
Scientific Data Systems
A XEROX COMPANY

XOs SIGMR 5/7 REAL-TIME BATCH MONITOR (RBM-2)

Reference Manual

Price: $5.25

REAL·TIME BATCH MONITOR (RBM·2)
REFERENCE MANUAL

for

XDS SIGMA 5/7 COMPUTERS

PRELIMINARY EDITION

90 15 81A

November 1969

XD'S
Xerox Data Systems/701 South Aviation Boulevard/EI Segundo, California 90245

© 1969, Xerox Data Systems, Inc. Printed in U.S.A.

RELATED PUBLICATIONS

Title

XDS Sigma 5 Computer Reference Manual

XDS Sigma 7 Computer Reference Manual

XDS Sigma 5/7 Real-Time Batch Processing Operations Manual

XDS Sigma 5/7 Mathematical Routines Technical Manual

XDS Sigma 5/7 Symbol and Meta-Symbol Reference Manual

XDS Sigma 5/7 Macro-Symbol Reference Manual

XDS Sigma 5/7 SL- i Reference Manuai

XDS Sigma 5/7 FORTRAN IV-H Reference Manual

XDS Sigma 5/7 FORTRAN IV-H Operations Manual

XDS Sigma 5/7 FORTRAN IV-H Library/Run-Time Technical Manual

XDS Glossary of Computer Terminology

NOTlet:

Publ ication No.

900959

900950

90 1647

900906

900952

90 1578

90 i 676

9009 66

90 11 44

90 11 38

900957

The specifications of the software system described in this publication are subject to change without notice. The availability or performance of some features may
depend on a specific configuration of equipment such as additional tape units or larger memory. Customers should consult their XDS sales representative for details.

ii

CONTENTS

DEFINITION OF TERMS vi RLS 24
STDLB 24

1. INTRODUCTION INTLB 24
CINT 24

Operating System 1 FMEM 25
R BM Terms and Processes 1 FG 25
Phi losophy of Operation 2 COMBINED KEY-INS 25
Monitor 2 DM, DB, DF 25
Job Organization 5 DED 25
Hardware Configurations 6 UND 25
System Configurations 6 Direct I/o Communication 25

Card Reader 26
2. CONTROL COMMANDS 7 Card Punch 26

Printer 26
Job Control Processor 7 Paper Tape Reader 27
System Control Commands 7 Paper Tape Punch 27

JOB 7 Magnetic Tape 27
ASSIGN 8
LOAD 10 4. INPUT/OUTPUT OPERATIONS 28
ATTEND 11
MESSAGE 12 Permanent RAD Fi les 28
PAUSE 12 Temporary RAD Files 28
CC 12 File Organization 28
LIMIT 12 Blocked Fi I es 28
STDLB 12 Unblocked Files 28
ROV 13 Compressed Fi Ie 29
RUN 13 Access Methods 29
POOL 13 Seguential Access 29
ALLOBT 13 Direct Access 29

Debug Cont·rol Commands 14 I/O Queueing 29
PMD 14 I/O Cleanup and I/o Start 29

Input Control Commands 15 Shari ng DC Bs Among Tasks 30
EOD 15 Sharing I/O Devices Among Tasks 30
FIN 15 Sharing RAD Files Among Tasks 30

Jti I ity Control Commands 15 I/O End Action 30
PFIL, PREC 15 Reserving I/o Devices for Foreground Use 31
SFIL 15 Direct I/O Execution (IOE X) 31
REWIND 16 Operational Labels 32
UNLOAD 16 DCB Creation 32
WEOF 16 DCB Format 33
DAL 17 Error and Abnormal Conditions 35

Processor Control Commands 17 I/o System Calls 36
Processor Interface with RBM 18 Open A File 36

OPEN 36
3. OPERATOR COMMUNICATION 20 Close a File 37

CLOSE 37
RBM Messages 20 Check I/O Completion 37
Trap Handl er Messages 21 CHECK 37
JCP Messages 21 Read a Data Record 38
Unsol icited Key-Ins 23 READ 38

C 23 Write a Data Record 39
COC 23 WRITE 39
W 23 Rewind, Unload, and Write Tape Marked
X 23 Functions 40
SY 23 REW 40
TY 23 UNLOAD 40
CC 24 WEOF 40
DT 24 Fi Ie and Record Positioning Functions 41
RUN 24 PFIL 41

iii

Print and Type Functions 41 :ASSIGN 62
PRINT, TYPE 41 :PUBLIB 62-

Device/File Mode and Format Control Program File 62
Functions 42 Root Segment 62

STOPIO, STARTIO 42 Overlay Segments 62
IOEX 43 Temporary RAD Fi les 62

Loader-Generated Items 62
5 USER PROGRAM SCHEDULING AND Program Control Block 62

OPERATION 45 Data Control Blocks 62
DCBTAB 63

Scheduling and Loading Programs 45 INTTAB 63
Loading and Releasing Foreground Programs __ 45 OVLOAD Table 63
Loading and Executing Background Programs __ 45 Temp Stack 63

Task Control Block (TCB) 45 Exteneral Definitions 63
Task Control Block Format 45 libraries 63

Program Control Block (PCB) 46 System and User libraries 64
PCB Format 46 Assembi y Language 64

Temp Stack 47 Entry Address 64
Master and Slave Modes 47 System and User Libraries on RAD 64
Overlay Segment Loading 47 Constructing and Maintaining Library 64
Checkpoint and Restart 48 Publ ic library 64
Trap Handl ing 48 Call ing the Publ ic Library 64
Return Functions 48 library Protection 64
Interrupt Control 48 Releasing a Public library 65

Connecting Tasks to Interrupts 48 Forming a Public library 65
Arming, Disarming, Enabling, Disabl ing 49 Map 65
Triggering of Interrupts 49 Error Diagnostics 68

System Function Call Formats 49 User Load- Time Assigns 75
RUN 49 M:DCB and F:DCB 75
RLS 50 Run- Time Assigns 75
TRAP 50 Load-Time Assigns 75
TRTN 51 FORTRAN Interrace 75
EXIT 51 Common Allocation 75
ABORT 51 Connect 76
CONNECT 51 Call ing Overlay Segments 76
ARM, DISARM 52 Main Program Name and Entry 76
ENABLE, DISABLE, TRIGGER 52 Labeled Common Names 76
MASTER, SLAVE 52 BI ank Common Names 76
SEGLOAD 52 Core Layout at Execution Time 76
WAIT 53
TIME 53 7. RAD EDITOR 78

6. OVERLAY LOADER 54 Operating Characteristics 78
Fi Ie Allocation 78

Overview 54 Skipping Bad Tracks 78
Functional Flow 54 System and User library Files 79
limitations 54 Algorithms for Computing library Fi Ie Sizes __ 79
Overl ay Programs 54 RAD Areas Protection 80
Overlay Structures 54 Call ing RAD Editor 80
Overlay Restrictions 55 Command Formats 80
Overlay Control Commands 55 RAD Editor Commands 80

Syntax 55 :ALLOT 80
Order of Control Commands 56 :COPY 81

! OLOAD 56 :DELETE 82
:ROOT 57 :CLEAR 82
:SEG 58 :SQUEEZE 83
:UB 59 :TRUNCATE 83
:INCLUDE 59 :MAP 83
:EXCLUDE 60 :DUMP 84
:COMMON 60 :SAVE 85
:RES 60 :RESTORE 85
:LCOMMON 60 :BDTRACK 85
:MODIFY 60 :GDTRACK 85

iv

Error Messages 86 APPENDIXES
RAD Restoration Messages 86

A. SIGMA STANDARD OBJECT LANGUAGE 111

8. PREPARING THE PROGRAM DECK 89 Introduction 111
General 111

Macro-Symbol Examples 89 Source Code Translation 111
Assemble Source Program, Listing Output __ 89 Object Language Format 112
Assemble Source Program, Listing Output, Record Control Information 112

Load and Go Operations 89 Load Items 113
Assemble from Compressed Deck with Source Decl arati ons 113

and Updates, Listing Output 89 Definitions 115
Assemble Source Program, Compressed Output Expression Evaluation 116

on Cards, Listing Output 90 Loading 118
Assemble Source or Compressed Program in Miscellaneous Load Items 120

Batch Mode, Listing Output 90 Object Module Example 120
Assemble Source Program, Binary Output

on Cards, Listing Output 90 B. REAL- TIME PERFORMANCE DATA 125
Assemble Source Program, Compressed Output

Response to Interrupts by Centrally Connected on RAD File, Listing Output 90
Assemble Compressed Deck from RAD File, Tasks 125

I/O Interrupt 125 Source Updates from Cards, Listing
Console Interrupt 125 Output 90

Assemble Source Program, Write Compressed Over! ay Load ing 125

Output on 9- Track Tape, Listing Output _ 91 C. RAD STORAGE REQUIREMENTS 126
Assemble Compressed Program from 9- Track

Tape, Listing Output 91 ILLUSTRATIONS
Overlay Loader Examples 92

Batch, Using GO Links 92 l. Overlay Structure 5
Segmented Background Job 93 2. Loading Overlay Loader from Cards 11

Foreground Job Examples 94 3. An Overl ay Program 55
Load and Execute Foreground Program 94 4. Overlay Example 59
Load and Execute Segmented Foreground 5. Object Module from GO File 59

Program 95 6. Sample PROGRAM Map 66
7. Blank COMMON Allocation by Default 75

9. SYSTEM GENERATION 96 8. Blank COMMON Option 75
9. Standard Core Layout of a Program 77

SYSGEN 96 10. Permanent RAD Area Before Squeezing 79
Overview 96 11. Permanent RAD Area After Squeezing 79
Core Allocation 96 12. SYSGEN Map Example 98
RAD Allocation 97 13. RAD Allocation Example 100
Tables Allocated and Set by SYSGEN 100
Input Parameters 101

TABLES SYSGEN Control Commands 102
:MONITOR 102

Monitor Operational Labels :RESERVE 102 1. 8
I/O Device Type Codes 8 :DEVICE 103 2.

:STDLB 104 3. Channel Designation Codes 9

:CTINT 105 4. Device Designation Codes 9

:INTLB 105 5. Process Specification Options 17

:ALLOBT 105 6. Monitor Messages 20

:PUNCH 105 7. JCP Messages 22

:SIOP 105 8. Monitor Actions 26

:FIN 105 9. System DCBs 32

:SYSLD 105 10. Line Printer Format Control Codes 34
Mon itor Errors and Abnormal Returns SYSLOAD 106 11. 36

43 All Option 106 12. M:IOEX Function Status Returns
13. 69 Update Option (UPD) 107 Overlay Loader Diagnostics

Loading System Processors and User Programs ___ 108
14. RAD Editor Error Messages 86

RAD Allocation of SP Area 108 15. RAD Restoration Messages 88

SYSGEN and SYSLOAD Alarms 108 16. RAD Area Default Sizes 99
17. GOI OV, Xl-X9 Default Sizes 100
18. SYSGEN and SYSLOAD Alarm Messages 108

INDEX 127 B-1 Times Required to Save Interrupted Context 125

v

DEFINITION OF TERMS

active foreground program: a foreground program is active
if it is resi dent in memory, connected to interrupts, or
in the process of being entered into the system via a
! RUN control command.

addend value: a hexadecimal or decimal constant to be
added to the value of a relocatable address. The con­
stant is expressed as a signed integer appended to the
address; e. g., START + 12 or HERE-.F 1.

address resolution code: a 2-bit code that specifies whether
an associated address is to be used as a byte address or
is to be converted to a haifword, word, or doubieword
address.

background area: that area of core storage a I located to
batch processing. This area may be checkpointed for
use by foreground programs.

background program: any program executed under Monitor
control in the background area with no external inter­
rupts active. These programs are entered through the
batch processing input stream.

binary input: input from the device to which the BI (binary
input) operational label is assigned.

centrally connected interrupt: an interrupt that is con­
nected to a Monitor interrupt routine which first
saves the envi ronment of the system and then switches
the en vi ronment to that of the task that gets control
when the i nte rrupt occ urs.

checkpointed job: a partially processed background job
that has been saved in secondary storage along with
all registers and other "environment" so that the job
can be restarted.

control command: any control message other than a key-in.
A control command may be input via any device to
which the system command input function has been
assigned (normally a card reader).

control message: any message received by the Monitor that
is either a control command or a control key-in (see
II key-in").

Data Control Block (DCB): a table in the executing pro­
gram that contains the information used by the Monitor
in the performance of an I/O operation.

declaration: an object language load item that introduces
a symbolic name, so that the loader can give it a unique
name number.

declaration number: the name numbergiven to the symbolic
external name associated with a particular object lan­
guage declaration.

dedicated memory: core memory locations reserved by the
Monitor for specia I purposes, such as traps, interrupts,
and real-time programs.

directly connected interrupt: an interrupt which, when it
occurs, causes control to go directly to the task.
e.g., execution of the XPSD instruction in the interrupt

vi

location gives control to the task rather than first going
to a Monitor interrupt routine.

dummy section: a type of program section that provides a
means by which more than one subroutine may reference
the same data (via an external definition used as a
label for the dummy section).

end record: the last record to be loaded, in an object mod­
ule or load module.

error severity level code: a 4-bit code indicating the sev­
erity of errors noted by the processor. This code is
contained in the final byte of an object module.

execution location: a value replacing the origin of a relo­
catable program, to change the address at which program
loading is to begin.

expression: a series of load items immediately preceded by
an "origin", "define field" f II forward reference defini­
tion", II external definition", or "define start" load
item and terminated by an "expression end" load item
(see Appendix A).

external definition: a load item that assigns a specific
value to the symbolic name associated with a particular
external definition name number. An external defini­
tion allows the spec ified symbol ic name to be used in
externa I references (see below).

external reference: a reference to a declared symbolic
name that is not defined within the object module in
which the reference occurs. An external reference
can be satisfied only if the referenced name is defined
by an external load item in another object module.

foreground area: that portion of memory dedicated specifi­
cally for foreground programs.

foreground program: a load module that contains one or
more foreground tasks.

forward reference number: a number assigned by a processor
to designate a specific forward reference in a source
program.

foreground task: a body of procedural code that is asso­
ciated with (connected to) a particular interrupt and
that is executed when the interrupt occurs.

Function Parameter Table (FPT): a table through which a
user's program communicates with a Monitor function
(such as an I/O function).

GO file: a temporary disc fi Ie of relocatable object mod­
ules formed by a processor. Such modules may be
retrieved by the use of a ! LOAD control command.

granule: a block of disc sectors containing a specified num­
ber of words.

idle state: the state of the 1\~oiiitOi vvhen it is fiist loaded
into core memory or after encountering a ! FIN control
command. The idle state is ended by means of an ! S
key-in.

installation control command: any control command used
during System Generation to direct the formatting of
a Mon i tor system.

key-in: information entered by the operator via a keyboard.

keyword: a word, consisting of from 1 to 8 characters, that
identifies a particular operand used in a control command.

library input: input from the device to which the LI (I ibrary
input) operational label is assigned.

load item: a load control byte followed by any additional
bytes of load information pertaining to the function
specified by the control byte.

load location counter: a counter established and maintained
to contain the address of the next location into which
information is to be loaded.

load map: a I isting of significant information pertaining to
the storage locations used by a program.

load module: an executable program formed by using relo­
eatable object modules and/or library object modules
as source information.

logical device: a peripheral device that is represented in a
program by an operational label (e. g., B1 or PO) rather
than by a specific physical device name.

Monitor: a program that supervises the processing, loading,
and execution of other programs.

name number: a number assigned by the relocating loader
to identify a declared name.

object deck: a card deck comprising one or more object
modules and control commands.

object language: the standard binary language in which the
output of a compi ler or assembler is expressed.

object module: the series of records containing the load in­
formation pertaining to a single program or subprogram.
Object modules serve as input to the Overlay Loader.

operational label: a symbolic name used to identify a logi­
cal system device.

option: an elective operand in a control command or pro­
cedure call, or an elective parameter in a Function
Parameter Table.

Overlay Loader: a processor that loads and links elements
of overlay programs.

overlay program: a segmented program in which the segment
currently being executed may overlay the core storage
area occupied by a previously executed segment.

parameter presence indicator: a bit, in word 1 of a Func­
tion Parameter Table that indicates whether a particu­
lar parameter word is present in the remainder of
the table.

physical device: a peripheral device that is referred to by
a II name ll specifying the device type, I/O channel,
and device number (also see Illogical device ll

).

postmortem dump: a listing of the contents of a specified
area of core memory, usually following the abortive
execution of a program.

primary reference: an external reference that must be satis­
fied by a corresponding external definition (capable of
causing loading from the system library).

Program Trap Conditions (PTC): two words that indicate
trap status (set or reset) and trap exi t address,
respectively.

pseudo fi Ie name: a symbol ic name used to identify a logi­
cal device in a user's program.

relocatable object module: a program, or subprogram, gen­
erated by a processor such as Meta-Symbol, FORTRAN,
COBOL, etc. (in XDS Sigma 5/7 object language).

resident program: a program that has been loaded into a
dedicated area of core memory.

ROM: relocatable object module.

secondary reference: an external reference that mayor
may not be satisfied by a corresponding external
definition (not capable of causing loading from the
system library).

secondary storage: any rapid-access storage medium other
than core memory (e. g., magnetic disc).

segment loader: a Monitor routine that loads overlay seg­
ments from disc storage at execution time.

source deck: a card deck comprising a complete program
or subprogram, in symbolic EBCDIC format.

source language: a language used to prepare a source pro­
gram (and therefrom a source deck) suitable for pro­
cessing by an assembler or compi ler.

standard control section: a control section whose length is
not known by a l-pass processor unti I all the load in­
formation for that section has been generated.

symbolic input: input from the device to which the SI
(symbol ic input) operational label is assigned.

symbol ic name: an identifier that is associated with some
particular source program statement or item so that
symbolic references may be made to it even though its
value may be subject to redefinition.

system library: a group of standard routines in object­
language format, any of which may be included in a
program being created.

Task Control Block (TCB): a table of program control in­
formation bui It by the relocating loader when a load
module is formed. The TCB is part of the load module
and contains a temp stack and the data required to
allow reentry of library routines during program execu­
tion. The TCB is program associated and not task
associated.

Temp Stack: a push-down stack created by the Overlay
Loader, by the Monitor, and by System Library routines.

vii

1. INTRODUCTION

OPERATING SYSTEM

The Sigma 5/7 Real-Time Batch Monitor (RBM) is the major
control element in an installation1s operation system. Op­
erating in a real-time environment, the Monitor provides
for concurrent background/foreground processing with em­
phasis on foreground operations.

The operating system consists of the Monitor~ language
translators, service programs, batch (background) user1s pro­
grams, and real-ti me (foreground) user1s programs. In gen­
eral, the Monitor governs the order in which these programs
are executed and provides services common to all of them.

The number, types, and version of programs in an operating
system vary, depending upon the exact requirements at a
particular installation. Each operating system consists of
closely integrated Monitor routines and processing programs
for a given range of applications.

As the requirements of an installation increase, the oper­
ating system can be enlarged, modified, or updated. The
ability to adapt to new requirements is inherent in the sys­
tem design. Once a system is generated, it can quickly
be expanded to include users l programs, data, and system
I ibrari es.

A user1s program and data may be temporari Iy incorporated
in the operati ng system or remai n a part of the system for an
extended period of time.

The operating system is self-contained and requires operator
intervention only under exceptional conditions. Operating
procedures are given in the XDS Sigma 5/7 Real-Time Batch
Monitor Operations Manual.

RBM TERMS AND PROCESSES

The following items are either unique to the RBM system or
have specific meaning within the RBM context. Terms and
processes not defined below are fully explained in the ap­
propriate chapter.

TASK

A task is a body of foreground procedural code associated
with a specific interrupt.

PROGRAM

A program is a body of procedural code and data that is
identifiable by name. A program is created at load time
from object modules and exists after load time in core image
form. A program is identified by a name so that it may be
loaded or released on request. Background programs are
loaded by control commands; foreground programs can be
loaded or released upon request through operator key-in,
control command, or system call from a foreground task.

FOREGROUND

The foreground is the set of all tasks in the system that are
currentl y connected to external interrupts. The priority
level and activation sequence of each interrupt controls the
execution order of the tasks. Foreground tasks are guaran­
teed memory protection from background processes.

BACKGROUND

The background is the set of all programs that use up any
available CPU time after the real-time interrupts are satis­
fied. In contrast to foreground tasks, background programs
are executed serially and their sequence is controlled by
control commands.

TEMP STACK

The Temp Stack is a IIpush-down/pu"-upll stack of memory
locations allocated by the Overlay Loader. It is used for
dynamic temporary storage when Monitor functions and
FORTRAN IV-H Library subroutines are called, and is also
avai lable as temporary storage for the user.

DATA CONTROL BLOCK

A DCB is a table located in the calling program that con­
tains information used by RBM in the performance of an I/O
operation. DCBs are the means by which I/O "information
is communicated between a user1s program and the Monitor.
The information required for a particular I/O operation is
either contained in the associated DCBor is given in a call.
The specific information needed for an I/O operation de­
pends on the organization of the data involved and the type
of operation to be performed.

The device used for an I/O operation is determined by the
contents of the assoc i ated DC B when the I/O operati on is
requested by the executing program.

There are both system DCBs and user-created DCBs. The
system DCBs need only be coded as external references in a
System Processor or user program; the Overlay Loader wi"
satisfy these external references at load ti me by furnishing
a copy of the appropriate DCBs in the program1s root. If a
user is not satisfied with the standard DCB parameters fur­
nished by the Overlay Loader, the system DC Bs can be coded
into the user program1s root and the DCB name declared as
an external definition.

FUNCTION PARAMETER TABLE

An FPT is a table through which a program communicates
with a Monitor function.

TASK CONTROL BLOCK

A TCB is a table containing task-associated parameters.
The space for this table is allocated by the user and the
entries are used and maintained by the Monitor.

Introduction

PROGRAM CONTROL BLOCK

The PCB is a table containing program-associated param­
eters. The PCB is constructed by the Overlay Loader at
load time.

CHECKPOINT

Checkpoint is the function of saving a copy of the back­
ground program on secondary storage.

RESTART

Restart is the function of restoring a background program
from its checkpoint image and resuming its operation from
the poi nt of interrupti on.

REENTRANT SUBROUTINE

A reentrant subroutine can be called by several different
tasks. During execution of such a subroutine, a higher pri­
ori ty task can interrupt and call the same subrouti ne. When
the higher priority task has completed execution, control is
returned to the subroutine at the interrupted point. Since
a reentrant subroutine does not perform any instruction
modification and uses the Temp Stack for scratch storage,
processing continues as though the subroutine had never
been reentered.

PHILOSOPHY OF OPERATION

The Monitor provides for two levels of operation:

1. Real-time foreground processing.

2. Batch processing.

REAL-TIME PROCESSING

Real-time processing, the most critical aspect of multiusage,
involves reacting to external events (including clock pulses)
within microseconds.

Real-Time programs can be either automatically loaded
every time the system is booted from the RAD or loaded
and initiated as needed. The first method is used when the
real-time process normally remains unchanged and is con­
stantlyoperative. The second approach is used when real­
time operations are executed periodically or irregularly, as
in an experimental laboratory.

A real-time process is assigned machine facilities on a ded­
icated basis at installation time. These facilities include
RAD and core memory residency, I/O channels, peripheral
devices, and external interrupt lines. Such allocation re­
mains in force unti I either the process or the computer oper­
ator terminates the program.

During SYSGEN, a user can reserve a portion of his fore­
ground area for communication between real-time programs.
Locations in this area are called foreground mailboxes. The
start of this area can be referenced through the system !abe!
FP:MBOX. Upon encountering an external reference to
FP:MBOX, the Overlay Loader wi II satisfy the reference
with the first location in the mailbox area.

2 Phi losophy of Operation/Monitor

The Monitor provides foreground programs with the facility
for direct I/O operations (so-called IOEX operations),
wherein the user furnishes the basic hardware commands and
does the necessary error checking and recovery. This type
of I/O operation provides decreased overhead and greater
flexibi I ity as compared to indirect I/O operations.

Foreground programs can be loaded for execution from a
background job stack by operator key-in or through a system
call by a foreground program, providing the program to be
loaded is already on the RAD in core image format. Fore­
ground programs are responsible for initializing the interrupt
system and connecti ng tasks to interrupts. Foreground tasks
can be processed compatibly and concurrently with a back­
ground production job stack.

RBtv\ '",i!! not borrow CPU ti me from a higher prj ori ty task to
process I/O requests of a lower priority.

BATCH PROCESSING

The system is capable of processing a continuous series of
background jobs with I ittle or no operator intervention.
Reducing the need for operator participation ensures faster
throughput and makes operations less subject to error. For
the most part, the operator should only have to perorm
routine tasks such as loading and unloading tape reels.

MONITOR

The Monitor controls and coordinates the processing of batch
and real-time jobs. The RAD-oriented system is designed
to ensure efficient operations by preventing interrupt re­
sponse time from being any longer than is absolutely neces­
sary, and by preserving the relative priority of tasks.

Reentrant service functions perform I/O and control the in­
terrupt system; other service functions load and connect
foreground tasks, and controi the partition of memory be­
tween foreground and background areas.

The Monitor provides for dynamic partitioning of core mem­
ory into background and foreground areas under user control.

Parts of the Monitor must remain resident to ensure contir.·­
ous coordinated operation. Other parts are brought into
core memory from secondary storage as requi red to perform
specific functions. Secondary storage management is essen­
tial for the Monitor. It is used for system storage to overlay
portions of the Monitor, thus minimizing core memory resi­
dency. Processing programs are retrieved from the RAD and
they too can capitalize on overlay techniques to minimize
core memory requirements.

Scratch storage for service programs, processors, and user
programs is avai lable on the RAD. In addition, the secon­
dary storage accommodates permanent user fi !es. Permanent
user fi les on disc are provided through the RAD Editor, which
can allocate files on the RAD in addition to providing media
conversion, RAD mapping (!isting of files), and other services.

The Monitor provides foreground programs with a background
checkpoint feature that writes the background program on

the RAD (after the I/O requests outstanding at the time of

the checkpoint requests have completed) and marks the
background core as foreground. The checkpoint of the
background is performed implicitly when a request is made
to load a foreground program and some portion of the mem­
ory occupied by the program lies in the background area.
The restart of the checkpointed background is also per­
formed implicitly upon release of the last foreground pro­
gram using a portion of the memory area required by the
checkpoi nted program.

Monitor features are summarized as follows:

• Efficient I/O service to user programs.

• Dynamic real-time process initiation and execution

• Uti I ization and management of rapid-access secondary
storage (disc).

• Comprehensive control of system operation by computer
operator.

• Sophisticated (but easy-to-use) processor services for
.program creation and execution such as FORTRAN IV-H
and Macro-Symbol.

• Checkpoint service.

• Job accounting.

• Flexible job scheduling of foreground programs for ef­
ficient throughput operation and recognition of instal­
lation priorities.

• Modular, flexible design for user modification.

• Use of overlay techniques and Public Library capabi lity
to minimize core memory residency.

•
•
•
•

Blocking and compression of disc fi les.

Foreground priority scheduling.

Di rect I/O operations.

Memory protection of the operating environment and
real-time processes (except for read protection).

RAD UTILIZATION

A rapid access disc storage (RAD) is essential for efficient
operation of the Monitor. Its purpose is to minimize core
storage requirements by utilizing theRADforsystemstorage r

including overlay requirements r processor areas r file areas r

checkpoint, data fi les, and scratch storage.

All RAD fi les (and all of memory) can be read by any user
without restrictions. There is no Monitor-furnished read
protection for memory or RAD fi les.

JOB ACCOUNTING

The Monitor provides accounting services for user job activ­
ity on the Sigma computer. Because of the system's multi­
usage capability, the accounting information can indicate
total elapsed time or actual machine time of each job.

Background job accounting is an option selected at SYSGEN.
To correctly calculate the elapsed time of a background job

r

all foreground tasks need to be centrally connected (see
"Connecting Real-Time Tasks to Interrupts" in Chapter 4).
Otherwise r the foreground task's execution time will be in­
cluded in the elapsed time of the background job.

To prevent including foreground execution time with back­
ground elapsed timer foreground response time to an inter­
rupt will be slightly slower (5 microseconds). Howeverr at
SYSGEN r the user has the option to include foreground exe­
cution time with background elapsed time to prevent this
degradation of foreground response time.

At the beginning of a background job r the date and start
time (in hours and minutes) will be logged on the LLdevice.
At the end of a background job, the total time of the job
(in hours, minutes, and seconds) will also be logged on LL.
This information plus the account number and user name is
then written on the "AL" file in the Background Data area
of the RAD. The "AL" file must be defined via the RAD
Editor; it must be in the D1 area of the RAD r and allocated
a minimum size of 256 words. This file can be purged
periodically by the operator.

The total time of a job is computed from the time the JOB
command is read until the next JOB or FIN command is
encountered. Following the FIN command and unti I the
next JOB command r all unused time is charged to the idle
account.

To attach a date and time to each jobr the user is required
to input the date and time of day (to the nearest mi nute)
whenever the system is booted into core.

PUBLIC LIBRARY

If an RBM system has several programs that share a group of
subroutines r this set of subroutines can be collected in core
in a "public library". This preselected set is loaded by the
Overlay Loader into a previously defined file on the RAD.
The Loader also writes the names and entry points of all the
routines into the same RAD file. Then r whenever the Over­
lay Loader loads a foreground or background program that
references one of the "public" routines r it links up the ap­
propriate branch to the Public Library copy instead of load­
ing a separate copy. This can represent a considerable
savi ng in space for a large system.

If the appropriate Public Library was not already present in
core, it wi II be automatically loaded into its specified fore­
ground location whenever a program is loaded that uses it.
Routines in the Public Library will execute under the same
WRITE key as the calling program; therefore, a Public Li­
brary routine used by both foreground and background must
on I y store into the ca II i ng program area.

RBM CONTROL TASK

The RBMControl Task will perform the following functions:

1. "I/O cleanup" and" I/O start" when any of these func­
tions are deferred from the I/O interrupt task because
of priority considerations.

2. Loading and initialization of foreground programs and
loading of background programs.

3. Release of foreground and background programs.

Monitor 3

4. Console interrupt and operator key-in processing.

5. Postmortem dumps for the background.

6. Checkpoint and restart of background.

The RBM Control Task is connected to the lowest priority
interrupt in the system at System Generation time. For con­
figurations without system interrupts, the Control Task is
connected to the console interrupt.

OVERLAYS

RBM is overlayed to minimize core residence requirements.
The ove rI ays consi st of a II Control Task sub tasks such as the
various key-in processors.

Foreground functions and frequent-use functions aie a!!
resident.

MEMORY PROTECTION

The Monitor provides memory protection for all input oper­
ations, except direct input and write protection for RAD
fi les. The hardware write-lock feature furnishes memory
protection for all non-I/O operations.

The hardware write-lock feature inhibits both foreground
programs (write-lock 10) and background programs (write­
lock 01) from storing outside their own memory area. An
exception is the Public Library which resides in the fore­
ground area of memory but executes under the key of the
calling program (either background or foreground). This
permits Public Library routines to use a Temp Stack in
the calling routine's portion of memory. Also, some Monitor
routines are given a skeleton key. One such routine is the
Job Control Processor, which executes in the background,
but has to set system flags in the Monitor portion (write­
lock 11) of memory.

Background programs causing protection violations are
aborted; foreground programs are not aborted but must pro­
cess all traps resulting from memory violation (see TRAPS
system call).

Memory protection on all input operations performed via
Monitor functions (except IOEX), is guaranteed by the Mon­
itor software. The Monitor checks the validity of the input
area on all read operations to ensure that the area is wholly
contained in the calling program's write-lock area. If an
attempt is made to read into an invalid area of core, an
error condition is returned to the error address specified by
the user. If no address is specified, the job is aborted. An
JlFG JI key-in is required before a foreground program can
be loaded from the background job stack; this protects the
foreground from an error in a background job stack.

The Monitor furnishes software write protection of RAD files
above and beyond that furnished by the hardware write-protect
switches on theRAD. Background programs are allowed to write
only in the Background Data area or Background Temp areas
of the RAD. Foreground programs are allowed to write only
in the Foreground Data areas. The foreground user is respon­
sible for ensuring that IOEX (direct I/O) writes only in the
IOEX Access area of the RAD. The systems program area,
Foreground program area, and Background program area,
can be written into only if the JlSY" key-in is in effect.

4 Monitor

Similarly, the Overlay Loader and RAD Editor (background
processors) are allowed to write in nonbackground areas only
if the IISyll key-in is in effect. Any RAD write-protection
violation will result in a write-protection error indication
return, and the write order wi" not be carried out.

PROCESSING PROGRAMS

The following language translators are available for inclusion

in the operating system:

FORTRAN IV-H

SL-1

Symbol

Macro-Symbo!

FORTRAN IV -H is a compi ler that operates in the backgiOund
butiscapable of generating code that will function in a real­
time environment.

SL-1 is a simulation language to solve differential equations
as the fundamental procedure in simulating parallel, con­
tinuous systems. An extensive set of macros permit the user
to simulate a wide variety of linear and nonlinear elements
through the use of single-operator statements. These proto­
type statements are inserted into the user program each time
a macro is referenced by name.

Symbol is a one-pass assembler that accepts symbol ic input
and outputs programs in Sigma 5/7 standard object language.

Macro-Symbol is a two-pass assembler with procedure capa­
bility that accepts both symbolic and compressed format
programs as input, and provides standard sequential editing
for compressed input fi les. The assembler outputs programs
in Si gma 5/7 standard object language.

SERVICE PROGRAMS

Service Programs provide routines for performing frequently
used functions. The service programs include the Overlay
Loader and the RAD Editor.

OVERLAY LOADER

The Overlay Loader (a background processor) can be used
to create overlay programs for later execution in either the
foreground or background. Thus, if a foreground program
can tolerate a slight delay in reading the overlays into
core for execution, either foreground or background pro­
grams of virtually unlimited size can be constructed even
though core size is restricted. For example, a 1400-word
overlay can be input in about 50 milliseconds, assuming
a Model 7204 RAD is available. That is, the time re­
quired to bring in an overlay for execution is the time
of the one RAD access requi red to read the overlay.
Since a program is stored on the RAD in core image
format, it can be loaded very quickly as one logical
record per segment. A program loaded by the Overlay
Loader can be entered permanently into the System Pro­
grams Directory, Foreground Programs Directory; or
Background Programs Directory, or it can be loaded on
a temporary file in the Background Temp area of the
RAD.

The overlay structure as illustrated in Figure 1 is restricted
to a permanently resident root section and any number of
overlay segments. A blank COMMON and labeled COM­
MON data area can be establ i shed for use by the root and
overlay segments. Each segment is created by the Loader
from one or more object modules output by the Symbol,
Macro-Symbol, or FORTRAN IV-H processors. The Loader
wi II bui Id the Program Control Block, the OVLOAD table
(used to load the overlay segments at execution time), al­
locate or bui Id DCBs, and allocate the temp stack. It
wi II also load library modules to satisfy unsatisfied ref­
erences encountered in the loading process. A maximum
of two I ibraries can be searched. Library search and
loading are extremely fast, due to special tables that
are added to the library files at the time the library is
created on the RAD.

The overlay segments must be explicitly defined at load
time and explicitly called at execution time. There is no
provision for implicitly calling in an overlay segment. All
segments in a path may communicate with each other via
REF/DEF linkages, but it is the user's responsibility to en­
sure that any segment referenced is currently in core.

RAD EDITOR

The RAD Editor (a background processor) controls RAD allo­
cation forareascontainingpermanent RAD files and performs
utility functions for all areas. The RAD areas with perma­
nent files include Background Programs, Foreground Pro­
grams, System Programs, and data areas.

I
Overlay
Segment
(level 2)

I
Overlay
Segment
(level 1)

I
I

Overlay
Segment
(I eVE: l! 2)

Root
(level 0)

I

I

The RAD Editor performs the following functions:

1. Adds or deletes entries to the permanentfi Ie di rectories.

2. Compacts the RAD areas by relocating RAD fi les and
updating/compacting directories to regain space with­
in an area.

3. Maps permanent RAD fi Ie allocation.

4. Bui Ids and maintains library fi les on the RAD for use
by the Overlay Loader.

5. Copies permanent RAD files from one file to another.

6. Saves the contents of RAD areas in self-reloadable form.

7. Restores RAD areas previously saved.

8. Dumps the contents of permanent RAD fi les or areas.

JOB ORGANIZATION
The user controls the construction and execution of a back­
ground job by means of control cards placed before, within,
and following the input card decks. These control cards,
interpreted by the Job Control Processor, Overlay Loader,
or RAD Editor, specify

• Processors required and the options to be used.

• Input/output devices required and their specific
assi gnments.

•
•
•

Loading and execution requirements.

Libraries and supporting services required.

Program modification and debugging (postmortem dump)
requi rements.

I
Overlay
Segment
(level 1)

1
I

Overlay
Segment
(level 2)

Overlay
Segment
(level 2)

I
Overlay
Segment
(level 3)

I
I

Overlay
Segment
(level 3)

Figure 1. Overlay Structure

Job Organization 5

A batch job is the basic independent task performed by the
operating system. Each such background job is independent
of any other job and consists of one or more directly or in­
directly related job steps. A job results in the execution of
a processing program such as a language translator, service
program, or user's program.

A foreground task may cause the background process to be
checkpointed if additional core storage area is requi red for
the real-time program. The Monitor's checkpoint routine
saves all data needed to restart a checkpointed job along
with the job.

HARDWARE CONFIGURATIONS

The minimum configuration required and supported by RBM
for either a Sigma 5 Or Sigma 7 is the following:

Sigma 5 or Sigma 7 CPU with two clocks and
Integral lOP

Memory Protect Feature t

Memory Module: 4096 words

Memory Increment: 4096 words each for a total of
12,228 words.

Keyboard/Printer with Paper Tape Reader/Punch

RAD Control and. 75MB RAD Storage Unit

Interrupt Control Chassist

Priority Interrupti Two Levelst

External Interface Featuret

Note that an external interrupt level is required at execu­
tion time for each real-time task in the system, and another
external interrupt level is required for the RBMControl Task.

In addition to the previous list, any items from the list be­
low can be added for increased performance and wi II be
specifically supported by RBM. Other items can be added
to this list but will not receive any special RBM support.

Floating-Point Arithmetic
Memory Module
Memory Increment
Multiplexor lOP with Eight Channels
Additional Eight Multiplexor Channels
Selector lOP
Decimal Arithmetic
Keyboard/Printer
Paper Tape Reader/Punch (High-Speed)
Card Readers

tTo run background only, these items are not required in
the minimum configuration. To run background/foreground,
the complete list is required.

6 Hardware/System Configurations

Card Punches
t

RADs
9-Track Magneti c Tape
7-Track Magnetic Tape
BCD and Binary Packing Options for 7-Track Mag­

netic Tape
Buffe red Li ne Pr in te rs t

SYSTEM CONFIGURATIONS

CORE SPACE CONSIDERATIONS FOR A
MINIMUM SYSTEM

The minimum size of a resident RBM is 5-1/2K words. This
wi II support foreground/background processing under the
minimum hardware configuration, but not floating-point
Oi decimal oiithmetic simulation softv/cre, orjobaccounting.
The floating-point simulation software requires about 500
words; decimal arithmetic requires about 800 words; and
job accounting requires about 100 words.

RBM wi II support the followi ng system processors ina maxi­
mum background space of 11 K (some of which require con­
siderably less than 11 K):

Macro-Symbol

Symbol

FORTRAN IV-H

SL-l

Overlay Loader

RAD Editor

WIRING OF EXTERNAL INTERRUPTS

External interrupts must be wired so that their priority and
address both have a corresponding monotonically increasing
or decreasing sequence. That is, the highest priority inter­
rupt must be connected to the lowest address interrupt ce II;
the next highest priority interrupt must be connected to an
address greater than the highest priority interrupt, etc.

A user can wire external interrupts to give them a higher
priority than the I/O interrupt within the following
restrictions:

1. A task connected to the high-priority interrupts cannot
use any Monitor function that performs I/O (e.g., Read,
Write, IOEX).

2. Such a task cannot perform its own I/O if the I/O de-
vice is connected to the central I/O interrupt level.

In general, a foreground task should not be connected to an
interrupt whose priority is higher than the I/O interrupt
except in a situation where instant response must be guaran­
teed. In this special case, a task that must perform I/O
could do direct data I/O or trigger a lower priority task to
perform system I/O.

tThe XDS Sigma 100 Card/Minute Card Punch (Model
No. 7165) and the XDS Sigma Buffered Line Printer (Model
No. 7450) are not supported in this release of RBM.

2. CONTROL COMMANDS

The Monitor is controlled and directed by means of control
commands. These commands effect the construction and exe­
cution of programs and provide communication between a
program and its environment. The environment includes the
Monitor and the Macro-Symbol, Symbol, FORTRAN IV-H
SL-l, Overlay Loader, and RAD Editor processors, the oper­
ator, and the peripheral equipment.

Control commands have the general form

(mnemonic specification

where

is the first character of the record and identifies
the beginning of a control message.

mnemonic is the mnemonic code name of a control
function or the name of a processor. The name may
begin any number of spaces after the ! character,
except for an EOD command.

specification is a listing of required or optional
specifications. This may include keywords, labels,
and numeric values appropriate to the specific
command.

In this manual, the options that may be included in the
specification field of a given type of control command are
shown enclosed in brackets (no brackets are actually used
in control commands, and parentheses are required to in­
dicate the grouping of subfields). For example/ see theop­
tions given for the LOAD control ~ommand.

One or more blanks may separate the mnemonic and specifi­
cation fields, but no blanks can be embedded within a field.
A control command is terminated by the first blank after the
specification field, or, if the specification field is absent
and a comment follows the command, the command is termi­
nated by a period after the blank that follows the mnemonic
field. Annotational comments detailing the specific pur­
pose of a command may be written following the command
terminator, but no control command record can contain more
than 80 characters.

A control command can be continued from one record to the
next by using a semicolon to replace the comma as a sub­
field terminator in the specification field of the command.
Column one of the continuation card must contain either an
exclamation mark (if the control command is read by the Job
Control Processor), or a colon (if the command is read by
the Overlay Loader or RAD Editor). See the control com­
mand examples given later in this chapter for an illustration
of the proper use of the semicolon.

Communication between the operator and the Monitor is ac­
compl ished via control commands, key-ins, and messages.

Control commands are usual I y input to the Monitor via
punched cards; however, any input device{s) may be desig­
nated for this function. All control commands are I isted on
the output device designated as the I isting log (normally a
line printer). In this manner, the Monitor keeps the oper­
ator informed regarding the progress of the job. When a job
is aborted, all control commands sk ipped over unti I the next
JOB command is encountered are I isted on LL with a greater
than character (» in column one.

Note that in all control commands, the first three characters
after the exclamation character are sufficient to define any
mnemon i c code or keyword.

Control commands may be categorized as follows:

System Control Debug Control

JOB PMD
ASSIGN

Utility Control
LOAD
ATTEND PFIL
MESSAGE PREC
PAUSE SFIL
CC REWIND
LIMIT UNLOAD
STDLB WE OF
ROV DAL
RUN

Processor Control
POOL
ALLOBT

OLOAD
RADEDIT

Input Control
MACRSYM
SYMBOL

EOD FORTRANH
FIN SL-l

JOB CONTROL PROCESSOR

All control commands are read from the "C" (op label) device
by the Job Control Processor (JCP). The JCP is a speci al pro­
cessor loaded into the background by RBM upon the initial
"el key-in. The JCP is also reloaded into the background
following each job step with in a job. A job step is defined
as all control commands required for the setup and execution
of a single processor or user program within a job stack.

The JCP processes each control command unti I a request is
made to execute a processor or user program, at wh i ch ti me
the appropriate program is read into the background and
given control. A detai led description of the JCP interface
with the system processors or user programs is given later in
this chapter under "Processor Control Commands".

SYSTEM CONTROL COMMANDS

JOB Each background job to be processed by the system
must begin with a JOB control command. The JOB command

Control Commands 7

signals the completion of the previous job, if any, and the
beginning of a new one. The JOB command causes the tem­
porary assignments of all operational labels (except the "C"
operational label) to be reset to their permanent assignments.

The form of the JOB command is

! JOB[account number, name]

where

account number identifies the account or project.
It consists of from 1 to 8 alphanumeric characters.

nn <:> identifies the user. It consists of from 1 to
12 characters.

Note that a comma separates the optional subfields. The
account number must precede the name,and both fields must
be present if either one is present.

Example:

(JOB 12345,JOBSAMPI

The above example defines the account number for the job
as 12345, and the user as J OBSAMP 1.

ASSIGN The ASSIGN control command specifies the
physical peripheral devices or RAD files to be used in pro­
cessing the current job step, and the uses to which they will
be put. ASSIGN commands must appear prior to the appro­
priate RUN or Processor name command and affect oniy that
one job step. Each ASSIGN command assigns a Data Con­
trol Block (DCB) name to an operational label (logical
device name), a RAD file, or a physical device. An opera­
tional label is a symbolic name used to identify a logical
system device (see Table 1). The "name" to which a DCB
is assigned may be either a system physical device name of
the form

yyndd

where

yy specifies the type of device (see Table 2).

n specifies the channel letter (see Table 3).

dd specifies the device number (see Table 4), in
hexadecimal.

or an operational label, background temp file, permanent
RAD file, or numeric zero.

If there is an error in an ASSIGN Command, the entire
command must be input again.

8 System Control Commands

I
I

Label

BI

CI

SI

C

BO

DO

LO

CO

LL

OC

SO

yy

TY

LP

CR

CP

Table 1. Monitor Operational Labels

Reference Comments

Binary input Used to input bi nary
information.

Compressed Used by Macro-Symbol.
input

Symbolic Used to input source
input (symbol ic) information.

Control com- Used by the Mon i tor and
mand input processors to read control

I
commands.

Binary output Used to output bi nary
I information.

Diagnostic I Used by the Monitor for
output postmortem dump and

diagnostic messages.

Listing output Used for object listings
from assembl ies and
compi I ation.

Compressed Used by Macro-Symbol.
output

Listing log Used by the Monitor to
log control commands and
other system messages.

Operator's Used by the Monitor for
console key- i ns and operator con-

trol. (Always assigned to
a keyboard/printer.)

Symbolic Used by SL-1.
output

Table 2. I/O Device Type Codes

Device Type

Typewriter

Li ne pri nter

Card reader

Card punch

9T 9-track magneti c tape

7T

PP

7-track magnetic tape

Paper tape punch

PR Paper tape reader

DC

NO

RAD or other di sc storage

Not a standard device. Used as a special

purpose device for IOEX.

I

Table 3. Channel Designation Codes

Specified Correspond i ng
Channel Decimal Digit
letter (n) of Unit Address

A a
B 1

C 2

D 3

E 4

F 5

G 6

H 7

Table 4. Device Designation Codes

Hexadecimal Device
Code (dd) Designation

00 :s dd :s 7F Refers to a device num-
ber (00 through 7F).

80 :s dd :s FF Refers to a device con-
troller number (0 through
7) followed by a device
number (0 through F).

The form of the ASSIGN control command is

! ASSIGN (dcb&area,name]) [,(option),(option), •• • /J
[(option)]

where

dcb is the name (not exceeding eight characters in
I ength) of the DCB to be assigned. It must be the
first subfield following ASSIGN, and must be fol­
lowed by a name specification (see below) 0 The
first two characters of a user's DCB name must be
"F: II (e. g., F:PRINT or F :BI). The first two char­
acters of a system DCB name are "M:" (e.g.,
M:lO).

area specifies the RAD area if the DCB is to be as-
signed to a RAD file, and must be one of the fol­
lowing:

SP

FP

BP

BT

== Systems Program area

== Foreground Program area

== Background Program area

== Background Temp area

XA = IOEX area

CK = Checkpoint area

D1

DA

DF

_ Data area (number of data areas
- are defined at SYSGEN)

Note that if the DCB is assigned to a background
temp file, the area can be omitted.

name specifies a system physical device name, a
system operational label, a background temp fi Ie
name (X1-X9, GO, OV), a permanent RAD file
name, or a numeric zero. In the "0" case, noout­
put will be generated by the DCB. If assignment
is to a permanent RAD file, and if "name" is
omitted, the DCB is assigned to the entire RAD
area.

The options below are used only if the user creates the DCB
or changes some of the DCB's parameters. Note that DCB
parameters not specified on the ASSIGN command are not
changed from their initial value. The initial values of the
DCB parameters depend upon how the DCB was created.
Parameters of System DCBs have standard default values.
DCBs allocated by the Overlay loader (F:DCBs) are set to
all zeros. User created DCBs have the initial values speci­
fied by the user.

Mode may be any or all of the following:

(

BCD}

BIN .

!VFC)

NOVFC

!PACK)

UNPACK

specifies the EBCDIC or automatic device
mode.

specifies the binary device mode.

specifies vertical format control.

no vertical format control.

specifies that the packed binary or un­
packed binary mode is to be used
for 7-track magnetic tape.

number of recovery tries

TRIES,value specifies the maximum number of re-
covery tries to be attempted for an I/O operation.
The value must be less than 256.

default record length

RECl/value specifies the default record length in
bytes. The value n must be 1 :s n:S 32,767. This
record length is used for a II requests referenci ng
the DCBs that do not explicitly specify a record
length in the FPT.

System Control Commands 9

Examples:

1. Assign I istable output to a magnetic tape:

~ ASSIGN (M:LO, 9TA81), VFC

This example assigns the M:LO DCB to a 9-track mag­
netic tape. Vertical format control is aiso specified,
so the first byte in each record is a format control byte
for the I ine printer.

2. Assign binary output to the GO file on RAD:

/ __ .,. 1t..1 ,...."""" ,...,.", r ! A»l \M:l.7V, l.7V}

This example assignstheM:GO DCB to the GO file.
Note that in this case the RAD area can be omitted.

3. Assign source input to a RAD file in the D 1 Data area:

(' ASSIGN (M:SI, Dl, PRESTORE)

This example assigns the M:SI DCB to the RAD file
PRESTORE, which is in the D 1 area. This type of as­
signment could be used to assemble a source program
that had been prestored onto a RAD file.

