
• Xerox SIGMA 6 Computer 

Reference Manual 

.~I ... 



XEROX SIGMA 6 INSTRUCTIONS 

Mnemonic Code In$truction Nome Page Mnemonic Code Instruction Nome ~ 

LOAD STORE 
FLOATING-POINT ARITHMETIC (!!I!!ionol) 

LI 22 Load Immediate 32 FAS 3D Floating Add Short 51 

LB 72 Load Byte 32 FAL 10 Floating Add Long 51 

LH 52 Load Hallward 32 FSS 3C Floating Subtract Short 51 

L':I 32 Load Ward 32 FSL IC Floating Subtract Long 52 

LD 12 Load Doubleword 32 FMS 3F Floating Multiply Short 52 

LCH 5,0. Load Complement Hallward 33 FML IF Floating Multiply Long 52 

LAH 5B Load Absolute Hallward 33 FDS 3E Floating Divide Shart 52 

LCW 3,0. Load Complement Word 33 FDl IE Floating Divide Long 52 

LAW 3B Load Absolute Word 33 

LCD 1,0. Load Complement Doubleward 33 DECIMAL 
LAD IB Load Absolute Doubleword 34 

LS 4,0. Load Selective 34 DL 7E Decimal Load 56 

LM 2,0. Load Multiple 35 DST 7F Decimal Store 56 

LCFI 02 Load Conditions and Floating Control Immediate 35 DA 79 Decimal Add 57 

LCF 70 Load Condition. and Floating Control 35 OS 78 Decimal Subtract 57 

XW 46 Exchange Word 36 OM 7B Decimal Multiply 57 

STB 75 Store Byt. 36 DO 7A Decima I Oi vide 58 

STH 55 Store Hallward 36 DC 70 Decimal Compar. 58 
STW 35 Store Word 36 DSA 7C Decimal Shift Aritlvnetic 58 
STD 15 Store Doubleword 36 PACk 76 Pock Decimal Digits 59 
STS 47 Store Selective 36 UNPk 77 Unpack Decimal Digits 59 

STM 2B Store Multiple 37 

STCF 74 Store Condition. and Floating ConlJol 37 
BYTE STRING 

ANALYZE/ INTERPRET 
MIS 61 Move Byte String 61 

ANLZ .. Analyze 37 CBS 60 Compare Byte String 62 

INT 6B Interpret 31 TBS .1 Translate Byte String 63 
HBS 40 T ran. late and Test Byte String 63 

FIXED-POINT ARITHMETIC EBS 63 Edit Byte String 64 

AI 20 Add Immediate 39 PUSH DOWN 
AH 50 Add Hallward 39 
AW 30 Add Word 40 PSW 09 Push Word 69 
AD 10 Add Doub leward 40 PLW 08 Pull Word 69 
SH 58 Subtract Hallward 40 PSM OB Push Mu hiple 70 
SW 38 Subtract Word 40 PLM OA Pull Multiple 70 
SO 18 Subtract Doubleward 41 MSP 13 Modify Stock Pointer 71 
MI 23 Multiply Immediate 41 

MH 57 Multiply Hallward 41 

MW 37 Multiply Word 42 EXECUTE/BRANC H 

DH 56 Divide Hallward 42 

OW 36 Divide Word 42 EXU 67 Execut. 73 

AWM 66 Add Word 10 Memory 43 BeS 69 Branch on Condition. Set 73 

MTB 73 Modify and Test Byte 43 BeR 68 Branch on Conditions Reset 73 

MTH 53 Modily and Te.t Hallward 43 BIR 65 Branch on Incrementing Regist.r 73 

MTW 33 Mod ily and T e.t Word 44 BDR 64 Branch on Decrementing Regist.r 7. 
BAL 6A Branch and Link 74 

COMPARISON 

CI 21 Compore Immediat. 44 
CALL 

CB 71 Compore Byte 44 CALI 04 Calli 
CH 51 Compare Halfword 45 

n 

CW 31 Compare Word 45 
CAL2 05 Call 2 n 

CD II Compare Doubleward 45 
CAL3 06 Call 3 n 

CS 45 Compare Selective 45 
CAL. 07 Call. n 

CLR 39 Compare with Limits in Register 46 

CLM 19 Con:'pore with Limits in Memory 46 CONTROL (prIvileged) 

LOGICAL LPSD OE Load Program Slotu. Doubleward 73 
XPSD OF Exchange Program Status Doubleword 73 

OR 49 OR Word 46 LRP 2F Load Regilter Pointer 75 

EOR 48 Exclu.ive OR Ward 46 MIN:. 6F Move 10 Memory Control 75 

AND 4B AND Word 46 WAIT 2E Wait 77 
RD 6C Rood Direct 'II 

SHIFT WD 60 Write Direct 'II 

S 25 Shilt .7 INPUT/OUTPUT (prIvileged) 

SF 24 Shift Floating ... 
SIO 4C Start Input/ Output 83 

CONVERSION HIO 4F Halt Input/ Output 86 
TlO .0 Test Input/ Output 86 

CVA 29 Convert by Addition 49 TDV 4E Telt Device 87 

CVS 28 Convert by Subtroc.tion 50 AIO 6E Acknowledge Input/ Output Interrupt 87 



Xerox SIGMA 6 Computer 

Reference Manual 

90 17 138 

June 1971 

© 1970. 1971. Xerox Corporation 

XEROX 

File No.: 1X13 
XL47, Rev. 0 

Printed in U.S.A. 



ii 

REVISION 

This publication is a revision of the Xerox SIGMA 6 Computer Reference Manual, 90 17 13A, and describes the 
new SIGMA 6 Computer System features. Changes to the previous manual are indicated by a vertical line in the 
margin of the affected page. 

RELATm PUBLICATIONS 

Xerox Sigma Glossary of Computer Terminology 

Xerox Meta-Symbol/LN,OPS Reference Manual 

Xerox Symbol/lN,OPS Reference Manual 

Xerox Macro-Symbol/LN,OPS Reference Manual 

Publication No. 

90 09 57 

900952 

90 1790 

90 1578 

Manual Type Codes: SP - batch processing, LN - language, OPS - operations, RBP - remote batch processing, 
RT - real-time, SM - system management, 15 - time-sharing, UT - utilities. 

All SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE 



CONTENTS 

1. SIGMA 6 SYSTEM 

Introduction 1 
General Characteristics 1 
Standard and Optional Features 4 
Real-Time Features 4 
General-Purpose Features 5 
Time-Sharing Features 6 
Multiuse Features 6 

2. SIGMA 6 SYSTEM ORGANIZATION 8 

Information Format 8 
Core Memory 8 

Dedicated Memory Locations 8 
Information Boundaries 8 

Computer Modes 9 
Master Mode 9 
Slave Mode 9 

CPU Fast Memory 9 
Central Processing Unit 10 

General Registers and Register Block Pointer_ 11 
Memory Control Storage 11 
Memory Map and Acc.ess Protection 11 

Instruction Format 11 
Immediate Operand 12 
Memory Reference Addresses 12 

Memory Address Control 14 
Memory Map and Access Protection 14 
Memory Write Locks 15 

Program Status Doubleword 17 
Interrupt System 18 

Internal Interrupts 18 
External Interrupts 20 
States of an Interrupt Level 20 
Control of the Interrupt System 21 
Time of Interrupt Occurrences 21 
Singl e-Instruction Interrupts 22 

Trap System 22 
Nonallowed Operation Trap 22 4. 

Unimplemented Instruction Trap '24 
Push-Down Stack Limit Trap 25 
Fixed-Point Overflow Trap 25 
Floating-Point Arithmetic Fault Trap 26 
Decimal Arithmetic Fault Trap 26 
Watchdog Timer Runout Trap 26 
Call Instruction Traps 27 

3. INSTRUCTION REPERTOIRE 28 5. 

Load/Store Instructions __________ 31 
Anal yze/Interpret Instructions 37 
Fixed-Point Arithmetic Instructions 39 
Comparison Instructions 44 
Logical Instructions 46 
Sh ift Instructions 47 

Floating-Point Shift 48 
Conversion Instructions 49 
Floating-Point Arith'metic Instructions 50 

Floating-Point Numbers 50 

Unimplemented Floating-Point Instructions __ 52 
Floating-Point Add and Subtract 52 
Floating-Point Multiply and Divide 52 
Condition Codes for floating-Potnt 

Instructions ____________ 53 

Deci mal Instructions 54 
Packed Decimal Numbers 55 
Zoned Decimal Numbers 55 
Decimal Accumulator 55 
Decimal Instruction Format 55 
Illegal Digit and Sign Detection 55 
Overflow Detection 55 
Decimal Instruction Nomenclature 56 
Condition Code Settings 56 

Byte-String Instructions 60 
Push-Down Instructions 67 

Stack Pointer Doubleword 68 
Push-Down Condition Code Settings 68 

Execute/Branch Instructions 72 
Ca II Instructi ons 74 
Control Instructions 75 

Program Status Doubleword 75 
Loadi ng the Memory Map 78 
Loadi ng the Access Protection Controls 78 
Loadi ng the Memory Wri te Protecti on Locks __ 79 
Interruption of MMC 79 
Read Direct Internal Computer Control 

(Mode 0) ___________ 80 

Write Direct Internal Computer Control 
(Mode 0) 81 

Write Direct, Interrupt Control (Mode 1) ___ 81 
Input/Output Instructions 82 

I/O Address 82 
I/O Unit Address Assignment 82 
I/O Status Response 82 
Status Information for SIO 83 

IN PUT/OUTPUT OPERA TIO NS 89 

lOP Command Doublewords 90 
Order 90 
Memory Byte Address 91 
Flags 91 
Byte Count 92 

OPERATOR CONTROLS 93 

Processor Control Panel 93 
POWER 93 
CPU RESET/CLEAR 93 
I/O RESET 94 
LOAD 94 
UNIT ADDRESS 94 
SYSTEM RESET/CLEAR 94 
NORMAL MODE 94 
RUN 94 
WAIT 94 

iii 



INTERRUPT 94 B. REFERENCE DIAGRAMS 119 
PROGRAM STATUS DOUBLEWORD 94 
INSERT 94 Notes on Basic SIGMA 6 Instruction Execution 
INSTR ADDR 95 Cycle 1. 
ADDR STOP 95 Basic SIGMA 6 Instruction Execution Cycle __ 1 
SE LECT ADDRESS 96 Floati ng-Point Instruction Execution 122 
STORE 96 Floating-Point Multiplication and Division __ 122 
DISPLAY 96 Floating-Point Addition and Subtraction ___ 123 
DATA 96 Floating-Point Shift 124 
COMPUTE 96 Edit Byte String Instruction Execution 125 
CON TROL MODE 97 
MEMORY FAULT 97 C. SIGMA 6 INSTRUCTIONS (MNEMONICS) 126 
ALARM 97 
AUDIO 97 D. INSTRUCTION TIMING 128 
WATCHDOG TIMER 97 
INTERLEAVE SELECT 97 
PARITY ERROR MODE 97 
PHASES 98 FIGURES 
RE GISTER SELECT 98 

SIGMA 6 Computer System 
SENSE 98 v 

CLOCK MODE 98 
1. A Typical SIGMA 6 System 2 

Loading Operation 98 
Load Procedure 98 

2. Information Boundaries 9 
Load Operation Details 99 

INDEX 135 
3. SIGMA 6 Central Processing Unit 10 

4. Index Displacement Alignment 14 

APPENDIXES 5. Generati on of Actua I Memory Addresses 16 

A. REFERENCE TABLES 100 
6. Typical Interrupt Priority Chain 

~ XDS Standard Symbols and Codes 100 
7. Operational States of an In~errupt Level 

XDS Standard Character Sets 100 
Control Codes 100 

Processor Control Panel 93 8. 
Special Code Properties 100 
XDS Standard 8-Bit Computer Codes 

(EBCDIC) 101 
XDS Standard 7-Bit Communication Codes TABLES 

(ANSCII) 101 
XDS Standard Symbol-Code Correspondences __ 102 1. SIGMA 6 Dedicated Memory Locations 'l 
Hexadecimal Arithmetic 106 2. SIGMA 6 Interrupt Locations 19 

Addition Table 106 3. Summary of SIGMA 6 Trap System 23 
Multiplication Table 106 4. Glossary of Symbolic Terms 30 
Table of Powers of Sixteenl0 107 5. ANALYZE Table for SIGMA 6 Operation Codes_ 38 
Table of Powers of Ten16 107 6. Floating-Point Number Representation 51 

Hexadecimal-Decimal Integer Conversion 7. Condition Code Settings for Floating-Point 
Table 108 Instructions 53 

Hexadecimal-Decimal Fraction Conversion 8. Status Bits for I/O Instructions 84 
Table 114 9. Program Status Doubleword Display 95 

Table of Powers of Two 118 D-1. Basic Instruction Timing 129 
Mathematical Constants 118 D-2. Additional Instruction Timing 133 

iv 



· 6 Computer Sigma 





1. SIGMA 6 SYSTEM 

INTRODUCTION 

The SIGMA 6 computer system can concurrently process 
operations for business, engineering/scientific, and general­
purpose applications. The basic system consists of a central 
processor, 32, 768 words of memory, and independent, multi­
plexed I/O capability. It is easily expandable by adding 
memory units, input/output processors, and peripheral de­
vices. Figure 1 shows a typical SIGMA 6 system. 

A SIGMA 6 system consists of the following major elements: 

• A memory consisting of up to four magnetic core storage 
units. 

• A central processor unit {CPU} that addresses core mem­
ory, fetches and stores information, performs arithmetic 
and logical operations, sequences and controls instruc­
tion execution, and controls the exchange of information 
between core memory and other elements of the system. 

• An i nput/ output system cor.troll ed by one or more i nput/ 
output processors {lOPs}, each providing data transfer 
between core memory and peripheral devices. The lOPs 
have separate access to core memory which are inde­
pendent of the CPU. They operate asynchronously 
and simultaneously with the CPU. 

GENERAL CHARACTERISTICS 

A SIGMA 6 computer system has features and operating 
characteristics that permit efficient functioni ng in real­
time, general-purpose, time-sharing, and multiuse computing 
envi ronments: 

• Word-oriented memory {32-bit word plus parity bit} 
which can be addressed and altered as byte (8-bit), 
halfword {2-byte}, word {4-byte}, and doubleword 
(8-byte) quantities. 

• Full parity checking for both CPU/memory and input/ 
output operations. 

• 

• 
• 

• 

Memory expandable from 32,768 to 131,072 words 
{131 ,072 to 524,288 bytes} in increments of 16,384 words. 

Direct addressing of the entire core memory, within the 
primary instruction word and without the need for base 
registers, indirect addressing, or indexing. 

Indirect addressing, with or without postindexing. 

Displacement index registers, automatically self­
adjusting for all data sizes. 

Immediate addressing' of operands, for greater storage 
efficiency and increased speed. 

• Sixteen general-purpose registers, expandable (in 
blocks of 16) to 512 to reduce transfer of data into and 
out of registers in a multiuse environment. 

• Hardware memory mapping, which obviates the problem 
of memory fragmentation and provides dynamic program 
relocation. 

• Selective memory access protection with four modes for 
system and information security and protection. 

• Selective memory-write protection. 

• Watchdog timer, assuring nonstop operation. 

• Real-time priority interrupt system with automatic iden­
tification and priority assignment, fast response time, 
and up to 235 levels that can be individually armed, 
enabled, and triggered by program control. 

• Interrupti bi I i ty of long i nstructi ons, guarantee i ng fast 
response to interrupts. 

• Automatic traps, for error conditions and for simulation 
of optional instructions not physically implemented, all 
under program control. 

• Power fai I-safe, for automatic, safe shutdown in the 
event of a power failure. 

• Multiple interval timers, with a choice of resolutions 
for independent time bases. 

• Privileged instruction logic {master/slave modes}, for 
concurrent, time-shared operati on. 

• Complete instruction set including: 

• Byte, halfword, word, and doubleword operations. 

• Use of all memory-referencing instructions for 
register-to-register operations, with or without 
indirect addressing and postindexing, and within 
the normal instruction format. 

• Multiple register operations. 

• 

• 

• 

• 

Fixed-point arithmetic operations in halfword, 
word, and doubleword modes. 

Optional floating-point hardware operations, in 
short and long formats, with significance, zero, 
and normalization control and checking, all under 
program control. 

Full complement of logical operations {AND, OR, 
exclusive OR}. 

Comparison operations, including compare between 
limits {with limits in memory or in registers}. 

SIGMA 6 System 



CENTRAL PROCESSOR UNIT 
(CPU) 

Standard Features: 

• Decimal arithmetic unit 
• Memory mop 
• Access protection 
• Memory write protection 
• Two register blocks 
• Power fail-safe 
• Two reol-time clacks 
• External interface (direct VOl 

Optional Features: 

• Two additional real-time clacks 
• 30 additional register blocks 
• Floating-point arithmetic 
• External priarity interrupt system 

(up to 224 levels) 

MEMl :: - --- - - - - r=---=-~:-eM-:1-uNiT - - -1 
Standard Features: I Standard Features: I 

32,768 words 
Two ports (multiocess) 
Two-way interleaving 
Four-way interleaving 
Parity checking 

Optional Features: 
• Four additional ports 
• Memory system expandable by 

adding up to three additional 
32K memory units 

I 16,384 or I 
I 32,768 words I 
I 

• Two ports (multiaccess) I 
• Two-way interleaving 

I • Four-woy interleaving I I • Parity checking I 
I Optional Features: I 
I • Four odditional ports : 

L--.---T'""""'-----' 
: I 
: I '--___ .== . .::.:=.~.=.=.=.=== .. ==.= . .:.r ..............•.....................•...•...•....••........•.•....••.•.•. ! 

...-_____ -..1. ____ :..'_--. -------------------. 

MUlTIPLEXING INPUT/OUTPUT r-MIOP EXPANsION OPTION - -, r
l 

- -smcroRi~puT/OUTPUT-1 
PROCESSOR (MIOP) (ONE PER MIOP) I PROCESSOR (SlOP) I 

Standard Features: Standard Features: I Stondard Features: I 

• One group of eight subchonnels One group of eight subchannels I Single-byte interface I 
• Single-byte interface • Single-byte interface I Four-byte interface I 
• Four-byte interface I I 
Optianal Features: 

Two additional groups of eight 
subchannels 

Accommodates: 

