Xerox Data Systems XEROX

701 South Aviation Boulevard
El Segundo, California 90245
213 679-4511

SIGMA 8 Computer

Reference Manual

FIRST EDITION

90 17 49A

January 1971

\

Price $5.75

© 1971, Xerox Corporation Printed in U.S.A.

‘ELATED PUBLICATIONS

Title Publication No.
~ XDS Sigma Glossary of Computer Terminology 90 09 57

XDS Symbol/Meta-Symbol Reference Manual 90 09 52

XDS Macro=-Symbol Reference Manual 90 1578

ALL SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

"Introduction

SIGMA 8 SYSTEM

General Characteristics

Scientific Features

Input/Output Capabilities

Time-Sharing Features

Real-Time Features

Multiusage Features
Multiprocessing Features

Multiprocessor Interlock

Homespace
Multiport Memory System

Manual Partitioning Capability
Multiprocessor Control Function
Shared Input/Output

SIGMA 8 SYSTEM ORGANIZATION

Central Processing Unit

General Registers

Memory Control Storage
Computer Modes

Information Format

Information Boundaries

Instruction Register

Main Memory

Memory Unit
Homespace

Memory Reference Address

Addressing

Address Modification

Memory Address Control

Program Status Doubleword

Interrupt System
Internal Interrupts

External Interrupts

States of an Interrupt Level
Control of the Interrupt System
Time of Interrupt Occurrences

Single-Instruction Interrupts
Trap System

Trap

Trap Entry Sequence
Trap Masks

Trap Condition Code

Trap Addressing
Nonallowed Operation Trap

Unimplemented Instruction Trap
Push-Down Stack Limit Trap

Fixed-Point Overflow Trap
Floating=Point Arithmetic Fault Trap
CALL Instruction Trap

Processor Detected Faults

Trap Conditions During "Anticipate"
Operations

Register Altered Bit

CONTENTS

-

COOCOCOOCOC O D AW~ —

3. INSTRUCTION REPERTOIRE

Load/Store Instructions
Analyze/Interpret Instructions

Fixed-Point Arithmetic Instructions

- Comparison Instructions
Logical Instructions

Shift Instructions

Floating-Point Shift
Conversion Instructions

Floating=Point Arithmetic Instructions

Floating=-Point Numbers
Floating-Point Add and Subtract
Floating=Point Multiply and Divide
Condition Codes for Floating=Point
Instructions

Byte=-String Instructions

Push-Down Instructions

Stack Pointer Doubleword (SPD)
Push-Down Condition Code Settings
Execute/Branch Instructions

Nonallowed Operation Trap During Execution

of Branch Instruction

CALL Instructions

Control Instructions

Program Status Doubleword

Loading the Memory Write Protection
Locks

Interruption of MMC
Read Direct, Internal Computer Control
(Mode 0)

Read Direct, Interrupt Control
(Mode 1)

Write Direct, Internal Computer Control

(Mode 0)
Write Direct, Interrupt Control
(Mode 1)

Input/QOutput Instructions
1/O Addresses

Processor Addresses
(Bits 19-23)

Device Controller Addresses
(Bits 24-31)

1/O Unit Address Assignment

1/O Status Response

Status Information for SIO

General Registers

4, INPUT/OUTPUT OPERATIONS

Operational Command Doublewords
Order

Memory Byte Address
Flags

Byte Count

Control Command Doublewords

85

86

87 _~

88
89
89

89

89
90
90
92
92

99

100
100
100
100
102
102

it

S.

Processor Control Panel

OPERATOR CONTROLS

Control Mode

POWER

MEMORY CLEAR

SYS RESET

1/O RESET
LOAD

UNIT ADDRESS

SENSE

NOT NORMAL

HALT

WAIT

RUN

Program Status Doubleword

INSERT

CPU RESET

INTERRUPT

ADDRESS STOP

SELECT ADDRESS

DISPLAY (Switch)

INSTR ADDR

DISPLAY (Indicators)

DISPLAY FORMAT

FORMAT SEL

DATA

STORE

COMPUTE

Maintenance Controls

ALARM

MARGINS

PHASES

CLOCK MODE

Operating Procedures

Control Codes
Special Code Properties
XDS Standard 8-Bit Computer Codes (EBCDIC)
XDS Standard 7-Bit Communication Codes

SNAP

MEMORY MODE

W.D. TIMER

SCAN

EXT DIO

Loading Operation

Fetching and Storing Procedure

APPENDIXES

REFERENCE TABLES

XDS Standard Symbols and Codes
XDS Standard Character Sets

(USASCII)

XDS Standard Symbol-Code Correspondences
Hexadecimal Arithmetic

Addition Table

Multiplication Table

Table of Powers of Sixteenig

Table of Powers of Ten;

104

104
104
105
105
105
105
105
105
105
105
105
106
106
106
107
107
107
107

108.

108
108
108
109
109
109
109
109
109
110
110
110
110
110
110
111
11
112
112
112
113

114

114

114
114
114
115

ns

116
120

120 -

120
121
121

Hexadecimal=Decimal Integer Conversion Table — 122
Hexadecimal~Decimal Fraction Conversion Table . 128

-

Table of Powers of

132

Mathematical Constants 132
H

B. SIGMA 8 INSTRUCTION LIST 133
C. INSTRUCTION TIMING 134
Timing Considerations 134
Effects of Memory Interference 134

Effects of Indexing 134

Effects of Indirect Addressing 134

Effects of Register-to-Register Operations 134

D. SYSTEMRELIABILITY ANDMAINTAINABILITY 144

System Maintainability Features 144
CPU Features 145
Main Memory Features 147
Multiplexor Input/Qutput Processor
(MIOP) Features 147
High-Speed RAD 1I/O Processor (HSRIOP)
Features 148
E. GLOSSARY OF SYMBOLIC TERMS 149
ILLUSTRATIONS
SIGMA 8 Computer System v
1. A Typical SIGMA 8 System 8
2, Central Processing Unit 9
3. Information Boundaries 10
4, Addressing Logic 15
5. Index Displacement Alignment 16
6. Interrupt Priority Chain 20
7. Operational States of an Interrupt Level . 2]
8. Processor Control Panel 104
TABLES
1. Homespace Layout 13
2, SIGMA 8 Interrupt Locations 19
3. Summary of SIGMA 8 Trap Locations—_ 24
4. TCC Setting for Instruction Exception
Trap X'4D' 30
5. Registers Changed at Time of a Trap Due to
an Operand Access 32
6, Status Word 0 4]
. 7. Status Word .1 42
8. Status Word 2 42

9. ANALYZE Table for SIGMA 8 Operation Codes_ 47
10. Floating=-Point Number Representation —— 63
11. Condition Code Settings for Floating=Point

Instructions 65

12. Status Response Bits for 1/O Instructions 91
13, Program Status Doubleword (PSD)

Indicators 106

135

C-]. Basic Instruction Timing

SIGMA 8 Computer System

1. SIGMA 8 SYSTEM

INTRODUCTION

The XDS SIGMA 8 Computer System is a high-speed,
general-purpose digital computer system. It is designed
for a variety of scientific, real-time, and time-sharing
applications. A basic system includesa central processing
unit (CPU), a main memory subsystem, and an independent
input/output subsystem. Each major system element per-
forms asynchronously with respect to other elements.

The basic system can be readily expanded to accommodate
the user's requirements. Main memory has addressing space
for 131,072 words. Memory access paths can be increased
from the basic two ports to a maximum of 12 ports. Input/
output capability can be increased by adding more input/
output processors (IOPs), device controllers, and /0O
devices.

The CPU has a large instruction set that includes floating-
point instructions. A special feature called "look-ahead"
enables the CPU to overlap instruction execution with
memory accessing, thereby reducing program execution
time.

A main memory of up to 131,072 (128K) words is available.
The minimum system size is 16,384 (16K) words. System
memory sizes are obtainable in 8K word increments. The
minimum memory configuration of 16K words consists of
two ports and two 8K word banks. Each bank can be
expanded to 16K words, yielding a modular unit of 32K
words. Each unit is expandable to 12 ports in single port
increments. The maximum configuration, therefore, con-
sists of four 32K word modular units of eight 16K word
banks and 12 ports per unit.

Each bank operates asynchronously, and address inter-
leaving can be provided between adjacent banks. This
multibank, multiaccess memory subsystem with interleaving
achieves system performance far in excess of single memory
bank designs. The SIGMA 8 system can include up to 11
independent 1/O processors (limited only by port expansion
capability) of two types — multiplexor 1/O processors and
high-speed RAD 1/O processors — which can transfer data
at rates up to three million bytes per second, concurrent
with CPU instruction execution. ’

The SIGMA 8 computer design is compatible with the
SIGMA 5 computer. Therefore, comprehensive, modular
software, requiring no reprogramming is available, including
operating systems, assemblers, compilers, mathematical and
utility routines.

Reliability, maintainability, and availability have been
significantly improved over previous SIGMA computers.
A partitioning feature, for example, permits faulty units
or an entire subsystem, consisting of a CPU, memory unit,
IOP, and attached peripherals to be isolated from the sys-
tem for diagnosis and repair while the primary system
continues operation.

This manual describes the general characteristics and
features, system organization, instruction set, 1/O oper=-
ations, operator controls, and timing of the system.

GENERAL CHARACTERISTICS

A SIGMA 8 computer system has features and operating
characteristics that permit efficient functioning in scien-
tific, multiprocessing, time=sharing, real-time, and multi=-
usage environments:

® Word-oriented memory (32-bit word plus parity bit)
which can be addressed and altered as byte (8-bit),
halfword (2-byte), word (4-byte), and doubleword
(8-byte) quantities.

8 Memory expandable from 16,384 (16K) to 131,072
(128K) words in increments of 8,192 (8K) words
(where K = 1024),

B Direct addressing of entire memory.
m Indirect addressing with or without post-indexing.

m Displacement index registers, automatically self-
adjusting for all data sizes.

® Immediate operand instructions, for greater storage
efficiency and increased speed.

B 16 general-purpose registers, expandable to 64
(in blocks of 16) reduce data transfer to and from
registers in a multiusage environment.

8 Memory write protection preventing inadvertent
destruction of critical areas of memory.

B Watchdog timer to assure nonstop operation.

B Real-time priority interrupt system with auto-
matic identification and priority assignment,
fast response time, and up to 238 levels that
can be individually armed, enabled, and trig-
gered by program control.

® Instructions with long execution times can be
interrupted to minimize response time to
interrupts.

B Automatic traps for error or fault conditions, with
masking capability and maximum recoverability,

under program control.

B Power fail-safe for automatic, safe shutdown in
event of power failure.

8 Multiple interval timers with a choice of resolu-
tions for independent time bases.

SIGMA 8 System 1

2

Privileged instruction logic for progrcm.egrity
in multiusage environments.

Complete instructions set that includes:

Byte, halfword, word, and doubleword
operations.

Use of all memory-referencing instructions

for register-to-register operations, with or
without indirect addressing and post-indexing,
and within normal instruction format.

Multiple register operations.

Fixed-point integer arithmetic operations in
halfword, word, and doubleword modes.

Floating-point hardware operations in short
and long formats with significance, zero, and
normalization control and checking, all
under full program control.

Full complement of logical operations (AND,
OR, exclusive OR).

Comparison operations, including compare
between limits (with limits in memory or in
registers). ‘

Call instructions that permit up to 64 dy-
namically variable, user-defined instructions,
and allow a program access to operating
system functions without operating system
intervention.

Push-down stack operations (hardware im=
plemented) of single or multiple words, with
automatic limit checking, for dynamic space
allocation, subroutine communication, and
recursive routine capability.

Automatic conversion operations, including
binary/BCD and any other weighted-number
systems.

Analyze instruction that facilitates effective
address computation.

Interpret instruction that increases speed of
interpretive programs.

Shift operations (left and right) of word or
doubleword, including logical, circular,
arithmetic, searching shift, and floating-
point modes.

Built-in reliability and maintainability features
that include:

Diagnostic programs with capabilities for:
system verification and testing to determine
the faulty unit; unit functional testing to

General Characteristics

determine the s;,?c function of a unit that
is faulty; and fault location diagnosing to
analyze what physical component is
malfunctioning.

Extensive error logging. When a fault is
detected, system status and fault informa=~
tion are available for program retrieval and
logging for subsequent analysis.

Full parity checking on all data and ad-
dresses communicated in either direction on
busses between memory units and processors,
providing fault detection and location capa-
bility to permit the operating system or
diagnostic program to quickly determine a
faulty unit.

Address stop feature that permits operator or
maintenance personnel to:

Stop on any instruction address.

Stop on any memory reference address.

Stop when any word in a selected page
of memory is referenced.

Programmable "snapshot" registers that en-
able diagnostic routines to compare contents
of a snapshot register with known correct in-
formation, thus accurately determining system
fault conditions.

CPU traps, that provide for detection of a
variety of CPU and system fault conditions,
designed to enable a high degree of system
recoverability.

Partitioning features that enable system re-
configuration. SIGMA 8 units can be par-
titioned from the system by selectively disabling
them from busses. Thus, faulty units or an
entire subsystem, consisting of a CPU, mem-
ory unit, input/output processor (IOP), and
attached peripherals, can be isolated from
the operational system to enable diagnosis
and repair of a faulty unit while the primary
system continues operation.

Independently operating I/O system with the fol-
lowing features:

Direct input/output of a full word, without
use of a channel.

Up to eleven 1/O processors (restricted only
by port limitations).

Multiplexor I/O processors (MIOP) with
dual channel capability, providing for
simultaneous operation of up to 24 devices
on one channel, and concurrently, simulta=~
neous operation of eight devices on the
other channel.

High-speed Rapid AnDara 1/O processor
(HSRIOP) for use wit S high-speed RAD

storage units, allowing data transfer rates of
up to three million bytes per second.

Both data and command chaining on all IOPs
for gather-read and scatter-write operations.

Up to 32,000 output control signals and in-
put test signals.

Comprehensive array of modular software rhat is
program compatible with -XDS SIGMA 5, ¢,

and 7 ' computers:

[

Expands in eapability and speed &5 system
grows.

Operating systems: Batch Processing Monitor
(BPM), Batch Time=Sharing Monitor (BTM),
and Real-Time Batch Monitor (RBM).

General-Purpose Compilers: Extended XDS
FORTRAN IV, XDS FORTRANIV-H, BASIC,
and FLAG.

Assemblers: Symbol, Macro~Symbol, and
Meta-Symbol.

Library: Mathematical, utility, and input/
output programs.

Business software: Data Management System
(DMS-1), Generalized Sort and Merge, XDS
ANS COBOL, Manage, Terminal-Oriented
Manage, and 1401 Simulator.

Application software: Functional Mathematical
Programming System (FMPS), FMPS Matrix
Generator/Report Writer (GAMMA 2), Simulation

Language (SL-1), Circuit Analysis Systems (CIRC-AC,

CIRC-DC), Graphic Display Library (GDL-1), and
General Purpose Discrete Simulator (GPDS).

Standard and special-purpose p'eripheral equip~-
ment including:

Rapid Access Data (RAD) files: Capacities to
6.2 million bytes per unit; transfer rates of
three million bytes per second; average access
times from 17 milliseconds.

Magnetic tape units: 7-track and 9-track
systems, IBM~compatible; high-speed units
operating at 150 inches per second with trans=
fer rates up to 120,000 bytes persecond; and
other units operating at 75 inches persecond
with transfer rates up to 60,000 bytes per
second, and at 37.5 inches per second with
transfer rates up to 20,800 bytes per second.

t .
Providing memory map has not been used.

. D,ys: Graphic display has standard char-
r generator, vector generator, and close-

ups, as well as light pen, and alphanumeric/
function keyboard.

e Cord equipment: Reading speeds up to 1500
cards per minute; punching speeds up to 300
cards per minute; intermixed binary and
EBCDIC card codes.

e Lline printers: Fully buffered with speeds up
to 1,500 lines per minute; 132 print positions
with 64 characters.

e Keyboard/printersi 10 eharacters per second;
also available with paper tape reader (20 char-
acters per second) and punch (10 characters
per second).

e Paper tape equipment: Readers with speeds up
to 300 characters per second; punches with
speeds up to 120 characters per second.

e Graph plotters: Digital incremental, provid-
ing drift-free plotting in two axes in up to
300 steps per second at speeds from 30 milli-
meters to 3 inches per second.

e Data communications equipment: Complete
line of character-oriented and message-
oriented equipment to connect remote user
terminals (including remote batch terminals)
to the computer system via common carrier
lines or connect local terminals directly.

SCIENTIFIC FEATURES

Scientific computing applications are characterized by
emphasis on computation and internal data handling. Most
operations are performed in floating-point format. Other
typical characteristics include binary to decimal number
conversion (for printing or display), and input/output at
standard speeds. The SIGMA 8 computer system includes
the following scientific features:

Floating-Point Hardware. Floating-point instructions are
available in both short (32-bit) and long (64-bit) formats.
Under program control, the user may select optional zero
checking, normalization, and significance checking (which
causes a trap when a post-operation shift or more than two
hexadecimal places occurs in the fraction of a floating-
point number). Significance checking permits use of the
short floating=point format for high processing speed and
storage economy and of the long format when loss of sig-
nificance is detected.

Indirect Addressing. Indirect addressing facilitates table
linkage and permits keeping data sections of a program
separate from procedure sections for ease of maintenance.

Displacement Indexing: Indexing by means of a "floating"
displacement permits accessing a desired unit of data

Scientific Features 3

without considering its size. The index re’n automati=

_cally align themselves appropriately; thus, ™™ same index
register may be used on arrays with different data sizes.

For example, in a matrix multiplication of any array of full
word, single-precision, fixed-point numbers, the results
may be stored in a second array as double-precision num=
bers using the same index quantity for both arrays. If an
index register contains the value of k, then the user always
accesses the kth element, whether it is a byte, halfword,
word, or doubleword, Incrementing by various quantities
according to data size is not required; instead, incre-
menting is always by units in a continuous array table re-
gardless of the size of data element used.

Instruction Set. More than 100 major Instructions permit
short, highly optimized programs to be written, which are
rapidly assembled and minimize both program space and
execution time.

Translate Instruction. The Translate instruction permits
rapid translation between any two 8-bit codes; thus data
from a variety of input sources can be handled and recon-
verted easily for output.

Conversion Instructions. Two generalized conversion in-
structions provide for bidirectional conversions between
internal binary and any other weighted number system,
including BCD.

Call Instructions. These four instructions permit handling
up to 64 user-defined subroutines, as if they were build=in
machine instructions, and gaining access to specified op-
erating system services without requiring its intervention.

Interpret Instruction. The Interpret instruction simplifies
and speeds interpretive operations such as compilation,

thus reducing space and time requirements for compilers and
other interpretive systems.

Four=Bit Condition Code. This simplifies the checking of
results by automatically providing information on almost
every instruction execution, including indicators for over-
flow, underflow, zero, minus, and plus, as appropriate,
without requiring an extra instruction execution,

INPUT/OUTPUT CAPABILITIES

Multiplexing Input/Qutput Processor (MIOP). Once
initialized, 1/O processors operate independently of the
CPU, leaving it free to provide faster response to system
needs. The MIOP requires minimal interaction with the
CPU by using channel command doublewords, which permit
both command chaining and data chaining without inter-
vening CPU control. 1/O equipment speeds range from
slow rates involving human interaction (teletypewriter, for
example) to transfer rates of rotating memory devices of
up to one million bytes per second. Many devices can
be operated simultaneously.

4 Input/Output Capabilities/Time-Sharing Features ’

Direct Data lnpuf/OquDlO). DIO facilitates in=
line program control of Usynchronous or special=-purpose
devices, With this feature information can be trans-
mitted directly to or from general-purpose registers so
that an 1/O channel need not be used for relatively
infrequent transmissions,

High-Speed Rad Input/Qutput Processor (HSRIOP). This
feature is similar to multiplexing input/output except that
one RAD per channel controller is operating at a time.
This high-speed channel contains the buffering and priority
logic sufficient to sustain transfer rates up to three million
bytes per second. In a typical time-sharing application,
this enables a program swap into or out of main memory in
less than 40 milliseconds,

TIME-SHARING FEATURES

Time-sharing is the ability of a system to share its total
capacities among many users. at the same time. Each user
can be performing a different task (requiring a different
share of the available resources) and may be on-line in an
intéractive, “conversational" mode with the computer.
Other users may be entering work to be processed that
requires only final output,

The SIGMA 8 system provides the time=sharing computer
features described below.

Rapid Context Saving. When changing from one user to
another, the operating environment can be switched
quickly and easily. Stack-manipulating instructions per-
mit storing in a push-down stack of 1 to 16 general-purpose
registers by a single instruction. Stack status is updated
automatically and information in the stack can be retrieved
when needed (also, by a single instruction). The current
program status doubleword (PSD), which contains the entire
description of the current user's environment and mode of
operation, can be stored anywhere in memory and a new
PSD loaded, all with a single instruction.

User Protection. The slave mode feature restricts each

user to his own set of instructions while reserving to the

operating system certain "privileged" (master mode) in-
structions that could destroy another user's program if
used incorrectly.

Input/Qutput Capability. Time=sharing input/output re-
quirements are handled by the same general-purpose input/
output capabilities described above,

Nonstop Operation. A "watchdog" timer assures that the
system continues to operate even in case of halts or delays
due to failure of special I/O devices. Multiple real-time
clocks with varying resolutions permit independent time
bases for flexible allocation of time slices to each user.

REAL-TIME FEQQRES

Real-time applications are characterized by a need for
(1) hardware that provides quick response to an external
enviornment, (2) speed great enough to keep up with the
real-time process itself, and (3) sufficient input/output
flexibility to handle a wide variety of data types at varying
speeds. The SIGMA 8 system includes provisions for the
following real-time computing features.

Multilevel, True Priority Interrupt System. The real-time-
oriented SIGMA 8 system provides quick response to inter-
rupts by means of up to 224 external interrupt levels. The
source of each interrupt is automatically identified and
responded to according to its priority. (This function is
programmable.) For further flexibility, each level can be
individually disarmed (to discontinue input acceptance)
and disabled (to defer responses) under program control.
Use of the disarm/disable feature makes programmed dy-
namic reassignment of priorities quick and easy, evenwhile
a real-time process is in progress. In establishing a con-
figuration for the system, each group of up to 16 interrupt
levels can have its priority assigned in different ways to
meet the specific needs of a problem.

Programs that deal with interrupts from specially designed
equipment sometimes must be checked out before the equip-
ment is actually available. To permit simulating this spe-
cial equipment, any SIGMA 8 interrupt level can be
“triggered" by the CPU through execution of a single in-
struction. This capability is also useful in establishing a
hierarchy of responses. For example, in responding to a
high-priority interrupt, after the urgent processing is com-
pleted, it may be desirable to assign a lower priority to
the remaining portion so that the interrupt routine is free
to respond to other critical stimuli. The interrupt routine
can accomplish this by triggering a lower-priority level,
which processes the remaining data only after other inter-
rupts have been handled.

Certain instructions (READ DIRECT and WRITE DIRECT,

described in Chapter 3) allow the program to completely
interrogate the condition of the interrupt system at any
time and to restore that system at a later time.

Nonstop Operation. When connected to special devices
the computer can sometimes become excessively delayed if
the special device does not respond quickly. A built-in
watchdog timer assures that the SIGMA 8 computer cannot
be delayed for an excessive length of time.

Real-Time Clocks. Many real-time functions must be timed '
to occur at specific instants. Other timing information is
also needed — for example, elapsedtime since a given event,
or the current time of day. SIGMA 8can contain up to four
real-time clocks with varying degrees of resolution to meet
these needs. These clocks also allow easy handling of sep-
arate time bases and relative time priorities.

Rapid Context Switching. When responding to a new set
of interrupt=initiated circumstances, a computer system must
preserve the current operating environment, for continuance

later, while s g up the new environment. This changing
of environments must be done quickly, with a minimum of
"overhead" time costs. In the SIGMA 8 system, euch one
of up to four blocks of general-purpose arithmetic registers
can, if desired, be assigned to a specific environment. All
relevant information about the current environment (instruc=
tion address, current general register block, memory-
protection key, etc.) is kept in a 64-bit program status
doubleword (PSD). A single instruction stores the current
PSD anywhere in memory and loads a new one from memory

‘to establish a new environment, which includes information

identifying a new block of general-purpose registers. A
SIGMA 8 system can thus preserve and change its operating
environment completely through the execution of a single
instruction.

Memory Protection. Both foreground (real-time) and
background programs can be run concurrently ina SIGMA 8
system because a foreground program is protected against
destruction by an unchecked background program.

Variable Precision Arithmetic. Much of the data encoun-
tered in real-time systems are 16 bits or less. To process
this data efficiently, SIGMA 8 provides halfword arithmetic
operations in addition to fullword operations. Doubleword
arithmetic operations (for extended precision) are also
included. '

Direct Data Input/Output. For handling asynchronous 1/O,
a 32-bit word can be transferred directly to or from a
general-purpose register so that an [/O channel need not
be occupied with relatively infrequent and nonperiodic
transmissions.

MULTIUSAGE FEATURES

As implemented in the SIGMA 8 system, "multiusage" com-
bines two or more computer application areas. The most
difficult general computing problem is the real-time appli-
cation because of its severe requirements. Similarly, the
most difficult multiusage problem is a time-sharing appli-
cation that includes one or more real-time processes. Be-
cause the SIGMA 8 system has been designed on areal-time
base, it is uniquely qualified for a mixture of applications
in a multiusage environment. Many hardware features that
prove valuable for certain application areas are equally
useful in others, although in different ways. This multiple
capability makes SIGMA 8 particularly effective in multi-
usage applications. The major SIGMA 8 multiusage com=
puter features are described below.

Priority Interrupt. In a multiusage environment, many ele-~
ments operate asynchronously. Thus, having a true priority

interrupt system is especially important. With it the com-

puter system corresponds quickly, and in proper order, to
the many demands being made upon it, without the high
overhead costs of complicated programming, lengthy exe-
cution time, and extensive storage allocations.

Quick Response. The many features that combine to pro-
duce a quick-response system (multiple register blocks,

Real-Time Features/Multiusage Features 5

rapid context saving, multiple push-p,peraﬁons)
benefit all users because more of the machine's power is

available at any instant for useful work.

Memory Protection. The memory protection feature guar~
antees the integrity of programs essential to critical real-
time applications.

Input/Qutput. Because of its wide range of capacities
and speeds, the SIGMA 8 1/O system simultaneously satis=
fies the needs of many different application areas economi=-
cally, both in terms of equipment and programming.

Instruction Set. The large SIGMA 8 instruction set pro-
vides the computational and data~handling capabilities
required for widely differing application areas; therefore,
each user's program length and running time is decreased,
and the speed of obtaining results is increased.

MULTIPROCESSING FEATURES

SIGMA 8 is designed to function as a shared-memory multi=-
processor system. It can contain up to four central proces=
sing units and up to 11 input/output processors (the sum of
both types of processors is restricted by the maximum mem-
ory port limitation of 12). All processors in a SIGMA 8
system address memory uniformly.

This section describes the major features of SIGMA 8 that
will allow growth from @ monoprocessor to a multi-
processor system.

MULTIPROCESSOR INTERLOCK

In a multiprocessor system, one of the central processing
units often needs exclusive control of a system resource.
This resource may be a region of memory, a particular
peripheral device or, in some cases, a specific software
process. A special instruction provides this required multi-
processor interlock. The special instruction, LOAD AND
SET, unconditionally sets a “1" bit in the sign position of
the referenced memory location during the restore cycle
of the memory operation. If this bit had been previously
set by another processor, the interlock is said to be "set"
and the testing program proceeds to another task. If the
sign bit of the tested location is a zero, the resource is
allocated to the testing processor, and simultaneously the
interlock is set for any other processor.

HOMESPACE

Since all processors in a multiprocessor system address mem=
ory in a uniform manner, it is necessary to retain a private
memory that is unique to each processor for its trap and
interrupt locations, 1/O communication locations, etc.
This private memory is called Homespace and consists of
1,024 words for each CPU. Each Homespace region be-
gins with real address zero. The implicitly assigned trap
locations, interrupt locations, and IOP communication lo=
cations, plus the 16 locations that are reserved for the

6 Multiprocessing Features

registers, occupy rh.sl' 320 locations of Homespace.
The remaining words in the Homesapce region can be
used as private, independent storage by the CPU.

MULTIPORT MEMORY SYSTEM

SIGMA 8 has growth capability of up to 12 ports per
memory unit. A memory unit consists of two banks of
8K words, each expandable to 16K, in which each
bank can be concurrently operating when addressed by
two of the possible 12 ports.

This system architecture allows flexibility in growth patterns
and provides a large memory bandwidth, essential to multi-
processor systems.

MANUAL PARTITIONING CAPABILITY

SIGMA 8 has manual partitioning capability for all system
units. Thus, besides its primary advantage of increased
throughput capability, a secondary advantage of a multi-
processor system is its fail-soft ability. Any SIGMA 8 unit
can be partitioned by selectively disabling it from the
system busses. Faulty units are thus isolated from the oper~
ational system. Reenabling the connection allows repaired
units to'be returned to service.

MULTIPROCESSOR CONTROL FUNCTION

A multiprocessor control function is provided on all multi-
processor systems. This function provides three basic
features:

1. Control of the External Direct Input/Output bus (Ex-
ternal DIO), used for controlling system maintenance
andspecial purpose units such as A/D converters.

2. Central control of system partitioning.

3. Interprocessor interrupt connection, allowing one pro~ ...
cessor to directly signal another processor that an ac-
tion is to be taken.

SHARED INPUT/OUTPUT

Provisions have been made in a SIGMA 8 multiprocessor
system for any CPU to direct I/O actions to any /O pro-
cessor. That is, any CPU can issue an SIO, TIO, TDV,
or HIO instruction to begin, stop, or test any 1/O process.
However, the end-action sequence of the 1/O process is
directed at one of the possible four CPUs. This feature
{accomplished by setting a pair of configuration control
switches) allows assigning 1/0O end-action tasks to a
single processor and avoids conflict resolution problems.

@e. SIGMA 8 SYSTEM ORGANIZAION

The primary elements of a basic SIGMA 8 computer
system, as illustrated in Figure 1, are central processor
units, memory units, and input/output processors. These
elements permit the total computer system to be viewed
as a group of program-controlled subsystems communi-
cating with a common memory. Each subsystem operates
asynchronously and semi-independently, automatically
overlapping the operation of the other subsystems for
greater speed (when circumstances permit). A CPU sub-
system primarily performs overall control and data re-
duction tasks while each IOP (MIOP or HSRIOP)
subsystem performs the tasks associated with the exchange
of digital information between the main memory and
selected peripheral devices. A basic system may be
expanded by increasing the number of memory units (up
to 4), increasing the number of IOPs (up to 11, in-
cluding MIOPs and HSRIOPs), or by increasing the num-
ber of central processors (up to 4).

CENTRAL PROCESSING UNIT

This section describes the organization and operation of the
SIGMA 8 central processing unit in terms of instruction
and data formats, information processing, and program
control. Basically, a SIGMA 8 CPU consists of a fast
memory and an arithmetic and control unit as illustrated
in Figure 2.

GENERAL REGISTERS

An integrated-circuit memory, consisting of sixteen 32-bit
general-purpose registers, is used within the SIGMA 8
CPU. These 16 registers of fast memory are referred to as
a register block. A SIGMA 8 system may contain up to

4 register blocks. A 4-bit control field (called the reg-
ister block pointer) in the Program Status Doubleword (PSD)
selects the block currently available to a program. The
16 general registers selected by the register block pointer
are referred to as the current register block. The register
block pointer can be changed when the computer is in the
master mode.

Each general register in the current register block is identi-
fied by a 4-bit code in the range 0000 through 1111

(0 through 15 in decimal, or X'0' through X'F' in hexa-
decimal notation). Any general register may be used as a
fixed-point accumulator, floating=-point accumulator,
temporary data storage location, or to contain control in-
formation such as a data address, count, pointer, etc.
General registers 1 through 7 may be used as index registers,
and registers 12 through 15 may be used as a decimal accu-
mulator capable of containing a decimal number of 31digits
plus sign. Registers 12 through 15 are always used when a
decimal instruction is simulated by standard XDS software.

MEMORY CONTROL STORAGE

The CPU has a high-speed integrated-circuit memory for
storage of memory write=-protection codes. This storage can
be changed when the computer is in the master mode.

Memory Write Protection. The memory write-protection
feature includes the necessary integrated-circuit memory
for the memory write locks. These locks operate in con-

- junction with a 2-bit field, called the write key, in the

program status doubleword. The locks and the key deter-
mine whether any program may alter any word located within
the main memory. The write key can be changed only when
the computer is in the master mode. (The functions of the
locks and key are described in the section "Memory
Address Control",)

COMPUTER MODES

A SIGMA 8 computer operates in either master or slave
mode.- -The mode _of operation is determined by the control
bit in the program status doubleword. (See "Program Status
Doubleword",)

MASTER MODE

In this mode, the CPU can perform all of its control func-
tions and can modify any part of the system. The only re-
strictions placed upon the CPU's operation in this mode is
that imposed by the write locks on certain protected parts
of memory, It is assumed that there is a resident operating
system (operating in the master mode) that controls and
supports the operation of other programs (which may be in
the master or slave mode).

SLAVE MODE

The slave mode of operation is the problem-solving mode of
the computer. In this mode, all "privileged" operations are
prohibited. Privileged operations are those relating to input/
output and to changes in the basic control state of the com-
puter. All privileged operations are performed in the master
mode by a group of privileged instructions. Any attempt by
a program to execute a privileged instruction while the com-
puter is in the slave mode results in a trap. The master/
slave mode control bit can be changed when the computer

is in the master mode. However, a slave mode program

can gain direct access to certain executive program op-
erations by means of CALL instructions without requiring
executive program intervention. The operations available
through CALL instructions are established by the resident
operating system.

Sigma 8 System Organization 7

Memory Unit Memory Unit
e 32,768 words e 32,768 words
e 900 ns e 900 ns
o Dual banks o Dual banks
e Up to 12 ports e Up to 12 ports
A x A _ |
Memory bus
Memory bus ‘
’ Processor bus
I \ Y i
MIOP CPU
8 sub- | 8sub- | 8 sub- | 8sub- 3550 o Memory protect
channels | channels | channels | channels HsSRiof o 1 register block
(option) {option) ® 2 clocks
e Power fail-safe
e o Floating=point arithmetic
Channel Af Channel Bf o External interface
e 2 interrupt levels
A t4—byte interface option J
I/O bus
I/O bus
Y ‘ \ \ \
Single Single Disk unit
Multidevice device device controller
controller controller controller o 4-byte
. interface
A) A
Y) Y Y \
I/0O device I/O device I/O device "I/O device | | Removable Removable
... . disk unit disk unit
0 15 e 2 spindles e 2 spindles

8

Central Processing Unit

Figure 1. A Typical SIGMA 8 System
t

CPU FA;QRY

ARMAETIC AND CONTROL UNIT

GENERAL REGISTER BLOCK (TYPICAL)

ol |

N\

Index
Registers

|

]

|

l

12 |
|

13 |

14 |]
15 |]

MEMORY CONTROL STORAGE

Memory Write Protection

WLLTTITTTTTTIS L] ==

|—— 256 2-bit write locks —|

INSTRUCTION REGISTER
D Indirect Address Flag
- v

G:mm Operation Code Field

1 1

General Register Designator
8 1

Index Register Designator
1"
Reference Address Field

I'SUHHHHIHIHMHI

_ Memory

~1/O Processors I

i
Read/Write Direct

_Interrupts l

Priority Interrupt System _ Write Direct |

PROGRAM STATUS DOUBLEWORD

[D]] Condition Code
[3

Floating=point Mode Control
s 1

D Master/Slave Mode Control
8

[:D\ Arithmetic Trap Masks
won

[T Rees™

Write Key
3%

Interrupt Inhibits
3

m Trapped Status Field

5

@ B
[m] Register Block Pointer
S5 59 ,

D Register Altered
60

" Figure 2, Central Processing Unit

Central Processing Unit

9

INFORMATION FORMA‘

Nomenclature associated with digital information within the
SIGMA 8 computer system is based on functional and/or
physical attributes. A "word" of digital information may
be either an instruction word or a data word.

The basic element of SIGMA 8 information is a 32-bit word,

in which the bit positions are numbered from O through 31,
as follows: ’

Word

0 1 2 3Ta 5 6 718 9 10 N2 13 14 15116 17 18 19120 2t 22 23124 25 26 27128 29 30 31

A SIGMA 8 word can be divided into two 16=bit parts
(halfwords) in which the bit positions are numbered from
0 through 15, as follows:

Halfword 0 Halfword 1

0 1 2 314 5 6718 9 101213141570 1 2 314 5 6 718 9 10 11112 13 14 15

A SIGMA 8 word can also be divided into four 8-bit parts
(bytes) in which the bit positions are numbered from
0 through 7, as follows:

Byte O Byte 1 Byte 2 Byte 3

0‘23;45670123:45670123'l5670I23il567

Two SIGMA 8 words can be combined to form a 64-bit
element (o doubleword) in which the bit positions are
numbered from O through 63, as follows:

Most significant word

T Z 3145 6 718 v Wiz 3 e 15116 7 18 Wi I 2 B BB IBE D

Least significant word

1233415,36373839‘4004243'444546474849505|52535455'56575559'60616263

For fixed-point binar),fhmeﬁc, each element of
information represents A0merical data as a signed integer
(bit O represents the sign, remaining bits represent the mag-
nitude, and the binary point is assumed to be just to the
right of the least significant or rightmost bit). Negative
values are represented in two's complement form. Other
formats required for floating=-point and decimal instructions
are described in Chapter 3.

INFORMATION BOUNDARIES

SIGMA 8 instructions assume that bytes, halfwords, and
doublewords cre located in main memory aceording to the
following boundary conventions:

1. Abyte is located in bit positions 0 through 7,
8 through 15, 16 through 23, or 24 through 31 of a
word.

2. A halfword is located in bit positions O through 15
or 16 through 31 of a word.

3. A doubleword is located so that bits O through 31 are
contained within an even-numbered word, and bits 32
through 63 are contained within the next consecutive
(odd-numbered) word.

The various information boundaries are illustrated in
Figure 3.

INSTRUCTION REGISTER

The instruction register contains the instruction that is cur=-
rently being executed by the CPU. The format and fields
of the two general types of instructions (immediate operand
and memory-reference) are described below.

Doubleword

Doubleword

Word (even address) Word (odd address)

Word (even address) Word (odd address)

Halfword 0 Halfword 1 Halfword O Halfword 1

Halfword 0 Halfword 1 Halfword 0 Halfword 1

P o sy = A s aes e e oy

Byte O |Byte 1|Byte 2| Byte 3|Byte O|Byte 1|Byte 2 |Byte 3

Byte 0| Byte 1|Byte 2| Byte 3|Byte 0| Byte 1|Byte 2|Byte 3

L]
1
!
]
{
1
1
1
1
1
1
1
]

Figure 3. Information Boundaries

10 Central Processing Unit

MEMORY-REFERENCING INSTR.ONS

Most SIGMA 8 CPU instructions make reference to an
operand located in main memory, The format for this type
of instruction is

Operation
* P R X Reference address
code
0 1 2 314 5 6 708 9 10 11112 13 14 15016 17 18 19120 21 22 23124 25 26 27128 29 30 I

Bits Description
0 _ This bit position indicates whether indirect ad~

dressing is to be performed, Indirect addressing
(one level only) is performed if this bit position
contains a 1 and is not performed if this bit posi-
tion contains a 0.

1-7 Operation Code. This 7-bit field contains the
code that designates the operation to be performed.
See the inside front and back covers as well
as Appendix B for complete listings of opera-
tion codes.

8-11 R field, For most instructions this 4-bit field des=-
ignates one of 16 general registers of the current
register block as an operand source, result destina-
tion, or both,

12-14 X field. This 3-bit field designates any one of
general registers 1-7 of the current register block
as an index register, If X is equal to 0, indexing
will not be performed; hence, register 0 cannot be
used as an index register. (See "Address Modifi-
cation” for a more complete description of the

SIGMA 8 indexing process.)

15-31 Reference Address. This 17-bit field normally
contains the reference address of the instruction
operand. Depending on the address modification
(direct/indirect or indexing) required, the ref-
erence address is translated into an effective
address. (See "Memory Reference Addresses" for
further details.)

IMMEDIATE OPERAND INSTRUCTIONS

Some SIGMA 8 CPU instructions are of the immediate
operand type, which is particularly efficient because the
required operand is contained within the instruction word.
Hence, memory reference, indirect addressing, and index=
ing are not required.

Operation
o P R Operand
code
0 1 2 374 5 6 778 9 101 1213MlsllbVlﬁl’lmilulﬂ?‘zS“ﬂlZB?’J)M

Bits Desc‘n

0 This bit position must be coded with a 0, If
this bit is coded with a 1, the instruction is

interpreted as being nonexistent. (See "Trap
System".)
1-7 Operation Code. This 7-bit field contains a code

that designates the operation that will be per-
formed. When any immediate operand operation
code is encountered, the CPU interprets the con-
tents of bits 12-31 of the instruction word as an
operand. Immediate operand operation codes are

as follows:

Operation Instruction

Code Name Mnemonic

X:02* Load Conditions and LCFI
Floating Control
Immediate

X'20' Add Immediate Al

X217 Compare Immediate ClI

X'22 Load Immediate LI

X'23' Multiply Immediate MI

8-11 R field. This 4-bit field designates one of 16 gen-
eral registers of the current register block. This
register may contain another operand and/or be
designated as the register in which the results of
this operation will be stored or accumulated.

12-31 Operand. This 20-bit field contains the immedi-
ate operand. Negative numbers are represented
in two's complement form. For arithmetic opera-
tions, bit 12 (the sign bit) is extended (dupli-
cated) to the left through position 0 to form a
32-bit operand.

The byte string instructions (described in Chapter 3) are
similar to immediate operand instructions in that they can
not be modified by indexing. If a byte string instruction is
indirectly addressed, it is treated as a nonexistent instruc-
tion by the computer.

MAIN MEMORY

This section describes the organization and operation of the
main memory and the various modes and types of addressing,
including indexing.

Main Memory 11

MEMORY UNIT ‘

The main memory for SIGMA 8 is physically organized as a
group of "units". A memory unit is the smallest, logically
complete part of the system, and the smallest part that can
be logically isolated from the rest of the memory system.

A memory unit always consists of two physical memory banks.
Both memory banks may be simultaneously and asynchronously
operating. Each memory unit has a set of from 2 to 12
"ports" or access points that are common to both banks
within the unit; that is, all ports in a given memory unit
provide access to both banks within that unit. The minimum
SIGMA 8 system of 16,384 words consists of one memory
unit with two ports and two banks of 8192 words each.

MEMORY BANK

A memory bank is the basic functionally independent ele~-
ment of the memory system. It consists of magnetic storage
elements, drive and sense electronics, control timing, and
data registers. A bank consists of 8, 192 memory locations
expandable to 16,384. Each location stores a 32-bit in-
formation word (instruction or data), plus a parity bit.

MEMORY INTERLEAVING

Memory interleaving is a built-in hardware feature that
distributes sequential addresses into independently operating
memory banks which are of equal size. Interleaving increases
the probability that a processor can gain access to a given
memory location without encountering interference from
other processors.

Two-way interleaving between two equal size banks within
a unit causes even addresses to be assigned to bank A and
odd addresses to bank B. Four-way interleaving between
two equal size units (eachwith two equal size banks) causes
every fourth address to be assigned to its respective bank.

MEMORY UNIT STARTING ADDRESS

Each memory unit in the SIGMA 8 system is provided its
individual identity by means of starting address switches.
These switches define the range of addresses to which the
unit responds when servicing memory requests. All ad-
dresses, including the starting address, for a given unit are
the same for all ports in that unit; that is, the address of a
given word remains the same regardless of the port used to
access the word, The starting address of a unit must be on
a boundary equal to a multiple of the size of the unit. In
the event that the unit is interleaved with another unit, the
starting address for the combined units must be on a bound~
ary equal to a multiple of the total size of the interleaved
assembly.

MEMORY PORTS

The memory ports of a memory unit are the connecting points
between processors (IOPs and CPUs) and memory banks, and

12 Main Memory

they permit the processo*access memory locations. Each
memory unit may have fr to 12 independent access
ports. A memory unit port is effectively a switch between
all the busses entering that unit and the two banks that
make up the unit. As an example, a unit that has four
busses connected to it and two banks within it would have

a port structure designated as a 4 x 2 switch. The ports
examine incoming addresses to determine if the request is
for a bank within the memory unit. They also determine
the priority of memory requests received simultaneously.

The minimum number of ports for a SIGMA 8 system is
two, one for the CPU and one for an IOP, The number
of ports may be expanded, in increments of one, to a
maximum of 12,

PORT PRIORITY

The multiport structure and the dual-bank memory (within
each unit)allow two simultaneous requests for memory to be
processed immediately, providing that the requests are re-
ceived on different ports, for different banks, and neither
bank is busy. If a requested bank is busy, or if simul-
taneous requests are received for the same bank, the
memory port logic selects the highest priority request first,

Normally, all ports in a memory unit operate on a priority
chain, with port number 0 having the highest priority and
port number "n" having the lowest. In general, CPUs are
connected to the higher priority ports and IOPs are con-
nected to the lower priority ports. If simultaneous requests
are received for a single bank on port 2 and port 4, port 2

has access to the memory bank first.

In addition to the normal priority that prevails among the
ports, as described above, each port has two priority levels
(a normal priority and a high priority). A processor will
usually request the normal priority level; however, under
certain conditions a processor may request high priority
access to a given port (e.g., an IOP will wait with a low
priority memory request until half of its available buffering
has been filled on input or empties on output; it then re-
quests a high priority memory reference). If one port
receives a high priority request, that port's priority is then
higher than the normal priority of all other ports. If more
than one port is on a high priority at the same time, the
normal sequence of priority will prevail among those ports
on high priority.

CPU PORT

When the memory is quiescent, the port selection logic is
set to a condition that automatically selects port 0. The
elimination of switching time (to select a port) results in a
timing preferential for the processor connected to port 0.
This is particularly advantageous for a monoprocessing sys=-
tem where the CPU would normally be connected to port 0
of each memory unit.

HOMESPACE.

In SIGMA 8 multiprocessing system, all processors address
memory in the same manner. However, since the CPUs do
not share the same interrupt or trap systems, it is necessary
to provide private storage for each CPU to contain its trap
and interrupt locations, 1/O communication locations, and
general registers, This private storage is called Homespace.

Each CPU contains a Homespace bias. The Homespace bias
is the address of a 16K region of main memory, of which

the first 1,024 words is Homespace. After an effective
address is generated in the CPU, and just before it is sent
to memory, the most significant 7 bits are tested. If all bits
are equal to zero, then a 3-bit Homespace bias is inserted
in place of the most significant three bits, This means that
any time the CPU makes a reference to the first 1,024 words
of real memory, that reference may be relocated by means
of the Homespace bias.

The 3-bit Homespace bias is supplied by a set of three
switches in a SIGMA 8 CPU. They can be changed
manually to move the Homespace region from one area to
another within the 8 possible areas.

When multiprocessors are used, a given CPU may reference
the Homespace region of other processors by using the nor-
mal memory addresses for that region. The only exception to
this is that the Homespace of a CPUthat is set at real mem-
ory location zero, cannot be referenced by any other CPU.
However, the CPU that has its Homespace at real location
zero may reference the Homespace of all other CPUs.

Each Homespace region contains all the trap locations, in-
terrupt locations, and IOP communication locations for a
given CPU (see Table 1), These implicitly assigned mem-
ory locations plus the 16 locations that are reserved for the
general registers, occupy the first 320 locations of Home=
space. The remaining words in the Homespace region can
be used as private, independent storage by the CPU,

MEMORY REFERENCE ADDRESS

Homespace memory locations O through 15 are not normally
accessible to the programmer because their memory ad-
dresses are reserved as register designators for "register-
to-register" operations. However, an instruction can treat
any register of the current register block as if it were a lo-
cation in main memory. Furthermore, the register block can
be used to hold an instruction (oraseries of up to 16 instruc~
tions) for execution just as if the instruction (or instructions)
were in main memory. The only restriction upon the use of
the register block for instruction storage is:

If an instruction accessed from a general register uses
the R field of the instruction word to designate the
next higher-numbered register, and execution of the
instruction would alter the contents of the register so
designated, the contents of that register should not be
used as the next instruction in sequence because the
operation of the instruction in the affected register
would be unpredictable.

