

[
Price: $5.50

REAL-TIME BATCH MONITOR (RBM)
REFERENCE MANUAL

for

XDS SIGMA 5/7 COMPUTERS

90 15 818

April 1970

XDS

Xerox Data Systems/701 South Aviation Boulevard/El Segundo, California 90245

€1969. 1970, Xerox Data Systems, inc Printed in U.S.A.

The specifications of the software system described in this publication are subject to change without notice.

REVISION

This publication, XDS 90 15 818, is a revision of the XDS Sigma 5/7 Rea!-Time Batch Monitor
Reference Manual, XDS 90 15 81A (dated November 1969). The manual haos been slightly
reformatted for faster referencing, and new examples of various processes have been incorpo-
rated. This revision also documents the Sigma 5/7 Real-Time Batch Monitor Extensions,
Group 1. A change in text from that of the previous manual is indicated by a vertical line in

the margin of the page.

RELATED PUBLICATIONS

Title

XDS Sigma 5 Computer Reference Manual

XDS Sigma 7 Computer Reference Manual

XDS Sigma 5/7 Real-Time Batch Processing Operations Manual
XDS Sigma 5/7 Real-Time Batch Monitor Technical Manual
XDS Sigma Real-Time Batch Monitor User's Guide

XDS Sigma 5/7 Mathematical Routines Technical Manual
XDS Sigma 5/7 Symbol and Meta~-Symbol Reference Manual
XDS Sigma 5/7 Macro-Symbol Reference Manual

XDS Sigma 5/7 SL-1 Reference Manual

XDS Sigma 5/7 Extended FORTRAN 1V-H Reference Manual
XDS Sigma 5/7 Extended FORTRAN 1V-H Operations Manual

XDS Sigma 5/7 Extended FORTRAN IV-H Library/Run-Time
Technical Manual

XDS Glossary of Computer Terminology

NOTICE

Publication No.

90 09 59
90 09 50
90 16 47
90 17 00
90 16 47
90 09 06
90 09 52
901578
9016 76
90 09 66
90 11 44
2011 38

90 09 57

The availability or performance of some features may

depend on a specific configuration of equipment such as additional tape units or larger memory. Customers should consult their XDS sales representative for details.

DEFINITION OF TERMS
1. INTRODUCTION

Operating System

RBM Terms and Processes

Task

Program

Foreground

Background

Temp Stack

Data Control Block

Function Parameter Table

Task Control Block

Program Control Block

Checkpoint

Restart

Reentrant Subroutine

Philosophy of Operation

Real-Time Processing

Batch Processing

Monitor

RAD Utilization

RAD Files

Job Accounting

Public Library

RBM Control Task

Overlays

Memory Protection

RAD Write Protection

Processing Programs

Service Programs

Job Organization

Hardware Configurations

System Configurations

Core Space Considerations for a Minimum
System

Wiring of External Interrupts
o
2. CONTROL COMMANDS

Job Control Processor

System Control Commands

JOB

ASSIGN

LOAD

ATTEND

MESSAGE

PAUSE

CccC

LIMIT

STDLB

ROV

RUN

POOL

ALLOBT

MODIFY

Debug Control Commands

PMD

CONTENTS

vii

NOOOC OO OUUPEARABAMBRAMBRMBWWNNRNNNNNN— — — — — — =

NN

[ee]

Input Control Commands

EOD

FIN

Utility Control Commands

PFIL, PREC

SFIL

REWIND

UNLOAD

WEOF

DAL

Processor Control Commands

Processor Interface with RBM
OPERATOR COMMUNICATION

RBM Messages

Trap Handler Messages

JCP Messages

Unsolicited Key-Ins

C

cocC

W

X

SY

TY

CcC

DT

RUN

RLS

STDLB

INTLB

CINT

FMEM

FG

COMBINED KEY-INS

DM, DB, DF

DED

UND

Direct /O Communication

Card Reader

Card Punch

Printer

Paper Tape Reader

Paper Tape Punch

Magnetic Tape

INPUT/OUTPUT OPERATIONS

Permanent RAD Files

Temporary RAD Files

File Organization

Blocked Files

Unblocked Files

Compressed Files

Access Methods

Sequential Access

Direct Access

/O Queueing

1/O Cleanup and 1/O Start

15
15
15
15
15
16
16
16
17
17
17
18

20

20
21
21
23
23
23
23
23
23
23
24
24
24
24
24
24
24
25
25
25
25
25
25
25
26
26
26
27
27
27

28

28
28
28
28
28
29
29
29
29
29
29

iii

Sharing DCBs Among Tasks

Sharing 1/O Devices Among Tasks
Sharing RAD Files Among Tasks

/O End Action

Reserving 1/O Devices for Foreground Use
Direct 1/O Execution (IOEX)

Operational Labels

DCB Creation

DCB Format

Error and Abnormal Conditions

I/O System Calls

Open a File

OPEN

Close a File

CLOSE

Check 1/0O Completion

CHECK

Read a Data Record

READ

Write a Data Record

WRITE

Rewind, Unload, and Write EOF Functions

REW

UNLOAD

WEOF

File and Record Positioning Functions
PFIL, PREC

Print and Type Functions

PRINT, TYPE

Device/File Mode and Format Control
Functions

STOPIO, STARTIO

10EX

USER PROGRAM SCHEDULING AND
OPERATION

Scheduling and Loading Programs
Loading and Releasing Foreground Programs

Loading and Executing Background Programs

Task Control Block (TCB)

Task Control Block Format

Program Control Block (PCB)

PCB Format

Temp Stack

Master and Slave Modes

Overlay Segment Loading

Checkpoint and Restart

Trap Handling

Return Functions

Interrupt Control

Connecting Tasks to Interrupts
Arming, Disarming, Enabling, Disabling
Triggering of Interrupts

System Function Call Formats

RUN

RLS

TRAP

TRTN

EXIT

ABORT

CONNECT

ARM, DISARM

30

30
30
31
31
32
32
33
35
36

36
37
37
37
37
38
38
39
39
40
40
40
40
41
41
41
41

42
42
43

45

45
45
45
45
45

46
47
47
47
48
48
48
48
48

49

49
49
49
50
50
51
51
51
51
52

ENABLE, DISABLE, TRIGGER

MASTER, SLAVE

SEGLOAD

WAIT

TIME

OVERLAY LOADER

Overview

Functional Flow

Limitations

Overlay Programs

Overlay Structures

Overlay Restrictions

Overlay Control Commands

Syntax

Order of Control Commands

!OLOAD

:ROOT

:SEG

:L1B

:INCLUDE

:EXCLUDE

:COMMON

:RES

:LCOMMON

:MODIFY

:ASSIGN

:PUBLIB

Program File

Root Segment

Overlay Segments

Temporary RAD Files

Loader-Generated [tems

Program Control Block

Data Control Blocks

DCBTAB

INTTAB

OVLOAD Table

Temp Stack

External Definitions

Libraries

System and User Libraries

Assembly Language

Entry Address

System and User Libraries on RAD
Constructing and Maintaining Library
Public Library

Calling the Public Library

Library Protection

Releasing a Public Library

Forming a Public Library

Map

Error Diagnostics

User Load-Time Assigns

M:DCB and F:DCB

Run-Time Assigns

Load-Time Assigns

FORTRAN Interface

COMMON Allocation

CONNECT

Calling Overlay Segments

Main Program Name and Entry

52
52
52
53
53

54

54
54
54
54
55
55
55
56

57
58
59
60
60
60
61
61
61
62
63
64
64
64
64
64
64
64
64
64
64
64
65
65
65
65
65
65
66
66
66

66
67
70
77
77
77
77
77
77
78
78
78

Labeled COMMON Names

Blank COMMON Names

Core Layout at Execution Time

RAD EDITOR”

Operating Characteristics

File Allocation

Skipping Bad Tracks

System and User Library Files

Algorithms for Computing Library File Sizes
RAD Areas Protection

Calling RAD Editor

Command Formats

RAD Editor Commands

:ALLOT

:COPY

:DELETE

:CLEAR

:SQUEEZE

:TRUNCATE

:MAP

:DUMP

:SAVE

:RESTORE

:BDTRACK

:GDTRACK

Error Messages

RAD Restoration Messages

PREPARING THE PROGRAM DECK

Macro-Symbol Examples

Assemble Source Program, Listing Qutput
Assemble Source Program, Listing Qutput,
Load and Go Operations

Assemble from Compressed Deck with Source

and Updates, Listing Output
Assemble Source Program, Compressed
Output on Cards, Listing Output
Assemble Source or Compressed Program in
Batch Mode, Listing Qutput
Assemble Source Program, Binary Qutput
on Cards, Listing Qutput
Assemble Source Program, Compressed
Qutput on RAD File, Listing Output
Assemble Compressed Deck from RAD File,
Source Updates from Cards, Listing
Qutput
Assemble Source Program, Write Compressed
Qutput on 9-Track Tape, Listing Output_
Assemble Compressed Program from 9-Track
Tape, Listing Qutput
FORTRAN Job Examples
Combined FORTRAN Compilations Pius
FORTRAN Compile and Execute
Compile and Execute FORTRAN Source
Program with Real-Time Linkages
Compile and Execute Program Using LS,
BO Default Options
Compile a FORTRAN Program and Setup
for Execution in Foreground Area

78
78
78

80

80
80
80
81

81

82
82
82
82
82
83
84
84
85
85
85
86
88
88
88
88
89
89

93

93

93

93

93

94

94

94

94

95

95
96

96

97

98

99

Qverlay Loader Examples

Batch, Using GO Links

Segmented Background Job

Foreground Job Examples

Load and Execute Foreground Program
Load and Execute Segmented Foreground
Program

SYSTEM GENERATION™

SYSGEN

Overview

Core Allocation

RAD Allocation

Tables Allocated and Set by SYSGEN
Input Parameters

SYSGEN Control Commands

:MONITOR

:RESERVE

:DEVICE

:STDLB

:CTINT

:INTLB

:ALLOBT

:PUNCH

:SIOP

:FIN

:SYSLD

SYSLOAD

ALL Option

Update Option (UPD)

RAD Allocation of SP Area

SYSGEN and SYSLOAD Alarms

Loading System Processors and User Programs

INDEX

APPENDIXES
SIGMA STANDARD OBJECT LANGUAGE

Introduction

General

Source Code Transiation

Object Language Format

Record Control Information

Load Items

Declarations

Definitions

Expression Evaluation

Loading

Miscellaneous Load Items

Object Module Example

REAL-TIME PERFORMANCE DATA

Response to Interrupts by Centrally Connected
Tasks

1/O Interrupt

Console Interrupt

Overlay Loading

RAD STORAGE REQUIREMENTS

100
100
101
102
102

103

104

104
104
104
106
108
109
110
110
110
111
112
113
113
113
113
113
113
114
114
114
115
116
116
116

140

121
121
121
122
122
123
123
125
126
128
130
130

135
135
135
135
135

136

vi

. Sample PROGRAM Map
. Blank COMMON Allocation by Default
. Blank COMMON Option
. Standard Core Layout of a Program

. Permanent RAD Area Before Squeezing
. Permanent RAD Area After Squeezing

JCP LOADER

Loading Non-Overlaid Programs
Loading Overlaid Programs

SYSTEM PATCHING

Input Options

Command Formats

Patch System Overlay or JCP
Patch PATCH Area

'END Command Format

System Patching Diagnostics

ILLUSTRATIONS

Overlay Structure

Loading Overlay Loader from Cards
An Overlay Program

Overlay Example

Object Module from GO File

:LIB Command Usage

:EXCLUDE Command Usage

DSECT Allocation Example

:MODIFY Command Items Example

137

137
137

138

138
138
138
138
138
138

12
55
59
59
60
60
61

63
68
77
77
79
81

81

16.
17.
18.
19.

20.

VENOUEWN -

B-1.
E-1.

. RAD Editor Error Messages

ALL Map Example

SYSGEN Map Example

RAD Allocation Example

Loading RAD Editor and Overlay Loader
Processors Into System

Loading Macro-Symbol Processor Into
System

TABLES

Monitor Operational Labels

1/O Device Type Codes

Channel Designation Codes

Device Designation Codes

RAD Area Mnemonics

Processor Specification Options
Monitor Messages

JCP Messages

Monitor Actions

System DCBs

. Line Printer Format Control Codes

Monitor Error and Abnormal Returns

. IOEX Function Status Returns

Overlay Loader Diagnostics

RAD Restoration Messages

. RAD Area Default Sizes

. GO, OV, X1-X9 Default Sizes
. SYSGEN and SYSLOAD Alarm Messages

Times Required to Save Interrupted Context
System Patching Diagnostics

87
105
108

19

120

10
10
10
18
20
22
26
32
34
36
43
70
89
92
107
108
116
125

139

DEFINITION OF TERMS

active foreground program: a foreground program is active
if it is resident in memory, connected to interrupts, or
in the process of being entered into the system via a
1 RUN control command.

addend value: « hexadecimal or decimal constant to be
added to the value of a relocatable address. The con-
stant is expressed as a signed integer appended to the
address; e.g., START+12 or HERE-.F1,

address resolution code: a 2-bit code that specifies whether
an associated address is to be used as a byte address or
is to be converted to a halfword, word, or doubleword
address.

background area: that area of core storage allocated to
batch processing. This area may be checkpointed for
use by foreground programs.

background program: any program executed under Monitor
control in the background area with no external inter-
rupts active. These programs are entered through the
batch processing input stream.

binary input: input from the device to which the BI (binary
input) operational Iabel is assigned.

centrally connected interrupt: an interrupt that is con-
nected to a Monitor interrupt routine which first
saves the environment of the system and then switches
the environment to that of the task that gets control
when the interrupt occurs.

checkpointed job: a partially processed background job
that has been saved in secondary storage along with
all registers and other "environment" so that the job
can be restarted.

control command: any control message other than a key-in.
A control command may be input via any device to
which the system command input function has been
assigned (normally a card reader).

control message: any message received by the Monitor that
is either a control command or a control key-in (see
key-in").

Data Control Block (DCB): a table in the executing pro-
gram that contains the information used by the Monitor
in the performance of an 1/O operation.

declaration: an object language load item that introduces
a symbolic name, so that the loader can give it a unique
name number.

declaration number: the name number given to the symbolic
external name associated with a particular object lan-
guage declaration.

dedicated memory: core memory locations reserved by the
Monitor for special purposes, such as traps, interrupts,
and real-time programs.

directly connected interrupt: an interrupt which, when it
occurs, causes control to go directly to the task.
e.g., execution of the XPSD instruction in the interrupt

location gives control to the task rather than first going
to a Monitor inferrupt routine.

dummy section: a type of program section that provides a
means by which more than one subroutine may reference
the same data (via an external definition used as a
label for the dummy section).

end record: the last record to be loaded, in an object mod-
ule or load modute.

error severity level code: a 4-bit code indicating the sev-
erity of errors noted by the processor. This code is
contained in the final byte of an object module.

execution location: a value replacing the origin of a relo~
catable program, to change the address at which program
loading is to begin.

expression: a series of load items immediately preceded by
an "origin", "define field", "forward reference defini-
tion", "external definition", or "define start" load
item and terminated by an "expression end" load item
(see Appendix A).

external definition: a load item that assigns a specific
value to the symbolic name associated with a particular
external definition name number. An external defini-
tion allows the specified symbolic name to be used in
external references (see below).

external reference: a reference to a declared symbolic
name that is not defined within the object module in
which the reference occurs. An external reference
can be satisfied only if the referenced name is defined
by an external load item in another object module.

foreground area: that portion of memory dedicated specifi-
cally for foreground programs.

foreground program: a load module that contains one or
more foreground tasks.

forward reference number: a number assigned by a processor
to designate a specific forward reference in a source
program.

foreground task: a body of procedural code that is asso-
ciated with (connected to) a particular interrupt and
that is executed when the interrupt occurs.

Function Parameter Table (FPT): a table through which a
user's program communicates with a Monitor function
(such as an I/O function).

GO file: a temporary RAD file of Relocatable Object
Modules formed by a processor.

granule: a block of disc sectors containing a specified
number of words.

idle state: the state of the Monitor when it is first loaded
into core memory or after encountering a | FIN control
command. The idle state is ended by means of a I C
key=in.

installation control command: any control command used
during System Generation to direct the formatting of
a Monitor system.

key-in: information entered by the operator via a keyboard.

keyword: a word, consisting of from 1 to 8 characters, that

identifies a particular operand used in a control command.

library input: input from the device to which the LI (library
input) operational label is assigned.

load item: a load control byte followed by any additional
bytes of load information pertaining to the function
specified by the control byte.

load location counter: a counter established and maintained
to contain the address of the next location into which
information is to be loaded.

load map: a listing of significant information pertaining to
the storage locations used by a program.

load module: an executable program formed by using relo-
catable object modules and/or library object modules
as source information.

logical device: a peripheral device that is represented in a
program by an operational label (e.g., Bl or BO) rather
than by a specific physical device name.

Monitor: a program that supervises the processing, loading,
and execution of other programs.

name number: a number assigned by the relocating loader
to identify a declared name.

object deck: a card deck comprising one or more object
modules and control commands.

object language: the standard binary language in which the
output of a compiler or assembler is expressed.

object module: the series of records containing the load in-
formation pertaining to a single program or subprogram.
Object modules serve as input to the Overlay Loader.

operational label: a symbolic name used to identify a logi-
cal system device.

option: an elective operand in a control command or pro-
cedure call, or an elective parameter in a Function
Parameter Table.

OV file: is a temporary RAD file that contains an exe-
cutable program formed by the Overlay Loader if a
program file name was not specified at load time.
Used primarily to test new programs or new versions
of programs.

Overlay Loader: a processor that loads and links elements
of overlay programs.

overlay program: a segmented program inwhich the segment
currently being executed may overlay the core storage
area occupied by a previously executed segment.

parameter presence indicator: a bit, in word 1 of a Func-
tion Parameter Table that indicates whether a particu-
lar parameter word is present in the remainder of the
table.

viii

physical device: a peripheral device that is referred to by
a "name" specifying the device type, 1/O channel,
and device number (also see "logical device").

postmortem dump: a listing of the contents of a specified
area of core memory, usually following the abortive
execution of a program.

primary reference: an external reference that must be satis-
fied by a corresponding external definition (capable of
causing loading from the system library).

Program Trap Conditions (PTC): two words that indicate
trap status (set or reset) and trap exit address,
respectively.

pseudo file name: a symbolic name used to identify a logi-
cal device in a user's program.

Relocatable Object Module: a program, or subprogram,
generated by a processor such as Macro-Symbol,
FORTRAN, etc. (in XDS Sigma 5/7 object language).

resident program: a program that has been loaded into a
dedicated area of core memory.

ROM: Relocatable Object Module.

secondary reference: an external reference that may or
may not be satisfied by a corresponding external
definition (not capable of causing loading from the
system library).

secondary storage: any rapid-access storage medium other
than core memory (e.g., RAD).

segment loader: a Monitor routine that loads overlay seg-
ments from disc storage at execution time.

source deck: a card deck comprising a complete program
or subprogram, in symbolic EBCDIC format.

source language: a language used to prepare a source pro-
gram (and therefrom a source deck) suitable for pro-
cessing by an assembler or compiler.

standard control section: a control section whose length is
not known by a 1-pass processor until all the load in-
formation for that section has been generated.

symbolic input: input from the device to which the SI
(symbolic input) operational label is assigned.

symbolic name: an identifier that is associated with some
particular source program statement or item so that
symbolic references may be made to it even though its
value may be subject to redefinition.

system library: a group of standard routines in object=-
language format, any of which may be included in a
program being created.

Task Control Block (TCB): a table of program control infor-
mation built by the relocating loader when a load module
is formed. The TCBis part of the load module and con-
tains a temp stack and the data required to allow reentry
of library routines during program execution. The TCB
is program associated and not task associated.

Temp Stack: apush-down stack created by the Overlay Loader
and used by the Monitor and System Library routines.

1. INTRODUCTION

OPERATING SYSTEM

The Sigma 5/7 Real-Time Batch Monitor (RBM) is the major
control element in an installation's operation system. Op-
erating in a real-time environment, the Monitor provides
for concurrent background/foreground processing with em-
phasis on foreground operations.

The operating system consists of the Monitor, language
translators, service programs, batch (background) user's pro-
grams, and real-time (foreground) user's programs. In gen-
eral, the Monitor governs the order in which these programs
are executed and provides services common to all of them.

The number, types, and version of programs in an operating
system vary, depending upon the exact requirements at a
particular installation. Each operating system consists of
closely integrated Monitor routines and processing programs
for a given range of applications.

As the requirements of an installation increase, the oper-

ating system can be enlarged, modified, or updated. The
ability to adapt to new requirements is inherent in the sys-
tem design. Once a system is generated, it can quickly
be expanded to include users' programs, data, and system

libraries.

A user's program and data may be temporarily incorporated
in the operating system or remain a part of the system for an
extended period of time.

The operating system is self-contained and requires operator
intervention only under exceptional conditions. Operating
procedures are given in the XDS Sigma 5/7 Real-Time Batch
Monitor Operations Manual.

RBM TERMS AND PROCESSES

The following items are either unique to the RBM system or
have specific meaning within the RBM context. Terms and
processes not defined below are fully explained in the ap-
propriate chapter.

TASK

A task is a body of foreground procedural code associated
with a specific interrupt.

PROGRAM

A program is a body of procedural code and data that is
identifiable by name. A program is created at load time

from object modules and exists after load time incore image
form. A program is identified by a name so that it may be

loaded or released on request. Background programs are

loaded by control commands; foreground programs can be

foaded or released upon request through operator key-in,
control command, or system call from a foreground task.

FOREGROUND

The foreground is the set of all tasks in the system that are
currently connected to external interrupts. The priority
level and activation sequence of each interrupt controls the
execution order of the tasks. Foreground tasks are guaran-
teed memory protection from background processes.

BACKGROUND

The background is the set of all programs that use up any
available CPU time after the real-time interrupts are satis-
fied. In contrast to foreground tasks, background programs
are executed serially and their sequence is controlled by
control commands.

TEMP STACK

The Temp Stack is a "push-down/pull-up" stack of memory
locations allocated by the Overlay Loader. It is used for
dynamic temporary storage when Monitor functions and
FORTRAN IV-H Library subroutines are called, and is also
available as temporary storage for the user.

DATA CONTROL BLOCK

A DCB is a table located in the calling program that con-
tains information used by RBMin the performance of an 1/0
operation. DCBs are the means by which /O information
is communicated between a user's program and the Monitor.
The information required for a particular I/O operation is
either contained in the associated DCBor is given in a call.
The specific information needed for an 1/O operation de-
pends on the organization of the data involved and the type
of operation to be performed.

The device used for an 1/O operation is determined by the
contents of the associated DCB when the /O operation is
requested by the executing program.

There are both system DCBs and user-created DCBs. The
system DCBs need only be coded as external references in a
System Processor or user program; the Overlay Loader will

satisfy these external references at load time by furnishing

a copy of the appropriate DCBs in the program's root. If a

user is not satisfied with the standard DCB parameters fur-
nished by the Overlay Loader, the system DCBs can be coded
into the user program's root and the DCB name declared as

an external definition.

FUNCTION PARAMETER TABLE

An FPT is a table through which a program communicates
with a Monitor function.

TASK CONTROL BLOCK

A TCB is a table containing task-associated parameters,
The space for this table is allocated by the user and the
entries are used and maintained by the Monitor.

[ntroduction 1

PROGRAM CONTROL BLOCK

The PCB is a table containing program-associated param-
eters. The PCB is constructed by the Overlay Loader at
load time.

CHECKPOINT

Checkpoint is the function of saving a copy of the back-
ground program on secondary storage.

RESTART

Restart is the function of restoring a background program
from its checkpoint image and resuming its operation from
the point of interruption.

REENTRANT SUBROUTINE

A reentrant subroutine can be called by several different
tasks. During execution of such a subroutine, a higher pri-
ority task can interrupt and call the same subroutine. When
the higher priority task has completed execution, control is
returned to the subroutine at the interrupted point. Since
a reentrant subroutine does not perform any instruction
modification and uses the Temp Stack for scratch storage,
processing continues as though the subroutine had never
been reentered.

PHILOSOPHY OF OPERATION

The Monitor provides for two levels of operation:

1. Real-time foreground processing.

2. Batch processing.

REAL-TIME PROCESSING

Real-time processing, the mostcritical aspect of multiusage,
involves reacting to external events (includingclock pulses)
within microseconds.

Real-Time programs can be either automatically loaded
every time the system is booted from the RAD or loaded
and initiated as needed. The first method is used when the
real-time process normally remains unchanged and is con-
stantly operative. The second approach is used when real-
time operations are executed periodically or irregularly, as
in an experimental laboratory.

A real-time process is assigned machine facilities on a ded~
icated basis at installation time. These facilities include
RAD and core memory residency, [/O channels, peripheral
devices, and external interrupt lines. Such allocation re-
mains in force until either the process or the computer oper-
ator terminates the program.

During SYSGEN, a user can reserve a portion of his fore-
ground area for communication between real-time programs.
Locations in this area are called foreground mailboxes. The
start of this area can be referenced through the system label
FP:MBOX. Upon encountering an external reference to
FP:MBOX, the Overlay Loader will satisfy the reference
with the first location in the mailbox area.

2 Philosophy of Operation/Monitor

The Monitor provides foreground programs with the facility
for direct 1/O operations (so-called IOEX operations),
wherein the user furnishes the basic hardware commands and
does the necessary error checking and recovery. This type
of 1/O operation provides decreased overhead and greater
flexibility as compared to indirect 1/O operations.

Foreground programs can be loaded for execution from a
background job stack by operator key-in or through a system
call by a foreground program, providing the program to be
loaded is already on the RAD in core image format. Fore-
ground programs are responsible for initializing the interrupt
system and connecting tasks to interrupts. Foreground tasks
can be processed compatibly and concurrently with a back-
ground production job stack.

RBM will not borrow CPU time from a higher priority task to
process [/O requests of a lower priority.

BATCH PROCESSING

The system is capable of processing a continuous series of
background jobs with little or no operator intervention.
Reducing the need for operator participation ensures faster
throughput, makes operations less subject to error, and
allows the operator to perform other tasks.

MONITOR

The Monitor controls and coordinates batch (background)
and real ~time (foreground) processing. Efficient operation
is assured by minimizing Monitor overhead in response to
an interrupt, and by preserving the relative priority of
tasks.

Reentrant service functions perform /O and control the in-
terrupt system; other service functions load and connect
foreground tasks, and control the partition of memory be-
tween foreground and background areas.

The Monitor provides for dynamic partitioning of core mem-
ory into background and foreground areas under user control.

Parts of the Monitor must remain resident to ensure continu-
ous coordinated operation. Other parts are brought into
core memory from secondary storage as required to perform
specific functions. Secondary storage management is essen-
tial for the Monitor. It is used for system storage to overlay
portions of the Monitor, thus minimizing core memory resi-
dency. Processing programs are retrieved from the RAD and
they too can capitalize on overlay techniques to minimize
core memory requirements.

Scratch storage for service programs, processors, and user
programs is available on the RAD. In addition, the secon-
dary storage accommodates permanent user files. Permanent
user files on disc are provided through the RAD Editor, which
can allocate files onthe RAD in addition to providing media
conversion, RAD mapping (listing of files), and other services.

The Monitor provides foreground programs with a background
checkpoint feature that writes the background program on

the RAD (after the I/O requests outstanding at the time of
the checkpoint requests have completed) and marks the
background core as foreground. The checkpoint of the
background is performed implicitly when a request is made
to load a foreground program and some portion of the mem-
ory occupied by the program lies in the background area.
The restart of the checkpointed background is also per-
formed implicitly upon release of the last foreground pro-
gram using a portion of the memory area required by the
checkpointed program,

Monitor features are summarized as follows:
e Efficient I/O service to user programs.
e Dynamic real-time process initiation and execution.

e Utilization and management of rapid-access secondary
storage (RAD).

e Comprehensive control of system operation by computer
operator.

o Sophisticated (but easy-to-use) processor services for
program creation and execution such as FORTRAN 1V-H
and Macro~-Symbol.

e Checkpoint service.

e Job accounting.

e Flexible job scheduling of foreground programs for
efficient throughput operation and recognition of in-
stallation priorities.

e Modular, flexible design for user modification.

e Use of overlay techniques and Public Library capability
to minimize core memory residency.

e Blocking and compression of RAD files.
e Foreground priority scheduling.
e Direct 1/O operations.

® Memory protection of the operating environment and
real -time processes (except for read protection).

RAD UTILIZATION

A rapid access disc (RAD)is essential for efficient operation
of the Monitor. It minimizes core memory requirements by
storing all Monitor, processor, and user program overlays,
yet provides very fast access whenever an overlay is called
into memory,

RAD FILES

During System Generation, the RAD(s) is divided into large
blocks called RAD areas. These areas represent functional
groupings of RAD files. All RAD files within an area are

either temporary or permanent, and have the same software

write protfection. Since the entire RBM system is RAD
oriented, every job will directly or indirectly involve the
use, modification, allocation, or release of RAD files,
Listed below are the RAD areas and the types of files that
occupy them,

e Foreground Programs area (FP) contains a collection of
foreground programs and optional User Libraries and
Public Libraries. Reference library routines are in-
cluded in the user load modules at "load time". Public
Libraries are a group of routines shared by a number of
programs and are called into core for execution only
when referenced.

e System Programs area (SP) contains the Monitor and the
set of language franslators used by the local instal lation,
such as Macro~Symbol and FORTRAN IV-H, The area
also contains the System Library (i.e., FORTRANIV-H
Library/Run-time), RAD Editor, and Overlay Loader.
All translators are called by user jobs to execute in the
background core space.

e Background Programs area (BP) contains the set of user

operational programs that execute in the background.
and Laranl Akl Loole el
p=

ErrOryrtTTTeS.

e Data areas (D1 through DF)are divided into foreground
and background data areas, and are used for storing
data. Foreground programs cannot write into files in
background data areas or vice versa; however, either
type of program can freely read from both areas.

e Background Temp area (BT) contains temporary (scratch)
files (X1 through Xn where n is a SYSGEN parameter)
used by background programs for intermediate storage
in processing. Their use is identical to scratch tapes
on magnetic tape units, (Note that temp filei\cre AE
des r.oz'ed at the end of each J,ob step unless *qﬁﬂ-\z
® AdAa e An TALLOGT < artj kfems Nos are

pTiles a
automatically destroyed when a new | JOB command is
encountered in a job stack regardless of :SAVE com-

mands, and there is no way fo save data on temp files
from one job to another,

The GO and QV files are also temporary files in the BT
area but have more permanence than the Xi temp files. The
GO file contains Relocatable Object Modules (ROMs)
formed by a processor if the GO option was specified on a
control command. It is used by FORTRAN IV-H, Macro-
Symbol, and Symbol programs for assemble~and~go type of
operations. The OV file contains the executable program
formed by the Overlay Loader if a program file name was
not specified at load time. It is the default output file for
the Overlay Loader, and is used primarily to test a new
program that has no permanent file defined, or to test a new
version of a program without destroying the current version.
A program in the OV file is always named OV, and is
called for execution via an ROV control command.

Note that both GO and OV are used for communication
between job steps but not jobs. There is no Monitor pro-
tection for these files between one job and another.

Monitor 3

JOB ACCOUNTING

The Monitor provides accounting services for user job activ-
ity on the Sigma computer. Because of the system's multi-
usage capability, the accounting information can indicate
total elapsed time or actual machine time of each job.

Background job accounting isan option selected at SYSGEN.
To correctly calculate the elapsed time of abackground job,
all foreground tasks need to be centrally connected (see
"Connecting Real-Time Tasks to Interrupts" in Chapter 4).
Otherwise, the foreground task's execution time will be in-
cluded in the elapsed time of the background job.

To prevent including foreground execution time with back-
ground elapsed time, foreground response time to an inter-
rupt will be slightly slower (5§ microseconds). However, at
SYSGEN, the user has the option to include foreground
execution time with background elapsed time to prevent
this degradation of foreground response time.

At the beginning of a background job, the date and start
time (in hours and minutes) will be logged on the LL device.
At the end of a background job, the total time of the job
(in hours, minutes, and seconds) will also be logged on LL.
This information plus the account number and user name is
then written on the "AL" file in the Background Data area
of the RAD. The "AL" file must be defined via the RAD
Editor; it must be in the D1 area of the RAD, andallocated
a minimum size of 256 words. This file can be purged
periodically by the operator.

The total time of a job is computed from the time the 1 JOB
command is read until the next { JOB or |FIN command is
encountered. Following the IFIN command and until the
next 1 JOB command, all unused time is charged to the idle
account.

To attach a date and time to each job, the user is required
to input the date and time of day (fo the nearest minute)
whenever the system is booted into core.

PUBLIC LIBRARY

If an RBM system has several programs that share a group of
subroutines, this set of subroutines can be collected in core
in a "public library". Thispreselected set is loaded by the
Overlay Loader into a previously defined file on the RAD.
The Loader also writes the names and entry points of all the
routines into the same RAD file. Then, whenever the Over-
lay Loader loads a foreground or background program that
references one of the "public" routines, it links up the
appropriate branch to the Public Library copy instead of
loading a separate copy. This can represent a considerable
saving in space for a large system.

If the appropriate Public Library was not already present in
core, it will be automatically loaded into its specified fore-
ground location whenever a program is loaded that uses it.
Routines in the Public Library will execute under the same
WRITE key as the calling program; therefore, a Public
Library routine used by both foreground and background

must only store into the calling program area.

4 Monitor

RBM CONTROL TASK
The RBM Control Task will perform the following functions:

1. "I/O cleanup" and "1/O start" when any of these
functions are deferred from the 1/O interrupt task be-
cause of priority considerations.

2. Loading and initialization of foreground programs and
loading of background programs.

3. Release of foreground and background programs.
4. Console interrupt and operator key-in processing.
5. Postmortem dumps for the background.

6. Checkpoint and restart of background.

The RBM Control Task is connected to the lowest priority
interrupt in the system at System Generation time. For con-
figurations without system interrupts, the Control Task is
connected to the console interrupt.

OVERLAYS

RBM is overlayed to minimize core residence requirements.
The overlays consist of all Control Task subtasks such as the
various key=in processors.

Foreground functions and frequent-use functions are all
resident,

MEMORY PROTECTION

The Monitor provides memory protection for all input oper=
ations, except direct input and write protection for RAD

files. The hardware write-lock feature furnishes memory

protection for all non-1/O operations.

The hardware write-lock feature inhibits both foreground
programs (write-lock 10) and background programs (write-
lock 01) from storing outside their own memory area. An
exception is the Public Library which resides in the fore-
ground area of memory but executes under the key of the
calling program (either background or foreground). This
permits Public Library routines to use a Temp Stack in
the calling routine's portion of memory. Also, some Moni-
tor routines are given a skeleton key. One such routine is
the Job Control Processor, which executesin the background,
but has to set system flags in the Monitor portion (write-
lock 11) of memory.

Background programs causing protection violations are
aborted; foreground programs are not aborted but must pro-
cess all traps resulting from memory violation (see TRAPS
system call).

Memory protection on all input operations performed via
Monitor functions {except IOEX) is guaranteed by the Mon-
itor software. The Monitor checks the validity of the input
area on all read operations to ensure that the area is wholly
contained in the calling program's write-lock area. If an

attempt is made to read into an invalid area of core, an
error condition is returned to the error address specified by
the user. If no address is specified, the job is aborted. An
"FG" key~in is required before a foreground program can
be loaded from the background job stack; this protects the
foreground from an error in a background job stack.

RAD WRITE PROTECTION

The Monitor furnishes software write-protection of RAD files
above and beyond that furnished by the hardware write-
profect switches on the RAD. Background programs are
allowed to write only in the Background Data area or Back=-
ground Temp areas of the RAD. Foreground programs are
allowed to write only in the Foreground Data areas. The
foreground user is responsible for ensuring that IOEX (direct
1/0O) writes only in the IOEX Access area of the RAD, The
Systems program area, Foreground programarea, and Back-
ground program area can be written into only if the "SY"
key-in is in effect.

Similarly, the Overlay Loader and RAD Editor (background
processors) are allowed to write in nonbackground areas only
if the "SY" key-in is in effect. Any RAD write-protection
violation will result in o write-protection error indication
return, and the write order will not be carried out.

All RAD files (and all of memory) can be read by a user
without restrictions. There is no Monitor-furnished read
protection for memory or RAD files,

PROCESSING PROGRAMS

The following language translators are available for inclu-
sion in the operating system:

FORTRAN IV-~-H
SL-1

Symbol
Macro-Symbol

FORTRAN IV=-H is a compiler that operates in the back-~
ground but is capable of generating code that will function
in a real-time environment.

SL-1is a simulation language to solve differential equations
as the fundamental procedure in simulating parallel, con-
tinuous systems. An extensive set of macros permit the user
to simulate a wide variety of linear and nonlinear elements
through the use of single-operator statements. These proto-
type statements are inserted into the user program each time
a macro is referenced by name.

Symbol is a one-pass assembler that accepts symbolic input
and outputs programs in Sigma 5/7 standard object language.

Macro-Symbol is a two-pass assembler with procedure capa=
bility that accepts both symbolic and compressed format
programs as input, and provides standard sequential editing
for compressed input files. The assembler outputs programs
in Sigma 5/7 standard object language.

SERVICE PROGRAMS

Service Programs provide routines for performing frequently
used functions. The service programs include the Overlay
Loader and the RAD Editor.

OVERLAY LOADER

The Overlay Loader {(a background processor) can be used
to create overlay programs for later execution in either the
foreground or background. Thus, if a foreground program
can tolerate a slight delay in reading the overlays into
core for execution, either foreground or background pro-
grams of virtually unlimited size can be constructed even
though core size is restricted. For example, a 1400-word
overlay can be input in about 50 milliseconds, assuming a
Model 7204 RAD is available. That is, the time required
to bring in an overlay for execution is the time of the one
RAD access required to read the overlay. Since a program
is stored on the RAD in core image format, it can be loaded
very quickly as one logical record per segment. A program
loaded by the Overlay Loader can be entered permanently
into the System Programs Directory, Foreground Programs
Directory, or Background Programs Directory, or it can be
loaded on a temporary file in the Background Temp area of

the RAD.

The overlay structure as illustrated in Figure 1 is restricted
to a permanently resident root section and any number of
overlay segments, A blank COMMON and labeled COM-
MON data area can be established for use by the root and
overlay segements. Each segment is created by the Loader
from one or more object modules output by the Symbol,
Macro-Symbol, or FORTRAN IV-H processors. The Loader
will build the Program Control Block, the OVLOAD table
(used to load the overlay segments at execution time), al-
locate or build DCBs, and allocate the temp stack. It will
also load library modules to satisfy unsatisfied references
encountered in the loading process. A maximum of two
libraries can be searched. Library search and loading are
extremely fast, due to special tables that are added to the
library files at the time the library is created on the RAD,

The overlay segments must be explicitly defined at load
time and explicitly called atexecution time. There is no
provision for implicitly calling in an overlay segment. All
segments in a path may communicate with each other via
REF/DEF linkages, but it is the user's responsibility to en-
sure that any segment referenced is currently in core,

RAD EDITOR

The RAD Editor (a background processor) controls RAD allo-
cation for areas containing permanent RAD files and per-
forms utility functions for all areas. The RAD areas with
permanent files include Background Programs, Foreground
Programs, System Programs, and data areas.

The RAD Editor performs the following functions:
1. Addsordeletesentries to the permanent file directories.

2. Compacts the RAD areas by relocating RAD files and
updating/compacting directories to regain space within
an area,

3. Maps permanent RAD file allocation.

Monitor 5

Root
(level 0)

|

Overlay Overlay
Segment Segment
(level 1) (level 1)
Overlay Overlay Overlay Overlay
Segment Segment Segment Segment
(level 2) (level 2) (level 2) (level 2)
Overlay Overlay
Segment Segment
(leve! 3) (level 3)

Figure 1. Overlay Structure

4. Builds and maintains library files on the RAD for use
by the Overlay Loader.

Copies permanent RAD files from one file to another.
Saves the contents of RAD areas inself-reloadable form.

Restores RAD areas previously saved.

0 N O O

. Dumps the contents of permanent RAD files or areas.

JOB ORGANIZATION

The user controls the construction and execution of a back-
ground job by means of control cards placed before, within,
and following the input card decks. These control cards,
interpreted by the Job Control Processor, Overlay Loader,
or RAD Editor, specify

e Processors required and the options to be used.

e Input/output devices required and their specific
assignments,

e Loading and execution requirements,
e Libraries and supporting services required.

e Program modification and debugging (postmortem dump)
requirements.

A batch job is the basic independent task performed by the

operating system. Each such background job is independent
of any other job and consists of one or more directly or in-

directly related job steps. A job results in the execution of
a processing program such as a language translator, service

program, or user's program.

A foreground task may cause the background process to be
checkpointed if additional core storage area is required for
the real-time program. The Monitor's checkpoint routine
saves all data needed to restart a checkpointed job along
with the job.

] Job Organization/Hardware Configurations

HARDWARE CONFIGURATIONS

The minimum configuration required and supported by RBM
for either a Sigma 5 or Sigma 7 is the following:

Sigma 5 or Sigma 7 CPU with two clocks and
Integral 1OP

Memory Protect Feclturet
Memory Module: 4096 words"

Memory Increment: 4096 words each for a total of
12,228 wordstt

Keyboard/Printer with Paper Tape Reader/Punch
RAD Control and .75MB RAD Storage Unit
Interrupt Control Chassis'
Priority Interrupt, Two Levels'
External Interface Fec:furef
Note that an external interrupt level is required at execu-

tion time for each real-time task in the system, and another
external interrupt level is required for the RBM Control Task.

t . . .

To run background only, these items are not required in
the minimum configuration. To run background/foreground,
the complete list is required.

tt
Memory Module and Memory Increment comprise a
total of 16K.

In addition to the previous list, any items from the list
below can be added for increased performance and will be
specifically supported by RBM. Other items can be added
to this list but will not receive any special RBM support.

Floating=Point Arithmetic

Memory Module

Memory Increment

Multiplexor IOP with Eight Channels

Additional Eight Multiplexor Channels

Selector IOP

Decimal Arithmetic

Keyboard/Printer

Paper Tape Reader/Punch (High-Speed)

Card Readers

Card Punches

RADs

9~Track Magnetic Tape

7-Track Magnetic Tape

BCD and Binary Packing Options for 7-Track Magnetic
Tape

Buffered Line Printers

Plotters

SYSTEM CONFIGURATIONS

CORE SPACE CONSIDERATIONS FOR A
MINIMUM SYSTEM

The minimum size of a resident RBM is 5-1/2K words. This
will support foreground/background processing under the
minimum hardware configuration, but not floating-point

ordecimal arithmetic simulation software, or job accounting.

The floating-point simulation software requires about 500
words; decimal arithmetic requires about 800 words; and
job accounting requires about 100 words.

RBM will support the following system processors in a maxi-
mum background space of 11K (some of which require con-
siderably less than 11K):

Macro-Symbol
Symbol
FORTRAN IV-H
SL-1

Overlay Loader

RAD Editor

WIRING OF EXTERNAL INTERRUPTS

External interrupts must be wired so that their priority and
address both have a corresponding monotonically increasing
or decreasing sequence. That is, the highest priority inter-
rupt must be connected to the lowest address interrupt cell;
the next highest priority interrupt must be connected to an
address greater than the highest priority interrupt, etc.

A user can wire external interrupts to give them a higher
priority than the 1/O interrupt within the following
restrictions:

1. A task connected to the high-priority interrupts cannot
use any Monitor function that performs 1/0 (e.g.,
READ, WRITE, IOEX).

2. Such a task cannot perform its own 1/O if the I/O de-
vice is connected to the central I/O interrupt level.

In general, a foreground task should not be connected to an
interrupt whose priority is higher than the 1/O interrupt
except in a situation where instant response must be guaran-
teed. In this special case, a task that must perform 1/O
could do direct data 1/O or trigger a lower priority task to
perform system 1/O.

System Configurations 7

2. CONTROL COMMANDS

The Monitor is controlled and directed by means of control
commands, These commands effect the construction and exe-
cution of programs and provide communication between a
program and its environment. The environment includes the
Monitor and the Macro-Symbol, Symbol, FORTRANIV-H
SL-1, Overlay Loader, and RAD Editor processors, the oper=-
ator, and the peripheral equipment.

Control commands have the general form

! mnemonic specification

where
! is the first character of the record and identifies
the beginning of a control message.
mnemonic is the mnemonic code name of a control

function or the name of a processor. The name may
begin any number of spaces after the ! character,
except for an EOD command,

specification is a listing of required or optional
specifications. This may include keywords, labels,
and numeric values appropriate to the specific
command.

In this manual, the options that may be included in the
specification field of a given type of control command are
shown enclosed in brackets (no brackets are actually used
in control commands, and parentheses are required to indi-
cate the grouping of subfields).

et
One or more blanks mes separate the mnemonic and specifi-

cation fields, but no blanks can be embedded within a field,

A control command is terminated by the first blank after the
specification field, or, if the specification field is absent
and a comment follows the command, the command is termi-
nated by a period after the blank that follows the mnemonic
field. Annotational comments detailing the specific pur=
pose of a command may be written following the command
terminator, but no control command record can contain more
than 80 characters.

A control command can be continued from one record to the
next by using a semicolon to replace the comma as a sub-
field terminator in the specification field of the command.
Column one of the continuation card must contain either an
exclamation mark (if the control command is read by the Job
Control Processor), or a colon (if the command is read by
the Overlay Loader or RAD Editor). See the control com-
mand examples given later in this chapter for an illustration
of the proper use of the semicolon,

Communication between the operator and the Monitor is ac=
complished via control commands, key-ins, and messages.

8 Control Commands

Control commands are usually input to the Monitor via
punched cards; however, any input device(s) may be desig-
nated for this function. All control commands are listed on
the output device designated as the listing log (normally a
line printer). In this manner, the Monitor keeps the oper=
ator informed regarding the progress of the job. When a job
is aborted, all control commands skipped over until the next
JOB command is encountered are listed on LL with agreater
than character (>) in column one,

Note that in all control commands, the first three characters
after the exclamation character are sufficient to define any
mnemonic code or keyword.

Control commands may be categorized as follows:

System Control Debug Control

108 PMD

oty Uttty Contrl

ATTEND PFIL

MESSAGE PREC

PAUSE SFIL

cC REWIND

STDLB WEOF

RQy DAL

RUN

PQOL Processor Control

O ecia) | QLOAD

MOD (special) RADEDIT
MACRSYM

Input Control SYMBOL

EOD FQRTRANH

FIN Lot

JOB CONTROL PROCESSOR

All control commands are read from the "C" (op label) device
by the Job Control Processor (JCP). The JCPis aspecial pro=
cessor loaded into the background by RBM upon the initial
"C" key-in, The JCP is also reloaded into the background
following each job step within a job. A job step is defined
as all control commandsrequired for the setup and execution
of a single processor or user program within a job stack.

The JCP processes each control command until a request is
made to execute a processor or user program, at which time
the appropriate program is read into the background and
given control. A detailed description of the JCP interface
with the system processors or user programs is given later in
this chapter under "Processor Control Commands",

SYSTEM CONTROL COMMANDS

JoB Each background job to be processed by the system

must begin with a JOB control command. The JOBcommand

-

signals the completion of the previous job, if any, and the

beginning of a new one, The JOBcommand causes the tem-
porary assignments of all operational labels (except the "C"
operational label) to be reset to their permanent assignments.

The form of the JOB command is

! JOB[cccounf number, name]

where

account number identifies the account or project.

It consists of from 1 to 8 alphanumeric characters.
identifies the user, It consists of from 1 to
12 characters,

' name

Note that a comma separates the optional subfields. The
account number must precede the name, and both fields must
be present if either one is present.

Example:

1 JOB 12345, JOBSAMP1

The above example defines the account number for the job
as 12345, and the user as JOBSAMPI.

ASSIGN The ASSIGN control command specifies the
physical peripheral devices or RAD files to be used in pro-
cessing the current job step, and the uses to which they will
be put. ASSIGN commands must appear prior to the appro-
priate RUN or Processor name command and affect only that
one job step. Each ASSIGN command assigns a Data Con-
trol Block (DCB) name to an operational label {logical
device name), a RAD file, or a physical device. An opera-
tional label is a symbolic name used to identify a logical
system device (see Table 1), The "name" to which a DCB
is assigned may be either a system physical device name of
the form

yyndd

where

yy specifies the type of device (see Table 2).
n specifies the channel letter (see Table 3),

dd specifies the device number (see Table 4), in
hexadecimal.

or an operational label, background temp file, permanent
RAD file, or numeric zero.

If there is an error in an ASSIGN command, the entire
command must be input again.

Table 1. Monitor Operational Labels

Label Reference Comments

BI Binary input Used to input binary
information,

Cl Compressed Used by Macro-Symbol.

input

SI Symbolic Used to input source

input (symbolic) information.

C Control com- Used by the Monitor and

mand input processors to read control
commands,

BO Binary output Used to output binary
information.

DO Diagnostic Used by the Monitor for

output postmortem dump and
diagnostic messages.

LO Listing output Used for object listings
from assemblies and
compilation,

CO Compressed Used by Macro-Symbol.

output

LL Listing log Used by the Monitor to
log control commands and
other system messages.

ocC Operator's Used by the Monitor for

console key~ins and operator con-
trol. (Always assigned to
a keyboard/printer,)
SO Symbolic Used by SL-1,
output
PL Plotter output Used by user programs
Table 2, 1/O Device Type Codes
Yy Device Type
TY Typewriter
LP Line printer
CR Card reader
Ccp Card punch
o1 9-track magnetic tape
7T 7-track magnetic tape
PP Paper tape punch
PR Paper tape reader
DC RAD or other disc storage
PL Plotter
NO Not a standard device. Used as a special

purpose device for IOEX,

System Control Commands

9

Table 3. Channel Designation Codes

Table 5. RAD Area Mnemonics

Specified Corresponding
Channel Decimal Digit
Letter (n) of Unit Address
A 0

B 1

C 2

D 3

3 4

F 5

G 6

H 7

Table 4. Device Designation Codes

Hexadecimal Device
Code (dd) Designation

00=dd =7F
(single devices)

Refers to a device number
(00 through 7F).

80 =dd = FF

(multiple devices)

Refers to a device controller
number (8 through F) fol-
lowed by a device number
(0 through F).

The form of the ASSIGN control command is

t ASSIGN (dcb[,area,name}) [,(option),(opfion), e

L (option)]

where

deb is the name (not exceeding eight characters in
length) of the DCB to be assigned. It must be the

first subfield following ASSIGN, and must be fol-
lowed by a name specification (see below). The
first two characters of a user's DCB name must be

€. : or . e Tirst fwo charac-

ters of asystem L name are "M " (e.g., M:LO).

area specifies the RAD area if the DCB is to be
assigned to a RAD file, and must be one of the
codes itemized in Table 5.

name specifies a system physical device name, a
system operational label, a background temp file
name (X1-X9, GO, OV), a permanent RAD file
name, of a numeric zero. In the "0" case, no out-
put will be generated by the DCB. If assignment
is to a permanent RAD file, and if "name" is
omitted, the DCB is assigned to the entire RAD
area.

10 System Control Commands

Code Mnemonic

SP Systems Program area

FP Foreground Program area

BP Background Program area

BT Background Temp area

XA IOEX area

CK Checkpoint area

Di

[.)A Data area (number of data areas are
defined at SYSGEN)

DF

Note: If the DCB is assigned to a background

temp file, the area can be omitted.

The options below are used only if the user creates the DCB
or changes some of the DCB's parameters. Note that DCB
parameters not specified on the ASSIGN command are not
changed from their initial value. The initial values of the
DCB parameters depend upon how the DCB was created.
Parameters of System DCBs have standard default values.
DCBs allocated by the Overlay Loader (F:DCBs) are set to
all zeros. User created DCBs have the initial values speci-
fied by the user.

Mode may be any or all of the following:

BCD specifies the EBCDIC or automatic

{ device mode.

LBIN specifies the binary device mode.
VFC specifies vertical format control.
NOVFC no vertical format control,
PACK specifies that the packed binary or un-

packed binary mode is to be used

UNPACK for 7-track magnetic tape.

number of recovery tries

TRIES,value specifies the maximum number of re-
covery tries to be attempted for an 1/O operation,
The value must be less than 256.

default record length

RECL,value specifies the default record length in
bytes. The value n must be 1 = n =< 32,767. This
record length is used for all requests referencing
the DCBs that do not explicitly specify a record
length in the FPT.

Examples:

1.

Assign listable output to a magnetic tape:

1 ASSIGN (M:LO, 9TA81), VFC

This example assigns the M:LO DCB to a 9-track mag-
netic tape. Vertical format control is also specified,
so the first byte in each record is a format control byte
for the line printer.

Assign binary output to the GO file on RAD;

I ASSIGN (M:80,G0)

This example assigns the M:BO DCB to the GO file.
Note that in this case the RAD area can be omitted.

Assign source input to a RAD file in the D1 Dataarea:

I ASSIGN (M:SI, D1, PRESTORE)

This example assigns the M:SI DCB to the RAD file
PRESTORE, which is in the D1 area. This type of as-
signment could be used to assemble a source program
that had been prestored onto a RAD file,

Build a user DCB that was left empty at load time:

L ASSIGN (F:XX, 7TAE0), PACK, (TRIES, 3),

l—(REC L, 80)

This example builds a user DCB, F:XX, and also as-
signs F:XX to a 7-track magnetic tape. The packed
binary mode (PACK) will be used in accessing the
tape, and a maximum of three recovery tries (TRIES, 3)
will be attempted for a possible tape parity error, The
default record size to be read or written is 80 bytes
(RECL, 80).

