance objective will allocate a different set of service rates for the various workload levels. In
this way the system can automatically associate either more or less systemservice with the job after
it has been running for a while.

This is obviously a very sophisticated technique for allocating service to jobs at a variety of levels. It
essentially tunes the system by degrading or suspending low-priority jobs by following the complex
descriptions supplied by the installation, management. However, a bit problem ,is that management
must devote a lot .of time to define and construct the data for the SRM. -The - installation
management must analyze its own job mix, define a series of appropriate Performance Objectives,
combine them in appropriate fashion in a list of Performance Group definitions and see that every
batch and timesharing job selects or is assigned to the prope~ Performance Group. The,se are all
critical decisions because what the installation is doing is essentially programming the scheduler.
Errors here just about guarantee substandard system performance. I n effect I BM has given the user a
very sophisticated tool, if the installation management is not as sophisticated or does not
understand the demands on his system, he can destroy throughput of a very expensive machine.

IBM has not yet indicated the overhead required to support such a complex system, yet it must be
considerable. SRM requires that the operatingsystern monitor the service rates allocated to every
active job and make sure that the requested performance objectives are being met. The frequency of
observation is yet another installation parameter, but I BM recommends sampling at 250 millisecond
intervals - four times per second.

Thus we have a familiar scenario for I BM customers: a very powerful system but one which
requires considerable sophistication to use and which can use considerable service time in an effort
to save additional time.

RESOURCE-USE ROUTINES

In addition to the above-mentioned workload management routines, VS2, Release 2 features a
variety of resource-use routines. The routines consist of a set of algorithms that provide
recommendation values for managing system resources on an absolute basi's without regard to the
installation's job performance specifications. These algorithms include:

,50

I/O Load Balancing

This algorithm attempts to maintain a dispatchable job mix that has a balanced use of logical
channels. The algorithm monitors the I/O load and produces recommendation values that
indicate when swapping is necessary to correct a detected I/O subsystem imbalance. The I/O
load balancing algorithm can be used only when SMF data set activity recording is being
performed.

CPU Load Balancing

This algorithm produces recommendation values for maintaining a job mix in which jobs that
make heavy use of the CPU are dispatched at reasonable intervals while keeping CPU
utilization at a high level.

Main Storage Occupancy

This algorithm determines the amount of swapping necessary to maintain real storage
occupancy within certain bounds. It also determines whether or not the bounds are adequate,
and adjusts them if they are not.

Page Replacement

This algorithm determines candidates for page stealing. Page stealing takes place when a certain
page within a user's private address space has gone unreferenced by that address space for a
certain amount of execution time, and when pages within the pageable link pack area have
gone unreferenced for a certain amount of time. It results in the page frames associated with
that page being freed for other users.

Device Allocation

This algorithm determines the unit to be used for data sets for which an allocation choice must
be made from a I ist of more than one device candidate. The goal is to allocate from
lightly-utilized channels, and to collect allocations for the same job on the same logical channel
without collecting them on the same device, so that suspending that job will have a predictable
effect on the system I/O load.

Automatic Priority Group (APG)

This algorithm reorders dispatchable address spaces within the automatic priority group based
on the degree to which they are I/O bound; within the APG, I/O-bound jobs are given higher
dispatching priorities than CPU-bound jobs.

ENQ/DEQ Algorithm

This algorithm determines when a batch or terminal job is in control of a system resource and
is delaying other jobs that are enqueued on the same resource. When such a determination is
made, the job that is enqueued upon the system resource is made non-swappable for an
installation-specified time interval.

51

System Activity Measurement Facility (MF/1)

The system activity measurement facility (M F/1) is new in VS2, Release 2. It is the UTSPM in that
installations may use it to monitor selected areas of system activity and obtain feedback in the form
of trace records and/or formatted reports. Measurements may be gathered independently on:

• CPU activity

• Channel activity and channel-CPU overlap activity

• I/O device activity and contention

Unit record devices
Graphics devices
Direct access storage devices
Communication equipment
Magnetic tape devices
Character reader equipment

• Paging activity

• Workload activity

MF/1 activity is divided into three categories:

• The System Activity Measurement Gathering routines obtain the measurements of system
activity requested by the installation.

• They consist of distinct sets of measurement gathering routines associated with each class of
measurement data. Only those sets associated with the measurement data requested by the
system operator are loaded and active during MF/1 reporting intervals.

• The System Activity Report Generation routines produce formatted reports of desired system
measu rements.

• They generate formatted summary reports of information requested by the system operator,
collected by the system activity report operator, and routed to it by the measurement facility
control. Printing of these reports may be done as they are generated, or may be deferred until
MF/1 termination.

• The Measurement Facility Control routines control the collection, tracing and reporting of
system activity. They control MG/1 operation. They cause the loading of the measurement
gathering routines that will be needed to obtain the desired information, pass control to these
routines at the desired intervals, route collected information to SARG as required, and
terminate M F /1 execution at the end of its specified duration.

52

