
~DS SIGMA 5 COMPUTER

Reference Manual

SCIENTIFIC ORTR SYSTEMS

SDS SIGMA 5 BASIC INSTRUCTIONS

Mnemonic Code Instruction Name Page Menmonic Code Instruction Name Page

LOAD/STORE LOGICAL

LI 22 Load Immediate 26 OR 49 OR Word 41
LB 72 Load Byte 26 EOR 48 Exclusive OR Word 41
LH 52 Load Hal fword 27 AND 4B AND Word 41
LW 32 Load Word 27
LD 12 Load Doubleword 27 SHIFT
LCH 5A Load Complement Holfword 27
LAH 58 Load Absolute Halfword 27 S 25 Shift 41
LCW 3A Load Complement Word 28 SF 24 Shi ft Floating 43

'LAW 3B Load Absolute Word 28
LCD lA Load Complement Doubleword 28 FLOATING-POINT ARITHMETIC (OPTIONAL)
LAD lB Load Absolute Doubleword 28
lS 4A Load Selective 29 FAS 3D Floating Add Short 47
LM 2A Load Multiple 29 FAL lD Floating Add lang 47
LCFI 02 Load Conditions and Floating Control Immediate 30 FSS 3C Floating Subtract Short 47
LCF 70 Load Conditions and Floating Control 30 FSL 1C Floating Subtract Long 48
XW 46 Exchange Word 30 FMS 3F Floating Multiply Short 48
STB 75 Store Byte 30 FMl IF Floating Multiply Long 48
STH 55 Store Hal fword 31 FDS 3E Floating Divide Short 48
STW 35 Store Word 31 FDL IE Floating Divide Long 48
STO 15 Store Doubleword 31
STS 47 Store Selective 31 PUSH DOWN
STM 2B Store Multiple 31
STCF 74 Store Conditions and .floating Control 32 PSW 09 Push Word 50

PlW 08 Pull Word 50

ANALYZE/INTERPRET
PSM OB Push Multiple 51
PLM OA Pull Multiple 51

44 Analyze 32 MSP 13 Modify Stack Pointer 52
ANlZ
INT 6B Interpret 33

EXECUTE/BRANCH

FIXED-POINT ARITHMETIC EXU 67 Execute 53
BCS 69 Branch on Conditions Set 54

AI 20 Add Immediate 34 BCR 68 Branch on Conditions Reset 54
AH 50 Add Halfword 34 BIR 65 Branch on Incrementing Register 54
AW 30 Add Word 34 BDR 64 Branch on Decrementing Register 54
AD 10 Add Doubleword 35 BAL 6A Branch and Link 55
SH 58 Subtract Hal fword 35
SW 38 Subtract Word 35 CALL
SD 18 Subtract Doub!cword 35 55
MI 23 Multiply Immediate 36 CAll 04 CallI 55
MH 57 Multiply Halfword 36 CAl2 05 Call 2 55
MW 37, Multiply Word 37 CAl3 06 Call 3 55
DH 56 Divide Halfword 37 CAl4 07 Call 4 55
DW 36 Divide Word 37
AWM 66 Add Word to Memory 37 CONTROL
MTB 73 Modi fy and Test Byte 38

OE Load Program Status Doubl eword
MTH 53 Modify and Test Hal fword 38 LPSD 56

MTW 33 Modify and Test'Word 38 XPSD OF Exchange Program Status Doubl eword 56
LRP 2F Load Register Pointer 58
MMC 6F Move to Memory Control 58

COMPARISON WAIT 2E Wait 59
RD 6C Read Direct 59

CI 21 Compare Immediate 39 WD 6D Write Direct 60

CB 71 Compare Byte 39
INPUT/OUTPUT CH 51 Com pore Hal fword 39

"ON 31 Compare, Word 40 SIO 4C Start Input/Output 63
CD' 11 Compare Doublew6rd 40 HIO 4F Halt Input/Output 66
CS 45 CompareSel ective 40 TIO 4D Test Input/Output 66
ClR 39 Compare with limfts in Register 40 TOV 4E Test Device 67
CLM 19 Compare with Limits in Memory 40 AIO 6E Acknowledge Input/Output Interrupt 67

SOS SIGMA 5 COMPUTER
REFERENCE MANUAL

90 09 59C

September 1968

5lC'S

Price: $4.00

SCIENTIFIC DATA SYSTEMS/701 South Av.iation Boulevard/EI Segundo, California 90245

©1966. 1967. 1968. Scientific Data Systems. Inc. Printed in U.S.A.

ii

REVISION

This publication, SDS 9009 59C is a revision of the SDS SIGMA 5 Computer Reference
Manual, 9009 59B (dated January, 1967). A change in text from that of the previous
manual is indicated by a vertical line in the margin of the page.

RELATED PUBLICATIONS

Title Publication No.

Sigma 5/7 Symbol/Meta-Symbol/Reference Manual 9009 52A

Sigma Glossary of Computer Terminology 9009 57A

ALL SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

CONTENTS

l. SIGMA 5 SYSTEM Push-Down Instructions 48
Stack Pointer Doubleword 49

General Characteristics 2 Push-Down Condition Code Settings 49
Real-Time Features 3 Execute/Branch Instructions 53
General-Purpose Features 4 Ca 1/ Instructi ons 55
Mul tiusage Features 4 Control Instructions 55
Compatibility with Sigma 7 Systems 5 Program Status Doubleword 56

Interruption of MMC 59
2. SIGMA 5 SYSTEM ORGANIZATION 6 Read Direct, Internal Computer Control

(Mode 0) 60
Information Format 6 Write Direct, Internal Computer Control
Core Memory 6 (Mode 0) 60

Dedicated Core Memory Locations 6 Input/Output Instructions 62
Information Boundaries 6 I/o Addresses 62

Computer Modes 7 I/O Unit Address Assignment 62
Master Mode 7 I/O Status Response 62
Slave Mode 7 Status Information for SIO 63

CPU Fast Memory 7
4. INPUT/OUTPUT OPERATIONS 69

Central Processing Unit 8
CPU Fast Memory 8 lOP Command Doublewords 70
Arithmetic and Control Unit 8 Memory Byte Address 71
General Registers and Register Block Pointer- 9 Flags 71
Memory Control Storage 9 Byte Count 72

Instruction Formats 9
5. OPERATOR CONTROLS 73

Memory Reference Addresses 10
Address Modification 10 Processor Control Panel 73
Memory Write Protection 12 Power 73
Program Status Doubleword 12 CPU Reset/Clear 73
Interrupt System 13 I/O Reset 74

Internal Interrupts 13 Load 74
External Interrupts 15 Unit Address 74
States of an Interrupt Level 16 System Reset/Clear 74
Control of the Interrupt System 16 Normal Mode 74
Time of Interrupt Occurrence 16 Run 74
Single-Instruction Interrupts 17 Wait 74

Trap System 17 Interrupt 74
Nonallowed Operations 17 Insert 74
Unimplemented Instructions 19 Instr Addr 75
Push-Down Stack Limit Reached 20 Clear 75
Fixed-Point Overflow 20 Addr Stop 75
Floating-Point Arithmetic Fault Condition -- 21 Select Address 76
Watchdog Timer Runout 21 Store 76
Call Instructions 21 Display 76

Data 76
3. INSTRUCTION REPERTOIRE 23 Compute 76

Control Mode 77
Load/Store Instruc ti ons 26 Memory Fault 77
Analyze/Interpret Instructions 32 Alarm 77
Fixed-Point Arithmetic Instructions 33 Audio 77
Comparison Instructions 39 Watchdog Timer 77
Logical Instructions 41 Interleave Select 77
Shift Instructions 41 Parity Error Mode 77

Floating-Point Shift 43 Phases 78
Floating-Point Instructions 44 Register Select 78

Floating-Point Numbers 44 Sense 78
Unimplemented Floating-Point Instructions -- 45 Clock Mode 78
Floating-Point Addition and Subtraction --- 46 Load Operati on 78
Floating-Point Mul tipl ication and Division -- 46 Load Procedu re 78
Condition Codes for Floating-Point Instructions - 47 Load Operation Details 79

iii

APPENDIXES C. INSTRUCTION LIST 105

A. REFERENCE TABLES 80
D. EXECUTION TIMES 107

Basic Instruction Timing Table 108
SDS Standard Symbols and Codes 80
SDS Standard Character Sets 80 ILLUSTRATIONS
Control Codes 80
Special Code Properties 80 SDS Sigma 5 Computer v
SDS Standard 8-Bit Computer Code (EBCDIC)-- 81 l. A Typical Sigma 5 System 1
SDS Standard 7-Bit Communications Codes 2. Information Boundaries 7

(USASCII) 81 3. Sigma 5 Central Processing Unit 8
SDS Standard Symbol-Code Correspondences -- 82 4. Index Displacement Alignment 11
Hexadecimal Arithmetic 86 5. Typical Interrupt Priority Chain 15

Addition Table 86 6. Interrupt Level Operation 15
Multipiication Table 86 7. Processor Control Panel 73

Table of Powers of Sixteenl0 87
Table of Powers of Ten16 87 TABLES

Hexadecimal-Decimal Integer Conversion Table- 88
Hexadec imal-Decimal Fraction Conversion Table - 94 l. Dedicated Sigma 5 Core Memory Locations --- 7
Table of Powers of Two 98 2. Sigma 5 Interrupt Locations 14
Mathematical Constants 98 3. Summary of Sigma 5 Trap System 18

4. Glossary of Symbolic Terms 25
B. REFERENCE DIAGRAMS 99 5. ANALYZE Table for Sigma 5 Operation Codes - 33

6. Floating-point Number Representation 45
Basic Sigma 5 Instruction Execution Cycle 100 7. Condition Code Settings for Floating-point

Floating-Point Addition and Subtraction --102 Instruc t ions 47
Floating-Point Multipl ication and Division -- 103 8. Status Bits for I/O Instructions 64
Floating-Point Shift 104 9. Program Status Doubleword Display 75

iv

SDS SIGMA 5 Computer

v

1. SIGMA 5 SYSTEM

A typical SIGMA 5 system (see Figure 1) consists of the
following major elements:

• A memory consisting of up to eight magnetic core
storage modu I es

• A central processing unit (CPU) that addresses core
memory, fetches and stores information, performs
arithmetic and logical operations, sequences and

Core Memory
Module

Core Memory
Module

I/o

t

SIGMA 5
Central Processing Unit

Integral Multiplexo/
Input/Output Processor

... ~

I/o I/o
Device Device 0 Device

I/O
Device 15

~---- Standard-Speed Peripheral Devices ----~

controls instruction execution, and controls the
exchange of i nformati on between core memory and
other elements of the system.

• An input/output system controlled by one or more
input/output processors (lOPs), each providing data
transfer between core memory and peripheral input/
output devices, and operating simultaneously with
the CPU.

Core Memory
Module

t

tt
External Sel ector

Core Memory
Module

t

Input/Output Proc:essor

~ ______ ~1~ __________ ~
U

I/O
Device

I/O
Device 0

1j0
Device 15

I/O
Device

~------ High-Speed Peripheral Devices ------

Figure 1. A typical SIGMA 5 System

tThe integral multiplexor lOP allows up to 32 devices (one per device controller) to operate simultaneously. This lOP pre­
empts central processor memory accesses and computation time. Other multiplexor (or selector) lOPs may be added to the
SIGMA 5 system, with each additional lOP having an independent memory path. lOPs with independent paths allow for
input/output simultaneous with computation.

ttThe selector lOP allows one device at a time to operate at a high-speed transfer rate of up to one 32-bit word per memory
cycle. A selector lOP may service up to 32 high-speed devices.

SIGMA 5 System

GENERAL CHARACTERISTICS

A SIGMA 5 system has many advanced features and oper­
ating charactersitics that enable it to function efficiently
in real-time, general-purpose, and multiusage computing
environments:

• Word-oriented memory (32-bit word plus parity bit) for
maximum efficiency; memory is addressable and alter­
able by byte (8-bit), halfword (2-byte), word {4-byte},
and doubleword {8-byte} quantities.

• Full parity checking for both CPU/memory and input/
output operations

• Memory expandable from 4096 to 131,072 words
(16,384 to 524,288 bytes) in blocks of 4096, 8192,
12,288 or 16,384 words, for compfete flexibility of
capacity

• Direct addressing of the entire core memory, with in
the primary instruction word and without the need for
base registers, indirect addressing, or indexing

• Indirect addressing, with or without post-indexing,
for additional programming flexibility

• Displacement index registers, automatically self­
adjusting for all data sizes

• Immediate addressing of operands, for greater storage
efficiency and increased speed

• 16 general-purpose registers, expandable (in blocks of
16) to 256 to reduce transfer of data into and out of
registers in a multiusage environment

• Selective memory write protection (optional)

• Watchdog timer, assuring nonstop operation

• Real-time priority interrupt system with automatic
identi fication and priority assignment, extremely fast
response time, and up to 240 levels that can be indi­
vidually armed and/or enabled by program control

• Interruptibi lity of long instructions, guaranteeing fast­
est possible response to interrupts by the system

• Automatic traps for error conditions and for simulation
of optional instructions not physically implemented,
all under flexible program control

• Power fail-safe for automatic, safe shutdown in the
event of a power failure

• Multiple interval timers, with a choice of resolutions
for independent time bases

• Priviteged instruction logic (moster/slave modes), for
concurrent, multiusoge operation

• Complete, powerful instruction set inctuding:

• Byte, hal fword, word, and doubl eword operations

• Use of off memory-referenci ng instructions for
register-to-register operations, with or without
indirect addressing and post-indexing, and within
the normal instruction format

• Multiple-register operations

2 General Characteristics

• Fixed-point arithmetic operations in hal fword,
word and doubl eword modes

• Optional floating-point hardware operations, in
short and long formats, with significance, zero,
and normal ization control and checking, all under
full program control

• Full complement of logical operations {AND, OR,
exclusive OR}

• Comparison operations, including compare between
limits (with limits in memory or in registers)

• Calls, an extension of the SDS programmed oper­
ators concept, permitting up to 64 dynamically
variable, user-defined instructions, and permitting
a program to gain access to monitor functions with­
out monitor intervention

• Push-down stack operations (hardware impl emented)
of single or multiple words, with automatic limit
checking, fordynamicspace allocation, subroutine
communication, and recursive routine capability

• An analyze instruction, for facilitating effective
address computation

• An interpret instruction, for increased compilation
effectiveness and speed

• Shift operations (left and right}of words or double­
words, including logical, circular, arithmetic, and
floating-point modes

• Efficiently operating input/output system with the
following features:

• Direct input/output of a full worq, without the
use of a channel

• Up to five external i nput/ output processors

• Multiplexor input/output processors, for simultane­
ous operation of up to 32 standard-speed devices
per I/O processor. One multiplexor I/O processor
is integral with the CPU, sharing memory access
and processing time; optional I/O processors oper­
ate semi-independently and simultaneously with
computation

• Selector input/output channels (8 or 32 bits wide),
for data rates approaching 3.3 million bytes per

• second

Up to 32 device controllers connected to each ex­
ternal I/O processor

• Both data and command chaining, for scatter-read
and gather-write operations

• Up to 32,000 output control signals and input test
signals

• Comprehensive array of modular software:

• Expands in capability and speed as system grows,
with no reprogramming required

• Operating systems: Basic Control Monitor and
Batch Processing Monitor

•

• Compiler: FORTRAN IV in standard and high­
efficiency versions

• Assemblers: Symbol and advanced Meta-Symbol

• Conversationa I language: FORTRAN IV ca Iculator
mode

• Library: Mathematical, utility, and input/output
programs

• Business software: Generalized Sort/Merge, 1401
Simulator, and SDS COBOL-65

The same comprehensive, field-proven peripheral de­
vices that are available for SIGMA 7 computer sys­
tems are also available for SIGMA 5 computer systems.
The available peripheral devices include the following:

• Rapid-access data (RAD) files: Capacities to 5.37
million bytes per unit; transfer rates to 3 million
bytes per second; average access times as low as
17 milliseconds. Fixed read/write head for each
track el iminates time delays associated with
movable-head units.

• Magnetic tape units: Four models; 7-track and
9-track systems, IBM-compatible; high-speed units
operate at 150 inches per second with transfer
ra tes of up to 120, 000 bytes per second i low-cost
units operate at 37.5 inches per second with trans­
fer rates of 20,800 characters per second

• Displays: Keyboard/display, buffered, with 8.5 x
l1-inch page area containing up to 2048 characters
displayed in any of 32 I ines of 86 characters each.
The display operates in character or message modes.
Graphic display has standard character generator,
vector generator, and closeups, as well as light
pen, refresh buffer, and alphanumeric/function
kayboard options. Both types feature display rates
of up to 100,000 characters per second.

• Card equipment: Reading speeds of up to 1500
cards per minute; punching speeds of up to 300
cards per minute; intermixed binary and EBCDIC
card codes; simpl ified punch programm ing does
not require IIcorner-turningll logic

• Line printers: Fu lIy buffered, with speeds of up to
1,000 lines per minute; 132 print positions with
56 different characters.

• Keyboard/printers: 10 characters per second;
also available with integral paper tape reader
(20 characters per second) and punch (10 charac­
ters per second)

• Paper tape equipment: Readers with speeds of up
to 300 characters per second; punches with speeds
of up to 120 characters per second.

• Graph plotters: Digita I incrementa I i providing
drift-free plotting in two axes in up to 300 steps
per second at speeds from 30 mm to 3.5 inches
per second.

• Data communications equipment: A complete line
of character- and message-oriented equipment to
connect remote and loca I user termina Is to common­
carrier lines

REAL-TIME FEATURES

Real-time applications are characterized by a need for hard­
ware that provides quick response to an external environment,
speed great enough to keep up with the real-time process it­
self, and sufficient input/output flexibility to handle a wide
vari ety of data types at varyi ng speeds. The SI GMA 5 system i n­
eludes provisions for the foHowing real-time computing
features:

Multilevel, True Priority Interrupt System. The real-time­
oriented SIGMA 5 system provides for quick response to
interrupts by means of up to 224 external interrupt levels.
The source of each interrupt is automatically identified and
responded to according to its priority (this function need not
be programmed). For further flexibility, each level can be
individuall y disarmed (to discontinue accepting inputs to it)
and disabled (to defer responding to it). Use of the disarm/
disable feature makes programmed dynamic reassignment of
priorities quick and easy, even while a real-time process is
in progress. In establishing a configuration for the system,
each group of 16 interrupt levels can have its priority as­
signed in different ways in order to meet the specific needs
of the problem; the way in which interrupt levels are pro­
grammed is not affected by the priori ty assignment.

Programs that deal with interrupts from specially designed
equipment sometimes must be checked out before that equip­
ment is actually avai labl e. To permit simulating this special
equipment, any SIGMA 5 interrupt level can be triggered
by the CPU itself through execution of a single instruction.
This capabi I ity is also useful in establ ishing a hierarchy of
responses. For example, in responding to a high-priority .
interrupt, after the urgent processing is compl eted, it may
be desirable to assign a lower priority to the remaining
portion in order to respond to other critical stimul i. The
interrupt routine can accomplish this merely by triggering
a lower-priority level, which processes the remaining data
~>nly after other interrupts have been handled.

Nonstop Operation. When connected to special devices
(on a ready/resume basis), the computer can sometimes be­
come excessively delayed if the special device does not
respond quickly. A built-in watchdog timer assures that
the SIGMA 5 computer cannot be delayed for an excessive
length of time.

Real-Time Clocks. Many real-time functions must be timed
to occur at specific instants. Other timing information is
also needed - elapsed time since a given event, for example,
or the current time-of-day. SIGMA 5 can contain two or
four real-time clocks with varying degrees of resolution
(1/60 second or 1/8 millisecond, for example) to meet these
needs. These clocks also allow easy handling of separate
time bases and relative time priorities.

Rapid Context Switching. When responding to a new set of
interrupt-initiated circumstances, a computer system must

Rea I-Time Features 3

preserve the current operating environment, for continuance
later, while setting up the new environment. This changing
of environments must be done quickly, with a minimum of
;'overhead ll costs in time. In SIGMA 5, each one of up to
16 blocks of general-purpose arithmetic reg"isters can, if
desired, be assigned to a specific environment. All rele­
vant information about the current environment (instruction
address, current general register block, memory-protection
key, etc.) is kept in a 64-bit program status doubleword
(PSD). A single instruction stores the current PSD anywhere
in memory and loads a new one from memory to establl sh a
new environment, which includes information identifying a
new block of general-purpose registers. A SIGMA 5 system
can thus preserve and change its operating environment com­
pletely through the execution of a single instruction.

Simultaneous Device Operation. The integral multiplexor
input/output processor permits up to 32 channels with stan­
dard-speed devices to operate concurrently; the addition
of externa I mu I ti pi exor I/o proc essors increases th i s
throughput.

High-Speed Channel Operation. The use of the selector
I/O processor permits very high-speed data transfer - up to
one 32-bi t word per memory cycl e. To meet spec i al needs,
data size can be 8 or 32 bits wide.

Memory Protection. Both foreground (real-time) and back­
ground programs can be run concurrently in a SIGMA 5
system because a foreground program is protected against
destruction by an unchecked background program. The
optional memory write-protection feature guarantees that
protected areas of memory can be written into only under
certain conditions.

Variable Precision Arithmetic. Many of the data encoun­
tered in real-time systems are 16 bits (or less) in precision.
To permit this length of data to be processed efficiently,
SIGMA 5 provides hal fword arithmeti c operations in addi­
tion to full word operations. Doubleword arithmetic oper­
ations (for extended precision) are also included.

Direct Data Input/Output. For handling asynchronous I/O,
a 32-bit word can be transferred directly to or from a
general-purpose register, so that an I/O channel need not
be occupied with relatively infrequent transmissions.

Interleave/Overlap. To increase processing speeds, mem­
ory modules overlap cycles automatically wherever possible.
Core memory addresses can be interleaved modul0-2 (odd­
even) 1 or modu 10-4 to increase th e probabi I ity of over­
lapping.

GENERAL-PURPOSE FEATURES

General-purpose computing applications are characterized
primarily by an emphasis on computation, internal data
handl i ng, and I arge amounts of i nput/ output at standard
speeds. The SIGMA 5 system includes the following
general-purpose computer features:

Floating-Point Hardware (optional). Floating-point instruc­
tions are available in both short (32-bit) and long (64-bit)

4 General-purpose Features/Mul tiusage Features

formats. Under program control, th e user can sel ect op­
tional zero checking, normal ization, and significance
checking (which causes the computer to trap when a post
operation shift of more than two hexadecimal places occurs
in the fraction of a floating-point number). The signifi­
cance checking feature permits the use of the short floating­
point format for high processing speed and storage economy
and the use of the long format when loss of significance is
detected.

Indirect Addressing. This feature provides for simpl e tabl e
linkages and perm its the user to keep data secti ons of his
program separate from procedure sections for ease of main­
tenance.

Displacement Indexing. The technique of indexing by
means of a IIfloating ll displacement permits the user to
access the desired unit of data without the need to consider
its size~ The index registers automatically align themselves
appropriately; thus, the same index register can be used on
arrays with different data sizes. For example, in a ma­
trix multipl ication of any array of full word, single-precision,
fixed-point numbers, the results can be stored in a second
array as double-precision numbers, using the same index
quantity for both arrays. If an index register contains the
value of k, then the user always accesses the kth element,
whether it is a byte, halfword, word, or doubleword. In­
crementing by various quantities according to data size is
not required; instead, incrementing is always by units in a
continuous array table no matter which size of data element
is used.

Powerful Instruction Set. The availability of a large num­
ber of major instructions results in programs that are short,
rapidly assembled, and quickly executed.

Call Instructions. Four instructions permit handling up to
64 user-defined subroutines (as if they were built-in machine
instructions) and gaining access to specified monitor services
without requiring monitor intervention.

Interpret Instruction. This instruction simpl ifies and speeds
compiling operations, thus reducing the space and time re­
qu i rements for compi! ers.

Four-Bit Condition Code. This feature simplifies the check­
ing of results by automatically providing information on
almost every instruction execution (including indicators for
overflow, underflow, zero, minus, and plus, as appropriate)
without requiring an extra instruction execution.

MUlTIUSAGE FEATURES
"Multiusage operation", as implemented in the SIGMA 5
system, consists of two or more major kinds of computing
appl ications running concurrently - general purpose com­
p'Jting with real-time process control, for example. Because
SIGMA 5 has been designed on a real-time base,
it is qualified for efficient operation in a multiusage

environment. Many of its hardware features that prove
valuable for certain application areas are equally useful
for others, although in different ways. This characteristic
of SIGMA 5 makes it particularly effective in multiusage
applications. The major SIGMA 5 multiusage computer
features are:

Priority Interrupt. In a multiusage environment, many
elements operate asynchronously. Thus, having a true
priority interrupt system, as SIGMA 5 does, is expecially
important. With it the computer system can respond
quickly (and in proper order) to the many demands being
made upon it, without the high overhead costs of com­
plicated programming, lengthy execution time, and ex­
tensive storage allocations.

Quick Response. The many features that combine to pro­
duce a quick-response system - multiple register blocks,
quick context saving, push-pull operations - benefit all.
users because more of the machine's power at any instant
is available for useful work.

Multiple Register Blocks. The optional availability of up
to 16 blocks of general-purpose registers further improves
response time by reducing the need to store and load reg­
ister blocks. As needed, each user can be assigned a dis­
tinct block; the program status doubleword automatically
points to the currently applicable register block.

Rapid Context Saving. When changing from one user to
another, the operating environment can be switched quickly
and easily. Stack-manipulating instructions permit from
one to 16 generai-purpose registers to be stored in a push­
down stack by a single instruction - with automatic up­
dating of stack status information - and to be retrieved
(again, by a single instruction) when needed. The current
program status doubleword, which contains the entire de­
scription of the current user's environment and mode of op­
eration, can be stored anywhere in memory' and a new
program status doubleword loaded, all with a single instruc­
tion.

User Protection. The master/slave mode of operation re­
stricts each user to his own set of instructions whi Ie reserv­
ing to the monitor those instructions that could, if used
incorrectly, destroy another user's program. The optional
memory write protection feature not onl y protects each user
from every other user, but also guarantees the integrity of
programs essential to critical real-time applications.

Input/Output. Because of its wide range of capacities
and speeds (with and without channels), the SIGMA 5 I/o
system simultaneously satisfies the needs of many different
application areas economicallYi both in terms of equip­
ment and of programming. SIGMA 5 can control up to
eight input/output processors (of two types in various com­
binations. Each multiplexor I/o processor can have to 32
standard-speed I/O channels operating simultaneously;
selector I/o processors can have anyone of up to 32 high-

speed I/O devices operating on each processor. The exter­
nal I/O processors operate semi-independently of the cen­
tral processor, leaving it free to provide faster response to
overall system needs.

Nonstop Operation. A watchdog timer assures that the sys­
tem continues to operate even if certain special I/O capa­
bilities are used with special devices that can cause delays
or halts if they fail.

Instruction Set. The large, powerful SIGMA 5 instruction
set provides the computational and data handling capabil­
ities required for widel y differing appl ication areas, so that
each user's program length (thus running time) is decreased
and the speed of obtaining results is increased.

Flexible Storage Capacity. SIGMA 5 memory is available
in 32 sizes (from 4096 to 131,072 words) to provide the pre­
cise capacity needed, while assuring potential for expansion.

COMPATIBILITY WITH SIGMA 7 SYSTEMS

SI GMA 5 computer hardware and software systems have been
designed for program compatibi I ity with SIGMA 7 systems.
In this context, "compatibility" means the following:

1. Any program written for a SIGMA 5 computer can
be assembled (or compiled) by SIGMA 7 software
and then executed by either a SIGMA 5 or a
SIGMA 7 computer.

2. Any program written for a SIGMA 5 computer and as­
sembled (or compiled) by SIGMA 5softwarecanbeexe­
cuted by a SIGMA 7 computer.

.3. Any program written for a SIGMA 7 computer can be
assembled (or compiled) by SIGMA 5 software, even if
the program cannot be executed by the SIGMA 5 com­
puter.

4. Any SIGMA 7 program that can be executed under con­
trol of the SIGMA 7 Basic Control Monitor or the SIGMA
7 Batch Processing Monitor can be executed under con­
trol of the corresponding SIGMA 5 monitor. A simula­
tion package is provided as part of the standard SIGMA
5 monitor systems for those SIGMA 7 instructions that
are not implemented in the SIGMA 5 computer. The
instruction simulation package occupies a portion of
core memory while the SIGMA 7 program is being exe­
cuted; thus, the maximum size for programs that require
simulated instructions is less than the maximum size for
programs that use only SIGMA 5 instructions, within a
specific memory system.

5. The only SIGMA 7 programs that cannot be executed
under the control of a SIGMA 5 monitor system are those
programs that either use the SIGMA 7 memory map option
or require the Un iversal Time-Sharing Monitor system
to use the memory map option. Such programs include
conversational, time-sharing programs.

Multiusage Features 5

2. SIGMA 5 SYSTEM ORGANIZATION

The primary elements in a basic SIGMA 5 system - a central
processor, core memory, and input/output processor - are
all designed around a central bus structure. Each primary
element of the system operates asynchronously and semi­
independently, automatically overlapping the operation of
the other elements (when circumstances permit) for greater
speed. The basic configuration can be expanded merely
by increasing the number of core memory modules (up to
eight), increasing the number of buses (up to six), or by
increasing the numberof input/output processors (up to six).

INFORMATION FORMAT
The basic element of SIGMA 5 information is a 32-bit
word, in whi c h the bit posi tions are numbered from 0 through
31, as fo 1I0ws:

A SIGMA 5 word can be divided into two 16-bit parts
(called halfwords) in which the bit positions are numbered
from 0 through 15, as follows:

A SIGMA 5 word can also be divided into four 8-bit parts
(called bytes) in which the bit positions are numbered from
o through 7, as follows:

Two SIGMA 5 words can be combined to form a 64-bit
element (called a doubleword) in which the bit positions
are numbered from 0 through 63, as follows:

Four bits of information can be expressed by means of a
single hexadecimal digit. Hexadecimal digits (and their
binary and decimal equivalents) are expressed in the fol­
lowing notation:

Hexadecimal Binary Decimal

0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6

6 SIGMA 5 System Organization

Hexadeci ma I Binary Decimal

7 0111 7
8 1000 8
9 1001 9
A 1010 10
B 1011 11
C 1100 12
D 1101 13
E 1110 14
F 1111 15

Thus, a byte can be expressed as a 2-digit hexadecimal num­
ber, a halfword as a 4-digit hexadecimal number, a word
as an 8-digit hexadecimal number, and a doubleword as a
16-digit hexadecimal number. In this reference manual, a
hexadecimal number is displayed as a string of hexadecimal
digits surrounded by sing Ie quotes and preceded by the letter
IIXII. For example, the binary number 01011010 is expressed
hexadecimally as XI5AI.

CORE MEMORY
SIGMA 5 core memory systems use a 32-bit word (four 8-bit
bytes, plus a parity bit) as the basic unit of information.
A II core memory is directly addressable both by the CPU
(except for memory locations 0 through 15) and by the lOP.
The SIGMA 5 addressing capabi lity accommodates a maxi­
mum core memory size of 131,072 words (524,288 bytes).
Core memory is modular and is avai lable in up to 8 blocks
of 4096 words (16,~84 bytes), 8192 words (32,768 bytes),
12,288 words (49,152 bytes), or 16,384 words (65,536 bytes),
in almost any combination.

DEDICATED CORE MEMORY LOCATIONS

Core memory locations 0 through 319 are reserved by stan­
dard SDS software for special purpose as shown in Table 1.

INFORMATION BOUNDARIES

SIGMA 5 instructions assume that bytes, halfwords, and
doublewords are located in core storage according to the
fo 1I0wi ng boundary conventions:

1. A byte is located in bit positions 0 thro:Jgh 7, 8
through 15, 16 through 23, or 24 through 31 of a
word.

2. A halfword is located in positions 0 through 15 or 16
through 31 of a word.

3. A doubleword is located so that bits 0 through 31 of
the doubleword are contained within an even-numbered
word, and bits 32 through 63 of the same doub leword are
contained within the next consecutive {odd-numbered}
word.

The various information boundaries are illustrated in
Figure 2.

Table 1. Dedicated SIGMA 5 Core Memory Locations

Location

Decimal Hexadecima I Function

0 0 I Addresses of general registers

15 F
16 10

Reserved for future use

31 IF
32 20

CPU/lOP communication
33 21
34 22

Program stored by LOAD
switch on the processor
panel

41 29
42 2A

First record read from pe-

· ripheral device during a
load operation

63 3F
64 40

Traps
·

79 4F
80 50

Override interrupts

87 57
88 58

· Counter interrupts

91 5B
92 5C

Input/output interrupts

95 5F
96 60

External interrupts .
319 13F

I
Doubleword I

•
i Word (even address) Word {odd address} !
i Halfword 0 Halfword 1 Halfword 0 Halfword 1
I

~ Byte 0 I Byte 1 Byte 21 Byte 3 Byte 0 1 Byte 1 Byte 2 f Byte 3

COMPUTER MODES

The SIGMA 5 computer operates in either the master mode
or the slave mode. The mode of operation is determined by
the state of the master/slave mode control bit in the arith­
metic and control unit.

MASTER MODE

The master mode is the basic operating mode of the com­
puter. In this mode, all legal SIGMA 5 operations are per­
missible. It is assumed that there is a resident executive
program (operating in the master mode) that controls and
supports the operation of other programs (which may be in
the master mode or in the slave mode).

SLAVE MODE

The slave mode is the problem-solving mode of the computer.
In this mode, certain "privi leged" operations are prohibited.
Privi leged operations are those relating to input/output and
to changes in the basic contro I state of the computer. A"
privi leged operations are performed (in the master mode on Iy)
by a group of privi leged instructions. Any attempt by a pro­
gram to execute a privi leged instruction whi Ie the computer
is in the slave mode results in a return of control to the
resident executive program. The master/slave mode con­
trol bit can be changed only when the computer is in the
master mode; thus, a slave program cannot direct Iy change
the computer mode from siave to master. However, the
slave program can gain direct access to certain executive
program operations by means of CALL instructions without
requiring executive program intervention. The operations
available through CALL instructions are established by the
resident executive program.

CPU FAST MEMORY

Several special (fast) memories may be used in a SIGMA 5
CPU. These memories consist of high-speed integrated
circuits that are capable of delivering information to {or
receiving information from} the arithmetic and control unit
simu Itaneously with the operation of core memory modu les .
These integrated-circuit memories are not accessible to any
other unit in a SIGMA 5 system.

Doubleword
1
I
• .

Word (even address) Word (odd address) I
I

Halfword 0 Halfword 1 Halfword 0 Halfword 1 i
I

Byte 0 I Byte 1 Byte 21 Byte 3 Byte 0 I Byte 1 Byte 21 Byte 3!

Figure 2. Information Boundaries

Computer Modes/CPU Private Memory 7

CENTRAL PROCESSING UNIT

This section describes the organization and operation of
the SIGMA 5 centra I-processing unit in terms of infor­
mation processing and program control, instruction and

CPU FAST MEMORY

GENERAL REGISTER BLOCK (Typical)

o

3 t%%HHH\ :;:~::~~;~>.::::~>?::~:.::::.::. @\\~\\\\\\\\\\\tt@\\\\\\ff\\\~~\\\\\\ff\%\\\\\%%\\]

4 t:{(ff }\?\O\\\::\{;:::;:; :::.::::\ :>::.V\\\\;~;;\~: 1%\\\\~\\\\\\\\\\\tt{;~\\\\\\t1

5 [\:\\\\%\\\:\@ ::\\~\\ \\\i\%::\\~\\\\\\\\\\U;\\\~\\\\\\\\\;\\\\\\\\\\\\\;\\\\\\\\%\\\~\\\\\;\:\~\\\\~\\\\,\\\\\\\\\\;\:\:m

6 J\\\\\\\\\\\;\\\\\m'\\\\ :::::::~:<~~~:)~:::~::~:::::::: \\\\::{\\\}\\I\X\\}}{J:\:;\'\f;II\t\:n~:1

7 r%\~%\\\ .::::::::::: //: ·:·:{?~~~r~~~~·}::::::;~~;:;:;::::.> ~\\~:\\m\\~\%@\}_

8~1 ________________ ~
91~ ________________ ~

lol~ ________________ ~

1l1~ ________________ ~
121~ ________________ ~
131~ ________________ ~
141~ ________________ ~
151~ ________________ ~

MEMORY CONTROL STORAGE

Memory Write Protection

Index
Registers

IIIIIIIIIIIII~) III111 :14-:--'-'
j-:---256 2-bit write locks)0' I

•

data formats, indirect addressing and indexing, memory
write-protection, overflow and trap conditions, and in­
terrupt contro I. Basi ca Ily, the SI G MA 5 CPU consi sts of
a fast memory and an arithmetic and control unit (see
Figure 3).

ARITHMETIC AND CONTROL UNIT

INSTRUCTION REGISTER

o Indirect Address Flag
o

III II II I Operation Code Field
1 7

IJJIJ General Register Designator
8 11

[]]] Index Register Designator
12 14

Reference Address Field

IIIIIIIIIIIIIIIILW
~ ~

Read/Write Direct

1-.... •
To/from External --.... ~ Vo Processors ..

""'- To/from Core Memory

Integral Multiplexor

Vo Processor

: • To/fro~
.... Device Controllers

~--------------------... -
Interrupts I ... ---- t Write Direct ---Priority Interrupt System

PROGRAM STATUS DOUBLEWORD

DJIJ Condition Code
o 3

ITIJ Floating-point Mode Control
5 7

o Master/Slave Mode Control
8

o Arithmetic Trap Mask
11

Instruction Address

111111111111111111
~ 31

W Write Key

ITIJ Interrupt Inhi bi ts
37 :f1

[ill] Register Block Pointer
56 59

Figure 3. SIGMA 5 Central Processing Unit

8 Central Processing Unit

GENERAL REGISTERS AND REGISTER BLOCK POINTER

An integrated-circuit memoryr consisting of sixteen 32-bit
wordsr is contained within the basic SIGMA 5 CPU for
general-purpose register usage; these 16 words of fast mem­
ory are referred to as a register block. A SIGMA 5 system
may contain up to 16 such register blocks, and a 4-bit con­
trol field (called the register block pointer) in the arith­
metic and control unit selects the block currently available
to a program. The 16 general registers selected by the reg­
ister block pointer are referred to as the current register
block. The register block pointer can be changed on Iy
when the computer is in the master mode, thus, a slave pro­
gram cannot change the register block pointer.

Each of the general registers in a register block is identi­
fied by a 4-bit code in the range 0000 through 1111 (0
through 15 in decimal, or X101 through Xlf! in hexadecimal
notation). Any of the general registers can be used as fixed­
point accumulatorsr floating-point accumulators, temporary
storage, or to contain control information such as data ad­
dresses, counts, pointersr etc. Any {or all) of general
registers 1 through 7 can be used as index registers.

MEMORY CONTROL STORAGE

An optional, high-speed integrated-circuit memory is avai 1-
able for storage of a set of memory write-protection codes,
or locks, which can be changed only when the computer is
in the master mode. The memory write-protection option
includes the necessary integrated-circuit memory for the
memory write locks. These locks operate in conjunction
with a 2-bit field, called the write key, in the arithmetic
and control unit. The locks and the key determine whether
or not the program {slave or master} may alfer the contents
of specific regions of core memory. The write key can be
changed only when the computer is in the master mode;
thus the current write key cannot be changed by a slave
program. (The functions of the locks and key are described
in the section II Memory Write Protection ll

.)

INSTRUCTION FORMATS

The normal SIGMA 5 memory addressing instruction has the
following format:

*

Operation

R

x

This bit position indicates whether or not in­
direct addressing is to be performed. Indirect
addressing is performed {one level only} if this
bit position contains a 1r and is not performed
if this bit position contains a O.

This 7-bit field contains the code that desig­
nates the operation to be performed.

This 4-bit field designates any of the 16 regis­
ters of the current register block as an operand
source, result destination, or both.

This 3-bit field designates anyone of registers
1-7 of the current register block as an index

Reference
address

register. X = 0 designates no indexing; hence
register 0 cannot be used as an index- register.

This 17-bit field contains the initial address of
the instruction operand. The reference address
field allows any word, doubleword, left half­
word, or leftmost byte within a word in memory
to be di rect Iy addressed. Ha! fword and byte
operations require additional address bits for
ha I fwords and bytes that do not beg in on a word
boundary. Thus, to address the second half­
word of a word, the X field of the instruction
must designate a register that contains a 1 in its
low-order bit position. To address bytes 1, 2,
or 3 of a word, the X field of the instruction
must designate a register that contains 01, 10,
or 11, respectively, in its two low-order bit
positions. See IIIndexing and Index Registersll

for a more complete description of the SIGMA
5 indexing process.

Some SIGMA 5 instructions are of the immediate-addressing
type. The format of these instructions provides for an oper­
and within the instruction word itself, as shown below. The
functions of the Operation and R fields are identical to
those of the normal instruction format.

o This bit position is coded with a 0 because in­
direct addressing is not meaningful for this type
of instruction. If indirect addressing is attempted,
the computer treats the instruction as a non­
existent instruction.

Value This field contains an operand that is 20 bits in
length, with negative numbers represented in
two1s-complement form.

There are several methods by which an instruction word may
specify 'the source of an operand or the destination of a re­
su It. These methods are explained below.

Immediate Operand

The operation code of an immediate-addressing instruction
specifies that an operand is to be found in the value field
{bit positions 12-31} of the instruction word itself and not
in a general register or core memory location. The value
field of this type of instruction cannot be modified by in­
dexing. The following SIGMA 5 instructions are of the
immediate-addressing type:

Instruction Name Mnemonic Page

Load Immediate LI 26

Load Conditions and Floating
Control Immediate LCFI 30

Add Immediate AI 34

Multiply Immediate MI 36

Compare Immediate CI 39

T nstruction Formats 9

MEMORY REFERENCE ADDRESSES

Core Memory locations 0 through 15 are not accessible to
the programmer because memory addresses 0 through 15 are
reserved as register designators for register-to-register op­
erations. Thus, an instruction can treat any register of the
current register block as if it were a location in core mem­
ory. Furthermore, the register block can be used to hold
an instruction (or a series of up to 16 instructions) for exe­
cution just as if the instruction (or instructions) were in core
memory. The only restriction upon the use of the register
block for instruction storage is:

If an instruction accessed from a genera I register uses
the R fie Id of the instruction word to designate the
next higher-numbered register and execution of the
instruction would alter the contents of the register so
designated, the contents of that register should not be
used as the next instruction in sequence; otherwise,
the operation of the instruction in the affected register
is unpredictable.

In the maximum core memory configuration (131,072 words),
memory addresses "wrap around" with address 0 (general
register 0) being the next consecutive memory address after
X'lFFFF'{l31,071). Core memory location 16 follows gen­
eral register 15 as the next location in ascending sequence.
All SIGMA 5 instructions not of the immediate-address type
are reference addressing instructions, which specify that
the reference address field {bit positions 15-31} of the in­
struction is to be used as the initia I address of the location
where an operand is to be obtained (or the location where'
a result is to be stored), or as an initial instruction value.

Direct Reference Address. If neither indirect addressing
nor indexing is called for by the instruction, the refer­
ence address fie Id of the instruction is a direct reference
address.

Indirect Reference Address. If indirect addressing is ca lied
for by the instruction (a 1 in bit position 0 of the instruc­
tion word), the reference address field is used to access a
word location that contains the direct reference address in
bit positions 15-31. The direct reference address then re­
places the indirect reference address. Indirect addressing
is limited to one level; only the reference address field of
the indirect word is significant.

Indexed Reference Address. Ifindexing is called for by the
instruction (a nonzero value in bit positions 12-14 of the
instruction), the direct reference address is modified by
addition of the displacement value in the general register
(index) called for by the instruction (after scaling the dis­
placement according to the instruction type). This final
reference address va lue (after indirect addressing, i ndex­
ing, or both) is defined as the effective address of the in­
struction. If indirect addressing and indexing are both
called for in an instruction, the index displacement is not
used to modify the indirect reference address, but is used
to modify the direct reference address obtained from the
location pointed to by the indirect reference address. This
method of indexing after indirect addressing is called post­
indexing.

10 Address Modification

Register Address. If any instruction produces an address that
is a memory reference (i. e., a direct, indirect, or indexed
reference address) in the range 0 through 15, the CPU does
not attempt to read from or write into core memory. Instead,
the 4 low-order bits of the reference address are used as a
general register address, and the general register (of the cur­
rent register block) corresponding to this address is used as
the operand location or result destination. Thus, the in­
struction can use any register in the current register block
as the source of an operand, the location of a direct address,
or the destination of a result.

Effective Address

An effective address is defined as the final address produced
for an instruction. The effective address is usua Ily used as
the address of an operand location or resu It destination.
However, some instructions do not use the effective address
as a location reference; instead, the effective address is
used to control the operation of the instruction (as in a shift
instruction), to designate the address of an input/output de­
vice (as in input/output instruction), or to designate a spe­
cific element of the system (as in a READ DIRECT or WRITE
DIRECT instruction).

Effective Location

An effective location is defined to be the location in core
memory or in the current register block that is to receive
the result of a memory-referencing instruction, and is refer­
red to by means of an effective address (whether the effec­
tive address refers to core memory or to a general register).

Effective Operand

An effective operand is defined to be the contents of a lo­
cation in core memory or in the current register block that
is to be used as an operand by a memory-referencing in­
struction, and is referred to by means of an effective address.

ADDRESS MODIFICATION

Indirect Addressing

The 7-bit operation code field of the SIGMA 5 instruction
word format provides for up to 128 instruction operation codes,
nearly a II of which can use indirect addressing (the excep­
tions, already mentioned, are the immediate-addressing in­
structions). The indirect addressing operation is limited to
one leve I, as called for by the i,ndirect address bit (bit po­
sition 0) of the instruction word. Indirect addressing does
not proceed to further levels, regardless of the contents of
the word location pointed to by the reference address field
of the instruction. Indirect addressing occurs before index­
ing; that is, the 17-bit reference address field of the in­
struction is used to obtain a word, and the 17 low-order
bits of the word thus obtained effectively replace the initial
reference field; then, indexing is carried out according to
the operation code of the instruction.

Indexing and Index Registers

The X field of the normal instruction format permits anyone
of registers 1 through 7 in the current register block to be
designated as an index register. The contents of this regis­
ter are then treated as a 32-bit displacement value.

The indexing technique employed in SIGMA is unique.
SIGMA instructions provide for operations on bytes, half­
words, words, and doublewords. These units of information
are typica lIy organized in lists that are processed sequen­
tially. The SIGMA indexing technique is based on the con­
cept that the index register contains an integer va lue (k)
that permits the accessing of the kth item of a list (where
k = 0 refers to the first item, k = 1 refers to the second
item, etc.), independent of the kind of data that is in the
list. Thus, a byte-addressing instruction that is indexed ac­
cesses the kth byte of a list; a halfword-addressing instruc­
tion that refers to the same index register obtains the kth
halfword of a list; a word-addressing instruction that refers
to the same index register obtains the kth word of a list;
and a doubleword-addressing instruction that is indexed
with the same register obtains the kth doubleword of a list.

Figure 4 shows how the indexing operation takes place. As
the instruction is brought from memory, it is loaded into a
34-bit instruction register that initially contains O·s in the
2 low-order bit positions (32 and 33). The displacement
value from the index register is then aligned with the in­
struction register {as an integer} relative to the addressing

Instruction in memory:

Instruction in instruction register:

Byte operation indexing alignment:

Halfword operation indexing alignment:

Word operation indexing alignment:

Shift operation indexing alignment:

Doubleword operation
indexing alignment:

type of the instruction. That is, if it is a byte-addressing
instruction, the displacement is lined up so that its low­
order bit is aligned with the least significant bit of the 34-
bit instruction register. The displacement is shifted one
bit to the left of this position for a halfword-addressing in­
struction, two bits to the left for a word-addressing instruc­
tion, and three bits to the left for a doubleword-addressing
instruction. An addition process then takes place to develop
a 19-bit address, which is referred to as the effective ad­
dress of the instruction. High-order bits of the 32-bit
displacement field are ignored in the development of this
effective address (i. e., the 15 high-order bits are ignored
for word operations, the 25 high-order bits are ignored for
shift operations, and the 16 high-order bits are ignored for
doubleword operations). However, the displacement value
can cause the effective address to be less than the initial
reference address within the instruction if the displace­
ment va lue contains a sufficient number of high-order l·s
{i. e., the di sp lacement is a negat i ve integer in two· s
complement form}.

fhe effective address of an instruction is always a 19-bit byte
address value; however, this value is automatically adjusted
to the SIGMA 5 information boundary conventions. Thus,
for ha Ifword-addressing instructions, the low-order bit of the
effective halfword address is 0, for word-addressing instruc­
tions, the 2 low-order bits of the effective word address are
O·s; and for doubleword-addressing instructions, the 3 low­
order bits of the effective doubleword address are O·s.

I J

Effective address: I : 19-bit addre:, value I
1516171819120 2122 23 24 25:!6 27128 29 30 313233

Figure 4. Index Displacement Alignment

Address Modification 11

If no indexing is used with a byte-addressing instruction,
the effective byte is the first byte (bit positions 0-7) of a
word location, if no indexing is used with a halfword­
addressing instruction, the effective halfword is the first
halfword (bit positions 0-15) of a word location. A double­
word operation always involves a wordatan even-numbered
word address and the word at the next sequential {odd­
numbered} word address. If an odd-numbered word location
is specified in a doubleword-addressing instruction, the low­
order bit of the effective address field (bit position 31) is
automatically forced to O. Thus, an odd-numbered word
address {referring to the middle of a doubleword} designates
the same doubleword as an even-numbered word address,
when used in a doubleword-addressing instruction.