One device controller 
per subchonnel 

I 
r;:--1--, r.:-.J.._:j 
ISDIENVGICLEE UNIT I IMULTI~UNIT I 

I ··· DEVICE I 
~~~O'!:!:E.!J IE£!'I~~L!RJ 

I I 
_..l-:::-1 I r-----, 

[1/0 ~V~ J r -t 1/0 DEVICE I I '-____ ..J 

I 
L fiiO DEViCE 1 

., (Up to I 
~~e~~J 

Optional Features: I Accommodates: I 
I • 32 device control/en I Two additional groups aF eight 

subchonnels 

Accommodates: 

• One device contraller 
per subchannel L __ , _____ , __ 

I I 

r.- J --:1 r.--1-~ 
I SINGLE UNIT I I MULTI-UNIT I 
I DEVICE I . • '1 DEVICE I 
I CONTROLLERJ I CONTROLLER I 
I..-T -- L..;.-T- ..... 

I I 

Ii/O~VlC~ . ~ rVODEvlcE] L.. ____ " I L~ __ 

I . 

L .-Vo DeVICE! 
-I (Up 10 : 
Ll~de~ces) J 

L--r-------J 
I 
I 
I 
I 
~------, 
I I 

r-J.--, r-J--, 
I DEVICE I I DEVICE I 
ICONTROlLERI' • 'ICONTROLLERI 
L_,---i L_,_-J 

I I 
r--L-,~_J-:1 
~O ~~~ lYO ~~~ 

--------------Standard-$PMd peripheral devices ------------..... pl 1- High-speed peripheral devices -I 

Note: Standard units and pracessan are shown enclosed with solid barder lines. Optional units, processors, device contrallen, 
-- and devices are enclosed with clashed barder lines. Standard and optional features within a unit or processor are as listed. 

Figure 1. A Typical SIGMA 6 System 

2 General Characteristics 



• Call instructions permitting up to 64 dynamically 
variable, user-defined instructions, and permitting 
a program to gain access to operating system func­
tions without operating system intervention. 

• Decimal hardware operations, including arith­
metic, edit, and pack/unpack. 

• Push-down stack operations (hardware imple­
mented) of single or multiple words, with auto­
matic limitchecking, for dynamic space allocation, 
subrouti ne communication, and recursive routine 
capabi I ity. 

• Automatic conversion operations, including binary/ 
BCD and any other weighted-number systems. 

• An analyze instruction, for facilitating effective 
address computation. 

• An interpret instruction, for increased speed of 
interpretive programs. 

• Shift operations (left and right) or word or double­
word, including logical, circular, arithmetic, and 
floating-point modes. 

• Independently operating input/output system with the 
following features: 

• Direct input/output of a full word, without the 
use of a channel. 

• Up to eight input/output processors (lOPs). 

• Multiplexor input/output processors (MIOPs) for 
simultaneous operation of up to 24 devices per 
lOP. 

• MIOP expansion option for simultaneous operation 
of up to 24additional devices, and includes conflict­
resolving circuitry that allows it to share a memory 
bus with an MIOP. 

• Selector input/output processors (SlOPs) (8 or 32 
bits wide}for data transfer rates approaching 4 mi I­
I i on bytes per second. 

• Up to 32 device controllers can be connected to 
each SlOP. 

• Both data and command chaining, for gather-read 
and scatter-write operations. 

• Up to 32,000 output control signals and input test 
signals. 

• External interface feature that: 

• Provides an exter-nal interface for the attachment of 
external equipment to a SIGMA 6 computer via the 
Direct I/O system (Write Direct/Read Direct). 

• Allows the transfer of a 32-bit data word between 
an affected regi ster and an external devi ce. In add i­
tion, a 16-bit address is transferred for selection and 
control purposes. Each transfer is under direct 
program control. 

• Is used for the attachment of external units to the 
direct I/O interface. External units may be Xerox 
external interrupts, Xerox system interface units, 
or nonstandard special equipment. 

• Comprehensive complement of modular software: 

• Expands in capabi I i ty and speed as system grows. 

• Basic system programming support: "Stand-Alone" 
Systems and Basic Control Monitor (BCM). 

• Operating systems: Real-time Batch Monitor 
(RBM), Batch Processing Monitor (BPM), Batch 
Time-Sharing Monitor (BTM), Universal Time­
Sharing System (UTS), and Xerox Operating Sys­
tem (XOS). When larger computing capacity is 
required, UTS and XOS users can expand to the 
Xerox SIGMA 9 Computer. 

• Language processors that include: FORTRAN IV -H, 
Extended Xerox FORTRAN IV, Xerox ANS COBOL, 
BASIC, FLAG, Symbol, Macro-Symbol, Meta­
Symbol; also, utilities and applications software 
for both commercial and scientific users, e. g. , 
Data Management System (DMS), General ized 
Sort and Merge, Manage, 140 1 Simulator, Func­
tional Mathematical Programming System (FMPS), 
FMPS Matrix Generator/Report Writer (GAMMA3), 
Simulation Language (SL-l), General Purpose Dis­
crete Simulation package (GPDS), Circuit 
Analysis Systems (CIRC-AC, CIRC-DC), etc. 

• Standard and special-purpose peripheral equipment 
includes: 

• Rapid Access Data (RAD) fi les: Capacities to 
6.2 million bytes per unit; transfer rates to 3 -mil­
lion bytes per second; average access times from 
17 mi lIiseconds. 

• Magnetic tape units: 7-track and 9-track sys­
tems, IBM-compatible; high-speed units operate 
at 150 inches per second wi th transfer rates up 
to 120,000 bytes per second; and other units 
operate at 37.5 inches per second with transfer 
rates up to 20,800 bytes per second and at 75 inches 
per second with transfer rates up to 60,000 bytes 
per second. 

• Displays: Graphic display has standard character 
generator, vector generator, and close-ups, as 
well as I ight pen and alphanumeric/function key­
board with a display rate of up to 100,000 charac­
ters per sec ond. 

General Characteristics 3 



• Card equipment: Reading speeds of up to 1500 cards 
per minute; punching speeds of up to 300 cards per 
minute; intermixed binary and EBCDIC card codes. 

• Line printers: Fully buffered, with speeds of up 
to 1500 lines per minute; 132 print positions with 
64 characters. 

• Keyboard/printers: Ten characters per second; 
also available with integral paper tape reader 
(20 characters per second) and punch (10 charac­
ters per second). 

• Paper tape equipment: Readers with speeds of up 
to 300 characters per second; punches with speeds 
of up to 120 characters per second. 

• Graph plotters: Digital incremental, providing 
drift-free plotting in two axes in up to 300 steps 
per second at speeds from 30 mm to 3 inches per 
second. 

• Data communications equipment: A complete line 
of character- and message-oriented equipment to 
connect remote user terminals to the computer sys­
tem via common carrier lines and local terminals 
directly. 

STANDARD AND OPTIONAL FEATURES 

A basic SIGMA 6 system has the following standard 
features: 

• A CPU that includes: 

• Decimal arithmetic unit 

• Memory map with access protection 

• Memory write protection 

• Watchdog timer 

• Two register blocks 

• Two real-time clocks 

• P ower fa ii-safe 

• Memory parity interrupt 

• Input/output interrupt 

• Control pane I interrupt 

• External interface (Direct I/O) 

• 32,768 words of main memory with two ports 

• Multiplexor Input/Output Processor with eight sub­
channels and 4-byte interface feature. 

4 Standard and Opti ona I/Rea 1-Ti me Features 

A SIGMA 6 system may have the following optional features: I 

• Two additional real-time clocks 

• Up to 30 additional register blocks 

• Floating-point arithmetic unit 

• Up to 224 external priority interrupts 

• Up to four additional memory ports 

• Up to three additional Multiplexor I/O Processors 
(MIOPs) 

• Up to two additional groups of eight multiplexor sub­
channels with each MIOP 

• MIOP expansion option for each MIOP with 4-byte 
interface and one group of eight subchannels 

• Selector Input/Output Processor (SlOP) with 4-byte 
interface 

REAL-TIME FEATURES 

Real-time appl ications are characterized by a need for hard­
ware that provides quick response to an external environment, 
enough speed to keep up with the real-time process and suf­
ficient input/output flexibility to handle a variety of data 
types at varying speeds. The SIGMA 6 system includes pro­
visions for the following real-time computing features. 

Multi level, True Priority Interrupt System. The real-time 
oriented SIGMA 6 system provides for quick response to in­
terrupts bymeans of up to 224 external interrupt levels. The 
source of each interrupt is automatically identified and re­
sponded to according to its priority. For further flexibility 
each level can be individually disarmed (to discontinue ac­
cepting inputs to it) and disabled (to defer responding to it). 
Use of the disarm/disable feature makes programmed dynam;c 
reassignment of priorities quick and easy, even while a real­
time process is in progress. In establishing a configuration for 
the system, each group of 16 interrupt levels can have its 
priority assigned in different ways in order to meet the spe­
cific needs of the problem; the way in which interrupt levels 
are programmed is not affected by the pri ority assignment. 

Programs that deal with interrupts from specially designed 
equipment sometimes must be checked out before that 
equipment is actually available. To permit simulating this 
special equipment, any SIGMA 6 interrupt level can be 
triggered by the CPU itself through exec uti on of a si ngle 
instruction. This capability is also useful in establishing a 
hierarchy of responses. For example, in responding to a 
high-priority interrupt, after the urgent processing is com­
pleted, it may be desirable to assign a lower priority to the 
rema i n i ng porti on in order to respond to other cri ti ca I i nter-
rupt levels. The interrupt routine can accomplish this by I 
triggering a lower-priority level, which processes the re­
maining data only after other interrupts have been handled. 



Nonstop Operation. When connected to special devices 
(on a ready-resume basis), the computer can sometimes 
become excessively delayed if the special device does not 
respond quickly. A built-in watchdog timer assures that 
the SIGMA 6 computer cannot be delayed for an exces­
sive length of time. 

Real-Time Clocks. Many real-time functions must be timed 
to occur at specific instants. Other timing information is 
also needed - elapsed time since a given event, for example, 
or the current time of day. SIGMA 6 can contain two (or 
four) real-time clocks with varying degrees of resolution 
(1/60 second or V8 mi lIisecond, for example) to meet these 
needs. These clocks also allow easy handling of separate 
time bases and relative time priorities. 

Rapid Context Switching. When responding to a new set of 
interrupt-initiated circumstances, a computer system must 
preserve the current operating environment, for continuance 
later, whi Ie setting up the new environment. This changing 
of environments must be done quickly, with a minimum of 
II overhead II costs in time. In SIGMA 6, each one of up to 
32 blocks of general-purpose arithmetic registers can, if 
desired, be assigned to a specific environment. All rele­
vant information about the current environment (instructi on 
address, current genera I regi s"er block, memory-protecti on 
key, etc.) is kept in a 64-bit program status doubleword 
(PSD). A single instruction stores the current PSD any­
where in memory and loads a new one from memory to es­
tablish a new environment, which includes information 
identifying a new block of general-purpose registers. A 
SIGMA 6 system can thus preserve and change its operating 
environment completely through the execution of a single 
i nstructi on. 

Simultaneous I/O Channel Operation. The use of a multi­
plexor input/output processor (MIOP) or MIOP expansion 
option permits up to 24 channels with standard-speed de­
vices to operate concurrently; the addition of more MIOPs 
increases this throughput. 

High-Speed Channel Operation. The use of the selector 
input/output processor (SlOP) permits very high-speed data 
transfer - up to one 32-bit word per memory cycle. To 
meet special needs, data size can be 8 or 32 bits wide. 

Memory Protection. Both foreground (real-time) and back­
ground programs can be run concurrently ina SIGMA 6 
system, because a foreground program is protected against 
destructi on by on unchecked background program. Mem­
ory write-protection guarantees that protected areas of 
memory can be written into only under predefined con­
ditions. Under operating system control, the memory 
access-protection feature also prevents accessing of mem­
ory for specified combinations of reading, writing, and 
instruction acquisition. 

Variable Precision Arithmetic. Much data encountered in 
real-time systems are 16 bits or less. To permit this length 
of data to be processed efficiently, SIGMA 6 provides half­
word arithmetic operations in addition to fullword oper­
ations. Doubleword arithmetic operations (for extended 
precision) are also included. 

Direct Data Input/Output. For handl ing asynchronous I/O, 
a 32-bit word can be transferred directly to or from a 
general-purpose register, so that an I/O channel need not 
be occupied with relatively infrequent transmissions. 

Interleave/Overlap. To increase processing speeds, mem­
ory banks overlap cycles automatically wherever possible. 
Core memory addresses can be interleaved modul0-2 or 
modul0-4 on a bank basis to increase the probability of 
overlapping. 

GENERAL -PURPOSE FEATURES 

General-purpose computing applications are characterized 
primari Iy by an emphasis on computation and internal data 
handling. Many operations are performed in floating-point 
format and on strings of characters. Other typical charac­
teristics include decimal arithmetic operations, the need to 
convert binary numbers into decimal (for printing or display), 
and considerable input/output at standard speeds. The 
SIGMA 6 system includes the following general-purpose 
computer features. 

Floating-Point Hardware (optional). Floating-point in­
structions are avai lable in both short (32-bit) and long 
(64-bit) formats. Under program control, the user can 
select optional zero checking, normalization, and signifi­
cance checking (which causes the computer to trap when a 
post opera.tion shift of more than two hexadecimal places 
occurs in the fraction of a floating-point number). The 
significance checki ng feature permits the use of the short 
floating-point format (for high processing speed and storage 
economy) and the use of the ·Iong format when loss of 
significance is detected. 

Decimal Arithmetic Hardware. Decimal arithmetic instruc­
tions operate on up to 31 digits plus sign. This instruction 
set also includes pack/unpack instructions (for converting to/ 
from the packed format of two digits per byte) and a general­
ized edit instruction (for zero suppression, check protection, 
and formatting byte information with punctuation to displc:y 
or print it). 

Indirect Addressing. This feature provides for simple table 
linkages and permits the user to keep data sections of 
his program separate from procedure sections for ease of 
maintenance. 

Displacement Indexing. The technique of indexing by 
means of a IIfloating li displacement permits the user to 
access the desired unit of data without the need to con­
sider its size. The index registers automatically align 
themselves appropriately; thus, the same index register 
can be used on arrays with different data sizes. For ex­
omple, in a matrix multiplication of any array of fullword, 
single-precision, fixed-point numbers, the results can be 
stored in a second array as double-precision numbers, using 
the same index quantity for both arrays. If an index regis­
ter contains the value of k, then the user always accesses 
the kth element, whether it is a byte, halfword, word, or 
doublaword. Incrementing by various quantities according 
to data size is not required; instead, incrementing is always 

General-Purpose Features 5 



by units in a continuous array table no matter which size 
of data element is used. 

Powerful Instruction Set. The availability of more than 
100 major instructi ons results in programs that are short, 
rapidly assembled, and quickly executed. 

Translate Instruction. This instruction permits rapid trans­
lation between any two 8-bit codes (such as EBCDIC to 
ANSCII); thus data from a variety of input sources can be 
easi Iy handled and reconverted for output. 

Conversion Instructions. Two generalized conversion in­
structions provide for bidirectional conversions between 
internal binary and any other weighted number system, 
including BCD. 

Call Instructions. Four instructions permit handling up to 
64 user-defined subroutines (as if they were built-in 
machine instructions) and gaining access to specified oper­
ating system services without requiring its intervention. 

Interpret Instruction. This instruction simplifies and speeds 
interpretive operations such as compi I ing, thus reducing the 
space and time requirements for compilers. 

Four-Bit Condition Code. This feature simplifies the 
checking of results by automatically providing information 
on almost every instruction execution (including indicators 
for overflow, underflow, zero, minus, and plus, as appro­
priate) without requiring an extra instruction execution. 

TIME -SHARING FEATURES 

Time-sharing is the abi lity of a computer system to share 
its resources among many users at the same time. Each 
user may perform a different task that requires a different 
share of the avai lable resources and, in many instances, 
each may be on-line in an interactive ("conversational") 
mode with the computer. Other users may enter work to be 
batch processed. The SIGMA 6 system provides for the fol­
lowing time-sharing computer features. 

Rapid Context Saving. When changing from one user to 
another, the operating environment can be switched quickly 
and easi Iy. Stack-manipulating instructi ons permit from 
one to 16 general-purpose registers to be stored in a push­
down stack by a single instruction - with automatic updating 
of stack status information - and to be retrieved (again, by 
a single instruction) when needed. The current program 
status doubleword (which contains the entire description of 
the current user's environment and mode of operation) can 
be stored anywhere in memory and a new program status 
doubleword loaded, all with a single instruction. 

Multiple Register Blocks. The optional avai lability of up 
to 32 blocks of 16 general-purpose registers further improves 
response time by reducing the need to store and load regis­
ter blocks. As needed, ea~h user can be assigned a distinct 
block; the program status doubleword automatically points 
to the currently appl icable register block. 

6 Time-Sharing/Multiuse Features 

User Protection. The slave mode of operati on restricts each 
user to his own set of instructions while reserving to the 
operating system those instructions that could, if used in- ~ 
correctly, destroy another user's prog:am. A memory acce~ 
protection system prevents any user from accessing storage 
areas other than those assigned to him. This access protec­
tion permits the user to access certain areas for reading only, 
such as those containing public subroutines, whi Ie preventing 
him from reading, writing, or accessing instructions in areas 
set aside for other users. 

Storage Management. SIGMA 6 memories are available in I' 
seven sizes (from 32,768 to 131,072 words) to provide the ca­
pacity needed, while assuring potential for expansion. To 
assure efficient use of available memory, the memory map 
hardware permits storing a user's program in fragments (as 
small as 512 words) wherever space is available; yet, all 
fragments appear as a single, contiguous block of storage at 
execution time. The memory map also automatically and 
dynamically handles program relocation, so that the pro­
gram appears to be stored in a standard way at execution 
time (even though it may actually be stored in a different 
set of locations each time it is brought into memory). The 
memory map for the full-sized SIGMA 6 memory is provided 
no matter how sma II the actua I memory may be. Th us, the 
system can always address a virtual memory of 131,072 words 
regardless of physical memory size. 

Input/Output Capability. Sigma 6 can control up to eight I 
input/output processors (of two types) in various combi­
nations. Each multiplexor I/O processor or MIOP expansiort-" 
option can have up to 24 standard-speed I/O channels op­
erating simu Itaneously; selector I/O processors can have any 
one of up to 32 high-speed I/O devices operating on each 
processor. The I/O processors operate semi-independently 
of the central processor, leaving it free to provide faster 
response to overall system needs. 

Nonstop Operation. A watchdog timer assures that the 
system conti nues to operate even if certain special I/O 
capabilities are used with special devices that can cause 
delays or halts if they fail. Multiple real-time clocks with 
varying resolutions permit establishing several independent 
time bases, thus allowing flexible allocation of time slices 
to each user. 

MULTIUSE FEATURES 

As implemented in the SIGMA 6 system, II multi use II com­
bines two or more computer applicati on areas. The most 
difficult computing problems are associated with real-time 
applications. Simi larly, the most difficult multiuse prob­
lems are associated with time-sharing applications that 
include one or more real-time processes. SIGMA 6 sys­
tem design is especially suited for a mixture of applica­
tions in a multiuse environment. Many of the hardware 
features that are required for specific application areas 
are equally useful in others, although in different ways. 



This multiple capabi lity makes SIGMA 6 particularly effec­
tiv.", for multiuse applications. The major SIGMA 6 multiuse 
computer features are: 

Priority Interrupt. In a multiuse environment, many ele­
ments operate asynchronously. Thus, a true pri ority i n­
terrupt system is essential. It allows the computer system 
to respond quickly {and in proper order} to the many de­
mands made on it, without the high overhead cost of 
compl icated programming, lengthy execution time, and 
extensive storage allocations. 

Quick Response. The many features that combine to pro­
duce a quick-response system - multiple register blocks, 
quick context saving, push-pull operations - benefit all 
users because more of the computer's resources are avail­
able for useful work. 

Memory Protection. The memory protection features protect 
each user from every other user and also guarantee the 
integrity of programs that are essential to critical real-time 
applications. 

Input/Output. Because of its wide range of capacities 
and speeds (with and without channels), the SIGMA 6 
I/O system simultaneously satisfies the needs of many 
different application areas economically, both in terms of 
equipment and of programming. 

Instruction Set. The large SIGMA 6 instruction set pro­
vides the computational and data-handling capabilities 
required for widely differing application areas; therefore, 
each user's program length (thus running time) is decreased 
and the speed of obtaining results is increased. 

Multiuse Features 7 



2. SIGMA 6 SYSTEM ORGANIZATION 

The primary el ements in a basic SIGMA 6 system - a centrai 
processor, core memory, and input/output processor - are 
all designed around a central, double bus structure. 
Each primary element of the system operates asynchronously 
and semi -independently, automatically overlapping the op­
eration of the other elements (when circumstances permit) 
for greater speed. The basic configuration can be expanded 
merely by increasing the number of core memory units 
(up to four), increasing the number of buses (up to six), 
increasing the number of input/output processors (up to 
eight), or by increasing the number of central processors. 

INFORMATION FORMAT 

The basic element of SIGMA 6 information is a 32-bit word, 
in which the bit positions are numbered from 0 through 31, 
as follows: 

A SIGMA 6 word can be divided into two 16-bit parts 
(called halfwords) in which the bit positions are numbered 
from 0 through 15, as follows: 

A SIGMA 6 word can also be divided into four 8-bit parts 
(called bytes) in which the bit positions are numbered from 
o through 7, as follows: 

Byte 0 Byte 1 Byte 2 Byte 3 

Two SIGMA 6 words can be combined to form a 64-bit 
element (called a doubleword) in which the bit positions 
are numbered from 0 through 63, as follows: 

I : least si9ni~cant ward: I 
32 33 34 35136 37 38 39 40 41 42 43144 45 46 47 48 49 50 5 d 52 53 54 55 56 57 58 59160 61 62 63 

Four bits of information can be expressed as a single hexa­
decimal digit. A byte can be expressed as a 2-digit hexa­
decimal number, a halfword as a 4-digit hexadecimal 
number, a word as an 8-digit hexadecimal number, and a 
doubleword as a 16-digit hexadecimal number. In this 
reference manual, a hexadecimal number is displayed as 
a string of hexadecimal digits enclosed by single quotation 
marks and preceded by the letter II X". For example, the 
binary number 01011010 is expressed hexadecimally as 
X'5A', 

8 51 GMA 6 System Organization 

CORE MEMOR't' 

SIGMA 6 core memory systems use a 32-bit word (four 8-bit 
bytes) plus a parity bit as the basic unit of information, All 
of memory is directly addressable by the CPU (except for 
memory locations 0 through 15)and by the lOPs. The SIGMA6 
addressing capabi lity accommodates a maximum memory size 
of 131, 072 words (524,288 bytes). Core memory is modular 
and is available in increments of 16, 384 words (65,536 bytes), 

The main memory for SIGMA 6 is physically organized as a 
group of "units", A memory unit is the smallest, logically 
complete part of the system. It is the smallest port that 
can be logically isolated from the rest of the memory sys­
tem. A memory unit may consist of up to two physical 
memory banks. Each memory bank operates independently 
and asynchronously with respect to each other. 128K words 
of main memory is comprised of four memory units. The 
memory is word, halfword, and byte addressable for both 
reading and writing. Each memory unit has a set of "ports" 
that are common to both banks within the unit; that is, 
all ports in a given memory unit give access to the bonks 
within that unit. The basic system is provided with two 
ports, expandable to six. 

The memory system has 2-way interleaving capabi lity within 
a unit and 4-way interleaving between two adjacent units. 
Interleaving increases the probabi lity that a processor can 
gain access to a given memory bonk without encountering 
interference from other processors: A multiple bonk system 
increases the probability that successive memory accesses 
may be overlapped. In combination, these two features 
provide the SIGMA 6 system with effective memory cycle 
times of a fraction of the individual bonk cycle times. 

DEDICATED MEMORY LDCATIONS 

Memory locations 0 through 319 are reserved by standard 
XDS software for dedicated purposes as shown in Table 1. 

INFORMATION BOUNDARIES 

SIGMA 6 instructions assume that bytes, halfwords, and 
doublewords are located in storage according to the 
following boundary conventions: 

1. A byte is located in bit positions 0 through 7, 8 
through 15, 16 through 23, or 24 through 31 of a word. 

2. A halfword is located in bit positions 0 through 15 or 
16 through 31 of a word. 

3. A doubleword is located such that bits 0 through 31 of 
the doubleword are contained within an even-numbered 
word, and bits 32 through 63 of the same doubleword 
must be contained within the next consecutive (odd­
numbered) word. 

The various information boundaries are illustrated in Figure 2. 



i 
Doubleword Doubleword I 

I I 
I • . 
I Word (even address) Word (odd address) Word (even address) Word (odd address) I 

! I 

i Halfword 0 Halfword 1 Halfword 0 Halfword 1 Halfword 0 Hal fword 1 Halfword 0 Halfword 1 i 
I I 

: Byte 01 Byte 1 Byte 21 Byte 3 Byte 0 1 Byte 1 Byte 2/ Byte 3 Byte 0 / Byte 1 Byte 2\ Byte 3 Byte 0 1 Byte 1 Byte 2[ Byte 3! 

Figure 2. Information Boundaries 

Table 1. SIGMA 6 Dedicated Memory Locations 

Location 
Decimal Hexadecimal Function 

0 0 
Addresses of general registers 

15 F 

16 10 
Reserved for future use 

31 1F 

32 20 
Cpu/Iop communication 

33 21 

34 22 
Program stored by LOAD 
switch on the processor panel 

41 29 

42 2A 
First record read from peri-
phera� device during a load 

63 3F operation 

64 40 
Traps (see Table 3) 

79 4F 

80 50 
Override interrupt levelst 

87 57 

88 58 
Counter interrupt level/ 

91 5B 

92 5C 
Input/output interrupt level/ 

93 5D 

94 5E 
Reserved for future use t 

95 5F 

96 60 
External interrupt level/ 

319 13F 

tSee Table 2 

COMPUTER MODES 

The SIGMA 6 computer operates in either the master mode 
or the slave mode. The mode of operation is determined 
by the state of the master/slave mode control bit in the 
arithmetic and control unit. 

MASTER MODE 

The master mode is the basic operating mode of the 
computer. In this mode, all SIGMA 6 instructions are 
permissible. It is assumed that there is a resident execu­
tive program (operating in the master mode) that controls 
and supports the other programs operating in the master 
or slave mode. 

SLAVE MODE 

The slave mode is the problelT)-solving mode of the com­
puter. In this mode, "privileged" instructions are pro­
hibited. Privileged instructions are those relating to input/ 
output and to changes in the basic control state of the com­
puter. All privileged instructions are performed in the 
master mode only. Any attempt by a program to execute a 
privileged instruction while the computer is in the slave 
mode results in a return of control to the resident execu­
tive program. 

The master/slave mode control bit can be changed only 
when the computer is in the master mode; thus, a slave pro­
gram cannot directly change the computer mode from slave 
to master. However, the slave program can gain direct 
access to certain executive program operations by means 
of call instructions. The operations available through 
call instructions are established by the resident execu­
tive program. 

CPU FAST MEMORY 

Several high-speed integrated circuit memories may be 
used in the SIGMA 6 CPU. These memories are cap­
able of delivering information to (or receiving informa­
tion from) the arithmetic and control unit simultaneously 
with the operation of core memory. These memories 
are not accessible to any other unit in a SIGMA 6 
system. 

Computer Modes/CPU Fast Memory 9 



CENTRAL PROCESSING UNIT 

This section describes the organization and operation of 
the SIGMA 6 central processing unit in terms of informa­
tion processing and program control, instruction and data 

CPU fAST MEMORY 

GENERAL REGISTER BLOCK (nPiCALI 

o I .... ________ ~ 
1~:n~:n~§I~&~m~@~@~@~Th~~@~%~~@~@~ru~w~M~a~ 

2 1:~~:::::fII:J:~:lJlI:l:jiI:Il~:~:~::II:1I::ililil:::lilmI1lljIIlllll\llllllItm!ililti::1 

3 lil!!:i!!!i:[!I[ttlllIililili!il@ttilIi!illi:it}!ttitl:1!~@!IMI1!@!!i!i!Ii!i!{fi!1 

4 1?:::Iffl:::l:::Ijljl!i!ill:iImt:1:::I1~iI::fliJi::~l:lIllIlllIIiIi}}tIIl 
Index 

~ Registers 

5 1:}I:::i::t:::~l::ii~::iiiii:i~iililiiil!ill:l\l\llliIlili~il:~i~i~\1!1:1\~\1lI1l1l1ltjll:l:llj:ltttl:l:tlt::1 

formats, indirect addressing and indexing, memory mapping 
and protection, overflow and trap conditions, and inter­
rupt control. Basically, the SIGMA 6 CPU consists of 
a fast memory and an arithmetic and control unit (see 
Figure 3). 

ARITHMETIC AND CONTROL UNIT 

INSTRUCTION REGISTER 

o Indirect Address Flag 
o 

III I III I Operation Code Field 
I 7 

ITTIJ General Register Designator 
8 11 

ITIJ Index Register Designator 
12 ,. 

Reference Address Field 

11111111111111111111 I 

6 1:::t:!!I:t:I:I:Iiili!11!il!lljlIll\illllllllilttIi:lilIJliti!tI::1il!:::!Illl!tl!lH 

7 f))))))):))))!)!!i~!:r!I:l)ijl)l)!)~!)ljl)~I!!!lj~~IIjjjljljj!j!j!j)))))jI)I!lj:)))I1)!1!Iijj)~1!~~))liI)j)lI!J 

15 31 .• To/From 
..... ~--...-jt~ Core Memory I 

I.. • To/From 

a 

9 

10 

11 

12 

13 

14 

15 

~ 

I 
] 

~------------------~ ~ 

~------------------~3' ~ 

MEMORY CONTROL STORAGE 
Memory Map 

I- 256 a-bit page addresses ---t 
Memory Access Protection 

III1I111I1111 ~ ~--+-I""-'-II"""'-II 
I--- 256 2-bit access codes ~ 
Memory Write Protection 

II1II1III1I11 ~~~II~III 
l---- 256 2-bit write locks ---I 

31-digit 
Decimal 
Accumu­
lator 

-

I 

I/O Processors I 
• Read/Write 

Direct I 
__ Interrupts 

Priority Interrupt System 
Write Direct 

PROGRAM STATUS DOUBLEWORD 

rrrn Condition Code 
o 3 

ITTI Flooting-point Mode Control 
S 7 o Master/Slave Mode Control 

o Memory Map Control 
9 

OJ Arithmetic Trap Masks 
10 \I 

Instructian Address 

111111111111111111 
IS 31 

OJ Write Key 
343S 

OTI Interrupt Inh ibits 
37 39 

III III Register Block Pointer 
ss 59 

Figure 3. SIGMA 6 Central Processing Unit 

10 Central Processing Unit 

--



GENERAL REGISTERS AND REGISTER BLOCK POINTER 

A register block is a high-speed memory consisting of six­
teen 32-bit words contained in the basic SIGMA 6 CPU for 
general-purpose register usage. A SIGMA 6 contains two 
such register blocks (expandable to 32), and a 5-bit control 
field (called the register block pointer) in the arithmetic 
and control unit selects the block currently available to 
a program. The 16 general registers selected by the 
register block pointer are referred to as the current register 

'block. The register block pointer can be changed only 
when the computer is in the master mode; thus, a slave 
program cannot change the register block pointer. 

Each general register in a current register block is identified 
by a 4-bit code in the range 0000 through 1111 (0 through 15 
in decimal, or X'O' through X'F' in hexadecimcl notation). 
Any general register can be used as a fixed-point accumu­
lator, floating-point accumulator, temporary storage, or can 
contain control information such as a data address, count, 
pointer, etc. Any (or all) of general registers 1 through 7 
can be used as index registers. Registers 12 through 15 are 
used as a decimal accumulator that is capable of containing 
31 decimal digits plus sign. The use of registers 12 through 15 
is automatic when a decimal instruction is executed; how­
ever, these registers may be used for other purposes by in­
structions not in the decimal instruction set. 

MEMORY CONTROL STORAGE 

Three high-speed integrated-circuit memories are avai 1-
able for storage of a memory map, a set of memory access­
protection codes, and a set of memory write-protection 
codes, all of which can be changed only when the computer 
is in the master mode. 

MEMORY MAP AND ACCESS PROTECTION 

The memory map feature includes high-speed memories for 
both the memory map and the access-protection codes. Use 
of the map is determined by the state of the memory map 
control bit in the arithmetic and control unit. 

Memory Map. Two terms are essential to a proper under­
standing of the memory mapping concept: virtual address 
(Jnd actua I address. 

A virtual address is a value used by a machine-level pro­
gram to designate the location of an instruction, the loca­
tion of an element of data, the location of a data address 
(indirect address), or to designate an explicit quantity, 
such as a count. Normally, virtual addresses are derived 
from programmer-suppl ied labels through an assembly (or 
compi lation) process followed by a loading process. Virtual 
addresses maya Iso be computed during a program's execu­
tion. Thus, virtual addresses include all instruction ad­
dresses, data addresses, indirect addresses, and addresses 
used as counts within a s~ored program, as well as those 
addresses computed by the program. 

An actual address is a value used by the CPU t:. access mem­

ory for storage or retrieval of information, as required b>, tl1e 
execution sequence of an instruction. Thus, actual addresses 
designate wired-in hardware storage locations. 

When the memory map is not in effect in a SIGMA 6 com­
puter, as determined by the memory map control bit, all 
virtual address values above 15 are used by the CPU as ac­
tual addresses. Virtual addresses in the range 0 through 15 
are always used by the CPU as general register addresses 
rather than as core memory addresses. Thus, for example, 
if an instruction uses a virtual address of 5 as the address 
where a result is to be stored, the result is stored in general 
register 5 in the current register block instead of in core 
memory location 5. 

When the computer is operating with the memory map, vir­
tual addresses in the range 0 through 15 are sti II used as 
general register addresses. However, all virtual addresses 
above 15 are transformed into actual addresses, by replacing 
the high-order portion of the virtual address with a value ob­
tained from the memory map. The memory map replacement 
process is descri bed in the secti on II Memory Address Control" . 

Memory Access Protection. When the computer is oper­
ati ng in the slave mode with the memory map, the access­
protection codes determine whether or not the program may 
access instructions from, read from, or write into specific 
regions of the virtual address continuum (virtual memory). 
If the slave program attempts to access a region of virtual 
memory that is so protected, program control is returned to 
the executive program. (The access-protection codes are 
described in the section "Memory Address Control".) 

MEMORY WRITE PROTECTION 

The memory write-protection feature operates independently 
of the memory map and access protection. The memory 
write-protection feature includes the high-speed memory 
for the memory write locks. These locks operate in con­
junction with a 2-bit field, called the write key, in the 
arithmetic and control unit. The locks and the key de­
termine whether or not the program (slave or master) may 
alter the contents of specific regions of core memory as 
accessed by actual addresses. The write key can be changed 
only when the computer is in the master mode; thus the cur­
rent write key cannot be changed by a slave program. (The 
functions of the locks and key are described in the section 
"Memory Address Control".) 

INSTRUCTION FORMAT 

The normal SIGMA 6 memory-addressing instruction has the 
following format: 

* This bit position indicates whether or not in­
direct addressing is to be performed. Indirect 
addressing is performed (one level only) if this 

Instruction Format 11 



bit position contains a 1, and is not performed 
if this bit position contains a 0. 

Operation This 7-bit field contains the code that desig­
nates the operation to be performed. 

R This 4-bit field designates any of the 16 regis­
ters of the current register block as an operand 
source, result destination, or both. 

x 

Reference 
address 

This 3-bit field designates anyone of registers 
1-7 of the current register block as an index 
register. X =0 designates no indexing; hence, 
register ° cannot be used as an index register. 

This 17-bit field contains the initial virtual ad­
dress of the instruction operand. Although the 
contents of this field is always, in itself, a word 
address, the reference address field allows any 
word, doubleword, left halfword, or leftmost 
byte within a word in memory to be directly 
addressed. Halfword and byte operations re­
quire additional address bits for halfwords and 
bytes that do not begin on a word boundary. 
Thus, to address the second halfword of a word, 
the X fi~ld of the instruction must designate a 
register that contains a 1 in its low-order bit 
position. To address bytes 1, 2, or 3 of a word, 
the X field of the instruction must designate a 
register that contains 01, 10, or 11, respec­
tively, in its two low-order bit positions. See 
II Indexing and Index Registers" for a more com­
plete description of the SIGMA 6 indexing 
process. 

Some SIGMA 6 instructions are ofthe immediate-addressing 
type. The format of these instructions provides for an 
operand within the instruction word itself, as shown below. 
The functions of the Operation and R fields are identical to 
those of the normal instruction format. 

° 

Operand 

This bit position is shown coded with a 0 be­
cause indirect addressing cannot be used with 
this type of instruction. If indirect addressing 
is attempted, the computer treats the instruc­
tion as a nonexistent instruction. 

This field contains an operand that is 20 bits in 
I ength, with negative numbers represented in 
two's-complement form. 

There are several methods by which an instruction word 
may specify the source of an operand or the destination of 
a result. These methods are explained below. 

IMMEDIATE OPERAND 

The operation code of an i'mmediate operand instruction 
spec i fi es that an operand is to be found in the operand 
field (bit positions 12-31) of the instruction word itself, 

12 Instructi on Format 

and not in a general register or core memory location. The 
operand field of this type of instruction cannot be modified 
by indexing. The following SIGMA 6. instructions are of 
the immediate operand type: 

Instruc ti on Name Mnemonic Page 

load Immediate LI 29 

load Conditions and Floating LCFI 32 
Control Immediate 

Add Immediate AI 36 

Mul tipl y Immediate MI 38 

Compare Immediate CI 41 

The byte string instructions are similar to those of the 
. immediate operand type in that they cannot be modified 
by indexing. However, the operand field of these in­
structions contains a byte address displacement (or a byte 
address) that is a virtual address subject to modification by 
the memory map. If an immediate or byte string instruction 
is indirectl y addressed, it is treated as a nonexistent instruc­
tion by the computer. 

MEMORY REFERENCE ADDRESSES 

Core memory locations ° through 15 are not accessible to 
the programm~r because memory addresses ° through 15 are 
reserved as register designators for "register-to-register" 
operations. Thus, an instruction can treat any register of 
the current register block as if it were a location in core 
memory. Furthermore, the register block can be used to 
hold an instruction (or a series of up to 16 instructions) for 
execution just as jf the instruction (or instructions) were in 
core memory. The only restriction upon the use of the 
register block for instruction storage is: 

If an instruction accessed from a general register uses 
the R field of the instruction word to designate the 
next higher-numbered register and execution of the 
instruction would alter the contents of the register so 
designated, the contents of that register should not be 
used as the next instruction in sequence because the 
operation of the instruction in the affected register 
would be unpredictable. 

In the maximum core memory configuration (131,072 words), 
memory addresses II wrap around" with address ° (general 
register 0) being the next consecutive memory address after 
X I1FFFFI(131,071). Core memory location 16 follows gen­
eral register 15 as the next location in ascending sequence. 

Direct Reference Address. If neither indirect addressing 
nor indexing is called for by the instruction, the reference 
address field of the instruction is a direct reference address. 

Indirect Reference Address. If indirect addressing is called 
forbythe instruction (a 1 in bit position 0 of the instruction 
word), the reference address field is used to access a word 
location that contains the direct reference address in bit 



positions 15-31. Tile direct reference address then re­
places the indirect reference address. Indirect addressing 
is limited to one level; only the reference address field of 
the indirect word is significant. 

Index Reference Address. If indexing is called for by the 
instruction (a nonzero value in bit positions 12-14 of the 
instruction), the direct reference address is modified by 
addition of the displacement value in the general register 
(index) called for by the instruction (after scaling the dis­
placement according to the instruction type). This final 
reference address value (after indirect addressing, index­
ing, or both) is defined as the effective address of the 
instruction. If indirect addressing and indexing are both 
called for in an instruction, the index displacement is not 
used to modi fy the indi rect reference address, but is used 
to modify the direct reference obtained from the loca~ 
tion pointed to by the indirect reference address. ThiS 
method of indexing after indirect addressing is called 
postindexing. 

Register Address. If any instruction produces a virtual ad­
dress that is a memory reference (i. e., a direct, indirect 
or indexed reference address) in the range 0 through 15, 
the CPU does not attempt to read from or write into core 
memory. Instead,the 4 low-order bits of the reference 
address are used as a general register address, and the gen­
era I register (of the current register block) corresponding to 
this address is used as the operand location or result desti­
nation. Thus, the instruction can use any register in the 
current register blockasthe source of an operand, theloca­
tion ofa direct address, or the destination of a result. Such 
usage is referred to as a IIregister-to-register ll operation. 

Actual Address. An actual address is the address value 
actually used by the CPU to access core memory. If the 
computer is not operating with the memory map, all virtual 
addresses above 15 automatically become actual addresses. 
However, if the computer is operating in the memory map 
mode, all virtual addresses above 15 are transformed (usually 
into alternate addresses in a different memory page) by the 
memory map, and these then become actual addresses. Vir­
tual addresses below 16 are never transformed by the mem­
ory map and thus always refer to a general register for 
a register-to-register operation. 

Effective Address. The effective address is defined as the 
final virtual address computed for an instruction. The 
effective address is usually used as the virtual address of 
an operand location or result destination. However, some 
instructions do not use the effective address as a location 
reference; instead, the effective address is used to control 
the operation of the instruction (as in a shift instruction), 
to designate the address of an input/output device (as in 
an input/output instruction), or to designate a specific 
element of the system (as in a READ DIRECT or WRITE 
DIRECT instruction). 

Effective Location. An effective location is defined to be 
the actual location(in core memory or in the current regis­
ter block) that is to receive the result of a memory­
referencing instruction, and is referred to by means of an effec­
tive address. Because an effective address can be either 
an actual address or a virtual address, this definition of an 

effective location assumes, where applicable, the trans­
formation of vi rtual addresses into ac tual address. 

Effective Operand. An effective operand is defined to be 
the contents of an actual location (in core memory or in 
the current register block) that is to be used as an operand 
by a memory-referencing instruction, and is referred to by 
means of an effective address. This definition of an ef­
fective operand also presupposes the transformation of vir­
tual address into actual addresses. 

ADDRESS MODI FICA nON 

Indirect Addressing. The 7-bit operation code field of the 
SIGMA 6 instruction word format provides for up to 128 in­
struction operation codes, nearl y all of which can use i ndi­
rect addressing (the exceptions, already mentioned, are the 
immediate and byte string instructions). The indirect ad­
dressing operation is limited to one level, as called for by 
the indirect address bit (bit position 0) of the instruction 
word. Indirect addressing does not proceed to further levels, 
regardless of the contents of the word location pointed to by 
the reference address field of the instruction. Indirect ad­
dressing occurs before indexing; that is, the 17-bit reference 
address field of the instruction is used to obtain a word, and 
the 17 low-order bits of the word thus obtained effectively 
replace the initial reference address field; then, indexing 
is carried out according to the operation code of the 
instruction. 

Indexing aAd Index Registers. The X field of the normal 
instruction format permits anyone of registers 1 through 7 
in the current register block to be designated as an index 
register. The contents of this r~gister are then treated as 
a displacement value. 

Figure 4 shows how the indexing operation takes place. As 
the instruction is brought from memory, it is loaded into a 
34-bit instruction register that initially contains OIS in the 
two low-order bi t posi ti ons (32 and 33). The di splacement val ue 
from the index register is then aligned with the instruction 
register (as an integer) according to the addressing type of 
the instruction. That is; if it is a byte operation, the dis­
placement is lined up so that its low-order bit is aligned 
with the least significant bit of the 34-bit instruction regis­
ter. The displacement is shifted one bit to the left of this 
position for a halfword operation, two bits to the left for a 
word operation, and three bits to the left for a doubleword 
operation. An addition process then takes place to develop 
a 19-bit address, which is referred to as the effective ad­
dress of the instruction. High-order bits of the 32-bit dis­
placement field are ignored in the development of th is 
effective address (i. e., the 15 high-order bits are ignored 
for word operations, the 25 high-order bits are ignored for 
shift operations, and the 16 high-order bits are ignored for 
doubleword operations). However, the displacement value 
can cause the effective address to be less than the initial 
reference address within the instruction if the displacement 
value contains a sufficient number of high-order lis (i. e. , 
if the displacement is a negative integer in twols comple­
ment form). 

The effective address of an instruction is always a 19-bit byte 
address value; however, this va lue is automati cally ad justed 

Instruction Format 13 



Instruction in memory: 

Instruction in instruction register: 

Byte operation indexing alignment: 

Halfword operation indexing alignment: 

Word operation indexing alignment: 

Shift operation indexing alignment: 

Doubleword operation 
indexing alignment: 

Effective virtual address: 

Figure 4. Index Displacement Alignment 

to the SIGMA 6 information boundary conventions. Thus, 
for halfword operations, the low-order bit of the effective 
halfword address is 0; for word operations, the two low-order 
bits of the effective word address are OIS; and for doubleword 
operations, the 3 low-order bits of the effective doubleword 
address are 0 1 s. 

If no indexing is used with a byte operation, the effective 
byte is the first byte (bit positions 0-7) of a word location; 
if no indexing is used with a halfword operation, the effec­
tive halfword is the first halfword (bit positions 0-15) of a 
word location. A doubleword operation always involves a 
word at an even-numbered word address and the word at the 
next sequential (odd-numbered) word address. If an odd­
numbered word location is specified for a doubleword oper­
ation, the low-order bit of the effective address field (bit 
position 31) is automatically forced to O. Thus, an odd­
numbered word address (referring to the middle of a double­
word) designates the same doubleword as an even-numbered 
word address, when used for a doubleword operation. 

MEMORY ADDRESS CONTROL 

With a SIGMA 6 computer,' two methods are avai lable for 
control I i ng the use of core memory by a program; they are 

14 Memory Address Control 

the memory map and the memory write locks. The mem­
ory map provides for dynamic relocatabi lity of programs 
and for access protection through inhibitions imposed on 
slave mode programs. The memory write locks provide mem­
ory write protection for both master and slave mode programs. 

MEMORY MAP AND ACCESS PROTECTION 

The memory map can be represented as a series of 256 a-bit 
registers, each of which contains an a-bit actual memory 
page address code for a specific 512-word page of virtual 
addresses, and a series of 256 2-bit registers, each of which 
contains a 2-bit access control code for a specific 512-word 
page of virtual addresses. (The access control codes are ap­
plicable only to programs operating in the slave mode with 
the memory map. ) 

The memory page address codes are assigned to pages of vir­
tual addresses as follows: 

I Memory page X I Memory page K I ~ ~ I Memory page N I 
Vi rtua I addresses 
X'lO'_X'lFF ' 
(virtual page 0) 

Virtual addresses Virtual addresses 
X'200'-X ' 3FF' Xil FEOO'-X'l FFFF' 
(virtual page l) (virtual page 255) 



The access control codes are assigned as follows: 

I AC I AC I AC IHI AC I AC I 
1 

·Virtual addressts 

X
I
600 ' - X

I
7FF

1
1 

Vi rtua I addresses 
XI4001-X I5FF' 

+ Vi r tua I ~ddresses 
X'lFEOOI-XllFFFF' 
(virtual page 255) 

Virtual addresses 
XI2001-X I3FF' 

Virtual addresses 
XllFCOOI-XllFDFF' 

Vi rtua I addresses 
XllOI-XllFF' 
(virtual page 0) 

The memory page addresses and access control codes can 
be changed only by the privileged instruction MOVE 
TO MEMORY CONTROL (see "Control Instructions"). 

When the CPU is operating in the mapping mode, all mem­
ory references used by the program (including instruction ad­
dresses) whether direct, indirect, or indexed, are referred to 
as virtual addresses. Virtual addresses in the range 0 through 
15 are not used to address core memorYi instead, the 4 low­
order bits of the virtual address comprise a general register 
address. However, if an instruction produces a virtual ad­
dress greater than 15, the 8 h~gh-order bits of the virtual 
address are used to obtain the appropriate memory page ad­
dress and access control codes. For example, if the 8 high­
order bits of the virtual address are 0000 0000, the first page 
address code and the first access control code are used; if 
the 8 high-order bits of the virtual address are 0000 0001, 
the second page address and access control codes are used; 
and so on, through the 256th page address and control codes. 
Thus, each 512-word page of virtual addresses is associated 
wi th its own memory page address and access control codes. 

When the memory map is accessed, the CPU performs a test 
to determine whether or not there are any inhibitions on using 
the virtual address by a slave program. (If the CPU is in the 
master mode, this test is not performed.) The 2-bit access 
control code is interpreted as follows: 

AC Function 

00 The slave program can write into, read from, or access 
instructions from this page of virtual addresses. 

01 The slave program cannot write into, but can read from 
or access instructions from this page of virtual addresses. 

10 The slave program cannot write into or access instruc­
tions from, but can read from this page of virtual ad­
dresses. 

11 The slave program is denied any access to this page of 
virtual addresses. 

If the instruction being executed by the slave program fails 
this test, the instruction execution is aborted and the com­
puter traps to location X140 ', the "nonallowed operation" 
trap (see II Trap System"). 

If the instruction being executed by the slave program passes 
this test (or the CPU is in the master mode), the page address 

bits in the accessed byte of the memory map replace the 8 
high-order bits of the virtual address, to produce the actua I 
address of the core memory location to be used by the in­
struction. 

If the page address bits in the accessed byte of the memory 
map are all O'S, and when combined with 9 low-order bits 
of the virtual address, an actual address is produced that 
corresponds to a word address in the range 0 throug h 15, 
the corresponding general register in the current register 
block is not accessed. In this one particular instance, a 
word address in the range 0 through 15 corresponds to actual 
core memory locations rather than general registers. 

Figure 5 illustrates the address modification and mapping 
process for an indirectly addressed, indexed, halfword 
operation. As the figure shows, word address 1 is the 
contents of the reference address field in the instruction 
stored in memory. The instruction is brought into the in­
struction register, and word address 1 (assumed to be greater 
than 15) is converted from a virtual address to an actuol ad­
dress by the memory map. The 17 low-order bi ts of the core 
memory location pointed to by word address I, labeled word 
address 2, then replaces word address 1 in the instruction reg­
ister. The index register designated in the X field of the in­
struction is then aligned for incrementing at the halfword­
address level, the final virtual (effective) address is formed, 
and the effective address (assumed to be greater than 15) is 
also transformed, through the memory map. The final 19-
bit core l1)emory address, which automatically contains a 
low-order 0, is then used to access the halfword to be used 
as an operand for the instruction. 

MEMORY WRITE LOCKS 

The access control bits in the memory map provide access 
protection, through inhibitions imposed on slave programs. 
However, this protection is only available when the memory 
map is in effect, and is only operative with respect to slave 
programs. A memory protection feature, independent of the 
memory map, is provided by a lock and key technique. A I 
2-bit write-protect lock (WL) is provided for each 512-
word page of actual core memory addresses. The write­
protect locks consist of 256 2-bit write locks, each as­
signed to a 512-word page of actual addresses as follows: 

I WL I WL I WL I WL I WL I~ ~ WL I WL I 

I 

1
• +. Actua I addresses Actual addresses 
XI6001-X'7FF' X'I FEOOI-XIIFFFF' 

Actual addresses (memory page 255) 
XI4001-X I5FF' 

Actual addresses 
XI2001-X I3FF' 

Actual addresses 
0-XI1FF' 
(memory page 0) 

Actual addresses 
XIIFCOOI-XIIFDFF' 

The write-protect locks can be changed on Iy by the execu­
tion of the privileged instruction MOVE TO MEMORY CON­
TROL (see Control Instructions). 

Memory Address Control 15 



Instruction in memory: 

Instruction in instruction register: 

The 8 high -order bi ts of the reference address are 
replaced with page address Z from memory map: 

Actual address of memory location 
that contains the direct address: 

Di rect address in memory: 

Indirect addressing replaces reference 
address wi th di rect address: 

Halfword operation indexing alignment: 

Effective virtual address: 

The 8 high-order bits of the effective address are 
replaced with page address N from memory map: 

Final memory address, which is the actual address of 
halfword location containing the effective halfword: 

II I I 

II II 

Figure 5. Generation of Actual Memory Addresses 

The write-key (a 2-bit field in the arithmetic and control 
unit) works in conjunction with the lock storage to deter­
mine whether or not the program (whether slave or master) 
can write into a specific page of core memory locations. 
The keys and locks control access for wri ti ng, accordi ng to 
the following rules: 

A lock value of 00 means that the corresponding mem­
ory page is "unlocked"; write access to that page is 
permitted independent of the key value. 

A key value of 00 is a "skeleton ll key that wi II open 
any locki thus, write access to any memory page is 
permitted independent of its lock value. 

A lock value other than 00 for a memory page permits 
write access to that page only if the key value is 
identical to the lock value. 

16 Memory Address Control 

Thus, a program can write into a given memory page if 
the lock value is 00, if the key value is 00, or if the key 
value matches the lock value. 

Note that the memory access protection feature is pro­
vided with the memory map and operates on virtual ad­
dresses, whereas the memory write proctection feature 
operates on actual memory addresses. Thus, if the ac­
cess protection feature is invoked (that is, the CPU is 
in the slave mode and is using the memory map), the access 
protection codes are examined at the time the virtual ad­
dress is converted into an actual address. Then, the locks 
and keys are examined to determine whether or not the 
program (master or slave) is a lIowed to alter the content< 
of the core memory location corresponding to the final 
actual address. If an instruction attempts to write into 
a write-protected memory page, the computer aborts 



the instruction, and traps to location X'40', which is 
the "nonallowed operation" trap (see Trap System). 

PROGRAM STATUS DOUBLEWORD 

The critical control conditions of the SIGMA 6 CPU can be 
defined by 64 bits of information. These 64 bits are 
collectively referred to as the current program statusdouble­
word (PSD). The current PSD can be considered as a 64-
bit internal CPU register, although it actually exists as a 
collection of separate registers and flip-flops. When stored 
in memory, the PSD is always in the following format: 

Desig-
nation Functi on 

CC 

FS 

FZ 

FN 

Condition code. T~is generalized 4-bit code in­
dicates the nature of the results of an instruction. 
The significance of the condition code bits depends 
on the particular instruction iust executed. After 
an instruction is executed, the instructions BRANCH 
ON CONDITIONS SET (BCS) and BRANCH ON 
CONDITIONS RESET (BCR) can be.used, singly 
or in combination, to test for a particular condi­
tion code setting (these instructionsaredescribed 
in Chapter 3, "Execute/Branch Instructions"). 

In some operations, only a portion of the condition 
code is involved; thus, the term CC 1 refers to the 
first bit of the condition code, CC2 to the second 
bit, CC3 to the third bit, and CC4 to the fourth 
bit. Any program (slave or master mode) can change 
the current value of the condition code by executing 
either the instruction LOAD CONDITIONS AND 
FLOATING CONTROL IMMEDIATE (LCFI) or the 
instruction LOAD CONDITIONS AND FLOAT­
ING CONTROL (LCF); any program can store 
the current condition code by executing STORE 
CONDITIONS AND FLOATING CONTROL 
(STCF). These instructions are described in 
Chapter 3, "Load/Store Instructions". 

Floating significance mode control 

Floating zero mode control 

Floating normal ize mode control 

The three floating-point mode bits (FS, FZ, and 
FN) control t~e operation of the computer with 
respect to floating-point significance checking, 

Desig-
nation Function 

MS 

MM 

DM 

AM 

IA 

WK 

the generation of zero results, and the normaliza­
tion of the results of floating-point additions and 
subtractions, respectively. (The floating-point 
mode controls are described in Chapter 3, "Float­
ing-point Instructions".) Any program (slave or 
master) can change the state of the current floating­
point mode controls by executing either the instruc­
tion LCFI or the instruction LCF; any program can 
store the current state of the current floating-
point mode controls by executing the instruction 
STCF. 

Master/slave mode control. The computer is in 
the master mode when this bit is a 0; it is in the 
slave mode when this bit is a 1. The master/slave 
mode control cannot di rectly be changed by a slave 
program; however, a master mode program can change 
the control by executing either the instruction LOAD 
PROGRAM STATUS DOUBLEWORD (LPSD) or the in­
struction EXCHANGE PROGRAM STATUS DOUBLE­
WORD (XPSD). These two privi leged instructions 
are described in Chapter 3, "Control Instructions". 

Memory map control. The memory map is in ef­
fect when this bit is a 1; it is not in effect 
when this bit is O. The memory map control 
cannot be changed by a slave program. A mas­
'ter mode program can change the memory map 
control by executing either the instruction LPSD 
or the instruction XPSD. 

Decimal mask. The decimal arithmetic trap (see 
"Trap System") is in effect when this bit is a 1; 
the trap is not in effect when this bit is a O. The 
conditions that can cause a decimal arithmetic 
trap are described in Chapter 3, "Decimal In­
structions". The decimal trap mask cannot be 
changed by a slave program; a master mode pro­
gram can change the mask by executi ng either the 
instruction LPSD or the instruction XPSD. 

Arithmetic mask. The fixed-point arithmetic over­
flow trap is in effect when this bit is a 1; the trap 
is not in effect when this bit is a O. The instruc­
tions that can cause fixed-point overflow are 
described in the section "Trap System". The arith­
metic trap mask cannot be changed by a slave program; 
a master mode program can change the mask by exe­
cuting either the instruction LPSD or the instruction 
XPSD. 

Instruction address. This 17-bit field contains the 
virtual address of the next instruction to be executed. 

Write key. This field contains the 2-bit key used 
in conjunction with the memory protection fea- il 
ture. A slave program cannot change the cur­
rent write key; a master mode program can change 
the write key by executing either the instruction 
LPSD or the instruction XPSD. 

Program Status Doub I eword 17 



Desig-
nation Function 

CI Counter interrupt group inhibit. 

II Input/output interrupt group inhibit. 

EI External interrupt group inhibit. 

The three inhibit bits (CI, II, and EI) determine 
whether an interrupt can occur. The functions of 
the interrupt inhibits are described in the section 
"Interrupt System". A slave program cannot change 
the state of the interrupt inhibits; a master mode 
program can change the interrupt inhibits by exe­
cuting LPSD, X PSD, or the instruction WRITE DI­
RECT (WD). The WD instruction is described in 
Chapter 3, "Control Instructions ". 

Register pointer. This 5-bit field selects one of 
the 32 possible blocks of general-purpose registers 
as the current register block. A slave program 
cannot change the register pointer; a master mode 
program can change the register pointer by exe­
cuting LPSD, XPSD, or the instruction LOAD REG­
ISTER POINTER (LRP). The LRP instruction is de­
scribed in Chapter 3, "Control Instructions". 

INTERRUPT SYSTEM 

The SIGMA 6 priority interrupt system is an improved ver­
sion of the system used successfully in XDS 900/9300 series 
computers. Up to 237 external and internal interrupt levels 
are normally available, each with a unique location (see 
Table 2) assigned in core memory, each with a unique pri­
ority, and (except for the Power on and Power off interrupt 
levels) each capabl e of being sel ectively armed and/or 
enabled by the CPU. Also, any interrupt level can be 
"triggered II by the CPU (suppl ied with a signal at the same 
physical point where the signal from the external source 
would enter the interrupt level). The triggering of an inter­
rupt permits the te~,ting of special systems programs before 
the special systems equipment is actually attached to the 
computer, and also permits an interrupt-servicing routine to 
defer a portion of the processing associated with an inter­
rupt level by processing the urgent portion of an interrupt­
servicing routine, triggering a lower-priority level (for a 
routine that handles the less-urgent part), then clearing the 
high-priority interrupt level so that other interrupts may be 
processed before the deferred interrupt. 

SIGMA6interruptleveisarearranged in groups that are con­
nected in a predetermined priority chain by groups of levels. 
The priority of each level within a group is fixed; the first 
level has the highest priority and the last level has the low­
est. The user has the option of ordering a machine with a 
priority chain starting with the override group and con­
necting all remaining groups in any sequence. This allows 
the user to establish external interrupts above, between, or 
below the counter and input/output groups of internal in­
terrupts. Figure 6 illustrates this with a configuration that 
c typical user might establish; where (after the override 
group) the counter group of internal interrupts is given 

18 Interrupt System 

the second-highest priori ty, followed by the first group of ex­
ternal interrupts, then the input/output group of internal i nter­
rupts, and finally all succeeding groups of external interrupts. 

1st Priority 2nd Priority 

Override Counter ---Interrupts Interrupts 

4 3rd Priority 

Externa I Interrupts Group 2 

~ 
4th Priority 

I nput/ Output 
Interrupts 

4 5th Priority 

Externa I Interrupts Group 3 r. 
Figure 6. Typical Interrupt Priority Chain 

INTERNAL INTERRUPTS 

The three groups of internal interrupts include standard 
interrupts that are normally supplied with a SIGMA 6 
system, as well as power fail-safe and the additional 
counter interrupts. 

OVERRIDE GROUP (Locations X'50' to X'56') 

This group of seven interrupt levels always has the high­
est priority in a SIGMA 6 system. The power fail-safe 
feature inc I udes the Power on and Power off interrupt 
levels. A system can have two or four count-pulse inter­
rupt levels that are triggered by pulses from clock sources. 
Counter 4 has a constant frequency of 500 Hz; counters 1, 
2, and 3 can be individually set to any of five manually 
switchable frequencies - the commercial line frequency, 
500 Hz, 2 kHz, 8 kHz, and a user-supplied external sig­
nal -:- that may be different for each counter. (All counter 
frequenci es are synchronous except for the line frequency 
and the signal supplied by the user.) Each of the count­
pulse interrupt locations must contain one of the modify and 
test instructions (MTB, MTH, or MTW). Counter 4 uses the 
mapped location if map is currently invoked in the PSD. 
The results of any other instruction are unpredictable when 
the instruction is executed as the result of a count-pulse 
interrupt level advancing to the active state. When the 
modification (of the effective byte, halfword, or word) 
causes a zero result, the appropriate counter-equafs-zero 
interrupt (see "Counter-Equals-Zero Group") is triggered. 
The override group also includes a memory parity interrupt 
level that is triggered whenever a memory parity error is 
reported to the CPU. 



Table 2. SIGMA 6 Interrupt Locations 

Location WRITE DIRECT PSD WRITE DIRECT 
Dec. Hex. Register bitt Function Availabi lity Inhibit Group codett 

80 50 none Power onttt 
standard none 

81 51 Power offttt 
82 52 16 Counter 1 count pulse optional 
83 53 17 Counter 2 count pulse (as a set) none 
84 54 18 Counter 3 count pu Ise 
85 55 19 Counter 4 count pulse standard 
86 56 20 Memory Pari ty 
87 57 Reserved for future use 

88 58 22 Counter 1 zero optional X'O' 
89 59 23 Counter 2 zero (as a set) CI 
90 5A 24 Counter 3 zero standard 
91 5B 25 Counter 4 zero 

92 5C 26 Input/Output standard II 
93 5D 27 Control Panel 
94 5E Reserved for future use 
95 5F Reserved for future use 

96 60 16 

External Group 2 X'2' 

111 6F 31 

112 70 16 

External Group 3 X'3' 

127 7F 31 

optional EI , 

288 120 16 

External Group 14 X'E' 

303 12F 31 

304 130 16 

External Group 15 X'F' 

319 13F 31 

tWhen the privileged instruction WRITE DIRECT is used in the interrupt control mode to operate on interrupt levels, the 
interrupt levels are sel ected by specific bit positions in register R. The numbers in this column indicate the bit position 
in register R that corresponds to the various interrupt levels. 

tt The numbers in this column indicate the group codes (for use with WRITE DIRECT) of the various interrupt levels. 

tttThese interrupts can not be disarmed, disabled, nor inhibited. 

COUNTER-EQUALS-ZERO GROUP 
(Locations X'58' to X'SB') 

Each interrupt level in the counter-equals-zero group (called 
a counter-equals-zero interrupt) is associated with a count­
pulse interrupt in the override group. When the execution of 
a modify and test instruction in the count-pulse interrupt 10- I 

cation causes a zero result in the effective byte, halfword, or 
word location, the corresponding counter-equals-zero inter­
rupt is tri ggered. The counter-equa Is-zero interrupts can be 

inhibited or permitted asa group. If bit position 37 (CI) of the 
current program status doubleword contains a 0, the counter­
equals-zero interrupts are allowed to interrupt the program be­
ing executed. However, if the CI bit is a 1, the counter­
equals-zero interrupts are notal lowed to interruptthe program. 

INPUT/OUTPUT GROUP (Locations X'SC' and X'5D') 

This interrupt group includes two standard interrupts: the I/O 
interrupt and the control panel interrupt. The I/O interrupt 

Interrupt System 19 



level accepts interrupt signals from the standard I/o 
system. The I/o interrupt location is assumed to contain 
an EXCHANGE PROGRAM STATUS DOUBLEWORD (XPSD) 
instruction that transfers program control to a routine for 
servicing all I/O interrupts. The I/O routine then contains 
an ACKNOWLEDGE I/o INTERRUPT (AIO) instruction that 
identifies the source and reason for the interrupt. 

The control panel interrupt level is connected to the INTER­
RUPT buttons on the processor control panel. The control 
panel interrupt level can thus be triggered by the computer 
operator, allowing him to initiate a specific routine. 

The interrupts in the input/output group can be inhibited or 
permitted by means of bit position 38 (II) of the program 
status doubleword. If II is a 0, the interrupts in the I/O 
group are allowed to interrupt the program being executed. 
However, if the II bit is a 1, the interrupts are inhibited 
from interrupting the program. 

POWER FAIL-SAFE FEATURE 

The two power fail-safe interrupt levels, which cannot be 
disabled, disarmed, or inhibited, are used to enter routines 
that save and restore volatile information (e. g., registers, 
interrupt environment, etc.) in case of primary powerfailure. 
When primary voltage drops below safe limits, the power off 
interrupt is triggered. Typically, a power off routine stores 
volati Ie information in main memory to faci litate recovery, 
halts all I/O operations, and ends in a waiting state. When 
primary power returns to safe limits, the power on interrupt 
is triggered. Typically, a power on routine restores infor­
mation from main memory and prepares to resume processing. 
(Note: When power is restored, software timeouts for I/O 
operations may occur.) Because the power on interrupt has 
a hi gher priority than the power off interrupt (see Table 2), 
a power failure cannot interrupt a power on routine before 
the system is restored to a predi ctab Ie state (registers 
restored, etc.). Since main frame power supplies maintain 
voltages for five milliseconds after detecting an imminent 
power failure, the total time of the power on and power off 
routines must be less than five mi Iliseconds. 

EXTERNAL INTERRUPTS 

A SIGMA 6 system can contain up fl.' 14 groups of optional 
interrupt levels, with 161evels in each group. As shown in 
Figure 6, the groups can be connected in any priority sequence. 

All external interrupts can be inhibited or permitted by means 
of bit position 39 (EI) of the program status doubleword. If 
EI is a 0, external interrupts are allowed to interrupt the 
program; however, if EI is a 1, all external interrupts are 
inhibited from interrupting the program. 

STATES OF AN INTERRUPT LEVEL 

A SIGMA 6 interrupt level is mechanized by means of three 
flip-flops. Two of the flip-flops are used to define any of 
four mutually exclusive states: disarmed, armed, waiting, 
and active. The third flip-flop is used as a level-enable. 
The various states and the conditionscausing them to change 
state (see Figure 7) are described in the following paragraphs. 

DISARMED 

When an interrupt level is in the disarmed state, no signal 
to that interrupt level is admitted; that is, no record is re­
tained of the existence of the signal, nor is any program 
interrupt caused by it at any time. 

ARMED 

When an interrupt level is in the armed state, it can accept 
and remember an interrupt signal. The receipt of such a sig­
nal advances the interrupt level to the waiting state. 

WAITING 

When an interrupt level in the armed state receives an in­
terrupt signal, it advances to the waiting state, and remains 

External 
Input 

Active, waiting, or r----------------------

: ~ I 

d;sarmed stale I O;sabled stale 

Trigger 
Input 

1-. ----0 ~: Remember 
Armed state : interr~pt Enabled state 

I 
I 

---------------------~ 
Group n 
inhibit = 1 

on 
off 

Group n 
inhibit = 0 

WAITING STATE 

---------------------------------------------I 

Note: The armed, disarmed, waiting, and active states are controlled by two flip-flops and the enabled/disabled I states are controlled by 

the level-enable flip-flop. 

Figure 7. Operational States of an Interrupt Level 

20 Interrupt System 



in the waiting state unti I it is allowed to advance to the 
active state. If the level-enable flip-·flop is off, the in­
terrupt level can undergo all state changes except that of 
moving from the waiting to the active state. Furthermore, 
if this flip-flop is off, the interrupt level is completely re­
moved from the chain that determines the priority of access 
to the CPU. Thus, an interrupt level in the waiting state 
with its level-enable in the off condition does not prevent 
an enabled, waiting interrupt of lower priority from moving 
to the acti ve state. 

When an interrupt level is in the waiting state, the follow­
ing conditions must all exist simultaneously before the level 
advances to the active state. 

1. The level must be enabled (i. e., its level-enable flip­
flop must be set to 1). 

2. The CPU must be at an interruptible point in the exe­
cution of a program. 

3. The group inhibit (CI, II, or EI, if applicable) must be 
a O. 

4. No higher-priority interrupt level is in the active state 
or is in the waiting sto4-e and totally enabled (i. e. , 
enabled and not inhibited). 

ACTIVE 

When an interrupt meets all of the conditions necessary to 
permit it to move from the waiting state to the active state, 
it is permitted to do so by being acknowledged by the com­
puter, which then executes the contents of the assigned in­
terrupt location as the next instruction. The instruction 
address portion of the program status doubleword remains 
unchanged until the instruction in the interrupt location is 
executed. 

The instruction in the interrupt location must be one of the 
following: XPSD, MTB, MTH, or MTW. If the execution of 
any other instruction in an interrupt location attempted as 
the result of an interrupt level advancing to the active 
state, the results of the instruction are unpredictable. 

The use of the privi leged instruction XPSD in an interrupt 
location permits an interrupt-servicing routine to save the 
entire current machine environment and establish a new 
environment. If working registers are needed by the 
routine and additiona I register blocks are avai lable, the 
contents of the current register block can be saved auto­
matically with no time loss. This is accomplished by chang­
ing the value of the register pointer, which results in the 
assignment of a new block of 16 registers to the routine. 

An interrupt level remains in the active state unti I it is 
cleared (removed from the active state) by the execution 
of the LPSD instruction or the WD instruction. An interrupt­
servicing routine can itself be interrupted whenever a 
higher-priority interrupt level meets all of the condi­
tions for becoming active; and then continued after the 
higher-priority interrupt is cleared. However, an 

interrupt-servicing routine cannot be interrupted by a 
lower-priority interrupt as long as it remains in the active 
state. Normally, the interrupt servicing routine clears its 
interrupt and transfers program contro I back to the poi nt of 
interrupt by means of an LPSD instruction with the same 
effective address as the XPSD instruction in the interrupt 
location. 

CONTROL OF THE INTERRUPT SYSTEM 

The SIGMA 6 system has two points of interrupt control. 
One point of interrupt control is at the individual interrupt 
level. The WD instruction can be used to individually arm, 
disarm, enable, disable, or trigger any interrupt level ex­
cept for the power fail-safe interrupts (which are always 
armed, always enabled, and cannot be triggered). 

The second point of interrupt control is achieved by means 
of the interrupt inhibits (CI, II, and EI) in the program status 
doubleword. If an interrupt inhibit is set to 1, all interrupt 
levels in the corresponding group are effectively disabled; 
i. e., no interrupt in the group may advance from the wait­
ing state to the active state and the group is removed from 
the interrupt recognition priority chain. Thus, a waiting, 
enabled interrupt level (in a group that is not inhibited) is 
not prevented from interrupting the program by a higher­
priority,' waiting, enabled interrupt level in a group that is 
inhibited. However, if an interrupt group is inhibited whi Ie 
a level in that group is in the active state, no lower-priority 
interrupt level may advance to the active state. 

nME OF INTERRUPT OCCURRENCES 

The SIGMA 6 CPU permits an interrupt to occur during the 
following time intervals (related to the execution cycle of 
an instruction) providing the control panel COMPUTE switch 
is in the RUN position and no "halt" condition exists: 

1. Between instructions: An interrupt is permitted between 
the completion of any instruction and the initiation of 
the next instruction. 

2. Between the initiation of an instruction and memory or 
register modification: For some instructions, an interrupt 
is permitted after an instruction has been in process and 
up to the point in time when a memory location or a general 
register is modified. If an interrupt occurs during this time 
interval, the instruction is aborted, the instruction address 
portion ofthe program status doubl eword remai ns poi nti ng 
tothe interrupted instruction, and the instruction in the in­
terrupt location is executed. After the interrupt-servi c i ng 
routine has been processed, program control is returned to 
the interrupted instruction, and the interrupted instruction 
is then reinitialized. Most instru.:tions have such a short 
execution time that they are not abortable by an interrupt; 
thus, an interrupt normal I y occurs onl y before or after an 
instruction execution. 

Interrupt System 21 



3. Between instruction iterations: An interrupt is also 
permitted to occur during the execution of the follow­
ing multiple-operand instructions: 

Move Byte String (MBS) 
Compare Byte String (CBS) 
Translate Byte String (TBS) 
Translate and Test Byte String (TTBS) 
Edit Byte String (EBS) 
Decimal Multiply (OM) 
Decimal Divide (00) 
Move tt::) Memory Control (MMC) 

The control and intermediate results of these instructions re­
side in registers and memory; thus, the instruction can be 
interrupted between the completion of one iteration (oper­
and execution cycle) and the point in time (during the next 
iteration) when a memory location or register is modified. 
If an interrupt occurs during this time, the current iteration 
is aborted and the instruction address portion of the program 
status doubleword remains pointing to the interrupted instruc­
tion. After the interrupt-servicing routine is completed, the 
instruction continues from the point at which it was inter­
rupted and does not begin anew. 

SINGLE-INSTRUCTION INTERRUPTS 

A s ingle- instruction interrupt is a situation where an interrupt 
level is activated, the current program is interrupted, the single­
instruction in the interrupt location is executed, the interrupt 
level is automatically cleared and armed, and the interrupted 
program continues without be ing disturbed or delayed (except 
for the time required for the singl e-instruction). 

If any of the following instructions is executed in any in­
terrupt location, then that interrupt automaticall y becomes 
a single-instruction interrupt. 

Instruction Name 

Modify and Test Byte 

Modify and Test Halfword 