'e 1. Homespace Layout

Dec.|Hex.[Function

000 |000

: . Addresses of general registers

015 |0OF '

016 {010

. : Reserved for future use

031 [OIF

ggg 82? CPU/IOP communication locations

034 |022

. : Load routine or reset recovery routine

063 | O3F

064 | 040

. . Trap locations

079 | 04F

080 | 050

. . Override group

085 | 055

086 |056 | Processor fault

087 {057 | Memory fault Internal
Interrupts,
roup X'0'

088 | 058 grooe

: . Counter group

091 | 058

| R

092 |05C | A Toyen of i

. : 1/O group

095 | O5F 2« 'va;;e/'l»\yf&

096 | 060

. . External Interrupts, group X'2'

111 | O6F

304 {130

. . External Interrupts, group X'F'

319 | 13F '

320 | 140

. . Reserved locations

1023 | 3FF

Main Memory

13

Description of the various types of addres’ used in the
SIGMA 8 are based upon terms and conce® defined below,
References are made to Figure 4, which illustrates the con-
trol flow and data flow during address generation.

Instruction Address, This is the address of the next instruc-
tion to be execution. The 17-bit instruction address is con~
tained within bits 15-31 of the program status doubleword.

Reference Address. This is the 17~bit address associated
with any instruction contained within bits 15-31 of the
-instruction itself. The reference address may be modified
by using indirect addressing or indexing. A reference ad-
dress becomes an effective address after the indirect ad-
dressing and/or post=indexing (if required) Is parformed.
(See Figure 4.)

Direct Reference Address. If neither indirect addressing
nor indexing is called for by the instruction (i.e., if bit
position 0 and the X field of the instruction are 0), the
reference address of the instruction (as defined above) be-
comes the effective address.

Indirect Reference Address. When bit position O of any
instruction (except immediate operand and byte string in=-
structions) is a 1, indirect addressing is specified. That is,
bits 15 through 31 of the instruction word are not used as

a direct reference address. Instead, bits 15 through 31 of
the instruction word point to (address) a location which
contains the direct reference address. Contents of bit posi=
tions 15 through 31 of the referenced location constitute
the direct reference address. Indirect addressing can be
performed only once during each instruction (one level)
and indexing (if specified) is performed after the direct
reference address has replaced the indirect reference ad-
dress. Performing the indexing operation after the in-
direct address operation is referred to as post-indexing.
Refer to "Address Modification" for further details.

Index Reference Address. If indexing is called for by the
instruction {a nonzero value in bit positions 12-14 of the
instruction), the direct or indirect reference address is
modified by addition of the displacement value in the gen-.
eral register (index) called for by the instruction (after
scaling the displacement according to the instruction type).
This final reference address value (after indirect addressing,
indexing, or both) is defined as the effective address of the
instruction. Indexing after indirect addressing is called
postindexing. (See "Address Modification" for further
details.)

Displacements. Displacements are 19-, 18-, 17-, or 16-bit

values used in index registers and by byte string instructions

memory. Instead, th low-order bits of the reference
address are used as a general register address, and the gen~
eral register (of the current register block) corresponding to
this address is used as the operand location or result destina~
tion. Thus, the instruction can use any register in the cur-
rent register block as the source of an operand, the location
of a direct address, or the destination of a result. Such
usage is referred to as a "register-to-register" operation.

Actual Address. An actual address is the address value

actually used by the CPU to access main memory via the
memory address register (see Figure 4). 1If the effective
address is X'0' = X'F*, one of the general registers is ad~
dressed. All actual addresses are 16, 17, 18, or 19 bits
as required fo address a doubleword, word, halfwerd, or
byte, (i.e., aneffective address is transformed intoan actual
address whenever Homespacing is performed).

Effective Address, The effective address is defined as the
final address computed for an instruction (output from the
address generator in Figure 4). The effective address is
usually used as the address of an operand location or result
destination. However, some instructions do not use the
effective address as a location reference; instead, the ef-
fective address is used to control the operation of the in-
struction (as in a shift instruction), to designate the address
of an input/output device (as in an input/output instruction),
or to designate a specific element of the system (as in a

READ DIRECT or WRITE DIRECT instruction).

Effective Location. An effective location is defined as the
actual location (in main memory or in the current regis-
ter block) that is to receive the result of a memory-
referencing instruction, and is referenced by means of an
effective address,

Effective Operand. An effective operand is defined as the
contents of an actual location (in main memory or in the
current register block) that is to be used as an operand by a
memory-referencing instruction, and is referred to by means
of an effective address.

ADDRESSING

Except for the special type of addressing that is performed
only by some interrupt and trap instructions, all SIGMA 8
addressing is as follows:

1. Each reference address is all7=bit word address.

2. The reference address may be direct or indirect, with
or without postindexing. e

——— e

3. Displacements associated with indexing are automati- \

to generate effective addresses of the appropriate size (byte, : cally aligned, as required, for doubleword, word, \
halfword, word, or doubleword), | halfword, or byte operations; and the effective ad- \

\ dress is either a 16-bit doubleword address, 17-bit i
Register Address. If any instruction produces an address : \\ word address, 18-bit halfword address, or a 19-bit /
that is @ memory reference (i.e., a direct, indirect, or \ byte address. A N4
indexed reference address) in the range O through 15, i

the CPU does not attempt to read from or write into main 4, Memory write protection is automatically invoked.

14 Main Memory

CONTROL FLOW

Add Displacement

Write Locks
oK?

no

Add Homespace
(if required)

4

Fetch Referenced
Address

Indirect
Reference ?

Trap

Address

Effective
Address

Actual }
Address

I
I
|
|
|
|
!
|
!
I
i
I
|
|
I
I
I
I
I
|
!
|
!
I
!
|
I
I
I
|
|
I
I
I
I
I
!
|
|
I
I
I
|
!
I
|
|
!
I
|
I
I
!
[}

M

Reference

}__

}

DATA FLOW

Instruction

Word
Index
Register
A A
Address
Generator
e
\
Write Locks

{all 128K words)

Y

Homespace
(if required)

Memory
Address
Register

Main Memory

Figure 4, Addressing Logic

Main Memory

15

ADDRESS MODIFICATION
" INDIRECT ADDRESSING

The 7-bit operation code field of the SIGMA 8 instruction
word format provides for up to 128 instruction operation
codes, nearly all of which can use indirect addressing (the
exceptions, already mentioned, are the immediate-addressing
instructions). The indirect addressing operation is [imited
to one level, as called for by the indirect address bit (bit
position 0) of the instruction word. Indirect addressing does
not proceed to further levels, regardless of the contents of
the word location pointed to by the reference address field
of the instruction. Indirect addressing occurs before index-
ing; that is, the 17-bit reference address field of the in-
struction is used to obtaln a word, and the 17 low=order
bits of the word thus obtained effectively replace the ini-
tial reference field; then indexing is carried out according
to the operation code of the instruction.

INDEXING AND INDEX REGISTERS

The X field of the normal instruction format permits any one
of registers 1 through 7 in the current register block to be
designated as an index register, The contents of this regis-
ter are then treated as a 32-bit displacement value,

The indexing techniqu loyed in SIGMA is unique,
SIGMA instructions pro for operations on bytes, half-
words, words, and doublewords. These units of information
are typically organized in lists that are processed sequen-
tially. The SIGMA indexing technique is based on the con=
cept that the index register contains an integer value (k)
that permits the accessing of the kth item of a list (where

k = 0 refers to the first item, k = 1 refers to the second
item, etc.), independent of the kind of data that is in the
list, Thus, a byte-addressing instruction that is indexed
accesses the kth byte of a list; a halfword-addressing in-
struction that refers to the same index register obtains the
kth halfword of a list; a word-addressing instruction that
refers to the same index register obtains the kth word of a
list; and a doubleword-addressing instruction that is indexed
with the same register obtains the kth doublewerd of a [lst,

Figure 5 shows how the indexing operation takes place. As
the instruction is brought from memory, it is loaded into a
34-bit instruction register that initially contains O's in the
2 low=order bit positions (32and 33). The displacement
value from the index register is then aligned with the in~
struction register (as an integer) relative to the addressing
type of the instruction. That is, if it is a byte-addressing
instruction, the displacement is lined up so that its low=
order bit is aligned with the least significant bit of the

(=]

Instruction in memory:

Operation

R X Reference address

01 2 JILA 5 6 718 9 10 112 IJMlsiléwIB|9’20212223242$2627“29303|

Instruction in instruction register: 0] Operation

R | X Reference address 00

Byte operation indexing alignment:

Halfword operation indexing alignment :

Word operation indexing alignment :

Shift operation indexing alignment;

Doubleword operation
indexing alignment:

Effective address:

0 1 2 314 5 6 708 9 101

12 13 34 15116 17 18 19120 21 22 23124 25 26 PP Jolu|szl:0|

19-bit displacement value

7 2!|N|&|Jl

18-bit displacement valuve |0

2‘|29

0 N

19-bit address value
'|5l|b v 18 Wi?ﬂ 222 23'14 25 26 27[2‘ % 3 3 32 JJ‘

Figure 5. Index Displacement Alignment

16 Main Memory

34-bit instruction register. The dis;’menr is shifted one
bit to the left of this position for a haltword-addressing in-
struction, two bits to the left for a word-addressing instruc-
tion, and three bits to the left for a doubleword-addressing
instruction. An addition process then takes place to develop
a 19-bit address, which is referred to as the effective ad=
dress of the instruction. High-order bits of the 32-bit
displacement field are ignored in the development of this
effective address (i.e., the 15 high-order bits are ignored
for word operations, the 25 high-order bits are ignored for
shift operations, and the 16 high-order bits are ignored for
doubleword operations). However, the displacement value
can cause the effective dddress to be less than the initial
reference address within the instruction if the displace-
ment value contains a sufficient number of high-order 1's
(i.e., the displacement is a negative integer in two's
complement form).

The effective address of an instruction is always a 19-bit
byte address value; however, this value is automatically
adjusted to the SIGMA 8 information boundary con-
ventions, Thus, for halfword-addressing instructions, the
low=-order bit of the effective halfword address is 0; for
word=-addressing instructions, the 2 low=order bits of the
effective word address are 0's; and for doubleword-
addressing instructions, the 3 low-order bits of the ef-
fective doubleword address are 0O's,

If no indexing is used with a byte~addressing instruction,
the effective byte is the first byte (bit positions 0-7) of

a word location. If no indexing is used with a halfword-
addressing instruction, the effective halfword is the first
halfword (bit positions 0-15) of a word location. A
doubleword operation always involves a word at an even-
numbered word address and the word at the next sequen-
tial (odd-numbered) word address. If an odd-numbered
word location is specified in a doubleword-addressing
instruction, the low=-order bit of the effective address
field (bit position 31) is automatically forced to 0. Thus,
an odd-numbered word address (referring to the middle

of a doubleword) designates the same doubleword as an
even-numbered word address, when used in a doubleword-
addressing insfruction.)

MEMORY ADDRESS CONTROL

In a SIGMA 8 computer, the use of main memory by a pro=-
" gram is controlled by the memory locks. The memory locks
provides memory write protection for all modes of programs
within the 131, 072 words of memory.

MEMORY WRITE LOCKS

Memory protection is provided by a lock and key technique.
A 2-bit write-protect lock (WL) is provided for each
512-word page of the 128K words of memory addresses, The
write-protect locks consist of 256 2-bit write locks, each
assigned to a 512-word page of addresses as shown below,

WL | WL WL | WL (Q WL | WL
} t
Addresses Addresses
X'600'~X"'7FF' X'1FEQQ*~
[]
Addresses ﬁq;;’:i
X'400'-X'5FF page 255)
Addresses
X'200'-X'3FF Addresses
Addresses X'1FCO0"
0-X'1FF' X'1FDFF!

(memory page 0)

The write-protect locks can be changed only by executing
the privileged instruction MOVE TO MEMORY CONTROL
(see "Control Instruction”).

The write key (@ 2-bit field in PSD for any operating . -— "~
program) works in conjunction with the lock storage to de-
termine whether any program (slave or master mode) can
write into a specific page of main memory locations. The
keys and locks control access for writing, according to the
following rules.

1. A lock value of 00 means that the corresponding mem=
ory page is "unlocked"; write access to that page is
permitted independent of the key value.

2. A key value of 00 is a "skeleton" key that will open
any lock; thus, write access to any memory page is
permitted independent of its lock value,

3. A lock value other than 00 for @ memory page permits
write access to that page only if the key value is iden~
tical to the lock value,

Thus, a program can write into a given memory page if the
lock value is 00, if the key value is 00, of if the key value
matches the lock value,

The locks and keys are examined to determine whether the
program (master or slave mode) is allowed to alter the
contents of the main memory location. If an instruction
attempts to write into a write-protected memory page, the
computer aborts the instruction, and traps to Homespace
location X'40', which is the "nonallowed operation" trap
(see "Trap System").

PROGRAM STATUS DOUBLEWORD

The critical control conditions of a SIGMA 8 CPU are
defined within 64 bits of information. These 64 bits are
collectively referred to as the current program status double-
word (PSD). The current PSD may be considered as a 64-bit
internal CPU register, although it actually exists as a col-
lection of separate registers and flip-flops. When stored in
memory, the PSD has the following format:

cC o

01 2 374

II Trapped
w 1olCiTiEl 0 —— P |®
00 ¥ 0 1|11 0 0 Status Field R A 000

3233343536373!39400420?441546474849505”5253545550575850656\6?63

oAl 000 1A

112713 14 15716 17 18 IVTZO 21 22 23724 25 26 27728 29 30 3!

“f v
MR
~SZw

M
S
3

0
g

Main Memory 17

Desig-
nation

Function

CcC

FS

FZ

FN

MS

18

Condition code. This generalized 4-bit code
indicates the nature of the results of an instruc-
tion. The significance of the condition code
bits depends on the particular instruction just
executed. After an instruction is executed, the
instructions BRANCH ON CONDITIONS SET
(BCS) and BRANCH ON CONDITIONS RESET
(BCR) can be used singly or in combination, to
test for a particular condition code setting (these
instructions are described in Chapter 3, "Execute/
Branch Instructions").

In some operations, only a portion of the condi=
tion code is involved; thus, the term CC1 refers
to the first bit of the condition code, CC2 to the
second bit, CC3 to the third bit, and CC4 to the
fourth bit. Any program can change the current
value of the condition code by executing either
the instruction LOAD CONDITIONS AND
FLOATING CONTROL IMMEDIATE (LCFI) or the
instruction LOAD CONDITIONS AND FLOATING
CONTROL (LCF). Any program can store the
current condition code by executing STORE
CONDITIONS AND FLOATING CONTROL
(STCF). These instructions are described in
Chapter 3, "Load/Store Instructions".

Floating significance mode control.

Floating zero mode control.

Floating normalize mode control, The three
floating=point mode bits (FS, FZ, and FN) con-
trol the operation of the computer with respect
to floating=-point significance checking, the
generation of zero results, and the normalization
of the results of floating=-point-additions and
subtractions, respectively, (The floating-point
mode controls are described in Chapter 3,
"Floating=-point Instruction".) Any program can
change the state of the current floating-point
mode controls by executing either the instruction
LCFI or the instruction LCF. Any program can
store the current state of the current floating-
point mode controls by executing the instruction
STCF,

Master/slave mode control. The computer is in
the master mode when this bit is a 0; or in the
slave mode when this bit is a 1. A master mode
program can change the mode control by exe-
cuting either the instruction LOAD PROGRAM
STATUS DOUBLEWORD (LPSD) or the instruction
EXCHANGE PROGRAM STATUS DOUBLEWORD
(XPSD). These two privileged instructions are
described in Chapter 3, "Control Instructions"”.

Main Memory

Desig-
nation

Function

DM

AM

1A

WK

Cl
I

El

TSF

RP

Decimal mask. This bit position is used only
to preserve the status of the decimal arithmetic
fault trap mask when a SIGMA 6,7, or 9 program
is being executed. The decimal mask bit does
not affect the operation of the SIGMA 8 com-
puter in any other way,

Arithmetic mask. The fixed-point arithmetic

overflow frap is in effect when this bit is a 1.

The instructions that can cause fixed=-point over=
flow are described in the section "Trap System",
The arithmetic trap mask can be changed by a
master mode program executing either the in~
struction LPSD or the instruction XPSD.

Instruction address. This 17-bit field contains
the address of the next instruction to be
executed.

Write key. This field contains the 2-bit key
used in conjunction with the memory protection
feature. A master mode program can change
the write key by executing either the instruction
LPSD or the instruction XPSD.

Counter interrupt group inhibit,

Input/output interrupt group inhibit,

External interrupt group inhibit. The three
inhibit bits (CI, 1I, and El) determine whether
certain interrupts may occur. The functions
of the interrupt inhibits are described in the
section “Interrupt System". A master mode pro=-
gram can change the interrupt inhibits by exe=-
cuting LPSD, XPSD, or the instruction WRITE
DIRECT (WD). The WD instruction is described
in Chapter 3, "Control Instructions".

Trapped status field. This field is used for the
tracing of faults during trap conditions. (For a
detailed explanation, see "Trap System", in=
cluding Table 5, in this chapter.)

Register pointer, This 4~bit field selects one of
the four possible blocks of general-purpose regis=
ters as the current register block., Unused codes
within this field are reserved for future use. A
master mode program can change the register
pointer by executing LPSD, XPSD, or the in-
struction LOAD REGISTER POINTER (LRP). The
LRP instruction is described in Chapter 3,
"Control Instructions".

Desig=-
nation Function
RA Register altered bit. In the event of a trap

entry, this bit is set to 1 when any general
register or location in memory has been altered
in the execution or partial execution of the
instruction that caused the trap.

INTERRUPT SYSTEM

When a condition that will result in an interrupt is sensed,
a signal is sent to an interrupt level. If that level is

“armed", it a,ces to the waiting state. When all the
conditions for ™®Packnowledgment have been achieved, the
interrupt level advances to the active state, where it causes
the computer to take an instruction from a specific location
in memory. The computer may execute many instructions
between the time that the interrupt-requesting condition is
sensed and the time that the actual interrupt acknowledg-
ment occurs.

Up to 238 interrupt levels are normally available, each
with a unique location (see Table 2) assigned in main mem~
ory, with a unique priority, and capable of beingselectively
armed and/or enabled by the CPU, Also, any interrupt

Table 2, SIGMA 8 Interrupt Locations

Location WRITE DIRECT PSD WRITE DIRECT
Dec. Hex, Register bitf Function Availability Inhibit Group codelt
80 50 none Poweron - - —u -—standard _ none
81 51 Power off '
82 52 16 Counter 1 count pulse optional .
83 53 17 Counter 2 count pulse (as a set) none
84 54 18 Counter 3 count pulse
85 55 19 Counter 4 count pulse standard
86 56 20 Processor fault ‘
87 57 21 Memory fault
88 58 22 Counter 1 zevo optional X'0*
89 59 23 Counter 2 zero (as a set) cI
90 5A 24 Counter 3 zero standard
1 58 25 Counter 4 zero
92 5C 26 Input/Output
93 5D 27 Control Panel standard I
" 94 5E Reserved for future use
95 5F Reserved for future use
96 60 16
. : . External Group 2 X2
111 6F 31
112 70 16
. : . External Group 3 X'3'
127 7F 31
optional El
288 120 16
. . . External Group 14 X'E!
303 12F 31
304 130 16
. . . External Group 15 X'F!
319 13F 31
"When the privileged instruction WRITE DIRECT is used in the interrupt control mode to operate on interrupt levels, the
interrupt levels are selected by specific bit positions in register R, The numbers in this column indicate the bit position
in register R that corresponds-fo the various interrupt levels,
M The numbers in this column indicate the group codes (for use with WRITE DIRECT) of the various interrupt levels,

Interrupt System 19

level can be "triggered" by the CPU (supp with a signal
at the same physical point where the signal the external
source would enter the interrupt level). The triggering of
an interrupt permits the testing of special systems programs
before the special systems equipment is actually attached
to the computer, and also permits an interrupt-servicing
routine to defer a portion of the processing associated with
an interrupt level by processing the urgent portion of an
interrupt=servicing routine, triggering a lower-priority level
(for a routine that handles the less-urgent part), then
clearing the high=priority interrupt level so that other in~
terrupts may occur before the deferred interrupt response

is processed,

SIGMA 8 interrupts are arranged in groups that are con-
nected in a predetermined priority chain by groupsof levels,
The priority of each level within a group is fixed; the first
level has the highest priority and the last level has the low=
" est. The user has the option of ordering a machine with a
priority chain starting with the override group and con-
necting all remaining groups in any sequence. This allows
the user to establish external interrupts above, between,

or below the counter and input/output groups of internal
interrupts, Figure 6 illustrates this with a configuration
that a user might establish, where (after the override group)
the counter group of internal interrupts is given the second-
highest priority, followed by the first group of external in-
terrupts, then the input/output group of internal interrupts,
and finally all succeeding groups of external interrupts,

INTERNAL INTERRUPTS

Internal interrupts include those standard interrupts that are
normally supplied with a SIGMA 8 system, as well as the
additional counter interrupts.

1st Priority 2nd Priority

Override
Interrupts

Counter
Interrupts

3rd Priority

External Interrupts Group 2

4th Priority

Input/Cutput
Interrupts

5th Priority

External Interrupts Group 3 i

Figure 6. Typical Interrupt Priority Chain

0 Interrupt System

OVERRIDE GROUP (LC.]ONS X'50' TO X'57')

The eight interrupt levels of this group always have the
highest priority in a SIGMA 8 system and can never be
inhibited. The power fail-safe feature includes the power
on and power off interrupt levels., A system can contain

2 or 4 count-pulse interrupt levels that are triggered by
pulses from clock sources. Counter 4 has a constant fre~
quency of 500 Hz. Counters 1, 2, and 3 can be individu=-
ally set to any of four manually switchable frequencies —
the commercial line frequency, 500 Hz, 2 kHz, or a
user-supplied external signal — that may be different for
each counter, (All counter frequencies are synchronous
except for the line frequency and the signal supplied by
the user.) Each of the count-pulse interrupt locations must
eontaln one of the modify and test Instructions (MTB, MTH,
or MTW) or an XPSD instruction. When the modification
(of the effective byte, halfword, or word) causes a zero
result, the appropriate counter-equals-zero interrupt (see
"Counter-Equals-Zero Group") is triggered.

The override group also includes a processor fault and a
memory fault interrupt level. The processor fault interrupt
level is triggered by a signal from an input/output processor
(IOP) or another CPU when these devices detect certain
fault conditions, The memory fault interrupt level is trig-
gered by a signal that the memory generates when it detects
certain fault conditions. (See "Trap System" for further
details on processor and memory faults.)

COUNTER-EQUALS-ZERO GROUP (LOCATIONS X'58'
TO X'5B')

Each interrupt level in the counter-equals-zero group
(called a counter-equals-zero interrupt) is associated with

a count-pulse interrupt in the override group. When the
execution of a modify and test instruction in the count-
pulse interrupt location causes a zero result in the effective
byte, halfword, or word location, the corresponding counter=

" equals-zero interrupt is triggered. The counter-equals-zero

interrupts can be inhibited or permitted as a group. If bit
position 37 (CI) of the current program status doubleword
contains a 0, the counter-equals-zerointerrupts are allowed
to interrupt the program being executed. However, if the
Cl bit is a 1, the counter-equals-zero interrupts are not
allowed to interrupt the program. These interrupts wait
until the CI bit is reset to 0 and then interrupt the program
according to priority.

|

INPUT/OUTPUT GROUP (LOCATIONS X'5C* AND X'5D')

This interrupt group includes two standard interrupts: the /O
interrupt and the control panel interrupt. The 1/O interrupt
level accepts interrupt signals from the standard 1/O system.
The 1/O interrupt location is assumed to contain an
EXCHANGE PROGRAM STATUS DOUBLEWORD (XPSD)
instruction that transfers program control to a routine for
servicing all 1/O interrupts. The 1/O routine then contains
an ACKNOWLEDGE I/O INTERRUPT (AIO) instruction that
identifies the source and reason for the interrupt,

The control panel interrupt leve,connecfed to the

INTERRUPT button on the procescontrol panel. The
control panel interrupt level can thus be triggered by
the computer operator, allowing him to initiate a spe-
cific routine.

The interrupts in the input/output group can be inhibited
or permitted by means of bit position 38 (II) of the program
status doubleword. If Il is a 0, the interrupts in the 1/O
group are allowed to interrupt the program being executed.
However, if the Il bit is a 1, the interrupts are inhibited
from interrupting the program. ‘

EXTERNAL INTERRUPTS

A SIGMA 8 system can contain up to 14 groups of optional
interrupt levels, with 16 levels in each group. As shown
in Figure 6, the groups can be connected in any priority
sequence.

All external interrupts can be inhibited or permitted by
means of bit position 39 (EI) of the program status double-
word. If EI is a 0, external interrupts are allowed to
interrupt the program. However, if El is a 1, all ex~
ternal interrupts are inhibited from interrupting the
program.

STATES OF AN INTERRUPT LEVEL

A SIGMA 8 interrupt level is mechanized by means of three
flip-flops. Two of the flip~flops are used to define any of
four mutually exclusive states: disarmed, armed, waiting,
and active. The third flip-flop is used as a level-enable.

The various sfc’nd the conditions causing them to change
state are descri in the following paragraphs. A con-
ceptual diagram of the operational states of the interrupt
system is shown in Figure 7.

DISARMED

When an interrupt level is in the disarmed state, no signal
to that interrupt level is admitted, no "record" is retained
of the existence of the signal, nor is any program interrupt
caused by it at any time.

ARMED

When an interrupt level is in the armed state, it can accept
and remember an interrupt signal. The receipt of such a
signal advances the interrupt level to the waiting state, (If
the level is already in a waiting or active state, as a result
of a previous interrupt signal, the second interrupt signal
has no effect.)

WAITING

When an interrupt level in the armed state receives an
interrupt signal, it advances to the waiting state, and
remains in the waiting state until it is allowed to advance
to the active state. If the level-enable flip=flop is off, the
interrupt level can undergo all state changes except that of
moving from the waiting to the active state. Furthermore,
if this flip-flop is off, the interrupt level is completely
removed from the chain that determines the priority of access
to the CPU. Thus, an interrupt level in the waiting state

External |"—
Input Active, waiting,

Disabled Inhibit=1

oo

WAITING STATE

o -GTO-UP—: —————— _-I

CPU

or disarmed I
/ I Remember
Armed interrupt
Trigger
Input

Enabled =0

interrupt

OK?2

Highest
interrupt?

Figure 7. Operational States of an Interrupt Level

Interrupt System 21

with its level-enable in the off condition dc.of prevent
an enabled, waiting interrupt of lower priority from moving
to the active state, (Additional interrupt signals received
by an interrupt level in the waiting state are ignored.)

When aninterrupt level isinthewaiting state, the following
conditions must all exist simultaneously before the level
advances to the active state.

1. The level must be enabled (i.e., its level=enable flip~-
flop must be set to 1),

2. The group inhibit (CI, II, or El, if applicable) must be
a0,

3. No higher-priority interrupt level is in the active state
or is in the waiting state and totally enabled (i.e.,
enabled and not inhibited).

4. The CPU must be at an interruptable point in the exe-
cution of a program,

ACTIVE

When an interrupt meets all of the conditions necessary to
permit it to move from the waiting state to the active state,
it is permitted to do so by being acknowledged by the com=
puter, which then executes the contents of the assigned
interrupt location as the next instruction. The instruction
address portion of the program status doubleword remains
unchanged until the instruction in the interrupt location is
executed,

The instruction in the interrupt location must be one of the
following: XPSD, MTB, MTH, or MTW, If the execution
of any other instruction in an interrupt location is attempted
as the result of an interrupt level advancing to the active
state, an instruction exception trap occurs.

The use of the privileged instruction XPSD in an interrupt
location permits an interrupt-servicing routine to save the
entire current machine environment and establish a new
environment. If working registers are needed by the routine
and additional register blocks are available, the contents
of the current register block can be saved automatically
with no time loss. This is accomplished by changing the
value of the register pointer, which results in the assign=-
ment of a new block of 16 registers to the routine.

An interrupt level remains in the active state until it is
cleared (removed from the active state) by the execution
of the LPSD instruction or the WD instruction. An interrupt-
servicing routine can itself be interrupted {whenever a
higher priority interrupt level meets all of the conditions
for becoming active) and then continued (after the higher
priority interrupt is cleared). However, an interrupt-
servicing routine cannot be interrupted by a lower priority
interrupt as long as the higher priority interrupt level remains
in the active state, Any signals received by an interrupt
level in the active state are ignored. Normally, the
interrupt=servicing routine clears its interrupt level and
transfers program control back to the point of interrupt by

22 Interrupt System

means of an LPSD instruc with the same effective
address as the XPSD instruction in the interrupt location.

CONTROL OF THE INTERRUPT SYSTEM

The SIGMA 8 system has two points of interrupt control.
One point of interrupt control is at the individual interrupt
level. The WD instruction can be used to individually arm,
disarm, enable, disable, or trigger any interrupt level
except for the power fail~safe interrupts (which are always
armed, always enabled, and cannot be triggered).

The second point of interrupt control is achieved by means
of the interrupt inhibits (CI, 11, and El) in the program
status doubleword. If an interrupt inhibit is set to 1, all
interrupt levels in the corresponding group are effectively
disabled, i.e., no interrupt in the group may advance from
the waiting state to the active state and the group is
removed from the interrupt recognition priority chain. Thus,
a waiting, enabled interrupt level (in a group that is not
inhibited) is not prevented from interrupting the program by
a higher priority, waiting, enabled interrupt level in a
group that is inhibited. However, if an interrupt group is
inhibited while a level in that group is in the active state,
no lower priority interrupt level may advance to the active
state.

The RD instruction may be used to determine which interrupt
leveis in a selected group are in the armed orwaitingstate,
in the waiting or active state, or enabled. Chapter 3 con-
tains a description of the RD instruction.

TIME OF INTERRUPT 0CCURRENCES

The SIGMA 8 CPU permits an interrupt to occur during the
following time intervals (related to the execution cycle of
an instruction) provided that the control panel COMPUTE

switch is in the RUN position and no "halt" condition exists:

1. Between instructions: aninterrupt is permitted between
the completion of any instruction and the initiation of
the next instruction.

2. Between instruction iterations: an interrupt is also
permitted to occur during the execution of the following
multiple-operand instructions:

Move Byte String (MBS)

Compare Byte String (CBS)

Translate Byte String (TBS)

Translate and Test Byte String (TTBS)
Move to Memory Control (MMC)

The control and intermediate results of these instructions

reside in registers and memory; thus, the instruction can be

interrupted between the completion of one iteration (oper-
and execution cycle) and the point in time (during the next

iteration) when a memory locoﬁon.egister is modified.

If an interrupt occurs during this tiW® the current iteration
is aborted and the instruction address portion of the program
status doubleword remains pointing to the interrupted instruc~
tion. After the interrupt-servicing routine is completed,
the instruction continues from the point at which it was
interrupted and does not begin anew.

SINGLE-INSTRUCTION INTERRUPTS

A single-instruction interrupt occurs ina situation where an
interrupt level is activated, the current program is inter-
rupted, the single instruction in the interrupt location is
executed, the interrupt level is automatically cleared and
armed, ond the Interrupted pregram eentinues witheut belng
disturbed or delayed (except for the time required for the
single instruction).

If any of the following instructions is executed in any inter-
rupt location, then that interrupt automatically becomes a
single=instruction interrupt:

Modify and Test Byte (MTB)
Modify and Test Halfword (MTH)
Modify and Test Word (MTW)

A modify and test instruction modifies the effective byte,
halfword, or word (as described in the section "Fixed=-point
Arithmetic Instructions")but the current condition code re-
mains unchanged (even if overflow occurs). The execution

of a modify and test instruction in an interrupt location, is
independent of the write-protection locks; thus, a memory
protection violation trap cannot occur (a nonexistent memory
address will cause an unpredictable operation). Also the
fixed=-point overflow trap cannot occur as the resul t of overflow
caused by executing MTH or MTW in an interrupt location.

The execution of a modify and test instruction inan interrupt
location automatically clears and arms the corresponding in=
terrupt level, allowing the interrupted program to continue.

When a modify and test instruction is executed in a count-
pulse interrupt location, all of the above conditions apply,
in addition to the following: if the resultant value in the
effective location is zero, the corresponding counter=-
equals-zero interrupt is triggered.

TRAP SYSTEM

TRAP

A trap is similar to an interrupt in that program execution
automatically branches to o predesignated location when a
trap condition occurs. A trap differs from an interrupt in
that a trap location must contain an XPSD instruction.
Depending on the type of trap, the trap instruction is
either executed immediately (i.e., current instruction

is aborted) or upon completion of the current instruction.

The trap insfru.w is not held in abeyance by higher
priority traps. errupts on the other hand may have
an entire sequence of instructions executed before actual
interrupt action occurs. ~

TRAP ENTRY SEQUENCE

A trap entry sequence begins when the CPU detects the
trap condition and ends when the new PSD has successfully
replaced the old PSD. Detection of any condition listed

in Table 3, which summarizes the trap system, results in a
trap to a unique location in memory, When a trap condition
occurs, the CPU sets the trap state, The operation cur-
rently being performed by the CPU may or may not be
earried fo completien, depending en the type ef trap, I
any event, the instructionis terminated with a trapsequence.
In this sequence, the program counter is not advanced;
instead, the XPSD instruction in the location associated
with the trap is executed. If any interrupt level is ready
to enter the active state at the same time that an XPSD
trap instruction is in process, the interrupt acknowledge-
ment will not occur until the XPSD trap instruction is com~
pleted. If the trap location does not contain an XPSD
instruction, a second trap sequence is immediately invoked.
(See "Instruction Exception Trap".) The operation of the
XPSD instruction is described in Chapter 3, under "Control
Instructions”.

TRAP MASKS

The programmer may mask the four trap conditions described
below. Other traps can not be masked,

1. The push-down stack limit trap is masked within the
stack pointer doubleword for each individual stack.

2, The fixed=-point overflow trap is masked in bit position
11 (AM) of the PSD. If bit position 11 (AM) of the
PSD contains a 1, the trap is allowed to occur. If bit
position 11 contains a 0, the trap is not allowed to
occur, AM can be masked by operator intervention or
by execution of either of the privileged instructions
XPSD or LPSD.

3. The floating=-point significance check trap is masked
by @ combination of the floating significance (FS),
floating zero (FZ), and floating normalize (FN) mode
control bits (see "Floating-Point Arithmetic Fault Trap").
FS, FZ, and FN can be set or cleared by the execution
of any of the following instructions:

LOAD CONDITIONS AND FLOATING CON-
TROL (LCF)

LOAD CONDITIONS AND FLOATING CON-
TROL IMMEDIATE (LCFI)

EXCHANGE PROGRAM STATUS DOUBLEWORD
(XPSD)

LOAD PROGRAM STATUS DOUBLEWORD (LPSD)

Trap System 23

Ta‘ Summary of SIGMA 8 Trap Locations .

Location ‘ PSD
Dec. | Hex, Function Mask Bit Time of Occurrence Trap Condition Code
64 40 Nonallowed operation
1. Nonexistent None At instruction decode, Set TCC1
instruction ‘
2, Nonexistent None Prior to memory access. Set TCC2

memory address

3. Privileged in- None At instruction decode. | Set TCC3
struction in slave
mode

4. Memory protec- None Prior to memory access. Set TCC4

tion violation

65 4] Unimplemented None At instruction decode. None
instruction) \

66 42 Push-down stack TW TS At the time of stack limit | None
limit reached detection. (The aborted

push-down instruction
does not change memory,
registers, or the condi-

tion code.)
67 43 Fixed-point AM * For all instructions except | None
arithmetic overflow DW and DH, trap occurs

after completion of in-
struction. For. DW and
DH, instruction is aborted
with memory, registers,

CCl, CC3, and CC4

unchanged.
68 44 Floating=-point At detection,
arithmetic fault
1. Characteristic None ((The floating-point None
overflow instruction is aborted
without changing
2, Divide by zero None { ony registers. The None
condition code is set
3. Significance FS, FZ,FN to indicate the reason None
check . \ for the trap.)
69 ~ | 45 Reserved
70 46 Watchdog Timer None At runout. (The Pro- Set TCC1 if instruction successfully
Runout ‘ cessor Detected Fault completed.

or PDF flag will be set.)
Set TCC2 if processor bus hang=-up.

Set TCC3 if memory bus hang-up.

Set TCC4 if DIO bus hang-up.

24 Trap System

je 3.

Summary of SIGMA 9 Trap Locations ')

Location PSD
Dec. | Hex, Function Mask Bit Time of Occurrence Trap Condition Code
.7] 47 Reserved
72 48 1 CALLY None At instruction decode. Equal to R field of CALL instruction,
73 49 CALL2 None At instruction decode. Equal to R field of CALL instruction.
74 4A CALL3 None At instruction decode. Equal to R field of CALL instruction,
75 4B CALL4 None At instruction decode. Equal to R field of CALL instruction.
76 4C Parity Error None (The PDF flag will be set.) | Set TCC3 if data bus parity error
detected by CPU.
Reset TCC1-4 if memory parity
error,
77 4D Instruction Exception None (The PDF flag will be set.) | Set TCC1 if trap or interrupt
Trap sequence and register pointer set to
nonexistent register block.
Set TCC3 if MMC configuration
illegal. .
Set TCC = X'C' if trap or interrupt
sequence with illegal instruction.
Set TCC=X'F'if trap or interrupt se-
quence and processor detected fault.
(The PDF flag will not Set TCC4 if invalid register desig-
be set.) nation (odd register on AD, SD,
FAL, FSL, FML, FDL, TBS, TTBS,
EBS, and register 0 on EBS),
78 4E Reserved
79 4F Reserved
- TRAP CONDITION CODE TRAP ADDRESSING

For the traps push-down stack limit, fixed-point overflow
and floating-point fault, the normal condition code register,
CC1-CC4, is.loaded with more detailed information about
the trap condition just before the trap occurs, This condi-
_ tion code is saved as part of the old PSD when the XPSD
instruction is executed in response to the trap.

For the traps nonallowed operation, watchdog timer runout,
memory parity error, instruction exception, and calls, a
special register, the trap condition TCC1-TCC4, is loaded
just before the trap occurs, When the XPSD instruction is
executed in response to the trap, this register is added to
the new program address if bit 9 of the XPSD is set to 1.
TCC1-TCC4 is also logically. ORed with the condition code
bits of the new PSD when loading CC1-CC4,

During the trap entry sequence, the XPSD instruction in the
trap location is accessed.

NONALLOWED OPERATION TRAP

The occurrence of a nonallowed operation always causes the
computer to abort the instruction being executed at the time

‘that the nonallowed operationisdetectedand to immediately

execute the XPSD instruction in Homespace trap location
X'40', A nonallowed operation trap cannot be masked.

NONEXISTENT INSTRUCTION

Any instruction that is not standard on SIGMA 8 is defined
as nonexistent. This includes immediate operand instructions

Trap System 25

-

thatare indirectly addressed (1 in bit positio instruction).
If @ nonexistent instruction is detected, the computer traps
to Homespace location X'40' at the time the nonexistent
instruction is decoded. No general registers or memory
locations are changed, and the PSD points to the instruction
trapped. The operation of the XPSD in Homespace trap
location X'40' (with respect to the condition code and in-
struction address portions of the PSD) is as follows:

1. Store the current PSD. The condition codes stored
are those that existed at the end of the last instruction
prior to the nonexistent instruction.

2. Load the new PSD, The current PSD is replaced by
the contents of the doubleword location following the
doubleword location in which the current PSD was
stored,

3. Moadify the new PSD,

a, Set CClto 1. The other condition code bits re-
remain unchanged from the values loaded from
memory.

b. If bitposition 9 of XPSD containsa 1, the program
counter is incremented by 8. If bit position 9 of
XPSD contains a 0, the program counter remains
unchanged from the value loaded from memory.

NONEXISTENT MEMORY ADDRESS

Any attempt to access a nonexistent memory address causes
a trap to Homespace location X'40' at the time of the
request for memory service. A nonexistent memory address
condition is detected when an actual address is presented
to the memory system. (Refer to Table 5 for possible changes
to registers and memory locations.) The operation of the
XPSD in Homespace trap location X'40' is as follows:

1. Store the current PSD.
2. load the new PSD.
3. Modify the new PSD.

a. Set CC2to 1. The other condition code bits
remain unchanged from the values loaded from
memory.

b. If bit position 9 of XPSD contains a 1, the pro-
gram counter is incremented by 4. If bitposition 9
of XPSD contains a 0, the program counter remains
unchanged from the value loaded from memory.

PRIVILEGED INSTRUCTION IN SLAVE MODE

An attempt to execute a privileged instruction while the
CPU is in the slave mode causes a trap to Homespace

26 Trap System

location X'40' before t ivileged operation is performed.
No general registers or memory locations are changed, and
the PSD points to the instruction trapped. The operation of
the XPSD in Homespace trap location X'40' is as follows:

1. Store the current PSD.
2. Load the new PSD.
3. Modify the new PSD.

a. Set CC3to 1. The other condition code bits
" 7 remain unchanged from the values loaded from
memory.

b. If bit position 9 of XPSD contains a 1, the program
counter is incremented by 2. If bit position 9 of
XPSD contains a 0, the program counter remains
unchanged from the values loaded from memory.

The operation codes 0C and 0D, and their indirectly ad-
dressed forms, 8C and 8D, are both nonexistent and priv-
ileged. If any one of these operation codes is used while
the CPU is in the slave mode, both CC1 and CC3 are set

to 1's after the current PSD is modified, and if bitposition 9
of XPSD contains a 1, the program counter is incremented
by 10. All other nonexistent operation codes are treated
as nonprivileged and, if used, will trap with CC1 set to 1.

MEMORY PROTECTION VIOLATION

A memory protection violation occurs because of a memory
write-lock violation (by any program) within the 128K words
of memory. When memory protection violation occurs, the
CPU aborts execution of the current instruction without
changing protected memory and traps to Homespace location
X'40'. (Refer to Table 5 for possible changes to registers
and memory locations,) The operation of the XPSD in
Homespace trap location X'40' is as follows:

1. Store the current PSD.
2. Load the new PSD.
3. Moadify the new PSD.

a. Set CC4 to 1. Theother condition code bitsremain
unchanged from the values loaded from memory.

b. If bit position 9 of XPSD contains a 1, the program
counter is incremented by 1. If bit position 9 of
XPSD contains a 0, the program counter remains
unchanged from the value loaded from memory.

An attempt to access a memory location that is both pro=
tected and nonexistent causes both CC2 and CC4 to be set
to 1's after the current PSD has been modified, ond if bit
position 9 of XPSD contains a .1, the program counter is
incremented by 5.

UNIMPLEMENTED INSTI'ION TRAP

The decimal instructions (available on other Sigma computers)
are treated as unimplemented instructions to aid software
simulation. The instructions are as follows:

Operation
Instruction Name Mnemonic Code
Decimal Load DL X'7E
Decimal Store DST X'7F
Decimal Add DA X779
Decimal Subtract DS X'78'
Decimal Multiply DM X'7B'
Decimal Divide DD X'7A
Decimal Compare DC X'7D’
Decimal Shift Arithmetic DSA X'7C!
Pack Decimal Digits PACK X'76'
Unpack Decimal Digits UNPK X77!
Edit Byte String EBS X'63!

If an attempt is made to execute a decimal instruction
(directly or indirectly addressed) the computer traps to
Homespace location X'41', the unimplemented instruction
trap. An indirectly addressed EBS instruction is always
treated as a nonexistent instruction rather than as an unim-
plemented instruction.

The operation of the XPSD in trap Homespace location
X'41" is as follows:

1. Store the current PSD. The condition code stored is
that which existed at the end of the instruction imme~
diately prior to the unimplemented instruction.

2. Load the new PSD. The condition code and the in-
struction address portions of the PSD remain at the
values loaded from memory.

PUSH-DOWN STACK LIMIT TRAP

"Push-down stack overflow or underflow can occur during
execution of any of the following instructions:

Operation
Instruction Mnemonic Code
Push Word PSW X'09'
Pull Word PLW X'08!
Push Multiple PSM X'0B!

Operation

Instruction Mnemonic Code
Pull Multiple PLM X'0A!
Modify Stack Pointer MSP X'13'

During the execution of any stack-manipulating instruction
(see "Push-down Instructions"), the stack is either pushed
(words added to stack) or pulled (words removed from stack).
In either case, the space (S) and words (W) fields of the
stack pointer doubleword are tested prior to moving any
words, If execution of the instruction would cause the
space (S) field to become less than 0 or greater than 2]5-1,
the instruction is aborted with memory and registers
unchanged. If TS (bit 32) of the stack pointer doubleword
is set to 0, the CPU traps to Homespace location X'42', If
TS is set to 1, the trap is inhibited and the CPU processes
the next instruction. If execution of the instruction would
cause the words (W) field to become less than O or greater
than 215-1, the instruction is aborted with memory and
registers unchanged, If TW (bit 48) of the stack pointer
doubleword is set to 0, the CPU traps to Homespace loca-
tion X'42', If TW is set to 1, the trap is inhibited and the
CPU processes the next instruction, If trapping is inhibited,
CC1 or CC3 is set to 1 to indicate the reason for aborting
the instruction. The stack pointer doublewoird, memory,
and registers are modified only if the instruction is success=
fully executed.

If a push-down instruction traps, the execution of XPSD in
Homespace trap location X'42' is as follows:

1. Store the current PSD. The condition codes that are
stored are those that existed prior to execution of the
aborted push-down instruction.

2. Load the new PSD. The condition code and instruction
address portions of the PSDremain at the values loaded
from memory.

FIXED-POINT OVERFLOW TRAP
Overflow can occur for any of the following instructions:
Operation
Instruction Mnemonic Code
Load Absolute Word LAW X'38!
Load Absolute Doubleword LAD X'18!
Load Complement Word LCW X'3A!
Load Complement Doubleword LCD X'1A!
Add Halfword AH X'50!
-.Subtract Halfword _ SH ' X'58'
Divide Halfword DH X'56'

Trap System 27

Operation
Instruction Mnemonic Code
Add Immediate Al X'20*
Add Word AW X'30'
Subtract Word swW X'38!
Divide Word DW X'36
Add Doubleword AD X'10
Subtract Doubleword SD X'18'
Modify and Test Halfword MTH X'53
Modify and Test Word MTW X'33
Add Word to Memory AWM X'66'

Except for the instructions DIVIDE HALFWORD (DH) and
DIVIDE WORD (DW), the instruction execution is allowed
to proceed to completion. CC2 is set to 1 and CC3 and
CC4 represent the actual result (0, =, or +) after overflow,

If the fixed-point arithmetic trap mask (bit 11 of PSD) is a
1, the CPU traps to Homespace location X'43' instead of
executing the next instruction in sequence,

For DW and DH, the instruction execution is aborted with-
out changing any register, and CC2 is set to 1; but CCl,
CC3, and CC4 remain unchanged from their values at the
end of the instruction immediately prior to the DW or DH.
If the fixed-point arithmetic trap mask is a 1, the CPU
traps to location X'43' instead of executing the next instruc=~
tion in sequence.

The execution of XPSD in Homespace trap location X'43'
is as follows:

1. Store the current PSD, If the instruction trapped was
any instruction other than DW or DH, the stored con~
dition code is interpreted as follows:

cCit cC2 CC3 CC4 Meaning

- 1 0 0 Result after overflow is
zero.
- 1 0 1 Result after overfiow is

negative,

ibCC] remains unchanged for instructions LCW, LAW, LCD,
and LAD,

A hyphen indicates that the condition code bitsare notaf-
fected by the condition given under the "Meaning" heading.

28 Trap System

CCit cCcC2 ! CC4 Meaning

- 1 1 0 Result ofter overflow is
positive,
0 - - - No carry out of bit 0

of the adder (add and
subtract instructions

only).

Carry out of bit 0 of
the adder (add and
subtract instructions

only).

If the instruction trapped was a DW or DH, the stored
condition code is interpreted as follows:

CCl CC2 CC3 CC4 Meaning

-ft 1 - - Overflow

2. Load the new PSD. The condition code and instruction
address portions of the PSD remain at the value loaded
from memory.