MEMORY WRITE PROTECTION
With a SIGMA 5 computer, an optional method is available
for controlling the use of core memory by a program: the
lock and key technique implemented in the memory write­
protection feature.

This feature provides a 2-bit write-protect lock {WL} for
each 512-word page of core memory addresses. Thus, there
are 256 of these locks, each one assigned to a 512-word
page of addresses as fo I lows:

I WL I WL I WL I WL I WL I~ II WL I WL I

1
+ Addresses
X'600' -X'7FF'

Addresses
X'400' -X'5FF'

Addresses
X'200' - X'3FF'

Addresses
O-X'lFF'
(memory page 0)

+
Addresses
X'lFEOO' -X'lFFFF'
(memory page 255)

Addresses
X'lFCOO' -X'lFDFF'

The write-protect locks can be changed only by the exe­
cution of the privileged instruction MOVE TO MEMORY
CONTROL (see "Control Instructions", Chapter 3).

The write-key (a 2-bit field in the arithmetic and control
unit) works in conjunction', with the lock storage to deter­
mine whether or not the program {whether slave or master}
can write into a specific block of memory. The keys and
locks control access for writing, according to the following
rules:

A lock value of 00 means that the corresponding mem­
ory block is lI un loc ked" i write access to that block is
permitted independent of the key value.

A key value of 00 is a lI skeleton" key that will open
any locki thus, write access to any memory block is
permitted independent of its lock va lue.

A lock value other than 00 for a memory block permits
write access to that block only if the key value is
identical to the lock value.

12 Memory Write Protection/Program Status Doubleword

Thus, a program can write into a given memory block if the
lock value is 00, if the key value is 00, or if the key value
matches the lock value.

If an instruction attempts to write into a write-protected
memory page, the computer aborts the instruction, and traps
to location X'40', which is the 11 nona II owed operation11 trap
(see "Trap System").

PROGRAM STATUS DOUBLEWORD

The critical control conditions of the SIGMA 5 CPU can be
defined within 64 bits of information .. These 64 bits are col­
lectively referred to as the current program status double­
word (PSD). The current PSD can be considered as a 64-bit
internal CPU register, although it actually exists as a col­
lection of sepcrate registers and flip-flops. When stored in
memory, the PSD is always in the following format:

Desig-
nation Function

CC Condition code. This generalized 4-bit code in­
dicates the nature of the results of an instruction.
The significance of the condition code bits depends
on the particular instruction just executed. After
an instruction is executed, the instructions BRANCH
ON CONDITIONS SET (BCS) and BRANCH ON
CONDITIONS RESET (BCR) can be used, singly or
in combination, to test for a particular condition
code setting (these instructions are described in
"Execute/Branch Instructions", Chapter 3).

In some operations on Iy a portion of the condition
code is involved; thus, the term CCl refers to the
first bit of the condition code, CC2 to the second
bit, CC3 to the third bit, and CC4 to the fourth
bit. Any program {slave or master mode} can change
the current value of the condition code by exe­
cuting either the instruction LOAD CONDITIONS
AND FLOATING CONTROL IMMEDIATE (LCFI)
or the instruction LOAD CONDITIONS AND
FLOATING CONTROL (LCF)i any program can
store the current condition code by executing
STORE CONDITIONS AND FLOATING CONTROL
(STCF). These instructions are described in "Load/
Store Instructions", Chapter 3.

FS Floating significance mode control

F Z Floating zero mode control

FN Floating normalize mode control

The three floating-point mode bits(FS, FZ, and
FN) control the operation of the computer with re­
spect to floating-point significance checking, the
generation of zero results, and the normalization

Desig-
nation Function

MS

DM

AM

IA

WK

CI

II

EI

of the results of floating-point additions and sub­
tractions, respectively. (The floating-point mode
controls are described in "Floating-point Instruc­
tionsll, Chapter 3). Any program (slave or master)
can change the state of the current floating-point
mode controls by executing either the instruction
LCFI or the instruction LCF; any program canstore
the current state of the currentfloating-point mode
controls by executing the instruction STCF.

Master/slave mode control. The computer is in
the master mode when this bit is a 0; it is in the
slave mode when this bit is a 1. The master/slave
mode control cannot directly be changed by a
slave program, however, a master mode program
can change the control by executing either the
instruction LOAD PROGRAM STATUS DOUBLE­
WORD (LPSD) or the instruc.tion EXCHANGE
PROGRAM STATUS DOUBLEWORD(XPSD). These
two privi leged instructions are described in "Con­
trol Instructions", Chapter 3.

Decimal mask. This bit position is used only to
preserve the status of the decimal arithmetic fault
trap mask when a SIGMA 7 program is being exe­
cuted. The decimal mask bit does not affect the
operation of the SIGMA 5 computer in any other
way.

Arithmetic mask. The fixed-point arithmetic
overflow trap is in effect when this bit is a 1; the
trap is not in effect when this bit is a O. The in­
structions that can cause fixed-point overflow are
described in the section IITrap System". The arith­
metic trap mask cannot be changed by a slave pro­
gram; a master mode program can change the mask
by executing either the instruction LPSD or the
instruction XPSD.

Instruction address. This 17-bit field contains the
address of the next instruction to be executed.

Write key. This field contains the 2-bit key used
in conjunction with the optional memory protec­
tion feature. A slave program cannot change the
current write keYi a master mode program can
change the write key by executing either the in­
struction LPSD or the instruction XPSD.

Counter interrupt group inhibit

Input/output interrupt group inhibit

External interrupt group inhibit

The three interrupt inhibit bits (CI, II, and EI)
determine whether an interrupt can occur. The
functions of the interrupt inhibits are described
in the section IIInterrupt System II. A slave
program cannot change the state of the in­
terrupt inhibits; a master mode program can
change the interrupt inhibits by executing

Desig-
nation Function

LPSD, XPSD, or the instruction WRITE DIRECT
(WD). The WD instruction is described in IICon­
trol Instructions ll

, Chapter 3.

RP Register pointer. This 4-bit field selects one of
the 16 possible blocks of general-purpose registers
as the current register block. A slave program
cannot change the register pointer; a master mode
program can change the register pointer by exe­
cuting LPSD, XPSD, or the instruction LOAD
REGISTER POINTER (LRP). The LRP instruction is
described in the section IIControl Instructions ll

•

INTERRUPT SYSTEM

The SIGMA 5 priority interrupt system is an improved ver­
sion of the system used successfully in SDS 900/9300 series
computers. Up to 237 interrupt levels are normally avail­
able, each with a unique location (see Table 2) assigned in
core memory, each with a unique priority, and each capable
of being selectivelyarmed and/or enabled by the CPU. Also,
any interrupt level can be IItriggered ll by the CPU (supplied
with a signal at the same physical point where the signal
from the externa I source would enter the interrupt level).
The triggering of an interrupt permits the testing of special
systems programs before the special systems equipment is
actually attached to the computer, and also permits an
interrupt-servicing routine to defera portion of the processing
associated with an interrupt level by processing the urgent
portion of an interrupt-servicing routine, triggering a lower­
priority level (for a routine that handles the less-urgent part),
then ciearing the high-priority interrupt level so that other
interrupts may occur before the deferred interrupt response
is processed.

SIGMA 5 interrupts are arranged in groups that are con­
nected in a predetermined priority chain by groups of levels.
The priority of each level within a group is fixed: the first
has the highest priority and the last level the lowest. The
user has the option of ordering a machine with a priority
chain starting with the override group and connecting a II
remaining groups in any sequence. This allows the user to
establish external interropts above, between, or below the
counter and input/output groups of interna I interrupts.
Figure 5 illustrates this with a configuration that a typical
user might establish; where (after the override group) the
counter group of interna I interrupts is given the second
highest priority, followed by the first group of external
interrupts, then the input/output group of interna I interrupts,
and finally all succeeding groups of external interrupts.

INTERNAL INTERRUPTS

Internal interrupts include the standard interrupts normally
supplied with a SIGMA 5 system, as well as the optional
power fail-safe and the additional counter interrupts.

Override Group (Locations X I 501 to X 156·

The seven interrupt levels of this group a Iways have the
highest priority in a Sigma 5 system.

The power on and power off interrupt levels are included
in the optional power fail-safe feature.

Interrupt System 13

Table 2. SIGMA 5 Interrupt Locations

Location WRITE DIRECT I PSD WRITE DIRECT
Regi ster bi tt

I
Function Availabil ity Inhibit Group codett Dec. Hex.

80 50 none Power on optional none
81 51 none Power off (as a set)

82 52 16 Counter 1 count pulse optional

83 53 17 Counter 2 count pulse (as a set) none
84 54 18 Counter 3 count pu Ise
85 55 19 Counter 4 count pulse standard
86 56 20 Memory pari ty
87 57 Unassigned

88 58 22 Counter 1 equa Is zero optional X'O'
89 59 23 Counter 2 equa Is zero (as a set)

CI
90 5A 24 Counter 3 equa Is zero standard
91 5B 25 Counter 4 equa Is zero

92 5C 26 Input/ output
standard II

93 5D 27 Control panel
94 5E
95 5F Unassigned

96 60 16

· Externa I Group 2 X'2'
·

111 6F 31

112 70 16

· External Group 3 X'3' · ·
127 7F 31

· . optional EI
·

288 120 16

· External Group 14 X'E'

303 12F 31

304 130 16

. External Group 15 X'F'

319 13F 31

tWhen the privileged instruction WRITE DIRECT is used in the interrupt control mode to operate on interrupt levels, the
interrupt levels are selected by specific bit positions in register R. The numbers in this column indicate the bit positionsin
register R that correspond to the various interrupt levels.

ttThe numbers in this column indicate the group codes (for use with WRITE DIRECT) of the various interrupt levels.

The override group can also contain 2 or 4 count-pulse inter­
rupt levels that are triggered by pulses from clock sources.
Counters 1, 2, and 3 can be individua Ily set to any of five
manua Ily switchable frequencies -the commercial line frequen­
cy, 50 Hz, 2kHz, 8kHz, and a user-suppl ied externa I signa I -
that may be different for each counter. Counter 4 has a con­
stant frequency of 500 Hz. All counter frequencies are
synchronous, except for the line frequency and the signal
supplied by the user. Each of the count-pulse interrupt loca­
tions must contain one of the modify and test instructions, M TB,

14 Interrupt System

M TH, or MTW. The results of any other instruction are unpre­
dictable when the instruction is executed as the result ofa count­
pulse interrupt level advancing to the active state. When the
modification of the effective byte, ha Ifword, or word causes a
zero result, the appropriate counter-equals-zero interrupt level
is triggered (see "Counter-Equa Is-Zero Group").

The override group also includes a memory parity interrupt
level that is triggered whenever a memory parity error is
reported to the CPU.

1st Priority 2nd Priority

Override Counter-

Group ---+ Equa Is-Zero
Group

3rd Priority

Externa I Interrupts Group 2

4th Priority

Input/Output
~------------------~~ ~---------------------~ Group

5th Priority

Externa I Interrupts Group 3

6th Priority

Externa I Interrupts Group 4

7th Priority

External Interrupts Group 5

Figure 5. Typical Interrupt Priority Chain

Counter-Equais-Zero Group (Locations X l 58 1 to X 158 1
)

Each interrupt level in the counter group (called a counter­
equals-zero interrupt) is associated with a count-pulse inter­
rupt level in the override group. When the execution of a
modify and test instruction in the count-pulse interrupt
location causes a zero result in the effective byte, halfword,
or word location, the corresponding counter-equals-zero
interrupt is triggered.

All of the counter-equals-zero interrupt levels can be in­
hibited or permitted as a group. If bit position 37 (CO of
the current program status doubleword contains a a, the
counter-equals-zero interrupt levels are allowed to inter­
rupt the program being executed. However, if the CI bit is
a 1, the counter-equals-zero interrupt levels are not al­
lowed to interrupt the programi also, the interrupt levels
are effectively removed from the priority chain, allowing a
lower-priority interrupt level to interrupt the program even
if a counter-equa Is-zero interrupt leve I is currently in the
waiting state.

Input/Output Group (Locations X 15C1 and X 15DI)

This interrupt group includes two standard interrupts: the
I/O interrupt and the control panel interrupt. The I/O
interrupt level accepts interrupt signals from the standard
I/O system. The I/O interrupt location norma Ily contains
an EXCHANGE PROGRAM STATUS DOUBLEWORD (XPSD)
instruction that transfers program control to a routine for
servicing all I/O interrupts. The I/O routine then contains
an ACKNOWLEDGE I/O INTERRUPT (AIO) instruction that
identifies the source and reason for the interrupt.

The control panel interrupt level is connected to the IN­
TERRUPT switch on the processor control panel. The con­
trol panel interrupt level can thus be triggered by the
computer operator, allowing him to initiate a specific
routine.

The interrupts in the input/output group can be inhibited or
permitted by means of bit position 38 (II) of the program
status doubleword. If II is a a, the interrupts in the I/O
group are a 1I0wed to interrupt the program being executed.
However, if the II bit is a 1, the interrupts are inhibited
from interrupting the program, and are effectively removed
from the interrupt priority chain.

EXTERNAL INTERRUPTS

A SIGMA 5 system can contain up to 14 groups of optiona I
interrupt levels, with 16 levels in each group. As shown in
Figure 5, the groups can be connected in any priority se­
quence.

All external interrupts can be inhibited or permitted by
means of bit position 39 (EI) of the program status double­
word. If EI is a 0, externa I interrupts are a II owed to i nter­
rupt the programi however, if EI is a 1, all external in­
terrupts are inhibited and effectively removed from the
priority chain.

Interrupt
State

Disarmed

Armed

Waiting

Active

FF Configuration

I

~

Level
Enable

Source of
Change Signal

CPU

CPU or
External Signal

Interrupt
a....~------ Ti m ing

a.......f------ Group Inh ibit
off

No higher-priority
level active, or
waiting and en­
abled

Figure 6. Interrupt Level Operation

Interrupt System 15

STATES OF AN INTERRUPT LEVEL

A SIGMA 5 interrupt level is mechanized by means of three
flip-flops. Two of the flip-flops are used to define any of
four mutually exclusive states: disarmed, armed, waiting,
and active. The third flip-flop is used as a level-enable.
The various states and conditions causing them to change
state (see Figure 6) are described in the following paragraphs.

Disarmed

When an interrupt level is in the disarmed state, no signal
to that interrupt level is admitted; that is, no record is re­
tained of the existence of the signal, nor is any program
interrupt caused by it at any time.

Armed

When an interrupt level is in the armed state, it is to accept
and remember an interrupt signa I. The receipt of such a
signal advances the interrupt level to the waiting state.

Waiting

When an interrupt level in the armed state receives an in­
terruptsignal, it advances to the waiting state, and remains
in the waiting state unti I it is allowed to advance to the
active state. If the level-enable flip-flop is off, the inter­
rupt level can undergo all state changes except that of moving
from the waiting to the active state. Furthermore, if this flip­
flop is off, the interrupt level is completely removed from
the chain that determines the priority of access to the CPU.
Thus, an interrupt level in the waiting state with its level­
enable in the off condition does not prevent an enabled, wait­
ing interrupt of lower priority from moving to the active state.

When an interrupt level is in the waiting state, the fo 1I0w­
ing conditions must all exist simultaneously before the level
advances to the active state.

1. The level must be enabled (i. e., its level-enable flip­
flop must be set to 1).

2. The CPU must be at an interruptible point in the exe­
cution of a program.

3. The group inhibit (CI, II, or EI, if applicable) must be off
(i.e., theappropriateinhibitin the PSD must be a O.

4. No higher-priority interrupt level is in the active state,
or is in the waiting state and totally enabled (i. e., en­
abled and not inhibited).

Active

Whenan interrupt level meetsall of the conditions necessary
to permit itto move from thewaiting statetotheactive state,
it is permitted to do so by being acknowledged by the com­
puter, which then executes the contents of the assigned in­
terrupt location as the next instruction. The instruction
address portion of the program status doubleword remains
unchanged until the instruction in the interrupt location is
executed. The instruction in the interrupt location must be
one of the following: EXCHANGE PROGRAM STATUS
DOUBLEWORD (XPSD), MODIFY AND TEST BYTE (MTB),
MODIFY AND TEST HALFWORD (MTH), or MODIFY AND
TEST WORD (MTW). If the execution of any other instruction

16 Interrupt System

in an interrupt location is attempted as the result of an
interrupt level advancing to the active state, the results of
the instruction are unpredictable.

The use of the privi leged instruction EXCHANGE PROGRAM
STATUS DOUBLEWORD (XPSD) in an interrupt location
permits an interrupt-servicing routine to save the entire
current machine environment and establish a new environ­
ment. If working registers are needed by the routine and
additional register blocks are available, the contents of the
current register block can be saved automatically with no
time loss. This is accomplished by changing the value of the
regi ster pointer, which results in the assignment of a new
block of 16 registers to the routine.

An interrupt level remains in the active state until it is
cleared (removed from the active state) by the execution of
the instruction LOAD PROGRAM STATUS DOUBLEWORD
(LPSD) or the instruction WRITE DIRECT (WD). (See "Con­
trol Instructions" for the detailed descriptions of LPSD and
WD.) An interrupt-servicing routine can itself be inter­
rupted (whenever a higher-priority interrupt level meets all
of the conditions for becoming active) and then continued
(after the higher-priority interrupt is cleared). However,
an interrupt-servicing routine cannot be interrupted by a
lower-priority interrupt as long as it remains in the active
state. Normally, the interrupt-servicing routine clears its
interrupt and transfers program control back to the point of
interrupt by means of an LPSD instruction with the same ef­
fective address as the XPSD instruction in the interrupt lo­
cation.

CONTROL OF THE INTERRUPT SYSTEM

The SIGMA 5 system has two points of interrupt control.
One point of control is achieved by means of the interrupt
inhibits in the program status doubleword. The interrupt
inhibits can be changed by executing XPSD, LPSD, or a
WD instruction.

The second point of interrupt control is at the individual
interrupt level. The WD instruction can be used to indi­
viduallyarm, disarm, enable, disable, or trigger any inter­
rupt level (except for the power fail-safe interrupts,
which are a Iways armed, a lways enabled, never inhibited,
and have the highest priority). The detailed operation of
the WD instruction is described in the section IIControl
Instructions".

TIME OF INTERRUPT OCCURRENCE

The SIGMA 5 CPU permits an interrupt to occur during the
following time intervals (related to the execution cycle of
an instruction) providing the control panel COMPUTE switch
is in the RUN position and no IIha ltll condition exists:

1. Between instructions: An interrupt is permitted between
the completion of any instruction and the initiation of
the next instruction.

2. Between instruction iterations: An interrupt is also per­
mitted to occur during the execution of the instruction
Move to Memory Control (MMC). The control and
intermediate results of this instruction reside in regis­
ters and memory; thus, the instruction can be inter­
rupted between the completion of one iteration (oper­
and execution cycle) and the point in time (during the
next iteration) when a memory location or register is
modified. If an interrupt occurs during th is time, the
current iteration is aborted and the instruction address
portion of the program status doubleword remains point­
ing to the interrupted instruction. After the interrupt­
processing routine is completed, the instruction con­
tinues from the point at which it was interrupted and
does not begin anew.

SINGLE-INSTRUCTION INTERRUPTS

A single-instruction interrupt is a situation where an inter­
rupt level is activated, the current program is interrupted,
the single instruction in the interrupt location is executed,
the interrupt level is automatically cleared and armed, and
the interrupted program continues without being disturbed
or delayed (except for the time required for the single
instruction).

If any of the following instructions is executed in any in­
terrupt location, then that interrupt automatica Ily becomes
a single-instruction interrupt.

Instruction Name Mnemonic Page

Modify and Test Byte MTB 38

Modify and Test Halfword MTH 38

Modify and Test Word MTW 38

The modify and test instruction modifies the effective byte,
halfword, or word (as described in the section lIFixed-point
Arithmetic Instructions ll

) but the current condition code re­
mains unchanged (even if overflow occurs). The execution
of a modify and test instruction in an interrupt location is
independent of the write-protection locks; thus, a memory
protection violation trap cannot occur (a nonexistent mem­
ory address trap can occur). Also, the fixed-point overflow
trap cannot occur as the result of overflow caused by exe­
cuting MTH or MTW in an interrupt location.

The execution of a modify and test instruction in a count­
pulse interrupt location automatically clears and arms the
corresponding interrupt level, a Ilowing the interrupted
program to continue. When a modify and test instruction is
executed in a count-pulse interrupt location, all the above
conditions apply, in addition to the following: if the re­
sultant value in the effective location is zero, the corre­
sponding counter-equa Is-zero interrupt level is triggered.

TRAP SYSTEM

When a condition that is to result in an interrupt is sensed,
a signal is sent to an interrupt level. If that level is lIarmed ll

it advances to the waiting state. When all of the conditions
for its acknowledgment have been achieved, the interrupt
level eventua Ily advances to the active state, where it fin­
a Ily causes the computer to take an instruction from a spe­
cific location in memory. The computer may execute many
instructions between the time that the interrupt requesting
condition is sensed and the time that the actual interrupt
acknowledgment occurs. However, detecting any of the
conditions listed in Table 3 results in a trap (the immediate
execution of the instruction in a unique location in memory).

When a trap condition occurs, the CPU sets the trap state.
Depending on the type of trap, the instruction currently be­
ing executed by the CPU mayor may not be carried to com­
pletion. In any event, the instruction is terminated with a
trap sequence. In this sequence, the instruction address (IA)
portion of the program status doubleword (PSD), which has
already been incremented by 1, is decremented by 1 and
then the instruction in the location associated with the trap
is executed. An interrupt acknowledgment cannot occur
unti I the execution of the instruction in the trap location is
completed. The instruction in the trap location must be an
XPSD instruction; if the execution of any other instruction
in a trap location is attempted as the result of a trap acti­
vation, the results of the instruction are unpredictable. No
memory protection violation or privileged instruction viola­
tion can occur as a result of executing an XPSD instruction
in a trap location. The detai led operation of XPSD is de­
scribed in IIControl Instructions ll

, Chapter 3.

NON ALLOWED OPERATIONS

The occurrence of one of the nonallowed operations always
causes the computer to abort the instruction being exe­
cuted (at the time that the nona Ilowed operation is de­
tected) and to immediately execute the instruction in trap
location X1401.

Nonexistent Instruction

Any instruction that is neither standard nor optiona I on
SIGMA 5 is defined as nonexistent (this includes immediate­
addressing instructions that are indirectly addressed). If
execution of a nonexistent instruction is attempted, the
computer traps to location X I 40 at the time the instruction
is decoded. The operation of the XPSD instruction in trap
location X 1401 (with respect to the condition code and in­
struction address portions of the PSD) is as follows:

1. Store the current PSD. The condition code stored is
that which existed at the end of the instruction executed
immediately prior to the nonexistent instruction. The
instructi on address stored is the address of the non­
existent instruction.

Trap System 17

Table 3. Summary of SIGMA 5 Trap System

Location PSD
Dec. Hex. Trap Condition Mask Bit Time of Occurrence Special Action During XPSD

-64 40 Nonallowed operation none

l. Nonexistent instruction Instruction decode Set CC1 after new CC is loaded
from memory. If bit 9 of XPSD is
1, add 8 to the new instruction
address value loaded from memory.

2. Nonexi stent memory Prior to memory access Set CC2 after new CC is loaded
address from memory. If bit 9 of XPSD is

1, add 4 to the new instruction
address value loaded from memory.

3. Privileged instruction Instruction decode Set CC3 after new CC is loaded
in slave mode from memory. If bit 9 of XPSD is

1, add 2 to the new instruction
address value loaded from memory.

4. Memory protection Prior to memory access Set CC4 after new CC is loaded
violation from memory. If bit 9 of XPSD is

1, add 1 to the new instruction
address value loaded from memory.

65 41 Unimplemented instruction none Instruction decode none

66 42 Push-down stack limit TW I TSt At time of stack limit detection none
reached

67 43 Fixed-point arithmetic over- AM For all instruction except DW none
flow and DH, trap occurs after com-

pletion of instruction. For DW
and DH, instruction is aborted
with memory, registers, CC1,
CC3, CC4 unchanged.

68 44 Floating-point fault

1. Characteristic overflow none At time of fault detectioni the none

2. Divide by zero
condition code is set to indicate

none
the reason for the trap

3. Significance check FS, FZ,
FN

70 46 Watchdog timer runout none At time of runout none

72 48 CALL 1 none Instruction decode The R field of the CALL instruc-

73 49 CALL 2 none Instruction decode
tion is ORed into new CC settings
loaded from memory. If bit 9 of

74 4A CALL 3 none Instruction decode XPSD is 1, the R field of the CALL

75 4B CALL 4 Instruction decode
instruction is added to the new in-

none
struction address value loaded from
memory.

tThe push-down stack limit trap is masked within the stack pointer doubleword for each push-down stack (see page 49).

18 Trap System

2. Load the new PSD. The current PSD is replaced by the
contents of the doubleword location fo Ilowing the
doubleword location in which the current PSD was
stored.

3. Modify the new PSD:

a. Set CCl to 1 (CC2, CC3, and CC4 remain set at
the values loaded from memory).

b. If bit position 9 ofXPSD contains a 1, the instruc­
tion address loaded from memory is incremented by
8~ If bit position 9 of XPSD contains a 0, the in­
struction address remains at the value loaded from
memory.

Nonexistent Memory Address

Any attempt to access a nonexistent memory address causes
a trap to locationX '40' at the time of the request for mem­
ory service. The operation of XPSD in trap location X'40'
is as fo lIows:

1. Store the current PSD. The condition code stored is
that which existed immediately prior to the instruction
that attempted to access a nonexistent memory address.
The instruction address stored is the address of the in­
struction that attempted to access a nonexistent memory
address. If an instruction execution is followed by an
access to a nonexistent memory address for the next in­
struction in sequence, the stored instruction address is
the nonexistent memory address.

2. Load the new PSD.

3. Modify the new PSD:

a. SetCC2to 1 (CC1, CC3, and CC4 remain set at
the values loaded from memory).

b. If bit position 9 ofXPSD contains a 1, the instruc­
tion address loaded from memory in incremented
by 4. If bit position 9 of XPSD contains a 0, the
instruction address remains at the value loaded
from memory.

Privileged Instruction in S lave Mode

An attempt to execute a privi leged instruction whi Ie the
CPU is in the slave mode causes a trap to location X'40 '
at the time of instruction decoding. The operation of
XPSD in trap location X'40' is as follows:

1. Store the current PSD. The condition code stored is
that which existed immediately prior to the privileged
instruction. The instruction address stored is the address
of the privi leged instruction.

2. Load the new PSD.

3. Modify the new PSD:

a. Set CC3 to 1 (CC1, CC2, and CC4 remain set at
the values loaded from memory).

b. If bit position 9 ofXPSD contains a 1, the instruction
address loaded from memory is incremented by 2. If
bit position90fXPSDcontains a 0, the instruction
address remains at the value loaded from memory.

The operation codes ~C, OD, 2C, 2D and their indirectly
addressed forms, 8C, 8D, AC, AD, are both nonexistent
and privi leged. If one of these operation codes is used
whiletheCPU isintheslavestate, both CCl and CC3 will be
set to lis after the new PSD has been loaded, and if bit po­
sition 9 ofXPSD contains a 1, the instruction address loaded
from memory is incremented by 10.

Memory Write- Protection Vio la-tion

A memory protection violation occurs when any instruction
attempts to alter write-protected memory and the current
write key is nonzero and does not match the write lock for
the memory page. When a memory protection violation oc­
curs, the CPU aborts execution of the current instruction
(without changing protected memory) and traps to location
X'40 ' • The operation of the XPSD in trap location X'40' is
as follows:

1. Store the current PSD. The condition code stored is
that which existed immediately prior to the instruction
attempting to alter protected memory. The instruction
address stored is the address of the instruction that at­
tempted to a Iter protected memory.

2. Load the new PS D.

3. Modify the new PSD:

a. Set CC4 to 1 (CC1, CC2, and CC3 remain at the
va lues ioaded from memory).

b. If bit position 9 of XPSD contains a 1, the instruc­
tion address loaded from memory is incremented by
1. If bit position 9 of XPSD contains a 0, the in­
struction address remains at the value loaded from
memory.

An attempt to access a memory location that is both wri te­
protected and nonexistent causes both CC2 and CC4 to be
set to lis after the new PSD has been loaded, and if bit
position 9 of XPSD contains a 1, the instruction address
loaded from memory is incremented by 5.

UNIMPLEMENTED INSTRUCTIONS

There is on optiona I SIGMA 5 instruction group, the floating­
point option, whi ch inc ludes the following instructions:

Instruction Name Mnemonic Page

Floating Add Short FAS 47
Floating Add Long FAL 47
Floating Subtract Short FSS 47
Floating Subtract Long FSL 48
Floating Multiply Short FMS 48
Floating Multiply Long FML 48
Floating Divide Short FDS 48
Floating Divide Long FDL 48

Trap System 19

If an attempt is made to execute an instruction in this group
when the floating-point option is not implemented, the
computer traps to location X'41'.

The operation of the XPSD in trap location X '41' is as
follows:

1. Store the current PSD. The condition code stored is
that which existed immediately prior to the unimple­
mented instruction. The instruction address stored is
the address of the unimplemented instruction.

2. Load the new PSD. The condition code and the in­
struction address portions of the PSD remain at the
values loaded from memory.

Note: The Move to Memory Control (MMC) instruction is
a Iways considered implemented even if the memory­
protection option is not implemented.

PUSH-DOWN STACK LIMIT REACHED

Push-down stack overflow or underflow can occur during
execution of any of the following instructions:

Instruction Name Mnemonic Page

Push Word PSW 50

Pull Word PLW 50

Push Multiple PSM 51

Pull Multiple PLM 51

Modify Stack Pointer MSP 52

During the execution of any stack-manipulating instruction
(see IIPush-down Instructions") the stack is either pushed
(words added to stack) or pulled (words removed from stack).
In either case, the space count and word count fields of the
stack pointer doubleword are tested prior to moving any words.
If execution of the instruction would cause the space count
to become less than 0 or greater than 215_1, the instruction
is aborted with memory and registers unchanged; then, if
bit 32 (TS) of the stack pointer doubleword is 0, the CPU
traps to location X '42'. If execution of the instruction
would cause the word count to become less than 0 or greater
than 215_1, the instruction is aborted with memory and
registers unchangedi then, if bit 48 (TW) of the stack point­
er doubleword is a 0, the CPU traps to location X '42'. The
execution of XPSD in trap location X '42' is as follows:

1. Store the current PSD. The condition code stored is
that which existed immediately prior to the aborted
push-down instruction. The instruction address stored
is the address of the aborted push-down instruction.

20 Trap System

2. Load the new PSD. The condition code and instruction
address portions of the PSD remain at the va lues loaded
from memory.

FIXED-POINT OVERFLOW

Fixed-point overflow can occur for any of the following in­
structions:

Instruction Name Mnemonic Page

Load Complement Word LCW 28
Load Absolute Word LAW 28
Load Complement Doubleword LCD 28
Load Absolute Doubleword LAD 28
Add Immediate AI 34
Add Ha I fword AH 34
Add Word AW 34
Add Doubleword AD 35
Subtract Ha Ifword SH 35
Subtract Word SW 35
Subtract Doubleword SD 35
Divide Halfword DH 37
Divide Word DW 37
Add Word to Memory AWM 37
Modify and Test Halfword MTH 38
Modi fy and Test Word MTW 38

Except for the instructions DIVIDE HALFWORD (DH) and
DIVIDE WORD (DW), the instruction execution is allowed
to proceed to comp letion, CC2 is set to 1 and CC3 and CC4
represent the actual result (0, -, or +) after overflow. If
the fixed-point arithmetic trap mask (bit 11 of PSD) is a 1,
the CPU traps to location X'43' instead of executing the
next instruction in sequence.

For DW and DH, the instruction execution is aborted with­
out changing any register and CC2 is set to 1; but CC1,
CC3, and CC4 remain unchanged from their values at the
end of the instruction immediately prior to the DW or DH.
If the fixed-point arithmetic trap mask (AM) isa 1, the CPU
traps to location X'43' instead of executing the next in­
struction in sequence.

The execution of XPSD in trap location X'43' is as follows:

1. Store the current PSD. If the instruction causing the
trap was an instruction other than DW or DH, the
stored condition code is interpretedt as follows:

ltt 2 3 4 Significance

o

o
o

o

o

resu It after overflow is zero

result after overflow is negative

resu It after overflow is positive

no carry from bit position 0

carry from bit position 0

tA hyphen (-) indicates that the condition code bitisnotaf­
fected by the condition given under the II significance II heading.

ttCCl remains unchanged for the instructions LCW, LAW,
LC D, and LAD.

2.

If the instruction causing the trap was DW or DH, the
stored condition code is interpreted as follows:

2 3 4 Significance

overflow

The stored instruction address is the address of the in­
struction that caused fixed-point overflow.

Load the new PSD. The condition code and instruction
address portions of the PSD remain at the value loaded
from memory.

FLOATING-POINT ARITHMETIC FAULT CONDITION

Floating-point fau It· detection is performed after the oper­
ation called for by the instruction code is performed, but
before any resu Its are actua lIy loaded into the genera I
registers; thus, the floating-point operation that causes an
arithmetic fault is not carried to completion (in the sense
that the original contents of the general registers remain
unchanged). Instead, the computer traps to location X' 441

with the current condition code indicating the reason for
the trap. A characteristic overflow or an attempt to divide
by zero always results in a trap condition; a significance.
check or a characteristic underflow result in a trap condI­
tion only if the floating-point mode controls (FS, FZ, and
FN) in the program status doubleword are set to the appro­
priate state.

If a floating-point instruction causes a trap, the execution
of XPSD in trap location X'441 is as follows:

1. Store the current PSD. If division is attempted with a
zero divisor or if characteristic overflow occurs, the
stored condition code is interpreted as follows:

2 3 4 Significance

0 0 0 divide by zero

0 0 characteristic overflow, negative
result

0 0 characteristic overflow, positive
result

If none of the above conditions occurs, but character­
istic underflow occurs with the floating zero (FZ) mode
bit set to 1, the stored condition code is interpreted
as follows:

2 3 4 Significance

0 characteristic underflow, negative
result

0 characteristic underflow, positive
result

If none of the above conditions occurs, but an addition
orsubtraction results in either a zero resu It{with FS = 1
and FN = O}, or a postnormalization shift of more than
two hexadecimal places (with FS = 1 and FN = O), the
stored condition code is interpreted as follows:

2 3 4 Significance

0 0 0 zero result of addition or subtraction

0 0 more than 2 postnorma lizing shifts,
negative resu It

0 0 more than 2 postnorma lizing shifts,
positive resu It

The stored instruction address is the address of the in­
struction that caused the floating-point fau It.

2. Load the new PSD. The condition code and instruction
address portions of the PSD remain at the va lues loaded
from memory.

WATCHDOG TIMER RUNOUT

The instruction watchdog timer insures that the CPU must
periodically reach interruptible points of operation in the
execution of instructions. An interruptible point is a time
during the execution of a program when an interrupt request
(if present) would be acknowledged. Interruptible points
occur at the end of every instruction and during the execu­
tion of some instructions. The watchdog timer measures
elapsed time from the last interruptible point. If the m~xi­
m'um allowable time has been reached before the next time
that an interrupt could be recognized, the current instruc­
tion is aborted and the watchdog timer runout trap is acti­
vated. Except for a nonexistent address used with READ
DIRECT (RD) or WRITE DIRECT (WD), programs trapped by
the watchdog timer cannot (in generai) be continued. Exe­
cution of XPSD in trap location X'461 is as follows:

1. Store the current PSD. The stored condition code is,
in genera I, meaningless. The instruction address stored
is the address of the aborted instruction.

2. Load the new PSD. The instruction address portion of
the PSD remains at the value loaded from memory; how­
ever, the resulting condition code value isgenerally,
meaningless. If the watchdog timer runout trap was
activated whi Ie an operation was being performed by
the integral lOP, the condition code is set to all 11S.
In this case the integral lOP is inhibited from further
operation unti I the inhibit is reset by a specific config­
uration of the WD instruction or by pressing either the
CPU RESET/CLEAR switch or the SYSTEM RESET/CLEAR
switch on the processor control panel.

CALL INSTRUCTIONS

The four CALLinstructions (CAll, CAL2, CAL3, and CAL4)
cause the computer to trap to location X'481 (for CAL 1)
X' 49 1 (for CAL2), X' 4A' (for CAL3), or X' 4B' (for CAL4).
Execution of XPSD in the trap location is as follows:

1. Store the current PSD. The stored condition code is
that which existed immediately prior to the CALL in­
struction. The stored instruction address is the address
of the CALL instruction.

2. Load the new PSD.

T rap System 21

3. Modify the new PSD.

a. The R field of the CALL instruction is logically
ORed with the condition code value loaded from
memory 1 and the result is loaded into the condi­
tion code.

22 T rap System

b. If bit 9 of XPSD contains a 1, the R field of the
CALL instruction is added to the instruction ad­
dress loaded from memory.

If bit 9 of XPSD contains a 0, the instruction ad­
dress remains at the value loaded from memory.

3. INSTRUCTION REPERTOIRE

This section describes all SIGMA 5 instructions, grouped in­
to the following functional classes:

Page

I. Load and Store 26
2. Analyze and Interpret 32
3. Fixed-Point Arithmetic 33
4. Comparison 39
5. Logical 41
6. Shift 41
7. Floating-Point Arithmetic 44
8. Push Down 48
9. Execute and Branch 53

10. Call 55
Il. Control 55
12. Input/Output 62

SIGMA 5 instructions are described in the following format:

MNEMONIC CD INSTRUCTION NAME CD
(Addressing type0, Optional 0,

o
Privileged ® Interrupt Action0)

Description ®
Affected® Trap@)

Symbolic notation ®
Condition Code Settings ®
Trap Action @)

Example@

I. MNEMONIC is the code used by the SIGMA 5 assem­
blers to produce the instruction IS basic operation code.

2. INSTRUCTION NAME is the instruction's descriptive
title.

3. The instruction's addressing type is one of the following:

a. Byte addressing: the reference address field of the
instruction can be used to address a byte in core
memory or in the current block of general registers.

b. Halfword addressing: the reference address field
of the instruction can be used to address a half­
word in core memory or in the current block of
general registers.

c. Word addressing: the reference address field of
the instruction can be used to address any word in
core memory or in the current block of general
registers.

d. Doubleword addressing: the reference address
field of the instruction can be used to address

4.

e.

any doubleword in core memory or in the current
block of general registers. The addressed double­
word is automatically located within doubleword
storage boundaries.

Immedi ate addressing: the instruction word contains
an operand value used as part of the instruction exe­
cution. If indirect addressing is attempted with this
type of instruction (i.e., bit 0 of the instruction
word is a 1), the instruction is treated as a non­
existent instruction, in wh ich case the computer
unconditionally aborts execution of the instruction
(at the time of operation code decoding) and traps
to location X '40 ', the "nonallowed operation II trap.
Indexing does not apply to this type of instruction.

If the instruction is not in the standard SIGMA 5 instruc­
tion set, it is labeled "optional". If execution of an
optional instruction is attempted on a computer in which
the instruction is not implemented, the computer uncon­
ditionally aborts execution of the instruction (at the time
of operation code decoding) and traps to location X'41 1

,

which is the "unimplemented instruction trap ".

5. If the instruction is not executable while the computer
is in the slave mode, it is labeled "privileged". If exe­
cution of a privileged instruction is attempted while the
computer is in the slave mode, the computer uncondi­
tiona��y aborts execution of the instruction (at the time
of operation code decoding) and traps to location X'40'.

6. If the instruction can be successfully resumed after its
execution sequence has been interrupted by an interrupt
acknowledgement, the instruction is labeled "continue
after interrupt". Otherwise, the instruction is either
completed or the instruction is aborted and then restarted
after the interrupt is cleared. In the case of the "con -
tinue after interrupt" instruction, certain general reg­
isters contain intermediate results or control information
that allows the instruction to continue properly.

7. Instruction format:

a. Indirect addressing - If bit position 0 of the instruc­
tion format contains an asterisk (*), the instruction
can uti lize indirect addressingi however, if bit
position 0 of the instruction format contains a 0,
the instruction is of the immediate addressing type,
which is treated as a nonexistent instruction if in­
direct addressing is attempted (resulting in a trap
to location X 1401).

b. Operation code - The operation code field (bit
positions 1-7) of the instruction is shown in hexa­
decimal notation.

c. R field - If the register address field (bit positions
8-11) of the instruction format contains the letter

Instructi on Repertoire 23

"R", the instruction can specify any register in
the current block of general registers as an op­
erand source, result destination, or both; other­
wise, the function of this field is determined by
the instruction.

d. X field - If the index register address field (bit
positions 12-14) of the instruction format contains
the character "X", the instruction can specify in­
dexing with anyone of registers·l through 7 in the
current blockof general registers; otherwise, the
function of th is field is deterni ined by the instruc­
tion.

e. Reference address field - Normally, the reference
address field (bit positions 15-31) of the instruc­
tion format is used as the initial address value for
an instruction operand. For some instructions the
effective address of the instruction is not used to
access an operand; instead, the effective address
itself is used as an operand. In these cases, the
function of the effective address is represented in
the lower half of the reference address field in the
instruction format diagram.

f. Value field - In immediate addressing instructions,
bit positions 12-31 of the instruction format con­
tain the word "value". This field is treated as a
20-bit integer, with negative integers represented
in two's complement form.

g. Ignored fields - In the instruction format diagrams,
any area that is shaded represents a fi el d or bi t po­
sition that is ignored by the computer (i .e., the
content of the shaded field or bit has no effect on
instruction execution) but shou Id be coded with
O's so as to preclude conflict with possible modi­
fications.

8. The description of the instruction defines the operations
performed by the computer in response to the instruction
configuration depicted by the instruction format diagram.
Any instruction configuration that causes an unpredict­
able result is so specified in the description.

9. All programmable registers and storage areas that can
be affected by the instruction are listed (symbolically)
after the word IIAffected". The instruction address
portion of the program status doubleword is considered
to be affected only if a branch condition can occur as
a result of the instruction execution, since the instruc­
tion address is updated (incremented by 1) as part of
every instruction execution.

10. All trap conditions that may be invoked by the execu­
tion of the instruction are listed after the word II Trap II.
SIGMA 5 trap locations are summarized in the section
"Trap System".

11. The symbolic notation presents the instruction operation
as a series of generalized symbolic statements. Thesym­
bolic terms used in the notation are defined in Table 4.

12. Condition code settings are given for each instruction
that affects the condition code. A a or a I under any

24 Instruction Repertoire

of columns I, 2, 3, or 4 indicates that the instruction
causes a 0 or 1 to be placed in CC I, CC2, CC3, or
CC4, respectively, for the reasons given. If a hyphen
(-) appears in column 1, 2, 3, or 4, that portion of the
condition code is not affected by the reason given for
the condition code bit(s) containing a 0 or I. For ex­
ample, the following condition code settings are given
for a comparison instruction:

2 3 4 Resu It of comparison

0 0 equal

0 register operand is arithmetieally
less than effective operand

0 register operand is arithmetically
greater than effective operand

0 logical product (AND) of the two
operands is zero

logical product of the two operands
is nonzero

CCI is unchanged by the instruction. CC2 indicates
whether or not the two operands have l's in correspond­
ing bit positions, regardless of their arithmetic relation­
ship. CC3 and CC4 are set according to the arithmetic
relationship of the two operands, regardless of whether
or not the two operands have 1 's in corresponding bit
positions. For example, if the register operand is
arithmetically less than the effective operand and the
two operands both have lis in at I east one correspond­
ing bit position, the condition code setting for the
comparison instruction is:

234

o

The above statements about the condition code are valid
only if no trap occurs before the successful completion of
the instruction execution cycle. If a trap does occur
during the instruction execution, the condition code is
normally reset to the value it contained before the in­
struction was started, and then the appropriate trap lo­
cation is activated.

13. Actions taken by the computer for those trap conditions
that may be invoked by the execution of the instruction
are described. The description includes the criteria for
the trap condition, any control I ing trap mask or inhibit
bits, and the action taken by the computer. In order to
avoid unnecessary repetition, the two trap conditions
that apply to all instructions (i.e., nonallowed opera­
tions and watchdog timer runout) are not described for
each instruction.

14. Some instruction descriptions provide examples to illus­
trate the results of the instruction. These examples
are intended only to show how the instructions op­
erate, and not to demonstrate their full capability.
Within the examples, hexadecimal notation is used to
represent the contents of general registers and storage
locations (condition code settings are shown in binary
notation). The character "x" is used to indicate irrel­
evant or ignored information.

Term

()

AM

R

Rul

x

EA

EBL

EB

EHL

EH

EWL

EW

EDL

Table 4. Glossary of Symbolic Terms

Meaning

Contents of

Fixed-point arithmetic trap mask - bit 11 of
the program status doubleword. If this bit
is a 1, the computer traps to location X '43 1

after executing an instruction that causes
fixed-point arithmetic overflow; if this bit is
a 0, the computer does not trap to I ocati on
X'43 1

•

Instruction register - the internal CPU regis-.
ter used to hold instructions obtained from
memory while they are being decoded.

General register address value - the 4-bit
contents of bit positions 8-11 (the R field) of
an instruction word, also expressed symbol­

ically as (08-11'

Odd register address value - registerRul is the
general register pointed to by the value ob­
tained by logically ORing 0001 into the ad­
dress value for register R. Thus, if the R field
of an instruction contains an even value,
Rul = R + 1 and if the R field contains an odd
value, Rul = R.

Index register address val ue - the 3-bit con­
tents of bit positions 12-14 (the X field) of an
instruction word. If X = 0 for an instructionf

no indexing is performed. If X 'I 0 for an in­
struction, indexing is performed (after indirect
addressing, if indirect addressing is called for)
with general register X in the current register
block.

Effective address - The final address value ob­
tained as a result of indirect addressing and/or
indexing.

Effective byte location - the byte location
pointed to by the effective address of a byte­
addressing instruction.

Effective byte - the 8-bit contents of the ef­
fective byte location, or (EBL).

Effective halfword location - the halfword lo­
cation pointed to by the effective address of
the halfword addressing instruction.

Effective halfword - the 16-bit contents of the
effective halfword location, or (EHL).

Effective word location - the word location
pointed to by the effective address of a word­
addressing instruction.

Effective word - the 32-bit contents of the ef­
fective word location, or (EWL).

Effective doubleword location - the double­
word location pointed to by the effective ad­
dress of a doubleword-addressing instruction.

Term

ED

CC

FN

FS

FZ

IA

n

u

@

SE

Meaning

Effective doubleword - the 64-bit contents of
the effective doubleword location, or (EDL).

Condition code - a 4-bit value (whose bit po­
sitions are labeled CC1, CC2, CC3, and CC4)
that is established as part of the execution of
most SIGMA 5 instructions.

Floating normalize mode control - bit 7 of the
program status doubleword. If this bit is a 0,
the results of floating-point additions and sub­
tractions are to be normal ized; if this bit is
a 1, the results are not normalized.

Floating significance mode control - bit 5 of
the program status doubleword. If this bit is
a 1, the computer traps to location X '44 1 when
more than two hexadecimal places of postnor­
mal ization shifting are required for a floating­
point addition or subtraction; if this bit is a 0,
no significance checking is performed.

Floating zero mode control - bit 6 of the
program status doubleword. If this bit is
a 1, the computer traps to location X'44 1

when either characteristic underflow or a zero
result occurs for a floating-point multiplica­
tion or division; if this bit is a 0, charac­
teristics underflow and zero resul ts are treat­
ed as normai conditions.

Instruction address - the 17 bit value that
defines the address of an instruction im­
mediately before the instruction is executed.

Hexadecimal qualifier - a hexadecimal
val ue (n) is a string of hexadecimal digits
encl osed by quote marks and preceded by
the qual ifi er IIX II.

AND (logical product, where 0 n 0 = 0,
o n 1 = 0, 1 n 0 = 0, and 1 n 1 = 1.

OR (logical inclusive OR, where 0 u 0 = 0,
o u 1 = 1, 1 u 0 = 1, and 1 u 1 = 1).

EOR (logical exclusive OR, where 0 C0 0 = 0,
o C0 1 = 1, 1 @ 0 = 1, and 1 C0 1 = 0).

Sign extension - some SIGMA 5 instructions
operate on two operands of different lengths;
the two operands are made equal in length by
extending the sign of the shorter operand by
the required number of bit positions. For posi­
tive operands, the result of sign extension is
high-order OIS prefixed to the operand; for neg­
ative operands, high-order lis are prefixed to
the operand. This sign extension process is per­
formed after the operand is accessed from mem­
ory and before the operation called for by the
i nstructi on code is performed.

Symbolic Terms 25

LOAD / STORE INSTRUCTIONS

The following load/store instructions are implemented in
SIGMA 5 computers:

Instruction Name Mnemonic Page

Load Immedi ate LI 26
Load Byte LB 26
Load Halfword LH 27
Load Word LW 27
Load Doubleword LD 27
Load Comp lement Halfword LCH 27
Load Absolute Halfword LAH 27
Load Complement Word LCW 28
Load Absolute Word LAW 28
Load Complement Doubleword LCD 28
Load Absolute Doubleword LAD 28
Load Selective LS 29
Load Multiple LM 29
Load Conditions and Floating Control

Immediate LCFI 30
Load Conditions and Floating Control LCF 30
Exchange Word XW 30
Store Byte STB 30
Store Halfword STH 31
Store Word STW 31
Store Doubleword STD 31
Store Selective STS 31
Store Multiple STM 31
Store Conditions and Floating Controls STCF 32

SIGMA 5 load and store instructions operate with informa­
tion fields of byte, halfword, word, and doubleword lengths.
Load instructions load the information indicated into one of
the general registers in the current register block. Load in­
structions do not affect core memory storage; however,
nearly all load instructions provide a condition code setting
that indicates the following information about the contents
of the affected general register{s) after the instruction is
successfully completed.