4. Build a user DCB that was left empty at load time:

/1 ASSIGN (F:XX, 7TAEO), PACK, (TRIES, 3)'1

I [(REeL, 80) ,

This example builds a user DCB, F:XX, and also as­
signs F:XX to a 7-track magnetic tape. The packed
binary mode (PACK) wi II be used in accessing the
tape, and a maximum of three recovery tries (TRIES, 3)
wi II be attempted for a possible tape parity error. The
default record size to be read or written is 80 bytes
(RECL,80).

5. Assign a user DCB to read nonstandard binary codes:

(' ASSIGN (F:INP, CRA03), BIN

This example assigns the user DCB, F:INP, to the card
reader, and specifies that the binary mode is to be used
in reading the cards. This type of assignment would be
used to change an existing DCB to read nonstandard
binary cards.

10 System Control Commands

LOAD The LOAD control command directs the JCP
Loader to load a program on the RAD and absolutize it for
its core execution location.

The form of the LOAD command is

(' LOAD [(option),(option)]

where the options are

IN[, area], name specifies the input device as a
system physical device name, a system operational
lobe!, or a RAD fi!e from which the object mod­
ules wi II be loaded. The default input device is
the one assigned to the BI operational label.

OUT[, area]' name specifies the output device as
an operational label or a RAD file on which the
loaded program is written. The defaul t output de­
vice is the OV file. A foreground program can
only be loaded on the FP area of the RAD or the
OV file.

EXLOC, value specifies the execution location (in
hexadecimal) of the program being loaded. The
default location will be the start of background.

SEG,value specifies the decimal number of overlay
segments that follow the root. The default value
is zero, which means only a root is being loaded.

MAP specifies that a map of the loaded program be

{~1
, LI J

output to the LO device. The default is no map.

specifies that the program being loaded is a fore­
ground program (F) or background program (8). The
default is a background program.

The primary function of the JCP Loader is to load the Over­
lay Loader. However, the JCP Loader will load any non­
overlaid program on the RAD under the following restrictions;

1. The last object module in the program being loaded must
be terminated by an lEOD command. Any number of
object modules can be loaded.

2. The object module cannot contain any of the following
load items: declare dummy section, declare secondary
external reference name, forward reference definition,
or add or subtract absolute section. The field (in a
define field load item) cannot cross a word boundary.

3. FORTRAN compiled programs or programs assembled
with basic Symbol, or programs using the LOCAL
directive cannot be loaded with this Loader.

4. Object modules being loaded cannot contain more than
255 declaration name numbers.

5. The JCP Loader creates the OVLOAD and DCB table
and the M:SL DCB. The user must code the complete
PCB except for the OVLOAD table address, the DCB
table address, and the M:SL DCB address. The user
must also code all DCBs (except M:SL), the Temp Stack
and all other tables referenced in the PCB.

6. The PCB must be the first data loaded in the root.

For loading a program with overlay segments, the above
restrictions plus the following restrictions apply:

1. The only overlay structure allowed is a root plus one
level of overlay.

2. The root must be the first group of object modu I es
loaded and must be terminated by an !EOD command.
Each group of object modules loaded after the root and
terminated with an !EOD command will consist of one
overlay segment and will be attached to the end of the
root. Each overlay segment wi II be assigned a segment
identification of 1 to n, where 1 is assigned to the first
segment loaded, 2 assigned to the second segment loaded,
etc. The segment identification is used in call ing in
an overlay segment at execution time.

3. The number of overlay segments must be correctl y stated
on the !LOAD command.

For mul tisegment programs, the JCP Loader builds the
OVLOAD table at the end of the root and allocates seven
words for the M:SL DCB. The entry address for each over­
lay is taken from the last encountered start item and placed
in the OVLOAD table along with the load address, byte
count, and segment identification.

The JCP Loader writes the program in core image format onto
the appropriate fi Ie. The addresses and names of all M: or
F: DEFs will be used by the Loader to create the DCB table.
The loaded program can be executed via the RU N, R OV,
or NAME command, depending upon which RAD file the
program was loaded on. Note that the Loader never loads
a program directly into core memory_ The JCP Loader can
be used to load foreground programs (which must obey the
previously stated restrictions) by using the EXLOC and F
parameters on the LOAD command.

Examples:

1. Load Overl ay Loader from cards:

! LOAD (IN,CRA03), (OUT, SP, OLOAD), ~

L(SEG, 5), MAP

This command would be used to load the Overlay Loader
onto its permanent file (OLOAD) on the SP area of the
RAD. Five overlay segments (SEG, 5) are specified and
a MAP of the load is requested. The complete deck struc­
ture required to perform the load is illustrated in Figure 2.

2. Load a nonoverlaid foreground program onto its per­
manent file:

! LOAD (IN, 9TA82), (OUT, FP, FCOPY), ~

L(EXLOC, 4100), F

This example loads a foreground program (indicated by
F parameter) from a 9-track tape onto the FCOPY file
in the FP area. The program wi II be loaded to execute
at 410016(EXLOC,4100). The foreground program can
consist of any number of object modules, but the last
object module must be followed by an EOF. The object
modules must obey the restrictions specified for the JCP
Loader (see above). Note that an SY key- in must be
in effect.

ATTEND The ATTEND control command is used during an
attended run and indicates that RBM is to go into a WAIT
condition after a WAIT system call, or after an abort from the
background. After an unsol icited key-in of IICI, background
processing will continue from the point of the wait. If the
ATTEND control command is not specified, and an abort or
error condition occurs, or if a WAIT system call is made,

Figure 2. Loading Overlay Loader from Cards

System Control Commands 11

the Monitor does not pause for operator intervention but
skips all control commands, binary records, and data until
a JOB or FIN command is encountered. When in skipping
mode, all control commands encountered will be listed on
the LL device, with a greater than character (» replacing
the exclamation mark in column one. Hence, the default
mode of operation (no ATTEND command) is for closed­
shop batch processing, with no holts between jobs after an
abort.

The form of the ATTEND command is

~ ATTEND

I

The effect of an ATTEND command exists for one job only.
Normally, the ATTEND command immediately follows the
JOB command.

MES~AGE The MESSAGE control command is used to
type a message to the operator. The message will be typed
on the OC device, and normal processing will continue
after the message is output.

The form of the MESSAGE command is

(' MESSAGE message

where message is any comment to the operator, up to a fu II
card image (80 columns). The message may contain any de­
sired characters, including blanks, but may not be con­
tinued from one record to the next. Two or more MESSAGE
control commands may be used in immediate succession.

Note that the entire card image, including the !MESSAGE,
will be output to LL and OC.

Example:

! MESSAGE SEND ALL SAVE TAPES TO JOHN SMITH

The above example would cause the following message to
be output on the LL and OC devices:

! !MESSAGE SEND ALL SAVE TAPES TOJOHN SMITH

Note: All Monitor messages to the operator begin with
two exclamation characters.

PAUSE The PAUSE control command is similar to the
MESSAGE command except that the JCP will enter a WAIT
state after the message is output to OC to give the opera­
tor time to carry out the instructions in the message. Pro­
cessing is continued after an unsolicited key-in of IICII.

12 System Control Commands

The form of the PAUSE command is

(' PAUSE message

where message is any comment to the operator, up to a full
card image (80 columns).

Example:

(' PAUSE KEYIN SYC

The above example would cause the ,V,onitor to pause eXe­
cution with the following message output on LL and OC,

!! PAUSE KEYIN SYC

giving the operator time to key in SYC, which would per­
mit the user to override the Write protection on the RAD
and continue the background job.

CC The CC control command removes typewriter over-
ride of the C device (see TY key-in description). The next
control command will be read from the C device instead of
the typewriter.

The form of the CC control command is

The CC control command has the same effect as the CC key­
in, and can be used whenever the JCP has contro!'

LIMIT The LIMIT control command is used to set a maxi-
mum allowable execution time for a background program.
If the job exceeds the time I imit, the background is aborted
with a postmortem dump (if the dump option was specified
via a PMD control command).

The form of the LIMIT control command is

(LIMIT n

where n specifies the maximum allowable execution time in
minutes.

STOLB The STDLB command is used to change the tempo-
rary assignment of an operational I abel, with the exception
of OC (operator IS console). The operational !abels being
changed receive the new temporary assignments which stay
in effect until the next JOB command is encountered.

The form of the STDLB command is

! STDLB (label ~areaJname) [, (label [,areaJ,name) • .• J

where

label specifies one of the standard operational
labels input during SYSGEN (see Table 2).

area specifies a RAD area for an operational label
assignment to a RAD file. If an operational label
is assigned to a fi Ie in the Background Temp area
(X1-X9, GO, OV), only the file name need be
specified.

name specifies a physical device name to which the

Example:

operational label is to be temporarily assigned, a
RAD file name, a numeric zero, or another oper­
ational label. In the latter case, the first oper­
ational label will receive the same assignment as
the temporary assignment of the second operational
label. If "a" is specified, there is to be no tempo­
raryassignment, which means that no output will
occur on that label. The C op label cannot be as­
signed to zero via this command. Note that if an
error occurs on a ! STD LB command, all fields up to
the one in error will be processed.

Change temporary assignments of operational labels:

! STDLB (BO/GO), (COr D2, COMPRESS), (LO, 9TA80)

Th is example could be used for Macro-Symbol assembl y to
change the binary output to the GO file in the RAD, the
compressed output to the COMPRESS fi Ie in the D2 area of
the RAD, and the listable outputtoa 9-track magnetic tape.

ROV The ROV command (RUN OV) causes execution
of the program (e i ther foreground or background) on the OV fi Ie.

The form of the ROV command is

(!ROV

The loading of any program into the foreground area via a
ROV control command must be preceded by an FG key-in
(see Chapter 3). A foreground program loaded by ! ROV is
given the name OV. There may be only one such program
resident at any time.

RUN The RUN control command causes the named pro-
gram (either foreground or background) to be executed.

The form of the RUN command is I RUN area,file name

where

area, fi Ie name specifies a RAD area and the fi Ie
name of the program in that area that is to be exe­
cuted. The area must be either SP, FP, or BP. The
loading of any program into the foreground area
via a RUN control command must be proceded by
an FG key-in.

POOL The POOL control command is used to override
the default allocation of blocking buffers for the background
by the JCP. The POOL command takes effect only for a job
step and not for the duration of an entire job.

The form of the POOL command is

where

n specifies the number of 256-word blocking buffers
that are to be allocated to the background for the
blocking and deblocking of blocked or compressed
RAD fi I es. The n val ue must be I ess than 255, and
the value of 256n + n + 1 cannot exceed the avail­
abl e background space.

ALLOST The ALLOBT control command is used to define
the files in the BT area of the RAD, and overrides any JCP
default definitions. The fi les input on the ALLOBT command
will receive the specified sizes and formats. The files defined
via an ALLOBT command wi II stay in effect only for the cur­
rent job step unless the SAVE option is invoked. Ifthe SAVE
option is used, the ALLOBT command will stay in effect for
the entire job (any input for the GO or OV fi les will always
stay in effect for th e entire j ob).

The form of the ALLOBT command is

! ALLOBT (FILE,nn) [,(option), (option) . •• J

where

FILE,nn specifies the name of the background temp
fi I e to be all ocated. Legal names for nn are
X1,X2, •.. , X9,GO, or OV.

and the options are

FORMAT,value specifies the format of the file; U
for unblocked, B for blocked, C for compressed.
The default is unblocked for all files except GO;
the default for GO is blocked.

FSIZE,value specifies the decimal length of the file
in logical records. If ALL is input for a value, the
remainder of the BT area will be allocated for this
file. An ALL input is allowed only once, and is
only allowed for Xi files (not GO or OV). A

System Control Commands 13

check is made for overflow of the BT area at the
time the ALLOBT command is input. The default
value is 1000 records. Note that the file size in
sectors is computed using the logical record size
and not the granule size.

RSIZE, val ue specifies the decimal number of words
per logical record. This field is only meaningful
for blocked or unblocked files, since the Monitor
compresses records of compressed fi I es into 256-
word blocks. Blocked files have a default record
size of 128 words, and unblocked files have a de­
fault record size equal to the granule size. Note
that if RSIZE > 128, unblocked organization wi II
always be given to the fi Ie.

GSIZE,value specifies the decimal number of words
per granuie. This fieid is only used in directly
accessing a file. The default granule size will be
the size of a RAD sector.

SAVE specifies that this file is to be saved through-
out the job and not reallocated between job steps.

Example:

Change the default assignments of the background temp
files:

The group of ALLOBT commands

5. ! ALLOBT(FIL,OV) ,(FSIZ,O)

4. ! ALLOB{FIL,X4) ,(FSI,ALL)

! (GSIZE, 180)

3. !ALLO(FILE,X3),(FSIZE,20);

i (F SIZE, 100) , (RS iZE ,30)
! ALL(FILE,X2) ,(FORMAT ,B);

! (FSIZE,1000),SAVE

1. !ALLOBT(FILE,Xl) ,(FORMA T ,C);

could be used by a background program to achieve the fol­
lowing results:

1. The Xl temp file would be a compressed file that could
hold approximately 1000 EBCDIC cards. This file would
be saved throughout the entire job.

2. The X2 temp file would be a blocked file which could
hold a maximum of 100 binary cards.

3. The X3 temp file would be an unblocked file contain­
ing 40 sectors (assuming a 7204 RAD) with a granule
size of 180 words or two sectors.

14 Debug Control Commands

4. The X4 temp file would be an unblocked file with a
record and granul e size of 90 words (assuming a 7204
RAD) and would be allocated the remainder of the
Background temp area.

5. The OV file would not be allocated.

After inputting this series of ALLOBT commands, the back­
ground temp area would have the following layout (assuming
a 7204 RAD):

X2 X3 X4 Xl GO
I I I I I I
38 Sectors 40 Sectors n Sectors 120 Sectors Default Size

Note that X4 receives n sectors, where n is the remainder
of the area after all other fi les have been allocated. Xl is
al iocated at the opposite end of the Bi area, since it will
be saved throughout the enti re job.

The formula used to calculate the number of RAD sectors for
X2 is the following:

R;~E x FSIZE x 3

where 256 is the number of words per blocking buffer and 3
is the number of RAD sectors (assuming a 7204 RAD) neces­
sary to contain a blocking buffer.

The formula used to calculate the number of RAD sectors for
Xl is

FSIZE
25 x 3

where it is assumed that 25 cards can be compressed into a
256-word blocking buffer. The number 3 is the number of
RAD sectors necessary to contain a blocking buffer.

DEBUG CONTROL COMMANDS

PMD The postmortem dump (PMD) control command
causes the Monitor to dump a specified area of memory if
a background job is aborted during execution. Such a dump
is termed "postmortem II because it is performed after the
background program has been aborted, terminated normally,
or not executed at all for any reason. The dump is always
output on the DO device. In the case of an abort the time
to perform the dump is not included in the total time on the
LIMIT control card. Note that the PMD command must pre­
cede the RUN command.

The form of the PMD command is

! PMD [U] L{from,to)] [,(from,to)] •.•

where

U specifies that an unconditional dump at the end
of the job is to be output, even if there were

no errors. If U is absent, the dump occurs only
if the job is aborted.

from specifies the Io.cation (in hexadecimal) at
which dumping is to begin. If no locations are
specified, the entire background is dumped.

to specifies the last location (in hexadecimal) to
be dumped. The I ast location must ~ first location.

A maximum of four location pairs is processed and only the
last PMD command is honored within a job step. If an error
occurs anywhere on the command, the entire command must
be reinput.

Example:

Request a postmortem dump:

! PMD U, {1200, 1300L (2000,3000)

This example requests an unconditional dump at the termina­
tion of the next program to run in the background. Loca­
tions 120016 through 130016' and 200016 through 300016
will be output on the DO device.

INPUT CONTROL COMMANDS

Note that E OD control commands must not have any spaces
between the exclamation character and the mnemonic.

EOD The user may define blocks in a data deck by in-
serting EOD control commands at the end of each block.
When an EOD command is encountered, the Monitor returns
an EOD status. Any number of EOD commands may be used
in a job and for any reason.

The form of the EOD command is

FIN The FIN control command is used to specify the end
of a stack of jobs. When the FIN command is encountered,
the Monitor writes it on the I isting log to inform the opera­
tor that all current jobs have been completed, types IIBEGIN
IDLE II on OC, and then enters the idle state. All time pre­
ceding the FIN command is charged to the previous job, if
job accounting is being performed. All time from the FIN
command to the next JOB command is charged to the idle
account.

The form of the FIN command is

UTILITY CONTROL COMMANDS

The util ity control commands described below allow the
user to manipulate RAD files or magnetic tape files.

PFIL, PREC The fil e and record positioning commands are
used to position a device within its current file. The PFIL
command, which is only val id for magnetic tapes or RAD
files, will leave the device positioned before the file mark
in the appropriate direction. Only background devices
(not dedicated to the foreground or IOEX) can be positioned.

The forms for the PFIL and PREC control commands are

{i ~~~~} [area,] name [, SAC K] [, n]

where

[area,] name specifies a system device name,
operational label, or RAD area and file name of
the device that is to be positioned. This must be
the first item in the specification field.

BACK specifies that the direction of the position-
ing is backward. The default is forward.

n specifies the number of records to skip. The linn
parameter applies only to the PREC command and
not to PFIL. The PFIL command always refers to
one file. The default is skip one record.

Examples:

1. Position a RAD file to the end of the data:

(! PFIL GO

This example could be used to position the GO file so
additional object modules could be added to those al­
ready existing.

2. Position a RAD fi Ie: (! PREC Dl,ABeD, 30

This example would position RAD file ABCD 30 records
forward from its current position.

SFIL The skip file command is used to skip one or
more files on a magnetic tape unit, but cannot be used
to position a RAD file. The SFIL command leaves the
device positioned following the specified tape mark in
the appropriate direction. Only undedicated devices
can be positioned.

Utility Control Commands 15

The form of the SFIL control command is I SFIL name [,BACK][,n]

where

name specifies a system device name or opeiational
label of the device that is to be positioned. This
must be the first item in the specification field.

BACK specifies that the direction of the positioning
is backward. The default is forward.

n specifies the number of files to skip. The default
IS one fiie.

Example:

Skip tape files:

(' SFIL 9T A82, BACK, 4

This example would cause back skipping of four files on the
designated 9-track magnetic tape.

REWIND The REWIND command is used to rewind a mag-
netic tape or a RAD file. It has no effect on other devices.

The form of the REWIND command is r REWIND [area,] name

where

[area,] name specifies a system device name, op-

Example:

erational label, or RAD area and file name of the
device that is to be rewound.

Rewinding a tape

(' REWIND 7TAEO

This example would rewind the designated 7-track tape.

UNLOAD The rewind manual (UNLOAD) command
causes the specified magnetic tape to be rewound in
manual mode. Operator intervention will be required
to use the device again (i. e.! depressing the ATTEN-
TION and START switches on a tape drive). An
U NL OAD command for a RAD fi I e produces the same
results as a REWIND command.

16 Uti Ii ty Contro I Commands

The form of the UNLOAD command is I UNLOAD [area,] name

where

[:lrea,] name specifies a system device name, op-
erational label, or RAD area and file name of the
device that is to be rewound in manual mode.

Example:

Unload a magnetic tape:

/! UNLOAD 9TA83

I
This example would cause the designated 9-track tape to be
rewound in manual mode.

WEOF The write end-of-file (WE OF} command causes an
end-of-file mark to be written on the output device if an
EOF is appropriate for the device. For magnetic tape, a
tape mark is written; for a RAD file, a logical file mark is
written. The WEOF command is ignored for all other devices.

The form of the WEOF command is

(' WEOF [orea,] name [, n]

where

[arec,] name specifies c system de\lice name, op-
erational label, or RAD area and file name of the
device that is to receive the EOF.

n specifies the number of end-of-files to write. The
default is one.

Examples:

1. Write end-of-file on magnetic tape:

(' WEOF 9TA8I, 2

2.

This example would write two EOFs on the designated
9-track magnetic tape.

Write end-of-file on RAD:

(' WEOF GO

I

This example would write a logical EOF on the GO
file at its current position. This would result in

truncation of a file if the file was positioned at some
point other than its end.

DAL The Dump Accounting Log command causes the
contents of the Accounting Log to be printed on the LO de­
vice. The Accounting Log is kept on the AL file on the D1
area of the RAD. An option exists to purge the file after
the dump is completed.

The form of the DAL command is

(DAL[PAL]

where

[PAL] specifies that the Accounting Log is to be
purged after the dump is completed.

PROCESSOR CONTROL COMMANDS

A processor control command indicates to the Monitor that
control is to be transferred to the specified processor. It
may also specify the types of input to be accepted and the
types of output to be produced by the processor.

Processors can be created, updated, and deleted under nor­
mal batch operations, and there are no restrictions as to
how many and what kind of processors may be added to the
system.

User programs on the FP or BP areas of the RAD are called
by

(' RUN area, file name

where file name is the name of the program to be executed.

All system processors and user processors on the System Pro­
grams area of the RAD can be called for execution by the
control command:

(' name parameters

where

na me is the RAD fi I e name of the processor to be
executed (e. g., FORTRANH, SYMBOL, SL-1, or
MACRSYM). Note that the RAD file name for
Macro-Symbol should be "MACRSYM" since the
JCP does special allocation of the BT area if the
name MACRSYM is encountered.

parameters are optional parameters interpreted by
each processor. Normally, at least one input
option and one output option must be specified.

Example:

The options for all system processors recognized
by RBM are defined in Table 5.

(" MACRSYM 51, LO, cr, BO

This exampl e specifies that control is to be given to the
Macro-Symbol assembler. It also specifies that symbolic

Table 5. Processor Specification Options

Specification Use Used by

BA Sel ects batch Macro-Symbol
assembly mode.

BO Relocatable bi- FORTRAN IV-H,
nary output on the SL-1, Symbol,
BO device. Macro-Symbol

CI Compressed i n- Macro-Symbol
put from the
CI device.

CN Concordance Symbol
listing.

CO Compressed out- Macro-Symbol
put on the CO
device.

D Debug mode FORTRAN IV-H
compilation.

GO Relocatable bi- Symbol, Macro-
nary output to Symbol, SL-1
temporary RAD
storage (i. e. ,
the GO file).

LO Listing output FORTRAN IV-H,
produced on the Symbol, Macro-
LO device. Symbol, SL- 1

LS Source listing FORTRAN IV-H,
produced on the SL-1
LO device

LU Listing of the Macro-Symbol
update decks (if
any) produced on
the LO device.

S S in column 1 FORTRAN IV-H,
SL-1

SI Symbolic input Macro-Symbol
from the SI SL-1
device.

SO Symbolic SL-1
(source) output
produced on the
SO device.

Processor Control Commands 17

input is to be taken from the device to which the SI oper­

ational label is assigned; I isting output is to be transmitted
to the device to which the LO operational label is assigned;
compressed input is to be received from the device to which
the CI operational label is assigned; and binary output is to
be transmitted to the device to which the BO operational
label is assigned.

Upon reading this control command, the JCP \vi!! set upthe
blocking buffers and RAD Background Temp files for the pro­
cessor, load the processor1s root, and transfer control to the
entry address of the root.

PROCESSOR INTERFACE WITH RBM

The system processors under RBM are

Macro-Symbol

Overlay Loader

RAD Editor

FORTRAN IV-H

Symbol

SL-1

System processors and any user processors on the System
Programs area of the RAD should follow these common
grou nd ru I es.

1. All processors must reside on the System Programs area
of the RAD to be callable by an ! Name command. A
user wishing to test a new version of a processor with­
out destroying the permanent version could execute the
processor from the OV file via an ! ROV command.

2. All processors must operate in the background space.

3. All system DCBs (M:DCBs) should be identified as a
primary reference in the processor, since at load time,
the Overlay Loader will furnish the processor with a
copy of the system DCBs.

4. All processors with overlay segments need only make
the explicit call to SEGLOAD to load the segments.
The DCB used to load segment M:SL wi II be furnished
by the Overlay Loader.

5. RBM will furnish the start address and end address of
unused background memory to any processor that needs
this information. The two addresses will be in the fol­
lowing locations, and should be defined via the EQU
directive in the processor:

Location Mnemonic

K:BPEND

Description

L WA + 1 tt of the background
program's loaded area; that
is, this cell contains the
FWAtt the processor can use
foradynamictable area.

18 Processor Interface with RBM

Location

XI1411t

Mnemonic Description

K:BCKEND LWA of usable background
memory for the processor;
that is, this cell contains
the L WA the processor can
use for a dynami c tabl e area.

6. If a processor has parameters to process from the II! Name ll

control command (where !!name!! is the processor's name)
the address of the buffer containing the control com­
mand is in cell X11441. That is,

Location Mnemonic

K:CCBUF

Description

Address of control card
buffer.

7. A processor must perform its own vertical format controi
of the printer if format control is required. That is, the
processor must set the VFC (vertical format control) bit
in the DCB via the Monitor Device Format Control call
and ensure that the first byte output to the printer is a
format control byte. If a processor (i. e., Macro­
Symbol) outputs a title at the top of each page, the
number of I ines to print per page is contained in the
following system call:

Location

XI 1741

byte 0

Mnemonic

K:PAGE

Description

Number of lines per page
to print.

8. Ha processor uses scratch files (Background Temp files
X1-X9) and desires a different record size, granule size,
or organization than is given by default by the JCP, the
processor must make the appropriate system calion the
Device Mode function. By call ing the Device Mode
function, the processor can set the file organization
(blocked or compressed) and the appropriate record
size and granule size. The Background Temp file de­
fault assignments by the JCP are described below.

9. In general, the processor should terminate input from
SI when an end-of-data status is sensed on SI. To termi­
nate, the processor shou I d make a system ca lion EXIT.
EXIT will close all the processor1s DCBs and close all
open RAD fi I es.

10. All processors using the GO file should open GO and
then do a file skip on GO so the GO file is properly
positioned to receive additional data. The Job Control
Processor will purge the GO file upon reading a JOB
control command.

The Job Control Processor will automatically allocate one
blocking buffer for each system DC B (M:xx) assigned to a
blocked file. Additionally, the JCP will always allocate

tAli these addresses are in bits 15-31 with bits 0-14 con­
taini ng zeros.

tt LWA and FWA are the last word address and first word
address.

a blocking buffer if the GO file is used, and allocates a
maximum of two blocking buffers for all Xi (l sis 9) files
used. If a system or user processor is not satisfied with the
blocking buffer allocation, a POOL control command can
be used to override the default allocation.

The JCP will also allocate the Background Temp area of
the RAD for all Xi files, where 1 sis 9. The GO and OV
files will receive their SYSGEN defined sizes, unless over­
ridden with an ALLOBT command. The GO file will bede­
fined as a blocked fi Ie with a logical record size of 120 bytes;

the OV file will be unblocked with the record and granule
sizes equal to the RAD sector size. The JCP will scan all
system DCBs and determine which of the Xi files are used.
The Background Temp area that remains after GO and OV
have been allocated will then be equally distributed among
these Xi files. All Xi files will be given unblocked organ­
ization with the record and granule sizes equal to the RAD
sector size. The user can override any of these defaults via
an ALLOBT command. If the user desires not to have the
Xi fi les reallocated between processors, the SAVE option
on the ALLOBT command can be used.

Processor Interface with RBM 19

3. OPERATOR COMMUNICATION

When events take place in the system requlrtng operator
intervention, or when one job completes and another job
begins, RBM informs the operator of these conditions by
messages output to the operator's console (OC device).
All such messages from the fv~onitor begin with two ex­
clamation marks (! I). Generally, these messages require

no operator response on the typewriter, but may indicate
that some peripheral needs attention.

RBM MESSAGES
The messages itemized in Table 6 are output by the Monitor
on the OC device.

Message

i iKEY ERROR

1 !JOB ABORTED AT yyyyy

1 lPAUSE comments

1 lBEGIN WAIT

1 lBCKG CKPT

1 !BKG RESTART

1 lyyndd WRT PROT

! lyyndd UNRECOG

1 lyyndd ERROR

! !yyndd MANUAL

! !RLS NAME NA

! !FILE NAME ERR

1 ! F GD AREA ACTIVE

! !NOT ENUF BCKG SPACE

1 !UNABLE TO DO ASSIGN

1 1 BKG IN USE BY FGD

20 Operator Communication

Table 6. Mon i tor Messages

Meaning

Monitor cannOT recognize an unsol icited key-in response. A new key=in
should be attempted.

Background job has been aborted. The "yyyyy" parameter contains the
address of the last instruction executed in the background. If aborted
because the specified limit on a 1 LIMIT control command has been
reached, the yyyyy parameter wi II contain the word II LIMIT ".

A lPAUSE control command card has been read. The comments field may
contain tape mounting instructions. A key-in of IIC" after pressing the
INTERRUPT switch will cause RBM to continue reading from the job stack.

Background has executed a IIWAIr' request. An unsolicited key-in of
"CII will continue background processing.

Background has been checkpointed as a result of a foreground program
load.

Background has been restarted from its point of interruption.

Indicated unit is write-protected. If a magnetic tape, insert the write
ring and make the appropriate key-in to retry the operation. If a RAD
is specified, an SY key-in is required before the RAD can be written on.

Some condition on device type yy with physical device number ndd
(hexadecimal) has caused the device to become not operational.

A parity or transmission error has occurred on this device. Any auto­
matic retries that were specified have been performed before this mes­
sage was output.

Device specified is in manual mode and may be out of paper, cards, or
tape.

A key-in request has been made to release a foreground program but the
name of the program is not recognized by the system.

A problem has occurred from a STDLB key-in request in attempting to
open or close a RAD file.

An FMEM key-in request cannot be honored because a foreground pro­
gram is still active in the area being released.

Insufficient background space to load the requested background program.

An !ASSIGN command cannot be fulfilled because either the DCB can­
not be found, or the DCB is only five words in length, and a seven-word
DCB is required (seven-word DCBs are required for any RAD file assign).

Background space is being used by the foreground but a checkpoint
was not iequiied since the backgiound vvas inactive at the time of
the foreground load.

Message

! !CK AREA TOO SMALL

! !I/O ERR ON CKPT

! !LOADED PROG xxxxxxxx

! !UNABLE TO CLOSE DCB xxxxxxxx

!! PROG xxxxxxxx RELEASED

! !FPT FULL, CAN'T LOAD xxxxxxxx

! !CORE USED, CAN'T LOAD xxxxxxxx

! !I/O ERR, CAN'T LOAD xxx xxx xx

! ! N ONEXIST., CAN'T LOAD xxxxxxxx

! !PUB LIB, CAN'T LOAD xxxxxxxx

! !UNABLE TO LOAD BCKG PUB LIB

! !CKPT WAITING FOR BCKG I/O
RUNDOWN

SIGMA 5/7 RBM-2, VERSION xxxx

! !UNABLE TO TRIGGER CONTROL
TASK INT.

TRAP HANDLER MESSAGES

Table 6. Monitor Messages (cont.)

Meaning

An attempt was made to checkpoint the background, but not enough space
was available on the CK area of the RAD. The background space will
nevertheless be released to the foreground and the active background job
will be aborted when the background is restarted.

An attempt was made to checkpoint the background, but a RAD I/O
error occurred during the process. The background space wil I neverthe­
less be released to the foreground, c;'c. the active background job will
be aborted when the background is restarted.

The specified foreground programs have been loaded for execution by the
foreground loader. A maximum of three program names will be output in
the one message.

The specified DCB was not closed upon rei easing a foreground program.

The specified foreground program has been released.

The specified foreground program cannot be loaded for execution be­
cause no room exists in the Foreground Programs Table (FPT).

The specified foreground program cannot be loaded for execution be­
cause the core space required for its execution is al ready in use.

An I/O error occurred in attempting to load the specified foreground
program for execution.

The specified foreground program cannot be loaded for execution be­
cause it does not exist on the RAD, or a Publ ic Library required by the
program does not exist on RAD. The foreground program must exist in
the FP area or the OV fi I e.

The request to load the specified Publ ic Library for execution is not
val id, since all Publ ic Libraries must be automatically loaded by the
system, as needed.

The current attempt to execute a background program has failed be­
cause the Publ ic Libraries required by the background program could not
be loaded. The current background job is aborted.

The checkpoint function is waiting for all background I/O to run down
so that the checkpoint of background can be completed.

This message is output on the OC device every time the system is booted
from the RAD. The message can be terminated prematurely by hitting
the BREAK key on the typewriter.

This alarm is output to OC after the system is booted from the RAD if the
RBM Control Task Interrupt cannot be triggered.

The following messages are output by the trap handler upon
occurrence of the various traps if the user does not specify
his own trap handling:

! !WDOG TIMER RUNOUT AT xxxxx

! !ILL. PARAM., CAL AT xxxxx

Note that the "ARITH. FAULT AT XXXXx" message is output
for the fixed point arithmetic overflow trap, the floating­
point fault trap, and the decimal arithmetic fault trap. The
"! ! ILL. PARAM., CAL AT XXXXx" message is output if a
user program furnishes the Monitor an invalid parameter
whi Ie attempting to use a Monitor function.

! ! MEM. PROT. ERR AT xxxxx

! ! PRIVILEGE IN5T. AT xxxxx

!! NONEXI5T. ADD. AT xxxxx

!! NONEXI5T. IN5T. AT xxxxx

!! UNIMPLE. IN5T. AT xxxxx

! ! 5T AC K OVERF LOW AT xxxxx

! ! ARITH. F AU LT AT xxxxx

JCP MESSAGES

The messages itemized in Table 7 are output by the Job
Control Processor on both the OC and LL devices.

Trap Handler Messages 21

Message

! UCP

! ICC ERROR IN ITEM xx

! ISCHING FOR JOB CMD

! ICC ERROR, FG KEY-IN
REQUIRED

! ICC ERROR, BT OVERFLOW

! !FPT FULL, CAN'T LOAD xxxxxxxx

! !FILE xxxxxxxx NONEXIST.

! !PUB LIB, CAN'T LOAD xxxxxxxx

! ICC ERROR, ILL.
RELOCATION OF BT

! !BT OVERFLOW

! ! BI CKSM ERR
! !BI SEQ ERR

! !ERR, CONTROL BYTE = xx

! !TOO MANY DEF/REF'S

! !UNSATISFIED REF xxxxxxxx

! !NOT ENUF SPACE FOR LOAD

! !TOO MANY DCB'S

! !ILLEGAL BINARY CARD

! !UNSATISFIED REPS DURING
LOAD

! !BEGIN IDLE

! !EOT ON FILE xxxxxxxx

! ! ILL. NEG. ORG ITEM

22 JCP Messages

Table 7. JCP Messages

Meaning

The JCP has just begun to read control commands. This occurs both at the
beginning of a job and between steps within a job. If C is assigned to the
typewriter or if "TY" override is in effect, the input light on the typewriter
will indicate that RBM is ready for input of a control command. This mes­
sage is output only to OC.

An error exists in a JCP control command in the indicated item. Every
item (except the ! character) followed by a blank or comma is counted
in determining the item in error.

The present job has been aborted and the JCP is searching the job stack for
the next JOB or FIN command.

A request has been made to run a foreground program without previously
inputting an FG key-in. The RUN or ROV command must be reentered
after the FG key-in is input.

The file size input on an !ALLOBT command is greater than the available
Background Temp RAD space.

The indicated foreground program cannot be loaded because insufficient
space exists in the Foreground Program Table.

The indicated RAD file was never allocated via the RAD Editor or was
never written into.

The designated program on the RUN command is a Publ ic Library and can­
not be executed via a RUN command.

An improper ALLOBT command was input to change a Background Temp
(BT) scratch file that was designated as a "saved" file prior to this job step.

Insufficient Background Temp RAD space to execute the requested back­
ground program. The job is aborted.

JCP Loader encountered a checksum or sequence error on a binary card
during the loading process.

JCP Loader is not equipped to process the indicated control byte.

JCP Loader has encountered more than 255 deciarations in the object
module being loaded.

Indicated REF was not satisfied during the loading process. This alarm
occurs only on LL if no map was requested, or on LO if a map was requested.

JCP Loader is unable to complete the load because of insufficient back­
ground space.

The maximum number of M: and F: DCBs was exceeded during the loading
process. Approximately 27 DCBs can be accommodated by the system.
The excess DCBs wi II not be stored in the DCB table or the RAD file header.

An EBCDIC card was read by the JCP Loader where a binary card was
expected.

This message is typed to the operator on OC at the end of a load if any
unsatisfied REFs were encountered during the loading process.

Job Control Processor has read a FIN card, which completes a job stack.
The background then goes into an idle state. Processing will resume on a
new job stack following an unsol icited key-in of C.

End-of...:TaFe status was returned from an attempt to read or write the indi­
cated RAD file.

JCP Loader has encountered an origin item that it is not equipped to handle
(an origin item that moves the load location counter in a negative direction).
The load will be aborted.

Table 7. JCP Messages (cont.)

Message Meaning

! !ILL. DEFINE FIELD ITEM JCP Loader has encountered a define field item that it is not equipped to handle
(a define field item that crosses a word boundary). The load will be aborted.

! !TOO MANY CONTROL SECT. JCP Loader has encountered more than one nonstandard control section. The
load will be aborted.

! !ILL. EXPRESSION JCP Loader has encountered an expression that it is not equipped to evaluate
(a mixed resolution expression). The load will be aborted.

UNSOLICITED KEY-INS

Unsoli cited key-ins provide the operator a means of control­
ling a background job or of loading for execution or re­
leasi ng foreground programs. Note that any control the
operator can exercise over the foreground is provided
through operator key-ins, so that foreground control is
independent of the background job stack.

The operator can initiate an unsolicited key-in at any time
by depressing the INTERRUPT switch on the control panel
console. This action causes the Control Panel Task to be
activated; the Control Panel Task, in turn, triggers the
RBM Control Task. When the RBM Control Task becomes
the highest priority task in the system (that is, when all
foreground task are inactive), the message

!! KEY-IN

wi II occur on the OC device.

All operator responses will terminate with a NEW LINE
code. A blank (i. e., space) is used as a field delimiter,
and any number of blanks can be used to separate fields.
A message can be deleted prior to the NEW LINE input
by depressing the End-of-Message key.

The analysis and subsequent action from an unsolicited key­
in is performed at the RBM Control Task priority level. If
the operator response is not recognized as a valid input,
the message

!!KEY ERR

is output on Oc. In thi s case, the operator should retype
the response. Note that if the typewriter is busy at the
time of the Control Panel Interrupt 0. e., waiting for an
input to complete), the operator must complete the input
before the ! ! KEY-IN type-out can occur.

The specific responses to the! ! KEY-IN type-out are listed
in the fo II ow i ng secti ons. All key -i ns can be preceded by
an optional exclamation mark.

C The Continue key-in directs the Monitor to either
start processing the background job stack or to continue
processing in the background. The C key-in will end an
i die state or wi II conti nue a job after the job was di scon­
tinued by a wait key-in, wait system call, or PAUSE con­
trol command.

The C key-i n has the form

C

COC The Continue from OC key-in is used to correct
an errored control command from the OC device. If a
processor reads an incorrect control command during an
attended run, the WAIT state wi II be entered. For some
processors such as the Overlay Loader and RAD Editor, the
control command in error can be reinput from OC via the
COC key-in after interrupting out of the WAIT state. After
correcting the command in error, control will be transferred
back to the C device.

The COC key-in has the form

COC

W The Wait key-in causes the current background job to
be discontinued and enter a WAIT state.

The W key-i n has the form

W

X The X key-in will abort the background job with any
dumps that were requested. A message will be printed on
OC and LL which shows the last background location that
was execu ted.

The X key-i n has the form

X

SV The SY key-in allows any RAD file to be written
into by a background program by providing the operator a
means of overriding the normal software protection of RAD
files. The SY key-in is cleared by a JOB command.

The SY key-in has the form

SY

TV The TY key-in causes the C operational label to be
assigned to the OC device. The next and all ensuing con­
trol commands wi II be read from OC. Control wi II be re­
turned to the C device on a CC control command or key-in.

The TY key-i n has the form

TY

Unsolicited Key-Ins 23

CC The CC key-in is used in conjunction with the TY
key-in and transfers control back to the C device by re­
assigning the C op label to its previous assignment.

The CC key-in has the form

CC

DT The DT key-in is used to inform the Monitor of the
current date and time.

The DT key-in has the form

DT month, day, year, hour, minute

v.;here

month

day

year

hour

minute

specifies the CUiient month (1::::::month::::::12).

specifies the current day (1::::::day::::::31).

speci fi es the current year (00 ::syear ::s99).

specifies the current hour (0::shour::s23).

specifies the current minute (O::sminute::s 59).

RUN The RUN key-in is used to load and initiate a fore­
ground program. The program will be loaded at the priority
of the Control Task if the space requi red for execution of
the program is avai iable. If the space is not avai lable, an
alarm wi II be typed and the operator wi II have to retype the
RUN key-in when the space is avai lable.

The form of the RUN key-in is

RUN name

whe re name is the fi I e name of the foreground program to
be loaded. The program must exist in core image format in
the Foreground Programs area or the RAD.

A !! KEY ERR type-out will occur from this key-in if the
requested program is already loaded or if space was not
avai lable in the Foreground Program Table.

RLS The RLS key-in is used to release a foreground pro-
gram. The interrupts associated with the program are dis­
armed and after I/O has run down for the program, the
memory space occupied by the program is marked as not
used.

The RLS key-in has the form

RLS name

where name is the fi Ie name of the foreground program to
be re I eased.

STDLB The STDLS key-in is used to change the perma-
nent assignment of an operational label. For a "(" op­
erational label, both the permanent and temporary
assignments ere changed, unless the IIC" label is assigned
to zero. In this case, only the temporary label is changed.
The assi gnment wi II stay in effect unti I the system is re­
booted from the RAD.

24 Unsolicited Key-ins

The STDLS key-in has the form

STDLS label [, areaJ ,name

where

label specifies one of the standard operational
labels that was input during SYSGEN.

area specifies a RAD area for the case of assign-
ment of an operational label to a RAD file. If the
operational label is being assigned to a file in the
ST area, the "area" input is optional.

name specifies a physical device name to which the
operational label is to be permanently assigned, a
numeric zero, the name of a RAD f1 !e, or another

operational label. In the latter case, the first op­
erational label will receive the same assignment as
the permanent assignment of the second operational
label. If "0" is specified, there is no permanent
assignment, which means that all output is sup­
pressed to that label.

INTLB The INTLS key-in is used to change the assign-
ment of interrupt labels specified at SYSGEN time.

The INTLS key-in has the form

INTLS label, loc

where

label specifies one of the interrupt labels defined at
SYSGEN time.

loc specifies the new absolute hexadecimal loca-
tion to be associated with the label. The location
n must be 58 16 ::S n ::Sy, where y is the highest in­
terrupt location specified at SYSGEN.

CINT The CINT key-in is used to disarm, arm and en-
able/ or trigger a specified interrupt.

The CINT key-in has the form

CINT {location} j~)
label 'T

where

location specifies the hexadecimal address of the
interrupt to be modified. The location n must be
58 16 ::s n ::s y/ where y is the highest interrupt lo­
cation specified at SYSGEN.

label specifies an interrupt label.

D disarm the specified interrupt.

A arm and enable the specified interrupt.

T arm and enabl el and trigger the specified
interrupt.

Note that the location being acted upon must contain an
XPSD instruction or the request will be rejected.

FMEM The FMEM key-in is used to change the boundary
between background and foreground memory. The key-in
will not take effect until the current background job step
completes.

The FMEM key-in has the form

FMEM [nJ

where n specifies the number of pages to be allocated to
foreground memory. If n is less than the present foreground
allocation, no active foreground programs can exist in the
area bei ng rei eased. If the foreground area is not free, an
alarm (! !FGD AREA ACTIVE) wi II be typed. If n is zero,
the entire foreground area will be allocated to the back­
ground. The default case will be to allocate the number of
pages specified during SYSGE N.

FG The FG key-in allows a foreground program to be
loaded for execution from the background job stack via a
RUN control command, and protects the foreground from
inadvertently being wiped out by an error in the background
job stack. The FG key-in must precede the RUN control
command or the background job will be aborted.

The FG key-in has the form

FG

COMBINED KEY-INS To facilitate the key-in process,
the following combinations of key-ins are allowed:

Combined Form Result

FGC Executes the FG and C key-ins

SYC Executes the SY and C key-ins

SFC or FSC Executes the FG, SY, and C key-ins

TYC Executes the TY and C key-ins

OM, DB, OF The Dump Monitor (DM), Dump Background
(DB), and Dump Foreground (DF) key-ins allow the user to
dump the contents of core memory onto the device that is
permanently assigned to the DO operational label.

These key-ins have the form

(gDM~ 1 [from, toJ

If the [from, to J field is absent, DM causes the entire Moni­
tor area of memory to be dumped; DB causes the entire, cur­
rently defined background area to be dumped; and DF causes
the entire, currentl y defined foreground area to be dumped.
The presence of the [from, toJ field indicates the first word
address and I ast word address (i n that order) of memory that
is to be dumped. If the [from, toJ field is present, any of
the three key-ins (DM, DF, or DB) can be used to achieve
the same result, since only the specified locations are
dumped. The last word address must be equal to or greater
than the fi rst word address.

OED The DED key-in allows a device and, optionally,
all other devices on the same lOP to be dedicated to the
foreground or to IOEX.

The DED key-in has the form

DED yyndd {~} [,IJ

where

yyndd is the name of the device to be dedicated

{ FX}

(e. g., CRA03, DCAFO, etc.).

specifies the device is to be dedicated to the
foreground (F) or to IOEX (X).

specifies all devices on lOP n {n of yY.Qdd} are to
be dedicated. If I is absent, only the one device
for a single unit controller is dedicated, or all de­
vices on the same multiunit controller are dedicated.

UND The UND key-in undedicates a device or lOP that
was previously dedicated through a DED key-in. If the de­
vi ce was dedicated to IOEX, it should be undedicated from
IOEX by using the X option.

The UND key-in has the form

UND yyndd, {~} [IJ

where

yyndd is the name of the device to be undedicated
(e. g., C RA03, DCAFO, etc.).

{ ~ } speci fi es the dev i ce is to be unded i cated from
the foreground (F) or from IOEX (X). The same
option that was used in dedicating the device
should be used in undedicating the device.

specifies that all devices on lOP n (n of yY..Qdd)
should be similarly undedicated.

DIRECT I/O COMMUNICATION

If the Monitor encounters an abnormal condition during an
I/O operation, a pertinent message to the operator is output
on the OC devi ceo Such a message is of the form

!! name message

where

name is the physical device name (see IIASSIGN ",
Chapter 2).

message is the message string informing the oper-
ator of the specific condition that has been detected.
For example:

ERROR (error was detected on operation)

or

MANUAL (device not ready)

Direct I/O Communication 25

Monitor I/O messages are discussed below, grouped accord­
ing to the type of device to which they apply.

After correcting the abnormal conditions, the operator re­
sponds by means of a key-in.

The format for an I/O key-in is

name a

where

name is the physical device name of the device
involved in the I/O operation.

a specifies a Monitor-action character
(see Table 8).

Table 8. Monitor Actions

a Monitor Action

C Continue "as is".

E Inform the user program of the error and
transmit record "as is".

R Repeat the I/O operation.

CARD READER

If the card reader fails to read properly, or if a val idity
error occurs, the Monitor outputs the message

!! CRndd ERROR

on the OC device. After correcting the condition, the
operator responds with an I/O key-in message. The action
character sel ected (see T abl e 8) depends on the circumstances.

If a feed check error or a power failure occurs, the Monitor
outputs the message

!! CRndd ERROR

or

! !CRndd TIMED OUT

on the OC device, depending on where in the cycle the
error took place. If the card in the hopper is damaged, the
operator replaces it with a duplicate, presses the RESET
button on the card reader, and responds to the Monitor with
the key-in

CRndd R

In the event of a power fai I ure, the operator presses the
RESET button on the card reader and responds to the Monitor
with the key-in

CRndd R

If the card stacker is full, if the hopper is empty, or if
the device is in the manual mode, ihe ,V\onitor outputs the
message

!! CRndd MANUAL

26 Direct I/O Communication

on the OC device. The operator corrects the condition
and then presses the START button on the card reader.

CARD PUNCH

Instead of outputting an error message when a punch error is
first detected, the I/O handler attempts to punch a card x
times (x = !'~RA, a DCB parameter specified by the useri see
Chapter 5) before outputting the message

!! CPndd ERROR

on the OC device. The above message indicates that the
card punch is not functioning properly, and the operator
should reevaluate the job stack based on this knowledge.
Improperly punched cards are routed to an alternate stacker.

If the input hopper is empty; the stacker is full, or the chip
box is full {some machines}, or if the device is in the manual
mode, the Monitor outputs the message

!! CPndd MANUAL

on the OC device. The operator corrects the condition and
presses the START button on the card punch.

If a power failure or a feed check error occurs, the Monitor
outputs the message

!! CPndd ERROR

or

! ! CPndd TIMED OUT

on the OC device, depending on where in the cycle the
error took place. If the card in the hopper is damaged, the
operator removes it, presses the RESET button on the card
punch, and responds to the Monitor with the key-in

CPndd R

In the event of a power failure, the operator presses the
RESET button on the card punch and responds to the Monitor
with the key-in

CPndd R

PRINTER

When an irrecoverable print error is detected, the Monitor
outputs the message

!! LPndd ERROR

on the OC device. The I/O handler attempts to print a
line x times (x = NRA, a DCB variable specified by the
I/O user; see Chapter 5) before outputting the above mes­
sage. The operator's response after correcting the condition
depends on the specific device and circumstances.

If the printer is out of paper, if the carriage is inoperative,
or if the device is in the manual mode, the Monitor outputs
the message

on the OC device. The operator corrects the condition and
presses the START button on the line printer.

If the line printer power is off, The Monitor outputs the
message

!! LPndd UNRECOG

on the OC device. The operator should correct the condi­
tion and respond with the key-in

LPndd R

PAPER TAPE READER

If an error occurs during the reading of paper tape, the
Monitor outputs the message

!! PRndd ERROR

on the OC device. After correcting the condition, the op­
erator responds with an I/o key-in message. The action
character selected depends on the circumstances.

PAPER TAPE PUNCH

If the paper tape punch is out of paper, the Monitor out­
puts the message

! ! PPndd MANUAL

on the OC device. The operator corrects the condition and
depresses the START key.

If the paper tape punch is off-I ine or the power is off, the
Monitor outputs the message

!! PPndd UNRECOG

on the OC device. The operator corrects the condition and
responds to the Monitor with the key-in.

PPndd C or R

MAGNETIC TAPE

If an error occurs during the reading or writing of magnetic
tape, the Monitor I/O handler attempts a recovery x times
(x = NRA, a DCB variable). If the error is irrecoverable,
the user is informed via an error return.