Assign a user DCB to read nonstandard binary codes:

I ASSIGN (F:INP, CRA03), BIN

This example assigns the user DCB, F:INP, to the card
reader, and specifies that the binary mode is to be used
in reading the cards. This type of assignment would be
used to change an existing DCB to read nonstandard
binary cards.

LOAD The LOAD control command directs the JCP
Loader to load a program on the RAD and absolutize it for
its core execution location.

The form of the LOAD command is

1 LOAD [(option), (option)]

where the options are

IN[, area], name specifies the input device as a
system physical device name, a system operational
label, or a RAD file from which the object mod=
vles will be loaded. The default input device is
the one assigned to the BI operational label.

OUT[, area], name specifies the output device as
an operational |abel or a RAD file on which the
loaded program is written, The default output de-
vice is the OV file. A foreground program can
only be loaded on the FP area of the RAD or the
QV file.

EXLOC,v-alue specifies the execution location (in
hexadecimal) of the program being loaded. The
default location will be the start of background.

SEG, value specifies the decimal number of overlay
segments that follow the root, The default value
is zero, which means only a root is being loaded.

MAP specifies that a map of the loaded program be
output to the LO device. The default is no map.

{F] specifies that the program being loaded is afore-~
B} ground program (F) or background program (B}. The
default is a background program,

The primary function of the JCP Loader is to load the Over-
lay Loader and RAD Editor at SYSGEN time. However, the
JCP Loader will load any nonoverlaid program on the RAD
under certain restrictions (see Appendix D).

Example-

Load Overlay Loader from cards:

! LOAD (IN,CRA03),(OUT,SP,OLOAD), —j

L (sec,5),map

This command would be used to load the Overlay Loader
onto its permanent file (OLOAD) on the SP area of the
RAD. Five overlay segements (SEG,5) are specified
and a MAP of the load is requested. The complefe
deck structure required to perform the load is illustrated
in Figure 2.

System Control Commands H

[1FIN

1EOD \w

[Binory Deck of Overlay 6

Bincr.y Decks of Overlays 3-5; each deck
followed by an IEOD

1EOD \ |

| Binary Deck of Overlay 2
f1eoD

[Bincry Deck of Overlay 1
1EOCD

A

Binary Deck of Overlay Loader Root N
f1(OUT,SP,OLOAD),(SEG,6),MAP
—— | LOAD(IN,CRA3);

[! Pause Key-in 'SYC!
1JOB

Figure 2. Loading Overlay Loader from Cards

ATTEND The ATTEND control command is used during an
attended run and indicates that RBM is to go into a WAIT
condition after a WAIT system call, or after an abort from
the background. After an unsolicited key-in of "C", back-
ground processing will continue from the point of the wait.
If the ATTEND control command is not specified, and an
abort or error condition occurs, or if a WAIT system call is
made, the Monitor does not pause for operator intervention
but skips al! control commands, binary records, and data
until a JOB or FIN command is encountered. When in skip-
ping mode, all control commands encountered will be listed
on the LL device, with a greater than character (>) replac-
ing the exclamation mark in column one. Hence, the de-
fault mode of operation (no ATTEND command) is for closed~-
shop batch processing, with no halts between jobs after
an abort.

The form of the ATTEND command is

(z ATTEND

The effect of an ATTEND command exists for one job only.
Normally, the ATTEND command immediately follows the
JOB command.

12 System Control Commands

MESSAGE The MESSAGE control command is used to

type a message to the operator. The message will be typed
on the OC device, and normal processing will continue
after the message is output.

The form of the MESSAGE command is

I MESSAGE message

where message is any comment to the operator, up to a full
card image (80 columns). The message may contain any de-
sired characters, including blanks, but may not be con-
tinued from one record to the next. Two or more MESSAGE
control commands may be used in immediate succession.

Note that the entire card image, including the ! MESSAGE,
will be output to LL and OC.

Example:

! MESSAGE SEND ALL SAVE TAPES TO JOHN SMITH

The above example would cause the following message to be
output on the LL and OC devices:

T IMESSAGE SEND ALL SAVE TAPES TO JOHN SMITH

Note: All Monitor messages to the operator begin with two
exclamation characters,

PAUSE The PAUSE control command is similar to the
MESSAGE command except that the JCP will enter a WAIT
state after the message is output to OC to give the operator
time to carry out the instructions in the message. Process-
ing is continued after an unsolicited key=~in of "C",

The form of the PAUSE command is

! PAUSE message

where message is any comment to the operator, up to a full
card image (80 columns).

Example:

! PAUSE KEYIN SYC

The above example would cause the Monitor to pause exe-
cution with the following message output on LL and OC,

11 PAUSE KEYIN SYC

giving the operator time to key in SYC, which would permit
the user to override the write protection on the RAD and
continue the background job.

cC The CC control command removes typewriter over-

ride of the C device(see TY key-in description). The next
control command will be read from the C device instead of
the typewriter.

The form of the CC control command is

I CC

The CC control command has the same effect as the CCkey-
in, and can be used whenever the JCP has control.

LIMIT The LIMIT control command is used to set a maxi-
mum allowable execution time for a background program.

If the job exceeds the time limit, the background is aborted
with a postmortem dump (if the dump option was specified
via a PMD control command).

The form of the LIMIT control command is

I LIMIT n

where n specifies the maximum allowable execution time
in minutes.

STOLB The STDLB command is used to change the tempo-
rary assignment of an operational label, with the exception
of OC (operator's console). The operational labels being
changed receive the new temporary assignments which stay
in effect until the next JOB command is encountered.

The form of the STDLB command is

I STDLB (label[,area],name)[,(label[,area],name). . N

where

label specifies one of the standard operational
labels input during SYSGEN (see Table 2).

area specifies a RAD area for an operational label
assignment to a RAD file. If an operational label
is assigned to a file in the Background Temp area
(X1-X9, GO, OV), only the file name need be
specified.

name specifies a physical device name to which the
operational label is to be temporarily assigned, a
RAD file name, a numeric zero, or another oper-
ational label. In the latter case, the first oper-
ational label will receive the same assignment as
the temporary assignment of the second operational

label. If "0" is specified, there is to be no tempo-

rary assignment, which means that no output will

occur on that label. The C op label cannot be as-

signed to zero via this command. Note that if an
error occurs on a !STDLB command, all fields up
to the one in error will be processed.

Example:

Change temporary assignments of operational labels:

I STDLB (BO,GO),(CO,D2,COMPRESS),(LO,9TAS0)

This example could be used for Macro-Symbol assembly to
change the binary output to the GO file in the RAD, the
compressed output to the COMPRESS file in the D2 area of
the RAD, and the listable output to a 9-track magnetic tape.

ROV The ROV command (RUN OV) causes execution of
the program (either foreground or background) onthe OV file.

The form of the ROV command is

I ROV

The loading of any program into the foreground area via a
ROV control command must be preceded by an FG key-in
(see Chapter 3). A foreground program loaded by ROV is
given the name OV. There may be only one such program
resident at any time.

RUN The RUN control command causes the named pro-

gram (either foreground or background) to be executed.

The form of the RUN command is

| RUN area,file name

where

areq,file name specifies a RAD area and the file
name of the program in that area that is to be exe-
cuted, The area must be either SP, FP, orBP. The
loading of any program into the foreground area
via a RUN control command must be proceded by
an FG key-in.

POOL The POOL control command is used to override
the default allocation of blocking buffers for the background
by the JCP. The POOL command takes effect only for a job

step and not for the duration of an entire job.

The form of the POOL command is

I POOL n

where

n specifies the number of 256-word blocking buffers
that are to be allocated to the background for the
blocking and deblocking of blocked or compressed
RAD files. The n value must be less than 255, and
the value of 256n + n + 1 cannot exceed the avail-
able background space.

System Control Commands 13

ALLOBT The ALLOBT control command is used to define
the files in the BT area of the RAD, and overrides any JCP
default definitions. The files input on the ALLOBT command
will receive the specified sizes and formats. The files de-
fined via an ALLOBT command will stay in effect only for
the current job step unless the SAVE option is invoked. I[f
the SAVE option is used, the ALLOBT command will stay in
effect for the entire job (any input for the GO or OV files
will always stay in effect for the entire job).

The form of the ALLOBT command is

I ALLOBT (FILE,nn)[,(option),(opfion). .]

where

FILE,nn specifies the name of the background temp
file to be allocated. Legal names for nn are
X1,X2,...,X9,GO, or OV.

and the options are

FORMAT,value specifies the format of the file;
U for unblocked, B for blocked, C for compressed.
The default is unblocked for all files except GO;
the default for GO is blocked.

FSIZE,value specifies the decimal length of the file
in logical records. If ALL is input for a value, the
remainder of the BT area will be allocated for this
file. An ALL input is allowed only once, and is
only allowed for Xi files (not GO or OV). Acheck
is made for overflow of the BT area at the time the
ALLOBT command is input. The default value is
1000 records. Note that the file size in sectors
is computed using the logical record size and not
the granule size.

RSIZE,value specifies the decimal number of words
per logical record. This field is only meaningful
for blocked or unblocked files, since the Monitor
compresses records of compressed files into 256~
word blocks. Blocked files have a default record
size of 128 words, and unblocked files have a de-
fault record size equal to the granule size. Note
that if RSIZE > 128, unblocked organization will
always be given to the file.

GSIZE,value specifies the decimal number of words
per granule. This field is only used in directly
accessing a file. The default granule size will be
the size of a RAD sector.

SAVE specifies that this file is to be saved through-
out the job and not reallocated between job steps.

14 System Control Commands

Example:

Change the default assignments of the background temp
files:

The group of ALLOBT commands

5. [{ALLOBT(FIL,OV),(FSIZ @)
4. [YALLOB(FIL X4, (FSIALL)

[1(GSIZE,180)

3. [YALLO(FILE X3),(FSIZE,20); \

[1(Fs1ZE,100),(RSIZE,30)
2. | IALL(FILE,X2) (FORMAT,B); \\

{1 (FSIZE, 1000),SAVE
1. | ALLOBT(FILE,X1),(FORMAT,C);

could be used by a background program to achieve the fol-
lowing results:

1. The X1 temp file would be a compressed file that could
hold approximately 1000 EBCDIC cards. This file would
be saved throughout the entire job.

2. The X2 temp file would be a blocked file which could
hold a maximum of 100 binary cards.

3. The X3 temp file would be an unblocked file contain-
ing 40 sectors (assuming a 7204 RAD) with a granule
size of 180 words or two sectors.

4. The X4 temp file would be an unblocked file with a
record and granule size of 90 words (assuming a 7204
RAD) and would be allocated the remainder of the
Background temp area.

5. The QV file would not be allocated.

After inputting this series of ALLOBT commands, the back-
ground temp area would have the following layout (assuming
a 7204 RAD):

X2 X3 X4 X1 GO

I

I36 Sectors l 40 Sectors l n Sectors ']20 Sectors lDefoulf Siz:‘ |

Note that X4 receives n sectors, where n is the remainder
of the area after all other files have been allocated. X1 is
allocated at the opposite end of the BT area, since it will
be saved throughout the entire job.

—

The formula used to calculate the number of RAD sectors for
X2 is the following:

RSIZE
“256 X FSIZE x 3
where 256 is the number of words per blocking buffer and
3 is the number of RAD sectors (assuming a 7204 RAD)

necessary to contain a blocking buffer.

The formula used to calculate the number of RAD sectors
for X1 is

FSIZE % 3
25

where it is assumed that 25 cards can be compressed into a

256-word blocking buffer. The number 3 is the number of

RAD sectors necessary to contain a blocking buffer.

MODIFY The Monitor MODIFY control command is a
special command used only at system boot time to modify
(patch) one or more system modules. Its use must be pre-
ceded by sense switch settings 1 through 3. (See Appen-
dix E "System Patching" for a complete description of con-
trol command format and use.)

DEBUG CONTROL COMMANDS

PMD The postmortem dump (PMD) control command
causes the Monitor to dump a specified area of memory if

a background job is aborted during execution. Such a dump
is termed "postmortem” because it is performed after the
background program has been aborted, terminated normally,
or not executed at all for any reason. The dump is always
output on the DO device. In the case of an abort the time
to perform the dump is not included in the total time on the
LIMIT control card. Note that the PMD command must pre-
cede the RUN command.

The form of the PMD command is

1 PMD [U] [,(from, to)] [,(from,fo)] ves

where
u specifies that an unconditional dump at the end
of the job is to be output, even if there were no
errors, If U is absent, the dump occurs only if
the job is aborted,
from specifies the location (in hexadecimal) at

which dumping is to begin. If no locations are
specified, the entire background is dumped.

to specifies the last location (in hexadecimal) to be
dumped. The last location must = first location.

A maximum of four location pairs is processed and only the
last PMD command is honored within a job step. If an error
occurs anywhere on the command, the entire command must
be reinput.

Example:

Request a postmortem dump:

I PMD U, (1200,1300),(2000,3000)

This example requests an unconditional dump at the termina-
tion of the next program to run in the background. Loca-
tions 120074 through 130014, and 20004 through 300044
will be output on the DO device.

INPUT CONTROL COMMANDS

Note that EOD control commands must not have any spaces
between the exclamation character and the mnemonic.

EOD The user may define blocks in a data deck by in~
serting EOD contro!l commands at the end of each block.
When an EOD command is encountered, the Monitor returns
an EOD status. Any number of EOD commands may be used
in a job and for any reason.

The form of the EOD command is

IEOD

FIN The FIN control command is used to specify the end
of a stack of jobs. When the FIN command is encountered,
the Monitor writes it on the listing log to inform the opera-
tor that all current jobs have been completed, types"BEGIN
IDLE" on OC, and then enters the idle state, All time pre-
ceding the FIN command is charged to the previous job, if
job accounting is being performed. All time from the FIN
command to the next JOB command is charged to the idle
account,

The form of the FIN command is

IFIN

UTILITY CONTROL COMMANDS

The utility control commands described below allow the
user to manipulate RAD files or magnetic tape files.

PFIL, PREC The file and record positioning commands are
used to position a device within its current file. The PFIL
command, which is only valid for magnetic tapes or RAD
files, will leave the device positioned before the file mark
in the appropriate direction. Only background devices
(not dedicated to the foreground or IOEX) can be positioned.

Debug Control Commands/Input Control Commands 15

The forms for the PFIL and PREC control commands are

| PFIL
K
{! PREC} [area,] nume[:, BAC][, n]

where

[urea,] name specifies a system device name,
operational label, or RAD area and file name of
the device that is to be positioned. This must be
the first item in the specification field.

BACK specifies that the direction of the position-
ing is backward. The default is forward.

n specifies the number of records to skip. The "n"
parameter applies only to the PREC command and
not to PFIL. The default is skip one record. The
PFIL command always refers to one file.

Examples:

1. Position a RAD file to the end of the data:

! PFIL GO

This example could be used to position the GO file so
additional object modules could be added to those al -
ready existing.

2. Position a RAD file:

! PREC D1,ABCD,30

This example would position RAD file ABCD 30 records
forward from its current position.

SFIL The skip file command is used to skip one or
more files on_a magnetic_tape unit, but cannot be used to

position a RAD file,. When skipping forward, the SFIL
command leaves the device positioned following the speci-
fied EOF. When skipping backward, the device is posi-
tioned at the first record of the designated file.

The form of the SFIL control command is

! SFIL name[,BACK] [,n]

where
name specifies a system device name or operational

label of the device that is to be positioned. This
must be the first item in the specification field.

16 Utility Control Commands

BACK specifies that the direction of the positioning
is backward. The default is forward.

n specifies the number of files to skip. The default
is one file.

Example:

Skip tape files:

| SFIL 9TA82,BACK 4

This example would cause back skipping of four files on the
designated 9-track magnetic tape.

REWIND The REWIND command is used to rewind a mag-
netic tape or a RAD file. It has no effect on other devices.

The form of the REWIND command is

! REWIND [areq,] name

where
[oreo,] name specifies a system device name, op~
erational label, or RAD area and file name of the
device that is to be rewound,

Example:

Rewinding a tape

! REWIND 7TAEO

This example would rewind the designated 7-track tape.

UNLOAD The rewind manual (UNLOAD) command
causes the specified magnetic tape to be rewound in manual
mode. Operator intervention will be required to use the
device again (i.e., depressing the ATTENTION and START
switches on a tape drive). An UNLOAD command for a
RAD file produces the same results as a REWIND command.

The form of the UNLOAD command is

TUNLOAD [areq,] name

where

[oreo,] name specifies a system device name, oper-
ational labe!, or RAD area and file name of the
device that is to be rewound in manual mode.

Example:

Unload a magnetic tape:

I UNLOAD 9TA83

This example would cause the designated 9-track tape to be
rewound in manual mode.

WEOF The write end-of-file (WEOF) command causes an
end-of-file mark to be written on the output device if an
EOF is appropriate for the device. For magnefi e, a
tqpe_mark is written; for a RAD file, a logical file mark s
written, for paper tape, an EQOD is written. The WEOF
command is ignored for all other devices.

The form of the WEOF command is

! WEOF [area,] nome[,n]

where
[qrea,] name specifies a system device name, oper-
ational label, or RAD area and file name of the

device that is to receive the EOF.

n specifies the number of end-of-files to write.
The default is one.

Examples:

1. Write end-of-file on magnetic tape:

I WEOF 9TA81,2

This example would write two EOFs on the designated
9-track magnetic tape.

2. Write end-of-file on RAD:

! WEOF GO

This example would write a logical EQF on the GO
file at its current position. This would result in trunca-
tion of a file if the file was positioned at some point
other than its end.

DAL The Dump Accounting Log command causes the
contents of the Accounting Log to be printed on the LO
device. The Accounting Log is kept on the AL file on the
D1 area of the RAD. An option exists to purge the file after
the dump is completed.

The form of the DAL command is

1 DAL[PAL]

where

[PAL] specifies that the Accounting Log is to be
purged after the dump is completed.

PROCESSOR CONTROL COMMANDS

A processor control command indicates to the Monitor that
control is to be transferred to the specified processor. It
may also specify the types of input to be accepted and the
types of output to be produced by the processor.

Processors can be created, updated, and deleted under nor-
mal batch operations, and there are no restrictions as to
how many and what kind of processors may be added to the
system.

User programs on the FP or BP areas of the RAD are called by

I RUN areq,file name

where file name is the name of the program to be executed.

All system processors and user processors on the System Pro~
grams area of the RAD can be called for execution by the
control command:

I name parameters

where

name is the RAD file name of the processor fo be
executed (e.g., FORTRANH, SYMBOL, SL-1, or
MACRSYM). Note that the RAD file name for
Macro-Symbol should be '"MACRSYM" since the
JCP does special allocation of the BT area if the
name MACRSYM is encountered.

parameters are optional parameters interpreted by
each processor. Normally, at least one input
option and one output option must be specified.
The options for all system processors recognized by
RBM are defined in Table 6.

This example specifies that control is to be given to the
Macro=Symbol assembler. It also specifies that symbolic

Processor Control Commands 17

Table 6. Processor Specification Options

Specification | Use Used by

BA Selects batch Macro-Symbol
assembly mode.

BO Relocatable bi- FORTRAN 1V-H,
nary output onthe | SL-1, Symbol,
BO device. Macro-Symbol

CI Compressed in= Macro-Symbol
put from the
CI device,

CN Concordance Symbol
listing.

co Compressed out- Macro=Symbol
put on the CO
device.

D Debug mode FORTRAN IV-H
compilation,

GO Relocatable bi- Symbol, Macro-
nary output to Symbol, SL-1,
temporary RAD foeTear (v-H
storage (i.e.,
the GO file).

LO Listing output FORTRAN IV=-H,
produced on the Symbol, Macro-
LO device. Symbol, SL-1

LS Source listing FORTRAN IV-H,
produced on the SL-1
LO device

LU Listing of the Macro=Symbol
update decks (if
any) produced on
the LO device.

S S incolumn 1 FORTRAN IV-H,

SL-1

SI Symbolic input Macro-Symbol,
from the SI FORTRAN IV-H,
device, SL-1

SO Symbolic SL-1
(source) output
produced on the
SO device,

input is to be taken from the device to which the SI opera-
tional label is assigned; listing output is to be transmitted to
the device to which the LO operational label is assigned;
compressed input is to be received from the device to which
the CI operational label is assigned; and binary output is to
be transmitted to the device to which the BO operational
label is assigned.

Upon reading this control command, the JCP will set up the
blocking buffers and RAD Background Temp files for the pro-
cessor, load the processor's root, and transfer control to the
entry address of the root,

18 Processor Interface with RBM

PROCESSOR INTERFACE WITH RBM

The system processors under RBM are
Macro=Symbol
Overlay Loader
RAD Editor
FORTRAN IV-H
Symbol
SL-1

System processors and any user processors on the System
Programs area of the RAD should follow these common
ground rules.

1. All processors must reside on the System Programs area
of the RAD to be callable by an ! Name command. A
user wishing to test a new version of a processor with-
out destroying the permanent version could execute the
processor from the OV file via an | ROV command.

2. All processors must operate in the background space.

3. All system DCBs (M:DCBs) should be identified as a
primary reference in the processor, since at load time,
the Overlay Loader will furnish the processor with a
copy of the system DCBs.

4. All processors with overlay segments need only make
the explicit call to SEGLOAD to load the segments.
The DCB used to load segment M:SL will be furnished
by the Overlay Loader.

5. RBM will furnish the start address and end address of
unused background memory to any processor that needs
this information. The two addresses will be in the fol -
lowing locations, and should be defined via the EQU
directive in the processor:

Location Mnemonic Description

X'153" K:BPEND LWA + 1" of the background
program's loaded area; that
is, this cell contains the
FWA' the processor can use
for a dynamic table area.
x'141" K:BCKEND LWA of usable background
memory for the processor;
that is, this cell contains
the LWA the processor can

use for a dynamic table area.

rAH these addresses are in bits 15-31 with bits 0~14 con-
taining zeros.

" LWA and FWA are the last word address and first word
address.

6. If a processor has parameters to process from the
"1 Name" control command (where "name" is the pro-
cessor's name) the address of the buffer containing the
control command is in cell X'144', That is,

Location Mnemonic Description

X'144't K:CCBUF Address of control card

buffer.

7. A processor must perform its own vertical format.con~
trol of the printer if format control is required, That
is, the processor must set the VFC (vertical format con-
trol) bit in the DCB via the Monitor Device Format
Control call and ensure that the first byte output to
the printer is a format control byte. If a processor
(i.e., Macro-Symbol) outputs a title at the top of
each page, the number of lines to print per page is
contained in the following system call:

Location Mnemonic Description

X'"74' K:PAGE Number of lines per page to
byte 0 print.

8. [If a processor uses scratch files (Background Temp files
X1-X9) and desires a different record size, granule
size, or organization than is given by default by the
JCP, the processor must make the appropriate system
call on the Device Mode function. By calling the
Device Mode function, the processor can set the file
organization (blocked or compressed) and the appropri-
ate record size and granule size. The Background
Temp file default assignments by the JCP are described
below.

i.All these addresses are in bits 15-31 with bits 0-14 con-

taining zeros.

9. In general, the processor should terminate input from
SI when an end-of-file status is sensed on Sl To termi- |
nate, the processor should make c: sxstem call on EXIT.
EXIT will close all the processor's DCBs and close all’

open RAD files,

10. All processors using the GO file should open GO and
then do a file skip (PFIL function call) on GO so_ the |
GO file is properly positioned to receive e odditional
data. The Job Control Processor will purge the GO
file upon reading a JOB control command.

The Job Control Processor will automatically allocate one
blocking buffer for each system DCB (M:xx) assigned to a
blocked file. Additionally, the JCP will always allocate
a blocking buffer if the GO file is used, and allocates
a maximum of two blocking buffers for all Xi (11<9)
files used. If a system or user process or is not satisfied
with the blocking buffer allocation, a POOL control com-
mand can be used to override the default allocation.

The JCP will also allocate the Background Temp area of
the RAD for all Xi files, where 1 =i <9, The GO and
OV files will receive their SYSGEN defined sizes, un-
less overridden with an ALLOBT command. The GO
file will be defined as a blocked file with a logical
record size of 120 bytes; the OV file will be unblocked
with the record and granule sizes equal to the RAD sec-
tor size. The JCP will scan all system DCBs and de-
termine which of the Xi files are used. The Background
Temp area that remains after GO and OV have been allo-
cated will then be equally distributed among these Xi
files. All Xi files will be given unblocked organization
with the record and granule sizes equal to the RAD sector
size. The user can override any of these defaults via an
ALLOBT command. If the user desires not to have the

Xi files reallocated between processors, the SAVE option
on the ALLOBT command can be used.

Processor Interface with RBM 19

When events take place in the system requiring operator
intervention, or when one job completes and another job
begins, RBM informs the operator of these conditions by

messages output to the operafor's console (OC device).
All such messages from the Monitor begin with two ex-

clamation marks (!1). Generally, these messages require

3. OPERATOR COMMUNICATION

no operator response on the typewriter, but may indicate
that some peripheral needs attention.

RBM MESSAGES

on the OC device.

Table 7. Monitor Messages

The messages itemized in Table 7 are output by the Monitor

Message

Meaning

11BACKG CKPT
HIBCKG RESTART
1IBACKG USED BY FGD
VIBEGIN WAIT

11CK AREA TOO SMALL

I ICKPT WAITING FOR BCKG 1/0O
RUNDOWN

I1CORE USED, CAN'T LOAD xxxxxxxx
1'FGD AREA ACTIVE

HIFGT FULL, CAN'T LOAD xxxxxxxx
I1FILE NAME ERR

111/0 ERR, CAN'T LOAD xxxxxxxx

111/O ERR ON CKPT

11JOB ABORTED AT yyyyy

ITKEY ERROR

HILOADED PROG xxxxxxxx

TINONEXIST., CAN'T LOAD xxxxxxxx

Background has been checkpointed as a result of a foreground program
load.

Background has been restarted from its point of interruption.

Background space is being used by the foreground but a checkpoint was
not required, since the background was inactive at the time of the fore-
ground load.

Background has executed a "WAIT" request. An unsolicited key-in of
"C" will continue background processing.

An attempt was made to checkpoint the background, but not enough space
was available on the CK area of the RAD. The background space will
nevertheless be released to the foreground and the active background job
will be aborted when the background is restarted.

The checkpoint function is waiting for all background 1/O to run down so
that the checkpoint of background can be completed.

The specified foreground program cannot be loaded for execution because
the core space required for its execution is already in use.

An FMEM key~=in request cannot be honored because a foreground program
is still active in the area being released.

The specified foreground program cannot be loaded for execution because
no room exists in the Foreground Programs Table.

A problem has occurred from a STDLB key-in request in attempting to
open or close a RAD file.

An 1/O error occurred in attempting to load the specified foreground pro-
gram for execution.

An attempt was made to checkpoint the background, but a RAD 1/0 error
occurred during the process. The background space will nevertheless be
released to the foreground, and the active background job will be aborted
when the background is restarted.

Background job has been aborted. The "yyyyy" parameter contains the
address of the last instruction executed in the background. If aborted be-
cause the specified limit on a | LIMIT control command has been reached,
the yyyyy parameter will contain the word "LIMIT",

Monitor cannot recognize an unsolicited key-in response. A new key-in
should be attempted.

The specified foreground programs have been loaded for execution by the
foreground loader. A maximum of three program names will be output in
the one message.

The specified foreground program cannot be loaded for execution because
it does not exist on the RAD, or a Public Library required by the program

20

Operator Communication

Table 7. Monitor Messages (cont,)

Message

Meaning

TENOT ENUF BCKG SPACE
HIPAUSE comments

1 IPROG xxxxxxxx RELEASED

1IPUB LIB, CAN'T LOAD xxxxxxxx

VIRLS NAME NA

1 ISIGMA 5/7 RBM=-2, VERSION xxxx

IUNABLE TO CLOSE DCB xxxxxxxx
'TUNABLE TO DO ASSIGN

ITUNABLE TO LOAD BCKG PUB LIB

ITUNABLE TO TRIGGER CONTROL
TASK INT.

!'1yyndd ERROR
I lyyndd MANUAL
I'yyndd UNRECOG

I'lyyndd WRT PROT

does not exist on RAD. The foreground program must exist in the FP area
or the QV file.

Insufficient background space to load the requested background program.

A | PAUSE control command card has been read. The comments field may
contain tape mounting instructions. A key=-in of "C" after pressing the
INTERRUPT switch will cause RBM to continue reading from the job stack.

The specified foreground program has been released.

The request to load the specified Public Library for execution is not valid,
since all Public Libraries must be automatically loaded by the system, as
needed.

A key-in request has been made to release a foreground program but the
name of the program is not recognized by the system.

This message is output on the OC device every time the system is booted
from the RAD. The message can be terminated prematurely by hitting the
BREAK key on the typewriter.

The specified DCB was not closed upon releasing a foreground program.

An LASSIGN command cannot be fulfilled because either the DCB cannot
be found, or the DCB is only five words in length, and a seven-word DCB
is required (seven-word DCBs are required for any RAD file assign).

The current attempt to execute a background program has failed because
the Public Libraries required by the background program could not be
loaded. The current background job is aborted.

This alarm is output to OC after the system is booted from the RAD if the
RBM Control Task interrupt cannot be triggered.

A parity or transmission error has occurred on this device. Any automatic
retries that were specified have been performed before this message was
output.

Device specified is in manual mode and may be out of paper, cards, or
tape.

Some condition on device type yy with physical device number ndd (hexa-
decimal) has caused the device to become not operational.

Indicated unit is write-protected. If a magnetic tape, insert the write
ring and make the appropriate key=in to retry the operation. If a RAD is
specified, an SY key-in is required before the RAD can be written on.

TRAP HANDLER MESSAGES HIWDOG TIMER RUNOUT AT xxxxx

The following messages are output by the trap handler upon
occurrence of the various traps if the user does not specify
his own trap handling:

MEM, PROT. ERR AT xxxxx
VIPRIVILEGE INST. AT xxxxx
INONEXIST. ADD. AT xxxxx
TINONEXIST. INST. AT xxxxx
TTUNIMPLE, INST. AT xxxxx
HISTACK OVERFLOW AT xxxxx
HHARITH. FAULT AT xxxxx

ITILL. PARAM., CAL AT xxxxx

Note that the FARITH. FAULT AT xxxxx" message is output
for the fixed point arithmetic overflow trap, the floating-
point fault trap, and the decimal arithmetic fault trap. The
"HHILL. PARAM,, CAL AT xxxxx" message is output if a
user program furnishes the Monitor an invalid parameter
while attempting to use a Monitor function.

JCP MESSAGES

The messages itemized in Table 8 are output by the Job
Control Processor on both the OC and LL devices.

Trap Handler Messages/JCP Messages 21

Table 8. JCP Messages

Message Meaning

FIBEGIN IDLE Job Control Processor has read a |FIN card, which completes a job stack.
The background then goes into an idle state. Processing will resume on a
new job stack following an unsolicited key-in of C.

1IBI CKSM ERR JCP Loader encountered a checksum or sequence error on a binary card during

FIBI SEQ ERR the loading process.

11BT OVERFLOW

I'1CC ERROR, BT OVERFLOW

HCC ERROR, FG KEY-IN REQUIRED

IHCC ERROR, ILL.
RELOCATION OF BT

I1CC ERROR IN ITEM xx

HHEOT ON FILE xxxxxxxx

IERR, CONTROL BYTE = xx
HNFGT FULL, CAN'T LOAD xxxxxxxx

PIFILE xxxxxxxx NONEXIST.

I'NTLL. DEFINE FIELD ITEM

IHILLEGAL BINARY CARD

PIILL. EXPRESSION

IHILL. NEG. ORG ITEM

1HJCP

FINOT ENUF SPACE FOR LOAD
1IPUB LIB, CAN'T LOAD xxxxxxxx
HISCHING FOR JOB CMD

11TOO MANY CONTROL SECT.

11TOO MANY DCB'S

Insufficient Background Temp RAD space to execute the requested background
program. The job is aborted.

The file size input on an L ALLOBT command is greater than the available
Background Temp RAD space.

A request has been made fo run a foreground program without previously
inputting an FG key-in. The !RUN or ROV command must be reentered
after the FG key-in is input.

An improper ! ALLOBT command was input to change a Background Temp (BT)
scratch file that was designated as a "saved" file prior to this job step.

An error exists in a JCP control command in the indicated item. Every item
(except the ! character) followed by a blank or comma is counted in deter-
mining the item in error.

End-of-Tape status was returned from an attempt to read or write the indicated

RAD file.
JCP Loader is not equipped to process the indicated control byte.

The indicated foreground program cannot be loaded because insufficient space
exists in the Foreground Program Table.

The indicated RAD file was never allocated via the RAD Editor or was never
written into.

JCP Loader has encountered a define field item that it is not equipped to
handle.

An EBCDIC card was read by the JCP Loader where a binary card was
expected.

JCP Loader has encountered an expression that it is not equipped to evaluate
(a mixed resolution expression). The load will be aborted.

JCP Loader has encountered an origin item that it is not equipped to handle
(an origin item that moves the load location counter in a negative direction).
The load will be aborted.

The JCP has just begun to read control commands. This occurs both at the
beginning of a job and between steps within a job. If C is assigned to the
typewriter or if "TY" override is in effect, the input light on the typewriter
will indicate that RBM is ready for input of a control command. This message
is output only to OC,

JCP Loader is unable to complete the load because of insufficient background
space.

The designated program on the |RUN command is a Public Library and cannot
be executed via a |RUN command.

The present job has been aborted and the JCP is searching the job stack for
the next 1JOB or !FIN command.

JCP Loader has encountered more than one nonstandard control section. The
load will be aborted.

The maximum number of M: and F: DCBs was exceeded during the loading
process. Approximately 27 DCBs can be accommodated by the system. The
excess DCBs will not be stored in the DCB table or the RAD file header.

22 JCP Messages

Table 8. JCP Messages (cont.)

Message Meaning

11TOO MANY DEF/REF'S
LTUNSATISFIED REF xxxxxxxx

TUNSATISFIED REF'S DURING

JCP Loader has encountered more than 255 declarations in the object module
being loaded.

Indicated REF was not satisfied during the loading process. This alarm occurs
only on LL if no map was requested, or on LO if a map was requested.

This message is typed to the operator on OC at the end of a load if any unsat-
LOAD isfied REFs were encountered during the loading process.

UNSOLICITED KEY-INS

Unsolicited key=ins provide the operator a means of control -
ling a background job or of loading for execution or re-
leasing foreground programs. Note that any control the
operator can exercise over the foreground is provided
throug!i operator key-ins, so that foreground control is
independent of the background job stack.

The operator can initiate an unsolicited key-in at any time
by depressing the INTERRUPT switch on the control panel
console. This action causes the Control Panel Task to be
activated; the Control Panel Task, in turn, triggers the
RBM Control Task. When the RBM Control Task becomes
the highest priority task in the system (that is, when all
foreground tasks are inactive), the message

IIKEY-IN
will occur on the OC device.

All operator responses will terminate with a NEW LINE
code. A blank {i.e., space) is used as a field delimiter,
and any number of blanks can be used to separate fields.
A message can be deleted prior to the NEW LINE input
by depressing the End-of -Message key.

The analysis and subsequent action from an unsolicited key-
in is performed at the RBM Control Task priority level. If
the operator response is not recognized as a valid input,
the message

!1KEY ERR

is output on OC. In this case, the operator should retype
the response. Note that if the typewriter is busy at the
time of the Control Panel Interrupt (i.e., waiting for an
input to complete), the operator must complete the input
before the 1! KEY-IN type-out can occur.

The specific responses to the HKEY-IN type-out are listed
in the following sections. All key=ins can be preceded by
an optional exclamation mark.

c The Continue key-in directs the Monitor to either
start processing the background job stack or to continue
processing in the background. The C key-in will end an
idle state or will continue a job after the job was discon-
tinued by a wait key-in, wait system call, or PAUSE con-
trol command.

The C key=-in has the form
C®

coc The Continue from OC key-in is used to correct
an errored control command from the OC device. If a

processor reads an incorrect control command during an
attended run, the WAIT state will be entered. For some
processors such as 'rhe Overloy Loader and RAD Edm

control cor_n“mg_nd in error can be reln_puf from OC via the
¢OC | key-in after interrupting out of the WAIT state. After
correcting the command in error, control will be transferred

back to the C device.

The COC key-in has the form
COC®

L] The Wait key-in causes the current background job to
be discontinued and enter a WAIT state.

The W key-in has the form
w®

X The X key-in will abort the background job with any
dumps that were requested. A message will be printed on
OC and LL which shows the last background location that
was executed,

The X key~-in has the form
X®

SY The SY key-in allows any RAD file to be written
into by a background program by providing the operator a
means of overriding the normal software protection of RAD
files. The SY key-in is cleared by a JOB command.

The SY key~-in has the form
SsY®

TY The TY key-in causes the C operational label to be

assigned to the OC device. The next and all ensuing con-
trol commands will be read from OC. Control will be re-
turned to the C device on a CC control command or key-in.

The TY key-in has the form
Y ®

Unsolicited Key-Ins 23

cC The CC key-in is used in conjunction with the TY
key=-in and transfers control back to the C device by re-
assigning the C op label to its previous assignment.
The CC key-in has the form

CC®

0T The DT key=-in is used to inform the Monitor of the
current date and time.

The DT key-in has the form
DT month, day, year, hour, minute @

where
month specifies the current month (1=month=<12),

day specifies the current day (1=day=31),

year specifies the current year (00syear=99).
hour specifies the current hour (O<hour=23),
minute specifies the current minute (Osminute < 59).

RUN The RUN key=-inisused to load and initiate a fore=
~ground program. The program will be loaded at the priority
of the Control Task if the space required for execution of
the program is available. If the space is not available, an
alarmwill be typed and the operator will have to retype the

RUN key-in when the space is available.

The form of the RUN key=in is
RUN name @

where name is the file name of the foreground program to
be loaded. The program must exist in core image format in
the Foreground Programs area of the RAD.

A 11KEY ERR type-out will occur from this key-in if the
requested program is already loaded or if space was not
available in the Foreground Program Table.

RLS The RLS key~in is used to release a foreground pro-
gram. The interrupts associated with the program are dis-
armed and after I/O has run down for the program, the
memory space occupied by the program is marked as not
used.

The RLS key~in has the form
RLS name @&

where name is the file name of the foreground program to
be released.

STDLB The STDLB key-in is used to change the perma-
nent assignment of an operational label. For a "C" op-
erational label, both the permanent and temporary
assignments are changed, unless the "C" label is assigned
to zero. In this case, only the temporary label is changed.
The assignment will stay in effect until the system is re-
booted from the RAD.

24 Unsolicited Key=~ins

The STDLB key-in has the form

STDLB label [, area] ,name @

where

label specifies one of the standard operational
labels that was input during SYSGEN.

area specifies a RAD area for the case of assign-
ment of an operational label to a RAD file. If the
operational label is being assigned to a file in the
BT area, the "area" input is optional.

name specifies a physical device name to which the

operational label is to be permanently assigned, a
numeric zero, the name of a RAD file, or another
operational label. In the latter case, the first op-
erational label will receive the same assignment as
the permanent assignment of the second operational
label. If "0" is specified, there is no permanent
assignment, which means that all output is sup=
pressed to that label.

INTLB The INTLB key-in is used to change the assign-
ment of interrupt labels specified at SYSGEN time.

The INTLB key-in has the form

INTLB label, loc ®

where
label specifies one of the interrupt labels defined at
SYSGEN time.
loc specifies the new absolute hexadecimal loca-

tion to be associated with the label. The location
n must be 58, = n Sy, where y is the highest in-
terrupt location specified at SYSGEN.

CINT The CINT key~-in is used to disarm, arm and en-

able, or trigger a specified interrupt.

The CINT key-in has the form

. D
CINT {|0C0fl0n}' Al ®
label
I
where
location specifies the hexadecimal address of the
interrupt to be modified. The location n must be
5814 =n sy, wherey is the highest interrupt lo-
cation specified at SYSGEN,
label specifies an interrupt label,

D disarm the specified interrupt.

A arm and enable the specified interrupt,
T arm and enable, and trigger the specified
interrupt.

Note that the location being acted upon must contain an
XPSD instruction or the request will be rejected.

FMEM The FMEM key=-in is used to change the boundary
between background and foreground memory. The key-in
will not take effect until the current background job step
completes,

The FMEM key=-in has the form
FMEM [n] @

where n specifies the number of pages to be allocated to
foreground memory. If n is less than the present foreground
allocation, no active foreground programs can exist in the
area being released. If the foreground area is not free, an
alarm (1!FGD AREA ACTIVE) will be typed. If n is zero,
the entire foreground area will be allocated to the back-
ground. The default case will be to allocate the number of

pages specified during SYSGEN,

FG The FG key-in allows a foreground program to be
loaded for execution from the background job stack via a
RUN control command, and protects the foreground from
inadvertently being destroyed by an error in the background
job stack. The FG key-in must precede the RUN control
command or the background job will be aborted.

The FG key~in has the form
FG ®

COMBINED KEY-INS To facilitate the key-in process,
the following combinations of key=ins are allowed:

Combined Form Result

FGC Executes the FG and C key=ins
SYC Executes the SY and C key-ins
SFC or FSC Executes the FG, SY, and Ckey-ins
TYC Executes the TY and C key-ins
DM, DB, DF The Dump Monitor (DM), Dump Background

(DB), and Dump Foreground (DF) key=-ins allow the user to
dump the contents of core memory onto the device that is
permanently assigned to the DO operational label.

These key-ins have the form

DM
{DF] [from,fo] @
DB

If the [from, to] field is absent, DM causes the entire Moni-
tor area of memory to be dumped; DB causes the entire, cur-
rently defined background area to be dumped; and DF causes
the entire, currently defined foreground area to be dumped.
The presence of the [from,to] field indicates the first word
address and last word address (in that order) of memory that
is to be dumped. If the [from,to] field is present, any of
the three key=ins (DM, DF, or DB) can be used to achieve
the same result, since only the specified locations are
dumped. The last word address must be equal to or greater
than the first word address,

DED The DED key=in allows a device and, optionally,
all other devices on the same IOP to be dedicated to the
foreground or to IOEX,

The DED key=-in has the form

DED yyndd {';(} (N®

where

yyndd is the name of the device to be dedicated
(e.g., CRAO3, DCAFOQ, etc.).

specifies the device is to be dedicated to the
foreground (F) or to IOEX (X).

I specifies all devices on IOP n (n of yyndd) are to
be dedicated. If I is absent, only the one device
for a single unit controller is dedicated, or all de-
vices on the same multiunit controller are dedicated.

UND The UND key=-in undedicates a device or IOP that
was previously dedicated through a DED key-in. If the de-
vice was dedicated to IOEX, it should be undedicated from
IOEX by using the X option,

The UND key~in has the form
UND yyndd [;} [N®

where

yyndd is the name of the device to be undedicated
(e.g., CRAQD3, DCAFO, etc.).

{F } specifies the device is to be undedicated from
the foreground (F) or from IOEX (X). The same
option that was used in dedicating the device
should be used in undedicating the device.

I specifies that all devices on IOP n (n of yyndd)
should be similarly undedicated.

DIRECT 1/0 COMMUNICATION

If the Monitor encounters an abnormal condition during an
I/O operation, a pertinent message to the operator is output
on the OC device, Such a message is of the form

'l name message

where
name is the physical device name (see "ASSIGN",
Chapter 2).
message is the message string informing the oper-

ator of thespecific condition that has been detected.
For example:

ERROR (error was detected on operation)

or

MANUAL (device not ready)

Direct 1/O Communication 25

Monitor I/O messages are discussed below, grouped accord-
ing to the type of device to which they apply.

After correcting the abnormal conditions, the operator re-
sponds by means of a key=in.
The format for an I/O key-in is
name a ¢y
where

name is the physical device name of the device
involved in the 1/O operation,

a specifies a Monitor-action character (see Table 9).

() is the NEW LINE code.

Table 9. Monitor Actions

a Monitor Action

C Continue "as is",

Inform the user program of the error and
transmit record "as is".

R Repeat the [/O operation.

CARD READER

If the card reader fails to read properly, or if a validity
error occurs, the Monitor outputs the message

Il CRndd ERROR

on the OC device, After correcting the condition, the
operator responds with an 1/0O key-in message. Theaction
character selected (see Table 8) depends on the circumstances.

If a feed check error or a power failure occurs, the Monitor
outputs the message

Il CRndd ERROR
or
11CRndd TIMED OUT

on the OC device, depending on where in the cycle the
error took place. If the card in the hopper is damaged, the
operator replaces it with a duplicate, presses the RESET
button on the card reader, and responds to the Monitor with
the key-in

CRndd R ®
In the event of a power failure, the operator presses the

RESET button on the card reader and responds to the Monitor
with the key-in

CRndd R @

If the card stacker is full, if the hopper is empty, or if
the device is in the manual mode, the Monitor outputs the
message

Il CRndd MANUAL

26 Direct I/O Communication

on the OC device. The operator corrects the condition
and then presses the START button on the card reader.

CARD PUNCH

Instead of outputting an error message when a punch error is
first detected, the 1/O handler attempts to punch a card
x times (x = NRT, a DCB parameter specified by the user;
see Chapter 4) before outputting the message

!l CPndd ERROR

on the OC device. The above message indicates that the
card punch is not functioning properly, and the operator
should reevaluate the job stack based on this knowledge.
Improperly punched cards are routed to an alternate stacker.

If the input hopper is empty, the stacker is full, or the chip
box is full (some machines), or if the device is in the manual
mode, the Monitor outputs the message

Il CPndd MANUAL

on the OC device, The operator corrects the condition and
presses the START button on the card punch.

If a power failure or a feed check error occurs, the Monitor
outputs the message

Il CPndd ERROR
or
11 CPndd TIMED OQUT

on the OC device, depending on where in the cycle the
error took place. If the card in the hopper is damaged, the
operator removes it, presses the RESET button on the card
punch, and responds to the Monitor with the key-in

CPndd R ®

In the event of a power failure, the operator presses the
RESET button on the card punch and responds to the Monitor
with the k ey=in

CPndd R ®
PRINTER

When an irrecoverable print error is detected, the Monitor
outputs the message

Il LPndd ERROR

on the OC device, The 1/O handler attempts to print a
line x times (x = NRT, a DCB variable specified by the

1/O user; see Chapter 4) before outputting the above mes-
sage. The operator's response after correcting the condition
depends on the specific device and circumstances.

If the printer is out of paper, if the carriage is inoperative,
or if the device is in the manual mode, the Monitor outputs
the message

I'l LPndd MANUAL

on the OC device, The operator corrects the condition and
presses the START button on the line printer.

If the line printer power is off, The Monitor outputs the
message

'l LPndd UNRECOG

on the OC device, The operator should correct the condi-
tion and respond with the key=-in

LPndd R ®

PAPER TAPE READER

If an error occurs during the reading of paper tape, the
Monitor outputs the message

Il PRndd ERROR

on the OC device. After correcting the condition, the op-
erator responds with an 1/O key-in message. The action
character selected depends on the circumstances,

PAPER TAPE PUNCH

If the paper tape punch is out of paper, the Monitor out-
puts the message

I'l PPndd MANUAL

on the OC device. The operator corrects the condition and
depresses the START key.

If the paper tape punch is off-line or the power is off, the
Monitor outputs the message

11 PPndd UNRECOG

on the OC device. The operator corrects the condition and
responds to the Monitor with thekey=-in.

PPrndd Cor R ®

MAGNETIC TAPE

If an error occurs during the reading or writing of magnetic
tape, the Monitor 1/O handler attempts a recovery x times
(x = NRT, a DCB variable). If the error is irrecoverable,
the user is informed via an error return,

If @ magnetic tape is addressed and there is no physical reel
or power, the Monitor will output the message

Il MTndd UNRECOG

on the OC device. The operator's key-in response depends
on the circumstances.

Direct 1/O Communication 27

4. INPUT/OUTPUT OPERATIONS

The RBM I/O system provides the user with the capability
of performing input/output operations on standard XDS pe-
ripheral devices, An I/O request is made through execu-
tion of a CALI instruction that addresses a Function Param-
eter Table (FPT), which in turn is a list of parameters that
define the request. The FPT addresses a Data Control Block
(DCB), which is a list of parameters that define the nature
of the data file. The DCB then addresses a Device Control
Table (DCT) entry or a RAD File Table (RFT) entry, depen-
ding upon whether the data file concerned is associated
with a non-RAD peripheral device or a RAD file. The DCT
entry contains the device status parameters, and the RFT
entry contains the RAD file parameters,

The CAL1 instruction and FPT must be generated at assembly
or compilation time. Symbol or Macro-Symbol users must
include both the CAL1 and the FPT in the source code. For
FORTRAN users, the compiler generates the necessary CALls
and FPTs,

All DCBs are given names beginning with M: for system
DCBs or F: for user DCBs, The DCBs may be included in
the source code if desired. If not included, the Overlay
Loader generates the DCBs necessary to satisfy any unsatis-
fied references to F: or M: DCB names. System DCBs gen-
erated by the Loader have default parameters; User DCBs
generated by the Loader are left blank.

The correspondence between a DCB and either a device or
RAD file can be established by using the ! ASSIGN control
command. Other DCB parameters describing the data file
may also be set by the | ASSIGN control command.

Two types of Read/Write requests are provided. Type I re-
quests have the completion status posted in the DCB. The
disadvantage of this type of 1/O operation is that a DCB
cannot be shared among requests in different tasks because,
in general, it is impossible to associate the completion status
in the DCB with a specific request. For this reason, Typell
requests are provided.

Type I requests result in the completion status being posted
in the FPT associated with the request. This enablesseveral
requests (perhaps in several tasks) to be in progress simulta-
neously on a given DCB. Type Il requests require that the
associated FPT must be in memory and not in a register.

The CHECK function tests for the completion of READ/
WRITE requests that are performed without waiting for com-
pletion. CHECK tests the completion status posted in
the DCB (Type I requests), or FPT (Type Il requests).

PERMANENT RAD FILES

Permanent files are defined through the RAD Editor by use
of the :ALLOT command, and data can be entered through

28 Input/Output Operations

the RAD Editor or any program that uses the system 1/O,
At definition time, the following file parameters are
given by the user:

File name (maximum 8 characters)
File organization (blocked, unblocked, compressed)

Record size (for blocked or unblocked files to be ac-
cessed sequentially)

Granule size (for files to be accessed directly)

File size

TEMPORARY RAD FILES

Temporary files are in the Background Temp area of the
RAD and have the fixed names X, (1=i=9, GOand OV,
The size for these files can be set by using the | ALLOBT
control command. If no ! ALLOBT control command ap-
pears within a user job, the files assume default sizes that
are set by the Job Control Processor, The files X should be
considered as primarily for temporary use within a single
job step, since they are all allocated from a single area
with X; 4 1 beginning just above X;. Therefore, changing
the size of a file X; can cause a change in location of files
X forj >i. GOand OVareallocated from the top of the
temporary file area downward. A change in the size of files
Xi therefore has no effect on the RAD position of these files.

Since the size and location of temporary files can be changed
through background job control commands, they must not be
used by foreground programs.

FILE ORGANIZATION

BLOCKED FILES

Blocked files contain fixed length records whose length is
less than or equal to 128 words. In blocked files, the
largest possible integral number of records is combined into
256-word blocks, These blocks are basic units of data trans-
mitted to and from the RAD. As sequential READ requests
are made to a blocked RAD file, the blocks are read from
the RAD into blocking buffers as necessary, and the data
records are transmitted to the user's input buffer,

Blocked organization is specified for a file when the file is
defined by the RAD Editor, A file specified by the user as
blocked, but having a record size greater than 128 words,
will be given unblocked organization.

UNBLOCKED FILES

Unblocked files contain records of fixed length, each of
which begins on a sector boundary. Each record requires

some integral number of sectors that is the smallest possible
integral number that can contain the record.

COMPRESSED FILES
Compression of EBCDIC data in RAD files is provided by

RBM by the removal of blank characters, since many blanks
occur in a typical programming language source code. Com-
pressed files are blocked into 256 word blocks on the RAD
and the records are of variable length. No record crosses

a block boundary.

ACCESS METHODS

SEQUENTIAL ACCESS

The sequential access method provides record-by-record
access to the file in the same way that a data file on
magnetic tape is accessed. A sequential access READ/
WRITE request results in the next record in sequence being
read or written, Sequential access can be used on blocked,
unblocked, or compressed files,

DIRECT ACCESS

In the direct access method, the user furnishes the relative
granule number of the start of the READ/WRITE request and
the number of bytes to be transferred. The user is respon-
sible for the organization of the file, including discrimina-
tion of logical records, maintenance of a key structure
within the file, etc. Addressing files by granules alfows
the direct access method to be independent of the RAD sec-
tor size, Granule size is specified by the user at file crea-
tion. Each granule begins on a sector boundary, and the
RAD space between granule end and the beginning of the
next sector is never involved in direct access to the file,

The user is not restricted to I/O operations whose length is
less than or equal to the granule size. For requests of
length greater than granule size, the 1/O system chains
/O operations to effect a skip of the dead space,

1/0 QUEUEING

The [/O system provides for queueing of all requests to1/O
devices, That is, any 1/O request (READ, WRITE, REW,
etc.) requiring a device to be accessed results in the re-
quest for the specific access being queued.

