
XIDlS SIGMA 9 COMPUTER

Xerox Data Systems

Reference Manual

XoS SIGMA 9 INSTRUCTION LIST (MNEMONICS)

Mnemonic Code Instruction Name ~age Mnemonic ~ode Instruction Name Page

AD 10 Add Doubleward 60 LCF 70 Load Conditions ond Floating Control 55
AH 50 Add Halfword ' 60 LCFI 02 Load Conditions and Floating Control Immediate 54
AI 20 Add Immediate 59 LCH 5A Load Complement Halfword 48
AIO 6E Acknowledge Input/Output Interrupt 120 LCW 3A Load Complement Word 48
AND 4B AND Word 68 LD 12 Load'Doubleword 48
ANLZ 44 Analyze 57 LH 52 Load Halfword 47
AW 30 Add Word 60 LI 22 Load Immediate 47
AWM 66 Add Word to Memory 64 LM 2A Lood Multiple 54

LMS 2D Load Memory Status 51
BAL 6A Branch and link 101 LPSD OE Load Program Status Doubleword 103
BCR 68 Branch on Conditions Reset 100 LRA 2C Load Rea I Address 50
BCS 69 Branch on Conditions Set 100 LRP 2F Load Register Pointer 106
BDR 64 Branch on Decrementing Register 101 LS 4A Load Selective 53
BIR 65 Branch on Incrementing Register JOO LW 32 Load Word 47

CAll 04 Call 1 102
MBS 61 Move Byte String 86

CAL2 05 Call 2 102
CAL3 06 Call 3 102

MH 57 Multiply Halfword 62

CAL4 07 Call 4 102
MI 23 Multiply Immedi-ate 62

CB 71 Compare Byte 66
MMC 6F Move to Memory Control 106

CBS 60 Compare Byte String 87
MSP 13 Modify Stack Pointer 98

CD 11 Compare Doubleword 67
MTB 73 Modify and Test Byte 64

CH 51 Compare Halfword 66
MTH 53 Modify and Test Halfword 64
MTW 33 Modify and Test Word 65

CI 21 Compare Immediate 66
MW 37 , M~ltiply Word 63

CLM 19 Compare with Limits in Memory 68
CLR 39 Compare with Limits in Register 67

OR 49 OR Word 68
CS 45 Compare Selective 67
CVA 29 Convert by Addition 72

PACK 76 Pack Decimal Digits 83
CVS 28 Convert by Subtraction 73

PLM OA Pull Multiple 97
CW 31 Compare Word 67

PLW 08 Pull Word 96

DA 79 Decimal Add 81
POLP 4F Poll Processor 120
POLR 4F Poll and Reset Processor 120

DC 7D Decimal Compare 82
PSM OB Push Multiple 96

DD 7A Decimal Divide 82
DH 56 Divide Halfword 63

PSW 09 Push Word 95

• DL 7E Decimal Load 80
RD 6C Read Direct 108

DM 7B Decimal Multiply 81
RIO 4F Reset Input/Output 120

DS 78 Decimal Subtract 81
DSA 7C Decimal Shift Arithmetic 82

S 25 Shift 69
DST' 7F Decimal Store 81

SD 18 Subtract Doubleword 61
DW 36 Divide Word 63

SF 24 Shift Floating 71

EBS 63 Edit Byte String 89
SH 58 Subtract Ralfword 61

EOR 48 Exclusive OR Word 68
SIO 4C Start Input/Output 114

EXU 67 Execute 99
STB 75 Store Byte 55
STCF 74 Store Conditions and Floating Control 56

FAL ID Floating Add Lang 77
STD 15 Store Doubleword 56
STH 55 Store Ha I fword 55

FAS 3D Floating Add Short 77
STM 2B Store Multiple 56

FDL IE Floating Divide Long 78
STS 47 Store ,Selective 56

FDS 3E Floating Divide Short 78
STW ~5 Store Word 55

FML IF Floating Multlply Long 77
SW 38 Subtract Word 61

FMS 3F Floating Multiply Short 77
FSL lC Floating SiJbtract Long 77
FSS 3C Floating Subtract Short 77 TBS 41 Translate Byte String 87

TDV 4E Test Device 118
HIO 4F Halt Input/Output 119 TIO 4D Test Input/Output 117

HBS 40 Translate and Test Byte String 88
lNT 6B Interpret 58

UNPK 77 Unpack Decimal Digits 84
LAD 1B Load Absolute Doubleword 50
LAH 5B Load Absolute Halfword 48 WAIT 2E Wait 108
LAS 26 Load and Set 51 WD 6D Write Direct 110
LAW 3B Load Absolute Word 49
LB 72 Load Byte 47 XPSD OF Exchange Program Status Doubleword 103
LCD lA Load Complement Doubleword 49 XW 46 Exchange Word 55

Price: $6.50

XDS SIGMA 9 COMPUTER

REFERENCE MANUAL

FIRST EDITION

90 17 33A

October 1970

Xerox Data Systems/701 South Aviation Boulevard/EI Segundo, California 90245

© 1970, Xerox Data Systems, Inc. Printed in U.S.A.

ii

RELATED PUBLICATIONS

Title

XDS Sigma Glossary of Computer Terminology

XDS Symbol/Meta-Symbol Reference Manual (Sigma 5/7 Computers)

XDS Macro-Symbol Reference Manual (Sigma 5/7 Computers)

Publ ication No.

90 09 57

90 0952

90 15 78

l.

2.

CONTENTS

SIGMA 9 SYSTEM

Introduction 1
General Characteristics 1
General-Purpose Features 3
Input/Output Capabi I ities 4
Time-Sharing Features 4
Real-Time Features 5
Multiusage Features 6
Multiprocessor Features 6

Multiprocessor Interlock 6
Homespace 6
Multiport Memory System 6
Manual Partitioning Capabi lity 7
Multiprocessor Control Function 7
Shared Input/Output 7

SIGMA 9 SYSTEM ORGANIZA nON 8

Central Processing Un it 8
General Registers 8
Memory Control Storage 8
Computer Modes 11
Information Format 11
Information Boundaries 12
Instruction Register 12

Main Memory 13
Memory Unit 13
Virtual and Real Memory 14
Homespace 14
Memory Reference Address 14
Types of Addressing 17
Address Modification Examples 20
Memory Address Control 22
Program Status Doubleword 26

Interrupt System 28
Internal Interrupts 29
Externa I Interrupts 30
States of an Interrupt Level 30
Control of the Interrupt System 32
Time of Interrupt Occurrences_ 32
Single-Instruction Interrupts 32

Trap System __ 33

Trap 33
T rap Entry Sequence _______ 33
Trap Masks 33
Trap Condition Code 33
Trap Addressing 33
Nonallowed Operation Trap 35
Unimplemented Instruction Trap 36
Push-Down Stack Limit Trap 37
Fixed-Point Overflow Trap 37
Floating-Point Arithmetic Fault Trap 38
Decimal Arithmetic Fault Trap 39
CALL Instruction Trap 39
Processor Detected Fau Its 39
Trap ConditIons During HAnti cipateJl Operations _ 42
Register Altered Bit 42

3. INSTRUCTION REPERTOIRE 44

Load/Store Instructions __________ _
Analyze/Interpret Instructions ________ _
Fixed-Point Arithmetic Instructions _____ _
Comparison Instructions __________ _
Logical Instructions ____________ _
Shift Instructions~ ____________ _

Floating-Point Shift __________ _

Zoned Decimal Numbers ________ _
Decimal Accumulator __________ _
Decimal Instruction Format ________ _
Illegal Digit and Sign Detection _____ _
Overflow Detection __________ _
Decimal Instruction Nomenclature _____ _
Condition Code Settings _________ _

Byte-String Instructions __________ _
Push-Down Instructions __________ _

Stack Pointer Doubleword (SPD) _____ _
Push-Down Condition Code Settings ____ _

Execute/Branch Instructions ________ _
Branches in Real Extended Addressing

Mode ______________ __ 99
Nonallowed Operation Trap During Execution

of Branch Instruction _________ 99
CALL Instructions _________ 101
Control Instructions 102

Program Status Doubleword ______ 102
Loading the Memory Map __ 106
Loading the Access Protection Controls 107
Loading the Memory Write Protection

Locks _______________ 107
Interruption of MMC 108
Read Direct - Internal Computer Control

(Mode 0) ____________ 109
Read Direct, Interrupt Control

(Mode 1) _________________ _ 109
Write Direct - Internal Computer Control

(Mode 0) ____________ 110
Write Direct, Interrupt Control

(Mode 1) ____________________ 112
Input/Output Instructions 113

I/O Addresses 113
Processor Addresses

(Bits 19-23) ___________ 113
Device Controller Addresses

(Bits 24-31)---__________ 113
I/O Unit Address Assignment 113
I/O Status Response 114
Status Information for SIO 114
General Registers _____________ 116

iii

4. INPUT/OUTPUT OPERATIONS 122 Contro I Codes 138
Special Code Properties 138

Operational Command Doublewords 123 XDS Standard 8-Bit Computer· Codes (EBCDIC) __ 139
Order 123 XDS Standard 7-Bit Communi cation Codes
Memory Byte Address 123 (USASCII) 139
Flags 123 XDS Standard Symbol-Code Correspondences __ 140
Byte Count 125 Hexadecimal Arithmetic 144

Control Command Doublewords 125 Addition Table 144
Multiplication Table 144
Table of Powers of Sixteen 10 145

5. OPERATOR CONTROLS 127 Table of Powers of Ten16 145
Hexadecimal-Decimal Integer Conversion Table_146

Processor Contro I Pane I 127 Hexadecimal-Decimal Fraction Conversion Table_152
Contro I Mode 127 Table of Powers of Two 156
POWER ·128 Mathematical Constants 156
MEMORY CLEAR 128
SYS RESET 128
I/O RESET 128

B. SIGMA 9 INSTRUCTION LIST 157
LOAD 128
UNIT ADDRESS 128
SENSE 128
NOT NORMAL 128 C. INSTRUCTION TIMING 158
HALT 128
WAIT 129 Timing Considerations 158
RUN 129 Effects of Memory Interference 158
Program Status Doubleword 129 Effects of Indexing 158
INSERT 130 Effects of Indi rect Addressi ng 158
CPU RESET 130
INTERRUPT 130
ADDRESS STOP 130

D. SYSTEM RELIABILITY AND MAINTAINABILITY 166
SELECT ADDRESS 131
DISPLA Y (switch) 131

System Maintainabi I ity Features 166
INSTR ADDR 131

CPU Features 167
DISPLAY (Indicator) 132

Main Memory Features 169
DISPLAY FORMAT 132
FORMAT SEL 132

Multiplexor Input/Output Processor
(MIOP) Features 169

DATA 132
STORE 132

High-Speed RAD I/O Processor (HSRIOP)
Features 170

COMPUTE 132
Maintenance Controls 133

Alarm 133
Margins 133 E. GLOSSARY OF SYMBOLIC TERMS 171
PHASES 133
CLOCK MODE 133
SNAP 133

ILLUSTRATIONS MEMORY MODE 134
OVERRIDE MODE 134 SIGMA 9 Computer System vi

134 SCAN l. A Typical SIGMA 9 System 9
EXT DIO 135 2. Central Processing Unit 10

Operating Procedures 135 3. Information Boundaries 12
Loading Operation 135 4. Addressing Logic 16
Fetchi ng and Storing Procedure 137 5. Index Displacement AI ignment (Real and

Virtual Addressing Modes) 21
6. Index Displacement AI ignment {Real Extended

Addressing} 22
APPENDIXES 7. Generation of Actual Memory Addresses,

Virtual Addressing (SIGMA 9 Mode) 23
8. Generation of Effective Virtual Address, Real

A. REFERE NCE TABLES 138 Extended Addressi ng 24
9. Interrupt Priority Chain 29

XDS Standard Symbols and Codes 138 10. Operational States of an Interrupt Level 31
XDS Standard Character Sets 138 11. Processor Control Panel 127

iv

TABLES 8. Status Word 1 53
9. Status Word 2 53

1. Homespace Layout 15 10. ANAL YZE Table for SIGMA 9 Operation
2. Computer Operating and Addressing Modes ___ 28 Codes 58
3. SIGMA 9 Interrupt Locations 29 11. Floating-Point Number Representation 74
4. Summary of SIGMA 9 Trap Locations 34 12. Condition Code Settings for Floating-Point
5. TCe Setting for Instruction Exception Instructions 76

Trap (X I 4D') 41 13. Status Response for I/O Instructions 115
6. Registers Changed at Time of a Trap Due to 14. Program Status Doubleword (PSD)

an Operand Access 42 Indi cation 129
7. Status Word 0 52 C-l. Basic Instruction Timing J58

v

1. SIGMA 9 SYSTEM

INTRODUCTION

The XDS SIGMA 9 Computer System is a high-speed,
general-purpose digital computer system. It is designed
for a variety of scientific, business data processing, and
time-sharing applications. A basic system includes a
central prbcessing unit (CPU), a main memory subsystem,
and an independent input/output subsystem .. Each major
system element performs asynchronously with respect to
other elements.

The basic system can be readi Iy expanded to accommodate
the user1s requirements. Main memory has addressing space
for four million words. Memory access paths can be in­
creased from the basic two ports to a maximum of 12 ports.
Input/output capability can be increased by adding more
input/output processors (lOPs), device controllers, and I/O
devices.

The CPU has a large instruction set that includes floating­
point and decimal instructions. A special feature called
1I100k-ahead ll enables the CPU to overlap instruction exe­
cution with memory accessing, thereby reducing program
execution time. A large main memory of up to 524,288
(512K) words is provided. The memory consists of up to
16 modular units of 32,768 (32K) words each. The number
of ports in each memory unit can be expanded to allow
independent access to memory by up to 12 processors - either
CPUs or lOPs. Each bank operates asynchronously, and
address interleaving can be provided between adjacent
banks. This multibanK, multiaccess memory subsystem with
interleaving achieves system performance far in excess of
single memory bank designs. The SIGMA 9 system can in­
clude up to 11 independent I/O processors (limited only by
port expansion capability) of two types - multiplexor I/O
processors and high-speed RAD I/O processors - which can
transfer data at rates up to three mill ion bytes per second,
concurrent with CPU instruction execution.

The SIGMA 9 computer design is compatible with the
SIGMA 7 computer, so that SIGMA 7 programs will run
on SIGMA 9. Therefore, comprehensive, modular soft­
ware, requiring no reprogramming is avai lable, including
operating systems, assemblers, compilers, mathematical
and uti I ity routines.

Reliabi lity, maintainabi lity, and avai labi lity have been
significantly improved over previous SIGMA computers.
A partitioning feature, for example, permits faulty units or
an entire subsystem, consisting of a CPU, memory un it,
lOP, and attached peripherals to be isolated from the sys­
tem for diagnosis and repair whi Ie the primary system
continues operation.

This manual describes the general characteristics and
features, system organ ization, instruction set, I/O oper­
ations, operator controls, and timing of the system.

GENERAL CHARACTERISTICS

A SIGMA 9 computer system has features and operating
characteristics that permit efficient functioning in general­
purpose, multiprocessing, time-sharing, real-time, and
multiusage environments:

• Word-oriented memory (32-bit word plus parity bit)
which can be addressed and a Itered as byte (8-bit),
halfword (2-byte), word (4-byte), and doubleword
(8-byte) quantities.

• Memory expandable from 131,072 (l28K) to 524,288
(512K) words in blocks of 16,384 (16K), 32,768 (32K),
and 65,536 (64K) words. Expansion proceeds in 32K
blocks from 128K to 256K, and in 64K blocks from
256K to 512K (where K = 1024 words).

• Direct addressing capability (real extended mode) of
entire memory.

• Indirect addressing with or without post-indexing.

• Displacement index registers, automati ca lIy self­
adjusting for all data sizes.

• Immediate operand instructions, for greater storage
effi ciency and increased speed.

• 16 general-purpose registers, expandable to 64 (in
blocks of 16) reduce data transfer to and from reg­
isters in a multiusage environment.

• Hardware memory mapping, which virtually elimi­
nates memory fragmentation and provides dynamic
program relocation.

• Four modes of memory access protection for system
and information security and protection.

• Memory write protection preventing inadvertent
destruction of critical areas of memory.

• Watchdog timer to assure nonstop operation.

• Real-time priority interrupt system with automatic
identification and priority assignment, fast response
time, and up to 238 levels that can be individually
armed, enabled, and triggered by program control.

• Instructions with long execution times can be in­
terrupted to guarantee response to interrupts.

• Automatic traps for error or fault conditions, with
masking capabi lity and maximum recoverabi lity,
under program contro I.

• Power fail-safe for automatic, safe shutdown in
event of power fai lure.

SIGMA 9 System

•

•

•

Multiple interval timers with a choice of resolutions
for independent time bases.

Privi leged instruction logic for program integrity
in multi usage environments.

Complete instruction set that includes:

• Byte, halfword, word, and doubleword
operations.

• Use of all memory-referencing instructions for
register-to-register operations, with or with­
out indirect addressing and post-indexing, and
within normal instruction format.

• Multiple register operations.

• Fixed-point integer arithmetic operations in
halfword, word, and doubleword modes.

• Floating-point hardware operations in short
and long formats with significance, zero, and
normalization control and checking, all

•

un der fu II program contro I.

Full complement of logical operations (AND,
OR, exclusive OR).

• Comparison operations, including compare
between limits (with limits in memory or in
registers).

• Call instructions that permit up to 64 dyn­
amically variable, user-defined instructions,
and allow a program access to operating
system functions without operating system
intervention.

• Decimal hardware operations, including arith­
metic, edit, and pack/unpack.

• Push-down stack operations (hardware im­
plemented) of single or multiple words, with
automatic limit checking, for dynamic space
allocation, subroutine communication, and
recursive routine capabi lity.

• Automatic conversion operations, including
binary/BCD and any other weighted-number
systems.

• Analyze instruction that facilitates effective
address computati on.

• Interpret instruction that increases speed of
interpretive programs.

• Shift operations (left and right) of word or
doubleword, including logical, circular,
arithmetic, searching shift, and floating­
point modes.

2 General Characteristics

•

•

Built-in reliabi lity and maintainabi lity features
that include:

• Diagnostic programs with capabilities for: sys­
tem verification and testing to determine the
faulty unit; unit functional testing to deter­
mine the specific function of a unit that is
faulty; and fault location diagnosing to analyze
what physical component is malfunctioning.

• Extensive error logging. When a fault is de­
tected, system status and fault information are
available for program retrieval and logging for
subsequent analysis.

• Full parity checking on all data and addresses
communicated in either direction on busses be­
tween memory units and processors, providing
fau It detection and location capabi lity to per­
mit the operating system or diagnostic program
to quickly determine a faulty unit.

• Address stop feature that permits operator or
maintenance personnel to:

Stop on any instruction address.
Stop on any memory reference address.
Stop when any word in a selected page

of memory is referenced.

• Programmable "snapshot" registers that enable
diagnostic routines to compare contents of a
snapshot register with known correct informa­
tion, thus accurately determining system fault
conditions.

• CPU traps, which provide for detection of a
variety of CPU and system fault conditions,
designed to enable a high degree of system
recoverability.

• Partitioning features that enable system recon­
figuration. SIGMA 9 un its can be partitioned
from the system by selectively disabling them
from busses. Thus, faulty units or an entire
subsystem, consisting of a CPU, memory unit,
input/output processor (lOP), and attached
peripherals, can be isolated from the oper­
ational system to enable diagnosis and repair
of a faulty unit while the primary system con­
tinues operation.

Independently operating I/O system with the fol­
lowing features:

• Direct input/output of a full word, without
use of a channel.

• Up to eleven I/O processors (restricted only
by port limitations).

• Multiplexor I/O processors (MIOP) with dual
channel capability, providing forsimultaneous

•

•

operation of up to 24 devices on one channel,
and concurrently, simultaneous operation of
eight devices on the other channel.

• High-speed Rapid Access Data I/O processor
(HSRIOP) for use with XDS high-speed RAD
storage units, allowing data transfer rates of
up to three million bytes per second.

• Both data and command chaining, for gather­
read and scatter-write operations.

• Up to 32,000 output control signals and in­
put test signals.

Comprehensive array of modular software that is
program compatible with XDS SIGMA 5, 6, and 7
computers:

• Expands in capability and speed as system
grows.

• Operating systems: Batch Processing Monitor
(BPM), Batch Time-Sharing Monitor (BTM),
Real-Time Batch Monitor (RBM), Universal
Time-Sharing System (UTS), and Xerox Oper­
ating System (XOS).

• General-Purpose Compilers: Extended XDS
FORTRAN IV, XDS FORTRAN IV-H, BASIC,
and FLAG.

• Assemblers: Symbol, Macro-Symbol, and
Meta-Symbo I.

• Library: Mathematical, utility, and input/
output programs.

• Business software: Data Management System
(DMS-l), Generalized Sort and Merge, XDS
ANS COBOL, Manage, Terminal-Oriented
Manage, and 1401 Simulator.

• Application software: Functional Mathemati­
cal Programming System (FMPS), FMPS
Matrix Generator/Report Writer (GAMMA 3),
Simulation Language (S L-1), Circuit Analysis
Systems (CIRC-AC, CIRC-DC), and Graphic
Display Library (GDL-l).

Standard and special-purpose peripheral equip­
ment including:

• Rapid Access Data (RAD) files: Capacities to
6.2 million bytes per unit; transfer rates of
three mill ion bytes per second; average access
times from 17 mi IIiseconds.

• Magnetic tape units: 7-track and 9-track
systems, IBM-compatible; high-speed units
operating at 150 inches per second with trans­
fer rates up to 120,000 bytes per second; and
other units operating at 75 inches per second

with transfer rates up to 60,000 bytes per
second and at 37.5 inches per second with
transfer rates up to 20,800 bytes per second.

• Displays: Graphic display has standard char­
acter generator, vector generator, and c lose­
ups, as well as iight pen, and alphanumeric/
function keyboard.

• Card equipment: Reading speeds up to 1500
cards per minute; punching speeds up to 300
cards per minute; intermixed binary and
EBCDIC card codes.

• Line printers: Fully buffered with. speeds up
to 1,500 lines per minute; 132 print positions
with 64 characters.

• Keyboard/printers: 10 characters per second;
also available with paper tape reader (20char­
acters per second) and punch (l0 characters
per second).

• Paper tape equipment; Readers with speeds up
to 300 characters per second; punches with
speeds up to 120 characters per second.

• Graph plotters: Digital incremental, provid­
ing drift-free plotting in two axes in up to
300 steps per second at speeds from 30 milli­
meters to 3 inches per second.

• Data communications equipment: Complete
line of character-oriented and message­
oriented equipment to connect remote user
terminals (including remote batch) to the
computer system via common carrier lines
and local terminals directly.

GENERAL-PURPOSE FEATURES

General-purpose computing applications are characterized
by emphasis on computation and internal data handling.
Many operations are performed in floating-point format and
on strings of characters. Other typical characteristics
include decimal arithmetic operations, binary to decimal
number conversion (for printing or display), and consider­
able input/output at standard speeds. The SIGMA 9 com­
puter system includes the following general-purpose
features.

Floating-Point Hardware. Floating-point instructions are
available in both short J32-bit) and long (64-bit) formats.
Under program control, the user may select optional zero
checking, normalization, and significance checking (which
causes a trap when a post-operation shift of more than two
hexadecimal places occurs in the fraction of a f/oating­
point number). Significance checking permits use of the
short floating-point format for high processing speed and
storage economy and of the long format when loss of
sign ifi cance is detected.

Genera I-Purpose Features 3

Decimal Arithmetic Hardware. Decimal arithmetic
instructions operate on up to 31 digits plus sign. This in­
struction set includes pack/unpack instructions for con­
verting to/from the packed format of two digits per byte,
and a genera Ii zed edit instruction for zero suppression,
check protection, and formatting, with punctuation to
display or print it.

Indirect Addressing. Indirect addressing faci litates table
linkages and permits keeping data sections of a program
separate from procedure sections for ease of maintenance.

Displacement indexing. Indexing by means of a "floating"
displacement permits accessing a desired unit of data
without considering its size. The index registers automati­
ca lIy al ign themselves appropriately; thus, the same index
register may be used on arrays with different data sizes.
For example, in a matrix multipl ication of any array of full
word, single-precision, fixed-point numbers, the results
may be stored in a second array as double-precision numbers,
using the same index quantity for both arrays. If an index
register contains the value of k, then the user always ac­
cesses the kth element, whether it is a byte, halfword,
word, or doubleword. Incrementing by various quantities
according to data size is not required; instead, incrementing
is always by units in a continuous array table regardless of
the size of data element used.

Instruction Set. More than 100 major instructions permit
short, highly optimized programs to be written, which are
rapidly assembled and minimize both program space and
execution time.

Translate Instruction. The Translate instruction permits
rapid translation between any two 8-bit codes; thus data
from a variety of input sources can be handled and recon­
verted easi Iy for output.

Conversion Instructions. Two generalized conversion in­
structions provide for bidirectional conversions between
internal binary and any other weighted number system, in­
cluding BCD.

Call Instructions. These four instructions permit handling
up to 64 user-defined subroutines, as if they were built-in
machine instructions, and gaining access to specified op­
erating system services without requiring its intervention.

Interpret Instruction. The Interpret instruction simplifies
and speeds interpretive operations such as compilation,
thus reducing space and time requirements for compi lers and
other interpretive systems.

Four-Bit Condition Code. This simpl ifies the checking of
results by automatically providing information on almost
every instruction execution, including indicators for over­
flow, underflow, zero, minus, and pi us, as appropriate,
without requiring an extra instruction execution.

4 Input/Output Capabi lities/fime-Sharing Features

INPUT jOUTPUT CAPABILITIES

Multiplexing Input/Output Processor (MIOP). Once
initialized, I/o processors operate independently of the
CPU, leaving it free to provide faster response to system
needs. The MIOP requires minimal interaction with the
CPU by using channel command doublewords, which per­
mit both command chaining and data chaining without in­
tervening CPU control. I/O equipment speeds range from
slow rates involving human interaction (teletypewriter, for
example) to transfer rates of rotating memory devices of
up to one million bytes per second. Many devices can be
operated simultaneous Iy.

Direct Data Input/Output (DIO). DIO facilitates in-line
program control of asynchronous or special-purpose devices.
With this feature information can be transmitted directly to
or from general-purpose registers so that an I/O channel
need not be used for relatively infrequent transmissions.

High-Speed RAD Input/Output Processor (HSRIOP). This
feature is simi lar to multiplexing input/output except that
one RAD per channel controller is operating at a time.
This high-speed channel contains the buffering and priority
logic sufficient to sustain transfer rates up to three million
bytes per second. In a typical time-sharing application,
this enables a program swap into or out of main memory in
less than 40 milliseconds.

TIME-SHARING FEATURES

Time-sharing is the ability of a system to share its total
capacities among many users at the same time. Each user
can be performing a different task (requiring a different
share of the available resources) and may be on-line in an
interactive, "conversational" mode with the computer.
Other users may be entering work to be processed that
requires on Iy final output.

The SIGMA 9 system provides the time-sharing computer
features described below.

Rapid Context Saving. When changing from one user to
another, the operating environment can be switched
quickly and easily. Stack-manipulating instructions per­
mit storing in a push-down stack of 1 to 16 general-purpose
registers by a single instruction. Stack status is updated
automatically and information in the stack can be retrieved
when needed (also, by a single instruction). The current
program status doubleword (PSD), which contains the entire
description of the current user's environment and mode of
operation, can be stored anywhere in memory and a new
PSD loaded, all with a single instruction.

Multiple Register Blocks. The optional avai labi lity of up
to four blocks of 16 general-purpose registers improves re­
sponse time by reducing the need to store and load register
blocks. A distinct block can be assigned for different func­
tions as needed; the program status doubleword automati­
cally selects the applicable register block.

User Protection. The slave mode feature restricts each
user to his own set of instructions whi Ie reserving to the
operating system certain "privileged" {master mode) instruc­
tions that could destroy another user's program if used in­
correctly. Also, a memory access-protection system pre­
vents a user From accessing any storage areas other than
those assigned to him. It permits him to access certain
areas for reading only, such as those containing public sub­
routines, while preventing him from reading, writing, or
accessing instructions-in areas set aside for other users.

Storage Management. SIGMA 9 memory is available in
sizes from 128K (l31,072)words to 512K (524,288) words to
provide the capacity needed while assuring the potential
for expansion. To make efficient use of available memory,
the memory map hardware permits storing a user's program
in fragments as small as a page of 512 words wherever
space is avai lable; yet a II fragments appear as a sing Ie,
contiguous block of storage at execution time. The memory
map also automatically handles dynamic program relocation
so that the program appears to be stored in a standard way
at execution time, even though it may actua lIy be stored
in a different set of locations each time it is brought into
memory. The memory map for SIGMA 9 can operate in a
compatible SIGMA 7 mode in addition to providing the
ability to locate any 128K-word (131,072) virtual program
in the SIGMA 9's logical addressing space of four million
words. Thus, the system can always address a virtual
memory of 128K words regardless of physical memory size.

Input/Output Capabi I ity. Time-sharing input/output re­
quirements are handled by the same general-purpose input/
output capabilities described under "General-purpose
Features II.

Nonstop Operation. A IIwatchdog II timer assures that the
system continues to operate even in case of halts or delays
due to failure of special I/O devices. Multiple real-time
clocks with varying resolutions permit independent time
bases for flexible allocation of time slices to each user.

REAL-TIME FEATURES

Real-time applications are characterized by a need for
(1) hardware that provi des qu i ck response to an extern a I
environment, (2) speed great enough to keep up with the
real-time process itself, and (3) sufficient input/output
flexibi lity to handle a wide varietyof data types at varying
speeds. The SIGMA 9 system includes provisions for the
following real-time computing features.

Multilevel, True Priority Interrupt System. The real-time­
oriented SIGMA 9 system provides quick response to inter­
rupts by means of up to 224 external interrupt levels. The
source of each interrupt is automatically identified and
responded to according to its priority. (This function must
be programmed.) For further flexibi lity, each level can be
individually disarmed (to discontinue input acceptance) and
disabled (to defer responses). Use of the disarm/disable fea­
ture makes programmed dynamic reassignment of priorities

quick and easy, even while a real-time process is in
progress. In establ ishing a con figuration for the system,
each group of up to 16 interrupt levels can have its prior­
ity assigned in different ways to meet the specific needs
of a problem; the way interrupt levels are programmed is
not affected by the priority assignment.

Programs that deal with interrupts from specially designed
equipment sometimes must be checked out before the equip­
ment is actually available. To permit simulating this spe­
cia I equipment, any SIGMA 9 interrupt level can be
IItriggered ll by the CPU through execution of a single in­
struction. This capability is also useful in establishing a
hierarchy of responses. For example, in responding to a
high-priority interrupt, after the urgent processing is com­
pleted, it may be desirable to assign a lower priority to
the remaining portion so that the interrupt routine is free
to respond to other critical stimuli. The interrupt routine
can accomplish this by triggering a lower-priority level,
which processes the remaining data only after other inter­
rupts have been handled.

Certain instructions (READ DIRECT and WRITE DIRECT,
described in Chapter 3) allow the program to completely
interrogate the condition of the interrupt system at any time
and to restore that system at a later time.

Nonstop Operation. When connected to special devices
(on a ready/resume basis), the computer can sometimes
become excessively delayed if the special device does not
respond quickly. A built-in watchdog timer assures that
the SIGMA 9 computer cannot be delayed for an excessive
length of time.

Real-Time Clocks. Many real-time functions must be timed
to occur at specific instants. Other timing information is
also needed - for example, elapsed time since a given
event / or the current time of day. SIGMA 9 can contain
up to four real-time clocks with varying degrees of re­
solution to meet these needs. These clocks a Iso allow
easy handling of separate time bases and relative time
priorities.

Rapid Context Switching. When responding to a new set of
interrupt-initiated circumstances, a computer system must
preserve the current operating environment/for continuance
later, while setting up the new environment. This changing
of environments must be done quickly, with a minimum of
1I0verhead ll time costs. In the SIGMA 9 system/ each one
of up to four blocks of general-purpose arithmetic registers
can, if desired, be assigned to a specific environment. All
relevant "information about the current environment (instruc­
tion address, current general register block, memory­
protection key/etc.) is kept in a 64-bit program status
doubleword (PSD). A single instruction stores the current
PSD anywhere in memory and loads a new one from memory
to establish a new environment/which includes informatic:>n
identifying a new block of general-purpose registers. A
SIGMA 9 system can thus preserve and change its operating
environment completely through the execution of a single
instruction.

Rea 1-Ti me Features 5

SIGMA 9 Computer System

vi

Memory Protection. Both foreground (real-time) and
background programs can be run concurrently in a SIGMA 9
system because a foreground program is protected against
destruction by an unchecked background program. Under
operating system control, the memory access-protection
feature prevents accessing memory for specified combina­
tions of reading, writing, and instruction acquisition.

Variable Precision Arithmetic. Much of the data encoun­
tered in real-time systems are 16 bits or less. To process
this data efficiently, SIGMA 9provides halfword arithmetic
operations in addition to fullword operations. Doubleword
arithmetic operations (for extended precision) are also
included.

Direct Data Input/Output. For handling asynchronous I/O,
a 32-bit word can be transferred directly to or from a
general-purpose register so that an I/O channel need not
be occupied with relatively infrequent and nonperiodic
transm iss ions.

MULTI USAGE FEATURES

As implemented in the SIGMA 9 system, IImultiusage ll com­
bines two or more computer application areas. The most
difficult general computing problem is the real-time appli­
cation because of its severe requirements. Similarly,
the most difficult multiusage problem is a time-sharing
application that includes one or more real-time processes.
Because the SIGMA 9 system has been designed on a real­
time base, it is uniquely qualified for a mixtureof applica­
tions in a multiusage environment. Many hardware features
that prove valuable for certain application areas are equally
useful in others, although in different ways. This multiple
capability makes SIGMA 9 particularly effective in mu Iti­
usage applications. The major SIGMA 9 multi usage com­
puter features are described below.

Priority Interrupt. In a multiusage environment, many ele­
ments operate asynchronously. Thus, having a true priority
interrupt system (as in SIGMA 9) is especially important.
With it the computer system corresponds qui ck Iy, and in
proper order, to the many demands being made upon it,
without the high overhead costs of complicated programming
lengthy execution time, and extensive storage allocations.

Quick Response. The many features that combine to pro­
duce a quick-response system (multiple register blocks,
rapid context saving, multiple push-pull operations) bene­
fit all users because more of the machine's power is avai 1-
able at any instant for useful work.

Memory Protection. The memory protection features not
only protect each user from every other user, they also
guarantee the integrity of programs essential to critical
real-time appl ications.

Input/Output. Because of its wide range of capacities and
speeds, the SIGMA 9 I/O system simultaneouslysatisfiesthe
needs of many different application areas economically,
both in terms of equipment and programming.

6 Multiusage/Multiprocessing Features

Instruction Set. The large SIGMA 9 instruction set
provides the computational and data-handling capabilities
required for widely differing application areas; therefore,
each user IS program length and runn ing time is decreased,
and the speed of obtaining results is increased.

MULTIPROCESSING FEATURES

SIGMA 9 is designed to function as a shared-memory
multiprocessor system. It can contain up to four central
processing units and up to n input/output processors
(the sum of both types of processors is restricted by the
maximum memory port limitation of 12). All processors in
a SIGMA 9 system address memory uniformly.

This section describes the major features of SIGMA 9 that
wi" allow growth from a monoprocessor to a multipro­
cessor system.

MULTIPROCESSOR INTERLOCK

In a multiprocessor system, the central processing units
(CPUs) often need exclusive control of a system resource.
This resource may be a region of memory, a particular
peripheral device or, in some cases, a specific software
process. SIGMA 9 has a special instruction to provide this
required multiprocessor interlock. The special instruction,
LOAD AND SET, unconditionally sets a 111" bit in the sign
position of the referenced memory location during the re­
store cycle of the memory operation. If this bit had been
previously set by another processor, the interlock is said
to be IIset" and the testing program proceeds to another task.
On the other hand, if the sign bit of the tested location is
a zero, the resource is allocated to the testing processor,
and simultaneously the interlock is set for any other
processor.

HOMESPACE

Since all processors in a multiprocessor system address
memory ina un i form manner, it is necessary to reta ina pr i­
vate memory that is un ique to each processor for its trap
and interrupt locations, I/O communication locations, etc.
This private memory is called Homespace and consists of
1,024 words for each CPU. Each Homespace region begins
with real address zero. The implicitly assigned trap loca­
tions, interrupt locations, and lOP commun ica ti on loca­
tions, plus the 16 locations that are reserved for the regis­
ters, occupy the first 320 locations of Homespace. The
remaining words in the Homespace region can be used as
private, independent storage by the CPU.

MUL TIPORT MEMORY SYSTEM

SIGMA 9 has growth capabi I ity of up to 12 ports per mem­
ory unit. A basic memory unit consists of two banks of
16K words each, in which each bank can be concurrently
operating when addressed by two of the possible 12 ports.

This system architecture allows flexibi lity in growth patterns
and provides large amounts of memory bandwi dth, essentia I
to multiprocessor systems.

MANUAL PARTITIONING CAPABILITY

SIGMA 9 has manual partitioning capability for all system
units. Thus, besides its primary advantage of increased
throughput capabi lity, a secondary advantage of a multi­
processor system is its fai I-soft abi lity. Any SIGMA 9 unit
can be partitioned by selectively disabling, it from the
system busses. Faulty units are thus isolated from the oper­
ational system. Reenabling the connection allows repaired
units to be returned to service.

MULTIPROCESSOR CONTROL FUNCTION

A multiprocessor control function is provided on a II multipro­
cessor systems. This function provides three basic features:

1. Control of the External Direct Input/Output bus
(External DIO), used for controlling system

2.

maintenance and special purpose units such as
AID converters.

Central control of system partitioning.

3. Interprocessor interrupt connection, a !lowing
one processor to directly signal another pro­
cessor that an action is to be taken.

SHAREDINPUT/OUPUT

Provisions have been made in a SIGMA 9 mul tiprocessor
system for any CPU to direct I/O actions to any I/O pro­
cessor. This is, any CPU can issue an SIO, no, TDV,
or HIO instruction to begin, stop, or test any I/O pro­
cess. However, the end-action sequence of the I/O
process is directed at one of the possible four CPUs.
This feature (accomplished by setting a pair of config­
uration control switches) allows dedicating I/O end­
action tasks to a single processor and avoids conflict
resolution problems.

Multiprocessing Features 7

2. SIGMA 9 SYSTEM ORGANIZATION

The primary elements of a basic SIGMA 9 computer
system, as illustrated in Figure 1, are central processor
units, memory units, and input/output processors. These
elements permit the total computer system to be viewed
as a group of program-control I ed subsystems commun i-
cati ng wi th a common memory. Each subsystem operates
asynchronously and semi-independently, automatically
overlapping the operation of the other subsystems for
greater speed (when circumstances permit). A CPU sub­
system primarily performs overall control and data re­
duction tasks while each lOP (MIOP or HSRIOP)
subsystem performs the tasks associated wi th the exchange
of digital information between the main memory and
selected peripheral devices. A basic system may be
expanded by increasing the number of memory units (up
to 16), increasing the number of lOPs (up to 11, in­
cluding MIOPs and HSRIOPs), or by increasing the num­
ber of central processors (up to 4).

CENTRAL PROCESSING UNIT

This section describes the organization and operation of the
SIGMA 9 central processing unit in terms of instruction
and data formats, information processing, and program
control. Basically, a SIGMA 9 CPU consists of a fast
memory and an arithmetic and control unit as illustrated
in Figure 2.

GENERAL REGISTERS

An integrated-circuit memory, consisting of sixteen 32-bit
general-purpose registers, is used within the SIGMA 9
CPU. These 16 reg i sters of fast memory are referred to as
a register block. A SIGMA 9 system may contain up to
4 register blocks. A 4-bit control field (called the reg­
ister block pointer) in the Program Status Doubleword (PSD)
selects the block currently available to a program. The
16 general registers selected by the register block pointer
are referred to as the current register block. The register
block pointer can be changed when the computer is in the
master or master-protected mode.

Each general register in the current register block is identi­
fied by a 4-bit code in the range 0000 through 1111
(0 through 15 in decimal, or X'O' through X' F' in hexa­
decimal notation). Any general register may be used as a
fixed-point accumulator, floating-point accumulator,
temporary data storage location, or to contain control in­
formation such as a data address, count, pointer, etc.
General registers 1 through 7 may be used as index regis­
ters, and regi sters 12 through 15 may be used as a decimal
accumulator capable of containing a decimal number of
31 digits plus sign. Registers 12 through 15 are always
used when a dec imal instruction is executed.

8 SIGMA 9 System Organization

MEMORY CONTROL STORAGE

The CPU has three high-speed integrated-circuit memories
for storage of a memory map, memory access protection
codes associated with the memory map, and memory write­
protection codes. This storage can be changed when the
computer is in the master or master-protected mode.

Memory Map. Two terms are essenti al to a proper under­
standing of the memory mapping concept: virtual address
and actual address.

A virtual address is a value pertaining to the logical space
used by a machine-level program, and which designates
the location of an instruction, the location of an element
of data, or the location of a data address (indirect address).
It may also be an explicit quantity. Normally, virtual
addresses are derived from programmer-suppl ied labels
through an assembly (or compilation) process followed by a
loading process. Virtual addresses may also be computed
during a program's execution. Thus, virtual addresses in­
clude all instruction addresses, data addresses, indirect
addresses, and addresses used as counts within a stored pro­
gram, as well as those addresses computed by the program.

An actual address is a value used within the memory unit
(memory address register) to access a specific memory
location for storage or retrieval of information, as required
by the execution sequence of an instruction. Thus, actual
addresses are fixed and dependent on the wired-in hard­
ware. (See "Main Memory" for further details.)

The memory map feature provides for dynamic program
relocation into discontinuous segments of memory. When
the memory map is in effect, any program may be broken
into 512-word pages and distributed throughout memory in
whatever pages of space are available. Thus the memory
map transforms virtual addresses, as seen by the individual
program, into actua I addresses, as seen by the memory
system.

When the memory map is not in effect, as determined by
the memory map control bit in the program status double­
word, all virtual address values above 15 are used by the
memory as actual addresses. Virtual addresses in the range
o through 15 are always used by the CPU as general register
addresses rather than as memory addresses. Thus, for exam­
ple, if an instruction uses a virtual address of 5 as the
address where a result is to be stored, the result is stored
in general register 5 in the current register block instead
of in memory location 5.

When the computer is operating with memory map, virtual
addresses in the range 0 through 15 are still used as general
regi ster addresses. However, all vi rtual addresses above 15
are transformed into actual addresses, by replacing the high­
order portion of the virtual address with a value obtained
from the memory map. (The memory map replacement pro­
cess is described in the section "Memory Address Control II •)

Memory Unit

• 32,768 words
.900 ns

• Dual banks
• Up to 1 2 ports

t Memory bus

Processor bus

Memory Unit

• 32,768 words
• 900 ns
• Dual banks
• Up to 12 ports

j

r---------,
I Memory Unit I
I I
I • 32,768 words I
I • 900 ns I
: • Dual banks :
1 • Up to 12 ports 1
L. ________ ...I

j j J

Memory bus

Memory bus

1
Separate memory bus ~ . , ,Ir , 1 ,

MIOP I ~-....&. ------.... r-------,
CPU 1 MIOP I r

l
-HS"Ri'O'P'

8 sub­
channels

8 sub- I 8 sub- I 8 sub- i
channels I channels I channels 1
(option) I (option) I :

• Decimal arithmetic unit
• Memory protect
• Memory map

I 1 ____ 1 • Memory access protect

I A t Chan- 1 Channe t
nel B I

• 2 register blocks
• 2 clocks

'---r-----~----- - -I'" - ..J • Power fail-safe
t 4 byte i nterfa ce j
option

• Floating-point arithmetic

I/O bus

1

.-- ~--1
• Multi- 1
: device 1
1 controller •
Io __ .- __ J

j~

,..._.:.~ __ __ 1 __ .,
11/0 device l• • I/O device 1
I 1 1
• ." " "I 1
I a • I 15 I .. -----1 • _____

• External interface
• 8 interrupt levels

I/O bus

.. __ 1 __ , . __ ~ __
: Single .: Single :
I device • 1 device •

~~j~~~ ~:~I~~:~
• I/O devi ce I I I/O devi ce·1 L- _____ .I ____

.. __ i __ ...,
I Removable •
• disk unit I
I I
I • 2 sp i nd I es I L. _____ ~

Figure 1. A Typical SIGMA 9 System

1 1
1 1

" " .
I •

1 1
1 1

• •
• RAD I

1 I
1 I

: 1 ---r---J

To associated I/O
device controllers

If

r--~--'
• Disk unit I
I control I er I
I •
I • 4 byte I

• lOP I

• 1 1 1
1 1
L _____ J

j~

I/O bus

L-~Jte~~eJ

r-- --...,
I Removable I

r-----...,
17212 storage! ...

I disk unit •
I I
I • 2 spindles I L _____ -I

I unit • .. -----

r-----'
I 7212 ~ ..
• I L _____ .J

Central Processing Unit 9

CPU FAST MEMORY ARITHMETIC AND CONTROL UNIT

GENERAL REGISTER BLOCK (TYPICAL) INSTRUCTION REGISTER

a I I

I

:::::::::::::::::::::: .:.' .:.:.:.:: ... : .. ::.:)t::::::· .::::::::::,.,:::;::, :,,:,::::::':' .:.:':'::'::'::':::':::'::'::"::::"::':.:::·1 1 {:tttt, :::::::}::,:::::::::,::,,:::::,: ,:::::::::::}::::}}:::,::} .

2 r::::I::::: :{:'::::::.:.::::\::::::\/:?: ... :::::::::'::::::::::::::;:;:;:;:;:;:;:;:;:;:;::::: :tI::::::::It·::1

t················· :-:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:-:.:.:.:-:.: ':':':':':':':""1

3 1:::::::::::::::::::1:11::: .':::':::::':::::::::::::::::::. :':-'-:':-:"':""':'::':::',::':':::'::::':':':' ':::r:::r::;

4 1:::::::::::::::I:I:::::::::t::::::::::: ::::::::::::::::::: :::::::,.:':'::r:::::::'::::;::.:?::::!:!:::!} :::::I::::::I

5 1:::::::::I::r:::I:: ::::::::}~::: f't:::t::}::::::':::: i::::::: I:::::]

6 1:::::::::::::::::::tf:tII:::::::::::::::::::t:::::::::::::::::::::::::::::::::::::I::::::::::::::::::::::::::::II::::tl

7 II::::i::::::::I:I::::i:i(:::::it:t::i:::::i:::i{:::::::::i::t:t::I::::: J:::::::j::::!j@t::::::::::::1 ~

8~1 ______________ ~
9~1 ______________ ~
10~1 ________________ ~
11 ~I ________________ ~

12~1 ________________ ~
13~1 ________________ ~
14 ~I __________________ ~

15

MEMORY CONTROL STORAGE

Memory Map

1-256 13-bit page addresses -I

Memory Access Protection

II I I III 1IIIIII1 ~ ~"'-+-'-II"""""""I II
1-- 256 2-bit access codes --I
Memory Write Protection

It IllllllllllllsffiIIJ
1----- 256 2-bit write locks --I

10 Central Processing Unit

Index
Registers

o Indirect Address Flag

o

III IIII I Operation Code Field
1 7

DIIJ General Register Designator
8 11

OJ] Index Register Designator
12 14

Reference Address Field

I1111111111111111111
15 31 --... Memory

I

31-digit
Decimal
Accumu­
lator

I/O Processors I
I I

I
Read/Write Direct

I •

.------------,1 Interrupts

I I
Priority Interrupt System I Write Direct

I

PROGRAM STATUS DOUBLEWORD

OJ]] Condition Code
o 3

[ill Floating-point Mode Control
5 7

o Master/Slave Mode Control
8

o Memory Map Control
9

[I] Arithmetic Trap Masks
1011

D ASCII Control
12 Instruction
r-r-,...,...,...,..-r-r""T"'"'1I'"""T'"",....,...,...,..-r-r-, Add r e ss

IJ I I I II II I II " \I I I or
15 31 Extended

OJ Write Key
3435

OJ] Interrupt Inhibits

37 39 o Mode Altered Control

40

III I II I Extension Address
42 47

Displacement

IIIIIIII1 Trapped Status Field
48 55

IllJJ Register Block Pointer
56 59 o Register Altered

60

I

Figure 2. Central Processing Unit

Memory Access Protection. When the computer is operating
in the slave or master-protected mode with the memory map,
the access-protecti on codes determ i ne whether or not the
program may access instructions from, read from, or write
into specific regions of the virtual address continuum (vir­
tual memory). If the slave or master-protected mode pro­
gram attempts to access a region of virtual memory that is
so protected, a trap occurs. (The access-protecti on codes
are described in the section "Memory Address Control ".)

Memory Write Protection. The memory write-protection
feature operates independently of the memory map and
access protection. The memory write-protec'tion feature
includes the necessary integrated-circuit memory for the
memory write locks. These locks operate in conjunction
with a 2-bit field, called the write key, in the program
status doubleword. The locks and the key determine
whether any program may alter any word located within the
first 128K words of main memory. The write key can be
changed when the computer is in the master or master­
protected mode. (The functions of the locks and key are
described in the section "Memory Address Control".)

COMPUTER MODES

A SIGMA 9 computer operates in either master, slave, or
master-protected mode. The mode of operation is deter­
mined by three control bits in the program status double­
word. (See" Program Status Doubleword".)

MASTER MODE

In this mode, the cpu. can perform all of its control func­
tions and can modify any part of the system. The only re­
strictions placed upon the CPUls operation in this mode is
that imposed by the write locks on certain protected parts
of memory. The Mode Altered control bit (PSD bit po­
sition 40) must also be zero for the computer to operate
in a SIGMA 7-compatible master mode. It is assumed that
there is a resident operating system (operating in the master
mode) that controls and supports the operation of other pro­
grams (which may be in the master, slave, or master­
protected mode).

SLAVE MODE

The slave mode of operation is the problem-solving mode of
the computer. In this mode, access protection codes apply
to the slave mode program if mapping is in effect, and all
"privileged" operations are prohibited. Privileged opera­
tions are those relating to input/output and to changes in
the basic control state of the computer. All privileged
operations are performed in the master or master-protected
mode by a group of privileged instructions. Any attempt by
a program to execute a privileged instruction while the
computer is in the slave mode results in a trap. The master/
slave mode control bit can be changed when the computer
is in the master or master-protected mode. However, a
slave mode program can gain direct access to certain ex­
ecutive program operations by means of CALL instructions

without requi ri ng executive program intervention. The
operations available through CALL instructions are estab­
I ished by the resident operating system.

MASTER-PROTECTED MODE

The master-protected mode of operation is a modification of
the master mode designed to provide additional protection
for programs that operate in the master mode. The master­
protected mode can only occur when the CPU is operating
in the master mode with the memory map in effect. In this
mode, a trap will occur to the memory protection violation
trap (Homespace location X140 1

, with CC4 = 1), as it does
in all mapped slave programs, if a program makes a reference
to a virtual page to whi ch access is prohibited by the cur­
rent setti ng of the access protection codes.

INFORMATION FORMAT

Nomenclature associated with digital information within the
SIGMA 9 computer system is based on functional and/or
physical attributes. A "word" of digital information may
be either an instruction word or a data word.

The basic element of SIGMA 9 information is a 32-bit word,
in which the bit positions are numbered from 0 through 31,
as follows:

A SIGMA 9 word can be divided into two 16-bit parts
(halfwords) in which the bit positions are numbered from
o through 15, as follows: '

A SIGMA 9 word can also be divided into four 8-bit parts
(bytes) in which the bit positions are numbered from
o through 7, as follows:

Byte 1 Byte 2
234567012345

Two SIGMA 9 words can be combined to form a 64-bit
element (a doubleword) in which the bit positions are
numbered from 0 through 63, as follows:

Central Processing Unit 11

For fixed-point binary arithmetic, each element of
information represents numerical data as a signed integer
(bit 0 represents the sign, remaining bits represent the mag­
nitude, and the binary point is assumed to be just to the
right of the least significant or rightmost bit). Negative
values are represented in two's complement form. Other
formats required for floating-point and decimal instructions
are described in Chapter 3.

INFORMATION BOUNDARIES

SIGMA 9 instructions assume that bytes, halfwords, and
doublewords are located in main memory according to the
following boundary conventions:

1. A byte is located in bit positions 0 through 7,
8 through 15, 16 through 23, or 24 through 31 of a
word.

2. A halfword is located in bit positions 0 through 15
or 16 through 31 of a word.

3. A doubleword is located so that bits 0 through 31 are
contained within an even-numbered word, and bits 32
through 63 are contained with in the next consecutive
(odd-numbered) word.

The various information boundaries are illustrated in
Figure 3.

INSTRUCTION REGISTER

The instruction register contains the instruction that is cur­
rently be ing executed by the CPU. The format and fields
of the two general types of instructions (immediate operand
and memory-reference) are described below.

MEMORY-REFERENCING INSTRUCTIONS

Most SIGMA 9 CPU instructions make reference to an
operand located in main memory. The format for this type
of instruction is

i
Doubleword I

•
I Word (even address) Word (odd address) !
i Halfword 0 Halfword 1 Halfword 0 Halfword 1
I

! Byte 01 Byte 1 Byte 21 Byte 3 Byte 0 I Byte 1 Byte 21 Byte 3

Bits

o

1-7

8-11

Description

This bit position indicates whether indirect ad­
dressing is to be performed. Indirect addressing
(one level only) is performed if this bit position
contains a 1 and is not performed if this bit posi­
tion contains a O.

Operation Code. This 7-bit field contains the
code that des ignates the operation to be performed.
See the inside front and back covers as well as
Append ix B for complete I istings of operation codes.

R field. For most instructions this 4-bit field des­
ignates one of 16 general registers of the current
register block as an operand source, result destina­
tion, or both.

12-14 X field. Th is 3-bit field designates anyone of
general registers 1-7 of the current register block
as an index register. If X is equal to 0, indexing
will not be performed; hence, register 0 cannot be
used as an index register. (See "Address Modifi­
cation Exampl es II for a more complete description
of the SIGMA 9 indexing process.)

15-31 Reference Address. This 17-bit field normally
contains the reference address of the instruction
operand. Depending on the type of addressing
(real, real extended, or virtual) and address mod i­
fication (direct/indirect or indexing) required,
the reference address is transl ated into an effec­
tive virtual address. (See "Memory Reference
Addresses" for further details.)

IMMEDIATE OPERAND INSTRUCTIONS

Some SIGMA 9 CPU instructions are of the immediate
operand type, which is particularly efficient because the
required operand is contained within the instruction word.
Hence, memory reference, indirect addressing, and index­
ing are not required.

Doubleword 1
I
I .

Word (even address) Word (odd address) I
I

Halfword 0 Halfword 1 Halfword 0 Halfword 1 :
I

Byte 0 1 Byte 1 Byte 2\ Byte 3 Byte 0 I Byte 1 Byte 21 Byte 3!

Figure 3. Information Boundaries

12 Central Processing Unit

Bits

o

1-7

8-11

12-31

Description

This bit position must be coded with a O. If this
bit is coded with a 1, the instruction is inter­
preted as being nonexistent. (See "Trap System".)

Operation Code. This 7-bit field contains a code
that designates the operation that will be per­
formed. When any immediate operand operation
code is encountered, the CPU interprets the con­
tents of bits 12-31 of the instruction word as an
operand. Immed iate operand operation codes are
as follows:

Operation
Code

X'02'

X'20'

X'21'

X'22'

X'23'

Instruction
Name

Load Conditions and
Floating Control
Immediate

Add Immediate

Compare Immediate

Load Immed iate

Multiply Immediate

Mnemonic

LCFI

AI

CI

LI

MI

R field. This 4-bit field designates one of 16 gen­
eral registers of the current register block. Th is
register may contain another operand and/or be
designated as the register in which the results of
th is operation will be stored or accumulated.

Operand. This 20-bit field contains the immedi­
ate operand. Negative numbers are represented
in two's complement form. For arithmetic opera­
tions, bit 12 (the sign bit) is extended (dupli­
cated) to the left through position 0 to form a
32-bit operand.

The byte string instructions (described in Chapter 3) are
similar to immediate operand instructions in that they can­
not be modified by indexing. However, the operand field
of byte string instructions contains a byte address displace­
ment (or a byte address) that is a virtual address subject to
modification by the memory map. If a byte string instruc­
tion is indirectly addressed, it is treated as a nonexistent
instruction by the computer.

MAIN MEMORY
This section describes the organization and operation of the
main memory and the various modes and types of addressing,
including indexing.

MEMORY UNIT

The main memory for SIGMA 9 is physically organized as a
group of "un its". A memory un it is the smallest, logically

complete part of the system, and the smallest part that can
be logically isolated from the rest of the memory system.
A memory unit always consists of two physical memory banks.
Both memory banks may be concurrently and asynchronously
operating. Each memory unit has a set of from 2 to 12
"ports" or access points that are common to both banks
within the unit; that is, all ports in a given memory unit
provide access to both banks within that unit.

MEMORY BANK

A memory bank is the basic functionally independent ele­
ment of the memory system. It consists of magnetic storage
elements, drive and sense electronics, control timing, and
data registers. A bank consists of 16,384 memory locations.
Each location stores a 32-bit information word (instruction
or data), plus a parity bit. Associated with each memory
location (or word) is an "actual address".

MEMORY INTERLEAVING

Memory interleaving is a built-in hardware feature that
distributes sequential addresses into independently operating
memory banks. Interleaving increases the probabil ity that
a processor can gain access to a given memory location with­
out encountering interference from other processors.

Both banks within a unit may be interleaved two ways. For
example, in two-way interleaving, even addresses are
assigned to bank A and odd addresses to bank B. Four-way
interleaving (the assignment of every fourth address to its
respective bank) may occur between two adjacent units.

MEMORY UNIT STARTING ADDRESS

Each memory unit in the SIGMA 9 system is provided its
individual identity by means of starting address switches.
These switches define the range of addresses to which the
un it responds when servicing memory requests. All ad­
dresses, including the starting address, for a given unit are
the same for all ports in that unit; that is, the address of a
given word remains the same regardless of the port used to
access the word. The starting address of a un it must be on
a boundary equal to a multiple of the size of the unit. In
the event that the unit is interleaved with another unit, the
starting address for the combined un its must be on a bound­
ary equal to a multiple of the total size of the interleaved
assembly.

MEMORY PORTS

The memory ports of a memory unit are the connecting points
between processors (IOPs and CPUs) and memory banks, and
they permit the processors to access memory locations. Each
memory unit may have from 2 to 12 independent access
ports. A memory unit port is effectively a switch between
all the busses entering that un it and the two banks that
make up the unit. As an example, a unit that has four
busses connected to it and two banks within it would have
a port structure designated as a 4 x 2 switch. The ports
examine incoming addresses to determine if the request is

Main Memory 13

for a bank within the memory unit. They also determine
the priority of memory requests received simultaneously.

The minimum number of ports for a SIGMA 9 system is two,
one for the CPU and one for an lOP. The number of ports
may be expanded, in increments of one, to a maximum of 12.

PORT PRIORITY

The multiport structure and the dual-bank memory (within
each unit) allow two simultaneous requests for memory to be
processed immed iately, providing that the requests are re­
ceived on different ports, for different banks, and neither
bank is busy. If a requested bank is busy, or if siml!l­
taneous requests are received for the same bank, the
memory port logic selects the highest priority request first.

Normally, all ports in a memory un it operate on a priority
chain, with port number 0 having the highest priority and
port number "n" having the lowest. In general, CPUs are
connected to the higher priority ports and lOPs are con­
nected to the lower pr iority ports. If simul taneous requests
are received for a single bank on port 2 and port 4, port 2
has access to the memory bank fj rst.

In addition to the normal priority that prevails among the
ports, as described above, each port has two priority levels
(a normal priority and a high priority). A processor will
usually request the normal priority level; however, under
certain conditions a processor may request high priority
access to a given port (e. g., an lOP will wait with a low

_ priority memory request until half of its available buffering
has been filled on input or emptied on output; it then re­
quests a high priority memory reference). If one port
rece ives a high priority request, that portis priority is then
higher than the normal priority of all other ports. If more
than one port is on a high priority at the same time, the
nC?,rmal sequence of priority will prevail among those ports
on high priority.

CPU PORT

When the memory is quiescent, the port selection logic is
set to a condition that automatically selects port O. The
elimination of switching time (to select a port) results in a
timing preferential for the processor connected to port O.
This is particularly advantageous for a monoprocessing sys­
tem where the CPU would normally be connected to port 0
of each memory un it.

VIRTUAL AND REAL MEMORY

Virtual memory is logical memory as seen by an individual
program. The maximum size of virtual memory is 128K
(131,072) words. A virtual memory for a given program may
consist of up to 256 pages of 512 words each distributed
throughout the avai lable pages of real memory.

Real memory corresponds to the physi cal memory, and its
size is equal to the total number of words contained within

14 Main Memory

all memory units. The size of real memory ranges from a
minimum of 128K words to 512K words. The 512K maximum
size limitation is physical (i. e., based on maximum cable
length considerations) rather than logical. Real memory
addressing space is over 4 million (222) words.

HOMESPACE

In a SIGMA 9 multiprocessing system, all processors address
memory in the same manner. However, since the CPUs do
not share the same interrupt or trap systems, it is necessary
to provide private storage for each CPU to contain its trap
and interrupt locations, I/O communication locations, and
general registers. This private storage is called Homespace.

Determining the location of Homespace for a CPU is like
second-level mapping. Each CPU contains a Homespace
bias. The Homespace bias is the actual address of a 16K
region of the first 1 million words of main memory, of which
the first 1,024 words is Homespace. After an effective real
address is generated in the CPU by whatever method, and
i ust before it is sent to memory, the most si gn i fi cant 12 bits
are tested. If all bits are equal to zero, then a 6-bit
Homespace bias plus two leading zeros are inserted in place
of the most significant eight of these bits. This means that
any time the CPU makes a reference to the first 1,024 words
of real memory that reference may be relocated by means of
the Homespace bias.

The 6-bit Homespace bias is supplied by a set of six switches
in a SIGMA 9 CPU. They can be changed manually to
move the Homespace region from one area to another within
the 64 possible areas.

When multiprocessors are used, a given CPU may reference
the Homespace region of other processors by using the nor­
mal memory addresses for that region. The only exception
to this is that the Homespace of a CPU that is set at real
memory location zero, cannot be referenced by any other
CPU. However, the CPU that has its Homespace at real
location zero may reference the Homespace of all other
CPUs.

Each Homespace region contains all the trap locations,
interrupt locations, and lOP communication locations for
a given CPU (see Table 1). These implicitly assigned mem­
ory locations plus the 16 locations that are reserved for the
general registers, occupy the first 320 locations of Home­
space. The remaining words in the Homespace region can
be used as pri vate, independent storage by the CPU.

MEMORY REFERENCE ADDRESS

Homespace memory 10cationsO through 15 are not normally
accessibl e to the programmer because thei r memory addresses
are reserved as register designators for "register-to-register ll

operations. However, an instruction can treat any register
of the current register block as if it were a location in
main memory. Furthermore, the register block can be used
to hold an instruction (or c series of up to 16 instructions)
for execution just as if the instruction (or instructions) were

Dec. Hex.

000 000

015 OOF

016 010

031 01F

032 020
033 021

034 022

063 03F

064 040

079 04F

080 050

085 055

086 056

087 057

088 058

091 05B

092 05C

095 05F

096 060

111 06F

304 130

319 13F

320 140

1023 3FF

Table 1. Homespace Layout

Function

Addresses of general registers

Reserved for future use

CPU/lOP communication locations

Load routine or reset recovery routine

T rap locations

Override group

Processor fau I t

Memory fau I t Internal
Interrupts,
group X ' 11

Counter group

I/O group

External Interrupts, group X ' 21

External Interrupts, group XI F'

Unassigned locations

in main memory. The only restriction upon the use of the
register block for instruction storage is:

If an instruction accessed from a general register uses
the R field of the instruction word to designate the
next higher-numbered register, and execution of the
instruction would alter the contents of the register so
designated, the contents of that register should not be
used as the next instruction in sequence because the
operation of the instruction in the affected register
would be unpredictable.

Description of the various types of addressing used in the
SIGMA 9 are based upon terms and concepts defined below.
References are made to Figure 4, which illustrates the con­
trol flow and data flow during address generation.

Instruction Address. This is the address of the next instruc­
tion to be executed. For real and virtual addressing, the
17-bit instruction address is contained within bits 15-31 of
the program status doubleword. For real extended address­
ing, the 22-bit instruction address is comPrised of bits 16-31
concatenated with bits 42-47 of the program status
doubleword.

Reference Address. This is the 17- or 22-bit address
associated with any instruction except a trap or interrupt
instruction that has bit position 10 equal to O. (See 20-Bit
Reference Address, below.) For real and virtual addressing,
the reference address is the address contai ned wi thi n
bits 15-31 of the instruction itself. For real extended ad­
dressing, the reference address is comprised of bits 16-31
of the instruction concatenated with bits 42-47 of the pro­
gram status doubleword. The reference address may be
modified by using indirect addressing, indexing, and mem­
ory mapping. A reference address becomes an effective
virtual address after the indirect addressing and/or post­
indexing (if required) is performed. (See Figure 4.)