If a magnetic tape is addressed and there is no physical reel
or power, the Monitor wi II output the message

!! MTndd UNRECOG

on the OC device. The operator's key-in response depends
on the ci rcumstances.

Direct I/o Communication 27

4. INPUT jOUTPUT OPERATIONS

The RBM I/o system provides the user with the capability
of performing input/output operations on standard XDS pe­
ripheral devices. An I/o request is made through execu­
tion of a CAL 1 instruction that addresses a Function Param­
eter Tabie (FPT), which in turn is a list of parameters that
define the request. The FPT addresses a Data Control Block
(DCB), which is a list of parameters that define the nature
of the data file. The DCB then addresses a Device Control
Table (DCT) entry or a RAD File Table (RFT) entry, depen­
di ng upon whether the data fi Ie concerned is associated
with a non-RAD peripheral device or a RAD file. The DCT
entry contains the device status parameters, and the RFT
entry conta i ns the RAD fi i e parameters.

The CAL 1 instruction and FPT must be generated at assembly
or compilation time. Symbol or Macro-Symbol users must
include both the CAL 1 and the FPT in the source code. For
FORTRAN users, the compiler generates the necessary CAL 1s
and FPTs.

All DCBs are given names beginning with M: for system
DCBs or F: for user DCBs. The DCBs may be included in
the source code if desired. If not included, the Overlay
Loader generates the DCBs necessary to satisfy any unsatis­
fied references to F: or M: DCB names. System DCBs gen­
erated by the Loader have defau I t parameters; User DC Bs
generated by the Loader are left blank.

The correspondence between a DCB and either a device or
RAD file can be established by using the! ASSIGN control
command. Other DCB parameters describing the data file
may also be set by the ! ASSIGN control command.

Two types of Read/Write requests are provided. Type I re­
quests have the completion status posted in the DCB. The
disadvantage of this type of I/O operation is that a DCB
cannot be shared among requests in different tasks because,
in general, it is impossible to associate the completion status
in the DCB with a specific request. For this reason, Type II
requests are provided.

Type II requests result in the completion status being posted
in the FPT associated with the request. This enables several
requests (perhaps in several tasks) to be in progress simulta­
neously on a given DCB. Type II requests require that the
associated FPT must be in memory and not in a register.

The CHECK function tests for the completion of READ/
WRITE requests that are performed without waiting for com­
pletion. CHECK tests the completion status posted in
the DCB (Type I requests), or FPT (Type II requests).

PERMANENT RAD FILES

Permanent files are defined through the RAD Editor by use
of the :ALLOT command, and data can be entered through

28 Input/Output Operations

the RAD Editor or any program that uses the system I/O.
At definition time, the following file parameters are
given by the user:

Fil e name (maxi mum 8 characters)

File organization (blocked, unbiocked, compressed)

Record size (for blocked or unblocked files to be ac­
cessed sequential I y)

Granule size (for files to be accessed directly)

File size

TEMPORARY RAD FILES

Temporary files are in the Background Temp area of the
RAD and have the fixed names Xi (1 .:S i .:S 9), GO and OV.
The size for these files can be set by using the! ALLOBT
control command. If no ! ALLOBT control command ap­
pears within a user job, the files assume default sizes that
are set by the Job Control Processor. The files Xi should be
considered as primarily for temporary use within a single
job step, since they are all allocated from a singl e area
with Xi + 1, beginning just above Xi' Therefore, changing
the size of a file Xi can cause a change in location of files
X j for j > i. GO and OV are a I located from the top of the
temporary file area downward. A change in the size of files

X. therefore has no effect on the RAD position of these files.
I

Since the size and location of temporary files can be changed
through background job control commands, they must not be
used by foreground programs.

. FILE ORGANIZATION

BLOCKED FILES

Blocked files contain fixed length records whose length is
less than or equal to 128 words. In blocked fi les, the
largest possible integral number of records is combined into
256-word blocks. These blocks are basic units of data trans­
mitted to and from the RAD. As sequential READ requests
are made to a blocked RAD file, the blocks are read from
the RAD into blocking buffers as necessary, and the data
records are transmitted to the user's input buffer.

Blocked organization is specified for a file when the file is
defined by the RAD Editor. A file specified by the user as
blocked/ but having a record size greater than 128 words,
will be given unblocked organization.

UNBLOCKED FILES

Unblocked files contain records of fixed length, each of
which begins on a sector boundary. Each record requires

some integral number of sectors that is the smallest possible
integral number that can contain the record.

COMPRESSED FILES

Compression of EBCDIC data in RAD files is provided by
RBM by the removal of blank characters, since many blanks
occur in a typical programming language source code. Com­
pressed files are blocked into 256 word blocks on the RAD
and the records are of variable length. No record crosses
a block boundary.

ACCESS METHODS

SEQUENTIAL ACCESS

The sequential access method provides record-by-record
access to the file in the same way that a data file on
magnetic tape is accessed. A sequential access READ/
WRITE request results in the next record in sequence being
read or written. Sequential access can be used on blocked,
unblocked, or compressed files.

DIRECT ACCESS

In the direct access method, the user furnishes the relative
granule number of the start of the READ/WRITE request and
the number of bytes to be transferred. The user is respon­
sible for the organization of the file, including discrimina­
tion of logical records, maintenance of a key structure
within the file, etc. Addressing files by granules allows
the direct access method to be independent of the RAD sec­
tor size. Granule size is specified by the user at file crea­
tion. Each granule begins on a sector boundary, and the
RAD space between granule end and the beginning of the
next sector is never involved in direct access to the file.

The user is not restricted to I/O operations whose length is
less than or equal to the granule size. For requests of
length greater than granule size, the I/O system chains
I/O operations to effect a skip of the dead space.

I/O QUEUEING

The I/o system provides for queueing of all requests to I/o
devices. That is, any I/O request (READ, WRITE, REW,
etc.) requiring a device to be accessed results in the re­
quest for the specific access being queued.

Device requests are queued on a controller basis (one queue
per controller), and they are queued in order by priority of
the task making the request. For example, a READ request
to a card reader will be placed in the queue for the speci­
fied card reader controller, and its position in the queue is
determined by the priority of the requesting task and the
relative priorities of the requests already in the queue. Re­
quests for a designated device from a specified priority level

are queued by order of occurrence. The queues are chains
of entries representing requests for actual I/O operations on
devices. There is a single pool of free entries for all de­
vices, and these entries are removed from the pool and linked
to the controller queues as needed. The queue entry is re­
turned to the free entry pool when a queued request is
completed.

At System Generation, the user may specify the maximum
number of entries to be used for background requests to
ensure that the background does not tie up all the queue
entries, thus causing foreground requests to wait. Whenever
a request is made and the free entry pool is empty (all queue
entries in use), the request is made to wait until an entry
is freed.

I/O CLEANUP AND I/O START

I/O Cleanup is the data processing performed between com­
pletion of the actual data transmission (signaled by occur­
rence of the I/o interrupt) and the completion of the re­
quest. It includes such functions as error testing, setup
for error recovery, posting of completion status in the FPT
or DCB, setting of indicators in the DCT, dequeueing the
compl eted request, etc.

I/o Start is the operation of starting a device for the next
request.

Under the RBM I/o system, CPU time is not taken from a
task to perform data processing for lower priority tasks; in­
stead, I/O Cleanup and I/O Start functions are performed
at the various times and priority levels given below:

1. I/O Cleanup is performed at I/O interrupt time if
either the current request or the highest priority re­
quest in the queue for the same device controller are
from tasks of higher priority than that of the interrupted
task. If I/O Cleanup is performed at this time, I/O
Start wi" be performed if the highest priority request
in the queue is from a task of higher priority than the
interrupted task.

2. If a CHECKed request was not previously completed,
the CHECK system instigates I/O CI eanup and I/O
Start on the specified controller through to completion.
The CHECK system performs at the priority of the
CHECKing task.

3. At request time, I/o Cleanup and I/O Start are per­
formed as necessary to satisfy the request at the pri ority
I evel of the requesti ng task.

For an I/o request with wait, the device is driven un­
til the request is completed. I/o Cleanup and I/O
Start are instigated as needed.

For an I/O request with no wait (after queueing the
request by priority), I/O CI eanup is performed if the
device and controller are not busy. The device is thus
made busy before control is returned to the user.

Access Methods/I/O Queueing/Cleanup and Start 29

4. At the Control Task level, any I/O Cleanup or I/O
Start that was deferred because of priority considera­
tion at I/o interrupt time (item 1 above) is performed.

SHARING DCBs AMONG TASKS

DCBs can be shared among several tasks within a given pro­
gram, subject to the restriction that no task can make a
Type I request on a DCB that is busy with another Type I
request.

DCBs explicitly referenced by the user are allocated and
created by the user either in the source code (for Symbol
and Macro-Symbol), the compi I er, or the Overlay
Loader. This means that each program has a private copy
of all DCBs explicitly referenced, and no DCBs are shared
among programs. The user program has the responsibility
for coordinating the Open and Close functions for DCBs
shared among tasks within a program. An Open request
results in the DCB being opened if it is not already open.
A Close request causes the DCB to be closed if it is not
already closed. No attempt is made to balance Open and
Close requests for a DCB to determine which Close request
should actually cause the DCB to be closed.

SHARING I/O DEVICES AMONG TASKS

Any number of tasks within a given program can share any
device by sharing a DCB assigned to the given device. For
sequential type devices (i. e., card reader, card punch,
line printer, magnetic tape, paper tape reader, paper tape
punch), responsibility for positioning and/or determining
the position of the device is left to the user. No attempt
is made to analyze a request on a DCB to determine which
task has made the request.

Sequential output devices (i. e., card punch, paper tape
punch, line printer, magnetic tape), can be shared by
tasks (possibly in different programs) that use different DCBs.
If several DCBs are assigned to an input or output device
such as a magnetic tope drive, only write requests may be
made through these DCBs. The sharing of output devices
by different programs using different DCBs is used for log­
ging error conditions or alarms.

Sequential input devices (i. e., card reader, paper tape
reader, magnetic tape) cannot have different DCBs as­
signed to them. Sharing of these devices must be accom­
plished through real-time requests on a single DCB. For
example, a background user who wishes to use double buf­
fering on a card reader can do so by using two real-time
Read requests with two different FPTs.

Random access devices such as RADs can be shared, using
direct access, by tasks within different proqrams usinq vari­
ous DCBs. The sharing can be perfor~ei without r;stric­
tion other than those restrictions normally imposed on
tasks shari ng a DC B.

As DCBs are opened and closed, a count of the DCBs that
are open and assigned to a devi ce is kept. This count is
incremented for every open request on a DCB assigned to
the particular device, and is decremented for each Close
request.

SHARING RAD FILES AMONG TASKS

Any number of tasks within a program can share a RAD file
by shoring a DCB assigned to the file (subject to the condi­
tions placed on tasks sharing DCBs discussed previously).
A RAD file shared in this manner can be accessed either
sequentially or directly. Input/output Requests are allowed.

Tasks can share a RAD file using different DCBs with the
restriction that no sequential input or blocked sequential
output requests can be allowed on a file shared in this man­
ner. A count of the number of DCBs opened and assigned
to a RAD file is kept for each file. If the count is greater
than one, no sequential input from or blocked sequential
output to the fi Ie is allowed.

An Open request on a DCB assigned to a RAD file results in
opening of the file if it is not already open. A Close request
on such a DCB results in closing of the file only if the
"Open DCB Count' for the file is 1.

I/O END ACTION

Foreground programs (for READ, WRITE, and 10EX requests)
may use I/O end-action. Two types of end-action are
possible:

1. The user provides an end-action address in the FPT.
A transfer to this address will be made following the
occurrence of an I/O interrupt that signals completion
of the data transfer. This end-action transfer is made
by executing

BAL, 11 end-acti on address

with the CPU in master mode, the I/O interrupt sti II
active, and the AIO status in register 5. The end­
action may destroy any registers except 5 and 11. Re­
turn from the end-action routine must be made by

B * 11

with the CPU sti II in master mode, the I/O interrupt
still high, and register 5 containing the AIO status.

It should be noted that since end-action is performed
with the I/o interrupt high, all tasks whose priority
is lower than that of the I/O interrupt task are effec­
tively disabled for the duration of the end-action.

Since the end-action user can seriously degrade in­
terrupt response for lower priority tasks, it is strongly
recommended that this type of end-action not be
used for applications where other techniques are
sati sfactory.

30 Sharing DeBs Among Tasks/I/O Devices Among Tasks/RAD Files Among Tasks/I/O End Action

2. The user FPT contains either an interrupt number or
interrupt label specifying a system interrupt. The sys­
tem interrupt is triggered upon occurrence of an I/o
interrupt that signals compl etion of the request (this
interrupt wi II be triggered before the I/O interrupt is
cleared). The task connected with the specified inter­
rupt then performs the end-action function at the pro­
per priority level. The useris responsible for connecting
the interrupt and ensuring that it is armed and enabled.

If the end-action interrupt priority has the same prior­
ity as the requesting task when the interrupt is triggered,
the I/o system sets a flag in the TCB to indicate that
the trigger has been performed. The EXIT routine in­
terrogates this flag before performing the EXIT for cen­
trally connected tasks. If the flag is set, the occur­
ence of the interrupt (previously lost by the triggering
of an active interrupt) wi II be simulated. Directly
connected tasks using this type of end-action assume
the responsibility for solving problems of this type.

No end-action is taken for requeststhatdonot require
actual device access (i. e., READ on a blocked RAD
file that does not require reading a block from the
RAD); however, end-action will be performed for re­
quests that cause a device access and an I/o interrupt.

RESERVING I/O DEVICES FOR FOREGROUND USE

I/o devices can be reserved for exclusive use of the fore­
ground program system through SYSGEN input, operator
key-in, or through a system call from a foreground program.
Reservation can be made either for a specific device or for
all devices associated with a given lOP. A reservation for
a device on a multidevice controller results in reservation
of the entire controller. When a device is reserved, it is
specified either that all foreground requests for the device
will be allowed, or that only foreground direct access
(IOEX) requests will be allowed.

Device reservation results in all background requests to the
device being held in abeyance until the device is released
for background use. The background user program is un­
aware that execution is suspended.

When devices are reserved for IOEX operation only, all
regular (READ, WRITE, etc.) requests from the foreground
are also held in abeyance. A foreground program making
such a request will be pending in the I/O system until the
device is released for regular foreground use. In IOEX
reservation mode, the foreground task doing IOEX I/o
and the task that eventually releases the device for regular
foreground use must be of higher priority than any task doing
standard I/O. This type of device reservation is designed
for the user with a high throughput foreground appl ication
who needs to guarantee that a devi ce (typical I y the RAD)
is immediately available and is not in the process of an
I/O operation for another task.

A count is kept of the number of reservations (STOPIO re­
quests) of each type (either all foreground I/O allowed Or
IOEX only allowed) for each controller. As devices are
reserved, the proper count is incremented, and as they are
released, the count is decremented. A value greater than
zero indicates that the controll er is reserved. The user must
balance each STOPIO request with a STARTIO request so
the system can maintain order.

When I/O requests are received by the system, the reserva­
tion counters are tested to determine whether the request is
allowed. Any request not allowed because of a STOPIO re­
quest will not be queued. Any request previously queued
but currently not allowed wi II not be started.

The foreground user can specify in a STOPIO request that
the in-process operation on the specified controller be
aborted through execution of an HIO.

DIRECT I/O EXECUTION (IOEX)

RBM provides the foreground user with the capabi I ity of
programming I/O devices by furnishing TIO, TDV, HIO and
SIO instructions, and lOP command doublewords. The in­
structions are executed by the I/o system. Status informa­
tion resulting from the instruction execution is returned to
the call ing task for analysis. No testing or error recovery
is performed by the system.

Prior to performing IOEX operations on a device, the device
must be reserved for IOEX operation only. This requires the
user to issue a STOPIO unless it is known that the device
was properly reserved either during SYSGEN or by the
operator.

For SIO requests, if a user wishes to be informed ofthe occur­
rence of the I/o interrupt, it is imperative that the command
doubl ewords be set up so that a channel end interrupt occurs.

The SIO request may also include an end-action address or
an end-action interrupt number. This address is the entry to
the user's routine that will analyze the resultant status and
set appropriate indicators. It should be noted that the user's
routine is entered with the I/O interrupt active, and toavoid
seriously degrading system interrupt response, the routine
should require as I ittle execution time as possible. Control
is transferred to the end-action routine through a

BAL, 11, address

If an end-action interrupt number or interrupt operational
label is given, the interrupt wi II be triggered upon compl e­
tion of the operation signaled by the I/O interrupt. This in­
terrupt must be connected to the end-action task.

IOEX cannot be used by background programs. The require­
ment that background programs be able to read any data writ­
ten by foreground programs is satisfied by the faci I ity to
treat an entire RAD area as a single-file fordirectaccess in­
put (see discussion of IOEXsystem call later in this chapter
fo~ detai Is of the call ing sequences and formats involved).

Reserving I/o Devi ces for Foreground Use/Direct I/o Execution (IOEX) 31

OPERATIONAL lABELS

Under RBM, operational labels are used to lend flexibi I ity
in the assignment of DCBs to peripheral devices. Opera­
tional labels represent logical devices and are assignable
to physical devices and RAD files.

The system DCBs are defined in Table 9.

T obi e 9. System DC Bs

DCB Name

M:C

M:OC

M:LO

M:LL

M:DO

M:CO

M:BO

M:CI

M:SI

M:BI

M:SO

M:Xi (1 ::; i ::; 9)

M:GO

M:OV

Op Label or RAD
File Assignment

C

OC

LO

LL

DO

CO

BO

CI

SI

BI

SO

Xi

GO

OV

Appropr i ate
program file

Comments

The first 11 DCBs
are assigned to
the standard op­
erational labels.

DCBs for Back­
ground Temp
scratch fi I e.

DCB to write on
GO file.

Output DCB for
Overlay Loader.

Input DCB for
Segment Loader.

t
The M:SL DCB does not have to be referenced by a pro-

gram using overlays, since this DCB is automatically
furnished by the Overlay Loader for any program with
overlay segments.

DCBs can be assigned to operational labels, physical de­
vices, or RAD files. Assignment of DCBs to operational
labels is accompl ished in one of the following ways:

1. The user can effect the assignment through the source
code by allocating and defining the DCB, providing
the operational label table index value (see II DCB
Creation"), and specifying that the assignment is to
an operational label.

2. The Overlay Loader provides each program with a copy
of all system DCBs referenced by the program. These

32 Operational Labels/DCB Creation

DCBs are distinguishable by the prefix "M:", and such
DCBs are assigned to system operational labels (see the
"Overl ay Loader II chapter).

3. ! ASSIGN control commands can be used to assign DCBs
to system operational labels (see the discussion of
! ASSIGN control command in Chapter 2).

Operational labels are assigned to physical devices or RAD
files. Each operational label has two assignments, tempo­
rary and permanent. The permanent assignment is used by
all foreground programs and serves as a default for the tempo­
rary assignment. The temporary assignment is used by all
background programs. Assignment of operational labels to
devices or RAD files is made in the following ways:

1. At System Generation, permanent assignments are made
and remain in force until changed through STDLB key­
in. The original permanent assignments are reinstated
whenever the system is again booted and initialized.

2. The STDLB key-in can be used by the operator to change
the permanent assignment of an operational label,
which will result in a corresponding change in the tem­
porary assignment when the next JOB card is read.

3. The! STDLB control command can be inserted by the
user to change the temporary assignment of an oper­
ational label.

Temporary assignments remain in force only within a single
background job. Each! JOB control command causes the
temporary assignments to be set the same as the permanent
assignments except for the "C" operational label. Should
temporary assignments be changed by an ! STDLB control
command, the new assignment remains in force only for the
duration of the job except for the "C II operational label.

At System Generation, the user may specify any number of
optional operational I abels, with the proviso that the op­
tional labels be two characters in length. For each optional
operational label, an entry is built in the operational label
table, and each entry requires four bytes of system residence.

The relationship of system operational labels to their table
index values is defined in the DCB description. The user
assumes responsibil ity for determining the index values as­
sociated with any optional operational labels created at
System Generation.

DCB CREATION
The Overlay Loader creates the DCBs for FORTRAN IV-H
programs that reference the standard FORTRAN operational
labels 101-106 for their I/O requests. For other labels, the
user must create DCBs using ! ASSIGN control commands
and machine language subroutines.

DC Bs for Symbol and Macro-Symbol programs are allocated
and defined in the fol lowing ways:

1. User Created DCBs: The user may create his DCBs in
the source code. The parameters defined at source

time may be overridden by ! ASSIGN control commands
if the user follows the convention of defining the name
of a DCB and beginning the name with F:.

Warning: DCBs will not receive any memory protec­
tion, and Assembly Language users should exercise ex­
treme care to prevent accidental alteration.

2. Loader Created DCBs: At the conclusion of the object
module load and the I ibrary search and load, the Loader
creates DCBs for any unsatisfied REFs beginning with
M: or F:. For REFs to system DCBs (M:), a copy of the
standard DCB is incl uded in the root portion of the load
module. This DCB contains standard system parameters,
including standard assignment to a system operational
label. For example, M:LO is assigned to operational
label LO. User DCBs (F:) are included in the load mod­
u I e but they are I eft bl ank. The background user must
define the parameters for F: DCBs through ! ASSIGN
control commands. Definition and assignment of F:
DCBs in foreground programs can be made through
Overlay Loader control commands.

3. ! ASSIGN Command Created DCBs: ! ASSIGN control
commands can create DCBs in addition to defining or
redefining parameters in existing DCBs. This DCB crea­
tion facility enables FORTRAN IV-H programs to per­
form I/O using variables as operational labels. At
run-time, the FORTRAN program evaluates such vari­
ables, converts the variable value to a DCB name and
locates the DCB. For example, a FORTRAN variable
with value 101 would result in I/O operation using
DCB F: 101. The DCB must have been created in a
Symbol or Macro-Symbol subroutine or through an
!ASSIGN control command.

DeB FORMAT

The format for a Data Control Block is given below:

word 1

o 1 2

where

Word 0

TTL is the total length of the DCB. A length of
seven words is required by any DCB which may be
assigned to a RAD file. A length of five words is
sufficient for DCBs that are assignable only to de­
vices or operational labels.

TTL must be set by the mechanism creating the
DCB; either by the user (through the source code),
Overlay Loader (when the user declares the name
but does not create the DCB), or by the ! ASSIGN
control command which creates the DCB.

OPEN is the DCB open indicator. It must be set to
zero before the DCB is opened. The I/O system
sets the indicator to 1 when the DCB is opened.

MOD is the mode flag (0 for EBCDIC mode; 1 for
binary). The flag is set at DCB creation time and
its status may be changed by ! ASSIGN control
commands or through a Device Mode system call.
This flag has meaning only for I/O requests to
7-track magneti c tape, card punch, or card reader.
For requests to read a card reader, Mode fl ag 0
causes a Read Automatic. t Input from a card
reader designated as the C device is always per­
formed in automatic mode (mode flag is ignored).

BUSY is the DCB busy indicator that is set and main-
tained by the I/O system to indicate that a Type I
request using the DCB is in progress. Any Type I
request using a DCB that is made when the DCB is
busy will result in an error.

PACK is the indicator specifying packed binary for-
mat on 7-track magnetic tape when BIN mode is
also specified (l indicates packed; 0 indicates un­
packed), PACK may be set using the! ASSIGN
control command. This indicator is also set to
value 1 when a DCB is opened and that DCB is as­
signed to an operational label, which in turn is
assigned to a 7-track magnetic tape.

VFC is the vertical format indicator (0 indicates no
format control; 1 i ndi cates format control) spec ify­
ing whether or not the first character of an output
record is to be used to control vertical positioning
for output to a I ine printer or keyboard/printer.
Under format control, the I ine printer is given a
IIprint with format ll order. The keyboard/printer
performs a preliminary new line (regardless of the
format character) and outputs the record beginning

t See Chapter 3, XDS Sigma Card Readers (Models 7120/
7122/7140) Reference Manual, Publication No. 90 09 70.

DCB Creation 33

with the second byte. On all other devices, the
first byte is output as data. VFC has no effect on
other I/O operations. This indicator issetat DCB
creation by ! ASSIGN control command or through
the Device Mode system call. The format control
codes are itemized in Table 10.

BTD is the byte displacement specifying at which
byte (0-3) in a buffer the.data begins.

ASN is the assignment type indicator (0 means null;
1 means RAD file; 2 means not used; 3 means de­
vi ce or system operational I abel).

Word 1

NRT is the number of recovery tries to be ai iowed
before outputting a device error message. This
parameter is set at DCB creation or through an
! ASSIGN control command.

DEVF is an indicator specifying whether the device
assignment (when ASN has value 3) in force is
directly to a physical device or indirectly through
an operational label (l means direct; 0 means in­
direct). This indicator may be set at DCB crea­
tion or by an ! ASSIGN control command. See
TYPE and DEV/OPLB/RFILE discussion below.

L is an indicator specifying whether the assigned
device is a line printer or keyboard/printer. The
indicator is set by the system at OPEN time.

Table 10. line Printer Format Control Codes

Code (hexa-
decimal) Action

CO, 40 Space no additional lines.

60, EO Inhibit space after printing.

C1 Space 1 additional I ine before
printing.

C2 Space 2 additional lines before
printing.

C3 Space 3 additional lines before
printing.

·
CF Space 15 additional I ines before

printing.

FO Skip to Channel 0 (bottom of
page) before printing.

F1 Skip to Channel 1 (top of page)

I

before printing.

F2 Skip to Channel 2 before printing.

I · ·
FF Skip to Channel 15 before

printing.

34 DCB Creation

TYPE is a field indicating the type of device that
is directly assigned if ASN has value 3 and DEVF
has value 1.

Value Device

TY

2 PR

3 pp

4 CR

5 CP

6 LP

8 9T

9 7T

If ASN has value 1, TYPE specifies the area that
contains the RAD file.

Value Area

0 SP

FP

2 BP

3 BT

4 XA

6 D1

20 DF

DEV /OPLB/RFILE contains one of three:

1. The DCT index of the assigned device when the
assignment is to a device (ASN equals 3 and DEVF
equals 1),

2. The operational label table index of the assigned
operational label when the assignment is to an op­
erational label (ASN equals 3 and DEVF equals 0).
The index values for standard system operational
labels are

Label Index value

C

OC 2

LO 3

LL 4

DO 5

CO 6

BO 7

LI 8

CI 9

BI 10

SO 11

The user is responsible for determining the index
values for his optional operational labels. These

values are a function of the order in which the
optional operational labels are specified as Sys­
tem Generation.

The index value for the devices are also a func­
tion of the order that the devices are specified at
System Generation. The TYPE and DEV /OPLB/
RFILE values are set at DCB creation or through
! ASSIGN control commands.

3. When a DCB is assigned to a RAD file (ASN
equals 1), this field contains the index to the RFT
(RAD File Table). Thisvalueissetwhen the DCB
is opened. The RFT entry is created at OPEN if
an entry does not already exist for the file.

Word 2

TYC is an indicator showing the type of comple-
tion for an I/O operation. TYC is set by the I/O
system at the completion of each request that uses
the DCB in a Type I mode (see discussion of Read
and Write system calls below).

The completion type codes are

Code Meaning

Normal

2 Lost Data

3 Beginning of Tape

5 End of Tape

6 End of Data

7 End of File

8 Read Error

9 Write Error

10 Write Protection
Violation

BUF is the address of the user buffer for requests
whose FPTs do not include a buffer address. The
address is establ ished at DCB creation by assembly
language users who create their own DCBs. The
parameter is not included in DCBs built by the
Overlay Loader and is not set through ! ASSIGN
control commands.

Word 3

RSZ is the default record size in bytes (1 5 RSZ
2: 32,767). The parameter is used as the byte count
for Read/Write requests that do not include a byte
count. RSZ may be set at DCB creation, either
through a Device Mode system call or through an
! ASSIGN control command.

ERA is the address of the user IS routine that handles
errors associated with insufficient or conflicting
information in the DCB or FPT. Zeros in this
field are used to indicate that no user error routine

exists, (see discussion of error and abnormal returns
below). This address can be establ ished at DCB
creation, but is more typically set through an
OPEN system call.

Word 4

ARS is the actual record size in bytes. The param-
eter is set by the I/O system when a request is
completed. It is set in the DCB for Type I re­
quests only.

ABA is the address of the user's routine that handles
abnormal conditions associated with insufficient or
confl icting information in the DCB or FPT. Zeros
are used to i ndi cate that no user abnormal rout i ne
exists (see discussion of error and abnormal returns
below). This address can be establ ished at crea­
tion time or set through an OPEN system call.

If the TTL field in word 0 has a value of 5, word 4 termi­
nates the DCB.

If the TTL field has a value of 7 or 90, and the DCB is as­
signed directly to a RAD file, words 5 and 6 have the fol­
lowing format:

word 5

where the C i are the EBCDIC characters defining the RAD
file name when the assignment is to a RAD file (ASN
equals 1). The file name is left-justified and filled with
trailing blanks. The name can be placed in the DCB at
creation time or through ! ASSIGN control command.
Note that DCBs assigned to RAD files at creation time, with
the file names included, are not compatible with Batch Pro­
cessing Monitor DCBs. Such DCBs can be used under BPM
only if the assignment is reestabl ished through use of the
! ASSIGN control command. If the Words 5 and 6 are all
zero and ASN specifies assignment to a RAD fi Ie, the entire
area specified in TYPE is taken as the fi Ie.

ERROR AND ABNORMAL CONDITIONS
Certain error codes are returned to the user's error or ab­
normal return routi nes upon occurrence of various conditions.
At entry to these routines, the error code is contained in
byte 0 of register 10, the DCB address is contained in the
address field (low-order 17 bits) of register 10, and the
address of the location following the CAL 1 is contained
in register 8.

Foreground users must provide error and abnormal returns on
all I/O requests with wait and on all CHECK requests. If
background users omit the error and abnormal addresses, the
system wi II take action as detai led below. The error codes
are defined in Table 11.

Error and Abnormal Conditions 35

Table 11. Monitor Errors and Abnormal Returns

I/o Code
(Hexadecimal)

Dt Ftt

C P
B T Meaning of I/O Codes

Abnormal Conditions (Continue)

01 X A DCB has been opened with in-
correct parameters.

103 X The assigned RAD fi Ie does not exist

I I or the assigned device is down.

05 X An end-of-data has been encoun-
tered (i. e., an E OD has been read).

06 X An end-of-fi Ie has been encoun-
tered (i. e., a control command has
been read on the C device).

07 X The buffer specified is smaller than
the data read.

OA X An attempt has been made to close
a DCB that is already closed.

lC X The end-of-tape has been
encountered.

1D X The beginning-of-tape has been
encountered.

2E X An attempt has been made to open
a DCB that is a I ready open.

30 X The request resulted in a condition

i
which the operator can correct. The
proper message has been output on
OC.ttt

Error Conditions (Abort, with post-
mortem dump if specified)

40 X A request has been made to read
an output device.

41 X An irrecoverable read error has
occurred.

42 X A RAD write protection violation
has occurred.

44 X A request has been made to wri te
on an input devi ce.

45 X An irrecoverable write error has
occurred.

46 X The DeB contains insuffi cient infor-
mation to open a closed DCB on a
read operation.

36 I/O System Calls

1

I
I

Table1l. Monitor Error and Abnormal Returns (cont.)

I/O Code
(Hexadeci mal)

Dt Ftt

C P
B T Meaning of I/O Codes

I Error Conditions (Abort, with post-
mortem dump if specified)

47 X The DCB contains insuffi cient infor-
mation to open a closed DCB on a

I
write operation.

1
48 X I 1

A nonreai-time request was made
___ L .. ~ .. I""Iro

I
VII U uU"Y L."_U.

4A X The user buffer address is not valid
or byte count is zero.

54 X More than one attempt has been
made to read a control message from
the Cdevice, through the same DCB.

55 X The DCB cannot be opened because
the RFT is full, the RAD is down, or
no buffer could be found for the
directory search.

58 X A foreground request was made to
the C device.

59 X DCB has changed since open.

60 X Input request on a shared device
or file.

tReturns due to insufficient information (error or abnormal
address in DCB is honored).

ttReturns due to device faiiure or abnormaiity (error or
abnormal address in FPT is honored).

ttt All background requests (even those specifying ab­
normal returns) will be held unti I the operator corrects
the condition. This condition is never returned to the
background.

I/O SYSTEM CALLS

OPEN A FILE

OPEN The OPEN system call opens the data fi Ie if it is

I

1

I

not already open. If the addressed DCB is assigned to a de­
vice (directly or through an operational label), a count is
kept of the number of open DCBs assigned to the device.

If the DCBisassigned toaRAD file, an entry is built in the
RFT (RAD File Table) if one does not already exist, and the
indexof the entry is placed in the DEV /OPLB/RFILE field
of the DCB. A count of open DCBs assigned to the RAD
fi!e is a! so maintained. The user may specify a buffer
to be used in the RAD File directory search but this is
not mandatory. If such a buffer is not given, the OPEN
function wi II use avai lable blocking buffers.

At OPEN, the error and abnormal addresses in the DeB may
be set or changed. The OPEN function causes the speci­
fied DeB's file-open indicator (OPEN) to be set to 1.

If the specified DeB isassigned to an operational label and
the operational label in turn, is assigned to a 7T device,
PACK and BIN are set to 1.

If a DeB is already open (OPEN = 1) for device-assigned
DeBs when the OPEN function is called, an abnormal con­
dition is signaled (see Table 10). The device indicator
(DEV/OPLB/RFILE) of the DeB is checked for validity. If
it references a valid operational label or physical device,
the DeB is marked open; if the device indicator is invalid,
the DeB is not marked open and an abnormal condition is
signaled (see below for the OPEN call format).

For DeBs assigned (directly or through op labels) to line
printers or keyboard/printers, the L indi cator in the DeB
is set to 1 .

CLOSE A FILE

CLOSE The CLOSE function closes a DeB by setting the
DCB open indicator (OPEN) to 0, which may result in closing
the assigned data file on a device or RAD file. the CLOSE
function decrements the "open DC B count" in the proper
DCT or RFT entry, and if the count becomes zero, the data
file is closed.

If the data file is to be closed and is a RAD file opened for
output, the directory entry for the RAD file is updated with
the information from the RFT entry and the entry is deleted
from the RFT tabl e.

If the data file is to be closed and is a RAD file opened for'
input only, the entry is deleted from the RFT table.

Closing other types of data files requires no action.

OPEN AND CLOSE SYSTEM CALL FORMAT

OPEN and CLOSE system calls have the format

CAL 1, 1 address

where address points to word 0 of the FPT shown below.

word 0

Code
0123456

. It opttona

o [: Abnorma: addre~ I
10 11112 13 14 15 16 17 18 19120 21 22 23 24 25 26 27128 29 30 31

optional t

where

Word 0

Code is X' 141 for Open, X' 151 for Closed.

DCB address is the address of the associated DeB

Word 1

is the error address parameter presence indicator
(0 means absent; 1 means present).

is the abnormal address parameter presence in­
dicator (0 means absent; 1 means present).

P 11 is the buffer address parameter presence indi-
cator (0 means present; 1 means absent).

Word Options

Error address is the address of the entry to the user's
routine that will handle error conditions.

Abnormal address is the address of the entry to the
user's routine that will handle abnormal conditions.

Blocking Buffer address is the address of a 257-word
buffer to be used for file directory search if the
DCB is being opened to a RAD file.

CHECK I/O COMPLETION

CHECK The CHECK function tests the type of compl e-
tion of an I/O operation initiated by a no-wait request.
The user specifies addresses, which are entries to his routines,
that handle error and abnormal conditions. At entry, regis­
ter 10 contains the error or abnormal code as detailed in
Table 11. Background users may take advantage of the
standard system handl i ng of the error and abnormal address
in the FPT. The action taken by the system in this case is
also detailed in Table 11. Foreground users must provide
both error and abnormal addresses when checking (CHECK,
no-wait) requests.

Users may specify a CHECK with no-wait by including a
busy address in the FPT. This address is taken (with the
address of the location following the CHECK CAll in

tIn all FPTs for I/O functions where an optional parameter
is not used, the parameter word must be omitted from the
FPT and the corresponding presence indicator (P) set to O.

n

I/O System Calls 37

register 8), if the CHECKed operation is not complete. If
no busy address is included in FPT, the CHECK function
will wait for completion before taking the appropriate action.

The CHECK function (through its own FPT) addresses a DCB
or an FPT, depending upon whether the request was Type I
or Type II. The FPT associated with a request is addressed
if the request was Type II and the completion parameters
were posted in the FPT by the I/O system. A DCB is ad­
dressed if the request was Type I and the completion param­
eters were posted in the DC B.

The CHECK function call is of the form

CAL 1, 1 address

where address points to word 0 of the FPT shown beiow.

word 0

word 1

optional

where

Word 0

Code is X'29' for the CHECK function.

DCB or FPT address is the address of the DCB or
FPT where the completion status is posted. P 10
determines whether this field contains a DCB or
FPT address.

Word 1

is the error address parameter presence indicator
(1 means present; 0 means absent).

is the abnormal address parameter presence in­
dicator (1 means present; 0 means absent).

is the busy address parameter presence indic'a­
tor (i means present; 0 means absent).

P 10 is a code to determine whether a DCB or FPT
is addressed (0 means DCB; 1 means FPT).

38 I/O System Calls

Word Options

Error address is the address of the entry to the user's
routine that wi II handle error conditions.

Abnormal address is the address ot'the entry to the
user's routine that wi II handl e abnormal conditions.

Busy address is the address of the entry to the user's
iOurine thatwill handle the "request busyll conditions.

READ A DATA RECORD

READ The READ function causes the I/O system to read
a data record into a user buffer from the devi ce or RAD fi! e
specified by the DCB.

If the addressed DCB is closed when the READ request is
made, an implicit OPEN will be performed on the DCB.

READ requests may specify either a IIwait for completion II
or an lIimmediate return II condition. Foreground requests
with wait must include error and abnormal returns in the
FPT. Background requests can omi t these addresses and have
the system handle error and abnormal conditions. For re­
quests with no-wait, such addresses in the READ FPT would
be superfl uous, since the user must perform a CHECK to
test for error or abnormal conditions resulting from the request.

Should the input record be physically longer than the speci­
fied buffer length, data is lost and the user is notified
through an abnormal return with code 07.

Should the input record be physically shorter than the speci­
fied buffer length, the buffer is not fi lied and the acutal rec­
ord length is posted in the FPT or DCB.

Input fiom the CCiid reader is performed in either automatic
or binary mode. If the card reader is not the C device, the
input mode is determined by the BIN flag in the DCB. The
C device is always read in automatic mode. Foreground
programs may not read the C device as this would disrupt
the background job stream.

Input from the C device results in all control commands
(! in column 1) being intercepted by the I/O system. Any
control command other than ! E aD causes an abnormal re­
turn with a code of 06 in register 10. The input record is
kept in the RBM control command buffer. If an attempt is
made to read this same device again, an error return with
code 54 is given (see Table 11).

An ! E aD record encountered from a card reader or paper
tape reader on a READ request results in an abnormal return
with code 05.

For random access input from RAD files, the user includes
a key in the FPT. All READ requests without a key
parameter are assumed to be sequential access requests
and result in the next record in order being input into
the user buffer. For sequential input from blocked files, a
request without a key parameter may not result in an
actual disc access.

For sequential access input from compressed files, the I/o
system decompresses the record in transmitting it to the
user buffer.

Type II READ requests must include in their FPTs a comple­
tion status parameter in which the I/O system will post the
type of completion code and the actual byte count.

A Type I READ request that finds the DCB busy with a pre­
vious Type I request results in an error condition (error
code 48).

WRITE A DATA RECORD

WRITE The WRITE function causes the I/O system to
write a data record from a user buffer to the device or RAD
file specified by the DCB.

WRITE requests may specify "wait" or "no-wait". As with
READ requests, WRITE requests specifying wait must include
error and abnormal return addresses in the FPT. For requests
with no-wait, such addresses in the FPTwould be superfluous
since the user must perform a CHECK to test for error and
abnormal conditions resulting from the request.

For random access output to RAD fi I es, the key address pa­
rameter is included in the FPT. All WRITE requests without
a key address parameter present are assumed to be sequential
access requests.

For output to compressed fi i es, the I/O system compresses
the record in transmitting it to the system blocking buffer.

Type II Write requests must include a completion status pa­
rameter word in their FPTs in which the I/O systemwill post
the type of completion code and the actual byte count.

A Type I request that finds the DCB busy with a previous
Type I request results in an error condition (error code 48).

READ AND WRITE FUNCTION CALL FORMAT

Calls for these functions are of the form

CAL 1, 1 address

where address points to word 0 of the FPT shown below.

optional (Completion Status)

where

Word 0

Code is XI 10 1 for READ and Xl 11 1 for WRITE.

DCB address is the address of the associated DCB.

Word 1

is the error address parameter presence i ndi cator
(0 means absent; 1 means present).

is the abnormal address parameter presence indi­
cator (0 means absent; 1 means present).

is the buffer address parameter presence indicator
(0 means absent; 1 means present).

is the byte count parameter presence indicator
(0 means absent; 1 means present).

is the byte displacement parameter presence in­
dicator (0 means absent; 1 means present).

is the key parameter presence indicator (0 means
absent; 1 means present).

is the end-action parameter presence indicator
(0 means absent; 1 means present).

1/0 System Calls 39

P 10 is the request type indicator (l means Type II;
o means Type I) and indicates the presence of the
Completion Status Parameter.

P 11 is the blocking buffer address parameter pres-
ence indicator (0 means absent; 1 means present).

is the direction indicator for READ (0 means for­
ward; 1 means reverse). This indicator has effect
on Magnetic Tape Read/Write operations only.

is the wait indicator (0 means no-wait; 1 means
wait for I/O completion).

is the RAD Check-Write indicator (1 means write
on a RAD wi II be performed by a Write, Check­
Write; 0 means a normal write wi II be done).

is the paper tape direct Read/vVrite indicator
(1 means binary paper tape Read/Write operations
are performed ignoring the standard paper tape bi­
nary record control information; 0 means standard
binary format is assumed).

is the paper tape Read immediate indicator. If
F 4 is 1 and F 5 is 1 for a Paper Tape Read, the read
is performed without ignoring leading blank frames.
If F 4 is 1 and F 5 is 0, paper tape reads are per­
formed ignoring leading blank frames. This indi­
cator is only signifi cant for binary paper tape read
requests with F 4 = 1.

Word Options

Error address is the address of the entry to the user
routine that will handle error conditions for re­
quests specifying wait.

Abnormal address is the address of the entry to the
user routine that will handle abnormal conditions
for requests specifying wait.

Buffer address is the word address of the user buffer
to be used in the I/O operation. Data is written
from or read into this buffer. If this parameter is
omitted, the buffer address is taken from the DCB
(BUF).

Byte count is the size in bytes of the data record.
If this parameter is omitted, the record size is
taken from the DCB (RSZ parameter).

BTD is the byte displacement (0-3) from the word
boundary of the beginning of the data record. If
this parameter is omitted and the Buffer address
parameter is included in the FPT, value 0 is
assumed for BTD. If both parameters are omitted
from the FPT, the values of the DCB are used
for both.

Key is the number of the granu lei n a RAD fi I e to
be accessed directly. Presence of this parameter
implies direct access to a RAD file.

40 I/O System Calls

I, End-action address no. I indicates the contents
of the End-action address number field. End-action
is allowed only for foreground.

Value 0

Value 1

Value 2

indicates an end-action address.

indicates an interrupt number.

indicates an interrupt operational label.

End-action is taken only in the case of an actual
I/O operation involving data transfer to a peripheral.

Completion status is the word wherein the I/O sys-
tem posts the completion parameters for the request
(presence of this parameter indicates that the re­
quest is of Type IlL The I/O system initializes the
word to zero before starting the operation. At com­
pletion of the request (cl eanup), the actual byte
count and the completion code are posted in the
word. CHECK may be used to test the parameters.

Blocking buffer address is the address of a 257-word
buffer to be used for file directory search if the
DCB is being opened to a RAD file.

REWIND, UNLOAD, AND WRITE TAPE MARK FUNCTIONS

REW The Rewind causes a data file to be positioned at
its beginning if the file is on magnetic tape or a RAD file.
Rewind of a file on magnetic tape is accompl ished by causing
the tape drive to rewind to beginning of tape. Rewind of a
RAD fi Ie is accompl ished by setting the fi Ie position param­
eter in the RAD File Table (RFnso that the next sequential
access request on the file results in the first record being ac­
cessed. A Rewind request for a data file on any other device
results in no action being taken.

UNLOAD The Unload request results in the same action as
Rewind except that magnetic topes are rewound "off-I ine".
When the rewind is concluded, the user must give an
ATTENTION interrupt before the device can be used again.
Fai lure to do so causes the device to time out, and the operator
must respond with a key-in before the device can be used again.

WEOF Write Tape Mark causes an E OF to be written if
the addressed DCB is assigned to a magnetic tape unit. If
the DCB is assigned to a Paper Tape Punch, an ! EOD rec­
ord is output. If the DCB is assigned to a RAD file, an im­
plicit EOF is written. If the DCB is assigned to any other
type of device, no action is taken.

Rewind (REW), Unload (UNLOAD) and Write Tape Mark
(WE OF) calls are of the form

CAL 1, 1 address

where

Code is X I 01 1 for REWIND, X 1021 for WEOF, and
X'03 1 for UNLOAD.

DCB address is the address of the associated DCB.

FILE AND RECORD POSITIONING FUNCTIONS

These functions are used to alter position within a data file
on magnetic tape or RAD.

PFIL A Position File call causes a magnetic tape to be
positioned at the beginning or end of the current file if
backward or forward direction, respectively, is specified
and no skip is requested. If skip is requested, the tape is
positioned as above except that the file mark is skipped
over in the specified direction. Position File forward with­
out skip positions the tape at the end of the current fi Ie
(before the EOF). With skip, Position File forward posi-
ti ons the tape at the beg i nn i ng of the next fi I e.

Position File causes a "rewind" of RAD files when IIback­
ward" is specified, and positioning after the last record in
a RAD file when "forward" is specified.

Position Record causes a tape or RAD file to be moved
n records in the specified direction.

Position File and Position Record are ignored when the data
files are on devices other than magnetic tape or RAD file.

File and Record positioning calls are of the form

CAL 1, 1 address

where address points to word 0 of the FPT shown below.

word 0

optional

optional

where

Word 0

Code is X' 1C for Position File, and X' 1D ' for
Position Record

DCB address
DCB.

Word 1

is the address of the associated

is the record count (N) address parameter pres­
ence i nd i cator (0 means absent i 1 means present).
P1 must be 0 for Position File.

is the abnormal address parameter presence in­
dicator (0 means absent; 1 means present). P 2
must be 0 for Positi on Fi I e.

SKIP indicates whether the EOF is to be skipped
over in positioning magnetic tape. This param­
eter has significance only for Position File and on
magnetic tape (0 means no skip; 1 means skip).

DrR is the direction indicator (0 means forward
positioning; 1 means backward positioning).

Word Options

N is the number of records to position.

Abnormal address is the address of the entry to the
user's routine that will handle abnormal conditions
(EOT, BOT, etc.), for this I/O operation (Posi­
tion Record only).

PRINT AND TYPE FUNCTIONS

PRINT, TYPE The PRINT function causes the Monitor to
list the user's message on the listing log device (operational
label LL). The TYPE function causes the Monitor to list the
user's message on the operator console device (operational
label OC). These functions are reentrant and available to
foreground programs. Error and abnormal conditions result­
ing from these functions are ignored.

Print and Type may. be performed without a wait for com­
pletion, but the user is warned that changing the output
buffer after return from such a request may result in the
output message being modified.

Calls for these functions are of the form

CAL 1, 2 address

where address points to word 0 of the FPT shown below.

where

Code is X10 11 for Print and X'021 for Type.

is the message address parameter presence indi­
cator (P 1 = 1). P 1 is assumed to be a 1.

I/o System Calls 41

is the wait indicator (0 means no-wait; 1 means
wait for I/o completion).

Message address
the message.

is the address of the first word of

Note that the first byte of the first word of the message must
specify the number of characters to be listed, up to a maxi­
mum of 132 characters for a i ine printer and 85 characters
for a typewriter.

DEVICE/FILE MODE AND FORMAT CONTROL FUNCTIONS

The DEVICE/FILE Mode function is used to set the following
parameters:

Modes (MOD, PACK) in the addressed DC B.

Record Size (RSZ) in the addressed DCB and in the
RFT entry if the DCB is assigned to an output file.

File Organization in the assigned file's RFT entry
if the DCB is assigned to an output file.

Granule Size in the assigned fi Ie IS RFT entry if the
DCB is assigned to an output fi Ie.

The parameters set in th e RFT entries for permanent fi I es
will be written into the RAD file directory entry for the
file when the file is closed. Thus, this function defines
the parameters for permanent RAD files.

The Device Vertical Format function causes the Monitorto
set the vertical-format-control indicator of the specified
DC B to 1 or to O.

Calls for these functions are of the form

CAL 1, 1 address

where address points to word 0 of the FPT below.

tTwo alternative forms of word 1 are shown.

42 I/o System Calls

where

Word 0

Code is X' 22 1 for Device/File Mode, X'05 1 for
Device Vertical Format.

DCB address is the address of the associated DCB.

Word 1 (option i)

is the record size parameter presence indicator
(0 means absent; 1 means present).

is the file organization parameter presence indi­
cator (0 means absent; 1 means present).

is the granule size parameter presence indicator
(0 means absent; 1 means present).

means BIN; 0 means BCD.

F 3 means unpacked format; 0 means packed.

Word 1 (option 2)

VFC is the vertical-format-control specification
(0 means no format control; 1 means format control).

Word 2

RSZ is the maximum record size specification, in
bytes.

ORG is the file organization type:

00 for unblocked

01 for blocked

10 for compressed

GSZ is the granule size in bytes.

STDPID, STARTID

CAll, 5 address

These calls are of the form

where address points to word 0 of the FPT shown below.

word 0

1 2

where

Code = X!10! for STOP ail system I/O
= X' l1 ' for START all system I/O
= X 'OE I for STOP background I/O
= X'OF ' for START Background I/o

IOEX

HIO = 0 for no HIO
= 1 for HIO

lOP = 0 reserve device and controller
= 1 reserve entire lOP

DOD = 00 DCB address is given
= 01 operational label index is given
= 10 device index is given

DCB/OP DEVICE contains the DCB address, oper-
ational label index, or device index as specified.

