
• Xerox Data Systems

701 South Aviation Boulevard
EI Segundo, California 90245
213679-4511

© 1971, Xerox Corporation

XEROX

SIGMA 8 Computer

Reference Manual

FIRST EDITION

90 17 49A

January 1971

Price $5.75

Printed in u.s.A.

ii

_ELATED PUBLICATIONS

Title

XDS Sigma Glossary of Computer Terminology

XDS Symbol/Meta-Symbol Reference Manual

XDS Macro-Symbol Reference Manual

ALL SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

Publ ication No.

900957

900952

90 15 78

CONTENTS

1. SIGMA 8 SYSTEM 3. INSTRUCTION REPERTOIRE 33

Introduction 1 Load/Store Instructions 35
General Characteristics 1 Ana I yze/lnterpret Instru ct ions 46
Scientific Features 3' Fixed-Point Arithmetic Instructions 48
Input/Output Capabilities 4 Comparison Instructions 54
Time-Sharing Features 4 Logical Instructions 57
Real-Time Features 5 Shift Instructions 58
Multiusage Features 5 Floating-Point Shift 60
Mul tiprocessing Features 6 Conversion Instructions 61

Multiprocessor Interlock 6 Floating-Point Arithmetic Instructions 62
Homespace 6 Floating-Point Numbers 62
Multiport Memory System 6 Floating-Point Add and Subtract 64
Manual Partitioning Capability 6 Floating-Point Multiply and Divide 64
Multiprocessor Control Function 6 Condition Codes for Floating-Point
Shared Input/Output 6 Instructi ons 65

Byte-String Instructions 67
Push-Down Instructions 72

Stack Pointer Doubleword (SPD) 72
2. SIGMA 8 SYSTEM ORGANIZATION 7 Push-Down Condition Code Settings 73

7 Execute/Branch Instructi ons 77
Central Processing Unit Nonallowed Operation Trap During Execution

General Registers 7
of Branch Instruction 77

Memory Control Storage 7
CALL Instructions 79

Computer Modes 7
Control Instructions 80

Information Format 10
Program Status Doubleword 80

Information Boundaries 10
Instruction Register 10 Loading the Memory Write Protection

Locks 84
NIO i n Memory 11

Interrupti on of MMC 84
Memory Unit 12

Read Direct, Internal Computer Control
Homespace 13

(Mode 0) 85
Memory Reference Address 13

Read Direct, Interrupt Control
Addressing 14

(Mode 1) 86
Address Modification 16
Memory Address Control 17 Write Direct, Internal Computer Control

(Mode 0) 87,/
Program Status Doubleword 17

Interrupt System 19 Write Direct, Interrupt Control
(Mode 1) 88

Internal Interrupts 20
Input/Output Instructions 89

External Interrupts 21
I/O Addresses 89

States of an Interrupt Level 21
Control of the Interrupt System 22 Processor Addresses

(Bits 19-23) 89
Ti me of Interrupt Occurrences 22
Single-Instruction Interrupts 23 Device Controller Addresses

(Bits 24-31) 89
Trap System 23

I/O Unit Address Assignment 90 Trap 23
I/O Status Response 90

T rap Entry Sequence 23
Status Information for SIO 92

Trap Masks 23
General Registers 92

Trap Condition Code 25
Trap Addressing 25
Nonallowed Operation Trap 25
Unimplemented Instruction Trap 27

INPUT/OUTPUT OPERATIONS 99
Push-Down Stack Limit Trap 27 4.

Fixed-Point Overflow Trap 27
Floating-Point Arithmetic Fault Trap 28 Operational Command Doublewords 100
CALL Instruction Trap 29 Order 100
Processor Detected Faul ts 29 Memory Byte Address 100
Trap Conditions During "Anticipate" Flags 100

Operations 31 Byte Count 102
Register AI tered Bit 31 Control Command Doublewords 102

iii

5. OPERATOR CONTROLS 104 Table of Powers of. 132
Mathematical Constants 132

Processor Control Panel 104
Control Mode 104
POWER 105 B. SIGMA 8 INSTRUCTION LIST 133
MEMORY CLEAR 105
SYS RESET 105
I/O RESET 105 C. INSTRUCTION TIMING 134
LOAD 105
U NIT ADDRESS 105 Timing Considerations 134
SENSE 105 Effects of Memory Interference 134
NOT NORMAL 105 Effects of Indexing 134
HALT 105 Effects of Indirect Addressing 134
WAIT 106 Effects of Register-to-Register Operations __ 134
RUN 106
Program Status Doubleword 106
INSERT 107 D. SYSTEM RE LIABI LITY AN D MAl NT AI NABI LITY 144
CPU RESET 107
INTERRUPT 107 System Maintainabi I ity Features 144
ADDRESS STOP 107 CPU Features 145
SELECT ADDRESS 108. Ma i n Memory Features 147
DISPLAY (Switch) 108 Multiplexor Input/Output Processor
INSTR ADDR 108 (MIOP) Features 147
DISPLAY (Indicators) 108 High-Speed RAD I/O Processor (HSRIOP)
DISPLAY FORMAT 109 Features 148
FORMAT SEL 109
DATA 109
STORE 109 E. GLOSSARY OF SYMBOLIC TERMS 149
COMPUTE 109

Maintenance Controls 109
ALARM 110 ILLUSTRATIONS
MARGINS 110
PHASES 110 SIGMA 8 Computer System v

CLOCK MODE 110 l. A Typical SIGMA 8 System 8
SNAP 110 2. Central Processing Unit 9
MEMORY MODE 110 3. Information Boundaries 10
W. D. TIMER 111 4. Addressing Logi c 15
SCAN 111 5. Index Displacement Alignment 16
EXT DIO 112 6. Interrupt Priority Chain 20

Operating Procedures 112 7. Operational States of an Interrupt Level 21
Loading Operation 112 8. Processor Control Panel 104
Fetching and Storing Procedure 113

TABLES
APPENDIXES

l. Homespace Layout 13
A. REFERENCE TABLES 114 2. SIGMA 8 Interrupt Locations 19

3. Summary of SIGMA 8 Trap Locations 24
XDS Standard Symbols and Codes 114 4. TCC Setting for Instruction Exception
XDS Standard Character Sets 114 Trap X'4D' 30
Control Codes 114 5. Registers Changed at Time of a Trap Due to
Special Code Properties 114 an Operand Access 32
XDS Standard 8-Bit Computer Codes (EBCDIC)_ 115 6. Status Word 0 41
XDS Standard 7-Bit Communication Codes - 7. -Status Word.1 42

(USASCII) 115 8. Status Word 2 42
XDS Standard Symbol-Code Correspondences __ 116 9. ANAL YZE T abl e for SIGMA 8 Operation Codes_ 47
Hexadecimal Arithmetic 120 10. Floating-Point Number Representation· 63

Addition Table 120 11. Condition Code Settings for Floating-Point
Multiplication Table 120 Instructions 65
Table of Powers of Sixteen10 121 12. Status Response Bits for I/O Instructions 91
Table of Powers of Ten16 121 13. Program Status Doubleword (PSD)

Hexadecimal-Decimal Integer Conversion Table_ 122 Indicators 106
Hexadecimal-Decimal Fraction Conversion Table_ 128 C-l. Basic Instruction Timing 135 ,

iv

SIGMA 8 C omputer System

v

1. SIGMA 8 SYSTEM

INTRODUCTION

The XDS SIGMA 8 Computer System is a high-speed,
general-purpose digital computer system. It is designed
for a variety of scientific, real-time, and time-sharing
applications. A basic system includesa central processing
unit (CPU), a main memory subsystem, and an independent
input/output subsystem. Each major system element per­
forms asynchronously with respect to other elements.

The basic system can be readily expanded to accommodate
the user's requirements. Main memory has addressing space
for 131,072 words. Memory access paths can be increased
from the basi c two ports to a maxi mum of 12 ports. Input /
output capabi lity can be increased by adding more input/
output processors (lOPs), device controllers, and I/O
devices.

The CPU has a large instruction set that includes floating­
point instructions. A special feature called "Iook-ahead"
enables the CPU to overlap instruction execution with
memory accessing, thereby reducing program execution
time.

A main memory of up to 131,072 (128K) words is available.
The minimum system size is 16,384 (16K) words. System
memory sizes are obtainable in 8K word increments. The
minimum memory configuration of 16K words consists of
two ports and two 8K word banks. Each bank can be
expanded to 16K words, yielding a modular unit of 32K
words. Each unit is expandable to 12 ports in single port
increments. The maximum configuration, therefore, con­
sists of four 32K word modular units of eight 16K word
banks and 12 ports per unit.

Each bank operates asynchronously, and address inter­
leaving can be provided between adjacent banks. This
multibank, multiaccess memory subsystem with interleaving
achieves system performance far in excess of single memory
bank designs. The SIGMA 8 system can include up to 11
independent I/O processors (limited only by port expansion
capability) of two types - multiplexor I/O processors and
high-speed RAD I/O processors - which can transfer data
at rates up to three mi Ilion bytes per second, concurrent
with CPU instruction execution.

The SIGMA 8 computer design is compatible with the
SIGMA 5 computer. Therefore, comprehensive, modular
software, requiring no reprogramming is avai lab Ie, including
operating systems, assemblers, compi lers, mathemati cal and -
uti lity routines.

Reliabi lity, maintainabi lity, and avai labi lity have been
significantly improved over previous SIGMA computers.
A partitioning feature, for example, permits faulty units
or an entire subsystem, consisting of a CPU, memory unit,
lOP, and attached peripherals to be isolated from the sys­
tem for diagnosis and repair whi Ie the primary system
continues operation.

This manual describes the general characteristics and
features, system organization, instruction set, I/O oper­
ations, operator controls, and timing of the system.

GENERAL CHARACTERISTICS

A SIGMA 8 computer system has features and operating
characteristics that permit efficient functioning in scien­
tific, multiprocessing, time-sharing, real-time, and multi­
usage environments:

• Word-oriented memory (32-bit word plus parity bit)
which can be addressed and altered as byte (8-bit),
halfword (2-byte), word (4-byte), and doubleword
(8-byte) quantities.

• Memory expandable from 16,384 (16K) to 131,072
(128K) words in increments of 8,192 (8K) words
(where K = 1024).

• Direct addressing of entire memory.

• Indirect addressing with or without post-in-dexing.

• Displacement index registers, automatically self­
adjusting for all data sizes.

• Immediate -operand instructions, for greater storage
efficiency and increased speed.

• 16 general-purpose registers, expandable to 64
(in blocks of 16) reduce data transfer to and from
registers in a multiusage environment.

• Memory write protection preventing inadvertent
destruction of critical areas of memory.

• Watchdog timer to assure nonstop operation.

• Real-time priority interrupt system wi th auto­
matic identification and priority assignment,
fast response time, and up to 238 levels that
can be individually armed, enabled, and trig­
gered by program control.

• Instructions with long execution times can be
interrupted to minimize response time to
interrupts.

• Automatic traps for error or fault conditions, with
maski ng capab iii ty and maxi mum recoverabi Ii ty,
under program control.

• Power fai I-safe for automati c, safe shutdown in
event of power fai lure.

• Multiple interval timers with a choice of resolu­
tions for independent time bases.

SI GMA 8 System

•

•

•

Privileged instruction logic for progra.grity
~n multiusage environments.

Complete instructions set that includes:

• Byte, halfword, word, and doubleword
operations.

• Use of all memory-referencing instructions
for register-to-register operations, with or
without indirect addressing and post-indexing,
and within normal instruction format.

• Multiple register operations.

• Fixed-point integer arithmetic operations in
halfword, word, and doubleword modes.

• Floating-point hardware operations in short
and long formats with significance, zero, and
normalization control and checking, all
under fu II program control.

• Full complement of logical operations (AND,
OR, exclusive OR).

• Comparison operations, including compare
between limits (with limits in memory or in
registers).

• Call instructions that permit up to 64 dy­
nami cally variable, user-defined instructions,
and allow a program access to operating
system functions without operating system
intervention.

• Push-down stack operations (hardware im­
plemented) of single or multiple words, with
automatic limit checking, for dynamic space
allocati on, subroutine communication, and
recursive routine capabi lity.

• Automatic conversion operations, including
binary/BCD and any other weighted-number
systems.

• Analyze instruction that foci litates effective
address computation.

• Interpret instruction that increases speed of
interpreti ve programs.

• Shift operations (left and right) of word or
doubleword, including logical, circular,
arithmetic, searching shift, and floating­
point modes.

Bui It-in reliabi lity and maintainabi lity features
that include:

• Diagnostic programs with capabilities for:
system verification and testing to determine
the faulty unit; unit functional testing to

2 General Characteristics

determine the sAc function of a unit that
is faulty; and f~iocation diagnosing to
analyze what physical component is
malfunctioning.

• Extensive error logging. When a fault is
detected, system status and fault informa­
tion are avai lable for program retrieval and
logging for subsequent analysis.

• Fu'll parity checking on all data and ad­
dresses communicated in either direction on
busses between memory uni ts and processors,
providing fault detection and location capa­
bi lity to permit the operating system or
diagnostic program to quickly determine a
faulty unit.

• Address stop feature that permits operator or
mai ntenance personne I to:

Stop on any instruction address.
Stop on any memory reference address.
Stop when any word in a selected page

of memory is referenced.

• Programmable "snapshot" registers that en­
able diagnostic routines to compare contents
of a snapshot register with known correct in­
formation, thus accurately determining system
fault conditions.

• CPU traps, that provide for detection of a
variety of CPU and system fault conditions,
designed to enable a high degree of system
recoverabi lity.

• Partitioning features that enable system re­
configuration. SIGMA 8 units can be par­
titioned from the system by selectively disabling
them from busses. Thus, faulty units or an
entire subsystem, consisting of a CPU, mem­
ory unit, input/output processor (lOP), and
attached peripherals, can be isolated from
the operational system to enable diagnosis
and repair of a faulty unit whi Ie the primary
system continues operation.

• Independently operating I/O system with the fol­
lowing features:

.0 Direct input/output of a full word, without
use of a channel.

• Up to eleven I/O processors (restricted only
by port limitations).

• Multiplexor I/O processors (MIOP) with
dual channel capability, providing for
simultaneous operation of up to 24 devices
on one channel, and concurrently, simulta­
neous operation of eight devices on the
other channel.

•

• Hi gh -speed Rapi d AaA Data I/O processor
(HSRIOP) for use wit~S high-speed RAD
storage units, allowing data transfer rates of
up to three mi Ilion bytes per second.

• Both data and command chaining on all lOPs
for gather-read and scatter-write operations.

• Up to 32,000 output control signals and in­
put test signals.

Comprehensive array of modular software that is
program compatib,le with XDS SIGMA 5, 6t,
and 7 t computers:

" EXpdl1d~ rn ecpcbfBty and sp~~d & !y~terl'i
grows.

• Operating systems: Batch Processing Monitor
(BPM), Batch Time-Sharing Monitor (BTM),
and Real-Time Batch Monitor (RBM).

• General-Purpose Compi lers: Extended XDS
FORTRAN IV, XDS FORTRAN IV-H, BASIC,
and FLAG.

• Assemblers: Symbol, Macro-Symbol, and
Meta-Symbol.

• Library: Mathemati cal, uti lity, and input/
output programs.

• Business software: Data Management System
(DMS-l), Generalized Sort and Merge, XDS
ANS COBOL, Manage, Terminal-Oriented
Manage, and 1401 Simulator.

• Application software: Functional IV\athematical
Programming System (FMPS), FMPS IV\atrix
Generator/Report Writer (GAMMA 2), Simulation
Language (SL-1), Circuit Analysis Systems (CIRC-AC,
CIRC-DC), Graphic Display Library (GDL-l), and
General Purpose Discrete Simulator (GPDS).

• Standard and special-purpose peripheral equip­
ment including:

• Rapid Access Data (RAD) fi les: Capacities to
6. 2 mi Ilion bytes per unit; transfer rates of
three mi Ilion bytes per second; average access
times from 17 milliseconds.

• Magnetic tape units: 7-track and 9-track
systems, IBM-compatible; high-speed units
operating at 150 inches per second with trans­
fer rates up to 120,000 bytes per second; and
other units operating at 75 inches per second
with transfer rates up to 60,000 bytes per
second, and at 37.5 inches per second with
transfer rates up to 20,800 bytes per second.

t Providing memory map has not been used.

, ,

• DAys: Graphic display has standard char­
a'-generator, vector generator, and c/ose­
ups, as well as light pen, and a/phanumeric/
function keyboard.

• Card equipment: Reading speeds up to 1500
cards per minute; punching speeds up to 300
cards per minute; intermixed binary and
EBCDIC card codes.

• Line printers: Fully buffered with speeds up
to 1,500 lines per minute; 132 print positions
with 64 characters.

• KeyboQrd/prif'ltoFiI 10 ahGrQerOfi ptr IIGond,
also dvatlable with paper tape reader (20 char­
acters per second) and punch (l0 characters
per second).

• Paper tape equi pment: Readers wi th speeds up
to 300 characters per second; punches with
speeds up to 120 characters per second.

• Graph plotters: Digital incremental, provid­
ing drift-free plotting in two axes in up to
300 steps per second at speeds from 30 mi 1Ii­
meters to 3 inches per second.

• Data communications equipment: Complete
line of character-oriented and message­
oriented equipment to connect remote user
terminals (including remote batch terminals)
to the computer system via common carrier
lines or connect local terminals directly.

SCIENTIFIC FEATURES

Scientific computing applications are characterized by
emphasis on computation and internal data handling. Most
operations are performed in floating-point format. Other
typical characteristics include binary to decimal number
conversion (for printing or display), and input/output at
standard speeds. The SIGMA 8 computer system includes
the following sci enti fi c features:

Floating-Point Hardware. Floating-point instructions are
avai lable in both short (32-bit) and long (64~bit) formats.
Under program control, the user may select optional zero
checking, normalization, and significance checking (which
causes a trap when a post-operation shift or more than two
hexadecimal places occurs in the fraction of a floating­
point number). Significance checking permits use of the
short floating-point format for high processing speed and
storage economy and of the long format when loss of sig­
nifi cance is detected.

Indirect Addressing. Indirect addressing faci litates table
linkage and permits keeping data sections of a program
separate from procedure sections for ease of maintenance.

Displacement Indexing: Indexing by means of a It floating"
displacement permits accessing a desired unit of data

Scientific Features 3

without considering its size. The index re~ automati­
cally olign themselves appropriately; thus,'" same index

. register may be used on arrays with different data sizes.
For example, in a matrix multiplication of any array of full
word, single-precision, fixed-point numbers, the results
may be stored in a second array as double-precision num­
bers using the same index quantity for both arrays. If an
index register contains the value of k, then the user always
accesses the kth element, whether it is a byte, halfword,
word, or doubleword. Incrementing by various quantities
according to data size is not required; instead, incre­
menting is always by units in a continuous array table re­
gardless of the size of data element used.

InstructIon Set. More than 100 molor InstructIons permit
short, highly optimized programs to be written, which are
rapidly assembled and minimize both program space and
execution time.

Translate Instruction. The Translate instruction permits
rapid translation between any two 8-bit codes; thus data
from a variety of input sources can be handled and recon­
verted easily for output.

Conversion Instructions. Two generalized conversion in­
structions provide for bidirectional conversions between
internal binary and any other weighted number system,
including BCD.

Call Instructions. These four instructions permit handling
up to 64 user-defined subroutines, as if they were bui Id-in
machine instructions, and gaining access to specified op­
erating system services without requiring its intervention.

Interpret Instruction. The Interpret instruction simplifies
and speeds interpretive operations such as compilation,
thus reducing space and time requirements for compi lers and
other i nterpreti ve systems.

Four-Bit Condition Code. This simplifies the checking of
results by automatically providing information on almost
ever-/ instruction execution, including indicators for over­
flow, underflow, zero, minus, and plus, as appropriate,
without requiring an extra instruction execution.

INPUT/OUTPUT CAPABILITIES

Multi lexing In ut/Out ut Processor (MIOP). Once
i n"itia Ii zed, I 0 processors operate independently of the
CPU, leaving it free to provide faster response to system
needs. The MIOP requires minimal interaction with the
CPU by using channel command doublewords, which permit
both command chaining and data chaining without inter­
vening CPU control. I/O equipment speeds range from
slow rates involving human interaction (teletypewriter, for
example) to transfer rates of rotating memory devices of
up to one mi Ilion bytes per second. Nv:Jny devices can
be operated simultaneously.

4 Input/Output Capabi lities/Time-Sharing Features

Direct Data 010 faci litates in-
or sp~cial-purpose

devices. feature information can be trans­
mitted directly to or from general-purpose registers so
that an I/O channel need not be used for relatively
infrequent transmissions.

High-Speed Rad Input/Output Processor (HSRIOP). This
feature is similar to multiplexing input/output except that
one RAD per channel controller is operating at a time.
This high-speed channel contains the buffering and priority
logic sufficient to sustain transfer rates up to three million
bytes per second. In a typical time-sharing application,
this enables a program swap into or out of main memory in
less than 40 ml "Iseconds.

TIME-SHARING FEATURES

Time-sharing is the abi lity of a system to share its total
capacities among many users at the same time. Each user
can be performing a different task (requiring a different
share of the avai lable resources) and may be on-line in an
interactive, "conversational ll mode with the computer.
Other users may be entering work to' be processed that
requires only final output.

The SIGMA 8 system provides the time-sharing computer
features described below.

Rapid Context Saving. When changing from one user to
another, the operating environment can be switched
quickly and easily. Stack-manipulating instructions per­
mit stori,ng in a push-down stack of 1 to 16 general-purpose
registers by a single instruction. Stack status is updated
automatically and information in the stack can be retrieved
when needed (a Iso, by a single instruction). The current
program status doubleword (PSD), which contains the entire
description of the current user's environment and mode of
operati on, can be stored anywhere in memory and a new
PSD loaded, all with a single instruction.

User Protection. The slave mode feature restricts each
user to his own set of instructions whi Ie reserving to the
operating system certain "privi leged" (master mode) in­
structions that could destroy another user's program if
used incorrectly.

Input/Output Capability. Time-sharing input/output re­
quirements are handled by the same general-purpose input/
output capabilities described above.

Nonstop Operation. A "watchdog II timer assures that the
system continues to operate even in case of halts or delays
due to failure of special I/O devices. Multiple real-time
clocks with varying resolutions permit independent time
bases for flexible allocation of time sl ices to each user.

REAL-TIME F.RES

Real-time applications are characterized by a need for
(1) hardware that provides qui ck response to an external
enviornment, (2) speed great enough to keep up with the
real-time process itself, and (3) sufficient input/output
flexibility to handle a wide variety of data types at varying
speeds. The SIGMA 8 system includes provisions for the
following real-time computing features.

Multi level, True Priority Interrupt System. The real-time­
oriented SIGMA 8 system provides quick response to inter­
rupts by means of up to 224 external interrupt levels. The
source of each interrupt is automatically identified and
responded to according to its priority. {This function is
programmable.) For further flexibility, each level can be
individually disarmed (to discontinue input acceptance)
and disabled (to defer responses) under program control.
Use of the disarm/disable feature makes programmed dy­
namic reassignment of priorities quick and easy, evenwhile
a real-time process is in progress. In establishing a con­
figuration for the system, each group of up to 16 interrupt
levels can have its priority assigned in different ways to
meet the specific needs of a problem.

Programs that deal with interrupts from specially designed
equipment sometimes must be checked out before the equip­
ment is actually available. To permit simulating this spe­
cial equipment, any SIGMA 8 interrupt level can be
"triggered" by the CPU through execution of a single in­
struction. This capability is also useful in establishing a
hierarchy of responses. For example, in responding to a
high-priority interrupt, after the urgent processing is com­
pleted, it may be desirable to assign a lower priority to
the remaining portion so that the interrupt routine is free
to respond to other cri ti ca I sti mu Ii. The interrupt routi ne
can accomplish this by triggering a lower-priority level,
which processes the remaining data only after other inter­
rupts have been handled.

Certain instructions (READ DIRECT and WRITE DIRECT,
described in Chapter 3) allow the program to completely
interrogate the condition of the interrupt system at any
time and to restore that system at a later time.

Nonstop Operation. When connected to special devices
the computer can sometimes become excessively delayed if
the special device does not respond qui ckly. A bui It-in
watchdog timer assures that the SIGMA 8 computer cannot
be delayed for an excessive length of time.

Real-Time Clocks. Many real-time functions must be timed'
to occur at specific instants. Other timing information is
also needed - for example, elapsed time since a given event,
or the current time of day. SIGMA 8 can contain up to four
real-time clocks with varying degrees of resolution to meet
these needs. These clocks also allow easy handling of sep­
arate time bases and relative time priorities.

Rapid Context Switching. When responding to a new set
of interrupt-initiated circumstances, a computer system must
preserve the current operating environment I for continuance

later, while s.g up the new environment. This changing
of environments must, be done quickly, with a minimum of
"overhead" time costs. In the SIGMA 8 system, each one
of up to four blocks of general-purpose arithmeti c registers
can, if desired, be assigned to a specific environment. All
relevant information about the current environment (instruc­
tion address, current general register block, memory­
protection key, etc.) is kept in a 64-bit program status
doubleword (PSD). A single instruction stores the current
PSD anywhere in memory and loads a new one from memory

'to establish a new environment, which includes information
identifying a new block of general-purpose registers. A
SI GMA 8 system can thus preserve and change its operati ng
environment completely through the execution of a single
instruction.

Memory Protection. Both foreground (real-time) and
background programs can be run concurrently in a SIGMA 8
system because a foreground program is protected against
destruction by an unchecked background program.

Variable Precision Arithmetic. Much of the data encoun­
tered in real-time systems are 16 bits or less. To process
this data em ciently, SIGMA 8 provides hal fword arithmetic
operations in addition to fullword operations. Doubleword
arithmetic operations (for extended precision) are also
included.

Direct Data Input/Output. For handling asynchronous I/O,
a 32-bit word can be transferred directly to or from a
general-purpose register so that an I/O channel need not
be occupied with relatively infrequent and nonperiodic
transmissions.

MUl TIUSAGE FEATURES

As implem~nted in the SIGMA 8 system, "multi usage" com­
bines two or more computer application areas. The most
difficult general computing problem is the real-time appli­
cation because of its severe requirements. Similarly, the
most diffi cult multi usage problem is a time-sharing appli­
cation that includes one or more real-time processes. Be­
cause the SIGMA 8 system has been designed on a real-time
base, it is uniquely qualified for a mixture of applications
in a multiusage environment. Many hardware features that
prove valuable for certain application areas are equally
useful in others, although in different ways. This multiple
capabi lity makes SIGMA 8 particu larly effecti ve in multi­
usage applications. The major SIGMA 8 multiusage com­
puter features are described below.

Priority Interrupt. In a multiusage environment, manyele­
ments operate asynchronously. Thus, having a true priority

. interrupt system is especially important. With it the com­
puter system corresponds quickly, and in proper order, to
the many demands being made upon it, without the high
overhead costs of complicated programming, lengthyexe­
cution time, and extensive storage allocations.

Quick Response. The many features that combine to pro­
duce a quick-response sYstem (mu Itiple register blocks,

Real-Time Features/Multiusage Features 5

rapid context saving, multiple push-pAperations)
benefit all users because more of the mZne's power is
avai lable at any instant for useful work.

Memory Protection. The memory protection feature guar­
antees the integrity of programs essential to critical real- .
time applications.

Input/Output. Because of its wide range of capacities
and speeds, the SIGMA 8 I/O system simu Itaneously satis­
fies the needs of many different application areas economi­
cally, both in terms of equipment and programming.

Instruction Set. The large SIGMA 8 instruction set pro­
vides the computational and data-handling capabilities
required for widely differing application areas; therefore,
each user's program length and running time is decreased,
and the speed of obtaining results is increased.

MULTIPROCESSING FEATURES

SIGMA 8 is designed to function as a shared-memory multi­
processor system. It can contain up to four central proces­
sing units and up to 11 input/output processors (the sum of
both types of processors is restricted by the maximum mem­
ory port limitation of 12). All processors in a SIGMA 8
system address memory uniformly.

This section describes the major features of SIGMA 8 that
will allow growth from a monoprocessor to a multi­
processor system.

MULTIPROCESSOR INTERLOCK

In a multiprocessor system, one of the central processing
units often needs exclusive control of a system resource.
This resource may be a region of memory, a particular
peripheral device or, in ~ome cases, a specific software
process. A special instruction provides this required multi­
processor interlock. The special instruction, LOAD AND
SET, unconditionally sets a "1" bit in the sign position of
the referenced memory location during the restore cycle
of the memory operation. If this bit had been previously
set by another processor, the interlock is said to be "set"
an.d the testing program proceeds to another task. If the
sign bit of the tested location is a zero, the resource is
allocated to the testing processor, and simultaneously the
interlock is set for any other processor.

HOMESPACE

Since all processors in a multiprocessor system address mem­
ory in a uniform manner, it is necessary to retain a private
memory that is unique to each processor for its trap and
interrupt locations, I/O communication locations, etc.
This private memory is called Homespace and consists of
1,024 words for each CPU. Each Homespace region be­
gins with real address zero. The implicitly assigned trap
locations, interrupt locations, and lOP communication lo­
cations, plus the 16 locations that are reserved for the

6 Multiprocessing Features

registers, occupy that 320 locations of Homespace.
The remaining words in the Homesapce region can be
used as private, independent storage by the CPU.

MULTIPORT MEMORY SYSTEM

SIGMA 8 has growth capability of up to 12 ports per
memory unit. A memory unit consists of two banks of
8K words, each expandable to 16K, in which each
bank can be concurrently operating when addressed by
two of the possible 12 ports.

This system architecture allows flexibi lity in growth patterns
and provides a large memory bandwidth, essential to multi­
processor systems.

MANUAL PARTITIONING CAPABILITY

SIGMA 8 has manual partitioning capability for all system
units. Thus, besides its primary advantage of increased
throughput capability, a secondary advantage of a multi­
processor system is its fai l-soft abi lity. Any SIGMA 8 unit
can be partitioned by selectively disabling it from the
system busses. Faulty units are thus isolated from the oper­
ational system. Reenabling the connection allows repaired
units to'be returned to service.

MULTIPROCESSOR CONTROL FUNCTION

A multiprocessor control function is provided on all multi­
processor systems. This function provides three basic
features:

1. Control of the External Direct Input/Output bus (Ex­
ternal 010), used for controlling system maintenance
and special purpose units such as A/D converters.

2. Central control of system partitioning.

3. Interprocessor interrupt connection, allowing one pro­
cessor to directly signal another processor that an ac­
ti on is to be taken.

SHARED INPUT/OUTPUT

Provisions have been made in a SIGMA 8 multiprocessor
system for any CPU to direct I/O actions to any I/O pro­
cessor. That is, any CPU can issue an SIO, TIO, TDV,
or HIO instruction to begin, stop, or test any I/O process.
However, the end-action sequence of the I/O process is
directed at one of the possible four CPUs. This feature
(accomplished by setting a pair of configuration control
switches) allows assigning I/O end-action tasks to a
single processor and avoids conflict resolution problems.

•. SIGMA 8 SYSTEM ORGANIZ.N

The primary elements of a basic SIGMA 8 computer
system, as illustrated in Figure 1, are central processor
units, memory units, and input/output processors. These
elements permit the total computer system to be viewed
as a group of program-control I ed subsystems communi­
cati ng wi th a common memory. Each subsystem operates
asynchronously and semi-independently, automatically
overlapping the operation of the other subsystems for
greater speed (when circumstances permit). A CPU sub­
system primarily performs overall control and data re­
duction tQsks while eoch lOP (MIOP or HSRIOP)
subsystem pe..torms the tasks assoc::iated with the exehange
of digital information between the main memory and
selected peripheral devices. A basic system may be
expanded by increasing the number of memory units (up
to 4), increasing the number of lOPs (up to 11, in­
cluding MIOPs and HSRIOPs), or by increasing the num­
ber of central processors (up to 4).

CENTRAL PROCESSING UNIT

This section describes the organization and operation of the
SIGMA 8 central processing unit in terms of instruction
and data formats, information processing, and program
control. Basically, a SIGMA 8 CPU consists of a fast
memory and an arithmetic and control unit as illustrated
in Figure 2.

GENERAL REGISTERS

An i ntegrated-c i rcu it memory, consi sti ng of si xteen 32-bit
general-purpose registers, is used within the SIGMA 8
CPU. These 16 registers of fast memory are referred to as
a register block. A SIGMA 8 system may contain up to
4 register blocks. A 4-bit control field (called the reg­
ister block pointer) in the Program Status Doubleword (PSD)
selects the block currently available to a program. The
16 general registers selected by the register block pointer
are referred to as the current register block. The register
block pointer can be changed when the computer is in the
master mode.

Each general register in the current register block is identi­
fied by a 4-bit code in the range 0000 through 1111
(0 through 15 in decimal, or X'O' through X'F' in hexa­
decimal notation). Any general register may be used as a
fixed-point accumulator, floating-point accumulator,
temporary data storage location, or to contain control in­
formation such as a data address, count, pointer, etc.
General registers 1 through 7 may be used as index registers,
and registers 12 through 15 may be used as a decimal accu­
mulator capable of containing a decimal number of31 digits
plus sign. Registers 12 through 15 are always used when a
decimal instruction is simulated by standard XDS software.

MEMORY CONTROL STORAGE

The CPU has a high-speed integrated-circuit memory for
storage of memory write-protection codes. This storage can
be changed when the computer is in the "master mode.

Memory Write Protection. The memory write-protection
feature includes the necessary integrated-circuit memory
for the memory write locks. These locks operate in con-

" junction with a 2-bit field, called the write key, in the
pro~ram status doubleword. The locks and the key deter­
mine whether any prograM may 01 ter any word looated withIn
the main memory. The write key can be changed only when
the computer is in the master mode. (The functions of the
locks and key are described in the section "Memory
Address Control II •)

COMPUTER MODES

A SIGMA 8 computer operates in either master or slave
----mode.-The mode of operation is determined by the control

bit in the program status doubleword. (See "Program Status
Doubleword".)

MASTER MODE

In this mode, the CPU can perform all of its control func­
tions and can modify any part of the system. The only re­
strictions placed upon the CPU's operation in this mode is
that imposed by the write locks on certain protected parts
of memory. It is assumed that there is a resident operating
system (operating in the master mode) that controls and
supports the operation of other programs (which may be in
the master or slave mode).

SLAVE MODE

The slave mode of operation is the problem-solving mode of
the computer. In this mode, all "privi leged" operations are
prohibited. Privi leged operations are those relating to input/
output and to changes in the basic control state of the com­
puter. All privileged operations are performed in the master
mode by a group of privi leged instructions. Any attempt by
a program to execute a privileged instruction while the com­
puter is in the slave mode results in a trap. The master/
slave mode control bit can be changed when the computer
is in the master mode. However, a slave mode program
can gain direct access to certain executive program op­
erations by means of CALL instructions without requiring
executive program intervention. The operations avai lable
through CALL instructions are establ ished by the resident
operating system.

Sigma 8 System Organization 7

Memory Unit

• 32, 768 words
.900 ns
• Dual banks
• Up to 12 ports

Memory Unit

• 32, 768 words
• 900 ns
• Dual banks
• Up to 12 ports

Memory bus

Memory bus
--.-'--""'\ ___ ~m ••• ___ "_. _____ "l

Processor bus

MIOP CPU

8 sub- 8 sub- 8 sub- 8 sub- • Memory protect

channels channels channels channels • 1 register block
• 2 clocks
• Power fail-safe

(option) (option)

• Floating-point arithmetic
• External interface Channel At Channel st
• 2 interrupt levels

t 4-byte interface option ,~

VO bus

VO bus

,

Single Single Disk unit

Multidevice device device controller

controller controller controller .4-byte
interface

~ ,~

,It , It

VO device VO device VO device VO device- -" -Removable Removable
. . . disk unit disk unit

0 15 • 2 spindles • 2 spindles

Figure 1. A Typical SIGMA 8 System

8 Central Processing Unit

CPU FAST y

GENERAL REGISTER BLOCK (TYPICAL)

o 1 ________ ---'

1 I·m}~:~::::::::::::::::::m:::~:~::::::::t:mt::r:::::::::::::::::::::~:::I:::~:t~:::fIr::::::::::::t::::::f::::1

2 I:): if::::::::::::::: ... ::::::::::::::::: r::::}: ::::i:@i:i::::::::::f::::i:f:~::::):::::I::::I:::::t::!:f:):):1

3 ':::.:!!:::\:If:::::::::;::f;;::::;~:!:;:!:!:::::!;;:!:!:::~!!:r::;:;\;::;;::::::;;::::I:r;::)~:;:~:!:::::!:f::;:::::!:::]

4 I·:::::;:: :::::::j:::;:::::::;::::i;:::::;~;:f::;:::::;:;::::::;::::;;;:::::::::::11::::i::::::::::::::::;:::::;;;;1;::):1:;:::I::ff:1

5 1:::::::r::I:::::::::t:::::;:::j::::;j::j:;::j:::::;:::::::;:::;t;:;:;;::;:;:;::;;;;:;:::;;j::;::::;j:jt:;;:;;;;t;:;:j;:::;1;:;;::;1

6 [:::::::::::;:::::::::::::::::::::j::;::::::;:::::::::::;;:f;:::;;;:;;;;f:::;;:;:::I::::::::~:::~:;::::;;;::::::;;::::::::m:;::::Id

7 1::::;::::::::;:::::::::::::::::::::::1:::::::;:::;::::;:::::t;II;:;::IJ::;lf::::;:r::::::::::Il::::;:r:::::rL

8 _I _______ -.J

9 _I _______ ---'

10,--1 ____________ ~

11 _I ________________ ~

12,--1 ________________ ~

13_1 ______________ __

14~1 __________________ ~

15

MEMORY CONTROL STORAGE

Memory Write Protection

1IIIIIIIIIIIIIISillDJ
1- 256 2-bit write locks -I

Index
Registers

•

METIC AND CONTROL UNIT

INSTRUCTION REGISTER

o Indirect Address Flag
o

II I II I I I Operation Code Field
1 7

[[[]] General Register Designator
a 11

lIIJ Index Register Designator
12 14

Reference Address Field

11111/11111111111111
15 31

Memory
•

I/O Processors
• • I

Read/Write Direct
• •

Interrupts I

I • Priority Interrupt System Write Direct
L---__ .-J ~~

PROGRAM STATUS DOUBLEWORD

[]llJ Condition Code
o 3

[IT] Floating-point Mode Control
5 7

o Master/Slave Mode Control
8

[0' Arithmetic Trap Masks

10 "

111111111111111111
15 31

CD Write Key
3435

[:oJ Interrupt Inhibits

37 39

Instruction
Address

1III IIIII Trapped Status Field
48 55

OIIJ Register Block Pointer
56 59 o Register AI tered
GO

Figure 2. Centrol Processing Unit

Central Processing Unit 9

INFORMATION FORM.

Nomenclature associated with digital information within the
SIGMA a computer system is based on functional ar:'d/or
physical attributes. A "word" of digital information may
be either an instruction word or a data word.

The basic element of SIGMA a information is a 32-bit word, .
in which the bit positions are numbered from 0 through 31,
as follows: .

A SIGMA 8 word can be divided into two 16-bit ports
(halfwords) in which the bit positions are numbered from
o through '15, as follows:

A SIGMA a word can also be divided into four a-bit parts
(bytes) in which the bit positions are numbered from
o through 7, as follows:

Byte 1
01234567

Two SIGMA a words can be combined to form a 64-bit
element (a doubleword) in which the bit positions are
numbered from 0 through 63, as follows:

I : Least signif:cont word :
'''' ~ "I" ~ " ~ .. " .",1" ~ ~ ~ ... '" "I" " " ~ " " ,,,.1 ,.,

I
Doubleword I

I

I Word (even address) Word (odd address) !
i Halfword 0 Halfword 1 Halfword 0 Halfword 1
I

: Byte 0 / Byte 1 Byte 21 Byte 3 Byte 0 / Byte 1 Byte 2/ Byte 3

For fixed-point binarAthmetic, each element of
information represent;Berical data as a signed integer
(bit O,represents the sign, remaining bits represent the mag­
n itude, and the binary po int is assumed to be just to the
right of the least significant or rightmost bit). Negative
values are represented in two's complement form. Other
formats required for floating-point and decimal instructions
are described in Chapter 3.

INFORMATION BOUNDARIES

SIGMA a instructions assume that bytes, halfwords, and
doublewords ore locoted in maIn memory according to the
following boundary conventions:

1. A byte is located in bit positions 0 through 7,
a through 15, 16 through 23, or 24 through 31 of a
word.

2. A halfword is located in bit positions 0 through 15
or 16 through 31 of a word.

3. A doubleword is located so that bits 0 through 31 are
contained within an even-numbered word, and bits 32
through 63 are contained within the next consecutive
(odd-numbered) word.

The var'ious information boundaries are illustrated in
Figure 3.

INSTRUCTION REGISTER

The instruction register contains the instruction that is cur­
rently being executed by the cpu. The format and fields
of the two general types of instructions (immediate operand
and memory-reference) are described below.

Doubleword i
I . .

Word (even address) Word (odd address) I
I

Halfword 0 Halfword 1 Halfword 0 Halfword 1 i
I

Byte 0 / Byte 1 Byte 2/ Byte 3 Byte 0 I Byte 1 Byte 21 Byte 3:

Figure 3. Information Boundaries

10 Central Processing Unit

MEMORY-REFERENCING INSTR.ONS

Most SIGMA 8 CPU instructions make reference to an
operand located in main memory. The format for this type
of. instruction is

Bits

o

1-7

8-11

Description

This bit position indi cates whether indirect ad­
dressing is to be performed. Indirect addressing
(one level only) is performed if this bit position
contains a 1 and is not performed if this bit posi­
tion contains a O.

Operation Code. This 7-bit field contains the
code that designates the operation to be performed.
See the inside front and back covers as well
as Appendix B for complete listings of opera­
tion codes.

R field. For most instructions this 4-bit field des­
ignates one of 16 general registers of the current
register block as an operand source, result destina­
tion, or both.

12-14 X field. This 3-bit field designates anyone of
general registers 1-7 of the current register block
as an index register. If X is equal to 0, indexing
wi II not be performed; hence, register 0 cannot be
used as an index register. (See "Address Modifi­
cation" for a more complete description of the
SIGMA 8 indexing process.)

15-31 Reference Address. This 17-bit field normally
contains the reference address of the instruction
operand. Depending on the address modification
(direct/indirect or indexing) required, the ref­
erence address is translated into an effective
address. (See "Memory Reference Addresses II for
further details.)

IMMEDIATE OPERAND INSTRUCTIONS

Some SIGMA 8 CPU instructions are of the immediate
operand type, which is particularly efficient because the
required operand is contained within the instruction word.
Hence, memory reference, indirect addressing, and index­
i ng are not requ ired.

, -

Bits

o

1-7

8-11

12-31

This bit position must be coded with a O. If
this bit is coded with a 1, the instruction is
interpreted as being nonexistent. (See "Trap
System".)

Operation Code. This 7-bit field contains a code
that designates the operati on that wi II be per­
formed. When any immediate operand operation
code is encountered, the CPU interprets the con­
tents of bits 12-31 of the instruction word as an
operand. Immediate operand operation codes are
as fol lows:

Operation
Code

X'02'

X'20'

X'21'

X'22'

X'23'

Instruction
Name

Load Conditions and
Floating Control
Immediate

Add Immediate

Compare Immedia te

Load Immediate

Multiply Immediate

Mnemonic

LCFI

AI

CI

LI

MI

R field. This 4-bit field designates one of 16 gen­
eral registers of the current register block. This
register may contain another operand and/or be
designated as the register in which the results of
this operation wi II be stored or accumulated.

Operand. This 20-bit field contains the immedi­
ate operand. Negative numbers are represented
in two's complement form. For arithmetic opera­
tions, bit 12 (the sign bit) is extended (dupli­
cated) to the left through position 0 to form a
32-bit operand.

The byte string instructions (described in Chapter 3) are
simi lar to immediate operand instructions in that they can
not be modifi ed by indexing. If a byte string instruction is
indirectly addressed, it is treated as a nonexistent instruc­
tion by the computer.

MAIN MEMORY

This section describes the organization and operation of the
main memory and the various modes and types of addressing,
including indexing.

Main Memory 11

MEMORY UNIT •

The main memory for SIGMA 8 is physically organized as a
group of "units ". A memory unit is the smallest, logically
complete part of the system, and the smallest part that can
be logically isolated from the rest of the memory system.
A memory unit always consists of two physical memory banks.
Both memory banks may be simultaneously and asynchronously
operating. Each memory unit has a set of from 2 to 12
"ports II or access points that are common to both banks
within the unit; that is, all ports in a given memory unit
provide access to both banks within that unit. The minimum
SIGMA 8 system of 16,384 words consists of one memory
unit with two ports and two banks of 8192 words each.

MEMORY BANK

A memory bank is the basic functionally independent ele­
ment of the memory system. It consists of magnetic storage
elements, drive and sense electronics, control timing, and
data registers. A bank consists of 8, 192 memory locations
expandable to 16,384. Each location stores a 32-bit in­
formation word (instruction or data), plus a parity bit.

MEMORY INTERLEAVING

Memory interleaving is a bui It-in hardware feature that
distributes sequential addresses into independently operating
memory banks which are of equal size. Interleaving increases
the probability that a processor can gain access to a given
memory location without encountering interference from
other processors.

Two-way interleaving between two equal size banks within
a unit causes even addresses to be assigned to bank A and
odd addresses to bank B. Four-way interleaving between
two equal size units (each with two equal size banks) causes
every fourth address to be assigned to its respective bank.

MEMORY UNIT STARTING ADDRESS

Each memory unit in the SIGMA 8 system is provided its
individual identity by means of starting address switches.
These switches define the range of addresses to which the
unit responds when servicing memory requests. All ad­
dresses, including the starting address, for a given unit are
the same for all ports in that unit; that is, the address of a
given word remains the same regardless of the port used to
access tbe word. The starting address of a unit must be on
a boundary equal to a multiple of the size of the unit. In
the event that the unit is interleaved with another unit, the
starting address for the combined units must be on a bound­
ary equal to a multiple of the total size of the interleaved
assembly.

MEMORY PORTS

The memory ports of a memory unit are the connecting points
between processors (lOPs and CPUs) and memory banks, and

12 Main Memory

they permit the processoAaccess memory locations. Each
memory unit may have fr~ to 12 independent access
ports. A memory unit port is effectively a switch between
all the busses entering that unit and the two banks that
make up the unit. As an example, a unit that has four
busses connected to it and two banks withi n it would have
a port structure designated as a 4 x 2 switch. The ports
examine incoming addresses to determine if the request is
for a bank within the memory unit. They also determin.e
the priority of memory requests received simultaneously.

The minimum number of ports for a SIGMA 8 system is
two, one for the CPU and one for an lOP. The number
of ports may be expanded, in increments of one, to a
maximum of 12.

PORT PRIORITY

The multiport structure and the dual-bank memory (within
each unit) allow two simultaneous requests for memory to be
processed immediately, providi ng that the requests are re­
ceived on different ports, for different banks, and neither
bank is busy. If a requested bank is busy, or if simul­
taneous requests are received for the same bank, the
memory port logic selects the highest priority request first.

Normally, all ports in a memory unit operate on a priority
chain, with port number 0 having the highest priority and
port number lin II having the lowest. In general, CPUs are
connected to the higher priority ports and lOPs are con­
nected to the lower priority ports. If simultaneous requests
are received for a single bank on port 2 and port 4, port 2
has access to the memory bank first.

In addition to the normal priority that prevails among the
ports, as described above, each port has two priority levels
(a normal priority and a high priority). A processor wi /I
usually request the normal priority level; however, under
certain conditions a processor may request high priority
access to a given port (e. g., an lOP wi" wait with a low
priority memory request unti I half of its avai lable buffering
has been filled on input or empties on output; it then re­
quests a high priority memory reference). If one port
receives a high priority request, that portis priority is then
higher than the normal priority of all other ports. If more
than one port is on a high priority at the same time, the
normal sequence of priority will prevail among those ports
on high priority.

CPU PORT

When the memory is quiescent, the port selection logic is
set to a condition that automatically selects port O. The
elimination of switching time (to select a port) results in a
timing preferential for the processor connected to port O.
This is particularly advantageous for a monoprocessing sys­
tem where the CPU would normally be connected to port 0
of each memory unit •.

HOMESPACEe

In SIGMA 8 multiprocessing system, all processors address
memory in the same manner • However, si nce the C PUs do
not share the same interrupt or trap systems, it is necessary
to provide private storage for each CPU to contain its trap
and interrupt locations, VO communication locations, and
general registers. This private storage is called Homespace.

Each CPU contains a Homespace bias. The Homespace bias
is the address of a 16K region of main memory, of which
the first 1,024 words is Homespace. After an effective
address is generated in the CPU, Qnd just before it is sent
to memory, the most signifi cant 7 bits are tested. If all bits
are equal to zero, then a 3-bit Homespace bias is inserted
in place of the most significant three bits. This means that
any ti me the CPU makes a reference to the fi rst 1, 024 words
of real memory, that reference may be relocated by means
of the Homespace bias.

The 3-bit Homespace bias is supplied by a set of three
switches in a SIGMA 8 CPU. They can be changed
manually to move the Homespace region from one area to
another within the 8 possible areas.

When mu Itiprocessors are used, a given CPU may reference
the Homespace region of other processors by usin9 the nor­
mal memory addresses for that region. The only exception to
this is that the Homespace of a CPU that is set at real mem­
ory location zero, cannot be referenced by any other CPU.
However, the CPU that has its Homespace at real location
zero may reference the Homespace of all other CPUs.

Each Homespace region contains all the trap locations, in­
terrupt locations, and lOP communication locations for a
given CPU (see Table 1). These implicitly assigned mem­
ory locations plus the 16 locations that are reserved for the
general registers, occupy the first 320 locations of Home­
space. The remaining words in the Homespace region can
be used as private, independent storage by the CPU.

MEMORY REFERENCE ADDRESS

Homespace memory locations 0 through 15 are not normally
accessible to the programmer because their memory ad­
dresses are reserved as register designators for "register­
to-register II operations. However, an instruction can treat
any register of the current register block as if it were a lo­
cation in main memory. Furthermore, the register block can
be used to hold an instruction (or a series of up to 16 instruc­
tions) for execution just as if the instruction (or instructions)
were in main memory. The only restriction upon the use of
the register block for instruction storage is:

If an instruction accessed from a general register uses
the R field of the instruction word to designate the
next higher-numbere'd register, and execution of the
instruction would alter the contents of the register so
designated, the contents of that register should not be
used as the next instruction in sequence because the
operation of the instruction in the affected register
would be unpredictable.

Dec.

000

015

016
·
·
031

032
033

034

063

064

·
079

080
·
085

086

087

088
·
091

092

·
095

096

111

-- --

304

319

320
·
1023

1. Homespace Layout

Hex. Function

000
Addresses of general registers

OOF

010
Reserved for future use

01F

020
CPU/lOP communication locations

021

022
Load routine or reset recovery routine

03F

040 .
Trap locations

04F

050
Override group

055

056 Processor fau I t

057 Memory fau I t Internal
Inte rrupts,

058
group X'O'

Counter group

058

05C
\ -y,! I), f.

/\ CA.:JY'-" - Ii ', ,

I/O group

05F '2 o("c-t./,;..12/f';j,S',cJ

060
External Interrupts, group X'2'

·
06F

130' -- -

· External Interrupts, group X'F'

13F

140

· Reserved locations

3FF

Main Memory 13

Description of the various types ofaddresAused in the
SIGMA S are based upon terms and conce~defined below.
References are made to Figure 4, which illustrates the con­
trol flow and data flow during address generation.

Instruction Address. This is the address of the next instruc­
tion to be execution. The 17-bit instruction address is con­
tained within bits 15-31 of the program status doubleword.

Reference Address. This is the 17-bit address associated
with any instruction contained within bits 15-31 of the

. instruction itself. The reference address may be modified
by using indirect addressing or indexing. A reference ad­
dress becomes an effective address after the indirect ad­
dressing and/or post-indexing (if required) Is perfofmed.
(See Figure 4.)

Di rect Reference Address. If neither indirect addressing
nor indexing is called for by the instruction (i.e., if bit
position 0 and the X field of the instruction are 0), the
reference address of the instruction (as defined above) be­
comes the effective address.

Indirect Reference Address. When bit position 0 of any
instruction (except immediate operand and byte string in­
structions) is a 1, indirect addressing is specified. That is,
bits 15 through 31 of the instruction word are not used as
a di rect reference address. Instead, bits 15 through 31 of
the instruction word point to (address) a location which
contains the direct reference address. Contents of bit posi­
tions 15 through 31 of the referenced location constitute
the direct reference address. Indirect addressing can be
performed only once during each instruction (one level)
and indexing (if specified) is performed after the direct
reference address has replaced the indirect reference ad­
dress. Performing the indexing operation after the in­
direct address operation is referred to as post-indexing.
Refer to IIAddress Modification ll for further details. .

Index Reference Address. If indexing is called for by the
instruction (a nonzero value in bit positions 12-14 of the
instruction), the direct or indirect reference address is
modified by addition of the displacement value in the gen-­
eral register (index) called for by the instruction (after
scaling the displacement according to the instruction type).
This final reference address value (after indirect addressing,
indexing, or both) is defined as the effective address of the
instruction. Indexing after indirect addressing is called
postindexing. (See IIAddress Modification" for further
details:)

Displacements. Displacements are 19-, 18-, 17-, or 16-bit
values used in index registers and by byte string instructions
to generate effective addresses of the appropriate size (byte,
halfword, word, or doubleword).

Register Address. If any instruction produces an address
that is a memory reference (i.e., a direct, indirect, or
indexed reference address) in the range 0 through 15,
the CPU does not attempt to read from or write into main

14 ~in Memory

memory. Instead, th. low-order bits of the reference
address are used as a general register address, and the gen­
eral register (of the current register block) corresponding to
this address is used as the operand location or result destina­
tion. Thus, the instruction can us~ any register in the cur­
rent register block as the source of an operand, the location
of a direct address, or the destination of a result. Such
usage is referred to as a "register-to-register" operation.

Actual Address. An actual address is the address value
actually used by the CPU to access main memory via the
memory address register (see Figure 4). If the effective
address is XIO' - XI F', one of the general registers is ad­
dressed. All actual addresses are 16, 17, 18, or 19 bits
as required to address a doubllword, word, halfword, or
byte, (Le., an effective address is transformed intoan actual
address whenever Homespacing is performed).

Effective Address. The effective address is defined as the
final address computed for an instruction (output from the
address generator in Figure 4). The effective address is
usually used as the address of an operand location or result
destination. However, some instructions do not use the
effective address as a location reference; instead, the ef­
fective address is used to control the operati on of the in­
struction (as in a shift instruction), to designate the address
of an input/output device (as in an input/output instruction),
or to designate a specific element of the system (as in a
READ DIRECT or WRITE DIRECT instruction).

Effective Location. An effective location is defined as the
actual location (in main memory or in the current regis­
ter block) that is to receive the result of a memory­
referencing instruction, and is referenced by means of an
effective address.

Effective Operand. An effective operand is defined as the
contents of an actual location (in main memory or in the
current register block) that is to be used as an operand by a
memory-referencing instruction, and is referred to by means
of an effective address.

ADDRESSING

Except for the special type of addressing that is performed
only by some interrupt and trap instructions, all SIGMA 8
addressing is as follows:

1. Each reference address is a 17-bit word address.

2. The reference address may be direct or indirect, with
or without postindexing.---- ---

- -;-;;ispla~=~ts associated with indexing are :utoma:--\
cally aligned, as required, for doubleword, word, \
halfword, or byte operations; and the effective ad- \
dress is either a 16-bit doubleword address, 17-bit)
word address, l8-bit halfword address, or a 19-bit
byte address. -~--------------~-J

4. Memory write protection is automatically invoked.

CONTROL FLOW

Add Homespace
(if required)

Fetch Referenced
Address

B

Reference}
Address

EffectiVe}_
Address

Actual}
Address

Figure 4. Addressing Logic

DATA FLOW

Instruction
Word

I Index

J Register

r l'
Address
Generator

----1
Write Locks
(all 128K words)

~

Homespace
(if required)

---~

" Memory
Address
Register

Main Memory

JV.ain Memory 15

ADDRESS MODIFICATION

• INDIRECT ADDRESSING

The 7-bit operation code field of the SIGMA 8 instruction
word format provides for up to 128 instruction operation
codes, nearly all of which can use indirect addressing (the
exceptions, already mentioned, are the immediate-addressing
instructions). The indirect addressing operation is limited
to one level, as called for by the indirect address bit (bit
position 0) of the instruction word. Indirect addressing does
not proceed to further levels, regardless of the contents of
the word location pointed to by the reference address field
of the instructi on. Indirect addressing occurs before index­
ing; that is, the 17-bit reference address field of the in­
Itruction ia used to obtain a word, ancl the 17 low-ord.r
bits of the word thus obtained effectively replace the ini­
tial reference field; then indexing is carried out according
to the operation code of the instruction.

INDEXING AND INDEX REGISTERS

The X field of the normal instruction format permits anyone
of registers 1 through 7 in the current register block to be
designated as an index register. The contents of this regis­
ter are then treated as a 32-bit displacement value.

Instruction in memory:

Instruction in instruction register:

Byte operation indexing alignment:

Halfword operation indexing alignment:

Word operation indexing alignment:

Shift operation indexing alignment:

Doubleword operation
indexing alignment:

The indexing techniqu~loyed in SIGN\A is unique.
SIGMA instructions pro~ for operations on bytes, half­
words, words, and doublewords. These units of information
are typically organized in lists that are processed sequen­
tially. The SIGN\A indexing technique is based on the con­
cept that the index register contains an integer value (k)
that permits the accessing of the kth item of a list (where
k = 0 refers to the first item, k = 1 refers to the second
item, etc.), independent of the kind of data that is in the
list. Thus, a byte-addressing instruction that is indexed
accesses the kth byte of a list; a halfword-addressing in­
struction that refers to the same index register obtains the
kth halfword of a list; a word-addressing instruction that
refers to the same index register obtains the kth word of a
list; and a doubleword-addressing instruction that is indexed
with the lame rlglltor obtaIn. the kth doubloword of a lIit.

Figure 5 shows how the indexing operation takes place. As
the instruction is brought from memory, it is loaded into a
34-bit instruction register that initially contains O's in the
2 low-order bit positions (32and 33). The displacement
value from the index register is then aligned with the in­
struction register (as an integer) relative to the addressing
type of the instruction. That is, if it is a byte-addressing
instruction, the displacement is lined up so that its low­
order bit is aligned with the least significant bit of the

Effective address: I : 19-bit addre:. value I
.,s 16 I; 18 1,120 21 222324 2.s 26 27128 29 30 31 32 33

Figure 5. Index Displacement Alignment

16 Main Memory

34-bit instruction register. The dis&ment is shifted one
bit to the left of this position for a ~ord-addressing in­
struction, two bits to the left for a word-addressing instruc­
tion, and three bits to the left for a doubleword-addressing
in.struction. An addition process then takes place to develop
a 19-bit address, which is referred to as the effective ad­
dress of the instruction. High-order bits of the 32-bit
displacement field are ignored in the development of this
effective address (i. e., the 15 high-order bits are ignored
for word operations, the 25 high-order bits are ignored for
shift operations, and the 16 high-order bits are ignored for
doubleword operations). However, the displacement value
can cause the effec.tive address to be I ess than the initial
reference address within the instruction if the displace­
ment value contains a sufficient number of high-order lis
(i. e., the displacement is a negative integer in two's
complement form).

The effective address of an instruction is always a 19-bit
byte address value; however, this value is automatically
adjusted to the SIGMA 8 information boundary con­
ventions. Thus, for halfword-addressing instructions, the
low-order bit of the effective halfword address is 0; for
word-addressing instructions, the 2 low-order bits of the
effective word address are O's; and for doubleword­
addressing instructions, the 3 low-order bits of the ef­
fective doubleword address are O's.

If no indexing is used with a byte-addressing instruction,
the effective byte is the first byte (bit positions 0-7) of
a word location. If no indexing is used with a halfword­
addressing instruction, the effective halfword is the first
halfword (bit positions 0-15) of a word location. A
doubleword operation always involves a word at an even­
numbered word address and the word at the next sequen­
tial (odd-numbered) word address. If an odd-numbered
word location is specified in a doubleword-addressing
instruction, the low-order bit of the effective address
field (bit position 31) is automatically forced to '0. Thus,
an odd-numbered word address (referring to the middle
of a doubleword) designates the same doubleword as an
even-numbered word address, when used in a doubleword­
addressing instruction.

MEMORY ADDRESS CONTROL

In a SIGN\A 8 computer, the use of main memory by a pro­
. gram is controlled by the memory locks. The memory locks

provides memory write protection for all modes of pr'ograms
within the 131,072 words of memory.

MEMORY WRITE LOCKS

Memory protection is provided by a lock and key technique.
A 2-bit write-protect lock (WL) is provided for each
512-word page of the 128K words of memory addresses. The
write-protect locks consist of 256 2-bit write locks, each
assigned to a 512-word page of addresses as shown below.

Addresses
X'600'-X'7FF'

Addresses
X'400'-X'5FF'

Addresses
X'200'-X'3FF'

Addresses
O-X'l FF'
(memory page O)

Addresses
X'lFEOO'­
X'lFFFF'
(memory
page 255)

Addresses
X'lFCOO'
X'l FDFF'

The write-protect locks can be changed only by executing
the privileged instruction MOVE TO MEMORY CONTROL
(see "Control Instruction").

The write key (a 2-bit field in PSD for any operating
program) works in conjunction with the lock storage to de­
termine whether any program (slave or master mode) can
write into a specific page of main memory locations. The
keys and locks control access for writing, according to the
following rules.

1. A lock value of 00 means that the corresponding mem­
ory page is "unlocked"; write access to that page is
permitted independent of the key value.

2. A key value of 00 is a "skeleton" key that will open
any lock; thus, write access to any memory page is
permitted independent of its lock value.

3. A lock value other than 00 for a memory page permits
write access to that page only if the key value is iden­
tical to the lock value.

Thus, a program can write into a given memory page if the
lock value is 00, if the key value is 00, of if the key value
matches the lock value.