FLOATING-POINT ARITHMETIC FAULT TRAP

Floating-point fault detection is performed after the opera-
tion called for by the instruction code is performed, but
before any results are loaded into the general registers,
Thus, the floating-point operation that causes an arithmetic
fault is not carried to completion in that the original con-
tents of the general registers are unchanged.

Instead, the computer traps to Homespace location X'44'
with the current condition code indicating the reason for
the trap. A characteristic overflow or an attempt to divide
by zero always results in a trap condition. A significance
check or a characteristic underflow results in a trap condi-
tion only if the floating-point mode controls (FS, FZ, and
FN) in the current program status doubleword are set to the
appropriate state,

If a floating=-point instruction traps, the execution of XPSD
in Homespace trap location X'44' is as follows:

1. Store the current PSD. If division is attempted with a
zero divisor or if characteristic overflow occurs, the
stored condition code is interpreted as follows:

CCl CC2 CC3 CC4 Meaning

Zero divisor,

0 1 0 1 Characteristic overflow,
negative result.
0 1 1 0 Characteristic overflow,

positive result.

If none of the above con!ns occurred but
characteristic underflow oc with floating zero
mode bit (FZ) = 1, the stored condition code is inter=
preted as follows:

cCi CC2 CC3 CC4 Meaning

1 1 0 1 Characteristic under-
flow, negative result,
1 1 1 0 Characteristic under-

flow, positive result.

If none of the above conditions occurred but an addi-
tion or subtraction results in either a zero result (with
FS =1 and FN =0), or a postnormalization shift of more
than two hexadecimal places (with FS = 1 and FN = 0),
the stored condition code is interpreted as follows:

CCi CC2 CC3 cc4

Meaning

1 0 0 0 Zero result of addition
or subfraction,

1 0 0 1 More than two post-
normalizing shifts,
negative result.

1 0 1 0 More than two post-

normalizing shifts,
positive result,

2. Load the new PSD, The condition code and instruc-
tion address portions of the PSD remain at the values
loaded from memory.

CALL INSTRUCTION TRAP

The four CALL instructions (CAL1, CAL2, CAL3, and
CAL4) cause the computer to trap to Homespace location
X'48' (for CAL1), X'49' (for CAL2), X'4A' (for CAL3), or
X'4B' (for CAL4). Execution of XPSD in the trap location
is as follows:

1. Store the current PSD. The stored condition code bits
are those that existed prior to the CALL instruction.

2. Load the new PSD,
3. Modify the new PSD,

a. The R Field of the CALL instruction is logically
ORed with the condition code register as loaded
from memory.

b. If bit 9 of XPSD contains a 1, the R field of the
CALlLinstructionisadded to the program counter. If
bit9 of XPSD contains a0, the program counter re-~

mains unchanged from the value loaded from memory.

Note: Return from a CALL trap will be to the trapping
instruction + 1,

.ocssson DETECTED FAULTS

The Processor Detected Fault (PDF) flag is hardware flag
used in the SIGMA 8 system to aid in solving the multiple
error problem, Most traps cccur because of some dynamic
programming consideration (i.e., overflow, attempted
division by zero, incorrect use of an instruction or address,
etc.) and recovery is easily handied by another software
subroutine. However, with certain classes of errors, if a
second error occurs while the computer is attempting to
recover from the first error, unpredictable results occur.
Included in this class of traps is the parity error trap, some
cases of the instruction exception trap, and the watchdog
timer runout trap. Upon the first occurrence of this type
of trap, the PDF flag is set,

When the PDF flag is set, the processor fault interrupt, the
memory fault interrupt, and count pulse interrupts are auto-
matically inhibited. The other interrupts, with the excep-
tion of power fail-safe, may or may not be inhibited as
specified by the PSD, which is loaded when the trap entry
XPSD is executed. The PDF flag is normally reset by the
last instruction of a trap routine, which is an LPSD instruc~
tion having bit 10 equal to 0 and bit 11 equal to 1.

If a second PDF is detected before the PDF flag is reset,
the CPU becomes "hung-up" until the PDF flag is reset
either by the operator pressing the CPU RESET or the
SYS RESET switches on the processor control panel; or,
in @ multiprocessor system, by another CPU executing an
RIO instruction,

The reset (RIO) function on a processor bus addressing a
CPU will cause a reset of that CPU. If the CPU is "hung-
up", this reset will cause the following actions:

1. The processor fault status register is cleared.

2. The PDF flag is cleared and the processor fault inter-
rupt generated flag is cleared.

3. The PSD is cleared to zero except that the instruction
address is set to Homespace location X'26', This is the
same condition for the PSD that results from pressing
the SYS RESET switch on the processor control panel.

4. The CPU will begin execution with the instruction
contained in Homespace location X'26'.

WATCHDOG TIMER RUNOUT TRAP

The watchdog timer is a two=phase timer that monitors and
controls the maximum amount of CPU time each instruction
can take. The timer is normally in operation at all times
and is initialized at the beginning of each instruction. If
the instruction is completed before the end of phase 1, the
timer is reset. If the instruction is completed after phase 1
but before the end of phase 2, a trap to Homespace loca-
tion X'46' occurs immediately after the instruction is com-
pleted, and TCC1 is set to indicate successful completion
of the instruction. Additional information as to probable
cause of delay is provided: TCC2 is set if the CPU was

Trap System 29

using the processor bus, TCC3 is set if PU was using
the memory bus, or TCC4 is set if the CP®was using the
DIO bus. If the instruction is not completed by the time
the watchdog timer has advanced through phase 2, the
instruction is aborted, TCCI is set to 0, and a trap occurs
immediately to Homespace location X'46'. In addition,
TCC2, TCC3, or TCC4 will be set as described above.
The register altered flag of the PSD is also set if any
register or main memory location had been changed when
the trap occurred,

A watchdog timer runout is considered a CPU fault and the
PDF is set.

INSTRUCTION EXCEPTION TRAP

The instruction exception trap occurs whenever the CPU
detects a set of operations that are called for in an instruc-
tion but can not be executed because of either a hardware
restriction or a previous event.

The different conditions that cause the instruction exception
trap are:

1. A processor-detected fault that occurs during the exe-
cution of an interrupt or trap entry sequence. An
interrupt or trap entry sequence is defined as the
sequence of events that consists of: (a) initiating on
interrupt or trap; (b) accessing the instruction in the
interrupt or trap location; and (c) executing that in-
struction, including the exchange of the PSD, if
required. Note that instructions executed as a result
of the interrupt or trap other than the instruction lo-
cated at the interrupt or trap location are not consid-
ered part of the entry sequence. ,

2. Anillegal instruction is found in the trap (not XPSD)
or interrupt (not XPSD, MTB, MTH, MTW) location
when executing a trap or interrupt sequence.

3. The register pointer (bits 56=59) of the PSD is set to a
nonexistent register block as a result of an LRP, LPSD,
or XPSD. ’

4, Bit positions 12-14 of the MOVE TO MEMORY CON-
TROL (MMC) instruction are interpreted as an illegal
configuration, That is, any configuration other than

001.

5. The set of operations, primarily doubleword and byte .
. string instructions, that yield an unpredictable result
when an incorrect register is specified; this type of
fault is called "invalid register designation" and in-
cludes the following instructions:!

Odd Register Specified

Add Doubleword (AD)
Subtract Doubleword (SD)

tll -
Invalidregister designation” faults do not set the PDF flag.

30 Trap System

Odd Regisf@fied (cont.)

Floating Add Long (FAL)

Floating Subtract Long (FSL)
Floating Multiply Long (FML)
Floating Divide Long (FDL)
Translate Byte String (TBS)

Translate and Test Byte String (TTBS)
Move to Memory Control (MMC)

Trap Condition Code. The Trap Condition Code (TCC)
differentiates between the different fault types. Some of
the fault conditions (as listed in Table 4) may occur and/or
be detected during a trap or interrupt eniry sequence. In
this case, the trapped status field, bits 48-55 of the PSD,
is set to equal the least significant eight bits of the ad-
dress of the trap or interrupt instruction in which the trap
occurred; that is, the trapped status field will point to
the trap or interrupt location thaf was in effect when
the fault occurred. In the event that the fault occurs

*in a normal program instruction, the trapped status field

has no meaning.

Table 4 shows the settings of the TCC and trapped status
field for the various fault types.

Table 4, TCC Setting for Instruction Exception Trap X'4D’

Trapped Status
TCC Field (PSD bits
Fault Type 1234 | 48-55)

XPSD in trap or 1000
interrupt location tries
to set register pointer

to nonexistent register

block.

8 least significant
bits of trap or
interrupt address.

XPSD, LPSD, or LRP 0000
not in a trap or inter~
rupt sequence tries to
set register pointer to
nonexistent register

block.

No meaning.

8 least significant
bits of trap or
interrupt address.

Trap or interrupt 1111
sequence and pro=-
cessor detected fault,

8 least significant
bits of trap or
interrupt address.

Trap or interrupt 1100
sequence with
invalid instruction.

MMC configuration 0010 | No meaning.
invalid.

Invalid register 0001 No meaning.
designation,

PARITY ERROR TRAP

Two types of parity errors may be detected in the addressing
and memory logic.

1. Data Bus Check. If the CPU detects a parity error on
data received from memory and the memory does not
also indicate a parity error on the information sent, a
data bus check occurs. The data bus check causes the
CPU to trap to Homespace location X'4C', and sets
TCC3to 1.

2. Memory Parity Error. When a CPU receives a signal
from the memory indicating memory parity error, this
fault occurs. The CPU traps to Homespace location
X'4C'. In addition, on a memory-detected parity
error trap, the memory bank will "snapshot" the address
causing the trap.

The memory parity error signal is generated:

1. When the memory is performing.a read operation and
a parity error is detected in the data as read from the
memory elements.

2. When the memory is performing a partial write opera~-
tion and a parity error is detected when reading the
word to be changed. This is done before the new
information is inserted and the data restored to memory.

3. When a parity error is detected in the memory on an
address received on the memory bus. If the address bus
check occurs on a write request, the memory is not
accessed. On a read request, dummy data with incor=-
rect parity is sent to the processor.

4. When a parity error is detected on data received by
the memory from the memory bus,

5. If the memory has a port selection error in attempting
to establish priority for requests received on two or more
ports. The memory parity error signal is generated on
the busses from all ports affected by the selection
error,

6. If the LOAD MEMORY STATUS instruction is used and
the condition code that is set prior fo execution of the
instruction is reserved (i.e., not implemented in the
memory logic), the memory will interpret it'as a read-
type instruction, send back a parity error signal and
all zeros on the data bus, and "snapshot" the address
in the Memory Status Register.

Any of these six conditions will also cause a Memory Fault
Interrupt to occur.

TRAP CONDITIONS DURING “ANTICIPATE" OPERATIONS

During the time that the SIGMA 8 is executing a current
instruction, it is also performing operations in anticipation
of the next instruction, as specified by the instruction

address. The erations (accessing the next instruction,
the associated Sperand, and/or indirect address, etc.) may
encounter trapping conditions. Whether a corresponding

_trap will occur is contingent on the current instruction.

Traps due to the current instruction and traps due fo branch
operations will inhibit traps due to operations performed
in anticipation of the next instruction,

If the current instruction is a successful branch instruction,
the instruction sequence is changed. Therefore, operations
performed in anticipation of the next instruction are no
longer valid, and any traps associated with these operations
are disregarded.

If the current instruction encounters a frap, it takes pre-
cedence over the next instruction and any anticipated trap.
At the end of the trap routine these operations will be
reperformed and the proper trap action will occur at this
time.

At the end of the execution of current (nonbranching)
instructions, trap conditions detected during "anticipate"
operations have priority over an interrupt. These trap con-
ditions include nonexistent memory, access protection vio=-
lation, nonexistent instruction, privileged instruction in
slave mode, and parity error.

REGISTER ALTERED BIT

Complete recoverability after a trap may require that no
main memory location, no fast memory register, and no
part (or flags) of the PSD be changed when the trap occurs.
If any of these registers or flags are changed, the Register
Altered bit (60) of the old PSD is set to 1 and is saved by
the trap XPSD.

Changes to CC1-4 cause the Register Altered bit to be set
only if the instruction requires these condition code bits as
subsequent inputs, :

Traps caused by conditions detected during operand fetch
and store memory cycles, such as nonexistent memory,
access protection violation, and memory parity error may
or may not leave registers, memory, and PSD unchanged,
depending on when they occur during instruction execu-
tion. Generally, these traps are recoverable. This is
done by checking for protection violations and nonexis-
tent memory at the beginning of execution in case of a
multiple operand access instruction, restoring the original
register contents if execution cannot be completed because
of a trap, and not loading the first half of the PSD until
a possible trap condition due to access of the second half
could have been detected. Table 5 contains a list of
SIGMA 8 instructions and indicates for these instructions
what registers, memory locations, and PSD bits, if any,
have been changed when a trap due to an operand access
memory cycle occurs.,

Trap System 31

Table 5. Regis'hanged at Time of a Trap Due to an Operc.ccess

Instructions

Changes

Al, CI, LCFI, LI, MI

Immediate type, no operand access.

CALI-CAL4, SF, S, WAIT, RD, WD, RIO,
POLR, POLP, DSA

No operand access.

LRA

Has operand access but traps are suppressed; register bits and
condition codes are set instead.

LB, LCF, LRP, CB
LH, LAH, LCH, AH, SH, MH, DH, CH
LW, LAW, LCW, AW, SW, MW, DW, CW
LD, LAD, LCD, AD, SD, CD, CLM, CLR
EOR, OR, AND, LS, INT, CS

FAS, FSS, FMS, FDS, FAL, FSL, FML, FDL

No operand store, registers and PSD unchanged when trap due to
operand fetch. CC1-4 may be changed but are not used as input
to any of these Instructions,

AWM, XW, STS, MTB, MTH, MTW
STB, STCF, STH, STW, LAS

Registers and memory are preserved, condition codes may be changed
but are not used as input to these instructions.

STD

If a trap occurs, the first word (odd address) may have been stored
already. The Register Altered bit is set in this case.

EXU, BCR, BCS
BAL, BDR, BIR

If the branch condition is true (always for EXU and BAL) and a trap
occurs due to access of the indirect address or of the next (branched
to or executed) instruction, the register used is left unchanged and

the program address saved in the PSD is the address of the branch or
execute instruction,

MBS, CBS, TBS, TTBS, MMC, LM,
STM, PLM, PSM

These instructions check for protection violations and nonexistent
memory at both ends of the data area at the beginning of execution
(see individual instruction descriptions). If any traps occur during
execution, e.g., because of parity errors, the instruction is aborted,
indicating in the registers at which point. In general, memory will
be altered and the Register Altered bit set,

CVA, CVS If a trap occurs, the instruction will be aborted before altering
registers, CCl-4 may be changed but not used as input to any of
these instructions.

XPSD, LPSD If a trap occurs due to storing the old PSD or fetching the new PSD,

the instruction is aborted before changing the old PSD.

$10, TIO, TDV, HIO, AIO

Protection violations are not possible during execution of these
instructions; therefore, a trap will only occur due to a parity error
when accessing the CPU/IOP communication locations (Homespace
location X'20" or X'21'). If a parity error trap does not occur
when accessing these locations (either by the CPU or 10P), the
instruction will abort with CC3 set to 1. (See "Input/Output
Instructions®, Chapter 3.)

Trap System

3. INSTRUCTION REPERTOIRE

This chapter describes all SIGMA 8 instructions, grouped
in the following functional classes:

1. Load and Store

2. Analyze and Interpret
3. Fixed-Point Arithmetic
4. Comparison

5. Logical

6. Shift

7. Conversion

8. Floating-Point Arithmetic
9. Byte String

10. Push Down

11. Execute and Branch
12. Call

13. Control

14. Input/Output

SIGMA 8 instruction are described in the following format:

MNEMONIC ® INSTRUCTION NAME®
(Addressing Type(D, Privileged@
Interrupt Action™)

®

* X_| Reference address

0| Operation R Operand

0 1 2 314 5 6 718 9 10 1112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
Description

Affected ®© Trap©

Symbolic Notation

Condition Code Sefﬁngs®
@

Trap Action

®

1. MNEMONIC is the code used by the SIGMA 8 assem-
blers to produce the instruction's basic operation code.

Example

t

INSTRUCTION NAME is the instruction's descriptive
title.

The instruction's addressing type isone of the following:

a. Byte index alignment: the reference address field
of the instruction (plus the displacement value)
can be used to address a byte in main memory or
in the current block of general registers.

b. Halfword index alignment: the referance address
field of the instruction (plus the displacement
value) can be used to address a halfword in main
memory or in the current block of general registers.

c. Word index alignment: the reference address field
of the instruction (plus the displacement value)
can be used to address any word in main memory
or in the current block of general registers.

d. Doubleword index alignment: the reference ad-
dress field of the instruction (plus the displacement
value) can be used to address any doubleword in
main memory or in the current block of general
registers. The addressed doubleword is auto-
matically located within doubleword storage
boundaries.

e. Immediate operand: the instruction word contains
an operand value used as part of the instruction
execution. If indirect addressing is attempted
with this type of instruction (i.e., bit O of the
instruction word is a 1), the instruction is treated
as a nonexistent instruction, and the computer
unconditionally aborts execution of the instruction
(at the time of operation code decoding) and traps
to Homespace location X'40', the "nonallowed
operation” trap. Indexing does not apply to this
type of instruction.

f. Immediate displacement: the instruction word
contains an address displacement used as part of
the instruction execution. If indirect addressing
is attempted with this type of instruction, the com-
puter treats the instruction as a nonexistent in-
struction, and the computer unconditionally aborts
execution of the instruction (at the time of opera-
tion code decoding) and traps to Homespace loca-
tion X'40'. Indexing does not apply to this type
of instruction.

If the instruction is not executable while the computer
is in the slave mode, it is labeled "privileged”. If
execution of a privileged instruction is attempted
while the computer is in the slave mode, the computer
unconditionally aborts execution of the instruction (at
the time of operation code decoding) and traps to
Homespace location X'40'.

Instruction Repertoire 33

34

If the instruction can be successfull med after its
execution sequence has been interrupted by an inter-
rupt acknowledgment, the instruction is labeled "con-
tinue after interrupt”. In the case of the "continue
after interrupt" instructions, certain general registers
contain intermediate results or control information that
allows the instruction to continue properly.

Instruction format:

a. Indirect addressing — If bit position O of the in-
struction format contains an asterisk (*), the in-
struction can use indirect addressing; however,
if bit position 0 of the instruction format contains
a 0, the instruction is of the immediate operand
type, which is treated as a nonexistent instruction
if indirect addressing is attempted (resulting in a
trap to Homespace location X'40').

b. Operation code — The operation code field (bit
positions 1-7) of the instruction is shown in hexa-
decimal notation.

c. Rfield = If the register address field (bit posi-
tions 8-11) of the instruction format contains the
character "R", the instruction can specify any
register in the current block of general registers
as an operand source, result destination, or both;
otherwise, the function of this field is determined
by the instruction.

d. X field — If the index register address field (bit
positions 12-14) of the instruction format contains
the character "X", the instruction specifies in-
dexing with any one of registers 1 through 7 in
the current block of general registers; otherwise,
the function of this field is determined by the
instruction.

e. Reference address field — Normally, the address
field (bit positions 15-31) of the instruction
format is used as the reference address value
(see Chapter 2). This reference address field
is also used to address /O systems (see 1/O
instructions later in this chapter and also
Chapter 4). For immediate operand instructions,
this field is augmented with the contents of
the X field, as illustrated, to form a 20-bit
operand.

f. Value field — In some fixed-point arithmetic in-
structions, bit positions 12-31 of the instruction
format contain the word "value". This field is
treated as a 20-bit integer, with negative inte-
gers represented in two's complement form.

g. Displacement field — In the byte string instruc-
tions, bit positions 12-31 of the instruction for-
mat contain the word "displacement”. In the
execution of the instruction, this field is used to
modify the source address of an operand, the
destination address of a result, or both.

Instruction Repertoire

10.

11.

h. Ignored fiel n the instruction format diagrams,
any area that is shaded represents a field or bit
position that is ignored by the computer (i.e., the
content of the shaded field or bit has no effect
on instruction execution) but should be coded
with 0's to preclude conflict with possible
modifications.

In any format diagram of a general register or
memory word modified by an instruction, a shaded
area represents a field whose content is indeter-
minate after execution of the instruction.

The description of the instruction defines the operations
performed by the computer in response to the instruc-
tion configuration depicted by the instruction format
diagram. Any instruction configuration that causes an
unpredictable result is so specified in the description.

All programmable registers and storage areas that can
be affected by the instruction are listed (symbolically)
after the word "Affected". The instruction address
portion of the program status doubleword is considered
to be affected only if a branch condition can occur as
a result of the instruction execution, since the instruc-
tion address is updated (incremented by 1) as part of
every instruction execution.

All trap conditions that may be invoked by the execu-
tion of the instruction are listed after the word "Trap".
SIGMA 8 trap locations are summarized in the section
“Trap System" in Chapter 2.

The symbolic notation presents the instruction opera-
tion as a series of generalized symbolic statements.
The symbolic terms used in the notation are defined in
Appendix D, "Glossary of Symbolic Terms".

Condition Code settings are given for each instruction
that affects the condition code. A 0 or a 1 under any
of columns 1, 2, 3, or 4 indicates that the instruction
causes a 0 or 1 to be placed in CC1, CC2, CC3, or
CC4, respectively, for the reasons given. If a hyphen
(-) appears in columns 1, 2, 3, or 4, that portion of
the condifion code is not affected by the reason given
for the condition code bit(s) containinga O or 1. For
example, the following condition code settings are
given for a comparison instruction:

1 2 3 Result of comparison

- - 0 0 Equal.

- =~ 0 1 Register operand is arithmetically less
than effective operand.

- - 1 0 Register operand is arithmetically greater
than effective operand.

- 1 - - The logical product of the two operands
is nonzero.

- 0 - - The logical product (AND) of the two

operands is zero.

CC1 is unchanged by the ins ion. CC2 indicates

whether or not the two oper

have 1's in corre-

sponding bit positions, regardless of their arithmetic
relationship. CC3 and CC4 are set according to the

arithmetic relationship of the two operands, regardless

of whether or not the two operands have 1's in corre=

sponding bit positions.

operand is arithmetically less than the effective oper-
and and the two operands both have 1's in at least one

For example, if the register

corresponding bit position, the condition code setting
for the comparison instruction is:

1 2 3 4
-1 01

The above statements about the condition code are

valid only if no trap occurs before the successful com-

pletion of the instruction execution cycle. If a trap
does occur during the instruction execution, the con-

dition code is normally reset to the value it contained

before the instruction was started and the register
altered bit (PSD 60) is set to 1 if a register has been

altered.
activated.

12. Actions taken by the computer for those trap conditions
that may be invoked by the execution of the instruc-

Then the appropriate trap location is

tion are described. The description includes the cri-

" teria for the trap condition, any controlling trap mask

or inhibit bits, and the action taken by the computer.

In order to avoid unnecessary repetition, the three trap

conditions that apply to all instructions (i.e., non-
allowed operations, parity error, and watchdog timer
runout) are not described for each instruction.

13. Some instruction descriptions provide one or more ex-
amples to illustrate the results of the instruction.

These examples are intended only to show how the in-

structions operate, and not to demonstrate their full
capability. Within the examples, hexadecimal nota-

tion is used to represent the contfents of general registers

and storage locations. Condition code settings are

shown in binary notation. The character "x" is used
to indicate irrelevant or ignored information.

LOAD/STORE INSTRUCTIONS

The following load/store instructions are implemented in

SIGMA 8 computers:
Instruction Name
Load Immediate
Load Byte

Load Halfword

Load Word

Load Doubleword

Mnemonic

L1
LB
LH
A

LD

Mnemonic

Instruction Na

Load Complement Halfword LCH
Load Absolute Halfword LAH
Load Complement Word LCw
Load Absolute Word 4 LAW
Load Complement Doubleword LCD
Load Absolute Doubleword LAD
Load Real Address LRA
Load and Set LAS
Load Memory Status LMS
Load Selective LS
Load Multiple LM
Load Conditions and Floating Contro!

Immediate LCFI
Load Conditions and Floating Control LCF
Exchange Word XW
Store Byte STB
Store Halfword STH
Store Word STW
Store Doubleword STD
Store Selective STS
Store Multiple STM
Store Conditions and Floating Control STCF

SIGMA 8 load and store instructions operate with informa-
tion fields of byte, halfword, word, and doubleword lengths.
Load instructions load the information indicated into one of
the general registers in the current register block. Load in-
structions do not affect main memory storage; however,
nearly all load instructions provide a condition code setting
that indicates the following information about the contents
of the affected general register(s) after the instruction is

 successfully completed:

Condition code settings:

1 2 3 4 Result

- = 0 0 Zero-— the result in the affected register(s)
is all O's.

Negative — register R contains a 1 in bit
position 0.

Load/Store Instructions 35

1 2 3 4 Result

- - 1 0 Positive — register R contains a 0 in bit posi=
tion 0, and at least one 1 appears in the
remainder of the affected registers(s) (or
appeared during execution of the current
instruction.)

- 0 - - No fixed-point overflow — the resylt in the
affected register(s) is arithmetically correct.

- 1 = =~ Fixed~point overflow — the result in the
affected register(s) is arithmetically
incorrect.

Store instructions affect only that portion of memory stor=
age that corresponds to the length of the information field
specified by the operation code of the instruction; thus,
register bytes are stored in memory byte locations, register
halfwords in memory halfword locations, register words in
memory word locations, and register doublewords in mem-
ory doubleword locctions. Store instructions do not affect
the contents of the general register specified by the R field
of the instruction, unless the same register is also specified
by the effective address of the instruction.

Lt LOAD IMMEDIATE
(Immediate operand)

0 22 R Value

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23[24 25 26 27128 29 30 31

LOAD IMMEDIATE extends the sign of the value field (bit
position 12 of the instruction word) 12 bit positions to the
left and then loads the 32-bit result into register R.

Affected: (R), CC3,CC4
Dypeg1se™ R

Condition code settings:

1 2 3 4 ResultinR

- = 0 0 Zero
- =~ 0 1 Negative
- = 1 0 Positive

If L1 is indirectly addressed, it is treated as a nonexistent
instruction, in which case the computer unconditionally
aborts execution of the instruction (at the time of opera-
tion code decoding) and traps to Homespace location X'40°
with the contents of register R and the condition code
unchanged.

LB LOAD BYTE
(Byte index alignment)

* 72 R X Reference address

6 V2 314 56 7218 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27126 29 30 31

36 Load/Store Instructions

LOAD BYTE loads fhe’cfive byte into bit positions 24-31
of register R and clears bit positions 0-23 of the register fo
all O's.

Affected: (R),CC3,CC4

BB —Ro4-317 O Ro.23

Condition code settings:

1 2 3 4 ResultinR

- = 0 0 Zero

- - 1 0 Nonzero

LH LOAD HALFWORD
(Halfword index alignment)

* 52 R X Reference address

© 1.2 314 5 6 716 9 10 11112 13 14 15016 17 18 19120 21 22 23124 25 26 27128 29 30 31

LOAD HALFWORD extends the sign of the effective half-
word 16 bit positions to the left and then loads the 32-bit
result into register R.

Affected: (R), CC3,CC4

EHSE —R

Condition code settings:

1 2 3 4 ResultinR

- - 0 0 Zero
- - 0 1 Negative

- -~ 1 0 Positive

LW LOAD WORD
(Word index alignment)

* 32 R X Reference address

0 Vv 2 3la"s 6 718 9 10 1112 13 14 15116 17 18 19120 21 22 23124 25 26 27126 29 30 31

LOAD WORD loads the effective word into register R.

Affected: (R), CC3,CC4
EW ——R

Condition code settings:

1 2 3 4 ResultinR .

- = 0 0 Zero
- - 0 1 Negative

- = 1 0 Positive

LD LOAD DOUBLEWORD
(Doubleword index alignn.
* 12 R X Reference address
O U 2 314 5 6 7108 9 10 NNI12 13 14 15116 17 18 19120 21 22 23124 25 26 2/i23 29 30 31

LOAD DOUBLEWORD loads the 32 low-order bits of the ef-
fective doubleword into register Rul and then loads the 32
high-order bits of the effective doubleword into register R.

If Ris an odd value, the result in register R is the 32 high~
order bits of the effective doubleword. The condition code
settings are based on the effective doubleword, rather than
the final result in register R (see example 3, below).

Affected: (R),(Rul), CC3,CC4
ED32-63 ——=Rul; EDp.37 —R

Condition code settings:

1 2 3 4 Effective doubleword
- = 0 0 Zero

- = 0 1 Negative

- « 1 0 Positive

Example 1, even R field value:

Before execution After execution

ED = X'0123456789ABCDEF' X'0123456789ABCDEF'
(R) = xxxxxxxx X'01234567

(Rul) = xxxxxxxx X'89ABCDEF!

CC = xxxx xx10

Example 2, odd R field value:

ED

(R)

CcC

Before execution

= X'0123456789ABCDEF*
= XXXXXXXX

= XXXX

Example 3, odd R field value:

D
(R)
cc

LCH

Before execution

= X'0000000012345678"
= XXXXXXXX

= XXXX

After execution

X'0123456789ABCDEF!
X'01234567'
xx10

After execution

X'0000000012345678'
X'00000000'
xx10

LOAD COMPLEMENT HALFWORD

(Halfword index alignment)

LOAD COMPLE T HALFWORD extends the sign of the
effective halfwoi6 bit positions to the left and then loads
the 32-bit two's complement of the result info register R.
(Overflow cannot occur.)

A{fecfed: (rR),CC3,CC4
-|EH

—R

SE

Condition code settings:

1 2 3 4 ResultinR

- - 0 0 Zero
=~ = 0 1 Negative
- - 1 0 Positive

LAH LOAD ABSOLUTE HALFWOQORD
(Halfword index alignment)

* 5B R X Reference address

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23724 25 26 27128 29 30 31

If the effective halfword is positive, LOAD ABSOLUTE
HALFWORD extends the sign of the effective halfword
16 bit positions to the left and then loads the 32-bit result

" in register R. If the effective halfword is negative, LAH

extends the sign of the effective halfword 16 bit positions
to the left and then loads the 32-bit two's complement of
the result into register R. (Overflow cannot occur.)

Affected: (R),CC3,CC4
|EHSE| —R

Condition code settings:

1 2 3 4 ResultinR

0 0 Zero

- - 1 0 Nonzero

LCW LOAD COMPLEMENT WORD
(Word index alignment)

Reference address

* 3A R X

*

5A R X

Reference address

0 1 2 314 5 6 7018 9 10 11712 13714 15716 17 18 19120 21 22 23124 25 26 27?28 29 30 3)

0 1 2 314 5 6 718 9 10 1ii2 13 1415006 17 18 19120 21 22 23124 25 26 27128 29 30 31

LOAD COMPLEMENT WORD loads the 32-bit two's com-
plement of the effective word into register R. Fixed-point
overflow occurs if the effective word is =231 (X*80000000),
in which case the result in register R is -2 1 and CC2 is set
to 1; otherwise, CC2 is reset to 0.

Affected: (R),CC2,CC3,CC4 Trap: Fixed-point overflow.
-EW R

Load/Store Instructions 37

Condition code settings:

1 2 3 4 ResultinR

- 0 0 0 Zero
- = 0 1 Negative

- 0 1 0 Positive

- 0 - No fixed-point overflow

- 1 0 1 Fixed-point overflow

1f CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to Homespace location
X'43" after execution of LOAD COMPLEMENT WORD;
otherwise, the computer executes the next instruction in
sequence.

LAW LOAD ABSOLUTE WORD
(Word index alignment)

* 3B R X Reference address

T 7 Z 314 5 6 718 9 10 11112 13 18 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

If the effective word is positive, LOAD ABSOLUTE WORD
loads the effective word into register R. If the effective
word is negative, LAW loads the 32-bit two's complement
of the effective word into register R. Fixed-point overflow
occurs if the effective word is =231 (X'80000000'), in which
case the result in register Ris =231 and CC2 is set to 1;
otherwise, CC2 is reset to O.

Affected: (R),CC2,CC3,CC4 Trap: Fixed-point overflow
[EW|——R

Condition code settings:

1 2 3 4 ResultinR

= 0 0 0 Zero

- - 1 0 Nonzero

- 0 - No fixed-point overflow

- 1 0 1 Fixed-point overflow (sign bit on)

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to Homespace location X'43'
after execution of LOAD ABSOLUTE WORD; otherwise, the
computer executes the next instruction in sequence.

LCD LOAD COMPLEMENT DOUBLEWORD
{Doubleword index alignment)

* 1A R X Reference address

O 1 2 314 5 6 716 9 10 11[12 13 14 15116 17 18 19120 21 22 23t24 25 26 27128 29 30 3}

LOAD COMPLEMENT DOUBLEWORD forms the 64-bit
two's complement of the effective doubleword, loads the

38 Load/Store Instructions

sult into register Rul, and then
ts of the result into register R.

32 low-order bits of t
loads the 32 high-ord

If R is an odd value, the result in register R is the 32 high-
order bits of the two's complemented doubleword. The con-
dition code settings are based on the two's complement of
the effective doubleword, rather than the final result in
register R.

Fixed-point overflow occurs if the effective doubleword is
-263 (X'8000000000000000"), in which case the result in
registers R and Rul is -263 and CC2 is set to 1; otherwise,
CC2 is reset to 0.

Affected: (R),(Rul),CC2, Trap: Fixed-point overflow

CC3, CC4
[€D)y, 3 —Rul; [ED)g 5, —R

Condition code settings:

1 2 3 4 Two's complement of effective doubleword

- 0 0 0 Zero

- = 0 1 Negative

- 0 1 O Positive

- 0 - - No fixed-point overflow

- 1 0 1 Fixed-point overflow

If CC2 is set to 1 and the fixed-point arithmetic trap
mask (AM) is a 1, the computer traps to Homespace loca-
tion X'43' after execution of LOAD COMPLEMENT

‘DOUBLEWORD; otherwise, the computer executes the next
instruction in sequence.

Example 1, even R field value:

Before execution After execution

ED = X'0123456789ABCDEF' X'0123456789ABCDEF'

(R) = xxxxxxxx X'FEDCBA?8'
(RuT) = xxxxxxxx X'76543211"
CC = xxxx =001

Example 2, odd R field value:

Before execution After execution

ED = X'0123456789ABCDEF' X'0123456789ABCDEF'
(R) = xxxxxxxx X'FEDCBA98'
CC = xxxx x001

LAD LOAD ABSOLUTE DOU ORD
(Doubleword index alig t)

Reference address

* 1B R X

- e "
0 1 2 314 5 6 718 9 10 11l12 13 14 158706 17 18 19020 2V 22 23124 25 26 27128 29 30 31

If the effective doubleword is positive, LOAD ABSOLUTE
DOUBLEWORD loads the 32 low-order bits of the effective
doubleword into register Rul, and then loads the 32 high-
order bits of the effective doubleword into.register R. If R
is an odd value, the result in register R is the 32 high-order
bits of the effective doubleword. The condition code set-
tings are based on the effective doubleword, rather than
the final result in register R.

If the effective doubleword is negative, LAD forms the
64-bit two's complement of the effective doubleword, loads
the 32 low-order bits of the two's complemented double-
word into register Rul, and then loads the 32 high-order
bits of the two's complemented doubleword into register R.
If Ris an odd value, the result in register R is the 32 high-
order bits of the two's complemented doubleword. The con-
dition code settings are based on the two's complement of
the effective doubleword, rather than the final result in
register R.

Fixed-point overflow occurs if the effective doubleword is
-263 (X'8000000000000000'), in which case the result in
registers R and Rul is -2 and CC2 is sef to 1; otherwise,
CC2 is reset to 0.

Example 2, ev. field value:

Before execution

After execution

ED = X'FEDCBA9876543210' X'FEDCBA9876543210"
R) = xxxxxxxx X'01234567*

(Rul) = xxxxxxxx X'89ABCDFO'

CC = xxxx =010

Example 3, odd R field value:

Before execution

After execution

ED = X'0123456789ABCDEF* X'0123456789ABCDEF!
(R) = xxxxxxxx X'01234567'
CC = xxxx x010
LRA LOAD REAL ADDRESS
(Byte, halfword, word, or doubleword index
alignment, privileged)
* 2C R X Reference address

0) 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

Affected: (R),(Rul),CC2,

|EDI

CC3,CC4
——Rul; |ED|

Trap: Fixed-point overflow

R

32-63 0-31

Condition code settings:

1 2 3 4 Absolute value of effective doubleword
- 0 0 0 Zero

- = 1 0 Nonzero

- 0 - - No fixed-point overflow

- 1 0 1 Fixed-point overflow (sign bit on)

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to Homespace location
X'43' after execution of LOAD ABSOLUTE DOUBLEWORD;
otherwise, the computer executes the next instruction in
sequence.

Example 1, even R field value:

Before execution After execution

ED = X'0123456789ABCDEF* X'0123456789ABCDEF!
(R) = xxxxxxxx X'01234567

(Rul) = xxxxxxxx X'89ABCDEF'

CC = xxxx x010

LOAD REAL ADDRESS loads register R with control informa-
tion (i.e., state of the write locks) and the effective ad-
dress of the byte, halfword, word, or doubleword pointed
to by the reference address. The information loaded is
determined by the setting of CC1 and CC2 at the beginning
of instruction execution. Indexing displacement is also
governed by CC1 and CC2. The desired value of the con-
dition code can be set with LCF or LCFI.

cCl CcC2 Displacement in index
0 0 Byte

0 1 Halfword

1 0 Word

1 1 Doubleword

The resultant contents of register R are as follows:

Bits Contents
0 Always zero.
1 Real Address Not Valid Flag (set if LRA indirectly

addresses a nonexistent address, an address that
has a parity error, or an address less than 16).

Load/Store Instructions 39

Bits Contents : .

2,3 Write Lock Codes.

4-12 Reserved.

13-31 Effective Address (as determined by the setting
of CC1 and CC2).

Affected: (R), CC3,CC4

CC3 is set to one if nonexistent memory is invoked; CC4
is set to one if Homespace bias is used in the resultant
effective address.

When LRA is executed as the operand of an ANALYZE
instruction, word addressing is assumed (word index align-
ment is.performed).

LAS LOAD AND SET
{Word index alignment)

* 26 R X Reference address

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23724 25 26 27128 29 30 31

LOAD AND SET loads the effective word into R and un-
conditionally sets bit 0 of the effective word location in
memory to 1. Register R contains the previous contents of
the effective word location (i.e., before being modified,
if required). The effective address always references mem=-
ory even if it is less than 16.

Affected: (R) CC3,CC4
EW-——R

]——-EWO

Condition code settings:

i 2 3 4 ResultinR

- = 0 0 Zero
- = 0 1 Negative

- = 1 0 Positive

Note: Write locks are used to protect memory during the
execution of LAS. Traps are not inhibited during
its execution.

40 Load/Store Instructions

LMS LOAD MEQY STATUS
(Word index @lignment, privileged)

Reference addreéss

* 2D R X

0 1T 2 374 56 778 % 10 nhiz 34 1shie 1718 wiw 2 2 2312425 26 27728 9 30 3

LOAD MEMORY STATUS is used to determine memory bank
status and/or to perform diagnostic action on a memory
bank. The effective address is used to determine the mem-
ory bank. The condition code setting immediately before
execution determines the diagnostic action to be performed.
The effective address always references memory even if it
is less than 16. The condition code can be set to the de-
sired value before execution of LMS with the LCF or LCFI
instructions. Register R is loaded with the result of the
action.

Trap: See “Trap System",
Chapter 2.

Affected: (R)

Condition code seftings:

1 2 3 4 LMS Action

0 0 0 O Load and set — causes the same action as
the LOAD AND SET (LAS) instruction.
Normal traps are allowed including write
protect.

0 O O 1 Readand inhibit parity — loads the effective
word into R. If a memory parity error is de-
tected, the memory does not take a "snap-
shot" or generate a Memory Fault Interrupt
(MFI). It does, however, generate the Mem-
ory Parity Error signal. The CPU inhibits
the trap that would ordinarily occur for the
memory parity error.

0 O 1 O Readand change parity — loads the effec-

tive word into R. The memory reads the
location and unconditionally restores the
word with the invalid parity bit. The
parity bit transmitted to the processor is
the original parity bit. Parity error traps
and memory fault interrupts are not in-
hibited by this instruction.

0 0 1 1 Reserved.
0 1 0 O Reserved.
0 1 0 1 Reserved.
0 1 1 O Reserved.

0 1 1 1 Setmemory status register — transfers the ef-

fective word from R to memory. The memory

2 3 4 LMS Action .

bank will interpret the word and change
its own timing as follows:

Word Bits Interpretation

8 9 101

1 0 0 0 Setclock margin O, early
write half cycle.

0 1 0 0 Setclock margin 1, late
write half cycle.

0 0 1 0 Setclock margin 2, early
strobe.

0 0 0 1 Setclock margin 3, late

strobe,

Read status word Ot — loads status word 0
into R (see Table 6).

Read status word It — loads status word 1
into R (see Table 7).

Read status word 2f — loads status word 2
into R (see Table 8).

Read status word O and clear all status bits.
Reserved.

t R
Read status word 2 and clear all status bits.

Clear memory — clears the effective word.
All traps are allowed including write protect
violation.

The status of the word loaded (if any) is
stored in the condition code bits at the con-
clusion of execution as follows:

CCl: Memory Parity Error (from memory)
CC2: Data Bus Check (from CPU)

CC3: Parity Bit (from memory)

CC4: O

LI . .
Primarily of diagnostic concern.

ble 6.

Status Word 0

Field Bits Comments

Memory fault 0 Reserved.

types

1 Data parity error detected
on read.

2 Data parity error detected
on partial write.

3 Address bus parity error.

4 Data bus parity error on
full or partial write.

5 Loop check data parity
error.

6 Port selection error.

7 Basic memory unit over-
temperature or power sup-
ply failures.

8-11 Reserved.

Subsequent 12 After a snapshot is taken,

faults this bit isa 1 if two or
more subsequent memory
faults occur before status
register is cleared.

Last parity 13 When-initial snapshot was

bit written taken, the value of the
last parity bit written into
main memory is stored in
this position.

Bank number 14 Bit 14 is the most signifi-
cant bit of bank number
in the unit.

15 Bit 15 is the least signifi-
cant bit of bank number
in the unit.

16-19 | Reserved.
)

Port number 20 Port 1

21 Port 2

> Group 1

22 Port 3

23 Port 4 J

Load/Store Instructions

Table 6. Status Word 0 (conf. : Table 7. ‘s Word 1 (cont.)

Field Bits | Comments Field Bits | Comments
3
l(’:;;:;mber 24 Port 5 : 8-13 | Reserved
25 Port 6
¢ Group 2
2 Port 7 Clock margin 14 Clock margin 0, early
27 Port 8 ' write half cycle.
P,
28 Port 9 15 Clock margin 1, late
29 Port 10 write half cycle.
¥ Group d
30 Port 11 16 Clock margin 2, early
31 | Port 12 strobe.
Note:; Ports are installed 17 Clock margin 3, late

in groups as shown.
group strobe.

18-31| Reserved

Table 7. Status Word 1

Field Bits Comments
Interleave 0, 0 1
mode Table 8. Status Word 2

0 0 Nointerleave .
Field Bits Comments

0 1 2-way interleave

1 0 Interleave between 0-14 | Reserved

two units (4-way)

1 1 Reserved

Interleaved 15-31
address of
fault
Bank size 2,3 2 3
0 0 8K
0 1 16K
LS LOAD SELECTIVE

1 0 Reserved (Word index alignment)

1 1 Reserved * 4A R X Reference address

0 1 2 3la 5 6 718 9 10 nhi213 14 15016 17 18 19120 21 22 23(24 25 26 27128 29 30 31

Memory unit 4-7 | This field specifies the
Register Rul contains a 32-bit mask. If R is an even value,

number memory unit number, as
follows: bit 4 is the LOAD SELECTIVE loads the effective word into register R
most significant bit; in those bit positions selected by a 1 in corresponding bit
bit 7 is the least sig- positions of register Rul. The contents of register R are not
nificant bit. affected in those bit positions selected by a 0 in corre-

sponding bit positions of register Rul.

42 Load/Store Instructions

If R is an odd value, LS logic NDs the contents of
register R with the effective wSPand loads the result into
register R. If corresponding bit positions of register R and
the effective word both contain 1's, a 1 remains in reg-
ister R; otherwise, a 0 is placed in the corresponding bit
position of register R.

Affected: (R), CC3,CC4

If R is even, [EWn(Rul)]u[(R)n(m)] R]
If R is odd, EWn(R) —R

Condition code settings:

1 2 3 4 ResultinR l

- - 0 0 Zero.
- = 0 1 BitOofregister Risa 1.

- = 1 0 BitOof register R is a 0 and bit positions 1-31
of register R contain at least one 1.

Example 1, even R field value:

Before execution After execution

EW = X'01234567' X'01234567
(Rul) = X'FFOOFFOO' X'FFOOFFO0*
(R) = xxoxxxxx X'01xx45xx"
CC = xxxx xx10

Example 2, odd R field value:

Before execution After execution

EW = X'89ABCDEF' X'89ABCDEF*
(R) = X'FOFOFOFQ' X'80A0COEQ!
CC = xxxx xx01

] LOAD MULTIPLE

(Word index alignment)

* 2A R X Reference address

T 1 Z 31T 35 6 7IE T BTN B R B 7 B RRN 2R E %8s 0T

LOAD MULTIPLE loads a sequential set of words into a
sequential set of registers, The set of words to be loaded
begins with the word pointed to by the effective address of
LM, and the set of registers begins with register R. The
set of registers is treated modulo 16 (i.e., the nextregister
loaded after register 15 is register O in the current register
block).

The number of words to be loaded into the general reg-
isters is determined by the setting of the condition code

immediatel re the execution of LM. (The desired
value of the condition code can be set with LCF or LCFIL.)
An initial value of 0000 for the condition code causes

16 consecutive words to be loaded into the register block.

_Affected: (R) to (R+CC~1)

(EWL)———R; ... (EWL+CC-1) R+CC-1

The LM instruction may cause a trap if the operation ex-
tends into a nonexistent memory region. It is detected
before the actual operation begins and the trap occurs

immediately.

LCFI LOAD CONDITIONS AND FLOATING
CONTROL IMMEDIATE
(Immediate operand)

FlF(e
sfzin

0 02 cC

10 213 v 1slie 17 18 19120 21 22 25124 25 26 27 29 30 31

0 1 2 314 5 &6 7
If bit position 10 of the instruction word contains a 1,
LOAD CONDITIONS AND FLOATING CONTROL IM-
MEDIATE loads the contents of bit positions 24 through 27
of the instruction word into the condition code; however,
if bit 10 is 0, the condition code is not affected.

If bit position 11 of the instruction word containsa 1, LCFI

" loads the contents of bit positions 29 through 31 of the in-

struction word info the floating significance (FS), floating
zero (FZ), and floating normalize (FN) mode control bits,
respectively (in the program status doubleword); however,
if bit 11 is 0, the FS, FZ, and FN control bits are not
affected. The functions of the floating=point control bits
are described in the section "Floating=Point Arithmetic
Instructions".

A'Ffecfed: CC[FS, FZ, FN

If (I)]O =1, (1)24_27 —CC

If (I)]0 =0, CC is not affected

If (I)” =1, (1)29_3]——-FS,FZ,FN

If (I).I.l =0, FS,FZ, and FN not affected
Condition code settings, if (I).lo =1

1 2 3 4

Mag M5 My Dy

If LCFI is indirectly addressed, it istreated as a nonexistent
instruction, in which case the computer unconditionally
aborts execution of the instruction (at the time of operation

Load/Store Instructions 43

code decoding) and traps to Homespace locgimen X'40' with
, the condition code unchanged. ‘

LCF LOAD CONDITIONS AND FLOATING
CONTROL
(Byte index alignment)

X Reference address

* 70

If bit position 10 of the instruction word contains a 1,

LOAD CONDITIONS AND FLOATING CONTROL loads
bits O through 3 of the effective byte into the location
code; however, if bit 10 is 0, the ¢condition code is nof
affected.