10EX calls are of the form

CAL 1, 5 address

where address points to word 0 of the FPT shown below.

word 1

optional

where

Word 0

Code

DOD

o I: End-action :Oddress no. I
10 11112 13 14 1516 17 18 19120 21222324252627128293031

= X 1 1 21 fo r S 10
= X' 13 1 for no
= X 1141 for TDV
= X ' 15 1 for HIO

= 00 if DCB address is given
= 01 if an operational label index is given
= 10 if a device index is given

DCB/OP DEVICE contains the DCB address, oper-
ational label index, or device index as specified
by DOD.

Word 1

is the SIO address parameter presence bit (0
means absent i 1 means present).

is the end-action parameter presence bit (0
means absent i 1 means present).

Word Options

SIO address is the address of the lOP command
doubleword

I, End-action address no. I indicates the contents
of the End-action address number field.

Value 0 indicates end-action address.

Value 1 indicates interrupt number.

Value 2 indicates interrupt label.

The no, TDV, and HIO operations are performed immedi­
ately and the condition codes and status are returned as
shown in Table 12.

The command pairs for an SIO operation are not checked for
validity. The flags in the command pairs may be set ac­
cording to the needs of the user. The SIO is issued whether
or not the device is busy or in manual mode, and the status
is returned to the caller. It is the user1s responsibility to
sense for the manual mode before and after the SIO request
and then inform the operator with a suitable message.

When I/O interrupts occur as a result of IOEX (SIO only),
end-action is initiated as requested in the FPT. The end­
action is identical to that for READ/WRITE calls.

Table 12 shows the status returned from the different M:IOEX
functions.

Table 12. M:IOEX Function Status Returns

Operation Major Status Condition Codes Register 8 Register 9

ALL Device not preempted 0001 - - - - - -
ALL No I/o address recognition 1100 - - - - - -
SIO I/O address recognized 0000 Current command Status and byte count

and SIO accepted address

I/O address recogn ized 0100 Current command Status and byte count
but SIO not accepted

Device controller is 1000 - - - - - -
attached to "busy"
selector lOP

I/O System Ca II s 43

Table 12. M:IOEX Function Status Returns (cont.)

Operation Major Status Condition Codes Register 8 Register 9

no I/O address recognized 0000 Last command Status and byte count
and SIO is currently address
possible

I/O address recognized 0100 Current command Status and byte count
but SIO not possible address I
Device controller at- 1000 - - - - - -
tached to "busy" selector
lOP

TDV I/O address recognized 0000 Current command Status and byte count

I i/O address recognized 0100 Current command Status and byte count I and device dependent address
condition present I
Device controller at- 1000 - - - - --
tached to "busy II
se I ector lOP

HIO I/O address recognized 0000 Current command Status and byte count
and device controller is
not busy

I/O address recognized 0100 Current command Status and byte count
but device controller "busy" address

44 I/O System Calls

5. USER PROGRAM SCHEDULING AND OPERATION

SCHEDULING AND LOADING PROGRAMS

The Overlay Loader links relocatable object modules to
form an absolute load module representation of the program.
The load module is created as a RAD file and consists of a
header and an absolute core image of the various program
segments. The load module header contains the program
parameters used by the Root Loader for Loading the program
root.

LOADING AND RELEASING FOREGROUND PROGRAMS

Loading and initializing of a foreground program root is per­
formed by the Foreground Root Loader, and involves the fol­
lowing steps:

1. Opening the file containing the absolute load module.

2. Bui Iding a Foreground Program Table entry that con­
tains the program name, core memory to be used by
the program (root and a II segments), and the publ i c
I ibraries used by the program. The last two parameters
are taken from the load module header.

3. Testing for required core size availability. If some
portion of required foreground memory is busy, a mes­
sage is typed, the Foreground Program Table entry is
purged! and an error return is given. If no busy fore­
ground core is required but some portion of background
is needed, the background is checkpointed and the
core area marked as foreground. If the foreground
memory is not busy or if the background has been check­
pointed (if necessary), the load process

• Loads the program root.

• Sets the PCB pointer in X 14E I to point to the fore­
ground user program PCB.

• Transfers control to the start address, taken from
the load module header, where the user program
initializes itself (connects tasks, conditions inter­
rupts, etc.).

When initialization is completed, the user program performs
an EXIT function call. The EXIT function will recognize
that initialization of a foreground program has been com­
pleted and wi II transfer control back to the RBM Control
Task (the EXIT ca II does not cause an exit from the RBM
Control Task).

A foreground program root can be loaded by any of the
following:

RUN control command

ROV control command

RUN key-in

RU N system ca II from a foreground task

Since the root loading occurs at the level of the RBM Con­
trol Task, foreground programs making RUN calls must give
up the CPU (EXIT) before the load can be accomplished.
Foreground tasks can request the triggering of an interrupt
at conclusion of the root lo~d and initialization.

Release of foreground programs is also performed at the RBM
Control Task priority through the following steps:

1. Disarming all interrupts connected to tasks within the
program. The interrupts are specified in the INTTAB
which is pointed to by a word in the program PCB.

2. Closing any open DCBs within the program to cause
I/O run-down in addition to closing data files.

3. Purging the foreground program entry, which has the
effect of marking the memory as not busy.

4. Restarting the background if it has been checkpointed,
and if release of this foreground program makes avail­
able the memory needed for the background.

Release of a foreground program occurs as a result of either
an RLS key-in or RLS system call.

LOADING AND EXECUTING BACKGROUND PROGRAMS

The Background Root Loader loads background programs as
specified by control commands in the background job stream
at the Control Task priority level.

The Background Root Loader will only load a background
program root if the background memory area is large enough
to contain the entire program (root and segments). Upon
completion of the root load, control is transferred to a
background program at its start address. The background
program terminates execution with an EXIT or ABORT re­
turn. After terminating a background program, RBM
resumes processing the control commands from the back­
ground job stream.

TASK CONTROL BLOCK (TCB)

A Task Control Block must be associated with each centrally
connected rea I-ti me task, and is used by the system to save
the context of the interrupted task upon occurrence of the
given task1s interrupt. The TCB is in the user program
(assembly language users must allocate and define their
TCBs in the source code of their program). The FORTRAN
compi I er generates i mpl i cit Iy the TCBs needed for a rea 1-
time FORTRAN program.

TASK CONTROL BLOCK FORMAT

The assembly language user must allocate a TCB in the
source code for each centrally connected task in the pro­
gram. Each TCB begins on a doubleword boundary and has
a I ength of 26 words.

User Program Scheduling and Operation 45

The RBM CONNECT function fills in the TCB. When com­
pleted, a TCB has the following form:

o

2
3

4

5

6

7

8
9

10

25

I
Saved PSD

Intermediate PSD to transfer to TCB + 4 with
skeleton key

STM,O TCB + 10

BAL,R1 RBMSAVE

Indicators 1 I PCB address

Priority I I TCB address

PS D to transfer to task entry in proper state
(mode, write key, etc.)

16 words for register saving

where RBMSAVE is a system routine that

I

1. Exchanges the contents of X'4E', X'4F', and TCB +6,7.

2. Sets appropriate indicators in TCB +6.

3. Transfers to the task starting address by LPSD from
TCB +8.

Users must never alter any portion of a TCB.

PROGRAM CONTROL BLOCK (PCB)

The Program Control Block contains the program-associated
parameters used by the RBM system to provide service func­
tions for the program. Every program, background and
foreground, contains a PCB that is allocated and constructed
by the Overlay Loader.

The Program Control Block defines the program Temp Stack
to be used by a program. It also contains a pointer to a list
of the DCBs associated with a program and a pointer to a
list of interrupts connected to the tasks within a foreground
program. This table of interrupts is filled by the CON­
NECT routine as the various connect calls are made.

Since the Temp Stack is associated with the program rather
than individual tasks, different tasks with a program should
not use these stacks for data communication. Common stor­
age can be used for communication between tasksorbetween
occurrences of a given task.

At a!! times during operation of RBM, location X '4E' and
X'4F ' contain pointers to the PCB and TCB, respectiveiy.
In addition, X'4F' contains the current priority level in
byte o.

46 Program Control Block (PCB)

PCB FORMAT

The PCB is built by the Overlay Loader from parameters
specified on the! LOAD control command.

The PCB is of the form

o 78 14 15 31
I

o 0 0 1
I

TSTACK-1 i
TSS (0 0

2 0 0 OVLOAD

Noo of
tasks

3 0-0 iNTTAB

01 Trap 0---01 TRAPADD I controi i
4

5 MSLADD

6 Unused

7 Unused

8 Unused

9 Unused

10 DCBTAB

11 Unused

12 I SSW

TSTACK User's Temp Stack
__ --+-_______ ' _,} TSS

o 14
1
15 26 31

where

TSTACK is the address of the current top of the
user's temp stack.

TSS indi cates the size, in words, of the user's temp
stack.

OVLOAD is the address of the table used by the
segment loader to manage the program overlays.

No. of Tasks is the number of tasks in the program.
This is also the number of entries in INTTAB.

INTTAB is the address of the interrupt table associ-
ated with the program. This table is maintained
by the CONNECT function. The format of this
table is shown below.

Trap Control (Bits 1-7) specify how the various
traps are to be handled. An explanation of these
bits is given in the TRAP function description later
in this chapter.

TRAPADD is the address of the user's routine which
processes the various traps.

MSLADD is the address of the M:SL DCB, which is
used to load overlay segments.

DCBTAB is the address of a table of names and
addresses of all of the user's DCBs. This table has
the form shown below.

SSW contains the user's sense switch settings.
Bit 26 contains the setting of switch 1, etc. The
sense switches have no use in this initial release
of RBM.

DCBTAB Format

o 15 16 31

DCTAB
T ota I no. entri es
in table

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

DCBLOC
1

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

DCBLOC
2

etc.

I

o 1516 31

where

C
1

- C
8

indicates the EBCDIC name of the DCB,
left-justified, with trailing blanks.

DCBLOC is the absolute address of the first word
location of the DCB.

INTTAB Format

o 15 16 31

I I I INTn + 1 I INT
n

INT4 \ INT3
\

INT2
\

INTl
,

o 1516 31

where I is the index value used to access the next avai lable
entry in the table 0 < I s 4N - 1. N is the number of words
allocated by the Loader for the table. The table is main­
tained by the CONNECT system call. I has an initial value
equa I to the number of tasks.

Each byte (interrupts 1 to n) represents the priority of the
interrupt where a value of 1 represents the highest priority
and corresponds to interrupt location X'50'.

TEMP STACK

The Temp Stack is a "push-down/pull-up" stack of memory
locations that have been allocated by the Overlay Loader.
It is required for Monitor functions and subroutines that use
Temp Stack storage (i.e., FORTRAN IV-H Library routines).

The user can manipulate the Temp Stack by push/pull stack
instructions (PSW, PLW, PSM, PLM, MSP) that indirectly ad­
dress location '4E', which contains the address of the exe­
cuting program's PCB. The first doubleword of the Program
Control Block is the stack pointer doubleword used in allo­
cating (pushing) and releasing (pulling) blocks within the
Temp Stack.

The "push-down/pull-up" functions operate on a last-in,
first-out basis, and these operations must be symmetrical in
number and size. An attempt to push a block that is greater
than the remaining stack space results in overflow. Sim­
ilarly, an attempt to pull more out of the Temp Stack than
had been previously pushed down would result in underflow.
These conditions result in traps that may be handled by the
user (see TRAP system ca II).

The size of the Temp Stack must be equal to or greater than
the total number of temp cells required by the maximum
number of nested routines using temporary storage; (i. e., if
a Monitor I/o routine needs 16 temp cells and it calls a
routine that needs 19 cells, the total number of cells re­
quired wou Id be 35). The number of cells required for sys­
tem CALs is 18 to 70i the FORTRAN IV-H Library subrou­
tines require 148 temp cells for each task.

Foreground tasks at different interrupt levels within the
same program share the program's Temp Stack, and alloca­
tion must be suffi cient to accommodate the maximum number
of tasks that could be enabled at one time. When an exe­
cuting task exits, it must restore the temp stack pointer to
its original condition. This is particularly important in a
foreground program where a Temp Stack is allocated for each
program and not each task. Thus, if several tasks in the
same program share the program's Temp Stack, the house­
keeping of the Temp Stack pointer (e. g., symmetrical
pushes and pu II s) must be meti cu I ous.

MASTER AND SLAVE MODES

Foreground tasks can change their execution mode through
MASTER and SLAVE system function calls. At entry to a
task, the mode is set as specified by the function call that
caused the connection.

Note: Serious consequences can result from improper oper­
ation in master mode.

OVERLAY SEGMENT LOADING

Overlay segments are loaded through a SEGLOAD system
function call and the segment to be loaded is specified by
number.

Temp Stack/Master and Slave Modes/Overlay Segment Loading 47

Both background and foreground programs may load overlay
segments. The memory space necessary for a foreground
program overlay is always available, since availability was
verified when the root was loaded, and the total space used
by the program and all its overlays was marked as busy by
the Root Loader. Overlay segments are loaded at the pri or­
i ty I eve I of the req uest i ng task.

CHECKPOINT AND RESTART

Checkpoint and restart of the background are performed
automatically by the system as foreground programs are
loaded and released. Checkpoints are performed as neces­
sary to load foreground programs. Restarts are performed as
possible when foreground programs are released. Both func­
tions are performed in the RBM Control Task. Checkpointing
consists of

1. Writing the background program to a fixed area on the
RAD (specified at SYSGEN) after the background pro­
gram has stabilized (no background I/o request running).

2. Marking the background memory as unused foreground
to enable loading of foreground programs into that
area.

Restarting consists of

1. Reading the checkpointed background program from the
RAD into memory if the required memory area is marked
as unused foreground (no active foreground programs in
the area), and marking this area as background.

2. Restarting the background program at the point it was
interrupted by the checkpoint request.

TRAP HANDLING

RBM provides standard processing of trap conditions. A user
can either take advantage of the system processing or request
that he himself handle certain trap conditions. Also, cer­
tain traps can be ignored. System trap handling involves
aborting (for background) or exiting (for foreground) the task
that is active at the occurrence of a trap, with the follow­
ing exceptions:

1. An unimplemented instruction trap occurrence will re­
sult in the instruction being simulated if the simulation
package is in the system. If simulation is impossible,
the program wi II be aborted or exited.

2. The user can mask out fixed-point arithmetic and deci­
mal arithmetic traps either through system call (TRAP
function) or at task connection time (CONNECT, ARM,
DISARM functions).

3. The user can mask out some floating-point trap occur­
rences through use of the LCF and LCFI instruction.

4. Any unmasked trap can be received by the active pro­
gram, This is set up through the TRAP function cai i!
wherein the user can specify the address of a routine to
handle the various trap conditions. This address is kept
on a per program basis as opposed to a per task basis.

When the user program receives control in the trap routine,
the following items are stored in sequence in a 19-word
block of the program's Temp Stack, starting on a doubleword
boundary: the PSD and the 16 registers saved when the trap
occurred, and a word containing the trap location (right­
justified). Register 1 points to word a (first word of the PSD)
in this block. If 21 words are not available in the Temp
Stack, a background program is aborted; a foreground task
is exited.

The address of the user trap routine and the control bit for
each trap is kept in the PCB.

User trap handling or system trap handling is also invoked if
an invalid parameter exists in an FPT for a system call that
is unable to post the 6iior condition. In this case, an error
code of X'50' will be posted in the last word of the user's
Temp Stack if a user trap address is present in the PCB.

Return from the user trap routine to the interrupted program
is accomplished by the TRTN function, which restores the
context from the Temp Stack and returns to the location fol­
lowing the trapped instruction.

RETURN FUNCTIONS

RBM provides users with the following return functions:

EXIT is used by background programs at the normal
completion of a background program. EXIT is used
by foreground programs when a centrally connected
task has concluded the processing of an interrupt.
An EXIT ca II from the foreground causes the system
to restore the context of the interrupted program
and return to the poi nt of interrupt.

ABORT is used by background programs to cause the
system to abort the job containing the program.
The system wi II abort the background program and
type a message on the operator console (OC) that
the job was aborted and give the address of the
ABORT call unless an !ATTEND command was
present in the background job. The system wi II
read and ignore all records from the C device until
the next! JOB card is encountered. If an ABORT
call is made from a foreground program, an EXIT
is performed.

INTERRUPT CONTROL

CONNECTING TASKS TO INTERRUPTS

Interrupt connection may be accomplished through use of
the CONNECT, ARM, or DISARM function calls. While
these calls are usually made during foreground program
initialization (performed at the Control Task priority level),
this is not a requirement. A table of interrupts connected
within a program is kept by the system. This table is pointed
to by an entry in the program's PCB, and space for the table
is allocated by the Overlay Loader in the user program. The
table enables the foreground program release function to

48 Checkpoint and Restart/Trap Handl ing/Return Functi ons/Interrupt Control

disarm and disable all interrupts associated with a foreground
program. In calling for connection the user may specify the
mode (master, slave) and the interrupt inhibit conditions
that are to exist at entry to the specified task. Two types
of connections are avai lable, direct and central:

1. Direct connection results in immediate entry to the task
upon occurrence of the interrupt. The task must ensure
that the context is saved, as necessary, and restored
upon exit. The task should set the priority field
(byte 0) in location X '4F I to ensure that CPU time is
not stolen for I/O cleanup for lower-priority tasks. If
the task uses any RBM services, locations X '4E ' and
X '4F I must be properly set.

2. Central connection results in entry to the task after the
interrupted task context has been saved. The CONNECT
function constructs the TCB so that the context save
will occur. Exit from a centrally connected task is by
EXIT, which will restore the interrupted task status and
return to the interrupted task.

To perform the connection, the system fills in the TCB
previously shown, The PSD is constructed (TCB + 8) to
transfer control to the user in the proper mode and with
the proper write key. An XPSD TCB instruction is
placed in the proper interrupt location to complete
the connection.

The CONNECT function also notes in the INTTAB the num­
ber of the interrupt being connected so that the interrupt
can be disarmed and disabled when the foreground program
is released. Details of the system calls concerned with con­
nection are given later in this chapter under "System Func­
tion Ca II Formats".

ARMING, DISARMING, ENABLING, DISABLING

These functions can be performed by the ARM, DISARM,
ENABLE, and DISABLE system function calls, which specify
an interrupt by number or label. As options on ARM and
DISARM, connection of the interrupt to a task can be per­
formed, and/or a clock can be set to interrupt at specifi c
intervals.

ARM, DISARM, ENABLE, and DISABLE functions can also
be performed by operator request through the CINT key-in.

TRIGGERING OF INTERRUPTS

An interrupt can be triggered through a TRIGGER system
function call. The interrupt to be triggered is specified by
number or by label. TRIGGER calls may be made from any
foreground task. An interrupt can also be triggered by
operator request through the CINT key-in.

SYSTEM FUNCTION CALL FORMATS

RUN This function call is avai lable only to the fore-
ground. It has the format

CAL 1,5 address

where address points to word 0 of the FPT show below.

word 0

word 1

word 2

word 3

where

Word 0

X'OC is the code for the RUN call.

Signal address is the address of a status word into
which the system posts one of thefollowingsignals:

o if the program was successfully loaded.

2

3

4

5

6

if the space was not avai lable in the fore­
ground memory area or if there was insuf­
ficient space in the Foreground Program (FP)
table to make entries for the publi c libraries
needed by the program.

if the requested program did not exist on the
FP area of the RAD or if an I/O error oc­
curred attempting to load the program.

if the program is already loaded.

if a previous request has been made to load
the same program but the program is not yet
loaded. In this case, the Foreground Root
Loader is able to notify only the first re­
quester when the program is loaded.

if the space was not avai lable in the Fore­
ground Program (FP) table for the requested
program.

if inval id attempt has been made to load a
public library. Since public libraries are
automatically loaded and released by the
Foreground Root Loader, they cannot be
loaded via a RUN ca II.

System Function Call Formats 49

The signa I address cannot be a register (addresses
O-F) and must be in the ca II ing program1s portion
of memory. An invalid signal address results in
control being transferred to the System or User
Trap Handler.

The user should inspect the signal word upon re­
turn from the CALI since some of the signals (3,
41 and 5) are posted immediately by the RUN pro­
cessor. The signal word should be initial ized to
a value other than 0-6, so that the user can de­
termine if or when the signal is posted.

Note that an interrupt is triggered only if the RUN
request is passed on to the Foreground Root Loader.
That is, signals 3, 4, and 5 are returned immedi­
ateiy by the RUN processor and, in this case, no
interiUpt is tii ggered.

Alarms are output by the Foreground Root Loader
for error conditions 1, 2, and 6.

Word 1

I, Interrupt no. /Iabel indicates the contents of the
Interrupt number/label field (0 for no interrupts;
1 for interrupt numberi 2 for interrupt label).

This interrupt is triggered by the Root Loader at the
conclusion (successful or unsuccessful) of the root
load and initialization.

Words 2-3

Ci are the characters in the name of the load mod-
ule. The name is left-justified with trailing blanks.

RLS This function call (Release Foreground Program) is
available only to the foreground, and has the format

CA L 1,5 address

where address points to word 0 of the FPT shown below.

word 0

word

word 2

where

X10B 1 is the code for the RLS call.

Ci are the characters specifying the name of the
program. The name is left-justified and filled with
trailing blanks. An invalid name results in a re­
turn with no action taken by the system.

50 System Function Call Formats

TRAP This function call has the form

CAL1,8 address

where address points to word 0 of the FPT shown below.

word 0

word

where

Word 0

X I 14 1 is the code for the TRAP ca II.

Trap address is the address in the user program that
receives the requested traps. The address is op­
tional unless it is the initial call and one of the
trap bits is set. The address must lie in the calling
program1s portion of memory.

Word 1

Bits 1-7 are the Abort flags specifying which traps
are to be handled by the System.

Bits 9-15 are the Trap flags specifying which traps
are to be handled by the user1s trap handler.

Bits 22-23 are the Permit flags specifying that the
decimal or arithmetic mask in the PSD is to be set
50 that theSe traps Cia peim itted.

Bits 30-31 are the Ignore flags specifying that the
decimal or arithmetic mask in the PSD is to be set
so that these traps are ignored.

The Abort, Trap, Permit, and Ignore fields specify
the changes to be made in the disposition of trap
occurrences.

The bits in these fields have the following significance:

WDG
NAO
UI
PS
FP
DEC
FX

Watchdog Timer
nonallowed operation
unimplemented instruction
pushdown stack lim i t
floating-point arithmetic
decimal arithmetic
fixed-point arithmetic

If a control bit has value 1, the trap is to be handled
as specified. A value of zero specifies that no change
is to be made in the handling of that trap. The fields
are processed from left to right (Abort, Trap, Permit,
Ignore), with the last-processed code overriding any
previously processed code.

If a given trap condition has a control bit value of 1 in
both the Abort and Trap fields, the Trap bit will over­
ride the Abort bit and the user will receive the trap,
since the Trap bit is the last one processed.

TRTN This function call (trap return) is of the form

CAL1,9 5

No FPT is used.

EXIT This function call is of the form

CALl,9

No FPT is used.

ABORT This function call is of the form

CAL1,9 3

No FPT is used.

CONNECT This function call (available only to the
foreground) has the form

CA L 1,5 address

where address points to word 0 of the FPT shown below.

word 0

word 1

optional

optional

Clock value

where

Word 0

X 1041 is the code for the CONNECT call.

12 indi cates that the address (12 = 0), or the label
(12 = 1), of the interrupt is specified in Interrupt
address/label.

Word 1

is the task start address parameter presence
indicator (0 means absent; 1 means present). This
indicator must be 1.

is the clock value parameter presence indicator
(0 means absent; 1 means present).

DE specifies that the interrupt is to be disabled
(DE = 1), or enabled (DE = 0).

01 specifies that the connection is to be direct
(01 = 1), or central (01 = 0).

CI specifies that the task is to be entered with the
clock group inhibit set (CI = 1), or reset (CI = 0).

II specifies that the task is to be entered with the
I/O group inh ibit set (II = 1), or reset (II = 0).

EI specifies that the task is to be entered with the
externalgroupinhibitset(EI=1), or reset (EI = 0).

MS specifies that the task is to be entered in master
mode (MS = 0), or slave mode (MS = 1).

OM specifies that the task is to be entered with the
decimal mask set (OM = 1), or reset (OM = 0).

AM specifies that the task is to be entered with the
arithmetic mask set (AM = 1), or reset (AM = 0).

NR is the number of regi sters to be saved upon oc-
currence of the interrupt (if connection is central).
Value 0 is used to denote that 16 registers are to be
saved. Registers are saved beginning with reg-
ister 0, and at least four registers must be saved.

TCB address contains the TCB address for central
connection. For direct connection, this portion
of word 1 is unused.

Word Options

Start address is the starting address of the task if it
is to be centrally connected. If the task is to be
directly connected, this is the address of the XPSD
to be executed in the interrupt location. fhe user­
furnished XPSD instruction will be stored in the
task's interrupt location by the CONNECT function.

Clock value is the value (in units of the clock's
resolution) to which the clock is to be set. If this
parameter is absent, no change is made in the in­
terval. This value should be presented if a task is
being centrally connected to a clock interrupt.
Note that the clock value is decremented via an
MTW, -1 instruction. This parameter is meaning­
less for a direct connection or if no connection is
being made.

System Function Call Formats 51

ARM, DISARM These function calls (available only to
the foreground) are of the form

CAL 1, address

where address points to word 0 of the FPT shown below.

word 0

word 1

optional

-----------------0
5 6 7 8 9

optional

where

Code = X'03'
= X'04'

Interrupt address/ iabei

spec ifies DISARM
specifies ARM

has the same significance as in the CON NECT call.

If P 1 = 1, a connection is performed and the parameters in
word 1 and the optional words assume the same significance
as in the CONNECT call.

If Pl = 0, no connection is performed and the remainder of
the parameters in word 1 are ignored, except for the DE
parameter in the case of an ARM call.

The rest of the coding is identical to that for the CON NECT
function call.

ENABLE, DISABLE, TRIGGER These function calls (avail-
able only to the foreground) are of the form

CA L 1,5 address

where address points to word 0 of the FPT shown below.

word 0

specifies that either the address (12 = 0), or the
label (12 := 1), of the interrupt is specified in In­

terrupt address/label.

MASTER, SLAVE These function calls (avai lable only to
the foreground) are of the form

CAL 1,5 address

where address points to word 0 of the FPT shown below.

word 0

where

Code

SEGLOAD

X'07'

X'08'

specifies SLAVE

specifies MASTER

This function call is of the form

CALl,8 address

where address points to word 0 of the FPT shown below.

word 0

word 1

a I: End-octi on: interrupt I
10 11112 13 14 1516 17 18 19120 21 22 23 24 25 26 27128 29 30 31

word 2

where

Word 0

X'Ol' is the code for the SEGLOAD call.

indicates the presence or absence of word 1 i
o means absent, 1 means present.

P 2 indi cates the presence or absence of word 2.

T indi cates whether control is to be returned fol-
lowing the call or transferred to the starting loca­
ti on of the segment at the conc lusion of the seg-

where ment load,

Code X'OQ'

X'Ol'

X'021

specifies TRIGGER

specifies DISABLE

specifies ENABLE

52 System Function Call Formats

o for return to caiiing program.

for transfer to new segment (on Iy val id
if Pl = 0).

Word 1

indi cates the contents of the end-action interrupt
field (foreground only):

1=0

1=1

1=2

indicates no end-action.

indicates an interrupt address.

indicates an interrupt label.

If end-action is specified, the request to load the seg­
ment will be queued, and control will be returned im­
mediately to the calling program. Thecalling program
can then exit and release control while the segment is
being loaded. If end-action is not specified (I = 0),
control will not be returned until the segment is loaded.
The user is responsible for checking the status of the
load if end-action is selected.

Word 2

Address to process error returns This is the address
of the user1s routine for processing any error or ab­
normal returns received while attempting to load
the overlay segment. The codes returned wi II be
identical to those of the READ CAL since a READ
CAL is used by SEGLOAD to load the segment. If
this address is not present and an error occurs, a
foreground program wi II be exited or a background
program aborted. If an error is detected in the
user1s PCB or OVLOAD table, the User or System
Trap Handler will be entered.

WAIT A background program wi II enter the II wa it ll state
through this function call ifan !ATTEND card was included
in the control commands for the job. Normally, a back­
ground program would use WAIT after typing an alarm to the
operator that" requires an operator response. While in this
state, the Control Task waits for a key-in from the operator
specifying the disposition of the background program. The
operator may specify continue (C), continue from OC (COC),
or abort (X).

This function call is of the form

CALl,9 9

No FPT is used.

TIME Programs may interrogate the Monitor to determine
the time of day and date.

This function call is of the form

CALl,8 address

where address points to word 0 of the FPT shown below.

word 0

where

is the code for the TIME call.

Address is the address of the first word of a 4-word

where

hh

mm.

block wh i ch is to rece ive the ti me and date. In sys­
tems without Job Accounting or if a data has never
been input via a II DTII key-in, the 4-word block
will not be modified. This block contains EBCDIC
characters as shown below.

word 0

h h m

word

m m o

word 2

n d d

word 3

y y

is the hour (0 s hh s 23).

is the minute (0 S mm S 59).

mon is the month (3-letter abbreviation).

dd

yy

is the day (01 S dd s 31).

is the year (00 S yy s 99).

System Function Call Formats 53

6. OVERLAY LOADER

OVERVIEW

The Overlay Loader is a two-pass processor that creates pro­
grams in overlay form. Modules in Sigma 5/7 Standard Ob­
ject Language format are converted to overlays in absolute
core image form in accordance with the Loader control com­
mands. The Loader creates programs for execution in either
foreground or backgroundr prepares standard processors for
execution under the Job Control Processorr and creates
Publ ic Libraries.

The Overlay Loader permits the user to assembler load to
background or foreground areas, and execute programs wi th
minimal control information. The default cases documented
in this section for each control command wi II handle most
normal situations.

The control command structure permits the user to tai lor the
loading procedure for a wide variety of situations, and the
control commands add control and flexibi I ity by overriding
default cases and adding options.

The size of the program that can be loaded is a function of
the size of the symbol table and available core storage at
load timer rather than the amount of core memory that the
program occupies at execution time. Therefore r the Over­
lay Loader may load user programs equal in size to the max­
imum avai lable area in core at execution timer even though
this area is not avai lable at load time.

The loading of mixed media is allowed, and all library load­
ing will be from library files on the RAD. A library need
not be ordered.

FUNCTIONAL FLOW

The options specified on the OLOAD control command are
scanned and those not specified are assigned their default
values. A ROOT or SEG control command is scanned to de­
termine the source of the binary object modules from which
the segment will be createdr and to define its linkage.

The Loader makes the first pass over the binary object mod­
ules r allocating the segment's labelled COMMON blocks
(dummy sections) and control sections. It concurrently bui Ids
a symbol table of DEFs and unsatisfied REFs. Object mod­
ules input from non-RAD devices are saved on a temporary
RAD file (X 1).

After the last object module for a segment has been inputr
the Libraries are searched. Pointers to the selected library
object modules are saved and their DEFs and REFs are added
to the symbol table. At the end of a path, segment symbol
tables ore written on temporary RAD fi ies. The blank
COMMON base is set at the end of the first pass. At this
pointr all the Loader control commands except :ASSIGN
have been input.

54 Overlay Loader

During the second pass, each segment's binary object mod­
ules and selected library modules are loaded. The absolute
core image of each segment is created and written on the
program file. Part two of the ROOT (the INTTAB r DCBTAB,
OVLOAD tabler the Temp Stack r and any DCBs created by
the Loader) is bu i I t at the end of the second pass. If a MAP
has been specified r it is output. If an output file used by
the Loader overflows, an attempt is made to output all poss­
ible MAP information. The Loader returns to the Monitor
by calling either the EXIT or ABORT function.

LIMITATIONS

There are certain limitations in the use of the Overlay
Loader due to tota I system considerations or because the
efficiency of the Loader could otherwise be degraded.

1. No discontinuous programs wi II be output by the Over­
lay Loader. The Monitor SEGLOAD function reads
only a contiguous core image. Since each discontin­
uity would result in at least one additional RAD access,
considerable degradation of the run-load process for
the foreground would result.

2. The contents of reserve areas within a program will not
be predictable at execution time unless initialized in
some manner (e. g. r by DATA statements). Labeled
COMMON will be unpredictable unless initialized by
a DATA statement. Blank COMMON is not written to
the RAD and is not loaded as part of the program.

3. Allocation of program r COMMON, and Labeled
COMMON within a program area is generally de­
termined by the Loader.

4. Only relocatable modules or those containing absolute
origins falling within the limits of the segment currently
being loaded will be allowed.

5. No implicit loading of segments will take place at exe­
cution time. Only explicit calls to the Monitor SEG­
LOAD function wi II read in overlay segments. Thusr
the overlay structure must be accurately defined at load
time to coincide with explicit calls in the user's program.

OVERLAY PROGRAMS

An overlay program is defined as the collection of absolute
core image segments generated by the Overlay Loader. The
Loader produces background overlay programs (including
processors) and foreground overlay programs. Note that
the Overlay Loader loads only programs; a foreground pro­
gram may consi st of one or more tasks.

OVERLAY STRUCTURES

An overlay program is generally composed of a root and
several overlay segments; however, it can consist of only
a root without overlay segments. The root segment is resi­
dent at a II times during the execution of a program; overlay

segments are resident only when they have been explicitly
read by calls to the Monitor SEGLOAD function.

Each segment is created from one or more binary object mod­
u les and associated I ibrary routines. The segments are as­
signed arbitrary identification numbers (except for the root
which is always segment 0) that must be unique within the
overlay program. Segment numbers are used by the Overlay
Loader and the Monitor SEGLOAD function.

The overlay structure is communicated to the Loader with
the :ROOT and :SEG control commands. Since each over-
I ay segment is created and stored on the RA D as a conti nuous
string of bytes in absolute core image form, data in reserved
areas of the program segment is not predictable. Note that
reserved areas and data blocks wi II effectively be reini­
tialized each time that an overlay segment is read in by
SEGLOAD. The structure formed by segments that can
exist in core at anyone time is called a path.

The overlay program example given in Figure 3, consists of
a root (segment 0) and overlay segments 1 through 15. The
segments (horizontal lines) are numbered in the order in
which they were bui It by the Loader. There are nine paths:

l. 0, 1,2 6. 0,5,9,10,11,12

2. 0, 1,3 7. 0,5,9,10,11,13

3. 0,4 8. 0,5,9, 10, 14

4. 0,5,6,7 9. 0,5,9, 15

5. 0,5,6,8

2

1 -
3

4

°
7

6

8

5 12
'---

11 J

~ I 13
14

9

15

Figure 3. An Overlay Program

OVERLAY RESTRICTIONS

Communication between segments by external DEF/REF link­
ages is permitted with the following restrictions:

1. The Loader will satisfy a DEF/REF linkage only within
a path.

2. A segment in one path cannot reference a segment in
another path. For example, segment 2 must not refer­
ence any of segments 3-15.

3. The user must ensure that any segments that intercom­
municate are in core. For example, if segment 5 ref­
erences segments 6 and 8, then segments 6 and 8 must
have been explicitly loaded. If segment 8 references
segments 5 or 6, these segments must have been expl ic­
itly loaded since the loading of segment 8 does not
cause the impl icit loading of segments 5 and 6.

4. Identical definitions cannot be used in segments that
are in the same path. For example, segments 5 and 13
cannot have identical definitions because they are both
in path (0,5,9,10,11,13).

5. Identical definitions and references may be used in seg­
ments of different paths that do not involve a common
segment. For example, if segments 7 and 15 reference
identical definitions in segments 6 and 9, the Loader
wi II link the reference in 7 with the definition in 6 and
the reference in 15 with the definition in 9.

6. Identical references in segments of different paths may
be made to a definition in a segment common to both
paths. For example, segments 6 and 9 can each refer­
ence a definition in segment 5 because 5 is a common
segment in the two paths (0,5,6,7) and (0,5,9,10,14).

7. A segment that is common to two paths cannot reference
identical definitions in the different paths. For exam­
ple, segment 10 cannot reference identical definitions
in segment 12 and 13, even though segments 12 and 13
are in different paths.

Where possible, the Loader wi II warn the user about errors
in overlay structure and segment communication; however,
it is the user1s responsibility to attempt a reasonable, work­
able overlay contruction.

OVERLAY CONTROL COMMANDS

The prime Overlay Loader command, ! OLOAD, is read by
the Job Control Processor and causes the Overlay Loader
processor to be read into the background and executed. All
Loader subcommands are identified by a leading colon (e. g. ,
:SEG). They are read from M:C and logged onto M:LL.
Blank cards are passed over without comment. When a Mon­
itor control command is encountered, the Loader completes
the load process and exits to the Monitor.

Note that! EOD must occur only as a terminator for object
module input; its use is illegal for terminating the Loader
control command stack.

SYNTAX

The syntax for Overlay Loader control commands is identical
to that defined for the RBM-2 Monitor (except for MODIFY
control commands).

Overlay Restrictions/Overlay Control Commands 55

ORDER OF CONTROL COMMANDS

The control command stack is divided into major divisions
or substacks, which must occur in the following order:

!OLOAD
:ROOT
:SEG

:SEG
:ASSIGN

or {:PUBLIB}

! (Monitor control command)

The :COMMON, :LCOMMON, :LIB, :INCLUDE, :EXCLUDE,
:RES, and :MODIFY control commands may occur in any
:ROOT or :SEG substack and apply only to that root or seg­
ment. The :ASSIGN control commands must follow all other
commands in the stack. The :PUBLIB control command is
unique, replacing :ROOT, :SEG, and :ASSIGN substacks.

A ROOT or SEG substack has the following order:

:ROOT or :SEG
:INCLUDE
:EXCLUDE
:LIB
:LCOMMON
:RES
:COMMON

Binary Object Module
1

Binary Object Module
n

:MODIFY

:MODIFY

These commands may occur
in any order

Binary object modules are in­
cluded at this point in the
substack only if the input de­
vice specified on the pre-'
ceding ROOT or SEG com­
mand is the same as the II CII
device.

The PUBLIB substack has the following order:

:PUBLIB }
:INCLUDE
:EXCLUDE

Binary Object Module
1

Binary Object Module
n

:MODIFY

:MODIFY

These commands may occur
in any order.

Binary object modules are
included in the substack
only if the input device
specified on the PUBLIB
command is the same as
the IICII device.

!OLOAD The! OLOAD control command signifies that
the Overlay Loader Processor is to be executed in the back­
ground area. Any error on the OLOAD control command

56 Overlay Control Commands

causes the Loader to abort. Recovery consists of correcting
the error and reloading the entire job.

If an ! OLOAD control command is continued to another
card, the continuation command must have a colon (:) in
column one instead of an exc lamation (!) character.

The form of the command is

where the options are

GO specifies that the Loader is to input all object
modules from the GO fi Ie and form a root. The only
other control commands recognized in this mode
are :RES, :INCLUDE, :MODIFY, and :ASSIGN.
All other commands are considered illegal.

GO,LINKS specifies that the Loader is to form a
I ink type overlay structure from GO in the follow­
ing manner: module 1 is identified as the root (seg­
ment 0); module 2 is identified as segment 1 and is
linked to the root, ... ; module n is identified as
segment n-l and is linked to the root.

Module 2 (ident 1)

Module 3 (ident 2)

Module 1 (root)

Module n (ident n-1)

Libraries are searched at the end of each segment.
Only :MODIFY and :ASSIGN commands are honored.
The user must have explicit SEGLOAD calls to load
segments 1, 2, ... n. No implicit calls are built
by the Loader.

PUBLIB,name
1

[,name
2

,name
3

] specifies that the
named Public Lil5raries are to be res·ident when the
loaded program executes, and that the Loader is to
establ ish the appropriate linkage. Namei is the file
name of a Public Library in the Foreground Programs
area of the RAD. The PUBLIB keyword may not be
used when a Public Library is being created. (i. e. ,
one Public Library cannot reference another Public
Library).

LIB [,USER,SYSTEM] specify the Libraries to be
searched following each segment. The order of
the keywords USER,SYSTEM defines the order of
the search. If the USER or SYSTEM keywords are
omitted, and only the LIB keyword is specified,
the Library search is suppressed. If the LIB option
is omitted, the Loader searches the System Library
after each segment.

Note: The: LI B contro I command overri des th i s
option for the segment in which it appears
(see below).

{
FORE}
BACK [,fwa,lwaJ specifies whether the program

being loaded is to execute in foreground or back­
ground. If the option is omitted, the program wi II
execute in the background area defined at SYSGEN.
The "fwa" and "Iwa" parameters are hexadecimal
values denoting the first word address (on a double­
word boundary) and last word address of the area
within which the program will execute. The PCB
will be located at the FWA specified.

For foreground programs, the defau It" fwa" is the
FWA of the foreground area (K:FGDBG2) and the
default "Iwa" is end of memory (K:FGDEND).

For background programs, the defau It" fwa" is the
FWA of the background area (K:BACKBG), and
the default"lwa" is the end of background defined
at SYSGEN (K:FGDBG2-1). If the "fwa" speci­
fied fora foreground program I ies in the background
area, the background wi II be checkpointed when
the foreground program is loaded. If the "fwa"
and "Iwa" specified for a background program ex­
ceed the limits of background at time of loading,
the program is still loaded and may be executed by
changing the upper limit of background. Note
that "Iwa" is an indicator of upper limit. If the
program exceeds this limit, the user is warned but
loading is not inhibited (except when a Public Library
is being created). If the program loads in less space,
the shorter area wi II be output in the header.

TASKS,value specifies the number of tasks in this
program which are to be connected to interrupts.
The option is used to allocate the INTTAB, and
thus has meaning only for foreground programs.
Thedefault is 0 for Background and Public Libraries;
1 for Foreground. The" value" parameter is a
decimal number.

TEMP ,value specifies the number of words to allo-
cate for the Temp Stack. The Temp Stack is lo­
cated in part two of the root. The defaul t size for
a foreground or background program is 150 words.
Public Libraries do not have Temp Stacks. There­
fore, the option may notbe specified when a Public
Library is being created. The" value" parameter
is a decimal number.

FILE,area,name specifies the RAD area and fi Ie
name of the output fi Ie to which the loaded pro­
gram is to be written (hereafter referred to as the
Program File). The default assignment of the pro­
gram fi Ie is OV in the Background Temp area. If
the Background Temp area (BT) isspecified, the file
name must be OV. W hen a foreground program is be­
ing loaded t either the Foreground Programs area (FP),
or Background Temp area (BT), must be specified.
When a Public Library is being created, the Fore­
ground Programs area (FP) must be specified.

specifies that a MAP of the

program is to be output to M:LO. If no keyword

follows MAP, a short map consisting of information
about program allocation and overlays is output.
HPROGRAMkeyword is given, external definitions
and control section designations for each segment
are listed without library definitions. For the ALL
keyword, both program and library definitions are
listed. In default, no MAP is output. (Diagnostics
and unsatisfied references are still listed on M:LL.)

BOUND,value sets the loading (and execution) ori-
gin for each object module to the next higher mul­
tiple of the bound value (e. g., if BOUND = 100,
then an origin would change from 3EF to 400). The
"value" parameter must be a hexadecimal number
less than or equal to 1000 and a power of 2. Sug­
gested values are 10, 100, or 1000. The BOUND
does not apply to Library modules. If BOUND is
not specified, the Loader begins each module on
a doubleword boundary.

UDCB,value specifies the number of unnamed DCBs
to be allocated by the Loader. (See" Loader­
Generated Items" for details.) The "va.lue" param­
eter is a decimal number.

STEP specifies a "WAIT" after loading each module
from paper tape. Used in RBM ATTEND mode.

:ROOT The ROOT control command is used to specify
the object modules from which the root segment is to be cre­
ated. The ROOT command must precede all SEG commands.

The form of the command is

~ (
input) (input)~ :ROOT (ENTRY,def) 't· ,. •• , t·
op lon

1
op lonn

where

ENTRY,def specifies the location atwhich execution
wi II commence after the root is loaded at execu­
tion time. The def parameter must be an external
definition (1-8 EBCDIC characters) in the root seg­
ment. This entry point overrides all subsequent en­
try addresses encountered in loading. The default
entry address is the last transfer address encoun­
tered in the nonlibrary object modules of the root.

Input options are of the form

{

DEVICE ,type L PAC KJ}
FILE,area,name [,value J
OPLB,Iabel

where

DEVICE ,type specifies the input device in the
format yyndd.

where

yy is a device type code.

n is the lOP towhich the device is connected.

dd is the hardware device number of the
device (e. g. T CRA03,9TA8l).

Overlay Control Commands 57

PACK specifies that the input is from 7-track mag-
netic tape with packed binary format.

FILE,area,name specifies the RAD area and name of
the input fi Ie. If the Background Temp area (BT)
is specified, the fi Ie name must be GO. Note
that a fi Ie may be used as input to more than one
segment (i n di fferent paths). A named fi lei s re­
wound each time it is specified; the GO fi Ie is not.

OPLB,Iabel specifies the operational label from
which the object module(s) will be input. The
IIlabel li parameter must be a 2-character standard
system operational iabeL

value either a decimal number (1 :s value :s 8191)
that specifies the number of object modules to in­
put from the specified device/fi Ie; or the text
string, EOD, which means to input from the speci­
fied device/file until an! EOD is encountered. If
value is omitted, one object module wi II be input
from the spec ifi ed devi ce/fi Ie.

If there are no input options on the ROOT control command,
one object module will be input from the GO file. Note
that the order of the subfields determines the order in
which the object modules are loaded.

:SEG The SEG control command is used to define a
segment's overlay linkage and to specify the object mod­
ules from which the segment is to be created.

The form of the command is

:SEG (LI NK ,i dent 1 ~O NT 0 ,i dent 2]) ~(EX L OC ,addr) 'J

[(ENTRY ,def) (inp~t), ... ,(inp~t)~
, optlon

1
optIOn n ~

where

ident1 specifies the identification number of the
segment being loaded. The identl must be speci­
fied and must be the same number used within the
overlay program to call in the segment at execu­
tion time by SEGLOAD. The II identlll parameter
must be a decimal number between 1 and 32,767.

ident
2

specifies the identification number of the
segment (which must have been previously loaded
when this control command is interpreted) towhich
this segment is linked as an oveday. If ident2 is
absent, identl is linked onto the root. The II jdent211
parameter must be a decimal number between 0
and 32,767 (0 denotes the root).

58 Overlay Control Commands

EXLOC,address specifies an optional execution ad-
dress for loading ofthis segment. The lIaddressli pa­
rameter is a hexadecimal value. This value will be
bounded by either the specified or default BOUND.
If the EXLOC option is specified, the segment wi II
be located at the first bounded address following
the segment that this segment is I inked to.

ENTRY,def specifies an entry point for the segment.
The IIdefli parameter must be an external definition
in an input module of the segment. The value of
the IIdefli overrides any transfer addresses encoun­
tered in loading of the segment. The default entry
address is the last transfer address encountered in
ioading noniibrary ROMs.

The input operations are the same as for the ROOT con­
trol commcmds. If there are no input options on the SEG
control command, a single object module from the GO file
will be input.

The ROOT and SEG control commands must be input in
an order determined by the overlay structure of the pro­
gram. The segments in the example given in Figure 4
have been numbered to illustrate this order. Basically,
segments are input one path at a time, with the restric­
tion that segments common to more than one path are
input only once.

Example 1.

The following control commands define the overlay structure
of Figure 4. This example specifies that one object module
for each segment will be input from the GO file.

:ROOT

:SEG (LINK,l,ONTO,O)

:SEG (LINK,2,ONTO,1)

:SEG (LINK,3,ONTO,l)

:SEG (LINK,4,ONTO,O)

:SEG (LINK,5,ONTO,O)

:SEG (LINK,6,ONTO,5)

:SEG (LINK,7,ONTO,6)

:SEG (LINK,8,ONTO,6)

:SEG (LINK,9,ONTO,5)

:SEG (LINK,lO,ONTO,9)

:SEG (LINK,l1 ,ONTO,10)

:SEG (LINK,12,ONTO,ll)

:SEG (LINK,13,ONTO,1l)

:SEG (LINK, 14,ONTO, 10)

:SEG (LINK,15,ONTO,9)

2

3

4

7

6

8

5 12

13

9

15

Figure 4. Overlay Example

Example 2.

The following control commands define the overlay structure
illustrated in Figure 5. This example spec ifies that one ob­
ject module for each segment wi II be input from the GO fi Ie.

:ROOT

:SEG (LINK,lO,ONTO,O)

:SEG (LINK,5,ONTO,10)

:SEG (LINK,25,ONTO,10)

:SEG (LINK,l03,ONTO,O)

10

o

103

5

25

Figure 5. Object Module from GO File

BINARY OBJECT MODULES

The Loader inputs binary object modules from mixed media
according to the input files and devices specified on the
ROOT, SEG and PUBLIB commands. Files may be blocked
or unblocked. Non-RAD input is written to a temporary
RAD file for Pass 2. Binary modules are read sequentially

from each RAD fi Ie. Each RAD fi Ie, with the exception of
GO, is rewound each time that it is named as input on a
control command. Therefore, multiple inputs from a fi Ie
(other than GO) result in the file being reread from the
beginning.

In this example,

:SEG (LINK,204,ONTO,O) ,(FILE,FP ,PROG 1,2);
:FILE,BT ,GOA)

:SEG (LINK,205,ONTO,O) ,(FILE,FP ,PROG 1,5);
: (FILE,BT ,GO ,2)

the first access to the PROG 1 fi Ie (in SEG 204) would result
in the first tvvo modules being loaded from the file. The
second access (in SEG 205) would result in the first five
modules of the file being loaded (not modules 3-7). The
GO fi Ie is read contiguously throughout a pass, and is re­
wound only at the beginning of each pass, no matter how
many accesses are made. In segment 204, the first four
object modules from GO would be loaded. In segment 205,
the next two modules (5 and 6) from GO would be loaded.

:LlB The LIB control command specifies the library search
for one segment only (i. e., the segment identified by the
preceding ROOT or SEG command). It overrides the library
search specified by the LIB option on the OLOAD control
command.