Modify and Test Word 

Mnemonic 

MTB 

MTH 

MTW 

The modify and test instruction modifies the effective byte, 
halfword, or word (as described in the section "Fixed-point 
Arithmetic Instructions") but the current condition code re­
mains unchanged (even if overflow occurs). The effective 
address ofa modify and test instruction in an interrupt loca­
tion (except counter 4) is always treated as an actual 
address, regardless of whether or not the memory map is 
currently being used. Counter 4 uses the mapped location if 
map is currently invoked in the PSD. The execution of a 
modify and test instruction in an interrupt location, including 
mapped and unmapped counter 4, is independent of the 
memory access protection codes and the write-protection 
locks; thus, a memory protection violation trap cannot 
occur (a nonexistent memory address wi II cause an unpre­
dictable operation). Also, the fixed-point overflow trap 
cannot occur as the result of overflow caused by executing 
MTH or MTW in an interrupt location. 

The execution of a modify and test instruction in an interrupt 
location automatically clears and arms the corresponding in­
terrupt level, allowing the interrupted program to continue. 

22 Trap System 

When a modify and test instruction is executed in a count­
pulse interrupt location, all of the above conditions appl~ 
in addition to the following: If the resultant value in the 
effective location is zero, the corresponding counter­
equals-zero interrupt is triggered. 

TRAP SYSTEM 
When a condition that is to result in an interrupt is 
sensed, a signal is sent to an interrupt level. If that 
level is "armed" it advances to the waiting state. When 
all of the conditions for its acknowledgment have been 
achieved, the interrupt level eventually advances to the 
active state, where it finally causes the computer to take 
an instruction from a specific location in memory. The com­
puter may execute many instructions between the time that 
the interrupt requesting condition is sensed and the time that 
the actual interrupt acknowledgment occurs. However, de­
tecting any of the conditions listed in Table 3 results in a 
trap (the immediate execution of the instruction in a unique 
location in memory). 

When a trap condition occurs, the CPU sets the trap state. De­
pending on the type of trap, the instruction currently being exe­
cuted by the CPU mayor may not be carried to completion. In 

I any event, the instruction is terminated with a trap sequence. 
~ In this sequ~nce, the instruction address (IA) portion of the 

program status doubleword (PSD), which has already been 
incremented by 1, is decremented by 1 and then the instruc 
tion in the location associated wi th the trap is executed. 
An interrupt acknowledgment cannot occur unti I the execu­
tion of the instruction in the trap location is completed. The 
instruction in the trap focation must be an XPSO instruction; 
if the execution of any other instruction in a trap location 
is attempted as the resul t of a trap activation, the results of 
the instruction are unpredictable. The detai led operation of 
XPSD is described in Chapter 3, II Control Instructions". 

The XPSO instruction in a trap location is accessed without 
using the memory map, regardless of whether or not the mem­
ory map is in effect when the trap condition occurs. Also, 
no memory protection violation or privileged instruction 
violation can occur as a result of either accessing or exe­
cuting an XPSO instruction in a trap location. Table 3 
summarizes the description of the trap system. 

NONALLOWED OPERATION TRAP 

The occurrence of one of the nona II owed operations always 
causes the computer to abort the instruction being exe­
cuted (at the time that the nona II owed operation is detected) 
and to immediately execute the instruction in trap location 
X'40'. 

NONEXISTENT INSTRUCTION 

Any instruction that is neither standard nor optional on 
SIGMA 6 is defined as nonexistent (this incl udes immediate 
addressin"g instructions that are indirectly addressed). If 
execution of a nonexistent instruction is attempted, the 
computer traps to location X'40 ' at the time the instruction 
is decoded. The operation of the XPSD instruction in trap 



Table 3. Summary of SIGMA 6 Trap System 

Location 

Dec. Hex. Function 
PSD 

Mask Bit 

64 

65 

66 

67 

68 

69 

70 

72 

73 

74 

75 

76 

40 

41 

42 

43 

44 

45 

46 

48 

49 

4A 

4B 

4C 

79 4F 

Nonallowed operation 

1. Nonexistent instruction 

2. Nonexistent memory 
address 

3. Privileged instruction 
in slave mode 

4. Memory protection 

Unimplemented instruction 

Push-down stac k lim it 
reached 

Fixed-point arithmetic 
overflow 

Floating-point fault 

none 

none 

TW, TSt 

AM 

1. Characteristic overflow none 

2. Divide by zero 

3. Significance check 

Decimal arithmetic fault 

Watchdog timer runout 

CALL 1 

CALL 2 

CALL 3 

CALL 4 

Reserved 

none 

FS, FZ, 
FN 

DM 

none 

none 

none 

none 

none 

Time of Occurrence 

Instruction decoding 

Prior to memory access 

Instruction decoding 

Prior to memory access 

Instruction decoding 

At the time of stack limit 
detection 

Spec ial Action During XPSD 

Set CCl after new CC is 
loaded from memory. If bit 
9 of XPSD is 1, add 8 to 
the new instruction address 
value loaded from memory.' 

Set CC2 after new CC is 
loaded from memory. If bit 
9 of XPSD is 1, add 4 to 
the new instruction address 
value loaded from memory. 

Set CC3 after new CC is 
loaded from memory. If bit 
9 of XPSD is 1, add 2 to 
the new instruction address 
value loaded from memory. 

Set CC4 after new CC is loaded 
from memory. If bit 9 of XPSD is 
1, add 1 to the new instruction 
address value loaded from memory. 

none 

none 

For al I instructions except DW none 
and D H, trap occurs after com­
pletion of instruction. For DW 
and D H, instruction is aborted 
with memory, regi sters, CC 1, 
CC3, CC4 unchanged. 

At time of fault detection; the 
condition code is set to indi­
cate the reason for the trap 

At time of fault detection; the 
condition code is set to indi­
cate the reason for the trap 

At time of runout 

Instruction decoding 

Instruction decoding 

Instruction decoding 

Instruction decoding 

none 

none 

none 

The R fi el d of the CA LL i nstruc­
tion is ORed into new CC set­
tings loaded from memory. If 
bit 9 of XPSD is 1, the R field 
of the CALL instruction is ad­
ded to the new instruction ad­
dress value loaded from memory. 

~ __ ~~ __ ~ ______ ~~ ____________ ~ __________ L' . ___ • _____ • ________________ ~ __________________________ ~ 

tThe TW and TS mask bits are contained within the stack pointer doubleword for each push-down stack. 

T rap System 23 



location X'40' (with respect to the condition code and 
instruction add~ess portions of the PSD) is as follows: 

1. Store the current PSO. The condition code stored is 
that which existed at the end of the instruction exe­
cuted immediately prior to the nonexistent instruction. 

2. Load the new PSD. The current PSD is replaced by the 
contents of the doubleword location following the double­
word location in which the current PSD was stored. 

3. Modify the new PSD: 

a. Set CCl to 1 (CC2, CC3, and CC4 remain set at 
the values loaded from memory). 

b. Ifbitposition90fXPSDcontainsal, the instruction 
address loaded from memory is incremented by S. If 
bit position 9 of XPSD contains a 0, the instruction 
address remai ns at the value loaded from memory. 

NONEXISTENT MEMORY ADDRESS 

Any attempt to access a nonex i stent memory address causes a 
trap to location X '40' at the time of the request for memory 
service. A nonexistent memory address condition is detected 
by memory on the basis of the actual address presented to it. 
If the CPU is currently using the memory map, the virtual ad­
dress wi II already have been modified by the memory map to 
generate an actual (but nonexistent) address. The operation 
of XPSD in trap location X'40' is as follows: 

1. Store the current PSD. 

2. Load the new PSD. 

3. Modify the new PSD: 

a. Set CC2 to 1 (CC1, CC3, and CC4 remain set at 
the values loaded from memory). 

b. Ifbitposition90fXPSDcontainsa 1, the instruction 
address loaded from memory is incremented by4. If 
bit position 9 of XPSD contains a 0, the instruction 
address remains at the value loaded from memory. 

PRIVILEGED INSTRUCTION IN SLAVE MODE 

An attempt to execute a privileged instruction while the 
CPU is in the slave mode causes a trap to location X140 ' at 
the time of instruction decoding. The operation of XPSD 
in trap location X140' is as follows: 

1. Store the current PSD. 

2. Load the new PSD. 

3. Modify the new PSD. 

a. Set CC3 to 1 (CC1, CC2, and CC4 remain at the 
val ues loaded from memory). 

b. If bi t position 9 of XPSD contains a 1, the instruc­
tion address loaded from memory is incremented 
by 2. If bit position 9 of XPSD contains a 0, the 
instruction address remains at the value loaded 
from memory. 

24 T rap System 

The operation codes, OC, aD, 2C, 20, and their indirectly 
addressed forms, SC, SO, AC, AD, are both nonexistent 
and privileged. If one of these operation codes is used I 

while the CPU is in the slave state, both CCl and CC3 wi~ 
be set to )'s after the new PSD has been loaded, and if bit 
position 9 of XPSD contains a 1, the instruction address 
loaded from memory is incremented by 10. 

MEMORY PROTECTION VIOLATION 

A memory protection violation can occur either because of 
a memory map access control bit violation (by a slave pro­
gram using the memory map) or because of a memory 
write lock violation (by either a slave or a master mode 
program). When either memory protection violation occurs, 
the CPU aborts execution of the current instruction (with­
out changing protected memory) and traps to location X'40'. 
The operation of the XPS D in trap location X'40' is as 
follows: 

1. Store the current PSD, 

2. Load the current PSO. 

3. Modify the new PSD: 

a. Set CC4 to 1 (CC 1, CC2, and CC3 remain at the 
values loaded from memory. 

b. If bit position 9 of XPSD contains a 1, the instrucl 
ti on address loaded from memory is incremented 
by 1. If bit position 9 of XPSD contains a a, the 
instruction address remains at the value loaded 
from memory. 

An attempt to access a memory location that is both pro­
tected and nonexistent causes both CC2 and CC4 to be set 
to lis after the new PSD has been loaded, and if bit posi­
tion 9 of XPSD contains a 1, the instruction address loaded 
from memory is incremented by 5. 

UNIMPLEMENTED INSTRUCTION TRAP 

There is one SIGMA 6 optional instruction group. This is 
the floating-point option. 

The floating-point option includes the following instructions: 

Instruction Name Mnemonic Operation Code 

Floating Add Short FAS X'3D' 

Floating Add Long FAL X'ID' 

FI oati ng Subtract Short FSS X'3C' 

Floating Subtract Long FSL X'lC' 

Floating Multiply Short FMS X'3F' 

Floating Multiply Long FML X'lF' 

Floating Divide Short FDS X'3E' 

Floating Divide Long FDL X'lE' 



If an attempt is made to execute an instruction (directly or 
indirectly addressed) in this group when the floating-point 
option is not implemented, the computer traps to location 
X'41'. The operation of the XPSD in trap location X'41' 
is as follows: 

1. Store the current PSD. The condition code stored is 
that which existed at the end of the instruction imme­
diately prior to the unimplemented instruction. 

2. Load the new PSD. The condition code and the in­
struction address portions of the PSD remain at the 
values loaded from memory. 

PUSH-DOWN STACK LIMIT TRAP 

Push-down stack overflow or underflow can occur during 
execution of any of the following instructions: 

Instruction Name Mnemonic 

Push Word PSW 

Pull Word PLW 

Push Multiple PSM 

Pull Multiple PLM 

Modify Stack Pointer MSP 

During the execution of any stack-manipulating instruction 
(see Push-down Instructions) the stack is either pushed 
(words added to stack) or pulled (words removed from 
stack). In either case, the space count and word count 
fields of the stack pointer doubleword are tested prior 
to moving any words. If execution of the instruction 
would cause the space count to become less than 0 or 
greater than 215_1, the instruction is aborted with mem­
ory and registers unchanged; then, if bit 32 (TS) of the 
stack pointer doubleword is 0, the CPU traps to loca­
tion X'42'. If execution of the instruction would cause 
the word count to become less than 0 or greater than 
215-1, the i nstructi on is aborted wi th memory and regi sters 
unchanged; then, if bit 48 (TW) of the stack pointer 
doubleword is a 0, the CPU traps to location X'42'. If 
trapping does occur, the condition code remains at the 
value it had immediately prior to the instruction that caused 
the trap. When trapping is inhibited, either CCl or CC3 
is set to 1 (or both CCI and CC3 are set to l's) to indicate 
the reason for aborti ng the i nstructi on. The stack poi nter 
doubleword, memory, and registers are modified only if the 
instruction is successfully executed. The execution of 
XPSD in trap location X'42' is as follows: 

1. Store the current PSD. The condition code stored is 
that which existed immediately prior to the execution 
of the aborted push-down instruction. 

2. Load the new PSD.' The condition code and instruction 
address portions of the PSD remain at the values loaded 
from memory. 

fiXED-POINT OVERflOW TRAP 

Fixed-point overflow can occur for any of the following 
instructions: 

Instruction Name 

Load Complement Word 
Load Absolute Word 
Load Complement Doubleword 
Load Absol ute Doubleword 
Add Immedi ate 
Add Ha I fword 
Add Word 
Add Doubleword 
Subtract Halfword 
Subtract Word 
Subtract Doublword 
Divide Halfword 
Divide Word 
Add Word to Memory 
Modify and Test Halfword 
Modify and Test Word 

Mnemonic 

LCW 
LAW 
LCD 
LAD 
AI 
AH 
AW 
AD 
SH 
SW 
SD 
DH 
DW 
AWM 
MTH 
MTW 

Except for the instructions DIVIDE HALFWORD (DH) and 
DIVIDE WORD (DW), the instruction execution is allowed 
to proceed to completion, CC2 is set to 1 and CC3 and 
CC4 represent the actual result (0, -, or +) after overflow. 
If the fixed-point arithmetic trap mask (bit 11 of PSD) is a 
1, the CPU traps to location X'43' instead of executing the 
next instruction in sequence. 

For OW and DH, the instructi,on execution is aborted with­
out changing any registers and CC2 is set to 1; but CCl, 
CC3, and CC4 remain unchanged from their values at the 
end of the instruction immediately prior to the OW or DH. 
If the fixed-point arithmetic trap mask is a 1, the CPU traps 
to location X'43' instead of executing the next instruction 
in sequence. 

1. Store the current PSD. If the instruction causing the 
trap was an instruction other than DW or DH, the 
stored condition codet is interpreted as follows: 

CCl tt CC2 CC3 CC4 Meaning 

o 

o 
o 

o result after overflow is zero 

resu I t after overff ow is 
negative 

o result after overflow is 
positive 

no carry from bit position 0 

carry from bit position 0 

t A hyphen (-) indicates that the condition code bit is not 
affected by the condition given under the "Meaning" 
heading. 

ttCCl remains unchanged for the instructions LCW, LAW, 
LCD, and LAD. 

T rap System 25 



If the instruction causing the trap was DW or DH, the 
stored condition code is interpreted as fol lows: 

CCI CC2 CC3 CC4 Meaning 

overflow 

2. Load the new PSD. The condition code and instruc­
tion address portions of the PSD remain at the value 
loaded from memory. 

FLOATING-POINT ARITHMETIC FAULT TRAP 

Floating-point fault detection is performed after the opera­
tion called for by the instruction code is performed, but be­
fore any results are actually loaded into the general registers; 
thus, the floating-point operation that causes an arithmetic 
fault is notcarried to completion (in the sense that the orig­
inal contents of the general registers remain unchanged). 
Instead, the computer traps to location X'44 1 with the cur­
rent condition code indicating the reason for the trap. A 
characteristic overflow or an attempt to divide by zero al­
ways results in a trap condition; a significance check or a 
characteristic underflow result in a trap condition only if 
the floating-point mode controls (FS, FZ, and FN) in the 
program status doubleword are set to the appropriate state. 

If a floating-point instruction causes a trap, the execution 
of XPSD in trap location X'44 1 is as follows: 

1. Store the current PS D. If division is attempted with a 
zero divisor or if characteristic overflow occurs, the 
stored condition code is interpreted as follows: 

CCl CC2 CC3 CC4 Meaning 

0 0 0 divide by zero 

0 0 characteristic overflow, neg-
ative result 

0 0 characteristic overflow, posi-
tive result 

If none of the above condi tions occurs, but character­
istic underflow occurs with the floating zero (FZ) mode 
bit set to 1, the stored condition code is interpreted 
as follows: 

CCI CC2 CC3 CC4 Meaning 

0 characteristic underflow, neg-
ative result 

0 characteristic underflow, posi-
tive result 

If none of the above conditions occurs, but an addition 
or subtraction results in either a zero resul t (with 

26 Trap System 

FS = 1 and FN = 0), or a postnormalization shift of m 
more than two hexadecimal places (with FS = 1 and 
FN = 0), the stored condition code is interpreted as 
follows: 

CCI CC2 CC3 CC4 Meaning 

0 0 0 zero result of addition or 
subtraction 

0 0 more than 2 postnormal izing 
shifts, negative result 

0 0 more than 2 postnormalizing 
shifts, positive result 

2. Load the new PSD. The condition code and instruction 
address portions of the PSD remain at the values loaded 
from memory. 

DECIMAL ARITHMETIC FAULT TRAP 

When either of two decimal fault conditions occur (see 
Decimal Instructions), the normal sequencing of instruction 
execution is halted, CCI and CC2 are set according to the 
reason for the fault condition, and CC3, CC4, memory, and 
the decimal accumulator remain unchanged by the instruc­
tion. If the decimal arithmetic trap mask (bit position 10 
of PSD) is a 0, the instruction execution sequence continues 
with the next instruction (in sequence) at the time of fault 
detection; however, if the decimal arithmetic trap mask bit 
is a 1, the computer traps to location X'45 1 at the time of 
fault detection. 

The execution of XPSD in trap location X'45 1 is as follows: 

1. Store the current PSD. The stored condition code is 
interpreted as fo II ows : 

CCI CC2 CC3 CC4 Meaning 

o all digits legal and overflow 

o illegal digit detected 

2. Load the new PSD. The condition code and instruction 
"address portions of the PSD remain at the values loaded 
from memory. 

WATCHDOG TIMER RUNOUT TRAP 

The instruction watchdog timer insures that the CPU must 
periodically reach interruptible points of operation in the 
execution of instructions. An interruptible point is a time 
during the execution of a program when an interrupt request 
(if present) would be acknowledged. Interruptible points 
occur at the end of every instruction and during the execu­
tion of some instructions (such as the byte string group). The 
watchdog timer measures elapsed time from the last inter­
ruptible point. If the maximum allowable time has been 
reached before the next time that an interrupt could be 



recognized, the current instruction is aborted and the 
watchdog timer runout trap is activated. Except for a non­
existent address used with READ DIRECT (RD) or WRITE 
DIRECT (WD) instructions, programs trapped by the watch­
dog timer cannojo (in general) be continued. Execution of 
XPSD in trap location X'46' is as follows: 

1. Store the current PSD. The stored condition code is, 
in general, meaningless. 

2. Load the new PSD. The instruction address portion of 
the PSD remains at the values loaded from memory; 
however, the resulting condition code is, generally, 
meaningless. 

CAll INSTRUCTION TRAPS 

The four call instructions (CAll, CAL2, CAL3, and CAL4) 
cause the computer to trap to location X'48' (for CAll) 

X'49' (for CAL2), X'4A' (for CAL3), or X'4B' (for CAL4l. 
Execution of XPSD in the trap location is as follows: 

1. Store the current PS D. The stored condi ti on code is 
that which existed at the end of the instruction imme­
diately prior to the call instruction. 

2. Load the new PSD. 

3. Modify the new PSD. 

a. The R field of the cal I instruction is logically 
ORed with the condition code value loaded from 
memory, and the result is loaded into the condi­
tion code. 

b. If bit 9 of XPSD contains a 1, the R field of the 
call instruction is added to the instruction address 
loaded from memory. 

If bit 9 of XPSD containa a 0, the instruction ad­
dress remains at the value loaded from memory. 

T rap System 27 



3. INSTRUCTION REPERTOIRE 

This section describes all SIGMA 6 instructions, grouped 
in the following functional classes: 

Page 

1. Load and Store 28 
2. Analyze and Interpret 34 
3. Fixed-Point Arithmetic 36 
4. Comparison 41 
5. Logical 43 
6. Shift 44 
7. Conversion 46 
8. Floating-Point Arithmetic (optional) 47 
9. Decimal 51 

10. Byte String 57 
11. Push Down 64 
12. Execute and Branch 69 
13. Call 71 
14. Control 72 
15. Input/Output 79 

SIGMA 6 instructions are described in the following format: 

MNEMONIC CD INSTRUCTION NAME ® 

(Addressing type @, Optional 0 

Privi leged @, Interrupt Action®) 

Description ® 

Affected 0 

Symbol ic notation ® 

Condition Code Settings@ 

Trap Action@ 

Example@ 

Trap @) 

1. MNEMONIC is the code used by the SIGMA 6 assem­
blers to produce the instruction IS basic operation code. 

2. INSTRUCTION NAME is the instruction's descriptive 
title. 

3. The instruction's addressing type is one of the following: 

a. Byte index alignment: the reference address field 
of the instruction (plus the displacement value) can 
be used to address a byte in core memory or in the 
current block of general registers. 

b. Halfword index alignment: the reference address 
field of the instruction (plus the displacement value) 
can be used to address a halfword in core memory 
or in the current block of general registers. 

c. Word index alignment: the reference address field 
of the instruction (plus the displacement value) can 
be used to address any word in core memory or in 
the current b lock of general registers. 

28 Instruction Repertoire 

d. Doubleword index alignment: the reference addre~ 
field of the instruction {plus the displacement valuel 
can be used to address any doubleword in core mem­
oryor in the current block of general registers. The 
addressed doubleword is automatically located 
within doubleword storage boundaries. 

e. Immediate operand: the instruction word contains 
an operand value used as part of the instruction 
execution. If indirect addressing is attempted 
with this type of instruction (i.e., bit 0 of the 
instruction word is a 1), the instruction is treated 
as a nonexistent instruction, in which case the 
computer unconditionally aborts execution of the 
instruction (at the time of operation code decoding) 
a nd traps to I ocat i on X 1401, the II nona /I owed 
operation" trap. Indexing does not apply to this 
type of instruction. 

f. Immediate displacement: the instruction word con­
tains an address displacement used as part of the 
instruction execution. If indirect addressing is at­
tempted wi th th i s type of instruct i on, the computer 
treats the instruction as a nonexistent instruction, 
in wh i ch case the computer uncond i ti ona /I y aborts 
execution of the instruction (at the time of opera­
tion code decoding) and traps to location X'40'. 
Inde'xing does not apply to this type of instruction. 

4. If the instruction is not in the standard SIGMA 6 in­
struction set, it is labeled "optional". If execution of 
an optional instruction is attempted on a computer in 
which the instruction is not implemented, the computer 
unconditionally aborts execution of the instruction (at 
the time of operation code decoding) and traps to loca­
tion X '41 1

, which is the "unimplemented instruction 
trap". 

5. If the instruction is not executable while the computer 
is in the slave mode, it is labeled "privileged". If 
execution of a privileged instruction is attempted whi Ie 
the computer is in the slave mode, the computer un­
conditionally aborts execution of the instruction (at 
the time of operation code decoding) and traps to 10-
.cation X'40'. 

6. If the instruction can be successfully resumed after its 
execution sequence has been interrupted by an interrupt 
acknowledgment, the instruction is labeled "continue 
after interrupt". Otherwise, the instruction is either 
completed or the instruction is aborted and then re­
started after the interrupt is cleared. In the case of 
the "continue after interrupt" instructions, certain gen­
eral registers contain intermediate results or control 
information that allows the instruction to continue 
properly. In the case of aborted instructions, all af­
fected registers are restored to the values they con­
tained immediately before the aborted instruction was 
begun. 



7. Instruction format; 

a. Indirect addressing -If bit position 0 of the in­
struction format contains an asterisk (*), the in­
struction can uti I ize indirect addressing; however, 
if bit position 0 of the instruction format contains 
a 0, the instruction is of the immediate addressing 
type, which is treated as a nonexistent instruction 
if indirect addressing is attempted (resulting in a 
trap to location XI401). 

b. Operation code - The operation code field (bit 
positions 1-7) of the instruction is shown in hexa­
decimal notation. 

c. R field - If the register address field (bit positions 
8-11) of the instruction format contains the char­
acter "R", the instruction can specify any register 
in the current block of general registers as an op­
erand source, result destination, or both; otherwise, 
the function of this field is determined by the in­
struction. 

d. X field - If the index register address field (bit 
positions 12-14) of the instruction format contains 
the character II X" , the instruction can specify 
indexing with anyone of registers 1 through 7 
in the current block of general registers; other­
wise, the function of this field is determined by 
the instruction. 

e. Reference address field - Normally, the reference 
address field (bit positions 15-31) of the instruc-
t ion format is used as the in Hia I address va lue for 
an instruction operand. For instructions of the im­
mediate addressing type, the effective address of 
the instruction is not used to access an operand; 
instead, the effective address itself is used as an 
operand. In these cases, the function of the ef­
fective address is represented in the lower half of 
the reference address field in the instruction for­
mat diagram. 

f. Value field - In some fixed-point arithmetic in­
structions, bit positions 12-31 of the instruction 
format contain the word "value". This field is 
treated as a 20-bit integer, with negative inte­
gers represented in twols complement form. 

g. Displacement field - In the byte string instructions, 
bit positions 12-31 of the instruction format con­
tain the word "displacement. II In the execution 
of the instruction, this field is used to modify the 
source address of an operand, the destination ad­
dress of a result, or both. 

h. Ignored fields - In the instruction format diagrams, 
any area that is shaded represents a field or bit po­
sition that is ignored by the computer (i. e., the con­
tent of the shaded field or bit has no effect on instruc­
tion execution) but should be coded with O's so as to 
preclude conflict with possible modifications. 

In any format diagram of a general register or mem­
ory word modified by an instruction, a shaded area 
represents a field' whose content is indeterminate 
after execution of the instruction. 

8. The description of the instruction defines the operations 
performed by the computer in response to the instruction 
configuration depicted by the instruction format diagram. 
Any instruction configuration that causes an unpredict­
able result is so specified in the description. 

9. All programmable registers and storage areas that can be 
affected by the instruction are I isted (symbol ically) after 
the word II Affected". The instruction address portion of 
the program status doubleword is considered to be af­
fected only if a branch condition can occur as a resul t 
of the instruction execution, since the instruction ad­
dress is updated (incremented by 1) as part of every in­
struction execution. 

10. All trap conditions that may be invoked by the execu­
tion of the instruction are I isted after the word liT rap". 
SIGMA 6 trap locations are summarized in the section 
liT rap System". 

11. The symbol ic notation presents the instruction operation 
as a seri es of general i zed symboli c statements. The sym­
bolic terms used in the notation are defined in Table 4. 

12. Condition Code settings are given for each instruction 
that affects the condition code. A 0 or a 1 under any 
of columns 1, 2, 3, or 4 indicates that the instruction 
causes a 0 or 1 to be placed in Cel, CC2, CC3, or 
CC4, respectivel y, for the reasons given. If a hyphen 
(-) appears in columns 1, 2, 3, or 4, that portion of the 
condition code is not affected by the reason given for 
the condition code bit{s) containing a 0 or 1. For ex­
ample, the following condition code settings are given 
for a comparison instruction: 

2 3 4 Result of comparison 

0 0 equal 

0 register operand is arithmetically 
less than effective operand 

0 register operand is arithmetically 
greater than effective operand 

0 the logical product (AND) of the 
two operands is zero 

the logical product of the two 
operands is nonzero 

CC1 is unchanged by the instruction. CC2 indicates 
whether or not the two operands have 11 sin corres-

. ponding bit positions, regardless of their arithmetic 
relationship. Ce3 and Ce4 are set according to the 
arithmetic relationship of the two operands, regard­
less of whether or not the two operands have lis in 
corresponding bit positions. For example, if the 
register operand is arithmetically less than the effec­
tive operand and the two operands both have l's in at 
least one corresponding bit position, the condition 
code setting for the comparison instruction is: 

2 3 4 

o 

The .above statements about the condition code are valid 
only if no trap occurs before the successful completion of 

Instruction Repertoire 29 



the instruction execution cycle. If a trap does occur 
during the instruction execution, the condition code 
is normally reset to the value it contained before the 
instruction was started, and then the appropriate trap 
location is activated. 

13. Actions taken by the computer for those trap con­
ditions that may be invoked by the execution of 
the instruction are described. The description 
includes the criteria for the trap condition, any 
controlling trap mask or inhibit bits, and the action 
taken by the computer. In order to avoid unnecessary 
repetition, the two trap conditions that apply to all 

instructions (i. e., nonallowed operations and 
watchdog timer runout) are not described for each 
instruction. 

14. Some instruction descriptions provide one or more 
examples to illustrate the results of the instruction. 
These examples are intended onl y to show how the 
instructions operate, and not to demonstrate their 
full capability. Within the examples, hexadecimal 
notation is used to represent the contents of general 
registers and storage locations {condition code set­
tings are shown in binary notation. The character "x" 
is used to indicate irrelevant or ignored information. 

Table 4. Glossary of Symbolic Terms 

Term 

( ) 

AM 

R 

Ru 1 

x 

RA 

EVA 

Meaning 

Contents of. 

Fixed-point arithmetic trap mask - bit 11 of 
the program status doubleword. If this bit is 
a 1, the computer traps to location X'431 after 
executing an instruction that causes fixed­
point overflow; if this bit is a 0, the computer 
does not trap to location X'431• 

Instruction register - the internal CPU register 
used to hold instructions obtained from memory 
whi Ie they are being decoded. 

General register address value - the 4-bit con­
tents of bit positions 8-11 (the R field) of an in­
struction word, also expressed symbolically as 
(1)8-11' In the instruction descriptions, reg­
ister R is the general register (of the current 
register block) that corresponds to the R field 
add ress va I ue • 

Odd register address value - register Ru 1 is the 
general register pointed to by the value obtained 
by logically ORing 0001 into the address value 
for register R. Thus, if the R field of an instruc­
tion contains an even value, Ru 1 = R + 1, and if 
the R field contains an odd value, Ru 1 = R. 

Index register address value - the 3-bit contents 
of bit positions 12-14 (the X field) of an instruc­
tion word. If X = ° for an instruction, no index­
ing is performed. If X t- a for an instruction, in­
dexing is performed (after indirect addressing if 
indirect addressing is called for) with general 
register X in the current register block. 

Reference address - the contents of bit positions 
15-31 of an instruction word. This 17-bit field 
is capable of directly addressing any general 
register in the current register block (by using 
a value in the range 0-15) or any word in core 
memory in the address range 16 through 131,07l. 
This address value is the initial address value for 
any subsequent address computations, memory 
mapping, or both computation and mapping. 

Effective vIrtual address - the virtual address 
value obtained as a result of indirect addressing 
and/or indexing. This address value is 

30 Instruction Repertoire 

Term 

EBL 

EB 

EHL 

EH 

EWL 

EW 

EDL 

ED 

CC 

FN 

Meaning 

independent of the program1s actual location 
in core memory, and is the final address value 
before memory mapping is performed. 

Effective byte location - the byte location 
pointed to by the effective virtual address of 
an instruction for a byte operation. 

Effective byte - the 8-bit contents of the 
effective byte location, or (EBL). 

Effective halfword location - the halfword lo­
cation pointed to by the effective virtual ad­
dressof an instruction fora halfword operation. 

Effective halfword - the 16-bit contents of 
the effective halfword location, or (EHL). 

Effective word location - the word location 
pointed to by the effective virtual address of 
an instruction for a word operation. 

Effective word - the 32-bit contents of the 
effective word location, or (EWL). 

Effective doubleword location - the double­
word location pointed to by the effective 
virtual address of an instruction for a double­
word operation. If an odd-numbered word lo­
cation is specified for a doubleword operation, 
the low-order bit of the effective address field 
(bit position 31) is automatically forced to 0. 
Thus, an odd-numbered word address (referring 
to the middle of a doubleword) designates the 
same doubleword as an even-numbered word 
address, when used for a doubleword operation. 

Effective doubleword - the 64-bit contents of 
the effective doubleword location, or (EDL). 

Condition code - a 4-bit value (whose bit 
positions are labeled CC 1, CC2, CC3, and 
CC4) that is establ ished as part of the exe­
cution of most SIGMA 6 instructions. 

Floating normal ize mode control - bit 7 of the 
program status doubleword. If this bit is a 0, 
the results of floating-point additions and 
subtractions are to be normalized; if this bit 
is a 1, the results Clre not normalized. I 



Table 4. Glossary of Symbolic Terms (cont.) 

Term Meaning 

FS Floating significance mode control - bit 5 of 
the program status doubleword. If this bit is 
a 1, the computer traps to location X'44' 
when more than two hexadecimal places of 
postnormalization shifting are required for a 
floating-point addition or subtraction; if this 
bit is 0, no significance checking is performed. 

FZ Floating zero mode control - bit 6 of the pro­
gram status doubleword. If this bit is a 1, the 
computer traps to location X'44' when either 
characteristic underflow or a zero result occurs 
for a floating-point multiplication or division; 
if this bit is a 0, characteristic underflow and 
zero resu I ts are treated as normal conditions. 

IA Instruction address - the 17-bit value that de­
fines the virtual address of an instruction 
immediately prior to the time that the instruc­
tion is executed. 

X'n' Hexadecimal qual ifier - a hexadecimal value 
{n} is an unsigned string of hexadecimal digits 
(O through 9 and A through F) surrounded by 

LOAD/STORE INSTRUCTIONS 

The following load/store instructions are implemented in 
SI GMA 6 computers: 

Instruction Name 

Load Immediate 
Load Byte 
Load Ha I fword 
Load Word 
Load Doubleword 
Load Complement Halfword 
Load Absolute Halfword 
Load Complement Word 
Load Absolute Word 
Load Complement Doubleword 
Load Absolute Doubleword 
Load Selective 
Load Multiple 
Load Conditions and Floating Control 

Immediate 
Load Conditions and Floating Control 
Exchange Word 
Store Byte 
Store Halfword 
Store Word 
Store Doubleword 
Store Selecti ve 
Store Multiple 
Store Conditions and Floating Controls 

Mnemonic 

LI 
LB 
LH 
LW 
LD 
LCH 
LAH 
LCW 
LAW 
LCD 
LAD 
LS 
LM 

LCFI 
LCF 
XW 
STB 
STH 
STW 
STD 
STS 
STM 
STCF 

SIGMA 6 load and store ihstructions operate with informa­
tion fields of byte, halfword, word, and daubleword lengths. 

Term 

n 

u 

SE 

Meaning 

single quotation marks and preceded by the 
qualifier "X" (for example, 7B0

16 
is writ­

ten X'7BO'. 

AND (Iogi cal product, where 0 nO;::: 0, 
o n 1 = 0, 1 n 0 = 0, and 1 n 1 = 1). 

OR (logical inclusive OR, where 0 u 0 = 0, 
o u 1 = 1, 1 u 0 ;::: 1, and 1 u 1 ;::: 1). 

EOR {logical exclusive OR, where 0 @ 0 = 0, 
o @ 1 ;::: 1, 1 @ 0;::: 1, and 1 @ 1 ;::: O}. 

Sign extension - some SIGMA 6 instructions 
operate on two operands of different lengths; 
the two operands are made equal in length by 
extending the sign of the shorter operand by 
the required number of bit positions. For posi­
tive operands, the result of sign extension is 
high-order O's prefixed to the operand; for 
negative operands, high-order l's are prefi xed 
to the operand. This sign extension process is 
performed after the operand is accessed from 
memory and before the operation called for by 
the instruction code is performed. 

Load instructions load the information indicated into one of 
the genera~ registers in the current register block. Load 
instructions do not affect core memory storage; however, 
nearly all load instructions provide a condition code setting 
that indicates the following inf9rmation about the contents 
of the affected general register(s) after the instruction is 
successfully completed: 

Condition code settings: 

2 3 4 Result ------
o 0 zero - the result in the.affected register{s) 

is all O's. 

o negative - register R contains a 1 in bit 
position O. 

o positive - register R contains a 0 in bit 
position 0, and at least one 1 appears in 
the remainder of the affected register(s} 
(or appeared during execution of the cur­
rent instruction.) 

o no fixed-point overflow - the result in 
the affected register{s} is arithmetica II y 
correct. 

fixed-point overflow - the result in the 
affected register(s) is arithmetically 
incorrect. 

Store instructions affect only that portion of memory storage 
that corresponds to the length of the information field speci­
fied by the operation code of the instruction; thus, register 
byte<; are stored in memory byte locations, register halfwords 
in memory halfword locations, register words in memory 

Load/Store Instructions 31 



word locations, and register doublewords in memory double­
word locations. Store instructions do not affect the contents 
of the general register specified by the R field of the instruc­
tion, unless the same register is also specified by the effec­
tive virtual address of the instruction. 

II LOAD IMMEDIATE 
(Immediate operand) 

o 1 

LOAD IMMEDIATE extends the sign of the value field (bit 
position 12 of the instruction ward) 12 bit positions to the 
left and then loods the 32-bit result into register R. 

Affected: (R), CC3, CC4 

(I)12-31SE - R 

Conditi on code setti ngs: 

2 3 4 Result in R 

0 0 zero 
0 1 negative 

0 positive 

If LI is indirectly addressed, it is treated as a nonexistent 
instruction, in .which case the computer unconditionally 
aborts execution of the instruction (at the time of opera­
tion code decoding) and traps to location X'40' with the 
contents of register R and the condition code unchanged. 

LB LOAD BYTE 
(Byte index alignment) 

LOAD BYTE loads the effective byte into bit positions 24-31 
of register R and clears bit positions 0-23 of the reg ister to 
allOls. 

Affected: (R), CC3, CC4 

EB - R24-31 ; 0 - RO- 23 
Condition code settings: 

2 

LH 

3 

o 
1 

4 

o 
o 

Result in R 

zero 
nonzero 

LOAD HALFWORD 
(Halfword index alignment) 

LOAD HALFWOR D extends the sign of the effective half­
word 16 bit positions to the left and then loads the 32-bit 
result into register R. 

Affected: (R),CC3,CC4 

EHSE R 

32 Load/Store Instructions 

Condition code settings: 

2 3 4 Result in R 

0 0 zero 
0 1 negative 
1 0 positive 

.LW LOAD WORD 
(Word index al ignment) 

LOAD WORD loads the effective word into register R. 

Affected: (R),CC3,CC4 
EW - R 

Condition code settings: 

2 3 4 Result in R 

o 0 zero 
o 1 negative 
1 0 positive 

.LD LOAD DOUBLEWORD 
(Doubleword index alignment) 

LOAD DOUBLEWORD loads the 32 low-order bits of the ef­
fective doubleword into register Ru 1 and then loads the 32 
high-order bits of the effective douhleword into register R. 

If R is an odd value, the result in register R is the 32 high­
order bits of the effective doubleword. The condition code 
settings are based on the effective doubleword, rather than 
the final result in register R (see Example 3, below). 

Affected: (R),(Ru 1 ),CC3,CC4 
ED

32
-
63 

- Rul; EDO_31 - R 

Condition code settings: 

2 3 4 Effective doubleword 

o 0 
o 1 
1 0 

zero 
negative 
positive 

Example 1, even R field value: 

ED 
(R) 
(Ru 1) 
CC 

Before execution After execution 

X 10123456789ABCDEF ' X'0123456789ABCDEF I 

xxxxxxxx X101234567 1 

xxxxxxxx X'89ABCDEF ' 
xxx x xx 10 

Example 2, odd R field value: 

ED 
(R) 
CC 

X'0123456789ABCDEF' X'0123456789ABCDEF' 
xxxxxxxx X'01234567 1 

xxxx xx 10 



Example 3, odd R field value: 

ED X I 00000000 1 2345678' X '00000000 I 2345678' 
(R) - xxxxxxxx X' 00000000' 
CC ~ xxxx xxlO 

LCH LOAD COMPLEMENT HALFWORD 
(Halfword index alignment) 

LOAD COMPLEMENT HALFWORD extends the sign of the 
effective halfword 16 bit positions to the left and then loads 
the 32-bit two's complement of the result into register R. 
(Overflow cannot occur. ) 

Affected: (R),CC3,CC4 

~~HSEJ - R 

Condition code settings: 

LAH 

2 3 4 Resu I tin R 

o O· zero 
o I negative 
I 0 positive 

LOAD ABSOLUTE HALFWORD 
(Halfword index alignment) 

If the effective halfword is positive, LOAD ABSOLUTE 
HALFWORD extends the sign of the effective halfword 16 
bit positions to the left and then loads the 32-bit result in 
register R. If the effective halfword is negative, LAH ex­
tends the sign of the effective halfword 16 bit positions to 
the left and then loads the 32-bit two's complement of the 
result into register R. (Overflow cannot occur.) 

Affected: (R),CC3,CC4 

IEH SEI -- R 
Condition code settings: 

LCW 

2 3 4 R esu I tin R 

o 0 zero 
1 0 nonzero 

LOAD COMPLEMENT WORD 
(Word index alignment) 

LOAD COMPLEMENT WORD loads the 32-bit two's com­
plement of the effective word into register R. Fixed-point 
overflow occurs if the effective word is _231 (X 'BOOOOOoo" 
in which case the result in register R is -231 and CC2 is set 
to 1; otherwise, CC2 is reset to O. 

Affected: (R),CC2,CC3, CC4 Trap: Fixed-point overflow. 
-EW - R 

Condi tion code settings: 

2 3 4 Result in R 

0 0 0 zero 
0 1 negative 

0 1 0 positive 
0 no fixed-point overflow 
1 0 fixed-point overflow 

If CC2 is set to 1 and the fixed-point arithmetic trap mask 
(AM) is a 1, the computer traps to location X '43 ' after exe­
cution of LOAD COMPLEMENT WOR D; otherwise, the com­
puter executes the next instruction in sequence. 

LAW LOAD ABSOLUTE WORD 
(Word index 01 ignment) 

If the effective word is positive, LOAD ABSOLUTE WORD 
loads the effective word into register R. If the effective 
word is negative, LAW loads the 32-bit two's complement 
of the effective word into register R. Fixed-point overflow 
occurs if the effective word is -231 (X '80000000 '), in which 
case the result in register R is _231 and CC2 is set to 1; 
otherwise, CC2 is reset to O. 

Affected: (R),CC2,CC3,CC4 Trap: Fixed-point overflow 
IEWI-· R 

Condition code settings: 

2 3 4 Result in R 

0 0 0 zero 
1 0 nonzero 

0 no fixed-point overflow 
1 0 fixed-point overflow (sign bit on) 

If CC2 is set to 1 and the fixed-point arithmetic trap mask 
(AM) is a 1, the computer traps to location X'43 ' afterexe­
cution of LOAD ABSOLUTE WORD; otherwise, the compu­
ter executes the next instruction in sequence. 

LCD LOAD COMPLEMENT DOUBLEWORD 
(Doubleword index alignment) 

LOAD COMPLEMENT DOUBLEWORD forms the 64-bit two's 
complement of the effective doubleword, loads the 32 low­
order bits of the result into register Ru I, and then loads the 
32 high-order bits of the result into register R. 

If R is an odd value, the result in register R is the 32 high­
order bits of the two's complemented doubleword. The con­
dition code settings are based on the two IS complement of 
the effective doubleword, rather than the final result in 
register R. 

Fixed-point overflow occurs if the effective doubleword is 
-263 (X '8000000000000000 '), in which case the result in 

Load/Store Instructions 33 



registers Rand Rul is -263 and CC2 is set to 1; otherwise, 
CC2 is reset to O. 

Affected: (R), (Ru1 ),CC2, Trap: Fixed -point overflow 
CC3,CC4 

[-ED] 32-63 - Ru 1; [-ED]O_31 - R 

Cond i ti on code setti ngs: 

2 3 4 Two's complement of effective doubleword 

0 0 0 zero 
0 1 negative 

0 0 positive 
0 no fixed-point overflow 
1 0 fixed-point overflow 

If CC2 is set to 1 and the fixed-point arithmetic trap mask 
(AM) is a 1, the computer traps to location X'43' after exe­
cution of LOAD COMPLEMENT DOUBLEWORD; otherwise, 
the computer executes the next instruction in sequence. 

Example 1, evenR field value: 

Before execution After execution 

ED X'0123456789ABCDEF' X '0123456789ABC DEF' 
(R) xxxxxxxx X'FEDCBA98' 
(Ru 1) xxxxxxxx X '76543211' 
CC xxxx xOOl 

Example 2, odd R field value: 

ED X'0123456789ABCDEF' X'0123456789ABCDEF' 
(R) xxxxxxxx X'FEDCBA98' 
CC xxxx xOOl 

LAD LOAD ABSOLUTE DOUBLEWORD 
(Doubleword index al ignment) 

If the effective doubleword is positive, LOAD ABSOLUTE 
DOUBLEWORD loads the 32 low-order bits of the effective 
doubleword into register Ru 1, and then loads the 32 high­
order bits of the effective doubleword into register R. If R 
is an odd value, the result in register R is the 32 high-order 
bits of the effective doubleword. The condition code settings 
are based on the effective doubleword, rather than the fina'! 
result in register R. 

If the effective doubleword is negative, LAD forms the 
64-bit two's complement of the effective doubleword, loads 
the 32 low-order bits of the two's complemented doubleword 
into register Ru 1, and then loads the 32 high-order bits of the 
two's complemented doubleword into register R. If R is an 
odd value, the result in register R is the 32 high-order bits 
of the two's complemented doubleword. The condition code 
settings are based on the two's complement of the effective 
doubleword, rather than the final result in register R. 

Fixed-point overflow occurs if the effective doubleword is 
_~3 (X'8000000000000000'), in which case the result in 

34 Load/Store Instructions 

registers Rand Ru 1 is -263 and CC2 is set to 1; otherwise, 
CC2 is reset to O. 

Affected: (R),(Ru 1 ),CC2, Trap: Fixed-point overflow. 
CC3,CC4 

IED132 _63 - Rul; 1ED10_31 - R 

Condition code settings: 

2 3 4 Absolute value of effective doubleword 

0 0 0 zero 
1 0 nonzero 

0 no fixed-point overflow 
1 0 fixed-point overflow (sign bit on) 

If CC2 is set to 1 and the fixed-point arithmetic trap mask 
(AM) is a 1, the computer traps to location X'43' after exe­
cution of LOAD ABSOLUTE DOUBLEWORDi otherwise, the 
computer executes the next instruction in sequence. 

Example 1, even R field value: 

Before execution After execution 

ED X'0123456789ABCDEF' X'0123456789ABCDEF' 
(R) xxxxxxxx X'01234567' 
(Ru 1) xxxxxxxx X'89ABCDEF' 
CC xxxx xOl0 

Example 2, even R field value: 

ED X'FEDCBA9876543210' X'FEDCBA9876543210' 
(R) xxxxxxxx X'01234567' 
(Ru 1) xxxxxxxx X'89ABCDFO' 
CC xxx x x010 

Example 3, odd R field value: 

ED 
(R) 
CC 

X'0123456789ABCDEF' X '0123456789ABCDEF' 
xxxxxxxx X'01234567' 
xxxx xOl0 

LS LOAD SELECTIVE 
(Word index alignment 

Register Ru1 contains a 32-bit mask. If R is an even value, 
LOAD SELECTIVE loads the effective word into register R 
in those bit positions selected by a 1 in correspondi ng bit 
positions of register Ru 1. The contents of register R are not 
affected in those bit positions selected by a 0 in correspond­
ing bit positions of register Ru 1. 

If R is an odd value, LS logically ANDs the contents of 
register R with the effective word and loads the result into 
register R. If corresponding bit positions of register Rand 
the effective word both contain l's, a 1 remains in register 
Ri otherwise, a 0 is placed in the corresponding bit position 
of register R. 

Affected: (R), CC3, CC4 

If R is even, [EWn(RulUu[(R)n(Rul)]-R 
If R is odd, EWn(R)-R 



Condition code settings: 

2 3 4 Resul t in R 

o 0 zero 

o bit 0 of register R is a 

Example 

EW 
(Ru 1) 
(R) 
CC 

o bit 0 of register R is a 0 and bit positions 
1-31 of register R contain at least one 1 

1, even R field value: 

Before execution After execution 

X' 01234567' X'01234567' 
X'FFOOFFOO' X' FFOOFFOO' 
xxxxxxxx X'01xx45xx' 
xxxx xx10 

Example 2, odd R field value: 

Before execution After execution 

EW X'89ABCDEF' X'89ABCDEF' 
(R) X' FOFOFOFO' X' 80AOCOEO' 
CC xxxx xxOl 

LM LOAD MULTIPLE 
0Nord index alignment) 

LOAD MULTIPLE loads a sequential set of words into a se­
quential set of registers. The set of words to be loaded be­
gi ns wi th the word poi nted to by the effecti ve address of LM, 
and the set of registers begins with register R. The set ofreg­
isters is treated modulo 16 (i. e., the next register loaded 
after register 15 is register 0 in the current register block). 

The number of words to be loaded into the general registers 
is determined by the value of the condition code immediately 
before the execution of LM. (The desired value of the con­
dition code can be set with LCF or LCFI.) An initial val ue 
of 0000 for the condition code causes 16 consecutive words 
to be loaded into the register block. 

Affected: (R) to (R+CC-l) 
(EWL) -R, (EWL+1) - R+l, ... , (EWL +CC-1) -R+CC-l 

If the instruction starts loading words from an accessible 
region of memory and then crosses into an inaccessible mem­
ory region, either the memory protection trap or the nonex­
istent memory address trap can occur. In either case, the 
trap is activated with the condition code unchanged from 
the value it contained before the execution of LM. The ef­
fecti ve address of the instruction permits the trap routine to 
compute how many registers have been loaded. Since it is 
permissible to use indirect addressing or indexing through a 
general register, or even to execute an instruction located 
in a general register,. a trapped LM instruction may have 
already overwritten the index, direct address, or the LM 
instruction itself, thus destroying any possibility of contin­
uing the program successfully. If such programming must 
be done, it is advisable ,that the register containing the di­
rect address, index displacement, or instruction be the last 
register loaded by the LM instruction. 

If the effective virtual address of the LM instruction is in 
the range 0 through 15, then the words to be 'oaded are 
taken from the general registers rather than from core mem­
ory. In this case the results will be unpredictable if any of 
the source registers are also used as destination registers. 

LeFt LOAD CONDITIONS AND FLOATING 
CONTROL IMMEDIATE 
(Immediate operand) 

If bit position 10 of the instruction word contains a 1, LOAD 
CONDITIONS AND FLOATING CONTROL IMMEDIATE 
loads the contents of bit positions 24 through 27 of the in­
struction word into the condition code; however, if bit 10 
is 0, the condition code is not affected. 

If bit position 11 of the instruction word contains a 1, LCFI 
loads the contents of bit positions 29 through 31 of the in­
struction word into the floating significance (FS), floating 
zero (FZ), and floating normalize (FN) mode control bits, 
respectivel y (in the program status doubl eword); however, 
if bit 11 is 0, the FS, FZ and FN control bits are not af­
fected. The functions of the floating-point control bits 
are described in the section "Floating-point Instructions". 

Affected: CC, FS, FZ, FN 

If (1)10 = 1, (1)24-27 - CC 

If (1)10 =·0, CC is not affected 

If (1)11 = 1, (1)29-31 -- FS, FZ, FN 

If (1)11 = 0, FS, FZ, and FN n,ot affected 

Condition code settings, 

2 3 

if (I) 10 = 1: 

4 

If LCFI is indirectly addressed, it is treated as a nonexis­
tent instruction, in which case the computer uncondition­
ally aborts execution of instruction (at the time of operation 
code decoding) and traps to location X'40' with the condi­
tion code unchanged. 

LCF LOAD CONDITIONS AND FLOATING 
CONTROL 
(Byte index 01 ignment) 

If bit position 10 of the instruction word contains a 1, LOAD 
CONDITIONS AND FLOATING CONTROL loads bits 0 
through 3 of the effective byte into the condition code; how­
ever, if bit 10 is 0, the condition code is not affected. 

If bit position 11 of the instruction word contains a 1, LCF 
loads bits 5 through 7 of the effective byte into the floating 
significance (FS), floating zero (FZ), and floating normalize 
(FN) mode control bits, respectively; however, if bit 11 is 
0, the FS, FZ and FN control bits are not affected. The 

Load/Store Instructions 35 



functions of the floating-point mode control bits are de­
scribed in the section "Floating-point Instructions". 

Affected: CC, FS, FZ, FN 

If (1)10 = I, EBO_3--CC 

If (1)10 = 0, CC not affected 

If (1)11 = I, EB
5

_
7 

- FS, FZ, FN 

If (1)11 = 0, FS, FZ, FN not affected 

Condition code setti ngs, if (1)10 = 1: 

2 3 4 

{EB)2 

XW EXCHANGE WORD 
(Word index alignment) 

EXCHANGE WORD exchanges the contents of register R 
with the contents of the effective word location. 

Affected: (R),(EWl),CC3,CC4 
(R) - (EWl) 

Condition code settings: 

2 3 4 Result in R 

0 0 zero 
0 1 negative 
1 0 positive 

ST8 STORE BYTE 
(Byte index alignment) 

STORE BYTE stores the contents of bit positions 24-31 of 
register R into the effective byte location. 

Affected: (EBl) 

(R)24-31 - EBl 

STH STORE HAlFWORD 
(Halfword index alignment) 

STORE HAlFWORD stores the contents of bit positions 16-31 
of register R into the effective halfword location. If the in­
formation in register R exceeds halfword data limits, CC2 is 
set to 1; otherwise, CC2 is reset to O. 

Affected: (EHl),CC2 

(R)16-31 - EHl 

Condition code settings: 

2 3 4 Information in R 

o (R) 0 _ 16 ~ a II 0' s or all 1 I s 

(R)0-16 :I all O's or all l's 

36 load/Store Instructions 

STW STORE WORD 
(Word index alignment) 

STORE WOR D stores the contents of register R into the ef­
fective word location. 

Affected: (EWl) 
(R) - EWl 

STD STORE DOUBlEWORD 
(Doubleword index alignment) 

STORE DOU BlEWORD stores the contents of register R into the 
32 high-order bit positions of the effectivedoubleword loca­
tion and then stores the contents of register Ru 1 into the 32 low­
order bit positions of the effective doubleword location. 

Affected: (EDl) 
(R) - EDl

O
_
31

; (Ru1) - EDl
32

_
63 

Example I, even R field value: 

(R) 
(Ru I) 
(EDl) = 

Before execution 

X '01234567' 
X'89ABCDEF' 
xxxxxxxxxxxxxxxx 

Example 2, odd R field value: 

(R) X'89ABCDEF' 
(EDl) = xxxxxxxxxxxxxxxx 

After execution 

X '01234567 1 

X'89ABCDEF' 
X '0123456789ABCDEF' 

X'89ABCDEF' 
X '89ABC DEF89ABC DEF' 

STS STORE SELECTIVE 
0/Vord index alignment) 

Register Ru1 contains a 32-bit mask. If R is an even value, 
STORE SELECTIVE stores the contents of register R into the 
effective word location in those bit positions sel·ected by a I 
in corresponding bit positions of register Ru 1; the effective 
word remains unchanged in those bit positions selected by a 
o in corresponding bit positions of register Rul. 

IfR isan odd value, STS logically inclusiveORs the contents 
of register R with the effective word and stores the result 
into the effective word location. The contents of register 
R are not affected. 

Affected: (EWl) 
If R is even, [(R)n(Ru 1)] u [EWn(~)] - EWl 
If R is odd, (R) u EW - EWl 

Example 1, even R field value: 

(R) 
(Ru 1) 
EW 

Before execution 

XI 12345678 1 

XI FOFOFOFO' 
xxxxxxxx 

After execution 

XI 12345678' 
XI FOFOFOFO ' 
X'1x3x5x7x ' 



Example 2, odd R field value: 

(R) 
EW 

STM 

o ) 

Before execution 

X'OOFFOOFF ' 
XI 12345678 1 

After executi on 

X'OOFFOOFP 
XI 12FF56FP 

STORE MULTIPLE 
(Word index alignment) 

STORE MULTIPLE stores the contents of a sequential set of 
registers into a sequential set of word locations. The set of 
locations begins with the location pointed to by the effective 
word address of STM, and the set of registers begins with 
register R. The set of registers is treated modulo 16 (i.e., 
the next sequential register after register 15 is register 0). 
The number of registers to be stored is determined by the 
value of the condition code immediately before execution 
of STM. (The condition code can be set to the desired val­
ue before execution of STM with LCF or LCFI.) An initial 
va lue of 0000 for the condition code causes 16 general regi­
sters to be stored. 

Affected: (EW L)to (EWL + CC-1) 
(R) --EWL, (R+ 1)-EWL+ 1, ... , (R+CC-l)- EWL+CC-l 

If the instruction starts stori ng words into an accessible region 
of the memory and then crosses into an inaccessible memory 
region, either the memory protection trap or the nonexistent 
memory address trap can occur. In either case, the trap is 
activated with the condition code unchanged from the value 
it contained before the execution of STM. The effective 
address of the instruction permits the trap routine to com­
pute how many words of memory have been changed. Since 
it is permissible to use indirect addressing through one of 
the affected locations, or even to execute an instruction lo­
cated in one of the affected locations, a trapped STM 
instruction may have al ready overwritten the direct address, 
or the STM instruction itself, thus destroying any possibil ity 
of continuing the program successfully. If such programming 
must be done, it is advisabl e that the direct address, or the 
STM instruction, occupy the last location in which the con­
tents of a register are to be stored by the STM instruction. 

If the effective virtual address of the STM instruction is in 
the range 0 through 15, then the registers indicated by the 
R field of the STM instruction are stored in the general reg­
isters rather than in core memory. In this case the resul ts 
will be unpredictable if any of the source registers are also 
used as destination registers. 

STCF STORE CONDITIO NS AND FLOATING CONTROL 
(Byte index alignment) 

STORE CONDITIONS AND FLOATING CONTROL stores 
the current condition code and the current values of the 
floating significance (FS), floating zero (FZ), and floating 
normalize (FN) mode cOr:ltrol bits of the program status 
doubleword into the effective byte location as follows: 

Affected: (EBL) 

(PSD)O_7 - EBL 

ANALYZE/INTERPRET INSTRUCTIONS 

ANLZ ANALYZE 
(Word index alignment) 

The ANALYZE instruction treats the effective word as a 
SIGMA 6 instruction and calculates the effective virtual 
address that would be generated by the instruction if the 
instruction were to be executed. ANALYZE produces an 
answer to the question, "What effective vi rtual address 
would be used by the instruction located at N if it were 
executed now?" The ANALYZE instruction determines 
the addressing type of the "analyzed" instruction, calcu­
lates its effective virtual address (if the instruction is not 
an immediate-operand instruction), and loads the effective 
virtual address into register R as a displacement value 
(the condition code settings for the ANALYZE instruction 
indicate the addressing type of the anal yzed instruction). 

The nonexistent instruction, the privileged instruction vio­
lation, and the unimplemented instruction trap conditions 
can never occur during execution of the ANLZ instruction. 
However, either the nonexistent memory address condition 
or the memory protection violation trap condition (or both) 
can occur as a result of any memory access initiated by the 
ANLZ instruction. If either of these trap conditions occur, 
the instruction address stored by an XPSD in trap location 
X'40 ' is always the virtual address of the ANLZ instruction. 

The detailed operation of ANAL YZE is as follows: 

1. The contents of the locarion pointed to by the effective 
virtual address of the ANLZ instruction is obtained. This 
effective word is the instruction to be analyzed. From (1 

memory-protection viewpoint, the instruction (to be ana­
lyzed) is treated as an operand of the ANLZ instruction; 
that is, the analyzed instruction may be obtained from 
any memory area to which the program has read access. 

2a. If the operation code portion of the effective word spec­
ifies an immediate-addressing instruction type, the 
condition code is set to indicate the addressing type, 
and instruction execution proceeds to the next instruc,," 
tion in sequence after ANLZ. The original contents of 
register R are not changed when the analyzed instruc­
tion is of the immediate-addressing type. 

2b. If the operation code portion of the effective word spec­
ifies a reference-addressing instruction type, the condi­
tion code is set to indicate the addressing type of the 
analyzed instruction and the effective address of the 
analyzed instruction is computed (using all of the normal 
address computation rules). If bit 0 of the effective word 
is a 1, the contents of the memory locat;on specified by 
bits 15-31 of the effective word are obtained and then 

Analyze/Interpret Instructions 37 



used as a di rect address. The nonallowed operation 
trap (memory protection violation or nonexistent memory 
address) can occur as a resu I t of the memory access. In­
dexingisalwaysperformed{with an index register in the 
current register block) if bits 12-14 of the analyzed in­
struction are nonzero. The effective virtual address of 
the analyzed instruction is aligned as an integer dis­
placement val ue and loaded into register R, accord­
ing to the instruction addressing type, as follows: 

Byte Addressing: 

Halfword Addressing: 

Word Addressing: 

Doubleword Addressing: 

Operation codes and mnemonics for the SIGMA 6 instruc­
tion set are shown in Table 5. Circled numbers in the table 
indicate the condition code val ue (decimal) available to the 
next instruction after ANALYZE when a direct-addressing 
operation code in the corresponding addressing type is analyzed. 

Affected: (R), CC 

Condition code settings: 

2 3 4 Instruction addressi ng type 

a a a byte 
a a 1 immediate byte 
a 1 a halfword 
1 a a word 
1 a 1 immediate, word 
1 a doubleword 

a direct addressing (EWO = 0) 
1 indirect addressing (EWO = 1) 

INT INTERPRET 
(Word index alignment) 

INTERPRET loads bits 0-3 of the effective word into the 
conditi on code, loads bits 4-15 of the effective word 
into bit positions 20-31 of register R (and loads a's into 
the remai nder of register R), and then loads bits 16-31 
of the effective word into bit positions 16-31 of register 
Ru 1 (and loads a's into bit positions 0-15 of register Ru 1). 
If R is an odd val ue, I NT loads bits 0-3 of the effective 
word int0 the condition code, loads bits 16-31 of the ef­
fective word into bit positions 16-31 of register R, and 

38 Analyze/Interpret Instructions 

Table 5. ANA L YZE Table for SIGMA 6 Operation Codes 

X'n l X'OO'+n X120'+n X'40'+n X'60'+n 

00 - AI TTBS CBS 
01 

LCFI® 
CI TBS CD MBS 

02 LI - -
03 - MI - EBS 

04 CAll SF ANLZ BDR 
05 CAL2 S CS BIR 
06 CAL3 - XW AWM 
07 CAL4 - STS EXU 

08 PLW CVS EOR BCR 
09 PSW CVA ® OR BCS 
OA PLM LM LS BAL 
OB PSM STM AND INT 

OC - - SIO RD 
OD 

LPSD @ 
- TIO WD 

OE WAIT TDV AIO 
OF XPSD LRP HIO MMC 

10 AD AW AH LCF 
11 CD CW CH CB 
12 LD lW lH LB 
13 MSP MTW MTH MTB 

14 - - - STCF 
15 STD STW STH STB ® 
16 - DW DH 0 PACK 0 
17 - MW MH UNPK 

18 SD SW SH DS 
19 CLM CLR - DA 
1A LCD LCW LCH DD 
1B LAD LAW LAH DM 

IC FSL FSS -- DSA 
ID FAL FAS - DC 
1E FDL FDS - DL 
IF FMl FMS - DST 

loads OIS into bit positions 0-15 of register R (bits 4-15 
of the effective word are ignored in this case). 

Affected: (R), (Ru 1), CC 

EW
O

_
3 

- CC 

EW4._ 15 - R20- 31 ; 0 - RO- 19 
EW

16
_

31 
- Rul

16
_
3I

; 0 - RuI
O

_
15 

Condition code settings: 

2 3 4 

EWO 

Example 1, even R field value: 

Before execution 

EW X I 1 2345678 I 
(R) xxxxxxxx 
(Ru 1) xxxxxxxx 
CC xxxx 

After execution 

X I 1 2345678' 
X 100000234' 
X'00005678' 
0001 



FIXED-POINT ARITHMETIC INSTRUCTIONS 
The following fixed-point arithmetic instructionsare included 
as a standard feature of the SIGMA 6 computer: 

Instruction Name 

Add Immediate 
Add Halfword 
Add Word 
Add Doubleword 
Subtract Halfword 
Subtract Word 
Subtract Doubl eword 
Multiply Immediate 
Multiply Halfword 
Multiply Word 
Divide Hal fword 
Divide Word 
Add Word to Memory 
Modify and Test Byte 
Modify and Test Halfword 
Modify and Test Word 

Mnemonic 

AI 
AH 
AW 
AD 
SH 
SW 
SO 
MI 
MH 
MW 
DH 
OW 
AWM 
MTB 
MTH 
MTW 

The fixed-point arithmetic instruction set performs binary 
addition, subtraction, multiplication, and division with 
integer operands that may bf; data, addresses, index values, 
or counts. One operand may be either in the instruction 
word i tsel f or may be in one or two of the current general 
registers; the second operand may be either in core memory 
or in one or two of the current general reg isters. For most 
of these instructions, both operands may be in the same 
gen era I reg i ster, thus perm i tti ng the doubl i ng, squari ng, or 
clearing the contEmts of a register by using a reference 
address value equal to the R field value. 

All fixed-point arithmetic instructions provide a condition 
code setting that indicates the folJowing information about 
the result of the operation called for by the instruction: 

Condition code settings: 

2 3 4 Resul t 

o 0 zero - The result in the specified general 
register{s) is all zeros. 

o negative - The instruction has produced a 
fixed-point negative result. 

o positive - The instruction has produced a 
fixed-poi nt posi ti ve resu It. 

o fixed-point overflow has not occurred 
during execution of an add, subtract, or 
divide instruction, and the result is 
correct. 

fixed-point overflow has occurred during 
execution of an add, subtract, or di vide 
instruction. For addition and subtraction, 
the incorrect result is loaded into the 
designated register{sL For a divide in­
struction, the designated register(s), and 
CC1, CC3, and CC4 are not affected. 

2 3 4 Result 

o no carry - For an add or subtract i nstruc­
tion, there was no carry of a I-bit out of 
the high-order (sign) bit position of the 
result. 

carry - For an add or subtract instruction, 
there was a l-bit carry out of the sign bit 
position of the result. (Subtracting zero 
will always produce carry.) 

AI ADD IMMEDIATE 
(Immediate operand) 

The value field (bit positions 12-31 of the instruction word) 
is treated as a 20-bit, two's complement integer. ADD 
IMMEDIATE extends the sign of the value field (bit position 
12 of the instruction word) 12 bit positions to the left, adds 
the resulting 32-bit value to the contents of register R, and 
loads the sum into register R. 

Affected: (R), CC Trap: Fixed-point overflow 

(R) + (I) 12-31SE -- R 

Condition code settings: 

2 3 4 Result in R 

o 0 zero 
o 1 negative 

o positive 
o no fixed-point overflow 

fixed-point overflow 
o no carry from bit position 0 

carry from bit position 0 

If AI is indirectly addressed, it is treated as a nonexistent 
instruction, in which case the computer unconditionally 
aborts execution of the instruction {at the time of operation 
code decoding) and traps to location X'40' with the contents 
of register R and the condition code unchanged. 

If CC2 is set to 1 and the fixed-point arithmetic trap mask 
(AM) is a 1, the computer traps to location X'43' after 
loading the sum into register R; otherwise, the computer 
executes the next instruction in sequence. 

AH AOD HALFWORD 
(Halfword index 01 ignment) 

ADD· HALFWORD extends the sign· of the effective hal ~ord 
16 bit positions to the left (to form a 32-bit word in which 
bit positions 0-15 contain the sign of the effective halfword), 
adds the 32-bit result to the contents of register R, and loads 
the sum into register R. 

Affected: (R), CC 

(R) + EHSE -- R 

Trap: Fixed-point overflow 

Fixed-Point Arithmetic Instructions 39 



Condition code settings: 

_---.:2::....-_3 __ 4 Resu It in R 

o 0 zero 
o 1 negative 
1 0 positive 

o no fi xed-poi nt overflow 
1 fixed-point overflow 

o no carry from bit position 0 
1 carry from bit position 0 

If C C2 is set to 1 and the fi xed-poi nt ari thmetic trap mask 
is 1, the computer traps to location X 1431 after loading the 
sum into regi ster R; otherwise, the computer executes the 
next instruction in sequence. 

AW ADD WORD 
(Word index alignment) 

ADD WORD adds the effective word to the contents of reg­
ister R and loads the sum into register R. 

Affected: (R), CC 
(R) + EW- R 

Condition code settings: 

2 3 4 Result in R 

o 0 zero 
o 1 negative 
1 0 positive 

Trap: Fixed-point overflow 

o n() fixed-point overflow 
fixed-point overflow 

o no carry from bit position 0 
1 carry from bit position 0 

If CC2 is set to 1 and the fixed-point arithmetic trap mask 
(AM) is a 1, the computer traps to location X'431 after 
loading the sum into register R; otherwise, the computer 
executes the next instruction in sequence. 

AD ADD DOUBlEWORD 
(Doubleword index alignment) 

ADD DOUBlEWORD adds the effective doubleword to the 
contents of registers Rand Ru 1 (treated as a single, 64-bit 
register); loads the 32 low-order bits of the sum into reg­
ister Ru1 and then loads the 32 high-order bits of the sum 
into register R. R must be an even value; if R is an odd 
value, the result in register R is unpredictable. 

Affected: (R), (Ru 1), CC 
(R,Ru1) + ED--R,Rul 

Condition code settings: 

Trap: Fixed-point overflow 

2 3 4 _Resu It in R, Ru 1 

o 0 
o 

zero 
negative 

40 Fixed-Point Arithmetic Instructions 

o 
1 

2 

o 
1 

3 4 Result in R, Ru1 

o positive 
no fixed-point ove:-flow 
fixed-point overflow 
no carry from bit position 0 
carry from bit position 0 

If CC2 is set to 1 and the fixed-point arithmetic trap mask 
(AM) is a 1, the computer traps to location X '431 after 
loading the sum into registers Rand Ru1; otherwise, the 
computer executes the next instruction in sequence. 

Example 1, even R field value: 

ED 
(R) 
(Ru 1) 
CC 

Before execution 

X'33333333EEEEEEEE ' 
X ' 11111111 1 

X'33333333 1 

xxxx 

After execution 

X'33333333EEEEEEEE ' 
X 1444444451 

X 1222222211 
0010 

SH SUBTRACT HAlFWORD 
(Halfword index al ignment) 

SUBTRACT HAlFWORD extends the sign of the effective 
halfword 16 bit positions to the left (to form a 32-bit word 
in which bit positions 0-15 contain the sign of the effec­
tive halfword), forms the two1s complement of the resulting 
word, adds the complemented word to the contents of reg­
ister R, and loads the sum into register R. 

Affected: (R), CC Trap: Fixed-point overflow 
-EH + (R)-R 

SE 

Condition code settings: 

o 

2 

o 
1 

3 4 

o 0 
o 1 
1 0 

Result in R 

zero 
negative 
positive 
no fixed-poi nt overflow 
fixed-point overflow 
no carry from bit position 0 
carry from bit position 0 

If CC2 is set to 1 and the fixed-point arithmetic trap mask 
(AM)" is a 1, the computer traps to location X'431 after 
loading the sum into register R; otherwise, the computer 
executes the next instruction in sequence. 

SW SUBTRACT WORD 
'YVord index 01 ignment) 

SUBTRACT WORD forms the two1s complement of the effec­
tive word, adds that complement to the contents of register 
R, and loads the sum into register R. 

Affected: (R), CC Trap: Fixed-point overflow 
-EW + (R)-- R 



Condition code settings: 

o 

2 

o 
1 

3 

o 
o 
1 

4 

o 
1 
o 

Result in R 

zero 
negative 
positive 
no fi xed-poi nt overflow 
fixed-poi nt overflow 
no corry from bit position 0 
corry from bit position 0 

If CC2 is set to 1 and the fixed-point arithmetic trap mask 
(AM) is a 1, the computer traps to location X '431 after 
loading the sum into register R; otherwise, the computer 
executes the next instruction in sequence. 

so SUBTRACT DOUBLEWORD 
(Doubleword index alignment) 

SUBTRACT DOUBlEWORD forms the 64-bit twols comple­
ment of the effective doubleword, adds the complemented 
doubleword to the contents of registers Rand Ru1 (treated 
as a single, 64-bit register), loads the 32 low-order bits 
of the sum into register Ru1 and loads the 32 high-or.der bits 
of the sum into register R. R must be on even value; if R is 
an odd value, the result in register R is unpredictable. 

Affected: (R),(Rul),CC 
-ED + (R, Ru1)--R, Ru1 

Trap: Fixed-point overflow 

Condition code settings: 

o 

2 

o 
i 

3 

o 
o 

4 

o 
1 
o 

Result in R, Ru1 

zero 
negative 
positive 
no fixed-point overflow 
fixed-point overflow 
no carry from bit position 0 
carry from bit position 0 

If CC2 is set to 1 and the fixed-point arithmetic trap mask 
(AM) is a 1, the computer traps to location XI431 after the 
result is loaded into registers Rand Ru1; otherwise, the com­
puter executes the next instruction in sequence. 

MI MULTIPLY IMMEDIA TE 
(Immediate operand) 

The value field (bit positions 12-31 of the instructions word) 
is treated as a 20-bit, twols complement integer. MUlTI­
PLY IMMEDIATE extends the sign of the value field (bit 
position 12) of the instruction word 12 bit positions to the 
left and multiplies the resulting 32-bit value by the con­
tents of register Ru 1, then loads the 32 high-order bits of 
the product into register R, and then loads the 32 low-
order bits of the product into register Rul. 

If R is an odd value, the result in register R is the 32 low­
order bits of the product. Thus, in order to generate a 64-
bit product, the R field of the instruction must be even and 
the multiplicand must be in register R+1. The conditioncode 
settings are based on the 64-bit product formed duri ng in­
struction execution, rather than on the final contents of 
register R. Overflow cannot occur. 

Affected: (R), (Ru1), CC2, CC3, CC4 

(Rul) x (1)12-31 SE - R, Ru1 

Condition code setti ngs: 

2 3 4 64-bit product 

o o zero 

o negative 

o positive 

o resul t is correct, as represented in reg­
ister Ru 1 

result is not correctly representable in 
register Ru 1 alone 

If MI is indirectly addressed, it is treated as a nonexistent 
instruction, in which case the computer unconditionally 
aborts execution of the instruction (at the time of opera­
tion code decoding) and traps to location X '40 ' with the 
contents of register R, register Ru 1, and the condition code 
unchanged; otherwi se, the computer executes the next i n­
struction° in sequence. 

Example 1, even R field value: 

Before executi on 

(1)12-31 = X?OOOOI 

(R) xxxxxxxx 

(Ru 1) 

CC 

X 1100010001 

xxxx 

Example 2, odd R field value: 

(1)12-31= X
1
01234

1 

(R) X 1000300021 

CC xxxx 

After execution 

X?OOOOI 

X 1000070001 

X?OOOOOOOI 

xll 0 

X '012341 

X '369C2468I 

xOlO 

MH MULTIPLY HAlFWORD 
(Halfword index al ignment) 

MULTIPLY HALFWORD multiplies the contents of bit posi­
tions 16-31 of register R by the effective halfword (with 
both halfwords treated as signed, twols complement inte­
gers) and stores the product in register Ru1 (overflow can­
not occur). If R is an even value, the original multiplier 
in register R is preserved, allowi ng repetitive halfword 
multiplication with a constant multiplier; however, if R is 

Fixed-Point Arithmetic Instructions 41 



an odd value, the product is loaded into the same register. 
Overflow cannot occur. 

Affected: (Rul), (C3, CC4 

(R)16-31 x EH -- Rul 

Condition code settings: 

2 3 4 ResultinRul 

a a zero 
a 1 negative 

a positive 

Example 1, even R field value: 

Before execution 

EH X'FFFF ' 
(R) X 'xxxxOOOA I 
(R u 1 ) xxxxxxxx 
CC xxxx 

Example 2, odd R field value: 

EH 
(R) 
CC 

X'FFFF ' 
X I xxxxOOOA I 

xxxx 

MW MULTIPLY WORD 
(Word index al ignment) 

After execution 

X'FFFF ' 
X I xxxxOOOA I 

X' FFFFFFF6 1 

xx01 

X'FFFF ' 
X' FFFFFFF6 1 

xx01 

MUL TIPL Y WORD multipl ies the contents of register Ru 1 by 
the effective word, loads the 32 high-order bits of the prod­
uct into register R and then loads the 32 low-order bits of 
the product into register Rul (overflow cannot occur). 

If R is an odd value, the result in register R is the 32 low­
order bits of the product. Thus, in order to generate a 64-
bit product, the R field of the instruction must be even and 
the multiplicand must be in register R+1. The condition 
code settings are based on the 64-bit product formed during 
instruction execution, rather than on the final contents of 
register R. 

Affected: (R),(Rul),CC 
(Ru 1) x EW ---+ R, Ru 1 

Condition code settings: 

2 3 4 64-bit product 

a 

a 0 zero 

a negative 

a positive 

result is correct, as represented in reg­
ister Ru 1 

result is not correctly representable in 
register Rul alone 

42 Fixed-Point Arithmetic Instructions 

OH DIVIDE HALFWORD 
(Halfword index alignment) 

DIVIDE HALFWORD divides the contents of register R (treated 
as a 32-bit fixed-point integer) by the effective hal fword 
and loads the quotient into register R. If the absolute value 
of the quotient cannot be correctly represented in 32 bits, 
fixed-point overflow occurs; in which case CC2 is set to 1 
and the contents of register R, and CC1, CC3, and CC4 
are unchanged. 

Affected: (R), CC2, CC3, 
CC4 

Trap: Fixed-point overflow 

(R)~ EH- R 

Condition code settings: 

2 3 4 Result in R 

a a a zero quotient, no overflow 
0 a 1 negative quotient, no overflow 
a 1 a positive quotient, no overflow 

fixed-point overflow 

If CC2 is set to 1 and the fixed-point arithmetic trap mask 
(AM) is a 1, the computer traps to location X '43 1 with the 
contents of register R, CC1, CC3, and CC4 unchanged. 

ow DIVIDE WORD 
(Word index al ignment) 

DIVIDE WORD divides the contents of registers Rand Ru 1 
(treated as a 64-bit fixed-point integer) by the effective 
word, loads the integer remainder into register R and then 
loads the integer quotient into register Ru 1. If a nonzero 
reml..li nder occurs, the remai nder has the same sign as the 
dividend (original contents of register R). If R is an odd 
value, DW forms a 64-bit register operand by extending 
the sign of the contents of register R 32 bit positions to the 
left, then divides the 64-bit register operand by the effec­
tive word, and loads the quotient into register R. In this 
case, the remainder is lost and only the contents of register 
R are affected. 

If the absolute value of the quotient cannot be correctly 
represented in 32 bits, fixed-point overflow occurs; in 
which case, CC2 is set to 1 and the contents of register R, 
register Rul, CC1, CC3, and CC4 remain unchanged; other­
wise, CC2 is reset to 0, CC3 and CC4 reflect the quotient 
in register Ru1, and CCl is unchanged. 

Affected: (R), (Rul), CC2 Trap: Fixed-point overflow 
CC3, CC4 

(R, Rul) -;- EW- R (remainder), Ru1 (quotient) 

Condition code settings: 

2 3 4 

o a a 
o a 

Resul tin Ru1 

zero quotient, no overflow 
negative quotient, no overflow 



Condition code seHings: 

2 3 4 

o o 
Result in Rul 

positive quotient, no overflow 
fixed-point overflow 

If CC2 is set to 1 and the fixed-point arithmetic trap mask 
(AM) is a 1, the computer traps to location X '43 1 with the 
original contents of register R, register Ru1, CCl, CC3, and 
CC4 unchanged; otherwise, the computer executes the next 
instruction in sequence. 

AWM ADD WORD TO MEMORY 
(Word index al ignment) 

ADD WORD TO MEMORY adds the contents of register R to 
the effective word and stores the sum in the effective word 
location. The sum is stored regardless of whether or not 
overflow occurs. 

Affected: (EWL), CC 
EW + (R)-- EWL 

Trap: Fixed-point overflow 

Condition code settings: 

o 

234 

o 

o 0 
o 1 
1 0 

Result in EWL 

zero 
negative 
positive 
no fixed-point overflow 
fixed-point overflow 
no carry from bit position 0 
carry from bit position 0 

If CC2 is set to 1 and the fixed-point arithmetic trap mask 
(AM) is a 1, the computer traps to location X'43 1 after the 
result is stored in the effective word location; otherwise, 
the computer executes the next instruction in sequence. 

MTB MODIFY AND TEST BYTE 
(Byte index alignment) 

If the value of R field is nonzero, the high-order bit of the 
R field (bit position 8 of the instruction word) is extended 
4 bit positions to the left, to form a byte with bit posi­
tions 0-4 of that byte equal to the high-order bit of the 
R field. This byte is added to the effective byte and then 
(if no memory protection violation occurs) the sum is stored 
in the effective byte location and the condition code is set 
according to the value of the resultant byte. This process 
al lows modification of a byte by any number in the range 
-8 through +7, fol lowed by a test. 

If the value of the R field is zero, the effective byte is 
tested for being a zero or nonzero value. The condition 
code is set according to the result of the test, but the 
effective byte is not affected. A memory write-protection 

violation cannot occur in this case; however, a memory 
read-protection violation can occur. 

Affected: CC if (1)8-11 OJ 

(EBL) and CC if (1)8-11 I 0 

If (1)8-11 f 0, EB + (1)8-11 SE-- EBL and set CC 

If (1)8-11 = 0, test byte and set CC 

Condition code settings: 

2 3 4 Result in EBL 

0 0 0 zero 
0 1 0 nonzero 

0 no carry from byte 
1 corry from byte 

If MTB is executed in an interrupt location, the condition 
code is not affected (see Chapter 2, "Single-Instruction 
Interrupts") . 

MTH MODIFY AND TEST HALFWORD 
(Halfword index alignment) 

If the value of the R field is nonzero, the high-order bit of 
the R field (bit position 8 of the instruction word) is extended 
12 bit positions to the left, to form a halfword with bit posi­
tions 0-11 of that halfword equal to the high-order bit of the 
R field. This halfword is added to the effective halfword and 
then (if no memory protectior violation occurs) the sum is 
stored in the effective halfword location and the condition 
code is set according to the value of the resultant halfword. 
The sum is stored regardless of whether or not overflow oc­
curs. This process allows modification of a halfword by any 
number in the range -8 through +7, foil owed by a test. 

If tile value of the R field is zero, the effective halfword is 
tested for being a zero, negative, or positive value. The 
condition code is set, according to the result of the test, 
but the effective halfword is not affected. A memory writ€:­
protection violation cannot occur in this case; however, a 