20-Bit Reference Address. If bit position 10 of any trap or
interrupt instruction is a 0, bits 12-31 of that instruction
are used as a 20-bit reference address. A 20-bit reference
address may be modified only by using indirect addressing.
A 20-bit reference address can not be indexed or mapped.

Direct Reference Address. If neither indirect addressing
nor indexing is called for by the instruction (i. e., if bit
position 0 and the X field of the instruction are 0), the
reference address of the instruction (as defined above) be­
comes the effective virtual address. Direct addressing may
be used during all addressing modes, including trap and
interrupt operations. Direct addressing during virtual
addressing does not preclude memory mapping.

Indirect Reference' Address. The 7-bit operation code field
of the SIGMA 9 instruction word format provides up to
128 instruction operation codes, nearly all of which can
use indirect addressing (except immediate operand and byte
string instructions). If indirect addressing is called for by
the instruction (when bit position 0 contains 1) the refer­
ence address (as defined above) is used to access a word
location that contains the direct reference address in bit
positions 15-31, or bit positions 10-31 for certain real

Main Memory 15

Add Homespace
(if required)

16 Main Memory

B

CONTROL FLOW

yes

Figure 4. Addressing Logic

DATA FLOW

Reference}
Address

Instruction
Word

Address

Write locks
(lst 128K
words only)

Actual}
Address - - - -

r----'-----.
Memory
Address
Register

Main Memory

extended addressing operations. The indirect addressing
operation is I imited to one level. Indirect addressing does
not proceed to further levels, regardless of the contents of
the word location pointed to by the reference address field
of the instruction. Indirect addressing occurs before index­
ing; that is, the 17-bit reference address field of the
instruction is used to obtain a word, and the 17 or 22 low­
order bits of the word thus obtained effectively replace the
initial reference address field; then, indexing is carried out
according to the operation code of the instruction. (See
II Address Modification Examples ll

.)

Index Reference Address. If i ndexi ng is ca II ed for by the
instruction (a nonzero value in bit positions 12-14 of the
instruction), the direct or indirect reference address is
modified by addition of the displacement value in the gen­
eral register (index) called for by the instruction (after
scaling the displacement according to the instruction type).
This final reference address value (after indirect addressing,
indexing, or both) is defined as the effective virtual ad­
dress of the instruction. Indexing after indirect addressing
is called postindexing. (See IIAddress Modification Exam­
ples ll for further details.)

Displacements. Displacements are the 16- to 24-bit values
used in index registers and by byte string instructions to
generate effective addresses of th e appropriate size (byte,
halfword, word, or doubleword).

Register Address. If any instruction produces a virtual ad­
dress that is a memory reference (i. e., a direct, indirect,
or indexed reference address) in the range Q through 15,
the CPU does not attempt to read from or write into main
memory. Instead, the four low-order h its- of the reference
address are used as a general register address, and the gen­
eral register (of the current register block) corresponding to
this address is used as the operand location or result destina­
tion. Thus, the instruction can use any register in the cur­
rent register block as the source of an operand, the location
of a direct address, or the destination of a result. Such
usage is referred to as a II reg ister-to-register ll operation.

Actual Address. An actual address is the address value
actually used by the CPU to access main memory via the
memory address register (see Figure 4). If the effective
virtual address is XIQI - XIFI, one of the general registers
is addressed. If the computer is operating in virtual address­
ing mode, all virtual addresses above 15 are transformed
(usually into addresses in a different memory page) by the
memory map, and these then become actual addresses. How­
ever, if the computer is operating in either real or real
extended mode, no transformation via the memory map takes
place. All actual addresses are 21, 22, 23, or 24 bits, as
required to address a doubleword, word, halfword, or byte.

Effective Address. The effective address is defined as the
final virtual address computed for an instruction (output
from the address generator in Figure 4). The effective
address is usually used as the virtual address of an opercmd
location or result destination. However, some instructions

do not use the effective address as a location reference;
instead, the effective address is used to control the opera­
tion of the instruction (as in a shift instruction), to desig­
nate the address of an input/output device (as in an input/
output instruction), or to designate a specific element of the
system (as in a READ DIRECT or WRITE DIRECT instruction).

Effective Location. An effective location is defined as
the actual location (in main memory or in the current regis­
ter block) that is to receive the result of a memory­
referencing instruction, and is referenced by means of an
effective address. Because an effective address may be
either an actual address or a virtual address, this definition
of an effective location assumes, where applicable, the
transformation of a virtual address into an actual address.

Effective Operand. An effective operand is defined as the
contents of an actual location (in main memory or in the
current register block) that is to be used as an operand by a
memory-referencing instruction, and is referred to by means­
of an effective address. This definition of an effective
operand also presupposes the transformation of a virtual
address into an actual address.

TYPES OF ADDRESSING

Except for the special type of addressing that is performed
only by some interrupt and trap instructions, all addressing
within the computer system is real, real extended, or virtual.

REAL ADDRESSING

Real addressing is a type of addressing where a one-to-one
relationship prevails between the effective virtual address
of each instruction and the actual address used to access
main memory. Characteristics of real addressing are:

1. Each reference address is a 17-bit word address.

2. The reference address may be direct or indirect, with
of without postindexing.

3. Displacements associated with indexing are automat­
ically aligned, as required, for doubleword, word,
halfword, or byte operations; and the effective virtual
address is either a 16-bit doubleword address, 17-bit
word address, 18-bit halfword address, or a 19-bit byte
address.

4. Memory mapping and memory access protection are
never invoked.

5. Memory write protection is automatically invoked be­
cause the reference word will always be located within
the first 128K words of real memory. Memory locations
outside the first 128K words of real memory are not ac­
cessible with real addressing.

6. Leading zeros are automatically appended to the effec­
tive address to generate an actual word address as
required by the main memory.

Main Memory 17

7. Real addressing may be used in master or slave mode
and is specified when bits 9 and 40 of the Program
Status Doubleword (PSD 9 and PSD 40) are both O.

VIRTUAL ADDRESSING

Virtual addressing is a type of addressing that uses a memory
map to determine the actual address to be associated with a
particular reference address of each instruction. Virtual
addressing differs from real addressing in that there is
normally no exact relationship between the effective virtual
address and the actual address. Characteristics of virtual
addressing are:

1. Each reference address is a 17-bit address.

2. The reference address may be direct or indirect, with
or without postindexing.

3. Displacements associated with indexing are automat­
ically aligned, as required, for doubleword, word,
halfword, or byte operation; and the effective virtual
address is either a 16-bit doubleword address, l7-bit
word address, l8-bit halfword address, or a 19-bit
byte address.

4. Virtual memory access protection is always invoked.
If the access protection code is inval id, the instruc­
tion aborts and traps to Homespace location X'40'.
(See "Trap Systems".)

5. Memory mapping translates the 8 most significant bits
of the effective virtual address (the page portion) into
a 13-bit page address. This page address is concqte­
nated with the 9 least significant bits of the reference
address. The resultant 22-bit word address is the
actual address used to access memory. This feature
permits anyone user at any given time to have a vir­
tual memory of up to 128K words (256 pages) located
throughout a real or actual memory of up to four million
words (8192 pages). Although the virtual memory is
physically fragmented, logically it is contiguous.

In addition, a special SIGMA 7 compatible mapping
mode is provided. In this mode, the memory map is
loaded with 8-bit page addresses. The most significant
8 bits of the effective virtual address are then trans­
lated into the designated 8-bit page address. This com­
patibility feature allows all SIGMA 7 programs to run
on SIGMA 9 computers with no change to the mapping
structure required.

6. If the actual address is within the first 128K words of
real memory, the memory write protection feature is
also invoked.

7. Virtual addressing may be used in all modes and is
specified when PSD 9 is a 1.

REAL EXTENDED ADDRESSING

Real extended addressing is similar to real addressing in
that there is a direct relationship between the effective
virtual address of each instruction and the actual address.
Real extended addressing faci I itates operating wi th mem­
ories larger than 128K words. It permits the operating

18 Main Memory

system to communicate with any user directly via real mem­
ory rather than through a part of the user's map. In addition,
it provides a method for the operating system to control
channel control word chains that work in real memory space.
Characteristics of real addressing are:

1. Memory mapping and access protection are not invoked.

2. Memory write protection is invoked only if the actual
address is within the first 128K words of real memory.

3. Real extended addressing is specified whenever PSD 9
is a 0 and PSD 40 is a 1.

Further descriptions of real extended addressing is provided
in three parts:

1. Instruction and reference addresses in instructions.

2. Other addresses and displacements.

3. Branching and branch addresses.

Note: The extended address fields and displacements
described below are appl icable only when real
extended addressing is used. --

Instruction and Reference Addresses in Instructions.

General Instruction Format:

PSD

The instruction address field of the PSD and the reference
address field of each instruction is 17 bits. The address
field in both places is divided into two parts. Bit posi­
tion 15 is used as a flag and bit positions 16-31 are used as
a displacement. The displacement field is 16 bits allowing
direct resolution to 64K words. The flag (bit 15) is called
the Extension Selector and indicates which of two regions
is addressed by the 16-bit displacement.

If the Extension Selector equals 0 then the displacement
address is to a word within the first 64K of real memory.
If the Extension Selector equals 1, then the displacement
addresses a word within the 64K region that is identified
by bits 42-47 of the PSD, call ed the Extension Address.
When bit position 15 equals 1, a full memory addresst is
formed by concatenating PSD 42-47 with bit"s 16-31 of the
address field.

t Ful1 memory address consists of 21 bits for a doubleword
address, 22 bits for a word address, 23 bits for a halfword
address, and 24 bits for a byte address.

The logic treats bits 16-31 of the PSD as a 16-bit counter.
The Extension Address (PSD bits 42-47) does not have asso­
ciated count logic. This means, for example, that if the
program is in the real extended addressing mode and the
flag bit in position 15 is a 1 and if the location of the in­
struction presently being executed is X'02FFFF', the next
instruction executed will be X'020000 ' . This occurs be­
cause the count logic on bits 16-31 of the PSD does not
change bit 15 to a 0 and the Extension Address is still in
effect. The Extension Address (PSD bits 42-47) remained at
the value X'021.

Other Addresses and Displacements. Except for reference
address fields and the instruction address of the PSD, all
address and displacement fields are extended into adjacent
(previously undefined) fields to address all memory directly.
The places affected are as follows:

1. An indirect address location contains either a 22-bit
word address or a 16-bit region address and an Exten­
sion Selector (ES) flag.

Indirect Address Location Formats:

2. An index register contains an extended displacement
of from 21 to 24 bits, depending on the size of the
unit being referenced.

Index Register Formats:

~
~ Doubleword }

Word •
Halfword DIsplacement

Byte

3. The stack pointer for push/pull instructions contains
a 22-bit word address for the top of stack address field.

Stack Pointer Format for Push/Pull Instructions:

4. The sign in bit position 12 of byte string instructions is
extended before the displacement is added to the des­
tination address. In addition, the registers that
describe the source byte address and the destination
byte address for a byte stri ng instruction are 24-b it
byte addresses.

Register Formats for Byte String Instructions:

When any of the addresses mentioned above are used, they
reference memory fully without the use of the extended
address field in the PSD. The only exception is the 22-bit
word address used for indirect addressing.

Branching and Branch Addresses. The Extension Address
field of the program status doubleword (PSD bits 42-47) may
be loaded at the time a new PSD is loaded by an XPSD or
LPSD instruction. This field is modified automatically by
branch instructions.

If the effective address of a branch instruction is outside
the first 64K of real memory, the high-order 6 bits of this
full effective address are loaded into the ExtelltiQJJ Address
field of the PSD. The remaining part of the effective
branch address is loaded into positions 16-31 of the PSD.
In addition, bit position 15 of the PSD, the Extension
Sel ector, is set to 1.

If the effective branch address is to a location within the
first 64K of memory, the extension address field of the PSD
will not be modified. The effective address is loaded into
the f6low-order positions of the instruction address field
and the Extension Selector (bit 15) is set to O. This means
that once the Extension Address is set it remains set until it
is either changed by the loading of a new PSD or by the
actual branching into another 64K word region of memory.

A BRANCH AND LINK instruction in real extended address­
ing stores the full address of the next instruction in the link
register. If the Extension Selector in the PSD at the time
BRANCH AND LINK is executed is equal to 0, the address
stored in the link register will be the incremented 16-bit
displacement from positions 16-31 of the PSD. Zeros will
be placed in the high-order address positions. If the
Extension Selector is equal to 1 in the PSD, the address
stored will be the incremented 16-bit displacement (PSD
16-31) plus the contents of the Extension Address (PSD
42-47) which will be placed into bit positions 10-15 of the
I ink register. In both cases, bit positions 0-9 of the I ink
register are set to OIS.

Main Memory 19

INTERRUPT AND TRAP ENTRY ADDRESSING

An interrupt instruction is defined as one that is in an
interrupt location and is executed as the direct result of
an interrupt. Both elements of the definition must be
satisfied simultaneously for it to be an interrupt instruction.
An instruction is not an interrupt instruction even though
it may be in an interrupt location if, for example, it is
executed as the result of the program branching to the
interrupt location under normal program control. Similarly,
a trap instruction is defined as one that is in a trap location
and is executed as the direct result of a trap. The only
valid interrupt instructions are XPSD, MTW, MTH, and
MTB. The only valid trap instruction is XPSD.

Interrupt and Trap Instructi on Format:

The address of the instruction executed as a result of an
interrupt or trap depends on bit 10 of the XPSD

If bit 10 of the XPSD in an interrupt or trap location is a 0,
a real address is generated independently of the addressing
mode specified by the current PSD. If bit 0 (the indirect
bit) of the XPSD instruction is a 0, bits 12-31 of the XPSD
instruction are used as a 20-bit reference address, which
permits direct addressing of the first one mi II ion words of
memory. If bit 0 of the XPSD instruction is a 1, indirect
addressing is invoked, and bits 12-31 of the XPSD instruc­
tion point to a word in memory that contains the reference
address in bit positions 10-31. Note that the indirect word
must be programmed with bit 0 containing a 0 and bits 10-31
containing the reference address (so called long form).
This 22-bit reference address allows addressing a 4 mill ion
word memory.

If bit 10 of the XPSD in a trap or interrupt location is a 1,
the address will be generated as prescribed by the current
PSD (i. e., real, real extended, or virtual addressing).

Any modify and test instruction encountered in an interrupt
location uses the 20-bit reference address in the same man­
ner as described above for the XPSD.

Any XPSD, MTW, MTH, orMTB instruction that is exe­
cuted as a normal instruction, not an interrupt or trap in­
struction, uses the 17-bit reference address in the same
manner as any other memory reference instruction. Bit 10
has no effect on the execution of an XPSD instruction that
is executed as a normal instruction.

ADDRESS MODIFICATION EXAMPLES

INDEXING (REAL AND VIRTUAL ADDRESSING)

Figure 5 shows how the indexing operation takes place
during real and virtual addressing operations. As the in­
struction is brought from memory, it is loaded into a 34-bit
instruction register that initially contains O's in the two

20 Mai n Memory

low-order bit positions (32 and 33). The displacement value
from the index register is then aligned with the instruction
register (as an integer) according to the addressing type of
the instruction; that is, if it is a byte operation, the dis­
placement is I ined up so that its low-order bit is al igned
with the least significant bit of the 34-bit instruction reg­
ister. The displacement is shifted one bit to the left of
this positi on for a halfword operation, two bits to the left
for a word operation, and three bits to the left for a double­
word operation. An addition process then takes place to
develop a 19-bit address, which is referred to as the effec­
tive address of the instruction. High-order bits of the
32-bit displacement fi eld are ignored in the development
of this effective address (i. e., the 15 high-order bits are
ignored for word operations, the 25 high-order bits are
ignored for shift operations, and the 16 high-order bits are
ignored for doubleword operations). However, the displace­
ment val ue can cause the effective address to be I ess than
the initial reference address within the instruction if the
displacement value contains a sufficient number of high­
order lis (i. e., if the displacement is a negative integer
in two's complement form.

The effective virtual address of an instruction is always a
19-bit byte address value. However, this value is auto­
matically adjusted to the SIGMA 9 information boundary
conventions. Thus, for halfword operations, the low-order
bit of the effective halfword address is 0; for word opera­
tions, the two low-order bits of the effective word address
are O'S; and for doubleword operations, the 3 low-order
bits of the effective doubleword address are O's.

If no indexing is used with a byte operation, the effective
byte is the first byte (bit positions 0-7) of a word location;
if no indexing is used with a halfword operation, the effec­
tive halfword is the first halfword (bit positions 0-15) of a
word location. A doubleword operation always involves a
word at an even-numbered word address and the word at
the next sequential (odd-numbered) word address. If an
odd-numbered word location is specified for a doubleword
operation, the computer will trap to the instruction excep­
tion trap (see liT rap System II).

If the addressing mode is real, the 19-bit effective virtual
address is concatentated with 5 leading zeros to form a
24-bit actual address. If the addressing mode is virtual,
the 8 most significant bits of the 19-bit effective virtual
address (SIGMA 7 page address) are transformed into a
13-bit SIGMA 9 page address. The new page address and
the 11 least significant bits .of the 19-bit effective virtual
address are combined to form a 24-bit actual address.

INDEXING (REAL EXTENDED ADDRESSING)

Figure 6 illustrates that the indexing process for real ex­
tended addressing is simi lar to that performed for real and
virtual addressing. The differences are:

1. Bit 15 of the instruction word is not a part of the refer­
ence address. It is used as a control flag. If bit 15 is
a 1 r the contents of the Extension Register (bits 42-47
of the PSD) are concatenated to bits 16-31 of the in­
struction register to form a 22-bit reference address.

Instruction in memory:

Instruction in instruction register:

I IIII
Byte operation indexing alignment:

Halfword operation indexing al ignment:

Word operation indexing alignment:

Shift operation indexing alignment:

Doubleword operation indexing alignment:

Effective virtual address:

Figure 5. Index Displacement AI ignment (Real and Virtual Addressing Modes)

If bit 15 is a zero, six leading zeros are concatenated
to the 16 bits of the instruction word. In either case,
the 22-bit word address is converted into an equival ent
byte address by appending two zeros on the right.

2. Displacement values have an extended number of bits,
24 bits for byte displacements, 23 bits for halfword
displacements, 22 bits for word displacements, and
21 bits for doubleword displacements.

INDIRECT, INDEXED HALFWORD (VIRTUAL ADDRESSING
SIGMA 9 MODE)

Figure 7 illustrates the address modification and mapping
process for an indirectly addressed, indexed, halfword
operation. As the figure shows, reference address 1 is the
content of the reference address field in the instruction
stored in memory. The instruction is brought into the instruc­
tion register, and if the value of the reference address field

is greater than 15, it is converted from a 19-bit reference
address to a 24-bit actual address by the memory map. The
17 low-order bits of the main memory location pointed to
by the actual address, labeled reference address 2, then
replaces reference address 1 in the instruction register.
The index register designated in the X field of the instruc­
tion is then aligned for incrementing at the halfword­
address level. The final effective virtual address is formed
by the address generator and if the value of the reference
address is greater than 15, it is transformed through the
memory map into an actual address. The final 24-bit main
memoryaddress, which automatically contains a 10w-orderO,
is then used to access the halfword to be used as the oper­
and for the instruction.

Note that for the real addressing mode, the modifica­
tions requ ired for indirect, indexed halfword operation
are exactly the same except that the reference address 1
and the final effective address are concatenated with
5 leading zeros rather than being transformed by the
memory map.

Main Memory 21

Instruction in memory:

Information used by address
generator:

Byte operation indexing alignment:.

Halfword operation indexing alignment:

Word operation indexing alignment:

Shift operation indexing alignment:

Bit 15 = 1
Bit 15 = 0

Doubleword operation indexing alignment:

24-bit effective address:

I IIII
24-bi~ displacement ;alue

I I

Figure 6. Index Displacement Alignment (Real Extended Addressing)

INDIRECT, INDEX HALFWORD (REAL EXTENDED
ADDRESSING)

Figure 8 illustrates the address modification process for
real extended, indirect, indexed addressing.

Bit 15 of the instruction word is used as a control flag.
When bit 15 equals 1, the 16-bit reference address of the
instruction is concatenated with the 6 bits contained
within the Extension Register (PSD 42-47). When bit 15
equals 0, the 16-bit reference address of the instruction
is concatenated with 6 leading zeros and the contents of
the Extension Register are not used nor changed.

The word in memory pointed to by the indirect reference
address may be one of three types, differentiated by bit 0
and bi t 15 of the direct address.

If bit 0 is a 0, bits 10 to 31 are used as the 22-bit direct
address. If bit 0 is a 1 and bit 15 is a 0, then bits 16-31
are concatenated with 6 leading zeros to form a 22-bit

22 Mai n Memory

direct address. When bit 0 is a 1 and bit 15 is a 1, bits
16-31 are concatenated with the contents of the Extension
Register to form a 22-bit direct address.

In either case, the 22-bit direct address is then modified
by 23-bit displacement value (halfword alignment of index)
to produce a 24-bit effective virtual address that has a 0 in
the least significant position. Since real extended addresses
are not subjected to mapping, the final effective address is
equivalent to the actual address.

MEMORY ADDRESS CONTROL

In a SIGMA 9 computer, two methods are available for
controlling the use of main memory by a program; they are
the memory map and the memory lock. The memory map
provides for dynamic relocatability of programs and for
access protection through inhibitions imposed on slave or
master-protected mode programs. The memory lock pro­
vides memory write protection for all modes of programs
within the first 131, 072 words of memory.

Instruction in memory:

Instruction in instruction registers:

The 8-high-order bits of the reference address are
replaced with 13-bit page address Z from memory map:

Actual address of memory location that contains
the direct address:

17-bit direct address in memory:

Indirect addressing replaces reference address
with direct address:

Halfword operation indexing alignment:

Effective virtual address:

The 8 high-order bits of the effective address are
replaced with 13-bit page address N from memory map:

Final memory address, which is the actual address of
halfword location containing the effective halfword:

~--------~~--------~'r~------~~------~
24-bit actual address

III

III

,-------~~------~'r,-------~~--------

Figure 7. Generation of Actual Memory Addresses, Virtual Addressing (SIGMA 9 Mode)

Main Memory 23

Initial conditions:

Instruction in instruction register:

Indi rect reference addresses:

PSD

Ie e e e e e\
42 43 44 45 46 .(7

Contents of indirect reference address:

Address used if bit 0 = 0:

Address used if bit 0 = 1 and bit 15 = 0:

Address used if bit 0 = 1 and bit 15 = 1:

Displacement aligned for halfword indexing:

Final effective address:

If bit 15 = 1
If bit 15 = 0

\ e e e e e e: r r r r r r r ~ r r r r r r r \00
10 11112 13 14 1516 17 18 19120 2122 23 24 25 26 27128 29 30 31

Figure 8. Generation of Effective Virtual Address, Real Extended Addressing

24 Main Memory

MEMORY MAP AND ACCESS PROTECTION

The SIGMA 9 memory map is physically an array of 256
registers, each containing 13 bits. The array is stored in
the CPUls fast memory. Each register has an 8-bit address
and contains a 13-bit actual memory page address code for
a speci fi c 512-word page of vi rtua I addresses.

The memory page address codes are assigned to pages of
virtual addresses as follows:

Memory page X Memory page K Memory page N
(13 bits (13 bits) (13 bits)

Virtual 8-bit Virtual 8-bit Virtual 8-bit
addresses addresses addresses
X' 1O'-X'1 FF' X'200'-X'3FF' XI 1 FEOO'-X' 1 FFFF'
(virtual page 0) (virtual page 1) (vi rtual page 255)

The most significant 8 bits of a 17-bit virtual address is con­
sidered to be the virtual page number. Just prior to a mem­
ory reference, the virtual page number is used as an address
of an element of the map. The 13 bits contained within
that element are then used in conjunction with the low­
order 9 bits of the 17-bit virtual address.

When SIGMA 9 is operating in the SIGMA 7-compatible
mode, the map appears identical to the SIGMA 7 map.
This is accompl ished by retaining the SIGMA 7 version of
the MOVE TO MEMORY CONTROL (MMC) instruction to
load the map in a compatible manner. In this form of the
instruction, 8-bit quantities from memory are transmitted
into the map. The 8 bits are stored in the low-order 8 bits
of each map element and the upper 5 bit positions are set
to zero. This means that the map will always relocate to
some address in the first 128K of real memory, which is
compatible for SIGMA 7 programs.

Associated with the memory map feature is another series of
256 2-bit registers, also located in CPU fast memory. Each
of these registers contains a 2-bit access control code for a
specific 512-word page of virtual addresses. The access
protection code indicates the allowed use or availability
of the corresponding page of virtual memory.

The access control codes are assigned as follows:

Vi rtual addresses
X'600 ' -X'7FF'

Virtual addresses
X'400'-X'5FF'

Virtual addresses
X'200'-X'3FF'

Virtual addresses
X'10'-X'1FF'
(Virtual page 0)

Vi rtual
addresses
X'1FEOO'­
XI 1 FFFF'
(vi rtual
page 255)

Virtual
addresses
X'1FCOO'­
X'1FDFF'

The memory page address and access control codes can be
changed only by means of the privileged instruction MOVE
TO MEMORY CONTROL (see "Control Instructions").

Access protection is in effect whenever the memory map is
in effect (PSD 9 = 1) and the computer is operating in the
slave mode (PSD 8 = 1) or in the master-protected mode
(PSD 40 = 1). Access protection is not in effect when the
computer is operating in the master mode.

When the memory map is in effect, all memory references
used by the program (including instruction addresses)
whether direct, indirect, or indexed, are referred to as vir­
tual addresses. Virtual addresses in the range 0 through 15
are not used to address main memory; instead, the 4 low­
order bits of the virtual address comprise a general register
address. However, if an instruction produces a virtual ad­
dress greater than 15, the 8 high-order bits of the virtual
address are used to obtain the appropriate memory page ad­
dress and access control codes. For example, if the 8 high­
order bits of the virtual address are 0000 0000, the first page
address code and the first access control code are used; if
the 8 high-order bits of the virtual address are 0000 0001,
the second page address and access control codes are used,
etc., through the 256th page address and control codes.
Thus, each 512-word page of virtual addresses is associated
with its own memory page address and access control codes.

When the memory map is accessed, the CPU performs a test to
determine whether there are any inh ibitions on using the vir­
tual address by a slave or master-protected mode program.
(If the CPU is in the master mode, this test is not performed.)

The four types of access protection are as follows:

00 A slave or master-protected program can write into,
read from, or access instructions from this page of
virtual addresses.

01 A slave or master-protected program cannot write into,
but can read from or access instructions from th is page
of virtual addresses.

10 A slave or master-protected program cannot write into
or access instructions from, but can read from this page
of virtual addresses.

11 A slave or master-protected program is denied any ac­
cess to this page of virtual addresses.

If the instruction being executed by the slave or master­
protected mode program fails this test, the instruction execu­
tion is aborted and the computer traps to Homespace location
X'40 ' , the "nonallowed operation II trap (see "Trap System ").

If the instruction bei ng executed by the slave or master­
protected mode program passes th is test (or the CPU is in
the master mode), the page address bits in the accessed
element of the memory map replace the 8 high-order bits
of the virtual address to produce the actual address of the
main memory location to be used by the instruction (22-bit
word address which is automatically adjusted as required for
doubleword, word, halfword, or byte operation).

If the page address bits in the accessed element of the mem­
ory map are all OIS, and an actual address is produced that
corresponds to a word address in the range 0 through 15,
when the page address is combined with 9 low-order bits of
the virtual address, the corresponding general register in the

Ma in Memory 25

current register block is not accessed. In this one particular
instance, a word address T;t"he range 0 through 15 corresponds
to actual main memory locations rather than general registers.

REAL MEMORY WRITE LOC KS

An additional memory protection feature, independent of
the access protection, is provided by a lock and key tech­
nique. A 2-bit write protect lock (WL) is provided for each
512-word page of the first 128K words of actual memory
addresses. The write-protect locks consist of 256 2-bit
write locks, each assigned to a 512-word page of actual
addresses as follows:

Actual addresses
X'600 ' -X'7FF'

Actual addresses
X'400'-X'5FF'

Actual addresses
X'200'-X '3Ff!

Actual addresses
0-X'1 FF'
(memory page 0)

Actual
addresses
X' 1 FEOO'­
X' l FFFF'
(memory
page 255)

Actual
addresses
X' 1 FCOO'­
X' 1 FDFF'

The write-protect locks can be changed only by executing
the privileged instruction MOVE TO MEMORY CONTROL
(see IIControl Instruction ll

).

The write key (a 2-bit field in PSD for any operating program)
works in conjunction with the lock storage to determine
whether any program (sl ave, master-protected, or master
mode) can write into a specific page of main memory loca­
tions. The keys and locks control access for writing, ac­
cording to the following rules:

1. A lock value of 00 means that the corresponding mem­
ory page is lIunlocked ll

; write access to that page is
permitted independent of the key value.

2. A key value of 00 is a IIskeleton li key that will open
any lock; thus, write access to any memory page is
perm itted independent of its lock value.

3. A lock value other than 00 for a memory page permits
write access to that page only if the key value is
identical to the lock value.

Thus, a program can write into a given memory page if the
lock value is 00, if the key value is 00, or if the key value
matches the lock value.

Note that the memory access protection feature is used
during virtual addressing modes and operates on virtual
addresses, whereas the memory write protection feature
operates always on the first 128K words of actual memory
addresses. Thus, if the access protection feature is invoked
(that is, the CPU is in the master-protected or slave mode
and is usi ng the memory map), the access protection codes
are examined at the time the virtual address is converted
into an actual address. Then, the locks and keys are

26 Main Memory

examined to determine whether the program (master, master­
protected or slave mode) is allowed to alter the contents of
the main memory location corresponding to the final actual
address. If an instruction attempts to write into a write­
protected memory page, the computer aborts the instruction,
and traps to Homespace location X'40 ' , which is the IInon-

. allowed operation" trap (see "Trap System").

All pages of main memory beyond address 128K are con­
sidered to have a lock of 00, and are open for writing by
any program.

PROGRAM STATUS DOUBLEWORD

The critical control conditions of a SIGMA 9 CPU are
defined within 64 bits of information. These 64 bits are
collectively referred to as the current program status double­
word (PSD). The current PSD may be considered as a 64-bit
internal CPU register, although it actually exists as a col­
lection of separate registers and flip-flops. When stored in
memory, the PSD has the following format:

Desig­
nation

CC

FS

FZ

Function

Condition code. This generalized 4-bit code
indicates the nature of the results of an instruc­
tion. The significance of the condition code bits
depends on the particular instruction just exe­
cuted. After an instruction is executed, the
instructions BRANCH ON CONDITIONS SET
(BCS) and BRANCH ON CON DITIONS RESET
(BCR) can be used singly or in combination, to
test for a particular condition code setting (these
instructions are described in Chapter 3, "Execute/
Branch Instructions").

In some operations, only a portion of the condi­
tion code is involved; thus, the term CCl refers
to the first bit of the condition code, CC2 to the
second bit, CC3 to the third bit, and CC4 to the
fourth bit. Any program can change the current
value of the condition code by executing either
the instruction LOAD CONDITIONS AND
FLOATING CONTROL IMMEDIATE (LCFI)or the
instruction LOAD CONDITIONS AND FLOATING
CONTROL (LCF). Any program can store the
current condition code by executing STORE
CONDITIONS AND FLOATING CONTROL
(STCF). These instructions are described in
Chapter 3, II Load/Store Instructions II.

Floating significance mode control.

Floating zero mode control.

Desig­
nation

FN

MS

MM

DM

AM

AS

Function

Floating normal ize mode control. The three
floating-point mode bits (FS, FZ, and FN) con­
trol the operation of the computer with respect
to floating-point significance checking, the
generation of zero results, and the normalization
of the results of floating-point additions and
subtractions, respectively. (The floating-point
mode controls are described in Chapter 3,
"Floating-point Instruction ".) Any program can
change the state of the current floating-point
mode controls by executing either the instruction
LCFI or the instruction LCF. Any program can
store the current state of the current floating­
point mode controls by executing the instruction
STCF.

Master/slave mode control. The computer is in
the master mode when this bit and the Mode
Altered bit are both OJ it is in the slave mode
when this bit is a 1. (See description of MA for
master-protected mode.) A master or master­
protected mode program can change the mode
control by executing either the instruction
LOAD PROGRAM STATUS DOUBLEWORD(LPSD)
or the instruction EXCHANGE PROGRAM
STATUS DOUBLEWORD (XPSD). These two
privi I eged instructions are described in Chapter 3,
"Control Instructi ons ".

Memory map control. The memory map is in
effect when this bit is a 1. A master or master­
protected mode program can change the memory
map control, by executing either the instruction
LPSD or the instruction XPSD.

Decimal mask. The decimal arithmetic trap (see
I'Trap System") is in effect when this bit is a l.
The conditions that cause a decimal arithmetic
trap are described in Chapter 3, "Decimal
Instructions". The decimal trap mask can be
changed by a master or a master-protected mode
program executing either the instruction LPSD or
the instruction XPSD.

Arithmetic mask. The fixed-point arithmetic
overflow trap is in effect when this bit is a 1.
The instructions that can cause fixed-point over­
flow are described in the section "Trap System".
The arithmetic trap mask can be changed by a
master or master-protected mode program exe­
cuting either the instruction LPSD or the instruc­
tion XPSD.

ASCII Control. This bit controls a feature that
faci I itates the generation of ASCII character
codes. When this bit is a 1, ASCII codes are
generate,d. When this bit is a 0, EBCDIC codes
are generated.

Desig­
nation

IA

ES

ED

WK

CI

II

EI

MA

EA

TSF

RP

Function

Instruction address. This 17-bit field contains
the virtual address of the next instruction to be
executed.

Extension selector. In real extended type of
addressing this bit indicates whether the region
that is addressed by bits 16-31 of the instruction
address field is the zero region or another 64K
word region, as defined by the Extension Address
(bits 42-47 of the PSD).

Extended displacement. Bits 16-31 of the
instruction address specify the displacement
within the region defined by EA (extension
address bits 42-47) and ES (bit 15).

Write key. This field contains the 2-bit key
used in conjunction with the memory protection
feature. A master or master-protected mode
program can change the write key by executing
either the instruction LPSD or the instruction
XPSD.

Counter interrupt group inhibit.

Input/output interrupt group inhibit.

External interrupt group inhibit. The three
inhibit bits (CI, II, and EI) determine whether
certain interrupts may occur. The functions of
the interrupt inhibits are described in the section
"Interrupt System ". A master or master-protected
mode program can change the interrupt inhibits
by executing LPSD, XPSD, or the instruction
WRITE DIRECT (WD). The WD instruction is
described in Chapter 3, "Control Instructions".

Mode altered. This bit is used to invoke both
the master-protected mode of operation and the
real extended type of addressing. Table 2 indi­
cates the function of this bit used in conjunction
with MS (bit 8) and MM (bit 9).

Extension address. This field is used in real
extended addressing to define the al ternate region
of 64K words that can be referenced by a given
16-bit address field (ED). It is used when ES
(bit 15) is equal to 1.

T rapped status field. This field is used for the
tracing of faults during trap conditions. (For a
detailed explanation, see "Trap System II , in­
cluding Table 5, in this chapter.)

Register pointer. This 4-bit field selects one of
the four possible blocks of general-purpose regis­
ters as the current register block. Unused codes
within this field are reserved for future use. A
master or master-protected mode program can

Main Memory 27

Desig­
nation Function

RP change the register pointer by executing LPSD,
(cont.) XPSD, or the instruction LOAD REGISTER

POINTER (LRP). The LRP instruction is described
in Chapter 3, "Control Instructions".

RA Register altered bit. In the event of a trap
entry, this bit is set to 1 when any general
register or location in memory has been altered
in the execution or partial execution of the
instruction that caused the trap.

Table 2. Computer Operating and Addressing Modes

MS MM MA State

a a a Master, real addressing (128K
words, maximum).

a a 1 Master, real extended addressing.

a 1 a Master, virtual addressing.

a 1 1 Master-protected, virtual
addressing.

1 a a Slave, real addressing (128K
words, maximum).

1 a 1 Slave, real extended addressing.

1 1 - Slave, vi'rtual addressing (MA may
be 1 or 0).

INTERRUPT SYSTEM

When a condition that will result in an interrupt is sensed,
a signal is sent to an interrupt level. If that level is
"armed", it advances to the waiting state. When all the
conditions for its acknowledgment have been achieved, the
interrupt level advances to the active state, where it causes
the computer to take an instruction from a specific location
in memory. The computer may execute many instructions
between the time that the interrupt-requesting condition is
sensed and the time that the actual interrupt acknowledg­
ment occurs.

Up to 238 interrupt levels are normally available, each
with a unique location (see Table 3) assigned in main mem­
ory, with a unique priority, and capable of beingselectively
armed and/or enabled by the CPU. Also, any interrupt
level can be "triggered" by the CPU (supplied with a signal
at the same physical point where the signal from the external
source would enter the interrupt level). The triggering of
an interrupt permits the testing of special systems programs
before the special systems equipment is actually attached
to the computer, and also permits an interrupt-servicing
routine to defer a portion of the processing associated with
an interrupt level by processing the urgent portion of an
interrupt-servicing routine, triggering a lower-priority level
(for a routine that handles the less-urgent part), then clearing
the high-priority interrupt level so that other interrupts may
occur before the deferred interrupt response is processed.

SIGMA 9 interrupts are arranged in groups that are con­
nected in a predetermined priority chain by groups of levels.
The priority of each level within a group is fixed; the first
level has the highest priority and the last level has the low­
est. The user has the option of ordering a machine with a
priority chain starti ng wi th the override group and connecting
all remaining groups in any sequence. This allows the user

Table 3. SIGMA 9 Interrupt Locations

Location WRITE DIRECT PSD WRITE DIRECT
Dec. Hex. Register bitt Function Availabi I ity Inhibit G roup code tt

80 50 none Power on standard none
81 51 Power off

82 52 16 Counter 1 count pulse optional
83 53 17 Counter 2 count pulse (as a set) none

84 54 18 Counter 3 count pulse
85 55 19 Counter 4 count pulse standard
86 56 20 Processor fault

X'O'
87 57 21 Memory fault

88 58 22 Counter 1 zero optional
89 59 23 Counter 2 zero (as a set)

CI
90 5A 24 Counter 3 zero standard
91 5B 25 Counter 4 zero

tWhen the privileged instruction WRITE DIRECT is used in the interrupt control mode to operate on interrupt levels, the
interrupt levels are selected by specific bit positions in register R. The numbers in this column indicate the bit position
in register R that corresponds to the various interrupt levels.

ttThe numbers in this column indicate the group codes (for use with WRITE DIRECT) of the various interrupt levels.

28 Interrupt System

Tabl e 3. SIGMA 9 Interrupt Locations (cont.)

Location WRITE DIRECT PSD WRITE DIRECT
Dec. Hex. Register bitt Function Availabil ity Inhibit Group codett

92 5C 26 Input/Output
standard II

93 5D 27 Control Panel

94 5E Reserved for future use
95 5F I Reserved for future use

96 60 16
External Group 2 X' 2

1

111 6F 31

112 70 16
External Group 3 X' 3

1

127 I 7F 31 !

. optional EI

288 120 16
External Group 14 X'E'

303 12F 31

304 130 16
External Group 15 Xip .

319 13F 31

tWhen the privileged instruction WRITE DIRECT is used in the interrupt control mode to operate on interrupt levels, the
interrupt levels are sel ected by specific bit positions in register R. The numbers in this column indicate the bit position
in register R that corresponds to the various interrupt levels.

ttThe numbers in this column indicate the group codes (for use with WRITE DIRECT) of the various interrwpt levels.

to establish external interrupts above, between, or below
the counter and input/output groups of internal interrupts.
Figure 9 illustrates this with a configuration that a user
might establ ish, where (after the override group) the counter
group of internal interrupts is given the second-highest
priority, followed by the first group of external interrupts,
then the input/output group of internal interrupts, and
finally all succeeding groups of external interrupts.

INTERNAL INTERRUPTS

Internal interrupts include those standard interrupts that are
normally suppl ied with a SIGMA 9 system, as well as the
additional counter interrupts.

The eight interrupt levels of this group always have the
highest priority in a SIGMA 9 system. The power fail-safe
feature includesthe power on and power off interrupt levels.
A system can contain 2 or 4 count-pulse interrupt levels
that are triggered by pulses from clock sources. Counter 4
has a constant frequency of 500 Hz. Counters 1, 2, and 3
can be individually set to any of four manually switchable

-1

-1

1 st Priority 2nd Priority

Override Counter -
Interrupts Interrupts

3rd Priority

External Interrupts Group 2 r-
4th Priority

Input/Output
Interrupts

5th Priority

Externa I Interrupts Group 3

Figure 9. Interrupt Priority Chain

Interrupt System 29

frequencies - the commercial I ine frequency, 500 Hz,
2 kHz, or a user-supplied external signal - that may be
different for each counter. (All counter frequenci es are
synchronous except for the I ine frequency and the signal
suppl ied by the user.) Each of the count-pulse interrupt
locations must contain one of the modify and test instruc­
tions (MTS, MTH, or MTW) or an XPSD instruction. When
the modification (of the e.ffective byte, halfword, or word)
causes a zero result, the appropriate counter-equals-zero
interrupt (see "Counter-Equals-Zero Group") is triggered.

The override group also includes a processor fault and a
memory fault interrupt level. The processor fault interrupt
level is triggered by a signal from an input/output processor
(lOP) or another CPU when these devices detect certpin
fault conditions. The memory fault interrupt level is trig­
gered by a signal that the memory generates when it detects
certain fault conditions. (See "Trap System" for further
details on processor and memory faults.)

COUNTER-EQUALS-ZERO GROUP (LOCATIONS X'58 1

TO X'5S ')

Each interrupt level in the counter-equals-zero group
(called a counter-equals-zero interrupt) is associated with
a count-pulse interrupt in the override group. When the
execution of a modify and test instruction in the count­
pulse interrupt location caU5es a zero result in the effective
byte, halfword, or word location, the corresponding counter­
equals-zero interrupt is triggered. The counter-equals-zero
interrupts can be inhibited or permitted as a group. If bit
position 37 (CO of the current program status doubleword
contains a 0, the counter-equals-zero interrupts are allowed
to interrupt the program being executed. However, if the
CI bit is a I, the counter-equals-zero interrupts are not
allowed to interrupt the program. These interrupts wait
until the CI bit is reset to 0 and then interrupt the program
according to priority.

INPUT/OUTPUT GROUP (LOCATIONS X'5C AND X'5D')

This interrupt group includes two standard interrupts: the I/O
interrupt and the control panel interrupt. The I/o interrupt
level accepts interrupt signals from the standard I/o system.
The I/O interrupt location is assumed to contain an
EXCHANGE PROGRAM STATUS DOUBLEWORD (XPSD)
instruction that transfers program control to a routine for
servicing all I/O interrupts. The I/O routine then contains
an ACKNOWLEDGE I/O INTERRUPT (AIO) instruction that
identifies the source and reason for the interrupt.

The control panel interrupt level is connected to the INTER­
RUPT button on the processor control panel. The control
panel interrupt level can thus be triggered by the computer
operator, allowing him to initiate a specific routine.

The interrupts in the input/output group can be inhibited or
permitted by means of bit position 38 (II) of the program
status doubleword. If II is a 0, the interrupts in the I/o

30 Interrupt System

group are allowed to interrupt the program being executed.
However, if the II bit is a I, the interrupts are inhibited
from interrupting the program.

EXTERNAL INTERRUPTS

A SIGMA 9 system can contain up to 14 groups of optional
interrupt levels, with 16 levels in each group. As shown in
Figure 9, the groups can be connected in any priority
sequence.

All external interrupts can be inhibited or permitted by
means of bit position 39 (EI) of the program status double­
word. If EI is a 0, external interrupts areal lowed to inter­
rupt the program. However, if EI is a I, all external
interrupts are inhibited from interrupting the program.

ST ATES OF AN INTERRUPT LEVEL

A SIGMA 9 interrupt level is mechanized by means of three
flip-flops. Two of the flip-flops are used to define any of
four mutually exclusive states: disarmed, armed, waiting,
and active. The third flip-flop is used as a level-enable.
The various states and the conditions causing them to change
state are described in the following paragraphs. A con­
ceptual diagram of the operational states of the interrupt
system is shown in Figure 10.

DISARMED

When an interrupt level is in the disarmed state, no signal
to that interrupt level is admitted; that is, no record is
retained of the existence of the signal, nor is any program
interrupt caused by it at any time.

ARMED

When an interrupt level is in the armed state, it can accept
and remember an interrupt signal. The receipt of such a
signal advances the interrupt level to the waiting state. (If
the level is already in a waiting or active state, the signal
has no effect.)

WAITING

When an interrupt level in the armed state receives an
interrupt signal, it advances to the waiting state, and
remains in the waiting state until it is allowed to advance
to the active state. If the level-enable flip-flop is off, the
interrupt I evel can undergo a II state changes except that of
moving from the waiting to the active state. Furthermore,
if this flip-flop is off, the interrupt level is completely
removed from the chain that determines the priority of access
to the CPU. Thus, an interrupt level in the waiting state
with its level-enable in the off condition does not prevent
an enabled, waiting interrupt of lower priority from moving
to the active state. Any signals received by an interrupt
level in the waiting state are ignored.

External
Input ~

Trigger
Input

Active, waiting,
or disarmed

I
I

~ ________ +-~ Remember

Armed

I
J

I
I
L

interrupt

WAITING STATE

Disabled

Enabled =0

I
I
I
I
I
I
I
~

Figure 10. Operational States of an Interrupt Level

When an interrupt level is in the waiting state, the following
conditions must all exist simultaneously before the level
advances to the active state.

1. The level must be enabled(i. e., its level-enable flip­
flop must be set to 1).

2. The group inhibit (CI, II, or Elf if applicable) must be
a O.

3. No higher-priority interrupt level is;n the active state
or is in the waiting state and totally enabled (i. e.,
enabled and not inhibited).

4. The CPU must be at an interruptable point in the exe­
cution of a program.

ACTIVE

When an interrupt meets all of the conditions necessary to
permit it to move from the waiting state to the active state,
it is permitted to do so by being acknowledged by the com­
puter, which then executes the contents of the assigned
interrupt location as the next instruction. The instruction
address portion of the program status doubleword remains
unchanged until the instruction in the interrupt location is
executed.

The instruction in the interrupt location must be one of the
following: XPSD, MTB, MTH, or MTW. If the execution
of any other i nstructi on in an interrupt I ocati on is attempted
as the result of an interrupt level advancing to the active
state, an instruction exception trap occurs.

If the instruction in the interrupt location is an XPSD instruc­
tion with bit 10 set to 1, or if a modify and test instruction
in the Counter 4 count-pulse location, the effective address
is generated subject to the current active addressing mode
(real, real extended, or virtual). If, for XPSD, bit 10 and
bit 0 are equal to a, bits 12-31 of the instruction uncondi­
tionally specify a direct address within the first 1 million
(220) words of real memory. Since the index field is used
for addressing, indexing is not possible. If bit 10 is equal
to a and indirect addressing is specified (bit 0= 1), the
indi rect address (interpreted as in real extended addressing)
is found in the word specified by bits 12-31.

The use of the privileged instruction XPSD in an interrupt
location permits an interrupt-servicing routine to save the
entire current machine environment and establish a new
environment. If working registers are needed by the routine
and additional register blocks are available, the contents
of the current register block can be saved automati cally
with no time loss. This is accompl ished by changing the
value of the register pointer, which results in the assign­
ment of a new block of 16 registers to the routine.

An interrupt level remains in the active state until it is
cleared (removed from the active state) by the execution
of the LPSD instruction or the WD instruction. An interrupt­
servicing routine can itself be interrupted (whenever a
higher priority interrupt level meets all of the conditions
for becoming active) and then continued (after the higher
priority interrupt is cleared). However, an interrupt­
servicing routine cannot be interrupted by a lower priority
interrupt as long as the higher priority interrupt level remains
in the active state. Any signals received by an interrupt
level in the active state are ignored. Normally, the
interrupt-servicing routine clears its interrupt level and

Interrupt System 31

transfers program control back to the point of interrupt by
means of an LPSD instruction with the same effective address
as the XPSD instruction in the interrupt location.

CONTROL OF THE INTERRUPT SYSTEM

The SIGMA 9 system has two points of interrupt control.
One point of interrupt control is at the individual interrupt
level. The WD instruction can be used to individually arm,
disarm, enable, disable, or trigger any interrupt level
except for the power fai I-safe interrupts (whi ch are always
armed, always enabled, and cannot be triggered).

The second point of interrupt control is achieved by means
of the interrupt inhibits (CI, II, and EI) in the program
status doubleword. If an interrupt inhibit is set to 1, all
interrupt levels in the corresponding group are effectively
disabled, i. e., no interrupt in the group may advance from
the waiting state to the active state and the group is
removed from the interrupt recognition priority chain. Thus,
a waiting, enabled interrupt level (in a group that is not
inhibited) is not prevented from interrupting the program by
a higher priority, waiting, enabled interrupt level in a
group that is inhibited. However, if an interrupt group is
inhibited whi Ie a level in that group is in the active state,
no lower priority interrupt level may advance to the active
state.

The RD instruction may be used to determine which interrupt
levels in a selected group are in the armed orwaitirig state,
in the waiting or active state, or enabled. Chapter 3 con­
tains a description of the RD instruction.

TIME OF INTERRUPT OCCURRENCES

The SIGMA 9 CPU permits an interrupt to occur during the
following time intervals (related to the execution cycle of
an instruction) provided that the control panel COMPUTE
switch is in the RUN position and no "halt" condition exists:

1. Between i nstructi ons: an interrupt is perm i tted between
the completion of any instruction and the initiation of
the next instruction.

2. Between instruction iterations: an interrupt is also
permitted to occur during the execution of the following
multiple-operand instructions:

Move Byte String (MBS)

Compare Byte String (CBS)

Translate Byte String (TBS)

Translate and Test Byte String (TTBS)

Edit Byte String (EBS)

Decimal Multiply (OM)

Decimal Divide (DO)

Move to Memory Control (MMC)

32 Interrupt System

The control and intermediate results of these instructions
reside in registers and memory; thus, the instruction can be
interrupted between the completion of one iteration (oper­
and execution cycle) and the point in time (during the next
iteration) when a memory location or register is modified.
If an interrupt occurs during this time, the current iteration
is aborted and the instruction address portion of the program
status doubleword remains pointing to the interrupted instruc­
tion. After the interrupt-servicing routine is completed, the
instruction continues from the point at which it was inter­
rupted and does not begin anew.

SINGLE-INSTRUCTION INTERRUPTS

A single-instruction interrupt occurs in a situation where an
interrupt level is activated, the current program is inter­
rupted, the single instruction in the interrupt location is
executed, the interrupt level is automatically cleared and
armed, and the interrupted program continues without being
disturbed or delayed (except for the time required for the
single instruction).

If any of the following instructions is executed in any inter­
rupt location, then that interrupt automatically becomes a
single-instruction interrupt:

Modify and Test Byte (MTB)

Modify and Test Halfword (MTH)

Modify and Test Word (MTW)

A modify and test instruction modifies the effective byte,
halfword, or word (as described in the section "Fixed-point
Arithmetic Instructions ") but the current condition code
remains unchanged (even if overflow occurs). The effective
address of a modify and test instruction in an interrupt loca­
tion (except cou~ter 4) is always treated as an actual
address, regardl ess of whether or not the memory map is
currently being used. Counter 4 uses the mapped location
if mapping is currently invoked in the PSD. The execution
of a modify and test instruction in an interrupt location,
including mapped and unmapped counter 4, is independent
of the memory access protection codes and the write­
protection locks; thus, a memory protection violation trap
cannot occur (a nonexistent memory address wi II cause an
unpredictable operation). Also, the fixed-point overflow
trap cannot occur as the result of overflow caused by exe­
cuting MTH or MTW in an interrupt location.

The execution of a modify and test instruction in an interrupt
location automatically clears and arms the corresponding
interrupt level, allowing the interrupted program to continue.

When a modify and test instruction is executed in a count­
pulse interrupt location, all of the above conditions apply,
in addition to the following: if the resultant value in the
effective location is zero, the corresponding counter­
equals-zero interrupt is triggered.

TRAP SYSTEM

TRAP

A trap is similar to an interrupt in that program execution
automatically branches to a predesignated location when a
trap condition occurs. A trap differs from an interrupt in
that a trap location must contain an XPSD instruction.
Depending on the type of trap, the trap instruction is
either executed immediatel y (i. e., current instruction
is aborted) or upon completion of the. current instruction.
The trap instruction is not held in abeyance by higher
priority traps. Interrupts on the other hand may have
an entire sequence of instructions executed before actual
i nterupt action occurs.

TRAP ENTRY SEQUENCE

A tralf' entry sequence begins when the CPU detects the
trap condition and ends when the new PSD has successfully
replaced the old PSD. Detection of any condition listed
in Table 4, which summarizes the trap system, results in a
trap to a unique location in memory. When a trap condition
occurs, the CPU sets the trap state. The operati on cur­
rently being performed by the CPU mayor may not be
carried to completion, depending on the type of trap. In
any event, the instruction is terminated with a trap sequence.
In this sequence, the program counter is not advanced;
instead, the XPSD instruction in the location associated
with the trap is executed. If any interrupt level is ready
to enter the active state at the same time that an XPSD
trap instruction is in process, the interrupt acknowl edge­
ment will not occur until the XPSD trap instruction is com­
pleted. If the trap location does not contain an XPSD
instruction, a second trap sequence is immediately invoked.
(See IIInstruction Exception Trapll.) The operation of the
XPSD instruction is described in Chapter 3, under IIControl
Instructions II.

TRAP MASKS

The programmer may mask the four trap conditions de.scribed
below. Other traps can not be masked.

1. The push-down stack I imit trap is masked within the
stack pointer doubleword for each individual stack.

2. The fixed-point overflow trap is masked in bit position
11 (AM) of the PSD. If bit position 11 (AM) of the
PSD contains a 1, the trap is allowed to occur. If bit
position 11 contains a 0, the trap is not allowed to
occur. AM can be masked by operator intervention or
by execution of either of the privileged instructions
XPSD or LPSD.

3. The floating-point significance check trap is masked
by a combination of the floating significance (FS),
floating zero (FZ), and floating normal ize (FN) 'TIode
control bits (see IIFloating-Point Arithmetic FaultTrapll).

FS, FZ, and FN can be set or cI eared by the execution
of any of the following instructions:

LOAD CONDITIONS AND FLOATING CON­
TROL (LCF)

LOAD CONDITIONS AND FLOATING CON­
TROL IMMEDIATE (LCFI)

EXCHANGE PROGRAM STATUS DOUBLEWORD
(XPSD)

LOAD PROGRAM STATUS DOUBLEWORD (LPSD)

4. The decimal arithmetic fault trap is masked by bit
position 10 (DM) of the PSD. If bit position 10 (DM)
of the PSD contains a 1, the trap is allowed. If DM
is a 0, the trap is not allowed. DM can be masked by
execution of either of the privileged XPSD or LPSD
instructions.

TRAP CONDITION CODE

For the traps push-down stack limit, fixed-point overflow,
floating-point fault, and decimal fault, the normal condi­
tion code register, CC1-CC4, is loaded with more detailed
information about the trap condition just before the trap
occurs. This condition code is saved as part of the old PSD
when the XPSD instruction is executed in response to the
trap.

For the traps nonallowed operation, watchdog timer runout,
memory parity error, instruction exception, and calls, a
special register, the trap condition code TCC1-TCC4, is
loaded just before the trap occurs. When the XPSD instruc­
tion is executed in response to the trap, this register is
added to the new program address if bit 9 of the XPSD is
set to 1, TCC1-TCC4 is also logically ORed with the con­
dition code bits of the new PSD when loading CC1-CC4.

TRAP ADDRESSING

During the trap entry sequence, the XPSD instruction in the
trap location is accessed without mapping, regardless of the
current addressing mode.

If bit 10 of the XPSD is a 1, the effective address is gen­
erated subject to the current active addressing mode (real,
real extended, or virtual). If, however, bit 10 and bit 0
are equal to a zero, bits 12-31 of the instruction uncondi­
tionally specify a direct address within the first 220 words
of real memory. Since the index field is used for addressing,
indexing is not possible. If bit 10 is equal to a zero and
indirect addressing is specified (bit 0 = 1), the indirect
address (interpreted as in real extended addressing) is found
in the word specified by bits 12-31. Bit 10 of the XPSD
has no effect when the XPSD is executed as a nontrap
instruction.

T rap System 33

Table 4. Summary of SIGMA 9 Trap Locations

Location PSD
Dec. Hex. Function Mask Bit Time of Occurrence Trap Condition Code

64 40 Nonallowed operation
I

l. Nonexistent None I At instruction decode. Set TCCl
instruction

2. Nonexistent None Prior to memory access. Set TCC2
memory address

3. Pri vi I eged i nstruc- None At instruction decode. Set TCC3
tion in slave mode

4. Memory protec- None Prior to memory access. Set TCC4
tion violation

65 41 Unimplemented None At instruction decode. None
instruction

66 42 Push-down stack TW TS At the time of stack limit None
I imit reached detection. (The aborted

push-down instruction does
not change memory, regis-
ters, or the condition
code.)

67 43 Fixed-point AM For all instructions except None
arithmetic overflow DW and DH, trap occurs

after completion of in-
struction. For DW and
DH, instruction is aborted
with memory, registers,
CC1, CC3, and CC4
unchanged.

68 44 Floating-point At detection.
arithmetic fault

~

l. Charactersiti c None (The floating-point None
overflow instruction is aborted

without changing any
2. Divide by zero None registers. The condition None

code is set to indicate
3. Significance check FS, FZ, FN .. the reason for the trap.) None

69 45 Decimal arithmetic DM At detection. (The None
fault aborted decimal instruc-

tion does not change
memory, registers, CC3,
or CC4.)

.,
70 46 Watchdog Timer None At runout. (The Pro- Set TCC 1 if instruction successfully

Runout cessor Detected Fault completed.
or PDF flag will be set.)

Set TCC2 if processor bus hang-up.

I
Set TCC3 if memory bus hang-up.

I Set TCC4 if DIO bus hang-up.

34 T rap System

Tabl e 4. Summary of SIGMA 9 Trap Locations (cont.)

Location PSD
Dec. Hex. Function Mask Bit Time of Occurrence Trap Condition Code

71 47 Reserved

72 48 CALLl None At instruction decode. Equal to R field of CALL instruction.

73 49 CALL2 None At instruction decode. Equal to R field of CALL instruction.

74 4A CALL3 None At instruction decode. Equal to R field of CALL instruction.

75 4B CALL4 None At instruction decode. Equal to R field of CALL instruction.

76 4C Pari ty Error None (The PDF flag will be set.) Set TCC2 if map parity error.

Set TCC3 if data bus parity error
detected by CPU.

Reset TCCl-4 if memory parity error.

77 4D Instruction Excepti on None (The PDF flag will be set.) Set TCCl if trap or interrupt
Trap sequence and reg ister poi nter set to

nonexistent register block.

Set TCC3 if MMC configuration
illegal.

Set TCC = X'C if trap or interrupt
sequence with illegal instruction.

SetTCC=X'F' if trap or interrupt se-
quence and processor detected fault.

(The PDF flag wi II not Set TCC4 if invalid register desig-
be set.)

78 4E Reserved

79 4F Reserved

NON ALLOWED OPERATION TRAP

The occurrence of a nonallowed operation always causes the
computer to abort the instruction being executed at the time
that the nonallowed operation is detected and to immediately
execute the XPSD instruction in Homespace trap location
X'40'. A nonallowed operation trap cannot be masked.

NONEXISTENT INSTRUCTION

Any instruction that is not standard on SIGMA 9 is defined
as nonexistent. This inC! udes immediate operand instructions
that are indi rectly addressed (l in bit position 0 of instruc­
tion). If a nonexistent instruction is detected, the computer
traps to Homespace location X'40' at the time the nonexis­
tent instruction is decoded. No general registers or memory
locations are changed, and the PSD points to the instruction
trapped. The operation of the XPSD in Homespace trap

nation (odd register on AD, SD,
FAL, FSL, FML, FDL, TBS, TTBS,
EBS, and register 0 on EBS) . ..

location X'40' (with respect to the condition code and
instruction address portions of the PSD) is as follows:

1. Store the current PSD. The condition codes stored are
those that existed at the end of the last instruction
prior to the nonexistent instruction.

2. Load the new PSD. The current PSD is replaced by the
contents of the doubleword location following the
doubleword location in which the current PSD was
stored.

3. Modify the new PSD.

a. Set CCl to 1. The other condition code bits
remain unchanged from the values loaded from
memory.

T rap System 35

b. If bit position9of XPSDcontainsa 1, the program
counter is incremented by 8. If bit position 9 of
XPSD contains a 0, the program counter remains
unchanged from the va I ue loaded from memory.

NONEXISTENT MEMORY ADDRESS

Any attempt to access a nonexistent memory address causes
a trap to Homespace location X'40' at the time of the
request for memory service. A nonexistent memory address
condition is detected when an actual address is presented
to the memory system. If the CPU is in the map mode, the
program address wi II al ready have been modified by the
memory map to generate an actual (but nonexistent) address.
(Refer to Table 6 for possible changes to registers and mem­
ory locations.) The operation of the XPSD in Homespace
trap location X'40' is as follows:

1. Store the current PSD.

2. Load the new PSD.

3. Modify the new PSD.

a. Set CC2 to 1. The other condition code bits
remain unchanged from the values loaded from
memory.

b. If bit position 9 of XPSD contains a 1, the pro­
gram counter is incremented by 4. If bit position 9
of XPSD contains a 0, the program counter remains
unchanged from the value loaded from memory.

PRIVILEGED INSTRUCTION IN SLAVE MODE

An attempt to execute a privileged instruction whi Ie the
CPU is in the slave mode causes a trap to Homespace loca­
tion X'40' before the privileged operation is performed. No
general registers or memory locations are changed, and the
PSD points to the instruction trapped. The operation of the
XPSD in Homespace trap location X'40' is as follows:

1. Store the current PSD.

2. Load the new PSD.

3. Modify the new PSD.

a. Set CC3 to 1. The other condition code bits
remain unchanged from the values loaded from
memory.

b. If bit position 9 of XPSD contains a 1, the program
counter is incremented by 2. If bit position 9 of
XPSD contains a 0, the program counter remains
unchanged from the va I ues loaded from memory.

The operation codes OC and OD, and their indirectly
addressed forms, 8C and 8D, are both nonexistent and priv­
ileged. If anyone of these operation codes is used while
the CPU is in the slave mode, both CCl and CC3 are set

36 Trap System

to lis after the current PSD is modified, and if bit position
9 of XPSD containsa 1, the program counter is incremented
by 10. All other nonexistent operation codes are treated as
nonprivileged and, if used, will trap with CCl set to 1.

MEMORY PROTECTION VIOLATION

A memory protection violation occurs either because of a
memory map access control bit violation (by a program
executed in the slave or master-protected mode using the
memory map), or because of a memory write-lock violation
(by any program) within the first 128K words of real memory.
When either type of memory protection violation occurs,
the CPU aborts execution of the current instruction without
changing protected memory and traps to Homespace location
X'40'. (Refer to Table 6 for possibl e changes to registers
and memory locations.) The operation of the XPSD in
Homespace trap location X'40' is as follows:

1. Store the current PSD.

2. Load the new PSD.

3. Modify the new PSD.

a. Set CC4 to 1. The other condition code bits remain
unchanged from the values loaded from memory.

b. If bit position 9 of XPSD contains a 1, the program
counter is incremented by 1. If bit position 9 of
XPSD contains a 0, the program counter remains
unchanged from the va I ue loaded from memory.

An attempt to access a memory location that is both pro­
tected and nonexistent causes both CC2 and CC4 to be set
to l's after the current PSD has been modified, and if bit
position 9 of XPSD contains a 1, the program counter is
incremented by 5.

UNIMPLEMENTED INSTRUCTION TRAP

When the DECIMAL switch on the processor control panel
is in the OVERRIDE position, the decimal unit is disabled.
The decimal unit includes the following instructions.

Operation
Instruction Name Mnemonic Code

Decimal Load DL X'7E'

Decimal Store DST X'7F'

Decimal Add DA X'79'

Decimal Subtract DS X' 78 1

Decimal Multiply DM X'7B'

Decimal Divide DD X'7A'

Operation
Instruction Mnemonic Code

Decimal Compare DC X'7D'

Decimal Shift Arithmetic DSA X'7C'

Pack Decimal Digits PACK X'76'

Unpack Decimal Digits UNPK X'77'

Edit Byte String EBS X'63'

If an attempt is made to execute a decimal instruction
(directly or indirectly addressed) when the DECIMAL switch
is in the OVERRIDE position, the computer traps to Home­
space location X'41', the unimplemented instruction trap.
An indirectly addressed EBS instruction is always treated
asa nonexistent instruction rather than asan unimplemented
instruction.

The operation of the XPSD in trap Homespace location
X'41' isasfollows:

1. Store the current PSD. The condition code stored is
that which existed at the end of the instruction imme­
diately prior to the unimplemented instruction.

2. Load the new PSD. The condition code and the in­
struction address portions of the PSD remain at the
va I ues loaded from memory.