Condition code settings:

2 3 4 Result

o 0 zero-the result in the affected register{s)
is all O's.

o negative-register R contains a 1 in bit
position O.

o positive-register R contains a 0 in bit
position 0, and at least one 1 appears in
the remainder of the affected register{s)
(or appeared during execution of the cur­
rent instruction.)

o no fixed-point overflow-the result in
the affected register{s) is arithmetically
correct.

fixed-point overflow-the result in the
affected register{s) is arithmetically in­
correct.

26 Load/Store Instructions

Store instructions affect on Iy that portion of memory storage
that corresponds to the length of the information field speci­
fied by the operation code of the instruction; thus, register
bytes are stored in memory byte locations, register halfwords
in memory halfword locations, register words in memory word
locations, and register doublewords in memory doubleword
locations. Store instructions do not affect the contents of
the general register specified by the R field of the instruc­
tion, unless the same register is also specified by the effec­
tive address of the instruction.

LI LOAD IMMEDIATE
(Immediate addressing)

o 1 2

LOAD IMMEDIATE extends the sign of the value field (bit
posi tion 12) of the instruction word 12 bit positions to the
left and then loads the 32-bit result into register R.

Affected: (R), CC3, CC4

(I)12-3ISE ~ R

Condition code settings:

2 3 4 Result in R

0 0 zero
0 1 negative

0 positive

If LI is indirectly addressed, it is treated as a nonexistent
instruction, in which case the computer unconditionally
aborts execution of the instruction (at the time of opera­
tion code decoding) and traps to location X'40' with the
contents of register R and the condition code unchanged.

LB LOAD BYTE
(Byte addressi ng)

LOAD BYTE loads the effective byte into positions 24-31 of
register R and clears bit positions 0-23 of the register to all
O's.

Affected: (R), CC3, CC4
EB~ R

24
-
3J

i O~ R
O

-
23

Condition code settings:

2 3 4 Resu I tin R

Example:

EB
(R)
CC

o 0 zero
1 0 nonzero

Before execution

X'B4'
xxxxxxxx
xxxx

After execution

X'B4'
X '000000B4'
xx 10

LH LOAD HALFWORD
(Halfword addressing)

LOAD HALFWORD extends the sign of the effective half­
word 16 bit positions to the left and then loads the 32-bit
result into register R.

Affected: (R), CC3, CC4

EHSE --.. R

Condition code settings:

2

LW

3 4 Result in R

0 0 zero
0 1 negative
1 0 positive

LOAD WORD.
(Word addressing)

LOAD WORD loads the effective word into register R.

Affected: (R), CC3, CC4
EW--" R

Cond ition code settings:

2 3 4 Result in R

0 0 zero
0 1 negative
1 0 positive

LO LOAD DOUBLEWORD
(Doubleword addressing)

LOAD DOUBLEWORD loads the 32 low-order bits of the
effective doubleword into register Ru 1 and then loads the
32 high-order bits of the effective doubleword into reg­
ister R.

If R is an odd value, the result in register R is the 32 high­
order bits of the effective doubleword. The condition code
settings are based on the effective doubleword, rather than
the final result in register R (see example 3, below).

Affected: (R), (Ru 1), CC3, CC4
ED

32
_
63

'--'" Rul; ED
O

_
31

--" R

Condition code settings:

2 3 4 Effective doubleword

0 0 zero
0 1 negative
1 0 positive

Example I, even R field value:

Before execution After execution

ED X '0123456789ABCDEF' X '0123456789ABCDEF'
(R) xxxxxxxx X'01234567'
(Ru 1) xxxxxxxx X'89ABCDEF'
CC xxxx xxl0

Example 2, odd R field val ue:

ED
(R)
CC

X'0123456789ABCDEF' X'0123456789ABCDEF'
xxxxxxxx X'01234567'
xxxx xx10

Example 3, odd R field val ue:

ED
(R)
CC

X'00000000I2345678'
xxxxxxxx
xxxx

X'00000000J2345678'
X' 00000000'
xxlO

LCH LOAD COMPLEMENT HALFWORD
(Halfword addressing)

LOAD COMPLEMENT HALFWORD extends the sign of the
effective halfword 16 bit positions to the left and then loads
the 32-bit two's complement of the result into register R.
(Overflow cannot occur.)

Affected: (R), CC3, CC4
-rEH ~l~ R

L SCJ

Condition code settings:

2 3 4 Result in R

0 0 zero
0 1 negative
J 0 positive

LAH LOAD ABSOLUTE HALFWORD
(Halfword addressing)

If the effective halfword is positive, LOAD ABSOLUTE
HALFWORD extends the sign of the effective halfword 16
bit positions to the left and then loads the 32-bit result in
register R. If the effective halfword is negative, LAH ex­
tends the sign of the effective halfword 16 bit positions to
the left and then loads the 32-bit two's complement of the
result into register R. (Overflow cannot occur.)

Affected: (R), CC3, CC4

IEHSEI --.. R

Condition code settings:

2 3 4 Resu I tin R

o 0 zero
1 0 nonzero

Load/Store Instructions 27

LCW LOAD COMPLEMENT WORD
(Word addressing)

LOAD COMPLEMENT WORD loads the 32-bit two's com­
plement of the effective word into register R. Fixed-point
overflow occurs if the effective word is _231 (X'80000000'),
in which case the result in register R is -231 and CC2 is set
to 1; otherwise, CC2 is reset to o.
Affected: (R), CC2, CC3, CC4 Trap: Fixed-point overflow
-EW --.. R

Condition code settings;

2 3 4 Result in R

0 0 0 zero
0 I negative

0 1 0 positive
0 no fixed-point overflow
1 0 fixed-point overflow

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is 1, the computer traps to location X'43 1 after exe­
cution of LOAD COMPLEMENT WORD; otherwise, the com­
puter executes the next instruction in sequence.

LAW LOAD ABSOLUTE WORD
(Word addressing)

If the· effective word is positive, LOAD ABSOLUTE WORD
loads the effective word into register R. If the effective
word is negative, LAW loads the 32-bit two1s complement
of the effective word into register R. Fixed-point overflow
occurs if the effective word is _231 (X 180000000'), in which
case the result in register R is _231 and CC2 is set to I;
otherwise, CC2 is reset to o.
Affected: (R); CC2, CC3, CC4 Trap: Fixed-point overflow
IEWI--.. R

Condition code settings:

2 3 4 Result in R

0 0 0 zero
1 0 nonzero

0 no fixed-point overflow
1 0 fixed-point overflow

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is 1, the computer traps to location X'43' after exe­
cution of LOAD ABSOLUTE WORD; otherwise, the com­
puter executes the next instruction in sequence.

LCD LOAD COMPLEMENT DOUBLEWORD
(Doubleword addressing)

28 Load/Store Instructions

LOAD COMPLEMENT DOUBLEWORD forms the 64-bit two's
comp lement of the effective doubleword, loads the 32 low­
order bits of the result into register Ru1, and then loads the
32 high-order bits of the result into register R.

If R is an odd value, the result in register R is the 32 high­
order bits of the two's complemented doubleword. The con­
dition code settings are based on the two's complement of
the effective doubleword, rather than the final result in
register R.

Fixed-point overflow occurs if the effective doubleword is
-:1>3 (X 18000000000000000'), in which case the result in
registers Rand Ru 1 is _263 and CC2 is set to 1 i otherwise,
CC2 is reset to O.

Affected: (R), (Ru 1), CC2, Trap: Fixed-point overflow
CC3, CC4

[-ED]32-63 --.. Ru1; [-ED] 0-31 --. R

Condition code settings:

2 3 4 Two's complement of effective doubleword

0 0 0 zero
0 1 negative

0 1 0 positive
0 no fixed-point overflow
1 0 fixed-point overflow

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is 1, the computer traps to location X'43' after exe­
cution of LOAD COMPLEMENT DOUBLEWORDi otherwise
the computer executes the next instruction in sequence.

Example 1, even R field value:

Before execution

ED X'0123456789ABCDEF'
(R) xxxxxxxx
(Ru 1) xxxxxxxx
CC xxxx

Example 2, even R field value:

ED X'FEDCBA9876543210'
(R) xxxxxxxx
(Ru 1) xxxxxxxx
CC xxxx

Example 3, odd R field value:

ED
(R)
CC

X '01 23456789ABCDEF'
xxxxxxxx
xxxx

After execution

X '0 123456789ABC DEF'
X'FEDCBA98'
X'765432 1 l'
x001

X' FEDCBA 98765432101

X'01234567'
X'89ABCDFO'
x010

X' 0 1 23456789ABCDEF •
X'FEDCBA98 1

x001

LAD LOAD ABSOLUTE DOUBLEWORD
(Doubleword addressing)

If the effective doubleword is positive, LOAD ABSOLUTE
DOUBLEWORD loads the 32 low-order bits of the effective

doubleword into register Rul, and then loads the 32 high­
order bits of the effective doubleword into register R. If R
is an odd value, the result in register R is the 32 high-order
bits of the effective doubleword. The condition code settings
are based on the effective doubleword, rather than the final
result in register R.

If the effective doubleword is negative, LAD forms the 64-
bit two's complement of the effective doubleword, loads the
32 low-order bits of the two's complemented doubleword in­
to register Rul, and then loads the 32 high-order bitsofthe
two's complemented doubleword into register R. If R is an
odd value, the result in register R is the 32 high-order bits
of the two's complemented doubleword. The condition code
settings are based on the two's complement of the effective
doubleword, rather than the final result in register R.

Fixed-point overflow occurs if the effective doubleword is
-263 (X'8000000000000000'), in which case the result in
registers Rand Ru 1 is _263 and CC2 is set to 1; otherwise,
CC2 is reset to O.

Affected: (R), (Run, CC2 - Trap: Fixed-point overflow
CC3, CC4

IED1 32_63 -Rul; IEDI 0-31 - R

Condition code settings:

2 3 4 Absolute value of effective doubl eword

0 0 0 zero
1 0 nonzero

0 no fixed-point overflow
1 0 fixed-point overflow

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is 1, the computer traps to location X'43' after exe­
cution of LOAD ABSOLUTE DOUBLEWORDi otherwise, the
computer executes the next instruction in sequence.

Example 1, even R field value:

Before execution

ED X'0123456789ABCDEF'
(R) xxxxxxxx
(Ru 1) xxxxxxxx
CC xxxx

Example 2, even R field value:

ED X' FEDCBA987654321 0'
(R) xxxxxxxx
(Ru 1) xxxxxxxx
CC xxxx

Example 3, odd R field value:

ED X'0123456789ABCDEF'
(R) xxxxxxxx
CC xxxx

LS LOAD SE LE CTIVE
(Word addressing)

After execution

X'0123456789ABCDEF'
X'01234567'
X'89ABCDEF'
xOl0

X' FEDCBA987654321 0'
X'01234567'
X'89ABCDFO'
xOl0

X'0123456789ABCDEF'
X'01234567'
xOl0

in those bit positions selected by a 1 in corresponding bit
positions of register Ru 1. The contents of register R are not
affected in those bit positions selected by a 0 in correspond­
ing bit positions of register Ru1.

If R is an odd value, LS logically ANDs the contents of reg­
isterR with the effective word and loads the result into reg­
ister R. If corresponding bit positions of register R and the
effective word both contain l's, a 1 remains in register R
in the corresponding bit position of register R.

Affected: (R), CC3, CC4

If R is even, [EWn(Ru1)] u [(R)n(Ru1)] - R
If R is odd, EWn(R) - R

Condition code settings:
1 2 3 4 Result in R

o 0 zero

o bit 0 of register R is a 1

o bit 0 of register R is a 0 and bit positions
1-31 of register R contain at least one 1

Example 1, even R field value:

EW
(Ru 1)
(R)
CC

Before Execution

X '01234567'
X'FFOOFFOO'
xxxxxxxx
xxxx

Example 2, odd R field value:

EW
(R)
CC

LM

XI 89ABCDEF'
X' FOFOF9FO'
xxxx

LOAD MULTIPLE
(Word addressing)

After execution

X'01234567'
X'FFOOFFOO'
X'01xx45xx'
xx 10

Xi 89ABCDEF'
X '80AOCOEO'
xxOl

LOAD MULTIPLE loads a sequential set of words into a se­
quential set of registers. The set of words to be loaded be­
gins with the word pointed to by the effective address of
LM, and the set of registers begin with register R. The set
of registers is treated modulo 16 (i. e., the next register
loaded after register 15 is register 0 in the current register
block) .

The number of words to be loaded into the general registers
is determined by the value of the condition code immediately
before the execution of LM. (The desired value of the con­
dition code can be set with LCF or LCFI.) An initial value
of 0000 for the condition code causes 16 consecutive words
to be loaded into the register block.

Affected: (R) to (R+CC-1)
(EWL) - Ri .•. (EWL+CC-l) - R+CC-1

If the instruction starts loading words from an existent
region of memory and then crosses into a nonexistent
memory region, the nonexistent memory address trap
occurs. In this case, the trap is activated with

Load/Store Instructions 29

the condition code unchanged from the value it contained
before the execution of LM. The effective address of the
instruction permits the trap routine to compute how many
registers have been loaded. Since it is permissible to use
indirect addressing or indexing through a general register or
even to execute an instruction located in a general register,
a trapped LM instruction may have already overwritten the
index, direct address, or the LM instruction itself, thus de­
stroying any possibi lity of continuing the program success­
fully. If such programming must be done, it is advisable
that the register containing the direct address, index dis­
placement, or instruction be the last register loaded by the
LM instruction.

LCFI LOAD CONDITIONS AND FLOATING
CONTROL IMMEDIATE
(Immediate addressing)

If bit position 10 of the instruction word contains a 1, LOAD
CONDITIONS AND FLOATING CONTROL IMMEDIATE
loads the contents of bit position 24 through 27 of the in­
struction word into the condition code; however, if bit 10
is 0, the condition code is not affected.

If bit position 11 of the instruction word contains a 1, LCFI
loads the contents of bit positions 29 through 31 of the in­
struction word into the floating significance (FS), floating
zero (FZ), and floating normalize (FN) mode control bits,
respectively (in the program status doubleword); however,
if bit 11 is 0, the FS, FZ and FN control bits are not af­
fected. The functions of the floating-point control bits are
described in the section "Floating-Point Instructions".

Affected: CC, FS, FZ, FN

If (1) 10 = 1, (1)24-27 ~ CC

If (I) 10 = 0, CC not affected

If (1)11 = 1, (1)29-31 ---+- FS, FZ, FN

If (I) 11 = 0, FS, FZ, and FN are not affected

Condition code settings,

2 3

(1)24 (1)25 (1)26 (I) 27

If LCFI is indirectly addressed, it is treated as a nonexistent
instruction, in which case the computer unconditionally
aborts execution of instruction (at the time of operation code
decoding) and traps to location X'40 ' with the condition
code unchanged.

Example:

Before execution

(I) X '023000A 11
CC xxxx
FS = x
FZ = x
FN = x

30 Load/Store Instructions

After execution

xxxxxxxx
1010
o
o
1

LCF LOAD CONDITIONS AN D FLOATING
CONTROL
(Byte addressing)

If bit position 10 of the instruction word contains a 1,
LOAD CONDITIONS AND FLOATING CONTROL loads
bits 0 through 3 of the effective byte into the condition
code; however, if bit 10 is 0, the condition code is not
affected.

If bit position 11 of the instruction word contains a 1, LCF
loads bits 5 through 7 of the effective byte into the floating
significance (FS), floating zero (FZ), and floating normalize
(FN) mode control bits, respectively; however, if bit 11 is 0,
the FS, FZ, and FN control bits are not affected. The func­
tions of the floating-point mode control bits are described in
the section "Floating-Point Instructions".

Affected: CC, FS, FZ, FN
If (I) 10 = I, EB

O
_
3

---+- CC

1 f (I) 10 = 0, CC not affected

If (I) 11 = 1, EB
5

_
7
--. FS, FZ, FN

If (I) 11 = 0, FS, FZ, FN not affected

Condition code settings, if (I) 1 0 = 1:

2 3 4

XW EXCHANGE WORD
(Word addressing)

EXCHANGE WORD exchanges the contents of register R
with the contents of the effective word location.

Affected: (R), (EWL), CC3, CC4
(R) (EWL)

Condition code settings:

2 3 4 Result in R

0 0 zero
0 1 negative
1 0 positive

STB STORE BYTE
(Byte addressing)

STORE BYTE stores the contents of bit positions 24-31 of
register R into the effective byte location.

Affected: (EBL)

(R) 24-31 ---+- E BL

STH STORE HALFWO RD
(Halfword addressing)

STORE HALFWORD stores the contents of bit positions 16-31
of register R into the effective halfword location. If the
information in register R exceeds halfword data limits, CC2
is set to 1 i otherwise, CC2 is reset to O.

Affected: (EHL), CC2

(R)16-31 ~ EHL

Condition code settings:

2 3 4 Information in R

o (R)0-16 = all OIS or all lis

(R)0-16 fall OIS or all lis

STW STORE WORD
(Word addressing)

H 35 I R I X I: Referenc~ address j
7 8 9 10 1112 13 14 1516 17 18 19120 21 22 23 24 25 26 27il8 29 30 31

STORE WORD stores the contents of register R into the ef­
fective word location.

Affected: (EWL)
(R) -- EWL

STD STORE DOUBLEWORD
(Doub I ew ord add ress i ng)

STORE DOUBLEWORD stores the contents of register R into
the 32 high-order bit positions of the effective doubleword
location and then stores the contents of reg ister Ru I into
the 32 low-order bit positions of the effective doubleword
location.

Affected: (E DL)
(R) ~ EDL

O
_
31

i (Rul) ~ EDL
32

-63

Example 1, even R field value:

(R)
(Ru I)
(EDL) =

Before execution

X 1012345671

X '89ABCDEF '
xxxxxxxxxxxxxxxx

Example 2, odd R field value:

(R) X '89ABCDEF '
(E DL) = xxxxxxxxxxxxxxxx

After execution

X '012345671

X'89ABCDEF '
X '0123456789ABCDEF '

X'89ABCDEF '
X '89ABCDEF89ABCDEF '

STS STORE SELECTIVE
(Word addressing)

Register Rul contains a 32-bit mask. If R is an even. value,
STORE SELECTIVE stores the contents of register R into the
effective word location in those bit positions selected by a I
in corresponding bit positions of register Rul; the effective
word remains unchanged in those bit positions selected bya
o in corresponding bit positions of register Rul.

If R is an odd value, STS logically inclusive ORs the con­
tents of register R with the effective word and stores there­
suIt into the effective word locati on. The contents of reg­
ister R are not affected.

Affected: (EWL)
If R is even, [(R)n(Rul)] u [EWn(Rul)] ~ EWL
If R is odd, (R)u EW ~ EWL

Example 1, even R field value:

(R)
(Ru I)
EW

Before executi on

X I I 23456781

X I FOFOFOFO'
xxxxxxxx

Example 2, odd R field value:

(R) X'OOFFOOFF '
EW = X' 123456781

STM STORE MULTIPLE
(Word addressing)

After execution

X I I 23456781

X'FOFOFOFO '
X II x3x5x7x I

X'OOFFOOFF '
X ' 12FF56FF '

STORE MULTIPLE stores the contents of a sequential set of
registers into a sequential set of word locations. The set of
locations begins with the location pointed to by the effec­
tive word address of STM, and the set of registers begins
with register R. The set of registers is treated modulo 16
(i. e., the next sequential register after register 15 is reg­
ister 0). The number of registers to be stored is determ ined
by the value of the condition code immediately before exe­
cution of STM. (The condition code can be set to the de­
sired value before execution of STM with LCF or LCFI.) An
initial value of 0000 for the condition code causes 16 gen­
eral registers to be stored.

Affected: (EWL) to (EWL + CC -1)
(R) ~ EWL, ... ,(R+CC-l)- EWL+CC-l

If the instruction starts storing words into an accessible
region of memory and then crosses into an inaccessible
memory region, either the memory protection trap or the
nonexistent memory address trap can occur. In either
case, the trap is activated with the condition code un­
changed from the value it contained before the execu­
tion of STM. The effective address of the instruction
permits the trap routine to compute how many words of

Load/Store Instructi ons 31

memory have been changed. Since it is pennissible to use
indirect addressing through one of the affected locations,
or even to execute an instruction located in one of the af­
fected locations, a trapped STM instruction may have al­
ready overwritten the direct address, or the STM instruction
itself, thus destroying any possibility of continuing the pro­
gram successfully. If such programming must be done, it is
advisable that the direct address, or the STM instruction,
occupy the last location in which the contents of a register
are to be stored by the STM instruction.

STCF STORE CONDITIONS AND FLOATING
CONTROL
(Byte Addressing)

STORE CONDITIONS AND FLOATING CONTROL stores
the current condition code and the current values of the
floating significance (FS), floating zero (FZ), and floating
normalize (FN) mode control bits of the program status dou­
bleword into the effective byte location as follows:

Affected: (EBL)

(PSD)O_7 - EBL

ANAL VZE/INTERPRET INSTRUCTIONS

ANLZ ANALYZE
(Word addressing)

The ANALYZE instruction treats the effective word as a
SIGMA 5 instruction and calculates the effective address
that would be generated by the instruction if the instruction
were to be executed. ANALYZE produces an answer to the
question, IIWhat effective address wou Id be used by the in-
struction located at N if it were executed now?1I The
ANALYZE instruction determines the addressing type of the
lIanalyzed ll instruction, calculates its effective address (if
the instruction is not an immediate-addressing instruction), and
loads the effective address into register R as a displacement
value (the condition code settings for the ANALYZE instruc­
tion indicate the addressing type of the analyzed instruction)

The nonexistent instruction, the privileged instruction vio­
lation, and the unimplemented instruction trap conditions
can never occur during execution of the ANLZ instruction.
However, the nonexistent memory address trap condition
can occur as a result of any memory access initiated by the
ANLZ instruction. If this trap condition occurs, the in­
struction address stored by an XPSD in trap location X'40'
is the address of the ANLZ instruction.

32 Anal yze/Interpret Instructions

The detailed operation of ANALYZE is as follows:

1. The contents of the location pointed to by the ef­
fective address of the ANLZ instruction are obtained ..
This effective word is the instruction to be analyzed.
The nonallowed operation trap (nonexistent memory
address) can occur as a result of this memory access.

2a. If the operation code portion of the effective word speci­
fies an immediate-addressing instruction type, the con­
dition code is set to indicate the addressing type, and
instruction execution proceeds to the next instruction
in sequence after ANLZ. The original contents of reg­
ister R are not changed when the anal yzed instruction
is of the immediate addressing type.

2b. If the operation code portion of the effective word speci­
fies a nonimmediate addressing type, the condition code
is set to indicate the addressing type of the analyzed in­
struction and the effective address of the anal yzed in­
struction is computed (using all of the normal address
computation rules). If bit 0 of the effective word is a
1, the contents of the memory location specified by bits
15-31 of the effective word are obtained and then used
as a direct address. The nonallowed operation trap (non­
exi stent memory address) can occur as a resul t of th i s
memory access. Indexing is always performed (with an
index register in the current register block) if bits
12-14 of the analyzed instruction are nonzero. The
effective address of the analyzed instruction is aligned
as an integer displacement value and loaded into reg­
ister R, according to the instruction addressing type,
as follows:

Byte Addressing:

Halfword Addressing:

Word Addressing:

Doubleword Addressing:

Operation codes and mnemonics for the SIGMA 5 instruction
set are shown in Table 5. Circled numbers in the table indi­
cate the condition code value (decimal) available to the next
instruction after ANALYZE when a direct-addressing operation
code in the corresponding addressing type is analyzed. The
R field of the instruction in the effective word location is
ignored.

Affected: (R), CC

Condition code Settings:

2 3 4 Instruc ti on addressi ng type

0 0 0 byte
0 0 1 immediate, byte
0 1 0 halfword
1 0 0 word
1 0 1 immediate, word
1 1 0 doubleword

0 direct addressing (EWO = 0)
1 indirect addressing (EWO = 1)

Table 5. ANALYZE Table for SIGMA 5 Operation Codes

X'n' X'OO' + n X'20' + n X'40' + n X'60' + n

00 - AI - -
01 CI - - (0
02 LCFI0 LI - -
03 - MI - -
04 CAll SF ANLZ BDR
05 CAL2 S CS BIR
06 CAL3 - XW AWM
07 CAL4 - STS EXU

08 PLW - EOR BCR
09 PSW - 0 OR BCS
OA PLM LM LS BAL
OB PSM STM AND INT

OC - - SIO RD
OD -@ - TIO WD
OE LPSD WAIT TDV AIO
OF XPSD LRP HIO MMC

10 AD AW AH LCF
11 CD CW CH CB
12 LD LW LH LB
13 MSP MTW MTH MTB

14 - - - STCF
15 STD STW STH STB 0 16 - DW DH 0 -
17 - MW MH -
18 SD SW SH -
19 CLM CLR - -
lA LCD LCW LCH -
IB LAD LAW LAH -
lC FSL FSS - -
1D FAL FAS - -
IE FDL FDS - -
IF FML FMS - -

INT INTERPRET
(Word addressing)

INTERPRET loads bits 0-3 of the effective word into the con­
dition code, loads bits 4-15 of the effective word into bit

positions 20-31 of register R (and loads OIS into the remain­
der of register R), and then loads bits 16-31 of the effective
word into bit positions 16-31 of register Rul (and loads O's
into bit positions 0-15 of register Ru1). If R is an odd value,
INT loads bits 0-3 of the effective word into the condition
code, loads bits 16-31 of the effective word into bit posi­
tions 16-31 of register R, and loads OIS into bit positions
0-15 of register R (bits 4-15 of the effective word are ig­
nored in this case).

Affected: (R), (Run, CC
EW

O
_
3

-CC

EW 4-15 - R20- 31 ; 0 ---. RO- 19
EW

16
_

31
- Rul

I6
_

31
; 0---. Rul

0
_

15

Condition code settings:

2 3 4

Example, even R field value:

EW
(R)
(Ru 1)
CC

Before execu ti on

X 11 2345678 I
xxxxxxxx
xxxxxxxx
xxxx

After execution

X' 12345678'
X '00000234'
~'OOO05678'
0001

FIXED-POINT ARITHMETIC INSTRUCTIONS

The following fixed-point arithmetic instructions are in­
cluded as a standard feature of the SIGMA 5 computer:

Instruction Name Mnemonic Page

Add Immediate AI 34
Add Halfword AH 34
Add Word AW 34
Add Doubleword AD 35
Subtract Halfword SH 35
Subtract Word SW 35
Subtract Doubleword SD 35
Multiply Immediate MI 36
Multiply Halfword MH 36
Multiply Word MW 37
Divide Halfword DH 37
Divide Word DW 37
Add Word to Memory AWM 37
Modify and Test Byte MTB 38
Modify and Test Halfword MTH 38
Modify and Test Word MTW 38

The fixed-point arithmetic instruction set performs binary
addition, subtraction, multiplication, and division with in­
teger operands that may be data, addresses, index values,
or counts. One operand may be either in the instruction
word itsel f or may be in one or two of the current general
registers; the second operand may be either in core memory
or in one or two of the current general registers. For most
of these instructions, both operands may be in the same gen­
eral register, thus permitting the doubling, squaring, or

Fixed-Point Arithmetic Instructions 33

clearing the contents of a register by using a reference ad­
dress value equal to the R field value.

All fixed-point arithmetic instructions provide a condition
code setting that indicates the following information about
the result of the operation called for by the instruction:

Condition code settings:

o

AI

234 Result

o

o 0 zero - The result in the specified general
reg i ste r(s) is a II zeros.

o negative - The instruction has produced a
fixed-point negative result.

o positive - The instruction has produced a
fixed-point positive resul t.

fixed-point overflow has not occurred dur­
ing execution of an add, subtract, or di­
vide instruction, and the result is correct.

fixed-point overflow has occurred during
executi on of an add, subtract, or divide
instructi on. For addition and subtraction,
the incorrect result is loaded into the des­
ignated register{s). For a divide instruc­
ti on, the designated reg ister (s), and CC 1,
CC3, and CC4 are not affected.

no carry - For an add or subtract instruc­
ti on, there was no carry of a 1 -bit out of
the high-order (sign) bit position of the
result.

carry - For an add or subtract instruction,
there was a 1-bit carry out of the sign
bit position of the result.

ADD IMMEDIATE
(Immediate addressing)

The value field (bit positions 12-31) of the instruction word
is treated as a 20-bit, two1s complement integer. ADD
IMMEDIATE extends the sign of the value field (bit position
12 of the instruction word) 12 bit positions to the left, adds
the resulting 32-bit value to the contents of register R, and
loads the sum into register R.

Affected: (R), CC Trap: Fixed-point overflow

(R) + (I) 1 2-31 SE ---.. R

Conditi on code settings:

2 3 4 Result in R

0 0 zero
0 1 negative
1 0 positive

0 no fixed-point overflow
1 fixed-point overflow

0 no carry from bit position 0
carry from bit positi on 0

34 Fixed-point Arithmetic Instructions

If AI is indirectly addressed, it is treated as a nonexistent
instruction, in which case the computer unconditionally
aborts execution of the instruction (at the time of operation
code decoding) and traps to location X 1401 with the contents
of register R and the condition code unchanged.

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is 1, the computer traps to location X'431 after
loading the sum into register R; otherwise, the computer
executes the next instruction in sequence.

AH ADD HALFWORD
(Halfword addressing)

ADD HALFWORD extends the sign of the effective halfword
16 bit positions to the left (to form a 32-bit word in which
bit positions 0-15 contain the sign of the effectivehalfword),
adds the 32-bit result to the contents of register R, and loads
the sum into register R.

Affected: (R), CC

(R)+ EHSE ~ R

Trap: Fixed-point overflow

Condition code settings:

o
1

2

o
1

3 4

o 0
o 1
1 0

Result in R

zero
negative
positive
no fixed-point overflow
fixed -poi nt ove rfl ow
no carry from bit position 0
carry from bit position 0

IfCC2 is set to 1 and the fixed-point arithmetic trap mask (AM)
is 1, the computer traps to location X '43 1 after loading the
sum into register R; otherwise, the computer executes the
next instruction in sequence.

AW ADD WORD
(Word addressing)

ADD WORD adds the effective word to the contents of reg­
ister R and loads the sum into register R.

Affected: (R), CC
(R)+EW ~ R

T rap: Fixed -poi nt overflow

Condition code settings:

2 3 4 Result in R

0 0 zero
0 1 negative
1 0 positive

0 no fixed-point overflow
1 fixed-point overflow

0 no carry from bit position 0
1 carry from bit position 0

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(PSD1l) is 1, the computer traps to location X'43' after
loading the sum into register R; otherwise, the computer
executes the next instructi on in sequence.

AD ADD DOUBLEWORD
(Doubleword addressing)

R must be an even value. ADD DOUBLEWORD adds the ef­
fective doubleword to the contents of registers Rand Ru I
(treated as a single, 64-bit register), and then loads the
64-bit sum into registers Rand Ru 1. If R is an odd value,
the result in register R is unpredictable.

Affected: (R), (Ru 1), CC
{R, Rul}+ ED ~ R, Rul

Condition code settings:

Trap: Fixed-point overflow

2 3 4 Result in R, Rul

o 0 zero
o 1 negative
1 0 positive

o no fixed-point overflow
1 fixed-point overflow

o no carry from bit position 0
1 carry from bit position 0

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is 1, the computer traps to location X'431 after
loading the sum into registers Rand Ru 1; otherwi se, the com­
puter executes the next instruction in sequence.

Example, even R field:

ED
(R)
(R+l)
CC

Before execution

X'33333333EEEEEEEE'
X'llllI111'
X' 33333333'
xxxx

SH SUBTRACT HALFWORD
(Halfword addressina)

After execution

X'33333333EEEEEEEE'
X 144444445'
X 122222221'
0010

SUBTRACT HALFWORD extends the sign of the effective half­
word 16 bit positions to the left (to form a 32-bit word in
which bit positions 0-15 contain the sign of the effective
halfword), forms the two's complement of the resulting word,
adds the complemented word to the contents of register R,
and loads the sum into register R.

Affected: (R), CC
-EH + (R)~ R

SE

Trap: Fixed-point overflow

Condition code settings:

o
I

2 3 4 Resu I tin R

o
1

o 0
o 1
1 0

zero
negative
positive
no fixed-point overflow
fixed -poi nt overflow
no carry from bit position 0
carry from bit position 0

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is 1, the computer traps to location X'431 after
loading the sum into register R; otherwise, the computer
executes the next instruction in sequence.

SW SUBTRACT WORD
(Word addressing)

SUBTRACT WORD forms the two's complement of the effec­
tive word, adds the complemented word to the contents of
register R, and loads the sum into register R.

Affected: (R), CC
-EW+ (R) ~ R

Condition code settings:

2 3 4 Result in R

o 0 zero
o 1 negative
1 0 positive

Trap: Fixed-point overflow

o no fixed-point overflow
1 fixed-point overflow

o no carry from bit position 0
I carry from bit position 0

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is 1, the computer traps to location X'431 after
loading the sum into register R; otherwise, the computer
executes the next instruction in sequence.

so SUBTRACT DOUBLEWORD
(Doubleword addressing)

R must be an even value. SUBTRACT DOUBLEWORD forms
the 64-bit two's complement of the effective doubleword,
adds the complemented doubleword to the contents of reg­
isters Rand Ru1 (treated as a single, 64-bit register), and
then loads the 64-bit sum into registers Rand Rul. If R is
an odd value, the result in register R is unpredictable.

Affected: (R), (R+1), CC
-ED + (R, Ru 1) -.....;.; R, Ru 1

Trap: Fixed-point overflow

Fixed-point Arithmetic Instructions 35

Condition code settings:

o
1

2 3 4 Resu I tin R, Ru 1

o
1

o 0
o 1
1 0

zero
negative
positive
no fixed-point overflow
fixed-point overflow
no carry from bit position 0
carry from bit position 0

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is 1, the computer traps to location X'43' after
the result is loaded into registers Rand Ru1; otherwise, the
computer executes the next instructi on in sequence.

MI MULTIPLY IMMEDIATE
(Immediate addressing)

The value field (bit positions 12-31) of the instruction word
is treated as a 20-bit, two's complement integer. MULTI­
PLY IMMEDIATE extends the sign of the value field (bit po­
sition 12) of the instruction word 12 bit positions to the left
and multiplies the resulting 32-bit value by the contents of
register Ru1, loads the 32 high-order bits of the product into
register R, and then loads the 32 low-order bits of the prod­
uct into register Ru 1.

If R is an odd value, the result in register R is the 32 low­
order bits of the product. Thus, in order to generate a 64-
bit product, the R field of the instruction must be even and
the multiplicand must be in register R+ 1. The condition code
settings are based on the 64-bit product formed during in­
struction execution t rather than on the final contents of
register R. Overflow cannot occur.

Affected: (R), (Ru1), CC2, CC3, CC4

(Ru 1) x (I) 12-31 SE --.. R, Ru 1

Condition code settings:

2 3 4 64-bit product

o

o 0 zero

o negative

o positive

result is correct, as represented in reg­
ister Ru 1

result is not correctly representable in
register Ru 1 alone.

If MI is indirectly addressed, it is treated as a nonexistent
instruction, in which case the computer unconditionally
aborts execution of the instruction (at the time of operation
code decoding) and traps to location X'40 ' with the contents
of register R, register Ru 1, and the condition code unchanged.

36 Fixed-poi nt Ari thmeti c Instructi ons

Example 1, even R field value:

Before execution

(1)12-31 X'70000'

(R) xxxxxxxx

(Ru 1) X'1 0001 0001

CC xxxx

Example 2, odd R field value:

(I) 12-31

(R)

CC

MH

X '012341

X 1000300021

xxxx

MULTIPLY HALFWORD
(Halfword addressing)

After execution

XI 700001

XI 00007000 1

X 170000000 1

x110

X '012341

X '369C24681

x010

MULTIPLY HALFWORD multiplies the contents of bit posi­
tions 16-31 of register R by the effective halfword, and
stores the product in register Ru 1, with both halfwords
treated as signed, twols complement integers (overflow
cannot occur). If R is an even value, the orig inal mu Iti­
plier in register R is preserved, allowing repetitive half­
word multiplication with a constant multiplier; however,
if R is an odd value, the product is loaded into the same
register. Overflow cannot occur.

Affected: (Ru 1), CC3, CC4

(R)16-31 x EH --.. Ru1

Condition code settings:

2 3 4 Result in Ru1

0 0 zero
0 1 ' negative
1 0 positive

Example 1, even R field:

Before execution

EH X'FFFF'
(R) X 'xxxxOOOA '
(Ru 1) xxxxxxxx
CC xxxx

Example 2, odd R field:

EH X'FFFF '
(R) X'xxxxOOOA'
CC xxxx

MW MULTIPLY WORD
(Word addressing)

After execution

X'FFFF '
X 'xxxxOOOA 1
X'FFFFFFF6 1

xx01

X'FFFF '
X'FFFFFFF6 1

xx01

MULTIPLY WORD multiplies the contents of register Ru 1
by the effective word, loads the 32 high-order bits of the

product into register R and then loads the 32 low-order bits
of the product into register Ru 1 (overflow cannot occur).

If R is an odd value, the result in register R is the 32 low­
order bits of the product. Thus, in order to generate a 64-
bit product, the R field of the instruction must be even and
the multiplicand must be in register R+ 1. The condition code
settings are based on the 64-bit product formed during in­
struction execution, rather than on the final contents of reg­
ister R.

Affected: (R), (Rul), CC
(Ru 1) x EW ---+- R, Ru 1

Condition code settings:

2 3 4 64-bit product

o 0 zero

o negative

o positive

o result is correct, as represented in register
Rul

result is not correctly representable in
register Ru 1 alone

OH DIVIDE HALFWORD
(Halfword addressing)

I: I, , ,~~ , . J ~",t ~ ..I.,:" " ~.e:~:e,~~e n7~::~,~ N E "I
DIVIDE HALFWORD divides the contents of register R (treated
as a 32-bit fixed-point integer) by the effective halfword
and loads the quotient into register R. If the absolute value
of the quotient cannot be correctly represented in 32 bits,
fixed point overflow occurs; in which case, CC2 is set to
1 and the contents of register R, CC1, CC3 and CC4 are
unchanged.

Affected: (R), CC2, CC3
CC4

(R).;- EH -- R

Condition code settings:

234 Result in R

Trap: Fixed-point overflow

o 0 0 zero quotient, no overflow
o 0 1 negative quotient, no overflow
o 0 positive quotient, no overflow
1 fixed-point overflow

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is 1, the computer traps to location Xl 43 1 with the
contents of register R, CC1, CC3, and CC4 unchanged;
otherwise, the computer executes the next instruction in
sequence.

OW DIVIDE WORD
(Word addressing)

DIVIDE WORD divides the contents of registers Rand Ru 1
(treated as a 64-bit fixed-point integer) by the effective

word, loads the integer remainder into register R and then
loads the integer quotient into register Rul. If a nonzero re­
mainder occurs, the remainder has the same sign as the divi­
dend (original contents of register R). Fixed-point overflow
occurs if the absol ute val ue ofthe quotient cannot be correctly
represented in 32 bi ts, in wh i ch case, CC2 is set to 1 and the
contentsofregisterR, register Ru1, CC1, CC3, and CC4re­
main unchanged; otherwise, CC2 is reset to 0, CC3 and CC4
reflect the quotient in register Ru 1, and CC1 is unchanged.

If R is an odd value, DW divides the contents of register R
by the effective word, and loads the quotient into register
R (in this case, the remainder is lost).

Affected: (R), (Ru 1), CC2, Trap: Fixed-point overflow
CC3, CC4

(R, Rul) .;- EW - R (remainder), Rul{quotient)

Condition code settings:

2 3 4 Result in Rul

0 0 0 zero quotient, no overflow
0 0 1 negative quotient, no overflow
0 1 0 positive quotient, no overflow
1 fixed-point overflow

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is 1, the computer traps to location XI 43 1 with the
original contents of register R, register Rul, CC1, CC3, and
CC4 unchanged; otherwise, the computer executes the next
instruction in sequence.

AWM ADD WORD TO MEMORY
(Word addressing)

ADD WORD TO MEMORY adds the contents of register R to
the effective word and stores the sum in the effective word
location. The sum is stored regardless of whether or not
overflow occurs.

Affected: (EWL), CC
EW+ (R) - EWL

Condition code settings:

2 3 4 Result in EWL

o 0 zero
o 1 negative
1 0 positive

Trap: Fixed-point overflow

o no fixed-point overflow
1 fixed-point overflow

o no carry from bit position 0
1 carry from bit posi ti on 0

If CC2 is set to 1 and the fixed-point arithmetic trap
mask (AM) is 1, the computer traps to location XI 43 1

after the result is stored in the effective word location;
otherwise, the computer executes the next instruction
in sequence.

Fixed-point Arithmetic Instructions 37

MTB

o 1 2

73

MODIFY AND TEST BYTE
(Byte addressing)

78 9 101112 13 14 15116 17 18 191 20 2122232425262712829 30 31

If the value of the R field (bit positions 8-11) of the instruc­
tion word is zero, the effective byte is tested for being a
zero, or nonzero value. The condition code is set accord­
ing to the result of the test, but the effective byte is not affected,
and no memory write-protection violation can occur.

If the value of the R field is nonzero, the high-order bit of
the R field (bit position 8 of the instruction word) is extend­
ed 4 bit positions to the left, to form a byte with bit posi­
tions 0-4 of that byte equal to the high-order bit of the R
field. This byte is then added to the effective byte, the
sum replaces the previous contents of the effective byte lo­
cation, and the condition code is set according to the value
of the resultant byte. This process allows modification of a
byte by any number in the range -8 through +7, followed by
a test. (A memory write-protection violation can occur
in this case.)

Affected: CC if (1)8-11 = 0;

(EBL) and CC if (1)8-11 =I °
If (I) 8 -11 = 0, test byte and set CC

If (1)8-11 =I 0, EB + (1)8-11 SE --+- EBL and set CC

Condition code settings:

2 3 4 Result in EBL

° ° 0 zero
0 1 0 nonzero

0 no carry from byte
1 carry from byte

If MTB is executed in an interrupt location, the condition code
is not affected (see "Interrupt System" in Chapter 2).

MTH MODIFY AND TEST HALFWORD
(Halfword addressing)

If the value of the R field (bit positions 8-11) of the instruc­
tion is zero, the effective halfword is tested for being a
zero, negative, or positive value. The condition code is
set, according to the result of the test, but the effective
halfword is not affected, and no memory write-protection
violation can occur.

If the value of the R field is nonzero, the high-order bit of
the R field (bit position 8 of the instruction word) isextended
12 bit positions to the left, to form a halfword with bit posi­
tionsO-11 of that halfword equal to the high-order bit of the
R field. This he I fword is then added to the effective helfwcrd,
the sum replaces the previous contents of the effective hal f­
word location, and the condition code is set according tothe
value of the resu Itant hal fword. This process allows modifi­
cation of a halfword by any number in the range -8 through
+7, followed by a test. If no memory write-protection

38 Fixed-point Arithmetic Instructions

violation is detected, the sum is stored regardless of whether
or not overflow occurs.

Affected: CC if (1)8-11 = Oi Trap: Fixed-point overflow

(EHL) and CC if (1)8-11 =I 0

If (1)8-11 = 0, test halfword and set CC

If (1)8-11 =I 0, EH + (1)8-11 SE - EHL and set CC

Condition code settings:

2 3 4 Result in EHL

o
1

o
1

o 0
o
1 0

zero
negative
positive
no fixed-point overflow
fixed-point overflow
no carry from halfword
carry from hal fword

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is 1, the computer traps to location X'43' after the re­
su It is stored in the effective hal fword location; otherwise,
the computer executes the next instruction in sequence,
However, if MTH is executed in an interrupt location, the
condition code is not affected and no fixed-point overflow
trap can occur (see "Interrupt System" in Chapter 2).

MTW MODIFY AND TEST WORD
0Nord addressing)

If the value of the R field (bit positions 8-11) of the instruc­
tion word is zero, the effective word is tested for being a
zero, negative, or positive value. The condition code is
set according to the result of the test, but the effective
word is not affected, and no memory write-protection vio­
lation can occur.

If the value of the R field is nonzero, the high-order bit of
the R field (bit position 8 of the instruction word) is extend­
ed 28 bit positions to the left, to form a word with bit posi­
tions 0-27 of that word equal to the high-order bit of the R
field. This word is then added to the effective word, the
sum replaces the previous contents of the effective word lo­
cation, and the condition code is set according to the value
of the resultant word. This process allows modification of a
word by any number in the range -8 through +7, followed
by a test. If no memory write-protection violation is de­
tected, the sum is stored regardless of whether or not over­
flow occurs.

Affected: CC if (1)8-11 = Oi Trap: Fixed-point overflow

(EWL) and CC if (1)8-11' 0

If (I) 8-11 = 0, test word and set CC

I f (I) 8-11 ,0, EW+1 8_11 SE -- EWL and set CC

Condition code settings:

o
1

2 3 4 Result in EWL

o
1

o 0
o 1
1 0

zero
negative
positive
no fixed-point overflow
fixed-point overflow
no carry from word
carry from word

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is 1, the computer traps to location X'43 1 after the
result is stored in the effective word location; otherwise,
the computer executes the next instruction in sequence.
However, if MTW is executed in an interrupt location,
the condition code is not affected and no fixed-point over­
flow trap can occur (see "Interrupt System" in Chapter 2).

COMPARISON INSTRUCTIONS

All SIGMA 5 comparison instructions produce a condition
code setting, which is indicative of the results of the com­
parison, without affecting the effective operand in memory
and without affecting the contents of the designated register.

CI COMPARE IMMEDIATE
(Immediate addressing)

COMPARE IMMEDIATE extends the sign of the value field
(bit position 12) of the instruction word 12 bit positions to
the left, compares the 32-bitresult with the contents of reg­
ister R (with both operands treated as signed fixed-point
quantities), and then sets the condition code according to
the results of the comparison.

Affected: CC2, CC3, CC4

(R) : (I) 12-31 SE

Condition code settings:

2 3 4 Result of Comparison

0 0 operands are equal

0 1. register value is arithmetically less than
immediate value

0 register value is arithmetically greater
than immediate value

0 logical product (AND) of the two
operands is zero

logical product of the two operands
is nonzero

If CI is indirectly addressed, it is treated as a nonexistent
instruction, in which case the computer unconditionally
aborts execution of the instruction (at the time of operation
code decoding) and then traps to location X'40' with the
condition code unchanged.

CB COMPARE BYTE
(Byte addressing)

COMPARE BYTE compares the contents of bit positions 24-31
of register R with the effective byte, with both bytes treated
as positive integer magnitudes, and sets the condition code
according to the results of the comparison

Affected: CC 2, CC3, CC4

(R)24-31 : EB

Condition code settings:

2 3 4 Result of Comparison

0 0 operands are equal

0 register byte is less in magnitude than
effective byte

0 register byte is greater in magnitude
than effective byte

0 logical product (AND) of the two
operands is zero

logical product of the two operands
is nonzero

CH COMPARE HALFWORD
(Halfword addressing)

I R I X I: Referenc~ add reg
,:., ,"",,,,,,,,n."""IM"~~U""PIU"""

COMPARE HALFWORD extends the sign of the effective
hal fword 16 bit positions to the left and then compares the
resultant 32-bit word with the contents of register R, with
both words treated as signed fixed-point quantitiesr and
sets the condition code according to the results of the
comparison.

Affected: CC2, CC3, CC4

(R) : EHSE

Condition code settings:

2 3 4 Result of Comparison

0 0 operands are equal

0 reg ister word is arithmetically less than
effective hal fword with sign extended

0 register word is arithmetically greater
then effective halfword with sign extended

0 logical product (AND) of the two
operands is zero

logical product of the two operands
is nonzero

Comparison Instructions 39

cw COMPARE WORD
(Word addressing)

COMPARE WORD compares the contents of register R with
the effective word, with both words treated as signed fixed­
p<?int quantities, and sets the condition code according to
the results of the comparison.

Affected: CC2, CC3, CC4
(R) : EW

Condition code settings:

2 3 4 Result of Comparison

0 0 operands are equal

0 register word is arithmetically less than
effective word

0 register word is arithmetically greater
than effective word

0 logical product (AND) of the two
operands is zero

logical product of the two operands
is nonzero

CO COMPARE DOUBLEWORD
(Doubleword addressing)

COMPARE DOUBLEWORD compares the effective double­
word with the contents of registers Rand Rul, with both
doublewords treated as signed fixed-point quantities, and
sets the condition code according to the results of the com­
parison. If the R field of CD is an odd value, CD forms a
64-bit register operand (by duplicating the contents of reg­
ister R for both the 32 high-order bits and the 32 low-order
bits) and compares the effective doubleword with the 64-
bit register operand. The condition code settings are based
on the 64-bit comparison.

Affected: CC3, CC4
(R, Rul) : ED

Condition code settings:

2 3 4 Result of Comparison

0 0 operands are equal

0 register doubleword is arithmetically
less than effective doubl eword

0 register doubleword is arithmetically
greater than effective doubleword

40 Comparison Instructions

cs COMPARE SELECTIVE
(Word addressing)

COMPARE SELECTIVE compares the contents of register R
with the effective word in only those bit positions selected
by a 1 in corresponding bit positions of register Ru 1 (mask).
The contents of register R and the effective word are ig­
nored in those bit positions designated by a 0 in correspond­
ing bit positions of register Ru 1. The selected contents of
register R and the effective word are treated as positive in­
teger magnitudes, and the condition code is set according
to the result of the comparison. If the R field of CS is an
odd value, CS compares the contents of register R with the
logical product (AND) of the effective word and the con­
tents of register R.