memory read-protection violation can occur. 

Affected: CC if (1)8-11 = 0; Trap: Fixed-poi nt overflow 

(EHL) and CC if (1)8-11 f 0 

If (1)8-11 = 0, test halfword and set CC 

If (1)8-11 f 0, EH + (1)8-11 SE-- EHL and set CC 

Condition code settings: 

o 
1 

2 

o 
1 

3 4 

o 0 
o 1 
1 0 

Result in EHL 

zero 
negative 
positive 
no fixed-point overflow 
fixed-point overflow 
no carry from hal fword 
carry from hal fword 

Fixed-Point Arithmetic Instructions 43 



If CC2 is set to 1 and the fixed-point arithmetic trap 
mask (AM) is a 1, the computer traps to location X'43' 
after the result is stored in the effective halfword loca­
tion; otherwise, the computer executes the next instruc­
tion in sequence. However, if MTH is executed in an 
interrupt location, the condition code is not affected 
and no fixed-point overflow trap can occur (see "Single­
Instruction Interrupts"). 

MTW MODIFY AND TEST WORD 
(Word index alignment) 

If the value of the R field is nonzero, the high-order 
bit of the R field (bit position 8 of the instruction 
word) is extended 28 bit positions to the left, to form 
a word with bit positions 0-27 of that word equal to 
the high-order bit of the R field. This word is added 
to the effective word and then (if no memory protec­
tion violation occurs) the sum is stored in the effective 
word location and the condition code is set according 
to the value of the resultant word. The sum is stored 
regardless of whether or not overflow occurs. This 
process allows modification of a word by any number 
in the range -8 through +7, followed by a test. 

If the value of the R field is zero, the effective word 
is tested for being a zero, negative, or positive value. 
The condition code is set according to the result of the 
test, but the effective word is not affected. A memory 
write-protection violation cannot occur in this case; 
however, a memory read-protection violation can occur. 

Affected: CC if (1)8-11 = 0; Trap: Fixed-point overflow 

(EWL) and CC if (1)8-11 f 0 

If (1)8-11 = 0, test word and set CC 

If (1)8-11 f 0, EW + 18_ 11 SE -EWL and set CC 

Condition code settings: 

o 

2 

o 
1 

3 4 

o 0 
o 1 
1 0 

Result in EWL 

zero 
negative 
positive 
no fixed-point overflow 
fixed-point overflow 
no carry from word 
carry from word 

If CC2 is set to 1 and the fixed-point arithmetic trap 
mask (AM) is a 1, the computer traps to location X'43' 
after the result is stored in the effective word location; 
otherwise, the computer executes the next instruction 
in sequence. However, if MTVV is executed in an 
interrupt location, the condition code is not affected 
and no fixed-point overflow trap can occur (see IISingle­
Instruction Interrupts ll

). 

44 Comparison Instructions 

COMPARISON INSTRUCTIONS 

The following comparison instructions are available to 
SIGMA 6 computers: 

Instruction Name 

Compare Immediate 
Compare Byte 
Compare Halfword 
Compare Word 
Compare Doubleword 
Compare Selective 
Compare With Limits in Register 
Compare With Limits in Memory 

Mnemonic 

CI 
CB 
CH 
CW 
CD 
CS 
ClR 
ClM 

All SIGMA 6 comparison instructions produce a condition 
code setting which is indicative of the results of the com­
parison, without affecting the effective operand in memory 
and without affecting the contents ofthedesignated register. 

(I COMPARE IMMEDIATE 
(Immediate operand) 

COMPARE IMMEDIATE extends the sign of the value field 
(bit position 12) of the instruction word 12 bit positions to 
the left, compares the 32-bit result with the contents of reg­
ister R (with both operands treated as signed fixed-point 
quantities), and then sets the condition code according to 
the results of the comparison. 

Affected: CC2, CC3, CC4 

(R) : (1)12-31 SE 

Cond ition code setti ngs: 

2 3 4 Result of Comparison 

o 0 equal 

o register value less than immediate value 

o register value greater than immediate 
value 

o no I-bits compare, (R) n (I) 12-32SE = 0 

one or more I-bits compare, 

(R) n (I)12-32SE f 0 

If CI· is indirectl y addressed, it is treated as a nonexistent 
instruction, in which case the computer unconditionally 
aborts execution of the instruction (at the time of operation 
code decoding) and then traps to location X'40' with the 
condition code unchanged. 

CB COMPARE BYTE 
(Byte index al ignment) 

COMPARE BYTE compares the contents of bit positions 
24-31 of register R with the effective byte (with both bytes 



treated as positive integer magnitudes) and sets the condi­
tion code according to the results of the comparison. 

Affected: CC2, CC3, CC4 

(R)24-31 : EB 

Condition code settings: 

CH 

2 3 4 Result of Comparison 

o 

o o 
o 1 

o 

equal 

register byte less than effective byte 

register byte greater than effective byte 

no l-bits compare, (R)24-31 n EB = 0 

one or more l-bits compare, 

(R)24-31 n EB -I 0 

COMPARE HALFWORD 
(Halfword index alignment) 

COMPARE HALFWORD extends the sign of the effective hal f­
word 16 bit positions to the I eft, then compares the resultant 
32-bit word with the contents of register R (with both words 
treated as signed, fixed-poin l quantities) and sets the condi­
tion code according to the results of the comparison. 

Affected: CC2, CC3, CC4 
(R) : EHSE 

Condition code settings: 

2 3 4 Result of Comparison 

o 

o 0 equal 

o register word less than effective half­
word wi th si gn extended 

o register word greater than effective 
halfword with sign extended 

no 1-b its compare, (R) n EH SE = 0 

one or more 1-bits compare, 

(R) n EHSEfO 

CW COMPARE WORD 
(Word index alignment) 

COMPARE WORD compares the contents of register R with 
the effective word, with both words treated as signed fixed­
poi nt quantities, and sets the condition code according to 
the results of the comparison. 

Affected: CC2, CC3, CC4 
(R) : EW 

Condition code setti ngs: 

2 3 4 Result of Comparison ------
o 0 equal 
o register word less than effective word 

CD 

2 3 4 Result of Comparison 

o reg i ster word greater than effect i ve word 
o no 1-bits compare, (R) n EW = 0 
1 one or more l-bits compare, (R) n EVv fa 

COMPARE DOUBLEWORD 
(Doubleword index alignment) 

COMPARE DOUBLEVvORD compares the effective double­
word with the contents of registers Rand Ru 1 (with both 
doublewords treated as signed, fixed-point quantities) and 
sets the condition code accordi ng to the resul ts of the com­
parison. If the R field of CD is an odd value, CD forms a 
64-bit register operand (by duplicating the contents of reg­
ister R for both the 32 high-order bits and the 32 low-order 
bits) and compares the effective doubl eword with the 64-bi t 
register operand. The condition code settings are based on 
the 64-bit comparison. 

Affected: CC3, CC4 
(R, Ru 1) : ED 

Condition code settings: 

2 

cs 

3 4 Result of Comparison 

0 0 equal 

{) register doubleword less than effective 
doubleword 

0 register dou91eword greater than effective 
doubleword 

COMPARE SELECTIVE 
(Word index alignment) 

COMPARE SELECTIVE compares the contents of register R 
with the effective word in only those bit positions selected by 
a 1 in corresponding bit positions of register Ru 1 (mask). The 
contentsof register R and the effective word are ignored in 
those bit positions designated by a 0 in corresponding bit 
positions of register Ru 1. The selected contents of register R 
and the effective word are treated as positive integer mag­
nitudes, and the condition code is set according to the re­
sult of the comparison. If the R field of CS is an odd value, 
CS compares the contents of register R wi th the logical prod­
uct (AND) of the effective word and the contents of regi ster R. 

Affected: CC3,CC4 
If R is even: (R) n(Ru 1) : EW n(Ru 1) 
If R is odd: (R) : EW n(R) 

Condition code settings: 

2 3 4 

o 0 
o 1 
1 0 

Results of Comparison under Mask in Rul 

equal 
register word less than effective word 
register word greater than effective word 
(if R is even) 

Comparison Instructions 45 



ClR 

~ ! 2 

39 

COMPARE WITH LIMITS IN REGISTERS 
(Word index alignment) 

J!4 5 

COMPARE WITH LIMITS IN REGISTERS simultaneously com­
pares the effective word with the contents of register Rand 
with the contents of register Ru 1 (with all three words treated 
as signed fixed-point quantities), and sets the condition 
code according to the results of the comparisons. 

Affected: CC 
(R) : EW, (Ru 1) : EW 

Condition code settings: 

o 
o 

elM 

2 

o 
J 

o 

3 4 

o 0 
o 1 
1 0 

Result of Comparison 

contents of R equal to effective word 
contents of R less than effective word 
contents of R greater than effecti ve word 
contents of Ru 1 equal to effecti ve word 
contents of Ru 1 less than effective word 
contents of Ru 1 greater than effective word 

COMPARE WITH LIMITS IN MEMORY 
(Doubleword index alignment) 

COMPARE WITH LIMITS IN MEMORY simultaneously com­
pares the contents of register R with the 32 high-order bits 
of the effective doubleword and with the 32 low-order bits 
of the effective doubleword, with all three words treated 
as 32-bit signed quantities, and sets the condition code 
according to the results of the comparisons. 

Affected: CC 

(R) = ED O_31 ; (R) : ED32- 63 

Condition code setti ngs: 

2 3 4 Result of Com~arison 

0 0 contents of R equal to most significant 
word, (R) = ED

O
_

31 

0 contents of R less than most significant 

word, (R) < ED 0-31 

0 contents of R greater than most signifi-
cant word, (R) > ED

O
_

31 

0 0 contents of R equal to least significant 

word, (R) = ED 32-63 

0 contents of R less than least significant 

word, (R) < ED 32-63 

0 contents' of R greater than I east signifi-
cant word, (R) > ED

32
_
63 

46 Logical Instructions 

LOGICAL INSTRUCTIONS 

All logical operations are performed bit by corresponding 
bit between two operands; one operar d is in register Rand 
the other operand is the effective word. The result of the 
logical operation is loaded into register R. 

OR OR WORD 
(Word index alignment) 

49 I R I X I : Referenc~ address i 
" • '" " " " " " " " " .. I~ " " n"" " " vl~ ~ • " o I 2 

OR WORD logically ORs the effective word into register R. 
If corresponding bits of register R and the effective word are 
both 0, a 0 remains in register R; otherwise, a 1 is placed in 
the corresponding bit position of register R. The effective 
word is not affected. 

Affected: (R), CC3, CC4 
(R) u EW - R, where 0 u 0 = 0, 0 u 1 = 1, 1 u 0 = 1, 1 u 1 = 1 

Condition code settings: 

2 3 4 Resul t in R 

o 0 zero 

o bit 0 of register R is a 1 

Obit 0 of register R is a 0 and bit positions 
1-31 of register R contain at least one 1 

EOR EXCLUSIVE OR WORD 
(Word index alignment) 

o I 2 

EXCLUSIVE OR WORD I ogical/y exclusive ORs the effective 
word into register R. If corresponding bits of register Rand 
the effective word are di fferent, a 1 is placed in the corre­
sponding bit position of register R; if the contents of the 
corr<:!sponding bit positions are alike, a 0 is placed in the 
corresponding bit position of register R. The effective word 
is not affected. 

Affected: (R), CC3, CC4 
(R)@EW--- R, where O@O = 0, 0@1 = 1, 

1@0=1, 1@1=0 

Condition code settings: 

2 3 4 Result in R 

o 0 zero 

o bit 0 of register R is a 1 

Obit 0 of register R is a 0 and bit positions 
1-31 of register R conta in at least one 1 

AND AND WORD 
0/'Iord index alignment) 

o I 2 

AND WORD logically ANDs the effective word into register 
R. If corresponding bits of register R and the effective word 



ale bath 1, a 1 remains in register R; otherwise, a 0 is 
placed in the corresponding bit position of register R. The 
effecti ve word is not affected. 

Affected: (R), CC3, CC4 
(R) n EW -- R, where 0 n 0 = 0, 0 n 1 = 0, 

1 n 0 = 0, 1 n 1 = 1 

Condition code settings: 

2 3 4 Result in R 

0 0 zero 

0 bit 0 of register R is a 

0 bit 0 of register R is a 0 and bit positions 
1-31 of register R contain at least one 1 

SHIFT INSTRUCTIONS 

The instruction format for logical, circular, and arithmetic 
shift operations is: 

s SHIFT 
(Word index 01 ignment) 

If neither indirect addressing nor indexing is called for in 
the instruction SHIFT, bit positions 21-23 of the reference 
address fi eld determine the type, and bit positions 25-31 
determine the direction and amount of the shift. If only in­
direct addressing is called for in the instruction, bits 15-31 
of the instruction are used to access the indirect word and 
then bits 21-31 of the indirect word determine the type, 
direction, and amount of the shift. If only indexing is 
called for in the instruction, bits 21-23 of the instruction 
word determine the type of shift; the direction and amount 
of shift are determined by bits 25-31 of the instruction plus 
bits 25-31 of the specified index register. If both indirect 
addressing and indexing are called for in the instruction, 
bits 15-31 of the instruction are used to access the indirect 
word and then bits 21-23 of the indirect word determine the 
type of shift; the direction and amount of the shiftare deter­
mined by bits 25-31 of the indirect word plus bits 25-31 of 
the specified index register. 

Bit positions 15-20 and 24 of the effective virtual address 
are ignored. Bit positions 21, 22 and 23 of the effective 
virtual address determine the type of shift, as follows: 

21 22 23 Shift Type 

0 0 0 Logical, single register 
0 0 1 Logical, double register 
0 1 0 Circular, single register 
0 1 1 Circular, double register 
1 0 0 Arithmetic, single register 
1 0 1 Arithmetic, double register 

1 0 Undefined 
1 1 Undefined 

Bit positions 25 through 31 of the effective virtual address are 
a shift count that determines the direction and amount of the 
shift. Theshiftcount(C} is treated asa7-bit signed binary 

integer, with the high-order bit (bit position 25) as the sign 
(negative integers are represented in two's complement form). 
A positive shift count causes a left shift of C bit positions. 
A negative shift count causes a right shift of I c I bit posi­
tions. The value of C is within the range: -64: C :: +63. 

All double-register shift operations require an even value for 
the R field of the instruction, and treat registers Rand Rul 
as a 64-bit register with the high-order bit (bit position Oaf 
register R) as the sign for the entire register. If the R field 
of SHIFT is an odd value and a double-register shift opera­
tion is specified, a register doubleword is formed by dupli­
cating the contents of register R for both the 32 high-order 
bits and the 32 low-order bits of the doubleword. The shift 
operation is then performed and the 32 high-order bits of the 
result are loaded into register R. 

Overflow occurs (on left shifts only) whenever the value of 
the sign bit (bit position 0 of register R) changes. At the 
completion of logical left, circular left, and arithmetic left 
shifts, the condition code is set as follows: 

2 3 4 

o 

o 

Result of Shift 

even number of l's shifted off left end of 
register R 

odd number of l's shifted off I eft end of 
register R 

no overflow on left shift 

overflow on left shift 

At the completion of logical right, circular right, and arith­
metic right shifts, the condition code is set as follows: 

234 

o 0 

Logica I Shift, Single Register 

If the shift count, C, is positive, the contents of register R 
are shifted left C places, with O's copied into vacated bit 
positions on the right. (Bits shifted past RO are lost.) If C 
is negative, the contents of register R are shifted right IC I 
places, with O's copied into vacated bit positions on the 
left.· (Bits shifted past R31 are lost.) 

Affected: (R), CC1, CC2 

Logical Shift, Double Register 

If the shift count, C, is positive, the contents of registers 
Rand Ru 1 are shifted left C places, with O's copied into 
vacated bit positions on the right. Bits shifted past bit posi­
tion 0 of register Ru1 are copied into bit position 31 of reg­
ister R. (Bits shifted past RO are lost.) If C is negative, the 
contents of registers Rand Ru 1 are shifted right IC I places, 

Shift Instructions 47 



with OIS copied into vacated bit positions on the left. Bits 
shifted past bit position 31 of register R are copied into bit 
position a of register Ru 1. (Bits sh ifted past Ru 131 are lost.) 

Affected: (R), (Ru1), CC1, CC2 

Circular Shift, Single Register 

If the shift count, C, is positive, the contents of registerR 
are shifted left C places. Bits shifted past bit position 0 
are copied into bit position 31. (No bits are lost.) If C 
is negative, the contents of register R are shifted right ICI 
places. Bits shifted past bit position 31 are copied into 
bit position O. (No bits are lost.) 

Affected: (R),CC1,CC2 

Circular Shift, Double Register 

If the shift count, C is positive, the contents of registers 
Rand Ru 1 are shifted left C places. Bits shifted past bit 
position a of register R are copied into bit position 31 of 
register Ru1. (No bits are lost.) If C is negative, the 
contents of registers Rand Ru1 are shifted right Ici places. 
Bits shifted past bit position 31 of register Ru1 are copied 
into bit position a of register R. (No bits are lost.) 

Affected: (R), (Ru1), CC1, CC2 

Arithmetic Shift, Single Register 

If the shift count, C, is positive, the contents of register 
R are shifted left C places, with O's copied into vacated 
bit positions on the right. (Bits shifted past RO are lost.) 
If C is negative, the contents of register R are shifted right 
Ic I places, with the contents of bit position 0 copied into 
vacated bit positions on the left. (Bits sh ifted past R31 are 
lost. ) 

Affected: (R), CC1, CC2 

Arithmetic Shift, Double Register 

If the shift count, C, is positive, the contents of registers 
Rand Ru1 are shifted left C places, with O's copied into 
vacated bit positions on the right. Bits shifted past bit 
position a of register Ru 1 are copied into bit position 31 
of register R. (Bits shifted past RO are lost.) If C is nega­
tive, the contents of registers Rand Ru 1 are shifted right ICI 
places, with the contents of bit position a of register R 
copied into vacated bit positions on the left. Bits shifted 
past bit position 31 of register R are copied into bit posi­
tion a of register Rul. (Bits shifted past Ru1 31 are lost.) 

Affected: (R), (Ru1), CC1, CC2 

48 Shift Instructions 

FLOATING-POINT SHifT 

See "Floating-Point Arithmetic Instructions" for a definition 
of floating-point numbers. The forma~ for the floating-poinj 
shift instruction is: 

SF SHIFT FLOATING 
(Word index al ignment) 

If indirectaddressing or indexing is called for in the instruction 
word, the effective virtual address is computed as for the in­
struction SHIFT except that bit position 23 of the effective 
virtual address determines the type ofshift. Ifbit 23 is aO, the 
contents of register R are treated as a short-format floating­
point number; if bit 23 is a 1, the contents of registers Rand 
Ru1 are treated as a long-format floating-point number. 

The shift count, C, in bit positions 25 through 31 of the 
effective virtual address determines the amount and direc­
tion of the shift. The shift count is treated as a 7-bit 
signed binary integer, with the high-order bit (bit position 
25) as the sign (negative integers are represented in twols 
compl ement form). 

The absolute value of the shift count determines the number 
of hexadecimal digit positions the floating-point number is 
to be shifted. If the shift count is positive, the floating­
point number"is shifted left; if the count is negative, the 
number is shifted right. 

SHIFT FLOATING loads the floatLng-point number from the 
register(s) specified by the R field of the instruction into a 
set of internal registers. If the number is negative, it is 
two's complemented. A record of the original sign is re­
tained. The floating-point number is then separated into 
a characteristic and a fraction, and CCl and CC2 are both 
reset to O's. 

A positive shift count produces the following left shift 
operations: 

1. If the fraction is normalized (i.e., is less than 1 and is 
equal to or greater than 1/16), or the fraction is all 
O's, CC1 is set to 1. 

2. If the fraction field is all O's, the entire floating-point 
number is set to all O's (true zero), regardless of the 
sign and the characteristic of the original number. 

3. If the fraction is not normalized, the fraction field is 
shifted 1 hexadecimal digit position (4 bit positions) to 
the left and the characteristic field is decremented by 
1. Vacated digit positions at the right of the fraction 
are filled with hexadecimal O's. 

If the characteristic field underflows (i.e., is all lis 
as the result of being decremented), CC2 is set to 1. 
However, if the characteristic field does not under­
flow, the shift process (shift fraction, and decrement 
characteristic) continues until the fraction is normal­
ized, until the characteristic field underflows, or 
until the fraction is shifted left C hexadecimal digit 



positions, whichever occurs first. (Any two, or all 
three, of the terminating conditions can occur 
simultaneously. ) 

4. At the completion of the left shift operation, the f1oating­
point result is loaded back into the general register{s). 
If the number was originall y negative, the two's com-
pi ement of the resul tant number is loaded into the gen­
eral register{s}. 

5 The condition code settings following a floating-point 
left shift are as follows: 

2 

o o 

3 

o 
o 

4 

o 

o 

Result 

true zero (all O's) 

negative 

positive 

C digits shifted (fraction unnormal­
ized, no characteristic underflow) 

fraction normalized {includes true 
zero} 

characteristic underflow 

A negative shift count produces the following right shift op­
erations (again assuming that negative numbers are two's 
complemented before and atter the shift operation): 

1. The fraction field is shifted 1 hexadecimal digit posi­
tion to the right and the characteristic field is incre­
mented by 1. Vacated digit positions at the left are 
filled with hexadecimal O's. 

2. 

3. 

4. 

5. 

If the characteristic field overflows (i.e., is all O's as 
the result of being incremented), CC2 is set to 1. How­
ever, if the characteristic field does not overflow, the 
shift process {shift fraction, and increment character­
istic} conti nues unti I the characteristic field overflows 
or until the fraction is shifted right Ici hexadecimal 
digit positions, whichever occurs first. (Both termin­
ating conditions can occur simultaneously.) 

If the resultant fraction field is all O's, the entire 
floating-point number is set to all O's {true zero}, re­
gardless of the sign and the characteristic of the origi­
nal number. 

At the completion of the right shift operation, the 
floating-point result is loaded back into the general 
register{s}. If the number was originally negative, the 
two's complement of the resultant number is loaded 
into the general register{s}. 

The condition code settings following a floating-point 
right shift are as follows: 

2 

o 0 

o 

3 

o 
o 

4 

o 

o 

Resul t 

true zero {all zeros} 

negative 

positive 

IC I digi ts shifted (no characteristic 
overflow) 

characteri sti c overfl ow 

Floating Shift, Single Register 

The short-format floating-point number in register R is shifted 
according to the rules established above for floating-point 
shift operations. 

Affected: {R}, cc 

Floating Shift, Double Register 

The long-format floating-point number in registers Rand Rul 
is shifted according to the rules established above for floating­
point shift operations. (If the R field of the instruction word 
is an odd value, a long-format floating-point number is gen­
erated by duplicating the contents of register R, and the 32 
high-order bits of the result are loaded into register R.) 

Affected: (R), (Ru 1 ), cc 

CONVERSION INSTRUCTIONS 

The following two conversion instructions are provided by the 
SI GMA 6 computer: 

Instruction Name 

Convert by Addition 
Convert by Subtraction 

Mnemonic 

CVA 
CVS 

These two conversion instructions can be used to accompl ish 
bidirectional translation betw~en binary code and any other 
weighted binary code, such as BCD. 

The effective addresses of the instructions CONVERT BY 
ADDITION and CONVERT BY SUBTRACTION each point 
to the starting location of a conversion table of 32 words, 
containing weighted values for each bit position of register 
Rul. The 32 words of the conversion table are considered to 
be 32-bit positive quantities, and are referred to as conver­
sion values. The intermediate results of these instructions 
are accumulated in internal CPU registers unti I the i nstruc­
tion is completed; the result is then loaded into the appro­
priate general register. Both instructions use a counter (n) 
that is set to 0 at the beginning of the instruction execution 
and is incremented by 1 with each iteration, unti I a total of 
32 iterations have been performed. 

If an interrupt or memory protection violation trap occurs during 
the execution of either instruction, the instruction sequence is 
aborted (without having changed the contents of register R or 
Ru 1) and restarted {at the beg inning of the instruction sequence} 
after the interrupt or trap routine is processed. 

eVA CONVERT BY ADDITION 
0/Vord index alignment) 

CONVERT BY ADDITION initially clears the internal A reg­
ister and sets an i nterna I counter (n) to O. If bit position n 

Conversion Instructions 49 



of register Ru1 contains a 1, CVA adds the nth conversion 
value (contents of the word location pointed to by the ef­
fective address plus n) to the contents of the A register, 
accumulates the sum in the A register, and increments n 
by 1. If bit position n of register Ru1 contains a 0, CVA 
only increments n. If n is less than 32 after being incre­
mented, the next bit position of register Ru 1 is examined, 
and the addition process continues through n equal to 31; 
the result is then loaded into register R. If, on any itera­
tion, the sum has exceeded the value 232 -1, CCl is set to 
1; otherwise, CC 1 is reset to O. 

Affected: (R), CC1, CC3, CC4 
o --A, 0 --n 

If (Rul) = 1, then (EWL + n) + (A) -A, n + 1- n 
n 

If (Ru 1) = 0, then n + 1 -- n 
n 

If n < 32, repeat; otherwise, (A) - R and continue to 
next instruction 

Condition code settings: 

o 

cvs 

234 ResultinR 

o 0 zero 

o bit 0 of register R is a 1 

Obit 0 of register R is a 0 and bit positions 
1-31 of register R contain at least one 1 

sum is correct (less than 232) 

sum is greater than 232 - 1 

CO NVERT BY SUBTRACTION 
0Nord index al ignment) 

CONVERT BY SUBTRACTION loads the internal A register 
with the contents of register R, clears the internal B regis­
ter, Old sets an internal counter (n) to O. All conversion 
val ues are considered to be 32-bit positive quantities. If 
the nth conversion value (the contents of the word location 
pointed to by the effective address plus n) is equal to or less 
than the current contents of the A register, CVS increments 
n by 1, adds the two's complement of the nth conversion 
value to the contents of the A register, stores the sum in 
the A register, and stores a 1 in bit position n of the B reg­
i ster. If the nth conversi on val ue is greater than the current 
contents of the A register, CVS only increments n by 1. If 
n is I ess than 32 after bei ng incremented, the next con­
version value is compared and the process continues through 
n equal to 31; the remainder in the A register is loaded into 
register R, and the converted quantity in the B register is 
loaded into register Rul. 

Affected: (R), (Rul), CC3, CC4 

(R) --- A, 0 --B, 0-- n 

If (EWL + n) :s (A) then A - (EWL + n) --A, 
1 -- Bn, n + 1 -- n . 

If (EWL + n) > (A) then n + 1 -- n 

50 Floating-Point Arithmetic Instructions 

If n < 32, repeat; otherwise, (A) -- R, (B) - Ru 1 and 
conti nue to the next instruction 

Condition code settings: 

2 3 4 Result in Ru 1 

0 0 zero 

0 bit 0 of register Ru 1 is a 1 

0 bit 0 of register Ru 1 is a 0 and bit posi-
tions 1-31 of register Ru 1 contain at 
least one 1 

FLOATING-POINT ARITHMETIC INSTRUCTIONS 
The following floating-point arithmetic instructions are 
available as optional SIGMA 6 instructions: 

Instruction Name 

Floating Add Short 
Floating Add Long 
Floating Subtract Short 
Floating Subtract Long 
Floating Multiply Short 
Floating Multiply Long 
Floating Divide Short 
Floating Divide Long 

Mnemonic 

FAS 
FAL 
FSS 
FSL 
FMS 
FML 
FDS 
FDL 

FLOATING-POINT NUMBERS 

SIGMA 6 accommodates two number formats for floating­
point arithmetic: short and long. A short-format floating­
point number consists of a sign (bit 0), a biased t, base 16 
exponent, which is called a characteristic (bits 1-7), and 
a six-digit hexadecimal fraction (bits 8-31). A long-format 
floating-point number consists of a short-format floating­
point number followed by an additional eight hexadecimal 
digits of fractional significance and occupies a doubl eword 
memory location or an even-odd pair of general registers. 

A SIGMA 6 floating-point number (N) has the following 
formct: 

A floQting-point number (N) has the following formal 
defi nition: 

1. N = F x 16 C -64 where F = 0 or 

16-6 :s IF l::s 1 (short format) or 

16- 14 :s IFI::s 1 (long format) 

and O::s C ::s 127 

tThe bias value of 4016 is added to the exponent for the 
purpose of making it possible to compare the absolute mag­
nitude of two numbers, i. e., without reference to a sign 
bit. This manipulation effectively removes the sign bit, 
making each characteristic a 7-bit positive number. 



2. Apositivefloating-pointnumberwith a fraction of zero 
and a characteristi c of zero is a IItrue ll zero. A positive 
floating-point number with a fraction of zero and a non­
zerO characteristic is an lIabnormal ll zero. For floating­
point multipl ication and division, an abnormal zero is 
treated as a true zero. However, for addition and 
subtraction, an abnormal zero is treated the same as 
any nonzero operand. 

3. A positive floating-point number is normal ized if and 
onl y if the fraction is contained in the interval 

1/16 sF < 1 

4. A negative floclting-point number is the two's compl e­
ment of its positive representation. 

5. A negative floating-point number is normal ized if and 
onl y if its two's compl ement is a normal ized positive 
number. 

By this definition, a floating-point number of the form 

1 xxx xxxx 11 11 0000 . .. 0000 

is normal ized, and a floating-point number of the form 

1 xxx xxxx 0000 0000 . •• 0000 

is illegal and, whenever gf'nerated by floating-point in­
structions, is converted to the form 

1 yyy yyyy 1111 0000 . .. 0000 

where yy ... y is 1 less than xx ... x. Table 6 contains 
examples of floating-point numbers. 

MODES OF OPERATION 

SIGMA 6 contains three mode control bits that are used to 
qualify floating-point operations. These mode control bits 
are identified as FS (floating significance), FZ (floating 
zero), and FN (floating normalize), and are contained 
in bit positions 5, 6, and 7, respectively, of the program 
status doubleword (PSD5-7)' 

The_ floating-point mode is established by setting the three 
floating-point mode control bits. This can be performed by 
any of the following instructions: 

Instruction Name 

. Load Conditions and Floating Control 

Load Conditions and Floating Control 
Immediate 

Load Program Status Doubleword 

Exchange Program Status Doubleword 

Mnemonic 

LCF 

LCFI 

LPSD 

XPSD 

The floating-point mode control bits are stored by executi ng 
either of the following instructions: 

Instruction Name 

Store Conditions and Floating Control 

Exchange Program Status Doubleword 

Mnemonic 

STCF 

XPSD 

Table 6. Floating-Point Number Representation 

Dec imal Number Short Floating -point Format Hexadecimal Value 

± C F 

+(16+63)(1-2 -24) a 111 1111 1111 1111 1111 1111 1111 1111 7F FFFFFF 

+(16+3)(5/16) a 100 0011 0101 0000 0000 0000 0000 0000 43 500000 

+(16 -3)(209/256) a all 1101 1101 0001 0000 0000 0000 0000 3D Dl0000 

+ (16 -63)(2047/4096) a 000 0001 0111 1111 1111 0000 0000 0000 01 7FFOOO 

+(16 -64) (1 /16) a 000 0000 0001 0000 0000 0000 0000 0000 00 100000 

a (called true zero) a 000 0000 0000 0000 0000 0000 0000 0000 00 000000 

-(16 -64)(1/16) 1 111 1111 1111 0000 0000 0000 0000 0000 FF FOOOOO 

-(16 -63)(2047/4096) 1 111 1110 1000 0000 0001 0000 0000 0000 FE 801000 

-( 16 -3) (209/256) 1 100 0010 0010 1111 0000 0000 0000 0000 C2 2 FOOOO 

-( 16+3)(5/16) 1 all 1100 1011 0000 0000 0000 0000 0000 BC BOOOOO 

_(16+63)(1_224) 1 000 0000 0000 0000 0000 0000 0000 0001 80 000001 

Spec ia I Case: 

-(16
e)(l) 1 e 0000 0000 0000 0000 0000 0000 

-(16e+1)(1/16) 
is changed to --1 e + 1 1111 0000 0000 0000 0000 0000 
whenever generated as the result of a floating-.point instruction. 

Floating-Point Arithmetic Instructions 51 



UNIMPLEMENTED FLOATING-POINT INSTRUCTIONS ~S 

If the optional floating-point instruction set is not imple­
mented in the computer and execution of a floating-point 
arithmetic instruction is attempted, the computer uncondi­
ti onall y aborts execution of the instruction (at the time of 
operation code decoding). The computer then traps to lo­
cation X'41 1

, with the contents of the condition code and 
all general registers unchanged. Location X'41' is the 
"unimplemented instruction" trap location. 

FLOA TlNG·-POINT ADD AND SUBTRACT 

The floating normalize (FN), floating zero (FZ), and floati ng 
significance (FS) mode control bits determine the operation of 
floating-point addition and subtraction (if characteristic 
overflow does not occur) as follows: 

FN Floating normalize: 

FN = a The results of additions and subtractions are 
to be postnormalized. If characteristic under­
flow occurs, if the result is zero, or if more 
than two postnormalization hexadecimal shifts 
are required, the setti ngs for FZ and FS de­
termine the resultant action. If none of the 
above conditions occur, the condition code 
is set to 0010 if the result is positive or to 
0001 if the result is negative. 

FN = 1 Inhibit postnormalization of the results of ad­
ditions and subtractions. The settings of FZ 
and FS have no effect on the i nstructi on op­
eration. If the result is zero, the result is 
set to true zero and the condition code is set 
to 0000. If the result is positive, the con­
dition code is set to 0010. If the result is 
negative, the condition code is set to 0001. 

FZ Floating zero: (applies only if FN = 0) 

FZ = a If the final result of an addition or subtrac­
tion operation cannot be expressed in normal­
ized form because of the characteristic being 
reduced below zero, underflow has occurred, 
in which case the result is set equal to true 
zero and the condition code is set to 1100. 
(Exception: if a trap results from significance 
checking with FS = 1 and FZ = 0, an under­
flow generated in the process of postnormal­
izing is ignored.) 

FZ = 1 Characteristi c underflow causes the computer 
to trap to I ocati on X '44' with the contents of 
the general registers unchanged. If the result 
is positive, the condition code is set to 1110. 
If the result is negative, the condition code 
is set to 110 1 . 

FS Floating significance: (applies only if FN = 0) 

FS -= a Inhibit signifi-ance trap. If the result of an 
addition or subtraction is zero, the result is 

52 Floating-Point Arithmetic Instructions 

set equal to true zero, the condition code is 
set to 1000, and the computer executes the 
next instruction in sequence. If more than 
two hexadecimal place~ of postnormalization 
shifting are required one characteristic under .... 
flow does not occur, the condition code is set 
to 1010 if the result is positive, or to 1001 if 
the result is negative; then, the computer exe-
cutes the next instruction in sequence. (Ex-
ception: if characteristic underflow occurs 
with FS = 0, FZ determines the resultant action.) 

FS = 1 The computer traps to location X'44' if more 
than two hexadecimal places of postnormal­
ization shifting are required or if the result is 
zero. The condition code is set to 1000 if the 
result is zero, to 1010 if the result is positive, 
or to 1001 if the result is negative; however, 
the contents of the general registers are not 
changed. (Exception: if a trap results from 
characteristic underflow wi th FZ = 1, the re­
sults of significance testing are ignored.) 

If characteristic overflow occurs, the CPU always traps to 
location X'44' with the general registers unchanged and the 
condition code set to 0110 if the result is positive, or to 
0101 if the result is negative. 

FLOATING-POINT MULTIPLY AND DIVIDE 

The floating zero (FZ) mode control bit alone determines 
the operation of floating-point multiplication and division 
(if characteristic overflow does nqt occur and division by 
zero is not attempted) as follows: 

FZ Floating zero: 

FZ = a If the final result of a multiplication or divi­
sion operation cannot be expressed in normal­
ized form because of the characteristic being 
reduced below zero, underflow has occurred. 
If underflow occurs, the result is set equal to 
true zero and the condition code is set to 1100. 
If underflow does not occur, the condition code 
is set to 0010 if the result is positive, to 0001 
if the result is negative, orto 0000 if the result 
is zero. 

FZ = 1 Underflow causes the computer to trap to loca­
tion X'44' with the contents of the general 
registers unchanged. The condition code is 
set to 1110 if the result is positive, or to 1101 
if the result is negative. If underflow does 
not occur, the resultant action is the same 
as that for FZ = O. 

If the divisor is zero in a floating-point division, the com­
puter always traps to location X'44' with the general reg­
isters unchanged and the condition code set to 01 00. If 
characteristic overflow occurs, the computer al ways traps 
to location X'44' with the general registers unchanged and 
the condition code set to 0110 if the result is positive, or 
to 0101 if the resu It is negative. 



CONDITION CODES FOR FLOATING-POINT INSTRUCTIONS 

The condition code settings for floating-point instructions 
are summarized in Table 7. The following provisions apply 
to all floating-point instructions: 

1. Underflow and overflow detection apply to the final 
characteristic, not to any lIintermediate ll value. 

2. If a floating-point operation results in a trap, the 
original contents of all general registers remain 
unchanged. 

3. All shifting and truncation are performed on absolute 
magnitudes. If the fraction is negative, then the two's 
complement is formed after shifting or truncation. 

FAS FLOATING ADD SHORT 
(Word index al ignment, optional) 

The effective word and the contents of register R are loaded 
into a set of internal registprs and a low-order hexadecimal 
zero (guard digit) is appended to both fractions, extending 
them to seven hexadecimal digits each. FAS then forms the 
floating-point sum of the two numbers. If no floating-point 
arithmetic fault occurs, the sum is loaded into register R as 
a short-format fl oati ng-poi nt number. 

Affected: (R), CC 
(R) + EW-R 

Traps: Unimplemented in­
struction, floating­
point arithmetic fault 

FAl FLOATING ADD LONG 
(Doubleword index al ignment, optional) 

The effective doubleword and the contents of registers Rand 
Ru1 are loaded into a set of internal registers. 

The operation of FAL is identical to that of F LOA TIN G ADD 
SHORT (FAS) except that the fractions to be added are each 
14 hexadecimal digits long, guard digits are not appended 
to the fractions, and R must be an even value for correct re­
sults. If no floating-point arithmetic fault occurs, the sum 
is loaded into registers Rand Ru1 as a long-format floating­
point number. 

Affected: (R), (Ru1), CC 
(R, Ru1) + ED - R, Ru1 

Traps: Unimplemented in­
struction, floating­
point arithmetic fault 

FSS FLOATING SUBTRACT SHORT 
(Word index alignment, optional) 

The effective word and the contents of register R are loaded 
into a set of i nterna I registers. 

FLOATING SUBTRACT SHORT forms the two's complement 
of the effective word and then operates identicall y to 
FLOATING ADD SHORT (FAS). If no floating-point arith­
metic fault occurs, the difference is loaded into register R 
as a short-format fl oati ng-poi nt number. 

Affected: (R), CC 
(R) - EW-R 

; Traps: Unimplemented in­
struction, floating­
point arithmetic fault 

Table 7. Condition Code Settings for Floating-Point Instructions 

Condition Code Mean i ng if no trap to location X'44 t occurs I Meaning if trap to location X'44' occurs 

1 2 3 4 

0 0 0 0 A x 0, O/A, or -A + A CD with FN=l I I *(l) 
0 0 0 1 N <0 

norma 
* 

0 0 1 0 N > 0 
results 

* 

0 1 0 0 *(l) div ide by zero I 
0 1 0 1 * overflow, N < 0 always trapped 
0 1 1 0 * overflow, N > 0 

~I : 0 0 0 -A + ACD 
-A + A I 

0 0 1 N < ° I > 2 postnorma'-l FS=O, FN=O, and N < 0 > 2 postnormal- FS=l, FN=O, and no 
0 1 0 N > 0 izing shifts no underflow N > 0 I izing shifts underflow with FZ= 1 

1 1 0 0 underflow with FZ=O and no trap by FS=l CD * 
1 1 0 1 * underflow, N < 0 l FZ=l 
1 1 1 0 * underflow, N >0 

Notes: CD result ~et to true zero --
(l) 11*11 indicates impossible configurations 

@ applies to add and subtract only where FN=O 

Floating-Point Arithmetic Instructions 53 



FSL FLOATING SUBTRACT LONG 
(Doubleword index 01 ignment, optional) 

The effective doubleword and the contents of registers Rand 
Ru 1 are loaded into a set of internal registers. 

FLOATING SUBTRACT LONG forms the two·s complement 
of the effective doubleword and then operates identically 
to FLOATING ADD LONG (FAL). If no floating-point 
arithmetic fault occurs, the difference is loaded into reg­
isters Rand Ru 1 as a long-format floating-point number. 

Affected: (R), (Ru 1), CC 
(R, Rul) - ED -R, Rul 

Traps: Unimplemented in­
struction, f/oating­
point arithmetic fault 

FMS FLOATING MULTIPLY SHORT 
(Word index al ignment, optional) 

o 1 2 

The effective word (multipl ier) and the- contents of register 
R (mul tipl icand) are loaded into a set of internal registers, 
and both numbers are then prenormal ized (if necessary). 
The product of the fractions contains 12 hexadecimal digits. 
If no floating-point arithmetic fault occurs, the product is 
loaded into register R as a properly truncated short-format 
floating-point number. 

The result of floating-mul tiply is always postnormal ized. 
At most, one place of postnormalizing shift may be required. 
Truncation takes place after postnormal ization. 

Affected: (R), CC 
(R) x EW - R 

Traps: Unimplemented in-
s tru cti on, fI oat i ng­
pointarithmetic fault 

FML FLOATING MULTIPLY LONG 
(Doubleword index alignment, optional) 

The effective doubreword (multiplier) and the contents of 
registers Rand Ru 1 (multiplicand) are loaded into a set of 
internal registers. FLOATING MULTIPLY LONG then 
operates identically to FLOA TING MULTIPLY SHORT (FMS), 
except that the mul tipl ier and the multiplicand fractions are 
each 14 hexadecimal digits long, the product fraction is 28 
hexadecimal digits long, and R must be an even value for 
correct results. If no floating-point arithmetic fault occurs, 
the postnormalized product is truncated to a long-format 
floating-point number and loaded into registers Rand Ru 1. 

54 Decimal Instructions 

Affected: (R), (Ru 1), CC 
(R, Ru 1) x ED - R, Ru 1 

Traps: Un implemented in­
struction, floating­
point arithmetic faull 

FDS FLOA TING DIVIDE SHORT 
0Nord index al ignment, optional) 

3E 
o 1 2 78,9 1011 12 1~ 14 15 16 17 18 19120 21222324 25262712829 30 31 

The effective word (divisor) and the contents of register R 
(dividend) are loaded into a set of internal registers and both 
numbers are then prenormal ized (if necessary). FLOATING 
DIVIDE SHORT then forms a floating-point quotient with a 
6-digit, normal ized hexadecimal fraction. If no floating­
point arithmetic fault occurs, the quotient is loaded into 

. register R as a short-format floating-point number. 

Affected: (R), CC 
(R) + EW - R 

Traps: Unimplemented in­
struction, floating­
point arithmetic faul t 

FDL FLOATING DIVIDE LONG 
(Doubleword index alignment, optional) 

The effective doubleword (divisor) and the contents of regis­
ters Rand Ru 1 (dividend) are loaded into a set of internal 
registers. FLOATING DIVIDE LONG then operates identi­
cally to FLOATING DIVIDE SHORT (FDS), except that the 
divisor, dividend, and quotient fractions are each 14 hexa­
decimal digits long, and R must be an even value for correct 
results. If no floating-point arithmetic fault occurs, the 
quotient is loaded into registers Rand Ru 1 as a long-format 
floating-point number. 

Affected: (R), (Ru 1), CC 
(R, Rul) + ED - R, Rul 

Traps: Unimplemented in­
struction, floating­
point arithmetic faul t 

DECIMAL INSTRUCTIONS 

The fallowing instructions comprise the standard decimal in­
struction set: 

Instruction Name 

Decimal Load 
Decimal Store 
Decimal Add 
Decimal Subtract 
Decimal Multiply 
Decimal Divide 
Decimal Compare 
Decimal Shift Arithmetic 
Pack Decimal Digits 
Unpack Decimal Digits 
Edit Byte String (described under 

Byte String Instructions) 

Mnemonic 

DL 
DST 
DA 
DS 
DM 
DD 
DC 
DSA 
PACK 
UNPK 
EBS 



PACKED DECIMAL NUMBERS 

All SIGMA 6 decimal arithmetic instructions operate on 
packed decimal numbers, each consisting of from 1 to 31 
decimal digits (in absolute form) plus a decimal sign. A 
decimal digit is a 4-bit code in the range 0000 through 1001, 
where 0000 = 0, 0001 = 1, 0010 = 2, 0011 = 3, 0100 = 4, 
0101 = 5, 0110 = 6, 0111 = 7, 1000 = 8, and 1001 = 9. A 
positive decimal sign is a 4-bit code of the form: 1010(X'A'~ 
1100(X'C}, 1110(X ' E' ), or 1111 (X'F"). A negative decimal 
sign is a 4-bit code of the form: 1011 (X'B') or 1101 (X'D'). 
However, the decimal sign codes generated for the result of 
a decimal instruction are: 1100 (XlC') for positive results, 
and 1101 (X'D') for negative results. The format of packed 
decimal numbers is: 

II digit I sign I 
o 1 2 3 4 5 6 7 

For the decimal arithmetic instructions, a packed decimal 
number must occupy an integral number (1 through 16) of 
consecutive bytes. Thus, a decimal number must contain an 
odd number of decimal digits, the high-order digit (zero or 
nonzero) of the number must be in bit positions 0-3 of the 
first byte, the decimal sign must be in bit positions 4-7 of 
the last byte, and all decimal digits and the decimal sign 
must be 4-bit codes of the fc-rm described above. 

ZONED DECIMAL NUMBERS 

In zoned decimal format, a single decimal digit is contained 
within bit positions 4-7 of a byte, and bit positions 0-3 of 
the byte are referred to as the "zone" of the decimal digit. 
A zoned decimal number consists of from 1 to 31 bytes, with 
the decimal sign appearing as the zone for the last byte, as 
follows: 

A decimal number can be converted from zoned to packed 
format by means of the instruction PACK DECIMAL DIGITS. 
A decimal number can be converted from packed to zoned 
format by means of the instruction UNPACK DECIMAL 
DIGITS. 

DECIMAL ACCUMULATOR 

All decimal arithmetic instructions imply the use of registers 
12 through 15 of the current register bank as the decimal ac­
cumulator, and registers 12 through 15 are treated as a single 
16-byte register. The entire decimal accumulator is used in 
every decimal arithmetic instruction. 

DECIMAL INSTRUCTION FORMAT 

The general format of a decimal instruction is as follows: 

The indirect address bit (position a), the operation code 
(positions 1-7), the index field (12-14), and the reference 
address field (15-31) all have the same functions for the 
decimal instructions as they do for any other SIGMA 6 byte 
addressing instruction. However, bit positions 8-11 of the 
instruction word do not refer to a general register; instead, 
the contents of this field (designated by the character ilL") 
designate the length, in bytes, of a packed decimal num­
ber. (If L = 0, a length of 16 bytes is assumed.) 

ILLEGAL DIGIT AND SIGN DETECTION 

Prior to executing any decimal instruction, the computer 
checks all decimal operands for the presence of illegal dec­
imal digits or illegal decimal signs. For all decimal arith­
metic instructions except DECIMAL MULTIPLY and DECI­
MAL DIVIDE, an illegal decimal digit is a sign code (i. e., 
in the range X'A ' through X'F') that appears anywhere ex­
cept in bit positions 4-7 of the least significant byte (the 
sign position) of the packed decimal number; an illegal 
decimal sign is a digit code (i. e., in the range X'O' through 
X'9

1
) that appears in the sign position of the packed deci­

mal number. 

For the instructions DECIMAL MULTIPLY and DECIMAL 
DIVIDE, the effective decimal operand is checked for 
illegal digits or signs as above. However, the operand in 
the decimal accumulator is checked to verify that there is 
at least one legal decimal sign code somewhere in the num­
ber. (This type of check is a result of the interruptibility 
of these instructions, which may leave the decimal accumu­
latorwith a partially-completed result containing an internal 
sign code.) 

If an illegal digit or sign is detected, the computer uncon­
ditionally aborts the execution of the instruction (at the 
time that the illegal digit or sign is detected), sets CC 1 to 1 
and -esets CC2 to O. If the decimal arithmetic faul t trap 
mask (bit position 10 of the program status doubleword) 
is a 0, the computer then executes the next instruction in 
sequence; however, if the decimal arithmetic fault trap 
mask (PSDlO) is a 1, the computer traps to location X'4S'. 
In either case, the contents of the decimal accumulator, 
the effective deci mal operand, CC3, and CC4 remain 
unchanged. 

OVERfLOW DETECTION 

Arithmetic overflow can occur during execution of the fol­
lowing decimal instructions: 

DECIMAL ADD: overflow occurs when the sum of the two 
decimal numbers exceeds the 31-digit ca)acity of the 
decimal accumulator (+ 1031 - 1 to - 103 + 1). 

DECIMAL SUBTRACT: overflow occurs when the difference 
between the two decimal numbers exceeds the 31-digit 
capacity of the decimal accumulator. 

Decimal Instructions 55 



DECIMAL DIVIDE: overflow occurs either when the divisor 
is zero, or when the dividend is greater than 14 digits in 
length and the absolute value of the significant digits to 
the left of the 15th digit position (counting from the right) 
is greater than or equal to the absolute value of the 
divisor. 

If arithmeti c overflow occurs during execution of DECIMAL 
ADD, DECIMAL SUBTRACT, or DECIMAL DIVIDE, the com­
puter unconditionally aborts execution of the instruction (at 
the time of overflow detection), resets CC 1 to 0, and sets' 
CC2 to 1. Then, if the decimal arithmetic fault trap mask 
(PSD 10) is a 1, the computer traps to location X'45'; if the 
decimal arithmetic fault trap mask is a 0, the computer exe­
cutes the next instruction in sequence. In either case, the 
contents of the decimal accumulator, memory storage, CC3, 
and CC4 remain unchanged. 

DECIMAL INSTRUCnON NOMENClATURE 

For the purpose of abbreviating the instruction descriptions 
to follow, the symbol ic term IIDECA" is used to represent 
the decimal accumulator, and the symbolic term IIEDO II is 
used to represent the effective decimal operand of the in­
struction. For the instructions DECIMAL LOAD, DECIMAL 
ADD, DECIMAL SUBTRACT, DECIMAL MULTIPLY, DECI­
MAL DIVIDE, and DECIMAL COMPARE, the effective dec­
imal operand is a packed decimal number that is IILII bytes 
in length, where L is the numeric value of bit positions 8-11 
of the instruction word, and a val ue of a for L designates 
16 bytes. The effective byte addresses of these instructions 
point to the byte location that contains the most significant 
byte (high-order digits) of the decimal number, and the ef­
fective byte address pi us L-l (where L = a = 16) points to 
the least significant byte (low-order digit and sign) of the 
dec imal number. Thus, for these instructions, the effective 
decimal operand (EDO) is the contents of the byte string 
that begins with the effective byte location, is L bytes in 
I ength, and ends with the effective byte location plus L-l . 

CONDITION CODE SETTINGS 

All decimal instructions provide condition code settings, 
using CCI toindicate whether or not an illegal digit or sign 
has been detected, and CC2 to indicate whether or not over­
flow has occurred. Most (but notall) of the decimal instruc­
tions provide condition code settings, using CC3 and CC4 to 
indicate whether the decimal number in the decimal accumu­
lator is zero, negative, or positive, as follows: 

CC3 CC4 

a a 

a 

Result in DECA 

zero - the decimal accumulator contains a 
positive or negative decimal sign code in the 
4 low-order bit positions; the remainder of 
the decimal accumulator contains all a's. 

negative - the deci mal accumulator contains 
a negative decimal sign code in the 4 low­
order bit positions; the remainder of the deci­
mal accumulator contains at least one nonzero 
decimal digit. 

56 Decimal Instructions 

CC3 CC4 Result in DECA 

a positive - the decimal accumulator contains 
a positive dec imal sign code in the 4 low­
order bit positions; the remainder of the dec­
imal accumulator contains at least one 
nonzero decimal digit. 

DL DECIMAL LOAD 
(Byte index alignment) 

If no illegal digit or illegal sign is detected in the effective 
decimal operand, DECIMAL LOAD expands the effective 
decimal operand to 16 bytes (31 digits + sign) by appending 
high-order D's, and then loads the expanded decimal num­
ber into the decimal accumulator. If the result i., the decimal 
accumulator is zero, the converted sign remains unchanged. 

Affected: (DECA), CC Traps: Deci mal arithmetic 
(EBL to EBL + L-I) -- DECA 

Condition code settings: 

2 3 4 Result in DECA 

a illegal digit or sign detected, instruction 
aborted 

a a a ·0 zero 

I no illegal digit or illegal 

a a a negative sign detected, instruct i on 

a a a positive 
completed 

CST DECIMAL STORE 
(Byte index al ignment) 

If no illegal digit or sign is detected in the decimal ac­
cumulator, DECIMAL STORE stores the low-order L bytes 
of the decimal accumulator into memory from the effec­
tive byte location to the effective byte location plus L-l. 
If the decimal accumulator contains more significant in­
formation than is actually stored (i. e., at least one non­
zero digit was not stored), CC2 is set to I; otherwise 
CC2. is reset to O. If the result in memory is zero, the 
converted sign remains unchanged. 

Affected: (EBL to EBL + L-l), Traps: Decimal arithmetic 
CC1, CC2 

(DECA) low-order bytes -- EBL to EBL + L-l 

Condition code setti ngs: 

2 3 4 

a 
Result of DST 

illegal digit or sign detected, instruction 
aborted 



2 3 

o o 

o 

4 Result of DST 

all significant in_j 
formation stored 

some significant 
information not 
stored 

no illegal digit or 
illegal sign detec­
ted, i nstructi on 
completed 

OA DECIMAL ADD 
(Byte index 01 ignment) 

If no i II ega I di git or sign is detected in the effecti ve dec i­
mal operand or in the decimal accumulator, DECIMAL ADD 
expands the effective decimal operand to 16 bytes (31 digits 
plus sign) by appE~nding high-order O's, algebraically adds 
the expanded decimal number to the contents of the entire 
decimal accumulator, and then loads the sum into the deci­
mal accumulator. If the result in the decimal accumulator 
is zero, the resulting sign is forced to the positive form. 

Overflow occursifthesum exceeds thecapacityof the deci­
mal accumulator (i. e. , if the absolute value of the sum is equal 
to or greater than 1031 ), inwhich case CC1 is reset to 0, CC2 
is set to 1, and the instruction aborted with the previous con­
tents of the decimal accumulator, CC3 and CC4 unchanged. 

Affected: (DECA), CC 
(DECA) + EDO - DECA 

Traps: Decimal arithmetic 

Condition code settings: 

2 3 4 Result in DECA 

0 illegal digit or 
sign detected 

instruction aborted 
0 overflow 

0 0 0 0 
zero ) no illegal digit or sign 

0 0 0 negative detected, no overflow, 

0 0 0 positive 
instruction completed 

OS DECIMAL SUBTRACT 
(Byte index 01 ignment) 

If no illegal digit or sign is detected in the effective deci­
mal operand or in the decimal accumulator, DECIMAL SUB­
TRACT expands the effective decimal operand to 16 bytes 
(31 digits plus sign) by appending high-order O's, alge­
braically subtracts the expanded decimal number from the con­
tents of the entire decimal accumulaTor, and then loads the 
difference into the decimal accumulator. If the result in the 
decimal accumulator is zero, the resulting sign is forced to 
the positive form. 

Overfl ow occurs if the <:Ji fference exceeds the capac i ty of 
the decimal accumulator (i.e., if the absolute value of the 
difference is equal to or greater then 1031 ), in which case 

CCl is reset to 0, CC2 is set to 1, and the instruction is 
aborted with the contents of the previous decimal accumu­
lator, CC3 and CC4 unchanged. 

Affected: (DECA), CC Traps: Decimal arithmetic 
(DECA) - EDO -- DEC A 

Condition code settings: 

2 3 4 Result in DECA 

0 illegal digit or 
sign detected 

i nstructi on aborted 
a overflow 

a a a a zero 
} no illegal digit or sign de-

a a a negative tected, no overflow, in-

a a 0 positive 
struction completed 

OM DECIMAL MU L TIPL Y 
(Byte index 01 ignment, continue after interrupt) 

If no illegal digit or sign is detected in the effective dec i­
mal operand and there is at least one decimal sign in the 
decimal accumulator, DECIMAL MULTIPLY multiplies the 
effective decimal operand (multiplicand) by the entire 
contents of the decimal accumu~ator (multiplier) and then 
loads th~ product into the decimal accumulator. If the 
result in the decimal accumulator is zero, the resulting 
sign is forced to the positive form. 

No overflow can occur; how~ver, an indeterminate result 
occurs (with an incorrect condition code indication, and 
with no trap activation) if any of the following conditions 
are not satisfied before the initial execution of DECIMAL 
MULTIPLY: 

1. The 4 low-order bit positions of the decimal accumu­
lator must contain the sign of the multiplier. 

2. The 16 high-order digit positions of the decimal accu­
mulator (i .e., general registers 12 and 13) must contain 
all O's. 

3. The effective decimal operand must not exceed 15 deci-
mal digits (i. e., the value of L must not exceed 8). 

This instruction can be interrupted during the course of its 
exec;ution, and then be resumed, without producing an er­
roneous product (provided that the contents of the decimal 
accumulator are not altered between the interruption and 
continuation). Actually, the instruction is reexecuted, 
but since there is no initializing phase, it begins with the 
same iteration that was started prior to the interrupt. 

Affected: (DECA), CC 
(DECA) x EDO - DECA 

Condition code settings: 

Traps: Decimal arithmetic 

234 Result in DECA 

illegal digit or sign detected, instruc­
tion aborted 

Decimal Instructions 57 



2 3 4 Result in DECA 

a a a a zero 
} no illegal digit or sign 

a 0 a negative detected, i nstructi on 

a a a positive 
completed 

DO DECIMAL DIVIDE 
(Byte index al ignment, continue after interrupt) 

If there is no illegal digit or sign in the effe~tive deci­
mal operand and if there is at least one decimal sign in 
the dec imal accumulator, DECIMAL DIVIDE divides the 
contents of the decimal accumulator (dividend) by the ef­
fective decimal operand (divisor). Then, if no overflow 
has occurred, the computer loads the quotient (15 decimal 
digits plus sign) into the 8 low-order bytes of the decimal 
accumulator (registers 14 and 15), and loads the remainder 
(also 15 decimal digits plus sign) into the 8 high-order bytes 
of the dec imal accumulator (registers 12 and 13). The sign 
of the remai nder is the same as that of the original dividend. 
If the quotient is zero, the sign of the quotient is forced to 
the positive form. 

Overflow can occur if any of the following conditions are 
not satisfied before the initial execution of DECIMAL 
DIVIDE: 

1. The divisor must not be zero. 

2. The length of the divisor must not be greater than 15 
decimal digits (i.e., the value of L must not exceed 8.) 

3. If the length of the dividend is greater than 15 decimal 
digits, the absolute value of the significant di gits to 
the left of the 15th digit position (i.e., those digits in 
registers 12 and 13) must be less than the absolute value 
of the divisor. 

This instruction can be interrupted during the course of its 
execution, and can then be resumed without producing an 
erroneous result (provided that the contents of the decimal 
accumulator are not altered between interruption and con­
tinuation). Actually, the instruction is reexecuted, but 
since there is no initializing phase, it begins with the same 
iteration that was started prior to the interrupt. 

Affected: (DECA), CC 
(DECA)';- EDO - DECA 

Traps: Decimal arithmetic 

Condition code settings: 

2 3 4 Result in DECA 

a illegal digit or 

I sign detected instruction aborted 

a overflow 

a a a a zero quotient 

} 
no illegal digit or 

a 0 a negative quotient 
sign detected, no 
overflow, instruc-

a 0 0 positive quotient tion completed 

58 Decimal Instructions 

DC DECIMAL COMPARE 
(Byte index al ignment) 

If there is no illegal digit or illegal sign in the effective 
decimal operand or in the decimal accumulator, DECIMAL 
COMPARE expands the effective decimal operand to 16 
bytes (31 digits plus sign) by appending high-order OIS, al­
gebraical Iy compares the expanded decimal number to the 
contents of the entire dec imal accumulator, and sets CC3 
and CC4 according to the result of the comparison (a posi­
tive zero compares equal to a negative zero). 

Affected: CC 
(DECA) : EDO 

Traps: Decimal arithmetic 

Condition code settings: 

2 3 4 Result of comparison 

a illegal digit or sign detected, instruction 
aborted 

0 a 0 0 (DECA) equals EDO I no illegal digit 
0 0 a (DECA) less than EDO or sign detected, 

0 0 0 (DECA) greater than 
instruction com-

EDO 
pleted 

DSA DECIMAL SHIFT ARITHMETIC 
(Byte index alignment) 

Reference address 

If no illegal digit or sign is detected in the decimal accu­
mulator, DECIMAL SHIFT ARITHMETIC arithmetically shifts 
the contents of the decimal accumulator (excluding the 
decimal sign), with the direction and amount of the shift 
determined by the effective virtual address of the instruc­
tion. If the result in the decimal accumulator is zero, the 
resulting sign remains unchanged. 

If no indirect addressing or indexing is used with DSA, the 
shift count C is the contents of bit positions 16-31 of the 
instruction word. If only indirect addressing is used with 
DSA, the shift count is the contents of bit positions 16-31 
of the word pointed to by the indirect address in the 
instruction word. If indexing only is used with DSA, the 
shift count is the contents of bit positions 16-31 of the 
instruction word plus the contents of bit positions 14-29 
of the designated index register (bits 0-13, 30, and 31 of 
the index are ignored). If indirect addressing and indexing 
are both used with DSA, the shift count is the sum of the 
contents of bit positions 16-31 of the word pointed to by 
the indirect address and the contents of bit positions 14-29 
of the designated index register. 

The shift count, C, is treated as a 16-bit signed binary in­
teger, with negative integers in twols complement form. 
If the shift count is positive, the contents of the decimal 
accumulator are shifted left C decimal digit positions; if 
the shift count is negative, the contents ::If the decimal 



accumulator are shifted right -C decimal digit positions. In 
either case, the decimal sign is not shifted, vacated deci­
mal digit positions are filled with OIS, and any digits shifted 
out of the decimal accumulator are lost, Although the range 
of possible values for C is 2 -15 ~ C ~ 2 5_ 1, a shift account 
greater than +31 or less than -31 is interpreted as a shift 
count of exactly +31 or -31. 

If any nonzero decimal digit is shifted out of the decimal 
accumulator during a left shift, CC2 is set to 1; otherwise, 
CC2 is reset to O. CC2 is unconditionally reset to 0 at the 
completion of a right shift. 

Affected: (DECA), cc Traps: Decimal arithmetic 

Condition code setti ngs: 

2 3 4 Result in DECA 

o 
o 
o 
o 

o 

o 

o 

PACK 

o 
o 

o 

o 

illegal di git or sign detected, instruction 
aborted 

zero 

negative 

positive 

right shift or no non­
zero dir:;it shifted out 
of DECA on I eft shi ft 

1 or more nonzero 
digit{s) shifted out 
of DECA on left shift 

no illegal digit 
or sign detected, 
instruction 
completed 

PACK DECIMAL DIGITS 
(Byte index al ignment, continue after interrupt) 

PACK DECIMAL DIGITS converts the effective decimal 
operand (assumed t·o be in zoned format) into a packed 
decimal number and, if necessary, appends sufficient high­
order OIS to produce a decimal number that is 16 bytes (31 
decimal digits plus sign) in length. The zone (bits 0-3) of 
the low-orderdigitof the effective decimal operand is used 
to select the sign code for the packed decimal number; all 
other zones are ignored in forming the packed decimal 
number. If no illegal digit or sign appears in the packed 
decimal number, it is then loaded into the decimal accu­
mulator. If the result in the decimal accumulator is zero, 
the resulting sign remains unchanged. 

The L field of this instruction specifies the length, in bytes, 
of the resultant packed decimal number in the decimal accu­
mulator; therefore, the length of the effective decimal oper­
and is 2L-1 bytes (where L :-= 0 implies a length of 31 bytes 
for the effective decimal operand). 

This instruction can be interrupted during the course of its 
execution, and can then be resumed without producing an 
erroneous result {provided that the contents of the decimal 
accumu lator are not .al tered between interruption and con­
tinuation}. Actually, the instruction is re-executed, but 

since there is no initializing phase, it begins with the 
same iteration that was started prior to the interrupt. 

Affected: (DECA), cc Traps: Decimal arithmetic 

packed (EBL to EBL + 2L -2)- DECA 

Condition code settings: 

2 3 4 Result in DECA 

0 illegal digit or sign detected, instruction 
aborted 

0 0 0 0 zero 
} no illegal digit or sign 

0 0 0 negati ve detected, instruction 

0 0 0 positive 
completed 

Example 1, L == 6: 

EDO 

(DECA) 

CC 

Example 2, 

EDO 

(DECA) 

CC 

Before exec uti on 

X'FOFIF2F3 
F4F5F6F7 
F8F9FO I 

xxxxxxxx 
xxxxxxxx 
xxxxxxxx 
xxxxxxxx 

xxxx 

L = 6: 

X'000938F7 
E655B483 
02Fl BOI 

xxxxxxxx 
xxxxxxxx 
xxxxxxxx 
xxxxxxxx 

xxxx 

After execution 

X'FOF1 F2F3 
F4F5F6F7 
F8F9FOI 

X'OOOOOOOO 
00000000 
00000123 
4567890(' 

0010 

X'OO0938F7 
E655B483 
02Fl BOI 

X'OOOOOOOO 
00000000 
00000987 
6543210D I 

0001 

UNPK UNPACK DECIMAL DIGITS 
(Byte index al ignrnent, continue after interrupt) 

If no illegal digit or sign is detected in the decimal accu­
mulator (assumed to be in packed decimal format), UNPACK 
DECIMAL DIGITS converts the contents of the low-order L 
bytes of the decimal accumulator to zoned decimal format 
and stores the result, as a byte string, from the effective byte 
location to the effective byte location plus 2L-2. The con­
tents of the 4 low-order bit positions of the decimal accu­
mulator are used to select the sign code for the last digit of 
the string; a zone of 1111 (XI FI) is used for all other digits. 
The contents of the decimal accumulator remain unchanged, 
and only 2L-l bytes of memory are altered. If the decimal 

Decimal Instructions 59 



accumulator contains more significant information than is 
actually unpacked and stored, CC2 is set to 1; otherwise 
eC2 is reset to O. If the result in memory is zero, the 
resulting sign remains unchanged. 

This instruction can be interrupted during the course of its 
execution, and can then be resumed without producing an 
erroneous result (provided that the contents of the decimal 
accumu lator are not altered between interruption and con­
ti nuation). Actually, the instruction is re-executed, but 
since there is no initializing phase, it begins with the same 
iteration that was started prior to the interrupt. 

Affected: (EBl to EBl + 2l -2), Traps: Decimal arithmetic 
Cel, CC2 

zoned (DECA)- EBl to EBl + 2l -2 

Condition code settings: 

2 3 4 Result of UNPK 

o illegal digit or sign detected, instruction 
aborted 

o 0 

o 

Example 1, 

(DECA) 

EDO 

ce 

Example 2, 

(DECA) = 

EDO 

ee 

Example 3, 

(DECA) = 

all significant infor­
mation zoned and 
stored 

some significant 
information not 
zoned and stored 

l = 10: 

Before execution 

X '00000000 
00000001 
23456789 
0123456D' 

xxx xxx xx 
xxxxxxxx 
xxxxxxxx 
xxxxxxxx 
xxxxxx 

xxxx 

l = 8: 

X '00000000 
23000000 
10001234 
0012345C' 

xxxxxx.xx 
xxxxxxxx 
xxxxxxxx 
xxxxxx 

xxxx 

l = 4: 

X '00001 001 
00001002 
00001003 
0001004F' 

60 Byte-String Instructions 

no illegal digit 
or sign detected, 
i nstructi on com­
pleted 

After execution 

X '00000000 
00000001 
23456789 
0123456D' 

X'FOFOFOF1 
F2F3F4F5 
F6F7F8F9 
FOF1F2F3 
F4F5D6' 

OOxx 

X '00000000 
23000000 
10001234 
0012345C' 

X'F1FOFOFO 
F1F2F3F4 
FOFOF1F2 
F3F4C5' 

01xx 

X'00001001 
00001002 
00001003 
0001004F' 

EDO xxxxxxxx 
xxxxxxxx 

X'FOFOFOFl 
FOFOC4' 

CC xxxx 01xx 

BYTE -STRING INSTRUCTIONS 

Five instructions provide for the manipulation of strings 
of consecutive bytes. These instructions are standard 
with the SIGMA 6 computer. The byte string instruc­
tions and their mnemonic codes are as follows: 

Instruction Name Mnemonic 

Move Byte String 
Compare Byte String 

MBS 
CBS 
TBS 
TTBS 
EBS 

Translate Byte String 
Translate and Test Byte String 
Edit Byte String 

These instructions are in the immediate displacement class, 
are memory-to-memory operations, and proceed one byte 
at a time (except for the instruction MOVE BYTE STRING, 
which proceeds four bytes at a time under certain condi­
tions). These operations are under the control of informa­
tion that must be loaded into certain general registers before 
the instruction is executed; hence, they may be interrupted 
after any individual byte operation. The general format for 
the information in the instruction word and in the general 
registers is as· follows: 

Instructi on word: 

Contents of register R: 

Contents of reg i ster Ru 1 : 

Designation 

Operation 

R 

Displacement 

Function 

The 7-bit operation code of the instruc­
tion. (If any byte string instruction is 
indirectly addressed, the computer traps 
to location X'40' at the time of opera­
tion code decoding. ) 

The 4-bit field that identifies register R 
of the current general register bank. 

A 20-bit field that contains a signed byte 
displacement value, used to form an ef­
fecti ve byte address. The displacement 
value is right-justified in the 20-bit fiel<d, 
and negative values are in two's comple­
ment form. 



Designation 

Mask/Fill 

Source Address 

Count 

Destination 
Address 

Function 

An 8-bit field used only with TRANS­
LATE AND TEST BYTE STRING and 
EDIT BYTE STRING. The purpose of this 
field is explained in the detailed dis­
cussion of the TTBS and EBS instructions. 

A 19-bit field that normally contains the 
byte address of the first (most significant) 
byte of the source byte string operand. 
The effecti ve source address is the source 
address in register R plus the displace­
ment value in the instruction word. 

An a-bit field that contains the true count 
(from 0 to 255) of the number of bytes i n­
volved in the operation. This field is 
decremented by 1 as each byte in the 
destination byte string is processed. A 
o count means "no operation" with re­
spect to the registers and main memory. 

A 19-bit fi eld that contai ns the byte 
address of the first (most significant) 
byte of the destination byte string oper­
and. Thi<; field is incremented by 1 as 
each byte in the destination byte string 
is processed. 

In any byte string instruction, any portion of registers R or 
Rul that is not explicitly defhed (i.e., in the shaded part 
of the register diagram for the instruction) should be coded 
with zeros. 

Since the value Ru 1 is obtained by performing a logical 
inclusive OR with the value 0001 and the value of the R 
field of the instruction word, the two control registers are 
Rand R + 1 if R is even. However, if R is an odd value, reg­
ister R contains an address value that functions both as a 
source operand address and as a destination operand ad­
dress. Also, if register 0 is designated in any byte string 
instruction (except for TRANSLATE AND TEST BYTE STRING 
and EDIT BYTE STRING), its contents are ignored and a zero 
source address value is obtained. Thus, the following three 
cases exi st for most byte stri ng i nstruc ti ons, dependi ng on 
whether the value of the R field of the instruction word is 
even and nonzero, odd, or zero: 

Case I: R is even and nonzero 

The effective source address is the address in register R plus 
the displacement in the instruction word; the destination 
address is the address in register R+ 1, but without the dis­
placement added. 

Case II: R is odd 

The effective source address is the address in register R plus 
the displacement in the instruction word; the destination 
address is also the address in register R, but without the 
displacement added. 

Case III: R is zero 

The effective source address is the displacement value in 
the instruction word; the destination address is the address 
in register 1. In this case, the source byte string operand 
is always a single byte. 

In the descriptions of the byte-string instructions, the fol­
lowing abbreviations and terms are used: 

D Displacement, (I) 12-31 

SA Source address, (R) 13-31 

ESA 

C 

DA 

SBS 

DBS 

MBS 

Effective source address, [(R)13-31+(I)12-31J 13-31 

The contents of bit positions 13-31 of register R 
are added (right aligned) to the contents of bit po­
sitions 12-31 of the instruction word; the 1910w­
order bits of the result are used as the effective 
source address. 

Count, (Ru 1 )0-7 

Destination address, (Ru1)13_31 

Source byte string, the byte string that begins with 
the byte location pointed ta by the 19-bit effective 
source address and is C bytes in length (if R is non­
zero) or is 1 byte in length (if R is 0). 

Destination byte string, the byte string that begins 
with the byte location poi nted to by the desti nation 
address and is always C bytes in length. 

MOVE BYTE STRING 
(Immediate displacement, continue after interrupt) 

MOVE BYTE STRING copi es the contents of the source byte 
string (left to right) into the destination byte string. The pre­
vi ous contents of the desti nation byte stri ng are destroyed, but 
the contents of the source byte string are not affected unl ess 
thedestinationbytestringoverlapsthe source byte string. 

When the destination byte string overlaps the source byte 
string, the resulting destination byte string contains one or 
more repetitions of bytes from the source byte string. Thus, 
if a destination byte string of C bytes begins with the kth 
byte of a source byte string (numbering from 1), the first 
k-1 bytes of the source byte string are duplicated in the 
destination byte string x number of times, where x=C/(k-l). 
For example, if the destination byte string begins with the 
second byte of the source byte string, the first byte of the 
source byte string is duplicated throughout the destination 
byte string. 

If both byte strings begin with the same byte (i.e., k = 1) 
and the R field of MBS is nonzero, the destination byte 
string is read and replaced into the same memory locations. 
However, if both byte strings begin with the same byte and 
the R field of MBS is zero, the first byte of the byte string 

Byte-String Instructions 61 



is dupl icated throughout the remainder of the byte string 
(see "Case III", below). 

Affected: (OBS), (R), (Ru 1) 
(S8S)- OBS 

If MBS is indirectly addressed, it is treated as a nonexistent 
instruction, in which case the computer unconditionally 
aborts execution of the instruction (at the time of operation 
code decoding) and traps to location X'40 ' with the contents 
of register R and the destination byte string unchanged. 

A speed advantage can be gained in the MBS instruction if 
the source and destination byte strings both begin on the 
same byte within their respective words. This allows all 
bytes (except passibly the first few bytes and the last few 
bytes to be moved in fullword units. 

Case I: even, nonzero R field (Ru1=R+l) 

Contents of register R: 

Contents of reg i ster R+ 1 : 

The source byte string begins with the byte location pointed 
to by the source address in register R plus the displacement 
in MBS; the destination byte string begins with the byte lo­
cation pointed to by the destination address in register R+1. 
Both byte strings are C bytes in length. When the instruc­
tion is completed, the destination and source addresses are 
each incremented by C, and C is set to zero. 

Case II: odd R field (Rul=R) 

Contents of regi ster R: 

The source byte string begins with the byte location pointed 
ta by the address in register R plus the displ acement in 
MBS; the destination byte string begins with the byte lo­
cation pointed to by the destination address in register R. 
Both byte strings are C bytes in length. When the instruc­
tion is completed, the destination address is incremented by 
C, and C is set to zero. 

Case III: zero R field (Rul=l) 

Contents of register 

The source byte string consists of a single byte, the contents 
of the byte location pointed to by the displacement in MBS; 
the destination byte string begins with the byte location 

62 Byte-String Instructions 

pointed to by the destination address in register 1 and is C 
bytes in length. In this case, the source byte is duplicated 
throughout the destination byte string. When the instruction 
is completed, the destination address is incremented by C 
and C is set to zero. 

CBS COMPARE BYTE STRING 
(Immediate displacement, continue after interrupt) 

COMPARE BYTE STRIN G compares, as magnitudes, the con­
tents of the source byte string with the contents of the des­
tination byte string, byte by corresponding byte, beginning 
with the first byte of each string. The comparison continues 
until the specified number of bytes have been compared or 
until an inequality is found. When CBS terminates, CC3 
and CC4 are set to indicate the result of the last comparison. 
If the CBS instruction terminates due to inequality, the count 
in register Ru 1 is one greater than the number of bytes re­
maining to be compared; the source address in register Rand 
the destination address in register Ru1 indicate the locations 
of the unequal bytes. 

Affected: (R), (Ru 1 ), CC3, CC4 
(SBS) : (OBS) 

Condition code settings: 

2 3 4 

o 0 

o 

o 

Result of CBS 

source byte string equals destination 
byte string 

source byte stri I1g I ess than desti nation 
byte stri ng 

source byte string greater than destination 
byte string 

If CBS is indirectly addressed, it is treated as a nonexistent 
instruction, in which case the computer unconditionally 
aborts execution of the instruction (at the time of operation 
code decoding) and traps to location X'40 ' with the contents 
of register R and the destination byte string unchanged. 

Case I: even, nonzero R field (Ru1=R+l) 

Contents of register R 

Contents of register R+ 1 

The source byte string begins with the byte location 
pointed to by the source address in register R plus the 
displacement in CBS; the destination byte string begins 
with the byte location poi nted to by the desti nation ad-
dress in register R+ 1. Both byte strings are C bytes in 
length. 



Case II: odd R field (Rul=R) 

Contents of register R 

Count 

o i 2 314 S 

The source byte string begins with the byte location 
pointed to by the address in register R plus the displace­
ment in CBS; the destination byte string begins with the byte 
location pointed to by the destination address in register R. 
Both byte strings are C bytes in length. 

Case III: zero R field (Ru1=1) 

Contents of register 

The source byte string consists of a single byte, the contents 
of the location pointed to by the displacement in CBS; the 
destination byte string begins with the byte location pointed 
to by the destination address in register 1 and is C bytes in 
length. In this case, the source byte is compared with each 
byte of the destination byte string until an inequality is found. 

IBS TRANSLATE BYTE STRING 
(Immediate displacement, continue after interrupt) 

TRANSLATE BYTE STRING replaces each byte of the des­
tination byte string with a source byte located in a transla­
tion table. The destination byte string begins with the byte 
location pointed to by the destination address in register 
Ru 1, and is C bytes in length. The translation table con­
sists of up to 256 consecutive byte locations, with the first 
byte location of the table pointed to by the displacement 
in TBS plus the source address in register R. A source byte 
is defined as that which is in the byte location pointed to 
by the 19 low-order bits of the sum of the following values: 

1. The displacement in bit positions 12-31 of the TBS 
instruction. 

2. The current contents of bit positions 13-31 of register 
R (source address). 

3. The numeric value of the current destination byte, the 
8-bit contents of the byte location pointed to by the 
current desti nation address in bit positions 13-31 of 
register (Ru 1). 

Affected: (DBS) ,(Ru 1) 
translated (DBS) - DBS 

If TBS is indirectly addressed, it is treated as a nonexistent 
instruction, in which case the computer unconditionally 
aborts execution of the instruction (at the time of operation 
code decoding) and traps to location X'40 ' with the contents 
of regi ster R and the destination byte string unchanged. 

Case I: even, nonzero R field (Ru 1 =R+ 1) 

Contents of register R 

Contents of register R+ 1 

The destination byte string begins with the byte location 
poi nted to by the desti nati on address in regi ster R + 1 and is C 
bytes in length. The source byte string (translation table) 
begins with the byte location pointed to by the displacement 
in TBS plus the source address in register R. When the in­
struction is completed, the destination address is incremented 
by C, Cis set to zero, and the source address remai ns 
unchanged. 

Case II: odd R field (Ru 1 =R) 

Because of the interruptible nature of TRANSLATE BYTE 
STRING, the results of the instruction are unpredictable 
when an odd-numbered general register is specified by the 
R field of the instruction word. 

Case III: zero R field (Ru1=1) 

Contents of register 

The destination byte string begins with the byte location 
pointed to by the destination address in register 1 and is C 
bytes in length. The source byte string (translation table) 
begins with the location pointed to by the displacement in 
TBS. When the instruction is completed, the destination 
address is incremented by C and Cis set to zero. 

TTBS TRANSLATE AND TEST BYTE STRING 
(Immediate displacement, continue after interrupt) 

TRANSLATE AND TEST BYTE STRING compares the mask in 
bit positions 0-7 of register R with source bytes in a byte 
translation table. The destination byte string begins with 
the byte location pointed to by the destination address in 
register Ru 1, and is C bytes in length. The byte transla­
tion table and the translation bytes themselves are identical 
to that described for the instruction TRANSLATE BYTE 
STRIN G. The destinati on byte string is examined (without 
being changed) unti I a translation byte (source byte) is found 
that contains a 1 in any of the bit positions selected by a 1 
in the mask. When such a translation byte is found, TTBS 
replaces the mask with the logical product (AND) of the 