PUSH-DOWN STACK LIMIT TRAP

Push-down stack overflow or underflow can occur during
execution of any of the following instructions:

Operation
Instruction Mnemonic Code

Push Word PSW X'09'

Pull Word PLW X'08'

Push Multiple PSM X'OB'

Pull Multiple PLM X'OA'

Modify Stack Pointer MSP X'13'

During the execution of any stack-manipulating instruction
(see "Push-down Instructions ll

), the stack is either pushed
(words added to stack) or pulled (words removed from stack).
In either case, the space (S) and words (W) fields of the
stack pointer doubleword are tested prior to moving any
words. If execution of the instruction would cause the
space (S) field to become less than 0 orgreater than 215_1,
the instruction is aborted with memory and registers
unchanged. If TS (bit 32) of the stack pointer doubleword
is set to 0, the CPU traps to Homespace location X'42'. If
TS is set to 1, the trap is inhibited and the CPU processes

the next instruction. If execution of the instruction would
cause the words (W) field to become less than 0 or greater
than 215-1, the instruction is aborted with memory and
registers unchanged. If TW (bit 48) of the stack pointer
doubleword is set to 0, the CPU traps to Homespace loca­
tion X'42'. If TW is set to 1, the trap is inhibited and the
CPU processes the next instruction. If trapping is inhibited,
CCl or CC3 is set to 1 to indicate the reason for aborting
the instruction. The stack pointer doubleword, memory,
and registers are modified only if the instruction is success­
fully executed.

If a push-down instruction traps, the execution of XPSD in
Homespace trap location X'42' is as follows:

1. Store the current PSD. The condition codes that are
stored are those that existed prior to execution of the
aborted push-down instruction.

2. Load the new PS D. The condition code and instruction
address portions of the PSD remain at the val ues loaded
from memory.

FIXED-POINT OVERFLOW TRAP

Overflow can occur for any of the following instructions:

Operation
Instructi on Mnemonic Code

Load Absol ute Word LAW X'3B'

Load Absolute Doubleword LAD X'1 B'

Load Complement Word LCW X'3A'

Load Complement Doubleword LCD X'lA'

Add Halfword AH X'50'

Subtract Halfword SH X'58'

Divide Halfword DH X'56'

Add Immediate AI X'20'

Add Word AW X'30'

Subtract Word SW X'38'

Divide Word DW X'36'

Add Doubleword AD X'lO'

Subtract Doubleword SD X'18'

Modify and Test Halfword MTH X'53'

Modify and Test Word MTW X'33'

Add Word to Memory AWM X'66'

Trap System 37

Except for the instructions DIVIDE HALFWORD (DH) and
DIVIDE WORD (DW), the instruction execution is allowed
to proceed to completion. CC2 is set to 1 and CC3 and
CC4 represent the actual result (0, -, or +) after overflow.

If the fixed-point arithmetic trap mask (bit 11 of PSD) is a
1, the CPU traps to Homespace location X'43 1 instead of
executing the next instruCtion in sequence.

For DW and DH, the instruction execution is aborted with­
out changing any register, and CC2 is set to 1; but CC1,
CC3, and CC4 remain unchanged from their values at the
end of the instruction immediately prior to the DW or DH.
If the fixed-point arithmetic trap mask is a 1, the CPU
traps to location X'43 1 instead of executing the next instruc­
tion in sequence.

The execution of XPSD in Homespace trap location X'43 1

is as follows:

1. Store the current PSD. If the instruction trapped was
any instruction other than DW or DH, the stored con­
dition code is interpreted as follows:

CClt CC2 CC3

tt a

a

a

CC4 Meaning

a Result after overflow is
zero.

Resu I t after overflow is
negative.

a Result after overflow is
positive.

No carry out of bit 0
of the adder (add and
subtract instructions
only).

Carry out of bit 0 of
the adder (add and
subtract instructions
only).

If the instruction trapped was a DW or DH, the stored
condition code is interpreted as follows:

CCl CC2 CC3 CC4 Meaning

tt
Overflow

tCCl remains unchanged for instructions LCW, LAW, LCD,
and LAD.

tt A hyphen indicates that the conditi on code bits are not af­
fected by the condition given under the "Meaning ll heading.

38 T rap System

2. Load the new PSD. The condition code and instruction
address portions of the PSD remain at the value loaded
from memory.

FLOATING·POINT ARITHMETIC FAULT TRAP

Floating-point fault detection is performed after the opera­
tion called for by the instruction code is performed, but
before any results are loaded into the general registers.
Thus, the floating-point operation that causes an arithmeti c
fault is not carried to completion in that the original con­
tents of the general registers are unchanged.

Instead, the computer traps to Homespace location X'44 1

with the current condition code indicating the reason for
the trap. A characteristic overflow or an attempt to divide
by zero always results in a trap condition. A significance
check or a characteristic underflow results in a trap condi­
tion only if the floating-point mode controls (FS, FZ, and
FN) in the current program status doubleword are set to the
appropriate state.

If a floating-point instruction traps, the execution of XPSD
in Homespace trap location X'44 1 is as follows:

1. Store the current PSD. If division is attempted with a
zero divisor or if characteristic overflow occurs, the
stored condition code is interpreted as follows:

CCl CC2 CC3 CC4 Meaning

0 0 0 Zero divisor.

0 0 Characteristic overflow,
negative result.

0 0 Characteristic overflow,
positive result.

If none of the above conditions occurred but charac­
teristic underflow occurs with floating zero mode bit
(FZ) = 1, the stored condition code is interpreted as
follows:

CCl CC2 CC3 CC4 Meaning

o Characteristic under­
flow, negat i ve resu It.

o Characteristic under­
flow, positive result.

If none of the above conditions occurred but an addition
or subtraction results in either a zero result (with
FS = 1 and FN = 0), or a postnormalization shift of more
than two hexadecimal places (with FS = 1 and FN = 0),
the stored condition code is interpreted as follows:

CCl CC2

o

CC3 CC4 Meaning

o o Zero resul t of addition
or subtraction.

CCl CC2 CC3 CC4 Meaning

o o

o o

More than two post­
normalizing shifts,
negative result.

More than two post­
normalizing shifts,
positive result.

2. Load the new PSD. The condition code 'and instruc­
tion address portions of the PSD remain at the values
loaded from memory.

DECIMAL ARITHMETIC FAULT TRAP

When either of two decimal fault conditions occurs (see
"Decimal Instructions"), the normal sequencing of instruc­
tion execution is halted, CC 1 and CC2 are set according
to the reason for the fault condition, and CC3, CC4, mem­
ory, and the decimal accumulator remain unchanged by the
instruction. If the decimal arithmetic trap mask (bit posi­
tion 10 of PSWl) is a 0, the instruction execution sequence
continues with the next instruction in sequence at the time
of fault detection; however, if the decimal arithmetic trap
mask contains a 1, the computer traps to Homespace loca­
tion X'45' at the time of fault detection. The following
are the fault conditions for decimal instructions:

Instruction Name Mnemonic Fault

Decimal Load DL Illegal digit

Decimal Store DS Illegal digit

Decimal Add DA Overflow, illegal
digit

Decimal Subtract DS Overflow, illegal
digit

Decimal Multiply DM Illegal digit

Decimal Divide DD Overflow, illegal
digit

Decimal Compare DC Illegal digit

Decimal Shift DSA Illegal digit
Arithmeti c

Pack Decimal PACK Illegal digit
Digits

Unpack Decimal UNPK Illegal digit
Digits

Edit Byte String EBS Illegal digit

The execution of XPSD in Homespace trap location X'45'
is as follows:

1. Store the current PSD. The stored condition code is
interpreted as foil ows:

2.

CCl CC2 CC3 CC4 Meaning

o

o

All digits legal and
overflow.

Illegal digit detected.

Load the new PSD. The condition code and instruction
address portions of the PSD remain at the values loaded
from memory.

CALL INSTRUCTION TRAP

The four CALL instructions (CAll, CAL2, CAL3, and
CAL4) cause the computer to trap to Homespace location
X'48' (for CAll), X'49' (for CAL2), X'4A' (for CAL3), or
X'4B' (for CAL4). Execution of XPSD in the trap location
is as follows:

1. Store the current PSD. The stored condition code bits
are those that existed prior to the CALL instruction.

2. Load the new PSD.

3. Modify the new PSD.

a. The R Field of the CALL instruction is logically
ORed with the condition code register as loaded
from memory.

b. If bit 9 of XPSD contains a 1/ the R field of the
CALL instruction is added to the program counter.
If bit 9 of XPSD contains a 0, the program counter
remains unchanged from the value loaded from
memory.

Note: Return from a CALL trap will be to the trapping
instruction + 1.

PROCESSOR DETECTED F AUL TS

The Processor Detected Fault (PDF) flag is a hardware
flag used in the SIGMA 9 system to aid in solving the mul­
tiple error problem. Most traps occur because of some
dynamic programming consideration (i. e., overflow, at­
tempted division by zero, incorrect use of an instruction
or address, etc.) and recovery is easily handled by another
software subroutine. However, with certain classes of
errors/ if a second error occurs while the computer is

t A hyphen indicates that the condition code bit is not
affected by the condition given under the "Meaning"
heading. .

T rap System 39

attempting to recover from the first error, unpredictable
results occur. Included in this class of traps is the parity
error trap, some cases of the instruction exception trap,
and the watchdog timer runout trap. Upon the fi rst occur­
rence of this type of trap, the PDF flag is set.

When the PDF flag is set, the processor fault interrupt, the
memory fault interrupt, and count pulse interrupts are auto­
matically inhibited. The other interrupts, with the excep­
tion of power fail-safe, mayor may not be inhibited as
specified by the PSD, which is loaded when the trap entry
XPSD is executed. The PDF flag is normally reset by the
last instruction of a trap routine, which is an LPSD instruc­
tion having bit 10 equal to 0 and bit 11 equal to 1.

If a second PDF is detected before the PDF flag is reset,
the CPU becomes "hung-up" unti I the PDF flag is reset
either by the operator pressing the CPU RESET or the
SYS RESET switches on the processor control panel; or,
in a multiprocessor system, by another CPU executing an
RIO instruction.

The reset (RIO) function on a processor bus addressing a
CPU will cause a reset of that CPU. If the CPU is "hung­
up", this reset will cause the following actions:

1. The processor fault status register is cleared.

2. The PDF flag is cleared and the processor fault inter­
rupt generated flag is c:eared.

3. The PSD is cl eared to zero except that the instruction
address is set to Homespace location X'26 1

• This is the
same condition for the PSD that resul ts from pressing
the SYS RESET switch on the processor control panel.

4. The CPU will begin execution with the instruction
contained in Homespace location X'26 1

•

WATCHDOG TIMER RUNOUT TRAP

The watchdog timer is a two-phase timer that mon itors and
controls the maximum amount of CPU time each instruction
can take. The timer is normally in operation at all times
and is initialized at the beginning of each instruction. If
the instruction is completed before the end of phase 1, the
timer is reset. If the instruction is completed after phase 1
but before the end of phase 2, a trap to Homespace loca­
tion X'46 1 occurs immediately after the instruction is com­
pleted, and TCCl is set to indicate successful completion
of the instruction. Additional information as to probable
cause of delay is provided: TCC2 is set if the CPU was
using the processor bus, TCC3 is set if the CPU was using
the memory bus, or TCC4 is set if the CPU was using the
DIO bus. If the instruction is not completed by the time
the watchdog timer has advanced through phase 2, the
instruction is aborted, TCCl is set to 0, and a trap occurs
immediately to Homespace location X'46 1

• In addition,
TCC2, TCC3, or TCC4 will be set as described above.
The register altered flag of the PSD is also set if any
register or main memory location had been changed when
the trap occurred.

40 Trap System

A watchdog timer runout is considered a CPU fault and the
PDF is set.

INSTRUCTION EXCEPTION TRAP

The instruction exception trap occurs whenever the CPU
detects a set of operations that are called for in an instruc­
tion but can not be executed because of either a hardware
restriction or a previous event.

The different conditions that cause the instruction exception
trap are:

1. A processor-detected fault that occurs during the exe­
cution of an interrupt or trap entry sequence. An
interrupt or trap entry sequence is defined as the
sequence of events that consists of: (a) initiating on
interrupt or trap; (b) accessing the instruction in the
interrupt or trap location; and (c) executing that in­
struction, including the exchange of the PSD, if
required. Note that instructions executed as a resul t
of the interrupt or trap other than the i nstructi on lo­
cated at the interrupt or trap location are not consid­
ered part of the entry sequence.

2. An illegal instruclion is found in the trap (not XPSD)
or interrupt (not XPSD, MTB, MTH, MTW) location
when executing a trap or interrupt sequence.

3. The register pointer (bits 56-59) of the PSD is set to a
nonexistent register block as a result of an LRP, LPSD,
or XPSD.

4. Bit positions 12-14 of the MOVE TO MEMORY CON­
TROL(MMC) instruction are interpreted as an illegal
configuration. That is, any configuration other than
100, 010, 001, or 101.

5. The set of operations, primarily doubleword and byte
string instructions, that yield an unpredictable result
when an incorrect register is specified; this type of
fault is called "inval id register designation II and
includes the following instructions: t

Register 0 Specified

Edit Byte String (EBS)

Odd Register Specified

Add Doubleword (AD)

Subtract Doubleword (SD)

Floating Add Long (FAL)

FI oati ng Subtract Long (FS L)

tliInvalid register designation ll faults do not set the PDF
flag.

Odd Register Specified (cont.)

Floating Multiply Long (FML)

Floating Divide Long (FDL)

Translate Byte String (TBS)

Translate and Test Byte String (TTBS)

Edit Byte String (EBS)

Move to Memory Control (MMC)

Trap Condition Code. The Trap Condition Code (TCC)
differentiates between the different fault types. Some of
the fault conditions (as listed in Table 5) may occur and/or
be detected during a trap or interrupt entry sequence. In
this case, the trapped status field, bits 48-55 of the PSD,
are set to equal the least significant eight bits of the ad­
dress of the trap or interrupt instruction in which the trap
occurred; that is, the trapped status fj el d wi II poi nt to the
trap or interrupt location that was in effect when the fault
occurred. In the event that the fault occurs in a normal
program instruction, the trapped status field has no meaning.

Table 5 shows the settings of the TCC and trapped status
field for the various fault types.

Table 5. TCC Setting for Instruction Exception Trap X'4D '

T rapped Status
TCC Field (PSD bits

Fault Type 1 234 48-55)

XPSD in trap or 1000 8 least significant
interrupt location tries bits of trap or
to set register pointer interrupt address.
to nonexistent register
block.

XPSD, LPSD, or LRP 0000 No meaning.
not in a trap or inter-
rupt sequence tries to
set register pointer to
nonexistent register
block.

T rap or interrupt 1 1 1 1 8 least significant
sequence and pro- bits of trap or
cessor detected faul t. interrupt address.

Trap or interrupt 1 1 a a 8 least significant
sequence with bits of trap or
inval id instruction. interrupt address.

MMC configuration 0010 No meaning.
invalid.

Inval id register 0001 No meaning.
designation.

PARITY ERROR TRAP

Three types of parity errors may be detected in the
addressing and memory logi c.

1. Map Check. When the CPU is operating with the
memory map, a parity check is made on the page
addresses retrieved from the map. If an error is found,
this fault occurs. The CPU aborts the memory request,
traps to Homespace location X'4C and sets TCC2 to 1.

2. Data Bus Check. If the CPU detects a parity error on
data received from memory and the memory does not
also indicate a parity error on the information sent, a
data bus check occurs. The data bus check causes the
CPU to trap to Homespace location X'4C, and sets
TCC3 to 1.

3. Memory Parity Error. When a CPU receives a signal
from the memory indicating memory parity error, this
fault occurs. The CPU traps to Homespace location
X'4C. In addition, on a memory-detected parity
error trap, the memory bank wi II "snapshot" the address
causing the trap.

The memory parity error signal is generated:

1. When the memory is performing a read operation and
a parity error is detected in the data as read from the
memory el ements.

2. When the memory is performing a partial write opera­
tion and a parity error is detected when reading the
word to be changed. This is done before the new
information is inserted and the data restored to memory.

3. When a parity error is detected in the memory on an
address received on the memory bus. If the address bus
check occurs on a write request, the memory is not
accessed. On a read request, dummy data with incor­
rect parity is sent to the processor.

4. When a parity error is detected on data received by
the memory from the memory bus. The memory is not
accessed and the data is not used.

5. If the memory has a port selection error in attempting
to establish priority for requests received on two or more
ports. The memory parity error signal is generated on
the busses from all ports affected by the selection

__ error.

6. If the LOAD MEMORY STATUS instruction is used and
the condition code set prior to execution of the instruc­
tion is reserved (i. e., not implemented in the memory
logic), the memory wi II interpret it as a read-type
instruction, send back a parity error signal and all
zeros on the data bus, and "snapshot" the address in
the Memory Status Register.

Any of these six conditions will also cause a Memory Fault
Interrupt to occur.

T rap System 41

TRAP CONDITIONS DURING" ANTICIPATE"

OPERATIONS

During the time that the SIGMA 9 is executing a current
instruction, it is also performing operations in anticipation
of the next instruction, as specified by the instruction ad­
dress. These operations (accessing the next instruction, the
associated operand, and/or indirect address, etc.) may
encounter trapping conditions. Whether a corresponding
trap will occur is contingent on the current instruction.
Traps due to the current instruction and traps due to branch
operations will inhibit traps due to operations performed
in anti cipation of the next instruction.

If the current instruction is a successful branch instruction,
the instruction sequence is changed. Therefore, operations
performed in anticipation of the next instruction are no
longervalid, and any traps associated with these operations
are disregarded.

If the current instruction encounters a trap, it takes pre­
cedence over the next instruction and any anticipated trap.
At the end of the trap routi ne these operati ons wi II be
reperformed and the proper trap action wi" occur at th is
time.

At the end of the execution of current (nonbranching)
instructions, trap conditions detected during lIanticipate"
operations have priority over an interrupt. These trap con­
ditions include nonexistent memory, access protection vio­
lation, nonexistent instruction, privileged instruction in
slave mode, and parity error.

REGISTER ALTERED BIT

Complete recoverabi I ity after a trap may require that no
main memory location, no fast memory register, and no
part (or flags) of the PsD be changed when the trap occurs.
If any of these registers or flags are changed, the Register
Altered bit (60) of the old PsD is set 10 1 and is saved by
the trap XPsD.

Changes to CC 1-4 cause the Reg ister AI tered bi t to be set
only if the instruction requires these condition code bits as
subsequent inputs.

Traps caused by conditions detected during operand fetch
and store memory cycles, such as nonexistent memory,
access protection violation, and memory parity error may
or may not leave registers, memory, and PsD unchanged,
depending on when they occur during instruction execu­
tion. Generally, these traps are recoverable. This is
done by checking for protection violations and nonexis­
tent memory at the beginning of execution in case of a
multiple operand access instruction, restoring the original
register contents if execution cannot be completed because
of a trap, and not loading the first half of the PsD until
a possible trap condition due to access of the second half
could have been detected. Table 6 contains a list of
SIGMA 9 instructions and indicates for these instructions
what registers, memory locations, and PsD bits, if any,
have been changed when a trap due to an operand access
memory cycle occurs.

Table 6. Registers Changed at Time of a Trap Due to an Operand Access

Instructions Changes

AI, CI, LCFI, LI, MI Immediate type, no operand access.

CALl-CAL4, SF,S, WAIT, RD, WD, RIO, No operand access.
POLR, POLP, DsA

LRA Has operand access but traps are suppressed; register bits and
condition codes are set instead.

LB, LCF, LRP, CB No operand store, registers and PsD unchanged when trap due to
LH, LAH, LCH, AH, sH, MH, DH, CH operand fetch. CC 1-4 may be changed but are not used as input
LW, LAW, LCW, AW, SW, MW, DW, CW to any of these instructions.
LD, LAD, LCD, AD, sD, CD, CLM, CLR
EaR, OR, AND, Ls, INT, CS
FAs, FsS, FMs, FDs, FAL, FsL, FML, FDL

AWM, XW, sTS, MTB, MTH, MTW Registers and memory are preserved, condition codes may be changed
sTB, sTCF, 5TH, sTW, LAS but are not used as input to these instructions.

I

sTD I
If a trap occurs, the first word (odd address) may have been stored

I
al ready. The Register Altered bit is set in this case.

42 T rap System

Table 6. Registers Changed at Time of a Trap Due to an Operand Access (cont.)

Instructions

EXU, BCR, BCS
BAL, BDR, BIR

MBS, CBS, TBS, TTBS, EBS, MMC
DA, DS, DL, DST, DC, DM, DD, P"ACK,
UNPK, LM, STM, PLM, PSM

CVA, CVS

XPSD, LPSD

510, no, TDV, HIO, AIO

Changes

If the branch condition is true (always for EXU and BAL) and a trap
occurs due to access of the indirect address or of the next (branched
to or executed) instruction, the register used is left unchanged and
the program address saved in the PSD is the address of the branch or
execute instruction.

These instructions check for protection violations and nonexistent
memory at both ends of the data area at the beginning of execution
(see individual instruction descriptions). If any traps occur during
execution, e. g., because of parity errors, the instruction is aborted,
indicating in the registers at which point. In general, memory will
be altered and the Register Altered bit set.

If a trap occurs, the instruction will be aborted before altering
registers. ec 1-4 may be changed but not used as input to any of
these instructions.

If a trap occurs due to storing the old PSD or fetching the new PSD,
the instruction is aborted before changing the old PSD.

Operand access protection violations are not possible during execution
of these instructions; therefore, a trap will only occur due to a parity
error when accessing the CPU/lOP communication locations (Home­
space location XI201 or XI211). If a parity error trap does occur when
accessing these locations (either by the CPU or lOP), the instruction
will abort with CC3 set to 1. (See IIInput/Output Instructions ll

,

Chapter 3.)

T rap System 43

3. IN STRUCTION REPERTOIRE

This chapter describes all SIGMA 9 instructions, grouped
in the following functional classes:

1. Load and Store

2. Analyze and Interpret

3. Fixed-Point Arithmetic

4. Comparison

5. Logical

6. Shift

7. Conversion

8. Floating-Point Arithmetic

9. Decimal

10. Byte String

1l. Push Down

12. Execute and Branch

13. Call

14. Control

15. Input/Output

SIGMA 9 instructions are described in the following format:

MNEMONIC CD INSTRUCTION NAME 0
(Addressing Type ~ Privileged~

CD Interrupt Action)

CD

Description Q)

Affected CD

Symbolic Notation@)

Condition Code Settings@

Trap Action@

Example
@

Trap®

1. MNEMONIC is the code used by the SIGMA 9 assem­
blers to produce the instruction's basic operation code.

44 Instruction Repertoire

2. INSTRUCTION NAME is the instruction's descriptive
title.

3. The instruction's addressing type isoneofthefollowing:

a. Byte index alignment: the reference address field
of the instruction (plus the displacement value)
can be used to address a byte in ma i n memory or
in the current block of general registers.

b. Ha I fword index a Ii gnment: the reference address
field of the instruction (plus the displacement
value) can be used to address a halfword in main
memory or in the current block of general registers.

c. Word index a Ii gnment: the reference address fi eld
of the instruction {plus the displacement value}
can be used to address any word in main memory
or in the current block of general registers.

d. Doubleword index al ignment: the reference ad­
dress field of the instruction {plus the displacement
value} can be used to address any doubleword in
main memory or in the current block of general
registers. The addressed doubleword is auto­
matically located within doubleword storage
boundaries.

e. Immediate operand: the instruction word contains
an operand value used as part of the instruction
execution. If indirect addressing is attempted
with this type of instruction (i. e., bit 0 of the
instruction word is a 1), the instruction is treated
as a nonexistent instruction, and the computer
unconditionally aborts execution of the instruction
(at the ti me of operati on code decodi ng) and traps
to Homespace location X'40', the "nonallowed
operation" trap. Indexing does not apply to this
type of instruction.

f. Immediate displacement: the instruction word
contains an address displacement used as part of
the instruction execution. If indirect addressing
is attempted with this type of instruction, the com­
puter treats the instruction as a nonexistent in­
struction, and the computer unconditionally aborts
execution of the instruction {at the time of opera­
tion code decoding} and traps to Homespace loca­
tion X'40'. Indexing does not apply to this type
of instruction.

4. If the instruction is not executable while the computer
is in the slave mode, it is labeled "privileged". If
execution of a privileged instruction is attempted
while the computer is in the slave mode, the computer
unconditionally aborts execution of the instruction (at
the time of operation code decoding) and traps to
Homespace locati on X'40'.

5. If the instruction can be successfully resumed after its
executi on sequence has been interrupted by an i nter­
rupt acknowledgment, the instruction is labeled "con­
tinue after interrupt ll . In the case of the IIcontinue
after interrupt ll instructions, certain general registers
contain intermediate results or control information that
allows the instruction to continue properly.

6. Instruction format:

a. Indirect addressing - If bit position 0 of the in­
struction format contains an asterisk (*), the in­
struction can use indirect addressing; however,
if bit position 0 of the instruction format contains
a 0, the instruction is of the immediate operand
type, which is treated as a nonexistent instruction
if indirect addressing is attempted (resulting in a
trap to Homespace location X'40').

b. Operation code - The operation code field (bit
positions 1-7) of the instruction is shown in hexa­
decimal notation.

c. R field - If the register address field (bit posi­
tions 8-11) of the instruction format contains the
character IIRII, the instruction can specify any
register in the current block of general registers
as an operand source, result destination, or both;
otherwise, the function of this field is determined
by the i nstructi on.

d. X field - If the index register address field (bit
positions 12-14) of the instruction format contains
the character II XII , the instruction specifies in­
dexing with anyone of registers 1 through 7 in
the current block of general registers; otherwise,
the function of this field is determined by the
i nstructi on.

e. Reference address field - Normally, the address
field (bit positions 15-31) of the instruction for­
mat is used as the reference address value for real,
real extended, and virtual addresses (see Chap­
ter 2). This reference address field is also used
to address I/O systems (see I/O instructions later
in this chapter and also Chapter 4). For immedi­
ate operand instructions, this field is augmented
with the contents of the X field, as illustrated,
to form a 20-bit operand.

f. Value field - In some fixed-point arithmetic in­
structions, bit positions 12-31 of the instruction
format contain the word IIvalue ll . This field is
treated as a 20-bit integer, with negative inte­
gers represented in two's complement form.

g. Displacement field - In the byte string instruc­
tions, bit positions 12-31 of the instruction for­
mat contain the word IIdisplacement ll . In the
execution of the instruction, this field is used to
modify the source address of an operand, the
destination address of a result, or both.

h. Ignored fields - In the instruction format diagrams,
any area that is shaded represents a fi eld or bit
position that is ignored by the computer (i. e., the
content of the shaded field or bit has no effect
on instruction execution) but should be coded
with O's to preclude conflict with possible
modifications.

In any format di agram of a genera I register or
memory word modified by an instruction, a shaded
area represents a field whose content is indeter­
minate after execution of the instruction.

7. The description of the instruction defines the operations
performed by the computer in response. to the instruc­
tion configuration depicted by the instruction format
diagram. Any instruction configuration that causes an
unpredictable result is so specified in the description.

8. All programmable registers and storage areas that can
be affected by the instruction are listed (symbolically)
after the word IIAffected II . The i nstructi on address
portion of the program status doubleword is considered
to be affected only if a branch condition can occur as
a result of the instruction execution, since the instruc­
tion address is updated (incremented by 1) as part of
every instruction execution.

9. All trap conditions that may be invoked by the execu­
tion of the instruction are I isted after the word liT rapll.
SIGMA 9 trap locations are summarized in the section
liT rap System II in Chapter 2.

10. The symbolic notation presents the instruction opera­
tion as a series of generalized symbolic statements.
The symbolic terms used in the notation are defined in
Appendix D, II Glossary of Symbolic Termsll.

11. Condition Code settings are given for each instruction
that affects the condition code. A 0 or a 1 under any
of columns 1, 2, 3, or 4 indicates that the instruction
causes a 0 or 1 to be placed in CCi, CC2, CC3, or
CC4, respectively, for the reasons given. If a hyphen
(-) appears in columns 1, 2, 3, or 4, that portion of
the condition code is not affected by the reason given
for the condition code bit(s) containing a 0 or 1. For

example, the following condition code settings are
given for a comparison instruction:

2 3 4 Result of comparison

o 0 Equal.

o

o Register operand is arithmetically less
than effective operand.

o Register operand is arithmeti cally greater
than effective operand.

The logical product of the two operands
is nonzero.

The logical product (AND) of the two
operands is zero.

Instruction Repertoire 45

CCl is unchanged by the instruction. CC2 indicates
whether or not the two operands have lis in corre­
sponding bit positions, regardless of their arithmetic
relationship. CC3 and CC4 are set according to the
arithmetic relationship of the two operands, regardless
of whether or not the two operands have lis in corre­
sponding bit positions. For example, if the register
operand is arithmetic.ally less than the effective oper­
and and the two operands both have lis in at least one
correspondi ng bi t posi tion I the conditi on code setti ng
for the comparison instruction is:

234

o

The above statements about the condition code are
valid only if no trap occurs before the successful com­
pletion of the instruction execution cycle. If a trap
does occur during the instruction execution, the con­
dition code is normally reset to the value it contained
before the instruction was started and the register
altered bit (PSD 60) is set to 1 if a register has been
altered. Then the appropriate trap location is
activated.

12. Actions taken by the computer for those trap conditions
that may be invoked by the executi on of the i nstruc­
tion are described. The description includes the cri­
teria for the trap condition, any controlling trap mask
or inhibit bits, and the action taken by the computer.
In order to avoid unnecessary repetition, the three trap
conditions that apply to all instructions (i. e., non­
allowed operations, parity error, and watchdog timer
runout) are not described for each instruction.

13. Some instruction descriptions provide one or more ex­
amples to illustrate the results of the instruction.
These examples are intended onl y to show how the in­
structions operate, and not to demonstrate their full
capability. Within the examples, hexadecimal nota­
tion is used to represent the contents of general registers
and storage locations. Condition code settings are
shown in binary notation. The character "X" is used
to indicate irrelevant or ignored information.

LOAD /STORE INSTRUCTIONS

The following load/store instructions are implemented in
SIGMA 9 computers:

Instruction Name Mnemonic

Load Immediate LI

Load Byte LB

Load Halfword LH

Load Word LW

Load Doubl eword LD

46 Load/Store Instructions

Instruction Name Mnemonic

Load Compl emen t Ha I fword LCH

Load Absolute Halfword LAH

Load Complement Word LCW

Load Absolute Word LAW

Load Complement Doubleword LCD

Load Absolute Doubleword LAD

Load Rea I Address LRA

Load and Set LAS

Load Memory Status LMS

Load Sel ective LS

Load Multiple LM

Load Conditions and Floating Control
Immediate LCFI

Load Conditions and Floating Control LCF

Exchange Word XW

Store Byte STB

Store Halfword STH

Store Word STW

Store Doubl eword STD

Store Selective STS

Store Mul tiple STM

Store Conditions and Floating Control STCF

SIGMA 9 load and store instructions operate with informa­
tion fields of byte, halfword, word, and doubleword lengths.
Load instructions load the information indicated into one of
the general registers in the current register block. Load in­
structions do not affect main memory storage; however,
nearly all load instructions provide a condition code setting
that indicates the following information about the contents
of the affected general register{s} after the instruction is
successfully completed:

Condition code settings:

2 3 4 Result

o 0 Zero - the result in the affected register(s}
is all O's.

o Negative - register R contains a 1 in bit
position O.

2 3 4 Result

o

o Positive - register R contains a 0 in bit posi­
tion 0, and at least one 1 appears in the
remainder of the affected registers(s) (or
appeared during execution of the current
instruction.)

No fixed-point overflow - the result in the
affected register(s) is arithmetically correct.

Fixed-point overflow - the result in the
affected register(s} is arithmet'ically
incorrect.

Store instructions affect only that portion of memory stor­
age that corresponds to the length of the information fi eld
specified by the operation code of the instruction; thus,
register bytes are stored in memory byte locations, register
halfwords in memory halfword locations, register words in
memory word locations, and register doublewords in mem­
ory doubleword locations. Store instructions do not affect
the contents of the general register specified by the R field
of the instruction, unless the same register is also specified
by the effective virtual address of the instruction.

LI

o 1

LOAD IMMEDIATE
(Immediate operand)

LOAD IMMEDIATE extends the sign of the value field (bit
position 12 of the inst'ruction word) 12 bit positions to the
left and then loads the 32-bit resul t into register R.

Affected: (R), CC3, CC4

(I) 12-31 S E --R

Condi ti on code setti ngs:

2 3 4 Resu I tin R

o 0 Zero

o Negative

o Positive

If LI is indirectly addressed, it is treated as a nonexistent
instruction, in which case the computer unconditionally
aborts execution of the instruction (at the time of opera-
ti on code decodi ng) and traps to Homespace I ocati on X 1401

with the contents of register R and the condition code
unchanged.

LB LOAD BYTE
(Byte index al ignment)

LOAD BYTE loads the effective byte into bit positions24-31
of register R and clears bit positions 0-23 of the register to
all OIS.

Affected: (R),CC3,CC4

EB -R24- 31 ; 0 -RO- 23

Condition code settings:

2 3 4 Re su I tin R

o 0 Zero

o Nonzero

LH LOAD HALFWORD
(Halfword index alignment)

LOAD HALFWORD extends the sign of the effective half­
word 16 bit positions to the left and then loads the 32-bit
result into register R.

Affected: (R), CC3, CC4

EHSE --R

Condition code settings:

2 3 4 Resul t in R

o 0 Zero

o Negative

o Positive

LW LOAD WORD
(Word index alignment)

LOAD WORD loads the effective word into register R.

Affected: (R), CC3, CC4
EW-R

Condition code settings:

2 3 4 Result in R

0 0 Zero

0 Negative

0 Positive

Load/Store Instructions 47

LD LOAD DOUBLEWORD
(Doubleword index alignment)

LOAD DOUBLEWORD loads the 32 low-order bits of the ef­
fective doubleword into register Ru 1 and then loads the 32
hi gh-order bits of the effective doubleword into register R.

If R is an odd value, the result in register R is the 32 high­
order bits of the effective doubleword. The condition code
settings are based on the effective doubleword, rather than
the final result in register R (see example 3, below).

Affected: (R),(Ru1),CC3,CC4
ED

32
_

63
--Ru1; EDO_

31
-R

Condition code settings:

2 3 4 Effective doubleword

0 0 Zero

0 Negative

0 Positive

Example 1, even R field value:

Before execution

ED X'0123456789ABCDEF'

(R) xxxxxxxx

(Ru 1) xxxxxxxx

CC xxxx

Example 2, odd R field value:

ED

(R)

CC

Before execution

XI 0 123456 789A BCDE F'

xxxxxxxx

xxxx

Example 3, odd R field value:

ED

(R)

CC

Before execution

X'0000000012345678 1

xxxxxxxx

xxxx

After execution

X'0123456789ABCDEF '

X'012345671

X'89ABCDEF'

xx10

After execution

X'0123456789ABCDEF '

XI 012345671

xx10

After execution

XI 000000001 2345678 1

XI 000000001

xxlO

LCH LOAD COMPLEMENT HALFWORD
(Halfword index alignment)

I

5A ! R X Reference address
i

48 Load/Stare Instructions

LOAD COMPLEMENT HALFWORD extends the sign of the
effective halfword 16 bit positions to the left and then loads
the 32-bit two's complement of the result into register R.
(Overflow cannot occur.)

Affected: (R),CC3, CC4

-[EHSE] -R

Condition code settings:

2 3 4 Resul t in R

0 0 Zero

0 Negative

0 Positive

LAH LOAD ABSOLUTE HALFWORD
(Halfword index alignment)

i:i, ,:~. ; ,I., R" J" ~ ,l:" " "R:::r~~~:I:~~~e:s" " ,i
If the effective halfword is positive, LOAD ABSOLUTE
HALFWORD extends the sign of the effective halfword
16 bit positions to the left and then loads the 32-bit result
in register R. If the effective halfword is negative, LAH
extends the sign of the effective halfword 16 bit positions
to the left and then loads the 32-bit twols complement of
the result into register R. (Overflow cannot occur.)

Affected: (R), CC3, CC4

iEHSEI-R

Condition code settings:

2 3 4 Resul tin R

LCW

o 0 Zero

o Nonzero

LOAD COMPLEMENT WORD
(Word index alignment)

LOAD COMPLEMENT WORD loads the 32-bit twols com­
plement of the effecti ve word into register R. Fi xed-point
overflow occurs if the effective word is -231 (X I 80000000 1

),

in which case the result in register R is _231 and CC2 is set
to 1; otherwi se, CC2 is reset to O.

Affected: (R),CC2,CC3,CC4 Trap: Fixed-point overflow.
-EW--R

Condition code settings:

2 3 4 Result in R

0 0 0 Zero

0 Negative

0 0 Positive

o No fixed-point overflow

o Fixed-point overflow

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to Homespace location
X'43 1 after execution of LOAD COMPLEMENT WORD;
otherwi se, the computer executes the next i nstructi on in
sequence.

LAW LOAD ABSOLUTE WORD
(Word index alignment)

If the effective word is positive, LOAD ABSOLUTE WORD
loads the effective word into register R. If the effective
word is negative, LAW loads the 32-bit two's complement
of the effective word into register R. Fixed-point overflow
occurs if the effective word is _231 (X'80000000'), in which
case the result in register R is -231 and CC2 is set to 1;
otherwise, CC2 is reset to O.

Affected: (R), CC2, CC3, CC4 Trap: Fixed-point overflow
IEWI-R

Condition code settings:

2 3 4 Resu I tin R

o 0 0 Zero

o Nonzero

o No fixed-poi nt overflow

o Fixed-point overflow (sign bit on)

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to Homespace location X'43'
after execution of LOAD ABSOLUTE WORD; otherwise, the
computer executes the next i nstructi on in sequence.

LCD LOAD COMPLEMENT DOUBLEWORD
(Doubleword index alignment)

LOAD COMPLEMENT DOUBLEWORD forms the 64-bit
two's complement of the effective doubleword, loads the

32 low-order bits of the result into register Ru 1, and then
loads the 32 high-order bits of the resul t into register R.

If R is an odd value, the result in register R is the 32 high­
order bits of the two's complemented doubl eword. The con­
dition code settings are based on the two's complement of
the effective doubleword, rather than the final result in
register R.

Fixed-point overflow occurs if the effective doubleword is
-263 (X'8000000000000000'), in which case the result in
registers Rand Ru1 is -263 and CC2 is set to 1; otherwise,
CC2 is reset to O.

Affected: (R), (Rul), CC2, Trap: Fixed-point overflow
CC3,CC4

[-ED]32_63 -Ru1; [-ED]O_31-- R

Condition code settings:

2 3 4 Two's complement of effective doubleword

0 0 0 Zero

0 Negative

0 0 Positive

0 No fixed-point overflow

0 Fixed-point overflow

If CC2 is set to 1 and the fixed-point arithmetic trap
mask (AM) is a 1, the computer traps to Homespace loca­
tion X'43' after execution of LOAD COMPLEMENT
DOUBLEWORD; otherwise, the computer executes the next
instruction in sequence.

Example 1, even R field value:

Before execution After execution

ED X' 0 123456789 ABCD EF' X'0123456789ABCDEF'

(R) xxxxxxxx X'FEDCBA98'

(Ru 1) xxxxxxxx X'76543211'

CC xxxx xOOl

Example 2, odd R field value:

Before execution After execution

ED X' 0 1 23456789A BCD EF' X'0123456789ABCDEF'

(R) xxxxxxxx X'FEDCBA98'

CC xxxx x001

Load/Store Instructions 49

LAD LOAD ABSOLUTE DOU BLEWORD
(Doubleword index al ignment)

If the effective doubleword is positive, LOAD ABSOLUTE
DOUBLEWORD loads the 32 low-order bits of the effective
doubleword into register Rul, and then loads the 32 high­
order bits of the effective doubl eword into register R. If R
is an odd value, the result in register R is the 32 high-order
bits of the effective doubleword. The condition code set­
tings are based on the effective doubleword, rather than
the final result in register R.

If the effective doubleword is negative, LAD forms the
64-bit two's complement of the effective doubleword, loads
the 32 low-order bits of the two's complemented double­
word into register Ru 1, and then loads the 32 high-order
bits of the two's complemented doubleword into register R.
If R is an odd value, the result in register R is the 32 high­
order bits of the two's complemented doubleword. The con­
dition code settings are based on the two's complement of
the effective doubleword, rather than the final result in
register R.

Fixed-point overflow occurs if the effective doubleword is
-263 (X'8000000000000000'), in which case the result in
registers Rand Rul is _263 and CC2 is set to 1; otherwise,
CC2 is reset to O.

Affected: (R), (Rul), CC2, Trap: Fixed-point overflow
CC3,CC4

I ED 132- 63 - Rul; 1ED10_31 --R

Condition code settings:

2 3 4 Absolute value of effective doubleword

o 0 0 Zero

o Nonzero

o No fixed-point overflow

o Fixed-point overflow (sign bit on)

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to Homespace location
X'43' after execution of LOAD ABSOLUTE DOUBLEWORD;
otherwise, the computer executes the next instruction in
sequence.

Example 1, even R field val·ue:

Before execution After execution

ED X'0123456789ABCDEF' X'O 123456789ABCD EF'

(R) xxxxxxxx X'01234567'

(Rul) xxxxxxxx X'89ABCDEF i

CC xxxx x010

50 Load/Store Instructions

Example 2, even R field value:

Before execution After execution

ED X'FEDCBA987654321O' X'FEDCBA987654321O'

(R) xxxxxxxx X'01234567'

(Ru 1) xxxxxxxx X'89ABCDFO'

CC xxxx x010

Example 3, odd R field value:

Before execution After execution

ED X'0123456789ABCDEF' X'0123456789ABCDEF'

(R) xxxxxxxx X'01234567'

CC xxxx xOlO

LRA LOAD REAL ADDRESS
(Byte, halfword, word, or doubleword index
alignment, privileged)

LOAD REAL ADDRESS loads register R with control informa­
tion and the real effective address of the byte, ha If word ,
word, or doubleword pointed to by the reference address.
The information loaded is determined by the setting of CCl
and CC2 at the beginning of instruction execution. Index­
ing displacement is also governed by CC 1 and CC2. The
desired value of the condition code can be set with LCF
or LCFI.

Displacement in Index

o o Byte

o Halfword

o Word

Doubleword

Regardless of the type of addressing currently defined by
the PSD, virtual addressing will be used in the generation
of the real effective address unless LRA is executed as an
operand of an ANALYZE instruction. The resultant con­
tents of register R are as follows:

Bits Contents

o AI ways zero.

Real Address Not Valid Flag (set if LRA indirectly
addresses a nonexistent address, an address that
has a parity error, or a virtual address less
than 16).

Bits Contents

2,3 Write Lock Codes.

4 Memory Map Parity Bit.

5 Parity Error (map, access protection, or write
lock).

6,7 Access Protection Codes.

8-31 Effective Address (as determined by the setting
of CC1 and CC2).

Affected: (R), CC3,CC4

CC3 is set to one if nonexistent memory is invoked; CC4 is
set to one if Homespace bias is used in the resultant real
effective address.

When LRA is executed as the operand of an ANALYZE
instruction, word addressing is assumed (word index al ign­
ment is performed) and the type of addressing currently
defined by the PSD will be used in the generation of the
effective address.

LAS LOAD AND SET
(Word index al ignment)

LOAD AND SET loads the effective word into R and un­
conditionally sets bit 0 of the effective word location in
memory to 1. Register R contains the previous contents of
the effective word location (i. e., before being modified,
if required). The effective address a Iways references mem­
ory even if it is less than 16.

Affected: (R) CC3, CC4
EW -R
l--EW o

Condition code settings:

2 3 4 Result in R

o 0 Zero

a Negative

a Positive

Note: Write locks are used to protect memory during the
execution of LAS. Traps are not inhibited during
its execution.

LMS LOAD MEMORY STATUS
(Word index al ignment, privi leged)

LOAD MEMORY STATUS is used to determine memory bank
status and/or to perform diagnostic action on a memory
bank. The effective address is used to determine the mem­
ory bank. The condition code setting immediately before
execution determines the diagnostic action to be performed.
The effective address always references memory even if it
is less than 16. The condition code can be set to the de­
sired value before execution of LMS with the LCF or LCFI
instructions. Register R is loaded with the result of the
action.

Affected: (R) T rap: See liT rap System 11 ,

Chapter 2.

Condition code settings:

2 3 4 LMSAction

o a a a Load and set - causes the same action as
the LOAD AND SET (LAS) instruction.
Normal traps are allowed including write
protect.

a a a Read and inhibit parity - loads the effective
word into R. If a memory parity error is de­
tected, the memory does not take a IIsnap­
shot" or generate a Memory Faul t Interrupt
(MFI). It does, however, generate the Mem­
ory Parity Error signal. The CPU inhibits
the trap that would ordinari Iy occur for the
memory parity error.

a a a Read and change parity - loads the effec-

a a

a

a

a

a

tive word into R. The memory reads the
location and unconditionally restores the
word with the invalid parity bit. The
parity bit transmitted to the processor is
the original parity bit. Parity error traps
and memory fault interrupts are not in­
hibited by this instruction.

Reserved.

a a Reserved.

a Reserved.

a Reserved.

Set memory status register - transfers the ef­
fective word from R to memory. The memory

Load/Store Instructions 51

2 3 4 LMS Action

bank will interpret the word and change
its own timing as follows:

Word Bits

8 9 10 11

000

000

000

000

Interpretation

Set clock margin 0, early
write half cycle.

Set clock margin 1, late
write half cycle.

Set clock margin 2, early
strobe.

Set clock margin 3, late
strobe.

o 0 0 Read status word ot - loads status word 0
into R (see Table 7).

o 0 Read status word 1 t - loads status word 1
into R (see Table 8).

o 0 Read status word 2t - loads status word 2
into R (see Table 9).

o 0 Read status word 0 and clear all status bits.

o Reserved.

o Read status word 2t and clear all status bits.

Clear memory - clears the effective word.
All traps are allowed including write protect
violation.

The status of the word loaded (if any) is
stored in the condition code bits at the con­
clusion of execution as follows:

CC1: Memory Parity Error (from memory)

CC2: Data Bus Check (from CPU)

CC3: Parity Bit (from memory)

CC4: 0

tp . '1 f d' . rlmar! y 0 lagnostlc concern.

52 Load/Store Instructions

Field

Memory fault
types

Subsequent
faul ts

Last parity
bit written

Bank number

Port number

T abl e 7. Status Word 0

Bits Comments

0 Reserved.

1 Data parity error detected
on read.

2 Data parity error detected
on partial write.

3 Address bus parity error.

4 Data bus parity error on
full or partial write.

5 Loop check data parity
error.

6 Port selection error.

7 Basic memory unit over-
temperature or power sup-
ply failures.

8-11 Reserved.

12 After a snapshot is taken,
th is bit is ali f two or

I more subsequent memory
fau I ts occur before status
register is cleared.

13 When initial snapshot was
to ken, the va I ue of the
last parity bit written into
main memory is stored in
th is position.

14 Bit 14 is the most signifi-
cant bit of bank number
in the unit.

15 Bit 15 is the least signifi-
cant bit of bank number
in the unit.

I 16-19 I Reserved.
I i

,

20 Port 1

21 Port 2
Group 1

22 Port 3

23 Port 4
...

Table 7. Status Word 0 (cont.)

Field Bits Comments
....

Port number 24 Port 5
(cont.)

I 25 Port 6
Group 2

26 Port 7

27 Port 8
~

28 Port 9

29 Port 10
Group 3

30 Port 11

31 Port 12
~

Note: Ports are installed
in groups as shown.

Tabl e 8. Status Word 1

Field Bits Comments

Interleave 0,1 0 1 --
mode

0 0 No interleave

0 1 2-way interleave

1 0 Interl eave between
two units (4-way)

1 1 Reserved

Bank size 2,3 2 3
--

I 0 0 8K

0 1 16K

1 0 Reserved

1 1 Reserved

Memory unit i 4-7 This field specifies the
number I memory unit number, as I

follows: bit 4 is the
most significant bit;
bit 7 is the least sig-
nificant bit.

Table 8. Status Word 1 (cont.)

Field Bits Comments

Unit size 8,9 8 9

0 0 8K

0 1 16K

1 0 32K

1 1 Reserved

I

10-13 i Reserved i

Clock margin 14 Clock margin 0, early
write half cycle.

15 Clock margin 1,
half cycle.

16 Clock margin 2,
strobe.

17 Clock margin 3,
strobe.

18-31 Reserved

Table 9. Status Word 2

Field Bits Comments

0-9 Reserved

Interl eaved 10-31
address of
fault

LS LOAD SELECTIVE
(Word index al ignment)

late write

early

late

Register Rul contains a 32-bit mask. If R is an even value,
LOAD SELECTIVE loads the effective word into register R
in those bit positions selected by a 1 in corresponding bit
positions of register Ru 1. The contents of register R are not
affected in those bit positions selected by a 0 in corre­
sponding bit positions of register Ru 1.

Load/Store Instructions 53

If R is an odd value, LS logically ANDs the contents of
register R with the effective word and loads the result into
register R. If corresponding bit positions of register Rand
the effective word both contain lis, a 1 remains in reg­
ister R; otherwise, a a is placed in the corresponding bit
position of register R.

Affected: (R), CC3, CC4

If R is even, [EWn(Rul)]u[(R)n(Rul)]-R]

If R is odd, EWn(R)-R

Condition code settings:

2 3 4 Resu I tin R

a a Zero.

a Bit a of register R is a 1.

a Bit a of register R is a a and bit positions 1-31
of register R contain at least one 1.

Example 1, even R field value:

Before execution

EW X'0l234567 1

(Ru 1) X I FFOOFFOO'

(R) xxxxxxxx

CC xxxx

Example 2, odd R field value:

EW

(R)

CC

LM

Before execution

X' 89ABCDEF'

X'FOFOFOFO'

xxxx

LOAD MULTIPLE
(Word index al ignment)

After execution

X' 012345671

X'FFOOFFOO'

X I 01 xx45xx '

xxl0

After execution

X'89ABCDEF'

X'80AOCOEO'

xx01

LOAD MULTIPLE loads a sequential set of words into a
sequential set of registers, The set of words to be loaded
begins with the word pointed to by the effective address of
LM, and the set of registers begins with register R. The
set of registers is treated modulo 16 (i. e., the next register
loaded after register 15 is register a in the current register
block).

The number of words to be loaded into the genera I reg­
isters is determined by the setting of the condition code

54 Load/Store Instructions

immediately before the execution of LM. (The desired
val ue of the condition code can be set with LCF or LCFI.)
An initial value of 0000 for the condition code causes
16 consecutive words to be loaded into the register block.

Affected: (R) to (R+CC - 1)

(EWL) -- R; ... (EWL +CC -l)-R+CC-l

The LM instruction may cause a trap if its operation ex­
tends into a page of memory tha tis protected by the access
protection codes. A trap maya Iso occur if the operation
extends into a nonexistent memory region. In either case,
it will be detected before the actua I operation begins and
the trap will occur immediately.

LCFI

o 1 2

LOAD CONDITIONS AND FLOATING
CONTROL IMMEDIATE
(Immed iate operand)

If bit position 10 of the instruction word contains a 1,
LOAD CONDITIONS AND FLOATING CONTROL IM­
MEDIATE loads the contents of bit positions 24 through 27
of the instruction word into the condition code; however,
if bit 10 is 0, the condition code is not affected.

If bit position 11 of the instruction word contains a 1, LCFI
loads the contents of bit positions 29 through 31 of the in­
struction word into the floating significance (FS), floating
zero (FZ), and floating normalize (FN) mode control bits,
respectively (in the program status doubleword); however,
if bit 11 is 0, the FS, FZ, and FN control bits are not
affected. The functions of the floating-point control bits
are described in the section "Floating-Point Arithmetic
Instructions" .

Affected: CC, FS, FZ, FN

If (1)10 = " (1)24-27 -CC

If (I), a = 0, CC is not affected

If (1)11 = " (1)29-31- FS, FZ, FN

If (1)11 = 0, FS, FZ, and FN not affected

Condition code settings, if (1)10 = ,:

2 3 4

(1)24

If LCFI is indirectly addressed, it is treated as a nonexistent
instruction, in which case the computer unconditionally
aborts execution of the instruction (at the time of operation

code decoding) and traps to Homespace location XI401 with
the condition code unchanged.

LCF LOAD CONDITIONS AND FLOATING
CONTROL
(Byte index al ignment)

H 70 ,'eIFI X I: Referenc~ address I
o 1 2 3 I 4 5 6 7 I 8 9 10 11 12 13 14 15 16 17 18 19120 21 22 23 24 25 26 27128 29 30 31

If bit position 10 of the instruction word contains a 1,
LOAD CONDITIONS AND FLOATING CONTROL loads
bits 0 through 3 of the effective byte into the location
code; however, if bit 10 is 0, the condition code is not
affected.

If bit position 11 of the instruction word contains a 1, LCF
loads bits 5 through 7 of the effective byte into the floating
significance (FS), floating zero (FZ), and floating normal­
ize (FN)mode control bits, respectively; however, if bit 11
is 0, the FS, FZ, and FN control bits are not affected.
The functions of the floating- point mode control bits
are described in the section IIFloating-Point Arithmetic
Instructions".

Affected: CC, FS, FZ, FN

If (1)10 = 1, EB
O
_
3

-CC

If (I) 10 = 0, CC not affected

If (1)11 = 1, EB
5
_7 -FS, FZ, FN

If (I) 11 = 0, FS, FZ, FN not affected

Condition code settings, if (I) 10 = 1:

2 3 4

(EB) 1

XW EXCHANGE WORD
(Word index al ignment)

EXCHANGE WORD exchanges the contents of register R
with the contents of the effective word location.

Affected: (R), (EWL),CC3,CC4
(R)-(EWL)

Condition code settings:

2 3 4 Result in R

0 0 Zero

0 Negative

0 Positive

STB STORE BYTE
(Byte index al ignment)

STORE BYTE stores the contents of bit positions 24-31 of
register R into the effective byte location.

Affected: (EBL)

(R) 24-31 - EBL

STH STORE HALFWORD
(Ha I fword index a Ii gnment)

STORE HALFWORD stores the contents of bit positions 16-31
of register R into the effective halfword location. If the
information in register R exceeds halfword data limits, CC2
is set to 1; otherwise, CC2 is reset to O.

Affected: (EHL), CC2

(R)16-31 -EHL

Condition code settings:

2 3 4 Information in R

o (R)0-16 =all Oisoralilis.

(R)0-16 1 all OIS or all lis.

STW STORE WORD
(Word index al ignment)

STORE WORD stores the contents of register R into the ef­
fective word location.

Affected: (EWL)
(R) --EWL

Load/Store Instructions 55

STD STORE DOUBLEWORD
(Doubleword index al ignment)

STORE DOUBLEWORD stores the contents of register R into
the 32 high-order bit positions of the effective doubleword
location and then stores the contents of register Ru 1 into
the 32 low-order bit positions of the effective doubleword
location.

Affected: (EDL)
(R)-EDL

O
_

31
; (Rul) -EDL

32
_

63

Example 1, even R field value:

Before execution

(R) X'012345671

(Ru1) = X'89ABCDEF'

(EDL) = xxxxxxxxxxxxxxxx

Example 2, odd R field value:

Before execution

(R) X'89ABCDEF'

(EDL) = xxxxxxxxxxxxxxxx

STS STORE SELECTIVE
(Word index al ignment)

After execution

X' 012345671

X' 89ABCDEF '

X I 0 123456789ABCD EF I

After execution

X'89ABCDEF'

X' 89ABCDEF89ABCDEF'

Register Ru1 contains a 32-bit mask. If R is an even value,
STORE SELECTIVE stores the contents of register R into the
effective word location in those bit positions sel ected by a
1 in corresponding bit positions of register Ru 1; the effec­
tive word remains unchanged in those bit positions selected
by a 0 in corresponding bit positions of register Ru 1.

If R is an odd value, STS logically inclusive ORs the con­
tents of register R with the effective word and stores the
result into the effective word location. The contents of
register R are not affected.

Affected: (EWL)

If R is even, [(R)n(Ru1)] u [EW (Rul)] -EWL

If R is odd, (R) u EW-EWL

56 Load/Store Instructions

Example 1, even R field value:

Before execution

(R) XI 12345678 1

(Ru 1) X'FOFOFOFO'

EW xxxxxxxx

Example 2, odd R field value:

(R)

EW

STM

Before execution

X'OOFFOOFF '

X'12345678'

STORE MULTIPLE
(Word index al ignment)

After execution

XI 12345678 1

X'FOFOFOFO'

XI lx3x5x7x'

After executi on

X'OOFFOOFF'

STORE MULTIPLE stores the contents of a sequential set of
registers into a sequential set of word locations. Hie set of
locations begins with the location pointed to by the effec­
tive word address of STM, and the set of registers begins
with register R. The set of registers is treated modulo 16
(i. e., the next sequential register after register 15 is reg­
ister 0). The number of registers to be stored is determined
by the value of the condition code immediately before exe­
cution of STM. (The condition code can be set to the de­
sired value before execution of STM with LCF or LCFI.)
An initial value of 0000 for the condition code causes
16 general registers to be stored.

Affected: (EWL) to (EWL + CC -1)
(R) -EWL; ... , (R+CC-l) -EWL+CC-l

The STM instruction may cause a trap if its operation
extends into a page of memory that is protected by the
access protection codes or the write locks. A trap may
also occur if the operation extends into a nonexistent
memory region. In any of these cases, the trap will be
detected before the actual operation begins and it will
occur immediately.

STCF STORE CONDITIONS AND FLOATING
CONTROL
(Byte index alignment)

STORE CONDITIONS AND FLOATING CONTROL stores
the current condition code and the current values of the
floating significance (FS), floating zero (FZ), and floating

normalize (FN) mode control bits of the program status
doubleword into the effective byte location as follows:

Affected: (EBL)
(PSD)O_7 --EBL

ANAL VZE/INTERPRET INSTRUCTIONS

ANLZ ANALYZE
(Word index al ignment)

The ANALYZE instruction treats the effective word as a
SIGMA 9 instruction and calculates the effective virtual
address that would be generated by the instruction if the
instruction were to be executed. ANALYZE produces an
answer to the question, IIWhat effective virtual address
would be used by the instruction location at N if it were
executed now? II The ANALYZE instruction determines
the addressing type of the lIanalyzedll instruction, calcu­
lates its effective virtual address (if the instruction is not
an immediate-operand instruction), and loads the effective
virtual address into register R as a displacement value
(the condition code settings for the ANALYZE instruction
indicate the addressing type of the analyzed instruction).

The nonexistent instruction, the privileged instruction
violation, and the unimplemented instruction trap condi­
tions can never occur during execution of the ANLZ in­
struction. However, either the nonexistent memory address
condition or the memory protection violation trap condition
(or both) can occur as a resul t of any memory access in i­
tiated by the ANLZ instruction. If either of these trap
conditions occurs, the instruction address stored by an
XPSD in trap Homespace location X'40 ' is always the vir­
tual address of the ANLZ instruction.

When the ANALYZE instruction is executed in the master­
protected mode and a trap condition occurs, it never traps.
Instead of trapping it completes its execution by storing in
register R the address that would have caused the instruc­
tion to trap. Since the mode is master-protected, the
access protection codes will apply to the interpretation of
addresses. If a slave mode program is trapped because an
instruction has referenced protected memory, the master­
protected mode can determine which address actually
caused the trap.

No new indicators are set when operating in the master­
protected mode. The condition code is set as it would
be with an ANALYZE instruction in any other mode.
The reason for the initial trap can be determined at the
time of trap entry. The interpreting program will then
know what type of violation it is trying to analyze. The
address that resul ts can be examined in I ight of t~e
originating trap.

If no trap condition occurs, ANLZ will execute normally
and return the effective address of the instruction analyzed.
Table 10 shows how SIGMA 9 operation codes will be inter­
preted by ANLZ.

The detailed operation of ANALYZE is as follows:

1. The contents of the location pointed to by the effective
virtual address of the ANLZ instruction is obtained.
This effective word is the instruction to be analyzed.
From a memory-protection viewpoint I the instruction
(to be analyzed) is treated as an operand of the ANLZ
instruction; that is, the analyzed instruction may be
obtained from any memory area to which the program
has read access.

2. If the operation code portion of the effective word
specifies an immediate-addressing instruction type,
the condition code is set to indicate the addressing
type, and instruction execution proceeds to the next
instruction in sequence after ANLZ. The original con­
tents of register R are not changed when the anal yzed
instruction is of the immediate-addressing type.

If the operation code portion of the effective word
specifies a reference-addressing instruction type, the
condition code is set to indicate the addressing type
of the analyzed instruction and the effective address
of the analyzed instruction is computed (using all of
the normal address computation rules). If bit 0 of the
effective word is a 1, the contents of the memory
location specified by bits 15-31 of the effective word
are obtained and then used as a direct address. The
nonallowed operation trap (memory protection viola­
tion or nonexistent memory address) can occur as a
result of the memory access. Indexing is always per­
formed (with an index register in the current register
block) if bits 12-14 of the analyzed instruction are
nonzero. During real extended addressing the effec­
tive virtual address of the analyzed instruction is
aligned as an integer displacement value and loaded
into register RI according to the instruction addressing
type, as follows:

Byte Addressing:

Halfword Addressing:

Word Addressing:

t Note that for real or virtual addressing, byte displacement
is 19 bits, halfword displacement is 18 bits l word displace­
ment is 17 bits, and doubleword displacement is 16 bits.

Analyze/Interpret Instructions 57

Doubleword Addressing:

Operation codes and mnemonics for the SIGMA 9 instruc­
tion set are shown in Table 10. Circled numbers in the
table (designating groups of instructions within the bold
lines) indicate the condition code value (decimal), shown
in condition code settings below, available to the next in­
struction after ANALYZE when a direct-addressing opera­
tion code in the corresponding addressing type is analyzed.

Affected: (R), cc

Condition code settings:

2 3 4 Instruction addressing type

o 0 - 0 Byte

o 0 - Immediate, byte

o - 0 Halfword

o - 0 Word

o - Immed iate, word

- 0 Doubl eword

- - 0 - Direct addressing (EWO=O)

Indirect addressing (EW 0 = 1)

INT INTERPRET
(Word index alignment)

1:1, , :~, , • J ,Rw ,1,: ,,I,:,, , ,~~~:r:n'~:'I~~:r:s;!" " ,,,,I
INTERPRET loads bits 0-3 of the effective word into the
cond it i on code, loads bits 16-31 of the effect i ve word into
bit positions 16-31 of register Ru1 (and loads O's into bit
positions 0-15 of register Ru 1, loads bits 4-15 of the effec­
tive word into bit positions 20-31 of register R (and clears
the remaining bits of register R). If R is an odd value, INT
loads bits 0-3 of the effective word into the condition code,
loads bits 16-31 of the effective word into bit positions
16-31 of register R, and loads O's into bit positions 0-15 of
register R (bits 4-15 of the effective word are ignored in
th is case).

Affected: (R), (Rul), CC

EW
O

_
3
--CC

EW 4-15 - R20- 31 ; 0 -RO- 19

EW
16

_
31

-Ru1
16

_
31

; 0 -Ru1
0

_
15

t Note that for real or virtual addressing, byte displacement
is 19 bits, halfword displacement is 18 bits, word displace­
ment is 17 bits, and doubleword displacement is 16 bits.

58 Analyze/Interpret Instructions

Table 10. ANALYZE Table for SIGMA 9
Operation Codes

X'n' X'OO'+n
I
i X'20'+n X'40'+n X'60'+n

00 - AI TTBS CBS
01 - CI TBS MBS
02 LCFI CD LI - CD -
03 - MI - EBS

04 CAll SF ANLZ BDR
05 CAL2 S CS BIR
06 CAL3 LAS XW AWM
07 CAL4 - STS EXU

08 PLW CVS EOR BCR
09 PSW CVA CD OR BCS
OA PLM LM LS BAL
OB PSM STM AND INT

OC - LRAt SlOt RDt

OD
~PSDt ®

LMSt TIot WDt
OE WAITt TDVt AIOt
OF XPSDt LRPt HIOt MMCt

10 AD AW AH LCF
11 CD CW CH CB
12 LD LW LH LB
13 MSP MTW MTH MTB

14 - - - STCF
15 STD STW STH STB
16 - DW DH CD PACK CD
17 - MW MH UNPK

18 SD SW SH DS
19 CLM CLR - DA
lA LCD LCW LCH DD
1B LAD LAW LAH DM

1C FSL FSS - DSA
1D FAL FAS - DC
1E FDL FDS - DL
1F FML FMS - DST

tPrivi leged instructions.

Condition code settings:

2 3 4

Example 1, even R field value:

Before execution After execution

EW X'12345678' X'12345678'

(R) xxxxxxxx X' 00000234'

(Ru 1) xxxxxxxx X'00005678'

CC xxxx 0001

FIXED-POINT ARITHMETIC INSTRUCTIONS

The following fixed-point arithmetic instructions are
included as a standard feature of the SIGMA 9 computer.

Instruction Name Mnemonic

Add Immediate AI

Add Ha I fword AH

Add Word AW

Add Doubl eword AD

Subtract Halfword SH

Subtract Word SW

Subtract Doubleword SD

Multiply Immediate MI

Multiply Halfword MH

Multiply Word MW

Divide Halfword DH

Divide Word DW

Add Word to Memory AWM

Modify and Test Byte MTB

Modify and Test Halfword MTH

Modify and Test Word MTW

The fixed-point arithmetic instruction set performs binary
addition, subtraction, multiplication, and division with
integer operands that may be data, addresses, index values,
or counts. One operand may be either in the instruction
word itself or may be in one or two of the current general
registers; the second operand may be either in main memory
or in one or two of the current general registers. For most
of these instructions, both operands may be in the same
general register, thus perm itting the doubl ing, squaring,
or clearing the contents of a register by using a reference
address value equal to the R field value.