Device requests are queued on a controller basis (one queue
per controller), and they are queued in order by priority of
the task making the request. For example, a READ request
to a card reader will be placed in the queue for the speci-
fied card reader controller, and its position in the queue is
determined by the priority of the requesting task and the
relative priorities of the requests already in the queve. Re=-
quests for a designated device from a specified priority level

are queuved by order of occurrence. The queues are chains
of entries representing requests for actual /O operations on
devices. There is a single pool of free entries for all de-
vices, and these entries are removed from the pool and linked
to the controller queues as needed, The queue entry is re-
turned to the free entry pool when a queued request is
completed.

At System Generation, the user may specify the maximum
number of entries to be used for background requests to
ensure that the background does not tie up all the queue
entries, thus causing foreground requests to wait. Whenever
a request is made and the free entry pool is empty (all queuve
entries in use), the request is made to wait until an entry

is freed.

1/0 CLEANUP AND 1/0 START

/O Cleanup is the data processing performed between com-
pletion of the actual data transmission (signaled by occur-
rence of the I/O interrupt) and the completion of the re-
quest. It includes such functions as error testing, setup

for error recovery, posting of completion status in the FPT
or DCB, setting of indicators in the DCT, dequeueing the
completed request, etc,

/O Start is the operation of starting a device for the next
request,

Under the RBM 1/O system, CPU time is not taken from a

task to perform data processing for lower priority tasks; in-
stead, 1/O Cleanup and 1/O Start functions are performed
at the various times and priority levels given below:

1. 1/0 Cleanup is performed at I/O interrupt time if
either the current request or the highest priority re-
quest in the queue for the same device controller are
from tasks of higher priority than that of the interrupted
task. If /O Cleanup is performed at this time, 1/O
Start will be performed if the highest priority request

in the queue is from a fask of higher priority than the
interrupted task.

2. If a CHECKed request was not previously completed,
the CHECK system instigates I/O Cleanup and 1/0
Start on the specified controller through to completion.
The CHECK system performs at the priority of the
CHECKiing task.

3. At request time, 1/O Cleanup and 1/O Start are per-
formed as necessary to satisfy the request at the priority
level of the requesting task.

For an /O request with wait, the device is driven un-
til the request is completed. 1/O Cleanup and 1/O
Start are instigated as needed.

For an I/O request with no wait (after queueing the
request by priority), [/O Cleanup is performed if the
device and controller are not busy. The device is thus
made busy before control is returned to the user,

Access Methods/1/O Queueing/Cleanup and Start 29

4, At the Control Task level, any 1/O Cleanup or I/O
Start that was deferred because of priority considera-
tion at /O interrupt time (item 1 above) is performed.

SHARING DCBs AMONG TASKS

DCBs can be shared among several tasks within a given pro-
gram, subject to the restriction that no task can make a
Type I request on a DCB that is busy with another Type 1
request,

DCBs explicitly referenced by the user are allocated and
created by the user either in the source code (for Symbol
and Macro-Symbol), the compiler, or the Overlay
Loader. This means that each program has a private copy
of all DCBs explicitly referenced, and no DCBs are shared
among programs. The user program has the responsibility
for coordinating the Open and Close functions for DCBs
shared among tasks within a program. An Open request
results in the DCB being opened if it is not already open.
A Close request causes the DCB to be closed if it is not
already closed. No attempt is made to balance Open and
Close requests for a DCB to determine which Close request
should actually cause the DCB to be closed.

SHARING 1/0 DEVICES AMONG TASKS

Any number of tasks within a given program can share any
device by sharing a DCB assigned to the given device. For
sequential type devices (i.e., card reader, card punch,
line printer, magnetic tape, paper tape reader, paper tape
punch), responsibility for positioning and/or determining
the position of the device is left to the user. No attempt
is made to analyze a request on a DCB to determine which
task has made the request.

Sequential output devices (i.e., card punch, paper tape
punch, line printer, magnetic tape), can be shared by

tasks (possibly in different programs) that use different DCBs.

If several DCBs are assigned to an input or output device
such as a magnetic tape drive, only write requests may be
made through these DCBs, The sharing of output devices
by different programs using different DCBs is used for log-
ging error conditions or alarms,

Sequential input devices (i.e., card reader, paper tape
reader, magnetic tape) cannot have different DCBs as-
signed to them, Sharing of these devices must be accom-
plished through real-time requests on a single DCB. For
example, a background user who wishes to use double buf-
fering on a card reader can do so by using two real-time
Read requests with two different FPTs,

Random access devices such as RADs can be shared, using
direct access, by tasks within different programs using vari-
ous DCBs, The sharing can be performed without restric-
tion other than those restrictions normally imposed on
tasks sharing a DCB.

As DCBs are opened and closed, a count of the DCBs that
are open and assigned to a device is kept. This count is
incremented for every open request on a DCB assigned to
the particular device, and is decremented for each Close
request,

SHARING RAD FILES AMONG TASKS

Any number of tasks within a program can share a RAD file
by sharing a DCB assigned to the file (subject to the condi-
tions placed on tasks sharing DCBs discussed previously).
A RAD file shared in this manner can be accessed either
sequentially or directly. Input/output Requestsare allowed,

Tasks can share a RAD file using different DCBs with the
restriction that no sequential input or blocked sequential
output requests can be allowed on a file shared in this man-
ner. A count of the number of DCBs opened and assigned
to a RAD file is kept for each file. If the count is greater
than one, no sequential input from or blocked sequential
output to the file is allowed,

An Open request on a DCB assigned to a RAD file results in
opening of the file if it is not already open. A Close request
on such a DCB results in closing of the file only if the
"Open DCB Count for the file is 1.

|/0 END ACTION

Foreground programs (for READ, WRITE, and IOEX requests)
may use I/O end-action, Two types of end-action are
possible:

1. The user provides an end-action address in the FPT,
A transfer to this address will be made following the
occurrence of an 1/0 interrupt that signals completion
of the data transfer. This end-action transfer is made
by executing

BAL, 11 end~action address

with the CPU in master mode, the 1/Q interrupt still
active, and the AIQO status in register 5, The end-
action may destroy any registers except 5, 7, and 11.
Return from the end-action routine must be made by

B *11

with the CPU still in master mode, the 1/O interrupt
still high, register 5 containing the AIO status, and
register 7 containing the device type index (DCT).

It should be noted that since end-action is performed
with the 1/O interrupt high, all tasks whose priority
is lower than that of the 1/O interrupt task are effec-
tively disabled for the duration of the end-action.

Since the end-action user can seriously degrade in-
terrupt response for lower priority tasks, it is strongly
recommended that this type of end-action not be
used for applications where other techniques are
satisfactory.

30 Sharing DCBs Among Tasks/1/O Devices Among Tasks/RAD Files Among Tasks/I/O End Action

2. The user FPT contains either an interrupt number or

interrupt label specifying a system interrupt. The sys-
tem interrupt is triggered upon occurrence of an I/O
interrupt that signals completion of the request (this
interrupt will be triggered before the 1/O interrupt is
cleared), The task connected with the specified inter-
rupt then performs the end-action function at the pro-
per priority level, The userisresponsible for connecting
the interrupt and ensuring that it is armed and enabled.

HHre—end=actiaon interupi-peierity—has-the-same. prior-
. l . I et T O

“Fhe 1/O system sets a flag in the TCB to indicate that
the trigger has been performed. The EXIT routine in-
terrogates this flag before performing the EXIT for cen-
trally connected tasks. If the flag is set, the occur-
ence of the interrupt (previously lost by the triggering
of an active interrupt) will be simulated. Directly
connected tasks using this type of end-action assume
the responsibility for solving problems of this type,

’

No end-action is taken for requests that do not require
actual device access (i.e., READ on a blocked RAD
file that does not require reading a block from the
RAD); however, end-action will be performed for re-
quests that cause a device access and an I/O interrupt.

RESERVING 1/0 DEVICES FOR FOREGROUND USE

[/O devices can be reserved for exclusive use of the fore-
ground program system through SYSGEN input, operator
key-in, or through a system call from a foreground program.
Reservation can be made either for a specific device or for
all devices associated with a given IOP. A reservation for
a device on a multidevice controller results in reservation
of the entire controller. When a device is reserved, it is
specified either that all foreground requests for the device
will be allowed, or that only foreground direct access
(IOEX) requests will be allowed.

Device reservation results in all background requests to the
device being held in abeyance until the device is released
for background use. The background user program is un-
aware that execution is suspended.

When devices are reserved for [OEX operation only, alf
regular (READ, WRITE, etc.) requests from the foreground
are also held in abeyance. A foreground program making
such a request will be pending in the I/O system until the
device is released for regular foreground use. In IOEX
reservation mode, the foreground task doing IOEX I/O
and the task that eventually releases the device for regular
foreground use must be of higher priority than any task doing
standard 1/O. This type of device reservation is designed
for the user with a high throughput foreground application
who needs to guarantee that a device (typically the RAD)
is immediately available and is not in the process of an
/O operation for another task,

A count is kept of the number of reservations (STOPIO re-
quests) of each type (either all foreground 1/O allowed or
IOEX only allowed) for each controller. As devices are
reserved, the proper count is incremented, and as they are
released, the count is decremented. A value greater than
zero indicates that the controller is reserved. The user must
balance each STOPIO request with a STARTIO request so

the system can maintain order,

When 1/O requests are received by the system, the reserva-
tion counters are tested to determine whether the request is
allowed. Any request not allowed because of a STOPIO re-
quest will not be queued. Any request previously queued
but currently not allowed will not be started.

The foreground user can specify in a STOPIO request that
the in-process operation on the specified controller be
aborted through execution of an HIO,

DIRECT 1/0 EXECUTION (IOEX)

RBM provides the foreground user with the capability of
programming I/O devices by furnishing TIO, TDV, HIO and
SIO instructions, and IOP command doublewords. The in-
structions are executed by the 746) system, Status informa-
tion resulting from the instruction execution is returned to
the calling task for analysis. No testing or error recovery
is performed by the system.

Prior to performing IOEX operations on a device, the device
must be reserved for IOEX operation only. This requires the
user to issue a STOPIO unless it is known that the device
was properly reserved either during SYSGEN or by the
operator,

For SIO requests, if a user wishes to be informed of the occur-
rence of the 1/O interrupt, it is imperative that the command
doublewords be set up sothat a channel end interrupt occurs.

The SIO request may also include an end-action address or
an end-action interrupt number, This address is the entry to
the user's routine that will analyze the resultant status and
set appropriate indicators, It should be noted that the user's
routine is entered with the I/O interrupt active, andto avoid
seriously degrading system interrupt response, the routine
should require as little execution time as possible. Control
is transferred to the end-action routine through a

BAb—Hhoddress. B AL 1l A

If an end-action interrupt number or interrupt operational
label is given, the interrupt will be triggered upon comple-
tion of the operation signaled by the 1/O interrupt., This in-
terrupt must be connected to the end-action task.

IOEX cannot be used by background programs. The require-
ment that background programs be able to read any datawrit=
ten by foreground programs is satisfied by the facility to
treat an entire RAD area as a single-file fordirect access in-
put (see discussion of 1OE X systemcall later in this chapter
for details of the calling sequences and formats involved).

Reserving I/O Devices for Foreground Use/Direct 1/O Execution 1OEX) 31

OPERATIONAL LABELS

Under RBM, operational labels are used to lend flexibility
in the assignment of DCBs to peripheral devices. Opera-
tional labels represent logical devices and are assignable

to physical devices and RAD files.

The system DCBs are defined in Table 10.

Table 10. System DCBs

Op Label or RAD
DCB Name File Assignment Comments
M:C C The first 12 DCBs
) are assigned to
M:OC oc the standard op-
M:LO LO erational labels.
M:LL LL
M:DO DO
M:CO coO
M:BO BO
M:Cl CI
M:S1 SI
M:BI BI
M:SO SO
M:PL PL
M:Xi(l1=i=9) Xi DCBs for Back~
ground Temp
scratch file.
M:GO GO DCB to write on
GO file.
M:0V oV Output DCB for
Overlay Loader.
M:SLf Appropriate Input DCB for
program file Segment Loader.
"The M:SL DCB does not have to be referenced by a
program using overlays, since this DCB is automati-
cally furnished by the Overlay Loader for any program
with overlay segments.

DCBs can be assigned to operational labels, physical de-
vices, or RAD files. Assignment of DCBs to operational
labels is accomplished in one of the following ways:

1. The user can effect the assignment through the source
code by allocating and defining the DCB, providing
the operational label table index value (see "DCB
Creation"), and specifying that the assignment is to
an operational label.

2. The Overlay Loader provides each program with acopy
of all system DCBs referenced by the program. These

32 Operational Labels/DCB Creation

DCBs are distinguishable by the prefix "M:", and such
DCBs are assigned to system operational labels (see the
"Overlay Loader" chapter).

3. ! ASSIGN control commands can be used to assign DCBs
to system operational labels (see the discussion of

1 ASSIGN control command in Chapter 2.

Operational labels are assigned to physical devices or RAD
files. Each operational |abel has two assignments, tempo-
rary and permanent. The permanent assignment is used by
all foreground programs and serves as a default for the tempo-
rary assignment. The temporary assignment is used by all
background programs. Assignment of operational labels to
devices or RAD files is made in the following ways:

1. At System Generation, permanent assignments are made
and remain in force until changed through STDLB key-
in. The original permanent assignments are reinstated
whenever the system is again booted and initialized.

2. The STDLB key-in can be used by the operator to change
the permanent assignment of an operational label,
which will result in a corresponding change in the tem-
porary assignment when the next JOB card is read.

3. The ISTDLB control command can be inserted by the
user to change the temporary assignment of an oper-
ational label.

Temporary assignments remain in force only within a single
background job. Each ! JOB control command causes the
temporary assignments to be set the same as the permanent
assignments except for the "C" operational label. Should
temporary assignments be changed by an ! STDLB control
command, the new assignment remains in force only for the
duration of the job except for the "C" operational label.,

At System Generation, the user may specify any number of
optional operational labels, with the proviso that the op-
tional labels be two characters in length. For each optional
operational label, an entry is built in the operational {abel
table, and each entry requires four bytes of systemresidence.

The relationship of system operational fabels to their table
index values is defined in the DCB description. The user
assumes responsibility for determining the index values as-
sociated with any optional operational labels created at
System Generation,

DCB CREATION

The Overlay Loader creates the DCBs for FORTRAN IV-H

programs that reference the standard FORTRAN operational

labels 1055106, for their 1/0 requests. For other labels, the
A o8,

user must create Dtes using ! ASSIGN control commands

and machine language subroutines,

DCBs for Symbol and Macro=-Symbol programs are allocated
and defined in the following ways:

1. User Created DCBs: The user may create his DCBs in
the source code. The parameters defined at source

time may be overridden by ! ASSIGN control commands
if the user follows the convention of defining the name
of a DCB and beginning the name with F:,

Warning: DCBs will not receive any memory protec-
tion, and assembly language users should exercise ex-
treme care to prevent accidental alteration,

2. Loader Created DCBs: At the conclusion of the object
module load and the library search and load, the Loader
creates DCBs for any unsatisfied REFs beginning with
M: or F:. For REFs to system DCBs (M:), a copy of the
sfcndcré DCB is included in the root portion of the load
module.| This DCB contains standard system parameters,
includif‘% standard assignment to a system operational
label. For example, M:LO is assigned to operational

label LO.. User DCBs (F:) are included inthe load mod-

ule bJ’r% Gre' e 'Blahk. The background user must
define the parameters for F: DCBs through § ASSIGN

control commands, Definition and assignment of F:

DCBs in foreground programs can be made through

Overlay Loader control commands.

3. 1 ASSIGN Command Created DCBs: ! ASSIGN control
commands can create DCBs in addition to defining or
redefining parameters in existing DCBs, This DCBcrea-
tion facility enables FORTRAN IV-H programs to per-
form I/O using variables as operational labels, At
run-time, the FORTRAN program evaluates such vari-
ables, converts the variable value to a DCB name and
locates the DCB. For example, a FORTRAN variable
with value 101 would result in an 1/O operation using
DCB F:101. The DCB must have been created in a
Symbol or Macro-Symbol subroutine or through an
YASSIGN control command.

DCB FORMAT

The format for a Data Control Block is given below:

word 0
o Tn IRAE
TTL 005 OOO% 000 300ﬁ£ 00|ero| ASN
5 T 2 314 5 6 718 9 10 11112 13 14 15176 17 16 19120 27 22 23128 25 26 &7 RE B 0 3
word 1
{)
NRT OlE|L| TYPE |pev/orie/RFILE
F
G 1 2 314 5 6 718 10 11192 13 14 15016 17 16 19120 21 22 23124 2 26 27126 29 30 31
word 2
0 TYC BUF
© 1 2 3t4 5 6 718 9 10 11012 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
word 3
RSZ ERA

© 1 2 al4 5 & 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 3}

word 4

ARS ABA

0 1 2 374 56 778 9 10 11172 13 14 15116 17 18 19120 21 22 23724 25 26 27128 29 30 3!

where

Word 0

TTL is the total length of the DCB. A length of
seven words is required by any DCB which may be
assigned to a RAD file. A length of five words is
sufficient for DCBs that are assignable only to de-
vices or operational labels.

TTL must be set by the mechanism creating the
DCB; either by the user (through the source code),
Overlay Loader (when the user declares the name
but does not create the DCB), or by the | ASSIGN
control command which creates the DCB,

OPEN is the DCB open indicator. It must be set to
zero before the DCB is opened. The 1/O system
sets the indicator o 1 when the DCB is opened.

MOD is the mode flag (0 for EBCDIC mode; 1 for
binary). The flag is set at DCB creation time and
its status may be changed by ! ASSIGN control
commands or through a Device Mode system call.
This flag has meaning only for I/O requests to
7-track magnetic tape, card punch, orcardreader,
For requests to read a card reader, Mode flag 0
causes a Read Automatic. ' Input from a card
reader designated as the C device is always per-
formed in automatic mode (mode flag is ignored).

BUSY is the DCB busy indicator that is set and main-
tained by the I/O system to indicate that a Typel
request using the DCB is in progress, Any Type I
request using a DCB that is made when the DCB is
busy will result in an error,

PACK is the indicator specifying packed binary for-
mat on 7-track magnetic tape when BIN mode is
also specified (1 indicates packed; 0 indicates un-
packed). PACK may be set using the | ASSIGN
control command. This indicator is also set to
value 1 when a DCB is opened and that DCB is as-
signed fo an operational label, which in turn is
assigned to a 7-track magnetic tape.

VFC is the vertical format indicator (0 indicates no
format control; 1 indicates format control)specify-
ing whether or not the first character of an output
record is to be used to control vertical positioning
for output to a line printer or keyboard/printer.
Under format control, the line printer is given a
“print with format" order, The keyboard/printer
performs a preliminary new line (regardless of the
format character) and outputs the record beginning

i'See Chapter 3, XDS Sigma Card Readers (Models 7120/
7122/7140) Reference Manual, Publication No. 90 09 70.

DCB Creation 33

with the second byte, On all other devices, the TYPE is a field indicating the type of device that
first byte is output as data. VFC has no effect on is directly assigned if ASN has value 3 and DEVF
other 1/O operations. This indicator isset at DCB has value 1.

creation by I ASSIGN control command or through

the Device Mode system call. The format control Valve Device _
codes are itemized in Table 11,
1 TY
BTD is the byte displacement specifying at which 2 PR
byte (0-3) in a buffer the data begins. 3 PP
4 CR
ASN is the assignment type indicator (0 means null; 3 ce
1 means RAD file; 2 means not used; 3 means de- 6 LP
vice or system operational label). 7 DC |
8 ')
9 77
Word 1
= 10 CP (Low Cost)
NRT is the number of recovery tries to be allowed ::]3 I‘;i (Low Cost) I .

before outputting a device error message. This

ter is set at DCB ti th h
ﬁa'zggfc;:llsc::"gl commfur:; fon or Through an If ASN has value 1, TYPE specifies the area that

contains the RAD file.
DEVF is an indicator specifying whether the device

assignment (when ASN has value 3) in force is Valve Area
directly to a physical device or indirectly through 0 SP
an operational label (1 means direct; 0 means in- 1 FP
direct) . This indicator may be set at DCB crea- 2 BP
tion or by an ! ASSIGN control command, See 3 BT
TYPE and DEV/OPLB/RFILE discussion below, 4 XA
6 D1
L is an indicator specifying whether the assigned : :
device is a line printer or keyboard/printer. The ZE) I.DF

indicator is set by the system at OPEN time,

Table 11. Line Printer Format Control Codes DEV/OPLB/RFILE contains one of three:

1. The DCT index of the assigned device when the
Code (hexa- assignment is to a device (ASN equals 3 and DEVF
decimal) Action equals 1),
CO, 40 Space no additional lines. 2. The operational label table index of the assigned
60, EO Inhibit f inting. operational label when the assignment is to an op-
PhIBIE space after printing erational label (ASN equals 3 and DEVF equals0).
Cl Space 1 additional line before The index values for standard system operational
printing, labels are
C2 Sp.ac.e 2 odditional lines before Label Index Value
printing. Ea— —
Cc3 Space 3 additional lines before C 1
printing. ocC 2
. : LO 3
CF Space 15 additional lines bef p *
pace 15 additional lines before DO 5
printing. coO 6
FO Skip to Channel O (bottom of BO 7
page) before printing. Cl 8
Fl Skip to Channel 1 (top of page) EII]3
before printing. SO 1
F2 Skip to Channel 2 before printing. PL 12 |
FF Skip to Channel 15 before
printing. The user is responsible for determining the index _
values for his optional operational labels. These

34 DCB Creation

values are a function of the order in which the
optional operational labels are specified as Sys-
tem Generation,

The index value for the devices are also a func-
tion of the order that the devices are specified at
System Generation. The TYPE and DEV/OPLB/
RFILE values are set at DCB creation or through
! ASSIGN control commands,

When a DCB is assigned to a RAD file (ASN

equals 1), this field contains the index to the RFT
(RAD Eile Table). Thisvalue isset when the DCB
is opened, The RFT entry is created at OPEN if

an entry does not already exist for the file,

Word 2

TYC

BUF

is an indicator showing the type of comple-
tion for an /O operation. TYC isset by thel/O
system at the completion of each request that uses
the DCB in a Type | mode (see discussion of Read
and Write system calls below),

The completion type codes are

Code

Meaning

1 Normal

Lost Data
Beginning of Tape
End of Tape

End of Data

End of File

Read Error

Write Error

O NV 0 N O w N

—_

Write Protection
Violation

is the address of the user buffer for requests
whose FPTs do not include a buffer address. The
address is established at DCB creation by assembly
language users who create their own DCBs, The
parameter is not included in DCBs built by the
Overlay Loader and is not set through ! ASSIGN
control commands.

Word 3

RSZ

ERA

is the default record size in bytes (1 = RSZ
232,767). The parameter is used as the byte count
for Read/Write requests that do not include a byte
count, RSZ may be set at DCB creation, either
through a Device Mode system call or through an

I ASSIGN control command.

is the address of the user's routine that handles
errors associated with insufficient or conflicting
information in the DCB or FPT. Zeros in this
field are used to indicate that no user errorroutine

exists, (see discussion of error and abnormal returns
below). This address can be established at DCB
creation, but is more typically set through an
OPEN system call.

Word 4

ARS is the actual record size in bytes. The param-
eter is set by the [/O system when a request is

completed. It is set in the DCB for Type [re-
quests only.
ABA is the address of the user's routine that handles

abnormal conditions associated with insufficientor
conflicting information in the DCB or FPT. Zeros
are used to indicate that no user abnormal routine
exists (see discussion of error and abnormal returns
below). This address can be established at crea-

tion time or set through an OPEN system call.

If the TTL field in word O has a value of 5, word 4 termi~
nates the DCB,

If the TTL field has a value of 7 or 90, and the DCB is as-
signed directly to a RAD file, words 5 and 6 have the fol-
lowing format:

word 5
Cl C2 C3 C4
¢ 1 2 Jil 5 6 718 ¢ IOTTIZ 13 14 15116 17 18 l9i20 21 22 23124 25 26 27128 29 30 31
word 6
C5 Cé c7 C8
0 1 2 374 5 ¢ 718 9 1¢ 1111213 14 15116 17 18 19720 27 22 23124 25 26 27128 29 30 31

where the C, are the EBCDIC characters defining the RAD
file name when the assignment is to a RAD file (ASN
equals 1), The file name is left-justified and filled with
trailing blanks. The name can be placed in the DCB at
creation time or through ! ASSIGN control command.

Note that DCBs assigned to RAD files at creation time, with
the file names included, are not compatible with Batch Pro-
cessing Monitor DCBs, Such DCBs can be used under BPM
only if the assignment is reestablished through use of the

I ASSIGN control command. If the words 5 and 6 are all
zero and ASN specifies assignment to a RAD file, theentire
area specified in TYPE is taken as the file,

ERROR AND ABNORMAL CONDITIONS

Certain error codes are refurned to the user's error or ab-
normal return routines upon occurrence of various conditions.
At entry to these routines, the error code is contained in
byte O of register 10, the DCB address is contained in the
address field (low-order 17 bits) of register 10, and the
address of the location following the CALI1 is contained

in register 8,

Foreground users must provide error and abnormal returns on
all I/O requests with wait and on all CHECK requests. [f
background users omit the error and abnormal addresses, the
system will take action as detailed below, The error codes
are defined in Table 12,

Error and Abnormal Conditions 35

Table 12. Monitor Errors and Abnormal Returns

Table 12. Monitor Error and Abnormal Returns {cont.)

1/O Code 1/O Code
(Hexadecimal) (Hexadecimal)
o' | " D' | Fit
C P C P
B T Meaning of 1/O Codes B T Meaning of 1/O Codes
Abnormal Conditions (Continue) Error Conditions (Abort, with post-
mortem dump if specified)

o X A DCBt has bee: opened with in- 47 1 X The DCB contains insufficient infor-
correct parameters. mation to open a closed DCB on a

03 | X The assigned RAD file does not exist write operation.
or the assigned device is down. 48 | X A nonreal-time request was made

on a busy DCB.

05 X An enq-of—dctc has been encoun- 4A 1 X The user buffer address is not valid
tered (i.e., an EOD has been read). .

or byte count is zero.

06 X An end-of-file has been encoun- 54 | X More than one attempt has been
tered (i.e., a control command has made toread a control message from
been read on the C device). the Cdevice, through the same DCB.

e s 55 | X The DCB cannot be opened because
07 X :':ee :urfferreszemfled is smaller than the RFT is full, the RAD is down, or
ata read. no buffer could be found for the
0A | X An attempt has been made to close directory search.
a DCB that is already closed. 58 | X A foreground request was made to
the C device.

ic X The end-of-tape has been 59 | X DCB has changed since being OPENed.

encountered,
60 | X Input request on a shared device
1D X The beginning-of-tape has been or file.
encountered.
t
2E X An attempt has been made to open Returns.due to 1nsuff|<:|en'r information (error or abnormal
. address in DCB is honored).
a DCB that is already open. "
Returns due to device failure or abnormality (error or
30 X The request resulted in a condition abnormal address in FPT is honored).
1 which the operator can correct. The Al background requests (even those specifying ab-
proper message has been output on . .
OC ttt normal returns) will be held until the operator corrects
. the condition. This condition is never returned to the
Error Conditions (Abort, with post- background.
mortem dump if specified)

40 | X A request has been made to read /0 SYSTEM CALLS
an output device.

OPEN A FILE

41 X An irrecoverable read error has
occurred. OPEN The OPEN system call opens the data file if it is

42 X A RAD write protection violation n?f olrc?ady open. If the cddressed.DCB is assigned to a .de—
has occurred vice (directly or through on operational label), a count is

’ kept of the number of open DCBs assigned to the device.

44 | X A request has been made to write
on an input device. If the DCBisassigned toaRAD file, an entry is built in the

45 X An irrecoverable write error has RFT (RADFile Table) if one does not already exist, and the
o:cl rred a wr! ° indexof the entry is placed in the DEV/OPLB/RFILE field

vrrec. of the DCB. A count of open DCBs assigned to the RAD

46 | X The DCB contains insufficient infor- file is also maintained. The user may specify a buffer
mation to open a closed DCB on @ to be used in the RAD File directory search but this is
read operation. not mandatory. If such a buffer is not given, the OPEN

function will use available blocking buffers.
36 1/O System Calls

At OPEN, the error and abnormal addresses in the DCB may
be set or changed. The OPEN function causes the speci-
fied DCB's file-open indicator (OPEN) to be set to 1.

If the specified DCBisassigned to an operational label and
the operational label in turn, is assigned to a 7T device,

PACK and BIN are set to 1.

If a DCB is already open (OPEN = 1) for device-assigned
DCBs when the OPEN function is called, an abnormal con-
dition is signaled (see Table Y}). The device indicator
(DEV/OPLB/RFILE) of the DCB is checked for validity. If
it references a valid operational label or physical device,
the DCB is marked open; if the device indicator is invalid,
the DCB is not marked open and an abnormal condition is
signaled (see below for the OPEN call format).

For DCBs assigned (directly or through op labels) to line
printers or keyboard/printers, the L indicator in the DCB
isset to 1.

CLOSE A FILE

CLOSE The CLOSE function closes a DCB by setting the
DCB open indicator (OPEN) to 0, which may result in closing
the assigned data file on a device or RAD file, the CLOSE
function decrements the "open DCB count" in the proper
DCT or RFT entry, and if the count becomes zero, the data
file is closed,

If the data file is to be closed and is a RAD file opened for
output, the directory entry for the RAD file is updated with
the information from the RFT entry and the entry is deleted

from the RFT table,

If the data file is to be closed and is a RAD file opened for
input only, the entry is deleted from the RFT table.

Closing other types of data files requires no action,

OPEN AND CLOSE SYSTEM CALL FORMAT
OPEN and CLOSE system calls have the format
CALI, 1 address

where address points to word O of the FPT shown below.

word 0
Code 0—0 DCB address

L S B VR VL PR P T - - R 3 7B T R A B v
word |

P[P P

12{0 0|0 0
R E R A A R N AR A R P IR R L S A

. t

optional L

0 0 Error address

G 1 2 314 5 6 718 ¢ 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

. t
optional

0 0 Abnormal address
R L A R R SRR A R A R R A
optional?
0 0 Blocking buffer address
O 1 2 314 5 & 718 9 10 11112 13 14 15116 17 16 19120 21 22 23124 25 26 27128 25 30 31
where

Word 0

Code is X'14' for OPEN, X'15' for CLOSE.

DCB address is the address of the associated DCB

Word 1

P is the error address parameter presence indicator
(0 means absent; 1 means present),

P is the abnormal address parameter presence in-
dicator (0 means absent; 1 means present),

P is the buffer address parameter presence indi-
cator (0 means presems; 1 means abseat).

PN pre Pl
Word Options
Error address is the address of the entry to the user's
routine that will handle error conditions.

Abnormal address is the address of the entry to the
user's routine that will handle abnormal conditions.

Blocking Buffer address is the address of a 257-word
buffer to be used for file directory search if the
DCB is being opened to a RAD file,

CHECK 1/0 COMPLETION

CHECK The CHECK function tests the type of comple-
tion of an 1/O operation initiated by a no-wait request.
The user specifies addresses, which are entries tohisroutines,
that handle error and abnormal conditions, At entry, regis-
ter 10 contains the error or abnormal code as detailed in
Table 12. Background users may take advantage of the
standard system handling of the error and abnormal address
in the FPT . The action taken by the system in this case is
also detailed in Table 12. Foreground users must provide
both error and abnormal addresses when checking (CHECK,
no-wait) requests.

Users may specify a CHECK with no-wait by including a
busy address in the FPT, This address is taken (with the
address of the location following the CHECK CAL1 in

1-In all FPTs for I/O functions where an optional parameter
is not used, the parameter word must be omitted from the
FPT and the corresponding presence indicator (Pn) set to 0,

1/O System Calls 37

register 8), if the CHECKed operation is not complete. If
no busy address is included in FPT, the CHECK function

will wait for completion before taking the appropriate action.

The CHECK function (through its own FPT) addressesa DCB
or an FPT, depending upon whether the request was Type |
or Type II. The FPT associated with a request is addressed
if the request was Type Il and the completion parameters
were posted in the FPT by the /O system. A DCB is ad-
dressed if the request was Type [and the completion param-
eters were posted in the DCB,

The CHECK function call is of the form
CAL], 1 address

where address points to word C of the FPT shown below.

word 0

Code 0—0 DCB or FPT address
O) 2 314 5 6 718 9 10 13112 13 14 i5(16 17 18 19120 21 22 23124 25 26 27128 29 30 31
word 1
F1f2|"|0 0[fol0 0
T 2 314 5 6 718 9 10 112 15 14 5116 17 18 WD 21 22 B B B HI1W 2 P 5
optional
0 0 Error address
TV 7 314 5 6 718 7 10 T2 13 14 15118 17 18 15120 21 22 23124 5 26 27128 7 30 31
optional
0 0 Abnormal address
D 1 2 314 5 6 718 5 1C 11112 13 14 15016 17 18 19120 21 22 23124 25 26 27128 29 ¢ 3°
optional
0 0 Busy address
T T T S s e T T T B e R W 5 2 BH S BRSO
where

Word 0

Code is X'29' for the CHECK function.

DCB or FPT address is the address of the DCB or
FPT where the completion status is posted. Pyq
determines whether this field contains a DCB or
FPT address.

Word 1

P is the error address parameter presence indicator
(1 means present; 0 means absent),

P is the abnormal address parameter presence in-
dicator (1 means present; O means absent),

P is the busy address parameter presence indica-
tor {1 means present; 0 means absent).

P is a code to determine whether a DCB or FPT
is addressed (O means DCB; 1 means FPT),

38 1/O System Calls

——

Word Options

Error address is the address of the entry to the user's
routine that will handle error conditions,

Abnormal address is the address of the entry to the
user's routine that will handle abnormal conditions.

Busy address is the address of the entry to the user's
routine that will handle the "request busy" conditions,

READ A DATA RECORD

READ The READ function causes the 1/O system to read
a data record into a user buffer from the device or RAD file
specified by the DCB,

If the addressed DCB is closed when the READ request is
made, an implicit OPEN will be performed on the DCB.

READ requests may specify either a "wait for completion®

or an "immediate return' condition. Foreground requests
with wait must include error and abnormal returns in the
FPT. Background requests can omit these addresses and have
the system handle error and abnormal conditions. For re-
quests with no-wait, such addresses in the READ FPT would
be superfluous, since the user must perform a CHECK to

test for error or abnormal conditions resulting from the request,

Should the input record be physically longer than the speci-
fied buffer length, data is lost and the user is notified
through an abnormal return with code 07,

Should the input record be physically shorter than the speci-
fied buffer length, the buffer is not filled and the acutal rec-
ord length is posted in the FPT or DCB,

Input from the card reader is performed either in automatic

or binary mode. If the card reader is not the C device, the
input mode is determined by the BIN flag in the DCB, The

C device is always read in automatic mode. Foreground

programs may not read the C device.as this would disrupt
the background job stream,

Input from the C device results in all control commands
(! in column 1) being intercepted by the 1/O system. Any
control command other than | EOD causes an abnormal re-
turn with a code of 06 in register 10, The input record is
kept in the RBM control command buffer, If an attempt is
made to read this same device again, an error return with
code 54 is given (see Table 12).

An | EOD record encountered from a card reader or paper
tape reader on a READ request results in an abnormal return
with code 05,

For random access input from RAD files, the user includes
a key in the FPT. All READ requests without a key
parameter are assumed to be sequential access requests
and result in the next record in order being input into
the user buffer. For sequential input from blocked files, a
request without a key parameter may not result in an
actual RAD access.

For sequential access input from compressed files, the /O
system decompresses the record in transmitting it to the
user buffer.

Type II READ requests must include in their FPTs a comple-
tion status parameter in which the 1/O system will post the
type of completion code and the actual byte count.

A Type I READ request that finds the DCB busy with a pre-

- vious Type I request results in an error condition (error

code 48).

WRITE A DATA RECORD

WRITE The WRITE function causes the /O system to
write a data record from a user buffer to the device or RAD
file specified by the DCB.

WRITE requests may specify "'wait" or "no-wait". As with
READ requests, WRITE requests specifying wait must include
error and abnormal return addresses in the FPT, For requests
with no-wait, such addresses in the FPT would be superfluous
since the user must perform a CHECK to test for error and
abnormal conditions resulting from the request.

For_ random access output to RAD files, the key address pa-
rameter is included in the FPT. "All WRITE requests without
a key address parameter present are assumed to be sequential

access requests,

or output to compressed files, the 1/O system compresses
‘the record in transmitting it to the system blocking buffer,

Type Il Write requests must include a completion status pa-
rameter word in their FPTs in which the I/O systemwill post
the type of completion code and the actual byte count,

A Type I request that finds the DCB busy with a previous
Type I request results in an error condition (error code 48).

NREAD AND WRITE FUNCTION CALL FORMAT

Calls for these functions are of the form
CALI, 1 address
where address points to word 0 of the FPT shown below,

word 0

Code 0——0 DCB address
0 1 2 314 5 6 718 9 10 1t112 13 14 15116 17 18 19iZO 21 22 23124 25 26 27128 29 30 31
word 1
plr et [e| lelelple FIE|e|F|F
1 2| 3 40| 6|Of 8| of10] N[O 0] 1| 2| 3| 4| 50|
0 1 2 314 5 % 718 9 10 11112 13 14 15[16 17 18 19120 21 22 2324 25 26 27128 29 30 31
optional
0 0 Error address
0 1 2 314 5 & 718 9 10 11112 13 14 15116 17 1B 19120 21 22 23124 25 26 27128 29 30 31

optional

0 0 Abnormal address

0 1 2 314 5 ¢ 7[8 9 10 11112 13 14 lﬁilé 17 18 \9320 21 22 23124 25 26 27128 29 30 3t
optional
0 0 Buffer address
O 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
optional
0 0 Byte count
O 1 2 3%4 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 3!
optional
0 0|8TD
0 1 2 314 5 6 718 9 10 11[12 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 3!
optional
0 0 Key
T T I ST T e 7s s PR T AR TR T R BR S R T E T
optional

Ii0 0| End-action address/no.

012 314 5 6 7i3 ¢ 10 I|i12 1314 'ISJHé 17 16 W?ZO 21 22 23724 25 26 27128 29 30 31

optional {(Completion Status)

Completion
code 0 0 Actual byte count

C 1 2 314 5 & 708 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
optional N
0 0 Blocking buffer address
c 1 2 3‘[‘ 5 6 718 9 10 11112 13 14 15116 17 v8 19120 21 22 23124 25 26 27128 29 30 31
where

Word 0

Code is X'10' for READ and X'11' for WRITE.

DCB address is the address of the associated DCB.

Word 1

P] is the error address parameter presence indicator
(0 means absent; 1 means present).

P is the abnormal address parameter presence indi-
cator (0 means absent; 1 means present),

P is the buffer address parameter presence indicator
(0 means absent; 1 means present).

P4 is the byte count parameter presence indicator
(0 means absent; 1 means present),

Pé is the byte displacement parameter presence in-
dicator (O means absent; 1 means present).

P8 is the key parameter presence indicator (0 means
absent; 1 means present).

P9 is the end-action parameter presence indicator

(0 means absent; 1 means present).

1/O System Calls 39

P is the request type indicator (1 means Type II;
0 means Type I) and indicates the presence of the
Completion Status Parameter.

P is the blocking buffer address parameter pres-
ence indicator (0 means absent; 1 means present).

F is the direction indicator for READ (0 means for-
ward; 1 means reverse), This indicator has effect
on Magnetic Tape Read/Write operations only,

F2 is the wait indicator (0 means no-wait; 1 means
wait for 1/O completion).
F3 is the RAD Check-Write indicator (1 means write

on a RAD will be performed by a Write, Check-
Write; O means a normal write will be done).

F is the paper tape direct Read/Write indicator

(1 means binary paper tape Read/Write operations
are performed ignoring the standard paper tape bi-
nary record control information; 0 means standard

binary format is assumed).

F5 is the paper tape Read immediate indicator. If
Fqis 1 and Fis 1 for o Paper Tape Read, the read
is performed without ignoring leading blank frames.
IfF4is 1 and F5is O, paper tape reads are per-
formed ignoring leading blank frames. This indi-
cator is only significant for binary paper tape read
requests with F4 =1.

Word Options

Error address is the address of the entry to the user
routine that will handle error conditions for re-
quests specifying wait.

Abnormal address is the address of the entry to the
user routine that will handle abnormal conditions
for requests specifying wait.,

Buffer address is the word address of the user buffer
to be used in the /O operation. Data is written
from or read into this buffer. 1f this parameter is
omitted, the buffer address is taken from the DCB
(BUF).

Byte count is the size in bytes of the data record.
If this parameter is omitted, the record size is
taken from the DCB (RSZ parameter).

BTD is the byte displacement (0-3) from the word
boundary of the beginning of the data record. If
this parameter is omitted and the Buffer address
parameter is included in the FPT, value O is
assumed for BTD. If both parameters are omittea
from the FPT, the values of the DCB are used
for both.

Key is the number of the granule in a RAD file to
be accessed directly. Presence of this parameter
implies direct access to a RAD file.

40 1/O System Calls

I, End-action address/no. I indicates the contents
of the End-action address number field. End-action
is allowed only for foreground.:: - T

- V.o S
Value 0 indicates an end-action address. ! -
Value 1 indicates an interrupt number. 1. A,
Value 2 indicates an interrupt operational label.

End-action is taken only in the case of an actual
/O operation involving data transfer to a peripheral,

Completion status is the word wherein the I/O sys-
tem posts the completion parameters for the request
(presence of this parameter indicates that the re-
quest is of Type I). The I/O system initializesthe
word to zero before starting the operation. At com-
pletion of the request (cleanup), the actual byte
count and the completion code are posted in the
word, CHECK may be used to test the parameters.

Blocking buffer address is the address of a 257-word
buffer to be used for file directory search if the
DCB is being opened to a RAD file,

REWIND, UNLOAD, AND WRITE EOF FUNCTIONS

REW The Rewind causes a data file to be positioned at
its beginning if the file is on magnetic tape or a RAD file.
Rewind of a file on magnetic tapeis accomplished by causing
the tape drive to rewind to beginning of tape. Rewind of a
RAD file is accomplished by setting the file position param-
eter in the RAD File Table (RFT) so that the next sequential
access request on the file results inthe first record being ac-
cessed. A Rewindrequest for a data file on any otherdevice
results in no action being taken.

UNLOAD The Unload request results in the same action as
Rewind except that magnetic tapes are rewound "off-line",
When the rewind is concluded, the user must give an
ATTENTION interrupt before the device can be used again.
Failure to doso causes the device to time out, and the operator
must respond with a key=in before the device can be used again.

WEOF Write End-of-File causes an EOF to be written
if the addressed DCB is assigned to a magnetic tape unit. If
the DCB is assigned to a Paper Tape Punch, an ! EOD rec-
ord is output, If the DCB is assigned to a RAD file, an im-
plicit EOF is written. If the DCB is assigned to any other
type of device, no action is taken,

Rewind (REW), Unload (UNLOAD) and Write End-of-File
(WEOF) calls are of the form

CALTL, 1 address

where address points to word O of the FPT below,
word 0

Code 0—0 DCB address
0 1T 2 3Vta 5 6 778 9 10 1111213 14 15716 17 18 19120 21 22 23124 25 26 27128 29 30 31
where

Code is X'01' for REWIND, X'02' for WEOF, and

X'03" for UNLOAD.

DCB address is the address of the associated DCB.

FILE AND RECORD POSITIONING FUNCTIONS

These functions are used to alter position within a data file
on magnetic tape or RAD,

PFIL, PREC A Position File (PFIL) call couses a magnetic
tape to be positioned at the beginning or end of the current
file if backward or forward direction, respectively, is spe-
cified and no skip is requested. If skip is requested, the
tape is positioned as above except that the file mark is
skipped over in the specified direction. Position File for~
ward without skip positions the tape at the end of the cur-
rent file (before the EOF). With skip, Position File forward
positions the tape at the beginning of the next file.

Position File causes a "rewind” of RAD files when "back-
ward" is specified, and positioning after the last record in

a RAD file when "forward" is specified.

Position Record (PREC) causes a tape or RAD file to be
moved n records in the specified direction.

Position File and Position Record are ignored when the data
files are on devices other than magnetic tape or RAD file,

File and Record positioning calls are of the form
CALT, 1 address

where address points to word 0 of the FPT shown below.

P is the abnormal address parameter presence in=-
dicator (0 means absent; 1 means present), P2
must be O for Position File.

SKIP indicates whether the EOF is to be skipped
over in positioning magnetic tape, This param-
eter has significance only for Position File and on
magnetic tape (O means no skip; 1 means skip).

DIR is the direction indicator (0 means forward
positioning; 1 means backward positioning).

Word Options
N is the number of records to position.

Abnormal address is the address of the entry to the
user's routine that will handle abnormal conditions
(EOT, BOT, etc.), for this /O operation (Posi-
tion Record only).

PRINT AND TYPE FUNCTIONS

PRINT, TYPE The PRINT function causes the Monitor to
list the user's message on the listing log device (operational
label LL). The TYPE function causes the Monitor to list the
user's message on the operator console device (operational

label OC), These functions are reentrant and available to
foreground programs, Error and abnormal conditions result-
ing from these functions are ignored.

word 0
Code 0 0 DCB address Print and Type may be performed without a wait for com-
0 1 2 314 5 6 718 9 10 1112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31 plehon, bUf the user is warned that Chcngmg the'output
buffer after return from such a request may result in the
q Y
word 1 output message being modified.
P lp — o
12| 0 0 ! r0—20 Calls for these functions are of the form
0 1 2 314 5 6 te 5o iz 1314 5T 7 18 BTX T 22 3124 25 25 T8 5 B3
CALI1, 2 address
optional where address points to word 0 of the FPT shown below.
N
word 0
0 1 2 314 5 6 718 9 10 11112 13 14 15[16 17 18 19120 21 22 23124 25 26 27128 2% 30 31 T T
Code 0 0
opfional T T T T T s e T W B W st 7 BRI 5T 2 BB % E %
0 0 Abnormal address
0 1 2 314 5 6 7186 9 10 18112 13 14 15116 17 18 15120 21 22 23124 25 26 27128 29 30 31 word 1
P
where 10 0ff2]0—0
WordO 012 3?‘ 5 6 718 9 10 lliIZ 13 14]5?16 17 18 19120 21 22 23124 25 26 27128 29 30 31

Code is X'1C' for Position File, and X'1D' for
Position Record

DCB aoddress
DCB.

is the address of the associated

Word 1

P is the record count (N) address parameter pres-
ence indicator (0 means absent; 1 means present).
Py must be O for Position File,

word 2

0 0 Message address

0 1 2 314 5 6 718 9 10 N2 13 1415116 17 18 19i202| 22 23T24252627i28291131

where
Code is X'01' for Print and X'02' for Type.

P is the message address parameter presence indi-
cator (P] =1). Pjisassumed to be a 1.

1/O System Calls 4]

F is the wait indicator (0 means no-wait; 1 means
wait for I/O completion).

Message address is the address of the first word of

the message.

Note that the first byte of the first word of the message must
specify the number of characters to be listed, up to a maxi-
mum of 132 characters for a line printer and 85 characters
for a typewriter,

DEVICE/FILE MODE AND FORMAT CONTROL FUNCTIONS

The DEVICE/FILE Mode function isused toset the following

parameters:

Modes (MOD, PACK) in the addressed DCB.

Record Size (RSZ) in the addressed DCB and in the
RFT entry if the DCB is assigned to an output file.

File Organization in the assigned file's RFT entry
if the DCB is assigned to an output file.

Granule Size in the assigned file's RFT entry if the
DCB is assigned to an output file.

The parameters set in the RFT entries for permanent files
will be written into the RAD file directory entry for the
file when the file is closed. Thus, this function defines
the parameters for permanent RAD files,

The Device Vertical Format function causes the Monitor to
set the vertical-format-control indicator of the specified
DCBto 1 or to 0.

Calls for these functions are of the form

CAL1, 1 address

where address points to word 0 of the FPT below.

word 0
Code 0—0 DCB address
0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

word 1f (for Device/File Mode Function)
plele

1|2(3[0 o[jo|hj0—o0

0 1 2 314 5 6 718 9 10 31112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

word 1" (for Device Vertical Format Function)

optional
0 0lorc
0 1 2 314 5 &6 718 9 10 l'liIZ 1314 15016 17 18 19120 21 22 23124 25 26 27128 25 30 31
optional
0 0 GSZ
0 1 2 314 5 6 7218 9 10 N1213 14 15(16 17 18 19120 2V 22 23124 25 26 27128 29 30 31
where

Word 0

Code is X'22' for Device/File Mode, X'05' for

Device Vertical Format.

DCB address is the address of the associated DCB.

Word 1 (option 1)

P] is the record size parameter presence indicator
(0 means absent; 1 means present).

P is the file organization parameter presence indi-
cator (0 means absent; 1 means present),

P is the granule size parameter presence indicator
(0 means absent; 1 means present).

F] 1 means BIN; O means BCD.

F 1 means unpacked format; 0 means packed.

3
Word 1 (option 2)

VFC

is the vertical-format-control specification
(0 means no format control; 1 means format control),

Word 2

RSZ is the maximum record size specification, in
bytes.

Word Options

ORG
00 for unblocked
01 for blocked

is the file organization type:

10 for compress

GSz

is the granule size in bytes,

STOPIO, STARTIO These calls are of the form
CALI, 5 address

where address points to word 0 of the FPT shown below,

0 0 RSZ

0 1 2 314 5 6 718 9 10 N112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

t
Two alternative forms of word 1 are shown.

42 1/O System Calls

v
Ylo—
0 B 0 13 0 0 word 0
0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 2t 22 23124 25 26 27128 29 30 31 Hl1 M
Code 0—0j!|o]ood DCB/OP/DEVICE
word 2 (with Device/File Mode Function only) . o|r , . N
071 2 314 5 6 718 9 10 11112 13 14 15116 17 18 9120 21 22 23124 25 26 2728 29 30 31

where

Code = X"10" for STOP all system 1/O

X'11" for START all system 1/O
X'0E* for STOP background 1/0
X

'OF* for START Background 1/O

Il

HIO =0 for no HIO DCB/OP/DEVICE contains the DCB address, oper- I
=1 for HIO ational label index, or device index as specified
by DOD.
1OP = 0 reserve device and controller
= 1 reserve entire IOP Word 1

DOD =00 DCB address is given P is the SIO address parameter presence bit (0
= 01 operational label index is given means absent; 1 means present).
= 10 device index is given
P is the end-action parameter presence bit (0
DCB/OP/DEVICE contains the DCB address, oper- means absent; 1 means present).

ational label index, or device index as specified.

10EX IOEX calls are of the form M

SIO address
doubleword

CALL 5 address is the address of the IOP command

where address points to word O of the FPT shown below.

I, End-action address no. [indicates the contents

word 0 of the End-action address number field.
C?de 0 0|poe) DCB/OP/EEVICE Value 0 indicates end-action address.
0 ' 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19720 21 22 23124 25 26 27128 29 30 3!
word 1 Value 1 indicates interrupt number,
AN 0 Value 2 indicates interrupt label,
6 1 2 314 5 & 7i5 9 10 1112 13 14 Ein 17 18 Wi?ﬂ 20 22 23124 25 26 27128 29 30 31 The TIOI TDV’ qnd H[O operainns are performed immedi_
optional ately and the condition codes and status are returned as
shown in Table 13,
0 0 SIO address
0 1 2 314 5 6 718 9 10 13112 13 14 15116 17 18 19120 21 22 23124 25 26 27028 29 30 3! The commqnd pqirs for an SIO operqfion are not Checked for
optional) validity. The flags in the command pairs may be set ac-
i lo ' . cording to the needs of the user, The SIOisissued whether
0 End-action address no. or not the device is busy or in manual mode, and the status
T 1 2 314 5 6 718 9 10 11112 13 14 15116 17 16 19120 21 22 23124 25 26 2128 2 30 31 is returned to the caller. It is the user's responsibi|ify to
where sense for the manual mode before and after the SIO request
Word 0 and then inform the operator with a suitable message.
Code = X'12" for SIO
= X"13' for TIO When 1/0 interrupts occur as a result of IOEX (SIO only),
=X"14! for TDV end-action is initiated as requested in the FPT. The end-
= X"15" for HIO action is identical to that for READ/WRITE calls.
DOD =00 if DCB address is given
= 01 if an operational label index is given Table 13 shows the status returned from the different IOEX I
=10 if a device index is given functions,
Table 13. IOEX Function Status Returns I
Operation Major Status Condition Codes Register 8 Register 9
ALL Device not preempted 0001 --- ---
ALL No I/O address recognition 1100 --- ---
SIO I/O address recognized 0000 Current command Status and byte count
and SIO accepted address
I/O address recognized 0100 Current command Status and byte count
but SIO not accepted
Device controller is 1000 --- ---
attached to "busy"
selector [OP

I/O System Calls 43

Table 13.

IOEX Function Status Returns (cont.)