translation byte and the mask, and terminates with CC4 set 
to i. If the TTBS instruction terminates due to the above 

Byte-String Instructions 63 



condition, the count (C) in register Rul is one greater than 
the number of bytes remaining to be compared and the des­
tination address in register Rul indicates the location of the 
desti nation byte that caused the instruction to terminate. If 
no translation byte is found that satisfies the above condi­
tion after the specified number of destination bytes have 
been compared, TTBS terminates with CC4 reset to O. In 
no case does the TTBS instruction change the source byte 
string. 

Affected: (R), (Ru 1 ), CC4 

If translated (SBS) n mask f 0, translated (SBS) n mask­
mask and stop 

If translated (SBS) n mask = 0, continue 

Condition code settings: 

2 3 4 Resu I t of TTBS 

o trans I ati on bytes and the mask do not 
compare ones anyplace 

the last translation byte compared with 
the mask contained at least one 1 corre­
sponding to a 1 in the mask 

If TTBS is indirectly addressed, it is treated as a nonexis­
tent instruction, in whi ch case the computer unconditionally 
aborts execution of the instruction (at the time of opera­
tion code decoding) and traps to location X l 40 1 with 
the contents of register R and the destination byte string 
unchanged. 

Case I: even, nonzero R field (Rul=R+l) 

Contents of register R 

Contents of reg i ster R+ 1 

The destination byte string begins with the byte location 
pointed to by the destination address in register R+ 1 and is 
C bytes in length. The source byte string (translation table) 
begins with the byte location pointed to by the displacement 
in TTBS plus the source address in register R. 

Case II: odd R field 

Because of the i nterruptibl e nature of TRANSLATE AND 
TEST BYTE STRING, the results of the instruction are un­
predictable when an odd-numbered general register is speci­
fied by the R field of the instruction word. 

Case III: zero R field (Rul=l) 

64 Byte-String Instructi ons 

The destination byte string begins with the byte location 
pointed to by the destination address in register 1 and is C 
bytes in length. The source byte string (translation table) 
begins with the location pointed to b,' the displacement in 
TTBS. In this case, the instruction aUiomaticaily provides 
a mask of eight lis. (This is an exception to the general 
rule, used in the other byte string instructions, that register 
o provides all OIS as its contents. ) 

EBS EDIT BYTE STRING 
(Immediate displacement, continue after interrupt) 

EDIT BYTE STRING converts a decimal information field 
from packed decimal format to zoned decimal format, under 
control of the editing pattern in the destination byte string, 
and replaces the destination byte string with the edited, zoned 
result. (See" Decimal Instructions" fora description of packed 
and zoned decimal formats.) EBS proceeds 1 byte at a time, 
starting with the first (most significant) byte of the editing 
pattern, and continues until all bytes in the editing pattern 
have been processed. The fill character, contained in bit 
positions 0-7 of register R, replaces the pattern byte under 
specified conditions. More than one decimal number field 
can be edited by a si ngle EBS instruction if the pattern in 
memory is, in fact, a series of patterns corresponding to a 
series of number fields. In such cases, however, after the 
EBS instruction is completed, the condition code indicates 
the result of the last decimal number field processed and 
register 1 contains the byte addres~ (or the byte address 
plus 1) of the last significance indicator in the edited des­
tination byte string. (This allows the insertion of a floating 
dollar sign, etc. with a subsequent instruction.) 

The results of EBS are unpredictable if the R field of EBS is 
an odd value, or if the R field of EBS is O. 

Contents of register R 

Contents of register R+ 1 

The destination byte string is an editing pattern that begins 
in the byte location pointed to by the destination ad­
dress in register R+l, and is C Gytes in length. The deci­
mal information field, which must be in packed decimal 
format, begins with the byte location pointed to by the 
displacement in EBS plus the source address in register R. 
The decimal information field must contain legal decimal 
digit and sign codes (packed format) and must begin with 
a decimal digit. 

The destination byte string (the editing pattern) may contain 
any 8-bit codes desired. However, four byte codes in the 



editing pattern have special meanings. These codes are as 
follows: 

Binary value Function Abbreviation 

0010 0000 (X'20') Digit selector ds 

0010 0001 (X'211) Significance start ss 

0010 0010 (X 1221) Field separation fs 

0010 0011 (X'231) Immediate sig- si 
n i fi cance start 

Before executing EBS, the condition code should be set to 
0000 if the high-order digit of the decimal number is in the 
left half of a byte, and should be set to 0100 if the high­
order digit is in the right half of a byte. 

The editing operation performed on each pattern byte of 
the destination byte string is determined by the following 
conditions: 

. 1. The pattern byte obtained from the destination byte 
string. 

2. The decimal digit obtained from the decimal number 
field. 

3. The current state of the condition code. 

Depending upon various combinations of these conditions, 
the instruction EDIT BYTE STRING performs one (and only 
one) of the following actions with the pattern byte and the 
decimal digit: 

1. The fi II character (contents of bit positions 0-7 of reg­
ister R) or a blank character (character code X'40') 
replaces the byte in the destination byte string. 

2. The decimal digit is expanded to zoned decimal format 
(by generating X'Fd ', where d is the decimal digit) and' 
replaces the pattern byte in the destination byte string. 

3. The pattern byte remains unchanged. 

In general, the normal editing process is as follows: 

1. Each byte of the destination byte string is replaced by 
a fill character until significance is present, either in 
the destination byte string or in the decimal informa­
tion field. Significance is indicated by any of the 
following: 

a. The pattern byte is X'231 (immediate significance 
start), which begins significance with the current 
decimal digit. 

b. The pattern byte is"X '21 1 (significance start), which 
begins significance with the following pattern byte. 

c. The current decimal digit is nonzero,. which begins 
significance with the current pattern byte. 

2. After significance is encountered, each pattern byte 
that is X'20 ' (digit"Selector), X'21' (significance start), 
or X'231 (immediate significance start) is replaced by 
a zoned decimal number from the decimal field and all 

other pattern bytes are unchanged. This process con­
tinues until any of the following conditions occur: 

a. A positive sign is encountered in the decimal field, 
in which case subsequent pattern bytes are replaced 
by blank characters (X' 40' ) until significance is 
again present, until a field separator is encoun­
tered, or until the destination byte string is entirely 
processed, whichever occurs first. 

b. A negative sign is encountered in the decimal field, 
in which case subsequent pattern bytes are un­
changed until significance is ogain present, until 
a field separator is encountered, or until the des­
tination byte string is entirely processed, which­
ever occurs first. 

c. A pattern byte 'of X'221 (field separator) is encoun­
tered, in which case the field separator is replaced 
by a fj II character; subsequent pattern bytes are re­
placed by the fill character until significance is 
again present, until a positive, or negative sign is 
encountered, or until the destination byte string is 
entirely processed, whichever occurs first • 

d. The destination byte string is entirely processed, 
in which case the computer executes the next 
instruction in sequence. 

The detailed operation of EDIT BYTE STRING is as given 
below. 

The explanation is necessarily quite detailed due to the high 
degree of flexibil ity inherent in EBS. Condition code set­
tings are made continuously during the editing process and 
these settings help determine how each subsequent pattern 
byte will be edited. The summary of condition code settings 
given on the next page will help clarify the discussion below. 

1. If the count in bit position 0-7 of register R+ 1 is a non­
zero, a pattern byte is obtained from the destination 
byte string; if the count in register R+ 1 is 0, the com­
puter executes the next instruction in sequence. 

2. If the pattern byte is a digit selector (X'20'), a signifi­
cance start (X'211), or immediate significance start 
(X '231), a digit is accessed from the decimal informa­
tion field as follows: 

a. A decimal byte is obtained from the byte location 
pointed to by the displacement in EBS plus the 
source address in register R. 

b. If bits 0-3 of the decimal byte are a sign code, the 
computer automatica" y aborts execution of EBS and 
traps to location X'451, with the contents of reg­
ister R, register R+l, the condition code, and the 
destination byte string unchanged from their cur­
rent contents. 

c. If CC2 is currently set to 0, the digit to be 
used for editing is the left digit (bits 0-3) of 
the decimal byte; however, if CC2 is currently 
set to 1, the digi t to be used is the right 
digit (bits 4-7) of the decimal byte. In either 
case, CC3 is set to 1 if the digit is nonzero. 
If Ce2 is set to 1 and the right digit (bits 4-7) of 

Byte-String Instructions 65 



the decimal byte is a sign code, the computer 
automatically aborts execution of EBS and traps 
to location X '45 1 as described above. 

d. One of the following editing actions is performed. 

Conditions 

Pattern byte=SI(X I231) 

Pattern byte = SS(XI211) 
CC4::= 1 

Pattern byte = 55 
CC4::= 0 
nonzero digit 

Pattern byte = 55 
CC4 = 0 
digit ::= 0 

Pattern byte = DS(X 1201) 
CC4 = 1 

Pattern byte = DS 
CC4::= 0 
nonzero digit 

Pattern byte::= DS 
CC4::= 0 
digit ::= 0 

Action 

Expand digit to zoned 
format, store in pat­
tern byte location, 
and set CC4 to 1 (start 
significance) 

Expand digit to zoned 
format and store in pat­
tern byte location (be­
cause CC4::= 1 means 
significance already 
encountered 

Expand digit to zoned 
format, store in pattern 
byte I ocati on, (because 
nonzero digit begins 
significance) and set 
CC4 to 1 

Store fi II character in 
pattern byte location 
(because significance 
starts wi th next pattern 
byte) and set CC4 to 1 

Expand digit to zoned 
format, and store digit 
in pattern byte location 

Expand digit to zoned 
format, store digit in 
pattern byte location, 
and set CC4 to 1 to 
signal significance 

Store fi II character in 
pattern byte location 
(because significance 
not encountered yet) 

Mark 

Mode 1 

None 

Model 

Mode 2 

None 

Mode 1 

None 

e. If CC2 is currently reset to 0 and if bits 4-7 of the 
decimal byte are a positive decimal sign code, 
CC1 is set to 1, CC4 is reset to 0, and the source 
address in register R is incremented by 1. If CC2 
is currently reset to 0 and if bits 4-7 of the deci­
mal byte are a negative decimal sign code, CC1 
and CC4 are both set to 1, and the source address 
is incremented by 1. Otherwise, Ce2 is added to 
the source address and then CC2 is inverted. 

f. If marking is invoked at step d, above, one of the 
two following marking operations are performed: 

Mode 1: load bits 13-31 of register R+ 1 into bit 
positions 13-31 of register 1; bit positions 
0-12 of register are unpredictable. 

Mode 2: Load bits 13-31 of register R+1 into bit 
positions 13-31 of register 1 and then 

66 Byte-String Instructions 

3. 

4. 

increment the contents of reg ister 1 
by 1; bit posirions 0-12 of register 1 
are unpredictable. 

If marking is not applicable (i.e., significance ~ 
not been encountered, the contents of register' 
are not affected. 

If the pattern byte is a field separator (X I22 1), the fi II 
character is stored in the pattern byte location. CC 1, 
CC3, and CC4 are all reset to OIS, and CC2 remains 
unchanged. 

If the pattern byte is not a digit selector, significance 
start, immediate significance start or field separator, 
one of the following actions are performed: 

Conditions 

CCI = a 
CC4 = a 
CC1 ::= 1 
CC4::= a 
CC4 = 1 

Action 

store fj II character in pattern byte 
location 

store blank character (X 140 1
) in pattern 

byte location 

none (pattern byte remai ns unchanged) 

5. Increment the destination address in register Ru 1, de­
crement the count in register Ru 1. If the count is still 
nonzero, process the next pattern byte as above, other­
wise, execute the next instruction in sequence. 

Affected: (R), (Rul) Traps: Decimal arithmetic 
(register 1), (DBS),CC 

edited (SBS) -- DBS 

Condition code settings: 

2 3 4 Result of EBS ------

o 

o 

o 

a 

o significance is not present, no sign digit 
has been encountered 

significance is present, no sign digit has 
been encountered 

o a positive sign has been encountered 

a negative sign has been encountered 

next digit to be processed is left digit 
of byte 

next digit to be processed is right digit 
of byte 

no nonzero digit has been encountered 

a nonzero di git has been encountered 

If EBS is indirectly addressed, it is treated as a nonexistent 
instruction, in which case the computer unconditionally 
aborts execution of the instruction (at the time of operatiol 
code decoding) and traps to location X '40 ' with the conte~ 
of register R, register Ru1, register 1, the destination byte 
string, and the condition code unchanged. 



If 011 illl'~lal digit or sign is detected in the decimal infor­
nlOti,-1f) field, the computer unconditionally aborts execution 
of the instl"uction (at the time the illegal digit or sign is en­
countered) and traps to location X'45' with the contents of 
register R, register Rul, register 1, the destination byte 
string, and the condition code containing the results of the 
last editing operation performed before the illegal digit or 
si gn was encountered. 

In the following examples, the hexadecimal codes for the 
digit selector (x'20'), the significance start (X'21 ' ), the 
field separation (X'22'), and the immediate significance 
start (X '23') are represented by the character groups ds, ss, 
fs, and si, respectivel y. Also, the symbol-t5 is used to 
represent the character blank (X'40'). 

Exampl e 1, before executi on: 

The instruction word is: X '63600000' 

The contents of register 6 are: X'5COOOI00' 

The contents of register 7 are: X'OCOOI000' 

The contents of the decimal information field beginning at 
byte locati on X'l 00' are: 00 00 00 0+ 

The contents of the desti nation byte string beginni ng at 
byte location X'1000' are: 

ds ds , ds ds ss . ds ds 1) C R 

The condition code is: 0000 

Example 1, after execution: 

The instruction word is unchanged 

The new contents of register 6 are: X '5COOOl 04' 

The new contents of regi ster 7 are: X '00001 OOC' 

The contents of the decimal information field are unchanged 

The new contents of the destination byte string are: 

* * * * * * .001)-0-0 

The new condition code is: 1000 

The contents of register 1 are: X'xxxOl006' 

By subsequent programming, a floating dollar sign can be 
inserted in front of the first significant character of the 
edited byte string by using the contents of register 1, minus 
1, as the address of the byte location where the dollar sign 
j s to be inserted. 

Fxampl e 2, before execution: 

The initial conditions are identical to example 1, except 
that the contents of the decimal information field are: 
06 54 32 1-

Example 2, after execution: 

The instruction word and the decimal field are unchanged 

The new contents of registers 6 and 7 are identical to those 
given for example 1 

The new contents of the destination byte string are 

*6,543.2115CR 

The new condition code is: 1011 

The new contents of register are: X'xxx01001' 

Example 3, before execution: 

The initial conditions are identical to example 1, except 
that the contents of the decimal field are: 

00 54 32 1+ 

Example 3, after executi on: 

The instruction word and the decimal field are unchanged 

The new contents of registers 6 and 7 are identica I to that 
given for example 1 

The new contents of the destination byte string are 

***543.211)1)-0 

The new condition code is: 1010 

The new contents of register 1 are: X'xxx01003' 

Example 4, before execution: 

The instruction word is: X '634001 00' 

The contents of register 4 are: X'7BOOI000' 

The contents of register 5 are: X'19002000' 

The contents of the decimal information field beginning at 
byte I ocati on X' 11 00' are: 

06 1'2 50 0+ 01 23 4+ 03 5-

The contents of the destination byte string beginning at 
byte location X '2000' are: 

Adsdssi. dsdsdsfsBdsdsss. dsdsCfsDsidsdsEND 

The condition code is: 0100 

Example 4, after execution: 

The instruction word is unchanged 

The new contents of register 4 are: X'7BOOI009' 

The new contents of register 5 are: X '00002019' 

The decimal information field is unchanged 

The new contents of the desti nation byte stri ng are: 

# 612.500 # # # 12 . 341> # # 035 END 

The new condition code is: 1011 

The new contents of register 1 are: X 'xxx020l3' 

PUSH-DOWN INSTRUCTIONS 

The term "push-down processing" refers to the programming 
technique (used extensively in recursive routines) of storing 
the context of a calculation in memory, proceeding with a 
new set of information, and then activating the previously 
stored information. Typically, this process involves a re­
served area of memory (stack) into which operands are 
pushed (stored) and from which operands are pulled 
{loaded} on a lost-in, first-out basis. The SIGMA 6 computer 

Push-Down Instructions 67 



provides for simplified and efficient programming of push­
down processing by means of the following instructions: 

Instruction Name 

Push Word 
Pull Word 
Push Multiple 
Pull Multiple 
Modify Stack Poi nter 

Mnemonic 

PSW 
PLW 
PSM 
PLM 
MSP 

STACK POINTER DOUBLEWORD 

Each of these instructions operates with respect to a memory 
stack that is defined by a doubleword located at the effec­
tive address of the instruction. This doubleword, referred 
to as a stack pointer doubleword (SPD), has the following 
structure: 

Bit positions 15 through 31 of the SPD contain a 17-bit ad­
dress field that points to the location of the word currently 
at the top (highest-numbered address) of the operand stack 
in a push operation, the top-of-stack address is incremented 
by 1 and then an operand in a general register is pushed 
(stored) i~to that'location, thus becoming the contents of 
the new top of the stack; the contents of the previous top of 
the stack remain unchanged. In a pull operation, the con­
tents of the current top of the stack are pulled (loaded) into 
a general register and then the top-of-stack address is de­
cremented by 1; the previ ous contents of the stack re­
main unchanged. 

Bit positions 33 through 47 of the SPD, referred to as the 
space count, contai n a 15-bit count (0 to 32,767) of the 
number of word locations currently available in the region 
of memory allocated to the stack. Bit positions 49 through 
63 of the SPD, referred to as the word count, contai n a 15-
bit count (0 to 32,767) of the number of words currently in 
the stack. In a push operation, the space count is decre­
mented by 1 and the word count is incremented by 1; ina 
pull operation, the space count is incremented by 1 and the 
word count is decremented by 1. At the beginning of all 
push-down instructions, the space count and the word count 
are each tested to determi ne whether or not the i nstructi on 
would cause either count field to be incremented above the 
upper I imit of 215-1 (32,767), or to be decremented below 
the lower limit of O. If execution of the push-down instruc­
tion would cause either count limit to be exceeded, the 
computer unconditionally aborts execution of the instruc­
tion, with the stack, the stack pointer doubleword, and the 
contents of general registers unchanged. Ordinarily, the 
computer traps to location X '421 after aborting a push-down 
instruction because of impending stack limit overflow or 
underflow, and with the condition code unchanged from the 
value it contained before execution of the instruction. 

68 Push-Down Instructions 

However, this trap action can be selectively inhibited by 
setting either (or both) of the trap inhibit bits in the SPD to 1. 

Bit position 32 of the SPD, referred h as the trap-on-spac8 
(TS) inhibit bit, determines whether 0\ not the computer is 
to trap to location X'421 as a result of impending overflow 
or underflow of the space count (SPD33-47), as follows: 

TS Space count overflow/underflow action 

o If the execution of a pull instruction would cause the 
space count to exceed 2 15-1, or if the execution of a 
push instruction would cause the space count to be less 
than 0, the computer traps to location X'421 with the 
condition code unchanged. 

Instead of trapping to location X'42', the computer 
sets CCl to 1 and then executes the next instruction 
in sequence. 

Bit position 48 of the SPD, referred to as the trap-on-word 
(TW) inhibit bit, determines whether or not the computer is 
to trap to location X'42' as a result of impending overflow 
or underflow of the word count (SPD49-63)' as follows: 

TW Word count overflow/underflow action 

o If the execution of a push instructi on would cause the 
word count to exceed 2 15_1, or if the execution of a 
pull instruction would cause the word count to be less 
than 0, the computer traps to location X'421 with the 
condition code unchanged. 

Instead of trapping to location X '42 1, the computer 
sets CC3 to 1 and then executes the next instruction 
in sequence. 

PUSH-DOWN CONDITION CODE SETTINGS 

If the execution of a push-down instruction is attempted and 
the computer traps to location X '421, the condition code re­
mains unchanged from the value it contained immediately 
before the instruction was executed. 

If the execution of a push-down instruction is attempted and 
the instruction is aborted because of impending stack limit 
overflow or underflow (or both) but the push-down stack 
limit trap is inhibited by one (or both) of the inhibits (TS 
and TW), then, eCl or CC3 is set to 1 (or both are set to 
lis) to indicate the reason for aborti ng the push-down i n­
struction, as follows: 

2 3 4 

o 

o 

Reason for abort 

impending overflow of word count on a 
push operation or impending underflow 
of word count on a pull operation. The 
push-down stack limit trap was inhibi ted 
by the TW bit (SPD 48) 

impending overflow of space count on a 
pull operation or impending underflow 
of space count on a push operation. The 
push-down stack limit trap was inhibited 
by the TS bit (SPD

32
) 



2 3 4 Reason for abort 

impending overflow of word count and 
underflow of space count on a push op­
eration or impending overflow of space 
count and underflow of word count on 
a pull operation. The push-down stack 
limit trap was inhibited by both the TW 
and the TS bits 

If a push-down instruction is successfully executed, CC1 
and CC3 are reset to 0 at the completion af the instruction. 
Also, CC2 and CC4 are independently set to indicate the 
current status of the space count and the word count, re­
spectivel y, as follows: 

2 3 4 Status of space and word counts 
-------

o 0 the current space count and the current 

o 
word count are both greater than zero 

the current space count is greater than 
zero, but the current word count is zero, 
indicating that the stack is now empty. 
If the next operation on the stack is a 
pull instruction, the instruction wi II be 
aborted 

o the currert word count is greater than 
zero, but the current space count is zero, 
indicating that the stack is now full. If 
the next operation on the stack is a push 
i nstructi on, the i nstructi on wi II be aborted 

If the computer does not trap to location X 1421 as a result 
of impending stack limit overflow/underflow, CC2 and 
CC4 indicate the status of the space and word counts at 
the termination of the push-down instruction, regardless 
of whether or not the space and word counts were actually 
modified by the instruction. In the following descriptions 
of the push-down instruction, only those condition codes 
are given that can actual I y be produced by the instruction, 
provided the computer does not trap to location X1421. 

PSW PUSH WORD 

(Doubleword index al ignment) 

PUSH WORD stores the contents of register R into the push­
down stack defined by the stack pointer doubleword located 
at the effective doubleword address of PSW. If the push 
operation can be successfully performed, the instruction 
operates as follows: 

1. The current top-of-stack address (SPD15-31) is incre­
mented by 1, to point to the new top-of-stack 
location. 

2. The contents of register R are stored in the location 
poi nted to by the new top-of-stack address. 

3. The space count (SPD33-47) is decremented by 1 and 
the word count (SPD49-63) is incremented by 1. 

4. The condition code is set to reflect the new status of 
the space count. 

Affected: (SPD), (TSA+1), Trap: push-down stack limit 
CC 

(SPD)15_31 + 1 -- SPD 15_31 
(R) - (SPD

15
_

31
) 

(SPD)33_47 - 1 -- SPD33_47 

(SPD) 49-63 + 1 - SPD 49-63 

Condition code settings: 

2 3 4 Result of PSW 

0 0 0 0 space count is greater 
than 0 

0 0 0 space count is now 0 

0 0 0 word count = 215_1, 
TW = 1 

0 0 space count = 0, 
TS = 1 

0 space count = 0, word 
count = 0, TS = 1 

° word count = 215_1, 
space count = 0, 
TW = 1, and TS=l 

PlW PULL WORD 
(Doubleword index alignment) 

I 
instruct i on 
completed 

instruction 
aborted 

PULL WORD loads register R with the word currently at the 
top of the push-down stack defined by the stack pointer 
doubleword located at the effective doubleword address of 
PLW. If the pull operation can be performed successfully, 
the instruction operates as follows: 

1. Register R is loaded with the contents of the location 
pointed to by the current top-of-stack address 

(SPD 15-31). 

2. The current top-of-stack address is decremented by 1, 
to point to the new top-of-stack location. 

3. The space count (SPD33-47) is incremented by 1 and 
the word count (SPD49-63) is decremented by 1. 

4. The condition code is set to reflect the status of the 
new word count. 

Affected: (SPD), (R), CC Trap: Push-down stack limit 

((SPD)15_31) - Ri (SPD)15_31 -1 - SPD15_31 

(SPD)33_47 + 1 - SPD33_4i (SPD 49-63- 1 

-SPD49- 63 

Push-Down Instructions 69 



Condition code settings: 

2 3 4 Result of PLW 

0 0 0 0 word count is greoter I 
than 0 instruction 

0 0 0 word count is now 0 
completed 

0 0 word count=O, TW=1 

0 space count = 0, 
word count = 0, TW = 1 

0 0 0 space count=215-1, i nstructi on 
TS = 1 aborted 

0 space count = 2 15_1, 
word count = 0, TS = 1 
and TW = 1 

PSM PUSH MULTIPLE 
(Doubleword index alignment) 

OB 
o i 2 

PUSH MULTIPLE stores the contents of a sequential set of 
general registers into the push-down stack defined by the 
stack pointer doubleword located at the effective double­
word address of PSM. The condition code is assumed to 
contai n a count of the number of regi sters to be pushed i n­
to the stack. (An initial value of 0000 for the condition 
code specifies that all 16 general registers are to be pushed 
into the stack.) The registers are treated as a circular set 
(with register 0 following register 15) and the first register 
to be pushed into the stack is register R. The last register 
to be pushed into the stack is register R + CC -1, and the 
contents of this register become the contents of the new 
top-of-stack location. 

If there is sufficient space in the stack for all of the speci­
fied registers, PSM operates as follows: 

1. The contents of registers R to R + CC -1 are stored in 
an ascending sequence, beginning with the location 
pointed to by the current top-of-stack address 
(SPD15-31) plus 1 and ending with the current top­
of-stack address pi us Cc. 

2. The current top-of-stack address is incremented by the 
value of CC, to point to the new top-of-stack location. 

3. The space count (SPD33- 47) is decremented by the 
value of CC and the word count is incremented by 
the value of CC. 

4. The condition code is set to reflect the new status of 
the space count. 

Affected: (SPD), (TSA+1)to Trap: Push-down stack limit 
(TSA+CC), CC 

(R)-(SPD)15_31 + 1 ... (R+CC-l)-(SPD)15_31+CC 

(SPD)15_31+CC - SPD 15_31 

(SPD )33-47-CC - SPD33_47 

(SPD)49_63+CC-SPD 49-63 

70 Push-Down Instructions 

Condition code settings: 

2 3 4 Resu I t of PSM 

° 0 0 0 spoce count> o} 
0 0 0 space count = ° 
0 0 0 word count + ec> 2 15_1, 

TW = 1 

0 0 0 space count <ec, TS = 1 

0 0 space count <ec, word 
count = 0, TS = 1 

0 0 space count < ec, word 
count + CC> 2 15_1, 
TS = 1, and TW = 1 

0 0 space count = 0, TS = 1 

0 space count = 0, word 
count = 0, TS = 1 

0 space count = Of word 
count + ec > 2 5-1, 
TS = 1, and TW = 1 

instruction 
completed 

instruction 
aborted 

If the instruction starts storing words into an accessible re­
gion of memory and then crosses into an inaccessible memory 
region, either the memory protection trap or the nonexistent 
memory address trap can occur. In ei ther case, the trap is 
activated with the condition code unchanged from the val ue 
it contained before the execution of PSM. The effective ad­
dress of the instruction permits the trap routine to compute 
how many words of memory have been changed. Since it is 
permissible to use indirect addressing through one of the af­
fected locations, or even to execute an instruction located 
in one of the affected locations; a trapped PSM instruction 
may have already overwritten the direct address, or the 
PSM instruction itself, thus destroying any possibility of 
continuing the program successfully. If such programming 
must be done, it is advisable that the direct address, or the 
PSM instruction, occupy the last location in which the con­
tents of a register are to be stored by the PSM instruction. 

If the address of the elements within the stack (pointed to 
by the top-of-stack address) is in the range 0 through 15, 
then the registers indicated by the R field of the PSM in­
struction are stored in the general registers rather than in 
core memory. In this case the results wi /I be unpredictable 
if any source registers are also used as destination registers. 

PLM PULL MULTIPLE 
(Doubleword index alignment) 

PUll MULTIPLE loads a sequential set of general registers 
from the push-down stack defined by the stack pointer 
doubleword located at the effective doubleword address 
of PLM. The condition code is assumed to contain a count 
of the number of words to be pulled from the stack. (An in­
itial value of 0000 for the condition code specifies that 
16 words are to be pul~edfrom the stack.) The registers 
are treated as a circular set {with register 0 following 



register 15), the first register to be loaded from the stack 
is register R -+ CC - 1, and the contents of the current top­
of-stack location become the contents of this register. The 
last register to be loaded is register R. 

If there is a sufficient number of words in the stack to load 
all of the specified registers, PLM operates as follows: 

1. Registers R + CC -1 to register R are loaded in a de­
scending sequence, beginning with the contents of 
the location pointed to by the current top-of-stack 
address (SPD15-31) and ending with the contents of 
the location pointed to by the current top-of-stack 
address minus CC-1. 

2. The current top-of-stack address is decremented by 
the value of CC, to point to the new top-of-stack 
location. 

3. The space count (SPD33-47) is incremented by the 
value of CC and the word count is decremented by 
the.value of CC. 

4. The condition code is set to reflect the new status 
of the word count. 

Affected: (SPD), (R+CC-1) Trap: Push-down stack limit 
to (R), cc 

((SPD)15_31) - R + CC -1, •.. , 

{(SPD)15_31 -lcc-1\ )-R 

(SPD)15_31 - CC -SPD15_31 
(SPD)33-47 + CC -SPD33_47 

(SPD)49_63 - CC --SPD 49-63 

Condition code settings: 

234 

o 
o 

o 0 o 
Result of PLM 

word count > 0 1 instruction completed 
o 0 word count = 0 

o 0 o word count < CC, TW = 1 

o 0 word count = 0, TW = 1 

o 0 space count = 0, word 
count <ee, TW = 1 

o 

o o o 

o o 

o 

space count = 0, word 
count = 0, TW = 1 

15 
space count + CC >2 -1, 
TS = 1 

15 
space count + CC >2 -1, 
word count < CC, TS = 1, 
and TW = 1 

15 
space count + CC >2 -1, 
word count = 0, TS = 1, 
and TW = 1 

instruction 
aborted 

If the instruction starts loading from an existent region of 
memory and then crosses a memory page boundary into an 
inaccessible memory region, either the memory protection 
trap or the nonexistent' memory address trap can occur. In 
either case, the trap is activated with the condition code 

unchanged from the val ue it contai ned before the executi on 

of PLM. The effective address of the instruction permits 
the trap routine to compute how many registers have been 
loaded. Since it is permissible to use indexing or indirect 
addressing through a general register, or even to execute 
an instruction located in a general register, a trapped PLM 
instruction may have already overwritten the index, direct 
address, or the PLM instruction itself, thus destroying any 
possibility of continuing the program successfully. If such 
programming must be done, it is advisable that the register 
containing the direct address, index displacement, or in­
struction be the last register loaded by the PLM instruction. 

If the address of the elements within the stack (pointed to 
by the top-of-stack address) is in the range 0 through 15, 
then the words to be loaded are taken from the general re­
gisters rather than from core memory. In this case the re­
sults will be unpredictable if any of the source registers 
are also used as destination registers. 

MSP MODIFY STACK POINTER 
(Doubleword index alignment) 

Reference address 

MODIFY STACK POINTER modifies the stack pointerdouble­
word, located at the effecti ve doubl eword address of MS P, 
by the contents of register R. Register R is assumed to have 
the following format: 

Bit positions 16 through 31 of register R are treated as a 
signed integer, with negative integers in f"'NCls complement 
form (i. e., a fixed-point halfword). The modifier is alge­
braicallyadded to the top-of-stack address, subtracted from 
the space count, and added to the word count in the stack 
pointer doubleword. If, as a result of MSP, either the space 
count or the word count would be decreased below 0 or in­
creased above 215_1, the instruction is aborted. Then, the 
computer either traps to location X'42 1 or sets the condition 
code to refl ect the reason for aborti ng, dependi ng on the 
stack limit trap inhibits. 

If the modification of the stack pointer doubleword can be 
successfully performed, MSP operates as follows: 

1. The modifier in register R is algebraically added to the 
current top-of-stack address (SPD}J 5-31, to poi nt to a 
new top-of-stack location. (If the modifier is negative, 
it is extended to 17 bits byappending a high-order 1.) 

2. The modifier is algebraically subtracted from the cur­
rent space count (SPD33- 47) and the result becomes 
the new space count. 

3. The modifier is algebraically added to the current word 
count {SPD49-63} and the result becomes the new word 
count. 

4. The condition code is set to reflect the new status of 
the new space count and new word count. 

Affected: (SPD), CC Trap: Push-down stack limit 

Push-Down Instructions 71 



(SPD)15_31 + (R)16-31SE -SPD15_31 

(SPD)33_47 - (R)16-31 -- SPD33_47 

(SPD)49_63 + (R)16-31 - SPD 49-63 

Condition code settings: 

2 3 4 

a a a a 

a 0 a 

a a a 

a a 

Result of MSP 

space count > 0, 
word count> 0 

space count> 0, 
word count = 0 

space count:::: 0, 
word count> 0 

space count = 0, 
word count = 0, 
modifier = a 

instruction 
completed 

If CC1, or CC3, or both CC1 and CC3 are lis after exe­
cution of MSP, the instruction was aborted but the push­
down stack limit trap was inhibited by the trap-an-space 
inhibit (SPD32), by the trap-on-word inhibit (SPD48), or 
both. The condition code is set to reflect the reason for 
aborting as follows: 

2 

a 

a 

3 4 Status of space count and word count 

a word count > 0 

a 
word count = 0 

o =:: word count + modifier =:: 2 15_1 

word count + modifier < 0, and TW = 1 
or word count + modifier> 215_1 and 
TW = 1 

space cou nt > 0 

space count = 0 

a =:: space count - modifier =:: 215-1 

space count - modifier < 0, and TS = 1 
or space count - modifier> 215-1 
TS = 1 

EXECUTE/BRANCH INSTRUCTIONS 

The EXECUTE instruction can be used to insert another in­
struction into the program sequence, and the branch instruc­
tions can be used to alter the program sequence, either 
unconditionally or conditionall y. If a branch is uncondi­
tiona� (or conditional and the branch condition is satisfied), 
the instruction pointed to by the effective address of the 
branch instruction is normally the next instruction to be 
executed. If a branch is conditional and the condition for 
the branch is not satisfied, the next instruction is normall y 
taken from the next location, in ascending sequence, after 
the branch instruction. 

Prior to the time that an in~truction is accessed from memory 
for execution, bit positions 15-31 of the program status 
doubleword contain the virtual address of the instruction, 
referred to as the instruction address. At this time, the 

72 Execute/Branch Instructions 

computer traps to location X '40 ' if the actual address of 
the instruction is nonexistent or instruction-access pro­
tected. If the instruction address ;s existent and is 
not instruction-access protected, tht: instruction is ac­
cessed and the instruction address portion of the program 
status doubleword is incremented by 1, so that it now con­
tains the virtual address of the next instruction in sequence 
(referred to as the updated instruction address). 

If a trap condition occurs during the execution sequence of 
any instruction, the computer decrements the updated in­
struction address by 1 and then traps to the location assigned 
to the trap condition. If neither a trap condition nor a 
satisfied branch condition occurs during the execution of an 
instruction, the next instruction is accessed from the location 
pointed to by the updated instruction address. Ifa satisfied 
branch condition occurs during the execution of a branch 
instruction (and no trap condition occurs), the next instruc­
tion is accessed from the location pointed to by the effec­
tive address of the branch instruction. Thus, during execu­
tion of a branch instruction, the updated instruction address 
is decremented, unchanged, or replaced, as determi ned by 
the following critera: 

1. Trap condition. A nonal/owed operation trap condition 
can occur during execution of a branch instruction, but 
onl y if an attempt is made to access ei ther a nonexis­
tent memory address or an address that is not avai I abl e 
to the slave program for instruction access. The trap 
condition occurs in the following situations: 

a. The branch instruction is indirectly addressed, but 
the address of the location containing the direct 
address is either nonexistent or unavailable to the 
slave program for read access. 

b. The branch instruction is unconditional (or the 
branch is conditional and the condition for the 
branch is satisfied), but the effective address of 
the branch instruction is unavailable to the slave 
program for instruction access. 

c. The effective address of any branch instruction 
{conditional or unconditional} is nonexistent. 

If any of the above situations occur, the computer 
aborts execution of the branch instruction, decrements 
the updated instruction address by 1, and traps to loca­
tion X1401. In this case, the instruction address value 
(IA) stored by the XPSD instruction in location X I 401 is 
the address of the aborted branch instruction. 

2. No branch condition. If the branch instruction is con­
ditional, the condition for the branch is not satisfied, 
and no trap condition occurs, the updated instruction 
address remains unchanged. Then, instruction execu­
tion proceeds with the instruction pointed to by the 
updated instruction address. 

3. Branch condition. If the branch instruction is uncon­
ditional (or if the branch instruction is conditional and 
the condition for the branch is satisfied) and no trap 
condition occurs, the updated instruction address is 
replaced by the effective virtual address of the branch 
instruction. Then, instruction execution proceeds with 
the instruction pointed to by the effective virtual ad­
dress of the branch instruction. 



EXU EXECUTE 
\.Word index alignment) 

EXECUTE causes the computer to access the instruction in 
the location pointed to by the effective address of EXU and 
execute the subject instruction. The execution of the sub­
ject instruction, including the processing of trap and in­
terrupt conditions, is performed exactly as if the subject 
instruction were initially accessed instead of the EXU in­
structi on. If the subj ect instruction is another EXU, the 
computer executes the subject instruction pointed to by the 
effective address of the second EXU as described above. 
Such "chains" of EXECUTE instructions may be of any length, 
and are processed (without affecting the updated instruction 
address) until an instruction other than EXU is encountered. 
After the final subject instruction is executed, instruction 
execution proceeds with the next instruction in sequence 
after the initial EXU (unless the subject instruction is an 
LPSD or XPSD instruction, or is a branch instruction and 
the branch condition is satisfied). 

If an interrupt activation occurs between the beginning of 
an EXU instruction (or chain of EXU instructions) and the 
last interruptible point in the subject instruction, the com­
puter processes the interrupt-servicing routine for the ac­
tive interrupt I evel and then returns program control to the 
EXU instruction (or the intial instruction of a chain of 
EXU instructions), which is started anew. Note that a pro­
gram is interruptible after every instruction access, includ­
ing accesses made with the EXU instruction, and the inter­
ruptibility of the subject instruction is the same as the 
normal interruptibility for that instruction. 

If a trap condition occurs between the beginning of an EXU 
instruction (or chain of EXU instructions) and the completion 
of the subject instruction, the computer traps to the appro­
priate trap location. The instruction address stored by the 
XPSD instruction in the trap location is the address of the 
EXU instruction (or the initial instruction of a chain of 
EXU instructions). 

Affected: Determi ned by 
subject instruction 

Traps: Determined by 
subject instruction 

Condition code settings: Determined by subject instruction 

BCS BRANCH ON CONDITIONS SET 
(V%rd index alignment) 

BRANCH ON CONDITIONS SET forms the logical product 
(AND) of the R field of the instruction word and the current 
condition code. If the logical product is nonzero, the 
branch condition is satisfied and instruction execution pro­
ceeds with the instruction pointed to by the effective ad­
dress of the BCS instru~tion. However, if the logical 
product is zero, the br:anch condition is unsatisfied and 
instruction execution then proceeds with the next instruc­
tion in normal sequence. 

Affected: (IA) if CC n RIO 

If CC n (1)8_11 /0, EVA 15_31 --- IA 

If CC n (1)8-11 = 0, IA not affected 

If the R field of BCS is 0, the next instruction to be exe­
cuted after BCS is always the next instruction in ascending 
sequence, thus effectively producing a "no operation" 
instruction. 

BCR BRANCH ON CONDITIONS RESET 
N'/ord index alignment) 

BRANCH ON CONDITIONS RESET forms the logical pro­
duct (AND) of the R field of the instruction word and the 
current condition code. If the logical product is zero, the 
branch condition is satisfied and instruction execution then 
proceeds with the instruction pointed to by the effective ad­
dress of the BCR instruction. However, if the logical pro­
duct is nonzero, the branch condition is unsatisfied and in­
struction execution then proceeds with the next instruction 
in normal sequence. 

Affected: (IA) if CC n R = 0 

If CC n (1)8-11 = 0, EVA 15_31 - IA 

IF CC n (1)8-11 10, IA not affected 

If the R field of BCR is 0, the 'next instruction to be execu­
ted after BCR is always the instruction located at the effec­
tive address of BCR, thus effectively producing a "branch 
unconditional! y" instruction. 

BIR BRANCH ON INCREMENTING REGISTER 
N'/ord index alignment) 

BRANCH ON INCREMENTING REGISTER computes the 
effective virtual address (EVA) and then increments the 
contents of general regi ster R by 1. If the resul t is a nega­
tive value, the branch condition is satisfied and instruction 
execution then proceeds with the instruction pointed to by 
the effective address of the BIR instruction. However, if 
the result is zero or a positive value, the branch condition 
is not satisfied and instruction execution proceeds with the 
next instruction in normal sequence. 

Affected: (R), (IA) 

(R) + 1 -R 

If (R)O = 1, EVA15- 31 -IA 

If (R)O = 0, IA not affected 

If the effective address of BIR is unavailable to the slave 
program for instruction access and the branch condition is 
satisfied, or if the effective address of BIR is nonexistent, 

Execute/Branch Instructions 73 



the computer aborts execution of the BIR instruction and 
traps to location X'40'. In this case, the instruction address 
stored by the XPSD instruction in location X'40 ' is the vir­
tual address of the aborted BIR instruction. If the computer 
traps because of instruction access protection, register R will 
contain the value that existed just before the BIR instruction. 

BDR BRANCH ON DECREMENTING REGISTER 
0/Vord index alignment) 

BRANCH ON DECREMENTI NG REGISTER computes the 
effective virtual address (EVA) and then decrements the 
contents of general register R by 1. If the result is a posi­
ti ve val ue, the branch condition is satisfied and instruction 
execution then proceeds with the instruction pointed to by 
the effective address of the BDR instruction. However, if 
the result is zero or a negative value, the branch condition 
is unsatisfied and instruction execution proceeds with the 
next instruction in normal sequence. 

Affected: (R), (IA) 

(R) - 1- R 

If (R)O = 0 and (R)1-31 ,0, EVA 15-31 - IA 

if (R)O = 1 or (R) = 0, IA not affected 

If the effective address of BDR is unavailable to the slave 
program for instruction access and the branch condition is 
satisfied, or if the effective address of BDR is nonexistent, 
the computer aborts execution of the BDR instruction and 
traps to location X'40 ' • In this case, the instruction address 
stored by the XPSD instruction in location X'40 ' is the vir­
tua I address of the aborted BDR instruction. If the computer 
traps because of instruction access protection, register R will 
contain the value that existed just before the BDR instruction. 

BAl BRANCH AND LINK 
0/Vord index alignment) 

BRANCH AND LINK determines the effective virtual ad­
dress, loads the updated instruction address (the virtual ad­
dress of the next instruction in normal sequence after the 
BAL instruction) into bit positions 15-31 of general regis­
ter R, clears bit positions 0-14 of register R to Dis and then 
replaces the updated instruction address with the effective 
virtual address. Instruction execution proceeds with the 
instruction pointed to by the effective address of the BAL 
instruction. 

Affected: (R), (IA) 

If the effective address of BAL is either nonexistent or is 
unavai labl e to the slave program for instruction access, 

74 Call Instructions 

the computer aborts execution of the BAL instruction (after 
loading the updated instruction address into register R) and 
traps to location X 140'. In thi s case, the instruction ad­
dress stored by the XPSD instruction in location X '40 ' is 
the virtual address of the BAL instruction. 

CALL INSTRUCTIONS 
Each of the four call instructions causes the computer to 
trap to a specific location for the next instruction in se­
quence. The four cal I instructions, their mnemonics, and 
the locations to which the computer traps are: 

Instruction Name Mnemonic Trap Location 

CALL 1 CAll X'48 1 

CALL 2 CAL2 X '49 1 

CALL 3 CAL3 X'4A ' 
CALL 4 CAL4 X '4B ' 

Each of these four trap locations must contain an EXCHANGE 
PROGRAM STATUS DOUBLEWORD (XPSD) instruction. Exe­
cution of XPSD in the trap location for a call instruction is 
described under the XPSD instruction. If the XPSD instruc­
tion is coded with bit position 9 set to 1, the next instruc-
ti on (executed after the XPSD) is taken from one of 16 pos­
sible locations, as designated by the value in the R field of 
the call instruction. Each of the 16 locations may contain 
an i nstructi on that causes the computer to branch to a spe­
cific routine; thus, the four call instructions can be used to 
enter any of as many as 64 unique routines. 

CAll CALL 1 
(Word index alignment) 

CALL 1 causes the computer to trap to location X 148 1
• 

CAl2 CALL 2 
0/Vord index alignment) 

CALL 2 causes the computer to trap to location X'49 1. 

CAl3 CALL 3 
(Word index alignment) 

o I 2 

CALL 3 causes the computer to trap to location X'4A'. 

CAl4 CALL 4 
0/Vord index alignment) 

CALL 4 causes the computer to trap to location X '4B '. 



CONTROL INSTRUCTIONS 

The following privileged instructions are used to control 
the basic operating conditions of the SIGMA 6 computer: 

Instruction Name Mnemonic 

Load Program Status Doubl eword 
Exchange Program Status Doubl eword 
Load Register Pointer 

LPSD 
XPSD 
LRP 
MMC 
WAIT 
RD 
WD 

Move to Memory Control 
Wait 
Read Direct 
Write Direct 

If execution of any control instruction is attempted while 
the computer is in the slave mode (i.e., while bit 8 of the 
current program status doubl eword is a 1), the computer un­
conditionally aborts execution of the instruction (at the time 
of operation code decoding) and traps to location X'40'. 

PROGRAM STATUS OOUBl£WORD 

The SIGMA 6 program status doubleword has the following 
structure when stored in memory: 

Bit Desig-
Position nation Function 

0-3 
5 
6 
7 
8 
9 
10 
11 
15-31 
34,35 
37 
38 

1
,39 
·55-59 

CC 
FS 
FZ 
FN 
MS 
MM 
OM 
AM 
IA 
WK 
CI 
II 
EI 
RP 

Condition code 
Floating significance mask 
Floating zero mask 
Floating normalize mask 
Master/Slave mode control 
Memory Map mode control 
Decimal arithmetic trap mask 
Fixed-point arithmetic overflow trap mask 
Instruction address 
Write key 
Counter interrupt group inhibit 
I/O interrupt group inhibit 
External interrupt inhibit 
Register pointer 

The detai led functions of the various portions of the SIGMA 6 
program status doubleword are described under II Program 
Status Doubleword" in Chapter 2. 

LPSD LOAD PROGRAM STATUS DOUBLEWORD 
(Doubleword index alignment, privileged) 

LOAD PROGRAM STATUS DOUBLEWORD replaces bits 0 
through 39 of the current program status doubleword with 
bits 0 through 39 of the effective doubleword. The follow­
ing conditional operations are also performed: 

1. If bit position S (LP) of LPSD contains a 1, bits 55 
through 59 of th e current program status doubl eword 
(register pointer) are replaced by bits 55 through S9 
of the effective doublewordi if bit S of LPSD is a 0, 
the current register pointer value remains unchanged. 

2. If bit position 10 (CL) of LPS D contains a 1, the 
highest-priority interrupt level currently in the active 
state is cleared (i. e., reset to either the armed state 
or the disarmed state); the interrupt level is armed if 
bit 11 of LPSD (AD) is a 1, or is disarmed if bit 11 of 
LPSD is O. If bit 10 of LPSD is a 0, no interrupt level 
is affected in any way, regardless of whether bit 11 
of LPSD is 1 or O. (Interrupt levels are described in 
detail under "Interrupt System" in Chapter 2. 

Those portions of the effective doubleword that correspond 
to undefined fields in the program status doubleword are 
ignored. 

Affected: (PSD), interrupt system if (1)10 = 1 

ED
O
_
3 

- CC; ED
5

_
7 

- FS, FZ, FN 

EDS-MS; ED
9
--MM 

ED
10
--DM; ED 11 - AM 

ED
15

_
31

- IAi ED
34

_
35 

-WK 

ED
37

_
39

- CI, II, Eli If (I)S = 1, ED
55

_
59 

- RP 

If (1)10 = 1 and (1)11 = 1, clear and arm interrupt 

If (1)10 = 1 and (1)11 = 0, c1~ar and disarm interrupt 

XPSD EXCHANGE PROGRAM STATUS DOU BLEWORD 
(Doubleword index alignment, privileged) 

EXCHANGE PROGRAM STATUS DOUBLEWORD stores the 
entire program status doubleword and then replaces the cur­
rent program status doubleword with a new program status 
doubleword. 

Use of the memory map in interpreting the XPSD instruction 
address depends on the combined settings of bit 9 of the 
current PSD and bit 10 of the XPSD instruction, and on 
whether or not the XPSD is executed in an interrupt or trap 
location as the result of an interrupt or trap: 

1. If the XPSD instruction is executed in an interrupt or 
trap location, the map is used to interpret the indirect 
reference address and the effective address if, and only 
if, a 1 is contained in bit positions 9 (MM) of the cur­
rent PSD and 10 (MP) of XPSD. 

2. The same logic applies with one exception when the 
instruction is not executed in an interrupt or trap lo­
cation. The exception is that if the program is in the 
mapping mode (PSD9 = 1), the map is used to interpret 
the indirect reference address regardless of the state 
of XPSD lO• 

Control Instructions 75 



These conditions are summarized in the truth table shown 
below. General information on memory addressing is con­
tained in Chapter2 under "Memory Control Storage", "Mem­
ory Reference Addresses", and IIMemory Address Control II. 

XPSD 10 PSD9 XPSD Address Type Map? 

1 Ind. Ref. Addr. yes 

1 
Effect. Addr. yes 

0 
Ind. Ref. Addr. no 
Effect. Addr. no 

1 
Ind. Ref. Addr. no I yest 

0 
Effect. Addr. no 

0 
Ind. Ref. Addr. no 
Effect. Addr. no 

tllYes li only if XPSD not executed in an interrupt or 
trap location. 

The current program status doubleword is stored in the double­
word location pointed to by the effective address of XPSD 
in the following form: 

The current program status doubleword is replaced by a new 
program status doubleword as follows: 

1. The effective address of XPSD is incremented by 2, so 
that it points to the next doubleword location. The ad­
dress thus generated is subject to the same mapping con­
sideration as the original effective address {i.e., mapping 
is performed with the new address if bit 10 of XPSD is 

,a 1 and bit 9 of the current program status doubl eword 
is also a 1; otherwise, mapping is not performed}. The 
contents of the next doubleword location are referred 
to as the second effective doubleword, or ED2. 

2. Bits 0 through 35 of the current program status double­
word are unconditionally replaced by bits 0 through 35 
of the second effective doubl eword. The affected por­
tions of the program status doubleword are: 

Bit 
Position Designation Function 

0-3 CC Condition code 

5-7 FS, FZ, FN Floating control 

8 MS Master/slave mode control 

9 MM Mapping mode control 

10 DM Decimal arithmetic trap mask 

11 AM Fixed-point arithmetic trap mask 

15-31 IA Instruction address 

34-35 WK 'Write key 

3. A logical inclusive OR is performed between bits 37 
through 39 of the current program status doubleword 

76 Control Instructions 

and bits 37 through 39 of the second effective double­
word. 

Bit 
Position Designation Function 

37 CI Counter interrupt inhibit 

38 II VO interrupt inhibit 

39 EI External interrupt inhibit 

If any (or all) of bits 37, 38, or 39 of the second effec­
tive doubleword are OIS, the corresponding bits in the 
current program status doubleword remain unchanged; 
if any (or all) of bits 37, 38, or 39 of the second effec­
tive doubleword are ]Is, the corresponding bits in the 
current program status doubl eword are set to lis. See 
page 19 for a detai I ed discussion of the interrupt inhibits. 

4. If bit position 8 (LP) of XPSD contains a I, bits 55-59 of 
the current program status doubleword (register pointer) 
are replaced by bits 55 through 59 of the second effec­
tive doubleword; if bit 8 of XPSD is a 0, the current 
register pointer value remains unchanged. 

The following additional operations are performed on the new 
program status doubleword if, and only if the XPSD is being 
executed as the result of a nonallowed operation (trap to lo­
cation X'40') or a call instruction (trap to location X'48', 
X149 1

, X'4A', or XI4BI): 

1. Nonallowed operations - the following additional func­
tions are performed when XPSD is being executed as a 
resul t of a trap to location X1401

: 

a. Nonexistent instruction - if the reason for the trap 
condition is an attempt to execute a nonexistent in­
struction, bit position 0 of the new program status 
doubleword (CC I) is set to 1. Then, if bit 9 (AI) 
of XPSD is a I, bit positions 15-31 of the new pro­
gram status doubleword (next instrucHon address) 
are incremented by 8. 

b. Nonexistent memory address - if the reason for the 
trap condition is an attempt to access or write into 
a nonexistent memory region, bit position 1 of the 
new program status doubl eword (CC2) is set to 1. 
Then, if bit 9 of XPSD is a I, the instruction ad­
dress portion of the new program status doubl eword 
is incremented by 4. 

c. Privileged instruction violation - if the reason for 
the trap condition is an attempt to execute a privi­
leged instruction while the computer is in the slave 
mode, bit position 2 of the new program statusdouble­
word (CC3) is set to 1. Then, if bit position 9 of 
XPSD is 1, the instruction address portion of the new 
program status doubleword is incremented by 2. 

d. Memory protection violation - if the reason for the 
trap condition is an attempt to read from or write into 
a memory reg ion to wh i ch the program does not have 
proper access, bit position 3 of the new program status 
doubleword (CC4) is set to 1. Then, if bit 9 of XPSD 
is a 1, the instruction address portion of the new 
program status doubleword is incremented by 1. 



There are certain circumstances under which two of the 
above nonal/owed operations can occur simultaneously. 
The following operation codes (including their counter­
parts) are considered to be both nonexistent and privi­
leged: XIOC, XIOD I, XI2C, and XI2DI. If any one of 
these operation codes is used as an instruction while 
the computer is in the slave mode, CC 1 and CC3 are 
both set to lis; if bit 9 of XPSD is a 1, the instruction 
address portion of the new program status doubl eword is 
incremented by 10. If an attempt is made to access or 
write into a memory region that is both nonexistent and 
prohibited to the program by means of the memory con­
trol feature, CC2 and CC4 are both set to lis; if bit 9 
of XPSD is a 1, the instruction address of the new pro­
gram status doubleword is incremented by 5. 

2. C::III instructions - the following additional functions 
are performed when XPSD is being executed as a resu It 
of a trap to location X'48 1

, X149 1
, XI4AI, or XI4BI: 

a: The R field of the call instruction causing the 
trap is logically inclusively ORed into bit posi­
tions 0-3 (CC) of the new PSD. 

b. If bit position 9 of XPSD contains a 1, the R field 
of the call instructi-:>n causing the trap is added 
to the instruction address portion of the new PSD. 

If bit position 9 of XPSD contains a 0, the instruction ad­
dress portion of the new PSD always remains at the value 
establ ished by the second effective doubleword. Bit posi­
tion 9 of XPSD is effective only if the instruction is being 
executed as the resul t of a nonall owed operati on trap or a 
call instruction trap. Bit position 9 of XPSD must be coded 
with a 0 in all other cases; otherwise, the resul ts of the 
XPSD instruction are undefined. 

Affected: (EDL), (PSD) 

If (I) 1 0 = 1, effect i ve address is vi rtua I 

If (1)10 = 0, effective address is actual 

PSD-EDL 

ED20_3 - CC; ED25_7 - FS, FZ, FN 

ED28 - MS; ED29 - MM 

ED210 -- DM; ED211 --AM 

ED215_31 - IA; ED234_35 - WK 

ED237_39 u CI, II, EI -CI, II, EI 

If (1)8 = 1, ED255_59 - RP 

If (1)8 = 0, RP not affected 

If nonexistent instruction, 1 - CC1 then, if (1)9 = 1, 
IA + 8-IA 

If nonexi stent memory address, 1 - CC2 then, if (1)9 = 1, 
IA + 4-IA 

If privileged instruction violation, 1-CC3 then, 
if (1)9 = 1, IA + 2 - IA 

If memory protection violation, 1 -- CC4 then, if (1)9 = 1, 
IA + 1-- IA 

If call instruction, CC u CALLS-11 -- CC then, 
if (1)9 = 1, fA + CALL8- 11 -- fA 

If (1)9 = 0, fA not affected 

LRP LOAD REGISTER POINTER 
(Word index al ignment, privi leged) 

LOAD REGISTER POINTER loads bits 23 through 27 of the 
effective word into the register pointer (RP) portion of the 
current program status doubleword. Bit positions 0 through 
22 and 28 through 31 of the effective word are ignored, and 
no other portion of the program status doubleword is affected. 
If the register pointer is loaded with a value that points to a 
nonexistent block of general reg isters, the computer subse­
quentl y generates either all 1's or all OIS as the contents of 
the nonexistent block of general registers, whenever an in­
struction designates a general register by means of the R field 
or the reference address field. 

Affected: RP 

EW23-27-RP 

MMC MOVE TO MEMORY CONTROL 
0Nord index al ignment, privi leged, continue 

. after interrupt) 

MOVE TO MEMORY CONTROL loads a string of one or 
more words into one of the three blocks of memory control 
registers (memory control registers are described under 
"Memory Address Control" in Chapter 2). Bitpositions 12-14 
of MMC are not used as an index register address; instead, 
they are used to specify which block of memory control reg­
isters is to be loaded, as follows: 

Bit positi on 
12 13 14 

100 
o 1 0 
001 

Function 

Load memory map block addresses 
Load access protection 
Load memory write protection locks 

If bit positions 12-14 of MMC contain either a" OIS or more 
than a single 1, the instruction produces an undefined result. 
Also, if an attempt is made to load unimplemented memory 
control storage, the contents of the general regi sters speci­
fied by the MMC instruction are undefined at the completion 
of the instruction, and the implemented memory control stor­
age (if any) is not affected. 

Bit positions 15-31 (reference address field) of MMC are ig­
nored insofar as the operation of the instruction is concerned, 
and the results of the instruction are the same whether or not 
MMC is indirectly addressed. 

The R field of MMC designates an even-odd pair of general 
registers (R and Ru 1) that are used to control the I oadi ng of 

Control Instructions 77 



the specified bank of memory control registers. Registers R 
and Ru 1 are assumed to contain the following information: 

Register R: 

Reg; ster Ru 1 : 

Bit positions 15 through 31 of register R contain the virtual 
address of the first word of the control image to be loaded 
into the specified block of memory control registers. Bit 
positions 0 through 7 of register Ru 1 contain a count of the 
number of words to be loaded. If bits 0-7 of register Ru 1 
are initially all OIS, a word count of 256 is implied.) 

Bit positions 15 through 22 of register Ru 1 point to the be­
ginning of the memory region controlled by the registers to 
be loaded. The significance of this field is different for the 
3 modes of MMC. 

The R field of the MMC instruction must be an even value 
for proper operation of the instruction; if the R field of MMC 
is an odd value, the operation of the instruction is undefined. 

If MCC is ind irectly addressed and the indirect reference ad­
dress is nonexistent, the nonallowed operation trap (location 
X'401) is activated. The effective vi rtual address of the MMC 
instruction however, is not used as a memory reference (thus 
does not affect the normal operation of the instruction). 

Affected: (R), (Ru 1), memory control storage 

LOADING THE MEMORY MAP 

The following diagrams represent the configuration of MMC, 
register R, and register Ru 1 that are required to load the 
memory map: 

The instruction format is: 

a I 2 

The contents of register Rare: 

The contents of register Ru 1 are: 

MEMORY MAP CONTROL IMAGE 

The initial address value in bit positions 15-31 of register R 
is the vi rtual address of the first word of the memory map 
control image. The word length of the control image to be 
loaded is specified by the initial count in bit posiTions 0-7 
of reg i ster Ru 1. A word count of 64 is suffi c i ent to load the 
entire block of memory map control registers. The memory map 
control registers are treated as a circular set, with the first 
register following the last; thus, a word count greater than 
64 causes the first registers loaded to be overwritten. 

78 Control Instructions 

Each word of the memory map control image is assumed to 
be in the following format: 

MEMORY MAP LOADING PROCESS 

Bit positions 15-22 of register Ru 1 initially points to the first 
512-word page of virtual addresses that is to be controlled 
by the map image being loaded. MMC moves the map image 
into the memory map control registers one word at a time, thus 
loading the page address for four consecutive memory map 
registers with each image wurd. As each word is loaded into 
the memory map, the virtual address of the image area is in­
cremented by 1, the word count is decremented by 1, and the 
value in bit positions 15-22 of register Ru 1 is incremented by 
4; th is process continues unti I the word count is reduced to O. 
When the loading process is completed, bit positions 15-31 of 
register R contain a value equal to the sum of the initial map 
image address plus the initial word count. Also, bit positions 
0-7 of register Ru1 contain all OIS, and bit positions 15-22 of 
register Ru 1 contain a value equal to the sum of the initial 
contents plus 4 times the initial word count. 

LOADING THE ACCESS PROTECTION CONTROLS 

The following diagrams represent the configurations of MMC, 
register R, and register Ru 1 that are required to load the ac­
cess protection controls: 

The instruction format is: 

The contents of reg ister Rare: 

The contents of reg ister Ru 1 are: 

ACCESS PROTECTION CONTROL IMAGE 

The initial address value in register R is the virtual address 
of the fi rst word of the access control image, and the word 
length of the first control image is specified by the initial 
count in register Ru 1. A word count of 16 is sufficient to 
load the entire block of access protection control registers. 
The access protection control registers are treated as a cir­
cular set, with the first register following the last; thus, a 
word count greater than 16 causes the first registers loaded 
to be overwritten. Each word of the access control image 
is assumed to be in the following format: 

ACCESS CONTROL LOADING PROCESS 

Bit positions 15-20 of register Ru 1 initially point to the first 
512-word page of virtual addresses that is to be controlled 



by the access control image. MMC moves the access con­
trol image into the access control registers one word at a 
ti me, thus loading th2 controls for 16 consecutive 512-word 
pages with each image word. As each word is loaded, the 
virtual address of the control image is incremented by 1, 
the word count is decremented by 1, and the value in bit 
positions 15-20 of register Ru1 is incremented by 4; this 
process continues until the word count is reduced to O. When 
the loading process is completed, register R contains a value 
equal to the sum of the initial control image address plus the 
in itial word count. Also, the final word count is 0, and bit po­
sitions 15-20 of register Ru 1 contain a value equal to the sum 
of the initial contents plus 4 times the initial word count. 

LOADING THE MEMORY WRITE PROTECTION LOCKS 

The following diagrams represent the configuration of MMC, 
register R, and register Ru 1 that are required to load the 
memory write protection locks: 

The instruction format is: 

The contents of register Rare: 

The contents of register Ru 1 are: 

MEMORY LOCK CONTROL IMAGE 

The initial address value in register R is the virtual address 
of the first word of the memory lock control image, and word 
length of the image is specified by the initial count in reg­
ister Ru1. A word count of 16 is sufficient to load the en­
tire block of memory locks. The memory lock registers are 
treated as a circular set, with the register for memory ad­
dresses 0 through X 11 FF' immediately following the register 
for memory addresses X 11 FEOOI through X 11 FFFF I; thus, a 
word count greater than 16 causes the first registers loaded 
to be overwritten. Each word of the lock image is assumed 
to be in the following format: 

MEMORY LOCK LOADING PROCESS 

Bit positions 15-20 of register Ru1 initially point to the first 
512-word page of actual core memory addresses that is to 
be controlled by the memory lock image. MMC moves the 
lock image into the lock registers 1 word at a time, thus 
loading the locks for 16 consecutive 512-word pages with 
each image word. As each word is loaded, the virtual ad­
dress of the lock image is incremented by 1, the word count 
is decremented by 1, and the value in bit positions 15 -20 
of register Ru1 is incremented by 4; this process continues 
until the word count is "reduced to O. When the loading 
process is completed, register R contains a va lue equal to 

the sum of the initial lock image address plus the initial 
word count. Also, the final word count is 0, and bit posi­
tions 15-20 of register Rul contain a value equal to the sum 
of the initial contents plus 4 times the initial word count. 

INTERRUPTION Of MMC 

The execution of MMC can be interrupted after each word 
of the control image has been moved into the specified con­
trol register. Immediatel y prior to the time that the instruc­
tion in the interrupt (or trap) location is executed, the 
instruction address portion of the program status doubleword 
contains the virtual address of the MMC instruction, register 
R contains the virtual address of the next word of the control 
image to be loaded, and register Ru1 contains a count of the 
number of control image words remaining to be moved and a 
value pointing to the next memory control register to be 
loaded. 

WAIT WAIT 
0/Vord index alignment, privileged) 

WAIT causes the CPU to cease all operations until an inter­
rupt activation occurs, or unti I the computer operator man­
uall y moves the COMPUTE switch {on the processor control 
panel or on the free-standing console} from the RUN posi­
tion to IDLE and then back to RUN. The instruction ad­
dress porti on of the PSD is updated before the computer 
begins waiting; therefore, while the CPU is waiting, the 
INSTRUCTION ADDRESS indicators contain the virtual ad­
dress of the next location in ascending sequenceafterWAIT 
and the contents of the next location are displayed in the 
DISPLAY indicators {on the processor control panel and on 
the free-standing console}. If any input/output operations 
are bei ng performed when WAIT is executed, the operations 
proceed to their normal termination. 

When an interrupt activation occurs while the CPU is wait­
ing, the computer processes the interrupt-servicing routine. 
Normally, the interrupt-servicing routine begins with an 
XPSD instruction in the interrupt location, and ends with 
an LPSD instruction at the end of the routi nee After the 
LPSD instruction is executed, the next instruction to be 
executed in the interrupted program is the next i nstructi on 
in sequence after the WAIT instruction. If the interrupt is 
to a single-instruction interrupt location, the instruction 
in the interrupt location is executed and then instruction 
execution proceeds with the next instruction in sequence 
after the WAIT instruction. When the COMPUTE switch 
is moved from RUN to IDLE and back to RUN while the 
CPU is waiting, instruction execution proceeds with the 
next instruction in sequence after the WAIT instruction. 

If WAIT is indirectly addressed and the indirect reference 
address is nonexistent, the nonallowed operation trap {loca­
tion X1401} is activated. The effective virtual address of 
the WAIT instruction, however, is not used as a memory 
reference (thus does not affect the normal operation of the 
i nstructi on). 

Control Instructions 79 



RD READ DIRECT 
(Word index alignment, privileged) 

The CPU is capable of directly communicating with other 
elements of the SIGMA 6 system, as well as performing in­
ternal control operations, by means of the READ DIRECT/ 
WRITE DIRECT (RD/WD) lines. The RD/WD lines consist 
of 16 address lines, 32 data lines, 2 condition code lines, 
and various control lines, that are connected to various 
CPU circuits and to special systems equipment. 

READ DIRECT causes the CPU to present bits 16 through 31 
of the effective virtual address to other elements of the 
SIGMA 6 system on the RD/WD address lines. Bits 16-31 
of the effective virtual address identify a specific element 
of the SIGMA 6 system that is expected to return informa­
tion (2 condition code bits plus a maximum of 32 data bits) 
to the CPU. The significance and number of data bits re­
turned to the CPU depend on the selected element. If the 
R field of RD is nonzero, up to 32 bits of the returned data 
are loaded into genera I register R; however, if the R field 
of RD is 0, the returned data is ignored and genera I regis-

, . ter 0 is not changed. The condition code is set by the ad­
dressed element, regardless of the value of the R field. 

Bits 16-19 of the effective virtual address of RD determine 
the mode of the RD instruction, as follows: 

Bit Position 
16 17 18 19 Mode 

000 
o 0 0 
o 0 1 
o 0 1 

o Internal computer control 
1 Unassigned 
o XDS testers 

1 } Assigned to various groups of standard 
XDS products 

o 
1 Spec ial systems control (for customer use 

with specially designed equipment) 

If bits 16-19 of the effecti ve vi rtua I address are nonzero 
(mode 1 through mode F), CC 1 and CC2 are set to zero and 
CC3 and CC4 are set according to the state of the two con­
dition code I ines from the external device. 

READ DIRECT INTERNAL COMPUTER CONTROL (MODE 0) 

In this mode, the condition code is unconditionally set ac­
cording to the states of the four SENSE switches on the pro­
cessor control panel. If a particular SENSE switch is set, 
the corresponding bit of the condition code is set to 1; if a 
SENSE switch is reset, the corresponding bit of the condi­
tion code is set to 0 (see "SENSE" in chapter 5). 

READ SENSE SWITCHES 

The following configuration of RD can be used to read the 
control panel SENSE switches: 

In th is case, only the condition code is affected. 

80 Control Instructions 

READ AND RESET MEMORY FAULT INDICATORS 

Each core memory module is associated with a MEMORY FAULT 
indicator that is turned on whenever a memory parity or over-I 
temperature condition occurs. The following configuration 
of RD is used to record and reset the MEMORY FAULT indi­
cators. 

If the R field of RD is nonzero, bit positions 0-23 of register 
R are reset to all O·s, bit positions 24-31 are set according 
to the current states of the MEMORY FAULT indicators, and 
all MEMORY FAULT indicators are reset. If a bit position 
in register R is set to 1, a memory fault has been detected 
in the corresponding core memory module. If the R field of 
RD is 0, the MEMORY FAULT indicators and the contents 
of register 0 remain unchanged (although the condition code 
is still set to the value of the SENSE switches). The MEM­
ORY FAULT indicators are also reset by means of the SYS 
RESET/CLEAR switch on the processor control panel. 

Affected: (R),CC,MEMORY FAULT Indicators 

WD WRITE DIRECT 
(Word index 01 ignment, privileged) 

WRITE DIRECT causes the CPU to present bits 16 through 31 
of the effective virtual address to other elements of the SIG­
MA 6 system on the RD/WDaddress lines(see READ DIRECT). 
Bits 16-31 of the effective virtua I address identify a specific 
element of the SIGMA 6 system that is to receive control in­
formation from the CPU. If the R fie Id of WD is nonzero, 
the 32-bit contents of register R are transmitted to the speci­
fied element on the RD;WD data lines. If the R field of 
WD is 0, 32 O·s are transmitted to the specified element (in­
stead of the contents of register 0). The condition code is I 
set by the addressed element, regardless of the value of the 
R field. 

Bits 16-19 of the effective virtual address determine the 
mode of the WD instruction, as follows: 

Bit Position 
16 17 18 

000 
000 
o 0 1 
001 

19 Mode 

o 
1 
o 
1 

o 

Internal computer control 
Interrupt control 
XDS testers 

}

ASSigned to various groups of standard 
XDS products 

1 Special systems control (for customer use 
with specially designed equipment) 

If bits 16-19 of the effective virtual address are nonzero 
(mode 1 through mode F), CC 1 and CC2 are set to zero and 
CC3 and CC4 are set according to the state of the two con­
dition code lines from the external device. 



WRITE DIRECT INTERNAL COMPUTER CONTROL (MODE 0) 

In this mode, the condition code is unconditionally set 
accordi ng to the states of the four SE NSE switches on the 
processor control panel. If a particular SENSE switch is 
set, the corresponding bit of the condition code is set to 1; 
if a SENSE switch is reset, the corresponding bit of the 
condition code is reset to 0 (see "SENSE" in Chapter 5). 

SET INTERRUPT INHIBITS 

The following configuration of WD can be used to set the 
interrupt inhibits (bit positions 37-39 of the PSD). 

A logical inclusive OR is performed between bits 29-31 of 
the effective virtual address and bits 37-39 of the PSD. If 
any (or all) of bits 29-31 of the effective virtual address are 
l's, the corresponding inhibit bits in the PSD are set to l's; 
the current state of an inhibit bit is not affected if the cor­
responding bit position of the effective virtual address con­
tains a O. 

RESET INTERRUPT INHIBITS 

The following configuration .)f WD can be used to reset the 
interrupt inhibits: 

If any (or all) of bits 29-31 of the effective virtual address 
are l's the corresponding inhibit bits in the PSD are reset to 
O's; the current state of an inhibit bit is not affected if a 
corresponding bit position of the effective virtual address 
contains a O. 

SET ALARM INDICATOR 

The following configuration of WD is used to set the ALARM 
indicator on the maintenance section of the processor con­
trol panel: 

If the COMPUTE switchontheprocessorcontrol panel isinthe 
RUN position and the AUDIO switch on the maintenance sec­
tion of the processor control panel is in the ON position, a 
WOO-Hz signal is transmi tted to the computer speaker. The 
signal may be interrupted by moving the COMPUTE switch 
to the IDLE position, by moving the AUDIO switch to the 
OFF position, or by resetting the ALARM indicator. 

RESET ALARM INDICATOR 

The following configuration of WD is used to reset the 
ALARM indicator: 

The ALARM indicator is.also reset by means of either the CPU 
RESET/CLEAR switch or the SYS RESET/CLEAR switch on the 
processor control panel. 

TOGGLE PROGRAM-CONTROLLED-FREQUE NCY 
FLIP-FLOP 

The following configuration of WD is used to "toggle" the 
CPU program-controlled-frequency (PCF) flip-flop: 

The output of the PCF flip-flop is transmitted to the computer 
speaker through the AUDIO switch on the maintenance secti on 
of the processor control pane I. If the PCF fI i p-fl op is reset whe n 
the above configuration of WD is executed, the WD instruction 
sets the PCF fI ip-floPi if the PCF fI ip-flop was previ ously set, 
the WD instruction resets it. A program can thus generate a 
desired frequency by toggling (setting and resetting) the PCF 
fl ip-flop at the appropriate rate. Execution of the above 
configuration of WD also resets the ALARM indicator. 

WRITE DIRECT, INTERRUPT CONTROL (MODE 1) 

The following configuration of WD is used to set and reset 
the various states of the individual interrupt levels within 
the CPU interrupt system: 

Bits 28 through 31 of the effective address specify the iden­
tification number (see Table 2) of the group of interrupt 
levels to .be controlled by the WD instruction. 

The R field of the WD instruction specifies ageneral register 
that contains the selection bits for the individual interrupt 
levels, excluding Power on/Power off, within the specified 
group (see Table2). Bit position 160f register R contains the 
selection bit for the highest-priority (lowest-numbered) in­
terrupt level within the group, and bit position 31 of register R 
contains the selection bit for the lowest-priority (h ighest­
numbered) interrupt level within the group. Each interrupt 
level in the designated group is operated on according to the 
function code specifiedbybits21 through 23 of the effective 
address of WD. The codes and their associated functions are as 
follows: 

Code Function 

000 Undefi ned 

OOlt Disarm all levels selected by a 1; all levels selected 
by a 0 are not affected. 

OlOt Arm and enable all levels selected by a 1; all level s 
selected by a 0 are not affected. 

Ollt Arm and disable al/ levels selected by a 1; all levels 
selected by a 0 are not affected. 

100 Enable all levels selected by a 1; all levels selected 
by a 0 are not affected. 

101 Disable all levels selected by a 1; all levels selected 
by a 0 are not affected. 

t These codes c I ear the current interrupt, i. e. I remove from 
the active or waiting state all levels selected by a 1 (see 
Figure 7). 

Control Instructions 81 



Code Function 

110 Enable ali levels selected by a 1 and disable all 
levels selected by a O. 

111 Trigger all levels selected by a 1. All such levels 
that are currently armed advance to the waiting state. 

INPUT jOUTPUT INSTRUCTIONS 

II Standard" SIGMA 6 I/O refers to the normal I/O system 
consisting of input/output processors, device controllers, 
and devices. This system handles normal communications 
with standard peripherals such as printers, disks, tapes, 
and so forth. When dealing with standard I/O operations, 
the CPU uses the following five instructions: 

Instruction Name 

Start Input/Output 
Halt Input/Output 
T est Input/Output 
Test Device 
Acknowledge Input/Output Interrupt 

Mnemonic 

SIO 
HIO 
TIO 
TOY 
AIO 

If execution of any input/output instruction is attempted while 
the computer is in the slave mode (i. e. , whi Ie bit a of the 
current program status doubleword is a 1), the computer un­
condi tiona II y aborts execution of the instruction (at the time 
of operation code decoding) and traps to location X '40'. 

110 ADDRESSES 

The device to be operated on by an I/O instruction is selected 
by the effective virtual address of the I/O instruction itself. 
Indirect addressing and/or indexing are performed, as for 
other word-addressing instructions, to compute the effective 
virtual address of the I/O instruction. However, the effec­
ti ve address is not used as a memory reference (i. e., not 
subject to memory mapping). For the SIO, HIO, TIO, and 
TDY instructions, the 11 low-order bits of the effective vir­
tualaddress constitute an I/O address. FortheAIOinstruc­
tion, the device causing the interrupt returns its 11-bit I/O 
address as part of the response to the AIO instruction. 

An I/O address occupies bit positions 21 through 31 of the 
effective virtual address, with bits 21, 22, and230ftheI/0 