All fixed-point arithmetic instruction? provide a condition
code setting that indicates the following information about
the result of the operation called for by the instruction:

Condition code settings:

2 3 4 Result

o 0 Zero - the result in the specified general
register(s) is all zeros.

o

2 3 4 Result

o Negative - the instruction has produced a
fixed-point negative resul t.

o Positive - the instruction has produced a
fixed-point positive result.

o Fixed-point overflow has not occurred during
execution of an add, subtract, or divide in­
struction, and the result is correct.

Fixed-point overflow has occurred during
execution of an add, subtract, or divide in­
struction. For addition and subtraction, the
incorrect result is loaded into the designated
register(s). For a divide instruction, the
designated register(s), and CC1, CC3, and
CC4 are not affected.

No carry - for an add or subtract instruction,
there was no carry of a l-bit out of the high­
order (sign) bit position of the result.

Carry - for an add or subtract instruction,
there was a l-bit carry out of the sign bit
position of the result. (Subtracting zero will
always produce carry.)

AI ADD IMMED lATE
(Immediate operand)

The value field (bit positions 12-31 of the instruction word)
is treated as a 20-bit, two's complement integer. ADD
IMMEDIATE extends the sign of the value field (bit posi­
tion 12 of the instruction word) 12 bit positions to the left,
adds the resulting 32-bit value to the contents of register R,
and loads the sum into register R.

Affected: (R), CC Trap: Fixed-point overflow

(R) + (I)12-31SE-R

Condition code settings:

2 3 4 Result in R

0 0 Zero

0 Negative

0 Positive

o - No fixed-point overflow

Fixed-point overflow

o No carry from bit position 0

Carry from bit position 0

Fixed-Point Arithmetic Instructions 59

If AI is indirectly addressed, it is treated as a nonexistent
instruction, in which case the computer unconditionally
aborts execution of the instruction (at the time of operation
code decoding) and traps to Homespace location X'40' with
the contents of register R and the condition code unchanged.

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to Homespace location
X'43' after loading the sum into register R; otherwise, the
computer executes the next instruction in sequence.

AH ADD HALFWORD
(Halfword index alignment)

ADD HALFWORD extends the sign of the effective holfword
16 bit positions to the left (to form a 32-bit word in which
bit positions 0-15 contain the sign of the effective half­
word), adds the 32-bit result to the contents of register R,
and loads the sum into register R.

Affected: (R), CC
(R) + EH -R

SE

Condition code settings:

2 3 4 Result in R

o 0 Zero

o Negative

o Positive

T rap: Fixed-point overflow

o No fixed-point overflow

Fixed-point overflow

o No carry from bit position 0

Carry from bit position 0

If CC2 is set to 1 and the fixed-point arithmetic trap mask
is 1, the computer traps to Homespace location X'43' after
loading the sum into register R; otherwise, the computer
executes the next instruction in sequence.

AI ADD WORD
(Word index al ignment)

ADD WORD adds the effective word to the contents of reg­
siter R and loads the sum into register R.

Affected: (R), CC
(R) + EW -R

Trap: Fixed-point overflow

60 Fixed-Point Arithmetic Instructions

Condition code settings:

2 3 4 Resu It in R

o 0 Zero

o Negative

o Positive

o No fixed-point overflow

Fixed-point overflow

o No carry from bit position 0

Carry from bit position 0

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to Homespace location
X'43' after loading the sum into register R; otherwise, the
computer executes the next instruction in sequence.

AD ADD DOU BLEWORD
(Doubleword index alignment)

ADD DOU BLEWORD adds the effective doubleword to the
contents of registers Rand Ru 1 (treated as a single, 64-bit
register); loads the 32 low-order bits of the sum into reg­
ister Ru 1 and then loads the 32 high-order bits of the sum
into register R. R must be an even value; if R is an odd
value, the computer traps with the contents in register R
unchanged.

Affected: (R),(Ru1),CC
(R, Ru1) + ED-R, Ru1

T rap: Fixed-point overflow,
instruction exception

Condition code settings:

2 3 4 Result in R, Ru1

o 0 Zero

o Negative

o Positive

o No fixed-point overflow

Fixed-point overflow

o No carry from bit position 0

Carry from bit position 0

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to Homespace location
X'43' after loading the sum into registers Rand Ru 1; other­
wise, the computer executes the next instruction in sequence.

The R field of the AD instruction must be an even value for
proper operation of the instruction; if the R field of AD is
an odd value, the instruction traps to Homespace location
X'4D', instruction exception trap.

Example 1, even R field value:

Before execution After execution

ED X'33333333EEEEEEEE' X'33333333EEEEEEEE'

(R) X' 11111111 1 X 1444444.451

(Ru 1) X 1333333331 Xi22222221 1

CC xxxx 0010

SH SU BTRACT HALFWORD
(Halfword index alignment)

SUBTRACT HALFWORD extends the sign of the effective
ha Ifword -16 bit positions to the I eft (to form a 32-bit word
in which bit positions 0-15 contain the sign of the effec­
tive halfword), forms the two1s complement of the resulting
word, adds the complemented word to the contents of reg­
ister R, and loads the sum into register R.

Affected: (R), CC Trap: Fixed-point overflow
-EH + (R)-R

SE

Condition code settings:

2 3 4 Resu I tin R

o 0 Zero

o Negative

o Positive

o No fixed-point overflow

Fixed-point overflow

o - No carry from bit position 0

Carry from bit position 0

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to Homespace location
X' 43 1 after loading the sum into register R; otherwise, the
computer executes the next instruction in sequence.

SW SUBTRACT WORD
(Word index a I ignment)

SU BTRACT WORD forms the two1s complement of the effec­
tive word, adds that complement to the contents of regis­
ter R, and loads the sum into register R.

Affected: (R), CC
-EW + (R)-R

Trap: Fixed-point overflow

Condition code settings:

2 3 4 Resul t in R

o 0 Zero

o Negative

o Positive

o No fixed-point overflow

Fixed-point overflow

o No carry from bit position 0

Carry from bit position 0

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to Homespace location
X'431 after loading the sum into register R; otherwise, the
computer executes the next instruction in sequence.

so

H
o I 2

SUBTRACT DOUBLEWORD
(Doub I eword index a I i gnment)

18 I R I X I: Reference:address I
3 14 5 6 7 8 9 10 11 12 13 Ii, 15 16 17 18 19120 21 22 23 24 25 26 27128 29 30 31

SUBTRACT DOUBLEWORD forms the 64-bit two1s comple­
ment of the effective doubleword, adds the complemented
doubl eword to the contents of registers Rand Ru 1 (treated
as a single, 64-bit register), loads the 32 low-order bits
of the sum into register Rul and loads the 32 high-order bits
of the sum into register R. R must be an even value; if R is
an odd value, the computer traps with the contents in reg­
ister R unchanged.

Affected: (R), (Ru 1), CC
-ED + (R, Ru1) -R, Rul

Trap: Fixed-point overflow,
instruction exception

Condition code settings:

2 3 4 Resu It in R, Ru 1

o

o -

o 0 Zero

o Negative

o Positive

No fixed-point overflow

Fixed-point overflow

No carry from bit position 0

Carry from bit position 0

Fixed-Point Arithmeti c Instructi ons 61

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to Homespace location
X'43' after the result is loaded into registers Rand Rul;
otherwise, the computer executes the next instruction in
sequence.

The R field of the SD instruction must be an even value for
proper operation of the instruction; if the R field of SD is
an odd value, the instruction traps to Homespace location
X'4D', instruction exception trap.

MI MULTIPLY IMMEDIATE
(Immediate operand)

o I 2

The value field (bit positions 12-31 of the instruction word)
is treated as a 20-bit, two's complement integer. MULTI­
PLY IMMEDIATE extends the sign of the value field (bit
position 12) of the instruction word 12 bit positions to the
left and multiplies the resulting 32-bit value by the con­
tents of register Ru 1, then loads the 32 high-order bits of
the product into register R, and then loads the 32 low­
order bits of the product into register Ru 1.

If R is an odd value, the result in register R is the 32 low­
order bits of the product. Thus, in order to generate a
64-bit product, the R field of the instruction must be even
and the multiplicand must be in register R + 1. The condi­
tion code settings are based on the 64-bit product formed
during instruction execution, rather than on the final con­
tents of register R. Overflow cannot occur.

Affected: (R), (Ru1), CC2,CC3,CC4

(Ru 1) x (I)12-31SE --R, Ru 1

Condition code settings:

2 3 4 64-bit product

o 0 Zero.

o Negative.

o Positive.

o Result is correct, as represented in regis­
ter Rul.

Result is not correctly representable in reg­
ister Ru 1 alone.

If MI is indirectly'addressed, it is treated as a nonexistent
instruction, in which case the computer unconditionally
aborts execution of the instruction (at the time of opera­
tion code decoding) and traps to Homespace location X'40'
with the contents of register R, register Rul, and the con­
dition code unchanged; otherwise, the computer executes
the next instruction in sequence.

62 Fixed-Point Arithmetic Instructions

Example 1, even R field value:

Before execution After execution

(1)12-31 X'70000' X'70000'

(R) xxxxxxxx X'00007000'

(Rul) X'10001000' X' 70000000'

CC xxxx x110

Example 2, odd R field value:

Before execution After execution

(1)12-31 X'01234' X'01234'

(R) X'00030002' X'369C2468'

CC xxxx xOlO

MH MULTIPLY HALFWORD
(Halfword index al ignment)

MULTIPLY HALFWORD multipl ies the contents of bit posi­
tions 16-31 of register R by the effective halfword (with
both halfwords treated as signed, two's complement inte­
gers) and stores the product in register Ru 1 (overflow can­
not occur). If R is an even value, the original multiplier
in register R is preserved, allowing repetitive halfword
multiplication with a constant multiplier; however, if R is
an odd value, the product is loaded into the same register.
Overflow cannot occur.

Affected: (Ru1),CC3,CC4

(R)16-31 x EH --Ru1

Condition code settings:

2 3 4 Result in Ru 1

0 0 Zero

0 Negative

0 Positive

Example 1, even R field value:

Before execution

EH X'FFFF'

(R) X'xxxxOOOA'

(Ru 1) xxxxxxxx

CC xxxx

After execution

X'FFFF'

X'xxxxOOOA'

X' FFFFFFF6'

xx01

Example 2, odd R field value:

Before execution After execution

EH X'FFFP X'FFFF '

(R) X I xxxxOOOA I X' FFFFFFF61

CC xxxx xxOl

MW MUL TIPL Y WORD
(Word index alignment)

MULTIPLY WORD multipl ies the contents of register Ru 1 by
the effective word, loads the 32 high-order bits of the
product into register R and then loads the 32 low-order bits
of the product into register Ru 1 (overflow cannot occur).

If R is an odd value, the result in register R is the 32 low­
order bits of the product. Thus, in order to generate a
64-bit product, the R field of the instruction must be even
and the multiplicand must be in register R + 1. The condi­
tion code settings are based on the 64-bit product formed
during instruction execution, rather than on the final con­
tents of register R.

Affected: (R), (Ru 1), CC
(Rul) x EW -R,Rul

Condition code settings:

2 3

0

0

0

0

OH

4 64-bit product

0 Zero.

Negative.

0 Positive.

Result is correct, as represented in regis-
ter Ru l.

0 Result is not correctly representable in reg-
ister Ru 1 alone.

DIVIDE HALFWORD
(Halfword index alignment)

DIVIDE HALFWORD divides the contents of register R
(treated as a 32-bit fixed-point integer) by the effective
halfword and loads the quotient into register R. If the
absolute value of the quotient cannot be correctly repre­
sented in 32 bits, fixed-point overflow occurs; in which

case CC2 is set to 1 and the contents of register R, and
CC 1, CC3, and CC4 are unchanged.

Affected: (R), CC2, CC3,
CC4

(R)";- EH-R

Condition code settings:

2 3 4 Resu I tin R

T rap: Fixed-point overflow

o 0 0 Zero quotient, no overflow.

o 0 Negative quotient, no overflow.

o 0 Positive quotient, no overflow.

Fixed-point overflow.

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to Homespace location
X'43 1 with the contents of register R, CC1, CC3, and
CC4 unchanged.

OW DIVIDE WORD
(Word index al ignment)

DIVIDE WORD divides the contents of registers Rand Ru 1
(treated as a 64-bit fixed-point integer) by the effective

.word, loads the integer remainder into register R and then
loads the integer quotient into register Rul. If a nonzero
remainder occurs, the remainder has the same sign as the
dividend (original contents of register R). If R is an odd
value, DW forms a 64-bit register operand by extending
the sign of the contents of register R 32 bit positions to the
left, then divides the 64-bit register operand by the effec­
tive word, and loads the quotient into register R. In this
case, the remainder is lost and only the contents of reg­
ister R are affected.

If the absolute value of the quotient cannot be correctly
represented in 32 bits, fixed-point overflow occurs; in
which case CC2 is set to 1 and the contents of register R,
register Ru 1, CC 1, CC3, and CC4 remain unchanged;
otherwise, CC2 is reset to 0, CC3 and CC4 reflect the
quotient in register Ru 1, and CC 1 is unchanged.

Affected: (R),(Rul),CC2 Trap: Fixed-point overflow
CC3,CC4

(R, Ru 1) ..;- EW -R (remainder), Ru 1 (quotient)

Condition code settings:

2 3 4 Resu I tin Ru 1

o 0 0 Zero quotient, no overflow.

o 0 Negative quotient, no overflow.

Fixed-Point Arithmetic Instructions 63

2 3 4 Resu I tin Ru 1

o 0 Positive quotient, no overflow.

Fixed-point overflow.

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to Homespace location
Xl 43 1 with the original contents of register R, register Ru 1,
CC1, CC3, and CC4 unchanged; otherwise, the computer
executes the next instruction in sequence.

AWM ADD WORD TO MEMORY
(Word index al ignment)

ADD WORD TO MEMORY adds the contents of register R
to the effective word and stores the sum in the effective
word location. The sum is stored regardless of whether or
not overflow occurs.

Affected: (EWL), CC
EW + (R) -EWL

Trap: Fixed-point overflow

Condition code settings:

2 3 4 Result in EWL

o 0 Zero

o Negative

o Positive

o No fixed-point overflow

Fixed-point overflow

o No carry from bit position 0

Carry from bit position 0

If CC2 is set to 1 and fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to Homespace location
XI43 1 after the resul t is stored in the effective word loca­
tion; otherwise, the computer executes the next instruction
in sequence.

MTB MODIFY AND TEST BYTE
(Byte index al ignment)

If the value of the R field is nonzero, the high-order bit of
the R field (bit position 8 of the instruction word) is ex­
tended 4 bit positions to the left, to form a byte with bit
positions 0-4 of that byte equal to the high-order bit of
the R field. This byte is added to the effective byte and
then (if no memory protection violation occu rs) the sum is

64 Fixed-Point Arithmetic Instructions

stored in the effective byte location and the condition code
is set according to the value of the resultant byte. This
process allows modification of a byte by any number in the
range -8 through +7, followed by a test.

If the value of the R field is zero, the effective byte is
tested for being a zero or nonzero value. The condition
code is set according to the result of the test, but the
effective byte is not affected. A memory write-protection
violation cannot occur in this case; however, a memory
read-protection violation can occur.

Affected: CC if (1)8-11 = 0;

(EBL) and CC if (1)8-11 f 0

If {I)8-11 f 0, EB + (1)8-11 SE -EBL and set CC

If (1)8-11 = 0, test byte and set CC

Condition code settings:

2 3 4 Result in EBL

o 0 0 Zero

o 0 Nonzero

o - No carry from byte

Carry from byte

If MTB is executed in an interrupt locationt , the condition
code is not affected (see Chapter 2, tlSingle-Instruction
Interrupts II).

MTH MODIFY AND TEST HALFWORD
(Halfword index al ignment)

If the value of the R field is nonzero, the high-order bit of
the R field (bit position 8 of the instruction word) is ex­
tended 12 bit positions to the left, to form a halfword with
bit positions 0-11 of that halfword equal to the high-order
bit of the R field. This halfword is added to the effective
halfword and then (if no memory protection violation oc­
curs) the sum is stored in the effective halfword location
and the condition code is set according to the value of the
resultant halfword. The sum is stored regardless of whether
or not overflow occurs. This process allows modification of
a halfword by any number in the range -8 through +7, foI­
lowed by a test.

t Other than counter 4, which uses the current acti ve
addressing mode (real, real extended, or virtual).

If the value of the R field is zero, the effective halfword
is tested for being a zero, negative, or positive value.
The condition code is set, according to the result of the
test, but the effective halfword is not affected. A memory
write-protection violation cannot occur in this case; how­
ever, a memory read-protection violation can occur.

Affected: CC if (1)8-11 = 0; Trap: Fixed-point overflow

(EHL) and CC if (1)8-11 f 0

If (1)8-11 = 0, test halfword and set CC

If (1)8-11 f 0, EH + (I)8-11SE --EHL and set CC

Condition code settings:

2 3 4 Result in EHL

0 0 Zero

0 Negative

0 Positive

o - No fixed-point overflow

Fixed-point overflow

o - No carry from halfword

Carry from halfword

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to Homespace location
X'43 1 after the result is stored in the effective halfword
location; otherwise, the computer executes the next in­
struction in sequence. However, if MTH is executed in
an interrupt locationt , the condition code is not affected
(see Chapter 2, "Si ngle-Instruction Interrupts".

MTW MODIFY AND TEST WORD
(Word index alignment)

If the value of the R field is nonzero, the high-order bit
of the R field (bit position 8 of the instruction word) is
extended 28 bit positions to the left, to form a word with
bit positions 0-27 of that word equal to the high-order bit
of the R field. This word is added to the effective word
and then (if no memory protection violation occurs) the
sum is stored in the effective word location and the con­
dition code is set according to the value of the resultant

t Other than counter 4, which uses the current active
addressing mode (real, real extended, or virtual).

word. The sum is stored regardless of whether or not over­
flow occurs. This process allows modification of a word by
any number in the range -8 through +7, followed by a test.

If the value of the R field is zero, the effective word is
tested for being a zero, negative, or positive value. The
condition code is set according to the result of the test,
but the effective word is not affected. A memory write­
protection violation cannot occur in this case; however,
a memory read-protection violation can occur.

Affected: CC if (1)8-11 = 0; Trap: Fixed-point overflow

(EWL) and CC if (1)8-11 f 0

If (1)8_ 11 = 0, test word and set CC

If (1)8-11 f 0, EW + 1
8

_11 SE --EWL and set CC

Condition code settings:

2 3 4 Result in EWL

o 0 Zero

o Negative

o Positive

o No fixed-point overflow

Fixed-point overflow

o No carry from word

Carry from word

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to Homespace location
X'43 1 after the result is stored in the effective word loca­
tion; otherwise, the computer executes the next instruction
in sequence. However, if MTW is executed in an interrupt
locationt , the condition code is not affected (see Chap-
ter 2, "Single-Instruction Interrupts".

COMPARISON INSTRUCTIONS

The following comparison instructions are available to
SIGMA 9 computers:

Instructi on Name Mnemonic

Compare Immediate CI

Compare Byte CB

Compa re Ha I fword CH

Compare Word CW

Comparison Instructions 65

Instruction Name Mnemonic

Compare Doubleword CD

Compare Sel ective CS

Compare With Limits in Register ClR

Compare With Limits in Memory ClM

All SIGMA 9 comparison instructions produce a condition
code setting which is indicative of the results of the
comparison, without affecting the effective operand in
memory and without affecting the contents of the des­
ignated register.

CI COMPARE IMMEDIATE
(Immediate operand)

COMPARE IMMEDIATE extends the sign of the value field
(bit position 12) of the instruction word 12 bit positions to
the left, compares the 32-bit result with the contents of
register R (with both operands treated as signed fixed-point
quantities), and then sets the condition code according to
the results of the comparison.

Affected: CC2, CC3, CC4

(R) : (I)12-31SE

Condition code settings:

2 3 4 Result of Comparison

o 0 Equal.

o Register value less than immediate value.

o Register value greater than immediate
value.

o No l-bits compare, (R) n (I)12-32SE = O.

One or more l-b its compare,

(R) n (I) 12-32SE I O.

If CI is indirectly addressed, it is treated as a nonexistent
instruction, in which case the computer unconditionally
aborts execution of the instruction (at the time of operation
code decoding) and then traps to Homespace location X'40 '
with the condition code unchanged.

CB COMPARE BYTE
(Byte index alignment)

R X
9 10 II 12 1,3

66 Comparison Instructions

COMPARE BYTE compares the contents of bit positions 24-31
of register R with the effective byte (with both bytes
treated as positive integer magnitudes) and sets the condi­
tion code according to the results of the comparison.

Affected: CC2, CC3, CC4

(R)24-31 : EB

Condition code settings:

CH

2 3 4 Result of Comparison

0 0 Equal.

0 Register byte less than effective byte.

0 Register byte greater than effective byte.

o No l-bits compare, (R)24-31 n EB = O.

One or more l-bits compare,

(R)24-31 n EB I O.

COMPARE HAlFWORD
(Halfword index al ignment)

COMPARE HAlFWORD extends the sign of the effective
halfword 16 bit positions to the left, then compares the
resultant 32-bit word with the contents of register R (with
both words treated as signed, fixed-point quantities) and
sets the condition code according to the results of the
comparison.

Affected: CC2, CC3, CC4

(R) : EHSE

Condition code settings:

2 3 4 Result of Comparison

o

o 0 Equal.

o Register word less than effective hal fword
with sign extended.

o Register word greater than effective
halfword with sign extended.

No l-bits compare, (R) n EHSE O.

One or more l-bits compare,
(R) n EHSE I O.

CW COMPARE WORD
(Word index al ignment)

COMPARE WORD compares the contents of register R with
the effective word, with both words treated as signed fixed­
point quantities, and sets the condition code according to
the results of the comparison.

Affected: CC2, CC3, CC4
(R) : EW

Condition code settings:

CD

2 3 4 Result of Comparison

o

o 0 Equal.

o Register word less than effective word.

o Register word greater than effective word.

No 1-bits compare, (R) n EW = O.

One or more 1-bits compare, (R) n fW I- o.

COMPARE DOUBLEWORD
(Doubleword index al ignment)

COMPARE DOUBLEWORD compares the effective double­
word with the contents of registers Rand Ru 1 (with both
doublewords treated as signed, fixed-point quantities)
and sets the condition code according to the results of the
comparison. If the R field of CD is an odd value, CD forms
a 64-bit register operand (by dupl icating the contents of
register R for both the 32 high-order bits and the 32 low­
order bits) and compares the effective doubleword with the
64-bit register operand. The condition code settings are
based on the 64-bit comparison.

Affected: CC3, CC4
(R, Ru 1) : ED

Condition code settings:

2 3 4 Result of Comparison

0 0 Equal.

0 Register doubleword less than effective
doubleword.

0 Register doubleword greater than effective
doubleword.

CS COMPARE SELECTIVE
(Word index al ignment)

COMPARE SELECTIVE compares the contents of register R
with the effective word in only those bit positions selected
by a 1 in corresponding bit positions of register Ru 1 (mask).
The contents of register R and the effective word are ignored
in those bit positions designated by a 0 in corresponding bit
positions of register Ru 1. The selected contents of register R
and the effective word are treated as positive integer
magnitudes, and the condition code is set according to
the result of the comparison. If the R Held of CS is
an odd value; CS compares the contents of register R
with the logical product (AND) of the effective word
and the contents of register R.

Affected: CC3, CC4
If R is even: (R) n (Ru1): EW n (Rul)
If R is odd: (R): EW n (R)

Condition code settings:

2 3 4 Resu I ts of Compa ri son under Mask in Ru 1

o 0 Equal.

o Register word less than effective word.

o Register word greater than effective word.
(if R is even)

CLR COMPARE WITH LIMITS IN REGISTERS
(Word index alignment)

COMPARE WITH LIMITS IN REGISTERS simultaneously
compares the effective word with the contents of register R
and with the contents of register Ru 1 (with a II three words
treated as signed fixed-point quantities), and sets the con­
dition code according to the results of the comparisons.

Affected: CC
(R) : EW, (Rul) : EW

Condition code settings:

2 3 4 Resul t of Comparison

o 0 Contents of R equal to effective word.

o Contents of R less than effective word.

o Contents of R greater than effective word.

o 0 Contents of Rul equal to effective word.

o Contents of Ru 1 less than effective word.

o Contents of Ru 1 greater than effective word.

Comparison Instructions 67

elM COMPARE WITH LIMITS IN MEMORY
(Doubleword index alignment)

COMPARE WITH LIMITS IN MEMORY simultaneously com­
pares the contents of regi"ster R with the 32 high-order bits
of the effective doubleword and with the 32 low-order bits
of the effective doubleword, with all three words treated
as 32-bit signed quantities, and sets the condition code
according to the results of the comparisons.

Affected: CC

(R) : ED 0-31; (R) : ED 32-63

Condition code settings:

2 3 4 Result of Comparison

o 0 Contents of R equal to most sign ificant
word, (R) = ED

O
_

3
f

o Contents of Riess than most signifi cant
word, (R) < ED

O
_
3f

o Contents of R grea ter tha n most si gnfi cant
word, (R) > ED

O
_
3f

o 0 Contents of R equal to least significant word,
(R) = ED

32
_
63

·

o

o -

Contents of R less than least significant word,

(R) < ED 32-63'

Contents of R greater than least significant
word, (R) > ED

32
_

63
·

lOGICAL INSTRUCTIONS

All logical operations are performed bit by corresponding
bit between two operands; one operand is in register Rand
the other operand is the effective word. The result of the
logical operation is loaded into register R.

OR OR WORD
(Word index alignment)

o 1 2

OR WORD logically ORs the effective word into register R.
If corresponding bits of register R and the effective word
are both 0, a 0 remains in register R; otherwise, a 1 is
placed in the corresponding bit position of register R. The
effective word is not affected.

68 Logical Instructions

Affected: (R), CC3, C C4
(R) u EW - R, where 0 u 0 = 0, 0 u 1 = 1, 1 u 0 = 1,

1 u 1 = 1

Condition code settings:

2 3 4 Resu I tin R

EOR

H
o 1 2

o 0 Zero.

OBit 0 of register R is a 1.

OBit 0 of register R is a 0 and bit positions 1-31
of reg i ster R conta i n at I east one 1.

EXCLUSIVE OR WORD
(Word index al ignment)

EXCLUSIVE OR WORD logically exclusive ORs the effec­
tive word into register R. If corresponding bits of regis­
ter R and the effective word are different, a 1 is placed in
the corresponding bit position of register R; if the contents
of the corresponding bit positions are al ike, a 0 is placed
in the corresponding bit position of register R. The effec­
tive word is not affected.

Affected: (R), CC3, CC4
(R)@ EW --R, where O@ 0 = 0, O@ 1 = 1,

1@0= 1, 1@1 =0

Condition code settings:

2 3 4 Result in R

AND

o 0 Zero.

OBit 0 of register R is a 1.

OBit 0 of register R is a 0 and bit positions 1-31
of register R contain at least one 1.

AND WORD
(Word index al ignment)

AND WORD logically ANDs the effective word into reg­
ister R. If corresponding bits of register R and the effec­
tive word are both 1, a 1 remains in register R; otherwise,
a 0 is placed in the corresponding bit position of register R.
The effective word is not affected.

Affected: (R), CC3, CC4
(R) n EW --R, where a n 0 = 0, 0 n 1 = 0,

n 0 = 0, 1 n 1 ~ 1

Condition code settings:

2 3 4 Resu I tin R

o 0 Zero.

o Bit 0 of register R is a 1.

OBit 0 of register R is a 0 and bit positions 1-31
of register R contain at least one 1.

SHIFT INSTRUCTIONS

The instruction format for logical, circular, arithmetic,
and searching shift operations is:

S SHIFT
(Word index al ignment)

If neither indirect addressing nor indexing is call ed for in
the instruction SHIFT, bit positions 21-23 of the reference
address field determine the type, and bit positions 25-31
determine the direction and amount of the shift. If only in­
direct addressing is called for in the instruction, bits 15-31
of the instruction are used to access the indirect word and
then bits 21-31 of the indirect word determine the type,
direction, and amount of the shift. If only indexing is
called for in the instruction, bits 21-23 of the instruction
word determine the type of shift; the direction and amount
of shift are determined by bits 25-31 of the instruction plus
bits 25-31 of the spedfied index register. If both indirect
addressing and indexing are called for in the instruction,
bits 15-31 of the instruction are used to access the indirect
word and then bits 21-23 of the indirect word determine
the type of shift; the direction and amount of the shift
are determined by bits 25-31 of the indirect word plus
bits 25-31 of the specified index register.

Bit positions 15-20 and 24 of the effective virtual address
are ignored. Bit positions 21, 22, and 23 of the effective
virtual address determine the type of shift, as follows:

21 22 23 Sh ift Type

0 0 0 Logical, single register

0 0 Logical, double register

0 0 Circular, si ngl e reg ister

0 Circular, double register

0 0 Arithmetic, single register

0 Arithmetic, doubl e register

0 Searching, single register

Searching, double register

Bit positions 25 through 31 of the effective virtual address
are a shift count that determines the direction and amount
of the shift. The shift count (C) is treated as a 7-bit
signed binary integer, with the high-order bit (bit posi­
tion 25) as the sign (negative integers are represented in
two's complement form). A positive shift count causes
a left shift of C bit positions. A negative shift count
causes a right shift of Ici bit positions. The value of C is
within the range: -64 :5 C :5 +63.

All double-register shift operations require an even value
for the R field of the instruction, and treat registers Rand
Rul as a 64-bit register with the high-order bit (bit posi­
tion 0 of register R) as the sign for the entire register. If
the R field of SHIFT is an odd value and a double-register
shift operation is specified, a register doubleword is
formed by dupl icating the contents of register R for both the
32 high-order bits and the 32 low-order bits of the double­
word. The shift operation is then performed and the 32 high­
order bits of the result are loaded into register R.

Overflow occurs (on left shifts only) whenever the value of
the sign bit (bit position 0 of register R) changes. At the
completion of logical left, circular left, arithmetic left,
and searching left shifts, the condition code is set as
follows:

2 3 4 Result of Shift

o - Even number of l's sh if ted off left end of
register R.

Odd number of l's sh if ted off I eft end of
register Rt.

o No overflow on left shift.

Overflow on left shift.

Searching shift terminated with RO
equal 1.

At the completion of right shifts, the condition code is set
as follows:

234

o 0

Logical Shift, Single Register

If the shift count, C, is positive, the contents of register R
are shifted left C places, with O's copied into vacated bit

t Not appl icable for searching shift.

Shift Instructions 69

positions on the right. (Bits shifted past RO are lost.) If C
is negative, the contents of register R are shifted right Ici
places, with OIS copied into vacated bit positions on the
left. (Bits shifted past R31 are lost.)

Affected: (R), CC1, CC2

Logical Shift, Double Register

If the shift count, C, is positive, the contents of regis­
ters Rand Ru 1 are shifted left C places, with OIS copied
into vacated bit positions on the right. Bits shifted past
bit position 0 of register Ru 1 are copied into bit position 31
of register R. (Bits shifted past RO are lost.) If C is nega­
tive, the contents of registers Rand Ru 1 are shifted right
Ici places with OIS copied into vacated bit positions on the
left. Bits shifted past bit position 31 of register Rare
copied into bit position 0 of register Ru 1. (Bits shifted
past Ru1

31
are lost.)

Affected: (R), (Ru 1), CC 1, CC2

Circular Shift, Single Register

If the shift count, C, is positive, the contents of regis-
ter R are shifted left C places. Bits shifted past bit posi­
tion 0 are copied into bit position 31. (No bits are lost.)
If C is negative, the contents of register R are shifted right
Ie! places. Bits shifted past bit position 31 are copied into
bit position O. (No bits are lost.)

Affected: (R), CC1, CC2

Circular Shift, Double Register

If the shift count, C, is positive, the contents of regis­
ters Rand Ru 1 are shifted left C places. Bits shifted past
bit position 0 of register R are copied into bit position 31
of register Rul. (No bits are lost.) If C is negative, the
contents of registers Rand Ru1 are shifted right Ici places.
Bits shifted past bit position 31 of register Ru 1 are copied
into bit position 0 of register R. (No bits are lost.)

Affected: (R), (Ru 1), CC 1, CC2

Arithmetic Shift, Single Register

If the shift count, C, is positive, the contents of regis­
ter R are shifted left C places, with OIS copied into

70 Shift Instructions

vacated bit positions on the right. (Bits shifted past RO are
lost.) If C is negative, the contents of register Rare
shifted right Ici places, with the contents of bit position a
copied into vacated bit positions on the left. (Bits shifted
past R31 are lost.)

Affected: (R), CCl ,CC2

Arithmetic Shift, Double Register

If the shift count, C, is positive, the contents of registers R
and Ru 1 are shifted left C places, with OIS copied into va­
cated bit positions on the right. Bits shifted past bit posi­
tion a of register Ru 1 are copied into bit position 31 of
register R. (Bits shifted past RO are lost.) If C is negative,
the contents of registers Rand Ru 1 are shifted right Ici
places, with the contents of bit position a of register R
copied into vacated bit positions on the left. Bits shifted
past bit position 31 of reg ister R are copied into bit posi­
tion 0 of register Rul. (Bits shifted past Ru1

31
are lost.)

Affected: (R),(Rul),CC1,CC2

Searching Shift, Single Register

The searching shift is circular in either direction. If the
shift count, C, is positive, the contents of register Rare
shifted left C bit positions or until a 1 appears in bit posi­
tion O. If C is negative, the contents are shifted right
Ici positions or until a 1 appears in bit position O. When
the shift is terminated, the remaining count is stored in
register 1, which is dedicated to the searching shift in­
struction. Bits 0-24 of register 1 are cleared and the re­
maining count is loaded into bits 25-31. If the initial
contents of bit a is equal to 1, then no bits are shifted by
the instruction. In this case the original count in the
instruction is stored in register 1.

Searching shift causing a change in bit position a causes
CC2 to be set to 1. If bit position a is not changed during
a searching shift, CC2 is cleared.

Affected: (R), (Rl), CC2,CC4

Searching Shift, Double Register

The searching shift is circular in either direction. If the
shift count, C, is positive, the contents of registers Rand
Rul are shifted left C bit positions or until a 1 appears in
bit position a of register R. If C is negative, the contents
are shifted right C positions or until a 1 appears in bit
position O. When the shift is terminated, the remaining

count is stored in register 1, whi ch is dedicated to the
searching shift instruction. Bits 0-24 of register 1 are
cleared and the remaining count is loaded into bits 25-31.

Affected: (R), (Ru 1), (Rl), CC2, CC4

FLOATING POINT SHIFT

Floating-point numbers are defined in the "Floating-Point
Arithmetic Instructions" section. The format for the
floating-point shift instruction is:

SF SHIFT FLOA lING
(Word index alignment)

If indirect addressing or indexing is called for in the in­
struction word, the effective virtual address is computed
as for the instruction SHIFT except that bit position 23 of
the effective virtual address determines the type of shift.
If bit 23 is a 0, the contents of register R are treated as a
short-format floating-point number; if bit 23 is a 1, the
contents of registers Rand Ru 1 are treated as a long-format
floating-point number.

The shift count, C, in bit positions 25 through 31 of the
effective virtual address determines the amount and direc­
tion of the shift. The shift count is treated as a 7-bit
signed binary integer, with the high-order bit (bit posi­
tion 25) as the sign (negative integers are represented in
twols complement form).

The absolute value of the shift count determines the number
of hexadecimal digit positions the floating-point number is
to be shifted. If the shift count is positive, the floating­
point number is shifted left; if the count is negative, the
number is shifted right.

SHIFT FLOA lING loads the floating-point number from the
register(s) specified by the R field of the instruction into a
set of internal registers. If the number is negative, it is
twols complemented. A record of the original sign is re­
tained. The floating-point number is then separated into
a characteristic and a fraction, and CC 1 and CC2 are both
reset to Dis.

A positive shift count produces the following left shift op­
erations:

1. If the fraction is normalized (i. e., is less than 1 and
is equal to or greater than 1/16), or the fraction is
all Dis, CC1 is set to 1.

2. If the fraction field is all Dis, the entire floating-point
number is set to all Dis (true zero), regardless of the
sign and the characteristic of the original number.

3. If the fraction is not normalized, the fraction field is
shifted 1 hexadecimal digit position (4 bit positions) to
the left and the characteristic field is decremented
by 1. Vacated digit positions at the right of the frac­
tion are filled with hexadecimal Dis.

If the characteristic field underflows (i. e., is all 1's
as the result of being decremented), CC2 is set to 1.
However, if the characteristic field does not under­
flow, the shift process (shift fraction, and decrement
characteristic) continues until the fraction is normal­
ized, until the characteristic field underflows, or
until the fraction is shifted left C hexadecimal digit
positions, whichever occurs first. (Any two, or
all three, of the terminating conditions can occur
simultaneously.)

4. At the completion of the left shift operation, the
floating-point result is loaded back into the general
register(s). If the number was originally negative, the
twols complement of the resultant number is loaded
into the general registers(s).

5. The condition code settings following a floating-point
left shift are as follows:

2 3 4 Result

0 0 True zero (all Dis).

0 Negative.

0 Positive.

0 0 C digits shifted (fraction unnormalized,
no characteristic underflow).

Fraction normalized (includes true zero).

Characteristic underflow.

A negative shift count produces the following right shift
operations (again assuming that negative numbers are twols
complemented before and after the shift operation):

1. The fraction field is shifted 1 hexadecimal digit posi­
tion to the right and the characteristic field is incre­
mented by 1. Vacated digit positions at the left are
filled with hexadecimdl Dis.

2. If the characteristic field overflows (i. e., is all Dis as
the result of being incremented), CC2 is set to l.
However, if the characteristic field does not overflow,
the shift process (shift fraction, and increment char­
acteristic) continues until the characteristic field over­
flows or until the fraction is shifted right Ici hexadeci­
mal digit positions, whichever occurs first. (Both
terminating conditions can occur simultaneously.)

3. If the resultant fraction field is all Dis, the entire
floating-point number is set to all Dis (true zero),
regardless of the sign and the characteristic of the
original number.

Shift Instructions 71

4. At the completion of the right shift operation, the
floating-point result is loaded back into the general
register(s). If the number was originally negative,
the two's complement of the resultant number is loaded
into the general register(s).

5. The condition code settings following a floating-point
right shift are as follows:

2 3 4 Result

a a True zero (a II zeros).

a Negative.

a Positive.

a a Ici digits shifted (no characteristic
overflow).

a Characteristic overflow.

Floating Shift, Single Register

The short-format floating-point number in register R is
shifted according to the rules established above for floating­
point shift operations.

Affected: (R), cc

Floating Shift, Double Register

The long-format floating-point number in registers Rand
Ru 1 is shifted according to the rules establ ished above for
floating-point shift operations. (If the R field of the in­
struction word is an odd value, a long-format floating­
point number is generated by dupl icating the contents of
register R, and the 32 high-order bits of the result are
loaded into register R.)

Affected: (R), (Ru 1), cc

CONVERSION INSTRUCTIONS

The following two conversion instructions are provided by
the SIGMA 9 computer:

Instruction Name Mnemonic

Convert by Addition CVA

Convert by Subtraction CVS

72 Conversion Instructions

These two conversion instructions can be used to accom-
pi ish bidirectional translation between binary code and any
other weighted binary code, such as BCD.

The effective addresses of the instructions CONVERT BY
ADDITION and CONVERT BY SUBTRACTION each point
to the starting location of a conversion table of 32 words,
containing weighted values for each bit position of regis­
ter Ru 1. The 32 words of the conversion table are con­
sidered to be 32-bit positive quantities, and are referred
to as conversion values. The intermediate results of these
instructions are accumulated in internol CPU registers unti I
the instruction is completed; the result is then loaded into
the appropriate general register. Both instructions use a
counter (n) that is set to a at the beginning of the instruc­
tion execution and is incremented by 1 with each iteration,
until a total of 32 iterations have been performed.

If a memory parity or protection violation trap occurs dur­
ing the execution of either instruction, the instruction se­
quence is aborted (without having changed the contents of
register R or Ru 1) and may be restarted (at the beginning of
the instruction sequence) after the trap routine is processed.

eVA CONVERT BY ADDITION
(Word index al ignment)

CONVERT BY ADDITION initially clears the internal A
register and sets an internal counter (n) to a. If bit posi­
tion n of register Ru 1 contains a 1, CVA adds the nth con­
version value (contents of the word location pointed to by
the effective address plus n) to the contents of the A reg­
ister, accumulates the sum in the A register, and incre­
ments n by 1. If bit position n of register Ru 1 contains a a,
CVA only increments n. If n is less than 32 after being
incremented, the next bit position of register Ru1 is ex­
amined, and the addition process continues through n equal
to 31; the result is then loaded into register R. If, on any
iteration, the sum has exceeded the value 232-1, CCl is
set to 1; otherwise, CCl is reset to a.

Affected: (R), CC1, CC3, CC4
a-A, a--n

If (Rul) = 1, then (EWL + n) + (A) -A, n + 1 -n
n

If (Rul) = a, then n + 1-- n
n

If n < 32, repeat; otherwise, (A) -R and continue to
next instruction.

Condition code settings:

2 3 4 Result in R

a 0 Zero.

o Bit 0 of register R is a 1.

2 3 4 Resu I tin R

0--

OBit 0 of register R is a 0 and bit positions 1-31
of register R contain at least one 1.

Sum is correct (less than 2
32

).

Sum is greater than 2
32

_1.

CVS CONVERT BY SUBTRACTION
(Word index alignment)

CONVERT BY SUBTRACTION loads the internal A register
with the contents of register R, clears the internal B regis­
ter, and sets an internal counter (n) to O. All conversion
values are considered to be 32-bit positive quantities. If
the nth conversion value (the contents of the word location
pointed to by the effective address plus n) is equal to or
less than the current contents of the A register, CVS incre­
ments n by 1, adds the two's complement of the nth con­
version value to the contents of the A register, stores the
sum in the A register, and stores a 1 in bit position n of the
B register. If the nth conversion value is greater than the
current contents of the A register, CVS onl y increments n
by 1. If n is less than 32 after being incremented, the
next conversion val ue is compared and the process con­
tinues through n equal to 31; the remainder in the A reg­
ister is loaded into re'gister R, and the converted quantity
in the B register is loaded into register Ru 1.

Affected: (R), (Ru 1), CC3, CC4

(R)-A, 0 --B, 0 -n

If (EWL + n) ~ (A) then A - (EWL + n) -A,
1-B n+1-n

n'

If (EWL + n) > (A) then n + 1-n

If n < 32, repeat; otherwise, (A) - R, (B) - Ru 1 and
continue to the next instruction.

Condition code settings:

2 3 4 Resu I tin Ru 1

- 0 0 Zero.

OBit 0 of register Ru 1 is a 1.

OBit 0 of register Ru 1 is a 0 and bit posi­
tion.s 1-31 of register Ru1 contain at
least one 1.

FLOATING-POINT ARITHMETIC INSTRUCTIONS

The following floating-point arithmetic instructions are
available to SIGMA 9 computers:

Instruction Name Mnemonic

Floating Add Short FAS

Floating Add Long FAL

Floating Subtract Short FSS

Floating Subtract Long FSL

Floating Mul tiply Short FMS

Floating Multiply Long FML

Floating Divide Short FDS

Floating Divide Long FDL

FLOATING-POINT NUMBERS

SIGMA 9 accommodates two number formats for f1oating­
point arithmetic: short and long. A short-format floating­
point number consists of a sign (bit 0), a biasedt , base 16
exponent, which is called a characteristic (bits 1-7), and
a six-digit hexadecimal fraction (bits 8-31). A long-format
floating-point number followed by an additional eight
hexadecimal digits of fractional significance and occupies
a doubleword memory location or an even-odd pair of
gener.al registers.

A SIGMA 9 floating-point number (N) has the following
format:

A floating-point number (N) has the following formal
definition:

1.
C-64

N = F x 16 where F = 0 or

-6 I 16 ~ FI $ 1 (short format) or

-14 I I 16 ~ F :5 1 (long format)

and 0 ~ C :5 127.

tThe bias value of 4016 is added to the exponent for the
purpose of making it possible to compare the absolute mag­
nitude of two numbers, i. e., without reference to a sign
bit. This manipulation effectively removes the sign bit,
making each characteristic a 7-bit positive number.

Floating-Point Arithmeti c Instructions 73

2. A positive floating-point number with a fraction of
zero and a characteristic of zero is a "true" zero.
A positive floating-point number with a fraction of
zero and a nonzero characteristic is an "abnormal"
zero. For floating-point multiplication and division,
an abnormal zero is treated as a true zero. However,
for addition and subtraction, an abnormal zero is
treated the same as any nonzero operand.

3. A positive floating-point number is normalized if and
only if the fraction is contained in the interval

1/16:5 F < 1

4. A negative floating-point number is the two's comple­
ment of its positive representation.

5. A negative floating-point number is normal ized if and
only if its two's complement is a normalized positive
number.

By this definition, a floating-point number of the form

1 xxx xxxx 1111 0000 . .. 0000

is normal ized, and a floating-point number of the form

lxxx xxxx 0000 0000 ... 0000

is illegal and, whenever generated by floating-point in­
structions, is converted to the form

1 yyy yyyy 1111 0000 ... 0000

where yy ... Y is 1 less than xx ... x. Table 11 contains
examples of floating-point numbers.

Modes of Operation

SIGMA 9 contains three mode control bits that are used to
qualify floating-point operations. These mode control bits

Table 11. Floating-Point Number Representation

Short Floating-Point Format

Decimal Number ± C F Hexadecimal Value

+(16+63)(1_2-24) a 111 1111 1111 1111 1111 1111 1111 1111 7F FFFFFF

+(16 +3)(5/16) a 100 0011 0101 0000 0000 0000 0000 0000 43 500000

+(16 -3) (209/256) a all 1101 1101 0001 0000 0000 0000 0000 3D D10000

+(16-63}(2047/4096) a 000 0001 0111 1111 1111 0000 0000 0000 01 7FFOOO

+(16 -64)(1/16) a 000 0000 0001 0000 0000 0000 0000 0000 00 100000

a (called true zero) a 000 0000 0000 0000 0000 0000 0000 0000 00 000000

-(16-
64

)(1/16) 1 111 1111 1111 0000 0000 0000 0000 0000 FF FOOOOO

-(16 -63)(2047/4096) 1 111 1110 1000 0000 0001 0000 0000 0000 FE 801000

-(16 -3)(209/256) 1 100 0010 0010 1111 0000 0000 0000 0000 C2 2 FOOOO

-(16 +3)(5/16) 1 all 1100 1011 0000 0000 0000 0000 0000 BC BOOOOO

-(16 +63)(1_224) 1 000 0000 0000 0000 0000 0000 0000 0001 80 000001

Special Case

-(16
e

)(l) 1
- 0000 e 0000 0000 0000 0000 0000

is changed to

_(16e+1)(1/16) 1 en 1111 0000 0000 0000 0000 0000

whenever generated as the result of a floating-point instruction.

74 Floating-Point Arithmetic Instructions

are identified as FS (floating significance), FZ (floating
zero), and FN (floating normalize), and are contained
in bit positions 5, 6, and 7, respectively, of the program
status doubl eword (PSD 5-7)'

The floating-point mode is establ ished by setting the three
floating-point mode controi bits. This can be performed by
any of the following instructions:

Instruction Name

Load Conditions and Floating Control

Load Conditions and Floating Control
Immediate

Load Program Status Doubl eword

Exchange Program Status Doubleword

Mnemonic

LCF

LCFI

LPSD

XPSD

The floating-point mode control bits are stored by exe­
cuting either of the following instructions:

Instruction Name Mnemonic

Store Conditions and Floating Control STCF

Exchange Program Status Doubleword XPSD

FLOATING-POINT ADD AND SUBTRACT

The floating normal ize (FN), floating zero (FZ), and
floating significance (FS) mode control bits determine the
operation of floating-point addition and subtraction (if
characteristic overflow does not occur) as follows:

FN Floating normal ize:

FN = a The results of additions and subtractions are
to be postnormal ized. If characteristic un­
derflowoccurs, if the result is zero, or if
more than two postnormal ization hexadeci­
mal shifts are required, the settings for FZ
and FS determine the resultant action. If
none of the above conditions occurs; the con­
dition code is set to 0010 if the result is
positive or to 0001 if the result is negative.

FN = 1 Inhibit postnormal ization of the result of ad­
ditions and subtractions. The settings of FZ
and FS have no effect on the instruction op­
eration. If the resul t is zero, the result
is set to true zero and the condition code
is set to 0000. If the result is positive,
the condition code is set to 0010. If the
result is negative, the condition code is
set to 0001.

FZ Floating zero: (appl ies onl y if FN = 0)

FZ = a If the final result of an addition or subtrac­
tion operation cannot be expressed in normal­
ized form because of the characteristic being
reduced below zero, underflow has occurred,
in which case the result is set equal to true
zero and the conditi on code is set to 1100.
(Exception: if a trap results from significance
checking with FS = 1 and FZ = 0, an under­
flow generated in the process of postnormal­
izing is ignored.)

FZ = 1 Characteristic underflow causes the computer
to trap to Homespace location X'441 with the
contents of the general registers unchanged.
If the resul t is positive, the condition code is
set to 1110. If the result is negative, the
condition code is set to 1101.

FS Floating significance: (applies only if FN = 0)

FS = a Inhibit significance trap. If the result of an
addition or subtraction is zero, the result is
set equal to true zero, the condition code
is set to 1000, and the computer executes
the next instruction in sequence. If more
than two hexadecimal places of postnormal­
ization shifting are required and character­
istic underflow does not occur, the condition
code is set to 1010 if the result is positive, or
to 1001 if the result is negative; then, the
computer executes the next instruction in se­
quence. (Exception: if characteristic under­
flow occurs with FS = 0, FZ determines the
resul tant action.)

FS = 1 The computer traps to Homespace location
X'44 1 if more than two hexadecimal places
of postnormalization shifting are required
or if the result is zero. The condition
code is set to 1000 if the result is zero,
to 1010 if the result is positive, or to 1001
if the result is negative; however, the con­
tents of the general registers are not changed.
(Exception: if a trap results from character­
istic underflow with FZ = 1, the results of
significance testing are ignored.)

If characteristic overflow occurs, the CPU always traps
to Homespace location X'44 1 with the general registers
unchanged and the condition code set to 0110 if the
result is positive, or to 0101 if the result is negative.

FLOATING-POINT MULTIPLY AND DIVIDE

The floating zero (FZ) mode control bit alone determines
the operation of floating-point multipl ication and division

Floating-Point Arithmetic Instructions 75

(if characteristic overflow does not occur and division by
zero is not attempted) as follows:

FZ Floating zero:

FZ = 0 If the final result of a multiplication or divi­
sion operation cannot be expressed in normal­
ized form b,ecause of the characteristic being
reduced below zero, underflow has occurred.
If underflow occurs, the result is set equal to
true zero and the cond iti on code is set to
1100. If underflow does not occur, the
condition code is set to 0010 if the result is
positive, to 0001 if the result is negative, or
to 0000 if the result is zero.

FZ = 1 Underflow causes the computer to trap to
Homespace location X'44' with the contents
of the general registers unchanged. The con­
dition code is set to 1110 if the result is posi­
tive, or to 1101 if the result is negative. If
underflow does not occur, the resultant
action is the same as that for FZ = O.

If the divisor is zero in a floating-point division, the com­
puter always traps to Homespace location X'44' with the
general registers unchanged and the condition code set to
0100. If characteristic overflow occurs, the computer al­
ways traps to Homespace location X'44' with the general
registers unchanged and the condition code set to 0110 if
the result is positive, or to 0101 if the result is negative.

CONDITION CODES FOR
FLOATING-POINT INSTRUCTIONS

The condition code settings for floating-point instructions
are summarized in Table 12. The following provisions apply
to all floating-point instructions:

1. Underflow and overflow detection apply to the final
characteristic, not to any "intermediate" value.

2. If a floating-point operation results in a trap, the
original contents of all general registers remain
unchanged.

Table 12. Condition Code Settings for Floating-Point Instructions

Condition Code
Meaning If No Trap to Homespace Meaning If Trap to Homespace

1 2 3 4 Location X'44' Location X'44' Occurs

·0 0 0 0 A x 0, O/A, or -A +A
0

w;th FN=1} *0

0 0 0 1 N <0
Normal

* results
0 0 1 0 N >0 *

0 1 0 0
0

o;v;de by zero } *

0 1 0 1 * Overflow, N <0 Always trapped

0 1 1 0 * Overflow, N >0

~
0 0 0

o }
-A+A -A +A FS=O,

0 0 1 N < 0 > 2 Postnormal- FN=O, and N < 0 } > 2 Postnormol- } FS= 1, FN=O, and no

0 1 0 N > o} ;z;n9 shHts no underflow N > 0 izing shifts underflow with FZ= 1

1 1 0 0
. (0

Underflow with FZ=O and no trap by FS= 1 *

1 1 0 1 * Underflow, N <0
} FZ~l

1 1 1 0 * Underflow, N >0

Notes: (l) Result set to true zero

0 "*" indicates impossible configurations

0) Appl ies to add and subtract only where FN=O

76 Floating-Point Arithmetic Instructions

3. All shifting and truncation are performed on absolute
magnitudes. If the fraction is negative, then the two1s
complement is formed after shifting or truncation.

FAS FLOATING ADD SHORT
(Word index alignment)

The effective word and the contents of reg~ster Rare
loaded into a set of internal registers and a low-order hexa­
decimal zero (guard digit) is appended to both fractions,
extending them to seven hexadecimal digits each. FAS
then forms the floating-point sum of the two numbers. If no
floating-point arithmetic fault occurs, the sum is loaded
into register R as a short-format floating-point number.

Affected: (R), CC
(R) + EW-R

Trap: Floating-point arith­
metic fault

FAL

H
o 1 2

FLOATING ADD LONG
(Doubleword index alignment)

314567891011121314151617181912021222324252627128293031

The effective doubleword and contents of registers R
and Ru 1 are loaded into a set of internal registers.

The operation of FAL is identical to that of FLOATING
ADD SHORT (FAS) except that the fractions to be added
are each 14 hexadecimal digits long, guard digits are not
appended to the fractions, and R must be an even value for
correct results. If no floating-point arithmetic fault occurs,
the sum is loaded into registers Rand Ru 1 as a long-format
floating-point number.

Affected: (R),(Ru1),CC
(R, Ru1) + ED --R, Ru1

Trap: Floating-point arith­
metic fault, instruc­
tion exception

The R field of the FAL instruction must be an even val ue
for proper operation of the instruction; if the R field of FAL
is an odd value, the instruction traps to Homespace location
X'4D', instruction exception trap.

FSS FLOATING SUBTRACT SHORT
(Word index al ignment)

The effective word and the contents of register R are loaded
into a set of internal registers.

FLOATING SUBTRACT SHORT forms the two's complement
of the effective word and then operates identically to
FLOATING ADD SHORT (FAS). If no floating-point

arithmetic fault occurs, the difference is loaded into reg­
ister R as a short-format floating-point number.

Affected: (R), cc
(R) - EW- R

Trap: Floating-point arith­
metic fault

FSL FLOATING SUBTRACT LONG
(Doubleword index alignment)

The effective doubleword and the contents of registers R
and Ru1 are loaded into a set of internal registers.

FLOATING SU BTRACT LONG forms the two's comple­
ment of the effective doubleword and then operates iden­
tically to FLOATING ADD LONG (FAL). If no floating­
point arithmetic fault occurs, the difference is loaded into
registers Rand Ru1 as a long-format floating-point number.

Affected: (R), (Ru 1), CC
(R, Ru 1) - ED --R, Ru 1

Trap: Floating-point arith­
metic faul t, instruc­
tion exception

The R field of the FSL instruction must be an even val ue for
proper operation of the instruction; if the R field of FSL is
an odd value, the instruction traps to Homespace location
X'4D', instruction exception trap.

FMS FLOATING MULTIPLY SHORT
(Word index alignment)

The effective word (multiplier) and the contents of regis-
ter R (multiplicand) are loaded into a set of internal
registers, and both numbers are then prenormal ized (if
necessary). The product of the fractions contains 12 hexa­
decimal digits. If no floating-point arithmetic fault occurs,
the product is loaded into register R as a properly truncated
short-format floating-point number.

The result of floating-multiply is always postnormalized. At
most, one place of postnormal izing shift may be required.
Truncation takes place after postnormal ization.

Affected: (R), CC
(R) x EW--R

Trap: Floating-point arith­
metic fault

FML FLOATING MULTIPLY LONG
(Doubleword index al ignment)

The effective doubleword (multiplier) and the contents of
registers Rand Ru1 (multiplicand) are loaded into a set of
internal registers. FLOATING MULTIPLY LONG then

Floating-Point Arithmetic Instructions 77

operates identically to FLOATING MULTIPLY SHORT
(FMS), except that the multiplier and the multiplicand
fractions are each 14 hexadecimal digits long, the product
fraction is 28 hexadecimal digits long, and R must be an
even value for correct results. If no floating-point arith­
metic fault occurs, the postnormalized product is truncated
to a long-format floating-point number and loaded into
registers Rand Ru 1.

Affected: (R) I (Ru 1), CC
(R, Rul) x ED -R, Ru1

Trap: Floating-point arith­
metic faul t, instruc­
tion exception

The R field of the FML instruction must be an even value
for proper operation of the instruction; if the R field of
FML is an odd value, the instruction traps to Homespace
location X'4D', instruction exception trap.

FDS FLOATING DIVIDE SHORT
(Word index al ignment)

The effective word (divisor) and the contents of register R
(dividend) are loaded into a set of internal registers and
both numbers are then prenormalized (if necessary).
FLOATING DIVIDE SHORT then forms a floating-point
quotient with a 6-digit, normal ized hexadecimal fraction.
If no floating-point arithmetic fault occurs, the quotient is
loaded into register R as a short-format [Ioating-point
number.

Affected: (R), C C
(R) -;- EW -R

Trap: Floating-point arith­
metic fault

FDL FLOATING DIVIDE LONG
(Doubleword index alignment)

o 1 2

The effective doubleword (divisor) and the contents of
registers Rand Rul (dividend) are loaded into a set of
internal registers. FLOATING DIVIDE LONG then oper­
ates identically to FLOATING DIVIDE SHORT (FDS), ex­
cept that the divisor, dividend, and quotient fractions are
each 14 hexadecimal digits long, and R must be an even
value for correct results. If no floating-point arithmetic
fault occurs, the quotient is loaded into registers Rand Ru1
as a long-format floating-point number.

Affected: (R), (Ru 1), CC
(R, Ru1) -;- ED -R, Rul

Trap: Floating-point arith­
metic fault, instruc­
tion exception

The R field of the FDL instruction must be an even va lue
for proper operation of the instruction; if the R field of FDL
is an odd value, the instruction traps to Homespace location
X' 4D ' I instruction exception trap.

78 Decimal Instructions

DECIMAL INSTRUCTIONS

The following instructions comprise the decimal instruction
sett:

Instruction Name

Decimal Load

Decimal Store

Decimal Add

Decimal Subtract

Decimal Multiply

Decimal Divide

Decimal Compare

Decimal Shift Arithmetic

Pack Decimal Digits

Unpack Decimal Digits

Edit Byte String (described under
"Byte-String Instructions")

PACKED DECIMAL NUMBERS

Mnemonic

DL

DST

DA

DS

DM

DD

DC

DSA

PACK

UNPK

EBS

All SIGMA 9 decimal arithmetic instructions operate on
packed decimal numbers, each consisting of from 1 to 31
decimal digitstt (in absolute form) plus a decimal sign. A
decimal digit is a 4-bit code in the range 0000 through
1001, where 0000 = 0, 0001 = 1, 0010 = 2, 0011 = 3,
0100 = 4, 0101 = 5, 0110 = 6, 0111 = 7, 1000 = 8, and
1001 = 9. A positive decimal sign is a 4-bit code of the
form: 101O(X'A'), 1l00(X'C), 1110(X'E'), or 1111(X'F').
A negative decimal sign is a 4-bit code of the form:
1011 (XI B') or 11 01 (X'D'). However, the decima I sign codes
generated for the resul t of a decimal instruction are: 1100
(EBCDIC) and 1010 (ASCII) for positive results, and 1101
(EBCDIC) and 1011 (ASCII) for negative results. The for­
mat of packed decimal numbers is:

For the decimal arithmetic instructions, a packed decimal
number must occupy an integral number (1 through 16) of
consecutive bytes. Thus, a decimal number must contain an
odd number of decimal digits, the high-order digit (zero or
nonzero) of the number must be in bit positions 0-3 of the
first byte, the decimal sign must be in bit positions 4-7 of
the last byte, and all decimal digits and the decimal sign
must be 4-bit codes of the form described above.

tFor disabling of decimal instructions, see "Unimplemented
Instruction Trap", Chapter 2.

ttExcept EDIT BYTE STRING (EBS), which has no limit on
the size of numbers.

ZONED DECIMAL NUMBERS

In zoned decimal format, a singledecimal digit is contained
within bit positions 4-7 of a byte, and bit positions 0-3 of
the byte are referred to as the "zone" of the decimal digit.
A zoned decimal number consists of from 1 to 31 bytes, with
the decimal sign appearing as the zone for the last byte, as
follows:

The sign and zones are determined by bit 12 of the PSD.
If bit 12 is zero, the sign format is EBCDIC and the zones
are 1111. If it is one, the sign format is ASCII and zones
are 0011.

A decimal number can be converted from zoned to packed
format by means of the instruction PACK DECIMAL DIGITS.
A decimal number can be converted from packed to zoned
format by means of the instruction UNPACK DECIMAL
DIGITS.

DECIMAL ACCUMULATOR

All decimal arithmetic instructions imply the use of reg­
isters 12 through 15 of the current register bank as the deci­
mal accumulator, and registers 12 through 15 are treated as
a single 16-byte register. The entire decimal accumulator
is used in every decimal arithmetic instruction.

DECIMAL INSTRUCTION FORMAT

The general format of a decimal instruction is as follows:

The indirect address bit (position 0), the operation code
(positions 1-7), the index field (12-14), and the reference
address field (15-31) all have the same functions for the
decimal instructions as they do for any other SIGMA 9 byte
addressing instruction. However, bit positions 8-11 of the
instruction word do not refer to a general register; instead,
the contents of this field (designated by the character "L")
designate the length, in bytes, of a packed decimal num­
ber. (If L = 0, a length of 16 bytes is assumed.)

ILLEGAL DIGIT AND SIGN DETECTION

Prior to executing any decimal instruction, the computer
checks all decimal operands for the presence of illegal
decimal digits or illegal decimal signs. For all decimal
arithmetic instructions except DECIMAL MULTIPLY and
DECIMAL DIVIDE, an illegal decimal digit is a sign code
(i. e., in the range X'A' through X'F') that appears any­
where except in bit positions 4-7 of the least significant
byte (the sign position) of the packed decimal number; an
illegal decimal sign is a digit code (i. e., in the range X'O'

through X'9') that appears in the sign position of the packed
decimal number.

For the instructions DECIMAL MULTIPLY and DECIMAL
DIVIDE, the effective decimal operand is checked for
illegal digits or signs as above. However, the operand in
the decimal accumulator is checked to verify that there is
at least one legal decimal sign code somewhere in the num­
ber. (This type of check is a result of the interruptibility
of these instructions, which may leave the decimal accumu­
lator with a partially-completed result containing an
internal code.)

For the instructions DECIMAL ADD and DECIMAL SUB­
TRACT, the operand in the decimal accumulator is checked
for illegal digits or signs only in those digit positions that
are changed by the current addition or subtraction. For
these two instructions, the illegal sign and digit check also
includes a check for an illegal L field in the instruction.
Illegal L fields are X'O' and the range X'9' to X'F'.

If an illegal digit or sign is detected, the computer un­
conditionally aborts the execution of the instruction (at
the time that the illegal digit or sign is detected), sets
CC1 to 1 and resets CC2 to O. If the decimal arithmetic
fault trap mask (bit position 10 of the program status
doubleword) is a 0, the computer then executes the next
instruction in sequence; however, if the decimal arithmetic
faul t trap mask (PSD 10) is a 1, the computer traps to
Homespace location X'45'. In either case, the contents
of the decimal accumulator, the effective decimal operand,
CC3, and CC4 remain unchanged.

OVERFLOW DETECTION

Arithmetic overflow can occur during execution of the fol­
lowing decimal instructions:

DECIMAL ADD: overflow occurs when the sum of the two
decimal numbers exceeds the 31-digit capacity of the
decimal accumulator (+1031 -1 to -1031 +1).

DECIMAL SUBTRACT: overflow occurs when the difference
between the two decimal numbers exceeds the 3-digit ca­
pacity of the decimal accumulator.

DECIMAL DIVIDE: overflow occurs either when the divisor
is zero, or when the dividend is greater than 14 digits
in length and the absolute value of the significant digits
to the left of the 15th digit position (counting from the
right) is greater than or equal to the absolute value of
the divisor.

If arithmetic overflow occurs during execution of DECIMAL
ADD, DECIMAL SUBTRACT, or DECIMAL DIVIDE, the com­
puter unconditionally aborts execution of the instruction (at
the time of overflow detection), resets CC1 to 0, and sets
CC2 to 1. Then, if the decimal arithmetic fault trap mask
(PSD 10) is a 1, the computer traps to Homespace location
X'45'; if the decimal arithmetic fault trap mask is a 0, the

Decimal Instructions 79

computer executes the next instruction in sequence. In
either case, the contents of the decimal accumulator, mem­
ory storage, CC3, and CC4 remain unchanged.