If bit position 11 of the instruction word contains a 1, LCF
loads bits 5 through 7 of the effective byte into the floating
significance (FS), floating zero (FZ), and floating normal-
ize (FN)mode control bits, respectively; however, if bit 11
is 0, the FS, FZ, and FN control bits are not affected.
The functions of the floating-point mode control bits
are described in the section "Floating-Point Arithmetic
Instructions".

Affected: CC,FS,FZ,FN

If (I)]0 =1, EBO-3 —CC
If (I)]0 =0, CC not affected

If (l).” =1, EB —FS,FZ,FN

5-7

If (I)” =0, FS,FZ,FN not affected

Condition code settings, if (I)]0 =1

1 2 3 4
(EBy) (EB); (EB), (EB),

X¥ EXCHANGE WORD
(Word index alignment)

O 1 2 314 5 6 718 9 10 112 13714 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31 :

Condition code sefﬁngs:.

1 2 3 4 ResultinR

- - 0 0 Zero
- - 0 1 Negative

- = 1 0 Positive

sTB STORE BYTE
(Byte index alignment)

* 75 R X Reference address

* 46 R X Reference address

G 1 2 314 5 6 718 9 10 11012 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

EXCHANGE WORD exchanges the contents of register R
with the contents of the effective word location.

Affected: (R), (EWL),CC3,CC4
(R) =—(EWL)

44 Load/Store Instructions

0 1 2 3Ta 5 6 718 9 10 nl12 1314 15116 17 18 19720 21 22 23124 25 26 27128 29 30 31

STORE BYTE stores the contents of bit positions 24-31 of
register R into the effective byte location.

Affected: (EBL)
Rpg3p — BB

STH STORE HALFWORD
(Halfword index alignment)

* 55 R X Reference address

0 1 2 304 5 6 718 9 10 11112 13 14 15116 17 18 19120 2V 22 23124 25 26 27128 29 30 3i

STORE HALFWORD stores the contents of bit positions 16-31
of register R into the effective halfword location. If the
information in register R exceeds halfword data limits, CC2
is set to 1; otherwise, CC2 is reset to 0.

Affected: (EHL),CC2
(R)]6-31 —EHL

Condition code settings:

1 2 3 4 Information inR

- 0 - - (R)O_.|6=0HO'soraH 1's.

#all 0's orall 1's,

1
—

R®o-16

STW STORE WORD
(Word index alignment)

Reference address

* 35 R X

0 v 2 314 5 6 718 9 10 1[12 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

STORE WORD stores the contents of register R into the ef-
fective word location.

Affected: (EWL)
(R) EWL

STD STORE DOUBLEWORD
(Doubleword index ali nt)

* 15 R X Reference address

O 0 2 314 5 6 718 90 NMNZ 1314 18116 17 18 19120 21 22 23124 25 26.27128 29 30 31

STORE DOUBLEWORD stores the contents of register R into
the 32 high-order bit positions of the effective doubleword
location and then stores the contents of register Rul into
the 32 low-order bit positions of the effective doubleword
location.

Affected: (EDL)

(R)——EDLy_4.; (Rul) —EDL,,

Example 1, even R field value:

After execution

Before execution

(R) = X'01234567' X'01234567

(Rul) = X'89ABCDEF' X'89ABCDEF'

X'0123456789ABCDEF"

(EDL) = XXXXXXXXXXXXXXXX

Example 2, odd R field value:

Before execution After execution

1}

X'89ABCDEF' X'89ABCDEF!

(R)

X'89ABCDEF89ABCDEF!

(EDL) = xxxXXXXXXXXXXXXX

STS STORE SELECTIVE
(Word index alignment)

* 47 R X Reference address

0 1 2 304 5 6 718 9 10 1213 14 15716 17 18 19120 23722 23124 25 26 27128 29 30 31

Register Rul contains a 32-bit mask. If R is an even value,
STORE SELECTIVE stores the contents of register R into the
effective word location in those bit positions selected by a
1 in corresponding bit positions of register Rul; the effec-
tive word remains unchanged in those bit positions selected
by a 0 in corresponding bit positions of register Rul.

If Ris an odd value, STS logically inclusive ORs the con=-
tents of register R with the effective word and stores the
result into the effective word location. The contents of
register R are not affected.

Affected: (EWL)
If R is even, [(R)n(Ru1)] u [EW (Rul)] ——EWL

If Risodd, R) v EW—EWL

(R

Example 1, e.R field value:

Before execution After execution

(R) = X'12345678* X'12345678'
(Rul) = X'FOFOFOFQ' X'FOFOFOFQ’
EW = xxxxxxxx X' Ix3x5x7x'

Example 2, odd R field value:

Before execution After execution

X' OOFFOOFF'

X! 00F FOOFF*

EW X'12345678' X' 12FF56FF!

STM STORE MULTIPLE
(Word index alignment)

* 2B R X Reference address

0 1 2 314 5 6 718 9 10 ni12 13 14 15016 17 18 19120 21 22 23124 25 26 27lzaz93031'/

STORE MULTIPLE stores the contents of a sequential set of
registers into a sequential set of word locations. The set of
locations begins with the location pointed to by the effec~
tive word address of STM, and the set of registers begins
with register R. The set of registers is treated modulo 16
(i-e., the next sequential register after register 15 is reg-
ister 0). The number of registers to be stored is determined
by the value of the condition code immediately before exe-
cution of STM. (The condition code can be set to the de-
sired value before execution of STM with LCF or LCFI.)
An initial value of 0000 for the condition code causes
16 general registers to be stored.

Affected: (EWL) to (EWL+CC-1)
(R)y —EWL;..., (R+CC-1) —EWL+CC-1

The STM instruction causes a trap if its operation extends
into a page of memory that is protected by the write locks.
A trap also occurs if the operation extends into a non-
existent memory region. In either case, the trap is de~
tected before the actual operation begins and will occur
immediately.

STCF STORE CONDITIONS AND FLOATING
CONTROL
(Byte index alignment)

* 74 X Reference address

0 v 2 34 5 6 7

2 13 14 15116 17 18 19120 27 22 23124 25 26 27128 29 30 3t

STORE CONDITIONS AND FLOATING CONTROL stores
the current condition code and the current values of the
floating significance (FS), floating zero (FZ), and floating

Load/Store Instructions 45

normalize (FN) mode control bits of the ’om status
doubleword into the effective byte location ollows:

CC 10j5|z|x

0 1 2 344 5 6 7

Affected: (EBL)
(PSD)O_7‘—’ EBL

ANALYZE /INTERPRET INSTRUCTIONS

ANLZ ANALYZE
(Word index alignment)

* 44 R X Reference address

0 1 2 314 5 6 718 9 10 13112 13 14 15016 17 18 19T?021 22 23124 25 26 27128 29 30 31

The ANALYZE instruction treats the effective word as
a SIGMA 8 instruction and calculates the effective
address that would be generated by the instruction if
the instruction were to be executed. ANALYZE pro-
duces an answer to the question, "What effective ad-
dress would be used by the instruction location at N if
it were executed now?". The ANALYZE instruction
determines the addressing type of the "analyzed" in-
struction, calculates its effective address (if the instruc-
tion is not an immediate-operand instruction), and loads
the effective address into register R as a displacement
value (the condition code scttings for the ANALYZE
instruction indicate the addressing type of the analyzed
instruction).

The nonexistent instruction, the privileged instruction
violation, and the unimplemented instruction trap condi-
tions can never occur during execution of the ANLZ in-
struction. However, either the nonexistent memory address
condition or the memory protection violation trap condition
{or both) can occur as a result of any memory access ini-
tiated by the ANLZ instruction. If either of these trap
conditions occurs, the instruction address stored by an
XPSD in trap Homespace location X'40' is always the
address of the ANLZ instruction.

When the ANALYZE instruction is executed and a trap
condition occurs, it never traps.

If no trap condition occurs, ANLZ will execute normally

and return the effective address of the instruction analyzed.

Table 9 shows how SIGMA 8 operation codes will be inter-
preted by ANLZ,

The detailed operation of ANALYZE is as follows:
1. The contents of the location pointed to by the effec-

tive address of the ANLZ instruction is obtained.

46 Analyze/Interpret Instructions

This effective word 90 instruction to be anulyzed.
From a memory-protection viewpoint, the instruction
(to be analyzed) is treated as an operand of the ANLZ
instruction; that is, the analyzed instruction may be
obtained from any memory area to which the program
has read access.

2. If the operation code portion of the effective word
specifies an immediate~addressing instruction type,
the condition code is set to indicate the addressing
type, and instruction execution proceeds to the next
instruction in sequence after ANLZ. The original con-
tents of register R are not changed when the analyzed
instruction is of the immediate-addressing type.

If the operation code portion of the effective word
specifies a reference-addressing instruction type, the
condition code is set to indicate the addressing type
of the analyzed instruction and the effective address
of the analyzed instruction is computed (using all of
the normal address computation rules). If bit 0 of the
effective word is a 1, the contents of the memory
location specified by bits 15-31 of the effective word
are obtained and then used as a direct address. The
nonallowed operation trap (memory protection viola-
tion or nonexistent memory address) can occur as a
result of the memory access. Indexing is always per-
formed (with an index register in the current register
block) if bits 12-14 of the analyzed instruction are
nonzero. The effective address of the analyzed in-
struction is aligned as an integer displacement value
and loaded into register R, according to the instruction
addressing type, as follows:

Byte Addressing:

0 0 19-bit byte displacement

071 2 3Ta 5 ¢ 718 9 10 11112 13 74 15116 17 18 19120 21 22 23124 5 26 27126 29 30 31

Halfword Addressing:

0 0] 18-bit halfword displacement

G 1 2 314 5 67169 1011112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

Word Addressing:

0 0 17-bit word displacement

0 1 2 374 5 6 718 9 10 NT12 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

Doubleword Addressing:

1
0 0 16-bit doubleword
displacement

0 1 2 314 5 6 718 9 10 NNz 13 1415116 17 18 19120 21 22 23124 25 26 27128 29 30 3}

Operation codes and mnemonics for the SIGMA 8 instruc~-
tion set are shown in Table 9. Circled numbers in the

table (designating groups of i,cﬁons within the bold
lines) indicate the condition code value (decimal), shown
in condition code settings below, available to the next in-
struction after ANALYZE when a direct-addressing opera-
tion code in the corresponding addressing type is analyzed.

Affected: (R),CC
Condition code settings:

3 4 Instruction addressing type

Byte

Immediate, byte

Halfword

Word

Immediate, word
Doubleword

Direct addressing (EW0 =0)

Indirect addressing (EW0 =1)

INT INTERPRET

(Word index alignment)

* 6B R X Reference address

BT 10 T2 13 14 15116 7 18 W10 21 22 23124 25 26 27728 29 30 31

0 1 2 314 5 6 7

INTERPRET loads bits 0-3 of the effective word into the
condition code, loads bits 16-31 of the effective word into
bit positions 16-31 of register Rul (and loads 0's into bit
positions 0-15 of register Rul), loads bits 4-15 of the effec-
tive word into bit positions 20-31 of register R (and clears
the remaining bits of register R). If R is an odd value, INT
loads bits 0-3 of the effective word into the condition code,
loads bits 16-31 of the effective word into bit positions
16-31 of register R, and loads 0's into bit positions 0-15 of
register R (bits 4-15 of the effective word are ignored in
this case).

Affected: (R),(Rul), CC

Ew, ,—CC

0-3

EW,4 15 7 Roou317 O Ropo

0 — Rul

Ru 0-15

EW

16-31 ° "Y116-31°

Tab.. ANALYZE Table for SIGMA 8
Operation Codes

X'n' | X'00'+n | X'20'+n | X'40'+n | X'60'+n
00 | - Al TTBS CBS
01 - I 8BS MBS
02 | Lcrr (@ U - QO -
03 - MI - -
04 CALI SF ANLZ BDR
05 CAL2 S cs BIR
06 CAL3 LAS XW AWM
07 CAL4 - STS EXU
08 PLW cvs EOR BCR
09 PSW CVA OR BCS
0A PLM LM LS BAL
0B PSM STM AND INT
oc | - TN siof RO
oD - LMmst TIOt wpt
OF Lpspt @ WAIT! TDV! Alot
OF XpPspt LRpPt HI1Ot MMCt
10 AD AW AH LCF
1 CD cw CH CB
12 LD LW LH LB
13 MSP MTW MTH MTB
4 |- - - STCF
15 STD STW STH STB
16 | - DW oH ®f~
17 | = MW MH -
18 SD SW SH -
19 CLM CLR - -
1A | LCD LCW LCH -
18 LAD LAW LAH -
1C | FSL FSS - -
ID | FAL FAS - -
1E FDL FDS - _
F FML FMS - -
fPrivileged instructions.

Condition code settings:

] 2 3 4

EW, EW, EW, EW,

Example 1, even R field value:

Ew =

(Rul) =
cC =

Before execution

X'12345678"

KAXKXXXXX

XXX XXXXXK

XXXX

After execution

X'12345678'
X'00000234'
X*00005678"
0001

Analyze/Interpret Instructions

47

FIXED-PGINT ARITHRIETIC lNST'TlONS

The following fixed-point arithmetic instructions are
included as a standard feature of the SIGMA 8 computer.

Instruction Name Mnemonic
Add Immediate Al
Add Halfword AH
Add Word AW
Add Doubleword ' AD
Subtract Halfword . SH
Subtract Word SW
Subtract Doubleword SD
Multiply Immediate MI
Multiply Halfword MH
Multiply Word MW
Divide Halfword DH
Divide Word DW
Add Word to Memory AWM
Modify and Test Byte MTB
Modify and Test Halfword MTH
Modify and Test Word MTW

The fixed-point arithmetic instruction set performs binary
addition, subtraction, multiplication, and division with
integer operands that may be data, addresses, index values,
or counts. One operand may be either in the instruction
word itself or may be in one or two of the current general
registers; the second operand may be either in main memory
or in one or two of the current general registers. For most
of these instructions, both operands may be in the same
general register, thus permitting the doubling, squaring,

or clearing the contents of a register by using a reference
address value equal to the R field value.

All fixed-point arithmetic instructions provide a condition -
code setting that indicates the following information about
the result of the operation called for by the instruction:

Condition code settings:

1 2 3 4 Result

- = 0 0 Zero- the result in the specified general
register(s) is all zeros.

48 Fixed-Point Arithmetic Instructions

1 2 3 4 Result .

- = 0 1 Negative — the instruction has produced a
fixed-point negative result.

~ =~ 1 0 Positive —the instruction has produced a
fixed-point positive result.

- 0 =~ =~ Fixed-point overflow has not occurred during
execution of an add, subtract, or divide in-
struction, and the result is correct.

- 1 - - Fixed-point overflow has occurred during
execution of an add, subtract, or divide in-
struction. For addition and subtraction, the
incorrect result is loaded into the designated
register(s). For a divide instruction, the
designated register(s), and CC1, CC3, and
CC4 are not affected.

0 - - - Nocarry— for an add or subtract instruction,
there was no carry of a 1-bit out of the high-
order (sign) bit position of the result.

1 - - - Carry - for an add or subtract instruction,
there was a 1-bit carry out of the sign bit
position of the result. (Subtracting zero will
always produce carry.)

Al ADD IMMEDIATE
(Immediate operand)

0 20 R Value

T v 2 314 5 6 718 9 10 13012 13 14 15116 17 18 19120 2) 22 23124 25 26 27028 29 30 3}

The value field (bit positions 12-31 of the instruction word)
is treated as a 20-bit, two's complement integer. ADD
IMMEDIATE extends the sign of the value field (bit posi-
tion 12 of the instruction word) 12 bit positions to the left,
adds the resulting 32-bit value to the contents of register R,
and loads the sum into register R.

Affected: (R),CC
(®) + (MDyp_315¢ R

Trap: Fixed-point overflow

Condition code settings:

1 2 3 4 ResultinR
- - 0 0 Zero

- 0 1 Negative
- = 1 0 Positive
- 0 - - No fixed-point overflow
- 1 - =~ Fixed-point overflow
0 - - - No carry from bit position 0

1 - - - Carry from bit position 0

If Al is indirectly addressed, it is od as a nonexistent
instruction, in which case the computer unconditionally
aborts exccution of the instruction {(at the time of operation
code decoding) and traps to Homespace location X'40' with

the contents of register R and the condition code unchanged.

If CC2is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to Homespace location
X'43" after loading the sum into register R; otherwise, the
computer executes the next instruction in sequence.

AH ADD HALFWORD
(Halfword index alignment)

* 50 R X Reference address

O 1 2 314 5 6 718 9 10 11112 13 14 1slle 17 18 19120 21 22 23124 25 26 27128 29 30 31

ADD HALFWORD extends the sign of the effective halfword
16 bit positions to the left (to form a 32-bit word in which
bit positions 0-15 contain the sign of the effective half-
word), adds the 32-bit result to the contents of register R,

- and loads the sum into register R.

Affected: (R), CC Trap: Fixed-point overflow
(R) + EH

—R

SE

Condition code settings:

1 2 3 4 ResultinR

- - 0 0 Zero

- - 0 1 Negative -

- = 1 0 Positive

- 0 - - No fixed-point overflow

- 1 - - Fixed-point overflow

0 - = - No carry from bit position 0
1 - - - Carry from bit position 0

If CC2 is set to 1 and the fixed-point arithmetic trap mask
is 1, the computer traps to Homespace location X'43" after
loading the sum into register R; otherwise, the computer
executes the next instruction in sequence.

AW ADD WORD
(Word index alignment)

Reference address

* 30 R X

G 1 2 374 5 6 7186 9 10 1213 1415016 17 18 19120 21 22 23124 25 26 27128 29 30 3

ADD WORD adds the effective word to the contents of reg-
siter R and loads the sum into register R.

Affected: (R),CC
(R) + EW —R

Trap: Fixed-point overflow

Condition code .ngs:

1 2 3 4 ResultinR

- - 0 0 Zero

- - 0 1 Negative

- - 1 0 Positive

- 0 - - No fixed-point overflow

- 1 - - Fixed-point overflow

0 - - - No carry from bit position 0

1 - = =~ Carry from bit position 0

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to Homespace location
X'43" after loading the sum into register R; otherwise, the
computer executfes the next instruction in sequence.

AD ADD DOUBLEWORD
(Doubleword index alignment)

Reference address

* 10 R X

01 2 JEA 5 6 718 9 10 13112 13 14 15716 17 18 19120 21 22 23124 25 26 27128 29 30 31

ADD DOUBLEWORD adds the effective doubleword to the
contents of registers R and Rul (treated as a single, 64-bit
register); loads the 32 low-order bits of the sum into reg~

“ister Rul and then loads the 32 high-order bits of the sum

into register R. R must be an even value; if R is an odd
value, the computer traps with the contents in register R
unchanged. '

Affected: (R),(Rul),CC
(R,Rul) + ED R, Rul

Trap: Fixed-poinr overflow,
instruction exception

Condition code settings:

1 2 3 4 ResultinR, Rul

- - 0 0 Zero

- = 0 1 Negative

- - 1 0 Positive

- 0 - - No fixed-point overflow

- 1 - - Fixed-point overflow

0 - - =~ No carry from bit position 0

1 - - = Carry from bit position 0

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to Homespace location
X'43' after loading the sum into registers R and Rul; other-
wise, the computer executes the next instruction insequence.

Fixed-Point Arithmetic Instructions 49

*

The R field of the AD instruction must be’ven value for
proper operation of the instruction; if the R'tield of AD is
an odd value, the instruction traps to Homespace location
X'4D', the instruction exception tfrap.

- Example 1, even R field value:

Before execution After execution

ED = X'33333333EEEEEEEE' X'33333333EEEEEEEE’

Ry = Xamnmnv X'44444445
(Rul) = X'33333333' X'22222221"
CC = xxxx 0010
SH SUBTRACT HALFWORD

(Halfword index alignment)
* 58 R X Reference address

O) 2 314 5 6 718 9 10 11112 13 14 15016 17 18 19720 21 22 23124 25 26 27128 29 30 31

SUBTRACT HALFWORD extends the sign of the effective
halfword 16 bit positions to the left (to form a 32-bit word
in which bit positions 0-15 contain the sign of the effec-
tive halfword), forms the two's complement of the resulting
word, adds the complemented word to the contents of reg-
ister R, and loads the sum into register R.

Affected: (R), CC
-EHSE + (R) —R

Trap: Fixed-point overflow

Condition code settings:

1 2 3 4 ResultinR

- - 0 0 Zero

- - 0 1 Negative

- = 1 0 Positive

- 0 - - No fixed-point overflow

- 1 - - Fixed-point overflow

0 - - - No carry from bit position 0

1 - - - Carry from bit position O

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to Homespace location

X'43" after loading the sum into register R; otherwise, the
computer executes the next instruction in sequence.

SW SUBTRACT WORD
(Word index alignment)

Reference address

* 38 R X

0 1 2 374 5 0 708 9 10 112 13 14 15116 17 1819120 21 22 23124 25 26 27128 29 30 31

50 Fixed-Point Arithmetic Instructions

SUBTRACT WORD for e two's complement of the effec-
tive word, adds that complement to the contents of regis-
ter R, and loads the sum into register R.

Affected: (R),CC Trap: Fixed-point overflow

-EW + (R) ——R
Condition code settings:

T 2 3 4 ResultinR

- - 0 0 Zero
- - 0 1 Negative

- =~ 1 0 Positive

- 0 - - No fixed-point overflow

- 1 - - Fixed-point overflow

0 - - - Nocarry from bit position 0
1 - =~ - Carry from bit position 0

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to Homespace location
X'43' after loading the sum into register R; otherwise,- the
computer executes the next instruction in sequence.

SD SUBTRACT DOUBLEWORD
(Doubleword index alignment)

* 18 R X Reference address

C 1 2 314 5 &6 718 9 10 1112 13715 15116 17 18 I9|L20 21 22 23124 25 26 Zﬁ?} 29 30 31

SUBTRACT DOUBLEWORD forms the 64-bit two's comple~
ment of the effective doubleword, adds the complemented
doubleword to the contents of registers R and Rul (treated
as a single, 64-bit register), loads the 32 low-order bits

of the sum into register Rul and loads the 32 high-order bits
of the sum into register R. R must be an even value; if Ris
an odd value, the computer traps with the contents in reg-
ister R unchanged.

Affected: (R),(Rul), CC Trap: Fixed-point overflow,
-ED + (R, Rul) R,Rul instruction exception

Condition code settings:

1 2 3 4 ResultinR, Rul

- -« 0 0 Zero

- - 0 1 Negative

- - 1 0 Positive

- 0 - - No fixed-point overflow

- 1 - - Fixed-point overflow

0 - - - No carry from bit position 0

1 - = =~ Carry from bit position 0

If CC2is set to 1 and the fixe int arithmetic trap mask
(AM) is a 1, the computer trap! Homespace location
X'43" after the result is loaded into registers R and Rul;
otherwise, the computer executes the next instruction in
sequence.

The R field of the SD instruction must be an even value for
proper operation of the instruction; if the R field of SD is
an odd value, the instruction traps to Homespace location
X'4D', instruction exception trap.

M MULTIPLY IMMEDIATE

(Immediate operand)

0 23 R Value

0 1 2 3T4 5 6 716 9 10 1112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

The value field (bit positions 12-31 of the instruction word)
is treated as a 20-bit, two's complement integer. MULTI-
PLY IMMEDIATE extends the sign of the value field (bit
position 12) of the instruction word 12 bit positions to the
left and multiplies the resulting 32-bit value by the con-
tents of register Rul, then loads the 32 high-order bits of
the product into register R, and then loads the 32 low-
order bits of the product into register Rul.

If Ris an odd value, the result in register R is the 32 low-
order bits of the product. Thus, in order to generate a
64-bit product, the R field of the instruction must be even
and the multiplicand must be in register R+1. The condi-
tion code settings are based on the 64-bit product formed
during instruction execution, rather than on the final con-
tents of register R. Overflow cannot occur.

Affected: (R),(Rul), CC2,CC3,CC4
(Rul) x (1)12_3155—'& Rul

Condition code settings:

1 2 3 4 64-bit product

- - 0 0 Zero.
- - 0 1 Negative,
- - 1 0 Positive.

- 0 - =~ Resultiscorrect, as represented in regis-
ter Rul.

- 1 = = Resultis not correctly representable in reg-
ister Rul alone.

If MI is indirectly addressed, it is freated as a nonexistent
instruction, in which case the computer unconditionally
aborts execution of the instruction (at the time of opera-
tion code decoding) and traps to Homespace location X'40'
with the contents of register R, register Rul, and the con-
dition code unchanged; otherwise, the computer executes
the next instruction in sequence.

Example 1, ‘ R field value:

Before execution After execution

(1)12_3] _ X'70000 X'70000

(R) = XXXXRXKX X'00007000"
(Rul) = X'10001000* X'70000000°
CcC = XXXX x110

Example 2, odd R field value:

After execution

X'01234'

Before execution

= X'01234

(Dy2-31

(R) = X'00030002' X'369C2468"

CcC = xxXXX x010

MH MULTIPLY HALFWORD

(Halfword index alignment)

* 57 R X Reference address

0 1 2 304 5 6 718 9 10 11112 13 ¥4 15716 17 18 19720 2V 22 23724 25 26 27126 29 30 3%

MULTIPLY HALFWORD multiplies the contents of bit posi-
tions 16-31 of register R by the effective halfword (with
both halfwords treated as signed, two's complement inte-
gers) and stores the product in register Rul (overflow can-
not occur). If R is an even value, the original multiplier
in register R is preserved, allowing repetitive halfword
multiplication with a constant multiplier; however, if R is
an odd value, the product is loaded into the same register.
Overflow cannot occur.

Affected: (Rul), CC3,CC4
(R)]6-31 x EH ——=Rul

Condition code settings:

1 2 3 4 ResultinRul

- = 0 0 Zero

- - 0 1 Negative

- - 1 0 Positive

Example 1, even R field value:

Before execution After execution

EH = X'FFFF X'FFFF

(R) = X'xxxx000A! X' xxxx000A'
(Rul) = soxxxxxxx X'FFFFFFFO’
CC = xxxx xx01

Fixed-Point Arithmetic Instructions 51

Example 2, odd R field value:

Before execution After execution

EH = X'FFFF X'FEEF
(R = X'xxxxO00A X'FFFFFFF!
CC = xxxx ‘ xx01

MW MULTIPLY WORD
(Word index alignment)

* 37 R {X Reference address

¢ v 2 3Ta 5 6 718 9 10 11412 13 14 15116 17 16 19120 21 22 23124 25 26 27128 29 30 31

MULTIPLY WORD multiplies the contents of register Rul by
the effective word, loads the 32 high-order bits of the
product into register R and then loads the 32 low-order bits
of the product into register Rul (overflow cannot occur).

If R is an odd value, the result in register R is the 32 low-
order bits of the product. Thus, in order to generate a
64-bit product, the R field of the instruction must be even
and the multiplicand must be in register R+1. The condi-
tion code settings are based on the 64-bit product formed
during instruction execution, rather than on the final con-
tents of register R.

Affected: (R),(Rul),CC
(Rul) x EW ——R, Rul

Condition code settings:

1 2 3 4 64-bit product

- - 0 0 Zero.
- = 0 1 Negative.
- - 1 0 Positive.

- 0 =~ =~ Resultis correct, as represented in regis-
ter Rul.

- 1 0 O Resultisnot correctly representable in reg-
ister Rul alone.

DH DIVIDE HALFWORD
(Halfword index alignment)

*! 56 R } X Reference address

G 1 2 514 5 6 718 9 10 1112 13 14 151%e 17 18 19120 21 22 23724 25 26 27128 29 30 31

DIVIDE HALFWORD divides the contents of register R
(treated as a 32-bit fixed-point integer) by the effective
halfword and loads the quotient into register R. If the
absolute value of the quotient cannot be correctly repre-
sented in 32 bits, fixed-point overflow occurs; in which

52 Fixed-Point Arithmetic Instructions

case CC2 is set to 1 cnd‘ contents of register R, and
CC1, CC3, and CC4 arl changed.

Trap: Fixed-point overflow

Affected: (R), CC2,CC3,
CccC4
(R) + EH—R

Condition code settings:

1 2 3 4 ResultinR

- 0 0 0 Zeroquotient, no overflow.

- 0 0 1 Negative quotient, no overflow.

- 0 1 0 Positive quotient, no overflow.

- 1 - - Fixed-point overflow.

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to Homespace location

X'43" with the contents of register R, CC1, CC3, and
CC4 unchanged.

Dw DIVIDE WORD
(Word index alignment)

Reference address

* 36 R X

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 50 31

DIVIDE WORD divides the contents of registers R and Rul
(treated as a 64~bit fixed-point integer) by the effective
word, loads the integer remainder info register R and then
loads the integer quotient into register Rul. If a nonzero
remainder occurs, the remainder has the same sign as the
dividend (original contents of register R). If R is an odd
value, DW forms a 64-bit register operand by extending
the sign of the contents of register R 32 bit positions to the
left, then divides the 64-bit register operand by the effec-
tive word, and loads the quotient into register R. In this
case, the remainder is lost and only the contents of reg-
ister R are affected.

If the absolute value of the quotient cannot be correctly
represented in 32 bits, fixed-point overflow occurs; in
which case CC2is set to 1 and the contents of register R,
register Rul, CC1, CC3, and CC4 remain unchanged;
otherwise, CC2 is reset to 0, CC3 and CC4 reflect the
quotient in register Rul, and CC1 is unchanged.
Affected: (R),(Rul), CC2 Trap: Fixed-point overflow
' CC3,Cc4
(R,Rul) + EW —R (remainder), Rul(quotient)

Condition code settings:

"1 2 3 4 ResultinRul

- 0 0 O Zero quotient, no overflow,

= 0 0 1 Negative quotient, no overflow.

1 2 3 4 ResultinRul

- 0 1 0 Positive quotient, no overflow,
- 1 - - Fixed-point overflow,

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to Homespace location
X'43" with the original contents of register R, register Rul,
CC1, CC3, and CC4 unchanged; otherwise, the computer
executes the next instruction in sequence.

AWM ADD WORD TO MEMORY
(Word index alignment)

* 66 R X Reference address

T 1 Z 314 5 6 718 ¢ W 1213 14 13116 17 18 9120 21 22 23124 25 26 7126 % 30 31

ADD WORD TO MEMORY adds the contents of register R
to the effective word and stores the sum in the effective
word location. The sum is stored regardless of whether or
not overflow occurs. t

Affected: (EWL),CC
EW + (R) —EWL -

Trap: Fixed-point overflow

Condition code settings:

1.2 3 4 ResultinEWL

- - 0 0 Zero

- = 0 1 Negative

- = 1 0 Positive

- 0 - - No fixed-point overflow

- 1 - - Fixed-point overflow

0 - - =~ No carry from bit position 0

1 - - - Carry from bit position 0

If CC2 is set to 1 and fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to Homespace location
X'43" after the result is stored in the effective word loca-

tion; otherwise, the computer executes the next instruction
in sequence.

MTB MODIFY AND TEST BYTE
(Byte index alignment)

Reference address

* 73 R X

O v 2z 312 35 & 71a 9 10 Wl12 13 14 15716 17 18 19720 21 22 23124 25 26 27128 29 30 31

If the value of the R field is nonzero, the high-order bit of
the R field (bit position 8 of the instruction word) is ex-
tended 4 bit positions to the left, to form a byte with bit
positions 0-4 of that byte equal to the high-order bit of
the R field. This byte is added to the effective byte and
then (if no memory protection violation occurs) the sum is

stored in the Q;'rive byte location and the condition code
is set accord¥® to the value of the resultant byte. This
process allows modification of a byte by any number in the
range -8 through +7, followed by a test.

If the value of the R field is zero, the effective byte is
tested for being a zero or nonzero value. The condition
code is set-according to the result of the test, but the
effective byte is not affected. A memory write-profection
violation cannot occur in this case.

= Affected:” CC if (I)g-11 = 0;

(EBL) and CC if (1)8-41 #0

— EBL and set CC

If () 8-11SE

g_17 70 EB+ (D

If (1)8_” =0, test byte and set CC

Condition code setfings:

1 2 3 4 ResultinEBL

- 0 0 O Zero

- 0 1 0 Nonzero

0 - - = No carry from byte
1 - - - Carry from byte

If MTB is executed in an interrupt location, the condition
code is not affected (see Chapter 2, "Single-Instruction
Interrupts").

MTH MODIFY AND TEST HALFWORD
(Halfword index alignment)

* 53 R 1 X Reference address

O 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

If the value of the R field is nonzero, the high-order bit of
the R field (bit position 8 of the instruction word) is ex-
tended 12 bit positions to the left, to form a halfword with -~
bit positions 0-11 of that halfword equal to the high-order
bit of the R field. This halfword is added to the effective
halfword and then (if no memory protection violation oc-
curs) the sum is stored in the effective halfword location
and the condition code is set according to the value of the
resultant halfword. The sum is stored regardless of whether
or not overflow occurs. This process allows modification
of a halfword by any number in the range -8 through +7,
followed by a test.

Fixed-Point Arithmetic Instructions 53

If the value of the R field is zero, the e’ve halfword
is tested for being a zero, negative, or P®itive value.
The condition code is set, according to the result of the
test, but the effective halfword is not affected. A memory
write-protection violation cannot occur in this case.

Affected: CC if (1)8_” =0; Trap: Fixed-point overflow

(EHL) and CC if (g 1, #0

If (1) =0, test halfword and set CC

8-11

(If (1)8-]1 #£0, EH + (1)8-HSE_._EHL and set CC

Condition code settings:

1 2 3 4 ResultinEHL

- = 0 0 Zero

- = 0 1 Negative

- - 1 0 Positive

- 0 - - Nofixed-point overflow
- 1 - - Fixed-point overflow

0 - - - No carry from halfword

1 - - - Carry from halfword

If CC2is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to Homespace location
X'43' after the result is stored in the effective halfword
location; otherwise, the computer executes the next in-
struction in sequence. However, if MTH is executed in
an interrupt location, the condition code is not affected
(see Chapter 2, "Single-Instruction Interrupts".

MTW MODIFY AND TEST WORD
(Word index alignment)

* 33 R X Reference address

G 12 314 5 6 706 9 10 11712 13 14 15016 17 18 19120 21 22 23124 25 26 27128 29 30 31

If the value of the R field is nonzero, the high-order bit
of the R field (bit position 8 of the instruction word) is
extended 28 bit positions to the left, to form a word with
bit positions 0-27 of that word equal to the high-order bit
of the R field. This word is added to the effective word
and then (if no memory protection violation occurs) the
sum is stored in the effective word location and the con-
dition code is set according to the value of the resultant

54 Comparison Instructions

word. The sum is sto egardless of whether or not over-
flow occurs. This process allows modification of a word by
any number in the range -8 through +7, foliowed by a test.

If the value of the R field is zero, the effective word is
tested for being a zero, negative, or positive value. The
condition code is set according to the result of the test,
but the effective word is not affected. A memory write-
protection violation cannot occur in this case.

Affected: CCif (1)8_” =0; Trap: Fixed-point overflow
(EWL) and CC if (1)8_.” #0

If (1) =0, test word and set CC

8-11

If (g_qq 70, EW +1g 1o cc —EWL and set CC

Condition code settings:

1 2 3 4 Resultin EWL

- = 0 0 Zero

- = 0 1 Negative

- = 1 0 Positive

- 0 - - No fixed-point overflow
- 1 - - Fixed-point overflow

0 - - =~ No carry from word

1 - - - Carry from word

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to Homespace location
X'43" after the result is stored in the effective word loca-
tion; otherwise, the computer executes the next instruction
in sequence. However, if MTW is executed in an interrupt
location, the condition code is not affected (see Chap-
ter 2, "Single-Instruction Interrupts".

. COIIPARISOR INSTRUCTIGNS

The following comparison instructions are available on

SIGMA 8 computers;

Instruction Name Mnemonic

Compare Immediate CI
Compare Byte CB
Compare Halfword CH
Compare Word Ccw

Instruction Name Mnemonic
Compare Doubleword CD
Compare Selective Cs
Compare With Limits in Register CLR
Compare With Limits in Memory CLM

All SIGMA 8 comparison instructions produce a condition
code setting that is indicative of the results of the com-
parison, without affecting the effective operand in memory
or the contents of the designated register.

Cl COMPARE IMMEDIATE
(Immediate operand)

0 21 R Valuve

Ry 3

0 1 2 3T4 5 6 718 9 10 11112 13 14 15016 17 18 19120 21 22 23124 25 26 27.:28 29 30 31

COMPARE IMMEDIATE extends the sign of the value field
(bit position 12) of the instruction word 12 bit positions fo
the left, compares the 32-bit result with the contents of
register R (with both operands treated as signed fixed-point
quantities), and then sets the condition code according to
the results of the comparison.

Affected: CC2,CC3,CC4
®): (y5-315e

Condition code settings:

1 2 3 4 Result of Comparison

- - 0 0 Equal.
- - 0 1 Register value less than immediate value.

- = 1 0 Register value greater than immediate
value.

- 0 - -~ No 1-bits compare, (R) n (1)12_325[_: =0.

- 1 - = One or more 1-bits compare,

(R n ()5_395¢ 7 0-

If Clis indirectly addressed, it is treated as a nonexistent
instruction, in which case the computer unconditionally
aborts execution of the instruction (at the time of operation
code decoding) and then traps to Homespace location X'40'
with the condition code unchanged.

CB COMPARE BYTE
(Byte index alignment)

* 71 R X Reference address

0 1V 2 3T4 5 o 7ie 9 10 Nhiz 13 14 as5hie 17 18 19120 21 22 23124 25 26 27128 29 30 31

COMPARE B”compares the contents of bit positions 24-31
of register R the effective byte (with both bytes
treated as positive integer magnitudes) and sets the condi=-
tion code according to the results of the comparison.

Affected: CC2, CC3, CC4
: EB

.

Condition code settings:

1 2 3 4 Result of Comparison

- - 0 0 Equal.

- = 0 1 Register byte less than effective byte.

- = 1 0 Register byte greater than effective byte.
- 0 - - No 1-bits compare, (R)24_3] n"EB = 0.

- 1 - - One or more 1-bits compare,

(R)24_3] nEB #0.

CH COMPARE HALFWORD
(Halfword index alignment)

Reference address

* 51 R X

0 1 2 314 5 6 7108 9 10 Ni12 13 14 15016 17 18 19120 21 22 23124 25 26 27128 2‘7.30 31

COMPARE HALFWORD extends the sign of the effective
halfword 16 bit positions to the left, then compares the
resultant 32-bit word with the contents of register R (with
both words treated as signed, fixed-point quantities) and
sets the condition code according to the results of the
comparison.

Affected: CC2, CC3, CC4
R) ¢ EHSE

Condition code settings:

1 2 3 4 Result of Comparison

- - 0 0 Equal.

- - 0 1 Register word less than effective halfword
with sign extended.

- = 1 0 Register word greater than effective
halfword with sign extended.

- 0 - - No 1-bits compare, (R) nEH £ 0.

S

- 1 - - One or more 1-bits compare,

Comparison Instructions 55

CW COMPARE WORD
(Word index alignment)

* 31 R X Reference address

v 2 3T4 5 s 7l v 10 NNI2 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

COMPARE WORD compares the contents of register R with
the effective word, withboth words treated as signed fixed-
point quantities, and setfs the condition code according to
the results of the comparison.

Affected: CC2,CC3,CC4
(R) : EW

Condition code settings:

1 2 3 4 Result of Comparison

- - 0 0 Equal.

- = 0 1 Register word less than effective word.

- - 1 0 Register word greater than effective word.
- 0 - - No 1-bits compare, (R) n EW = 0

- 1 - = One ormore 1-bits compare, (R) n EW # 0.

co COMPARE DOUBLEWORD

(Doubleword index alignment)

Reference address

* 11 R X

0 1 2 314 5 6 7108 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

COMPARE DOUBLEWORD compares the effective double-
word with the contents of registers R and Rul (with both
doublewords treated as signed, fixed-point quantities)
and sets the condition code according to the results of the
comparison. If the R field of CD is an odd value, CD forms
a b4-bit register operand (by duplicating the cantents of
register R for both the 32 high-order bits and the 32 low-
order bits)and compares the effective doubleword with the
64-bit register operand. The condition code settings are
based on the 64-bit comparison.

Affected: CC3,CC4
(R,Rul) : ED

Condition code settings:

1 2 3 4 Result of Comparison

- - 0 0 Equdl.

- - 0 1 Register doubleword less than effective
doubleword.

- - 1 0 Register doubleword greater than effective
doubleword.

56 Comparison Instructions

€S - COMPARES TIVE
(Word index nment)

Reference address

* 45 R X

0 1 2 314 5 6 718 % 10 11012 13 14 15116 17. 1€ 17120 21 22 22124 ¢ 26 2/126 24 35 31

COMPARE SELECTIVE compares the contents of register R
with the effective word in only those bit positions selected
by a 1 in corresponding bit positions cf register Rul (mask).
The contents of register R and the effective word are ignored
in those bit positions designated by a 0 in correspending bit
positions of register Rul. The selected contents of register R
and the effective word are treated as positive integer
magnitudes, and the condition code is set according to
the result of the comparison. If the R field of CS is

an odd value; CS compares the contents of register R
with the logical product (AND) of the effective word
and the contents of register R.

Affected: CC3,CC4

If Ris even: (R) n (Rul) : EW n (Rul)
IfRisodd: (R): EWn (R)

Condition code settings:

1 2 3 4 Results of Comparison under Mask in Rul

- - 0 0 Equal.
- = 0 1 Register word less than effective word.
- - 10 Regisfef word greater than effective word.

(if RJs»even)

CLR COMPARE WITH LIMITS IN REGISTERS
(Word index alignment)

* 39 R X Reference address

0 1 2 314 5 6 718 9 16111121314 15“0 17 18 19126 21 22 23124 25 26 27126 29 30 31

COMPARE WITH LIMITS IN REGISTERS simultaneously
compares the effective word with the contents of register R
and with the contents of register Rul (with all three words
treated as signed fixed-point quantities), and sets the con-
dition code according to the results of the comparisons.

Affected: CC
(R) : EW, (Rul) : EW
Condition code settings:

1 2 3 4 Result of Comparison

- - 0 0 Contents of R equal to effective word.

- - 0 1 <Contents of R less than effective word.

- - 1 0 Contentsof R greater than effective word.
0 0 - - Contents of Rul equal to effective word.
0 1 - - Contents of Rul less than effective word.

1 0 - - Contents of Rul greater than effective word.

CLM COMPARE WITH LIM N MEMORY

(Doubleword index a! Ngi#ent)

Reference address

* 19 R X

O 1 2 31475 6 718 9 10 17012 13 14 157t 17 18 19120 21 22 23124 25 26 27128 29 30 31

COMPARE WITH LIMITS IN MEMORY simultaneously com-
pares the contents of register R with the 32 high-order bits
of the effective doubleword and with the 32 low-order bits
of the effective doubleword, with all three words treated
as 32-bit signed quantities, and sets the condition code
according to the results of the comparisons.

Affected: CC
(R) : ED0_3]; (R) : ED32-63
Condition code settings:

T 2 3 4 Result of Comparison

- = 0 0 Contents of R equal to most significant
word, (R) = EDO—3].

- - 0 1 Contents of R less than most significant
word, (R) < ED

0-31°

- - 1 0 Contents of R greater than most signficant
word, (R) > EDO-31.

0 O - - Contents of R equal to least significant word,
(R) =ED35 43

0 1 - - Contents of R less than least significant word,
(R) < ED32-63.

1 0 - - Contents of R greater than least significant

word, (R) > ED32—63°

LOGICAL INSTRUCTICNS

All logical operations are performed bit by corresponding

bit between two operands; one operand is in register R and
the other operand is the effective word. The result of the
logical operation is loaded into register R. ‘

OR OR WORD
(Word index alignment)

Affected: (C3,CC4
(R) u EW , where 0u0=0,0ul1=1,100=1,
Tul=1

Condition code settings:

1 2 3 4 ResultinR

- - 0 0 Zero.
- - 0 1 BitOof register Risa 1.

- = 1 0 BitO0 of register R is a 0 and bit positions 1-31
of register R contain at least one 1.

EOR EXCLUSIVE OR WORD
(Word index alignment)

* 48 R X Reference address

0 1 2 314 5 6 716 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27126 29 30 3i

EXCLUSIVE OR WORD logically exclusive ORs the effec~
tive word into register R. If corresponding bits of regis=-
ter R and the effective word are different, a 1 is placed in
the corresponding bit position of register R; if the contents
of the corresponding bit positions are alike, a 0 is placed
in the corresponding bit position of register R. The effec~
tive word is not affected.

Affected: (R), CC3,CC4
(R)@ EW ——R, where 0@ 0=0, 0@ 1 =1,

1@©0=1,1@1=0
Condition code settings:

1 2 3 4 ResultinR

- -~ 0 0 Zero.
- - 0 1 BitOof register Risa 1.

- = 1 0 BitOof register R is a 0 and bit positions 1-31
of register R contain at least one 1.

AND AND WORD
(Word index alignment)

* 4B R X Reference address

* 49 R X Reference address

G 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 237124 25 26 27128 29 30 31

OR WORD logically ORs the effective word into register R.
If corresponding bits of register R and the effective word
are both 0, a 0 remains in register R; otherwise, a 1 is
placed in the corresponding bit position of register R. The
effective word is not affected.

0 1 2 314 5 6 718 9 10 11012 i3 14 15116 17 18 19120 21 22 23124 25 20 27128 29 30 3!

AND WORD logically ANDs the effective word into reg-
ister R. If corresponding bits of register R and the effec-
tive word are both 1, a 1 remains in register R; otherwise,
a 0 is placed in the corresponding bit position of registerR.
The effective word is not affected.

Affected: (R),CC3,CC4

(R) n EW ——R, where 0 n0=0, 0
1n0=0,1

Logical Instructions 57

Condition code settings:

1 2 3

4 ResultinR
- - 0 0 Zero.
- - 0 1 BitOofregister Risa 1.
- - 1 0 BitOof register R is a 0 and bit positions 1-31

of register R confain at least one 1.

SHIFT INSTRUCTICNS

The instruction format for logical, ‘circular, drithmetic,
and searching shift operations is:

S SHIFT
(Word index alignment)
Reference address
* 2
> R X S Type] Count
0 1 2 314 5 6 718 9 10 11112 13 14 15118 18 19120 21 22 23124 25 26 27128 29 30 31

If neither indirect addressing nor indexing is called for in
the instruction SHIFT, bit positions 21-23 of the reference
address field determine the type, and bit positions 25-31
determine the direction and amount of the shift., If only in-
direct addressing is called for in the instruction, bits 15-31
of the instruction are used to access the indirect word and
then bits 21-31 of the indirect word determine the type,
direction, and amount of the shift. If only indexing is
called for in the instruction, bits 21-23 of the instruction
word determine the type of shift; the direction and amount
of shift are determined by bits 25-31 of the instruction plus
bits 25-31 of the specified index register. If both indirect
addressing and indexing are called for in the instruction,
bits 15-31 of the instruction are used to access the indirect
word and then bits 21-23 of the indirect word determine
the type of shift; the direction and amount of the shift
are determined by bits 25-31 of the indirect word plus

bits 25-31 of the specified index register.

Bit positions 15-20 and 24 of the effective address are
Bit positions 21, 22, and 23 of the effective
address determine the type of shift, as follows:

ignored.

2l 22 23 Shift Type

0 O O |Logical, single register

0 O 1 |Logical, double register

0 1 0 Circular, single register

0 1 1 Circular, double register

1 0 O Arithmetic, single register
1 0 1 Arithmetic, double register
1 1 0 Searching, single register
1 1 1 Searching, double register

58 Shift Instructions

Bit positions 25 throy 1 of the effective address are o
shift count that dete es the direction and amount

of the shift. The shift count (C) is treated as a 7-bit
signed binary integer, with the high-order bit (bit posi~
tion 25) as the sign (negative integers are represented in
two's complement form). A positive shift count causes
a left shift of C bit positions. A negative shift count
causes a right shift of |C| bit positions. The value of Cis
within the range: -64 = C < +63.