The locks and keys are examined to determine whether the
program (master or slave mode) is allowed to alter the
contents of the main memory location. If an instruction
attempts to write into a write-protected memory page, the
computer aborts the instruction, and traps to Homespace
location X'40', which is the "nonallowed operation II trap
(see "Trap System").

PROGRAM STATUS DOU BLEWORD

The critical control conditions of a SIGN\A 8 CPU are
defined within 64 bits of information. These 64 bits are
collectively referred to as the current program status double­
word (PSD). The current PSD may be considered as a 64-bit
i~ternal CPU register, although it actually exists as a col­
lection of separate registers and fl ip-flops. When stored in
memory, the PSD has the following format:

Iv\ain Memory 17

Desig-
nation Function

CC Condition code. This generalized 4-bit code
indicates the nature of the results of an instruc­
tion. The significance of the condition code
bits depends on the particular instruction just
executed. After an instruction is executed, the
instructions BRANCH ON CON DITIONS SET
(BCS) and BRANCH ON CONDITIONS RESET
(BCR) can be used singly or in combination, to
test for a particular condition code setting (these
instructions are'described in Chapter 3, "Execute/
Branch Instructions").

In some operations, only a portion of the condi­
tion code is involved; thus, the term CCl refers
to the first bit of the condition code, CC2 to the
second bit, CC3 to the third bit, and CC4 to the
fourth bi t. Any program can change the current
value of the condition code by executing either
the instruction LOAD CONDITIONS AND
FLOATING CONTROL IMMEDIATE (LCFI)orthe
instruction LOAD CONDITIONS AND FLOATING
CONTROL (LCF). Any program can store the
current condition code by executing STORE
CONDITIONS AND FLOATING CONTROL
(STCF). These instructions are described in
Chapter 3, II Load/Store Instructions".

FS Floating significance mode control.

FZ Floating zero mode control.

FN Floating normal ize mode control. The three
floating-point mode bits (FS, FZ, and FN) con­
trol the operation of the computer with respect
to floating-point significance checking, the
generation of zero results, and the normalization
of the results of floating-point additions and
subtractions, respectively. (The floating-point
mode controls are described in Chapter 3,
"Floating-point Instruction".) Any program can
change the state of the current floating-point
mode controls byexecuting either the instruction
LCFI or the instruction LCF. Any program can
store the current state of the current floating­
point mode controls by executing the instruction
STCF.

MS Master/slave mode control. The computer is in
the master mode when this bit is a 0; or in the
slave mode when this bit is a 1. A master mode
program can change the mode control by exe­
cuting either the instruction LOAD PROGRAM
STATUS DOUBLEWORD (LPSD) or the instruction
EXCHANGE PROG RAM STATUS DOUBLEWORD
(XPSD). These two privileged instructions are
described in Chapter 3, "Control Instructions".

18 Main Memory

Desig-
nation Function'

DM Decimal mask. This bit position is used only
to preserve the status of the decimal arithmetic
fault trap mask when a SIGMA 6,7, or 9program
is being executed. The decimal mask bit does
not affect the operation of the SIGMA 8 com­
puter in any other way.

AM Arithmetic mask. The fixed-point arithmetic
overflow trap is in effect when this bit is a 1.
The instructions that can cause fixed-point over­
flow are described in the section "Trap System".
The arithmetic trap mask can be changed by a
master mode program executing either the in­
struction LPSD or the instruction XPSD.

IA Instruction address. This 17-bit field contains
the address of the next instruction to be
executed.

WK Write key. This field contains the 2-bit key
used in conjunction with the memory protection
feature. A master mode program can change
the write key by executing either the instruction
LPSD or ,the instruction XPSD.

CI Counter interrupt group inhibit.

II Input/output interrupt group inhibit.

EI External interrupt group inhibit. The three
inhibit bits (CI, II, and EI) determine whether
certain interrupts may occur. The functions
of the interrupt inhibits are described in the
secti on "Interrupt System ". A master mode pro­
gram can change the interrupt inhibits by exe­
cuting LPSD, XPSD, or the instruction WRITE
DIRECT 0/'1 D). The WD instruction is described
in Chapter 3, "Control Instructions".

TSF Trapped status field. This field is used for the
tracing of foul ts during trap conditions. (For a
detailed explanation, see "Trap System", in­
cluding Table 5, in this chapter.)

RP Register pointer. This 4-bit field selects one of
the four possible blocks of general-purpose regis­
ters as the current register block. Unused codes
within this field are reserved for future use. A
master mode program can change the register
pointer by executing LPSD, XPSD, or the in­
struction LOAD REGISTER POINTER (LRP). The
LRP instruction is described in Chapter 3,
"Control Instructions ll

•

Desig­
nation

RA

Function

Register altered bit. In the event of a trap
entry, this bit is set to 1 when any general
register or location in memory has been altered
in the execution or partial execution of the
instruction that caused the trap.

INTERRUPT SYSTEM

"armed ", it a.ces to the waiting state. When all the
conditions for . acknowledgment have been achieved, the
interrupt level advances to the active state, where it causes
the computer to take an instruction from a specific location
in memory. The computer may execute many instructions
between the time that the i nterrupt-requesti ng condition is
sensed and the time that the actual interrupt acknowledg­
ment occurs.

When a condition that will result in an interrupt is sensed,
a signal is sent to an interrupt le el. If that level is

Up to 238 interrupt levels are normally available, each
with a unique location (see Table 2) assigned in main mem­
ory, with a unique priority, and capable of beings electively
armed and/or enabled by the CPU. Also, any interrupt

Tobie 2. SIGMA a Interrupt Locations
-. -..

Location WRITE 01 RECT PSD WRITE DIRECT
Dec. Hex. Regi ster bi tt Function Availability Inhibit Group codett

80 50 none Power on --~--~-- ---standard none
81 51 Power off

82 52 16 Counter 1 count pulse optional
83 53 17 Counter 2 count pul se (as a set) none

84 54 18 Counter 3 count pulse
85 55 19 Counter 4 count pulse standard
86 56 20 Processor faul t
87 57 21 Memory fault

88 58 22 Counter 1 ze'ro optional X10'
89 59 23 Counter 2 zero (as a set)

CI
90 5A 24 Counter 3 zero standard
91 58 25 Counter 4 zero

92 5C 26 Input/Output
standard II

93 50 27 Control Panel

. 94 5E Reserved for future use
95 5F Reserved for future use

96 60 16
External Group 2 X' 2

1

111 6F 31

112 70 16
Externa I Group 3 X'3

1

127 7F 31

optional EI

288 120 16
External Group 14 X'E'

303 12F 31

304 130 16
External Group 15 X'F'

319 13F 31

tWhen the privileged instruction WRITE DIRECT is used in the interrupt control mode to operate on interrupt levels, the
interrupt levels are selected by specific bit positions in register R. The numbers in this column indicate the bit position
in register R that corresponds -to the various interrupt levels.

ttThe numbers in this column indicate the group codes (for use with WRITE DIRECT) of the various interrupt levels.

Interrupt System 19

level can be "triggered" by the CPU (supp.with a signal
at the same physical point where the signal the external

• source would enter the interrupt level). The triggering of
an interrupt permits the testing of special systems programs
before the special systems equipment is actually attached
to the computer, and also permits an interrupt-servicing
routine to defer a portion of the processing associated with
an interrupt level by processing the urgent portion of an
interrupt-servicing routine, triggering a lower-priority level
(for a routine that handles the less-urgent part), then
clearing the high-priority interrupt level so that other in­
terrupts may occur before the deferred interrupt response
is processed.

SIGMA 8 interrupts are arranged in groups that are con­
nected in a pI'edetermined priority chain by groupsof levell.
The priority of each level within a group is fixed; the first
level has the highest priority and the last level has the low­
est. The user has the option of ordering a machine with a
priority chain starting with the override group and con­
necting all remaining groups in any sequence. This allows
the user to establ ish external interrupts above, between,
or below the counter and input/output groups of internal
interrupts. Figure 6 illustrates this with a configuration
that a user might establ ish, where (after the override group)
the counter group of internal interrupts is given the second­
highest priority, followed by the first group of external in­
terrupts, then the input/output group of internal interrupts,
and finally all succeeding groups of external interrupts.

INTERNAL INTERRUPTS

Internal interrupts include those standard interrupts that are
normally suppl ied with a SIGMA 8 system, as well as the
additional counter interrupts.

1 st Priority 2nd Priority

Override Counter
I---

Interrupts Interrupts

3rd Priority

y External Interrupts Group 2 r-
4th Priority

Input/Output
Interrupts

5th Priority

y Externa I Interrupts Group 3

Figure 6. Typical Interrupt Priority Chain

20 Interrupt System

OVERRIDE GROUP (L.IONS X'50 ' TO X'57')

The eight interrupt levels of this group always have the
highest priority in a SIGMA 8 system and can never be
inhibited. The power fai I-safe feature incl udes the power
on and power off interrupt levels. A system can contain
2 or 4 count-pulse interrupt levels that are triggered by
pulses from clock sources. Counter 4 has a constant fre­
quency of 500 Hz. Counters 1, 2, and 3 can be individu­
ally set to any of four manually switchable frequencies -
the commercial I ine frequency, 500 Hz, 2 kHz, or a
user-suppl ied external signal - that may be different for
each counter. (All counter frequenci es are synchronous
except for the I ine frequency and the signal suppl ied by
the user.) Each of the count-pulse interrupt locations must
eonteiln oi1@ of the Ffioelffy and test InsffUdions (MfS, M'fH,
or MTW) or an XPSD instruction. When the modification
(of the effective byte, halfword, or word) causes a zero
result, the appropriate counter-equals-zero interrupt (see
"Counter-Equals-Zero Group") is triggered.

The override group also includes a processor fault and a
memory fault interrupt level. The processor fault interrupt
level is triggered by a signal from an input/output processor
(lOP) or another CPU when these devices detect certain
fault conditions. The memory fault interrupt level is trig­
gered by a signal that the memory generates when it detects
certain fault conditions. (See "Trap System" for further
details on processor and memory faults.)

COUNTER-EQUALS-ZERO GROUP (LOCATIONS X158'
TO X I 5B')

Each interrupt level in the counter-equals-zero group
(called a counter-equals-zero interrupt) is associated with
a count-pulse interrupt in the override group. When the
execution of a modify and test instruction in the count­
pulse interrupt location causes a zero result in the effective
byte, halfword, or word location, the corresponding counter­
equals-zero interrupt is triggered. The counter-equals-zero
interrupts can be inhibited or permitted as a group. If bit
position 37 (CI) of the current program stat.us doubl eword
contains a 0, the counter-equals-zero interrupts are allowed
to interrupt the program being executed. However, if the
Cl bit is a 1, the counter-equals-zero interrupts are not
allowed to interrupt the program. These interrupts wait
unti I the CI bi t is reset to 0 and then interrupt the program
according to priority.

I

INPUT/OUTPUT GROUP (LOCATIONS X'5C' AND X I 5D')

This interrupt group includes two standard interrupts: the I/O
interrupt and the control panel interrupt. The I/O interrupt
level accepts interrupt signals from the standard I/O system.
The I/O interrupt location is assumed to contain an
EXCHANGE PROGRAM STATUS DOUBLEWORD (XPSD)
instruction that transfers program control to a routine for
servicing all I/O interrupts. The I/O routine then contains
an ACKNOWLEDGE I/O INTERRUPT (AIO) instruction that
identifies the source and reason for the interrupt.

The control panel interrupt leve.connected to the
INTERRUPT button on the proces control panel. The
control panel interrupt level can thus be triggered by
the computer operator, allowing him to initiate a spe­
cific routine.

The interrupts in the input/output group can be inhibited
or permitted by means of bit position 38 (II) of the program
status doubleword. If II is a 0, the interrupts in the I/O
group are allowed to interrupt the program being executed.
However, if the II bit is a 1, the interrupts are inhibited
from interrupting the program. '

EXTERNAL INTERRUPTS

A SIGMA 8 system can contain up to 14 groups of optional
interrupt levels, with 16 levels in each group. As shown
in Figure 6, the groups can be connected in any priority
sequence.

All external interrupts can be inhibited or permitted by
means of bit position 39 (EI) of the program status double­
word. If EI is a 0, external interrupts are allowed to
interrupt the program. However, if EI is a 1, all ex­
ternal interrupts are inhibited from interrupting the
program.

STATES OF AN INTERRUPT LEVEL

A SIGMA 8 interrupt level is mechanized by means of three
fl ip-flops. Two of the fl ip-flops are used to define any of
four mutually excl usive states: disarmed, armed, waiting,
and active. The third flip-flop is used as a level-enable.

External
Input

Trigger
Input

Active, waiting,
or disarmed

Armed

I
I

I
I
I
I
L

Remember
interrupt

The various sta.nd the conditions causing them to change
state are descri in the following paragraphs. A con­
ceptual diagram of the operational states of the interrupt
system is shown in Figure 7.

DISARMED

When an interrupt level is in the disarmed state, no signal
to that interrupt level is admitted, no Ifrecordlf is retained
of the existence of the signal, nor is any program interrupt
caused by it at any time.

ARMED

When an interrupt level is in the armed state, it can accept
and remember an interrupt signal. The receipt of such a
signal advances the interrupt level to the waiting state. (If
the level is already in a waiting or active state, as a result
of a previous interrupt signal, the second inter.rupt signal
has no effect.)

WAITING

When an interrupt level in the armed state receives an
interrupt signal, it advances to the waiting state, and
remains in the waiting state until it is allowed to advance
to the active state. If the level-enable flip-flop is off, the
interrupt level can undergo all state changes except that of
moving from the waiting to the active state. Furthermore,
if this flip-flop is off, the interrupt level is completely
removed from the chain that determines the priority of access
to the CPU. Thus, an interrupt level in the waiting state

WAITING STATE

Disabled

Enabled =0

I
I
I
I
I
I
I

.J

Figure 7. Operational States of an Interrupt Level

Interrupt System 21

with its level-enable in the off condition d.ot prevent
'an enabled, waiting interrupt of lower priority from moving
to the active state. (Additional interrupt signals received
by on interrupt level in the waiting state are ignored.)

When on interrupt level is in the waiting state, the following
conditions must 0/1 exist simultaneously before the level
advances to the active state.

1. The level must be enabled (i. e., its level-enable flip­
flop must be set to 1).

2. The group inhibit (CI, II, or EI, if applicable) must be
a O.

3. No higher-priority interrupt level is 1n the active state
or is in the waiting state and totally enabled {i. e.,
enabled and not inhibited}.

4. The CPU must be at an interruptable point in the exe­
cution of a program.

ACTIVE

When an interrupt meets all of the conditions necessary to
permit it to move from the waiting state to the active state,
it is permitted to do so by being acknowledged by the com­
puter, which then executes the contents of the assigned
interrupt location as the next instruction. The instruction
address portion of the program status doubleword remains
unchanged until the instruction in the interrupt location is
executed.

The instruction in the interrupt location must be one of the
following: XPSD, MTB, MTH, or MTW. If the execution
of any other instruction in on interrupt location is attempted
as the result of on interrupt level advancing to the active
state, on instruction exception trap occurs.

The use of the privileged instruction XPSD in an interrupt
location permits on interrupt-servicing routine to save the
entire current machine environment and establish a new
environment. If working registers are needed by the routine
and additional register blocks are available, the contents
of the current register block can be saved automatically
with no time loss. This is accomplished by changing the
value of the register pointer, which results in the assign­
ment of a new block of 16 registers to the routine.

An int~rrupt level remains in the active state unti I it is
cleared {removed from the active state} by the execution
of the LPSD instruction or the WD instruction. An interrupt­
servicing routine can itsel f be interrupted {whenever a
higher priority interrupt I evel meets all of the conditions
for becoming active} and then continued {after the higher
priority interrupt is cleared}. However, an interrupt­
servicing routine cannot be interrupted by a lower priority
interrupt as long as the higher priority interrupt level remains
in the active state. Any signals received by an interrupt
level in the active state are ignored. Normally, the
interrupt-servicing routine clears its interrupt level and
transfers program control bock to the point of interrupt by

22 Interrupt System

means of on LPSD instruc. with the some effective
address as the XPSD instruction in the interrupt location.

CONTROL OF THE INTERRUPT SYSTEM

The SIGMA 8 system has two points of interrupt control.
One point of interrupt control is at the individual interrupt
level. The WD instruction can be used to individually arm,
disarm; enable, disable, or trigger any interrupt level
except for the power fail-safe interrupts {whi ch are always
armed, always enabled, and cannot be triggered}.

The second point of interrupt control is achieved by means
of the interrupt inhibits (CI, 11, and EI) in the program
status doubleword. If an interrupt inhibit is set to 1, all
interrupt levels in the corresponding group are effectively
disabled, i. e., no interrupt in the group may advance from
the waiting state to the active state and the group is
removed from the interrupt recognition priority chain. Thus,
a waiting, enabled interrupt level (in a group that is not
inhibited) is not prevented from interrupting the program by
a higher priority, waiting, enabled interrupt level in a
group that is inhibited. However, if an interrupt group is
inhibited whi Ie a level in that group is in the active state,
no lower priority interrupt level may advance to the active
state.

The RD instruction may be used to determine which interrupt
levels in a selected group are in the armed orwaitingstate,
in the waiting or active state, or enabled. Chapter 3 con­
tains a description of the RD instruction.

TIME OF INTERRUPT OCCURRENCES

The SIGMA 8 CPU permits an interrupt to occur during the
following time intervals {related to the execution cycle of
an instruction} provided that the control panel COMPUTE
switch is in the RUN position and no "halt" condition exists:

1. Between instructions: an interrupt is permitted between
the completion of any instruction and the initiation of
the next instruction.

2. Between instruction iterations: an interrupt is also
permitted to occur during the execution of the following
multiple-operand instructions:

Move Byte String (MBS)

Compare Byte String (CBS)

Translate Byte String (TBS)

Translate and Test Byte String (TTBS)

Move to Memory Control (MMC)

The control and intermediate results of these instructions
reside in registers and memory; thus, the instruction can be
interrupted between the completion of one iteration (oper­
and execution cycle) and the point in time (during the next

iteration) when a memory location.egister is modified.
If an interrupt occurs during this ta ,the current iteration
is aborted and the instruction address portion of the program
status doubleword remains pointing to the interrupt~d instruc­
tion. After the interrupt-servi cing routine is completed,
the instruction continues from the point at which it was
interrupted and does not begin anew.

SINGLE-INSTRUCTION INTERRUPTS

A single-instruction interrupt occurs in a situation where an
interrupt level is activated, the current program is inter­
rupted, the single instruction in the interrupt location is
executed, the interrupt level is automatically cleared and
armed, and the Interrupted program contlnu@j without beIng
disturbed or delayed (except for the time required for the
single instruction).

If any of the following instructions is executed in any inter­
rupt location, then that interrupt automatically becomes a
single-instruction interrupt:

Modify and Test Byte (MTB)

Modify and Test Halfword (MTH)

Modify and Test Word (MTW)

A modify and test instruction modifies the effective byte,
halfword, or word (as described in the section IIFixed-point
Arithmetic Instructions ll) but the current condition code re­
mains unchanged (even if overflow occurs). The execution
of a modify and test instruction in an interrupt location, is
independent of the write-protection locks; thus, a memory
protection violation trap cannot occur (a nonexistent memory
address wi II cause an unpredictable operation). Also the
fixed-point overflow trap cannot occuras the resul t of overflow
caused byexecuting MTH or MTW in an interrupt location.

The execution of a modify and test instruction in an interrupt
location automatically clears and arms the corresponding in­
terrupt level, allowing the interrupted program to continue.

When a modify and test instruction is executed in a count­
pulse interrupt location, all of the above conditions apply,
in addition to the following: if the resultant val ue in the
effective location is zero, the corresponding counter­
equals-zero interrupt is triggered.

TRAP SYSTEM

TRAP

A trap is simi lar to an interrupt in that program execution
automatically branches to a predesignated location when a
trap condition occurs. A trap differs from an interrupt in
that a trap location must contain an XPSD instruction.
Depending on the type of trap, the trap instruction is
either executed immediately (i. e., current instruction
is aborted) or upon completion of the current instruction.

The trap instru. is not held in abeyance by higher
priority traps. errupts on the other hand may have
an entire sequence of instructions executed before actual
interrupt action occurs.

TRAP ENTRY SEQUENCE

A trap entry sequence begins when the CPU detects the
trap condition and ends when the new PSD has successfully
replaced the old PSD. Detection of any condition listed
in Table 3, which summarizes the trap system, results in a
trap to a unique location in memory. When a trap condition
occurs, the CPU sets the trap state. The operati on cur­
rently being performed by the CPU mayor may not be
tltlffi@d to eompl fdlon; d@p€mdin§ on fft@ typ@ 6f fffip. In

, any event, the instruction is terminated with a trap sequence.
In this sequence, the program counter is not advanced;
instead, the XPSD instruction in the location associated
with the trap is executed. If any interrupt level is ready
to enter the active state" at the same time that an XPSD
trap instruction is in pro~ess, the interrupt acknowledge­
ment will not occur until the XPSD trap instruction is com­
pleted. If the trap location does not contain an XPSD
instruction, a second trap sequence is immediately invoked.
(See "Instruction Exception Trap".) The operation of the
XPSD instruction is described in Chapter 3, under "Control
Instructions ".

TRAP MASKS

The programmer may mask the four trap conditions described
below. Other traps can not be masked.

1. The push-down stack I imit trap is masked within the
stack pointer doubleword for each individual stack.

2. The fixed-point overflow trap is masked in bit position
11 (AM) of the PSD. If bit position 11 (AM) of the
PSD contains a 1, the trap is allowed to occur. If bit
position 11 contains a 0, the trap is not allowed to
occur. AM can be masked by operator intervention or
by execution of either of the privileged instructions
XPSD or LPSD.

3. The floating-point significance check trap is masked
by a combination of the floating significance (FS),
floating zero (FZ), and floating normal ize (FN) mode
control bits (see IIFloati ng-Point Arithmetic Faul t T rapll),
FS, FZ, and FN can be set or cleared by the execution
of any of the following instructions:

LOAD CONDITIONS AND FLOATING CON­
TRO'l (LCF)

LOAD CONDITIONS AND FLOATING CON­
TROL IMMEDIATE (LCFI)

EXCHANGE PROGRAM STATUS DOUBLEWORD
(XPSD)

LOAD PROGRAM STATUS DOUBLEWORD (LPSD)

Trap System 23

To Summary of SIGMA 8 Trap Locations

Location PSD
Dec. Hex. Function Mask Bit Time of Occurrence Trap Condition Code

64 40 Nonallowed operation

l. Nonexistent None At instruction decode. Set TCCl
instruction

2. Nonexistent None Prior to memory access. Set TCC2
memory address

3. Privileged in- None At instruction decode. Set TCC3
struction in slave
mode

4. Memory protec- None Prior to memory access. Set TCC4
tion violation

65 41 Unimplemented None At instruction decode. None
instruction \

66 42 Push-down stack TW TS At the time of stack limit None
I imit reached detection. (The aborted

push-down instruction
does not change memory,
registers, or the condi-
tion code.)

67 43 Fixed-point AM . For all instructions except None
arithmetic overflow DW and DH, trap occurs

after completion of in-
struction. For DWand
DH, instruction is aborted
with memory, registers,
CC1, CC3, and CC4
unchanged.

68 44 Floating-point At detection.
arithmetic fault

l. Characteri sti c None r (The floating-point None
overflow instruction is aborted

without changing
2. Divide by zero None any registers. The None

condition code is set
3. Significance FS, FZ, FN to indicate the reason None

check , for the trap.)

69 45 Reserved

70 46 Watchdog Timer None At runout. (The Pro- Set TCCl if instruction successfully
Runout cessor Detected Foul t completed.

or PDF flag will be set.)
Set TCC2 if processor bus hang-up.

Set TCC3 if memory bus hang-up.

Set TCC4 if DI 0 bus hang-up.
J

24 T rap System

e 3. Summary of SIGMA 9 Trap Locations)

Location PSD
De H Function Mask Bit Time of Occurrence Trap Condition Code

71 47 Reserved

72 48 CALL1 None At instruction decode. Equal to R field of CALL instruction.

73 49 CALL2 None At instruction decode. Equal to R field of CALL instruction.

74 4A CALL3 None At instruction decode. Equal to R field of CALL instruction.

75 4B CALL4 None At instruction decode. Equal to R field of CALL instruction.

76 4C Parity Error None (The PDF flag will be set.) Set TCC3 if data bus parity error
detected by CPU.

Reset TCCl-4 if memory parity
error.

77 4D Instruction Exception None (The PDF flag will be set.) Set TCCl if trap or interrupt
Trap sequence and reg ister pointer set to

nonexistent register block.

Set TCC3 if MMC configuration
illegal.

Set T CC = X I C' if trap or interrupt
sequence with illegal instruction.

SetTCC =X'F' if trap or interrupt se-
quence and processor detected fault.

(The PDF flag wi II not Set TCC4 if inval id register desig-
be set.) nation (odd register on AD, SD,

78 4E Reserved

79 4F Reserved

TRAP CONDITION CODE

For the traps push-down stack limit, fixed-point overflow
and floating-point fault, the normal condition code register,
CC1-CC4, is loaded with more detailed information about
the trap condition just before the trap occurs. This condi­
tion code is saved as part of the old PSD when the XPSD
instruction is executed in response to the trap.

For the traps nonallowed operation, watchdog timer runout,
memory parity error, instruction exception, and calls, a
special register, the trap condition TCC 1-TCC4, is loaded
just before the trap occurs. When the XPSD instruction is
executed in response to the trap, this register is added to
the new program address if bit 9 of the XPSD is set to 1.
TCC1-TCC4 is also logically, ORed with the condition code
bits of the new PSD when loading CC1-CC4.

FAL, FSL, FML, FDL, TBS, TTBS,
EBS, and register 0 on EBS).

TRAP ADDRESSING

During the trap entry sequence, the XPSD instruction in the
trap location is accessed.

NONALLOWED OPERATION TRAP

The occurrence of a nonallowed operation always causes the
computer to abort the instruction being executed at the time
that the nonallowed operation isdetected and to immediately
execute the XPSD instruction in Homespace trap location
X'40'. A nonallowed operation trap cannot be masked.

NONEXISTENT INSTRUCTION

Any instruction that is not standard on SIGMA 8 is defined
as nonexistent. This includes immediate operand instructions

T rap System 25

that are indirectly addressed (1 in bit pOSitiO. instruction).
• If a nonexi stent i nstructi on is detected, the computer traps

to Homespace location X'40' at the time the nonexistent
instruction is decoded. No general registers or memory
locations are changed, and the PS D points to the instruction
trapped. The operation of the XPSD in Homespace trap
location X'40' (with respect to the condition code and in­
struction address portions of the PSD) is as follows:

1. Store the current PSD. The condition codes stored
are those that existed at the end of the last instruction
prior to the nonexistent instruction.

2. Load the new PSD. The current PSD is replaced by
the contents of the doubleword location following the
doubleword location in which the current PSD was
stored.

3. Modify the new PS D.

a. Set CCl to 1. The other condition code bits re­
remain unchanged from the values loaded from
memory.

b. If bit position 9 of XPSP containsa 1, the program
counter is incremented by B. If bit position 9 of
XPSD contains a 0, the program counter remains
unchanged from the value loaded from memory.

NONEXISTENT MEMORY ADDRESS

Any attempt to access a nonexistent memory address causes
a trap to Homespace location X'40' at the time of the
request for memory service. A nonexistent memory address
condition is detected when an actual address is presented
to the memory system. (Refer to Table5 for possible changes
to registers and memory locations.) The operation of the
XPSD in Homespace trap location X'40 ' is as follows:

1. Store the current PSD.

2. load the new PSD.

3. Modify the new PSD.

a. Set CC2 to 1. The other condition code bits
remain unchanged from the values loaded from
memory.

b. If bit position 9 of XPSD contains a 1, the pro­
gram counter is incremented by 4. If bit position 9
of XPSD contains a 0, the program counter remains
unchanged from the value loaded from memory.

PRIVILEGED INSTRUCTION IN SLAVE MODE

An attempt to execute a privileged instruction while the
CPU is in the slave mode causes a trap to Homespace

26 T rap System

location X'40' before teivileged operation is performed.
No general registers or memory locations are changed, and
the PSD points to the instruction trapped. The operation of
the XPSD in Homespace trap location X'40 ' is as follows:

1. Store the current PS D.

2. Load the new PSD.

3. Modify the new PSD.

a. Set CC3 to 1. The other condition code bits
--remain -unchanged from the values loaded from

memory.

b. If bit position 9 of XPSD contains'a 1, the program
counter is incremented by 2. If bit position 9 of
XPSD contains a 0, the program counter remains
unchanged from the values loaded from memory.

The operation codes OC and 00, and their indirectly ad­
dr'essed forms, BC and BD, are both nonexistent and priv­
ileged. If anyone of these operation codes is used whi Ie
the CPU is in the slave mode, both CCl and CC3 are set
to 1 's after the current PSD is modified, and if bit position 9
of XPSD contains a 1, the program counter is incremented
by 10. All other nonexistent operation codes are treated
asnonprivilegedand, if used, will trapwithCCl set to 1.

MEMORY PROTECTION VIOLATION

A memory protection violation occurs because of a memory
write-lock violation (by any program) within the 12BK words
of memory. When memory protection violation occurs, the
CPU aborts execution of the current instruction without
changing protected memory and traps to Homespace location
X'40'. (Refer to Table 5 for possible changes to registers
and memory locations.) The operation of the XPSD in
Homespace trap location X'40' is as follows:

1. Store the current PS D.

2. Load the new PSD.

3. Modify the new PSD.

a. Set CC4 to 1. The other condition code bits remain
unchanged from the values loaded from memory.

b. If bit position 9 of XPSD contains a 1, the program
counter is incremented by 1. If bit position 9 of
XPSD contains a 0, the program counter remains
unchanged from the value loaded from memory.

An attempt to access a memory location that is both pro­
tected and nonexistent causes both CC2 and CC4 to be set
to lis after the current PSD has been modified, end if bit
position 9 of XPSD contains a .1, the program counter is
incremented by 5.

UNIMPLEMENTED INST.ON TRAP

The decimal instructions (available on other Sigma computers)
are treated as unimplemented instructions to aid software
simulation. The instructions are as follows:

Operation
Instruction Name Mnemonic Code

Decimal Load DL X' 7E'

Decimal Store DST X' 7F'

Decimal Add DA X'79 1

Decimal Subtract DS X' 78 1

Decimal Multiply DM X'7B'

Decimal Divide DD X'7A'

Decimal Compare DC X'7D'

Decimal Shift Arithmetic DSA X'7C'

Pack Decimal Digits PACK X'76'

Unpack Decimal Digits UNPK X'77'

Edit Byte String EBS X'63'

If an attempt is made to execute a decimal instruction
(directly or indirectly addressed) the computer traps to
Homespace location X'41 1

, the unimplemented instruction
trap. An indirectly addressed EBS instruction is always
treated as a nonexistent instruction rather than as an unim­
plemented instruction.

The operation of the XPSD in trap Homespace location
X'41' is as follows:

1. Store the current PSD. The condition code stored is
that which existed at the end of the instruction imme­
diately prior to the unimplemented instruction.

2. Load the new PSD. The condition code and the in­
struction address portions of the PSD remain ot the
values loaded from memory.

PUSH-DOWN STACK LIMIT TRAP

Push-down stack overflow or underflow can occur during
execution of any of the following instructions:

Operation
Instruction Mnemonic Code

Push Word PSW X'091

Pull Word PLW X'08 1

Push Mul tiple PSM XI OBI

Instruction

Pull Mul tiple

Modify Stack Pointer

Operation
Mnemonic Code

PLM X'OA'

MSP X'13'

During the execution of any stack-manipulating instruction
(see II Push-down Instructions "), the stack is either pushed
(words added to stack) or pulled (words removed from stack).
In either case, the space (S) and words (W) fields of the
stack pointer doubleword are tested prior to moving any
words. If execution of the instruction would cause the
space (S) field to become less than 0 or greater than 215_1,
the instruction is aborted with memory and registers
unchanged. If TS (bit 32) of the stack pointer doubleword
is set to 0, the CPU traps to Homespace location X'42'. If
TS is set to 1, the trap is inhibited and the CPU processes
the next instruction. If execution of the instruction would
cause the words (W) field to become less than 0 or greater
than 215-1, the instruction is aborted with memory and
registers unchanged. If TW (bit 48) of the stack pointer
doubleword is set to 0, the CPU traps to Homespace loca­
tion X'42'. If TW is set to 1, the trap is inhibited and the
CPU processes the next instruction. If trapping is inhibited,
CC 1 or CC3 is set to 1 to indi cate the reason for aborting
the instruction. The stack pointer doubleword, memory,
and registers are modified only if the instruction is success­
ful I y executed.

If a puc;h-down instruction traps, the execution of XPSD in
Homespace trap location X'42' is as follows:

1. Store the current PSD. The condition codes that are
stored are those that existed prior to execution of the
aborted push-down instruction.

2. Load the new PSD. The condition code and instruction
add ress porti ons of the PS D rema in at the va I ues looded
from memory.

FIXED-POINT OVERFLOW TRAP

Overflow can occur for any of the following instructions:

Operation
Instruction Mnemonic Code

Load Absol ute Word LAW X'3B'

Load Absolute Doubleword LAD X'1B'

Load Complement Word LCW X'3A'

Load Complement Doubleword LCD X'lA'

Add Halfword AH X'50 '

Subtract Hal fword SH X'58'

Divide Halfword DH X'56'

Trap System 27

Operation
Instruction MnemonIc Code

Add Immediate AI X'20'

Add Word AW X'30'

Subtract Word SW X'381

Divide Word DW X'36 1

Add Doubl eword AD X' l0 '

Subtract Doubleword SD X' 181

Modify and Test Halfword MTH X'53 1

Modify and Test Word MTW X'33 1

Add Word to Memory AWM X '66 1

Except for the instructions DIVIDE HALFWORD (DH) and
DIVIDE WORD (DW), the instruction execution is allowed
to proceed to completion. CC2 is set to 1 and CC3 and
CC4 represent the actual result (0, -, or +) after overflow.

If the fixed-point arithmetic trap mask (bit 11 of PSD) is a
1, the CPU traps to Homespace location X'43 1 instead of
executing the next instruction in sequence.

For DW and DH, the instruction execution is aborted with­
out changing any register, and CC2 is set to 1; but Cel,
CC3, and CC4 remain unchanged from their values at the
end of the instruction immediately prior to the DW or DH.
If the fixed-point arithmetic trap mask is a 1, the CPU
traps to location X'43 1 instead of executing the next instruc­
tion in sequence.

The execution of XPSD in Homespace trap location X'43 1

is as follows:

1. Store the current PSD. If the instruction trapped was
any instruction other than DW or DH, the stored con­
dition code is interpreted as follows:

CClt CC2 CC3

tt o

o

CC4 Meaning

o Result after overflow is
zero.

Result after overfiow is
negative.

tCCl remains unchanged for instructions LCW, LAW, LCD,
and LAD.

tt A hyphen indicates that the condition code bits are notaf­
fected by the condition given under the "Meaning" heading.

28 T rap System

CClt CC2 • CC4 Meaning

o

o Result after overflow is
positive.

No carry out of bit 0
of the adder (add and
subtract instructions
only).

Carry out of bit 0 of
the adder (add and
subtract instructions
only).

If the instruction trapped was a DW or DH, the stored
condition code is interpreted as fol lows:

CCl CC2 CC3 CC4 Meaning

Overflow

2. Load the new PSD. The condition code and instruction
address portions of the PSD remain at the value loaded
from memory.

FLOATING-POINT ARITHMETIC FAULT TRAP

Floating-point fault detection is performed after the opera­
tion called for by the instruction code is performed, but
before any results are loaded into the general registers.
Thus, the floating-point operation that causes an arithmetic
fault is not carried to completion in that the original con­
tents of the general registers are unchanged.

Instead, the computer traps to Homespace location X'441

with the current condition code indicating the reason for
the trap. A characteristic overflow or an attempt to divide
by zero always results in a trap condition: A significance
check or a characteristic underflow results in a trap condi­
tion only if the floating-point mode controls (FS, FZ, and
FN) in the current program status doubleword are set to the
appropriate state.

If a floating-point instruction traps, the execution of XPSD
in Homespace trap location X'441 is as follows:

1. Store the current PSD. If division is attempted with a
zero divisor or if characteristic overflow occurs, the
stored condition code is interpreted as follows:

CCl CC2 CC3 CC4 Meaning

0 0 0 Zero divisor.

0 0 Characteristic overflow,
negative result.

0 0 Characteristic overflow,
positive result.

If none of the above conts occurred but
characteristic underflow oc with floating zero
mode bit (FZ) = 1, the stored condition code is inter­
preted as follows:

CCl CC2 CC3 CC4 Meaning

0 Characteri sti c under-
flow, negative result.

0 Characteristic under-
flow, positive result.

If none of the above conditions occurred but an addi­
tion or subtraction results in either a zero result (with
FS = 1 and FN = 0), or a postnormalization shift of more
than two hexadecimal places (with FS = 1 and FN = 0),
the stored condition code is interpreted as follows:

CCl CC2 CC3

o o

o o

o

CC4 Meaning

o

o

Zero result of addition
or subtracti on.

More than two post­
normal izing shifts,
negative resul t.

More than two post­
normalizing shifts,
positive result.

2. Load the new PS D. The condition code and instruc­
tion address portions of the PSD remain at the values
loaded from memory.

CALL INSTRUCTION TRAP

The four CALL instructions (CAll, CAL2, CAL3, and
CAL4) cause the computer to trap to Homespace location
X'48 1 (for CAll), X'49 1 (for CAL2), X'4A' (for CAL3), or
X'4B ' (for CAL4). Execution of XPSD in the trap location
is as fol lows:

1. Store the current PSD. The stored condition code bits
are those that existed prior to the CALL instruction.

2. Load the new PS D.

3. Modify the new PSD.

a. The R Field of the CALL instruction is logically
ORed with the condition code register as loaded
from memory.

b. If bit 9 of XPSD contains a 1, the R field of the
CALL instruction is added to the program counter. If
bit 9 of XPS D contains a 0, the program counter re­
mains unchanged from the value loaded from memory.

Note: Return from a CALL trap will be to the trapping
instruction + 1.

eOCESSOR DETECTED FAULTS

The Processor Detected Fault (PDF) flag is hardware flog
used in the SIGMA 8 system to aid in solving the multiple
error problem. Most traps occur because of some dynamic
programming consideration (i. e., overflow, attempted
division by zero, incorrect use of on instruction or address,
etc.) and recovery is easily handled by another software
subroutine. However, with certain classes of errors, if a
second error occurs while the computer is attempting to
recover from the first error, unpredictable results occur.
Included in this class of traps is the parity error trap, some
cases of the instruction exception trap, and the watchdog
timer run out trap. Upon the first occurrence of this type
of trap, the PDF flag is set.

When the PDF flag is set, the processor fault interrupt, the
memory fault interrupt, and count pulse interrupts are auto­
matically inhibited. The other interrupts, with the excep­
tion of power foil-safe, mayor may not be inhibited as
specified by the PSD, which is loaded when the trap entry
XPSD is executed. The PDF flag is normally reset by the
last instruction of a trap routine, which is an LPSD instruc­
tion having bit 10 equal to 0 and bit 11 equal to 1.

If a second PDF is detected before the PDF flag is reset,
the CPU becomes "hung-up" unti I the PDF flag is reset
either by the operator pressing the CPU RESET or the
SYS RESET switches on the processor control panel; or,
in a multiprocessor system, by another CPU executing an
RIO instruction.

The reset (RIO) function on a processor bus addressing a
CPU will cause a reset of that CPU. If the CPU is "hung­
Up", this reset will cause the following actions:

1. The processor fault status register is cleared.

2. The PDF flag is cleared and the processor fault inter­
rupt generated flag is cleared.

3. The PSD is cleared to zero except that the instruction
address is set to Homespace location X'26 1

• This is the
same condition for the PSD that resul ts from pressing
the SYS RESET switch on the processor control panel.

4. The CPU will begin execution with the instruction
contained in Homespace location X'26 1

•

WATCHDOG TIMER RUNOUT TRAP

The watchdog timer is a two-phase timer that monitors and
controls the maximum amount of CPU time each instruction
can take. The timer is normally in operation at all times
and is initialized at the beginning of each instruction. If
the instruction is completed before the end of phase 1, the
timer is reset. If the instruction is completed after phose 1
but before the end of phase 2, a trap to Homespace loca­
tion X'46 1 occurs immediately after the instruction is com­
pleted, and TCCl is set to indicate successful completion
of the instruction. Additional information as to probabl e
cause of delay is provided: TCC2 is set if the CPU was

T rap System 29

using the processor bus, TCC3 is set if t~PU was using
the memory bus, or TCC4 is set if the C.was using the
010 bus. If the instruction is not completed by the time
the watchdog timer has advanced through phase 2, the
instruction is aborted, TCCl is set to 0, and a trap occurs
immediately to Homespace location X'46 I

• In addition,
TCC2, TCC3, or TCC4 wi II be set as described above.
The register altered flag of the PSD is also set if any
register or main memory location had been changed when
the trap occurred.

A watchdog timer runout is considered a CPU fault and the
PDF is set.

INSTRUCTION EXCEPTION TRAP

The instruction exception trap occurs whenever the CPU
detects a set of operations that are called for in an instruc­
tion but can not be executed because of either a hardware
restriction or a previous event.

The different conditions that cause the instruction exception
trap are:

1. A processor-detected fault that occurs during the exe­
cution of an interrupt or trap entry sequence. An
interrupt or trap entry sequence is defined as the
sequence of events that consists of: (a) initiating on
interrupt or trap; (b) accessing the instruction in the
interrupt or trap location; and (c) executing that in­
struction, including the exchange of the PSD, if.
required. Note that instructions executed as a resul t
of the interrupt or trap other than the instruction lo­
cated at the interrupt or trap location are not consid­
ered part of the entry sequence. •

2. An illegal instruction is found in the trap (not XPSD)
or interrupt (not XPSD, MTB, MTH, MTW) location
when executing a trap or interrupt sequence.

3. The register pointer (bits 56-59) of the PSD is set to a
nonexistent register block as a result of an LRP, LPSD,
or XPSD. .

4. Bit positions 12-14 of the MOVE TO MEMORY CON­
TROL (MMC) instruction are interpreted as an illegal
configuration. That is, any configuration other than
001.

5. The set of operations, primarily doubleword and byte.
strin'g instructions, that yield an unpredictable result
when an incorrect register is specified; this type of
fault is called "invalid register designation II and in­
cludes the following instructions: t

t

Odd Register Specified

Add Doubleword (AD)

Subtract Doubleword (SD)

IIlnval id register designation" faul ts do not set the PDF flag.

30 T rap System

Odd Registeecified (cont.)

Floating Add Long (FAL)

Floating Subtract Long (FSL)

Floating Multiply Long (FML)

Floating Divide Long (FDL)

Translate Byte String (TBS)

Translate and Test Byte String (TTBS)

Move to Memory Control (MMC)

Trap Condition Code. The Trap Condition Code (TCC)
differentiates between the different faul t types. Some of
the fault conditions (as listed in Table 4) may occur and/or
be detected during a trap or interrupt entry sequence. In
this case, the trapped status field, bits 48-55 of the PSD,
is set to equal the least significant eight bits of the ad­
dress of the trap or interrupt instruction in which the trap
occurred; that is, the trapped status field will point to
the trap or interrupt location that was in effect when
the fault occurred. In the event that the fault occurs

, in a normal program instruction, the trapped status field
has no mean i ng.

Table 4 shows the settings of the TCC and trapped status
field for the various faul t types.

Table 4. TCC Setting for Instruction Exception Trap X'4D '

T rapped Status
TCC Field (PS D bits

Fault Type 1 234 48-55)

X,PSD in trap or 1 000 8 least significant
interrupt location tries bits of trap or
to set register pointer interrupt address.
to nonexistent register
block.

XPSD, LPSD, or LRP 0000 No meaning.
not in a trap or inter-
rupt sequence tries to
set register pointer to
nonexistent register
block.

T rap or interrupt 1 1 1 1 8 least significant
sequence and pro- bits of trap or
cessor detected faul t. interrupt address.

Trap or interrupt 1 1 0 0 8 least significant
sequence with bits of trap or
inval id instruction. interrupt address.

MMC configuration 001 0 No meaning.
invalid.

lnval id register 000 1 No meaning.
designation.

PARITY ERROR TRAP

Two types of parity errors may be detected in the addressing
and memory logic.

1. Data Bus Check. If the CPU detects a parity error on
data received from memory and the memory does not
also indicate a parity error on the information sent, a
data bus check occurs. The data bus check causes the
CPU to trap to Homespace location X'4C, and sets
TCC3 to 1.

2. Memory Parity Error. When a CPU receives a signal
from the memory indicating memory parity error, this
faul t occurs. The CPU traps to Homespace location
X'4C. In addition, on a memory-detected parity
error trap, the memory bank wi II "snapshot" the address
causing the trap.

The memory parity error signal is generated:

1. When the memory is performing a read operation and
a parity error is detected in the data as read from the
memory el ements.

2. When the memory is performing a partial write opera­
tion and a parity error is detected when reading the
word to be changed. This is done before the new
information is inserted and the data restored to memory.

3. When a parity error is detected in the memory on an
address received on the memory bus. If the address bus
check occurs on a write request, the memory is not
accessed. On a read request, dummy data with incor­
rect parity is sent to the processor.

4. When a parity error is detected on data received by
the memory from the memory bus.

5. If the memory has a port selection error in attempting
to establish priority for requests received on two or more
ports. The memory parity error signal is generated on
the busses from all ports affected by the sel ecti on
error.

6. If the I.!OAD MEMORY STATUS instruction is used and
the condition code that is set prior to execution of the
instruction is reserved (i. e., not implemented in the
memory logic), the memory will interpret it as a read­
type instruction, send back a parity error signal and
all zeros on the data bus, and "snapshot" the address
in the Memory Status Register.

Any of these six conditions wi II also cause a Memory Faul t
Interrupt to occur.

TRAP CONDITIONS DURING "ANTICIPATE" OPERATIONS

During the time that the SIGMA 8 is executing a current
instruction, it is also performing operations in anticipation
of the next instruction, as specified by the instruction

address. TheAerations (accessing the next instruction,
the associated~rand, and/or indirect address, etc.) may
encounter trapping conditions. Whether a corresponding

. trap wi II occur is contingent on the current instruction.
Traps due to the current instruction and traps due to branch
operations will 'inhibit traps due to operations performed
in anticipation of the next instruction.

If the current instruction is a successful branch instruction,
the instruction sequence is changed. Therefore, operations
performed in anticipation of the next instruction are no
longer val id, and any traps associated with these operations
are disregarded.

If the current instruction encounters a trap, it takes pre­
cedence over the next instruction and any anticipated trap.
At the end of the trap routine these operations will be
reperformed and the proper trap action will occur at this
time.

At the end of the execution of current (nonbranching)
instructions, trap conditions detected during "anticipate"
operations have priority over an interrupt. These trap con­
ditions include nonexistent memory, access protection vio­
lation, nonexistent instruction, privileged instruction in
slave mode, and parity error.

REGISTER ALTERED BIT

Complete recoverability after a trap may require that no
main memory location, no fast memory register, and no
part (or flags) of the PSD be changed when the trap occurs.
If any of these regi sters or fl ags are changed, the Register
AI tered bit (60) of the old PSD is set to 1 and is saved by
the trap XPSD.

Changes to CCl-4 cause the Register AI tered bit to be set
only if the instruction requires these condition code bits as
subsequent inputs.

Traps caused by conditions detected during operand fetch
and store memory cycles, such as nonexistent memory,
access protection violation, and memory parity error may
or may not leave registers, memory, and PSD unchanged,
depending on when they occur during instruction execu­
tion. Generally, these traps are recoverable. This is
done by checking for protection violations and nonexis­
tent memory at the beginning of execution in case of a
multiple operand access instruction, restoring the original
register contents if execution cannot be completed because
of a trap, and not loading the first half of the PSD until
a possible trap condition due to access of the second half
could have been detected. Table 5 contains a list of
SIGMA 8 instructions and indicates for these instructions
what registers, memory locations, and PSD bits, if any,
have been changed when a trap due to an operand access
memory cycle occurs.

Trap System 31

Table 5. Regis

Instructions

AI, CI, LCFI, L1, MI

CALl-CAL4, SF, S, WAIT, RD, WD, RIO,
POLR, POLP, DSA

LRA

LB, LCF, LRP, CB
LH, LAH, LCH, AH, SH, MH, DH, CH
LW, LAW, LeW, AW, SW, MW, DW, CW
LD, LAD, LCD, AD, SD, CD, CLM, CLR
EaR, OR, AND, LS, INT, CS

hanged at Ti me of a Trap Due to an Operaeccess

Changes

Immediate type, no operand access.

No operand access.

Has operand access but traps are suppressed; register bits and
condition codes are set instead.

No operand store, registers and PSD unchanged when trap due to
operand fetch. CCl-4 may be changed but are not used as input

to any 0' th~s~ Instrucrioni.

FAS, FSS, FMS, FDS, FAl, FSL, FMl, FDL

AWM, XYV, STS, MTB, MTH, MTW
STB, STCF, STH, STW, LAS

STD

EXU, BCR, BCS
BAL, BDR, BI R

MBS, CBS, TBS, TTBS, MMC, LM,
STM, PLM, PSM

CVA, CVS

XPSD, LPSD

SIO, TIO, TDV, HIO, Ala

32 Trap System

Registers and memory are preserved, condition codes may be changed
but are not used as input to these instructions.

If a trap occurs, the first word (odd address) may have been stored
al ready. The Register Altered bit is set in this case.

If the branch condition is true (always for EXU and BAL) and a trap
occurs due to access of the indirect address or of the next (branched
to or executed) instruction, the register used is left unchanged and
the program address saved in the PSD is the address of the branch or
execute instruction.

These instructions check for protection violations and nonexistent
memory at both ends of the data area at the beginning of execution
(see individual instruction descriptions). If any traps occur during
execution, e. g., because of parity errors, the instruction is aborted,
indicating in the registers at which point. In general, memory will
be altered and the Register Altered bit set.

If a trap occurs, the instruction will be aborted before al tering
registers. CC 1-4 may be changed but not used as input to any of
these instructions.

If a trap occurs due to storing the old PSD or fetching the new PSD,
the instruction is aborted before changing the old PSD.

Protection violations are not possible during execution of these
instructions; therefore, a trap will only occur due to a parity error
when accessing the CPU/lOP communication locations (Homespace
location X l 201 or XI211). If a parity error trap does not occur
when accessing these locations (either by the CPU or lOP), the
instruction wi" abort with CC3 set to 1. (See "Input/Output
Instructions", Chapter 3.)

3. INSTRUCTION REPERTOIRe

This chapter describes all SIGMA 8 instructions, grouped
in the following functional classes:

1. Load and Store

2. Analyze and Interpret

3. Fixed-Point Arithmetic

4. Comparison

5. Logical

6. Shift

7. Conversion

8. Floating-Point Arithmetic

9. Byte String

10. Push Down

1l. Execute and Branch

12. Call

13. Control

14. Input/Output

SIGMA 8 instruction are described in the following format:

MNEMONIC CD INSTRUCTION NAMEQ)

(Addressing Type~ Privileged~
® Interrupt Action)

D .. CD escnptlon

Affected CD

b I
. @

Sym 0 ic Notation

Condition Code Settings®

Trap Action®

Example
@

1. MNEMONIC is the code used by the SIGMA 8 assem­
blers to produce the instruction's basic operation code.

2. INSTRUCTION NAME is the instruction's descriptive
title.

3. The instruction's addressing type is one of the following:

a. Byte index alignment: the reference address field
of the instruction (plus the displacement value)
can be used to address a byte in ma i n memory or
in the current block of general registers.

b. Halfword index alignment: the reference address
field of the instruction (plus the displacement
value) can be used to address a halfword in main
memory or in the current block of general registers.

c. Word index alignment: the reference address field
of the instruction (plus the displacement value)
can be used to address any word in main memory
or in the current block of genera I reg i sters.

d. Doubleword index alignment: the reference ad­
dress field of the instruction (plus the displacement
value) can be used to address any doubleword in
main memory or in the current block of general
registers. The addressed doubleword is auto­
matically located within doubleword storage
boundari es.

e. Immediate operand: the instruction word contains
an operand value used as part of the instruction
execution. If indirect addressing is attempted
with this type of instruction (i. e., bit 0 of the
instruction word is a 1), the instruction is treated
as a nonexistent instruction, and the computer
unconditionally aborts execution of the instruction
(at the time of operation code decoding) and traps
to Homespace location X'40 ' , the "nonallowed
operation" trap. Indexing does not apply to this
type of instruction.

f. Immediate displacement: the instruction word
contains an address displacement used as part of
the instruction execution. If indirect addressing
is attempted with this type of instruction, the com­
puter treats the i nstructi on as a nonexi stent i n­
struction, and the computer unconditionally aborts
execution of the instruction (at the time of opera­
tion code decoding) and traps to Homespace loca­
tion X'40'. Indexing does not apply to this type
of instruction.

4. If the instruction is not executable while the computer
is in the slave mode, it is labeled "privileged". If
execution of a privileged instruction is attempted
while the computer is in the slave mode, the computer
unconditionally aborts execution of the instruction {at
the time of operation code decoding} and traps to
Homespace location X'40'.

Instruction Reperto'ire 33

5. If the instruction can be successfull.med after its
executi on sequence has been interrupted by an inter­
rupt acknowledgment, the instruction is labeled "con-
tinue after interrupt". In the case of the "continue
after interrupt" instructions, certain general registers
contain intermediate results or control information that
allows the instruction to continue properly.

6. Instruction format:

a. Indirect addressing - If bit position 0 of the in­
struction format contains an asterisk (*), the in­
struction can use indirect addressing; however,
if bit position 0 of the instruction format contains
a 0, the instruction is of the immediate operand
type, which is treated as a nonexistent instruction
if indirect addressing is attempted (resulting in a
trap to Homespace location XI401).

b. Operation code - The operation code field (bit
positions 1-7) of the instruction is shown in he"xa­
decimal notation.

c. R field - If the register address field (bit posi­
tions 8-11) of the i nstructi on format contai ns the
character "R", the instruction can specify any
register in the current block of general registers
as an operand source, result destination, or both;
otherwise, the function of this field is determined
by the instruction.

d. X field - If the index register address field (bit
positions 12-14) of the instruction format contains
the character II X" , the instruction specifies in­
dexing with anyone of registers 1 through 7 in
the current block of general registers; otherwise,
the function of this field is determined by the
i nstructi on.

e. Reference address fie Id - Norma lIy, the address
field (bit positions 15-31) of the instruction
format is used as the reference address value
(see Chapter 2). This reference address field
is also used to address I/O systems (see I/O
instructions later in this chapter and also
Chapter 4). For immediate operand instructions,
this field is augmented with the contents of
the X fi eld, as illustrated, to form a 20-bit
operand.

f. Value field - In some fixed-point arithmetic in­
structions, bit positions 12-31 of the instruction
format contain the word "value". This field is
treated as a 20-bit integer, with negative inte­
gers represented in twols complement form.

g. Displacement field - In the byte string instruc­
tions, bit positions 12-31 of the instruction for­
mat contain the word "displacement". In the
execution of the instruction, this field is used to
modify the source address of an operand, the
destination address of a result, or both.

34 Instruction Repertoire

h. Ignored fiel.n the instruction format diagrams,
any area that IS shaded represents a field or bit
position that is ignored by the computer (i. e. , the
content of the shaded field or bit has no effect
on instruction execution) but should be coded
with OIS to preclude conflict with possible
modifi cations.

In any format diagram of a general register or
memory word modified by an instruction, a shaded
area represents a fi eld whose content is i ndeter­
minate after execution of the instruction.

7. The description of the instruction defines the operations
performed by the computer in response to the instruc­
tion configurotion depicted by the instruction formot
diagram. Any instruction configuration that causes an
unpredictable result is so specified in the description.

8. All programmable registers and storage areas that can
be affected by the instruction are listed (symbolically)
after the word "Affected ". The i nstructi on address
portion of the program status doubleword is considered
to be affected only if a branch condition can occur as
a result of the instruction execution, since the instruc­
ti on address is updated (i ncremented by 1) as part of
every instruction execution.

9. All trap conditions that may be invoked by the execu­
tion of the instruction are listed after the word "Trap".
SIGMA 8 trap locations are summarized in the section
liT rap System II in Chapter 2.

10. The symbolic notation presents the instruction opera­
tion as a series of generalized symbolic statements.
The symbolic terms used in the notation are defined in
Appendix D, II Glossary of Symbolic Terms".

11. Condition Code settings are given for each instruction
that affects the condition code. A 0 or a 1 under any
of columns 1, 2, 3, or 4 indicates that the instruction
causes a 0 or 1 to be placed in CC 1, CC2, CC3, or
CC4, respectively, for the reasons given. If a hyphen
(-) appears in columns 1, 2, 3, or 4, that portion of
the condition code is not affected by the reason given
for the condition code bit(s) containing a 0 or 1. For
example, the following condition code settings are
given for a comparison instruction:

2 3 4 Resu I t of compo ri son

o 0 Equal.

o

o

Register operand is arithmetically less
than effective operand.

o Register operand is arithmetically greater
than effective operand.

The logical product of the two operands
is nonzero.

The logical product (AND) of the two
operands is zero.

CCl is unchanged by the ins.ion. CC2 indicates
whether or not the two oper have 1· sin corre-
sponding bit positions, regardless of their arithmetic
relationship. CC3 and CC4 are set according to the
arithmetic relationship of the two operands, regardless
of whether or not the two operands have l·s in corre­
sponding bit positions. For example, if the register
operand is arithmetically less than the effective oper­
and and the two operands both have l·s in at least one
corresponding bit position, the condition code setting
for the comparison instruction is:

234

o

The above statements about the condi tion code are
valid only if no trap occurs before the successful com­
pletion of the instruction execution cycle. If a trap
does occur during the instruction execution, the con­
dition code is normally reset to the value it contained
before the instruction was started and the register
altered bit (PSD 60) is set to 1 if a register has been
altered. Then the appropriate trap location is
activated.

12. Actions taken by the computer for those trap conditions
that may be invoked by the executi on of the i nstruc­
tion are described. The description includes the cri­
teria for the trap condition, any controlling trap mask
or inhibit bits, and the action taken by the computer.
In order to avoid unnecessary repetiti on, the three trap
conditions that apply to all instructions (i. e., non­
allowed operations, parity error, and watchdog timer
runout) are not described for each instruction.

13. Some instruction descriptions provide one or more ex­
amples to illustrate the results of the instruction.
These examples are intended onl y to show how the in­
structions operate, and not to demonstrate their full
capability. Within the examples, hexadecimal nota­
tion is used to represent the contents of general registers
and storage locations. Condition code settings are
shown in binary notation. The character IIXIl is used
to indicate irrelevant or ignored information.

LOAD /STORE INSTRUCTIONS

The followi ng load/store instructions are implemented in
SI G MA 8 computers:

Instruction Name Mnemonic

Load Immediate LI

Load Byte LB

Load Halfword LH

Load Word LW

Load Doubl eword LD

Instruction Na •

Load Complement Halfword

Load Absolute Halfword

Load Complement Word

Load Absolute Word

Load Complement Doubleword

Load Absolute Doubleword

Load Rea I Address

Load and Set

Load Memory Status

Load Sel ective

Load Multiple

Load Conditions and Floating Control
Immediate

Load Conditions and Floating Control

Exchange Word

Store Byte

Store Halfword

Store Word

Store Doubleword

Store Sel ective

Store Mul tiple

Store Conditions and Floating Control

Mnemonic

LCH

LAH

LCW

LAW

LCD

LAD

LRA

LAS

LMS

LS

LM

LCFI

LCF

XW

STB

STH

STW

STD

STS

STM

STCF

SIGMA 8 load and store instructions operate with informa­
tion fields of byte, halfword, word, and doubleword lengths.
Load instructions load the information indicated into one of
the general registers in the current register block. Load in­
structi ons do not affect mai n memory storage; however,
nearly all load instructions provide a condition code setting
that i ndi cates th e fo II owi ng i nformati on a bout the con tents
of the affected general register{s) after the instruction is

___ y~<:ce~sfu_~~X compl eted:

Condition code settings:

2 3 4 Result

o 0 Zero - the result in the affected register{s)
is all O·s.

o Negative - register R contains a 1 in bit
position O.

Load/Store Instructi'ons 35

2 3 4 Result

o -

o Positive - register R contains a 0 in bit posi­
tion 0, and at least one 1 appears in the
remainder of the affected registers(s) (or
appeared during execution of the current
instruction.)

No fixed-point overflow - the resylt in the
affected register(s) is arithmetically correct.

Fixed-point overflow - the result in the
affected register(s} is arithmetically
incorrect.

Store instructions affect only that portion of memory stor­
age that corresponds to the length of the information field
specified by the operation code of the instruction; thus,
register bytes are stored in memory byte locations, register
halfwords in memory halfword locations, register words in
memory word locations, and register doublewords in mem­
ory doubleword locations. Store instructions do not affect
the contents of the general register specified by the R field
of the instruction, unless the some register is also specified
by the effective address of the instruction.

Ll

o 1

LOAD IMMEDIATE
(Immediate operand)

LOAD IMMEDIATE extends the sign of the value field (bit
position 12 of the instruction word) 12 bit positi ons to the
left and then loads the 32-bit result into register R.

Affected: (R), CC3, CC4

(1) 1 2-31 S E --R

Condition code settings:

2 3 4 Resu I tin R

o 0 Zero

o Negative

o Positive

If LI is indirectly addressed, it is treated as a nonexistent
instruction, in which case the computer unconditionally
aborts execution of the instruction (at the time of opera­
tion code decoding) and traps to Homespace location Xl 40 1

with the contents of register R and the condition code
unchanged.

LB LOAD BYTE
(Byte index 01 ignment)

36 Load/Store Instructions

LOAD BYTE loads thActive byte into bit positions 24-31
of register R and clea-~ positions 0-23 of the register to
all OIS.