DECIMAL INSTRUCTION NOMENCLATURE

For the purpose of abbreviating the instruction descriptions
to follow, the symbolic term "DECA" is used to represent
the decimal accumulator, and the symbolic term "EDOII is
used to represent the effective decimal operand of the in­
struction. For the instructions DECIMAL LOAD, DECIMAL
ADD, DECIMAL SUBTRACT, DECIMAL MULTIPLY, DECI­
MAL DIVIDE, and DECIMAL COMPARE, the effective
decimal operand is a packed decimal number that is IILII
bytes in length, where L is the numeric value of bit posi­
tions 8-11 of the instruction word, and a value of 0 for
L designates 16 bytes. The effective byte addresses of
these instructions point to the byte location that contains
the most significant byte (high-order digits) of the decimal
number, and the effective byte address plus L-1 (where
L = 0 = 16) points to the least significant byte (low-order
digit and sign) of the decimal number. Thus, for these in­
structions, the effective decimal operand (EDO) is the con­
tents of the byte string that begins with the effective byte
location, is L bytes in I ength and ends with the effective
byte location plus L-1.

CONDITION CODE SETTINGS

All decimal instructions provide condition code settings,
using CCl to indicate whether or not an illegal digit or
sign has been detected, and CC2 to indicate whether or
not overflow has occurred. Most (but not all) of the deci­
ma I instructions provide condition code settings, using CC3
and CC4 to indicate whether the decimal number in the
decimal accumulator is zero, negative, or positive, as
follows:

CC3 CC4

o o

o

o

Result in DECA

Zero - the decimal accumulator contains
a positive or negative decimal sign code
in the four low-order bit positions; the
remainder of the decimal accumulator con­
ta ins a II O' s.

Negative - the decimal accumulator con­
tains a negative decimal sign code in the
four low-order bit positions; the remainder
of the decimal accumulator contains at
least one nonzero decimal digit.

Positive - the decimal accumulator contains
a positive decimal sign code in the four low­
order bit positions; the remainder of the deci­
mal accumulator contains at least one nonzero
decimal digit.

80 Decimal Instructions

OL DECIMAL LOAD
(Byte index alignment)

If no illegal digit or illegal sign is detected in the effective
decimal operand, DECIMAL LOAD expands the effective
decimal operand to 16 bytes (31 digits + sign) by appending
high-order O's, and then loads the expanded decimal num­
ber into the decimal accumulator. If the result in the deci­
mal accumulator is zero, the converted sign remains
unchanged.

Affected: (DECA), CC Trap: Decimal arithmetic
(EBL to EBL + L -l)-DECA

Condition code settings:

2 3 4 Result in DECA

o Illegal digit or sign detected, instruction
aborted

o 0 o 0

000 :::ative} No illegal digit or illegal
sign detected, instruction
completed

o 0 o Positive

OST DECIMAL STORE
(Byte index al ignment)

If no illegal digit or sign is detected in the decimal ac­
cumulator, DECIMAL STORE stores the low-order L bytes
of the decimal accumulator into memory from the effec­
tive byte location to the effective byte location plus L-1.
If the decimal accumulator contains more significant in­
formation than is actually stored (i. e. , at least one non­
zero digit was not stored), CC2 is set to 1; otherwise,
CC2 is reset to O. If the result in memory is zero, the
converted sign remains unchanged.

Affected: (EBL to EBL + L-1), Trap: Decimal arithmetic
CC1, CC2

(DECA) low-order bytes --EBL to EBL + L - 1

Condition code settings:

2 3 4 Result of DST

o Illegal digit or sign detected, instruction
aborted

o 0

o

- All significant in-}
formation stored

Some significant
information not
stored

No illegal digit or
illegal sign detected,
instruction
completed

OA DECIMAL ADD
(Byte index al ignment)

If no illegal digit or sign is detected in the effective deci­
mal operand or in the decimal accumulator, DECIMAL ADD
algebraically adds the decimal number to the contents of the
decimal accumulator. If the result in the decimal accumu­
lator is zero, the resulting sign is forced to the positive
form.

Overflow occurs if the sum exceeds the capacity of the
decimal accumulator (i. e. I if the absolute value of the sum
is equal to or greater than 1031), in which case CC1 is reset
to 0, CC2 is set to 1, and the instruction aborted with the
previous contents of the decimal accumulator, CC3 and
CC4 unchanged.

Affected: (DECA), CC
(DECA) + EDO -DECA

Trap: Decimal arithmetic

Condition code settings:

0

0

0

0

os

2 3 4 Result in DECA

0

0 0

0 0

0

Illegal digit or

} sign detected
Instruction aborted

Overflow

0
Zero } No illegal digit or sign
Negati~e detected, no overflow,

instruction completed
0 Positive

DECIMAL SUBTRACT
(Byte index al ignment)

If no illegal digit or sign is detected in the effective deci­
mal operand or in the decimal accumulator, DECIMAL SUB­
TRACT algebraically subtracts the decimal number from the
contents of the decimal accumulator, and then loads the
difference into the decimal accumulator. If the result in
the decimal accumulator is zero, the resulting sign is
forced to the positive form.

Overflow occllrs if the difference exceeds the capacity of
the decimal accumulator (i. e., if the absolute value of the
difference is equal to or greater then 1031), in which case
CC 1 is reset to 0, CC2 is set to 1, and the instruction is
aborted with the contents of the previous decimal accumu­
lator, CC3 and CC4 unchanged.

Affected: (DECA), CC Trap: Decimal arithmetic
(DECA) - EDO -DECA

Condition code settings:

2 3 4 Result in DECA

0 - Illegal digit or}
sign detected

Instruction aborted
0 Overflow

0 0 0 0 Zero

} No illegal digit or sign
0 0 0 Negative detected, no overflow,

instruction completed
0 0 0 Positive

OM DECIMAL MULTIPLY
(Byte index alignment, continue after interrupt)

o 1 2

If no illegal digit or sign is detected in the effective deci­
mal operand and there is at least one decimal sign in the
decimal accumulator, DECIMAL MULTIPLY multiplies the
effective decimal operand (mul tiplicand) by the entire
contents of the decimal accumulator (multiplier) and then
loads the product into the decimal accumulator. If the
result in the decimal accumulator is zero, the resulting
sign is forced to the positive form.

No overflow can occur; however, an indeterminate result
occurs (with an incorrect condition code indication, and
with no trap activation) if any of the following conditions
are not satisfied before the initial execution of DECIMAL
MULTIPL Y:

1. The four low-order bit positions of the decimal accumu­
lator must contain the sign of the multiplier.

2. The 16 high-order digit positions of the decimal accu­
mulatore (i. e., general registers 12 and 13) must
contain all OIS.

3. The effective decimal operand must not exceed 15 deci­
mal digits (i.e., the value of L must not exceed eight).
The illegal values of L are XIOI and the range X'91 to
X'F'. An illegally coded L field is recognized as an
illegal digit or sign and the instruction is aborted.

This instruction ca.n be interrupted during the course of its
execution, and then be resumed, without producing an er­
roneous product (provided that the contents of the dec imal
accumulator are not altered between the interruption and
continuation). Actually, the instruction is reexecuted, but
since there is no initializing phase, it begins with the same
iteration that was started prior to the interrupt.

Affected: (DECA), cc
(DECA) x EDO -DECA

Trap: Decimal arithmetic

Decimal Instructions 81

Condition code settings:

2 3 4 Result in DECA

a Illegal digit or sign detected, instruction
aborted

a a a a Zero

} No illegal digit or sign

a a a Negative detected, instruction
completed

a a a Positive

DO DECIMAL DIVIDE
(Byte index al ignment, continue after interrupt)

o I 2

If there is no illegal digit or sign in the effective decimal
operand and if there is at least one decimal sign in the
decimal accumulator, DECIMAL DIVIDE divides the con­
tents of the decimal accumulator (dividend) by the effec­
tive decimal operand (divisor). Then, if no overflow has
occurred, the computer loads the quotient (15 decimal
digits plus sign) into the eight low-order bytes of the deci­
mal accumulator (registers 14 and 15), and loads the
remainder (also 15 decimal digits plus sign) into the eight
high-order bytes of the decimal accumulator (registers 12
and 13). The sign of the remainder is the same as that of
the original dividend. If the quotient is zero, the sign of
the quotient is forced to the positive form.

Overflow can occur if any of the following conditions
are not satisfied before the initial execution of DECIMAL
DIVIDE:

1. The divisor must not be zero.

2. The length of the divisor must not be greater than
15 decimal digits (i. e., the value of L must not
exceed eight).

3. If the length of the dividend is greater than 15 decimal
digits, the absolute value of the significant digits to
the left of the 15th digit position (i. e., those digits in
registers 12 and 13) must be less than the absolute value
of the divisor.

This instruction can be interrupted during the course of its
execution, and can then be resumed without producing
an erroneous resul t (provided that the contents of the
decimal accumulator are not al tered between interrup­
tion and continuation). Actua" y, the instruction is
reexecuted, but since there is no initializing phase, it
begins with the same iteration that was started prior to
the interrupt.

82 Decimal Instructions

Affected: (DECA), CC Trap: Decimal arithmetic
(DECA) 7 EDO -DECA

Condition code settings:

2 3 4 Resul t in DECA

a Illegal digit or

} Instruction aborted
sign detected

a Overflow

a a a a Zero quotient
} No ill egol digit or

a a a Negative quotient
sign detected, no
overflow, i nstruc-

a a a Positive quotient
tion completed

DC DECIMAL COMPARE
(Byte index alignment)

If there is no illegal digit or illegal sign in the effective
decimal operand or in the decimal accumulator, DECIMAL
COMPARE expands the effective decimal operand to
16 bytes (31 digits plus sign) by appending high-order O's,
algebraically compares the expanded decimal number to the
contents of the entire decimal accumulator, and sets CC3
and CC4 according to the resul t of the comparison (a posi­
tive zero compares equal to a negative zero).

Affected: CC
(DECA) : EDO

Trap: Decimal arithmetic

Condition code settings:

2 3 4 Resul t of comparison

a Illegal digit or sign detected, instruct i on
aborted

a a a a (DECA) equals EDO

} No illegal digit or
a a a (DECA) less than EDO sign detected,

instruction
a a a (DECA) greater than completed

EDO

DSA DECIMAL SHIFT ARITHMETIC
(Byte index alignment)

If no illegal digit or sign is detected in the decimal accu­
mulator, DECIMAL SHIFT ARITHMETIC arithmetically shifts
the contents of the decimal accumulator (excluding the
decimal sign), with the direction and amount of the shift
determined by the effective virtual address of the instruc­
tion. If the result in the decimal accumulator is zero, the
resulting sign remains unchanged.

If no indirect addressing or indexing is used with DSA, the
shift count C is the contents of bit positions 16-31 of the
instruction word. If only indirect addressing is used with
DSA, the shift count is the contents of bit positions 16-31
of the word pointed to by the indirect address in the in­
struction word. If indexing only is used with DSA, the
shjft count is the contents of bit positions 16-31 of the
instruction word plus the contents of bit positions 14-29 of
the designated index register (bits 0-13, 30, and 31 of the
index are ignored). If indirect addressing and indexing are
both used with DSA, the shift count is the sum of the con­
tents of bit positions 16-31 of the word pointed to by the
indirect address and the contents of bit positions 14-29 of
the designated index register.

The shift count, C, is treated as a 16-bit signed binary
integer, with negative integers in twols complement form.
If the shift count is positive, the contents of the decimal
accumulator are shifted left C decimal digit positions; if
the shift count is negative, the contents of the decimal
accumulator are shifted right -C decimal digit positions.
In either case, the decimal sign is not shifted, vacated
decimal digit positions are filled with OIS, and any digits
shifted out of the decimal accumulator are lost. AI though
the range of possible values for C is 2- 15 ~ C ~ 215_1,
a shift count greater than +31 or less than -31 is interpreted
as a shift count of exactly +31 or -31.

If any nonzero decimal digit is shifted out of the decimal
accumulator during a left shift, CC2 is set to 1; otherwise,
CC2 is reset to O. CC2 is unconditionally reset to 0 at the
completion of a right shift.

Affected: (DECA), CC Trap: Decimal arithmetic

Condition code settings:

2 3 4 Result in DECA

o - Illegal digit or sign detected, instruction
aborted

o - 0 0 Zero

0-0 Negative

o - 0 Positive

o 0 - Right shift or no non­
zero digit shifted out
of DECA on left shift

o

PACK

One or more nonzero
digit(s) shifted out of
DECA on left shift

PACK DECIMAL DIG ITS

No illegal digit
or sign detected,
instruction
completed

(Byte index alignment, continue after interrupt)

PACK DECIMAL DIGITS converts the effective decimal
operand (assumed to be in zoned format) into a packed
decimal number and, if necessary, appends sufficient high­
order OIS to produce a decimal number that is 16 bytes
(31 decimal digits plus sign) in length. The zone (bits 0-3)
of the low-order digit of the effective decimal operand is
used to select the sign code for the packed decimal number;
all other zones are ignored in forming the packed decimal
number. If no illegal digit or sign appears in the packed
decimal number, it is then loaded into the decimal accu­
mulator. If the result in the decimal accumulator is zero,
the resulting sign remains unchanged.

The L field of this instruction specifies the length, in bytes,
of the resultant packed decimal number in the decimal ac­
cumulator; therefore, the length of the effective decimal
operand is 2L-1 bytes (where L = 0 implies a length of
31 bytes for the effective decimal operand).

Affected: (DECA), cc Trap: Decimal arithmetic

packed (EBL to EBL + 2L - 2) --DECA

Condition code settings:

2 3 4 Result in DECA

0 - - Illegal digit or sign detected, instruction
aborted

0 0 0 0
Zero } No illegal digit or sign

0 0 0 Negative detected, instruction

0 0 0 Positive
completed

Example 1, L = 6:

Before execution After execution

EDO XIFOF1F2F3 XIFOF1F2F3
F4F5F6F7 F4F5F6F7
F8F9FOI F8F9FOI

(DECA) xxxxxxxx XI 00000000
xxx xxx xx 00000000
xxxxxxxx 00000123
xxxxxxxx 4567890('

CC xxxx 0010

Example 2, L = 6:

EDO

(DECA)

CC

Before execution

XI000938F7
E655B483
02F1 BOI

xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx

xxxx

After execution

XI000938F7
E655B483
02F1 BO'

X'OOOOOOOO
00000000
00000987
6543210D I

0001

Decimal Instructions 83

UNPK UNPACK DECIMAL DIGITS
(Byte index alignment, continue after interrupt)

If no illegal digit or sign is detected in the decimcl accu­
mulator (assumed to be in packed decimal format), UNPACK
DECIMAL DIGITS converts the contents of the low-order
L bytes of the decimal accumulator to zoned decimal format
and stores the result, as a byte string, from the effective
byte location to the effective byte location pi us 2L-2.
The contents of the four low-order bit positions of the dec i­
mal accumulator are used to select the sign code for the
last digit of the string; for all other digits, if bit 12 of the
PSD is zero, the zones are 1111 (EBCDIC), and if bit 12 is
one, the zones are 0011 (ASCII). The contents of the deci­
mal accumulator remain unchanged, and only 2L-1 bytes
of memory are altered. If the decimal accumulator con­
tains more significant information than is actually unpacked
and stored, CC2 is set to 1; otherwise, CC2 is reset to O.
If the result in memory is zero, the resulting sign remains
unchanged.

Affected: (EBL to EBL + 2L -2), Trap: Decimal arithmetic
CCl, CC2

zoned (DECA) -EBL to EBL + 2L - 2

Condition code settings:

2 3 4 Result of UNPK

o Illegal digit or sign detected, instruction
aborted

o 0

o

All significant infor­
mation zoned and
stored

Some significant
information not
zoned and stored

Example 1, L = 10:

(DECA)

EDO

CC

Before exec uti on

X'OOOOOOOO
00000001
23456789
0123456D'

xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxx

xxxx

84 Byte-String Instructions

No illegal digit
or sign detected,
instruction
completed

After execution

X'OOOOOOOO
00000001
23456789
0123456D"

X'FOFOFOF1
F2F3F4F5
F6F7F8F9
FOF1F2F3
F4F5D6'

OOxx

Example 2, L = 8:

Before execution

(DECA) X'OOOOOOOO
23000000
10001234
0012345C'

EDO xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxx

CC xxxx

Example 3, L = 4:

Before execution

(DECA) X'OOOOlOOl
00001002
00001003
0001004F'

EDO xxxxxxxx
xxxxxxxx

CC xxxx

After execution

X'ooOOOOOO
23000000
10001234
oo12345C'

X'F1 FOFOFO
F1F2F3F4
FOFOF1F2
F3F4C5'

01xx

After execution

X'00001001
00001002
00001003
00001004'

X'FOFOFOF1
FOFOC4'

Olxx

BYTE-STRING INSTRUCTIONS

Five instructions provide for the manipulation of strings of
consecutive bytes. The byte string instructions and their
mnemonic codes are as follows:

Instruction Name

Move Byte Stri ng

Compare Byte String

Translate Byte String

Translate and Test Byte String

Edit Byte String

Mnemonic

MBS

CBS

TBS

TTBS

EBS

These instructions are in the immediate displacement class
and are memory-to-memory operations. These operations
are under the control of information that must be loaded
into certain general registers before the instruction is exe­
cuted. These instructions may be interrupted at various
stages of their execution; upon return, execution continues
from the point of interruption.

The general format for the information in the instruction
word and in the general registers is as follows:

Instruction word:

1

10
Operation

, code R Displacement

Contents of register R:

Contents of reg i ster Ru 1 :

Designation

Operation

R

Displacement

Mask/Fill

Source Address

Count

Desti nati on
Address

Function

The 7-bit operation code of the instruc­
tion. (If any byte string instruction is
indirectly addressed, the computer traps
to Homespace location X'40' at the time
of operation code decoding.)

The 4-bit field that identifies register R
of the current general register block.

A 20-bit field that contains a signed
byte displacement value, used to form an
effective byte address. The displacement
value is right-justified in the 20-bit
field, and negative values are in two's
complement form.

An 8-bit field used only with TRANSLATE
AND TEST BYTE STRING and EDIT BYTE
STRING. The purpose of this field is
explained in the detailed discussion of
the TTBS and EBS instructions.

A 19- or 24-bit fiell that normally con­
tains the byte address of the first (most
significant) byte of the source byte
string operand. The effective source
address is the source address in register R
plus the displacement value in the in­
struction word.

An 8-bit field that contains the true
count (from 0 to 255) of the number of
bytes involved in the operation. This
field is decremented by 1 as each byte
in the destination byte string is processed.
A 0 count means IIno operation".

A 19- or 24-bit field
t

that contains the
byte address of the first (most significant)
byte of the destination byte string oper­
and. This field is incremented by 1 as
each byte in the destination byte string
is processed.

t
For real extended addressing mode, this is a 24-bit field

(bits 8-31); for real and virtual addressing modes it is a
19-bit field (13-31).

In any byte string instruction, any portion of register R
or Ru1 that is not explicitly defined (i.e., bit positions
8-12), should be coded with zeros for real and virtual
addressing.

Since the value Ru 1 is obtained by performing a logical
inclusive OR with the value 0001 and the value of the
R field of the instruction word, the two control registers
are Rand R + 1 if R is even. However, if R is an odd value,
register R contains an address value that functions both as a
source operand address and as a destination operand address.
Also, if register .0 is designated in any byte string instruc­
tion (except for TRANSLATE AND TEST BYTE STRING and
EDIT BYTE STRING), its contents are ignored and a zero
source address value is obtained. Thus, the following three
cases exist for most byte string instructions, depending on
whether the value of the R field of the instruction word is
even and nonzero, odd, or zero:

Case I: R is even and nonzero

The effective source address is the address in register R plus
the displacement in the instruction word; the destination
address is the address in register R + 1, but without the dis­
placement added.

Case II: R is odd

The effective source address is the address in register R plus
the displacement in the instruction word; the destination
address is also the address in register R, but without the
displacement added.

Case III: R is zero

The effective source address is the displacement value in
the instruction word; the destination address is the address
in register 1. In this case, the source byte string operand
is always a single byte.

. In the descriptions of the byte-string instructions, the fol­
lowing abbreviations and terms are used:

D Displacement, (1)12-31·

SA

ESA

C

DA

Source address, (R)13-3l.

Effective source address, ~R)13-31 +(I)12-31]~3-31.
The contents of bit positions 13-31

t
of register R

are added (right al igned) to the contents of bit
positions 12-31 of the instruction word; the 19 or
24 low order bitst of the result are used as the
effective source address.

Count, (Rul)O_T

Desti nati on address, (Ru 1) 13-31 t.

Byte-String Instructions 85

SBS Source byte string, the byte string that begins
with the byte location pointed to by the 19- or
24-bitt effective source address and is C bytes in
length (if R is nonzero) or is 1 byte in length
if R is 0).

DBS Destination byte string, the byte string that begins
with the byte location pointed to by the destina­
tion address and is always C bytes in length.

TRAPS BY BYTE STRING INSTRUCTIONS

Byte string instructions cause a trap if either of the byte
strings addressed come from pages of memory that are pro­
tected either through access protection or through write
locks. A trap also occurs if either byte string is fully or
partly contained within pages of memory that are physically
not present. A check for these access trap conditions are
made prior to initiation of any byte relocation or general
register change. These tests are performed for MOVE
BYTE STRING and COMPARE BYTE STRING. These tests
are performed only for the source byte string for TRANSLATE
BYTE STRING, TRANSLATE AND TEST BYTE STRING, and
EDIT BYTE STRING, since there is no assurance that the
translate table or decimal digit bytes will be accessed in
their entirety in the course of execution. If an access pro­
tection violation were to occur in trying to reach a byte in
the translate table or decimal digit strings during the course
of execution, then the instruction would trap and resul t in
a partially executed condition. The registers would be re­
stored, however, in such a manner that the instruction
could be resumed after the protection violation had been
corrected. When a trap occurs resulting in a partially exe­
cuted instruction, the Register Altered indicator will be
set.

MBS MOVE BYTE STRING
(Immediate displacement, continue after interrupt)

MOVE BYTE STRIN G copies the contents of the source byte
string (left to right) into the destination byte string. The
previous contents of the destination byte string are de­
stroyed, but the contents of the source byte string are not
affected unless the destination byte string overlaps the
source byte string.

When the destination byte string overlaps the source byte
string, the resulting destination byte string contains one or
more repetitions of bytes from the source byte string. Thus,
if a destination byte string of C bytes begins with the kth
byte of a source byte string (numbering from 1), the first

tFor real extended addressing mode, this is a 24-bit field
(bits 8-31); for real and virtual addressing modes it is a
19-bit field (13-31).

86 Byte-String Instructions

k-1 bytes of the source byte string are dupl icated in
the destination byte string x number of times, where
x = C/(k-1). For example, if the destination byte string
begins with the second byte of the source byte string, the
first byte of the source byte string is dupl icated throughout
the destination byte string.

If both byte strings begin with the same byte (i. e., k = 1)
and the R field of MBS is nonzero, the destination byte
string is read and replaced into the same memory locations.
However, if both byte strings begin with the same byte and
the R field of MBS is zero, the first byte of the byte string
is duplicated throughout the remainder of the byte string
(see "Case III", below).

Affected: (DBS),(R),(Rul)
(SBS)-DBS

If MBS is indirectly addressed, it is treated as a non­
existent instruction, in which case the computer uncondi­
tionall y aborts execution of the instruction (at the time of
operation code decoding) and traps to Homespace location
X'40' with the contents of register R and the destination
byte string unchanged. See "Traps by Byte String Instruc­
tions" (in this section) for other trap conditions.

Case I: even, nonzero R field (Ru 1 = R+ 1)

Contents of register R:

Contents of register R+ 1:

The source byte string begins with the byte location pointed
to by the source address in register R plus the displacement
in MBS; the destination byte string begins with the byte lo­
cation pointed to by the destination address in register R+ 1.
Both byte strings are C bytes in length. When the instruc­
tion is completed, the destination and source addresses are
each incremented by C, and C is set to zero.

Case II: odd R field (Ru 1 = R)

Conten ts of reg i ster R:

Count I
0123/45678

! : Destinotion o~dres,t I
91011/1213141516171819/20 2122 23 24 25 26 27/28 29 30 31

The source byte string begins with the byte location
pointed to by the address in register R plus the displacement
in MBS; the destination byte string begins with the byte lo­
cation pointed to by the destination address in register R.
Both byte strings are C bytes in length. When the instruc­
tion is completed, the destination address is incremented
by C, and C is set to zero.

Case III: zero R field (Ru1=l)

Contents of register 1

I Count Ii: Destination o~dres,t I
o I 2 314 5 6 7 8 9 10 ,,112 13 14 15 16 17 IE 19120 21 22 23 24 25 26 27128 29 30 31

The source byte string consists of a single byte, the con­
tents of the byte location pointed to by the displacement in
MBS; the destination byte string begins with the byte loca­
tion pointed to by the destination address in register 1 and
is C bytes in length. In this case, the source byte is dupli­
cated throughout the destination byte string. When the
instruction is completed, the destination address is incre­
mented by C and Cis set to zero.

CBS COMPARE BYTE STRING
(Immediate displacement, continue after interrupt)

o I 2

COMPARE BYTE STRING compares, as magnitudes, the
contents of the source byte string with the contents of the
destination byte string, byte by corresponding byte, begin­
ning with the first byte of each string. The comparison
continues until the specified numberof bytes have been com­
pared or until an inequality is found. When CBS is termi­
nated, CC3 and CC4 are set to indicate the result of the
last comparison. If the CBS instruction terminates due to
inequal ity, the count in register Ru 1 is one greater than the
number of bytes remaining to be compared; the source ad­
dress in register R and the destination address in register Ru1
indicate the locations of the unequal bytes.

Affected: (R), (Ru 1), CC3, CC4
(SBS) : (DBS)

Condition code settings:

2 3 4 Result of CBS.

o 0 Source byte string equals destination byte
string.

o Source byte string less than destination byte
string.

o Source byte string greater than destination
byte string.

If CBS is indirectly addressed, it is treated as a nonexistent
instruction, in which case the computer unconditionally
aborts execution of the instruction (at the time of operation
code decoding) and traps to Homespace location X'40' with
the contents of register R and the destination byte string
unchanged. See "Traps By Byte String Instructions" (in this
section) for other trap conditions.

t For real extended addressing mode, this is a 24-bit field
(bits 8-31); for real and virtual addressing modes it ;s a
19-bit field (13-31).

Case I: even, nonzero R field (Ru1=R+l)

Contents of register R

Contents of register R+ 1

The source byte string begins with the byte location
pointed to by the source address in register R plus the dis­
placement in CBS; the destination byte string begins with
the byte location pointed to by the destination address in
register R+l. Both byte strings are C bytes in length.

Case II: odd R field (Ru 1 = R)

Contents of register R:

I Count Ii: Destination o~dres,tl
o , , ,I, , • ,:, • "" I" " " ,,: .. " " "I m " " " " " " vi" ~ ~ "

The source byte string begins with the byte location
pointed to by the address in register R plus the displace­
ment in CBS; the destination byte string begins with the
byte location pointed to by the destination address in
register R. Both byte strings are C bytes in length.

Case III: zero R field (Ru1=l)

Contents of register 1·

The source byte string consists of a single byte, the con­
tents of the location pointed to by the displacement in CBS;
the destination byte string begins with the byte location
pointed to by the destination address in register 1 and is
C bytes in length. In this case, the source byte is com­
pared with each byte of the destination byte string unti I
an inequality is found.

TBS TRANSLATE BYTE STRING
(Immediate displacement, continue after interrupt)

TRANSLA TE BYTE STRING replaces each byte of the des­
tination byte string with a source byte located in a transla­
tion table. The destination byte string begins with the
byte location pointed to by the destination address in reg­
ister Ru1, and is C bytes in length. The translation table
consists of up to 256 consecutive byte locations, with the
first byte location of the table pointed to by the displace­
ment in TBS plus the source address in register R. A source

Byte-String Instructions 87

byte is defined as that which is in the byte location pointed
to by the 19 low-order bitst of the sum of the following
values.

1. The displacement in bit positions 12-31 of the TBS
instruction.

2. The current contents of bit positions 13-31 t of register R
(source address).

3. The numeric value of the current destination byte, the
8-bit contents of the byte location pointed to by the
current destination address in bit positions 13-31 t of
register (Ru 1).

Affected: (DBS), (Ru1)
translated (DBS) -DBS

Trap: Instruction exception

The R field of the TBS instruction must be an even value for
proper operation of the instruction; if the R field of TBS is
an odd value, the instruction traps to Homespace location
XI4DI, instruction exception trap.

If TBS is indirectly addressed, it is treated as a nonexistent
instruction, in which case the computer unconditionally
aborts execution of the instruction (at the time of operation
code decoding) and traps to Homespace location XI40 1 with
the contents of register R and the destination byte string
unchanged.

See IITraps By Byte String Instructions ll (in this section) for
other trap conditions. Note that the check for access trap
conditions is done only for the source byte string.

Case I: even, nonzero R field (Ru1=R+l

Contents of register R

Contents of register R+l

The destination byte string begins with the byte location
pointed to by the destination address in register R + 1 and
is C bytes in length. The source byte string (translation
table) begins with the byte location pointed to by the dis­
placement in TBS plus the source address in register R.
When the instruction is completed, the destination address
is incremented by C, C is set to zero, and the source ad­
dress rema i ns unchanged.

t For real extended addressing mode, this is a 24-bit field
(bits 8-31); for real and virtual addressing modes it is a
19-bit field (13-31).

88 Byte-String Instructions

Case II: odd R field (Ru 1 = R)

Because of the interruptible nature of TRANSLATE BYTE
STRING, the instruction traps with the contents of register R
unchanged when an odd-numbered general register is speci­
fied by the R field of the instruction word.

Case III: zero R field (Ru 1= 1)

Contents of register 1

Destination address
t

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The destination byte string begins with the byte location
pointed to by the destination address in register 1 and is
C bytes in length. The source byte string (translation table)
begins with the location pointed to by the displacement in
TBS. When the instruction is completed, the destination
address is incremented by C and C is set to zero.

TTBS TRANSLATE AND TEST BYTE STRING
(Immediate displacement, continue after interrupt)

TRANSLATE AND TEST BYTE STRING compares the mask
in bit positions 0-7 of register R with source bytes in a byte
translation table. The destination byte string begins with
the byte location pointed to by the destination address in
register Ru1, and is C bytes in length. The byte translation
table and the translation bytes themselves are identical to
that described for the instruction TRANSLATE BYTE STRING.
The destination byte string is examined (without being
changed) until a translation byte (source byte) is found that
contains a 1 in any of the bit positions selected by a 1 in
the mask. When such a translation byte is found, TTBS re­
places the mask with the logical product (AND) of the trans­
lation byte and the mask, and terminates with CC4 set to 1.
If the TTBS instruction terminates due to the above condi­
tion, the count (C) in register Ru1 is one greater than
the number of bytes remaining to be compared and the
destination address in register Rul indicates the location
of the destination byte that caused the instruction to
terminate. If no translation byte is found that satisfies
the above condition after the specified number of destina­
tion bytes have been compared, TTBS terminates with CC4
reset to O. In no case does the TTBS instruction change
the source byte string.

Affected: (R), (Rul), CC4 Trap: Instruction exception

If translated (SBS) n mask f 0, translated (SBS) n mask -
mask and stop

If translated (SBS) n mask = 0, continue

Condition code settings:

2 3 4 Result of TTBS

o Translation bytes and the mask do not com­
pare ones any place.

The last translation byte compared with the
mask contained at least one 1 corresponding
to a 1 in the mask.

The R field of the TTBS instruction must be an. even value
for proper operation of the instruction; if the R field of TTBS
is an odd value, the instruction traps to Homespace loca­
tion X'4D', instruction exception trap.

If TTBS is indirectly addressed, it is treated as a nonexistent
instruction, in which case the computer unconditionally
aborts execution of the instruction (at the time of operation
code decoding) and traps to Homespace location X'40' with
the contents of register R and the destination byte string
unchanged.

See "Traps By Byte String Instructions" (in this section) for
other trap conditions. Note that the check for access trap
conditions is done only for the source byte string.

Case I: even, nonzero R field (Ru1=R+1)

Contents of register R

Contents of register R+ 1

The destination byte string begins with the byte location
pointed to by the destination address in register R + 1 and
is C bytes in length. The source byte string (translation
table) begins with the byte location pointed to by the dis­
placement in TTBS plus the source address in register R.

Case II: odd R field

Because of the interruptible nature of TRANSLATE AND
TEST BYTE STRING the instruction traps with the contents
of register R unchanged when an odd-numbered general reg­
ister is specified by the R field of the instruction word.

tFor real extended addressing mode, this is a 24-bit field
(bits 8-31); for real and virtual addressing modes it is a
19-bit field (13-31).

Case III. zero R field (Rul=l)

Contents of register 1

The destination byte string begins with the byte location
pointed to by the destination address in register 1 and is
C bytes in length. The source byte string (translation table)
begins with the location pointed to by the displacement in
TTBS. In this case, the instruction automatically provides
a mask of eight l's. (This is an exception to the general
rule, used in the other byte string instructions, that reg­
ister 0 provides all O's as its contents.)

EBS EDIT BYTE STRING
(Immediate displacement, continue after interrupt)

EDIT BYTE STRING converts a decimal information field
from packed decimal format to zoned decimal format, under
control of the editing pattern in the destination byte string,
and replaces the destination byte string with the edited,
zoned result. The decimal formats on which EBS operates
are governed by bit 12 of the PSD (ASCII/EBCDIC mask bit).
If PSD 12 is zero, EBCDIC codes are used; if it is one,
ASCII codes are used. (see "Decimal Instruction",
"Packed Decimal Numbers", and "Zoned Decimal Numbers"
for a description of packed and zoned decimal formats.)
EBS proceeds one byte at a time, starting with the first
(most significant) byte of the editing pattern, and continues
unti I all bytes in the editing pattern have been processed.
The fill character, contained in bit position 0-7 of regis-
ter R, replaces the pattern byte under specified conditions.
More than one decimal number field can be edited by a
single EBS instruction if the pattern in memory is, in fact,
a series of patterns corresponding to a series of number fields.
In such cases, however, after the EBS instruction is com­
pleted, the condition code indicates the result of the last
decimal number field processed and register 1 contains the
byte address (or the byte address plus 1) of the last signifi­
cance indicator in the edited destination byte string. (This
allows the insertion of a floating dollar sign, etc., with a
subsequent instruction.)

R must be an even value (excluding 0) for proper operation
of the instruction; if R is an odd value or equal to zero, the
computer traps to Homespace location X'4D', instruction
exception trap, with the contents in register R unchanged.

Contents of register R

o 1 2 3 14 5 6 7 8 9 10 11112 13 14 15 16 17 18 19120 21 22 23 24 25 26 27128 29 30 31

Contents of regi ster R+ 1

Byte-String Instructions 89

The destination byte string is an editing pattern that begins
in the byte location pointed to by the destination address
in register R + 1, and is C bytes in length. The decimal in­
formation field, which must be in packed decimal format,
begins with the byte location pointed to by the displace­
ment in EBS pi us the source address in register R. The dec i­
mal information field must contain legal decimal digit and
sign codes (packed format) and must begin with a decimal
digit.

The destination byte string (the editing pattern) may con­
tain any 8-bit codes desired. However, four byte codes
in the editing pattern have special meanings. These codes
are as follows:

Binary value FunCtion Abbreviation

00100000 (X'20') Digit selector ds

0010 0001 (X'21') Significance start ss

0010 0010 (X'22') Field separation fs

00100011 (X'23') Immediate signifi- si
cance start

Before executing EBS, the condition code should be set
to 0000 if the high-order digit of the decimal number is in
the left half of a byte(and should be set to 0100 if the
high-order digit is in the right half of a byte.

The editing operation performed on each pattern byte of
the destination byte string is determined by the following
conditions:

1. The pattern byte obtained from the destination byte
string.

2. The decimal digit obtained from the decimal number
field.

3. The current state of the condition code.

Depending upon various combinations of these conditions,
the instruction EDIT BYTE STRING performs one (and only
one) of the following actions with the pattern byte and the
decimal digit:

1. The fill character (contents of bit positions 0-7 of reg­
ister R) or a blank character replaces the byte in the
destination byte string.

2. The decimal digit is expanded to zoned decimal format
and replaces the pattern byte in the destination byte
string.

3. The pattern byte remains unchanged.

90 Byte-String Instructions

In general, the normal editing process is as follows:

1. Each byte of the destination byte string is replaced by
a fill character until significance is present, either in
the destination byte string or in the dec imal informa­
tion field. Significance is indicated by any of the
following:

a. The pattern byte is X'23' fjmmediate significance
start), which begins significance with the current
decimal digit.

b. The pattern byte is X'21' (significance start),
which begins significance with the following pat­
tern byte.

c. The current decimal digit is nonzero, which begins
significance with the current pattern byte.

2. After significance is encountered, each pattern byte
that is X'20' (digit selector), X'21' (significance start),
X'22' (field separator), or X'23' (immediate signifi­
cance start) is replaced by a zoned decimal number
from the decimal field and all other pattern bytes are
unchanged. This process continues until any of the
following conditions occur:

a. A positive sign is encountered in the decimal field,
in which case subsequent pattern bytes are re­
placed by blank characters until significance is
again present, until a field separator is encoun­
tered, or until the destination byte string is en­
tirely processed, whichever occurs first.

b. A negative sign is encountered in the decimal
field, in which case subsequent pattern bytes are
unchanged until significance is again present,
until a field separator is encountered, or until the
destination byte string is entirely processed, which­
ever occurs fi rst.

c. A pattern byte of X'22' (field separator) is encoun­
tered, in which case the field separator is replaced
by a fi II character; subsequent pattern bytes are
replaced by the fill character until significance is
again present, until a positive or negative sign is
encountered, or until the destination byte string is
entirely processed, whichever occurs first.

d. The destination byte string is entirely processed,
in which case the computer executes the next in­
struction in sequence.

The detailed operation of EDIT BYTE STRING is as given
below.

The explanation is necessarily quite detailed due to the
high degree of flexibility inherent in EBS. Condition code
settings are made continuously during the editing process
and these settings help determine how each subsequent pat­
tern byte will be edited. The summary of condition code
settings given on the next page will help clarify the discus­
sion below.

1. If the count in bit position 0-7 of register R+ 1 is a
nonzero, a pattern byte is obtained from the destina­
tion byte string; if the count in register R+l is 0, the
computer executes the next instruction in sequence.

2. If the pattern byte is a digit selector (X'20'), a Isig­
nificance start (X'21'), or immediate significance
start (X'23'), a digit is accessed from the decimal
information field as follows:

a. Adecimal byte is obtained from the byte location
pointed to by the displacement in EBS plus the
source address in register R.

b. If bits 0-3 of the decimal byte are a sign code,
the computer automatically aborts execution of
EBS and traps to Homespace location X'45', with
the contents of register R, register R+l, the con­
dition code, and the destination byte string un­
changed from thei r current contents.

c. If CC2 is currently set to 0, the digit to be used
for editing is the left digit (bits 0-3) of the deci­
mal byte; however, if CC2 is currently set to 1,
the digit to be used is the right digit (bits 4-7)
of the decimal byte. In either case, CC3 is
set to 1, the digit to be used is the right digit
(bits 4-7) of the decimal byte. In either case,
CC3 is set to 1 if the digit is nonzero. If CC2 is
set to 1 and the right digit (bits 4-7) of the deci­
mal byte is a sign code, the computer automati­
cally aborts execution of EBS and traps to
Homespace location X'45', as described above.

d. One of the following editing actions is performed.

Conditions Action Mark

Pattern byte=SI(X'23') Expand digit to zoned Mode 1

Pattern byte=SS(X'21')
CC4=1

Pattern byte = SS
CC4=0
nonzero digit

Pattern byte = SS
CC4=0
digit=O

format, store in pattern
byte location, and set
CC4 to 1 (start
significance).

Expand digit to zoned
format and store in
pattern byte location
(because CC4= 1 means
significance already
encountered).

Expand digit to zoned
format, store in pat­
tern byte location
(because nonzero digit
begins significance),
and set CC4 to 1.

None

Mode 1

Store fill character in Mode 2
pattern byte location
(because significance
starts with next pattern
byte) and set CC4 to 1 .

Conditions Action Mark

Pattern byte= DS(X'20') Expand digit to zoned None
CC4= 1 format, and store digit

in pattern byte location.

Pattern byte = DS
CC4=0

Expand digit to zoned
format, store digit in
pattern byte I ocat i on,
and set CC4 to 1 to.
signal significance

Mode 1

nonzero digit

Pattern byte= DS
CC4=0

Store fi II character in
pattern byte location
(because significance
not encountered yet).

None

digit =0

3.

4.

e. If CC2 is currently reset to 0 and if bits 4-7 of the
decimal byte are a positive decimal sign code,
CCl is set to 1, CC4 is reset to 0, and the source
address in register R is incremented by 1. If CC2
is currently reset to 0 and if bits 4-7 of the deci­
mal byte are a negative decimal sign code, CC 1
and CC4 are both set to 1, and the source address
is incremented by 1. Otherwise, CC2 is added to
the source address and then CC2 is inverted.

f. If marking is invoked at set d, above, one of the
two following marking operations are performed:

Mode 1: Load bits 13-31 of register R+ 1 into bit
positions 13-31 of register 1; bit posi­
tions 0-12 of register are unpredictable.

Mode 2: Load bits 13-31 of register R+ 1 into bit
positions 13-31 of register 1 and then
increment the contents of register 1 by 1;
bit positions 0-12 of register 1 are
unpredictable.

If marking is not appl icable (i. e., significance has
not been encountered), the contents of register 1
are not affected.

If the pattern byte is a field separator (X'22'), the fill
character is stored in the pattern byte location. CC1,
CC3, and CC4 are all reset to O's, and CC2 remains
unchanged.

If the pattern byte is not a digit selector, significance
~tart, immediate sign ificance start, or field separator,
one of the following actions are performed:

Conditions

CC1=0}
CC4=0

CC1=1}
CC4=0

CC4=1

Action

Store fill character in pattern byte
location.

Store blank character (X'40') in pattern
byte location.

None (pattern byte remains unchanged).

Byte-String Instructions 91

5. Increment the destination address in register Ru1 and
decrement the count in register Ru1. If the count is
still nonzero, process the next pattern byte as above;
otherwise, execute the next instruction in sequence.

Affected: (R), (Ru 1)

(register 1),
(DBS), CC

ed ited (SBS) - DBS

Traps: Nonexistent instruc­
tion, decimal arith­
metic, instruction
exception

Condition code settings:

o

o

2 3 4 Result of EBS

o

o Significance is not present, no sign digit
has been encountered.

Significance is present, no sign digit has
been encountered.

o A positive sign has been encountered.

A negative sign has been encountered.

Next digit to be processed is left digit of
byte.

Next digit to be processed is right digit of
byte.

o No nonzero digit has been encountered.

A nonzero digit has been encountered.

If EBS is indirectly addressed, it is treated as a nonexistent
instruction, in which case the computer unconditionally
aborts execution of the instruction (at the time of operation
code decoding) and traps to Homespace location X' 40' with
the contents of register R, register Ru 1, register 1, the
destination byte string, and the condition code unchanged.

The R field of the EBS instruction must be an even value
(excluding 0) for proper operation of the instruction; if the
R field of EBS is an odd value or equal to zero, the instruc­
tion traps to Homespace location X'4D ', instruction excep­
tion trap.

If an illegal digit or sign is detected in the decimal infor­
mation field, the computer unconditionally aborts execu­
tion of the instruction (at the time the illegal digit or sign
is encountered) and traps to Homespace location X'451 with
the contents of reg ister R, regi ster Ru 1, reg ister 1, the
destination byte string, and the condition code containing
the results of the last editing operation performed before
the illegal digit or sign was encountered.

See "Traps By Byte String Instructions" (in this section) for
other trap conditions. Note that the check for access
trap conditions is done only for the source byte string.

In the following examples, the hexadecimal codes for the
digit selector (X ' 20 '), the significance start (X'21 I), the
field separation (X'22'), and the immediate significance

92 Byte-String Instructions

start (X'23') are represented by the character groups ds, ss,
fs, and si, respectively. Also, the symbol is is used to
represent the character blank (X'40').

Exampl e 1, before execution:

The instruction word is:

X 163600000 I

The contents of reg i ster 6 are:

XI 5COOO 1001

The contents of register 7 are:

X'OC001000'

The contents of the decimal information field beginning at
byte location XI 1001 are:

0000000+

The contents of the destination byte string beginning at
byte location XI 10001 are:

ds ds , ds ds ss . ds ds is C R

The condition code is:

0000

Example 1, after execution:

The instruction word is unchanged.

The new contents of register 6 are:

X'5COOO1041

The new contents of register 7 are:

XI 0000 1 OOC'

The contents of the decimal information field are unchanged.

The new contents of the destination byte string are:

******.00-51515

The new condition code is:

1000

The contents of reg i ster 1 are:

X'xxx01006'

By subsequent programming, a floating dollar sign can be
inserted in front of the first significant character of the
edited byte string by using the contents of register 1,

minus 1, as the address of the byte location where the
dollar sign is to be inserted.

Example 2, before execution:

The initial conditions are identical to example 1, except
that the contents of the decimal information field are:

065432 1-

Example 2, after execution:

The instruction word and the decimal field are unchanged.

The new contents of registers 6 and 7 are identical to those
given for example 1.

The new contents of the destination byte string are:

*6,543.211sCR

The new condition code is:

1011

The new contents of regi ster 1 are:

X'xxx01001 1

Example 3, before execution:

The initial conditions are identical to example 1, except
that the contents of the decimal field are:

005432 1+

Example 3, after execution:

The instruction word and the decimal field are
unchanged.

The new contents of registers 6 and 7 are identical to that
given for example 1.

The new contents of the destination byte string are:

***543.21151:>15

The new condition code is:

1010

The new contents of register 1 are:

XI xxx01 003 1

Exampl e 4, before execution:

The instruction word is:

X'63400100'

The contents of register 4 are:

X' 7B001000 '

The contents of register 5 are:

XI 190020001

The contents of the decimal information field beginning at
byte location X' 1100' are:

06 12 50 0+ 01 23 4+ 03 5-

The contents of the destination byte string beginning at
byte location X'2000' are:

A ds ds si • ds ds ds fs B ds ds ss . ds ds C fs D

si ds ds END

The condition code is:

0100

Example 4, after execution:

The instruction word is unchanged.

The new contents of register 4 are:

XI 7B001 009 1

The new contents of register 5 are:

X' 00002019 1

The decimal information field is unchanged.

The new contents of the destination byte string are:

6 1 2 . 5 0 0 # # # 1 2 . 3 415 # # 0 3 5 END

The new condition code is:

1011

The new contents of register 1 are:

X' xxx02013 1

PUSH-DOWN INSTRUCTIONS

The term "push-down processing" refers to the programming
technique (used extensively in recursive routines) of storing
the context of a calculation in memory, proceeding with a
new set of information, and then activating the previously

Push-Down Instructions 93

stored information. Typically, this process involves a
reserved area of memory (stack) into which operands are
pushed (stored) and from which operands are pulled (loaded)
on a last-in, first-out basis. The SIGMA 9 computer pro­
vides for simpl ified and efficient programming of push-down
processing by means of the following instructions:

Instruction Name Mnemonic

Push Word PSW

Pull Word PLW

Push Multiple PSM

Pull Multiple PLM

Modi fy Stack Poi nter MSP

STACK POINTER DOUBLEWORD (SPD)

Each of these instructions operates with respect to a
memory stack that is defined by a doubleword located at
the effective address of the instruction. This doubleword,
referred to as a stack pointer doubleword (SPD), has the
following structure:

III spac~ count I~I word: count I
32 33 34 35136 37 38 39 40 41 42 43144 45 <16 47 ~ 49 50 5 d 52 53 54 55 56 57 58 59160 61 62 63

Bit positions 15 through 31 t of the SPD contain a 17 ... bit
address fieldt that points to the location of the word cur­
rently at the top (highest-numbered address) of the operand
stack in a push operation, the top-of-stack address is in­
cremented by 1 and then an operand in a general register
is pushed (stored) into that location, thus becoming the
contents of the new top of the stack; the contents of the
previous top of the stack remain unchanged. In a pull
operation, the contents of the current top of the stack are
pulled (loaded) into a general register and then the top-of­
stack address is decremented by 1; the previous contents of
the stack remain unchanged.

Bit positions 33 through 47 of the SPD, referred to as the
space count, contain a 15-bit count (0 to 32, 767) of the
number of word locations currently available in the region
of memory allocated to the stack. Bit positions 49 through
63 of the 5 PD , referred to as the word coun t, conta ina
15-bit count (0 to 32,767) of the number of words currently
in the stack. In a push operation, the space count is decre­
mented by 1 and the word count is incremented by 1; in a

t For real extended mode of addressing this is a 22-bit fi eld
(10-31); for real and virtual addressing modes it is a
17-bit field (15-31).

94 Push-Down Instructions

pull operation, the space count is incremented by 1 and the
word count is decremented by 1. At the beginning of all
push-down instructions, the space count and the word count
are each tested to determine whether the instruction would
cause either count field to be incremented above the upper
limit of 215- 1 (32,767), or to be decremented below the
lower limit of O. If execution of the push-down instruc­
tion would cause either count I imit to be exceeded, the
computer unconditionally aborts execution of the instruc­
tion, with the stack, the stack pointer doubleword, and the
contents of general registers unchanged. Ordinarily, the
computer traps to Homespace location X'42 1 after aborting
a push-down instruction because of impending stack limit
overflow or underflow, and with the condition code un­
changed from the value it contained before execution of
the instruction.

However, th is trap action can be selectively inhibited by
setting either (or both) of the trap inhibit bits in the
SPD to 1.

Bit position 32 of the SPD, referred to as the trap-on-space
(TS) inhibit bit, determines whether the computer will trap
to Homespace location X'42 1 as a result of impending over­
flow or underflow of the space count (SPD33-47), as
follows:

TS Space count overflow/underflow action

o If the execution of a pull instruction would cause the
space count to exceed 2 15- 1, or if the execution of a
push instruction would cause the space count to be
less than 0, the computer traps to Homespace location
X'42 1 with the condition code unchanged.

Instead of trapping to Homespace location X'42 1
, the

computer sets CC 1 to 1 and then executes the next in­
struction in sequence.

Bit position 48 of the SPD, referred to as the trap-on-word
(TW) inhibit bit, determines whether the computer will
trap to Homespace location X' 42 1 as a result of impending
overflow or underflow of the word count (SPD 49-63)' as
foil ows:

TW Word count overflow/underflow action

o If the execution of a push instruction would cause the
word count to exceed 215- 1, or if the execution of a
pull instruction would cause the word count to be less
than 0, the computer traps to Homespace location
X'42 1 with the condition code unchanged.

Instead of trapping to Homespace location X'42 1
, the

computer sets CC3 to 1 and then executes the next
instruction in sequence.

PUSH-DOWN CONDITION CODE SETTINGS

If the execution of a push-down instruction is attempted
and the computer traps to Homespace location X' 42 1

I the
condition code remains unchanged from the value it con­
tained immediately before the instruction was executed.

If the execution of a push-down instruction is attempted
and the instruction is aborted because of impending stack
I imit overflow or underflow (or both) but the push-down
stack I imit trap is inhibited by one (or both) of the inhibits
(TS and TW), then, CCl or CC3 is set to 1 (or both are
set to Ps) to indicate the reason for aborting the push­
down instruction, as follows:

o

2 3 4 Reason for abort

o

Impending overflow of word count on a push
operation or impending underflow of word
count on a pull operation. The push-down
stack I imit trap was inhibited by the TW
bit (SPD 48)'

Impending overflow of space count on a pull
operation or impending underflow of space
count on a push operation. The push-down
stack I imit trap was inhibited by the TS bit
(SPD

32
)·

Impending overflow of word count and under­
flow of space count on a push operation or
impending overflow of space count and under­
flow of word count on a pull operation. The
push-down stack limit trap was inhibited by
both the TW and the TS bits.

If a push-down instruction is successfully executed, CCl
and CC3 are reset to 0 at the completion of the instruction.
Also, CC2 and CC4 are independently set to indicate the
current status of the space count and the word count, re­
spectively, as follows:

2 3 4 Status of space and word counts

o 0 The current space count and the current word

o

count are both greater than zero.

The current space count is greater than zero,
but the current word count is zero, indicating
that the stack is now empty. If the next
operation on the stack is a pull instruction,
the instruction will be aborted.

o The current word count is greater than zero,
but the current space count is zero, indicating
that the stack is now full. 'If the next opera­
tion on the stack is a push instruction, the
instruction will be aborted.

If the computer does not trap to Homespace location
X'42 1 as a result of impending stack limit overflow/
underflow, CC2 and CC4 indicate the status of the space
and word counts at the termination of the push-down
instruction, regardless of whether the space and word
counts were actually modified by the instruction. In the
following descriptions of the push-down instructions, only
those condition code configurations are given that can
actually be produced by the instruction, provided that the
computer does not trap to Homespace location X'421.

PSW PUSH WORD
(Doubleword index alignment)

PUSH WORD stores the contents of register R into the push­
down stack defined by the stack pointer doubleword lo­
cated at the effective doubleword address of PSW. If the
push operation can be successfully performed, the instruc­
tion operates as follows:

1. The current top-of-stack address (SPD15_31)t is incre­
mented by 1 to point to the new top-of-stack location.

2. The contents of register R are stored in the location
pointed to by the new top-of-stack address.

3. The space count (SPD33-47) is decremented by 1 and
the word count (SPD 49-63) is incremented by 1.

4. The condition code is set to reflect the new status of
the space count.

Affected: (SPD),(TSA+1),
CC

Trap: Push-down stack limit

(SPD)15_31 + 1 -SPD15_31 t

(R) - (SPD
15

_
31

)
t

(SPD)33_47- 1 --SPD33_47

(SPD) 49-63 + 1 -SPD 49-63

Condition code settings:

2 3 4 Result of PSW

0 0 0 0 Space count is greater
than O.

0 0 0 Space count is now O.

0 0 0
15

Word count = 2 -1,
TW = l.

0 0 Space count = 0,
TS = 1.

0 Space count = 0, word
count = 0, TS = 1.

0 15 Word count = 2 - 1,
space count = 0,
TW = 1, and TS = 1.

} Instruction
completed

Instructi on
aborted

tFor real extended mode of addressing this is a 22-bit field
(10-31); for real and virtual addressing modes it is a
17-bit field (15-31).

Push-Down Instructi ons 95

PLW PULL WORD
(Doubleword index alignment)

PULL WORD loads register R with the word currently at the
top of the push-down stack defined by the stack pointer
doubleword located at the effective doubleword address of
PLW. If the pull operation can be performed successfully,
the instruction operates as follows:

1. Register R is loaded with the contents of the location
pointed to by the current top-of-stack address
(SPD

15
_
31

)t.

2. The current top-of-stack address is decremented by 1,
to point to the new top-of-stack location.

3. The space count (SPD33- 47) is incremented by 1 and
the word count (SPD49-63) is decremented by 1.

4. The condition code is set to reflect the status of the
new word count.

Affected: (SPD), (R), cc Trap: Push-down stack limit

«SPD)15_31) -R; (SPD)15_31 -1 -SPD15_31 t

(SPD)33_47 + 1 -SPD33_4i (SPD)49_63- 1

-SPD
49

_
63

Conditiqn code settings:

2 3

0 0 0

0 0 0

0 0

0

0 0

o

4

0

0

Result of PLW

Word count is greater
than O.

Word count is now O.

Word count = 0, TW = 1.

Space count = 0,
word count = 0, TW = 1.

15
Space count = 2 -1,
TS = 1.

15
Space count = 2 - 1,
word count = 0, TS = 1,
and TW = 1.

} Instruction
completed

Instruction
aborted

tFor real extended mode of addressing this is a 22-bit
field (10-31); for real and virtual addressing modes it is
a 17-bit field (15-31).

96 Push-Down Instructions

PSM PUSH MULTIPLE
(Doubleword index al ignment)

PUSH MULTIPLE stores the contents of a sequential set of
general registers into the push-down stack defined by the
stack pointer doubleword located at the effective double­
word address of PSM. The condition code is assumed to
contain a count of the number of registers to be pushed
into the stack. (An initial value of 0000 for the condition
code specifies that all 16 general registers are to be pushed
into the stack.) The registers are treated as a circular set
(with register 0 following register 15) and the first register
to be pushed into the stack is register R. The last register
to be pushed into the stack is register R + CC -1, and the
contents of th is register become the contents of the new
top-of-stack location.

If there is sufficient space in the stack for all of the speci­
fied registers, PSM operates as follows:

1. The contents of registers R to R + CC - 1 are stored in
ascending sequence, beginning with the location
pointed to by the current top-of-stack address
(SPD15_31)t plus 1 and ending with the current top­
of-stack address plus CC.

2. The current top-of-stack address is incremented by
the value of CC, to point to the new top-of-stack
location.

3. The space count (SPD33-47) is decremented by the
value of CC and the word count is incremented by the
value of Cc.

4. The condition code is set to reflect the new status of
the space count.

Affected: (SPD), (TSA+l) to
(TSA+CC), CC

Trap: Push-down stack limit

(R) - (SPD)15-31 + 1 ... (R+CC-l) - (SPD)t15_31 + CC

(SPD)15_31 +CC -SPD15_31 t

(SPD)33_47- CC --SPD33_47

(SPD 49-63 + CC -SPD 49-63

Condition code settings:

2 3 4 Resul t of PSM

0 0 0 0 Space count> O.

0 0 0 Space count = O.
} Instruction

completed

a

2 3 4 Resu I t of PSM

a a Word count + ee >
215 - 1, TW = 1.

a a a Space count < ee,
TS = 1.

a a Space count < ee,
word count = 0,
TS = 1.

a a Space count < ee,
word count + ee >
215 -1, TS = 1,
and TW = 1.

a a Space count = 0,
TS = 1.

a Space count = 0,
word count = 0,
TS = 1.

a Space count = 0,
word count + ee >
215 _1, TS = 1,
and TW = 1.

Instructi on
aborted

If the instruction operation extends into a page of memory
that is protected either by the access protection codes or
write locks, the memory protection trap can occur. If the
operation extends into a memory region that is physically
not present, the nonexistent memory address trap can occur.
In either case, if a tr~p is to occur during the execution of
this instruction, it will be detected before the actual oper­
ation begins and the trap will occur immediately.

PlM PULL MULTIPLE
(Doubleword index al ignment)

PULL MULTIPLE loads a sequential set of general registers
from the push-down stack defined by the stack pointer
doubl eword located at the effective doubl eword address of
PLM. The condition code is assumed to contain a count of
the number of words to be pulled from the stack. (An ini­
tial value of 0000 for the condition code specifies that
16 words are to be pulled from the stack.) The registers
are treated as a circular set (with register a following reg­
ister 15), the first register to be loaded from the stack is
register R + ee - 1, and the contents of the current top-of­
stack location become the contents of this register. The
last register to be loaded is register R.

If there is a sufficient number of words in the stack to load
all of the specified registers, PLM operates as follows:

1. Registers R + ee - 1 to register R are loaded in de­
scending sequence, beginning with the contents of the

location pointed to by the current top-of-stack address
(SPD15_31)t and ending with the contents of the loca­
ti on pointed to by the current top-of-stack address
minus ee-1.

2. The current top-of-stack address is decremented by
the value of ee, to point to the new top-of-stack
location.

3. The space count (SPD33-47) is incremented by the
value of ee and the word count is decremented by the
value of ec.

4. The condition code is set to reflect the new status of
the word count.

Affected: (SPD), (R+ee-l) Trap: Push-down stack limit
to (R), ee

t
((SPD)15_31) -R + ee -1, ... ,

((SPD)15_31 - Icc -11) - Rt

(SPD)15_31 - ee - SPD15_31 t

(SPD)33_47 + ee - SPD33_47

(SPD) 49-63 - ee -SPD 49-63

Condition code settings:

2 3 4 Result of PLM

a a a a Word count > a } a a a Word count = a
a a a Word count < ee,

TW = 1

a a Word count = 0,
TW = 1

a a Space count = 0,
word count < ee,
TW = 1

a Space count = a,
word count = 0,
TW = 1

a a a 15
Space count+ ee > 2 -1,
TS = 1

a a 15
Space count+ ee > 2 -1,
word count < ee, TS = 1,
and TW = 1

a Space count+ ee > 215_1,
word count = 0, TS = 1,
and TW = 1

Instru ct i on
completed

Instruction
aborted

t For real extended mode of addressing this is a 22-bit
field (10-31); for real and virtual addressing modes it is ,
a 17-bit field (15-31).

Push-Down Instructi ons 97

If the instruction operation extends into a page of memory
that is protected either by the access protection codes or
write locks, the memory protection can occur. If the oper­
ation extends into a memory region that is physically not
present, the nonexistent memory address trap can occur. In
either case, if a trap is to occur during th~ execution of
this instruction, it will be detected before the actual oper­
ation begins and the trap will occur immediately.

MSP MODIFY STACK POINTER
(Doubleword index al ignment)

MODIFY STACK POINTER modifies the stack pointer dou­
bleword, located at the effective doubleword address of
MSP by the contents of register R. Register R is assumed to
have the following format:

Bit positions 16 through 31 of register R are treated as a
signed integer, with negative integers in two l s complement
form (i. e., a fixed-point halfword). The modifier is alge­
braically added to the top-of-stack address, subtracted
from the space count, and added to the word count in the
stack pointer doubleword. If, as a result of MSP, either
the space count or the word count would be decreased
below 0 or increased above 215_1, the instruction is
aborted. Then, the computer either traps to Homespace
location XI 42 1 or sets the condition code to reflect the
reason for aborting, depending on the stack I imit trap
inhibits.

If the modification of the stack pointer doubl eword can be
successfully performed, MSP operates as follows:

1. The modifier in register R is algebraically added to the
current top-of-stack address (SPDh5-31t, to point to
a new top-of-stack location. (If the modifier is nega­
tive, it is extended to 17 bits by appending a high­
order 1.)

2. The modifier is algebraically subtracted from the cur­
rent space count (SPD33-47) and the result becomes
the new space count.

3. The modifier is algebraically added to the current word
count (SPD49-63) and the result becomes the new word
count.

4. The condition code is set to reflect the new status of
the new space count and new word count.

tFor real extended mode of addressing this is a 22-bit
field (10-31); for real and virtual addressing modes it is
a 17-bit field (15-31).

98 Execute/Branch Instructi ons

Affected: (SPD), cc T rap: Push-down stack limit

(SPD)15_31 + (R)16-31SE-- SPD 15_31 t

(SPD)33_47 - (R)16-31- SPD33_47

(SPD)49_63 + (R)16-31- SPD 49-63

Condition code settings:

2 3 4 Result of MSP

o 0 0 0 Space count> 0,
word count> O.

000

o 0 0

Space count> 0,
word count = O.

Space count = 0,
word count > O.

o 0 '1 Space count = 0,
word count = 0,
modifier = O.

Instruction
completed

If CC1, or CC3, or both CCl and CC3 are lis after exe­
cution of MSP, the instruction was aborted but the push­
down stack limit trap was inhibited by the trap-on-space
inhibit (SPD32), by the trap-on-word inhibit (SPD48)' or
both. The condition code is set to reflect the reason for
aborting as follows:

o

2 3 4 Status of space and word counts

o

o

o Word count > O.

Word count = O.

0$ word count + modifier $ 2
15

_1.

Word count + modifier < 0, and TW = 1 or
word count + modifier> 215_1, and TW = 1.

Space count> O.

Space count = O.

O$space count - modifier~215_1.

Space count - modifier < 0, and TS = 1 or
space count - modifier> 215 -1, and TS = 1.

EXECUTE/BRANCH INSTRUCTIONS
The EXECUTE instruction can be used to insert another in­
struction into the program sequence, and the branch instruc­
tions can be used to alter the program sequence, either
unconditionally or conditionally. If a branch is uncondi­
tional (or conditional and the branch condition is satisifed),
the instruction pointed to by the effective address of the
branch instruction is normally the next instruction to be
executed. If a branch is conditional and the condition for

the branch is not satisifed, the next instruction is normally
taken from the next location, in ascending sequence, after
the branch instruction.

BRANCHES IN REAL EXTENDED ADDRESSING MODE

The extension address field of the PSD will be modified
automatically by branch instructions. If the effective
address of a branch instruction is outside the first 64K of
real memory (region 0 is defined as the first 64K of real
memory), the high-order bits of this full effective address
will automatically be loaded into the Extension Address
field of the PSD if the branch is taken. The remaining part
of the effective branch address will, of course, be loaded
into bit positions 16-31 of the PSD. In addition, bit posi­
tion 15 of the PSD, the Extension Selector, will be set to 1.

If the effective branch address is to a location within the
first 64K of memory, then the Extension Address field of
the PSD will not be modified. The effective address will be
loaded into the 16 low-order positi ons of the instruction
address field and the Extension Selector (bit 15) will be
cleared (set equal to zero). This means that once the
Extensi on Address field has been set, it wi II remain set
unti I it is either changed by the loading of a new PSD or
by actually branching into another 64K region of memory
(excl uding region 0).