All double-register shift operations require an even vclue

for the R field of the instruction, and treat registers R and
Rul as a 64-bit register with the high-order bit (bit posi-
tion O of register R) as the sign for the entire register. If

the R field of SHIFT is an odd value and a double-register
shift operation is specified, a register doubleword is

formed by duplicating the contents of register R for both the
32 high~order bits and the 32 low-order bits of the double~
word. The shift operation is then performed and the 32 high-
order bits of the result are loaded into register R.

Overflow occurs (on left shifts only) whenever the value of
the sign bit (bit position O of register R) changes. At the
completion of logical left, circular left, arithmetic left,
and searching left shifts, the condition code is set as
follows:

1 2 3 4 Resultof Shift

0 - - - Even number of 1's shifted off left end of
register R.

1 - - = Odd number of 1's shifted off left end of
register Rt

- 0 - - Nooverflow on left shift,

- 1 - - Overflow on left shift.

- - - 0 Searching shift terminated with Ry equal 0.
- - =~ 1 Searching shift terminated with Ry equal 1.

At the completion of right shifts, the condition code is set
as follows:

1 2 3 4 Resultof Shift

0 0 - 0 Searching shift terminated with Rg equal 0.

0 0 - 1 Searching shift terminated with Ry equal 1.

Logical Shift, Single Register

* 25 R X

012 Ji4 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27i282930 31

If the shift count, C, is positive, the contents of register R
are shifted left C places, with 0's copied into vacated bit

"Not applicable for searching shift.

positions on the right. (Bits shifte t Rg are lost.) If C
is negative, the contents of regisf'ore shifted right |C|
places, with 0's copied into vacated bit positions on the
left. (Bits shifted past R3] are lost.)

Affected: (R}, CC1,CC2

Logical Shift, Double Register

vacated bit pos‘s on the right.

(Bits shifted past Ry are
lost.) If Cisn ive, the contents of register R are
shifted right |C| places, with the contents of bit position 0
copied into vacated bit positions on the left. (Bits shifted
past R3] are lost.)

Affected: (R),CC1,CC2

Arithmetic Shift, Double Register

* Reference address * Reference address
25 R X = 25 R X -
ol1f] Count o] Count
0 1 2 374 5 o 718 9 10 111213 14 122 23124 25 26 27128 29 30 31 0 1 2 374 5 6 718 9 100N 21 22 23124 25 26 27126 25 X0 3

If the shift count, C, is positive, the contents of regis=
ters R and Rul are shifted left C places, with 0's copied
into vacated bit positions on the right. Blts shifted past
bit position 0 of register Rul are copied into bit position 31
of register R. (Bits shifted past Ry are lost.) If Cis nega-
tive, the contents of registers R and Rul are shifted right
[Clplaces with 0's copied into vacated bit positions on the
left. Bits shifted past bit position 31 of register R are
copied into bit position O of register Rul. (Bits shifted
past Ru13] are lost.)

Affected: (R),(Rul), CC1,CC2

Circular Shift, Single Register

Reference address

* 25 R X

To[1Jofil Count

2021 22 23124 25 26 27128 29 30 31

G 1 2 31a 5 6 718 9 10 11712 13 14

If the shift count, C, is positive, the contents of regis-
ter R are shifted left C places. Bits shifted past bit posi~
tion 0 are copied into bit position 31. (No bits are lost.)
If Cis negative, the contents of register R are shifted right
|C| places. Bits shifted past bit position 31 are copied into
bit position 0. (No bits are lost.)

Affected: (R),CC1,CC2

Circular Shift, Double Register

R 05 R X Reference address
_ JoE]l Count
G 1 2 314 5 6 778 9 10 NTi213 34 0 z1 22 23124 25 26 27128 29 30 3)

If the shift count, C, is positive, the contents of regis=~
ters R and Rul are shifted left C places. Bits shifted past
bit position 0 of register R are copied into bit position 31
of register Rul. (No bits are lost.) If C is negative, the
contents of registers R and Rul are shifted right |C| places.
Bits shifted past bit position 31 of register Rul are copied
into bit position 0 of register R. (No bits are lost.)

Affected: (R),(Rul),CC1,CC2

Arithmetic Shift, Single Register

Reference address

* 25 R X

[0 Count

0 1 2 314 5 6 718 9 10 11132 13 14 0 21 22 23124 25 26 27126 29 30 31

If the shift count, C, is positive, the contents of regis-
ter R are shifted left C places, with 0's copied into

If the shift count, C, is positive, the contents of registers R
and Rul are shifted left C places, with 0's copied into va-
cated bit positions on the right, Bifs shiffed pasi bit pasi-
tion O of register Rul are copied into bit position 31 of
register R. (Bits shifted past Rgy are lost.) If C is negative,
the contents of registers R and Rul are shifted right |C|
places, with the contents of bit position O of register R
copied into vacated bit positions on the left. Bits shifted
past bit position 31 of register R are copied into bit posi-
tion O of register Rul. (Bits shifted past RU]3] are lost.)

Affected: (R),(Rul), CC1,CC2

Searching Shift, Single Register

Reference address
1[0 Count

20 2223124 2526 27128 29 30 31
The searching shift is circular in either direction. If the
shift count, C, is positive, the contents of register R are
shifted left C bit positions or until a 1 appears in bit posi~
tion 0. If C is negative, the contents are shifted right

|C| positions or until a 1 appears in bit position 0. When
the shift is terminated, the remaining count is stored in
register 1, which is dedicated to the searching shift in-
struction. Bits 0-24 of register 1 are cleared and the re—
maining count is loaded into bits 25-31. If the initial =~
contents of bit 0 is equal to 1, then no bits are shifted by
the instruction. In this case the original count in the
instruction is stored in register 1.

* 25 RIX

0 1 2 314 5 6 718 9 10 111121334

Searching shift causing a change in bit position 0 causes
CC2 to be set to 1. If bit position 0 is not changed during
a searching shift, CC2 is cleared. If a searching shift is
terminated with bit position 0 equal to 1, CC4 is set to 1;
otherwise, CC4 is cleared.

Affected: (R),(R1),CC2,CC4

Searching Shift, Double Register

Reference address

111 Count

* 25 R X
0 1 2 314 5 6 718 9 10 11112131415 17 18 19120 21 22 23124 25 26 27128 29 30 31
The searching shift is circular in either direction. If the
shift count, C, is positive, the contents of registers R and
Rul are shifted left C bit positions or until a 1 appears in
bit position 0 of register R. If C is negative, the contents
are shifted right C positions or until a 1 appears in bit
position 0. When the shift is terminated, the remaining

Shift Instructions 59

e

count is stored in register 1, which is ated to the
searching shift instruction. Bits 0-24 of ister 1 are
cleared and the remaining count is loaded into bits 25-31.

- Searching shift causing a change in bit position O causes
CC2 to be set to 1. If bit position 0 is not changed during
a searching shift, CC2is cleared. If a searching shift is
terminated with bit position 0 equal to 1, CC4 is set to 1;
otherwise, CC4 is cleared.

Affected: (R),(Rul),(R1),CC2,CC4

FLOATING-POINT SHIFT

Floating-point numbers are defined in the "Floating-Point
Arithmetic Instructions" section. The format for the
floating~point shift instruction is:

SF SHIFT FLOATING
(Word index alignment)
1 T
.l | ce address
A R X BIT_ Count
o1 2 T s o 718 9 1w nhizaz et 22 23124 25 26 2/128 29 30 3t

If indirect addressing or indexing is called for in the in-
struction word, the effective address is computed as for

the instruction SHIFT except that bit position 23 of the
effective address determines the type of shift. If bit 23 is
a 0, the contents of register R are treated as a short-format
floating-point number; if bit 23 is a 1, the contents of reg-
isters R and Rul cre treated as a long-format floating-point
number.

The shift count, C, in bit positions 25 through 31 of the
effective address determines the amount and direction of
the shift. The shift count is treated as a 7-bit signed bi-
nary integer, with the high-order bit (bit position 25) as
the sign (negative integers are represented in two's com-
plement form).

The absolute value of the shift countdetermines the number
of hexadecimal digit positions the floating-point number is
to be shifted. If the shift count is positive, the floating-
point number is shifted left; if the count is negative, the
number is shifted right.

SHIFT FLOATING loads the floating-point number from the
register(s) specified by the R field of the instruction into a
set of internal registers. If the number is negative, it is
two's complemented. A record of the original sign is re-
tained. The floating-point number is then separated into

a characteristic and a fraction, and CC1 and CC2 are both
reset fo 0's.

A positive shiff count produces the following left shift
operations:

1. If the fraction is normalized (i.e., is less than 1 and
is equal to or greater than 1/16), or the fraction is
all 0's, CC1l is set to 1.

2. If the fraction field is.all 0's, the entire floating-point
number is set to all 0's (true zero), regardless of the
sign and the characteristic of the original number.

60 Shift Instructions

3. If the fraction is r'wrmolized, the fraction field is
shifted 1 hexadecimal digit position (4 bit positions) to
the left and the characteristic field is decremented
by 1. Vacated digit positions at the right of the frac-
tion are filled with hexadecimal 0's.

If the characteristic field underflows (i.e., isall 1's
as the result of being decremented), CC2 isset to 1.
However, if the characteristic field does not under-
flow, the shift process (shift fraction, and decrement
characteristic) continues until the fraction is normal-
ized, until the characteristic field underflows, or
until the fraction is shifted left C hexadecimal digit
positions, whichever occurs first. (Any two, or
all three, of the termingting conditions can occur
simultaneously.)

4. Ai the completion of the left shift operation, the
floating-point result is loaded back into the general
register(s). If the number was originally negative, the
two's complement of the resultant number is loaded
into the general registers(s).

5. The condition code settings following a floating-point
left shift are as follows:

1 2 3 4 Result

- - 0 0 True zero {(all 0's).
- - 0 1 Negative.

- - 1 0 Positive.

0 0 - -~ Cdigitsshifted (fraction unnormalized,
no characteristic underflow).
‘' 1 - - - Fraction normalized (includes true zero).
- 1 = - Characteristic underfiow.

A negative shift count produces the following right shift
operations (again assuming that negative numbers are two's
complemented before and after the shift operation):

1. The fraction field is shifted 1 hexadecima!l digit posi-
tion to the right and the characteristic field is incre~
mented by 1. Vacated digit positions at the left are
filled with hexadecimal 0O's.

2. If the characteristic field overflows (i.e., isall 0's as
the result of being incremented), CC2 is set to 1.
However, if the characteristic field does not overflow,
the shift process (shift fraction, and increment char-
acteristic) continues until the characteristic field over-
flows or until the fraction is shifted right |C| hexadeci-
mal digit positions, whichever occurs first. (Both
terminating conditions can occur simultaneously.)

3. If the resultant fraction field is all 0's, the entire

floating-point number is set to all O's (true zero),
regardless of the sign and the characteristic of the
original number.

4. At the completion of the shift operation, the
floating-point result is loa ack into the general
register(s). If the number was originally negative,
the two's complement of the resultant number is loaded
into the general register(s).

5. The condition code settings following a floating-point
right shift are as follows:

1 2 3 4 Result

- - 0 0 True zero (all zeros).
- = 0 1 Negative.
- = 1 0 Positive.

00 - - lC| digits shifted (no characteristic
overflow).

0 1 - - Characteristic overflow.

Floating Shift, Single Register

Reference address

Count
25 26 27128 29 30 3i

* 24 R X

T 1 2 316 5 o 718 ¢ 10 Wz 134

The short-format floating=point number in register R is
shifted according to the rules established above for floating-
point shift operations.

Affected: (R),CC

Floating Shift, Double Register

. 24 R X Reference addres(s:
ount

G 1 2 314 5 6 7.8 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 3

The long-format floating-point number in registers R and
Rul is shifted according to the rules established above for
floating-point shift operations. (If the R field of the in-
struction word is an odd value, a long-format floating-
point number is generated by duplicating the contents of
register R, and the 32 high-order bits of the result are
loaded into register R.)

Affected: (R),(Rul),CC

CONVERSION INSTRUCTIONS

The following two conversion instructions are provided by
the SIGMA 8 computer:

Instruction Name Mnemonic
Convert by Addition CVA
Convert by Subtraction CVs§s

These two ¢ ion instructions can be used to accom-
plish bidirectional translation between binary code and any
other weighted binary code, such as BCD.

The effective addresses of the instructions CONVERT BY
ADDITION and CONVERT BY SUBTRACTION each point
to the starting location of a conversion tuble -of 32 words,
containing weighted values for each bit position of regis-
ter Rul. The 32 words of the conversion table are con-
sidered to be 32-bit positive quantities, and are referred
to as conversion values. The intermediate results of these
instructions are accumulated in internol CPU registers until
the instruction is completed; the result is then loaded into
the appropriate general register. Both instructions use @
counter (n) that is set to 0 af the beginning of the instrue-
tion execution and is incremented by 1 with each iteration,
until a total of 32 iterations have been performed.

If @ memory parity or protection violation trap occurs dur-
ing the execution of either instruction, the instruction se-
quence is aborted (without having changed the contents of
register R or Rul) and may be restarted (at the beginning of
the instruction sequence) after the trap routine is processed.

CVA CONVERT BY ADDITION
(Word index alignment)

* 29 R X Reference address

If n < 32, repeat; otherwise, (A)

0 1 2 314 5 6 718 9 10 11012 13 14 15016 17 18 19120 21 22 2324 25 26 27128 29 30 31

CONVERT BY ADDITION initially clears the internal A
register and sets an internal counter (n) to 0. If bit posi-
tion n of register Rul contains a 1, CVA adds the nth con-
version value (contents of the word location pointed to by
the effective address plus n) to the contents of the A reg-
ister, accumulates the sum in the A register, and incre-
ments n by 1. If bit position n of register Rul contains a 0,
CVA only increments n. If n is less than 32 after being
incremented, the next bit position of register Rul is ex~
amined, and the addition process continues through n equal
to 31; the result is then loaded into register R. If, on any
iteration, the sum has exceeded the value 232'], CClis
set to 1; otherwise, CC1 is reset to O.

Affected: (R),CC1,CC3,CC4
0——A, 0 n

n

If (Ru])n =1, then (EWL * n) + (A) —A, n + 1

If (Ru’l)n =0, thenn + 1 n

R and continue to

next instruction.

Condition code settings:

1 2 3 4 ResultinR

- - 0 0 Zero.

- - 0 1 BitOof register Risa I.

Conversion Instructions 61

1 2 3 4 ResultinR

- - 1 0 Bit0ofregisterRis a 0and bit positions 1-31
of register R contain at least one 1.

0 - - - Sumis correct (less than 232).
1 - - - Sumis greater than 232—].

cvs CONVERT BY SUBTRACTION
(Word index alignment)

* 28 R X

0 Y 2 314 5 s 718 9 10 vih12 13 1415016 17 18 19120 21 22 23124 25 26 27128 29 30 31

Reference address

CONVERT BY SUBTRACTION loads the internal A register
with the contents of register R, clears the internal B regis-
ter, and sets an internal counter (n) to 0. All conversion
values are considered to be 32-bit positive quantities. If
the nth conversion value (the contents of the word location
pointed to by the effective address plus n) is equal to or
less than the current contents of the A register, CVS incre-
ments n by 1, adds the two's complement of the nth con-
version value to the contents of the A register, stores the
sum in the A register, and stores a 1 in bit position n of the
B register. If the nth conversion value is greater than the
current contents of the A register, CVS only increments n
by 1. If n is less than 32 after being incremented, the
next conversion value is compared and the process con-
tinues through n equal to 31; the remainder in the A reg-
ister is loaded into register R, and the converted quantity
in the B register is loaded into register Rul.

Affected: (R),(Rul), CC3,CC4

(R) A, 0 B, 0 n

If (EWL + n) <(A) then A = (EWL + n) —A,
1 Bn’ n+1l ——en

If (EWL +n) >(A) thenn + 1=——n

If n <32, repeat; otherwise, (A) ——R, (B) Rul and

continue to the next instruction.

Condition code settings:

1 2 3 4 ResultinRul

- - 0 0 Zero.
- = 0 1 BitOof register Rulisa 1.

- - 1 0 BitOof register Rul is a 0 and bit posi-
tions 1-31 of register Rul contain at
least one 1.

62 Floating-Point Arithmetic Instructions

FLOATING-POINITHMETIC INSTRUCTICIS

The following floating-point arithmetic instructions are
available to SIGMA 8 computers:

Instruction Name Mnemonic
Floating Add Short FAS
Floating Add Long FAL
Floating Subtract Short FSS
Floating Subtract Long FSL
Floating Multiply Short FMS
Floating Multiply Long FML
Floating Divide Short FDS
Floating Divide Long FDL

FLOATING-POINT NURISERS

SIGMA 8 accommodates two number formats for floating-
point arithmetic: short and long. A short-format fioating-
point number consists of a sign (bit 0), a biased!, base 16
exponent, which is called a characteristic (bits 1-7), and

a six-digit hexadecimal fraction (bits 8-31). A long-format
floafing-point number is followed by an additional eight
hexadecimal digits of fractional significance and occupies
a doubleword memory location or an even-odd pair of
general registers.

A SIGMA 8 floating-p=int number (N) has the following
format:

e~ e 4

+| Character- .
_istic (C) Fraztion (F)

0 1 2 314 5 6 718 9 10 Ni12Z % % :577A 17 18 19120 21 22 23124 25 26 27126 29 30 31

Extra Fractional Precision

ST 55 G4 G % 37 35 A A 47 A3V ar 4L 36 w7148 @ 50 51157 53 54 5ol 5h 57 o8 w1eh 61 62 &3
A floating-point number (N) has the following formal
definition:

C-64

1. N=Fx 16 where F =0 or
16_6 <|Fl £ 1V(short format) or
167 14< [Fl <1 (long format)

and 0 =C <127.

"The bias value of 4014 is added to the exponent for the

purpose of making it possible to compare the absolute mag-
nitude of two numbers, i.e., without reference to a sign
bit. This manipulation effectively removes the sign bit,
making each characteristic a 7-bit positive number.

A positive floating-point er with a fraction of
zero and a characteristic :‘ro is a "true" zero.

A positive floating-point number with a fraction of
zero and a nonzero characteristic is an "abnormal "
zero. For floating-point multiplication and division,
an abnormal zero is treated as a true zero. However,
for addition and subtraction, an abnormal zero is
treated the same as any nonzero operand.

A positive floating-point number is nomalized if and
only if the fraction is contained in the interval

1/16 <F <1

A negative floating-point number is the two's comple-
ment of its positive representation.

A negative fioating=-point number is normalized if and
only if its two's complement is a normalized positive
number.

By this deﬁn., a floating-point number of the form
Txxx xxxx 1111 0000 ... 0000

is normalized, and a floating-point number of the form
Ixxx xxxx 0000 0000 ... 0000

is illegal and, whenever generated by floating-point in-
structions, is converted to the form

lyyy yyyy 1111 0000 ... 0000

where yy ... y is 1 less than xx ... x. Table 10 contains

examples of floating-point numbers.

Modes of Operation

SIGMA 8 contains three mode control bits that are used to
qualify floating-point operations. These mode control bits

Table 10. Floating-Point Number Representation
Short Floating-Point Format

Decimal Number x C F Hexadecimal Value
+1673%)(1-2724 0 111 ImT o i oy 1 1N 111 7F FFFFFF
+16™(5/16) 0 100 0011 0101 0000 0000 0000 0000 0000 43 500000
+1673)(209/256) 0 OIT 1101 1101 0001 0000 0000 0000 0000 3D D1000O-
+(167%)(2047,/4096) 0 000 0001 Oill 1111 1111 0000 0000 0000 01 7FFO00
+16™%%01,/16) 0O 000 0000 0001 0000 0000 0000 0000 0000 00 100000
0 (called true zero) 0 000 0000 0000 0000 0000 0000 0000 0000 00 000000
-16~%H016) 1 11 111 1111 0000 0000 0000 0000 0000 FF FOOO0O
-(16753)(2047/4096) 1 111 1110 1000 0000 0001 0000 0000 0000 FE 801000
-(1673)(209,/256) 1 100 0010 0010 1111 0000 0000 0000 0000 C2 2F0000
-(1673(5/16) 1 011 1100 1011 0000 0C00 0000 0000 0000 BC BOOOOO
-(16+63)(1-224) 1 OOQ 0000 0000 0000 0000 0000 0000 0001 80 (000001
Special Case
-(lée)(l) 1 e 0000 0000 0000 0000 0000 0000
is changed to
—(16e+])(1/16) 1 e +1 1111 0000 0000 0000 0000 0C00
whenever generated as the result of a floating-point instruction.

Floating-Point Arithmetic Instructions

63

(floating
contained

are identified as FS (floating significance)
zero),-and FN (floating normalize), and
in bit positions 5, 6, and 7, respectively, of the program
status doubleword (PSD5_7).

The floating-point mode is established by setting the three
floating-point mode control bits. This can be performed by
any of the following instructions:

Instruction Name Mnemonic

Load Conditions and Floating Control LCF

Load Conditions and Floating Control

Immediate LCFI
Load Program Status Doubleword LPSD
Exchange Program Status Doubleword XPSD

The floating-point mode control bits are stored by exe-
cuting either of the following instructions:

Instruction Name Mnemonic

Store Conditions and Floating Control STCF

Exchange Program Status Doubleword XPSD

FLOATING-POINT ADD AND SUBTRACT

The floating normalize (FN), floating zero (FZ), and
floating significance (FS) mode control bits determine the
operation of floating-point addition and subtraction (if
characteristic overflow does not occur) as follows:

FN Floating normalize:

FN =0 The results of additions and subtractions are
to be postnormalized. If charecteristic un=
derflow occurs, if the result is zero, or if
more than two postnormalization hexadeci-
mal shifts are required, the settings for FZ
and FS determine the resultant action. If
none of the above conditions occurs; the con-

“dition code is set to 0010 if the result is
positive or to 0001 if the result is negative.

FN =1 Inhibit postnormalization of the result of ad-
ditions and subtractions. The settings of FZ
and FS have no effect on the instruction op-
eration. If the result is zero, the result
is set to true zero and the condition code
is set to 0000. If the result is positive,
the condition code . set to 0010. If the
result is negative, the condition code is

set to 0001.

&4 Floating-Point Arithmetic Instructions

FZ Floating zero: (app.n!y if FN =0)

FZ =0 If the final result of an addition or subtrac~
tion operation cannot be expressed in normal-
ized form because of the characteristic being
reduced below zero, underflow has cccurred,
in which case the result is set equal to true
zero and the condition code is set to 11C0.
(Exception: if a trap results from significance
checking with FS =1 and FZ =0, an under-
flow generated in the process of postnormal~
izing is ignored.)

FZ =1 Characteristic underflow causes the computer
to trap to Homespacs location X'44' with the
contents of the general registers unchanged.
If the result is positive, the condition code is
set to 1110, If the result is negative, the
condition code is set to 1101,

FS Floating significance: (applies only if FN = 0)

FS =0 Inhibit significance trap. If the result of an
addition or subtraction is zero, the result is
set equal to true zero, the condition code
is set to 1000, and the computer executes
the next insiruction in sequence. If more
than two hexadecimal places of postnormal-
ization shifting are required and character-
istic underflow does not occur, the condition
code is set to 1010 if the result is positive, or
to 1001 if the result is negative; then, the
computer executes the next instruction in se-
quence. (Exception: if characteristic under-
flow occurs with FS =0, FZ determines the
resultant action.)

FS

]
—

The computer traps to Homespace location
X'44' if more than two hexadecimal places
of postnormalization shifting are recuired
or if the result is zero. The condition
code is set to 1000 if the result is zero,
to 1010 if the result is positive, or fo 1001
if the result is negative; however, the con-
tents of the general registers are not changed.
(Exception: if a trap results from character-
istic underflow with FZ =1, the results of
significance testing are ignored.)

If characteristic overflow occurs, the CPU always traps
to Homespace location X'44' with the general registers
unchanged and the condition code set to 0110 if the

result is positive, or to 0101 if the result is negative.

FLOATIRG-POINT RIULTIPLY AXD BIVIDE

The floating zero (FZ) mode control bit alone determires
the operation of floating-point multiplication and division

(if characteristic overflow does-

‘accur and division by
zero is not attempted) as follows¥

FZ Floating zero:

If the final result of a multiplication or divi-
sion operation cannot be expressed in normal-
ized form because of the characteristic being
reduced below zero, underflow has occurred.
If underflow occurs, the result is set equal to
true zero and the condition code is set to
1100. If underflow does not occur, the
condition code is set.to 0010 if the result is
positive, to 0001 if the result is negative, or
to 0000 if the result is zero.

FZ=0

Underflow causes the computer to trap to
Homespace location X'44' with the contents
of the general registers unchanged. The con-
dition code is set to 1110 if the result is posi~
tive, or to 1101 if the result is negative. If
underflow does not occur, the resultant
action is the same as that for FZ = 0.

FZ =1

If the divisor ro in a floating-point division, the com=
puter always t to Homespace location X'44' with the
general registers unchanged and the condition code set to
0100. If characteristic overflow occurs, the computer al=

" ways traps to Homespace location X'44' with the general

registers unchanged and the condition code set to 0110 if
the result is positive, or to 0101 if the result is negative.

CONDITION CODES FOR FLOATING-POIT 1:STRUCTIONS

The condition code settings for floating-point instructions
are summarized in Table 11. The following provisions apply
to all floating-point instructions:

1. Underflow and overflow detection apply to the final
characteristic, not to any "intermediate" value.

2. If a floating-point operation results in a trap, the
original contents of all general registers remain
unchanged.

Table 11. Condition Code Settings for Floating=Point Instructions

Condition Code Meaning If No Trap to Homespace

Meaning If Trap to Homespace
Location X'44' Occurs

1 2 3 4 Location X'44'

0 0 0 A x 0, 0/A, or A ‘*’ACD with FN:]] *@

0 0 1 | N<O Normal|
results

0O 0 1 0 N >0 *

®

o 1 0 O *
o 1 0 1 *
0 1 1 O *

Divide by zero
Overflow, N <0
Overflow, N >0

Always trapped

~-A +A®

1 0 ES=0 -A+A
1] N <0]} > 2 Postnormal- $ FN=0, and N <0 |>2 Postnormal- | FS=1, FN=0, and no
1 0 N >0 izing shifts no underflow N >0 izing shifts underflow with FZ=1
11 0 Underflow with FZ=0 and no trap by FS= 'l® *
%
11 0 1 Underflow, N <0 } _
1 1 1 0 * Underflow, N >0
Notes: @ Result set to true zero

@ "*" indicates impossible configurations

(3 Applies to add and subtract only where FN=0

Floating-Point Arithmetic Instructions 65

- 3. All shifting and truncation are perForm' absolute
magnitudes. If the fraction is negative ,®Men the two's
complement is formed after shifting or truncation.

FAS FLOATING ADD SHORT
(Word index alignment)

Reference address

= 3D R | X

S 12 3745 o 778 9 10 11112 13 14 15118 17 18 19120 21 22 23124 25 26 27128 29 30 31

The effective word and the contents of register R are
loaded into a set of internal registers and a low-order hexa-
decimal zero (guard digit) is appended to both fractions,
extending them to seven hexadecima! digits each. FAS
then forms the floating-point sum of the two numbers. If no
floating-point arithmetic fault occurs, the sum is loaded
into register R as a short-format floating-point number.

Affected: (R}, CC
(R) + EW —R

Trap: Floating-point arith-
metic fault

FAL FLOATING ADD LONG
(Doubleword index alignment)

1D R X

SV 2 3T4 5 e 718 9 i0 il 3w asie 12 s \9i20 2122 23124 25 20 27128 29 30 3V

Reference address

The effective doubleword and contents of registers R
end Rul are loaded into a set of internal registers.

The operation of FAL is identical to that of FLOATING
ADD SHORT (FAS) except that the fractions to be added
are each 14 hexadecimal digits long, guard digits are not
appended to the fractions, and R must be an even value for
correct results. If no floating-point arithmetic fault occurs,
the sum is loaded info registers R and Rul as a long-format
floating-point number.

Affected: (R),{(Rul),CC
(R,Ru1) + ED —R,Rul

Trap: Floating-point arith-
metic fault, instruc-
tion exception

The R field of the FAL instruction must be an even value
for proper operationof the instruction; if the R field of FAL
is an odd value, the instruction traps to Homespace location
X'4D', the instruction exception trap.

FSS FLOATING SUBTRACT SHORT
(Word index alignment)

* 3C R X

T Z 31E 5 € 718 9 10 Iz 1313 15116 7 16 Wi 21 12 B D5 %6 1w B h 5

Reference address

The effective word and the contents of register R are loaded
into a set of internal registers.

FLOATING SUBTRACT SHORT forms the two's complement
of the effective word and then operates identically to
FLOATING ADD SHORT (FAS). If no floating-point

66 Flocting=-Point Arithmetic Instructions

arithmetic fault occurs, @iifference is loaded into reg~
ister R as a short-format ting=point number,

Affected: (R),CC
(R) - EW——R

Trap: Floating-point arith-
metic fault

FSL FLOATING SUBTRACT LONG
(Doubleword index alignment)

Reference address

* 1C R X

G 1 2 304 5 6 712 9 10 M2 13 14 15016 17 18 19120 2V 22 23124 25 26 27120 29 3G 31

The effective doubleword and the contents of registers R
and Rul cre loaded into a set of internal registers.

\
FLOATING SUBTRACT LONG forms the two's comple-
ment of the effective doubleword and then operates iden-
tically to FLOATING ADD LONG (FAL). If no floating-
point arithmetic fault occurs, the difference is loaded into
registers R and Rul as a long-format floating=point number.

Affected: (R),(Rul), CC
(R,Rul) - ED ——R, Rul

Trap: Floating-point arith=-
metic fault, instruc=-
tion exception

The R field of the FSL instruction must be an even value for
proper operation of the instruction; if the R field of FSL is
an odd value, the instruction traps to Homespace location
X'4D', the instruction exception trap.

FNS FLOATING MULTIPLY SHORT
(Word index alignment)

* 3F R X Reference address

0 1 2 314 5 6 716 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 20 27128 29 30 21

The effective word (multiplier) and the contents of regis-
ter R (multiplicand) are tocaded into a set of internal
registers, and both numbers are then prenormalized (if
necessary). The product of the fractions contains 12 hexa-
decimal digits. If no floating-point arithmetic fault occurs,
the product is loaded into register R as a properly truncated
short-format floating-point number.

The result of flocting-multiply is always postnormalized. At
most, one place of postnormalizing shift may be required.
Truncation takes place after postnormalization.

Affected: (R),CC
(R) x EW——R

Trap: Floating-point arith-
metic fault

FML™ FLOATING MULTIPLY LONG

(Doubleword index alignment)

* 1F R X Reference address

© 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 2> 26 27128 29 30 31

The effective doubleword (multiplier) and the contents of
registers R and Rul (multiplicand) are loaded into a set of
internal registers. FLOATING MULTIPLY LONG then

operates identically to FLOATIN ULTIPLY SHORT
(FMS), except that the multiplier the multiplicand
fractions are each 14 hexadecimal digits long, the product
fraction is 28 hexadecimal digits long, and R must be an
even value for correct results. If no floating-point arith-
metic fault occurs, the postnormalized product is truncated
to a long-format floating-point number and loaded into
registers R and Rul.

Affected: (R),(Rul),CC
(R,Rul) x ED ——R, Rul

Trap: Floating-point arith~-
metic fault, instruc-
tion exception

The R ficld of the FML instruction must be an even value
for proper operation of the instruction; if the R field of
FML is an odd value, the lnstruetion tiaps to Homespace
location X'4D, the instruction exception trap.

FDS FLOATING DIVIDE SHORT
(Word index alignment)

Reference address

*l 3E R X

0 1 2 314 5 6 718 9 10 1111213 14 15016 17 18 19120 21 22 23124 25 26 27128 29 30 3\

The effective word (divisor) and the contents of register R
(dividend) are loaded into a set of internal registers and
both numbers are then prenormalized (if necessary).
FLOATING DIVIDE SHORT then forms a floating-point
quotient with a 6-digit, normalized hexadecimal fraction.
If no floating=point arithmetic fault occurs, the quotient is
loaded into register R as a short-format floating-point
number.

Affected: (R),CC
(R) + EW —R

Trap: Floating-point arith-
metic fault

FoL FLOATING DIVIDE LONG

(Doubleword index alignment)

Reference address

* 1E R X

0 1 2z 314 5 6 718 9 10 Wil12 13 14 15116 17 18 19120 21 22 23124 25 26 27028729 30 3)

The effective doubleword (divisor) and the contents of
registers R and Rul (dividend) are loaded into a set of
internal registers. FLOATING DIVIDE LONG then oper-
ates identically to FLOATING DIVIDE SHORT (FDS), ex~-
cept that the divisor, dividend, and quotient fractions are
each ‘14 hexadecimal digits long, and R must be an even
value for correct results. If no floating-point arithmetic

" fault occurs, the quotient is loaded into registers R and Rul
as a long=format floating-point number.

Trap: Floating-point arith=
metic fault, instruc-
tion exception

Affected: (R),(Rul),CC
(R,Rul) + ED — R, Rul

The R field of the FDL instruction must be an even value

for proper operation of the instruction; if the R field of FDL
is an odd value, the instruction traps to Homespace location
X'4D', the instruction exception trap.

W-sma?ea INSTRUCTICNS

Four instructions provide for the manipulation of strings of
consecutive bytes. The byte string instructions and their
mnemonic codes are as follows:

Instruction Name Mnemonic
Move Byte String MBS
Compare Byte String CBS
Translate Byte String TBS
Translate and Test Byte String TTBS

These instructions are in the immediate displacement class
and are memory-to-memory operations. These operations
are under the control of information that must be loaded
info certain general registers before the instruction is exe-
cuted. These instructions may be interrupted at various
stages of their execution; upon return, execution continues
from the point of interruption.

The general format for the information in the instruction
word and in the general registers is as follows:

Instruction word:

Operation

R Displacement
code , P
O 1 2 314 5 6 718 9 10 51112 13 14 15516 17 1€ 19120 21 22 23124 25 26 27128 29 30 3

Contents of register R:

Source address

Mask

0 1 2 314 5 6 7

12 13 14 15176 17 18 19120 21 22 23124 25 25 27136 29 30 31

Contents of register Rul:

Destination address

1314 1516 17 18 19120721 22 23724 25726 27128 29 30 31

Count

07z 3t 5 671

Designation Function

The 7-bit operation code of the in-
struction. (If any byte siring instruc-
tion is indirectly addressed, the
computer fraps to Homespace location
X'40* at the time of operation code
decoding.)

Operation

The 4-bit field that identifies register R
of the current general register block.

Byte=~String Instructions 67

Designation Function

A 20-bit field that contains a signed
byte displacement value, used to form
an effective byte address. The dis-
clacement value is right-justified in
the 20-bit field, and negative values
are in two's complement form.

Displacement

Mask An 8-bitfield used only with TRANSLATE
AND TEST BYTE STRING. The purpose
of this field is explained in the detailed
discussion of the TTBS instruction.

A 19-bit field that normally contains
the byte address of the first (most sig-
nificant) byte of the source byte string
operand. The effective source address
is the source address in register R plus
the displacement value in the instruc-
tion word.

Source Address

Count An 8-bit field that contains the true
count (from 0 to 255) of the number of
bytes involved in the operation. This
field is decremented by 1 as each byte
in the destination byte string is pro-
cessed. A 0 count means "no operation"
with respect to the registers and main
memory.

A 19-bit field that contains the byte
address of the first (most significant)
byte of the destination byte string oper-
and. This field is incremented by ! as
each byte in the destination byte string
is processed.

Destination
Address

In any byte siring instruction, any portion of register R
or Rul that is not explicitly defined (i.e., bit positions
8-12), should be coded with zeros.

Since the value Rul is obtained by performing a logical
inclusive OR with the value 0001 and the value of the

R field of the instruction word, the two control registers
are Rand R + 1 if R is even. However, if R is an odd value,
register R contains an address value that functions both as
a source operand address and as a destination operand ad-
dress. Also, if register O is designated in any byte string
instruction (except for TRANSLATE AND TEST BYTE
STRING), its contents are ignored and a zero source
address value is obtained. Thus, the following three
cases exist for most byte string instructions, depending on
whether the value of the R field of the instruction word is
even and nonzero, odd, or zero:

Case I: R is even and nonzero

The effective source address is the address in register R
plus the displacement in the instruction word; the destina-
tion address is the address in register R + 1, but without
the displacement added.

68 Byte-String Instructions

Case II: R is odd

The effective source address is the address in register R plus
the displacement in the instruction word; the destination
address is also the address in register R, but without the
displacement added.

Case III: R is zero

The effective source address is the displacement value in
the instruction word; the destination address is the address
in register 1. In this case, the source byte string aperand
is always a single byte.

In the descriptions of the byte-string instructions, the fol-
lowing abbreviations and terms are used:

D Displacement, (1)12_3].

SA Source address, (R).|3_3] .

ESA Effective source address, [(R)iS—S'I +(I)]2_3 'l] 13-31°

The contents of bit positions 13-31 of register R
are added (right aligned) fo the contents of bit posi-
tions 12-31 of the instruction word; the 19 low-
order bits of the result are used as the effective
source address.

C Count, (Ru])o_7.
DA Destination address, (Ru])]3_3].
58S Source byte string, the byte string that begins

with the byte location pointed fo by the 19-bit
effective source address and is C bytes in length
(if R is nonzero) or is 1 byte in length if R is 0).

DBS Destination byte string, the byte string that be-
gins with the byte location pointed to by the
destination address and is always C bytes in
length.

TRAPS BY BYTE STRING INSTRUCTIONS

Byte string instructions cause a trap if either of the byte
strings addressed come from pages of memory that are pro-
tected by write locks. A trap also oceurs if either byte
string is fully or partly contained within pages of memory
that are physically not present. A check for these access
trap conditions are made prior to initiation of any byte
relocation or general register change. These tests are per-
formed for MOVE BYTE STRING and COMPARE BYTE
STRING. These tests are performed only for the source
byte string for TRANSLATE BYTE STRING and TRANSLATE
AND TEST BYTE STRING, since there is no assurance that
the translate table will be accessed in its entirety in the

course of execution. If an acce’nfccﬁon violation
were to occur in trying to reach a Byte in the translate
table during the course of execution, then the instruction
would trap and result in a partially executed condition.
The registers would be restored, however, in such a man-
ner that the instruction could be resumed after the protec-
tion viclation had been corrected. When a trap occurs
resulting in a partially executed instruction, the Register
Altered indicator will be set.

HARN MOVE BYTE STRING

(Immediate displacement, continue after interrupt)

0 61 R Displacement

0 1V 2 31475 o 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 3}

MOVE BYTE STRING copies the contents of the source
byte string (left to right) into the destination byte string.
The previous contents of the destination byte string are de-
stroyed, but the contents of the source byte string are not
affected unless the destination byte string overlaps the
source byte string.

When the destination byte string overlaps the source byte
string, the resulting destination byte string contains one or
more repetitions of bytes from the source byte string. Thus,
if a destination byte string of C bytes begins with the kth
byte of a source byte string (numbering from 1), the first
k-1 bytes of the source byte string are duplicated in the
destination byte string x number of times, where

x = C/(k-1). For example, if the destination byte string
begins with the second byte of the source byte string, the
first byte of the source byte string is duplicated throughout
the destination byte string.

If both byte strings begin with the same byte (i.e., k =1)
and the R field of MBS is nonzero, the destination byte
string is read and replaced into the same memory locations.
However, if both byte strings begin with the same byte and
the R field of MBS is zero, the first byte of the byte string
is duplicated throughout the remainder of the byte string
(see "Case 111", below).

Affected: (DBS), (R),(Rul)
(SBS)—- DBS

If MBS is indirectly addressed, it is treated as a non-
existent instruction, in which case the computer uncondi-
tionally aborts execution of the instruction (at the time of
operation code decoding) and traps to Homespace location
K'40" with the contents of register R and the destination
byte string unchanged. See "Traps by Byte String Instruc-
tions" (in this section) for other trap conditions.

Case I: even, nonzero R field (Rul=R+1)

Contents of register R:

Source address

; s :
0 1 2z 3747576 718 9 10 11112 13 14 15116 17 18 19120 21 22 28124 25 26 27128 29 30 31

Contents of re.r R+1:

Count

0 1 2 314 5 6 7

Destination address

V5 14 15016 V7 V& 120 21 22 15124 2% 26 4128 19 Fi 3

The source byte string begins with the byte location pointed
to by the source address in register R plus the displacement
in MBS; the destination byte string begins with the byte lo-
cation pointed to by the destination address in register R+1.
Both byte strings are C bytes in length. When the instruc-
tion is completed, the destination and source addresses are
each incremented by C, and C is set to zero.

Case II: odd R field (Rul=R)

Contents of register R:

Count Destination address

[] 3%4 5 6 718 9 10 1112 13 14 15716 17 18 19120 21 22 23124 25 26 27128 29 36 3!

The source byte string begins with the byte location
pointed to by the address in register R plus the displacement
in MBS; the destination byte string begins with the byte {o-
cation pointed to by the destination address in register R.
Both byte strings are C bytes in length. When-the instruc-
tion is completed, the destination address is incremented
by C, and C is sef to zero.

Case II: zero R field (Rul=1)

Contents of register 1:

Destination address

314 lSi\a 1708 1wl20 21 22 23124 25 26 27126 29 30 31

Count

6 v 2 3la 5 48 7

The source byte string consists of a single byte, the con-
tents of the byte location pointed to by the displacement in
MBS; the destination byte string begins with the byte loca-
tion poinfed to by the destination address in register 1 and
is C bytes in length. In this case, the source byte is dupli-
cated throughout the destination byte string. When the
instruction is completed, the destination address is incre-
menfed by C and C is set to zero.

cBs COMPARE BYTE STRING

(Immediate displacement, continue after interrupt)

Displacement

[Ol 60 R

4 314 5 6 718 9 10 11213 14 15106 17 18 19120 21 22 23724 25 26 27125 29 30 3}

COMPARE BYTE STRING compares, as magnitudes, the
contents of the source byte string with the contents of the
destination byte string, byte by corresponding byte, begin~
ning with the first byte of each string. The comparison
continues until the specified number of bytes have been
compared or until an inequality is found. When CBS is
terminated, CC3 and CC4 are set to indicate the result of

Byte-String Instructions 69

the last comparison. If the CBS instructyiilicrminates due
to inequality, the count in register Rul e greater than
the number of bytes remaining to be compared; the source
address in register R and the destination address in reg-
ister Rul indicate the locations of the unequal bytes.

Affected: (R),(Rul), CC3,CC4
(SBS) : (DBS)

Condition code settings:

1 2 3 4 Resultof CBS

- - 0 0 Source byte string equals destination byte
string.

- = 0 1 Source byte string less than destination byte
string.

- = 1 0 Source byte string greater than destination
byte string.

If CBS is indirectly addressed, it is freated as a nonexistent
instruction, in which case the computer unconditionally
aborts execution of the instruction (at the time of operation
code decoding) and fraps to Homespace location X'40' with
the contents of register R and the destination byte string
unchanged. See "Traps By Byte String Instructions" (in

this section) for other trap conditions.

Case I: even, nonzero R field (Rul=R+1)

Contents of register R:

byte location poinfe,by the destination address” in
register R. Both byte Srings are C bytes in length.

Case IIl: zero R field (Rul=1)

Contents of register 1:

Count Destination address

0 1 2 34 56 7 13 14 15116 17 18 19120 21 22 23124 25 26 27122 29 20 3
The source byte string consists of a single byte, the con-
tents of the location pointed to by the displacement in CBS;
the destination byte string begins with the byte location
pointed to by the destination address in register 1 and is
C bytes in length. In this case, the source byte is com=
pared with each byte of the destination byte string until
an inequality is found.

TBS TRANSLATE BYTE STRING
Immediate displacement, continue after interrupt)

0 41 R

Displacement

Source address

12 13 14 15816 17 18 |9T20 21 22 23124 25 26 27128 29 30 31

Contents of register R+1:

Destination address

Count

G 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23724 25 26 27128 29 30 31

The source byte string begins with the byte location
pointed to by the source address in register R plus the dis-
placement in CBS; the destination byte string begins with
the byte location pointed to by the destination address in
register R+1. Both byte strings are C bytes in length.

Case II: odd R field (Rul=R)

Contents of register R:

Count Destination address

G 1 2 314 5 6 718 9 10 11112 13 14 15016 17 16 19120 21 22 23124 25 26 27128 29 30 31

The source byte string begins with the byte [ocation
pointed fo by the address in register R plus the displace-
ment in CBS; the destination byte string begins with the

70 Byte-String Instructions

0 1 2 30475 6 7Te 9 10 112 13 18 15116 17 18 19120 21 22 23:24 25 26 27126 27 20 21

TRANSLATE BYTE STRING replaces each byte of the des-
tination byte string with a source byie located in a trans-
lation table. The destination byte string begins with the
byte location pointed to by the destination address in reg-
ister Rul, and is C bytes in length. The translation table
consists of up to 256 consecutive byte locations, with the
first byte location of the table pointed to by the displace-
ment in TBS plus the source address in register R. A source
byte is defined as that which is in the byte location pointed
to by the 19 low-order bits of the sum of the following
values.

1. The displacement in bit positions 12-31 of the TBS
instruction.

2. The current contents of bit positions 13-31 of register R
(source address).

3. The numeric value of the current destination byte, the
8-bit contents of the byte location pointed to by the
current destination address in bit positions 13-31 of
register (Rul).

Affected: (DBS),(Rul)
translated (DBS) DBS

Trap: Instruction exception

The R field of the TBS instruction must be an even value for
proper operation of the instruction; if the R field of TBS is
an odd value, the instruction traps to Homespace location
X'4D', instruction exception trap.

l

If TBS is indirectly addressed, it is treated as a nonexistent
instruction, in which case the computer unconditionally
aborts execution of the instruction (at the time of operation
code decoding) and traps to Homespace location X'40' with
the contents of register R and the des.nation byte string
unchanged.

See "Traps By Byte String Insh‘ucﬁ’ (in this section) for
other trap conditions. Note that the check for access trap
conditions is done only for the source byte string.

Case I: even, nonzero R field (Rul=R+1)

Contents of register R:

Source address
13 14 15116 17 18 19120 21 22 23124 25 26 m?ﬁ 29 30 31

Count

S Tz 314 5 6 718 9 1011112 13 14 15116 17 16 19120 21 22 23124 25 26 27128 B 30 31

The destination byte string begins with the byte location
pointed to by the destination address in register R+ 1 and
is C bytes in length. The source byte string (translation
table) begins with the byte location pointed to by the dis-
placement in TBS plus the source address in register R.
When the instruction is completed, the destination address
is incremented by C, C is set to zero, and the source ad-
dress remains unchanged.

Case II: odd R field (Rul=R)

Because of the interruptible nature of TRANSLATE BYTE
STRING, the instruction traps with the contents of reg-
ister R unchanged when an odd-numbered general register
is specified by the R field of the instruction word.

Cuse 11I: zero R field (Rul=1)

Contents of register 1:

Destination address
LR T R 1 T R R VR) S TR VA TR B R T B K N TR T R T)

Count

T T 3T 7

The destination byte string begins with the byte location
pointed to by the destination address in register 1 and is
C bytes in length. The source byte string (franslation table)
begins with the location pointed to by the displacement in
TBS.. When the instruction is completed, the destination
address is incremented by C and C is set to zero.

TTBS TRANSLATE AND TEST BYTE STRING
(Immediate displacement, continue aofter interrupt)

0 40 R

Displacement

the byte Ioccﬁ’:ﬁnfed to by the destination address in
register Rul, an@is C bytes in iength. The byte translation
table and the translation bytes themselves are identical to
that described for the instruction TRANSLATE BYTE STRING.
The destination byte string is examined (without being
changed) until a translation byte (source byte) is found that
contains a 1 in any of the bit positiens selected by a 1in
the mask. When such a translation byte is found, TTES re-~
places the mask with the logical product (AND) of the trans-
lation byte and the mask, and terminates with CC4 set to 1.
If the TTBS instruction terminates due to the above condi-
tion, the count (C) in register Rul is one greater than
the number of bytes remaining to be compared and the
<ustination address in register Rul indicates the location
of the destination byte that caused the instruction to
terminate. If no translation byte is found that satisfies

the above condition after the specified number of destina-
tion bytes have been compared, TTBS terminates with CC4
reset to 0. In no case does the TTBS instruction change

the source byte string.