Affected: (R),CC3,CC4
EB -R24- 31 ; 0 -RO- 23

Condition code settings:

2 3 4 Result in R

o 0 Zero

o Nonzero

LH LOAD HALFWORD
(Halfword index alignment)

LOAD HALFWORD extends the sign of the effective half­
word 16 bit positions to the left and then loads the 32-bit
result into register R.

Affected: (R), CC3, CC4

EHSE -R

Condition code settings:

2 3 4 Result in R

o 0 Zero

o Negative

o Positive

LW LOAD WORD
(Word index alignment)

LOAD WORD loads the effective word into register R.

Affected: (R), CC3, CC4
EW-R

Condition code settings:

2 3 4 Result in R

0 0 Zero

0 Negative

0 Positive

LO LOAD DOUBLEWORD •
(Doubleword index align

LOAD DOUBLEWORD loads the 32 low-order bits of the ef­
fective doubleword into register Ru 1 and then loads the 32
high-order bits of the effective doubleword into register R.

If R is an odd value, the result in register R is the 32 high­
order bits of the effective doubleword. The condition code
settings are based on the effective.doubleword, rather than
the final result in register R (see example 3, below).

Affected: (R), (Ru 1), CC3, CC4
ED

32
_

63
-Ru1; ED

O
_

31
-R

Condition code settings:

2 3 4 Effective doubleword

o 0 Zero

o Negative

o Positive

Example 1, even R field value:

Before execution

ED X '0123456789ABCDEF'

(R)

(Ru 1)

CC

xxxxxxxx

xxxxxxxx

xxxx

Example 2, odd R field value:

Before execution

After execution

XI 0 123456789ABCD EF 1

X '012345671

X ' 89ABCDEF'

xxlO

After execution

ED

(R)

CC

X'0123456789ABCDEF' XI 01 23456789ABCDEF'

xxxxxxxx X ' 012345671

xxxx xxlO

Example 3, odd R field value:

ED

(R)

CC

LCH

Before execution

XI 00000000 1 23456781

xxxxxxxx

xxxx

After execution

XI 000000001 2345678 1

X 1000000001

xx10

LOAD COMPLEMENT HALFWORD
(Halfword index alignment)

LOAD COMPLE.T HALFWORD extends the sign of the
effective halfwo 6 bit positions to the left and then loads
the 32-bit twols complement of the result into register R.
(Overflow cannot occur.)

Affected: (R),CC3, CC4

-[EHSE] -R

Condi ti on code setti ngs:

2 3 4 Resul t in R

- 0 0 Zero

o Negative

o Positive

LAH LOAD ABSOLUTE HALFWORD
(Ha I fword index a Ii gnmen t)

If the effective halfword is positive, LOAD ABSOLUTE
HALFWORD extends the sign of the effective halfword
16 bit positions to the left and then loads the 32-bit result

, in register R. If the effective halfword is negative, LAH
extends the sign of the effective halfword 16 bit positions
to the left and then loads the 32-bit twols complement of
the result into register R. (Overflow cannot occur.)

Affected: (R), CC3, CC4

IEHSEI-R

Condition code settings:

2 3 4 Resu It in R

- 0 0 Zero

o Nonzero

LCW LOAD COMPLEMENT WORD
(Word index alignment)

1*1 3A
0123145

I R I X I: Reference: address I
7 6 9 10 II 12 13 14 15 Ib 17 18 19120 21 22 23 24 2; 2b 27128 29 30 31

LOAD COMPLEMENT WORD loads the 32-bit two's com­
plement of the effective word into register R. Fixed-point
overflow occurs if the effective word is _231 (X ' 80000000'),
in which case the result in register R is _231 and CC2 is set
to 1; otherwise, CC2 is reset to O.

Affected: (R),CC2,CC3,CC4 Trap: Fixed-point overflow.
-EW-R

Load/Store Instructions 37

Condition code settings:

2 3 4 Result in R

- 0 0 0 Zero

0 Negative

- 0 0 Positive

- 0 No fixed-point overflow

o Fixed-point overflow

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to Homespace location
X' 43 1 after execution of LOAD COMPLEMENT WORD;
otherwise, the computer executes the next instruction in
sequence.

LAW LOAD ABSOLUTE WORD
(Word index alignment)

If the effective word is positive, LOAD ABSOLUTE WORD
loads the effective word into register R. If the effective
word is negative, LAW loads the 32-bit two's complement
of the effective word into register R. Fixed-point overflow
occurs if the effective word is _231 (X'80000000'), in which
case the result in register R is _231 and CC2 is set to 1;
otherwise, CC2 is reset to O.

Affected: (R), CC2, CC3, CC4 Trap: Fixed-point overflow
IEWI-R

Condition code settings:

2 3 4 Resu I tin R

- 0 0 0 Zero

o Nonzero

a No fixed-point overflow

o Fixed-point overflow (sign bit on)

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to Homespace location X'43'
after execution of LOAD ABSOLUTE WORD; otherwise, the
computer executes the next instruction in sequence.

LCD LOAD COMPLEMENT DOUBLEWORD
(Doubleword index alignment)

LOAD COMPLEMENT DOUBLEWORD forms the 64-bit
two's complement of the effective doubleword, loads the

38 ~d/Store Instructions

32 low-order bits of t.sult into register Ru 1, and then
loads the 32 high-ord ts of the result into register R.

If R is an odd value, the result in register R is the 32 high­
order bits of the two's complemented doubleword. The con­
dition code settings are based on the two's complement of
the effective doubleword, rather than the final result in
register R.

Fixed-point overflow occurs if the effective doubleword is
_263 (X'8000000000000000'), in which case the result in
registers Rand Ru1 is _263 and CC2 is set to 1; otherwise,
CC2 is reset to O.

Affected: (R), (Ru 1), CC2, Trap: Fixed-point overflow
CC3, CC4

[-ED]32_63 -Ru1; [-ED]O_31- R

Condition code settings:

2 3 4 Two's complement of effective doubleword

- 0 0 0 Zero

o Negative

- 0 0 Positive

- 0 - No fixed-point overflow

o Fixed-point overflow

If CC2 is set to 1 and the fixed-point arithmetic trap
mask (AM) is a 1, the computer traps to Homespace loca­
tion X'43 1 after execution of LOAD COMPLEMENT

'DOUBLEWORD; otherwise, the computer executes the next
instruction in sequence.

Example 1, even R field value:

ED

(R)

(Ru 1)

CC

Before execution After execution

X'0123456789ABCDEF' X'0123456789ABCDEF'

xxxxxxxx X'FEDCBA98'

xxxxxxxx XI 76543211 ,

xxxx x001

Example 2, odd R field value:

Before execution After execution

ED X' 0 123456 789ABCD EF' X' 0 123456 789 ABCD EF'

(R) xxxxxxxx X'FEDCBA98'

CC xxxx x001

LAD LOAD ABSOLUTE DOU jliVORD
(Doubleword index al ig~t)

If the effective doubleword is positive, LOAD ABSOLUTE
DOUBLEWORD loads the 32 low-order bits of the effective
doubleword into register Ru 1, and then loads the 32 high­
order bits of the effective doubleword into register R. If R
is an odd value, the result in register R is the 32 high-order
bits of the effectivedoubleword. The condition code set­
tings are based on the effective doubleword, rather than
the final result in register R. '

If the effective doubl eword is negative, LAD forms the
64-bit two's complement of the effective doubleword, loads
the 32 low-order bits of the two's complemented double­
word into register Ru 1, and then loads the 32 high-order
bits of the two's complemented doubleword into register R.
If R is an odd value, the result in register R is the 32 high­
order bits of the two's complemented doubleword. The con­
dition code settings are based on the two's complement of
the effective doubleword, rather than the final result in
register R.

Fixed-point overflow occurs if the effective doubleword is
-263 (X'8000000000000000'), in which case the result in
registers Rand Ru 1 is _263 and CC2 is set to 1; otherwise,
CC2 is reset to O.

Affected: (R), (Ru 1), CC2, Trap: Fixed-point overflow
CC3,CC4

I ED 132- 63 - Ru 1; I ED 10- 31 --R

Condition code settings:

2 3 4 Absolute value of effective doubleword

- 0 0 0 Zero

o Nonzero

- 0 - - No fixed-point overflow

o Fixed-point overflow (sign bit on)

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to Homespace location
X'43' after execution of LOAD ABSOLUTE DOUBLEWORDi
otherwise, the computer executes the next instruction in
sequence.

Example 1, even R field val-ue:

ED

(R)

(Ru 1)

CC

Before execution

X'0123456789ABCDEF'

xxxxxxxx

xxxxxxxx

xxxx

After execution

X'O 123456789ABCD EF'

X'01234567'

X'89ABCDEF'

x010

Example 2, eve field value:

Before execution After execution

ED XI FEDCBA9876543210' X' FED CBA987654321 01

(R) xxxxxxxx X'012345671

(Ru 1) xxxxxxxx X'89ABCDFO'

CC xxxx x010

Example 3, odd R field value:

Before execution After execution

ED X'0123456789ABCDEF' X'0123456789ABCDEF'

(R) xxxxxxxx X'01234567'

CC xxxx x010

LRA LOAD REAL ADDRESS
(Byte, halfword, word, or doubleword index
alignment, privileged)

LOAD REAL ADDRESS loads register R with control informa­
tion (i. e., state of the write locks) and the effective ad­
dress of the byte, halfword, word, or doubleword pointed
to by the reference address. The information loaded is
determined by the setting of CCl and CC2 at the beginning
of instruction execution. Indexing displacement is also
governed by CCl and CC2. The desired value of the con­
dition code can be set with LCF or LCFI.

CCl CC2 Displacement in index

o o Byte

o Halfword

o Word

Doubleword

The resultant contents of register R are as follows:

Bits

o

Contents

Always zero.

Real Address Not Valid Flag (set if LRA indirectly
addresses a nonexistent address, an address that
has a parity error, or an address less than 16).

Load/Store Instructions 39

Bits Contents •
2,3 Write Lock Codes.

4-12 Reserved.

13-31 Effective Address (as determined by the setting
of CC 1 and CC2).

Affected: (R), CC3, CC4

CC3 is set to one if nonexistent memory is invoked; CC4
is set to one if Homespace bias is used in the resultant
effective address.

When LRA is executed as the operand of an ANALYZE
instruction, word addressing is assumed (word index align­
ment is.performed).

LAS LOAD AND SET
\Word index al ignment)

LOAD AND SET loads the effective word into R and un­
conditionally sets bit 0 of the effective word location in
memory to 1. Register R contains the previous contents of
the effective word location (i. e., before being modified,
if required). The effective address a Iways references mem­
ory even if it is less than 16.

Affected: (R) CC3, CC4
EW-R
1-EW o

Condition code settings:

2 3 4 Resu It in R

o 0 Zero

o Negative

o Positive

Note: Write locks are used to protect memory during the
execution of LAS. Traps are not inhibited during
its execution.

40 Load/Store Instructions

LMS LOAD MEAY STATUS
(Word ind~~rgnment, privileged)

LOAD MEMORY STATUS is used to determine memory bank
status and/or to perform diagnosti c action on a memory
bank. The effective address is used to determine the mem­
ory bank. The condition code setting immediately before
execution determines the diagnosti c action to be performed.
The effective address always references memory even if it
is less than 16. The condition code can be set to the de­
sired value before execution of LMS with the LCF or LCFI
instructions. Register R is loaded with the result of the
action.

Affected: (R)

Condition code settings:

2 3 4 LMS Action

Trap: See IITrap Systemll,
Chapter 2.

o 0 0 0 Load and set - causes the same action as
the LOAD AND SET (LAS) instruction.
Normal traps are allowed including write
protect.

000

o 0

Read and inhibit parity - loads the effective
word into R. If a memory parity error is de­
tected, the memory does not take a IIsnap-
shot ll or generate a Memory Faul t Interrupt
(MFI). It does, however, generate the Mem­
ory Parity Error signal. The CPU inh ibits
the trap that would ordinari Iy occur for the
memory parity error.

o Read and change parity - loads the effec­
tive word into R. The memory reads the
location and unconditionally restores the
word with the invalid parity bit. The
parity bit transm itted to the processor is
the original parity bit. Parity error traps
and memory fault interrupts are not in­
hibited by this instruction.

o 0 Reserved.

o 0 0 Reserved.

o o Reserved.

o 0 Reserved.

o Set memory status register - transfers the ef­
fective word from R to memory. The memory

2 3 4 LMS Action •

000

o 0

bank will interpret the word and change
its own timing as follows:

Word Bits

8 9 10 11

0 0 0

0 0 0

o 0 o

000

Interpretation

Set clock margin 0, early
write balf cycle.

Set clock margin 1, late
write half cycle.

Set clock margin 2, early
strobe.

Set clock margin 3, late
strobe.

t
Read status word 0 - loads status word 0
into R (see Table 6).

Read status word 1 t - loads status word 1
into R (see Table 7).

o 0 Read status word 2t - loads status word 2
into R (see Table 8).

o 0 Read status word 0 and clear all status bits.

o Reserved.

o Read status word 2t and clear all status bits.

Clear memory - clears the effective word.
All traps are allowed incl uding write protect
violatio!,,!.

The status of the word loaded (if any) is
stored in the condition code bits at the con­
clusion of execution as follows:

CC1: Memory Parity Error (from memory)

CC2: Data Bus Check (from CPU)

CC3: Parity Bit (from memory)

CC4: 0

t Primarily of diagnostic concern.

Field

Memory fault
types

Subsequent
faults

Last parity
bit written

Bank number

Port number

Ie 6. Status Word 0

Bits Comments

0 Reserved.

1 Data parity error detected
on read.

2 Data parity error detected
on partial write.

3 Address bus parity error.

4 Data bus parity error on
full or partial writo.

5 Loop check data parity
error.

6 Port selection error.

7 Basic memory unit over-
temperature or power sup-
ply failures.

8-11 Reserved.

12 After a snapshot is taken,
this bit is a 1 if two or
more subsequent memory
fau I ts occur before status
register is cleared.

13 When· initial snapshot was
ta ken, the va I ue of the
last parity bit written into
main memory is stored in
th is position.

14 Bit 14 is the most signifi-
cant bit of bank number
in the unit.

15 Bit 15 is the least signifi-
cant bit of bank number
in the unit.

16-19 Reserved.

....

20 Port 1

21 Port 2
Group 1

22 Port 3

23 Port 4
oJ

load/Store Instructions 41

Table 6. Status Word 0 {cont

Field Bits Comments
....

Port number 24 Port 5
(cont.)

25 Port 6
Group 2

26 Port 7

27 Port 8
~

28 Port 9

29 Port 10
.~ GF@Up J

30 Port 11

31 Port 12
J

Note: Ports are installed
in groups as shown.

Table 7. Status Word 1

Field Bits Comments

Interleave 0,1 0 1
mode

I

0 0 No interleave

0 1 2-way interleave

1 0 Interl eave between
two units (4-way)

1 1 Reserved

Bank size 2,3 2 3 --
0 0 8K

0 1 16K

1 0 Reserved

1 1 Reserved

Memory unit 4-7 This field specifies the
number memory unit number, as

follows: bit 4 is the
most significant bit;
bit 7 is the least sig-
nificant bit.

42 Load/Store Instructions

Table 7. sWord 1 (cont.)

Field Bits Comments

8-13 Reserved

Clock margin 14 Clock margin 0, early
write half cycle.

15 Clock margin 1, late
write half cycle.

16 Clock margin 2,
strobe.

17 Clock margin 3,
strobe.

18-31 Reserved

Table 8. Status Word 2

Field Bits Comments

0-14 Reserved

Interleaved 15-31
address of
fault

LS LOAD SELECTIVE
(Word index al ignment)

early

late

Register Ru1 contains a 32-bit mask. If R is an even value,
LOAD SELECTIVE loads the effective word into register R
in those bit positions selected by a 1 in corresponding bit
positions of register Ru 1. The contents of register R are not
affected in those bit positions selected by a 0 in corre­
sponding bit positions of register Ru 1.

If R is on odd value, LS logic.ANDs the contents of
register R with the effective wand loads the result into
register R. If corresponding bit positions of register Rand
the effective word both contain lis, a 1 remains in reg­
ister R; otherwise, a 0 is placed in the corresponding bit
position of register R.

Affected: (R), CC3, CC4

If R is even, [EWn(Ru1)]u[(R)n(Ru1)]-R]

If R is odd, EWn(R)-R

Condition code settings:

2 3 4 Resu I tin R

o 0 Zero.

o Bit 0 of register R is a 1.

o Bit 0 of register R is a 0 and bit positions 1-31
of register R contain at least one 1.

Example 1, even R field value:

Before execution After execution

EW X1 01234567' X1 01234567'

(Ru 1) X I FFOOFFOO' X'FFOOFFOO'

(R) xxxxxxxx X'Ol xx45xx '

CC xxxx xx10

Example 2, odd R field value:

Before execution After execution

EW X I 89ABCDEF' X I 89ABCDEF'

(R) X I FOFOFOFO' X '80AOCOEO'

CC xxxx xxOl

LM LOAD MULTIPLE
(Word index al ignment)

LOAD MULTIPLE loads a sequential set of words into a
sequential set of registers, The set of words to be loaded
begins with the word pointed to by the effective address of
LM, and the set of registers begins with register R. The
set of registers is treated modulo 16 (i. e. , the next register
loaded after register 15 is register 0 in the current register
block).

The number of words to be loaded into the genera I reg­
isters is determined by the setting of the condition code

immediatel.re the execution of LM. (The desired
val ue of the condition code can be set with LCF or LCFI.)
An initial value of 0000 for the condition code causes
16 consecutive words to be loaded into the register block.

- ----Affected: _ (R) to (R+CC -1)

(EWL)-R; ... (EWL+CC-l)--R+CC-1

The LM instruction may cause a trap if the operation ex­
tends into a nonexistent memory region. It is detected
before the actual operation begins and the trap occurs
immediately.

LCFI

o I 2

LOAD CONDITIONS AND FLOATING
CONTROL IMMEDIATE
(Immediate operand)

314 5 6 78 9 101112 13 14 1516 17 18 19120212223 242526272& 29 30 31

If bit position 10 of the instruction word contains a 1,
LOAD CONDITIONS AND FLOATING CONTROL IM­
MEDIATE loads the contents of bit positions 24 through 27
of the instruction word into the condition code; however,
if bit lOis 0, the condition code is not affected.

If bit position 11 of the instruction word containsa 1, LCFI
loads the contents of bit positions 29 through 31 of the in­
struction word into the floating significance (FS), floating
zero (FZ), and floating normal ize (FN) mode control bits,
respectively (in the program status doubleword); however,
if bit 11 is 0, the FS, FZ, and FN control bits are not
affected. The functions of the floating-point control bits
are described in the section "Floating-Point Arithmetic
Instructions" •

Affected: CC, FS, FZ, FN

If (1)10 = 1, (I)24-27 -CC

If (1)10 = 0, CC is not affected

If (1)11 = 1, (I)29-31- FS, FZ, FN

If (I)11 = 0, FS, FZ, and FN not affected

Condition code settings, if (1)10 = 1:

2 3 4

(1)24 (1)26

If LCFI is indirectly addressed, it is treated as a nonexistent
instruction, in which case the computer unconditionally
aborts execution of the instruction (at the time of operation

Load/Store Instructions 43

code d~coding) and traps to Homespacc I o c.' n X'40' with
• the condition code unchanged.

LCF LOAD CONDITIONS AND FLOATING
CONTROL
(Byte index 01 ignment)

If bit position 10 of the instruction word contains a 1,
LOAD CONDITIONS AND FLOATING CONTROL loads
bih 0 through 3 of the effective byte into the IOCQtion
code; howevel', if bit 10 is 0, the ~onditioh code is not
affected.

If bit position 11 of the instruction word contains a 1, LCF
loads bits 5 through 7 of the effective byte into the floating
significance (FS), floating zero (FZ), and floating normal­
ize (FN)mode control bits, respectively; however, if bit 11
is 0, the FS, FZ, and FN control bits are not affected.
The functions of the floating- point mode control bits
are described in the section "Floating-Point Arithmetic
Instructions".

Affected: CC, FS, FZ, FN

If (I)10 = 1, EB
O

_3 -CC

If (I) 10 = 0, CC not affected

If (1)11 = 1, EB
5

_7 -FS, FZ, FN

If(I)ll = 0, FS, FZ, FN not affected

Condition code settings, if (I)10 = 1:

2 3 4

(EB)l

XW EXCHANGE WORD
(Word index al ignment)

EXCHANGE WORD exchanges the contents of register R
with the contents of the effective word location.

Affected: (R), (EWL),CC3,CC4
(R)-(EWL)

44 load/Store Instructions

Condition code settings: •

1 2 3 4 Resu I tin R

- - 0 0 Zero

- 0 Negative

o Positive

STS STORE BYTE
(Byte index alignment)

STORE BYTE stores the contents of bit positions 24-31 of
register R into the effective byte location.

Affected: (EBL)

(R)24-31 -EBL

STH STORE HALFWORD
(Halfword index alignment)

STORE HALFWORD stores the contents of bit positions 16-31
of register R into the effective halfword location. If the
information in register R exceeds halfword data limits, CC2
is set to 1; otherwise, CC2 is reset to O.

Affected: (EHL), CC2

(R)16-31 -EHL

Condition code settings:

2 3 4 Information in R

- 0 (R)0-16 = all O's or all l's.

- (R)0-16 f all O's or all l's.

STW STORE WORD
(Word index alignment)

o I 2

STORE WORD stores the contents of register R into the ef­
fective word location.

Affected: (EWL)
(R) -EWL

STD STORE DOUBLEWORD.
(Doubleword index al i nt)

STORE DOUBLEWORD stores the contents of register R into
the 32 high-order bit positions of the effective doubleword
location and then stores the contents of register Ru 1 into
the 32 low-order bit positions of the effective doubleword
location.

Affected: (EDL)
(R)-EDL

O
_

31
; (Ru1) -EDL

32
_

63

Example 1, even R field value:

Before execution

(R) X 101234567'

(Rul) = X'89ABCDEF'

(EDL) = xxxxxxxxxxxxxxxx

Example 2, odd R field value:

Before execution

(R) X'89ABCDEF'

(EDL) = xxxxxxxxxxxxxxxx

STS STORE SELECTIVE
(Word index alignment)

After execution

X 101234567'

X I 89ABCDEF'

X '0 123456789ABCD EF I

After execution

X'89ABCDEF'

X'89ABCDEF89ABCDEF'

Register Ru1 contains a 32-bit mask. If R is an even value,
STORE SELECTIVE stores the contents of register R into the
effective word location in those bit positions selected by a
1 in corresponding bit positions of register Ru 1; the effec­
tive word remains unchanged in those bit positions selected
by a 0 in corresponding bit positions of register Ru 1.

If R is an odd value, STS logically inclusive ORs the con­
tents of register R with the effective word and stores the
result into the effective word location. The contents of
register R are not affected.

Affected: (EWL)

If R is even, [(R)n(Ru 1)] u [EW (Ru 1)] -EWL

If R is odd, (R) u EW-EWL

Example 1, eeR field value:

Before execution After execution

(R) X'12345678 ' X' 12345678'

(Ru 1) X' FOFOFOFO' X'FOFOFOFO'

EW = xxxxxxxx Xllx3x5x7x '

Example 2, odd R field value:

(R)

EW

STM

Before execution

X' OOFFOOFF'

X'12345678'

STORE MULTIPLE
(Word index alignment)

After execution

X'OOFFOOFF'

X I 12FF56FF'

STORE MULTIPLE stores the contents of a sequential set of
registers into a sequential set of word locations. Tne set of
locations begins with the location pointed to by the effec­
tive word address of STM, and the set of registers begins
with register R. The set of registers is treated modulo 16
(i. e., the next sequential register after register 15 is reg­
ister 0). The number of regi sters to be stored is determi ned
by the value of the condition code immediately before exe­
cution of STM. (The condition code can be set to the de­
sired value before execution of STM with LCF or LCFI.)
An initial value of 0000 for the condition code causes
16 general registers to be stored.

Affected: (EWL) to (EWL + CC -1)
(R) -EWLi .•• , (R +CC -1) -EWL +CC-1

The STM instruction causes a trap if its operation extends
into a page of memory that is protected by the write locks.
A trap also occurs if the operation extends into a non­
existent memory region. In either case, the trap is de­
tected before the actual operation begins and wi II occur
immediately.

STCF STORE CONDITIONS AND FLOATING
CONTROL
(Byte index alignment)

STORE CONDITIONS AND FLOATING CONTROL stores
the current condition code and the current values of the
floating significance (FS), floating zero (FZ), and floating

Load/Store Instructions 45

norma I i::c (FN) mode control bits of the .am status
'Cloublcword into the effective byte location ollows:

Affected: (EBL)
(PSD)O_7-- EBL

A~~AL YZE/I.~TERPRET INSTRUCTIONS

ANLZ ANALYZE
(Word index al ignment)

The ANALYZE instruction treats the effective word as
a SIGMA 8 instruction and calculates the effective
address that would be generated by the instruction if
the instruction were to be executed. ANALYZE pro­
duces an answer to the question, "What effective ad­
dress wou Id be used by the instruction location at N if
it were executed now?". The ANALYZE instruction
determines the addressing type of the "analyzed" in­
struction, ca'lculates its effective address (if the instruc­
tion is not an immediate-operand instruction), and loads
the effective address into register R as a displacement
va lue (the condition code settings for the ANALYZE
instruction indicate the addressing type of the analyzed
i nstructi on).

The nonexistent instruction, the privi leged instruction
violation, and the unimplemented instruction trap condi­
tions can never occur during execution of the AN LZ in­
struction. However, either the nonexistent memory address
condition or the memory protection violation trap condition
(or both) can occur as a result of any memory access ini­
tiated by the AN LZ instruction. If either of these trap
conditions occurs, the instruction address stored by an
XPSD in trap Homespace location X'40' is always the
address of the AN LZ instruction ..

When the ANALYZE instruction is executed and a trap
condition occurs, it never traps.

If no trap condition occurs, AN LZ wi II execute normally
and return the effective address of the instruction analyzed.
Table 9 shows how SIGMA 8 operation codes wi II be inter­
preted by AN LZ.

The detailed operation of ANALYZE is as follows:

1. The contents of the location pointed to by the effec­
tive address of the ANLZ instruction is obtained.

46 Analyze/Interpret Instructions

This effective word.e instruction to be: analyzed:
From a memory-prot~on viewpoint, the instruction
(to be analyzed) is treated as an operand of the AN LZ
instruction; that is, the analyzed instruction may be
obtained from any memory area to which the p'rogram
has read access.

2. If the operation code portion of the effective word
specifies an immediate-addressing instruction type~
the condition code is set to indicate the addressing
type, and instruction execution proceeds to the next
instruction in sequence after ANLZ. The original con­
tents of register R are not changed when the analyzed
instruction is of the immediat,e-addressing type.

If the operation code portion of the effective word
specifies a reference-addressing instruction type, the
condition code is set to indi cate the addressing type
of the analyzed instruction and the effective address
of the analyzed instruction is computed (using all of
the normal address computation ru les). If bit 0 of the
effective word is a 1, the contents of the memory
location specified by bits 15-31 of the effective word
are obtained and then used as a direct address. The
nona I lowed operation trap (memory protection viola­
tion or nonexistent memory address) can occur as a
result of the memory access. Indexing is always per­
formed (with an index register in the current register
block) if bits 12-14 of the analyzed instruction are
nonzero. The effective address of the analyzed in­
struction is aligned as an integer displacement value
and loaded into register R, according to the instruction
addressing type, as follows:

Byte Addressing:

Ha Ifword Addressing:

Word Addressing:

Doubleword Addressing:

Operation codes and mnemonics for the SIGMA 8 instruc­
tion set are shown in Table 9. Circled numbers in the

table (designating groups of i_ctions within the bold
lines) indicate the condition c~value (decimal), shown
in condition code settings below, available to the next in­
struction after ANALYZE when a direct-addressing opera­
tion code in the corresponding addressing type is analyzed.

Affected: (R), cc

Condition code settings:

2 3 4 Instruction addressing type

o 0 - 0 Byte

o 0 - Immediate, byte

o - 0 Ha Ifword

o - 0 Word

o - Immed i ate, word

- 0 Doubleword

o - Direct addressing (EWO = 0)

- Indirect addressing (EW 0 = 1)

INT INTERPRET
(Word index alignment)

INTERPRET loads bits 0-3 of the effective word into the
condition code, loads bits 16-31 of the effective wo~d into
bit positions 16-31 of registerRu1 (and loads O's into bit
positions 0-15 of register Ru1), loads bits 4-15 of the effec­
tive word into bit positions 20-31 of register R (and clears
the remaining bits of register R). If R is an odd value, INT
loads bits 0-3 of the effective word into the condition code,
loads bits 16-31 of the effective word into bit positions
16-31 of register R, and loads O's into bit positions 0-15 of
register R (bits 4-15 of the effective word are ignored in
this case).

Affected: (R), (Ru 1), CC

EW
O

_
3
-- CC

EW 4-15 -- R20- 31 ; 0 -- RO- 19

EW 16-31 -- Ru 116- 31 ; 0 - Ru 1 0- 15

Ta •. ANALYZE Table for SIGMA 8
Operation Codes

X'n' X'OO'+n X'20'+n X'40'+n X'60'+n

00 - AI TTBS CBS
01 - CI TSS MBS
02 LCFI CD LI - CD -
03 - MI - -

04 CAll SF ANLZ BDR
05 CAL2 S CS BIR
06 CAL3 LAS XW AWM
07 CAL4 - STS EXU

I I
08 PLW CVS EOR BCR
09 PSW CVA CD OR BCS
OA PLM LM LS BAL
OB PSM STM AND INT

OC - LRAt SlOt RDt
OD

~PSDt ®
LMSt TIot WDt

OE WAITt TDVt AIOt
OF XPSDt LRPt HIOt MMCt

10 AD AW AH LCF
11 CD CW CH CB
12 LD LW LH LB
13 MSP MTW MTH MTB

14 - - - STCF
15 STD STW STH STB
16 - DW DH CD ,..- (0
17 - MW MH -

18 SD SW SH -
19 CLM CLR - -
1A LCD LCW LCH -
1B LAD LAW LAH -

1C FSL FSS - -
1D FAL FAS - -
1 E FDL FDS - -
IF FML FMS - -

tprivileged instructions.

Condition code settings:

2 3 4

Example 1, even R field value:

Before execution After execution

EW X'12345678' X'12345678'

(R) xxxxxxxx X' 00000234'

(Ru 1) xxxxxxxx X'OOO05678'

CC xxx x 0001

Ana Iyze/Interpret Instructions 47

FIXED-POlt~T ARITHMETIC INST.TIONS

The following fixed-point arithmetic instructions are
included as a standard feature of the SIGMA 8 computer.

Instruction Name Mnemonic

Add Immediate AI

Add Ha I fword AH

Add Word AW

Add Doubl eword AD

Subtract Halfword SH

Subtract Word SW

Subtract Doubleword SD

Multiply Immediate MI

Multiply Halfword MH

Multiply Word MW

Divide Halfword DH

Divide Word DW

Add Word to Memory AWM

Modify and Test Byte MTB

Modify and Test Halfword MTH

Modify and Test Word MTW

The fixed-point arithmetic instruction set performs binary
addition, subtraction, multiplication, and division with
integer operands that may be data, addresses, index values,
or counts. One operand may be either in the instruction
word itself or may be in one or two of the current general
registers; the second operand may be either in main memory
or in one or two of the current general registers. For most
of these instructions, both operands may be in the same
general register, thus permitting the doubling, squaring,
or clearing the contents of a register by using a reference
address value equal to the R field value.

All fixed-point arithmetic instructions provide a conditio~'
code setting that indicates the following information about
the result of the operation called for by the instruction:

Condition code settings:

2 3 4 Result

o 0 Zero - the result in the specified general
register(s) is all zeros.

48 Fixed-Point Arithmetic Instructions

__ 2 __ 3_4_ Result.

o

o Negative - the instruction has produced a
fixed-point negative resul t.

o Positive -the instruction has produced a
fixed-point positive result.

o Fixed-point overflow has not occurred during
execution of an add, subtract, or divide in­
struction, and the result is correct.

Fixed-point overflow has occurred during
execution of an add, subtract, or divide in­
struction. For addition and subtraction, the
incorrect result is loaded into the designated
register(s). For a divide instruction, the
designated register(s), and CC 1, CC3, and
CC4 are not affected.

No carry - for an add or subtract instruction,
there was no carry of a 1-bit out of the high­
order (sign) bit position of the result.

Carry - for an add or subtract instruction,
there was a l-bit carry out of the sign bit
position of the result. (Subtracting zero will
always produce carry.)

AI ADD IMMEDIATE
(Immediate operand)

The value field (bit positions 12-31 of the instruction word)
is treated as a 20-bit, two's complement integer. ADD
IMMEDIATE extends the sign of the value field (bit posi­
tion 12 of the instruction word) 12 bit positions to the left,
adds the resulting 32-bit value to the contents of register R,
and loads the sum into register R.

Affected: (R), CC Trap: Fixed-point overflow

(~) + (I)12-31SE-- R

Condition code settings;

2 3 4 Result in R

0 0 Zero

0 Negative

0 Positive

o - No fixed-point overflow

Fixed-point overflow

o No carry from bit positi on 0

Carry from bit position 0

If ;\1 is indirl~ctly oddrcssed, it is .d as a nonexistent
instruction, in which case the computer unconditionally
aborts execution of the instruction (at the time of operation
code decoding) and traps to Homespace location X' 40' with
the contents of register R and the condition code unchanged.

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to Homespace location
X'43 1 after loading the sum into register R; otherwise, the
computer executes the next instruction in sequence.

AH ADD HALFWORD
(Halfword index alignment)

ADD HALFWORD extends the sign of the effective halfword
16 bit positions to the left (to form a 32-bit word in which
bit positions 0-15 contain the sign of the effective half­
word), adds the 32-bit result to the contents of register R,
and loads the sum into register R.

Affected: (R), CC
(R) + EH -R

SE

Condition code settings:

2 3 4 Result in R

0 0 Zero

0 Negative

0 Positive

Trap: Fixed-point overflow

o No fixed-point overflow

Fixed-point overflow

o No carry" from bit position 0

Carry from bit position 0

If CC2 is set to 1 and the fixed-point arithmetic trap mask
is 1, the computer traps to Homespace location X'43 1 after
loading the sum into register R; otherwise, the computer
executes the next instruction in sequence.

AW ADD WORD
(Word index al ignment)

ADD WORD adds the effective word to the contents of reg­
siter R and loads the sum into register R.

Affected: (R), CC
(R) + EW -R

Trap: Fixed-point overflow

Condition code engs:
2 3 4 Result in R

o 0 Zero

o Negative

o Positive

o No fixed-point overflow

Fixed-point overflow

o No carry from bit position 0

Carry from bit position 0

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to Homespace location
X '43 1 after loading the sum into register R; otherwise, the
computer executes the next instruction in sequence.

AD ADD DOU BLEWORD
(Doubleword index alignment)

ADD DOUBLEWORD adds the effective doubleword to the
contents of registers Rand Rul (treated as a single, 64-bit
register); loads the 32 low-order bits of the sum into reg-

. isterRu 1 and then loads the 32 high-order bits of the sum
into register R. R must be an even value; if R is an odd
value, the computer traps with the contents in register R
unchanged.

Affected: (R),(Rul),CC
(R, Ru 1) + ED --R, Ru 1

Trap: Fixed-poinT overflow,
instruction exception

Condition code settings:

2 3 4 Resu It in R, Ru 1

o 0 Zero

o Negative

o Positive

o No fixed-point overflow

Fixed-point overflow

o No carry from bit position 0

Carry from bit position 0

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to Homespace location
X'43 1 after loading the sum into registers Rand Ru 1; other­
wise, the computer executes the next instruction in sequence.

Fixed-Point Arithmetic Instructions 49

The R field of the AD instruction must beAven value for
proper operation of the instruction; if theWield of AD is
an odd value, the instruction traps to Homespace location
X'4D', the instruction exception trap.

Example 1, even R field value:

Before execution After execution

ED X'33333333EEEEEEEE' X'33333333EEEEEEEE'

(R) X'11l11111' X '44444445 ,

(Ru 1) X '33333333' X'22222221,

CC = xxxx 0010

SH SU BTRACT HALFWORD
(Halfword index alignment)

SUBTRACT HALFWORD extends the sign of the effective
halfword 16 bit positions to the left (to form a 32-bit word
in which bit positions 0-15 contain the sign of the effec­
tive halfword), forms the two's complement of the resulting
word, adds the complemented word to the contents of reg­
ister R, and loads the sum into register R.

Affected: (R) I CC Trap: Fixed-point overflow
-EH + (R) --R

SE

Condition code settings:

2 3 4 Resu I tin R

o 0 Zero

o Negative

o Positive

o No fixed-point overflow

Fixed-point overflow

o - No carry from bit position 0

Carry from bit position 0

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to Homespace location
X'43' after loading the sum into register R; otherwise, the
computer executes the next instruction in sequence.

SW SU BTRACT WORD
(Word index a I ignment)

50 Fixed-Point Arithmetic Instructions

SUBTRACT WORD foree two's complement of the effec­
tive word, adds that complement to the contents of regis­
ter R, and loads the sum into register R.

Affected: (R), CC
-EW + (R) --R

Trap: Fixed-point overflow

Condition code settings:

2 3 4 Resu It in R

o 0 Zero

o Negative

o Positive

o No fixed-point overflow

Fixed-point overflow

o No carry from bit position 0

Carry from bit position 0

If CC2 is set to 1 and the fixed-point arithmeti c trap mask
(AM) is a 1, the computer traps to Homespace location
X'43' after loading the sum into register R; otherwise,. the
computer executes the next instruction in sequence.

so SUBTRACT DOUBLEWORD
(Doubleword index alignment)

SUBTRACT DOUBLEWORD forms the 64-bit two's comple­
ment of the effective doubleword, adds the compl emented
doubl eword to the contents of registers Rand Ru 1 (treated
as a single, 64-bit register), loads the 32 low-order bits
of the sum into register Ru1 and loads the 32 high-order bits
of the sum into register R. R must be an even val uei if R is
an odd va lue, the computer traps with the contents in reg­
ister R unchanged.

Affected: (R), (Rul), CC
-ED + (R, Ru 1) -R, Ru 1

Trap: Fixed-point overflow,
instruction exception

Condition code settings:

o

2 3 4 Resu I tin R, Ru 1

o

o 0 Zero

o Negative

o Positive

No fixed-point overflow

Fixed-point overflow

No carry from bit position 0

Carry from bit position 0

If CC2 is sd to 1 and the fixe.int arithmetic trap mask
(AM) is a 1, the computer trap Homespace location
X'43' after the result is loaded into registers Rand Ru1;
otherwise, the computer executes the next instruction in
sequence.

The R field of the SD instruction must be an even value for
proper operation of the instruction; if the R field of SD is
an odd value, the instruction traps to Homespace location
X'4D', instruction exception trap.

MI MULTIPLY IMMEDIATE
(Immediate operand)

The value field (bit positions 12-31 of the instruction word)
is treated as a 20-bit, two's complement integer. MUL TI­
PLY IMMEDIATE extends the sign of the value field (bit
position 12) of the instruction word 12 bit positions to the
left and multiplies the resulting 32-bit value by the con­
tents of regi ster Ru 1, then loads the 32 hi gh-order bits of
the product into register R, and then loads the 32 low­
order bits of the product into register Ru 1.

If R is an odd value, the result in register R is the 32 low­
order bits of the product. Thus, in order to generate a
64-bit product, the R field of the instruction must be even
and the multiplicand must be in register R + 1. The condi­
tion code settings are based on the 64-bit product formed
during instruction execution, rather than on the final con­
tents of register R. Overflow cannot occur.

Affected: (R),(Ru1), CC2,CC3,CC4
(Ru1) x (I)12_31SE--R,Ru1

Condition code settings:

2 3 4 64-bit product

o 0 Zero.

o Negative.

o Positive.

o Result is correct, as represented in regis­
ter Ru 1.

Result is not correctly representable in reg­
ister Ru 1 alone.

If MI is indirectly addressed, it is treated as a nonexistent
instruction, in which case the computer unconditionally
aborts execution of the instruction (at the time of opera­
tion code decoding) and traps to Homespace location X'40 '
with the contents of register R, register Ru 1, and the con­
dition code unchanged; otherwise, the computer executes
the next instruction in sequence.

Example 1, • R field value:

Before execution

(1)12-31 XI 700001

(R) xxxxxxxx

(Ru 1) XI 100010001

CC xxxx

Example 2, odd R field value:

(1)12-31

(R)

CC

Before execution

X' 012341

X'000300021

xxxx

After execution

X'70000'

X 1000070001

X 170000000 I

x110

After execution

X' 012341

X'369C2468J

x010

MH MULTIPLY HALFWORD
(Halfword index al ignment)

MULTIPLY HALFWORD multiplies the contents of bit posi­
tions 16-31 of register R by the effective halfword (with
both halfwords treated as signed, twols complement inte­
gers) and stores the product in register Ru 1 (overflow can­
not occur). If R is an even value, the original multiplier
in register R is preserved, allowing repetitive halfword
multiplication with a constant multiplier; however, if R is
an odd value, the product is loaded into the same register.
Overflow cannot occur.

Affected: (Rul), CC3, CC4

(R)16-31 x EH -Rul

Condition code settings:

2 3 4 Resu I tin Ru 1

o 0 Zero

o Negative

o Positive

Example 1, even R field value:

Before execution

EH X'FFFF'

(R) X'xxxxOOOA'

(Ru 1) xxxxxxxx

CC xxxx

After execution

X' FFFF'

X I xxxxOOOA I

XI FFFFFFF61

xxOl

Fixed-Point Arithmetic Instructions 51

Example 2, odd R field value:

After e!,lion Before execution

EH X'FFFF' X'FFFF'

(R) X'xxxxOOOA' X'FFFFFFF6'

CC xxxx xxOl

~tI MUL TIPL Y WORD
(Word index a I ignment)

MULTIPLY WORD multipl ies the contents of register Ru 1 by
the effective word, loads the 32 high-order bits of the
product into register R and then loads the 32 low-order bits
of the product into register Ru 1 (overflow cannot occur).

If R is an odd value, the result in register R is the 32 low­
order bits of the product. Thus, in order to generate a
64-bit product, the R fi eld of the instruction must be even
and the multipl icand must be in register R + 1. The condi­
tion code settings are based on the 64-bit product formed
during instruction execution, rather than on the final con­
tents of register R.

Affected: (R), (Ru 1), CC
(Rul) x EW -R, Rul

Condition code settings:

DH

2 3 4 64-bit product

o 0 Zero.

o Negative.

o Positive.

o Result is correct, as represented in regis­
ter Ru 1.

o 0 Result is not correctly representable in reg­
ister Rul alone.

DIVIDE HALFWORD
(Halfword index alignment)

DIVIDE HALFWORD divides the contents of register R
(treated as a 32-bit fixed-point integer) by the effective
halfword and loads the quotient into register R. If the
absolute value of the quotient cannot be correctly repre­
sented in 32 bits, fixed-point overflow occurs; in which

52 Fixed-Point Arithmeti c Instructions

case CC2 is set to 1 an. contents of register R, and
CC 1, CC3, and CC4 ar changed.

Affected: (R), CC2, CC3,
CC4

(R) -;. EH --R

Condition code settings:

2 3 4 Resu It in R

Trap: Fixed-point C?verflow

o O' 0 Zero quotient, no overflow.

o 0 Negative quotient, no overflow.

o 0 Positive quotient, no overflow.

Fixed-point overflow.

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to Homespace location
X'43' with the contents of register R, CC1, CC3, and
CC4 unchanged.

OW D IVID E WORD
(Word index al ignment)

DIVIDE WORD divides the contents of registers Rand Ru 1
(treated as a 64-bit fixed-point integer) by the effective
word, loads the integer remainder into register R and then
loads the integer quotient into register Rul. If a nonzero
remainder occurs, the remainder has the same sign as the
dividend (original contents of register R). If R is an odd
value, DW forms a 64-bit register operand by extending
the sign of the contents of register R 32 bit positions to the
left, then divides the 64-bit register operand by the effec­
tive word, and loads the quotient into register R. In this
case, the remainder is lost and only the contents of reg­
ister R are affected.

If the absolute value of the quotient cannot be correctly
represented in 32 bits, fixed-point overflow occurs; in
whi ch case CC2 is set to 1 and the contents of register R,
register Ru 1, CC 1, CC3, and CC4 remain unchanged;
otherwise, CC2 is reset to 0, CC3 and CC4 reflect the
quotient in register Ru 1, and CC 1 is unchanged.

Affected: (R), (Ru1), CC2 Trap: Fixed-point overflow
I CC3, CC4

(R, Ru 1) -;. EVV --R (remainder), Ru 1 (quotient)

Condition code settings:

2 3 4 Resu I tin Ru 1

o 0 0 Zero quotient, no overflow.

o 0 Negative quotient, no overflow.

2 3 4 Resu I tin Ru 1

o 0 Positive quotient, no overflow.

Fixed-point overflow.

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to Homespace location
X'43 1 with the original contents of register R, register Ru 1,
CC1, CC3, and CC4 unchanged; otherwise, the computer
executes the next instruction in sequence.

AWM ADD WORD TO MEMORY
(Word index al ignment)

ADD WORD TO MEMORY adds the contents of register R
to the effective word and stores the sum in the effective
word location. The sum is stored regardless of whether or
not overflow occurs.

Affected: (EWL), CC
EW + (R) -EWL .

Trap: Fixed-point overflow

Condition code settings:

2 3 4 Result in EWL

o 0 Zero

o Negative

o Positive

o - No fixed-point overflow

Fixed-point overflow

o - No carry from bit position 0

Carry from bit position 0

If CC2 is set to 1 and fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to Homespace location
X'43 1 after the resul t is stored in the effective word loca­
tion; otherwise, the computer executes the next instruction
in sequence.

MTS MODIFY AND TEST BYTE
(Byte index al ignment)

If the value of the R field is nonzero, the high-order bit of
the R field (bit position 8 of the instruction word) is ex­
tended 4 bit positions to the left, to form a byte with bit
positions 0-4 of that byte equal to the high-order bit of
the R field. This byte is added to the effective byte and
then (if no memory protection violation occu rs) the sum is

stored in the &tive byte location and the condition cede
is set accord"" to the value of the resultant byte. This
process allows modification of a byte by any number in the
range -8 through +7, followed by a test.

If the value of the R field is zero, the effective byte is
tested for being a zero or nonzero value. The condition
code is set 'according to the result of the test, but the
effective byte is not affected. A memory write-protection
violation cannot occur in this case.

Affected: - CC if (I)8-11 = 0;
(EBL) and CC if (1)8" 11,0

If (I)8-11 ,0, EB + (I)8-l1SE - EBL and set CC

If (I)8-11 = 0, test byte and set CC

Condition code settings:

2 3 4 Result in EBL

o 0 0 Zero

o 0 Nonzero

o No carry from byte

Carry from byte

If MTB is executed in an interrupt location, the condition
code is not affected (see Chapter 2, "Single-Instruction
Interrupts").

MTH MODIFY AND TEST HALFWORD
(Halfword index al ignment)

If the value of the R field is nonzero, the high-order bit of
the R field (bit position 8 of the instruction word) is ex­
tended 12 bit positions to the left, to form a halfword with,/'/
bit positions 0-11 of that halfword equal to the high-order
bit of the R field. This halfword is added to the effective
halfword and then (if no memory protection violation oc-
curs) the sum is stored in the effective ha Ifword location
and the condition code is set according to the value of the
resu Itant halfword. The sum is stored regard less of whether
or not overflow occurs. This process allows modification
of a ha Ifword by any number in the range -8 through +7,
followed by a test.

Fixed-Point Arithmetic Instructions 53

If the value of the R field is zero, the erAve halfword
is tested for being a zero, negative, or ~tive value.
The condition code is set, according to the result of the
test, but the effective halfword is not affected. A memory
write-protection violation cannot occur in this case.

Affected: CC if (1)S-11 == 0; Trap: Fixed-point overflow

(EH L) and CC if (I)S-11 1 0

If (I)S-l1 == 0, test halfword and set CC

(If (1)S-l1 1 0, EH + (I)S_llSE-EHL and set CC

Condition code settings:

2 3 4 ResultinEHL

o 0 Zero

o Negative

o Positive

o No fixed-point overflow

Fixed-point overflow

o No carry from halfword

Carry from halfword

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to Homespace location
X '43 1 after the result is stored in the effective halfword
location; otherwise, the computer executes the next in­
struction in sequence. However, if MTH is executed in
an interrupt location, the condition code is not affected
(see Chapter 2, "Single-Instruction Interrupts".

MTW MODIFY AND TEST WORD
(Word index alignment)

If the value of the R field is nonzero, the high-order bit
of the R field (bit position S of the instruction word) is
extended 28 bit positions to the left, to form a word with
bit positions 0-27 of that word equal to the high-order bit
of the R field. This word is added to the effective word
and then (if no memory protection violation occurs) the
sum is stored in the effective word location and the con­
dition code is set according to the value of the resultant

54 Comparison Instructions

word. The sum is stoeegardless of whether or not over­
flow occurs. This process allows modification of a word by
any number in the range -S through +7, followed by a test.

If the value of the R field is zero, the effective word is
tested for being a zero, negative, or positive value. The
condition code is set according to the result of the test,
but the effective word is not affected. A memory write­
protection violation cannot occur in this case.

Affected: CC if (I)S-11 == 0; Trap: Fixed-point overflow

(EWL) and CC if (1)S-11 10

If (I)S-11 = 0, test word and set CC

If (1)S-l1 10, EW + IS_11 SE --EWL and set CC

Condition code settings:

2 3 4 Result in EWL

o 0 Zero

o Negative

o Positive

o No fixed-point overflow

Fixed-point overflow

o No carry from word

Carry from word

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to Homespace location
X'43 1 after the result is stored in the effective word loca­
tion; otherwise, the computer executes the next instruction
in sequence. However, if MTW is executed in an interrupt
location, the condition code is not affected (see Chap­
ter 2, "Si ngl e-Instruction Interrupts".

CO(v1PARISON INSTRUCTIONS

The following comparison instructions are available on
SIGMA S computers:

Instruction Name Mnemonic

Compare Immediate CI

Compare Byte CB

Compare Halfword CH

Compare Word CW

Instruction Name Mnemonic

Compare Doubleword CD

Compare Sel ective CS

Compare With Limits in Register ClR

Compare With Limits in Memory ClM

All SIGMA 8 comparison instructions produce a condition
code setting that is indicative of the results of the com­
parison, without affecting the effective operand in memory
or the contents of the designated register.

CI COMPARE IMMEDIATE
(Immediate operand)

COMPARE IMMEDIATE extends the sign of the value field
(bit position 12) of the instruction word 12 bit positions to
the left, compares the 32-:bit result with the contents of
register R (with both operands treated as signed fixed-point
quantities), and then sets the condition code according to
the resul ts of the comparison.

Affected: CC2, CC3,CC4

(R) : (I)12-31SE

Condition code settings:

2 3 4 Result of Comparison

o 0 Equal.

o Register value less than immediate value.

o Register value greater than immediate
value.

o No 1-bits compare, (R) () (I)12-32SE = O.

One or more 1-bits compare,

(R) () (I) 12-32SE I O.

If CI is indirectly addressed, it is treated as a nonexistent
instruction, in which case the computer unconditionally
aborts execution of the instruction (at the time of operation
code decoding) and then traps to Homespace location X·40·
with the condition code unchanged.

CB COMPARE BYTE
(Byte index alignment)

COMPARE B.compares the contents of bit positions 24-31
of register R the effective byte (with both bytes
treated as positive integer magn itudes) and sets the condi­
tion code according to the results of the comparison.

Affected: CC2, CC3, CC4

(R)24-31 : EB

Condition code settings:

2 3

0

0

0

CH

4 Result of Comparison

0 Equal.

Register byte less than effective byte.

0 Register byte greater than effective byte.

No 1-bits compare, (R)24-31 n" EB = O.

One or more l-bits compare,

(R)24-31 n EB I O.

COMPARE HAlFWORD
(Halfword index al ignment)

COMPARE HAlFWORD extends the sign of the effective
halfword 16 bit positions to the left, then compares the
resultant 32-bit word with the contents of register R (with
both words treated as signed, fixed-point quantities) and
sets the condition code according to the results of the
comparison.

Affected: CC2, CC3, CC4

(R) : EHSE

Condition code settings:

2 3 4 Resul t of Comparison

o

o 0 Equal.

o Register word less than effective halfwo~d
with sign extended.

o Register word greater than effective
halfword with sign extended.

No l-bits compare, (R) n EHSE

One or more 1-bits compare,
(R) n EHSE I O.

O.

Comparison Instructions 55

CW COMPARE WORD
(Word index al ignment)

COMPARE WORD compares the contents of register R with
the effective word, with both words treated as signed fixed­
point quantities, and sets the condition code according to
the results of the comparison.

Affected: CC2, CC3, CC4
(R) : EW

Condition code settings:

CD

2 3 4 Resul t of Comparison

a

a a Equal.

a Register word less than effective word.

a Register word greater than effective word.

No l-bits compare, (R) n EW = a.

One or more l-bits compare, (R) n EW I a.

COMPARE DOUBLEWORD
(Doubleword index al ignment)

COMPARE DOUBLEWORD compares the effective double­
word with the contents of registers Rand Ru 1 (with both
doublewords treated as signed, fixed-point quantities)
and sets the condition code according to the results of the
comparison. If the R field of CD is an odd value, CD forms
a 64-bit register operand (by dupl icating the contents of
register R for both the 32 high-order bits and the 32 low­
order bits) and compares the effective doubleword with the
64-bit register operand. The condition code settings are
based on the 64-bit comparison.

Affected: CC3, CC4
(R, Ru 1) : ED

Condition code settings:

2 3 4 Result of Comparison

a a Equal.

a Register doubleword
doubleword.

less than effective

a Register doubleword greater than effective
doubleword.

56 Comparison Instructions

CS COMPARE S.TIVE
(Word index nment)

COMPARE SELECTIVE compares the contents of register R
with the effective word in only those bit positions selected
by a 1 in corresponding bit positions of register Ru 1 (mask).
The c~ntents of register R and the effective word are ignored
in those bit positions designated by a a in corresponding bit
positions of register Ru 1. The selected contents of register R
and the effective word are treated as positive integer
magnitudes, and the condition code is set according to
the result of the comparison. If the R field of CS is
an odd value; CS compares the contents of register R
with the logical product (AND) of the effective word
and the contents of register R.

Affected: CC3, CC4
If R is even: (R) n (Ru1) : EW n (Ru1)
If R is odd: (R): EW n (R)

Condition code settings:

2 3 4 Results of Comparrson under Mask in Ru1

o 0 Equal.

o Register word less than effective word.

o Register word greater than effective word.
(if R. is even)

ClR COMPARE WITH LIMITS IN REGISTERS
(Word index al ignment)

COMPARE WITH LIMITS IN REGISTERS simultaneously
compares the effective word with the contents of register R
and with the contents of register Ru1 (with all three words
treated as signed fixed-point quantiti es), and sets the con­
dition code according to the results of the comparisons.

Affected: CC
(R) : EW, (Ru 1) : EW

Condition code settings:

2 3 4 Result of Comparison

o 0 Contents of R equal to effective word.

o Contents of R less than effective word.

o Contents of R greater than effective word.

o 0 Contents of Ru1 equal to effective word.

o Contents of Ru 1 less than effective word.

o Contents of Ru 1 greater than effective word.

elM COMPARE WITH LIM~N MEMORY
(Doubleword index al"ent)

COMPARE WITH LIMITS IN MEMORY simultaneously com­
pares the contents of register R with the 32 high-order bits
of the effective doubleword and with the 32 low-order bits
of the effective doubleword, with all three words treated
as 32-bit signed quantities, and sets the condition code
according to the results of the comparisons.

Affected: CC

(R) : ED 0-31; (R) : ED 32-63

Condition code settings:

2 3 4 Result of Comparison

o 0 Contents of R equal to most significant
word, (R) = ED

O
_
3

(

o Contents of R less than most significant
word, (R) < EDo_

3r

o Contents of R greater than most signfi cant
word, (R) > ED

O
_

3
1"

o 0 - Contents of R equal to least signiHcant word,

(R) = ED 32-63'

o Contents of R less than least significant word,
(R) < ED

32
_
63

·

o - Contents of R greater than least significant
word, (R) > ED

32
_

63
·

LOGICAL I~~STRUCTIO~JS

All logical operations are performed bit by corresponding
bit between two operands; one operand is in register Rand
the other operand is the effective word. The result of the
logical operation is loaded into register R. '

OR OR WORD
(Word index al ignment)

OR WORD logically ORs the effective word into register R.
If corresponding bits of register R and the effective word
are both 0, a 0 remains in register R; otherwise, a 1 is
placed in the corresponding bit position of register R. The
effective word is not affected.

Affected: (~C3, CC4
(R) u EW ~ where 0 u 0 = 0, 0 u 1 = 1, 1 u 0 = 1,

1 u 1 = 1

Condition code settings:

2 3 4 Resu I tin R

o 0 Zero.

OBit 0 of register R is a 1.

OBit 0 of register R is a 0 and bit positions 1-31
of register R contain at I east one 1.

EOR EXCLU SIVE OR WORD
(Word index al ignment)

EXCLUSIVE OR WORD logically exclusive ORs the effec­
tive word into register R. If corresponding bits of regis­
ter R and the effective word are different, a 1 is placed in
the corresponding bit position of register R; if the contents
of the corresponding bit positions are alike, a 0 is placed
in the corresponding bit position of register R. The effec­
tive word is not affected.

Affected: (R), CC3, CC4
(R)@ EW --R, where O@ 0 = 0, O@ 1 = 1,

1@0= 1, 1@1 =0

Condition code settings:

AND

2 3 4 Resu It in R

o 0 Zero.

OBit 0 of register R is a 1.

OBit 0 of register R is a 0 and bit positions 1-31
of register R contain at least one 1.

AND WORD
(Word index alignment)

AND WORD logically ANDs the effective word into reg­
ister R. If corresponding bits of register R and the effec­
tive word are both 1, a 1 remains in register R; otherwise,
a 0 is placed in the corresponding bit position of register R.
The effective word is not affected.

Affected: (R), CC3, CC4
(R) n EW - R, where 0 n 0 = 0, 0 n 1 = 0,

1 n 0 = 0, 1 n 1 = 1

Logical Instructions 57

Condition code settings:

2 3 4 Resul t in R

o 0 Zero.

o Bit 0 of register R is a 1.

OBit 0 of register R is a 0 and bit po;;itions 1-31
of register R contain at least one 1.

SBiFT INSTRUCTIONS

The instruction format for logical, circular, arithmetic,
and searching shift operations is:

S SHIFT
(Word index alignment)

If neither indirect addressing nor indexing is called for in
the instruction SHIFT, bit positions 21-23 of the reference
address field determine the type, and bit positions 25-31
determine the direction and amount of the shift. If only in­
direct addressing is called for in the instruction, bits 15-31
of the instruction are used to access the indirect word and
then bits 21-31 of the indirect word determine the type,
direction, and amount of the shift. If only indexing is
called for in the instruction, bits 21-23 of the instruction
word determine the type of shift; the direction and amount
of shift are determined by bits 25-31 of the instruction plus
bits 25-31 of the specified index register. If both indirect
addressing and indexing are called for in the instruction,
bits 15-31 of the instruction are used to access the indirect
word and then bits 21-23 of the indirect word determine
the type of shift; the direction and amount of the shift
are determined by bits 25-31 of the indirect word plus
bits 25-31 of the specified index register.

Bit positions 15-20 and 24 of the effective address are
ignored. Bit positions 21, 22, and 23 of the effective
address determine the type of shift, as follows:

21 22 23 Shift Type

0 0 0 Logical, single register

0 0 Logical, double register

0 0 Circular, single register

0 Circular, double register

0 0 Arithmetic, single register

0 Arithmetic, double register

0 Searching, single register

Searching, double register

58 Sh i ft Instructi ons

Bit positions 25 throu.1 of the effective address are a
shift count that dete es the direction and amount
of the shift. The shift count (C) is treated as a 7-bit
signed binary integer, with the high-order bit (bit posi­
tion 25) as the sign (negative integers are represented in
twols complement form). A positive shift count causes
a left shift of C bit positions. A negative shift count
causes a right shift of Ici bit positions. The value of C is
within the range: -64 :s C :s +63.

All double-register shift operations require an even value
for the R field of the instruction, and treat registers Rand
Rul as a 64-bit register with the high-order bit (bit posi­
tion 0 of register R) as the sign for the entire register. If
the R field of SHIFT is an odd value and a double-register
shift operation is specified, a register doubleword is
formed by dupl icating the contents of register R ror both the
32 high-order bits and the 32 low-order bits of the double­
word. The shift operation is then performed and the 32 high­
order bits of the result are loaded into register R.

Overflow occurs (on left shifts only) whenever the value of
the sign bit (bit position 0 of register R) changes. At the
completion of logical left, circular left, arithmetic left,
and searching left shifts, the condition code is set as
follows:

o

2 3 4 Resul t of Shift

Even number of lis shifted off left end of
register R.

Odd number of 11 s sh i fted off I eft end of
register Rt.

o No overflow on left shift.

Overflow on left shift.

o Searching shift terminated with RO equal O.

Searching shift terminated with RO equal 1.

At the completion of right shifts, the condition code is set
~s follows:

2 3 4 Result of Shift

o 0 0 Searching shift terminated with RO equal O.

o 0 Searching shift terminated with RO equal 1.

Logical Shift, Single Register

If the shift count, C, is positive, the contents of register R
are sh if ted left C places, with Dis copi ed into vacated bit

t Not appl icable for searching shift.

positions on the right. (Bits shifte.t RO are lost.) If C
is negative, the contents of regist are shifted right \cl
places, with O's copied into vacated bit positions on the
left. (Bits shifted past R31 are lost.)

Affected: (R), CC1, CC2

Logical Shift, Double Register

If the shift count, C, is positive, the contents of regis­
ters Rand Rul are shifted left C places, with O's copied
Into vO~ated bit poiitiofis en the right. Ba§ shifted p9§f
bit position 0 of register Rul are copied into bit position 31
of register R. (Bits shifted past RO are lost.) If C is nega­
tive, the contents of registers Rand Ru 1 are shifted right
Ici places with O's copied into vacated bit positions on the
left. Bits shifted past bit position 31 of register Rare
copied into bit position 0 of register Rul. (Bits shifted
past Ru1

31
are lost.)