A BRANCH AND LINK instruction in real extended ad­
dressing will store the full address of the next instruction
in the link register. If the Extension Selector in the PSD
at the time BRANCH AND LINK is executed is zero,
then the address stored in the link register will be the in­
cremented 16-bit displacement from positions 16-31 of the
PSD and zeros in the high-order address positions. If the
Extension Selector in the PSD is one, then the address
stored will be the incremented 16-bit displacement (PSD
16-31) concatenated with the contents of the Extension
Address field (PSD 42-47), which are loaded into bit posi­
tions 10-15 of the I ink register. In both cases, posi-
tions 0-9 of the link register will be cleared.

NONALLOWED OPERATION TRAP DURING EXECUTION
OF BRANCH INSTRUCTION

A branch instruction has two possible places from which the
next instruction may be taken: the location following the
branch instruction or the location that may be branched to.
lt is possible that either of these two locations may be in a
protected memory region or in a region that is physically
nonexistent. The execution of the branch does not cause
a trap unless the instruction that is actually to follow the
branch instruction is in a protected or nonexistent memory
region. Traps do not occur because of any anticipation on
the part of the hardware.

A nonallowed operation trap condition during execution of
a branch instruction will occur for the following reasons:

1. The branch instruction is indirectly addressed and the
branch condi ti ons are sati sfi ed, but the address of the

location containing the direct address is either non­
existent or unavailable for read access to the program
in the slave mode.

2. The branch instruction is unconditional (or the branch
is conditional and the condition for the branch is
satisfied), but the effective address of the branch
instruction is either nonexistent or unavailable for
read access to the program (i n sl ave or master­
protected mode).

If either of the above situations occurs, the computer aborts
execution of the branch instruction and executes a non­
allowed operation trap.

Prior to the time that an instruction is accessed from mem­
ory for execution, bit positions 15-31 of the program status
doubleword contain the virtual address of the instruction,
referred to as the instruction address. At this time, the
computer traps to Homespace location X'40' if the actual
address of the instruction is nonexistent or instruction­
access protected. If the instruction address is existent and
is not instruction-access protected, the instruction is ac­
cessed and the instruction address portion of the program
status doubleword is incremented by 1, so that it now
contains the virtual address of the next instruction in
sequence (referred to as the updated instruction address).

If a trap condition occurs during the execution sequence of
any instruction, the computer decrements the updated in­
struction address by 1 and then traps to the location
assigned to the trap condition. If neither a trap condition
nor a satisfied branch condition occurs during the execution
of an instruction, the next instruction is accessed from the
location pointed to by the updated instruction address. If
a satisfied branch condition occurs during the execution of
a branch instruction (and no trap condition occurs), the
next instruction is accessed from the location pointed to by
the effective address of the branch instruction.

EXU EXECUTE
(Word index alignment)

EXECUTE causes the computer to access the instruction in
the location pointed to by the effective address of EXU and
execute the subject instruction. The execution of the sub­
ject instruction, including the processing of trap and in­
terrupt conditions, is performed exactly as if the subject
instruction were initially accessed instead of the EXU
instruction. If the subject instruction is another EXU, the
computer executes the subject instruction pointed to by the
effective address of the second EXU as described above.
Such "chains" of EXECUTE instructions may be of any
length, and are processed (without affecti ng the updated
instruction address) until an instruction other than EXU is
encountered. After the final subject instruction is exe­
cuted, instruction execution proceeds with the next in­
struction in sequence after the initial EXU (unless the
subject instruction is an LPSD or XPSD instruction, or is
a branch instruction and the branch condition is satisfied).

Execute/Branch Instructions 99

If an interrupt activation occurs between the beginning of
an EXU instruction (or chain of EXU instructions) and the
last interruptible point in the subject instruction, the com­
puter processes the interrupt-servicing routine for the active
interrupt level and then returns program control to the EXU
instruction (or the initial instruction of a chain of EXU
instructions), which is started anew. Note that a program
is interruptible after every instruction access, including
accesses made with the EXU instruction, and the inter­
ruptibility of the subject instruction is the same as the nor­
mal interruptibility for that instruction.

If a trap condition occurs between the beginning of an EXU
instruction (or chain of EXU instructions) and the completion
of the subject instructi on, the computer traps to the aRpro­
priate trap location. The instruction address stored by the
XPSD instruction in the trap location is the address of the
EXU instruction (or the initial instruction of a chain of EXU
instructions).

Affected: Determined by
subject instruction

Traps: Determined by
subject instruction

Condition code settings: Determined by subject instruction

BCS BRANCH ON CONDITIONS SET
(Word index alignment)

BRANCH ON CONDITIONS SET forms the logical product
(AND) of the R field of the instruction word and the cur­
rent condition code. If the logical product is nonzero, the
branch condition is satisfied and instruction execution pro­
ceeds with the instruction pointed to by the effective ad­
dresst of the BCS instruction. However, if the logical
product is zero, the branch condition is unsatisfied and
instruction execution then proceeds with the next instruc­
tion in normal sequence.

Affected: (IA) if CC n R f 0

If CC n (1)8-11 10, EVA15_31 - IA

If CC n (1)8-11 = 0, IA not affected

If the R field of BCS is 0, the next instruction to be exe­
cuted after BCS is always the next instruction in ascending
sequence, thus effectively producing a "no operation"
instruction.

tSee "Branches in Real Extended Addressing Mode"
in the introductory description under "Execute/Branch
Instructions" •

100 Execute/Branch Instructions

BCR BRANCH ON CONDITIONS RESET
0/'Iord index alignment)

BRANCH ON CONDITIONS RESET forms the logical pro­
duct (AND) of the R field of the instruction word and the
current condition code. If the logi cal product is zero, the
branch condition is satisfied and instruction execution then
proceeds with the instruction pointed to by the effective
addresst of the BCR instruction. However, if the logical
product is nonzero, the branch condition is unsatisfied and
instruction execution then proceeds with the next instruc­
tion in normal sequence.

Affected: (IA) if CC n R = 0

If CC n (1)8-11 = 0, EVA
15

_
31

- IA

If CC n (1)8-11 f 0, IA not affected

If the R field of BCR is 0, the next instruction to be exe­
cuted after BCR is always the instruction located at the
effective address of BCR t thus effectively producing a
"branch unconditionally" instruction.

BIR BRANCH ON INCREMENTING REGISTER
(Word index alignment)

BRANCH ON INCREMENTING REGISTER increments the
contents of general register R by 1. If the result is a nega­
tive value, the branch condition is satisfied and instruction
execution then proceeds with the instruction pointed to by
the effective addresst of the BIR instruction. However, if
the result is zero or a positive value, the branch condition
is not satisfied and instruction execution proceeds with the
next instruction in normal sequence.

Affected: (R), (IA)

(R) + 1 -- R

If (R)O = 1, EVA
15

_
31
-- IA

If (R)O = 0, IA not affected

If the effective address of BIR is unavailble to the program
(slave or master-protected mode) for instruction access and
the branch condition is satisfied, or if the effective address
of BIR is nonexistent, the computer aborts execution of the
BIR instruction and traps to Homespace location X'40'. In
this case, the instruction address stored by the XPSD in­
struction in location X'40 ' is the virtual address of the
aborted BIR instruction. If the computer traps because
of instruction access protection, register R wi II contain
the value that existed iust before the BIR execution

(i. e., upda,ted instruction address). If a memory parity error
occurs due to the accessing of the instruction to which the
program is branching, the computer aborts execution of the
BIR and traps to Homespace location X'4C' with register R
unchanged.

BDR BRANCH ON DECREMENTING REGISTER
(Word index al ignment)

BRANCH ON DECREMENTING REGISTER decrements the
contents of general register R by 1. If the result is a posi­
tive value, the branch condition is satisfied and instruction
execution then proceeds with the instruction pointed to by
the effective addresst of the BDR instruction. However, if
the result is zero or a negative value, the branch condition
is unsatisfied and instruction execution proceeds with the
next instruction in normal sequence.

Affected: (R), (IA)

(R) - 1 -R

If (R)O = 0 and (R)1_31!0, EVA 15_31 -IA

If (R)O = 1 or (R) = 0, IA not affected

If the effective address of BDR is unavailable to the pro­
gram (slave or master-protected mode) for instruction access
and the branch condition is satisfied, or if the effective
address of BDR is nonexistent, the computer aborts execu­
tion of the BDR instruction and traps to Homespace location
X'40'. In this case, fhe instruction address stored by the
XPSD instruction in location X'40' is the virtual address of
the aborted BDR instruction. If the computer traps because
of instruction access protection, register R will contain the
value that existed just before the BDR instruction. If a
memory parity error occurs due to the accessing of the in­
struction to which the program is branching, the computer
aborts execution of the BDR and traps to Homespace loca­
tion X'4C with register R unchanged.

BAL BRANCH AND LINK
(Word index alignment)

BRANCH AND LINK determines the effective virtual ad­
dress, loads the updated instruction address (the virtual
address of the next instruction in normal sequence after the
BAL instruction) into bit positions 15-31 of general reg­
ister R, clears bit positions 0-14 of register R to O's and
then replaces the updated instruction address with the ef­
fective virtual address. Instruction execution proceeds
with the instruction pointed to by the effective address
of the BAL instruction.

t See II Branches in Real Extended Addressing Mode" in the in­
troductory descri pti on under II Execute/Branch Instructi ons II •

The BAL instruction in real extended addressing will store
the fu II address of the next instruction in the spec ifi ed
R register. If the Extension Selector in the PSD at the time
BAL is executed is equal to zero, then the address stored in
the specified R register will be the incremented 16-bit dis­
placement from positions 16-31 of the PSD, and zeros in
the high-order address positions. If the Extension Selector
in the PSD is equal to one, then the address stored wi II be
the incremented 16-bit displacement (PSD 16-31) concate­
nated with the contents of the Extension Address (PSD 42-47).
In both cases, positions 0-9 of the specified R register wi II
be set equal to zero.

Affected: (R), (IA)

If the effective address of BAL is unavailable to the Program
(slave or master-protected mode) for instruction access and
the branch condition is satisfied, or if the effective address
of BAL is nonexistent, the computer aborts execution of the
BAL instruction and traps to Homespace location X'40' (non­
allowed operation trap). In this case, the instruction ad­
dress stored by the XPSD instruction in location X'40' is
the virtual address of the aborted BAL instruction. If the
computer traps because of instruction access protection,
register R will contain the value that existed just before
execution of BAL (i.e., updated instruction address). If a
memory parity error occurs due to the accessing of the in­
structi on to wh i ch the program is branch i ng, the computer
aborts execution of the BAL and traps to Homespace location
X'4C with register R unchanged.

CALL INSTRUCTIONS

Each of the four CALL instructions causes the computer to
trap to a specific location for the next instruction in se­
quence. The four CALL instructions, their mnemonics,
and the locations to which the computer traps are:

Instruction Trap Home-
Name Mnemonic space Location

CALL 1 CAll X'48'

CALL 2 CAL2 X'49'

CALL 3 CAL3 X'4A'

CALL 4 CAL4 X'4B'

Each of these four trap locations must contain an EX­
CHANGE PROGRAM STATUS DOUBLEWORD (XPSD)
instruction. Execution of XPSD in the trap location for a
CALL instruction is described under II Control Instructions,
XPSD Exchange Program Status Doubl eword II • If the XPSD
instruction is coded with bit position 9 set to 1, the next
instruction (executed after the XPSD) is taken from one of
16 possible locations, as designated by the value in the

CALL Instructions 101

R field of the CALL instruction. Each of the 16 locations
may contain an instruction that causes the computer to
branch to a specific routine; thus, the four CALL instruc­
tions can be used to enter any of as many as 64 unique
routines.

CAll CALL 1
(Word index al ignment)

CALL 1 causes the computer to trap to Homespace loca­
tion X'48'.

CAL2 CALL 2
(Word index al ignment)

CALL 2 causes the computer to trap to Homespace loca­
tion X'49'.

CAL3 CALL 3
(Word index al ignment)

o 1 2

CALL 3 causes the computer to trap to Homespace loca­
tion X'4A'.

CAL4 CALL 4
(Word index alignment)

CALL 4 causes the computer to trap to Homespace loca­
cation X'4B'.

CONTROL INSTRUCTIONS

The following privileged instructions are used to control
the basic operating conditions of the SIGMA 9 computer:

Instruction Name

Load Program Status Doubleword

Exchange Program Status Doubleword

Load Reg i ster Po inter

Move to Memory Control

Wait

Read Direct

Write Direct

102 Control Instructi ons

Mnemonic

LPSD

XPSD

LRP

MMC

WAIT

RD

WD

If execution of any control instruction is attempted while
the computer is in the slave mode (i. e., while bit 8 of the
current program status doubleword is a 1), the computer
unconditionally traps to Homespace location X'40' prior to
executing the instruction.

PROGRAM STATUS DOUBLEWORD

The SIGMA 9 program status doubleword has the following
structure when stored in memory:

I CC 101~1~1~1~1~1~1~1~1 001~1 I~ I
o 1 2 3 4 5 6 7 6 9 10 11 12 13 14 15 16 17 18 1912021 22 23 24 25 26 2712629 30 31

Bit Desig-
Positions nation Function

0-3 CC

5 FS

6 FZ

7 FN

8 MS

9 MM

10 DM

11 AM

12 AS

15 ES

16-31 IA

34,35 WK

37 CI

38 II

39 EI

40 MA

42-47 EA

48-55 TSF

56-59 RP

60 RA

Condition code

Floating significance mask

Floating zero mask

Floating normal ize mask

Master/slave mode control

Memory map mode control

Decimal arithmeti c trap mask

Fixed-point arithmetic overflow trap
mask

ASCII mask

Extension selector

Instruction address

Write key

Counter interrupt group inhibit

I/O interrupt group inhibit

External interrupt inhibit

Mode altered

Extension address

Trap status field

Regi ster pointer

Register altered

The detailed functions of the various portions of the
SIGMA 9 program status doubleword are described in
Chapter 2, II Program Status Doubl eword II.

LPSD LOAD PROGRAM STATUS DOUBLEWORD
(Doubleword index alignment, privileged)

LOAD PROGRAM STATUS DOUBLEWORD replaces bits 0
through 39 of the current program status doubleword with
bits 0 through 39 of the effective doubleword.

Control bits used in the LPSD instructions are:

Bit Desig- Control
Position nation Function

8 LP Load pointer control

10 CL Clearing of interrupt level

11 AD Armed/ di sarmed state

The following conditional operations are performed:

1. If bit position 8 (LP) of LPSD contains a 1, bits 56
through 59 of the current program status doubl eword
(register pointer) are replaced by bits 56 through 59
of the effective doubleword; if bit 8 of LPSD is a 0,
the current register pointer value remains unchanged.

2. If bit position 10 (CL) of LPSD contains a 1, the
highest-priority interrupt level currently in the active
state is c I eared (i. e., reset to e i th er the armed state
or the disarmed state); the interrupt level is armed if
bit 11 of LPSD (AD) is a 1, or is disarmed if bit 11 of
LPSD is O. If bit 10 of LPSD is a 0, no interrupt level
is affected in any way, regardless of whether bit 11 of
LPSD is 1 or O. (Interrupt levels are described in de­
tail in Chapter 2, IIInterrupt System II.)

Those portions of the effective doubleword that correspond
to undefined fields in the program status doubleword are
ignored.

Affected: (PSD), interrupt system if (1)10 = 1

ED
O

_
3
--CC; ED

5
_

7
-- FS, FZ, FN

ED8 -MSi ED9 --MM

ED
lO

--DM; ED
11

-AM

ED
15

--ES

ED
16

_
31

- IA; ED
34

_
35

- WK

ED37_39 - CI, II, EI; if (1)8 = 1, ED 56-59-RP

If (1)10 = 1 and (1)11 = 1, clear and arm interrupt

If (1)10 = 1 and (1)11 = 0, clear and disarm interrupt

XPSD EXCHANGE PROGRAM STATUS DOUBLEWORD
(Doubleword index al ignment, privileged)

EXCHANGE PROGRAM STATUS DOUBLEWORD stores the
currently active PSD in the doubleword location addressed
by the effective address of the XPSD instruction. The foI-
I owi ng doubl eword is then accessed from memory and loaded
into the active PSD registers.

The XPSD instruction is used for three distinct types of
operations: as a normal instruction in an ongoing program;
as an interrupt instruction; and as a trap instruction.

Control bits used in the XPSD instructions are:

Bit Desig- Control
Position nation Function Where Used

8 LP Load poi nter All XPSDs
control

9 AI Address increment Trap XPSD

10 AT Addressing type Trap XPSD or
interrupt XPSD

The effective address of an XPSD instruction is generated
in one of the following ways:

XPSD (normal instruction)

When an XPSD instruction is encountered in the course of
execution of normal programs, the effective address is gen­
erated according to the rules for addressing then in effect
as described by the currently active PSD; that is, the CPU
is operating in real, real extended, or virtual addressing
mode. The flags in bit positions 9 and 10 have no effect
and must be coded as zeros.

XPSD (interrupt instruction)

An XPSD instruction (in an interrupt location) executed as
a result of an interrupt is called an interrupt instruction.
Bit position 10 determines the type of addressing to be used
by the XPSD. If bit positions 10 and 0 are equal to zero,
bit positions 12-31 of the instruction unconditionally specify
a direct address within the first 1,048,576 words of real
memory. Since the index field is used for addressing, index­
ing is not possible. If bit 10 is equal to zero anp indirect
addressing is specified (bit 0 = 1), the indirect address, in­
terpreted as in real extended addressing, is found in the
word specified by bits 12-31. (In brief, the current type
of addressing has no bearing on the execution of this instruc­
tion.) Bit position 9 is not effective during an interrupt
instruction and must be a zero.

If bit 10 is a 1, the effective address of the XPSD is gener­
ated subject to the current active addressing mode (real,
real extended, or virtual), and indexing is permitted.

Control Instructi ons 103

XPSD (trap instruction)

An XPSD instruction (in a trap location) executed as 'a
result of a trap entry operation is called a trap instruction.
Bit positions 9 and 10 are both effective in this instruction.
Bit position 10 determines the type of addressing to be used
by the XPSD. If bit positions 10 and 0 are equal to zero,
bits 12-31 of the instruction unconditionally specify a
direct address within the first 1,048,576 words of real
memory. Since the index field is used for addressing,
indexing is not possible. If bit lOis equal to zero and
indirect addressing is specified (bit 0 = 1), the indirect
address, interpreted as in real extended addressing, is
found in the word specified by bits 12-31. (In brief, the
effective address is generated independently of the type of
addressing being used by the program that was trapped.)

If bit position 10 is a 1, the effective address is generated
subject to the same current active addressing mode (real,
real extended, or virtual) as the program that was trapped,
and indexing is permitted.

The following additional operations are performed on the
new program status doubleword if, and only if, the XPSD
is being executed as the result of a nonallowed operation
(trap to Homespace location X'40 ') or a CALL instruction
(trap to Homespace location X'481, X'491, X'4A', or
X'4B'):

1. Nonallowed operations - the following additional
functions are performed when XPSD is being executed
as a result of a trap to Homespace location X'40' :

a. Nonexistent instruction - if the reason for the
trap condition is an attempt to execute a non­
existent instruction, bit position 0 of the new
program status doubleword (CC1) is set to 1. Then,
if bit 9 (AI) of XPSD is a 1, bit positions 15-31 of
the new program status doubleword (next instruc­
tion address) are incremented by 8. t

b. Nonexistent memory address - if the reason for the
trap condition is an attempt to access or write into
a nonexistent memory region, bit position 1 of the
new program status doubleword (CC2) is set to 1.
Then, if bit 9 of XPSD is a 1, the instruction ad­
dress portion of the new program status doubleword
is incremented by 4. t

c. Privileged instruction violation - if the reason for
the trap condition is an attempt to execute a
privi leged instruction while the computer is in the
slave mode, bit position 2 of the new program

tIf the CPU is in a real extended addressing mode and the
effective address of the trap XPSD instruction is generated
subject to that current mode, the addition of the condition
code is restricted to bits 16 to 31 of the Instruction
Address. The Extension Selector (bit 15) and Extension
Address (bits 42-47) will not be affected if a carry
should result.

104 Control Instructions

status doubleword (CC3) is set to 1. Then, if bit
position 9 of XPSD is 1, the instruction address
portion of the new program status doubleword is
incremented by 2. t

d. Memory protection violation - if the reason for
the trap condition is an attempt to read from or
write into a memory region to which the program
does not have proper access, bit position 3 of the
new program status doubleword (CC4) is set to 1.
Then, if bit 9 of XPSD is a 1, the instruction ad­
dress portion of the new program status doubleword
is incremented by 1. t

There are certain circumstances under which two of the
above nonallowed operations can occur simultaneously.
The following operation codes (including their counter­
parts) are considered to be both nonexistent and privi­
leged: XIOC' and X'OD'. If either of these operation
codes is used as an instruction whil e the computer is
in the slave or master-protected mode, CCl and CC3
are both set to 11 s; if bi t 9 of XPSD is a 1, the i nstruc­
tion address portion of the new program status double­
word is incremented by 10. If an attempt is made to
access or write into a memory region that is both non­
existent and prohibited to the program by means of the
memory control feature, CC2 and CC4 are both set
to lis; if bit 9 of XPSD is a 1, the instruction address
of the new program status doubleword is incremented
by 5.

2. CALL instructions - the following additional functions
are performed when XPSD is being executed as a result
of a trap to Homespace location X'481, X'491, X'4A',
or X'4B'.

a. The R field of the CALL instruction causing the
trap is logically inclusively ORed into bit posi­
tions 0-3 (CC) of the new PSD.

b. If bit position 9 of XPSD contains a 1, the R field
of the CALL instruction causing the trap is added
to the instruction address portion of the new PSD.

If bit position 9 of XPSD contains a 0, the instruction ad­
dress portion of the new PSD always remains at the value
established by the second effective doubleword. Bit posi­
tion 9 of XPSD is effective only if the instruction is being
executed as the result of a nona I lowed operation trap or a
CALL instruction trap. Bit position 9 of XPSD must be
coded with a 0 in all other cases; otherwise, the results of
the XPSD instruction are undefined.

The current program status doubleword is stored in the
doubleword location pointed to by the effective address of
XPSD in the following form:

Program status doubleword:

IA
IA

21222312423262,.22

The current program status doubleword (as illustrated above)
is replaced by a new program status doubleword as de­
scribed below.

1. The effective address of XPSD is incremented by 2 so
that it points to the next doubleword location. The
contents of the next doubleword location are referred
to as the second effective doublew~rd, or ED2.

2. Bits 0-35, 40, and 42-47 of the current program status
doubleword are unconditionally replaced by bits 0-35,
40, and 42-47 of the second effective doubleword.
The affected portions of the program status double­
word are:

Bit Desig-
Position nation Function

0-3

5-7

8

9

10

11

15

16-31

or

15-31

34-35

40

42-47

CC Condition code

FS, FZ, Floating control
FN

MS Master/slave mode control

MM Mapping mode control

DM Decimal arithmeti c trap mask

AM Fixed-point arithemti c trap mask

Extension selector} (real

. extended)
Instruct. on address

ES

IA

IA Instruction address (real or virtual)

WK Write key

MA Mode al tered

EA Extensi on address

3. A logical inclusive OR is performed between bits 37
through 39 of the current program status doubl eword
and bits 37 through 39 of the second effective
doubleword.

Bit Desig-
Position nation Function

37 CI Counter interrupt inhibit

38 II I/O interrupt inhibit

39 EI External interrupt inhibit

If any (or all) of bits 37, 38, or 39 of the second
effective doubleword are OIS, the corresponding bits
in the current program status doubleword remain un­
changed; if any (or all) of bits 37, 38, or 39 of the
second effective doubleword are lIs, the corresponding
bits in the current program status doubleword are set
to lIs. See IIInterrupt System II, Chapter 2, for a de­
tailed discussion of the interrupt inhibits.

4. If bit position 8 (LP) of XPSD contains a 1, bits 56
through 59 of the current program status doubleword
(register pointer) are replaced by bits 56 through 59
of the second effective doubleword; if bit 8 of XPSD
is a 0, the current register pointer value remains
unchanged.

Affected: (EDL), (PSD)

If (1)10 = 1, trap or interrupt instructions only, effective
address is subject to current active addressing mode.

If (1)10 = 0, trap or interrupt instructions only, effec­
tive address is independent of current active addressing
mode.

PSD -EDL

ED2
0

_
3

- CC; ED2
5

_
7

- FS, FZ, FN

ED2 --MS, ED2 - MM
8 ' 9

ED210 --- DM; ED211 -AM; ED
15

_31 -IA

or

ED2
15

--ES

ED2
16

_
31

-IA; ED2
34

_
35

---WK

ED2
37

_
39

u CI, II, EI -- CI, II, EI; ED2
40

- MA

ED 42-47 -- EA

If (1)8 = 1, ED2
56

_
59

- RP

If (1)8 = 0, RP not affected

If nonexistent instruction, 1 --CC1 then, if (1)9 = 1,
IA + 8 --IA

If nonexistent memory address, 1 ---CC2 then, if
(1)9= 1, IA+4 -IA

If privileged instruction violation, 1 -- CC3 then, if
(1)9 = 1, IA + 2 --IA

Control Instructions 105

If memory protection violation, 1 --CC4 then, if
(1)9 = 1, IA + 1 ----IA

If CALL instruction, CC u CALL8-11 -- CC then, if
(1)9 = 1, IA + CALL

8
_

11
- IA

If (1)9 = 0, IA not affect~d

LRP LOAD RE,GISTER POINTER
(Word index al ignment, privi leged)

LOAD REGISTER POINTER loads bits 26 and 27 of the
effective word into the register pointer (RP) portion of the
current program status doubleword. Bit positions 0 through
25 and 28 through 31 of the effective word are ignored,
and no other portion of the program status doubleword is
affected. If the LOAD REGISTER POINTER instruction
attempts to load the register pointer with a value that points
to a nonexistent block of general registers, the computer
traps to Homespace location X'4D'.

Affected: RP Trap: Instruction exception

EW
26

_
27

-RP

MMC MOVE TO MEMORY CONTROL
(Word index alignment, privileged, continue
after interrupt)

MOVE TO MEMORY CONTROL loads a string of one or
more words into one of the three blocks of memory control
registers (memory control regi sters are described in Chapter 2,
under "Memory Address Control ". Bit positions 12-14 of
MMC are not used as an index register address; instead,
they are used to specify which block of memory control
registers is to be loaded, as follows:

Bit Position

12 13 14 Function

0 0 Load memory write protection locks.

0 0 Load access protection.

0 0 Load memory map (8-bit format).

0 Load memory map (13-bit format).

An attempt to execute an MMC instruction with any code
other than the four above causes the instruction to trap to
Homespace location X'4D', instruction exception trap.

106 Control Instructi ons

Bit positions 15-31 of MMC are ignored insofar as the
operation of the instruction is concerned, and the results
of the instruction are the same whether MMC is indirectly
addressed or not.

The R field of MMC designates an even-odd pair of general
registers (R and Ru1) that are used to control the loading of
the specified bank of memory control registers. Registers R
and Ru 1 are assumed to contain the following information:

Register R:

Register Ru 1:

Register R contains the address of the first word of the con­
trol image to be loaded into the specified block of memory
control registers. Bit positions 0 through 7 of register Ru 1
contain a count of the number of words to be loaded. (If
bits 0-7 of register Ru 1 are initially all O's, a word count
of 256 is implied.)

Bit positions 15 through 22 of register Ru 1 point to the be­
ginning of the memory region controlled by the registers
to be loaded. The significance of this field is different for
the three modes of MMC.

The R field of the MMC instruction must be an even value
for proper operation of the instruction; if the R field of
MMC is an odd value, the instruction traps to Homespace
location X'4D', instruction exception trap.

If MMC is indirectly addressed and the indirect reference
address is nonexistent, the nonallowed operation trap
(Homespace location X'40') is not activated. The effective
virtual address of the MMC instruction, however, is not
used as a memory reference (thus does not affect the normal
operation of the instruction).

Affected: (R), (Ru 1),
memory control storage

T rap: Instruction

exception

LOADING THE MEMORY MAP

The following diagrams represent the configuration of MMC,
register R, and register Ru 1 that are required to load the
memory map in either the 8-bit or 13-bit format:

The 8-bit instruction format is:

The 13-bit instruction format is:

6F
o 1 2 9 10 il 1213 14 '5116 " 18 191 202122231242526 27!2f 29 3C ~.

In the following description, the top of the diagram
depicts the 8-bit format and the bottom the 13-bit format.

The contents of register Rare:

The contents of register Ru 1 are:

MEMORY MAP CONTROL IMAG E

The initial address value in bit positions 15-31
t

of reg­
ister R is the virtual address of the first word of the memory
map control image. The word length of the control image
to be loaded is specified by the initial count in bit posi­
tions 0-7 of register Rul. A word count of 64 is sufficient
to load the entire block of memory map control registers.
The memory map control registers are treated as a ci rcu lar
set, with the first register following the last; thus, a word
count greater than 64 causes the first registers loaded to be
overwritten.

Each word of the memory map control image is assumed to
be in the following 8- or 13-bit format:

MEMORY MAP LOAQING PROCESS

Bit positions 15-22 of register Rul initially point to the
first 512-word page of virtual addresses that is to be con­
trolled by the map image being loaded. MMC moves the
map image into the memory map control registers one word
at a time, thus loading the page address for four (two if
13-bit format selected) consecutive memory map registers
with each image word. As each word is loaded into the
memory map, the virtual address of the image area is in­
cremented by 1, the word count is decremented by 1, and
the value in bit positions 15-22 of register Ru1 is incre­
mented by 4 (by 2 if 13-bit format selected); this process
continues until the word count is reduced to O.

When the loading process is completed, bit positions 15-31 t
of register R contain a value equal to the sum of the initial
map image address plus the initial word count. Also, bit
positions 0-7 of register Ru1 contain all O's, and bit posi­
tions 15-22 of register Ru1 contain a value equal to the
sum of the initial contents plus four times the initial word
count (two times the initial word count if 13-bit format
selected).

t .
For real extended mode, bits 10-31.

LOADING THE ACCESS PROTECTION CONTROLS

The following diagrams represent the configurations of
MMC, register R, and register Ru 1 that are required to
load the access protecti on control s:

The instruction format is:

The contents of register Rare:

The contents of register Ru 1 are:

ACCESS PROTECTION CONTROL IMAGE

The initial address value in register R is the virtual address
of the first word of the access control image, and the word
length of the first control image is specified by the initial
count in register Rul. A word count of 16 is sufficient to
load the entire block of access protection control registers.
The access protection control registers are treated as a cir­
cular set, with the first register following the last; thus, a
word count greater than 16 causes the first registers loaded
to be overwritten. Each word of the access control image
is assumed to be in the following format:

ACCESS CONTROL LOADING PROCESS

Bit positions 15-20 of register Ru1 initially point to the
first 512-word page of virtual addresses that is to be con­
trolled by the access control image. MMC moves the ac­
cess control image into the access control registers one
word at a time, thus loading the controls for 16 consecutive
512-word pages with each image word. As each word is
loaded, the virtual address of the control image is incre­
mented by 1, the word count is decremented by 1, and the
value in bit positions 15-20 of register Ru1 is incremented
by 4; this process continues until the word count is reduced
to o. When the loading process is completed, register R
contains a value equal to the sum of the initial control
image address plus the initial word count. Also, the final
word count is 0, and bit positions 15-20 of register Ru1
contain a value equal to the sum of the initial contents
plus four times the initial word count.

LOADING THE MEMORY WRITE PROTECTION LOCKS

The following diagrams represent the configurations of
MMC, register R, and register Ru 1 that are required to
load the memory write protection locks:

Control Instructions 107

The contents of register Rare:

The contents of register Ru 1 are:

MEMORY LOCK CONTROL IMAGE

The initial address value in register R is the virtual address
of the first word of the memory lock control image, anp
word length of the image is specified by the initial count
in register Ru1. A word count of 16 is sufficient to load
the entire block of memory locks. The memory lock reg­
isters are treated as a circular set, with the register for
memory addresses 0 through X l 1FFI immediately following
the regi ster for memory addresses XI 1 FEOOI through
X l 1 FFFP; thus, a word count greater than 16 causes the
first registers loaded to be overwritten. Each word of the
lock image is assumed to be in the following format:

MEMORY LOCK LOADING PROCESS

Bit positions 15-20 of register Ru1 initially point to the
fi rst 512-word page of actual memory addresses that wi II be
controlled by the memory lock image. MMC moves the
lock image into the lock registers one word at a time, thus
loadi ng the locks for 16 consecutive 512-word pages with
each image word. As each word is loaded, the virtual
address of the lock image is incremented by 1, the word
count is decremented by 1, and the value in bit posi-
tions 15-20 of register Rul is incremented by 4; this pro­
cess continues until the word count is reduced to O. When
the loading process is completed, register R contains a
value equal to the sum of the initial lock image address
plus the initial word count. Also, the final word count
is 0, and bit positions 15-20 of register Ru 1 contain a
value equal to the sum of the initial contents plus four
times the initial word count.

INTERRUPTION OF MMC

The execution of MMC can be interrupted or trapped after
each word of the control image has been moved into the
specified control register. Immediately prior to the time
that the instruction in the interrupt (or trap) location is
executed, the instruction address portion of the program
status doubleword contains the virtual address of the MMC
instruction, register R contains the virtual address of the
next word of the control image to be loaded, and register
Ru 1 contains a count of the number of control image words
remaining to be moved and a value pointing to the next
memory control register to be loaded. After interrupt, the
MMC instruction may be resumed from the point it was

108 Control Instructions

interrupted. In case of an interrupt or a parity error in a
control image word, the MMC wi II set the Register Altered
indicator, bit 60 of the program status doubleword.

WAIT WAIT
(Word index al ignment, privileged)

o 1 2

WAIT causes the CPU to cease all operations until an inter­
rupt activati on occurs, or unti I the computer operator manu­
ally moves the COMPUTE switch on the processor control
panel from the RUN position to IDLE and then back to RUN.
The instruction address portion of the PSD is updated before
the computer begins waiting; therefore, while the CPU is
waiting, the INSTRUCTION ADDRESS indicators contain
the virtual address of the next location in ascending se­
quence after WAIT and the contents of the next location
are displayed in the DISPLAY indicators on the processor
control panel. If any input/output operations are being
performed when WAIT is executed, the operations proceed
to their normal termination.

When an interrupt activation occurs while the CPU is wait­
ing, the computer processes the interrupt-servi cing routine.
Normally, the interrupt-servicing routine begins with an
XPSD instruction in the interrupt location, and ends with
an LPSD instruction at the end of the routine. After the
LPSD instruction is executed, the next instruction to be
executed in the interrupted program is the next instruction
in sequence after the WAIT instruction. If the interrupt is
to a single-instruction interrupt location, the instruction
in the interrupt location is executed and then instruction
execution proceeds with the next instruction in sequence
after the WAIT instruction. When the COMPUTE switch is
moved from RUN to IDLE and back to RUN while the CPU
is waiting, instruction execution proceeds with the next
instruction in sequence after the WAIT instruction.

Affected: PC

If WAIT is indirectly addressed and the indirect reference
address is nonexistent, the nonallowed operation trap to
Homespace location XI40 1 will not occur. The effective
virtual address of the WAIT instruction, however, is not
used as a memory reference (thus does not affect the normal
operation of the instruction).

RD READ DIRECT
(Word index al ignment, privileged)

6 7 R

The CPU is capable of directly communicating with other
elements of the SIGMA 9 system, as well as performing
internal control operations, by means of the READ

DIRECT/WRITE DIRECT (RD/WD) lines. The RD/WD
I ines consist of 16 address lines, 32 data I ines, two
condition code lines, and various control lines that are
connected to various CPU circuits and to special systems
equipment.

READ DIRECT causes the CPU to present bits 16 through 31
of the effective virtual address to other elements of the
SIGMA 9 system on the RD/WD address lines. Bits 16-31
of the effective virtual address identify a specific element
of the SIGMA 9 system that is expected to return informa­
tion (two condition code bits plus a ma){imun;J of 32 data
bits) to the CPU. The significance and number of data bits
returned to the CPU depend on the selected element. If
the R field of RD is nonzero, up to 32 bits of the returned
data are loaded into genera I regi ster R; however, if the
R field of RD is 0, the returned data is ignored and general
register 0 is not changed. Bits CC3 and CC4 of the condi­
ti on code are set by the addressed e I em ent, regard I ess of
the value of the R field. (CC1 and CC2 are also set when
the RD instruction is coded for the internal control mode.)

Bits 16-19 of the effective virtual address of RD determine
the mode of the RD instruction, as follows:

Bit Position

16 17 18 19 Mode

000 0 Internal computer control.

000

o 0

o 0

Interrupt control.

o XDS testers.

1 } Assigned to various groups of standard
XDS products.

o

Spec i al systems control (for customer use
with specially designed equipment).

READ DIRECT

INTERNAL COMPUTER CONTROL (MODE 0)

In this mode, the computer is able to read the sense
switches, the interrupt inhibit bits of the PSD, and the
"snapshot" register, as follows.

READ SENSE SWITCHES

The following configuration of RD can be used to read the
control panel SENSE switches:

If a particular SENSE switch is set, the corresponding bit
of the condition code is set to 1; if a SENSE switch is zero,

the corresponding bit of the condition code is set to 0 (see
"SENSE" in Chapter 5).

In this case, only the condition code is affected.

READ SNAPSHOT SAMPLE REG ISTER

Each CPU will contain an internal snapshot sample register
to aid in diagnostic programming. The following configura­
tion of RD is used to record the snapshot sample register:

If the R field of RD is nonzero, the contents of the snapshot
sample register are transferred to the specified R register.

Affected: (R), CC

(Sample Register)-- R

Condition Code Settings:

2 3 4 Result

0 0 Clock Counter = 0,
reached.

0 Clock Counter = 0,

end of instruction not

end of instruction.

0 Armed but not "snapped".

READ INTERRUPT INHIBITS

The following configuration of RD can be used to read the
contents of the interrupt inhibit field:

If the R field of RD is nonzero, the contents of the inter­
rupt inhibit field (bits 37, 38, 39) of the program status
doubleword are transferred to the least significant 3 bits
of the specified R register (bits 29, 30,31). The remainder
of the R register bits (0-28) is cleared to zeros.

Affected: (R)

(PSD}J7-39 --R29-31

o --RO- 28

READ DIRECT, INTERRUPT CONTROL (MODE 1)

The following configuration of RD is used to control the
sensing of the various states of the individual interrupt
levels within the CPU interrupt system:

Bits 28 through 31 of the effective address specify the iden­
tification number of the group of interrupt levels to be con­
troll ed by the READ DIRECT instruction.

Control Instructions 109

The R field of the RD instruction specifies a general register
that will contain the bits sensed from the individual inter­
rupt levels within a specified group. Bit position 16 of
register R contains the appropriate indicator bit for the
highest priority (lowest number) interrupt level within the
group and bit position 31 of register R contains the indicator
bit for the lowest priority interrupt level within the group.
Each interrupt level in .the designated group is sensed
according to the function code spec ified by bits 21 through
23 of the effecti ve address of RD. The codes and thei r
associated functions are as follows:

Code Function

001 Read Armed or Waiting State. Set to 1 the bits
in the selected register which correspond to
interrupt levels in this group that are in either
the armed or the waiting state. Reset all other
bits to zero.

010 Read Waiting or Active State. Set to 1 the bits
in the selected register which correspond to each
interrupt level in this group that is in either the
waiting state or the active state. All other bits
are reset to zero.

100 Read Enables. Set to 1 the bits in the selected
register which correspond to each interrupt level
in this group which is enabled. Reset all other
bits to ~ero.

WD WRITE DIRECT
(Word index al ignment, privileged)

WRITE DIRECT causes the CPU to present bits 16 through 31
of the effective virtual address to other elements of the
SIGMA 9 system on the RD/vVD address I ines (see READ
DIRECT). Bits 16-31 of the effective virtual address
identify a specific element of the SIGMA 9 system that is
to receive control information from the CPU. If the
R field of WD is nonzero, the 32-bit contents of register R
are transmitted to the specified element on the RD/vVD data
lines. If the R field of WD is 0, 32 O's are transmitted to
the specified element (instead of the contents of register 0).
The specified element may return information to set the
condition code.

Bits 16-19 of the effective virtual address determine the
mode of the WD instruction, as follows:

Bit Position

.:...:16~----=....:17_----=....:18~--=-:.19 Mode

000

000

o Internal computer control

Interrupt control

110 Control Instructions

16 17 18 19 Mode

0 0 0 XDS testers

0 0

:) Assigned to various groups of
standard XDS products

Speci al systems control (for customer
use with specially designed
equipment)

WRITE DIRECT

INTERNAL COMPUTER CONTROL (MODE 0)

SET INTERRUPT INHIBITS

The followi ng configuration of WD can be used to set
the interrupt inhibits (bit positions 37-39 of the PSD).

A logical inclusive OR is performed between bits 29-31 of
the effective virtual address and bits 37-39 of the PSD.
If any (or all) of bits 29-31 of the effective virtual address
are l's, the corresponding inhibit bits in the PSD are set
to l's; the current state of an inhibit bit is not affected if
a corresponding bit position of the effective virtual address
contains a O.

RESET INTERRUPT INHIBITS

The following configuration of WD can be used to reset the
interrupt inhibits:

If any (or all) of bits 29-31 of the effective virtual address
are l's, the corresponding inhibit bits in the PSD are reset
to O's; the current state of an inhibit bit is not affected if
a corresponding bit position of the effective virtual address
contains a O.

SET ALARM INDICATOR

The following configuration of WD is used to set the
ALARM indicator on the maintenance section of the
processor control panel.

If the COMPUTE switch on the processor control panel is
in the RUN position and the AUDIO switch on the mainte­
nance section of the processor control panel is in the ON
position, a lOOO-Hz signal is transmitted to the computer
speaker. The signal may be interrupted by moving the
COMPUTE switch to the IDLE position, by moving the
AUDIO switch to the OFF position, or by resetting the
ALARM i ndi cator.

RESET ALARM INDICATOR

The following configuration of WD is used to reset the
ALARM indicator:

The ALARM indicator is also reset by means of either the
CPU RESET/CLEAR switch or the SYS RESET/CLEAR
switch on the processor control panel.

TOG GLE PROGRAM-CONTROLLED-FREQUENCY
FLIP-FLOP

The following configuration of WD is used to set and
reset the CPU program-control led-frequency (PCF)
flip-flop:

The output of the PCF flip-flop is transmitted to the
computer speaker through the AUDIO switch on the mainte­
nance section of the processor control panel. If the
PCF flip-flop is reset when the above configuration of
WD is executed, the WD instruction sets the PCF fl ip­
flop; if the PCF flip-flop was previously set, the WD
instruction resets it. A program can thus generate a
desired frequency by setting and resetting the PCF fl ip­
flop at the appropriate rate. Execution of the above
configuration of WD also resets the ALARM indicator.

LOAD INTERRUPT INHIBITS

The following configuration of WD can be used to transfer
the contents of the specified R register (R29-31) to the
Interrupt Inhibit field (PSD

37
_

39
).

Affected: (PSD
37

_
39

)

(R29- 31) - PSD
37

_
39

LOAD SNAPSHOT CONTROL REGISTER

The following configuration of WD is used to arm the
snapshot feature.

The contents of the specified R register are transferred
to the snapshot control register with the following
format:

Bit
Position

0-7

10-14

15-31

Desig­
nation

CC

CS

IA

Function

Clock Counter. Contains the num­
ber of clock pu Ises, wh i ch deter­
mine the time the snapshot sample
register is strobed after instruction
adress recognition.

Condition Select. Determine which
of several possible internal states
of the hardware to record. t

Instruction Address. The address
used by the snapshot feature is
the 17-bit address in positions
15-31 of the PSD, regardless of
the mode of operation.

Affected: (Snapshot Control Register)

{R)--Snapshot Control Register

TURN ON MODE ALTERED FLAG

The following configuration of WD is used to set the Mode
Altered Flag (PSD 40) to 1:

t A separate document, XDS SIGMA 9 Engineering Support
Manud wi II contain this information.

Control Instructi ons 111

TURN OFF MODE ALTERED FLAG

The following condiguration of WD is used to reset the
Mode Altered Flag (PSD 40) to 0:

SET INTERNAL CONTROLS

The following configuration of WD is used to set the CPU
clock margin controls.

The contents of the specified R register, bits 8 and 9,
are used to set the internal CPU margin controls as
follows:

Clock Margins

Bit 8 Bit 9

o o Norm

o Hi

o Lo

Unused

All unused bits of the specified R register are
disregarded.

WRITE DIRECT, INTERRUPT CONTROL (MODE 1)

The following configuration of WD is used to control the
alteration of the various states of the individual interrupt
levels within the CPU interrupt system:

Bits 28 through 31 of the effective address specify
the identification number (see Table 3) of the group
of interrupt levels to be controlled by the 'vVD
instruction.

112 Control Instructions

The R field of the WD instruction specifies a general
register that contains the selection bits for the indi­
vidual interrupt levels within the specified group. Bit
positions 16 of register R contains the selection bit for
the highest-priority (lowest-numbered) interrupt level
within the group, and bit position 31 of register R con­
tains the selection bit for the lowest-priority (highest­
numbered) interrupt level within the group.

Each interrupt level in the designated group is operated
on according to the function code specified by bits 21
through 23 of the effective address of WD. The codes
and their associated functions are as follows:

Code

000

100

101

Function

Set active all selected levels currently in the
armed or waiting states.

Disarm all levels selected by a 1; all levels
selected by a 0 are not affected.

Arm and enable all levels selected by a 1;
all levels selected by a 0 are not affected.

Arm and disable all levels selected by a 1;
all levels selected by a 0 are not affected.

Enable all levels selected by a 1; all levels
selected by a 0 are not affected.

Disable all levels selected by a 1; all levels
selected by a 0 are not affected.

110 Enable all levels selected by a 1 and disable
all levels selected by a O.

111 Trigger all levels selected by a 1. All such
levels that are currently armed advance to
waiting state.

tThese codes clear the current interrupts, i. e., remove
from the active or waiting state ail levels selected by
a 1 (see Figure 10).

INPUT jOUTPUT INSTRUCTIONS

SIGMA 9 I/O instructions permit a CPU to initiate, test,
and control I/O operations. SIGMA 9 I/O systems consist
of special- and general-purpose Input/Output Processors
(lOPs), e. g., High-Speed RAD I/O Processor (HSRIOP),
Multiplexor I/O Processor (MIOP), single- and multi­
device controllers, and a variety of standard peripheral de­
vices (printers, disks, tapes, etc.). Standard I/O operations
are performed with the I/O instructions I isted below.

Instructi on Name Mnemonic

Start Input/Output SIO

Test Input/Output no

Test Device TDV

Halt Input/Output HIO

Reset Input/Output RIO

Poll Processor POLP

Poll and Reset Processor POLR

Acknowledge Input/Output Interrupt AIO

If execution of any input/output instruction (always privi­
leged) is attempted while the computer is in the slave mode
(i.e., while bit 8 of the current program status double­
word is a 1), the computer unconditionally aborts execution
of the instruction (at the time of operation code decoding)
and traps to Homespace location X1401.

1/0 ADDRESSES

An I/O device is selected by the effective virtual address
of the I/O instruction. Indirect addressing and/or index­
ing may be performed., as for other word-addressing instruc­
tions, to compute the effective vi rtual address of the I/O
instruction. However, the effective address is not used as
a memory reference (i. e. , not subject to any mapping).
For all I/O instructions, except AIO, the 13 low-order
bits of the effective virtual address (bits 19-31) constitute
an I/O address. For the AIO instruction, the device
causing the interrupt returns its 13-bit I/O address as part
of the response to the AIO instruction.

An effective virtual I/O address is subdivided into a pro­
cessor address and a devi ce controller address.

PROCESSOR ADDRESSES (BITS 19-23)

The 32 processor addresses (PA) may be assigned in the fol­
lowing manner:

1. The assignment of addresses is mutually exclusive, that
is, no two processors may have the same address.

2. The four highest addresses (X I1C - X'lFI) are reserved
for addressing CPUs in a multiprocessor system.

3. The remaining 28 addresses may be assigned to MIOPs,
High-Speed RAD lOPs, or to any other lOP that is
compatible with the SIGMA 9 computer system.

a. SIGMA 9 MIOPs require an even-odd pair of
addresses. The even address (bit 23 is 0) selects
Channel A and the odd address (bit 23 is 1) selects
Channel B. If the MIOP onl y has Channel A, the
odd address is preempted and reserved.

b. A SIGMA 9 HSRIOP may be assigned an even or
an odd address. However, the ad9ress cannot be
one that has been reserved for Channel B of an
existing MIOP.

DEVICE CONTROLLER ADDRESSES (BITS 24-31)

There are two types of devi ce controll er addresses. If the
device controller controls a single unit, bit 24 is 0 and
bits 25-31 constitute a single code specifying a particular
combination of device controller (DC) and device. Nor­
ma II y, these codes refer to devi ce con troll ers that dri ve
only a single device, such as a card reader, card punch,
or line printer.

Type 1: Addressing single-unitdevice controllers (bit24=0)

If the device controller (DC) can control more than one
device, bit 24 is a 1 and bits 25-31 are subdivided into a
device controller address (bits 25-27) and a device address
(bits 28-31). This form of I/O addressing is used for de­
vice controllers, such as magnetic tape or rapid access data
(RAD) controllers, that control information exchange with
onl y one devi ce at a ti me from a set of as many as
16 devices.

Type 2: Addressing multiunit device controllers (bit 24 = 1)

SIGMA 9 MIOPs permit multiunit device controllers to be
installed into the first eight subchannels of Channel A and
Channel B.

I/O UNIT ADDRESS ASSIGNMENT

Device controller numbers are normally assigned to an lOP
in numerical sequence, beginning with zero and continuing
through the highest number recognized by the lOP. In the
case of multiunit device controllers, the device controller
number must be in the range XIOI through XI71 because the
I/O address field structure allows for a 3-bit multiunit

Input/Output Instructions 113

device controller number. In the case of si ngle-unit device
controllers, any of the avai lable numbers in the range X'O'
through X'lF' may be assigned to the device controller,
provided that the same number has not already been as­
signed to a multiunit device controller. For example, if
device controller number X'O' is assigned to a magnetic
tape unit controller, the number X'O' cannot also be used
for a card reader (although the coding of the I/O address
field would be different in bit posi tion 24).

1/0 STATUS RESPONSE

All I/O instructions result in the condition code bits (CC 1-
CC3) being set to denote the nature of the I/O response.
By coding the R field of the I/O instruction, additional
I/O status information may be loaded into either two, one,
or no general registers. If the R field is coded with a zero,
no additional I/O status information will be returned. If
the R field is coded with an odd value, one "word" of ad­
ditional I/O status information will be loaded into the
specified general register. If the R field is coded with an
even (and nonzero) value, two "words" of additional I/O
status information will be loaded into register R and regis­
ter Rul. However, the requested additional I/O status
information will not be returned to the specified general
registers if the I/O address of the I/O instruction was not
recognized, or the addressed device controller is attached
to a "busy" lOP, or if a memory parity error or data bus
fault was detected when the lOP read the CPU/lOP com­
munication locations in main memory. The format of the
additional I/O status information that is loaded into the
general registers for all I/O instructions, except AIO, is
shown below.

Word into register R when R is even and not 0:

Word into register Ru 1 when R is even and not 0; or word
in R when R is odd:

Subchannel Status. See II General Registers, Subchannel
Status Response Bits".

Current Command Doubleword Address. After the addressed
device has received an order, this field contains the 21
high-order bits of the main memory address for the command
doubleword currently being processed for the addressed
device.

Status. The meaning of this field depends on the particular
I/O instruction being executed and upon the selected I/O
device (see Table 13).

Byte Count. After the addressed device has received an
order, this field contains a count of the number of bytes
yet to be transmitted by the operation called for by the
order.

114 Input/Output Instructions

SID START INPUT/OUTPUT
(Word index alignment, privileged)

Instruction Register

General Register 0

START INPUT/OUTPUT performs the following:

1. Initiates an input or output operation.

2. Specifies which lOP, channel, device controller,
and input/output device is to be selected (bits 19-31
of the effective virtual address of the instruction word).

3. Specifies the address of the first command doubleword
for the subsequent I/O operation (bits 11-31 of gen­
eral register 0).

4. Specifies how much additional status information is to
be returned from the I/O system (R field, bits 8-11,
of instruction word).

5. Specifies which general registers are to be loaded with
the requested status information (R field, bits 8-11, of
instruction word).

General register 0 is temporarily dedicated during SIO in­
struction execution and must contain the doubleword mem­
ory address of the first command doubleword specifying the
operation to be started. The required address information
must be in general register 0 when the SIO is executed.

ST ATUS INFORMATION FOR SIO

Status information for an SIO is always returned via condi­
tion codes (CC1-CC3). Additional information may be
returned into one or two general registers only if programmed
(R field has a nonzero value) and if CCl is O.

Affected: (R), (Rul), CC1, CC2, CC3

The meaning of the condition code during an SIO instruc­
tion is:

2 3 4 Meaning

000

o 0

o 0

I/O address recognized and SIO accepted.

I/O address recognized and SIO accepted;
however, status i nformati on in genera I reg­
isters is incorrect.

I/O address recogni zed but SIO not
accepted.

Position and State in Register Ru1

Device Status Byte

0 2 3

0 0
0 1
1 0 -
1 1

0
1

4 5 6 7

00-
o 1
1 0
1 1

o

Position and State i.n Register R

Devi ce Status Byte

o 2 3 456 7

Table 13. Status Response Bits for I/O Instructions

Operational Status Byte

8 9 10 11 12 13 14 15

Operational Status Byte

8 9 10 11 12 13 14 15

o
o -

o

Signifi cance for
SIO I HIO, and TIO

interrupt pending
devi ce ready
device not operational
device unavailable
device busy
devi ce manua I
device automatic

device unusual end
devi ce controll er ready
device controller not operational
device controller unavailable
device controller busy
reserved

incorrect length
transmission data error
transmission memory error
memory address error

lOP memory error
lOP control error
lOP halt
High-speed RIOP busy

Significance for AIO

data overrun

unique to the device and
the device controller

incorrect length
transmission data error
zero byte count interrupt
channel end interrupt

unusual end interrupt

) reserved

Significance
for TDV

data overrun

unique to the
devi ce and the
devi ce control I er

same as for
SIO, HIO I and
TIO

Input/Output Instructions 115

a

2 3 4 Meaning

a a

a

a

I/O address recogni zed but 510 not accepted
because device controller or device is busy
and status information in general registers is
incorrect.

I/O address recogni zed but devi ce controi I er
is attached to a busy RIOP or an MIOP oper­
ating in the "burst" mode; no status informa­
tion is returned to general registers.

Not possibl e.

I/O address not recognized and 510 not
accepted; no status i nformati on returned to
general registers.

I/O address not recognized and 510 not
accepted; no status information returned to
general registers because a memory parity
error or a bus check faul t occurred when the
lOP read the CPu/IOP communication loca­
tions in main memory or a memory parity
error was detected when writing into the com­
munication locations.

GENERAL REGISTERS

If the R field of the 510 instruction contains a 0, no status
information will be loaded into any of the general registers.
If the R field is coded with an odd value, then the desig­
nated register will be loaded with status information. If
the R field is even and nonzero, then both the R register
and the R + 1 register wi II be loaded with status informa­
tion. The format for the information loaded into the gen­
eral registers is shown below:

Register R (if R field is even and nonzero)

Subchannel
status

Status Response Bits

Bit
Posi tion Function

a Always set to zero.

Bus Check Fault. This bit is set to 1 if a data
transmission error occurs when an lOP is per­
forming a main memory read cycle.

116 Input/Output Instructions

Bit
Position Function

2

3-7

8-10

11-31

Control Check Fault. This bit is set to 1 when
a parity error occurs during a subchannel opera­
tion within the lOP.

AI ways set to O.

Always set to O.

Contain the current command doubleword
address decremented by one. This address is
currently stored in the lOP.

Register R (if R field is odd) or register Ru 1 (if R field is
even and nonzero)

Status Response Bits (see T abl e 13)

Bit
Positi on Function

a

1,2

Interrupt Pending. If this bit is 1, the ad­
dressed device has requested an interrupt and
the interrupt has not been acknowl edged by
an AIO instruction. Device interrupts can be
achieved by coding the flag portion of the
I/O command doubleword. Device interrupts
can also be achieved for certain devices by
using M modifiers in the basi c order to the de­
vice (M bits in the Order portion of the com­
mand doubleword). In either case, the device
will not accept a new 510 instruction until the
interrupt-pending condition is cleared (i. e. ,
the condi ti on code setti ng for the 510 i nstruc­
tion wi II indicate "510 not accepted" if the
interrupt-pending condition is present in the
addressed device).

Device Condition. If bits 1 and 2 are 00
(device "ready"), all device conditions re­
quired for proper operation are satisfied. If
bits 1 and 2 are 01 (device "not operational"),
the addressed device has developed some con­
dition that will not allow it to proceed; in
either case, operator intervention is usually
required. If bits 1 and 2 are 10 (device
"unavailable"), the device has more than one
channel of communi cation avai lable and it is
engaged in an operation controlled by an lOP
other than the one specified by the I/O address.
If bits 1 and 2 are 11 (device "busy"), the de­
vice has accepted a previous 510 instruction and
is already engaged in an I/O operation.

Bit
Position

3

4

5,6

Function

Device Mode. If this bit is 1, the device is in
the lIautomatic ll mode; if this bit is 0, the de­
vice is in the IImanual ll mode and requires
operator intervention. This bit can be used in
conjunction with bits 1 and 2 to determine the
type of action required. For example, assume
that a card reader is able to operate, but no
cards are in the hopper. The card reader would
be in state 000 (device IIreOdyll (but manual
intervention required), where the state is indi­
cated by bits 1, 2, and 3 of the I/O status
response. If the operator subsequently loads
the card hopper and presses the card reader
START switch, the reader would advance to
state 001 (device II ready" and in automatic
operation). If the card reader is in state 000
when an SIO instruction is executed, the SIO
would be accepted by the reader and the
reader would advance to state 110 (device
"busyll, ,but operator intervention required).
Should the operator then place cards in the
hopper and press the START switch, the card
reader state would advance to 111 (device
"busyll and in lIautomatic" mode), and the in­
put operation would proceed. Should the card
reader subsequently become empty (or the
operator press the STOP switch) and command
chaining is being used to read a number of
cards, the card reader would return to state 110.
If the card reader is in state 001 when an SIO
instruction is executed, the reader advances
to state 1-11, and the input operation continues
as normal. Should the hopper subsequently be­
come empty (or should the operator press the
card reader STOP switch) and command chain­
ing is being used to read a number of cards,
the reader would go to state 110 until the
operator corrected the si tuati on.

Device Unusual End occurred during last
operation. If this bit is 1, the reason for the
indication is an error or a IIfault" condition.
For a fault condition, the device has hal ted at
other than its normal stopping point. In either
case, the device will not automatically re­
quest further action from its device controller.
The specific details of this indication are a
function of the particular device (see the ap­
plicable peripheral reference manual).

Device Controller Condition. If bits 5 and 6
are 00 (device controller "readyll), all device
controller conditions required for its proper
operation are satisfied. If bits 5 and 6 are 01
(device controller IInot operational "), some
condition has developed that does not allow it
to operate properly. In either case, operator
intervention is usually required. If bits 5 and 6
are lQ (device controller "unavailable"), the
devi ce controll er is cu rrentl y engaged in an

Bit
Position

7

8

9

10

11

12

13

14

15

16-31

TID

Function

operation controlled by an lOP other than the
one addressed by the I/O instruction. If bits 5
and 6 are 11 (device controller "busyll), the
devi ce control I er has accepted a previous SIO
instruction and is currently engaged in per­
forming an operation for the addressed lOP.

Unassigned.

Incorrect Length. This bit is set to 1, if incor­
rect length is signaled by the device controller
to the lOP during the previous operation. In­
correct length is caused by a channel end (or
end of record) condition occurring before the
device controller has received a "count done"
signal from the lOP, or is caused by the device
controller receiving a count done signal before
channel end (or end-of-record), e. g., count
done before 80 columns have been read from a
card.

Transmission Data Error. This bit is set to ~

if the device controller or lOP detects a
parity error or data overrun in the trans­
mitted information.

Transmission Memory Error. This bit is set to 1
if a memory parity error is detected during a
data input/output operation.

Memory Address Error. This bit is set to 1 if a
nonexistent memory address is detected during
a chaining operation or a data input/output
operati on.

lOP Memory Error. This bit is set to 1 if the
lOP detects a memory parity error while fetch­
ing a command.

lOP Control Error. This bit is set to 1 if the
lOP detects two successive Transfer in Channel
commands.

lOP Halt. This bit is set to 1 if the lOP has
issued a halt order to the addressed I/O device
because of an error condition.

lOP Busy. This bit is always set to O.

Byte Count. Contain the byte count currently
stored in the lOP.

TEST INPUT/OUTPUT
(Word index alignment, privileged)

Input/Output Instructions 117

TEST INPUT/OUTPUT is used to make an inquiry on the
status of data transmi ssion. The operati on of the sel ected
lOP, device controller, and device are not not affected,
and no operations are initiated or terminated by this in­
struction. The responses to no provide the program with
the information necessary to determine the current status of
the device, devi ce controll er, and lOP, the number of
bytes remaining to be transmitted in the operation, and the
present point at which the lOP is operating in the command
list. If the R field of the no instruction is 0, or if no
I/O address recognition exists, or if the device is attached
to a "busy" HSRIOP, no general registers are affected, but
the condition code is set. If the R field of no is an odd
value, the condition code is set and the I/O status and
byte count are loaded into register R as follows:

The status information has the same interpretation as the
status information returned for the instruction 510 and
shows the I/O status at the time of sampling.

The count information shows the number of bytes remaining
to be transmitted at the time of sampling. If the R field of
the no instructi on is an even value and not 0, the condi­
tion code is set, register R+1 is loaded as shown above, and
register R is loaded as follows:

The current command doubleword address has the same in­
terpretation as for the instruction 510.

Affected: (R), (Ru 1), cc 1, CC 2, CC3

The meaning of the condition code during a no is:

2 3 4 Result of no

a a a

a a

a a

a

a a

I/O address recognized and acceptable 510
is currently possible.

I/O address recognized and acceptable 510
is currently possible; however, status informa­
tion in the general registers is incorrect.

I/O address recognized but acceptable 510
is not currently possible because device con­
troller or device is busy.

I/O address recognized but acceptable 510
is not currently possible because device con­
troll er or devi ce is busy. Status i nformati on
in general registers is incorrect.

I/O address recognized but device controller
is attached to a busy high-speed RIOP or an
MIOP operating in the "burst" mode. No
status information is returned to general
registers.

118 Input/Output Instructions

2 3 4 Result of no

a Not possible.

a I/O address not recognized and no status in­
formation is returned to general registers.

I/O address not recognized and no status in­
formation is returned to general registers be­
cause a memory parity error or a bus check
fault occurred when the lOP read the CPU/
lOP communication locations in main memory
or a memory parity error was detected when
writing into the communi cation locations.

TOV TEST DEVICE
(Word index al ignment, privileged)

TEST DEVICE is used to provide information about a device
other than that obtainable by means of the no instruction.
The operation of the selected lOP, device controller, and
device are not affected, and no operations are initiated or
terminated. The responses to TDV provide the program with
information giving details on the condition of the selected
device, the number of bytes remaining to be transmitted in
the current operation, a'1d the present point at which the
lOP is operating in the command list. If the R field of the
TDV instruction is a or if no I/O address recognition exists,
or if the device is attached to a "busy" HSRIOP, the con­
dition code is set, but no general registers are affected. If
the R field of TDV is an odd value, the condition code is
set and the devi ce status and byte coun t are loaded into
register R as follows:

Status Response Bi ts (see Tabl e 13):

Bit
Position Function

a Data Overrun. This bit is set to 1 if a data over­
run has occurred in the current I/O operation.
A data overrun is a situation wherein the device
controller is ready to transmit data to the lOP
but the lOP has not received the previous data,
or the device controll er requires data but cannot
obtain it from the lOP. In either case, the condi­
tion is caused by an equipment malfunction or by
the total I/O data rate exceeding system limits.

1-7 Unique to the device.

8-15 Same as for bits 8-15 of the status information
for instruction 510.

The count information shows the number of bytes remaining
to be transmitted in the current operation at the time of the
TDV instruction. If the value of the R field of TDV is an

even value and not 0, the condition code is set, register R+ 1 is
loaded as shown above, and register R is loaded as follows:

The current command doubleword address has the ·same
interpretation as for the instruction 510.

Affected: (R), (Rul), CC1, CC2, CC3

The meaning of the condition code during a TDV is:

2 3 4 Result of TDV

0 0 0 I/O address recognized, no device-
dependent condition present, and status in-
formation in general registers is correct.

0 0 I/O address recognized and no device-
dependent condition present; however, status
information in general register is incorrect.

0 0 I/O address recognized and device-dependent
condition is present.

0 I/O address recognized and device-dependent
condition is present but status information in
the general register is incorrect.

0 0 I/O address recognized but device controller
is attached to a busy high-speed RIOP or an
MIOPoperating in the "burst" mode. No status
information is returned to general registers.

0 Not possible.

0 I/O address not recognized and no status in-
formation is returned to the general registers.

I/O address nOT recogn i zed and no status i n-
formation is returned to the general registers
because a memory parity error or a bus check
fault occurred when the lOP read the CPU/lOP
communi cation locations in main memory or a
parity error was detected when writing into
the communication locations.