Affected: (R),(Rul), CC4

Trap: Instruction exception

If translated (SBS) n mask # 0, translated (SBS) n mask
mask and stop

If translated (SBS) n mask = 0, continue

Condition code settings:

1 2 3 4 Resultof TTBS

- = - 0 Translation bytes and the mask do not com-
pare 1's any place.

- = = 1 The last translation byte compared with the
mask contained at least one 1 corresponding
to a 1 in the mask.

The R field of the TTBS instruction must ke an even value

for proper operation of the instruction; if the R field of TTBS
is an odd value, the instruction traps to Homespace loca-

tion X'4D', the instruction exception traps.

If TTBS is indirectly address, it is treated as a nonexistent
instruction, in which case the computer unconditionally
aborts execution of the instruction (at the time of operation
code decoding) and traps to Homespace location X'40* with
the contfents of register R and the destination byte siring
unchanged.

See "Traps By Byte String Instructions" (in this section) for

other trap conditions. Note that the check for access trap
conditions is done only for the source byte string.

Case I: even, nonzero R field (Rul=R+1)

0 1 2 3[4 5 6 718 9 10 11{12 13 14 15116 17 18 19120 21 22 23{24 25 26 27128 29 30 31

TRANSLATE AND TEST BYTE STRING compares the mask
in bit positions 0-7 of register R with source bytes in a byte
translation table. The destination byte string begins with

Contents of register R:

Source address

10 11112 13 14 15116 17 16 19120 21 22 23124 25 26 27128 29 30 31

Mask

01 2 314 5 6 718

Byte-String Instructions 71

Contents of register R+1: ‘

Count Destination address

T T f 314 5 6 718 9 10 11112 13 14 15116 17 16 19120 21 22 23124 25 26 27128 25 30 31

The destination byie string begins with the byte location

pointed to by the destination address in register R + 1 and
is C bytes in length. The source byte string (translation
table) begins with the byte location pointed to by the dis-
placemeni in TTBS plus the source address in register R.

Case II: odd R field

Because of the interruptible nature of TRANSLATE AND
TEST BYTE STRING the instruction traps with the contents
of register R unchanged when an odd-numbered general reg-
ister is specified by the R field of the instruction word.

Case III. zero R field (Rul=1)

Contents of register 1:

Count Destination address

01 2 314 3 o 7

i2 13 14 150116 17 18 19720 21 22 23124 25 26 27128 29 30 31

The destination byte string begins with the byte location
pointed to by the destination address in register 1 and is

C bytes in length. The source byte string (translation table)
begins with the location pointed to by the displacement in
TTBS. In this case, the instruction automatically provides
a mask of eight 1's. (This is an exception to the general
rule, used in the other byte string instructions, that reg-
ister O provides all 0's as its contents.)

PUSH-BOUL INSTRUCTIONS

The term "push-down processing" refers to the programming
technique (used extensively in recursive routines) of storing
the context of a calculation in memory, proceeding with a
new set of information, and then activating the previously
stored information. Typically, this process involves a
reserved area of memory (stack) into which operands are
pushed (stored) and from which operands are pulled
(loaded) on a last-in, first-out basis. The SIGMA 8 com-
puter provides for simplified and efficient programming of
push-down processing by means of the following instructions:

Instruction Name Mnemonic
Push Word PSW
Pull Word PLW
Push Multiple PSM
Pull Multiple PLM
Modify Stack Pointer MsP

72 Push-Down Instructions

STACK PGE’ DOUSLEV/CRD (SPD)

Each of these instructions operates with respect to a
memory stack that is defined by a doubleword located at
the effective address of the instruction. This doubleword,
referred to as a stack pointer doubleword (SPD), has the
following structure:

Top of stack address

4 5 6 718 ¥ 10 Niiz 13 14 15016 17 18 19120 21 22 25124 25 2 2712 29 20 31

T

T
s Space count W Word count

32 33 34 35136 37 38 39140 41 42 2343 45 46 47148 49 50 51152 53 54 5:}i5(4 57 58 7160 &) 67 &3

Bit positions 15 through 31 of the SPD contain a 17-bit
address field that points to the location of the word cur-
rently at the top (highest-numbered address) of the operand
stack. In a push operation, the top-of-stack address is in-
cremented by 1 and then an operand in a general register
is pushed (stored) into that location, thus becoming the
contents of the new fop of the stack, the contents of the
previous top of the stack remain unchanged. In a pull
operation, the contents of the current top of the stack are
pulled (loaded) into a general register and then the top-of-
stack address is decremented by 1; the previous contents of
the stack remain unchanged.

Bit positions 33 through 47 of the SPD, referred to as the
space count, contain a 15-bit count (0 to 32,767) of the
number of word locations currently available in the region
of memory allocated to the stack. Bit positions 49 through
63 of the SPD, referred to as the word count, contain a
15-bit count (0 to 32,767) of the number of words currently
in the stack. In a push operation, the space count is decre-
mented by 1 and the word count is incremented by 1; ina
pull operation, the space count is incremented by 1 and the
word count is decremented by 1. At the beginning of all
push-down instructions, the space count and the word count
are each tested to determine whether the instruction would
cause either count field to be incremented above the upper
limit of 215-1 (32,767), or to be decremented below the
lower limit of 0. If execution of the push-down instruc-
tion would cause either count limit to be exceeded, the
computer unconditionally aborts execution of the instruc-
tion, with the stack, the stack pointer doubleword, and the
contents of general registers unchanged. Ordinarily, the
computer traps to Homespace location X'42' after aborting
a push-down instruction because of impending stack limit
overflow or underflow, and with the condition code un-
changed from the value it contained before execution of
the instruction.

However, this trap action can be selectively inhibited by
setting either (or both) of the trap inhibit bits in the
SPD to 1.

Bit position 32 of the SPD, referred to as the trap-on-
space (TS) inhibit bit, determines whether the computer
will trap to Homespace location X'42' as a result of

impending overflow or underﬂov‘fhe space count
(SPD33_47), as follows:

TS Space count overflow/underflow action

0 If the execution of a pull instruction would cause
the space count to exceed 215-1, or if the execution
of a push instruction would cause the space count to
be less than O, the computer traps to Homespace lo-
cation X'42' with the condition code unchanged.

1 Instead of trapping to Homespace location X'42', the
computer sets CC1 to 1 and then executes the next in-
struction in sequence.

Bit position 48 of the SPD, referred to as the trap~on-word
(TW) inhibit bit, determines whether the computer will

trap to Homespace location X'42' as a result of impending '

overflow or underflow of the word count (SPD),
49-63
as follows:

TW Word count overflow/underflow action

0 If the execution of a push instruction would cause the
word count to exceed 219-1, or if the execution of a
pull instruction would cause the word count to be less
than 0, the computer traps to Homespace location
X'42' with the condition code unchanged.

1 Instead of trapping to Homespace location X'42', the
computer sets CC3 to 1 and then executes the next
instruction in sequence.

PUSH-DIWHN CORDITION CODE SETTHIES

If the execution of a push-down instruction is attempted

and the computer traps to Homespace location X42', the
condifion code remains unchanged from the value it con-
tained immediately before the instruction was executed.

If the execution of a push-down instruction is attempted
and the instruction is aborted because of impending stack
limit overflow or underflow (or both) but the push~down
stack limit trap is inhibited by one (or both) of the inhibits
(TS and TW), then, CCT1 or CC3 is set to 1 (or both are
set to 1's) to indicate the reason for aborting the push-
down instruction, as follows:

1 2 3 4 Reason for abort

0 - 1 - Impending overflow of word count on a push
operation or impending underflow of word
count on a pull operation. The push-down
stack limit trap was inhibited by the TW
bit (SPD48).

1 - 0 - Impending overflow of space count on a pull
operation or impending underflow of space
count on a push operation. The push-down
stack [imit trap was inhibited by the TS bit

(SPD32).

son for abort

1 2 3 4

1 - 1 - Impending overilow of word count and under-
flow of spacc count on u puth operation cr
impending overflow of space count and under-
flow of word count on a pull cperation. The
push-down stack limit trap was inhibited by
both the TW and the TS bits.

If a push-down instruction is successfully executed, CCI
and CC3 are reset to 0 at the compieticn of the instruction.
Also, CC2 and CC4 are independently sef to indicate the
current status of the space count and the word count, re-
spectively, as follows:

1 23 4 Status of space and word counts

- 0

0 The current space count and the current word
count are both greater than zero.

- 0 - 1 The current space count is greater than zero,
but the current word count is zero, indicating
that the stack is now empty. [If the next
operation on the stack is a pull instruction,
the instruction will be aborted.

- 1 - 0 The current word count is greater than zero,
but the current space count iszero, indicating
that the stack is now full. If the next opera-
tion on the stack is a push instruction, the
instruction will be aborted.

If the computer does rot trap to Homespace focation
X'42' as a result of impending stack limit overflow/
underflow, CC2 and CC4 indicate the status of the space
and word counts at the fermination of the push-down
instruction, regardless of whether the space and word
counts were actually modified by the instruction. In the
following descriptions of the push-down instructions, only
those condition code configurations are given that can
actually be produced by the instruction, provided that the
computer does not trap to Homespace location X'42'.

PSYW PUSH WORD
(Doubleword index alignment)

Reference address

* 09 R X

0 1 2 314 5 6 718 9 10 1112 13 14 15116 1718 19120 2V 22 23124 25 26 27128 29 30 3}

PUSH WORD stores the contents of register R into the push-
down stack defined by the stack pointer doubleword lo-
cated at the effective doubleword address of PSW. If the
push operation can be successfully performed, the instruc-
tion operates as follows:

1. The current top-of-stack address (SPD15-31) is incre-
mented by 1 fo point to the new top-of-stack location.

2. The contents of register R are stored in the location
pointed to by the new top-of-stack address.

Push-Down Instructions 73

A
: 9 :
i)
! e i,
,. = I N
; A : I 3
: & = :
B - P ey g =
.) SR A
: o :
s +a o N » -
n o, ! <3 2 5
° 4 -~ N Es Fit
4 N < - A o
' m w w ~ L S ,p.m.. mu
] i S () <y] [N
o , > 2 "o 2 8 3
& ‘ - . = w | 95 3
oy o .. i * & o XK e R o
o . Al & : - 3
2 ey 3 . 2 2 35 S s
il 4 p Q Q Q.9 = .
o2 _ £ o 9 PRy -
N it o) 0 O g N
. 505 % y |
r— @ =~ > (72 I+ ey \,v,
g &
- + b5]
T~ L 5w I - e ° I51
o) N) i i
i 4 ? 5 al o
: “ - - - I :
2 4 S 87
- L e 3
-~ " ¢ =) : e [e -
MU. \mmu rw I ’ . O [
%) s Q =
N LA) -) 5] <) - -) T "
TS <
ot 3 v B
s N Q
£ - A ~ 5
bt b N -0
2 IS o
2 3 S]
t EQs N 2
g PO Y S e
s 0D L &
oo & N &
c e i B3 5
z 5.2
a N a5
o~ {.
3 } S
.
s,m , N P . = - Bl
g & S a0
& . g 2%
2 ~ . I " O
. < 2 - 2 20
O " Q - : o . e
2 \vu. . T el an! ﬁ: 2 o B
= - « Yy - ped o tm
= p X o L] - S 8] Ta v
© N M PR it o © N I o SIS
:_J fw_w /\‘_v > o i 1w no - \% 4 o Felbiad o ,.v;
e o o~ -~ . te S aad 4. G -3 N) [INe) mw wy s
- fo)] b4 < i< i [e G 2 R g o ,
o % 0 r a. 3 3 o 3. £ 50 R o LR W .
+ et Q 7 . s} I} P o @ 23 R PO 5 3
< iy & o °of o . Y 9 - AT 3 0. QY - 0o I € e &
. — I N S : i
e 2 - = D B B w9y 3 2 ne [? ooy o5 -
£ = P 3 0 oo 0 c v O = N D 2 2 .c 3 o
3 =< | @ 33 g S 92 5 > 9 I a o :
2 I b 3] O, & a, 2= 0.0 = oo B I 35 " o)
) /) e N — o o A) = w0 p-S ol ; Q N O 5 c 5 = b I
R W) s 3 33 [9)
Q % + (&) - + 9 2o o koo 3 L
2.0 a. ! . o~ o) o o o) e ©) 2.2 . K
2 A N Q9 a2 " 03 8 i
o. o L 0 - o |- et . A
oy ! ! ! 5 ¢ o R o o — i Y !
o & w) o It = CEIN
el P — (3] ~r et [RRT ;
S a3 % oaloe -~ o - - - - .
e a. o~ O o. o R o . . N
. e ¥ I o~] .
o o T LA A) g ~ o o o -~ - - .
)

Affected: (SPD),(TSA+1) to

pointed to by the current to stack address
(SPDy5-31) plus 1 and ending with the current top-
of-stack address plus CC.

The current top-of-stack address is incremented by
the value of CC, to point to the new top-of-stack
location.

The space count (SPD33_y47) is decremented by the
value of CC and the word count is incremented by the
value of CC. '

The condition code is set to reflect the new status of
the space count.

Trap: Push-down stack limit
(TSA+CC),CC

(R)— (SPD)15_31 +1 ... (R#CC-1) — (SPD) 15.37+CC

(SPD);5_gq*CC

SPDy5 31

(SPD)33_477CC —5PDy3_47

(SPD

+CC ——SPD

49-63 49-63

Condition code settings:

1 2 3 4 Resultof PSM
0 0 0 O Space count >0.] Instruction
|
0 1 0 0O Space count =0. completed
\

0 0 1 0 Wordcount+ CC>

2151, Tw=1.
1 0 0 0 Space count <CC,

s=1.
1 0 0 1 Space count <CC,

word count = 0, ' A .

TS =1.
1 0 1 0 Space count <CC,

word count + CC >

2151, 15=1,

and TW =1. ¢ Instruction

aborted
1 1 0 O Space count =0,
TS=1 o

1 1 0 1 Space count =0,

word count =0,

Is=1.
1. 1T 1 0 Space count =0,

word count + CC >

2151, 15 =1,

and TW =1. J

If the insfrucfgpemfion extends into a page of memory
that is protected by the write locks, a memory protection
trap occurs. If the operation extends into a memory region
that is physically not present, the nonexistent memory ad-
dress trap occurs. In either case, if a trap occurs during
the execution of this instruction, it is detected before the
actual operation begins and the trap occurs immediately.

PLM PULL MULTIPLE
(Doubleword index alignment)
* 0A R X Reference address

0 1 2 314 5 6 778 9 10 11112 13 1415016 17 18 19120 21 22 23124 25 26 27126 29 36 3)

PULL MULTIPLE loads a sequential set of general registers
from the push-down stack defined by the stack pointer
doubleword located at the effective doubleword address of
PLM. The condition code is assumed to contain a count of
the number of words to be pulled from the stack. (An ini-
tial value of 0000 for the condition code specifies that

16 words are to be pulled from the stack.) The registers
are treated as a circular set (with register O following reg-
ister 15), the first register to be loaded from the stack is
register R+ CC - 1, and the contents of the current top-of-
stack location become the contents of this register. The
last register to.be loaded is register R.

If there is a sufficient number of words in the stack to load
all of the specified registers, PLM operates as follows:

1. Registers R + CC - 1 to register R are loaded in de- -
scending sequence, beginning with the contents of the
location pointed to by the current top-of-stack address
(SPDy5.37) and ending with the contents of the loca-
tion pointed to by the current top-of-stack address
minus CC-1.

2. The current top-of-stack address is decremented by
the value of CC, to point to the new top-of-stack
location.

3. The space count (SPD33.47) is incremented by the
value of CC and the word count is decremented by
the value of CC.

4. The condition code is set to reflect the new status of
the word count.

Affected: (SPD),(R+CC-1)
to (R),CC

Trap: Push-down stack limit

—((SPD)]‘,j:a])—f—,"R + CC '], ceoy

((SPD)y5_59 = lcc-1)) —= ’

(SPD) - CC—- SPD

15-31 15-31
(SPDl3g g7 * CC—5PDy3 47
——sPD

(SPD)49_g3 = <C 49-63

Push-Down Instructions 75

Condition code settings:

1 2 3 4 Result of PLM
0 0 0 0 Word count >0 } Instruction
0 0 0 1 Word count =0 completed
0 0 1 0 Word count < CC,)

T™W=1
0 0 1 1 Wordcount =0,

TW=1

0 1 1 0 Space count=0,
word count < CC,
TW =1 :

0 1 1 1 Spacecount=0,
word count =0, , Instruction
W =1 aborted

1 0 0 O Space count+CC >2]5-1,

TS =1
5

1 0 1 0 Space count+CC >2] -1,
word count <CC, TS =1,
and TW =1

1 0 1 1 Space count+CC >215-1,
word count =0, TS =1,
and TW =1 J

If the instruction operation extends into a page of memory
that is protected by the write locks, the memory protection
trap occurs. If the operation extends into a memory region
that is physically not present, the ronexistent memory
address trap occurs. In either case, if a trap occurs during
the execution of this instruction, it is detected before the
actual operation begins and the trap occurs immediately.

MSP MODIFY STACK POINTER

(Doubleword index alignment)

Reference address

* 13 R X

0 1 2 3[4 56 718 9 10 ul1z2 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 3
1

MODIFY STACK POINTER modifies the stack pointer dou-
bleword, located at the effective doubleword address of
MSP by the contents of register R. Register R is assumed to
heve the following format:

+ Modifier

Bit positions 16 through 31 of register R are treated os a
signed integer, with negative integers in two's complement
form (i.e., a fixed-point halfword). The modifier is alge-
braically added to the top-of-stack address, subtracted
from the space count, and added to the word count in the
stack pointer doubleword. If, as a result of MSP, either
the space count or the word count would be decreased
below 0 or increased above 219-1, the instruction is
aborted. Then, the computer either traps to Homespace
location X'42' or sets the condition code to reflect the
reason for aborting, depending on the stack {imit trap
inhibits.

76 Push-Down Instructions

o 4 4 _J
1617 18 19120 21 22 23124 25 26 27128729 30 3t

If the modificcfio.fhe stack pointer doubleword can be
successfully performed, MSP operates as follows:

1. The modifier in register R is algebraically added to the
current top-of-stack address (SPD)j5_37, to point to
a new top-of-stack location. (If the modifier is nega-
tive, it is extended to 17 bits by appending a high-
order 1.)

2. The modifier is algebraically subtracted from the cur-
rent space count (SPD33-47) and the result becomes
the new space count.

3. The modifier is algebraically added to the current word
count (SPD4g_g3) and the result becomes the new
word count.

4. The condition code is set to reflect the new status of

the new space count and new word count.

Affected: (SPD),CC Trap: Push-down stack limit

SPP)y5_31 * Ry 31567~ SPDy5 3y

(SPD)33_g7 = (Rhyg 3y SPD33_47
(SPD)go g3 * (R) 14377 SPDyg_¢3

Condition code settings:

1 2 3 4 Result of MSP

0 0 0 O Space count >0, A
word count > 0.
0 0 0 1 Space count>0,
word count = 0.
> Instruction

0 1 0 O Space count=0, completed
word count > 0. comp
01 0 1 Space count =0,
word count =0,
modifier = 0. J

If CC1, or CC3, or both CC1 and CC3 are 1's after exe=
cution of MSP, the instruction was aborted but the push-
down stack limit trap was inhibited by the trap-on-space
inhibit (SPD32), by the trap-on-word inhibit (SPDyg), or
both. The condition code is set to reflect the reason for
aborting as follows:

1 2 3 4 Status of space and word counts

- - = 0 Word count >0.
- - - 1 Word count =0.
- - 0 - 0<word count + modifier < 291,

- = 1 - Word count + modifier <0, and TW =1 or
word count + modifier > 2]5-], and TW =1.

1 2 3 4 Status of space ongd counts

- 0 - - Space count >0.
- 1 - =~ Space count =0.
0 - - - 0<space count - modifier < 2]5-1.

1 - - = Space count - modifier <0, and TS =1 or
space count - modifier > 21521, and TS = 1.

EXECUTE/BRANCH INSTRUCTIONS

The EXECUTE instruction can be used to insert another in-
struction into the program sequence, and.the branch instruc-
tions can be used to alter the program sequence, either
unconditionally or conditionally. If a branch is uacondi-
tional (or conditional and the branch condition is satisfied),
the instruction pointed to by the effective address of the
branch instruction is nomally the next instruction to be
executed. If a branch is conditional and the condition for
the branch is not satisfied, the next instruction is normally
taken from the next location, in ascending sequence, after
the branch instruction.

NONALLOWED GPERATION TRAP DURING EXECUTION OF
BRANCH INSTRUCTION

A branch instruction has two possible places from which the
next instruction may be taken: the location following the
branch instruction or the location that may be branched to.
It is possible that either of these two locations may be in a
protected memory region or in a region that is physically
nonexistent. The execution of the branch does not cause

a trap wimess the instruction that is actually to follow the
branch instruction is in a protected or nonexistent memory
region. Traps do not occur because of any anticipation on
the part of the hardware.

A nonallowed operation trap condition during execution of
a branch instruction will occur for the following reasons:

1. The branch instruction is indirectly addressed and the
branch conditions are satisfied, but the address of the
location containing the direct address is either non-
existent or unavailable for read access to the program
in the slave mode.

2. The branch instruction is unconditional (or the branch
is conditional and the condition for the branch is
satisfied), but the effective address of the branch
instruction is nonexistent.

If either of the above situations occurs, the computer aborts
execution of the branch instruction and executes a non-
allowed operation trap.

Prior to the time that an instruction is accessed from mem-
ory for execution, bit positions 15-31 of the program status
doubleword contain the address of the instruction, referred
to as the instruction address. At this time, the computer
traps to Homespace location X'40' if the address of the
instruction is nonexistent. If the instruction address is

existent, the .ucﬁon is accessed and the instruction
address portion of the program status doubleword is incre~
mented by 1, so that it now contains the address of the next
instruction in sequence (referred to as the updated instruc-~
tion address).

If a trap condition occurs during the execution sequence of
any instruction, the computer decrements the updated in-
struction address by 1 and then traps to the location
assigned to the trap condition. If neither a trap condition
nor a satisfied branch condition occurs during the execution
of an instruction, the next instruction is accessed from the
location pointed to by the updated instruction address. If

. a satisfied branch condition occurs during the execution of

a branch instruction (and ng trap condition occurs), the
next instruction is accessed from the location pointed fo by
the effective address of the branch instruction.

EXU EXECUTE
(Word index alignment)

* 67

0 1 2 314 5 6 7

X Reference address

{17 13 14 15116 17 18 5120 21 22 23124 25 26 27126 29 30 31

EXECUTE causes the computer to access the instruction in
the location pointed to by the effective address of EXU and
execute the subject instruction. The execution of the sub-
ject instruction, including the processing of trap and in-
terrupt conditions, is performed exactly as if the subject
instruction were initially accessed instead of the EXU
instruction. If the subject instruction is another EXU, the
computer executes the subject instruction pointed to by the
effective address of the second EXU as described above.
Such "chains" of EXECUTE instructions may be of any
length, and are processed (without affecting the updated
instruction address) until an instruction other than EXU is
encountered. After the final subject instruction is exe-
cuted, instruction execution proceeds with the next in-
struction in sequence after the initial EXU (unless the
subject instruction is an LPSD or XPSD instruction, or is

a branch instruction and the branch condition is satisfied).

If an interrupt activation occurs between the beginning of
an EXU instruction (or chain of EXU instructions) and the
last interruptible point in the subject instruction, the com-
puter processes the interrupt-servicing routine for the active
interrupt level and then returns program control to the EXU
instruction (or the initial instruction of a chain of EXU
instructions), which is started anew. Note that a program
is interruptible after every instruction access, including
accesses made with the EXU instruction, and the inter-
ruptibility of the subject instruction is the same as the nor-

“mal interruptibility for that instruction.

If a trap condition occurs between the beginning of an EXU
instruction (or chain of EXU instructions)and the completion
of the subject instruction, the computer traps to the appro=-
priate trap location. The instruction address stored by the
XPSD instruction in the trap location is :- dress of the

Execute/Branch Instructions 77

EXU instruction (or the initial instrucfio.cx chain of EXU
instructions). ‘

Traps: Determined by
subject instruction

Affected: Determined by
subject instruction

Condition code settings: Determined by subject instruction

BCS BRANCH ON CONDITIONS SET
(Word index alignment)

* 69 R X Reference address l
0\23%4567B9l‘6)llzlJl4l$i\6!7‘f8W} 2 23124 25 26 27128 31

BRANCH ON CONDITIONS SET forms the logical product
(AND) of the R field of the instruction word and the cur-
rent condition code. If the logical product is nonzero, the
branch condition is satisfied and instruction execution pro-
ceeds with the instruction pointed to by the effective ad-
dress of the BCS instruction. However, if the logical
product is zero, the branch condition is unsatisfied and
instruction execution then proceeds with the next instruc-
tion in normal sequence.

"Affected: (IA)if CCaR#0

If CC n (Dg_y, #0, EA IA

15-31

If CCna(l) =0, IA not aoffected

8-11

If the R field of BCS is O, the next instruction to be exe-
cuted after BCS is always the next instruction in ascending
sequence, thus effectively producing a "no operation"
instruction. ‘

BCR BRANCH ON CONDITIONS RESET
(Word index alignment)

* 68 R X Reference address

0 1 2 374 5 6 718 9 10 1111213 14 BT 78 WIH 21 2 DM B 1 TN 5 0 3

BRANCH ON CONDITIONS RESET forms the logical pro-
duct (AND) of the R field of the instruction word and the
current condition code. If the logical product is zero, the
branch condifion is satisfied and instruction execution then
proceeds with the instruction pointed to by the effective
address of the BCR instruction. However, if the logical
product is nonzero, the branch condition is unsatisfied and
instruction execution then proceeds with the next instruc-
tion in normal sequence.

Affected: (IA) if CCn R =0
If CC n (Dg_qq =0, EA . o —IA

If CCn (1) # 0, 1A not affected

8-11

78 Execute/Branch Instructions

If the R field of BCR . the next instruction to be exe-
cuted after BCR is always the instruction located at the
effective address of BCR, thus effectively producing a
"branch unconditionally” instruction.

BIR BRANCH ON INCREMENTING REGISTER
(Word index alignment)

g 65 R X Reference address

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 0 3}

BRANCH ON INCREMENTING REGISTER Increments the
contents of general register R by 1. If the result is a nega-
tive value, the branch condition is satisfied and instruction
execution then proceeds with the instruction pointed to by
the effective address of the BIR instruction. However, if
the result is zero or a positive value, the branch condition
is not satisfied and instruction execution proceeds with the
next instruction in normal sequence.

Affected: (R),(IA)

(R)y+ 1—R

I (R)y =1, EAs 5 —I1A
If (R)0 =0, IA not affected

If the branch condition is satisfied and the effective
address of BIR is nonexistent, the computer aborts exe~
cution of the BIR instruction and traps to Homespace
location X'40'. In this case, the instruction address
stored by the XPSD instruction in location X'40" is the
address of the aborted BIR instruction. If a memory parity
error occurs due to the accessing of the instruction to which
the program is branching, the computer aborts execution of
the BIR and traps to Homespace location X'4C' with
register R unchanged.

BDR BRANCH ON DECREMENTING REGISTER
(Word index alignment)

.

* 64 R X Reference address

T T 23T 5 s T T NN B W BB T B RB D EBn BT BE R

BRANCH ON DECREMENTING REGISTER decrements the
contents of general register R by 1. If the result is a posi-
tive value, the branch condition is satisfied and instruction
execution then proceeds with the instruction pointed to by
the effective address of the BDR instruction. However, if
the result is zero or a negative value, the branch condition

is unsatisfied and instruction execu roceeds with the

next instruction in normal sequence.
Affected: (R),(I1A)

(R)-1—R

If (R)0 =0 and (R)1-31 #0, EA]5_3]—- IA

If (R)o =1 or (R) =0, IA not affected

If the branch condition is satisfied and the effective ad-
dress of BDR is nonexistent, the computer aborts execution
of the BDR instruction and traps to Homespace location
X'40'. In this case, the instruction address stored by
the XPSD instruction in location X'40' is the address

of the aborted BDR instruction. If a memory parity
error occurs due to the accessing of the instruction

to which the program is branching, the computer aborts
execution of the BDR and traps to Homespace location
X'4C" with register R unchanged.

BAL BRANCH AND LINK
(Word index alignment)

* 6A R X Reference address

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

BRANCH AND LINK determines the effective address,
loads the updated instruction address (the address .of the
next instruction in normal sequence after the BAL in-
struction) into bit positions 15-31 of general register R,
clears bit positions 0-14 of register R to 0's and then
replaces the updated instruction address with the effec-
tive address. Instruction execution proceeds with the
instruction pointed to by the effective address of the
BAL instruction.

Affected: (R),(IA)

IA 0—R EA IA

—Ry5317 0-147 FA15.31

If the branch condition is satisfied and the effective ad-
dress of BAL is nonexistent, the computer aborts execution
of the BAL instruction and traps to Homespace location
X'40' {nonallowed operation trap). In this case, the in-
struction address stored by the XPSD instruction in loca-
tion X'40' is the address of the aborted BAL instruction.

If @ memory parity error occurs due to the accessing of the
instruction to which the program is branching, the com-
puter aborts execution of the BAL and traps to Homespace
location X'4C’ with register R unchanged.

@ nsTrRucTIONS

Each of the four CALL instructions causes the computer to
trap to a specific location for the next instruction in se-
quence. The four CALL instructions, their mnemonics,
and the locations to which the computer traps are:

Instruction Trap Home-
Name Mnemonic space Location
CALL 1 CAL1 X'48

CALL 2 CAL2 X'49'

CALL 3 CAL3 X“4A'

CALL 4 CAL4 X'4B'

Each of these four frap locations must contain an EX-
CHANGE PROGRAM STATUS DOUBLEWORD (XPSD)
instruction. Execution of XPSD in the trap location for @
CALL instruction is described under "Control Instructions,
XPSD Exchange Program Status Doubleword". If the XPSD
instruction is coded with bit position 9 set to 1, the next
instruction (executed after the XPSD) is taken from one of
16 possible locations, as designated by the value in the

R field of the CALL instruction. Each of the 16 locations
may contain an instruction that causes the computer to
branch to a specific routine; thus, the four CALL instruc-
tions can be used to enter any of as many as 64 unique
routines.

CALl CALL 1
(Word index alignment)

* 04 R X

0 1 2 314 5 6 718 9 30 11112 13 14 15116 17 18 19120 2V 22 23124 25 26 27128 29 30 31

Reference address

CALL 1 causes the computer to trap to Homespace loca-
tion X'48'.

CAL2 CALL 2
(Word index alignment)

* 05 R X Reference address

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27126 29 30 31

CALL 2 causes the computer to trap to Homespace loca-
tion X'49'. :

CAL3 CALL 3
(Word index alignment)

* 06 R X Reference address

A N A R R R R R A R R R AR R AL

CALL 3 causes the computer to trap to Homespace loca-

tion X'4A',

Call Instructions 79

CALS CALL 4
(Word index alignment)

* 07 R X Reference address

O 1 2 314 5 6 718 9 10 11612 13 1% 15116 17 18 19120 20 22 23124 25 26 27126 29 30 31

CALL 4 causes the computer to trap to Homespace loca-
cation X'4B'.

CONTROL INSTRUCTIONS

The following privileged instructions are used to control
the basic operating conditions of the SIGMA 8 computer:

Instruction Name . Mnemonic
Load Program Status Doubleword LPSD
Exchange Program Status Doubleword XPSD
Load Register Pointer LRP

Move to Memory Control MMC
Wait WAIT
Read Direct RD

Write Direct WD

If execution of any control instruction is attempted while
the computer is in the slave mode (i.e., while bit 8 of the
current program status doubleword is a 1), the computer
unconditionally traps to Homespace location X'40' prior to
executing the instruction.

PROGRAM STATUS DOUBLEWORD

The SIGMA 8 program status doubleword has the following
structure when stored in memory:

FlF[Flmi~ OO
CC |0js|z|njs [0 lmlm| 000 IA
a123456799l'dn121314!5?16!71319202122232425262723293031
00 fwk fo|Z| 7|7 0————0 TSF RP Iilooo
32333435363730394041Ql&iu«i“474649505"525354555657585960616263
Bit Desig-

Positions nation Function

0-3 cc Condition code

5 FS Floating significance mask
6 FZ Floating zero r.nask

7 FN Floating normalize mask

8 MS Masfer/slave mode control

80 Control Instructions

Bit Desig- ‘

Positions nation Function

10 DM Decimal arithmetic trap mask

11 AM Fixed-point arithmetic overflow trap
mask

15-31 IA Instruction address

34,35 WK Write key

37 Cl1 Counter interrupt group inhibit

38 11 1/O interrupt group inhibit

39 El External interrupt inhibit

48-55 TSF Trap status field

56-59 RP Register pointer

60 RA Register altered

The detailed functions of the various portions of the
SIGMA 8 program status doubleword are described in
Chapter 2, "Program Status Doubleword".

LPSD LOAD PROGRAM STATUS DOUBLEWORD
(Doubleword index alignment, privileged)

A
ol X Reference address
V0 10112 13 14 15016 17 18 19120 21 22 23124 25 26 27128 29 30 31

LOAD PROGRAM STATUS DOUBLEWORD replaces bits O
through 39 of the current program status doubleword with
bits 0 through 39 of the effective doubleword. -

* OE

0 1 2 3la 5 6 7

_The following conditional operations are performed:

1. If bit position 8 (LP) of LPSD contains a 1, bits 56
through 59 of the current program status double-
word (register pointer) are replaced by bits 56
through 59 of the effective doubleword; if bit 8 of
LPSD is a 0, the current register pointer value re-
mains unchanged.

2. If bit position 10 {CL) of LPSD contains a 1, the
highest~priority interrupt level currently in the active
state is cleared (i. e., reset to either the armed state
or the disarmed state); the interrupt level is armed if
bit 11 of LPSD (AD) isa 1, or is disarmed if bit 11 of
LPSD is 0. If bit 10 of LPSD is a O, no interrupt level
is affected in any way, regardless of whether bit 11 of
LPSD is 1 or 0. If bit 10 of the LPSD is a 0 and bit 11
of the LPSD is a 1, the PDF flag is cleared. (Inter-
rupt levels are described in detail in Chapter 2,
“Interrupt System".)

Bit Position Bit Position

10 (CL) 11 (AD)

Function

1 0 Clear and disarm interrupt level
1 1 Clear and arm interrupt level

0 1 Clear PDF flag

0 0 No control action

Those portions of the effective doubleword that correspond
to ‘undefined fields in the program status doubleword are
ignored.

Affected: (PSD), interrupt system if (l)w =1

EDOT’ CcG; EDST* FS,FZ, FN

EDs——*MS

ED_]—O-—*DM; EDﬁ—ﬁAM

RTETENS

E WK

D34=35

CLIL EL; if (g =1, RP

D739 EDsg 59

If (I)IO =1 and (I).” =1, clear and arm interrupt
If (I)‘IO =1 and (I)” =0, clear and disarm interrupt
If (), =0and (1), =1, clear PDF flag

XPSD EXCHANGE PROGRAM STATUS DOUBLEWORD
(Doubleword index alignment, privileged)

X Reference address

* OF P

] Gil 5 6 718 9 1'0 1112 13 14 15|l§ 17 18 19720 21 22 23124 25 26 27128 29 30 3!

EXCHANGE PROGRAM STATUS DOUBLEWORD stores the
currently active PSD in the doubleword location addressed

by the effective address of the XPSD instruction. The fol-
lowing doubleword is thenaccessed from memory and loaded
into the active PSD registers.

The XPSD instruction is used for three distinct types of
operations: as a normal instruction in an ongoing program;
as an interrupt instruction; and as a trap instruction.

- An XPSD instruction (in an interrupt location) executed

as a result of an interrupt is called an interrupt instruction.
An XPSD instruction (in a trap location) executed as a
result of a trap entry operation is called a trap instruction.

An XPSD instruction encountered in the course of execution

of a normal p’m (that is, not as an interrupt instruction
nor as a trap instruction) is a normal instruction.

Control bits used in the XPSD instructions are:

Bit Desig- Control
Position nation Function

Where Used

8 Lp Load pointer All XPSDs
control
9 Al Address increment Trap XPSD

The effective address of an XPSD instruction is generated
in one of the following ways:

XPSD (normal and interrupt instructions)

When either of these XPSD instructions are executed, the
effective address is generated according to the normal rules -
for addressing. Bit position 9 is not effective during these
instructions and must be a zero.

XPSD (frap instruction)

An XPSD executed as a trap instruction (as defined above) .
may have the effective address and condition codes modi-
fied as a function of bit position 9.

If bit position 9 of XPSD contains a 0, the instruction ad-
dress portion of the new PSD always remains at the value
established by the second effective doubleword. Bit posi-
tion 9 of XPSD is effective only if the instruction is being
executed as the result of a nonallowed operation trap or a
CALL instruction trap. Bit position 9 of XPSD must be
coded with a 0 in all other cases; otherwise, the results of
the XPSD instruction are undefined.

The following additional operations are performed on the
new program status doubleword if, and only if, the XPSD
is being executed as the result of a nonallowed operation
(trap to Homespace location X'40') or a CALL instruction
(trap to Homespace location X'48', X'49', X'4A', or
X'4B): :

1. Nonallowed operations — the following additional
functions are performed when XPSD is being executed
as a result of a trap to Homespace location X'40':

a. Monexistent instruction — if the reason for the
irap condition is an attempt fo execute a non-
existent instruction, bit position 0 of the new
program status doubleword (CC1) is set to 1. Then,
if bit 9 (Al) of XPSD is a 1, bit positions 15-31 of
the new program status doubleword (next instruc-
tion address) are incremented by 8.

Control Instructions 81

b. Nonexistent memory address —‘e reason for the
trap condition is an attempt to access or write into
a nonexistent memory region, bit position 1 of the
new program status doubleword (CC2) is set to 1.
Then, if bit 9 of XPSD is a 1, the instruction ad-
dress portion of the new program status double-
word is incremented by 4.

c. Privileged instruction violation — if the reason for
the trap condition is an attempt to execute a
privileged instruction while the computer is in the
slave mode, bit position 2 of the new program
status doublewerd (CC3) is set to 1. Then, if bit
position 9 of XPSD is 1, the instruction address
portion of the new program status doubleword is
incremented by 2.

d. Memory protection violation — if the reason for
the trap condition is an attempt to write into
a memory region to which the program does
not have proper access, bit position 3 of the
new program status doubleword (CC4) is set to 1.
Then, if bit 9 of XPSD is a 1, the instruction ad-
dress portion of the new program status double-
word is incremented by 1.

There are certain circumstances under which two of the
above nonallowed operations can occur simultaneously.
The following operation codes (including their counter-
parts) are considered to be both nonexistent and privi-
leged: X'OC' and X'OD'. If either of these operation
codes is used as an instruction while the computer is

in the slave mode, CC1 and CC3 are both set to 1's;

if bit 9 of XPSD is a 1, the instruction address portion
of the new program status doubleword is incremented

by 10. If an attempt is made to write into a memory
region that is both nonexistent and prohibited to the
program by means of the memory control feature, CC2
and CC4 are both set to 1's; if bit 9 of XPSD isa 1,

the instruction address of the new program status
doubleword is incremented by 5.

2. CALL instructions — the following additional functions
are performed when XPSD is being executed as a
result of a trap to Homespace location X'48', X'49',
X'4A', or X'4B'.

a. The R field of the CALL instruction causing the
trap is logically inclusively ORed into bit posi-
tions 0-3 (CC) of the new PSD.

) b. If bit position 9 of XPSD contains a 1, the R field
of the CALL instruction causing the trap is added
to the instruction address portion of the new PSD.

The current program status doubleword is stored in the
doubleword location pointed to by the effective address of

XPSD in the following form:

Program status doubleword:

cc |0

T 23

£ o [a]al 000 1A
7

8 9 10 11112 13 14 ISILM 17 18 I9i20 21 22 23i24 25 26 27i28 29 30 3

wl
o] Nm

82 Control Instructions

00|wx 0| zir|x

M N o——g——-o TSF RP [*| 000

A

32 33 34 350136 37 38 39140 41 42 43144 45 46 47143 49 50 51152 53 54 55150 57 58 59160 6) 82 63

The current program status doubleword (as illustrated above)
is replaced by a new program status doubleword as de-
scribed below.

The effective address of XPSD is incremented by 2 50
that it points to the next doubleword location. The
contents of the next doubleword location are referred
to as the second effective doubleword, or ED2.

Bits 0-35 of the current program status doubleword are
unconditionally replaced by bits 0-35, of the second
effective doubleword. The affected portions of the
program status doubleword are:

Bit Desig-
Position nation Function
0-3 cC Condition code
5-7 FS,FZ, Floating control
FN
8 MS Master/slave mode control
10 DM Decimal arithmetic trap mask
11 AM Fixed~point arithmetic irap
mask
15-31 1A Instruction address

34-35 WK Write key

A logical inclusive OR is performed between bits 37
through 39 of the current program status doubleword
and bits 37 through 39 of the second effective
doubleword.

Bit Desig-
Position nation Function

37 ClI Counter interrupt inhibit
38 11 1/O interrupt inhibit
39 EI External interrupt inhibit

If any (or all) of bits 37, 38, or 39 of the second
effective doubleword are 0's, the corresponding bits
in the current program status doubleword remain un-
~ changed; if any (or all) of bits 37, 38, or 39 of the
second effective doubleword are 1's, the correspond-
ing bits in the current program status doubleword are

set to 1's. See "Interrupt Sy ', Chapter 2, fora
detailed discussion of the interrupt inhibits.

4. If bit position 8 (LP) of XPSD contains a 1, bits 56
through 59 of the current program status doubleword
(register pointer) are replaced by bits 56 through 59
of the second effective doubleword; if bit 8 of XPSD

is a 0, the current register pointer value remains
unchanged.

Affected: (EDL),(PSD)
PSD —EDL

— CC; ED2

0-3 ; 5_7-‘—’FS,FZ,FN

ED2
ED28 —MS

ED2, ., —DM; ED2

0 ;ED2, — AM; ED, . o, — 1A

15-31

D234-357 WK

ED237_39 v CI I, EI—=CI, II, EI

If (g =1, ED25, .o —RP

If (.1)8 =0, RP not affected

If nonexistent instruction, 1—— CC1 then, if (I) =1,
IA+8—IA

If nonexistent memory address, 1—=CC2 then, if
(1)9 =1, IA+4—]A

If prnvnleged instruction vuolahon, 1—— CC3 then, if
(1) =1, IA+2—-]A

If memory protection violation, 1—CC4 then, if

(g =1, 1A+ 1—1A

If CALL instruction, CC u CALLg-11 —=CC then, if

If (l)9 =0, IA not affected

LRP " LOAD REGISTER POINTER
(Word index alignment, privileged)
* 2F R X Reference address

0 1 2 314 5 6 718 9 10 11112 1314 she e P10 21 22 231242526273282930“

LOAD REGISTER POINTER loads bits 26 and 27 of fhe‘.
effective word into the register pointer (RP) portion of the

EW

current progrcl,fus doubleword. Bit positions 0 through
25 and 28 through 31 of the effective word are ignored,
and no other portion of the program status doubleword is
affected. If the LOAD REGISTER POINTER instruction
attempts to load the register pointer with a value that points
to a nonexistent block of general registers, the computer

. traps to Homespace location X'4D'.

Instruction exception

Affected: RP Trap:

26-27 " RP

MMC MOVE TO MEMORY CONTROL
(Word index alignment, privileged, continue

after interrupt)

* 6F . R Reference address

0 1 2 3Va 5 6 718 910 N2 13714 15516 17 18 19120 21 22 23124 25 26 27126 2% R 31

MOVE TO MEMORY CONTROL loads a string of one or
more words into the write lock registers. Bit positions 12
through 14 of MMC specify that the memory control reg-
isters are to be loaded. Indexing is not permitted.

Control

Bit Position
12 13
0 0 1

14 Function

Load memory write protection locks.

An attempt to execute an MMC instruction with any con-
trol code other than the above causes the instruction to
trap to Homespace location X'4D', the instruction ex-
ception trap.

Bit positions 15-31 of MMC are ignored insofar as the
operation of the instruction is concerned, and the results
of the instruction are the same’ whether MMC is indirectly
addressed or not.

The R field of MMC designates an even-odd pair of general
registers (R and Rul) that are used to control the loading of
the specified bank of memory control registers. Registers R
and Rul are assumed to contain the following information:

Register R:

Control image address

Register Rul:

Control

start
5016 17 18 19120 21 22

Count

Register R contains the address of the first word of the con-
trol image to be loaded into the specified block of memory
control registers. Bit positions O through 7 of register Rul
contain a count of the number of words to be loaded. (If
bits 0-7 of register Rul are initially all 0's, o word count
of 256 is implied.)

Bit positions 15 through 22 of register Rul point to the be-
ginning of the memory region controlled by the registers
to be loaded.

Control Instructions 83

The R field of the MMC instruction mu‘ an even value
for proper operation of the instruction; 11 the R field of
MMC is an odd value, the instruction traps to Homespace
location X'4D', the instruction exception trap.

If MMC is indirectly addressed and the indirect reference
address is nonexistent, the nonallowed operation trap
(Homespace location X'40') is not activated. The effective
address of the MMC instruction is not used as a memory
reference (thus does not affect the normal operation of
the instruction).

Affected: (R),(Rul),

memory control storage

Trap: Instruction
exception

LOADING THE MEMORY PROTECTION LOCKS

The following diagrams represent the configurations of
MMC, register R, and register Rul that are required to
load the memory write protection locks:

0 6F R lojo1i0 0

I R KRNI R A T) SV KR PR AT A

T 23124 25 26 27128 29 30 31

The contents of register R are:

0 : 0

01 2 314 5 ¢ 7iS 9 10 11112 13 14 15016 17 18719120 21 22 23124 25 26 27128 29 30 3)

Lock image address

The contents of register Rul are:

Control
Count 0——- 0
0 start 0
0 v 2 314 5 6 7ks 9 10 nli2 13 14 15T 17 18 19120 20 22 23124 25 26727128 29 30 31

MEMORY LOCK CONTROL IMAGE

The initial address value in register R is the address of the
first word of the memory lock control image, and word
length of the image is specified by the initial count in
register Rul. A word count of 16 is sufficient to load the
entire block of memory locks. The memory lock registers
are treated as a circular set, with the register for memory
addresses O through X'1FF' immediately following the reg-
ister for memory addresses X'1FEQ0' through X'IFFF';
thus, a word count greater than 16 causes the first registers
loaded to be overwritten. Each word of the lock image is
assumed to be in the following.format:

WL IwL [WL WL IwWL [wl |[wL (WL wl |wL|WL[IWL|WL]wL|wL]wlL

0.1 2 314 5 6 718 9 10 11412 13 14 15016 17 18 19120 21 22 23124 25 26 27128 29 30 3}

MEMORY LOCK LOADING PROCESS

Bit positions 15-20 of register Rul initially point to the
first 512-word page of memory addresses that will be con-
trolled by the memory lock image. MMC moves the lock
image into the lock registers one word at a time, thus load-
ing the locks for 16 consecutive 512-word pages with each
image word. As each word is loaded, the address of
the lock image is incremented by 1, the word count is

84 Control Instructions

decremented by 1, che value in bit positions 15-20 of
register Rul is incremented by 4; this process continues
until the word count is reduced to 0. When the loading
process is completed, register R contains a value equal to
the sum of the initial lock image address plus the initial
word count. Also, the final word count is 0, and bit posi~
tions 15-20 of register Rul contain a value equal to the
sum of the initial contents plus four times the initial word
count.

INTERRUPTION OF MNiC

The execution of MMC can be interrupted or trapped after
each word of the control image has been moved into the
specified control register. Immediately pricr to the time
that the instruction in the interrupt (or trap) location is
executed, the instruction address portion of the program
status doubleword contains the address of the MMC in-
struction, register R contains the address of the next word
of the control image to be loaded, and register Rul con-
tains a count of the number of control image words remain=
ing to be moved and a value pointing to the next memory
control register to be loaded. After interrupt, the MMC
Jinstruction may be resumed from the point it was interrupted.
In case of an interrupt or a parity error in a control image
word, the MMC will set the Register Altered indicator,

bit 60 of the program status doubleword.