Affected: CC3, CC4
If R is even: (R) n (Ru 1) : EW n (Ru 1)
If R is odd: (R): EW n (R)

Condition code settings:

2 3 4 Results of Comparison under Mask in Ru 1

0 0 operands are equal

0 register word is less in magnitude than
effective word

0 register word is greater in magnitude
than effective word

CLR COMPARE WITH LIMITS IN REGISTER
(Word addressing)

COMPARE WITH LIMITS IN REGISTER simultaneously com­
pares the effective word with the contents of register Rand
with the contents of register Rul, With all three words treat­
ed as signed fixed-point quantities, and sets the condition
code according to the results of the comparisons. Note
that if the R field of CLR is an odd value, the settings for
CCl and CC2 are identical (respectively) to the settings
for CC3 and CC4.

Affected: CC
(R) : EW, (Ru 1) : EW

Condition code settings:

2 3 4 Result of Comparison

0 0 contents of R equal to effective word
0 1 contents of R less than effective word
1 0 contents of R greater than effective word

0 0 contents of Ru 1 equal to effective word
0 1 contents of Ru 1 less than effective word

0 contents ofRu 1 greater than effective word

eLM COMPARE WITH LIMITS IN MEMORY
(Doubleword addressing)

COMPARE WITH LIMITS IN MEMORY simultaneously com­
pares the contents of register R with the 32 high-order bits
of the effective doubleword and with the 32 low-order bits
of the effective doubleword, with all three words treated
as 32-bit signed quantities, and sets the condition code
according to the results of the comparisons.

Affected: CC
(R) : ED

O
_

31
; (R) : ED

32
-

63

Condition code settings:

2 3 4 Result of Comparison

a a contents of R equal to most significant
word, (R) = ED

O
_

31
a contents of R less than most significant

word, (R) < ED
O

_
31

a contents of R greater than most signifi-
cant word, (R) > ED

O
_

31
a a contents of R equal to least significant

word, (R) = ED
32

-
63

a contents of R less than least significant
word, (R) < ED

32
-

63
a contents of R greater than least signifi-

cant word, (R) > ED
32

_
63

LOGICAL INSTRUCTIONS

All logical operations are performed bit by corresponding
bit between two operands; one operand is in register Rand
the other operand is the effective word. The result of the
logical operation is loaded into register R.

OR OR WORD
(Word addressing)

o 1 2

OR WORD logically ORs the effective word into register R.
If the corresponding bits of register R and the effective
word are both 0, a a remains in R; otherwise, a 1 is placed
in the corresponding bit position of R. The effective word
is not affected.

Affected: (R), CC3, CC4
(R) u EW -- R, where au 0=0, au 1 = 1, 1 u 0= 1, 1 u 1 = 1

Condition code settings:

2 3 4 Result in R

a a zero

a 1

a
bit a of register R is a 1

bit a of register R is a a and bit positions
1-31 of register R contain at least one 1

EOR EXCLUSIVE OR WORD
(Word addressing)

EXCLUSIVE OR WORD logically exclusive ORs the effective
word into register R. If the corresponding bits of register
R and the effective word are different, a 1 is' placed in the
corresponding bit position of R; if the contents of the corre­
sponding bit positions are alike, a a is placed in the corre­
sponding bit position of R. The effective word is not affected.

Affected: (R), CC3, CC4
(R) @ EW -- R, where a @ a = 0, a @ 1 = 1,

1 @ 0= 1, 1 @ 1 = a

Condition code settings:

2 3 4 Result in R

a a zero

a bit a of register R is a

a bit a of register R is a a and bit positions
1-31 of register R contain at least one 1

AND AND WORD
(Word addressing)

AND WORD logically ANDs the effective word into register
R. If the corresponding bits of register R and the effe'ctive
word are both 1, a 1 remains in Ri otherwise, a a is placed
in the corresponding bit position of R. The effective word
is not affected.

Affected: (R), CC3, CC4
(R) n EW -- R, where a n a = a, a n 1 = 0,

1 n 0= a, 1 n 1 = 1

Condition code settings:

2 3 4 Result in R

a a zero

a bit a of register R is a

a bit a of register R is a a and bit positions
1-31 of register R contain at I east one 1

SHIFT INSTRUCTIONS

The instruction format for logical, circular, and arithmetic
shift operations is

S SHIFT
(Word addressing)

If neither indirect addressing nor indexing is called for in
the instruction SHIFT, bit positions 21-31 of the reference
address field determine the type, direction, and amount of

Logical/Shift Instructions 41

the shift. If only indirect addressing is called for in the
instruction, bits 15-31 of the instruction are used to access
the indirect word and then bits 21-31 of the indirect word
determine the type, direction, and amount of the shift. If
only indexing is called for in the instruction, bits 21-31 of
the instruction word determine the type of shift; the direc­
tion and amount of shift are determined by the 7 low-order
bits of the sum of bits 25-31 of the instruction and bits 25-
31 of the specifie'cJ index register. If both indirect adress­
ing and indexing are called for in the instruction, bits 15-
31 of the instruction are used to access the indirect word
and then bits 21-23 of the indirect word determine the type
of shift; the direction and amount of the shift are deter­
mined by the 7 low-order bits of the sum of bits 25-31 of
the indirect word and bits 25-31 of the specified index
register.

Bit positions 15-20 and 24 of the effective address are ig­
nored. Bit positions 21, 22 and 23 of the effective address
determine the type of shift, as follows:

Bit Positions
21 22 23 Shift Type

0 0 0 logical, single register
0 0 1 logical, double register
0 1 0 Circular, single register
0 1 1 Circular, double register
1 0 0 Arithmetic, single register
I 0 1 Arithmetic, double register

1 0 Undefined
1 1 Undefined

Bit positions 25 through 31 of the effective address are a
shift count that determines the direction and amount of the
shift. The shift count (C) is treated as a 7-bit signed binary
integer, with the high-order bit (bit positi on 25) as the sign
(negative integers are represented in two's complement form).
A positive shift count causes a left shift of C bit positions.
A negative shift count causes a right shift of Ici bit positions.
The value of C is within the range: -64::; C ::; +63.

All double-register shift operations require an even value
for the R field of the instruction, and treat registers Rand
Ru 1 as a 64-bit register with the high-order bit (bit position
o of reg ister R) as the sign for the enti re register. If the R
field of SHIFT is an odd value and a double-register shift
operation is specified, a register doubleword is formed by
duplicating the contents of register R for both the 32 high­
order bits and the 32 low-order bits of the doubleword. The
sh ift operation is then performed and the 32 high-order bits
of the result are loaded into register R.

Overflow occurs (on left shifts only) whenever the value of
the sign bit (bit position 0 of register R) changes. At the
completion of logical left, circular left, and arithmetic left
shifts, the condition code is set as follows:

o
2 3 4 Result of Shift

even number of l's shifted off left end of
register R

odd number of l's shifted off left end of
register R.

42 Shift Instructions

2 3 4 Result of Shift

o no overflow on left shift

overflow on left shift

At the completion of logical right, circular right, andarith­
metic right shifts, the condition code is set as follows:

234

o 0

Logical Shift, Single Register

If the shift count, C, is positive, the contents of register R
are shifted left C places, with O's copies into vacated bit posi­
tions on the right. (Bits shifted past RO are lost.) If C is
negative, the contents of register R are shifted right Ici
places, with O's copied into vacated bit positions on the
left. (Bits shifted past R31 are lost.)

Affected: (R), cc I, CC2

logical Shift, Double Register

If the shift count, C, is positive, the contents of registers
Rand Rul are shifted left C places, with O's copied into
vacated bit positions on the right. Bits shifted past bit po­
sition 0 of register Rul are copied into bit position 31 of
register R. (Bits shifted past RO are lost.) If C is negative,
the contents of registers Rand Ru I are shifted right Ici
places, with O's copied into vacated bit positions on the
left. Bits shifted past bit position 31 of register R are copied
into bit position 0 of register Rul. {Bits shifted past Ru131
are lost.}

Affected: (R), (Ru I), CC I, CC2

Circular Shift, Single Register

If the shift count, C, is positive, the contents of register R
are shifted left C places. Bits shifted past bit position 0 are
copied into bit position 31. (No bits are lost.) If C is neg­
ative, the contents of register R are shifted right ICI
places. Bits shifted past bit position 31 are copied into bit
position O. (No bits are lost.)

Affected: (R), CCl, CC2

Circular Shift, Double Register

If the shift count, C, is positive, the contents of registers
Rand Ru 1 are sh if ted left C places. Bits sh if ted past bit
position 0 of register R are copied into bit position 31 of
register Ru 1. (No bits are lost.) If C is negative, the con­
tents of registers Rand Ru 1 are shifted right ICI places. Bits
shifted past bit position 31 of register Rul are copied into
bit position 0 of reg ister R. (No bits are lost.)

Affected: {R),{Rul),CCl,CC2

Arithmetic Shift, Single Register

If the shift count, C, is positive, the contents of register R
are shifted left C places, with O's copied into vacated bit
positions on the right. (Bits shifted past RO are lost.) If C
is negative, the contents of register R are shifted right Ic I
places, with the contents of bit position 0 copied into va­
cated bit positions on the left. (Bits shifted past R31 are
lost.)

Affected: (R), CC I, CC2

Arithmetic Shift, Double Register

If the shift count, C, is positive, the contents of registers R
and Ru 1 are shifted left C places, with O's copied into va­
cated bit positions on the right. Bits shifted past bit posi­
tion 0 of register Rul are copied into bit position 31 of reg­
ister R. (Bits shifted past RO are lost.) If C is negative, the
contents of registers Rand Ru 1 are shifted right Ic I places,
with the contents of bit position 0 of register R copied into
vacated bit positions on the left. Bits shifted past bit posi­
tion 31 of register R are copied into bit position 0 of register
Ru 1. (Bits shifted past Ru 131 are lost.)

Affected: (R), (Rul), CCl, CC2

FLOATING-POINT SHIFT

Floating-point numbers are defined on page 44. The in­
struction format for floating-point shift operation is:

SF SHIFT FLOA liNG
(Word addressing)

If indirect addressing and/or indexing are called for in the
instruction word, the effective address is computed as for
the instruction SHIFT (see page 41) except that bit position
23 of the effective address determines the type of shift. If
bit 23 is 0, the contents of register R are treated as a short­
format floating-point number; if bit 23 is I, the contents of
registers Rand Ru 1 are treated as a long-format f1oating­
point number.

The shift count, C, in bit positions 25 through 31 of the ef­
fective address determines the amount and direction of the
·shift. The shift count is treated as a 7-bit signed binary in­
teger, with the high-order bit (bit position 25) as the sign
(negative integers are represented in two's complement form).
The absolute value of the sh ift count determines the number
of hexadecimal digit positions the floating-point number is
to be shifted. A positive shift count specifies a left shift;
a negative shift count specifies a right shift.

SHIFT FLOA liNG loads the floating-point number from the
register{s) specified by the R field of the instruction into a
set of internal registers. If the number is negative, it is
two's complemented. A record of the original sign is re­
tained. The floating-point number is then separated into a
characteristic and a fracti on, and CCI and CC2 are both
reset to O's.

A positive shift count produces the following left shift op­
erations:

1. If the fraction is normalized (i.e., is less than 1 and is
equal to or greater than 1/16, or the fraction is al J O's),
cc 1 is set to 1.

2. If the fraction field is all O's, the entire floating-point
number is set to all O's (true zero), regardless of the sign
and the characteristic of the original number.

3. If the fraction is not normalized, the fraction field is
shifted 1 hexadecimal digit position (4 bit positions) to
the left and the characteristic field is decremented by
1. Vacated digit positions at the right of the fraction
are filled with hexadecimal O's.

If the characteristic field underflows (i.e., is all l's as
the result of being decremented), CC2 is set to 1.
However, if the characteristic field does not underflow,
the shift process (shift fraction, and decrement charac­
teristic) continues until the fraction is normalized, until
the characteristic field underflows, or until the fraction
is shifted left C hexadecimal digit positions, whichever
occurs first. (Any two, or all three, of the terminating
conditions can occur simultaneously.)

4. At the completion of the left shift operation, .the
floating-point result is loaded back into the general
register{s}. If the number was originally negative, the
two's complement of the resultant number is loaded in­
to the general register{s}.

5. The condition code settings following a floating-point
left shift are as follows:

2 3 4 Result

0 0 true zero (all O's)

0 negative

0 positive

0 0 C digits shifted (fraction unnormal-
ized, no characteristic underflow)

fraction normalized (includes true
zero)

characteristic underflow

Shift Instructions 43

A negative shift count produces the following right shift op­
erations (again assuming that negative numbers are two's
complemented before and after the shift operations):

1. The fraction field is shifted 1 hexadecimal digit posi­
tion to the right and the characteristic field is incre­
mented by 1. Vacated digit positions at the left are
filled with hexadecimal O's.

2. If the characteristic field overflows (i. e., is all O's as
the result of being incremented), CC2 is set to 1.
However, if the characteristic field does not overflow,
the shift process (shift fraction, and increment char­
acteristic) continues until the characteristic field over­
flows or unti I the fraction is shifted ri ght C hexa­
decimal digit positions, whichever occurs first. (Both
terminating conditions can occur simultaneously.)

3. If the resultant fraction field is all O's, the entire
floating-point number is set to all O's (true zero), re­
gardless of the sign and the characteristic of the orig­
inal number.

4. At the completion of the right shift operations, the
floating-point result is loaded back into the general
register{s}. If the number was originally negative, the
two's complement of the resultant number is loaded into
the general register(s}.

5. The condition code settings following a floating-point
right shift are as follows:

2 3 4 Result

o 0

o

o 0 true zero (all O's)

o negative

o positive

Ic Idigits shifted (no characteristic
overflow)

characteristic overflow

Floating Shift, Sing Ie Register

The short-format floating-point number in register R is sh if ted
according to the rules established above for floating-point
shift operations.

Affected: (R), CC

Floating Shift, Double Register

The long-format floating-point number in registers Rand Ru1
is shifted according to the rules established above forfloating
point shift operations. (If the R field of the instruction word
is an odd value, a long-format floating-point number is gen-

44 Floating-point Instructions

erated by duplicating the contents of register R, and the 32
high-order bits of the result are loaded into register R.)

Affected: (R), (Ru1), cc

FLOATING-POINT INSTRUCTIONS
The following floating-point arithmetic instructions are
avai lable as optional SIGMA 5 instructions:

Instruction Name Mnemonic Page

Floating Add Short FAS 47
Floating Add Long FAL 47
Floating Subtract Short FSS 47
Floating Subtract Long FSL 48
Floating Multiply Short FMS 48
Floating Multiply Long FML 48
Floating Divide Short FDS 48
Floating Divide Long FDL 48

FLOATING·POINT NUMBERS

SIGMA 5 accommodates two number formats for floating­
point arithmetic: short and long. A short-format floating­
point number consists of a sign (bit 0), a biased, base 16
exponent, which is called a characteristic (bits 1-7), and
a six-digit hexadecimal fraction (bits 8-31). A long-format
floating-point number consists of a short-format floating­
point number followed by an additional eight hexadecimal
digits of fractional significance and occupies a doubleword
memory location or an even-odd pair of general registers.

A SIGMA 5 floating-point number (N) has the following
format:

A floating-point number (N) has the following formal def­
inition:

1 . N = F x 16 C-64 where F = 0 or

16 -6 s IFI < 1 (short format) or

16-14 s IFI < 1 {long format)

and 0 s C s 127

2. A positive floating-point number with a fracti on of ze ro .
and a characteristic of zero is a "true" zero. A positive
floating-point number with a fraction of zero and a non­
zero characteristic is an "abnormal" zero. For floating­
point multiplication and division, an abnormal zero is
treated as a true zero. However, for addition and sub­
traction, an abnormal zero is treated the same as any
nonzero operand.

3. A positive floating-point number is normalized if and
only if the fraction is contained in the interval
1/16::s F < 1.

4. A negative floating-point number is the two's comple­
ment of its positive representation.

5. A negative floating-point number is normalized if and
only if its two's complement is a normalized positive
number.

By this definition, a floating-point number of the form

1 xxx xxxx 11 1 1 0000 . .. 0000

is normalized, and a floating-point number of the form

1 xxx xxxx 0000 0000 . .. 0000

is illegal and, whenever generated by floating-point in­
structions, is converted to the form

1 yyy yyyy 1111 0000 . .. 0000

where yy ... Y is 1 less than xx ... x. Table 6 contains
examples of floating-point numbers.

Modes of Operation

SIGMA 5 contains three mode control bits that are used to
qualify floating-point operations. These mode control bits
are identified as FS (floating significance), FZ (floating
zero), and FN (floating normalize), and are contained in
bit positions 5, 6, and 7, respectively, of the program
status doubleword (PSD)

5-7·

The floating-point mode is established by setting the three
floating-point mode control bits. This can be performed by
any of the following instructions:

Instruction Name Mnemonic Page

Load Conditions and Floating Control LCF 30

Load Conditions and Floating Control LCFI 30
Immediate

Load Program Status Doubleword LPSD 56

Exchange Program Status Doubleword XPSD 56

The floating-point mode control bits are stored by executing
either of the following instructions:

Instruction Name

Store Conditions and Floating Control

Exchange Program Status Doubleword

Mnemonic Page

STCF

XPSD

32

56

UNIMPLEMENTED FLOATING-POINT INSTRUCTIONS

If the optional floating-point instruction set is not imple­
mented in the computer and execution of a floating-point
arithmetic instruction is attempted, the computer uncondi­
tionally aborts execution of the instruction (at the time of
operation code decoding). The computer then traps to lo­
cation X'41', with the contents of the condition code and

Table 6. Floating-point Number Representation

Decimal Number Short Floating-point Format Hexadecimal Value

± C F

+(16+63)(1-2 -24) a 111 1111 1111 1111 1111 1111 1111 1111 7F FFFFFF

+(16+3)(5/16) a 100 0011 0101 0000 0000 0000 0000 0000 43 500000

+(16 -3)(209/256) a all 1101 1101 0001 0000 0000 0000 0000 3D D10000

+ (16 -63)(2047/4096) a 000 0001 0111 1111 1111 0000 0000 0000 01 7FFOOO

+(16 -64)(1/16) a 000 0000 0001 0000 0000 0000 0000 0000 00 100000

a (called true zero) a 000 0000 0000 0000 0000 0000 0000 0000 00 000000

-(16 -64)(1/16) 1 111 1111 1111 0000 0000 0000 0000 0000 FF FOOOOO

-(16 -63)(2047/4096) 1 111 1110 1000 0000 0001 0000 0000 0000 FE 801000

-(16 -3) (209/256) 1 100 0010 0010 1111 0000 0000 0000 0000 C2 2 FOOOO

-(16+3)(5/16) 1 all 1100 1011 0000 0000 0000 0000 0000 BC BOOOOO

_(16+63)(1_224) 1 000 0000 0000 0000 0000 0000 0000 0001 80 000001

Special Case

-(16
e

)(1) 1 e 0000 0000 0000 0000 0000 0000

-(16e+ 1)(1/16)
is changed to --

I e + 1 1111 0000 0000 0000 0000 0000
whenever generated as the result of a floating-point instruction.

Floating-point Instructions 45

all general registers unchanged. Location X'41 1 is the
"unimplemented instruction" trap location.

FLOATING-POINT ADDITION AND SUBTRACTION

The floating normalize (FN), floating zero(FZ), and float­
ing significance (FS) mode control bits determine the oper­
ation of floating-point addition and subtraction (if charac­
teristic overflow does not occur) as follows:

FN Floating normalize:

FN = 0 The results of additions and subtractions are
to be postnormalized. If characteristic over­
flow occurs, if the result is zero, or if more
than two postnormalization hexadecimal shifts
are requ i red, the sett i ngs for FZ and FS de­
termine the resultant action. If none of the
above conditions occur, the condition code
is set to 0010 if the result is positive or to
0001 if the result is negative.

FN = 1 Inhibit postnormalization ofthe results of addi­
tions and subtractions. The settings of FZand
FS have no effect on the instruction operation.
If the resu I tis zero, the resu I tis set to true
zero and the condition code is set to 0000.
If the result is positive, the condition code
is set to 00 10. If the result is negative, the
condition code is set to 0001.

FZ Floating zero: (applies only if FN = 0)

FZ = a If the final result of an addition or subtraction
operation cannot be expressed in normalized
form because of the characteristic being re­
duced below zero, underflow has occurred,
in which case the result is set equal to true
zero and the condition code is set to 1100.
(Exception: if a trap results from significance
checking with FS = 1 and FZ= 0, an under­
flow generated in the process of postnormal­
izing is ignored.)

F Z = 1 Characteristic underflow causes the computer
to trap to location X'44 1 with the contents of
the general registers unchanged. If the result
is positive, the condition code is set to 1110.
If the result is negative, the condition code
is set to 1101.

FS Floating significance: (applies only if FN = 0)

FS = a Inhibit significance trap. If the result of an
addition or subtraction is zero, the result is
set equal to true zero, the condition code is
set to 1000, and the computer executes the
next instruction in sequence. If more than
two hexadecimal places of postnormalization

46 Floating-point Instructions

shifting are required and characteristic under­
flow does not occur, the condition code is set
to 1010 if the result is positive, or to 1001 if
the result is negativei then, the computer ex­
ecutes the next instruction in sequence. (Ex­
ception: if characteristic underflow occurs
with FS = a, FZ determines the resultant ac­
tion.)

FS = 1 The computer traps to location X'44 1 if more
than two hexadecimal places of postnormal­
ization shifting are required or if the result
is zero. The condition code is set to 1000 if
the result is zero, to 1010 if the result is posi­
tive, or to 100 1 if the result is negativei how­
ever, the contents of the general registers are
not changed. (Exception: if a trap results
from characteristic underflow with FZ = 1,
the results of significance testing are ignored.)

If characteristic overflow occurs, the CPU always traps to
location X'44 1 with the general registers unchanged and the
condition code set to 0110 if the result is positive, or to
OlDl if the result is negative.

FLOATING-POINT MULTIPLICATION AND DIVISION

The floating zero (FZ) mode control bit alone determines the
operation of floating-point multiplication and division (if
characteristic underflow does not occur and division byzero
is not attempted) as follows:

FZ Floating zero:

FZ = a If the final result of a multiplication or divi­
sion operation cannot be expressed in normal­
ized form because of the characteristic being
reduced below zero, underflow has occurred.
If underflow occurs or if the result is zero,
the result is set equal to true zero and the
condition code is set to 0000. Otherwise, the
condition code is set to 0010 if the result is
positive, or to 0001 if the result is negative.

FZ = 1 Underflow causes the computer to trap to lo­
cation X'44 1 with the contents of the general
registers unchanged. The condition code is
set to 11lD if the result is positive, or to
1101 if the result is negative. If underflow
does n'at occur, the resultant action is the
same as that for FZ = O.

If the divisor is zero in a floating-point division, the com­
puter always traps to location X'44 1 with the general regis­
ter unchanged and the condition code set to 01 00. If char­
acteristic overflow occurs, the computer always traps to
location X'44 1 with the general register unchanged and the
condition code set to 0110 if the result is positive, or to
0101 if the result is negative.

CONDITION CODES FOR
FLOATING.POINT INSTRUCTIONS

The condition code settings for floating-point instructions
are summarized in Table. 7. The following provisions
apply to all floating-point instructions:

1. Underflow and overflow detection apply to the final
characteristic, not to any lIintermediate ll value.

2. If a floating-point operation results in a trap, the orig­
inal contentsofall general registers remain unchanged.

3. All shifting and truncation are performed on absolute
magnitudes. If the fraction is negative, the two's
complement is formed after shifting or truncation.

FAS FLOATING ADD SHORT
(Word addressing, optional)

The effective word and the contents of register R are loaded
into a set of internal registers and a low-order hexadecimal
zero (guard digit) is appended to both fractions, extending
them to seven hexadecimal digits each. FAS then forms
the floating-point sum ot the two numbers. If no floating­
point arithemtic fault occurs, the sum is loaded into register
R as a short-format floating-point number.

Affected: (R), CC
(R) + EW--""R

Traps: Unimplemented in­
struction, f!oating­
point arithmetic fault

FAL FLOATING ADD LONG
(Doubleword addressing, optional)

The effective doubleword and the contents of registers R
and Ru 1 are loaded into a set of internal regi sters.

The operation of FAL is identical to that of FLOATING ADD
SHORT (FAS) except that the fractions to be added are each
14 hexadecimal digits long, guard digits are not appended
to the fractions, and R must be an even value for correct re­
sults. If no floating-point arithmetic fault occurs, the sum
is loaded into registers Rand Ru1 as a long-format floating­
point number.

Affected: (R), (Ru 1), CC Traps: Unimplemented in­
struction, floating­
point arithmetic fault

FSS FLOATING SUBTRACT SHORT
(Word addressing, optional)

Reference address

The effective word and the contents of register R are loaded
into a set of internal registers.

FLOATING SUBTRACT SHORT forms the two's complement
of the effective word and then operates identically to
FLOATING ADD SHORT (FAS). If no floating-point arith-

Table 7. Condition Code Settings for Floating-point Instructions

Condition Code Meaning if no trap to location X'44' occurs Meaning if trap to location X'44' occurs

1 2 3 4

0 0 0 0 A x 0, O/A, or -A + A CD with FN=l\ I *~
0 0 0 1 N <0

norma
*

0 0 1 0 N>O
results

*

0 1 0 0 *~ div ide by zero I
0 1 0 1 * overflow, N < 0 always trapped
0 1 1 0 * overflow, N > 0

@\i 0 0 0 -A + ACD
-A+ A \

0 0 1 N < ° I > 2 postnormal-\ FS=O, FN=O, and N < 0 > 2 postnormal- FS=l, FN=O, and no
0 1 0 N > 0 izing shifts no underflow N > 0 J izing shifts underflow with FZ=l

1 1 0 0 underflow with FZ=O and no trap by FS=1 CD *

1 1 0 1 * underflow, N < 0 I FZ=1
1 1 1 0 * underflow, N >0

CD result set to true zero

® 11*11 indicates impossible configurations

@ applies to add and subtract only where FN=O

Floating-point Instructions 47

metic fault occurs, the difference is loaded into register R
as a short-format floating-point number.

Affected: (R), CC
(R) - EW~R

Traps: Unimplemented in­
struction, floating­
point arithmetic fault

FSL FLOATING SUBTRACT LONG
(Doubleword addressing, optional)

The effective doubleword and the contents of registers R
and Ru 1 are loaded into a set of internal registers.

FLOATING SUBTRACT LONG forms the twols complement
of the effective doubleword and then operates identically
to FLOATING ADD LONG (FAL). If no floating-point
arithmetic fault occurs, the difference is loaded into regis­
ters ,R and Ru 1 as a long-format floating-point number.

Affected: (R), (Ru 1), CC
(R, Ru 1) - ED~R, Ru1

Traps: Unimplemented in­
str~ction, floating­
point arithmetic fault

FMS FLOATING MULTIPLY SHORT
(Word addressing, optional)

The effective word (multipl ier) and the contents of register
R (multiplicand) are loaded into a set of internal registers,
and both numbers are then prenormalized (if necessary).
The product of the fractions contains 14 hexadecimal digits
(the lower two of which are Dis). If no floating-point
arithmetic fault occurs, the product is loaded into registers
Rand Rul as follows:

1. If R is an even value, the product is loaded into reg­
isters Rand R + 1 as a long-format floating-point num­
ber.

2. If R is an odd value, the product is loaded into reg­
ister R as a properly truncated short-format floating­
point number.

The result of floating multiply is always postnormalized. At
most, one place of postnormalizing shift may be required.
Truncation takes place after postnormalization.

Affected: (R), (Ru 1), CC
(R) x EW~R, Ru1

Traps: Unimplemented in­
struction, floating­
point arithmetic fault

FML

o 1 2

1F

FLOATING MULTIPLY LONG
(Doubleword addressing, optional)

48 Floating-point/Push-down Instructions

The effective doubleword (multiplier) and the contents of
registers Rand Ru1 (multiplicand) are loaded intoa set of
internal registers. FLOATING MULTIPLY LONG then op­
erates identically to FLOATING MULTIPLY SHORT (FMS),
except that the multiplier, the multiplicand, and the prod­
uct fractions are each 14 hexadecimal digits long, and R
must be an even value for correct results. If no floating­
point arithmetic fault occurs, the postnormalized product
is truncated to a long-format floating-point number and
loaded into registers Rand Ru1.

Affected: (R); (Ru1), CC
(R, Rul) x ED~R, Ru1

Traps: Unimplemented in­
struction, floating­
point arithmetic
fault

FDS FLOATING DIVIDE SHORT
(Word addressing, optional)

3E
o 1 2

The effective word (divisor) and the contents of register R
(dividend) are loaded into a set of internal registers and
both numbers are then prenormalized (if necessary).

FLOATING DIVIDE SHORT then forms a floating-point
quotient with a 6-digit, normalized hexadecimal fraction.
If no floating-point arithmetic fault occurs, the quotient is
loaded into register R as a short-format floating-point number.

Affected: (R), CC Traps: Unimplemented in-
(R) ~ EW~R struction, floating­

point arithmetic fault

FDL FLOATING DIVIDE LONG
(Doubleword addressing, optional)

The effective doubleword (divisor) and the contents of reg­
isters Rand Ru 1 (dividend) are loaded into a set of internal
registers. FLOATING DIVIDE LONG then operates identi­
cally to FLOATING DIVIDE SHORT (FDS), except that the
dividend, the divisor, and the quotient fractions are each
14 hexadecimal digits long, and R must be an even value
for correct results. If no floating-point arithmetic fault oc­
curs, the quotient is lo~ded into registers Rand Ru 1 as a
long-format floating-point number.

Affected: (R), (Ru 1), CC
(R, Ru1) ~ ED ~ R, Ru1

Traps: Unimplemented instruc­
tion, floating-point
arithmetic fault

PUSH-DOWN INSTRUCTIONS

The term IIpush-down processing" refers to the programming
technique {used extensively in recursive routines} of storing
the context of a calculc:ition in memory, proceeding with a
new set of information, and then activating the previously

stored information. Typically, this process involves a re­
served area of memory (stack) into which operands are
pushed (stored) and from which operands are pulled (loaded)
on a last-in, first-out basis. The SIGMA 5 computer pro­
vides for simplified and efficient programming of push-down
processing by means of the following instructions:

Instructi on Name Mnemonic Page

Push Word PSW 50

Pull Word PLW 50

Push Multiple PSM 51

Pull Multiple PLM 51

Modify Stack Pointer MSP 52

STACK POINTER OOUBLEWORD

Each of these instructions operates with respect to a mem­
ory stack that is defined by a doubleword located at the
effective address of the instruction. This doubleword, re­
ferred to as a stack pointer doubleword (SPD), has the fol­
lowing structure:

Bit positions 15 through 31 of the SPD contain a 17-bit ad­
dress field that points to the location of the word currently
at the top (highest-numbered address) of the operand stack.
In a push operation, the top-of-stack address is incremented
by I and then an operand in a general register is pushed
(stored) into that location, thus becoming the contents of
the new top of the stack; the contents of the previous top of
the stack remain unchanged. In a pull operation, the con­
tents of the current top of the stack are pu lied (loaded) into
a general register and then the top-of-stack address is decre­
mented by 1; the previous stack contents remain unchanged.

Bit positions 33 through 47 of the SPD, referred to as the
space count, contain a 15-bit count (0 to 32,767} of the
number of word locations currently available in the region
of memory allocated to the stack. Bit positions 49 through
63 of the SPD, referred to as the word count, contain a 15-
bit count (0- to 32,767} of the number of words currently in
the stack. In a push operation, the space count is decre­
mented by 1 and the word count is incremented by 1; in a
pull operation, the space count is incremented by 1 and the
word count is decremented by 1. At the beg inn ing of all
push-down instructions, the space count and the word count
are each tested to determ i ne whether or not the i nstructi on
would cause either count field to be incremented above the
upper limit of 215 _1 (32, 767}, or to be decremented below
the lower limit of O. If execution of the push-down instruc­
tion would cause either count limit to be exceeded, the com­
puter unconditionally aborts execution of the instruction,
with the stack, the stack pointer doubleword, and the con­
tents of the general registers unchanged. Ordinari Iy, the
computer traps to location X I 421 after aborting a push-down
instruction because of impending stack limit overflow or

underflow, and with the condition code unchanged from the
value it contained before execution of the instruction. How­
ever, this trap action can be selectively inhibited by setting
either (or both) of the trap inhibit bits in the SPD to 1.

Bit position 32 of the SPD, referred to as the trap-on-space
(TS) inhibit bit, determines whether or not the computer is
to trap to location X '421 as a result of impending overflow
or underflow of the space count (SPD33-47), as follows:

TS Space count overflow/underflow action

o If the execution of a pull instruction would cause the
space count to exceed 215 _1, or if the execution of a
push instruction would cause the space count to be less
than 0, the computer traps to location X I 421 with the
condition code unchanged

TS Space count overflow/underflow action

Instead of trapping to location X'421, the computer sets
eel to 1 and then executes the next instruction in se­
quence

Bit position 48 of the SPD, referred to as the trap-on-word
(TW) inhibit bit, determines whether or not the computer is
to trap to location X 1421 as a result of impending overflow
or underflow of the word count (SPD49-63) as follows:

TW Word count overflow/underflow action

o If the execution of a push instruction would cause the
word count to exceed 215 _1, or if the execution of a
pull instruction would cause the word count to be less
than 0, the computer traps to locati on X 1421 with the
condition code unchanged.

Instead of trapping to location X '421, the computer sets
ee3 to 1 and then executes the next instructi on in se­
quence.

PUSH-DOWN CONDITION CODE SETTINGS

If the execution of a push-down instructi on is attempted and
the computer traps to locati on X 1421, the conditi on code re­
mains unchanged from the value it contained immediately be­
fore the instruction was executed.

If execution of a push-down instruction is attempted and the
instruction is aborted because of impending stack limit over­
flow or underflow (or both) but the push-down stack limit
trap is inhibit~d by one (or both) of the inhibits (TS and TW),
then eel and ee3 indicate the reason for aborting the
push-down instruction, as follows:

o
2 3 4 Reason for abort

o

impending overflow of word count on a
push operation or impending underflow
of word count on a pull operation. The
push-down stack limit trap was inhibited
by the TW bit (SPD48)

impending overflow of space count on a
pu II operati on or impendi ng underflow of
space count on a push operation. The

Push-down Instructi ons 49

2 3 4 Reason for abort

push-down stack limit trap was inhibited
by the TS bit (SPD32)

impending overflow of word count and
underflow of space count on a push op­
eration or impending overflow of space
count and underflow of word count on a
pull operation. The push-down stack
limit trap was inhibited by both the TW
and the TS bits

If a push-down instruction is successfully executed, CC1
and CC3 are reset to 0 at the completion of the instruction.
Also, CC2 and CC4 are independently set to indicate the
current status of the space count and the word count, re­
spectively, as follows:

2 3 4 Status of space and word counts

o 0 0 0 the current space count and the current
word count are both greater than zero

000 the current space count is greater than
zero, but the current word count is zero,
indicating that the stack is now empty.
I f the nex t operati on on the stack is a
pull instruction, the instruction will be
aborted

o 0 0 the current word count is greater than
zero, but the current space count is zero
indicating that the stack is now full. If
the next operation on the stack is a push
instruction, the instruction wi II be aborted.

If the computer does not trap to location X I 421 as a result
of impending stack limit overflow/underflow, CC2 and CC4
indi cote the status of the space and word counts at the ter­
mination of the push-down instruction, regardless of whether
or not the space and word counts were actually modified by
the instruction. In the following descriptions of the push­
down instruction, only those condition codes are given that
can actually be produced by the instruction, provided the
computer does not trap to location X 1421.

PSW PUSH WORD
(Doubleword addressing)

PUSH WORD stores the contents of register R into the push­
down stack defined by the stack pointer doubleword located
at the effective doubleword address of PSW. If the push op­
eration can be successfully performed, the instruction oper­
ates as follows:

1. The current top-of-stack address (SPD15-31) is incre­
mented by 1, to point to the new top-of-stack locati on.

2. The contents of register R are stored in the locati on
pointed to by the new top-of-stack address.

50 Push-down Instructions

3. The space count (SPD33 -47) is decremented by 1 and
the word count (SPD49-63) is incremented by 1.

4. The condition code is set to reflect the new status of
the space count.

Affected: (SPD), (TSA+ l),CC Trap: Push -down stack limit

(SPD)15_31 + 1 - SPD15 _31

(R) ~ (SPD 15- 31)

(SPD)33-47 - 1 SPD
33

_
47

(SPD) 49-63 + 1 - SPD 49-63

Condition code settings:

2 3 4 Resu I t of PSW

0 0 0 0 space count is greater
than 0

0 0 0 space count is now 0

0 0 0 word count = 215 _1,
TW= 1

0 0 space count = 0, TS = 1

0 space count = 0, word
count = 0, TS = 1

0 word count = 215 _1,
space count = 0

TW = 1, and TS = 1

PLW PULL WORD
(Doubleword addressing)

} i nstructi on
completed

instruction
aborted

PULL WORD loads register R with the word currently at the
top of the push-down stack defined by the stack pointer
doubleword located at the effective doubleword address of
PLW. If the pull operation can be performed successfully,
the i nstructi on operates as foil ows:

1. Register R is loaded with the contents of the location
pointed to by the current top-of-stack address
(SPD

15
_

31
)·

2. The current top-of-stack address is decremented by 1,
to point to the new top-of-stack location.

3. The space count (SPD33- 47) is incremented by 1 and
the word count (SPD49-63) is decremented by 1.

4. The condition code is set to reflect the status of the
new word count.

Affected: (SPD), (R), CC Trap: Push-down stack limit

«SPD)15_31) - R; (SPD)15_31 -1 - ?PD15- 31

(SPD)33-47 + 1 - SPD33- 4i (SPD) 49-63 -1- SPD49-63

Condition code settings:

2 3 4 Result of PLW

0 0 0 0 word count is greater

} than 0 i nstructi on

0 0 0 word count is now 0
completed

0 0 word count = 0, TW = 1

0 space count = 0,
word count = 0, TW = 1

0 0 0 space count = 215 _1, instruction
TS = 1 aborted

0 space count = 215 .. 1,
word count = 0,
TS = 1, and TW = 1

PSM PUSH MULTIPLE
(Doubleword addressing)

PUSH MULTIPLE stores the contents of a sequential set of
general registers into the push-down stack defined by the
stack pointer doubleword located at the effective double­
word address of PSM. The condition code is assumed to
contain a count of the number of registers to be pushed in­
to the stack. (An initial value of 0000 for the condition
code specifies that all 16 general registers are to be pushed
into the stack.) The registers are treated as a circular set
(with register 0 following register 15) and the first register
to be pushed into the stack is register R. The last register
to be pushed into the stack is register R + CC -1, and the
contents of this register become the contents of the new top­
of-stack location.

If there is sufficient space in the stack for all of the speci­
fied registers, PSM operates as follows:

1. The contents of registers R to R + CC -1 are stored in an
ascending sequence, beginning with the location pointed
to by the current top-of-stack address (SPD15- 31) plus 1
and ending with the current top-of-stack address plus Cc.

2. The current top-of-stack address is incremented by the
value of CC, to point to the new top-of-stack location.

3. The space count (SPD33-47) is decremented by the value
of CC and the word count is incremented by the valueof
Cc.

4. The condition code is set to reflect the new status of
the space count.

Affected: (SPD), (TSA+1 to Trap: Push-down stack limit
TSA+CC), CC

(R) - (SPD
15

_
31

)+ 1 ... (R+CC-1) - (SPD
15

_
31

)+CC

(SPD)15_31+CC - SPD15 _31

(SPD)33_47-CC - SPD33-47

(SPD) 49-63+CC - SPD 49-63

If the instructi on starts storing words into an accessible region
of memory and then crosses a memory page boundary into an
inaccessible region, either the memory protection trap or the
non~xistent memory trap can occu·r. In either case, the trap
i-s activated with the condition code unchanged from the val­
ue it contained before the execution of PSM. The effective
address of the instruction permits the trap routine to compute
how many words of memory have been changed. Since it is
permissible to use indirect addressing through one of the af­
fected locations, or even to execute an instructi on located
in one of the affected locations, a trapped PSM instruction
may have already overwritten the direct address, or the PSM
instruction itself, thus destroying any possibility of continu­
ing the program successfully. If such programming must be
done, it is advisable that the direct address, or the PSM in­
struction, occupy the last location in which the contents of
a register are to be stored by the PSM instruction.

Conditi on code settings:

2 3 4 Result of PSM

o 000

000

000

000

o 0

o 0

o 0

o

o

space count> 0

space count= 0

word count + CC > 2 15_ 1,
TW=l

space count <CC, TS = 1

space count <CC, word
count= 0, TS"'= 1

space count < CC,
word count +CC>215 -I,
TS = 1, and TW = 1

space count = 0, TS = 1

space count = 0, word
count = 0, TS = 1

space count = 0, word
count+CC>215 -1,
T S = 1, and TW = 1

PLM PULL MULTIPLE
(Doubleword addressing)

i nstruc ti on
completed

instruction
aborted

PULL MULTIPLE loads a sequential set of general registers
from the push-down stack defined by the stack pointer
doubleword located at the effective doubleword address of
PLM. The conditi on code is assumed to contain a count of
the number of words to be pulled from the stack. (An initial
value of 0000 for the condition code specifies that 16 words
are to be pu lied from the stack.) _ The reg i sters are treated
as a circular set (with register 0 following register 15),
the first register to be loaded from the stack is register
R + CC -1, and the contents of the current top-of-stack
location becomes the contents of this register. The last
register to be loaded is register R.

Push-down Instructions 51

If there is a sufficient number of words in the stack to load
all of the specified registers, PLM operates as follows:

1. Registers R + CC -1 to register R are loaded in a de-
scending sequence, beg inning with the contents of the
I oc~ti on poi nted to by the current top-of-stack address
(SPD15-31) and ending with the contents of the loca-
tion pointed to by the current top-of-stack address
minus (CC -1).

2. The current top-of-stack address is decremented by the
value of CC, to point to the new top-of-stack location.

3. The space count (SPD33-47) is incremented by the value
of CC and the w(,rrl Gount is decremented by the value
of CC.

4. The condition code is set to reflect the new status of
the word count.

Affected: (SPD), (R+CC-1) Trap: Push-down stack limit
to (R), CC

«SPD)15_31) ~ R+CC-1, ... ,

«SPD)15-31 - ICC-11) ~ R

(SPD)15_31 - CC ~ SPD15 _31

(SPD)33-47 + CC --. SPD33-47

(SPD) 49-63 - CC - SPD 49-63

If the instruction starts loading words from an existent
region of memory and then crosses a memory page boundary
into a nonexistent memory region, the nonexistent memory
address trap occurs. In this case, the trap is activated with
the condition code unchanged from the value it contained
before the executi on of PLM. The effective address of the
instructi on permits the trap routine to compute how many
registers have been loaded. Since it is permissible to use
indirect addressing through a general register, indexing, or
even to execute an instruction located in a general register,
a trapped PLM instruction may have already overwritten the
index, direct address, or the PLM instruction itself, thus
destroying any possibility of continuing the program success­
fully. If such programming must be done, it is advisable
that the register containing the direct address, index dis­
placement, or instruction be the last register loaded by the
PLM instruction.

Condition code settings:

2 3 4 Resu I t of PLM

0 0 0 0 word count> 0

0 0 0 word count = 0

0 0 0 word count < CC,
TW= 1

0 0 word count = 0,
TW= 1

0 0 space count = 0,
word count < CC,
TW= 1

52 Push-down Instructi ons

}

1
j

instruction
completed

instruction
aborted

2 3 4 Result of PLM

0 space count = 0,
word count = 0,
TW= 1

0 0 0 space count+ CC> 215_1
TS = 1

i nstructi on
0 0 space count+ CC> 215 _1, aborted

word count<CC, TS= 1,
and TW = 1

0 space count+ CC > 215_1,
word count = 0, TS = 1,
and TW = 1

MSP MODIFY STACK POINTER
(Doubleword addressing)

MODIFY STACK POINTER modifies the stack pointer double­
word, located at the effective doubleword address of MSP,
by the contents of register R. Register ~ is assumed to have
the following format:

Bit positions 16 through 31 of reg ister R are treated as a
signed integer, with negative integers in two's complement
form (i. e., a fixed-point halfword). The modifier is alge­
braically added to the top-of-stack address, subtracted from
the space count, and added to the word count in the stack
pointer doubleword. If, as a result of MSP, either the
space count or the word count would be decreased below 0
or increased above 215-1, the instruction is aborted. Then,
the computer either traps to location X'42' or sets the con­
dition code to reflect the reason for aborting, depending on
the stack I imit trap inhibits.

If the modificati on of the stack pointer doubleword can be
successfu Ily performed, MSP operates as follows:

1. The modifier in register R is algebraically added to
the current top-of-stack address (SPD) 15-31' to point
to a new top-of-stack location. (If the modifier is
negative, it is extended to 17 bits by appending a
high-order 1.)

2. The modifier is algebraically subtracted from the cur­
rent space count (SPD33-47) and the result becomes
the new space count.

3. The modifier is algebraically added to the current word
count (SPD49-63) and the result becomes the new word
count.

Affected: (SPD), CC Trap: Push-down stack limit

(SPD)15_31 + (R)16-31SE ~ SPDf5 _31

(SPD)33_47 - (R) 16-31 ~ SPD33_47

(SPD)49_63 + (R)16-31 ~ SPD49-63

Condition code settings:

2 3 4 Result of MSP

0 0 0 0 space count> 0,
word count> 0

0 0 0 space count> 0,
word count = 0

instruction
0 0 0 space count = 0, completed

word count> 0

0 0 space count = 0,
word count = 0,
modifier = 0

If CC 1, or CC3, or both CC 1 and CC3 are lis after exe­
cution of MSP, the instruction was aborted but the push­
down stack limit trap was inhibited by the trap-on-space
inhibit (SPD32), by the trap-on-word inhibit (SPD4S)' or
both. The condition code is set to reflect the reason for
aborting as follows:

o

2 3 4 Status of space count and word count

o

o word count> 0

word count = 0

o 0::5 word count + modifier::5 215_1

word count + modifier < 0 and TW = 1,
or word count + modifier> 215-1 and
TW= 1

space count> 0

space count = 0

0::5 space count - modifier ::5 215-1

space count - modifier < 0 and TS = 1,
or space count - modifier> 215-1 and
TS = 1

EXECUTE/BRANCH INSTRUCTIONS

The EXECUTE instruction can be used to insert another in­
struction into the program sequence, and the branch instruc­
tions can be used to alter the program sequence, either
unconditionally or conditionally. If a branch is uncondi­
tional (or conditional and the branch condition is satisfied),
the instruction pointed to by the effective address of the
branch instruction is normally the next instruction to be ex­
ecuted. If a branch is conditional and the condition for
the branch is not satisfied, the next instruction is normally
taken from the next location, in ascending sequence, after
the branch instruction.

Prior to the time that an instruction is accessed from memory
for execution, bit positions 15-31 of the program status
doubleword contain the core memory address of the instruc­
tion, referred to as the instruction address. At this time,
the computer traps to location X140' if the instruction ad­
dress is nonexistent. If the instruction address is existent,
the instruction is accessed and the instruction address por­
tion of the program status doubleword is incremented by 1,

so that it now contains the address of the next instruction in
sequence (referred to as the updated instruction address).

If a trap condition occurs during the execution sequence of
any instruction, the computer decrements the updated in­
struction address by 1 and then traps to the location assigned
to the trap condition. If neither a trap condition nor a
satisfied branch condition occurs during the execution of an
instruction, the next instruction is accessed from the location
pointed to by the updated instruction address. If a satisfied
branch condition occurs during the execution of a branch
instruction (and no trap condition occurs), the next instruc­
tion is accessed from the location pointed to by the effec­
tive address of the branch instruction. Thus, during execu­
tion of a branch instruction, the updated instruction address
is decremented, unchanged, or replaced, as determined by

_ the following critera:

1. Trap condition. A nonal/owed operation trap condition
can occur during execution of a branch instruction,but
only if an attempt is made to access a nonexistent mem­
ory address. The trap condition occurs in the following
situations:

a. The branch instruction is indirectly addressed, but
the address of the location containing the direct
address is nonexistent.

b. The branch instruction is unconditional (or the
branch is conditional and the condition for the
branch is satisfi ed), but the effective address of
the branch instruction is nonexistent.

If either or both of the above situations occur, the
computer aborts execution of the branch instruction,
decrements the updated instruction address by 1, and
traps to location X1401. In this case, the instruction
address value (IA) stored by the XPSD instruction in
location X I 401 is the address of the aborted branch
instruction.

2. No branch condition. If the branch instruction is con­
ditional, the condition for the branch is not satisfied,
and no trap condition occurs, the updated instruction
address remains unchanged. Then, instruction execu­
tion proceeds with the instruction pointed to by the up­
dated instruction address.

3. Branch condition. If the branch instruction is uncondi­
tional (or if the branch instruction is conditional and
the condition for the branch is satisfied) and no trap
condition occurs, the updated instruction address is re­
placed by the effective address of the branch instruction.
Then, instruction execution proceeds with the instruc­
tion located at the effective address of the branch in­
struction.