Operation Major Status Condition Codes Register 8 Register ¢

TIO 1/O address recognized 0000 Last command Status and byte count
and SIO is currently address
possible
/O address recognized 0100 Current command Status and byte count
but SIO not possible address
Device controller at- 1000 --- ---
tached to "busy" selector
10P

DV /O address recognized 0000 Current command Status and byte count
I/O address recognized 0100 Current command Status and byte count
and device dependent address
condition present
Device controller at- 1000 --- ---
tached to "busy"
selector IOP

HIO 1/O address recognized 0000 Current command Status and byte count
and device controller is
not busy
1/O address recognized 0100 Current command Status and byte count
but device controller "busy" address

44 1/O System Calls

9. USER PROGRAM SCHEDULING AND OPERATION

SCHEDULING AND LOADING PROGRAMS

The Overlay Loader links relocatable object modules to
form an absolute load module representation of the program.
The load module is created as a RAD file and consists of a
header and an absolute core image of the various program
segments. The load module header contains the program
parameters used by the Root Loader for Loading the program
root.

LOADING AND RELEASING FOREGROUND PROGRAMS

Loading and initializing of a foreground program root is per-
formed by the Foreground Root Loader, and involves the fol-
lowing steps:

1. Opening the file containing the absolute load module.

2. Building a Foreground Program Table entry that con-
tains the program name, core memory to be used by
the program (root and all segments), and the public
libraries used by the program. The last two parameters
are taken from the load module header.

3. Testing for required core size availability. If some
portion of required foreground memory is busy, a mes-
sage is typed, the Foreground Program Table entry is
purged, and an error return is given. If no busy fore-
ground core is required but some portion of background
is needed, the background is checkpointed and the
core area marked as foreground, If the foreground
memory is not busy or if the background has been check-
pointed (if necessary), the load process

o Loads the program root.

o Sets the PCB pointer in X'4E' to point to the fore-
ground user program PCB.

e Transfers control to the start address, taken from
the load module header, where the user program
initializes itself (connects tasks, conditions inter-
rupts, etc.).

When initialization is completed, the user program performs
an EXIT function call. The EXIT function will recognize
that initialization of a foreground program has been com-
pleted and will transfer control back to the RBM Control
Task (the EXIT call does not cause an exit from the RBM
Control Task).

A foreground program root can be loaded by any of the
following:

! RUN control command
! ROV contro!l command
RUN key=-in

RUN system call from a foreground task

Since the root loading occurs at the level of the RBM Con-
trol Task, foreground programs making RUN calls must give
up the CPU (EXIT) before the load can be accomplished.
Foreground tasks can request the triggering of an interrupt
at conclusion of the root load and initialization.

Release of foreground programs is also performed at the RBM
Control Task priority through the following steps:

1. Disarming all interrupts connected to tasks within the
program. The interrupts are specified in the INTTAB
which is pointed to by a word in the program PCB.

2. Closing any open DCBs within the program to cause
I/O run-down in addition to closing data files.

3. Purging the foreground program entry, which has the
effect of marking the memory as not busy.

4. Restarting the background if it has been checkpointed,
and if release of this foreground program makes avail-
able the memory needed for the background.

Release of a foreground program occurs as a result of either
an RLS key-in or RLS system call.

LOADING AND EXECUTING BACKGROUND PROGRAMS

The Background Root Loader loads background programs as
specified by control commands in the background job stream
at the Control Task priority level.

The Background Root Loader will only load a background
program root if the background memory area is large enough
to contain the entire program (root and segments). Upon
completion of the root load, control is transferred to a
background program at its start address. The background
program terminates execution with an EXIT or ABORT re~
turn. After terminating a background program, RBM
resumes processing the control commands from the back-
ground job stream.

TASK CONTROL BLOCK (TCB)

A Task Control Block must be associated with each centrally
connected real-time task, and is used by the system to save
the context of the interrupted task upon occurrence of the
given task's interrupt. The TCB is in the user program
(assembly language users must allocate and define their
TCBs in the source code of their program). The FORTRAN
compiler generates implicitly the TCBs needed for a real -
time FORTRAN program.

TASK CONTROL BLOCK FORMAT

The assembly language user must allocate a TCB in the
source code for each centrally connected task in the pro-
gram. Each TCB begins on a doubleword boundary and has
a length of 26 words.

User Program Scheduling and Operation 45

The RBM CONNECT function fills in the TCB. When com-
pleted, a TCB has the following form:

0

1| Saved PSD

2 | Intermediate PSD to transfer to TCB + 4 with
3| skeleton key

4] stm,0 TCB + 10

51 BAL,RI RBMSAVE

6| Indicators PCB address

7 | Priority TCB address
8| PSD to transfer to task entry in proper state
91 (mode, write key, etc.)
10
; 16 words for register saving
25

where RBMSAVE is a system routine that
1. Exchanges the contents of X'4E', X'4F', and TCB +6,7.
2. Sets appropriate indicators in TCB +6.

3. Transfers to the task starting address by LPSD from
TCB +8.

Users must never alter any portion of a TCB.

PROGRAM CONTROL BLOCK (PCB)

The Program Control Block contains the program-associated
parameters used by the RBM system to provide service func-
tions for the program. Every program, background and
foreground, contains a PCB that is allocated and constructed
by the Overlay Loader.

The Program Control Block defines the program Temp Stack
to be used by a program. It also contains a pointer to a list
of the DCBs associated with a program and a pointer to a
list of interrupts connected to the tasks within a foreground
program. This table of interrupts is filled by the CON-
NECT routine as the various connect calls are made.

Since the Temp Stack is associated with the program rather
than individual tasks, different tasks within a programshould
not use these stacks for data communication. - Common stor-
age can be used for communication between tasks or between
occurrences of a given task.

At all times during operation of RBM, location X'4E' and
X'4F' contain pointers to the PCB and TCB, respectively.
In addition, X'4F' contains the current priority level in

byte 0.

46 Program Control Block (PCB)

PCB FORMAT

The PCB is built by the Overlay Loader from porameters
specified on the !/OLOAD control command.

The PCB is of the form

0 78 14 15 31
0]0 0 TSTACK-1
1 TSS 0—0
210 0 OVLOAD
g | No-of 1o o INTTAB
tasks
4 |o|P lo—o| TRAPADD
control
5 MSLADD
6 Unused
7 Unused
8 Unused
9 Unused
10 DCBTAB
" Unused
12 SSW
TSTACK User's Temp Stack] TSS
0 415 26 3l
where
TSTACK is the address of the current top of the
user's temp stack.
TSS indicatesthesize, in words, of the user's temp
stack.
OVLOAD is the address of the table used by the
segment loader to manage the program overlays.
No. of Tasks is the number of tasks in the program.
This is also the number of eniries in INTTAB.
INTTAB is the address of the interrupt table associ-

ated with the program. This table is maintained
by the CONNECT function. The format of this

table is shown below.

Trap Control (Bits 1-7) specify how the various
traps are to be handled. An explanation of these
bits is given in the TRAP function description later
in this chapter.

TRAPADD is the address of the user's routine which
processes the various traps.

MSLADD is the address of the M:SL DCB, which is
used to load overlay segments.

DCBTAB is the address of a table of names and
addresses of all of the user's DCBs. This table has
the form shown below.

SSW contains the user's sense switch settings.
Bit 26 contains the setting of switch 1, etc. The
sense switches have no use in this initial release
of RBM.

DCBTAB Format

0 15,16 k]
DCTAB :l'otol no. entries
in table
CI C2 C3 C4
C5 C6 C:7 C8
DCBLOC]
<) 3 <4
C5 Cé C7 C8
DCBLOC2
etc.
0 15i16 31
where
C]-C8 indicates the EBCDIC name of the DCB,

left-justified, with trailing blanks.

DCBLOC is the absolute address of the first word
location of the DCB.

INTTAB Format

0 15 .16 31
I INT | INT
INT4 INT3 INT2 INTI

0 1516 31

where [is the index value used to access the next available
entry in the table 0 <1 =4N - 1. N is the number of words
allocated by the Loader for the table. The table is main-

tained by the CONNECT system call. [has an initial value

equal to the number of tasks.

Each byte (interrupts 1 to n) represents the priority of the
interrupt where a value of 1 represents the highest priority
and corresponds to interrupt location X'50".

TEMP STACK

The Temp Stack is a "push-down/pull-up" stack of memory
locations that have been allocated by the Overlay Loader.
It is required for Monitor functions and subroutines that use

Temp Stack storage (i.e., FORTRANIV-H Library routines).

The user can manipulate the Temp Stack by push/pull stack
instructions (PSW, PLW, PSM, PLM, MSP) that indirectly ad-
dress location '4E', which contains the address of the exe-
cuting program's PCB. The first doubleword of the Program
Control Block is the stack pointer doubleword used in allo-
cating (pushing) and releasing (pulling) blocks within the
Temp Stack.

The "push-down/pull-up" functions operate on a last-in,
first-out basis, and these operations must be symmetrical in
number and size. An attempt to push a block that is greater
than the remaining stack space results in overflow. Sim-
ilarly, an attempt to pull more out of the Temp Stack than
had been previously pushed down would result in underflow.
These conditions result in traps that may be handled by the
user (see TRAP system call).

The size of the Temp Stack must be equa! to or greater than
the total number of temp cells required by the maximum
number of nested routines using temporary storage; (i.e., if
a Monitor 1/O routine needs 16 temp cells and it calls a
routine that needs 19 cells, the total number of cells re-
quired would be 35). The number of cells required for sys-
tem CALs is 18 to 70; the FORTRAN IV-H Library subrou-

tines require 148 temp cells for each task.

Foreground tasks at different interrupt levals within the
same program share the program's Temp Stack, and alloca-
tion must be sufficient to accommodate the maximum number
of tasks that could be enabled at one time. When an exe-
cuting task exits, it must restore the temp stack pointer to
its original condition. This is particularly important in a
foreground program where a Temp Stack is allocated for each
program and not each task. Thus, if several tasks in the
same program share the program's Temp Stack, the house-
keeping of the Temp Stack pointer (e.g., symmetrical
pushes and pulls) must be meticulous.

MASTER AND SLAVE MODES

Foreground tasks can change their execution mode through
MASTER and SLAVE system function calls. At entry to a
task, the mode is set as specified by the function call that
caused the connection.

Note: Serious consequences can result from improper oper-
ation in master mode.

OVERLAY SEGMENT LOADING

Overlay segments are loaded through a SEGLOAD system
function call and the segment to be loaded is specified by
number.

Temp Stack/Master and Slave Modes/Overlay Segment Loading 47

Both background and foreground programs may load overlay
segments. The memory space necessary for a foreground
program overlay is always available, since availability was
verified when the root was loaded, and the total space used
by the program and all its overlays was marked as busy by
the Root Loader. Overlay segments are loaded at the prior-
ity level of the requesting task.

CHECKPOINT AND RESTART

Checkpoint and restart of the background are performed
automatically by the system as foreground programs are
loaded and released. Checkpoints are performed as neces-
sary to load foreground programs. Restarts are performed as
possible when foreground programs are released. Both func-
tions are performed in the RBM Control Task. Checkpointing
consists of

1. Writing the background program to a fixed area on the
RAD (specified at SYSGEN) after the background pro-
gram has stabilized (no background I/O request running).

2. Marking the background memory as unused foreground
to enable loading of foreground programs into that
area.

Restarting consists of

1. Reading the checkpointed background program from the
RAD into memory if the required memory area is marked
as unused foreground (no active foreground programs in
the area), and marking this area as background.

2. Restarting the background program at the point it was
interrupted by the checkpoint request.

TRAP HANDLING

RBM provides standard processing of trap conditions. A user
can either toke advantage of the system processing or request
that he himself handle certain trap conditions. Also, cer-
tain traps can be ignored. System trap handling involves
aborting (for background) or exiting (for foreground) the task
that is active at the occurrence of a trap, with the follow-
ing exceptions:

1. An unimplemented instruction trap occurrence will re-
sult in the instruction being simulated if the simulation
package is in the system. If simulation is impossible,
the program will be aborted or exited.

2. The user can mask out fixed-point arithmetic and deci-
mal arithmetic traps either through system call (TRAP
function) or at task connection time (CONNECT, ARM,
DISARM functions).

3. The user can mask out some floating-point trap occur-
rences through use of the LCF and LCFI instruction.

4. Any unmasked trap can be received by the active pro-
gram. This is set up through the TRAP function call,
wherein the user can specify the address of a routine to
handle the various trap conditions. This address is kept
on a per program basis as opposed to a per task basis.

When the user program receives control in the trap routine,

the following items are stored in sequence in a 19-word

block of the program's Temp Stack, starting on a doubleword
boundary: the PSD and the 16 registers saved when the trap
occurred, and a word containing the trap location (right-
justified). Register 1 points to word O (first word of the PSD) -
in this block. If 19 words are not available in the Temp |
Stack, a background program is aborted; a foreground task

is exited.

The address of the user trap routine and the control bit for
each trap is kept in the PCB.

User trap handling or system trap handling is also invoked if
an invalid parameter exists in an FPT for a system call that
is unable to post the error condition. In this case, an error
code of X'50' will be posted in the last word of the user's
Temp Stack if a user trap address is present in the PCB,

Return from the user trap routine to the interrupted program
is accomplished by the TRTN function, which restores the
context from the Temp Stack and returns to the location fol-
lowing the trapped instruction.

RETURN FUNCTIONS

RBM provides users with the following return functions:

EXIT is used by background programs at the normal
completion of a background program. EXIT is used
by foreground programs when a centrally connected
task has concluded the processing of an interrupt.
An EXIT call from the foreground causes the system
to restore the context of the interrupted program
and return to the point of interrupt.

ABORT is used by background programs to cause the
system to abort the job containing the program.
The system will abort the background program and
type a message on the operator console (OC) that
the job was aborted and give the address of the
ABORT call unless an TATTEND command was
present in the background job. The system will
read and ignore all records from the C device until
the next | JOB card is encountered. [f an ABORT
call is made from a foreground program, an EXIT
is performed.

INTERRUPT CONTROL
CONNECTING TASKS TO INTERRUPTS

Interrupt connection may be accomplished through use of
the CONNECT, ARM, or DISARM function calls. While
these calls are usually made during foreground program
initialization (performed at the Control Task priority level),
this is not a requirement. A table of interrupts connected
within a program is kept by the system. Thistable is pointed
to by an entry in the program's PCB, and space for the table
is allocated by the Overlay Loader in the user program. The
table enables the foreground program release function to

48 Checkpoint and Restart/Trap Handling/Return Functions/Interrupt Control

disarm and disable all interrupts associated with a foreground
program. In calling for connection the user may specify the
mode (master, slave) and the interrupt inhibit conditions
that are to exist at entry to the specified task. Two types

of connections are available, direct and central:

1. Direct connection results in immediate entry to the task
upon occurrence of the interrupt. The task must ensure
that the context is saved, as necessary, and restored
upon exit. The task should set the priority field
(byte 0) in location X'4F' to ensure that CPU time is
not stolen for 1/O cleanup for lower-priority tasks. If
the task uses any RBM services, locations X'4E' and
X'4F' must be properly set.

2. Central connection results in entry to the task after the
interrupted task context has been saved. The CONNECT
function constructs the TCB so that the context save
will oceur. Exit from a centrally connected task is by
EXIT, which will restore the interrupted task status and
return to the interrupted task.

To perform the connection, the system fills in the TCB
previously shown, The PSD is constructed (TCB + 8) to
transfer control to the user in the proper mode and with
the proper write key. An XPSD TCB instruction is
placed in the proper interrupt location to complete
the connection.

The CONNECT function also notes in the INTTAB the num-
ber of the interrupt being connected so that the interrupt
can be disarmed and disabled when the foreground program
is released. Details of the system calls concerned with con
nection are given later in this chapter under "System Func-
tion Call Formats".

ARMING, DISARMING, ENABLING, DISABLING

These functions can be performed by the ARM, DISARM,
ENABLE, and DISABLE system function calls, which specify
an interrupt by number or label. As options on ARM and
DISARM, connection of the interrupt to a task can be per-
formed, and/or a clock can be set to interrupt at specific
intervals,

ARM, DISARM, ENABLE, and DISABLE functions can also
be performed by operator request through the CINT key-in.

TRIGGERING OF INTERRUPTS

An interrupt can be triggered through a TRIGGER system

function call. The interrupt to be triggered is specified by
number or by label. TRIGGER calls may be made from any
foreground task. An interrupt can also be triggered by
operator request through the CINT key-in.

SYSTEM FUNCTION CALL FORMATS

RUN This function call is available only to the fore-
ground. It has the format

CAL1,5 address

where address points to word 0 of the FPT show below.

word 0
X'oc! 0 0 Signal address
0 1 2 314 5 6 7T8 9 10 11112 13 14 15F16 17 18 19120 21 22 23124 25 26 27128 29 30 a1
word 1
110 0 Interrupt no. /label
O 1 2 314 5 & 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
word 2
Ci C2 C3 C4
C 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 2) 22 23124 25 26 27126 29 30 3l
word 3
C5 Cé6 c7 c8
0 1 2 314 5 6 718 § 10 11112 13 14 15116 17 18 19120 2} 22 23124 25 26 27128 29 30 31
where
Word 0
X'oC! is the code for the RUN call.

Signal address is the address of a status word into
which the system posts one of the following signals:

0 if the program was successfully loaded.

1 if the space was not available in the fore-
ground memory area or if there was insuf-
ficient space in the Foreground Program (FP)
table to make entries for the public libraries
needed by the program.

2 if the requested program did not exist on the
FP area of the RAD or if an 1/O error oc-
curred attempting to load the program.

3 if the program is already loaded.

4 if a previous request has been made to load
the same program but the program is not yet
loaded. In this case, the Foreground Root
Loader is able to notify only the first re-
quester when the program is loaded.

5 if the space was not available in the Fore-
ground Program (FP) table for the requested
program.

6 if invalid attempt has been made to load a

public library. Since public libraries are
automatically loaded and released by the
Foreground Root Loader, they cannot be
loaded via a RUN call.

System Function Call Formats 49

The signal address cannot be a register (addresses
0-F) and must be in the calling program's portion
of memory. An invalid signal address results in
control being transferred to the System or User
Trap Handler.

The user should inspect the signal word upon re-
turn from the CAL, since some of the signals (3,
4, and 5) are posted immediately by the RUN pro-
cessor. The signal word should be initialized to

a value other than 0-6, so that the user can de-
termine if or when the signal is posted.

Note that an interrupt is triggered only if the RUN
request is passed on to the Foreground Root Loader.
That is, signals 3, 4, and 5 are returned immedi-
ately by the RUN processor and, in this case, no
interrupt i< triggered.

Alarms are output by the Foreground Root Loader
for error conditions 1, 2, and 6.

Word 1

I, Interrupt no. /label indicates the contents of the
Interrupt number/label field (0 for no interrupts;
1 for interrupt number; 2 for interrupt label).

This interrupt is triggered by the Root Loader at the
conclusion (successful or unsuccessful) of the root
load and initialization.

Words 2-3

Ci are the characters in the name of the load mod-
ule. Thename is left-justified with trailing blanks.

RLS This function call (Release Foreground Program) is
available only to the foreground, and has the format

CAL1,5 address

where address points to word O of the FPT shown below.

word 0
X'0B' 0 0
0 1 2 314 5 6 718 9 10 11112 13 14 15716 17 18 19120 21 22 23724 25 26 27128 29 30 31
word 1
C1 C2 C3 C4
0 1 2 314 5 6 718 9 10 11012 13 14 15118 17 8 19120 27 22 23124 25 26 27128 29 30 3}
word 2
c5 Cé C7 (@]
0 1 2 314 5 6 718 9 10 11112 13 14 15(16 17 18 19120 21 22 23124 25 26 27128 29 30 31
where
X'oB’ is the code for the RLS call.
Ci are the characters specifying the name of the

program. The name is left-justified and filled with
trailing blanks. An invalid name results in a re-
turn with no action taken by the system.

50 System Function Call Formats

TRAP This function call has the form

CAIl'1,8 address

where address points to word 0 of the FPT shown below.

word 0

X"14! 0—0 Trap address

TT IO T e T s W B W e T R RIR T R B B O R W

word 1

worz

) D
F F F
s|piE(x Eix x
14

wo
-
o[Aamo
>
[=]
o/ Qo%

3{0>»Z
nmo

U
|
3

o ©
(-|0osg

4 5

12 13

5|

% 17 18 19120 21 22 23124 25 26 27128 29 30 31

Abort Trap Permit Ignore

where

Word 0

X'14 is the code for the TRAP call.

Trap address is the address in the user program that
receives the requested traps. The address is op~
tional unless it is the initial call and one of the
trap bits is set. The addressmust lie in the calling
program's portion of memory.

Word 1

Bits 1-7 are the Abort flags specifying which traps
are to be handled by the System.

Bits 9-15 are the Trap flags specifying which traps
are to be handled by the user's trap handler.

Bits 22-23 are the Permit flags specifying that the
decimal or arithmetic mask in the PSD is to be set
so that these traps are permitted.

Bits 30-31 are the Ignore flags specifying that the
decimal or arithmetic mask in the PSD is to be set
so that these traps are ignored.

The Abort, Trap, Permit, and Ignore fields specify
the changes to be made in the disposition of trap
occurrences.

The bits in these fields have the following significance:
wWDG Watchdog Timer

NAO nonallowed operation

Ul unimplemented instruction
PS pushdown stack limit

FP floating-point arithmetic
DEC decimal arithmetic

FX fixed-point arithmetic

If a control bit has value 1, the trap is to be handled
as specified. A value of zero specifies that no change
is to be made in the handling of that trap. The fields
are processed from left to right (Abort, Trap, Permit,
Ignore), with the last-processed code overriding any
previously processed code.

If a given trap condition has a control bit value of 1 in
both the Abort and Trap fields, the Trap bit will over-
ride the Abort bit and the user will receive the trap,
since the Trap bit is the last one processed.

TRTN This function call (trap return) is of the form
CALL,9 5

No FPT is used.

EXIT This function call is of the form
CALLS 1

No FPT is used.

ABORT This function call is of the form
CALL,9 3

No FPT is used.

CONNECT This function call (available only to the
foreground) has the form

CAL1,5 address

where address points to word O of the FPT shown below.

word 0
X'04! 0—0i" Interrupt address/ label
0 1 2 314 5 6 718 9 10 11712 13 14 15116 17 18 Wim 21 22 23124 25 26 27128 29 30 31

word 1

PPoDD(’jIEMDA NR

TCB address l
0 1 2 314 5 6 718 9 10 11012 13 14 15116 17 18 19720 21 22 23124 25 26 27(28 29 30 31

m

SIMIM

optional

0 0 Start address

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

optional

Clock value
0 1 2 314 5 & 7108 9 10 11012 13 14 15036 17 18 19120 21 22 23124 25 26 27128 29 30 31

where
Werd 0
X'04' is the code for the CONNECT call.
Iy indicates that the address (12 = 0), or the label

(I, = 1), of the interrupt is specified in Interrupt
address/label .

Word 1

P] is the task start address parameter presence
indicator (0 means absent; 1 means present). This
indicator must be 1.

P2 is the clock value parameter presence indicator
(0 means absent; 1 means present).

DE specifies that the interrupt is to be disabled
(DE = 1), or enabled (DE = 0).

DI specifies that the connection is to be direct
(DI = 1), or central (DI = 0).

CI specifies that the task is to be entered with the
clock group inhibit set (CI = 1), or reset (CI = 0).

11 specifies that the task is to be entered with the
/O group inhibit set (Il = 1), or reset (Il = 0).

El specifies that the task is to be entered with the
external group inhibitset (EI=1), or reset (EI = 0).

MS specifies that the task is to be entered in master
mode (MS = 0), or slave mode (MS = 1).

DM specifies that the task is to be entered with the
decimal mask set (DM = 1), or reset (DM = 0).

AM specifies that the task is to be entered with the
arithmetic mask set (AM = 1), or reset (AM = 0).

NR is the number of registers to be saved upon oc-
currence of the interrupt (if connection is central).
Value 0 is used to denote that 16 registersare to be
saved. Registers are saved beginning with reg-
ister 0, and at least four registers must be saved.

TCB address contains the TCB address for central
connection. For direct connection, this portion
of word 1 is unused.

Word Options

Start address is the starting address of the task if it
is to be centrally connected. If the task is to be
directly connected, this is the address of the XPSD
to be executed in the interrupt location. The user-
furnished XPSD instruction will be stored in the
task'sinterrupt location by the CONNECT function.

Clock value is the value (in units of the clock's
resolution) to which the clock is to be set. If this
parameter is absent, no change is made in the in-
terval. This value should be presented if a task is
being centrally connected to a clock interrupt.
Note that the clock value is decremented via an
MTW, -1 instruction. This parameter is meaning-
less for a direct connection or if no connection is
being made.

System Function Call Formats 51

ARM, DISARM These function calls (available only to

the foreground) are of the form
CAL1,5 address

where address points to word O of the FPT shown below.

word 0
Code 0—014 Interrupt address/ label
G 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 259 30 3!
word 1
PP DIDIC|IIE|M[DIA
W2 0felt]T|i|i]s|miM| NR TCB address
0 1 2 314 5 6 718 § 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

optional

0 0

Tyt e

Start address
10 HilZ 13 14 15hé 17 18 |‘7i20 21 22 3i24 25 26 27128 29 30 31

o

optional

Clock value

0 1 2 314 5 & 718 10 11112 13 14 15116 17 18 19120 21 22 23724 25 26 27128 29 30 31

9|

where

Code = X'03!
= X'04'

Iy has the same significance asin the CONNECT call.

specifies DISARM
specifies ARM

If Py = 1, a connection is performed and the parameters in
word 1 and the optional words assume the same significance

as in the CONNECT call.

If Py =0, no connection is performed and the remainder of
the parameters in word 1 are ignored, except for the DE
parameter in the case of an ARM call.

The rest of the coding is identical to that for the CONNECT
function call.

ENABLE, DISABLE, TRIGGER These function calls (avail -
able only to the foreground) are of the form

CAL1,5 address

where address points to word 0 of the FPT shown below.

word 0
1
Code 0———01'?| Interrupt address/ label
0 1 2 314 5 6 718 9 10 13112 13 14 15116 17 18 V‘?‘imz‘ 22 23124 25 26 27128 29 30 3!

where

Code = X'00' specifies TRIGGER
xX'or specifies DISABLE
= X'02' specifies ENABLE

52 System Function Call Formats

1 specifies that either the address (I = 0), or the
label (I2 = 1), of the interrupt is specified in In-
terrupt address/label,

MASTER, SLAVE These function calls {available only to

the foreground) are of the form
CAL1,5 address

where address points to word 0 of the FPT shown below.

word 0
Code 0 0
0 1 2 314 5 6 718 % 10 N[12 13 14 15116 17 18 19120 2) 22 23124 25 26 27128 29 30 3!
where
Code = X'07' specifies SLAVE
= X'08' specifies MASTER
SEGLOAD This function call is of the form

CALL1,8 address
where address points to word 0 of the FPT shown below.

word 0

X'01" Al 0—oO|T

Segment number

0 1 2 304 5 & 718 9 10 112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
optional
110 0 End-action interrupt
0 1 2 3la 5 & 718 9 10 11112 13 14 VEIIS 17 18 19120 21 22 23124 25 26 27128 29 30 3l
optional
0 0| Address to process error returns
0 1 2 374 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
where
Word 0
X'01! is the code for the SEGLOAD call.
P indicates the presence or absence of word 1;

0 means absent, 1 means present.
P2 indicates the presence or absence of word 2.

T indicates whether control is to be returned fol-
lowing the call or transferred to the starting loca-
tion of the segment at the conclusion of the seg-

ment load,

0 for return to calling program.

1 for transfer to new segment (only valid
if Py =0).

Word Options

1 indicates the contents of the end-action interrupt
field (foreground only):

=0 indicates no end-action.
I=1 indicates an interrupt address.
[=2 indicates an interrupt label.

If end-action is specified, the request to load the seg-
ment will be queued, and control will be returned im-
mediately to the calling program. The calling program
can then exit and release control while the segment is
being loaded. [f end-action is not specified (I = 0),
control will not be returned until the segment is loaded.
The user is responsible for checking the status of the
load if end-action is selected.

Address to process error returns This is the address
of the user's routine for processing any error or ab-
normal returns received while attempting to load
the overlay segment. The codes returned will be
identical to those of the READ CAL since a READ
CAL is used by SEGLOAD to load the segment.
If this address is not present and an error occurs,
a foreground program will be exited or a back-
ground program aborted, If an error is detected
in the user's PCB or OVLOAD table, the User or
System Trap Handler will be entered.

WAIT A background program will enter the "wait" state
through this function call if an !ATTEND card was included
in the control commands for the job. Normally, a back-
ground program would use WAIT after typing an alarm to the
operator that requires an operator response. While in this
state, the Control Task waits for a key=-in from the operator
specifying the disposition of the background program. The
operator may specify continue (C), continue from OC(COC),
or abort (X).

This function call is of the form
CALI9 9

No FPT is used.

TIME Programs may interrogate the Monitor to determine
the time of day and date.

This function call is of the form
CAL1,8 address

where address points to word 0 of the FPT shown below.

word 0

X'10' 0——0 Address

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

where

X'"10' is the code for the TIME call.

Address is the address of the first word of a 4-word
block which istoreceive the time and date. In sys-
tems without Job Accounting or if a data has never
beeninputvia a "DT" key=~in, the 4-word block
will not be modified. This block contains EBCDIC
characters as shown below.

word 0
h h m
word 1 N
m % m o
word 2
n) d d
word 3
' ' y Y
where
hh is the hour (0 = hh = 23).
mm is the minute (0 = mm < 59).
mon is the month (3-letter abbreviation).

dd is the day (01 = dd = 31).
Yy is the year (00 = yy < 99).

System Function Call Formats 53

6. OVERLAY LOADER

OVERVIEW

The Overlay Loader is a two-pass processor that creates pro-
grams in overlay form. Modules in Sigma 5/7 Standard Ob-
ject Language format are converted to overlays in absolute
core image form in accordance with the Loader control com-
mands. The Loader creates programs for execution in either
foreground or background, prepares standard processors for
execution under the Job Control Processor, and creates
Public Libraries.

The Overlay Loader permits the user to assemble, load to
background or foreground areas, and execute programs with
minimal control information. The default cases documented
in this section for each control command will handle most
normal situations.

The control command structure permits the user to tailor the
loading procedure for a wide variety of situations, and the
control commands add control and flexibility by overriding
default cases and adding options.

The size of the program that can be loaded is a function of
the size of the symbol table and available core storage at
load time, rather than the amount of core memory that the
program occupies at execution time. Therefore, the Over-
lay Loader may load user programs equal in size to the max-
imum available area in core at execution time, even though
this area is not available at load time.

The loading of mixed medid is allowed, andall library load-
ing will be from library files on the RAD. A library need
not be ordered.

FUNCTIONAL FLOW

The options specified on the ! OLOAD control command are
scanned and those not specified are assigned their default
valves. A :ROOTor :SEG control command isscanned to de-
termine the source of the binary object modules from which
the segment will be created, and to define its linkage.

The Loader makes the first pass over the binary object mod-
ules, allocating the segment's labelled COMMON blocks
(dummy sections) and control sections. It concurrently builds
a symbol table of DEFs and unsatisfied REFs. Object mod-
ules input from non-RAD devices are saved on a temporary
RAD file (X1).

After the last object module for a segment has been input,
the Libraries are searched. Pointers to the selected library
object modules are saved and their DEFs and REFs are added
to the symbol table. At the end of a path, segment symbol
tables are written on temporary RAD files. The blank
COMMON base is set at the end of the first pass. At this
point, all the Loader control commands except :ASSIGN
have been input.

54 Overlay Loader

During the second pass, each segment's binary object mod-
ules and selected library modules are loaded. The absolute
core image of each segment is created and written on the
program file. Part two of the ROOT (the INTTAB, DCBTAB,
OVLOAD table, the Temp Stack, and any DCBs created by
the Loader) is built at the end of the second pass. If a MAP
has been specified, it is output. If an output file used by
the Loader overflows, an attempt is made to output all poss-
ible MAP information. The Loader returns to the Monitor
by calling either the EXIT or ABORT function.

LIMITATIONS

There are certain limitations in the use of the Overlay
Loader due to total system considerations or because the
efficiency of the Loader could otherwise be degraded.

1. No discontinuous programs will be output by the Over=-
lay Loader. The Monitor SEGLOAD function reads
only a contiguous core image. Since each discontin-
uity would result in at least one additional RAD access,
considerable degradation of the run-load process for
the foreground would result.

2. The contents of reserve areas within a program will not
be predictable at execution time unless initialized in
some manner (e.g., by DATA statements). Labeled
COMMON will be unpredictable unless initialized by
a DATA statement. Blank COMMON is not written to
the RAD and is not loaded as part of the program.

3. Allocation of program, COMMON, and Labeled
COMMON within a program area is generally de-
termined by the Loader.

4, Only relocatable modules or those containing absolute
origins falling within the limits of the segment currently
being loaded will be allowed.

5. No implicitloading of segments will take place at exe~
cution time. Only explicit calls to the Monitor SEG-
LOAD function will read in overlay segments. Thus,
the overlay structure must be accurately defined at load
time to coincide with explicit calls in the user's program.

OVERLAY PROGRAMS

An overlay program is defined as the collection of absolute
core image segments generated by the Overlay Loader. The
Loader produces background overlay programs (including

processors) and foreground overlay programs. Note that

the Overlay Loader loads only programs; a foreground pro-
gram may consist of one or more tasks.

OVERLAY STRUCTURES

An overlay program is generally composed of a root and

several overlay segments; however, it can consist of only
a root without overlay segments. The root segment is resi-
dent at all times during the execution of a program; overlay

segments are resident only when they have been explicitly
read by calls to the Monitor SEGLOAD function.

Each segment is created from one or more binary object mod-
ules and associated library routines. The segments are as-
signed arbitrary identification numbers (except for the root
which is always segment 0) that must be unique within the
overlay program. Segmentnumbers are used by the Overlay
Loader and the Monitor SEGLOAD function.

The overlay structure is communicated to the Loader with
the :ROOT and :SEG control commands. Since each over-
lay segment is created andstored on the RAD as a continuous
string of bytes in absolute core image form, data in reserved
areas of the program segment is not predictable. Note that
reserved areas and data blocks will effectively be reini-
tialized each time that an overlay segment is read in by
SEGLOAD. The structure formed by segments that can
exist in core at any one time is called a path.

The overlay program example given in Figure 3, consists of
a root (segment 0) and overlay segments 1 through 15. The
segments (horizontal lines) are numbered in the order in
which they were built by the Loader. There are nine paths:

1. 0,1,2 6. 0,5,9,10,11,12
2. 0,1,3 7. 0,5,9,10,11,13
3. 0,4 8. 0,5,9,10,14
4, 0,5,6,7 9. 0,5,9,15
5. 0,5,6,8
2
1
3
4
0
7
[)
IS—,—_
5 12
11
10 13
14
9
15

Figure 3. An Overlay Program

OVERLAY RESTRICTIONS

Communication between segments by external DEF/REF link-
ages is permitted with the following restrictions:

1. The Loader will satisfy a DEF/REF linkage only within
a path.

L

A segment in one path cannot reference a segment in
another path. For example, segment 2 must not refer-
ence any of segments 3-15.

3. The user must ensure that any segments that intercom-
municate are in core. For example, if segment 5 ref-
erences segments 6 and 8, then segments 6 and 8 must
have been explicitly loaded. If segment 8 references
segments 5 or 6, these segments must have been explic-
itly loaded since the loading of segment 8 does not
cause the implicit loading of segments 5 and 6.

4. ldentical definitions cannot be used in segments that
are in the same path. For example, segments 5 and 13

cannot have identical definitions because they are both
in path (0,5,9,10,11,13).

5. ldentical definitions and references may be used in seg-
ments of different paths that do not involve a common
segment. For example, if segments 7 and 15 reference
identical definitions in segments é and 9, the Loader
will link the reference in 7 with the definition in é and
the reference in 15 with the definition in 9.

6. Identical references in segments of different paths may
be made to a definition in a segment common fo both
paths. For example, segments 6 and 9 can each refer-
ence a definition in segment 5 because 5 is a common
segment in the two paths (0,5,6,7) and (0,5,9,10, 14).

7. Asegment that is common to two paths cannot reference
identical definitions in the different paths. For exam-
ple, segment 10 cannot reference identical definitions
in segment 12 and 13, even though segments 12 and 13
are in different paths.

Where possible, the Loader will warn the user about errors
in overlay structure and segment communication; however,
it is the user's responsibility to attempt a reasonable, work-
able overlay contruction.

OVERLAY CONTROL COMMANDS

The prime Overlay Loader command, ! OLOAD, is read by
the Job Control Processor and causes the Overlay Loader
processor to be read into the background and executed. Al
Loader subcommands are identified by a leadingcolon (e. g.,
:SEG). They are read from M:C and logged onto M:LL.
Blank cards are passed over without comment. When a Mon-
itor control command is encountered, the Loader completes
the load process and exits to the Monitor.

Note that | EOD must occur only as a terminator for object
module input; its use is illegal for terminating the Loader
control command stack.

SYNTAX
The syntax for Overlay Loader control commands is identical

to that defined for the RBM Monitor (except for MODIFY

control commands).

Overlay Restrictions/Overlay Control Commands 55

ORDER OF CONTROL COMMANDS causes the Loader to abort. Recovery consists of correcting
the error and reloading the entire job.
The control command stack is divided into major divisions

or substacks, which must occur in the following order: If an ! OLOAD control command is continued fo another
1 OLOAD card, the continuation command must have a colon (:) in _
:ROOT column one instead of an exclamation (1) character.
:SEG
The form of the command is
: or {:PUBLIB}
| . . .
e L OLOAD [(ophon])(,ophonz). .. (,ophonn)]
:ASSIGN

! (Monitor control command)

where the options are

The :COMMON, :LCOMMON, :LIB, :INCLUDE, :EXCLUDE,
:RES, and :MODIFY control commands may occur in any

:ROQOT or :SEG substack and apply only to that root or seg-

ment. The :ASSIGN control commands must follow all other
commands in the stack. The :PUBLIB control command is
unique, replacing :ROOT, :SEG, and :ASSIGN substacks.

GO specifies that the Loader is to input all object
modules from the GO file and form a root. The only
other control commands recognized in this mode

are :RES, :INCLUDE, :MODIFY, and :ASSIGN.

All other commands are considered illegal.

GO,LINKS specifies that the Loader is to form a

A ROOT or SEG substack has the followi der:
or substack has fhe following order link type overlay structure from GO in the follow-

:ROOT or :SEG ing manner: module 1 is identified as the root (seg-

:INCLUDE ment 0); module 2 is identified as segment 1 and is

:EXCLUDE linked to the root, ...; module n is identified as
These commands may occur S

:LIB in any order segment n-1 and is linked to the root.

:LCOMMON

:RES Module 2 (ident 1)

:COMMON

Module 3 (ident 2)

Binary Object Moduleﬂ Binary objectmodules are in-
cluded at this point in the
substack only if the input Module 1 (root) |
device specified on the . -
preceding :ROOT or :SEG Module n (ident n-1)

command is the same as the

v

. . "~ , Libraries are searched at the end of each segment.
Binary Object MOdU|enJ C* device. Only :MODIFY and :ASSIGN commands are honored.
:MODIFY The user must have explicit SEGLOAD calls to load
. segments 1, 2, ...n. No implicit calls are built

by the Loader.
:MODIFY PUBLIB,name . [,name,,,name specifies that the
The PUBLIB substack has the following order: named Public Libraries are to be resident when‘ the
loaded program executes, and that the Loader is to
:PUBLIB establish the appropriate linkage. Name; is the file
:INCLUDE} These commands may occur name of a Public Library in the Foreground Programs
:EXCLUDE in any order. area of the RAD, The PUBLIB keyword may not be

used when a Public Library is being created. (i.e.,
one Public Library cannot reference another Public
Library).

Binary Object Module] Binary object modules are
included in the substack
only if the input device
specified on the PUBLIB

command is the same as

LIB [,USER,SYSTEM] specify the Libraries to be

Bi fect M he "C" ice. searched following each segment. The order of
nary Object Module] the "C" device the keywords USER,SYSTEM defines the order of

:MODIFY the search. If the USER or SYSTEM keywords are
. omitted, and only the LIB keyword is specified,
the Library search is suppressed. If the LIB option
is omitted, the Loader searches the System Library

:MODIFY
after each segment.
'0LOAD The | OLOAD control command signifies that Note: The :LIB control command overrides this
the Overlay Loader Processor is to be executed in the back- option for the segment in which it appears -
ground area. Any error on the | OLOAD control command (see below).

56 Overlay Control Commands

BACK

TASKS,value

TEMP,value

FILE ,area,name

FORE} [lfwc,|wq] specifies whether the program

being loaded is to execute in foreground or back-
ground. If the option is omitted, the program will
execute in the background area defined at SYSGEN,
The "fwa" and "lwa" parameters are hexadecimal
values denoting the first word address (on adouble-
word boundary) and last word address of the area
within which the program will execute. The PCB
will be located at the FWA specified.

For foreground programs, the default "fwa" is the
FWA of the foreground area (K:FGDBG2) and the
default "lwa" is end of memory (K:FGDEND).

For background programs, the default "fwa" is the
FWA of the background area (K:BACKBG), and
the default"lwa" is the end of background defined
at SYSGEN (K:FGDBG2-1). If the "fwa" speci-
fied fora foreground program lies in the background
area, the background will be checkpointed when
the foreground program is loaded. If the "fwa"
and "lwa" specified for a background progrom ex-
ceed the limits of background at time of loading,
the program is still loaded and may be executed by
changing the upper limit of background. Note
that "lwa" is an indicator of upper limit. If the
program exceeds this limit, the user is warned but
loading isnot inhibited (except when a Public Library
is being created). If the program loads in less space,
the shorter area will be output in the header.

specifies the number of tasks in this
program which are to be connected to interrupts.
The option is used to allocate the INTTAB, and
thus has meaning only for foreground programs.
The default is O for Background and Public Libraries;
1 for Foreground. The "value" parameter is a
decimal number.

specifies the number of words to allo-
cate for the Temp Stack. The Temp Stack is lo-

cated in part two of the root. The default size for
a foreground or background program is 200 words.

Public Libraries do not have Temp Stacks. There-
fore, the option may notbe specified when a Public
Library is being created. The "value" parameter

is a decimal number.

specifies the RAD area and file
name of the output file to which the loaded pro-
gram is to be written (hereafter referred to as the
Program File). The default assignment of the pro-
gram file is OV in the Background Temp area. If
the Background Temp area (BT) isspecified, the file
name mustbe OV. When a foreground program isbe-
ing loaded, either the Foreground Programs area (FP),
or Background Temp area (BT), must be specified.
When a Public Library is being created, the Fore-
ground Programs area (FP) must be specified.

PROGRAM
MAP['{ ALL }]

program is to be output to M:LO. If no keyword

specifies that a MAP of the

follows MAP, a short map consisting of information
about program allocation and overlays is output.
IfPROGRAMkeyword is given, external definitions
and control section designations for each segment
are listed without library definitions. For the ALL
keyword, both program and library definitions are
listed. In default, no MAP is output. (Diagnostics
and unsatisfiedreferences are still listed on M:LL.)

BOUND,value sets the loading (and execution) ori-
gin for each object module to the nexthigher mul-
tiple of the bound value (e.g., if BOUND =100,
then an origin would change from 3EF to 400). The
"value" parameter must be a hexadecimal number
less than or equal to 1000 and a power of 2. Sug-
gested values are 10, 100, or 1000. The BOUND
does not apply to Library modules. [f BOUND is
not specified, the Loader begins each module on
a doubleword boundary.

UDCB,value specifies the number of unnamed DCBs
to be allocated by the Loader. (See "Loader-
Generated Items" for details.) The "'value" param-
eter is a decimal number.

STEP specifies a "WAIT" after loading each module
from paper tape. Used in RBM ATTEND mode.

Example: Form Root From GO File Modules

1OLOAD GO,(TEMP,300),(MAP PROG),(UDCB,3)

This example specifies that the Loader is to form the root
from object modules located on the GO file, allocate 300
words for the Temp Stack, output a PROGRAM map, and
allocate three unnamed DCBs.

‘ROOT The ROOT control command is used to spec-
ify the object modules from which the root segment is
to be created. The ROOT command must precede all
SEG commands.

The form of the command is
ROOT [ENTRY de (,'"PY"),... (,'"PY!
ophon] ophonn

where

ENTRY ,def specifies the location at which exe-
cution will commence after the root is loaded
at execution time. The def parameter must be
an external definition (1-8 EBCDIC characters)
in the root segment. This entry point overrides
all subsequent entry addresses encountered in
loading. The default entry address is the last
transfer address encountered in the nonlibrary
object modules of the root.

Overlay Control Commands 57

Input options are of the form

DEVICE type[,PACK]
FILE ,area,name [svalue]
OPLB, label
where
DEVICE,type specifies the input device in the
format yyndd.
where
Yy is a device type code.
n isthe IOP to which thedevice isconnected.
dd is the hardware device number of the

device (e.g., CRAO3,9TA81).

PACK specifies that the input is from 7-track
magnetic tape with packed binary format.

FILE ,area,name specifies the RAD area and name of
the input file. If the Background Temp area (BT)
is specified, the file name must be GO. Note
that a file may be used as input to more than one
segment (in different paths). A named file is re-
wound each time it is specified; the GO file is not.

OPLB,label specifies the operational label from
which the object module(s) will be input. The
"label" parameter must be a 2-character standard
system operational label.

value either a decimal number (1 =< value < 8191)
that specifies the number of object modules to in-
put from the specified device/file; or the text
string, EOD, which means to input from the speci-
fied device/file until an 1EOD is encountered. If
value is omitted, one object module will be input
from the specified device/file.

If there are no input options on the ROOT control command,
one object module will be input from the GO file. Note
that the order of the subfields determines the order in
which the object modules are loaded.

Example: Form Root From Input File

:ROOT (FILE,D1,BETA,3),(ENTRY ,START)

This example specifies that the root is to be formed from the
three object modules in a file called BETA located in the
D1 RAD area. After loading, execution is to commence at
the location defined by the external definition START.

:SEG The SEG control command is used to define a
segment's overlay linkage and to specify the object mod-
ules from which the segment is to be created.

58 Overlay Control Commands

The form of the command is

:SEG (LlNK,idenr] [,ONTO,identiI) [,(EXLOC,addr),-l

L(ENTRY,def),(inpr) .. ,(“‘P‘”)]
1

option opfionn

where

LINK ,ident; specifies the identification number of
the segment being loaded. The ident} must be
specified and must be the same number used within
the overlay program to call in the segment at exe~
cution time by SEGLOAD. The"ident}" parameter
must be a decimal number between 1 and 32,767.

ONTO,identy specifies the identification number |
of the segment (which must have been previously
loaded when this control command is interpreted)
to which this segment is linked as an overlay. If
identy is absent, ident is linked onto the root.
The "identy" parameter must be a decimal number

between 0 and 32,767 (0 denotes the root).

EXLOC ,address specifies an optional execution ad-
dress for loading of this segment. The "address" pa-
rameter is a hexadecimal value. Thisvalue will be
bounded by either the specified ordefault BOUND.
If the EXLOC option is omitted, the segment will
be located at the first bounded address following
the segment that this segment is linked to.

ENTRY ,def specifies an entry point for the segment.
The "def" parameter must be an external definition
in an input module of the segment. The value of
the "def'" overrides any transfer addresses encoun-
tered in loading of the segment. The default entry
address is the last transfer address encountered in
loading nonlibrary ROMs,

The input operations are the same as for the ROOT control
commands. If there are no input options on the SEG con-
trol command, a single object module from the GO file
will be input.

The ROOT and SEG control commands must be input in an
order determined by the overlay structure of the program.
The segments in the example given in Figure 4 have been
numbered to illustrate this order. Basically, segments are
input one path at a time, with the restriction that segments
common to more than one path are input only once.

Example 1.

The following control commands define the overlay structure
of Figure 4. This example specifies that one object module
for each segment will be input from the GO file.

:ROOT

:SEG (LINK,1,ONTO,0)
:SEG (LINK,2,0ONTO, 1)
:SEG (LINK,3,0NTO,1)

:SEG (LINK,4,0NTO,0)
:SEG (LINK,5,0NTO,0)
:SEG (LINK,6,0NTO,5)
:SEG (LINK,7,0NTO,6)
:SEG (LINK,8,0NTO,8)
:SEG (LINK,9,0NTO,5)
:SEG (LINK,10,0NTO,9)

:SEG (LINK,11,0NTO,10)
:SEG (LINK,12,0NTO,11)
:SEG (LINK,13,0ONTO,11)
:SEG (LINK,14,0NTO,10)
:SEG (LINK,15,0NTO,9)

2
—
1
3
4
—0
7
6
8
5 12
11
10 13
14
9
15
Figure 4. Overlay Example
Example 2.

The following control commands define the overlay structure
illustrated in Figure 5. This example specifies that one ob-
ject module for each segment will be input from the GO file.

:ROOT

:SEG (LINK,10,0ONTO,0)
:SEG (LINK,5,0NTO,10)
:SEG (LINK,25,0NTQ,10)
:SEG (LINK,103,0NTO,0)

0 25

103

Figure 5. Object Module from GO File

BINARY OBJECT MODULES

The Loader inputs binary object modules from mixed media
according to the input files and devices specified on the
ROOT, SEG and PUBLIB commands. Files may be blocked
or unblocked. Non-RAD input is written to a temporary
RAD file for Pass 2. Binary modules are read sequentially
from each RAD file. Each RAD file, with the exception of
GO, is rewound each time that it is named as input on a
control command. Therefore, multiple inputs from a file
(other than GO) result in the file being reread from the
beginning.

In this example,

:SEG (LINK,204,0ONTO 0) (FILE ,FP,PROG1,2);
:(FILE,BT,GO,4)

:SEG (LINK,205,0NTO,0),(FILE,FP,PROG1,5);
:(FILE,BT,GO,2)

the first access to the PROGI file (in SEG 204) would
result in the first two modules being loaded from the file.
The second access (in SEG 205) would result in the first
five modules of the file being loaded (not modules 3-7).
The GO file is read contiguously throughout a pass, no
matter how many accesses are made. In segment 204, the
first four object modules from GO would be loaded. In
segment 205, the next two modules (5 and 6) from GO
would be loaded.

LIB The LIB control command specifies the library
search for one segment only (i.e., the segment identified
by the preceding ROOT or SEG command). It overrides
the library search specified by the LIB option on the
OLOAD control command.

The form of the command is

:LIB [(USER,SYSTEM)]

where option keywords USER and SYSTEM are used to denote
the libraries and order of search; e.g., :LIB (USER) would
cause only the USER library to be searched for that segment.
If neither USER nor SYSTEM is specified, library search
(except for Public Library) is suppressed for that segment.

Overlay Control Commands 59

Example:

In Figure 6, assume an overlay program with four ROMs on
the GO file; with segments 0, 1, and 2 coded in Macro-
Symbol, and segment 3 coded in FORTRAN IV-H.

Seg 1
ROM 2

Seg 0 Seg 2
ROM 1 ROM 3

Seg 3
ROM 4

Figure 6. :LIB Command Usage

To speed up the load process, the :LIB command in the stack
of commands given below would be used to specify a search
of the System Library in segment 3, and the no-library

search option would be specified on the | OLOAD command.

IOLOAD (MAP,ALL),LIB
:ROOT

:SEG (LINK,1)

:SEG (LINK,2)

:SEG (LINK,3)

:LIB SYSTEM

IINCLUDE The INCLUDE control command allows rou-
tines to be loaded from libraries when no reference to the
routine has been made in any module of the segment.

The form of the command is

:INCLUDE (def. |, def.,...,def |)
1 2 n

where

def, is the EBCDIC symbol of a definition con-
" tained in the library routine to be loaded. The
symbol may be one to eight EBCDIC characters.
The def; must be available in a library specified
in a preceding :LIB command or the LIB option on
the | OLOAD command; any unfound def, results
in an error diagnostic. !

Example. Load Two Routines From Library

:INCLUDE (9SETUP,7SET)

In this example, the routines 9SETUP and 7SET are to be
included in the load from a library previously specified in
the search criteria.

60 Overlay Control Commands

:EXCLUDE The EXCLUDE control command inhibits 1i-
brary search and linkage for the named definition(s) even
though an external reference occurs in a module of the

segment.

The form of the command is

:EXCLUDE (def, |,def,,...,def |)
1 2 n

where

def; is the EBCDIC symbol of an external reference
contained in a module of the segment. However,
def; must not occur as an external definition in a
lower level segment of the path. The symbol may
be one to eight EBCDIC characters. Note that
EXCLUDE also inhibits linkage with the specified

Public Library for the given symbols.

Example: Exclude Search For Named Routine

Seg |
DEF SIN
Seg O
DEF A
REF TAN,SIN
Seg 2
REF TAN

Figure 7. :EXCLUDE Command Usage

In this example, the tree structure illustrated in Figure 7
shows a routine called SIN in segment 1 that has the same

name as a library routine, and is referenced in an earlier
segment (Seg 0). The command

-EXCLUDE (SIN)

inhibits fibrary search and linkage for the named routine
only so that the TAN routine would be included in the root
but the SIN routine would not.

:COMMON The COMMON control command specifies
that the Loader is to set the base of Blank COMMON at
the end of the segment identified by the preceding ROOT

or SEG control command (see "FORTRAN Interface" for
details). If this control command is not included, Blank
COMMON s set at the end of the longest path. Only one
COMMON control command may be used in a control com=-
mand stack.

The form of the command is

:COMMON

The specification field must be blank.

‘RES The RES control command allows the user to re-
serve and name one or more areas at the end of the segment
for load~time or run-time debug purposes (see " MODIFY"
control command for further comment).

The form of the command is

:RES (def size) | [,(def,size) greees (def,size)n]

where

def creates an external definition whose value is
the FWA of the reserve area. The definition must
be unique within the path.

size is a decimal value specifying the number of
words in the reserve area.