WAIT WAIT) .
(Word index alignment, privileged)

* 2E R X Reference address
0 1 2 314 5 6 718 9 10 1112 13 14 15116 17 18 |9EZ\ 22 23124 25 26 27128 29 31

WAIT causes the CPU to cease all operations until an inter-
rupt activation occurs, or until the computer operator manu-
ally moves the COMPUTE switch on the processor control
panel from the RUN position to IDLE and then back to RUN.
The instruction address portion of the PSD is updated before
the computer begins waiting; therefore, while the CPU is
waiting, the INSTRUCTION ADDRESS indicators contain
the address of the next location in ascending sequence after
WAIT and the contents of the next location are displayed

in the DISPLAY indicators on the processor control panel.

If any input/output operations are being performed when
WAIT is executed, the operations proceed to their normal
termination.

When an interrupt activation occurs while the CPU is wait-
ing, the computer processes the interrupt-servicing routine.
Normally, the interrupt-servicing routine begins with an
XPSD instruction in the interrupt location, and ends with
an LPSD instruction at the end of the routine. After the
LPSD instruction is executed, the next instruction to be
executed in the interrupted program is the next instruction
in sequence after the WAIT instruction. If the interrupt is
to a single=instruction interfupt location, the instruction

in the interrupt location is executed and then instruction
execution proceeds with the next instruction in sequence

after the WAIT instruction. When the COMPUTE switch is

moved from RUN to IDLE and ba RUN while the CPU
is waiting, instruction execution Proceeds with the next
instruction in sequence after the WAIT instruction.

Affected: PC

If WAIT is indirectly addressed and the indirect reference
address is nonexistent, the nonallowed operation trap to
Homespace location X'40' will not occur. The effective
address of the WAIT instruction, however, is not used as a
memory reference (thus does not affect the normal operation
of the instruction).

RD READ DIRECT
(Word index alignment, privileged)

. Reference address
6C R X | Mode I Function

07 Z 314 5 6 718 9 10 112 13 14 15016 17 18 19120 20722 23124725 26 27128 29 30 31

The CPU is capable of directly communicating with other
elements of the SIGMA 8 system, as well as performing
internal control operations, by means of the READ
DIRECT/WRITE DIRECT (RD/WD) lines. The RD/WD
lines consist of 16 address lines, 32 data lines, two
condition code lines, and various control lines that are
connection to various CPU circuits and to special sys-
tems equipment.

READ DIRECT causes the CPU to present bits 16 through 31
of the effective address to other elements of the SIGMA 8
system on the RD/WD address lines. Bits 16-31 of the ef-
fective address identify a specific element of the SIGMA 8
system that is expected to retum information (two condition
code bits plus a maximum of 32 data bits) to the CPU. The
significance and number of data bits retumed to the CPU
depend on the selected element. If the R field of RD is
nonzero, up to 32 bits of the returned data are loaded into
general register R; however, if the R field of RD is zero,
the only action taken is the setting of the condition codes
as indicated by the particular form of the instruction.

Bits 16-19 of the effective virtual address of RD determine
the mode of the RD instruction, as follows:

Bit Position

16 17 18 19 Mode

0 0 O O Internal computer control.

0 0 O 1 |Interrupt control.

0 0 1 0 XDS testers.

0 0 1 1
Assigned to various groups of standard
XDS products.

1 1 1 0

Special systems control (for customer use
with specially designed equipment).

READ DIRECT,
INTERNAL CORPUTER CONTROL (MiGDED)
In this mode, the computer is able to read the sense

switches, the interrupt inhibit bits of the PSD, and the
"snapshot"” register, as follows.

READ SENSE SWITCHES

The following configuration of RD can be used fo read the
control panel SENSE switches:

Reference address
" eC R | X 75000 | 0000 | 6000 | 0600

1 2 31a 5 6 718 7 10 NIz 3 14 15016 178 % 1 22 2517 7% 26 @13 77 & 3

If a particular SENSE switch is set, the corresponding bit
of the condition code is set to 1; if a SENSE switch is zero
the corresponding bit of the condition code is set to O (see
"SENSE" in Chapter 5).-

In this case, only the condition code is affected.

READ SNAPSHOT SAMPLE REGISTER

Each CPU will contain an internal snapshot sample register
to aid in diagnostic programming. The following configura=-
tion of RD is used to record the snapshot sample register:

* , i Reference address
oC R | X BET70000 [0000 | 0100 | 1001

0 1 2 314 5 6 718 9 10 112 13 14 15116 1718 19120 21 22 23124 25 26 27128 29 & 0

If the R field of RD is nonzero, the contents of the snapshot
sample register are transferred to the specified R register.

Affected: (R),CC
R

(Sample Register)
Condition Code Settings:

1 2 3 4 Result

- - 0 0 Clock Counter =0, end of instruction not
reached.

- = 0 1 Clock Counter =0, end of instruction.

- = 1 0 Armed but not "snapped".

READ INTERRUPT INHIBITS

The following configuration of RD can be used to read the
contents of the interrupt inhibit field:

Reference address

| s¢ R | X 1275000 | 0000 | 0100 | 1000

G T 2 314 5 6 718 9 16 11112 13 12 15116 17 18 19120 21 22 23124 25 26 27125 29 30 31

If the R field of RD is nonzero, the contents of the inter-
rupt inhibit field (bits 37, 38, 39) of the program status
doubleword are transferred to the least significant 3 bits

Control Instructions 85

of the specified R register (bits 29, 30, ‘ The remainder
of the R register bits (0-28) is cleared to zeros.

Affected: (R)

(PSD)37_30 Roo_31

0—Ry_28

READ INTERNAL CONTROLS

The following configuration of RD is used to read the CPU
clock margin controls.

Reference address

6C R | * [0000 | 0000, 0100 | 0101

0 1 2 314 5 6 718 9 101111213 14 15116 17 18 19120 2t 22 23124 25 26 27128 29 30 3)

The internal CPU margin controls are read into the speci-
fied R register, bits 8 and 9, with all other bits zero, ac-
cording to the following table:

Bit8 Bit9 Clock Margins

0 Norm

1 Hi
1 0 Lo
1 1 Unused
Affected: (R)
C)—*RO_7
Clock Margins R8, R9
0—Ry0-31

READ DIRECT, INTERRUPT CONTROL (MODE1)

The following configuration of RD is used to control the
sensing of the various states of the individual interrupt
levels within the CPU interrupt system:

Reference address

éc R X %1 0001 |0] code | 0000 | Growe

¢ 1 7 3il 5 & 718 9-10 M2 1314 15116 17 18 19020 21 22 23124 25 26 27128 29 30 31

Bits 28 through 31 of the effective address specify the iden-
tification number of the group of interrupt levels to be con-
. trolled by the READ DIRECT instruction.

The R field of the RD instruction specifies a general reg-
ister that will contain the bits sensed from the individual
interrupt levels within a specified group (see Table 2, Chap-

ter 2). Bit position 16 of register R contains the appropri-

ate indicator bit for the highest priority (lowest number)
interrupt level within the group and bit position 31 of
register R contains the indicator bit for the lowest priority

86 Control Instructions

interrupt level withir‘ group. Each interrupt level in
the designated group is sensed according to the function
code specified by bits 21 through 23 of the effective ad-
dress of RD. The codes and their associated functions are
as follows:

Code Function

001 Read Armed or Waiting State. Set to 1 the bits
in the selected register which correspond to in-
terrupt levels in this group that are in either
the armed or the waiting state. Reset all other
bits to zero.

010 Read Waiting or Active State. Set to 1 the bits
in the selected register which correspond to each
interrupt level in this group that is in either the
waiting state or the active state. All other bits
are reset to zero.

100 Read Enables. Set to 1 the bits in the selected
register which correspond to each interrupt level
in this group which is enabled. Reset all other

- —-bitsto-zero.— - _

WD WRITE DIRECT
(Word index alignment, privileged)
‘ Reference address
*
6D R X] Mode | Function
0 1 2 314 5 6 718 9 10 11]12 13 14 15116 17 18 19720 21 22 23i24 25 26 27128 29 30 31

[}

WRITE DIRECT causes the CPU to present bits 16 through 31
of the effective address to other elements of the SIGMA 8
system on the RD/WD address lines (see READ DIRECT).
Bits 16-31 of the effective address identify a specific
element of the SIGMA 8 system that is to receive con-
trol information from the CPU. If the R field of WD is
nonzero, the 32-bit contents of register R are transmitted
to the specified element on the RD/WD data lines. If the

R field of WD is 0, 32 0's are transmitted to the speci-
fied element (instead of the contents of register 0). The
specified element may return information to set the con-
dition code.

Bites 16-19 of the effective address determine the mode
of the WD instruction, as follows:

Bit Position

16 17 18 19 Mode

0 0 0 O

Internal computer control

0 0 O 1 Interrupt control

16 17 18 19 Mode

XDS testers

Assigned to various groups of
standard XDS products

Special systems control (for customer
use with specially designed
equipment)

WRITE DIRECT,
INTERNAL COMPUTER CONTROL (MODE 0)

SET INTERRUPT INHIBITS

The following configuration of WD can be used fo set
the interrupt inhibits (bit positions 37-39 of the PSD).

Reference address

*| 6D R X ET0000 | 0000 [0011 Jofe]r]e

0 1 2 314 56 7218 % 10 11112 13 14 Isllb 17 18 19120 21 22 23]24 25 26 27128 29 30 31

A logical inclusive OR is performed between bits 29-31
of the effective address and bits 37-39 of the PSD. If
any or all) or bits 29-31 of the effective address are 1's,
the corresponding inhibit bits in the PSD are set to 1's;
the current state of an inhibit bit is not affected if a
corresponding bit position of the effective address con-
tains a O.

RESET INTERRUPT INHIBITS

" The following configuration of WD can be used to reset the
interrupt inhibits:

Reference address

60 | R | X H5000 [0000 | 0010 Jole[1]e

0 1 2 314 5 6 718 9 10 nI12713 14 15|!6 17 18 19120 21 22 23124 25 26 27128 29 30 3V

If any (or all) of bits 29-31 of the effective address
-are 1's, the corresponding inhibit bits in the PSD are
reset fo 0's; the current state of an inhibit bit is not

affected if a corresponding bit position of the effective .

address contains a 0.

SET ALARM INDICATOR

The following configuration of WD is used to set the
ALARM indicator on the maintenance section of the
processor control panel.

s . __ Reference address
| 6D X 775000 | 0000] 0100 | 0001

01 2 JTA 5 6 718 9 10 nhiz 13 14 15106 17 12 19120727 22 25724 25726 27126 29 36 31

If the COMPUTE switch on the processor control panel is

in the RUN position and the AUDIO switch on the mainte-
nance section of the processor control panel is in the ON
position, a 1000-Hz signal is transmitted to the computer
speaker. The signal may be interrupted by moving the
COMPUTE switch to the IDLE position, by moving the
AUDIO switch to the OFF position, or by resetting the
ALARM indicator.

RESET ALARM INDICATOR

The following configuration of WD is used to reset the
ALARM indicator:

Reference address

¥ 6D R | X 5000] 0000 | 0100 | 0060

] 3|L4 5 6 7018 9 10 1112 1314 35006 17 18 19§20 21 22 25024 25 26 27128 29 30 31

The ALARM indicator is also reset by means of either the
CPU RESET/CLEAR switch or the SYS RESET/CLEAR
switch on the processor control panel.

TOG GLE PROGRAM-CONTROLLED-FREQUENCY
FLIP-FLOP

The following configuration of WD is used to set and
reset the CPU program-controlled-frequency (PCF)
flip-flop:

e “ Reference address
- 6D R | -X FT0000 | 0000 | 0100 | 0010

0 1 2 314 5 6 718 9 10 111213 14 15016 17 18 19120 2y 22 23124 25 26 27128 29 30 3)

The output of the PCF flip-flop is transmitted to the
computer speaker through the AUDIO switch on the mainte-
nance section of the processor control panel. If the
PCF Hip—flop is reset when the above configuration of
WD is executed, the WD instruction sets the PCF flip-
flop; if the PCF flip-flop was previously set, the WD
instruction resefs it. A program can thus generate a
desired frequency by setting and resetting the PCF flip-
flop at the appropriate rate.” Execution of the above
configuration of WD also resets the ALARM indicator.

LOAD INTERRUPT INHIBITS

The followmg configuration of WD can be used to transfer

the contents of the specified R register (Ryg_31) to the
Interrupt Inhibit field (PSD37_39)

Reference address

L3
D R| X 175600 1 0000 | 0100 [7000

0 1 2 314 5 6 718 9 10 nnhi2 13 1@ 15516 17718 19120 21 22 23124 25 26 27128 29 30 3

Affected: (PSD

37-39)

(Ryg_31) —PSD37 30

Control Instructions 87

LOAD SNAPSHOT CONTROL REGISTE‘

The following configuration of WD is used to arm the
snapshot feature.

Reference address

I R | X [T o000 | 0000] 0100 [1601

¢ 1 2 Bit 5 6 718 9 10 11112 13 14 iillé 17 18 19120 21 22 23024 25 26 27128 29 30 31

The contents of the specified R register are transferred -
to the snapshot control register with the following
format:

CcC Cs Instruction address

N " " 4
0 v 2 314 5 6 718 9 10 1I12 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 3!

Bit Desig-

Position nation Function

0-7 cC Clock Counter. Contains the num-
ber of clock pulses, which deter-
mine the time the snapshot sample
register is strobed after instruction
adress recognition.

10-14 - CS Condition Select. Determine which

’ of several possible internal states

of the hardware to record.t

15-31 IA Instruction Address. The address

used by the snapshot feature is the
17-bit address in positions 15-31
of the PSD.

Affected: (Snapshot Control Register)

{R)—= Snapshot Control Register

SET INTERNAL CONTROLS

The following configuration of WD is used to set the CPU
clock margin controls.

Reference address

* 6D R X

7770000 | 0000 | 0100 | 0101

i.A separate document, XDS SIGMA 8 Engineering Support
Manual will contain this information.

88 Control Instructions

0 v 2 314 56 718 9 10 11213 14 15016 17 18 19920 21 22 23124 25 26 27128 29 30 31

The contents of the s‘ied R register, bits 8 and 9,
are used to set the infernal CPU margin controls as

follows:

Bit 8- Bit9 Clock Margins

0 0 Norm
) 1 Hi
1 0 Lo
1 1 Reserved

All unused bits of the specified R register are disregarded.

WRITE BIRECT, INTERRUPT CONTROL (MODE1)

The following configuration of WD is used to set and reset
the various states of the individual interrupt levels within
the CPU interrupt system:

Reference address

* 6D
A 0] code | 0000 | Group

0 1 2 3i4 5 &6 718 9 wnliz 13 ll‘l’.’:’llé 17 18 19120 21 22 23524 25 26 27128 29 30 31

Bits 28 through 31 of the effective address specify the
identification number (see Table 2) of the group of inter-
rupt levels to be controlled by the WD instruction.

The R field of the WD instruction specifies a general reg-
ister that contains the selection bits for the individual
interrupt levels within the specified group (see Table 2,
Chapter2). Bit position 16 of register R contains the selec-
tion bit for the highest-priority (lowest-numbered) interrupt
level within the group, and bit position 31 of register R
contains the selection bit for the lowest-priority (highest-
numbered) interrupt level within the group.

Each interrupt level in the designated group is operated
on according to the function code specified by bits 21
through 23 of the effective address of WD.. The codes and
their associated functions are as follows:

Code Function

000 Set active all selected levels currently in the
armed or waiting states.

001" Disarm all levels selected by a 1; all levels

selected by a O are not affected.

M hese codes clear the current interrupts, i.e., remove
from the active or waiting state all levels selected by
a 1 (see Figure 7).

Code Function

o1of Arm and enable all levels selected by a 1; all
levels selected by a O are not affected.

ont Arm and disable all levels selected by.a 1; all
levels selected by a 0 are not affected.

100 Enable all levels selected by a 1; all levels
selected by a 0 are not affected.

101 Disable all levels selected by a 1; all levels
selected by a 0 are not affected.

110 Enable all levels selected by a 1 and disable all
levels selected by a 0.

111 Trigger all levels selected by a 1. All such levels

that are currently armed advance fo waiting state.

INPUT/CUTPUT INSTRUCTIONS

SIGMA 8 1/O instructions pemit a CPU to initiate, test,
and control 1/O operations. SIGMA 8 1/O systems consist
of special- and general-purpose Input/Output Processors
(IOPs), e.g., High-Speed RAD 1/O Processor (HSRIOP),
Multiplexor I/O Processor (MIOP), single- and multi-
device controllers, and a variety of standard peripheral de-
vices (printers, disks, tapes, etc.). Standard 1/O operations
are performed with the 1/O instructions listed below.

Instruction Name Mnemonic
Start Input/Output ‘ SIO

Test Input/Output TIO

Test Device DV

Halt Input/Output HIO

Reset Input/Output RIO

Poll Processor . POLP

Poll and Reset Processor POLR
Acknowledge Input/Output Interrupt AIO

If execution of any input/output instruction (always privi-
leged) is attempted while the computer is in the slave mode
(i.e., while bit 8 of the current program status double-
word is a 1), the computer unconditionally aborts execution
of the instruction (at the time of operation code decoding)
and traps to Homespace location X'40'.

t. . .

These codes clear the current interrupts, i.e., remove
from the active or waiting state all levels selected by
a 1 (see Figure 7).

I/0 ADBRESSES

An 1/O device is selected by the effective address of the
1/O instruction. Indirect addressing and/or indexing may
be performed, as for other word-addressing instructions, to
compute the effective address of the 1/O instruction. How-
ever, the effective address is not used as a memory
reference. For all I/O instructions, except AIO, the

13 low-order bits of the effective address (bits 19-31) con-
stitute an I/O address. For the AIO instruction, the
device causing the interrupt returns its 13-bit 1/O address -
as part of the response to the AIO instruction.

An effective I/O address is subdivided into a processor

" address and a device controller address.

PROCESSOR ADDRESSES (BITS 18-23)

The 32 processor addresses (PA) may be assigned in the fol-
lowing manner:

1. The assignment of addresses is mutually exclusive, that
is, no two processors may have the same address.

2. The four highest addresses (X'1C' - X'1F') are reserved

for addressing CPUs in a multiprocessor system.

3. The remaining 28 addresses may be assigned to MIOPs,
High-Speed RAD IOPs, or to any other IOP that is
compatible with the SIGMA 8 computer system.

a. SIGMA 8 MIOPs require an even-odd pair of
addresses. The even address (bit 23 is 0) selects
Channe! A and the odd address (bit 23 is 1) selects
Channel B. If the MIOP only has Channel A, the
odd address is preempted and reserved.

b. A SIGMA 8 HSRIOP may be assigned an even or
an odd address. However, the address cannot be
one that has been reserved for Channel B of an
existing MIOP.

DEVICE CONTROLLER ADDRESSES (BITS 24-31)

There are two types of device controller addresses. If the
device controller controls a single unit, bit 24 is 0 and
bits 25-31 constitute a single code specifying a particular
combination of device controller (DC) and device. Nor-
mally, these codes refer to device controllers that drive
only a single device, such as a card reader, carc punch,
or line printer.

Type 1: Addressing single-unitdevice controllers (bit 24 =0)

«| Operation R X Reference address
code PA 10]DC/device

0 1 2 314 5 6 7108 9 10 11112 13 141510617 18 19120 21 22 23124 25 26 271256 29 30 3!
If the device controller (DC) can control more than one

device, bit 24 is a 1 and bits 25-31 are subdivided into a
device controller address (bits 25-27) and a device address

Input/Output Instructions 89

?

’

(bits 28-31). This form of 1/O cddressi’ used for de-
vice controllers, such as magnetic tape ™ rapid access data
(RAD) controllers, that control information exchange with
only one device at a time from a set of as many as

16 devices.

Type 2: Addressingmultiunit device controllers (bit 24 = 1)

«| Operation R X _Reference address
code 1 PA [1]DC IDevice]

0 1 2 314 5 &6 716 9 10 nli2 13 14 5016 17 18 19120 21 22 23724 25 20 27128 29 0 N

SIGMA 8 MIOPs permit multiunit device controllers to be
installed into the first eight subchannels of Channel A and

the eight subchannels of Channel B.

I/0 UNIT ADDRESS ASSIGRMENT

Device controller numbers are normalfly assigned to an 10P
in numerical sequence, beginning with zero and continuing
through the highest number recognized by the IOP. In the
case of multiunit device controllers, the device controller
number must be in the range X'0' through X'7' because the
1/O address field structure allows for a 3-bit multiunit
device controller number. In the case of single-unit de-
vice controllers, any of the available numbers in the range
X'0' through X'1F' may be assigned to the device control-
ler, provided that the same number has not already been
assigned to a multiunit device controller. For example, if
device controller number X'0' is assigned to a magnetic |
tape unit controller, the number X'0' cannot also be used
for a card reader (although the coding of the 1/O address
field would be different in bit position 24). -

I/0 STATUS RESPONSE

All 1/O instructions result in the condition code bits (CC1-
CC3) being set to denote the nature of the 1/O response. -
By coding the R field of the 1/O instruction, additional
1/Q status information may be loaded into either two, one,
or no general registers. If the R field is coded with a zero,
no additional 1/O status information will be returned. If
the R field is coded with an odd value, one "word" of ad-
ditional 1/O status information will be loaded into the
specified general register. If the R field is coded with an
even (and nonzero) value, two "words" of additional 1/0O
status information will be loaded into register R and regis-
ter Rul. However, the requested additiona!l I/O status
information will not be returned to the specified general
registers if the /O address of the 1/O instruction was not
recagnized, or the addressed device controller is attached
to a "busy” IOP, or if @ memory parity error or data bus
fault was detected when the IOP read the CPU/IOP com-
munication locations in main memory. The format of the
additional 1/O status information that is loaded into the
general registers for all 1/O instructions, except AIO, is
shown below.

-Word into register R when R is even and not 0:

Subchannel 0 0 Current command

status, doubleword address
© 1 2 314 5 6 718 9 10 11112 13 14 15016 17 18 19120 21 22 23124 25 26 27128 29 30 31

90 Input/Output Instructions

Word into register R en R is even and not 0; or word

in R when R is odd:

Status Byte count

0 1 2 314 5 6 718 7 10 1111z 13 14 15036 17 18 19120 21 22 23124 25 26 2/126 19 30 31

Subchannel Status. See "General Registers, Subchannel
Status Response Bits".

Current Command Doubleword Address. After the addressed
device has received an order, this field contains the 16 high~
order bits of the main memory address for the command
doubleword currently being processed for the addressed
device. ,

Status. The meaning of this field depends on the particular

I/O instruction being executed and on the selected 1/0O
device (see Table 12).

Byte Count. After the addressed device has received an

order, this field contains a count of the number of bytes

yet to be transmitted by the operation called for by the
order.

SI0 START INPUT/OUTPUT
(Word index alignment, privileged)

Instruction Register

Reference address

* 4C R X

1/0 address

0 T 2 314 5 6 718 5 101213 14 15116 17 18 Wi 21 22 3124 5 2 77126 & 0 3

General Register 0

0 First command
0 doubleword address

01 2 3f4 5 6 7i8 9 10 IIiIZ T3 14 15116 17 18 l‘)iZO 21 22 23124 25 26 27128 29 30 31

START INPUT/OUTPUT performs the following:
1. Initiates an input or output operation.

2. Specifies which IOP, channel, device controller,
and input/output device is to be selected (bits 19-31
of the effective address of the instruction word).

3. Specifies the address of the first command doubleword
for the subsequent 1/0O operation (bits 16-31 of gen-
eral register 0).

4. Specifies how much additional status information is to
be returned from the 1/O system (R field, bits 8-11,
of instruction word).

5. Specifies which general registers are to be loaded with
the requested status information (R field, bits 3-11, of
instruction word).

General register 0 is temporarily dedicated during SIO in-
struction execution and must contain the doubleword mem-
ory address of the first command doubleword specifying the
operation to be started. The required address information
must be in general register 0 when the SIO is executed.

able 12. Status Response Bits for 1/O]nstru.s

Position and State in Register Rul

Device Status Byte

Operational Status Byte

Significance for

0 1 2 3 4 5 6 7 8 9 101 1213 14 15 SIO, HIO, and TIO
- - - - - - - - - = - - - - - interrupt pending
- 0 0 - - - - - - - - - - - - - device ready
-0 1 - - - - - - - - - - - - - device not operational
- 10 - - - - - - - - - - - - - device unavailable
- 11 - - - - - - - - - - - - - device busy
- - -0 - - - - - - - - - - - - device manual
- - =1 - - - - - - - - - - - - device automatic
- - - - - - - - - - - - - - - device unusual end
- - - - - 0 0 - - - - - - - - - device controller ready
- - - - - 01 - - - - - - - - - device controller not operational
- - - - - 10 - - - - - - - - - device controller unavailable
- - - - - 11 - - - - - - - - - device controller busy
- - - - - - -0 - - - - - - - - reserved
- - e - - - - - - - - - - - - incorrect length
- - - - - - - - - - - - - - - transmission data error
- - - - - - - - - - - - - - - transmission memory error
- - - - - - - - - - =1 - - - - memory address error

Position and State in Register R

Device Status Byte

Operational Status Byte

- IOP memory error

- IOP control error

- IOP halt

1 High-speed RIOP busy

01 2 3 4 5 6 7 8 9 101 12 13 14 15 Significance for AIO
oo _ o - Y
- - - - - - - - - - - - - - - . .
| unique to the device and
the device controller
- - - - - = -] - - - - - - - -) o -
- = - - - - - - - - - - - - - incorrect length
- - - - - - - - - - - - - - - transmission data error
- - - - - - - - - - - - - - - zero byte count interrupt
- - - - - - - - - - -1 - - - - channel end interrupt
- e - - - - - - - - - - - - - unusual end interrupt
- - - - - - - - - - - - - 0 - -
- - - - - - - - -~ - = = - -0 -] reserved ’
- = - - - .- = - - - - - - = =0

Significance
for TDV

data overrun

unigque fo the
> device and the

same as for
> SIO, HIO, and
TIO

device controller

Input/Qutput Instructions

91

STATUS INFORMATION FOR s‘

Status information for an SIO is always returned via
condifion codes (CC1-CC3). Additional information may
be returned into one or two general registers only if pro-
grammed (R field has a nonzero value) and if CC1is 0.

Affected: (R),(Rul), CC1,CC2,CC3

The meaning of the condition code during an SIO instruc-
tion is:

1 2 3 4 Meaning

0 0 0 - I/O address recognized and SIO accepted.

0 0 1 - I/O address recognized and SIO accepted;
however, status information in general reg-
isters is incorrect.

0 1 0 -~ 1/O address recognized but SIO not
accepted.

0 1 1 - 1/O address recognized but SIO not ac-
cepted because device controller or device
is busy and status information in general
registers is incorrect.

1.0 0 - 1/O address recognized but device controller
is attached to a busy RIOP or an MIOP oper-
ating in the "burst" mode; no status informa-
tion is returned to general registers.

1 0 1 - Reserved.

1 1 0 - I/O address not recognized and SIO not
accepted; no status information refurned to
general registers.

1 1 1 - 1/O address not recognized and SIO not
accepted; no status information returned to
general registers because a memory parity
error or a bus check fault occurred when the
IOP read the CPU/IOP communication loca-
tions in main memory or a memory parity
error was detected when writing into the
communication locations.

GENERAL REGISTERS

If the R field of the SIO instruction contains a 0, no
status information will be loaded into any of the general
registers. If the R field is coded with an odd value, then
the designated register will be loaded with status infor-
mation. If the R field is even and nonzero, then both the
R register and the R+ 1 register will be loaded with status

92 Input/Qutput Instructions

information. The formz, the information loaded into
the general registers is shown below:

Register R (if R field is even and nonzero)

Subchannel
status - .
[S
8C 0 Current command
clc
0¢ls|0 0]0) doubleword address
T 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 2V 22 23124 25 26 27128 29 20 31

Status Response Bits

Bit

Position Function

0 Always set to zero.

1 Bus Check Fault. This bit is set to 1 if a data

transmission error occurs when an IOP is per-
forming a main memory read cycle.

2 Control Check Fault. This bit is set to 1 when
a parity error occurs during a subchannel read
operation within the MIOP.

3-7 ~ Always set to 0.
8-15 Always set to 0.
16-31 Contain the current command doubleword ad-

dress decremented by one. This address is cur-
rently stored in the IOP.

Register R (if R field is odd) or register Rul (if R field is

even and nonzero)

¢

I
L.
o

DC status 1OP status Stored byte count

27314 5 6 718 9 10 11112 13 14 15016 17 18 19120 21 22 23124 25 26 27128 29 30 3i

Status Response Bits (see Table 12)

Bit
Position Function

0 Interrupt Pending. If this bit is 1, the ad-
dressed device has requested an interrupt and
the interrupt has not been acknowledged by
an AlO instruction. Device interrupts can be
achieved by coding the flag portion of the
1/O command doubleword. Device interrupts
can also be achieved for certain devices by
using M modifiers in the basic order to the de=
vice (M bits in the Order portion of the com-
mand doubleword). In either case, the device
will not accept a new SIO instruction until the
interrupt-pending condition is cleared (i.e.,
the condition code setting for the SIO instruc-
tion will indicate "SIO not accepted" if the
interrupt-pending condition is present in the
addressed device).

Bit

Position

o
Position

Function

'cﬁon

1,2

Device Condition. If bits 1 and 2 are 00
(device “ready"), all device conditions re-
quired for proper operation are satisfied. If
bits 1 and 2 are 01 (device "not operational™),
the addressed device has developed some con-
dition that will not allow it to proceed; in
either case, operator intervention is usuc”y
required. If bits 1 and 2 are 10 (device 5,6
"unavailable"), the device has more than one
channel of communication available and it is
engaged in an operation controlled by an IOP
other than the one specified by the I/Oaddress.
If bits 1 and 2 are 11 (device "busy™), the
device has accepted a previous SIO instruction
and is already engaged in an 1/O operation.

Device Mode. If this bit is 1, the device is in
the "automatic" mode; if this bit is 0, the de-
vice is in the "manual” mode and requires
operator intervention. This bit can be used in
conjunction with bits 1 and 2 to determine the
type of action required. For example, assume
that a card reader is able to operate, but no
cards are in the hopper. The card reader would
be in state 000 {(device “ready", but manual -
intervention required), where the state is indi-

cated by bits 1, 2, and 3 of the 1/O status

response. If the operator subsequently loads 8
the card hopper and presses the card reader
START switch, the reader would advance to
state 001 (device "ready" and in automatic
operation). If the card reader is in state 000
when an SIO instruction is executed, the SIO
would be accepted by the reader and the

reader would advance to state 110 (device
“busy", but operator intervention required).
Should the operator then place cards in the
hopper and press the START switch, the card
reader state would advance to 111 (device
"busy" and in "automatic" mode), and the in-
put operation would proceed. Should the card
reader subsequently become empty (or the)
operator press the STOP switch) and command
chaining is being used to read a number of
cards, the card reader would return to state 110.
If the card reader is in state 001 when an SIO
instruction is executed, the reader advances

to state 111, and the input operation continues
as normal. Should the hopper subsequently be-
come empty (or should the operator press the
card reader STOP switch) and command chain-
ing is being used to read a number of cards,

the reader would go to state 110 until the
operator corrected the situation.

10

11

12

Device Unusual End occurred during last
operation. If this bit is 1, the reason for the

indication is an error or a "fault" condition. 13

For a fault condition, the device has halted at
other than its normal stopping point. In either

case, the device will not automatically re-
quest further action from its device controller.
The specific details of this indication are a
function of the particular device (see the ap-
plicable peripheral device reference manual).

Device Controller Condition. If bits 5 and 6
are 00 (device controller "ready"), all device
controller conditions required for its proper
operation are satisfied. If bits 5 and 6 are 01
(device controller "not operational”), some
condition has developed that does not allow it
to operate properly. In either case, operator
intervention is usually required. If bits 5 and 6
are 10 (device controller "unavailable™), the
device controller is currently engaged in an
operation controlled by an IOP other than the
one addressed by the 1/O instruction. If bits 5
and 6 are 11 (device controller "busy"), the
device controller has accepted a previous SIO
instruction and is currently engaged in per-
forming an operation for the addressed IOP.

Unassigned.

Incorrect Length. This bit is set to 1, if incor-
rect length is signaled by the device controller
to the IOP during the previous operation. In-
correct length is caused by a channel end (or
end of record) condition occurring before the
device controller has received a "count done"
signal from the IOP, or is caused by the device
controller receiving a count done signal before
channel end (or end-of-record), e.g., count
done before 80 columns have been read from a
card.

Transmission Data Error. This bit is set to 1
if the device controller or IOP detects a
parity error or data overrun in the trans-
mitted information.

Transmission Memory Error. This bit is set to 1
if a memory parity error is detected during a
data input/output operation.

Memory Address Error. This bit is set to 1 ifa
nonexistent memory address is detected during
a chaining operation or a data input/output
operation.

IOP Memory Error. This bit is set to 1 if the
IOP detects a memory parity error while fetch-
ing a command.

1OP Control Error. This bit is set to 1 if the
IOP detects two successive Transfer in Channel
commands.

Input/Output Instructions 93

- Bit
Position Function
14 IOP Halt. This bit is set to 1 if the IOP has
issued a halt order to the addressed 1/O device
because of an error condition. Error conditions
that may cause an IOP halt are as follows:

1. A bus check fault detected during a chain-
ing operation or during a data out oper-
ation and the HTE flag is true.

2. A control check fault detected during a
chaining, data out, data in, or order in
operation.

3. Anincorrect length condition detected
and the HTE flag is true and SIL flag is
false.

4. A transmission data error or transmission
memory error condition is detected and
the HTE flag is true.

5. A memory address error, IOP memory error,

~or IOP control error is detected.
15 IOP Busy. This bit is always set to 0.
16-31 Byte Count. Contain the byte count currently

stored in the IOP.

Ti0 TEST INPUT/QUTPUT
(Word index alignment, privileged)

. Reference address
4D R X 1/0O address

G 1 2 314 5 & 718 9 10 11112 13 14 13716 17 18 19120 21 22723124 .25 26 27128 29 30 3

TEST INPUT/OUTPUT is used to make an inquiry on the
status of data fransmission. The operation of the selected
I0OP, device controller, and device are not affected, and
no operations are initiated or terminated by this instruction.
The responses to TIO provide the program with the informa-
tion necessary to determine the current status of the device,
device controller, and IOP, the number of bytes remaining
to be transmifted in the operation, and the present point at
which the IOP is operating in the command list. If the

R field of the TIO instruction is 0, or if no 1/O-address
recognition exists, or if the device is attached to a "busy"
HSRIOP, no general registers are affected, but the condi-
tion code is set. If the R field of TIO is an odd value, the
condition code is set and the 1/O status and byte count are
loaded into register R as follows:

Status Byte count

0 3 2 314 5 6 718 9 10 N2 13714 15116 17 18 19120 21 22 23124 25 26 27128 29 30 3)

The status information has the same interpretation as the
status information. returned for the instruction SIO and
shows the 1/O status at the time of sampling.

94 Input/Output Instructions

The count information s, the number of bytes remaining

to be transmitted at the fMe of sampling. If the R field of

the TIO instruction is an even value and not 0, the condi-

tion code is set, register R+1 is loaded as shown above, and
register R is loaded as follows:

Subchannel
status
r—-—h———\
0 e (C; 0 olo 0 Current command
FIF) doubleword address
0 1 2 314 5 6 718 9]O‘ 1012 13714 15118 17 18 19120 21 22 23124 25 26 27126 29 3¢ 31

The current command doubleword address has the same in-
terpretation as for the instruction SIO.

\ :
Affected: (R),(Rul),CC1,CC2,CC3

The meaning of the condition code during a TIO is:

1 2 3 4 Resultof TIO

0 0 0 - I/O address recognized and acceptable SIO
is currently possible.

0 0 1 =~ I/O address recognized and acceptable SIO
is currently possible; however, status informa-
tion in the general registers is incorrect.

0 1 0 - I/O address recognized but acceptable SIO
is not currently possible because device con-
troller or device is busy.

0 1 1 - 1/O address recognized but acceptable SIO
is not currently possible because device con-
troller or device is busy. Status information
in general registers is incorrect.

1 0 0 - 1/O address recognized but device controller
is attached to a busy high-speed RIOP or an
MIOP operating in the "burst" mode. No
status information is returned fo general
registers.

1 0 1 - Reserved.

1 1 0 - 1/O address not recognized and no status in-
formation is returned to general registers.

1 1 1 - 1/O address not recognized and no status in-
formation is returned to general registers be-
cause a memory parity error or a bus check
fault occurred when the 1OP read the CPU/
IOP communication locations in main memory
or a memory parity error was detected when
writing into the communication locations.

ToOV TEST DEVICE
(Word index alignment, $®¥ivileged)

Reference address

* 4E R X " 1/O address

0 1 2 3i4 5 6 718 9 10 1213 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 3t

TEST DEVICE is used to provide information about a device
other than that obtainable by means of the TIO instruction.
The operation of the selected 10P, device controller, and
device are not affected, and no operations are initiated or
terminated. The responses to TDV provide the program with
information giving details on the condition of the selected
device, the number of bytes remaining to be transmitted in
the current operation, and the present point at which the
IOP is operating in the command list. If the R field of the
TDV instruction is 0 or if no 1/O address recognition exists,
or if the device is attached to a "busy" HSRIOP, the con-
dition code is set, but no general registers are affected. If
the R field of TDV is an odd value, the condition code is
set and the device status and byte count are loaded into
register R as follows:

Status Byte count

0 1 2 314 5 & 718 9 10 NI12713 14 15716 17 16 19720 21722 23724 25 26 27128 29 30 31

Status Response Bits (see Table 13):

Bit
Position

Function

0 Data Overrun. This bit is set to 1 if a data over-
run has occurred in the current 1/O operation.
A data overrun is a situation wherein the device
controller is ready to transmit data to the IOP
but the 1OP has not received the previous data,
or the device controller requires data but cannot
obtain it from the IOP. In either case, the condit
tion is caused by an equipment malfunction or by
the total 1/O data rate exceeding system limits.

1-7 Unique to the device.

8-15 Same as for bits 8-15 of the status information
for instruction SIO.

The count information shows the number of bytes remaining
to be transmitted in the current operation at the time of the
TDV instruction. If the value of the R field of TDV is an
even value and not 0, the condition code is set, reg~
ister R+1 is loaded as shown above, and register R is
loaded as follows:

Subchannel
status
SR N
0 Blc 0 olo v 0 Current command
FlF doubleword address
0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27!2829303‘

The current command doubleword address has the same
interpretation as for the instruction SIO.

Affected: (R),(Rul),CC1,CC2,CC3

of ¥t
The mecming.ne condition code during a TDV is:

1 2 3 4 Resultof TDV

0 0 0 - 1/O address recognized, no device-
dependent condition present, and status in-
formation in general registers is correct.

0 0 1 - 1/O address recognized and no device-
dependent condition present; however, status
information in general register is incorrect.

0 1 0 - 1/0 address recognized and device~-dependent
condition is present.

0 1 1 - 1/O address recognized and device-dependent
condition is present but status information in
the general register is incorrect,

1 0 0 - I/O address recognized but device controller
is attached to a busy high-speed RIOP or an
MIOP operating in the "burst" mode. No status
information isreturned to general registers.

1 0 1 - Reserved.

-
\
i
—
|
o
|
|
1

~1/O address not recognized and no status in-
formation is returned to the general registers.

1 1 1 - 1/0O address not recognized and no status in=-
formation is returned fo the general registers
because @ memory parity error or a bus check
fault occurred when the IOP read the CPU/10OP
communication locations in main memory or a
parity error was detected when writing info
the communication locations.

Hio HALT INPUT/OUTPUT
(Word index alignment, privileged)

Reference address
Y4 RO X [o[oo 1/0 address

0 v 2 374 5 &6 718 9 10 11112713 14 15116 17 IB 19120 21 22 23124 25 26 27i78 29 30 3

HALT INPUT/OUTPUT causes the addressed device to im-
mediafely halt its current operation (perhaps improperly,

in the case of magnetic tape units, when the device is
forced to stop at other than an interrecord gap). If the
device is in an interrupt-pending condition, the condition

.is cleared.

i'When indexing operation code 4F instructions (HIO, RIO,
POLP, POLR), the programmer must make certain that the
summation of the contents of the index register and the 1/0
address (bits 19-31 of the instruction word) does not affect
bits 15-17 of the final effective address. When indirect
addressing is used, the contents of the indirect address
location (bits 15, 16, and 17) must specify the desired
operation code extension.

Input/Output Instructions 95

If the R field of the HIO instruction is,r if no I/O
address recognition exists, no general registers are affected,
but the condition code is set. If the R field is an odd value,
the condition code is set and the following information is
loaded into register R.

Status Byte count

0 1 2 314 5 & 718 9 10 112 13 14 350116 17 18 19120 21 22 23124 25 26 27128 29 30 31

The status information returned for HIO has the same inter-
-pretation as that returned for the instruction SIO and shows
the 1/O status at the time of the halt. The count informa-
tion shows the number of bytes remaining to be transmitted
at the time of the halt, If the R of HIQ is an even
value and not 0, the condition code is set, register R+ 1 is
loaded as shown above, and register R contains the follow-
ing information:

Subchannel
status
PRI E—
02 ¢ 0 olo 0 Current command
FlF doubleword address
T 1 2 514 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

The current command doubleword address has the same in-
terpretation as that for the instruction SIO.

The HIO instruction must have zeros in bit positions 15, 16,
and 17 to differentiate it from the RIO, PCLP, and POLR
instructions, which also have X'4F' as an operation code
(bits 1-7).

Affected: (R),(Rul),CC1,CC2,CC3

The meaning of the condition code during an HIO instruc-
tion is:

1 2 3 4 Result of HIO

0 0 0 - I/O address recognized, device controller
not busy and status information in general
registers is correct.

0 0 1 - 1/O address recognized, device controller
not busy but status information in general
registers is incorrect.

010 - ‘I/O address recognized but device controller
: was busy at the time of the HIO.

0 1 1 - 1/O address recognized but device controller
was busy at the time of the HIO and the
status information in the general registers is
incorrect.

1 0 0 - 1/O address recognized but device controller
is attached to a busy high-speed RIOP or an
MIOP operating in the "burst” mode. No sta-
tus information is returned to general registers.

96 Input/Output Instructions

3 4 Resulfo&\t(b

2
T 0 1 - Reserved
1 0 - 1/0 address not recognized.

1 1 1 - 1/O address not recognized; instruction ter-
minated because a memory parity error or a
bus check fault was detected when reading
CPU/IOP communication locations in main
memory or a memory parity error was de-
tected when writing into the communication
locations.

RIO RESET INPUT/QUTPUT
(Word index alignment,! privileged)

Reference address
Y| 4F R | X BT Proc. no
0 1 2 314 5 & 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 51
RESET INPUT/OUTPUT causes the selected IOP to generate
an I/O reset signal to all devices attached to it. In addi-
tion to the operation code of X'4F', bits 15, 16, and 17
must be coded as 001, respectively.

An RIO instruction resets the selected 1OP in the same man-
ner as the 1/O RESET switch on the Processor Control Panel
(PCP). However, unlike the switch, the RIO instruction
resets only the addressed IOP and may be controlled by the
executing program.

Processor addresses (bits 19-23) having values of X'1C*,
X'1D', X'1E', and X'IF' are reserved for CPUs in a multi-
processor system. Addresses between X'00' to X'1C' may
be assigned to other processors in the system. An RIO in-
struction addressed to a CPU is used to reset that CPU only
in a special case. This special case is the result of a
double fault (described in the "Trap System", Chapter 2).
When the double fault occurs, the CPU raises the Processor
Fault Interrupt (PF1), loads the error status register, and
goes to a PCP idle state. The CPU that responds to the

PFI will use the POLP or POLR instruction to determine the
source of the PFI. The error status may be logged (as pro-
grammed). The responding CPU may then issue an RIO in-
struction to the “faulted" CPU, which resets and forces
execution to start at location X'26'.

Status information is returned only in the condition code
bits.

Affected: CC1, CC2, CC3.

1 2 3 4 Resultof RIO

0 0 0 - 1/O address recognized.
1 1 0 - I/0 address not recognized.

POLP POLL PROCESSOR
(Word index alignment,! privileged)

: Reference address
* 4F R X 0] 1]0F]Proc. no

01 2 3ﬁ 5 6 718 9 10 Nz 13 12 15116 17 18 19130 2V 22 23124 25 26 27128 29 30 31

t . .
See footnote to HIO instruction.

POLL PROCESSOR causes the adc’ad processor to return
processor fault status in bits 24 to"® of register R. This
status information is processor dependent; as follows:

Bt Fault Status

Position | CPU MIOP HSRIOP

24 Instruction Reserved Reserved
exception trap

25 Data bus Data bus Data bus
check check check

26 Memory Control Reserved
parity error check

27 Watchdog Reserved Reserved
timer runout

28 Reserved Reserved Reserved

29 Reserved Reserved Reserved

In addition to the operation code of X'4F', bits 15, 16,
and 17 must be coded as 010, respectively.

Affected: (R),CC1,CC2,CC3
Condition code settings are as shown below:

1 2 3 4 Resultof POLP

0 0 0 - Processor fault interrupt not pending.
0 1 0 - Processor fault interrupt pending.
1 1 0 - Processor address not recognized.

POLR POLL AND RESET PROCESSOR
(Word index alignment,! privileged)

% Reference address

4F RO X O[[ETProc. no it
O 1 2 314 5 6 718 9 10 11112 13 14 15016 17 18 19120 21 22 23124 25
POLL AND RESET PROCESSOR causes the selected pro-
cessor to return processor fault status in bits 24 to 29 of
register R. This status information is processor dependent,
as follows:

Bit Fault Status

Position | CPU MIOP HSRIOP

24 Instruction Reserved Reserved
exception trap

25 Data bus Data bus Data bus

: check check check

t
See footnote to HIO instruction

Bit ' Fault Status

Position CPU MIOP HSRIOP

26 Memory Control check| Reserved
parity error

27 Watchdog Reserved Reserved
timer runout

28 Reserved Reserved Reserved

29 Reserved Reserved Reserved

The POLR also resets and clears the Processor Fault Interrupt
signal and the error status register. In addition to the oper-
ation code of X'4F*, bits 15, 16, and 17 must be coded

as 011, respectively.

Affected: (R),CC1,CC2,CC3

Condition code settings for the POLR instructions are:

1 2 3 4 Resultof POIR

0 0 O - Processor fault interrupt not pending.
0 1 0 - Processor fault interrupt pending.
1 1 0 - Processor address not recognized.

Alo ACKNOWLEDGE INPUT/OUTPUT INTERRUPT
(Word index alignment, privileged)

Reference

*| 6 RO X 00[000]

0 1 2 314 5 6 718 % 10 NI12 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

ACKNOWLEDGE INPUT/OUTPUT INTERRUPT is used to
acknowledge an input/output interrupt and to identify the
1/O unit that is causing the interrupt and why. If more
than one device has an interrupt pending, the highest
priority requesting device will respond-to the AIO.

Bits 19-23 of the effective address of the AIO instruction
{the processor portion of the I/O address field) specify the
type of interrupt being acknowledged. These bits should be
coded 00000 to specify the standard I/O system interrupt
acknowledgment (other codings of the bits are reserved for
use with special I/O systems). The remainderof the I/O
selection code field (bit positions 24-31) are not used in the
standard I/O interrupt acknowledgment because the identi-
fication of the interrupt source is one of the responses of
the standard 1/O system to the AIO instruction.

Input/Cutput Instructions 97

Standard 1/O system interrupts can be .afed for the

following conditions:

Interrupt Status
Condition Prerequisite Bit Set
Zero byte coun* 1IZzC =1 o 10
Channel end ICE=1 11
Transmission memory IUE=1, HTE=1 12

error

Incorrect length IUE =1, HTE=1 8,12

and SIL=0
Memory address error, IUE =1 12
IOP memory error, or
IOP control error
Transmission data error IUE =1, HTE=1 9,12
Device unusual end IUE=1 12
IOP halt JUE =1 12

When a device interrupt condition occurs, the IOP forwards
the request to the CPU interrupt system 1/O interrupt level.
If this interrupt level is armed, enabled, and not inhibited,
the CPU eventually acknowledges the interrupt request and
executes the XPSD instruction in main memory location

X'5C', which leads to the execution of an AlO instruction.