HIO HALT INPUT/OUTPUT
(Word index alignment} privileged)

tWhen indexing operation code 4F instructions (HIO, RIO,
POLP, POLR), the programmer must make certain that the
summation of the contents of the index register and the I/O
address (bits 19-31 of the instruction word) does not affect
bits 15-17 of the final effective address. When indirect
addressing is used, the contents of the indirect address
location (bits 15, 1.6, and 17) must specify the desired
operation code extension.

HALT INPUT/OUTPUT causes the addressed device to im­
mediately halt its current operation (perhaps improperly,
in the case of magnetic tape units, when the device is
forced to stop at other than an interrecord gap). If the
device is in an interrupt-pending condition, the condition
is cleared.

If the R field of the HIO instruction is 0 or if no I/O ad­
dress recognition exists, no general registers are affected,
but the condition code is set. If the R field is an odd value,
the condition code is set and the following information is
loaded into register R.

The status information returned for HIO has the same inter­
pretation as that returned for the instruction 510 and shows
the I/O status at the time of the halt. The count informa­
tion shows the number of bytes remaining to be transmitted
at the time of the halt. If the R field of HIO is an even
value and not 0, the condition code is set, register R+l is
loaded as shown above, and register R contains the follow­
ing information:

The current command doubleword address has the same in­
terpretation as that for the instruction 510.

The HIO instruction must have zeros in bit positions 15, 16,
and 17 to differentiate it from the RIO, POLP, and POLR
instructions, which also have X'4F' as an operation code
(bits 1-7).

Affected: (R), (Rul), CC1, CC2, CC3

The meaning of the condition code during an HIO instruc­
tion is:

2 3 4 Resu I t of HI 0

000

o 0

o 0

o

o 0

I/O address recognized, device controller
not busy and status information in general
registers is correct.

I/O address recognized, device controller
not busy but status information in general
registers is incorrect.

I/O address recognized but device controller
was busy at the time of the HIO.

I/O address recognized but device controller
was busy at the time of the HIO and the
status information in the general registers is
incorrect.

I/O address recognized but device controller
is attached to a busy high-speed RIOP or an
MIOP operating in the "burst" mode. No sta­
tus information is returned to general registers.

Input/Output Instructions 119

2 3 4 Result of HIO

o Not possible.

RIO

o I/O address not recognized.

I/o address not recognized; instruction ter­
minated because a memory parity error or a
bus check faul t was detected when reading
CPU/lOP communication locations in main
memory or a memory pari ty error was de­
tected when writing into the communication
locations.

RESET INPUT/OUTPUT
(Word index alignment} privileged)

31

RESET INPUT/OUTPUT causes the selected lOP to generate
an I/O reset signal to all devices attached to it. In addi­
tion to the operation code of X'4F ' , bits 15, 16, and 17
must be coded as 001, respectively.

An RIO instruction resets the selected lOP in the same man­
ner as the I/O RESET switch on the Processor Control Panel
(PCP). However, unlike the switch, the RIO instruction
resets only the addressed lOP and may be controlled by the
executi ng program.

Processor addresses (bits 19-23) having values of X'l C ~
X'ID', X'IE', and X' IF' are reserved for CPUs in a multi­
processor system. Addresses between XIOOI to X'l C may
be assigned to other processors in the system. An RIO in­
struction addressed to a CPU is used to reset that CPU only
in a special case. This special case is the result of a
double fault (described in the liT rap System II , Chapter 2).
When the double fault occurs, the CPU raises the Processor
Fault Interrupt (PFI), loads the error status register, and
goes to a PCP idle state. The CPU that responds to the
PFI will use the POLP or POLR instruction to determine the
source of the PFI. The error status may be logged (as pro­
grammed). The responding CPU may then issue an RIO in­
structi on to the "faulted" CPU, which resets and forces
execution to start at location X'26 1

•

Status information is returned only in the condition code
bits.

Affected: CC1, CC2, CC3.

2 3 4 Resu I t of RIO

o 0 0 I/O address recogni zed.

o I/O address not recognized.

POLP POLL PROCESSOR
(Word index alignment} privileged)

t
See footnote to HIO instruction.

120 Input/Output Instructions

POLL PROCESSOR causes the addressed processor to return
processor fault status in bits 24 to 29 of register R. In addi­
tion to the operation code of X'4F', bits 15, 16, and 17
must be coded as 010, respectively.

Affected: (R), CC1, CC2, CC3

Condition code settings are as shown below:

2 3 4 Result of POLP

000 Processor fau It interrupt not pendi ng.

o

POLR

o Processor fault interrupt pending.

o Processor address not recognized.

POLL AND RESET PROCESSOR
(Word index alignment} privileged)

POLL AND RESET PROCESSOR causes the selected processor
to return processor faul t status and condition code val ues in
the same manneras the POLP. However, the POLRalso resets
and clears the Processor Fault Interrupt signal and the error
status register. In addition to the operation code of X'4F',
bits 15, 16, and 17 must be coded as 011, respectively.

Affected: (R), CC1, CC2, CC3

Condition code settings for the POLR instructions are:

2 3 4 Result of POLR

o 0 0 Processor fault interrupt not pending.

o 0 - Processor fault interrupt pending.

AIO

o Processor address not recognized.

ACKNOWLEDGE INPUT/OUTPUT INTERRUPT
(Word index al ignment, privi leged)

ACKNOWLEDGE IN PUT/OUTPUT INTERRUPT is used to
acknowledge an input/output interrupt and to identify the
I/O unit that is causing the interrupt and why. If more than
one device has an interrupt pending, the highest priority
requesting device will respond to the AIO. Bits 19-23 of
the effective virtual address of the AIO instruction (the pro­
cessor portion of the I/O address field) specify the type of
interrupt being acknowl edged. These bits should be coded
00000 to specify the standard I/O system interrupt acknow­
ledgment (other codings of these bits are reserved for use
with special I/O systems). The remainder of the I/O selec­
tion code field (bit positions 24-31) are not used in the
standard I/O interrupt acknowledgment because the

identification of the interrupt source is one of the responses
of the standard I/o system to the AIO instruction.

Standard I/O system interrupts can be initiated for the fol­
lowing conditions:

Condition

Zero byte count

Channel end

Transmission memory
error

Incorrect length

Memory address error,
lOP memory error, or
lOP control error

Transmission data error

Devi ce unusua I end

lOP halt

Interrupt
Prerequisitet

IZC = 1

ICE = 1

IUE = 1, HTE = 1

IUE = 1, HTE = 1
and SIL = 0

IUE = 1

IUE=l, HTE=l

IUE = 1

IUE = 1

Status
Bit Set

10

11

12

8, 12

12

9, 12

12

12

When a device interrupt condition occurs, the lOP forwards
the request to the CPU interrupt system I/O interrupt level.
If this interrupt level .is armed, enabled, and not inhibited,
the CPU eventua II y acknowl edges the interrupt request and
executes the XPSD instruction in main memory location
X'5C, which leads to the execution of an AIO instruction.

For the purpose of acknowledging standard I/O interrupts,
the lOPs, device controllers, and devices are connected in
a preestablished priority sequence that is customer-assigned
and is independent of the physical locations of the portions
of the I/O system in a particular installation.

If the R field of the AIO instruction is 0 or if no device in­
terrupt request is present, the condition code is set but the
general register is not affected. If the R field of AIO is
not 0, the condition code is set and register R is loaded
with the following information:

tIZC , ICE, IUE, HTE, and SIL refer to flag bits in th~
lOP command doublewords (see Chapter 4).

Status Response Bits (see Table 13):

Bit
Position Function

o Data Overrun.

1-7 These bits are unique to the device.

8 Incorrect Length. As defined for SIO, above.

9

10

11

12

13-18

19-23

24-31

Transmission Data Error. As defined for SIO,
above.

Zero Byte Count Interrupt. This bit is set to 1
if the interrupt on zero byte count flag is 1 and
zero byte count is detected.

Channel End Interrupt. Thi s bi tis set to 1 if the
interrupt at channel end flag is 1 and channel
end is reported by the device to the lOP.

Unusual End Interrupt. This bit is set to 1 if the
interrupt at unusual end flag is 1 and unusual
end is reported by the device to the lOP, or if
lOP halt is signaled to the device controller by
the lOP.

Unassigned. These bits are set to O.

Processor Address. Contain the address of the
respondi ng processor.

Device Controller/Device Address. Contain
the address of the responding device controller.
If bit 24 is 0, bits 25-31 constitute a common
device controller and device code; if bit 24 is 1,
bits 25-27 constitute a device controller code
and bits 28-31 identify a device attached to
that device controller.

The AIO instruction resets the interrupt request signal for
the I/O device responding to the AIO (i. e., the device
identified by bits 19-31 of R).

Affected: (R), CC1, CC2, CC3

Condition code setting for AIO are shown below.

2 3 4 Result of AIO

o 0 0 - Normal interrupt recognized.

o 0 Normal interrupt recognized but a memory
parity error also detected in the status
information.

o 0 - Unusual condition interrupt recognized.

o Unusual condition interrupt recognized and
a parity error was detected in the status
information.

o - No I/O device requesting an interrupt.

Input/Output Instructions 121

4. INPUT jOUTPUT OPERATIONS

In a SIGMA 9 system, input/output operations are primari Iy
under control of one or more input/output processors (lOPs).
This allows the CPU to concentrate on program execution,
free from the time-consulT)ing details of I/o operations.
Any I/o event that requires CPU intervention is brought to
its attention by means of the interrupt system (see Chapter 2).
For a detailed description of SIGMA 9 I/O instructions, see
Chapter 3.

In the following discussion, the terminology conventions
used are: The CPU executes instructions, the lOP eXf~­
cutes commands, and the device controllers and I/O
devices execute orders. To illustrate, the CPU will exe­
cute the START IN PUT/OUTPUT (SIO) instruction to initi­
ate an I/O operation. During the course of an I/O
operation, the lOP might issue a command called Control,
to transmit a byte to a device controller or I/O device that
interprets the byte as an order, such as Rewind.

Each SIGMA 9 lOP operates independently after being
started by a CPU. An lOP automatically picks up a chain
of one or more commands from memory and executes these
commands until the chain is completed or truncated as the
result of an lIunusual end ll condition.

A multiplexor lOP can simultaneously operate up to 32
device controll ers using both Channels A and B. Each
device controller is assigned its own subchannel and chain
of I/O commands. A high-speed RAD lOP (HSRIOP) can
communi cate with up to four Model 7212 RAD storage units.
However, due to its high transfer rate capability, the
HSRIOP remains connected until termination of the data
in/data out sequence.

The fl exible SIGMA 9 I/O structure permits both command
chaining (making possible multiple-record operations) and
data chaining (making possible scatter-read and gather­
write operations) without intervening CPU control. Com­
mand chaining refers to the execution of a sequence of I/O
commands, under control of an lOP, on more than one
physical record. Thus, a new command must be issued for
each physical record even if the operation to be performed
for a record is the same as that performed for the previous
record. Data chain ing refers to the execution of a sequence
of I/O commands, under control of an lOP, that gather (or
scatter) information within one physical record from (or to)
more than one region of memory. Thus, a new command
must be issued for each portion of a physical record when
the data associated with that physical record appears (or is
to appear) in noncontiguous locations in memory. For
example, if information in specific columns of two cards in
a file are to be stored in specific regions of memory, the
I/O command I ist might appear,as follows:

1. Read card, store columns 1-10, data chain.

2. Store columns 11-60, data chain.

3. Store columns 61-80, command chain.

122 Input/Output Operations

4. Read card, store columns 1-40, data chain.

5. Store col umns 41-80.

The SIGMA 9 CPU plays a minor rol e in the execution of
an I/O operation. The CPU-executed program is respon­
sible for creating and storing the command I ist (prepared
prior to the initiation of any I/O operation) and for
supplying the lOP with a pointer to the first command in
the I/O command list. Most of the communication between
the CPU and the I/O system is carried out through memory.

The following is an example of the sequence of events that
occurs during an I/O operation:

1. A CPU-executed program writes a sequence of I/O
commands (doublewords) in memory.

2. The CPU executes the START IN PUT/OUTPUT (SIO)
instruction and furnishes the lOP with a 13-bit I/O
address (designating the device to be started) and a
21-bit first command address (designating the actual
memory doubleword location where the first command
for this device is located). At this point, either the
device is started (if in the "ready" condition with no
device interrupt pending) oran instruction reject occurs.
The CPU is informed by condition code settings which
of the two alternatives has occurred. If the SIO
instruction is accepted, the command counter portion
of the lOP register associated with the designated
device controller is loaded with the first command
address. From this time until the full sequence of I/O
commands has been executed, the main program of the
CPU need play no role in the I/O operation. At any
time, however, the CPU may obtain status information
on the progress of the I/O operation without interfering
with it.

3. The device is now in the IIbusy" condition. When the
device determines that it has the highest priority for
access to the lOP, it requests service from the lOP
with a service call. The lOP obtains the address of
the fi rst command doub I eword of the I/O sequence
(from the command counter associated with this
device). The lOP then fetches the I/O command dou­
bleword from memory, loads the doubleword into another
register associated with the device, and transmits the
first order (extracted from the command doubleword)
to it.

4. Each command counter contains the memory address of
the current I/O command in the sequence for its
device. When the device requires further servicing,
it makes a request to the lOP, which then repeats a
process simi lar to that of step 3.

5. If a data transmission order has been sent to a device,
control of the transmission resides in it. As each char­
acterisobtained bythel/Odevice, thelOPissignaled

that data is avai lable. The lOP uses the information
stored in its own registers to control the information
interchange between the I/O device and the memory,
on either a word-by-word or character-by-character
basis, depending on the nature of the device.

6. When all information exchanges cal led for by a single
I/O command doubleword have been completed, the
lOP uses the command counter to obtain the next com­
mand doubleword for execution. This process continues
until all such command doublewords associated with the
I/O sequence have been executed.

OPERATIONAL COMMAND DOUBLEWORDS

Operational command doublewords have the following
format:

ORDER

Bit positions 0 through 7 of the command doubleword con­
tain the I/O order for the device controller or device. The
I/O orders are shown belowt . Bits represented by the .Ietter
"M II specify orders or special conditions to the device and
are unique for each type of device.

Bit positions
0 1 2 3 4 5 6 7 Order

M M M M M M 0 Write

M M M M M M 0 Read

M M M M M ·M Control

M M M M 0 0 0 Sense

M M M M 0 0 Read Backwa rd

Write. The Write order causes certain device controllers
to initiate an output operation. Bytes are read in ascending
sequence from the memory location specified by the memory
byte address field of the command doubl eword. The output
operation continues until the device signals IIchannel end ll

,

or unti I the byte count is reduced to 0 and no further data
chaining is specified. Channel end occurs when the device
has received all information associated with the output
operation, completed all checks, and no longer requires the
use of lOP faci I ities for the operation. Data chaining is
described later in this chapter.

tNot all I/O devices recognize all the orders shown. See
the particular XDS SIGMA peripheral reference manual for
orders applicable to that device.

Read. The Read order causes certain device controllers to
initiate an input operation. Bytes are stored in memory in
ascending sequence, beginning at the location specified by
the memory byte address field of the command doubleword.
The input operation continues until the device signals chan­
nel end, or until the byte count is reduced to 0 and no data
chaining is specified. Channel end occurs when the device
has transmitted all information associated with the input
operation and no longer requires the use of lOP facilities
for the operation.

Control. The Control order is used to initiate special oper­
ations by certain devices. For magnetic tape, it is used to
issue orders such as Rewind, Backspace Record, Backspace
File, etc. Most orders can be specified by .the M bits of
the Control order; however, if additional information is
required for a particular operation (e. g., the starting address
of a disk seek), the memory byte address field of the com­
mand doubleword specifies the starting address of the bytes
that are to be transmitted to the device controller for the
additional information. When all bytes necessary for the
operation have been transmitted, the device controller sig­
nals channel end.

Sense. The Sense order causes certain devices to transmit
one or more bytes of information, describing its current
state. The bytes are stored in memory in ascending sequence,
beginning with the address specified by the memory byte
address field of the command doubleword. The number of
bytes transmitted is a function of the device and the condi­
tion it describes. The Sense order can be used to obtain the
current sector address from a disk or RAD storage unit.

Read Backward. The Read Backward order causes certain
devices (at present, 9-track magnetic tape units) to be
started in reverse, and bytes to be transmitted to the lOP
for storage into memory in descending sequence, beginning
at the location specified by the memory byte address field
of the command doubl eword. In all other respects, Read
Backward is identical to Read, inc! uding reducing the byte
count with each byte transmitted.

MEMORY BYTE ADDRESS

For all operational I/O command doublewords, bit positions
8-31 of the doubleword provide a 24-bit memory byte
address, designating the memory location for the next byte
of data. For all orders other than Read Backward, this field
(as stored in an lOP register) is incremented by 1 as each
byte is transmitted in the I/O operation; for the Read Back­
ward order, the field is decremented by 1 as each byte is
transmitted.

FLAGS

For all operational I/O command doublewords, bit positions
32-39 of the doubleword provide the lOP with eight flags
that specify how to handle cnaining, error, and interrupt
situations.

Operational Command Doubleword 123

The three flags (IZC, ICE, and IUE) pertaining to lOP
interrupt action control whether the lOP will request an
I/O interrupt to be triggered when a specified condition
occurs during an I/O operation. These flags do not affect
the I/O interrupt I evels. Furthermore, in order for the flags
to be effective, the I/O interrupt level (X I 5C') must first
be placed in the desired state (i. e., armed and enabled)
via interrupt write control instructions (mode 1).

The functions of the eight flags are explained below.

Bit
Position Function

32 (DC) Data chain. If this flag is 1, data chaining is
called for when the current byte count is
reduced to O. The next command doubleword is
fetched and loaded into the lOP register asso­
ciated with the device controller, but the new
order code is not passed out to the device con­
troller; thus, the operation called for by the
previous order is continued. (Except for Transfer
in Channel command doublewords, which are
explained later in this chapter, the new command
doubleword is used only to supply a new memory
address, a new count, and new flags.) If the
data chain flag is 0, no further data chaining is
called for. Channel end is initiated either by
the device running out of information, or by the
byte count being reduced to O. At channel end,
the device may accept a new 510 instruction,
provided that a device interrupt is not pending
and no "fault" condition exists.

33 (IZC) Interrupt at zero byte count. If this flag is 1,
the lOP requests the I/O interrupt (location
X I 5C') to be triggered when the byte count of
this command doubleword (as stored in the lOP
register) is reduced to O. An AIO instruction
executed after the interrupt is acknowledged
resul ts in a 1 in bit position 10 of register R
(status information) to indicate the reason for
the interrupt.

34 (CC) Command chain. If this flag is 1, command
chaining is called for when channel end occurs.
If the previous operation did not terminate with
a "fault" or "unusual end" condition, the next
command doubleword is fetched and loaded into
the lOP register associated with the device con­
troller, and the new order code is passed out to
the device controller. If the CC flag is 0, no
further command chaining is called for. If both
data and command chaining are called for in the
same command doubleword, data chaining occurs
if the byte count is reduced to 0 before channel
end, and command chaining occurs if channel
end occurs before the byte count is reduced to O.

35 (ICE) Interrupt at channel end. If this flag is 1, the
lOP requests the I/O interrupt (location XI 5C')
to be tri ggered when channel end occurs for the
operation being controlled by this command

124 Operational Command Doubleword

Bit
Position

35 (ICE)
(cont.)

Function

doubleword. An AIO instruction executed after
the interrupt is acknowledged results in a 1 in
bit position 11 of register R (status information)
to indicate the reason for the interrupt. If the
ICE flag is 0, no interrupt is requested.

36 (HTE) Halt on transmission error. If this flag is 1, any
error condition associated with data transmission
(transmission data error, transmission memory
error, incorrect length error) detected in the
device controller or lOP results in halting the
I/O operation being controlled by this command
doubleword. If the HTE flag is 0, an error con­
dition does not cause the I/O operation to halt,
al though the error conditions are recorded in the
lOP register and returned as part of the status
information for the instructions 510, HIO, and
no.

The HTE flag must be coded identically in every
command doubleword associated with the same
physical record. This means that when data
chaining occurs, the HTE flag in the new lOP
command doubleword must be the same as the
HTE flag in the previous lOP command double­
word. This restriction applies to data chaining
only, and not to command chaining.

37 (IUE) Interrupt on unusual end. If this flag is 1, the
device controller requests the I/O interrupt
(location XI 5C') to be triggered when a "fault"
condition or unusual termination is encountered.
A fault is a condition requiring the device to
halt, irrespective of the coding of the HTE flag.
Exampl es of faul ts a re torn magnetic tape and
jammed cards. When unusual termination is
detected by the device or lOP, further servicing
of the commands for that device is suspended.
An AIO instruction executed after the interrupt
is acknowledged results in a 1 in bit position 12
of register R (status information) to indicate the
reason for the interrupt. If the IUE flag is 0, no
interrupt is requested.

38 (51 L) Suppress incorrect length. If this flag is 1, an
incorrect length indication by the device con­
troll er is not to be classified as an error by the
lOP, al though the lOP retains the incorrect
length indication and provides an indicator (bit 8
of register Ru 1, the status response for 510, HIO,
AIO, and nO) to the program. If the SIL flag
is 0, an incorrect length is considered an error
and the lOP performs as specified by the HTE
and IUE fl ags. Incorrect length is caused by a
"channel end" condition occurring before the
device controller has received a "count done"

Bit
Position

38 (SIL)
(cont.)

39 (S)

Function

signal from the lOP, or is caused by the device
controller receiving a count done signal before
end of record, e. g., count done before 80 col­
umns have been read from a card. Normally, a
count done signal is sent to the device control­
ler by the lOP to indicate that all data transfer
associated with the current operation has been
completed. The lOP is capable of suppressing
an error condition on incorrect length, since
there are many situations in which incorrect
length is a legitimate condition and not a true
error.

Skip. If th is flag is 1, the input operation (Read
or Read Backward) controlled by this command
doubleword continues normally, except that no
information is stored in memory. When used in
conjunction with data chaining, the skip opera­
tion provides the capability for selective reading
of portions of a record.

If the S flag is 1 for an output (Write) operation,
the lOP does not access memory, but transmits
zeros as data instead (i. e., the lOP transmits
the number of X·OO· bytes specified in the byte
count of the command doubleword). This allows
a program to punch a blank card (by using the
S bit and a Punch Binary order with a byte count
of 120) without requiring memory access for
data. If the S flag is 0, the I/O operation
proceeds norma II y ..

BYTE COUNT

Forall operational I/O command doublewords, bit positions
48-63 of the doubleword provide for a 16-bit count of the
number of bytes to be transmitted in the I/O operation;
thus, 1 to 65,536 bytes (16,384 words) can be specified
for transfer before command or data chaining is required.
This field (as stored in an lOP register) is decremented by
1 after each byte is transmitted in the I/O operation; thus,
it always contains a count of the number of bytes to be
transmitted and this count is returned as part of the response
information for the instructions, SIO, HIO, no, and
TDV. An initial byte count of a is interpreted as 65,536
bytes.

CONTROL COMMAND DOUBLEWORDS

In addition to the operational command doubleword, there
are two control command doublewords with different formats
that provide control information for the lOP.

The Transfer in Channel command doubleword has the
foil owi ng format:

Transfer in Channel. The Transfer in Channel command is
executed within the lOP and has no direct effect on any of
the I/O system elements external to the addressed lOP. The
primary purpose of this command is to permit branching
within the command I ist so that the lOP can, for example,
repeatedly transmit the same set of information a number of
times. When the lOP executes the Transfer in Channel
command, it loads the command counter for the device
controller it is currently servicing with the next command
address field of the Transfer in Channel command, loads
the new command doubleword specified by this address into
the lOP registers associated with the device controller, and
then executes the new command. (Bit positions 0-3, 8-10,
and 32-63 of the command doubleword for Transfer in Chan­
nel are ignored.) Transfer in Channel thus allows a com­
mand I ist to be broken into noncontiguous groups of
commands. When used in conjunction with <:ommand chain­
ing, Transfer in Channel facilitates the control of devices
such as unbuffered card punches or unbuffered I ine printers.
The current flags are not altered during this command; thus,
the type of chaining called for in the previous command
doubleword is retained until changed by a command double­
word following Transfer in Channel.

For example, assume that it is desired to present the same
card image twelve times to an unbuffered card punch. The
punch counts the number of times that a record is presented
to it and, when twel ve rows have been punched, causes
the lOP to skip the command it would be executing next.
Thus, a command list for punching two cards might look
like the following example:

Location

A

B

Command

Punch row for card 1, command chain.

Transfer in Channel to A.

Punch row for card 2, command chain.

Transfer in Channel to B.

Stop.

The Transfer in Channel command also can be used in con­
junction with data chaining. As one example, consider a
situation often encountered in data acquisition appl ications,
where data is transmitted in extremely long, continuous
streams. In this case, the data can be stored alternately in
two or more buffer storage areas so that computer processing

Control Command Doubleword 125

can be ca rri ed out on the data in one buffer wh i I e add i ti ona I
data is being input into the other buffer. The command list
for such an appl ication might look I ike the foil owing
example:

Location

A

Command

Read data, store into buffer 1, data chain.

Store into buffer 2, data chain.

Transfer in Channel to A.

If the lOP encounters two successive Transfer in Channel
commands, this is considered an lOP control error, resulting
in the lOP setting the lOP control error status bit (bit 13
of register Ru 1) and issuing an "lOP Hal t" signal to the
device controller. The lOP then halts further servicing of
this command list.

126 Control Command DoubJeword

The Stop command doubJeword has the following formats:

Stop. The Stop command causes certain devices to stop,
generate a "channel end" condition, and also request the
I/O interrupt (location X'5C) to be triggered if bit 0 in
the Stop command is a 1. An Ala instruction executed
afterthe interrupt is acknowledged results in a 1 in bit posi­
tion 7 of register R (status information) to indicate the rea­
SQl1 for the interrupt. (Bit positions 32-39 of the command
doubleword for Stop must be zero; bit positions 8-31 and
40-63 are ignored). The Stop command is primarily used
to terminate a command chain for an unbuffered device,
as illustrated in the first example given for the Transfer in
Channel command.

5. OPERATOR CONTROLS

PROCESSOR CONTROL PANEL

The SIGMA. 9 processor control panel (PCP) is shown in
Figure 11. The controls and indicators are divided into two
sections. The upper section l which is labeled MAINTE­
NANCE SECn ONI contains most of the controls and indi­
cators used by maintenance personnel. The DISPLAY
FORMAT indicator and FORMAT SEL switch-located in the
lower section are also primarily used by maintenance per­
sonnel. All other controls and indicators located in the
lower section of the PCP are normally used by operating
personnel to loadl executel and troubleshoot programs.

A three-position rotary switch l located in the upper left­
hand corner and labeled MPCU/LOCAL NORM/LOCAL
MAINTI is a control mode selector for the PCP. It is set

~~<'; ..

,"" ..•

either to the LOCAL NORM position for normal operations
or to the LOCAL MAINT position for maintenance operations.
The MPCU position is reserved for future use. Hereafter

l

this switch will be referred to as the Control Mode switch.

CONTROL MODE

When the Control Mode switch is in the LOCAL MAINT
position l all switches on the control panel are enabl ed.
When the Control Mode switch is in the LOCAL NORM
position l all switches are enabled except the following:

1. The FORMAT SEL switch is disabled and forced to
appear in the NORMAL position l regardless of the
position of that switch.

EX! tHO

-.. ,.J
'------------.HoCf ~DDRlSS--------------' ::::. .""". '.,

i £HSP'tA¥

[lXXX I XXIXX! XI I J IX I X IX 11"1'1 X'IXXIX]

ft···",
I I; "I ~ I·' '" I.

C.~:l'''------________ ---I

Figure 11. Processor Control Panel

Ope rat~r Contro Is 127

2. The S NAP switches are disabl ed.

3. The EXT DIO switch is disabled.

4. The CLOCK MARGINS switch is disabled and forced
to appear in the NORM position.

5. The CLOCK MODE switch is disabled and forced to
appear in the CONT position.

6. The SCAN switches are disabled.

POWER

The POWER switch controls ac power to the central pro­
cessor and to units under its direct control. The POWER
indicator is I ighted when ac power is on.

MEMORY CLEAR

The MEMORY CLEAR switch clears all CPU memory. When
this switch is pressed, the SCAN light illuminates and
remains on until all memory is cleared. The contents of
the general registers remain unaltered during the operation.
It is recommended that CPU RESET be pressed before using
the MEMORY CLEAR switch. Homespace bias is automati­
cally suppressed during the clear operation.

SYS RESET

The SYS RESET (system reset) switch performs the combined
functions of the CPU RESET switch and the I/O RESET switch.
The SYS RESET switch also initial izes all memories con­
nected to the system. The initial ization of memaries does
not change the contents of any memory locations; only
memory port logic is reset.

I/O RESET

The I/O RESET switch initial izes the standard input/output
system. When the switch is pressed, all peripheral devices
under control of the centra I processor are reset to the
"ready" condition, and all status, interrupt, and control
indicators in the input/output system are reset. The I/O
RESET switch does not affect the central processor.

LOAD

The LOAD switch is active only when the COMPUTE switch
is in the I DLE position. When this momentary action switch
is pressed, a load program is written into memory locations
X' 22 1 through X' 2B ' for an input operation that uses the
peripheral unit selected by the UNIT ADDRESS switches.
CPU RESET or SYSTEM RESET must be performed before
using this switch.

Detailed loading operation is described in the section
Ii Loadi ng Operation ".

128 Processor Contro I Pane I

UNIT ADDRESS

Four UNIT ADDRESS switches select the peripheral unit to
be used in the loading process. The two switches on the
left designate an input/output processor (lOP). The left­
most switch has two positions, numbered 0 and 1. The next
switch has 16 positions, numbered hexadecimally 0 through F.
The two rightmost switches each have 16 positions, num­
bered hexadecimally 0 through F, wh ich designate the
device controller/device that is under control of the
selected lOP.

SENSE

The four SENSE switches and indicators are monitored under
program control to set the condition code portion of the
program status doubl eword (PSD). When a READ DIRECT
instruction is executed in the internal control mode, the
condition code is set according to the state of the four
SENSE switches. If a SENSE switch is in the set (1) position
(indicator lighted), the corresponding bit of the condition
code is set to 1; if a SENSE switch is in the reset (0) posi­
tion (indicator unl ighted), the corresponding bit of the con­
dition code is reset to O.

NOT NORMAL

The NOT NORMAL indicator informs the user that normal
program execution may be inhibited by the PCP. The NOT
NORMAL indicator is lighted when any of the following
occurs:

1. The Control Mode switch is in the LOCAL MAINT
position.

2. The DECIMAL OVERRIDE switch is in the OVERRIDE
position.

3. The INTERLEAVE SEL switch is in the DISABLE
position.

4. The CLOCK MODE switch is in the unmarked center
position.

5. The W. D. TIMER switch is in the OVERRIDE position.

6. The PARITY ERROR switch is in the HALT position.

When the NOT NORMAL momentary action switch is
depressed, a control panel lamp test is performed. This test
turns on all indicators in the MAl NTENANCE section, the
DISPLAY lights, and the STOP and NOT HERE lights, with­
out affecting machine operation.

HALT

The HALT indicator is lighted when the CPU is in the IDLE
state.

WAIT

The WAIT indicator is lighted when any of the following
halt conditions exists:

1. The computer has executed a WAIT instruction.

2. The CPU RESET or SYS RESET switch is pressed when
the COMPUTE switch is in the IDLE position.

3. The COMPUTE switch is in the IDLE position and the
SYSTEM POWER switch turns power' on o.r power is
appl ied to the CPU,

RUN

The RUN indi cator is I ighted when the COMPUTE switch is
in the RUN position and no halt condition exists.

PROGRAM STATUS DOUBLEWORD

Two rows of binary indicators display the current PSD.
For convenience, the second portion of the PSD, labeled
PSW2, is arranged above the first portion, label ed PSW1.
The PSD display consists of the indicators shown in
Table 14.

Table 14. Program Status Doubleword (PSD) Indicators

PSD PSD Bit PSD

Portion Indicator Function Position Designation

PSW2 WRITE KEY Write key status 34,35 WK

INTRPT INHIB Interrupt inhibits status

CI Counter interrupt group inhibit 37 CI

II Input/output interrupt group inhibit 38 II

EI External interrupt inhibit 39 EI

MA Mode a I tered 40 MA

EXT ADDR Extension address 42-47 EA

POINTER Register block pointer 58-59 RP

PSWl COND CODE Condition code

1 Condition code 1 0 CCl

2 Condition code 2 1 CC2

3 Condition code 3 2 CC3

4 Condition code 4 3 CC4

FLOAT MODE Floating-point mode controls

SIG Significance trap mask 5 FS

ZERO Zero trap mask 6 FZ

NRMZ Normal ize mask 7 FN

MODE Computer mode and memory map controls

SLY Master/slave mode control 8 MS

MAP Memory map control 9 MM

Processor Contro I Pane I 129

Table 14. Program Status Doubleword (PSD) Indicators (cont.)

PSD PSD Bit PSD
Portion Indicator Function Position Designation

PSW1 TRAP Arithmetic trap mask
(cont.)

DEC Decimal arithmetic fault trap mask 10 DM

AR Fixed-point arithmetic overflow trap mask 11 AM

ASCI ASCII mask 12 AS

INSTRUCTION Instruction address or extension selector/displacement 15-31 IA
ADDRESS

Extension selector

Displacement

INSERT

The INSERT switch permits manual changes to the PSD. The
switch is stationary and inactive in the center (normal)
position and momentary in the upper (PSW2) and lower
(PSW1) positions. When the INSERT switch is moved to the
PSW1 or PSW2 position, the corresponding half of the PSD
is changed, as necessary, and the corresponding indicators
display the information that has been entered from the 32
DATA switches located at the bottom of the control panel.

CPU RESET

The CPU RESET switch initial izes the central processor.
When this switch is pressed, the following operations are
performed:

1. All interrupt levels are reset to the disarmed and dis­
abled state.

2. The ALARM indicators (visual and audio) are reset.

3. All PSD bits are reset except for the INSTRUCTION
ADDRESS.

4. The INSTRUCTION ADDRESS indicators are set to
X'26 1

•

5. The WAIT indicator is set, indicating the CPU is in
the WAIT state.

The CPU RESET switch does not affect any operation that
may be in process in the standard input/output system.

INTERRUPT

The operator uses the INTERRUPT switch to activate the
control panel interrupt. If the control panel interrupt
(level X'5D') is armed when the INTERRUPT switch is

130 Processo r Contro I Pane I

15 ES

16-31 D

pressed, a single pulse is transmitted to the interrupt level,
advancing it to the waiting state. The INTERRUPT indica­
tor is lighted when the control panel interrupt level is in
the waiting state and it remains lighted until the interrupt
level advances to the active state (at which time the
INTERRUPT indicator is turned off). If the control panel
interrupt level is disarmed (or already in the active state)
when the INTERRUPT switch is pressed, no computer or con­
trol panel action occurs. If the control panel interrupt
level advances to the waiting state and the level is disabled,
the INTERRUPT indicator remains lighted until the level is
either enabled and allowed to advance to the active state
or is returned to the armed or disarmed state. The INTER­
RUPT switch is always operative.

ADDRESS STOP

The ADDRESS STOP section of the control panel consists of
two switches, a STOP indicator, and a NOT HERE indicator.

The two ADDRESS STOP switches latch in all positions and
are labeled INST/NORtvVMEM REF and PAGE/WORD.
They are used in conjunction with the SELECT ADDRESS
switches and the COMPUTE switch to cause the CPU to
establ ish a halt condition and turn on the ADDRESS STOP
indicator whenever the CPU accesses an instruction or a
real memory address.

PAGE/WORD

When the PAGE/WORD switch is in the PAGE position, it
causes the address stop feature to ignore the nine least sig­
nificant SELECT ADDRESS switches. In effect, this enables
the address stop feature when any word ina sel ected page
is addressed.

When the PAGE/WORD switch is in the WORD position,
22 SELECT ADDRESS switches specify an address. Note that
although there are 24 SELECT ADDRESS switches, the two
leftmost switches are not used during address stop operations.

INSTR/NORM/MEM REF

When the INST/NORM/MEM REF (instruction/normal/
memory reference) switch is in the NORM position, it is
inactive and the address stop feature is inhibited.

When this switch is in the MEM REF position and the COM­
PUTE switch is in the RUN position, a halt condition occurs
when the CPU accesses a real memory reference address
equal to the address contained by the 22 SE LECT ADDRESS
switches, subject to the constraints of the PAGE/WORD
switch, as described above. The val ue of the I NSTRUC­
TION ADDRESS indicators at the time of the halt is deter­
mined by the sequence of instructions being executed at
the time of memory reference.

When the INSTR/NORM/MEM REF switch is in the INSTR
position and the COMPUTE switch is in the RU N position,
a halt condition occurs when the CPU accesses an instruc­
tion whose virtual address is equal to that contained in the
17 least significant SELECT ADDRESS switches, subject to
the constraints of the PAGE/WORD switch. The I NSTRUC­
TION ADDRESS indicators at the time of the halt normally
will equal the SELECT ADDRESS value, and the instruction
pointed to by the INSTRUCTION ADDRESS will appear on
the DISPLAY indicators.

The ADDRESS STOP hal t condition is reset when the
COMPUTE switch is moved from RUN to IDLE; if the
COMPUTE switch is then moved back to RUN (or to STEP),
the instruction shown in the DISPLAY indicators is the next
instruction executed. No interrupt is allowed to proceed
from the waiting to the active state while the ADDRESS
STOP hal t condition exists.

The ADDRESS STOP function is disabled during the time
that the SNAP is armed.

STOP

The STOP indicator I ights to indicate that the machine has
hal ted due to either an INSTR-ADDRESS STOP or MEM REF­
ADDRESS STOP. The STOP indicator is turned off when
the COMPUTE switch is moved from RUN to IDLE.

NOT HERE

The NOT HERE indicator is I ighted whenever a nonexistent
memory location is referenced. It is automatically reset at
the end of each memory cycle, or when the RESET switch
is depressed.

SELECT ADDRESS

The SELECT ADDRESS switches are used in conjunction
with

1. The ADDRESS STOP switches (INSTR/NORM/MEM
REF and PAGEjWORD) to select the virtual or reol
address at which a program will be halted.

2. The STORE switch to select the location to be altered.

3. The DISPLAY switch to select the word to be displayed.

4. The SCAN MODE switches to establish an upper bound­
ary of the memory scan operation.

5. The SCAN-START ADDR switch to enter a starting
address of the memory scan operation.

Each SELECT ADDRESS switch represents a 1 in the upper
position or a 0 in the lower position.

DISPLAY (SWITCH)

The DISPLAY switch displays the contents of a general regis­
ter or a memory location. The DISPLAY switch is stationary
and inactive in the center (unmarked) position and momen­
tary in the INSTR ADDR and SELECT AD DR positions. When
the switch is moved to the INSTR ADDR or SELECT ADDR
position, the contents of the location pointed to by the
INSTRUCTION ADDRESS indicators or the SELECT ADDRESS
switches, respectively, are shown in the DISPLAY indicators.
The real memory address is modified according to the CPU
mode bits of the PSD.

If the final memory address is nonexistent, the CPU does not
trap and the DISPLAY indicators are indeterminate. The
access protection status of the vi rtual memory does not affect
the operation of the DISPLAY switch.

INSTR ADDR

The INSTR ADDR (instruction address) switch is latching and
inactive in the NORM position, latching in the HOLD posi­
tion, and momentary in the INCRM position.

When the INSTR AD DR switch is in the HO LD position, the
normal process of incrementing the INSTRUCTION ADDRESS
portion of the PSD with each instruction execution is inhib­
ited. With the I NSTR ADDR switch in the HO LD position
and the COMPUTE switch in the RUN position, the instruc­
tion in the location pointed to by the value of the INSTRUC­
TION ADDRESS indicators is executed repeatedly, with the
INSTRUCTION ADDRESS indicators remaining unchanged.
Moving the COMPUTE switch to the momeni-ary STEP posi­
tion while the INSTR ADDR switch is in the HOLD position
causes the instruction in the location pointed to by the value
of the INSTRUCTION ADDRESS indicators to be executed
each time the COMPUTE switch is moved to the STEP posi­
tion. The INSTRUCTION ADDRESS indicators normally
remain unchanged. During HOLD operations, the INSTRUC­
TION ADDRESS may be altered as a result of a trap, inter­
rupt, LPSD, XPSD, or branch instruction.

Each time the INSTR ADDR switch is moved from the NORM
position to the INCRM position, the following operations
are performed:

1. The current value of the INSTRUCTION ADDRESS
indicators is incremented by 1.

Processor Control Panel 131

2. Using the new value of the INSTRUCTION ADDRESS
indicators as a virtual address value (i. e., subject to
the current memory map if the MAP mode indicator is
lighted), the contents of the location pointed to by
the INSTRUCTION ADDRESS are displayed in the
DISPLAY indicators.

If the final memory address is nonexistent, the CPU does
not trap and the DISPLAY indicators are indeterminate.
The access protection status of the virtual address does not
affect the operation of the INSTR ADDR switch.

DISPLAY (INDICATORS)

The 32 DISPLAY indicators may display an instruction, data
word, or maintenance data. When the Control Mode switch
is in the LOCAL NORM position, the FORMAT SEL switch
is forced into the NORMAL mode and the DISPLAY switch,
COMPUTE switch, and I NSTR ADDR switch can be used to
display the contents of a memory location or the current
contents of the internal CPU instruction register.

When the DISPLAY switch is placed in the INSTR ADDR
position, the contents of the location indicated by the
INSTRUCTION ADDRESS indicators are displayed in the
DISPLAY indicators. When the DISPLAY switch is placed
in the SELECT ADDR position, the contents of the location
selected by the SELECT ADDRESS switches is displayed in
the DISPLAY indicators. When the INSTR ADDR switch is
placed in the INCRM position, the I NSTRUCTION ADDRESS
is incremented by one and the contents of the location is
displayed in the DISPLAY indicators.

When the COMPUTE switch is placed in the STEP position,
the contents of the location displayed in the I NSTRUCTI ON
ADDRESS will be executed and the next instruction in the
sequence in the internal CPU instruction register will be
displayed in the DISPLAY indicators.

To display maintenance data, the Control Mode switch must
be in the LOCAL MAINT position, and the FORMAT SEL
switch may be placed in either the CONTROL position or
the REGISTER position to have control words or internal
register contents displayed in the DISPLAY indicators. The
specific control word or internal register selected is con­
troll ed by the thumbwheel adjacent to the roll chart on the
DISPLAY FORMAT.

DISPLAY FORMAT

The DISPLAY FORMAT feature, whichisused by maintenance
personnel, is inactive whenever the Control Mode switch is
in the LOCAL NORM position. A chart comprised of 16
I ines of printed information is mounted on a roller located
directly behind the slot in the panel labeled DISPLAY
FORMAT. Associated with the chart is a 16-position switch
(thumbwheel-actuated) and a 3-position FORMAT SEL
switch, which sel ects various internal registers of the CPU
for display.

132 Processor Contro I Pane I

FORMAT SEL

The 3-position FORMAT SEL (format select) switch is labeled
CONTROL/NORMAL/REGISTER. In the NORMALposition,
the DISPLAY FORMAT and FORMAT SEL features are inac­
tive and the DISPLAY lights show the CPU internal instruc­
tion register. When the FORMAT SEL switch is in the
REGISTER position and the Control Mode switch is in the
LOCAL MAINT position, the contents of the selected inter­
nal register will appear in the DISPLAY indicators. When
the FORMAT SEL switch is in the CONTROL position and
the Control Mode switch is in the LOCAL MAINT position,
specific control information, as indicated by the DISPLAY
FORMAT chart, appears in the DISPLAY indicators.

DATA

The 32 DATA switches alter the contents of the PSD when
used in conjunction with the INSERT switch, or alter the
contents of memory or a general register when used in con­
junction with the STORE switch. Each DATA switch is
latching in both the upper and center positions. In the
center position, a DATA switch represents a 0; in the upper
position, a 1.

STORE

The STORE switch alters the contents of a general register
or a memory location. The switch is stationary and inactive
in the center (unmarked) position and momentary in the
INSTR ADDR and SELECT ADDR positions. When the switch
is moved to the INSTR ADDR position, the current value of
the DATA switches is stored in the location pointed to by
the INSTRUCTION ADDRESS indicators; when the switch is
moved to the SELECT ADDR position, the current value of
the DATA switches is stored in the location pointed to by
the SELECT ADDRESS switches. The address is modified by
the computer mode bits of the PS D. The contents of the
addressed location are altered regardless of write protection.

COMPUTE

The COMPUTE switch controls the execution of instructions.
The IDLE and RUN positionsareboth latching; the STEPposi­
tion is momentary. When the COMPUTE switch is in the IDLE
position, all other control panel switches are operative and the
ADDRESS STOP hal t and the WAIT instruction hal t conditions
are reset (cleared). No interrupts are allowed in this mode.

When the COMPUTE switch is moved from IDLE to RUN,
the RUN indicator is I ighted and the current setting of the
INSTRUCTION ADDRESS indicators is taken as the address
of the next instruction to be executed, regardless of the
contents of the DISPLAY indicators.

When the COMPUTE switch is in the RUN position, the
only operative switches are POWER, INTERRUPT, ADDRESS
STOP, INSTR AD DR (in the HOLD position), and the
switches in the maintenance section except SCAN, EXT
DIO, and SNAP ENTER.

Each time the COMPUTE switch is moved from IDLE to
STEP, the following operations occur:

1. The instruction pointed to by the current val ue of the
INSTRUCTION ADDRESS indicators is executed.

2. The current value of the INSTRUCTION ADDRESS
indicators is incremented by 1. If the "stepped" instruc­
tion (executed by moving the COMPUTE switch from
IDLE to STEP) is a branch instruction and the branch
should occur, the INSTRUCTION ADDRESS indicators
are set to the val ue of the effective' address of the
branch instruction.

3. The instruction in the location pointed to by the new
value of the INSTRUCTION ADDRESS indicators is
displayed in the DISPLAY indicators.

If an instruction is being stepped, all interrupt levels are
temporarily inhibited while the instruction is being exe­
cuted; however, a trap condition can occur while the
instruction is being executed. In this case, the XPSD
instruction in the appropriate trap location is executed as
if the COMPUTE switch were in the RUN position. Thus,
if a trap condition occurs during a stepped instruction, the
PSD display automatically reflects the effects of the XPSD
instruction, and the DISPLAY indicators then contain the
first instructi on of the trap routine.

MAINTENANCE CONTROLS

The controls and indicators located in the MAINTENANCE
SECTION of the PCP, as well as the DISPLAY FORMAT
and FORMAT SEL switches (described previously), are used
primari Iy during computer maintenance and diagnostic
operations.

ALARM

Audio and visual alarms may be used toattract the computer
operator's attention. The alarms are turned on and off
(under program control) by executing a properly coded
WRITE DIRECT instruction. When the visual ALARM indi­
cator is lighted and the AUDIO switch is ON, a 1000-Hz
signal is sent to the computer speaker; when the AUDIO
switch is not in the ON position, the speaker is discon­
nected. (The AUDIO switch does not affect the state of
the visual ALARM indicator.) The ALARM indicator is
reset (turned off) whenever either the CPU RESET or the
SYS RESET switch is pressed or a properly coded WRITE
DIRECT instruction is executed.

The AUDIO switch controls all signals to the computer
speaker, whether from the 1000-Hz signal, or program­
controlled frequency fI ip-flop.

MARGINS

The CPU clock frequency may be changed to val ues Glbove
and below the normal operating values by manually setting

the CLOCK MARGIN switch or by programming via an
appropriate internal WRITE DIRECT instruction. The CLOCK
MARGIN switch overrides program control when set to the
FAST or SLOW position. When set to the NORMAL posi­
tion, clock margins are under program control. The NOT
NORM CLOCK indicator will be lighted whenever the clock
frequency is not normal due to programming or switch set­
tings of FAST or SLOW.

The system voltage margin, for a single processor system,
or the CPU voltage margin, for a multiprocessor system, is
indicated by the VOLTAGE NOT NORM light. The VOLT­
AGE NOT NORM light will be on if any power supply in
the system is on HIGH or LOW MARGINS.

PHASES

The PHASES indicators display certain internal operating
phases of the computer. The PREPARATION indicators dis­
play computer phases during preparation sequences. The
PCP indicators display computer phases during processor con­
trol panel operations. The EXECUTION indicators display'
computer phases during the execution portion of an instruc­
tion cycle. The I NT/TRAP (interrupt/trap) indicators are
individually I ighted when an interrupt or a trap condition
occurs. When the COMPUTE switch is in the IDLE position,
all PHASES indicators are normally off except for the right­
most PCP indicator (indicating the idle phase for processor
control panel functions).

CLOCK MODE

The CLOCK MODE switch controls the internal computer
clock. When the switch is in the CONT (continuous) posi­
tion, the clock operates at normal speed. However, when
the CLOCK MODE switch is in the inactive (center) posi­
tion, the clock enters an idle state and can be made to
generate one clock pulse each time the switch is moved to
the SINGLE STEP position. When the clock is pulsed by
the CLOCK MODE switch, the PHASES indicators reflect
the computer phase during each pulse of the clock.

SNAP

All logic that is displayable on the PCP can be monitored
with the snapshot control logic. Snapshot control logic is
preset (armed) by executing a WRITE DIRECT (Load Snap­
shot Control Register) instruction or, when the COMPUTE
switch is in the ID LE position, by moving the SNAP ENTER
switch to the ENTER position. Moving the ENTER switch
from the latching and inactive center position selects the
following conditions (duplicates the function performed by
the appropriate internal WRITE DIRECT instruction):

1. A clock count number (obtained from DATA
switches 0-7).

2. A register or group of control el ements to be recorded
(obtained from DATA switches 10-14).

Maintenance Controls 133

3. A virtual instruction address (obtained from DATA
switches 15-31).

When the COMPUTE switch is in the RUN position and the
selected virtual address matches the instruction address of
the PSD, the clock counter is decremented by each CPU
clock pulse, starting with the first phase of execution.
When the clock counter reaches a value of one, the
selected logic is clocked by the current selected CPU clock
into a 32-bit "snap" register and the snap condition is reset.
The contents of the "snap" register can then be recorded by
a READ DIRECT instruction under program control or visually
displayed with the use of FORMAT SEL and DISPLAY FOR­
MAT switches. The SNAP STOP switch can be used tostop
the clock at time of the snap condition by setting it to the
ON position. This switch is inactive in the NORM posi­
tion. The halt condition, resulting from the SNAP STOP
switch stopping clock at snap time, can be reset by placing
the STOP switch to the NORM position, which disables the
STOP switch, or by placing the CLOCK MODE switch to
center (unmarked) position, which keeps the clock stopped,
then moving the SNAP STOP switch to the NORM position
and SINGLE STEP the CLOCK MODE switch to reset the
stop on snap condition, and then set the CLOCK MODE
switch to CONT position.

SNAP MODE

The SNAP MODE indicator shows that the snap feature is
armed and waiting to "snap", and is reset only if the snap
has occurred or CPU RESET or SYS RESET has been performed.

MEMORY MODE

MEMORY MODE switches and indicator are comprised of
an INTERLEAVE SE L switch, a PARITY ERROR switch, and
a PARITY ERROR indicator.

INTERLEAVE SE L

When the INTERLEAVE SEL (interleave select) switch is in
the NORM position, memory address interleaving occurs
normally; however, when the switch is in the DISABLE posi­
tion, memory addresses are not interleaved between memory
banks.

PARITY ERROR

The PARITY ERROR switch is inactive in the CONT posi­
tion. When it is set to the HALT position, a parity error
resulting from memory operation will establ ish a CPU halt
condition by stopping the CPU clock at the time the CPU
detects the parity error. At th is time the PARITY ERROR
I ight is on. This condition is removed by CPU RESET, SYS
RESET, or by setting the PARITY ERROR switch to the
CONT position.

134 Maintenance Controls

OVERRIDE MODE

The OVERRIDE MODE portion of the control panel consists
of the W. D. TIMER switch and the DECIMAL switch.

W. D. TIMER

When the W. D. TIMER (watchdog timer) switch is in the
NORM position, the watchdog timer is operative; when
the switch is in the OVERRIDE position, the watchdog timer
is inactive.

DECIMAL

When the DECIMAL switch is in the OVERRIDE position,
the decimal unit appears nonexistent to the CPU. When
the DECIMAL switch is in the NORM position, the switch
is inactive. The switch is latching in both positions.

SCAN

The SCAN portion of the control panel consists of the
MODE switch, SCAN I ight, MEMORY MODE switch, and
START ADDR switch. These controls enabl e the operator to
continuously cycle memory between selected lower and
upper addresses at a rate simulating the faster CPU operation
with memory. Only memory is affected. All the switches
are active only when the COMPUTE switch is in the IDLE
position. Homespace bias is suppressed during the SCAN
operation.

Prior to using this feature, the MAP mode bit of the PSD
must be reset.

The starting address (first address read or modified by the
SCAN operation) is entered by using the START ADDRswitch
in conjunction with the SELECT ADDRESS switches, which
are active only when the COMPUTE switch is in the IDLE
position. Placing the START ADDR switch in the ENTER
position enters the contents of the SELECT ADDRESS switches
into an internal CPU register (P), which designates a starting
address.

The upper address (the last address read or modified by the
SCAN operation) is then set into the SE LECT ADDRESS
switches, and the ADDRESS STOP switch set to the MEM
REF position.

The memory scan operation can be initiated by first placing
the MEMORY MODE switch to DATA (for a store or display)
or CLEAR (only for a store operation), then the MODE switch
to STORE or DISPLAY. When this is performed, the SCAN
operation starts continuously reading from or storing into
consecutive memory locations, as a function of whether the
MODE switch was set to DISPLAY or STORE, respectively.
The SCAN operation begins with the starting address (set
into P), and continues until the real memory address equals
the value of the SELECT ADDRESS switches. Then, if the
ADDRESS STOP switch is set to MEM REF, the scan con­
tinues again from the starting address. If the ADDRESS STOP
switch is in the NORM position, all memory will be scanned.

The scan operation continues indefinitely in this manner
until the MEMORY MODE switch is set to the NORM posi­
tion, which forces the CPU to the IDLE state. The SCAN
I ight is on during the memory scan operation.

During a store scan, if the MEMORY MODE switch is set
to DATA, the contents of the DATA switches are written
into memory. If the MEMORY MODE switch is set to
CLEAR, the memory is cleared in the "operational" mode.

During a display scan, the MEMORY fy\ODE switch must
be in the DATA position. Data from memory is displayed
on the DISPLAY lights when the display is selecting the
CPU bus.

The PARITY ERROR switch can be used during the scan
to hal t the operation on a memory parity error. At the
time of the halt, the memory parity error light is on and
the DISPLAY lights indicate the failing data when the
display is selecting the CPU bus. CPU RESET will reset
this condition.

MODE

The MODE switch is effective only when the COMPUTE
switch is in the IDLE position and the Control Mode
switch is in the LOCAL MAl NT position. This is a three­
position switch, latching in the inactive center position
and momentary in the DISPLAY and STORE positions where
it initiates a memory scan operation in conjunction with the
MEMORY MODE switch.

MEMORY MODE

The MEMORY MODE switch isa three-position (all latching)
switch, which must be set to either the DATA or CLEAR
position, prior to setting the MODE switch to STORE or
DISPLAY to start a scan operation. The memory scan opera­
tion is terminated when the MEMORY MODE switch is
returned to NORM.

START AD DR

The START ADDR switch is effective only when the
COMPUTE switch is in the IDLE position and the Control
Mode switch is in the LOCAL MAINT position. This is a
two-position switch, latching in the center position where
it is inactive, and momentary in the ENTER position where
it enters the state of the SELECT ADDRESS switches into an
internal CPU register (P), which designates the starting
address of the scan.

SCAN

The SCAN indicator is on during memory scan operations
initiated by the MODE switch or the MEMORY CLEAR
switch.

EXT 010

The EXT DIO (external direct input/output) switch controls
the DIO interface directly from the PCP switches. This
switch is active only when the COMPUTE switch is in the
IDLE position.

When the EXT DIO switch is in the momentary RD (read
direct) position, the least significant 16 switches of the
SELECT ADDRESS switches directly control the DIO address
I ines. The read/write direct I ine on the DIO interface is
set to indicate a read direct operation. The read direct
operation is compl eted with the data response returned to
the S NAP register.

The WD (write direct) position is also momentary. Opera­
tions in the WD position are the same as described above for
the RD position, except that the contents of the DATA
switches are sent on the DIO data I ines, and the read/write
direct line indicates a write direct operation.

The EXT DIO switch is inactive in the center position
(latching).

OPERATING PROCEDURES

LOADING OPERATION

This section describes the procedures for initially loading
programs into memory from certain peripheral units attached
to an input/output processor (lOP) in the SIGMA 9 system.
The computer operator may initiate a loading program from
the processor control panel (with the Control Mode switch
in the LOCAL MAINT or LOCAL NORM position).

BOOTSTRAP LOADI NG PROG RAM

The LOAD switch and the UNIT ADDRESS switches prepare
a SIGMA 9 computer for a load operation. When the
LOAD switch is pressed, the foil owing bootstrap program
is stored in memory locations X'22' through X'2B':

Location Contents Symbol ic Form
(Hex.) (Dec.) (Hexadecimal) of Instruction

22 34 22110029 LI, 1

23 35 64100023 BDR, 1

24 36 68000028 BCR, 0 40

25 37 OOOOxxxx
t

tThe XiS in location X'25' represent the value of the UNIT
ADDRESS switches at the time the LOAD switch is pressed.
The values can range from X'OOOO' to X'l FFF'.

Operating Procedures 135

Location Contents Symbol i c Form
(Hex.) (Dec.) (Hexadecimal) of Instruction

26 38 22Oyy015
t

LI,O

27 39 CCOOO025 510,0 *37

28 40 CDOOOO25 TIO,O *37

29 41 69C00022 BCS, 12 34

2A 42 02yyOOA8
t

2B 43 OEOOO058

When the LOAD switch is pressed, the selected peripheral
device is not activated and no other indicators or controls
are affected; on Iy memory is al teredo

LOAD PROCEDURE

To ensure correct loading operation, the following sequence
should always be used to initiate the loading process:

1. Place the COMPUTE switch in the IDLE position.

2. Press the SYS RESET switch.

3. Set the UNIT ADDRESS switches to the address of the
desired peripheral unit.

4. Press the LOAD switch.

5. Place the COMPUTE switch in the RUN position.

After the COMPUTE switch is placed in the RUN position,
in step 5, the following actions occur:

1. The first record on the selected peripheral device is
read into memory locations X'2A' through X'3F'. (The
previous contents of general register 0 are destroyed
as a result of executing the bootstrap program in loca­
tions X'26' through X'29'.)

2. After the record has been read, the next instruction is
taken from location X'2A' (provided that no error con­
dition has been detected by the device or the lOP).

3. When the instruction in location X'2A' is executed,
the unit device and device controller selected for
loading can accept a new 510 instruction.

tThe y's in locations X'26' and X'2A' represent the val ue
of the Homespace bias at the time the LOAD switch is
pressed. Homespace bias is loaded automatically (from
Homespace bias switches) into bit positions 13 through 18
in X'26' and bit positions 10 through 15 in X'2A'.

136 Operating Procedures

4. Further I/O operations from the load unit may be
accompl ished by coding subsequent I/O instructions
to indirectly address location X'25'.

LOAD OPERATION DETAILS

The first executed instruction of the bootstrap program (in
location X'26') loads general register 0 with the double­
word address of the first I/O command doubleword. The
I/O address for the 510 instruction in location X'27' is the
13 low-order bits of location X'25' (which have been set
equal to the load unit address as a resul t of pressing the
LOAD switch). During execution of the 510 instruction,
general register 0 points to locations X'2A' and X'2B' as
the first I/O command doubleword for the selected device.
This command doubleword contains an order that instructs
th-e selected peripheral device to read 88 (X'58') bytes into
consecutive memory locations starting at word location
X'2A' (byte location X'A8'). At the completion of the
read operation, neither data chaining nor command chaining
is called for in the I/O command doubleword. Also, the
Suppress Incorrect Length flag is set to 1 so that an incor­
rect length indication will not be considered an error. (This
means that no transmission error halt will result if the first
record is either less than or greater than 88 bytes. If the
record is greater than 88 bytes, only the first 88 bytes will
be stored in memory.)

After the 510 instruction has been executed, the computer
executes a TIO instruction with the same effective address
as the 510 instruction. The TIO instruction is coded to
accept only condition code data from the lOP. The BCS
instruction in location X'29' will cause a branch to X'22'
(a LOAD IMMEDIATE instruction), if either CCl or CC2
(or both) is set to 1. Execution of the LI instruction at
X'22' loads a count of X'10029' into register 1. The fol­
lowing BDR instruction at X'23' uses this as a "delay" count
before execution of the BCR instruction in X'24', which
unconditionally branches to the TIO in X'28'. Sufficient
delay is introduced between execution of consecutive TIO
instructions when testing the lOP so that excessive inter­
ference with the lOP cannot occur. In normal operation,
CC1 is reset to 0 and CC2 remains set to 1 until the device
can accept another 510 instruction, at which time the next
instruction will be taken from location X'2A'.

If a transmission error or equipment malfunction is detected
by either the device or the lOP, the lOP instructs the
device to halt and initiate an "unusual end" interrupt sig­
nal (as specified by the appropriate flags in the I/O com­
mand doubleword). The "unusual end" interrupt will be
ignored, however, since all interrupt levels have been dis­
armed by pressing the SYS RESET/CLEAR switch prior to
loading. The device wi II not accept another 510 whi Ie the
device interrupt is pending and, therefore, the BCS instruc­
tion in location X'29' will continue to branch to location
X'22'. The correct operator action at this point is to repeat
the load procedure. If there is no I/O address recogn ition of
the load unit, the 510 instruction will not cause any I/O
actionandCC1 will continuetobesetto 1 bytheSIOand TIO
instructions thus causing the BCS instruction to branch.

FETCHING AND STORING DATA

Note: In the following operations, it is assumed that con­
trol bits PSD 9 and PSD 40 are both O. This ensures that
the address designated by the SELECT ADDRESS switches
will be the actual address of a memory location and not a
virtual address.

To fetch data from a memory location and display it:

1. Set COMPUTE switch to IDLE.

2. Set SELECT ADDRESS switches to desired address.

3. Depress DISPLAY switch to SELECT ADDR.

Contents of designated memory location will be dis­
played in the DISPLAY indicators.

To fetch and display data from successive memory locations:

1. Set COMPUTE switch to IDLE.

2. Set DATA switches to desired address.

3. Depress INSERT switch to PSW1.

4. Depress DISPLAY switch to INSTR ADDR.

Contents of first memory location will be displayed in
the DISPLAY indicators.

5. Depress INSTR ADDR switch to INCRM.

Contents of successive memory locations wi II be dis­
played in the DISPLAY indicators for each depression
of the INSTR ADDR switch.

To store data in a designated memory location:

1. Set COMPUTE switch to IDLE.

2. Set SELECT ADDRESS switches to desired address.

3. Set DATA switches to desired storage val ue.

4. Depress STORE switch to SELECT ADDR.

Operating Procedures 137

APPENDIX A. REFERENCE TABLES

This appendix contains the following reference material:

Title

XDS Standard Symbols and Codes

XDS Standard 8-Bit Computer Codes (EBCDIC)

XDS Standard 7-BitCommunication Codes (USASCII)

XDS Standard Symbol-Code Correspondences

Hexadecimal Arithmetic

Addition Table
Multiplication Table
T able of Powers of Sixteen 10
T able of Powers of Ten 16

Hexadecimal-Decimal Integer Conversion Table

Hexadecimal-Decimal Fraction Conversion Table

Table of Powers of Two

Mathematical Constants

XDS STANDARD SYMBOLS AND CODES
The symbol and code standards described in this publication
are appl icable to all XDS products, both hardware and soft­
ware. They may be expanded or altered from time to time
to meet changing requirements.

The symbols listed here include two types: graphic symbols
and control characters. Graphic symbols are displayable
and printable; control characters are not. Hybrids are SP,
the symbol for a blank space, and DEL, the delete code
which is not considered a control command.

Three types of code are shown: (1) the 8-bit XDS Standard
Computer Code, i. e. , the XDS Extended Binary-Coded­
Decimal Interchange Code (EBCDIC); (2) the 7-bit United
States of America Standard Code for Information Inter­
change (USASCII); and (3) the XDS standard card code.

138 Appendix A

XDS STANDARD CHARACTER SETS

1. EBCDIC

57-character set: uppercase letters, numerals, space,
and & - / . < > () + I $ * : ; , %
@ I =

63-character set: same as above pi us rJ ?
11 --,

89-character set: same as 63-character set plus lower­
case letters

2. USASCII

64-character set: upper case letters, numerals, space,
and 11 $ % & I () * + , / \

: = < > ? @ [J"" #

95-character set: same as above plus lowercase letters

and {} : -- \

CONTROL CODES

In addition to the standard character sets listed above, the
XDS symbol repertoire incl udes 37 control codes and the
hybrid code DEL (hybrid code SP is considered part of all
character sets). These are listed in the table titled XDS
Standard Symbol-Code Correspondences.

SPECIAL CODE PROPERTIES

The following two properties of all XDS standard codes wi II
be retained for future standard code extensions:

1. All control codes, and onl y the control codes, have
their two high-order bits equal to ''~O''. DEL is not
considered a control code.