address specifying one of eight possible lOPs that can be con­
trolled by a CPU. The remainder of the I/O address is factored 
into one of two forms, depending on bit 24, as follows: 

Case I: Single-unit device controllers (bit 24 is 0) 

Bits 25 through 31 of the I/O address (DC/Device) consti­
tute a single code specifying a particular combination of 
devi ce controller and device. Normally these codes refer 
to devi ce controllers that drive only a single device, such 
as card readers, card punches, line pri nters, etc. 

Case II: Multiunit device controllers (bit 24 is 1) 

82 Input/Output Instructi ons 

Bit positions 25 through 31 of the I/O address contain a 
3-bit device controller code (DC) in bit positions 25-27 
and a 4-bit device code (Device) in bit positions 28-31. 
This form of I/O address is used for device controllers (such 
as magnetic tape and rapid access data file controllers) that 
control information exchange with only one device at a time 
(out of a set of as many as 16 devices). 

110 UNIT ADDRESS ASSIGNMENT 

Device controller numbers are normally assigned to a multi­
plexor lOP in numerical sequence, beginning with zero and 
continuing through the highest number recognized by the lOP 
(i. e., X,]', X'fi, X'17', or X'lF'). In the case of multiunit 
device controllers, the device controller number must be in the 
range X '0' through X '7' because the I/O address field structure 
allows fora 3-bit multiunitdevice controller number. In the 
case of si ngle-unit device controllers, any of the avai lable 
numbers in the range X'O' through X'lF' may be assigned to 
the device controller, providi ng that the Same number has not 
already been assigned to a multiunit device controller. For 
example, if device controller number X '0' is assigned to a 
magnetic tape unit controller, the number X'O' cannot also 
be used for a card reader (although the coding of the I/O 
address field would be different in bit position 24). The I/O 
address codes used by standard XDS software are 

I/O address Peripheral device designation 

x'oao' . lOP 0, devi ce controller 0, magnetic tape 
unit 0 

X'Oal' lOP 0, device controller 0, magnetic tape 
unit 1 

X'Oa7' lOP 0, device controller 0, magnetic tape 
unit 7 

X'OOl' lOP 0, device controll er 1, keyboard/printer 

X'002' lOP 0, device controller 2, line pri nter 

X'003' lOP 0, device controller 3, card reader 

X'004' lOP 0, device controll er 4, card punch 

X'005' lOP 0, device controller 5, paper tape 
reader/punch 

110 STATUS RESPONSE 

All I/O instructions result in the setting of condition code 
CC1 and CC2 to denote the nature of the I/o response. 
The R field of the I/O instruction specifies one of the gen­
eral registers that is to accept additional I/O response in­
formation during the execution of an I/O instruction. In 
some situations, the programmer may want two sets of re­
sponse information loaded into the general registers, while 
in other situations he may want only one set, or even no 
information loaded into a general register. This control is 
achieved by coding the R field of the I/O instruction. One 
set of response information is loaded into register R and an­
other set may be loaded into register Rul. If the R field is 
an even, nonzero number, registers Rand R + 1 are each 
loaded with response information. If the R field specifies 



an odd-numbered general register, then only register R is 
loaded with response information. However, if the R field 
is 0, Rand Rul are not loaded with response information. 
Also, if RI- 0 and CCl is set to 1 as a result of the opera­
tion, no status information is returned to Rand Rul. The 
I/O response information loaded into the general register 
for 510, HIO, TIO, and TDV instructions is in the following 
format: 

Word into register R 

Word into regi ster Ru 1 

Current Command Doubleword Address. After the addressed 
devi ce has received an order, this field contai ns the 16 
high-order bits of the core memory address for the command 
doubleword (see "IOP Command Doublewords ll

) currently 
being processed for the addressed device. 

Status. The meaning of this field depends on the particular 
I/O instruction being execu+-ed and upon the selected I/O 
device (see Table 8). 

Byte Count. After the addressed device has received an 
order, this field contains a caunt of the number of bytes yet 
to be transmitted to or from memory by the operation called 
for by the order. 

See the AIO instruction description for the format of I/O 
response i nformati on for AIO. 

510 START INPUT/OUTPUT 
\:'Nord index alignment, privileged) 

START INPUT/OUTPUT is used to initiate an input or out­
put operation with the device selected by the I/O address 
(bits 21-31 of the effective vi rtua I address of the instruction). 

510 utilizes data in general register 0, which is assumed 
to have the following content when 510 is executed. 

General register 0 is temporarily dedicated during the exe­
cution of an 510 instruction to specify the starting double­
word address for the lOP command list. The doubleword 
address in register 0 is the 16 high-order bits of a memory 
address; thus, the address in register 0 always specifies an 
even-numbered word location. (The lOP command list is 
described in "10P Command Doublewords", Chapter 4.) 

If I/O address recogniti.on exists in the I/O system, and the 
device controller and device are in the "ready" condition 
and no interrupt condition is pending, the 510 is accepted 

and the device is started 0. e., advanced to the "busy" 
condition). If the 510 is accepted, the first command 
doubleword address is loaded into the IOPcommand address 
counter associated with the device controller specified by 
the I/O address of the 510 instruction. Then, if the device 
is in the "automatic" mode, it requests an order from the 
lOP. The lOP loads the first command doubleword of the 
1/ 0 command list into its appropriate regi sters and transmits 
the order to the device. 

The CPU condition code provides an indication of whether 
the I/O address specified by the 510 instruction was or was 
nC;;t recognized by the I/O system and whether the 510 in­
struction was or was not accepted by the device (i. e., whether 
the device did or did not advance to the "busy" condition). 

The condition code settings for 510 are: 

1 234 

o 0 

Resul t 

I/O address recognized and 510 accepted 

I/O address recognized but 510 not 
accepted 

o 

o lOP address recognized but device con­
troller either is attached to a "busy" 
selector lOP that cannot return status at 
this time or, for specific device con­
troll ers, is currentl y "busy" wi th another 
devi ceo No status informati on is returned 
to general registers. 

I/O address not recognized and 510 not 
accepted; no status i nformati on is returned 
to general registers. 

STATUS INFORMATION FOR SIO 

In the event that the 510 instruction was not accepted 
(i. e., CC 1 = 0 and CC2 = 1), the status information returned 
as a part of the I/O response provides indications of Nhy 
the 510 instruction was not accepted. If the 510 instruction 
has been coded with an R field value of 0, or if CCI (as a 
result of the execution of this instruction) is a I, only the 
condition code settings are available. If the R field value 
is odd, register R contains the fol lowing information: 

Bit 
Position Function 

o Interrupt pendingj if this bit is 1, the addressed 
device has requested an interrupt and the inter­
rupt has not been acknowledged by an AIO in­
struction. I/O interrupts can be achieved by coding 
of the flag portion of the I/O command double­
word. I/O interrupts can also be achieved by using 
M modifiers in the basic order to the device (M bits 
in the Order portion of the command doubleword). 
In either case, the device wil I not accept a new 
SIO instruction until the interrupt-pending condi­
tion is cleared (i.e., the condition code settings 
for the SIO instruction will indicate IISIO not 
accepted ll if the interrupt-pending condition is 
present in the addressed device. 

Input/Output Instructions 83 



Posi tion and State in Register Ru 1 

Device Status Byte 

0 2 3 4 5 6 7 

- 0 0 -
- 0 1 

1 0 -
1 1 

- 0 
1 

- 00-
- 0 1 

1 0 
1 1 

- 0 

Position and State in Register R 

Device Status Byte 

o 2 3 4 5 6 7 

84 Input/Output Instructi ons 

Table 8. Status Bits for I/O Instructions 

Operational Status Byte 

8 9 10 11 12 13 14 15 

- - - -

Operational Status Byte 

8 9 10 11 12 13 14 15 

Significance for 
SIO, HIO, and TIO 

interrupt pendi ng 
device ready 
devi ce not operational 
device unavailable 
device busy 
de vi ce manua I 
device automatic 

device unusual end 
device controller ready 
device controller not operational 
device controller unavailable 
device controller busy 
unassigned 

incorrect length 
transmission data error 
transmission memory error 
memory address error 

lOP memory error 
lOP control error 
lOP halt 
Selector lOP busy 

Significance for AIO 

unique to the device and 
the devi ce controller 

incorrect length 
transmission data error 
zero byte count interrupt 
channel end interrupt 

unusual end interrupt 
- 0 

o : } unassigned 

Significance 
for TOV 

unique to the 
device and the 
device controller 

1 
same as for 
SIO, HIO, and 
TIO 

j 



Bit 
Position Function 

1, 2 

3 

4 

5,6 

Devi ce condition: if bits 1 and 2 are 00 (device 
"ready II), all devi ce conditions required for proper 
operation are satisfied. If bits 1 and 2 are 01 
(devi ce "not operational II), the addressed device 
has developed some condition that will not allow 
it to proceed; in either case, operator intervention 
is usually required. If bits 1 and 2 are 10 (device 
IIUnavailable ll ), the device has more than one 
channel of communication avai lable and it is en­
gaged in an operation controlled by a controller 
other than the one specified by the I/O address. 
If bits 1 and 2 are 11 (device IIbusyll), the device 
has accepted a previous SIO instruction and is al­
ready engaged in an I/O operation. 

Device mode: if this bit is 1, the device is in the 
lIautomatic ll mode; if this bit is 0, the device is 
in the IImanual li mode and requires operator inter­
vention. This bit can be used in conjunction with 
bits 1 and 2 to determine the type of action re­
qu ired. For exam pi e, assume that a card reader 
is abl e to operate, but no cards are in the hopper. 
The card reader wvuld be in state 000 (device 
IIreadyll, but manual intervention required), where 
the state is indicated by bits 1, 2, and 3 of the 
I/o status response. If the operator subsequently 
loads the card hopper and presses the card reader 
START switch, the reader would advance to state 
001 (device IIreadyll and in automatic operation). 
If the card reader is instate 000 when an SIO i n­
struction is executed, the SIO would be accepted 
by the reader and the reader would advance to 
state 110 (device IIbusyll, but operator intervention 
required). Should the operator then place cards 
in the hopper and press the START switch, the card 
reader state would advance to 111 (device IIbusy" 
and in automatic operation), and the input opera­
tion would proceed. Should the card reader sub­
sequently become empty (or the operator press the 
STOP switch) and command chaining is being used 
to read a number of cards, the card reader would 
return to state 110. If the card reader is instate 
001 when an SIO instruction is executed, the 
reader advances to state 111, and the input'opera­
tion continues as normal. Should the hopper sub­
sequently become empty (or should the operator 
press the card reader STOP switch) and command 
chaining is being used to read a number of cards, 
the reader would go to state 110 unti I the operator 
corrected the situation. 

Unusual end: if this bit is 1, the previous I/O op­
eration terminated in an II unusual end ll condition. 
These conditions vary from device to device (see 
the applicable peripheral reference manual). 

Device controller condition: if bits 5and 6 are 00 
(device controller "readyll), all device controller 
conditions required for its proper operation are 
satisfied. If bits 5 and 6 are 01 (device controller 

Bit 
Position Function 

5,6 
(cont.) 

7 

8 

9 

10 

11 

II not operational"), some condition has developed 
that does not allow it to operate properly. In 
either case, operator i nterventi on is usually re­
qui red. If bits 5 and 6 are 10 (device controller 
"unavailable"), the device controller is currently 
engaged in an operation controlled by an lOP 
other than the one addressed by the I/O instruction. 
If bits 5 and 6 are 11 (device controller "busy"), 
the device controller has accepted a previ ous 
SIO instruction and is currently engaged in per­
forming an operati on for the addressed lOP. 

Reserved 

Incorrect length: if this bit is 1, an incorrect 
length condition has been detected during the 
previous operation. Incorrect length is caused 
by a channel end (or end of record) condition 
occurring before the device controller has re­
ceived a IIcount done" signal from the lOP, or is 
caused by the de vi ce controller recei vi ng a count 
done signal before channel end (or end of record); 
e. g., count done before 80 columns have been 
read from a card. Normally, a count done signal 
is sent to the device controller by the lOP to in­
dicate that the byte count associated with the 
current operati on has been reduced to zero. The 
lOP is capable of suppressing an error condition on 
incorrect length, since there are many situations 
in which incorrect le.ngth is a legitimate situation 
and not a true error condition. Incorrect length is 
suppressed as an error by coding the SIL flag (a 1 
in bit 38) of the lOP command doubleword (see 
IIFlags ll , Chapter 4). At the end of the execution 
of an I/O command list, this status bit is 1 if an 
incorrect length condition occurred anywhere in 
the command list, regardless of the coding of the 
SIL flag. 

Transmission data error: this bit is set to 1 if the 
lOP or device controller has detected a parity 
error or data overrun in the transmitted informa­
tion. At the end of an execution of an I/O com­
mand list, this status bit is 1 if a transmission data 
error occurred anywhere in the command list. 

Transmission memory error: this bit is set to 1 if 
a memory parity error has occurred during a data 
input/output operation. A parity error is detected 
on any output operation and on partial-word input 
operations. At the end of an execution of an I/O 
command list, this status bit is 1 if a transmission 
memory error occurred anywhere in the command 
list. A device halt occurs only if the HTE flag 
in the lOP command doubleword is set to 1 (see 
II Flags ll , Chapter 4). 

Memory address error: a nonexi stent memory address 
has been encountered on ei ther data or commands. 
Operation is terminated with an II unusual end". 

Input/Output Instructions 85 



Bi t 
Posi tion Function 

12 lOP memory error: if a memory parity error has 
occurred while the lOP was fetching a command, 
this bit is set to 1. Operation is terminated with 
an "unusual end". 

13 lOP control error: this bit is set to 1 if the lOP 
has encountered two successive TRANSFER IN 
CHANNEL commands. 

14 

15 

16-31 

lOP halt: this bit is set to 1 if the lOP has issued 
a halt order to the addressed I/O device because 
of an error condition. 

Selector lOP busy: this bit is set to 1 if a selector 
lOP is addressed by the I/O instruction and the 
selector lOP is currently in use by some I/O de­
vice. The selector lOP is considered to be in use 
from the time that a device accepts an S10 in­
struction until the operation is completed. 

Byte count: a count of the number of bytes yet to 
be transmitted to or from memory in the operation 
called for by the current command doubleword. 

If the R field value of the SIO instruction is even and not 
0, the condition code and register R+ 1 contain the informa­
tion described above and register R contains the following 
information: 

Bit 
Position Function 

16-31 Current command doubl eword address: the 16 
high-order bits of the core memory address from 
which the command doubleword for the I/O opera­
tion currently being processed by the addressed 
device controller was fetched. 

HIO HALT INPUT/OUTPUT 
0/Vord index al ignment, privi leged) 

HALT IN PUT/OUTPUT causes the addressed device to im­
mediately halt its current operation (perhaps improperly, in 
the case of magneti c tape un j ts, when the devi.ce is forced to 
stop at other than interrecord gap). If the device is in an 
interrupt-pending condition, the condition is cleared. 

If the R field of the HIO instruction is a or if no I/O ad­
dress recognition exists, no general registers are affected, 
but the condition code is set. If the R field is an odd 
value, the condition code is set and the following informa­
tion is loaded into register R. 

I St~tus I Byte ~ount I 
0', ,I." ,",. '""I"""""" .... I~"""""u"I~~~,, 

86 Input/Output Instructions 

The status information returned for HIO has the same in­
terpretation as that returned for the instruction SIO and 
shows the I/O status at the time cf the halt. The count 
information shows the number of byies remaining to be 
transmitted at the time of the halt. If the R field of HIO 
is an even value and not 0, the condition code is set, reg­
ister R+l is loaded as shown above, and register R contains 
the following information: 

The current command doubleword address has the same in­
terpretation as that for the instruction SIO. 

Affected: (R), (Rul), CC1,CC2 

Condition code settings: 

2 3 4 

o 0 

o 

Result of HIO 

VA address recognized and device con­
troll er is not "busy II • 

VA address recognized but device con­
trollerwas "busy"at the time of the halt. 

VA address not recognized. 

TlO TEST INPUT/OUTPUT 
0/Vord index alignment, privileged) 

TEST INPUT/OUTPUT is used to make an inquiry on the 
status of data transmission. The operation of the selected 
lOP, device controller, and device are not affected, and 
no operations are initiated or terminated by this instruction. 
The responses to TIO provide the program with the informa­
tion necessary to determine the current status of the device, 
device controller, and lOP, the number of bytes remaining 
to be transmitted to or from memory in the operation, and 
the present point at which the lOP is operating in the com­
mand list. If the R field of the TIO instruction is 0, or if 
CC 1 (as a result of the execution of this instruction) is a 1, 
no general registers are affected, but the condition code is 
set. If the R field of TIO is an odd value, the condition 
code is set and the I/O status and byte count are loaded 
into register R as follows: 

The status i nformati on has the same i nterpretati on as the 
status information returned for the instruction SID and shows 
the I/O status at the time of sampling. 

The count information shows the number of bytes remaining 
to be transmitted at the time of sampling. If the R field of 
the TIO instruction is an even value and not 0, the 



condition code is set, register R + 1 is loaded as shown 
above, and register R is loaded as follows: 

The current command doubleword address has the same in­
terpretation as for the instruction 510. 

Affected: (R), (Ru1), CC1,CC2 

Condition code settings: 

2 3 4 Result of TIO 

o 0 

o 

o 

TDV 

I/O address recognized and acceptable 
SIO is currently possible. 

I/O address recognized but acceptable 
SIO is not currentl y possible. 

lOP address recognized but device con­
troller either is attached to a "busy" 
sel ector lOP that cannot return status at 
this time or, for specific device con­
trollers, is currently "busy" with another 
device. No status information is returned 
to general registers. 

I/O address not recognized; no status in­
formation is returned togeneral registers. 

TEST DEVICE 
(Word index alignment, privileged) 

TEST DEVICE is used to provide information about a device 
other than that obtainable by means of the TIO instruction. 
The operation of the selected lOP, device controller, and 
device is not affected, and no operations are initiated or 
terminated. The responses to TDV provide the program with 
information giving details on the condition of the selected 
device, the number of bytes remaining to be transmitted to 
or from memory in the current operation, and the present 
point at which the lOP is operating in the command list. 
If the R field of the TDV instruction is 0, or if CC 1 (as a 
result of the execution of this instruction) is a 1, the con­
dition code is set, but no general registers are affected. 
If the R field of TDV is an odd value, the condition code 
is set and the device status and byte count are loaded into 
register R as follows: 

Bit 
Position Function 

0-7 

8-15 

Unique to the device and device controller. 

Same as for bits 8-15 of the status information for 
instruction 510. 

The count information shows the number of bytes remaining 
to be transmitted in the current operation at the time of the 
TDV instruction. If the value of the R field of TDV is an 
even value and not 0, the condition code is set, register 
R + 1 is loaded as shown above, and register R is loaded as 
follows: 

The current command doubl eword address has the same in­
terpretation as for the instruction 510. 

Affected: (R), (Ru 1), CC 1 

Condition code settings: 

2 3 4 Result of TDV 

a a 
o 

a 

I/O address recognized. 

I/O address recognized and device­
dependent condi ti on is present. 

lOP address recognized but device con­
troller either is attached to a "busy" 
selector lOP that cannot return status at 
this time or, for specific device con­
trollers, is currently "busy" with another 
device. No status information is returned 
to general registers. 

1/ 0 address not recogn i zed; no status in­
formation is returned to general registers. 

AIO ACKNOWLEDGE INPUT/OUTPUT INTERRUPT 
0/Vord index al ignment, privi leged) 

AIO is used to acknowledge an input/output interrupt and to 
identify what I/O unit is causing the interrupt and why. Bits 
21,22, and 23 of the effective virtual address of the AIO in­
struction (the 10 P portion of the I/o sel ection code field) 
specify the type of interrupt being acknowl edged. These bits 
should be coded 000 to specify the standard I/O system interrupt 
acknowl edgement (other codi ngs of these bits are reserved for 
use with special I/o systems). The remainder ofthe I/o se-
I ection code field (bit positions 24-31) has no other use in the 
standard I/o interrupt acknowledgement because the identi­
ficationoftheinterruptsourceis one of the responses of the 
standard I/o system to the AIO instruction. 

Standard I/O system interrupts can be initiated for the fol­
lowing conditions: 

Interrupt t Status 
Condition prerequi si te bit set 

Zero byte count IZC= 1 10 

Channel end ICE = 1 11 

t rzc, ICE, IUE, HTE, and SIL refer to flag bits in the lOP 
command doublewords (see Chapter 4). 

Input/Output Instructions 87 



Interrupt Status 
Condition 

.. t 
bit set prerequi Sl te 

Transmission memory error I UE = 1, H TE = 1 12 

Incorrect length I UE = 1, H TE = 1 8, 12 
and SIL=O 

Memory address error (lOP IUE= 1 12 
memory error or lOP con-
trol error) 

Transmission data error IUE = 1, HTE = 1 9, 12 

Unusual end IUE= 1 12 

lOP halt IUE= 1 12 

When a device interrupt condition occurs, the lOP forwards 
the request to the CPU interrupt system I/O interrupt level. 
If this interrupt level is armed, enabled, and not inhibi ted 
(see Chapter 2, II Control of the Interrupt System"), the CPU 
eventually acknowledges the interrupt request and executes 
the XPSD instruction in core memory location X'5C, which 
leads to the execution of an AIO instruction. 

For the purpose of acknowledging standard I/O interrupts, 
the lOPs, device controllers, and devices are connected in 
a preestablished priority sequence that is customer-assigned 
and is independent of the physical locations of the portions 
of the I/O system in a particular installation. 

If the R field of the AIO instruction is 0 or if no device in­
terrupt request is present, the condition code is set but the 
general register is not affected. If the R field of AIO is 
not 0, the condition code is set and register R is loaded 
with the following information: 

Bit 
Position Function 

0-7 Unique to the device and the device controller. 

8 Incorrect length: if this bit is I, an incorrect 
length condition has been signaled to the lOP 
by the device controller during the previous 
operation. 

t IZC, ICE, IUE, HTE, and SIL refer to flag bits in the lOP 
command doublewords (see Chapter 4). 

88 Input/Output Instructions 

Bit 
Position Function 

8 Incorrect I ength is suppressed as on error by 
(cont.) coding the SIL flag (0 1 in bit 38) of the command 

doubleword. At the end of the execution of on 
I/O command list, this status bit is 1 if on incor­
rect length condition occurred anywhere in the 
command I ist, regardless of the coding of the SIL fI ago 

9 Transmission data error: this bit is set to 1 if the 
lOP or device controller has detected a parity er­
ror or data overrun in the transmitted information. 

10 

11 

12 

Zero byte count interrupt: if this bit is 1, the byte 
count for the operation being performed by the in­
terrupting device has been reduced to 0, and the 
interrupt at zero byte count (IZC) flag in the com­
mand doubleword for the operation was coded with 
a1. 

Channel end interrupt: if this bit is 1, the device 
controller has signaled channel end to the lOP, 
and the interrupt at channel end (ICE) flag in the 
command doubleword for the operation was coded 
with a 1. 

lOP unusual end interrupt: if this bit is 1, the lOP 
has originated the interrupt as a result of a fault or 
unusual condition reported by the device. 

13-20 Reserved 

21-31 I/O address: this field identifies the highest­
priority devi ce requesting on interrupt. Bit posi­
tions 21-23 identify the lOP. If bit 24 is 0, bits 
25-31 constitute a common device controller and 
device code; if bit 24 is 1, bits 25-27 constitute 
a device controller code and bits 28-31 identify a 
device attached to that device controller. 

The AIO instruction resets the interrupt request signal from 
the highest priority I/O device requesting interrupt service 
(i. e., the device identified above in bits 21-31). 

Affected: (R), CC1, CC2 

Condition code settings: 

2 3 4 Result of AIO 

o 0 

o 
normal interrupt recognition. 

unusual interrupt recognition. 

no interrupt recognition. 



4. INPUT jOUTPUT OPERATIONS 

In a SIGMA 6 system, input/output operations are prima-
ri I y under control of one or more input/output processors 
(lOPs). This allows the CPU to concentrate on program 
execution, free from the time-consuming details of I/o opera­
tions. Any I/O events that require CPU intervention are 
brought to its attenti on by means of the interrupt system. 

In the following discussion, the terminology conventions 
used are that the CPU executes instructions, the lOP exe­
cutes commands, and the device controllers and/or I/O 
devices execute orders. To illustrate, the CPU will exe­
cute the START INPUT/OUTPUT {SIO} instruction to initi­
ate an I/O operation. During the course of an I/O opera­
tion, the lOP might issue a command called Control, to 
transmi t a byte to a device controll er or I/O device that 
interprets the byte as an order, such as Rewi nd. 

SIGMA 6 lOPs operate independentl y after they have been 
started by the central processor. They automatically pick 
up a chain of one Of" more commands from core memory and 
then execute these commands until the chain is completed. 

The multiplexor input/output processor (MIOP), or MIOP 
expansion option (wh ich includes confl iet-resolving circuitry 
to permit it to share a memory bus), can simultaneously 
operate up to 24 device controllers. Each device controller 
is assigned its own channel and chain of I/o commands. The 
seleetor input/output processor (SlOP) can handle any of up 
to 32 high-speed device controllers at rates up to the full 
speed of the core memory (one 32-bit word/cycle). 

The flexible SIGMA 6 I/o structure permits both command 
chaining (making possible multiple-record operations) and 
data chaining (making possible scatter-read and gather­
write operations) without intervening CPU control. Com­
mand chaining refers to the execution of a sequence of I/O 
commands, under control of an lOP, on more than one 
physical record. Thus, a new command must be issued for 
each physical record even if the operation tobe performed 
for a record is the same as that performed for the previous 
record. Data chaining refers to the execution of a sequence 
of I/O commands, under control of an lOP, that gather (or 
scatter) information within one physical record from {or to} 
more than one region of memory. Thus, a new command 
must be issued for each portion of a physical record when 
the data associated with that physical record appears {or is 
to appear} in noncontiguous locations in memory. For 
example, if information in specific columns of two cards in 
a file are to be stored in specific regions of memory, the 
I/o command I ist might appear as follows: 

1. Read card, store col umns 1-10, data cha in 

2. Store columns 11-60, data chain 

3. Store columns 61-80, command chain (end of data 
chain) 

4. Read card, store col umns 1-40, data chain 

5. Store columns 41-80 {end of command chain, end of 
data chain} 

The SIGMA 6 CPU plays a minor role in the execution 
of an I/o operation. The CPU-executed program is respon­
sible for creating and storing the command I ist (prepared 
prior to the initiation of any I/O operation) and for supply­
ing the lOP with a pointer to the first command in the I/O 
command list. Most of the communication between the CPU 
and the I/O system is carried out through memory. 

The following is an example of the sequence of events that 
occurs during an I/O operati on: 

1. A CPU-executed program writes a sequence of I/O 
commands in core memory. 

2. TheCPU executes the instruction START INPUT/OUTPUT 

and furnishes the lOP with an 11-bitl/Oaddress (des­
signating the device to be started) and a 16-bit first 
command address (designating the actual core memory 
doubleword location where the first command for this 
device is located). At this point, either the device is 
started (if in the "ready" condition with no device in­
terrupt pending) or an instruction rei ect occurs. The 
CPU is informed by condition code settings as to which 
of the two al ternatives has occurred. If the START I/O 
instruction is accepted, the command counter portion 
of the lOP register associated with the designated de­
vice.controller is loaded with the first command address. 
Assuming that the SIO instruction is accepted, from this 
time until the full sequence of I/o commands has been 
executed, the moin program of the CPU need play no 
role in the I/O operation-. At any time, however, it 
mayobtain status information on the progress of the l/O 
operation without interfering with the operation. 

3. The device is now in the "busy" condition. When the 
device determines that it has the highest priority for 
access to the lOP, it requests service from the lOP 
with a service call. The lOP obtains the address of 
the first command doubl eword of the I/O sequence 
{from the command counter asssociated with this de-­
vice}. The lOP then fetches the I/O command 
doubleword from core memory, loads the doubleword 
into another register associated with the device, and 
transmits the first order (extracted from the command 
doubl eword) to the device. 

4. Each command counter contains the memory address of 
the current I/O command in the sequence far its de­
vice. When the device requires further servicing, it 
makes a request to the lOP, which then repeats a pro­
cess similar to that of step 3. 

5. If a data transmi ssi on order has been sent to a device, con­
trol of the transmission residesin thedevice. Aseachchar­
acter is obtained by the I/Odevice, the lOP is signaled I 
that data is available. The lOP uses the information 
stored in its own registers to control the information 

interchange between the I/o device and the memory, on 
either a word-by-word or character-by-character 
basis, depending on the nature of the device. 

Input/Output Operations 89 



6. When all information exchanges called for by a single 
I/o command doubl eword have been compl eted, the 
lOP uses the command counter to obtain the next com­
mand doubl eword for execution. This process continues 
until all such command doubl ewords associated with the 
I/O sequence have been executed. 

lOP COMMAND DOUBLEWORDS 
All lOP command doublewords (except Transfer in Channel 
and Stop) are assumed to be in the following format: 

ORDER 

Bit positions 0 through 7 of the command doubleword con­
tain the I/O order for the device controller or device. The 
I/o orders are shown below. t Bits represented by the letter', 
"M" specify orders or special conditions to the device and 
are unique for each type of device. 

Bit positions 
o 1 234 5 6 7 

MMMMM 
MMMMM 
MMMMM 
M M M M 0 
MMMMl 

M 0 
Ml 
M 1 
1 0 
1 0 

1 
o 
1 
o 
o 

Order 

Write 
Read 
Control 
Sense 
Read Backward 

Write. The Write order causes the device controll er to in­
itiate an output operation. Bytes are read in an ascending 
sequence from the memory location specified by the memory 
byte address field of the command doubl eword. The output 
operation continues until thedevice signals "channel end", 
or until the byte count is reduced to 0 and no further data 
chaining is specified. Channel end occurs when the device 
has received all information associated with the output op­
eration, has completed all checks, and no longer requires 
the use oflOPfacilities for the operation. Data chaining 
is described on the following page. 

Read. The Read order causes the device controller to initi­
ate an input operation. Bytes are stored in core memory in 
an ascending sequence, beginning at the location specified 
by the memory byte address field of the command double­
word. The input operation continues until the device signals 
channel end, or until the byte count is reduced to 0 and no 
further data chaining is specified. Channel end occurs when 
the device has transmitted all information associated with 
the input operation and no longer requires the use of lOP 
faci I i ti es for the operati on. 

tNot all I/o devices recbgnize all these orders. See the 
particular XDS SIGMA peripheral reference manual for 
orders appl icable to that device. 

90 lOP Command Doublewords 

Control. The Control order is used to initiatespecial oper­
ations by the device. For magnetic tape, it is used to issue 
orders such as rewind, backspace record, backspace fi Ie, 
etc. Most orders can be specified ':>y the M bits of the 
Control order; however, if additional information is re­
quired for a particular operation (e.g., the starting ad­
dress of a disk-seek), the memory byte address field of the 
command doubleword specifies the starting address of the 
bytes that are to be transmitted to the device controller for 
the additional information. When all bytes necessary for 
the operation have been transmitted, the device controller 
signals channel end. 

Sense. The Sense order causes the device to transmit one or 
more bytes of information, describing its current state. The 
bytes are stored in core memory in an ascending sequence, 
beginning with the address specified by the memory byte ad­
dress field ofthecommanddoubleword. The number of bytes 
transmitted is a function of the device and the condition it 
describes. The Sense order can be used to obtain the cur­
rent sector address from a disk unit. 

Read Backward. The Read Backward order (for devices that 
can execute it) causes the device to be started in reverse, 
and bytes to be transmitted to the lOP for storage into core 
memory in a descending sequence, beginning at the location 
specified by the memory byte address field of the command 
doubleword. In all other respects, Read Backward is iden­
tical to Read, inc! uding reducing the byte count with each 
byte transm itted. 

The Transfer in Channel command doub leword is assumed to 
be in the following format: 

Transfer in Channel. The Transfer in Channel command is exe­
cutedwithin the lOP, and it has no direct effect on any of 
the I/o system el eme"ts externa I to the addressed lOP. The 
primary purpose of Transfer in Channel is to perm it branch­
ing within the command list so that the lOP can, for exam­
ple, repeatedly transmit the same set of information a num­
ber of times. When the lOP executes Transfer in Channel, 
it loads the command counter for the device controller it is 
currently servicing with the command doubleword address 
field of the Transfer in Channel command, loads the new 
command doubleword specified by this address into the lOP 
registers associated with the device controller, and then 
executes the new command. (Bit positions 0-3, and 32-63 
of the command doubleword for Transfer in Channel are ig­
nored.) Transfer in Channel thus allows a command list to 
be broken into noncontiguous groups of commands. When 
used in conjunction with command chaining, Transfer in 
Channel facilitates the control of devices such as unbuffered 
card punches or unbuffered line printers. The current flags 
(see "Flags" below) are not al tered during th is command; 
thus the type of chain ing called for in the previous com­
mand doubleword is retained until changed by a command 
doubleword following Transfer in Channel. 



For example, assume that it is desired to present the same 
card image twelve times to an unbuffered card punch. The 
punch counts the number of times that a record is presented 
to it and, when twelve rows have been punched, it causes 
the lOP to sk ip the command it would be executing next. 
Thus, a command list for punching two cards might look 
I ike the following example. 

Location 

A 

B 

Command 

Punch row for card 1, command chain 

Transfer in Channel to A 

Punch row for card 2, command chain 

Transfer in Channel to B 

Stop 

The Transfer in Channel command a Iso can be used in con­
junction with data chaining. As one example, consider a 
si tuation often encountered in data acquisition appl ications, 
where data is transmitted in extremely long, continuous 
streams. In this case, the data can be stored alternately in 
two or more buffer storage areas so that computer processing 
can be carried out on the data in one buffer whileadditional 
data is being input into the other buffer. The command list 
for such an application might look like the following example. 

Location 

A 

Command 

Read data, store in buffer 1, data chain 

Store in buffer 2, data chain 

Transfer in Channel to A 

If the lOP encounters two successive Transfer in Channel 
commands, this is considered an lOP control error, result­
ing in the lOP setting the lOP control error status bit and 
issuing an "lOP halt" signal to the device controller. The 
lOP then halts further servicing of this command list. 

The Stop command doubleword is assumed to be in the fol­
lowing format: 

Stop. The Stop command causes certain devices to stop, 
generate a channel end condition, and also request an in­
terrupt at location X'5C' if bit 0 in the Stop command is a 
1. An Ala instruction executed after the interrupt is ac­
knowledged results in a 1 in bit position 7 of register R, to 
ind icate the reason for the interrupt. (Bit positions 32-39 
of the command double~ord for Stop must be zero; bit posi­
tions 8-31 and 40-63 are ignored). The Stop command is 

primarily used to terminate a command chain for an 
unbuffered device, as illustrated in the example given for 
Transfer in Channel. 

MEMORY am ADDRESS 

For all I/O commands (except Transfer in Channel and 
Stop), bit positions 13-31 of the command doubleword 
provide for a 19-bit core memory byte address, desig­
nating the memory location for the next byte of data. 
For the Write, Read, and Control orders, this field (as 
stored in an lOP register) is incremented by 1 as each 
byte is transmitted to the I/o operation; for the Read 
Backward order, the field is decremented by 1 as each 
byte is transmitted. 

FlAGS 

For all I/o commands (except Transfer in Channel and 
Stop) bit positions 32-39 of the command doubleword 
provide the lOP with eight flags that specify how to 
handle chaining, error, and interrupt situations. The 
functions of these flags are: 

Bit 
Position Function 

32 (DC) Data chain. If this flag is 1, data chaining is 
called for when the current byte count is reduced 
to o. The next command doub I eword is fetched 
and loaded into the lOP register associated with 
the device controller, but the new order code is 
not passed out to the device controller; thus, the 
operation called for by the previous order is con­
tinued. (Except for Transfer in Channel, the 
new command doubleword is used only to supply 
a new memory address, a new count, and new 
flags.) If the data chain flag is 0, no further 
data chaining is called for. Channel end is ini­
tiated either by the device running out of infor­
mation, or by the byte count being reduced to 
O. At channel end, the device may accept a 
new SIO instruction, providing that a device 
interrupt is not pending as a result of coding the 
IZC (bit 33), ICE (bit 35), or IUE (bit 37) flags, 
and no fault condition exists. 

33 (IZC) Interrupt at zero byte count. If th is flag is 1, 
the lOP requests an interrupt at location X'5C' 
when the byte count of th is command doub le­
word (as stored in the lOP register) is reduced 
to O. An Ala instruction executed after the 
interrupt is acknowledged results in a 1 in bit 
position 10 of register R, to indicate the reason 
for the interrupt. 

34(CC) Command chain. If this flag is 1, command 
chaining is called for when channel end occurs. 
If the previous operation did not terminate with 
an "unusual end" condition, the next command 
doubleword is fetched and loaded into the lOP 
register associated with the device controller, 

lOP Command Doublewords 91 



Bit 
Position Function 

35 (ICE) 

36 (HTE) 

37 (IUE) 

38 (SIL) 

and the new order code is passed out to the de­
vice controller. If the CC flag is 0, no further 
command chaining is called for. If both data 
chaining and command chaining are called for in 
the same command doubleword, data chaining 
occurs if the byte count is reduced to 0 before 
channel end, and command chaining occurs if 
the channel end occurs before the byte count is 
reduced to O. 

Interrupt at channel end. If this flag is 1, the 
lOP requests an interrupt at locationX'5C' when 
channel end occurs for the operation being con­
trolled by this command doubleword. An AIO 
instruction executed after the interrupt is acknowl­
edged results in a 1 in bit position 11 of the 
status information, to indicate the reason for the 
interrupt. If the ICE flag is 0, no interrupt is 
requested. 

Halt on transmission error. If this flag is 1, any 
error condition (transmission data error, trans­
mission memory error, incorrect length error) 
detected in the device controller or lOP results 
in halting the I/o operation being controlled by 
this command doubleword. If the HTE flag is 0, 
an error condi tion does not cause the I/o oper­
ation to halt, although the error conditions are 
recorded in the lOP register and returned as 
part of the status information for the instructions 
510, HIO, and TIO. 

The HTE flag must be coded identically in every 
command doubleword associated with the same· 
physical record. Th is means that when data 
chaining occurs, the HTE flag in the new lOP 
command doubleword must be the same as the 
HTE flag in the previous lOP command double­
word. This restriction applies to data chaining 
only, and not to command chaining. 

Interrupt on unusua I end. If th is flag is 1, the 
device controller requests an interrupt at loca­
tion X'5C' to be triggered when an II un usuaI 
end" condition is encountered. When an 
"unusual end" condition is signaled to the lOP, 
further servicing of the commands for that device 
is suspended. An AIO instruct ion executed after 
the interrupt is acknowledged results in a 1 in 
bit position 12 of register R, (status information) 
to indicate the reason for the interrupt. If the 
IUE flag is 0, no interrupt is requested. 

Suppress incorrect length. If th is flag is 1, an 
incorrect length indication is not to be classified 
as an errorby the lOP, although the lOP retains 
the incorrect length indi cation and provides an 
indicator (bit 8 of the status response for 510, 
HIO, and TIO) t~ the program. If the SIL flag 
is 0, an incorrect length is considered an error 

92 lOP Command Doublewords 

Bit 
Position Function 

39 (S) 

and the lOP performs as spucified by the HTE and 
IUE flags. Incorrect length is caused by a channel 
end condition occurring before the device control­
ler has received a count-done signal from the lOP, 
or is caused by the device controller rece ivi ng a 
count-done signal before end of record; e. g. , 
count-done before 80 columns have been read 
from a card. Normally, a count-done signal is 
sent to the device controller by the 10 P to i ndi-I 
cate that all data transfer associated with the cur­
rent operation has been completed. The lOP is 
capable of suppressing an error condition on in­
correct length, since there are many situations in 
which incorrect length is a legitimate condition 
and not a true error. 

The SIL flag must be coded identically in every 
command doubleword associated with the same 
physical record. This means that when data 
chaining occurs, the 51L flag in -the new lOP 
command doubleword must be the same as the SIL 
flag in the previous lOP command doubleword. 
This restriction applies to data chaining only, 
and not to command chaining. 

5kip. If this flag is 1, the input operation 
(Read or Read Backward) controlled by this com­
m~nd doubleword continues normally, except 
that no information is stored in memory. When 
used in conjunction with data chaining, the skip 
operation provides the capability for selective 
reading of portions of a record. 

If the 5 flag is 1 for an output (Write) operation, 
the lOP does not access memory, but transmits 
zeros as data instead (i. e., the 10 P transmits 
the number of X'OO' bytes specified in the byte 
count of the command doubleword). This allows 
a program to punch a blank card (by usi ng the 5 
bit and a Punch Binary order with a byte count 
of 120) without requiring memory access for data. 
If the 5 flag is 0, the I/O operation proceeds 
normally. 

am COUNT 

For all commands (except Transfer in Channel and Stop) 
bit positions 48-63 of the command doubleword provide 
for a 16-bi t count of the number of bytes to be trans­
mitted in the I/O operation; thus, 1 to 65,536 bytes 
(16,384 words) can be specified for transfer before com­
mand chaining or data chaining is required. This field 
(as stored in an lOP register) is decremented for each 
byte transmitted in the I/O operation; thus, it always 
contains a count of the number of bytes to be transmitted 
to and from memory, and this count is returned as part of 
the response information for the instructions, 510, HIO, 
TIO, and TDV. An initial byte count of 0 is interpreted 
as 65,536 bytes. 



5. OPERATOR CONTROLS 

The standard SIGMA 6 system has a processor control panel 
(PCP) mounted on one of the central processor cabinets. 
This panel serves as an operator's control center. 

PROCESSOR CONTROL PANEL 

The processor control panel (see Figure 7) has two distinct 
functional s'ections. The upper section (labeled MAINTE­
NANCE SECTION) is reserved for maintenance controls and 
indicators, and the lower section contains the controls and 
indicators for the computer operator. 

POWER 

The POWER switch controls all AC p,ower to the central 
processor and to all units under its direct control. The 
POWER switch is unl ighted when the AC power is off, and 
is lighted when AC power is on. The POWER switch is 
always operative. 

CPU RESET/CLEAR 

The CPU RESET/CLEAR switch is used to initialize the cen­
tral processor. When this switch is pressed, the following 
operations are performed: 

1. All interrupt levels are reset to the disarmed and dis­
abled state. 

2. The ALARM, WRITE KEY, INTRPT INHIBIT, POINTER, 
CONDITION CODE, FLOAT MODE, MODE, and 
TRAP indicators are all reset to O's (turned off). 

3. The INSTRUCTION ADDRESS indicators are set to 
X'25'. 

4. The DISPLAY indicators are set to X '02000000', which 
is a LOAD CONDITIONS AND FLOATING CON­
TROLS IMMEDIATE (LCFI) with an R field of 0 to pro­
duce a "no operation" instruction. 

--------------------- MAn .. 1[~A.'i(~ "S".fCTlQN ---------__________ _ 

--M£MO~YfA;;'i.f--

•••••••• v CDl CDl [XXX) tll 

!::. 

,-, -........., 

'it '. 
______ ~tl~'_f AI.>;;"';'~, .-.... -.-.--.. -... ------

( t i J " I I i 1( X I X )[ X I I It X II )(' X , )[ II ,,, X X I) 

Figure 8, Processor Control Panel 

Operator Controls 93 



The C PU RESET/CLEAR switch does not affect any operations 
that may be in process in the standard input/output system. 

The CPU RESET/CLEAR switch is also used in conjucntion 
with theSYS RESET/CLEAR switch to clear core memory 
(Le., reset memory to all OIS). The two switches are inter­
locked so that both must be pressed simultaneously for the 
memory clear operation to occur. The memory clear oper­
ation does not affect any general register - core memory 
locations 0 through 15 are cleared instead. Also the clear 
operation does not affect the memory control storage (write 
locks). Note that pressing the SYS RESET/CLEAR switch 
affects the I/O system and the MEMORY FAULT indicators. 

I/O RESET 

The I/O RESET switch is used to initialize the input/ 
output system. When the switch is pressed, all periph­
eral devices under control of the central processor are 
reset to the "ready" condition, and all status, interrupt, and 
control indicators in the input/output system are reset. The 
I/o RESET switch does not affect any operations that may 
be processed in the central processor. 

LOAD 

The LOAD switch initializes memory for an input operation 
that uses the peripheral unit selected by the UNIT ADDRESS 
switches. The detailed operation of the loading process is 
described in the section "Loading Operation". 

UNIT ADDRESS 

The three UNIT ADDRESS switches are used to select the 
peripheral unit to be used in the loading process. The left 
switch has eight positions, numbered 0 through 7, desig­
nating an input/output processor. The center and right 
switches each have 16 positions, numbered 0 through F 
(hexadecimal) that designate a device controller/device 
under the control of the lOP. 

SYSTEM RESET/CLEAR 

The SYS RESET/CLEAR switch is used to reset all controls 
and indicators in the SIGMA6 system. Pressing this switch 
causes the computer to perform all operations described for 
the CPU RESET/CLEAR switch, perform all operations de­
scribed for the I/O RESET switch, initialize the memory 
control logic, and reset the MEMORY FAULT indicator. 

The SYS RESET/CLEAR switch is also used in conjunction 
with the CPU RESET/CLEAR switch to reset core memory 
to OIS. 

NORMAL MODE 

The NORMAL MODE indicator is lighted when all the fol­
lowing conditions are satisfied: 

1. The WATCHDOG TIMER switch is in the NORMAL 
position 

2. The INTERLEAVE SELECl switch is in the NORMAL 
position 

94 Processor Control Panel 

3. The PARITY ERROR MODE switch is in the CONT 
(continue) position 

4. The CLOCK MODE switch is in the CONT (continuouilii 
position 

5. All logic power margins are "normal" 

If any of the above conditions is not satisfied, the NORMAL 
MODE indicator is unlighted. 

RUN 

The RUN indicator is lighted when the COMPUTE switch is 
in the RUN position and no halt condition exists. 

WAIT 

The WAIT indicator is I ighted when any of the following 
halt conditions exist: 

1. The computer is executing a WAIT instruction. 

2. The program is stopped because of the ADDRESS STOP 
switch. 

3. The computer is halted because of the PARITY ERROR 
MODE switch. 

INTERRUPT 

The INTERRUPT switch is used by the operator to activate 
the control panel interrupt. If the control panel interrupt 
(level XI5DI) is armed when the INTERRUPT switch is 
pressed, a single pulse is transmitted to the interrupt level, 
advancing it to the waiting state. The INTERRUPT switch is 
lighted when the control pone" interrupt level is in the 
waiting state, and remains lighted until the interrupt level 
advances to the active state (at which time the INTERRUPT 
switch is turned off). If the control panel interrupt level 
is disarmed (or already in the active state) when the INTER­
RUPT switch is pressed, no computer or control panel action 
occurs. If the control panel interrupt level advances to the 
waiting state and the level is disabled, the INTERRUPT 
switch remains lighted until the level is either enabled and 
allowed to advance to the active state or is returned to the 
armed or disarmed state. The INTERRUPT switch is always 
operative on the processor control panel. 

PROGRAM STATUS DOUBLEWORD 

Two rows of binary indicators are used to display the cur­
rent program status doubleword (PSD). For the convenience 
of use and display, the second portion of the PSD, labeled 
PSW2, is arranged above the first portion, labeled PSW1. 
The PSD display consists of the indicators shown in Table 9. 

INSERT 

The INSERT switch is used to make changes in the program 
status doubleword. The switch is inactive in the center 
position and is momentary in the upper (PSW2) and lower 
(PSW1) positions. When the INSERT switch is moved to the 



Table 9. Program Status Doubleword Display 

PSD Bit PSD 
Indicator Function Posiiton Des ignat ion 

PSW2 WRITE KEY Write key 34-35 WK 

INTRPT INHIBIT Interrupt i nhi bits 37-39 CI, II, EI 
CTR Counter interrupt group inhibit 37 CI 
I/O Input/output interrupt group inhibit 38 II 
EXT External interrupts inhibit 39 EI 

POINTER Register block pointer 55-59 RP 

PSW1 CONDITION CODE Condition code 0-3 CC 

FLOAT MODE Floating-point mode controls 5-7 FS, FZ, FN 
SIG Significance trap mask 5 FS 
ZERO Zero trap mask 6 FZ 
NRMZ Norma I i ze mask 7 FN 

MODE Machine state/memory map controls 8-9 MS,MM 
SLAVE Master/slave mode control 8 MS 
MAP Memory map control 9 MM 

TRAP Arithmetic trap masks 10, 11 DM, AM 
DEC Decimal arithmetic fault trap mask 10 DM 
ARITH Fixed-point arithmetic overflow trap mask 11 AM 

INSTRUCTION I.DDRESS Address of next instruction to be executed 15-31 IA 

PSWl or PSW2 position, the corresponding indicators in the 
program status doubleword are altered (or unchanged, ac­
cording to current state of the 32 DATA switches below the 
DISPLAY indicators). 

INSTR ADDR 

The INSTR ADDR (instruction address) switch is inactive in 
the center position; the upper position (HOLD) is latching 
and the lower position (INCREMENT) is momentary. When 
the switch is placed in the HOLD position, the normal pro­
cess of incrementing the instruction address portion of the 
program status doubleword with each instruction execution 
in inhibited. If the COMPUTE switch is placed in the RUN 
position while the INSTRADDR switch is at HOLD, the in­
struction in the location pointed to by the value of the IN­
STRUCTION ADDRESS indicators is executed, repeatedly, 
with the INSTRUCTION ADDRESS indicators remaining un­
changed. If the COMPUTE switch is moved to the STEP 
position while the INSTR ADDR switch is at HOLD, the in­
struction is executed once each time the COMPUTE switch 
is moved to STEP; the INSTRUCTION ADDRESS indicators 
remain unchanged unless the instruction is LPSD, XPSD, or 
a branch instruction with the branch condition satisfied. 

The foil owing operations are performed each time the 
INSTR ADDR switch is moved from the center position to 
the INCREMENT position: 

1. The current value of the INSTRUCTION ADDRESS 
indicators is incremented by 1. 

2. Using the new value of the INSTRUCTION ADDRESS 
indicators, the contents of the location pointed to by 
the INSTRUCTION ADDRESS is displayed in the DIS­
PLAY i nd i cators. 

ADDR STOP 

The ADDR STOP (address stop) switch is used (with the 
COMPUTE switch in the RUN position) to cause the central 
processor to establ ish a halt condition and turn on the WAIT 
indicator whenever the CPU accesses the memory location 
whose address is equal to the SELECT ADDRESS value. 

When the halt condition occurs, the instruction in the lo­
cation pointed to by the INSTRUCTION ADDRESS indicators 
appears in the DISPLAY indicators. The displayed instruc- . 
tion is the one that would have been executed next, had 
the halt condition not occurred. If the halt condition is 
caused by an instruction access, the value of the IN­
STRUCTION ADDRESS indicators (at the time of the halt) 
is equal to the SELECT ADDRESS value. If the halt condi­
tion is caused by execution of an instruction with an in­
direct reference address equal to the SELECT ADDRESS 
value (i .e., by a direct address fetch), is caused by an in­
struction operand fetch, or is caused by an unsatisfi ed 
conditional branch instruction whose effective address is 
equal to the SELECT ADDRESS value, the value of the 
INSTRUCTION ADDRESS indicators (at the time of the 
halt) is 1 greater than the address of the instruction that 
referenced the SELECT ADDRESS value. 

Processor Control Pane I 95 



If an interrupt or tr'::lp condi ti on is detected after the AD­
DRESS STOP halt condition is detected and before the CPU 
reaches the normal ADDRESS STOP halt phase, the CPU 
executes the instruction in the appropriate interrupt or trap 
location and then enters the ADDRESS STOP halt phase. In 
this case; the value of the INSTRUCTION ADDRESS indica­
tors (at the time of the halt) is equal to the address of the 
next instruction in logical sequence after the instruction in 
the rnterrupt or trap location. 

The ADDRESS STOP halt condition is reset when the COM­
PUTE switch is moved from RUN to IDLE; if the COMPUTE 
switch is then moved back to RUN (or to STEP), the instruc­
ti on shown in the DISPLAY indicators is the next instruction 

executed. 

SELECT ADDRESS 

The SE LECT ADDRESS switches select the address at which 
a program is to be hal ted (when used in conjunction with 
the ADDR STOP switch), select the address of a location 
to be altered (when used in conjunction with the STORE 
swi tch), and sel ect the address of a word to be displayed 
(when used in conjunction with the DISPLAY switch). Each 
SELECT ADDRESS switch represents a 1 when it is in the 
upper position, a'1d represents a ° in the lower position. 

STORE 

The STORE switch is used to alter the contents of a general 
register or a memory location. The switch is inactive in the 
center position and is momentary in the INSTR ADDR and 
SELECT ADDR positions. When the switch is moved to the 
INSTR AD DR position, the current value of the DISPLAY in­
dicators is stored in the location pointed toby the INSTRUC­
TION ADDRESS indicators; when the switch is moved tothe 
SELECT ADDR position, the current value of the DISPLAY 
indicators is stored in the location pointed to by the SE­
LECT ADDRESS switches. 

DISPlAY 

The DISPLAY switch is used to display the contents of a 
general register or memory location. The switch is inactive 
in the center position and is momentary in the INSTR ADDR 
and SELECT ADDR positions. When the switch is moved to 
the INSTR ADDR or SELECT ADDR position, the word in the 
location pointed to by the indicators or switches, respec­
tively, is loaded into the instruction register and displayed 
with the DISPLAY indicators. 

The 32 DISPLAY indicators are used to display a computer 
word, when used together with the INSTR ADDR, STORE, 
DISPLAY, and DATA switches. The DISPLAY indicators 
represent the current contents of the internal CPU instruc­
ti on reg i ster. 

DATA 

The 32 DATA switches beneath the DISPLAY indicators are 
u sed to al ter the contents of the program status doubl eword 
(when used in conjunction wIth the INSERT switch) and to 
alter the value of the DI.SPLAY indicators (when used in 
conjunction with the single DATA switch). Each of the 
32 DATA switches is inactive in the center position arld 

96 Processor Control Panel 

is latching in both the upper (1) and lower (0) positions. In 
the center position, aDATAswitchrepresentsnochange, in 
the upper or lower position it represents a 1 orO, respectively. 

The single DATA switch is used to d,l)nge the state of the 
DISPLAY indicators. The switch is inactive in the center 
position and is momentary in the CLEAR and ENTER posi­
tions. When the switch is moved to the CLEAR position, all 
the DISPLAY indicators are reset (turned off). When the 
switch is moved to the ENTER position, the display indi ca­
tors are not affected in those positions corresponding to 
DATA switches that are in the center position, but if a 
DATA switch is in the 1 or ° position, that value is in­
serted into the correspondi ng i ndic ator. 

COMPUTE 

The COMPUTE switch is used to control the execution of 
instructions. The center position (IDLE) and the upper po­
sition (RUN) are both latching, and the lower position 
(STEP) is momentary. When the COMPUTE switch is in the 
IDLE position, all other control panel switches are operative 
and the ADDRESS STOP halt and the WAIT instruction halt 
conditions are reset (cleared). If the computer is in a halt 
condition as a result of a memory parity error, moving the 
COMPUTE switch to IDLE does not clear the memory parity 
halt condition. This condition can be cleared only by press­
ing the SYS RESET/CLEAR switch. 

When the COMPUTE switch is moved from IDLE to RUN, 
the RUN indicator is lighted and the computer begins to 
execute instructions (at machine speed) as follows 

1. The current setting of the DISPLAY indicators is taken 
as the next instruction to be executed, regardl ess of 
the contents of the location pointed to by the current 
value of the INSTRUCTION ADDRESS indicators. 

2. The value of the INSTRUCTION ADDRESS indicators 
is incremented by 1 unless the instruction in the DIS­
PLAY indicators was LPSD, XPSD, or a branch instruc­
tion and the branch should occur (in which case the 
INSTRUCTION ADDRESS indicators are set to the value 
established by the LPSD, XPSD, or branch instruction). 

3. Instruction execution continues with the instruction in 
the location pointed to by the new value of the IN­
STRUCTION ADDRESS indi cators. 

When the COMPUTE switch is in the RUN position, the 
only switches that are operative are the POWER switch, the 
INTERRUPT switch, the ADDR STOP switch, the INSTR 
ADDR switch (in the HOLD position), and the switches in 
the maintenance section. 

Each time the COMPUTE switch is moved from the IDLE to 
the STEP position, the following operations occur: 

1. The current setting of the DISPLAY indicators is taken 
as an instruction, and thesingle instruction is executed. 

2. The current value of the INSTRUCTION ADDRESS in­
dicators is incremented by 1 unless the "stepped" instruc­
tion was LPSD, XPSD, or branch instruction and the 
branch should occur (in which case the INSTRUCTION 
ADDRESS indicators are set to the value establ ished by 
the LPSD, X PSD, or branch i nstructi on). 



3. The instruction in the location pointed to by the new 
value of the INSTRUCTION ADDRESS indicator is 
displayed in the DISPLAY indicators. 

If an instruction is being stepped (executed by moving the 
COMPUTE switch from IDLE to STEP), all interrupt levels 
are temporarily inhibited while the instruction is being 
executed; however, a trap condition can occur whi Ie the 
instruction is being executed. In this case, the XPSD in­
struction in the appropriate trap location is executed as if 
the COMPUTE switch were in the RUN position. Thus, if 
a trap condition <X curs during a stepped instruction, the 
program status doubleword display automatically reflects 
the effects of the XPSD instruction and the DISPLAY indi­
cators then contain the first instruction of the trap routine. 

CONTROL MODE 

The CONTROL MODE switch is a three-position, key­
operated locking switch. When the switch is in the REMOTE 
position, the CPU is not operational. When the CONTROL 
MODE switch is in the LOCAL position, all controls on the 
PCP are operative. When the CONTROL MODE switch is 
in the LOCK position, all controls on the PCP (except for 
POWER, INTERRUPT, SENSE, and AUDIO) are inoperative. 
However, all indicators on t~c PCP continue to indicate the 
various computer states. The AUDIO swi tch is not affected 
by the position of the CONTROL MODE switch. In addition, 
the following switches on the PCP are operative when the 
CONTROL MODE switch is in the LOCK position: 

1. The POWERswitch remains operative to allow for situa­
tions in which power must be removed from the system. 

2. The INTERRUPT switch remains operative to allow the 
operator to interrupt the program being executed. 

3. The SENSE switches remain operative to allow the op­
erator to provide informction to the program being 
executed. 

Certain switches on the PCP are locked to specific states 
when the CONTROL MODE switch is in the LOCK position. 
The affected switches and their locked states are: 

Switch 

COMPUTE 
WATCHDOG TIMER 
INTERLEAVE SELECT 
PARITY ERROR MODE 
CLOCK MODE 

Locked State 

RUN 
NORMAL 
NORMAL 
CONT 
CO NT 

The COMPUTE switch on the PCP must be in the R.UN posi­
tion whenever the CONTROL MODE switch is moved either 
from the LOCAL to the LOCK position or from the LOCK 
to the LOCAL position; otherwise, an undefined operation 
may occur. 

MEMORY FAULT 

The MEMORY FAULT indicators each correspond to a 
specific memory bank .. Whenever a memory parity error 
occurs in a memory bank, the appropriate indicator is 
lighted and remains lighted until the indicators are reset. 

When a memory parity error occurs, an interrupt pulse is 
also transmitted to the memory parity interrupt level. 

The MEMORY FAULT indicators are reset whenever the 
SYS RESET/CLEAR switch is pressed or whenever the com­
puter executes a READ DIRECT instruction coded to read the 
MEMORY FAULT indicators. If the reason for a MEMORY 
FAULT indicator being on is overtemperature, and the con­
dition still exists when the indicators are reset, the indica­
tor is immediately turned on again. 

ALARM 

The ALARM indicator is used to attract the computer opera­
tor's attention, and is turned on and off (under program con­
trol) by executing a properly coded WRITE DIRECT instruc­
tion. When the ALARM indicator is I ighted and the AUDIO 
switch is ON, a lOOO-Hz signal is sent to the computer 
speaker; when the AUDIO switch is not in the ON position, 
the speaker is disconnected. (The AUD 10 switch does not 
affect the state of the ALARM indicator.) The ALARM in­
dicator is reset (turned off) whenever either the CPU RESET/ 
CLEAR or the SYS RESET/CLEAR switch is pressed. 

AUDIO 

The AUDIO switch controls all signals to the computer 
speaker, whether from the ALARM indicator or from the 
program-controlled frequency flip-flop. 

WATCHDOG TIMER 

The WATCHDOG TIMER switch is used to override the in­
struction watchdog timer. When this switch is at NORMAL, 
the watchdog timer is operative; when the switch is in the 
OVERRIDE position, the watchdog timer is inactive. 

INTERLEAVE SELECT 

The INTERLEAVE SELECT switch is used to override the nm­
mal operation of interleaved memory banks. When this 
switch is in the NORMAL position, memory address inter­
leaving occurs normally; however, when the switch is in 
the DIAGNOSTIC position, memory addresses are not inter­
leaved between core memory banks. 

PARITY ERROR MODE 

The PARITY ERROR MODE switch controls the action of the 
computer when a memory parity error occurs. If the PARITY 
ERROR MODE switch is in the CONT (continue) position 
when a parity error occurs, the appropriate MEMORY 
FAULT indicator is turned on and an interrupt pulse is trans­
mitted to the memory parity interrupt level. If the switch 
is in the HALT position when a parity error occurs, the ap­
propriate MEMORY FAULT indicator is turned on and the 
computer enters a "halt" state; the memory bank in which 
the parity error occurred is unavailable to any access until 
the MEMORY FAUL T indicators are reset. If the COMPUTE 
switch is in the RUN position during a halt, the WAIT 

Processor Control Panel 97 



i nd i cator is lighted; however, the COMPUTE swi tch cannot 
be used alone to proceed from a halt caused by a parity 
error. In order to proceed, the SYS RESET/CLEAR switch 
must first be pressed. 

PHASES 

The PHASES indicators, used for maintenance functions, 
display certain internal operating phases of the computer. 
The PREPARA nON indicators display computer phases dur­
ing the preparation portion of an instruction cycle. The 
PCP (processor control panel) indicators display computer 
phases during processor control panel operations. The EXE­
CUTION indicators display computer phases during the 
execution portion of an instruction cycle. The INT/TRAP 
(interrupt/trap) indicators are individually lighted when an 
interrupt or trap condition occurs. When the COMPUTE 
switch is in the IDLE position, all of the PHASES indicators 
are normall y off except for the center PCPindicator(phase 2 
is the "idle" phase for processor control panel functions). 

REGISTER SELECT 

The REGISTER SELECT switch is used to display the contents 
of selected internal registers. When the REGISTER DISPLAY 
switch is in the inactive position, the DISPLAY indicators 
display the current contents of the internal instruction reg­
ister. When the COMPUTE switch is in the IDLE position, 
the register selected by the REGISTER SELECT switch may 
be shown in the DISPLAY indicators by moving the REGIS­
TER DISPLAY switch to the ON position. 

SENSE 

The four SE NSE switches are used, under program control, 
to set the condi tion code porti on of the program status 
doubleword. When a READ DIRECT or WRITE DIRECT in­
struction is executed in the internal control mode, the con­
d i ti on code is set accordi ng to the state of the four SE NSE 
switches. If a SENSE switch is in the set (1) position, the 
correspond i ng bit of the cond i ti on code is set to 1; if a 
SENSEswitch is in the reset (O) position, the corresponding 
bit of the condition code is reset to O. The SENSE switches 
on the PCP are operative only if the CONTROL MODE switch 
is in either the LOCAL position or the LOCK position. 

CLOCK MODE 

The CLOCK MODE switch controls the internal computer 
clock. When the switch is in the CONT (continuous) po­
sition, the clock operates at normal speed. However, when 
the CLOCK MODE is in the inactive (center) position, the 
c lock enters an idle state and can be made to generate one 
clock pulse each time the·switch is moved to the SINGLE 
STEP position. When the clock is pulsed by the CLOCK 
MODE switch, the PHASE indicators reflect the computer 
phase during each pulse of the clock. 

98 Loading Operation 

LOADING OPERATION 

This section describes the procedure for initially loading 
programs into core memory from certain peripheral units 
attached to an input/output processor in the SIGMA 6 sys­
tem. The computer operator may initiate a loading opera­
tion from the processor control panel with the CONTROL 
MODE switch in the LOCAL position. 

The LOAD switch and the UNIT ADDRESS switches are used 
to prepare a SIGMA 6 computer for a load operation. When 
the LOAD switch is pressed, the following bootstrap pro­
gram is stored in core memory 10cationsX '20' through X '29': 

Location 
(Hex.) (Dec.) 

20 32 
21 33 
22 34 
23 35 
24 36 
25 37 
26 38 
27 39 
28 40 
29 41 

Contents 
(Hexadecimal) 

00000000 
00000000 
020000A8 
OEOOO058 
00000011 
OOOOOxxxt 

32000024 
CCOO0025 
CDOOO025 
69COO028 

Symbol ic form 
of Instruction 

LW,O 36 
SIO,O *37 
no,o *37 
BCS,12 40 

When the LOAD switch is pressed, the selected peripheral 
device is not activated, and no other indicators or controls 
are affected; only core memory is altered. 

LOAD PROCEDURE 

To assure correct operation of the loading process, the fol­
lowing sequence should always be used when initiating a 
load operation: 

1. 

2. 

3. 

4. 

5. 

Place the COMPUTE switch in the IDLE position. 

Press the SYS RESET/CLEAR switch. 

Set the UNIT ADDRESS switches to the address of 
the desired peripheral unit. 

Press the LOAD switch. 

Place the COMPUTE switch in the RUN position. 

After the COMPUTE switch is placed in the RUN position, 
in step 5, the following actions occur: 

1. The first record on the selected peripheral device is 
read into memory locations X'2A' through X '3F'. The 
previous contents of general register 0 are destroyed 
as a result of executing the bootstrap program in lo­
cations X '26' through X '29'. 

tThe XiS in location X'25' represent the value of the UNIT 
ADDRESS switches at the time the LOAD switch is pressed. 



2. After the record has been read, the next instruction is 
taken from location X '2A ' (provided that no error con­
dition has been detected by the device or input/output 
proce ssor). 

3. When the instruction in location X '2A' is executed, 
the unit device and device controller selected for 
loading are capable of accepting a new SIO instruction. 

4. Further I/O operations from the load unit may be ac­
complished by coding subsequent I/O instructions to 
indirectly address location X'251. 

LOAD OPERAnON DETAILS 

The first executed instruction of the bootstrap program (in 
location X 1261) loads general register 0 with the doubleword 
address of the first I/O command doubleword. The I/O ad­
dress for the SIO instruction in location X 1271 is the 11 
low-order bits of location XI251 (which have been set equal 
to the load unit address as a result of pressing the LOAD 
switch). During the SIO instruction, general register 0 
points to locations X 1221 and X 1231 as the first I/O com­
mand doubleword for the selected device. This command 
doubleword contains an order that instructs the selected pe­
ripheral device to read 88 (XI ~31) bytes into consecutive 
memory locations starting at word location X '2AI (byte lo­
cation X 'A8 1). At the completion of the read operation, 
neither data chaining nor command chaining is called 
for in the I/O command doubleword. Also, the suppress 

incorrect length flag is set to 1 so that an incorrect length 
indication wi II not be considered an error. (This means 
that no transmission error halt will result if the first record 
is either less than or greater than 88 bytes. If the record is 
greater than 88 bytes, on Iy the first 88 bytes wi II be stored 
in memory.) After the SIO instruction, the computer exe­
cutes a TIO instruction with the same effective address as 
the SIO instruction. The TIO instruction is coded to accept 
only condition code data. The BCS instruction in location 
XI291 will cause a branch back to the TIO instruction as 
long as either CC1 or CC2 (or both) is set to 1. In normal 
operation, CCl is reset to 0 and CC2 remains set to 1 until 
the device can accept another SIO instruction, at which 
time the next instruction will be taken from location X'2A'. 

If a transmission error or equipment malfunction is detected 
by either the device or the lOP, the lOP instructs the de­
vice to halt and initiate an "unusual end" interrupt signal 
(as specified by the appropriate flags in the I/O command 
doubleword). The "unusual end II interrupt wi II be ignored, 
however, si nce all interrupt levels have been disarmed by 
pressing the SYS RESET/CLEARswitch prior to loading. The 
device will not accept another SIO while the device inter­
rupt is pending and, therefore, the BCS instruction in loca­
tion X l 291 will continue to branch to location X1281. The 
correct operator action at this point is to repeat the load 
procedure. If there is no I/O address recognition of the 
load unit, the SIO instruction wi II not cause any I/O action 
and CC 1 wi II conti nue to be set to 1 by the 510 and TI 0 
instructions; thus causing the BCS instruction to branch. 

Loading Operation 99 



APPENDIX A. REFERENCE TABLES 

This appendix contains the following reference material: 

Title 

XDS Standard Symbols and Codes 

XDS Standard 8-Bit Computer Codes (EBCDIC) 

XDS Standard 7-Bit Communication Codes (ANSCII) 

XDS Standard Symbol-Code Correspondences 

Hexadecimal Arithmetic 

Addition Table 
Multiplication Table 
Tab I e of Powers of Si xteen 10 
Table of Powers of Ten 16 

Hexadecimal-Decimal Integer Conversion Table 

Hexadec ima I-Dec ima I Fraction Conversion Table 

Table of Powers of Two 

Mathematical Constants 

XDSSTANDARDSYMBOLSANDCODES 

The symbol and code standards described in this publication 
are opplicable to all XDS products, both hardware and soft­
ware. They may be expanded or altered from time to time 
to meet changing reqcirements. 

The symbols I isted here incl ude two types: graphic symbols 
and control characters. Graphic symbols are displayable 
and printable; control characters are not. Hybrids are SP, 
the symbol for a blank space; and DEL, the delete code, 
which is not considered a control command. 

Three types of code are shown: (1) the 8-bit XDS Standard 
Computer Code, i.e., the XDS Extended Binary-Coded­
Decima I Interchange Code (EBCDIC); (2) the 7-bit American 
National Standard Code for Information Interchange (ANSCIl); 
and (3) the XDS standard card code. 

100 Appendix A 

XDS STANDARD CHARACTER SETS 

1. EBCDIC 

57-character set: uppercase letters, numerals, space, 
and & / < > ( ) + I $ * 

% # @ 

63-character set: same as above plus I 
--, 

89-character set: same as 63-character set plus 
lowercase letters 

2. ANSCII 

? 

64-character set: uppercase letters, numerals, space, 
and ! $ % & () * + , 

/ \ < >? @ [] 
/'\. # 

95-character set: same as above plus lowercase letters 
and { } 

CONTROL CODES 

In addition to the standard character sets listed above, the 
XDS symbol repertoire includes 37 control codes and the 
hybrid code DEL (hybrid code SP is considered part of all 
character sets). These are I isted in the table titled XDS 
Standard Symbol-Code Correspondences. 

SPECIAL CODE PROPERTIES 
The following two properties of all XD S standard codes wi /I 
be retained for future standard code extensions: 

1. All control codes, and only the control codes, have 
their two high-order bits equal to "00". DEL is not 
considered a control code. 

2. No two graphic EBCDIC codes have their seven low­
order bi ts equa I. 



Hexadec imal 0 1 

Binary 0000 0001 

0 0000 NUL OLE 

I 0001 SOH DCl 

2 0010 STX DC2 

3 0011 ETX DC3 

4 0100 EOT DC4 

.~ 
5 0101 HT NL 

1£5 6 OliO ACK SYN 

3 7 0111 BEL ETB 
I ~ IE~ ~AN ~ 8 1000 
Iv> 

] 9 1001 ENQ EM 

A 1010 INAK SUB 

B lOll VT ESC 

C 1100 FF FS 

0 1101 CR GS 

E 1110 SO RS 

F 1111 SI US 
. , 

Decimal 
0 I rows) (col's.)-

1 Binary 
1 

xOOO xOOI 

0 0000 NUL DLE 

I 0001 SOH DCI 

2 0010 STX DC2 

3 0011 ETX DC3 

4 0100 EOT DC4 

5 0101 ENQ NAK 

'0. 
0 6 0110 ACK SYN 

C 
0 7 0111 BEL ETB 
~ 
'c 8 1000 BS CAN 01 
v; 

S 9 1001 HT EM 
~ 

LF 
10 1010 SUB 

NL 

11 1011 VT ESC 

12 1100 FF FS 

13 1101 CR GS 

14 1110 SO RS 

15 1111 SI US 

'---" 

2 

0010 

ds 

ss 

fs 

si 

XDS STANDARD 8-BIT CIIt1PUTER CODES (EBCDIC) 

Most :;'1:1'" , .. uno Digits 

3 4 5 6 7 8 9 A B C D E F 

0011 0100 0101 OliO 0111 1000 1001 1010 lOll 1100 1101 1110 1111 

SP /l, - ~ 0 

~ ~ / ~ j \1 A J I 

~ ~ ~ ~ b k s { 1 B K S 2 

~ ~ ~ ~ c I t 
1 

C l T 3 

~ ~ ~ ~ d m u [ 1 0 M U 4 

r" .", .:~ ;~;;' e n v ] 1 E N V 5 

~ ~ ~ ~ f 0 w F 0 W 6 

~ ~ ~ ~ g p x G P X 7 

~ ~ ~ ~ h q y H Q Y 8 

~ ~ ~ ~ i r z I R Z 9 

Z _1 
~ ~ ~ ~ I : ~ 

S , , Wi ~ ~ ~ 
< . % @ 

'{'" r", "" "'.'1. 
1;,,, ,,,,,.....~:iiJ~e,d,~ 

( ) 
, ~ ~ ~ ~ -

+ ; > = ~ ~ ~ ~ 
I 2 . Z ? " ~ ~ ~ 

NOTES: 

The characters - \ { l [] are ANSCII 
characters that do not appear in any of the 
XDS EBCDIC-based character sets, though 
they are shown in the EBCDIC table. 

The characters i 1 -. appear in the XDS 
63- and 59-character EBCDIC sets but not 
in either of the xes ANSCII-based sets. 
However, XDS software translates the char­
acters t I --. into ANSCII characters 
as follows: 

EBCDIC ANSCII 

t \ (6-0) 

I : (7-12) 

- (7-14) 

The EBCDIC control codes in columns 0 
and I and their binary representation are 
exactly the some os those in the ANSCII 
table, except for two interchanges: LF/NL 
with NAK, and HT with ENQ. 

Characters enclosed in heavy lines are 
included only in the XDS standard 63-
and 59-character EBCDIC sets. 

These characters are included only in the 
XDS standard 89-chorocter EBCDIC set. 

XDS STANDARD 7-81T COMMUNICATION CODES (ANSCII) 1 

Most Significant Digits 

2 3 4 5 

xOIO xOll xlOO xlOI 

SP 0 @ P 

! 
5 

I A Q 

II 2 B R 

, 3 C S 

S 4 0 T 

% 5 E U 

/l, 6 F V 

. 7 G W 

( 8 H X 

) 9 I Y . : J Z 

+ ; K [ 5 

, < L \ 

- = M ] 5 

> N 
4 ..... 5 

/ ? 0 
4 

-

6 7 

xll0 xiii 

, 
P 

a q 

b r 

c s 

d t 

e u 

f v 

g w 

h X 

i Y 

j z 

k { 

I I 
I 

m l 
4 

n -
0 DEL 

, 

1 Most significant bit, added for 8-bit format, is either 0 or even parity. 

Columns 0-1 are control codes. 

Columns 2-5 correspond to the XDS 64-character ANSCII set. 
Columns 2-7 correspond to the XDS 95-character ANSCII set. 

4 On many current teletypes, the symbol 

is (5-14) 

is (5-15) 

is ESC or ALTMODE control (7-14) 

and none of the symbols appearing in columns 6-7 are provided. Except for the three 
symbol differences noted above, therefore, such teletypes provide all the characters in 
the XDS 64-character ANSCII set. (The XDS 7015 Remote Keyboard Printe( provides the 
64-character ANSCII set also, but prints ..... as /I .) 

On the XDS 7670 Remote Batch Terminal, the symbol 

is 

is 

is 

is 

(2-1) 

(5-11) 

(5-13) 

(5-14) 

and none of the symbols appearing in columns 6-7 are provided. Except for the four symbol 
differences noted above, therefore, this terminal provides all the characters in the XDS 64-
character ANSCII set. 

~ndix A 101 



XDS STANDARD SYMBOL -CODE CORRESPONDENCES 

EBCDICt 
AN scutt Hex. Dec. Symbol Card Code Meaning Remarks 

00 0 NUL 12-0-9-8-1 0-0 null 00 through 23 and 2F are control codes. 
01 1 SOH 12-9-1 0-1 start of header 
02 2 STX 12-9-2 0-2 start of te~d 
03 3 ETX 12-9-3 0-3 end of t~t 
04 4 EOT 12-9-4 0-4 end of transmission 
05 5 HT 12-9-5 0-9 hori zontGJ tab 
06 6 ACK 12-9-6 0-6 acknowledge (positive) 
07 7 BEL 12-9-7 0-7 bell 
08 8 B50rEOM 12-9-8 0-8 backspace or end of message EOM is used only onXD5 Keyboord/ 
09 9 ENQ 12-9-8-1 0-5 enquiry Printers Models 7012, 7020, 8091, 
OA 10 NAK 12-9-8-2 1-5 negative acknowledge and 8092. 
OB 11 VT 12-9-8-3 O-Ii vertical tab 
OC 12 FF 12-9-8-4 0-12 form feed 
00 13 CR 12-9-8-5 0-13 carriage return 
OE 14 50 12-9-8-6 0-14 shift out 
OF 15 51 12-9-8-7 0-15 shift in 

10 16 DlE 12-11-9-8-1 1-0 data link escape 
11 17 DCl 11-9-1 1-1 device control 1 
12 18 DC2 11-9-2 1-2 devi ce control 2 
13 19 DC3 11-9-3 1-3 device control 3 
14 20 DC4 11-9-4 1-4 device control 4 
15 21 IF or Nl 11-9-5 0-10 line feed or new line 
16 22 SYN 11-9-6 1-6 sync 
17 23 ETB 11-9-7 1-7 end of transmission block 
18 24 CAN 11-9-8 1-8 cancel 
19 25 EM 11-9-8-1 1-9 end of medium 
lA 26 SUB 11-9-8-2 1-10 substitute Replaces characters with parity error. 
1 B 27 ESC 11-9-8-3 1-11 escape 
1C 28 FS 11-9-8-4 1-12 fi I e separator 
10 29 GS 11-9-8-5 1-13 group separator 
1 E 30 RS 11-9-8-6 1-14 record separator 
IF 31 US 11-9-8-7 1-15 unit separator 

20 32 ds 11-0-9-8-1 digit selector 20 through 23 are used with 
21 33 ss 0-9-1 significance start Sigma EDIT BYTE STRING (EBS) 
22 34 fs 0-9-2 field separation instruction - not input/output con-
23 35 si 0-9-3 immediate significance start trol codes. 
24 36 0-9-4 24 through 2E are unassigned. 