Example: Reserve Two Areas at Segment End for Debug
Purposes

:RES (PATCHI,5),(PATCH2,10)

In this example, two areas are being reserved at the end
of a given segment; the first (PATCHI) comprising an
area of five words and the second (PATCH2) an area of
ten words.

:LCOMMON The LCOMMON control command allows
the user to determine the allocation of labeled COMMON
blocks (DSECTs) within the root and overlay segments of the
program. (See "FORTRAN Interface-Labeled COMMON"
for a discussion of restrictions concerning labeled COMMON
allocation and initialization.)

The form of the command is

:LCOMMON (blockname,size) ! [,(blockname,size) z,j

L er (blockname,size)n]

where

blockname is the one- to eight-character EBCDIC
name of the labeled COMMON block or DSECT.

size is a decimal value specifying the largest word
size needed for the allocated block. If 'size' is
omitted, the first size encountered will be used.

Example: Specify Allocation of a Labeled COMMON Block

In the overlay structure given in Figure 8, seg O references

a Labeled COMMON block A of 50 words; seg 1 references
a Labeled COMMON block A of 100 words; seg 2 references
a Labeled COMMON block A of 60 words.

Seg 1

References a Labeled
COMMON block A
of 100 words

Seg 0

References a
Labeled COMMON
block A of 50 words

Seg 2

References a Labeled
COMMON block A
of 60 words

Figure 8. DSECT Allocation Example

Normally, the Loader would allocate block A with the size
first encountered (50 words), and would output a diagnostic
alarm when the second block of 100 words in seg 1 is
encountered.

However, the :LCOMMON command inserted in the deck

structure

|OLOAD (MAP,ALL)
:ROOT (DEV,CRAO03)
:LCOM (A,100)

:SEG (LINK,1),(DEV,CRAQ3)
:SEG (LINK,2),(DEV,CRAQ3)

would set the size of block A to 100 words.

!MODIFY The MODIFY control command modifies core
locations of relocatable programs at load time. Core lo-
cations in either root or overlay segments can be modified.
Since the reserved area at the end of a segment (allocated
with the RES command) is output to the RAD as part of the
segment, that area can be used for "patches" that will be
read in with the segment at execution time. The MODIFY
commands must be input at the end of the ROOT, SEG, or
PUBLIB substack for the segment being modified. If the GO
option is specified, the MODIFY commands must follow any
RES or INCLUDE commands and precede any :ASSIGN com-
mands. [f the (GO,LINKS) option is specified, the MODIFY
commands must be ordered by segment number and follow the
OLOAD command.

Overlay Control Commands 61

The form of the command is decimal, and byte string instructions have not
been implemented.) The register and index
:MODIFY [(SEG,ident),](LOC,address),word],... [,word] fields can only be signed hexadecimal or

" decimal values. The address field can be
either a signed hexadecimal value, a signed
decimal value, or an external name plus or

where minus an optional offset.

SEG,ident specifies the identification number of
the segment to be modified. This option is only
necessary when the (GO,LINKS) option has been
specified. If this option is omitted, the segment
identified by the preceding ROOT, SEG, or
PUBLIB command will be modified.

Examples:

:MODIFY (LOC,MAP+. F0),(B PATCH+¢)

LOC ,address specifies the relative location of the
first 32-bit word to be modified. The address must
be expressed as an external definition name plus
or minus an optional hexadecimal or decimal off- :MODIFY (LOC,PATCH+6),(L1,6 BA(TABL)),“'
set. Hexadecimal values are distinguished from
decimal values by a period preceding the hexadec-
imal valve (i.e., .A9B).

l——(LW,? *WA(VAL) +9,6),(B MAP+, F1)

word; specifies the word to be inserted (right-
justified) at the ith location. The word can be
expressed as:

1. A signed (plus sign (+) optional) hexadecimal
or decimal value that cannot be enclosed in :MODIFY (SEG,0),(LOC, .140),.3F,-.F,250,-1
parentheses. Hexadecimal values are pre-
ceded by a period.

Examples

-6, 100, .2A, -.AF

/:MODIFY (SEG,1),(LOC,CCI+.80),(L1,5 0), N

2. An external name plus or minus an optional
offset that cannot be enclosed in parentheses.
The offset can be either a hexadecimal or
decimal value. Address resolution for the ex- L
ternal can be specified by using the SYMBOL (LB,6 0,5),(5TB,6 *WA(TABL) +1,5),(LW,0 . 4E)

notation: rr(name) + offset

|~(BAL,I 5SERCHTAB),(MTW,-1 FLCHG),(BLEZ*CC1+5),

p |

where

rr = BA, HA, WA, or DA

Word resolution is assumed by default. Note
that BA(ALPHA) + 3 is legal; BA(ALPHA+3)is
not. If the name specified has not been de-

clared an external somewhere in the overlay L

segment's path, it will be listed as an unsat- .F0400090,ERRIO ,ABNIO,BUF1,80,0
isfied REF on the MAP.

:MODIFY (SEG,3),(LOC,FPTLO),M:LO+.HOOOOOO,—I

Examples:

In reporting MODIFY command errors, any EBCDIC string,
TABL + .F, TABL-1, TABL, HA(TABL) decimal number, or hexadecimal number that is separated
by a comma, blank, plus sign, or minus sign (ignoring pa-
rentheses) is counted as an item. An example of items on

3. A symbolic instruction that must be enclosed a MODIFY command is given in Figure 9.

by parentheses. The mnemonic field of the in-
struction must be an EBCDIC operation code
that immediately follows the left parenthe- :ASSIGN The ASSIGN control command is used to
sis. (The floating-arithmetic, floating-shift, create, initialize, or modify DCBs at load time. If the DCB

62 Overlay Control Commands

/:MODIFY (SEG,2),(LOC,CCI+.F),(LW,6 *FWATAB-1,6),(L1,1 BA(TABL)+.F),.FF
(AL

item 3 item 7 item 9 item item
11 15
item 5
item
item 2 item 8 13 item 16
item
12
item 1 item 4 item 6 item 10 item 14
Figure 9. :MODIFY Command Items Example

is in the program's DCBTAB table, it will be either initial-
ized or modified. If the DCB is not named in DCBTAB, the
Loader will build the DCB from the parameters on the
:ASSIGN control command in an unnamed DCB's entry. An
error diagnostic is output if an unnamed DCB entry is not
available (see "Load Time ASSIGN"),

The format and options are identical to the Monitor |ASSIGN
control command. The :ASSIGN control commands must be

the last commands in the control command stack.

Example: Assign a DCB at Load Time

:ASSIGN (F:2,LPA02),VFC,(RECL,133)

In this example, the DCB F:2 is assigned to the line printer.
Vertical format control is specified, so that the first byte in
each record controls the spacing on the line printer. Al-
though 133 bytes are output for each record, only the last
132 bytes are printed because VFC is specified.

:PUBLIB The PUBLIB control command is used to specify
the object modules from which the Public Library is to be
created. The order of the parameters determines the order
of loading.

The form of the command is

.PUBLIB input input input
: option/’\ option}’" " "\ option

where option may be

DEVICE, type[,PACK]
FILE ,area,name
OPLB,label

as for ROOT and SEG commands

If there are no input options onthe PUBLIB control command,
the first object module on the GO file will be input.

When the specified object modules have been input, the
Loader searches the libraries (specified on the OLOAD con-
trol command or the System Library by default) to satisfy
any unsatisfied primary references. If a COMMON, |abeled
COMMONDblock, or other DSECT is encountered in an object
module of the Public Library, the load process is aborted and
an error diagnostic is output. If the severity level exceeds
zero in the load process, the Public Library is not loaded.
If anything was written on the Public Library file, the file
is destroyed and an error diagnostic is output.

The following conventions concerning other control com-
mands should be observed when using the PUBLIB command:

1. The FORE option must be specified on | OLOAD to de-
fine the area that the Public Library is to occupy at
execution time. If the limits of this area are exceeded,
the Loader aborts.

2. The FILE option on ! OLOAD must specify the name of
the Public Library file being created in the Foreground
area.

3. The TEMP, PUBLIB, GO, and TASKS options are illegal,
and if used, the Loader will abort with an OLOAD con-

trol command error.

4. BOUND should be avoided unless a special debug ver-
sion of a Public Library is being created.

5. ROOQT, SEG, :ASSIGN, LIB, LCOMMON, RES, and
COMMON control commands cannot be used increating
a Public Library.

Example: Create Public Library From Specified Module

:PUBLIB (FILE,SP,MODULE,10)

In this example, the Public Library will be created from the
first 10 object modules in the System Library.

Overlay Control Commands 63

PROGRAM FILE

The Program File contains the root and overlay segments in

core image format and a one-granule header. The program

header is located at granule 0 and contains information nec-
essary to run-load the program.

ROOT SEGMENT

The root is divided into two parts (see " Core Layout at Execu-
tion Time" later in thischapter). Part one of the root always
begins in granule 1 of the Program File, and contains the
PCB, root code, library code, labeled COMMON, and RES
area for the root. Part two contains the DCBTAB, INTTAB,
OVLOAD Table, Loader-created DCBs, and the Temp Stack.

The Temp Stack is not output on the Program File. Each
part of the root is written as a continuous string of bytes.
There is no restriction on the size of the root,

OVERLAY SEGMENTS

Each overlay segment begins on a granule boundary and is
written on the Program File as a continuous string of bytes.
The order of segments on the file is unimportant, since the
granule displacement pointer (in the OVLOAD table) for
each segment specifically determines its position. Segments
cannot be longer than 16K words (64K bytes).

TEMPORARY RAD FILES

The Loader uses six scratch files in the Background Temp
area of the RAD (X1,X2,...,Xé). If one of these files
overflows, the Loader completes the pass over the object
modules even though the load will be aborted. The Loader
calculates the number of records (for sequential files) or
granules (for direct-access files) required for all scratch
files and lists this information on the Map. With this in-
formation, the user can then allocate the Background
Temp files with an !ALLOBT command and reload the
program.

LOADER-GENERATED ITEMS

All items discussed in the following paragraphs are gener-
ated by the Loader and located in the root segment of the

overlay program (see Figure 9 in this chapter for a diagram
of the core allocation).

PROGRAM CONTROL BLOCK

The PCB is built by the Loader and located at the FWA of
the overlay program area.

DATA CONTROL BLOCKS

The Loader automatically includes a copy of the M:SL DCB
in any program that has overlay segments. (M:SL is used by
the Monitor SEGLOAD function to read in overlay segments
at execution time.)

64 Program File/Temporary RAD Files/Loader-Generated Items

Any external DEF/REF that begins with an M: or F: is de-
fined to be either a system (M:) DCB or user (F:) DCB. DCBs
referenced by the program that are not satisfied at the con-
clusion of the load process are either created or allocated
by the Loader. Copies of system and FORTRAN DCBs are
created with their standard system parameters and opera-
tional label assignments. Space for user DCBs is allocated
at the rate of seven words per DCB.

Parameters for user or system DCBs may be defined by either
IASSIGN control commands at execution time (for back-
ground programs only) or :ASSIGN control commands at
load time.

The user can create his own DCBs within the source code
and locate them in any segment of his overlay program.
However, if the user wishes to change parameters in a DCB
at execution time via an ! ASSIGN command, he must de~
clare the DCB as an external definition (with a name that
begins with an F:) and locate the DCB in the root segment.
To utilize the FORTRAN 1V-H capability of performing
1/O by using variables as operational labels, the user can
specify (on the OLOAD control command) a number of un-~
named DCBs to be allocated by the Loader. The user must
name and define these DCBs before the program executes;
either at load time (with :ASSIGN), or execution time
(with TASSIGN).

DCBTAB

The DCBTAB table is created by the Loader, and contains the
EBCDIC name (if any) and absolute core location of each
Loader-recognized or created DCB in the root of the overlay
program. The EBCDIC name of an unnamed DCB is inserted
when the DCB is given a name by either the ! ASSIGN or
:ASSIGN control command.

INTTAB

The interrupt task table (INTTAB) has a one-byte entry for

each interrupt task in a foreground program. Space for the
INTTAB is allocated by the Loader according to the number
of tasks specified on the OLOAD control command.

OVLOAD TABLE

The OVLOAD table is built by the Loader and contains the
information necessary for SEGLOAD to read in overlay seg-
ments at execution time. The OVLOAD table consists of

one entry for each overlay segment, with a total of eleven

words per entry.

TEMP STACK

The Loader allocates space for the overlay program's Temp
Stack either according to the number of words specified on
the OLOAD control command, or by default. The Temp Stack
is located at the end of part two of the root segment and is
not output on the Program File (see "Core Layout of User
Program at Execution" later in this chapter).

EXTERNAL DEFINITIONS

The Loader adds the external DEFs F4:COM and P:END to
all programs except for Public Libraries. F4:COM is the
name of FORTRAN's blank COMMON. The initial size is
set to zero and changed to the largest size encountered dur-
ing the load process. If there are no references to F4:COM,
blank COMMON is allocated with a size of zero. The
Loader indicates the LWA +1 (including blank COMMON)
of the loaded overlay program by an external definition,
P:END. External references to P:END within the overlay
program will be linked to this definition.

The external DEF, FP:MBOX, is added to Foreground over-
lay programs by the Loader only if an area was allocated at
SYSGEN time. FP:MBOX is the name of the Foreground
Program's Mailbox. External references to FP:MBOX will
be linked to this definition.

LIBRARIES

The Overlay Loader supplies the capability to search the
System Library or the User Library in any order. The default
condition is for the Loader to search and load only from the
System Library. Control commands and keywords enable the
user to control more specifically the search and load options.
Note that an attempt will first be made to satisfy all REFs
with DEFs from the Public Library, if a Public Library has
been specified on the OLOAD control command.

If any unsatisfied primary references exist after loading the
specified modules for a root or an overlay segment, the
Loader searches the library or libraries in the specified order
to satisfy those references. Thus, if an external REF is
made to a higher level segment, the name should not be the
same as a library definition. Consider the following:

2

If segment 1 contains a primary reference, 95IN, it will
normally be satisfied by loading a Library at the completion
of segment 1. Thus, if the definition 9SIN occurred in seg-
ment 2, it would be in error (a duplicate definition). The
loading of 9SIN from the library can be suppressed by using
the EXCLUDE command. In this case, the forward REF would
be linked and no duplicate DEF would occur. However, if
the definition 9SIN occurred in the root, or in the library
loaded in the root, no search for 9SIN would be made in
segment 1, and the occurrence of the definition 9SIN in
segment 2 would be in error. Primary references can oceur
in two ways: as external references in a module, or by list-
ing the primary references on the INCLUDE control command.

SYSTEM AND USER LIBRARIES

Cross-references between System and User Libraries are al-
lowed. However, since each [ibrary is searched only once
per segment, the order of search is important.

If Library A contains references to be resolved by Library B,
the search criteria :LIB (A,B) must be specified to guarantee
cross-reference resolution. If B also contained references
to A they would not be resolved. (Note that these remarks
do not apply to cross-references within any single library).

Generally, the System Library should contain the FORTRAN
Math and Run-Time Routines and should be independent.
The User Library is a repository for user subroutines and al-
ternate Math and Run-Time routines that supersede the same
routines in the System Library.

The typical search order would be

:LIB (USER,SYSTEM)

where both libraries are referenced. In this case, all unsat-
isfied REFs from the User Library would be satisfied (where
possible) from the System Library.

ASSEMBLY LANGUAGE

Library routines may be coded in Symbol, Macro-Symbol,
FORTRAN 1V, or FORTRAN IV-H.

ENTRY ADDRESS

Entry addresses in library routines are ignored.

SYSTEM AND USER LIBRARIES ON RAD

The System Library and the User Library on the RAD are
structurally identical. Each library consists of four files:

EBCDIC
MODIR
DEFREF
MODULE

The System Library is located in the System Programs (SP) area
of the RAD, The User Library is located in the Foreground
Programs (FP) area of the RAD.

Only the MODULE file contains the actual binary modules
of the library. The other files are tables constructed by
the RAD Editor to facilitate the rapid search of the library
by the Overlay Loader without actually reading the module.
The library is structured on the principle that access should
be as fast as possible, since it is performed frequently during
an overlay loading procedure.

The three files: EBCDIC, MODIR, and DEFREF contain
enough information to determine which modules from the
actual MODULE File are to be loaded without examining
these modules directly. All four library files are constructed
and maintained by the RAD Editor. These short files contain
coded information about the external definitions and primary
references for each module in the library.

Libraries 65

CONSTRUCTING AND MAINTAINING LIBRARY

To begin construction of a library, the user allocates the
EBCDIC, DEFREF, MODIR, and MODULE files with the
RAD Editor, and then copies the library's binary object
modules onto the MODULE file. As each module is copied,
the DEFs and REFs are scanned, and corresponding entries
are built in the other files by the RAD Editor. Library rou-
tines may be added or deleted by using the RAD Editor
:COPY and :DELETE commands.

PUBLIC LIBRARY

The Public Library is a file containing a set of reentrant
subroutines in core image format that can be shared in com-
mon by all foreground and background programs. The resul-
tant saving in core can be considerable where a FORTRAN
library is shared. The Public Library is created from input
modules or library routines by the Loader (see "Forming a
Public Library"). The availability of the Public Library is
determined at execution time.

CALLING THE PUBLIC LIBRARY

When a user indicates by the PUBLIB keyword on the OLOAD
control command that Public Libraries are to be used to sat-
isfy references, the names are set in the program header for
the Root Loader, and the Public Library Symbol tables are
read from the Public Library files and added to the loaded
program's Symbol table. The Loader will satisfy primary
external references with Public Library definitions at the
time the external reference is encountered in the object
module, not at the end of the segment (as when the other
libraries are searched). When the Root Loader loads the
root segment of a program, the header is searched to deter-
mine if the program contains the name of one or more Public
Libraries. If so, and one of the named Public Libraries is
not already in core, the Monitor determines whether Public
Library space is available. If available, the Root Loader
reads in the named Public Library or Libraries and the pro-
gram executes. If the space is not available for all Public
Librariesreferenced, the program will be neither root loaded
nor executed.

Each Public Library file is designated at Public Library cre-
ation time (see "Forming a Public Library"). All Public Li-
brariesare located in the Foreground Programs area of the RAD.

LIBRARY PROTECTION

Since the call to a Public Library routine is by a BRANCH
AND LINK(BAL) operation, the write key of the library
routine is the same as the write key of the user program.
Thus, the foreground and Monitor are both protected from
being destroyed by background use of the Public Library.
However, because of the write-lock protection, routines
containing their own local storage (e.g., FORTRAN 1/O
run-time) may not be included in a Public Library that is to
be called from the background since any attempt by a Pub-
lic Library routine to write in its own foreground local stor-
age with a background write key would cause a write-lock
protection violation.

66 Public Library

RELEASING A PUBLIC LIBRARY

If no currently executing program is utilizing a Public
Library and the space is required to load a foreground pro-
gram, the space is released.

FORMING A PUBLIC LIBRARY

A Public Library is created by using the :PUBLIB control
command in place of the ROOT and SEG commands, and
modules may be input and libraries searched and loaded in
the same manner as for standard loading. Because each Pub-
lic Library has a unique name, more than one Public Library
can exist in the system. Although no more than three Pub-
lic Libraries can be called by any one program, any number
can be created.

ROUTINES USED TO FORM A PUBLIC LIBRARY

All routines used to form a Public Library must be reentrant.
If the Public Library is to be used by background programs,
all the routines must use the Temp Stack directly for local
storage (e. g. , FORTRAN IV Math Library; see " Protection",
discussed previously).

If the Public Library is to be used only by the foreground,
the method of moving local storage in routines to the
Temp Stack on reentrance can be employed (e.g., Real-
Time FORTRAN subroutines and FORTRAN Run-Time Li-
brary). FORTRAN main routines are not reentrant and
cannot be used.

Routines assembled in Symbol (one-pass), or Macro-Symbol
(two-pass), are acceptable provided the reentrancy re-
quirements are met.

Noreferences to COMMON, labeled COMMON, or DSECTs
are allowed in any Public Library routine.

Since DCBs in the Public Library could not be assigned and
might not be reentrant, DCBs will not be allowed in any
Public Library routine. Note that it is not possible for the
Loader to warn the user about DCBs that are not named ac-
cording to the conventions and made externals.

The file associated with each Public Library is in the FP
area. This file contains the actual core image of the Pub-
lic Library and the corresponding Symbol table used by the
Loader. The name of the file must correspond to the name
given with the FILE keyword on the OLOAD control com-
mand, and the file must be previously allocated in the FP
area by the user. If loading of the requested modules and
libraries has been completed and there are no remaining
unsatisfied primary references, the Loader writes the core
image and the Symbol table to the file in the FP area. If
unsatisfied primary references are found, the file in the FP
area is destroyed. A file name of a previous Public Library
may be used, but at the risk of obliterating the old file if
the new one cannot be completed.

MAP

Three types of maps may be output to M:LO following Pass 2
according to the MAP keyword on the t OLOAD control com-
mand: aSHOET map, PROGRAM map, or ALL map. If the
MAP option is not specified, none is output.

The short map is output when the MAP keyword appears alone.
It consists of essential information about the overlay structure.

The PROGRAM Map consists of all elements of the short Map,
plus all external definitions and control sections contained
in the input modules (excluding those from Library ROMs),

The ALL Map consists of all elements of the PROGRAM map

and includes all definitions and control sections from Library
ROMs. Atypical PROGRAMmap is illustrated in Figure 10.

In Figure 10, the header keywords have the following
meaning:

1. Program Header Keywords:

FILE: Area and name of the program file.
NUMBER OF OVERLAY SEGMENTS: Decimal number,

excluding root.
LIMITS: FWA and LWA of the Program area.

BOUND: Hexadecimal value on which object module
addresses are bounded.

BLANK COMMON BASE: FWA of blank COMMON
with the SIZE specified in decimal words.

PUBLIC LIBRARIES: Names of the Public Libraries, if
any, referenced by the program.

TOTAL FILE SIZE: Number of hexadecimal/decimal
WORDS output to the program file and the number
of hexadecimal/decimal GRANULES required for
the file.

LIBRARY SIZE: Total number of words loaded from the

user and/or system libraries.

PROGRAM ERROR SEVERITY: Set to one if any kind of

error is encountered; otherwise, set to zero.

2. Root Header Keywords:

INPUT: Total number of hexadecimal words in the
root loaded from the ROMs (excluding the Temp
Stack).

LIBRARY: Total number of hexadecimal words in the
root loaded from the User Library and/or System
Library.

TOTAL SIZE: Total number of hexadecimal/decimal
words in the root (including the Temp Stack).

PTFWA: FWA of part one of the root.
PTLWA: LWA +1 of part one of the root.

SIZE: Number of hexadecimal words in part one of
the root.

P2FWA: FWA of part two of the root.
P2LWA: LWA + 1 of part two of the root.

SIZE: Number of hexadecimal words in part two of
the root.

OVLOAD: FWA of the OVLOAD table.

PCB: FWA of the Program Control block (PCB).
ENTRY: Entry address for the root.

TSFWA: FWA of the Temp Stack.

SIZE: Number of decimal words in the root.
DCBTAB: FWA of the DCBTAB.

INTTAB: FWA of the INTTAB on zero, if none.

INSEV: Set to one if the error severity level is set on
any ROM input for the root; otherwise, it is set to
zero.

LDSEV: Set to one if any loading errors were encoun-
tered on the root; otherwise, it is set to zero.

Segment Header Keyword:

INPUT: Total number of hexadecimal words in the seg-
ment loaded from the ROMs, RES, and LCOMMON

control commands.

LIBRARY: Total number of hexadecimal words in the
segment loaded from User and/or System Libraries.

TOTAL SIZE: Total number of hexadecimal/decimal
words in the segment.

FWA: FWA of the segment.
LWA: LWA + 1 of the segment.
ENTRY: Entry address of the segment.

INSEV: Set to one if the error severity level is set on
any ROM input for the segment; otherwise, it is
set to zero.

LDSEV: Set to one if any loading errors were encoun-
tered for the segment; otherwise, it is set to zero.

GRAN: The granule number (decimal) on the program
file where the segment's core image begins.

Control Sections:

Control sections input from the program ROMs are listed
with the following information:

address size

ROM ROM number (hex.) (dec.)

Control sections input from user and/or system libraries
are listed with the following information:

[ULIB} Record displacement address size
SLIB in the MODULE file (hex.) (dec.)

Map 67

PROGRAM MAP
BACKGROBUND PRBGRAM

FILE B8T.0V

NUMBER OF 8BVERLAY SEGMENTS 2
LIMITS FWA 2600 LWA 3032

BOUND 100

BLANK COMMBN BASE 2Fs6 SIZE 0
PUBL1IC LIBRARIES NBNE

TOTAL FILE SIZE AD2/ 2770 WBRDS 22/ 34 GRANULES

LIBRARY SIZE 489/ 1161 WBRDS
PRBGRAM ERROBR SEVERITY 1

RGBT

INPUT LIBRARY TBTAL SIZE PIFWA PiLLWA SIZE P2FWA
27A 3A4 689 1721 2600 2C1t 61E eF9s

PaLwA Size
3031 9B

BvLBAD PCB ENTRY TSFwA SIZg ODOCEBTAB INTTAB INSEV LDSkV

2F 96 2600 2/08 2FE6 75 2F00 0 1
CONTRBL SECTIBNS
ROM 1 2700 309
ULIB 155 2836 12
UL 1B 156 2842 22
uL1B 158 2858 16
ULIB 160 2868 51
SL18 8 289¢C S
SLIB 203 28A2 [}
SLIB 204 28A8 15
SLIR 205 2888 23
sLie 207 28p0 6
SLIR 208 2806 18
SLIB 210 28E8 24
SLIB 379 2900 37
SL1IB 395 2926 2
SL1IB 396 2928 7
SLIB 408 2930 118
SLIB 637 29A6 186
SLIB 653 2A60 23
SLIB 656 2A78 56
SLIB 659 2ABO 166
SL1IR 677 2Bsé 21
SLIB 679 2B6C 109
uDcB F:S0 2700
speB MiL® 2FAD
sbeB Fi3 2FB4
sSnCB MiZ© 2F B8
SDCB MISL eFCe
U spcB UNNAMED 2FC9
DSCT IM Fa:CBM 2F9% © 0
DEF IM PIEND 3n31 O
DEF SL SGRY 289C 0
U REF IM UNSAT
DEF UL GAUSS 2868 O
pDSCT M COUNT 2BDA O 50
DSCT IM CALC 2c0C © 17
DSCT IM MATRIXA 260E © 27
DEF IM CUDE FFFFD C
DEF IM MAXTAB 2813 ¢
DEF IM MAIN 2708 n
SREF IM 7SET 2F71 ©

1

68

Map

Figure 10. Sample PROGRAM Mgp

DEF UL SDELAY
DEF UL DELAY
DEF UL DERIVT
U REF UL FUNI
DEF SL 9SETUP1
DEF SL 9SGRT
DEF SL 9CADD
SEGMENT 101 LINKED T8
INPUT LIBRARY THTAL SIZE
181 ES 296 662
CBNTRBL SECTIENS
ROM 1 2E00
SLIB 6 2E94
SL18B 14 2EA6
SL18B 16 2EAC
SL18B 302 2EB2
SL1B 310 2EDO
SL1B 367 2F16
SLIB 399 2F70
DEF SL TAN
DEF SL ASIN
OEF SL ATAN
DSCT IM LOADS
DSCT IM MATRIXC
OEF IM SEGBNE
DEF SL 9ATANL
DEF SL 9ATAN2
DEF SL 9SETUPM
DEF SL 9ASIN
DEF SL 9TAN
DEF SL 9ACSS
DEF SL 9SETUPN
DEF SL 7SET
SLGMENT 102 LINKED T8
INPUT LIBRARY TBTAL SlZe
1CE 0 1CE 462
CONTRBL SECTIBNS
REM 1 2D00
DSCT IM TBTALS
DEF IM SEGTWB
LBADING WAS COMPLETED
FILE BT,8y USED
FILE BT,x1 USED
FILE BTsx2 USED
FILE BT,x3 USED
FILE BT x4 USED
FILE BT,x5 USED
FILE BT,x6 USED

WARNING: UNSATISFIED REF'S

END 8F MAP
TOTAL JBB TIME=QO0:01:00

2836
2842
2858

2928
2908
28A2

e jeNol [eReNe]

FWA
2000

LA
2F 96

ENTRY
2ECO

23
15

N

|

n

~
[eNeloRoRoNeloNoNoNoNeoNoRoRol

LA
2eCE

ENTRY
2D00

34 GRANULES
0 GRANULLES
4 GRANULES
4 GRANULES
4 GRANULES
4 GRANULES

0 GRANULES

INSEV
0

INSEV
0

LDOSEV
0

LDSEV
0

GRAN
19

GRAN
27

Figure 10.

Sample PROGRAM Map (cont.)

69

5. DCBs e. If the definition is an address, it is expressed as a
word address and a byte offset. 1f the definition is

The user and system DCBs are listed after the control a constant, it is expressed as a hexadecimal number
section of the ROOT with the following information: followed by the letter 'c'. For undefined symbols,
{SDCB} {name } address the address field is blank.
ubCBl UNNAMED] (hex.)

f. The DSECT size in words (decimal).
DEFs, REFs, and DSECTs

The externals are listed with the following information: ERROR DIAGNOSTICS
_ e . The Overlay Loader outputs diagnostic messages to M:OC
a. U unsatisfied or undefined and M:LL. Duplication is suppressed if OC and LL are as-
D = doubly defined or referenced signed to the same device.
b. [DSCT) = dummy section If an operator response is required, the Loader will call the
_ Monitor "WAIT" function. The operator should hit the con-
DEF = definition . . .
4 sole interrupt and key in one of the following:
REF = primary reference
LSREF = secondary reference ¢ Continue
X Abort
e [PL = Public Library CcOC Read the corrected command from M:OC and
uL = User Library continue (used only in response to control
P
SL = System Library command errors).
LIM = Input Module Note that the Monitor "WAIT" routine aborts if an ! ATTEND
control command has not been encountered in the job stack.
d. The symbol name in EBCDIC (one to eight The diagnostic messages in Table 14 are output by the Over-
characters). lay Loader.
Table 14, Overlay Loader Diagnostics
Text Meaning Action
BACKGROUND TOO SMALL User's program cannot be loaded | Abort
in the current size of the back-
ground. This is a function of
the number of external symbols
and forward references that a
program has, not a function of
the program length.
BINARY CARD ENCOUNTERED INSTEAD OF CC A binary record was encoun- Wait
tered on the C device instead
of a control command
BOT ON [yyndd Unexpected beginning-of-tape Abort
area,name
has been encountered on the
specified device/file.
BUF SMALLER THAN DATA RECORD Specified DCB has been assigned | Abort
DCB x:xxxxxx to a record size larger than the
1/O buffer associated with the
Read request. Either the user
has assigned incorrectly or the
Loader has a program error.
CC ERR: DUP NAME IN ITEM xx Item number xx on the com- Wait
mand is a duplicate of a name
in the symbol table.

70 Error Diagnostics

Table 14.

Overlay Loader Diagnostics (cont.)

Text Meaning Action

CC ERR: DUP SEG IDENT Ident on :SEG command is a Wait
duplicate of a previous seg-
ment's ident.

CC ERR: FOLLOWING ITEM xx There is an error following item | Abort if lOLOAD
xx on the command (e.g., a pa- | CC. Wait if any
rameter has been omitted, an other CC.
extra parameter has been in-
cluded, etc.).

CC ERR: ILLEGAL CC SEQUENCE Loader commands have been Wait
ordered incorrectly.

CC ERR: ILLEGAL OPTION FOR PUBLIB LOAD (PUBL,name) Option (PUBLIB,name) was speci- | Abort
fied on 1 OLOAD and a :PUBLIB
command has been encountered.

CC ERR: ILLEGAL OPTION FOR PUBLIB LOAD (TASKS,value) Option (TASKS,value) was Abort
specified on | OLOAD and a
:PUBLIB command has been
encountered.

CC ERR: ILLEGAL OPTION FOR PUBLIB LOAD (TEMP,value) Option (TEMP ,value) was speci- Abort
fied on 1 OLOAD and a :PUBLIB
command has been encountered.

CC ERR: ILL OPCODE IN ITEM xx Specified operation code is Wait
either illegal or unimplemented.

CC ERR: ILL SEG IDENT Seg ident on the :MODIFY Wait
command does not match the
segment being modified.

CC ERR: ITEM xx Item number xx on the command Abort if lOLOAD
is in error. CC. Wait if any

other CC,

CC ERR: MODIFY OUTSIDE SEG LIMITS One of the locations on the Wait
:MODIFY command is outside
the limits of the segment.

CC ERR: NEED (FORE, fwa,lwa) OPTION FOR PUBLIB LOAD Option (FORE,fwa,lwa) was not Abort
specified on the | OLOAD com-
mand and a :PUBLIB command
has been encountered.

CC ERR: SEG IDENT NOT 1ST OPTION Segment ident (LINK,ident;) is Wait
not the first option on the :SEG
command.

CC ERR: SEGMENTS ORDERED INCORRECTLY :SEG commands have been in- Wait
put in the wrong order.

CC ERR: SPECIFIED AREA FOR PUBLIB LOAD NOT 'FP! Option (FILE,area,name) on Abort

1OLOAD did not specify the
Foreground Programs area (FP)
and a :PUBLIB command has

been encountered.

Error Diagnostics

71

Table 14. Overlay Loader Diagnostics (cont.)

Text

Meaning

Action

CC ERR: STEP OPTION ILLEGAL WITHOUT ATTEND

An !ATTEND command must be
included in the job when the
STEP option is specified.

Abort

CC ERR: UNDEFINED FILE area,name

Area and file specified in the
option (FILE,area,name) has not

Abort if | OLOAD
CC. Wait if any

SEG xxxxx

specified segment will exceed
131K at the given EXLOC.

been defined by the RAD Editor other CC.
CC ERR: UNDEFINED SYMBOL IN ITEM xx Symbol name in item xx on the Wait
:MODIFY command has not
been defined.
DCB CANNOT BE A DSECT A DCB was encountered in the | Abort
named segment that was as- |
ULIB sembled as a dummy section
SEGxxxxx {ROM{xxx instead of being part of the
SLIB control section.
DCB HAS BAD PARAMETERS Specified DCB has bad param- Abort
DCB x:xxxxxx eters. Either the user has as-
signed incorrectly or the Overlay
Loader has a program error.
DCB HAS INSUFFICIENT INFO Specified DCB contains insuf- Abort
DCB x:xxxxxx ficient information to open a
Read or Write operation.
Either the user has assigned in-
correctly or the Loader has a
program error.
DCB NOT ASSIGNED Specified DCB has been assigned | Abort
DCB x:xxxxxx to the "null" device. Either the
user has assigned incorrectly, or
the Overlay Loader has a pro-
gram error.
DEFAULT ENTRY ADDRxxxxx SUPPLIED FOR ROOT A transfer address was not en- | Continue
countered on any ROM in the
root and an entry address was
not specified on the CC; there-
fore, a default hasbeensupplied.
DSECT'S IN PUBLIB LOAD Labeled COMMON blocks Abort
(DSECTs) are illegal in the
ULIB Public Libraries.
SE G xxxxx ROM}xxx
SLIB
EOT ON {yyndd End-of-tape has been encount- Wait
area,name tered on the specified device/
file.
EXLOC TOO LARGE The execution locations of the Abort

72 Error Diagnostics

Table 14,

Overlay Loader Diagnostics (cont.)

Text

Meaning

Action

FILE DESTROYED area,name

Overlay Loader is aborting past
the point where data has been
written on the specified pro-
gram file. The first sector of
the file has been zeroed out.

Abort

FILE UNCHANGED area,name

Overlay Loader is aborting at a
point where the program file is
unchanged.

Abort

ILLEGAL LOAD LOCATION xxxxx

ULIB
SEGxxxxx {ROM fxxx
SLIB

Specified "load location" origin
has been defined with a value
that is either not an address or
that lies outside the address limits
of the specified segment. (A
labeled COMMON block must
be initialized in the segment
where the block is allocated.)

Abort

ILL SEG IDENT TERMINATED MODIFY'S

The :MODIFY commands have
been ordered incorrectly for
the (GO,LINKS) option. The
MODIFY mode has been termi-
nated at this point. If the user
wishes to continue, all :MODIFY
commands that follow will be
ignored.

Wait

LIB ROM'S EXCEED MAX
SE G xxxxx

Maximum number of library
ROMs that can be loaded is
2000.

Abort

MONITOR CC ENCOUNTERED INSTEAD OF :ROOT or :PUBLIB

Monitor control command was
encountered on the C device
instead of a :ROOT or :PUBLIB

command.

Abort

MOUNT PAPER TAPE ROM

STEP option was specified on
IOLOAD and the next relocat-
able object module (ROM) is tobe
input from the paper tape reader.

Wait. Operator
should load the paper
tape, interrupt, and
key in"C".

CCl
ONE
PROGRAM ERR:ATWOFADDR xxxx
MAP
LIB

ULIB
SEGxxxxx {ROMxxx
SLIB

Loader has a program error in
the named overlay at the speci-
fied address.

Abort. Operator
should get a core
dump.

CClI
ONE
PROGRAM ERR:{TWO pSB=xx,ADDR xxxx
MAP
LIB

DCB x:xxxxxx

Specified error status has been
returned from an Overlay Loader
call (in the named overlay) to a
Monitor 1/O routine. The ad-
dress of the CAL and the name
of the DCB are specified.

Abort

Error Diagnostics 73

Table 14.

Overlay Loader Diagnostics (cont.)

Text Meaning Action
PROGRAM ERR: UNALLOCATED CSECT Loader has encountered a con- Abort
trol section that has not been
ULIB allocated; either a Loader,
SEGxxxxx {ROM[xxx compiler, or assembler error.
SLIB
RAD FILE TABLE FULL RAD File Tablesize that wasallo- | Abort
cated at SYSGEN is insufficient.
READING AN OUTPUT DEVICE A DCB that the Overlay Loader | Abort
DCB x:xxxxxx reads with has been assigned to
an OUT device. Either the user
has assigned incorrectly or the
Loader has a program error.
ROM ERR: BAD SEQ Sequence number of the binary Wait
ULIB record does not equal xxx.
SEGxxxxx {1 ROM{xxx SEQNOxxx
SLIB
ROM ERR: CHKSUM Specified binary record has a Wait
ULIB checksum error.
SEGxxxxx 1ROM[xxx SEQNOxxx
SLIB
ROM ERR: EXPRESSION SIZE EXCEEDS MAX An object language expression | Abort
on the specified binary record
ULIB] exceeds 120 bytes.
SEGxxxxx {ROM?xxx SEQNOxxx
SLIB
ROM ERR: ILLEGAL LOAD ITEM Object language on specified Abort
binary record cannot be trans-
ULIB lated (assembler or compiler
SEGxxxxx {ROM xxx SEQNOxxx error).
SLIB
ROM ERR: NO MODULE END Module end was not encoun- Abort
tered on the last binary record
ULIB of the relocatable object
SEGxxxxx {ROM{xxx SEQNOxxx module.
SLIB
ROM ERR: NOT OBJECT LANGUAGE Specified binary record is not Wait
ULIB in object language format.
SEGxxxxx {ROM{xxx SEQNOxxx
SLIB
ROM ERR: NOT STANDARD BIN Specified record has a non- Wait
ULIB standard binary format.
SEGxxxxx {ROM}xxx SEQNOxxx
SLIB
UNDEFINED FILE area,name Specified DCB has been assigned | Abort

DCB x:xxxxxx

to a RAD file that has not been
defined by the RAD Editor.

74 Error Diagnostics

Table 14, Overlay Loader Diagnostics (cont.)

Text Meaning Action
UNDEFINED ORIGIN Loader has encountered a " load Abort
location" origin with an expres-
ULIB sion that cannot be resolved.
SEGxxxxx {ROM}xxx
SLIB
UNEXPECTED EOD ON{W“dd Unexpected EOD was encoun- | Wait if the !EOD
area,name ope .
tered on the specified device/ | was encountered
file. instead of a ROM;
otherwise, Abort.
UNEXPECTED MONITOR CC ON{W"dd . Unexpected Monitor control Abort
area,nam command was encountered
while reading ROMs from the
C device.
UNRECOVERABLE RD ERR ON/{Y"4 Transmission error has occurred | Abort
area,name while reading from the speci-
fied device/file.
UNRECOVERABLE WR ERR ON{YYndd Transmission error has occurred Abort
area,name . ‘e e
while writing on the specified
device/ffile.
WARNING: DCB IN OVERLAY SEGMENT Specified DCB was declared an | Continue
ULIB external DEF in a segment other
than the Root. The DCB will
SEGoxxx [‘;SQA]XXX SEQNOxocx not be included in DCBTAB.
DCB x:xxxxxx
WARNING: DEF'D DCB NOT DEFINED Specified DCB was declared on Continue
DCB x:xxxxxx external DEF and the DEF was
never defined.
WARNING: DUPLICATE DEF'S User's program contains dupli- Continue
cate external DEFs. Map will
indicate the name(s) of the DEFs,
WARNING: DUPLICATE REF'S User's program contains dupli- Continue
cate external REFs. Map will
indicate the name(s) of the
REFs. Occurs when identical
DEFs in different segments of
different paths are referenced
by the same REF (in a segment
common to both paths).
WARNING: ENTRY ADDRxxxxx OUTSIDE SEGMENT Entry address for the specified | Continue
SE Gxxxxx segment is outside the segment's
address limits.
WARNING: ILLEGAL DCB ADDR Specified DCB was declared an Continue
DCB x:xxxxxx external DEF and the DEF has
been defined with either a neg-
ative address or a constant.

Error Diagnostics

75

Table 14.

Overlay Loader Diagnostics (cont.)

Text

Meaning

Action

WARNING: ILLEGAL DCB NAME

ULIB
ROM
SLIB

SEGxxxxx

XXX

DCB x:xxxxxx

Specified DCB name is illegal
and will not be included in
DCBTAB. Monitor DCBs (M:) must
have standard OPLB names. User
DCBs (F:) must not exceed eight
EBCDIC characters in length.

Continue

ALLOCATED

ULIB
SEGxxxxx {ROM
SLIB

xxx SEQNOxxx

WARNING: LCOM name OF SIZE xxxx GREATER THAN

The named labeled COMMON
block (DSECT) with the size
specified in words is greater
than the size allocated.

Continue

WARNING: NO ENTRY ADDRESS FOR ROOT

Root does not have an entry
address.

Continue

WARNING:

OVERLAY SEG GREATER THAN 16K

Specified overlay segment ex-
ceeds the maximum size record

that can be loaded by the Mon-
itor SEGLOAD function.

Continue

WARNING:

PROGRAM EXCEEDS SPECIFIED ADDR LIMITS

User's program exceeds the ad-
dress limits, either specified on
1 OLOAD or the defaults forback-
ground/foreground programs.

Continue

WARNING: UNDEFINED DEF'S

User's program contains external
DEFs that either have not been
defined or have been defined
with an expression the Loader
cannot resolve. Map will in-
dicate the name(s) of the un-
defined DEFs.

Continue

WARNING:
SE Gxxxxx

UNDEFINED ENTRY ADDR

Expression defining the entry ad-
dress for the specified segment
cannot be resolved by the Loader.

Continue

WARNING: UNSATISFIED REF'S

User's program contains unsatis-
fied external REFs. Map will
indicate the name(s) of the DEFs.

Continue

WRITING ON INPUT DEVICE

DCB x:xxxxxx

A DCB that the Overlay Loader
writes with has been assigned to
an IN device. Either the user
has assigned incorrectly or the
Loader has a program error.

Abort

yyndd WRITE PROT

Specified RAD is write-
protected.

Wait and
1. Reset RAD pro-

tection switches
or

2. Interrupt and
key in "SYC",
or

3. Interrupt and
key in " X" if
the job is not
allowed to write
on protected
areas of the RAD.

76 Error Diagnostics

USER LOAD-TIME ASSIGNS

M:DCB AND F:DCB

DCBs identified by external definitions must exist in the
root for each unique reference to an M:DCB or F:DCB.
These are either inserted explicitly by the user or built im-
plicitly by the Loader. A user can change DCB assignments
in several ways:

1. By modifying the DCB at execution time.

2. By using a load-time :ASSIGN (foreground and
background).

3. By using a run-time !ASSIGN (net-eHowed-for-afere=
ground-pregrami (nsch Oy

P -
A T eas 0RVCW

Aean e @ ar

B A SR NP ‘P(BRI R
S‘\"(Zi}a-. e

RUN-TIME ASSIGNS

Run-time !ASSIGNs (by Job Control Processor) apply only
to the background job in which they are inserted. Change

of assignment for foreground programs is permitted only
through STDLB key-ins and load-time :ASSIGNs,

LOAD-TIME ASSIGNS

Load-time :ASSIGNs are changes to the respective DCB at
load-time, so that the given assignment remains as a part of
the program. This effectively allows assignments for fore-

ground programs, and assignment of DCBs with nondefault

cases.

FORTRAN INTERFACE

System interface between FORTRAN-produced programs and
RBM is the shared responsibility of the FORTRAN compiler-
Loader-RBM complex. This complex enables the user to
program real-time programs for foreground operation using
Real-Time FORTRAN language without having to use sym=
bolic coding to create the system interface (see FORTRAN
job examples in Chapter 8).

Symbolic code and control information can be used to give
the FORTRAN user added versatility in cases where compat-
ibility with other FORTRAN configurations is not a factor.
However, such coding is not required. That is, the user can
write and execute a program to service real~time interrupts
without any symbolic embellishment of the FORTRAN lan-
guage and without destroying the real-time response required.

COMMON ALLOCATION
BLANK COMMON

By default, blank COMMON is allocated beginning at the
end of the longest path as illustrated in Figure 11.

1
2
Root Blank Root
Part 1 3 COMMON | Part 2
4
F4.:COM P:END
Figure 11, Blank COMMON Allocation by Default

The size of blank COMMON is determined by the size of
the largest blank COMMON encountered during the load-
ing of all segments.

An optional COMMON control command allows the user to
specify that the blank COMMON base is to be set immedi-
ately following that segment, as illustrated in Figure 12, |

1
2
Root Blank Root
Part 1 3 COMMON | Part 2
4
F4:.COM P:END
Figure 12. Blank COMMON Option I

Note that in Figure 12, segment 1 sets the COMMON base I
so that segments 1, 2, and 3, share all COMMON, but seg-
ment 4 overlays a portion of COMMON. Thus, segments 1,
2, and 3, might operate on a large array, leaving the results
in upper COMMON for segment 4, which can reclaim the
remainder of the COMMON storage. However, a COMMON
allocation in segment 4 would be necessary to align refer-
ences to the upper portion of COMMON.

LABELED COMMON

Labeled COMMON is allocated by the Loader either by de-
fault in the segment in which the block is first encountered,
or specifically, by the parameters on the LCOMMON con-

trol command. All references to a labeled COMMON block
must be in the same path as the definition. Note that la-

beled COMMON in the root is available to all segments.

A labeled COMMON block must be initialized in the seg-

ment that is allocated.

User Load-Time ASSIGNs/FORTRAN Interface 77

The LCOMMON control command will allocate labeled
COMMON in the segment specified by the preceding SEG

command. The example

(:LCOMMON (A,100),(B,101),(XRAY,50)

:SEG (LINK,201,0NTO,0)

will allocate a labeled COMMON block /A/ of 100 words,
a block /B/ of 101 words, and a block /XRAY/of 50 words

in segment number 201.

CONNECT

The Loader does not provide any facility for generating
code to connect foreground programs to interrupts or to
trigger interrupts. The CONNECT statement in FORTRAN
plus the Monitor CONNECT call provides the necessary
interface.

CALLING OVERLAY SEGMENTS

The Overlay Loader generates no implicit calls for load-
ing overlay segments, and generates no explicit code for
such calls. FORTRAN programs to be run in overlay form
must call the FORTRAN run-time routine SEGLOAD, which
calls the SEGLOAD function of the Monitor. The iden-
tification numbers in the argument list must correspond to
the identification number on the SEG control command.

78 Core Layout at Execution Time

The SEGLOAD function calls in the overlay segment and
returns, e.g.,

CALL SEGLOAD (I)
CALL SUBROUTINE

where [is the segment ident.

MAIN PROGRAM NAME AND ENTRY

The entry point of a FORTRAN main program is not neces-
sarily the first location of the program. The compiler will
output an external definition to identify it as @ FORTRAN
main program. The entry point for that program is either
the transfer address on the main program, or the value spec-

ified with the ENTRY keyword on the :ROOT command.

LABELED COMMON NAMES

Labeled COMMONblocks are identified as DSECTs, labeled

with an external definition the same as the block name.

BLANK COMMON NAMES

Blank COMMON references are identified as DSECTs with
the unique external definition name F4:COM.

CORE LAYOUT AT EXECUTION TIME

The core storage area allocations for a typical segmented
program are illustrated in Figure 13.

Program
Area

PCB

Optional Space for BOUND

Root Code (User Programs)

Root Library Programs

LCOMMON (root only)

RES (optional)

SEG 1 SEG2

SEG 5

SEG 3

SEG 4

Biank COMMON

OVLOAD Table

Loader Created DCBs

DCBTAB

INTTAB

Temp Stack

FWA of Program

Part one of root segment
output to Program File

FWA Overlay Area

(BOUND and RES not shown)

LWA of Overlay Area
FWA of base of Blank COMMON (F4:COM)

FWA of part two of the root

Part two of the root

LWA + 1 of Program (P:END)

Figure 13.

Standard Core Layout of a Program

Core Layout at Execution Time

79

1. RAD EDITOR

The RAD Editor is a background processor that performs RAD

allocation for RAD areas by generating and maintaining di-

rectories for all permanent files. Through commands input

by the user, the RAD Editor performs the following functions:

e Adds or deletes entries to the permanent filedirectories
that, in turn, allocate and release permanent RAD space
within a RAD area.

e Copies data files onto the RAD.

e Appends records to the end of an existing RAD file,

e Compactspermanent file directories and permanent
RAD areas.

e Truncates empty space from the end of RAD files,

® Maps permanent RAD file allocation,

e Dumps the contents of RAD files or entire RAD areas.
e Copies permanent RAD files.

e Copies object modules contained in the libraries.

e Saves the contents of RAD areas on a magnetic or paper
tape device in a self-reloadable form.

e Restores previously saved RAD areas to their RAD
location,

® Maintains library files on RAD for use by the Overlay
Loader.

® Zeros out (clears) complete RAD areas.

e Temporarily inhibits the use of bad tracks on the RAD.

OPERATING CHARACTERISTICS

FILE ALLOCATION

The RAD Editor performs RAD allocation for all permanent
files, The name, size, and location of each permanent RAD
area are indicated through the use of a Master Directory that
is set up at system initialization in the resident portion of
RBM. The permanent RAD areas maintained by the RAD
Editor are

Background programs (BP).

Data (D1-DF). A maximum of 15 Background and
Foreground data areas are allowed.

Foreground programs (FP) contain User Library.

System programs (SP) contain System Library.

80 RAD Editor

The Editor controls file allocation by generating and main-
taining a directory entry for each file within the above per-
manent RAD areas. Every permanent RAD area has a direc-
tory that begins in the first sector of its own area. A direc-
tory consists of entries with the following information:

o File name (maximum length of eight alphanumeric
characters).

e Resident foreground program flag.

e File type; blocked; unblocked, or compressed.
e Granule size in bytes (used for direct access),
e File size (current number of records in file).

e Record size (bytes per logical record).

o Relative RAD address of the first sector defined for
the file,

o Relative RAD address of the last sector defined for
the file.

Before any permanent RAD file can be written, space must
be allocated for the file by requesting the RAD Editor to add
a new entry to the designated directory. Directory entries
may be added or deleted by using RAD Editor commands.
The following method is used to allocate files:

1. Permanent RAD files are allocated sequentially, begin-
ning in the second sector of the area, with every file
beginning and ending on a sector boundary.

2. A new directory entry is added as the last entry to the
existing directory and the corresponding space for the
file is allocated.

3. When all available space inan area is exhausted, a
complete search of the file directory is made for un-
allocated areas made available through file deletions.
The smallest area containing a sufficient amount of
space to allocate for the file is selected. If sufficient
space is not found upon searching the directory, the op~
eration is aborted. To overcome this problem, RAD
squeezing may be requested to recover the unused stor-
age within a permanent RAD area by compressing the
directory entries and files (see Figures 14 and 15).

4, File deletion is accomplished by zeroing out the appro-
priate directory entry.

SKIPPING BAD TRACKS

The method used to handle bad RAD tracks is as follows.
The :BDTRACK command removes the track from use by
placing a special entry in the file directory and allocating
the track as a file, The :GDTRACK command returns the

Identification entry

File 1 directory entry —| File 1

Deleted directory entry |——| Unallocated

File 2 directory entry ——| File 2

Deleted directory entry |——| Unallocated

Bad track directory entry|——| Bad track

File 3 ——| File 3

Figure 14, Permanent RAD Area Before Squeezing

Identification entry

File 1 directory entry —| File 1

File 2 directory entry —| File 2

File 3 directory entry ——]File 3

Bad track directory entry 1 Unallocated

Zeros Bad track

Unallocated

Figure 15. Permanent RAD Area After Squeezing

track for RAD Editor use by deleting the file directory entry.
When a bad track is discovered, it it the user'sresponsibility
to prevent it from being used by deleting the defectivefile
and reallocating an area for the new file if it is to be
regenerated,

SYSTEM AND USER LIBRARY FILES

System and User Library files are searched by the Overlay
Loader to satisfy external references. These files are gen-
erated and maintained by the RAD Editor in a form that can
be rapidly and easily searched by the Overlay Loader. The
System Library files must reside in the System Programs (SP)
area, and the User Library files must reside in the Fore-
ground Programs (FP) area. Each library consists of three
unblocked files: the Module Directory File (MODIR),
DEFREF File (DEFREF), and EBCDIC File (EBCDIC); and
one blocked file: Module File (MODULE), The user must
define and allocate these library files via the RAD Editor
by using the file names that appear within parenthesesabove
and defining the files as blocked or unblocked. As an aid
in approximating the file sizes, the user can use the algo-
rithms given below.