For the purpose of acknowledging standard 1/O interrupts,
the 10OPs, device controllers, and devices are connected in
a preestablished priority sequence that is customer-assigned
and is independent of the physical locations of the portions
of the I/O system in a particular installation.

If the R field of the AlO instruction is 0 or if no device in-
terrupt request is present, the condition code is set but the
general register is not affected. If the R field of AIO is
not 0, the condition code is set and register R is loaded
with the following information:

Status Response Bits &ble 12):

Bit

Position Function

10P D
DC status IOP status {0/010f ,ddress cdfiress

J
0 1 2 3T« 56 718 9 10 NT12713714 15016 17 18 19120 21 22 23124 25 26 27128 29 30 3}

t
1ZC, ICE, 1UE, HTE, and SIL refer to flag bits in the
IOP command doublewords (see Chapter 4).

93 Input/Qutput Instructions

0-7 - These bits are unique to the device.

8 Incorrect Length. As defined for SIO, above.

9 Transmission Data Error. As defined for 510,
above.

10 Zero Byte Count Interrupt. This bit is set to 1

if the interrupt on zero byte count flag is 1 and
zero byte count is detected.

1 Channel End Interrupt. This bit is set to 1 if the
interrupt at channel end flag is 1 and channel
end is reported by the device to the 1OP.

12 Unusual End Interrupt. This bit is set to 1 if the
interrupt at unusual end flag is 1 and unusual
end is reported by the device to the IOP, or if
1OP halt is signaled to the device controller by
the 1OP.

13-18 Unassigned. These bits are set to 0.

19-23 Processor Address. Contain the address of the
responding processor.

24-31 Device Controller/Device Address. Contain
the address of the responding device controller.
If bit 24 is 0, bits 25-31 constitute a common
device controller and device code; if bit 24 is 1,
bits 25-27 constitute a device controller code
and bits 28-31 identify a device attached to
that device controller.

The AlO instruction resets the interrupt request signal for
the 1/O device responding to the AIO (i.e., the device
identified by bits 19-31 of R).

Affected: (R), CC1, CC2, CC3

Condition code setting for AIO are shown below.

1 2 3 4 Resultof AIO

0 0 0 - Normal interrupt recognized.

0 0 1 - Normal interrupt recognized but a memory
parity error also detected in the status
information.

0 1 0 - Unusual condition interrupt recognized.

0 1. 1 - Unusual condition interrupt recognized and
a parity error was detected in the status
information.

1 1 0 - Nol/O device requesting an interrupt.

4. INPUT/GUTPUT GPERATIG@S

Ina SIGMA 8 system, input/output operations are primarily
‘under control of one or more input/output processors (10Ps).
This allows the CPU to concentrate on program execution,
free from the time-consuming details of 1/O operations.
Any 1/O event that requires CPU intervention is brought to
its attention by means of the interrupt system (see Chapter2).

For a detailed description of SIGMA 8 1/O instructions, see

Chapter 3.

In the following discussion, the terminology conventions
used are: The CPU executes instructions, the IOP exe-
cutes commands, and the device controllers and 1/0O
devices execute orders. To illustrate, the CPU will exe-
cute the START INPUT/OQUTPUT (SIO) instruction to initi-
ate an 1/O operation. During the course of an 1/O
operation, the 1OP might issue a command called Control,
to transmit a byte to a device controller or I/O device that
interprets the byte as an order, such as Rewind.

Each SIGMA 8 IOP operates independently after being
started by a CPU. An IOP automatically picks up a chain
of one or-more commands from memory and executes these
commands until the chain is completed or truncated as the
result of an "unusual end" condition.

A multiplexor IOP can simultaneously operate up to 32
device controllers using both Channels A and B. Each
device controller is assigned its own subchannel and chain
of 1/O commands. A high-speed RAD 10OP (HSRIOP) can
communicate with up to four Model 7212 RAD storage units.
However, due to its high transfer rate capability, the
HSRIOP remains connected until termination of the data
in/data out sequence.

The flexible SIGMA 8 1/O structure permits both command
chaining (making possible multiple-record operations) and
data chaining (making possible scatter-read and gather-
write operations) without intervening CPU control. Com-
mand chaining refers to the execution of a sequence of 1/O
commands, under control of an IOP, on more than one
physical record. Thus, a new command must be issued for
each physical record even if the operation to be performed
for a record is the same as that performed for the previous
record, Data chaining refers to the execution of a scquence
of 1/O commands, under control of an 1OP, that gather (or
scatter) information within one physical record from (or to)
more than one region of memory. Thus, a new command
must be issued for each portion of a physical record when
the data associated with that physical record appears {(or is
to appear) in noncontiguous locations in memory. For
example, if information in specific columns of two cards in
a file are to be stored in specific regions of memory, the
1/O command list might appear as follows:

1. ' Read card, store columns 1-10, data chain.
2, Store columns 11-60, data chain.

3. Store columns 61-80, command chain,

4, Read card, store columns 1-40, data chain.
5. Store columns 41-80.

The SIGMA 8 CPU plays a minor role in the execution of
an 1/O operation. The CPU-executed program is respon-
sible for creating and storing the command list {prepared
prior to the initiation of any 1/O operation) and for
supplying the IOP with a pointer to the first command in
the 1/O command list. Most of the communication between
the CPU and the 1/O system is carried out through memory.

The following is an example of the sequence of events that
occurs during an /O operation:

1. A CPU-executed program writes a sequence of 1/O
commands (doublewords) in memory.

2. The CPU executes the START INPUT/OUTPUT (SIO)
instruction and furnishes the 10P with a 13-bit I/O
address (designating the device to be started) and a
16-bit first command address (designating the actual
memory doubleword location where the first command
for this device is located). At this point, either the
device is started (if in the "ready" condition with no
device interrupt pending) oran instruction reject occurs.
The CPU is informed by condition code settings which
of the two alternatives has occurred. If the SIO
instruction is accepted, the command counter portion
of the IOP register associated with the designated
device controller is loaded with the first command
address. From this time until the full sequence of I/O
commands has been executed, the main program of the
CPU need play no role in the 1/O operation. At any
time, however, the CPU may obtain status information
on the progress of the 1/O operation without interfering
with it.

3. The device is now in the "busy" condition. When the
device determines that it has the highest priority for
access to the 10P, it requests service from the 10P
with a service call. The 10P obtains the address of
the first command doubleword of the 1/O sequence
(from the command counter associated with this
device). The IOP then fetches the 1/O command dou-
bleword from memory, loads the doubleword into another
register associated with the device, and transmits the
first order (extracted from the command doubleword)
to it.

4. Each command counter contains the memory address of
the current 1/O command in the sequence for its
device. When the device requires further servicing,
it makes a request to the IOP, which then repeats a
process similar to that of step 3.

5. If a data transmission order has been sent to a device,
control of the transmission resides in it. As each char=-
acteris obtained by the I/ Odevice, the IOPissignaled

Input/Output Operations 99

that data is available. The IOP us’ information
stored in its own registers to control The information
interchange between the 1/O device and the memory,
on either a word-by-word or character-by-character
basis, depending on the nature of the device.

6. When all information exchanges called for by a single
I/O command doubleword have been completed, the
IOP uses the command counter to obtain the next com-
mand doubleword for execution. This process contfinues
until all such command doublewords associated with the
1/O sequence have been executed,

GPERATICNAL COLLIAND DOUBLEVGRDS

Operational command doublewords have the following
format:

Order " Memory byte address

T T 2 315 5 6 718 5 10 N112 1314 15116 17 16 P10 21 22 5128 2526 718 B X 31

Flags

32 33 34 35130 37 I8 ¥

Byte count
48 49 50 5!i§53 54 55256 57 58 59160 61 62 63

41 42 43144 45 4 4

CRDER

Bit positions 0 through 7 of the command doubleword con-
tain the 1/O order for the device controller or device. The
1/O orders are shown below!. Bits represented by the letter
"M" specify orders or special conditions to the device and
are unique for each type of device.

Bit positions

0 1 2 3 4 5 6 7 Order

M M M M M M O 1 Write

M M M M M M 1 0 Read

M MM M M M 1 1 Control

M M M M O 1 0 Sense

M M M M 1 0 Read Backward

Write. The Write order causes certain device controllers

fo inifiate an output operation, Bytes are read in ascending
sequence from the memory location specified by the memory
byte address field of the command doubleword. The output
operation continues until the device signals "channel end”,
or until the byte count is reduced to 0 and no further data’
chaining is specified. Channel end occurs when the device
has received all information associated with the output
operation, completed all checks, and no longer requires the
use of 1OP facilities for the operation. Data chaining is
described later in this chapter,

tNot all I/O devices recognize all the orders shown. See
the particular XDS SIGMA peripheral device reference
manual for orders applicable to that device.

100 Operational Command Doublewords

Read. The Read orde ses certain device controllers to
initiate an input operafron. Bytes are stored in memory in
ascending sequence, beginning af the location specified by *
the memory byte address field of the command doubleword.
The input operation continues until the device signals chan-
nel end, or until the byte count is reduced to 0 and no data
chaining is specified. Channel end occurs when the device
has transmitted all information associated with the input
operation and no longer requires the use of IOP facilities
for the operation.

Control. The Control order is used to initiate special oper-
ations by certain devices. For magnetic tape, it is used fo
issue orders such as Rewind, Backspace Record, Backspace
File, etc. Most orders can be specified by the M bits of
the Control order; however, if additional information is
required for a particular operation (e. g., the starting address
of a disk seek), the memory byte address fieid of the com-
mand doubleword specifies the starting address of the bytes
that are to be transmitted to the device controller for the
additional information. When all bytes necessary for the
operation have been transmitted, the device controller sig-
nals channel end.

Sense. The Sense order causes certain devices to transmit
one or more bytes of information, describing its current
state. The bytes are stored in memory in ascendingsequence,
beginning with the address specified by the memory byte
address field of the command doubleword. The number of
bytes transmitted is a function of the device and the condi-
tion it describes, The Sense order can be used to obtain the
current sector address from a disk or RAD storage unit.

Read Backward. The Read Backward order causes certain
devices (at present, 9-track magnetic tape units) to be
started in reverse, and bytes to be transmitted to the JOP
for storage into memory in descending sequence, beginning
at the location specified by the memory byte address field
of the command doubleword. In all other respects, Read
Backward is identical to Read, including reducing the byte
count with each byte transmitted.

RMERZORY BYTE ADDRESS

For all operational 1/O command doublewords, bit positions
13-31 of the doubleword provide a 19-bit memory byte
address, designating the memory location for the next byte
of data. For all orders other than Read Backward, this field
(as stored in an 1OP register) is incremented by 1 as each
byte is transmitted in the 1/O operation; for the Read Back-
ward order, the field is decremented by 1 as each byte is
transmitted.

FLAGS

For all operational 1/O command doublewords, bit positions
32-39 of the doubleword provide the IOP with eight flags
that specify how to handle chaining, error, and interrupt
situations.

’

flags (1ZC, ICE, and ghlS) pertaining to i0O? . Bit
t action conirol whethe IOP will request an Position
upt to be triggered when a specified condition
uring an 17O operation. These fiags do néi affect 35 (ICE)
upt levels, Furthermore, inerder for the flags (cont.)
, the I/O Interrupt level (X*5C Y must first ’

unctions of the eight flags are explained below.

Position

armed and enabled)
tions (mode 1).

36 (HTE

32 (DQ)

33 {IZC

24 {CQ)

)

Da If this fiag is 1, daia chaining is
called for whon the current byre counf s
re 'u ed to 0. The next command doubicwerd is
‘o ond loaded into the IOP rcg:s?er asso=
d with the device controiler, but the new
order code is not passed out to he device con=
troller; thus, the operation called for by the
pre evious order is continued. (Except for Transfer
in Chainnel command doublewords, which are
explained later in this chepter, the new comman
c‘ou' leword is used only to supp! y a new mcmc—y
address, a new comf, and new flegs.) If th
in flag is 0, no further data chainin
Channe!l end is initicted either by
ru‘.n.“g out of information, or by r!’*
being reduced to 0. At channel end,
may acceot a new SIO instruction,
provided that a device inferrupt is not pending
ault" condifion exists.

By

e
gis

o
O

ot zero

byte count. If this flag is 3, 37 (1Ug)
? requests the [/ O interrupt (jocation
triggered when the byte count of

s command doubleword (as stored in the ICP
ister) is reauced t0.0. An AIO instruciion

uted after the interrupt is ackrowledged
resulfs ina 1in bit position 10 of regisier R
us information) to indicate the reason for
inferrudt,

o
e
o
0O
-

Comrmand chain. If this flag is 1, command
craining is called for when channel end occurs,
If the previous cperaiion did not terminate with
¢ “fault” or "unusuel end” condii‘ion the next
com mand doubleword is fetched ond foaded into
tne JOP register associated with the device con=
sroller, and the new ordu coce is passed out (o
r'u. device controlier. If the CC "c is G, no
further command chaining is called for. If both
cote end command chaining are cali ed for in the
same command doubleword, data chaining occurs
if the byte count is reduced o O before channel
end, and command chaining occurs if channel
crnd ceeurs before the byte count is reduced to 0.

38 (SIL)

Interrupt at channel end. 17 this fleg is 1,

107 reoussts the I/O iaterrupt (location X'5CY)

tc ke riggered when channel end oceurs for the
soration being controlled by this commend

An AIG

doubleword.
ine inferrupt is
bit posi??on i

to indicate rease 7 ;1
ICE flag is O, no interrupt is reguclied,

error e d u rrencmaiscion
(frunsmission data error, trarsmisuion moms
error, incorrect length crror; dutecied in fh:
davice coniroitor or G2 rew) ‘. '
/0 eperaiion bdﬁg niroliva oy fais cLmzang
doubleword. if the ﬂcg ic 0, cn erer con

dition does not cause the I/C operation fo halt,
although the error conditions arc recorded in the

10OP register and returned as part of the status
information for the insiructions S1IO, HIO, and
T1O. .

The HTE fiag must be coded identically in every
commaend doubleword associat ed wii‘ the same
ohysical record. This means thet when data
chaining occurs, the HIE ﬂog in the new 10?
command doubleword must be the same as the
HTE flag in the previous IOP commend double-
word, This restricfion cpplies to data chaining

only, and not to command chaining.

h
Interrupt on unusual end, If this flag is 1, the
device confrolier requests the /O interrupt

{location X'5C') to be triggered whea o "fault"

condition or unusual termination is encountered.
A fault is a cendition requiring the device to

halt, irrespective of the ceding of the HTE flag.
Examples of faults are torn magnetic fape cnd
jommed cards. When unusucl terminction is
detected by the device or ICR, further e'vEcEng
of the commands for that d\,v-cc is su
An AIO instruction executed afrer the

is acknowledged results y bid posr:.

inalin
of register R (status information) ¢

reason for the jaterrupt. If the IU
interrupt Is requested.

Suppress incorrect lencih.
incorrect length indicaricn by
trolier is not to be classified as an
Or’ “aithough the IOP retcins tha inc
length indication and provides anindic
cf register Rul, the sic f
AIO, and TIO) to th
is 0, an incorrect length |
and the 1OP perfo.ms as specitied
and IUE flags. Incorrect length i

“channel end" condition occurring be
device controller hes received a "count Jdone™

9]
-t
%
pol
%}
1
9
E’
v
[}
(54
1%
o
(
<)
-y
i
P2

Bit

Position Function

38 (SIL) signal from the IOP, or is caused by the device

{cont.)} controller receiving a count done signal before
end of record, e.g., count done before 80 col-
umns have been read from a card, Normally, a
count done signal is sent to the device control=
ler by the IOP to indicate that all data transfer
associated with the current operation has been
completed. The IOP is capable of suppressing
an error condition on incorrect length, since
there are many situations in which incorrect
length is a legitimate condition and not a true
error,

39 (S) Skip. If this flag is 1, the input operation (Read
or Read Backward) controlled by this command
doubleword continues normally, except that no
information is stored in memory. When used in
conjunction with data chaining, the skip opera~
tion provides the capability for selective reading
of portions of a record,

If the S flag is 1 for an output (Write) operation,
the IOP does not access memory, but transmits
zeros as data instead (i.e., the IOP transmits
the number of X'00' bytes specified in the byte
count of the command doubleword). This allows
a program to punch a blank card (by using the

S bit and a Punch Binary order with a byte count
of 120) without requiring memory access for
data. If the S flag is 0, the 1/O operation
proceeds normally,

BYTE CGUNT

For all operational 1/O command doublewords, bit positions
48-63 of the doubleword provide for a 16-bit count of the
number of bytes to be transmitted in the 1/O operation;
-thus, 1 to 65,536 bytes (16, 384 words) can be specified
for transfer before command or data chaining is required.
This field (as stored in an IOP register) is decremented by
1 after each byte is transmitted in the 1/O operation; thus,
it always contains a count of the number of bytes to be
transmitted and this count is returned as part of the response
information for the instructions, S1O, HIO, TIO, and
TDV. An initial byte count of 0 is interpreted as 65, 536
bytes.

CONTRCL CONIAND DOUBLEWORDS

In addition to the operational command doubleword, there
are two control command doublewords with different formats
that provide control information for the IOP,

102 Control Command Doublewords

The Transfer in Ch command doubleword has the

following format:

wvrererre -

1000 ’ Next command address

0 1V 2 314 5 6 718 9 10 11712 13 1415036 17 18 19120 21 22 23724 25

Transfer in Channel. The Transfer in Channel command is

executed within the JOP and has no direct effect on any of
the 1/O system elemenfs external to the addressed IOP, The
primary purpose of this command is to permit branching
within the command list so that the IOP can, for example,
repeatedly transmit the same set of information a number of
times. When the 1OP executes ths Transfer in Channel
command, it loads the command counter for the device
controller it is currently servicing with the next command
address field of the Transfer in Channel command, loads

the new command doubleword specified by this address into
the 10OP registers associated with the device controller, and
then executes the new command, (Bit positions 0-3, 8-15,
and 32-63 of the command doubleword for Transfer in Chan=".
nel are ignored.) Transfer in Channel thus allows a com-
mand list to be broken into noncontiguous groups of
commands, When used in conjunction with command chain=
ing, Transfer in Channel facilitates the control of devices
such as unbuffered card punches or unbuffered line printers.
The current flags are not altered during this command; thus,
the type of chaining called for in the previous command
doubléword is retained until changed by a command double=
word following Transfer in Channel,

For example, assume that it is desired to present the same
card image twelve times to an unbuffered card punch. The
punch counts the number of times that a record is presented
to it and, when twelve rows have been punched, causes
the IOP to skip the command it would be executing next.
Thus, a command list for punching two cards might look
like the following example: :

Location Command
A “Punch row for card 1, command chain.
Transfer in Channel to A,
B ' Punch row for card 2, command chain.

Transfer in Channel to B.
Stop.

. .

The Transfer in Channel command also can be used in con=
junction with data chaining. As one example, consider a
situation often encountered in data acquisition applications,
where data is transmitted in extremely long, continuous
streams, In this case, the data can be stored altemately in
two or more buffer storage areas so that computer processing

can be carried out on the data j buffer while additional
data is being input into the oth ffer. The command list
for such an application might look like the following
example:

Location Command

A Read data, store into buffer 1, data chain.
Store into buffer 2, data chain.

Transfer in Channel to A,

If the 10P encounters two successive Transfer in Channel
commands, this is considered an IOP control error, resulting
in the IOP setting the IOP control error status bit (bit 13
of register Rul) and issuing an "IOP Halt" signal to the
device controller, The 1OP then halts further servicing of
this command list.

Stop. The Stop command causes certain devices to stop,
generate a "channel end" condition, and also request the-
I/O interrupt (location X'5C') to be triggered if bit 0 in
the Stop command isa 1. An AIQ instruction executed
afterthe interrupt is acknowledgedresults ina 1 inbit posi~
tion 7 of register R (status information) to indicate the rea-
son for the interrupt, (Bit positions 32-39 of the command
doubleword for Stop must be zero; bit positions 8-31 and

"40-63 are ignored). The Stop command is primarily used

to terminate a command chain for an unbuffered device,
as illustrated in the first example given for the Transfer in
Channel command, '

Contro! Command Doublewords 103

9. OPERATOR CONTROLS

PROCESSOR CONTROL PANEL

The SIGMA 8 processor control panel (PCP) is shown in
Figure 8. The controls and indicators are divided into two
sections, The upper section, which is labeled MAINTE-
NANCE SECTION, contains most of the controls and indi=
cators used by maintenance personnel. The DISPLAY
FORMAT indicator and FORMAT SEL switch located in the
lower section are also primarily used by maintenance per-
sonnel. All other controls and indicators located in the
lower section of the PCP are normally used by operating
personnel to load, execute, and froubleshoet pregrams,

A three-position rotary switch, located in the upper left-

hand corner and labeled EXTCONT/LOCALNORM/LOCAL

either to the LOCAL NORM position for normal operations or
tothe LOC MAINT position for maintenance operations. The
EXT CONT position is reserved for future use, Hereafter,
this switch will be referred to as the Control Mode switch,

CONTROL MODE

When the Control Mode switch is in the LOCAL MAINT
position, all switches on the control panel are enabled.

When the Control Mode switch is in the LOCAL NORM

position, all switches are enabled except the following:

1. The FORMAT SEL switch is disabled and forced to
appear in the NORMAL posmon, regardless of the

MAINT, is a control mode selector for the PCP. It is set
— position.of_the switch.’
Xerox Data Systems
LocaL NaRe [ALARN ——my f RGINS \ | PHASES . €LOCK 0DE
ONe "} o NOT NORM FAST » NOT NORM f "‘7 TRAR I——.'CP_ﬁ CONT o
v 0 O wwd O [99gggogqgllooool[oolloo@
AUDIC VOLTAGE e CLOCK et CLock
T SNAP — = WEMORY WODE oy r - Can \ EXT Di0
e @ O NORM: A NORM) O coqu : (9] Nom: O sy (@) m: — @ @
SNAP MODE sToP INTERLEAVE SEL = PARITY ERROR —J w.D. TIMER ° MOOE MEMORY m START ADDR LA
! power “CEL"E(L:' Rgz.’ ﬁEIS:' L0AD 1ot § sa:se w;x m;* s:n‘ls: "fc;' m:“ HALT wa RUN
| ‘ [b ik ot Hox
SERT WRITE VKEV, ‘»:.TﬁP: I“N.IYB, "WTEl-' .
o Psw2 z OO“ Q0 Ol‘ “ ” o O]L] .:‘;’? INTERRUPT
‘—COND Cmﬁﬁ [FLOAY NWE] IME '\"I.AP r ADDRESS —
! olelelo)l OOO“O oll [¢)0]eYe)e) eYeYele) (0Ye) OOHOOOQ]
s o o o330 0ovop m@@@] o v
L————— ADDRESS STOP SELECT ADDRESS L ST ADDR HOLD o
r DISPLAY Y . @ NORM o @
E I o - SELECTADDR e INCAM o
Iroo:ﬁ :)oooWoooo][oooolllooooﬂoooo}!oooollooo ol ot o
Fuu‘:itc‘s‘“ 1 2 3 | 4 5 & 7 8 $ 10 N 12 13 14 15 16 17 18 19 l 20 22 2 0 I 4 25 2.7 ‘ % ¥ 20 N l INSTR ADDR o RUN o
Y | 500 foooqﬂ“}&@h@@@@l@@@@M@m 0000l o
OATA TADOR o STEP
Figure 8. Processor Control Panel
104 Operator Controls

2. The SNAP switches are disot.

3. The EXT DIO switch is disabled.

4. The CLOCK MARGINS switch is disabled and forced
" to appear in the NORM position.

5. The CLOCK MODE switch is disabled and forced to
appear in the CONT position.

6. The SCAN switches are disabled,

POWER

The POWER switch controls ac power to the central pro=
cessor and to units under its direct control, The POWER
indicator is lighted when ac power is on,

MEMORY CLEAR

The MEMORY CLEAR switch clears all CPU memory. When
this switch is pressed, the SCAN light illuminates and
remains on until all memory is cleared. The contents of
the general registers remain unaltered during the operation.
It is recommended that CPU RESET be pressed before using
the MEMORY CLEAR switch., Homespace bias is automati-
cally suppressed during the clear operation,

SYS RESET

The SYS RESET (system reset) switch performs the combined
functions of the CPU RESET switch and the 1/O RESET switch.
The SYS RESET switch also initializes all memories con-
nected to the system. The initialization of memories does
not change the contents of any memory locations; only
memory port logic is reset.

I/0 RESET

The 1/O RESET switch initializes the standard input/output
system. When the switch is pressed, all peripheral devices
under control of the central processor are reset to the
“ready" condition, and all status, interrupt, and control
indicators inthe input/output system are reset. The 1/O
RESET switch does not affect the central processor.

LOAD

The LOAD switch is active only when the COMPUTE switch
is in the IDLE position. When this momentary action switch
is pressed, a load program is written into memory locations

X'22' through X'2B' for an input operation that uses the

peripheral unit selected by the UNIT ADDRESS switches.
CPU RESET or SYS RESET must be performed before using

this switch.

Detailed loading operation is described in the section
" Loading Operation".

UNIT ADDRESS

Four UNIT ADDRESS switches select the peripheral unit to
be used in the loading process. The two switches on the
left designate an input/output processor (IOP). The left~
most switch has two positions, numbered 0 and 1. The next
switch has 16 positions, numbered hexadecimally 0 through F,
The two rightmost switches each have 16 positions, num=
bered hexadecimally O through F, which designate the de-
vice controller/device that is under control of the selected

10°. | _ |

SENSE

The four SENSE switches and indicators are monitored under
program control to set the condition code position of the
program status doubleword (PSD). When a READ DIRECT
instruction is executed in the internal control mode, the
condition code is set according to the state of the four
SENSE switches. 1f a SENSE switch is in the set (1) position
(indicator lighted), the corresponding bit of the condition
code is set to 1; if a SENSE switch is in the reset (0) posi-
tion (indicator unlighted), the corresponding bit of the con~
dition code is reset to 0.

NOT NORMAL

The NOT NORMAL indicator informs the user that normal
program execution may be .inhibited by the PCP, The NOT
NORMAL indicator is lighted when any of the following .
occurs:

1. The Cénfrol Mode switch is in the LOCAL MAINT
position.

2. The INTERLEAVE SEL switch is in the DISABLE

position,

3. The CLOCK* MODE switch is in the unmarked center
position.

4, The W.D. TIMER switch is in the OVERRIDE position.

5. The PARITY ERROR switch is in the HALT position.

When the NOT NORMAL momentary action switch is
depressed, a control panel lamp test is performed. This test
turns on all indicators in the MAINTENANCE section, the
DISPLAY lights, and the STOP and NOT HERE lights, with=

out affecting machine operation.

HALT

The HALT indicator is lighted when the CPU is in the IDLE
state,

Processor Control Panel 105

The WAIT indicator is lighted when any of the following

WAIT

halt conditions exists:

The RUN indicator is lighted when the COMPUTE switch is

in the RUN position and no hult condition exists,

1. The computer has executed a WAIT instruction.

PROGRAM STATUS DOUBLEWORD

2. The CPU RESET or SYS RESET switch is pressed when

the COMPUTE switch is in the IDLE position.

3. The COMPUTE switch is in the IDLE position and the
POWER switch turns power on or power is applied to

Two rows of binary indicators display the current PSD.

For convenience, the second portion of the PSD, labeled

The PSD display consists

PSW2, is arranged above the first portion, labeled PSWI.
of the indicators shown in

the CPU, Table 13.
Table 13. Program Status Doubleword (PSD) Indieators
PSD PSD Bit PSD
Portion Indicator Function Position Designation
PSW2 WRITE KEY Write key status 34, 35 WK
INTRPT INHIB Interrupt inhibits status
Cl Counter interrupt group inhibit 37 CI
11 Input/output interrupt group inhibit 38 |
El External interrupt inhibit 39 El
POINTER Register block pointer 58-59 RP
PSW1 COND CODE Condition code
1 Condition code 1 0 cCl
2 Condition code 2 1 cc2
3 Condition code 3 2 ca3
4 Condition code 4 3 CC4
FLOAT MODE Floating=-point mode controls : ‘
SIG Significance trap mask 5 FS
ZERO Zero trap mask 6 FZ
NRMZ Normalize mask | -7. ; FN
MODE Computer mode control
SLv Master/slave mode control 8 MS
TRAP Arithmetic trap mask
'
AR Fixed-point arithmetic overflow trap mask n AM
INSTRUCTiON Instruction address 15-31 1A
ADDRESS

106 Processor Control Panel

INS ER.

The INSERT switch permits manual changes to the PSD,
The switch is stationary and inactive in the center (nor-
mal) position and momentary in the upper (PSW2) and

- lower (PSW1) positions. When the INSERT switch is
moved to the PSWI or PSW2 position, the corresponding
- half of the PSD is changed, as necessary, and the cor=
responding indicators display the information that has

been entered from the 32 DATA swnfches located at the

bottom of the control panel.

CPU RESET

The CPU RESET switch initializes the central processor.,
When this switch is pressed, the following operations are
performed:

1. All interrupt levels are reset to the disarmed and dis-
abled state.

2. The ALARM indicators (visual and audio) are reset.

3. All PSD bits are reset except for the INSTRUCTION
ADDRESS.

4, The INSTRUCTION ADDRESS indicators are set to
X'26',

5. The WAIT indicator is set, indicating the CPU is in
the WAIT state,

The CPU RESET switch does not affect any operation that
may be in process in the standard input/output system.

INTERRUPT

The operator uses the INTERRUPT switch to activate the
control panel interrupt. If the control panel interrupt
(level X‘5D') is armed when the INTERRUPT switch is
pressed, a single pulse is transmitted to the interrupt level,

advancing it to the waiting state. The INTERRUPT indica~

tor is lighted when the control panel interrupt level is in
the waiting state and it remains lighted until the interrupt
level advances to the active state (at which time the
INTERRUPT indicator is turned off). If the control panel
interrupt level is disarmed (or already in the active state)
when the INTERRUPT switch is pressed, no computer or con-
trol panel action occurs. If the conirol panel interrupt
level advances to the waiting state and the level isdisabled,
the INTERRUPT indicator remains lighted until the level is
either enabled and allowed to advance to the active state
or is returned to the armed or disarmed state, The INTER-
RUPT switch is always operative,

ADDRESS STOP

The ADDRESS STOP section of the control panel consists of
two switches, a STOP indicator, and a NOT HERE indicator.

The two ADDRESS STOP switches latch in all positions and -
are labeled INST/NORM/MEM REF and PAGE/WORD.
They are used in conjunction with the SELECT ADDRESS
switches and the COMPUTE switch to cause the CPU to
establish a halt condition and turn on the ADDRESS STOP
indicator whenever the CPU accesses an instruction or a
memory address.

PAGE/WORD

When the PAGE/WORD switch is in the PAGE position, it
causes the address stop feature to ignore the nine least sig-
nificant SELECT ADDRESS switches. In effect, this enables
the address stop feature when any word in a selected page

's addressed.

When the PAGE/WORD switch isin the WORD position, all
17 SELECT ADDRESS switches are used to specify an address.

INSTR/NORM/MEM REF

When the]NST/NORM/MEM REF (instruction/normal/
memory reference) switch is in the NORM position, it is
inactive and the address stop feature is inhibited.

When this switch is in the MEM REF posiftion and the COM-

PUTE switch is in the RUN position, a halt condition occurs
when the CPU accesses a memory reference address equal

to the address contained by the 17 SELECT ADDRESS
switches, subject to the constraints of the PAGE/WORD
switch, as described above. The value of the INSTRUC-
TION ADDRESS indicators at the time of the halt is deter-
mined by the sequence of instructions being executed at
the time of memory reference.

When the INSTR/NORM/MEM REF switch is in the INSTR
position and the COMPUTE switch is in the RUN position,

a halt condition occurs when the CPU accesses an instruc=
tion whose address is equal to that contained in the

17 SELECT ADDRESS switches, subject to the constraints
of the PAGE/WORD switch. The INSTRUCTION ADDRESS
indicators at the time of the halt normally will equal the
SELECT ADDRESS value, and the instruction pointed to by
the INSTRUCTION ADDRESS will appear on the DISPLAY
indicators.

The ADDRESS STOP halt condition is reset when the
COMPUTE switch is moved from RUN to IDLE; if the
COMPUTE switch is then moved back to RUN (or to STOP),
the instruction shown in the DISPLAY indicators is the next
instruction executed.. No interrupt is allowed to proceed
from the waiting to the active state while the ADDRESS
STOP halt condition exists.

The ADDRESS STOP function is disabled during the time
that the SNAP is armed.

Processor Control Panel 107

STOP

The STOP indicator lights to indicate that the machine is
halted due to either an INSTR-ADDRESS STOP or MEM
REF-ADDRESS STOP, The STOP indicator is turned off -
when the COMPUTE switch is moved from RUN to IDLE,

NOT HERE

The NOT HERE indicator is lighted when a nonexistent
memory location is referenced. It is automatically reset at
the end of each memory cycle, or when the RESET switch
is depressed.

SELECT ADDRESS

The SELECT ADDRESS switches are used in conjunction
with

1. The ADDRESS STOP switches (INSTR/NORM/MEM
REF and PAGE/WORD) to select the address at which

a program will be halted.
. 2. The STORE switch to select the location to be altered.
3. The DISPLAY switch to select the word to be displayed.

4. The SCAN MODE switches to establish an upper bound=-
ary of the memory scan operation.

5. The SCAN-START ADDR switch to enter a starting
address of the memory scan operation.

Each SELECT ADDRESS switch represents a 1 in the upper
position or a 0 in the lower position.

DISPLAY (SWITCH)

The DISPLAY switch displays the contents of a general regis-
ter or a memory location. The DISPLAY switch is stationary
and inactive in the center (unmarked) position and momen-
tary in the INSTR ADDR and SELECT ADDR positions. When
the switch is moved to the INSTR ADDR or SELECT ADDR
position, the contents of the location pointed to by the
INSTRUCTION ADDRESS indicators or the SELECT ADDRESS
switches, respectively, are shownin the DISPLAY indicators.

If the final memory address is nonexistent, the CPU does
not.trap and the DISPLAY indicators are indeterminate.

INSTR ADDR

The INSTR ADDR (instruction address) switch is latching
and inactive in the NORM position, latching in the HOLD
position, and momentary in the INCRM position.

When the INSTR ADDR switch is in the HOLD position, the

normal process of incrementing the INSTRUCTION ADDRESS
portion of the PSD with each instruction execution is

108 Processor Control Panel

inhibited. With theﬂTR ADDR switch in the HOLD
position and the CO TE switch in the RUN position, the
instruction in the location pointed to by the value of the
INSTRUCTION ADDRESS indicators is executed repeatedly,
with the INSTRUCTION ADDRESS indicators remaining
unchanged. Moving the COMPUTE switch to the momen-~
tary STEP position while the INSTR ADDR switch is in the
HOLD position causes the instruction in the location pointed
to by the value of the INSTRUCTION ADDRESS indicators
to be executed each time the COMPUTE switch is moved to
the STEP position. The INSTRUCTION ADDRESS indicators
normally remain unchanged. During HOLD operations, the
INSTRUCTION ADDRESS may be altered as a result of a
trap, interrupt, LPSD, XPSD, or branch instruction,

Each time the INSTR ADDR switch is moved from the NORM
position to the INCRM position, the following operations
are performed:

1. . The current value of the INSTRUCTION ADDRESS
indicators is incremented by 1.

2. Using the new value of the INSTRUCTION ADDRESS
indicators, the contents of the location pointed to by
the INSTRUCTION ADDRESS are displayed in the
DISPLAY indicators. ‘

If the final memory address is nonexistent, the CPU does
not trap and the DISPLAY indicators are indeterminate.

DISPLAY (INDICATORS)

The 32 DISPLAY indicators may display an instruction, data
word, or maintenance data. When the Control Mode switch
is in the LOCAL NORM position, the FORMAT SEL switch
is forced into the NORMAL mode and the DISPLAY switch,
COMPUTE switch, and INSTR ADDR switch can be used to
display the contents of a memory location or the current
contents of the internal CPU instruction register.

When the DISPLAY switch is placed in the INSTR ADDR
position, the contents of the location indicated by the
INSTRUCTION ADDRESS indicators are displayed in the
DISPLAY indicators. - When the DISPLAY switch is placed

in the SELECT ADDR position, the contents of the location
selected by the SELECT ADDRESS switches is displayed in
the DISPLAY indicators. When the INSTR ADDR switch is
placed in the INCRM position, the INSTRUCTION ADDRESS
is incremented by one and the contents of the location is
displayed in the DISPLAY indicators.

When the COMPUTE switch is placed in the STEP position,
the contents of the location displayed in the INSTRUCTION
ADDRESS will be executed and the next instruction in the
sequence in the internal CPU instruction register will be

displayed in the DISPLAY indicators.

To display maintenance data, the Control Mode switch must
be in the LOCAL MAINT position, and the FORMAT SEL
switch may be placed in either the CONTROL position or
the REGISTER position to have control words or internal
register contents displayed in the DISPLAY indicators. The

specific control word or inter gister selected is
controlled by the thumbwheel adltcent to the roll chart

on the DISPLAY FORMAT,

DISPLAY FORMAT

The DISPLAY FORMAT feature, which.is used by mainte~
nance personnel,. is inactive whenever the Control Mode
switch is in the LOCAL NORM position. A chart comprised
of 16 lines of printed information is mounted on a roller
located directly behind the slot in.the panel labeled DIS-
PLAY FORMAT. Associated with the chart is a 16=position
switch (thumbwheel-actuated) and a 3-position FORMAT
SEL switch, which selects various internal registers of the
CPU for display.

FORMAT SEL

The 3-position FORMAT SEL (format select) switchis labeled
CONTROL/NORMAL/REGISTER. Inthe NORMALposition,
the DISPLAY FORMAT and FORMAT SEL features are inac=
tive and the DISPLAY lights show the CPU internal instruc-
tion register. When the FORMAT SEL switch is in the
REGISTER position and the Control Mode switch is in the
LOCAL MAINT position, the contents of the selected inter-
nal register will appear in the DISPLAY indicators. When
the FORMAT SEL switch is in the CONTROL position and
the Control Mode switch is in the LOCAL MAINT position,
specific control information, as indicated by the DISPLAY
FORMAT chart, appears in the DISPLAY indicators.

DATA

The 32 DATA switches alter the contents of the PSD when
used in conjunction with the INSERT switch, or alter the
contents of memory or a general register when used in con=-
junction with the STORE switch. Each DATA switch is
latching in both the upper and center positions. In the
center position, a DATA switch represents a 0; in the upper
position, a 1.

STORE

The STORE switch alters the contents of a general register

or a memory location. The switch is stationary and inactive

in the center (unmarked) position and momentary in the
INSTR ADDR and SELECT ADDR positions. When the switch
is moved to the INSTR ADDR position, the current value of
the DATA switches is stored in the location pointed to by
the INSTRUCTION ADDRESS indicators; when the switchis
moved to the SELECT ADDR position, the current value of
the DATA switches is stored in the location pointed to by
the SELECT ADDRESS switches. The contents of the ad-
dressed location are altered regardless of write protection.

COMPUTE

The COMPUTE switch controls the execution of instructions.
The IDLE and RUN positions are both latching; the STEP" "
position is momentary. When the COMPUTE switch is in
the IDLE position, all other control panel switches are
operative and the ADDRESS STOP halt and the WAIT ..
instruction halt conditions are reset (cleared). No inter—
rupts are allowed in this mode.

When the COMPUTE switch is moved from IDLE to RUN,

- the RUN indicator is lighted and the current setting of the

INSTRUCTION ADDRESS indicators is taken as the address
of the next instruction to be executed, regardless of the

contents of the DISPLAY Indlcators.

When the COMPUTE switch is in the RUN position, the
only operative switches are POWER, INTERRUPT, ADDRESS
STOP, INSTR ADDR (in the HOLD position), and the
switches in the maintenance section except SCAN, EXT
DIO, and SNAP ENTER,

Each time the COMPUTE switch is moved from IDLE to
STEP, the following operations occur:

1. The instruction pointed to by the current value of the
INSTRUCTION ADDRESS indicators is executed.

2. The current value of the INSTRUCTION ADDRESS
indicators is incremented by 1. If the "stepped" in-
struction (executed by moving the COMPUTE switch

" from IDLE to STEP) is a branch instruction and the branch
branch should occur, the INSTRUCTION ADDRESS
indicators are set to the value of the effective address
of the branch instruction.

3. The instruction in the location pointed to by the new
value of the INSTRUCTION ADDRESS indicators is
displayed in the DISPLAY indicators.

If an instruction is being stepped, all interrupt levels are
temporarily inhibited while the instruction is being exe-
cuted; however, a trap condition can occur while the
instruction is being executed. In this case, the XPSD

" instruction in the appropriate trap location is executed as
_ if the COMPUTE switch were in the RUN position. Thus,

if a trap condition occurs during a stepped instruction, the

. PSD display automatically reflects the effects of the XPSD

instruction, and the DISPLAY indicators then contain the
first instruction of the trap routine.

MAINTENANCE CONTROLS

The controls and indicators located in the MAINTENANCE
SECTION of the PCP, as well as the DISPLAY FORMAT
and FORMAT SEL switches (described previously), are used
primarily during computer maintenance and. diagnostic
operations.

" Maintenance Controls 109

ALARM.

Audio and visual alarms may be used fo attract the computer
operator's attention. The alarms are turned on and off
(under program control) by executing a properly coded
WRITE DIRECT instruction. When the visual ALARM indi~-
cator is lighted and the AUDIO switch is ON, a 1000-Hz
signal is sent to the computer speaker; when the AUDIO
switch is not in the ON position, the speaker is discon-
nected, (The AUDIO switch does not affect the state of
the visual ALARM indicator.) The ALARM indicator is
reset (turned off) whenever either the CPU RESET or the
SYS RESET switch is pressed or a properly coded WRITE
DIRECT instruction is executed.

The AUDIO switch controls all signals to the computer
speaker, whether from the 1000-Hz signal or program-
controlled frequency flip~flop.

MARGINS

The CPU clock frequency may be changed to values above
and below the normal operating values by manually setting
the CLOCK MARGIN switch or by programming via an
appropriate internal WRITE DIRECT instruction. The CLOCK
MARGIN switch overrides program control when set to the
FAST or SLOW position. When set to the NORMAL posi-
tion, clock margins are under program control. The NOT
NORM CLOCK indicator will be lighted whenever the
clock frequency is not normal due to programming or switch
settings of FAST or SLOW.

The system voltage margin, for a single processor system,

or the CPU voltage margin, for a multiprocessor system, is
indicated by the VOLTAGE NOT NORM light. The VOLT-
AGE NOT NORM light will be on if any power supply in
the system is on HIGH or LOW MARGINS.,

PHASES

The PHASES indicators display certain internal operating
phases of the computer. The PREPARATION indicators dis=
play computer phases during preparation sequences. The
PCP indicators display computer phases during processor
control panel operations. The EXECUTION indicators dis=
play computer phases during the execution portion of an
~ instruction cycle. The INT/TRAP (interrupt/trap) indica-
tors are individually lighted when an interrupt or a trap
condition occurs. When the COMPUTE switch is in the
IDLE position, all PHASES indicators are normally off except
except for the rightmost PCP indicator (indicating the idle
phase for processor control panel functions).

CLOCK MODE

The CLOCK MODE switch controls the internal computer
clock. When the switch is in the CONT {continuous) posi--
tion, the clock operates at normal speed. However, when
the CLOCK MODE switch is in the inactive (center) posi~
tion, the clock enters an idle state and can be made fo

110 Maintenance Controls

generate one clock each time the switch is moved to
the SINGLE CLOCK Bosition. - When the clock is pulsed by
the CLOCK MODE switch, the PHASES indicators reflect
the computer phase during each pulse of the clock.

SNAP

All logic that is displayable on the PCP can be monitored
with the snapshot control logic. Snapshot control logic is
preset (armed) by executing a WRITE DIRECT (Load Snap-
shot Control Register) instruction or, when the COMPUTE
switch is in the IDLE position, by moving the SNAP ENTER —
switch to the ENTER position. Moving the ENTER switch
from the latching and inactive center position selects the
following conditions (duplicates the function performed by
the appropriate internal WRITE DIRECT instruction):

1. Aclock count number (obtained from DATA
switches 0-7),

2. A register or group of control elements to be recorded
(obtained from DATA switches 10-14),

3. An instruction address (obtained from DATA
switches 15-31),

When the COMPUTE switch is in the RUN position and the
selected address matches the instruction address of the PSD,
the clock counter is decremented by each CPU clock pulse,
starting with the first phase of execution. When the clock
counter reaches a value of 1, the selected logic is clocked
by the current selected CPU clock into a 32-bit "snap" reg~
ister and the snap condition is reset. . The contents of the
"snap" register can then be recorded by a READ DIRECT
instruction under program control or visually displayed with
the use of FORMAT SEL and DISPLAY FORMAT switches.
The SNAP STOP switch can be used to stop the clock at
time of the snap condition by setting it to the ON position.
This switch is inactive in the NORM position. The halt
condition, resulting from the SNAP STOP switch stopping the
clock at snap time, can be reset by placir.g the STOPswitch
to the NORM position, which disables the STOP switch, or
by placing the CLOCK MODE switch to center (unmarked)
position, which keeps the clock stopped, then moving the
SNAP STOP switch to the NORM position and SINGLE
CLOCK the CLOCK MODE switch to reset the stop on snap
condition, and then set the CLOCK MODE switch to CONT

position,

SNAP MODE

The SNAP MODE indicator shows that the snap feature
is armed and waiting to "snap", and is reset only if
the snap has occurred or CPU RESET or SYS RESET has
been performed.

MEMORY MODE

MEMORY MODE switches and indicator are comprised of
an INTERLEAVE SEL switch, a PARITY ERROR switch, and
a PARITY ERROR indicator.

INTERLEAVE SEL

When the INTERLEAVE SEL (inferlge select) switch is in
the NORM position, memory address interleaving occurs
normally; however, when the switch is in the DISABLE posi-
tion, memory addresses are not interleaved between memory

banks.

PARITY ERROR

The PARITY ERROR switch is inactive in the CONT posi-
tion. When it is set to.the HALT position, a parity error
resulting from memory operation will establish a CPU halt
condition by stopping the CPU clock at the time the CPU
detects the parity error, At this time the PARITY ERROR
light is on. This condition is removed by CPU RESET,

SYS RESET, or by setting the PARITY ERROR switch to the
CONT position.

W.D. TIMER

When the W, D. TIMER (watchdog timer) switch is in the
NORM position, the watchdog timer is operative; when
the switch is in the OVERRIDE position, the watchdog timer
is inactive.

SCAN

The SCAN portion of the control panel consists of the
MODE switch, SCAN light, MEMORY MODE switch, and
START ADDR switch. These controls enable the operator to
continuously cycle' memory between selected lower and
upper addresses at a rate simulating the faster CPU operation
with memory. Only memory is affected. All the switches
are active only when the COMPUTE switch is in the IDLE
position. Homespace bias is suppressed during the SCAN
operation,

The starting address (first address read or modified by the
SCAN operation) is entered by using the START ADDRswitch
in conjunction with the SELECT ADDRESS switches, which
are active only when the COMPUTE switch is in the IDLE
position. Placing the START ADDR switch in the ENTER
position enters the contents of the SELECT ADDRESS switches
into an internal CPU register (P), which designates a starting
address.

The upper address (the last address read or modified by the
SCAN operation) is then set into the SELECT ADDRESS
- switches, and the ADDRESS STOP switch set fo the MEM

REF position.

The memory scan operation can be initiated by first placing
the MEMORY MODE switch to DATA (for a store or display)
or CLEAR (only for a store operation), then the MODE
switch to STORE or DISPLAY, When this is performed,
the SCAN operation starts continuously reading from or
storing into consecutive memory locations, as a function of
whether the MODE switch was set to DISPLAY or STORE,
respectively. The SCAN operation begins with the starting

address equals alue of the SELECT ADDRESS switches, -
Then, if the ADDRESS STOP switch is set to MEM REF, the
scan continues again from the starting address. If the ;
ADDRESS STOP switch is in the NORM position, all mem-~
ory will be scanned.

address “(set infol i),» and continues until the memory