Affected: (R), (Ru1), CC1,CC2

Circular Shift, Single Register

If the shift count, C, is positive, the contents of regis-
ter R are shifted left C places. Bits shifted past bit posi­
tion 0 are copied' into bit position 31. (No bits are lost.)
If C is negative, the contents of register R are shifted right
\C\ places. Bits shifted past bit position 31 are copied into
bit position O. (No bits are lost.)

Affected: (R),CC1,CC2

Circular Shift, Double Register

If the shift count, C, is positive, the contents of regis­
ters Rand Rul are shifted left C places. Bits shifted past
bit position 0 of register R are copied into bit position 31
of register Ru 1. (No bits are lost.) If C is negative, the
contents of registers Rand Rul are shifted right Ici places.
Bits shifted past bit position 31 of register Rul are copied
into bit position 0 of register R. (No bits are lost.)

Affected: (R),(Rul),CC1,CC2

Arithmetic Shift, Single Register

If the shift count, C, is positive, the contents of regis­
ter R are shifted left C places, with O's copied into

vacated bit pos.s on the right. (Bits shifted past RO are
lost.) If C is n ive, the contents of regi$ter Rare
shifted right Ici places, with the contents of bit position 0
copied into vacated bit positions on the left. (Bits shifted
past R31 are lost.)

Affected: (R), CCl ,CC2

Arithmetic Shift, Double Register

If the shift count, C, is positive, the contents of registers R
and Ru 1 are shifted left C places, with O's copied into va­
GQf~d bit ~Qs;HQfi§ Qfl tke fi§At, elh; §hif"i"§Q jJti§f ;It f}§§i.­

tion 0 of register Rul are copied into bit position 31 of
register R. (Bits shifted past Ro are lost.) If C is negative,
the contents of registers Rand Ru 1 are shifted right IC\
places, with the contents of bit position 0 of register R
copied into vacated bit positions on the left. Bits shifted
past bit position 31 of register R are copied into bit posi­
tion 0 of register Ru 1. (Bits shifted past Ru 131 are lost.)

Affected: (R), (Ru 1), CC1, CC2

Searching Shift, Single Register

The searching shift is circular in either direction. If the
shift count, C, is positive, the contents of register Rare
shifted left C bit positions or until a 1 appears in bit posi­
tion O. If C is negative, the contents are shifted right
Ici positions or unti I a 1 appears in bit position o. When
the shift is terminated, the remaining count is stored in
register 1, which is dedicated to the searching shift in­
struction. Bits 0-24 of register 1 are cleared and the re-"
maining count is loaded into bits 25-31. If the initial
contents of bit 0 is equal to 1, then no bits are shifted by
the instruction. In this case the original count in the
instruction is stored in register 1.

Searching shift causing a change in bit position 0 causes
CC2 to be set to 1. If bit position 0 is not changed during
a searching shift, CC2 is cleared. If a searching shift is
terminated with bit position 0 equal to 1, CC4 is set to 1;
otherwise, CC4 is cleared.

Affected: (R), (Rl), CC2,CC4

Searching Shift, Double Register

012 5678

The searching shift is circular in either direction. If the
shift count, C, is positive, the contents of registers Rand
Rul are shifted left C bit positions or until a 1 appears in
bit position 0 of register R. If C is negative, the contents
are shifted right C positions or until a 1 appears in bit
position O. When the shift is terminated, the remaining

Shift Instructions 59

count is stored in register 1, which is cAated to the
scarching shift instruction. Bits 0-24 of~ster 1 are
cleared and the remaining count is loaded into bits 25-31.

Searching shift causing a change in bit position 0 causes
CC2 to be set to 1. If bit position 0 is not changed during
a searching shift, CC2 is cleared. If a searching shift is
terminated with bit position 0 equal to 1, CC4 is set to 1;
otherwise, CC4 is cleared.

Affected: (R), (Ru 1), (R 1), CC2, CC4

FlOATING-POlr~T SHiFT

Floating-point numbers are defined in the IIFloating-Point
Arithmetic Instructions i

! section. The format for the
floating-point shift instruction is:

SF SHIFT FLOATING
(Word index a I ignment)

If indirect addressing or indexing is called for in the in­
struction word, the effective address is computed as for
the instruction SHIFT except that bit position 23 of the
effective address determines the type of shift. If bit 23 is
a 0, the contents of register R are treated as a short-format
floating-point number; if bit 23 is a 1, the contents of reg­
isters Rand Ru 1 are treated as a long-format floating-point
number.

The shift count, C, in bit positions 25 through 31 of the
effective address determines the amount and direction of
the shift. The shift count is treated as a 7-bit signed bi­
nary integer, with the high-order bit (bit position 25) as
the sign (negative integers are represented in two's com­
plement form).

The absolute value of the shift count determines the number
or hexadecimal digit positions the floating-point number is
to be shifted. If the shift count is positive, the floating­
point number is shifted left; if the count is negative, the
number is shifted right.

SHIFT FLOATING loads the floating-point number from the
register(s) specified by the R field of the instruction into a
set of internal registers. If the number is negative, it is
two's complemented. A record of the original sign is re­
tained. The floating-point number is then separated into
a char.acteristi c and a fraction, and CC 1 and CC2 are both
reset to O's.

A positive shift count produces the following left shift
operations:

1. If the fraction is normalized (i. e., is less than 1 and
is equal to or greater than 1/16), or the fraction is
all O's, CCl is set to 1.

2. If the fraction field is. all O's, the entire floating-point
number is set to oliO's (true zero), regardless of the
sign and the characteristic of the original number.

60 Shift Instructions

3. If the fraction is rArmalized, the fraction field is
shifted 1 hexade;i~igit position (4 bit positions) to
the left and the characteristic field is decremented
by 1. Vacated digit positions at the right of" the frac­
tion are filled with hexadecimal O's.

If the characteristic field underflows (i. e., is 01 I l's
as the result of being decremented), CC2 is set to 1.
However, if the characteristic field does not under­
flow, the shift process (shift fraction, and decrement
characteristic) continues until the fraction is normal­
ized, until the characteristic field underflows, or
until the fraction is shifted left C hexadecimal digit
positions, whichever occurs first. (Any two, or
all three, of the terminqtin~ conditiQns c;an occ;yr
simu I taneousl y.)

4. At the completion of the left shift operation, the
floating-point result is loaded back into the general
register(s). If the number was originally negative, the
two's complement of the resultant number is loaded
into the general registers(s).

5. The condition code settings following a floating-point
I eft shift are as follows:

2 3 4 Result

0 0 True zero (oliO's).

0 Negative.

0 Positive.

0 0 C digits shifted (fraction unnormal ized,
no characteristic underflow).

Fraction normalized (includes true zero).

Characteristic underflow.

A negative shift count produces the following right shift
operations (again assuming that negative numbers are two's
complemented before and after the shiff operation):

1. The fraction field is shifted 1 hexadecimal digit posi­
tion to the right and the characteristic field is incre­
mented by 1. Vacated digit positions at the left are
fi lied with hexadecimal O's.

2. If the characteristic field overflows (i. e., is oliO's as
the result of being incremented), CC2 is set to 1.
However, if the characteristic field does not overflow,
the sh ift process (shift fraction, and increment char­
acteristic) continues until the characteristic field over­
flows or until the fraction is shifted right Ici hexadeci­
mal digit positions, whichever occurs first. (Both
terminating conditions can occur simultaneously.)

3. If the resultant fraction field is all O's, the entire
floating-point number is set to all O's (true zero),
regardless of the sign and the characteristic of the
original number.

4.

5.

At the compl etion of the ~ shift operation, the
floating-point result is loa~ack into the general
register(s}. If the number was originally negative,
the two's complement of the resultant number is loaded
into the general register(s}.

The condition code settings following a floating-point
right shift are as follows:

2 3 4 Resul t

o 0 True zero (all zeros).

o Negative.

o Positive.

o 0 Ici digits sh if ted (no characteristi c
overflow).

o Characteristic overflow.

Floating Shift, Single Register

The short-format floating-point number in register R is
shifted according to the rules established above for floating­
point shift operations.

Affected: (R), cc

Floating Shift, Double Register

The long-format floating-point number in registers Rand
Ru 1 is shifted according to the rul es establ ished above for
floating-point shift operations. (If the R field of the in­
struction word is an odd value, a long-format floating­
point number is generated by dupl icating the contents of
register R, and the 32 high-order bits of the result are
loaded into regi~ter R.)

Affected: (R), (Ru 1), cc

cor~VERSION I~JSTRUCTIONS

The following two conversion instructions are provided by
the SIGMA 8 computer:

Instruction Name Mnemonic

Convert by Addition o/A

Convert by Subtraction O/S

These two c.sion instructions can be used to accom­
plish bidirecTIonal translation between binary code and any
other weighted binary code, such as BCD.

The effective addresses of the instructions CONVERT BY
ADDITION and CONVERT BY SUBTRACTION each point
to the starting location of a conversion table"of 32 words,
containing weighted values for each bit position of regis­
ter Ru 1. The 32 words of the conversion table are con­
sidered to be 32-bit positive quantities, and are referred
to as conversion values. The intermediate results of these
instructions are accumulated in internol CPU registers until
the instruction is completed; the result is then loaded into
the appropriate general register. Both instructions use a
countor (n) that is r;ct to 0 at the bcginnir,g (.;f tho imrruc ...
tion execution and is incremented by 1 with each iteration,
unti I a total of 32 iterations have been performed.

If a memory parity or protection violation trap occurs dur­
ing the execution of either instruction, the instruction se­
quence is aborted (without having changed the contents of
register R or Ru 1) and may be restarted (at the beginning of
the instruction sequence) after the trap routine is processed.

eVA CONVERT BY ADDITION
(Word index al ignment)

o I

CONVERT BY ADDITION initially clears the internal A
register and sets an internal counter (n) to O. If bit posi­
tion n of register Ru 1 contains a 1, CVA adds the nth con­
version value (contents of the word location pointed to by
the effective address plus n) to the contents of the A reg­
ister, accumulates the sum in the A register, and incre­
ments n by 1. If bit position n of register Ru 1 contains a 0,
CVA onl y increments n. If n is I ess than 32 after being
incremented, the next bit position of register Rul is ex­
amined, and the addition process continues through n equal
to 31; the result is then loaded into register R. If, on any
iteration, the sum has exceeded the value 232- 1, CCl is
set to 1; otherwise, CCl is reset to O.

Affected: (R),CC1,CC3,CC4
O--A,O--n

If (Rul) = 1, then (EWL + n) + (A) --A, n + 1 --n
n

If (Rul) = 0, then n + 1-- n
n

If n < 32, repeat; otherwise, (A) --R and continue to
next instruction.

Condition code settings:

2 3 4 Result in R

o 0 Zero.

o Bit 0 of register R is a 1.

Conversion Instructions 61

2 3 4 Rc su I tin R

OBit 0 of register R is a 0 and bit positions 1-31
of register R contain at least one 1.

o - Sum is correct (less than 232).

cvs

Sum is greater than 2
32

_1.

CONVERT BY SUBTRACTION
(Word index al ignment)

CONVERT BY SUBTRACTION loads the internal A register
with the contents of register R, clears the internal B regis­
ter, and sets an internal counter (n) to O. All conversion
values are considered to be 32-bit positive quantities. If
the nth conversion value (the contents of the word location
pointed to by the effective address plus n) is equal to or
less than the current contents of the A register, CVS incre­
ments n by 1, adds the two's complement of the nth con­
version value to the contents of the A register, stores the
sum in the A register, and stores a 1 in bit position n of the
B register. If the nth conversion value is greater than the
current contents of the A register, CVS onl y increments n
by 1. If n is less than 32 after being incremented, the
next conversion value is compared and the process con­
tinues through n equal to 31; the remainder in the A reg­
ister is loaded into register R, and the converted quantity
in the B register is loaded into register Ru 1.

Affected: (R), (Ru 1), CC3, CC4

(R}--A, 0 --B, 0 -n

If (EWL + n) :S (A) then A - (EWL + n) -A,
l-B n+1-n

n'

If (EWL + n) > (A) then n + l-n

If n < 32, repeat; otherwise, (A) - R, (B) -- Ru 1 and
continue to the next instruction.

Condition code settings:

2 3 4 Resu I tin Ru 1

o 0 Zero.

o BitOofregister Ru1 isa 1.

OBit 0 of register Ru 1 is a 0 and bit posi­
tions 1-31 of register Ru 1 contain at
least one 1.

62 Floating-Point Arithmetic Instructions

The following floating-point arithmetic instructions are
avo ilable to SIGMA 8 computers:

Instruction Name Mnemonic

Floating Add Short FAS

Floating Add Long FAL

Floating Subtract Short FSS

Floating Subtract Long FSL

Floating Multiply Short FMS

Floating Multiply Long FML

Floating Divide Short FDS

Floating Divide Long FDL

FlOATlruG-pm~~T NUMB1CRS

SIGMA 8 accommodates two number formats for floating­
point arithmetic: short and long. A short-format fioating­
point number consists of a sign (bit 0), a biased t , base 16
exponent, which is called a characteristic (bits 1-7), and
a six-digit hexadecimal fraction (bits 8-31). A long-format
floating-point number is followed by an additional eight
hexadecimal digits of fractional significance and occupies
a doubleword memory location or an even-odd pair of
general registers.

A SIGMA 8 floating-p")in t number (N) has the following
format:

Fra(;tion (F)

A floating-point number (N) has the following formal
definition:

1. C-64
N = F x 16 where F = 0 or

16-
6

::5/F/::5 1(short format) or

16-
14:s IFI ::5 1 (long format)

and O:S C ::5127.

tThe bias value of 4016 is added to the exponent for the
purpose of making it possibl e to compare the absol ute mag­
nitude of two numbers, i. e., without reference to a sign
bit. This manipulation effectively removes the sign bit,
making each characteristic a 7-bit positive number.

2.

3.

A positive floating-point n.er with a fraction of
::ero and c characteristic 0 ro is a "true ll zero.
A positive floating-point number with a fraction of
zero and a nonzero characteristic is an "abnormal"
zero. For floating-point multiplication and division,
an abnorma I zero is treated as a true zero. However,
for addition and subtraction, an abnormal zero is
treated the same as any nonzero operand.

A positive floating-point number is normalized if and
only if the fraction is contained in the interval

1/16 =:; F < 1

4. A negative floating-point number is the two's comple­
ment of its positive representation.

5. A negative floating-point number is normalized if and
only if its two's complement is a normalized positive
number.

By this defin., a floating-point number of the form

lxxx xxxx 1111 0000 . .. 0000

is normalized, and a floating-point number of the form

1 xxx xxxx 0000 0000 . .. 0000

is illegal and, whenever generated by floating-point in­
structions, is converted to the form

1 yyy yyyy 1111 0000 . .. 0000

where yy ... Y is 1 less than xx ... x. Table 10 contains
examples of floating-point numbers.

Modes of Operation

SIGMA 8 contains three mode control bits that are used to
qualify floating-point operations. These mode control bits

Table 10. Floating-Point Number Representation

Short Floating-Point Format

Decimal Number ± I C . I F Hexadecimal Value

+(16 +63)(1_2-24) a 111 1111 1111 1111 1111 1111 1111 1111 7F FFFFFF

+(16+3)(5/16) a 100 0011 0101 0000 0000 0000 0000 0000 43 500000

+(16 -3) (209/256) a 011 1101 1101 0001 0000 0000 0000 0000 3D Dl0000·

+(16 -63)(2047/4096) a 000 0001 On1 1111 1111 0000 0000 0000 01 7FFOOO

+(16-64)(1/16) a 000 0000 0001 0000 0000 0000 0000 0000 00 100000

a (called true zero) a 000 0000 0000 0000 0000 0000 0000 0000 00 000000

-(16 -64)(1/16) 1 111 1111 1111 0000 0000 0000 0000 0000 FF FOOOOO

-(16 -63)(2047/4096) 1 111 1110 1000 0000 0001 0000 0000 0000 FE 801000

- (16 -3) (209/256) 1 100 0010 0010 1111 0000 0000 0000 0000 C2 2FOOOO

-(16+3)(5/16) 1 all 1100 1011 0000 0000 0000 0000 0000 BC BOOOOO

-(16 +63)(1_224) 1 000 0000 0000 0000 0000 0000 0000 0001 80 000001

Special Case

-(16 e)(1) 1 -e 0000 0000 0000 0000 0000 0000

is changed to

-(16 e+ 1)(1/16) 1 e+1 1111 0000 0000 0000 0000 0000

whenever generated as the result of a floating-point instruction.

Floating-Point Arithmetic Instructions 63

. are identified as FS (floating significance). (floating
zero),- and FN (floating normal ize), and contained
in bit positions 5, 6, and 7, respectively, of the program
status doubl eword (PSD 5-7)'

The floating-point mode is established by setting the three
floating-point mode control bits. This can be performed by
any of the following instructions:

Instruction Name

Load Conditions and Floating Control

Load Conditions and Floating Control
Immediate

Load Program Status Doubl eword

Exchange Program Status Doubleword

Mnemonic

LCF

LCFI

LPSD

XPSD

The floating-point mode control bits are stored by exe­
cuting either of the following instructions:

Instruction Name Mnemonic

Store Conditions and Floating Control STCF

Exchange Program Status Doubleword XPSD

flOATlmG-pm~~ ADO AND SUBTRACT

The floating normal ize (FN), floating zero (FZ), and
floating significance (FS) mode control bits determine the
operation of floating-point addition and subtraction (if
characteristic overflow does not occur) as follows:

FN Floating normalize:

FN = 0 The resul ts of additions and subtractions are
to be postnormal ized. If characteristi c un­
derflowoccurs, if the result is zero, or if
more than two postnormalization hexadeci­
mal shifts are required, the settings for FZ
and FS determine the resultant action. If
none of the above conditions occurs; the con-

. dition code Js set to 0010 if the result is
positive or to 0001 if the resul t is negative.

FN = 1 Inhibit postnormalization of the result of ad­
ditions and subtractions. The settings of FZ
and FS have no effect on the instruction op­
eration. If the result is zero, the result
is set to true zero and the condition code
is set to 0000. If the result is positive,
the condition code: ~, set to 0010. If the
result is negative, the condition code is
set to 0001.

64 Floating-Point Arithmetic Instructions

FZ Floating zero: (appenly if FN = 0)

FZ = 0 If the final result of an addition or subtrac­
tion operation cannot be expressed in' normal­
ized form because of the characteristic being
reduced below zero, underflow has occurred,
in which case the result is set equal to true
zero and the condition code is set to 1100.
(Exception: if a trap results from significance
checking with FS = 1 and FZ == 0, an under­
flow generated in the process of postnormal­
izing is ignored.)

FZ = 1 Characteristic underflow causes the computer
to trcp to Homespoca location X'44' with the
contents of the general registers unchanged.
If the result is positive, the condition code is
set to 1110. If the result is negative, the
condition code is set to 1101.

FS Floating significance: (appl ies only if FN = 0)

FS = 0 Inhibit significance trap. If the result or an
addition or subtraction is zero, the result is
set equa I to true zero, the cond it i on cod e
is set to 1000, and the computer executes
the next instruction in sequence. If more
than two hexadecimal places of postnormal­
ization shifting are required and character­
istic underflow does not occur, the condition
code is set to 1010 if the result is positive, or
to 1001 if the resul t is negative; then, the
computer executes the next instruction in se­
quence. (Exception: if characteristi c under­
flow occurs with FS = 0, FZ determines the
resultant action.)

FS = 1 The computer traps to Homespace location
X'44 1 if more than two hexadecimal places
of postnormalization shifting are required
or if the result is zero. The condition
code is set to 1000 if the result is zero,
to 1010 if the result is positive, or to 1001
if the result is negative; however, the con­
tents of the general registers are not changed.
(Exception: if a trap results from character­
istic underflow with FZ == 1, the results of
significance testing are ignored.)

If charccteristi c overflow occurs, the CPU a! ways traps
to Homespace location X'44 1 with the genera I registers
unchanged and the condition code set to 0110 if the
result is positive, or to 0101 if the result is negative.

FiOATir~G-pmruT MULTIPLY A~JO mvm::

The floating zero (FZ) mode control bit alone determines
the operation of floating-point multiplication and division

(if characteristic overflow does .• ccur and division by
zero is not attempted) as follows.

FZ Floating zero:

FZ = 0 If the final result of a multiplication or divi­
sion operation cannot be expressed in normal­
ized form because of the characteristic being
reduced below zero, underflow has occurred.
If underflow occurs, the result is set equal to
true zero and the condition code is set to
1100. If underflow does not occur, the
condition code is set.to 0010 if the result is
positive, to 0001 if the result is negative, or
to 0000 if the result is zero.

FZ = 1 Underflow causes the computer to trap to
Homespace location X'441 with the contents
of the genera I registers unchanged. The con­
dition code is set to 1110 if the result is posi­
tive, or to 1101 if the result is negative. If
underflow does not occur, the resu I tant
action is the same as that for FZ = O.

If the divisor.ro in a floating-point division, the com-
puter always to Homespace location X'44' with the
general registers unchanged and the condition code set to
0100. If characteristic overflow occurs, the computer al-

. ways traps to Homespace location X'44' with the general
registers unchanged and the condition code set to 0110 if
the result is positive, or to 0101 if the result is negative.

cor~mTiOr~ CODES FOR FlOATmG-pm~JT I~JSTRUCTJOrJS

The condition code settings for floating-point instructions
are summarized in Table 11. The following provisions apply
to all floating-point instructions:

1. Underflow and overflow detection apply to the final
characteristic, not to any lIintermediate ll value.

2. If a floating-point operation results in a trap, the
original contents of all general registers remain
unchanged.

Table 11. Condition Code Settings for Floating-Point Instructions

Condition Code
Meaning If No Trap to Homespace Meaning If Trap to Homespace

1 2 3 4 Location X'441 Location X'44' Occurs

0 0 0 0 A x 0,
o ") *0 O/A, or -A + A with FN= 1 I

0 0 0 1 N <0
Normal

* J results
0 0 1 0 N >0 *

0 1 0 0
0

Divide by zero } *

0 1 0 1 * Overflow, N < 0 Always trapped

0 1 1 0 * Overflow, N > 0

0~
0 0 0 o } -A+A -A +A . FS=O, '

0 0 1 N < 0 > 2 Postnormal- FN=O, and N < 0 } > 2 Postnormal- } FS= 1, FN=O, and no

0 1 0 N > o} izing shifts no underflow N > 0 izing shifts underflow with FZ= 1

1 1 0 0
. 0

Underflow with FZ=O and no trap by FS=l *

1 1 0 1 * Underflow, N <0
} FZ=l

1 1 1 0 * Underflow, N >0

Notes: 0 Result set to true zero

0 11*11 indicates impossible configurations

CD Appl ies to add and subtract only where FN=O

Floating-Point Arithmetic Instructions 65

· 3. All shifting and truncation are perform~ absolute
magnitudes. If the fraction is negative"n the two's
complement is formed after shifting or truncation.

FAS FLOATING ADD SHORT
(Word index alignment)

o 7, S

The effective word and the contents of register Rare
loaded into a set of internal registers and a low-order hexa­
decimal zero (guard digit) is appended to both fractions,
extending them to seven hexadecimal digits each. FAS
then forms the floating-point sum of the two numbers. If no
floating-point arithmetic fau It occurs, the sum is loaded
into register R as a short-format floating-point number.

Affected: (R), CC
(R) + EW-R

Trap: Floating-point arith­
metic fault

FAL FLOATING ADD LONG
(Doubleword index al ignment)

The effective doubleword and contents of registers R
end Ru 1 ere loaded into a set of internel registers.

The operation of FAL is identical to that of FLOATING
ADD SHORT (FAS) except that the fractions to be added
are each 14 hexadecimal digits long, guard digits are not
appended to the fractions, and R must be an even va lue for
correct results. If no floating-point arithmetic fault occurs,
the sum is loaded into registers Rand Ru 1 as a long-fonnat
floating-point number.

Affected: (R),(Rul),CC
(R, Ru 1) + ED --R, Ru 1

Trap: Floating-point arith­
metic fault, instruc­
tion exception

The R field of the FAL instruction must be an even value
for proper operation of the instruction; if the R field of FAL
is an odd value, the instruction traps to Homespace location
X'4D', the instruction exception trap.

FSS FLOATING SUBTRACT SHORT
(Word index alignment)

The effective word and the contents of register R are loaded
into a set of internal registers.

FLOATING SUBTRACT SHORT forms the two's complement
of the effective word and then operates identically to
FLOATING ADD SHORT (FAS). If no floating-point

66 Floating-Point Arithmetic Instructions

arithmetic fault occurs, ~ifference is loaded into reg­
ister R as a short-format _ing-point number.

Affected: (R), CC
(R) - EW-- R

Trap: Floating-point arith­
metic foul t

FSL FLOATING SUBTRACT LONG
(Doubleword index al ignment)

C I 2

The effective doubl eword end the contents or registers R
and Rul are loaded into a set of internal registe:-s.

I

FLOATING SU BTRACT LONG forms the two's comp!e-
ment of the effective doubleword and then operates iden­
tically to FLOATING ADD LONG (FAL). If no floating­
point arithmetic fault occurs, the difference is loaded into
registers Rand Rul as a long-format floating-point number.

Affected: (R), (Rul), CC
(R,Rul) - ED --R,Rul

Trap: Floating-point arith­
metic fault, instruc­
tion exception

The R field of the FSL instruction must be an even value for
proper operation of the instruction; if the R field of FSL is
an odd value, the instruction traps to Homespace location
X'4D ' , the instruction exception trap.

FrtlS FLOATING MULTIPLY SHORT
(Word index a I ignment)

The effective word (multiplier) and the contents of regis­
ter R (multiplicand) are loaded into a set of internal
registers, and both numbers are then prenormal ized (if
necessary). The product of the fractions contains 12 hexa­
decimal digits. If no floating-point arithmetic fault occurs,
the product is loaded into register R as a properly truncated
short-format floating-point number.

The result of floating-multiply is always postnormalized. At
most, one place of postnormal izing shift may be required.
Truncation takes place after postnormalization.

Affected: (R), CC
(R) x EW--R

Trap: Floating-point arith­
metic fault

FMl FLOATING MULTIPLY LONG
(Doubleword index al ignment)

The effective doubleword (multiplier) and the contents of
registers Rand Ru 1 (multipl icand) are loaded into a set of
internal registers. FLOATING MULTIPLY LONG then

operates identically to FLOA TINWUL TIPL Y SHORT
(FMS), except that the multiplier the multiplicand
fractions are each 14 hexadecimal digits long, the product
fraction is 28 hexadecimal digits long, and R must be an
even value for correct results. If no floating-point arith­
m'etic foul t occurs, the postnormal ized product is truncated
to a long-format floating-point number and loaded into
registers Rand Ru 1.

Affected: (R), (Ru 1), CC
(R, Ru 1) x ED --R, Ru 1

Trap: Floating-point arith­
metic fault, instruc­
tion exception

The R field of the FML instruction must be an even value
for proper operation of the instruction; if the R field of

FML is an odd voluQ, tho Jn5ffU~fi{}n trap§ to H9meSpg'e
location X'4D', the instruction exception trap.

FDS FLOATING DIVIDE SHORT
(Word index al ignment)

The effective word (divisor) and the contents of register R
(dividend) are loaded into a set of internal registers and
both numbers are then prenormal ized (if necessary).
FLOATING DIVIDE SHORT then forms a floating-point
quotient with a 6-digit, normal ized hexadecimal fraction.
If no floating-point arithmetic fault occurs, the quotient is
loaded into register R as a short-formai' floating-point
number.

Affected: (R), CC
(R) 7 EW -R

Trap: Floating-point arith­
metic fault

FDL FLOATING DIVIDE LONG
(Doubleword index 01 ignment)

1E I R I X I: Reference: address I
,:, , '" ":,, " " .,:" " ""Iw"""""" "I"" ~" o I 2

The effective doubleword (divisor) and the contents of
registers Rand Ru1 (di'vidend) are loaded into a set of
internal registers. FLOATING DIVIDE LONG then oper­
ates identically to FLOATING DIVIDE SHORT (FDS), ex­
cept that the divisor, dividend, and quotient fractions are
each 14 hexadecimal digits long, and R must be an even
value for correct results. If no floating-point arithmetic
fault occurs, the quotient is loaded into registers Rand Rul
as a long-format floating-point number.

Affected: (R), (Ru 1), CC
(R, Rul) 7 ED -R, Rul

T rap: Floating-point arith­
metic fault, instruc­
tion exception

The R field of the FDL instruction must be an even va lue
for proper operation of the instruction; if the R field of FDL
is an odd value, the instruction traps to Homespace location
X'4D', the instruction exception trap.

Four instructions provide for the manipulution of strings or
consecutive bytes. The byte string instructions and their
mnemoni c codes are as follows:

Instruction Name Mnemonic

Move Byte String MBS

Compare Byte Stri ng CBS

Translate Byte String TSS

Translate and Test Byte String TTBS

These instructions are in the immediate displacement class
and are memory-to-memory operations. These operations
are under the control of information that must be loaded
into certain general registers before the instruction is exe­
cuted. These instructions may be interrupted at various
stages of their execution; upon return, execution continues
from the point of interruption.

The general format for the information in the instruction
word and in the general registers is as follows:

Instruction word:

Contents of register R:

Contents of register Ru 1:

Designation

Operation

R

Function

The 7-bit operation code of the in-
struction. (If any byte string instruc-
tion is indi rectly addressed, the
computer traps to Homespace location
X'40' at the time of operation code

, decoding.)

The 4-bit field that identifies register R
of the current general register block.

Byte-Stri ng Instru ctions 67

Desi gnation

Displacement

Mask

Source Address

Count

Destination
Address

Function

A 20-bit field that contains a signed
byte displacement value, used to form
an effective byte address. The d is­
placement value is right-justified in
the 20-bit field, and negative values
are in two's complement form.

An 8-bit field used only with TRANSLATE
AND TEST BYTE STRING. The purpose
of this field is explained in the detai led
discussion of the TTBS instruction.

A 19-bit field that normally contains
the byte address of the first (most sig­
nificant) byte of the source byte string
operand. The effective source address
is the source address in register R plus
the displacement value in the instruc­
tion word.

An 8-bit fie ld that contai ns the true
count (from 0 to 255) of the number of
bytes involved in the operation. This
field is decremented by 1 as each byte
in the destination byte string is pro­
cessed. A 0 count means "no operation"
with respect to the registers and main
memory.

A 19-bit field that contains the byte
address of the first (most significant)
byte of the destination byte string oper­
and. This field is incremented by 1 as
each byte in the destination byte string
is processed.

In any byte string instruction, any portion of register R
or Ru 1 that is not expl icitly defined (i. e., bit positions
8-12), should be coded with zeros.

Since the value Rul is obtained by performing a logical
inclusive OR with the value 0001 and the value of the
R field of the instruction word, the two control registers
are Rand R + 1 if R is even. However, if R is an odd value,
register R contains an address value that functions both as
a source operand address and as a destination operand ad­
dress. Also, if register 0 is designated in any byte stri ng
instruction (except for TRANS LATE AND TEST BYTE
STRING), its contents are ignored and a zero source
address value is obtained. Thus, the following three
cases exist for most byte string instructions, depending on
whether the va lue of the R fie ld of the instruction word is
even and nonzero, odd, or zero:

Cme I: R is even and nonzero

The effective ~ource address is the address in register R
plus the displacement in the instruction word; the destina­
tion address is the address in register R + 1, but without
the displacement added.

68 Byte-String Instructions

Case II: R is odd

The effective source address is the address in register R plus
the displacement in the instruction word; thE: desti.nation
address is also the address in register R, but without the
displacement added.

Case III: R is zero

The effective source address is the displacement value in
the instruction word; the destination addrE:ss is the address
in register 1. In this case, the source byte string aperand
is always a single byte.

In the descriptions of the byte-string instructions, the fol­
lowing abbreviations and terms are used:

D Di sp lacement, (1) 12-31.

SA Source address, (R)13-3l"

ESA

C

DA

SBS

Effective source address, [(R)13-31 +(1)12-3"1J 13-31"

The contents of bit positions 13-31 of register R
are added (rightaligned) to the contents of bit posi­
tions 12-31 of the instruction word; the 19 low­
order bits of the result are used as the effective
source address.

Count, (Ru 1)O-T

Destinati on address, (Ru 1) 13-31"

Source byte string, the byte string that begins
with the byte location pointed to by the 19-bit
effective source address and is C bytes in length
(if R is nonzero) or is 1 byte in length if R is 0).

D BS Desti nati on byte stri ng, the byte stri ng that be­
gins with the byte location pointed to by the
destination address and is always C bytes in
length.

TRAPS BY BYTE STRING INSTRUCTIO NS

Byte string instructions cause a trap if either of the byte
strings addressed come from pages of memory that are pro­
tected by write locks. A trap also occurs if either byte
string is fully or partly contained within pages of memory
that are physically not present. A check for these access
trap conditions are made prior to initiation of any byte
relocation or general register change. These tests are per­
formed for MOVE BYTE STRING and COMPARE BYTE
STRING. These tests are performed only for the source
byte string for TRANSLATE BYTE STRING and TRANSLATE
AND TEST BYTE STRING, since there is no assurance that
the translate table will be accessed in its entirety in the

course of execution. If an acce&tection violation
were to occur in trying to rcach a~~ in the translate
table during thc course of execution, then the instruction
wou Id trap and resu It in a partia lIy executed condition.
TI)e regi sters wou Id be restored, however, in such a man­
ner that the instruction could be resumed after the protec­
tion violation had been corrected. When a trap occurs
resulting in a partially executed instruction, the Register
Altered indicator will be set.

MBS MOVE BYTE STRING
(Immediate displacement, continue after interrupt)

MOVE BYTE STRING copies the contents of the source
byte string (left to right) into the destination byte string.
The previous contents of the destination byte string are de­
stroyed, but the contents of the source byte string are not
affected unless the destination byte string overlaps the
source byte string.

When the destination byte string overlaps the source byte
string, the resulting destination byte string contains one or
more repetitions of bytes from the source byte string. Thus,
if a destination byte string of C bytes begins with the kth
byte of a source byte string (numbering from 1), the first
k-l bytes of the source byte string are duplicated in the
destination byte string x number of times, where
x = C/(k-l). For example, if the destination byte string
begins with the second byte of the source byte string, the
first byte of the source byte string is duplicated throughout
the desti nation byte stri ng.

If both byte strings begin with the same byte (-i.e., k = 1)
and the R field of MBS is nonzero, the destination byte
string is read and replaced into the same memory locations.
However, if both byte strings begin with the same byte and
the R field of MBS is zero, the first byte of the byte string
is duplicated throughout the remainder of the byte string
(see IICase II I" , below).

Affected: (DBS),(R),(Rul)
(SBS)-DBS

If MBS is indirectly addressed, it is treated as a non­
existent instruction, in which case the computer uncondi­
tionally aborts execution of the instruction (at the time of
operation code decoding) and traps to Homespace location
X'40 ' with the contents of register R and the destination
byte string unchanged. See "Traps by Byte String Instruc­
tions" (in this section) for other trap conditions.

Case I: even, nonzero R field (Ru 1 =R + 1)

Contents of register R:

Contents of rc. R+ 1:

The source byte string begins with the byte location pointed
to by the source address in register R plus the displacement
in MBS; the destination byte string begins with the byte lo­
cation pointed to by the destination address in register R+ 1.
Both byte strings are C bytes in length. V/hen the instruc­
tion is completed, the destination and source addresses are
each incremented by C, and C is set to zero.

Case II: odd Rfield (Rul:=R)

Contents of register R:

The source byte string begins with the byte location
pointed to by the address in register R plus- the displacement
in MBS; the destination byte string begins with the byte lo­
cation pointed to by the destination address in register R.
Both byte strings are C bytes in length. When-the instruc­
tion is completed, the destination address is incremented
by C, and C is set to zero.

Case III: zero R fie Id (Ru 1 =1)

Contents of register 1:

The source byte string consists of a single byte, the con­
tents of the byte location pointed to by the displacement in
MBS; the destination byte string begins with the byte loca­
tion pointed to by the destination address in register 1 and
is C bytes in length. In this case, the source byte is dupli­
cated throughout the destination byte string. When the
instruction is completed, the destination address is incre­
mented by C and C is set to zero.

CBS COMPARE BYTE STRING
(Immediate displacement, continue after interrupt)

60 I R I : Displacement I
314 5 6 78 9 10 1112131415161718191202122 23!24 25262712529 30 31

COMPARE BYTE STRING compares, as magnitudes, the
contents of the source byte string with the contents of the
destination byte string, byte by corresponding byte, begin­
ning with the first byte of each string. The comparison
continues unti I the specified number of bytes have been
compared or until an inequality is found. When CBS is
terminated, CC3 and CC4 are set to indicate the result of

Byte-Stri ng Instructions 69

the iast comparison. If the CBS instruct.erminates due
to inequality, the count in register Ru1 e greater than
the number of bytes remaining to be compared; the source
address in register R and the destination address in reg­
ister Ru 1 indi cate the locations of the unequal bytes.

Affected: (R) f (Ru 1) f CC3 f C C4
(SBS) : (DBS)

Condition code settings:

2 3 4 Result of CBS

o 0 Source byte string equals destination byte
string.

o Source byte string less than destination byte
string.

o Source byte string greater than destination
byte string.

If CBS is indirectly addressed, it is treated as a nonexistent
instruction, in whi ch case the computer unconditiona lIy
aborts execution of the instruction (at the time of operation
code decoding) and traps to Homespace location X'40 ' with
the contents of register R and the destination byte string
unchanged. See "Traps By Byte String Instructions" (in
this section) for other trap conditions.

Case I: even, nonzero R field (Ru1=R+l)

Contents of register R:

Contents of register R+l:

The source byte string begins with the byte location
pointed to by the source address in register R plus the dis­
placement in CBS; the destination byte string begins with
the byte location pointed to by the destination address in
register R+l. Both byte strings are C bytes in length.

Case II: odd R field (Rul=R)

Contents of register R:

The source byte string begins with the byte location
pointed to by the address in register R plus the displace­
ment in CBS; the destination byte string begins with the

70 Byte-String Instructions

byt~ location pointe~by the destinat~on add;ess' in
register R. Both byteY,'ngs are C bytes In lengtn.

Case III: zero R field (Ru1=l)

Contents of register 1:

The source byte string consists of a single byte, the con­
tents of the location pointed to by the displacement in CBS;
the destination byte string begins with the byte location
pointed to by the destination address in register 1 and is
C bytes in length. In this ease, the source byte is com""
pared with each byte of the destination byte string unti I
an inequality is found.

TBS TRANSLATE BYTE STRING
(Immediate displacement, continue after interrupt)

TRANS LATE BYTE STRING replaces each byte of the des­
tination byte string with a source byte located in a trans­
lation table. The destination byte string begins with the
byte location pointed to by the destination address in reg­
ister Ru 1 f and is C bytes in length. The translation table
consists of up to 256 consecutive byte locations, with the
first byte location of the table pointed to by the displace­
ment in TBS plus the source address in register R. A source
byte is defined as that which is in the byte location pointed
to by the 19 low-order bits of the sum of the following
values.

1. The displacement in bit positions 12-31 of the TBS
instruction.

2. The current contents of bit positi ons 13-31 of register R
(source address).

3. The numeric value of the current destination byte, the
8-bit contents of the byte location pointed to by the
current destination address in bit positions 13-31 of
register (Ru1).

Affected: (OBS), (Ru 1)
translated (OBS)-- DBS

Trap: Instruction exception

The R field of the TBS instruction must be an even value for
proper operation of the instruction; if the R field of TBS is
an odd value, the instruction traps to Homespace location
X'40 ' , instruction exception trap.

I

If TBS is indirectly addressed, it is treated as a nonexistent
instruction, in whi ch case the computer unconditiona Ily
aborts execution of the instruction (at the time of operation
code decoding) and traps to Homespace location X '40' with
the contents of register R and the des~.;-:ation byte string
unchanged.

See "Traps By Byte String InstructA (in this section) for
other trap conditions. Note that -rcheck for access trap
conditions is done only for the source byte string.

Case I: even, nonzero R field (Rul=R+l)

Contents of reg i ster R:

Contents of reg isl-er R+ 1:

The destination byte string begins with the byte location
pointed to by the destination address in register R + 1 and
is C bytes in length. The source byte string (translation
table) begins with the byte location pointed to by the dis­
placement in TBS plus the source address in register R.
When the instruction is completed, the destination address
is incremented by C, C is set to zero, and the source ad­
dress remains unchanged.

Case II: odd R field (Ru1=R)

Because of the interruptible nature of TRANS LATE BYTE
STRING, the instruction traps with the contents of reg­
ister R unchanged when an odd-numbered genera I register
is specified by the R field of the instruction word.

Cuse III: zero R fie Id (Ru 1 =1)

Contents of regi ster 1:

The destination byte string begins with the byte location
pointed to by the destination address in register 1 and is
C bytes in length. The source byte string (translation table)
begins with the location pointed to by the displacement in­
TBS. When the instruction is completed, the destination
address is incremented by C and C is set to zero.

TTBS TRANSLATE AND TEST BYTE STRING
(Immediate di splacement, conti nue after interrupt)

o 1 2

TRANSLATE AND TEST BYTE STRING compares the mask
in bit positions 0-7 of register R with source bytes in a byte
translation table. The destination byte string begins with

the byte locati&inted to by the destinotion adcJres~ in
register Ru 1, a~ C bytes in iength. The byte translation
table and the translation bytes themselves are identical to
that described for the instruction TRANS LATE BYTE STRING.
The destination byte string is examined (without being
changed) unti I a trans lotion byte (source byte) is found that
contains a 1 in any of the bit positions selected by a 1 in
the mask. When such a translation byte is found, TTeS re­
places the mask with the logical product (At'JD) of the trans­
lation byte and the mask, and terminates with CC4 set to 1.
If the TTBS instruction terminates due to the above condi­
tion, the count (C) in register Ru 1 is one greater than
the number of bytes remaining to be compared and the
("Jstination address in register Ru 1 indi cates the location
of the destination byte that caused the instruction to
terminate. If no translation byte is found that satisfies
the above condition after the specified number of destina­
tion bytes have been compared, TTBS terminates with CC4
reset to O. In no case does the TTBS instruction change
the source byte string.

Affected: (R), (Ru 1), CC4 Trap: Instruction exception

If translated (SBS) n mask I 0, translated (SBS) n mask-­
mask and stop

If translated (SBS) n mask = 0, continue

Condition code settings:

2 3 4 ResultofTTBS

o Translation bytes and the mask do not com­
pare lis any place.

The last translation byte compared with the
mask contained at least one 1 corresponding
to a 1 in the mask.

The R field of the TTBS instruction must be an even value
for proper operation of the instruction; if the R field of TTBS
is an odd value, the instruction traps to Homespace loca­
tion X I 4D I

, the instruction exception traps.

If TTBS is indirectly address, it is treated as a nonexistent
instruction, in which case the computer unconditionally
aborts execution of the instruction (at the time of operation
code decoding) and traps to Homespace location X l 40 1 with
the contents of register R and the destination byte string
unchanged.

See IITraps By Byte String Instructions ll (in this section) for
other trap conditions. Note that the check for access trap
conditions is done only for the source byte string.

Case I: even, nonzero R fi e Id (Ru 1 =R+ 1)

Contents of register R:

Byte-String Instructions 71

Contents of register R+ 1: • Count
o I ~ 3 14 .)

The destination byte string begins with the byte location
pointed to by the destination address in register R + 1 and
is C bytes in length. The source byte string (translation
table) begins with the byte location pointed to by the dis­
placement in TTBS plus the source address in register R.

Case II: odd R field

Because of the interruptible nature of TRANSLATE AND
TEST BYTE STRING the instruction traps with the contents
of register R unchanged when an odd-numbered genera I reg­
ister is specified by the R field of the instruction word.

Case III. zero R field (Ru1=l)

Contents o,f register 1:

The destination byte string begins with the byte location
pointed to by the destination address in register 1 and is
C bytes in length. The source byte string (translation table)
begins with the location pointed to by the displacement in
TTBS. In this case, the instruction automatically provides
a mask of eight lis. (This is an exception to the general
rule, used in the other byte string instructions, that reg­
ister 0 provides a II OIS as its contents.)

The term "push-down processing" refers to the programming
techn ique (used extensive Iy in recursive routines) of storing
the context of a calculation in memory, proceeding with a
new set of information, and then activating the previously
stored information. Typically, this process involves a
reserved area of memory (stack) into which operands are
pushed (stored) and from which operands are pulled
(loaded) on a last-in, first-out basis. The SIGMA 8 com­
puter provides for simplified and efficient programming of
push-down processing by means of the following instructions:

Instr~ction Name Mnemonic

Push Word PSW

Pull Word PLW

Push Multiple PSM

Pull Mu Itiple PLM

Modify Stack Pointer MSP

72 Push-Down Instructions

STAC~{ POI. OOU3la"JO::::D (S?D)

Each of these instructions operates with resped to a
memory stack that is defined by a doubleword located at
the effective address of the instruction. This doubfeword,
referred to as a stack pointer doubleword (SPD), has the
following structure:

Bit positions 15 through 31 of the SPD contain a 17-bit
address field that points to the location of the word cur­
rently at the top (highest-numbered address) of the operand
stack. In a push operation, the top-of-stack address is in­
cremented by 1 and then an operand in a general register
is pushed (stored) into that location, thus becoming the
contents of the new top of the stack, the contents of the
previous top of the stack remain unchanged. In a pu II
operation, the contents of the current top of the stack are
pu lied (loaded) into a genera I register and then the top-of­
stack address is decremented by 1; the previous contents of
the stack remain unchanged.

Bit positions 33 through 47 of the SPD, referred to as the
space count, contain a 15-bit count (0 to 32,767) of the
number of word locations currently available in the region
of memory allocated to the stack. Bit positions 49 through
63 of the SPD, referred to as the word count, contain a
15-bit count (0 to 32,767) of the number of words currently
in the stack. In a push operation, the space count is decre­
mented by 1 and the word count is incremented by 1; in a
pull operation, the space count is incremented by 1 and the
word count is decremented by 1. At the beginning of a /I
push-down instructions, the space count and the word count
are each tested to determine whether the instruction would
cause either count field to be incremented above the upper
limit of 215- 1 (32,767), or to be decremented below the
lower limit of O. If execution of the push-down instruc­
tion would cause either count limit to be exceeded, the
computer unconditionally aborts execution of the instruc­
tion, with the stack, the stack pointer doubleword, and the
contents of general registers unchanged. Ordinarily, 'the
computer traps to Homespace location Xl 42 1 after aborting
a push-down instruction because of impending stack limit
overflow or underflow, and with the condition code un­
changed from the value it contained before execution of
the instruction.

However, this trap action can be selectively inhibited by
setting either (or both) of the trap inhibit bits in the
SPD to 1.

Bit position 32 of the SPD, referred to as the trap-on­
space (TS) inhibit bit, determines whether the computer
will trap to Homespace location X I 42 1 as a result or

i~pcnding overflow or und~rflo.he space count
(SPD

33
_

47
), as follows:

TS Space count overflow/underflow action

o If the execution of a pull instruction would cause
the space count to exceed 2 15- 1, or if the execution
of a push instruction wou Id cause the space count to
be less than 0, the computer traps to Homespace lo­
cation X142 ' with the condition code unchanged.

Instead of trapping to Homespace location X '42 ' , the
computer sets CC 1 to 1 and then executes the next i n­
struction in sequence.

Bit position 48 of the 5PD, referred to as the trap-on-word
(TW) inhibit bit, determines whether the computer will
trap to Homespace location X 142 ' as a result or impending
overflow or underflow of the word count (5PD 49-63)'
as follows:

TW Word count overflow/underflow action

o If the execution of a push instruction wou Id cause the
word count to exceed 2 15- 1, or if the exec~ti on of a
pu 1/ instruction wou Id cause the word count to be less
than 0, the computer traps to Homespace location
X 142 ' with the condition code unchanged.

Instead of trapping to Homespace location XI42 ' , the
computer sets CC3 to 1 and then executes the next
instruction in sequence.

If the execution of a push-down instruction is attempted
and the computer traps to Homespace location X '42 ' , the
condition code remains unchanged from the value it con­
tained immediately before the instruction was executed.

If the execution of a push-down instruction is attempted
and the instruction is aborted because of impending stack
limit overflow or underflow (or both) but the push-down
stack limit trap is inhibited by one (or both) of the inhibits
(T5 and TW), then, CCl or CC3 is set to 1 (or both are
set to lis) to indicate the reason for aborting the push­
down instruction, as follows:

o

2 3 4 Reason for abort

o

Impending overflow of word count on a push
operation or impending underflow of word
count on a pull operation. The push-down
stack I imit trap was inhibited by the TW

bit (5PD 48)'

Impending overflow of space count on a pu"
operation or impending underflow of space
count on a push operation. The push-down
stack limit trap was inhibited by the T5 bit
(5PD

32
)·

2 3 4 .son for abort

Impending overflow of word count and under­
flow of space count on a Fu:;h operation cr
impending overflow of space ccunt and under­
flow of word count on a pull operaticn. The
push-down stack limit trap wm inhibited by
both the TW and the T5 bits.

If a push-down instruction is successfully executed, CCl
and CC3 are reset to 0 at the cornpieticn or the instruction.
Also, CC2 and CC4 are independently set to indicate the
current status of the space count and the word count, re­
spectively, as follows:

2 . 3 4 Status of space and word couhts

o 0 The current space count and the current word
count are both greater than zero.

o The current space count is greater than zero,
but the current word count is zero, indicating
that the stack is now empty. If the next
operation on the stack is a pull instruction,
the instruction will be aborted.

o The current word count is greater than zero,
but the current space count iszero, indicating
that the stack is now fu II. If the next opera­
tion on the stack is a push instruction, the
instruction wi I I be aborted.

If the computer does Lot trap to Homespace iocation
X'42 ' as a result of impending stack limit overflow/
underflow, CC2 and CC4 indicate the status of the space
and word counts at the termination of the push-down
instruction, regardless of whether the space and word
counts were actually modified by the instruction. In the
following descriptions of the push-down instructions, only
those condition code configurations are given that can
actually be produced by the instruction, provided that the
computer does not trap to Homespace location XI42'.

PSW PUSH WORD
(Doubleword index alignment)

PUSH WORD stores the contents of register R into the push­
down stack defined by the stack pointer doubleword lo­
cated at the effective doubleword address of PSW. If the
push operati on can be successfu Ily performed, the instruc­
tion operates as follows:

1. The current top-of-stack address (SPD15-31) IS Incre­
mented by 1 to point to the new top-of-stack location.

2. The contents of register R are stored in the location
pointed to by the new top-of-stack address.

Push-Down Instrucfions 73

3.

4. Tn,;; ,::oilcii;on code is set to rerzct ;';~..3 :13W src:' . .;: 07
the spcce cvun r.

Affe.;red: (SPD) ,(TSA+ 1),
CC

(S?D)~~ "'~ + 1
I ,J-,,) ;

(Rj---(SPD, _ ,.,.)
,j-,,) i

rSPD' , S0r"l \. },.,,., '7- 1 - • U r ,,., '7
,,),,)-~ ..)")-4

(SPD).l9 6~' + 1 -S?l).~. ,v:,
4 - ,,) ~y-v~

2 3 4 X..3st}!t of PSW

" 0 0 0 Sp.::ice coun~ is g,\:;Qi:.:;r u
,I O. rncn

0 0 0 S}:;ccc cowr.~· ;5 :10W O.

0 0 0 Word 2
r:5 ,

~o0nt - -, I

-:v/ == 1.

0 0 $~)C-=0 cow;:';" = 0,
:;:; = L

:
;.

J
./

"'~

" . _ .;$·rrwc~·, 0;"',

0 S?CC0 ccunt - 0, wore
cou;,;' = 0, -r <.: = -/.., ..

0 Word C0ur.r = 2"15 -1,
$~:':;C~ count == 0,
TVI = 1 and TS = 1.)

"

:?L'} PUi..L. WORD
(Do~Sit;wo;"C: index alignment)

~------------~-----.~~-------------~-------------
;*1 08 R, /(I .\e:.;:;:-o;-:co c..:....Jr~:>s i 1 I I

C 1 3 14 ~ 6 7.3 't i':' :1;:2 13 i<! 15:;0 :/ H .. >~~LO ~~ 2:l i:::;Z4 25 26 Li'i2~O :i l

:;UL~ \Ja/c:~(:· ~~c.,':~ (2~'is'~~!'" ~~ vvr~~h tr:~ \-vorc1 cu:-rentl, !?;- the
~:.? .Jr ·:~-.2 ?~:::·-i-:1C'.~/n STGCK 22f1ned 1:.;1 ':ne s~~ack Do£r.'re:­
cc·~::'fc:·.··~.-·:: ;ccc;\:!c c~ :h~ effGc~-~Ve dOU:,l·5V/O:-C cccress :,f
PLV/.1C pu; I operation can be perfom18d $0ccessfuLy,
the l.-.::~-t\..lc;ion opeic~·.;;s as' fellows:

i.

2.

3.

-;~t\2 currcr-:t t':)?-or-:':'G~:< cddress ~ $.= ~c~-erncnfecl
'<, ,:';'0ir.t to ~he :"i:.,;\/,,::;.;:,-or-s;ock ;,:,cc;'ion •

. _ ~pa~(; cClJnf/~:?0::;3_47). is .ir,crc;nen':'cd, by
:.:':- \:c:-c cO:J(:',~ \~)/)-63} _5 Gc~rc·;:-:\:" .. ;:·(:d o~/ ••

and

((S ? D) ,~ ".,) - i~; (S CJ D) ,. ,: ":.' -' --,-::? G, _ ,
i ::>-.;, j -v • : :,-..... ;

'.', -.,J....,J

C \..: Li 'l/~·;2 CCtjr .. ~ i~ :;.~~~~':~~:

C U 0

o 0

t\
V

. .1

o

r· v

:~'~'~:::1 G.

Word cour.r = 0, TV.,,'

::,~:(,::~ coun; = J,
W0;C COull:' ::: O. TV! =:;: 1 .

S':;c'ce co~n: = :.: ::)
TS ::: ~.

- .-c. '1":,.',' = _,/.15 - -,1. , ~pacs __

ViC:.::i COL.;,! = V, TS ::: 'j t

or,~ -:w = 1.

". ,',

lr~~::-ur;,,>:. v.~

PUS~-: 1,,;~LiLT:?L.E storeS the CC':-~:'8~'i's of ~ ::.e\.~L(;~'1;;l:: ~.,,;: c:
~,";.~2rci r-eg:s1'2ts L~:"o lonG PUSh-C;0\V;; ~·~·c~k 68:~:~:=~ w. -'-.'

":~'Gck ::.c;·~"':;\~t 60U0Ls\,vo;C !cccf-~d c<- ;'~i(; c·.~·Fec~":\i;;': C":·, __

\/0:-0. cdcrc~:; of ?'S,\/I,. -~-~,~ c:.;.~"~:·:<,:..": (:o~~::- ::i ~':'.:::' ".~. .• .J

...... II ..

~ ~";c :-'~;:S'~~er5 c;~ .. (; ':~",,-,C:':~';'':'" <L': ~ C.:~~~.

(vvlrl"'. re9is';~r J ·,':o'.~·ovV!;1g ~"cSi~~',,;~- ~i5) ar~c :':~I:; ·~":t~·{

'~'O bB i)'Jshcd Irr:c ~-!1e ~tcck is rasis';~'; R .. ";.";~.:::..~ ~C~~· ."\~;~:.,~'~."

·~'O be p~sr.~~d ir.to i+:e ;;"~"cck is r~.; i~·:·e; ~~~ .. ;- \:.: -'~ f -

ccr.~·~r:·:s of this :"e£}!st~~: becc.~.~ .. :. .. ".: ~(:,n:'..:.::.:·,,; :..,.: L,_

-:·";?--·:.:,::·"'s';",:::k :~:,,,,;~'~.: C:-l.

, '."' ::: t, '~'':;:- (... ~ ; -.... . ~ . ." (".. ...
.;."(' .n0re IS SU·i·;~C:;·.:~,~-:: ::':).:.:2C(': Jli

fied iegiste;s, :5>/) o~:;ctc'~~c~ cs ':'c'~ .~:J\-vs;

1.

pointed to by the current to.stack address
(SPD15-31) plus 1 and ending with the current top­
of-stack address plus CC.

2. The current top-of-stack address is incremented by
the value of CC, to point to the new top-of-stack
location.

3. The space count (SPD33-47) is decremented by the
value of CC and the word count is incremented by the
value of CC.

4. The condition code is set to reflect the new 'status of
the space count.

Affected: (SPD), (TSA+l) to
(TSA+CC), CC

Trap: Push-down stack limit

(R) - (SPD)15-31 + 1 ... (R+CC-l) - (SPD) 15-31 + CC

(SPD)15_31+CC -SPD15_31

(SPD)33_47-CC -SPD33_47

(SPD 49-63 + CC -SPD 49-63

Condition code settings:

0

0

0

2 3

0 0

0

0

0 0

o 0

4

0

0

0

°

Resu I t of PSM

Space count > O.

Space count = o.

Word count + CC >
215 - 1, TW = l.

Space count < CC,
TS = 1.

Space count < CC,
word count = 0,
TS = 1.

o 1 0 Space count < CC,
word count + CC >
215 -1, TS = 1,
and TW = 1.

} Instruction
completed

Instructi on
aborted

If the instruct-peration extends into a page of memory
that is protect~y the write locks, a memory protection
trap occurs. If the operation extends into a memory region
that is physically not present, the nonexistent memory ad­
dress trap occurs. In either case, if a trap occurs during
the execution of this instruction, it is detected before the
actual operation begins and the trap occurs in:mediately.

PLM PULL MULTIPLE
(Doubleword index al ignment)

PULL MULTIPLE loads a sequential set of general registers
from the push-down stack defined by the stack pointer
doubleword located at the effective doubleword address of
PLM. The condition code is assumed to contain a count of
the number of words to be pulled from the stack. (An ini­
tial value of 0000 for the condition code specifies that
16 words are to be pulled from the stack.) The registers
are treated as a circular set (with register 0 following reg­
ister 15), the first register to be loaded from the stack is
register R + CC - 1, and the contents of the current top-of­
stack location become the contents of this register. The
last register to be loaded is register R.

If there is a sufficient number of words in the stack to load
all of the specified registers, PLM operates as follows:

1. Registers R + CC - 1 to register R are loaded in de- ,
scending sequence, beginning with the contents of the
location pointed to by the current top-of-stack address
(SPD15-31) and ending with the contents of the loca­
tion pointed to by the current top-of-stack address
minus CC-l.

2. The current top-of-stack address is decremented by
the value of CC, to point to the new top-oF-stack
location.

3. The space count (SPD33-47) is incremented by the
value of CC and the word count is decremented by
the value of CC.

4. The condition code is set to reflect the new status of
the word count.

Affected: (SPD), (R+CC-1) Trap: Push-down stack limit
to (R),CC o 0 Space count = 0,

TS = 1.
------------«SPD)r5=31)--~-R + CC -1, ... ,

° Space count = 0,
word count = 0,
TS = 1.

o Space count = 0,
word count + CC >
215 -1, TS = 1,
and TW = 1.

«SPD)15_31 - Icc -11) - ~

(SPD)f5_31 - CC - SPD 15_31

(SPD)33_47 + C~ - SPD33_47

(SPD) 49-63 - CC -SPD 49-63

Push-Down Instructions 75

Condition code settings:

2 3 4 Result of PLM

0 0 0 0 Word count > 0 } Instruction

0 0 0 1 Word count = 0
completed

0 0 0 Word count < CC,
TW = 1

0 0 Word count = 0,
TW = 1

0 ° Space count = 0,
word count < CC,
TW = 1

° 1 Space count = 0,
word count = 0, Instruction
TW = 1 aborted

0 0 °
15

Space count+ CC > 2 -1,
TS = 1

° 0
15

Space count + CC > 2 -1,
word count < CC, TS = 1,
and TW = 1

0 Space count+ CC > 215_1,
word count = 0, TS = 1,
and TW = 1

If the instruction operation extends into a page of memory
that is protected by the write locks, the memory protection
trap occurs. If the operation extends into a memory region
that is physically not present, the nonexistent memory
address trap occurs. In either case, if a trap occurs during
the execution of this instruction, it is detected before the
actual operation begins and the trap occurs immediately.

MSP

o 1 2

MODIFY STACK POINTER
(Doubleword index al ignment)

MODIFY STACK POINTER modifies the stack pointer dou­
bleword, located at the effective doubleword address of
MSP by the contents of register R. Register R is assumed to
have the following format:

Bit positions 16 through 31 of register R are treated as a
signed integer, with negative integers in twols complement
form (i. e., a fixed-point halfword). The modifier is alge­
braicallyadded to the top-of-stack address, subtracted
from the space count, and added to the ord count in the
stack pointer doubleword. If, as a result of MSP, either
the space count or the word count would be decreased
below ° or increased above 215_1, the instruction is
aborted. Then, the computer either traps to Homespace
location Xl 42 1 or sets the condition code to reflect the
reason for aborting, depending on the stack limit trap
inhibits.

76 Push-Down Instructions

If the modificatioethe stack pointer doubleword can be
successfully performed, MSP operates as follows:

1. The modifier in register R is algebraically added to the
current top-of-stack address (SPD)15-31' to point to
a new top-of-stack location. (If the modifier is nega­
tive, it is extended to 17 bits by appending a high­
order 1.)

2. The modifier is algebraically subtracted from the cur­
rent space count (SPD33-47) and the result becomes
the new space count.

3. The modifier is algebrai cally added to the current word
count (SPD 49-63) and the result becomes the new
word count.

4. The condition code is set to reflect the new status of
the new space count and new word count.

Affected: (SPD), CC Trap: Push-down stack limit

(SPD)15_31 + (R)16-31SE - SPD 15_31

(SPD)33_47 - (R)16-31- SPD33_47

(SPD)49_63 + (R)16-31- SPD 49-63

Condition code settings:

2 3 4 Result of MSP

o ° 0 0 Space count> 0,
word count > 0.