EXU EXECUTE
(Word addressing)

EXECU TE causes the computer to access the instruction in
the location pointed to by the effective address of EXU and
execute the subject instruction. The execution of the sub­
ject instruction, including the processing of trap and in-

Execute/Branch Instructi ons 53

terrupt conditions, is performed exactly as if the subject
instruction were initially accessed instead of the EXU in­
struction. If the subject instruction is another EXU, the
computer executes the subject instruction PQinted to by the
effective address of the second EXU as described above.
Such "chains" of EXECUTE instructions may be of any length,
and are processed (without affecting the updated instruction
address) unti I an instruction other than EXU is encountered.
After the final subject instruction is executed, instruction
execution proceeds with the next instruction in sequence
after the initial EXU (unless the subject instruction is an
unconditional branch or is a conditional branch instruc-
tion and the branch condition is satisfied).

If an interrupt activation occurs between the beginning of
an EXU instruction (or chain of EXU instructions) and the
last interruptible point in the subject instruction, the com­
puter processes the interrupt-servicing routine for the ac­
tive interrupt level and then returns program control to the
EXU instruction {or the initial instruction of a chain of EXU
instructions}, which is started anew. Note that a program
is interruptible after every instruction access, including
accesses made with the EXU instruction, and the interrupti­
bil ity of the subject instruction is the same as the normal
interruptibil ity for that instruction.

If a trap condition occurs between the beginning of an EXU
instruction (or chain of EXU instructions) and the completion
of the subject instruction, the computer traps to the appro­
priate trap location. The instruction address stored by the
XPS D instruction in the trap location is the address of the
EXU instruction (or the initial instruction of a chain of
EXU instructions).

Affected: Determined by
subject instruction

Traps: Determined by
subject instruction

Condition code settings: Determined by subject instruction.

BCS BRANCH ON CONDITIONS SET
(Word addressing)

BRANCH ON CONDITIONS SET forms the logical product
(AND) of the R field of the instruction word and the current
condition code. If the logical product is nonzero, the
branch condition is satisfied and instruction execution pro­
ceeds with the instruction pointed to by the effective ad­
dress of the BCS instruction. However, if the logical
product is zero, the branch condition is unsatisfied and
instruction execution then proceeds with the next instruc­
tion in normal sequence.

Affected: (lA) if CC n Rio

If CC n (1)8-11 10, EA 15- 31 ~ IA

If CC n (1)8-11 = 0, IA not affected

If the R field of BCS is 0, the next instruction to be
executed after BCS is always the next instruction in as­
cending sequence, thus effectively producing a "no op­
eration" instruction.

54 Execute/Branch Instructi ons

BCR BRANCH ON CONDITIONS RESET
(Word addressing)

BRAN CH ON CONDITIONS RESET forms the logica I product
(AN D) of the R field of the instruction word and the current con­
dition code. If the logical product is zero, the branch condi­
tion is satisfied and instruction execution then proceeds with
the instruction pointed to by the effective address of the BCR
instruction. However, if the logical product is nonzero, the
branch condition is unsatisfied and instruction execution then
proceeds with the next instruction in normal sequence.

Affected: (IA) if CC n R = 0

If CC n (1)8-11 = 0, EA 15- 31 --+- IA

If CC n (I) 8-11 I 0, IA not affected

If the R field of BCR is 0, the next instruction to be execu­
ted after BCR is always the instruction located at the effec­
tive address of BCR, thus effectively producing a "branch
unconditiona Ily" instruction.

BIR BRANCH ON INCREMENTING REGISTER
(Word addressing)

BRANCH ON INCREMENTING REGISTER increments the
contents of general register R by 1. If the result is a nega­
tive value, the branch condition is satisfied and instruction
execution then proceeds with the instruction pointed to by
the effective address of the BIR instruction. However, if
the result is zero or a positive value, the branch condition
is not satisfied and instruction execution proceeds with the
next instruction in normal sequence.

Affected: (R), (IA)

(R) + 1--+- R
If (R}O = 1, EA

15
-

31
~ IA

If (R)O = 0, IA not affected

If the effective address of BIR is a nonexistent memory address
and the result of incrementing register R isa negative value,
the computer aborts execution of the BIR instruction (with reg­
ister R containing the value that existed just before the BIR in­
struction) and traps to location X'40'. In this case, the instruc­
tionaddress stored by the XPSD instruction in location X'40'
is the address of the aborted BIR instruction.

BDR BRANCH ON DECREMENTING REGISTER
(Word addressing)

BRANCH ON DECREMENTING REGISTER decrements the
contents of general register R by 1. If the result is a posi- I
tive value, the branch condition is satisfied and instruction
execution then proceeds with the instruction pointed to by

the effective address of the BDR instruction. However, if
the result is zero or a negative value, the branch condition
is unsatisfied and instruction execution proceeds with the
next instruction in normal sequence.

Affected: (R), (IA)

(R) - 1--.. R

If (R)O = 0 and (R)1-317- 0, EA 15- 31 --" IA

If (R)O = 1 or (R) = 0, IA not affected

If the effective address of BDR is a nonexistent memory ad­
dress and the result of decrementing register R is zero or is
a positive value, the computer aborts execution of the BDR
instruction (with register R containing the value that existed
just before the BDR instruction) and traps to location X1401.
In this case, the' instruction address stored by the XPSD in­
struction in location XI401 is the address of the aborted
BDR instruction.

SAl BRANCH AND LINK
(Word addressing)

BRANCH AND LINK determines the effective address, loads
the updated instruction address (the address of the next in­
struction in normal sequence after the BAL.instruction) into
bit positions 15-31 of generaL-register R, clears bit position
0-14 of register R to OIS and then replaces the updated in­
struction address with the effective address. Instruction
execution proceeds with the instruction pointed to by the
effective address of the BAL instruction.

Affected: (R), (IA)

If the effective address of BAL is a nonexistent memory
address, the computer aborts execution of the BAL instruc­
tion (ofter loading the updated instruction address into
register R) and traps to location X1401. In this case, the
instruction address stored by the XPSD instruction in loca­
tion XI401 is the address of the BAL instruction.

CALL INSTRUCTIONS
The four CALL instructions each cause the computer to
trap to a specific location for the next instruction in
sequence.

Each of these four trap locations must contain an EX­
CHANGE PROGRAM STATUS DOUBLEWORD (XPSD) in­
struction. Execution of XPSD in thetrap location for a
CALL instruction is descibed on page 57. If the XPSD

instruction is coded with bit position 9 set to 1, the next
instruction (executed after the XPSD) is taken from one of
16 possible locations, as designated by the value in the R
field of the CALL instruction. Each of the 16 locations
may contain an instruction that causes the computer to
branch to a specific routine; thus the four CALL instructions
can be used to enter any of as may as 64 unique routines

CAll CALL 1
(Word addressing)

CALL 1 causes the computer to trap to location X148 1.

CAL2 CALL 2
(Word addressing)

CALL 2 causes the computer to trap to location X149 1.

CAll CALL 3
(Word addressing)

CALL 3 causes the computer to trap to location XI4AI.

CAL4 CALL 4
(Word addressing)

CALL 4 causes the computer to trap to location XI4BI.

CONTROL INSTRUCTIONS
The following privileged instructions are used to control
the basic operating conditions of the SIGMA 5 computer:

Instruction Name Mnemonic Page

Load Program Status Doubl eword LPSD 56
Exchange Program Status Doubleword XPSD 56
Load Register Pointer LRP 58
Move to Memory Control MMC 58
Wait WAIT 59
Read Direct RD 59
Write Direct WD 60

If execution of any control instruction is attempted while
the computer is in the slave mode (i.e., while bit 8 of the
current program status doubleword is a 1), the computer un­
conditionally aborts execution of the instruction (at the
time of operation code decoding) and traps to location X1401.

CALL/Control Instructions 55

PROGRAM STATUS DOUBLEWORD

The SIGMA 5 program status doubleword has the following
structure when stored in memory:

Bit
Position Designation Function

0-3 CC Condition code

5 FS Floating significance mask

6 FZ Float i ng zero mask

7 FN Floating normalize mask

8 MS Master/slave mode control

lOt DM Decimal fault trap mask

11 AM Fixed-point arithmetic overflow
trap mask

15-31 IA Instruction address

34,35 WK Write key

37 CI Counter interrupt group inhibit

38 II I/O interrupt group inhibit

39 EI External interrupt inhibit

54-59 RP Register pointer

The detailed functions of the various portions of the SIGMA
5 program status doubleword are described on page 12.

LPSD LOAD PROGRAM STATUS DOUBLEWORD
(Doubleword addressing, privileged)

LOAD PROGRAM STATUS DOUBLEWORD replaces bits 0
through 39 of the current program status doubl eword with
bits 0 through 39 of the effective doubleword. The follow­
ing conditional operations are also performed:

1. If bit position 8 (LP) of LPSD contains a 1, bits 56
through 59 of the current program status doubleword
(register pointer) are replaced by bits 56 through 59
of the effective doublewordi if bit 8 of LPSD is a 0,
the current register pointer value remains unchanged.

t This bit position is used only to preserve the status of
the decimal arithmetic fault trap mask when a SIGMA 7
program is being executed. The decimal trap mask bit does
not affect the operation of the SIGMA 5 computer in any
way.

56 Control Instructions

2. If bit position 10 of LPSD contains a 1, the highest­
priority interrupt level currently in the active state is
cleared (i.e., reset to either the armed or disarmed
state). The interrupt level is armed if bit 11 of LPSD is
a 1, or is disarmed if bit 11 of LPSD is a O. If bit 10
of LPSD is a 0, no interrupt level is affected in any
way, regardless of whether bit 11 of LPSD is 1 or O.
(Interrupt levels are described in detail on page 15.)

Those portions of the effective doubleword that correspond
to undefined fields in the program status doubleword are
ignored.

Affected: (PSD), interrupt system if (I) 10 = 1

ED
O

_
3
- CC

ED
5

_
7

- FS, FZ, FN

ED
8
-MS

ED
10

- DM; ED ll - AM

ED 15- 31 - IA

ED
34

_
35

-WK

ED37-39~ CI, II, EI

If (1)8 = 1, ED56- 59 - RP

If (I) 10 = 1 and (I) 11 = 1, clear and arm interrupt

If (1) 10 = 1 and (I) 11 = 0, clear and disarm interrupt

XPSD EXCHANGE PROGRAM STATUS DOUBLEWORD
{Doubleword addressing, privileged}

EXCHANGE PROGRAM STATUS DOUBLEWORD stores the
entire current program status doubl eword and then replaces
the current program status doubleword with a new program
status doubleword.

The current program status doubleword is stored in the double­
word location pointed to by the effective address of XPSD
in the following form:

The current program status doubleword is replaced by a new
program status doubleword as follows:

1. The effective address of XPSD is incremented by 2, so
that it points to the next doubleword location. The
contents of the next doubleword location are referred
to as the second effective doubleword, or ED2.

2. Bits 0 through 35 of the current program status double­
word are unconditionally replaced by bits 0 through 35

of the second effective doubleword. The affected por­
tions of the program status doubleword are:

Bit
Position Designation Function

0-3 CC Condition code

5-7 FS, FZ, FN Floating control

8 MS Master/slave mode
control

10 DM Decimal trap mask

11 AM Fixed-point arithmetic
trap mask

15-31 IA Instruction address

34-35 WK Write key

3. A logical inclusive OR is performed between bits 37
through 39 of the current program status doubleword
and bits 37 through 39 of the second effective double­
word.

Bit
Position Designation Function

37 CI Counter interrupt inhibit

38 II I/o interrupt inhibit

39 EI External interrupt inhibit

If any (or all) of bits 37, 38, or 39 of the second ef­
fective doub!eword are O's, the cOriesponding bits in
the current program status doubleword remain unchanged;
if any (or all) of bits 37, 38, or 39 of the second ef­
fective doubleword are lis, the corresponding bits in
the current program status doubleword are set to lis.
See page 15 for a detailed discussion of the interrupt
inhibits.

4. If bit position 8 (LP) of XPSD contains a 1, bits 56-
59 of the current program status doubleword (register
pointer) are replaced by bits 56 through 59 of the sec­
ond effective doubleword; if bit 8 of XPSD is a 0, the
current register pointer value remains unchanged.

The following additional operations are performed on the new
program status doubleword if, and only if, the XPSD is
being executed as the result of a nonallowed operation
(trap to location X'40') or a CALL instruction (trap to lo­
cation X'48 1

, X'49 1
, X'4A', or X'4B'):

1. Nonallowed operations - the following additional func­
tions are performed when XPSD is being exeucted as
a result of a trap to location X'40 ' :

a. Nonexistent instruction - if the reason for the
trap condition is an attempt to execute a non­
existent instruction, bit position 0 of the new
program status doubleword (CCl") is set to 1. Then,
if bit 9 (AI) of XPSD is a 1, bit positions 15-31
of the new program status doubleword (next instruc­
tion address) are incremented by 8.

b. Nonexistent memory address - if the reason for
the trap condition is an attempt to access or write
into a nonexistent memory region, bit position 1 of
the new program status doubleword (CC2) is set to
1. Then, if bit 9 of XPSD is a 1, the instruction
address portion of the new program status double­
word is incremented by 4.

c. Privileged instruction violation - if the reason for
the trap condition is an attempt to execute a privi­
leged instruction while the computer is in the slave
mode, bit position 2 of the new program status dou­
bleword (CC3) is set to 1. Then, if bit position 9
of XPSD is a 1, the instruction address portion of
the new program status doubleword is incremented
by 2.

d. Memory protection violation - if the reason for the
trap condition is an attempt to write into a memory
region to which the program does not have proper
access, bit position 3 of the new program status
doubleword (CC4) is set to 1. Then, if bit 9 of
XPSD is a 1, the instruction address portion of the
new program statusdoubleword is incremented by 1.

There are certain circumstances under which two of the
above nonallowed operations can occur simultaneously.
The following operation codes (including their indirect
counterparts) are considered to be both nonexistent
and privileged: XIOC', X'OD ', X'2C', and X'2D'. If
any of these operation codes is used as an instruction
while the computer is in the slave mode, CC1 and CC3
are both set to 1 IS; if bit 9 of XPSD is a 1, the instruc­
tion address portion of the new program status double­
word is incremented by 10. If an attempt is made to
write into a memory region that is both nonexistent and
protected from the program by means of the memory
protection feature, CC2 and CC4 are both set to 1's;
if bit 9 of XPSD is a 1, the instruction address of the
new program status doubleword is incremented by 5.

2. CALL instructions - the following additional functions
are performed when XPSD is being executed as a re­
sule of a trap to location X'48 1

, X'49~ X'4A', or X'4B':

a. The R field (contents of bit positions 8-11) of the
CALL instruction causing the trap is logically in­
clusively ORed into bit positions 0-3 (CC) of the
new program status doubleword.

b. If bit position 9 of XPSD contains a 1, the R field
of the CALL instruction causing the trap is added
to the instruction address portion of the new pro­
gram status doubleword.

If bit position 9 of XPSD contains a 0, the instruction ad­
dress portion of the new program status doubleword always
remains at the value established by the second effective
doubleword. Bit position 9 of XPSD is effective only if
the instruction is being executed as the result of a non­
allowed operation traporaCALL instruction trap. Bit posi­
tion 9 of XPSD must be coded with a 0 in all other cases;
otherwise, the results of the XPSD instructi on are undefined.

Control Instructi ons 57

Affected: (EDL), (PSD)

PSD --+- EDL
ED2

0
_
3

--+- CCi ED2
5

_
7
~ FS, FZ, FN

ED28--+- MSi ED2
10

--+- DMi ED2
11

---. AM

ED2
15

_
31

--+- IAi ED2
34

_
35

--+- WK

E D237 -39u CI, II, EI ---. CI, II, EI

If (1)8 = 1, ED2
56

_
59

--+- RP

If (I) 8 = 0, R P not affected

If nonexistent instruction, 1 ---. CCl then, if (1)9 = 1,
IA + 8 --+-IA

If nonexistent memory address, l--+- CC2 then, if (1)9 = 1,
IA + 4-+- IA

If privileged instruction violation, 1-+- CC3 then,
if (1)9 = 1, IA + 2-+- IA

If memory protection violation, 1--+- CC4 then, if (1)9 = 1,
IA + 1--+- IA

If CALL instruction, CC u CALL
8

_
11
~ CC then,

if (1)9 = 1, IA + CALL
8

_
11

---. IA

if (1)9 = 0, IA not affected

LRP LOAD REGISTER POINTER
(Word addressing, privileged)

LOAD REGISTER POIN TER loads bits 24 through 27 of the
effective word into the register pointer (RP) portion of the
current program status doubleword. Bits positions 0 through
23 and 28 through 31 of the effective word are ignored, and
no other portion of the program status doubleword is affected.
If the register poinTer is loaded with a value that points to
a nonexistent block of general registers, the computer sub­
sequently generates either all lis or all OIS as the contents
of the nonexistent block of general registers whenever an
instruction designates a general register by means of the R
field of the reference address field.

Affected: R P
EW

24
_
27
-. RP

MMC MOVE TO MEMORY CONTROL
(Word addressing, privileged, continue after
interrupt)

MOVE TO MEMORY CONTROL loads a string of one or
more words into the memory control registers (memory con­
trol registers are described on page 12). Bit positions 12-
14 of MMC are not used as an index register addressi in­
stead, they are used to specify that memory control registers
are to be loaded. Bit positions 12-14 of MMC must be
coded as 001, in order to load the memory control storage.

58 Control Instructi ons

If bit positions 12-14 of MMC are not coded as 001, the
instruction produces an undefined result. Also, if an at­
tempt is made to load unimplemented memory control storage,
the contents of the general registers specified by the MMC
instruction are undefined at the completion of the instruction.

Bit positions 15-31 (reference address field) of MMC are ig­
nored insofar as the operation of the instruction is concerned,
and the results of the instruction are the same whether or not
MMC is indirectly addressed. However, if MMC is indirectly
addressed and the indirect reference address is nonexistent,
the nonallowed operation trap (location X1401) isactivated.
The effective address of the MMC instruction however, is
not used as a memory reference (thus does not affect the nor­
mal operation of the instruction).

The R field of MMC designates an even-odd pair of general
registers (R and Ru 1) that are used to control the loading of
the memory control registers. Registers Rand Ru 1 are as­
sumed to contain the following information:

Register R:

Control i~ge address

Register Ru 1 :

Bit positions 15 through 31 of register R contain the address
of the first word of the control image to be loaded into the
memory control registers. Bit positions 0 through 7 of reg­
ister Rul contain a count of the number of words to be loaded.
If bits 0-7 of register Ru 1 are initially all OIS a word count
of 256 is implied.

Bit positions 15 through 20 of register Ru1 point to the be­
ginning of the memory region controlled by the registers to
be loaded.

The R field of the MMC instruction must be an even value
for proper operation of the instruction; if the R field of MMC
is an odd value, the operation of the instruction is undefined.

LOADING THE MEMORY WRITE PROTECTION LOCKS

The following diagrams represent the configuration of MMC,
register R, and register Ru 1 that are required to load the
memory write-protection locks:

The instruction format is

The contents of register Rare

The contents of register Ru 1 are

Memory Lock Control Image

The initial address value in register R is the address of the
first word of the memory lock control image, and word
length of the image is specified in the initial count in reg­
ister Ru 1. A word count of 16 is sufficient to load the en­
tire block of memory locks. The memory lock registers are
treated as a circular set, with the register for memory ad­
dresses 0 through X l 1 FP immediately following the register
for memory addresses X l 1 FFEOO I through X l 1 FFFF Pi thus, a
word count greater than 16 causes the first registers loaded
to be overwritten. Each word of the lock image is assumed
to be in the following format:

Memory Lock Loading Process

Bit positions 15-20 of register Ru 1 initially point to the first 512-
word page of core memory addresses that are to be control I ed
by the memory lock image. MMC moves the lock image in­
to the lock registers 1 word at a time, thus loading the locks
for 16 consecutive 512-word pages with each image word.
As each word is loaded, the address of the lock image is in­
cremented by 1, the word count is decremented by 1, and
the value in bit positions 15-20 of register Ru 1 is incremented
by 4i this process continues until the word count is reduced
to O. When the loading process is completed, register R
contains a value equal to the sum of the initial lock image
address plus the initial word count. Also, the final word
count is 0, and bit positions i 5-20 of register Ru 1 contain
a value equal to the sum of the initial contents plus 4 times
the initial word count.

INTERRUPTION OF MMC

The execution of MMC can be interrupted after each word
of the control image has been moved into the specified con­
trol register. Immediately prior to the time that the instruc­
tion in the interrupt (or trap) location is executed, register
R contains the address of the next word of the control image
to be loaded, and register Ru 1 contains a count of the num­
ber of control image words remaining to be moved and a
value pointing to the next memory control register to be
loaded.

Affected: (R), (Ru 1), memory control registers

WAIT WAIT
(Word addressing, privileged)

WAIT causes the central processing unit (CPU) of the
SIGMA 5 system to cease all operations until an inter­
rupt activation occurs, or unti I the computer operator
manually moves the COMPUTE switch (on the processor
control panel) from the RUN position to IDLE and then
back to RUN. The instruction address portion of the

program status doubleword is updated before the com­
puter begins waitingi therefore, while the CPU is wait­
i ng, the program status doubl eword contai ns the address
of the next location in ascending sequence after WAIT
and the contents of the next location are displayed in
the DISPLAY indicators on the processor control panel
(see Chapter 5). If any input/output operations are being
performed when WAIT is executed, the operations proceed
to their normal termination.

When an interrupt activation occurs while the CPU is wait­
ing, the computer processes the interrupt-servicing routine.
Normally, the interrupt-servicing routine begins-with an
XPSD instruction in the interrupt location, and ends with
an LPSD instruction at the end of the routine. After the
LPSD instruction is executed, the next instruction to be
executed in the interrupted program is the next instruction
in sequence after the WAIT instruction. If the interrupt is
to a single-instruction interrupt location, the instruction in
the interrupt location is executed and then instruction exe­
cution proceeds with the next instruction in sequence after
the WAIT instruction. When the COMPUTE switch is moved
from RUN to IDLE and back to RUN while the CPU is wait­
ing, instruction execution proceeds with the next instruction
in sequence after the WAIT instruction.

If WAIT is indirectly addressed and the indirect reference
address is nonexistent, the nonallowed operation trap (loca­
tion X1401) is activated. The effective address of the WAIT
instruction, however, is not used as a memory reference (thus
does not affect the normal operation of the instruction.

RD READ DIRECT
(Word addressing, privileged)

The CPU is capable of directly communicating with other
elements of the SIGMA 5 system, as well as performing
internal control operations, by means of the READ
DIRECT/WRITE DIRECT (RD/WD) lines. The RD/WD
lines consist of 16 address lines, 32 data lines, 2 con­
dition code I ines, and various control I ines that are
connected to various CPU circuits and to special systems
equipment.

READ DIRECT causes the CPU to present bits 16 through 31
of the effective address to other elements of the SIGMA 5
system on the RD/WD address lines. Bits 16-31 of the ef­
fective address identify a specific element of the SIGMA 5
system that is expected to return information (2 condition
code bits plus a maximum of 32 data bits) to the CPU. The
significance and number of data bits returned to the CPU
depend on the selected element. If the R field of RD is
nonzero, up to 32 bits of the returned data are loaded into
general register Ri however, if the R field of RD is 0, the
returned data is ignored and general register 0 is not
changed. Bits CC3 and CC4 of the condition code are set
by the addressed element, regardless of the value of the R
field. (CCl and CC2 are also set when the RD instruction
is coded for the internal control mode.)

Control Instructions 59

Bits 16-19 of the effective address of RD determine the mode
of the RD instruction, as follows:

Bit position
16 17 18 19 Mode

o
o
o
o

o
o
o
o

o
o
1
1

o
1
o

J
Internal computer control
Unassigned
SDS testers

Assigned to various groups of
standard SDS products

Special systems control (for customer
use with specially designed equipment)

READ DIRECT,

INTERNAL COMPUTER CONTROL (MODE 0)

In this mode, the condition code portion of the program
status doubleword is unconditionally set according to the
states of the four SENSE switches on the processor control
panel. If a particular SENSE switch is set, the correspond­
ing bit of the condition code is set to 1; if a SENSE switch
is reset, the corresponding bit of the condition code is re­
set to O.

Read SEN SE Switches

The following configuration of RD can be used to read the
control panel SENSE switches:

In this case, only the condition code is affected.

Read MEMORY FAULT Indicators

Each core memory module is associated with a MEMORY
FAUL T indicator that is turned on whenever a memory parity
or overtemperature condition occurs. The following con­
figuration of RD is used to record and reset the MEMORY
FAULT indicators.

If the R field of RD is nonzero, bit positions 0-23 of regis­
ter R are reset to all O's, and bit positions 24-31 are set
according to the current states of the MEMORY FAULT in­
dicators;thenall MEMORY FAULT indicators are reset. If
a bit position in register R is set to 1, a memory fault has
been detected in the corresponding core memory module.
If the R field of RD is zero, the MEMORY FAULT indicators
and the contents of register 0 remain unchanged (although
the condition code is sti II set to tre value of the SENSE
switches). The MEMORY FAU LT indicators are a Iso
reset by means of the SYS RESET/CLEAR switch on the pro­
cessor control panel.

Affected: (R), CC, MEMORY FAULT indicators

60 Control Instructions

WD WRITE DIRECT
(Word addressing, privileged)

WRITE DIRECT causes the CPU to present bits 16 through 31
of the effective address to other elements of the SIGMA 5
system on the RD/WD address I ines (see READ DIRECT).
Bits 16-31 of the effective address identify a specific ele­
ment of the SIGMA 5 system that is to receive control in­
formation from the CPU. If tre R field of WD is nonzero,
the 32-bit contents of register R are transmitted to the speci­
fied element on the RD/WD data lines. If the R field of WD
is 0, 32 O's are transmitted to the specified element (instead
of the contents of register 0). The specified element may
return information to set the condition code.

Bits 16-19 of the effective address determine the mode of
the WD instruction, as follows:

Bit position
16 17 18 19 Mode

o
o
o
o

o
o
o
o

o
o
1
1

o
1
o

J
Internal computer control
Interrupt control
SDS testers

Assigned to various groups of
standard SDS products

Special systems control (for customer
use with specially designed equipment)

WRITE DIRECT,
INTERNAL COMPUTER CONTROL (MODE 0)

In this mode, the condition code portion of the program
status doubleword (PSDO-3) is unconditionally set according
to the states of the four SENSE switches on the processor
control panel. If a particular SENSE switch is set, the
corresponding bit of the condition code is set to 1; if a
SENSE switch is reset, the corresponding bit of the condi­
tion code is reset to O.

Set Interrupt Inhibits

The following configuration of WD can be used to set
the interrupt inhibits (bits 37-39 of the program status
doubleword):

A logical inclusive OR is performed between bits 29-31 of
the effective address and bits 37-39 of the program status
doubleword. If any (or all of bits 29-31) of the effective
address are 1 IS, the corresponding inhibit bits in the pro­
gram status doubleword are set to l's; the current state of
an inhibit bit is not affected if a corresponding bit posi­
tion of the effective address contains a O.

Reset Interrupt Inhibits

The following configuration of WD can be used to reset the
interrupt inhibits:

If any (or all) of bits 29-31 of the effective address are lis,
the corresponding inhibit bits in the program status doubl e­
word are reset to Olsi the current state of an inhibit bit is
not affected ifa corresponding bit position of the effective
address contains a O.

Set ALARM Indicator

The following configuration of WD is used to set the ALARM
indicator on the maintenance section of the processor con­
trol panel:

If the COMPUTE switch on the processor control panel is
in the RUN position and the AUDIO switch on the main­
tenance section of the processor control panel in in the ON
position, a 1000-Hz signal is transmitted to the computer
speaker. The signal may be interrupted by moving the
COMPUTE switch to the IDLE position, by moving the
AU DIO switch to the OFF position, or by resetting the
ALARM indicator.

Reset ALARM Indicator

The following configuration of WD is used to reset the
ALARM indicator:

The ALARM indicator is also reset by means of either the
CPU RESET/CLEAR switch or the SYSTEM RESET/CLEAR
switch on the processor control panel.

Reset Integral lOP Inhibit

If the integral lOP is operating when the instruction watch­
dog timer runout trap is activated, the integral lOP is in­
hibited from further operation until the integral lOP inhi­
bit is reset. The following configuration of WD is used to
reset the integral lOP inhibit:

The integral lOP inhibit is also reset by means of the CPU
RESET/CLEAR switch or the SYS RESET/CLEAR switch on
the processor control panel.

Toggle Program-Controlled-Frequency Flip-Flop

The following configuration of WD is used to "toggle" the
CPU program-control led-frequency (PCF) fI ip-flop:

The output of the PCF flip-flop is transmitted to the com­
puter speaker through the AU DI0 switch on the mainten­
ance section of the processor control panel. If the PCF
fl ip-flop is reset when the above configuration of WD is
executed, the WD instruction sets the PCF fl ip-flop, if the
PCF fl ip-flop was previously set, the WD instruction resets
it. A program can thus generate a desired frequency by
toggl ing (setting and resetting) the PC F fl ip-flop at the ap­
propriate rate. Execution of the above configuration of
WD also resets the ALARM indicator.

WRITE DIRECT, INTERRUPT CONTROL (MODE 1)

The following configuration of WD is used to control the al­
teration of the various states of the individual interrupt
levels within the CPU interrupt system:

Bits 28 through 31 of the effective address specify the iden­
tification number (see page 14) of the group of interrupt
levels to be controlled by the WD instruction.

The R field of the WD instruction specifies a general register
that contains the selection bits for the individual interrupt
levels within the specified group. Bit position 16 of register
R contains the selection bit for the highest-priority (lowest
numbered) interrupt level within the group, and bit position
31 of register R contains the selection bit for the lowest­
priority (highest-numbered) interrupt level within the group.
Each interrupt level in the designated group is operated on
according to the function code specified by bits 21 through
23 of the effective address of WD. The codes and their as­
sociated functions are as follows:

Code Function

000 Undefined

001

010

011

100

101

110

Disarm all levels selected by ali all levels
sel ected by a 0 are not affected.

Arm and enable all levels selected by a li all
levels selected by a 0 are not affected.

Arm and disable all levels selected by ali all
levels selected by a 0 are not affected.

Enable all levels selected by a 1i alJ levels
selected by a 0 are not affected.

Disable all levels selected by a li all levels
selected by a 0 are not affected.

Enable all levels selected by a 1 and disable
all levels selected by a O.

Control Instructions 61

Code Function

111 Trigger all levels selected by a 1. All such
-levels that are currently armed advance to the
waiting state. Those levels currently disarmed
are not altered, and all levels selected by a a
are not affected. The interrupt trigger is appl ied
at the same input point as that used by the device
connected to the interrupt level.

INPUT jOUTPUT INSTRUCTIONS

"Standard" SIGMA 5 I/O refers to the normal I/o system
consisting of input/output processors, device controllers,
and devices. This system handles normal communication
with standard peripherals such as printers, discs, tapes, and
so forth. When deal ing with standard I/o operati ons,
the CPU uses the following five instructions:

Instruction Name

Start Input/Output
Halt Input/Output
T est Input/Output
Test Device
Acknowledge Input/Output Interrupt

Mnemonic

SIO
HIO
TIO
TDV
AIO

63
66
66
67
67

If execution of any input/output instruction is attempted
while the computer is in the slave mode (i.e., while bit 8
of the current program status doubleword is a 1), the com­
puter unconditionally aborts execution of the instruction
(at the time of operation code decoding) and traps to lo­
cation X'40'.

I/O ADDRESSES

The device to be operated on by an I/O instruction js sel­
ected by the effective address of the I/O instruction itself.
Indirect addressing and/or indexing are performed, as for
other word-addressing instructions, to compute the effec­
tive address of the I/o instruction. However, the effec­
tive address is not used as a memory reference (i.e., not
subject to memory protection). For the SIO, HIO, TIO,
and TDV instructions, the 11 low-order bits of the effec­
tive address constitute an I/O address. For the AIO in­
struction, the device causing the interrupt returns its ll-bit
I/o address as part of the response to the AIO instruction.

An I/o address occupies bit positions 21 through 31 of the
effective address, with bits 21, 22, and 23 of the I/O ad­
dress specifying one of eight possible lOPs that can be
controlled by a CPU. The remainder of the I/O address
is factored into one of two forms, depending on bit 24, as
follows:

Case I: Single-unit device controllers (bit 24 is 0)

Bits 25 through 31 of the I/o address (DC/Device) con­
stitute a single code specifying a particular combination

62 Input/Output Instructions

of device controller and device. Normally, these codes
refer to device controllers that drive only a single device,
such as card readers, card punches, line pri nters, etc.

Case II: Multiunit device controllers (bit 24 is 1)

Bits positions 25 through 31 of the I/o address contain a
3-bit device controller code (DC) in bit positions 25-27
and a 4-bit device code (Device) in bit positions 28-3l.
This form of I/o address is used for device controllers (such
as magnetic tape and rapid access data file controllers) that
control information exchange with only one device at a
time (out of a set of as many as 16 devices).

I/O UNIT ADDRESS ASSIGNMENT

Device controller numbers are normally assigned to a multi­
plexor lOP in numerical sequence, beginning with zero and
continuing through the highest number recognized by the
lOP (i.e., X?', X'F', X'17', or X'l P). In the case of
multiunit device controllers, the device controller number
must be in the range X'O' through X?' because the I/O
address field structure allows for a 3-bit multiunit device
controller number. In the case of single-unit device con­
trollers, any of the available numbers in the range X'O'
through X'l P maybe assigned to the device controller, pro­
viding that the same number has not already been assigned
to a multiunit device controller. For example, if device
controller number X'O' is assigned to a magnetic tape unit
controller, the number X'O' cannot also be used for a card
reader {although the coding of the I/o address field would
be different in bit position 24}. The I/O address codes
used by standard SDS software are

I/o address Peripheral device designation

X'080' lOP 0, device controller 0, magnetic tape
unit a

X'081' lOP 0, device controller 0, magnetic tape
unit 1

X'0871

X'OOl'

X'002'

X'OO3'

X'004'

X'005'

lOP 0, device controller 0,
unit 7

lOP 0, device controller 1,

lOP 0, device controller 2,

lOP 0, device controller 3,

lOP 0, device controller 4,

lOP 0, device controller 5,
reader/punch

I/O STATUS RESPONSE

magneti c tape

keyboard/ pri nter

I ine printer

card reader

card punch

paper tape

All I/o instructions result in the setting of condition code
CCl and CC2 to denote the nature of the I/O response.
The R field of the I/O instruction specifies one of the gen-

eral registers that is to accept additional I/o response in­
formation during the execution of an I/o instruction. In
some situations, the programmer may want two sets of re­
sponse information loaded into the general registers, while
in other situations he may want only one set, or even no in­
formation loaded into a general register. This control is
achieved by coding the R field of the I/o instruction. One
set or response information is loaded into register R and an­
other set may be loaded into register Ru1. If the R field is
an even, nonzero number, registers Rand R + 1 are each
loaded with response information. If the R field specifies
an odd-numbered general register, then only register R is
loaded with response information. However, if the R field
is 0 or if the I/o address is not recognized by the I/o sys­
tem, or if the device controller is attached to a IIbusyli se­
lector lOP, no general registers are loaded with response
information. The I/o response information loaded into the
general register for SIO, HIO, no and TDV instructions
is in the following format:

Word into register R

Word into register Ru 1

Current Command Doubl eword Address. After the addressed de­
vice has received an order, this field contains the 16 high-order
bits of the core memory address for the command doub!eword
(see page 70) currently being processed for the addressed device.

Status. The meaning of this field depends on the particular
I/O instruction being executed and upon the selected I/O
device (see Table 8).

Byte Count. After the addressed device has received an order,
this field contains a count of the number of bytes yet to be
transmitted by the operation called for by the order.

The format of I/o response information loaded into register
R for the instruction AIO is described on page 68.

SIO START INPUT/OUTPUT
(Word addressing, privi leged)

START INPUT/OUTPUT is used to initiate an input or out­
put operation with the device selected by the I/o address
(bits 21-31 of the effective address of the instruction).

SIO util izes data in general register 0, which is assumed
to have the following content when SIO is executed.

General register 0 is temporarily dedicated during the exe­
cution of an SIO instruction to specify the starting double-

word address for the lOP command list. The doubleword ad­
dress in register 0 is the 16 high-order bits of a memory ad­
dress; thus, the address in register 0 always specifies an
even-numbered word location. (The lOP command I ist is
described in 1I10P Command Doublewords ll

, Chapter 4.)

If I/o address recognition exists in the I/o system, the first
command doubleword address is loaded into the lOP command
address counter associated with the device controller speci­
fied by the I/o address of the SIO instruction. If, at this
time, the device is in the II ready li condition and the device
does not have an interrupt condition pending, the device is
started (Le., advanced to the IIbusy li condition). Then, if
the device is in the lIautomatic li mode, it requests an order
from the lOP. The lOP loads the first command doubleword
of the I/o command I ist into its appropriate registers and
transmits the order to the device.

The CPU condition code provides an indication of whether
or not the I/o address specified by the SIO instruction was
recognized by the I/o system and whether the SIO instruc­
tion was or was not accepted by the device (i.e., whether
the device did or did not advance to the "busy" condition).

The condition code settings for SIO are:

2 3 4 Result

o 0

o

o

I/o address recognized and SIO accepted

I/o address recognized but SIO not
accepted

device control ler is attached to a IIbusy"
selector lOP

I/o address not recognized

STATUS INFORMATION FOR SIO

In the event that the SIO instruction was not accepted
(i.e., CC1 = 0 and CC2 = 1), the status information returned
as a part of the I/o response provides indications of why
the SIO instruction was not accepted. If the SIO instruction
has been coded with an R field value of 0, or if the I/O ad­
dress is not recognized by the I/o system, or if the device
controller is attached to a IIbusy li selector lOP, only the
condition code settings are available. If the R field value
is odd, register R contains the following information:

Bit
Position Function

o Device interrupt pending: if this bit is 1, the ad­
dressed device has requested an interrupt and the
interrupt has not been acknowledged by an AIO
instruction. Device interrupts can be achieved
by coding of the flag portion of the I/o command
doubleword. Device interrupts can also be
achieved by using M modifiers in the basic order
to the device (M bits in the Order portion of the

Input/Output Instructions 63

Table 8. Status Bits for I/O Instructions

Position and State in Register Ru1

Device Status Byte

0234567

- 00-
- 0 1 -
- 1 0 -
- 1 1 -

- 0
1

- 00-
- 0 1 -
- 1 0 -
- 1 1 -

- 0

Operational Status Byte

8 9 10 11 12 13 14 15

- 1
1 -

- 1
1 -

Meaning (510, HIO, TIO)

device interrupt pending
device ready
device not operational
device unavailable
device busy
device manual
device automatic

device unusual end
device controller ready
device controller not operational
device controller unavai lable
device controller busy
unassigned

incorrect length
transmission data error
transmission memory error
memory address error

lOP memory error
lOP control error
lOP halt

- - - - Selector lOP busy

Position and State in Register R Meaning (AIO)

Devi ce Status Byte Operational Status Byte

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

- 1
1 -

- 1
1 -

- 1
1 -

- 0 - -
- - 0 -

- 0

64 Input/Output Instructions

data overrun

unique to the device and the
device controller

incorrect length
transmission data error
zero byte count interrupt
cnannel end interrupt

unusual end interrupt

unassigned

Meaning (TDV)

data overrun

unique to the
device and the
device controller

same as for
510, HIO,
and TIO

Bit
Position Function

1,2

3

4

command doubl eword). In either case, the devi ce
will not accept a new SIO instruction until the in­
terrupt-pending condition is cleared (Le., the
condition code settings for the SIO instruction will
indicate II SIO not accepted ll if the interrupt-pending
condition is present in the addressed device).

Device condition: if bits 1 and 2 are 00 (devi ce
IIreadi'), all device conditions required for proper
operation are satisfied. If bits 1 and 2 are 01
(device IInot operational II), the addressed device
has developed some condition that will not allow
it to proceed; in either case, operator intervention
is usually required. If bits 1 and 2 are 10 (device
lIunavailable ll), the device has more than one
channel of communication available and it is en­
gaged in an operation controlled by an lOP other
than the one specified by the I/o address. If bits
1 and 2 are 11 (device libusy"), the device has
accepted a previous SIO instruction and is already
engaged in an I/o operation.

Device mode: if this bit is 1, the device is in the
lIautomati c ll mode; if this bit is 0, the device is
in the IImanual ll mode and requires operator inter­
vention. This bit can be used in conjunction with
bits 1 and 2 to determine the type of action re­
quired. For example, assume that a card reader
is able to operate, but no cards are in the hopper.
The card reader would be in state 000 (device
"ready", but manual intervention required), where
the state is indicated by bits 1,2, and 3 of the
I/O status response. If the operator subsequently
loads the card hopper and presses the card reader
START switch, the reader would advance to state
001 (device "ready" and in automatic operation).
If the card reader is in state 000 when an SIO in­
struction is executed, the SIO would be accepted
by the reader and the reader would advance to
state 110 (device IIbusyll, but operator intervention
required). Should the operator then place cards
in the hopper and press the START sw itch, the card
reader state would advance to 111 (device IIbusy"
and in automatic operation), and the input opera­
tion would proceed. Should the card reader sub­
sequently become empty (or the operator press the
STOP switch) and command chaining is being used
to read a number of cards, the card reader would
return to state 110. If the card reader is in state
001 when an SIO instruction is executed, the
reader advances to state 111,. and the input opera­
tion continues as normal. Should the hopper sub­
sequently become empty (or should the operator
press the card reader STOP switch) and command
chaining is being used to read a number of cards,
the reader would go to state 110 until the opera­
tor corrected the situation.

Device unusual end occurred during last operation:
if this bit is 1, the reason for the indication may

Bit
Position Function

5,6

7

8

9

10

be a normal end (such as an end of file) or a fault
condition. For a fault condition, the device has
halted at other than its normal stopping point. In
either case, the device will not automatically re­
quest further action from its device controller. The
specific details of this indication are a function of
the particular device.

Device controller condition: if bits 5 and 6 are 00
(device controller "ready"), all device controller
conditions required for its proper operation are
satisfied. If bits 5 and 6 are 01 (device controller
"not operational II), some condition has developed
that does not allow it to operate properly. In either
case, operator intervention is usually required. If
bits 5 and 6 are 10 (device controller "unavailable ll),
the device controller is currently engaged in an
operation controlled by an lOP other than the one
addressed by the I/O instruction. If bits 5 and 6
are 11 (device controller "busy"), the device con­
troller has accepted a previous SIO instruction and
is currently engaged in performing an operation
for the addressed lOP.

Unassigned

Incorrect length: if this bit is 1, an incorrect
length condition has been signaled to the lOP
during the previous operation. Incorrect length
is caused by a channei end (or end of record) con­
dition occurring before the device controller has
received a "count done" signal from the lOP, or is
caused by the device controller receiving a count
done signal before channel end (or end of record);
e.g., count done before 80 columns have been
read from a card. Normally, a count done signal
is sent to the device controller by the lOP to in­
dicate that the byte count associated with the
current operation has been reduced to zero. The
lOP is capable of suppressing an error condition on
incorrect length, since there are many situations
in which incorrect length is a legitimate situation
and not a true error condition. Incorrect length is
suppressed as an error by coding the SIL flag (a 1
in bit 38) of the lOP command doubleword (see
page 72). At the end of the execution of an I/O
command I ist, this status bit is 1 if an incorrect
length condition occurred anywhere in the command
I ist, regardless of the coding of the SIL flag.

Transmission data error: this bit is set to 1 if the
lOP or device controller has detected a parity
error or data overrun in the transmitted informa­
tion.

Transmission memory error: this bit is set to 1 if
a memory parity error has occurred during a data
input/output operation. A parity error is detected
on any output operation and on partial-word input
operations. A device halt does not occur unless

Input/Output Instructions 65

Bit
Position Function

11

12

13

The HTE flag in the lOP command doubleword
is set to 1 (see page 72).

Memory address error: a nonexistent memory ad­
dress has been encountered on either data or com·
mands. Core memory I ocati ons 0 through 15 are
not considered nonexistent because the lOP can
work with these addresses as normal memory addresses.

lOP memory error: if a memory parity error has
occurred whi Ie the lOP was fetching a command,
this bit is set to 1.

lOP control error: this bit is set to 1 if the lOP
has encountered two successive TRANSFER IN
CHANNEL commands.

14 lOP halt: this bit is set to 1 if the lOP has issued
a halt order to the addressed I/o device because
of an error condition.

15

16-31

lOP busy: this bit is set to 1 if a selector lOP is
addressed by the I/o instruction and the selector
lOP is currently in use by some I/o device oper­
ating in conjunction with the selector lOP.

Byte count: a count of the number of bytes yet to
be transmitted in the operation called for by the
current command doubl eword.

If the R field value of the SIO instruction is even and not 0, the
condition code and register R+l contain the information'des­
cribed above and register R contains the following information:

Bit
Position Function

16-31 Current command doubleword address: the 16 high­
order bits of the core memory address from which
the command doubleword for the I/O operation
currently being processed by the addressed device
controller was fetched.

Ordinarily, on an SIO instruction, the programmer has no
interest in where the lOP is in executing its command list,
and thus will usually code the R field of the SIO instruction
to specify an odd-numbered general register, loading only
the byte count and status information into the CPU. The con­
dition code is set regardless of the coding of the R field.

HIO HALT INPUT/OUTPUT
(Word addressing, privi leged)

HALT INPUT/OUTPUT causes the addressed device to immed­
iately halt its current operation (perhaps improperly, in the
case of magnetic tape units, when the device is forced to
stop at other than an interrecord gap). If the device is in
an interrupt-pending condition, the condition is cleared.

66 Input/Output Instructions

If the R field of the HIO instruction is 0 or if no I/O address
recognition exists, no general registers are affected, but the
condition code is set. If the R field is an odd value, the
condition code is set and the following information is loaded
into register R.

The status information returned for HIO has the same inter­
pretation as that returned for the instruction SIO (see page
64), and shows the I/O status at'the time of the halt. The
count information shows the number of bytes remaining to
be transmitted at the time of the halt. If the R field of HIO
is an even value and not 0, the condition code is set, reg­
ister R+l is loaded as shown above, and register R contains
the following information:

The current command doubleword address has the same in­
terpretation as that for the instruction SIO.

Affected: (R), {Rul}, CC1, CC2

Condition code settings:

2

o 0

o

TlO

3 4 Result of HIO

I/o address recognized and device con­
troll er is not II busy II

I/o address recognized but device con­
troller was "busy" at the time of the halt

I/o address not recognized

TEST INPUT/OUTPUT
(Word addressing, privi leged)

TEST INPUT/OUTPUT is used to make an inquiry on the
status of data transmission. The operation of the selected
lOP, device controller, and device are not affected, and
no operations are initiated or terminated by this instruction.
The responses to TIO provide the program with the informa­
tion necessary to determine the current status of the device,
device controller, and lOP, the number of bytes remaining
to be transmitted in the operation, and the present point at
which the lOP is operating in the command list. If the R
field of the TIO instruction isOorif the device controller is
attached to a "busy" selector lOP, no general registers are
affected, but the condition code is set. If the R field of
TIO is an odd value, the condition code is set and the I/O
status and byte count are loaded into register R as follows:

The status information has the same interpretation as the
status information returned for the instruction SIO (see
page 64), and shows the I/o status at the time of sampling.
The count information shows the number of bytes remaining

to be transmitted at the time of sampling. If the R field of
the no instruction is an even value and not 0, the condi­
tion code is set, register R+1 is loaded as shown above, and
resister R is loaded as follows:

The current command doubleword address has the same in­
terpretation as for the instruction 510.

Affected: (R), (Ru 1), CC 1, CC2

Condition code settings:

2 3 4 Result of no

o 0

o

o

TDV

I/o address recognized and acceptable
510 is currently possible

I/o address recognized but acceptable
510 is not currently possible

device controller is attached to "busy"
selector lOP

I/o address not recognized

TEST DEVICE
(Word addressing, privi leged)

TEST DEVICE is used to provide information about a device
other than that obtainable by means of the TIO instruction.
The operation of the selected lOP, device controller, and
device are not affected, and no operations are initiated or
terminated. The responses to TDV provide the program with
information giving details on the condition of the selected
device, the number of bytes remaining to be transmitted in
the current operation, and the present point at which the
lOP is operating in the command list. If the R field of the
TDV instruction is 0 or if no I/O address recognition exists,
or if the device controller is attached to a "busy" selector
lOP, the condition code is set, but no general registers are
affected. If the R field of TDV is an odd value, the con­
dition code is set and the device status and byte count are
loaded into register R as follows:

Bit
Position Function

o Data overrun: This bit is set to 1 if a data over­
run has occurred in the current I/O operation. A
data overrun is a situation wherein the device
controller is ready to transmit data to the lOP
but the lOP has not received the previous data,
or the device controller requires data but cannot
obtain it from the lOP. In either case, the condi­
tion is caused by an equipment malfunction or by
the total I/O data rate exceeding system limits.

Bit
Position Function

1-7 Unique to the device.

8- 15 Same as for bits 8-15 of the status i nformati on for
the instruction 510

The count information shows the number of bytes remaining
to be transmitted in the current operation at the time of the
TDV instruction. If the value of the R field of TDV is an
even value and not 0, the condition code is set, register
R+1 is loaded as shown above, and register R is loaded as
follows:

The current command doubleword address has the same inter­
pretation as for the instruction 510.