25 37 0-9-5 
26 38 0-9-6 
27 39 0-9-7 
28 40 0-9-8 
29 41 0-9-8-1 
2A 42 0-9-8-2 
2B 43 0-9-8-3 
2C 44 0-9-8-4 
20 45 0-9-8-5 
2E 46 0-9-8-6 
2F 47 0-9-8-7 

30 48 12-11-0-9-8-1 30 through 3F are unassigned. 
31 49 9-1 
32 50 9-2 
33 51 9-3 
34 52 9-4 
35 53 9-5 
36 54 9-6 
37 55 9-7 
38 56 9-8 
39 57 9-8-1 
3A 58 9-8-2 
3B 59 9-8-3 
3C 60 9-8-4 
3D 61 9-8-5 
3E 62 9-8-6 
3F 63 9-8-7 

tHexadecimal and dec"imal notation. 

tt Decimal notation (column-row). 

102 Appendix A 



XDS STANDARD SYMBOL-CODE CORRESPONDENCES (cont.) 

E8CDICt Symbol Card Code ANSClItt Meaning Remarks 
Hex. Dec. 

40 64 SP blank 2-0 blank 
41 65 12-0-9-1 41 through 49 wi II not be assigned. 
42 66 12-0-9-2 
43 67 12-0-9-3 
44 68 12-0-9-4 
45 69 12-0-9-5 
46 70 12-0-9-6 
47 71 12-0-9-7 
48 72 12-0-9-8 
49 73 12-8-1 
4A 74 i or ' 12-8-2 6-0 cent or accent grave Accent grove used for left single 
48 75 12-8-3 2-14 period quote. On model 7670, \ not 
4C 76 < 12-8-4 3-12 less than available, and i:: ANSCII 5-11. 
4D 77 ( 12-8-5 2-8 left parenthesis 
4E 78 + 12-8-6 2-11 plus 
4F 79 I or 

I 12-8-7 7-12 vertical bar or broken bar On Model 7670, : not available, I 

and I :: ANSCII 2-1. 

50 80 8. 12 2-6 ampersand 
51 81 12-11-9-1 51 through 59 will not be assigned. 
52 82 12-11-9-2 
53 83 12-11-9-3 
54 84 12-11-9-4 
55 85 12-11-9-5 
56 86 12-11-9-6 
57 87 12-11-9-7 
58 88 12-11-9-8 
59 89 11-8-1 
SA 90 ! ".1-8-2 2-1 exclamation point On Model 7670, ! is I. 
58 91 $ 11-8-3 2-4 dollars 
5C 92 * 11-8-4 2-10 asterisk 
5D 93 ) 11-8-5 2-9 right parenthesis 
5E 94 ; 11-8-6 3-11 semicolon 
5F 95 - or -, 11-8-7 7-14 tilde or logical not On Model 7670, - is not available, 

and -. :: ANSCII 5-14. 

60 96 - 11 2-13 minus, dash, hyphen 
61 97 / 0-1 2-15 slosh 
62 98 11-0-9-2 62 through 69 wi II not be assigned. 
63 99 11-0-9-3 
64 100 11-0-9-4 
65 101 11-0-9-5 
66 102 11-0-9-6 
67 103 11-0-9-7 
68 104 11-0-9-8 
69 105 0-8-1 
6A 106 

...... 
12-11 5-14 circumflex On Model 7670 ~ is""'. On Model 

68 107 , 0-8-3 2-12 comma 7015 ...... is " (caret). 
6C 108 % 0-8-4 2-5 percent 
6D 109 - 0-8-5 5-15 underline Underline is sometimes called "break 
6E 110 > 0-8-6 3-14 greater than character"; may be printed along 
6F III ? 0-8-7 3-15 question mark bottom of character line. 

70 112 12-11-0 I 70 through 79 wi II not be assigned. 
71 113 12-11-0-9-1 
72 114 12-11-0-9-2 
73 115 12-11-0-9-3 
74 116 12-11-0-9-4 
75 117 12-11-0-9-5 
76 118 12-11-0-9-6 
77 119 12-11-0-9-7 
78 120 12-11-0-9-8 
79 121 8-1 
7A 122 8-2 3-10 colon 
78 123 II 8-3 2-3 number 
7C 124 @ 8-4 4-0 at 
7D 125 I 8-5 2-7 apostrophe (right single quote) 
7E 126 = 8-6 3-13 equals 
7F 127 " 8-7 2-2 quotation mark 

tHexadecimal and decimal notation. 

ttDecimal notation (c.,fumn-row). 

Appendix A 103 



XDS STANDARD SYMBOL-CODE CORRESPONDENCES (cont.) 

EBCDIC t 
ANSCUtt 

Hex. Dec. Symbol Card Code Meaning Remarks 

80 128 12-0-8-1 80 is unassigned. 
81 129 a 12-0-1 6-1 81-89, 91-99, A2-A9 comprise the 
82 130 b 12-0-2 6-2 lowercase alphabet. Available 
83 131 c 12-0-3 6-3 only in XDS standard 89- and 95-
84 132 d 12-0-4 6-4 character sets. 
85 133 e 12-0-5 6-5 
86 134 f 12-0-6 6-6 
87 135 g 12-0-7 6-7 
88 136 h 12-0-8 6-8 
89 137 i 12-0-9 6-9 
8A 138 12-0-8-2 8A through 90 are unassigned. 
88 139 12-0-8-3 
8C 140 12-0-8-4 
80 141 12-0-8-5 
8E 142 12-0-8-6 
8F 143 12-0-8-7 

90 144 12-11-8-1 
91 145 j 12-11-1 6-10 
92 146 k 12-11-2 6-11 
93 147 I 12-11-3 6-12 
94 148 ~ 12-11-4 6-13 
95 149 n 12-11-5 6-14 
96 150 0 12-11-6 6-15 
97 151 p 12-11-7 7-0 
98 152 q 12-11-8 7-1 
99 153 r 12-11-9 7-2 
9A 154 12-11-8-2 9A through AI are unassigned. 
98 155 12-11-8-3 
9C 156 12-11-8-4 
90 157 12-11-8-5 
9E 158 12-11-8-6 
9F 159 12-11-8-7 

AO 160 11-0-8-1 
Al 161 11-0-1 
A2 162 s 11-0-2 7-3 
A3 163 t 11-0-3 7-4 
A4 164 u 11-0-4 7-5 
A5 165 v 11-0-5 7-6 
A6 166 w 11-0-6 7-7 
A7 167 x 11-0-7 7-8 
A8 168 y 11-0-8 7-9 
A9 169 z 11-0-9 7-10 
AA 170 11-0-8-2 AA through eo are unassigned. 
AB 171 11-0-8-3 
AC 172 11-0-8-4 
AD 173 11-0-8-5 
AE 174 11-0-8-6 
AF 175 11-0-8-7 

BO 176 12-11-0-8-1 
Bl 177 \ 12-11-0-1 5-12 backslash 
B2 178 t 12-11-0-2 7-11 left brace 
B3 179 J 12-11-0-3 7-13 right brace 
B4 180 [ 12-11-0-4 5-11 left bracket On Model 7670, ~ is i. 
B5 181 ] 12-11-0-5 5-13 right bracket On Model 7670, is!. 
B6 182 12-11-0-6 B6 through SF are unassigned. 
B7 183 12-11-0-7 
B8 184 12-11-0-8 
89 185 12-11-0-9 
BA 186 12-11-0-8-2 
BB 187 12-11 -0-8-3 
BC 188 12-11-0-8-4 
BD 189 12-11-0-8-5 
8E 190 12-11-0-8-6 
BF 191 12-11-0-8-7 

tHexadecimal and deci.mal notation. 

ttDecimal notation (column-row). 

104 Appendi X A 



XDS STANDARD SYMBOL-CODE CORRESPONDENCES (cont.) 

EBCDICt Symbol Card Code ANScntt Meaning Remarks 
Hex. Dec. 

CO 192 12-0 CO is unassigned. 
Cl 193 A 12-1 4-1 Cl-C9, DI -D9, E2-E9 comprise the 
C2 194 B 12-2 4-2 uppercase alphabet. 
C3 195 C 12-3 4-3 
C4 196 D 12-4 4-4 
C5 197 E 12-5 4-5 
C6 198 F 12-6 4-6 
C7 199 G 12-7 4-7 
C8 200 H 12-8 4-8 
C9 201 I 12-9 4-9 
CA 202 12-0-9-8-2 CA through CF will not be assigned. 
CB 203 12-0-9-8-3 
CC 204 12-0-9-8-4 
CD 205 12-0-9-8-5 
CE 206 12-0-9-8-6 
CF 207 12-0-9-8-7 

DO 208 11-0 DO is unassigned. 
Dl 209 J 11-1 4-10 
D2 210 K 11-2 4-11 
D3 211 L 11-3 4-12 
D4 212 M 11-4 4-13 
D5 213 N 11-5 4-14 
D6 214 0 11-6 4-15 
D7 215 P 11-7 5-0 
D8 216 Q 11-8 5-1 
D9 217 R 11-9 5-2 
DA 218 12-11-9-8-2 DA through DF will not be assigned. 
DB 219 12-11-9-8-3 
DC 220 12-11-9-8-4 
DD 221 12-11-9-8-5 
DE 222 12-11-9-8-6 
DF 223 12-11-9-8-7 

EO 224 0-8-2 EO, E 1 are unassigned. 
El 225 11-0-9-1 
E2 226 S 0-2 5-3 
E3 227 T 0-3 5-4 
E4 2L8 U 0-4 5-5 
E5 229 V 0-5 5-6 
E6 230 W 0-6 5-7 
E7 231 X 0-7 5-8 
E8 232 Y 0-8 5-9 
E9 233 Z 0-9 5-10 
EA 234 11-0-9-8-2 EA through EF will not be assigned. 

EB 235 11-0-9-8-3 
EC 236 11-0-9-8-4 
ED 237 11-0-9-8-5 
EE 238 11-0-9-8-6 
EF 239 11-0-9-8-7 

FO 240 0 0 3-0 
Fl 241 1 1 3-1 
F2 242 2 2 3-2 
F3 243 3 3 3-3 
F4 244 4 4 3-4 
F5 245 5 5 3-5 
F6 246 6 6 3-6 
F7 247 7 7 3-7 
F8 248 8 8 3-8 
F9 249 9 9 3-9 
FA 250 12-11-0-9-8-2 FA through FE will not be assigned. 

FB 251 12-11-0-9-8-3 
FC 252 12-11-0-9-8-4 
FD 253 12-11-0-9-8-5 
FE 254 12-11-0-9-8-6 
FF 255 DEL 12-11-0-9-8-7 delete Special - neither graphic nor con-

trol symbol. 

tHexadecimal and decimal notation. 

ttDecimal notation (c~lumn-row). 

Appendi X A 105 



HEXADECIMAL ARITHMETIC 

ADDITION TABLE 

0 1 2 3 4 5 6 7 8 9 A B C 0 E F 

1 02 03 04 05 06 07 08 09 OA OS DC 00 OE OF 10 

2 03 04 05 06 07 08 09 OA OB DC 00 OE OF 10 11 

3 04 05 06 07 08 09 OA OB DC 00 OE OF 10 11 12 

4 05 06 07 08 09 OA OB DC 00 OE OF 10 11 12 13 

5 06 07 08 09 OA OB DC 00 OE OF 10 11 12 13 14 

6 07 08 09 OA OB DC 00 OE OF 10 11 12 13 14 15 

7 08 09 OA OB DC 00 OE OF 10 11 12 13 14 15 16 

8 09 OA OB OC 00 OE OF 10 11 12 13 14 15 16 17 

9 OA OB DC OD OE OF 10 11 12 13 14 15 16 17 18 

A OB DC 00 OE OF 10 11 12 13 14 15 16 17 18 19 

B OC 00 OE OF 10 11 12 13 14 15 16 17 18 19 1A 

C 00 OE OF 10 11 12 13 14 15 16 17 18 19 1A 1B 

0 OE OF 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 

E OF 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 10 

F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 10 1E 

MULTIPLICATION TABLE 

1 2 3 4 5 6 7 8 9 A B C 0 E F 

2 04 06 08 OA DC OE 10 12 14 16 18 1A 1C 1E 

3 06 09 DC OF 12 15 18 1B 1E 21 24 27 2A 2D 

4 08 OC 10 14 18 1C 20 24 28 2C 30 34 38 3C 

5 OA OF 14 19 1E 23 28 20 32 37 3C 41 46 4B 

6 OC 12 18 1E 24 2A 30 36 3C 42 48 4E 54 5A 

7 OE 15 1C 23 2A 31 38 3F 46 4D 54 5B 62 69 

8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 

9 12 1B 24 20 36 3F 48 51 5A 63 6C 75 7E 87 

A 14 1E 28 32 3C 46 50 5A 64 6E 78 82 8C 96 

B 16 21 2C 37 42 4D 58 63 6E 79 84 8F 9A A5 

C 18 24 30 3C 48 54 60 6C 78 84 90 9C A8 B4 

D 1A 27 34 41 4E 5B 68 75 82 8F 9C A9 B6 C3 

E 1C 2A 38 46 54 62 70 7E 8C 9A A8 B6 C4 02 

F 1E 20 . 3C 4B 5A 69 78 87 96 A5 B4 C3 D2 E 1 

106 Appendix A 



16 

256 

4 096 

65 536 

1 048 576 

16 777 216 

268 435 456 

4 294 967 296 

68 719 476 736 

1 099 511 627 776 

17 592 186 044 416 

281 474 976 710 656 

4 503 599 627 370 496 

72 057 594 037 927 936 

1 152 921 504 606 846 976 

3 

23 

163 

DEO 

8AC7 

2 

17 

E8 

918 

5AF3 

807E 

86F2 

4578 

B6B3 

2304 

A 

64 

3E8 

2710 

86AO 

F 4240 

98 9680 

5F5 E100 

3B9A CAOO 

540B E400 

4876 E800 

D4A5 1000 

4E72 AOOO 

107A 4000 

A4C6 8000 

6FC1 0000 

5 D8A 0000 

A764 0000 

89E8 0000 

TABLE OF POWERS OF SIXTEEN II 

n 

o 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

0.10000 00000 00000 00000 x 10 

0.62500 00000 00000 00000 x 10- 1 

0.39062 50000 00000 00000 x 10-2 

0.24414 06250 00000 00000 x 10-3 

0.15258 78906 25000 00000 x 10-4 

0.95367 43164 06250 00000 x 10-6 

0.59604 64477 53906 25000 x 10-7 

0.37252 90298 46191 40625 x 10-8 

0.23283 06436 53869 62891 x 10-9 

0.14551 91522 83668 51807 x 10- 10 

0.90949 47017 72928 23792 x 10- 12 

0.56843 41886 08080 14870 x 10- 13 

0.35527 13678 80050 09294 x 10- 14 

0.22204 46049 25031 30808 x 10- 15 

0.13877 78780 78144 56755 x 10- 16 

0.86736 17379 88403 54721 x 10- 18 

TABLE OF POWERS OF TEN 16 

o 1.0000 0000 0000 0000 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

0.1999 9999 

0.28F5 C28F 

0.4189 374B 

0.680B 8BAC 

0.A7C5 AC47 

0.10C6 F7 AO 

0.1 A07 F 29 A 

0.2AF3 1 DC4 

0.44B8 2FAO 

0.6 OF 3 7F67 

O.AFE B F FOB 

0.1197 9981 

0.lC25 C268 

0.2009 370 D 

0.480E BE7B 

0.734A CA5 F 

0.B877 AA32 

0.1272 5 DD1 

0.1083 C94F 

9999 

5C28 

C6A7 

710C 

1B47 

B5E 0 

BCAF 

61 1 8 

9B5A 

5EF6 

CB24 

2DEA 

4976 

4257 

9D58 

6226 

36A4 

D243 

B6D2 

999A 

F5C3 x 

EF9E x 

B296 x 

8423 x 

8037 x 

4858 x 

73BF x 

52CC x 

EAOF x 

AAFF x 

1 119 x 

81C2 x 

3604 x 

566D x 

FOAE x 

B449 x 

ABA1 x 

AC35 x 

16- 1 

16-2 

16-3 

16-4 

16-4 

16-5 

16-6 

16-7 

16-8 

16-9 

16-9 

16- 10 

16 -11 

16- 12 

16- 13 

16- 14 

16- 14 

16- 15 

Appendix A 107 



HEXADECIMAL-DECIMAL INTEGER CONVERSION TABLE 

The table below provides for direct conversions between hexa­
decimal integers in the range O-FFF and decimal integers in 
the range 0-4095. For conversion of larger integers, the 
table values may be added to the following figures: 

Hexadecimal 

01000 
02 000 
03 000 
04 000 
05 000 
06 000 
07 000 
08 000 
09 000 
OA 000 
OB 000 
OC 000 
00000 
OE 000 
OF 000 
10 000 
11000 
12000 
13000 
14000 
15 000 
16000 
17 000 
18000 
19000 
lA 000 
lB 000 
lC 000 
10000 
IE 000 
IF 000 

000 
010 
020 
030 

040 
050 
060 
070 

080 
090 
OAO 
OBO 

OCO 
000 
OEO 
OFO 

0 

0000 
0016 
0032 
0048 

0064 
0080 
0096 
0112 

0128 
0144 
0160 
0176 

0192 
0208 
0224 
0240 

Decimal 

4 096 
8 192 

12 288 
16 384 
20480 
24576 
28672 
32768 
36864 
40960 
45056 
49 152 
53 248 
57344 
61440 
65536 
69632 
73728 
77 824 
81 920 
86 016 
90 112 
94208 
98304 

102400 
106496 
110 592 
114688 
118784 
122 880 
126 976 

1 2 

0001 0002 
0017 0018 
0033 0034 
0049 0050 

0065 0066 
0081 0082 
0097 0098 
0113 0114 

0129 0130 
0145 0146 
0161 0162 
0177 0178 

0193 0194 
0209 0210 
0225 0226, 
0241 0242 

108 Appendi x A 

Hexadecima I 

20000 
30000 
40000 
50000 
60000 
70000 
80000 
90000 

AO 000 
BO 000 

CO 000 
DO 000 
EO 000 
FO 000 

100000 
200000 
300000 
400000 
500000 
600 000 
700000 
800 000 
900 000 

AOO 000 
BOO 000 

COO 000 
000 000 
EOO 000 
FOO 000 

1 000 000 
2000 000 

3 4 

0003 0004 
0019 0020 
0035 0036 
0051 0052 

0067 0068 
0083 0084 
0099 0100 
0115 0116 

0131 0132 
0147 0148 
0163 0164 
0179 0180 

0195 0196 
0211 0212 
0227 0228 
0243 0244 

Decimal 

131072 
196608 
262 144 
327680 
393 216 
458752 
524 288 
589824 
655 360 
720896 
786 432 
851 968 
917 504 
983040 

1 048576 
2 097 152 
3 145 728 
4 194304 
5 242 880 
6 291 456 
7 340 032 
8388608 
9437 184 

10485 760 
11 534 336 
12582912 
13631 488 
14680064 
15728640 
16777 216 
33554432 

5 6 

0005 0006 
0021 0022 
0037 0038 
0053 0054 

0069 0070 
0085 0086 
OlDl 0102 
0117 0118 

0133 0134 
0149 0150 
0165 0166 
0181 0182 

0197 0198 
0213 0214 
0229 0230 
0245 0246 

7 

0007 
0023 
0039 
0055 

0071 
0087 
0103 
0119 

0135 
0151 
0167 
0183 

0199 
0215 
0231 
0247 

Hexadecimal fractions may be converted to decimal fractions 
as follows: 

1. Express the hexadecimal fraction as an integer times 
16-n, where n is the number of significant hexadecimal 
places to the right of the hexadecimal point. 

O. CA9BF3 16 = CA9 BF3 16 x 16-6 

2. Find the decimal equivalent of the hexadecimal integer 

CA9 BF3
16 

= 13 278 195
10 

3. Multiply the decimal equivalent by 16-n 

13 278 195 
x 596 046 448 x 10-16 

0.791 442096 10 

Decimal fractions may be converted to hexadecimal fractions 
by successively multiplying the dec imal fraction by 16

10
, 

After each multiplication, the integer portion is removea to 
form a hexadecimal fraction by bui Iding to the right of the 
hexadecimal point. However, since decimal arithmetic is 
used in this conversion, the integer portion of each product 
must be converted to hexadecimal numbers. 

Example: Convert 0.895lD to its hexadecimal equivalent 

0.895 
16 

------@.320 

~ 
,.-----@.120 

Z ~ 
0.E51 E16 .. ·----@.720 

8 9 A B C 

0008 0009 0010 0011 0012 
0024 0025 0026 0027 0028 
0040 0041 0042 0043 0044 
0056 0057 0058 0059 0060 

0072 0073 0074 0075 0076 
0088 0089 0090 0091 0092 
0104 0105 0106 OlD7 0108 
0120 0121 0122 0123 0124 

0136 0137 0138 0139 0140 
0152 0153 0154 0155 0156 
0168 0169 0170 0171 0172 
0184 0185 0186 0187 0188 

0200 0201 0202 0203 0204 
0216 0217 0218 0219 0220 
0232 0233 0234 0235 0236 
0248 0249 0250 0251 0252 

0 E F 

0013 0014 0015 
0029 0030 0031 
0045 0046 0047 
0061 0062 0063 

0077 0078 0079 
0093 0094 0095 
0109 0110 0111 
0125 0126 0127 

0141 0142 0143 
0157 0158 0159 
0173 0174 0175 
0189 0190 0191 

0205 0206 0207 
0221 0222 0223 
0237 0238 0239 
0253 0254 0255 



HEXADECIMAL-DECIMAL INTEGER CONVERSION TABLE (cont.) 

0 1 2 3 4 5 6 7 8 9 A B C D E F 

100 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271 
110 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287 
120 0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303 
130 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319 

140 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0332 0333 0334 0335 
150 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351 
160 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367 
170 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383 

180 0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399 
190 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415 
lAO 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431 
lBO 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447 

lCO 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463 
lDO 0464 0465 0466 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479 
lEO 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495 
lFO 0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511 

200 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527 
210 0528 0529 0530 J531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543 
220 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559 
230 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575 

240 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591 
250 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607 
260 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623 
270 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 06,36 0637 0638 0639 

280 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655 
290 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671 
2AO 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687 
2BO 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703 

2CO 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719 
2DO 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735 
2EO 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751 
2FO 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767 

300 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783 
310 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799 
320 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815 
330 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831 

340 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847 
350 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863 
360 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879 
370 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895 

380 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911 
390 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927 
3AO 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943 
3BO 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959 

3CO 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975 
3DO 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991 
3EO 0992 0993 0994 0995 0996 0997 0998 0999 1000 .1001 1002 1003 1004 1005 1006 1007 
3FO 1008 1009 IJIO 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 

Appendi x A 109 



HEXADECIMAL-DECIMAL INTEGER CONVERSION TABLE (cont.) 

0 1 2 3 4 5 6 7 8 9 A B C 0 E F 

400 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 
410 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 
420 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 
430 1072 1073 1074 1075 1076 1077 1078 1079 lOBO 1081 1082 1083 1084 1085 1086 1087 

440 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 
450 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 
460 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 
470 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 

480 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 
490 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 
4AO 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 
480 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 

4(0 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 
400 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 
4EO 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 
4FO 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 

500 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 
510 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 
520 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 
530 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 

540 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 
550 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 
560 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 
570 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 

580 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 
590 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 
SAO 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 
5BO 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 

5(0 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 
5DO 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 
5EO 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 
5FO 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 

600 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 
610 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 
620 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 
630 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 

640 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 
650 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 
660 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 
670 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 

680 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 /677 1678 1679 
690 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 
6AO 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 
6BO 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 

6(0 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 
600 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 
6EO 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 
6FO 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 

110 Appendix A 



HEXADECIMAL-DECIMAL INTEGER CONYERSION TABLE (cant.) 

0 1 2 3 4 5 6 7 8 9 A B C D E F 

700 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 
710 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 
720 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 
730 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 

740 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 
750 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 
760 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 
770 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 

780 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 
790 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 
7AO 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 
7BO 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 

7CO 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 
7DO 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 
7EO 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 
7FO 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 

800 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 
810 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 
820 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 
830 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 

840 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 
850 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 
860 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 
870 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2.172 2173 2174 2175 

880 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 
890 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 
8AO 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 
8BO 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 

8CO 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 
8DO 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 
8EO 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 
8FO 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 

900 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 
910 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 
920 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 
930 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 

940 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 
950 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 
960 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 
970 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 

980 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 
990 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 
9AO 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 
9BO 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 

9CO 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 
9DO 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 
9EO 2528 2529 2530 2531 2532 2533 2534 2535 2536· 2537 2538 2539 2540 2541 2542 2543 
9FO 2544 2545 L546 2547 2548 2549 2550 2551 2j52 2553 2554 2555 2556 2557 2558 2559 

Appendix A 111 



HEXADECIMAL-DECIMAL INTEGER CONVERSiON TABLE (cant.) 

0 1 2 3 4 5 6 7 8 9 A B C D E F 

AOO 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 
Al0 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 
A20 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 
A30 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 

A40 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 
A50 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 
A60 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 
A70 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 

A80 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 
A90 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 
AAO 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 
ABO 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 

ACO 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 
ADO 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 
AEO 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 
AFO 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 

BOO 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 
BlO 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 
B20 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 
B30 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 

B40 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 
B50 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 
B60 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 
B70 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 

B80 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 
B90 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 
BAO 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 
BBO 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 

BCO 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 
BOO 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 
BEO 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 
BFO 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 

COO 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 
Cl0 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 
C20 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 
C30 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 

C40 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 
C50 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 
C60 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3i83 
C70 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 

C80 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 
C90 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 
CAO 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 
CBO 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 

CCO 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 
COO 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 
CEO 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 
CFO 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 

112 Appendix A 



I 
I 

I 

I 

I 

I 

000 
D10 
D20 
D30 

D40 
DSO 
D60 
D70 

080 
D90 
DAO 
DBO 

DCO 
ODO 
nEO 
DFO 

EGO 
1:10 
EiO 
E30 

tAO 
E.50 
[60 
E 70 

E80 
E90 
EAO 
ESO 

ECO 
EDO 
EEO 
EFO 

FOO 
FlO 
F20 
F30 

F40 
F50 
F60 
F70 

F80 
F90 
FAO 
FBO 

FCO 
FDO 
FEO 
FFO 

0 

3328 
3344 
3360 
3376 

3392 
3408 
3424 
3440 

3456 
3472 
3488 
3504 

3520 
3536 
3552 
3568 

3584 
3600 
3616 
3632 

3648 
3664 
3680 

I 
3696 

3712 
3728 
3744 
3760 

3776 
3792 
3808 
3824 

3840 
3856 
3872 
3888 

3904 
3920 
3936 
3952 

3968 
3984 
4000 
4016 

4032 
4048 
4064 
4080 

2 

3329 3330 
3345 3346 
3361 3362 
3377 3378 

3393 3394 
3409 3410 
3425 3426 
3441 3442 

3457 3458 
3473 3474 
3489 3490 
3505 3506 

3521 3522 
3537 3538 
3553 3554 
3569 3570 

3585 3586 
3601 3602 
3617 3618 
3633 3634 

3649 3650 
3665 3666 
3681 3682 
3697 3698 

37i3 3714 
3729 3730 
3745 3746 
3761 3762 

3777 3778 
3793 3794 
3809 3810 
3825 3826 

3841 3842 
3857 3858 
3873 3874 
3889 3890 

3905 3906 
3921 3922 
3937 3938 
3953 3954 

3969 3970 
3985 3986 
4001 4002 
4017 4018 

4033 4034 
4049 4050 
4065 4066 
4081 4082 

HEXADECIMAL-DECIMAL INTEGER CONVERSION TABLE (cant.) 

3 4 5 6 7 8 9 A B 

3331 3332 3333 3334 3335 3336 3337 3338 3339 
3347 3348 3349 3350 3351 3352 3353 3354 3355 
3363 3364 3365 3366 3367 3368 3369 3370 3371 
3379 3380 3381 3382 3383 3384 3385 3386 3387 

3395 3396 3397 3398 3399 3400 3401 3402 3403 
3411 3412 3413 3414 3415 3416 3417 3418 3419 
3427 3428 3429 3430 3431 3432 3433 3434 3435 
3443 3444 3445 3446 3447 3448 3449 3450 3451 

3459 3460 3461 3462 3463 3464 3465 3466 3467 
3475 3476 3477 3478 3479 3480 3481 3482 3483 
3491 3492 3493 3494 3495 3496 3497 3498 3499 
3507 3508 3509 3510 3511 3512 3513 3514 3515 

3523 3524 3525 3526 3527 3528 3529 3530 3531 
3539 3540 3541 3542 3543 3544 3545 3546 3547 
3555 3556 3557 3558 3559 3560 3561 3562 3563 
3571 3572 3573 3574 3575 3576 3577 3578 3579 

....... -...... ~-~.-.~~-"'-.-.----- ......... -.. ~-.--.,.~-------. 

3587 3588 3589 3590 3591 3592 3593 3594 3595 
3603 3604 3605 3606 3607 3608 3609 3610 3611 
3619 3620 3621 3,,22 3623 3624 3625 3626 3627 
:3635 3636 3637 3638 3639 3640 3641 3642 3643 

3651 3652 3653 3654 3655 3656 3657 3658 3659 
3667 3668 3669 3670 3671 3672 3673 3674 3675 
3683 3684 3685 3686 3687 3688 3689 3690 3691 
3699 3700 3701 3702 3703 3704 3705 3706 3707 

3715 3716 3717 3718 3719 3720 3721 3722 3723 
3731 3732 3733 3734 3735 3736 3737 3738 3739 
3747 3748 3749 3750 3751 37.52 3753 3754 3755 
3763 3764 3765 3766 3767 3768 3769 3770 3771 

3779 3780 3781 3782 3783 3784 3785 3786 3787 
3795 3796 3797 3798 3799 3800 3801 3802 3803 
3811 3812 3813 3814 3815 3816 3817 3818 3819 
3827 3828 3829 3830 3831 3832 3833 3834 3835 

3843 3844 3845 3846 3847 .3848 3849 3850 3851 
3859 3860 3861 3862 3863 3864 3865 3866 3867 
3875 3876 3877 3878 3879 3880 3881 3882 3883 
3891 3892 3893 3894 3895 3896 3897 3898 3899 

3907 3908 3909 3910 3911 3912 3913 3914 3915 
3923 3924 3925 3926 3927 3928 3929 3930 3931 
3939 3940 3941 3942 3943 3944 3945 3946 3947 
3955 3956 3957 3958 3959 3960 3961 3962 3963 

3971 3972 3973 3974 3975 3976 3977 3978 3979 
3987 3988 3989 3990 3991 3992 3993 3994 3995 
4003 4004 4005 4006 4007 4008 4009 4010 4011 
4019 4020 4021 4022 4023 4024 4025 4026 4027 

4035 4036 4037 4038 4039 4040 4041 4042 4043 
4051 4052 4053 4054 4055 4056 4057 4058 4059 
4067 4068 4069 4070 4071 4072 4073 4074 4075 
4083 4084 4085 4086 4087 4088 4089 4090 4091 

C 

3340 
3356 
3372 
3388 

3404 
3420 
3436 
3452 

3468 
3484 
3500 
3516 

3532 
3548 
3564 
3580 

3596 
3612 
3628 
3644 

3660 
3676 
3692 
3708 

3724 
3740 
3756 
3772 

3788 
3804 
3820 
3836 

3852 
3868 
3884 
3900 

3916 
3932 
3948 
3964 

3980 
3996 
4012 
4028 

4044 
4060 
4076 
4092 

D E 

3341 3342 
3357 3358 
3373 3374 
3389 3390 

3405 3406 
3421 3422 
3437 3438 
3453 3454 

3469 3470 
3485 3486 
3501 3502 
3517 3518 

3533 3534 
3549 3550 
3565 3566 
3581 3582 

3597 3598 
3613 3614 
3629 3630 
3645 3646 

3661 3662 
3677 3678 
3693 3694 
3709 3710 

3725 3726 
3741 3742 
3757 3758 
3773 3774 

3789 3790 
3805 3806 
3821 3822 
3837 3838 

3853 3854 
3869 3870 
3885 3886 
3901 3902 

3917 3918 
3933 3934 
3949 3950 
3965 3966 

3981 3982 
3997 3998 
4013 4014 
4029 4030 

4045 4046 
4061 4062 
4077 4078 
4093 4094 

3:~~ 
3359 , 
3375 I 
3391 I 
3407 
3423 
3439 
3455 

3471 
3487 
3503 
3519 

3535 

3551 I 3567 
3583 

r'=i~90 J_" , i 

3615 i 
3631 I 

~c471 
..5663

1

" 

3679 
3695 I 
3?1 i 

3727 
3743 
3759 
3775 

3791 
3807 
3823 
3839 

3855 
3871 
3887 
3903 

3919 
3935 
3951 
3967 

3983 
3999 
4015 
4031 

4047 
4063 
4079 
4095 

Appendix A 113 



HEXADECIMAl~DECIMAl FRACTION CONVERSION TABLE 

'-It?''.-odec i~nc. i DeC;'Tl0i ~exadec;mc! DecimG! Hexodec imo I uec;ma! Hexadecimal ! 
DeClflloi i ~ ____________________ ~ ______________________ ~~ ______________________ ~ ____________ , _________ J 

.0(; 0000 OJ .ooaoo 00000 .40 000000 .25000 00000 

.0 : 000000 .003QO 6:::500 .41 000000 .25390 62500 
(~ .. , 000008 .00781 25000 ,42 000000 .25781 25000 ..... ' ... 

.02 eye 00 00 01 17187500 .43 0000 JO .26171 87500 
,l)4 ')00000 .0156250000 .4~ 0000 00 .26562 50000 
.0'; 000000 .01953 i 2500 .45 CO 00 OC .26'i'53 12500 
.06 0000 00 .02343 75000 .46 000000 .27343 75000 
.07 00 OC 00 .02734 37500 .4::' 00 00 00 .27734 37500 
.08 0000 (Ii) .03125 00000 .48 000000 .281 25 00000 
.09 00 00 00 .035! 5 62500 .49 00 00 00 .28515 62500 
.0/\ ')0 00 00 .03°06 25000 AA OC 00 00 .28906 25000 
J)a 00 00 OC .04296 87500 .4B 000000 .29296 87500 
.oc 0000 OC .04687 50000 .4C 000000 .29687 50000 
.OD 0000 00 .05078 12500 .4D 00 00 00 .30078 12500 
.Of 0000 00 .05468 75000 AE 00 OC 00 .30468 75000 
.or 00 00 0G .05859 37500 AF 0000 00 .30859 37500 

.10 0000 00 .06250 00000 .50 000000 .31250 00000 
11 000000 .0664062500 .5l 00 CO 00 .31040 62500 
1'1 000000 .07031 25000 .52 000000 .32031 25000 

.: :3 00 00 00 ,07 42 1 87500 .53 00 00 00 .32421 87500 
" . C:O 00 00 .07812 50000 .54 000000 .3281250000 . '" 

· 15 000000 .082C3 12500 .55 000000 .33203 12500 
.!t. 00 OC 00 .08593 75000 .56 0000 ('0 .33593 75000 

17 00 00 00 .08984 37500 .57 000000 .33984 37500 
.18 00 00 00 .09375 00000 .58 0000 CO .34375 00000 
.19 00 00 00 .09765 62500 .59 00 00 00 .34765 62500 
.iA 000000 · iOl5c) 25000 .5A 0000 00 .35156 25000 
· ; b 000000 .10546 87500 .58 00 00 00 .35546 87500 
.J( 0000 00 .10937 50000 . 5C 00 00 00 .35937 50000 
.lD 000000 .11328 J2500 .50 0000 00 .36328 12500 
.1 E 000000 .1171875000 .5E 000000 .36718 75000 
· iF 0000 00 • J 21 09 37500 .5F 00 00 00 .3710937500 

.20 CO 00 00 · 12500 00000 .60 000000 .37500 00000 

I .21 00 00 00 .12890 62500 
! 

.61 000000 .37890 62500 
i .~2 GC 00 00 .13281 25000 .62 000000 .38281 25000 
I 
! 

~.., 00 00 00 .13671 87500 .63 000000 .38671 87500 .LJ 
j 24 00 00 OC .14062 50000 .64 000000 .39062 50000 I 

I .25 00 00 00 · 14453 I 2500 .65 000000 .39453 12500 
.26 000000 .14843 75000 I .66 00 00 00 .39843 75000 
27 000000 · i5234 37500 I .67 0000 GO .40234 37500 

I .28 00 00 00 · 15625 00000 I .68 000000 .40625 00000 
29 00 00 00 .160156250n I .69 000000 .401015 62500 

.2t.. 0000 00 .16406 25000 I .6A 0000 00 .41406 25000 I I .n 000000 .16n687500 .6S 000000 .401796 87500 
I .2C 0000 00 · 17 j 87 50000 

I 
.6C 00 00 00 .42187 50000 I 

I .20 0000 00 .17578 12500 .60 000000 .402578 i 2500 

I 
.2E 000000 .17968 75000 I .6E 000000 .42968 75000 
.2F 000000 .18359 37500 i .6F 00 00 OC- .403359 37500 ! 
.30 0000 00 .18750 00000 I .70 00 00 00 .43750 00000 
.31 00 00 00 · i9140 62500 .71 000000 .44140 62500 
.32 00 00 00 · I 953 1 25000 ! .72 0000 00 .404531 25000 
~" 0000 00 .1992 i 87500 I .73 00 00 00 .44921 87500 • .j.) 

.34 00 00 00 .20312 50000 I .74 0000 00 .40531 2 50000 

.35 000000 .20703 12500 I .75 00 00 00 .405703 12500 

.36 000000 .21093 75000 j .76 00 00 00 .46093 75000 

.37 000000 .21484 37500 1 .77 00 00 00 .46484 37500 

.38 000000 .21875 00000 
I 

.78 000000 .46875 00000 
.39 000000 .22265 62500 .79 00 00 00 .407265 62500 
.3A 000000 .22656 25000 I .7A 00 00 00 .47656 25000 
.36 000000 .23046 87500 .7S 0000 00 .408046 87500 
.3C 00 00 00 .23437 50000 .7C 00 00 00 .48437 50000 
.30 000000 .23828 12500 .70 00 00 00 .408828 12500 
.3E 000000 .24218 75000 .7E 00 00 00 .409218 75000 
.3F 00 00 00 .24609 37500 .7F 00 00 00 .409609 37500 

114 Appendix A 

.80 000000 .50000 00000 

.8! 000000 .50390 62500 
8~' . £ 000000 .5078] 25000 

.83 000000 .51171 87500 
,84 000000 .5156250000 
.85 00 00 00 .51953 : 2500 
.86 0000 00 .52343 75000 
.87 00 00 00 .52734 37500 
.88 000000 .5312.5 00000 
.89 00 00 00 .53515 62500 
.8A 00 00 00 .53906 25000 
.8B OC 00 00 .54296 87500 
.8C 00 00 00 .54687 50000 
.80 00 00 00 .55078 12500 
.8E 00 OC 00 .55468 75000 
.8F 000000 .55859 37500 

.90 0000 00 .56250 00000 

.9 1 0000 00 .56640 62500 

.92 00 00 00 .5703! 25000 

.93 00 00 00 .57421 87500 

.94 0000 00 .57812 50000 

.95 00 00 00 .58203 12500 

.96 00 00 00 .5859375000 

.97 0000 00 .58984 37500 

.98 0000 00 .59375 00000 

.99 0000 00 .59765 62500 

.9A 000000 ,60156 25000 

.9B 00 00 00 .60546 87500 

.9C 000000 .60937 50000 

.90 00 00 dO .6 j 328 12500 

.9E 0000 00 .6171875000 

.9F 0000 00 .62109 37500 

.AO 0000 00 .62500 00000 
,AI 0000 00 2 .6 89062500 
.A2 0000 00 .63281 25000 i 
.A3 00 00 00 .63671 87500 
.A4 00 00 00 .64062 50000 
.A5 00 00 00 .64453 12500 
.A6 00 00 00 .64843 75000 
.A7 00 00 00 .65234 37500 

I 
.A8 0000 00 .65625 00000 
.A9 00 00 00 .66015 62500 
.AA 00 00 00 .66406 25000 I .AB 00 00 00 .66796 87500 
.AC 0000 00 .67187 50000 ! 

I .AD 00 00 00 .67578 12500 
.AE 00 00 00 .67968 75000 
.AF 00 00 00 .68359 37500 

.BO 000000 .68750 00000 

I .Bl 00 00 00 .6914062500 
.B2 00 00 00 .69531 25000 
.B3 00 00 00 .69921 87500 I 
.B4 00 00 00 .7031 2 50000 
.B5 0000 00 .70703 1 2500 
.86 00 00 00 .7109375000 
.B7 00 00 00 .71484 37500 
.B8 00 00 00 .71875 00000 
.B9 000000 .7226562500 
.BA 00 00 00 .72656 25000 
.BB 00 00 00 .73046 87500 
.BC 00 00 00 .73437 50000 
.BD 00 00 00 .73828 12500 
.BE 00 00 00 .7421875000 
.BF 000000 .74609 37500 

.CO 0000 00 

.Cl 00 00 00 

.(2 0000 00 

.C3 0000 00 

.C4 000000 

.C5 000000 

.C6 000000 

.C7 00 00 00 

.(8 0000 00 

.C9 0000 00 

.CA 00 00 00 

.CB 0000 00 

.CC 0000 00 

.CD 00 00 00 

.Ct 000000 

.CF 00 00 00 

.00 000000 

.D1 00 0000 

.D2 000000 

.03 0000 00 

.D4 0000 00 

.D5 0000 00 

.D6 00 00 00 

.D7 00 00 00 

.08 0000 oe 

.D9 00 00 00 

.DA 00 00 00 

.06 0000 00 

.DC 00 00 00 

.DD 000000 

.DE 00 00 00 

.DF 00 00 OC 

.. EO 000000 
E I 00 00 00 

.E2 00 0000 

.E3 0000 00 

.E4 000000 

.E5 00 00 00 

.E6 00 00 00 

.E7 000000 

.E8 00 00 00 

.E9 00 00 00 

.EA 00 00 00 

.EB 00 00 00 

.EC 00 00 00 

.ED 000000 

.EE 00 00 00 

.EF 00 00 00 

.FO 000000 

.F I 00 00 00 

.F2 00 00 00 

.F3 000000 

.F4 000000 

.F5 00 00 00 

.F6 000000 

.F7 00 00 00 

.F8 0000 OG 

.F9 000000 

.FA 000000 

.fB 000000 

.Fe 00 00 00 

.FD 0000 00 

.FE 0000 00 

.FF 0000 00 

.75000 OOO{)(j I 

.75390 62S~(; 

.75i81 25C0::: 

.76',71 87500 

./6562 SOOtY':, 

.76953 i 2)0'] 

.77343 75000 

.7T' 34 3750(; 

.781 25 00000 

.78515 62500 

.78906 2500C 

.79296 87500 

.79687 50000 

.80078 12500 

.80468 75C.(;0 

.8085937500 

.8 J 250 00000 

.8164062500 

.82031 25000 

.82421 8750G I 

. g231 2 50000 
I 

.83203 12500 I 

.83593 75000 

.83984 37500 l 

.84375 00000 I 

.84765 62500 I 

.85 i 56 25000 

.85546 87500 . 

.85937 50000 

.86328 12500 

.8671875000 

.871 09 37500 I 

.87500 00000 
7 .8 890 62500 

.88281 25000 

.88671 87500 

.89062 50000 

.89453 12500 

.89843 75000 

.90234 37500 

.906 25 00000 

.91015 62500 
.9 ! 406 25000 
.9179687500 
.92 i 87 50000 
.92578 1 2500 
.92968 75000 
.93359 37500 

.93750 00000 

.94140 62500 

.94531 25000 

.94921 87500 

.95312 50000 

.95703 12500 

.96093 75000 

.96484 37500 

.96875 00000 

.97265 62500 

.97656 25000 

.98046 87500 

.98437 50000 

.98828 12500 

.99218 75000 

.99609 37500 



HEXADECIMAL-DECIMAL FRACTION CONVERSION TABLE (cant.) 

Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal 

.0000 0000 .00000 00000 .0040 0000 .0009765625 .0080 0000 .00195 31250 .00 CO 0000 .00292 96875 

.0001 0000 .00001 52587 .0041 0001) .00099 18212 .0081 0000 .00196 83837 .00 ClOD 00 .00294 49462 

.0002 0000 .00003 05175 .0042 0000 .00100 70800 .0082 0000 .00198 36425 .00 C2 0000 .00296 02050 

.0003 0000 .0000457763 .0043 0000 .00102 23388 .0083 0000 .0019989013 .00 C3 0000 .00297 54638 

.0004 0000 .00006 1 0351 .0044 0000 .00103 75976 .0084 0000 .00201 41601 .00 C4 00 00 .00299 07225 

.0005 0000 .00007 62939 .0045 0000 .001 05 28564 .0085 0000 .00202 94189 .00 C5 0000 .0030059814 

.0006 0000 .00009 15527 .0046 0000 .00106 81152 .0086 0000 .00204 46 777 .00 C6 0000 .00302 12402 

.0007 0000 .0001068115 .0047 0000 .00108 33740 .0087 0000 .00205 99365 .00 C7 00 00 .00303 64990 

.00 08 0000 .00012 20703 .0048 0000 .0010986328 .0088 0000 .00207 51953 .00 C8 0000 .00305 17578 

.0009 0000 .00013 73291 .0049 0000 .00111 38916 .0089 0000 .00209 04541 .00 C9 0000 .00306 70166 

.OOOA 0000 .00015 25878 .004A 0000 .00112 91503 .008A 0000 .00210 57128 .00 CA 00 00 .00308 22753 

.OOOB 0000 .00016 78466 .004B 0000 .0011444091 .008B 00 00 .0021209716 .00 CB 0000 .00309 75341 

.OOOC 0000 .00018 31054 .004C 0000 .00115 96679 .008C 0000 .00213 62304 .00 CC 00 00 .00311 27929 

.OOOD 00 00 .0001983642 .004D 0000 .00117 49267 .0080 00 00 .00215 14892 .00 CD 00 00 .0031 2 8051 7 

.OOOE 00 00 .00021 36230 .004E 0000 .0011901855 .008E 0000 .0021667480 .00 CE 0000 .00314 33105 

.00 OF 0000 .00022 88818 .004F 0000 .0012054443 .008F 0000 .00218 20068 .00 CF 00 00 .00315 85693 

.00 10 0000 .00024 41406 .0050 0000 .0012207031 .0090 0000 .00219 72656 .00 DO 0000 .00317 38281 

.00 11 0000 .00025 93994 .0051 0000 .0012359619 .0091 0000 .00221 25244 .00 Dl 0000 .00318 90869 

.00 12 0000 .00027 46582 .0052 0000 .00125 12207 .0092 0000 .00222 77832 .00 D2 00 DC .00320 43457 

.00 13 0000 .00028 99169 .0053 0000 .00126 64794 .0093 0000 .00224 30419 .00 D3 00 00 .00321 96044 

.00 14 0000 .00030 51757 .0054 0000 .00128 17382 .0094 0000 .00225 83007 .00 D4 0000 .00323 48632 

.00 15 0000 .00032 04345 .0055 0000 .0012969970 .0095 0000 .00227 35595 .00 D5 0000 .00325 01220 

.00 16 00 00 .00033 56933 .0056 0000 .00131 22558 .0096 00 00 .00228 88183 .00 D6 0000 .00326 53808 

.00 17 00 00 .00035 09521 .0057 00 00 .0013275146 .0097 0000 .00230 40771 .00 D7 00 00 .00328 06396 

.00 18 00 00 .00036 62109 .0058 0000 .0013427734 .0098 0000 .00231 93359 .00 D8 0000 .0032958984 

.00 19 0000 .00038 14697 .00 S9 0000 .00135 80322 .0099 0000 .00233 45947 .00 D9 00 00 .00331 11572 

.00 lA 0000 .00039 6728.) .005A 0000 .00137 32910 .009A 00 00 .00234 98535 .00 DA 00 00 .00332 64160 

.00 1 B 0000 .00041 19873 .005B 0000 .0013885498 .009B 00 00 .00236 51123 .00 DB 0000 .00334 16748 

.00 lC 0000 .00042 72460 .005C 0000 .00140 38085 .009C 00 00 .00238 03710 .00 DC 00 00 .00335 69335 

.00 1 D 0000 .00044 25048 .005D 0000 .00141 90673 .00 90 00 pO .0023956298 .00 DD 0000 .00337 21923 

.00 lE 00 00 .00045 77636 .005E 0000 .00143 43261 .009E 0000 .00241 08886 .00 DE 0000 .00338 74511 

.00 1 F 0000 .00047 30224 .005F 0000 .00144 95849 .009F 00 00 .00242 61474 .00 DF 0000 .00340 27099 

.00 20 0000 .0004d 82812 .0060 0000 .00146 48437 .00 AD 0000 .00244 14062 .00 EO 0000 .00341 79687 

.00 21 0000 .00050 35400 .0061 0000 .00148 01025 .00 Al 0000 .00245 66650 .00 E1 0000 .00343 32275 

.0022 0000 .00051 87988 .0062 0000 .0014953613 .00 A2 0000 .00247 19238 .00 E2 0000 .00344 84863 

.0023 0000 .00053 40576 .0063 0000 .00151 06201 .00 A3 00 00 .00248 71826 .00 E3 0000 .00346 37451 

.00 24 0000 .000S493164 .0064 0000 .0015258789 .00 A4 0000 .00250 24414 .00 E4 0000 .00347 90039 

.0025 0000 .00056 45751 .0065 0000 .00154 11376 .00 A5 0000 .00251 77001 .00 E5 0000 .00349 42626 

.0026 0000 .00057 98339 .0066 0000 .0015563964 .00 A6 00 00 .00253 29589 .00 E6 0000 .00350 95214 

.0027 0000 .00059 50927 .0067 0000 .00157 16552 .00 A7 0000 .00254 82177 .00 E7 0000 .00352 47802 

.0028 00 00 .00061 03515 .0068 0000 .0015869140 .00 A8 0000 .00256 34765 .00 E8 0000 .00354 00390 

.00 29 0000 .00062 56103 .0069 0000 .00160 21728 .00 A9 0000 .00257 87353 .00 E9 0000 .00355 52978 

.002A 0000 .00064 08691 .006A 0000 .00161 74316 .00 AA 00 00 .00259 39941 .00 EA 0000 .00357 05566 

.002B 0000 .00065 61279 .006B 0000 .00163 26904 .00 AB 0000 .00260 92529 .00 EB 00 00 .00358 58154 

.002C 0000 .00067 13867 .006C 0000 .0016479492 .00 AC 0000 .00262 45117 .00 EC 0000 .00360 10742 

.00 2D 0000 .00068 66455 .006D 0000 .00166 32080 .00 AD 00 00 .00263 97705 .00 ED 0000 .00361 63330 

.00 2E 0000 .00070 19042 .006E 0000 .00167 84667 .00 AE 0000 .00265 50292 .00 EE 00 00 .00363 15917 

.002F 0000 .00071 71630 .006F 0000 .0016937255 .00 AF 0000 .00267 02880 .00 EF 0000 .00364 68505 

.0030 0000 .00073 24218 .0070 0000 .00170 89843 .00 BO 0000 .0026855468 .00 FO 0000 .00366 21093 

.0031 0000 .00074 76806 .0071 0000 .00172 42431 .00 Bl 0000 .00270 08056 .00 F1 0000 .00367 73681 

.0032 0000 .00076 29394 .0072 0000 .0017395019 .00 B2 0000 .00271 60644 .00 F2 0000 .00369 26269 

.0033 0000 .00077 81982 .0073 0000 .00175 47607 .00 B3 0000 .00273 13232 .00 F3 0000 .00370 78857 

.0034 0000 .00079 34570 .0074 0000 .00177 00195 .00 B4 0000 .0027465820 .00 F4 0000 .00372 31445 

.0035 0000 .00080 87158 .0075 0000 .00178 52783 .00 B5 0000 .00276 18408 .00 F5 0000 .00373 84033 

.0036 0000 .00082 39746 .0076 0000 .00180 05371 .00 B6 0000 .00277 70996 .00 F6 0000 .00375 36621 

.0037 0000 .00083 92333 .0077 0000 .00181 57958 .00 B7 0000 .00279 23583 .00 F7 0000 .00376 89208 

.0038 0000 .00085 44921 .001'8 0000 .00183 10546 .00 B8 0000 .0028076171 .00 F8 0000 .00378 41796 

.0039 0000 .00086 97509 .0079 0000 .0018463134 .00 B9 0000 .00282 28759 .00 F9 0000 .00379 94384 

.003A 0000 .00088 50097 .007A 0000 .00186 15722 .00 BA 0000 .0028381347 .00 FA 0000 .00381 46972 

.003B 0000 .00090 02685 .007B 0000 .0018768310 .00 BB 0000 .00285 33935 .00 FB 0000 .00382 99560 

.003C 0000 .00091 55273 .007C 0000 .00189 20898 .00 BC 0000 .00286 86523 .00 FC 0000 .0038452148 

.00 3D 0000 .00093 07861 .0070 0000 .00190 73486 .00 BD 0000 .00288 39111 .00 FD 0000 .00386 04736 

.00 3E 0000 .00094 60449 .007E 0000 .00192 26074 .00 BE 0000 .00289 91699 .00 FE 0000 .00387 57324 

.003F 0000 .00096 13037 .007F 0000 .00193 78662 .00 BF 0000 .00291 44287 .00 FF 0000 .0038909912 

Appendix A 115 



HEXADECIMAL-DECIMAL FRACTION CONVERSION TABLE (cant.) 

Hexadecimal 

,00 00 00 00 
.0000 01 00 
.00 00 02 00 
.00 00 03 00 
.00 00 04 00 
.00 00 05 00 
.00 00 06 00 
.000007 00 
.00 00 08 00 
.00 00 09 00 
.00 00 OA 00 
.00 00 OB 00 
.00 00 OC OC 
.00 00 aD 00 
.00 00 OE 00 
.0000 OF 00 

.000010 00 

.00 00 11 00 

.00 00 12 00 

.00 00 13 00 

.0000 14 00 
,00 00 15 00 
.00 00 16 00 
.00 00 17 00 
.0000 18 00 
.0000 19 00 
.0000 1 A. 00 
.00 00 1 B 00 
.00 00 1C 00 
.0000 1 D 00 
.00 00 1 E 00 
.00 00 IF 00 

.00 00 20 00 

.00 00 21 00 

.00 00 22 00 

.0000 23 00 

.0000 24 00 

.0000 25 00 

.00 00 26 00 

.0(1 00 27 00 

.00 00 28 00 

.00 00 29 00 
00002A 00 
.00002B 00 
.00 00 2C 00 
.0000 2D 00 
.00 00 2E 00 
.00002F 00 

.000030 OC 

.00 00 31 00 

.00 00 32 00 
,00 00 33 00 
.000034 00 
.00 00 35 00 
.000036 00 
.00 00 37 00 
.00 00 38 00 
.0(\ 00 39 00 
,co :")0 3.4. 1)0 

Decimal 

· 00000 00000 
.00000 00596 
.00000 01 J 92 
.00000 01788 
.00000 02384 
.00000 02980 
.00000 03576 
.00000 04 J 72 
.00000 04768 
,00000 05364 
.00000 as 960 
.0000006556 
.00000 07152 
.00000 07748 
.00000 08344 
.00000 08940 

.00000 09536 

.00000 10 1 32 
00000 10728 

.00000 11324 
· 00000 1 1 920 
.00000 12516 
.00000 13113 
,00000 1 3709 
.00000 14305 
.00000 1 4901 
.00000 15497 
.00000 16093 
.00000 16689 
· 00000 I 7285 
.00000 17881 
.00000 18477 

.00000 19073 

.00000 19669 
· 00000 20265 
.00000 20861 
· 00000 21 457 
.00000 22053 
.00000 22649 
.00000 23 245 
.00000 23841 
.00000 24437 
,00000 25033 
.00000 25629 
.00000 26226 
.00000 20822 
.00000 27418 
.00000 28014 

· 00000 286 1 0 
.00000 29206 
.00000 29802 
.00000 30398 
.00000 30994 
.00000 31590 
.OCOOO 32186 
.00000 32782 
.00000 33378 
.00000 33974 
.00000 34570 
.0000('; 35 166 

Hexadecimal 

.0000 40 00 

.00 00 41 00 

.00 00 42 00 

.00 00 43 00 

.00 00 44 00 

.00 00 45 00 

.00 00 46 00 

.00 00 47 00 

.00 0048 00 

.0000 49 00 

.00004A 00 

.0000 4B 00 

.00004C 00 

.00004D 00 

.00004E 00 

.00004F 00 

.00 00 50 00 

.00 00 51 00 

.00 0052 00 

.00 00 53 00 

.00 00 54 00 

.00 00 55 00 

.00 00 56 00 

.000057 00 

.000058 00 

.0000 59 00 

.00005A 00 

.00 00 5B 00 

.00 00 5C 00 

.00 0050 00 

.00 00 5E 00 

.00 00 5F 00 

.00 00 60 00 

.00 00 61 00 

.00 00 62 00 

.00 0063 00 

.00 00 64 00 

.00 00 65 00 

.00 00 66 00 

.0000 67 00 

.000068 00 

.00 00 69 00 

.00006A 00 

.00006B 00 

.00 00 6C 00 

.00 00 6D 00 

.00006E 00 

.00 00 6F 00 

.00 0070 00 
I .0000 71 00 

.00 00 72 00 

.00 00 73 00 

.00 00 74 00 

.00 00 75 00 

.0000 76 00 

I 
.00 00 77 00 

I 

.00 00 78 00 

.00 00 7'1 00 

.00 00 7,6.. GO 
I .00 00 73 ,'jC 

JJ 00 3C 00 .()OOOO 35762 I .00 00 i'C I)oJ 

,~~ GO :: D GO .00000 36358 .1 ,'X) 00 7D ~,',vo" 
.,,:0 CO 2E 00 .COOOO 369)4 .00 00 7E . 

•• _._~l_; J_f=_,)~_._ .. c_:o._o.c_,·_; ._3:'_'~_:::1:_) _.LGCJ 00 IF ce, 

116 Appendix A 

Decimal 

.00000 38146 

.00000 38743 

.00000 39339 

.00000 39935 

.00000 40531 

.00000 41127 

.00000 41723 

.00000 4231 9 

.00000 42915 
· 00000 43511 
· 00000 44107 
.00000 44703 
.00000 45299 
.00000 45895 
.00000 46491 
.00000 47087 

.00000 47683 

.00000 48279 

.00000 48875 

.00000 49471 

.00000 50067 
· 00000 50663 
.00000 51259 
· 00000 51856 
.00000 52452 
.00000 53048 
.00000 53644 
.00000 54240 
.00000 54836 
.00000 55432 
.00000 56028 
.00000 56624 

.00000 57220 

.0000057816 

.00000 58412 
· 00000 59008 
· 00000 59604 
.00000 60200 
.00000 60796 
.00000 61392 
· 00000 61 988 
.00000 62584 
.00000 631 80 
.00000 63776 
.00000 64373 
.00000 64969 
.00000 65565 
.00000 66161 

.00000 66757 

.00000 67353 

.00000 67949 

.00000 68545 

.00000 69141 

.00000 69737 

.00000 70333 

.00000 70929 

.00000 71525 

. 00000 72121 

.00000 7271 7 

.00000 73313 

.00000 73909 
· 00000 74505 
.00000 75101 
.00000 75697 

Hexadecimal 

.00 00 80 00 

.00 00 81 00 

.00 00 82 00 

.0000 83 00 

.00 00 84 00 

.00 00 85 00 

.00 00 86 00 

.00 00 87 00 

.00 00 88 00 

.00 00 89 00 

.00 00 8A 00 

.00 00 8B 00 

.00 00 8C 00 

.00 00 8D 00 

.00 00 8E 00 

.00 00 8F 00 

.00 0090 00 

.00 0091 00 

.00 00 92 00 

.00 00 93 00 

.00 00 94 00 

.00 0095 00 

.00 0096 00 
.00 00 97 00 
.00 0098 00 
.00 00 99 00 
.00 00 9A 00 
.00 00 9B 00 
.00 00 9C 00 
.0000 9D 00 
.00 00 9E 00 
.00 00 9F 00 

.00 00 AO 00 

.0000 Al 00 

.0000 A2 00 

.00 00 A3 00 

.00 00 A4 00 

.00 00 A5 00 

.0000 A6 00 

.0000 A7 00 

.00 00 A8 00 

.0000 A9 00 

.00 00 AA 00 
,0000 AB 00 
.00 00 AC 00 
.00 00 AD 00 
.00 00 AE 00 
.00 00 AF 00 

.00 00 BO 00 

.00 00 Bl 00 

.00 00 B2 00 

.00 00 B3 00 

.00 00 B4 00 

.00 00 B5 00 

.00 00 B6 00 

.00 00 B7 00 

.00 00 B8 00 

.00 00 B9 00 

.00 00 BA 00 

.00 00 BB 00 

.00 00 BC 00 

.0000 SD 00 

.00 00 BE 00 

.0000 BF 00 

Decimal 

.00000 76293 

.00000 76889 
· 00000 77486 
.00000 78082 
.00000 78678 
.00000 79274 
.00000 79870 
.00000 80466 
.0000081062 
.00000 81658 
.00000 82254 
.00000 82850 
· 00000 83446 
.00000 84042 
.00000 84638 
.00000 85234 

.00000 85830 

.00000 86426 

.00000 87022 

.00000 87618 

.00000 88214 
· 00000 8881 0 
.00000 89406 
· 00000 90003 
.00000 90599 
.00000 91195 
.00000 91791 
.09000 92387 
.00000 92983 
.00000 93579 
.00000 94175 
· 00000 94771 

.00000 95367 

.00000 95963 

.00000 96559 

.00000 97155 

.00000 97751 

.00000 98347 

.00000 98943 

.00000 99539 

.00001 00135 

.00001 00731 

.00001 01327 

.00001 01923 

.00001 02519 

.00001 03116 

.00001 03712 

.00001 04308 

· 0000 1 04904 
.00001 05500 
.0000 1 06096 
.00001 06692 
· 00001 07288 
.00001 07884 
.00001 08480 
.00001 09076 
.00001 09672 j 
.00001 10268 . 
.00001 !O864 I 

Hexadecimal 

.0000 co 00 

.00 00 Cl 00 

.00 00 C2 00 

.0000 C3 00 

.00 00 (4 00 

.0000 C5 00 

.0000 C6 00 

.00 00 C7 00 

.0000 C8 00 

.0000 C9 00 

.00 00 CA 00 

.00 00 CB 00 

.00 00 CC 00 

.00 00 CD 00 

.00 00 CE 00 

.00 00 CF 00 

.00 00 DO 00 

.00 00 Dl 00 

.00 00 D2 00 

.00 00 D3 00 

.00 00 D4 00 

.00 00 D5 00 

.00 00 D6 00 

.00 00 D7 00 

.00 00 D8 00 

.00 00 D9 00 

.00 00 DA 00 

.00 00 DB 00 

.00 00 DC 00 

.00 00 DD 00 

.00 00 DE 00 

.00 00 DF 00 

.00 00 EO 00 

.00 00 El 00 

.00 00 E2 00 

.00 00 E3 00 

.00 00 E4 00 

.00 00 E5 00 

.00 00 E6 00 

.0000 E7 00 

.00 00 E8 00 

.00 00 E9 00 

.00 00 EA 00 

.00 00 EB 00 

.00 00 EC 00 

.00 00 ED 00 

.00 00 EE 00 

.00 00 EF 00 

.00 00 FO 00 

.00 00 Fl 00 

.00 00 F2 00 

.0000 F3 00 

.0000 F4 00 

.00 00 F5 00 

.00 00 F6 00 

.00 GO F7 00 

.00 00 F8 00 

.0000 F9 00 

.00 00 FA 00 
.00001 11460 1 .00 00 FB 00 
.00001 12056 I .0000 FC 00 
.00001 12652 I .0000 FD 00 

Decimal 

· 0000 1 14440 
.00001 15036 
.00001 15633 
.00001 16229 
.00001 16825 
.00001 17421 
.00001 18017 
.00001 18613 
.00001 19209 
.0000 I 19805 
.00001 20401 
.00001 20997 
,0000 1 21 593 
.00001 22189 
.0000 1 22785 
.00001 23381 

.00001 23977 

.00001 24573 

.0000 1 25169 

.00001 25765 
· 0000 1 2636 1 
.00001 26957 
.0000 1 27553 
.00001 28149 
· 00001 28746 
.00001 29342 
.00001 29938 
.00001 30534 
.0000 1 311 30 
.00001 31726 
.00001 32322 
.0000 1 32918 

.00001 33514 

.0000 1 341 1 a 

.00001 34706 

.00001 35302 

.00001 35898 

.00001 36494 

.00001 37090 

.00001 37686 

.00001 38282 

.00001 38878 

.00001 39474 
,00001 40070 
· JOOO 1 40666 
.00001 41263 
.00001 41 859 
.00001 42455 

.0000 1 43051 
00001 43647 

.00001 44243 

.00001 44839 
· 0000 I 45435 
.00001 46031 
.0000 I 46627 
.00001 47223 
.00001 47819 
.00001 48415 
/)0001 490 11 
.00001 49607 
.00001 50203 
.0000 I :::0799 
.0000 1 5135 .0000 1 13248 I' .00 00 FE 00 

.:)000113844 .OOOOFF 00 ,OGCI()l ~1)91 ---L ___ .-____ , __ . ___ r_ 



HEXADECIMAL-DECIMAL FRACTION CONVERSION TABLE (cont.) 

Hexadec ima I Decimal Hexadecimal Decimal Hexadecimal Decimal Hexadec'mal Decimal 

.00000000 .00000 00000 .00000040 .00000 00149 .00000080 .00000 00298 .00 00 00 CO .00000 0044 7 

.00000001 .00000 00002 .00000041 .00000 00151 .00000081 .00000 00300 .000000 Cl .00000 0044 9 

.00000002 .00000 00004 .00000042 .00000 00 153 .00000082 .00000 00302 .000000 C2 .00000 00451 

.00000003 .00000 00006 .00000043 .00000 00155 .00000083 .00000 00305 .0000 00 C3 .00000 00454 

.00000004 .00000 00009 .00000044 .00000 00158 .00000084 .00000 00307 .0000 00 C4 .00000 00456 

.00000005 .00000 0001 I .00000045 .00000 00 160 .00000085 .00000 00309 .000000 C5 .00000 00458 

.00000006 .00000 000 I 3 .00000046 .0000000162 .00 00 00 86 .00000 00311 .00 00 00 C6 .00000 0046 1 

.00000007 .00000 00016 .00000047 .00000 00 165 .00 000087 .00000 00314 .000000 C7 .00000 0046 3 

.00000008 .00000 00018 .00000048 .0000000167 .00000088 .00000 00316 .000000 C8 .00000 00465 

.00000009 .00000 00020 .00000049 .0000000169 .00000089 .00000 00318 .000000 C9 .00000 0046 7 

.00 0000 OA .0000000023 .0000 00 4A .00000 00172 .0000008A .00000 00321 .0000 00 CA .00000 00470 

.000000 DB .00000 00025 .0000004B .0000000174 .00 00 008B .00000 00323 .0000 00 CB .0000000472 

.000000 DC .0000000027 .00 00 00 4C .00000 00176 .0000008C .00000 00325 .000000 CC .00000 00474 

.OOOOOOOD .0000000030 .0000004D .00000 00179 .0000008D .00000 00328 .0000 00 CD .00000 00477 

.000000 DE .0000000032 .0000004E .0000000181 .000000 8E .00000 00330 .000000 CE .00000 00479 

.000000 OF .00000 00034 .0000004F .00000 00183 .0000008F .00000 00332 .0000 00 CF .00000 0048 I 

.00000010 .0000000037 .00000050 .00000 00 186 .00000090 .00000 00335 .000000 00 .00000 00484 

.OC 00 00 II .00000 00039 .00000051 .00000 00 188 .00000091 .00000 00337 .000000 DI .00000 00486 

.000000 12 .00000 00041 .00000052 .00000 00 1 90 .00000092 .00000 00339 .000000 D2 .0000000488 

.000000 13 .00000 00044 .00000053 .00000 00193 .00000093 .00000 00342 .000000 D3 .00000 00491 

.000000 14 .00000 00046 .00000054 .00000 00195 .00000094 .00000 00344 .00 00 00 D4 .00000 00493 

.000000 15 .00000 00048 .00000055 .00000 001 97 .00000095 .00000 00346 .000000 D5 .00000 00495 

.00000016 .00000 0005 I .00000056 .00000 00200 .00000096 .0000000349 .000000 D6 .00000 004 98 

.000000 17 .00000 00053 .00000057 .00000 00202 .00000097 .00000 0035 I .000000 D7 .00000 00500 

.000000 18 .00000 00055 .00000058 .00000 00204 .00000098 .00000 00353 .000000 D8 .0000000502 

.000000 19 .0000000058 .00000059 .00000 00207 .00000099 .00000 00356 .000000 D9 .00000 00505 

.OOOOOOIA .00000 00060 .00 00 00 5A .00000 00209 .00 00 00 9A .0000000358 .000000 DA .00000 00507 

.000000 1 B .00000 0006 2 .00 00 00 5B .00000 00211 .00 0000 9B .00000 00360 .000000 DB .00000 00509 

.OOOOOOIC .00000 00065 .00 0000 5C .00000 00214 .000000 ric .00000 00363 .000000 DC .00000 0051 2 

.000000 1 D .00000 00067 .00 00 00 5D .00000 00216 .0000009D .00000 00365 .000000 DD .00000 00514 

.000000 1 E .00000 0006 9 .00 00 00 5E .00000 00218 .0000009E .00000 00367 .000000 DE .00000 0051 6 

.000000 1 F .0000000072 .0000005F .0000000221 .0000 00 9F .00000 00370 .000000 DF .00000 0051 9 

.00000020 .00000 00074 .00000060 .00000 00223 .000000 AD .00000 00372 .000000 EO .00000 00521 

.000000 21 .00000 00076 .00000061 .00000 00225 .000000 AI .00000 00374 .000000 EI .00000 00523 

.000000 22 .00000 00079 .00000062 .00000 00228 .000000 A2 .00000 00377 .000000 E2 .00000 00526 

.00000023 .00000 00081 .00000063 .00000 00230 .000000 A3 .00000 00379 .0000 00 E3 .00000 00528 

.00000024 .00000 00083 .00000064 .00000 00232 .000000 A4 .00000 00381 .000000 E4 .00000 00530 

.000000 25 .00000 00086 .00000065 .00000 00235 .000000 A5 .00000 00384 .000000 E5 .00000 00533 

.00000026 .00000 00088 .00000066 .00000 00237 .000000 A6 .00000 00386 .0000 00 E6 .0000000535 

.000000 27 .00000 00090 .00000067 .00000 00239 .000000 A7 .00000 00388 .000000 E7 .00000 00537 

.00000028 .00000 00093 .00000068 .00000 00242 .000000 A8 .00000 00391 .000000 E8 .00000 00540 

.00000029 .00000 00095 .00000069 .00000 00244 .000000 A9 .00000 00393 .000000 E9 .00000 00542 

.000000 2A .00000 00097 .00 00 00 6A .00000 00246 .000000 AA .00000 00395 .000000 EA .00000 00544 

.0000002B .00000 00 1 00 .0000006B .00000 00249 .000000 AB .00000 00398 .000000 EB .00000 00547 

.0000002C .0000000102 .00 00 00 6C .00000 00251 .000000 AC .00000 00400 .000000 EC .00000 00549 

.0000002D .00000 001 04 .0000006D .0000000253 .000000 AD .00000 00402 .000000 ED .00000 0055 I 

.0000002E .00000 001 07 .0000006E .00000 00256 .000000 AE .00000 00405 .000000 EE .00000 00554 

.0000002F .00000 00109 .0000006F .00000 00258 .000000 AF .00000 00407 .000000 EF .00000 00556 

.00000030 .00000 00111 .00000070 .0000000260 .000000 BO .00000 00409 .000000 FO .00000 00558 

.00000031 .0000000114 .00000071 .00000 00263 .000000 Bl .00000 0041 2 .000000 Fl .00000 0056 I 

.00000032 .0000000116 .00000072 .00000 00265 .000000 B2 .00000 004 14 .000000 F2 .00000 00563 

.00000033 .00000 00118 .00000073 .00000 00267 .000000 B3 .00000 00416 .000000 F3 .00000 00565 

.00000034 .00000 00121 .00000074 .00000 00270 .000000 B4 .00000 0041 9 .000000 F4 .00000 00568 

.00000035 .00000 00123 .00 00 00 75 .00000 00272 .000000 B5 .00000 00421 .OC 00 00 F5 .00000 00570 

.00000036 .00000 001 25 .00000076 .0000000274 .000000 B6 .00000 00423 .000000 F6 .00000 00572 

.00000037 .00000 00 1 28 .000000 77 .00000 00277 .000000 B7 .00000 00426 .000000 F7 .00000 00575 

.00000038 .00000 001 30 .00000078 .00000 00279 .000000 B8 .00000 00428 .000000 F8 .00000 00577 

.00000039 .0000000132 .00000079 .00000 00281 .000000 B9 .00000 00430 .000000 F9 .00000 00579 

.0000003A .00000 001 35 .0000 00 7A .00000 00284 .000000 BA .00000 00433 .000000 FA .00000 00582 

.0000003B .0000000137 .0000007B .00000 00286 .000000 BB .0000000435 .000000 FB .00000 00584 

.0000003C .00000 00139 .00 00 00 7C .00000 00288 .000000 BC .00000 00437 .000000 FC .00000 00586 

.0000003D .0000000142 .0000007D .00000 00291 .000000 BD .00000 00440 .00 0000 FD .00000 00589 

.000000.3E . 00000 00144 .0000007E .00000 00293 .000000 BE .00000 0044 2 .000000 FE .00000 00591 

.00 00 00 3F .00000 00 I 46 .0000007F .00000 00295 .000000 BF .00000 00444 .000000 FF .00000 00593 

Appendix A 117 



TABLE OF POWERS OF TWO MATHEMATICAL CONSTANTS 

2n n 2- n 

---
I 0 1.0 
2 1 0.5 
4 2 0.25 
8 3 0.125 

16 4 0.062 5 
32 5 0.031 25 
64 6 0.015 625 

128 7 0.007 812 5 

256 8 0.003 906 25 
512 9 0.00 I 953 125 

I 024 10 0.000 976 562 5 
2 048 11 0.000 488 281 25 

" 096 12 0.000 244 140 625 
8 192 13 0.000 122 070 312 5 

16 384 14 0.000 061 035 156 25 
32 768 15 0.000 030 517 578 125 

65 536 16 0.000 015 258 789 062 5 
131 072 17 0.000 007 629 394 531 25 
262 144 18 0.000 003 814 697 265 625 
524 288 19 0.000 001 907 348 632 812 5 

I 048 576 20 0.000 000 953 674 316 406 25 
2 097 152 21 0.000 000 476 837 158 203 125 
4 194 304 22 0.000 000 238 418 579 101 562 5 
8 388 608 23 0.000 000 119 209 289 550 781 25 

16 777 216 24 0.000 000 059 604 644 775 390 625 
33 554 432 25 0.000 000 029 802 322 387 695 312 5 
67 108 864 26 0.000 000 014 901 161 193 847 656 25 

134 217 728 27 0.000 000 007 450 580 596 923 828 125 

268 435 456 28 0.000 000 003 725 290 298 461 914 062 5 
536 870 912 29 0.000 000 001 862 645 149 230 957 031 25 

I 073 741 824 30 0.000 000 000 931 322 574 615 478 515 625 
2 147 483 648 31 0.000 000 000 465 661 287 307 739 257 812 5 

4 294 967 296 32 0.000 000 000 232 830 643 653 869 628 906 25 
8 589 934 592 33 0.000 000 000 116 415 321 826 934 814 453 125 

17 179 869 184 34 0.000 000 000 058 207 660 913 467 407 226 562 5 
34 359 738 368 35 0.000 000 000 029 103 830 456 733 703 613 281 25 

68 719 476 736 36 0.000 000 000 014 551 915 228 366 851 806 640 625 
137 438 953 472 37 0.000 000 000 007 275 957 614 183 425 903 320 312 5 
274 877 906 944 38 0.000 000 000 003 637 978 807 091 712 951 660 156 25 
549 755 813 888 39 0.000 000 000 001 818 989 403 545 856 475 830 078 125 

I 099 511 627 776 40 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5 
2 199 023 255 552 41 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25 
4 398 046 511 104 42 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625 
8 796 093 022 208 43 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 

17 592 186 044 416 44 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 
35 184 372 088 832 45 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 
70 368 744 177 664 46 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 

140 737 488 355 328 47 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 

281 474 976 710 656 48 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 
562 949 953 421 312 49 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 

1 125 899 906 842 624 50 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 
2 251 799 813 685 248 51 0.000 000 000 000 000 444 089 209850 062 616 169 452 667236 328 125 

Constant 

IT-I 

.JW 
InIT 

e 
-1 

e 

..Je 
loglOe 

log2 e 

Y 

InY 

.J2 
In 2 

logl02 

..JlO 
In 10 

4 503 599 627 370 496 52 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 
9 007 199 254 740 992 53 0.000 000 000 000 000 II I 022 302 462 515 654 042 363 166 809 082 031 25 

18 014 398 509 481 984 54 0.000 000 000 000 000 055 511 151 231 257827 021 181 583404 541 015 625 
36 028 797 018 963 968 55 0.000 000 000 000 000 027 755 575615 628 913 510 590 791 702 270 507 812 5 

72 057 594 037 927 936 56 0.000 000 000 000 000 013 877 787 807 814 456 755 295 395 851 135 253 906 25 

Decimal Value 

3.1" 159 26535 89793 

0.31830 98861 83790 

1.772"5 38509 05516 

1 .1«72 98858 "9400 

2.71828 18284 590t45 

0.36787 9«11 71«2 

1.64872 12707 00128 

0.43429 44819 03252 

1 .«269 ~ 88963 

0.57721 56649 01533 

-0.54953 93129 81645 

1.41421 35623 73095 

0.69314 71805 59945 

0.30102 99956 63981 

3.16227 76601 68379 

2.30258 "0929 94Q.46 

144 115 188 075 855 872 57 0.000 000 000 000 000 006 938 893 903 907 228 377 647 697 925 567 626 953 125 
288 230 376 151 711 744 58 0.000 000 000 000 000 003 469 446951 953614 188 823 848 962 783 813 476 562 5 
576 460 752 303 423 488 59 0.000 000 000 000 000 001 734 723 475 976 807 094 411 924 481 391 906 738 281 25 

1 152 921 504 606 846 976 60 0.000 000 000 000 000 000 867 361 737 988 403 547 205 962 240 695 953 369 140 625 
2 305 843 009 213 693 952 61 0.000 000 000 000 000 000 433 680 868 994201 773 602 981 120 347 976 684 570 312 5 
4 611 686 018 427 387 904 62 0.000 000 000 000 000 000 216 840 434 497 100 886 801 490 560 173 988 342 285 156 25 
9 223 372 036 854 775 808 63 '0.000 000 000 000 000 000 108 420217248 550 443 400 745280 086 994 171 142 578 125 

118 Appendix A 

Hexadecimal Value 

3.243F 6A89 

0.517C C1B7 

I.C5BF 891C 

1.2500 CMBF 

2.B7El 5163 

0.5E20 5809 

I.A612 98E2 

0.6F20 EC55 

1]15" 7653 

0.93C" 67E4 

-0.8CAE 9BCl 

1.6A09 E668 

O.BI72 17F8 

0.4010 40"2 

3.298B 075C 

2. "D76 3777 



APPENDIX B. REFERENCE DIAGRAMS 

This appendix contains flow diagrams that are intended to 
illustrate the major operations involved during the execu­
tion of instructions by the SIGMA 6 computer. The flow 
diagrams are not intended to depict actual computer oper­
ati ons and sequences, but the operations and sequences 
shown are valid representations of the internal computer 
operations. The symbolic notation used in the flow dia­
grams is consistent with that used in other portions of this 
reference manual. The symbolic terms used are: 

Term Meaning 

A An internal CPU register used to hold an operand 
obtained from the general register that is speci­
fied by the R field value in the instruction word. 

AC Access control code - the code used to determine 
whether or not a slave program operating with 
the memory map may read from, access instruc­
tion from, or write into a specific page of virtual 
addresses. 

ADDR Address - any virtua I address. 

B 

C 

D 

EB 

EBL 

ED 

EDL 

EH 

EHL 

EW 

EWL 

An internal CPU register used to hold an operand 
obtained from the ~eneral register that is speci­
fied by the value produced by performing a logi­
calOR between the R field of the instruction and 
the va lue 1. 

An interna I CPU register used to hold an immediate 
operand obtained from the instruction, or a byte, 
halfword, or word operand obtained from the me­
mory (or general register) location specified by 
the effective address of the instruction. For 
doubleword operations, this register holds the 32 
high-order bits of the effective doubleword. 

An internal CPU register used to hold the32 low­
order bits of the effective doubleword in a double­
word operation. 

Effective byte. 

Effective byte location. 

Effective doubleword 

Effective doubl eword location. 

Effective halfword. 

Effective ha Ifword location. 

Effective word. 

Effective word location. 

IA 

IRA 

MA 

OP 

R 

TCC 

TYPE 

WK 

WL 

X 

Instruction register. 

Instruction address. 

Indi rec t reference address. 

Memory Address - an actua I core memory address. 

Operation code - bits 1-7 of an instruction word. 

General register address value. 

Trap condition code - the code that is used during 
the EXCHANGE PROGRAM STATUS DOUBLE­
WORD (XPSD) instruction. 

Memory access type - the following values are 
used to indicate the reason for accessing memory: 

o = write 
1 = instruction read 
2 = operand read 

Write key 

Write lock 

Index register designator. 

NOTES ON BASIC SIGMA 6 INSTRUCTION 
EXECUTION CYCLE 

The hexagonal elements in the flow diagram labeled 
"Memory Contro I" refer to th~ memory request process 
shown at the right of the basic flow diagram. The memory 
request process is represented as a subrouti ne with two inputs: 
an address value (ADDR) and a memory access TYPE, sepa­
rated by a slash, that correspond to the values shown in the 
"Memory Control II elements of the basic flow diagram. 

The circular entry point labeled "TRAP" is a continuation 
of the circular exit points labeled "Trap X'n''', where n is 
the appropriate trap location. 

The triangular entry point labeled "EXU" indicates the 
point in the basic flow diagram at which an instruction 
(being executed as an operand of the EXECUTE instruction) 
is started. 

The triangular entry point labeled "ANLZ" indicates the 
point in the basic flow diagram at which the effective ad­
dress computation for the instruction being analyzed is 
started; the triangular exit points indicate the completion 
of the effective address calculation. 

Appendix B 119 



BASIC SIGMA 6 INSTRUCTION EXECUTION CYCLE 

120 Appendix B 

(1)15-33' (X)13-31- '15-331------, 

EB - C24-31 
0- C0-23 
0- 0 

EW-C 
0-0 



BASIC SIGMA 6 INSTRUCTION EXECUTION CYCLE (cont.) 

o 

yes 

Appendix B 121 



122 Appendix B 

FLOATlNG- POINT INSTRUCTION EXECUTION 

FLOAnNG-POINT MULnpUCAnON AND DIVISION 

yes 

no 
no 



Right shift number with 
smaller characteristic and 
increment its character­
istic by 1 far each hex 
place shifted until the 
characteristics of the num­
ben are equal 

FLOATING-POINT ADDITION AND SUBTRACTION 

yes 

yes 

<pastnarmalization ~ __ .....;..:...... __ .... 
required mare than 

2 hex shifts? 

no 

X'5'- CC 

Appendix B 123 



lEFT SHIFT 

Shift fraction left 1 hex place, 
fill vacated bit position on the 
right with O's, decrement char­
acteristic field by I, and dec­
rement shift count by I. 

124 Appendix B 

Form the 2's comple­
ment of the final 
floating-point number 

0-Ce3 
I-CC4 

FLOATING-POINT SHIFT 

yes 

yes 

no yes 

RIGHT SHIFT 

Shift fraction risht 1 hex place, 
fill vacated bit pcIIitions on the 
left with O's, increment char­
acteristic field by I, and incre­
ment shift caunt by one. 



EDIT BYTE STRING INSTRUCTION EXECUTION 

Fill - (R)O_7 

SA = (R)I3-31 

0=(1)12_31 

C = (Ru 1)0-7 

DA = (Ru 1)13-31 

a = byte buffer 
IJ = byte buffer 
II = digit buffer 
d. = X'2O' 
•• ~ X'21' 
h = X'22' 
.i = X'23' 

Appendix B 125 



APPENDIX C. SIGMA 6 INSTRUCTIONS (MNEMONICS) 

Mnemonic Code Instruction Name Addressing Type Page 

AD 10 Add Ooubleword Daub I eword 40 
AH 50 Add Halfword Halfword 39 
AI 20 Add Immediate Immediate, word 39 
AIO 6E Acknowl edge I/O Interrupt (pri vi I eged) Word 87 
AND 4B AND Word Word 46 
ANLZ 44 Analyze Word 37 
AW 30 Add Word Word 40 
AWM 66 Add Word to Memory Word 43 
BAL 6A Branch and Link Word 74 
BCR 68 Branch on Conditions Reset Word 73 
BCS 69 Branch on Conditions Set Word 73 
BDR 64 Branch on Decrementing Register Word 74 
BIR 65 Branch on Incrementing Register Word 73 
CALl 04 Call 1 Word 74 
CAL2 05 Call 2 Word 74 
CAL3 06 Call 3 Word 74 
CAL4 07 Cal14 Word 74 
CB 71 Compare Byte Byte 44 
CBS 60 Compare Byte String Immediate, byte 62 
CD 11 Compare Doubleword Doubleword 45 
CH 51 Compare Halfword Halfword 45 
CI 21 Compare Immediate Immediate, word 44 
CLM 19 Compare with Limits in Memory Doubleword 46 
CLR 39 Compare with Limits in Register Word 46 
CS 45 Compare Selective Word 45 
CVA 29 Convert by Addition Word 49 
CVS 28 Convert by Subtraction Word 50 
CW 31 Compare Word Word 45 
DA 79 Decimal Add Byte 57 
DC 70 Decimal Compare Byte 58 
DD 7A Decimal Divide Byte 58 
DH 56 Divide Halfword Halfword 42 
DL 7E Decimal Load Byte 56 
DM 7B Decimal Multiply Byte 57 
OS 78 Decima I Subtract Byte 57 
OSA 7C Decimal Shift Arithmetic Byte 58 
DST 7F Decimal Store Byte 56 
DW 36 Divide Word Word 42 
EBS 63 Edit Byte String Immediate, byte 64 
EOR 48 Exclusive OR Word Word 46 
EXU 67 Execute Word 73 
FAL 10 Floating Add Long Doubleword 53 
FAS 3D Floating Add Short Word 53 
FDL lE Floating Divide Long Doubleword 54 
FDS 3E Floating Divide Short 

optional 
Word 54 

FML IF Floating Multiply Long Doubleword 54 
FMS 3F Floating Multiply Short Word 54 
FSL 1C Floating Subtract Long Doubleword 54 
FSS 3C Floating Subtract Short Word 53 
HIO 4F Halt Input/Output (privileged) Word 86 
INT 6B Interpret Word 38 
LAD 1B Load Absolute Doubleword Doubleword 34 
LAH 5B Load Absolute Halfword Halfword 33 
LAW 3B Load Absolute Word Word 33 

LB 72 Load Byte Byte 32 

LCD 1A Load Complement Doubleword Doubleword 33 

LCF 70 Load Conditions and Floating Control Byte 35 

126 Appendix C 



SIGMA 6 INSTRUCTIONS (MNEMONICS) (cont.) 

Mnemonic Code Instruction Name Addressing Type Page 

lCFI 02 load Conditions and Floating 
Control Immediate Immediate, word 35 

lCH 5A load Complement Halfword Halfword 33 
lCW 3A load Complement Word Word 33 
lD 12 load Doubleword Ooubleword 32 
lH 52 load Halfword Halfword 32 
LI 22 load Immediate Immediate, word 32 
lM 2A load Multiple Word 35 
lPSD OE load Program ~tatus Doubleword } 

privileged 
Ooubleword 75 

lRP 2F load Register Pointer Word 77 
lS 4A load Selective Word 34 
lW 32 load Word Word 32 
MBS 61 Move Byte String Immediate, byte 61 
MH 57 Multiply Halfword Halfword 41 
MI 23 Multiply Immediate Immediate, word 41 
MMC 6F Move to Memory Control (pri v iI eged) Word 77 
MSP 13 Modify Stack Pointer Ooubleword 71 
MTB 73 Mod i fy and Test Byte Byte 43 
MTH 53 Modify and Test Halfword Halfword 43 
MTW 33 Modify and Test Word Word 44 
MW 37 Multiply Word Word 42 
OR 49 OR Word Word 46 
PACK 76 Pack Decimal Dig its Byte 59 
PlM OA Pull Multiple Word 70 
PlW 08 Pull Word Word 69 
PSM OB Push Multiple Word 70 
PSW 09 Push Word Word 69 
RD 6C Read Direct (privileged) Word 80 
S 25 Shift Word 47 
SD 18 Subtract Doubleword Ooubleword 41 
SF 24 Shift Floating Word 48 
SH 58 Subtract Halfword Halfword 40 
SIO 4C Start Input/Output (privileged) Word 83 
STB 75 Store Byte Byte 36 
STCF 74 Store Conditions and Floating Control Byte 37 
STD 15 Store Doubleword Doubleword 36 
STH 55 Store Halfword Halfword 36 
STM. 28 Store Multiple Word 37 
STS 47 Store Selective Word 36 
STW 35 Store Word Word 36 
SW 38 Subtract Word Word 40 
TBS 41 Translate Byte Stri ng Immediate, byte 63 
TDV 4E Test Device } privileged Word 87 
TIO 40 Test Input/Output Word 86 
TTBS 40 Translate and Test Byte String Immediate, byte 63 
UNPK 77 Unpack Decimal Digits Byte 59 
WAIT 2E Wait - } Word 79 
WD 60 Write Direct privileged Word 80 
XPSD OF Exchange Program Status Doubleword Doubleword 75 
XW 46 Exchange Word Word 36 

Appendix C 127 



APPENDIX D. INSTRUCTION TIMING 

This appendix shows the timing (in microseconds) for 
executing individual SIGMA 6 computer instructions under 
a variety of circumstances. All of the times are based on 
the assumption that whenever the CPU requests a service 
cycle from a parti cular memory bank, it never has to wait 
for such service due to other devices (such as lOPs) that 
are connected to that memory bank. 

Execution times depend not only on the nature of the specific 
instructions, but also on the configuration of memory banks 
in the system, and the placement of instructions and operands. 
The following table provides a means of estimating instruction 

Memory Bank Configuration 

A II instructions and operands are in the same 
memory bank 

All instructions are in one memory bank and all 
operands are in a different memory bank 

A II instructions and operands are in two inter-
leaved memory banks 

A II instructions and operands are in four inter-
leaved memory banks 

All instructions are in one memory bonk and all 
operands are in two interleaved memory banks. 
(Both operand memory banks are different from 
instruction memory bank.) 

Basic timing information is summarized in the following two 
tables. A dash entry for any item indicates a non-applicable 
or impossible condition for the instruction. Special notes 
(identified by numbers in the II Notes" column are given at 
the end of the table to which they apply. Table D-1 shows 
the execution times for instructions under the most common 
conditions that the user can expect to encounter in his pro­
gram. Table D-2 shows the additional times that must be 
added to the basic times if (1) the instruction performs a 
register-to-register operation (i. e., accesses one or more 
of the genera I registers for an operand(s) or a direct address} 
or (2) the register pointer in the current program status 
doubleword selects one of the register blocks in the range 
from X I 41 through X l l P (4 through 31 decimal). 

The times given in Table D-2, where the instruction per­
forms a register-to-register operation, assume the following 
conditions. 

1. The CPU is operating in the mapping mode with one 
memory bank so that no memory overlap occurs. 

2. All instructions are in core memory. 

128 Appendix D 

execution times for some of the possible combinations of 
memory bank configuration, data placement, and instruc­
tion type, where 

MAX = Time with no memory overlap (i. e., all se­
quential memory accesses come from the same 
bank) 

MIN = Time with complete memory overlap (i. e. I all 
sequential memory accesses come from a bank 
not currently busy, that is, the bank being 
accessed is not being used by the CPU or any 
external lOP) 

Average Instruction Execution Time 

Instructions that utilize Instructions that uti Iize 
byte., ha Ifword, doubleword 

and word addressing addressing 

MAX MAX 

MIN 1,12 MAX + 1/2 MIN 

1/2 MAX + 1/2 MIN 1/4 MAX + 3/4 MIN 

1/4 MAX + 3/4 MIN 1/8 MAX + 7/8 MIN 

MIN MIN 

3. In the case of an instruction with a direct address, its 
operand is in one or more of the general registers. For 
a push-down instruction with a direct address, however, 
its stack pointer doubleword is in the general registers 
and the stack is in core memory. 

4. In the case of an instruction with an indirect address, 
the indirect reference is to one of the general registers, 
which contains the direct address of the operand. The 
resultant virtual address is assumed to be a core memory 
address. For a push-down instruction with an indirect 
address, therefore, both the stack pointer doubleword 
and the stack are assumed to be in core memory. 

The timing data given below are for a typical system. A 
specific CPU may vary by up to ±1O% of the times shown. 

For Jarge core memory configurations, an additional. 1 I-Isec 
per memory access may be encountered due to added cable 
lengths. 



Table D-1. Basic Instruction Timing 

No Memory Overlap Maximum Memory Overla) 

No Map Map No Map Map 

Mnemonics Notes Direct Indirect Direct Indirect Direct Indirect Direct Indirect 

No 
Index I"dex 

No 
Index Index 

No 
Index Index 

No 
Index Index 

No 
Index Index 

No 
Index Index 

No 
Index Index 

No 
Index I Index 

3.6 2.5 3.2 3.4 3.8 +,----t---- ~-~--~~--- ~~--+--4.-2--+--2-.-9--+- 3_._7 ____ 3_._9_+-_4_. 3 _ __1>---2-. 4_~-3.-0-.--3. 3 

..... r----:-:-o-------4·-R--iO=::-~~9 7.' :::: ~~-~~-~: :: _:::-~~ ~:~(~~-;;-~--~----_+-------- - --------.------ - ._---_.-+------1,-- , , + 
AID R ~ 0 6. 1 6. 1 6. 7 6.7 6. I 6. I 6.7 6.7 6. I 6. 1 6.7 6.7 6. I i 6. 1 6.7 6.7 

-.32 .. 03-13~.69 ---~ .. 93 I :.-6
2 

2.0 2.7 2.9 __ ~~ __ -~~~--~~--~-- 2.6 --31..5
2 

---+-3
2 

.. : _ . _ 2.4 2.9 

~ ____ .,-___ .. _ .. ____ ~3-.-3-+_ •. 1 U .., -'~2i3:. '.1 •.• t '.1 <.S_ 

AW 2.0 _2_.6 ____ 2_9 ~.! __ f_-2.O 2.7 2.9 3.3 1.4 _~ __ :~_r-_2.~ ___ ~_-+~~~ ____ ~ __ :~ 
---BAA"!l~- ------r-32·.-03---L=-2·.~3---=--2·.99---~2·.-92 3

2 

.. : 3.8 4.0 4.4 2.6 3.3 3.6 3.9 2.9 /3.6 3.8 4.2_ 

AND 

I .. 2.4 3.0 3.0 2.2 I 2.2 2.8 2.8 2.3 i 2.3 2.9 2.9 
-------. r--------~ .. ----i---------.. --- -r---.----l-----_+-------.-f--- ----+-------- 1------- f__- .-

BCR branch 1.0 Ii 1.6 2.0 2.3 1.0 1.7 2.0 2.4 0.9 1.5 1.8 2.2 0.9 1.6 1.8 2.3 
-------T------------- ; --------+---~------.~----~--_+------+_--_+---+_------~--~ 

BCR no branch 2.0 ~._6 ____ 3._0 _ _+-3-.-3-+--2-.-1--+--2-.8----3.-1-~-3-.-5--~_1_._9_~-2-.5----2.-8-_+-3-.-1--~-2-.-0-_+-2-.-7----2-.9-_+-3._3_~ 
! BCS branch 1.0 2.0 2.3 1.0 1.7 2.0 2.4 1.8 2.3 I 1.6 o. 9 1. 5 1. 8 2. 2 o. 9 J 1. 6 

~---~.------I__--+_------------~--_4---+_------__I-----~--~----------------1---- ----------+----~ 

BCS no branch· 2.0 2.6 3.0 3.3 2.1 2.8 3.1 3.5 1. 9 i 2.5 2. 8 3. 1 2.0 2. 7 2.9 3.3 

BDR branch 1. 4 i 1. 7 2.4 2.4 1. 4 1. 8 2.4 2.5 1. 4 1. 7 2.3 2.3 1.4 1.8 2.3 2." 
----- - ---+---------+-----4---+_-------If_---~---f_------_+----I__---_+-------+---~ 

BDR no branch 2.4 J 2.- 3.4 3.4 2.5 2.9 3.5 3.6 2.3 12.6 3.2 3.2 2.4 2.8 3.4 i' 3.4 
~-----~------~---~-------------+----+-------

!~ ____ b_ro_nc_~ ____ ~~~~-~.!-------~~~---2-.4---_+-1.-4-_+--1.-8----2-._4_+-_2_.5_---t_1_.4_--+!_1._7_. __ 2_._3_+_2_.3 __ ---t_1_.4_-+_1._8 ___ 2.3 i 2.4 

no branch 2. 4 ~ ---3.-4-l~.4 2.5 2.9 3.5 3.6 2.3 2.6 3.2 3.2 2.4 2.8 3.4 I 3.4 BIR 

CAL 1-4 __ ~ _ --+-=:-~_~_3 ___ 3.3 3.3 3.3 3.3 3.3 3. 2 3.2 3. 2 3.2 3.2 3.2 3.2 I 3.2 

r--~~--f-------r-~.-~- -t' ~~-- -~-- -~~-f_~- ~ ___ 2._9_ 3.3 1.4 2.0 2.3 2.6 1.5 2.2 2.4 2.9 

CBS 2 .j:~N -- +::~N +;:~N +::~N 
r-------f-------I-----+----------f_--I----i----------------if_----+------ii-------~---_t---_+_------i__-__I 

CD 2.9 3.6 3.9 4.2 2.9 3.7 3.9 4.3 2.4 3.0 3.3 3.6 2.5 3.2 3.4 3.8 
t---.---r-------~-- -----f--------+-----f--------f---_+---t------_+-- ----+-----+-------I--------t 

CH 2.0 2.6 2.9 3.2 2.0 2.7 2.9 3.3 1.4 12.0 2.3 2.6 1.5 2.2 2.4 2.9 
r-------I----- i -~~.----_+_----!__-------_+---~ 

CI 1. 9 2.0 - - 1. 8 I - - - - 1.9 

3.8 3.2 ~;:;,--- ~--,~-- r 3.'3 'l' ,->-;:;-- -;;--;:;- .;-- -,. 7,- - 3:3- 3.' 
~--= :--__ ~=;. 0 _t6_~~2. 9 _ _~ __ ~ ___ ~ ____ ~. ~ __ 2~_ ~.~3 ____ ~~ _____ ~~_ 3-. -1--_+--1-.8---+-2.-6-----2-.-8--+-3-.-2--1 

~ ___ ~__ _ 3.0 ~L~:~ . 4~~ ~·-=-_~_+2~ ____ ~~ __ ~~_f_~-~-~~8---- ~~_~--~--.-7----3-.-9---+--4.-3---I 

3.4 2.5 

CVA 

CVS 
---_.-

CW 
----- ----- -

DA 

---_._--

DC 

----------

17.1 117.1 17.6 17.6 17.1 17.1 17.8 17.8 17.1 17.1 17.3 17.3 17.2 17.2 
tD.6N ! .Q.6N ~0.6N +0.6N +0.7N +O.7N ~0.7N +0.7N +O.5N +O.5N to.6N .0.6N +O.6N +O.6N 

17.3 
+O.7N 

17.3 
.0.7N 

------ --------+------------ f_----- .-- f---~--f__---~- --.. - --- f------- ------------- .. ---f-----"1i-----------+-----I 
34. 7 i 34. 7 35. 2 35. 2 38.4 38.4 38.5 38.5 33. 2 33.2 33. 7 33. 7 36. 8 36.6 

--- -- - ----f~ ------.------ -.---. ~------- ---~---.---------- -----------
___ 2.0_!_~~ ___ ~:~_~~ __ f_--2..:~ .!:!..__ 2.9 3.3 1.4 2.0 2.3 2.6 1.5 2.2 

19.2 19.2 20.0 20.0 19.4 19.4 20.6 20.6 19.2 19.2 20.0 20.0 19.4 19.4 

::.:O--r~:~--;~:-:-~--- ~::~~ _:_:~ -~~:-7- ~::D ~::o ~::D ~::o ~::D ::::0 ~::o I ~::~D 

36.7 

2.4 

20.6 
+0.30 

12.8 
+0.30 

36.7 

2.9 

20.6 
+0.30 

, 12.8 
-'0.30 

-------+-----------'--------- ------- -------.--- ---- ----.- -.----- . -----+-----1 
+0.30 I .0.30 .0.30 +0.30 +0.30 +0.30 +0.30 +0.30 +0.30 +0.3D +0.30 +0.30 +0.30 I +0.30 

DO 29.7 l29.7 30.3 30.3 30.8 30.8 31.4 31.4 29.7 j29.7 30.3 30.3 30.8 30.8 31.4 31.4 
___ .. _________ ~. 8K _ ~~.~~ __ +0: 8K .. ~ I~:~~__ +0.8K +0. 8K ____ ~~__ +0.8K +0.8K +O.8K +O.8K +O.8K +O.8K I +O.8K +O.8K +0.8K 

DH 12.4 113.0 13.4 ~113.7 12.4 13.2 13.4 13.8 ~U- Q-0---~3 ~---~~-1--13.3 13.7 

~--- -4-- ~~~~--_r~~;----1-2~~--11~4--~- -~;~~--tl~·~--~-;~-- 12.5~;~;--~~~~--~~~--- ~2~;-- --;-~ 11:S--- 12.5 12.5 

______________ ~.:3~Nti +~._~ __ ~.30_+~~~~ ,~._3~_ +O.~ __ +~~~ __ +0.30 +0.3~ ___ ~~-~--tO.3~-~~-~~---~~--~0.30-- ~0.3~ __ 

OM 6 612 61.2 61.8 \' 61.8 62.3 62.3 62.9 62.9 61.2 61.2 61.8 61.8 62.3 62.3 62.9 62.9 

___ __ ~_4~N ~._4~~ _~_~~~_ ~~~4D~ ~~4~ .~~~_ ~_~_~~o~ _+O.4~~ ~~~~~:~~ __ ~4DN +0.4oN +O.4DN +O.4oN +O.4DN 

::A -- ~:o -t ~-:O~§.!O-~!O- _~~c:~o_~:o_ ~:o :·:0 ::0 ::0 ::0 ::0 ::0 ::0 ::0 
-- - - ~------+-------------._i---- ---- -------- -.--- .. -------,----- -------< ------------ ----I ----------------~-

oST 11.3 /".3 12.0 12.0 11.3 11.3 12.1 12.1 11.3 11.3 12.0 12.0 11.3 11.3 12.1 I 12.1 
+0. 70 i .0.70 +O.7D to. 70 +0.7D +0.70 .0. 70 +0.70 +0. 70 +0.70 +0.70 to. 70 +0.70 +0. 7D +0.70 I +0.7D 

Appendix D 129 



Table D-1. Basic Instruction Timing (cont. ) 

No Memory Overlap Maximum Memory Ovedop 

No Map Mop No Mop Mop 
-- - --- -- ------ ---- r-----------,.--------i 

Direct Indirect Direct Indirect Direct Indirect Direct Indirect 
f---- -- r--- -- -- r' ---- ---- --- -- ---_t----.----\ 

No No No No No No No No 
Index Index 

--."'--

DW i 13.8 

:;5 _-_ ~j" '-__ 
EOR _ 1.8 2.~ __ 2.~+ 3.0 I.B . __ 2.5 2.~ 31 14 1 20 23 126 15 2 2 

1.8 

2 4 2.9 

2 2 2.4 EXU 19 1. 1.6 2.2,2.2 18 22 2.4 I 1.6 2.1 2.2 1.3 
- t - r ~---~~---+----+----.~--~ 

j~:-:~: I:: -- ,:; ,:; ,::' ,:: ,:: ,:: ,:; !,:L ,:; ,:: ,:: ,:: ,::--'~~-+-I-:-.--:--t-I-:-'~---I 
_!~LtYPir.alj'12 5.0 5.5 ___ ~ ___ ~ ___ ~~r-~.7 6.0 6.4 5.0 5.5 5.9 6.1 5.1 5.7 6.0 6.4 

FASmin 10 3.3 3.9 4.2 4.6 3.3 4.0 4.2 4.7 3.3 3.9 4.2 4.6 3.3 4.0 4.2 4.7 
------ r --- --" ------1---- ----- .----

8.2 9.0 9. I 9.6 FAS max I 11 B.2 8.9 9.1 9.5 B.2 9.0 9. I 9.6 B.2 8.9 9. I 9.5 
--.--.- ·----1 -. ---.---- -----.-----. ~---r--" -----.-.-----t----.,.---f----+---_+_--~ 

_~~ty~~co~J~2 __ ~O__ 4.6 4.9 5.3 4._0 __ ~_4.7 4.9 5.4 4.0 4.6 4.9 5.3 4.0 4.7 4.9 5.4 
-.-f---

FDLmin 113,14 254 261 26.4 126.7 255 26.1 27.0 26.B 25.4 26.1 26.-4 26.7 25.5 261 270 26B 

FDL ma~- r 1I- 34 7 r- 35 .. - 35 7 ~I 36.0 34 B - -35.4 36.3 36.1 34.7 35.4 35.7 36.0 34.8-- 35:4 36:3t36~I--
f--F-DS min I 13,14 12 4 r;3 ;--- 13~ -~3-7 -- -~2 4 - -13.4 :-;; ... -- 13. B -.. 12.4 13.3 - - ~3~ ~T 13.7 ~2.-i-- ;3~.4--- 13:~- -tru--
r-~~:~"-- t~=~-~-!~~6- ~~;---~~-- _17-;~= ~~.-;- -;7.6 17.6 IB.-;;- 16.61-;.~-- -;~~--- -1-7-.9--+--16-.·-6-+-17-.-6-+-1-7-.6--t-I-B-.O--I 

FMlmin 13,14 9.1 9.8 10.0 10.4 9.2 10.0 10.2 10.6 9.1 9.8 10.0 10.4 9.2 10.0 10.2110.6 
f-- .--- --.- ---- . --- ----- ----- ----t--__j----t----+--__jc----+_---~r_---_+_--_t---+----

FMLmox" 14.7 15.4 15.6 16.0 14.8 15.6 IS.8 16.2 14.7 15.4 15.6 16.0 14.8 15.6 15.8 16.2 
f----.-- ----.. -- .... - -.------+---+_---+----I,---+_----t---f----+---+---f----+----f---+----+--.... -+----1 

::~ ~;;j ~,,,-::. . .~_:_.-_ .. +-_:_: _:_+-.1_:_: :--+-::-:-+-:-:-:-_+-:-:-:-_+_1-:-: : __ +_:._. :_.+_:_:_:_+ __ :_:_:_+-1_: __ : 0_

2 

_+-.: __ : :_+_::_:_+_:_:_:_+1_:_: :_~ 
~~~ __ I 10 __ ~-4-.-1-+_-4-.-7-~-5-.0-_+_-5.-3-~-4-.-2-~-4-.-9-4--S-.-1._t--_5._5_-+_4_._I_+_-4-.-7-t---5-.0-~-S-.3--+-4-.--2 ~_4_._9_+_-5-.I-_t-S-.-5--I 