The form of the command is

(UB [(USER,SYSTEM)]

where option keywords USER and SYSTEM are used to denote
the libraries and order of search; e. g., :LIB (USER) would
cause only the USER Library to be searched for that segment.
If neither USER nor SYSTEM is specified, library search
(except for Public Library) is suppressed for that segment.

:INCLUDE The INCLUDE control command allows rou-
tines to be loaded from libraries when no reference to the
routine has been made in any module of the segment.

The form of the command is

:INCLUDE (def
1

[def
2

, .•• ,def
n
])

where

def. is the EBCDIC symbol of a definition con-
I tained in the library routine to be loaded. The

symbol may be one to eight EBCDIC characters.
The defi must be available in a library specified
by the search criteria; any unfound def. results in
an error diagnostic. I

Overlay Control Commands 59

:EXCLUDE The EXCLUDE control command inhibits li-
brary search and linkage for the named definition{s) even
though an external reference occurs in a module of the
segment.

The form of the command is

where

defi is the EBCDIC symbol of an external reference
contained in a module of the segment. However,
defi must not occur as an external definition in a
lower level segment of the path. The symbol may
be one TO eight EBCDIC characters. Note that
EXCLUDE also inhibits linkage with the specified
Publ ic Library for the given symbols.

:COMMON The COMMON control command specifies
that the Loader is to set the base of Blank COMMON at
the end of the segment identified by the preceding ROOT
or SEG control command (see II FORTRAN Interface ll for
details). If this control command is not included, Blank
COMMON is set at the end of the longest path. Only one
COMMON control command may be used in a control com­
mand stack.

The form of the command is

(:COMMON

The specification field must be blank.

:RES The RES control command a! lows the user to reserve
and name one or more areas at the end of the segment for
load-time or run-time debug purposes (see" MODIFY" con­
trol command for further comment).

The form of the command is

:RES (def,size) 1 t(def,size)2'···' (def,size)n]

where

def creates an external definition whose value is
the FYl/A of the reserve area. The definition must
be unique within the path.

size is a decimal value specifying the word size of
the reserve area.

:LCOMMON The LCOMMON control command al tows
the user to determine the allocation of labeled COMMON
blocks (DSECTs) vvithin the ioot and overlay segments of the
program. (See" FORTRAN Interface-Labeled COMMONII
for a discussion of restrictions concerning labeled COMMON
allocation and initialization.)

60 Overlay Control Commands

The form of the command is

:LCOMMON (blockname,size) 1 [(blockname'Size)2'~

L. .. , (b lock name ,size) nJ

where

b lockname is the one-to-eight character EBCDIC
name of the labeled COMMON block or DSECT.

size is a decimal value specifying the largest word

:MODIFY

size needed for the allocated block. If 'size ' is
omitted, the first size encountered will be used.

The MODIFY control command modifies core
iocations of reiocatable programs at load time. Core lo­
cations in either root or overlay segments can be modified.
Since the reserved area at the end of a segment (allocated
with the RES command) is output to the RAD as part of the
segment, that area can be used for II patches" that wi II be
read in with the segment at execution time. The MODIFY
commands must be input at the end of the ROOT, SEG, or
PUBLIB substack for the segment being modified. If the GO
option is specified/ the MODIFY commands must follow any
RES or INCLUDE commands and precede any :ASSIGN com­
mands. If the (GO/LINKS) option is specified, the MODIFY
commands must be ordered by segment number and follow the
OLOAD command.

The form of the command is

:MODIFY [(SEG ,ident) ,] (LOC/addressLword, ••• [word
n
]

where

SEG/ident specifies the identification number of
the segment to be modified. This option is only
necessary when the (GO/LINKS) option has been
specified. If this option is omitted, the segment
identified by the preceding ROOT, SEG, or
PUBLIB command will be modified.

LOC,address specifies the relative location of the
first 32-bit word to be modified. The address must
be expressed as an external definition name plus
or minus an optional hexadecimal or decimal off­
set. Hexadecimal values are distinguished from
decimal values by a period preceding the hexadec­
imal value (i. e., .A9B).

wordi specifies the word to be inserted (right-
justified) at the ith location. The word can be
expressed as:

1. A signed (plus (+) sign optional) hexadecimal
or decimal value that cannot be enclosed in
parentheses. Hexadecimal values are pre-
.-0,..10,..1 h" ,., nor: ",..I ""' ""'''"''''''' -, "",-- ,--.
Examples

-6, 100, .2A, -.AF

2. An external name plus or minus an optional
offset that cannot be enclosed in parentheses.
The offset can be either a hexadecimal ordec­
imal value. Address resolution for the exter­
nal can be specified by using the SYMBOL
notation: rr(NAME) ± offset

where

rr = BA, HA, WA, or DA

Word resolution is assumed by default. Note
that BA(ALPHA) + 3 is legal; BA(ALPHA + 3) is
not. If the name specified has not been de­
clared an external somewhere in the overlay
segment's path, it will be listed as an unsatis­
fied REF on the MAP.

Examples:

TABL + .F, TABL-l, TABL, HA(TABL)

3. A symbolic instruction that must be enclosed
by parentheses. The mnemonic field of the
instruction must be an EBCDIC operation code
that immediately follows the left parenthesis.
(The floating-arithmetic, floating-shift, deci­
mal, and byte string instructions have not
been implemented.) The register and index
fields can only be signed hexadecimal or
decimal values. The address field can be
either a signed hexadecimal value, a signed
decimal value, or an external name plus or
minus an optional offset.

Examples:

:MODIFY (LOC,MAP +. FO) ,(B PATCH + 6)

:MODIFY (LOC,PATCH+ 6),(LI,6 BA(TABL)),~

GLW,9 *WA(VAL) + 9,6),(B MAP+. Fl)

:MODIFY (SEG ,0) ,(LOC,.140),. 3F ,-.F ,250,-1

:MODIFY (SEG,l),(LOC,CCI+.80),(LI,5 0), ~

CBA L, 15 SERCHT AB ,(MTW ,-1 FLCH G)(BLEZ 'CCI + 5), J

L(LB,6 0,5) ,(STB,6 *WA(TABL) + 1,5) ,(LW ,0. 4E)

:MODIFY (SEG,3),(LOC,FPTLO),M:LO+ .11000000,~

L.F0400090,ERRIO,ABNIO ,BUF1,80,O

In reporting MODIFY command errors, any EBCDIC string,
decimal number, or hexadecimal number that is separated
by a comma, blank, plus sign, or minus sign (ignoring pa­
rentheses) is counted as an item. An example of items on
a MODIFY command is given below:

BA(TABL) + .F) ,.FF

\ · '1
:MODIFY (SEG ,2) ,(LOC,CCI + .F) ,(LW,6 *FWATAB - l,6),(LI,l

1 I ' · '11
item 3 item 7 item 9 item

11
item 5

item 2 item 8

item 1 item 4 item 6 item 10

item
13

item
12

item 14

item
15

item 16

Overlay Control Commands 61

:ASSIGN The ASSIGN control command is used to
create, initialize, or modify DCBs at load time. If the DCB
is in the program's DCBTAB table, it will be either initial­
ized or modified. If the DCB is not named in DCBTAB, the
Loader wi II bu i I d the DCB from the parameters on the
:ASSIGN control command in an unnamed DCB's entry. An
error diagnostic is output if an unnamed DCB entry is not
available (see II Load Time ASSIGN").

The format and options are identical to the Monitor! ASSIGN
control command. The :ASSIGN control commands must be
the last commands in the control command stack.

:PUBLIB The PUBLIB control command is used to specify
the object modules from which the Public Library is to be
created. The order of the parameters determines the order
of loading.

The form of the command is

:PUBLIBfJ(inp~t),(inp~t), ... ,(inp~t)1
~ option option option J

where opti on may be

DEVICE,type ['PACK

J FILE,area,name as for ROOT and SEG commands
OPLBtlabel

I f there are no input options on the PUB LIB control command,
the first object module on the GO file will be input.

When the specified object modules have been input, the
Loader searches the libraries (specified on the OLOAD con­
trol command or the System Library by default) to satisfy
any unsatisfied primary references. If a COMMON, labeled
COMMON block, or other DSECT is encountered in an object
module of the Pub!lc Library, the load process is aborted and
an error diagnostic is output. If the severity level exceeds
zero in the load process, the Public Library is not loaded.
If anything was written on the Publ ic Library fi Ie, the fi Ie
is destroyed and an error diagnostic is output.

The following conventions concerning other control com­
mands should be observed when using the PUBLIB command:

1. The FORE option must be specified on ! OLOAD to de­
fine the area that the Publ ic Library is to occupy at
execution time. If the I imits of this area are exceeded,
the Loader aborts.

2. The FILE option on ! OLOAD must specify the name of
the Public Library fi Ie being created in the Foreground
area.

3. The TEMP, PUBLIB, GO, and TASKS options are illegal,
and if used, the Loader wi II abort with an OLOAD con­
trol command error.

4. BOUND should be avoided unless a special debug ver­
sion of a Public Library is being created.

5. ROOT, SEG, :ASSIGN, LIB, LCOMMON, RES, and
COMMON control commands cannot be used in creating
a Public Library.

62 Program File/Temporary RAD Files/Loader-Generated Items

PROGRAM FILE

The Program Fi Ie contains the root and overlay segments in
core image format and a one-granule header. The program
header is located at granule 0 and contains information nec­
essary to run-load the program.

ROOT SEGMENT

The root is divided into two parts (see II Core Layout at Execu­
tion Time" I~ter in this chapter). Part one of the root always
begins in granule 1 of the Program File, and contains the
PCB, root code, library code, labeled COMMON, and RES
area for the root. Part two contains the DCBTAB, INTTAB,
OVLOADTable, Loeder-created DCBs, and the Temp Stack.

The Temp Stack is not output on the Program Fi Ie. Each
part of the root is written as a continuous string of bytes.
There is no restriction on the size of root that the Root
Loader wi II read.

OVERLAY SEGMENTS

Each overlay segment begins on a granule boundary and is
written on the Program File as a continuous string of bytes.
The order of segments on the fil e is unimportant, si nce the
granule displacement pointer (in the OVLOAD table) for
each segment specifically determ ines its position. Segments
cannot be longer than 8K words (32K bytes).

TEMPORARY RAD FILES

The Loader uses six scratch files in the Background Temp area
of the RAD (X1,X2, ... X6). If one of these files overflows,
the Loader completes the pass over the object modules even
though the load will be aborted. The Loader calculates the
number of records (for sequentiai fiies) orgranuies(fordirect­
access fi les} requi red for all scratch fi les and I ists this in­
formation on the Map. With this information, the user can
then allocate the Background Temp fi les with an ! ALLOBT
command and reload the program.

LOADER-GENERATED ITEMS
All items discussed in the following paragraphs are gener­
ated by the Loader and located in the root segment of the
overlay program (see Figure 9 in this chapter for a diagram
of the core allocation).

PROGRAM CONTROL BLOCK

The PCB is built by the Loader and located at the FWA of
the overlay program area.

OAT A CONTROL BLOCKS

The Loader automatically includes a copy of the M:SL DeB
in any program that has overlay segments. (M:SL is used by
the Monitor SEGLOAD function to read in overlay segments
at execution time.)

Any external DEF/REF that begins with an M: or F: is de­
fined to be either a system (M:) DCB or user (F:) DCB. DCBs
referenced by the program that are not satisfied at the con­
clusion of the load process are either created or allocated
by the Loader. Copies of system and FORTRAN DCBs are
created with their standard system parameters and opera­
tional label assignments. Space for user DCBs is allocated
at the rate of seven words per DCB.

Parameters for user or system DCBs may be defined by either
!ASSIGN control commands at execution time (for back­
ground programs only) or :ASSIGN control commands at
load time.

The user can create his own DCBs within the source code
and locate them in any segment of his overlay program.
However, if the user wishes to change parameters in a DCB
at execution time via an ! ASSIGN command, he must de­
clare the DCB as an external definition (with a name that
begins with an F:) and locate the DCB in the root segment.
To utilize the FORTRAN IV-H capability of performing
I/O by using variables as operational labels, the user can
specify (on the OLOAD control command) a number of un­
named DCBs to be a II ocated by the Loader. The user must
name and define these DCBs before the program executes;
either at load time (with :ASSIGN), or execution time
(with !ASSIGN).

DCBTAB

The DCBTAB table is created by the Loader, and contains the
EBCDIC name (if any) and absolute core location of each
Loader-recognized or created DCB in the root of the overlay
program. The EBCDIC name of an unnamed DCB is inserted
when the DCB is given a name by either the !ASSIGN or
:ASSIGN control command.

INTTAB

The interrupt task table (INTTAB) has a one-byte entry for
each interrupt task in a foreground program. Space for the
INTTAB is allocated by the Loader according to the number
of tasks specified on the OLOAD control command.

OVLOAD TABLE

The OVLOAD table is built by the Loader and contains the
information necessary for SEGLOAD to read in overlay seg­
ments at execution time. The OVLOAD table consists of
one entry for each overlay segment, with a total of eleven
words per entry.

TEMP STACK

The Loader allocates space for the overlay program 's Temp
Stack either according to the number of words specified on
the OLOAD control command, or by default. The Temp Stack
is located at the end of part two of the root segment and is
not output on the Program Fi Ie (see II Core Layout of User
Program at Execution" later in this chapter).

EXTERNAL DEFINITIONS

The Loader adds the external DEFs F4:COM and P:EN D to
a II programs except for Pub Ii c Li brari es. F4: C OM is the
name of FORTRAN's blank COMMON. The initial size is
set to zero and changed to the largest size encountered dur­
ing the load process. If there are no references to F4:COM,
blank COMMON is allocated with a size of zero. The
Loader indicates the LWA + 1 (including blank COMMON)
of the loaded overlay program by an external definition,
P:END. External references to P:END within the overlay
program will be linked to this definition.

The external DEF, FP:MBOX, is added to Foreground over­
lay programs by the Loader only if an area was allocated at
SYSGEN time. FP:MBOX is the name of the Foreground
Program's Mailbox. External references to FP:MBOX will
be linked to this definition.

LIBRARIES

The Overlay Loader supplies the capability to search the
System Library or the User Library in any order. The default
condition is for the Loader to search and load only from the
System Library. Control commands and keywords enable the
user to cO,-,"fol more specifically the search and load options.
Note thai- an attempt wi II first be made to satisfy all REFs
with DEFs from the Public Library, if a Public Library has
been specified on thE OLOAD control command.

If any unsatisfied primary references exist after loading the
specified modules for a root or an overlay segment, the
Loader searches the I ibrary or libraries in the specified order
to satisfy those references. Thus, if an external REF is
made to a higher level segment, the name should not be the
same as a library definition. Consider the following:

2

3

o

4

If segment 1 contains a primary reference, 9SIN, it wi II
normally be satisfied by loading a Library at the completion
of segment 1. Thus, if the definition 9SIN occurred in seg­
ment 2, it would be in error (a duplicate definition). The
loading of 9SIN from the library can be suppressed by using
the EXCLUDE command. In this case, the forward REF would
be linked and no duplicate DEF would occur. However, if
the definition 9SIN occurred in the root, or in the library
loaded in the root, no search for 9SIN would be made in
segment 1, and the occurrence of the definition 9SIN in
segment 2 would be in error. Primary references can occur
in two ways: as external references in a module, or by list­
ing the primary references on the INCLUDE control command.

Libraries 63

SYSTEM AND USER LIBRARIES

Cross-references between System and User Libraries are al­
lowed. However, since each library is searched only once
per segment r the order of search is important.

If Library A contains references to be resolved by Library B,
the search criteria :LIB (A,B) must be specified to guarantee
cross-reference resolution. If B also contained references
to A they would not be resolved. (Note that these remarks
do not apply to cross-references within any single library).

Generally, the System Library should contain the FORTRAN
Math and Run-Time Routines and should be independent.
The User Library is a repository for user subroutines and
alternate Math and Run-Time routines that supercede the
Same routines in the System Library.

The typical search order would be

:LIB (user/system)

where both libraries are referenced. In this case, all unsat­
isfied REFs from the User Library would be satisfied (where
possible) from the System Library.

ASSEMBLY LANGUAGE

Library routines may be coded in Basic Symbol r Macro­
Symbol, FORTRAN IV, or FORTRAN IV-H.

ENTRY ADDRESS

Entry addresses in library routines are ignored.

SYSTEM AND USER LIBRARIES ON RAD

The System Librar/ and the User Library on the R_AD are
structurally identical. Each library consists of four files:

EBCDIC
MODIR
DEFREF
MODULE

The System Library is located in the System Programs (SP) area
of the RAD. The User Library is located in the Foreground
Programs (FP) area of the RAD.

Only the MODULE fi Ie contains the actual binary modules
of the library. The other fi les are tables constructed by
the RAD Editor to facilitate the rapid search of the library
by the Overlay Loader without actually reading the module.
The library is structured on the principle that access should
be as fast as possible, since it is performed frequently during
an overlay loading procedure.

The three files: EBCDIC, MODIR r and DEFREF contain
enough information to determine which modu les from the
actual MODULE Fi Ie are to be loaded without examining
these rnodules directly. All fOUi!ibior/fi!es Oie constructed
and maintained by the RAD Editor. These short fj les contain
coded information about the external definitions and primary
references for each module in the library.

64 Public Library

CONSTRUCTING AND MAINTAINING LIBRARY

To begin construction of a library, the user allocates the
EBCDIC, DEFREF r MODIR, and MODULE fi les with the
RAD Editor, and then copies the librarls binary object
modules onto the MODULE file. As each module is copied,
the DEFs and REFs are scanned, and corresponding entries
are built in the other files by the RAD Editor. Library rou­
tines may be added or deleted by using the RAD Editor
:COpy and :DELETE commands.

PUBLIC LIBRARY

The Publ ic Library is a fi Ie containing a set of reentrant
subroutines in core image format that can be shared in com­
mon by a II foreground and background programs. The resul­
tant saving in core can be considerable where a FORTRAN
library is shared. ihe Publ ic Library is created from input
modules or I ibrary routines by the Loader (see" Forming a
Public Libr9ry"). The availability of the Public Library is
determined at execution time.

CALLING THE PUBLIC LIBRARY

When a user indicates by the PUBLIB keyword on the OLOAD
control command that Public Libraries are to be used to sat­
isfy references, the names are set in the program header for
the Root Loader, and the Public Library Symbol tables are
read from the Public Library files and added to the loaded
program's Symbol table. The Loader will satisfy primary
external references with Public Library definitions at the
time the external reference is encountered in the object
module, not at the end of the segment (as when the other
libraries are searched). When the Root Loader loads the
root segment of a program, the header is searched to deter­
mine if the program contains the name of one or more Public
Libraries. If so, and one of the named Public Libraries is
not already in core, the Monitor determines whether Public
Library space is available. If available, the Root Loader
reads in the named Public Library or Libraries and the pro­
gram executes. If the space is not available for all Public
Libraries referenced, the program wi II be neither root loaded
nor executed.

Each Public Library file is designated at Public Library cre­
ation time (see "Forming a Public Library"). All Public Li­
brariesare located in the Foreground Programs area of the RAD.

LI BRARY PROTECTION

Since the call to a Public Library routine is by a BRANCH
AND LINK(BAL) operation, the write key of the library
routine is the same as the write key of the user program.
Thus, the foreground and Monitor are both protected from
being destroyed by background use of the Public Library.
However, because of the write-lock protection, routines
containing their own local storage (e. g., FORTRAN I/O
run-time) may not be included in a Public Library that is to
be called fiom the background since an,' attempt b,l a Pub­
lic Library routine to write in its own foreground local stor­
age with a background write key would cause a write-lock
protection violation.

RELEASING A PUBLIC LIBRARY

If no currently executing program is utilizing a Public
Library and the space is required to load a foreground pro­
gram, the space is released.

FORMING A PUBLIC LIBRARY

A Public Library is created by using the :PUBLIB control
command in place of the ROOT and SEG commands, and
modu les may be input and I ibraries searched and loaded in
the same manner as for standard loading. Because each Pub­
lic Library has a unique name, more than one Public Library
can exist in the system. Although no more than three Pub­
lic Libraries can be called byanyone program, any number
can be created.

ROUTINES USED TO FORM A PUBLIC LIBRARY

All routines used to form a Public Library must be reentrant.
If the Publ ic Library is to be used by background programs,
a II the routines must use the Temp Stack directly for local
storage (e. g. , FORTRAN IV Math Library; see II Protection ll

,

discussed previously).

If the Public Library is to be used only by the foreground,
the method of moving local storage in routines to the
Temp Stack on reentrance can be employed (e.g., Real­
Time FORTRAN subroutines and FORTRAN Run-Time Li­
brary). FORTRAN main routines are not reentrant and
cannot be used.

Routines assembled in Symbol (one-pass), or Macro-Symbol
(two-pass), are acceptable provided the reentrancy re­
qu i rements are met.

No references to COMMON, labeled COMMON, or DSECTs
are allowed in any Public Library routine.

Since DCBs in the Public Library could not be assigned and
might not be reentrant, DCBs will not be allowed in any
Publ ic Library routine. Note that it is not possible for the
Loader to warn the user about DCBs that are not named ac­
cording to the conventions and made externals.

The fi Ie assoc iated with each Publ ic Library is in the FP
area. This fi Ie contains the actual core image of the Pub­
I ic Library and the corresponding Symbol table used by the
Loader. The name of the fi Ie must correspond to the name
given with the FILE keyword on the OLOAD control com­
mand, and the fi Ie must be previously allocated in the FP
area by the user. If loading of the requested modules and
libraries has been completed and there are no remaining
unsatisfied primary references, the Loader writes the core
image and the Symbol table to the fi Ie in the FP area. If
unsatisfied primary references are found, the fi Ie in the FP
area is destroyed. A fi Ie name of a previous Public Library
may be used, but at the risk of obliterating the old fi Ie if
the new one cannot be completed.

MAP

Three types of maps may be output to M:LO following Pass 2
according to the MAP keyword on the! OLOAD control com­
mand: a short map, PROGRAM map, or ALL map. If the
MAP option is not specified, none is output.

The short map is output when the MAP keyword appears alone.
It consists of essential information about the overlay structure.

The PROGRAM Map consists of all elements of the short Map,
plus all external definitions and control sections contained
in the input modules (excluding those from Library ROMs).

The ALL Map consists of all elements of the PROGRAM map
and includes all definitions and control sections from Library
ROMs. A typical PROGRAM map is illustrated in Figure 6.

In Figure 6, the header keywords and control sections of
the PROGRAM image have the following meaning:

1. Program Header Keywords:

FILE: Area and name of the program fi Ie.

NUMBER OF OVERLAY SEGMENTS: Decimal number,
excluding root.

LIMITS: FWA and LWA of the Program area.

BOUND: Hexadecimal value on which object module
addresses are bounded.

BLANK COMMON BASE: FWA of blank COMMON
with the SIZE specified in decimal words.

PUBLIC LIBRARIES: Names of the Public Libraries, if
any I referenced by the program.

TOTAL FILE SIZE: Number of hexadecimal/decimal
WORDS output to the program file and the number
of hexadecimal/decimal GRANULES required for
the fi Ie.

LIBRARY SIZE: Total number of words loaded from the
user and/or system libraries.

PROGRAM ERROR SEVERITY: Set to one if any kind of
error is encountered; otherwise, set to zero.

2. Root Header Keywords:

IN PUT: Total number of hexadecimal words in the root
loaded from the ROMs control commands (excluding
the Temp Stack).

LIBRARY: Total number of hexadecimal words in the
root loaded from the User Library and/or System
Libraries.

TOTAL SIZE: Total number of hexadecimal/decimal
words in the root (including the Temp Stack).

P1 FWA: FWA of part one of the root.

P1 LWA: LWA + 1 of part one of the root.

SIZE: Number of hexadecimal words in part one of
the root.

Map 65

66 Map

p~eGRAM MAP
BACKGReU~D PRe GRAM

rILE BT,8V
NUMBER eF BVERLAY SEG~ENTS 2
LIMITS FWA 2600 LWA 3032
eeUND 100
eLANK ceMM~N BAS~ 2F96 SIZE C
PUBLYC LIBRARIES Ne~E
feTAL FILE SIZE AC2/ 2770 W5RDS 22/ 3~ GRANULES
LIBRARY SIlE 489/ 1161 W6RDS
PReGRAM ERRBR SEVERITY 1

RtleT

INPUT LIBRARY n:'TAL SIZE P1FWA P1LWA SIZE P2FWA P2LwA
27A 3A4 6B9 1721 2600 2C11:: 61E 2F96 3031

tlvu~ AD PCB ENTRY TSF'wA SIZE OC8TAB INTTAB INSEV LDSEV
2F96 2600 2 / 08 2FE6 75 2FDO 0 1 1

ceNTReL SECTIBNS
ROM 1 2700 309

ULIE 1S:, 2836 12
ULIB 156 28~2 22
ULIB 158 2858 16
ULIB 160 2868 51
SLIB 8 289C 5
SlIB 2C3 28A2 6
SL!B 204 28A8 15
SLIP 205 28B8 23
SLTB 207 28DO 6
SLl8 208 2806 18
SLIB 210 28£8 2~
SLIB 379 2900 37
SLIB 395 2926 2
SLIB 396 2928 7
SLI8· 408 2930 118
SLI8 637 29A6 186
SLIB 653 2A60 23
SLIB 656 2A78 56
SLIB 659 2ABO 166
SLIP. 677 2St;6 21
SLIB 679 2B6C 109

UDCB F:SB 2700
SDCB M: LEt 2FAO
saCB F:3 2FB~

S!)CB M:::e 2FB8
SDCB M:SL 2FC2

U SDCB UNI\AMED 2FC9

DSCT 1M F4+:CBM 2F96 0 0
DEF 1M P:END 3n31 0
DEF SL Sr.,;RT 289C 0

U REF 1M UNSAT
DEF UL GAUSS 2868 0

OSCT 1M. CtlUNT 28DA 0 50
DSCT 1M CALC 2COC 0 17
DSCT 1M MATRlxA 260£ 0 27

f)EF 1M ceDE FFFFD C
DEF 1M MAXTAB 2~13 C
DEF 1M MAIN 2708 n

SREF 1M 7SFT 2F71 0

Figure 6. Sample PROGRAM Map

SIZE.
9B

DEF LJL SLJELAY 25<36 a
OEF UL Dt-LAY 2842 0
OEF l.JL Dt=.RIVT 2858 0

L: ~EF UL FlP\ 1
DEF SL 9SETUPl 2928 0
DEF SL 9bQRT 290B a
DEF SL 9CADD 28A2 0

St:.GMENT 101 LINKED T8 0

INPUT LIBRARY TtiTAL SIZE FWA L~A ENTRY INS£V LDSEV GriAN
1B1 E5 ~96 662 2DOO 2F96 2ECO 0 0 19

C8NTR8L SE:.CTI f:}NS
ReM 1 2EOO 153

SL!8 6 2E9A 11
SLIB 14 2EA6 :)

SLI6 16 2EAC c;
...J

SLrB 302 2E82 29
SLIP 310 2EDO 70
SLI8 367 2F16 90
SLIB 399 2F70 14

DEF SL TAN 2EAC a
DEF SL Ab!N 2EA6 C
DEF SL AlAN 2E9A 0

DSCT 1M LtJADS 2F7E 0 23
DSCT 1M MATRIXC 2000 0 15

DEF 1M SI:.GeNE 2[00 a
DEF SL SATANl 2F27 0
D[F SL 9ATAN2 2F28 0
DEI=" SL 9S[TUP~ 2F70 0
DEF SL 9ASIN 2[87 0
DEF SL 9TAN 2EE2 0
DEF SL 9Aces 2E86 0
nEF SL 9SETUPN 2F70 0
DEF SL 75ET 2F71 0

St:.GMENT 102 LINKED Te 0

INPUT LrBRARy TtHAL SIZE FWA L(.t;A ENTRY INSEV LDSEV GRAN
lCE 0 lCE i+62 2DOO 2ECE 2DOO 0 0 27

CSNTR8L SECTleNS
Rf!~ 1 2000 411

DSCT 1M ntT ALS 2E9C 0 50
OEF IM Sf::.GTW8 2DOO 0

LeADI~G ~AS CBMPLf::.TEO

FILE BT,ev USED 34 GRAN~LES

FILE BT/xl USED a GRANL.LES

FILE BT,x2 uSED '+ GRANLiLES

FILE 8T.lx3 LiSEO 4 GRANLJLES

FILE BT,x,+ LSED 4 GRANULES

FILE BT/x5 l,;SEO '+ GRANuLES

FILE BT,x6 LSED 0 GRANL.LES

WARNING: U~SATISFlt.D REF'S

END eF MAP
TeTAL JBS TIME=OO:Ul:OO

Figure 6. Sample PROGRAM Map (cont.)

Map 67

P2FWA: FWA of part two of the root.

P2LWA: LWA + 1 of part two of the root.

SIZE: Number of hexadecimal words in part two of
the root.

OVLOAD: FWA of the OVLOAD table.

PCB: FWA of the Program Control block (PCB).

ENTRY: Entry address for the root.

TSFWA: FWA of the Temp Stack.

SIZE: Number of decimal words in the root.

DCBTAB: FWA of the DCBTAB.

INTTAB: FWA of the INTTAB on zero, if none.

H"-lSEV: Set to one if the error severity level is set on
any ROM input for the root; otherwise j it is set to
zero.

LDSEV: Set to one if any loading errors were encoun­
tered on the root; otherwise, it is set to zero.

3. Segment Header Keyword:

INPUT: Total number of hexadecimal words in the seg­
ment loaded from the ROMs, RES, and LCOMMON
control commands.

LIBRARY: Total number of hexadecimal words in the
segment loaded from User and/or System Libraries.

TOTAL SIZE: Total number of hexadecimal/decimal
words in the segment.

FWA: FWA of the segment.

LWA: LWA + 1 of the segment.

ENTRY: Entry address of the segment.

INSEV: Set to one if the error severity level is set on
any ROM input for the segment; otherwise, it is
set to zero.

LDSEV: Set to one if any loading errors were encoun­
tered for the segment; otherwise, it is set to zero.

GRAN: The granule number (decimal) on the program
fi Ie where the segmentls core image begins.

4. . Control Sections:

Control sections input from the program ROMs are listed
with the following information:

ROM ROM number
address
(hex.)

size
(dec.)

Control sections input from user and/or system libraries
are listed with the following information:

{
ULIB}
SLIB

Record displacement
in the MODULE file

68 Error Diagnostics

address
(hex.)

size
(dec.)

5. DCBs

The user and system DCBs are listed after the control
section of the ROOT with the following information:

{
SDCB} {name }
UDCB UN NAMED

address
(hex.)

DEFs, REFs, and DSECTs

The externals are listed with the following information:

a. {~} unsatisfied or undefined

doubly defined or referenced

b.

rSCT}
dummy section

DEF definition

REF primary reference

SREF secondary reference

c.

{i]
Public Library

User Library

System Library

Input Module

d. The symbol name in EBCDIC (one-to-eight
characters) .

e. If the definition is an address, it is expressed as a
word address and a byte offset. If the definition is
a constant, it is expressed as a hexadec i ma I number
followed by the letter IC I. For undefined symbols,
the address field is blank.

f. The DSECT size in words (decimal).

ERROR DIAGNOSTICS

The Overlay Loader outputs diagnostic messages to M:OC
and M:LL. Duplication is suppressed if OC and LL are as­
signed to the same device.

If an operator response is required, the Loader will call the
Monitor "WAIT" function. The operator should hit the con­
sole interrupt and key in one of the following:

C Continue

x
COC

Abort

Read the corrected command from M:OC and
continue (used only in response to control
command errors).

Note that the ,VlonitorIWAIT" routine aborts if an lATTEND

control command has not been encountered in the job stack.
The diagnostic messages in Table 13 are output by the Over­
lay Loader.

Table 13. Overlay Loader Diagnostics

Text Meaning Action

CC ERR: ITEM xx Item number xx on the command Abort if OLOAD
is in error Ce. Wait if any

other CC.

CC ERR: FOLLOWING ITEM xx There is an error following item Abort if OLOAD
xx on the command (e. g., a pa- Ce. Wait if any
rameter has been omitted, an other ce.
extra parameter has been in-
cluded, etc.).

CC ERR: ILLEGAL CC SEQUENCE Loader commands have been Wait
ordered incorrectly.

CC ERR: SEGMENTS ORDERED INCORRECTLY SE G commands have been input Wait
in the wrong order.

CC ERR: SEG IDENT NOT 1ST OPTION Segment ident (LINK,identl) is
not the first option on the SEG

Wait

command.

CC ERR: DUP SEG IDENT Ident on SEG command is a Wait
duplicate of a previous seg-
mentis ident.

CC ERR: DUP NAME IN ITEM xx Item number xx on the com- Wait
mand is a duplicate of a name
in the symbol table.

CC ERR: ILL SEG IDENT Seg ident on the MODIFY , Wait
command does not match the
segment being modified.

CC ERR: UNDEFINED SyMBOL IN ITEM xx Symbol name in item xx on the Wait
MODIFY command has not
been defi ned.

CC ERR: UNDEFINED FILE area,name Area and fi I e spec i fi ed in the Abort if OLOAD
option (FILE,area,name) has not Ce. Wait if any
been defined by the RAD Editor. other CC.

CC ERR: NEED (FORE,fwa,lwa) OPTION FOR PUBLIB LOAD Option (FORE,fwa,lwa) was not Abort
specified on the OLOAD com- !

i
mand and a PUBLIB command I

I has been encountered.

CC ERR: SPECIFIED AREA FOR PUBLIB LOAD NOT IFpl Option (FILE,area,name) on Abort
OLOAD did not specify the
Foreground Programs area (FP)
and a PUBLIB command has
been encountered.

CC ERR: STEP OPTION ILLEGAL WITHOUT ATTEND An ATTEND command must be Abort
included in the job when the
STEP option is specified.

CC ERR: ILLEGAL OPTION FOR PUBLIB LOAD (TASKS,value) Option (TASKS,value) was Abort
specified on OLOAD and a
PUBLIB command has been
encountered.

Error Diagnostics 69

Table 13. Overlay Loader Diagnostics (cont.)

Text Meaning Action

CC ERR: ILLEGAL OPTION FOR PUBLIB LOAD (TEMP, value) Option (TEMP ,va lue) was spec i- Abort
fied on OLOAD and a PUBLIB
command has been encountered.

CC ERR: ILLEGAL OPTION FOR PUBLIB LOAD (PUBL,name) Option (PUBLIB,name) wasspeci- Abort
fied on OLOAD and a PUBLIB

I command has been encountered.

CC ERR: MODIFY OUTSIDE SEG LIMITS One of the locations on the Wait
MODIFY command is outside
the limits of the segment.

I CC ERR: ILL OPCODE IN ITEM xx Specified operation code is Wait
either illegal or unimplemented.

iLL SEG iDENT TER,.v\n~ATED MODIFY!S The I\~ODIFY commands have \A1~: ~

I
"UII

been ordered incorrectly for
the (GO,LINKS) option. The
MODIFY mode has been termi-
nated at this point. If the user
wishes to continue, all MOD-
IFY commands that follow will
be ignored.

ROM ERR: CHKSUM Specified binary record has a Wait

rUB] checksum error.

SEGxxxxx ROM xxx SEQNOxxx
SUB

ROM ERR: BAD SEQ Sequence number of the binary Wait

rUB] record does not equa I xxx.

SEGxxxxx ROM xxx SEQNOxxx
SUB

ROM ERR: NOT OBJECT LANGUAGE I Specified binary record is not Wait

(I II TR 1 I in object language format.

SEGxxxxx tROM) xxx SEQNOxxx
SUB

ROM ERR: NOT STANDARD BIN

I
Specified record has a non- Wait

rIB) standard binary format.

SEGxxxxx ROM xxx SEQNOxxx
SUB

ROM ERR: ILLEGAL LOAD ITEM Object language on specified Abort

rIB} binary record cannot be trans-

SEGxxxxx ROM xxx SEQNOxxx
lated (assembler or compi ler

SUB
error) .

ROM ERR: NO MODULE END Module end was not encoun- Abort

rUB) tered on the last binary record

SEGxxxxx ROM xxx SEQNOxxx
of the relocatable object

SLIB
module.

ROM ERR: EXPRESSION SIZE EXCEEDS MAX An object language expression Abort
on the specified bincr'1 record I I rUB] exceeds 120 bytes.

I
SEGxxx ROM xxx SEQNOxxx

SUB

70 Error Diagnostics

Table 13. Overlay Loader Diagnostics (cont.)

T ext Mean i ng

BINARY CARD ENCOUNTERED INSTEAD OF CC A binary record was encoun­
tered on the C device instead
of a control command.

MONITOR CC ENCOUNTERED INSTEAD OF :ROOT or :PUBLIB Monitor control command was
encountered on the C device
instead of a :ROOT or :PUBLIB
command.

BOT ON {yyndd
area,name

EOT ON {yyndd
area,name

UNRECOVERABLE RD ERR ON {yyndd
area,name

Unexpected beginning-of-tape
has been encountered on the
specified device/file.

End-of-tape has been encoun­
tered on the specified device/
file.

Transmission error has occurred
while reading from the speci­
fied device/fi Ie.

Action

Wait

Abort

Abort

Wait

Abort

UNRECOVERABLE WR ERR ON {yyndd T ransm i ssi on error has occurred Abort
area,name

UNEXPECTED EOD ON {yyndd
area,name

UNEXPECTED MONITOR CC ON {yyndd
area,name

RAD FILE TABLE FULL

yyndd WRITE PROT

DCB HAS BAD PARAMETERS
DCB x:xxxxxx

. DCB NOT ASSIGNED
DCB x:xxxxxx

while writing on the specified I
device/file.

Unexpected! EOD was encoun­
tered on the specified device/
file.

Unexpected Monitor control
command was encountered
while reading ROMs from the
C device.

RAD Fi Ie Table size that was
allocated at SYSGEN is
i nsuffi c i ent.

Specified RAD is write­
protected. The operator should
take the appropriate action:

1. ResetRAD protection switches
and interrupt and key in II SYCI.

or

2. Interrupt and key in II X" if
the job is not allowed to
write on protected areas of
the RAD.

Specified DCB has bad param­
eters. Either the user has as­
signed incorrectly or the Over- II

lay Loader has a program error.

Wait if the EOD
was encountered
instead of a ROMi
otherwise, Abort.

Abort

Abort

Wait

Abort

Specified DCB has been assigned Abort
to the II null" device. Either the
user has assigned incorrectly, or
the Overlay Loader has a pro-
gram error.

Error Diagnostics 71

Table 13. Overlay Loader Diagnostics (cont.)

Text

READING AN OUTPUT DEVICE
DCB x:xxxxxx

WRITING ON INPUT DEVICE
DCB x:xxxxxx

I .
I nrR HA~ TN~IIFFTrTFNT TNFO I DeB ~';~x-~~~-' ----... -... -

BUF SMALLER THAN DATA RECORD
DCB x :xxxxxx

UNDEFINED FILE area/name
DCB x:xxxxxx

WARNING. UNSATISFIED REF'S

WARNING: DUPLICATE DEF=S

WARNING: UNDEFINED DEF's

WARNING: DUPLICATE REF'S

'WARNING DEF'D DeB NOT DEFiNED
DCB x:xxxxxx

72 Error Diagnostics

Meaning

A DCB that the Overlay Loader
reads with has been assigned to
an OUT device. Either the user
has assigned incorrectly or the
Loader has a program error.

A DCB that the Overlay Loader
writes with has been assigned to
an IN device. Either the user
has assigned incorrectly or the
Loader has a program error.

I ii~~:~~i~~f~r~~t~~;tt:i~p~~$~f- I

Read or Write operation. I

Either the user has assigned in-
correctly or the Loader has a I
program error.

Spec i fi ed DCB has been assigned
to a record size larger than the
I/O buffer associated with the
Read request. Either the user
has assigned incorrectly or the
Loader has a program error.

Action

Abort

Abort

Abort

Abort

II

' Specified DCB has been assigned i Abort
to a RAD file that has not been i
defined by the RAD Editor. :

User's program contains unsatis- I Continue
fi ed externa I REFs. The map wi II
indicate the name{s) of the DEFs.

User!s program contains dupli- ; Continue
cated externa I DEFs. The map
wi II i ndi cate the name{s) of the
DEFs.

User's program contains external
DEFs that either have not been
defi ned or have been defi ned
with an expression the Loader
cannot resolve. The map wi II
indicate the name{s) of the un­
defined DEFs.

User's program contains dupli­
cate external REFs. The map
will indicate the name{s) of the
REFs. Occurs when identical
DEFs in different segments of
different paths are referenced
by the same REF (in a segment
common to both paths).

I,. .~.. ~......... . I •

I ::>pecltlea U""I) was aeclarea on

I
external DEF and the DEF was
never defi ned.

Continue

Continue

I
I I....ontlnue

I

Table 13. Overlay Loader Diagnostics (cont.)

Text

WARNING: ILLEGAL DCB NAME

IULIB]
SEGxxxxx ROM xxx

SLIB

DCB x:xxxxxx

WARNING: ILLEGAL DCB ADDR
DCB x:xxxxxx

WARNING: DCB IN OVERLAY SEGMENT

IULlB]
SEGxxxx ROM xxx SEQNOxxx

SUB

DCB x: xxx xxx

WARNING: NO ENTRY ADDRESS FOR ROOT

WARNING: UNDEFINED ENTRY ADDR
SEGxxxxx

WARNING: ENTRY ADDRxxxxx OUTSIDE SEGMENT
SEGxxxxx

DEFAULT ENTRY ADDRxxxxx SUPPLIED FOR ROOT

WARNING: OVERLAY SEG GREATER THAN 8K
SEGxxxxx

WARNING: PROGRAM EXCEEDS SPECIFIED ADDR LIMITS

WARNING: LCOM name OF SIZE xxxx GREATER THAN
ALLOCATED

IULlB]
SEGxxxxx ROM xxx SEQNOxxx

SLIB

UNDEFINED ORIGIN

IULIB]
SE Gxxxxx ROM xxx

SLIB

I

I

1
!

!

Meaning

Specified DCB name is illegal
and will not be included in
DCBTAB. Monitor DCBs (M:)
must have standard OPLB names.
User DCBs (F:) must not exceed
eight EBCDIC characters in
length.

Specified DCB was declared an
external DEF and the DEF has I'

been defined with either a neg­
ative address or a constant.

Spec i fi ed DCB was dec lared an
external DEF in a segment other
than the ROOT. The DCB will
not be included in DCBTAB.

Root does not have an entry
address.

Expression defining the entry
address for the spec i fi ed seg-
ment cannot be resolved by the
Loader

Entry address for the specified
i segment is outside the segment's

I
address limits.

A transfer address was not en-
i countered on any ROM in the
I root and an entry address was
I

not specified on the CCi there-
fore, a default has been supplied.

Specified overlay segment ex-
ceeds the maximum size record
that can be loaded by the Mon-
itor SEGLOAD function.

User's program exceeds the ad- i
I

dress I imits, either specified on

I
OLOAD or the defaults for back-
ground/foreground programs.

The named labeled COMMON
:

block (DSECT) with the size
specified in words is greater
than the size allocated.

Loader has encountered a II load
location ll origin with an expres-
sion that cannot be resolved.

Action

Continue

Continue

Continue

Continue

Continue

Continue

Continue

Continue

Continue

Continue

Abort

Error Diagnostics 73

Table 13. Overlay Loader Diagnostics (cont.)

Text Meaning Action

ILLEGAL LOAD LOCA nON xxxxx Specified II load location ll origin Abort

{ULlB}
has been defined with a value
that is either not an address or

SEGxxxxx ROM xxx
that lies outside the address

SLIB

I
limits of the specified segment.

I
(A labeled COMMON block

I
i must be initialized in the seg- I

ment where the block is
allocated.)

EXLOC TOO LARGE I Specified segment will exceed Abort

SEGxxxxx 131 K at the given EXLOC.

BAcKl7ROLJNu T U ')MALL

I
user's program cannot ue luCiueu I r"\uort
in the current size of the back-

I
ground. This is a function of
the number of external symbols
and forward references that a

.. ~ O~ I II L I ..J..J A\""

program has, not a function of
the program length.

PROGRAM ERR: UNALLOCATED CSECT Loader has encountered a con- Abort

rIB} trol section that has not been

SE Gxxxxx ROM xxx
allocated; either a Loader,

SLIB
compi ler, or assembler error.

DSECTs in PUB LIB LOAD Labeled COMMON blocks Abort

rIB) (DSECTs) are illegal in the

SEGxxxxx ROM xxx
Public Libraries.

SLIB

MOUNT PAPER TAPE ROM STEP option was specified on Wait
OLOAD and the next relocat-

I
able object module (ROM) is to
be input from the paper tape

i
reader. Operator should load
the paper tape I interrupt, and
key in IICII.

LIB ROMIS EXCEED MAX Maximum number of library Abort
SEGxxxxx ROMs that can be loaded is

2000.

rCI} Loader has a program error in Abort
ONE the named overlay at the speci-

PROGRAM ERR: :~ ADDR xxxx fied address. Operator should
get a core dump.

LIB

rIB}
I SEGxxxxx ROM xxx

SLIB

fClt Specified error status has been Abort
ONE returned from an Overlay Loader

I
PROGRAM ERR: TWO SB =xx, ADDR xxxx call (in the named overlay) to a

L'VAPJ
lv~,onitor I/O routine. The ad- I

LIB dress of the CAL and the name

I DCB x:xxxxxx
of the DCB are specified.

74 Error Diagnostics

Table 13. Overlay Loader Diagnostics (cont.)

Text Meaning Action

FILE UNCHANGED area/name Overlay Loader is aborting at a Abort
point where the program file is
unchanged.

FILE DESTROYED area,name Overlay Loader is aborting past Abort
the point where data has been
wri tten on the spec i fi ed pro-
gram file. The first sector of
the fi I e has been zeroed out.

USER LOAD-TIME ASSIGNS COMMON ALLOCATION

M:DCB AND F:DCB BLANK COMMON

DCBs identified by external definitions must exist in the root
for each unique reference to an M: DCB or F: DCB. These
are either inserted explicitly by the user or built implicitly
by the Loader. A user can change DCB assignments in sev­
eral ways:

1. By modifying the DCB at execution time.

2. By using a load-time :ASSIGN {foreground and
background.

3. By using a run-time! ASSIGN (not allowed for a fore­
ground program).

RUN-TIME ASSIGNS

Run-time! ASSIGNs (by Job Control Processor) apply only
to the background JOB in which they are inserted. Change
of assignment for foreground programs is permitted only
through STDLB key-ins and Load-time ASSIGNS.

LOAD-TIME ASSIGNS

Load-time ASSIGNS are changes to the respective DCB at load­
time, so that the given assignment remains as a part of the
program. This effectively allows assignments for foreground
programs, and assignment of DCBs with nondefau It cases.

FORTRAN INTERFACE

System interface between FORTRAN-produced programs and
RBM is the shared responsibility of the FORTRAN compiler­
Loader-RBM complex. This complex enables the user to
program real-time p~ograms for foreground operation using
Real-Time FORTRAN language without having to use sym­
bolic coding to create the system interface.

Symbolic code and control information can be used to give
the FORTRAN user added versati lity in cases where compat­
ibility with other FORTRAN configurations is not a factor.
However, such coding is not required. That is, the user can
write and execute a program to service real-time interrupt
without any symbolic embellishment of the FORTRAN lan­
guage and wi thout destroyi ng the rea I-ti me response requ ired.

By default, blank COMMON is allocated beginning at the
end of the longest path as illustrated in Figure 7.

1

r-L
Root Blank Root Program
Part 1 r---L- COMMON Part 2 Area

4

F4:COM P:END

Figure 7. Blank COMMON Allocation by Default

The size of blank COMMON is determined by the size of
the largest blank COMMON encountered during the load­
ing of all segments.

An optional COMMON control command allows the user to
specify that the blank COMMON base is to be set immedi­
ately following that segment, as illustrated in Figure 8.

1

Root
r-L

Blank Root Program
Part 1 r---L- COMMON Part 2 Area

4

F4:COM P:END

Figure 8. Blank COMMON Option

Note that in Figure 8, segment 1 sets the COMMON base
so that segments 1, 2, and 3 share all COMMON, but seg­
ment 4 overlays a portion of COMMON. Thus, segments 1,
2, and 3 might operate on a large array/leaving the resul ts
in upper COMMON for segment 4, which can reclaim the
rema i nder of the COMMO N storage. However, a C OMMO N
allocation in segment 4 would be necessary to align refer­
ences to the upper portion of COMMON.

User Load-Time ASSIGNS/FORTRAN Interface 75

LABELED COMMON

Labeled COMMON is allocated by the Loader either by de­
fault in the segment in which the block is first encountered,
or specifically, by the parameters on the LCOMMON con­
trol command. All references to a labeled COMMON block
must be in the same path as the definition. Note that la­
beled COMMON in the root is available to all segments.
A !abe!ed COMMON block must be initialized in the seg­
ment that is allocated.

The LCOMMON control command will allocate labeled
COMMON in the segment specified by the preceding SEG
command. The example

(: LCOMMON (A,l 00) ,(B, 101) ,(XRAY ,50)

(SEG (LINK,201,ONTO,O)

will allocate a labeled COMMON block /A/ of 100 words,
a block /B/of 101 words, and a block /XRAY/of 50 words
in segment number 201 .

CONNECT

The Loader provides no facility for generating code to con­
nect foreground programs to interrupts or to trigger inter­
rupts. The CONNECT statement in FORTRAN plus the
Monitor CONNECT call provides the necessary interface.

CALLING OVERLAY SEGMENTS

The Overlay Loader generates no implicit calls for loading
overlay segments, and generates no explicit code for such

76 Core Layout at Execution Time

calls. FORTRAN programs to be run in overlay form must
call FORTRAN run-time routine SEGLOD, which calls the
SEGLOAD function of the Monitor. The identification
numbers in the argument list must correspond to the identifi­
cation number on the SEG control command. The SEGLOAD
function calls in the overlay segment and returns, e. g.,

CALL SEGLOD (I)

CALL SUBROUTINE

where I is the segment ident.

MAIN PROGRAM NAME AND ENTRY

The entry point of a FORTRAN main program is not neces­
sarily the first location of the program. The compiler will
output an external definition to identify it as a FORTRAN
main program. The entry point for that program is either
the transfer address on the main program, or the value spec­
ified with the ENTRY keyword on the ROOT command.