The RAD Editor is the only processor that should write in the
library files, The files are generated from information con-
tained in the object modules read in by the RAD Editor. Each
module is identified within the library files by a DEF, The
first DEF encountered in the module is considered the module
name, and no other DEF in a program will be so recognized.
Any module may be referenced by using the first DEF in a
program, and modules may be copied or deleted through its
use.

ALGORITHMS FOR COMPUTING LIBRARY FILE SIZES

The following algorithms can be used to determine the ap-
proximate sizes of the four files in a library, Itisnotcrucial
that the file sizes be exact, since any unused space can be
recovered via the :TRUNCATE command. The approximate
number of sectors (n R) required in the MODIR file is

MODI
] _306)
MODIR s
where
i is the number of modules to be placed in the
library.
s is the RAD sector size in words,
3 words is the length of a MODIR file entry.
The approximate number of sectors (n) required in
the EBCDIC file is EBCDIC
- 20
"EBCDIC ~ s
where
d is the unique number of DEFs in the library.
s is the RAD sector size in words,
2 words is the average length of an EBCDIC file

entry.

The number of records {n
file is

MODULE) required in the MODULE

n
"MODULE ~ i; <

where
n is the total number of modules in the library.
C, is the number of card images in the ith library

routine,

System and User Library Files 81

The number of sectors (n)} in the DEFREF file is

DEFREF
n di + .
DR R
n Si=1 000
DEFREF s
where
n is the total number of routines in the library.
d is the number of DEFs in the ith library routine,
r is the number of REFs in the ith library routine.
s is the RAD sector size in words.

RAD AREAS PROTECTION

Updating or squeezing of permanent RAD areas containing
information for real-time programs (foreground programand
foreground data areas) must not occur while the foreground
is utilizing these permanent RAD areas. The user must
ensure that the RAD Editor is not modifying a permanent
RAD area at the same time a foreground programisusingit.

Software protection of the SP, FP, BP, and foreground data
areas of the RAD is provided by requiring the operator to
key in "SY" before any of these areas are modified by a
background processor. The only areas that can be modified

that do not require a SY key=-in are the Background Data areas.

CALLING RAD EDITOR

When a !RADEDIT control command is read from the C de-
vice, the RAD Editor is loaded into core memory from the
RAD. Control is transferred to the RAD Editor which reads
commands from the C device that specify the functions to
be performed.

The form of the command is

IRADEDIT

The RAD Editor is terminated when a record with an ! in
column one is read from the C device (with the exception
of IEOD). An !EOD indicates an end-of-data to the RAD
Editor when data is input via the :COPY command.

COMMAND FORMATS

All RAD Editor commands are input from the C device and
listed on LL. The general form for RAD Editor commands

is identical to the RBM control command format described
in Chapter 2, with the symbols below being used to aid in
describing the RAD Editor commands in this chapter,

aa refers to a permanent RAD area and must be one
of the following:

BP is the Background Programs area.

D1 through DF is the Background and
Foreground Data areas.

FP is the Foreground Programs area.
SP is the System Programs area.
zz refers to any RAD area.
. t .
nnnnRRAn refers to a file name or library module
{maximum name length of eight alphanumeric
characters).
yyndd refers to a physical device name, where

Yy specifies the type of device: CR, CP, ete.

n specifies the IOP number: A for IOPQ,
B for IOP1, etc.

dd specifies the device number: 03, 80, etc.

orp refers to an operational label: BI, S, etfc.

RAD EDITOR COMMANDS

(ALLOT The :ALLOT command adds a new entry to the
specified permanent file directory that allocates space for
a new file, After space has been allocated, files can be
written by either background or foreground programs. The
space allocated for the new entry is zeroed out.

The form of the command is

:ALLOT (FILE, aa,nnnnnnnn) [, (opfion)] .. .[, (opfion)]

where the options are

FORMAT, type specifies the file format where type is
u for unblocked.
B for blocked.

C for a compressed file,
The default value is unblocked.

FSIZE,value specifies the decimal length of the
file in logical records. The default value is 1000,

RSIZE,value specifies the decimal number of words
per record. The logical record size is used in se-
quentially accessing a file. For a compressed file,
record size is omitted and the Monitor blocks com-
pressed files into 256-word records. Blocked files

have a default value equal to 128 words perrecord.

i’If this file name is RBM and in the SP area, it cannot be
copied or dumped.

82 Calling RAD Editor/Command Formats/RAD Editor Commands

If the record size is greater than 128 words, un-~
blocked organization will be given. Unblocked
files have a default record size equal to the gran-
ule size.

GSIZE,value specifies granule size in words and is
used for direct access only. The default size will
be equal to the RAD sector size.

RF indicates that the file contains a resident fore-
ground program and is applicable only if the FP
area is specified. [If RF is omitted, the file does
not contain a resident foreground program. Any
program flagged as resident foreground will be
automatically loaded into core every time the sys-
tem is booted from the RAD.,

Examples:

1. An unblocked file:

:ALLOT (FILE,BP,TEST), (FORMAT, V), (FSIZE,SO),j

L (RSIZE, 90)

This example allocates space for the unblocked file
TEST in the BP area of the RAD, with a file size of

50 records and a record size of 90 words.

2. A blocked file:

:ALLOT (FILE,FP, TESTA), (FORMAT,B),(FSIZE,SO),W

L rsize, 30), R

This example allocates space for the blocked file
TESTA in the FP areq, with a record size of 30 words
and a file size of 50 records. This is a resident fore-
ground program.

:COPY The :COPY command copies single files of data
or modules (EBCDIC, BINARY in standard binary format, or
nonstandard binary) from one device to another. Input and
output must be copied to and/or from the RAD. Files are
copied until an | EOD or tape mark is encountered, except
when the CC option is specified, which is terminated when
an :EQOD is encountered. A logical file mark will be writ-
ten onto the output file.

On 7-track tape, a copy from a file to a device assigned to
an op label will be in packed binary format. [f a device is
specified, the information (data) will be written unpacked.

When nonstandard binary (BIN) or control commands (CC)
are copied from the C device, the C device mustbe assigned
to 0 and reassigned after the copy is completed. The as-
signment is made when the message

HKEYIN STDLB C,0
is typed to the operator and reassigned when the message

11COPY ENDED

appears.

An IATTEND card must be used to force a pause for oper-
ator intervention whenever the BIN and CC options are
specified.

The general form of the command is

/ FROM 10

FILE, aa,nnnnnnnn ‘FILE,ca,nnnnnnnn
LIB,aq,nnnnnnnn LIB,aa

op op
IN, {yyndd} ouT, {yyndd} \‘

[[vec] [,aDD] [,BIN] [,CC] [, FBCO]

:COPY

where

FILE indicates either a file in a permanent RAD areaq,
a file in the Background Temp area where nnnnnnnn
is the designated file, or the Checkpoint of IOEX
access area where nnnnnnnn is not applicable.
Areas CK and XA are only allowed as input files.

LIB indicates a library object module(s) in the SP or
FP area.

IN indicates an input operation from a non-RAD
device is to be performed.

ouT indicates an output operation to a non-RAD
device is to be performed.

VFC indicates vertical format control is desired on
printing.

ADD indicates records are to be added to the end
of an already existing file.

BIN specifies that nonstandard binary information
is to be copied from the card reader or to the card
punch.

ccC specifies that control commands are to be
copied from the C device.

FBCD specifies that BCD input is to be converted
to EBCDIC.

The following are examples and explanations of the differ-
ent types of copies that can be performed.

Examples:

.COPY (IN, {;p

yndd}) , (FILE,ag,nnnnnnnn)

This example copies a file of data onto the specified RAD
file.

RAD Editor Commands 83

. op
| (.COPY (N, {Wndd}) ,(FILE, ag, nnnnnnnn),CC

This example copies a file of data containing control com-
mands from the C device onto the specified RAD file.

| :COPY (IN, {;’;ndd]) ,(FILE, ag, nnnnnnnn), ADD

This example adds data to the end of an already existing

RAD file.

. op
I :COPY (IN, {yyndd}) (L1, aq)

This example copies the library object modules to the speci-
fied library. The library being copied will completely re-
place an already existing library.

. op
l .copy (IN, {Wndd}) (LIB,aq), ADD

This example adds the library object modules to the speci-
fied library.

:COPY (FILE,aq,nnnnnnnn), (FILE, aa,nnnnnnnn)

This example copies the contents of the first specified RAD
file to the second specified RAD file.

:COPY (LIB, ag,nnnnnnnn), (OUT { })
yyndd

This example copies one library object module to the speci-
fied output device. The "nnnnnnnn" parameter is the name
of the library object module to be copied.

:COPY (FILE, aa,nnnnnnnn), (our,{ °P }) VFC
yyndd

This example lists the contents of an EBCDIC file with ver-
tical format control,

84 RAD Editor Commands

(OPY (FILE,aa,nnnnnnnn), (OUT{])
yyndd

This example copies the contents of the specified RAD file
onto the specified device.

(copv (FILE,aa,nnnnnn), (OUT,{°p D,BIN
yyndd

This example copies nonstandard binary from the specified
RAD file to the card punch.

(.COPY (FILE, aq), (our,{“’ })
yyndd

This example copies the contents of the IOEX access (XA)
or Checkpoint (CK) areas to the specified output device.

:DELETE The :DELETE command deletes either a file di-
rectory entry and file from a specified permanent RAD areq,
or an object module from the designated library. The space
formerly allocated is not used until a :SQUEEZE is executed.

The :DELETE command has the form

LIB

.DELETE ({ FiLE

} ,aa,nnnnnnnn)

Examples:

1. Delete a file:

:DELETE (FILE,BP,TESTA)

2. Delete an object module:

:DELETE (LIB,SP,CSCN)

This example specifies that an object module named
CSCN is to be deleted from the Library in the SP area.

:CLEAR The :CLEAR command zeros out the specified
RAD areas which results in deleting all files and file direc-
tories in the area,

The form of the command is

:CLEAR zz,zz,. ..

where zz is any RAD area.

Example:

:CLEAR D1,DF

This example specifies that permenent RAD areas D1 and DF
are to be zeroed out,

‘SQUEEZE The :SQUEEZE command regains unused space
within permanent RAD areas resulting from file deletionsand
truncations and library module deletions, Unused space is
regained by compressing file directory entries and their as-
sociated files, and library file entries and their associated
library modules. Within the libraries, the Module Directory
File (MODIR) and the Module File (MODULE) entries and
modules are compressed to regain the unused space, Space
is regained in the remaining two files, EBCDIC File (EBCDIC)
and DEFREF File (DEFREF), by regenerating them completely
from the Module Directory and Module Files.

The forms of the command are

1.
/:SQUEEZE ag,ag,aq,. . .

/:SQUEEZE ALL

Examples:

1. Regain unused space in specified area:

:SQUEEZE SP

This example regains unused space between files and
between modules in the SP area only,

2. Regain space in all permanent RAD areas.

:SQUEEZE ALL

This example regains unused space between all files
and modules in all permanent RAD areas.

‘TRUNCATE The :TRUNCATE command is used to trun-
cate empty space from the end of specified file(s). If the
allocated RAD space for a file is greater than the actual
length of the file, a considerable amount of space may be
left empty. This command will set the allocated space equal
to the actual length of the file. For a direct access file, the
length of the file in granules must be specified (g) as actual
file length is unknown,

The forms of the command are

1.

/:TRUNCATE (FILE, aa,nnnnnnnn), j

l'—(F[LE,cm,nnnnnnnn). . .,(FILE, aa,nnnnnnnn)

2, Ve
:TRUNCATE (FILE,aq,nnnnnnnn,g), N

L (FILE,aq,nnnnnnnn,g). . .,(FILE,aa,nnnnnnnn, g)

3.
/:TRUNCATE aa,aq,qaq, . . .

Examples:

1. Truncate allocated file:

:TRUNCATE (FILE,BP, TEST)

This example truncates empty space from the end of the
allocated file TEST in the BP area by setting the allo-
cated size equal to the actual size of the file,

2. Truncate all files:

:TRUNCATE BP,D2,D3

This example truncates all files in the BP, D2, and D3
areas,

‘MAP The :MAP command maps the specified permanent
RAD areas to the LO device (using the M:LO DCB). The

map contains

1. Information from the Master Directory, consisting of
the RAD, write protection, area identification, and
its beginning and ending RAD addresses,

2. Information from the Permanent File Directories con-
cerning each file in the areaq; file name, format,

RAD Editor Commands 85

beginning file address, ending file address, file size,
record size, granule size, and resident foreground pro-
gram indicator.

3. Information about object modules in the library files,
consisting of the name of each module, its relocatable

length, and the definitions and references in the module.

The forms of the command are

1.

/:MAP aq,aq,qq, .

r/:MAP ALL

Examples:

1. Map specified permanent RAD areas:

:MAP BP,D4

This example outputs a map of the permanent RAD
areas BP and D4 to the LO device.

2. Map all permanent RAD areas:

:MAP ALL

This example outputs a map of all permanent RAD areas
to the LO device.

An example of an ALL version of a RAD map (fore-
shortened for brevity) is illustrated in Figure 16.

:DUMP The :DUMP command dumps, in hexadecimal,
the designated random or sequential access file onto the
LO device (using the M:LO DCB). All permanent RAD
areas plus the IOEX Access area {(XA), Background Temp
area (BT), and Checkpoint area (CK) can be dumped. The
RAD Editor will sequentially access thedesignated file or
area to be dumped.

The forms of the command are

1.
I :DUMP (FILE, aq,nnnnnnnn) [,(SREC,vclue)] —

L [, (EREC,value)]

86 RAD Editor Commands

where

aa also includes the XA, BT and CK RAD areas, and I

annnnnnn is any of the files,

SREC, value specifies the starting record (in deci-
mal) to begin the dump.

EREC,value specifies the last record to be dumped.

:DUMP zz[, (SREC, value)] [,(EREC,va|ue)]

where
zz is any RAD area. '

SREC,value specifies the starting sector (in
decimal) to begin the dump.

EREC,value
dumped.

specifies the last sector to be

Examples:

I. Dump specified file:

:DUMP (FILE,BP,TEST)

This example specifies that the TEST file in the BP area
is to be dumped onto the LO device,

2, Dump specified records:

:DUMP (FILE,BP,TEST), (SREC,10), (EREC,20)

This example specifies that records 10 through 20 of
the TEST file in the BP area are to be dumped onto
the LO device.

3. Dump specified sectors:

:DUMP BP, (SREC, 6), (EREC,9)

This example specifies that sectors 6 through 9 of the
BP area are to be dumped onto the LO device.

4, Dump all of specified RAD area:

:DUMP BP

This example specifies that all of the BP area is to be
dumped onto the LO device.

Jgs

VERSIBN AQ1

ATT

RADEDIT

SALLBT (FILEsD1sTEST)s (FORMATIC) s (FSIZES10)

IMAP ALL

RAD AREA SP RAD DCAFO B6A 0001 EBA 1599 WP N

NAME FHRMAT GSIZE RSIZE FSIZE B8BF E6F

REM U ~360 0360 021, 0001 0249

RADBBUT U C360 0360 0001 022C 0220

RADEDIT U 0360 0360 0100 0221 0320

BLBAD U 0360 0360 0000 0321 0480

FERTRANK U 0360 0360 0000 O481 C645

MACRSYM U 0360 0360 0000 0646 0745

RAR AREA FF RAD DCAFO BBA 1600 EBA 2399 WP N

NAME FURMAT GSIZE RSIZE FSIZE BBF EBF

MBDIR U ~360 3132 000: 0001 00,5

EBCDIC U C360 2629 0001 001é 0030

DEFREF U 0360 3644 0001 0031 0CS0

MBDULE B 0360 0120 0703 0051 0425

MAP BF LIBRARY IN FP AREA

MBDULE NAME LBCATIBN CEFS REFS

TEST 0060 TEST MiS] Fi5

ALBG 0011 ALBG 8T0 9ALBG 9SETUP1
DLOG 0012 CLBG 8T0 9DLBG 9SETUP1
EXP 0013 EXP 8T0 9EXP YSETUP1
DEXP 0014 CEXP 8T0 9DEXP 9SETUP1
SIN 0C15 SIN 9SETUP1 8TO YSIN
DSIN 0C16 CSIN 870 9DSIN 9SETUP]
ATAN QoC1L7 ATAN 870 871 9ATAN]

SATANZ 9SETUPM
DATAN 0019 CATAN 870 871 IDATAN]
IDATANZ 9SETUFM

SQRT oc21 SGRT 9SETUPY 8TO YSURT
DSGRT 0022 CSGRT 870 90SURT 9SETUPL
SINH 0023 SINH 9SETUP1 8TO IS INH
RAD AKEA RP RAD DCAFO BeA 2400 EBA 3199 WP N

AREA HBP CBNTAINS N# FILES

RAC AREA BT ©2AD DCAFU HBBA 4436 EBA 8191 wp B

RAD AREA XA RAD LCAF1 BBA 4096 EBA 8191 wh X

RAD AREA CK RAD DCAFO BBA 4208 EBA 4435 WP M

RAD AREA D1 RAD DCAFQ BAA 3200 EBA 3679 wP B

NAME FURMAT GSIZE RSIZE FSIZE B8BF E6F

TEST C C360 1C24 0000 0001 ©0G3

FIN

THTAL JBB TIME=00:01:0C
BEGIN IDLE

Figure 16. ALL Map Example

RAD Editor Commands

1SAVE The :SAVE command saves the specified RAD
area(s) on the BO device {using the M:BO DCB) for subse-
quent restoration. The BO device mustbe either a magnetic-
tape or paper-tape device. The image of the designated RAD
area(s) and the RBM bootstrap are written on BO in self-
reloadable format. The BO output contains abootstrap loader,
followed by the RAD image of the RBM bootstrap, and the
designated area(s). Sectors containing all zeros are sup-
pressed. Executing the bootstrap loader causes the RAD
image to be read into memory and restored onto the RAD(s)
without RBM control, The BO output can also be used to
restore the RAD via the :RESTORE command. If the BO de-
vice is a magnetic tape, the tape is rewound and the data
saved is verified. If the BO device is a paper tape, the
paper tape must be input on the BI device for verification.
If the tape verifies correctly, the message

'SAVE TAPE OK!
is output.
The forms of the command are

1.

:SAVE zz,zz,...

where zz can be any RAD area.

2.
:SAVE ALL
where ALL includes all RAD areas except Background,
Temporary, and Checkpoint.
Examples:

1. Dump specified areas to secondary storage:

:SAVE SP,BP,D2

This example specifies that RAD areas SP, BP, and D2,
with a preceding bootstrap loader, are to be saved on
the BO device for subsequent reloading.

2. Dump all RAD areas to secondary storage:

:SAVE ALL

This example specifies that all RAD areas, with a pre-
ceding bootstrap, are to be saved on the BO device for
subsequent reloading.

88 RAD Editor Commands

:RESTORE The :RESTORE command restores the specified
permanent RAD areas that were saved by the :SAVE command,
Input is read from the Bl device (using the M:BI DCB), and
the bootstrap is ignored. Read after write is employed to
verify the data restored.

The form of the command is

:RESTORE zz,zz,...

Example:

:RESTORE SP,BP,D2

This example specifies that the RAD areas SP, BP, and D2

(previously saved with a :SAVE directive) are to be restored.

‘BDTRACK The :BDTRACK command specifies the RAD
and the hexadecimal track numbers that are not to be used

by the RAD Editor. A track containing a sector of the file

directory is not permitted to be removed from use.

The form of the command is

:BDTRACK yyndd,number[,number]. . .

Example:

:BDTRACK DCAFO, 10,11

This example specifies that the RAD Editor is to be inhibited
from using tracks 10 and 11 on the RAD DCAFO.

{GDTRACK The :GDTRACK command specifies the RAD
and the hexadecimal track numbers that now can be used by
the RAD Editor, The tracks were previously removed from
use by the :BDTRACK command.

The form of the command is

:GDTRACK yyndd,number[, number]. ..

Example:

GDTRACK DCAFQ,10,11

This example specifies that previously inhibited tracks 10
and 11 are to be restored for use by the RAD Editor,

ERROR MESSAGES

The RAD Editor outputs error messages on the OC and LL
devices. If OC and LL are assigned to the same device,
duplication of messages on LL is suppressed. If an operator
response is required, the RAD Editor will call the Monitor
“WAIT" routine. The operator initiates a console interrupt
and keys in one of the following commands to the Monitor.

C Continue and read next record from the C device.
X Abort RAD Editor and return control to Monitor.
CcoC Continue and read a record from the OC de-

vice (used only in conjunction with the error mes-

sage "ERROR ITEM xx").

If the Editor aborts because of an irrecoverable 1/O error,
the physical device name is included in the abort message.

The error messages output by the RAD Editor and their mean-
ings are given in Table 15.

RAD RESTORATION MESSAGES

The messages itemized in Table 16 are written on the
keyboard/printer during RAD restoration via the bootstrap
loader produced by SAVE. Unless otherwise specified, the
computer will go into a WAIT after writing a message.

Table 15. RAD Editor Error Messages

Message

Meaning

Action Taken

AREA xx CANNOT CONTAIN
A RESIDENT FOREGROUND
PROGRAM

Illegal area specified. Only the FP
area can contain a resident foreground
program

Operation is aborted.

AREA xx CKSM ERROR

A checksum error exists on the RAD
SAVE tape in the specified area.

Operation is aborted.

AREA xx CONTAINS NO
FILES

Specified area contains no files.

Editor continves.

AREA xx INCOMPATIBILITY

Attempting to restore specified area
onto a different type of RAD from
which it was saved, or the area to be
restored is too large for the same area
using the current Master Directory.

Operation is aborted.

AREA xx IS NOT ALLOCATED

Specified area was not allocated at
SYSGEN,

Operation is aborted.

AREA SPECIFIED DOES NOT
CONTAIN ALIBRARY

An area other than SP or FP was speci-
fied that does not contain a library.

Operation is aborted.

AREA SPECIFIED IS NOT
MAINTAINED BY THE RAD
EDITOR

An attempt has been made to use area
CK, XA, or BT which is not maintained
by the RAD Editor.

Operation is aborted.

AREA xx TRUNCATED

Specified area being restored is larger
than the same area using the current
Master Directory, but the data that was
lost contained all zeros.

Operation continues.

BUFFER SMALLER THAN
DATA READ

Data read exceeds the amount of avail-
able buffer space.

Operation is aborted.

CKSM ERR ON SAVE
TAPE

A checksum error has been encoun-
tered while verifying the RAD SAVE
tape.

Operation is aborted.

Error Messages/RAD Restoration Messages

89

Table 15. RAD Editor Error Messages (cont.)

Message

Meaning

Action Taken

CKSM ERROR

Last record in the object module
being read has a checksum error,

If the operator response is C, the
Editor reads the next record from the
specified device.

DUPLICATE DEF xxxxxxxx

Relocatable Object Module being
copied to the library contains dup-
licate definitions.

RAD Editor skips to the end of the
module. A key-in of C causes the
Editor to read the next record from
the specifieddevice.

DUPLICATE FILE

An attempt has been made to allocate
a file using a name which already
exists.

Operation is aborted.

EQOT on [yyndd

qarea, name

Unexpected end-of ~tape was encoun-
tered on the specified device or file.

Operation was aborted

ERROR ITEM xx

[tem number xx on the command is
in error.

If the operator response is C, the
Editor reads the next record from
the C device. If the operator
response is COC, the next record
is read from the OC device. This
will enable operator to rectify a
directive error.

FILE xxxxxxxx WAS NOT
TRUNCATED. FSIZE=0

File was not truncated because file
size being 0 suggests either a direct
access file or a file with O records.

Editor continues

ILLEGAL BINARY RECORD

An illegal binary record (first byte
not X'1C', X'3C') has been read

with an object module.

If the operator response is C, the
Editor reads the next record from the
specified device.

ILLEGAL FILE NAME

An attempt has been made to allocate
a file using GO, OV, or X1-X9 as a
file name.

Operation is aborted.

ILLEGAL LOAD ITEM xx

Relocatable Object Module to the
library contains an illegal load
item.

RAD Editor skips to the end of the
module. A key=in of C causes the
Editor to read the next record from
the specified device.

ILLEGAL OPTION xxx

Option specified is not permitted on
a :COPY command.

Operation is aborted.

ILLEGAL USE OF :COPY

The specified combination of input
and output devices on the :COPY
command is prohibited.

Operation is aborted.

INVALID RSIZE. UNBLOCKED
ORGANIZATION GIVEN

Maximum record size for a blocked
file has been exceeded. Unblocked
orgnization given.

Editor continues.

KEY ERR

Operator key-in is erroneous.

Key=-in has to be either C, COC,
or X.

NOT ENUF BACKG SPACE

Insufficient background space to
perform the requested operation.

Operation is aborted.

Error Messages

Table 15. RAD Editor Error Messages (cont.)

Message

Meaning

Action Taken

RAD OVERFLOW

Allocating the amount of RAD storage
indicated by the "file" parameter on

the :ALLOT command would cause the

permanent RAD area indicated by the
"directory" parameter to overflow.

Operation is aborted.

RECORD SIZES DIFFER ON
INPUT AND QUTPUT FILES

Record sizes differ on copying from RAD

file to RAD file.

Operation is aborted.

REFERENCES TO F4:COM
NOT ALLOWED

An external definition or reference

F4:COM encountered in a Relocatable

Object Module being copied to the
library.

RAD Editor skips to the end of the
module. A key-in of C causes the
Editor to read the next record from
the specified device.

ROM DOES NOT CONTAIN
A DEF

Relocatable Object Module being
copied does not contain an external
definition.

A key-in of C causes the Editor to
read the next record from the speci-
fied device.

SAVE TAPE OK

RAD SAVE tape has been verified
correctly.

No action.

SEQ ERROR

Last record in the object module
being read has a sequence error.

If the operator response is C, the
Editor reads the next record from
the specified device,

SPECIFIED FILE DOES
NOT EXIST

File does not exist within the speci-
fied area.

Operation is aborted.

SPECIFIED ROM DOES NOT
EXIST

Relocatable Object Module does not
exist within the specified library.

Operation is aborted.

SREC VALUE GREATER THAN
EREC VALUE

Parameter error on the :DUMP com=-
mand. The last record to be dumped
precedes the initial record to be
dumped.

Operation is aborted.

TRACT xxxxx CANNOT BE
DELETED

Illegal attempt to remove a track from

use containing a sector of the file
directory. Removal would prevent
accessing of files or other sectors of
the directory.

Operation is aborted.

UNABLE TO FIND AREA xx

Specified area cannot be found on the

RAD SAVE tape during a :RESTORE
operation.

Operation is aborted.

yyndd WRT PROT

Specified RAD is write-protected.

Operator should take appropriate
action: interrupt and key in "SYC"
or reset the appropriate RAD pro-
tection switches. Or, if the job is
not allowed to write on protected
areas of the RAD, interrupt and key
in "X" to abort.

Error Messages

A

Table 16. RAD Restoration Messages

Message

Meaning

Resulting Action

CKSM ERROR

A checksum error has occurred in

reading the SAVE tape.

If the WAIT condition is cleared, the
bootstrap loader continues and accepts
the bad record.

RAD RESTORED OK

The RAD restoration has been suc-
cessfully completed.

Control is transferred from the RAD
bootstrap.

TRK = xxxx
DATA = ALL ZEROS

Specifies the contents of the RAD
controller address register in hexa-
decimal at the time of a check write
error,

If the data being written contains all
zeros, this information is output. If
the WAIT condition is cleared, the
bootstrap loader continues.

yyndd ERROR,

SB = xxxx

A parity or transmission error has oc~
curred on device yyndd. Both the device
status byte and operational status byte
are displayed following "SB=",

There is no recovery.

yyndd UNRECOG.,
SB = xxxx

An unrecognized status has been re-
turned from the indicated device. Both
the device status byte and operational

status byte are displayed following "SB=".

Upon clearing the WAIT condition,
the operation is retried.

yyndd UNUS, END,
TDV = xxxx

An unusual end status has been returned
from the specified device. Both the TDV
status byte and operational status byte
are displayed following "SB=".

There is no recovery on a read op-
eration. On a write operation, the
write is tried again after the WAIT is
cleared,

yyndd WRT PROT

The RAD is write-protected.

Program will attempt the RAD write
after an SY key=in.

92

RAD Restoration Messages

8. PREPARING THE PROGRAM DECK

The following examples show some of the ways program
decks may be prepared for RBM operation. Unless stated
otherwise, standard default cases for device assignments
are assumed.

MACRO-SYMBOL EXAMPLES

ASSEMBLE SOURCE PROGRAM, LISTING OUTPUT

Next Command

J?ource Deck

| IMACRSYM S1, LO
1JOB

In this example, the symbolic input is received from the SI
device and the listing output is produced on the LO device.

ASSEMBLE SOURCE PROGRAM, LISTING OUTPUT,
LOAD AND GO OPERATIONS

| rrOV
[tPmD
[1OLOAD (MAP,PROGRAM)

[Source Deck
| IMACRSYM S1,LO,GO
1JOB

In this example, the binary object program produced from
the assembly is placed in a temporary (GO) file from which
it is later loaded and executed. The resultant file is
always temporary and cannot be retained from one job to
another. The Overlay Loader loads the program root
into the OV file for execution. A postmortem dump is
specified.

ASSEMBLE FROM COMPRESSED DECK WITH SOURCE
AND UPDATES, LISTING OUTPUT

l Compressed Deck
+END

Source Deck

Update
Deck

[+7,9

Source Deck

1+5

Source Deck

[+5
L IMACRSYM S1,CI,LO,LU
1JOB

In this example, the compressed input (deck) is received
from the CI device, listing output is produced on the
LO device, and listing of the update deck is also pro-
duced on the LO device. The update deck is enclosed
in the bracket.

Preparing the Program Deck 93

ASSEMBLE SOURCE PROGRAM, COMPRESSED OUTPUT
ON CARDS, LISTING OUTPUT

mexf Command

I Source Deck
[tMACRSYM 51,CO,LO
1JOB

In this example, the compressed card output is procuded on

the CO device.

ASSEMBLE SOURCE OR COMPRESSED PROGRAM IN BATCH
MODE, LISTING OUTPUT

= N

{1e0D

Source or Compressed Input

1EOD (optional) \

[Source or Compressed Input

IEQOD (optional)

[Source or Compressed Input
L TMACRSYM 51 (or CI),LO,BA
1JOB

In this example, successive assemblies are performed with
a single MACRSYM command until a double EOD is read.
The device assignments and options on the MACRSYM com-
mand apply to all assemblies within the batch. A program
is considered terminated when an END Macro-Symbol di-
rective is processed.

When batch assemblies consist of successive updates from
card input to compressed programs from the RAD or tape,
the updates are terminated by a +END card and should not
be separated by |EOD cards. There must be a one-to-one
correspondence of update packets to compressed programs.
End-of-job is signaled by end-of-file conventions applied
to the CI device.

94 Macro-Symbol Examples

ASSEMBLE SOURCE PROGRAM, BINARY OUTPUT ON
CARDS, LISTING OUTPUT

l Next Command

I Source Deck
[imMACRSYM
1JOB

In this example, the SI, LO, and BO assignments are as-
sumed by default.

ASSEMBLE SOURCE PROGRAM , COMPRESSED OUTPUT
ON RAD FILE, LISTING OUTPUT

rSource Deck
| IMACRSYM s1,L0,CO
IASSIGN (M:CO,D1,COMPRESS) \

[:(RS1ZE,30)
[:(FORMAT B), (FSIZE, 300), ; \
L[[:ALLOT (FILE,D1,COMPRESS), ;

IRADEDIT
1JOB

In this example, the CO device is assigned to a RAD file
called COMPRESS in a background data area of the RAD.
The compressed output is written on the COMPRESS file.

ASSEMBLE COMPRESSED DECK FROM RAD FILE, SOURCE
UPDATES FROM CARDS, LISTING OUTPUT

[+END

lUpdcfe Deck (+Cards and Source)
WAACRSYM $1,CI,LO
[1ASSIGN (M:CI,D1,COMPRESS)

1JOB AN

In this example, the ClI (compressed input) device is assigned
to the COMPRESS file in a background area of the RAD.
The source update deck will be read from the SI device. In
effect, this will update the assembly given in the pre-
vious example.

ASSEMBLE SOURCE PROGRAM, WRITE COMPRESSED
OUTPUT ON 9-TRACK TAPE, LISTING OUTPUT

lSource Deck
| tMACRSYM $1,CO,LO
[1REW 9TA83
[IASSIGN (M:CO,9TA83)
1JOB

In this example, the COdevice is assigned to the designated
9-track magnetic tape unit to receive the compressed output.

ASSEMBLE COMPRESSED PROGRAM FROM
9-TRACK TAPE, LISTING OUTPUT

| IMACRSYM CI,LO
[1REW 9TA83
| LASSIGN (M:CI,9TA83)
1JOB

In this example, the CI device is assigned to the desig-
nated magnetic tape to read the compressed input to be
assembled. This is the next logical job step to follow
the previous example.

Macro-Symbol Examples

95

FORTRAN JOB EXAMPLES
COMBINED FORTRAN COMPILATIONS, PLUS FORTRAN COMPILE AND EXECUTE

- AN

[ieop

l Data Deck
[:rOV
[10L0AD (MAP, ALL), GO

~ |ieop

4. | FORTRAN Source Deck
|\ FORTRANH LO, GO

IEOD \

3. I FORTRAN Source Deck
[1FORTRANH LS
{1eoD

2.| IFORTRAN Source Deck
[1eoD

1. IFORTRAN Source Deck

| IFORTRANH LO
1JOB

In this example, the first two source decks are compiled with mixed (source and object languoge) listed output. The next
source program (3) is compiled with a source listing (only) being output. The final source deck (4) will compile with the ob-
ject module being output on both the BO and GO files. The Loader inputs the object module from the GO file to form the
Root and outputs the executable program to the OV file. The program (called OV) is executed via the ROV command,

96 FORTRAN Job Examples

COMPILE AND EXECUTE FORTRAN SOURCE PROGRAM WITH REAL-TIME LINKAGES

|Dota Deck
[1rOV
1OLOAD GO, (MAP, ALL)

IFORTRAN Source Deck
|1FORTRANH SI,LS,80,GO,RT
[1AssIGN (M:BO, BP, BOFORT)
[:(FORMAT, B), RSIZE, 30), (FSIZE,50)
[.ALLOT (FiLE, 8P, BOFORT);

| irRADEDIT
1JOB

In this example, the RAD Editor allots a file called BOFORT in binary format to the Background Programs area of the RAD.
The specified record size is 30 words; the file size is 50 records. The !'ASSIGN command assigns the M:BO DCB (binary out-
put) tofile BOFORT. The !FORTRANH command specifies that symbolic input is to be read from the SI device, the source
input is to be listed (under RBM, LS would be redundant if LO was specified in addition to LS), and the binary output is to

be written out on both the BO and GO files. The relocatable binary output on the file "BOFORT" may be used as input to
the Overlay Loader at a later date. Since the real-time option (RT) is specified, the linkage will be set up for real~time sub-
routines. The Overlay Loader (!OLOAD) reads input from the GO file, outputs an ALL map, searches the System Library (by
default), and writes the executable program into the OV file. The program is run via the ROV (Run OV) command. Note
that a program with real-time linkages can also run in the background in nonreal-time mode.

FORTRAN Job Examples 97

COMPILE AND EXECUTE PROGRAM USING LS, BO DEFAULT OPTIONS

RN

Data Deck
~ |irov
| :ro0T (FiLE, BP, BOFORT)
[1ot0AD (MAP, ALL)
IEOD

I FORTRAN Source Deck

1 [FORTRANH

- | 1AsSIGN (M:BO, BP, BOFORT)
[:(FORMAT B), (RSIZE,30), (FSIZE,50)
[:ALLOT (FILE, BP, BOFORT);

|1RADEDIT
1108

In this example, the LS (list source) and BO (binary output) are assumed by default on the FORTRANH command. The System
Library is searched via the default option on the !|OLOAD command.

98 FORTRAN Job Examples

COMPILE A FORTRAN PROGRAM AND SETUP FOR EXECUTION IN FOREGROUND AREA

[rFIN

[1ROV
| :(mAP, ALLY(FORE, 4000)
[10L0AD (GO), (TEMP,600);

IE)RTRAN Source Deck
| IFORTRANH LS, GO
1 PAUSE KEY-IN FGC
IATTEND
1JOB 12345,D, F

In this example, the !ATTEND command will inhibit the Monitor ABORT routine so that corrective action can be taken at the
console in case of error, The FORE option on the IOLOAD command gives the FWA of the program in the Foreground area of
memory.

FORTRAN Job Examples 99

OVERLAY LOADER EXAMPLES
BATCH, USING GO LINKS

[!Rov
[rpmD
[IOLOAD

[FORTRAN Source Deck
| 1FORTRANH $1,GO,LO, LS

FORTRAN Source Deck
I!FORTRANH SI,GO,LO,LS

I FORTRAN Source Deck

IFORTRANH SI,GO,LO,LS \

| 1JOB
[rrov
[IPMD

Jl IVFC, (RECL, 133)

[1ASSIGN (F:2,LPA02),BCD;

FORTRAN Source Deck

| tFORTRANH SI,GO,LO,LS
1J08

In this example, the GO file is rewound by the initial ! JOB command for the first FORTRAN compilation. The Overlay Loader
loads from the GO file to form a root and outputs on the OV file for execution. A SHORT map will be output. A postmortem
dump is requested if the background aborts. The next 1JOB command rewinds the GO file and three FORTRAN jobs are com-
piled, with the binary object modules output on GO to form ROMI,ROM2,ROM3. The Overlay Loader loads the first ROM
for the root, the second ROM for segment 1, and the third ROM for segment 2. Note that :SEG cards are not required. The
programs are executed from the OV file. A SHORT map is output. A postmortem dump is specified in case an abort occurs.

100 Overlay Loader Examples

SEGMENTED BACKGROUND JOB

J!RUN BP,CALCLOAD
| «(F1Lg, D5,cALCI)
| :SEG (LINK,3,ONTO,0);
- |:(F1LE,D5,CALC)
[1SEG (LINK,2,0NTO,0);
1EOD

Binary Object Module

Binary Object Module

Binary Object Module
| :(DEVICE,CRAO3,EOD)
—]:SEG (LINK,1,ONTO, 0);
| :ro0T
| ICALCLOAD)

| 1OLOAD (MAP,ALL),(FILE,BP, ;

=

{IMACRSYM C1,51,CO,LO,BO
— 1ASSIGN (M:BO,D5,CALC2)

Compressed Deck
+END

Source Deck
| [FORTRANH SI,GO,LO,LS
| TATTEND
1JOB

In this example, the JOB card rewinds the GO file, the FORTRAN source deck is compiled, and the binary object module
is output on GO. The Macro-Symbol compressed source deck is updated and the binary object module is output to file CALC2
in the D5 area (previously allocated by the RAD Editor). The ROMs designated on the :ROOT and :SEG commands are loaded,
and the loaded program is output to CALCLOAD in the BP area. The :ROOT command causes the ROM created by FORTRANH
to be loaded from the GO file and creates the Root. The ROMs following the first :SEG command are loaded until 1EOD is
encountered and segment 1 is then created. The next :SEG command loads the ROM assembled by Macro-Symbol on the
CALC2 file in the D5 area and creates segment 2. The last :SEG command loads one ROM from the CALC3 file in the D5 area
(ROM previously created by an assembly or compilation). The |RUN command executes the loaded segmented program.

Overlay Loader Examples 101

FOREGROUND JOB EXAMPLES

LOAD AND EXECUTE FOREGROUND PROGRAM

[1FIN
[tRUN FP,FINT

l Binary Object Deck

:ROOT (ENTRY, INIT),(DE VICE, CRAO3)
| :(FILE FP,FINT),(MAP,PROGRAM)

LOLOAD FORE,(TASKS,1);

l :ALLOT (FILE,FP,FINT),(FSIZE,25)

—[IRADEDIT

I!MESSAGE LOADING FG TEST JOB

| 1aTTEND
TPAUSE KEY-IN FSC

1JOB

In this example, the RAD Editor allots a file, (FINT) in the Foreground Programs (FP) area of the RAD. The Overlay Loader loads
the binary object deck in the file FINT in core image format. The !RUN control command causes execution of the foreground
program. A PROGRAM map is specified.

102 Foreground Job Examples

LOAD AND EXECUTE SEGMENTED FOREGROUND PROGRAM

[rriN
[1RuNFPFSEG

l Binary Object Deck

| :exLoC, 7C00), (DEV, CRAOS)
| :SEG (LINK 2,ONTO,0);

lBinqry Object Deck
| :(EXLOC,7A00),(DEV,CRA03)
:SEG (LINK 1,0NTO,0);

Binary Object Deck

r:(DEV,CRAOS)
| :ROOT (ENTRY,OVFOR);
| :(FILE,FP,FSEG),(MAP,ALL)
ﬁl 1OLOAD (FORE),(TASKS,1);

|:ALLOT (FILE FP FSEG),(FSIZE,25)
F.RADEDIT

['MESSAGE LOADING FG TEST JOB
[1aTTEND
| IPAUSE KEY-IN SFC
1JOB

In this example, the RAD Editor allots space for a file called FSEG in the Foreground Programs (FP) area of the RAD. The
Overlay Loader loads a root and two segments into FSEG in core image format. The overlaid program is executed via the
IRUN control command. An ALL map is requested.

Foreground Job Examples 103

9. SYSTEM GENERATION

System Generation provides the means of forming a Monitor
system adapted to the specific requirements of the user's
installation. This is done by processing a set of installa-
tion control commands. The entire System Generation
comprises two processes: SYSGEN and SYSLOAD. Dur-
ing the SYSGEN phase, only the specific installation
parameters are input, not the processors, This permits
the later replacement of modules on the RAD without
going through an actual SYSGEN, provided that the re-
placements do not exceed their SYSGEN defined area.
The only output from SYSGEN is an optional rebootable
version of SYSLOAD (System Load).

SYSLOAD phase performs the loading of the entire RAD,
That is, it loads the Monitor, the RBM Overlays, the Job
Control Processor, any Optional Routines, the System Pro-
cessors, User Processors, and other installation specific
programs,

To eliminate the necessity for a complete reload, a new
Monitor can be written without disturbing the remainder of
the RAD.

SYSGEN

OVERVIEW

SYSGEN and SYSLOAD are assembled as one absolute mod-
ule and then loaded by a stand alone loader, After the
SYSGEN/SYSLOAD object module has been loaded, con-

trol is transferred to SYSGEN. SYSGEN inputs the installa-

tion specific parameters and sets up, in low core, all RBM
tables and flags that are dependent upon these parameters,
SYSGEN also builds a Symbol table containing the EBCDIC
names of all RBM tables and the address where each table

is loaded in memory, During the loading of RBM, this Sym-
bol table will be used by SYSLOAD to satisfy any Monitor
references (REFs) to these tables.

After SYSGEN has input its final control command, it will
optionally output a rebootable binary deck in core image
format containing the RBM tables, the RBM flags, and
SYSLOAD, This rebootable deck can later be used to load
a new version of the Monitor without going through a
SYSGEN.

Upon request, SYSGEN will also output a map showing the
core allocation (estimated background first word address,
foreground first word address, etc.), the aforementioned
Symbol table definitions and values, and the allocation of

104 System Generation

the RAD areas. The RAD area portion of the map will con-
tain the following information:

MAP Heading Meaning

AREA The two~-character name of the RAD
area (i.e., SP, BP, FP, D3, etc.).

DISC The device number of the RAD on
which the area is located (i.e., ADO).

FWA First word address of the area in the
format xxx/yy, where xxx = track
number in decimal, yy = sector num-
ber in decimal.

LWA Last word address of the area (same
format as for FWA),

NSPT Number of sectors per track, in dec-
imal, for the RAD on which the area
is located.

NWPS Number of words per sector, in dec=~
imal, for the RAD on which the area
is located.

WP Write protection code for the area.

The codes are

N No one can write in the area (un-
less an'SY' key-inisineffect).

B Only background can write in
the area,

F Only foreground can write in
the area.

M Only the Monitor can write in
the area.

X Only IOEX can write in the

area.
A sample map output by SYSGEN isillustrated in Figure 17.
Control is transferred to SYSLOAD following the comple-

tion of either the SYSGEN operation or loading of the re-
bootable SYSLOAD deck.

CORE ALLOCATION

CORE LAYOUT AFTER SYSGEN

After SYSGEN has executed and before control is trans-
ferred to SYSLOAD, core memory has the layout dis-
played below,

IMBNITOR (CBRE»32)sALLSIMI{ACCNT,FB)

IRESERVE (RSDFs4)s (FFPBBLI2)»(FRGDS)) (FRADSS) (BRADIS) S (FT190Q,4)2 (FMRAX,100)
IDEVICE TYAO1

IDEVICE CRAO3

{DEVICE CPAOL

IDEVICE LPAQ2

IDEVICE 7TAEQ

SDEVICE (DCCFOsS)s (ENTRACK)B511),(NSPTH12)s (NWPS,2568)2(SP280Y»(FPs50Y
! (BP,50)s(N1s30sB)s(D2,304F)
(D3s52F)a(D4s5sB)s(DS»5sBI2(DK25,R)2(D755,F), (D8,5,8))

(09,52F) (DAISIBII(DRIBIFI2(DNCLTIB)2(DDSSHF) S (DF 51282 (XA»100)
{DEVICE STA8R0

IDEVICE 9TAS81

IDEVICE 9TA82

tDEVICE 9TA83

ISTOLY (CsCRAO3)2(DCHTYADL1Y (LA, LPAD2)»(LL,LB)Y,(DO,LE)Y)

H (BA,sCPACL)» (ST,CRAD3Y2(SOOTARBL) 2 (XXa0)a(YYs0)s(MT,D)3

! {S1aCRAD03),(BI,SINa(F1,9TARLI(F24LB)Y2(F349TAR3) S (F4,7TAFO))

H (FB20)s(F6s9TAR2Y2(CBsBBY,{CY,SI

TALLOBRT (GB,8)s(0OVs15)

ICTINT (CTa65)s(H1265)

PINTLS (11260)0 (1206100 (13062)0t142063)2(15,64)3

P (C3,5A),(FCr63) 2 (FXs64)2(1Xs62)

ISYSLRAD (INCRAO3),ALL,(V,Q02), (MAP,LPAOR)

BCKGe. FWA=Q1EOOQ
FGDe FWA=07800
FMBBX FWA=Q7099

#anx RBM TABLE ALLOCATIAN xwus

MASTD=0066 NCTL=0090 DCT220096 DPCY320099 NCT4+=009C
DCTSs009F DCT&=00A2 DCT7=00A5 RCY8=00AA NETI=00R4
DCT10=00BF DCT11=00CH DCT12200CE DCT13s00NR NeTi4200EE
DCT15=00F DCT16=00F2 DCYL17=0108 DCT18z010F neTi9s01tl
CI1T1=024E CIT2=0250 C1T320252 18210254 1aR2r0256
180320258 18Q4=0254A 18325=2025C 1806s025n tAR7e0265
182820266 18Q09=024F 18Q10=0272 1PR11=C274 18N12a0275
186Q13=027C 1r214=028C RFT13028C RFT2=02R2 RFY3a028C
RFT4302Cé RFTS=02D0 RFY6=02DA RFT7s02F4% RFYRs02E9
RFT9302EE RFT10802F3 RFY11=202FD RFT1220307 RFT13s0311
RFT1420316 RFT15=031R RFT16=0320 RFT17=037P4 FP1x0336
FP220342 FP3=0345 FP430347 FP5s034D 8P RS1s034F
APLBS2=(Q35A APLBS3=0340 INTLR1=0366 INTLR2=036R BVLaAN1=0370
8vVLBANZ=0373 AVLAAD3=037R WNLBECKaQ37D 3JLAYFWASO3IRE
*xuu RBM PRBGRAM ALLBCATIBN ##ws
FPSIMa06AE DECSIM=08F& BYTSIM=sQR72 CvSIM=0cCn TFI TAsCO0O0
R8M=0B34 RBMEND={D1R
#ndn RAC ALLOBCATION wwsean
ARE A DISC FWa Lwa NSPT NWPS WP
5P CFQ 0s 4 79/11 12 256 N
FP CFO 2807 0 129/11 1? 256 N
RP CFo 1307/ 0 179/11 12 256 N
8T CFo 4037 6 5B11/11 12 256 8
XA CFo 296/ 0 395/11 12 256 X
CK CFO 3967 0 403/ 5 12 56 M
D& CFoO 180/ 0 209/11 12 256 R
D2 CFO 210/ 0 239/11 12 256 F
N3 CFO 240/ 0 244711 12 256 F
N4 CFo 2457 0 249/11 12 ?56 B
D5 CFO 250/ 0 25u4/11 12 256 B
Dé CFO 2557 0 259/11 12 256 B
D7 CFO 2607 0 264711 12 256 F
na CFQ 2657 0 269/11 12 256 B
D9 CFO 2707 0 P74/11% 12 256 F
DA CFO 275/ 0 279/11 12 256 B
0B CFo 2807 0 284711 i2 256 F
bC CFQ 285/ 0 289/11 12 256 B
DD CFQ 290/ 0 294711 12 256 F
DF CFO 29%7 0 295/11 12 256 B

#xnn FND MAP %axe

Figure 17. SYSGEN Map Example

SYSGEN

105

Interrupts, traps, etc.
RBM Confrol Task int. loc. |
\
Unused interrupt locations used
for monitor tables
320 | Output in
System flags and pointers t Rebootable
350 | Deck
RBM tables (DCT, 10Q, RFT, etc.)
700~
RBM overlay area
1200
10K
SYSGEN
12K
SYSLOAD Output in
Rebootable
15K Deck
Symbol table
16K

RBM STRUCTURE

The RBM system is assembled in several different modules,
the largest of which consists of the following nonoptional
resident routines:

1. 1/O Interrupt Task.

2. Control Panel Task.

3. Tasks to process the various traps.
4

The following Monitor functions: Foreground Exit,
I/O Package, Interrupt Control, Segment Loader,
1/O Handlers, IOEX and foreground service routines.

The other RBM parts consist of the optional resident rou-
tines, RBM Overlays, and the Job Control Processor (JCP).
All RBM parts will be assembled as relocatable object mod-
ules and loaded by SYSLOAD.

The optional resident routines are the floating-point simu-
lation routines and decimal simulation routines; they are

input during SYSLOAD as required.
The RBM Overlays consist of the subtasks of the RBM Con-
trol Task, which include:

Key=-in Processor

Background Abort/Exit Routine

Postmortem Dump

Foreground Root Loader

Background Root Loader

Checkpoint/Restart

106 SYSGEN

CGRE MEMORY LAYOUT AFTER SYSGEN AND SYSLOAD

After SYSGEN and SYSLOAD have executed, core memory
would have the following typical layout:

- 0
Interrupts, traps, etc.
RBM Control Task int. loc.
Unused interrupt locations used for
Monitor tables 320
System flags and pointers
Write RBM tables
Lock
n RBM overlay area
Optional resident routines
6K
Nonoptional resident routines
Monitor expansion and patch area
Writ]
e Background and RBM Job page
Lock
o1 Control Processor area bOUF\ldcry
-
Foreground area
Write Foreground mailtboxes
Lock 9
10
Foreground blocking buffer pool
. 16K

Note that during SYSGEN, the user inputs the number of
pages to be reserved for the foreground area. After
SYSLOAD has loaded all resident routines and allocated
the appropriate space for the Monitor patch area, the start-
ing address of background will be fixed at the start of the
next page. The starting address of background can not be
precisely determined until all resident routines are loaded
by SYSLOAD. For this reason, the background first word
address output on the map by SYSGEN is necessarily an
estimated address, and would be changed by SYSLCAD if
the SYSGEN estimate was incorrect. The background will
extend up to the start of the foreground area.

RAD ALLOCATION

RAD AREAS

During SYSGEN, the total user RAD space can be divided
into a maximum of 21 areas, the size of which can not be
changed except by a new SYSGEN. A subdivision of an
area is a file, and each area can consist of several files,
Files are defined through the RAD Editor after SYSGEN,

~—

and can be created or deleted at any time without going
through a SYSGEN process. In the order of their normal
RAD allocation, the RAD areas are as follows:

AREA NAME Name Code Write Protect Code
System Programs SP N
Foreground Programs FP N
Background Programs BP N
Foreground and
Background Data D1 through DF ForB

[IOEX Access XA X
Checkpoint CK M
Background Temp BT B

If the RAD areas are allocated in the order given above,
the user can easily protect all the programs on the RAD
through the hardware write protect switches.

The user can specify a given area to physically reside on
any RAD in the system if the system contains more than one
RAD; however, each area must be wholly contained on one
RAD. The user must also specify a RAD to be the System
RAD that will contain the SP area and receive the RBM
Bootstrap. The user inputs the number of words per sector
and number of sectors per track for each RAD in the system
and SYSGEN stores this information in the Master Directory.