Affected: (R), {Ru1),CC1

Condition code settings:

2 3 4 Result of TDV

o 0

o

o

I/O address recognized

I/O address recognized and device­
dependent conditio'n is present

device controller is attached to IIbusyll
selector lOP

I/o address not recognized

AIO ACKNOWLEDGE INPUT/OUTPUT INTERRUPT
(Word addressi ng, pri vi I eged)

AIO is used to acknowledge an input/output interrupt and
to identify what I/o unit is causing the interrupt and why.
Bits 21,22, and 23 of the effective program address of the
AIO instruction (the lOP portion of the I/O selection code
field) specify the type of interrupt being acknowledged.
These bits should be coded 000 to specify the standard I/O
system interrupt acknowledgment (other codings of these
bits are reserved for use with special I/O systems). The re­
mainaer of the I/O selection code field (bit positions 24-31)
has no other use in the standard I/o interrupt acknowledg­
ment because the identification of the interrupt source is
one of the responses of the standard I/O system to the AIO
instruction.

Standard I/O system interrupts can be initiated for the fol­
lowing conditions:

t
Status

Condition Interrupt prereguisite bit set

Zero byte count IZC = 1 10

Channel end ICE=l 11
;

tlZC, ICE, IUE, HTE, and SIL refer to flag bits in the lOP
command doublewords (see Chapter 4).

Input/Output Instructions 67

It.. t
Status

Condition n errupt prerequIsite bit set

Transmission memory IUE = 1, HTE = 1 12
error

Incorrect length IUE = 1, HTE = 1 and 8, 12
SIL = 0

Memory address error IUE = 1 12
(lOP memory error or
lOP control error)

Transmission data error IUE = 1, HTE = 1 9, 12

When a device interrupt condition occurs, the lOP forwards
the request tothe CPU interrupt system I/O intenrupt level.
If this interrupt level is armed, enabled, and not inhibited
(see page 16, "Control of the Interrupt System"), the CPU
eventually acknowledges the interrupt request and executes
the XPSD instruction in core memory location X'5C', which
leads to the execution of an AIO instruction.

For the purpose of acknowledging standard I/o interrupts,
the lOPs, device controllers, and devices are connected
in a preestablished priority sequence that is customer­
assigned and is independent of the physical locations of
the portions of the I/o system in a particular installation.

If the R field of the AIO instruction is 0 or if no device in­
terrupt request is present, the condition code is set but the
general register is not affected. If the R field of AIO is
not 0, the condition code is set and register R is loaded
with the following information:

Bit
Position Function

o Data overrun: This bit is set to 1 if a data over­
run has occurred in the current I/O operation.

1 -7 Unique to the device and the device controller.

t
IZC, ICE, IUT, HTE, and SIL refer to flag bits in the lOP

command doubl ewords (see Chapter 4)

68 Input/Output Instructions

Bit
Position Function

8 Incorrect length: if this bit is 1, an incorrect
length condition has been signaled to the lOP by
the device controller during the previous operation.
Incorrect length is suppressed as an error by coding
the SIL flag (a 1 in bit 38) of the command double­
word. At the end of the execution of an I/O com­
mand list, this status bit is 1 .if an incorrect length
condition occurred anywhere in the command list,
regardless of the coding of the SIL flag.

9

10

11

12

Transmission data error: this bit is set to 1 if the
lOP or device controller has detected a parity
error or data overrun in the transmitted infor­
mation.

Zero byte count: if this bit is 1, the byte count
for the operation being performed by the interrupt­
ing device has been reduced to 0, and the inter­
rupt at zero byte count (IZC) flag in the command
doubleword for the operation was coded with a 1.

Channel end: if this bit is 1, the device controller
has signaled channel end to the lOP, and the in­
terrupt at channel end (ICE) flag in the command
doubleword for the operation was coded with a 1.

lOP unusual end interrupt: if this bit is 1, the lOP
has originated the interrupt as a result of a fault or
unusual condition repOrted by the device.

13-20 Unassigned

21-31 I/O address: this field identifies the highest­
priority device requesting an interrupt. Bit posi­
tions 21-23 identify the lOP. If bit 24 is 0, bits
25-31 constitute c common device controller and
device code; if bit 24 is 1, bits 25-27 constitute
a device controller code and bits 28-31 identify a
device attached to that device controller.

Affected: (R), CC1, CC2

Condition code settings:

2 3 4 Result of AIO

0 0 normal interrupt recognition
0 1 unusual interrupt recognition
1 1 no interrupt recognition

4. INPUT jOUTPUT OPERATIONS

In a SIGMA 5 system, input/output operations are primarily
under control of one or more input/output processors (lOPs).
This allows the CPU to concentrate on program execution,
free from the time-consuming detai Is of I/O operations.
Any I/O events that require CPU intervention are brought
to its attention by means of the interrupt system.

In the following discussion, the terminology conventions
used are that the CPU executes instructions, the lOP exe­
cutes commands, and the device controllers and/or I/O de­
vices execute orders. To illustrate, the CPU wi II execute
the START INPUT/OUTPUT (SIO) instruction to initiate an
I/O operation. During the course of an I/O operation, the
lOP might issue a command called Control, to transmit a
byte to a device controller or I/O device that interprets
the byte as an order, such as Rewind.

SIGMA 5 lOPs operate independently after they have been
started by the central processor. They automatically pick
up a chain of one or more commands from core memory and
then execute these commands unti I the chain is completed.

The SIGMA 5 computer consists of an integrated CPU-lOP
combination that utilizes a single memory bus. When an
input/output service call is presented to the lOP, instruc­
tion execution is suspended only long enough to a I low the
lOP to complete the servicing. Since the lOP is capable
of operating at the maximum rated speed of memory unit
response, the instruction execution rate may approach zero
for very high speed I/O operations. Additional (external)
I/O processors have their own memory buses, thus providing
for input/output of data simultaneous with computation.
Also, the external I/O processors may take advantage of
memory overlap, providing higher overall I/O data rates.

The multiplexor lOP can simultaneously operate up to 32
device controllers with a combined transfer rate of 250,000
bytes per second. Each device controller is assigned its
own channel and chain of I/O commands. The selector
10Pcan handle anyone of up to 32 high-speed device con­
tro Ilers at rates up to the fu II speed of the core memory
(one 32-bit word/cycle).

The flexible SIGMA 5 I/O structure permits both command
chaining (making possible multiple-record operations) and
data chaining (making possible scatter-read and gather­
write operations) without intervening CPU control. Com­
mand chaining refers to the execution of a sequence of I/O
commands, under control of an lOP, on more than one
physical record. Thus, a new command must be issued for
each physical record even if the operation to be performed
for a record is the same as that performed for the previous
record. Data chaining refers to the execution of a sequence
of I/O commands, under control of an lOP, that gather {or
scatter information within one physical record from (or to)
more than one region of memory. Thus, a new command
must be issued for each portion of a physical record when
the data associated with that physical record appears (or is
to appear) in noncontiguous locations in memory. For

example, if information in specific columns of two cards in
a file are to be stored in specific regions of memory, the
I/O command list might appear as follows:

1. Read card, store columns 1-10, data chain

2. Store columns 11-60, data chain

3. Store columns 61-80, command chain (end of data
chain)

4. Read card, store columns 1-40, data chain

5. Store columns 41-80 (end of command chain, end of
data chain)

The SIGMA 5 CPU itself plays a minor role in the execution
of an I/O operation. The CPU-executed program is respon­
sible for creating and storing the command list (prepared
prior to the initiation of any I/O operation) and for supply­
ing the lOP with a pointer to the first command in the I/O
command list. Most of the communication between the CPU
and the I/O system is carried out through memory.

The following is an example of the sequence of events that
occurs during an I/O operation:

1. A CPU-executed program writes a sequence of I/O
commands in core memory.

2. The CPU executes the instruction START INPUT/OUTPUT
and furnishes the lOP with al111-bit I/O address (des­
ignati ng the device to be started) and a 16-bit first
command address (designating the actual core memory
doubleword location where the first command for this
device is located). At this point, either the device is
started (if in the II ready" condition with no device in­
terrupt pending) or an instruction reject occurs. The
CPU is informed by condition code settingsastowhich
of the two alternatives has o'ccurred. If the START I/O
instruction is accepted, the command counter portion
of the lOP register associated with the designated de­
vice controller is loaded with the first command address.
Assuming that the SIO instruction is accepted, from this
time until the full sequence of I/O commands has been
executed, the main program of the CPU need play no
role in the I/O operation. At any time, however, it
may obtain status information on the progress of the I/O
operation without interfering with the operation.

3. The device is now in the "busy" condition. When the
device determines that it has the highest priority for
access to the lOP, it requests service from the lOP
with a service call. The lOP obtains the address of
the first command of the I/O command sequence
(from the command counter associated with this de­
vice). The lOP then fetches an I/O command from
a doubleword in core memory, loads the double­
word into another register associated with the de­
vice, and transmits the first order (extracted from
the doubleword) to the device.

Input/Output Operations 69

4. Each command counter contains the memory address of
the current I/O command in the sequence for its de­
vice. When the device requires further servicing, it
makes a request to the lOP, which then repeats a pro­
cess simi lar to that of step 3.

5. If a data transmission order has been sent to a device,
control of the transmission resides in the device. As
each character is obtained by the I/O device, the lOP
is signa led that data is avai lab Ie. The lOP uses the
information stored in its own registers to control the
information interchange between the I/O device and
the memory, on either a word-by-word or character­
by-character basis, depending on the nature of the
device.

6. When all information exchanges called for by a single
I/O command doubleword have been completed, the
lOP uses the command counter to obtain the next com­
mand doubleword for execution. This process continues
unti I all such command doublewords associated with the
I/O sequence have been executed.

lOP COMMAND DOUBLEWORDS

All lOP command doublewords (except Transfer in Channel
and Stop) are assumed to be in the following format:

ORDER

Bit positions 0 through 7 of the command doubleword con­
tain the lOP order for the device controller or device. The
lOP orders are shown below. Bits represented by the letter
IIMII specify orders or special conditions to the device and
are unique for each type of device.

Bit positions
0 1 2 3 4 5 6 7 Order

MMMMMMO 1 Write
MMMMMMl 0 Read
MMMMMMl 1 Control
MMMMO 1 0 0 Sense
MMMMl 1 0 0 Read Backward

Write. The Write order causes the device controller to in­
itiate an output operation. Bytes are read in an ascending
sequence from the memory location specified by the memory
byte address field of the command doubleword. The output
operation continues unti I the device signals IIchannel endll

,

or unti I the byte count is reduced to 0 and no further data
chaining is specified. Channel end occurs when the device
has received all information associated with the output op­
eration, has completed all checks, and no longer requires
the use of lOP faci lities for the operation. Data chaining
is described on the following page.

70 lOP Command Doublewords

Read. The Read order causes the device controller to initi­
ate an input operation. Bytes are stored in core memory in
an ascending sequence, beginning at the location specified
by the memory byte address field of the command double­
word. The input operation continues unti I the device signals
channel end, or unti I the byte count is reduced to 0 and no
further data chaining is specified. Channel end occurs when
the device has transmitted all information associated with
the input operation and no longer requires the use of lOP
faci lities for the operation.

Control. The Control order is used to initiate special oper­
ations by the device. For magnetic tape, it is used to issue
orders such as rewind, backspace record, backspace file,
etc. Most orders can be specified by the M bits of the Con­
trol order; however, if additional information is required for
a particular operation (e. g., the starting address of a disc­
seek), the memory byte address field of the command double­
word specifies the starting address of the bytes that are to be
transmitted to the device controllerforthe additional infor­
mation. When a II bytes necessary for the operation have
been transmitted, the device controller signals channel end.

Sense. The Sense order causes the device to transmit one or
more bytes of information, describing its current state. The
bytes are stored in core memory in an ascending sequence,
beginning with the address specified by the memory byte ad­
dress field of the command doubleword. The number of bytes
transmitted is a function of the device and the condition it
describes. The Sense order can be used to obtain the cur­
rent sector address from a disc or drum unit.

Read Backward. The Read Backward order (for devices that
can execute it) causes the device to be started in reverse,
and bytes to be transmitted to the lOP for storage into core
memory in a descending sequence, beginning at the location
specified by the memory byte address field of the command
doubleword. In all other respects, Read Backward is iden­
tical to Read, including reducing the byte count with each
byte transmitted.

The Transfer in Channel command doubleword is assumed to
be in the following format:

Transfer in Channel. The Transfer in Channel order is exe­
cuted within the lOP, and it has no direct effect on any of
the I/O system elements external to the addressed lOP. The
primary purpose of Transfer in Channel is to permit branch­
ing within the command list so that the lOP can, for exam­
ple, repeatedly transmit the same set of information a num­
ber of times. When the lOP executes Transfer in Channel,
it loads the command counter for the device controller it is
currently servicing with the command doubleword address
field of the Transfer in Channel command, loads the new

command doubleword specified by this address into the lOP
registers associated with the device controller, and then
executes the new command. (Bit positions 0-3, and 32-63
of the command doubleword for Transfer in Channel are ig­
nored.) Transfer in Channel thus allows a command list to
be broken into noncontiguous groups of commands. When
used in conjunction with command chaining, Transfer in
Channel faci litates the control of devices such as unbuffered
card punches or unbuffered line printers. The current flags
(see lIFlagsll below) are not altered during this command;
thus, the type of chaining called for in the previous com­
mand doubleword is retained until changed by a command
doubleword following Transfer in Channel.

For example, assume that it is desired to present the same
card image twelve 'times to an unbuffered card punch. The
punch counts the number of times that a record is presented
to it and, when twelve rows have been punched, it cavses
the lOP 'to skip the command it would be executing next.
Thus, a command list for punching two cards might look
like the following example.

Location

A

B

Command

Punch row for card 1, command chain
Transfer in Channel to A

Punch row for card 2, command chain
Transfer in Channel to B
Stop

If the rop encounters two successive Transfer in Channel
commands, this is considered an lOP control error, result­
ing in the lOP setting the lOP control error status bit and
issuing an 1I10P halt" signal to the device controller. The
lOP then ha Its further servicing of this command list.

The Stop command doubleword is assumed to be in the fol­
lowing format:

Stop. The Stop order causes certain devices to stop, gen­
erate a channel end condition, and a Iso request an interrupt
at location X 15(' if bit 0 in the Stop order is a 1. An Ala
instruction, executed after the interrupt is acknowledged,
results in a 1 in bit position 7 of Register R to indi cate the
reason for the interrupt. (Bit positions 32-39 of the com­
mand doubleword for stop must be zeroi bit positions 8-21
and 40-63 are ignored.) The Stop order is primarily used to
terminate a command chain for an unbuffered device, as
illustrated in the example given for Transfer in Channel.

MEMORY BYTE ADDRESS

For all lOP commands (except Transfer in Channel and Stop),
bit positions 13-31 of the command doubleword provide for a

19-bit core memory byte address, designating the memory
location for the next byte of data. For the Write, Read,
and Control orders, this field (as stored in an lOP register)
is incremented by 1 as each byte is transmitted in the I/O
operationi for the Read Backward command, the field is de­
cremented by 1 as each byte is transmitted.

FLAGS

For all lOP commands (except Transfer in Channel and Stop)
bit positions 32-39 of the command doubleword provide the
lOP with eight flags that specify how to handle chaining,
error, and interrupt situations. The functions of these flags
are:

Bit
Position Function

32 (DC) Data chain. If this flag is 1, data chaining is
called for when the current byte count is reduced
to O. The next command doubleword is fetched
and loaded into the lOP register associated with
the device controller, but the new order code is
not passed out to the device controlleri thus, the
operation called for by the previous order is con­
tinued. (Except for Transfer in Channel, the new
command doubleword is used only to supply a new
memory address, a new count, and new flags.) If
the data chain flag is 0, no further data chaining
is called for. Channel end is initiated either by
the device running out of information, or by the
byte count being reduced to O. At channel end,
the device may accept a new SIO instruction, pro­
viding that a device interrupt is not pending as a
result of coding the IZC (bit 33), ICE (bit 35), or
IUE (bit 37) flags, and no fault condition exists.

33 (IZC) Interrupt at zero byte count. If this flag is 1, the
lOP requests an interrupt at location XI5CI when
the byte count of this command doubleword (as
stored in the lOP register) is reduced to O. An
Ala instruction executed after the interrupt is ac­
know ledged results in a 1 in bit position 10 of reg­
ister R, to indicate the reason for the interrupt.

34 (CC) Command chain. If this flag is 1, command chain­
ing is called for when channel end occurs. The next
command doubleword is fetched and loaded into
the lOP register associated with the device con­
troller, and the new order code is passed out to the
device controller. If the CC flag is 0, no further
command chaining is called for. If both data chain­
ing and command chaining are called for in the
same command doubleword, data chaining occurs
if the byte count is reduced to 0 before channel
end, and command chaining occurs if channel end
occurs before the byte count is reduced to O.

35 (ICE) Interrupt at channel end. If this flag is 1, the lOP
requests an interrupt at location X15C' when chan­
ne I end occurs for the operati on bei ng contro lied
by this command doubleword. An Ala instruction
executed after the interrupt isacknowledged results

lOP Command Doublewords 71

Bit
Position Function ---

in a 1 in bit position 11 of the status information,
to i ndi cate the reason for the interrupt. If the
ICE flag is 0, no interrupt is requested.

36(HTE) Halt on transmission error. If this flag is 1, any
error condition (transmission data error, transmission
memory error, incorrect length error) detected in
the device controller or lOP results in halting the
I/O operation being controlled by this command
doubleword. If the HTE flag is 0, an error con­
dition does not cause the I/O operation to halt,
although the error conditions are recorded in the
lOP register and returned as part of the status in­
formation for the instructions SIO, HIO, and TIO.

37 (IUE) Interrupt on unusual end. If this flag is 1, the de­
vice controller requests an interrupt at location
X'5C' when a fault condition or unusual termina­
tion is encountered. A fault is a condition requir­
ing the device to halt, irrespective of the coding
of the HTE flag. Examples of faults are torn mag­
netic tape and jammed cards. When unusual ter­
mination is signaled to the lOP, further servicing
of the commands for that device is suspended. An
AIO instruction executed after the interrupt is ac­
knowledged results in a 1 in bit position 12 of reg­
ister R, to indicate the reason for the interrupt.
If the IUE flag is 0, no interrupt is requested.

38 (SIL) Suppress incorrect length. If this flag is 1, an in­
correct length indication by the device controller
is not to be classified as an error by the lOP, al­
though the lOP retains the incorrect length indi­
cation and provides an indicator (bit 8 of the status
response for SIO, HIO, and TIO) to the program.
If the SIL flag is 0, an incorrect length is consid­
ered an error and the lOP performs as specified by
the HTE and IUE flags. Incorrect length is caused
by a channel end condition occurring before the
device contro lIer has received a count-done sig­
nal from the lOP, or is caused by the device con­
troller receiving a count-done signal before end

72 lOP Command Doublewords

Bit
Position Function

39 (S)

of record; e. g., count-done before 80 columns
have been read from a card. Norma Ily, a count­
done signal is sent to the device controller by the
lOP to indicate that all data transfer associated
with the current operation has been completed.
The lOP is capable of suppressing an error condition
on incorrect length, since there are many situations
in which incorrect length is a legitimate condition
and not a true error.

Skip. If this flag is 1, the input operation (Read
or Read Backward) controlled by this command
doubleword continues normally, except that no in­
formation is stored in memory. When used in con­
junction with data chaining, the skip operation
provides the capability for selective reading of
portions of a record.

If the S flag is 1 for an output (Write) operation,
the lOP does not access memory, but transmits zeros
as data instead (i. e., the lOP transmits the number
of X'OO' bytes specified in the byte count of the
command doubleword). This allows a program to
punch a blank card (by using the S bit and a Punch
Binary order with a byte count of 120) without re­
quiring memory access for data. If the S flag is 0,
the I/O operation proceeds norma IIy.

BYTE COUNT

For all commands except Transfer in Channel and Stop, bit
positions 48-63 of the command doubleword provide for a
16-bit count of the number of bytes to be transmitted in
the I/O operation; thus, 1 to 65,536 bytes (16,384 words)
can be specified for transfer before command chaining or
data chaining is required. This field (as stored in an lOP
register) is decremented by 1 after each byte transmitted
in the I/O operation; thus, it always contains a count of
the number of bytes to be transmitted and this count is
returned as part of the response information for the instruc­
tions, SIO, HIO, TIO, and TDV. An initial byte count of
o is interpreted as 65,536 bytes.

5. OPERATOR CONTROLS

PROCESSOR CONTROL PANEL

The processor control panel (PCP) mounted in oneof the CPU
cabinets has two distinct functiona I sections (see Figure 7).
The upper section (labeled MAINTENANCE SECTION) is
reserved for controls and indicators related to computer mai n­
tenance and diagnostic operations. The lower section contains
the contro Is and indicators for the computer operator and for
program debugging.

POWER

The POWER switch controls all AC power to the central
processor and to all units under its direct contro I. The
POWER switch is unlighted when the AC power is off, and
is lighted when AC power is on. The POWER switch is al­
ways operative 0. e., not affected by the position of the
CONTROL MODE switch) to allow for situations in which
power must be removed from the system.

SCIENTIFIC DATA SYSTEMS

CPU RESET/CLEAR

The CPU RESET/CLEAR switch is used to initia lize the cen­
tral processor. When this switch is pressed, the following
operations are performed:

1. All interrupt levels are reset to the disarmed and dis­
abled state.

2. The ALARM, WRITE KEY, INTRPT INHIBIT, POINTER,
CONDITION CODE, FLOAT MODE, MODE, andTRAP
indicators are all reset to O's (turned off).

3. The INSTRUCTION ADDRESS indicators are set to
X'25'.

4. The DISPLAY indicators are set to X'02000000', which
isa LOAD CONDITIONS AND FLOATING CONTROL
IMMEDIATE (LCFI) instruction with an R field of 0 to
produce a II no operation ll instruction.

----------------------MAINTENANCE SECTlON----------------------

CONTROL MODE

LOCAL

@)-wa
eOVERRIDE

~eNORMM.

WATCHDOG
TIMER

--MEMORY FAULT---

\2345678

\000000001

eDIAGNOSTIC e eNORMAL

INTERLEAVE
SELECT

e HALT

~ eCONT

PARITY ERROR
MODE

-ALARM -

AUDIO

UNIT ADDRESS

______ PHASES ______ _

-PREPARATION- - pcp- -EXECUTION- ·INT/TRAP-

1000110001 1000011001
421421842121

rti-ti.,
eO

---SENSE---

o .,ON'
.e SINGLE STEP

CLOCK MODE

REGISTER SELECT

«) e ON

REGISTER
DISPLAY

[;] ~
-WRITE KEY-INTRPTINHIBIT- _POINTER_

1 00 0001'--1 ---~I~I ___ ----l11L.0~0~0~0.=::.__ _ ___l__

PSW2

-~C~ON~D~IT~IO~N-=-CO~D~E =-2FL~O~AT~M~O~DE~- ~M~O~DE=-=-----=2T~RA~P =--_--=~:=====INSTRUCTION ADDRESS-------

I~O-=-0---7=-0~O--=O-=O-=O:....JILlo=---o~-...::::..JolloOOOOOOOllooOOOOO01
1 2 3 4

--CLEAR_

PSW 1 e r:J PSW2e © ADDR STOP

ONee

-------SELECT ADDRESS-------

ij~~:~
----------------DISPLAY----------------

1000000001100000000110000000011000000001
o 1 2 3 4 5 6 7 B 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

----------------DATA----------------

Figure 7. Processor Control Panel

PSWI

INSTR ADDR

SELECT ADDR

CLEAR

ENTER

INSERT INSTR ADDR

:0 HOlD :0 INCREMENT

STORE DISPLAY

:0 INSTR ADDR :0 SELECT ADDR

DATA COMPUTE

:0 RUN

=0 IDLE

STEP

Operator Controls 73

The CPU RESET/CLEAR switch does not affect any operations
that may be in process in the standard input;butput system.

The CPU RESET/CLEAR switch is also used in conjunction with
the SYS RESET/CLEAR switch to clear core memory (i. e.,
reset memory to a II OIS). The two switches are interlocked
so that both must be pressed simultaneously for the memory
clear operation to occur. The memory clear operation does
not affect any general register - core memory locations a
through 15 are cleared instead. Also the clear operation
does not affect the memory control storage (write locks).
Note that pressing the SYS RESET/CLEAR switch affects the
I/O system and the MEMORY FAULT indicators.

1/0 RESET

The I/O RESET switch is used to initialize the standard
input/output system. When this switch is pressed, all periph­
eral devices under control of the centra I processor are
halted, and all status and control indicators in the input/
output system are reset. The I/O RESET switch does not
affect any operations that may be in process in the central
processor.

LOAD

rhe LOAD switch initializes memory from an input opera­
tion that uses the periphera I unit selected by the UNIT
ADDRESS switches. The detai led operation of the loading
process is described in the section "Loading Operation".

UNIT ADDRESS

The three UNIT ADDRESS switches are used to select the
periphera I unit to be used in the loading process. The left
switch has eight positions, numbered a through 7, desig­
nating an input/output processor. The center and right
switches each have 16 positions, numbered a through F
(hexadecimal) that designate a device controller/device
under the control of the selected input/output processor.

SYSTEM RESET ICLEAR

The SYS RESET/CLEAR switch is used to reset a" controls
and indicators in the SIGMA 5 system. Pressing this switch
ca uses the computer to perform a II opera ti ons described for
the CPU RESET/CLEAR switch, perform all operations de­
scribed for the I/O RESET switch, initia I ize the memory
control logic, and reset the MEMORY FAU LT indicators.

The SYS RESET/CLEAR switch is also used in conjunction with
the CPU RESET/CLEAR switch to reset core memory to OIS.

NORMAL MODE

The NORMAL MODE indicator is lighted when all the fol­
lowing conditions are satisfied:

1. The WATCHDOG TIMER switch is in the NORMAL
position

2. The INTERLEAVE SELECT switch is in the NORMAL
position

3. The PARITY ERROR MODE switch is in the CONT
(continue) position

74 Processor Control Panel

4. The CLOCK MODE switch is in the CONT (continuous)
position

5. All memory margins are 11 norma In

If any of the above conditions is not satisfied, the NORMAL
MODE indicator is unlighted.

RUN

The RUN indicator is lighted when the COMPUTE switch is
in the RUN position and no halt condition exists.

WAIT

The WAIT indicator is lighted when any of the following
halt conditions exist:

1. The computer is executing a WAIT instruction

2. The program is stopped because of the ADDRESS STOP
switch

3. The computer is halted because of the PARITY ERROR
MODE switch.

INTERRUPT

The INTERRUPT switch is used by the operator to activate
the control panel interrupt. If the control panel interrupt
(level XI5DI) is armed when the INTERRUPT switch is pressed,
a single pulse is transmitted to the interrupt level, advanc­
ing it to the waiting state. The INTERRUPT switch is
lighted when the control panel interrupt level is in the
waiting state, and remains lighted unti I the interrupt level
advances to the active state {at which time the INTERRUPT
switch is turned off}. If the control panel interrupt level
is disarmed (or already in the active state) when the INTER­
RUPT switch is pressed, no computer or control panel action
occurs. If the control panel interrupt level advances to the
waiting state and the level is disabled, the INTERRUPT
switch remains lighted unti I the level is either enabled and
allowed to advance to the active state or is returned to the
armed or disarmed state. The INTERRUPT switch is always
operative.

Two rows of binary indicators are used to display the cur­
rent program status doubleword (PSD). For the convenience
of use and display, the second portion of the PS D, labeled
PSW2, is arranged above the first portion, labeled PSW1.
The PSDdispiay consists of the indicators shown in Table 9.

INSERT

The IN SERT switch is used to make changes in the program
status doubleword. The switch is inactive in the center posi­
tion and is momentary in the upper(PSW2)and lower (PSWl)
positions. When the INSERT switch is moved to the PSW1 or
PSW2 position, the corresponding indicators in the program
status doubleword are altered (according to current state of
the 32 DATA switches below the DISPLAY indicators) as fol­
lows: ifa DATA switch is in the 1 position,the corresponding
program status indicator is changed to a 1 (if not already 1);
otherwise, the program status indicator remains unchanged.

Table 9. Program Status Doubleword Display

PSD Bit PSD
Indicator Function Position Designation

r WRITE KEY Write key 34-35 WK

INTRPT INHIBIT Interrupt inhibits
CTR Counter interrupt group inhibit

PSW2
37 CI

I/O Input/output interrupt group inhibit 38 II
EXT External interrupts inhibit 39 EI

POINTER Register block pointer 56-59 RP
"
r CONDITION CODE Condition code 0-3 CC

FLOAT MODE Floating-point mode controls
SIG Significance trap mask 5 FS
ZERO Zero trap mask 6 FZ
NRMZ Normalize mask 7 FN

PSW1 MODE
SLAVE Master/slave mode control 8 MS

TRAP
ARITH Fixed-point arithmetic overflow trap mask 11 AM

\,. INSTRUCTION ADDRESS Address of next instruction to be executed 15-31 IA

INSTR ADDR

The INSTR ADDR (instruction address) switch is inactive in
the center position; the upper position (HOLD) is latching
and the lower position (INCREMENT) is momentary. When
the switch is placed in the HOLD position, the normal pro­
cess of -incrementing the instruction address portion of the
program status doubleword with each instruction execution
is inhibited. If the COMPUTE switch is placed in the RUN
position while the INSTR AD DR switch is at HOLD, the in­
struction in the location pointed to by the value of the IN­
STRUCTION ADDRESS indicators is executed, repeatedly,
with the INSTRUCTION ADDRESS indicators remaining un­
changed. If the COMPUTE switch is moved to the STEP
position while the INSTR ADDR switch is at HOLD, the in­
struction is executed once each time the COMPUTE switch
is moved to STEP; the INSTRUCTION ADDRESS indicators
remain unchanged unless the instruction is LPSD, XPSD, or
a branch instruction with the branch condition satisfied.

The following operations are performed each time the
INSTR ADDR switch is moved from the center position to
the INCREMENT position:

1. The current value of the INSTRUCTION ADDRESS
indicators is incremented by 1.

2. Using the new value of the INSTRUCTION ADDRESS
indicators, the contents of the location pointed to by
the INSTRUCTION ADDRESS is displayed in the DIS­
PLAY indicators.

CLEAR

The two CLEAR toggle switches below the program status
doubleword display are used to clear the program status
doubleword. When the left CLEAR toggle switch is moved

to the PSW1 position, the CONDITION CODE, FLOAT
MODE, MODE, TRAP, and INSTRUCTION ADDRESS indi­
catorsare all reset to O's (turned off). When the right CLEAR
toggle switch is moved to the PSW2 position, the WRITE KEY,
INTRPT INHIBIT, and POINTER indicators are a!! reset to O's.

ADDR STOP

The ADDR STOP (address stop) switCh is used (with the
COMPUTE switch in the RUN position) to cause the central
processor to establish a halt condition and turn on the WAIT
indicator whenever the CPU accesses the memory location
whose address is equal to the SELECT ADDRESS value.

When the halt condition occurs, the instruction in the lo­
cation pointed to by the INSTRUCTION ADDRESS indicators
appears in the DISPLAY indicators. The displayed instruc­
tion is the one that would have been executed next, had
the halt condition not occurred. If the ha It condition is
caused by an instruction access, the value of the IN­
STRUCTION ADDRESS indicators (at the time of the halt)
is equal to the SELECT ADDRESS value. If the halt condi­
tion is caused by execution of an instruction with an in­
direct reference address equal to the SELECT ADDRESS value
(i.e., by a direct address fetch), iscausedbyan instruction
operand fetch, or is caused by an unsatisfied conditional
branch instruction whose effective address is equal to the
SELECT ADDRESS value, the value of the INSTRUCTION
ADDRESS indicators (at the time of the halt) is 1 greater
than the address of the instruction.

If an interrupt or trap condition is detected after the AD­
DRESS STOP halt condition is detected and before the CPU
reaches the normal ADDRESS STOP halt phase, the CPU
executes the instruction in the appropriate interrupt or trap
location and then enters the ADDRESS STOP halt phase. In

Processor Control Panel 75

this case; the value of the INSTRUCTION ADDRESS indi­
cators (at the time of the ha It) is equa I to the address of the
next instruction in logical sequence after the instruction in
the interrupt or trap location.

The ADDRESS STOP halt condition is reset when the COM­
PUTE switch is moved from RUN to IDLE; if the COMPUTE
switch is then moved back to RUN (or to STEP), the instruc­
tion shown in the DISPLAY indicators is the next instruction
executed.

SELECT ADDRESS

The SELECT ADDRESS switches select the address at which
a program is to be halted (when used in conjunction with
the ADDR STOP switch), select the address of a location
to be altered {when used in conjunction with the STORE
switch}, and select the address of a word to be displayed
(when used in conjunction with the DISPLAY switch). Each
SELECT ADDRESS switch represents a 1 when it is in the up­
per position, and represents a 0 in the lower position.

STORE

The STORE switch is used to alter the contents of a general
register or a memory location. The switch is inactive in the
center position and is momentary in the INSTR ADDR and
SELECT ADDR positions. When the switch is moved to the
INSTR AD DR position, the current value of the DISPLAY in­
dicators is stored in the location pointed to by the INSTRUC­
TION ADDRESS indicators; when the switch is moved to the
SELECT ADDR position, the current va lue of the DISPLAY
indicators is stored in the location pointed to by the SE­
LECT ADDRESS switches.

DISPLAY

The DISPLAY switch is used to display the contents of a
general register or memory location. The switch is inactive
in the center position and is momentary in the INSTR ADDR
and SELECT ADDR positions. When the switch is moved to
the INSTR ADDR or SELECT ADDR position, the word in the
location pointed to by the indicators or switches, respec­
tively, is loaded into the instruction register and displayed
with the DISPLAY indicators.

The 32 DISPLAY indicators are used to display a computer
word, when used together with the INSTR ADDR, STORE,
DISPLAY, and DATA switches. The DISPLAY indicators
represent the current contents of the internal CPU instruc­
tion register.

DATA

The 32 DATA switches beneath the DISPLAY indicators are
used to a Iter the contents of the program status doubleword
(when used in conjunction with the INSERT switch) and to
a Iter the value of the DISPLAY indicators (when used in
conjunction with the single DATA switch). Each of the 32
DA TA switches is latching in both the upper (1) and lower
(O) positions. In the upper position it represents a 1; in
the lower, a O. The single DATA switch is used to change
the state of the DISPLAY indicators. The switch is inactive

76 Processor Control Panel

in the center position and is momentary in the CLEAR and
ENTER positions. When the switch is moved to the CLEAR
position, a II the DISPLAY indicators are reset (turned off).
When the switch is moved to the ENTER position, the dis­
play indicators are not affected in those positions corre­
sponding to DATA switches that are in the 0 position, but
if a DATA switch is in the 1 position, that va lue is inserted
into the corresponding indicator.

COMPUTE

The COMPUTE switch is used to control the execution of
instructions. The center position (IDLE) and the upper po­
sition (RUN) are both latching, and the lower position
(STEP) is momentary. When the COMPUTE switch is in the
IDLE position, all other control panel switches are operative
and the ADDRESS STOP halt and the WAIT instruction halt
conditions are reset {cleared}. If the computer is in a halt
condition as a result of a memory parity error, moving the
COMPUTE switch to IDLE does not clear the memoryparity
halt condition. This condition can be cleared only by press­
ing the SYSTEM RESET/CLEAR switch.

When the COMPUTE switch is moved from IDLE to RUN,
the RUN indicator is lighted and the computer begins to
execute instructions (at machine speed) as follows:

1. The current setting of the DISPLAY indicators is taken
as the next instruction to be executed, regardless of
the contents of the location pointed to by the current
value of the INSTRUCTION ADDRESS indicators.

2. The value of the INSTRUCTION ADDRESS indicators
is incremented by 1 unless the instruction in the DIS­
PLAY indicators was LPSD, XPSD, or a branch instruc­
tion and the branch should occur {in which case the
INSTRUCTION ADDRESS indicators are set to the value
established by the LPSD, XPSD, or branch instruction}.

3. Instruction execution continues with the instruction in
the location pointed to by the new value of the IN­
STRUCTION ADDRESS indicators.

When the COMPUTE switch is in the RUN position, the
only switches that are operative are the POWER switch, the
INTERRUPT switch, the ADDR STOP switch, the INSTR
ADDR switch (in the HOLD position), and the switches in
the maintenance section.

Each time the COMPUTE switch is moved from the IDLE to
the STEP position, the following operations occur:

1. The current setting of the DISPLAY indicators is taken
as an instruction, and the sing Ie instruction is executed.

2. The current value of the INSTRUCTION ADDRESS in­
dicators is incremented by 1 unless the IIstepped ll instruc­
tion was LPSD, XPSD, or a branch instruction and the
branch should occur (in which case the INSTRUCTION
ADDRESS indicators are set to the value established by
the LPSD, XPSD, or branch instruction).

3. The instruction in the location pointed to by the new
value of the INSTRUCTION ADDRESS indicators is
displayed in the DISPLAY indicators.

If an instruction is being stepped (executed by moving the
COMPUTE switch from IDLE to STEP), all interrupt levels
are temporarily inhibited while the instruction is being
executed; however, a trap condition can occur while the
instruction is being executed. In this case, the' XPSD in­
struction in the appropriate trap location is executed as if
the COMPUTE switch were in the RUN position. Thus, if
a trap condition occurs during a stepped instruction, the
program status doubleword display automatically reflects
the effects of the XPSD instruction and the DISPLAY indi­
cators then contain the first instruction of the trap routine.

CONTROL MODE

The CONTROL MODE switch is a two-position key lock.
When the switch is at LOCAL, all controls and indicators
on the processor control panel are operative.

When the CONTROL MODE switch is in the LOCK position,
most of the controls in the lower portion of the processor
control panel are inoperative, although all indicators on
the central processor control panel continue to indicate the
various computer states.

The following switches on the processor control panel re­
main operative when the CONTROL MODE switch is in the
LOCK position:

1. The POWER switch remains operative to allow for situ­
ations in which power must be removed from the system

2. The INTERRUPT switch remains operative to allow the
operator to interrupt the program being executed

3. The SENSE switches remain operative to allow the op­
erator to provide information to the program being ex­
ecuted

4. The AUDIO switch remains operative to allow the op­
erator to control the computer speaker

The following switches on the processor control panel are
interlocked to specific states when the CONTROL MODE
switch is in the LOCK position:

Switch Interlock State

COMPUTE RUN

WATCHDOG TIMER NORMAL

INTERLEAVE SELECT NORMAL

PARITY ERROR MODE CONT

CLOCK MODE CONT

MEMORY FAULT

The MEMORY FAULT indicators each correspond to a spe­
cific memory module. Whenever a memory parity error oc­
curs or an overtemperature condition exists in a memory
module, the appropriate indicator is lighted and remains
lighted until the indicators are reset. When a memory
parity error occurs, an interrupt pu Ise is also transmitted
to the memory parity interrupt level.

The MEMORY FAULT indicators are reset whenever the SYS
RESET/CLEAR switch is pressed or whenever the computer
executes a READ DIRECT instruction coded to read the
MEMORY FAULT indicators. If the reason for a MEMORY
FAULT indicator being on is overtemperature, and the con­
dition sti II exists when the indicators are reset, the indica­
tor is immediately turned on again.

ALARM

The ALARM indicator is used to attract the computer opera­
tor's attention, and is turned on and off (under program con­
trol) by executing a properly coded WRITE DIRECT instruc­
tion. When the ALARM indicator is lighted and the AUDIO
switch is ON, a 1000-Hz signal is sent to the computer
speaker; when the AUDIO switch is not in the ON position,
the speaker is disconnected. (The AUDIO switch does not
affect the state of the ALARM indicator.) The ALARM in­
dicator is reset (turned off) whenever either the CPU RESET/ I
CLEAR or the SYS RESET/CLEAR switch is pressed.

AUDIO

The AUDIO switch controls all signals to the computer
speaker, whether from the ALARM indicator or from the
program-controlled frequency flip-flop.

WATCHDOG TIMER

The WATCHDOG TIMER switch is used to override the in­
struction watchdog timer. When this switch isat NORMAL,
the watchdog timer is operativei when the switch is in the
OVERRIDE position, the watchdog timer is inactive.

INTERLEAVE SELECT

The INTERLEAVE SELECT switch is used to override the nor­
mal operation of interleaved memory modules. When this
switch is in the NORMAL position, memory address inter­
leaving occurs normally; however, when the switch is in
the DIAGNOSTIC position, memory addresses are not inter­
leaved between core memory modules.

PARITY ERROR MODE

The PARITY ERROR MODE switch controls the action of the
computer when a memory parity error occurs. If the PARITY
ERROR MODE switch is in the CONT (continue) position
when a parity error occurs, the appropriate MEMORY
FAULT indicator isturned on and an interrupt pulse is trans­
mitted to the memory parity interrupt level. If the switch
is in the HALT position when a parity error occurs, the ap­
propriate MEMORY FAU LT indicator is turned on and the
computer enters a "halt ll state; the memory module in which
the parity error occurred is unavai lable to any access unti I
the MEMORY FAULT indicators are reset. If the COM­
PUTE switch is in the RUN position during a halt, the WAIT
indicator is lighted; however, the COMPUTE switch cannot
be used a lone to proceed from a ha It caused by a parity
error. In order to proceed, the SYS RESET/CLEAR switch
must first be pressed.

Processor Control Panel 77

PHASES

The PHASES indicators, used for maintenance functions,
display certain internal operating phases of the computer.
The PR EPA RA nON indicators display computer phases dur­
ing the preparation portion of an instruction cycle. The
PCP (processor control panel) indicators display computer
phases during processor control panel operations. The EX­
ECUTION indicators display computer phases during the
execution portion of an instruction cycle. The INT/TRAP
(interrupt/trap) indicators are individually lighted when an
interrupt, or trap condition occurs. When the COMPUTE
switch is in the IDLE position, all of the PHASES indicators
are normally off except for the center PCP indicator(phase
2 is the 11 idlel1 phase for processor control panel functions).

REGISTER SELECT

The REGISTER SELECT switch is used to display the contents
of selected internal registers. When the REGISTER DISPLAY
switch is in the inactive position, the DISPLAY indicators
display the current contents of the internal instruction reg­
ister. When the COMPUTE switch is in the IDLE position,
the register selected by the REGISTER SELECT switch may
be shown in the DISPLAY indicators by moving the REGIS­
TER DISPLAY switch to the ON position.

SENSE

The four SENSE switches are used, under program control,
to set the condition code portion of the program status
doubleword. When a READ DIRECT or WRITE DIRECT in­
struction is executed in the internal control mode, the con­
dition code is set according to the state of the four SENSE
switches. If a SENSE switch is in the set (1) position, the
corresponding bit of the condition code is set to 1; if a
SENSE switch is in the reset (O) position, the corresponding
bit of the condition code is reset to O. The SENSE switches
are always operative.

CLOCK MODE

The CLOCK MODE switch controls the internal computer
clock. When the switch is in the CONT (continuous) po­
sition, the c lock operates at normal speed. However, when
the CLOC K MODE is in the inactive (center) position, the
c lock enters an idle state and can be made to generate one
c lock pulse each time the switch is moved to the SINGLE
STEP position. When the clock is pulsed by the CLOCK
MODE switch, the PHASE indicators reflect the computer
phase during each pulse of the clock.

LOADING OPERA liON
This section describes the procedure for initially loading
programs into core memory from certain peripheral units
attached to an input/output processor in the SIGMA 5 sys­
tem. The computer operator may initiate a loading opera­
tion from the processor control panel only when the CON­
TROL MODE switch is in the LOCAL position.

78 Loading Operation

The LOAD switch and the UNIT ADDRESS switches are used
to prepare a SIGMA 5 computer for a load operation. When
the LOAD switch is pressed, the following bootstrap pro­
gram is stored in core memory locations X'20 ' through X'29 1

:

Location
(Hex.) (Dec.)

20 32
21 33
22 34
23 35
24 36
25 37
26 38
27 39
28 40
29 41

Contents
(H exadec i ma I)

00000000
00000000
020000A8
OEOoo058
00000011 t
OOOOOxxx
32000024
CCOoo025
CDOOO025
69C00028

Symbolic form
of Instruction

LW,O 36
SIO,O *37
TIO,O *37
BCS,12 40

When the LOAD switch is pressed, the selected peripheral
device is not activated, and no other indicators or controls
are affected; only core memory is altered.

LOAD PROCEDURE

To assure correct operation of the loading process, the fol­
lowing sequence should always be used when initiating a
load operation:

1. Place the COMPUTE switch in the IDLE position.

2. Press the SYS RESET/CLEAR switch.

3. Set the UNIT ADDRESS switches to the address of the
desired peripheral unit.

4. Press the LOAD switch.

5. Place the COMPUTE switch in the RUN position.

After the COMPUTE switch is placed in the RUN position,
in step 5, the following actions occur:

1. The first record on the selected peripheral device is
read into memory locations X'2A' through X' 3F'. (The
previous contents of general register 0 are destroyed as
a result of executing the bootstrap program in locations
X' 261 through X' 291

.)

2. After the record has been read, the next instruction is
taken from location X' 2A I (provided that no error con­
dition has been detected by the device or the lOP).

3. When the instruction in location X' 2A ' is executed,
the unit device and device controller selected for load­
ing are in a "ready" condition.

4. Further I/O operations from the load unit may be ac­
complished by coding subsequent I/O instructions to
indirectly address Jocation X'251

•

tThe XiS in location X' 251 represent the value of the UNIT
ADDRESS switches at the time the LOAD switch is pressed.

LOAD OPERATION DETAILS

The first executed instruction of the bootstrap program (in
location X'26') loads general register 0 with the doubleword
address of the first I/O command doubleword. The I/O ad­
dress for the SIO instruction in location X'27' is the 11
low-order bits of location X'25' (which have been set equal
to the load unit address as a result of pressing the LOAD
switch). During the SIO instruction, genera I register 0
points to locations X'22' and X'23' as the first I/O com­
mand doubleword for the selected device. This command
doubleword contains an order that instructs the selected pe­
ripheral device to read 88 (X'58') bytes into consecutive
memory locations starting at word location X'2A' (byte lo­
cation X'A81

). At the completion of the read operation,
neither data chaining nor command chaining is called for
in the I/O command doubleword. Also, the suppress in­
correct length flag is set to 1 so that an incorrect length
indication wi II not be considered an error. (This means
that no transmission error halt will result if the first record
is either less than or greater than 88 bytes. If the record
is greater than 88 bytes, on Iy the first 88 bytes wi II be
stored in memory.) After the SIO instruction, the com­
puter executes a TIO instruction with the same effective

address the SIO instruction. The TIO instruction is coded
to accept only condition code data from the lOP. The BCS
instruction in location X'29' will cause a branch back to
the TIO instruction as long as either CC 1 or CC2 (or both)
is set to 1. In normal operation, CCl is reset to 0 and CC2
remains set to 1 unti I the device can accept another SIO
instruction, at which time the next instruction wi II be taken
from location X'2AI.

If a transmission error or equipment malfunction is detected
by either the device or the lOP, the lOP instructsthedevice
to halt and initiate an unusual end interrupt signal (as speci­
fied by the appropriate flags in the I/O command double­
word). The unusual end interrupt wi II be ignored, however,
since a II interrupt levels have been disarmed by pressing
the SYS RESET/CLEAR switch prior to loading. The device
wi II not accept another SIO whi Ie the device interrupt is
pending and, therefore, the BCS instruction in location X' 29'
wi II continue to branch to location X'281

• The correct op­
erator action at this point is to repeat the load procedure.
If there is no I/O address recognition of the load unit, the
SIO instruction wi II not cause any I/O action and CCl wi II
continue to be set to 1 by the SIO and TIO instructions;
thus causing the BCS instruction to branch.

Loading Operation 79

APPENDIX A. REFERENCE TABLES

This appendix contains the following reference material:

Title

SDS Standard Symbols and Codes 80

Standard 8-Bit Computer Codes (EBCDIC) 81

SDS Standard 7-Bit Communication Codes (USASCII) 81

SDS Standard Symbol-Code Correspondences

Hexadecimal Arithmetic

Addition Table
Multiplication Table
Table of Powers of Sixteen 1 0
Table of Powers of Ten16

Hexadecimal-Decimal Integer Conversion Table

Hexadecimal-Decimal Fraction Conversion Table

Table of Powers of Two

Mathematical Constants

SDS STANDARD SYMBOLS AND CODES

82

86

86
86
87
87

88

94

98

98

The symbol and code standards described in this publication
are appl icable to all SDS products, both hardware and soft­
ware. They may be expanded or altered from time to time
to meet changing requirements.

The symbols listed here include two types: graphic symbols
and control characters. Graphic symbols are displayable
and printable; control characters are not. Hybrids are SP,
the symbol for a blank space, and DEL, the delete code
which is not considered a control command.

Three types of code are shown: (1) the 8-bit SDS Standard
Computer Code, i. e., the SDS Extended Binary-Coded­
Decimal Interchange Code (EBCDIC); (2) the 7-bit United
States of America Standard Code for Information Inter­
change (USASCII); and (3) the SDS standard card code.

80 Appendix A

SDS STANDARD CHARACTER SETS

1. EBCDIC

57-character set: uppercase letters, numerals, space,
and & - / • < > () + I $ * : ; , %
@ I =

~4
..,6a--character set: same as above pi us I

II --, '"

?

89-character set: same as 63-character set plus lower­
case Jetters

2. USASCII

64-character set: upper case letters, numerals, space,
and! $ % & I () * + , / \

: = < > ? @ [] #

95-character set: same as above plus lowercase letters
and {} : -- \

CONTROL CODES

In addition to the standard character sets listed above, the
SDS symbol repertoire includes 37 control codes and the
hybrid code DEL (hybrid code SP is considered part of all
character sets). These are listed in the table titled SDS
Standard Symbol-Code Correspondences.

SPECIAL CODE PROPERTIES

The following two properties of all SDS standard codes will
be retained for future standard code extensions:

1. All control codes, and only the control codes, have
their two high-order bits equal to "00". DEL is not
considered a control code.