LABELED COMMON NAMES

Labeled COMMON blocks are identified as DSECTs, labeled
with an external definition the same as the block name.

BLANK COMMON NAMES

Blank COMMON references are identified as DSECTs with
the unique external definition name F4:COM.

CORE LAYOUT AT EXECUTION TIME

The core storage area allocations for a typical segmented
program are illustrated in Figure 9.

Program
Area

PCB

Optional Space for BOUND

Root Code (User Programs)

Root Library Programs

LCOMMON (root only)

RES (optional)

SEG 1 SEG2

I SEG 3
SEG 4

Blank COMMON

OVLOAD Table

Loader Created DCBs

DCBTAB

INTTAB

Temp Stack

,-

SEG 5

1-

'-

--- FWA of Program

Part one of root segment
output to Program File

- FW A Overlay Area

(BOUND and RES not shown)

_ LWA of Overlay Area
-- FWA of base of Blank COMMON (F4:COM)

-- FWA of part two of the root

Part two of the root

- LWA of Program (P:END)

Figure 9. Standard Core Layout of a Program

Core Layout at Execution Time 77

7. RAD EDITOR

The RAD Editor is a background processor that performs RAD
allocation for RAD areas by generating and maintaining di­
rectori es for a II permanent fi I es. Through commands i npu t
by the user, the RAD Editor performs the following functions:

• Adds or deletes entries to the permanentfil e directori es
that, in turn, allocate and release permanent RAD space
within a RAD area.

• Copies data files onto the RAD.

• Appends records to the end of an existing RAD file.

• Compacts permanent fi led i rectori es and permanent
RAD areas.

• Truncates empty space from the end of RAD fi I es.

• Maps permanent RAD file allocation.

• Dumps the contents of RAD files or entire RAD areas.

• Copies permanent RAD files.

• Copies object modules contained in the libraries.

• Saves the contents of RAD areas on a magneti c or paper
tape device in a self-reloadable form.

• Restores previously saved RAD areas to their RAD
location.

• Maintains library files on RAD for use by the Overlay
Loader.

• Zeros out (clears) complete RAD areas.

• Temporarily inhibits the use of bad tracks on the RAD.

OPERATING CHARACTERISTICS

FILE ALLOCATION

The RAD Editor performs RAD allocation for all permanent
files. The name, size, and location of each permanent RAD
area are indicated through the use of a Master Directory that
is set up at system initial ization in the resident portion of
RBM. The permanent RAD areas maintained by the RAD
Editor are

Background programs

Data (a maximum of 15 Background and Foreground
data areas are a II owed)

Foreground programs (contains User Library)

System programs (contains System Library)

78 RAD Editor

The Editor controls file allocation by generating and main­
taining a directory entry for each file within the above per­
manent RAD areas. Every permanent RAD area has a direc­
tory that begins in the first sector of its own area. A direc­
tory consists of entries with the following information:

• File name (maximum length of eight alphanumeric
characters) •

• Resident foreground program flag.

• File type; blocked; unblocked, or compressed.

• Granule size in bytes (used for direct access).

• File size (current number of records in file).

• Record size (bytes per logical record).

• Relative RAD address of the first sector defined for
the file.

• Relative RAD address of the last sector defined for
the file.

Before any permanent RAD file can be written, space must
be allocated for the file by requesting the RAD Editor to add
a new entry to the designated directory. Directory entries
may be added or deleted by using RAD Editor commands.
The following method is used to allocate files:

1. Permanent RAD fi les are allocated sequentially, begin­
ning in the second sector of the area, with every file
beginning and ending on a sector boundary.

2. A new directory entry is added as the I ast entry to the
existing directory and the corresponding space for the
fi Ie is allocated.

3. When all avai lable space in an area is exhausted, a
compl ete search of the fi led i rectory is made for un­
allocated areas made available through file deletions.
The smallest area containing a sufficient amount of
space to allocate for the file is selected. If sufficient
space is not found upon searching the directory, the op­
eration is aborted. To overcome this problem, RAD
squeezing may be requested to recover the unused stor­
age within a permanent RAD area by compressing the
directory entries and files (see Figures 10 and 11).

4. File deletion is accomplished by zeroing out the appro­
priate directory entry.

SKIPPING BAD TRACKS

The method used to hand i e bad RAD tracks is as foi i ows.
The :BDTRACK command removes the track from use by
placing a special entry in the file directory and allocating
the track as a file. The :GDTRACK command returns the

Identification entry

File 1 directory entry File 1

Deleted directory entry Unallocated

File 2 directory entry File 2

Deleted directory entry Unallocated

Bad track directory entry Bad track

File 3 File 3

Figure 10. Permanent RAD Area Before Squeezing

Identification entry

File 1 directory entry File 1

Fi I e 2 directory entry File 2

File 3 directory entry File 3

Bad track directory entry Unallocated

Zeros Bad track

Unallocated

Figure 11. Permanent RAD Area After Squeezing

track for RAD Editor use by deleting the file directory entry.
When a bad track is discovered, it it the user1s responsibil ity
to prevent it from being used by deleting the defective file
and reallocating an area for the new file if it is to be
regenerated.

SYSTEM AND USER LIBRARY FILES

System and User Library files are searched by the Overlay
Loader to satisfy external references. These fi les are gen­
erated and maintained by the RAD Editor in a form .that can
be rapidly and easily searched by the Overlay Loader. The
System Library files must reside in the System Programs (SP)
area, and the User Library files must reside in the Fore­
ground Programs (FP) area. Each I ibrary consists of three
unblocked files: the Module Directory File (MODIR),
DEFREF File (DEFREF), and EBCDIC File (EBCDIC); and
one blocked file: Module File (MODULE). The user must
define and allocate these library files via the RAD Editor
by using the file names that appear within parentheses above
and defining the files as blocked or unblocked. As an aid
in approximating the file sizes, the user can use the algo­
rithms given below.

The RAD Editor is the only processor that should write in the
library files. The files are generated from information con­
tained in the object modu les read in by the RAD Editor. Each
module is identified within the library files by a DEF. The
first DEF encountered in themoduleis considered the module
name, and no other DEF in a program wi II be so recognized.
Any module may be referenced by using the first DEF in a
program, and modules may be copied or deleted through its
use.

ALGORITHMS FOR COMPUTING LIBRARY FILE SIZES

The following algorithms can be used to determine the ap­
proximate sizes of the four files in a I ibrary. It is not crucial
that the file sizes be exact, since any unused space can be
recovered via the: TRUNCATE command. The approximate

number of sectors (nMODIR) required in the MODIR fi I e is

_ 3 (i)
nMODIR - -s-

where

is the number of modules to be placed in the
library •

is the RAD sector size in words.

3 words is the length of a MODIR file entry.

The approximate number of sectors (nEBCDIC) required in
the EBCDIC fi I e is

where

d is the unique number of DEFs in the library.

is the RAD sector size in words.

2 words
entry.

is the average length of an EBCDIC file

The number of records (nMODULE) required in the MODULE
fi Ie is

n

nMODULE L
i = 1

C.
I

where

n

C.
I

is the total number of modules in the library.

is the number of card images in the ith library
routine.

System and User Library Fi les 79

The number of sectors (nDEFREF) in the DEFREF file is

n

L
i = 1

d. + r.
1+-'--'

2

nDEFREF

where

n is the total number of routines in the library.

d is the number of DEFs in the ith I ibrary routine.

is the number of REFs in the ith library routine.

is the RAD sector size in v/crds.

RAD AREAS PROTECTION

Updating or squeezing of permanent RAD areas containing
information for real-time programs (foreground program and
foreground data areas) must not occur wh ile the foreground
is uti I izing these permanent RAD areas. The user must
ensure that the RAD Editor is not modifying a permanent
RAD area at the same time a foreground program is using it.

Software protection of the SP, FP, BP, and foreground data
areas of the RAD is provided by requiring the operator to
key in "SY" before any of these areas are modified by a
background processor. The on I y areas that can be mod ifi ed

, that do not require a SY key-in are the Background Data areas.

CALLING RAD EDITOR
When a !RADEDIT controi command is read from the C de­
vice, the RAD Editor is loaded into core memory from the
RAD. Control is transferred to the RAD Editor which reads
commands from the C device that specify the functions to
be performed.

The form of the command is

(!RADEDIT

The RAD Editor is terminated when a record with an I in
column one is read from the C device (with the exception
of lEaD). An lEaD indicates an end-of-data to the RAD
Editor when data is input via the :COPY command.

COMMAND FORMATS

All RAD Editor commands are input from the C device and
i isted on LL. The general form for RAD Editor commands
is identi cal to the RBM control command format described
in Chapter 2, with the symbols below being used to aid in
describing the RAD Editor commands in this chapter.

AA refers to a permanent RAD area and must be one
of the following:

BP is the Background Programs area.

D 1 through DF is the Background and Fore-
ground Data areas.

FP is the Foreground Programs area.

SP is the System Programs area.

nnnnnnnn refers to a fil e name t or library modu I e
(maximum name length of eight alphanumeric
characters) .

yyndd refers to a physical device name, where

yy specifies the type of device: CR, CP, etc.

n specifies the lOP number: A for IOPO:
B for IOP1, etc.

dd specifies the device number: 03, 80, etc.

OP refers to an operational label: BI, SI, etc.

RAD EDITOR COMMANDS

:ALLOT The :ALLOT command adds a new entry to the
specified permanent file directory that allocates space for
a new fi I e. After space has been allocated, fi I es can be
written by either background or foreground programs. The
space allocated for the new entry is zeroed out.

The form of the command is

:ALLOT (FILE,AA,nnnnnnnn) [, (option)] ... [, (option)]

where the options are

FORMAT,value specifies the file format:

U

B

C

for unblocked.

for blocked.

for a compressed file.

The default value is unblocked.

FSIZE,value specifies the decimal length of the
file in logical records. The default value is 1000.

RSIZE,value specifies the decimal number of words
per record. The logical record size is used in se­
quentially accessing a file. For a compressed file,
record size is omitted and the Monitor blocks com­
pressed fi les into 256-word records. Blocked fi les
have a default value equal to 128 words perrecord.

tIf this file name is RBM and in the SP area, it cannot be
copied or dumped.

80 Calling RAD Editor/Command Formats/RAD Editor Commands

If the record size is greater than 128 words, un­
blocked organization wi II be given. Unblocked
files have a default record size equal to the
granule size.

GSIZE,value specifies granule size in words and is
used for direct access only. The default size will
be equal to the RAD sector size.

RF indicates that the file contains a resident fore-
ground program and is applicable only if the FP
area is specified. If RF is omitted, the file does
not contain a resident foreground program. Any
program flagged as resident foreground will be
automatically loaded into core every time the sys­
tem is booted from the RAD.

Examples:

1. An unblocked file:

:ALLOT (FILE, BP, TEST), (FORMAT,U), (FSIZE,50),~

L(RSIZE, 90)

This example allocates space for the unblocked file
TEST in the BP area of the RAD, with a file size of
50 records and a record size of 90 words.

2. A blocked file:

:ALLOT (FILE, FP, TESTA), (FORMAT, B), (FSIZE,50)'J

L(RSIZE,30),RF

This example allocates space for the blocked file TESTA
in the FP area, with a record size of 30 words and a
file size of 50 records. This is a resident foreground
program.

:COPV The :COPY command copies single files of data
or modules (EBCDIC, BINARY in standard binary format, or
nonstandard binary) from one device to another. Input and
output must be copied to and/or from the RAD. Fi I es are
copied until an ! EOD or tape mark is encountered, except
when the CC option is specified, which is terminated when
an :EOD is encountered. A logical file mark will be writ­
ten onto the output file.

When nonstandard binary (BIN) or control commands (CC)
are copied from the C device, the C device must be assigned
to 0 and reassigned after the copy is completed. The assign­
ment is made when the message

! !KEYIN STDLB C,O

is typed to the operator and reassigned when the message

! ! COpy ENDED

appears.

An ! ATTEND card must be used to force a pause for oper­
ator intervention whenever the BIN and CC options are
specified.

The general form of the command is

FROM TO

,C OPY LIB,AA,nnnnnnnn LIB,AA (J
FILE,AA, nnnnnnnn I) (1 FILE,AA,nnnnnnnn })

. {OP} , {OP }
IN, yyndd OUT, yyndd

[, VFC] [,ADD] [, BIN][,CC]

where

FILE indicates either a file in a permanent RAD area,
a file in the Background Temp area where nnnnnnnn
is the designated fi Ie, or the Checkpoint of IOEX
access area where nnnnnnnn is not applicable.
Areas CK and XA are only allowed as input files.

LIB indicates a I ibrary object module(s) in the SP or
FP area.

IN indi~ates an input operation from a non-RAD de-
vice is to be performed.

OUT indicates an output operation to a non-RAD de-
vi ce is to be performed.

VFC indicates verti cal format control is desired on
printing.

ADD indicates records are to be added to the end of
an already existing file.

BIN specifies that nonstandard binary information is
to be copied from the card reader or to the card
punch.

CC specifies that control commands are to be copied
from the C devi ceo

The following are examples and explanations of the different
types of copi es that can be performed.

Examples:

:COPY (IN, {~~dd}) ,(FILE,AA,nnnnnnnn)

This example copies a file of data onto the specified
RAD file.

RAD Editor Commands 81

:COpy (IN, {~~dd}) ,(FILE,AA, nnnnnnnn),CC

This example copies a file of data containing control com­
mands from the C device onto the specified RAD file.

:COpy (IN, {~~dd}) ,(FILE,AA, nnnnnnnn),ADD

This example adds data to the end of on olready existing
RAD file.

:C Opy (I N, {~~dd}) ,(UB,AA)

This example copies the library object modules to the speci­
fied library. The library being copied will completely re­
place an already existing library.

:COPY (IN, {~~dd}) (LIB,AA),ADD

This example adds the I ibrary object modules to the speci­
fied library.

:COPY (FILE,AA,nnnnnnnn), (FILE,AA, nnnnnnnn)

This example copies the contents of the first specified RAD
file to the second specified RAD file.

:COPY (LIB,AA, nnnnnnnn), (OUT, {y~~dd})

:COPY (FILE,AA,nnnnnnnn), (OUT, {~~dd})

This example copies the contents of the specified RAD fi Ie
onto the specified device.

:COPY (FILE,AA,nnnnnn), (OUT, {~~dd})' BIN

This example copies nonstandard binary from the specified
RAD file to the card punch.

:COPY (FILE,AA), (OUT, {~~dd})

This example copies the contents of the IOEX access (XA)
or Checkpoint (CK) areas to the specified output device.

:DELETE The :DELETE command deletes either a file di-
rectory entry and file from a specified permanent RAD area,
or an object module from the designated library. The space
formerly allocated is not used unti I a :SQUEEZE is executed.

The :DELETE command has the form

:DELETE ({~~~E} ,AA,nnnnnnnn)

Examples:

1. Delete a fi Ie:

:DELETE (FILE,BP, TESTA)

2. Delete an object module:

This example copies one library object module to the speci- ,.--------------------
fied output device. The IInnnnnnnn ll parameter is the name (:DELETE (LIB,SP,CSCN)
of the library object module to be copied.

:COPY (FILE,AA,nnnnnnnn), (OUT, {~~dd}) ,VFC

This example lists the contents of an EBCDIC file with ver­
tical format control.

82 RAD Editor Commands

This example specifies that an object module named
CSCN is to be deleted from the Library in the SP area.

:CLEAR The :CLEAR command zeros out the specified
RAD areas which results in deleting all files and file direc­
tori es in the area.

The form of the command is

(CLEAR ZZ,ZZ, .•.

where ZZ is any RAD area.

Example:

(,CLEAR Dl,DF

This example specifies that permenent RAD areas D 1 and DF
are to be zeroed out.

:SQUEEZE The :SQUEEZE command regains unused space
within permanent RAD areas resulting from fil e del etions and
truncations and library module deletions. Unused space is
regained by compressing file directory entries and their as­
sociated files, and library file entries and their associated
library modules. Within the libraries, the Module Directory
File (MODIR) and the Module File (MODULE) entries and
modules are compressed to regain the unused space. Space
is regained in the remaining two files, EBCDIC File (EBCDIC)
and DEFREF File (DEFREF), by regenerating them completely
from the Module Directory and Module Files.

The forms of the command are

1.
(,SQUEEZE AA,AA,AA" ..

2.
(SQUEEZE ALL

Examples:

1. Regain unused space in specified area:

(,SQUEEZE SP

This example regains unused space between files and
between modules in the SP area only.

2. Regain space in all permanent RAD areas.

(,SQUEEZE ALL

This example regains unused space between all files
and modules in all permanent RAD areas. -

:TRUNCATE The: TRUNCATE command is used to trun-
cate empty space from the end of specified file(s). If the
all ocated RAD space for a fi I e is greater than the actual
length of the file, a considerable amount of space may be -
left empty. This command will set the allocated space equal
to the actual length of the file. For a direct access file, the
length of the file in granules must be specified (g) as actual
fi Ie length is unknown.

The forms of the command are

1.
: TRU NCATE (FI LE,AA,nnnnnnnn), -=oJ

[(FI LE,AA, nnnnnnnn) ••• , (FI LE,AA, nnnnnnnn)

2.
: TRUNCATE (FILE,AA,nnnnnnnn,g),"]

~FILE ,AA, nnnnnnnn,g) •.• , (FILE,AA,nnnnnnnn,g)

3.
(TRUNCATE AA,AA,AA, ••.

Examples:

1. Truncate allocated file:

:TRUNCATE (FILE,BP, TEST)

This example truncates empty space from the end of the
allocated file TEST in the BP area by setting the allo­
cated size equal to the actual size of the file.

2. Truncate all files:

(TRUNCATE BP,D2,D3

This example truncates all files in the BP, D2, and D3
areas.

:MAP The :MAP command maps the specified permanent
RAD areas to the LO device (using the M:LO DCB). The
map contai ns

1. Information from the Master Directory, consisting of
the RAD, write protection, area identification, and
its beginning and ending RAD addresses.

2. Information from the Permanent File Directories con­
cerning each file in the area; file name, format,

RAD Editor Commands 83

beginning file address, ending file address, file size,
record size, granule size, and resident foreground
program indicator.

3. Information about object modules in the library files,
consisting of the name of each module, its relocatable
length, and the definitions and references in the module.

The forms of the command are

1.
(MAP AA,AA,AA, ...

2.

(:MAPALL

Examples:

1. Map specified permanent RAD areas:

(MAP BP,D4

This example outputs a map of the permanent RAD
areas BP and D4 to the LO device.

2. Map all permanent RAD areas:

(:MAPALL

I

This example outputs a map of all permanent RAD areas
to the LO device.

:DUMP The :DUMP command dumps, in hexadecimal,
the designated random or sequential access file onto the
LO device (using the M:LO DCB). All permanent RAD
areas plus the IOEX Access area (XA), Background Temp
area (Bn, and Checkpoint area (CK) can be dumped. The
RAD Editor wi II sequentially access the designated file or
area to be dumped.

The forms of the command are

1.

where

:DUMP (FILE,AA,nnnnnnnn)[,(SREC,value)] ~

[[, (EREC,value)]

SREC,value specifies the starting record (in deci-
mal) to begin the dump.

84 RAD Editor Commands

2.

EREC,value specifies the last record to be
dumped.

AA also includes BT, and nnnnnnnn is any of the files.

:DUMP ZZ~(SREC,value)] ['(EREC,value)]

where

ZZ is any RAD area.

SREC,vaiue specifies the starting sector (in
decimal) to begin the dump.

r-nr-r. I
CKC"-,VOlue

dumped.
specifies the !cst sector to be

Examples:

1. Dump specified file:

(DUMP (FILE, BP, TESn

This example specifies that the TEST file in the BParea
is to be dumped onto the LO device.

2. Dump specified records:

3.

:DUMP (FILE, BP, TESn, (SREC, 1 0), (EREC,20)

This example specifies that records 10 through 20 of
the TEST fi lei n the BP area are to be dumped onto
the LO device.

Dump specified sectors:

:DUMP BP, (SREC,6), (EREC, 9)

This example specifies that sectors 6 through 9 of the
BP area are to be dumped onto the LO device.

4. Dump all of specified RAD area:

(:DUMP BP

This example specifies that all of the BP area is to be
dumped onto the LO device.

:SAVE Th e : SA VE command saves the spec ifi ed RAD
area{s) on the BO device (using the M:BO DCB) for subse­
quent restorati on. The BO devi ce must be either a magneti c­
tape or paper-tape devi ce. The i mage of the desi gnated RAD
area(s) and the RBM bootstrap are written on BO in self­
reloadable format. The BO output contains a bootstrap loader,
followed by the RAD image of the RBM bootstrap, and the
designated area(s) with selected sectors of all zeros sup­
pressed. Executi ng the bootstrap loader causes the RAD
image to be read into memory and restored onto the RAD{s)
without RBM control. The BO output can also be used to
restore the RAD via the :RESTORE command. If the BO de­
vice is a magnetic tape, the tape is rewound and the data
saved is verified. If the BO device is a paper tape, the
paper tape must be input on the BI device for verification.
If the tape verifies correctly, the message

'SAVE TAPE OK '

is output.

The forms of the command are

1.

2.

(:SAVE ZZ,ZZ, •••

where zz can be any RAD area.

(:SAVE ALL

where ALL includes all RAD areas except Background,
Temporary, and Checkpoint.

Examples:

1. Dump specified areas to secondary storage:

(SAVE SP,BP,D2

This example specifies that RAD areas SP, BP, and D2,
with a preceding bootstrap loader, are to be saved on
the BO device for subsequent reloading.

2. Dump all RAD areas to secondary storage:

(:SAVE ALL

This example specifies that all RAD areas, with a pre­
ceding bootstrap, are to be saved on the BO device for
subsequent reloading.

:RESTORE The :RESTORE command restores the specified
permanent RAD areas that were saved by the :SAVE command.
Input is read from the BI device (using the M:BI DCB), and
the bootstrap is ignored. Read after write is employed to
verify the data restored.

The form of the command is

(RESTORE ZZ,ZZ, •••

Example:

(RESTORE SP,BP,D2

This example specifies that the RAD areas SP, BP, and D2
(previously saved with a :SAVE directive) are to be restored.

:BDTRACK The :BDTRACK command specifies the RAD
and the hexadecimal track numbers that are not to be used
by the RAD Editor. A track containing a sector of the file
directory is not permitted to be removed from use.

The form of the command is

:BDTRACK yyndd,number ~numberJ •..

Example:

(BDTRACK DCAFO, 10, 11

This example specifies that the RAD Editor is to be inhibited
from using tracks 10 and 11 on the RAD DCAFO.

:GDTRACK The :GDTRACK command specifies the RAD
and the hexadecimal track numbers that now can be used by
the RAD Editor. The tracks were previously removed from
use by the :BDTRACK command.

The form of the command is

:GDTRACK yyndd,number[, number]. ..

Example:

~~G-D-T-RA-C-K--D-C-A-F-O-'1-0-/1-1------------------

This example specifies that previously inhibited tracks 10
and 11 are to be restored for use by the RAD Editor.

RA D Ed i tor Commands 85

ERROR MESSAGES If the Editor aborts because of an irrecoverable I/o error,
the physical device name is included in the abort message.

The RAD Editor outputs error messages on the OC and LL
devices. If OC and LL are assigned to the same device,
duplication of messages on LL is suppressed. If an operator
response is required, the RAD Editor will call the Monitor
"WAIT" routine. The operator initiates a console interrupt
and keys in one of the following commands to the Monitor.

The error messages output by the RAD Editor and their mean­
ings are given in Table 14.

C Continue and read next record from the C device. RAD RESTORATION MESSAGES

X Abort RAD Editor and return control to Monitor.

COC Continue and read a record from the OC de-
vice (used only in conjunction with the error mes­
sage "ERROR ITEM xx").

The messages itemized in Table 15 are written on the
keyboard/printer during RAD restoration via the bootstrap
loader produced by SAVE. Unless otherwise specified, the
computer will go into a WAIT after writing a message.

Table 14. RAD Editor Error Messages

Message Meaning Action Taken

ERROR ITEM xx Item number xx on the command If the operator response is C, the Editor
is in error. reads the next record from the C device.

If the operator response is C OC, the next
record is read from the OC device. This
will enable operator to rectify a directive
error.

ILLEGAL BINARY RECORD An illegal binary record (first byte If the operator response is C, the Editor
not XI 1 C I, XI 3C I) has been read reads the next record from the spec i fi ed
with an object module. device.

CKSM ERROR Last record in the object module If the operator response is C, the Editor

! being read has a checksum error. reads the next record from the specified
device.

SEQ ERROR I Last record in the object module ! If the operator response is C, the Editor
being read has a sequence error. reads the next record from the speci fi ed

device.

EOT on {yyndd Unexpected end-of-tape was en- i Operation is aborted.
area,name

countered on the specified device
or file.

yyndd WRT PROT Specified RAD is write-protected. Operator should take appropriate action:
interrupt and key in IISYC" or reset the
appropriate RAD protection switches. Or,
if the job is not allowed to write on pro-
tected areas of the RAD, interrupt and
key in "X" to abort.

RAD OVERFLOW Allocating the amount of RAD storage Operation is aborted.
indicated by the "file" parameter on
the :ALLOT command would cause the
permanent RAD area indicated by the
"directory" parameter to overflow.

INVALID RSIZE. UNBLOCKED Maximum record size for a blocked I Editor continues.
ORGANIZATION GIVEN fi I e has been exceeded. Unblocked I

organization given. I
-

AREA xx IS NOT ALLOCATED Speci fi ed area was not a II ocated at Operation is aborted.
SYSGEN.

86 Error Messages/RAD Restoration Messages

I

Table 14. RAD Editor Error Messages (cont.)

Message Meaning Action Taken

KEY ERR Operator key-in is erroneous. Key-in has to be. either C, COC, or X.

SPECIFIED FILE DOES Fi Ie does not exist within the speci- Operation is aborted.
NOT EXIST fied area.

DUPLICATE FILE I An attempt has been made to a II 0- Operation is aborted. I
cate a file using a name which al-
ready exi sts.

ILLEGAL FILE NAME An attempt has been made to allo- Operation is aborted.
cate a fi Ie usi ng GO, OV, or
Xl-X9 as a file name.

AREA xx CANNOT CONTAIN III egal area specified. Only the Operation is aborted.
A RESIDENT FOREGROUND i FP area can contain a resident
PROGRAM I foreground program.

AREA SPECIFIED DOES NOT An area other than SP or FP was Operation is aborted.
CONTAIN A LIBRARY specified that does not contain a

library.

TRACK xxxxx CANNOT BE III egal attempt to remove a track Operation is aborted.
DELETED from use containing a sector of the

fi I e directory. Removal would pre-
vent accessing of fi les or other sec-
tors of the directory.

SPECIFIED ROM DOES NOT Relocatable object module does not Operation is aborted.
EXIST exist within the specified library.

REFERENCES TO F:4COM An external definition or reference RAD Editor skips to the end of the module.
COMMON NOT ALLOWED F4:COM encountered in a relocat- A key-in of C causes the Editor to read

i able object module being copied the next record from the specified device.
I
I to the library.

ROM DOES NOT CONTAIN Relocatable object module being A key-in of C causes the Editor to read
A DEF copied does not contain an external the next record from the specified device.

definition.

DUPLICATE DEF xxxxxxxx Relocatable object module being RAD Editor skips to the end of the module.
copied to the I ibrary contains dupl i- A key-in of C causes the Editor to read
cate definitions. the next record from the specified device.

ILLEGAL LOAD ITEM xx Relocatable object module to the RAD Editor skips to the end of the module.
I ibrary contains an illegal load item. I A key-in of C causes the Editor to read

I the next record from the specified device.

FILE xxxxxxxx WAS NOT File was not truncated due to the Editor continues.
TRUNCATED. FSIZE = 0 fi I e size being 0 which suggests a

direct access file.

SREC VALUE GREATER THAN Parameter error on the :DUMP com- Operation is aborted.
EREC VALUE mand. The I ast record to be du mped

precedes the initial record to be
dumped.

AREA xx CONTAINS NO Specified area contains no files. I Editor continues.
FILES

RECORD SIZES DIFFER ON Record sizes differ on copying from I Operation is aborted.
INPUT AND OUTPUT FILES RAD file to RAD file. I

I

ILLEGAL OPTION xxx Option specified is not permitted on i Operation is aborted.
a :COPY command.

i

BUFFER SMALLER THAN Data read exceeds the amount of I Operation is aborted.
DATA READ avai labl e buffer space.

Error Messages 87

Table 14. RAD Editor Error Messages (cont.)

Message Meaning Action Taken

NOT ENUF BACKG SPACE Insufficient background space to per- Operation is aborted.
form the requested operation.

UNABLE TO FIND AREA xx Specified area cannot be found on the Operation is aborted.
RAD SAVE tape during a :RESTORE
operation.

AREA xx INCOMPATIBILITY Attempting to restore specified area Operation is aborted.
onto a different type of RAD from
wh i ch it was saved, or the area to be

I I
restored is too large for the same area

I using the current Master Directory.

AREA xx CKSM ERROR A checksum error exists on the RAD Operation is aborted. I
SA VE tape in the spec i fi ed area.

AREA xx TRUNCATED Specified area being restored is larger Operation continues.
than the same area using the current
Master Directory, but the data that
was lost contained all zeros.

SAVE TAPE OK RAD SAVE tape has been veri fi ed No action.
correctly.

CKSM ERR ON SAVE TAPE A checksum error has been encountered Operation is aborted.
while verifying the RAD SAVE tape.

AREA SPECIFIED IS NOT An attempt has been made to use area Operation is aborted.
MAINTAINED BY THE RAD CK, XA, or BT which is not maintained
EDITOR I by the RAD Editor.

ILLEGAL USE OF :COPY The specified combination of input and Operation is aborted.
output devices on the :COPY command
is prohibited.

Tab Ie 15. RAD Res torat i on Messages

Message Meaning Resuiting Action

yyndd WRT PROT The RAD is write-protected. Program will attempt the RAD write after
an SY key-in.

CKSM ERROR A Checksum error has occurred in If the WAIT condition is cleared, the
reading the SAVE tape. bootstrap loader conti nues and accepts

the bad record.

RAD RESTORED OK The RAD restoration has been Control is transferred from the RAD
successfully completed. bootstrap.

yyndd ERROR, SB=xxxx A parity or transmission error has occur- There is no recovery.
red on device yyndd. The device status
byte (SB =) is also displayed.

yyndd UNUS. END, An unusual end status has been re- There is no recovery on a read operation.
TDV = xxxx turned from the specified device. On a write operation, the write is tried

The TDV status byte is also displayed. again after the WAIT is cleared.

TRK = xxxx Specifies the contents of the RAD con- If the data being written contains all zeros,
DATA = ALL ZEROS I troller address register in hexadecimal this information is output. If the WAIT I

I I at the ti me of a check write error. condition is cleared, the bootstrap loader I

I I continues.
I I I ---.. -,~,.-

yyndd UNRECOG., I An unrecognized status has been re- I Upon clearing the WAIT condition, the
SB = xxxx I turned from the indicated device. The operation is retried.

device status byte is also displayed.

88 Error Messages/RAD Restoration Messages

8. PREPARING THE PROGRAM DECK

The following examples show some of the ways program
decks may be prepared for RBM operation. Unless stated
otherwise, standard default cases for device assignments
are assumed.

MACRO-SYMBOL EXAMPLES

ASSEMBLE SOURCE PROGRAM, LISTING OUTPUT

In this example, the symbolic input is received from the 51
device and the listing output is produced on the LOdevice.

ASSEMBLE SOURCE PROGRAM, LISTING OUTPUT,
LOAD AND GO OPERATIONS

In-this example, the binary object program produced from
the assembly is placed in a temporary (GO) file from which
it can later be loaded and executed. The resultant file is
always temporary and cannot be retained from one job to
another. The Overlay Loader wi" load the program root
into the OV file for execution. A postmortem dump is
specified.

ASSEMBLE FROM COMPRESSED DECK WITH SOURCE
AND UPDATES, LISTING OUTPUT

Update
Deck

In this example, the compressed input (deck) is received
from the CI device, listing output is produced on the
LO device, and listing of the update deck is also pro­
duced on the LO device. The update deck is enclosed
in the bracket.

Preparing the Program Deck 89

ASSEMBLE SOURCE PROGRAM, COMPRESSED OUTPUT
ON CARDS, LISTING OUTPUT

In this example, the compressed card output vii!! be pro­
duced on the CO device.

ASSEMBLE SOURCE OR COMPRESSED PROGRAM IN BATCH
MODE, LISTING OUTPUT

In this example, successive assembl ies are performed with
a single MACRSYM command until a double EOD is read.
The device assignments and options on the MACRSYM com­
mand apply to all assemblies within the batch. A program
is considered terminated when an END Macro-Symbol di­
rective is processed.

When batch assembl ies consist of successive updates from
card input to compressed programs from the RAD or tape,
the updates are terminated by a +END card and should not
be separated by ! EOD cards. There must be a one-to-one
correspondence of update packets to compressed programs.
End-of-job is signaled by end-of-fi Ie conventions appl ied
to the CI devi ce.

90 Macro-Symbol Examples

ASSEMBLE SOURCE PROGRAM, BINARY OUTPUT ON
CARDS, LISTING OUTPUT

In this example, the 51, LO, and BO assignments are as­
sumed by default.

ASSEMBLE SOURCE PROGRAM, COMPRESSED OUTPUT
ON RAD FILE, LISTING OUTPUT

In this example, the CO device is assigned to a RAD fi Ie
called COMPRESS in a background data area of the RAD.
The compressed output is written on the COMPRESS file.

ASSEMBLE COMPRESSED DECK FROM RAD FILE, SOURCE
UPDATES FROM CARDS, LISTING OUTPUT

In this example, the CI (compressed input) device is assigned
to the COMPRESS fiie in a background area of the RAD.
The source update deck wi II be read from the SI devi ce. In
effect, this will update the assembly given in the pre­
vious example.

ASSEMBLE SOURCE PROGRAM, WRITE COMPRESSED
OUTPUT ON 9-TRACK TAPE, LISTING OUTPUT

In this example, the COdevice is assigned to the designated
9-trackmagnetictapeunit to receive the compressed output.

ASSEMBLE COMPRESSED PROGRAM FROM
9-TRACK TAPE, LISTING OUTPUT

l MACRSYM CI,LO

!REW 9TA83

! ASSIGN (M:CI,9TA83)

!JOB

In this example, the CI device is assigned to the desig­
nated magnetic tape to read the compressed input to be
assembled. This is the next logical job step to follow
the previous example.

Macro-Symbol Examples 91

OVERLAY LOADER EXAMPLES

BATCH, USING GO LINKS

In this example, the GO fi Ie is rewound by the initial ! JOB command for the first FORTRAN compilation. The Overlay Loader
loads from the GO file to form a root and outputs on the OV file for execution. A SHORT map will be output. A postmortem
dump is requested if the background aborts. The next! JOB command rewinds the GO file and three FORTRAN jobs are com­
pi led, with the binary object modules output on GO to form ROM 1 ,ROM2,ROM3. The Overlay Loader loads the first ROM
for the root, the second ROM for segment 1, and the third ROM for segment 2. Note that :SEG cards are not required. The
programs are executed from the OV fi Ie. A SHORT map is output. A postmortem dump is specified in case an abort occurs.

92 Overlay Loader Examples

SEGMENTED BACKGROUND JOB

In thi s example, the JOB card rewinds the GO fi Ie, the FORTRAN source deck is compi led, and the binary object modu Ie
is output on GO. The Macro-Symbol compressed source deck is updated and the binary object module is output to file CALC2
in the 05 area (previously allocated by the RAO Editor). The ROMs designated on the :ROOT and :SEG commands are loaded,
and the loaded program is output to CALCLOAO in the BP area. The :ROOT command causes the ROM created by FORTRANH
to be loaded from the GO fi Ie and creates the Root. The ROMs following the first :SEG command are loaded until ! EOO is
encountered and segment 1 is then created. The next :SEG command loads the ROM assembled by Macro-Symbol on the
CALC2 file in the 05 area and creates segment 2. The last :SEG command loads one ROM from the CALC3 file in the 05 area
(ROM previously created by an assembly or compilation). The! RUN command executes the loaded segmented program.

Overlay Loader Examples 93

FOREGROUND JOB EXAMPLES

LOAD AND EXECUTE FOREGROUND PROGRAM

In this example, the RAD Editor allots a fi Ie, (FINT) in the Foreground Programs (FP) area of the RAD. The Overlay Loader loads
the binary object deck in the fi Ie FINT in core image format. The! RUN control command causes execution of the foreground
program. A PROGRAM map is specified.

94 Foreground Job Examples

LOAD AND EXECUTE SEGMENTED FOREGROUND PROGRAM

!FIN

! RUN FP,FSEG

In this example, the RAD Editor allots space for a file called FSEG in the Foreground Programs (FP) area of the RAD. The
Overlay Loader loads a root and two segments into FSEG in core image format. The overlaid program is executed via the
l RUN control command. An ALL map is requested.

Foreground Job Examples 95

9. SYSTEM GENERATION

System Generation provides the means of forming a Monitor
system adapted to the specific requirements of the user's
installation. This is done by processing a set of installa­
tion control commands. The entire System Generation
comprises two processes: SYSGEN and SYSLOAD. Dur­
ing the SYSGEN phase, only the specific installation
parameters are input, not the processors. This permits
the later replacement of modules on the RAD without
going through an actual SYSGEN, provided that the re­
placements do not exceed their SYSGEN defined area.
The only output from SYSGE N is an optional rebootable
version of SYSLOAD (System Load).

SYSLOAD phase performs the loading of the entire RAD.
That is, it loads the Monitor, the RBM Overlays, the Job
Control Processor, any Optional Routines, the System Pro­
cessors, User Processors, and other installation specific
programs.

A new Monitor can be written without disturbing the re­
mainder of the RAD to eliminate the necessity for a
complete reload.

SYSGEN

OVERVIEW

SYSGEN and SYSLOAD are assembled as one absolute mod­
ule and then loaded by a stand alone loader. After the
SYSGEN/SYSLOAD object module has been loaded, con­
trol is transferred to SYSGEN. SYSGEN inputs the installa­
tion specific parameters and sets up, in low core, all RBM
tables and flags that are dependent upon these parameters.
SYSGEN also builds a Symbol table containing the EBCDIC
names of all RBM tables and the address where each table
is loaded in memory. During the loading of RBM, this Sym­
bol table will be used by SYSLOAD to satisfy any Monitor
references (RE Fs) to these tabl es.

After SYSGEN has input its final control command, it will
optionally output a rebootable binary deck in core image
format containing the RBM tables, the RBM flags, and
SYSLOAD. This rebootable deck can later be used to load
a new version of the Monitor without going through a
SYSGEN.

Upon request; SYSGEN wii i also output a map showing the
core allocation (estimated background first word address,
foreground first word address, etc.), the aforementioned
Symbol table definitions and values, and the allocation of

96 System Generation

the RAD areas. The RAD area porti on of the map wi II con­
tain the following information:

MAP Heading

AREA

DISC

FWA

LWA

NSPT

NWPS

WP

Meaning

The two-character name of the RAD
area (i. e., SP, BP, FP, D3, etc.).

The device number of the disc on
which the area is located (i.e.,ADO).

First word address of the area in the
format xxx/yy! where xxx = track
number in decimal, yy = sector num­
ber in decimal.

Last word address of the area (same
format as for FW A).

Number of sectors per track, in dec­
imal, for the RAD on which the area
is located.

Number of words per sector, in dec­
imal, for the RAD on which the area
is located.

Write protection code for the area.
The codes are

N No one can write in the area (un­
less an' SY' key-in is in effect).

B Only background can write in
the area.

F Only foreground can write in
the area.

M Only the Monitor can write in
the area.

X Only IOEX can write in the
area.

A sample map output bySYSGEN is illustrated in Figure 12.

Control is transferred to SYSLOAD following the comple­
tion of either the SYSGEN operation or loading of the re­
bootable SYSLOAD deck.

CORE ALLOCATION

CORE LAYOUT AFTER SYSGEN

After SYSGEN has executed and before controi is trans­
ferred to SYSLOAD, core memory has the layout dis­
played below.

Interruptsl trapsl etc.

~-------------
RBM Control Task int. loc.

Unused interrupt locations used
for monitor tables

320 Output in

System flags and pointers Rebootable

350 Deck

RBM tables (DCT I IOQI RFT I etc.)
700

RBM overlay area

1200

10K

SYSGEN
12K

SYSLOAD
Output in
Rebootable

15K
Deck

Symbol table

16K

RBM STRUCTURE

The RBM system is assembled in several different modules,
the largest of which consists of the following nonoptional
resident routines:

1. I/o Interrupt Task.

2. Control Panel Task.

3. Tasks to process the vari ous traps.

4. The following Monitor functions: Foreground Exitl
I/O Packagel Interrupt Controll Segment Loaderl
I/o Handlersl IOEX and foreground service routines.

The other RBM parts consist of the optional resident rou­
tines, RBM Overlays, and the Job Control Processor (JCP).
All RBM parts will be assembled as relocatable object mod­
ules and loaded by SYSLOAD.

The optional resident routines are the floating-point simu­
lation routines and decimal simulation routines; they are
input during SYSLOAD as required.

The RBM Overlays consist of the subtasks of the RBM Con­
trol Taskl which include:

Key-in Processor

Background Abort/Exit Routine

Postmortem Dump

Foreground Root Loader

Background Root Loader

Checkpoint/ Restart

CORE MEMORY LAYOUT AFTER SYSGEN AND SYSLOAD

After SYSGE Nand SYSLOAD have executed, core memory
would have the following typical layout:

r o
Interrupts l trapsl etc.

1---- --------------

Write
Lock
11

Write
Lock
01

Write
Lock
10

"-

{
r

~

RBM Control Task into loc.

Unused interrupt locations used for
Monitor tables

320
System flags and pointers

RBM tables

RBM overlay area

Optional resident routines

6K

Nonoptional resident routines

Monitor expansion and patch area

I
Background and RBM Job page

Control Processor area boun
l
dary

Foreground area

Foreground mai Iboxes

Foreground blocking buffer pool

16K

Note that during SYSGEN I the user inputs the number of
pages to be reserved for the foreground area. After
SYSLOAD has loaded all resident routines and allocated
the appropriate space for the Monitor patch area, the start­
ing address of background will be fixed at the start of the
next page. The starti ng address of background can not be
precisely determined unti I all resident routines are loaded
by SYSLOAD. For this reason, the background first word
address output on the map by SYSGEN is necessarily an
estimated address, and would be changed by SYSLOAD if
the SYSGEN estimate was incorrect. The background wi II
extend up to the start of the foreground area.

RAD ALLOCATION

RAD AREAS

During SYSGEN, the total user RAD space can be divided
into a maximum of 21 areas, the size of which can not be
changed except by a new SYSGEN. A subdivision of an
area is a filel and each area can consist of several files.
Fi les are defined through the RAD Editor after SYSGEN,

SYSGEN 97

98

:M6NIT8R ceBRE,32}'ALLSIH,(Ar.CNT,~8)
:qESERVE (RSDF,~)/(~FP~AL,?),(FRGD,5)/(FRAn,S),(aRAD,5)'(~T8QI~)/(~M~~X,100)

:DEvrCE TVA01
:OEVICE CRA03
: DEV H~E CPA04
:DEVICE LPA02
:OEvrCE 7TAEO
:OEvrCE (OCCFO,S),CENTRACK,511,,(NSPT,12),(NWPS,256),CSP,SO),(FP,50'J
: (BPI50),CD1,30,B),CDc,30,F);

(D3,5IF),(D_/5IB)J(D515,8)/(0615,B)/(D',5IF),(D8,5,8)~
(09,S,F),(DA,S,S),(OB,SIF),(OC,5,B),(DD.5,F),CPF,I,B),(XA.100)

:DEvrCE 9TA80
:DEVICE 9TA81
:OEVICE 9TA82
:DEVICE 9TA83
:STDLB (C,CRA03), (6c,TYAOU" CL8,LPA02), (LL"Un, (De,L.e'J
: CB6,CPAO_,,(SY,CRA03',(SB,9TA81,,(XX,O,,(YY,O)/(MT,O)J
: (SI,eRA03),(8I,SI),(~t,9TA81)/(F2,La)'(F3,9TA83),(F~'7TAFell
: (rS'C)i!F6;9TA82);!Ce;8B);!C1;S!)
:ALLBST (Ge,8),CBV,15)
:CTINT (CT,65),(~I,65)
: INTLB (11,60)" (I2,61), (13,62), (14,63), (15.6_) J
: (C3,5A),(FCI63)/(FX,6~)/CIXI62)

:SYSL6AD CIN,CRA03),ALL/(V,Q02),CMAP,LPA02)

BCKG. FWAI!I01EOO
FGD. FWA-07800
F'MBSX FWAI!I07099

**** RBM TABLE ALLeeATr~N ****
MASTD=0066 nCTlc0090

DCTS.009F DCT6.00A?
DCT10;OOBF DCT11=OOr.4
DCT15~OOFl DeT16.00F'2
crT1~024E
1803-0258
IBQ8=:0266

18Q131!1027C
RFT4=02C6
RF'T91102EE

RFT14-0316
FP2:1!0342

6PLBS211035A
eVL6AD2-0373

eIT?a0250
IBQ4.025A
YSQ9c026E

18~14.028C:
RFT5s02DO

RFT10-02F3
Rr:T15-031R

FP3·03~5
ePL8S3.0360

eVLBAD31:0318

**** RBM PRBGRAM ALLBCATI9N ****

DCT2~0096
DCT7·00A5

nCT12~OOCE
DCT17-0108

CIT311!0252
IBQ5~025C

I8Gl10:;:0272
RFTll10?8C
RFT6=02DA

RFT11=O?FO
RFT16=0320

FP4 l1 0347
I\lTL81·0366
WL6CK·037D

FPSfM .. 06AE DEcSIM=08F6 8YTSIH~0872
RBMlIOB34 RBMEND.1DtB

**** RAD ALLSCATlf)N ****
AREA DISC FWA LWA NSPT NWPS

SP eFa 01 1 79/11 12 256
FP CFa 801 0 129/11 12 256
BP eFe 130/ a 179/11 12 256
BT CFO 403/ 6 511/1.1 12 256
XA (FO 296/ 0 395/11 12 256
CK eFa 396/ 0 4031 5 12 256
01 CFO 180/ a 209/11 12 256
02 eFO 210/ 0 239/11 12 256
03 CFQ 2_o1 0 244/11 12 256
04 CFO 245/ 0 2~9/11 12 256
05 CFO 2501 0 254/11 12 256
D6 CFQ 255/ ° 259/11 12 256
07 CFO 260/ 0 264/11 12 256
DB eFO 265/ a 269/11 12 256
09 eFO 270/ 0 ?74/11 12 256
DA eFO 2751 0 279/11 .12 256
08 (FO 280/ 0 284/11 12 ?S6
DC CFa 2f\5/ 0 289/11 12 256
DO eFQ 290/ 0 294/11 12 256
OF CFO 295/ 0 295/11 12 256

**** rND ~AP ****

WP
N
N

'" B
X
I"i
8
F
F
B
B
B
r:
B
F
B
F
B
F

B

DCT3.00QQ
OCT8-00AA

DCT13=OOD~
DCT18=010E

r6QlcO?54
rBG6=0?Sn

IA.Ql1;;0274
RFT2.0?8?
RFT7=02r:4

R~T12=03n7
Rr:T171103?4

FPS.034D
PJTL82110368

~LAVFwA.03~E

Figure 12. SYSGEN Map Example

SYSGEN

I")r.T4.n0ge
~'H':~Tth0084

DrTl_=OOEE
DrT19·0111
TIi~?.C2S6
T,,07-0265

TA~12.C275
Rr:T3.029C
Rr:T~-02E9

Rr:T13-0311
r:Pl.0336

BPI ~Sl-034~
eVL~A~H =0370

r}r:1 T A. 0000

and can be created or deleted at any time without going
through a SYSGEN process. In the order of their normal
RAD allocation, the RAD areas are as follows:

AREA NAME Name Code Write Protect Code

System Programs SP N

Foreground Programs FP N

Background Programs BP N

Foreground and
Background Data D 1 through DF F or B

IOEX Access XA X

Checkpoint CK M

Background Temp BT B

If the RAD areas are allocated in the order given above,
the user can easily protect all the programs on the RAD
through the hardware write protect switches.

The user can specify a given area to physically reside on
any RAD in the system if the system contains more than one
RADi however, each area must be wholly contained on one
RAD. The user must also specify a RAD to be the System
RAD that will contain the SP area and receive the RBM
Bootstrap. The user inputs the number of words per sector
and number of sectors per track for each RAD in the system
and SYSGEN stores this information in the Master Directory.

The System Programs area of the RAD contains the Monitor,
service processors (Overlay Loader, RAD Editor), system pro­
cessors (Macro-Symbol, FORTRAN IV-H, etc.), and the
System Library.

The Foreground Programs area of the RAD should contain
the user1s foreground programs, the Publ ic Library I and the
User Library, if they exist.

The Background Program area should contain any back­
ground programs of the user.

The IOEX Access area can be written only by IOEX and
should normally be the only area of the RAD that IOEX
is allowed to access.

The Foreground and Background Data areas can be used to
store the appropriate type of user data. Up to fifteen
Data areas (D l-DF) are allowed, to accommodate a user
with multiple RADs.

The Checkpoint area is used to save the contents of back­
ground core memory during a checkpoint. The Background
Temp area can be allocated to a maximum of nine scratch
files (Xl-X9) plus the GO and OV files.

If a user does not choose to specify the sizes for the
different RAD areas, the default sizes given in Table 16
will be assumed, and the total area will be allocated
to the System RAD.

Table 16. RAD Area Default Sizes

Area Defaul t Size Comments

System 60 tracks Large enough to con-
Programs tain all system pro-

cessors, one per fi Ie,
in core i mage format;
the system library in
relocatable binary for-
mat i and the Mon i tor
in core i mage format.

Foreground 0 User is required to
Programs specify number of

tracks for a II areas
not used by system
programs.

Background 0
Programs

Foreground/ 0
Background
Data

IOEX Access 0

Checkpoint n sectors Where n = the initial
size of background in
sectors.

Background m sectors Where m = remainder
Temp of RAD. RAD size is

determined from the
EN TRACK parameter
on the :DEVICE
command.