F5lmax fil 13.7 14.2 14.6 14.8 13.8 14.4 14.7 15.1 13.7 14.2 14.6 14.8 13.8 14.4 14.7 IS.I 

~;yp.;~'t_'2~=-_. - ~.-.~--5-.5--+-5-.-9-+-6.-.-1-4_-5-.-1-_+_-5-.7-_+-6.-0-+-6_._4_~-5-.-0-+_-5-.5-+-5.-9-+_-6-.-1-~-5-.-1-_+_-5-.7-_t-6._0 _ _+-6-.-4-~ 
~min __ ~ __ .. _~~--+_-4.-2-~-4-.-6-;--3-.-3-+_-4-.0-_+-4.-2-_r-4-.-7_-r .. _3_._3 _ _+_-3-.9-~-4.-2-+-4-.-6-+-3-.-3 .. --+_-4-.0-_t-4-.2_-+_4_._7_-1 

F5S mox I 11 8.2 8.9 9. I 9.5 8.2 9.0 9 .. I 9.6 8.2 8.9 9. I 9 .. 5 8.2 9.0 9. I 9.6 
f__---_+-------- -----.. ----~--~----_+---+---_+---;---1_--_+_--_+---+_--_;---t__--+_--_+-----1 

FSS typical 12 4.0 4.6 4.9 5.3 4.0 4.7 4.9 5.4 4.0 4.6 4.9 5.3 4.0 4.7 4.9 5.4 
r--'- - - -- ~----4------+_----_+----~f------_r----_+----~r-----~------~----+_----_+------~----~ 

HIO R = even,/O 9.7 9.7 10.3 10.3 9.7 9.7 10 .. 3 10.3 9.4 9.4 10.0 10.0 9.5 9.5 10. I 10. I 
~-.-.. - -- ------.-.- -+-----1--.--

HIO R = odd 8.3 8.3 8.9 8.9 8.3 8.3 8 .. 9 8.9 8.3 8.3 8.9 8.9 8.3 8.3 8.9 8.9 
---- r'--'--'-- f----- ---. -- -f-.---+_---_t---f---_t----f----;----+---_+----+_------if__---+---_+-----f__---I 

HIO R = 0 7. I 7. I 7.7 7.7 7. I 7. I 7.7 7.7 7. I 7. I 7.7 7.7 7. I 7. I 7.7 7.7 
-----------+--------+-----r-----~----_r----_t------f__----1_----1_----~------i-----,f__----+_----_t----_+------+-----1------1 

INT 2.4 3.0 3.4 3.6 2.5 3.2 3.4 3.8 2.3 2.9 3.2 3.5 2.4 3. I 3.3 3..7 

LAD 3.4 4.0 4.3 4.6 3.4 4.2 4.4 4.8 3. I 3.7 4.0 4.3 3.2 3.9 4.2 4.6 

LAH i 2.0 2.6 2.9 3.2 2.0 2.7 2.9 3.3 1.8 2.4 2.7 3.0 1.8 2.5 2.7 3. I 

LAW 
l 

2.0 2.6 2.9 3.2 2.0 2..7 2.9 3.3 1.8 2.4 2.7 3.0 1.8 2.5 2.7 3. I 

LB 1.8 2.5 2.7 3. I 1 2.0 2.6 2.9 3.2 2.0 2.7 2.9 3.3 1.8 2.4 2. 7 3.0 
~------ --------T-----+_----_1----~f__----_r----_1------~----_+------~----+_----4-----_+------~----+------t__----~----~ 

LCD 2.9 3.6 3.9 4.2 2.9 3.7 3.9 4.3 2.4 3.0 3.3 3.6 2.S 3.2 3.4 3.8 

LCF 2.0 2.6 2.9 3.2 2.0 2.7 2.9 3.3 1.8 2.4 2.7 3.0 1.8 2.5 2.7 3.1 

LCFI 1.3 1.4 1.3 1.4 

LCH 2.0 2.6 2.9 3.2 2.0 2.7 2.9 3.3 1.8 2.4 2.7 3.0 1.8 2.5 2.7 3.1 

LCW 2.0 2.6 2.9 3.2 2.0 2.7 2.9 3 .. 3 1.8 2.4 2.7 3.0 1.8 2.5 2.7 3.1 

3.9 2.9 3.6 4.2 3.9 4.3 3.0 3.3 3.6 2.5 LD 
f----------4--------i-----1------~----_+------r-----1_----__jf__----r_----~----_+------r_----_r------r_----~---_+------+_----1 

2.9 3.7 2.4 3.2 3.4 3.8 

LH 2.0 2.6 2.9 3.2 2.0 2.7 2.9 3.3 1.8 2.4 2.7 3.0 1.8 2.5 2.7 3.1 

Ll 1.3 1.4 1.3 1.4 

LM 15 2.3 2.3 3.0 3.0 2.4 2.4 3.0 3.0 2.2 2. 2 2.8 2.8 2.3 2.3 2.8 2.8 
+1.0N +LON +1. ON +1.0N +1. IN +1. IN +1.IN +1. IN +1.0N +1. ON +1. ON +1. ON +1. IN +I.IN +LIN +LIN 

f-----.----.---------r-----r-----+----_+------+------+------f-----+_----_t------f------+_-----+------+----_r----__if__----~----~ 

lPSD 
~------------1-----1-----__ir_----+_-----~----__i~----_r----_+------r_----4_----_+--

4.4 4.4 5.0 5.0 4.7 4.7 5.2 5.2 5.0 

LRP 2. 2 2.8 3. I 3.4 2. 3 3.0 3. 2 3.6 2. 2 2.8 3. I 

130 Appendix D 

5.0 4.7 4.7 5.2 5.2 

3.4 2.3 3.0 3.2 3.6 



Mnemonics 

lS 

LW 

MBS word 

MBS byte 

Table D-l. Basic Instruction Timing (cont. ) 

No Memory Overlap Maximum Memory Over;"p 

No Map Map No Map Map 

Notes Direct Indirect Direct Indirect Direct Indirect Direct t Indirect 
No No --,- No No No ,-------N--;;-- ----f---N;;--i--- --- -N~-T--

--c---- --- -- --f--- -- ---- -===±::::===--==+=====1 Index Index IndeXr~ndex Index Index Index Index Index Index Index Index Index Index I Index : Index 

2.5 3.1 3.4 3.7 2.6 3.3 3.5 3.9 2.5 3.1 3,4 3.7 2.6 3.3~±tt±i5 i 39 

---------;r--1.-8-- "2.~- --:;;--- 3. 0-- -~;_r__;-;_ ~-~ r-~7- ~- -;.-; -- -;~- ~~- -;-; 2.4' 3.~-
-----r----+----- --- ------ -- ---- -- - --- ---- ------- ---t--
;~: ~N I - - - - 4.4 - - - - - - 4. 2 - - - - 4.4 I' - - i 

, to.8N to. aN to.8N i 

4.2 
+3,4N 

4.3 
t3.4N 

--1------ ----

4.2 
+3.4N 

------ -------

4.3 
+3.4N 
------+ 

I 

3.8 MH 

~'----+-----~I-

4.4 4.8 5. I 3.9 4.7 4.9 5.3 3.8 
-------- --f--- -- -----------c--.-.---

4.8 5.1 3.9 4.7 4.9 ! 5.3 
---

MI 5.0 
I-------+----+-- -~~- ---

MMC 15 3.0 

5.1 5.0 
- --- - -. ---c-------- ----- -------+---------+----

3.1 3.0 

5.1 

3.1 
+3. ON 

I 
+3.0N

t 
+3. IN +2.9N 

~M-M_:-:--+R-I-O--~~ ~;gl~-~~-----;r---:-:-~---'~--:-:-~--~---~-~----~-:-:-~-:-:-:-~-:-:-:-~-:-::---+:-:-::--+il--:-:-~-
----+-- --c--- !! 4.1 

. _M_: __ :_: __ ~:_:_-_: ___ -+ :~-(:: -=tIl ~: --tit: ___~c~~_ : : : : :: : ~t :: : _: __ -+_:_:_--.i_:_: __ + I; _:_: ____ -_:', ~-:_'~:~~-i 
r- MTW RIO 3.8 ,4.2 

MTW R ~ 0 3.4 3.8 

MW 6.0 6.5 

OR 2.2 2.4 2_ 8 

PACK 16 12.0 
1--____ +--____ +-tO_._6_~_ .. _ +~.~N_l~.:.6-~_+ ':?..:.6f\J._~~~~_+ to.6N to.6N to.6N +O.6N +0.6N to.6N i +0.6N 

12.0 
to.6N 

1 12. 0 ; 12.8 12.8 
itO.6N +0.6N +0 6N 

+---~ 
, 10.7 I 10.7 

-1. IN +1. 1 N 
PLM 15 10.0 10.0110.8110.8 10.5110.5 11.! 11.1 9.5 9.5 10.0 i10.0 

, +1 ON l1.0N I t1.0N ! 'LON +1 IN t1.1N +1. IN +1 IN +ION +10N +10N I +1 ON +1.0N : +1.0N , -1-1------- '~----1-- i' 
~:--+5 .. -_'::_-'~~- ,;:-t'::- ~-11~~--~;;- ~~:---~~-+I~:-+~::: -f~~-~~~ :1:.: I~:: II::: 

I------Jt--------- +I~_ r~:-~~ ~~_~~~I ON T1.0N j +1.0N +1.0N +1. ON +O.9N I to.8N to.8N I +0.8N +1.0N i .1.0N +1.0~~: +1.0N 

PSW! 9.8 i 9.8 110.5 i 10.5 10.~~ 10.9 10.9 9.3 9.3 9,8 9.8 9.8 ; 9.9 : 10.5 [10.5 

... r---------RO- ---.-+j-nt-e-rn-a-, --t 2:' I 2.5 _+ 3. 1 1-3~ ~-, I 2.5 3. 1 3. 1 2.5 2.5 3. 1 3. 1 2.5: 2 5 : 3. 1 I 3 I 

RO external 2.8 I 1}8 3.4 I 3.4 2.8! 2.83,4 1 3,4 2.8 2.8 1 3.4 1 3. 4 2.8 i 2.8 : 3_4 I 3.4 

17 +0.41''---t-0~~I'~ __ L~.4N __ L- ~:4N _ ~:~~--I +_0~4~_c--::<>,4~_11:0,4~ __ tO'4N _~4~_+~:_~_1 to.~~ ~~:~~--+_'~~~~_~_:I'J : +O,4N 

S left 18 2. I I 2. I I 2.7 I 2.7 2.2 i 2.2 2.8 2.8 2. I 2. I I 2.7 I 2.7 2.1 i 2.1 : 2.7 ! 2.7 

r---------L---- .0. I~ __ ~ +O~~N __ -~~~-J:-~:-~r:..- -~~~--t.~~~~r:.- _~~~ _~~~_(~.~~_++O:-~r:.--, ~~ _I~_ ~~_+_~~-~O~~-j~ 
Srih, 118 2.1 +2.1 2.8 1 2. 8 2.2 1 2. 2 2.9 2.9 2.1 1

2. 1 1 2. 8 2.8 2.2 ! 2.2 12.9 12.9 

9 L--- _~._:N__ to_'.~~ __ ~~2~_li.02N"'. 2N .r:'N.- c:C·.2N- ."'~_ ~"'-t '" 2" , ~. 2N "'. "'_:0 '" i ,0. 2N ,"'. 2N ~ 
50 i 2.9 3.6 3.9 4.2 2.9 3.7 3.9 4.3 2.4 3.0 I 3.3 3.6 2.5 3.2 i 3.4 ! 3.8 

SF If ISingle 2.6 2.6 3.2 I 3.2 2.7 2.7 3.3 3.3 2.6 2.6 I 3.2 3.2 2.7 'I 2.7 ! 3.3 I 3.3 .. G ,0.2N "'."',0. 2N I'0.2N '0. 2'#tO. 2N +0.2N +0.2N -+{).2N +0.2N J +0. 2N +0.2N to.2N l +0. 2N iTO. 2N +O.2N 

~~--i;j;~~ +~:_:N _ ~-~~_l_:-,~-._-.-r_~. ;~=l:N_£:;~J:cl~J:-c:rrN-c-~:N II +_~:~N_·t~;N- ~:N i '~~N1 ~.~_~- '., ~:~N 
SF left I double 4.0 4.0 4.6 u.6 4. I 4. I 4.7 4.7 4.0 4.0 4.6 4.6 4. I 4. I 4. I ,4. 7 

r---~-- to.2N ___ to.2~_ ~~~ _ +O.2N __ +~~:~---t' +~3_~. __ ~!~_ ~O..:~ ~~_:~ ____ ~~+ +{).2N_ TO.2N +0.2N i .0.2N +0.2N! +O.2N 

SF . h I double 3.8 3.8 I 4.4 4.4 3.9 3.9 4.6 4.6 3.8 3.8 4.4 4.4 3.9 I 3.9 4.6, 4.6 
rig t 119 +0.6N to.6N to.6N +O.6N to.6N I to.6N to.6N to.6N +O.6N to.6N to.6N +{).6N to.6N i to.6N ,to.6N I TO.6N 

:: ::::",~':: 1:::~jl_~=_;:~l'~~:~ ~~[:T~;f; J;~;_ci~ ~~±--i;-;,:- ':: ::-1 ::: ::: 
510 'R~O __ 7.1 7.1 ~~ ____ 7.7 ___ 7.1 r-~:-~---l~:~ I~ __ ~~ __ +~~ _7.7 7.7 7.1 7.1-+-;~~~ 
STB 3.0 3.0; 3.6 13.6 3.1 3.1 3.7 3.7 2.9 2.9 i 3.5 13.5 3.0 3.1 3.I,! 3.7 

'sTcF'-- ------ -3.-0 3.0 3:6---1-3.'6-- -3.I--~-- '---3.7-- -3. i- c--- 2. 9 --~+i5I3. 5 3.0 3. I 3.6!-~ 
5TD 3.-6----;.6 -~~~---t 4.-;-·3.-;----;~;---~~_;_--___z;-- 3.2-;;-1-~;-l--;-·7-- -;.-5----r--;-~- r---;~;-j--;:-;-

10.2 i 10.2 

Appendix D 131 



Table D-l. Basic Instruction Timing (cont.) 

~ I _N_o_M_e_m,o_'y_o_v_e_rl_ap ____ ~------------~--------~~~--M-a-x-im-u_m_M_e~m-or-y-O-v-e-rla-p----------------~ 

I
I ''',,~..,onics' Noles - - D-;"~;_~C~_op Ind;~-'----Di-re-c-t --M-,a,p--In-di-re-c-t ----+--D-j-re-c-t --N-O~--dj-r-e-C-' ----t----D;-re-c-' --M-rap---In-di-re--c-, ---

--N-;;--------f--~,- No No No No No No 

Index Index Index Index Index Index Index Index Index Index Index Index Index Inde" Index Index 

~~---=~~=~-==-~=~=====i=====t======~====t=====t=====t=====~====~=====t=====i====~~==~~==~~====~====~ 
5TH 3.0 3.0 3.6 3.6 3.1 3.1 3.7 3.7 2.8 2.8 3.5 3_9 3.0 3.0 3.6 4.0 

----··---------+-2-.1--+--2·-. -1 -+-2-.-S--· f---2. 8 2.2 2.2 2.-S 2.8 2. 1 -2~- 2.8 2.8 2.2 2.2 2.2 2.2 

~TM 15 +1.0N +1.0N +1. ON d.ON ,1.0N +1.0N +1. ON tl.ON +<l.SN .0.8N cO.8N to.8N +O.9N +<l.9N +0.9N +<l.9N 
-- -- ------------- -- ~----- t----.--f-----+------+-----+-----+-----f----I__---/ 

STS 3.7 4.3 4.7 5.0 3.8 4.5 ".8 I 5.2 3.5 4.0 ..... ".6 3.6 4.3 4.5 4.9 
----- ----- ----+----+---+------ ------f--__jf---- +----_t_---- --.. -.-+-----+-.---+--__+---l------+--~ 

STW 2.6 2.6 3.2 3.2 2.7 2.7 3.3 3.3 2.3 2.3 2.9 2.9 2.6 2.7 3.2 
~-----+----- --f-------~--__j~-__j----

SW 2.0 2.6 2.9 3.2 2.0 2.7 2.9 3.3 1.4 2.0 
_ .. --------_+_----_l_--_t__----f.----.--~---+_---+__--+_.--_+----+--

TBS 
3.0 

+".2N 
3.2 

t4."N 
3.0 

+".2N 

I 2.3 2.6 

! 
I 

1.5 

3.2 
+4."N 

2.2 2 ... 

3.3 

i 3.0 

/----------r--- ----- r------+-----f----t-----+----+----+----+---f-----+----_l_---+----t----+----+----~-~ 
TOY R - even,1O 9. 7 9.7 10.3 10.3 9.7 9.7 10.3 10.3 9.4 9.4 10.0 10.0 9.5 9.5 10.1 10.1 

TOV R - odd 8.3 B.3 B. 9 B.9 B.3 8.3 8.9 B.9 B.3 B.3 B.9 B.9 8.3 B.3 i 8.9 B.9 
-------+·-------r-----r----~---+------I----I----+---~---+----t------+----+----;----t---~I--------~ 

TDV R = 0 7. 1 7.1 7. 7 7.7 7.1 7.1 7.7 7.7 7.1 7. 1 7.7 7.7 7.1 7.1 i 7.7 7.7 

~----~~ve;,~-~~- -~~~---1-0-.3---t--9-.7---+-9-.-7--l-10-.-3---+-1-0-.3--t--9-... --+--9-.-"-+'-1-0.-0-41-1-0-.0--t--9-.5--+--9-.-5-1f--1-0.-1-~;I-O-.I-~ 

----- ---+--__I----/-----+-----4-----+-----------+---_+.----1--__t--~----+--~ 

8.3 8. 9 B.9 8.3 8.3 8.9 8.9 B.3 I 8.3 8.9 8.9 8.3 8.3 I 8.9 I 8.9 TlO B.3 
/-------+--- -.--- r---.-- -----+---+---.---+-------+--.---f---+---+---t----.--t---_t_--_t_----+---+----t----I 

TlO R = 0 7. I 7. I 7.7 7.7 7. I 7. I 7.7 7.7 7. I 7. I 7.7 7.7 7.1 7. I I 7.7 ,7.7 
~---- ------f-.. -.-.-f----+----+----_t_----+--.---t---+---~--__t----r---t___--+---+__--+-----+---1 

TTBS 

----------

UNPK 20,21 

3.2 3. 2 3.2 3.2 I 
+".3N +4.6N +".3N +".6N j 

11.6 11.6 12.1 12.1 11.9 11.9 12.3 12.3 11.4 11.4 12.0 12.0 II.B II.8!1 12.2 
+1.3N +1.3N +1.4N +1.4N +1.3N +1.3N +1.3N '1.3N +1.3N +1.3N +1.3N +1.3N tl.3N +1.3N +1.3N 

1 12. 2 
+1.3N 

~----_t_------r--·---~---__+----+----_1--_4---~-__t---~--+_---~---+---+----+-----+------~-~ 
WAIT 21 1. 9 1. 9 2. 6 2.6 1.9 1.9 2.7 2.7 1.8 1.8 2.4 2.4 1.9 1. 9 2.5 i 2.5 

WD internol 2.5 2.5 3.1 3. I 2.5 2.5 3.1 3.1 2.5 2.5 3.1 3.1 2.5 2.5 3. I 3.1 
------1-----.-- -----+----+---+---~--+_--+_---+_---+--;_--+----+--_+---+---+---+_----l 

external 2.B 2.8 3.4 3.4 2.B 2.8 3.4 3.4 2.8 2.B 3.4 3.4 2.8 2.B 3." 3.4 
17 +O.4N +O.4N +0.4N to.4N +0.4N +O.4N +O.4N +O."N +O.4N +O."N +O.4N +0.4N +0 ... N +0.4N +D.4N +D.4N 

WD 

~---_t_---------------f_-----~.--~--_4--~r_--1-----+_----+_----1_---~---+---+---+-----+--~ 

XPSD 110=0 6.5 6.5 7.1 7.1 6.5 6.5 7.1 7.1 6.1 6.1 6.6 6.6 6.1 6.1 6.7 6.7 
~--- f--------- ------- .------t-----t---t-----t___---t---t-----t-----4----+-----t----ir----ir----1---1_----/ 

XPSD 110 = 1 6.5 6.5 7.1 7.1 6.7 6.7 7.3 7.3 6. I 6. I 6.6 6.6 6.5 6.5 7.1 7.1 
I-------+-----~------+---+---.- -----+-.---t-----+---t-----t----t---i".----~---t__--+_--+_--_+----_f 

xw 

Notes: 1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
ll. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 

3.0 3.6 3.9 4.2 3. I 3.8 ".0 4.4 2.6 3.3 3.6 3.9 2.9 3.6 3.8 

Add 0.6 if analyzed instruction is indirect. Subtract 0.3 if it is LCFI, AI, LI, CBS, MBS, or EBS. 
N number of destination bytes processed. 
N number of 11 sin the word converted. 
D number of digits (including the sign) in the effective decimal operand. 
K (D + 6) (16 - Q); D = same as note 4; Q = number of leading zeros in the quotient. 
D same as note 4; N = number of nonzero decimal digits in the decimal accumulator. 
D number of digits (including the sign) to be stored. 
N number of bytes in the editing pattern. 
Add execution time for subject instruction. 
No pre-alignment or post-normalization required. 
Un-normalized operands. 
One hexadecimal pre-al ignment and one hexadecimal post-normalization. 
Nonzero, normal ized operands. 
Minimum time is also typical time. 
N number of words moved. 
N number of byt~s in zoned number in memory. 
N integer (0, 1, 2, ••. ), dependent on delay in external device. 
N number of bit positions shifted. 
N number of hexadecimal positions shifted. 
N number of bytes to be stored in memory. 
Minimum time. 

132 Appendix D 

4.2 



Table D-2. Additional Instruction Timing 
(Add to times in Table D-1) 

Register pointer selects 
Reg i ster-to-reg i ster Operati ons 

register block X'4' - X'lF' 
Mne'l1on ic 1------.--0-;r-e-ct---.--I-n-di-re-c-t-+----r---

0
- i-re-c-t -'--In-d-ir-e-ct---t 

AD 

AD 

AH 

Al 

AIO 

AND 

/'Jotes 
/'Jo 

Index 

2.2 

1.2 

1.2 

Index 

1.4 

0.5 

o 

/'Jo 
Index 

1.2 

1.2 

1.5 

0.5 1.2 

Index 
/'Jotes 

No 
Index Index 

1.2 22 0.5 0.3 

23 0.5 0.4 

1.3 0.4 0.3 

0.1 

1.5 0.6 0.6 

1.3 0.4 0.3 

No 
Index 

0.9 

1.0 

0.8 

0.9 

0.8 

Index 

0.6 

0.7 

0.6 

0.9 

0.6 

1.3 0.9 0.7 1.6 Af'JLZ 
r--------1---+--_1--+_-~~-;_---_+---;---~----_+--_; 

1.4 0.6 1.3 1.3 

AW 1.2 0.5 1.2 1.3 0.4 0.3 0.8 0.6 

A'V/M 2.2 1.6 ' 1.3 1.3 0.4 0.3 0.8 0.6 
t---.--I------+---+----+--+---+------jf----+---t---~I-__I 

BAl OJ 0.7 1.4 1.4 0.4 0.4 0.7 0.7 

BCR branch 1.3 0.7 1.3 1.4 0.3 0.3 0.7 0.6 

BCR no blanch 2.1 1.9 1.3 1.3 

BCS branch 1.3 0.7 1.3 1.4 0.3 0.3 0.7 0.6 

BCS no branch 2.5 1.9 1.3 1.3 

BDR blanch 1.4 0.9 1.4 1.4 0.3 0.3 0.7 0.6 
.'-'----- -- - -- ----- ----.. --+----_+--+_--+----1 

BDR nob,allch 2.4 2.1 1.2 1.3 

branch I 1.4 1.4 1.4 0.3 0.3 0.7 0.9 0.6 BIR 
--------+------4----~--_+-----~--_1~----~--~----~----+_--~ 

BIR 

CAL 
1,2,3,4 

CB 

CBS 
1------

no branch 2.4 

1.3 

24 0.7/'J 

2.1 1.2 

1.4 

0.6 1.3 

1.3 

1.4 0.4 0.4 0.7 0.7 

1.3 0.4 0.3 0.8 0.6 

0.6 

CD , 22 1.4 1.2!'2 0.4 0.3 0.8 0.6 

r-C-H----+-·-----t--l:-3-4--0.-6-+--1.-3-4--'-.2-+------+--0-.4-+--0.-3-+--0-.8--r-O-.6~ 
r--.--- -----+----t--f---+---- -.--~--.+----+----~--~ 

CI 0.4 

CS 1.4 0.7 0.4 0.3 0.8 0.6 

~-C-LM-----+_---_~-I-.-5_+-1-.-2~_I-.-2-_i-1.--2-+ __ ----+--0-.4-+--0._3_+ __ 0-.8--r-0-.6~ 
~-C-LR-__ +_-----t--l-._3 _ _+-0-._7-+-_i-.4-- i 1.4 0.4 0.3 O.B 0.6 

1.3 I 1.3 

CVA 30 1.4 I 1.4 0.4 0.4 0.7 0.7 

CVS 30 1.4 1.4 0.4 0.4 0.7 0.7 

CW 1.3 0.6 1.3 1.3 0.4 0.3 0.8 0.6 

OA 0.10 0.10 1.5 1.5 0.4 0.4 0.7 0.7 

DC 0.10 0.10 1.5 1.5 0.4 0.4 0.7 0.7 
~---+_--~--+_-~-·--+_--+---·~-~---+_--~c---

~-D-D--~~----+_-3.-5-+-3-.-5+-1-.5-.t-l-.)---~-----1-0-.-4-+-_0_.4~f--O.-7_+-0.-7~ 
DH 1.5 0.7 1.4 1.4 0.4 0.3 0.8 0.6 

DL 0.10 0.10 1.5 1.5 0.4 0.4 0.7 0.7 

OM 3.5 3.5 1.5 j .5 0.4 0.4 0.7 0.7 

OS 1.5 
I------~----+--+--_+_--+_--t-----~--+---+--~-~ 

O.lD 0.10 1.5 0.4 0.4 0.7 OJ 

OSA o 1.4 L4 0.4 0.4 0.7 0.7 
-------+----+---+----+--­ ---- ---I-----+-------1~-_+-__I 

DST 0.30 0.30 1.5 1 .5 0.4 0.4 0.7 0.7 

ow 1.5 0.8 1.4 1.4 0.4 0.3 0.8 0.6 

EBS 25 OAN 0.3 

EOR 1.4 0.7 1.4 1.5 0.4 0.3 0.8 0.6 
~.-~r_.--~--_+----+_-_+--~f--_+_---+--_1--__i 

EXU 26 1.5 0.7 1.5 1.5 26 0.4 0.3 0.8 0.6 

Register-to-register Operations 
Register pointer selects 
regisr"r block X'4' - XlF' 

~emonic~----r--D-ir-e-ct--r--In-d-ir-ec-t-+---~--O-;r-e-ct-----In-d-ir-ec-t-~ 

FAl 

FAS 

FOL 

FOS 

FMl 

FMS 

FSL 

FSS 

HIO 

INT 

LAD 

LAH 

LAW 

LB 

LCD 

LCF 

LCFI 

LCH 

Nates 
No 

Index 

2.3 

1.5 

2.3 

1.5 

2.3 

1.5 

2.3 

1.5 

1.4 

2.3 

1.2 

1.2 

1.2 

2.2 

1.2 

1.2 

Index 

1.6 

0.8 

1.6 

0.8 

1.6 

0.8 

1.6 

0.8 

0.7 

1.5 

0.5 

0.5 

0.5 

1.4 

0.5 

0.5 

No 
Index 

1.5 

1.5 

1.5 

1.5 

1.5 

1.5 

1.5 

1.5 

1.5 

1.4 

1.3 

1.3 

1.3 

1.3 

1.2 

1.3 

1.3 

Index 

1.5 

1.5 

1.5 

1.5 

1.5 

1.5 

1.5 

1.5 

1.5 

1.4 

1.3 

1.4 

1.4 

1.4 

1.2 

1.4 

1.4 

Note~ No 
Index 

0.4 

0.4 

0.4 

0.4 

0.4 

0.4 

0.4 

0.4 

0.6 

0.4 

0.4 

0.4 

0.4 

0.4 

0.4 

0.4 

0.1 

0.4 

Index 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.6 

0.3 

D.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

/'Jo 
Index 

0.8 

0.8 

0.8 

0.8 

O.B 

0.8 

O.B 

0.8 

0.9 

0.8 

0.8 

0.8 

0.8 

0.8 

O.B 

0.8 

0.8 

Index 

0.6 

0.6 

0.6 

0.6 

0.6 

0.'> 

0.6 

0.6 

0.9 

0.6 

0.6 

0.6 

0.6 

0.6 

0.6 

0.6 

0.6 

0.6 LCW 

-----.-i----+_-_1--~--_+--;_---.~I--_+_---+_--+_--~ 

1.2 0.5 1.3 1.4 0.4 0.3 O.B 

LO 2.2 1.4 1.2 1.2 0.4 0.3 0.8 0.6 

LH 1.2 0.5 1.3 1.4 0.4 0.3 0.8 0.6 

LI 0.1 
~-----+----~---+---~---~--.----+-----+---+---------

LM 0.8N 0.8N 1.3 1.3 0.4 0.4 0.7 0.7 

LPSO I.B 1.8 1.5 1.5 0.4 0.3 0.8 0.6 

LRP 1.5 0.7 1.5 1.5 0.4 0.4 0.7 0.7 

LS 1.5 0.8 1.5 1.5 0.5 0.4 1.0 0.7 

LW 1.4 0.7 1.5 '.5 0.4 0.3 O.B 0.7 

MBS 27 0.2N 0.6 

MBS 28 0.3N 

MH 1.5 0.8 1.5 1.5 0.4 0.3 0.8 0.6 

MI 0.4 

MMC 0.8N 0.6 0.6 0.9 0.9 

MSP 3.5 3.5 1.5 1.5 0.4 0.4 0.7 0.7 

MTB RIO 2.1 1.4 1.5 1.5 0.4 0.3 0.8 0.6 

MTB R=O 1.5 0.8 i.5 1.5 

MTH RIO 2.1 1.4 1.5 1.5 0.4 0.3 0.8 0.6 

MTH R=O 1.5 0.8 1.5 1.5 

MTW RIO 2.4 1.7 '.5 1.5 0.4 0.3 0.8 0.6 

MTW R=O 1.5 0.8 1.5 1.5 

MW 1.5 0.8 1.5 1.5 0.4 0.3 0.8 0.6 

0.8 0.0 
~------+_----_r----+_--_+----t---_+------+---_+----+_----~---

OR 1.4 0.7 1.5 1.5 0.4 0.3 

PACK O.2N 0.2N 1.5 '.5 0.4 0.4 0 -, 
.1 0.7 

PLM 3.2 3.2 1.1 1.1 0.4 0.4 0.7 0.7 

Appendi X D 133 



Table D-2. Additional Instruction Timing (cant.) 
(Add to times in Table D-O 

! 
Register pointer selects 

"t"Si,tt"l·tc-reg ster Operotions register block X'4' _ X'IF' Register-to-register Operations 
'-'---

Register pointer selects 
register block X'4' - X1F' .-

I 
,\,kerno',"c . r -Dj·;~;-;-l-nd-il-·c-cl-+-----r--D-i-re-c-t -~-'n-d-ir-e-ct-'" Mnemonic 

Direct I.,direct Direct Indirect 

"Jt~s I 'j-;; l~n-:-ex No Index Notes No Index No Index 

II:' ~I-::;'.' -~t~1 :;_0_+_-In-:d-:-X.r_-:-:_t_--_+-In-:d-~,-t--:-::---;rl-~-i-x-t--:.-:;-t 
! ,-- c - -l:t: :: :~ -+----+--:-::--+-O-O:-:_+-::-:_+-:-::.~ 

--~--- --~---+--t----+----t---I----+--__if-----f 
~l; 2,2 1.4 1.2 1.2 0.4 0,3 0.8 0.6 -- ---f----r----t---+--t---r--_t_--;--_t_---I 
SF 0 1.5 0.4 0.4 07 0.7 .---- .- .- e-----.-+--+---~--+_-_+--_+--r_--+--t---I 
SH 1.2 0,5 1.3 1.4 0.4 0.3 0,8 0.6 

~--- -+----~-_+-__if__-+_-_+--_+---+----_+_--~--~ 
SIO o 1.5 0.6 0.6 0,9 0.9 

------~~--r_-_+_-_t_-_;--~--_t_--;--+_-_+-~ 
STS 0.5 0.6 1.4 0.3 0.3 0.6 0.6 

STcr 
1---·-+----f---4--f----f---t---f---+---+--+---I 

0.5 0.6 1.4 0.3 0.3 0.6 0.6 1.5 

STD 1.7 1.7 0.5 1.1 0.3 0.3 0.6 0.6 

I---------~--_+-_+-~r_-+--_+--_+--r_--+--t_~ 
5TH 

Notes: 22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

0.5 0.5 1.4 1.4 0.3 0.3 

No memory overlap. 

Maximum memory overlap. 

One byte string is in registers. 

Decimal number is in registers. 

Add factor for object instruction. 

0.6 0.6 

Word mode - one byte string in registers. 

Byte mode - one byte string in registers. 

Byte string to be translated in registers. 

Notes 

STM 

STS 

SlW 

SW 

TSS 29 

TOV 

TIO 

HBS 29 

UNPK 

WAIT 

WO 

XPSO 

XW 

No No 
Notes 

No 
Inde..: 

Index 
Index 

Index 
Index 
- -

0.8N O.aN 0.9 0.9 0.4 
--

2.3 1.5 L3 1.2 0.6 
-

O.B 0.9 1.4 1.5 0.3 

1.2 0.5 1.3 1.4 0.4 

l.8N - - - - - - 0.6 

0 0 1.5 1.5 0.6 

0 0 1.5 1.5 0.6 

0.8N - - - - - - 0.6 
+<l.2N 

0.5N 0.5N 1.1 1.1 0.4 

0 a 1.3 1.3 0.4 

0 0 1.5 1.5 OA 

3.5 3.5 1.3 1.3 0.4 

2.2 1.5 1.3 1.3 0.4 

30. eVA and evs instructions require a 32-word table and should not be used in register-to-register 
operations. The indirect word, however, may be located in a register. 

134 Appendix D 

No Index 
r ~dex 

Indf'x 

-. 
0.4 0.7 0.7 

0.4 1.0 0.7 
--

0.3 0.6 0.6 

0.3 0.8 0.6 

- - - - - -

0.6 0.9 0.9 

0.6 0.9 0.9 

- - - - - -

0.4 0.7 0.7 

0.4 0.7 0.7 

0.4 0.7 0.7 

0.4 0.7 0.7 

0.3 0.8 0.6 



INDEX 

Note: For each entry in this index, the number of the most significant page is I isted first. Any pages thereafter are I isted in 
numerical sequence. 

A 
access codes, 14, 15,78 
access protection, 14, 11, 15,78 

control image, 78 
loading process, 78 

accumulator, decimal, 10,55 
address 

actual, 13 
control, 14, 15, 16 
direct reference, 12 
effective, 13,30 
indexed reference, 13 
indirect reference, 12 
input/output, 82,88 
instruction, 17,31 
memory, 8 
modification, 13,28 
nonexistent, 24,23,76 
reference, 12,30 
register, 13,30 
updated instruction, 72 
virtual, 11,13,14,15,47,82 

Anal yze/lnterpret instructions, 37,38 
arithmetic shift, 47,48 
armed interrupt, 20,81 

B 
block pointer, register, 11, 18,77 
Branch instructions, 72-74 
byte format, 8 
byte-string instructions, 60-67, 125 

c 
Call instructions, 74,6,27,77 
Call instruction traps, 23,27,74,77 
central processing unit, 10-27 
channel end, 92 
circular shift, 48 
clock, real-time, 5, 18, 19 
command chaining, 89,91 
comparison instructions, 44-46 
computer modes, 9 
condition code, 17,6,23,29,30,35,37,51,53 
condition code setting for 

decimal instructions, 56,26 
fixed-point arithmetic instructions, 39,25 
floating-point arithmetic instructions, 53,26,122, 123 
luad/store instructions, 31 
push-down instructions, 68,25 
Shift instructions, 47,-49 

control instructions, 75-82 
Con fro I order, 90 

conversion instructions, 49,6,50 
core memory, 8 

dedicated addresses, 8,9, 18,23 
counter interrupts, 19 
CPU fast memory, 9 

o 
data chaining, 89,91 
decimal 

accumulator, 10,55 
arithmetic fault trap, 26,17,23 
arithmetic hardware, 5 
illegal digit, 55,26 
instructions, 54-60 
overflow, 55,23,26 
packed format, 55 
zoned format, 55 

device interrupt, 83,88 
disabled interrupt, 20,81 
disarmed interrupt, 20,81 
displacement indexing, 5 
doubleword 

E 

format, 8 
I/O command, 90,83 
program status, 17,22,24, 75, 76, 94 
stack pointer, 68,70 

effective address, 13,30 
effective location, 13,30 
effective operand, 13 
enabled interrupt, 21,81 
Execute/Branch instructions, 72-74 
external interrupt, 20 

F 
fail-safe, power, 20, 1 
fi xed -po i nt ari thm eti c 

instructions, 39-44 
overflow trap, 25, 17,23,30 

floating -po int 
addition and subtraction, 52,53,54, 123 
arithmetic fault trap, 26,23,31,52 
arithmetic option, 5 
hardware, 5 
instructions, 50-54,24, 122, 123, 124 
multiplication and division, 52/ 53,54, 122 
normal ize control, 17,30,35,37,50 
numbers, 50,51 
shift, 48,49, 124 
siqnificance control, 52, 17,26,35,37 
zero control, 52,17,26,.35,37 

Index 135 



Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in 
numerical sequence. 

G 
general characteristics, 1 
general registers, 11,6 
general-purpose features, 5 

H 
hal fword, format, 8 

immediate addressing, 12 
immediate operand, 12 
indexed reference address, 13 
indexing, 13 
index registers, 13, 10 
indirect addressing, 13, 11 
information format, 8 
inhibits, interrupt, 18, 19,81 
inhibits, push-down trap, 68 
input/output 

address, 82,88 
commands, 90 
command doubleword, 90,83 
flags, 91,92 
instructions, 82-88 
interrupt, 19,91,92 
operations, 89-92 
status information, 82,83 
un it address assignments, 82 

instruction format, 11 
i nstru ct ions, 28 -88 

Ana I yze/Interpret, 37,38 
Branch, 72-74 
byte string, 60-67, 125 
Call, 74,6,27,77 
comparison, 44-46 
control, 75-82 
conversion, 49,6,50 
decimal, 54-60 
Execute/Branch, 72-74 
fixed-point arithmetic, 39-44 
floating-point arithmetic, 50-54,24, 122, 123 
format, 11 
input/output, 82-88 
Interpret, 38,6 
load/store, 31-37 
logical, 46 
nonexistent, 22,23,76 
privileged, 75-88 
push-down, 67-72,25 
Shift, 47-49, 124 
translate, 63,6 
unimplemented, 24,23,52 

interleave/overlap, 97 
Interpret instruction, 38,6 
interrupt 

active, 21 
armed, 20,81 

136 Index 

L 

channel end, 92 
control panel, 94, 19 
counter-equal s-zero, 19 
count-pulse, 18, 19 
device, 83,88 
disabled, 20,81 
disarmed, 20,81 
enabled,20,81 
external, 20 
inhib its, 18, 19,81 
input/output, 19,91,92 
internal, 18 
locations, 19 
override, 18, 19 
priority chain, 18 
single-instruction, 22 
states, 20 
system, control of, 20, 18,81 
time of occurrence, 21 
trigger, 82 
unusual end, 88, 92 
waiting, 20 
zero byte count, 88,91 

loading process 
access protection, 78 
core memory, 98 
memory map, 78 
write protection, 79 

load/store instructions, 31-37 
logical instructions, 46 
logical shift, 47 

M 
master mode, 9, 17 
memory 

access protection, 14, 11, 15, 78 
addresses, 8 
control, 11, 14 
fast, 9 
fault indicators, 97,80 
map, 11, 14,78 
nonexistent address trap, 23,24 
nonexistent addresses, 24,23 
parity error, 85,88,97 
protection violation trap, 23,24,76 
write locks, 15, 11,79 
write protection, 11, 14, 15,79 

memory mapi 11, 14, 17,78 
control image, 78 
loading process, 78 

multiplexor lOP (MIOP), 89,3,5 
multiplexor lOP (MIOP) expansion option, 89,3,5 
multiuse features, 6 



Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in 
numerical sequence. 

N 
nonallowed operations, 76,22,23 
nonexistent instructions, 22,23,76 
nonexistent memory addresses, 24,23,76 
normalized control, floating-point, 17,35,50 
numbers 

o 

decimal, 54 
floating-point, 50,51 

operator controls, 93-99 
optional features, 4 
overflow 

decimal, 23,26,55 
fixed-point, 25,26 
floating-point characteristic, 52,26,51 

override interrupt group, 18 

p 
packed decimal format, 55 
par i ty error, memory, 85, 88, 97 
peripheral equipment, 3,4 
power fail-safe, 20, 1 
priority interrupt chain, 18 
privileged instructions, 75-88 

violation trap, 23,24,76 
processor control panel, 93-98 
program status doubleword, 17,22,24,75,76,94 
push-down 

R 

instructions, 67-72,25 
stack limit trap, 25,23,68 

read di rect, 80 
Read order, 90 
real-time clocks, 5, 18, 19 
real-time features, 4 
reference address, 12,30 
register address, 13,30 
register block pointer, 11, 18,77 

s 
selector lOP, 89,3,5 
Sense order, 90 
sense switches, 98,80 
Shift instructions, 47-49, 124 
significance control, floating-point, 52, 17,26,35,37 
single-instruction interrupt, 22 
slave mode, 9,17 
stack pointer doubl eword, 68,70 
standard features, 4 
states of an interrupt level, 20 
Stop order, 91 

system 

T 

input/output, 82-92 
interrupt, 18-22 
organ ization, SIGMA 6, 8-27 
SIGMA 6, 1-7 
trap, 22-27 

time of interrupt occurrence, 21 
time-sharing features, 6 
Transfer in Channel, 90 
translate instruction, 63,6 
trap, 22-27 

u 

Call instruction, 74,23,27, 77 
decimal arithmetic fault, 26, 17,23 
fixed-point overflow, 25,17,23,30 
floating-point arithmetic fault, 26,23,52 
masks, 17,23,29 
memory protection violation, 24,23,76 
nonallowed operations, 22,23,76 
nonexistent instructions, 24,23,76 
nonexistent memory address, 24,23,76 
privileged instruction violation, 24,23,76 
push-down stack limit, 25,23,68 
un implemented instruction, 24,23,52 
watchdog timer runout, 26,23 

un impl emented instructions, 24,23,52 
unusual end, 88,92 
updated instruction address, 72 

v 
virtual address, 11, 14, 15,47,82 

w 
watchdog timer runout trap, 26,23 
word format, 8 
write 

z 

direct, 80 
key, 11,15,16,17 
lock, 15, 11,79 
lock control image, 79 
lock loading process, 79 
order, 90 

zero byte count interrupt, 88,91 
zero control , floating-point, 52, 17,26,31 F 37 
zoned decimal format, 55 

Index 137 



XEROX 

Reader Comment Form 
We would appreciate your comments and suggestions for improving this publication 

Publication No. I R_. L •• te'! T;tI. I Current Date 

I 
How did you use this publication? Is the material presented effectively? 

o Learning o Instalt.ing 0 Sales o Fully Covered DWell o Well organized o Clear o Reference o Maintaining o Operating 
Illustrated 

What is your overall rating of this publication? What is your occupation? 

o Very Good o Fair o Very Poor 

o Good o Poor 

Your other comments may be entered here. Please be specific and give page, column, and line number references where 
applicable. To report errors, please use the Xerox Software Improvement or Difficulty Report (1188) instead of this form. 

~ 

Your name & Return Address 

Thank YOu FOt' Your Interest (fold & fasten as shown on back. no postage needed .f mailed In USA) 



PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms 

111111 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 59153 LOS ANGELES,CA 90045 

POSTAGE WILL BE PAID BY ADDRESSEE 

HONEYWELL INFORMATION SYSTEMS 
5250 W. CENTURY BOULEVARD 
LOS ANGELES, CA 90045 

ATTN: PROGRAMMING PUBLICATIONS 

Honeywell 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

I 
w 
2 
::; 
~ 
2 o 
-J 
c( ... 
::> 
u 

I 
I 
I 
I 
I 
I ~ 
I 
I ~ 
I 4 

1C~ 
< 
c 
C 
u 

u. 
~ 

c: 
2 

~S 
c( 

Q 
-l 
o 
... 



XEROX SIGMA 6 INSTRUCtiONS (OPERATION CODES) 

Code Mnemonic Instruction Nome ~ Code Mnemonic Instruc tion Nane ~ 

02 LCFI load Conditions ond Flooting Control Immediate 35 44 ANLZ Analyze 37 
04 CALI Call I 74 45 CS Compore Selective 4S 
05 CAL2 Call 2 74 46 XW Exchange Word 36 
06 CAL3 Call 3 74 47 STS Store Selective 36 
07 CAL4 Call 4 74 48 EOR Exclusive OR Word 46 
08 PLW Pull Word 69 49 OR OR Word 46 
09 PSW Push Word 69 4A LS Load Selective 34 
OA PLM Pull Multiple 71 48 AND AND Word 46 
OB PSM Push Multiple 71 4C S10 Stort Input/ output} 83 
OE LPSD load Program Status Doubleword } privileged 75 40 TlO Test Input/ Output "1 d 86 
OF XPSD Exchange Program Status Doubteword 75 4E TDV Test Device pl"lVI ege 87 

4F HIO Halt Input/ Output 86 
10 AD Add Dou b leword 40 
II CD Compore Doubleword 45 50 AH Add Ha If word 39 
12 LD Lood Doubleword 32 51 CH Compore Ho I Fword 45 
13 MSP Modify Stock Pointer 71 52 LH Lood Halfword 32 
15 STD Store Doubleword 36 53 MTH Modify ond Test Holfward 43 
18 SO Subtract Doubleword 41 55 STH Store Hoi fword 36 
19 CLM Compore with limits in Memory 46 56 DH Divide Halfword 42 
IA LCD Lood Complement DO<Jbleword 33 57 MH Multiply Holfword 41 
I B LAD Lood Absolute DO<Jbleword 34 58 SH Subtract Halfword 40 
lC FSL Floating Subtract long 

} optional 

54 SA LCH Load Complement Halfword 33 
10 FAL Floating Add Long 53 5B LAH Lood Absolute Halfword 33 
IE FDL Flooting Divide long 54 
IF FML Floating Multiply Long 54 

60 CBS Compare Byte String 62 
20 AI Add Immediate 39 61 MBS Move Byte 5tri"9 61 
21 CI Compore Immediate « 63 EBS Edit Byte String 64 
22 LI Load Immediote 32 64 BDR Branch on Decrementing Register 74 
23 MI Multiply Immediate 41 65 BIR Branch on Incrementing Register 73 
24 SF Shift Floating 48 66 AWM Add Word to Memory 43 
25 S Shift 47 67 EXU Execute 73 
28 CVS Convert by Subtroction 50 68 BCR Branch on Conditions Reset 73 
29 CVA Convert by Addition 49 69 BCS Branch on Conditions Set 73 
2A LM Lood Multiple 3S 6A 8AL Branch and link 74 
2B STM Store Multiple 37 68 INT Interpret 38 
2E WAIT Wait } privileged 79 6C RD Read Direct } 80 
2F LRP Load Register Pointer 77 60 WD Write Direct privileJed 80 

6E AIO Acknowledge I/O Interrupt ' 87 
30 AW Add Word 40 6F MMC Move to Memory Control 77 
31 CW Compare WCJrd 45 
32 LW Lood Word 32 70 LCF Laad Conditions and Floating Control 35 
33 MTW Modify and Test Word « 71 C8 Compare Byte « 
35 STW Store Word 36 72 LB Load Byte 32 
36 OW Divide Word 42 73 MTB Modify and Test Byte 43 
37 MW Multiply Word 42 74 STCF Store Conditions and Floating Contrel 37 
38 SW Subtract Word 40 75 STB Store Byte 36 
39 CLR Compare wi th limits in Register 46 76 PACK Pack Decimal Digits 59 
3A LCW Load Complement Word 33 77 UNPK Unpack Decimal Digits 59 
3B LAW Lood Absolute Word 33 78 OS Decimal Subtract 57 
3C FSS Floating Subtract Short 

} optional 

53 79 DA Decimal Add 57 
3D FAS Floating Add Short 53 7A DO Decimal Divide 58 
3E FDS Floating Divide Short 54 7B OM Decimal Multiply 57 
3F FMS Floating Multiply Short 54 7C DSA Decimal Shift Arithmetic 58 

70 DC Decimal Compare 58 
40 HBS Translate and Test Byte String 63 7E DL Decimal Load 56 
41 TBS Translate Byte String 63 7F DST Decimal Store 56 



• 

• ttonev ... InformMIon .,....... 
In the U.S.A.: 200 SmIII'i SIrMt, MS .... Wllltham. ~ 02154 
In c.neda: 2025 SheppMI Avenue E .... WIIIowdIIe. 0rUri0 M2J 1W5 

In Mexico: Avenidl Nuevo Leon 250. Mexico 11. D.F. 

24778, 3C1079. Printed In U.S.A. XL47, Rev. 0 


	00001
	00002
	0001
	0002
	0003
	0004
	0005
	0006
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	replyA
	replyB
	xBackA
	xBackB