The System Programs area of the RAD contains the Monitor,
service processors (Overlay Loader, RAD Editor), system pro-
cessors (Macro-Symbol, FORTRAN IV-H, etc.), and the
System Library.

The Foreground Programs area of the RAD should contain
the user's foreground programs, the Public Library, and the
User Library, if they exist.

The Background Program area should contain any back-
ground programs of the user,

The IOEX Access area can be written only by IOEX and
should normally be the only area of the RAD that IOEX
is allowed to access.

The Foreground and Background Data areas can be used to
store the appropriate type of user data, Up to fifteen
Data areas (D1-DF) are allowed, to accommodate a user
with multiple RADs,

The Checkpoint area is used to save the contents of back-
ground core memory during a checkpoint. The Background
Temp area can be allocated to @ maximum of nine scratch

files (X1-X9) plus the GO and OV files.

If a user does not choose to specify the sizes for the
different RAD areas, the default sizes given in Table17
will be assumed, and the total area will be allocated
to the System RAD.

Table 17. RAD Area Default Sizes

Area Default Size Comments

System 60 tracks Large enough to con-

Programs tain all system pro-
cessors, one per file,
in core image format;
the system library in
relocatable binary for-
mat; and the Monitor
in core image format,

Foreground 0 User is required to

Programs specify number of

tracks for all areas
not used by system
programs.

Background 0
Programs

Foreground/ 0

Background

Data

IOEX Access | O

Checkpoint n sectors Where n = the initial
size of background in
sectors,

Background m sectors Where m = remainder

Temp of RAD. RAD size is
determined from the

ENTRACK parameter
on the :DEVICE

command.

The areas will be physically located on the RAD in the same
order as they were input during SYSGEN, The System Pro-
grams area will be the first area on the System RAD unless
the user inputs the SP area in a different order. In both the
initial and succeeding SYSGENs, all RAD areas required

by the user must be input, except those areas that SYSGEN
automatically allocates by default, In succeeding SYSGENS,
the user must input all areas in the same order and with the
same size as the initial SYSGEN to prevent destruction of
any RAD areas.

Beginning at the starting track address input on the :DEVICE
command, SYSGEN will allocate the number of tracks for
each area without leaving empty spaces between areas, A
bad track on a user's RAD can be skipped via an input to
the RAD Editor at the time the user's files are defined. The
first area allocated on the System RAD will include the RAD
Bootstrap among its alfocated space, and therefore, the
actual space allocated for the area will be one sector less
than the number of tracks input. This technique forceseach
area to start on a track boundary to make the hardware
Write Protect switches easier to use.

BACKGROUND TEMP AREA

The scratch files (X1 through X9) of the Background Temp
area of the RAD will be automatically allocated and defined

SYSGEN 107

by the Job Control Processor prior to execution of a back-
ground program, unless the user wishes to override these
defaults via an YALLOBT control command. During SYSGEN,
the user will not specify any standard sizes for the scratch
files, X1-X9. The X1-X9 files are normally destroyed and
subsequently reallocated before execution of each baele- 500
ground-mesarom-iametob-stecte: < fop o
The GO and OV files are also in the BT area of the RAD.
These files are more permanent than the X1-X? files and
are maintained throughout an entire job. The user has the
option to override the default permanent size of GO and
OV at SYSGEN via the :ALLOBT command. GO and OV
have both a permanent size, determined at SYSGEN, and
a temporary size, which can be input through the back-
ground job stack via an :ALLOBT control command.

An example of allocation for a System RAD is given in
Figure 18.

und 53“0,

Table 18 gives the default sizes and types for GO, OV, and i
X1-X9, and the order in which the files are allocated. Note
that X1-X9 are at the front of the BT area, and GO and OV

are at the opposite end.

TABLES ALLOCATED AND SET BY SYSGEN
DEVICE CONTROL TABLE (DCT)

The DCT table is allocated by SYSGEN and several of the
entries in the table are set by SYSGEN (i.e., device type,
device number, dedicated to foreground bit, etc.). The
DCT contains one entry for each device input by the user

on the :DEVICE command, and the order of the entries is
the same as the order of the :DEVICE commands. Note that
there will be only one entry in the DCT for each RAD.

RAD FILE TABLE (RFT)
RAD Bootstrap (somms,) | 60 tracks The RAD file table is allocated by SYSGEN from the FRAD
(default and BRAD entries on the :RESERVE command, and should
SP Area size) contain sufficient entries to reflect the maximum number of
3 open RAD files that can exist simultaneously. The user will
FP Area input the number of RFT entries to be reserved for foreground
programs and the number to be reserved for background pro-
BP Area grams. The background is not allowed to use more than the
Size must be number of RFT entries allocated for the background. How-
D1 Area > specified by user or ever, the foreground can use all RFT entries if they are
area not allocated needed. The rationale for having foreground/background
D2 Area RAD files as opposed to a single pool of files is that a back-
ground program could erroneously use all the file entries,
XA Area thus preventing the operation of a foreground program.
P
CK Area Z;Z?azf,b;z:?mund MASTER DIRECTORY
BT Area ?demomdel: of RAD The Master Directory is entirely set up by SYSGEN in the
efault size) R R . R
resident Monitor portion of memory and contains the fol-
lowing information about each area on the RAD: the sec-
tor address of each area, the RAD to which the area is
Figure 18. RAD Allocation Example assigned, the sector size and number of sectors per track;
Table 18. GO, OV, X1-X9 Default Sizes
File Name File Type Default Size Comments
X1)
X2
X3
X4
X5 » Unblocked Determined by Job File type and record sizes can be changed through
X6 Control Processor at a Device Mode function call or through an ! ALLOBT
X7 execution time, command,
X8
X9 J
ov Unblocked 8 tracks Default output for Overlay Loader. Used mainly
to test a program that has no permanent file defined,
or to test a new version of a program without de-
stroying the current version.
GO Blocked (120 bytes/ 8 tracks Used by FORTRAN and Symbol for "assemble and
logical record) go" type operations,

108 SYSGEN

a bit that states if an area has been allocated; and the
write protection code for the area.

RBM OVLOAD TABLE

The RBM OVLOAD table is entirely set up by SYSLOAD and
contains the information the Monitor needs to load a Moni-

tor overlay. This information consists of an overlay identi-

fier, the relative RAD address of the overlay, and the num-
ber of bytes in the overlay.

I/O QUEUE TABLE (10Q)

The IOQ table is allocated by SYSGEN from the FIOQ and
BIOQ entries on the :RESERVE command. The user inputs
the maximum number of I/O operations that can be queued
at one time for the foreground and background. The restric-
tions on the use of the foreground 10Q table are the same
as for the RAD File Table,

FOREGROUND PROGRAM TABLE (FGT)

The Foreground Program table contains an active entry for
each foreground program loaded into memory. Requests to
load a foreground program can be made from either another
foreground program or by the operator, Space for this table
is allocated by SYSGEN from the FRGD entry on the
:RESERVE command.

OPERATIONAL LABEL TABLE (OPLBS)

The OPLBS table is built by SYSGEN from the information
input on the :STDLB command. The table has a minimumof
eleven entries that contain the standard Monitor operational
labels. Since operational labels are referenced via an in-
dex value in the DCB, each of the eleven standard oper-
ational labels have a fixed index value. If the user adds
his own operational labels to the table, the user oper -
ational labels are assigned an index value, starting with

13, in the order in which they are input on the :STDLB
command. The standard operational labels are

Op Label Index Value
C 1)
ocC 2
LO 3
LL 4
DO 5
Cco 6 » Standard operational
BO 7 labels
Cl 8
Sl 9
BI 10
SO 11
PL 12 J
XX 13 User-defined operational
vy 14 { labels; {(index value de-
, . pendent upon order on
:STDLB command)

INTERRUPT LABEL TABLE (INTLB)

The INTLB table is set up by SYSGEN from information con-
tained on the :INTLB command. The table contains the
name of each interrupt and the location to which the inter-
rupt is assigned.

INPUT PARAMETERS
After the absolute object module of SYSGEN and SYSLCAD

has been loaded bytc: stand-alone loader, control is trans-
ferred to SYSGEN. SYSGEN types the following messages
on the typewriter (note that the typewriter must be assigned

to IOP zero, device 01; that is, TYAQT):

RBM SYSGEN
IN, OUT DEVICES?

The user will input the following control command in re-
sponse to the query. All SYSGEN commands must begin
with a colon in column one,

:SYSGEN (IN,yyndd) [(OUT,yyndd[,LP])]

where

IN specifies the device in the format yyndd from
which the remainder of the SYSGEN control com=~
mands will be input,

yy is a device type code and must be either
CR, TY, or PR (see below for a description of
the codes).

n is the [OP; legal values are A-H correspond-

ing to IOP's 0-7,
dd isthe hardware device number of the device.

ouT specifies an optional output device on which
the input commands are to be logged or the map,
if requested, is to be output. The device type code
must be either the TY or LP,

The optional LP field specifies the lower perfor-
mance line printer (225 lines per minute) as op~
posed to the 1000 line-per-minute printer,

Following input of the :SYSGEN command, the SYSGEN
control commands are input through the specified device.

Mhe stand-alone loader types out the query "INPUTDEVICE",
The operator should respond by typing in the device from
which the absolute object module of SYSGEN and SYSLOAD
is to be loaded. Examples of a possible responseare:
CRA03, 9TA80, PRADS.

SYSGEN 109

The following device types are standard under RBM, and
should be input in the yy portion of a yyndd parameter in
all SYSGEN control commands.

Device Type Code Device
Y Typewriter
Lpf Line printer
CR Card reader
cp! Card punch
oT 9-track magnetic tape
7T 7-track magnetic tape
PP Paper tape punch
PR Paper tape reader
DC RAD or other disc
PL Plotter
NO Not a standard device.

A special purpose device

for use with IOEX.
SYSGEN CONTROL COMMANDS

The SYSGEN control commands are given below. The
:MONITOR and :RESERVE commands (in that order) must
be input prior to the :DEVICE command. A :DEVICE com-
mand must precede a :STDLB command that references that
device.

‘MONITOR The :MONITOR command specifies Monitor
and CPU options, The :MONITOR command must precede
the :RESERVE command and must precede the :DEVICE com-
mand for the System RAD.

The command has the form

:MONITOR (option) [, (option) . . . ,(option)]

where the options are

CORE,size specifies the memory size, in decimal
units of K (where 1K =1024 words), of the target
computer (computer for which the SYSGEN is

being run). Thedefault value for CORE is 16K words.

FPSIM specifies that the floating-point simulation
package is to be loaded by SYSLOAD. If this
parameter is absent, either the floating-point
hardware exists or floating-point isnot needed
for the target computer.

"1f the optional LP (lower performance) parameter is in=
put with a CP or LP device type, the device is the 255-
line-per-minute printer in the LP case, or the 100-card-
per-minute punch in the CP case (i.e., LPAO2,LP or
CPAD4, LP).

110 SYSGEN Control Commands

DECSIM specifies that the decimal instruction simu-
lation package is to be loaded by SYSLOAD. The
absence of this parameter indicates that either the
decimal instruction hardware exists or the decimal
package is not needed for the target computer.

BYTSIM specifies the byte string instruction simula-
tion package is to be loaded by SYSLOAD.

CVSIM specifies the convert instruction simulation
package is to be loaded by SYSLOAD.
ALLSIM specifies that all software instruction simu-

lation packages are to be loaded by SYSLOAD.

ACCNT, {EB] specifies that the Monitor is to per=

form job accounting. B or FB specifies the type

of accounting. B indicates background accounting
only, with all foreground time included in the back-
ground job time. FBindicates foreground/background
accounting, with the foreground time kept separate
from the background time. If the FB typeis chosen,
the foreground interrupt response time could be in-
creased by a maximum of 5 microseconds, Absence
of the ACCNT parameter indicates that no job ac-
counting is to be kept.

LPP,value is number of lines per printer page. The
default is 37, This value is used by processors that
perform their own vertical format control of the
printer.

‘RESERVE The :RESERVE command allocates areas of core
and the various variable length Monitor tables. The :RESERVE
command must precede the :DEVICE command for the System
RAD.

The :RESERVE command has the form

:RESERVE (option) [, (option) . . . , (option)]

where the options are

RSDF,value specifies the decimal number of pages
to be reserved for foreground programs. The value
specified includes the foreground mailbox (FMBO X)
and foreground blocking buffer (FFPOOL) areas,
if any. This space is available for all foreground
programs on a first-come, first-served basis. A
program is given its predetermined core space (de-
termined when it is loaded on the RAD by the
Overlay Loader) when loaded for execution. No
other program can use this space until the program
is unloaded, The Public Library will also exist
in this foreground space. The default value is
zero.

MPATCH, size specifies the decimal number of
word locations to be reserved for modifications
and expansion of the Monitor. The default
size is zero,

ﬁ
To vAn 3Ny ‘i;w(arou\\.aé proacan | at l(eﬁf [

One Faetacound Yhoc\ler v ie, (e eG4 i,
FFPOOL,value specifies the decimal number of The :DEVICE command has the form ’
256-word blocking buffers to be allocated for all

foreground programs. Qe default value is zero. :DEVICE (yyndd[,LF] [, S]P[, (option)] [, (option)]. . .
FRGD,value specifies the maximum number of fore-

ground programs that can reside in core memory at
any one time, This parameter will be used to allo~
cate space for the foreground program table thatis
used to manage the foreground core area. The de-

fault size is zero. Maximum allowable vaiue is225.

FRAD,value specifies the number of entries to re-
serve in the RAD File Table for foreground RAD
files. This number should reflect the maximum
number of foreground RAD files that could be open
simultaneously. Note that the background RAD
pool is also available to the foreground. The de-
fault value is zero.

BRAD,value specifies the number of entries to re-
serve in the RAD File Table for background RAD
files. This number should reflect the maximum
number of backgroundRAD files that canbe opened
simultaneously. The default value is 5, whichwill
be sufficient to accommodate the System Processors.
The value indicated should not include the files
on the BT area of the RAD.

FIOQ,value specifies the maximum number of
foreground 1/O operations that can be queued at
any one time. This parameter determines the space
allocated for foreground entries in the [/O queue
table. Note that the background queue table is
also available to the foreground. The default
value is zero.

BIOQ, value specifies the maximum number of back-
ground 1/O operations that can be queued at any
one time. This parameter determines the space
allocated for background entries in the 1/O queue
table. The default value allows three entries to
be placed in the queue table.

Note that the sum of FIOQ and BIOQ must be
less than 256, or an error indication will be
given.

FMBOX,size specifies the decimal number of
word locations to reserve at the end of the
foreground core space for foreground mailboxes.
The default value is zero.

BT,value specifies the maximum number of Back-
ground Temp files (X1-X9) that will ever be used.
The default value is 6, that is, files X1,X2,
X3, X4,X5,X6. Six files are sufficient for the
System Processors. The files defined are X1-Xn,
where n is the input value. The 'n' must be
less than 10.

:DEVICE The :DEVICE command introduces peripheral
units into the system. One :DEVICE command is required
for each peripheral unit to be used. The order of the
:DEVICE commands determines the Device Control Table
index value that the device will receive (the index value
can be used in theDCB). If an error is made in any field
of the command, the entire command must be input again.

where

yyndd specifies the device name (see the :SYSGEN
command for a description of yyndd). If yy = NO
(for anIOEX device) the device will automatically
be dedicated to IOEX,

LP specifies that the device is the lower perfor-
mance type; e.g., LP would be used to differen-
tiate the lower performance card punch (100 cards
per minute) from the unbuffered card punch, or the
lower performance printer from the high speed
printer. If LP is absent, the higher performance
device is assumed,

S specifies (for aRAD device only) this RAD as the
System RAD; the System RAD receives the Boot~
strap, the SP area, and any default allocations.

The device name must be the first field input after the

:DEVICE.

The options are

DEDICATE, value specifies that the device is to be
dedicated to the foreground if value is "F"; it can
be used by IOEX only if value is "X". If this op-
tion is omitted, the device is undedicated unless
the device is NO. In this case, the device is
dedicated to IOEX.

Note: The remaining options are only applicable for a

RAD device.

STTRACK,value specifies the startingtrack (decimal
track number) on the RAD that is to be used by the sys-
tem. Ifthe optionisomitted, track zero will be the
starting track. Tracks are numbered starting with zero.
STTRACK must be input before ENTRACK and must
be equal to or less than ENTRACK.

ENTRACK, value specifies the end track (in deci-
mal) on the RAD to be used by the system. If this
option is omitted, a value of 511 will be assumed.
Note that tracks are numbered 0-n, where n<512.
For a Model 7212 RAD, ENTRACK should be <64,

NSPT,value specifies the decimal number of sectors
per track. The default value is 16, For a Model
7212 RAD, NSPT = 82, and for a Model 7232 RAD,
NSPT = 12.

NWPS,value specifies the decimal number of words
per sector. The default value is 90,

area,value specifies the decimal number of tracks
to be allocated to the designated area (SP, FP, BP,

SYSGEN Control Commands 111

Dn, Q¢ XA, or BT). The various forms in which
this option can be written are

P, valuef XA,value

FP, value BT,value

BP, value Dn, value [, E}

CK, value where 1= nsF

If the remainder of the RAD is to be allocated to
an area, "ALL" can be input instead of the number
of tracks. Any area not input on a :DEVICE con-
trol command will receive its default allocation.
If zero is input as a value for the number of tracks
for the CK or BT areq, the area will not be allo-
cated. Note that for the data area, Dn(1<n=<F),
an F {foreground), or a B (background) must be
specified to indicate the write protection code for
the area. See the "RAD ALLOCATION" section
in this chapter.

Examples:

(DEVICE CRAO3

Higher performance card reader, device number 3, on [OP
number 0, undedicated.

ﬁvmﬁ (LPAO2,LP),(DEDICATE,F)

Lower performance line printer, device number 2, on 1OP
number 0, dedicated to the foreground.

(DEV[CE (DCB90,5),(ENT, 127),(FP, 15),(D1,10,F),(D2, 10, B)

7202 RAD, device number 90, on IOP number 1, to be used
as the System RAD starting on sector zero, with default
sizes for the SP, CK, and BT areas, and the input sizes for
the FP, D1, and D2 areas. (The BT area would receive the
remainder of the RAD.)

:DEVICE (DCB?]),(DED,X),(STTRACK,256),(NSPT,12),~|
L (nwes, 256), (xA, ALL)

7232 RAD, device number 91, on IOP number 1, to be used

only by IOEX starting on track 256 and ending on track 511.

These tracks are allocated to the XA area.

Mhe SP area must be allocated to the System RAD. If allo-
cated elsewhere, an '‘ERROR ITEMxx' alarm will be output.

112 SYSGEN Control Commands

:STOLB The :STDLB command defines all standard Moni-
tor operational label assignments for the generated system
and all standard user operational labels and their assign-
ments, Note that operational labels cannot be assigned to
RAD files during SYSGEN. The STDLB command must be
input following the :DEVICE commands.

The :STDLB command has the form

:STDLB (label, name) [, (label, name) .. .]

where

label specifies a standard Monitor operational label
or a user operational label. All user operational
labels must consist of two alphanumeric characters.
Any standard Monitor operational labels not speci-
fied on a :STDLB command will receive by default
a permanent assignment of zero. The order of the
user's labels determines a label's position in the
operational label table, and therefore determines
the OPLB value that might be present in a user
DCB (see the table in the example below). No
label will be allowed that is the same as a Back-
ground Temp file name (GO, OV, X1-X9) or the
same as a RAD area.

name specifies a physical device name to which
the operational label is permanently assigned, a
numeric zero, or a previously assigned operational
label. In the latter case, the operational label
will be assigned to the same device as the label to
which it is assigned. If "0" is specified, there is
no permanent assignment.

The :STDLB command example

:STDLB (C, TYAO1), (OC, C), (LO, LPA02), (LL, LO),—]

- (BI, PRAO5), (SI, PRAOS5), (PL, PLADS), (XX, PRA05),j

L (zz, Lrac2)

would set up the operational label table given below.

OPLB Permanent
Label Index (1) Assignment
[C 1 TYAO}
ocC 2 TYAO!
LO 3 LPAO2
Standard LL 4 LPAO2
Monitor DO 3 0
Op Labels { €© 6 0
BO 7 0
Cl 8 0
SI 9 PRAO5
BI 10 PRAO5
SO 11 0
PL 12 PLAO6

OPLB Permanent

Label Index(y) Assignment
User Op {XX 13 PRAOS
Labels Y4 14 LPAQ2
{CTINT The :CTINT command specifies the interrupt to

which the RBM Control Task is to be connected, and the
highest address used for interrupts on the system.

The :CTINT command has the form

:CTINT [(CT,address), (HL,address)]

where

CT,address specifies the absolute hexadecimal in-
terrupt location to which the RBM Control Task is
to be connected. If the Control Task is to be con-
nected to an interrupt, that interrupt must be the
lowest priority interrupt used by the system. If "ad-
dress' has the value zero, no interrupt is available
for the Control Task. In this case, the user can
run only background programs, andSYSGEN will
allocate the Monitor tables beginning at address
X'5E'. The default value for the Control Task In=~
terrupt is location X'61'.

HI,address specifies the highest address in hexa-
decimal needed for an interrupt. SYSGEN will
assume that all memory locations greater than HI
are unused and will attempt to allocate the Moni-
tor tables in this area. The default value is
X'13F'. Normally, CT and HI would have the

same value.

:INTLB The :INTLB command provides the capability of
associating a label with an interrupt location. The label
may then be used in the different interrupt CALs on the
Monitor,

The :INTLB command has the form

:INTLB (label, loc) [, (label, loc). . ., (Iabel, loc)]

where
label specifies a two=characteralphanumeric label.
loc specifies the absolute hexadecimal interrupt

location to be associated with the label.

The key=in INTLB may be used to change the assignment of
the label from one interrupt location to another.

{ALLOBT The :ALLOBT command establishes the perma-
nent sizes of the GO and OV files contained in the Back-
ground Temp area of the RAD.

The :ALLOBT command has the form

:ALLOBT (file name, sizes) [, (file name, size)]

where

file name specifies the name of the file, which must

be either GO or OV.

size specifies the decimal number of tracks to be
allocated for the specified file. The input size
becomes the permanent size for the specified file
and overrides the default sizes given in the
"BACKGROUND TEMP AREA" subsection. The
permanent size can be changed at execution time
via an !ALLOBT control command.

:PUNCH The PUNCH command specifies that a reboot-
able version of SYSLOAD is to be punched after SYSGEN
has input the last control command.

The PUNCH command has the form

:PUNCH device

where device specifies the device (e.g., CPAO4) on which
the rebootable copy of SYSLOAD is to be punched.

SI0P The :SIOP command defines the selector IOPs as
opposed to multiplexor IOPs. This command is required in
SYSGEN to correctly allocate the Channel Information
Table for the Monitor. All selector IOPs at an installation
must be input on this command.

The :SIOP command has the form

:SIOP n,n,n,...

where the n's indicate which IOPs are selector IOPs. The
'n' parameter must be a one-letter character from A

through H.

FIN The :FIN command signals the end of the control
commands for the SYSGEN phase. Upon reading the :FIN
command, SYSGEN will punch a rebootable version of
SYSLOAD and output the map, if requested, and exit
to SYSLOAD. The :FIN command should normally be

used to terminate SYSGEN when it is not desired to
continue with SYSLOAD (otherwise, the :SYSLD command
should be used).

SYSGEN Control Commands 113

The :FIN command has the form

:FIN [MAP]

where

MAP specifies that a MAP is to be output on the
same device being used to log the SYSGEN con-
trol commands. If no outputdevice wasspecified
on the :SYSGEN command, the MAP is output on
TYAOT1.

:SYSLD The :SYSLD command also signals the end of the
control commands to SYSGEN. The :SYSLD command causes
SYSGEN to output the rebootable deck of RBM,if requested,
and then exit to a SYSLOAD entry where no further control
command input is required.

The :SYSLD command has the form

:SYSLD (IN,yyndd) E(OUT,yyndd[,LP]), {ALL }

UpPD

L (V,xxxx); (MAP,yyndd [, LP])]

where

IN specifies the device to be used for loading the
Monitor, the RBM overlays, and all optional rou-
tines, The device must be either CR, PR, 9T, or
7T. This field is not optional. See the SYSGEN
command for the yyndd definition,

ouT specifiesthe device to receive the hard copy
of the RAD Bootstrap. I[f the System RAD allocation
starts on sector zero, this field is optional; other-
wise, an output device must be specified. The out-
put device must be either CP, PP, 9T, or 7T. The

LP option specifies the lower performance card punch.

{GI‘;E} specifies the SYSLOAD mode of operation.
The "ALL" parameter indicates that all defined
areas of the RAD are to be initialized to zero.
The "UPD" parameter indicates that existingdata
on the RAD must be saved and only the new ver-
sion of RBM should be output to the RAD. See
"SYSLOAD", below, for a further description of
these options, The default value for this parameter

is "UPD".

Vv specifies the version number of the system being
loaded. Up to four alphanumeric characters can
be input for the version. The version will be
logged on LL at the start of each job and logged
with each postmortem dump.

MAP specifies that a MAP is to be output at the
completion of SYSLOAD on the yyndd device.
The device must be either LP or TY.

See the SYSGEN control command for a description of
yyndd.

114 SYSLOAD

SYSLOAD

When the SYSGEN phase has been completed, or when the
rebootable SYSLOAD deck punched by SYSGEN has been
input, control is transferred to SYSLOAD. SYSLOAD loads
the Monitor, the RBM Overlays and Optional Routines and
outputs these to the RAD, It then outputs the RAD Boot-
strap and the System Program's Directory to the RAD. When
SYSLOAD terminates it enters an idle state. If necessary,
the user can now load the system and user programs on the
RAD by following the sequence outlined later in this chap-
ter, If a :SYSLD command was not input to SYSGEN or in-
put after rebooting the SYSLOAD deck, SYSLOAD will
initially output the following messages on the TYAOQT device:

RBM SYSLOAD
INPUT OPTIONS

The options input on the TYAO1 device must be made via
the :SYSLD command.

All writes made on the RAD during the SYSLOAD phase will
be checked to ensure that the data was correctly recorded

on the RAD.

ALL OPTION

The ALL option specifies that a complete system load is to
occur and that all RAD areas should be initialized to zeros.
The ALL option is necessary for the initial SYSLOAD or if
the RAD allocation has changed so drastically that all areas
on the RAD have moved. SYSLOAD initially zeros out all
defined areas of the RAD. It then loads three groups of ob-
ject modules in the following sequence: optional resident
routines (FPSIM, DECSIM, CVSIM, BYTSIM); resident Moni-
tor; and RBM Overlays and JCP.

The three groups of object modules must be loaded in the
stated order, but (for example) specific RBM Overlays need
not be in any special order. All these routines can be input
as one package and SYSLOAD will select and load only the
routines that were requested during SYSGEN, making it un-
necessary to rearrange the decks of the object modules ifre-
quirements change.

Each object module is identified to SYSLOAD via a DEF
item, and any object module not required is passed over.
EODs are allowed between object modules, and the final ob-
ject module must be followed by two EODs. If all the re-
quired object modules are not present in a group, SYSLOAD
outputs the following alarm on TYAOT:

MISSING ID namel, name2, . . .
RELOAD?

where name,, is the name of the missing routine, the name
being indicated by the only DEF item in the object module,

If "Y" (YES) is input to the RELOAD query, SYSLOAD
again reads the input device to load the missing routines.
If "N" (NO) is input, SYSLOAD assumes the missing rou-
tines are not required and continues,

SYSLOAD writes the required overlays on the RAD as they
are loaded and sets up the information needed to load the
overlays in the RBM OVLOAD table. Modules that are not
overlays will be loaded directly into core and later written
out with resident RBM.

When the directory is written on the RAD by SYSLOAD, the
System Programs Directory will contain entries for two files
named "RBM" and "RADBOOT". RADBOOT is the file that
contains a copy of the RAD Bootstrap, which is the only pro=
gram on the RAD not contained within a RAD area. There-
fore, it cannot be accessed if a RAD dump or save is
required, and for this reason a copy of the Bootstrap is kept
in the SP area.

The RBM and RADBOOT files will be the first two files in
the SP area. The area on the RADallocated for the Monitor
will include any patch or expansion core area the user has
requested. If a new version of the RBM system exceeds the
RAD space allocated to a previous version, all programs in
the SP area must be reloaded.

After RBM and the SP Directory are output to the RAD,
SYSLOAD sets up the appropriate command list in the
Bootstrap to enable the Bootstrap to easily reload RBM
from the RAD. The Bootstrap is then written both into
the RADBOOT file and onto the starting sector of the
System RAD (SSTRACK option on :DEVICE command).

If the SystemRAD allocation starts at other than sector zero,
a copy of the RAD Bootstrap is punched on the device speci-
fied by the OUT keyword on the :SYSLD command. The
user can then boot in RBM by loading the hard copy of the
RAD Bootstrap, This permits having more than one Monitor
system on the user'sRAD and still being able to boot inRBM
by reading in a hard copy of the Bootstrap.

UPDATE OPTION (UPD)

The UPD option can be used whenever there is an existing
version of RBM on the RAD, and the user wishes to load a
new version of the Monitor or change some of the SYSGEN
parameters. It is not necessary to go through a SYSGEN to
load a new version of the Monitor. It is only necessary to
load the rebootable SYSLOAD deck and go through a nor-
mal SYSLOAD, specifying the "UPD" option on the :SYSLD
command.

To change any SYSGEN-defined parameters, it is neces-
sary to input the complete set of SYSGEN control com-
mands. That is, there is no aftempt to merge the new ver-~
sion of the Monitor with the existing version on the RAD.

If the user does not want to disturb any of the RAD areas,
the RAD areas must be input with the same size and in the
same order as the initial SYSGEN., If the size of a RAD
area has to be changed or a new RAD area has to be added,
all RAD areas (except CK or BT) must be reloaded from the
first changed area to the end of the RAD. Therefore, the
areas most subject to change in size should be allocated to
the end of the RAD so that the minimum number of areas
are affected by a change. An area that must be moved can
be saved and restored intact by using the RAD Editor Save

and Restore functions. It is normally to the user's ad-
vantage to take the default size and allocation for the CK
and BT areas since these are automatically allocated at the
end of the RAD and may be changed without affecting any
other area.

To inform the user as to which areas on the RAD have moved,
SYSLOAD reads in the RAD Bootstrap from the existing ver-
sion, determines where the Monitor is located on the RAD,
and then inputs the Master Directory from the existing ver-
sion. If the absolute RAD first word address is changed for
any of the SP, FP, BP, XA, or Dn areas, SYSLOAD outputs
an appropriate alarm, requests permission to continue, and
then zeros out the first sector in each area that has moved,
thus effectively erasing all data in the area. The alarms
that could be output are

RELOAD

SP AREA

FP AREA

BP AREA

Dn AREA (where Tsn<F)
XA AREA

CONTINUE?

If the user types" YES" to the CONTINUE? query, SYSLOAD
will proceed and effectively erase each area that has moved.
A"NO" input is allowed in the event that the user made an
error in allocating the RAD areas on the :DEVICE command
and does not wish to proceed. Fora"NO" input, SYSLOAD
will output the map, if requested, and then enter a "WAIT"
condition. Note that since SYSLOAD must read in the RAD
Bootstrap of the existing version to find the RAD location of
the Master Directory, the starting track of the System RAD
must be identical in both versions for the "UPD" option to
be used.

The RELOAD, SP AREA alarm would also be output if the
new version of the Monitor occupied more or less RAD space
than the existing version. Since the Monitor is the first file
in the area, all other files have to be moved and reloaded

if the new Monitor requires a different amount of RAD space.
In this case, the user must reload the entire SP area in the
same manner as in an initial system load. The Monitor nor-
mally does not overflow its allocated RAD space when a new
version is loaded, since RAD space is allocated up to the
starting address of background.

If the first word address of background is different in a new
version from that of the existing version, the alarm

RELOAD, BGKG, PROGRAMS

is output. All programs that execute in the background,
both System Processors and user background programs, would
then have to be reloaded and absolutized for their new core
execution location.

If SYSLOAD determines that the new version is completely
compatible with the existing version, the message

RELOAD, NOTHING

is output,

SYSLOAD 115

After typing the necessary RELOAD alarms, SYSLOAD loads
the resident optional routines, the resident Monitor, and the
RBM Overlays as described under the ALL option.

RAD ALLOCATION OF SP AREA

When SYSLOAD has executed, the Systems Program area of
the RAD will have the following layout:

SP Directory

Entries for RBM, BOOT Relative sector O

RBM File
(Resident Monitor and RBM Sectors 1 = n
Overlays)
BOOT File Sector n + 1

Unused SP AREA Sectors (n+2) - (n+m)

SYSGEN AND SYSLOAD ALARMS

All alarm messages that can be output during SYSGEN and
| SYSLOAD are defined in Table 1.

LOADING SYSTEM PROCESSORS AND
USER PROGRAMS

After SYSLOAD completes its operation it will type the
message

SIGMA 5/7 RBM-2 VERSION XXXX

and executes a WAIT instruction. The operator should then
place his job stack in the C device to load the appropriate
programs, perform an interrupt, and key in a "C". Control
will be transferred to the Job Control Processor to read the
first control command.

If the "ALL" option was input to SYSLOAD, or if the SP
AREA or BCKG PROGRAMS need reloading, the RAD Editor
must be the first processor loaded. The RAD Editor should
be loaded by the JCP Loader onto the OV file. The user
then inputs control commands to the RAD Editor to define
permanent RAD files for all system processors (including the
RAD Editor), libraries, and all user programs. The RAD
Editor can then be copied from the OV file onto its perma-
nent file via the RAD Editor COPY command. The Overlay
Loader should be the next processor loaded by the RBM
Loader onto its defined file, and this loader can then be
used to load all other processors and user programs,

Typical examples for loading the RAD Editor and Overlay
Loader, followed by a load of a system processor are illus-
trated in Figures 19 and 20.

Table 19. SYSGEN and SYSLOAD Alarm Messages

Alarm Meaning Recovery Action
Non-I/O Alarms
BI CKSM ERR A checksum error has occurred in SYSLOAD will execute a "WAIT" instruction. If
the object module being input. the computer is put back into RUN, the next rec-
ord will be read from the Bl input device.
BI SEQ ERR A sequence error has occurred in Identical to "BI CKSM ERR".

the object module being input.

BT AREA TOO SMALL

The space allocated to the BT area
of the RAD is insufficient to hold the

default sizes of the GO and OV files.

There is no recovery from this condition except to
rerun the SYSGEN to either allocate more RAD
space for the BT area, or reduce the default size

of the GO and/or QV file.

CK AREA TOO SMALL

The amount of RAD space allocated
for the CK area is not sufficient to
hold the initial size of background.

Either the RAD areas must be reallocated (requires
a rerun of SYSGEN) or a checkpoint cannot be
done with the initial size of background.

DUP. DEF, xxxxxxxx

The same DEF has been encountered
in two object modules, probably in-
dicating that two copies exist of the
same object module.

Identical to "ERR, CONTROL BYTE = xx".

EOF BEFORE END ITEM

During the loading of an object mod-
ule, SYSLOAD has encountered a
misplaced EOD or EOF.

SYSLOAD will enter a "WAIT" condition, If the
computer is put back into RUN, the EOD or EOF
will be ignored and the next record will be input,

116 SYSGEN and SYSLOAD Alarms/Loading System Processors and User Programs

Table 19.

SYSGEN and SYSLOAD Alarm Messages (cont.)

Alarm

Meaning

Recovery Action

ERR, CONTRCL BYTE =xx

Non-1/O Alarms (cont.)

The xx control byte in the object
module being loaded cannot be
processed by SYSLOAD.

SYSLOAD will execute a "WAIT" instruction. If
the computer is put back into RUN, the current
object module will be bypassed and not loaded.

ERROR ITEM xx

An error has occurred in item xx

of the last control command input.
Every item (except the :), followed
by a blank or a comma, is counted
in determining the one in error.

If xx is one greater than the last
item input, a nonoptional item
was not input.

Control will be transferred to TYAQ] to allow the
user to correct the error. Unless stated otherwise
(where the individual commands are described) all
items preceding the incorrect one have been pro-
cessed, and only items starting with and following
the incorrect one need be input, If the user de-
sires to input nothing from TYAOT and to transfer
control back to the original input device, a single
colon (:) should be input on TYAOL. If an error
occurs on a continuation card, a card containing
a control command must follow,

ILL. DEF, xxxxxxxx
ILL. REF, xxxxxxxx

The specified DEF or REF is not
recognized by SYSLOAD during

the loading of an object module.

SYSLOAD will enter @ "WAIT" condition. If the
computer is put back into RUN, processing of the
current object module will continue.

INPUT ORDER ERROR

The :MONITOR, :RESERVE, or
:DEVICE command for the System
RAD has been input in the wrong
order,

Catastrophic error. Rerun SYSGEN from the start,

MISSING ID

See ALL option.

See ALL option.

NG SYSTEM RAD

No RAD has been designated as
the System RAD.

Catastrophic error. SYSGEN must be rerun from
the start,

OBJ. MOD. NOT RECOG.

The current object module being
loaded by SYSLOAD is not recog-
nized by SYSLOAD.

Identical to "ERR, CONTROL BYTE = xx".

OC LABEL NOT ASSIGNED

The OC operational label has not

been assigned toatypewriterdevice.

There isno recovery fromthiserror. The OC label
must be assigned in order for the system to function.

RAD OVERFLCW

The total number of tracks input
on the :DEVICE command have
exceeded the total available size.

The :DEVICE command must be completely reinput,
with the sizes of the areas appropriately changed.

RELOAD

SP AREA

FP AREA

BP AREA

Dn AREA

XA AREA

BCKG. PROGRAMS
NOTHING

See UPDATE option.

See UPDATE option.

TYPEC - OR - E

This message is output after each
object module when RBM is
being loaded from paper tape

to allow the user to load a

new paper tape for each ob-
ject module.

Type "C" to continue if this is not the last object
module to be input; or "E" (meaning EOD) if this
is the last object module.

SYSGEN and SYSLOAD Alarm Messages 17

Table 19.

SYSGEN and SYSLOAD Alarm Messages (cont.)

Alarm

Meaning

Recovery Action

UNABLE TO FIND OLD RBM

Non-1/O Alarms (cont.)
During an update run, SYSLOAD

was unable to locate the old ver-

sion of RBM on the RAD.

SYSLOAD will continue with the load, but will be
unable to make any checks as to which areas need
reloading. The user must reload the entire SP area
of the RAD if this alarm is output,

yyndd BUSY
IOP n BUSY

/O Alarms

The indicated device or IOP has
returned a busy status.

SYSGEN will keep attempting the 1/O operation.
Probably indicates a hardware problem.

yyndd ERROR, SB =xxxx
yyndd PARITY, TRK =xxxx

A transmission error hasoccurred with

the indicated device. SB=xxxx
indicates the contents of the TIO
status bytes in hexadecimal. If
a parity occurs while clearing
the RAD, the bad track, as re-
turned in the sense order, is also
logged in hexadecimal.

SYSGEN continues attempting the /O operation,
unless a parity has occurred while clearing the
RAD. In this case, this alarm and the parity alarm
will be logged and the RAD clearing will continue.

yyndd FAULT,
TDV = xxxx

A hardware fault has occurred on
the indicated device. The TDV
status byte is also output in
hexadecimal.

SYSGEN continues attempting the 1/O operation.
Repair and ready the indicated device.

yyndd MANUAL

The indicated device is in manual
mode,

Ready the device.

yyndd UNRECOG

The device indicated by yyndd is
unrecognized by the system,

SYSGEN will enter a "WAIT" state. Probably an
invalid device number was input, and the
SYSGEN will have to be rerun from the start, If
the "WAIT" state is cleared, SYSGEN will retry
the 1/O operation.

yyndd UNUS. END,
TDV = xxxx

An unusual end status has been
returned from the indicated de-
vice. The TDV status byte is also
logged in hexadecimal.

SYSGEN continues attempting the 1/O operation,

yyndd WRT PROT

The indicated magnetic tape or
RAD is hardware write-protected.

For a magnetic tape, insert a write ring and ready
the tape. For a RAD, reset the hardware Write
Protect switch and then clear the "WAIT" state so
SYSLOAD can retry the 1/O operation.

118

SYSGEN and SYSLOAD Alarm Messages

[Binary Deck (MAP Object Module)
[1eoD

I Binary Deck (LIB Object Module)

IEOD

méry Deck (DIAG Object Module

| Binary Deck (PAS2 Object Module)
| 1eoD

J Binary Deck (PAS1 Cbject Module
['eco

l Binary Deck (Root Object Module)
| 1our,sp,0L04D)

ILOAD MAP, (SEG,6),(IN,CRA03), ; \

| :(FSIZE,160)
| :ALLOT (FILE, SP,OLOAD), ;
[.(FILE, SP,RADEDIT)

.COPY (FILE,BT,OV), ;
[.(FSIZE, 100)
[:ALLOT (FILE, SP,RADEDIT), ;

I RAD Editor Object Module Deck
[1LOAD MAP, (CRAO3)
r!PAUSE KEY-IN SYC

1JOB

Figure 19. Loading RAD Editor and Overlay Loader Processors Into System

Loading System Processors and User Programs

119

I Binar
l :SEG (LINK, 3),(DEV,CRAQ3)

J Binary Deck (PASS1 Object Module)
| :seG (LINK,2), (DEV,CRAO3)

l Binary Deck (INIT Object Module)
:SEG (LINK, 1), (DEV,CRAD3)

I Binary Deck (ROOT Object Module)
[rOOT (DEV,CRAO3)

[:(FILE, 5P, MACRSYM), LIB
[TOLOAD (MAP,ALL), ;

| :(FSIZE, 100)
| :ALLOT (FILE, SP,MACRSYM), ;

l IRADEDIT
| IPAUSE KEY-IN SYC

1JOB

120

Figure 20. Loading Macro-Symbol Processor Into System

Loading System Processors and User Programs

APPENDIX A. SIGMA STANDARD OBJECT LANGUAGE

INTRODUCTION
GENERAL

The XDS Sigma standard object language provides a means

of expressing the output of any Sigma processor in standard
format, All programs and subprograms in this object format
can be loaded by the Monitor's relocating loader. Such a
loader is capable of providing the program linkages needed
to form an executable program in core storage. The object
language is designed to be both computer-independent and
medium-independent; i.e., it is applicable to any XDS

Sigma computer having a 32-bit word length, and the same
format is used for both cards and paper tape.

SOURCE CODE TRANSLATION

Before a program can be executed by the computer, it must
be translated from symbolic form to binary data words and
machine instructions. The primary stages of source program
translation are accomplished by o processor. However, under
certain circumstances, the processor may not be able to trans-
late the entire source program directly into machine lan-
guage form.

If a source program contains symbolic forward reterences, a
single-pass processor such as the XDS Symbol assembler can
not resolve such references into machine language. This is
because the machine language value for the reterenced sym-
bol is not established by a one-pass processor until after the
statement containing the forward reference has been
processed.

A two-pass processor, such as the XDS Meta~Symbol assem-
bler, is capable of making "retroactive" changes in the
object program before the object code is output. There-
fore, a two-pass processor does not have to output any
special object codes for forward references. An example

of a forward reference in a Symbol source program is given
below,

Y EQU

$+3
Cl,5 z
LLR z

Z QU 2
BG z

R EQU Z+1

In this example the operand $ + 3 is not a forward reference
because the assembler can evaluate it when processing the
source statement in which it appears.
and Z in the statement

However, the oper-

cLs Zz

is a forward reference because it appears before Z has been
defined. In processing the statement, the assembler outputs
the machine-language code for CI,5, assigns o forward ref-
erence number (e.g., 12) to the symbol Z, and outputs that
forward reference number. The forward reference number
and the symbol Z are also retained in the assembler's symbol
table.

When the assembler processes the source statement
LI, R z

it outputs the machine-language code for LI, assigns a for-
ward reference number (e.g., 18) to the symbol R, outputs
that number, and again outputs forward reference number
12 for symbol Z.

On processing the source statement
Z EQU 2

the assembler again outputs symbol Z's forward reference
number and also outputs the value, which defines symbol Z,
so that the relocating loader will be able to satisfy refer-
ences to Z in statements CI,5 Z and LI,R Z. At this time,
symbol Z's forward reference number (i.e., 12) may be
deleted from the assembler's symbol table and the defined
value of Z equated with the symbol Z (in the symbol table).
Then, subsequent references to Z, as in source statement

BG Z

would not constitute forward references, since the assembler
could resolve them immediately by consulting its symbol
table.

If a program contains symbolic references to externally
defined symbols in one or more separately processed subpro-
grams or library routines, the processor will be unable to
generate the necessary program linkages.

An exomple of an external reference in a Symbol source pro~
gram is shown below,

REF ALPH

LI, 3

ALPH

When the assembler processes the source statement

REF ALPH

Appendix A 121

it outputs the symbol ALPH, in symbolic (EBCDIC) form, in
a declaration specifying that the symbol is an external ref-
erence. At this time, the assembler also assigns a declara-
tion name number to the symbol ALPH but does not output
the number. The symbol and name number are retained in
the assembler's symbol table.

After a symbol has been declared an external reference, it
may appear any number of times in the symbolic subprogram
in which it was declared. Thus, the use of the symbol
ALPH in the source statement

LI, 3 ALPH

in the above example, is valid even though ALPH is not
defined in the subprogram in which it is referenced.

The relocating loader is able to generate interprogram link-
ages for any symbol that is declared an external definition
in the subprogram in which that symbol is defined. Shown
below is an example of an external definition in a Symbol
source program,

DEF ALPH
LI, 3 ALPH

ALPH Al 4 X'F2'

When the assembler processes the source statement

DEF ALPH

it outputs the symbol ALPH, in symbolic (EBCDIC) form, in
a declaration specifying that the symbol is an external defi-
nifion. At this time, the assembler also assigns a declaration
name number to the symbol ALPH but does not output the
number, The symbol and name number are retained in the
assembler's symbol table.

After a symbol has been declared an external definition it
may be used (in the subprogram in which it was declared)in
the same way as any other symbol. Thus, if ALPH is used as
a forward reference, as in the source statement

LI, 3 ALPH

above, the assembler assigns a forward reference number to
ALPH, in addition to the declaration name number assigned
previously. (A symbol may be both a forward reference and
an external definition.)

On processing the source statement
ALPH Al 4 X'F2

the assembler outputs the declaration name number of the
label ALPH (and an expression for its value) and also outputs
the machine-language code for Al,4 and the constant X'F2',

OBJECT LANGUAGE FORMAT

An object language program generated by a processor is out-
put as a string of bytes representing "load items". A {oad
item consists of an item type code followed by the specific
load information pertaining to that item. (The detailed format
of each type of load item is given later in this appendix.)
The individual load items require varying numbers of bytes

122 Appendix A

for their representation, depending on the type and specific
content of each item. A group of 108 bytes, or fewer, com-
prises a logical record. A load item may be continued from
one logical record to the next.

The ordered set of logical records that a processor generates
for a program or subprogram is termed an "object module”.
The end of an object module is indicated by a module-end
type code followed by the error severity level assigned to
the module by the processor.

RECORD CONTROL INFORMATION

Each record of an object module consists of 4 bytes of con-
trol information followed by a maximum of 104 bytes of load
information. That is, each record, with the possible excep-
tion of the end record, normally consists of 108 bytes of
information (i.e., 72 card columns).

The 4 bytes of control information for each record have the
form and sequence shown below,

Byte O
Record Type Mode Format
i 1 1 0
0 1 2 3 4 5 6
Byte 1
Sequence Number
0 7
Byte 2
Checksum
0 7
Byte 3
Record Size
0 7

Record Type specifies whether this record is the last
record of the module:

000 means last
001 means not last

Mode specifies that the loader is to read binary infor-
mation. This code is always 11.

Format specifies object language format. This code is
always 100.

Sequence Number is O for the first record of the module
and is incremented by 1 for each record thereafter,
until it recycles to O after reaching 255,

Checksum is the computed sum of the bytes comprising
the record. Carries out of the most significant bit
position of the sum are ignored.

Record Size is the number of bytes (including the record
control bytes) comprising the logical record (5 < record

size < 108). The recordsize will normally be 108 bytes
for all records except the last one, which may be fewer,
Any excess bytes in a physical record are ignored.

LOAD ITEMS

Each load item begins with a control byte that indicates the
item type. In some instances, certain parameters are also
provided in the load item control byte. Inthe following dis-

cussion, load items are categorized according to their function:

1. Declarations identify to the loader the external and
control section labels that are to be defined in the
object module being loaded.

2. Definitions define the value of forward references,
external definitions, the origin of the subprogram being
loaded, and the starting address (e.g., as provided in

a Symbol /Meta-Symbol END directive).

3. Expression evaluation load items within a definition
provide the values (such as constants, forward refer-
ences, etc.) that are to be combined to form the final
value of the definition.

4. Loading items cause specified information to be stored
into core memory.

5. Miscellaneous items comprise padding bytes and the
module-end indicator.

DECLARATIONS

In order for the loader to provide the linkage between subpro-
grams, the processor must generate for each external refer-
ence ordefinition aloaditem, referred to as a "declaration”,
containing the EBCDIC code representation of the symbol
and the information that the symbol is either an external ref-
erence or a definition (thus, the loader will have access to
the actual symbolic name).

Forward references are always internal references within an
object module. (External references are never considered
forward references.) The processor does not generate a dec-
laration for a forward reference as it does for externals; how-
ever, it does assign name numbers to the symbols referenced.

Declaration name numbers (for control sections and external
labels) and forward reference name numbers apply only within
the object module in which they are assigned. They have no
significance in establishing interprogram linkages, since
external references and definitions are correlated by match-
ing symbolic names. Hence, name numbers used in any
expressions in a given object module always refer to symbols
that have been declared within that module.

The processor must generate a declaration for each symbol
that identifies a program section. Although the XDS Symbol
assembler used with the Monitor aliows only a standard con-
trol section (i.e., program section), the standard object
language includes provision for other types of control sec-
tions (such as dummy control sections). Each object module
produced by the Symbol processor is considered to consist of
at least one control section. If no section is explicitly iden-
tified in a Symbol source program, the assembler assumes it
to be a standard control section (discussed below). The stan-
dard control section is always assigned a declaration name

number of 0. All other control sections (i.e., produced by
a processor capable of declaring other control sections) are
assigned declaration name numbers (1, 2, 3, efc.) in the
order of their appearance in the source program.

In the load items discussed below, the access code, pp, des-
ignates the memory protection class that is to be associated
with the control section. The meaning of this code is given
below,

PP Memory Protection Featuref

00 Read, write, or access instructions from,
01 Read or access instructions from,

10 Read only.

11 No access.

Control sections are always allocated on a doubleword
boundary. The size specification designates the number of
bytes to be allocated for the section.

Declare Standard Control Section

Byte O
Control byte
0 0 0 1 0 1 1

0 1 2 3 4 5 6 7
Byte 1

Access code Size (bits 1 through 4)

° P 0 0

0 1 2 3 4 5 6 7
Byte 2

Size (bits 5 through 12)

Byte 3

Size (bits 13 through 20)

0 7

This item declares the standard control section for the object
module. There may be no more than one standard control
section in each object module. The origin of the standard
control section is effectively defined when the first reference
to the standard control section occurs, although the declara-
tion item might not occur until much later in the object
module.

FuRead" means a program can obtain information from the
protected area; "write" means a program can store informa-
tion into a protected area; and, "access' means the compu~
ter can execute instructions stored in the protected area,

Appendix A 123

This capability is required by one-pass processors, since Byte 4
the size of a section cannot be determined until all of - -
S h h
the load information for that section has been generated by ize (bits 5 through 12)
the processor.
. 0 7
Declare Nonstandard Control Section
Byte O Byte 5
Control byte Size (bits 13 through 20)
0 0 0 0 1 1 0 0
1 2 3 4 5 6 0 /
This item comprises a declaration for a dummy control sec-
Byte 1 . . . e
tion. It results in the allocation of the specified dummy
Access code Size (bits 1 through 4) section, if that section has not been allocated previously
P P 0 0 by another object module. The label that is to be associ-
0 1) 3 4 7 ated with the first location of the allocated section must be
a previously declared external definition name. (Even
Byte 2 though the source program may not be required to explicitly

Size (bits 5 through 12)

Byte 3

Size (bits 13 through 20)

0 7

This item declares a control section other than standard con-
trol section (see above). Note that this item is not applicable
to the XDS Symbol processor used with the Monitor system,
However, the loader is capable of loading object modules
(produced by other processors, such as the Meta-Symbol
and FORTRAN 1V processors) that do contain this item,

Declare Dummy Section

Byte O
Control byte

0 0 0 1 0 0 1

1 2 3 4 5 6 7
Byte 1

First byte of name number
0 7
Byte 2
Second byte of name numbert
0 7
Byte 3
Access code Size (bits 1 through 4)

P p 0
0 i 2 3 4 7

"If the module has fewer than 256 previously assigned name
numbers, this byte is absent.

124 Appendix A

designate the label as an external definition, the processor
must generate an external definition name declaration for
that label prior to generating this load item.)

Declare External Definition Name

Byte O
Control byte
0 0 0 0 0 1 1
0 1 2 3 4 5 6 7
Byte 1
Name length, in bytes (K)
0 7
Byte 2
First byte of name
0 7
Byte K+1
Last byte of name
0 7

This item declares a label (in EBCDIC code) that is an exter-
nal definition within the current object module. The name
may not exceed 63 bytes in length.