000

o o °
o °

Space count> 0,
word count = 0.

Space count = 0,
word count> 0.

Space count = 0,
word count = 0,
modifier = 0.

Instruction
'completed

If CC1, or CC3, or both CCl and CC3 are lis after exe­
cution of MSP, the instruction was aborted but the push­
down stack I imit trap was inhibited by the trap-on-space
inhibit (SPD32), by the trap-on-word inhibit (SPD48)' or
both. The condition code is set to reflect the reason for
aborting as follows:

2 3 4 Status of space and word counts

- 0 Word count> 0.

Word count = O.

- - 0 - Os word count + modifier :s 2 i 5 -1.

- Word count + modifier < 0, and TW = 1 or
word count + modifier> 215_1, and TW = 1.

2 3 4 Status of space and. counts

o - Space count> O.

Space count::: O.

o - 0 :s space count - modifier:S 2
15

_1.

Space count - modifier < 0, and TS = 1 or
space count - modifier> 215_1, and TS = 1.

EXECUTE/BRAt~CH INSTRUCTIONS .

The EXECUTE instruction can be u~ed to insert another in­
struction into the program sequence, and the branch instruc­
tions con be t,Jsed to alter the program se9uence, either
unconditionally or condItionally. If a branch is ul'\cbnd;­
tional (or conditional and the branch condition is satisfied),
the instruction pointed to by the effective address of the
branch instruction is normally the next instruction to be
executed. If a branch is conditional and the condition for
the branch is not satisfied, the next instruction is normally
taken from the next location, in ascending sequence, after
the branch instruction.

NONALLOWED OPERATION TRAP DURING EXECUTION OF
BRArJCH INSTRUCTION

A branch instruction has two possible places from which the
next instruction may be taken: the location following the
branch instruction or the location that may be branched to.
It is possible that either of these two locations may be in a
protected memory region or in a region that is physically
nonexistent. The execution of the branch does not cause
a trap -.Jlll\~SS the instruction that is actually to follow the
branch instruction is in a protected or nonexistent memory
region. Traps do not occur because of any anti cipation on
the' part of the hardware.

A nonallowed operation trap condition during execution of
a branch instruction wi" occur for the following reasons:

1. The branch instruction is indirectly addressed and the
branch conditions are satisfied, but the address of the
location containing the direct address is either non­
existent or unavai lable for read access to the program
in the slave mode.

2. The branch instruction is unconditional (or the branch
is conditional and the condition for the branch is
satisfied), but the effective address of the branch
instruction is nonexistent.

If either of the above situations occurs, the computer aborts
execution of the branch instruction and executes a non­
allowed operation trap.

Prior to the time that an instruction is accessed from mem­
ory for execution, bit positions 15-31 of the program status
doubleword contain the address of the instruction, referred
to as the instruction address. At this time, the computer
traps to Homespace location X'40' if the address of the
instruction is nonexistent. If the instruction address is

existent, the euction is accessed and the instruction
address portion of the program status doubl eword is i ncre­
mented by 1, so that it now contains the address of the next
instruction in sequence {referred to as the updated instruc­
tion address}.

If a trap condition occurs during the execution sequence of
any instruction, the computer decrements the updated in­
struction address by 1 and then traps to the location
assigned fo the trap condition. If neither a trap condition
nor a satisfied branch condition occurs during the execution
of an instruction, the next instruction is accessed from the
location pointed to by the updated instruction address. If

, a satisfied branch condition occurs during the execution of
a bronch instruc;ti¢11 (gnd 119 trap conditiqn Qc;;curs)(the
next :nstruct;ori is accessed from the location pointed to by
the effective address of the branch instruction.

EXU EXECUTE
(Word index alignment)

EXECUTE causes the computer to access the instruction in
the location pointed to by the effective address of EXU and
execute the subject instruction. The execution of the sub­
ject instruction, including the processing of trap and in­
terrupt conditions, is performed exactly as if the subject
instruction were initially accessed instead of the EXU
instruction. If the subject instruction is another EXU, the
computer executes the subject instruction pointed to by the
effective address of the second EXU as described above.
Such "chains" of EXECUTE instructions may be of any
length, and are processed (without affecting the updated
instruction address) unti I an instruction other than EXU i5
encountered. After the final subject instruction is exe­
cuted, instruction execution proceeds with the next in­
struction in sequence after the initial EXU (unless the
subject instruction is an LPSD or XPSD instruction, or is
a branch instruction and the branch condition is satisfied).

If an interrupt activation occurs between the beginning of
an EXU instruction (or chain of EXU instructions) and the
last interruptible point in the subject instruction, the com­
puter processes the interrupt-servicing routine for the active
interrupt level and then returns program control to the EXU
instruction (or the initial instruction of a chain of EXU
instructions), which is started anew. Note that a program
is interruptible after every instruction access, including
accesses made with the EXU instruction, and the inter­
ruptibi lity of the subject instruction is the same as the nor-

. mal interruptibi lity for that instruction.

If a trap condition occurs between the beginning of an EXU
instruction (or chain of EXU instructions) and the completion
of the subject instruction, the computer traps to the appro­
priate trap location. The instruction address stored by the
XPSD instruction in the trap location is ; . .::lress of the

Execute/Branch Instructions n

EXU instruction (or the initial instructioea chain of EXU
instructions).

Affected: Determined by
subjec;t instruction

T raps: Determined by
subject instruction

Condition code settings: Determined by subject instruction

SCS BRANCH ON CONDITIONS SET
fY/ord index alignment)

BRANCH ON CONDITIONS SET forms the logical product
(AND) of the R field of the instruction word and the cur~
rent condition code. If the logical product is nonzero, the
branch condition is satisfied and instruction execution pro­
ceeds with the instruction pointed to by the effective ad­
dress of the BCS instruction. However, if the logical
product is zero, the branch condition is unsatisfied and
instruction execution then proceeds with the next instruc­
tion in normal sequence •

. Affected: (IA) if CC n R f °
If CC n (1)8-11 f 0, EA 15_31-IA

If CC n (1)8-11 = 0, IA not affected

If the R field of BCS is 0, the next instruction to be exe­
cuted after BCS is always the next instruction in ascending
sequence~ thus effectively producing a "no operation"
instruction.

SCR BRANCH ON CONDITIONS RESET
fY/ord index alignment)

BRANCH ON CONDITIONS RESET forms the logical pro­
duct (AND) of the R field of the instruction word and the
current condition code. If the logical product is zero, the
branch condition is satisfied and instruction execution then
proceeds with the instruction pointed to by the effective
address of the BCR instruction. However, if the logical
product is nonzero, the branch condition is unsatisfied and
instruction execution then proceeds with the next instruc­
tion in normal sequence.

Affected: . (IA) if CC n R = °
If CC n (I}8-11 = 0, EA15_31 - IA

If CC n (1)8-11 "10, IA not affected

78 Execute/Branch Instructions

If the R field of BCR • the next instruction to be exe­
cuted after BCR is always the instruction located at the
effective address of BCR, thus effectively producing a
"branch unconditionally" ·instruction.

SIR BRANCH ON INCREMENTING REGISTER
(Word index alignment)

BRANCH ON INCREMENTING REGISTER tncremenh thE!
contents of general register R by 1. If the result is a nega­
tive value, the branch condition is satisfied and instruction
execution then proceeds with the instruction pointed to by
the effective address of the BIR instruction. However, if
the result is zero or a positive value, the branch condition
is not satisfied and instruction execution proceeds with the
next instruction in normal sequence.

Affected: (R), (IA)

(R) + l-R

If (R)O = 0, IA not affected

If the branch condition is satisfied and the effective
address of BIR is nonexistent, the computer aborts exe­
cution of theBIR instruction and traps to Homespace
location X'40'. In this case, the instruction address
stored by the XPSD instruction in location X'40' is the
address of the aborted BIR instruction. "If a memory parity
error occurs due to the accessing of the instruction to which
the program is branching, the computer aborts execution of
the ·BIR and traps to Homespace location X'4C' with
register R unchanged.

BDR BRANCH ON DECREMENTING REGISTER
(Word index alignment)

BRANCH ON DECREMENTING REGISTER decrements the
contents of general register R by 1. If the result is a posi­
tive value, the branch condition is satisfied and instruction
execution then proceeds with the instruction pointed to by
the effective address of the BDR instruction. However, if
the result is zero or a negative value, the branch condition

is unsatisfied and instruction execu.roceeds with the
next instruction in normal sequence.

Affected: (R), (IA)

(R) - 1-R

If (R)O = 0 and (R)l-31 I 0, EA15_31 - IA

If (R)O = 1 or (R) = 0, IA not affected

If the branch condition is satisfied and the effective ad­
dress of BDR is nonexistent, the computer aborts execution
of the BDR instruction and traps to Homespace location
X'40'. In this case, the instruction address stored by
the XPSD instruction in location X'40' is the address
of the aborted BDR instruction. If a memory parity
error occurs due to the accessing of the instruction
to which the program is branching, the computer aborts
execution of the BDR and traps to Homespace location
X'4C' with register R unchanged.

BAL BRANCH AND LINK
(Word index alignment)

BRANCH AND LINK determines the effective address,
loads the updated instruction address (the address .of the
next instruction in normal sequence after the BAL in­
struction) into bit positions 15-31 of general register R,
clears bit positions 0-14 of register R to O's and then
replaces the updated instruction address with the effec­
tive address. Instruction execution proceeds with the
instruction pointed to by the effective address of the
BAL instruction.

Affected: (R), (IA)

IA -R
15

-
31

; 0-R
O

_
14

; EA
15

_
31

-IA

If the branch condition is satisfied and the effective ad­
dress of BAl is nonexistent, the computer aborts execution
of the BAl instruction and traps to Homespace location
X'40' (nonallowed operation trap). In this case, the in­
struction address stored by the XPSD instruction in loca­
tion X'40' is the address of the aborted BAl instruction.
If a memory parity error occurs due to the accessing of the
instruction to which the program is branching, the com­
puter aborts execution of the BAL and traps to Homespace
location X'4C' with register R unchanged.

ell INSTRUCTIONS

Each of the four CALL instructions causes the computer to
trap to a specific location for the next instruction in se­
quence. The four CALL instructions, their mnemonics,
and the locations to which the computer traps are:

Instruction Trap Home-
Name Mnemonic space Locati on

CALL 1 CAll X'48 1

CALL 2 CAL2 X'49 1

CALL 3 CAL3 X'4A'

CALL 4 CAL4 X'4B'

Each of these four trap locations must contain an EX­
CHANGE PROGRAM STATUS DOUBLEWORD (XPSD)
instruction. Execution of XPSD in the trap location for a
CALL instruction is described under "Control Instructions,
XPSD Exchange Program Status Doubleword". If the XPSD
instruction is coded with bit position 9 set to 1, the next
instruction (executed after the XPSD) is taken from one of
16 possible locations, as designated by the value in the
R field of the CALL instruction. Each of the 16 locations
may contain an instruction that causes the computer to
branch to a specific routine; thus, the four CALL instruc­
tions can be used to e"nter any of as many as 64 unique
routines.

CAU CALL 1
(Word index al ignment)

CALL 1 causes the computer to trap to Homespace loca­
tion X'48 1

•

CAL2 CALL 2
(Word index al ignment)

CALL 2 causes the computer to trap to Homespace loca­
tion X'49'.

CAL3 CALL 3
(Word index al ignment)

CALL 3 causes the computer to trap to Homespace loca­
tion X'4A'.

Call Instructions 79

CAL4 CALL 4
(Word index alignment)

CALL 4 causes the computer to trap to Homespace loca­
cation X'4B'.

CONTROL INSTRUCTIONS

The following privileged instructions are used to control
the basic operating conditions of the SIGMA 8 computer:

Instruction Name"

Load Prog~am Status Doubleword

Exchange Program Status Doubleword

Load Register Pointer

Move to Memory Control

Wait

Read Direct

Write Direct

Mnemonic

LPSD

XPSD

LRP

MMC

WAIT

RD

WD

"If execution of any control instruction is attempted whi Ie
the computer is in the slave mode (i. e., whi Ie bit 8 of the
current program status doubleword is a 1), the computer
unconditionally traps to Homespace location X'40' prior to
executing the instruction.

PROGRAl"'JlSTATUS DOUBLElNORD

The SIGMA 8 program status doubleword has the following
structure when stored in memory:

Bit Desig-
Positions nation Function

0-3 CC Condition code

5 FS Floating significance mask

6 FZ Floating zero mask

7 FN Floating normalize mask

8 MS Master/slave mode control

80 Control Instructions

t

Bit
Positions

10

11

15-31

34,35

37

38

39

48-55

56-59

60

DeSig~-·-'·
nation Function

DM Decimal arithmetic trap mask

AM Fixed-point arithmetic overflow trap
mask

IA Instruction address

WK Write key

CI Counter interrupt group inhibit

II I/O. interrupt group inhibit

EI External interrupt inhibit

TSF Trap status field

RP Register pointer

RA Register altered

The detai led functions of the various portions of the
SIGMA 8 program status doubleword are described in
Chapter 2, II Program Status Doubleword ".

LPSD LOAD PROGRAM STATUS DOUBLEWORD
(Doubleword index alignment, privileged)

LOAD PROGRAM STATUS DOUBLEWORD replaces bits 0
through 39 of the current program status doublewordwith
bits 0 through 39 of the effective doubleword.

c The fol lowing conditional operations are performed:

1. If bit position 8 (LP) of LPSD contains a 1, bits 56
through 59 of the current program status double­
word (register pointer) are replaced by bits 56
through 59 of the effective doubleword; if bit 8 of
LPSD is a 0, the current register pointer val ue re­
mains unchanged.

2. If bit position 10 (CL) of LPSD contains a 1, the
highest-priority interrupt level currently in the active
state is cleared (i. e., reset to either the armed state
or the disarmed state); the interrupt level is armed if
bit 11 of LPSD (AD) is a 1, or is disarmed if bit 11 of
LPSD is O. If bit 10 of LPSD is a 0, no interrupt level
is affected in any way, regardless of whether bit 11 of
LPSD is 1 or O. If bit 10 of the LPSD is a 0 and bit 11
of the LPS Dis a 1, the PDF fl ag is cI eared. (I nter­
rupt levels are described in detail in Chapter 2,
"Interrupt System".) "

Bit Position Bit Position • 10 (CL) 11 (AD) Function

0 Clear and disarm interrupt level

Clear and arm interrupt level

0 Clear PDF flag

0 0 No control action

Those portions of the effective doubleword that correspond
to 'undefined fields in the program status doubleword are
ignored.

Affected: (PSD), interrupt system if (1)10 = 1

EDO--:y-CCi EDS:y-FS, FZ, FN

ED lS---3-1--IA

ED
3
-
4
-_

3
-
S
--WK

ED
37

_
39

CI, II, Eli if (1)8 = 1, ED
S
-
6
-_-

S9
--RP

If (1)10 = 1 and (1)11 = 1, clear and arm interrupt

If (1)'0 = 1 and (1)11 = 0, clear and disarm interrupt

If (1)10 = 0 and (1)11 = 1, clear PDF flag

XPSD EXCHANGE PROGRAM STATUS DOUBLEWORD
(Doubleword index alignment, privileged)

EXCHANGE PROGRAM STATUS DOUBLEWORD stores the
currently active PSD in the doubleword location addressed
by the effective address of the XPSD instruction. The fol­
lowingdoubleword is thenaccessed from memoryand loaded
into the active PSD registers.

The XPSD instruction is used for three distinct types of
operations: as a normal instruction in an ongoing program;
as an interrupt instruction; and as a trap instruction.

An XPSD instruction (in an interrupt location) executed
as a result of an interrupt is called an interrupt instruction.
An XPSD instruction (in a trap location) executed as a
result of a trap entry operation is called a trap instruction.
An XPSD instruction encountered in the course of execution

of a normal pAm (that is, not as an interrupt instruction
nor as a trap Zction) is a normal instruction.

Control bits used in the XPSD instructions are:

Bit Desig- Control
Position nation Function Where Used

8 LP Load pointer All XPSDs
control

9 AI Address increment Trap XPSD

The effective address of an XPSD instruction is generated
in one of the following ways:

XPSD (normal and interrupt instructions)

When either of these XPSD instructions are executed, the
effective address is generated accord ing to the norma I ru les (
for addressing. Bit position 9 is not effective during these
instructions and must be a zero.

XPSD (trap instruction)

An XPSD execu·ted as a trap instruction (as defined above)
may have the effective address and condition codes modi­
fied as a function of bit position 9.

If bit position 9 of XPSD contains a 0, the instruction ad­
dress portion of the new PSD always remains at the value
established by the second effective doubleword. Bit posi­
tion 90f XPSD is effective only if the instruction is being
executed as the result of a nonal/owed operation trap or a
CALL instruction trap. Bit position 9 of XPSD must be
coded with a 0 in a/l other cases; otherwise, the results of
the XPSD instruction are undefined.

The following additional operations are performed on the
new program status doubleword if, and only if, the xpsg
is being executed as'the result of a nonallowed operatio·"
(trap to Homespace location X'40') or a CALL instruction
(trap to Homespace location X'48 1

, X'49 1
, X'4A', or

X'4B'):

1. Nonal/owed operations - the following additional
functions are performed when XPSD is being executed
as a result of a trap to Homespace location X'40' :

a. ~.Ionexistent instruction - if the reason for the
1 rap condition is an attempt to execute a non­
existent instruction, bit position 0 of the new
program statusdoubleword (CC1) is set to 1. Then,
if bit 9 (AI) of XPSD is a 1, bit positions 15-31 of
the new program status doubleword (next instruc­
tion address) are incremented by 8.

Control Instructions 81

b. Nonexistent memory address -ee reason for the
trap condition is an attempt to access or write into
a nonexistent memory region, bit position 1 of the
new program status doubleword (CC2) is set to 1.
Then, if bit 9 of XPSD is a 1, the instruction ad­
dress portion of the new program status double­
word is incremented by 4.

c. Privi leged instruction violation - if the reason for
the trap condition is an attempt to execute a
privi leged instruction whi Ie the computer is in the
slave mode, bit position 2 of the new program
status doublewcrd (CC3) is set to 1. Then, if bit
position 9 of XPSD is 1, the instruction address
portion of the new program status doubleword is
incremented by 2.

d. Memory protection violation - if the reason for
the trap condition is an attempt to write into
a memory' region to which the program does
not have proper access, bit position 3 of the
new program status doubleword (CC4) is set to 1.
Then, if bit 9 of XPSD is a 1, the instruction ad­
dress portion of the new program status double­
word is incremented by 1.

There are certain circumstances under whi ch two of the
above nonallowed operations can occur simultaneously.
The following operation codes (including their counter­
parts) are considered to be both nonexistent and privi-
1eged: XIOCI and X'OD'. If either of these operation
codes is used as an instruction while the computer is
in the slave mode, CC 1 and CC3 are both set to lis;
if bit 9 of XPSD is a 1, the instruction address portion
of the new program status doubleword is incremented
by 10. If an attempt is made to write into a memory
region'that is both nonexistent and prohibited to the
program by means of the memory control feature, CC2
and CC4 are both set to lis; if bit 9 of XPSD is a 1,
the instruction address of the new program status
doubleword is incremented by 5.

2. CALL instructions - the following additional functions
are performed when XPSD is being executed as a
result of a trap to Homespace location X'48 I, X'49 1

,

XI4AI, or XI4BI.

a. The R field of the CALL instruction causing the
trap' is logically inclusively ORed into bit posi­
tions 0-3 (CC) of the new PSD.

b. If bit position 9 of XPSD contains a 1, the R field
of the CALL instruction causing the trap is added
to the instruction address portion of the new PSD.

The current program status doubleword is stored in the
doubleword location pointed to by the effective address of
XPSD in the following form:

Program status doubleword:

82 Control Instructions

The current program status doubleword (as illustrated above)
is replaced by a new program status doubleword as de­
scribed below.

1. The effective address of XPSD is incremented by 2 so
that it points to the next doubleword location. The
contents of the next doubleword location are referred
to as the second effective doubleword, or ED2.

2. Bits 0-35 of the current program status doubleword are
unconditionally replaced by bits 0-35, of the second
effective doubleword. The affected portions of the
program status doubleword are:

3.

Bit Desig-
Position nation Function

0-3 CC Condition code

5-7

8

10

11

15-31

34-35

FS, FZ, Floating control
FN

MS

DM

AM

IA

WK

Master/slave mode control

Decimal arithmetic trap mask

Fixed-point arithmeticirap
mask

I nstructi on address

Write key

A logical inclusive OR is performed between bits 37
through 39 of the current program status doubleword
and bits 37 through 39 of the second effective
doubleword.

Bit Desig-
Position nation Function

37 CI Counter interrupt inhibit

38 II I/O interrupt inhibit

39 EI External interrupt inhibit

If any (or all) of bits 37, 38, or 39 of the second
effective doubleword are O's, the corresponding bits
in the current program status doubleword remain un-

, ____ c~c:Jnge~;if any (or all) of bits 37, 38, or 39 of the
second effective-doubleword are lis, the correspond­
ing bits in the current program status doubleword are

set to lis. See IIInterrupt Sy.l, Chapter 2, for a
detailed discussion of the interrupt inhibits.

4. If bit position 8 (LP) of XPSD contains a 1, ·bits 56
through 59 of the current program status doubleword
(register pointer) are replaced by bits 56 through 59
of the second effective doubleword; if bit 8 of XPSD
is a 0, the current register pointer value remains
unchanged.

Affected: (ED L), (PSD)

PSD -EDL

ED2
0

_
3

- CC; ED2
5

_i - FS, FZ, FN

ED28 -MS

ED2
10

-DM; ED2
11

-AM; ED
15

_
31

- IA

ED2
34

_
35

-WK

ED2
37

_
39

u CI, II, EI -CI, II, EI

If (1)8 = 1, ED2
56

_
59

-RP

If (1)8 = 0, RP not affected

If nonexistent instruction, l-CC1 then, if (1)9 = 1,
IA+8-IA

If nonexistent memory address, 1-CC2 then, if
(1)9 = 1, IA + 4-IA

If privi leged instruction violation, 1 - CC3 then, if
(1)9 = 1, IA + 2-IA

If memory protection violation, l-CC4 then, if
(1)9 = 1, IA + l-IA

If CALL instruction, CC u CALLs-11 -CC then, if
(1)9 = 1, IA + CALL8_11 -IA

If (1)9 = 0, IA not affected

LRP LOAD REGISTER POINTER
(Word index al ignment, privi leged)

I

LOAD REGISTER POINTER loads bits 26 and 27 of the
effective word into the register pointer (RP) portion of the

current progra"tus doubleword. Bit positions 0 through
25 and 28 thr~~31 of the effective word are ignored,
and no other portion of the program status doubleword is
affected. If the LOAD REGISTER POINTER instruction
attempts to load the register pointer with a value that points
to a nonexistent block of general registers, the computer

, traps to Homespace location XI4DI.

Affected: RP Trap: Instruction exception

,EW 26-27 - RP

MMC MOVE TO MEMORY CONTROL
(Word index alignment, privileged, continue
after interrupt)

MOVE TO MEMORY CONTRO L loads a string of one or
more words into the write lock registers. Bit positions 12
through 14 of MMC specify that the memory control reg­
isters are to be loaded. Indexing is not permitted.

Bit Position

12 13 14 Function

o 0 Load memory write protection locks.

An attempt to execute an MMC instruction with any con­
trol code other than the above causes the instruction to
trap to Homespace location X14D 1

, the instruction ex­
ception trap.

Bit positions 15-31 of MMC are ignored insofar as the
operation of the instruction is concerned, and the results
of the instruction are the same whether MMC is indirectly
add ressed or not.

The R field of MMC designates an even-odd pair of general
registers (R and Ru 1) that are used to control the loading of
the specified bank of memory control registers. Registers R
and Ru 1 are assumed to contain the following information:

Register R:

Register Ru 1:

Register R contains the address of the first word of the con­
trol image to be loaded into the specified blo~k of memory
control registers. Bit positions 0 through 7 of register Ru 1
contain a count of the number of words to be loaded. (If
bits 0-7 of register Ru1 are initially all O's, a word count
of 256 is implied.)

Bit positions 15 through 22 of register Rul point to the be­
ginning of the memory region controlled by the registers
to be loaded.

Control Instructi-ons 83

The R field of the MMC instruction rnA an even value
for proper operation of the instructio~~he R field of
MMC is an odd value, the instruction traps to Homespace
location X'4D ' , the instruction exception trap.

If MMC is indirectly addressed and the indirect reference
address is nonexistent, the nonallowed operation trap
(Homespace location X'40 ') is not activated. The effective
address of the MMC instruction is not used as a memory
reference (thus does not affect the norma I operation of
the instruction).

Affected: (R),(Ru1), Trap: Instruction
memory control storage exception

LOADING THE MEMORY PROTECTION LOCKS

The following diagrams represent the configurations of
MMC, register R, and register Rul that are required to
load the memory write protection locks:

--------------------0
4 25 26 27 28 29 ~o 31

The contents of register Rare:

The contents of register Ru 1 are:

MEMORY LOCK CO NTRO L IMAGE

The initial address value in register R is the address of the
first word of the memory lock control image, and word
length of the image is specified by the initial count in
register Rul. A word count of 16 is sufficient to load the
entire block of memory locks. The memory lock registers
are treated as a circu lar set, with the register for memory
addresses 0 through X'l FF' immediately following the reg­
ister for memory addresses X'1FEOO' through X'1FFF';
thus, a word count greater than 16 causes the first registers
loaded to be overwritten. Each word of the lock image is
assumed to be in the following .format:

MEMORY LOCK LOADING PROCESS

Bit positions 15-20 of register Ru1 initially point to the
first 512-word page of memory addresses that will be con­
trolled by the memory lock image. MMC moves the lock
image into the lock registers one word at a time, thus load~
ing the locks for 16 consecutive 512-word pages with each
image word. As each word is loaded, the address of
the lock image is incremented by 1, the word count is

84 Control Instructions

decremented by 1, .the value in bit positions 15-20 of
register Ru 1 is incr_ted by 4; this process continues
unti I the word count is reduced to O. When the loading
process is completed, register R contains a value equal to
the sum of the initial lock image address plus the initial
word count. Also, the final word count is 0, and bit posi­
tions 15-20 of register Ru1 contain a value equal to the
sum of the initial contents plus four times the initial word
count.

INTERRUPTION OF MMC

The execution of MMC can be interrupted or trapped after
each word of the control image has been moved into the
specified control register. Immediately priQr to the time
that the instruction in the interrupt (or trap) location is
executed, the instruction' address portion of the program
status doubleword contains the address of the MMC in­
struction, register R contains the address of the next word
of the control image to be loaded, and register Ru 1 con­
tains a count of the number of control image words remain­
ing to be moved and a value pointing to the next memory
control register to be loaded. After interrupt, the MMC
instruction may be resumed from the point itwas interrupted.
'In case of an interrupt or a parity error in a control image
word, the MMC will set the Register Altered indicator,
bit 60 of the program status doubleword.

WAIT WAIT
(Word index alignment, privileged)

WAn causes the CPU to cease all operations until an inter­
rupt activation occurs, or unti I the computer operator manu­
ally moves the COMPUTE switch on the processor control
panel from the RUN position to IDLE and then back to RUN.
The instruction address portion of the PSD is updated before
the computer begins waiting; therefore, whi Ie the CPU is
waiting, the INSTRUCTION ADDRESS indicators contain
the address of the next location in ascending sequence after
WAIT and the contents of the next location are displayed
in the DISPLAY indicators on the processor control panel.
If any input/output operations are being performed when
WAIT is executed, the operations proceed to their normal
termination.

When an interrupt activation occurs whi Ie the CPU is wait­
ing, the computer processes the interrupt-servicing routine.
Normally, the interrupt-servicing routine begins with an
XPSD instruction in the interrupt location, and ends with
an LPSD instruction at the end of the routine. After the
LPSD instruction is executed, the next instruction to be
executed in the interrupted program is the next i'nstruction
in sequence after the WAIT instruction. If the interrupt is
to a single-instruction interrupt location, the instruction
in the interrupt location is executed and then instruction
execution proceeds with the next instruction in sequence
after the WAIT instruction. When the COMPUTE switch is

moved from RUN to IDLE and baA RUN while the CPU
is waiting, instruction executio~oceeds with the next
instruction in sequence after the WAIT instruction.

Affected: PC

If WAIT is indirectly addressed and the indirect reference
address is nonexistent, the nonallowed operation trap to
Homespace location X' 40 ' wi" not occur. The effective ,
address of the WAIT instruction, however, is not used as a
memory reference (thus does not affect the normal operation
of the instruction). .

RD READ DIRECT
(Word index alignment, privileged)

The CPU is capable of directly communicating with other
elements of the SIGMA 8 system, as well as performing
internal control operations, by means of the READ
DIRECTjWRITE DIRECT (RD/WD) lines. The RDjWD
lines consist of 16 address lines, 32 data lines, two
condition code lines, and various control lines that are
connection to various CPU circuits and to specia I sys­
tems equipment.

READ DIRECT causes the CPU to present bits 16 through 31
of the effective address to other elements of the SIG MA 8
system on the RDjWD address lines. Bits 16-31 of the ef­
fective address identify a specifi c element of the SIGMA 8
system that is expected to return information (two condition
code bits plus a maximum of 32 data bits) to the CPU. The
significance and number of data bits returned to the CPU
depend on the ~elected element. If the R field of RD is
nonzero, up to 32 bits of the returned data are loaded into
general register R; however, if the R field of RD is zero,
the only action taken is the setting of the condition codes
as indicated by the particular form of the instruction.

Bits 16-19 of the effective virtual address of RD determine
the mode of the RD instruction, as follows:

Bit Position

16 17 18 19 Mode

o 0 0 0 Internal computer control.

000

o 0

o 0

Interrupt control.

o XDS testers.

1 } Assigned to various groups of standard
XDS products.

o .

Special systems control (for customer use
with specially designed equipment).

READ DmECT,

INTERNAL COMPUTER r;OfJTROL(MODEO)

In this mode, the computer is able to read the sense
switches, the interrupt inhibit bits of the PSD, and the
"snapshot II register, as follows.

READ SENSE SWITCHES

The following configuration of RD can be used to read the
control panel SENSE switches:

If a particular SENSE switch is set, the corresponding bit
of the condition code is set to 1; if a SENSE switch is zero
the corresponding bit of the condition code is set to 0 (see
"SENSE" in Chapter 5).,

In this case, only the condition code is affected.

READ SNAPSHOT SAMPLE REGISTER

Each CPU will contain an internal snapshot sample register
to aid in diagnostic programming. The following configura­
tion of RD is used to record the snapshot sample register:

If the R field of RD is nonzero, the contents of the snapshot
sample register are transferred to the specified R register.

Affected: (R), CC

(Sample Register)-- R

Condition Code Settings:

2 3 4 Result

o 0 Clock Counter = 0, end of instruction not
reached.

o Clock Counter = 0, end of instruction.

o Armed but not "snapped II •

READ INTERRUPT INHIBITS

The following configuration of RD can be used to read the
contents of the interrupt inhibit field:

If the R field of RD is nonzero, the contents of the inter­
rupt inhibit field (bits 37, 38, 39) of the program status
doubleword are transferred to the least significant 3 bits

Control Instructions 85

of the specified R register (bits 29, 30,. The remainder
of the R register bits (0-28) is cleared to zeros.

Affected: (R)

(PSD)37_39 -R29- 31

0-R
O

_
28

READ INTERNAL CONTRO LS

The following configuration of RD is used to read the CPU
clock margin controls.

The internal CPU margin controls are read into the speci­
fied R register, bits 8 and 9, with a" other bits zero, ac­
cording to the following table:

Bit 8 Bit 9 Clock Margins

o 0 Norm

o Hi

o Lo

Unused

Affected: (R)

Clock Margins--R
8

, R9

READ DIRECT. INTERRUPT CONTROL (MODE1)

The following confi guration of RD is used to control the
sensing of the various states of the individual interrupt
levels within the CPU interrupt system:

Bits' 28 through 31 of the effective address specify the iden­
tification number of the group of interrupt levels to be con­

. trolled by the READ DIRECT instruction.

The R field of the RD instruction specifies a general reg­
ister that will c~ntain the bits sensed from the individual
interrupt levels ~ithin a specified group (see Table 2, Chap­
ter 2). Bit position 16 of register R contains the appropri­
ate indicator bit for the highest priority (lowest number)
interrupt level within tbe group and bit position 31 of
register R contains the indicator bit for the lowest priority

86 Control Instructions

interrupt level withie group. Each interrupt level in
the designated group is sensed according to the function
code specified by bits 21 through 23 of the effective ad­
dress of RD. The codes and their associated functions are
as follows:

Code

001

010

Function

Read Armed or Waiting State. Set to 1 the bits
in the selected register which correspond to in­
terrupt levels in this group that are in either
the armed or the waiting state. Reset all other
bits to zero.

Read Waiting or Active State. Set to 1 the bits
in the selected register which correspond to each
i.nterrupt level in this group that is in either the
waiting state or the active state. All other bits
are reset to zero.

100 Read Enables. Set to 1 the bits in the selected

WD

register which correspond to each interrupt level
in this group which is enabled. Reset all other

~~-~--bitstozero.·--~-

WRITE DIRECT
(Word index al ignment, privileged)

WRITE DIRECT causes the CPU to present bits 16 through 31
of the effective address to other elements of the SIGMA 8
system on the RDjWD address lines (see READ DIRECT).
Bits 16-31 of the effective address identify a specific
element of the SIGMA 8 system that is to receive con­
trol information from the CPU. If the OR field of WD is
nonzero, the 32-bit contents of register R are transmitted
to the specified element on the RDjWD data lines. If the
R field of WD is 0, 32 O's are transmitted to the speci­
fied element (instead of the contents of register 0). The
specified element may return information to set the con­
dition code.

Bites 16-19 of the effective address determine the mode
of the WD instruction, as follows:

Bit Position

16 17 18 19 Mode

o 0 0 0 Interna I computer control

o 0 0 Interrupt control

16 17 18 19 Mode

0 0 0 XDS testers

0 0

] Assigned to various groups of
standard XD S products

Speci al systems control (for customer
use with specially designed
equipment)

WRITE DIRECT,
INTERNAL COMPUTER CONTROL (MODE 0)

SET INTERRUPT INHIBITS

The following configuration of WD can be used to set
the interrupt inhibits (bit positions 37-39 of the PSD).

A logical inclusive OR is performed between bits 29-31
of the effective address and bits 37-39 of the PSD. If
any or all) or bits 29-31 of the effective address are lis,
the corresponding inhibit bits in the PSD are set to lis;
the current state of an inhibit bit is not affected if a
corresponding bit position of the effective address con­
tains a o.

RESET INTERRUPT INHIBITS

The following configuration of WD can be used to reset the
interrupt inhibits:

If any (or a II) of bits 29-31 of the effective address
. are l's, the corresponding inhibit bits in the PSD are

reset to OIS; the current state of an inhibit bit is not
affected if a corresponding bit position of the effective
address contains a o.

SET ALARM INDICATOR

The following configuration of WD is used to set the
ALARM i ndi cator on the mai ntenance secti on of the
processor control panel.

If the COMPUTE switch on the processor control panel is
in the RUN position and the AUDIO switch on the mainte­
nance section of the processor control panel is in the ON
position, a 1000-Hz signal is transmitted to the 'computer
speaker. The signal may be interrupted by moving the
COMPUTE switch to the IDLE position, by moving the
AUDIO switch to the OFF position, or by resetting the
ALARM indicator.

RESET ALARM INDICATOR

The following configuration of WD is used to reset the
ALARM indicator:

The ALARM indicator is also reset by means of either the
CPU RESET/CLEAR switch or the SYS RESET/CLEAR
switch on the processor control panel.

TOG GLE PROGRAM-CONTROLLED-FREQUENCY
FLIP-FLOP

The following configuration of WD is used to set and
reset the CPU program-controlled-frequency (PCF)
flip-flop:

The output of the PCF fl ip-flop is transmitted to the
computer speaker through the AUDIO switch on the mainte­
nance section of the processor control panel. If the
PCF flip-flop is reset when the above configuration of
WD is executed, the WD instruction Sets the PCF flip­
flop; if the PCF flip-flop was previously set, the WD
instruction resets it. A program can thus generate a
desired frequency by setting and resetting the PCF fl ip­
flop at the appropriate rate. Execution of the above
configuration of WD also resets the ALARM indicator.

LOAD INTERRUPT INHIBITS

The following configuration of WD can be used to transfer
-the-~o~ten'ts of the specified R register (R29-31) to the

Interrupt Inhibit field (PSD
37

_
39

).

Affected: (PSD
37

_
39

)

(R29- 31) - PSD37_39

Control Instructions 87

LO~D SNAPSHOT CONTROL REGISTE.

The following configuration of WD is used to arm the
snapshot feature.

The contents of the specified R register are transferred
to the snapshot control register with the following
format:

Bit
Position

0-7

10-14

15-31

Desig­
nation

CC

CS

IA

Function

Clock Counter. Contains the num­
ber of clock pulses, which deter­
mine the time the snapshot sample
register is strobed after instruction
adress recognition.

Condition Select. Deterrriinewhich
of several possible internal states
of the hardware to record. t

Instruction Address. The address
used by the snapshot feature is the
17-bit address in positions 15-31
of the PSD.

Affected: (Snapshot Control Register)

(R)-Snapshot Control Register

seT INTERNAL CONTROLS

The following configuration of WD is used to set the CPU
clock margin controls.

tA separate document, XDS SIGMA 8 Engineering Support
Manual will contain this information.

88 Control Instructions

The contents of the ,,"ied R register, bits 8 and 9,
are used to set the ~nal CPU margin controls as
follows:

Bit 8 Bit 9 Clock Margins

o 0 Norm

o Hi

o Lo

Reserved

All unused bits of the specified R register are disregarded.

"tyRITE DIRECT, INTERRUPT CONTROL (MODE 1)

The fpllowing configuration of WD is used to set and reset
the various states of the individual interrupt levels within
the CPU interrupt system:

Bits 28 through 31 of the effective address specify the
identification number (see Table 2) of the group of inter­
rupt levels to be controlled by the WD instruction.

The R field of the WD instruction specifies a general reg­
ister that contains the selection bits for the individual
interrupt levels within the specified group (see Table 2,
Chapter 2). Bit position 16 of register R contains the selec­
tion bit for the highest-priority (lowest-numbered) interrupt
level within the group, and bit position 31 of register R
contains the selection bit for the lowest-priority (highest­
numbered) interrupt level within the group.

Each interrupt level in the designated group is operated
on according to the function code specified by bits 21
through 23 of the effective address of WD. The codes and
their associated functions are as follows:

Code Function

000 Set active all selected levels currently in the
armed or waiting states.

001 tt Disarm all levels selected by a 1; all levels
se I ected by a 0 are not affected.

ttThese codes clear the current interrupts, i. e., remove
from the active or waiting state all levels selected. by
a 1 (see Figure 7).

Code

100

101

110

111

Function

Arm and enable all levels selected by a 1; all
levels selected by a 0 are not affected.

Arm and disable all levels selected by.a 1; all
levels selected by a 0 are not affected.

Enable all levels selected by a 1; all levels
selected by a 0 are not affected.

Disable all levels selected by a 1; all levels
selected by a 0 are not affected.

Enable all levels selected by a 1 and disable all
levels selected by a O.

Trigger all levels selected by a 1. All such levels
that are currently armed advance to waiting state.

ItJPUT jOUTPUT INSTRUCTIONS

SIGMA 8 I/O instructions permit a CPU to initiate, test,
and control I/O operations. SIGMA 8 I/O systems consist
of special- and general-purpose Input/Output Processors
(lOPs), e. g., High-Speed RAD I/O Processor (HSRIOP),
Multiplexor I/O Processor (MIOP), single- and multi­
device controllers, and a variety of standard peripheral de­
vices (printers, disks, tapes, etc.). Stand.ard I/O operations
are performed with the I/O instructions listed below.

Instruction Name Mnemonic

Start Input/Output SIO

Test Input/Output TIO

Test Device TDV

Halt Input/Output HIO

Reset Input/Output RIO

Poll Processor POLP

Poll and Reset Processor POLR

Acknowl edge I nput/Output Interrupt AIO

If execution of any input/output instruction (always privi­
leged) is attempted while the computer is in the slave mode
(i.e., while bit 8 of the current program status double­
word is a 1), the computer unconditionally aborts execution
of the instruction (at the time of operation code decoding)
and traps to Homespace location X'40'.

tThese codes clear the current interrupts, i. e., remove
from the active or waiting state all leve Is selected by
a 1 (see Figure 7).

1/0 ADD~ESStES

An I/O device is selected by the effective address of the
I/O instruction. Indirect addressing and/or indexing may
be performed, as for other word-addressing instructions, to
compute the effective address of the I/O instruction. How­
ever, the effective address is not used as a memory
reference. For all I/O instructions, except AIO, the
13 low-order bits of the effective address (bits 19-31) con-
stitute an I/O address. For the AIO instructiun, the
device causing the interrupt returns its 13-bit I/O address
as part of the response to the AIO instruction.

An effective I/O address is subdivided into a processor
address and a device controller address.

PROCESSOR ADDRESSES (BITS 19-23)

The 32 processor addresses (PA) may be assigned in the fol­
lowing manner:

1. The assignment of addresses is mutually exclusive, that
is, no two processors may have the same address.

2. The fou r highest addresses (X'l C' - X' 1 F ') are reserved
for addressing CPUs in a multiprocessor system.

3. The remaining 28 addresses may be assigned to MIOPs,
High-Speed RAD lOPs, or to any other lOP that is
compatible with the SIGMA 8 computer system.

a. SIGMA 8 MIOPs require an even-odd pair of
addresses. The even address (bi t 23 is 0) sel ects
Channel A and the odd address (bit 23 is 1) selects
Channel B. If the MIOP only has Channel A, the
odd address is preempted and reserved.

b. A SIGMA 8 HSRIOP may be assigned an even or
an odd address. However, the address cannot be
one that has been reserved for Channel B of an
existing MIOP.

DEVICE CONTROllER ADDRESSES (BITS 24-31)

There are two types of device controller addresses. If the
device controller controls a single unit, bit 24 is 0 and
bits 25-31 constitute a single code specifying a particular
combination of device controller (DC) and device. Nor­
mally, these codes refer to device controllers that drive
only a single device, such as a card reader, care; punch,
or line printer.

Type 1: Addressing single-unit device controllers (bit 24 = 0)

If the device controller (DC) can control more than one
device(bit 24 is a 1 and bits 25-31 are subdiv.ided into a
device controller address (bits 25-27) and a device address

Input/Output Instructions 89

(bits 28-31). This form of I/O addressi~ used for de­
vice controllers, such ,as magnetic tapeYrapid access data
(RAD) controllers, that control information exchange with
only one device at a time from a set of as many as
16 devices.

Type 2: Addressing multiunit devi ce controllers (bit 24 = 1)

SIGMA 8 MIOPs permit multiunit device controllers to be
installed into the first eight subchannels of Channel A and
the eight subchannels of Channel B.

110 UNIT ADDRESS ASSIGNMENT

Device controller numbers are normally assigned to an lOP
in numerical sequence, beginning with zero and continuing
through the highest number recognized by the lOP. In the
case of mu Itiunit device controllers, the device controller
number must be in the range X'O' through X'7' because the
I/O address field structure allows for a 3-bit multiunit
device controller number. In the case of single-unit de­
vice controllers, any of the avai lable numbers in the range
X'O' through X'l F' may be assigned to the device control­
ler, provided that the same number has not already been
assigned to a multiunit device controller. For example, if
device controller number X'O' is assigned to a magneti c ,
tape unit controller, the number X'O' cannot also be used
for a card reader (although the coding of the I/O address
field would be different in bit position 24).

VO STATUS RESPOr~SE

All I/O instructions result in the condition code bits (CC1-
CC3) being set to denote the nature of the I/O response. '
By coding the R field of the I/O instruction, additional
I/O status information may be loaded into either two, one,
or no general registers. If the R field is coded with a zero,
no additional I/O status information will be returned. If
the R field is coded wi,th an odd value, one "word" of ad­
ditional I/O status information will be loaded into the
specified general register. If the R field is coded with an
even (and nonzero) value, two "words" of additional I/O
status information will be loaded into register R and regis­
ter Rul. However, the requested additional I/O status
information will not be returned to the specified,general
registers if the I/O address of the I/O instruction was not
recQgnized, or the addressed device controller is attached
to a "busy" lOP, or if a memory parity error or data bus
fault was detected when the lOP read the CPU/IOP com­
munication locations in main memory. The format of the
additional I/O status information that is loaded into the
general registers for all I/O instructions, except Ala, is
shown below.

, Word into register R when R is even and not 0:

90 Input/Output Instructions

Word into register R.en R is even and not 0; or word
in R when R is odd:

Subchannel Status. See" General Registers, Subchannel
Status Response Bits".

Current Command Doubleword Address. After the addressed
device has received an order, this field contains the 16 high­
order bits of the main memory address for the command
doubleword currently being processed for the addressed
device.

Status. The meaning of this field depends on the particular
I/O instruction being executed and on the selected I/O
device (see Table 12).

Byte Count. After the addressed device has received an
order, this field contains a count of the number of bytes
yet to be transmi tted by the operati on called for by the
order.

SIO START INPUT/OUTPUT
(Word index alignment, privileged)

Instruction Register

General Register 0

START INPUT/OUTPUT performs the following:

1. Initiates an input or output operation.

2. Specifies which lOP, channel, device controller,
and input/output device is to be selected (bits 19-31
of the effective address of the instruction word).

3. Specifies the address of the first command doubleword
for the subsequent I/O operation (bits 16-31 of gen­
era I regi ster 0).

4. Specifies how much additional status information is to
be returned from the I/O system (R field, bits 8-11,
of instruction word).

5. Specifies which general registers are to be loaded with
the requested status information (R field, bits 8-11, of
instruction word).

General register 0 is temporari Iy dedicated during SIO in­
struction execution and must contain the doubleword mem­
ory address of the first command doubleword specifying the
operati on to be started. The required address informati on
must be in general register 0 when the SIO is executed.

Position and State in Register Ru1

Device Status Byte

o 2 3

- 00-
o 1
10-
1 1

o
1

4 5 6 7

00-
o 1

o
1

o

Position and STate in Register R

Devi ce Status Byte

o 2 3 456 7

ble 12. Status Response Bits for I/O Instru

Operational Status Byte

8 9 10 11 12 13 14 15

Operational Status Byte

8 9 10 11 12 13 14 15

o -
o -

o

Signifi cance for
SIO, HIO, and TIO

interrupt pending
device ready
device not operational
device unavailable
device busy
device manual
devi ce automati c

device unusual end
devi ce control I er ready
device controller not operational
device controller unavailable
devi ce controller busy
reserved

incorrect length
transmission data error
transmission memory error
memory address error

lOP memory error
lOP control error
lOP halt
High-speed RIOP busy

Significance for AIO

un i que to the devi ce and
the device control Jer

incorrect length
transmission data error
zero byte count interrupt
channel end interrupt

unusual end interrupt

} reserved'

Significance
for TDV

data overrun

1 uni~ue to tho
devi ce and the
devi ce control I er

same as for
SIO, HIO, and
TIO

Input/Output Instructions 91

STATUS mJFORMATION FOR S.

Status information for an SIO is always returned via
condition codes (CC1-CC3). Additional information may
be returned into one or two general registers only if pro­
grammed (R field has a nonzero value) and if CCl is O.

Affected: (R), (Ru 1), CC 1, CC2, CC3

The meaning of the condition code during an SIO instruc­
tion is:

2 3 4 Meaning

000 I/O address recognized and SIO accepted.

o 0

o

o

I/O address recognized and SIO accepted;
however, status information in general reg­
isters is incorr~ct.

o - I/O address recognized but SIO not
accepted.

I/O address recognized but SIO not ac­
cepted because device controller or device
is busy and status information in general
registers is incorrect.

1.0 0 I/O address recognized but device controller
is attached to a busy RIO P or an MIO P oper­
ating in the "burst" mode; no status informa­
tion is returned to general registers.

o Reserved.

o - I/O address not recognized and SIO not
accepted; no status information returned to
genera I regi sters.

I/O address not recognized and SIO not
accepted; no status information returned to
genera I registers because a memory parity
error or a bus check fault occurred when the
lOP read the CPU/lOP communication loca­
tions in main memory or a memory parity
error was detected when writing into the
communication locations.

GENERAL REGISTERS

If the R field of the SIO instruction contains a 0, no
status information wi" be loaded into any of the genera I
registers. If the R field is coded with an odd value, then
the designated register wi" be loaded with status infor­
mation. If the R field is even and nonzero, then both the
R register and the R + 1 register wi" be loaded with status

92 Input/Output Instructions

information. The form. the information loaded into
the genera I registers is snown be low:

Reg'ister R (if R field is even and nonzero)

Subchannel
status

Status Response Bits

Bit
Position Function

o

2

3-7

8-15

16-31

Always set to zero.

Bus Check Fault. This bit is set to 1 if a data
transmission error occurs when an 10 P is per­
forming a main memory read cycle.

Control Check Fault. This bit is set to 1 when
a parity error occurs during a subchannel read
operation within the MIOP.

Always set to o.

Always set to o.

Contain the current command doubleword ad­
dress decremented by one. This address is cur­
rently stored in the lOP.

Register R (if R field is odd) or register Rul (if R field is
even and nonzero)

Status Response Bits (see Table 12)

Bit
Position Function

o Interrupt Pending. If this bit is 1, the ad­
dressed device has requested an interrupt and
the interrupt has not been acknowledged by
an AIO instruction. Device interrupts can be
achieved by coding the flag portion of the
I/O command doubleword. Device interrupts
can also be achieved for certain devices by
using M modifiers in the basic order to the de-:
vice (M bits in the Order portion of the com­
mand doubleword). In either case, the device
will not accept a new SIO instruction unti I the
interrupt-pending condition is cleared (i. e. ,
the condition code setting for the SIO instruc­
tion will indicate "SIO not accepted" if the
interrupt-pending condition is present in the
addressed device).

Bit
Position

1,2

3

4

Function •
Device Condition. If bits 1 and 2 are 00
(device "ready"), all device conditions re­
quired for proper operation are satisfied. If
bits 1 and 2 are 01 (devi ce "not operational"),
the addressed device has developed some con­
dition that will not allow it to proceed; in
either case, operator intervention is usually
required. If bits 1 and 2 are 10 (device
"unavai lable"), the device has more than one
channel of communicat.ion available and it is
engaged in an operation controlled by an 10 P
other than the one specified by the I/O address.
If bits 1 and 2 are 11 (device "busy"), the
device has accepted a previous SIO instruction
and is already engaged in an I/O operation.

Device Mode. If this bit is 1, the device is in
the "automatic" mode; if this bit is 0, the de­
vice is in the "manual" mode and requires
operator intervention •. This bit can be used in
conjunction with bits 1 and 2 to determine the
type of action required. For example, assume
that a card reader is able to operate, but no
cards are in the hopper~ The card reader would
be in state 000 (device "ready", but manual
intervention required), where the state is indi­
cated by bits 1, 2, and 3 of the I/O status
response. If the operator subsequently loads
the card hopper and presses the card reader
START switch, the reader would advance to
state 001 (device "ready" and in automatic
operation). If the card reader is in state 000
when an 510 instruction is executed, the 510
would be accepted by the reader and the
reader would advance to state 110 (device
"busy", but operator intervention required).
Should the operator then place cards in the
hopper and press the START switch, the card
reader state would advance to 111 (device
"busy" and in "automatic" mode), and the in­
put operation would proceed. Should the card
reader subsequently become empty (or the
operator press the STOP switch) and command
chaining is being used to read a number of
cards, the card reader would return to state 110.
If the card reader is in state 001 when an SIO
instruction is executed, the reader advances
to state 111, and the input operation conti nues
as normal. Should the hopper subsequently be­
come empty (or should the operator press the
card reader STOP switch) and command chain­
ing is being used to read a number of cards,
the reader would go to state 110 until the
operator corrected the situation.

Device Unusual End occurred during last
operation. If this bit is 1, the reason for the
indication is an error or a "fault" condition.
For a fault condition, the device has halted at
other than its normal stopping point. In either

Bit
Position

5,6

7

8

9

10

11

12

13

case, the device will not automatically re­
quest further action from its device controller.
The specific details of this indication are a
function of the particu lar devi ce (see the ap­
plicable peripheral device reference manual).

Device Controller Condition. If bits 5 and 6
are 00 (device controller IIready"), all device
controller conditions required for its proper
operation are satisfied. If bits 5 and 6 are 01
(device controller "not operational"), some
condition has developed that does not allow it
to operate properly. In either case, operator
intervention is usually required. If bits 5 and 6
are 10 (device controller "unavailable"), the
device controller is currently engaged inan
operation controlled by an lOP other than the
one addressed by the I/O instruction. If bits 5
and 6 are 11 (device controller "busy"), th~
device controller has accepted a previous SIO
instruction and is currently engaged in per­
forming an operation for the addressed lOP.

Unassigned.

Incorrect Length. This bit is set to 1, if incor­
rect length is signaled by the device controller
to the lOP during the previous operation. In­
correct length is caused by a channel end (or
end of record) condi ti on occurri ng before the
device controller has received a "count done"
signal from the lOP, or is caused by the device
controller receiving a count done signal before
channel end (or end-of-record), e. g., count
done before 80 columns have been read from a
card.

Transmission Data Error. This bit is set to 1
if the device controller or lOP detects a
parity error or data overrun in the trans­
mitted information.

Transmission Memory Error. This bit is set to 1
if a memory parity error is detected during a
data input/output operation.

Memory Address Error. This bit is set to 1 if a
nonexistent memory address is detected during
a chaining operation or a data input/output
operation.

lOP Memory Error. This bit is set to 1 if the
lOP detects a memory parity error while fetch­
i ng a command.

lOP Control Error. This bit is set to 1 if the
lOP detects two successive Transfer in Channel
commands.

Input/Output Instructi-ons 93

· Bit
,Position

14

15

16-31

TID

Function

lOP Halt. This bit is set to 1 if the lOP has
issued a halt order to the addressed I/O device
because of an error condition. Error conditions
that may cause an lOP halt are as follows:

1. A bus check fau It detected during a chain­
ing operation or during a data out oper­
ation and the HTE flag is true.

2. A control check fault detected during a
chaining, data out, data in, or order in
operation.

3. An incorrect length condition detected
and the HTE flag is true and SIL flag is
false.

4. A transmission data error or transmission
memory error condition is detected and
the HTE flag is true.

5. A memory address error, 10 P memory error,
or lOP control error is detected.

lOP Busy. This bit is always set to O.

Byte Count. Contain the byte count currently
stored in the 10 P.

TEST INPUT/OUTPUT
(Word index alignment, privileged)

TEST INPUT/OUTPUT is used to make an inquiry on the
status of data transmission. The operation of the selected
lOP, device controller, and device are not affected, and
no operations are initiated- or terminated by this instruction.
The responses to no provide the program with the informa­
tion nece~sary to determine the current status of the device,
device controller, and lOP, the number of bytes remaining
to be transmitted in the operation, and the present point at
which the lOP is operating in the command list. If the
R field of the no instruction is 0, or if no I/O·address
recognition exists, or if the device is attached to a "busy"
HSRIOP, no general registers are affected, but the condi­
tion code is set. If the R field of no is an odd value, the
condition code is set and the I/O status and byte count are
loaded into register R as follows:

The status information has the same interpretation as the
status information returned for the instruction 510 and
shows the I/O status at the time of sampling.

94 Input/Output Instructions

The count information s. the number of bytes remain ing
to be transmitted at the t e of sampling. If the R field of
the no instruction is an even value and not 0, the condi­
tion code is set, register R+l is loaded as shown above, and
register R is loaded as follows:

Subchanne 1-
status

Current command
doubleword address

The current command doubleword address has the same in­
terpretation as for the instruction SIO.

,
Affected: (R), (Rul), CC1, CC2, CC3

The meaning of the condition code during a no is:

2 3 4 Result, of no

o 0 0 - I/O address recognized and acceptable SIO
is currently possible.

o 0 I/O address recognized and acceptable 510
is currently possible; however, status informa­
tion in the general registers is incorrect.

o 0 - I/O address recognized but acceptable SIO
is hot currently possible because device con­
troller or device is busy.

o I/O address recognized but acceptable 510
is not currently possible because device con­
trol/er or devi ce is busy. Status information
in general registers is incorrect.

o 0 - I/O address recognized but device controller
is attached to a busy hi gh-speed RIO P or an
MIO P operating in the "burst" mode. No'
status information is returned to general
registers.

o Reserved.

o I/O address not recognized and no status in­
formation is returned to genera I registers.

I/O address not recognized and no status in­
formation is returned to general registers be­
cause a memory parity error or a bus check
fault occurred when the lOP read the CPU/
lOP communication locations in main memory
or a memory parity error was detected when
writing into the communication locations.

TDV TEST DEVICE •
(Word index alignment, Ivileged)

TEST DEVICE is used to provide information about a device
other than that obtainable by means of the TIO instruction.
The operation of the selected lOP, device controller, and
device are not affected, and no operations are initiated or
terminated. The responses to TDV provide the program with
information giving details on the condition of the selected
device, the number of bytes remaining to be transmitted in
the current operation, and the present point at which the
lOP is operating in the command list. If the R field of the
TDV instruction is 0 or if no I/O address recognition exists,
or if the device is attached to a "busy" HSRIOP, the con­
dition code is set, but no general registers are affected. If
the R field of TDV is an odd value, the condition code is
set and tt,e device status and byte count are loaded into
register R as follows:

I St~tus I Byte ~ount I
o 1 2 31456 789 10 nl12 13 14 1516 17 IS 191202122232425262712829 30 31

Status Response Bits (see Table 13):

Bit
Position Function

o

1-7

8-15

Data Overrun. This bit is set to 1 if a data over­
run has occurred in the current I/O operation.
A data overrun is a situation wherein the device
controller is ready to transmit data to the lOP
but the lOP has not received the previous data,
or the device controller requires data but cannot
obtain it from the lOP. In either case, the condi i

tion is caused by an equipment malfunction or by
the total I/O data rate exceeding system limits.

Unique to the device.

Same as for bits 8-15 of the status information
for instruction 510.

The count information shows the number of bytes remaining
to be transmitted in the current operation at the time of the
TDV instruction. If the value of the R field of TDV is an
even value and" riot 0, the condition code is set, reg­
ister R+ 1 is loaded as shown above, and register R is
loaded as follows:

Subchannel
status

...

The current command doubleword address has the same
interpretation as for the instruction 510.

Affected: (R),(Ru1),CC1,CC2,CC3

.,f~
The meanin.e condition code during a TDV is:

2 3 4 Result of TDV

000

o 0

o 0

o

o 0

o

I/O address recognized, no deviee­
dependent condition present, and status in­
formation in general registers is correct.

I/O address recognized and no device­
dependent condition present; however, status
information in general register is incorrect.

I/O address recognized and device-dependent
condition is present.

I/O address recognized and device-dependent
condition is present but status information in
the general register is incorrect.

I/O address recognized but device controller
is attached to a busy high-speed RIOP or an
MIOPoperating in the "burst" mode. No status
information is returned to general registers".

Reserved.

- --r--o--:.----I/O address not recognized and no status in­
formation is returned to the general registers.

HIO

I/O address not rec~gnized and no status in­
formation is returned to the general registers
because a memory parity error or a bus check
fault occurred when the lOP read the CPU/lOP
communication locations in main memory or a
parity error was detected when writing into
the communication locations.

HALT INPUT/OUTPUT
(Word index alignment,t privileged)

HALT INPUT/OUTPUT causes the addressed device to im­
mediately halt its current operation (perhaps improperly,
in the case of magnetic tape units, when the device is
forced to stop at other than an interrecord gap). If the
device is in an interrupt-pending condition, the condition

" is cleared.

tWhen indexing operation code 4F instructions (HIO, RIO,
PO LP, PO LR), the programmer must make certain that the
summation of the contents of the index register and the I/O
address (bits 19-31 of the instruction word) does not affect
bits 15-17 of the final effective address. When indirect
addressing is used, the contents of the indirect address
location (bits 15, 16, and 17) must specify the desired
operation code extension.

Input/Output Instructions 95

If the R field of the HIO instruction isAr if no I/O
addres~ recognition exists, no genera I regiWs are affected,
but the condition code is set. If the R field is an odd value,
the condition code is set and the following information is
loaded into register R.

The status information returned for HIO has the same inter-
'pretation as that returned for the instruction SIO and shows
the I/O status at the time of the halt. The count informa­
tion shows the number of bytes remaining to be transmitted
at the time of the holt. If the R of HIO is an even
value and not 0, the condition code is set, register R + 1 is
loaded as shown above, and register R contains the follow­
ing information:

Subchannel
status

The current command doubleword address has the same in­
terpretation as that for the instruction SIO.

The HIO instruction must have zeros in bit positions 15, 16,
and] 7 to differentiate it from the RIO, PO lP, and PO lR
instructions, which a Iso have X'4F' as an operation code
(bits 1-7).

Affected: (R), (Ru 1), CC 1 , CC2, CC3

The meaning of the condition code during an HIO instruc­
tion is:

2 3 4 Result of HIO

o 0 0 - I/O address recognized, device controller
not busy and status information in general
reg i sters is corre ct .

o 0 I/O address recognized, device controller
not busy but status i Mormati on in genera I
registers is incorrect.

o

o

o - I/O address recognized but device controller
was busy at the time of the HIO.

I/O address recognized but device controller
was busy at the time of the HIO and the
status information in the genera I registers is
incorrect.

o 0 - I/O address recogn ized but device controller
.is attached to a busy high-speed RIOP or an
MIOP operating in the "burst" mode. No sta­
tus information is returned to general registers.

96 Input/Output Instructions

2 3 4 Result o.1:.cP

o 1 Reserved

o I/O address not recognized.

I/O address not recognized; instruction ter­
minated because a memory parity error or a
bus check fault was detected when reading
CPU/IOP communication locations in main
memory or a memory pari ty error was de­
tected when writing into the communication
locations.

RIO RESET INPUT/OUTPUT
(Word index alignment,t privileged)

RESET INPUT/OUTPUT causes the selected lOP to generate
an I/O reset signal to all devices attached to it. In addi­
tion to the operation code of X'4F', bits 15, 16, and 17
must be coded as 001, respectively.