The areas will be phys ica II y located on the RAD in the same
order as they were input during SYSGEN. The System Pro­
grams area wi II be the first area on the System RAD unless
the user inputs the SP area in a different order. In both the
initial and succeeding SYSGENs, all RAD areas required
by the user must be input, except those areas that SYSGEN
automatically allocates by default. In succeeding SYSGENs,
the user must input all areas in the same order and with the
same size as the initial SYSGEN to prevent destruction of
any RAD areas.

Beginning at the starting track address input on the :DEVICE
command, SYSGEN will allocate the number of tracks for
each area without leaving empty spaces between areas. A
bad track on a user's RAD can be skipped via an input to
the RAD Editor at the time the user's files are defined. The
first area allocated on the System RAD will include the RAD
Bootstrap among its allocated space, and therefore, the
actual space allocated for the area will be one sector less
than the number of tracks input. This technique forces each
area to start on a track boundary to make the hardware
Write Protect switches easier to use.

BACKGROUND TEMP AREA

The scratch files (Xl through X9) of the Background Temp
area of the RAD wi II be automatically allocated and defined

SYSGEN 99

by the Job Control Processor prior to execution of a back­
ground program, unless the user wishes to override these
defaults via an :ALLOBT control command. During SYSGEN,
the user wi II not specify any standard sizes for the scratch
files, Xl-X9. The X1-X9 files are normally reset and re­
allocated before execution of each background program in
a job stack.

The GO and OV files are also in the BT area of the RAD.
These files are more permanent than the X1-X9 files and
are maintained throughout an entire job. The user has the
option to override the default permanent size of GO and
OV at SYSGEN via the :ALLOBT command. GO and OV
have both a permanent size, determined at SYSGEN, and
a temporary size, which can be input through the back­
ground job stack via an :AlLOBT control command.

An example of allocation for a System RAD is given in
Figure 13.

•

RAD Bootstrap (
SP Area

FP Area

BP Area

D1 Area

D2 Area

XA Area

CK Area

BT Area

One)} 60 tracks
sector (default

size)

~

Size must be
specified by user or
area not allocated

S ize of background
default size) (

R emainder of RAD
default size) (

Figure 13. RAD Allocation Example

Table 17 gives the default sizes and types for GO, OV, and
X1-X9, and the order in which the files are allocated. Note
that X1-X9 are at the front of the BT area, and GO and OV
are at the opposite end.

TABLES ALLOCATED AND SET BY SYSGEN

DEVICE CONTROL TABLE (DCT)

The DCT table is allocated by SYSGEN and several of the
entries in the table are set by SYSGEN (i. e., device type,
device number, dedicated to foreground bit, etc.). The
DCT contains one entry for each device input by the user
on the :DEVICE command, and the order of the entries is
the same as the order of the :DEVICE commands. Note that
there wil! be only one entry in the DCT for each RAD.

RAD FILE TABLE (RFT)

The RAD file table is allocated by SYSGEN from the FRAD
and BRAD entries on the :RESERVE command, and should
contain sufficient entries to reflect the maximum number of
open RAD files that can exist simultaneously. The user will
input the number of RFT entries to be reserved for foreground
programs and the number to be reserved for background pro­
grams. The background is not allowed to use more than the
number of RFT entries allocated for the background. How­
ever, the foreground can use a II RFT entries if they are
needed. The rationale for having foreground/background
RAD files as opposed to a single pool oHiles is that a back­
ground program could erroneously use all the file entries,
thus preventing the operation of a foreground program.

MASTER DIRECTORY

The Master Directory is entirely set up by SYSGEN in the
resident Monitor portion of memory and contains the fo!=
lowing information about each area on the RAD: the sec­
tor address of each area, the RAD to which the area is
assigned, the sector size and number of sectors per track;

Table 17. GO, OV, Xl-X9 Default Sizes

File Name File Type Default Size Comments

Xl
.,

X2
X3
X4
X5 Unblocked Determined by Job File type and record sizes can be changed through
X6 Control Processor at a Device Mode function call or through an ! ALLOBT
X7 execution time. command.
X8
X9

~

OV Unblocked 8 tracks Default output for Overlay Loader. Used mainly
to test a program that has no permanent fi Ie defi ned,
or to test a new version of a program without de-
stroying the current version=

GO Blocked (120 bytes/ 8 tracks Used by FORTRAN and Symbol for "assemble and
logical record) go II type operations.

100 SYSGEN

a bit that states if an area has been allocated; and the
write protection code for the area.

RBM OVLOAD TABLE

The RBM OVLOAD table is entirely set up by SYSLOAD and
contains the information the Monitor needs to load a Moni­
tor overlay. This information consists of an overlay identi­
fier, the relative RAD address of the overlay, and the num­
be r of bytes in the over! a y .

I/O QUEUE TABLE (IOQ)

The IOQ table is allocated by SYSGEN from the FIOQ and
BIOQ entries on the :RESERVE command. The user inputs
the maximum number of I/O operations that can be queued
at one time for the foreground and background. The restric­
tions on the use of the foreground IOQ table are the same
as for the RAD File Table.

FOREGROUND PROGRAM TABLE (FP)

The Foreground Program table contains an active entry for
each foreground program loaded into memory. Requests to
load a foreground program can be made from either another
foreground program or by the operator. Space for this table
is allocated by SYSGEN from the FRGD entry on the
:RESERVE command.

OPERATIONAL LABEL TABLE (OPLBS)

The OPLBS tab I e is buil t by SYSGEN from the information
input on the :STDLB command. The table has a minimum of
eleven entries that contain the standard Monitor operational
labels. Since operational labels are referenced via an in­
dex value in the DCB, each of the eleven standard oper­
ational labels have a fixed index val ue. If the user adds
his own operational labels to the table, the user oper­
ational labels are assigned an index value, starting with
twelve, in the order in which they are input on the :STDLB
command. The standard operational labels are

Op Label

C
OC
LO
LL
DO
CO
BO
CI
51
BI
SO

XX
YY
ZZ

Index Value

1
2
3
4
5
6
7
8
9

10
11

12

)
13
14

Standard operational
labels

User-defined oper­
ationallabelsi (index
value dependent upon
order on :STDLB
command)

INTERRUPT LABEL TABLE (INTLB)

The INTLB table is set up by SYSGEN from information con­
tained on the :INTLB command. The table contains the
name of each interrupt and the location to which the inter­
rupt is assigned.

INPUT PARAMETERS

After the absolute object module of SYSGEN and SYSLOAD
has been loaded by a stand-alone loader, control is trans­
ferred to SYSGEN. t SYSGEN types the following messages
on the typewriter (note that the typewriter must be assigned
to lOP zero, device 01i that is, TYA01):

RBM SYSGEN
IN, OUT DEVICES?

The user wi II input the following control command in re­
sponse to the query. All SYSGE N commands must beg i n
with a colon in column one.

:SYSGEN (IN,yyndd) G {OUT,yyndd[,LP] ~

where

IN specifies the device in the format yyndd from

OUT

which the remainder of the SYSGEN control com­
mands will be input.

yy is a devi ce type code and must be either
CR, TY, or PR (see below for a description of
the codes).

n is the lOP; legal values are A-H correspond-
ing to IOP's 0-7.

dd is the hardware device number of the device.

specifies an optional output device on whi ch
the input commands are to be logged or the map,
if requested, is to be output. The de vi ce type code
must be either the TY or LP.

The optional LP field specifies the lower perfor­
mance I ine printer (225 I ines per minute) as op­
posed to the 1000 I ine-per-minute printer.

Following input of the :SYSGEN command, the SYSGEN
control commands are input through the specified device.

tThe stand-alone loader types out the query "INPUT DEVICE".
The operator should respond by typing in the device from
which the absolute object module of SYSGEN and SYSLOAD
is to be loaded. Examples of a possible response are:
CRA03, 9TA80, PRA05.

SYSGEN 101

The following device types are standard under RBM, and
shou Id be input in the yy portion of a yyndd parameter in
all SYSGEN control commands.

Device Type Code

TY

LPt

CR

cpt

9T

7T

pp

PR

DC

NO

Device

Typewriter

Line printer

Card reader

Card punch

9-track magnetic tape

7-track magnetic tape

Paper tape punch

Paper tape reader

RAD or other disc

Not a standard device.
A special purppse device
for use with IOEX.

SYSGEN CONTROL COMMANDS

The SYSGEN control commands are given below. The
:MONITOR and :RESERVE commands (in that order) must
be input prior to the :DEVlCE command. A :DEVICE com­
mand must precede a :STDLB command that references that
device.

:MONITOR The :MONITOR command specifies Monitor
and CPU options. The :MONITOR command must precede
the :RESERVE command and must precede the :DEVICE com­
mand for the System RAD.

The command has the form

:MONITOR (option) [,(option) .•. ,(option)]

where the options are

CORE, size specifies the memory size, in decimal
units of K (where 1 K = 1024 words), of the target
computer (computer for which the SYSGEN is
being run). The default value for CORE is 16K words.

FPSIM specifies that the floating-point simulation
package is to be loaded by SYSLOAD. If this
parameter is absent, either the floating-point
hardware exists or floating-point is not needed
for the target computer.

tlf the optional LP (lower performance) parameter is input
with a CP or LP device type, the device is the 225 line per
minlltp. orinter in the LP case. or the 100 card Der minute _. - r - # I

punch in the CP case (i. e., LPA02,LP or CPA04,LP). How­
ever, the 225 line printer and 100 card per minute punch are
not supported in this initial release of RBM-2.

102 SYSGEN Control Commands

DECSIM specifies that the decimal instruction simu-

lation package is to be loaded by SYSLOAD. The
absence of this parameter indicates that either the
decimal instruction hardware exists or the decimal
package is not needed for the target computer.

BYTSIM speci fies the byte string instruction simula-
tion package is to be loaded by SYSLOAD.

CVS!M specifies the convert instruction simulation
package is to be loaded by SYSLOAD.

ALLSIM specifies that all software instruction simu-
lation packages are to be loaded by SYSLOAD.

specifies that the Monitor is to per-

form job accounting. B or FB specifies the type
of accounting. 8 indicates background accounting
only, with all foreground time incl uded in the back­
ground job time. FB indicates foreground/background
accounting, with the foreground time kept separate
from the background time. If the FB type is chosen,
the foreground interrupt response time could be in­
creased by a maximum of 5 microseconds. Absence
of the ACCNT parameter indicates that no job ac­
counting is to be kept.

LPP, va I ue is nu mber of lines per pri nter page. The
default is 37. This value is used by processors that
perform their own vertical format control of the
printer.

:RESERVE The :RESERVE command allocates areas of core
and the various variable length Monitor tables. The :RESERVE
command must precede the :DEVICE command for the System
RAD.

The :RESERVE command has the form

(:RESERVE (cption)[,(option) ... ; (optionD

where the options are

RSDF,value specifies the decimal number of pages
to be reserved for foreground programs. The va lue
specified includes the foreground mai Ibox (FMBOX)
and foreground blocking buffer (FFPOOL) areas,
if any. This space is available for all foreground
programs on a first-come, first-served basis. A
program is given its predetermined core space (de­
termined when it is loaded on the RAD by the
Overlay Loader) when loaded for execution. No
other program can use this space until the program
is unloaded. The Public Library will also exist
in this foreground space. The default value is
zero.

MPATCH,size specifies the decimal number of
word locations to be reserved for modifications
and expansion of the Monitor. The default
size is zero.

FFPOOL,value specifies the decimal number of
256-word blocking buffers to be allocated for all
foreground programs. The default value is zero.

FRGD, val ue specifies the maxi mum number offore-
ground programs that can reside in core memory at
anyone time. This parameter will be used toallo­
cate space for the foreground program table that
is used to manage the foreground core area. The
default size is zero. Maximum allowable value
is 225.

FRAD,value specifies the number of entries to re-
serve in the RAD Fi Ie Table for foreground RAD
files. This number should reflect the maximum
number of foreground RAD files that could be open
simultaneously. Note that the background RAD
pool is also available to the foreground. The de­
fault value is zero.

BRAD,value specifies the number of entries to re-
serve in the RAD File Table for background RAD
files. This number should reflect the maximum
number of background RAD files that can be opened
simultaneously. The default value is 5, which will
be sufficient to accommodate the System Processors.
The value indicated should not include the files
on the BT area of the RAD.

FIOQ, value specifies the maximum number of
foreground I/o operations that can be queued at
anyone time. This parameter determines the space
allocated for foreground entries in the I/O queue
tabl e. Note that the background queue tabl e is
also available to the foreground. Thedefaultvalue
is zero.

BIOQ,value specifies the maximum numberofback-
ground I/O operations that can be queued at any
one time. This parameter determines the space
allocated for background entries in the I/O queue
table. The default value allows three entries to
be placed in the queue table.

Note that the sum of FIOQ and BIOQ must
be less than 256, or an error indication wi II
be given.

FMBOX,size specifies the decimal number of
word locations to reserve at the end of the
foreground core space for foreground mai I boxes.
The default value is zero.

BT, val ue specifies the maximum number of Back-
ground Temp files eXl-X9) that will ever be
used. The default value is 6, that is, files
Xl, X2, X3, X4, X5, X6. Six files are suf-
ficient for the System Processors. The files
defined are Xl-Xn, where n is the input value
The In l must be less than 10.

:DEVICE The :DEVICE command introduces peripheral
units into the system. One :DEVICE command is required
for each peripheral unit to be used. The order of the
:DEVICE commands determines the Device Control Table
index value that the device will receive (the index value
can be used in the DCB). If an error is made in any field
of the command, the entire command must be input again.

The :DEVICE command has the form

:DEVICE (yyndd [, LP] [, S]) [, (option)] [, (option)] ...

where

yyndd specifies the device name (see the :SYSGEN
command for a description of yyndd). Ifyy=NO
(for an IOEX device) the device will automatically
be dedicated to IOEX.

LP specifies that the device is the lower perfor-
mance type; e. g., LP would be used to differen­
tiate the lower performance card punch (100 cards
per minute) from the unbuffered card punch, or the
lower performance printer from the high speed
printer. If LP is absent, the higher performance
device is assumed.

S specifies (for a RAD device only) this RAD as the
System RAD; the System RAD receives the Boot­
strap, the SP area, and any default allocations.

The device name must be the first field input after the
:DEVICE.

The options are

DEDICATE,value specifies that the device is to be
dedicated to the foreground if value is "F"; it can
be used by IOEX only if value is "X". If this op­
tion is omitted, the device is undedicated unless
the device is NO. In this case, the device is
dedicated to IOEX.

Note: the remaining options are only applicable for a
RAD device.

STTRACK,value specifies the starting track (decimal
track number) on the RAD that is to be used by the
system. If the option is omitted, track zero wi II
be the starting track. Tracks are numbered start-
ing with zero. STTRACK must be input before
ENTRACK and must be equal to or less than
ENTRACK.

ENTRACK,value specifies the end track (in deci-
mal) on the RAD to be used by the system. If this
option is omitted, a value of 511 will be assumed.
Note that tracks are numbered O-n, where n < 512.
For a Model 7212 RAD, ENTRACK should be <64.

SYSGEN Control Commands 103

NSPT,value specifies the decimal number of sectors
per track. The default value is 16. For a Model
7212 RAD, NSPT = 82, and for a Model 7232 RAD,
NSPT = 12.

NWPS,value specifies the decimal number of words
per sector. The default value is 90.

area,vaiue specifies the decimal number of tracks
to be allocated to the designated area (SP, FP, BP,
Dn, CK, XA, or Bn. The various forms in which
this option can be written are

t
SP ,value

FP ,value

BP ,value

CK,value

XA,value

BT,value
" r F 1

Dn,value h~ 1
where 1 =s n =s F

If the remainder of the RAD is to be allocated to
an area, II ALL II can be input instead of the number
of tracks. Any area not input on a :DEVICE con­
trol command will receive its default allocation.
If zero is input as a va lue for the number of tracks
for the C K or B T area, the area will not be a 110-
cated. Note that for the data area, Dn (1 =s n =s F),
an F (foreground), or a B (background) must be
specified to indicate the write protection code
for the area. See the "RAD ALLOCA nON II sec­
tion in this chapter.

The following are examples of various :DEVICE commands:

: DEVICE CRA03

:DEVICE (LPA02,LP),(DEDICATE,F)

:DEViCE (DCB90,S),(ENT,i27),(FP, i5), (Di, 10, F),
(D2,10,B)

:DEVICE (DCB91),(DED ,X),(STTRACK,256),(NSPT ,12);

:(NWPS,256) ,(XA,ALL)

1. High performance card reader, device number 3, on
lOP number 0, undedicated.

2. Low performance line printer, device number 2, on
lOP number 0, dedicated to the foreground.

3. 7202 RAD, device number 90, on lOP number 1, to
be used as the System RAD starting on sector zero,
with default sizes for the SP, CK, and BT areas, and
the input sizes for the FP, D 1, and D2 areas. (The
BT area would receive the remainder of the RAD.)

4. 7232 RAD, device number 91, on lOP number 1, to be
used only by 10EX starting on track 256 and ending on
track 511. These tracks are allocated to the XA area.

t
The SP area must be allocated to the System RAD. If allocated

elsewhere, an 'ERROR ITEM xx' alarm will be output.

104 SYSGEN Control Commands

:STDLB The :STDLB command defines all standard Moni-
tor operational label assignments for the generated system
and all standard user operational labels and their assign­
ments. Note that operational labels cannot be assigned to
RAD files during SYSGEN. The STDLB command must be
input following the: DEVICE commands.

The :STDLB command has the form

:STDLB (label,name)[,(label,name) ... J

where

label specifies a standard Monitor operationa! !abe!
or a user operational I abel. All user operational
labels must consist of two al phanumeric characters.
Any standard Monitor operational labels not speci­
fied on a :STDLB command will receive by default
a permanent assignment of zero. The order of the
user's labels determines a label's position in the
operational I abel tabl e, and therefore determines
the OPLB value that might be present is a user DCB
(see the tabl e in the example below). No label
wi II be allowed that is the same as a Background
Temp file name (GO, OV, X1-X9) or the same
as a RAD area.

name specifies a physical device name to which the
operational label is permanently assigned, a num­
eric zero, or a previously assigned operational la­
bel. In the latter case, the operational label will
be assigned to the same device as the label to
which it is assigned. If "0" is specified, there is
no permanent assignment.

The :STDLB command example

:STDLB (C, TY AO 1), (OC,C), (LO,LPA02), (LL,LO),~

L(BI,PRA05) i(SI,PRA05), (XX,PRA05), (ZZ, LPA02)

would cause the following operational label table to be set up:

Standard
Monitor
Op Labels

User Op
Labels

Label

C
OC
LO
LL
DO
CO
BO
CI
SI
BT lso

{ XX
ZZ

OPLB Permanent
Index(10} Assignment

1 TYA01
2 TYA01
3 LPA02
4 LPA02
5 0
6 0
7 0
8 0
9 PRA05

10 PRA05
11 0
12 PRA05
13 LPA02

:CTINT The :CTINT specifies the interrupt to which the
RBM Control Task is to be connected, and the highest ad­
dress used for interrupts in the system.

The :CTINT command has the form

:CTINT[{CT,address), (HI,address)]

where

CT,address specifies the absolute hexadecimal in-
terrupt location to which the RBM Control Task is
to be connected. If the Contro I Task is to be con­
nected to an interrupt, that interrupt must be the
lowest priority interrupt used by the system. If
lIaddress II has the value zero, no interrupt is avai 1-
able for the Control Task. In this case, the user
can run only background programs, and SYSGEN
will allocate the Monitor tables beginning at ad­
dress X'SE'. The default value for the Control
Task Interrupt is location X'6]'.

HI,address specifies the highest address in hexa-
decimal needed for an interrupt. SYSGEN will
assume that all memory locations greater than HI
are unused and will attempt to allocate the Monitor
tables in this area. The default value is X']3F'.
Normally, CT and HI would have the same value.

:INTLB The :IN TLB command provides the capabi I ity of
associating a label with an interrupt location. The label
may then be used in the different interrupt CALs on the
Monitor.

The :INTLB command has the form

:INTLB (Iabel,loc)[' (Iabel,loc) •.. ,(label,loc)]

where

label specifies a two character alphanumeric label.

loc specifies the absolute hexadecimal interrupt
location to be associated with the label.

The key-in IN TLB may be used to change the assignment
of the label from one interrupt location to another.

:ALLOBT The :ALLOBT command establ ishes the per-
manent sizes of the GO and OV fi les contained in the
Background Temp area of the RAD.

The :ALLOBT command has the form

:ALLOBT (file name,size) ['(file name,size)]

where

fj I e name speci fi es the name of the fi I e, which
must be either GO or OV.

size specifies the decimal number of tracks to be
allocated for the specified file. The input size be­
comes t"he permanent size for the specified fi Ie and
overrides the default sizes given in the IIBACK­
GROUN D TEMP AREA" subsection. The perma­
nent size can be changed at execution time via an
!ALLOBT control command.

:PUNCH The :PUNCH command specifies that a reboot-
able version of SYSLOAD is to be punched after SYSGEN
has input the last control command.

The :PUNCH command has the form

(:PUNCH device

where device specifies the device (e. g., CPA04) on wh ich
the rebootable copy of SYSLOAD is to be punched.

:SIOP The :SIOP command defines the selector lOPs as
opposed to multiplexor lOPs. This command is required in
SYSGEN to correctly allocate the Channel Information
Table for the Monitor. All selector lOPs at an installation
must be input on th is command.

The :SIOP command has the form

(SlOP n,n,n, •..

where the n's indicate which lOPs are selector lOPs. The
In l parameter' must be a one-letter character from A
through H.

:FIN The :FIN command signals the end of the control
commands for the SYSGEN phase. Upon reading the :FIN
command, SYSGEN will punch a rebootable version of
SYSLOAD and output the map, if requested, and exit to
SYSLOAD. The :FIN command should normally be used to
terminate SYSGEN when it is not desired to continue with
SYSLOAD (otherwise, the :SYSLD command should be used).

The :FIN command has the form

[MAP]

where

MAP specifies that a MAP is to be output on the
same device being used to log the SYSGEN con­
trol commands. If no output device was specified
on the :SYSGEN command, the MAP is output on
TYAOl.

:SYSLD The :SYSLD command also signals the end ofthe
control commands to SYSGEN. The :SYSLD command causes
SYSGEN to output the rebootable deck of RBM, if requested,

SYSGEN Control Commands lOS

and then exit to a SYSLOAD entry where no further control
command input is required.

The :SYSLD command has the form

:SYSLD (IN,yyndd) ~(OUT,yyndd[,LPJ), {~~~}, ~

L (V,xxxx); (MAP,yyndd[, LPJ~

where

IN specifies the device to be used for loading the
Monitor, the RBM overlays, and all optional rou­
tines. The device must be either CR, PR, 9T, or
7T. This field is not optional. See the SYSGEN
command for the yyndd definition.

OUT specifies the device to receive the hard copy
of the RAD Bootstrap. If the System RAD alloca­
tion starts on sector zero, this field is optional;
otherwise, an output device must be specified.
The output device must be either CP, PP, 9T,
or 7T.

{~~~} specifies the SYSLOAD mode of operation.
The "ALL" parameter indicates that all defined
areas of the RAD are to be initialized to zero.
The "UPD" parameter indicates that existing data
on the RAD must be saved and only the new ver-
sion of RBM should be output to the RAD. See
"SYSLOAD", below, for a further description of
these options. The defaultvalue for this parameter
is "UPD".

V specifies the version number of the system being
loaded. Up to four alphanumeric characters can
be input for the version. The version \-vi!! be
logged on LL at the start of each job and logged
with each postmortem dump.

MAP specifies that a MAP is to be output at the
completion of SYSLOAD on the yyndd device.
The device must be either LP or TY.

See the SYSGEN control command for a description of
yyndd.

SYSLOAD

When the SYSGEN phase has been completed, or when the
rebootable SYSLOAD deck punched by SYSGEN has been
input, control is transferred to SYSLOAD. SYSLOAD loads
the Monitor, the RBM Overlays and Optional Routines and
outputs these to the RAD. It then outputs the RAD Boot:­
strap and the System Program's Directory to the RAD. When
SYSLOAD terminates it enters an idle state. If necessary,
the user can now load the system and user programs on the
RAD by following the sequence outlined later in this
chapter. If a :SYSLD command was not input to SYSGEN

106 SYSLOAD

"'r after rebooting the SYSLOAD deck, SYSLOAD wi II
initially output the following messages on the TYAO 1
device:

RBM SYSLOAD
INPUT OPTIONS

The options input on the TYAOl device must be made via
the :SYSLD command.

All writes made on the RAD during the SYSLOAD phase will
be checked to ensure that the data was correctly recorded
on the RAD.

ALL OPTION

The ALL option specifies that a complete system load is to
occur and that all RAD areas should be initial ized to zeros.
The ALL option is necessary for the initial SYSLOAD or if
the RAD allocation has changed so drastically that all areas
on the RAD have moved. SYSLOAD initially zeros out all
defined areas of the RAD. It then loads three groups of ob­
ject modules in the following sequence: optional resident
routines (FPSIM, DECSIM, CVSIM, BYTSIM)i resident Moni­
tor; and RBM Overlays and JCP.

The three groups of object modules must be loaded in the
stated order, but (for example) specific RBM Overlays need
not be in any special order. All these routines can be input
as one package and SYSLOAD will select and load only the
routines that were requested during SYSGEN, making it un­
necessary to rearrange the decks of the object modules ifre­
quirements change.

Each object module is identified to SYSLOAD via a DEF
item, and any object module not required is passed over.
EODs are a! lowed between object modules, and the final ob­
ject module must be followed by two EODs. If all the re­
quired object modules are not present in a group, SYSLOAD
outputs the following alarm on TYA01:

MISSING ID name 1, name2, ••.
RELOAD?

where namen is the name of the missing routine, the name
being indicated by the only DEF item in the object module.

If "Y" (YES) is input to the RELOAD query, SYSLOAD
again reads the input device to load the missing routines.
If liN II (NO) is input, SYSLOAD assumes the missing rou­
tines are not required and continues.

SYSLOAD writes the required overlays on the RAD as they
are loaded and sets up the information needed to load the
overlays in the RBM OVLOAD table. Modules that are not
overlays will be loaded directly into core and later written
out with resident RBM.

When the directory is written on the RAD by SYSLOAD, the
System Programs Directory will contain entries for two files
named "RBM" and "RADBOOT". RADBOOT is the file that

contains a copy of the RAD Bootstrap, which is the only pro­
gram on the RAD not contained within a RAD area. There­
fore, it cannot be accessed if a RAD dump or save is
required, and for this reason a copy of the Bootstrap is kept
in the SP area.

The RBM and RADBOOT fi les wi" be the first two files in
the SP area. The area on the RAD allocated for the Monitor
wi" include any patch or expansion core area the user has
requested. If a new version of the RBM system exceeds the
RAD space allocated to a previous version, a" programs in
the SP area must be reloaded.

After RBM and the SP Directory are output to the RAD,
SYSLOAD sets up the appropriate command list in the
Bootstrap to enable the Bootstrap to easily reload RBM
from the RAD. The Bootstrap is then written both into
the RADBOOT fi Ie and onto the starting sector of the
System RAD (SSTRACK option on :DEVICE command).

If the System RAD allocation starts at other than sector zero,
a copy of the RAD Bootstrap is punched on the device spec i­
fied by the OUT keyword on the :SYSLD command. The
user can then boot in RBM by loading the hard copy of the
RAD Bootstrap. This permits having more than one Monitor
system on the user's RAD and sti" being able to boot in RBM
by read i ng ina hard copy of the Bootstrap.

UPDATE OPTION (U PD)

The UPD option can be used whenever there is an existing
version of RBM on the RAD, and the user wishes to load a
new version of the Monitor or change some of the SYSGEN
parameters. It is not necessary to go through a SYSGEN to
load a new version of the Monitor. It is only necessary to
load the rebootable SYSLOAD deck and go through a nor­
mal SYSLOAD, specifying the IIUPD" option on the :SYSLD
command.

To change any SYSGEN-defined parameters, it is neces­
sary to input the complete set of SYSGEN control com­
mands. That is, there is no attempt to merge the new ver­
sion of the Monitor with the existing version on the RAD.

If the user does not want to disturb any of the RAD areas,
the RAD areas must be input with the same size and in the
same order as the initial SYSGEN. If the size of a RAD
area has to be changed or a new RAD area has to be added,
all RAD areas (except CK or BT) must be reloaded from the
fi rst changed area to the end of the RAD. Therefore, the
areas most subject to change in size should be allocated to
the end of the RAD so that the minimum number of areas
are affected by a change. An area that must be moved can
be saved and restored intact by using the RAD Editor Save
and Restore functions. It is norma" y to the user's advant­
age to take the default size and allocation for the CK and
BT areas since these are automatically allocated at the end
of the RAD and be changed without affecting any other area.

To inform the user as to which areas on the RAD have moved,
SYSLOAD reads in the RAD Bootstrap from the existing ver­
sion, determines where the Monitor is located on the RAD,

and then inputs the Master Directory from the existing ver­
sion. If the absolute RAD first word address is changed for
any of the SP, FP, BP, XA, or Dn areas, SYSLOAD outputs
an appropriate alarm, requests permission to continue, and
then zeros out the first sector in each area that has moved,
thus effectively erasing a" data in the area. The alarms
that could be output are

RELOAD

SP AREA

FP AREA

BP AREA

Dn AREA (where l::s n::s F)

XA AREA

CONTINUE?

If the user types "YES" to the CONTINUE? query, SYSLOAD
wi" proceed and effectively erase each area that has moved.
A "NO II input is allowed in the event that the user made an
error in allocating the RAD areas on the ! DEVICE command
and does not wish to proceed. Fora "NO" input, SYSLOAD
wi" output the map, if requested, and then enter a II WA IT II
condition. Note that since SYSLOAD must read in the RAD
Bootstrap,of the existing version to find the RAD location of
the Master Directory, the starting track of the System RAD
must be identical in both versions for the "UPD" option to
be used.

The RELOAD, SP AREA alarm would also be output if the
new version of the Monitor occupied more or less RAD space
than the existing version. Since the Monitor is the first file
in the area, a" other files have to be moved and reloaded
if the new Monitor requires a different amount of RAD space.
In this case, the user must reload the entire SP area in the
same manner as in an initial system load. The Monitor nor­
mally does not overflow its allocated RAD space when a new
version is loaded, since RAD space is allocated up to the
starting address of background.

If the first word address of background is different in a new
version from that of the existing version, the alarm

RELOAD, BGKG, PROGRAMS

is output. A" programs that execute in the background,
both System Processors and user background programs, would
then have to be reloaded and absolutized for their new core
execution location.

If SYSLOAD determines that the new version is completely
compatible with the existing version, the message

RELOAD, NOTHING

is output.

After typing the necessary RE LOAD alarms, SYSLOAD loads
the resident optional routines, the resident Monitor, and the
RBM Overlays as described under the ALL option.

SYSLOAD 107

LOADING SYSTEM PROCESSORS AND
USER PROGRAMS

RAD ALLOCATION OF SP AREA

After SYSLOAD completes its operation it wi II type the
message

When SYSLOAD has executed, the Systems Program area of
the RAD will have the following layout:

SIGMA 5/7 RBM-2 VERSION XXXX

and execute a WAIT instruction. The operator should then
place his job stack in the C device to load the appropriate
programs, perform an interrupt, and key in a "C ". Control
will be transferred to the Job Control Processor to read the
first control command.

SP Directory
Entries for RBM, BOOT

Relative sector 0

RBM File
(Resident Monitor and RBM Sectors 1 - n
Overlays)

BOOT File I Sector n + 1

Unused SP AREA Sectors (n +2) - (n + m)

SYSGEN AND SYSLOAD ALARMS

If the iiALL;; option was input to SYSLOAD, or if the SP
AREA or BCKG PROGRA,\AS need reloading, the RAD Edi=
tor must be the first processor loaded. The RAD Editor
should be loaded by the JCP Loader onto the OV fi Ie. The
user then inputs control commands to the RAD Editor to de­
fine permanent RAD files for all system processors (including
the RAD Editor), I ibraries, and all user programs. The RAD
Editor can then be copied from the OV file onto its perma­
nent file via the RAD Editor COpy command. The Overlay
Loader should be the next processor loaded by the RBM
Loader onto its defined file, and this loader can then be
used to load all other processors and user programs.

All alarm messages that can be output during SYSGEN and
SYSLOAD are defined in Table 18.

Alarm

INPUT ORDER ERROR

ERROR ITEM xx

RAD OVERFLOW

CK AREA TOO SMALL

NO SYSTEM RAD

Table 18. SYSGEN and SYSLOAD Alarm Messages

Meaning

Non/I/O Alarms

The :MONITOR, :RESERVE, or
:DEVICE command for the Sys­
tem RAD has been input in the
wrong order.

An error has occurred in item xx
of the last control command input.
Every item (except the :), followed
by a blank or a comma, is counted
in determining the one in error.
If xx is one greater than the last
item input, a nonoptional item
was not input.

The total number of tracks input
on the :DEVICE command have ex­
ceeded the total available size.

The amount of RAD space allo­
cated for the CK area is not suf­
ficient to hold the initial size
of background.

No RAD has been designated as
the System RAD.

Recovery Action

Catastrophic error. Rerun SYSGEN from the
start.

Control will be transferred to TVAOl to allow
the user to correct the error. Unless stated
otherwise (where the individual commands are
described) all items preceding the incorrect one
have been processed, and only items starting
with and following the incorrect one need be
input. If the user desires to input nothing from
TV AO 1 and to transfer control back to the
original input device, a single colon {:} should
be input on TY AO 1. If an error occurs on a
continuation card, a card containing a control
command must follow.

The :DEVICE command must be completely re­
input, with the sizes of the areas appropriately
changed.

Either the RAD areas must be reallocated {re­
quires a rerun of SYSGEN} or a checkpoint
cannot be done with the initial size of
background.

Catastrophic error. SYSGEN must be rerun
from the start.

108 Loading System Processors and User Programs/SYSGEN and SYSLOAD Alarms

Table 18. SYSGEN and SYSLOAD Alarm Messages (cont.)

Alarm Meaning Recovery Action

Non/I/O Alarms (cont.)

BI CKSM ERR A checksum error has occurred in SYSLOAD will execute a I1WAITII instruction.
the object module being input. If the computer is put back into RUN, the next

record will be read from the BI input device.

BI SEQ ERR A sequence error has occurred in Identical to IIBI CKSM ERRII.
the object module being input.

ERR, CONTROL BYTE = xx The xx control byte in the object SYSLOAD will execute a I1WAITII instruction.
module being loaded cannot be If the computer is put back into RUN, the cur-
processed by SYSLOAD. rent object module will be bypassed and not

loaded.

ILL. DE F, xxxxxxxx The specified DEF or REF is not SYSLOAD will enter a IIWAIT II condition. If
ILL. RE F, xxxxxxxx recognized by SYSLOAD during the computer is put back into RUN, processing

the loading of an object module. of the current object module will continue.

DUP. DEF, xxxxxxxx The same DEF has been encountered Identical to IIERR, CONTROL BYTE = XXII.
in two object modules, probably in-
dicating that two copies exist of the
same object module.

MISSING ID See ALL option. See ALL option.

EOF BEFORE END ITEM During the loading of an object SYSLOAD will enter a IIWAIT II condition. If
module, SYSLOAD has en- the computer is put back into RUN, the EOD
countered a misplaced EOD or or EOF wi II be ignored and the next record
EOF. wi II be input.

OBJ. MOD. NOT RECOG. The current object module being Identical to IIERR, CONTROL BYTE = XXII.
loaded by SYSLOAD is not recog-
nized by SYSLOAD.

TYPE C - OR - E This message is output after each Type IIC II to continue if this is not the last ob-
object module when RBM is being ject module to be input; or liE II (meaning EOD)
loaded from paper tape to allow if this is the last object module.
the user to load a new paper tape
for each obj ect modu I e.

UNABLE TO FIND OLD RBM During an update run, SYSLOAD SYSLOAD will continue with the load, but will
was unable to locate the old ver- be unable to make any checks as to which areas
sion of RBM on the RAD. need reloading. The user must reload the entire

SP area of the RAD if this alarm is output.

BT AREA TOO SMALL The space allocated to the BT area There is no recovery from this condition ex-
of the RAD is insufficient to hold cept to rerun the SYSGEN to either allocate
the default sizes of the GO and more RAD space for the BT area, or reduce the
OV files. default size of the GO and/or OV file.

OC LABEL NOT ASSIGNED The OC operational label has There is no recovery from this error. The OC
not been assigned to a type- label must be assigned in order for the system
writer device. to function.

RELOAD See U PDA TE option. See UPDATE option.

SP AREA

FP AREA

BP AREA

Dn AREA

XA AREA

BCKG. PROGRAMS

NOTHING

SYSGEN and SYSLOAD Alarms 109

Table 18. SYSGEN and SYSLOAD Alarm Messages (cont.)

I

Alarm

yyndd UNRECOG

yyndd BUSY
lOP n BUSY

yyndd MAN UAL

yyndd WRT PROT

yyndd FAULT,
TDV = xxxx

yyndd ERROR, SB = xxxx
yyndd PARITY, TRK = xxxx

yyndd UNUS. END,
TDV = xxxx

Meaning

I/O Alarms

The device indicated by yyndd is
unrecognized by the system.

I
I

The indicated device or lOP has
returned a busy status.

I The indicated device is in manual
mode.

I
I ne inuico.eu mogiiel iC lope OJ

RAD is hardware write-protected.

A hardware fault has occurred on
the indicated device. The TDV
status byte is also output in
hexadecimal.

A transmission error has occurred
with the indicated device.
SB = xxxx indicates the contents
of the TIO status byte in hexa­
decimal. If a parity occurs while
cI eari ng the RAD I the bad track,
as returned in the sense order, is
also logged in hexadecimal.

An unusual end status has been
returned from the indicated de­
vice. The TDV status byte is
also logged in hexadecimal.

110 SYSGEN and SYSLOAD Alarms

Recovery Action

SYSGE N will enter a "wait" state. Probably an
inval id device number was input, and the
SYSGE N wi II have to be rerun from the start.

I If the ilwaitil state is cleared, SYSGEN wiil re-
try the I/O operation.

SYSGEN will keep attempting the I/O operation.
Probably indicates a hardware problem.

Ready the device.

I For a magnetic tape, mser. a write rmg and
ready the tape. For a RAD, reset the hard­
ware Write Protect switch and then clear the
"wait" state so SYSLOAD can retry the I/O
operation.

SYSGEN continues attempting the I/O oper­
ation. Repair and ready the indicated device.

SYSGEN continues attempting the I/O oper­
ation, unless a parity has occurred while clear­
ing the RAD. In this case, this alarm and the
parity alarm will be logged and the RAD clear­
ing will continue.

SYSGEN continues attempting the I/O
operation.

I

I

APPENDIX A. SIGMA STANDARD OBJECT LANGUAGE

INTRODUCTION

GENERAL

The XDS Sigma standard object language provides a means
of expressing the output of any Sigma processor in standard
format. All programs and subprograms in this object format
can be loaded by the Monitor's relocating loader. Such a
loader is capable of providing the program linkages needed
to form an executabl e program in core storage. The obj ect
language is designed to be both computer-independent and
medium-independent; i. e., it is appl icable to any XDS
Sigma computer having a 32-bit word length, and the same
format is used for both cards and paper tape.

SOURCE CODE TRANSLATION

Before a program can be executed by the computer, it must
be translated from symbol ic form to binary data words and
machine instructions. The primary stages of source program
translation are accomplished by a processor. However, under
certain circumstances, the processor may not be able to trans­
late the entire source program directly into machine lan­
guage form.

If a source program contains symbol ic forward reterences, a
single-pass processor such as the XDS Symbol assembler can
not resolve such references into mach ine language. This is
because the machine language value for the referenced sym­
bol is not established by a one-pass processor unti I after the
statement containing the forward reference has been
processed.

A two-pass processor, such as the XDS Meta-Symbol assem­
bler, is capable of making "retroactive ll changes in the
object program before the object code is output. There­
fore, a two-pass processor does not have to output any
special object codes for forward references. An example
of a forward reference in a Symbol source program is given
below.

y EQU $ + 3

el,5 z

LI,R z

z EQU 2

BG Z

R EQU Z + 1

In this example the operand S + 3 is not a forward reference
because the assembl er can eval uate it when processing the
source statement in which it appears. However, the oper­
and Z in the statement

CI,5 Z

is a forwa rd refe rence because it appea rs before Z has been
defined. In processing the statement, the assembler outputs
the machine-language code for CI,5, assigns a forward ref­
erence number (e. g., 12) to the symbol Z, and outputs that
forward reference number. The forward reference number
and the symbol Z are also retained in the assembler's symbol
table.

When the assembl er processes the source statement

LI, R Z

it outputs the machine-language code for LI, assigns a for­
ward reference number (e. g., 18) to the symbol R, outputs
that number, and again outputs forward reference number
12 for symbol Z.

On processing the source statement

Z EQU 2

the assembler again outputs symbol Z's forward reference
number and also outputs the value, which defines symbol Z,
so that the relocating loader will be able to satisfy refer­
ences to Z in statements CI, 5 Z and LI, R Z. At this time,
symbol Z's forward reference number (i. e., 12) may be
deleted from the assembler's symbol table and the defined
value of Z equated with the symbol Z (in the symbol table).
Then, subsequent references to Z, as in source statement

BG Z

would not constitute forward references, since the assembler
could resolve them immediately by consulting its symbol
table.

If a program contains symbolic references to externally
defined symbols in one or more separately processed subpro­
grams or library routines, the processor will be unable to
generate the necessary program linkages.

An example of an external reference in a Symbol source pro­
gram is shown below.

REF ALPH

LI,3 ALPH

When the assembler processes the source statement

REF ALPH

Appendix A 111

it outputs the symbol ALPH, in symbolic (EBCDIC) form, in
a declaration specifying that the symbol is an external ref­
erence. At this time, the assembler also assigns a declara­
tion name number to the symbol ALPH but does not output
the number. The symbol and name number are retained in
the assembler's symbol table.

After a symbol has been declared an external reference, it
may appear any number of times in the symbol ic subprogram
in which it was declared. Thus, the use of the symbol
ALPH in the source statement

LI,3 ALPH

in the above example, is valid even though ALPH is not
defined in the subprogram in which it is referenced.

The relocating loader is able to generate interprogram i ink­
ages for any symbol that is declared an external definition
in the subprogram in which that symbol is defined. Shown
below is an example of an external definition in a Symbol
source program.

DEF ALPH

LI,3 ALPH

ALPH AI,4

When the assembler processes the source statement

DEF ALPH

it outputs the symbol ALPH, in symbolic (EBCDIC) form, in
a declaration specifying that the symbol is an external defi­
nition. At this time, the assembler also assigns a declaration
name number to the symbol ALPH but does not output the
number. The symbol and name number are retained in the
assembler's symbol table.

After a symbol has been declared an external definition it
may be used (in the subprogram in which it was declared) in
the same way as any other symbol. Thus, if ALPH is used as
a forward reference, as in the source statement

LI,3 ALPH

above, the assembler assigns a forward reference number to
ALPH, in addition to the declaration name number assigned
previously. (A symbol may be both a forward reference and
an external definition.)

On processing the source statement

ALPH A1,4

the assembler outputs the declaration name number of the
label ALPH (and an expression for its value) and also outputs
the machine-language code for AI,4 and the constant X'F21.

OBJECT LANGUAGE FORMAT

An object language program generated by a processor is out­
put as a string of bytes representing Hload items". A load
item consists of an item type code follo'vved by the specific
load information pertaining to that item. (The detailed format
of each type of load item is given later in this appendix.)
The individual load items require varying numbers of bytes

112 Appendix A

for their representation, depending on the type and specific
content of each item. A group of 108 bytes, or fewer, com­
prises a logical record. A load item may be continued from
one log i ca I record to the ne xt •

The ordered set of logical records that a processor generates
for a program or subprogram is termed an "object module".
The end of an object module is indicated by a module-end
type code followed by the error severity level assigned to
the modu I e by the processor.

RECORD CONTROL INFORMATION

Each record of an object module consists of 4 bytes of con­
trol information followed by a maximum of 104 bytes of load
information. That is, each record, with the possible excep­
tion of the end record, normaiiy consists of 108 bytes of
information (i. e., 72 card columns).

The 4 bytes of control information for each record have the
form and sequence shown below.

Byte 0

Record Tlpe Mode Format

01 1 0

0 2 3 4 5 6 7

Byte 1

Sequence Number

o 7

Byte 2

Checksum

o 7

Byte 3

Record Size

o 7
Record Type specifies whether this record is the last

record of the module:

000 means last
001 means not last

Mode specifies that the loader is to read binary infor-
mation. This code is always 11.

Format specifies object language format. This code is
always 100.

Sequence Number is 0 for the first record of the module
and is incremented by 1 for each record thereafter,
until it recycles to 0 after reaching 255.

Checksum is the computed sum of the bytes comprising
the record. Carries out of the most significant bit
position of the sum are ignored.

Record Size is the number of bytes (including the record
control bytes) comprising the logical record (5 ~ record

size :s 108). The record size will normally be 108 bytes
for all records except the last one, which may be fewer.
A.ny excess bytes in a physical record are ignored.

LOAD ITEMS

Each load item begins with a control byte that indicates the
item type. In some instances, certain parameters are also
provided in the load item control byte. In the following dis­
cussion, load items are categorized according to their function:

1. Declarations identify to the loader the external and
control section labels that are to be defined in the
object module being loaded.

2. Definitions define the value of forward references,
external definitions, the origin of the subprogram being
loaded, and the starting address (e. g., as provided in
a Symbol/Meta-Symbol END directive).

3. Expression evaluation load items within a definition
provide the values (such as constants, forward refer­
ences, etc.) that are to be combined to form the final
value of the definition.

4. Loading items cause specified information to be stored
into core memory.

5. Miscellaneous items comprise padding bytes and the
module-end indicator.

DECLARATIONS

In order for the loader to provide the linkage between subpro­
grams/ the processor must generate for each external refer­
ence ordefinition a load item, referred to as a "declaration",
containing the EBCDIC code representation of the symbol
and the information that the symbol is either an external ref­
erence or a definition (thus, the loader will have access to
the actual symbolic name).

Forward references are always internal references within an
object module. (External references are never considered
forward references.) The processor does not generate a dec-
1aration for a forward reference as it does for externalsi how­
ever, it does assign name numbers to the symbols referenced.

Declaration name numbers (for control sections and external
labels) and forward reference name numbers apply onlywithin
the object module in which they are assigned. They have no
significance in establ ishing interprogram I inkages, since
external references and definitions are correlated by match­
ing symbol ic names. Hence, name numbers used in any
expressions in a given ob ject module always refer to symbols
that have been declared within that module.

The processor must generate a declaration for each symbol
that identifies a program section. AI though the XDS Symbol
assembler used with the Monitor allows only a standard con­
trol section (i. e' J program sectionL the standard object
language includes provision for other types of control sec­
tions (such as dummy control sections). Each ob ject module
produced by the Symbol processor is considered to consist of
at least one control section. If no section is explicitly iden­
tified in a Symbol source program J the assembl er assumes it
to be a standard control section (discussed below). The stan­
dard control section is always assigned a declaration name

number of O. All other control sections (i. e., produced by
a processor capable of declaring other control sections) are
assigned declaration name numbers (1, 2, 3, etc.) in the
order of their appearance in the source program.

In the load items discussed below, the access code, pp, des­
ignates the memory protection class that is to be associated
with the control section. The meaning of this code is given
below.

pp Memory Protection Feature t

00 Read, write, or access instructions from.

01 Read or access i nstructi ons from.

10 Read only.

11 No access.

Control sections are always allocated on a doubleword
boundary. The size specification designates the number of
bytes to be a II oca ted for the section.

Declare Standard Control Section

Byte 0

I 0
Control b~te

0 0 0 1 0

0 2 3 4 5 6

Byte 1

Access code .
p p 0 0

0 1 2 3 4 5 6

Byte 2

I
Size (bits 5 through 12)

0

Byte 3

I
Size (bits 13 through 20)

0

11
7

7

7

7

This item declares the standard control section for the object
modul e. There may be no more than one standard control
section in each object module. The origin of the standard
control section is effectively defined when the first reference
to the standard control section occurs, although the declara­
tion item might not occur until much later in the ob ject
module.

t"R d II b . . f . f h ea means a program can 0 taln In ormatIOn rom t e
protected areai "write" means a program can store informa­
tion into a protected areai and, "access II means the compu­
ter can execute instructions stored in the protected area.

Appendix A 113

This capability is required by one-pass processors, since
the size of a section cannot be determined until all of
the load information for that section has been generated by
the processor.

Declare Nonstandard Control Section

Byte 0

o
o

Byte 1

I ~ccess c~de I
I I

f'\
V

Byte 2

o

o

Control byte
o o 1 o
2 3 4 5 6

Siz~ (bits 1 through 4)
o 0

2 4

Size (bits 5 through 12)

Size (bits 13 through 20)

7

"7
f

7

7

This item declares a control section other than standard con­
trol section (see above). Note that this item is not appl icable
to the XDS Symbol processor used with the Monitor system.
However, the loader is capable of loading object modules
(produced by other processors, such as the Meta-Symbol
and FORTRAN IV processors) that do contain this item.

Declare Dummy Section

Byte 0

o
Control byte

11 0 0 1 0 0

o 2 3 4 5 6 7

Byte 1

First byte of name number

o 7

Byte 2

Second byte of name numbert

0 7

Byte 3

Access code Size (bits 1 through 4)
p p 0 0

0 2 3 4 7

tIf the module has fewer than 256 previously assigned name
numbers, this byte is absent.

114 Appendix A

Byte 4

Size (bits 5 through 12)

o 7

Byte 5

Size (bits 13 through 20)

o 7

This item comprises a declaration for a dummy control sec­
tion. It results in the allocation of the specified dummy
section, if that section has not been allocated previously
by another object module. The label that is to be associ­
ated with the first location of the allocated section must be
a previously declared external definition name. (Even
though the source program may not be required to explicitly
designate the label as an external definition, the processor
must generate an external definition name declaration for
that label prior to generating this load item.)

Declare External Definition Name

Byte 0

10
Control b:t:te

11 0 0 0 0 0

0 2 3 4 5 6 7

Byte 1

I
Name length, in bytes (K)

0 7

Byte 2

I
First byte of name I

I I
0 7

Byte K +1

I last byte of name

0 7

This item declares a label (in EBCDIC code) that is an exter­
nal definition within the current object module. The name
may not exceed 63 bytes in length.