2. No two graphic EBCDIC codes have their seven low­
order bits equal.

Hexadecimal

Binary

o 0000

0001

2 0010

3 0011

4 0100

A 1010

1011

C 1100

D 1101

1110

1111

Decimal
(rows) (col's.)-

I Binary
1

0 0000

1 0001

2 0010

3 0011

4 0100

5 OlOl

'0,
i5 6 0110

1:
0 7 0111
~
'c

8 1000 OJ

Vi

6 9 1001
Q)

....I

lO 1010

11 1011

12 1100

13 1101

14 1110

15 1111

\

SDS STANDARD 8-BIT COMPUTER CODES (EBCDIC)

Most Significant Digits NOTES:

o 2 3 4 5 6 7 8 9 A C D

00000001 0010 0011 01000101 0110 0111 1000 1001 10lO 1011 1100 1101 1110 1111

The characters ~ \ { } [] are USASCII
characters that do not appear in any of the
SDS EBCDIC-based character sets, though
they are shown in the EBCDIC table.

NUL DLE ds

SOH DC1 ss

STX DC2 fs I

!
ETX DC3 si !

EaT DC4

NAK 55

VT ESC!

FF FS I

CR GS!
i
I

SO RS i

51 US PE

SP~ & l'J

o

p

q

i < 1

@

I (

+ i i " >'

• I 2 -,2 ? I II

I'

o

J 1

K 5 2

L T 3

M U 4

w F a W 6

x : G P X 7

y H Q Y 8

The characters i I -, appear in the SDS
63- and 89-character EBCDIC sets but not
in either of the SDS USASCII-based sets •.
However, SDS software translates the char­
acters i I -, into USASCII characters
as follows:

EBCDIC

i
I

UASCII

\ (6-0)

I (7-12)

- (7-14)

The EBCDIC control codes in columns 0
and 1 and their binary representation are
exactly the same as those in the USASCII
table, except for two interchanges: LF/NL
with NAK, and HT with ENQ.

Characters enclosed in heavy lines are
included only in the SDS standard 63-
and 89-character EBCDIC sets.

These characters are included only in the
SDS standard 89-character EBCDIC set.

SDS STANDARD 7-BIT COMMUNICATION CODES (USASCII) 1

Most Significant Digits NOTES:

0 1 2 3 4

xOOO x001 xOlO x011 x100

NUL DLE SP 0 @

SOH DC1 !
5

1 A

STX DC2 II 2 B

ETX DC3 # 3 C

EaT DC4 $ 4 D

ENQ NAK % 5 E

ACK SYN & 6
I

F

!

BEL ETB I 7 ! G

BS CAN (8 i Ii

HT EM) 9 I

LF --",,; * J
NL

:

VT ESC + i K

FF FS < L ,
i

.

CR GS - = M

SO RS •
I

> i

N

51 US / ? ! a .. . H

5 6

x101 x110

P \

Q a

R b

5 /
C

T d

U e

V f

W g

X h

Y i

Z j

[51 k

\ I

] 5 I

m
I

I

4 ~ 51 n

4,
- I 0 .

7

xlII

P

q

r

s

t

u

v

w

x

Y

z

{
I
I

}
4 -

DEL

J

Most significant bit, added for 8-bit format, is either 0 or an even-parity bit for the
remaining 7 bits.

Columns 0-1 are control codes.

Columns 2-5 correspond to the SDS 64'-character USASCII set.
Columns 2-7 correspond to the SDS 95-character USASCII set.

On many current teletypes, the symbol

is (5-14)

is (5-15)

is ESC or ALTMODE control (7-14)

and none of the symbols appearing in columns 6-7 are provided. Except for the three
symbol differences noted above, therefore, such teletypes provide all the characters in
the SDS 64-character USASCII set. (The SDS 7015 Remote Keyboard Printer provides the
64-character USASCII set also, but prints ~ as " .)

On the SDS 7670 Remote Batch Terminal, the symbol

is I (2-1)

is i (5-11)

is (5-13)

is (5-14)

and none of the symbols appearing in columns 6-7 are provided. Except for the four symbol
differences noted above, therefore, this terminal provides all the characters in the SDS 64-
character USASCII set.

Appendix A 81

SDS STANDARD SYMBOL-CODE CORRESPONDENCES

EBCOIC
t

Symbol Card Code USASCII
tt

Meaning Remarks

00 NUL 12-0-9-8-1 0-0 null 00 through 23 and 2F are control codes.
01 SOH 12-9-1 0-1 start of header
02 STX 12-9-2 0-2 start of text
03 ETX 12-9-3 0-3 end of text
04 EOT 12-9-4 0-4 end of transmission
05 HT 12-9-5 0-9 horizontal tab
06 ACK 12-9-6 0-6 acknowledge (positive)
07 BEL 12-9-7 0-7 bell
08 BSorEOM 12-9-8 0-8 backspace or end of message EOM is used only on SOS Keyboard/
09 ENQ 12-9-8-1 0-5 enquiry Printers Models 7012, 7020, 8091,
OA NAK 12-9-8-2 1-5 negative acknowledge and 8092.
OB VT 12-9-8-3 0-11 vertical tab
OC FF 12-9-8-4 0-12 form feed
00 CR 12-9-8-5 0-13 carriage return
OE SO 12-9-8-6 0-14 shift out
OF SI 12-9-8-7 0-15 shift in

10 OLE 12-11-9-8-1 1-0 data I ink escape
11 OCI 11-9-1 1-1 device control 1
12 OC2 11-9-2 1-2 device control 2
13 OC3 11-9-3 1-3 device control 3
14 OC4 11-9-4 1-4 device control 4
15 LF or NL 11-9-5 0-10 line feed or new line
16 SYN 11-9-6 1-6 sync
17 ETB 11-9-7 1-7 end of transmission block
18 CAN 11-9-8 1-8 cancel
19 EM 11-9-8-1 1-9 end of medium
lA SS 11-9-8-2 1-10 start of special sequence
lB ESC 11-9-8-3 1-11 escape
lC FS 11-9-8-4 1-12 fi Ie separator
10 GS 11-9-8-5 1-13 group separator

I
IE RS 11-9-8-6 1-14 record separator
IF US 11-9-8-7 1-15 un i t separator

20 ds 11-0-9-8-1 digit selector 20 through 23 are used with
21 ss 0-9-1 significance start Sigma 7 EDIT BYTE STRING (EBS)
22 fs 0-9-2 field separation instruction - not input/output con-
23 si 0-9-3 immediate significance start trol codes.
24 0-9-4 24 through 2E are unassigned.
25 0-9-5
26 0-9-6
27 0-9-7
28 0-9-8
29 0-9-8-1
2A 0-9-8-2
2B 0-9-8-3
2C 0-9-8-4
20 0-9-8-5
2E 0-9-8-6
2F PE 0-9-8-7 parity error If parity checking is requested.

30 12-11-0-9-8-1 30 through 3F are unassigned.
31 9-1
32 9-2
33 9-3
34 9-4
35 9-5
36 9-6
37 9-7
38 9-8
39 9-8-1
3A 9-8-2
3B 9-8-3
3C 9-8-4
3D 9-8-5
3E 9-8-6
3F 9-8-7

tHexadecimal notation.

ttOecimal notation {column-row}.

82 Appendix A

SDS STANDARD SYMBOL-CODE CORRESPONDENCES (Cont.)

EBCOIC
t

Symbol Card Code USAScn
tt

Meaning Remarks

40 SP blank 2-0 blank
41 12-0-9-1 41 through 49 will not be assigned.
42 12-0-9-2
43 12-0-9-3

I I
44 12-0-9-4
45 12-0-9-5
46 12-0-9-6
47 12-0-9-7
48 12-0-9-8
49 12-8-1
4A i or \ 12-8-2 6-0 cent or accent grave Accent grave used for left single
4B 12-8-3 2-14 period quote. On model 7670, \ not
4C 12-8-4 3-12 less than available, and i = USASCII 5-11.
40 (12-8-5 2-8 left parenthesis
4E + 12-8-6 2-11 plus
4F I or I 12-8-7 7-12 vertical bar or broken bar On Model 7670,: not available, 1

and I = ASASCII 2-l.

50 & 12 2-6 ampersand
51 12-11-9-1 51 through 59 will not be assigned.
52 12-11-9-2
53 12-11-9-3
54 12-11-9-4
55 12-11-9-5
56 12-11-9-6
57 12-11-9-7
58 12-11-9-8
59 11-8-1
5A ! 11-8-2 2-1 exclamation point On Model 7670, ! is I.
5B $ 11-8-3 2-4 dollars
5C * 11-8-4 2-10 asterisk
50) 11-8-5 2-9 right parenthesis
5E ; 11-8-6 3-11 semicolon
5F - or, 11-8-7 7-14 tilde or logical not On Model 7670,- is not available,

and -, = USASCII 5-14.

60 - 11 2-13 minus, dash, hyphen
61 / 0-1 2-15 slash
62 11-0-9-2 62 through 69 will not be assigned.
63 11-0-9-3
64 11-0-9-4
65 11-0-9-5
66 11-0-9-6
67 11-0-9-7
68 11-0-9-8
69 0-8-1
6A

.,...
12-11 5-14 circumflex On Model 7670 ~ is ' • On Model

6B , 0-8-3 2-12 comma 7015 is A (caret).
6C % 0-8-4 2-5 percent
60 - 0-8-5 5-15 underline Underline is sometimes called "break
6E > 0-8-6 3-14 greater than character"; may be printed along
6F ? 0-8-7 3-15 question mark bottom of character line.

70 12-11-0 70 through 79 will not be assigned.
71 12-11-0-9-1
72 12-11-0-9-2
73 12-11-0-9-3
74 12-11-0-9-4
75 12-11-0-9-5
76 12-11-0-9-6
77 12-11-0-9-7
78 12-11-0-9-8
79 8-1
7A 8-2 3-10 colon
7B # 8-3 2-3 number
7C @ 8-4 4-0 at
70 I 8-5 2-7 apostrophe (right single quote)
7E = 8-6 3-13 equals
7F " 8-7 2-2 quotation mark
t
Hexadecimal notation

ttOecimal notation (column-row).

Appendix A 83

SDS STANDARD SYMBOL-CODE CORRESPONDENCES (Cont.)

EBCOIC
t I

USASCII
tt

Symbol Card Code Meaning Remarks

80 12-0-8-1 80 is unassigned.
81 a 12-0-1 6-1 81-89/ 91-99, A2-A9 comprise the
82 b 12-0-2 6-2 lowercase alphabet. Available
83 c 12-0-3 6-3 only in SOS standard 89- and 95-
84 d 12-0-4 6-4 character sets.
85 e 12-0-5 6-5
86 f

I
12-0-6

I
6-6

87 g 12-0-7 6-7
88 h 12-0-8 6-8
89 i 12-0-9 6-9
8A 12-0-8-2 8A through 90 are unassigned.
8B 12-0-8-3
8C I 12-0-8-4 I

80 12-0-8-5
8E 12-0-8-6
8F 12-0-8-7

90 12-11-8-1
91 j 12-11-1 6-10
92 k 12-11-2 6-11
93 I 12-11-3 6-12
94 !Tl 12-11-4 6-13
95 n 12-11-5 6-14
96 0 12-11-6 6-15
97 p 12-11-7 7-0
98 q 12-11-8 7-1
99 r 12-11-9 7-2
9A 12-11-8-2 9A through Al are unassigned.
9B 12-11-8-3
9C 12-11-8-4
90 12-11-8-5
9E 12-11-8-6
9F 12-11-8-7

AO 11-0-8-1
Al 11-0-1
A2 s 11-0-2 7-3
A3 t 11-0-3 7-4
A4 u 11-0-4 7-5
A5 v 11-0-5 7-6
A6 w 11-0-6 7-7
A7 x 11-0-7 7-8
A8 y 11-0-8 7-9
A9 z 11-0-9 7-10
AA 11-0-8-2 AA through BO are unassigned.
AB 11-0-8-3
AC 11-0-8-4
AO 11-0-8-5
AE 11-0-8-6
AF 11-0-8-7

BO 12-11-0-8-1
Bl \ 12-11-0-1 5-12 backslash
B2 t 12-11-0-2 7-11 left brace
B3 } 12-11-0-3 7-13 right brace
B4 [12-11-0-4 5-11 left bracket On Model 7670, [is,t.
B5] 12-11-0-5 5-13 right bracket On Model 7670,] is !.
B6 12-11-0-6 B6 through BF are unassigned.
B7 12-11-0-7
B8 12-11-0-8
B9 12-11-0-9
BA 12-11-0-8-2
BB 12 -11 -0-8-3
BC 12-11-0-8-4
BO

I

12-11-0-8-5

I

BE 12-11-0-8-6
BF I 12-11-0-8-7

t Hexadecimal notation.

ttOecimal notation {column-row}.

84 Appendix A

SDS STANDARD SYMBOL-CODE CORRESPONDENCES (Cont.)

EBCDIC
t

Symbol Card Code USASCn
tt Meaning Remarks

CO 12-0 CO is unassigned.
C1 A 12-1 4-1 C1-C9, D1-D9, E2-E9 comprise the
C2 B 12-2 4-2 uppercase a I phabet.
C3

I

C 12-3 4-3
C4 D 12-4 4-4
C5 E 12-5 4-5
C6 F 12-6 4-6
C7 G 12-7 4-7
C8 H 12-8 4-8
C9 I 12-9 4-9
CA 12-0-9-8-2 CA through CF will not be assigned.
CB 12-0-9-8-3
CC 12-0-9-8-4
CD 12-0-9-8-5
CE 12-0-9-8-6
CF 12-0-9-8-7

DO 11-0 DO is unassigned.
D1 J 11-1 4-10
D2 K 11-2 4-11
D3 l 11-3 4-12
D4 M 11-4 4-13
D5 N 11-5 4-14
D6 0 11-6 4-15
D7 P 11-7 5-0
D8 Q 11-8 5-1
D9 R 11-9 5-2
DA 12-11-9-8-2 DA through DF will not be assigned.
DB 12-11-9-8-3
DC 12-11-9-8-4
DD 12-11-9-8-5
DE 12-11-9-8-6
DF 12-11-9-8-7

EO I 0-8-2 11-0-9-1 i EO, E1 are unassigned.
E1 11-0-9-1
E2 S 0-2 5-3
E3 T 0-3 5-4
E4 U 0-4 5-5
E5 V 0-5 5-6
E6 W 0-6 5-7
E7 X 0-7 5-8
E8 Y 0-8 5-9
E9 Z 0-9 5-10
EA 11-0-9-8-2 EA through EF will not be assigned.

EB 11-0-9-8-3
EC 11-0-9-8-4
ED 11-0-9-8-5
EE 11-0-9-8-6
EF 11-0-9-8-7

FO 0 0 3-0
F1 1 1 3-1
F2 2 2 3-2
F3 3 3 3-3
F4 4 4 3-4
F5 5 5 3-5
F6 6 6 3-6
F7 7 7 3-7
F8 8 8 3-8
F9 9 9 3-9
FA 12-11-0-9-8-2 FA through FE will not be assigned.

FB 12-11-0-9-8-3
FC 12-11-0-9-8-4
FD 12-11-0-9-8-5
FE 12-11-0-9-8-6
FF DEL 12-11-0-9-8-7 delete Special - neither graphic nor con-

trol symbol.

t Hexadecimal notation.

ttDecimal notation {column-row}.

Appendix A 85

HEXADECIMAL ARITHMETIC

ADDITION TABLE

0 1 2 3 4 5 6 7 8 9 A B C D E F

1 02 03 04 05 06 07 08 09 OA OS OC 00 OE OF 10

2 03 04 05 06 07 08 09 OA OB OC 00 OE OF 10 11

3 04 05 06 07 08 09 OA OB OC OD OE OF 10 11 12

4 05 06 07 I 08 09 OA OB OC OD OE OF 10 11 12 13

5 06 07 08 09 OA OB OC OD OE OF 10 11 12 13 14

6 07 08 09 OA OB OC OD OE OF 10 11 12 13 14 15

7 08 09 OA OB OC OD OE OF 10 11 12 13 14 15 16

8 09 OA OB OC OD OE OF 10 11 12 13 14 15 16 17

9 OA OB OC OD OE OF 10 11 12 13 14 15 16 17 18

A OB OC OD OE OF 10 11 12 13 14 15 16 17 18 19

B DC 00 OE OF 10 11 12 13 14 15 16 17 18 19 1A

C OD DE OF 10 11 12 13 14 15 16 17 18 19 1A 1B

D OE OF 10 11 12 13 14 15 16 17 18 19 1A 1B 1C

E OF 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D

F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E

MULTIPLICATION TABLE

1 2 3 4 5 6 7 8 9 A B (1 D E F

2 04 06 08 OA OC OE 10 12 14 16 18 1A 1C 1E

3 06 09 DC OF 12 15 18 1B 1E 21 24 27 2A 2D

4 08 OC 10 14 18 1C 20 24 28 2C 30 34 38 3C

5 OA OF 14 19 1E 23 28 2D 32 37 3C 41 46 4B

6 OC 12 18 1E 24 2A 30 36 3C 42 48 4E 54 5A

7 OE 15 1C 23 2A 31 38 3F 46 4D 54 5B 62 69

8 10 18 20 28 30 38 40 48 50 58 60 68 70 78

9 12 1B 24 2D 36 3F 48 51 5A 63 6C 75 7E 87

A 14 1E 28 32 3C 46 50 5A 64 6E 78 82 8C 96

B 16 21 2C 37 42 4D 58 63 6E 79 84 8F 9A A5

C 18 24 30 3C 48 54 60 6C 78 84 90 9C A8 B4

D 1A 27 34 41 4E 5B 68 75 82 8F 9C A9 B6 (3

lC 38 46 54
I

70 8C 9A A8 66 C4 D2
I

E 2A 62 7E

F 1E 2D 3C 4B 5A 69 78 87 96 A5 B4 C3 D2 E1

86 Appendix A

3

23

163

DE 0

8AC7

TABLE OF POWERS OF SIXTEEN 10

16

256

4 096

65 536

1 048 576

16 777 216

268 435 456

4 294 967 296

68 719 476 736

099 511 627 776

17 592 186 044 416

281 474 976 710 656

4 503 599 627 370 496

72 057 594 037 927 936

152 921 504 606 846 976

n

o

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0.10000 00000 00000 00000 x 10

0.62500 00000 00000 00000 x 10- 1

0.39062 50000 00000 00000 x 10-2

0.24414 06250 00000 00000 x 10-3

0.15258 78906 25000 00000 x 10-4

0.95367 43164 06250 00000 x 10-6

0.59604 64477 53906 25000 x 10-7

0.37252 90298 46191 40625 x 10-8

0.23283 06436 53869 62891 x 10-9

0.14551 91522 83668 51807 x 10- 10

0.90949 47017 72928 23792 x 10- 12

0.56843 41886 08080 14870 x 10- 13

0.35527 13678 80050 09294 x 10- 14

0.22204 46049 25031 30808 x 10- 15

0.13877 78780 78144 56755 x 10- 16

0.86736 17379 88403 54721 x 10- 18

TABLE OF POWERS OF TEN 16

2

17

E8

918

5AF3

8D7E

8652

4578

B6B3

2304

A

64

3E8

2710

86AO

F 4240

98 9680

5F5 El00

3 B9 A CAOO

540B E400

4876 E800

D4A5 1000

4E72 AOOO

107A 4000

A4C6 8000

6FCl 0000

5 D8A 0000

A764 0000

89E8 0000

o 1.0000 0000 0000 0000

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

0.1999

0.2 8F 5

9999

C28F

9999

5C28

999A

F5C3 x

0.4 1 89 3 7 4 B C6 A7 E F 9 E x

0.68DB 8BAC 710C B296 x

0.A7C5 AC47 1 B 47 8423 x

0.10C6 F 7 AO B 5 E D 8 D3 7 x

0.lAD7 F29A BCAF 4858 x

0.2 AF 3 1 DC4 61 1 8 73 B F x

0.44B8 2FAO 9B5A 52CC x

0.6 DF 3 7 F 6 7 5 E F 6 E ADF x

O.AFEB FFOB CB24 AAFF x

0.1 197 998 1 2 DE All 19 x

0.lC25 C268 4976 81C2 x

0.2 DO 9 370 D 42 5 7 3 6 04 x

0.4 80 E B E 7 B 9 D5 8 5 66 D x

0.7 3 4 A CA5 F 6 2 2 6 F 0 AE x

0.B877 AA32 36A4 B449 x

0.1272 5 DD 1 D24 3 AB A 1 x

0.1 D83 C94 F B 6 D2 AC35 x

16-1

16-2

16-3

16-4

16-4

16-5

16-6

16-7

16-8

16-9

16-9

16- 10

16 -11

16- 12

16- 13

16- 14

16- 14

16- 15

Appendix A 87

HEXADECIMAL-DECIMAL INTEGER CONVERSION TABLE

The table below provides for direct conversions between hexa- Hexadecimal fractions may be converted to decimal fractions
decimal integers in the range O-FFF and decimal integers in as follows:
the range 0-4095. For conversion of larger integers, the
table values may be added to the following figures: 1. Express the hexadecimal fraction as an integer times

16 -n, where n is the number of significant hexadecimal
Hexadecimal Decimal Hexadecimal Decimal places to the right of the hexadecimal point.

01 000 4096 20000 131 072 O. CA9BF316 = CA9 BF316 x 16-6
02000 8 192 30000 196608
03000 12288 40000 262 144 2. Find the decimal equivalent of the hexadecimal integer
04 000 16384 50000 327680
05000 20480 60000 393 216 CA9 BF3

16
= 13278 195

10
06 000 24576 70000 458752
07000 28672 80000 524288 3. Multiply the decimal equivalent by 16-n

08000 32768 90 000 589824
09000 36 864 AOOOO 655 360 13 278 195
OA 000 40 960 80000 720896 x 596 046 448 x 10-16

OB 000 45056 CO 000 786 432 0.791 44209610
OC 000 49152 00000 851 968
00000 53248 EO 000 917 504 Decimal fractions may be converted to hexadecimal fractions
OE 000 57344 FO 000 983040 by successively multiplying the decimal fraction by 1610,
OF 000 61 440 100 000 1 048576 After each multiplication, the integer portion is removea to
10000 65536 200000 2097 152 form a hexadecimal fraction by building to the right of the
11000 69632 300 000 3 145 728 hexadecimal point. However, since decimal arithmetic is
12000 73728 400 000 4 194304 used in this conversion, the integer portion of each product
13000 77824 500000 5 242 880 must be converted to hexadecima I numbers.
14000 81 920 600 000 6291 456
15000 86 016 700 000 7340032 Example: Convert 0.89510 to its hexadecimal equivalent
16000 90 112 800 000 8388608

0.895
17000 94208 900000 9437 184
18000 98304 AOO 000 10485 760 @.32~
19000 102400 BOO 000 11 534 336
lA 000 106 496 COO 000 12582912 ---..M.
lB 000 110592 000000 13631 488

,~
@.120

lC 000 114688 EOO 000 14680 064 CD.92~ 10000 118 784 FOO 000 15728640
lE 000 122880 1 000000 167n 216 ~ IF 000 126 976 2000000 33554432 0.E51 E16 •

0 1 2 3 4 5 6 7 8 9 A B C 0 E F

000 0000 0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015
010 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031
020 0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047
030 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063

040 0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 oon 0078 0079
050 0080 0081 0082 0083 0084 0085 0086 0087 0088 0089 0090 0091 0092 0093 0094 0095
060 0096 0097 0098 0099 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111
070 0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127

080 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143
090 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159
OAO 0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 0175
OBO 0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 0190 0191

OCO 0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207
000 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 0223
OEO 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239
OFO 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255

88 Appendix A

HEXADECIMAL - DECIMAL INTEGER CONVERSION TABLE (cont.)

0 1 2 3 4 5 6 7 8 9 A B C D E F

100 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271
110 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287
120 0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303
130 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319

140 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0332 0333 0334 0335
150 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351
160 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367
170 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383

180 0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399
190 0400 0401 0402 0403 04()4 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415
lAO 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431
IBO 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447

lCO 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463
IDO 0464 0465 0466 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479
lEO 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495
IFO 0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511

200 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527
210 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543
220 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559
230 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575

240 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591
250 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607
260 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623
270 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639

280 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655
290 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671
2AO 0672 0673 0674 0675 0676 0677 0678 0679 ·0680 0681 0682 0683 0684 0685 0686 0687
2BO 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703

2CO 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719
2DO 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735
2EO 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751
2FO 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767

300 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783
310 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799
320 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815
330 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831

340 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847
350 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863
360 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879
370 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895

380 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911
390 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927
3AO 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943
3BO 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959

3CO 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975
3DO 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991
3EO 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007
3FO 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

Appendix A 89

HEXADECIMAL - DECIMAL INTEGER CONVERSION TABLE (cont.)

0 1 2 3 4 5 6 7 8 9 A B C D E F

400 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
410 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
420 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
430 1072 1073 1074 1075 1076 1077 1078 1079 lOBO 1081 1082 1083 1084 1085 1086 1087

440 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
450 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
460 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
470 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151

4BO 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
490 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
4AO 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
4BO 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215

4CO 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
400 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
4EO 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
4FO 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279

500 12BO 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
510 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
520 1312 1313 13.14 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
530 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343

540 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
550 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
560 1376 1377 1378 1379 13BO 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
570 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407

5BO 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
590 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
SAO 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
580 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471

5CO 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
5DO 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
5EO 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
5FO 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

600 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
610 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
620 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 15BO 1581 1582 1583
630 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599

640 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
650 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
660 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
670 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663

680 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
690 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
6AO 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
6BO 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727

6CO 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
6DO 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 I 6EO 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
6FO 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791

90 Appendix A

HEXADECIMAL - DECIMAL INTEGER CONVERSION TABLE (cont.)

0 1 2 3 4 5 6 7 8 9 A B C D E F

700 1792 1793 1794 1795 1796 1797 1798 . 1799 1800 1801 1802 1803 1804 1805 1806 1807
710 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
720 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
730 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855

740 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
750 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
760 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
770 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919

780 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
790 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
7AO 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
780 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983

7CO 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
700 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
7EO 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
7FO 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047

800 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
810 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
820 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
830 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111

840 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
850 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
860 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
870 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175

880 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
890 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
SAO 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
8BO 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239

8CO 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
800 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
8EO 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
8FO 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303

900 2304 2305 2306 2307 '2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
910 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
920 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
930 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367

940 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
950 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
960 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
970 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431

980 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
990 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
9AO 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
980 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495

9C0 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
9DO 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
9EO 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
9FO 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559

Appendix A 91

HEXADECIMAL - DECIMAL INTEGER CONVERSION TABLE (cont.)

0 1 2 3 4 5 6 7 8 9 A B C D E F

AOO 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
AlO 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
A20 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
A30 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623

A40 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
A50 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
A60 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
A70 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687

A80 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 .
A90 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
AAO 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
ABO 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751

ACO 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
ADO 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
AEO 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 :797 2798 2799
AFO 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815

BOO 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
B10 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
B20 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
B30 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879

840 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
B50 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
860 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
B70 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943

B80 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
B90 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
BAO 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
BBO 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007

BCO 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
BDO 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
BEO 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
BFO 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071

COO 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
C10 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
C20 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
C30 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135

C40 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3.147 3148 3149 3150 3151
C50 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
C60 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
C70 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199

C80 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
C90 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
CAO 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
CBO 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263

CCO 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
CDO 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
CEO 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
CFO 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327

92 Appendix A

HEXADECIMAL - DECIMAL INTEGER CONVERSION TABLE (cont.)

0 1 2 3 4 5 6 7 8 9 A B C D E F

DOO 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
DI0 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
D20 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
D30 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391

D40 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
D50 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
D60 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
D70 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455

D80 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
D90 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
DAO 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
DBO 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519

DCO 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
DDO 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
DEO 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
DFO 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583

EOO 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
ElO 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
E20 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
E30 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647

E40 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
E50 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
E60 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
E70 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711

E80 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
E90 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
EAO 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
EBO 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775

ECO 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
EDO 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
EEO 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
EFO 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839

FOO 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
FlO 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866" 3867 3868 3869 3870 3871
F20 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
F30 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903

F40 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
F50 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
F60 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
F70 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967

F80 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
F90 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
FAO 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
FBO 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031

FCO 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
FDO 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
FEO 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
FFO 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095

Appendix A 93

HEXADECIMAL-DECIMAL FRACTION CONVERSION TABLE

Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal

.00 000000 .00000 00000 .40 00 00 00 .25000 00000 .80 00 00 00 .50000 00000 .CO 00 00 00 .75000 00000

.01 000000 .00390 62500 .41000000 .25390 62500 .81 00 00 00 .50390 62500 .Cl 00 00 00 .75390 62500

.02 000000 .00781 25000 .42 000000 .25781 25000 .82 00 00 00 .50781 25000 .C2 00 00 00 .75781 25000

.03 000000 .01171 87500 .43 000000 .26171 87500 .83 00 00 00 .51171 87500 .C3 00 00 00 .76171 87500

.04 000000 .0156250000 .44 000000 .2656250000 .84 00 00 00 .5156250000 .C4 00 00 00 .7656250000

.05 00 00 00 .01953 12500 .45 000000 .26953 12500 .85 00 00 00 .51953 12500 .C5 000000 .76953 12500

.06 00 00 00 .02343 75000 .46 000000 .27343 75000 .86 000000 .52343 75000 .C6 000000 .77343 75000

.07 000000 .02734 37500 .47 000000 .27734 37500 .87 000000 .52734 37500 .C7 00 00 00 .77734 37500

.08 000000 .03125 00000 .48 000000 .28125 00000 .88 000000 .5312500000 .C8 00 00 00 .78125 00000

.09 000000 .0351562500 .49 000000 .2851562500 .89 000000 .5351562500 .C9 000000 .78515 62500

.OA 00 00 00 .03906 25000 .4A 000000 .28906 25000 .8A 000000 .53906 25000 .CA 00 00 00 .78906 25000

.OS 000000 .04296 87500 .4S 000000 .2929687500 .8S 000000 .5429687500 .CS 00 00 00 .79296 87500

.OC 000000 .04687 50000 .4C 000000 .29687 50000 .8C 000000 .54687 50000 .CC 000000 .79687 50000

.00 000000 .05078 12500 .40 00 00 00 .30078 12500 .80 000000 .55078 12500 .CO 00 00 00 .80078 12500

.OE 000000 .05468 75000 .4E 000000 .30468 75000 .8E 00 00 00 .5546875000 .CE 00 00 00 .8046875000

.OF 000000 .05859 37500 .4F 00 00 00 .30859 37500 .8F 000000 .5585937500 .CF 00 00 00 .80859 37500

.10 00 00 00 ,.06250 00000 .50 000000 .3125000000 .90 000000 .5625000000 .00 00 00 00 .81250 00000

.11 00 00 00 .06640 62500 .51 00 00 00 .31640 62500 .91 000000 .56640 62500 .01 00 00 00 .81640 62500

.12 000000 .07031 25000 .52 000000 .32031 25000 .92 00 00 00 .57031 25000 .02 00 00 00 .82031 25000

.13 00 00 00 .07421 87500 .53 000000 .32421 87500 .93 000000 .57421 87500 .03 000000 .82421 87500

.14 000000 .0781250000 .54 000000 .3281250000 .94 00 00 00 .57812 50000 .04 00 00 00 .82812 50000

.15 000000 .08203 12500 .55 000000 .33203 12500 .95 00 00 00 .58203 12500 .05 000000 .83203 12500

.16 000000 .08593 75000 .56 00 00 00 .33593 75000 .96 00 00 00 .58593 75000 .06 00 00 00 .83593 75000

.17 000000 .08984 37500 .57 000000 .33984 37500 .97 00 00 00 .58984 37500 .07 00 00 00 .83984 37500

.18 000000 .09375 00000 .58 000000 .34375 00000 .98 00 00 00 .59375 00000 .08 00 00 00 .8437500000

.19 000000 .09765 62500 .59 000000 .34765 62500 .99 00 00 00 .59765 62500 .09 00 00 00 .8476562500

.IA 000000 · 10 156 25000 .5A 00 00 00 .35156 25000 .9A 000000 .60156 25000 .OA 00 00 00 .85156 25000

.1S 000000 .10546 87500 .5S 000000 .35546 87500 .9S 000000 .60546 87500 .DS 00 00 00 .85546 87500

.1C 000000 · 10937 50000 .5C 000000 .35937 50000 .9C 00 00 00 .60937 50000 .DC 00 00 00 .85937 50000

.10 000000 · 11328 12500 .50 00 00 00 .36328 12500 .90 000000 .61328 12500 .0000 00 00 .86328 12500

.1E 000000 .11718 75000 .5E 000000 .3671875000 .9E 000000 .6171875000 .OE 900000 .8671875000

.1F 000000 .1210937500 .5F 00 00 00 .3710937500 .9F 000000 .6210937500 .OF 000000 .8710937500

.20 000000 · 12500 00000 .60 000000 .37500 00000 .AO 000000 .62500 00000 .EO 000000 .87500 00000

.21 000000 .12890 62500 .61 000000 .37890 62500 .A1 00 00 00 .62890 62500 .E1 00 00 00 .87890 62500

.22 000000 .13281 25000 .62 00 00 00 .38281 25000 .A2 000000 .63281 25000 .E2 00 00 00 .88281 25000

.23 000000 .13671 87500 .63 000000 .38671 87500 .A3 00 00 00 .63671 87500 .E3 000000 .88671 87500

.24 000000 · 14062 50000 .64 000000 .39062 50000 .A4 00 00 00 .64062 50000 .E4 000000 .89062 50000

.25 000000 · 14453 12500 .65 000000 .39453 12500 .AS 00 00 00 .64453 12500 .E5 000000 .89453 12500

.26 000000 · 14843 75000 .66 000000 .39843 75000 .A6 00 00 00 .64843 75000 .E6 00 00 00 .89843 75000

.27 00 00 00 .15234 37500 .67 000000 .40234 37500 .A7 000000 .65234 37500 .E7 00 00 00 .90234 37500

.28 000000 .15625 00000 .68 000000 .40625 00000 .A8 000000 .65625 00000 .E8 000000 .90625 00000

.29 000000 .1601562500 .69 000000 .410 15 62500 .A9 000000 .66015 62500 .E9 000000 .9101562500

.2A 000000 · 16406 25000 .6A 000000 .41406 25000 .AA 00 00 00 .66406 25000 .EA 000000 .91406 25000

.2S 000000 .16796 87500 .6B 000000 .41796 87500 .AB 00 00 00 .66796 87500 .ES 00 00 00 .91796 87500

.2C 000000 .17187 50000 .6C 000000 .42187 50000 .AC 00 00 00 .67187 50000 .EC 00 00 00 .92187 50000

.20 00 00 00 .17578 12500 .60 00 00 00 .42578 12500 .AO 00 00 00 .67578 12500 .EO 000000 .92578 12500

.2E 000000 .1796875000 .6E 000000 .42968 75000 .Af 000000 .67968 75000 .EE 00 00 00 .92968 75000

.2F 00 00 00 .18359 37500 .6F 000000 .43359 37500 .AF 00 00 00 .68359 37500 .EF 00 00 00 .93359 37500

.30 000000 .1875000000 .70 000000 .43750 00000 .SO 000000 .6875000000 .FO 000000 .93750 00000

.31 000000 .1914062500 .71 000000 .44140 62500 .Bl 00 00 00 .6914062500 .FI 000000 .94140 62500

.32 00 00 00 · 1 9531 25000 .72 00 00 00 .44531 25000 .S2 000000 .69531 25000 .F2 00 00 00 .94531 25000

.33 00 00 00 .19921 87500 .73 00 00 00 .44921 87500 .S3 00 00 00 .69921 87500 .F3 000000 .94921 87500

.34 000000 .20312 50000 .74 00 00 00 .4531 2 50000 .B4 00 00 00 .70312 50000 .F4 00 00 00 .95312 50000

.35 000000 .20703 12500 .75 000000 .45703 12500 .85 0000 00 .70703 12500 .F5 00 00 00 .95703 12500

.36 00 00 00 .21093 75000 .76 000000 .46093 75000 .86 00 00 00 .7109375000 .F6 00 00 00 .96093 75000

.37 00 0000 .21484 37500 .77 00 00 00 .46484 37500 .S7 00 00 00 .71484 37500 .F7 00 00 00 .96484 37500

.38 00 00 00 .2187500000 .78 00 00 00 .46875 00000 .sa 00 00 00 .71875 00000 .F8 00 00 00 .96875 00000

.39 000000 .22265 62500 .79 00 00 00 .47265 62500 .S9 00 00 00 .72265 62500 .F9 00 00 00 .97265 62500

.3A 000000 .22656 25000 .7A 00 00 00 .47656 25000 .SA 000000 .72656 25000 .FA 000000 .97656 25000

.3S 000000 .23046 87500 .7S 00 00 00 .48046 87500 .SS 00 00 00 .73046 87500 .FS 000000 .98046 87500

.3C 000000 .23437 50000 .7C 000000 .48437 50000 .SC 00 00 00 .73437 50000 .FC 000000 .98437 50000

.30 000000 .23828 1 2500 .70 000000 .48828 12500 .SO 00 00 00 .73828 12500 .FO 000000 .98828 12500

.3E 000000 .2421875000 .7E 000000 .4921875000 .SE 00 00 00 .7421875000 .FE 00 00 00 .99218 75000

.3F 00 00 00 .24609 37500 .7F 000000 .49609 37500 .SF 000000 .74609 37500 .FF 000000 .99609 37500

94 Appendix A

HEXADECIMAL - DECIMAL FRACTION CONVERSION TABLE (cont.)

Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal

.0000 0000 .00000 00000 .0040 00 00 .00097 65625 .00 80 0000 .00195 31250 .00 CO 0000 .00292 96875

.0001 0000 .00001 52587 .00 41 00 00 .00099 18212 .0081 0000 .001% 83837 .00 Cl 0000 .00294 49462

.00 02 00 00 .0000305175 .0042 0000 .00100 70800 .0082 0000 .00198 36425 .00 C2 0000 .00296 02050

.00 03 00 00 .00004 57763 .00 43 00 00 .00102 23388 .0083 0000 .00199 89013 .00 C3 0000 .00297 54638

.00 04 0000 .00006 10351 .00 44 0000 .00103 75976 .0084 0000 .00201 41601 .00 C4 0000 .00299 07226

.00 05 0000 .00007 62939 .00 45 00 00 .00 105 28564 .00 85 00 00 .00202 94189 .00 C5 0000 .00300 59814

.00 06 0000 .00009 15527 .00 46 0000 .00106 81152 .0086 0000 .0020446m .00 C6 00 00 .00302 12402

.00 07 0000 .0001068115 .00 47 00 00 .00108 33740 .00 87 0000 .00205 99365 .00 C7 00 00 .0030364990

.00 08 0000 .0001220703 .0048 00 00 .00 109 86328 .0088 00 00 .00207 51953 .00 C8 00 00 .00305 17578

.00 09 00 00 .0001373291 .00 49 00 00 .00111 38916 .00 89 0000 .00209 04541 .00 C9 0000 .00306 70166

.00 OA 00 00 .00015 25878 .004A 00 00 .0011291503 .00 8A 0000 .0021057128 .00 CA 00 00 .00308 22753

.00 OB 00 00 .0001678466 .00 4B 0000 .0011444091 .008B 0000 .0021209716 .00 CB 0000 .00309 75341

.00 OC 0000 .0001831054 .00 4C 00 00 .00115 96679 .00 8C 00 00 .00213 62304 .00 CC 0000 .00311 27929

.00 00 00 00 .0001983642 .0040 00 00 .0011749267 .0080 00 00 .00215 14892 .00 CD 0000 .0031280517

.00 OE 00 00 .00021 36230 .00 4E 00 00 .0011901855 .00 8E 0000 .0021667480 .00 CE 0000 .0031433105

.00 OF 00 00 .00022 88818 .004F 0000 .00120 54443 .008F 00 00 .00218 20068 .00 CF 00 00 .0031585693

.0010 0000 .0002441406 .0050 0000 .00122 07031 .0090 00 00 .00219 72656 .00 DO 0000 .00317 38281

.00 11 0000 .00025 93994 .0051 0000 .0012359619 .0091 0000 .00221 25244 .0001 0000 .00318 90869

.00 12 0000 .00027 46582 .00 52 0000 .00125 12207 .00 92 00 00 .0022277832 .0002 0000 .00320 43457

.0013 0000 .00028 99169 .0053 0000 .00 126 64794 .00 93 0000 .00224 30419 .0003 0000 .00321 96044

.00 14 00 00 .00030 51757 .00 54 0000 .00 128 17382 .0094 0000 .00225 83007 .00 04 0000 .00323 48632

.0015 0000 .00032 04345 .0055 0000 .0012969970 .00 95 0000 .00227 35595 .0005 0000 .00325 01220

.00 16 0000 .0003356933 .00 56 0000 .00131 22558 .0096 00 00 .0022888183 .00 D6 0000 .00326 53808

.00 17 00 00 .00035 09521 .0057 0000 .0013275146 .0097 0000 .00230 40771 .0007 00 00 .00328 06396

.0018 0000 .00036 62109 .0058 0000 .00134 27734 .0098 0000 .00231 93359 .0008 0000 .00329 58984

.00 19 00 00 .00038 14697 .0059 0000 .00135 80322 .0099 0000 .00233 45947 .0009 0000 .00331 11572

.00 lA 0000 .00039 67285 .005A 0000 .0013732910 .009A 0000 .00234 98535 .00 OA 00 00 .00332 64160

.00 IB 0000 .00041 19873 .005B 00 00 .00138 85498 .009B 00 00 .00236 51123 .00 DB 0000 .00334 16748

.00 lC 0000 .0004272460 .005C 0000 .00140 38085 .009C 0000 .00238 03710 .00 DC 00 00 .00335 69335

.0010 0000 .00044 25048 .0050 0000 .00141 90673 .00 90 00 00 .00239 56298 .00 DO 00 00 .00337 21923

.00 IE 0000 .00045 77636 .005E 0000 .0014343261 .009E 0000 .00241 08886 .00 DE 0000 .00338 74511

.00 IF 0000 .00047 30224 .005F 0000 .00144 95849 .009F 00 00 .00242 61474 .00 OF 0000 .00340 27099

.0020 0000 .00048 82812 .0060 00 00 .00146 48437 .00 AO 0000 .00244 14062 .00 EO 0000 .00341 79687

.00 21 0000 .00050 35400 .0061 0000 .00148 01025 .00 Al 0000 .00245 66650 .00 El 0000 .0034332275

.0022 0000 .00051 87988 .00 62 0000 .0014953613 .00 A2 0000 .00247 19238 .00 E2 0000 .00344 84863

.0023 0000 .00053 40576 .0063 0000 .00151 06201 .00 A3 0000 .00248 71826 .00 E3 00 00 .00346 37451

.00 24 0000 .00054 93164 .0064 0000 .00 152 58789 .00 A4 0000 .00250 24414 .00 E4 0000 .00347 90039

.0025 0000 .0005645751 .00 65 0000 .00154 11376 .00 A5 0000 .00251 77001 .00 E5 0000 .00349 42626

.0026 00 00 .00057 98339 .0066 00 00 .00155 63964 .00 A6 00 00 .00253 29589 .00 E6 0000 .00350 95214

.00 27 0000 .00059 50927 .0067 0000 .00157 16552 .00 A7 0000 .0025482177 .00 E7 0000 .00352 47802

.0028 00 00 .00061 03515 .0068 00 00 .0015869140 .00 A8 00 00 .00256 34765 .00 E8 0000 .00354 00390

.0029 00 00 .0006256103 .0069 00 00 .00160 21728 .00 A9 0000 .00257 87353 .00 E9 0000 .00355 52978

.00 2A 00 00 .00064 08691 .006A 0000 .00161 74316 .00 AA 00 00 .00259 39941 .00 EA 00 00 .00357 05566

.00 2B 00 00 .00065 61279 .00 6B 0000 .00163 26904 .00 AB 00 00 .00260 92529 .00 EB 0000 .00358 58154

.002C 00 00 .00067 13867 .006C 0000 .0016479492 .00 AC 0000 .00262 45117 .00 EC 0000 .00360 10742

.0020 00 00 .0006866455 .00 60 00 00 .00166 32080 .00 AD 00 00 .00263 97705 .00 ED 0000 .00361 63330

.002E 00 00 .00070 19042 .006E 0000 .0016784667 .00 AE 00 00 .00265 50292 .00 EE 0000 .00363 15917

.002F 00 00 .00071 71630 .006F 0000 .00169 37255 .00 AF 0000 .00267 02880 .00 EF 00 00 .00364 68505

.00 30 00 00 .00073 24218 .0070 00 00 .00170 89843 .00 BO 0000 .0026855468 .00 FO 0000 .00366 21093

.0031 00 00 .0007476806 .0071 00 00 .00 172 42431 .00 B1 00 00 .00270 08056 .00 F1 0000 .00367 73681

.0032 00 00 .00076 29394 .0072 0000 .00173 95019 .00 B2 0000 .00271 60644 .00 F2 0000 .00369 26269

.0033 00 00 .0007781982 .00 73 00 00 .0017547607 .00 B3 0000 .00273 13232 .00 F3 0000 .00370 78857

.0034 00 00 .00079 34570 .0074 00 00 .00177 00195 .00 B4 0000 .00274 65820 .00 F4 0000 .00372 31445

.0035 0000 .00080 87158 .0075 00 00 .0017852783 .00 B5 00 00 .00276 18408 .00 F5 00 00 .00373 84033

.0036 00 00 .0008239746 .00 76 00 DO .00180 05371 .00 B6 00 00 .00277 70996 .00 F6 0000 .00375 36621

.00 37 00 00 .00083 92333 .0077 0000 .00181 57958 .00 B7 00 00 .00279 23583 .00 F7 0000 .00376 89208

.0038 00 00 .00085 44921 .0078 0000 .00 183 10546 .00 B8 0000 .00280 76171 .00 F8 0000 .00378 41796

.00 39 0000 .00086 97509 .0079 00 00 .00184 63134 .00 B9 00 00 .00282 28759 .00 F9 0000 .00379 94384

.003A 0000 .0008850097 .007A 0000 .00186 15722 .00 BA 0000 .0028381347 .00 FA 0000 .00381 46972

.003B 00 00 .00090 02685 .00 7B 0000 .0018768310 .00 BB 0000 .00285 33935 .00 FB 0000 .00382 99560

.003C 0000 .00091 55273 .007C 0000 .0018920898 .00 BC 00 00 .00286 86523 .00 FC 0000 .00384 52148

.0030 00 00 .00093 07861 .0070 0000 .00190 73486 .00 BO 0000 .OO21:s8 39111 .00 FO 00 00 .00386 04736

.00 3E 0000 .00094 60449 .007E 00 00 .0019226074 .00 BE 0000 .0028991699 .00 FE 0000 .0038757324

.003F 0000 .00096 13037 .007F 0000 .0019378662 .00 BF 00 00 .00291 44287 .00 FF 0000 .00389 09912

Appendix A 95

HEXADECIMAL - DECIMAL FRACTION CONVERSION TABLE (cont.)

Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal

.000000 00 .00000 00000 .00 00 40 00 .00000 38146 .000080 00 .00000 76293 .00 00 CO 00 .0000 1 14440

.000001 00 .00000 00596 .00 00 41 00 .00000 38743 .000081 00 .00000 76889 .00 00 Cl 00 .00001 15036

.00 00 02 00 .00000 01192 .00 00 42 00 .00000 39339 .000082 00 .00000 77486 .00 00 C2 00 .00001 15633

.000003 00 .00000 01788 .000043 00 .00000 39935 .000083 00 .00000 78082 .00 00 C3 00 .00001 16229

.000004 00 .00000 02384 .00 00 44 00 .00000 40531 .000084 00 .00000 78678 .0000 C4 00 .00001 16825

.000005 00 .00000 02980 .000045 00 .00000 41127 .00 00 85 00 .00000 79274 .00 00 C5 00 .00001 17421

.00 00 06 00 .00000 03576 .00 00 46 00 .00000 41723 .00 00 86 00 .00000 79870 .00 00 C6 00 .00001 18017

.000007 00 .00000 04172 .00 00 47 00 .00000 42319 .00 00 87 00 .00000 80466 .00 00 C7 00 .00001 18613

.000008 00 .00000 04768 .00 00 48 00 .00000 42915 .000088 00 .00000 81062 .00 00 C8 00 .00001 19209

.000009 00 .00000 05364 .00 00 49 00 .00000 43511 .000089 00 .00000 81658 .00 00 C9 00 .00001 19805

.00 00 OA 00 .00000 05960 .00 00 4A 00 .00000 44107 .0000 8A 00 .00000 82254 .00 00 CA 00 .0000 1 2040 1

.OOOOOB 00 .00000 06556 .00 00 4B 00 .00000 44703 .00 00 8B 00 .00000 82850 .0000 CB 00 ~ooool 20997

.0000 OC 00 .00000 07152 .00 00 4C 00 .00000 45299 .00 00 8C 00 .00000 83446 .00 00 CC 00 .00001 21593

.000000 00 .00000 07748 .00 00 40 00 .00000 45895 .00 00 80 00 .00000 84042 .0000 CD 00 .00001 22189

.OOOOOE 00 .00000 08344 .00 00 4E 00 .00000 46491 .00 00 8E 00 .00000 84638 .0000 CE 00 .00001 22785

.0000 OF 00 .00000 08940 .00 00 4F 00 .00000 47087 .0000 8F 00 .00000 85234 .00 00 CF 00 .0000 1 23381

.0000 10 00 .00000 09536 .00 00 50 00 .00000 47683 .00 00 90 00 .00000 85830 .00 00 00 00 .00001 23977

.00 00 11 00 .00000 10132 .00 00 51 00 .00000 48279 .00 00 91 00 .00000 86426 .00 00 01 00 .00001 24573

.0000 12 00 .00000 10728 .00 00 52 00 .00000 48875 .00 00 92 00 .00000 87022 .000002 00 .00001 25169

.0000 13 00 .00000 11324 .000053 00 .00000 49471 .00 00 93 00 .00000 87618 .00 00 03 00 .00001 25765

.0000 14 00 .00000 11920 .000054 00 .00000 50067 .00 00 94 00 .00000 88214 .00 0004 00 .00001 26361

.0000 15 00 .00000 12516 .000055 00 .00000 50663· .00 00 95 00 .00000 88810 .00 00 05 00 .00001 26957

.00 00 16 00 .00000 13113 .00 00 56 00 .00000 51259 .00 00 96 00 .00000 89406 .0000 D6 00 .00001 27553

.00 00 17 00 .00000 13709 .000057 00 .00000 51856 .00 00 97 00 .00000 90003 .00 0007 00 .00001 28149

.00 00 18 00 .00000 14305 .00 00 58 00 .00000 52452 .00 00 98 00 .00000 90599 .0000 OS 00 .00001 28746

.00 00 19 00 .00000 14901 .000059 00 .00000 53048 .00 00 99 00 .00000 91195 .000009 00 .00001 29342

.0000 lA 00 .00000 15497 .00 00 5A 00 .00000 53644 .00 00 9A 00 .00000 91791 .00 00 OA 00 .00001 29938

.00 00 lB 00 .00000 16093 .000058 00 .00000 54240 .00 00 9B 00 .00000 92387 .00 00 DB 00 .00001 30534

.00 00 lC 00 .00000 16689 .00 00 5C 00 .00000 54836 .00 00 9C 00 .00000 92983 .0000 DC 00 .00001 31130

.00 00 1000 .00000 17285 .000050 00 .00000 55432 .000090 00 .00000 93579 .0000 DO 00 .00001 31726

.00 00 IE 00 .00000 17881 .00005E 00 .00000 56028 .0000 9E 00 .00000 94175 .00 00 DE 00 .00001 32322

.00 00 IF 00 .00000 18477 .00 00 5F 00 .00000 56624 .0000 9F 00 .00000 94771 .00 00 OF 00 .00001 32918

.00 00 20 00 .00000 19073 .000060 00 .00000 57220 .0000 AO 00 .00000 95367 .0000 EO 00 .00001 33514

.000021 00 .00000 19669 .00 00 61 00 .00000 57816 .00 00 Al 00 .00000 95963 .00 00 El 00 .00001 34110

.000022 00 .00000 20265 .00-00 62 00 .00000 58412 .00 00 A2 00 .00000 96559 .00 00 E2 00 .00001 34706

.00 00 23 00 .00000 20861 .00 0063 00 .00000 59008 .0000 A3 00 .00000 97155 .00 00 E3 00 .00001 35302

.00 00 24 00 .00000 21457 .00 00 64 00 .00000 59604 .00 00 A4 00 .00000 97751 .00 00 E4 00 .00001 35898

.000025 00 .00000 22053 .00 00 65 00 .00000 60200 .00 00 A5 00 .00000 98347 .00 00 E5 00 .00001 36494

.00 00 26 00 .00000 22649 .00 00 66 00 .00000 60796 .0000 A6 00 .00000 98943 .00 00 E6 00 .00001 37090

.00 00 27 00 .00000 23245 .000067 00 .00000 61392 .00 00 A7 00 .00000 99539 .00 00 E7 00 .00001 37686

.00 00 28 00 .00000 23841 .000068 00 .00000 61988 .00 00 A8 00 .00001 00135 .00 00 E8 00 .00001 38282

.00 00 29 00 .00000 24437 .00 00 69 00 .00000 62584 .0000 A9 00 .00001 00731 .00 00 E9 00 .00001 38878

.00002A 00 .00000 25033 .0000 6A 00 .00000 63180 .00 00 AA 00 .00001 01327 .0000 EA 00 .00001 39474

.0000 2B 00 .00000 25629 .00 00 6B 00 .00000 63776 .00 00 AB 00 .00001 01923 .00 00 EB 00 .00001 40070

.00 00 2C 00 .00000 26226 .00 00 6C 00 .00000 64373 .0000 AC 00 .00001 02519 .00 00 EC 00 .00001 40666

.00 00 20 00 .00000 26822 .000060 00 .00000 64969 .0000 AD 00 .00001 03116 .0000 ED 00 .00001 41263

.0000 2E 00 .00000 27418 .00006E 00 .00000 65565 .0000 AE 00 .00001 03712 .0000 EE 00 .00001 41859

.00 00 2F 00 .00000 28014 .00 00 6F 00 .00000 66161 .0000 AF 00 .0000 1 04308 .00 00 EF 00 .00001 42455

.00 00 30 00 .00000 28610 .000070 00 .00000 66757 .0000 BO 00 .00001 04904 .0000 FO 00 .00001 43051

.00 00 31 00 .00000 29206 .00 00 71 00 .0000067353 .0000 Bl 00 .00001 05500 .0000 Fl 00 .00001 43647

.00 00 32 00 .00000 '29802 .000072 00 .00000 67949 .0000 B2 00 .00001 06096 .0000 F2 00 .00001 44243

.00 0033 00 .00000 30398 .000073 00 .00000 68545 .0000 B3 00 .00001 06692 .0000 F3 00 .00001 44839

.000034 00 .00000 30994 .000074 00 .00000 69141 .00 00 B4 00 .00001 07288 .0000 F4 00 .00001 45435

.000035 00 .00000 31590 .000075 00 .00000 69737 .00 00 B5 00 .00001 07884 .0000 F5 00 .00001 46031

.000036 00 .00000 32186 .000076 00 .00000 70333 .0000 B6 00 .00001 08480 .0000 F6 00 .00001 46627

.000037 00 .00000 32782 .000077 00 .00000 70929 .0000 B7 00 .00001 09076 .0000 F7 00 .00001 47223

.000038 00 .00000 33378 .000078 00 .00000 71525 .0000 B8 00 .00001 09672 .0000 F8 00 .00001 47819

.000039 00 .00000 33974 .000079 00 .00000 72121 .0000 B9 00 .00001 10268 .0000 F9 00 .00001 48415

.00 00 3A 00 .00000 34570 .00 00 7A 00 .00000 72717 .0000 BA 00 .00001 10864 .0000 FA 00 .00001 49011

.00 00 3B 00 .00000 35166 .00007B 00 .00000 73313 .0000 BB 00 .00001 11460 .0000 FB 00 .00001 49607

.00003C 00 .00000 35762 .00007C 00 .0000073909 .0000 BC 00 .00001 12056 .0000 FC 00 .00001 50203

.00 00 3D 00 .00000 36358

I
.000070 00 .00000 74505 .0000 SD 00 .00001 12652 I .0000 FD 00 .00001 50799

.00003E 00 .0000036954 .00007E 00 .0000075101 .0000 BE 00 .00001 13248 .0000 FE 00 .00001 51395

.00003F 00 .00000 37550 .00 00 7F 00 .00000 75697 .00 00 BF 00 .00001 13844 .00 00 FF 00 .00001 51991

96 Appendix A .

HEXADECIMAL - DECIMAL FRACTION CONVERSION TABLE (cont.)

Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal

.00000000 .00000 00000 .00000040 .00000 00149 .00000080 .00000 00298 .00 00 00 CO .00000 00447

.00000001 .00000 00002 .00000041 .00000 00151 .00000081 .00000 00300 .00 00 00 Cl .00000 00449

.00000002 .00000 00004 .00 00 00 42 .00000 00153 .00000082 .00000 00302 .00 00 00 C2 .00000 00451

.0000 00 03 .00000 00006 .00 00 00 43 .00000 00 155 .00000083 .00000 00305 .0000 00 C3 .00000 00454

.00000004 .00000 00009 .00000044 .00000 00158 .00 00 00 84 .00000 00307 .00 00 OOC4 .00000 00456

.00000005 .00000 00011 .00 00 00 45 .00000 00160 .0000 00 85 .0000000309 .00 00 00 C5 .00000 00458

.00000006 .00000 00013 .00 00 00 46 .00000 00162 .00 00 00 86 .00000 00311 .00 00 00 C6 .00000 00461

.0000 00 07 .00000 00016 .00 00 00 47 .00000 00 165 .00 00 00 87 .00000 00314 .00 00 00 C7 .00000 00463

.00000008 .00000 00018 .00 00 00 48 .00000 00167 .00 00 00 88 .00000 00316 .00 00 00 C8 .00000 00465

.00000009 .00000 00020 .00 00 0049 .00000 00169 .00000089 .00000 00318 .00 00 00 C9 .00000 00467

.00 0000 OA .00000 00023 .0000 00 4A .00000 00172 .00 00 00 8A .00000 00321 .0000 00 CA .00000 00470

.0000 00 OB .00000 00025 .0000 00 4B .00000 00174 .00 00 00 8B .00000 00323 .0000 00 CB .00000 00472

.0000 00 DC .0000000027 .00 00 00 4C .00000 00176 .0000 00 8C .00000 00325 .00 00 00 CC .00000 00474

.00 00 00 OD .00000 00030 .00 00 00 4D .00000 00179 .00 00 00 8D .00000 00328 .00 00 00 CD .00000 00477

.0000 00 OE .00000 00032 .000000 4E .00000 00181 .000000 8E .00000 00330 .00 00 00 CE .00000 00479

.00 00 00 OF .00000 00034 .00 00 00 4F .00000 00183 .0000 00 8F .00000 00332 .00 00 00 CF .00000 00481

.000000 10 .00000 00037 .00000050 .00000 00186 .000000 90 .00000 00335 .00 00 00 00 .00000 00484

.000000 11 .00000 00039 .00000051 .00000 00188 .00 00 00 91 .00000 00337 .00 00 00 D1 .00000 00486

.00000012 .00000 00041 .00 000052 .00000 00 190 .00 00 00 92 .00000 00339 .00 00 00 D2 .00000 00488

.00 00 00 13 .00000 00044 .00 000053 .00000 00 193 .00 00 0093 .00000 00342 .00 00 00 D3 .00000 00491

.000000 14 .00000 00046 .00000054 .00000 00195 .00 00 00 94 .00000 00344 .00 00 00 D4 .00000 00493

.00 00 00 15 .00000 00048 .00000055 .00000 00197 .00 00 00 95 .00000 00346 .00 00 00 D5 .00000 00495

.00000016 .00000 00051 .00 00 0056 .00000 00200 .00000096 .00000 00349 .00 00 00 D6 .00000 00498

.000000 17 .00000 00053 .0000 00 57 .00000 00202 .00000097 .00000 00351 .000000 D7 .00000 00500

.00000018 .00000 00055 .00 00 0058 .00000 00204 .00 00 0098 .00000 00353 .000000 OS .00000 00502

.000000 19 .0000000058 .00 00 00 59 .00000 00207 .00 00 00 99 .00000 00356 .00 00 00 D9 .00000 00505

.OOOOOOIA .00000 00060 .00 00 00 5A .00000 00209 .0000009A .00000 00358 .00 00 00 DA .00000 00507

.000000 IB .00000 00062 .000000 5B .00000 00211 .00 00 00 9B .0000000360 .00 00 00 DB .00000 00509

.OOOOOOIC .00000 00065 .00 00 005C .00000 00214 .000000 9C .00000 00363 .000000 DC .00000 00512

.0000001 D .00000 00067 .00 00 00 5D .00000 00216 .0000009D .00000 00365 .00 00 00 DD .00000 00514

.00 00 00 lE .00000 00069 .00 00 00 5E .00000 00218 .00 00 00 9E .00000 00367 .00 00 00 DE .00000 00516

.00 00 00 IF .00000 00072 .0000005F .00000 00221 .000000 9F .00000 00370 .00 00 00 DF .00000 00519

.00000020 .00000 00074 .00000060 .00000 00223 .0000 00 AO .00000 00372 .000000 EO .00000 00521

.00000021 .00000 00076 .00000061 .00000 00225 .0000 00 Al .00000 00374 .00 00 00 El .00000 00523

.00 00 0022 .00000 00079 .0000 00 62 .00000 00228 .000000 A2 .00000 00377 .00 00 00 E2 .00000 00526

.00000023 .00000 00081 .00000063 .00000 00230 .000000 A3 .00000 00379 .00 00 00 E3 .00000 00528

.00000024 .00000 00083 .00000064 .00000 00232 .00 00 00 A4 .00000 00381 .00 00 00 E4 .00000 00530

.000000 25 .00000 00086 .00000065 .00000 00235 .000000 AS .00000 00384 .00 00 00 E5 .00000 00533

.00 00 0026 .00000 00088 .00000066 .00000 00237 .00 00 00 A6 .00000 00386 .00 00 00 E6 .00000 00535

.00 00 0027 .00000 00090 .00000067 .00000 00239 .00 00 00 A7 .00000 00388 .00 00 00 E7 .00000 00537

.00000028 .00000 00093 .00 00 0068 .00000 00242 .0000 00 A8 .00000 00391 .00 00 00 E8 .00000 00540

.00000029 .00000 00095 .00000069 .00000 00244 .00 00 00 A9 .00000 00393 .00 00 00 E9 .00000 00542

.0000002A .00000 00097 .00 00 006A .00000 00246 .000000 AA .00000 00395 .00 00 00 EA .00000 00544

.00 00 00 2B .00000 00 100 .00 00 00 6B .00000 00249 .00 00 00 AB .00000 00398 .00 00 00 EB .00000 00547

.0000002C .00000 00102 .0000 00 6C .00000 00251 .000000 AC .00000 00400 .00 00 00 EC .00000 00549

.000000 2D .00000 00 104 .00 00 00 6D .00000 00253 .00 00 00 AD .00000 00402 .00 00 00 ED .0000000551

.00 00 00 2E .00000 00 107 .00 00 00 6E .00000 00256 .0000 00 AE .00000 00405 .00 00 00 EE .00000 00554

.000000 2F .00000 00109 .0000 00 6F .00000 00258 .000000 AF .00000 00407 .00 00 00 EF .00000 00556

.00000030 .00000 00111 .00 00 00 70 .00000 00260 .00 00 00 BO .00000 00409 .00 00 00 FO .00000 00558

.00 00 00 31 .00000 00114 .00 00 00 71 .00000 00263 .00 00 00 Bl .00000 00412 .000000 Fl .00000 00561

.00000032 .00000 00116 .00 00 00 72 .00000 00265 .00 00 00 B2 .00000 00414 .00 00 00 F2 .00000 00563

.00 00 00 33 .00000 00 118 .00 00 00 73 .00000 00267 .00 00 00 B3 .00000 00416 .00 00 00 F3 .00000 00565

.00 00 00 34 .00000 00121 .00000074 .00000 00270 .000000 B4 .00000 00419 .00 00 00 F4 .00000 00568

.000000 35 .00000 00123 .00000075 .00000 00272 .00 00 00 B5 .00000 00421 .00 00 00 F5 .00000 00570

.00 00 00 36 .00000 00 125 .00 0000 76 .00000 00274 .000000 B6 .00000 00423 .000000 F6 .00000 00572

.00000037 .00000 00 128 .00 00 00 77 .00000 00277 .00 00 00 B7 .00000 00426 .00 00 00 F7 .00000 00575

.00000038 .00000 00130 .00 00 00 78 .00000 00279 .00 00 00 B8 .00000 00428 .000000 F8 .00000 00577

.00000039 .00000 00 132 .00000079 .00000 00281 .000000 B9 .00000 00430 .00 00 00 F9 .00000 00579

.0000 00 3A .00000 00135 .00 0000 7A .00000 00284 .00 00 00 BA .00000 00433 .000000 FA .00000 00582

.0000003B .00000 00137 .00 00 00 7B .00000 00286 .00 00 00 BB .00000 00435 .00 00 00 FB .00000 00584

.00 00 00 3C .00000 00139 .0000007C .00000 00288 .000000 BC .00000 00437 .000000 FC .00000 00586

.000000 3D .00000 00 142 .0000 00 7D .00000 00291 .00 00 00 BD .00000 00440 .0000 00 FD .00000 00589

.0000003E .00000 00 144 .0000 00 7E .00000 00293 .000000 BE .00000 00442 .000000 FE .00000 00591

.00 00 00 3F .0000000146 °.0000 00 7F .00000 00295 .000000 BF .00000 00444 .000000 FF .00000 00593

Appendix A 97

TABLE OF POWERS OF TWO MATHEMATICAL CONSTANTS

2n n 2-n
Constant Decimal Value Hexadecimal Value ---

I 0 1.0 rr 3.14159 26535 89793
2 1 0.5 rr-l

0.31830 98861 83790
4 2 0.25
8 3 0.125 .fIT 1.77245 38509 05516

16 4 0.062 5
Inrr 1.14472 98858 49400

32 5 0.031 25 e 2.71828 18284 59045
64 6 0.015 625 -1

0.36787 94411 71442 128 7 0.007 812 5 e

.Je 1.64872 12707 00128
256 8 0.003 906 25

10910 e 0.43429 44819 03252 512 9 0.001 953 125
1 024 10 0.000 976 562 5 log2 e 1.44269 50408 88963
2 048 11 0.000 488 281 25 y 0.57721 56649 01533

4096 12 0.000 244 140 625 In)' .,.0.54953 93129 81645
8 192 13 0.000 122 070 312 5

"JI 1.41421 35623 73095
16 384 14 0.000 061 035 156 25
32 768 15 0.000 030 517 578 125 In2 0.69314 71805 59945

65 536 16 0.000 015 258 789 062 5 109 10
2 0.30102 99956 63981

131 072 17 0.000 007 629 394 531 25 .JTO 3.16227 76601 68379
262 144 18 0.000 003 814 697 265 625

In 10 2.30258 40929 94046
524 288 19 0.000 001 907 348 632 812 5

1 048 576 20 0.000 000 953 674 316 406 25
2 097 152 21 0.000 000 476 837 158 203 125
4 194 304 22 0.000 000 238 418 579 101 562 5
8 388 608 23 0.000 000 119 209 289 550 781 25

16 777 216 24 0.000 000 059 604 644 775 390 625
33 554 432 25 0.000 000 029 802 322 387 695 312 5
67 lOS 864 26 0.000 000 014 901 161 193 847 656 25

134 217 728 27 0.000 000 007 450 580 596 923 828 125

268 435 456 28 0.000 000 003 725 290 298 461 914 062 5
536 870 912 29 0.000 000 001 862 645 149 230 957 031 25

1 073 741 824 30 0.000 000 000 931 322 574 615 478 515 625
2 147 483 648 31 0.000 000 000 465 661 287 307 739 257 812 5

4 294 967 296 32 0.000 000 000 232 830 643 653 869 628 906 25
8 589 934 592 33 0.000 000 000 116 415 321 826 934 814 453 125

17 179 869 184 34 0.000 000 000 058 207 660 913 467 407 226 562 5
34 359 738 368 35 .0.000 000 000 029 103 830 456 733 703 613 281 25

68 719 476 736 36 0.000 000 000 014 551 915 228 366 851 806 640 625
137 438 953 472 37 0.000 000 000 007 275 957 614 183 425 903 320 312 5
274 877 906 944 38 0.000 000 000 003 637 978 807 091 712 951 660 i56 25
549 755 813 888 39 0.000 000 000 001 818 989 403 545 856 475 830 078 125

1 099 511 627 776 40 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5
2 199 023 255 552 41 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25
4 398 046 511 104 42 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625
8 796 093 022 20S 43 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5

17 592 186 044 416 44 0.000 000 000 000 056 843 418 860 80s 014 869 689 941 406 25
35 184 372 088 832 45 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125
70 368 744 177 664 46 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5

140 737 488 355 328 47 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25

281 474 976 710 656 48 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625
562 949 953 421 312 49 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5

1 125 899 906 842 624 50 0.000 000 000 000 000 888 178 419 700 125232 338 905 334 472 656 25
2 251 799 813 685 248 51 0.000 000 000 000 000 444 089 209 850062 616 169 452 667236 328 125

4 503 599 627 370 496 52 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5
9 007 199 254 740 992 53 0.000 000 000 000 000 111 022 302 462 515 654 042 363 166 809 082 031 25

3.243F

0.517C

1.C5BF

1.250D

2.B7El

0.5E2D

1.A612

0.6F2D

1.7154

0.93C4

-0.8CAE

1.6A09

O.BI72

0.4Dl0

3.298B

2.4D76

18 014 398 509 481 984 54 0.000 000 000 000 000 055 511 151 231 257 827 021 181 583 404 541 015 625
36 028 797 018 963 968 55 0.000 000 000 000 000 027 755 575 615 628 913 510 590 791 702 270 507 812 5

72 057 594 037 927 936 56 0.000 000 000 000 006 013 877 787 807 814 456 755 295 395 851 135 253 906 25
144 115 188 075 855 872 57 0.000 000 000 000 000 006 938 893 903 907 228 377 647 697 925 567 626 953 125
288 230 376 151 711 744 58 0.000 000 000 000 000 003 469 446 951 953 614 188 823 848 962 783 813 476 562 5
576 460 752 303 423 488 59 0.000 000 000 000 000 001 734 723 475 976 807 094 411 924 481 391 906 738 281 25

1 152 921 504 606 846 976 60 0.000 000 000 000 000 000 867 361 737 988 403 547 205 962 240 695 953 369 140 625

6A89

C1B7

891C

048F

5163

58D9

98E2

EC55

7653

67E4

9BCl

E668

17F8

4D42

075C

3777

2 305 843 009 213 693 952 61 0.000 000 000 000 000 000 433 680 868 994201 773 602 981 120 347 976 684 570 312 5
4 611 686 018 427 387 904 62 0.000 000 000 000 000 000 216 840 434 497 100 886 80i 490 560 173 988 342 285 156 25
9 223 372 036 854 775 808 63 0.000 000 000 000 000 000 108 420 217 248 550 443 400 745 280 086 994 171 142 578 125

98 Appendix A

APPENDIX B. REFERENCE DIAGRAMS

This appendix contains flow diagrams that are intended to
illustrate the major operations involved during the execu­
tion of instructions by the SIGMA 5 computer. The flow
diagrams are not intended to depict actual computer oper­
ations and sequences, but the operations and sequences
shown are valid representations of the internal computer
operations. The symbolic notation used in the flow dia­
grams is consistent with that used in other portions of this
reference manual. The symbolic terms used are:

Term

A

Meaning

An internal CPU register used to hold an operand
obtained from the general register that is speci­
fied by the R field value in the instruction word.

ADDR Address - any reference address.

B

C

D

EB

EBL

ED

EDL

EH

EHL

EW

EWL

An internal CPU register used to hold an operand
obtained from the general register that is speci­
fied by the value produced by performing a logi­
calOR between the R field of the instruction and
the value 1.

An internal CPU register used to hold an immediate
operand obtai ned from the instruct i on, or a byte,
ha I fword, or word operand obta i ned from the mem­
ory (or general register) location specified by the
effective address of the instruction. For doubl eword
operations, the register holds the 32 high-order bits
of the effective doubleword.

An internal CPU register used to hold the 32 low­
order bits of the effective doubleword in a double­
word operati on.

Effective byte.

Effective byte location.

Effective doubl eword.

Effective doubl eword location.

Effective halfword.

Effective halfword location.

Effective word.

Effective word location.

IA

IRA

MA

OP

R

TCC

TYPE

WK

WL

X

Instruction register.

Instructi on address.

Indirect reference address.

Memory address - an actual core memory address.

Operation code - bits 1-7 of an instruction word.

General register address value.

Trap condition code - the code that is used during
the EXCHANGE PROGRAM STATUS DOUBLE­
WORD (XPSD) instruction.

Memory access type - the following values are used
to indicate the reason for accessing memory:

0= write
1 = read

Write key

Write lock

Index register designator.

BASIC SIGMA 5 INSTRUCTION EXECUTION CYCLE
The hexagonal elements in the flow diagram labeled lIMem­
ory Control II refer to the memory request process shown at
the right of the basic flow diagram. The memory request
process is represented as a subroutine with two inputs: an
address value (ADDR) and a memory access TYPE, separated
by a slash, that correspond to the values shown in the IIMem­
ory Control II el ements of the basic flow diagram.

The circular entry point labeled IITRAp lI is a continuation
of the circular exit points labeled IITrap Xlnlll, where n is
th e appropriate trap I ocati on.

The triangular entry point labeled IIEXU II indicates the
point in the basic flow diagram at which an instruction
(being executed as an operand of the EXECUTE instruction)
is started.

The triangular entry point labeled lIANLZ II indicates the
point in the basic flow diagram at which the effective ad­
dress computation for the instruction being anal yzed is
started; the triangular exit points indicate the completion
of the effective address calculation.

Appendix B 99

BASIC SIGMA 5 INSTRUCTION EXECUTION CYCLE

100 Appendix B

EB - C24-31
0- CO-23
0_ D

BASIC SIGMA 5 INSTRUCTION EXECUTION CYCLE (cont.)

yes

Appendix B 101

yes

102 Appendix B

FLOATING-POINT ADDITION AND SUBTRACTION

Right shift number with
smaller characteristic and
increment its character­
istic by 1 for each hex
place shifted until the
characteristics of the num­
bers are equa I

Postnormalization yes
<required more than > _____ ..,

2 hex shifts?

no

yes

yes

Right shift resultant frac­
r----------1~ tion 1 hex place and in­

crement characteristic by 1

no

yes

<postnormalization ">-___ no ___ -.
required mare than

2 hex shifts?

no

no

X'S'- CC

FLOATING-POINT MULTIPLICATION AND DIVISION

yes

no

Appendix B 103

104 Appendix B

no

LEFT SHIFT

Shift fraction left 1 hex place,
fill vacated bit position on the
right with 0'5, decrement char­
acteristic field by 1, and dec­
rement shift count by 1.

FLOATING-POINT SHI FT

yes

Fonn the 2'5 comple­
ment of the final
floating-point number

O-CC3
l-CC4

yes

yes

RIGHT SHIFT

Shift fraction right 1 hex place,
fill vacated bit positions on the
left with 0'5, increment char­
acteristic field by 1, and incre­
ment shift count by one.

APPENDIX C. INSTRUCTION LIST

Mnemonic Code Instruction Name Addressing Type Page

AD 10 Add Doubleword Doubleword 35

AH 50 Add Halfword Halfword 34

AI 20 Add Immediate Immediate 34

AIO 6E Acknowledge Input/Output Interrupt Word 67

AND 4B AND Word Word 41

ANLZ 44 Analyze Word 32

AW 30 Add Word Word 34

AWM 66 Add Word to Memory Word 37

BAL 6A Branch and Link Word 55

BCR 68 Branch on Conditions Reset Word 54

BCS 69 Branch on Conditions Set Word 54

BDR 64 Branch on Decrementing Register Word 54

BIR 65 Branch on Incrementing Register Word 54

CAll 04 Call 1 Word 55

CAL2 05 Call 2 Word 55

CAL3 06 Call 3 Word 55

CAL4 07 Call 4 Word 55

CB 71 Compare Byte Byte 39

CD 11 Compare Doubleword Doubleword 40

CH 51 Compare Halfword Halfword 39

CI 21 Compare Immediate Immediate 39

CLM 19 Compare with Limits in Memory Doubleword 40

CLR 39 Compare with Limits in Register Word 40

CS 45 Compare Selective Word 40
CW 31 Compare Word Word 40
DH 56 Divide Halfword Halfword 37
DW 36 Divide Word Word 37
EOR 48 Exclusive OR Word Word 41
EXU 67 Execute Word 53
FAL 1D Floating Add Long Doubleword 47
FAS 3D Floating Add Short Word 47
FDL 1 E Floating Divide Long Doubleword 48
FDS 3E Floating Divide Short Word 48
FML 1F Floating Multiply Long Doubleword 48
FMS 3F Floating Multiply Short Word 48
FSL lC Floating Subtract Long Doubleword 48

FSS 3C Floating Subtract Short Word 47

HIO 4F Halt Input/Output Word 66

INT 6B Interpret Word 33

LAD lB Load Absolute Doubleword Doubleword 28

LAH 5B Load Absolute Halfword Halfword 27

LAW 3B Load Absolute Word Word 28

LB 72 Load Byte Byte 26

LCD lA Load Complement Doubleword Doubleword 28

LCF 70 Load Conditions and Floating Control Byte 30

LCFI 02 Load Conditions and Floating Control
Immediate Immediate 30

LCH 5A Load Complement Halfword Halfword 27

LCW 3A Load Complement Word Word 28

LD 12 Load Doubleword Doubleword 27

LH 52 Load Ha I fwo rd Halfword 27

LI 22 Load Immediate Immediate 26

LM 2A Load Multiple Word 29

LPSD OE Load Program Status Doubleword Doubleword 56

LRP 2F Load Register Pointer Word 58

LS 4A Load Selective Word 29

LW 32 Load Word Word 27

Appendix C 105

Mnemonic Code Instruction Name Add ress i ng T l.pe Page

MH 57 Multiply Halfword Halfword 36
MI 23 Multiply Immediate Immediate 36
MMC 6F Move to Memory Control Word 58
MSP 13 Modify Stack Pointer Doubleword 52
MTB 73 Modify and Test Byte Byte 38
MTH 53 Modify and Test Halfword Halfword 38
MTW 33 Modify and Test Word Word 38
MW 37 Multiply Word Word 37
OR 49 OR Word Word 41
PLM OA Pull Multiple Word 51
PLW 08 Pull Word Word 50
PSM OB Push Multiple Word 51
PSW 09 Push Word Word 50
RD 6C Read Direct Word 59
S 25 Shift Word 41
SD 18 Subtract Doubleword Doubleword 35
SF 24 Shift Floating Word 43
SH 58 Subtract Halfword Halfword 35
SIO 4C Start Input/Output Word 63
STB 75 Store Byte Byte 30
STCF 74 Store Conditions and Floating Control Byte 32
STD 15 Store Doubleword Doubleword 31
STH 55 Sto re Ha I fword Halfword 31
STM 2B Store Multiple Word 31
STS 47 Store Selective Word 31
STW 35 Store Word Word 31
SW 38 Subtract Word Word 35
TDV 4E Test Device Word 67
TIO 4D T est Input/Output Word 66
WAIT 2E Wait Word 59
WD 6D Write Direct Word 60
XPSD OF Exchange Program Status Doubl eword Doubleword 56
XW 46 Exchange Word Word 30

106 Appendix C

APPENDIX D. SIGMA 5 EXECUTION TIMES

This appendix shows the timing (in microseconds) for exe­
cuting individua I Sigma 5 computer instructions under a
variety of circumstances. A II of the times are based on the
assumption that whenever the CPU requests a service cycle
from a particular memory bank, there is never a wait due to
other devices (such as lOPs) being connected to that memory
bank.

BasiC timing information is summarized in Table D-l. A
dash entry for any item indicates a nonapplicable or impossi­
b�e condition for the instruction. Special notes (identified
by numbers in the IINotes ll column) are given at the end of
the table. Execution times shown are for instructions under
the most common conditions the user can expect to encounter
in his program. The basic timing differences for indexed
byte and halfword instructions are due to the alignment of
bytes or halfwords in the specified register. For example,
to load byte zero into register R, the computer must

1. access the byte from core;

2. a lign the byte three byte positions to the right;

3. load it into the register.

Also shown are the additiona I times that must be added to
the basic times if the instruction performs a register-to­
register operation (i.e., accesses one or more of the general

registers for one or more operands or a di rect address). The
following conditions are assumed:

1. All instructions are in core memory.

2. In the case of an instruction with a direct address, its
operand is in one or more of the genera I registers. For
a push-down instruction with a direct address, however,
its stack pointer doubleword is in the genera I registers
and the stack is in core memory.

3. In the case of an instruction with an indirect address,
the indirect reference is to one of the genera I registers,
which contain the direct address of the operand. For
all indirect address references, add 0.16 microseconds
to the indirect address execution times. The resultant
virtua I address is assumed to be a core memory address.
For a push-down instruction with an indirect address,
therefore, both the stack pointer doubleword and the
stack are assumed to be in core memory.

Note: 1. All times are subject to change.

2. Execution times are considered to be on the
C port of memory.

3. A + 10% tolerance should be allowed for all
execution times.

4. Sigm9 5 attains memory overlap in the Push
Multiple Instruction only.

Appendix D 107

BASIC INSTRUCTION TIMING TABLE

Direct Indirect

Indexing with Byte or Indexing with Byte or
Additional

No No Times,
Index

Ha Ifword Alignment
Index

Halfword Alignment
Register-

or Word HW 0 HW 1 or Word HWO HW 1 to-Register
Mnemonic Notes Immed Index Byte 0 Byte 1 Byte 2 Byte 3 Immed Index Byte 0 Byte 1 Byte 2 Byte 3 Operation

AD 2.8 3.5 3.9 4.0 I .82

AH 2.8 3.5 2.9 4.0 4.1 3.5 .16

AI 1.8 0

AIO 6.9 7.3 9.1 9.2 0

AND 2.0 I 2.4 I 3. 1 I 3.2 I .16

ANLZ minimum 4.3 4.7 5.5 5.6 .16

ANLZ maximum 5.6 5.9 6.7 6.8 .16

AW 2.0 2.4 3.1 3.2 .16

AWM 3.3 3.7 4.5 4.6 .40

BAL 1.3 1.7 2.4 2.5 .72

BCR
BCS branch 1.2 1.6 2.4 2.5 .72

BCR
BCS no branch 2.0 2.4 3.1 3.2 .72

BDR
BIR branch 1.5 1.8 2.6 2.7 .72

BDR
BIR no branch 2.0 2.4 3.1 3.2 .72

CALL 1.0 0

CB 3.0 3.8 3.5 3.2 2.9 4.2 4.3 4.0 3.8 3.5 .16

CD 2.8 3.5 3.9 4.0 .78

CH 2.8 3.5 2.9 4.0 4. 1 3.5 .16

CI 1.8 0

CLM 2.8 3.5 3.9 4.0 .82

CLR 2.7 3.1 3.8 3.9 .16

CS 2.8 I 3.9 4.0 .16

CW 2.0 2.4- 3.1 3.2 .16

DH 16.0 16.5 16.1 17.1 17.2 16.6 .16

DW 15.8 16.2 17.0 17.1 .16

EOR 2.0 2.4- 3.1 3.2 .16

EXU 1.4 1.8 2.6 2.7 .54

FAL
FSL minimum 4.9 5.3 6.0 6.1 .78

FAL
FSL maximum 14.8 15.2 15.9 16.0 .78

FAS
FSS minimum 4.9 5.3 6.0 6.1 .16

FAS
FSS maximum 9.5 9.9 10.6 10.7 .16

FDL minimum 26.7 27.0 27.7 27.8 .78

FDL maximum 37.2 37.6 38.3 38.4 .78

FDS minimum 14.4 14.8 15.5 15.6 .16

FDS maximum 10.0 19.4- 20.1 20.2 .16

FML minimum 15.5 15.9 16.6 16.7 .78

FML !1'lOximum 21.6 22.0 I I I I 22.7 I 22.8 I .78

FMS minimum 9.5 9.9 10.6 10.7 .16

FMS maximum 12.5 12.9 13.6 13.7 .16

108 Appendix D

BASIC INSTRUCTION TIMING TABLE (Cont.)

Direct Indirect

Indexing with Byte or Indexing with Byte or
Additional

No No Times,
Index

Halfword Alignment
Index

Halfword Alignment
Register_

or Word HW 0 HW 1 or Word HW 0 HW 1 to-Regi ster
Mnemonic Notes Immed Index Byte 0 Byte 1 Byte 2 Byte 3 Immed Index Byte 0 Byte 1 Byte 2 Byte 3 Operation

HIO internal 7.8 8.2 10.0 10.1 0

HIO external 9.7 9.1 11.9 12.0 0

INT 2.6 3.0 3.8 3.9 .16

LAD 3.1 3.8 4.2 4.3 .70

LAH 3.1 3.8 3.2 4.2 4.3 3.8 .16

LAW 2.3 2.6 3.4 3.5 .16

LB 2.9 3.6 3.3 3.0 2.7 4.0 4.1 3.8 3.6 3.3 .16

LCF 2.9 3.6 3.3 3.0 2.7 4.0 4.1 3.8 3.6 3.3 .16

LCD 2.8 3.5 3.9 4.0 .70

LCH 2.6 3.3 2.7 3.7 3.8 3.3 .16

LCFI 1.4 0

LCW 2.0 2.4 3.1 3.2 .16

LD 2.8 3.5 3.9 4.0 .70

LH 2.6 3.3 2.7 3.7 3.8 3.3 .16

LI 1.4 0

LM 1
2.2+ 2.6+ 3.3+ 3.4+

.16N
O.B4N O.B4N O.B4N O.B4N

LRP 2.0 2.4 3.1 3.2 .16

LPSD 3.2 3.6 4.2 4.3 .32

LS 2.8 3.2 3.9 4.0 .16

LW 2.0 2.4 3.1 3.2 .16

MH , minimum 5.3 6.4 .16

MH maximum 6.1 7.2 .16

MI minimum 7.2 0

MI maximum 8.9 0

MMC 1
2.1+

.16N
3.52N

MSP 6.0 6.4 7.1 7.2 1. 18

MTB RiO 6.1 6.8 6.2 5.6 5.1 7.2 7.3 6.8 6.2 5.7 .08

MTB R=O 4.5 5.1 4.8 4.5 4.3 5.6 5.7 5.4 5.1 4.8 .08

MTH RiO 5.5 6.2 5.1 6.7 6.8 5.7 .08

MTH R=O 4.1 4.8 4.3 5.3 5.4 .08

MTW RiO 3.6 4.0 4.7 4.8 .40

MTW R=O 3.1 3.5 4.2 4.3 .40

MW minimum 7.2 7.6 8.3 8.4 .16

MW maximum 8.9 9.3 10.0 10.1 .16

OR 2.0 2.4 3.1 3.2 .16

PLM 1
9.8+ 10.2+ 11. 0+ 11.1+

1. 88
O.B4N O.B4N O.B4N O.B4N

PLW 10.7 11. 1 11.8 11.9 1. 88

PSM 1
9.7+ 10.1+ 10.9+ 11. 0+

1. 88
O.B4N O.B4N O.B4N O.B4N

PSW 10.6 11.0 11.7 11. 8 1. 88

RD internal 1.8 2.2 2.9 3.0 0

RD
external 4.0+D 4.4+0 5.1+0 5.2+0 0
2

S
left 1. 1+ 1. 5+ 2.2+ 2.3+

0
3 .28NB .28NB .28NB .28NB

Appendix D 109

Mnemonic

S

SD

SF

SF

SF

SF

SH

SIO

SIO

STB

STCF

STD

STH

STM

STS

STW

SW

TDV

TDV

no
no
WAIT

WD

WD

XPSD

XW

Notes:

,

1.

2.

3.

4.

BASIC INSTRUCTION TIMING TABLE (Cont.)

Direct Indirect

Indexing with Byte or Indexing with Byte or
Nc No
Index

Halfword Alignment
Index

Halfword Alignment

or Word HW 0 HW 1 or Word HW 0 HW 1
Notes Immed Index Byte 0 Byte 1 Byte 2 Byte 3 Immed Index Byte 0 Byte 1 Byte 2 Byte 3

right 1. 1+ 1.5+ 2.2+ 2.3+
3 .14NB .14NB, .14NB .14NB

2.8 3.5 3.9 4.0

short left 2.3+ 2.7+ 3.4+ 3.5+
4 1.lNH 1.lNH 1.1NH 1.1NH

short right 2.3+ I 2.7+ I I , 2.4+ , 3.5+
I I

4 .56NH .56NH .56NH .56NH'
I

long left 3.0+ 3.4+ 4.1+ 4.2+
4 1.1NH 1.lNH 1.1NH 1.1NH

long right 3.0+ 3.4+ 4.1+ 4.2+
4 .56NH .56NH .56NH .56NH

2.3 3.5 2.9 3.4

internal 8.5 8.9 10.7 10.8

external 10.6 11.0 12.8 12.9

2.8 4.3 4.0 3.7 3.4 3.9 4.9 4.6 4.3 4.0

2.8 4.3 4.0 3.7 3.4 3.9 4.9 4.6 4.3 4.0

3.4 4.0 4.5 4.6

2.8 4.0 3.4 3.9 4.6 4.0

1
2.0+ 2.4+ 3.1+ 3.2+
O.84N O.84N O.84N O.84N

3.5 3.9 4.7 4.8

2.5 2.9 3.6 3.7

2.0 2.4

internal 7.8 8.2 10.0 10.1

external 9.7 9.1 11.9 12.0

internal 7.8 8.2 10.0 10.1

external 9.7 9.1 11.9 12.0

1.5 1.9 2.6 2.7

internal 1.8 2.2 2.9 3.0

external 4.O+D 4.4+D 5.1+D 5.2+D
2

4.8 5.1 5.9 6.0

3.4 3.7 4.5 4.6

N Number of words.

D Delay caused by an external device returning the Function Strobe Acknowledge (FSA),
which is the ready/resume signal.

NB = Number of bits shifted.

NH = Number of Hex (4-bits) positions shifted.

110 Appendix D

Additional
Times,
Register-
to-Register
Operation

0

.82

0

0

0

0

.16

0

0

-.08

-.08

.48

-.08

.24N

.24

.24

.16

0

0

0

0

0

0

0

.80

.40

A
Address

direct reference, 10
effective, 10,25
indexed reference, 10
indirect reference, 10
input/output, 62
instruction, 13
memory, 6
modifi cation, 10
nonexistent, 19
reference, 10, 25
register, 10,25
updated instruction, 53

Anal yze/lnterpret Instructi ons, 32
Arithmetic Shift, 42
Armed Interrupt, 16

B
Block Pointer, register, 9, 13
Branch Instructions, 53
Byte Format, 6

c
Call Instructions, 55
Call Instruction Trap, 21
Central Processing Unit, 8-21
Circular Shift, 42
Comparison Instructions, 39
Computer Modes, 7
Condition Code Setting for

fixed-point arithmetic instructions, 34
floating-point arithmetic instructions, 44
load/store instructions, 26
push-down instructions, 48
shift instructions, 42,43

Control Instructions, 55
Core Memory, 6

dedicated locations, 7, 14, 18
Counter Interrupts, 14

o
Disabl ed Interrupt, 15
Di sarmed Interrupt, 16
Di spl acement Indexi ng, 10
Doubleword

format, 6
lOP command, 70
program status, 12
stack pointer, 49

INDEX

E
Effective Address, 10,25
Effective Location, 10,25
Effective Operand, 10,25
Enabl ed Interrupt, 16
Execute/Branch Instructions, 53
Execution Timing, 107
External Interrupt, 15

F
Fault, Interrupt System, 19
Fixed-Point Arithmetic

i nstru ct ions, 33
overflow trap, 20

Floating-Point

G

addition and subtraction, 45
arithmetic fault trap, 21
condition code settings, 47
instructions, 21,44
multiplication and division, 46
normal ize control, 45
numbers, 44
shift, 43
significance control, 46
zero control, 46

General Characteristi cs, 2
General Registers, 9
General- Purpose Features, 4

H
Hal fword, Format, 6

Immediate Addressing, 10
Immediate Operand, 10
Indexed Reference Address, 10
Indexing, 10
Index Registers, 10
Indirect Addressing, 10
Information Boundaries, 7
Information Format, 6
Input/Output

commands, 70
i nstructi ons, 62
interrupt, 15
operations, 68
status information, 64

Index 111

Instruction Format, 9
Instructions,

analyze/interpret, 32
branch, 53
call, 55
com pari son, 39
control, 55
execute/branch, 53
fixed-point arithmetic, 33
input/output, 62
load/store, 26
logical, 41
privi I eged, 55-68
push-down, 48
shift, 39

Interrupt
active, 16
armed, 16
control panel, 15
counter, 14
count pulse, 14
disabled, 16
disarmed, 15
enabled, 16
external, 15
fault trap, 19
inhibits, 16
input/output, 15
locations, 14
operat ion, 15
overri de, 13
priority chain, 15
single-instruction, 17
states, 15
system, control, 16
time of occurrence

Inter I eave/Overl ap, 4

L
Load i ng Proc ess

core memory, 79
write protection, 58

Load/Store Instructions, 26
Logical Instructions, 41
Logical Shi ft, 42

M
Master Mode, 7, 13
Memory

addresses, 6
control, 9, 12
nonexi stent addresses, 19
nonexistent address trap, 19
protecti on vi 01 ati on trap, 19
write locks, 9, 12
write protecti on, 9, 12, 13

Mu Itiusage Features, 4

112 Index

N
Normalize Control, floating-point, 45
Numbers, floating-point, 44

o
Operator Control s, 73
Overflow

fixed-point, 20
floating-point characteristic, 21

Override Interrupt Group, 13

p
Peri pheral Equi pment, 3
Priority Interrupt Chain, 15
Privi leged Instructions, 55-62

violation trap, 19
Program Status Doubl eword, 12
Processor Control Panel, 73-79
Push-Down

R

instructions, 48
stack I imit trap, 20

Real-Time Clocks, 3
Real-Time Features, 3
Reference Address, 10, 25
Register Address, 10,25
Register Block Pointer, 9, 13

s
Significance Control, Floating-Point, 46
Single-Instruction Interrupt, 17
Slave Mode, 7, 13
Stack Pointer Doubleword, 48
States of an Interru pt Level, 15
System

T

interrupt, 13-17
organization, SIGMA 5, 6-21
trap, 17-21
SIGMA 5, 1-5

Ti mes of Interru pt Occurrence, 16
Trap, 17-21

call instruction, 21/55
fixed-point overflow, 18,20
floating-point arithmetic fault, 21
interrupt system fault, 19
memory protection violation, 19
nona II owed operat ions, 17

u

nonexistent memory address, 19
nonexistent instruction, 17
privi leged instruction violation, 19
push-down stack limit, 20
unimplemented instruction, 19
watchdog timer runout, 21

Unimplemented Instructions, 19,33
Updated Instruction Address, 53

w
Watchdog Timer Runout Trap, 21
Word Format, 6
Write

key, 9, 12
lock, 9, 12

Write Protection, 9, 12, 19
lock control image, 58
lock loading process, 58

z
Zero Control, floating-point, 46
Zero Interrupt, 14

Index 113

SDS SIGMA 5 BASIC OPERATION CODES

Code Mnemonic Instruction Name Page Code Mnemonic Instruction Name ~ ----

02 lCFI load Conditions and Floating Control Immediate 30 3C FSS Floating Subtract Short

} (opUonaQ

47

04 CAll Call 1 55 3D FAS Floating Add Short 47

05 CAl2 Call 2 55 3E FDS Floating Divide Short 48

06 CAl3 Call 3 55 3F FMS Floating Multiply Short 48
07 CAl4 Call 4 55
08 PlW Pull Word 50 44 ANlZ Analyze 32
09 PSW Push Word 50 45 CS Compare Selective 40
OA PlM Pull Multiple 51 46 XW Exchange Word 30
OB PSM Push Multiple 51 47 STS Store Selective 31
OE lPSD load Program Status Daubleword 56 48 EOR Exclusive OR Word 41
OF XPSD Exchange Program Status Daubl eword 56 49 OR OR Word 41

4A lS load Selective 29
10 AD Add Doubl eword 35 4B· AND AND Word 41
11 CD Compare Daubl eword 40 4C SIO Start Input/Output 63
12 LD load Doubl eword 27 4D TIO Test Input/Output 65
13 MSP Modify Stack Pointer 52 4E TOY Test Device 67
15 STO Store Doubleword 31 4F HIO Halt Input/Output 66
18 SD Subtract Doubl eword 35
19 ClM Compare with limits in Register 40 50 AH Add Hal fword 34
1A LCD Load Complement Doubleword 28 51 CH Compare Hal fword 39
1B LAD load Absol ute Doubl eword 28 52 lH load Halfword 27
1C FSl Floating Subtract long

} (opUenol)

48 53 MTH Modify and Test Halfword 38
1D FAl Floating Add long 47 55 STH Store Hal fword 31
1E FDl Floating Divide long 48 56 DH Divide Hal fword 37
1F FMl Floating Multiply long 48 57 MH Multiply Hal fword 36

58 SH Subtract Hal fword 35
20 AI Add Immediate 34 5A lCH load Complement Halfword 27
21 CI Compare Immediate 39 5B LAH load Absolute Halfword 27
22 LI Load Immediate 26
23 MI Multiply Immediate 36 64 BDR Branch on Decrementing Register 54
24 SF Shift Floating 43 65 BIR Branch on Incrementing Register 54
25 S Shift 41 66 AWM Add Word to Memory 37
2A LM Load ,'v'lultiple 29 67 EXU Execute 53
2B STM Store Multiple 31 68 BCR Branch on Conditions Reset 54
2E WAIT Wait 59 69 BCS Branch on Conditions Set 54
2F lRP Load Register Pointer 58 6A BAl Branch and link 55

6B INT Interpret 33
30 AW Add Word 34 6C RD Read Direct 59
31 CW Compare Word 40 6D WD Write Direct 60
32 lW load Word 27 6E AIO Acknowledge Input/Output Interrupt :67
33 MTW Modify and Test Word 38 6F MMC Move to Memory Control 58
35 STW Store Word 31
36 DW Divide Word 37 70 lCF load Conditions and Floating Control 30
37 MW Multiply Word 37 71 CB Compare Byte 39
38 SW Subtract Word 35 72 lB load Byte 26
39 ClR Compare with limits in Register 40 73 MTB Modify and Test Byte 38
3A LCW load Complement Word 28 74 STCF Store Conditions and Floating Control 32
3B LAW load Absolute Word 28 75 STB Store Byte 30

701 South Aviation Blvd./EI Segundo, California 90245

	00001
	00002
	0001
	0002
	0003
	0004
	0005
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	xBackA
	xBackB