An RIO instruction resets the selected lOP in the same man­
ner as the I/O RESET switch on the Processor Control Panel
(PCP). However, unlike the switch, the RIO instruction
resets only the addressed lOP and may be controlled by the
executing program.

Processor addresses (bits 19-23) having values of X'lC',
X'lD', X'lE', and X'lF' are reserved for CPUs in a multi­
processor system. Addresses between X'OO' to X'l C' may
be assigned to other processors in the system. An RIO in­
structiol) addressed to a CPU is used to reset that CPU only
in a special case. This special case is the result of a
double fault (described in the "Trap System~', Chapter 2).
When the double faul t occurs, the CPU raises the Processor
Fault Interrupt (PFI), loads the error status register, and
goes to a PCP idl e state. The CPU that responds to the
PFI will use the POLP or POLR instruction to determine the
source of the PFI. The error status may be logged (as pro­
grammed). The responding CPU may then issue an RIO in­
str\Jction to the "faulted" CPU, which resets and forces
execution to start at location X'26 1

•

Status information is returned only in the condition code
bits.

Affected: CC1, CC2, CC3.

2 3 4 Resu I t of RIO

o 0 0 I/O address recogni zed.

1 0 - I/O address not recogni zed.

POLP POLL PROCESSOR
(Word index alignment,t privileged)

t See footnote to HIO instruction.

POLL PROCESSOR causes the ad~d processor to return
processor fault status in bits 24 to'" of register R. This
status information is processor dependent; as follows:

. Bit
Fault Status

Position CPU MIOP HSRIOP

24 Instruction Reserved Reserved
exception trap

25 Data bus Data bus Data bus
check check check

26 Memory Control Reserved
parity error check

27 Watchdog Reserved Reserved
timer runout

28 Reserved Reserved Reserved

29 Reserved Reserved Reserved

In addition to the operation code of X'4F ' , bits 15, 16,
and 17 must be coded as 010, respectively.

Affected: (R), CC1, CC2, CC3

Condition code settings are as shown below:

2 3 4 Result of PO LP

o 0 0 - Processor fault interrupt not pending.

o o

o

POLR

Processor fault interrupt pending.

Processor address not recognized.

POLL AND RESET PROCESSOR
(Word index alignment,t privileged)

POLL AND RESET PROCESSOR causes the selected pro­
cessor to return processor fau It status in bits 24 to 29 of
register R. This status information is processor dependent,
as follows:

Bit
Fau It Status

Position CPU MIOP HSRIOP

24 Instruction Reserved Reserved
exception trap

25 Data bus Data bus Data bus
check check check

t
See footnote to HIO instruction

Bit • Fault Status

Position CPU MIOP HSRIOP

26 Memory i
Control check Reserved

parity error

27 Watchdog Reserved Reserved
timer runout

28 Reserved Reserved Reserved

29 Reserved Reserved Reserved

The PO LR also resets and clears the Processor Fault Interrupt
signal and the error status register. In addition to the oper­
ation code of X'4F ' , bits 15, 16, and 17 must be coded
as 011, respective Iy.

Affected: (R), CC1, CC2, CC3

Condition code settings for the PO LR instructions are:

2 3 4 Result of PO LR

000 Processor fault interrupt not pending.

o

AIO

o - Processor fault interrupt pending.

o Processor address not recognized.

ACKNOWLEDGE INPUT/OUTPUT INTERRUPT
(Word index alignment, privileged)

ACKNOWLEDGE INPUT/OUTPUT INTERRUPT is used to
acknowledge an input/output interrupt and to identify the
I/O unit that is causing the interrupt and why. If more
than one device has an interrupt pending, the highest
priority requesting device wi" respond to the AIO.
Bits 19-23 of the effective address of the AIO instruction
(the processor portion of the I/O address field) specify the
type of interrupt being acknowledged. These bits should be
coded 00000 to specify the standard I/O system interrupt
acknowledgment (other codings of the bits are reserved ror
use with special I/O systems). The remainderof the I/O
selection code field (bit positions 24-31} ore not used in the
standard I/O interrupt acknowledgment because the identi­
fication of the interrupt source is one of the responses of
the standard I/O system to the AIO instruction.

Input/Output Instructi'ons 97

Standard I/O system interrupts can be eated for the
following conditions:

Condition

Zero byte count

Channel end

Transmission memory
error

Incorrect length

Memory address error,
10 P memory error, or
lOP control error

Transmission data error

Device unusual end

lOP halt

Interrupt
t

Prerequisite

IZC = 1

ICE = 1

IUE = 1, HTE = 1

IUE = 1, HTE = 1
and SIL = 0

IUE = 1

IUE=l, HTE=]

IUE = 1

IUE = 1

Status'
Bit Set

10

11

.12

8, 12

12

9, 12

12

12

When a device interrupt condition occurs, the lOP forwards
'the request to the CPU interrupt system I/O interrupt level.
If this interrupt level is armed, enabled, and not inhibited,
the CPU eventually acknowledges the interrupt request and
executes the XPSD instruction in main memory location
X15C', which leads to the execution of an AIO instruction.

For the purpose of acknowledging standard I/O interrupts,
the lOPs, device controllers, and devices are connected in
a preestablished priority sequence that is customer-assigned
and is independent of the physical locations of the portions
of the I/O system in a particular installation.

If the R field of the AIO instruction is 0 or if no device in­
terrupt request is present, the condition code is set but the
general register is not affected. If the R field of AIO is
not 0, the condition code is set and register R is loaded
with the following information:

t
IZC, ICE, IUE, HTE, and SIL refer to flag bits in the

lOP command doublewords (see Chapter 4).

98 Input/Output Instructions

Status Response Bits (_able 12):

Bit
P~sition Function

0-7 These bits are unique to the device.

8 Incorrect Length. As defined for SIO, above.

9

10

11

12

13-18

19-23

24-31

Transmission Data Error. As defined for SIO,
above.

Zero Byte Count Interrupt. This bit is sot to 1
if the interrupt on zero byte count flag is 1 and
zero byte count is detected.

Channel End Interrupt. This bit is set to 1 if the
interrupt at channel end flag is 1 and channel
end is reported by the device to the lOP.

Unusual End Interrupt. This bit is set to 1 if the
interrupt at unusual end flag is 1 and unusual
end is reported by the device to the lOP, or if
lOP halt is signaled to the device controller by
the lOP.

Unassigned. These bits are set to O.

Processor Address. Contain the address of the
respond i ng processor.

Device Controller/Device Address. Contai n
the address of the responding device controller.
If bit 24 is 0, bits 25-31 constitute a common
device controller and device code; if bit 24 is 1,
bits 25-27 constitute a device controller code
and bits 28-31 identify a device attached to
that device controller.

The AIO i nstructi on resets the interrupt request si gna I for
the I/O device respond i ng to the Ala (i. e., the device
identified by bits 19-31 of R).

Affected: (R), CC1, CC2, CC3

Condition code setting for AIO are shown below.

2 3 4 Result of Ala

o 0 0 - Normal interrupt recognized.

o 0 Normal interrupt recognized but a memory
parity error also detected in the status
information.

o 0 - Unusual condition interrupt recognized.

o 1· Unusual condition interrupt recognized and
a parity error was detected in the status
information.

o - No I/O device requesting an interrupt.

4. I~~PUT jOUTPUT OPERATI.

In a SIGMA 8 system, input/output operations are primari Iy
under control of one or more input/output processors (lOPs).
This allows the CPU to concentrate on program execution,
free from the time-consuming details of I/O operations.
Any I/O event that requires CPU intervention is brought to
its attention by means of the interrupt system (see Chapter 2).
For a detailed description of SIGMA 8 I/O instructions, see
Chapter 3.

In the following discussion, the terminology conventions
used are: The CPU executes instructions, the JOP exe­
cutes commar1ds, and the device controllers and 1/0
devices execute orders. To ill ustrate, the CPU wi II exe­
cute the START INPUT/OUTPUT (SIO) instruction to initi­
ate an I/O operation. During the course of an I/O
operation, the lOP might issue a command called Control,
to transmit a byte to a device controller or I/O device that
interprets the byte as an order, such as Rewind.

Each SIGMA 8 lOP operates independently after being
started by a CPU. An lOP automatically picks up a chain
of one or more commands from memory and executes these
commands until the chain is completed or truncated as the
result of an lIunusual end II condition.

A multiplexor lOP can simultaneously operate up to 32
device controll ers using both Channels A and B. Each
device controller is assigned its own subchannel and chain
of I/O commands. A high-speed RAD lOP (HSRIOP) can
communicate with up to four Model 7212 RAD storage units.
However, due to its high transfer rate capability, the
HSRIOP remains connected until termination of the data
in/data out sequence.

The flexible SIGMA 8 I/O structure permits both c9mmand
chaining (making possible multiple-record operations) and
data chaining (making possible scatter-read and gather­
write operations) without intervening CPU control. Com­
mand chaining refers to the execution of a sequence of I/O
commands, under control of an lOP, on more than one
physical record. Thus, a new command must be issued for
each physical record even if the operation to be performed
for a record is the same as that performed for the previous
record. Data chaining refers to the execution of a sequence
of I/O commands, under control of an lOP, that gather (or
scatter) information within one physical record from (or to)
more than one region of memory. Thus, ci new command
must be issued for each portion of a physical record when
the data associated with that physical record appears (or is
to appear) in noncontiguous locations in memory. For
example, if information in specific columns of two cards in
a file are to be stored in specific regions of memory, the
I/O command list might appear as follows:

1. . Read card, store columns 1-10, data chain.

2. Store columns 11-60, data chain.

3. Store col umns 61-80, command chain.

4. Read card, store columns 1-40, data chain.

5. Store columns 41-80.

The SIGMA 8 CPU plays a minor role in the execution of
an I/O operation. The CPU-executed program is respon­
sibl e for creating and storing the command I ist (prepared
prior to the initiation of any I/O operation) and for
supplying the lOP with a pointer to the fi rst command in
the I/O command list. Most of the communication between
the CPU and the I/O system is carried out through memory.

The following is an example of the sequence of events that
occurs during an I/O operation:

1. A CPU-executed program writes a sequence of I/O
commands (doublewords) in memory.

2. The CPU executes the START IN PUT/OUTPUT (510)
instruction and furnishes the lOP with a 13-bit I/O
address (designating the device to be started) and a
16-bit first command address (designating the actual
memory doubleword location where the first command
for this device is located). At this point, either the
device is started (if in the " ready ll condition with no
device interrupt pending) oran instruction reject occurs.
The CPU is informed by condition code settings which
of the two alternatives has occurred. If the 510
instruction is accepted, the command counter portion
of the lOP register associated with the designated
device controller is loaded with the first command
address. From this time until the full sequence of I/O
commands has been executed, the main program of the
CPU need play no role in the I/O operation. At any
time, however, the CPU may obtain status information
on the progress of the I/O operation without interfering
with it.

3. The device is now in the IIbusyll condition. When the
device determines that it has the highest priority for
access to the lOP, it requests service from the lOP
with a service call. The lOP obtains the address of
the first command doubleword of the I/O sequence
(from the command counter associated with this
device). The lOP then fetches the I/O command dou­
bleword from memory, loads the doubleword into another
register associated with the device, and transmits the
first order (extracted from the command doubleword)
to it.

4. Each command counter contains the memory address of
the current I/O command in the sequence for its
device. When the device requires further servicing,
it makes a request to the lOP, which then repeats a
process simi lar to that of step 3.

5. If a data transmission order has been sent to a device,
control of the transmission resides in it. As each char­
acter is obtained by the I/Odevice, the lOP is signaled

Input/Output Operations 99

that data is available. The lOP usA information
stored in its own registers to controlYinformation
interchange between the I/O device and the memory,
on either a word-by-word or character-by-character
basis, depending on the nature of the device.

6. When all information exchanges called for by a single
I/O command doubleword have been completed, the
lOP uses the command counter to obtain the next com­
mand doubleword for execution. This process continues
until all such command doublewords associated with the
I/O sequence have been executed.

OPERA TUn:Al COrjr~1A~JD DOUBlE\"JORDS

Operational command doublewords have the following
format:

ORDER

Bit positions 0 through 7 of the command doubleword con­
tain the I/O order for the device controller or device. The
I/O orders are shown belowt . Bits represented by the letter
"Mil specify orders or special conditions to the device and
are unique for each type of device.

Bit positions
0 1 2 3

M M M M

M M M M

M M M M

M M M M

M M M M

4

M

M

M

0

5

M

M

M

6

o

o
o

7 Order

1 Write

0 Read

1 Control

0 Sense

0 Read Backward

Write. The Write order causes certain device controllers
to initiate an output operation. Bytes are read in ascending
sequence from the memory location specified by the memory
byte address field of the command doubleword. The output
operation continues until the device signals IIchannel end",
or unti I the byte count is reduced to 0 and no further data'
chaining is specified. Channel end occurs when the device
has received all information associated with the output
operation, completed all checks, and no longer requires the
use of lOP faci I ities for the operation. Data chaining is
described later in this chapter.

tNot all I/O devices recognize all the orders shown. See
the particular XDS SIGMA peripheral device reference
manual for orders appl icable to that device.

100 Operational Command Doublewords

Read. -The Read ordeeses certain device controllers to
initiate an input operatron. Bytes are stored in memory in
ascending sequence, beginning at the location specified by .
the memory byte address fi eld of the command doubl eword.
The input operation continues until the device signals chan­
nel end, or until the byte count is reduced to 0 and no data
chaining is specified. Channel end occurs when the de"i ce
has transmitted all information associated with the input
operation and no longer requires the use of JOP facilities
for the operation.

Control. The Control order is used to initiate special oper­
ations by certain devices. For magnetic tape, it is used to
issue orders such as Rewind, Backspace Record, Backspace
File, etc. Most orders can be specified by the M bits or
the Control order; however, if additional information is
required for a particular operation (e. g., the starting address
of a disk seek), the memory byte address field of the com­
mand doubleword specifies the starting address of the bytes
that are to be transmitted to the device controller for the
additional information. When all bytes necessary for the
operation have been transmitted, the device controller sig­
nals channel end.

Sense. The Sense order causes certain devices to transmit
one or more bytes of information, describing its current
state. The bytes are stored in memory in ascending sequence,
beginning with the address specified by the memory byte
address field of the command doubleword. The number of
bytes transmitted is a function of the device and the condi­
tion it describes. The Sense order can be used to obtain the
cu(rent sector address from a disk or RAD storage unit.

Read Backward. The Read Backward order causes certain
devi ces (at present, 9-track magneti c tape un its) to be
started in reverse, and bytes to be transmitted to the JOP
for storage into memory in descending sequence, beginning
at the location specified by the memory byte address field
of the command doubl eword. In all other respects, Read
Backward is identical to Read, including reducing the byte
count with each byte transmitted.

MEMORY BYTE ADDRESS

For all operational I/O command doublewords, bit positions
13-31 of the doubleword provide a 19-bit memory byte
address, designating the memory location for the next byte
of data. For all orders other than Read Backward, this field
(o;s stored in an JOP register) is incremented by 1 as each
byte is transmitted in the I/O operation; for the Read Back­
ward order, the field is decremented by 1 as each byte is
transmitted.

FLAGS

For all operational I/O command doublewords, bit positions
32-39 of the doubleword provide the lOP with eight flags
that specify how to handle chaining, error, and interrupt
situations.

Tj'l~ thr<.'!~ fl""'::Js (lze, ICE, and.) p..::rtaining to lOP
i::7l:!ri-Upr ,::ctivn cO:itrol wh2the. lOP wi!! reque:;T an

1./0 i;lt~;rupt :-0 J..; ~riS0crcd when a sp'ccified condition
0C'::UiS .:lL'rin9 an 1./0 0;)';;0;-;on. These flags do n6t affecT

.he i/O intcr;-Jpr l~v(;:$. furthermorc, in ordei f~r the flass
to b~ cffcc;;v~, ti,.:: I/O :n;-crrupt lovel (X I 5C') must first

be p:ac~o in r:.c dc;); red stat;:; (i.~., onT.cd and c:1obkd)
vic int(;i-rui)~ write con:-rol instructi,ons (mode 1).

Th~ functio;1S of \-hc cight flags arc explained below.

~j~

Position ::~,;-.(:;-io:l

32 (DC) DGre cr.cin. If this flao is 1/ CC;;'C chaining ;s
cQll:Jf"r wh~i1 the curront byrQ ,ount ;~
reduced to O. The nex!- command coubl eword is
fetched one loaded in~o the lOP reoisicr asso­
cicted wii-h the device controller, but the new
o:-dcr code is not passed out to the device con­
!".-vlleri thus, the operation ca!led for by the
previous order is continued. (Except for Trc:1sfcr
in Channel com:;1and doubiewords, which or.:;;

explainec larcr in this chcpter, the new cO";1r.":end
C:ou::'leword j:; used only to supply a new m~mczy
address, C nt;W count, and r.ew flegs.) If the
cc~-:: chain flag is 0, no further ca:-a chaining is

~a:J~d ~or. Ch~nne! end i.s ini-rict~d eith~r b~
:-,,0 cevl ce running out of Information, or by tne

byte cou:,:: being reduced to O. At channel end,
~he device moy accept a new 510 instructivn,
provided tnar a device inl'erriJpi" is not pending
a:".d no "faultll condil'ion exists.

33 (IZC) Ir.-;-errL.:pt ct zero byre couni'. If this flag is 1,
;-h.: IO? reques'~s the I/O interrupi' (loca~ion
X '5C) to 6e triggered when the byte count of

this command doubleword (as stored in the lOP
resister) is reduced to, O. An AlO ins'rrucrion
executed after the interrupt is acknowledged
results in a 1 in bit position 10 or register R.
(sTetus inrorr.&ation) to indi cate the reason for

the interrupt.

34 (CC) Co;,,,,:rnand chain. If this flag is i, command

cha:ni"g is called for when channel end occurs.
I: ~-~;e previous o?erar:on did nOT tcr:niliote with
c "raulr" or "unusual end" condition, the nexl­
commend doubleword is fC:Tched and loaded :ni'o
i-:',~ lOP register associat.::c wah the device con­

:":oller, and the new order code is passed out \'0

;~o device coni'rolier. If th.::: CC flag is 0, no
furthci co:nrr.and chaining is celled for. If both
60:-0 end command chaining are cal led for in i'he

:;Oi.1C commend doubleword, cota chaining occurs
if the bIte count is reduced to 0 berore channel
end, cr,d command chaining occurs if channel
c:-.d occurs before i'he byte count is reduced to O.

35 eeE) l!,_~-~:rnJPt 01- channel end. If this flag is 1, the

:O? rcc:u(;srs the I/O ini'crrupt (location X'5C 1
)

to Se rrisaered when channel end occurs for the

cp(;rction being control led by th:s command

Bit
Posil'ion

35 (lCE)
(cont.) the interrupt i5 C,.iC;{n('/"l/~(.;~2c~ ;::"':~:';~7~ 1:"; C 1 in

bit po:;it!on 11 of ~·::9I:.,~·;..;r R (~~.~~ . .): ir;;-G:rr,6rio:1;

to indicat.; Tn..;;: rCO:;0:1 Fe: the: :;.;L:ru:~;. If the
ICE flog is 0, no in;crrup~ is rc.:c:'Jt.:.;e:6.

36 (HTE) l-iall- en ~rcn:;;-.'1l~:o:,,; ur~ r.: ~:-i;:' f;cS i:. 1, cr'l
error condition C4ssocic.;;·c.:J '1':~~~ (..!.:-~~.(.; ;:-c..;,:r;,j::i~r.

(j-rummission cata cr.-or, trors;;::;:.i("1 r:,cffir"rl
error, inco:rccl- knS::' e:rror~ c.!:;;t(~c:-r:;c1 ir. Tt.(;

.:i..::vicc C(H){iOikr or ~G? r(;;:.l,J;:'~. in ;/.;:;r':'j r;'.;;;

1/0 opcrtil';bfl being tbhdblit;(.J WI j-rl;:' tbti'_;"~;(.;f.d
doubleword. If l-he HIE flc~) ;:. 0, en e;.'o; c.on­

dition dOGS not cause th0 I/O operation to halt,
although the error conditions orc record(;d in the
lOP register and returned C$ port of ~he stctu;;.
information for the inscructions SIO, HIO, and

TIO.

37 (rUE)

The HTE flag must be coded idcn:-icclly in cvery
command doubl eword a:;$ociared wi;-h the same

physicel record. This means that when dora

chaining occurs, the HiE fiog in the ne ' lOP
commend doubleword must be the sarne as the
HTE flag in the previous lOP CO:-;ir,".end doub!e­

word. This restridion ep?/ies TO cot.::: chaining

oniy, and not to command chaining.
j\

V
Interrupj- on unusual end. If this flcg is 1, the
device coni-roiier requests the 1/0 intc:rv?i"
(location X I 5C') to be triggered wh~;,; a '·l-at.;! ~II

condition or unusual terr.linar:on is er.coLir.:-cied.
A faull, :s a condition rec;uiring the device to

hah\ irrespective of ;-he codir.g of ~he l-:TE flag.
Exam?l es of reul ts a ie torn magneri c tape end
jammed ccrds. When unusual terminction is
de)'eded by the device or iO?, Turi-!;..;;:: seivicing
of the commands for that device is susp;.:ndcd.
An AlO instrucj'ion executed a-trcr th~ i :i;-<s:;,ru?~'
is acknowledged results in a '! in b:;- ;:::.osi;-icn 12
of register R (stel'us inrormat'ion) ~:. ;;;:licote :-ne
reason for the ~nterrupt. If t:-;..:: lUt fiaS ;s 0, ~o

interrupt is requested.

38 (SIL) Suppress incorrect !enst!... If rn!S flc.:g is 1, en
incorrect length incicarion b)' -:-~.3 device cor.­
t;-o!leris not to be classified'::5 (;;"1 e:-:-or by tho;;
IOP, ali-hough the lOP .-e;cir;:; :'~;':; !n.::orrcc;
length indication ane prc,v:c€:s O:"l indicai'o:- (air 8
cf register ;{ul, the ::tcrus re';i)onse ror S}O, ~:IO,
Alai and nO) to the progi.:: ;. :f the S~l ficg
is 0, an incorrect !(;not!; is co,;si,:krec en error
and !-he lOP performs as spec;;;,].:! by the HiE
and !UE negs. Incerrec: l.:;n0:i~ is CCiJSCa by a
"channel end ll condition occurrins before i'he
device controiler hes ro;;ceive': a IIcouni" .:lone"

Bit
Position

38 (SIL)
(cont.)

39 (S)

Function

signal from the lOP, or is caused by the device
controller receiving a count done signal before
end 'of record, e. g., count done before 80 col­
umns have been read from a card. Normally, a
count done signal is sent to the device control­
ler by the lOP to indicate that all data transfer
associated with the current operation has been
completed. The lOP is capable of suppressing
an error condition on incorrect length, since
there are many situations in which incorrect
length is a legitimate condition and not a true
error.

Skip. If this flag is 1, the input operation (Reed
or Read Backward) controlled by this command
doubleword continues normally, except that no
information is stored in memory. When used in
conjunction with data chaining, the skip opera­
tion provides the capability for selective reading
of portions of a record.

If the S flag is 1 for an output (Write) operation,
the lOP does not access memory, but transmits
zeros as data instead (i. e., the lOP transmits
the number of X'OO' bytes specified in the byte
count of the command doubleword). This allows
a program to punch a blank card (by using the
S bit and a Punch Binary order with a byte count
of 120) without requiring memory access for
data. If the S flag is 0, the I/O operation
proceeds normally.

BYTE COUNT

Forall operational I/O command doublewords, bit positions
48-63 of the doubleword provide for a 16-bit count of the
number of bytes to be transmitted in the I/O operation;

. thus, 1 to 65,536 bytes (16,384 words) can be specified
for transfer before command or data chaining is required.
This field (as stored in an lOP register) is decremented by
1 after each byte is transmitted in the I/O operation; thus,
it always contains a count of the number of bytes to be
transmitted and this count is returned as part of the response
info'rmation for the instructions, SIO, HIO, TIO, and
TOV. An initial byte count of 0 is interpreted as 65,536
bytes.

CONTROL COMMAND DOUBLEWORDS

In addition to the operational comJ:Tland doubleword, there
are two control command doublewords with different formats
that provide control information for the lOP.

102 Control Command Ooublewords

The Transfer in Ch. command doubleword has the
following format:

Transfer in Channel. The Transfer in Channel command is
executed within the lOP and has no direct effect on any of
the I/O system elements external to the addressed lOP. The
primary purpose of this command is to permit branching
within the command list so that the lOP can, for exomple,
repeatedly transmit the same set of information a number of
times. When the lOP execute, the Transfer in Channa I
command, it loads the command counter for the device
cpntroller it is currently servicing with the next command
address field of the Transfer in Channel command, loads
the new command doubleword specified by this address into
the 10.P registers associated with the device controller, and
then executes the new command. (Bit positions 0-3, 8-15,
and 32-63 of the command doubleword for Transfer in Chan­
nel are ignored.) Transfer in Channel thus allows a com­
mand I ist to be broken into noncontiguous groups of
commands. When used in conjunction with command chain­
ing, Transfer in Channel facilitates the control of devices
such as unbuffered card punches or unbuffered line printers.
The current flags are not altered during this command; thus,
the type of chaining called for in the previous command
doubleword is retained until changed by a command double­
word following Transfer in Channel.

For example, assume that it is desired to present the same
card image twelve times to an unbuffered card punch. The
punch counts the number of times that a record is presented
to it and, when twel ve rows have been punched, causes
the lOP to skip the command it would be executing next.
Thus, a comma'nd list for punching two cards might look
I ike the following example:

Location

A

B

Command

Punch row for card 1, command chain.

Transfer in Channel to A.

Punch row for card 2, command chain.

Transfer in Channel to B.

Stop.

The Transfer in Channel command also can be used in con­
junction with data chaining. As one example, consider a
situation often encountered in data acquisition appl ications,
where data is transmitted in extremely long, continuous
streams. In this case, the data can be stored altemately in
two or more buffer storage areas so that computer processi n9

can be carried out on the data, buffer while additional
data is being input into the oth ffer. The command list
for such an application might ook like the following ,
example:

location

A

Command

Read data, store into buffer 1, data chain.

Store into buffer 2, data chain.

Transfer in Channel to A.

If the lOP encounters two successive Transfer in Channel
commands, this is considered an lOP control error, resulting
in the lOP setting the lOP control error status bit (bit 13
of register Rul) and issuing an "IOP Halt" signal to the
device controller. The lOP then halts further servicing of
this command list.

doubleword has the following formats:

Stop. The Stop command causes certain devices to stop,
generate a "channel end" condition, and also request the
I/O interrupt (location XI5CI) to be triggered if bit 0 in
the Stop command is a 1. An AIO instruction executed
afterthe interrupt is acknowledged results ina 1 in bit posi­
tion7 of register R (status information) to indic;ate the rea­
son for the interrupt. (Bit positions 32-39 of.the commond
doubleword for Stop must be zero; bit positions 8-31 and

. 40-63 are ignored). The Stop command is primarily used
to terminate a command chain for an unbuffered device,
as illustrated in the first example given for the Transfer in
Channel command.

Control Command Doublewords 103

5. OPERATOR CONTROLS

PROCESSOR CONTROL PANEL
The SIGMA 8 processor control panel (PCP) is shown in
Figure 8. The controls and indicators are divided into two
sections. The upper section, which is labeled MAINTE­
NANCE SECTION, contains most of the controls and indi­
cators used by maintenance personnel. The DISPLAY
FORMAT indicator and FORMAT SEL switch located in the
lower section are also primarily used by maintenance per­
sonnel. All other controls and indicators located in the
lower section of the PCP are normally used by operating
perJol1nol to I C)od, iX~ClJti# Clnd ffOublo§hoot progfClmi.

either to the LOCAL NORM position for normal operations or
to the LOC MAI.NT position for maintenance operations. The
EXT CONT position is reserved for future use. Hereafter,
this switch will be referred to as the Control Mode switch.

CONTROL MODE

When the Control Mode switch is in the LOCAL MAINT
position, all switches on the control panel are enabled.
When the Contr<~1 Mode §witch h in thf# LOCAL. NORM
position, aH sw:tehes are enabled except the tollowing:

A three-position rotary switch, located in the upper left­
hand corner and labeled EXTCONT/LOCALNORM/LOCAL
MAINT, is a control mode selector for the PCP. It is set

1. The FORMAT SEL switch is disabled and forced to
appear in the NORMAL position, regardless of the
posi ti on _oLthe~~wHc:~ ~=

XErox Data SystEms

----------_______________ MAINTDlAllClUCTION __________________ ---

LOCAl NORM

EXT, . ': LOCAL @) ... ~:~
(ONT - " ~. ; - MAINT \,U/

ON. ;~
,~1J

411010

.----SNAP-----.

ENTEI.Q

ON. :'" o NORM. ~~

SNAP IIOOE STOP

,..----MARGlHS-----,

NOT NORM
ON

NOT NORM FAST.

o o NOAM. ~ o
SLOW.

VOLTAGE ~CLOCK~

,--"EIIORY IIOOE---,

DISAIII.E. HALT. OVERRIDE.

NORM. g 0 CONT. <) NORM.g
INTERLEAVE SEL L..PARITY ERRDR-I W.D. TillER

UNIT ADDRESS

,---------P"ASfS---------.

, PREPARATIOH-----,,-UECIITION-,J'N.T TII~;--PCP-,

10000000001100001100110001
t •• eel f'C1 .. AI '.1 ... " ••• I • , • J ,

,.---------~~------------,
STORE.

DISPLAY. e
llOOE

CLOCK MOOE

CONT.

SINGLE
Q

CLOCK'

UTOIO

WOo

0
aD.

r=::1
l::J

~r-;:--l
~~

r:=l ~ r::;l r:=l ~o"r::-l r:;l r:::I r:I
L.J L-.J L.J L.:..J TfSr~ L:.J L:.J L:::.J

'''SERT

WRITE KEY IINTRPT INHIB, ,POINTER,

i-bOll 0001"-1 ----,.----,,-----------::0::-0:-111,----,
• PSV'l2

Q r:-COHO COOE-:. r';;:O~:.:~~,' ... e?~ TRAP , IHSTRUCTIOIUOORESS i

• ..sw 1--:6 6 oOir-1 --::::o'--'::o:c-=o;:::,II'..:::-o-~c5]I,....-----'-o=->Ir::lo::--:o=-o=-=o.,lIro=-o-::::--:::o,..--::o::-llir--=-o-:::Oo--:o::-o-:=-lIr-::::lo:--:o::-o~C?1
HOT

STOP HERE
INST~. PAGE. ~ ()-.('H")-(), r;.i;-f)-n-;or;;, I

NORM.'.)WORO."-9 0 0 1 QJr~:b~~~rgy~~[9gggl~:o
MEM REF. fill ~_rn.~~ · H=_rn ·

~ I Iii i i .~, i i ii I

U j~Q=QQJlQQO~!oooolloooolloooolloooolloooollooool
FORIlAT .:GISTER 1,.0 1....2 31 4 S '. 7 I 89 10 II 1'2 13 14 15 II, 17 18 19 120 21 22 231 24 25 26 'D 1 28 29 30 31 1

.). :;= 9~'1~~~[Q.9 0 glr.~~~JIIO g g QIlO 0 g o IrJiJW[Q1)1ml1 0 0 gOI: ~
I DATA '

. Figure 8. Processor Control Panel

104 Operator Controls

r=l
~

DISPLAY

'NS'IAOOI.

"LEer MOl •
a

STOlE

INSTlAOOI •

0
SlUCTADOa.

INSTR AOOR

HOLD. 0
NOlM.

!NOM.

cOIiPun

WN. 0
lOLl.

SH'.

2. The SNAP switches are disae
3. The EXT DIO switch is disabled.

4. The CLOCK MARGINS switch is disabled and forced
to appear in the NORM position.

5. The CLOCK MODE switch is disabled and forced to
appear in the CO NT position.

6. The SCAN switches are disabled.

POWER

The POWER switch control s ac power to the central pro­
cessor and to units under its direct control. The POWER
indicator is lighted when ac power is on.

MEMORY CLEAR

The MEMORY CLEAR switch clears all CPU memory. When
this switch is pressed, the SCAN light illuminates and
remains on unti I all memory is cleared. The contents of
the general registers remain unal tered during the operation.
It is recommended that CPU RESET be pressed before using
the MEMORY CLEAR switch. Homespace bias is automati­
cally suppressed during the clear operation.

SYSRESET

The SYS RESET (system reset) switch performs the combined
functions of the CPU RESET switch and the I/O RESET switch.
The SYS RESET switch also initializes all memories con­
nected to the system. The initialization of memories does
not change the contents of any memory locations; only
memory port logic is re~et.

I/O RESET

The I/O RESET switch initializes the standard input/output
system. When the switch is pressed, al I peripheral devices
under control of the central processor are reset to the
"ready" condition, and all status, interrupt, and control
indicators in the input/output system are reset. The I/O
RESET switch does not affect the central processor.

LOAD

The LOAD switch is active onlywhen the COMPUTE switch
is in the IDLE position. When this momentary action switch
is pressed, a load program is written into memory locations
X'221 through X'2B ' for an input operation that uses the
peripheral unit selected by the UNIT ADDRESS switches.
CPU RESET or SYS RESET must be performed before using
this switch.

Detailed loading operation is described in the section
II Loading Operation ".

UNIT ADDRESS

Four UNIT ADDRESS switches select the peripheral unit to
be used in the loading process. The two switches on the
left designate an input/output processor (lOP). The left­
most switch has two positions, numbered 0 and 1. The next
switch has 16 positions, numbered hexadecimal Iy 0 through F.
The two rightmost switches each have 16 positions, num­
bered hexadecimally 0 through F, which designate the de­
vice controller/device that is under control of the selected
lOP.

SENSE

The four SENSE switches and indi cators are monitored under
program control to set the condition code position of the
program status doubleword (PSD). When a READ DIRECT
instruction is executed in the internal control mode, the
condition code is set according to the state of the four
SENSE switches. If a SENSE switch is in the set (1) position
(indicator lighted), the corresponding bit of the condition
code is set to 1; if a SENSE switch is in the reset (0) posi­
tion {indicator unlighted}, the corresponding bit of the con­
dition code is reset to O.

NOT NORMAL

The NOT NORMAL indicator informs the user that normal
program execution may be inhibited by the PCP. The NOT
NORMAL indicator is lighted when any of the following
occurs:

1. The Control Mode switch is in the LOCAL MAINT
position.

2. The INTERLEAVE SEL switch is in the DISABLE
position.

3. The CLOCK" MODE switch is in the unmarked center
position.

4. The W. D. TIMER switch is in the OVERRIDE position.

5. The PARITY ERROR switch is in the HALT position.

When the NOT NORMAL momentary action switch is
depressed, a control panel lamp test is performed. This test
turns on all indicators in the MAINTENANCE section, the
DISPLAY lights, and the STOP and NOT HERE I ights, with­
out affecting machine operation.

HALT

The HALT indicator is lighted when the CPU is in the IDLE
state.

Processor Control Parrel 105

WAIT

The WAIT indicator is lighted when any of the following
halt conditions exists:

1. The computer has executed a WAIT instruction.

2. The CPU RESET or SYS RESET switch is pressed when
the COMPUTE switch is in the IDLE position.

3. The COMPUTE switch is in the IDLE position and the
POWER switch turns power on or power is applied to
the CPU.

PSD
Portion Indicator Function

PSW2 WRITE KEY Write key status

INTRPT INHIB Interrupt inhibits status

RUN

The RUN indicator is lighted when the COMPUTE switch is
in the RUN position and no holt condition exists.

PROGRAM STATUS DOUBLEWORD

Two rows of binary indicators display the current PSD.
For convenience, the second portion of the PSD, labeled
PSW2, is arranged above the first portion, labeled PSW1.
The PS 0 display consists of the indicators shown in
Table 13.

PSD Bit PSD
Position Designation

34,35 WK

CI Counter interrupt group inhibit 37 CI

II Input/output interrupt group inhibit 38 II

EI External interrupt inhibit 39 EI

POINTER Register block pointer 58-59 RP

PSWl CON'D CODE Condition code

1 Condition code 1 0 CCl

2 Condition code 2 1 CC2

3 Condition code 3 2 CC3

4 Condition code 4 3 CC4

FLOAT MODE Floating-point mode controls

SIG Significance trap mask 5 FS

ZERO Zero trap mask 6 FZ
"-

NRMZ Norma Ii ze mask 7 FN

MODE Computer mode control

SLY Master/slave mode control 8 MS

TRAP Arithmetic trap mask ,
AR Fixed-point arithmetic overflow trap mask 11 AM

INSTRUCTION Instruction address 15-31 IA
ADDRESS

106 Processor Control Panel

INSEni

The INSERT switch permits manual changes to the PSD.
The switch is stationary and inactive in the center (nor­
m<;ll) position and momentary in the upper (PSW2) and
lower (PSW1) positions. When the INSERT switch is
moved to the PSWl or PSW2 position, the corresponding
half of the PSD is changed, as necessary, and the cor­
responding indicators display the information that has
been entered from the 32 DATA switches located at the
bottom of the control panel.

CPU RESET

The CPU RESET switch initializes the central processor.
When this switch is pressed, the following operations are
performed:

1. All interrupt levels are reset to the disarmed and dis­
abled state.

2. The ALARM indicators (visual and audio) are reset.

3. All PSD bits are reset except for the INSTRUCTION
ADDRESS.

4. The INSTRUCTION ADDRESS indicators are set to
X'26'.

5. The WAIT indicator is set, indicating the CPU is in
the WAIT state.

The CPU RESET switch does not affect any operation that
may be in process in the standard input/output system.

INTERRUPT

The operator uses the INTERRUPT switch to activate the
control panel interrupt. If the control panel interrupt
(level X'5D ') is armed when the INTERRUPT switch is
pressed, a single pulse is transmitted to the interrupt level,
advancing it to the waiting state. The INTERRUPT indica­
tor is lighted when the control panel interrupt level is in
the waiting state and it remains lighted until the interrupt
level advances to the active state (at which time the
INTERRUPT indicator is turned off). If the control panel
interrupt level is disarmed {or already in the active state}
when the INTERRUPT switch is pressed, no computer or con­
trol panel action occurs. If the control panel interrupt
level advances to the waiting state and the level is disabled,
the INTERRUPT indicator remains lighted until the level is
either enabled and allowed to advance to the active state
or is returned to the armed or disarmed state. The I NTER­
RUPT switch is always operative.

ADDRESS STOP

The ADDRESS STOP section of the control panel consists of
two switches, a STOP indicator, and a NOT HERE indicator.

The two ADDRESS STOP switches latch in all positions and
are labeled INST/NORM/MEM REF and PAGE/WORD.
They are used in conjunction with the SELECT ADDRESS
switches and the COMPUTE switch to couse the CPU to
establish a holt condition and turn on the ADDRESS STOP
indicator whenever the CPU accesses an instruction or a
memory address.

PAGE,/WORD

When the PAGE/'NORD switch is in the PAGE position, it
causes the address stop feature to ignore the nine least sig­
nificant SELECT ADDRESS switches. In effect, this enables
the address stop feature when any word in a selected page

... : s addressed.

When the PAGE/WORD switch is in the WORD position, all
17 SELECT ADDRESS switches are used to specify an address.

I NSTR/NORM/MEM REF

When the INST/NORM/MEM REF {instruction/normal/
memory reference} switch is in the NORM position, it is
inactive and the address stop feature is inhibited.

When this switch is in the MEM REF position and the COM­
PUTE switch is in the RUN position, a halt condition occurs
when the CPU accesses a memory reference address equal
to the address contained by the 17 SELECT ADDRESS
switches, subject to the constraints of the PAGE/WORD
switch" as described above. The value of the INSTRUC­
TION ADDRESS indicators at the time of the halt is deter­
mined by the sequence of instructions being executed at
the time of memory reference.

When the INSTR/NORM/MEM REF switch is in the I NSTR
position and the COMPUTE switch is in the RUN position,
a holt condition occurs when the CPU accesses an instruc­
tion whose address is equal to that contained in the
17 SELECT ADDRESS switches, subject to the constraints
of the PAGE/WORD switch. The INSTRUCTION ADDRESS
indicators at the time of the holt normally wi" equal the
SELECT ADDRESS value, and the instruction pointed to by
the INSTRUCTION ADDRESS will appear on the DISPLAY
indicators.

The ADDRESS STOP holt co'ndition is reset when the
COMPUTE switch is moved from RUN to IDLE; if the
COMPUTE switch is then moved bock to RUN {or to STOP},
the instruction shown in the DISPLAY indicators is the next
instruction executed., No interrupt is allowed to proceed
from the waiting to the active state while the ADDRESS
STOP holt condition exists.

The ADDRESS STOP function is disabled during the time
that the SNAP is armed.

Processor Control Panel 107

STOP

The STOP indicator lights to indicate that the machine is
halted due to either an INSTR-ADDRESS STOP or MEM
REF-ADDRESS STOP. The STOP indicator is turned off .
when the COMPUTE switch is moved from RUN to IDLE.

NOT HERE

The NOT HERE indicator is I ighted when a nonexistent
memory location is referenced. It is automatically reset at
the end of each memory cycle, or when the RESET switch
is depressed.

SELECT ADDRESS

The SELECT ADDRESS switches are used in conjunction
with

1. The ADDRESS STOP switches (INSTR/NORM/MEM
REF and PAGE/WORD) to select the address at which
a prqgram will be halted.

2. The STORE switch to select the location to be altered.

3. The DISPLAYswitch to select theword to be displayed.

4. The SCAN MODE switches to establ ish an upper bound­
ary of the memory scan operation.

5. The SCAN-START ADDR switch to enter a starting
address of the memory scan operation.

Each SELECT ADDRESS switch represents a 1 in the upper
position or a 0 in the lower position.

DISPLAY (SWITCH)

The DISPLAY switch displays the contentsofa general regis­
ter or a memory location. The DISPLAY switch is stationary
and inactive in the center (unmarked) position and momen­
tary in the INSTR AD DR and SELECT ADDR positions. When
the switch is moved to the INSTR ADDR or SELECT ADDR
position, the contents of the location pointed to by the
INSTRUCTION ADDRESS indicators or the SELECT ADDRESS
switches, respectively, are shown in the DISPLAY indicators.

If the final memory address is nonexistent, the CPU does
not. trap and the DISPLAY indicators are indeterminate.

INSTRADDR

The INSTR AD DR (instruction address) switch is lotching
and inactive in the NORM position, latching in the HOLD
position, and momentary in the INCRM position.

When the INSTR ADDR switch is in the HOLD position, the
normal process of incrementing the INSTRUCTlON ADDRESS
portion of the PSD with each instruction execution is

108 Processor Control Panel

inhibited. With theATR ADDR switch in the HOLD
position and the CO~TE switch in the RUN position, the
instruction in the location pointed to by the value of the
INSTRUCTION ADDRESS indicators is executed repeatedly,
with the INSTRUCTION ADDRESS indicators remaining
unchanged. Moving the COMPUTE switch to the momen­
tary STEP position while the INSTR ADDR switch is in the
HOLD position causes the instruction in the location pointed
to by the value of the INSTRUCTION ADDRESS indicat.ors
to be executed each time the COMPUTE switch is moved to
the STEP position. The INSTRUCTION ADDRESS indicators
normally remain unchanged. During HOLD operations, the
INSTRUCTION ADDRESS may be altered as a result of a
trap, interrupt, LPSD, XPSD, or branch instruction.

Each time the INSTR ADDR switch is moved from the NORM
position to the INCRM position, the following operations
are performed:

1. The current value of the INSTRUCTION ADDRESS
indicators is incremented by 1.

2. Using the new value of the INSTRUCTION ADDRESS
indicators, the contents of the location pointed to by
the INSTRUCTION ADDRESS are displayed in the
DISPLAY indicators.

If the final memory address is nonexistent, the CPU does
not trap and the DISPLAY indicators are indeterminate.

DISPLAY (INDICATORS)

The 32 DISPLAY iQdicators may display an instruction, data
word, or maintenance data. When the Control Mode switch
is in the LOCAL NORM position, the FORMAT SEL switch
is forced into the NORMAL mode and the DISPLAY switch,
COMPUTE switch, and INSTR ADDR switch can be used to
display the contents of a memory location or the current
contents of the internal CPU instruction register.

When the DISPLAY switch is placed in the INSTR ADDR
position, the contents of the location indicated by the
INSTRUCTION ADDRESS indicators are displayed in the
DISPLAY indicators. When the DISPLAY switch is placed
in the SELECT ADDR position, the contents of the location
selected by the SELECT ADDRESS switches is displayed in
the DISPLAY indicators. When the INSTR ADDR switch is
placed in the INCRM position, the INSTRUCTION ADDRESS
is incremented by one and the contents of the location is
displayed in the DISPLAY indicators.

When the COMPUTE switch is placed in the STEP position,
the contents of the location displayed in the INSTRUCTION
ADDRESS will be executed and the next instruction in the
sequence in the internal CPU instruction register wi II be
displayed in the DISPLAY indicators.

To display maintenance data, the Control Mode switch must
be in the LOCAL MAINT position, and the FORMAT SEL
switch may be placed in either the CONTROL position or
the REGISTER position to have control words or internal
register contents displayed in the DISPLAY indi cators. The

specific control word or inter.gister selected is .
control I ed by the thumbwheel a cent to the roll chart
on the DISPLAY FORMAT.

DISPLAY FORMAT

The DISPLAY FORMAT feature, which. is used by mainte­
nance personnel, is inactive whenever the Control Mode
switch is in the LOCAL NORM position. A chart comprised
of 16 lines of printed information is mounted on a roller
located directly behind the slot in .the panel labeled DIS­
PLAY FORMAT. Associated with the chart is a 16-position
5witch (thumbwheel-cctucted) end g 3-position FORMAT
SEL switch, which selects various internal register's of the
CPU for display.

FORMATSEL

The 3-position FORMAT SEL (format select) switch is labeled
CONTROL/NORMAL/REGISTER. In the NORMALposition,
the DISPLAY FORMAT and FORMAT SEL features are inac­
tive and the DISPLAY I ights show the CPU internal instruc­
tion register. When the FORMAT SEL switch is in the
REGISTER position and the Control Mode switch is in the
LOCAL MAINT position, the contents of the selected inter­
nal register will appear in the DISPLAY indicators. When
the FORMAT SEL switch is in the CONTROL position and
the Control Mode switch is in the LOCAL MAINT position,
specific control information, as indicated by the DISPLAY
FORMAT chart, appears in the DISPLAY indicators.

DATA

The 32 DATA switches alter the contents of the PSD when
used in conjunction with the INSERT switch, or alter the
contents of memory or a general register when used in con­
junction with the STORE switch. Each DATA switch is
latching in both the upper and center positions. In the
center position, a DATA switch represents a 0; in the upper
position, a 1.

STORE

The STORE switch alters the contents of a general register
or a memory location. The switch is stationary and inactive'
in the center {unmarked} position and momentary in the
INSTR ADDR and SELECT ADDR positions. When the switch
is moved to the INSTR ADDR position, the current value of
the DATA switches is stored in the location pointed to by
the INSTRUCTION ADDRESS indicators; when the switch is
moved to the SELECT ADDR position, the current value of
the DATA switches is stored in the location pointed to by
the SELECT ADDRESS switches. The contents of the ad­
dressed location are altered regardless of write protection.

COMPUTE

The COMPUTE switch controls the execution of instructions~'
The IDLE and RUN positions are both latching; the STEP
position is momentary. When the COMPUTE switch is in
the IDLE positi on, a II other control panel switches are
operative and the ADDRESS STOP halt and the WAIT
instruction halt conditions are reset (cleared). No inter-'
rupts are allowed in this mode.

When the COMPUTE switch is moved from IDLE to RUN,
the RUN indicator is lighted and the current setting of the
INSTRUCTION ADDRESS indicators is taken as the address
of the next instruction to be executed, regardless of the
contents of the 'OISPLAY IndIcators.

When the COMPUTE switch is in the RUN position, the
only operative switches are POWER, INTERRUPT, ADDRESS
STOP, INSTR ADDR (in the HOLD position), and the
switches in the maintenance section except SCAN, EXT
DIO, and SNAP ENTER.

Each time the COMPUTE switch is moved from IDLE to
STEP, the following operations occur:

1. The instruction pointed to by the current value of the
INSTRUCTION ADDRESS indicators is executed.

2. The current value of the INSTRUCTION ADDRESS
indicators is incremented by 1. If the "stepped" in­
struction (executed by moving the COMPUTE switch
from IDLE to STEP) is a branch instruction and the branch
branch should occur, the INSTRUCTION ADDRESS
indicators are ,set to the value of the effective address
of the branch instruction.

3. The instruction in the location pointed to by the new
value of the INSTRUCTION ADDRESS indicators is
displayed in the DISPLAY indicators.

If an instruction is being stepped, all interrupt levels are
temporarily inhibited while the instruction is being exe­
cuted; however, a trap condition can occur while the
instruction is being executed. In this case, the XPSD
instruction in the appropriate trap location is executed as
if the COMPUTE switch were in the RUN position. Thus,
if a trap condition occurs during a stepped instruction, the
PSD display automatically reflects the effects of the XPSD
instruction, and the DISPLAY indicators then contain the
first instruction of the trap routine.

MAINTENANCE CONTROLS
The controls and indicators located in the MAINTENANCE
SECTION of the PCP, as well as the DISPLAY FORMAT
and FORMAT SEL switches (described previously), are used
primarily during computer maintenance and. diagnostic
operations.

Maintenance Controls 109

ALARM •

Audio and visual alarms may be used to attract the computer
operator1s attention. The alarms are turned on and off
(under program control) by executing a properly coded
WRITE DIRECT instruction. When the visual ALARM indi­
cator is lighted and the AUDIO switch is ON, a 1000-Hz
signal is sent to the computer speaker; when the AUDIO
switch is not in the ON position, the speaker is discon­
nected. (The AUDIO switch does not affect the state of
the visual ALARM indicator.) The ALARM indicator is
reset (turned off) whenever either the CPU RESET or the
SYS RESET switch is pressed or a properly coded WRITE
DIRECT instruction is executed.

The AUDIO switch controls all signals to the computer
speaker, whether from the lOOO-Hz signal or program­
controlled frequency flip-flop.

MARGINS

The CPU clock frequency may be changed to values above
and below the normal operating values by manually setting
the CLOCK MARGIN switch or by programming via an
appropriate internal WRITE DIRECT instruction. The CLOCK
MARGIN switch overrides program control when set to the
FAST or S LOW position. When set to the NORMAL posi­
tion, clock margins are under program control. The NOT
NORM CLOCK indicator will be lighted whenever the
clock frequency is not normal due to programming or switch
settings of FAST or SLOW.

The system vol tage margin, for a single processor system,
or the CPU voltage margin, for a multiprocessor system, is
indicated by the VOLTAGE NOT NORM light. The VOLT­
AGE NOT NORM I ight wi /I be on if any power supply in
the system is on HIGH or LOW MARGINS.

PHASES

The PHASES indicators display certain internal operating
phases of the computer. The PREPARATION indicators dis­
play computer phases during preparation sequences. The
PCP indicators display computer phases during processor'
control panel operations. The EXECUTION indicators dis­
play computer phases during the execution portion of an
instruction cycle. The INT/TRAP (interrupt/trap) indica­
tors are individually lighted when an interrupt or a trap
condition occurs. When the COMPUTE switch is in the
IDLE position, all PHASES indicators are normally off except
except for the rightmost PCP indicator (indicating the idle
phase for processor control panel functions).

CLOCK MODE

The CLOCK MODE switch controls the internal computer
clock. When the switch is in the CONT (continuous) posi­
tion, the clock operates at normal speed. However, when
the CLOCK MODE switch is in the inactive (center) posi­
tion, the clock enters an idle state and can be made to

110 Maintenance Controls

generate one clock& each time the switch is moved to
the SINGLE CLOC~sition. When the clock is pulsed by
the CLOCK MODE switch, the PHASES indicators reflect
the computer phase during each pulse of the clock.

SNAP

All logic that is displayable on the PCP can be monitor.ed
with the snapshot control logic. Snapshot control logic is
preset (armed) by executing a WRITE DIRECT (Load Snap­
shot Control Register) instruction or, when the COMPUTE
switch is in the IDLE position, by moving the SNAP ENTER­
switch to the ENTER position. Moving the ENTER switch
from the latching and inactive center position selects the
following conditions (duplicates the function performed by
the appropriate interna/WRITE DIRECT instruction):

1. A clock count number (obtained from DATA
switches 0-7),

2. A register or group of control elements to be recorded
(obtained from DATA switches 10-14). -

3. An instruction address (obtained from DATA
switches 15-31).

When the COMPUTE switch is in the RUN position and the
selected address matches the instruction address of the PSD,
the clock counter is decremented by each CPU clock pulse,
starting with the first phase of execution. When the clock
counter reaches a value of 1, the selected logic is clocked
by the current selected CPU clock into a 32-bit "snap" reg­
ister and the snap condition is reset. The contents of the
IIsnap" register can then be recorded by a READ DIRECT
instruction under program control or visually displayed with
the use of FORMAT SEL and DISPLAY FORMAT switches •.
;rhe SNAP STOP switch can be used to stop the clock at
time of the snap condition by setting it to the ON position.
This switch is inactive in the NORM position. The halt
condition, resulting from the SNAP STOP switch stopping the
clock at snap time, can be reset by placir.~ the STOP switch
to the NORM position, which disables th~ STOP switch, or
by placing the CLOCK MODE switch to center (unmarked)
position, which keeps the clock stopped, then moving the
SNAP STOP switch to the NORM position a"d SINGLE
CLOCK the CLOCK MODE switch to reset the stop on snap
condition, and then set the CLOCK MODe swit<..h to CONT
position.

SNAP MODE

The SNAP MODE indicator shows that the snap feature
is armed and waiting to "snap", and is reset only if
the snap has occurred or CPU RESET or SYS RESET has
been performed.

MEMORY MODE

MEMORY MODE switches and indicator are comprised of
an INTERLEAVE SEL switch, a PARITY ERROR switch, and
a PARITY ERROR indicator.

INTERLEAVE SEL

When the INTERLEAVE SEL (inte". select) switch is in
the NORM position, memory address interleaving occurs
normally; however, when the switch is in the DISABLE posi­
tion, memory addresses are not interleaved between memory
banks.

PARITY ERROR

The PARITY ERROR switch is inactive in the CONT posi­
tion. When it is set to .the HALT position, a parity error
resulting from memory operation will establish a CPU halt
condition by stopping the CPU clock at the time the CPU
detects the parity error. At this time the PARITY ERROR
light ,is on. This condition is removed by CPU RESET,
SYS RESET, or by setting the PARITY ERROR switch to the
CONT position.

W.O. TIMER

When the W. D. TIMER (watchdog timer) switch is in the
NORM position, the watchdog timer is operative; when
the switch is in the OVERRIDE position, the watchdog timer
is inactive.

SCAN

The SCAN portion of the control panel consists of the
MODE switch, SCAN I ight, MEMORY MODE switch, and
START AD DR switch. These controls enable the operator to
continuously cycle' memory between selected lower and
upper addresses at a rate simulating the faster CPU operation
with memory. Only memory is affected. All the switches
are active only when the COMPUTE switch is in the IDLE
position. Homespace bias is suppressed during the SCAN
operation.

The starting address (first address read or modified by the
SCAN operation) is entered by using the START ADDRswitch
in conjunction with the SELECT ADDRE'SS switches, which
are active only when the COMPUTE switch is in the IDLE
position. Placing the START ADDR switch in the ENTER
position enters the contents of the SELECT ADDRESS switches
into an internal CPU register (P), which designates a starting
address.

The upper address (the last address read or modified by the
SCAN operation) is then set into the SELECT ADDRESS

. switches, 'and the ADDRESS STOP swit-ch set to the MEM
REF position.

The memory scan operation can be initiated by first placing
the MEMORY MODE switch to DATA (for a store or display)
or CLEAR (only for a store operation), then the MODE
switch to STORE or DISPLAY. When this is performed,
the SCAN operation starts continuously reading from or
storing into consecutive memory locations, as a function of
whether the MODE switch was set to DISPLAY or STORE,
respectively. The SCAN operation begins with the starting

address {set inMo),- and continues until the memory
address equals alue of the SELECT ADDRESS switches.
Then, if the AD ESS STOP switch is set to MEM REF, the
scan continues again from the starting address. If the
ADDRESS STOP switch is in the NORM position, all mem­
ory wi II be scanned.

The scan operation continues indefinitely in this manner
until the MEMORY MODE switch is set to the NORM posi­
tion, which forces the CPU to the I DLE state. The SCAN
light is on during the memory scan operation.

During a store scan, if the MEMORY MODE switch is
set to DATA, the contents of the DATA swi tches are
written into memory. If the MEMORY MODE switch is
set to CLEAR, the memory is cleared in the "operational"
mode. '

During a display scan, the MEMORY MODE switch must
be in the DATA position. Data from memory is displayed
on the DISPLAY lights when the display is selecting the
CPU bus.

The PARITY ERROR switch can be used during the scan
to halt the operation on a memory parity error. At the
time of the halt,the memory parity error light is on and
the DISPLAY lights indicate the failing data when the
display is selecting the CPU bus. CPU RESET will reset
this condition.

MODE

The MODE switch is effective only when the COMPUTE
switch is in the IDLE position and the Control Mode
switch is in the LOCAL MAINT position. This is a three­
position switch, latching in the inactive center position
and momentary in the DISPLAY and STORE positions where
it initiates a memory scan operation in conjunction with the
MEMORY MODE switch.

MEMORY MODE

The MEMORY MODE switch is a three-positiol") {all latching}
switch, which must be set to either the DATA or CLEAR
position, prior to setting the MODE switch to STORE or
DISPLAY to start a scan operation. The memory scan opera­
tion is terminated when the MEMORY MODE switch is
returned to NORM.

START ADDR

The START ADDR switch is effective only when the
COMPUTE switch is in the IDLE position and the Control
Mode switch is in the LOCAL MAl NT position. This is a
two-position switch, latching in the center position where
it is inactive, and momentary in the ENTER position where
it enters the state of the SELECT ADDRESS switches into an
internal CPU register (P), which designates the starting
address of the scan.

Maintenance Controls' 111

SCAN

The SCAN indicator is on during memory scan operations
initiated by the MODE switch or the. MEMORY CLEAR
switch.

EXT 010

The EXT DIO (external direct input/output) switch controls
the DIO interface directly from the PCP switches. This
switch is active only when the COMPUTE switch is in the
IDLE position.

When the EXT 010 switth is In the momentary RD (reod
direct) position, the least significant 16 switches of the
SELECT ADDRESS switches directly control the DIO address
lines. The read/write direct line on the DIO interface is
set to indicate a read direct operation. The read direct
operation is completed with the data response returned to
the S NAP register.

The WD (write direct) position is also momentary. Opera­
tions in the WD position are the same as described above
for the RD position, except that the contents of the DATA
switches are sent on the DIO data lines, and the read/write
direct line indicates a write direct operation.

The EXT DIO switch is inactive in the center position
(latching).

OPERATING PROCEDURES

LOADING OPERATION

This section describes the procedures for initially loading
programs into memory from certain peripheral units attached
to an input/output processor (lOP) in the SIGMA 8 system.
The computer operator may initiate a loading program from
the processor control panel (with the Control Mode switch
in the LOCAL MAINT or LOCAL NORM position).

BOOTSTRAP LOADI NG PROGRAM

The LOAD switch and the UNIT ADDRESS switches prepare
a SIGMA 8 computer for a load operation. When the
LOAD switch is pressed, the following bootstrap program
is stored in memory locations X'22' through X'2B':

Location Contents Symbolic Form
(Hex.) (Dec.) (Hexadeci rna I) of Instruction

22 34 22110029 LI, 1

23 35 64100023 BDR, 1

24 36 68000028 BCR,O 40

112 o perati ng Procedures

Location
(Hex.) (Dec.)

25. 37

26 38

27 39

28 40

29 41

2A 42

2B 43

.ontents
(Hexadecimal)

OOOOxxxx
t

2200y015
tt

CCOOO025

CDOOO025

69COO022

020yOOA8
tt

OEOOO058

Symbol j c Form
of Instruction

LI,O

SIO,O *37

TIO,O *37

BCS, 12 34

When the LOAD switch is presse.d, the selected peripheral
device is not activated and no other indicators or controls
are affected; only me.mory is al teredo

LOAD PROCEDURE

To ensure correct loading operation, the following sequence
should always be used to initiate the loading process:

1. Place the COMPUTE switch in the IDLE position.

2. Press the SYS RESET switch.

3. Set the UNIT ADDRESS switches to the address of the
desired peripheral unit.

4. Press the LOAD switch.

5. Place the COMPUTE switch in the RUN position.

After the COMPUTE switch is placed in the RUN position,
in step 5, the following actions occur:

1. The first record on the selected peripheral device is
read into memory locations X'2A' through X'3F'. (The
previous contents of general register 0 are destroyed
as a result of executing the bootstrap program in loca­
tions X'26' through X'29'.)

2. After the record has been read, the next instruction is
taken from location X'2A' (provided that no error con­
dition has been detected by the device or the lOP).

tThe x's in location X'25' represent the value of the UNIT
~DDRESS switches at the time the LOAD switch is pressed.
The values can range from X'OOOO' to X'1 FFF'.

ttThe y's in locations X'26' and X'2A' represent the. value
of the Homespace bias at the time the LOAD switch is
pressed. Homespace bias is loaded automatically (from
Homespoce bias switches) into bit positions 16 through 18
in X'26' and bit positions 13 through 15 in X'2A'. .

3. When the instruction in locatAx'2A' is executed,
the unit device and device c·.iler selected for
loading can accept a new SIO instruction.

4. Further I/O operations from the load unit may be
accomplished by coding subsequent I/O instructions
to indirectly address location X'25'.