Declare Primary External Reference Name

Byte 0

Control byte

o o o 0 o
o 2 3 4 5 6 7

Byte 1

Name iength (K), in bytes

o 7

Byte 2

First byte of name

o 7

Byte K+l

Last byte of name

o 7

This item declares a symbol (in EBCDIC code) that is a pri­
mary external reference within the current object module.
The name may not exceed 63 bytes I n length.

A primary external reference is capable of causing the loader
to search the system I ibrary for a corresponding external
definition. If a corresponding external definition is not
found in another load module of the program or in the system
library, a load error message is output and the job is errored.

Declare Secondary External Reference Name

Byte 0

10
Control byte

0 0 0 0

0 2 3 4 5 6 7

Byte 1

Name length, in bytes (K)

o 7

Byte 2

First byte of name

o 7

Byte K+l

Last byte of name

o 7

This item declares a symbol (in EBCDIC code) that is a sec­
ondary external reference within the current object module.
The name may not exceed 63 bytes in length.

A secondary external reference is not capable of causing the
loader to search the system library fora corresponding exter­
nal definition. If a corresponding external definition is not
found in another load module of the program, the job is not
errored and no error or abnormal message is output.

Secondary external references often appear in I ibrary routines
that contain optional or al ternative subrouti nes, some of which
may not be required by the user's program. By the use of pri­
mary external references in the user's program, the user can
specify that only those subroutines that are actual! y required by
the current job are to be loaded. AI though secondary external
references do not cause loading from the I ibrary, they do cause
I inkages to be made between routines that are loaded.

DEFINITIONS
When a source language symbol is to be defined (i. e., equa­
ted with a val ue), the processor provides for such a val ue by
generating an object language expression to be evaluated by
the loader. Expressions are of variable length, and termi­
nate with an expression-end control byte (see Section 4 of
this appendix). An expression is evaluated by the addition
or subtrac ti on of va I ues spec i fi ed by the express i on.

Since the loader must derive values for the origin and start­
ing address of a program, these also require definition.

Origin

Byte 0

10
Control blte

0 0 0 0 0

0 2 3 4 5 6

This item sets the loader's load-location counter to the
value designated by the expression immediately following
the origin control byte. This expression must not contain
any el ements that cannot be eval uated by the loader (see
Expression Evaluation which follows).

Forward Reference Definition

Byte 0

o
Byte 1

o
Byte 2

o

o
Control byte

o o 1 o
2 3 4 5

First byte of reference number

Second byte of reference number

o
6

01
7

7

7

7

This item defines the vaiue (expression) for a forward refer­
ence. The referenced expression is the one immediatel y
following byte 2 of this load item, and must not contain
any elements that cannot be evaluated by the loader (see
Expression Evaluation which follows).

Forward Reference Definition and Hold

Byte 0

10
0

Byte 1

o
Byte 2

o

0
Control byte

01 0 1 0 0 0

2 3 4 5 6 7

Fi rst byte of reference number

7

Second byte of reference number

7

Appendix A 115

This item defin,es the value (expression) for a forward refer­
ence and notifies the loader that this value is to be retained
in the loader's symbol table until the module end is encoun­
tered. The referenced expression is the one immediately
following the name number. It may contain values that have
not been defined previously, but all such values must be
available to the loader prior to the module end.

After generating this load item, the processor need not retain
the value for the forward reference, since that responsibility
is then assumed by the loader. However, the processor must
retain the symbol ic name and forward reference number
assigned to the forward reference (until module end).

External Definition

Byte 0

10
Controi by:te

01 0 0 0 1 0

0 2 3 4 5 6 7

Byte 1

I First byte of name number

0 7

Byte 2

Second byte of name numbert

o 7

This item defines the value (expression) for an external
definition name. The name number refers to a previously
declared definition name. The referenced expression is
the one immediately following the name number.

Define Start

Byte 0

10
Control byte

0 0 0 1 0

0 2 3 4 5 6 7

This item defines the starting address (expression) to be used
at the completion of loading. The referenced expression is
the one immediately following the control byte.

EXPRESSION EVALUATION

A processor must generate an object language expression
whenever it needs to communicate to the loader one of
the following:

1. A program load origin.

2. A program starting address.

tIf the module has fewer than 256 previously assigned name
numbers, this byte is absent.

116 Appendix A

3. An external definition value.

4. A forward reference value.

5. A field definition value.

Such expressions may include sums and differences of con­
stants, addresses, and external or forward reference values
that, when defined, will themselves be constants or addresses.

After initiation of the expression mode, by the use of a con­
trol byte designating one of the five items described above,
the value of an expression is expressed as follows:

1. An address val ue is represented by an offset from the
control section base plus the value of the control sec­
tion base.

2. The value of a constant is added to the accumulated
sum by generating an Add Constant (see below) control
byte followed by the value, right-justified in four bytes.

The offset from the control section base is given as a
constant representing the number of units of displace­
ment from the control section base, at the resol ution
of the address of the item. That is, a word address
would have its constant portion expressed as a count of
the number of words offset from the base, whi I e the
constant portion of a byte address would be expressed
as the number of bytes offset from the base.

The control section base value is accumulated by means
of an Add Value of Declaration (see below) or Subtract
Value of Declaration load item specifying the desired
resolution and the declaration number of the control
section base. The loader adjusts the base value to the
specified address resolution before adding it to the cur­
rent partial sum for the expression.

In the case of an absolute address! an Add Absolute
Section (see below) or Subtract Absolute Section con­
trol byte must be included in the expression to identify
the value as an address and to specify its resolution.

3. An external definition or forward reference val ue is
included in an expression by means of a load item add­
ing or subtracting the appropriate declaration or forward
reference value. If the value is an address, the reso-
I ution specified in the control byte is used to al ign the
value before adding it to the current partial sum for the
expression. If the value is a constant, no alignment is
necessary.

Expressions are not evaluated by the loader until all required
values are available. In evaluating an expression, the
loader maintains a count of the number of values added or
subtracted at each of the four possible resol utions. A sepa­
rate counter is used for each resolution, and each counter
is incremented or decremented by 1 whenever a value of the
corresponding resol ution is added to or subtracted from the
loader's expression accumulator. The final accumulated sum
is a constant, rather than an address value, if the final count
in all four counters is equal to O. If the final count in one
(and only one) of the four counters is equal to + 1 or -1, the

accumulated sum is a "simple address" having the resolution
of the nonzero counter. If more than one of the four counters
have a nonzero final count, the accumulated sum is termed
a "mixed-resolution expression" and is treated as a constant
rather than an address.

The resolution of a simple address may be altered by means
of a Change Expression Resolution (see below) control byte.
However, if the current partial sum is either a constant or
a mixed-resolution value when the Change Expression Reso­
lution control byte occurs, then the expression resolution
is una ffected •

Note that the expression for a program load origin or start­
ing address must resolve to a simplt:: address, and the single
nonzero resol ution counter must have a final count of + 1
when such expressions are eval uated.

In converting a byte address to a word address, the two least
significant bits of the address are truncated. Thus, if the
resulting word address is later changed back to byte resolu­
tion, the referenced byte location will then be the first byte
(byte O) of the word.

After an expression has been evaluated, its final value is
associated with the appropriate load item.

In the following diagrams of load item formats, RR refers to
the address resolution code. The meaning of this code
is given in the table below.

RR Address Resolution

00 Byte

01 Halfword

10 Word

11 Doubleword

The load items discussed in this appendix, "Expression
Evaluation", may appear only in expressions.

Add Constant

Byte 0

Fa Control byte
0 0 0 0 0 0

0 2 3 4 5 6

Byte 1

First byte of constant

o

Byte 2

Second byte of constant

o

11
7

7

7

Byte 3

Third byte of constant

o 7

Byte 4

Fourth byte of constant

o 7

This item causes the specified 4-byte constant to be added
to the loader·s expression accumulator. Negative constants
are represented in two·s complement form.

Add Absolute Section

Byte 0

Control byte
o 1 0 R

o 2 3 4 5 6 7

This item identifies the associated value (expression) as a
positive absolute address. The address resolution code, RR,
designates the desired resolution.

Subtract Absolute Section

Byte 0

Control byte
o 1 1 o R

o 2 3 4 5 6

This item identifies the associated value (expression) as a
negative absolute address. The address resolution code,
RR, designates the desired resol ution.

Add Value of Declaration

Byte 0

10 0

0

Byte 1

o

Byte 2

o

Control bz::te
0 a 0

2 3 4 5

First byte of name number

t Second byte of name number

R

6

7

RI

7

7

7

t
If the module has fewer than 256 previously assigned name
numbers, this byte is absent.

Appendix A 117

This item causes the value of the specified declaration to be
added to the loader's expressi on accumu lator. The address
resolution code, RR, designates the desired resolution, and
the name number refers to a previously declared definition
name that is to be associated with the first location of the
allocated section.

One such item must appear in each expression for a reloca­
table address occurring within a control section, adding the
value of the specified control section declaration (i. e.,
adding the byte address of the first location of the control
section).

Add Value of Forward Reference

Byte 0

I Control byte I
1

0 0 0 0 R RI

0 2 3 4- 5 6 7

Byte 1

First byte of forward reference number

0 7

Byte 2

Second byte of forward reference number

0 7

This item causes the value of the specified forward reference
to be added to the loader's expression accumulator. The
address resolution code, RR, designates the desired resolu­
tion, and the designated forward reference must not have
been defined previously.

Subtioct Value of Declaration

Byte 0

10
Control blte

0 0 1 0 R

0 2 3 4- 5 6

Byte 1

First byte of name number

o

Byte 2

Second byte of name numbert

This item causes the value of the specified declaration to
be subtracted from the loader's expression accumulator.

RI
7

7

tlf the module has fewer than 256 previously assigned name
numbers, this byte is absent.

118 Appendix A

The address resolution code, RR, designates the desired
resolution, and the name number refers to a previously de­
clared definition name that is to be associated with the
first location of the allocated section.

Subtract Value of Forward Reference

Byte 0

10
Control blte

R I 0 0 R

0 2 3 4- 5 6 7

Byte 1

I First byte of forward reference number

,

0 7

Byte 2

Second byte of forward reference number

0 7

This item causes the value of the specified forward reference
to be subtracted from the loader's expression accumulator.
The address resolution code, RR, designates the desired reso­
lution, and the designated forward reference must not have
been defined previously.

Change Expression Resolution

Byte 0

Control blte
o 1 0 o R

o 2 3 4- 5 6 7

This item causes the address resol ution in the expression to
be changed to that designated by RR.

Expression End

Byte 0

Control byte
o o o 0 o

o 2 3 4 5 6 7

This item identifies the end of an expression (the value of
which is contained in the loader's expression accumulator).

LOADING
load Absolute

Byte 0 . I

10
Control blte

NI 0 0 N N N

0 2 3 4- 5 6 7

Byte 1

First byte to be loaded

o 7

Byte NNNN

Last byte to be loaded

o 7

This item causes the next NNNN bytes to be loaded abso­
lutely (NNNN is expressed in natural binary form, except
that 0000 is interpreted as 16 rather than 0). The load loca­
tion counter is advanced appropriately.

Load Relocatable (Long Form)

Byte 0

10
Control b~te

RI 0 1 Q C R

0 2 3 4 5 6 7

Byte 1

First byte of name number

o 7

Byte 2

Second byte of name numbert

o 7

This item causes a 4-byte word (immediately following this
load item) to be loaded, and relocates the address field
according to the address resolution code, RR. Control bit
C designates whether relocation is to be relative to a for­
ward reference (C = 1) or relative to a declaration (C = O).
Control bit Q designates whether a 1-byte (Q = 1) or a
2-byte (Q = O) name number follows the control byte of
this load item.

If relocation is to be relative to a forward reference, the
forward reference must not have been defined previously.
When this load item is encountered by the loader, the load
location counter can be al igned with a word boundary by
loading the appropriate number of bytes containing all zeros
(e.g., by means of a load absolute item).

Load Relocatable (Short Form)

Byte 0

Control byte
C D D D

o 2 3 4

D D

5 6 7

tif the module has fewer than 256 previously assigned name
numbers, this byte is absent.

This item causes a 4-byte word (immediately following this
load item) to be loaded, and relocates the address field
(word resol ution). Control bit C designates whether reloca­
tion is to be relative to a forward reference (C = 1) or rela­
tive to a declaration (C = 0). The binary number DDDDDD
is the forward reference number or declaration number by
which relocation is to be accomplished.

If relocation is to be relative to a forward reference, the
forward reference must not have been defined previously.
When this load item is encountered by the loader, the load
location counter must be on a word boundary (see "Load
Relocatable (Long Form)lI, above).

Repeat Load

Byte 0

Control byte
o o o 1

o 2 3 4 5 6 7

Byte 1

First byte of repeat count

o 7

Byte 2

Second byte of repeat count

o 7

This item causes the loader to repeat (i.e., perform) the
subsequent load item a specified number of times. The
repeat count must be greater than 0, and the load item to
be repeated must follow the repeat load item immediately.

Define Field

Byte 0

10
Control byte

0 0 0 0

0 2 3 4 5 6 7

Byte 1

Field location constant, in bits (K)

o 7

Byte 2

Field length, in bits (L)

o 7

This item defines a value (expression) to be added to a field
in previously loaded information. The field is of length L
(1 ~ L ~ 255) and terminates in bit position T, where:

T = current load bit position -256 +K.

Appendix A 119

The field location constant, K, may have any value from
1 to 255. The expression to be added to the specified field
is the one immediately following byte 2 of this load item.

MISCELLANEOUS LOAD ITEMS

Byte 1

o
o o

2

Severity level
o E E E

3 4 5 6 7

Padding

Byte 0

o o
Control byte

o 0 o o

This item identifies the end of the object module. The
value EEEE is the error severity level assigned to the mod­
ule by the processor (see "LOAD", in Chapter 2 of this
manual).

o 2 3 4 5 6 7

Padding bytes are ignored by the loader. The object lan­
guage allows padding as a convenience for processors. OBJECT MODULE EXAMPLE

Module End

Byte 0

Control byte
o o o 1

o 2 3 4 5

Example

2

3 00000

4 OOOC8

5 00OC8 22000000 N

6 00OC9 32000000 N

7

8

9 OOOCA 50000000 N

10

11 OOOCB 69200000 F

12

13 ooOCC 20000001 N

14 OOOCD 680000CA

15 OOOCE 68000000 X

16 OOOCF 0001 A

17 00000003

18 00000004

19 000 DO 224FFFFF A

20

21

22 OOOC8

120 Appendix A

6 7

The following example shows the correspondence between
the statements of a Symbol source program and the string
of object bytes output for that program by the assembler.
The program, listed below, has no significance other than
illustrating typical object code sequences.

DEF AA, BB,CC CC IS UNDEFINED BUT CAUSES NO
ERROR

REF RZ, RTN

ALPHA CSECT

EXTERNAL REFERENCES DECLARED

DEFINE CONTROL SECTION ALPHA

DEFINE ORGIN

AA

*

*

RPT

*

*

KON

R

CNT

BB

*

*

ORG 200

LI, CNT 0

LW, R RZ

AH,R KON

BCS,2 BB

AI,CNT

B

B

RPT

RTN

DATA, 2 1

EQU 3

EQU

LI,CNT

END

4

-1

AA

DEFINES EXTERNAL AA; CNT IS A
FWD REF

{

R IS A FORWARD REFERENCE;

RZ IS AN EXTERNAL REFERENCE, AS

DECLARED IN LINE 2

{
DEFINES RPTi RAND KON ARE

FORWARD REFERENCES

{
BB IS AN EXTERNAL DEFINITION

USED AS A FORWARD REFERENCE

CNT IS A FORWARD REFERENCE

RPT IS A BACKWARD REFERENCE

RTN IS AN EXTERNAL REFERENCE

DEFINES KON

DEFINES R

DEFINES CNT

{

DEFINES EXTERNAL BB THAT HAS

ALSO BEEN USED AS A FORWARD

REFERENCE

EN D OF PROGRAM

CONTROL BYTES (In Binary)

Begin Record Record number: 0

00111100
00000000
01100011
01101100

00000011

00000011

00000011

00000101

00000101

00001010

00000001
00100000

00000010

00000100
00000001
00100000

00000010

01000100

00000111

00100110

00000010

Record type: not last, Mode binary, Format: object language.
Sequence number 0
Checksum: 99
Record size: 108

03020101 (hexadecimal code comprising the load item)
Declare external definition name (2 bytes) Name: AA

03020202
Declare external definition name (2 bytes) Name: BB

03020303
Declare external definition name (2 bytes) Name: CC

OS02D9E9
Declare primary reference name (2 bytes) Name RZ

OS03D9E3DS
Declare primary reference name (3 butes) Name: RTN

OA010100000320200002
Define external definition
Number 1
Add constant: 800 X·320·
Add value of declaration (byte resolution)
Number 0
Express i on end

040100000320200002
Origin
Add constant: 800 X·320·
Add value of declaration (byte resolution)
Number 0
Expression end

4422000000
Load absolute the following 4 bytes: X·22000000·

07EB0426000002
Define field
Field location constant: 23S bits
Field length: 4 bits
Add the following expression to the above field:
Add value of forward reference (word resolution)
Number 0
Express i on end

Declaration number: 1

Declaration number: 2

Declaration number: 3

Declaration number: 4

Decl aration number: S

}

}

Record control
information not
part of load item

Source Li ne 1

Source Line 2

Source Line st

Source Line 4

Source Li ne 5

t No object code is generated for source lines 3 (define control section) or 4 (define origin) at the time they are encountered.
The control section is declared at the end of the program after Symbol has determined the number of bytes the program requires.
The origin definition is generated prior to the first instruction.

Appendix A 121

10000100

00000111

00 lOO 110

00000010

11001100

00000111

00lO0110

00000010

llOlO0lO

o lOOO lOO

00000111

00 lOO 110

00000010

10000000

lOOOOlOl

00001000

8432000000
Load relocatable (short form). Relocate address field (word resolution)
Relative to declaration number 4
The following 4 bytes: XI 32000000 1

07EB0426000602
Define field
Field location constant: 235 bits
Field length: 4 bits
Add the following expression to the above field:
Add value of forward reference {word resolution}
Number 6
Express i on end

CC50000000
Load re!ocatable (short form). Relocate address field (word resolution)
Relative to forward reference number 12
The following 4 bytes: XI 50000000 1

07EB0426000602
Define field
Field location constant: 235 bits
Field length: 4 bits
Add the following expression to the above field:
Add value of forward reference {word resolution}
Number 6
Express i on end

D269200000
Load relocatable {short form}. Relocateaddress field {word resolution}
Relative to forward reference number 18
The following 4 bytes: X'69200000 '

4420000001
Load absolute the following 4 bytes: X'20000001 1

07EB0426000002
Define field
Field location constant: 235 bits
Field length: 4 bits
Add the following expression to the above field:
Add value of forward reference {word resolution}
NiJmber 0
Expression end

8 068 OOOOCA
Load relocatable {short form}. Relocate address field {word resolution}
Relative to declaration number 0
The following 4 bytes: X'680000CA'

8568000000
Load relocatable {short form}. Relocate address field {word resolution}
Relative to declaration number 5
The following 4 bytes: XI 68000000 1

08
Define forward reference (continued in record 1)

122 Appendix A

"'\

I

}

}
}

Source Li ne 6

Source Line 9

Source line 11

Source Line 13

Source Line 14

Source Line 15

Source line 16

Begin Record Record number 1

00011100
00000001
1110 1100
01010001

00000001
00100000

00000010

01000010

00001000

00000001
00000010

00001000

00000001
00000010

00001111

01000001

00001000

00000001

00000010

00001010

00000001
00100000

00000010

01000100

00001101
00000001
00100000

00000010

Record type: last, Mode: binary, Format: object language.
Sequence number 1
Checksum: 236
Record size: 81

000C010000033C200002 (continued from record 0)
Number 12
Add constant: 828 X'33C
Add value of declaration (byte resolution)
Number 0
Expression end

42001
Load absolute the following 2 bytes: X'OOOl l

080006010000000302
Define forward reference
Number 6
Add constant: 3 X' 31

Express i on end

080000010000000402
Define forward reference
Number 0
Add constant: 4 X'4 1

Express i on end

OF00024100
Repeat load
Repeat count: 2
Load absolute the following 1 bytes: XIOO I

0800120100000340200002
Define forward reference
Number 18
Add constant: 832 X' 340 '
Add value of declaration (byte resolution)
Number 0
Expression end

OA020100000340200002
Define external definition
Number 2
Add constant: 832 XI 340 1

Add value of declaration (byte resolution)
Number 0
Express i on end

44224FFFFF
Load absolute the following 4 bytes: X'224FFFFF '

ODOI00000320200002
Define start
Add constant: 800 XI 320 I
Add value of declaration (byte resolution)
Number 0
Expression end

}

}

}
}

Record Control
Information

Source Line 16

Source Line 17

Source Li ne 18

Advance to Word
Boundary

Source Line 19

Source Line 22

Appendix A 123

o B000344
00001011 Declare standard control section declaration number: 0

Access code: Full access. Size 836 X'344'

OEOO
00001110 Module end

Severity level: X'O'

A table summarizing control byte codes for object language load items is given below.

Ob ject Code Control Byte Type of Load Item

0 0 0 0 0 0 0 0 Padding

0 0 0 0 0 0 0 Add constant

0 0 0 0 0 0 0 Expression end

0 0 0 0 0 0 Declare external definition name

0 0 0 0 0 0 0 Origin

0 0 0 0 0 0 Declare primary reference name

0 0 0 0 0 0 Declare secondary reference name

0 0 0 0 0 1 Define field

0 0 0 0 0 0 0 Define forward reference

0 0 0 0 0 0 Declare dummy section

0 0 0 0 0 0 Define external definition

0 0 0 0 0 1 Declare standard control section

0 0 0 0 0 0 Declare nonstandard control section

0 0 0 0 0 Define start

0 0 0 0 0 Module end

0 0 0 0 Repeat load

0 0 0 0 0 0 0 Define forward reference and hold

0 0 0 0 0 R R Add value of declaration

0 0 0 0 R R Add value of forward reference

0 0 0 0 R R Subtract value of declaration

0 0 0 1 R R Subtract value of forward reference

0 0 0 0 R R Change expression resolution

0 0 0 R R Add absolute section

0 0 1 0 R R Subtract absolute section

0 1 0 0 N N N N Load absol ute

0 1 0 Q C R R Load relocatable {long form}

C D D D D D D Load relocatable (short form)

124 Appendix A

APPENDIX B. REAL-TIME PERFORMANCE DATA

RESPONSE TO INTERRUPTS BY CENTRALLY
CONNECTED TASKS

Table B-1 shows the time (in flsec) used by the system to
save the interrupted context and establish the interrupting
task context. This time includes the XPSD in the interrupt
location context and represents the total time between the
interrupt becoming active and the start of execution of the
first instruction in the task (assuming no interruption by a
higher priority task). The minimum and maximum times
reflect minimum and maximum memory overlap.

I/O INTERRUPT

Following successful completion of an I/O device access,
the I/O interrupt wi II remain active for a maximum of
90 flsec, assuming that no higher priority interrupts have
become active during this period. RBM never disables the
interrupt system for longer than 100 flsec.

Upon clearing the I/O interrupt, the system proceeds with
cleanup of the request at the priority level of the inter­
rupted task.

CONSOLE INTERRUPT
The Console Interrupt remains active for less than 30 flsec.
During this time, a flag in the Control Task is set to indi­
cate the occurrence of the interrupt and the Control Task
interrupt is triggered.

OVERLAY LOADING

Overlay loading is accompl ished with a negl igible percent­
age of total time devoted to non-I/O system activity. For
example, on the Model 7202/7204 RAD, a 1400-word over­
lay requires approximately 50 msec, assuming average la­
tency (17 mils) and I/O transfer time of 34 msec. To this
must be added the ti me waited to gain access to the RAD
(time of request, if any in progress, plus the time of any
higher priority requests).

Table B-1. Times Required to Save Interrupted Context

Registers Times in Task interrupts back- Task interrupts system or fore- No ac-
Saved jJsec t ground with accounting ground tasks with accounting counting

Min. 39.0 34.4 30.8
4

Max. 42.2 36.1 32.4

Min. 42.2 37.6 34.0
8

Max. 44.8 39.7 36.0

Min. 48.6 44.0 40.4
16

Max. 52.0 46.9 43.2

tTimes assume a Sigma 7 configuration without map.

Appendix B 125

APPENDIX C. RAD STORAGE REQUIREMENTS

Assuming a Model 7202/7204 RAD, a rough approximation
of the amount of RAD space required by the RBM system is
approximately 60 tracks to store the Monitor plus the foI­
I owi ng processors:

Macro-Symbol

FORTRAN IV-H

FORTRAN Math/Run-Time Library

Symbol

Overlay Loader

RAD Editor

126 Appendix C

The RAD areas used by the system require the following ap­
proximate numbers of tracks:

RAD Area

System Programs

Checkpoint

t
Background Temp

Number of Tracks

50

8 (assuming an 11 K background)

45 (sufficient for a Macro­
Symbol "assemble and go" of
about a 7000 I ine source
program)

tThe size of the Background Temp area is highly dependent
on a user's requirements.

INDEX

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

7T device code, 8
9T device code, 8

A
abnormal conditions, 35,36
abnormal returns, 36
abort, 4
ABORT/EXIT routine, 97
ABORT function, 51
ABORT return, 48,45
absol ute core image, 45
access methods, 29
accounting_ services, 3
action character, 26
active foreground program, vi
add constant, 117
add value of declaration, 117
add value of forward reference, 118
addend val ue, vi
address resolution, 117
address resolution code, vi
addressing files, 29
AIO status, 30
AL fi Ie, 17,3
ALL map, 65, 95
ALL option, 106
ALLOBT control command (Monitor), 13,7, 14,28
ALLOBT control command (SYSGEN), 105, 100
ALLOT control command (Editor), 80,28
ALLOT examples, 81
ARM function, 52, 48,49
assembl e compressed deck, 90
assemble from compressed deck, 89
assemble source program, 89,90,91
assemble compressed program, 91
ASSIGN command created DCBS, 33
ASSIGN control command (Loader), 62,56,63,75
ASSIGN control command (Monitor), 8,7,9, 10,28,

32, 33, 63, 75
ATTEND control command (Monitor), 12,7, 11,53,68(81

8
BA processor specification option, 17
backgroundl 1
background areal vi
Background Data areal 3/ 4, 99
background devices, 15
background IOQ table, 10 1
background job, 25
background job stack, 23,2
background memory, 25
background overlay programs, 54
background program, vi

Background Programs area (BP), 78,4,9,99
background stack, 25
background Temp area, 28,4,9, 14, 19,58,99, 100, 104
background Temp File, 18,9
bad RAD tracks, 78, 99
batch, 92
batch assemblies, 90
batch assembly mode, 17
batch job, 6
batch mode, 90
batch processi ng, 2
BDTRACK control command (Editor), 85,78
BI operational label, 8
binary input, vi
binary object module, 59,56
binary output, 90
blank COMMON, 75,5, 54,60
blank COMMON allocation, 75
blank COMMON names, 76
block boundary, 29
blocked files, 28, 14, 18,29,78
blocked sequential output, 30
blocking buffers, 13, 18(19
blocking files, 3
BO operational label, 8
BO processor specification option, 17
BRAD entry, 100
buffer pool, 97

c
C key-in, 23
C operational label, 8,24
calling overlay segments, 76
calling Public Library, 64
calling RAD Editor(80
CAL 1 instruction, 28
card punch, 26
card reader, 26
card reader controller, 29
CC control command (Monitor), 12,7
CC key-in, 24, 12
central connection, 49
centrally connected interrupt, vi
centrall y connected task, 45, 31, 125
change expression resolution, 118
change memory bou ndary, 25
channel designation codes, 9
CHECK function, 37,28, 38
check I/O completion, 37
CHECK system, 29
CHECKed operations, 38
CHECKed request, 29
checkpoint, 48,2, 3,99
Checkpoint/Restart, 97
checkpointed job, vi

Index 127

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

CI operational label, 8
CI processor specification option, 17
CINT key-in, 24
CLEAR control command (Editor), 82
CLOSE file, 37
CLOSE function, 30,37
CLOSE request, 30
CN processor specification option, 17
CO operational label, 8
CO processor specification option, 17
COC key-in, 23
combined key-ins, 25
COMMON, 62
COMMON ai iocation, / j

COMMON control command {Loader}, 60,56,75
common storage, 46,75
completion status, 29
compressed files, 29,3,39,78
compressed input, 17,90
compressed output, 17,90,91
compressed programs, 90
compressing directory entries, 78
computing library file sizes, 79
CONNECT statement, 76
CONNECT function, 51,46,48,49,76
connecting tasks to interrupts, 48,2
console interrupt, 125
constructing library, 64
control command, vi
control message, vi
control panel task, 23,97
COpy control command (Editor), 81,80,82
COpy examples, 81
core allocation, 96
core memory layout, 96,97
core memory requirements, 2
core size, 102
core storage area allocations, 76
CP device code, 8
CPU options, 10
CR device code, 8
CTINT control command (SYSGEN), 105

o
D processor specification option, 17
DAL control command {Monitor}, 17,7
data area, 78
data areas

background, 99
foreground, 99

Data Control Block (DCB), 62, vi, 1,8,28
data fi I eST 78
DA TA statement, 54
date, 3,24
DB key-in, 25
DC devi ce code, 8
DCB, 1,8,30,75
DCB creation, 32

128 Index

DC B format, 33
DCB table, 11
DCB

ASSIGN created, 33
Loader created, 33
user created, 32, 33

DCBTAB, 47,62,63
DCT, 28, 100
decimal arithmetic trap, 48,50
decimal simulation routines, 97
declaration, vi
decl aration number, vi
deci arations, 113
DED key-in, 25
dedicated device, 25
dedicated memory, vi
DEF, 63
DEF/REF, 63
DEF /REF linkage, 55
define field, 119
define files, 13
DEFREF file, 64,79,80,83
DE LETE control command (Editor), 82
DELETE examples, 82
DEVICE control command (SYSGEN), 103,99,

104, 107
devi ce control tabl e, 100, 28, 103
device controller, 29
device dedication, 25
device designation codes, 9
devi ce fi I e mode, 42, 100
devi ce mode, 9
device requests, 29
device type code, 102
device types, 102
DF key-in, 25
direct access, 29, 30
direct connection, 49
direct I/O (IOEX), 31,4,25
direct I/O operations, 2
direct input, 4
directly connected interrupt, vi
directly connected tasks, 31
DISABLE function, 52,49
disable interrupts, 49
DISARM function, 52,48,49
disarm interrupts, 49
DM key-in, 25
DO operational label, 8
double buffering, 30
DSECT, 60,62
DT key-in, 24
dummy section, 114, vi
Dump Accounting Log, 17
Dump Background key-in, 25
DUMP control command (Editor), 84
DUf"W examples, 84
Dump Foreground key-in, 25
Dump Monitor key-in, 25
Dumps, 23

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

E
EBCDIC datal 29
EBCDIC fi Ie, 64/ 79,83
elapsed time, 3
ENABLE function l 52,49
end record, vi
end-actionl 31
end-action address, 30
end-of-file mark, 16
End-Of-Message keYI 23
entry address, 64
ENTRY keyword, 76
entry pool, 29
EOD control command (Monitor), 15,7,55,90,93
EO D record, 38
EOF, 16
EQU directJve, 18
error codes, 35
error conditions, 36
error conditions returns, 35
error severity level code, vi
EXCLUDE control command (Loader), 56,60,63
execution location, vi
execution time, 12
EXIT function, 51
EXIT function call, 45
EXIT return, 45,48
EXIT routine, 31
expression, vi
expression end, 118
expression evaluation, 116
external definition, 63, vi, 116
external definition name, 114
external interrupt, 6
external reference, 63, vii 79
external reference name, primary, 114
external reference name, secondary, 115

F
F:DCB, 75
feed check, 26
FFPOOL, 102
FG key-in, 13,25
FGC key-in, 25
fi Ie allocation, 78
fi Ie deletion, 78
fi Ie directories, 78, 5
fi Ie directory entry, 79
fi Ie format, 83
fi Ie keyword, 65
fi Ie organization, 28,42
file positioning l 15
fi Ie size, 28,78,79,84
fi Ie truncations, 83
FIN control command {Monitor}, 15,7
FIN control command (SYSGEN), 105
fixed-point arithmetic trap, 48,50
floating-point arithmetic trap, 48,50

floating-point simulation, 102
floating-point simulation routines, 97
FMBOX, 102
FMEM key-in, 25
foreground, 1
foreground area, vi, 97, 99
foreground blocking buffer, 102
foreground execution time, 3
foreground exit, 97
foreground IOQ table, 101
foreground job examples, 94
foreground mailbox, 2,63,97, 102
foreground memory, 25
foreground memory allocation, 25
foreground overlay programs, 54
foreground program, 2, vi, 3, 11, 13,24,49,80,99
foreground program loading, 45
Foreground Programs area (FP), 78,24,64,65,79,99
foreground protection, 25
foreground Root Loader, 45,49, 50,97
foreground service routines, 97
foreground task, 47, vi, 2,6
Foreground Programs Directory, 4
foreward reference definition, 115
format control, 34
format control functions, 42
forming Public Library, 65
FORTRAN Blank COMMON, 63
FORTRAN DCBS, 63
FORTRANH control command (Monitor), 7
FORTRAN interface, 75
FORTRAN operational labels, 32
FORTRAN source deck, 93
forward reference number, vi
FP:MBOX, 2,63
FPT (see Function Parameter Table)
FRAD entry, 100
free entry pool, 29
FSC key-in, 25
Function Parameter Table (FPT), l,vi,28,30 / 31 / 38
F4:COM, 75

G
GDTRACK control command (Editor), 85,78
GO file, 18,vi,10, 15,19,28,32,56,89,92/ 93,

99, 100
GO processor specification option, 17
granule, 29, vi
granule size, 29,28,42,78

H
headerl 45
high-priority interruptsl 6
HIO instruction, 31
HIO operation, 43

Index 129

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

I/O cleanup, 29,3,30
I/O codes, 36
I/O communications, 25
I/O device, 31,29,30
I/O end action, 30
I/O interrupt, 6,29-31,43,97,125
I/O key-i n, 26
I/O messages, 26
I/O package, 97
I/O queue table, 101
I/O queueing, 29
i/O request, 29,32
I/O start, 29,3,30
I/O system calls, 36
idle account, 15
idle state, vi
INCLUDE control command (Loader), 56,59,63
initiate foreground program, 24,45
input/output operations, 28
installation control command, vii
installation parameters, 96
interrrupt, 2,31,97
interrupt connection, 48
interrupt control, 48,97
interrupt label, 24,31,101
interrupt priority, 31
interrupt task, 63
interrupt task table, 63
interrupt, external, 6
interrupt, trigger, 24
interrupts

ARM, 24
DISARM, 24,49
ENABLE, 24
I/O, 6

interrupts, disabling, 49
INTLB control command (SYSGEN), 105, 101
INTLB key-in, 24
INTLB table, 101
INTT AB, 62,63
INTT AB format, 47
10EX access, 99
10EX function, 43,4,6,25,31,44
lOP, 25
lOP command doublewords, 31
lOP multiplexor, 105
lOP, selector, 105
item number, 69

J
JCP (see Job Control Processor)
JC P loader, 10, 11
Ir P occ,.,,...oc ? 1 ??

J"'" '11,",,"""'\,ooI~""'v, ""1,_-
job accounting, 3,53, 102
JOB control command (Monitor), 7,8,23,32,89
Job Control Processor, (JCP), 7,4,18,19,28,54,97

130 Index

K
key-in, vi
key-in processor, 97
key-ins, 23

C, 23
CC, 24, 12
CINT, 24
COC, 23
DB, 25
OED, 25
OF, 25
DM, 25
DT, 24
FG, 13,25
FGC, 25
FSC, 25
FMEM, 25
I/O, 26
INTLB, 24
RLS, 24
RUN, 24,45
SFC, 25
STDLB, 24,32,75
SY, 23
SYC, 25
TY, 23,24
Tye, 25
UNO, 25
W,23
X,23

keyword, vii

L
Labeled COMMON, 5,54,76
Labeled COMMON block, 60,62,76
LCOMMON control command {Loader}, W, 56, 76
LIB control command {Loader}, 59,56
LIB option, 59
library fi les, 79
library input, vii
library object modules, 54
library protection, 64
I ibrary search, 59
LIMIT control command (Monitor), 12,7, 14
LL operational label, 8
LO operational label, 8
LO processor specification option, 17
load absolute, 118
load and go operations, 89
LOAD control command (Monitor), 10,7,46
load foreground program, 24,45,94
load item control byte codes, 124
load items, 113, vii
load location counter, vii
load map, vii
load module, vii ,45
load module header, 45
load origin, 116

Note: For each entry in this index l the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

load relocatable l 119
load-time ASSIGNS I 75
Loader created DCBsl 33 / 62
Loader error diagnostics l 68
Loader-generated items, 62
loading system processorsl 108
loading user programs l 108
LOCAL directive l 10
logical device l vii
logical file mark l 16
LP device code l 8
LS processor specification option l 17
LU processor specification option l 17

M
M:BI system DCBI 32
M:BO system DCBI 32
M:C system DCBI 32
M:CI system DCBI 32
M:CO system DCBI 32
M:DCB system DCB I 75
M:DO system DCB I 32
M:GO system DCBI 32
M:LL system DCBI 32
M:LO system DCB, 32
M:OC system DCBI 32
M:OY system DCB, 32
M:SI system DCB I 32
M:SL system DCB, 32 1 11
M:SO system DCBI 32
M:X i system DCB I 32
Macro-Symbol l 4, 13, 17,89
MACRSYM control command (Monitor), 7/ 17/ 89 /90
magnetic tape, 27, 110
maintaining library I 64
manual mode, 16,26
mapl 65
MAP control command (Editor) I 83
map examples l 84
map information l 54
Master Directory, 100
MASTER function 52
master mode I 30 /47 /49
math and run-time routines l 64
memory areal 25
memory locationsl 1
memory protection l 4
memory size, 102
MESSAGE control command (MonitorL 71 12
minimum hardware configuration, 6
modes (MOD, PACK), 42
MODIFY control command (Loader) I 56,60
MODIFY control command examples, 61
MODIR file, 64,79
module directory file, 64,79 / 83
module end, 120
Mon i tor I vii I 2
MONITOR control command (SYSGEN), 102

Monitor control commandsl 7
ALLOBT I 13 / 71 14 / 28
ASSIGN/8/7/9,lO,28,32,33/63/75
ATTENDI 12 / 7/ 11,53/ 68 / 81
CC I 12,7
DAL, 1717
EOD I 15,7/ 55,90,93
FIN, 15,7
FORTRANH I 7
JOBI 7/ 8,23132 /89
LIMIT, 12 /7,14
LOADI 10/7,46
MACRSYM, 7,17,89,90
MESSAGE, 7, 12
OLOAD I 5~~M'~/~'~/~'~
PAUSE I 12 /7,23
PFILI 15,7
PMD, 14,7,15,89
POOL, 13/ 7, 19
PREC, 15 / 7
RADEDIT, 80,7
REWINDI 16/ 7
ROY I 13,7/ 18/ 45,89
RUN I 13 /7,14,17 /25 /45 /93
SFIL I 15/ 71 16
SL-1, 7
S T D L B I 121 71 1 31 32
SYMBOL I 7
UNLOAD I 16,7
WE OF I 16,71 17

Monitor errors, 36
Monitor-action character I 26
Monitor l SYSGEN options, 102
multidevice controller, 31
multiplexor IOP I 105

N
name number, vii
NEW LINE code l 23
NO device code l 8
non-RAD input, 59
nonallowed operation trapl 50
nonstandard control section l 114

o
object deck l vi i
object language, vii
object language format l 112
object module l vii, 10
object module example l 120
OC operational label, 8
OLOAD control command (Monitor), 56,7/ 54,55,59 / 62,

65 / 89
OPEN fi Ie, 36

Index 131

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

OPEN function, 30,36,37
OPE N request, 30
operating system, 1
operational label, 32,vii, 12, 13,24, 101, 104
operator control, 23
operator's console, 20
OPLBS table, 101
option, vii
origin, 115
output devices, 30
o V fi I e I 19, 10, 13, 14, 28, 89 I 92, 99, 100
Overlay control commands, 55

ASSIGN, 62,56,63,75
COMMON, 60,56,75
EXCLUDE, 56,60,63
INCLUDE, 56,59,63
LCOMMON, 60,56,76
UB, 59,56
MOD IFY, 56, 60
PUBUB, 62,56,59
RES, 60,56
ROOT, 57,54-56,58,59,65,76,93
SEG, 58/54-56,59,65,93

overlay example, 59
Overlay Loader, 54, vii, 3,4, 10, 11,23,28,32,45,46,

89, 100
Overlay Loader diagnostics, 68,69-75
Overlay Loader examples, 92
-overlay loading, 125
overl ay program, 54, vii, 55
overlay restri ctions, 55
overlay segment, 11,5,47,48,62
overlay structure, 54,5, 11,55
overlays, 4
override software protection, 23
OVLOAD, 63,5, 11,62

p
P:END, 63,75
padding, 120
page boundary, 97
paper tape punch, 27
paper tape reader, 27
parameter presence indicator, vii
PAUSE control command (Monitor), 12,7,23
PCB (see Program Control Block)
permanent assignment, 24,32
permanent files, 2,28,78
PFIL control command (Monitor), 15,7
PFIL function, 41
physical device, vii
PMD control command (Monitor), 14,7, 15,89
POOL control command (Monitor), 13,7, 19
position file, 15,41
position record, 15,41
postmortem dump, 14, vii ,5,92,97
power failure, 26

132 Index

PP device code, 8
PR device code, 8
PREC control command (Monitor), 15,7
primary reference, vii
print error, 26
PRINT function, 41
printer, 26
processing programs, 4
processor control commands, 17
processor interface, 19
program, 1
Program Control Block (PCB), 46,2,5,47,62
program deck, 89
progiOm fi! e, 62
PROGRAM map, 65,94
PROGRAM map sample, 66
program modification, 5
program scheduling, 45
program segments, 45
Program Trap Conditions (PTC), vii
protection violations, 4
PSD, 49
pseudo fi Ie name, vii
PUBUB control command (Loader), 62,56,59
PUBLIB substack, 56,60
Public Library, 64,3,4,49,54,56,62,63
PUNCH control command (SYSGEN), 105
purge file, 3
push down stack limit trap, 50
push/pull stack instructions, 47

Q

queue entry, 29
queued request, 29
queue i ng, 29

R
RAD, 2
RAD allocation, 78,5,96,97,99,108
RAD areas, 97,99,126
RAD bootstrap, 106, 107
RAD Editor, 78,5,23
RAD Editor control commands, 80

ALLOT, 80,28
BDTRACK, 85,78
CLEAR, 82
COPY, 81,80,82
DELETE, 82
DUMP, 84
GDTRACK, 85,78
MAP, 83
RESTORE, 85
c::t. \/1= R~ oJ, ~ ,,_,,...,

SQUEEZE, 83,82
TRUNCATE, 79,83

RAD Editor messages, 86,87,88

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

RAD Editor SAVE and RESTORE functions, 107
RAD file, 30,8,15,23,32,78,97
RAD File Directory, 42
RAD File Table (RFT)/ 28,35,42,100,103
RAD map/ 96
RAD protection, 80
RAD restoration messages, 88,86
RAD squeezing, 78
RAD storage requirements, 126
RAD tracks/ 85,99
RAD, default sizes, 99
RAD, write protected, 110
RADBOOT files, 107
RADEDIT control command (Monitor), 80,7
RBM Bootstrap / 99
RBM Control Task, 3,4,6,23,97
RBM files, 107
RBM messa.ges/ 20
RBM overlay area/ 97
RBM OVLOAD Table, 101
RBM structure, 97
RBM tables, 96/97
RBMSAVE/ 46
read data record, 38
READ function/ 38
read operati ons, 4
read protection, 3
READ re.:'juest, 38,28-31
real-time performance datal 125
real-time processi ng/ 2
real-time programs l 2
rebootable binary deck/ 96,97
record control information, 112
record positioning, 15
Record Size (RSZ), 28,42,78,84
reentrant routine, 2/65
reentrant service functions, 2
REF, 63/96
REF/DEF linkages/ 5
release foreground program, 25,45,50
releasing Publ ic Library, 65
relocatable object module, 45, vii ,58
relocatable programs, 60
repeat load, 119
RES control command (Loader), 60,56
RESERVE control command (SYSGEN), 102, 100
resident foreground program flag, 78
resident program, vii
restart, 48/2/3
RESTORE control command (Editor), 85
RESTORE example, 85
return functions/ 48
REWIND control command (MonitorL 16,7
REWIND function, 40
RFT (see RAD File Table)
RLS function I 50
RLS key-in/ 24
ROM (see relocatable object module)
root, 11,5, 54
ROOT control command (Loader), 57,54-56,58/59,65,76,93

Root Loader, 45,48, 62, 97
ROOT segment, 62
ROOT substack, 56,60
ROV control command (MonitorL 13,7,18,45,89
RUN control command (Monitor), 13,7/14,17,25,45,93
RUN function, 49
RUN key-in, 24,45
RUN system call, 45
run-time ASSIGNS, 75

s
S processor specification option/ 17
SAVE control command (Editor), 85
SAVE examples/ 85
SAVE option, 13, 19
scheduling programs, 45
scratch files, 99
scratch storage, 2
secondary reference, vii
secondary storage, vii, 2
SEG control command (Loader), 58,54-56,59,65/93
SEG substack, 56,60
SEGLOAD function, 52,18,47,53-55/58,62,76
segment communication, 55
segment linkage, 54
Segment Loader, 32, vii, 97
segment loading, 54
segment numbers, 55
segment symbol tables, 54
segmented background job, 93
segmented foreground program, 95
selector lOP/ 105
sequential access, 29
sequential input, 30,38
severity level, 62
SFC key-in/ 25
SFIL control command (Monitor)/ 15/7/16
sharing DCBs/ 30
sharing I/O devices/ 30
sharing RAD files, 30
SHORT map/ 65,92
Sloperational label, 8
SI processor specification option, 17
signal address/ 49,50
SIO instruction, 31
SIO operation, 43
SlOP control command (SYSGEN), 105
ski p fi Ie, 15/ 16
skipping bad tracks, 78
SL-1, 4
SL-1 control command (Monitor), 7
SLAVE function/52
slave mode, 47,49
SO operational label, 8
SO processor specification option, 17
software write protection, 4
source code translation, 111
source deck, vii

Index 133

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

source language, vii
specification field, 7
SQUEEZE control command (Editor), 83,82
SQUEEZE examples, 83
squeezing RAD areas, 80
Stack Pointer Doubleword, 47
stand-alone loader, 96, 101
standard control section, vii,l13
Standard Object Language, 111,54
standard operational labels, 13
starting address, 1i6
ST,6.RTIO function, 31/42
STDLB control command (Monitor), 12,7,13,32
STDLB control command (SYSGEN), 104, 101
STDLB key-in, 24,32,75
STOPIO function, 42,31
subfi e I d term i nator, 7
subroutine, reentrant, 2
subtract value of declaration, 118
subtract va I ue of forward reference, 118
SY key-in, 23
SYC key-in, 25
Symbol, 4, 100
SYMBOL control command (Monitor), 7
symbol table 96
symbolic name, vii
SYSGEN, 96, 100, 104
SYSGEN alarms, 108, 109, 110
SYSGEN control command (SYSGEN), 101
SYSGEN control commands, 102

ALLOBT, 105, 100
CTINT, 105
DEVICE, 103,99,104,107
FIN, 105
INTLB, 105, 101
MONITOR, 102
PUNCH, 105
RESERVE, 102, 100
SlOP, 105
STDLB, 104, 101
SYSGEN, 101
SYSLD, 105,106

SYSGEN map, 98
SYSGEN-defined parameters, 107
SYSLD control command (SYSGEN), 105, 106
SYSLOAD, 106,96,105,107
SYSLOAD alarm, 108, 107, 109, 110
system DCBs, 32, 1,63
system function call formats, 49
System Generati on, 96
system interrupt, 31
system library, 64, vi i, 56, 63
system library files, 79
system processors, 18, 17
System Programs, 99
System Programs area (SP), 78,9,64,79,99, 106
system RA D, 107
system storage, 2
system trap handling, 48
system user processor, 19

134 Index

T
tape mark, 16
task, 1
task control block (TCB), 45,vii, 1,46,49
TCB (see Task Control Block)
TDV instruction, 31
TDV operation, 43
temp fi Ie, 14
Temp Stack, 47,vii, 1,2,4,46,62,63
temporary assignments, 24, 12
temporary RAD files! 28,62
temporary storage, 1
time, 3,24
TIME function, 53
no instruction, 31
no operation, 43
TRAP function, 50,48
trap handler messages, 21
trap handl ing, 48
trap processing tasks, 97
trap return, 51
traps, 21,97
TRIGGER function, 52,49
triggering interrupts, 49
TRTN function, 51,48
TRUNCATE control command (Editor), 79,83
TRUNCATE examples, 83
TY device code, 8
TY key-in, 23,24
TYC key-in, 25
TYPE function, 41

u
unblocked file, 78
unblocked fi les, 28, 14,29
unconditional dump, 14, 15
UND key-in, 25
unimplemented instruction trap, 48,50
UNLOAD control command (Monitor), 16,7
UNLOAD function, 40
unmasked trap, 48
unsatisfied primary references, 63
unsol icited key-ins, 23
UPDA TE option (UPD), 107
update packets, 90
updating RAD areas, 80
user created DCBs, 32,1,9,10
User Library, 64, 63,79
user load-time ASSIGNS, 75
user processors, 17, 18
user programs, 17
user subroutines, 64

y
variables, 63
verify, data, 85
verify, tape, 85
vertical format control (VFC), 42, 18

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical se()uence.

w
W key-in, 23
Wait, 11
WAIT function, 53
Wait state, 23
Watchdog Timer Trap, 50
WEOF control command (Monitor), 16,7,17
wiring external interrupts, 6
write, 30,31
write data record, 39

write end-of-fi Ie, 16
WRITE function, 39
write protection, 4
WRITE requests, 39
WRITE TAPE MARK function, 40
write-lock area, 4

x
X key-in, 23

Index 135

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135