Declare Primary External Reference Name

Byte 0
Control byte
0 0 0 0 0 1 0]
0 1 2 3 4 5 6 7
Byte 1
Name length (K), in bytes
0 7

Byte 2
First byte of name
0 7
Byte K+1
Last byte of name
0 7

This item declares a symbol (in EBCDIC code) that is a pri-
mary external reference within the current object module.
The name may not exceed 63 bytes in length.

A primary external reference is capable of causing the loader
to search the system library for a corresponding external
definition. If a corresponding external definition is not
found in anotherload module of the program or in the system

library, a load error message is output and the job is errored.

Declare Secondary External Reference Name

DEFINITIONS

When a source language symbol is to be defined (i.e., equa-
ted with a value), the processor provides for such a value by
generating an object language expression to be evaluated by
the loader. Expressions are of variable length, and termi-
nate with an expression-end control byte (see Section 4 of
this appendix). An expression is evaluated by the addition
or subtraction of values specified by the expression.

Since the loader must derive values for the origin and start-
ing address of a program, these also require definition,

Origin

Byte O

Control byte
0 0 0 0 0 1 0 0
0 i 2 3 4 5 6 7

This item sets the loader's load-location counter to the
value designated by the expression immediately following
the origin control byte, This expression must not contain
any elements that cannot be evaluated by the loader (see
Expression Evaluation which follows).

Byte O
Control byte Forward Reference Definition
0 0 0 0 0 1 ! 0 Byte 0
0 1 2 3 4 5 6 7 Control byte
0 0 0 0 1 0 0
Byte 1
e 0 1 2 3 4 5 6
Name length, in bytes (K) Byte |
First byte of reference number
0 7
Byte 2 0 7
First byte of name Byte 2
Second byte of reference number
0 . 7
: 0 7
Byte K+1 L.)
This item defines the vaiue (expression) for a forward refer-
Last byte of name ence. The referenced expression is the one immediately
following byte 2 of this load item, and must not contain
0 7 any elements that cannot be evaluated by the loader (see

This item declares a symbol (in EBCDIC code) that is a sec-
ondary external reference within the current object module,
The name may not exceed 63 bytes in length,

A secondary external reference is not capable of causing the
loader to search the system library for a corresponding exter-
nal definition, If o corresponding external definition is not
found in another load module of the program, the job is not
errored and no error or abnormal message is output.

Secondary external references often appear in library routines
that contain optional or alternative subroutines, some of which
may not be required by the user's program, By the use of pri-
mary external references in the user's program, the user can
specify that only those subroutines thatare actually required by
the current job are tobe loaded. Althoughsecondary external
references do not cause loading from the fibrary, theydo cause
linkages to be made between routines that are loaded,

Expression Evaluation which follows).

Forward Reference Definition and Hold

Byte O
Control byte

0 0 0 1 0 0 0 0
0 1 2 3 4 5 6 7
Byte 1

First byte of reference number
0 7
Byte 2

Second byte of reference number
0 7

Appendix A 125

This item defines the value (expression) for a forward refer-
ence and notifies the loader that this value is to be retained
in the loader's symbol table until the module end is encoun-
tered. The referenced expression is the one immediately
following the name number. It may contain values that have
not been defined previously, but all such values must be
available to the loader prior to the module end.

After generating this load item, the processor need not retain
the value for the forward reference, since that responsibility
is then assumed by the loader. However, the processor must
retain the symbolic name and forward reference number
assigned to the forward reference (until module end).

External Definition

Byte O
Control byte

0 0 0 0] 0 1 0

0 1 2 3 4 5 6 7
Byte 1

First byte of name number

0 7

Byte 2
Second byte of name numbert
0 7

This item defines the value (expression) for an external
definition nome. The name number refers to a previously
declared definition name. The referenced expression is
the one immediately following the name number.

Define Start

Byte O
Control byte
0 0 0 0 1 1 0 1
0 i 2 3 4 5 6 7

This item defines the starting address (expression) to be used
at the completion of loading. The referenced expression is
the one immediately following the control byte.

EXPRESSION EVALUATION

A processor must generate an object language expression
whenever it needs to communicate to the loader one of
the following:

1. A program load origin.

2. A program starting address.

"I the module has fewer than 256 previously assigned name
numbers, this byte is absent.

126 Appendix A

3. An external definition valve.

4. A forward reference value.

5. A field definition value.

Such expressions may include sums and differences of con-
stants, addresses, and external or forward reference values
that, when defined, will themselves be constants or addresses.

After initiation of the expression mode, by the use of a con-
trol byte designating one of the five items described above,
the value of an expression is expressed as follows:

1. An address value is represented by an offset from the
control section base plus the value of the control sec-
tion base.

2. The value of a constant is added to the accumulated
sum by generating an Add Constant (see below) control
byte followed by the value, right-justified in fourbytes.

The offset from the conirol section base is given as a
constant representing the number of units of displace-
ment from the control section base, at the resolution
of the address of the item. That is, a word address
would have its constant portion expressed as a count of
the number of words offset from the base, while the
constant portion of a byte address would be expressed
as the number of bytes offset from the base,

The control section base value is accumulated by means
of an Add Value of Declaration (see below) or Subtract
Value of Declaration load item specifying the desired
resolution and the declaration number of the control
section base. The loader adjusts the base value to the
specified address resolution before adding it to the cur-
rent partial sum for the expression.

In the case of an absolute address, an Add Absolute
Section (see below) or Subtract Absolute Section con-
trol byte must be included in the expression to identify
the value as an address and to specify its resolution.

3. An external definition or forward reference value is
included in an expression by means of a load item add-
ing or subtracting the appropriate declaration or forward
reference value. If the value is an address, the reso-
lution specified in the control byte is used to align the
value before adding it to the current partial sum for the
expression. If the value is a constant, no alignment is
necessary.

Expressions are not evaluated by the loader until all required
values are available. In evaluating an expression, the
loader maintains a count of the number of values added or
subtracted at each of the four possible resolutions, A sepa-
rate counter is used for each resolution, and each counter

is incremented or decremented by 1 whenever o value of the
corresponding resolution is added to or subtracted from the
loader's expression accumulator. The final accumulated sum
is a constant, rather than an address value, if the final count
in all four counters is equal to 0. If the final count inone
(and only one) of the four counters is equal to +1 or -1, the

accumulated sum is a "simple address" having the resolution
of the nonzero counter. If more than one of the four counters
have a nonzero final count, the accumulated sum is termed
a "mixed-resolution expression” and is treated as a constant
rather than an address,

The resolution of a simple address may be altered by means
of a Change Expression Resolution (see below) control byte.
However, if the current partial sum is either a constant or
a mixed-resolution value when the Change Expression Reso-
lution control byte occurs, then the expression resoluiion

is unaffected.

Note that the expression for a program load origin or start-
ing address must resolve to a simple address, and the single
nonzero resolution counter must have a final count of +1
when such expressions are evaluated.

In converting a byte address to a word address, the two least
significant bits of the address are truncated. Thus, if the

resulting word address is later changed back to byte resolu-
tion, the referenced byte location will then be the first byte

{byte 0) of the word.

After an expression has been evaluated, its final value is
associated with the appropriate load item.

In the following diagrams of load item formats, RR refers to
the address resolution code. The meaning of this code
is given in the table below.

RR Address Resolution
00 Byte

01 Halfword

10 Word

11 Doubleword

The foad items discussed in this appendix, "Expression
Evaluation", may appear only in expressions.

Byte 3
Third byte of constant
0 7
Byte 4
Fourth byte of constant
0 7

This item causes the specified 4-byte constant to be added
to the loader's expression accumulator. Negative constants
are represented in two's complement form.

Add Absolute Section

Byte O

Control byte
0 0 1 1 0 1 R R

1 2 3 4 5 6 7

This item identifies the associated value (expression) as a
positive absolute address. The address resolution code, RR,
designates the desired resolution.

Subtract Absolute Section

Byte O

Control byte
0 0 1 1 1 0 R R

1 2 3 4 5 6 7

This item identifies the associated value (expression) as a
negative absolute address. The address resolution code,
RR, designates the desired resolution.

Add Value of Declaration

Byte O
Add Constant Control byte
0 1 0 0 0 R R
Byte 0 1 2 3 4 5 6 7
Control byte
0 0 0 0 0 0 0 1 Byte 1
1 2 3 4 5 6 7 First byte of name number
Byte 1 0 7
First byte of constant
Byte 2
0 7 Second byte of name number’
Byte 2 0 7
Second byte of constant
t
If the module has fewer than 256 previously assigned name
0 7 numbers, this byte is absent.

Appendix A 127

This item causes the value of the specified declaration tobe
added to the loader's expression accumulator. The address
resolution code, RR, designates the desired resolution, and
the name number refers to a previously declared definition
name that is to be associated with the first location of the
allocated section,

One such item must appear in each expression for a reloca~
table address occurring within a control section, adding the
value of the specified control section declaration (i.e.,
adding the byte address of the first location of the control
section).

Add Value of Forward Reference

Byte O
Control byte
0 0 1 0 0 1 R R
0 1 2 3 4 5 6 7
Byte 1
First byte of forward reference number
0 7
Byte 2

Second byte of forward reference number

0 7

This item causes the value of the specified forward reference
to be added to the loader's expression accumulator. The
address resolution code, RR, designates the desired resolu-
tion, and the designated forward reference must not have
been defined previously.

Subtract Value of Declaration

Byte 0
Control byte

0 1 0 i 0 R R

] 2 3 4 5 6 7
Byte 1

First byte of name number

0 7
Byte 2

Second byte of name numbert

This item causes the value of the specified declaration to
be subtracted from the loader's expression accumulator,

"If the module has fewer than 256 previously assigned name
numbers, this byte is absent.

128 Appendix A

The address resolution code, RR, designates the desired
resolution, and the name number refers to a previously de-
clared definition name that is to be associated with the
first location of the allocated section.

Subtract Value of Forward Reference

Byte O
Control byte
0 1 0 1 1 R R
0 i 2 3 4 5 6 7
Byte 1
First byte of forward reference number
0 7
Byte 2
Second byte of forward reference number
0 7

This item causes the value of the specified forward reference
to be subtracted from the loader's expression accumulator.
The address resolution code, RR, designates the desired reso-
lution, and the designated forward reference must not have
been defined previously.

Change Expression Resolution

Byte O
Control byte
0 1 i 0] R R
0 1 2 3 4 5 6 7

This item causes the address resolution in the expression to
be changed to that designated by RR.

Expression End

Byte O
Control byte
0 0 0 0 0 1
0 1 2 3 4 5 6 7

This item identifies the end of an expression (the value of
which is contained in the loader's expression accumulator).

LOADING
Load Absolute
Byte O
Control byte
0 1 0 0 N N N N

i 2 3 4 5 6 7

Byte 1

First byte to be loaded

0 . 7

Byte NNINN

Last byte to be loaded

0 7

This item causes the next NNNN bytes to be loaded abso-
lutely (NNNN is expressed in natural binary form, except
that 0000 is interpreted as 16 rather than 0). Theload loca-
tion counter is advanced appropriately.

Load Relocatable {Long Form)

Byte O
Control byte
1 0 1 Q C R R
1 2 3 4 5 6 7
Byte 1
First byte of name number
0 7
Byte 2
Second byte of name numbert
0 7

This item causes a 4-byte word (immediately following this
load item) to be loaded, and relocates the address field
according to the address resolution code, RR. Control bit
C designates whether relocation is to be relative to a for-
ward reference (C = 1) or relative to a declaration (C = 0).
Control bit Q designates whether a 1-byte (Q = 1) or a
2-byte (Q = 0) name number follows the control byte of
this load item.

If relocation is to be relative to a forward reference, the
forward reference must not have been defined previously.
When this load item is encountered by the loader, the load
location counter can be aligned with a word boundary by
loading the appropriate number of bytes containing all zeros

This item causes a 4-byte word (immediately following this
load item) to be loaded, and relocates the address field
(word resolution). Control bit C designates whether reloca-
tion is to be relative to a forward reference (C = 1) or rela-
tive to a declaration (C = 0). The binary number DDDDDD
is the forward reference number or declaration number by
which relocation is to be accomplished.

If relocation is to be relative to a forward reference, the
forward reference must not have been defined previously.
When this load item is encountered by the loader, the load
location counter must be on o word boundary (see "Load
Relocatable (Long Form)”, above).

Repeat Load
Byte O
Control byte
0 0 0 0 1] 1 1
0 1 2 3 4 5 6 7
Byte 1
First byte of repeat count

0 7
Byte 2

Second byte of repeat count
0 7

This item causes the loader to repeat (i.e., perform) the

subsequent load item a specified number of times. The
repeat count must be greater than 0, and the load item to
be repeated must follow the repeat load item immediately.

Define Field
Byte O

Control byte
0 0 0 0 0 1 1 i
0 1 2 3 4 5 6 7
Byte 1

Field location constant, in bits (K)

(e.g., by means of a load absolute item). 0 7
Load Relocatable (Short Form) Byte 2
Byte O Field length, in bits (L)

Control byte
1 Cc D D D D D D 0 7
0 1 2 3 4 5 6 7 This item defines a value (expression) to be added to a field

"If the module has fewer than 256 previously assigned name
numbers, this byte is absent.

in previously loaded information. The field is of length L
(1 =L =255) and terminates in bit position T, where:

T = current load bit position -256 +K.

Appendix A 129

The field location constant, K, may have any value from
1 to 255. The expression to be added to the specified field
is the one immediately following byte 2 of this load item.

MISCELLANEOUS LOAD ITEMS
Padding
Byte O
Control byte
0 0 0 0 0 0 0 0
0 1 2 3 4 5 6 7

Padding bytes are ignored by the loader. The object lan-
guage allows padding as a convenience for processors.

Module End

Severity level

0 0 0 0 E E E E

1 2 3 4 5 6 7

This item identifies the end of the object module. The
value EEEE is the error severity level assigned to the mod-
ule by the processor (see "LOAD", in Chapter 2 of this
manual).

OBJECT MODULE EXAMPLE

Byte 0 The following example shows the correspondence between
Control byte the st_otemenfs of a Symbol source program and the string
0 0 0) i 1 0 of object byfes'output for that program b?/ the assembler,
The program, listed below, has no significance other than
1 2 3 4 5 6 illustrating typical object code sequences.
Example
1 DEF AA,BB,CC CC IS UNDEFINED BUT CAUSES NO
ERROR
2 REF RZ,RTN EXTERNAL REFERENCES DECLARED
3 00000 ALPHA CSECT DEFINE CONTROL SECTION ALPHA
4 000C8 ORG 200 DEFINE ORGIN
5 000C8 22000000 N AA LI, CNT 0 DEFINES EXTERNAL AA; CNT IS A
FWD REF
6 000C9 32000000 N LW, R RZ R IS A FORWARD REFERENCE;
7 * RZ IS AN EXTERNAL REFERENCE, AS
8 * DECLARED IN LINE 2
? 000CA 50000000 RPT AH,R KON [DEFINES RPT; R AND KON ARE
10 * FORWARD REFERENCES
11 000CB 69200000 BCS, 2 BB BB IS AN EXTERNAL DEFINITION
12 * [USED AS A FORWARD REFERENCE
13 000CC 20000001 AL, CNT 1 CNT IS A FORWARD REFERENCE
14 000CD 680000CA B RPT RPT IS A BACKWARD REFERENCE
15 000CE 68000000 B RTN RTN IS AN EXTERNAL REFERENCE
16 000CF 0001 KON DATA, 2 1 DEFINES KON
17 00000003 R EQU 3 DEFINES R
18 00000004 CNT EQU 4 DEFINES CNT
19 000DO 224FFFFF BB LI, CNT -1 DEFINES EXTERNAL 8B THAT HAS
20 * ALSO BEEN USED AS A FORWARD
21 * REFERENCE
22 000C8 END AA END OF PROGRAM

130 Appendix A

~

CONTROL BYTES (In Binary)

Begin Record

Record number: 0

00111100
00000000
01100011
01101100

00000011

00000011

00000011

00000101

00000101

00001010

00000001

00100000

00000010

00000100
00000001
00100000

00000010

01000100

00000111

00100110

00000010

Record type: not last, Mode binary, Format: object language.

Sequence number 0
Checksum: 99
Record size: 108

03020101 (hexadecima! code comprising the load item)
Declare external definition name (2 bytes) Name: AA

03020202

Declare external definition name (2 bytes) Name: BB

03020303
Declare external definition name (2 bytes) Name: CC

0502D9E9
Declare primary reference name (2 bytes) Name RZ

0503D9E3DS

Declare primary reference name (3 butes) Name: RTN

0A010100000320200002

Define external definition

Number 1

Add constant: 800 X'320'

Add value of declaration (byte resolution)
Number 0

Expression end

040100000320200002

Origin

Add constant: 800 X'320'

Add value of declaration (byte resolution)
Number 0

Expression end

4422000000
Load absolute the following 4 bytes: X'22000000'

07EB0426000002

Define field

Field focation constant: 235 bits

Field length: 4 bits

Add the following expression to the above field:
Add value of forward reference (word resolution)
Number 0

Expression end

Declaration

Declaration

Declaration

Declaration

Declaration

number:

number:

number:

number:

number:

Record control
information not
part of load item

Source Line 1

Source Line 2

Source Line 5'

Source Line 4

Source Line 5

No object code is generated for source lines 3 (define control section) or 4 (define origin) at the time they are encountered.
The control section is declared at the end of the program after Symbol has determined the number of bytes the program requires.
The origin definition is generated prior to the first instruction.

Appendix A 131

8432000000

10000100 Load relocatable (short form). Relocate address field (word resolution)
Relative to declaration number 4
The following 4 bytes: X'32000000"

07EB0426000602
00000111 Define field
Field location constant: 235 bits
Field length: 4 bits
Add the following expression to the above field:
00100110 Add value of forward reference (word resolution)
Number 6
00000010 Expression end

CC50000000
11001100 Load relocatable (short form). Relocate address field (word resolution)
Relative to forward reference number 12

The following 4 bytes: X'50000000*

07EB0426000602
00000111 Define field
Field location constant: 235 bits
Field length: 4 bits
Add the following expression to the above field:

00100110 Add value of forward reference (word resolution)
Number 6
00000010 Expression end
D26%200000
11010010 Load relocatable (short form), Relocate address field (word resolution)

Relative to forward reference number 18
The following 4 bytes: X'69200000"

4420000001

01000100 Load absolute the following 4 bytes: X'20000001"
07EB0426000002

00000111 Define field

Field location constant: 235 bits
Field length: 4 bits
Add the following expression to the above field:
00100110 Add value of forward reference (word resolution)
Number 0
00000010 Expression end

80680000CA
10000000 Load relocatable (short form). Relocate address field (word resolution)
Relative to declaration number 0

The following 4 bytes: X'680000CA"

8568000000

10000101 Load relocatable {short form). Relocate address field (word resolution)
Relative to declaration number 5
The following 4 bytes: X'68000000"

08
00001000 Define forward reference (continued in record 1)

132 Appendix A

Source Line 6

Source Line 9

Source Line 11

Source Line 13

Source Line 14

Source Line 15

Source Line 16

Begin Record Record number 1

00011100
00000001
11101100
01010001

00000001
00100000

00000010

01000010

00001000

00000001

00000010

00001000

00000001

00000010

00001111

01000001

00001000

00000001

00000010

00001010

00000001
00100000

00000010

01000100

00001101
00000001
00100000

00000010

Record type: last, Mode: binary, Format: object language.

Sequence number 1
Checksum: 236
Record size: 81

000C010000033C200002 (continued from record 0)
Number 12

Add constant: 828 X'33C'

Add value of declaration (byte resolution)
Number 0

Expression end

42001
Load absolute the following 2 bytes: X'0001'

0800060 10000000302
Define forward reference
Number 6

Add constant: 3 X'3!
Expression end

0800000 10000000402
Define forward reference
Number 0

Add constant: 4 X'4!
Expression end

0F00024100

Repeat load

Repeat count: 2

Load absolute the following 1 bytes: X'00'

0800 120100000340200002

Define forward reference

Number 18

Add constant: 832 X'340'

Add value of declaration (byte resolution)
Number 0

Expression end

0A020100000340200002

Define external definition

Number 2

Add constant: 832 X'340'

Add value of declaration (byte resolution)
Number 0

Expression end

44224FFFFF
Load absolute the following 4 bytes: X'224FFFFF'

0D0100000320200002

Define start

Add constant: 800 X'320*

Add value of declaration (byte resolution)
Number 0

Expression end

Record Control
Information

Source Line 16

Source Line 17

Source Line 18

Advance to Word
Boundary

Source Line 19

Source Line 22

Appendix A 133

0B000344

00001011 Declare standard control section declaration number: 0

Access code: Full access,

OEO0O
00001110 Module end
Severity level: X'0'

Size 836 X'344'

A table summarizing control byte codes for object language load items is given below.

Type of Load Item

Object Code Control Byte

0 0 0 0 0 O

0 0 0 0 0 O O
0 0 0 0 0 0 1
0 0 0 0 0 0 1
06 0 0 0 0 1 O
0 0 0 0 0 1 O
0 0 0 0 O 1 1
0 0 0 0 0 1 1
0 0 0 0 1 0 O
0o 0 0 0 1 0 O
0 0 0o 0 1 0 1
6 0 0 0 1 0 1
o 0 0 0 1 1 O
0 0 0 0 1 1 0
o 0 0o o0 1 1 1
0 0 0 0 1 1 1
0 0 0 1 0 0 O
6 0 1 0 0 0 R
0 0 1 0 O 1 R
6 0 1 0 1 0 R
0o 0 1 0 1 1 R
o 06 1 1 0o O R
o 0 1 1 0 1 R
o 0 1 1 1 0 R
0 1 0 0 N N N
o 1 0 1 @ C R
1 ¢ b D D D D

O »» Z o =mom o ™ o » ™ O

Padding

Add constant

Expression end

Declare external definition name
Origin

Declare primary reference name
Declare secondary reference name
Define field

Define forward reference

Declare dummy section

Define external definition
Declare standard control section
Declare nonstandard control section
Define start

Module end

Repeat load

Define forward reference and hold
Add value of declaration

Add value of forward reference
Subtract value of declaration
Subtract value of forward reference
Change expression resolution

Add absolute section

Subtract absolute section

Load absolute

Load relocatable {long form)

Load relocatable (short form)

134 Appendix A

APPENDIX B. REAL-TIME PERFORMANCE DATA

RESPONSE TO INTERRUPTS BY CENTRALLY
CONNECTED TASKS

Table B-1 shows the time (in psec) used by the system to
save the interrupted context and establish the interrupting
task context. This time includes the XPSD in the interrupt
location context and represents the total time between the
interrupt becoming active and the start of execution of the
first instruction in the task (assuming no interruption by a
higher priority task). The minimum and maximum times
reflect minimum and maximum memory overlap.

1/0 INTERRUPT

Following successful completion of an I/O device access,

the 1/O interrupt will remain active for a maximum of

90 psec, assuming that no higher priority interrupts have
become active during this period. RBM never disables the
interrupt system for longer than 100 psec.

Upon clearing the 1/O interrupt, the system proceeds with
cleanup of the request at the priority level of the inter-
rupted task.

CONSOLE INTERRUPT

The Console Interrupt remains active for less than 30 usec.
During this time, a flag in the Control Task is set to indi-
cate the occurrence of the interrupt and the Control Task
interrupt is triggered.

OVERLAY LOADING

Overlay loading is accomplished with a negligible percent-
age of total time devoted to non-1/O system activity. For
example, on the Model 7202/7204 RAD, a 1400-word over-
lay requires approximately 50 msec, assuming average la-
tency (17 mils) and 1/O transfer time of 34 msec. To this
must be added the time waited to gain access to the RAD
(time of request, if any in progress, plus the time of any
higher priority requests).

Table B-1. Times Required to Save Interrupted Context
Registers Times in Task interrupts back- Task interrupts system or fore- No ac-
Saved psecf ground with accounting ground tasks with accounting counting
Min, 39.0 34.4 30.8
4
Max. 42.2 36.1 324
Min. 42.2 37.6 34.0
8
Max. 44.8 39.7 36.0
Min. 48.6 44.0 40.4
16
Max. 52.0 46.9 43.2
Mimes assume a Sigma 7 configuration without map.

Appendix B 135

Assuming a Model 7202/7204 RAD, a rough approximation
of the amount of RAD space required by the RBM system is

60 tracks to store the Monitor plus the following processors:

136

APPENDIX C. RAD STORAGE REQUIREMENTS

Macro-Symbol

FORTRAN 1V-H

FORTRAN Math/Run-Time Library
Symbol

Overlay Loader

RAD Editor

Appendix C

The RAD areas used by the system require the following ap-
proximate numbers of tracks:

RAD Area Number of Tracks
System Programs 50
Checkpoint 8 (assuming an 11K background)

Background Tempf 45 (sufficient for a Macro-
Symbol "assemble and go" of
about a 7000 line source
program)

fThe size of the Background Temp area is highly dependent
on a user's requirements.

APPENDIX D.

In addition to loading the Overlay Loader and RAD Editor
into their respective files in the SP RAD area at SYSGEN
time (see !LOAD command in Chapter 2), the JCP Loader
can be used to load some user programs. Within the restric-
tions given below, both nonoverlaid and overlaid programs
can be loaded onto the RAD for subsequent execution.

LOADING NON-OVERLAID PROGRAMS

1. The last object module in the program being loaded
must be terminated by an 1EOD command. Any num-
ber of object modules can be loaded.

2. The object module cannot contain any of the following
load items: declare dummy section, declare secondary
external reference name, forward reference definition,
or add or subtract absolute section. The field (in a de-
fine field load item) cannot cross a word boundary.

3. FORTRAN compiled programs or programs assembled
with basic Symbol, or programs using the LOCAL
directive cannot be loaded with this Loader.

4. Object modules being loaded cannot contain more than
225 declaration name numbers.

5. The JCP Loader creates the OVLOAD and DCB table
and the M:SL DCB. The user must code the complete
PCB except for the OVLOAD table address, the DCB
table address, and the M:SL DCB address. The user
must also code all DCBs (except M:SL), the Temp Stack
and all other tables referenced in the PCB.

6. The PCB must be the first data loaded in the root.
Example:

Load a nonoverlaid foreground program onto its permanent
file:

ILOAD (IN,9TA82), (QUT,FP FCOPY), (EXLOC 4100) F

This example loads a foreground program (indicated by F
parameter) from a 9-track tape onto the FCOPY file in the

JCP LOADER

FP area. The program will be loaded to execute at 41004
(EXLOC,4100). The foreground program can consist of any
number of object modules, but the last object module must
be followed by an EOF. The object modules must obey the
restrictions specified for the JCP Loader (see above). Note
that an SY key=~in must be in effect.

LOADING OVERLAID PROGRAMS

For loading a program with overlay segments, the above re-
strictions plus the following restrictions apply:

1. The only overlay structure allowed is a root plus one
level of overlay.

2. The root must be the first group of object modules
loaded and must be terminated by an 'EOD command.
Each group of object modules loaded after the root and
terminated with an IEOD command will consist of one
overlay segment and will be attached to the end of the
root. Each overlay segment will be assigned o segment
identification of 1 to n, where 1 is assigned to the first
segment loaded, 2 assigned to the second segment
loaded, etc. The segment identification is used in
calling in an overlay segment at execution time.

3. The number of overlay segments must be correctly stated
on the |LOAD command.

For multisegment programs, the JCP Loader builds the
OVLOAD table at the end of the root and allocates seven
words for the M:SL DCB. The entry address for each over-
lay is taken from the last encountered start item and placed
in the OVLOAD table along with the load address, byte

count, and segment identification.

The JCP Loader writes the program in core image format onto
the appropriate file. The addresses and names of all M: or
F: DEFswill be used by the Loader to create the DCB table.
The loaded program can be executed via the RUN, ROV, or
Name command, depending upon which RAD file the pro-
gram was loaded on. Note that the Loader never loads a
program directly into core memory. The JCP Loader can be
used to load foreground programs (which must obey the pre-
viously stated restrictions) by using the EXLOC and F pa-
rameters on the !LOAD command.

Appendix D 137

APPENDIX E. SYSTEM PATCHING

Modification of the resident RBM system (including all sys-
tem tables), RBM overlays, and Job Control Processor can
be performed at system boot time through patches defined
on !MODIFY control commands. Any number of | MODIFY
commands can be input, and the stack is terminated by a
single |END command. The system is notified that patching
is to take place by sense switch settings that are set prior to
RBM initialization.

As each command is processed, the overlay is read into
core, modified, and written out to the system RAD. Note
that unused RAD space between the end of an overfay and
the end of an overlay's file (that is, unused space on the
last sector of an overlay) can be used for a patch area.

INPUT OPTIONS

The !MODIFY control commands are input at system boot
time during the RBM initialization. Sense switches 1, 2,
and 3 are used to designate the input device as follows:

Setting Meaning

All off no patches

1 on; 2,3 off input from C device

2 on; 1,3 off input from OC device

3on; 1,2 off input from SI device

Any other sense switch settings will result in an error mes-
sage and the system will have to be rebooted. The switches
must be set prior to booting in the system.

COMMAND FORMATS

In the !IMODIFY control commands listed below, the
brackets only indicate options available in the specification
field and are not actually used in the MODIFY statements;
the indicated parenthesis and commas are required. The
general format for | MODIFY commands is

IMODIFY (module,loc), value{R]

where

module specifies one of the modules described be-
low to be patched.

loc specifies the initial hexadecimal location to
be modified and is relative to the beginning of the
named module (for ABS, loc is relative location 0).

value specifies the hexadecimal value to be inserted
in the location. Successive values in successive
locations.

R is the relocation flag indicating that the address

field of the value is to be relocated by adding the
beginning address of the named module.

138 Appendix E

PATCH SYSTEM OVERLAY OR JCP

IMODIFY (OLAY,name,loc)[R]value[[R] value,... [Rjvalue]

where name can be one of the following:

JCP Job Control Processor)
CKPT Checkpoint Routine)
FGLI Foreground Program Releaser)

(
(
(
FGL2 (Foreground Program Loader)
ABEX (Abort/Exit Routine)
KEY1 (Key-in Processor 1)
KEY2 (Key=in Processor 2)
PMD (Postmortem Dump Routine)
BKLI (Background Loader 1)
BKL2 (Background Loader 2)

PATCH SIMULATION ROUTINE

/! MODIFY (SROU, name, loc) [Rvalue[,[Rvalue... [R]value]

PATCH RBM MONITOR

/!MODIFY (RBM, loc), [R}value[, [Rlvalue ... [R]value]

PATCH SYSTEM TABLES

!MODIFY (ABS, loc), value[, value, ... vczlue]

PATCH PATCH AREA

IMODIFY (PATCH, loc), value

IEND COMMAND FORMAT

The IMODIFY control command(s) must be followed by a
terminating YEND command with the form

1END [RBM]

where RBM indicates that the copy of RBM resident on the
system RAD is to be replaced by the current version of RBM
in core.

SYSTEM PATCHING DIAGNOSTICS

The diagnostic messages in Table E-1 will be output on
the OC device for a corresponding error in sense switch
settings or | MODIFY commands. There is no error re-
covery. In all cases, the condition causing the mes-
sage must be corrected and the system rebooted.

Table E-1. System Patching Diagnostics

Message

Meaning

Action

IHINVALID SSW SETTING, REBOOT

Switch 4 is set, or more than
one switch is set,

Correct and reboot system.

TERROR ITEM xxxx, REBOOT

Illegal areq, illegal simulation
routine, illegal identifier, or
missing syntax (e.g., parenthesis
or comma),

Correct and reboot system.

1 IPATCHING OUTSIDE OF SPECIFIED —
L AREA, REBOOT

Requested patch either exceeds or
falls outside previously specified
area,

Correct and reboot system.

PATCH AREA NOT ALLOCATED

Patch area was not previously
specified at SYSGEN time,

Re-SYSGEN and reboot
system,

Appendix E

139

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in

numerical sequence.

7T device code, 9
9T device code, 9

A

abnormal returns, 36

ABORT/EXIT routine, 97

ABORT function, 51

ABORT return, 48,45

access methods, 29

accounting services, 4

action character, 26

active foreground program, vii

add constant, 127

add value of declaration, 127

add value of forward reference, 128

addend value, vii

address resolution, 127

address resolution code, vii

addressing files, 29

AlIO status, 30

AL file, 17,4

ALL map, 67,87,103

ALL option, 114

ALLOBT control command (Monitor), 14,8, 28
ALLOBT control command (SYSGEN), 113,108
ALLOT control command (Editor), 82,28
ARM function, 52,48, 49

ASSIGN command created DCBs, 33
ASSIGN control command (Loader), 62,56,64,77

ASSIGN control command (Monitor), 9,8,10,11,28, 32,

33,64,77

ATTEND control command (Monitor), 12,8, 53,70, 83

BA processor specification option, 18
background, 1

background area, vii

Background Data area, 5,107

background devices, 15

background IOQ table, 109

background job stack, 23,2

background program, vii, 82

Background Programs area (BP), 3, 80, 5,10, 107

background Temp area, 28,3,5,10,14,19,58,107,108,112

background Temp File, 19,10

batch processing, 2

BDTRACK control command (Editor), 88, 80
BI operational label, 9

binary input, vii

binary object module, 59, 56

blank COMMON, 77, 5, 54, 60,78

block boundary, 29

blocked files, 28,14,19,29,80

blocking buffers, 13,19

140 Index

INDEX

BO operational label, 9,18
BRAD entry, 108
buffer pool, 105

C

C key=-in, 23

C operational label, 9,24

calling overlay segments, 78

calling Public Library, 66

calling RAD Editor, 82

CAL1 instruction, 28

card punch, 26

card reader, 26

CC control command (Monitor), 13, 8
CC key=-in, 24,13

centrally connected interrupt, vii
centrally connected task, 45,31,135
change expression resofution, 128
channel designation codes, 10
CHECK function, 37,28,38

CHECK system, 29

CHECKed operations, 38

checkpoint, 48, vii, 4,107

CI operational label, 9,18

CINT key-in, 24

CLEAR control command (Editor), 84
CLOSE file, 37

CLOSE function, 30,37

CLOSE request, 30

CN processor specification option, 18
CO operational label, 9,18

COC key~-in, 23

COMMON control command (Loader), 60, 56,77
COMMON storage, 46,77
completion status, 29

compressed files, 29,3, 39,80
compressed input, 18, 94

compressed output, 18, 90, 94, 95
compressed programs, 94

compressing directory entries, 80
computing library file sizes, 81
CONNECT function, 51,46,48,49,78
connecting tasks to interrupts, 48,2
console interrupt, 135

constructing library, 66

control command, vii

control message, vii

control panel task, 23,105

COPY control command (Editor), 83,82, 84
core memory layout, 104,105

core memory requirements, 2

core size, 110

core storage area allocations, 78,104
CP device code, 9

CPU options, 10,110

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in

numerical sequence.

CR device code, 9

CTINT control command (SYSGEN), 113

D processor specification option, 18
DAL control command (Monitor), 17,8

data area, 80

data areas
background, 107, 3
foreground, 107,3

Data Control Block (DCB), 64, vii, 1,9,28

data files, 80

DATA statement, 54

date, 4,24

DB key-in, 25

DC device code, 9

DCs, 1,9,30,77

DCB creation, 32

DCB format, 33

DCB table, 11

DCBTAB, 47,64

DCT, 28,108

decimal arithmetic trap, 48,50
decimal simulation routines, 105
declaration, vii
declaration number, vii
declarations, 123

DED key=-in, 25
dedicated device, 25
dedicated memory, vii
DEF/REF, 65, 81, 82,85
DEF/REF linkage, 55
define field, 129

define files, 14

DEFREF file, 65,80, 81,83

DELETE control command (Editor), 84
DEVICE control command (SYSGEN), 111,107,112, 115

device control table, 108,28, 111
device controller, 29

device dedication, 25
device designation codes, 10
device file mode, 42,108
device requests, 29

device type code, 110
device type index, 30

DF key-in, 25

direct access, 29,30

direct connection, 49

direct 1/O (IOEX), 31,5,25
directly connected interrupt, vii
directly connected tasks, 31
DISABLE function, 52,49
DISARM function, 52,48, 49
DM key=~in, 25

DO operational label, ¢
DSECT, 61,63

DT key-in, 24

dummy section, 124, vii
Dump Accounting Log, 17

Dump Background key-in, 25
DUMP control command (Editor), 86
Dump Foreground key-in, 25

Dump Monitor key-in, 25

Dumps, 23

E

EBCDIC data, 29

EBCDIC file, 65, 81,85

ENABLE function, 52,49

end record, vii

end-action, 31

end-of-file mark, 17
End-Of-Message key, 23

entry address, 65

ENTRY keyword, 78

entry pool, 29

EQD control command (Monitor), 15,8, 55, 94, 101
EQOD record, 38

EOF, 17

EQU directive, 19

error conditions, 36

error severity level code, vii
EXCLUDE control command (Loader), 56, 60, 65
execution location, vii

execytion time, 13

EXIT function, 51

EXIT return, 45,48

EXIT routine, 31

expression, vii

expression end, 128

expression evaluation, 125

external definition, 65, vii, 124,126
external interrupt, 6

external reference, 65, vii, 81
external reference name, 124,125

F

F4:COM, 77,78

F:DCB, 77

FFPOOL, 105

FG key-in, 25

FGC key-in, 25

file allocation, 80

file deletion, 80

file directories, 80, 5, 81

file format, 85

file keyword, 67

file organization, 28,42

file positioning, 15

file size, 28,80, 81, 86

file truncations, 85

FIN control command (Monitor), 15,8
FIN control command (SYSGEN), 113
fixed-point arithmetic trap, 48,50
floating-point arithmetic trap, 48, 50
floating=point simulation, 106,110
FMBOX, 110

FMEM key-in, 25

Index

141

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in

numerical sequence.

foreground, 1

foreground area, vii, 106, 107

foreground blocking buffer, 110

foreground execution time, 4

foreground exit, 105

foreground I0OQ table, 109

foreground job examples, 102

foreground mailbox, 2,65,110

foreground memory, 25

foreground overlay programs, 54

foreground program, 2,vii,3,11,13,24,49,82,107

Foreground Programs area (FP), 3,80, 10, 24,65, 81,102,
103, 107

fareground protection, 25

foreground Root Loader, 45,49, 50, 106

foreground service routines, 106

foreground task, 47, vii, 2,6

Foreground Programs Directory, 4

format control, 34

forming Public Library, 66

FORTRAN Blank COMMON, 65

FORTRAN DCBs, 64

FORTRAN H control command (Monitor), 8

FORTRAN interface, 77

FORTRAN operational labels, 32

FORTRAN source deck, 96,97,101

forward reference definition, 125

forward reference number, vii

FP:MBOX, 2,65,109

FPT (see Function Parameter Table)

FRAD entry, 108

free entry pool, 29

FSC key=-in, 25

Function Parameter Table (FPT), 1, vii, 28,30, 31, 38

F4:COM, 75

GDTRACK control command (Editor), 88, 80

GO file, 3,19,vii, 11,16,18,19, 28,32, 56, 93,100, 101,
107,108

granule size, 29, vii, 28,42, 80

H

hardware configuration, 6
HIO instruction, 31

1/0 cleanup, 29,3,4,30

I/O codes, 36

1/O communications, 25

1/0 device, 31,29,30

1/O end action, 30

1/O interrupt, 7,29-31,43,106,135
1/0 key-in, 26

1/O messages, 26

1/0 package, 106

1/O queue table, 109

142 Index

1/O queueing, 29
I/O request, 29,32
1/0 start, 29,3,30
I/O system calls, 36
idle account, 15
idle state, vii
INCLUDE control command (Loader), 60, 56,65
input/output operations, 28
installation control command, viii
installation parameters, 104
interrupt, 2,31,106
interrupt connection, 48
interrupt control, 48,106
interrupt label, 24,31, 109
interrupt priority, 31,7
interrupt task, 65
interrupt, external, 6
interrupt, trigger, 24
interrupts

ARM, 24

DISARM, 24,49

ENABLE, 24

1/0, 7
interrupts, disabling, 49
INTLB control command (SYSGEN), 113,109
INTLB key-in, 24
INTLB table, 109
INTTAB, 64
1IQEX function, 43,5,7,25,31,44,106,107
IOP, 25
IOP command doublewords, 31
IOP multiplexor, 113
IOP, selector, 113

J

JCP (see Job Control Processor)

JCP Loader, 11,137

JCP messages, 21,22

job accounting, 4,53,106

JOB control command (Menitor), 8,9, 23, 32, 93
Job Control Processor, (JCP), 8,4,19,28,54,106

key-in, vii

key=-in processor, 106

key-ins, 23
C, 23
CC, 24,12
CINT, 24
CoC, 23
DB, 25
DED, 25
DF, 25
DM, 25
DT, 24
FG, 13,25
FGC, 25
FSC, 25

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in

numerical sequence.

FMEM, 25
1/0, 26
INTLB, 24
RLS, 24
RUN, 24, 45
SFC, 25
STDLB, 24,32,75
SY, 23
SYC, 25
TY, 23,25
TYC, 25
UND, 25
W, 23
X, 23
keyword, viii

L

Labeled COMMON, 5, 54,61, 63,76-78

LCOMMON control command (Loader), 61,56,77,78

LIB control command (Loader), 59,56, 60
LIB option, 59

library files, 81

library input, viii

library object modules, 54

library protection, 66

library search, 59

LIMIT control command (Monitor), 13,8, 15
LL operational label, ¢

LO operational label, 9,18

load absolute, 128

load and go operations, 93

LOAD control command (Monitor), 11, 8,46
load foreground program, 24, 45,102
load item, 123, viii, 130, 134

load location counter, viii

load map, viii

load module, viii, 45

load origin, 126

load relocatable, 129

Loader created DCBs, 33, 63

Loader error diagnostics, 70
Loader-generated items, 64

loading system processors, 116

loading user programs, 116

logical device, viii

LP device code, 9

LS processor specification option, 18

LU processor specification option, 18

M:BI system DCB, 32
M:BO system DCB, 32
M:C system DCB, 32
M:CI system DCB, 32
M:CO system DCB, 32
M:DCB system DCB, 77
M:DO system DCB, 32
M:GO system DCB, 32

M:LL system DCB, 32
M:LO system DCB, 32
M:OC system DCB, 32
M:QV system DCB, 32
M:PL, 32
M:SI system DCB, 32
M:SL system DCB, 32
M:SO system DCB, 32
M:Xi system DCB, 32
Macro-Symbol, 5,13,18, 93
Macro-Symbol processor load, 120
MACRSYM control command (Monitor), 8,18,93, 94
magnetic tape, 27,118
manual mode, 16,26
map, 67
MAP control command (Editor), 85
map information, 54
Master Directory, 108
MASTER function, 52
master mode, 30, 47,49
math and run-time routines, 65
memory area, 25
memory protection, 4
memory size, 110
MESSAGE control command (Monitor), 8,12
modes (MOD,PACK), 42
MODIFY control command (Loader), 61, 56
MGCDIFY control command (Monitor), 138, 15
MODIR file, 65, 81
module directory file, 65,81, 85
module end, 130
Monitor, viii, 2
MONITOR control command (SYSGEN), 110
Monitor control commands, 7
ALLOBT, 14,8,28
ASSIGN, ¢9,8,10,11,28
ATTEND, 12,8,53,70, 80
CC, 13,8
DAL, 17,8
EOD, 15,8,55,94,101
FIN, 15,8
FORTRANH, 8
JOB, 8,9,23,32,93
LIMIT, 13,8,15
LOAD, 11,8, 46
MACRSYM, 8,18, 93,94
MESSAGE, 8,12
MCDIFY, 138,15
OLOAD, 56,8,54,55,59,63
PAUSE, 12,8, 23
PFIL, 15,8
PMD, 15,8,93
POOL, 13,8,19
PREC, 15,8
RADEDIT, 82,8
REWIND, 16, 8
ROV, 13,8,18,45,693
RUN, 13,8,15,25,45,101
SFIL, 16, 8
SL-1, 5,8

Index

143

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in

numerical sequence.

STDLB, 13,8,13,32
SYMBOL, 8
UNLOAD, 16,8
WEOF, 17,8
Monitor errors, 36
Monitor, SYSGEN options, 105

multidevice controller, 31

name number, viii
NEW LINE code, 23
NO device code, 9

nonstandard control section, 124

0

object deck, viii
object language, viii
object language format, 122
object module, viii, 11
object module example, 130
OC operational label, 9
OLOAD control command (Monitor), 56,8, 54, 55, 59, 63,
67,93
OPEN function, 30, 36, 37
OPEN request, 30
operational label, 32, viii, 13,24,109,112
operator control, 23
OPLBS table, 109
option, viii
origin, 125
output devices, 30
QV file, 3,19,11,13,14,28,93,100,107,108
Overlay control commands, 55
ASSIGN, 62,56, 64,77
COMMON, 60, 56,77
EXCLUDE, 56, 60, 65
INCLUDE, 60, 56, 65
LCOMMON, é1,56,77,78
LiB, 59,56,60
MODIFY, 61,56
PUBLIB, 63, 56,59, 61,62
RES, 61,56
ROOT, 57, 54-56, 58, 59, 66,78, 101
SEG, 58,54-56,59,61, 66,100
overlay example, 59
Overlay Loader, 54, viii, 5, 11,23, 28, 32, 45, 46, 93,108
Overlay Loader diagnostics, 70
Overlay Loader processor load, 119
overlay loading, 135
overlay program, 54, viii, 55
overlay segment, 12,5,47,48,64
overlay structure, 54,5,6,11,55
OVLOAD, 63,5,11,64

P

P:END, 65,77
padding, 130

144 Index

page boundary, 105

paper tape punch, 27

paper tape reader, 27

parameter presence indicator, viii

patching system, 138

PAUSE control command (Monitor), 12,8, 23
PCB (see Program Control Block)

permanent files, 2,28, 80

PFIL control command (Monitor), 15,8

PFIL function, 41

physical device, viii

PL operation label, 34

PMD control command (Monitor), 15,8,15,93
POOL control command (Monitor), 13,8,19
position file, 15,41

position record, 15, 41

postmortem dump, 15, viii, 6, 100, 106

power failure, 26

PP device code, 9

PR device code, 9

PREC control command (Monitor), 15,8
primary reference, viii

print error, 26

PRINT function, 41

printer, 26

processor control commands, 17

processor interface, 19

program, 1

Program Control Block (PCB), 46,2, 5,47,64
program deck, 93

program file, 64

PROGRAM map, 67,102

PROGRAM map sample, 68

program modification, 6

program scheduling, 45

program segments, 45

Program Trap Conditions (PTC), viii
protection violations, 4

PSD, 49

pseudo file name, viii

PUBLIB control command {Loader), 63,56, 59,61, 62
Public Library, 66,3, 4,49, 54,56, 64, 65
PUNCH control command (SYSGEN), 113
push down stack limit trap, 50

push/pull stack instructions, 47

queueing, 29

RAD, 2

RAD allocation, 80,5,104,106,107,116

RAD areas, 3, 97,105,107, 136

RAD bootstrap, 114,115

RAD Editor, 80, 5,23

RAD Editor control commands, 82
ALLOT, 82,28
BDTRACK, 87,79

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in

numerical sequence.

CLEAR, 84
COPY, 83,82,84
DELETE, 84
DUMP, 86
GDTRACK, 87,80
MPA, 85
RESTORE, 87
SAVE, 87
SQUEEZE, 85,84
TRUNCATE, 85,81
RAD Editor messages, 8%
RAD Editor processor load, 119
RAD file, 4,3,9,16,23,30,32,80,106
RAD File Directory, 42
RAD File Table (RFT), 28,35,42,108,111
RAD map, 104
RAD protection, 82
RAD restoration messages, 89, 91
RAD squeezing, 80
RAD storage requirements, 136
RAD tracks, 88,99
RAD, default sizes, 107
RAD, write-protected, 118
RADBOOT files, 115
RADEDIT control command (Monitor), 82
RBM Bootstrap, 107
RBM Control Task, 4,6,23,106
RBM files, 115
RBM overlay area, 106
RBM OVLOAD Table, 109
RBM structure, 106
RBM tables, 104,106
RBMSAVE, 46
READ function, 38
read protection, 3
READ request, 38,28-31
real-time performance data, 135
real-time processing, 2, 97
rebootable binary deck, 104, 106
record control information, 122
Record Size (RSZ), 28, 42, 80, 86
reentrant routine, 2,66
REF, 65,104
REF/DEF linkages, 5
release foreground program, 25,45, 50
releasing Public Library, 65
relocatable object module, 45, viii, 58
relocatable programs, 61
repeat load, 129
RES control command (Loader), 61, 56
RESERVE control command (SYSGEN), 110,108
resident foreground program flag, 80
resident program, viii
restart, 48,2,3
RESTORE control command (Editor), 88
return functions, 48
REWIND control command (Monitor), 16,8
REWIND function, 40
FRT (see RAD File Table)
RLS function, 50

RLS key-in, 24

ROM (see Relocatable Object Module)

root, 11,5,54

ROOT control command (Loader, 57,54-56,58,59,66,78,101
Root Loader, 45,48,64, 106
ROOT segment, 64

ROOT substack, 56,61

ROV control command (Monitor),
RUN control command (Monitor),
RUN function, 49

RUN key-in, 24,45

RUN system call, 45

run-time ASSIGNS, 77

)

SAVE control command (Editor), 88
SAVE option, 14,19

scheduling programs, 45

scratch files, 19,99

scratch storage, 2

secondary reference, viii

secondary storage, viii, 2

SEG control command (Loader), 58,54-56,59,61,66,100
SEGLOAD function, 52, 18,47, 53-55, 58, 64,78
segment linkage, 54

Segment Loader, 32, viii, 106

segment loading, 54

segmented background job, 101
segmented foreground program, 103
selector IOP, 113

sequential access, 29

sequential input, 30,38

severity level, 62

SFC key=-in, 25

SFIL control command (Monitor), 16,8
sharing DCBs, 30

sharing I/O devices, 30

sharing RAD files, 30

SHORT map, 67,100

SI operational label, 9,18

signal address, 49, 50

SIO instruction, 31

SIO operation, 43

SIOP control command (SYSGEN), 113
skip file, 16

skipping bad tracks, 80

SL-1, 5,8

SL~1 control command (Monitor), 7
SLAVE function, 52

slave mode, 47,49

SO operational label, 9,18

software write protection, 4,23
source code translation, 121

source deck, viii

source language, viti

SQUEEZE control command (Editor), 85,84
Stack Pointer Doubleword, 47
stand-alone loader, 104,109

standard control section, viii, 123

,8,18,45,93
8,15,25,45,101

Index 145

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in ..

numerical sequence.

Standard Object Longuage, 121, 54
standard operational labels, 13
starting address, 126
STARTIO function, 31,42
STDLB control command (Monitor), 13,8, 32
STDLB control command (SYSGEN), 112,109
STDLB key-in, 24,32,77
STOPIO function, 42,31
subroutine, reentrant, 2
SY key~in, 23
SYC key-in, 25
Symbol, 5,108
SYMBOL control command (Monitor), 8
symbol table, 104
symbolic name, viii
SYSGEN, 104,108,112
SYSGEN control command (SYSGEN), 109
SYSGEN control commands, 110
ALLOBT, 113,108
CTINT, 113
DEVICE, 111,107
FIN, 113
INTBL, 113,109
MONITOR, 110
PUNCH, 113
RESERVE, 110,108
STOP, 113
STDLB, 112,108
SYSGEN, 109
SYSLD, 114
SYSGEN map, 105
SYSGEN-defined parameters, 115
SYSLD control command (SYSGEN), 114
SYSLOAD, 114,104,115
SYSLOAD alarm, 108-110,115
system DCBs, 32,1,64
system function call formats, 49
System Generation, 104
system library, 65, viii, 56, 64
system library files, 81
system patching, 138
system processors, 18
System Programs, 107
System Programs area (SP), 80,3, 10, 65, 81, 106, 107
system RAD, 115
system trap handling, 48

T

task, 1

Task Control Block (TCB), 45, viii, 1,46, 49
TCB (see Task Control Block)

TDV instruction, 31,43

temp file, 3,14

Temp Stack, 47,viii, 1,2,4,46,64
temporary assignments, 24,13

TIME function, 53

TIO instruction, 31,43

TRAP function, 50, 48

146 Index

trap handler messages, 21
trap handling, 48

trap processing tasks, 106
trap return, 51

traps, 21,106

TRIGGER function, 52,49
TRTN function, 51,48
TRUNCATE control command (Editor), 85, 81
TY device code, 9

TY key-in, 23,24

TYC key-in, 25

TYPE function, 41

unblocked files, 28, 14, 29, 80
unconditional dump, 15
unimplemented instruction trap, 48, 50
UNLOAD control command (Monitor), 16,8
UNLOAD function, 40

unsatisfied primary references, 65
UPDATE option (UPD), 115

update packets, 94

updating RAD areas, 82

user created DCBs, 32,1,10, 11

User Library, 3,64,65, 81

user load-time ASSIGNS, 77

user programs, 17

user subroutines, 65

v

variables, 64

verify, data, 88

verify, tape, 88

vertical format control (VFC), 42,19

W key~in, 23

WAIT function, 53

Wait state, 23

Watchdog Timer Trap, 50
WEOF control command (Monitor), 17,8
wiring external interrupts, 7
write data record, 39

write end-of-file, 16,40

WRITE function, 39

write protection, 5,3

WRITE TAPE MARK function, 40

write-lock area, 4

X

X key=-in, 23