LOAD OPERATION DETAILS

The first executed instruction of the bootstrap program (in
location X'26') loads general register 0 with the double­
word address of the first I/O command doubleword. The
I/O address for the SIO instruction in location X'27 1 is the
13 low-order bits of location X'25 1 (which have been set
equal to the load unit address as a resul t of pressing the
LOAD switch). During execution of the SIO instruction,
general register 0 points to locations X'2A' and X'2B' as
the first I/O command doubleword for the selected device.
This command doubleword contains an order that instructs
the selected peripheral device to read 88 (X'581

) bytes into
consecutive memory locations starting at word location
X'2A' (byte location X'A8 1

). At the completion of the
read operation, neither data chaining nor command chaining
is called for in the I/O command'doubleword. Also, the
Suppress Incorrect Length flag is set to 1 so that an incor­
rect length indication will not be considered an error. (This
means that no transmission error halt will result if the first
record is either less than or greater than 88 bytes. If the
record is greater than 88 bytes, only the first 88 bytes will
be stored in memory.)

After the SIO instruction has been executed, the computer
executes a TIO instruction with the same effective address
as the SIO instruction. The TIO instruction is coded to
accept only condition code data from the lOP. The BCS
instruction in location X'291 will cause a branch to X'221

(a LOAD IMMEDIATE instruction), if either CCl or CC2
(or both) is set to 1. Execution of the LI instruction at
X'22 1 loads a count of XI 10029' into register 1. The fol­
lowing BDR instruction at X'23 1 uses this as a "delay" count
before execution of the BCR instruction in X'24', which
unconditionally branches to the TIO in X'28'. Sufficient
delay is introduced between execution of consecutive TIO
instructions when testing the lOP so that excessive inter­
ference with the lOP cannot occur. In normal operation,
CCl is reset to 0 and CC2 remains set to 1 until the device
can accept another SIO instruction, at which time the next
instruction wi II be taken from location X'2A'.

If a transmission error or equipment malfunction is detected
by either the device or the lOP, the lOP instructs the
device to hal t and initiate an "unusual end" interrupt

signal (as spece by the appr.opriate flags in the I/o
command doubleword). The "unusual end" interrupt will be
ignored, however, since all interrupt levels have been dis­
armed by pressing the SYS RESET/CLEAR switch prior to
loading. The device will not accept another SIO while
the device interrupt is pending and, therefore, the BCS
instruction in location X'29' will continue to branch to
location X'22'. The correct operator action at this point
is to repeat the load procedure. If there is no I/O address
recognition of the load unit, the SIO instruction will not
cause any I/O action and CC 1 wi" conti nue to be set to
1 by the SIO and TIO instructions thus causing the BCS
instruction to branch.

FETCHING AND STORING DATA

To fetch data from a memory location and display it:

1. Set COMPUTE switch to IDLE.

2. Set SELECT ADDRESS switches to desired address.

3. Depress DISPLAY switch to SELECT ADDR.

Contents of designated memory location will be dis­
played in the DISPLAY indicators.

To fetch and display data from successive memory locations:

1. Set COMPUTE switch to IDLE.

2. Set DATA switches to desired address.

3. Depress I NSERT switch to PSW 1.

4. Depress DISPLAY switch to INSTR ADDR.

Contents of first memory location will be displayed in
the DISPLAY indicators.

5. Depress I NSTR ADDR switch to INCRM.

Contents of successive memory locations will be dis­
played in the DISPLAY indicators for each depression
of the INSTR ADDR switch.

To store data in a designated memory location:

1. Set COMPUTE switch to IDLE.

2. Set SELECT ADDRESS switches to desired address.

3. Set DATA switches to desired storage value.

4. Depress STORE switch to SELECT ADDR.

Operating Procedures 113

.PENDIX A. REFERENCE TABLES

This appendix contains the following reference material:

Title

XDS Standard Symbols and Codes

XDS Standard 8-Bit Computer Codes (EBCDIC)

XDS Standard 7-BitCommunication Codes (USASCII)

XDS Standard Symbol-Code Correspondences

Hexadecimal Arithmetic

Addition Table
Multiplication Table
Table of Powers of Sixteen10
T able of Powers of Ten 16

Hexadecimal-Decimal Integer Conversion Table

Hexadecimal-Decimal Fraction Conversion Table

Table of Powers of Two

Mathematical Co'nstants

XDS STAf4DARD SYMBOLS AND CODES
The symbol and code standards described in this publication
are appl icable to all XDS products, both hardware and soft­
ware. They may be expanded or 01 tered from ti me to ti me
to meet changing requirements.

The symbols listed here include two types: graphic symbols
and control characters. Graphic symbols are displayable
and printable; control characters are not. Hybrids are SP,
the symbol for a blank space, and DEL, the delete code
which is not considered a control command.

Three types of code are shown: (1) the 8-bit XDS Standard
Computer Code, i. e. , the XDS Extended Binary-Coded­
Decimal' Interchange Code (EBCDIC); (2) the 7-bit United
States of America Standard Code for Information Inter­
change (USASCII); and (3) the XDS standard card code.

114 Appendix A

XDS STANDARD CHARACTER SETS

1. EBCDIC

57-character set: uppercase letters, numerals, spa~e,
and & - / • < > . () + I $ * : ; , %
/I @ I =

63-character set: same as above pi us I . ?
" -,

89-character set: same as 63-character set pi us lower­
case letters

2. USASCII

64-character set: upper case letters, numerals, space,
and "$ % & I () * + , / \

: = < > ? @ [] - /I

95-character set: same as above pi us lowercase letters
and {} : -- \

CONTROL CODES

In addition to the standard character sets listed above, the
XDS symbol repertoire includes 37 control codes and the
hybrid code DEL (hybrid code SP is considered part of all
character sets). These are listed in the table titled XDS
Standard Symbol-Code Correspondences.

SPECIAL CODE PROPERTIES

The following two properties of all XDS standard codes will
be retained for future standard code extensions:

1. All control codes, and only the control codes, have
their two high-order bits equal to "00". DEL is not
considered a control code.

2. No two graphic EBCDIC codes have their seven low­
order bi ts equal.

'0,
(5

c
8
'c
01

Vi

(5

He"adecimal

Binary

o 0000

0001

2 0010

3 0011

4 0100

B 10

C 1100

o 1101

1110

1111

Decimal
rows) (col's.)-

OS STANDARD 8-BIT COMPUTER COD CDIC)
Most ::'::1' .'~ .. ,.. Digits NOTES:

o 3 4 5 6 7 8 A B C o

0000 0001 10 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

1 The characters" \ { I (J are U$ASCII
characters that do not appear in any of the
XDS EBCDIC-bosed choracter ~ets, though
they ore shown in the EBCDIC table.

NUL OLE ds SP 8. - r@ 0

SOH DCI 55

STX DC2 fs ~~~~ b k s i 18K S 2

ETX DC3 si

EaT DC4

r z I R Z 9

FF FS < % @

CR GS

SO RS + >

SI US I 2 2
?

The characters I I appear in the XDS
63- and 89-choracter EBCDIC sets but not
in either of the XDS USASCII-based sets.
However, XDS software translates the chor­
octe,rs I I -.. into USA$CII charocters
as follows:

EBCDIC

I
I

UASCII

, (6-0)

: (7-12)

,.. (l-14J

The EBCDIC control codes in ca'iumns 0
and I and their binary representation are
exactly the some as those in the USASCII
table, except for two interchanges: LF/NL
with NAK, and HT with ENO.

Choracters enclosed in heavy lines are
included only in the XOS standard 63-
and 89-charocter EBCOIC sets.

These characters are included anly in the
XOS standard 89-character EBCOIC set.

XOS STANDARD 7-BIT COMMUNICATION CODES (USASCII) I

Most Significant Digits NOTES:

0 I 2 3 I 4 5 6 7

I Binary I "OOOlxOOI xOIO x011 xlOO xl0l xl10 xiii

Most significant bit, added for 8-bit format, is either 0 or on even-parity bit for the
remaining 7 bits.

0 0000 NUL OLE SP 0

I I 0001 SOH! DCl !
s

1

2 0010 STX DO II I 2
I

3 0011 ETX DC3 I 3

4 0100 EaT DC4 1 S 4

5 0101 ENQ NAK % 5

6 0110 ACK SYN 8. 6

7 ! 0111 BEL I ETB 7

8 1000 as CAN (8

9 1001 HT EM) 9

LF
10 1010 SUB * :

I NL

11 1011 VT ESC + i

12 1100 FF FS , <

13 1101 CR GSI - =
I I

14 I 1110 SO RS >

15 1111 SI US / ?
. ,\

@ P \

A 0 a

B R b

C S c

0 T d

E U e

F V f

I G W g

H X h

I 1 Y i

J Z j

K [5 k

L \ I

M I] 5 m I

I N
4 5

n

0
4

0 -
..

P

q

r

s

t

u

v

w

X

Y

z

i
I
I

}
4 -

DEL
,

Columns 0-1 are control codes.

Columns 2-5 correspand to the XDS 64-character USASCII set.
Columns 2-7'correspondto the XDS 95-character USASCII set.

4 On many current teletypes, the symbol

is (5-14)

is (5-15)

is ESC or ALTMOOE control (7-14)

and none of the symbols appearing in columns 6-7 are provided, Except for the three
symbol differences nated above, therefore, such teletypes provide all the characters in
the XDS 64-character USASCII set. (The XOS 7015 Remote Keyboard Printer provides the
64-choracter USASCII set 0150, but prints os 1\ .)

On the XOS 7670 Remote Botch Terminal, the symbol

is (2-1)

is I (5-11)

is (5-13)

is (5-14)

and none of the symbols appearing in columns 6-7 are provided. Except for the four symbol
differences noted above, therefore, this terminal provides all the characters in the XDS 64-
choracter USASCU set.

Appendix'A 115

XDS ST.ARD SYMBOL-CODE CORRESPONDENC.

ESCDICt
USASCll

tt
Hex. Dec. Symbol Card Code Meaning Remarks

00 0 NUL 12-0-9-8-1 0-0 null 00 through 23 and 2F are control code5.
01 1 SOH 12-9-1 0-1 start of header
02 2 STX 12-9-2 0-2 start of text
03 3 ETX 12-9-3 0-3 end of text
04 4 EOT 12-9-4 0-4 end of transmission
05 5 HT 12-9-5 0-9 horizontal tab
06 6 ACK 12-9-6 0-6 acknowledge (positive)
07 7 BEL 12-9-7 0-7 bell
08 I 8 BSorEOM 12-9-8 0-8 backspace or end of menage fOM is used only on XDS Keyboard/
09 9 ENQ 12-9-8-1 0-5 enquiry Printers Models 7012, 7020, 8091,
OA 10 NAK 12-9-8-2 1-5 negative acknowledge and 8092.
DB 11 VT 12-9-8-3 0-11 vertical tab
OC 12 FF 12-9-8-4 0-12 form feed
00 13 CR 12-9-8-5 0·13 ecrrlog@ return
OE 14 SO 12-9-8-6 0-14 shift out
OF 15 SI 12-9-8-7 0-15 shift in

10 16 OLE 12-11-9-8-1 1-0 data I ink escape
11 17 DCl 11-9-1 1-1 device control 1
12 18 OC2 11-9-2 1-2 device control 2
13 19 DC3 11-9-3 1-3 device control 3
14 20 OC4 11-9-4 1-4 device control 4
15 21 LF or NL 11-9-5 0-10 line feed or new line
16 22 SYN 11-9-6 1-6 sy,nc
17 23 ETB 11-9-7 1-7 end of transmilsion block
18 24 CAN 11-9-8 1-8 cancel
19 25 EM 11-9-8-1 1-9 end of medium
lA 26 SUB 11-9-8-2 1-10 substitute Replaces characters with parity error.
lB 27 ESC 11-9-8-3 1-11 escape
lC 28 FS 11-9-8-4 1-12 fi Ie separator
10 29 GS - 11-9-8-5 1-13 group separator
IE 30 RS 11-9-8-6 1-14 record separator
IF 31 US 11-9-8-7 1-15 unit separator

20 32 ds 11-0-9-8-1 digit selector 20 through 23 are used with
21 33 ss 0-9-1 significance start Sigma 7 EDIT 8YTE STRING (E8S)
22 34 fs 0-9-2 field separation instruction - not input/output con-
23 35 si 0-9-3 immediate significance start trol codes.
24 36 0-9-4 24 tnrough 2E are unauigned.
25 37 0-9-5 ,
26 38 0-9-6
27 39 0-9-7
28 40 0-9-8
29 41 0-9-8-1
2A 42 0-9-8-2
2B 43 0-9-8-3
2C 44 0-9-8-4
20 45 0-9-8-5
2E 46 0-9-8-6
2F 47 0-9-8-7

30 48 12-11-0-9-8-1 30 through 3F are unassigned.
31 49 9-1
32 50 9-2
33 51 9-3
34 52 9-4
35 53 9-5
.36 54 9-6
37 55 9-7
38 56 9-8
39 57 9-8-1
3A 58 9-8-2
38 59 9-8-3
3C 60 9-8-4
3D 61 9-8-5
3E 62 9-8-6
3F 63 9-8-7

tHexadecimal and decimal notation.

ttOecimal nototion (column-row).

116 Appendix A

XDS.NDARD SYMBOL-CODE CORRESPONDEN.(cont.)

EBCOICt Symbol Card Code USASCn
tt

Meaning Remarks
Hex. Dec.

40 64 SP blank 2-0 blank
41 65 12-0-9-1 41 through 49 will not be assigned.
42 66 12-0-9-2
43 67 12-0-9-3
44 68 12-0-9-4
45 69 12-0-9-5
46 70 12-0-9-6
47 71 12-0-9-7
48 72 12-0-9-8
49 73 12-8-1
4A 74 i or' 12-8-2 6-0 cent or accent grave Accent grave used for left single
48 75 12-8-3 2-14 period quote. On model 7670, ' not
4C 76 < 12-8-4 3-12 less than avai lable, and 1= USASCII 5-11.
40 77 (12-8-5 2-8 left parenthesis
4E 78 + 12-8-6 2-11 plus
4F 79 I or I 12-8-7 7-12 vertical bar or broken bar On Model 7670, : not available, I

and I = USASCII 2-1.

50 80 & 12 2-6 ampersand
51 81 12-11-9-1 51 through 59 will not be assigned.
52 82 12-11-9-2
53 83 12-11-9-3
54 84 12-11-9-4
55 85 12-11-9-5
56 86 12-11-9-6
57 87 12-11-9-7
58 88 12-11-9-8
59 89 11-8-1
5A 90 ! 11-8-2 2-1 exclamation point On Model 7670, 1 is I.
58 91 $ 11-8-3 2-4 dollars
5C 92 * 11..;8-4 2-10 asterisk
50 93) 11-8-5 2-9 right parenthesis
5E 94 ; 11-8-6 3-11 semicolon
SF 95 ... or -. 11-8-7 7-14 tilde or logical not On Model 7670,-is not available,

and ..., = USASCn 5-14.

60 96 - 11 2-13 minus, dash, hyphen
61 97 / 0-1 2-15 slash
62 98 11-0-9-2 62 through 69 will not be assigned.
63 99 11-0-9-3
64 100 11-0-9-4
65 101 11-0-9-5 I

66 102 11-0-9-6
67 103 11-0-9-7
68 104 11-0-9-8
69 105 0-8-1
6A 106 12-11 5-14 circumflex On Model 7670 is ..,. On Model
68 107 , 0-8-3 2-12 comma 7015 is" (caret).
6C 108 % 0-8-4 2-5 percent
60 109 - 0-8-5 5-15 underline Underline is sometimes called "break
6E 110 > 0-8-6 3-14 greater than character"; may be printed along
6F 111 ? 0-8-7 3-15 question mark bottom of character line.

70 112 12-11-0 70 through 79 will not be assigned.
71 113 12-11-0-9-1
72 114 12-11-0-9-2
73 115 12-11-0-9-3
74 116 12-11-0-9-4 ,
75 117 12-11-0-9-5
76 118 12 - 11-0-9-6
77 119 12-11-0-9-7
78 120 12-11-0-9-8
79 121 8-1
7A 122 : 8-2 3-10 colon
78 123 I 8-3 2-3 number
7C 124 @ 8-4 4-0 at
7D 125 . 8-5 2-7 apostrophe (right single quote)
7E 126 = 8-6 3-13 equals
7F 127 .. 8-7 2-2 quotation mark

tHexadecimal and decimal notation.

ttDecimal notation (column-row).

Appendix A 117

XDS STA.D SYMSOL-CODE CORRESPONDENCES (e>
ESCDICt

,

Hex. Dec. Symbol Cord Code USASCll
tt

Meonin9 Remarks

80 128 .12-0-8-1 80 is unassigned.
81 129 a 12-0-1 6-1 81-89, 91-99, A2-A9 comprise the
82 130 b 12-0-2 6-2 lowercase alphabet. Available
83 131 c 12-0-3 6-3 only in XDS standard 89- and 95-
84 132 d 12-0-4 . 6-4 character sets.
85 133

I
e 12-0-5 6-5

86 134 f 12-0-6 6-6
87 135 g 12-0-7 6-7
88 136

I
h 12-0-8 6-8

89 137 i 12-0-9 6-9
8A 138 I 12-0-8-2 SA through 90 are unassigned.
88 139

I
12-0-8-3

8C 140 12-0-8-4
SO 141

I

12-0-8-5
8E 142 12-0-8-6
8F 143 12-0-8-7

.'

90 144 12-11-8-1
91 145 j 12-11-1 6-10
92 146 k 12-11-2 6-11 .
93 147 I 12-11-3 6-12
94 148 m 12-11-4 6-13
95 149 n 12-11-5 6-14
96 150 0 12-11-6 6-15
97 151 p 12-11-7 7-0
98 152 q 12-11-8 7-1
99 153 r 12-11-9 7-2
9A 154 12-11-8-2 9A through A1 or. unassigned.
93 155 12-11-8-3
9C 156 12-11-8-4
9D 157 12-11-8-5
9E 158 12-11-8-6
9F 159 12-11-8-7

AO 160 11-0-8-1
Al 161 11-0-1
A2 162 s 11-0-2 7-3
A3 163 t 11-0-3 7-4
A4 164 u 11-0-4 7-5
A5 165 v 11-0-5 7-6
A6 166 w 11-0-6 7-7
A7 167 I x 11-0-7 7-8
A8 168 I 11-0-8 i 7-9 y
A9 169 I z 11-0-9 7-10
AA 170 11-0-8-2 AA through BO are unassigned.
AS 171 11-0-8-3
AC In 11-0-8-4
AD 173 11-0-8-5
AE 174 11-0-8-6
AF 175 11-0-8-7

SO 176 12-11-0-8-1
Sl 177 \ 12-11-0-1 5-12 backslash
S2 178 { 12-11-0-2 7-11 left brace
S3 179 J 12-11-0-3 7-13 right brace
84 180 [12-11-0-4 5-11 left brocket On Model 7670, ~ is I.
S5 181] 12-11-0-5 5-13 right bracket On Model 7670, is 1.
86 182 12-11-0-6 56 through 8F are unassiQned.
B7 183 12-11-0-7
S8 184 I 12-11-0-8
B9 185 12-11-0-9
SA 186 12-11-0-8-2
aa 187 12-11-0-8-3
BC 188 12-11-0-8-4
BO 189 12-11-0-8-5
BE 190 12-11-0-8-6 .
8F 191 12-11-0-8-7

tHexadecimal and decimal notation.

ttOecimal notation (column-row).

118 Appendix A

XD.NDARD SYMBOL-CODE CORRESPONDEr-e (cont.)

EBCOICt Syr.-bol Cord Code USASCU
tt Meaning Remarks

Hex. Dec.

CO 192 12-0 CO i, unassigned.

C1 193 A 12-1 4-1 Cl-(9, 01-D9, E2-E9 comprise the

C2 194 B 12-2 4-2 uppercase alphabet.

C3 195 C 12-3 4-3
C4 196 0 12-4 4-4
C5 197 E 12-5 4-5
C6 198 F 12-6 4-6
C7 199 G 12-7 4-7
C8 200 H 12-8 4-8
C9 201 I 12-9 4-9
CA 202 12-0-9-8-2 C:A through CF will not be assigned.

CB 203 12-0-9-8-3
CC 204 12-0 .. 9·8 ... 4
CO 205 12..Q .. 9-B-5
CE 206 12-0-9-8-6
CF 207 12-0-9-8-7

DO 208 11-0 00 is unassigned.
D1 209 J 11-1 4-10

- -
02 210 K 11-2 4-11
03 211 L 11-3 4-12
04 212 M 11-4 4-13
05 213 N 11-5 4-14
D6 214 0 11-6 4-15
07 215 P 11-7 5-0
DB 216 Q 11-8 5-1
09 217 R 11-9 5-2
OA 218- 12-11-9-8-2 OA through OF wi II not be assigned.

D8 219 12-11-9-8-3
DC 220 12-11-9-8-4
DO 221 12-11-9-8-5

,
DE 222 12-11-9-8-6
DF 223 12-11-9-8-7

EO 224 0-8-2 EO, fl or. unossigned.

El 225 11-0-9-1
E2 226 S 0-2 5-3
E3 227 T 0-3 5-4
E4 223 U 0-4 5-5
E5 229 V 0-5 5-6
E6 230 W 0-6 5-7
E7 231 X 0-7 5-8
EB 232 Y 0-8 5-9
E9 233 Z 0-9 5-10
EA 234 11-0-9-8-2 fA through EF will not be ossigned.

EB 235 11-0-9-8-3
EC 236 11-0-9-8-4
ED 237 11-0-9-8-5
EE 238 11-0-9-8-6
EF 239 11-0-9-8-7

FO 240 0 0 3-0
Fl 241 1 1 3-1
F2 242 2 2 3-2
F3 243 3 3 3-3
F4 244 4 4 3-4
F5 245 5 5 3-5
F6 246 6 6 3-6
F7 247 7 7 3-7
F8 248 8 8 3-8
F9 249 9 9 3-9
FA 250 12-11-G-9-8-2 FA through FE will not be a,signed.

FB 251 12-11-0-9-8-3
FC 252 12-11-0-9-8-4
FO 253 12-11-0-9-8-5
FE 254 12-11-0-9-8-6
FF 255 DEL 12-11-0-9-8-7 delete Speciol - neither graphic nor con-

trol symbol.

tHexadecimal and decimal notation.

ttOecimal notation {column-row}.

Appendix A 119

• HEXADECIMAL ARITHMETIC •
ADDITION TABLE

0 1 2 3 4 5 6 7 8 9 A 8 C 0 E F

1 02 03 04 05 06 07 08 00 OA ~ OC 00 OE OF 10

2 03 04 05 06 07 08 09 OA OS OC 00 OE OF 10 11

3 04 05 06 07 08 00 OA 08 OC 00 OE OF 10 11 12

4 05 06 07 08 09 OA 08 OC 00 oe OF 10 11 12 13

S 06 07 OS cYJ OA OB OC OD OE OF 10 11 1:2 13 14

6 07 08 09 OA 08 OC 00 OE OF 10 11 12 13 14 15

7 08 (1} OA 08 OC 00 OE OF 10 11 12 13 14 15 16

8 09 OA OB OC 00 OE OF 10 11 12 13 14 15 16 17

9 OA OB OC 00 OE OF 10 11 12 13 14 15 16 17 18

A OS OC 00 OE OF 10 11 12 13 14 15 16 17 18 19

B OC 00 OE OF 10 11 12 13 14 15 16 17 18 19 1A

C 00 OE OF 10 11 12 13 14 15 16 17 18 19 1A 1B

0 OE OF 10 11 12 13 14 15 16 17 18 19 1A 1B 1C

E OF 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 10

F 10 11 12 13 14 15 16 17 18 19 1A 18 1C 10 1E

MULTIPLICATION TABLE

1 2 3 4 5 6 7 8 9 A B C 0 E F

2 04 06 08 OA OC OE 10 12 14 16 18 1A 1C 1E

3 06 09 OC OF 12 15 18 1B 1E 21 24 27 2A 20

4 08 OC 10 14 18 1C 20 ' 24 28 2C 30 34 38 3C

5 OA OF 14 19 1E 23 28 20 32 37 3C 41 46 4B

6 OC 12 18 1E 24 2A 30 36 3C 42 48 4E 54 5A

7 OE 15 1C 23 2A 31 38 3F 46 40 54 5B 62 69

8 10 18 20 28 30 38 40 48 50 58 60 68 70 78

9 12 1B 24 20 36 3F 48 51 5A 63 6C 75 7E 87

A 14 1E 28 32 3C 46 50 5A 64 6E 78 82 8C 96

B 16 21 2C 37 42 40 58 63 6E 79 84 8F 9A A5

C 18 24 30 3C 48 54 60 6C 78 84 90 9C A8 84

0 1A 27 34 41 4E 58 68 75 82 8F . 9C A9 86 C3

E lC 2A 38 46 54 62 70 7E 8C 9A A8 86 C4 02

F 1E 20 3C 48 5A 69 78 87 96 AS 84 C3 02 E1

120 Appendix A

TABLE OF POWERS OF SIXTEEN,•

16n n 16-n

0 0.10000 00000 00000 00000 x 10

16 1 0.62500 00000 00000 00000 x 10- 1

256 2 0.39062 50000 00000 00000 x 10-2

4 096 3 0.24414 062.50 00000 00000 x 10-3

65 536 4 0.15258 78906 25000 00000 x 10-4

1 048 576 5, 0.95367 43164 06250 00000 x 10-6

16 777 216 6 0.59604 64477 53906 25000 x 10-7

268 435 456 7 0.37252 90298 46191 40625 x 10-8

4 294 967 296 8 0.23283 06436 53869 62891)(10.9

68 719 476 736 9 0.14551 91522 83668 51807 x 10- 10

099 511 627 776 10 0.90949 47017 72928 23792 x 10- 12

17 592 186 044 416 11 0.56843 41886 08080 14870 x 10- 13

281 474 976 710 656 12 0.35527 13678 80050 09294 x 10- 14

4 503 599 627 370 496 13 0.22204 46049 25031 30808 x 10- 15

72 057 594 037 927 936 14 0.13877 78780 78144 56755 x 10- 16

152 921 504 606 846 976 15 0.86736 17379 88403 54721 x 10- 18

TABLE OF POWERS OFTEN 16

10n
.!2 10-n

1 0 1.0000 0000 0000 0000

A 0.1999 9999 9999 999A

C28F 5C28 F5C3
' -1

64 2 0.28F5 x 16

3E8 3 0.4 1 89 3748 C6A7 EF9E x 16-2

2710 4 0.6808 88AC 710C 8296 x 16-3

86AO 5 0.A7C5 AC47 1B47 8423 x 16-4

F 4240 6 0.10C6 F7AO B5E 0 8037 x 16-4

98 9680 7 0.1 A07 F29A BCAF 4858 x 16-5

5F5 E100 8 0.2AF3 10C4 6118 73BF x 16-6

389A CAOO 9 0.4488 2FAO 9B5A 52CC x 16-7

2 540B E400 10 0.60F3 7F67 5EF6 EAOF x 16-8

17 4876 E800 11 O.AFE 8 FFOB C824 AAFF x 16-9

E8 04A5 1000 12 0.1 197 9981 20EA 1 119 x 16-9

918 4E72 AOOO 13 0.1 C25 C268 4976 81C2 x 16- 10
--------- - - -_._.-._._---_._--

16 -11 5AF3 107A 4000 14 0.2009 3700 4-257 3604 x

3 8.07E A4C6 8000 15 0.480E BE7B 9058 5660 x 16- 12

23 86F2 6FC1 0000 16 0.734A CASF 6226 FOAE x 16- 13

163 4578 508A 0000 17 0.B877 AA32 36A4 B449 x 16- 14

OEO B6B3 A764 0000 18 0.1272 5001 0243 ABA1 x 16- 14

8AC7 2304 89E8 0000 19 0.1083 C94F 8602 AC35 x 16- 15

Appendix A 121

HEXADECltJ-OECIMAL INTEGER CONVERSION TABLE.

The table below provides for direct conversions between hexa- Hexadecimal fractions may be converted to decimal fractions
decimal integers in the range O-FFF and decimal integers in as follows:
the range 0-4095. For conversion of larger integers, the
table values may be added to the following figures: 1. Express the hexadecimal fraction as an integer times

16-n, where n is the number of significant hexadecimal
Hexadecimal Decimal Hexadecimal Decimal places to the right of the hexadecimal point.

01 000 4096 20000 131 072 . O. CA9BF316 = CA9 BF316 x 16-6
02000 8 192 30000 196608
03000 12 288 40000 262 144 2. Find the decimal equivalent of the hexadecimal integer
04 000 16384 50000 327680
05000 20480 60000 393 216 CA9 BF3

16
= 13 278 195

10 06 000 24576 70000 458752
07000 28672 80000 524288 3. Multiply the decimal equivalent by 16"n

08000 32768 90000 589824
09000 36 864 AOOoo 655 360 13 278 195
OA 000 40960 BO 000 720896 x 596 046 448 x 10-16

OB 000 45056 CO 000 786 432 0.791 442 09610
OC 000 49 152 DO 000 851 968
OD 000 53248 EO 000 917 504 Decimal fractions may be converted to hexadecimal fractions
OE 000 57344 FO 000 983040 by successively multiplying the decimal fraction by 1610.
OF 000 61440 100000 1 048576 After each multiplication, the integer portion is removea to
10000 65536 200000 2097 152 form a hexadecimal fraction by building to the right of the
11 000 69632 300000 3 145728 hexadecimal point. However, since decimal arithmetic is
12000 73728 400 000 4 194304 used in this conversion, the integer portion of each product.
13000 77824 500000 5 242880 must be converted to hexadecimal numbers.
14000 81 920 600000 6 291 456
15000 86 016 700000 7340032 Example: Convert 0.89510 to its hexadecimal equivalent
16000 90 112 800000 8388608

0.895 17000 94208 900000 9437 184
18000 98304 AOO 000 10485 760 @.3~~ 19000 102400 BOO 000 11 534336
lA 000 106 496 COO 000 12582912 @.12~ IS 000 110592 000000 13 631 488

~ lC 000 114 688 EOO 000 14680 064 (D.Jg
ID 000 118784 FOO 000 15728640
IE 000 122880 1 000000 167n 216 G.72~ IF 000 126 976 2000 000 33554432 O.ESI E16 •

0 1 2 3 4 5 6 7 8 9 A B C D E F

000 0000 0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015
010 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031
020 0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047
030 0048 0049 0050 0051 ,0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063

040 0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 0077 0078 0079
050 0080 0081 0082 0083 0084 0085 0086 0087 0088 0089 0090 0091 0092 0093 0094 0095
060 0096 0097 0098 0099 0100 0101 0102 0103 0104 0105 0106 0107 0108 °0109 0110 0111
070 0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127

080 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143
090 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 6156 0157 0158 0159
OAO 0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 0175
OBO 0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 0190 0191

oeo 0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207
000 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 0223
OEO 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239
OFO 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255

122 Appendix A

HEWECIMAL - DECIMAL INTEGER CONVERSIO.A~LE (cont.)

0 1 2 3 4 5 6 ' 7 8 9 A B C D E F

100 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271
110 0272 0273 0274 0275 0276 0277 0278 0279. 0280 0281 0282 0283 0284 0285 0286 0287
120 0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303
130 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319

140 0320 0321 0322 0323 0324 0325 0326 0327 .0328 0329 0330 0331 0332 0333 0334 0335
150 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351
160 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367
170 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383

180 03S4 6395 0~S6 0387 0388 0389 0390 0391 0392 0393 ()~94 0395 03t76 639' 0398 539<J
190 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415
lAO 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431
IBO 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447

lCO 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463
lDO 0464 0465 0466 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479
1 EO 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495
1FO 0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511

200 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527
210 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543
220 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559
230 0560 0561. 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575

240 0576 0577 0578 0579 0580 0581 ·0582 0583 0584 0585 0586 0587 0588 0589 0590 0591
250 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607
260 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623
270 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639

280 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655
290 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671
2AO 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 . 0684 0685 0686 0687
2BO 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703

2CO 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719
2DO 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735
2EO 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751
2FO 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767

300 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783
310 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799
320 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815
330 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831

340 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847
350 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863
360 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879
370 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895

380 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911
390 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927
3AO 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943
3BO 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959

3CO 0960 0961 0962 0963 0964 0965 0966 09(J7 0968 0969 0970 0971 0972 0973 0974 0975
3DO 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991
3EO 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007
3FO 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

Appendix A 123

HEXADECI, DECIMAL INTEGER CONVERSION TABLE.t.)

0 1 2 3 4 5 6 7 8 9 A B C 0 E F

400 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
410 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
420 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
430 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

440 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
450 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
460 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
470 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151

480 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
490 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
4AO 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 . 1196 1197 1198 1199
480 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215

4CO 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
4DO 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
4EO 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
4FO 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279

I

500 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
510 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
520 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
530 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343

540 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
550 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
560 1376 1377 1378 1379 1380 1381 1382. 1383 1384 1385 1386 1387 1388 1389 1390 1391
570 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407

580 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
590 1424 1425_ 1426 1427 1428 1429 1430 1431 1432 1433' 1434 1435 1436 1437 1438 1439
5AO 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
580 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471

5CO 1472 . 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
5DO 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
5EO 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
5FO 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

600 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
610 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
620 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
630 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599

640 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
650 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
660 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
070 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663

680 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
690 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
6AO 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
680 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727

6CO 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
6DO 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
6EO 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
6FO 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791

124 Appendix A

HE.CIMAL - DECIMAL INTEGER CONVERSI.BLE (cont.)

0 1 2 3 4 5 6 7 8 9 A B C D E F

700 1792 1793 1794 1795 1796 1797 1798 1799 .1800 1801 1802 1803 1804 1805 1806 1807
710 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
720 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
730 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855

740 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871.
750 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
760 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
770 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919

780 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
790 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
7AO 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
780 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 '1979 1980 1981 1982 1983

---.

7CO 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
700 2000 2001 ' 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
7EO 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
7FO 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047

800 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059. 2060 2061 2062 2063
"

810 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
820 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
830 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111

840 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
850 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
860 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
870 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175

880 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
890 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
SAO 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
8BO 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239

8CO 2240 2241 2242' 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
800 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
8EO 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
8FO 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303

900 2304 2305 2306 2307 2308 2309 2310 I 2311 2312 2313 2314 2315 2316 2317 2318 2319
910 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
920 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
930 2352 2353 2354 2355 2356 2357 2358 235~ 2360 2361 2362 2363 2364 2365 2366 2367

940 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
950 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
960 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
970 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431

980 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
990 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
9AO 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
9BO 2480 2481 2482 2483 2484 2485 2486 24~ 2488 2489 2490 2491 2492 2493 2494 2495

9CO 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
9DO 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
9EO 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 ,2538 2539 2540 2541 2542 2543
9FO 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559

Appendix A 125

- -----_._-------_._--._._._--

HEXADECle - DECIMAL INTEGER CONVERSION 'TAS.nt.)

0 1 2 3 4 5 6 7 8 9 A B C 0 E F

AOO 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
AlO 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
A20 2592 2593 2594 2595 2596 2597 2598 2599 , 2600 2601 2602 2603 2604 2605 2606 2607
A30 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623

A40 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633, 2634 2635 2636 2637 2638 2639
ASO 2640 2641 2642 2643 2644- 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
A60 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
A70 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687

A80 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
A90 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
AAO 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
ABO 2736 2737 2738 2739 2740 2741 2742 2743 2744- 2745 2746 2747 2748 2749 2750 2751

ACO 2752 2753· 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
ADO 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
AEO 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
AFO 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815

BOO 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
BI0 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
B20 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
830 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879

840 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
850 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
860 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 ·2922 2923 2924 2925 2926 2927
870 2928 2929 .2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943

B80 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
B90 2960 2961- 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
BAO 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
BBO 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007

BCO 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
BOO 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
8EO 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
8FO 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071

COO 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
ClO 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
C20 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
C30 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135

C40 3136 3137 3138 3139 3140 3141 3142 3143 3144- 3145 3146 3147 3148 3149 3150 3151
C50 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167

. C60 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
C70 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199

C80 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
C90 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
CAD 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
C80 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263

CCO 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
COO 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
CEO 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
CFO 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327

126 Appendix A

HEX.ClMAL - DECIMAL INTEGER CONVERS10WBLE (cont.)

0 1 2 .3 4 5 6 7. 8 9 A B C D E F

DOO 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
DlO 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
D20 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
030 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391

D40 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
D50 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
060 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
D70 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455

DSO 3456 3457 3458 3459 3460 3461 3462 3463 3464 346~ 3466 3467 34&9 3.469 ~4'O 3471
D90 3472 3473 3474 3475 3476 .3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
OAO 3488 3489 3490 3491 3492 349j 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
DBO 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519

DCO 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
ODO 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
DEO I 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
DFO 3568 3569 3570 3571 3572 3573 3574 3575 3576 35n 3578 3579 3580 3581 3582 3583

EOO 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
EI0 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
E20 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
E30 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647

E40 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
E50 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
E60 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
E70 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711

E80 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 ·3724 3725 3726 3727
E90 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
EAO 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
EBO 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775

ECO 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
EDO 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
EEO 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
EFO 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839

FOO 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 ·3853 3854 3855
FlO 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
F20 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
F30 3888 3889 3890 3891 3892 3893 3894 ·-3895 -----3896-:-3897--3898 3899 3900 3901 3902 3903

F40 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914· 3915 3916 3917 3918 3919
F50 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
F60 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
F70 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967

F80 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
F90 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
FAO 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
FBO 4016 4017 4018 4019 4020 4021 4022 '4023 4024 4025 4026 4027 4028 4029 4030 4031

FCO 4032_ 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
FOO 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
FEO 4064 4065 ·4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
FFO 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095

Appendix A 127

HEXA.AL-DECIMAL FRACTION COtlVERSION ye
Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal

.00 000000 .00000 00000 .40 00 00 00 .25000 00000 .80 000000 .50000 00000 .co 000000 .75000 00000

.01 000000 .00390 62500 .41 000000 .25390 62500 .81 000000 .50390 62500 .Cl 000000 .75390 62500

.02 000000 .00781 25000 .42 000000 .25781 25000 .82 000000 .50781 25000 .C2 00 00 00 .75781 25000

.03 000000 .0117187500 .43 000000 .26171 87500 .83 000000 .51171 87500 .C3 00 00 00 .7617187500

.04 000000 .0156250000 .44 000000 .2656250000 .84 00 00 00 .5156250000 .C4 000000 .7656250000

.05 000000 .01953 12500 .45 000000 .26953 12500 .85 00 00 00 .51953 12500 .C5 000000 .76953 "12500

.06 000000 .02343 75000 .46 000000 .27343 75000 .86 000000 .52343 75000 .C6 000000 .77343 75000

.07 000000 .02734 37500 .47 000000 .27734 37500 .87 000000 .52734 37500 .C7 00 00 00 .77734 37500

.08 000000 .03125 00000 .48 000000 .28125 00000 .88 000000 .53125 00000 .C8 00 00 00 .78125 00000

.09 000000 .0351562500 .49 000000 .2851562500 .89 000000 .53515 62500 .C9 000000 .78515 62500

.OA 000000 .03906 25000 .4A 000000 .28906 25000 .8A 000000 .53906 25000 .CA 00 00 00 .78906 25000

.08 000000 .04296 87500 .48 000000 .29296 87500 .88 000000 .54296 87500 .CB 00 00 00 .79296 87500

.OC 000000 .04687 50000 .4C 000000 .29687 50000 .8C 000000 .54687 50000 .CC 000000 .79687 50000

.00 000000 .05078 12500 .40 00 00 00 .30078 12500 .80 000000 .55078 12500 .CO 00 00 00 .80078 12500

.OE 000000 .05468 75000 .4E 000000 .30468 75000 .8E 00 00 00 .55468 75000 .CE 000000 .8046875000

.OF 000000 .05859 37500 .4F 000000 .30859 37500 .8F 000000 .55859 37500 .CF 00 00 00 .80859 37500

.10 000000 .06250 00000 .50 000000 .31250 00000 .90 000000 .56250 00000 .00 00 00 00 .8125000000

.11 000000 .0664062500 .51 000000 .31640 62500 .91 000000 .56640 62500 .01 000000 .81640 62500

.12 000000 .07031 25000 .52 000000 .32031 25000 .92 000000 .57031 25000 .02 00 00 00 .82031 25000

.13 000000 .07421 87500 .53 000000 .32421 87500 .93 000000 .57421 87500 .03 000000 .82421 87500

.14 0000 00 .07812 50000 .54 000000 .3281250000 .94 00 00 00 .57812 50000 .04 00 00 00 .82812 50000

.15 00 00 00 .08203 12500 .55 06 00 00 .33203 12500 .95 00 00 00 .58203 12500 .05 000000 .83203 12500

.16 000000 .08593 75000 .56 00 00 00 .33593 75000 .96 000000 .58593 75000 .06 00 00 00 .83593 75000

.17 000000 .08984 37500 .57 000000 .33984 37500 .97000000 .58984 37500 .07 00 00 00 .83984 37500

.18 000000 .09375 00000 .58 000000 .34375 00000 .98 000000 .59375 00000 .08 00 00 00 .84375 00000

.19 000000 .09765 62500 .59 000000 .34765 62500 .99 00 00 00 .59765 62500 .09 00 00 00 .84765 62500

.1A 000000 · 10 156 25000 .. 5A 000000 .35156 25000 .9A 000000 .60156 25000 .OA 00 00 00 .85156 25000

.1 8 000000 .10546 87500 .58 000000 .35546 87500 .9B 000000 .60546 87500 .OB 000000 .85546 87500

.1C 00 00 00 · 10937 50000 .5C 000000 .35937 50000 .9C 000000 .60937 50000 .DC 00 00 00 .85 937 50000

.10 000000 .11328 12500 .50 000000 .36328 12500 .90 000000 .61328 12500 "" .00 00 00 00 .86328 12500

.1 E 0000 00 .1171875000 .5f 000000 .3671875000 .9f 000000 .6171875000 .OE 000000 .8671875000

.1F 000000 .1210937500 .5F 000000 .3710937500 .9F 000000 .6210937500 .OF 000000 .8710937500

.20 000000 · 12500 00000 .60 000000 .37500 00000 .AO 000000 .62500 00000 .EO 000000 .87500 00000

.21 000000 .12890 62500 .61 000000 .37890 62500 .Al 000000 .62890 62500 .El 00 00 00 .87890 62500

.22 000000 .13281 25000 .62 000000 .38281 25000 .A2 000000 .63281 25000 .E2 000000 .88281 25000

.23 000000 .13671 87500 .63 000000 .38671 87500 .A3 000000 .63671 87500 .E3 '000000 .88671 87500

.24 000000 .1406250000 .64 000000 .39062 50000 .A4 00 00 00 .6406250000 .E4 00 00 00 .89062 50000

.25 000000 · 14453 1 2500 .65 000000 .39453 12500 .A5 000000 .64453 12500 .E5 00 00 00 .89453 12500

.26 000000 .1484375000 .66 000000 .39843 75000 .A6 00 00 00 .6484375000 .E6 00 00 00 .89843 75000

.27 000000 .15234 37500 .67 000000 .40234 37500 .A7 000000 .65234 37500 .E7 00 00 00 .90234 37500

.28 000000 .15625 00000 .68 000000 .40625 00000 .A8 000000 .65625 00000 .E8 000000 .90625 00000

.29 000000 .1601562500 .69 000000 .4101562500 .A9 000000 .6601562500 .E9 000000 .9101562500

.2A 000000 · 16406 25000 .6A 000000 .41406 25000 .AA 00 00 00 .66406 25000 .EA 000000 .91406 25000

.28 0000 00 .16796 87500 .68 000000 .41796 87500 .A8 00 00 00 .66796 87500 .EB 00 00 00 .9179687500

.2C 000000 .1718750000 .6C 000000 .42187 50000 .AC 000000 .67187 50000 .EC 000000 .92187 50000

.20 000000 .17578 12500 .60 000000 .42578 12500 .AD 00 00 00 .67578 12500 .ED 000000 .92578 1 2500

.2E 000000 .1796875000 .6E 000000 .42968 75000 .AE 000000 .67968 75000 .EE 000000 .92968 75000

.2F 000000 .18359 37500 .6F 000000 .43359 37500 .AF 000000 .68359 37500 ' .EF 00 00 00 .93359 37500

.30 000000 .1875000000 .70 000000 .4375000000 .BO 000000 .68750 00000 .FO 00 00 00 .93750 00000

.31 000000 .1914062500 .71 000000 .44140 62500 .Bl 000000 .6914062500 .FI 00 00 00 .94140 62500

.32. 000000 · 19531 25000 .72 000000 .44531 25000 .B2 000000 .69531 25000 .F2 00 00 00 .94531 25000

.33 0000 00 .19921 87500 .73 000000 .44921 87500 .83 000000 .69921 87500 .F3 000000 .94921 87500

.34 00 00 00 .20312 50000 .74 000000 .45312 50000 .84 00 00 00 .70312 50000 .F4 000000 .9531250000

.35 000000 .20703 12500 .75 000000 .45703 12500 .B5 00 00 00 .70703 12500 .F5 000000 .95703 12500

.36 000000 .21093 75000 .76 000000 .46093 75000 .86 000000 .7109375000 .F6 000000 .96093 75000

.37 000000 .2148437500 .77 000000 .46484 37500 .B7 000000 .71484 37500 .F7 00 00 00 .96484 37500

.38 0000 00 .21875 00000 .78 000000 .4687500000 .B8 00 00 00 .71875 00000 .F8 000000 .96875 00000

.39 000000 .22265 62500 .79 000000 .47265 62500 .B9 00 00 00 .7226562500 .F9 000000 .97265 62500

.3A 000000 .22656 25000 .7A 00 00 00 .47656 25000 .SA 00 00 00 .72656 25000 .FA 000000 .97656 25000

.3B 000000 .23046 87500 .7B 00 00 00 .48046 87500 .BB 000000 .73046 87500 .FB 0000 co .98046 87500

.3C 000000 .23437 50000 .7C 000000 .48437 50000 .BC 00 00 00 .73437 50000 .FC 000000 .98437 50000

.30 000000 .23828 12500 .70 00 00 00 .48828 } 2500 .80 000000 .73828 12500 .FO 00 00 00 .98828 12500

.3E 000000 .2421875000 .7E 000000 .4921875000 .BE 00 00 00 .7421875000 .FE 00 00 00 .9921875000

.3F 00 00 00 .24609 37500 .7F 00 00 00 .49609 37500 .BF 000000 .74609 37500 .FF 00 00 00 .99609 37500

128 Appendix A

HEXWIMAL - DECIMAL FRA,nQN CONVERSIO.ABLE (cont.)

Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal

.0000 0000 .00000 00000 .00 40 00 00 .00097 65625 .0080 0000 .00195 31250 .00 CO 0000 .00292 96875

~OO 01 0000 .00001 52587 .0041 00 00 .00099 18212 .0081 0000 .0019683837 .00 Cl 0000 .00294 49462

.0002 0000 .0000305175 .0042 0000 .001 00 70800 .0082 0000 .00198 36425 .00 C2 0000 .00296 02050

.00 03 00 00 .00004 57763 .00 43 0000 .00102 23388 .0083 0000 .00199 89013 .00 C3 0000 .00297 54638

.00 04 0000 .00006 10351 .00 44 0000 .0010375976 .0084 0000 .00201 41601 .00 C4 0000 .00299 07226

.00 05 0000 .00007 62939 .00 45 00 00 .00 105 28564 ' .0085 0000 .00202 94189 .00 C5 0000 .00300 59814

.0006 0000 .00009 15527 .00 46 0000 .00106 81152 .0086 0000 .00204 46777 .00 C6 0000 .00302 12402

.00 07 0000 .0001068115 .0047 0000 .00108 33740 .0087 0000 .00205 99365 .00 C7 0000 .00303 64990

.00 08 0000 .00012 20703 .00 48 0000 .00 109 86328 .0088 0000 .00207 51953 .00 C8 0000 .00305 17578

.00 09 0000 .0001373291 .0049 00 00 .00111 38916 .00 89 0000 .00209 04541 .00 C9 0000 .00306 70166

.00 OA 0000 .00015 25878 .004A 00 00 .0011291503 .008A 0000 .00210 57128 .00 CA 00 00 .00308 22753

.00 OB 0000 .00016 78466 .00 40 0000 .0011444091 .00 08 0000 IOO2U Ofl116 100 <:6 0000 :OOJO~ 15a41

.00 OC 0000 .0001831054 .00 4C·00 00 .00115 96679 .008C 0000 .00213 62304 .00 CC 00 00 .00311 27929

.00000000 .0001983642 .00400000 .00117 49267 .0080 00 00 .00215 14892 .00 CD 00 00 .0031280517

.00 OE 0000 .00021 36230 .00 4E 00 00 .0011901855 .00 8E 0000 .0021667480 ·.00 CE 0000 .0031433105

.00 OF 00 00 .0002288818 .00 4F 0000 .0012054443 .008F 00 00 .00218 20068 .00 CF 0000 .00315 85693

.00 10 0000 .00024 41406 .00 50 0000 .00 122 07031 .0090 00 00 .00219 72656 .00 DO 0000 .00317 38281

.00 11 0000 .00025 93994 .0051 0000 .0012359619 .0091 0000 .00221 25244 .00 01 0000 .00318 90869

.00 12 0000 .00027 46582 .00 52 0000 .00125 12207 .00 92 0000 .00222 77832 .0002 0000 .00320 43457

.00 13 0000 .00028 99169 .0053 0000 .00 126 64794 .0093 0000 .00224 30419 .00 03 0000 .00321 96044

.00 14 0000 .00030 51757 .0054 0000 .00 1 28 17382 .0094 0000 .00225 83007 .00 04 0000 .00323 48632
:00 15 0000 .00032 04345 .0055 0000 .0012969970 .0095 0000 .00227 35595 .0005 0000 .00325 01220

.00 16 0000 .0003356933 .00 56 0000 .00131 22558 .0096 00 00 .0022888183 .00 06 0000 .0032653808

.00 17 0000 .00035 09521 .0057 0000 .0013275146 .0097 00 00 .00230 40771 .0007 0000 .00328 06396

.00 18 0000 .00036 62109 .0058 0000 .00134 27734 .0098 0000 .00231 93359 .00 08 0000 .00329 58984

.00 19 00 00 .00038 14697 .0059 0000 .00135 80322 .0099 0000 .00233 45947 .0009 0000 .00331 11572

.00 lA 0000 .00039 67285 .005A 0000 .00137 32910 .009A 0000 .00234 98535 .00 DA 00 00 .00332 64160

.00 18 0000 .00041 19873 .0058 0000 .00138 85498 .009B 0000 .00236 51123 .00 DB 0000 .00334 16748

.001C 0000 .00042 72460 .005C 0000 .0014038085 .009C 0000 .00238 03710 .00 DC 0000 .00335 69335

.·')010 0000 .00044 25048 .0050 0000 .00141 90673 .0090 0000 .00239 56298 .00 DO 0000 .00337 21923

.00 IE 0000 .0004577636 .005E 0000 .00143 43261 .009E 0000 .00241 08886 .00 DE 0000 .00338 74511

.00 IF 0000 .00047 30224 .005F 00 00 .00144 95849 .009F 00 00 .00242 61474 .00 OF 0000 .00340 27099

.0020 0000 .00048 82812 .0060 0000 .00146 48437 .00 AO 0000 .00244 14062 .00 EO 0000 .00341 79687

.00 21 00 00 .00050 35400 .0061 0000 .00148 01025 .00 Al 0000 .00245 66650 .00 El 0000 .00343 32275

.0022 0000 .00051 87988 .00 62 0000 .0014953613 .00 A2 0000 .00247 19238 .00 E2 0000 .00344 84863

.0023 0000 .00053 40576 .0063 0000 .00151 06201 .00 A3 0000 .00248 71826 .00 E3 0000 .00346 37451

.00 24 0000 .00054 93164 .0064 0000 .0015258789 .00 A4 0000 .00250 24414 .00 E4 0000 .00347 90039

.0025 0000 .0005645751 .0065 0000 .00154 11376 .00 A5 0000 .00251 77001 .00 E5 0000 .00349 42626

.0026 0000 .00057 98339 .0066 0000 .0015563964 .00 A6 0000 .00253 29589 .00 E6 0000 .0035095214

.0027 0000 .00059 50927 .0067 0000 . 00157 16552 .00 A7 00 00 .0025482177 .00 E7 0000 .00352 47802 .

.0028 00 00 .00061 03515 .0068 0000 .0015869140 .00 A8 0000 .00256 34765 .00 E8 0000 .00354 00390

.0029 0000 .0006256103 .0069 0000 .00160 21728 .00 A9 0000 .00257 87353 .00 E9 0000 .00355 52978

.00 2A 0000 .00064 08691 .006A 0000 .00161 74316 .00 AA 00 00 .00259 39941 .00 EA 0000 .00357 05566

.002B 0000 .00065 61279 .0068 0000 .00163 26904 .00 AS 0000 .00260 92529 .00 ES 0000 .0035858154

.002C 0000 .00067 13867 .006C 0000 .0016479492 .00 AC 0000 .00262 45117 .00 EC 0000 .00360 10742

.0020 0000 .00068 66455 .0060 0000 .00166 32080 .00 AD 0000 .00263 97705 .00 EO 0000 .00361 63330

.002E 0000 .00070 19042 .00 6E 0000 .00167 84667 .00 AE 0000 .00265 50292 .00 EE 0000 .00363 15917

.002F 0000 .00071 71630 .006F 0000 .0016937255 .00 AF 0000 .00267 02880 .00 EF 0000 .00364 68505

.0030 0000 .00073 24218 .0070 0000 .00170 89843 .0080 0000 .00268 55468 .00 FO 0000 .00366 21093

.0031 0000 .0007476806 .0071 0000 .0017242431 .0081 0000 .00270 08056 .00 Fl 0000 .00367 73681

.0032 0000 .00076 29394 .0072 0000 .0017395019 .00 B2 0000 .00271 60644 .00 F2 0000 .00369 26269

.0033 0000 .00077 81982 .0073 0000 .0017547607 .00 B3 0000 .00273 13232 .00 F3 0000 .00370 78857

.0034 0000 .00079 34570 .0074 0000 .0017700195 .0084 0000 .00274 65820 .00 F4 0000 .00372 31445

.0035 0000 .0008087158 .0075 0000 .0017852783 .00 B5 0000 .00276 18408 .00 F5 0000 .00373 84033

.0036 0000 .00082 39746 .0076 0000 .0018005371 .00 B6 0000 .00277 70996 .00 F6 0000 .00375 36621

.0037 0000 .00083 92333 .0077 0000 .00181 57958 .0087 0000 .00279 23583 .00 F7 0000 .0037689208

.0038 0000 .00085 4492·1 .0078 0000 .00183 10546 .0088 0000 .0028076171 .00 F8 0000 .00378 41796

.0039 0000 .00086 97509 .0079 0000 .00184 63134 .00 89 00 00 .00282 28759 .00 F9 0000 .00379 94384

.003A 0000 .0008850097 .00 7A 0000 .00186 15722 .00 SA 0000 .00283 81347 .00 FA 0000 .00381 46972

.0038 0000 .00090 02685 .00 78 00 00 .0018768310 .00 BB 0000 .00285 33935 .00 FB 0000 .00382 99560

.003C 0000 .00091 55273 .007C 0000 .0018920898 .00 SC 0000 .00286 86523 .00 FC 0000 .0038452148

.0030 0000 .00093 07861 .00 70 0000 .00190 73486 .00 BO 0000 .00288 39111 .00 FO 0000 .00386. 04736

.003E 0000 .0009460449 .007E 0000 .00192 26074 .00 BE 0000 .00289 91699 .00 FE 0000 .00387 57324

.003F 0000 .00096 13037 .00 7F 00 00 .00 1 93 78662 .00 SF 0000 .00291 44287 .00 FF 0000 .00389 09912

Appendix- A 129

HEXADECI. - DECIMAL FRACTION CONVERSION lA.cont.)

Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal

.000000 00 .00000 00000 .000040 00 .00000 38146 .000080 00 .00000 76293 .00 00 CO 00 .0000 1 14440

.000001 00 .00000 00596 .00 00 41 00 .00000 38743 .000081 00 .00000 76889 .0000 Cl 00 .00001 15036

.000002 00 .00000 01192 .00 0042 00 .00000 39339 .000082 00 .00000 77486 .00 00 C2 00 .0000 1 15633

.000003 00 .00000 01788 .000043 00 .00000 39935 .000083 00 .00000 78082 .00 00 C3 00 .00001 16229

.000004 00 .00000 02384 .000044 00 .00000 40531 .000084 00 .00000 78678 .0000 C4 00 .00001 16825

.000005 00 .00000 02980 .000045 00 .00000 41127 .00 00 85 00 .00000 79274 .00 00 C5 00 .00001 17421

.000006 00 .00000 03576 .00 00 46 00 .00000 41723 .000086 00 .00000 79870 .00 00 C6 00 .00001 18017

.0000 07 00 .00000 04172 .000047 00 .00000 42319 .000087 00 .00000 80466 .00 00 C7 00 .00001 18613

.0000 08 00 .00000 04768 .00 00 48 00 .00000 42~15 .000088 00 .00000 81062 .00 00 C8 00 .00001 19209

.00 00 09 00 .00000 05364 .000049 00 .00000 43511 .000089 00 .00000 81658 .00 00 C9 00 .00001 19805

.OOOOOA 00 .0000005960 ~OO 00 4A 00 .00000 44107 .00008A 00 .00000 82254 .00 00 CA 00 .00001 2040 1

.000008 00 .00000 06556 .00 00 48 00 .00000 44703 .000088 00 .00000 82~0 .0000 CB 00 .00001 20997

.00 00 OC 00 .00000 07152 .00 00 4C 00 .0000045299 .0000 8C 00 .00000 83446 .00 00 CC 00 .00001 21593

.00 00 OD 00 .00000 07748 .0000 4D 00 .00000 45895 .00 00 8D 00 .00000 84042 .0000 CD 00 .00001 22189

.OOOOOE 00 .00000 08344 .00 00 4E 00 .00000 46491 .00008E 00 .00000 84638 .0000 CE 00 .00001 22785

.0000 OF 00 .00000 08940 .00 00 4F 00 .00000 47087 .00 00 8F 00 .00000 85234 .00 00 CF 00 .0000 1 23381

.00 00 10 00 .00000 09536 .000050 00 .00000 47683 .000090 00 .00000 85830 .00 00 DO 00 .00001 23977

.00 00 II 00 .00000 10132 .00 00 51 00 .00000 48279 .00 00 91 00 .00000 86426 .00 00 Dl 00 .00001 24573

.0000 12 00 .00000 10728 .000052 00 .00000 48875 .00 00 92 00 .00000 87022 .00 00 02 00 .00001 25169

.0000 13 00 .00000 11324 .000053 00 .00000 49471 .00 0093 00 .00000 87618 .00 00 03 00 .00001 25765

.00 00 14 00 . 00000 11920 .000054 00 .00000 50067 .000094 00 .00000 88214 .000004 00 .00001 26361

.00 00 15 00 .00000 12516 .000055 00 .00000 50663 .00 00 95 00 .00000 88810 .00 00 05 00 .00001 26957

.0000 16 00 .00000 13113 .000056 00 .00000 51259 .00 00 96 00 .00000 -89406 .00 00 D6 00 .00001 27553

.0000 17 00 .00000 13709 .000057 00 .00000 51856 .00 00 97 00 .00000 90003 .00 00 07 00 .00001 28149

.000018 00 . 00000 14305 .000058 00 .00000 52452 .00 0098 00 .00000 90599 .00 00 OS 00 .00001 28746

.0000 19 00· .00000 14901 .000059 00 .00000 53048 .000099 00 .00000 91195 .00000900 .00001 29342

.0000 lA 00 .00000 15497 .0000 5A 00 .00000 53644 .0000 9A 00 .00000 91791 .00 00 DA 00 .00001 29938

.0000 18 00 .00000 16093 .000058 00 .00000 54240 .00 00 98 00 .00000 92387 .0000 D8 00 .00001 30534

.0000 lC 00 .00000 16689 .00005C 00 .00000 54836 .00 00 9C 00 .00000 92983 .0000 DC 00 .00001 31130

.0000 1 D 00 .00000 17285 .00005D 00 .00000 55432 .0000 9D 00 .00000 93579 .0000 DO 00 .00001 31726

.0000 1 E 00 .00000 17881 .00005E 00 .00000 56·028 .0000 9E 00 .00000 94175 .00 00 DE 00 .00001 32322

.00 00 IF 00 .00000 18477 .0000 5F 00 .00000 56624 .00009F 00 .00000 94771 .00 00 DF 00 .00001 32918

.000020 00 .00000 19073 .000060 00 .00000 57220 .0000 AO 00 .00000 95367 .00 00 EO 00 .00001 33514

.000021 00 .00000 19669 .000061 00 .00000 57816 .0000 Al 00 .00000 95963 .0000 El 00 .00001 34110

.000022 00 .00000 20265 .000062 00 .00000 58412 .0000 A2 00 .00000 96559 .00 00 E2 00 .0000 l 34706

.00 0023 00 .00000 20861 .000063 00 .00000 59008 .00 00,A3 00 .00000 97155 .0000 E3 00 .00001 35302

.000024 00 .00000 21457 .000064 00 .00000 59604 .0000 A4 00 .00000 97751 .00 00 E4 00 .00001 35898

.000025 00 .00000 22053 .000065 00 .00000 60200 .0000 AS 00 .00000 98347 .00 00 E5 00 .0000 1 36494

.000026 00 .00000 22649 .000066 00 .00000 60796 .0000 A6 00 .00000 98943 .00 00 E6 00 .00001 37090

.000027 00 .00000 23245 .000067 00 .00000 61392 .00 00 A7 00 .00000 99539 .00 00 E7 00 .00001 37686

.000028 00 .00000 23841 .000068 00 .00000 61 988 .00 00 A8 00 .00001 00135 .00 00 E8 00 .00001 38282

.000029 00 .00000 24437 .000069 00 .00000 62584 .0000 A9 00 .00001 00731 .00 00 E9 00 .0000 1 38878

.00002A 00 .00000 25033 .0000 6A 00 .. 00000 63180 .00 00 AA 00 .00001 01327 .00 00 EA 00 .00001 39474

.000028 00 .00000 25629 .00 00 68 00 .00000 63776 .0000 A8 00 .00001 01923 .00 00 EB 00 .00001 40070

.00002C 00 .00000 26226 .00 00 6C 00 .00000 64373 .0000 AC 00 .00001 02519 .00 00 EC 00 .00001 40666

.000020 00 .00000 26822 .00006D 00 .00000 64969 .0000 AD 00 .00001 03116 .00 00 ED 00 .00001 41263

.00002E 00 .00000 27418 .00006E 00 .00000 65565 .0000 AE 00 .00001 03712 .00 00 EE 00 .00001 41859

.00002F 00 .00000 28014 .00006F 00 .00000 66161 .0000 AF 00 .0000 1 04308 .00 00 EF 00 .00001 42455

.00 00 30 00 .00000 28610 .000070 00 .00000 66757 .000080 00 .00001 04904 .0000 FO 00 .00001 43051

.000031 00 .00000 29206 .00 00 71 00 .00000 67353 .000081 00 .00001 05500 .00 00 Fl 00 .00001 43647

.000032 00 .00000 29802 .000072 00 .00000 67949 .000082 00 .00001 06096 .00 00 F2 00 .00001 44243

.000033 00 .00000 30398 .000073 00 .00000 68545 .000083 00 .00001 06692 .00 00 F3 00 .00001 44839

.000034 00 .00000 30994 .000074 00 .00000 69141 .00 0084 00 .00001 07288 .00 OOF4 00 .00001 45435

.000035 00 .00000 31590 .000075 00 .00000 69737 .00 00 B5 00 .00001 07884 .0000 F5 00 .00001 46031

.000036 00 .0000032186 .000076 00 .00000 70333 .00 00 B6 00 .00001 08480 .00 00 F6 00 .00001 46627

.000037 00 .00000 32782 .000077 00 .00000 70929 .000087 00 .00001 09076 .00 00 F7 00 .00001 47223

.000038 00 .00000 33378 .000078 00 .00000 71525 .000088 00 .00001 09672 .00 00 F8 00 .0000 1 47819

.000039 00 .00000 33974 .00 00 79 00 .00000 72121 .00 0089 00 .00001 10268 .00 00 F9 00 .00001 48415

.0000 3A 00 .00000 34570 .0000 7A 00 .00000 72717 .00 00 8A 00 .00001 10864 .00 00 FA 00 .00001 49011

.00 00 3B 00 .00000 35166 .00007B 00 .00000 73313 .00 00 B8 00 .00001 11460 .00 00 F8 00 .00001 49607

.00003C 00 .00000 35762 .00 00 7C 00 .00000 73909 .00 00 BC 00 .00001 12056 .00 00 FC 00 .00001 50203

.00 00 3D 00 .00000 36358 .000070 00 .00000 74505 .00 00 so 00 .00001 12652 .00 00 FO 00 .00001 50799

.00003E 00 .00000 36954 .00007E 00 .00000 75101 .00 00 BE 00 .00001 13248 .00 00 FE 00 .00001 51395

.00003F 00 .00000 37550 .00 00 7F 00 .00000 75697 .00 00 SF 00 .0000 1 13844 .00 00 FF 00 .00001 51991

130 Appendix A

HEX"IMAL - DECIMAL FRACTION CONVERSI9BLE (cont.)

Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal

.00 00 00 00 .00000 00000 .00 00 00 40 .00000 00149 .00 00 00 80 .00000 00298 .00 00 00 CO .00000 00447

.00 00 00 01 .00000 00002 .00 00 00 41 .00000 00151 .0000 00 81 .00000 00300 .00 00 00 C1 .00000 00449

.00 00 00 02 .00000 00004 .00 00 00 42 .00000 00153 .00 00 00 82 .00000 00302 .00 00 00 C2 .00000 00451

.00 00 0003 ' ' .00000 00006 .00 00 00 43 .00000 00 155 .0000 00 83 .00000 00305 .0000 00 C3 .00000 00454

.00 00 00 04 .00000 00009 .00 00 00 44 .00000 00158 .00 00 00 84 .00000 00307 .00 00 00 C4 .00000 00456

.0000 00 05 .00000 000 11 .00 00 00 45 .00000 00 160 .0000 00 85 .00000 00309 .00 00 00 C5 .00000 00458

.0000 00 06 .00000 00013 .00 00 00 46 .00000 00162 .00 00 00 86 .00000 00311 .00 00 00 C6 .00000 00461

.00 00 00 07 .00000 00016 .00 00 00 47 .00000 00 165 .00 00 00 87 .00000 00314 .00 00 00 C7 .()OOOO 00463

.00 00 00 08 .00000 00018 .00 00 00 48 .00000 00167 .00 00 00 88 .00000 00316 .00 00 00 C8 .00000 00465"

.00 00 00 09 .00000 00020 .00 00 00 49 .00000 00169 .00 00 00 89 .00000 00318 .00 00 00 C9 .00000 00467

.000000 OA .00000 00023 .0000 00 4A .00000 00172 .00 00 00 8A .00000 00321 .0000 00 CA .00000 00470

.00 00 00 os .00000 00025 ' .00 00 00 48 .00000 00174 .00 00 00 88 .00000 00323 .000000 C8 .00000 00472

.00 00 00 OC .00000 00027 .00 00 00 4C .00000 00176 .000000 8C .00000 00325 .00 00 00 CC .00000 00474

.00 00 00 00 .00000 00030 .00 00 00 40 .00000 00179 .00 00 00 80 .00000 00328 .00 00 00 CD .00000 OO4n

.0000 00 OE .00000 00032 .00 00 00 4E .00000 00 181 .000000 8E .00000 00330 .00 00 00 CE .00000 00479

.00 00 00 OF .00000 00034 .00 00 00 4F .00000 00 183 .00 00 00 8F .00000 00332 .00 00 00 CF .00000 00481

.00 00 00 10 .00000 00037 .00 00 00 50 .00000 00186 .00000090 .00000 00335 .00 00 00 DO .00000 00484

.000000 11 .00000 00039 .00 00 00 51 .00000 00 188 .00 00 00 91 .00000 00337 .00 00 0001 .00000 00486

.00 00 00 12 .00000 00041 .00 00 00 52 .00000 00 190 .00 00 00 92 .00000 00339 .00 00 00 02 .00000 00488

.00 00 00 13 .00000 00044 .00 00 00 53 .00000 00193 .00 00 00 93 .00000 00342 .00 00 0003 .00000 00491

.00 00 00 14 .00000 00046 .00000054 .00000 00 195 .00 00 00 94 .00000 00344 .00 00 00 D4 .00000 00493

.00 00 00 15 .00000 00048 .00000055 .00000 00 197 .0000 00 95 .00000 00346 .00 00 00 05 .00000 00495

.000000 16 .00000 00051 .00 00 00 56 .00000 00200 .00 00 00 96 .00000 00349 .00 00 00 D6 .00000 00498

.000000 17 .00000 00053 .0000 00 57 .00000 00202 .00 00 00 97 .00000 00351 .00 00 00 07 .00000 00500

.00000018 .00000 00055 .00 00 00 58 .00000 00204 .00 00 00 98 .00000 00353 .00 0000 OS .00000 00502

.00000019 .00000 00058 .00 00 00 59 .00000 00207 .00 00 00 99 .00000 00356 .00 00 00 09 .00000 00505

.00 00 00 1A .00000 00060 .00 00 00 5A .00000 00209 .00 00 00 9A .00000 00358 .00 00 00 OA .00000 00507

.000000 18 .00000 00062 .0000 00 5B .00000 00211 .00 00 00 9B .00000 00360 .00 00 00 DB .00000 00509

.00 00 00 IC .00000 00065 .00 00 00 5C .00000 00214 .000000 9C .00000 00363 .000000 DC .00000 00512

.00 00 00 10 .00000 00067 .00 00 00 50 .00000 00216 .00000090 .00000 00365 .00 00 00 DO .00000 00514

.00 00 00 1E .00000 00069 .00 00 00 5E .00000 00218 .000000 9E .00000 00367 .00 00 00 DE .00000 00516

.00 00 00 IF .00000 00072 .0000005F .00000 00221 .0000 00 9F .00000 00370 .00 00 00 OF .00000 00519

.00 00 00 20 .00000 00074 .00 00 00 60 .00000 00223 .00 00 00 AO .00000 00372 .000000 EO .00000 00521

.00 00 00 21 .00000 00076 .00 00 00 61 .00000 00225 .000000 Al .00000 00374 .00 00 00 E1 .00000 00523

.00 00 0022 .00000 00079 .0000 00 62 .00000 00228 .0000 00 A2 .00000 00377 .00 00 00 E2 .00000 00526

.00 00 00 23 .00000 00081 .00 00 00 63 .00000 00230 .000000 A3 .00000 00379 .00 00 00 E3 .00000 00528

.00000024 .00000 00083 .00 00 00 64 .00000 00232 I .00 00 00 A4 .00000 00381 .00 00 00 £4 .00000 00530

.00 00 00 25 .00000 00086 .00 00 00 65 .00000 00235 .00 00 00 AS .00000 00384 .00 00 00 E5 .00000 00533

.00 00 00 26 .00000 00088 .00 00 0066 .00000 00237 .00 00 00 A6 .00000 00386 .00 00 00 E6 .00000 00535

.00 00 00 27 .00000 00090 .0000 00 67 .00000 00239 .00 00 00 A7 .00000 00388 .00 00 00 E7 .00000 00537

.00 000028 .00000 00093 .00 00 00 68 .00000 00242 .00 00 00 A8 .00000 00391 .00 00 00 E8 .00000 00540

.00 00 00 29 .00000 00095 .00000069 .00000 00244 .00 00 00 A9 .00000 00393 .00 00 00 E9 .00000 00542

.00 00 00 2A .00000 00097 .00 00 00 6A .00000 00246 .00 00 00 AA .00000 00395 .00 00 00 EA .00000 00544

.00 00 00 28 .00000 00100 .00 00 00 6B .00000 00249 .00 00 00 AB .00000 00398 .000000 EB .00000 00547

.00 00 00 2C .00000 00102 .00 00 00 6C .00000 00251 .00 00 00 AC .00000 00400 .00 00 00 EC .00000 00549

.000000 20 .00000 00 104 .00 00 00 60 .00000 00253 .0000 00 AD .00000 00402 .000000 ED .00000 00551

.00 00 00 2E .00000 00107 .00 00 00 6E .00000 00256 .00 00 00 AE .00000 00405 .00 00 00 EE .00000 00554

.00 00 00 2F .00000 00109 .00 00 00 6F .00000 00258 .00 00 00 AF .00000 00407 .000000 EF .00000 00556

.000000 30 .00000 00111 .00 00 00 70 .00000 00260 .00 00 00 80 .00000 00409 .00 00 00 FO .00000 00558

.00 00 00 31 .00000 00114 .00 00 00 71 .00000 00263 .00 00 00 81 .00000 00412 .00 00 00 Fl .00000 00561

.0000 00 32 .00000 00116 .00 00 00 72 .00000 00265 ' .00 00 00 B2 .00000 00414 .000000 F2 .00000 00563

.00 00 00 33 .00000 00 118 .00 00 00 73 .00000 00267 .00 00 00 B3 .00000 00416 .00 00 00 F3 .00000 00565

.00 00 00 34 .00000 00121 .0000 00 74 .00000 00270 .00 00 00 84 .00000 00419 .00 00 00 F4 .00000 00568

.00 00 00 35 .00000 00 123 .00000075 .00000 00272 .00 00 00 85 .00000 00421 .00 00 00 F5 .00000 00570

.00 00 00 36 .00000 00125 .00 00 00 76 .00000 00274 .000000 86 .00000 00423 .0000 00 F6 .00000 00572

.00 00 00 37 .00000 00128 .00 00 00 77 .00000 00277 .00 00 00 B7 .00000 00426 .00 0000 F7 .00000 00575

.0000 0038 .00000 00130 .00 00 00 78 .00000 00279 .00 00 00 B8 .00000 00428 .000000 F8 .00000 00577

.00000039 .00000 00132 .00 00 00 79 .00000 00281 .00 00 00 89 .00000 00430 .00 00 00 F9 .00000 00579

.000000 3A .00000 00 135 .00 00 00 7A .00000 00284 .00 00 00 BA .00000 00433 .00 00 00 FA .0000000582

.00 00 0038 .00000 00137 .00 00 00 78 .00000 00286 .00 00 00 88 .00000 00435 .00 00 00 FB .00000 00584

.00 00 00 3C .00000 00139 .0000 007C .00000 00288 .000000 8C .00000 00437 .00 00 00 FC .00000 00586

.00 00 00 3D .00000 00142 .00 00 00 70 .00000 00291 .00 00 00 BO .00000 00440 .00 00 00 FO .00000 00589

.000000 3E .00000 00 144 .00 00 00 7E .00000 00293 .00 00 00 8E .00000 00442 .00 00 00 FE .00000 00591

.00 00 00 3F .00000 00 146 .00 00 00 7F .00000 00295 .00 00 00 8F .00000 00444 .000000 FF .00000 00593

Appendix' A 131

TABLE OF PO\VERS OF TWO • ~EMAT~ALCONSTANTS

.t:..!!.. £:.
I 0 1.0
2 1 0.5
4 2 0.25
8 3 0.125

16 4 0.062 5
32 5 0.031 25
64 6 0.015 625

128 7 0.007 812 5

256 8 0.003 906 25
512 9 0.001 953 125

I 024 10 0.000 976 562 5
2 048 11 0.000 488 281 25

4 096 12 0.000 244 140 625
8 192 13 0.000 122 070 312 5

16 384 14 0.000 061 035 156 25
32 768 15 0.000 030 517 578 125

65 536 16 0.000 015 258 789 062 5
131 072 17 0.000 007 629 394 531 25
262 144 18 0.000 003 814 697 265 625
524 288 19 0.000 001 907 348 632 812 5

I 048 576 20 0.000 000 953 674 316 406 25
2 097 152 21 0.000 000 476 837 158 203 125
4 194 304 22 0.000 000 238 418 579 101 562 5
8 3SS 608 23 0.000 000 119 209 289 5SO 781 25

16 7n 216 24 0.000 000 059 604 644 775 390 625
33 554 432 25 0.000 000 029 802 322 387 695 312 5
67 108 864 26 0.000 000 014 901 161 193 847 656 25

134 217 728 27 0.000 000 007 450 580 596 923 828 125

268 435 456 28 0.000 000 003 725 290 298 461 914 062 5
536 870 912 29 0.000 000 001 862 645 149 230 957 OJI 25

1 073 741 824 30 0.000 000 000 931 322 574 615 478 515 625
2 147 483 648 31 0.000 000 000 465 661 287 307 739 257 812 5

4 294 967 296 32 0.000 000 000 232 830 643 653 869 628 906 25
8 589 934 592 33 0.000 000 000 116 415 321 826 934 814 453 125

17 179 869 184 34 0.000 000 000 058 207 660 913 467 407 226 562 5
34 359 738 368 35 0.000 000 000 029 103 830 456 733 703 613 281 25

68 719 476 736 36 0.000 000 000 014 551 915 228 366 851 806 640 625
137 438 953 472 37 0.000 000 000 007 275 957 614 183 425 903 320 312 5
274 877 906 944 38 0.000 000 000 003 637 978 807 091 712 951 660 156 25
549 755 813 888 39 0.000 000 000 001 818 989 403 545 856 475 830 078 125

I 099 511 627 n6 40 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5
2 199 023 255 552 41 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25
4 398 046 511 104 42 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625
8 796 093 022 208 43 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5

17 592 186 044 416 44 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25
35 184 372 088 832 45 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125
70 368 744 In 664 46 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5

140 737 488 355 328 47 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25

281 474 976 710 656 48 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625
562 949 953 421 312 49 0.000 000 000 000 00 1 776 356 839 400 250 464 677 810 668 945 312 5

1 125 899 906 842 624 50 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25
2 251 799 813685248 51 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667236 328 125

Constont

w
w-l

..r;

Inw

e
-1

e

..:e
I0910 e

log2 e

'Y

In'Y

..rz
In2

1~102

·,!nr
In 10

.. 503 599 627 370 496 52 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5
9 007 199 254 740 992 53 0.000 000 000 000 000 111 022 302 462 515 654 042 363 166 809 082 031 25

18 014 398 509 481 984 54 0.000 000 000 000 000 055 511 151 231 257 827 021 181 583 404 541 015 625
36 028 797018 963 968 55 0.000 000 000 000 000 027 755 575 615 628 913 510 590 791 702 270 507 812 5

72 057 594 037 927 936 56 0.000 000 000 000 000 013 877 787 807 814 456 755 295 395 851 135 253 906 25

Oecimol Value

3.14159 26535 89793

0.31830 98861 83790

l.n245 38509 05516

1.14472 98858 49400

2.71828 18284 59045

0.36787 94411 71442

1.64872 12707 00128

0.43429 44819 03252

1.44269 50408 88963

0.57721 56649 01533

-0.54953 93129 81645

1.41421 35623 73095

0.69314 71805 59945

0.30102 99956 63981

3.16227 76601 68379

2.30258 40929 94046

144 115 188 075 855 872 57 0.000 000 000 000 000 006 938 893 903 907 228 377 647 697 925 567 626 953 125
288 230 376 151 711 744 58 0.000 000 000 000 000 003 469 446 951 953614 188 823 848 962 783 813 476 562 5
576 460 752 303 423 488 59 0.000 000 000 000 000 001 734 723 475 976 807 094 1" 924 481 391 906 738 281 25

1 152 921 504 606 846 976 60 0.000 000 000 000 000 000 867 361 737 988 403 547 205 962 240 695 953 369 140 625
2 305 843 009 213 693 952 61 0.000 000 000 000 000 000 433 680 868 994 201 773 602 981 120 347 976 684 570 312 5
.. 611 686018 427387 904 62 0.000 000 000 000 000 000 216 840 434 497 100 886 801 490 560 173 988 342 285 15625
9 223 372 036 854 775 808 63 0.000 000 000 000 000 000 108 420 217 248 550 443 400 745280 086 994 171 142 578 125

132 Appendix A

Hexodecimal Value

3.243F 6A89

0.517C C187

I.C58F 891C

1.2500 048F

2.87El 5163

0.5E2D 5809

I.A612 98E2

0.6F20 EC55

1.7154 7653

0.93C4 67E4

-0.8CAE 9BCl

1.6A09 E668

0.8172 17F8

0.4010 4042

3.2988 075C

2.4076 37n

ePENDIX B. SIGMA 8 INSTRUCT. LIST

l\·.ncmonic Code Instruction !'Ieme Page Mnemonic Code Instruction Nom'!' Page

lOAD/STORE SHIFT

1I 22 load Immediate 36 S 25 Shift 58
lB 72 load Byte 36 SF 24 Shift Floating 60
LH 52 load Holfword 36'
LW 32 load Word 36 CONVERSION
LD 12 load Daubleword 37
lCH SA load Complement Halfword 37 CVA 29 Convert by Addition 61
lAH 5B load Absolute Halfword 37 CVS 28 Convert by Subtraction 62
lCW 3A load Complement Word 37
LAW 3B load Absolute Word" 38 FlOATING-POINT ARITHMETIC
LCD lA load Complement Doubleword 38
LAD IB lood AbsOlute Doubleword 39 FAS 3D Floating Add Short 66
LRA 2C Load Real Add ... " 39 FAL 10 FloatIng Add Long 66
LAS 26 Loed and Set 40 FSS 3C FloatIng Subtract Short 66

. LMS 20 load Memory Status 40 FSL lC Floating Subtract Long 66
LS 4A load Selective 42 FMS 3F Floating Multiply Short 66
LM 2A load Multiple 43 FML IF Floating Multiply Long 66
LCFI 02 Load Conditions and Floating Control Immediate 43 FDS 3E Floating Divide Short 67
LCF 70 load Conditions and Floating Control 44 FDL IE Floating Divide Long 67
XW 46 Exchange Word 44
STB 75 Store Byte 44 BYTE STRING
STH 55 Store Halfword 44
STW 35 Store Word 44 MBS 61 Move Byte String 69
STD 15 Store Doubleword 45 CBS 60 Compare Byte String 69
STS 47 Store Selective 45 TBS 41 Translate Byte String 70
STM 2B Store Multiple 45 TTBS 40 Translate and Test Byte String 71
STCF 74 Store Conditions and Floating Control 45

PUSH DOWN

ANALYZE/INTERPRET PSW 09 Push Word 73
PlW 08 Pull Word 74

ANLZ 44 Analyze 46 PSM OB Push Multiple 74
INT 6B Interpret 47 PLM OA Pull Multiple 75

MSP 13 Modify Stock Pointer 76

FIXED-POINT ARITHMETIC EXECU TE/BRANCH

AI 20 Add Immediate 48 EXU 67 EXbCute 77'
AH 50 Add Halfword 49 BCS 69 Branch on Conditions Set 78
AW 30 Add \\brd 49 BCR 68 Branch on Conditions Reset 78
AD 10 Add Daubleword 49 BIR 65 Branch on Incrementing Register 78
SH 58 Subtract Halfword 50 BDR 64 Branch on Decrementing Register 78
SW 38 Subtract Word 50 BAL 6A Branch and Link 79
SO 18 Subtract Doubleword 50
MI 23 Multiply Immediate 51 CALL
MH 57 Multiply Halfword 51
MW 37 Multiply Word 52 CAll 04 CallI 79
DH 56 Divide Halfword 52 CAL2 05 Coli 2 79
OW 36 Divide Word 52 CAL3 06 Call 3 79
AWM 66 Add Word to Memory 53 CAL4 07 Coli 4 80
MTB 73 Modify and Test Byte 53
MTH 53 Modify and Test Halfword 53

CONTROL MTW 33 Modify and Test Word . 54

LPSD OE load Program Stotus Doubleword 80

COMPARISON XPSD OF Exchange Program Status Doubleword 81
lRP 2F load Register Pointer 83

CI 21 Compare Immediate 55
MMC 6F Move to Memory Control 83
WAIT 2E Wait 84

CB 71 Compare Byte 55
RO 6C Read Direct 85

CH 51 Compare Holfword 55
WD 60 Write Direct 86

CW 31 Compare Word 56
CD 11 Compare Ooubleword 56
CS 45 Compare Selective 56 INPUT/OUTPUT
ClR 39 Compare with limits in Register 56
CLM 19 Compare with limits in Memory 57 SIO 4C Stort Input/Output 90

TIO 40 Test Input/Output 94
TDV 4E Test Device 95

LOGICAL HIO 4F Halt Input/Output 95
RIO 4F Reset Input/Output 96

OR 49 OR Word 57 POLP 4F Poll Processor 96
EOR 48 Exclusive OR Word 57 POlR 4F Pofland Reset Processor 97
AND 4B AND Word 57 AIO 6E Ackno'wledge Input/Output Interrupt 97

Appendix B 133

.PENDIX C. INSTRUCTION TIl\11.

TIMING CONSIDERATIONS

Because of SIGMA 8's complexity, simple timing formulas
cannot exactly express central processor operations. Timings
and formu las in this section are a reasonable approximation
of actual SIGMA 8 performance, taking all factors into
consideration. However, system performance can be estab­
lished using benchmark programs under actual operating
system environments.

All times are based on the assumption that, whenever the
CPU requests a service cycle from a particular memory
bank, it never waits for such service due to other devices
(such as lOPs), which are connected to that memory bank.

Execution times depend not only on the nature of the speci­
fic instructions but also on the configuration of memory
banks in the system, and the placement of instructions and
operands in memory. Basic timing information is sum­
marized in Table C-1. Execution times for instructions
assume the most common conditions that the user can ex­
pect to encounter in his program. These basic execution
times must be increased to account for the effects of mem­
ory interference, indexing, and indirect addressing. These
effects <;lre discussed in the following paragraphs.

EFFECTS OF MEMORY INTERFERENCE

Memory interference· wi" affect central processor speed,
which varies with the memory cycle time, the number of
memory banks capable of running in parallel , and the func­
tion being executed. Interference is minimized by inter­
leaving memory banks to allow maximum memory overlap.

In a typical instruction mix used in scientific/engineering
applications, the percentages of the instructions executed
might be as follows:

Type of Instruction Percent

Floating-point 8.5

Fixed-point (including 53.0
loads and stores)

Branch 27.5

Miscellaneous 11.0

The effect of memory interference on the above instruction
mix in an 8-bank system for 100 instructions is an increase of
approximately 7. 4 microseconds or an average of74 nano­
seconds per instruction. With a minimum memory con­
figuration (two memory bonks of 8K words each), the
effect of memory interference increases to on overage of
290 nanoseconds per instruction.

134 Appendix C

EFFECTS OF INDEXING

Indexing causes a maximum increase of 260 nanoseconds in
the execution time of an instruction. Many instructions are
limited in speed due to memory access time. Indexing is
often performed in conjunction with memory accesses. This
overlapping of indexing with memory time allows the effec­
tive time due to indexing to be 260 nanoseconds less the
memory overlap time. For a typical scientific mix of in-

-----structions~- iheaverage memory overlap is 120 nanoseconds.
The typical indexing time would then be 140 ngno$eQondst

EFFECTS OF INDIRECT ADDRESSING

Indirect addressing requires a memory access. This access
may be from the general registers or main memory.

1. Indirect addressing from general registers requires a
maximum time of 960 nanoseconds.

2. Indirect addressing from main memory requires a maxi­
mum time of 1. 050 microseconds.

The maximum time required for indirect addressing is re­
duced when the indirect memory request is overlapped with
instruction execution. This effect is instruction dependent.

EFFECTS OF REGISTER-TO-REGISTER OPERATIONS

If the reference address is X'O' through XI F', the operand
is accessed from the appropriate general register rather
than,from main memory. The additional time required for
this operation varies from 155 to 445 nanoseconds, de­
pending on the seque'nce ~f instructions being executed.

The major factors determining the additional time required
for register-to-register operations are the type of instruction
(multiple operands versus single-operand instructions)
being executed and the type of instruction preceding the
instruction in question.

For multiple operand type 'of instructions (Multiples, Push/
Pu lis, Byte Strings, etc.), the average delay for operands
other than the first of the string is approximately 260 nano­
seconds for load-type instructions and 155 nanoseconds for
store-type instructions.

For all initial operands pointed to by the effective address_
of the instruction, the delay due to register-to-register
operations is dependent on the preceding instruction as
follows:

1. If the preceding instruction is generally greater
than 1· microsecond, then the typical delay is
445 nanoseconds.

2. If the preceding instruction is genera Ify less than 1 micro­
second, then the typical delay is 235 nanoseconds.

----~----

Table C-l. Basic Instruction Timi

-
Instruction
Mnemonic Time (tJsec) Notes

AD 1.66

AH .73

AI .73

AIO 6.78 + 0 RIO.

Includes 3 tJSec to claim the processor bus.

D = turnaround time on the interface.

AIO 5.96 + 0 R = O.

Includes 3 J.Lsec to claim the processor bus.

D = turnaround time on the interface •

AND • 73

ANLZ 3.34 + p P = Time required for address preparation (indexing and/or indirect).

AW .73

AWM 1.n

BAL .9

BCR .81 Branch

BCR 1.63 No Branch

BCS .81 Branch

BCS 1.63 No Branch --.- -

BDR 1. 10 Branch

BOR 1.63 No Branch

BIR 1.1 Branch

BIR 1.63 No Branch

CALl-4 1.98

CB .81

CBS 4.3 + .6N N = number of destination bytes processed.

CO 1.4

CH .81

CI .80

CLM 1.4

Appendix C 135

ble C-1. Basic Instruction Timing (cont.)

Instruction
Mnemonic Time (jJsec) Notes

CLR .92

CS 1. 33

CVA 8.57 + .6N N = number of l's in the word converted.

CVS 27.43

CW .81

OH 9.5

-- ----_._-- -- --~---------- -- -----

OW 9.5 ,

EOR .73

EXU 1.2 Add execution time for subject instruction.

136 Appendix C

Table C-l. Basic Instruction Timing (co.
,

Instruction
. Mnemonic Time {J-Isec} Notes

FAL 2.9 {min} No prealignment or postnormalization required.

FAL 3.35 {typi co I} One hexadecimal prealignment and one hexadecimal
postnorma Ii zati on.

FAL 9.82 {max} Unnormalized operands.

FAS 2.05 (min) No prealignment or postnormaJization required.

FAS 2.54 (typica I) One hexadecimal prealignment and one hexadecimal
postnorma I i zati on.

FAS 5.33 (max) Unnormalized operands.

FDL 17.46 {min} Nonzero, normalized operands.

Minimum time is also typical time.

FDL 24.58 (max) Unnorma Iized operands.

FDS 7.69 {min} Nonzero, normalized operands.

Minimum time is also typical time.

FDS 10.86 (max) Unnormalized operands.

FML 6.27 (min) Nonzero, normalized operands.

Minimum time is also typical time.

FML 10.83 (max) Unnorma Ii zed operands.

FMS 3.32 {min} Nonzero, normalized operands.

Minimum time is also typical time.

FMS 6. 12 {max} Unnormalized operands.

FSL 2.9 {min} No prealignment or postnormalization required.

FSL 3.35 (typical) One hexadecimal preafignment and one hexadecimal
postnorma I i zati on.

Appendix C 137

.ble C-1. Basic Instruction Timing (cont.)

Instruction
Mnemonic Time (tJsec) Notes

FSL 9.82 (max) Unnorma lized operands.

FSS 2.05 (min) No prealignment or postnormalization required.

FSS 2.54 (typica /) One hexadecimal prealignment and one hexadecimal.
postnorma I i zati on.

FSS 5.33 (max) Unnormalized operands.

HIO 7.37 + D R = even, f O.

Includes 3 tJsec to claim the processor bus.

D = turnaround time on the interface.

HIO 6.78 + 0 R = odd.

Includes 3 fJSec to claim the processor bus.

D = turnaround time on the interface.

HIO 5.96 + 0 R = O.

Includes 3 tJsec to claim the processor bus.

o = turnaround time on the interface •

INT . 73 R = odd.

.75 R = even.

LAD 1.66

LAH .81

LAS 1. 94

LAW .73

LB .73

LCD 1.66

138 Appendix C

• Table C-1. Basic Instruction Timing (e)
Instru cti on
Mnemonic Ti me (fJsec) Notes

LCF .73

LCFI .73

.
LCH . 73

LeW .73

LD 1. 58

LH .73

LI .73

LM 2.8 + .8N N : number of words moved.

LMS 1. 94

LPSD 3.63

LRA 1. 06

LRP .73

LS .99

LW .73

MBS 3.4 + .6N
,

N -= number of destination bytes processed regardless of word or byte
boundaries.

MH 2.44

MI 3.32

~

MMC 3.42+2.51N N = number of words moved.

MSP 4.75

MTB 1.77

Appendi x' C 139

C-l. Basic Instruction Timing (cont.)

Instruction
Mnemonic Time (!-'sec) Notes

MTH 1.77

MTW 1. 77

MW 3.32

OR .73

PLM 7.75 + .39N N -:: number of words moved.

PLW 6.03

PSM 7.32 + .65N N = number of words moved.

PSW 5.86
.

RO 1.41 Internal

RO 2.07+ .24N External

N = i.nteger (0, 1, 2, •••), dependent on delay in external device.

S (left) 1.5 + .06N N = number of bit positions shifted.

S (right) 1.6 + .06N N = number of bit positions shifted.

S (searching left) 2.9 + .06N N = number of bit positions shifted.

S (searching right) 2.7+ .12N N = number of bit positions shifted.

SO 1.66

SF (left) 2.0+ .23N Single

N = number of hexadecimal positions shifted.

140 Appendix C

Instruction
Mnemonic

SF (left)

SF (right)

SF (right)

SH

SIO

SIO

SIO

SiB

STCF

STD

STH

STM

STS

Table C-1. Basic Instruction Timing (co.

Time (!-'sec) Notes

2. 1 + .23N Double.

N = number of hexadecimal positions shifted.

2.5 + .23N Single.

N = number of hexadecimal positions shifted.

2.6 + .23N Double.

N = number· of hexadecimal positions shifted.

.73

7.37 + D R = even, 10.

Includes 3 !-,sec to claim the processor bus.

D = turnaround time on the interface.

6.78 + D R = odd.

Includes 3 !-,sec to claim the processor bus.

D = turnaround time on the interface.

5.96 + D R = O.

Includes 3 !-,sec to claim the processor bus.

D = turnaround time on the interface.

1.77

1.77

2.42

1. 77

2.1 + .65N N = number of words moved.

1. 81

Appendix'C 141

·Ie C-1. Basic Instruction Timing (cont.)

Instruction
Mnemonic Time (~sec) Notes

STW 1.77

SW .73

TBS 5.9 + 2.25N N = number of destination bytes processed.

TOV 7.37 + 0 R Seven, 1- o.
Includes 3 ~sec to claim the processor bus.

D = turnaround time on the interface.

TDV 6.78 + D R = odd.

Includes 3 ~sec to claim the processor bus.

D = turnaround time on the interface.

TDV 5.96 + D R = o.

Includes 3 ~sec to claim the processor bus.

D = turnaround time on the interface.

TIO 7.37 + D R = even, '10.

Includes 3 ~ec to claim the processor bus.

D = turnaround time on the interface.

TIO 6.78 + D R = odd.

Includes 3 fJsec to claim the processor bus.

D = turnaround time on the interface.

TIO 5.96 + 0 R = O.

Includes 3 ~ec to claim the processor bus.

D = turnaround time on the interface.

TTBS 13 + 1. 9N N = number of destination bytes processed.

. 142 Appendix C

Table C-l. Basic Instruction Timing)

Instruction :

Mnemonic Time (lJsec) Notes
'-L:i:

WAIT • 73 Minimum time •
'i:-:;'

WD 1. 41 Internal

WD 2.07+ .24N External
-----" ----

N = integer (0, 1, 2, •••) i dependent on de lay in externa I dey ice.

XPSD 5.43

XW 1. 77

Appendix C 143

APPENDIX D .• STEM RELIABILITY AND MAINT.ABILITY

The SIGMA 8 computer system has many new design features
that provide the user with rei iable operation and efficient
maintenance. For example, the extent to which a system
can be partitioned into separate un its for either checkout
or maintenance is a IIfail-soft li feature (i.e., ability to
keep remainder of a system operational in case of fai lure
of any given unit), which was a major design goal for
SIGMA 8 development.

The new design features are outlined in the following
sections:

System N1aintainability Features

CPU Features

Main Memory Features

Multiplexor Input/Output Processor Features

High-SpeedRAD I/O Processor Features

SYSTEM MAINTAINABILITY FEATURES
SIGMA 8 computer systems are maintained by means of the
following:

1. Diagnostic Programs

Diagnostic programs for centralized SIGMA 8 units
(CPUs, memory units, and lOPs) use built-in hardware
features to detect and isolate system faults. Interface
with maintenance personnel is simplified and is pro­
vided through a local keyboard-printer or a remote
keyboard printer connected via a telephone line.
Diagnostic programs are designed with a multilevel
structure consisting of the following capabilities.

a. . System verification and testing to determine which
unit is faulty.

b. Unit functional testing to determine the specific
function that is faulty.

c. Fault location diagnosis to analyze which compo­
nent is malfunctioning.

2. Snapshot Logic

Snapshot logic enables diagnostic programs to retrieve
control fl ip-flops and internal register contents that are
not otherwise IIvisible" to a program. This feature .
makes it possible to determine system status at the time
a fault occurs and to locate the source of a fault con­
dition down to the level of a small set of replaceable
elements. {See IICPU Features".}

144 Appendix D

I

3. Status and Fault Retrieval

When a fault is detected, system status and fault infor­
mation is available for program retrieval and error
logging for subsequent analysis.

4. Partitioning Feature

5.

A SIGMA 8 system can be reconfigured through the use
of reconfiguration controls. SIGMA 8 units can be
partitioned out of the system by selectively disabling
them from the busses. Thus, faulty units can be isolated
from the system, or· an entire subsystem (including a
CPU in a multiprocessing environment) can be parti­
tioned from the primary system to permit diagnosis and
repair of a faulty unit. Repaired units can be returned
to service by reenabl ing the connections. A set of
reconfiguration control panels are centrally. located to
accomplish this function.

RESET I/O (RIO) InsTruction

This instruction provides programmed I/O Reset that
operates exactly as th9u9h the I/O Reset had been
initiated with the switch on the processor control panel
(PCP). The addressed lOP and all peripheral devices
connected to it are initialized. Special coding of RIO
will reset a CPU. (See RIO instruction, Chapter-3.)

6. Parity Checking

Parity on all data and addresses communicated in either
direction on busses between memory units and processors
(CPUs, MIOPs, and HSRIOPs) is checked. This feature
provides fault detection and location capabilities that
enhance the abil ity of an operating system or diag­
nostic program to quickly determine which unit is faulty.

7. Clock and Voltage Margins

Centralized units are provided with clock and voltage
margin capabil ities that assist maintenance personnel
or diagnostic programs to quickly locate the source of
an intermittent fault. -Programmable clock margin
control is provided and status is available for program
retrieval. NOT NORMAL conditions are indicated on
the PCP.

8. Alternate Processor Bus (optional)

This feature provides a redundant connection of the
lOPs and CPUs in a system. It is used in partitioning
central ized units for diagnostic or reconfiguration
purposes.

9. Unique Processor Numbers •

All processors have unique numbers so that they can be
identified in communications on the processor bus.

10. Processor Fault Interrupt

A processor fault interrupt (PFI) signal is generated by
processors (CPUs, MIOPs, and HSRIOPs) when certain
fault conditions are detected. The interrupt signal is
transmitted via the processor bus to all CPUs in the
system (except to the CPU generating the PFI) for
special fault handl ing.

11. Status Instructions

The two instructions, POLL PROCESSOR (POLP) and
POLL AND RESET PROCESSOR (POLR), are used to
determ ine status. All processors in a SIGMA 8 system
retain the status of faults, internal conditions, and pro­
cessor identification. When a Processor Fault Interrupt
(PFI) occurs, the CPU(s) that receive the interrupt must
determ i ne wh i ch processor caused the PFI and the nature
of the fault.

The POLP instruction causes the addressed processor to
return the contents of its fault status register and, in
the condition code bits, indicate whether the processor'
had detected a fau It and generated PFI. (See POLP
instruction, Chapter 3.)

The POLR instruction performs the same functions as
POLP but, in addition, causes the addressed processor
to reset the contents of the processor fault register and

, reset the PFI signal. (See POLR instruction, Chapter 3.)

CPU FEATURES

1. Processor Control Panel (PCP)

The PCP (see Chapter 5) is divided into two sections.
The upper portion (MAINTENANCE SECTION) con­
tains controls and indicators used exclusively by main­
tenance personnel. The lower portion is used primarily
by operating personnel to load, execute, and trouble­
shoot programs. A Control Mode switch disables cer­
tain maintenance functions during normal operation.

2. Maintenance Display

Various phases, control fl ip-flops, and registers of the
CPU and decimal unit can be displayed on the PCP.
A 16-position thumbwheel switch identifies and selects
display information during maintenance activities.

3. Snapshot Logic

All CPU logic that can be displayed on the PCP can be
monitored by a program with the,snapshot logic. At a

preselecteAck time of a given instruction execution,
selected I~ is stored into a 32-bit snapshot register.
The contents of the snapshot regi ster are then retrieved
by a specially coded READ DIRECT instruction. By com­
paring the "snapped II information with known correct
information, the diagnostic program can accurately
determine a specific fault. The failing component can
then be identified. Snapshot action can also be initi­
ated at the PCP, and the contents of the snapshot reg­
ister displayed.

4. Clock and Voltage IVargins

Clock margin control is accomplished manually at the
PCPwith th@ CLOCK MARGIN §witcan Of YfUJOf pfOQfaffl
control with a properly coded WRItE DIRECT instruction.
Three clock rates are provided:

• NORMAL

• FAST

• SLOW

Voltage margin controls are also provided at each
local d. c. power supply within a unit.

5. Memory,Clear and Scan

Manual memory clear and scan capabilities are pro­
vided to enable operators or maintenance personnel
to rapidly clear or read selected data from, or store
selected data into, any or dll consecutive CPU main
memory locations. During the read scan operation,
the CPU can be made to halt on a memory parity
error, at which time the address and data of the
indicated memory location can be displayed.

6. Address Stop Feature

This feature allows the operator or maintenance person­
nel to:

a. Stop on'any instruction whose address equals the
SELECT ADDRESS switch value. At the time of "
the halt, the instruction pointed to by the SELECT
ADDRESS appears in the DISPLAY indicators.

b. Stop on any memory reference indicated by the
SELECT ADDRESS switch.

c. Stop when any word in a selected page is referenced.

7. Manual I/O Instruction Execution

The PCP allows manual execution of READ/WRITE
DIRECT instructions while the CPU is in the idle mode.
This feature is in addition to the programmable interro~ .-'
gation provided via the READ/WRITE DIRECT instruc­
tions (see Chapter 3). Thus, all devices connected to

Appendix'O 145

the direct I/O or maintenance in&e may be
examined manually by maintenan~ersonnel.

8. Single Clock Mode

The CPU has a single clock mode of operation that
enables maintenance personnel to execute an instruc­
tion from the PCP, one internal phase at a time.

9. W. D. Timer Override

The operation of the watchdog timer can be selectively
overridden to aid maIntenance personnel in dfognosing
related machine faults (see Chapter 5).

10. CPU Traps

CPU traps are provided for a variety of detected CPU
and system fault conditions. The trap system (see
Chapter 2) provides a hig"h degree of system recover­
abi lity. Indicators and audit trai Is enable the system
programmer to accurate Iy determ ine the status of the
machine at the time of the trap. CPU fault conditions
are:

a. Memory Parity Error - When a CPU receives a
signal from the memory indicating a memory parity
error, the CPU traps. The condition code identi­
fies the memory parity error trap condition.

b.

c.

d.

Data Sus Check - If the CPU detects a parity error
on data received from memory, and the memory
does not also indi cate a parity error on the infor­
mation sent, then a data bus check occurs. like­
wise, the data bus check occurs if the memory
indicates a parity error, but the CPU does not de­
tect the parity error on the information received.
Occurrence of the data bus check condition causes
the CPU to trap.

Watch Dog Timer - The watch dog timer prevents
the CPU from being "hung Up" due to internal
faults or faults in other units. When the timer
t"imes out, the CPU traps and sets the condition
code indicating which fault has occurred.

Instruction Exceptions - If a CPU encounters an
illegal condition in certain CPU operations, an
instruction exception fault is detected and causes
a trap. Included as instruction exceptions are:

• A processor-detected fault occurring during
the execution of an interrupt or trap entry
sequence.

146 Appendix D

• An i 1& instruction in a trap (not XPSD)
or int~~t (not XPSD, MTS, MTH, MTW)
location when operating a trap or interrupt
sequence.

• The setting of the register pointer of the PSD
to a nonexistent register block as a result of
an LRP, LPSD, orXPSD.

• An illegal MOVE MEMORY CONTROL
(MMC) instruction.

• An invalid register (odd) for an instruction
(doubleword and byte string) that would yield
an unpredictable result.

11. Processor Fau It Interrupt

Whenever a CPU fault is detected, a Processor De­
tected Fault (PDF) flag is set in that CPU. If a second
fault is detected (with PDF set), the CPU wi II generate
and transmit the Processor Fault Interrupt (PFI) to any
other CPUs in the system and enter a WAIT state that
requires a Reset function to clear. Another CPU (in a
multiprocessor system) may issue an RIO instruction to
the malfunctioning CPU, which will clear the machine
(in the same way as a CPU RESET or SYS RESET would),
and cause it to resume execution at a predetermined
instruction location. For a monoprocessor, operator
action is required.

·12. Automatic Instruction Fetch Retry

When fau It conditions are detected on overlapped in­
struction fetch operations, the fetch' is aborted and an
automatic instruction fetch retry is attempted. If the
fau It recurs on the second attempt, the CPU traps in
the normal manner.

t 13. Partitioning Feature

Various partitioning features in the SIGMA 8 CPU en­
able system reconfiguration. These features are locally
controlled by switches and are readable by specially
coded READ DIRECT instructions (see Chapter 3).

a.

b.

Homespace bias switches enable placing the Home­
space for each CPU in different physica I locations
of memory (see I. Homespace II, Chapter 2).

CPU-lOP control bus selection is provided for the
purpose of switching the CPU from primary to alter­
nate processor busses. Thus, a failed CPU may be
effectively partitioned out of the system; also, an
entire subsystem consisting of an lOP, including
attached peripherals, CPU, and memory unit can
be partitioned from the primary system via this
switch and the memory port disable switches, to
allow diagnosis of any unit in the subsystem while
the primary system continues operation.

c. The direct VO bus and ~aintenance interface
bus may be selectively ~Ied from the CPU.

MAIN MEMORY FEATURES

1. Snapshot Log i c

Each memory bank contains snapshot logic that is auto­
matically activated when a memory fau It occurs to
record the nature and environment of the fault. The
contents of the memory snapshot words (each 32 bits in
size) can be retrieved by the use of the instruction,
LOAD MEMORY STATUS (see Chapter3). This feature
may be used by the operating system for error logging,
or by a diagnostic program to assist in fault locating.
Notification of a fault occurrence is via the Memory
Fault Interrupt.

2. Memory Fault Detection

Memory fault detection covers the following types of
faul ts:

a. Parity errors detected on information read out of
the memory bank.

b. Parity errors detected on addresses received from
processors.

c. Parity errors detected on data received from
processors.

d. Port selection errors detected if more than one port
is simultaneously selected for one bank. Under
this condition, the memory aborts the requested
operation without modifying the contents of any
memory location.

e. Memory bank operational status, e. g., overtem­
perature, d. c. voltages out of toleranc~, etc.

f. Data loop checks that provide additional fault de­
tection on read operations. As data is gated onto
the memory bus for transmission to a processor, it is
a I so gated from the bu s back throug h the i npu t path,
clocked into a register, and checked for parity.
Thus, the integrity of the I ine drivers/receivers at
the memory is tested on every read cycle.

3. Memory Interleave Switch

The interleaved mode of memory operation may be dis­
abled for certain diagnostic purposes with a switch
located on the PCP (see Chapter 5).

4. Clock Iv\argin Switches

Clock margins are controJled manually by means of
switches or by use of the LOAD MEMORY STATUS in­
struction. Voltage margin control is also provided at
each local d.c. power supply within a unit.

5. partitionie Memory

Partitioning of memory units is allowed on a memory
port basis where each memory bus connection may se­
lectively be disabled. Starting address switches allow
the memory system to remain a contiguous unit after
partitioning. A centrally located reconfiguration con­
trol panel for each memory unit is provided for this
purpose.

6. Memory Mode Feature

Two additional memory modes of operation are provided
for testing memory un its. These modes are called Read
and Inhibit Parity and R.ad and Chans. Parity (5 ••
Chapter 3).

a. During the Read and Inhibit Parity operation, a
word is read from memory and transmitted to the
requesting processor. If a parity error is detected
in the memory bank, the memory is prohibited from
taking any snapshot and does not generate the
Memory Fault Interrupt. It does transmit the Parity
Error signal, however. The CPU recognizes this
mode of operation and inhibits the trap that might
occur for memory parity error and data bus check
and, instead, records these attributes in the con­
dition code at the conclusion of the instruction.
If there is no parity error, the instruction is treated
as a normal LOAD WORD instruction, except for
the setting of the condition code. ,

b. During the Read and Change Parity operation, a
word is read from memory and transm i.tted to the
requesting processor. In the write half cycle, the
word is restored to memory, and the word with an
inval id parity bit is unconditionally restored. This
allows the parity generation and checking logic of
the memory to be tested.

MULTIPLEXOR INPUT/OUTPUT PROCESSOR
(MIOP) FEATURES

1. Maintenance Interface Bus

The maintenance interface bus (a special mode of the
direct VO bus) is connected to each MIOP from the
CPU for maintenance purposes. The MIOP responds
in the following way to special WRITE DIRECT and
READ DIRECT instructions executed by the CPU.

a. Under RD control, monitors one of 32 selectable
groups of MIOP logic.

b. Under WD control, steps the clock control of the
MIOP in a single-phase mode.

c. Under WD control, a snapshot mode of operation
selects a display group and stores it in a snapshot
register at the end of a preset countdown for later
monitoring by an RD instruction.

Appendix' D 147

d. Under WD control, writes dire. into an
addressed subchannel.

e. Under RD control, reads directly from an addressed
subchannel.

f. Under WD control, sets the clock margins to fast,
normal, or slow rates.

2. Parity Checking

Parity is checked on information brought out of the
MIOP's local memory for each subchannel. A fault is
reported to the system via the Processor Faul t Interrupt.

3. Maintenance Subcontrollcr

A maintenance subcontroller feature on each I/O chan­
nel assists in diagnosing the I/O system. A diagnostic
program controls and monitors the maintenance sub­
controller via the maintenance interface and the I/O
bus. The following functions can be accompl ished:

a. Simulation of a device controller that responds to
commands sent to it bx: the MIOPand receives and
sends strings of data bytes.

b. Monitoring of lOP bus during diagnostic operations.

c. Exercising of the lOP at variable rates up to and
including its maximum rate.

d. Self-testing of the maintenance subcontroller logic.

4. Clock and Voltage Margins

Clock margins are programmatically controlled by a
specially coded WRITE DIRECT instruction (see Chap­
ter 3). Voltage margin controls are provided at each
d. c. power supply.

5. Partitioning of MIOPs

Partitioning of MIOPs is accompl ished by disabling the
primary (or alternate) processor bus connection and
disabl ing the appropriate memory port(s). A centrally
located reconfiguration control panel is provided for
t~is purpose.

HIGH-SPEED RAD VO PROCESSOR (HSRIOP) FEATURES

1. N\aintenance Interface Bus

The maintenance interface bus (a special mode of the
direct I/O bus) is connected to the HSRIOP from the
CPU for maintenance purposes. The HSRIOP responds

148 Appendix 0

in the following .to special WRITE DIRECT and
READ DIRECT instr Ions executed by the CPU:

a. Under WD control, selects a phase that c~uses the
HSRIOP to halt when entered during execution of
any HSRIOP operation. At this time, the HSRIOP
may be "snapped" for diagnostic purposes, via RD
control.

b. Under RD control, "snaps" one of seven selectable
groups of internal HSRIOP logic.

c. Under WD control, steps the clock control of the
HSRIOP in a single-phase mode.

d. Under WD control, selectively sets various fault
indicators (e. g., device and memory faults) to
simulate actual fault occurrence. This feature
allows the diagnostic to test for correct HSRIOP
response under these fault conditions.

e. Under WD control, selectively initiates one of
two test modes of the HSRIOP in which the HSRIOP
responds to normal I/o instructions while simu­
lating action of the storage units. In this way,
major portions of the HSRIOP logic can be diag­
nosed separately from the storage units.

2. Test Mode 1.

This is called the "short loop" test and is initiated via
maintenance interface WD action. In this test mode,
the HSRIOP responds to Write and Read I/O commands.
Data is transferred from memory into the data buffer
and sent back to memory. The memory interface, data
buffer, and control logic are checked in Test Mode 1.

3.' Test Mode 2

This is called the "long loop" test and is initiated via
maiontenance interface WD action. In this test mode,
the HSRIOP responds to Write and Read VO com­
mands. Data is transferred from memory through the
data buffer, through the deskew logic, and then back
to memory via the data buffer again. Assuming the
"short loop" test was successful, the deskew logic is
specifically checked in Test Mode 2.

4. Clock and Voltage N\argins

Clock margins for the HSRIOP are not applicable be­
cause of its unique design. Voltage margin controls
are provided at each local d. c. power supply.

5. Partitioning of HSRIOPs

Partitioning of HSRIOPs is accomplished by disabling
the primary (or alternate) processor bus connection and
inhibiting the appropriate memory port(s). A centrally
located reconfiguration control panel is provided for
this purpose.

A.NDIX E. GLOSSARY OF SYMBOe TERMS

Term Meaning Term Meaning

() Contents of. EBl Effective byte location - byte location
pointed to by effective address of an in-
struction for byte operation.

n AND (logical product, where 0 n 0 = 0,
o n 1 = 0, 1 n 0 = 0, and 1 n 1 = 1).

ED Effective doubleword - 64-bit contents of
effective doubleword location (ED l).

u OR (logical inclusive OR, where 0 u 0 = 0,
o u 1 = 1, 1 u 0 = 1, and 1 u 1 = 1). EDl Effective doubleword location - doubleword

location pointed to by effective address of
an instruction for a doubleword operation.

@ EOR (logical exclusive OR, where
If odd-numbered word location is specified,

O@ 0 = 0,0 @ 1 = 1, 1 @ 0 = 1,
low-order. bit of effective address field (bit
position 31) is automatically forced to O.

and 1 @ 1 = 0).
Hence, odd-numbered word address (re-
ferring to middle of doubleword) designates

, same doubleword as even-numbered word
AM Fixed-point arithmetic trap mask - bit posi- address when used for a doubleword operation.

tion 11 of PSD. If set (=1), computer traps
to Homespace location X143' after executing
an instruction causing fixed-point overflow; EH Effective halfword - 16-bit contents of
if not set, computer does not trap. effective halfword location, or (EH l).

CC Condition code - 4-bit va·lue (bit positions
EHl Effective halfword location - halfword loca-

labeled CC 1, CC2, CC3, and CC4), estab-
tion pointed to by effective address of an

I ished as part of the execution of most
instruction for halfword operation.

SIGMA a instructions.

, EI External interrupt group inhibit - bit posi-
tion 39 of PSD. If set (=1), a" interrupt

CI Counter interrupt group inhibit - bit posi- levels within this group are inhibited.
tion 37 of PSD. If set (=1), all interrupt
levels within this group are inhibited.

ESA Effective source address - in byte string in-
structions, address of the source byte

DA Destination address - in byte string instruc-
string.

tions, address of the destination byte string.

EW Effective word - 32-bit contents of effective
word location (EWl).

DBS Destination byte string - operand specified
by byte string instruction.

EWl Effective word location - word location
pointed to by effective address of an in-

EA Effective address - address value obtained
struction for a word operation.

as result of indirect addressing and/or
indexing.

FN Floating normalize mode control - bit posi-
tion 7 of PSD. If not set I resu Its of floating-
point additions and subtractions are to be

EB Effective byte - a-bit contents of eff~ctive normalized; if set (=1), results are not
byte location (EBl). norma I i zed.

Appendix E 149

Term

FS

FZ

, I

IA

II

MS

PSD

R

RA

Meaning

Floating significance mode control - bit posi­
tion 5 of PSD. If set (=1), computer traps to
location X'44' when more than two hexa­
decimal places of postnormalization shifting
are required for a floating-point addition or
subtraction; if not set, no significance
checking is performed.

Floating zero mode control - bit position 6
of the PSD. If set (=1), ,computer traps to
location X'44' when either characteristic
underflow or zero result occurs for a floating­
point multiplication or division; if not set,
characteristic underflow and zero result are
treated as normal conditions.

Instruction register - internal CPU register
that holds instructions obtained from memory
while they are being decoded.

Instruction address - 17-bit va lue that defines
address of instruction immediately prior to the
time that it is executed.

I/O interrupt group inhibit - bit position 38
of the PSD. If set (=1), all interrupt levels
within this group are inhibited.

Master/slave mode control - bit position 8 of
PSD. When set (=1), computer is in slave
mode; when not set, computer is 'i n master
mode.

Program status doubleword - collection of
separate registers and flip-flops treated as
a 64-bit internal CPU register to store and
display critical control information.

General register address value - 4-bit con­
tents of bit positions 8-11 (R field) of
instruction word, also expressed symbolically
as (I)8-11' In instruction descriptions,
register R is general register (of current
register block) that corresponds to R field
address value.

Reference address - contents of bit posi­
tions 15-31 of instruction word, a 17-bit
field capable of directly addressing any
general register in current register block (by
using a value in range 0-15) or any word in

150 Appendix E

Term

RA
(cont)

RP

Rul

SBS

SE

SPD

TCC

TS

TSA

Meaning

main memory in address range 16 through
131,071. This address value is initial ad­
dress value for any subsequent address
computations.

Register pointer - bit positions 56-59 of PSD;
bits 58 and 59 select one of four possible
register blocks; bits 56 and 57 are reserved.

Odd register address value - register Rul is
general register pointed to by, value obtained
by logically ORing 0001 into address for
register R. Thus, if R field of instruction
contains even value, Ru 1 = R + 1 and if
R field contains odd value, Ru 1 = R.

Source address - in byte string instructions,
contents of specified R register. .'

Source byte string - operand specified by
byte string instruction.

Sign extension - some instructions operate
on two operands of different lengths; they
are made equal in length by extending sign
of shorter operand by requ ired number of
bit positions. For positive operands, result
of sign extension is high-order O's prefixed
to the operand; for negative operands, high­
order l's are prefixed to operand. Sign ex­
tension proc,ess is performed after operand
accessed from memory and before operation
called for by instruction code is performed.

Stack pointer doubleword - contains the
context (TSA, space count, word count,
and TS, TW inhibit bits) of the push-down
instructions.

T~ap condition code - 4-bit value (bit posi­
tions labeled TCC1, TCC2, TCC3, and TCC4),
established as part of trap operations.

Trap-on-space inhibit bit - conditions push­
down stack limit trap for impending overflow
or underflow of space count.

Top-of-stack address - pointer that points
to highest-numbered address of operand
stack in push-down instructions.

Term

TW

. WK

x

Meaning

Trap-on-word inhibit bit - conditions push­
down stack limit trap for impending overflow
or underflow of word count.

Write key - bit positions 34 and 35 of PSD;
they are evaluated by the memory write­
protect feature to determine accessibility of
memory by current program.

Index register address value - 3-bit contents
of bit positions 12-14 (X field) of instruction

Term

X (cont)

Xl n '

ning

word. In instruction word, if X = 0, no
indexing is performed; if X I 0, indexing is
performed (after indirect addressing if indi­
red addressing is called for) with general
register X in current register block •

Hexadecimal qualifier - hexadecimal
value (n) is unsigned string of hexadecimal
digits (0 through 9 and A through F) sur­
rounded by single quotation marks and pre­
ceded by the qualifier "X" (for example,
7B0

16
is written X'7BO'.

Appendix E .151

AD
AH
AI
AJO
AND
ANlZ
AW
AWM

SAL
BCR
SCS
BDR
SIR

CAll
CAl2
CAL3
CAl4
CB
CBS
CO
CH
CI
CLM
CLR
CS
CIA
CVS
ON

DH
OW

EOR
EXU

FAl
FAS
fDl
FDS
FMl
fMS
FSl
FSS

HIO

INT

LAD
lAH

--to-lAS
LAW
L8
LCD
lCF
LCFI
lCH

10
50
20
6E
48
44
30
66

6A
68
69
64
6S

04
OS
06
07
71
60
11
51
21
19
39
4S
29
28
31

56
36

48
67

10
3D
IE
3E
IF
3F
lC
3C

4F

6B

18
58
26
38
72
lA
70
02
5A

XDSSIG.IN~TRUCTION LIST (MNEMONI8I:

Instruction Nome -------
Add Doubleword
Add Halfword
Add Immediate
Acknowledge Input,/Output Interrupt
AND Word
Anolyze
Add Word
Add Word to Memory

Branch and link
8ranch on Condifions,Reset
Bronch on Conditions Set
Bronch on Decrementing Register
Bronch on Incrementing Register

Ca!ll
Coil 2
Call 3
Call 4
Compare Byte
Compare 8yte String
Compare Doubleword
Compare Holfword
Compare Immediate
Compare with limih in Memory
Compare with Limits in Register
Compare Selective
Convert by Addition
Convert by Subtroction
Compare Word

Divide Holfword
Divide Word

Exclusive OR Word
Execute

Floating Add long
Floating Add Short
Floating Divide long
Floating Divide Short
Flooting Multiply Long _
Flooting Multiply Short
Flooting Subtrcict long
Floating Subtroct Short'

Holt Input,/Output

Interpret

Load Absolute Doubleword
lood Absolute Holfword
Load and Set
Load Absolute Word
Lood Byte
Load Complement Doubleword
load Conditions and Ftooting Control
load Conditions and Flooting ,Control In\mediote
load Complement Holfwo~

49
49
48
97
57
46
49
53

79
78
78
78
78

79
79
79
80
55
69
56
55
5S
57
S6
56
61
62
56

52
52

57
77

66
66
67
67
66
66
66

-66

95

47

39
37
40
38
36
38
44
43
37

lCW,
lD
lH
1I

, lM
~LMS

lPSD
~LRA

LRP
lS
LW

MBS
MH
MI
MMC
MSP
MTB
MTH
MTW
MW

OR

PlM
PLW

,-.... POLP
--.. POLR

PSM
PSW

RD
--+ RIO

S
SO I.

SF
SH
SIO
STB
STCF
STD
STH
STM
STS
STW
SW

TBS
TDV
TlO
TTBS

WAIT
WD

XPSD
XW

Code.c·- Instruction Nom.

3A~:".: loodComplementWord
12 " Load Doubteword . , . ',.;

52 . Load Holfworcl "
22 ,:.' " Load Immediate
2Alood Multiple
20 ' load MelllOlY statu.
OE load Program Status'DQubleword
2C :,lood Reol Address
2F load Register Pointer
4A lood Selective
32 load Word

61
57
23
6F
13
73
53
33
37

49

OA
08
4F
4F
OB
09

6C
4F

25
18
24
58
4C
75
74
15
S5
28
47
3S
38

41
4E
40
40

2E
60

OF
46

Move Byte Stri,n;
Multiply Halfword
Multiply Immediate
Move to Memory Control
Modify Stock Pointer
Modify and T est8yte
Modify and Test Halfword
Modify and Test Word
Multiply Word

OR Word

Pull Multiple
Pull Word
Poll Processor
Poll and Reset Processor
Push Multiple
Push Word

Read Direct
Reset Input/Output

Shift
Subtroct Doubteword
Shift Flooting
Subtract Holfword
Stort Input/Output
Store Byte
Store Conditions and Floating Control
Store Doubleword
Store Holfword
Store Multiple
Store Selective
Store Word
Subtroct Word

Tronslate Byte String
Test Device
Te,t Input!Output
Translate and Test Byte String

Woit
Write Direct

Exchange ProgromStotus Doubleword
Exchange· Word

37
37
JO
36
43
40
80
39
83
42
36

69
51
51
83
76
53
53
54
52

57

7S
74-
96
97
74)
73

85
96

58
50
60
50
90
44
45
45
44
45
45
44
50

70
95
94
71

84
86

81
44

	0001
	0002
	0003
	0004
	0005
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152