2. No two graphic EBCDIC codes have their seven low­
order bits equal. .

Hexadecimal

Binary

o 0000

1 0001

2 0010

3 0011

4 0100

5 0101
.0,
o 6 0110

A 1010

B 1011

C 1100

D I 1101

E 1110

F ! 1111

Decimal
(rows) (col's.)-

j Binary
1

0 0000

I 0001

2 0010

3 0011

4 0100

5 0101
.-
0)

0 6 0110

C
8 7 0111

·c
8 1000 0)

v;

B 9 1001
Q)
-I

10 1010

11 1011

12 i 1100

13
I

1101

14 1110

15
i

1111

XDS STANDARD 8-BIT COMPUTER CODES (EBCDIC)
Most Significant Digits NOTES:

o 2 3 4 5 6 7 8 9 A C D

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

The characters ~ \ { } [J are USASCII
characters that do not appear in any of the
XDS EBCDIC-based character sets, though
they are shown in the EBCDIC table.

\

NUL DLE ds

SOH DCI ss

STX DC2 fs

ETX DC3

EOT DC4

HT
LF
NL

NAK; SUB

VT ESC

FF FS

CR GS

SO RS

SI I US

si

I,

k

m

v'// '// '// '/

~,Will not be assigned n v

o

p x

< * % @

()

+ ; >

I 2 -,2 ?

I'

A

K

C

D M

N

Flo
I

G I P

o

3

U 4

v 5

W 6

x 7

~~ ~DEL

The characters i I -, appear in the XDS
63- and 89-character EBCDIC sets but not
in either of the XDS USASCll-based sets.
However, XDS software translates the char­
acters i I -, into USASCII characters
as follows:

EBCDIC

i
I

UASCII

\ (6-0)

(7-12)

- (7-14)

The EBCDIC control codes in columns 0
and 1 and their binary representation are
exactly the same as those in the USASCII
table, except for two interchanges: LF/NL
with NAK, and HT with ENQ.

4 Characters enclosed in heavy lines are
included only in the XDS standard 63-
and 89-character EBCDIC sets.

These characters are included only in the
XDS standard 89-character EBCDIC set.

XDS STANDARD 7-BIT COMMUNICATION CODES (USASCII) 1

Most Significant Digits NOTES:

O. I 2 3

xOOO xOOl xOIO x011

NUL DLE SP 0

SOH DCI !
5 '

I

STX DC2 II 2

ETX DC3 # 3

I

EOT DC4 ' $! 4

ENQ NAK % 5 !

ACK SYN & 6

BEL I ETB
,

I
7 I

BS ICAN (I 8 I
I

HT i EM) 9

LF '
NL I SUB I * :

VT T ESC + ;

I
FF i FS I , <

CR !
I

I GS i - =

SO I RS I >

SI ! US / ?
i

4 5

x 100 xlOl

@; P

AI Q

B I R

C S I

I

D T

E U !

F vi
G W

I

i

H I
I

X i

I i
I

Y i I

I z I J
I

K i [51

l i \ i
I

] 51 M

N 4~ 51
I 1

01_ 4

.

6 7

xl 10 xIII

\ P

a q

b r

C s

d t

e u

f v

g w

h x

i y

j z

k {

I I
I

m }
4

n -
I

o i DEL
,

Most significant bit, added for 8-bit format, is either 0 or an even-parity bit for the
remaining 7 bits.

Columns 0-1 are control codes.

Columns 2-5 correspond to the XDS 64-character USASCII set.
Columns 2-7 correspond to the XDS 95-character USASCll set.

On many current teletypes, the symbol

is (5-14)

is (5-15)

is ESC or ALTMODE control (7-14)

and none of the symbols appearing in columns 6-7 are provided. Except for the three
symbol differences noted above, therefore, such teletypes provide all the characters in
the XDS 64-character USASCII set. (The XDS 7015 Remote Keyboard Printer provides the
64-character USASCII set also, but prints ~ as " .)

On the XDS 7670 Remote Batch Terminal, the symbol

is

is

is

is

(2-1)

(5-11)

(5-13)

(5-14)

and none of the symbols appearing in columns 6-7 are provided. Except for the four symbol
differences noted above, therefore, this tefminal provides all the characters in the XDS 64-
character USASCII set.

Appendix A 139

XDS STANDARD SYMBOL-CODE CORRESPONDENCES

EBCDICt
USAScn

tt
Hex. Dec. Symbol Card Code Meaning Remarks

00 0 NUL 12-0-9-8-1 0-0 null 00 through 23 and 2F are control codes.
01 I SOH 12-9-1 0-1 start of header
02 2 STX 12-9-2 0-2 start of text
03 3 ETX 12-9-3 0-3 end of text
04 4 EOT 12-9-4 0-4 end of transmission
05 5 HT 12-9-5 0-9 horizontal tab
06 6 ACK 12-9-6 0-6 acknowledge (positive)
07 7 BEL 12-9-7 0-7 bell
08 8 BSorEOM 12-9-8 0-8 backspace or end of message EOM is used only on XDS Keyboard/
09 9 ENQ 12-9-8-1 0-5 enquiry Printers Models 7012, 7020, 8091,
OA 10 NAK 12-9-8-2 1-5 negative acknowledge and 8092.
OB 11 VT 12-9-8-3 0-11 vertical tab
DC 12 FF 12-9-8-4 0-12 form ,feed
OD 13 CR 12-9-8-5 0-13 carriage return
OE 14 SO 12-9-8-6 0-14 shift out
OF 15 51 12-9-8-7 0-15 shift in

10 16 DLE 12-11-9-8-1 1-0 data link escape
11 17 DCl 11-9-1 I-I device control I
12 18 DC2 11-9-2 1-2 device control 2
13 19 DC3 11-9-3 1-3 device control 3
14 20 DC4 11-9-4 1-4 device control 4
15 21 LF or NL 11-9-5 0-10 line feed or new line
16 22 SYN 11-9-6 1-6 sync
17 23 ETB 11-9-7 1-7 end of transmission block
18 24 CAN 11-9-8 1-8 cancel
19 25 EM 11-9-8-1 1-9 end of medium
lA 26 SUB 11-9-8-2 1-10 substitute Replaces characters with parity error.
lB 27 ESC 11-9-8-3 1-11 escape
1C 28 FS 11-9-8-4 1-12 fj Ie separator
10 29 GS 11-9-8-5 1-13 group separator
IE 30 RS 11-9-8-6 1-14 record separator
IF 31 US 11-9-8-7 1-15 unit separator

20 32 ds 11-0-9-8-1 digit selector 20 through 23 are used with
21 33 ss 0-9-1 significance start Sigma 7 EDIT BYTE STRING (EBS)
22 34 fs 0-9-2 field separation instruction - not input/output con-
23 35 si 0-9-3 immediate significance start trol codes.
24 36 0-9-4 24 through 2E are unassigned.
25 37 0-9-5
26 38 0-9-6
27 39 0-9-7
28 40 0-9-8
29 41 0-9-8-1
2A 42 0-9-8-2
28 43 0-9-8-3
2C 44 0-9-8-4
2D 45 0-9-8-5
2E 46 0-9-8-6
2F 47 0-9-8-7

30 48 12-11-0-9-8-1 30 through 3F are unassigned.
31 49 9-1
32 50 9-2
33 51 9-3
34 52 9-4
35 53 9-5
36 54 9-6
37 55 9-7
38 56 9-8
39 57 9-8-1
3A 58 9-8-2
38 59 9-8-3
3C 60 9-8-4
3D 61 9-8-5
3E 62 9-8-6
3F 63 9-8-7

tHexodecimai and decimal notation.

ttDecimal notation {column-row}.

140 Appendix A

XDS STANDARD SYMBOL-CODE CORRESPONDENCES (cont.)

EBCDlct Symbol Card Code USASCII
tt

Meaning Remarks
Hex. Dec.

40 64 SP blank 2-0 blank
41 65 12-0-9-1 41 through 49 wi II not be assigned.
42 66 12-0-9-2
43 67 12-0-9-3
44 68 12-0-9-4
45 69 12-0-9-5
46 70 12-0-9-6
47 71 12-0-9-7
48 72 12-0-9-8
49 73 12-8-1
4A 74 ¢ or \ 12-8-2 6-0 cent or accent grave Accent grave used for left single
4B 75 12-8-3 2-14 period quote. On model 7670, \ not
4C

I
76 < 12-8-4 3-12 less than available, and ¢ = USAsciI 5-11.

4D 77 { 12-8-5 2-8 left parenthesis
4E 78 + 12-8-6 2-11 plus
4F 79 I or

I 12-8-7 7-12 vertical bar or broken bar On Model 7670, : not available, I

and I = USASCII 2-l.

50 80 & 12 2-6 ampersand
51 81 12-11-9-1 51 through 59 will not be assigned.
52 82 12-11-9-2
53 83 12-11-9-3
54 84 12-11-9-4
55 85 12-11-9-5
56 86 12-11-9-6
57 87 12-11-9-7
58 88 12-11-9-8
59 89 11-8-1
5A 90 ! 11-8-2 2-1 exclamation point On Model 7670, ! is I.
5B 91 $ 11-8-3 2-4 dollars
5C 92 * 11-8-4 2-10 asterisk
5D 93 } 11-8-5 2-9 right parenthesis
5E 94 ; 11-8-6 3-11 semicolon
5F 95 - or ..., 11-8-7 7-14 tilde or logical not On Model 7670,- is not available,

and -, = USASCII 5-14.

60 96 - 11 2-13 minus, dash, hyphen
61 97) 0-1 2-15 slash
62 98 11-0-9-2 62 through 69 will not be assigned.
63 99 11-0-9-3
64 100 11-0-9-4
65 101 11-0-9-5
66 102 11-0-9-6
67 103 11-0-9-7
68 104 11-0-9-8
69 105 0-8-1
6A 106

......
12-11 5-14 circumflex On Model 7670 ~ is --. On Model

6B 107 , 0-8-3 2-12 comma 7015 is 1\ {caret}.
6C 108 % 0-8-4 2-5 percent
6D 109 - 0-8-5 5-15 underline Underline is sometimes called "break
6E 110 > 0-8-6 3-14 greater than character"; may be printed along
6F 111 ? 0-8-7 3-15 question mark bottom of character line.

70 112 12-11-0 70 through 79 will not be assigned.
71 113 12-11-0-9-1
72 114 12-11-0-9-2
73 115 12-11-0-9-3
74 116 12-11-0-9-4
75 117 12-11-0-9-5
76 118 12-11-0-9-6
77 119 12-11-0-9-7
78 120 12-11-0-9-8
79 121 8-1
7A 122 8-2 3-10 colon
7B 123 # 8-3 2-3 number
7C 124 @ 8-4 4:-0 at
7D 125 I 8-5 2-7 apostrophe (right single quote)
1E 126 = 8-6 3-13 equals
IF 127 " 8-7 2-2 quotation mark

tHexadecim,al and decimal notation.

ttDecimal notation {column-row}.

Appendix A 141

XDS STANDARD SYMBOL-CODE CORRESPONDENCES (cont.)

EBCDICt
, USASCntt

Remarks Hex. Dec. Symbol Card Code Meaning

80 128 12-0-8-1 80 is unassigned.
81 129 a 12-0-1 6-1 81-89, 91-99, A2-A9 comprise the
82 130 b 12-0-2 6-2 lowercase alphabet. Available
83 131 c 12-0-3 6-3 only in XDS standard 89- and 95-
84 132 d 12-0-4 6-4 character sets.
85 133 e 12-0-5 6-5
86 134 f 12-0-6 6-6
87 135 g 12-0-7 6-7
88 136

,
I h 12-0-8 6-8

89 137 i 12-0-9 6-9
8A 138 12-0-8-2 8A through 90 are unassigned.
8B 139 12-0-8-3
8C 140 12-0-8-4
8D 141 12-0-8-5
8E 142 12-0-8-6
Sf 143 12-0-8-7

90 144 12-11-8-1
91 145 j 12-11-1 6-10
92 146 k 12-11-2 6-11
93 147 I 12-11-3 6-12
94 148 m 12-11-4 6-13
95 149 n 12-11-5 6-14
96 150 0 12-11-6 6-15
97 151 p 12-11-7 7-0
98 152 q 12-11-8 7-1
99 153 r 12-11-9 7-2
9A 154 12-11-8-2 9A through Al are unassigned.
9B 155 12-11-8-3
9C 156 12-11-8-4
9D 157 12-11-8-5
9E 158 12-11-8-6
9F 159 12-11-8-7

AO 16V 11-0-8-1
Al 161 11-0-1
A2 162 s 11-0-2 7-3
A3 163 t 11-0-3 7-4
A4 164 u 11-0-4 7-5
A5 165 " 11-0-5 7-6
A6 166 w 11-0-6 7-7
A7 167 x 11-0-7 7-8
A8 168 Y 11-0-8 7-9
A9 169 z 11-0-9 7-10
AA 170 11-0-8-2 AA through BO are unassigned.
AB 171 11-0-8-3
AC In 11-0-8-4
AD 173 11-0-8-5
AE 174 11-0-8-6
AF 175 11-0-8-7

BO 176 12-11-0-8-1
Bl 177 \ 12-11-0-1 5-12 backslash
B2 178 { 12-11-0-2 7-11 left brace
B3 179 } 12-11-0-3 7-13 right brace
B4 180 [12-11-0-4 5-11 left bracket On Model 7670, [is i.
B5 181] 12-11-0-5 5-13 right bracket On Model 7670,] is !.
B6 182 12-11-0-6 B6 through BF are unassigned.
B7 183 12-11-0-7
B8 184 12-11-o-8
B9 185 12-11-0-9
BA 186 12-11-0-8-2
BB 187 12-11-0-8-3
BC 188 12-11-0-8-4
BD 189 12-11-0-8-5
BE 190 12-11-0-8-6
BF 191 12-11-0-8-7

tHexadecimal and decimal notation.

ttDecimal notation (column-row).

142 Appendix A

XDS STANDARD SYMBOL-CODE CORRESPONDENCES (cont.)

EBCDIC t
SY£!'!bol Card Code USASCUtt Meaning Remarks

Hex. Dec.

CO 192 12-0 CO is unassigned.
C1 193 A 12-1 4-1 CI-C9, DI-D9, E2-E9 comprise the
C2 194 B 12-2 4-2 uppercase alphabet.
C3 195 C 12-3 4-3
C4 196 D 12-4 4-4
C5 197 E 12-5 4-5
C6 198 F 12-6 4-6
C7 199 G 12-7 4-7
C8 200 H 12-8 4-8
C9 201 I 12-9 4-9
CA 202 12-0-9-8-2 CA through CF will not be assigned.
CB 203 12-0-9-8-3
CC 204 12-0-9-8-4
CD 205 12-0-9-8-5
CE 206 12-0-9-8-6
CF 207 12-0-9-8-7

DO 208 11-0 DO is unassigned.
D1 209 J 11-1 4-10
D2 210 K 11-2 4-11
D3 211 L 11-3 4-12
D4 212 M 11-4 4-13
D5 213 N 11-5 4-14
D6 214 0 11-6 4-15
D7 215 P 11-7 5-0
D8 216 Q 11-8 5-1
D9 217 R 11-9 5-2
DA 218 12-11-9-8-2 DA through DF will not be assigned.
DB 219 12-11-9-8-3
DC 220 12-11-9-8-4
DD 221 12-11-9-8-5

"'-
DE 222 12-11-9-8-6
DF 223 12-11-9-8-7

EO 224 0-8-2 EO, E1 are unassigned.
E1 225 11-0-9-1
E2 226 S 0-2 5-3
E3 227 T 0-3 5-4
E4 228 U 0-4 5-5
E5 229 V 0-5 5-6
E6 230 W 0-6 5-7
E7 231 X 0-7 5-8
E8 232 y 0-8 5-9
E9 233 Z 0-9 5-10
EA 234 11-0-9-8-2 EA through EF wi II not be assigned.
EB 235 11-0-9-8-3
EC 236 11-0-9-8-4
ED 237 11-0-9-8-5
EE 238 11-0-9-8-6
EF 239 11-0-9-8-7

FO 240 0 0 3-0
F1 241 1 1 3-1
F2 242 2 2 3-2
F3 243 3 3 3-3
F4 244 4 4 3-4
F5 245 5 5 3-5
F6 246 6 6 3-6
F7 247 7 7 3-7
F8 248 8 8 3-8
F9 249 9 9 3-9
FA 250 12-11-0-9-8-2 FA through FE will not be assigned.
FB 251 12-11-0-9-8-3
FC 252 12-11-0-9-8-4
FD 253 12-11-0-9-8-5
FE 254 12-11-0-9-8-6
FF 255 DEL 12-11-0-9-8-7 delete Special - neither graphic nor con-

trol symbol.

tHexadecimal and decimal notation.

ttDecimal notation (column-row).

Appendix A 143

HEXADECIMAL ARITHMETIC

ADDITION TABLE

0 1 2 3 4 5 6 7 8 9 A B C D E F

1 02 03 04 05 06 07 08 09 OA 00 DC OD DE OF 10

2 03 04 05 06 07 08 09 OA DB OC OD OE OF 10 11

3 04 05 06 07 08 09 OA OB OC OD OE OF 10 11 12

4 05 06 07 08 09 OA OB DC OD DE OF 10 11 12 13

5 06 07 08 09 OA OB DC 00 OE OF 10 11 12 13 14

6 07 08 09 OA OB OC OD DE OF 10 11 12 13 14 15

7 08 09 OA OB DC OD OE OF 10 11 12 13 14 15 16

8 09 OA OB OC OD OE OF 10 11 12 13 14 15 16 17

9 OA OB DC OD OE OF 10 11 12 13 14 15 16 17 18

A OB OC OD DE OF 10 11 12 13 14 15 16 17 18 19

B OC OD DE OF 10 11 12 13 14 15 16 17 18 19 1A

C OD DE OF 10 11 12 13 14 15 16 17 18 19 1A 1B

D DE OF 10 11 12 13 14 15 16 17 18 19 1A 1B 1C

E OF 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D

F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E

MULTIPLICATION TABLE

1 2 3 4 5 6 7 8 9 A B C D E F

2 04 06 08 OA DC DE 10 12 14 16 18 1A 1C 1E

3 06 09 DC OF 12 15 18 1B 1E 21 24 27 2A 2D

4 08 DC 10 14 18 1C 20 24 28 2C 30 34 38 3C

5 OA OF 14 19 1E 23 28 2D 32 37 3C 41 46 4B

6 DC 12 18 1E 24 2A 30 36 3C 42 48 4E 54 5A

7 OE 15 1C 23 2A 31 38 3F 46 4D 54 5B 62 69

8 10 18 20 28 30 38 40 48 50 58 60 68 70 78

9 12 1B 24 2D 36 3F 48 51 5A 63 6C 75 7E 87

A 14 1E 28 32 3C 46 50 5A 64 6E 78 82 8C 96

B 16 21 2C 37 42 4D 58 63 6E 79 84 8F 9A A5

C 18 24 30 3C 48 54 60 6C 78 84 90 9C A8 B4

D 1A 27 34 41 4E 5B 68 75 82 8F 9C A9 B6 C3

E 1C 2A 38 46 54 62 70 7E 8C 9A A8 B6 C4 D2

F lE 2D 3C 4B 5A 69 78 87 96 A5 B4 C3 D2 E1

144 Appendix A

3

23

163

DE 0

8AC7

TABLE OF POWERS OF SIXTEEN
10

16

256

4 096

65 536

048 576

16 777 216

268 435 456

4 294 967 296

68 719 476 736

1 099 511 627 776

17 592 186 044 416

281 474 976 710 656

4 503 599 627 370 496

72 057 594 037 927 936

152 921 504 606 846 976

n

o

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0.10000 00000 00000 00000 x

0.62500 00000 00000 00000 x

0.39062 50000 00000 00000 x

0.24414 06250 00000 00000 x

0.15258 78906 25000 00000 x

0.95367 43164 06250 00000 x

0.59604 64477 53906 25000 x

0.37252 90298 46191 40625 x

0.23283 06436 53869 62891 x

0.14551 91522 83668 51807 x

0.90949 47017 72928 23792 x

0~56843 41886 08080 14870 x

0.35527 13678 80050 09294 x

0.22204 46049 25031 30808 x

0.13877 78780 78144 56755 x

0.86736 17379 88403 54721 x

TABLE OF POWERS OF TEN

2

17

E8

918

5AF3

8D7E

86F2

4578

B6B3

2304

A

64

3E8

2710

86AO

F 4240

98 9680

5F5 E100

3B9A CAOO

540B E400

4876 E800

D4A5 1000

4E72 AOOO

107A 4000

A4C6 8000

6FCl 0000

5 D8A 0000

A764 0000

89E8 0000

16

o 1.0 000 000 0 0000 000 0

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

0.1999

0.28F5

004 1 89

0.68DB

0.A7C5

0.10C6

0.1 AD7

0.2AF3

0044B 8

0.6 DF 3

O.AFE B

0.1 197

0.1 C2 5

0.2 D09

9999

C28F

374B

8BAC

AC47

F7 AO

F29A

1 DC4

2FAO

'7F67

FFOB

9981

C268

370D

00480E BE7B

0.734A CA5 F

0.B877 AA32

0.1272 5DDl

0.1 D83 C94F

9999 999A

5C28 F 5C3

C6A7 E F9E

710C B296

lB47 8423

B 5E D 8D37

BCAF 4858

6118 73BF

9B5A 52CC

5E F 6 E ADF

CB24 AAFF

2 DE A 1 119

4976 81C2

4'257 3604

9 D58 566D

6226 F OAE

36A4 B449

D243 ABAl

B6D2 AC35

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

10
10- 1

10-2

-3 10

10-4

10-6

10-7

10-8

10-9.

10- 10

10- 12

10- 13

10- 14

10- 15

10- 16

10- 18

16-1

16-2

16-3

16-4

16-4

16-5

16-6

16-7

16-8

16-9

16-9

16- 10

16 -11

16- 12

16- 13

16- 14

16- 14

16- 15

Appendix A 145

HEXADECIMAL-DECIMAL INTEGER CONVERSION TABLE

The table below provides for direct conversions between hexa­
decimal integers in the range O-FFF and decimal integers in
the range 0-4095. For conversion of larger integers, the
table values may be added to the following figures:

Hexadecimal

01000
02000
03000
04 000
05000
06 000
07000
08000
09000
OA 000
OB 000
DC 000
OD 000
OE 000
OF 000
10000
11 000
12000
13000
14000
15000
16000
17000
18000
19000
1A 000
1B 000
1C 000
1D 000
1E 000
1F 000

000
010
020
030

040
050
060
070

080
090
OAO
OBO

OCO
ODO
OEO
OFO

0

0000
0016
0032
0048

0064
0080
0096
0112

0128
0144
0160
0176

0192
0208
0224
0240

Decimal

4096
8 192

12 288
16384
20480
24576
28672
32768
36 864
40960
45056
49 152
53248
57344
61440
65536
69632
73728
77824
81920
86 016
90 112
94208
98304

102400
106496
110592
114688
118784
122 880
126 976

1 2

0001 0002
0017 0018
0033 0034
0049 0050

0065 0066
0081 0082
0097 0098
0113 0114

0129 0130
0145 0146
0161 0162
0177 0178

0193 0194
0209 0210
0225 0226
0241 0242

146 Appendix

Hexadecima I

20000
30000
40000
50000
60000
70000
80000
90000
AO 000
BO 000

CO 000
DO 000
EO 000
FO 000

100000
200000
300000
400000
500000
600000
700000
800000
900000

AOO 000
BOO 000

COO 000
DOO 000
EOO 000
FOO 000

1 000000
2000000

3 4

0003 0004
0019 0020
0035 0036
0051 0052

0067 0068
0083 0084
0099 0100
0115 0116

0131 0132
0147 0148
0163 0164
0179 0180

0195 0196
0211 0212
0227 0228
0243 0244

Decimal

131072
196608
262 144
327680
393216
458752
524288
589824
655 360
720896
786 432
851 968
917 504
983040

1 048576
2097 152
3 145 728
4 194304
5 242 880
6 291 456
7340032
8388608
9437 184

10485 760
11 534336
12582 912
13631 488
14680064
15728640
16 777 216
33554432

5 6

0005 0006
0021 0022
0037 0038
0053 0054

0069 0070
0085 0086
0101 0102
0117 0118

0133 0134
0149 0150
0165 0166
0181 0182

0197 0198
0213 0214
0229 0230
0245 0246

7

0007
0023
0039
0055

0071
0087
0103
0119

0135
0151
0167
0183

0199
0215
0231
0247

Hexadecimal fractions may be converted to decimal fractions
as follows:

1. Express the hexadecimal fraction as an integer times
16 -n, where n is the number of significant hexadecimal
places to the right of the hexadecimal point.

O. CA9BF316 = CA9 BF316 x 16-6

2. Find the decimal equivalent of the hexadecimal integer

CA9 BF3
16

= 13 278 195
10

3. Multiply the decimal equivalent by 16-n

13 278 195
x 596 046 448 x 10-16

0.791 44209610

Decimal fractions may be converted to hexadecimal fractions
by successively multiplying the decimal fraction by 16 10.
After each multiplication, the integer portion is removed to
form a hexadecimal fraction by building to the right of the
hexadecimal point. However, since decimal arithmetic is
used in this conversion, the integer portion of each product
must be converted to hexadecimal numbers.

Example: Convert 0.89510 to its hexadecimal equivalent

0.895
-----M..

------@.320

-----M..
,....----@.120

~ ~
0.E51 E 16-' ---- (13) .720

8 9 A B C D E F

0008 0009 0010 0011 0012 0013 0014 0015
0024 0025 0026 0027 0028 0029 0030 0031
0040 0041 0042 0043 0044 0045 0046 0047
0056 0057 0058 0059 0060 0061 0062 0063

0072 0073 0074 0075 0076 0077 0078 0079
0088 0089 0090 0091 0092 0093 0094 0095
0104 0105 0106 0107 0108 0109 0110 0111
0120 0121 0122 0123 0124 0125 0126 0127

0136 0137 0138 0139 0140 0141 0142 0143
0152 0153 0154 0155 0156 0157 0158 0159
0168 0169 0170 0171 0172 0173 0174 0175
0184 0185 0186 0187 0188 0189 0190 0191

0200 0201 0202 0203 0204 0205 0206 0207
0216 0217 0218 0219 0220 0221 0222 0223
0232 0233 0234 0235 0236 0237 0238 0239
0248 0249 0250 0251 0252 0253 0254 0255

HEXADECIMAL - DECIMAL INTEGER CONVERSION TABLE (cant.)

0 1 2 3 4 5 6 7 8 9 A B C D E F

100 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271
110 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287
120 0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303
130 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319

140 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0332 0333 0334 0335
150 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351
160 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367
170 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383

180 0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399
190 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415
lAO 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431
1BO 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447

lCO 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463
1DO 0464 0465 0466 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479
lEO 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495
lFO 0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511

200 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527
210 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543
220 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559
230 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575

240 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591
250 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607
260 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623
270 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639

280 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655
290 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671
2AO 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687
2BO 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703

2CO 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719
2DO 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735
2EO 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751
2FO 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767

300 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783
310 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799
320 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815
330 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831

340 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847
350 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863
360 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879
370 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895

380 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911
390 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927
3AO 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943
3BO 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959

3CO 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975
3DO 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991
3EO 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007
3FO 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

Appendix A 147

HEXADECIMAL - DECIMAL INTEGER CONVERSION TABLE (cont.)

0 1 2 3 4 5 6 7 8 9 A B C D E F

400 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
410 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
420 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
430 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

440 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
450 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
460 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
470 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151

480 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
490 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
4AO 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
4BO 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215

4CO 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
4DO 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
4EO 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
4FO 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279

500 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
510 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
520 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
530 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343

540 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
550 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
560 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
570 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 . 1404 1405 1406 1407

580 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
590 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
5AO 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
5BO 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471

5CO 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
5DO 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
5EO 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
5FO 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

600 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
610 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
620 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
630 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599

640 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
650 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
660 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
670 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663

680 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
690 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
6AO 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
6BO 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727

6CO 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
6DO 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
6EO 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
6FO 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791

148 Appendix A

HEXADECIMAL - DECIMAL INTEGER CONVERSION TABLE (cont.)

0 1 2 3 4 5 6 7 8 9 A B (D E F

700 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
710 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
720 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
730 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855

740 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
750 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
760 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
770 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919

780 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
790 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
7AO 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
7BO 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983

7(0 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
7DO 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
7EO 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
7FO 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047

800 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
810 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
820 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
830 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111

840 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
850 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
860 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
870 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175

880 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
890 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
8AO 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
8BO 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239

8(0 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
8DO 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
8EO 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
8FO 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303

900 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
910 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
920 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
930 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367

940 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
950 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
960 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
970 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431

980 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
990 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
9AO 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
980 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495

9C0 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
9DO 2512 25~3 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
9EO 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
9FO 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559

Appendix A 149

HEXADECIMAL - DECIMAL INTEGER CONVERSION TABLE (cant.)

0 1 2 3 4 5 6 7 8 9 A B C D E F

AOO 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
AlO 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
A20 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
A30 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623

A40 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
A50 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
A60 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
A70 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687

A80 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
A90 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
AAO 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
ABO 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751

ACO 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
ADO 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
AEO 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
AFO 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815

BOO 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
B10 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
B20 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
B30 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879

B40 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
B50 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
B60 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
B70 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943

B80 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
B90 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
BAO 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
BBO 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007

BCO 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
BDO 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
BEO 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
BFO 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071

COO 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
Cl0 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
C20 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
C30 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135

C40 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
C50 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
C60 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
C70 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199

C80 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
C90 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
CAO 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
CBO 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263

CCO 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
CDO 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
CEO 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
CFO 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327

150 Appendix A

HEXADECIMAL - DECIMAL INTEGER CONVERSION TABLE (cont.)

0 1 2 3 4 5 6 7 8 9 A B C D E F

DOO 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
DlO 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
D20 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
D30 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391

D40 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
D50 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
D60 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
D70 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455

D80 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
D90 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
DAO 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
DBO 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519

DCO 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
DDO 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
DEO 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
DFO 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583

EOO 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
ElO 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
E20 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
E30 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647

E40 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
E50 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
E60 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
E70 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711

E80 3712 37.13 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
E90 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
EAO 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
EBO 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775

ECO 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
EDO 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
EEO 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
EFO 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839

FOO 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
FlO 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
F20 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
F30 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903

F40 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
F50 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
F60 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
F70 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967

F80 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
F90 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
FAO 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
FBO 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031

FCO 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
FDO 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
FEO 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
FFO 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095

Appendix A 151

HEXADECIMAL-DECIMAL FRACTION CONVERSION TABLE

Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal

.00 000000 .00000 00000 .40 000000 .25000 00000 .80 000000 .50000 00000 .CO 000000 .75000 00000

.01 000000 .00390 62500 .41 000000 .25390 62500 .81 000000 .50390 62500 .Cl 000000 .75390 62500

.02 000000 .00781 25000 .42 000000 .25781 25000 .82 000000 .50781 25000 .C2 000000 .75781 25000

.03 000000 .01171 87500 .43 000000 .26171 87500 .83 000000 .51171 87500 .C3 000000 .76171 87500

.04 00 00 00 .0156250000 .44 000000 .26562 50000 .84 00 00 00 .5156250000 .C4 000000 .7656250000

.05 00 00 00 .01953 12500 .45 000000 .26953 12500 .85 00 00 00 .51 953 12500 .C5 000000 .76953 12500

.06 000000 .02343 75000 .46 000000 .27343 75000 .86 000000 .52343 75000 .C6 000000 .77343 75000

.07 000000 .02734 37500 .47 000000 .27734 37500 .87 000000 .52734 37500 .C7 000000 .77734 37500

.08 000000 .03125 00000 .48 000000 .28125 00000 .88 000000 .531 25 00000 .C8 000000 .78125 00000

.09 000000 .0351562500 .49 000000 .2851562500 .89 000000 .53515 62500 .C9 000000 .78515 62500

.OA 00 00 00 .03906 25000 .4A 000000 .28906 25000 .8A 000000 .53906 25000 .CA 00 00 00 .78906 25000

.OB 000000 .0429687500 .4B 000000 .29296.87500 .8B 000000 .5429687500 .CB 000000 .79296 87500

.OC 000000 .04687 50000 .4C 000000 .29687 50000 .8C 000000 .54687 50000 .CC 000000 .79687 50000

.00 00 00 00 .05078 12500 .40 00 00 00 .30078 12500 .80 000000 .55078 12500 .CD 00 00 00 .80078 12500

.OE 000000 .0546875000 .4E 000000 .30468 75000 .8E 000000 .55468 75000 .CE 000000 .8046875000

.OF 000000 .05859 37500 .4F 00 00 00 .3085937500 .8F 000000 .55859 37500 .CF 000000 .80859 37500

.10 000000 .06250 00000 .50 000000 .31250 00000 .90 000000 .56250 00000 .00 000000 .81250 00000

.11 000000 .0664062500 .51 00 00 00 .31640 62500 .91 000000 .56640 62500 .01 000000 .81640 62500

.12 00 00 00 .07031 25000 .52 000000 .32031 25000 .92 000000 .57031 25000 .02 000000 .82031 25000

.13 000000 .07421 87500 .53 000000 .32421 87500 .93 000000 .57421 87500 .03 000000 .82421 87500

.14 00 00 00 .0781250000 .54 000000 .3281250000 .94 00 00 00 .57812 50000 .04 000000 .8281250000

.15 000000 .08203 12500 .55 000000 .33203 12500 .95 000000 .58203 12500 .05 000000 .83203 12500

.16 000000 .08593 75000 .56 00 00 00 .3359375000 .96 000000 .58593 75000 .06 000000 .83593 75000

.17 000000 .08984 37500 .57 000000 .33984 37500 .97 000000 .58984 37500 .07 000000 .83984 37500

.18 000000 .09375 00000 .58 000000 .34375 00000 .98 000000 .59375 00000 .08 000000 .84375 00000

.19 000000 .09765 62500 .59 000000 .34765 62500 .99 00 00 00 .59765 62500 .09 000000 .8476562500

.1A 000000 · 10 156 25000 .5A 00 00 00 .35 156 25000 .9A 000000 .60156 25000 .DA 000000 .85156 25000

.IB 000000 · 10546 87500 .5B 000000 .35546 87500 .9B 000000 .60546 87500 .DB 000000 .85546 87500

.1C 000000 · 1 0937 50000 .5C -00 00 00 .35937 50000 .9C 000000 .60937 50000 .DC 000000 .85937 50000

.10000000 · 11328 1 2500 .50 000000 .36328 12500 .90 000000 .61328 12500 .00000000 .86328 12500

.1E 000000 .1171875000 .5E 000000 .3671875000 .9E 000000 .6171875000 .DE 000000 .8671875000

.1F 000000 .12109 37500 .5F 000000 .3710937500 .9F 000000 .6210937500 .DF 000000 .8710937500

.20 000000 · 12500 00000 .60 000000 .37500 00000 .AO 000000 .62500 00000 .EO 000000 .87500 00000

.21 000000 .12890 62500 .61 000000 .37890 62500 .Al 000000 .62890 62500 .El 000000 .87890 62500

.22 000000 .13281 25000 .62 00 00 00 .38281 25000 .A2 000000 .63281 25000 .E2 000000 .88281 25000

.23 00 00 00 .13671 87500 .63 000000 .38671 87500 .A3 000000 .63671 87500 .E3 000000 .88671 87500

.24 000000 .14062 50000 .64 000000 .39062 50000 .A4 000000 .64062 50000 .E4 000000 .8906250000

.25 000000 · 14453 12500 .65 000000 .39453 12500 .A5 000000 .64453 12500 .E5 000000 .89453 12500

.26 000000 .14843 75000 .66 000000 .39843 75000 .A6 00 00 00 .6484375000 .E6 000000 .89843 75000

.27 000000 .15234 37500 .67 000000 .40234 37500 .A7 000000 .65234 37500 .E7 000000 .90234 37500

.28 000000 · 15625 00000 .68 000000 .40625 00000 .A8 000000 .65625 00000 .E8 000000 .90625 00000

.29 000000 .1601562500 .69 000000 .4101562500 .A9 000000 .66015 62500 .E9 000000 .910 15 62500

.2A 000000 .16406 25000 .6A 000000 .41406 25000 .AA-OO 00 00 .66406 25000 .EA 000000 .91406 25000

.2B 000000 .1679687500 .6B 000000 .41796 87500 .AB 000000 .66796 87500 .EB 000000 .91796 87500

.2C 000000 .17187 50000 .6C 000000 .42187 50000 .AC 000000 .67187 50000 .EC 000000 .92187 50000

.20 000000 .17578 12500 .60 000000 .42578 12500 .AD 00 00 00 .67578 12500 .ED 000000 .92578 1 2500

.2E 000000 .1796875000 .6E 000000 .42968 75000 .AE 000000 .67968 75000 .EE 000000 .92968 75000

.2F 000000 .18359 37500 .6F 000000 .43359 37500 .AF 000000 .68359 37500 .EF 000000 .93359 37500

.30 000000 .18750 00000 .70 000000 .43750 00000 .BO 000000 .68750 00000 .FO 000000 .93750 00000

.31 000000 .1914062500 .71 000000 .44140 62500 .Bl 000000 .6914062500 .FI 000000 .94140 62500

.32 000000 · 1 9531 25000 .72 000000 .44531 25000 .B2 000000 .69531 25000 .F2 000000 .94531 25000

.33 000000 .19921 87500 .73 000000 .44921 87500 .B3 000000 .69921 87500 .F3 000000 .94921 87500

.34 000000 .20312 50000 .74 000000 .45312 50000 .B4 000000 .7031 2 50000 .F4 000000 .95312 50000

.35 000000 .20703 12500 .75 000000 .45703 12500 .B5 000000 .70703 12500 .F5 000000 .95703 12500

.36 000000 .21093 75000 .76 000000 .46093 75000 .B6 000000 .7109375000 .F6 000000 .96093 75000

.37 000000 .2148437500 .77 000000 .46484 37500 .B7 000000 .71484 37500 .F7 000000 .96484 37500

.38 000000 .2187500000 .78 000000 .46875 00000 .B8 000000 .71875 00000 .F8 000000 .96875 00000

.39 000000 .22265 62500 .79 000000 .47265 62500 .B9 000000 .72265 62500 .F9 000000 .97265 62500

.3A 000000 .22656 25000 .7A 000000 .47656 25000 .BA 000000 .72656 25000 .FA 000000 .97656 25000

.3B 000000 .23046 87500 .7B 000000 .48046 87500 .BB 000000 .73046 87500 .FB 000000 .98046 87500

.3C 000000 .23437 50000 .7C 000000 .48437 50000 .BC 000000 .73437 50000 .FC 000000 .98437 50000

.30 00 00 00 .23828 12500 .70 00 00 00 .48828 12500 .BD 0000 00 .73828 12500 .FD 0000 00 .98828 12500

.3E 0000 00 .24218 75000 .7E 00 00 00 .49218 75000 .BE 0000 00 .74218 75000 .FE 000000 .9921875000

.3F 000000 .2460937500 .7F 000000 .49609 37500 .BF 000000 .74609 37500 .FF 000000 .99609 37500

152 Appendix A

HEXADECIMAL - DECIMAL FRACTION CONVERSION TABLE (cont.)

Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal

.0000 0000 .00000 00000 .0040 0000 .0009765625 .0080 0000 .00195 31250 .00 CO 0000 .00292 96875

.0001 0000 .00001 52587 .0041 00 00 .00099 18212 .0081 0000 .001 96 83837 .00 Ci 0000 .00294 49462

.0002 0000 .0000305175 .0042 0000 .00100 70800 .0082 0000 .00198 36425 .00 C2 0000 .00296 02050

.00 03 0000 .0000457763 .0043 0000 .00102 23388 .0083 0000 .00199 89013 .00 C3 0000 .00297 54638

.0004 0000 .00006 10351 .00 44 0000 .0010375976 .0084 0000 .00201 41601 .00 C4 0000 .00299 07226

.00 05 0000 .00007 62939 .00 45 0000 .00105 28564 .0085 0000 .0020294189 .00 C5 0000 .0030059814

.0006 0000 .00009 15527 .00 46 0000 .00106 81152 .0086 0000 .00204 46777 .00 C6 0000 .00302 12402

.0007 0000 .00010 68115 .004? 0000 .00108 33740 .0087 0000 .00205 99365 .00 C7 0000 .00303 64990

.00 08 0000 .0001220703 .0048 0000 .0010986328 .0088 0000 .00207 51953 .00 C8 0000 .00305 17578

.0009 0000 .0001373291 .0049 0000 .00111 38916 .0089 0000 .00209 04541 .00 C9 0000 .00306 70166

.00 OA 0000 .00015 25878 .004A 00 00 .0011291503 .008A 0000 .0021057128 .00 CA 00 00 .00308 22753

.00 OB 0000 . 0001678466 .00 4B 0000 .0011444091 .008B 0000 .0021209716 .00 CB 0000 . .00309 75341

.OOOC 0000 .0001831054 .00 4C 00 00 .00115 96679 .008C 0000 .0021362304 .00 CC 0000 .00311 27929

.OOOD 00 00 .0001983642 .004D 00 00 .00117 49267 .008D 0000 .00215 14892 .00 CD 00 00 .00312 80517

.OOOE 0000 .00021 36230 .004E 0000 .0011901855 .008E 0000 .0021667480 .00 CE 0000 .0031433105

.00 OF 00 00 .0002288818 .004F 0000 .00120 54443 .008F 00 00 .00218 20068 .00 CF 0000 .00315 85693

.00 10 0000 .0002441406 .0050 0000 .00122 07031 .0090 00 00 .00219 72656 .00 DO 0000 .00317 38281

.00 11 0000 .00025 93994 .0051 0000 .0012359619 .0091 0000 .00221 25244 .00 Dl 0000 .00318 90869

.00 12 0000 .00027 46582 .00 52 0000 .00125 12207 .0092 0000 .00222 77832 .00 D2 0000 .00320 43457

.00 13 0000 .00028 99169 .0053 0000 .00126 64794 .0093 0000 .00224 30419 .00 D3 0000 .00321 96044

.00 14 0000 .00030 51757 .0054 0000 .00128 17382 .0094 0000 .00225 83007 .00 D4 0000 .00323 48632

.0015 0000 .00032 04345 .0055 0000 .0012969970 .0095 0000 .00227 35595 .00 D5 0000 .00325 01220

.00 16 0000 .00033 56933 .00 56 0000 .00131 22558 .0096 00 00 .0022888183 .00 D6 0000 .00326 53808

.0017 0000 .0003509521 .00 57 0000 .0013275146 .0097 0000 .00230 40771 .00 D7 0000 .00328 06396

.00 18 0000 .0003662109 .0058 0000 .00134 27734 .0098 0000 .00231 93359 .00 D8 0000 .00329 58984

.00 19 00 00 .00038 14697 .0059 0000 .0013580322 .0099 0000 .00233 45947 .00 D9 0000 .00331 11572

.00 lA 0000 .0003967285 .005A 0000 .00137 32910 .009A 00 00 .00234 98535 .00 DA 00 00 .0033264160

.00 IB 0000 .00041 19873 .005B 0000 .00138 85498 .009B 0000 .00236 51123 .00 DB 0000 .00334 16748

.001C 0000 .0004272460 .005C 0000 .00140 38085 .009C 0000 .0023803710 .00 DC 00 00 .00335 69335

.00 ID 0000 .00044 25048 .005D 0000 .00141 90673 .00 9D 0000 .00239 56298 .00 DD 00 00 .00337 21923

.00 IE 0000 .00045 77636 .005E 0000 .0014343261 .009E 0000 .00241 08886 .00 DE 0000 .00338 74511

.00 IF 0000 .00047 30224 .005F 00 00 .00144 95849 .009F 0000 .00242 61474 .00 DF 0000 .00340 27099

.0020 0000 .00048 82812 .0060 0000 .00146 48437 .00 AD 0000 .00244 14062 .00 EO 0000 .00341 79687

.00 21 0000 .00050 35400 .0061 0000 .00148 01025 .00 Al 0000 .00245 66650 .00 E1 0000 .00343 32275

.00 22 0000 .00051 87988 .0062 0000 .0014953613 .00 A2 0000 .00247 19238 .00 E2 0000 .00344 84863

.0023 0000 .00053 40576 .0063 0000 .00151 06201 .00 A3 0000 .00248 71826 .00 E3 0000 .00346 37451

.0024 0000 .00054 93164 .0064 0000 .0015258789 .00 A4 0000 .00250 24414 .00 E4 0000 .00347 90039

.0025 0000 .0005645751 .00 65 0000 .00154 11376 .00 A5 0000 .00251 77001 .00 E5 0000 .00349 42626

.0026 0000 .00057 98339 .0066 0000 .0015563964 .00 A6 0000 .00253 29589 .00 E6 0000 .00350 95214

.0027 0000 .00059 50927 .0067 0000 .00157 16552 .00 A7 0000 .0025482177 .00 E7 0000 .00352 47802

.0028 00 00 .00061 03515 .00 68 0000 .0015869140 .00 A8 0000 .00256 34765 .00 E8 0000 .00354 00390

.0029 00 00 .00062 56103 .0069 0000 .0016021728 .00 A9 0000 .00257 87353 .00 E9 0000 .00355 52978

.002A 0000 .00064 08691 .006A 0000 .00161 74316 .00 AA 00 00 .00259 39941 .00 EA 0000 .00357 05566

.002B 0000 .00065 61279 .006B 0000 .00163 26904 .00 AB 0000 .00260 92529 .00 EB 0000 .0035858154

.002C 0000 .00067 13867 .006C 0000 .0016479492 .00 AC 0000 .0026245117 .00 EC 0000 .00360 10742

.002D 0000 .00068 66455 .006D 0000 .00166 32080 .00 AD 0000 .00263 97705 .00 ED 0000 .00361 63330

.002E 0000 .00070 19042 .006E 0000 .00167 84667 .00 AE 0000 .00265 50292 .00 EE 0000 .00363 15917

.002F 0000 .00071 71630 .006F 0000 .0016937255 .00 AF 0000 .00267 02880 .00 EF 0000 .00364 68505

.0030 0000 .00073 24218 .0070 0000 .00170 89843 .00 BO 0000 .0026855468 .00 FO 0000 .00366 21093

.0031 0000 .0007476806 .0071 0000 .00172 42431 .00 Bl 0000 .00270 08056 .00 Fl 0000 .0036773681

.0032 0000 .00076 29394 .0072 0000 .0017395019 .00 B2 0000 .00271 60644 .00 F2 0000 .00369 26269

.00 33 0000 .00077 81982 .0073 0000 .0017547607 .00 B3 0000 .00273 13232 .00 F3 0000 .00370 78857

.0034 0000 .00079 34570 .0074 0000 .00177 00195 .00 B4 0000 .0027465820 .00 F4 0000 .00372 31445

.0035 0000 .00080 87158 .0075 0000 .0017852783 .00 B5 0000 .00276 18408 .00 F5 0000 .0037384033

.0036 0000 .00082 39746 .0076 0000 .0018005371 .00 B6 0000 .00277 70996 .00 F6 0000 .00375 36621

.0037 0000 .00083 92333 .0077 0000 .00181 57958 .00 B7 0000 .00279 23583 .00 F7 0000 .00376 89208

.0038 0000 .00085 44921 .0078 0000 .00183 10546 .00 B8 0000 .0028076171 .00 F8 0000 .00378 41796

.0039 0000 .00086 97509 .0079 0000 .00184 63134 .00 B9 0000 .00282 28759 .00 F9 OOOQ .00379 94384

.003A 0000 .00088 50097 .00 7A 0000 .00186 15722 .00 BA 0000 .00283 81347 .00 FA 0000 .00381 46972

.003B 0000 .00090 02685 .007B 0000 .00187 68310 .00 BB 0000 .00285 33935 .00 FB 0000 .00382 99560

.003C 0000 .00091 55273 .007C 0000 .0018920898 .00 BC 0000 .00286 86523 .00 FC 0000 .0038452148

.00 3D 0000 .00093 07861 .007D 0000 .00190 73486 .00 BD 0000 .00288 39111 .00 FD 0000 .00386 04736

.003E 0000 .00094 60449 .007E 0000 .0019226074 .00 BE 0000 .0028991699 .00 FE 0000 .00387 57324

.003F 0000 .00096 13037 .007F 0000 .0019378662 .00 BF 0000 .00291 44287 .00 FF 0000 .00389 09912

Appendix A 153

HEXADECIMAL - DECIMAL FRACTION CONVERSION TABLE (cont.)

Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal

.000000 00 .00000 00000 .00 00 40 00 .0000038146 .00 00 80 00 .00000 76293 .0000 CO 00 .00001 14440

.0000 01 00 .00000 00596 .000041 00 .00000 38743 .00 00 81 00 .00000 76889 .0000 ClOD .00001 15036

.00 00 02 00 .00000 01192 .00 00 42 00 .00000 39339 .00 00 82 00 .00000 77486 .00 00 C2 00 .00001 15633

.00 00 03 00 .00000 Ol788 .000043 00 .00000 39935 .00 00 83 00 .00000 78082 .0000 C3 00 .00001 16229

.00 00 04 00 .00000 02384 .00 00 44 00 .00000 40531 .00 00 84 00 .00000 78678 .0000 C4 00 .00001 16825

.00 00 05 00 .00000 02980 .0000 45 00 .00000 41127 .0000 85 00 .00000 79274 .00 00 C5 00 .00001 17421

.00 00 06 00 .00000 03576 .00 00 46 00 .00000 41723 .0000 86 00 .00000 79870 .00 00 C6 00 .00001 18017

.00 00 07 00 .00000 04172 .00 00 47 00 .00000 42319 .00 00 87 00 · 00000 80466 .0000 C7 00 .00001 18613

.00 00 08 00 .00000 04768 .00 0048 00 .00000 42915 .00 00 88 00 .0000081062 .00 00 C8 00 .00001 19209

.00 00 09 00 .00000 05364 .000049 00 .00000 43511 .000089 00 .00000 81658 .0000 C9 00 .00001 19805

.0000 OA 00 .00000 05960 .00004A 00 .00000 44107 .0000 8A 00 .00000 82254 .0000 CA 00 .00001 2040 1

.00 00 DB 00 .00000 06556 .00 00 4B 00 .00000 44703 .00008B 00 .00000 82850 .0000 CB 00 .00001 20997

.0000 DC 00 .00000 07152 .00 00 4C 00 .00000 45299 .00 00 8C 00 .00000 83446 .0000 CC 00 .00001 21593

.0'000 OD 00 .00000 07748 .00 00 40 00 .00000 45895 .0000 8D 00 .00000 84042 .0000 CD 00 .00001 22189

.0000 DE 00 .00000 08344 .00 00 4E 00 .00000 46491 .0000 8E 00 .00000 84638 .0000 CE 00 .00001 22785

.00 00 OF 00 .00000 08940 .0000 4F 00 .00000 47087 .00008F 00 .00000 85234 .00 00 CF 00 .00001 23381

.000010 00 .00000 09536 .00 00 50 00 .00000 47683 .000090 00 .00000 85830 .0000 DO 00 .00001 23977

.00 0011 00 .00000 10132 .00 00 51 00 .00000 48279 .000091 00 .00000 86426 .0000 DIaD .00001 24573

.00 00 12 00 .00000 10728 .000052 00 .00000 48875 .000092 00 .00000 87022 .00 00 D2 00 .00001 25169

.00 00 13 00 .00000 11324 .000053 00 .00000 49471 .00 00 93 00 .00000 87618 .00 00 D3 00 .00001 25765

.0000 14 00 .00000 1 1920 .000054 00 .00000 50067 .000094 00 .00000 88214 .0000 D4 00 .00001 26361

.000015 00 .00000 12516 .000055 00 .00000 50663 .000095 00 .00000 8881 0 .0000 D5 00 .00001 26957

.0000 16 00 .00000 13113 .00 00 56 00 .0000051259 .000096 00 .00000 89406 .0000 D6 00 .00001 27553

.0000 17 00 .00000 13709 .000057 00 .00000 51856 .000097 00 .00000 90003 .0000 D7 00 .00001 28149

.0000 18 00 .00000 14305 .000058 00 .00000 52452 .000098 00 .00000 90599 .0000 DB 00 .00001 28746

.00 00 19 00 .00000 14901 .00 00 59 00 · 00000 53048 .00 00 99 00 .00000 91195 .00 00 D9 00 .00001 29342

.00 00 lA 00 .00000 15497 .0000 5A 00 .00000 53644 .0000 9A 00 .00000 91791 .00 00 DA 00 .00001 29938

.00 00 1 B 00 . 00000 16093 .00 00 5B 00 .00000 54240 .00 00 9B 00 .00000 92387 .00 00 DB 00 .00001 30534

.OOOOIC 00 .00000 16689 .00 00 5C 00 .00000 54836 .00 00 9C 00 .00000 92983 .00 00 DC 00 .00001 31130

.00 00 I D 00 .00000 17285 .00 00 5D 00 .00000 55432 .00 00 9D 00 .00000 93579 .00 00 DD 00 .00001 31726

.00 00 IE 00 .00000 17881 .00 00 5E 00 .00000 56028 .00 00 9E 00 .00000 94175 .00 00 DE 00 .00001 32322

.00 00 1 F 00 .00000 18477 .00 00 5F 00 .00000 56624 .00 00 9F 00 · 00000 94771 .00 00 DF 00 .00001 32918

.00 00 20 00 .00000 19073 .000060 00 .00000 57220 .0000 AD 00 .00000 95367 .0000 EO 00 .00001 33514

.00 00 21 00 .00000 19669 .00 00 61 00 .0000057816 .0000 Al 00 .00000 95963 .0000 El 00 .00001 3411 0

.00 00 22 00 .00000 20265 .000062 00 .00000 58412 .00 00 A2 00 .00000 96559 .0000 E2 00 .00001 34706

.0000 23 00 .00000 2086 1 .00 00 63 00 .00000 59008 .00 00 A3 00 .00000 97155 .00 00 E3 00 .00001 35302

.00 0024 00 .00000 21457 .0000 64 00 .00000 59604 .0000 A4 00 .00000 97751 .00 00 E4 00 .00001 35898

.000025 00 .00000 22053 .0000 65 00 .00000 60200 .0000 A5 00 .00000 98347 .0000 E5 00 .00001 36494

.000026 00 .00000 22649 .000066 00 .00000 60796 .00 00 A6 00 .00000 98943 .0000 E6 00 .00001 37090

.00 0027 00 .00000 23245 .000067 00 .00000 61392 .0000 A7 00 .00000 99539 .0000 E7 00 .00001 37686

.00 00 28 00 .00000 23841 .000068 00 .00000 61 988 .0000 A8 00 .00001 00135 .0000 E8 00 .00001 38282

.000029 00 .00000 24437 .00 00 69 00 .00000 62584 .00 00 A9 00 .00001 00731 .0000 E9 00 .00001 38878

.00 00 2A 00 .00000 25033 .00006A 00 .00000 63180 .0000 AA 00 .00001 01327 .00 00 EA 00 .00001 39474

.00 00 2B 00 .00000 25629 .00006B 00 .00000 63776 .0000 AB 00 .00001 01923 .0000 EB 00 .00001 40070

.00002C 00 .00000 26226 .00006C 00 .00000 64373 .0000 AC 00 .00001 02519 .0000 EC 00 .00001 40666

.00 00 2D 00 .00000 26822 .00 00 6D 00 .00000 64969 .00 00 AD 00 .00001 03116 .00 00 ED 00 .00001 41263

.00 00 2E 00 .0000027418 .00 00 6E 00 .00000 65565 .00 00 AE 00 .00001 03712 .00 00 EE 00 .00001 41859

.00 00 2F 00 .00000 280 14 .00 00 6F 00 .00000 66161 .00 00 AF 00 .0000 I 04308 .0000 EF 00 .00001 42455

.0000 30 00 .00000 28610 .00 00 70 00 .00000 66757 .0000 BO 00 .00001 04904 .00 00 Fa 00 .00001 43051

.00 00 31 00 .00000 29206 .00 00 71 00 .00000 67353 .00 00 BI 00 · 00001 05500 .00 00 FI 00 .00001 43647

.00 00 32 00 .00000 29802 .00 00 72 00 .00000 67949 .00 00 B2 00 · 0000 I 06096 .0000 F2 00 .00001 44243

.00 00 33 00 .00000 30398 .00 00 73 00 · 00000 68545 .00 00 B3 00 .00001 06692 .00 00 F3 00 .00001 44839

.00 00 34 00 .00000 30994 .00 00 74 00 .00000 69141 .00 00 B4 00 · 0000 I 07288 .00 00 F4 00 .00001 45435

.00 00 35 00 .00000 31590 .00 00 75 00 .00000 69737 .00 00 B5 00 .00001 07884 .00 00 F5 00 .0000 I 46031

.00 00 36 00 .00000 32186 .00 00 76 00 .00000 70333 .00 00 B6 00 .00001 08480 .00 00 F6 00 .00001 46627

.00 00 37 00 .00000 32782 .00 00 77 00 .00000 70929 .00 00 B7 00 · 0000 I 09076 .00 00 F7 00 .00001 47223

.00 00 38 00 .00000 33378 .00 00 78 00 .00000 71525 .00 00 B8 00 .00001 09672 .00 00 F8 00 .00001 47819

.00 00 39 00 .00000 33974 .00 00 79 00 .00000 72121 .00 00 B9 00 .00001 10268 .00 00 F9 00 .00001 48415

.00 00 3A 00 .00000 34570 .00 00 7A 00 · 00000 7271 7 .00 00 BA 00 · 0000 I 10864 .00 00 FA 00 .00001 49011

.00 00 3B 00 . 00000 35166 .00 00 7B 00 .00000 73313 .00 00 BB 00 .0000 1 11460 .00 00 FB 00 .00001 49607

.00 00 3C 00 .00000 35762 .00 00 7C 00 .00000 73909 .00 00 BC 00 · 00001 I 2056 .0000 FC 00 .00001 50203

.00 00 3D 00 .00000 36358 .00 00 7D 00 .00000 74505 .00 00 BD 00 .00001 12652 .0000 FD 00 .00001 50799

.00003E 00 .0000036954 .00 00 7E 00 .00000 7510 I .00 00 BE 00 .00001 13248 .0000 FE 00 .00001 51395

.00 00 3F 00 .00000 37550 .00 00 7F 00 .00000 75697 .00 00 BF 00 .00001 13844 .00 00 FF 00 .00001 51991

154 Appendix A

HEXADECIMAL - DECIMAL FRACTION CONVERSION TABLE (cont.)

Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal

.00000000 .00000 00000 .00000040 .00000 00149 .00000080 .00000 00298 .00 00 00 CO .00000 00447

.00000001 .00000 00002 .00000041 .00000 00151 .00000081 .00000 00300 .0000 00 Cl .00000 00449

.00000002 .00000 00004 .00000042 .0000000153 .00000082 .00000 00302 .000000 C2 .00000 00451

.00000003 .00000 00006 .00000043 .00000 00155 .00000083 .0000000305 .0000 00 C3 .00000 00454

.00000004 .00000 00009 .00000044 .00000 00158 .00000084 .00000 00307 .0000 00 C4 .00000 00456

.00000005 .00000 00011 .00000045 .00000 00160 .00000085 .0000000309 .000000 C5 .00000 00458

.00000006 .00000 00013 .00000046 .00000 00162 .00 00 00 86 .0000000311 .00 00 00 C6 .00000 00461

.00000007 .00000 00016 .00600047 .00000 00 165 .00 00 00 87 .00000 00314 .000000 C7 .00000 00463

.00000008 .00000 00018 .00000048 .0000000167 .00000088 .00000 00316 .00 00 00 C8 .00000 00465

.00000009 .00000 00020 .00000049 .00000 00169 .00000089 .00000 00318 .00 00 00 C9 .00000 00467

.00 00 00 OA .00000 00023 .00 00 004A .00000 00 172 .00 00 00 8A .00000 00321 .0000 00 CA .00000 00470

.OOOOOOOB .00000 00025 .00 00 004B .00000 00174 .00 00 00 8B .00000 00323 .000000 CB .00000 00472

.000000 OC .00000 00027 .00 00 00 4C .00000 00176 .000000 8e .00000 00325 .00 00 00 CC .00000 00474

.00 00 00 OD .00000 00030 .00 0000 4D .00000 00179 .00 00 00 8D .00000 00328 .00 00 00 CD .00000 00477

.0000 00 OE .00000 00032 .00 00 00 4E .00000 00181 .0000 00 8E .00000 00330 .00 00 00 CE .00000 00479

.000000 OF .0000000034 .00 00 00 4F .00000 00183 .0000 00 8F .00000 00332 .00 00 00 CF .00000 00481

.00000010 .00000 00037 .00000050 .00000 00 186 .0000 00 90 .00000 00335 .000000 DO .00000 00484

.000000 11 .0000000039 .00000051 .00000 00 188 .000000 91 .00000 00337 .00 00 00 Dl .00000 00486

.000000 12 .00000 00041 .00 00 00 52 .00000 00 1 90 .000000 92 .00000 00339 .00 00 00 D2 .0000000488

.00 00 00 13 .00000 00044 .00 00 0053 .00000 00193 .00000093 .00000 00342 .00 00 00 D3 .00000 00491

.00000014 .00000 00046 .00000054 .00000 00195 .0000 00 94 .00000 00344 .00 00 00 D4 .00000 00493

.00 00 0015 .00000 00048 .00000055 .0000000197 .0000 00 95 .00000 00346 .00 00 00 D5 .00000 00495

.00000016 .00000 00051 .00 00 0056 .00000 00200 .00 00 00 96 .00000 00349 .000000 D6 .00000 00498

.000000 17 .00000 00053 .0000 00 57 .0000000202 .00 00 00 97 .00000 00351 .000000 D7 .00000 00500

.00000018 .00000 00055 .00 00 00 58 .0000000204 .00 00 00 98 .00000 00353 .00 00 00 DB .00000 00502

.00000019 .00000 00058 .00 00 00 59 .00000 00207 .00 00 00 99 .00000 00356 .00 00 00 D9 .0000000505

.0000001A .00000 00060 .0000 005A .00000 00209 .0000009A .00000 00358 .00 00 00 DA .00000 00507

.000000 lB .00000 00062 .00 00 00 5B .00000 00211 .00 00 00 9B .0000000360 .00 00 00 DB .00000 00509

.0000001C .00000 00065 .00 00 005C .00000 00214 .0000009C .00000 00363 .000000 DC .00000 0051 2

.0000001 D .00000 00067 .0000005D .00000 00216 .000000 9D .00000 00365 .00 00 00 DD .00000 00514

.000000 lE .00000 00069 .0000 00 5E .00000 00218 .000000 9E .00000 00367 .00 00 00 DE .00000 00516

.0000001F .00000 00072 .00 00 005F .00000 00221 .000000 9F .00000 00370 .oq 00 00 DF .00000 00519

.00000020 .00000 00074 .00000060 .00000 00223 .00 00 00 AO .00000 00372 .0000 00 EO .00000 00521

.00000021 .00000 00076 .00000061 .00000 00225 .000000 Al .00000 00374 .00 00 00 E1 .00000 00523

.00000022 .00000 00079 .0000 00 62 .00000 00228 .000000 A2 .00000 00377 .00 00 00 E2 .00000 00526

.00000023 .00000 00081 .00000063 .00000 00230 .000000 A3 .00000 00379 .00 00 00 E3 .00000 00528

.00000024 .00000 00083 .00000064 .00000 00232 .00 00 00 A4 .00000 00381 .00 00 00 E4 .00000 00530

.00 00 00 25 .00000 00086 .00000065 .00000 00235 .000000 A5 .00000 00384 .000000 E5 .00000 00533

.00000026 .00000 00088 .0000 0066 .00000 00237 .00 00 00 A6 .00000 00386 .00 00 00 E6 .00000 00535

.00000027 .00000 00090 .00000067 .00000 00239 .00 00 00 A7 .00000 00388 .00 00 00 E7 .00000 00537

.00000028 .00000 00093 .00 00 0068 .00000 00242 .00 00 00 A8 .00000 00391 .00 00 00 E8 .00000 00540

.00000029 .00000 00095 .00000069 .00000 00244 .00 00 00 A9 .00000 00393 .000000 E9 .00000 00542

.0000002A .00000 00097 .00 00 006A .00000 00246 .000000 AA .00000 00395 .00 00 00 EA .00000 00544

.0000002B .00000 00100 .00 00 006B .00000 00249 .00 00 00 AB .00000 00398 .000000 EB .00000 00547

.000000 2C .00000 00102 .0000006C .00000 00251 .0000 00 AC .00000 00400 .00 00 00 EC .00000 00549

.000000 2D .00000 00104 .00 00 00 6D .00000 00253 .0000 00 AD .00000 00402 .000000 ED .00000 00551

.00 00 00 2E .00000 00107 .00 00 006E .00000 00256 .0000 00 AE .00000 00405 .00 00 00 EE .00000 00554

.00 00 00 2F .00000 00109 .00 00 006F .00000 00258 .0000 00 AF .00000 00407 .000000 EF .00000 00556

.0000 00 30 .00000 00111 .00 00 00 70 .00000 00260 .00 00 00 BO .00000 00409 .00 00 00 FO .00000 00558

.00000031 .00000 00 114 .000000 71 .00000 00263 .00 00 00 Bl .00000 00412 .000000 Fl .00000 00561

.0000 00 32 .00000 00 116 .000000 72 .00000 00265 .00 00 00 B2 .00000 00414 .000000 F2 .00000 00563

.00000033 .00000 00 118 .00 00 00 73 .00000 00267 .000000 B3 .00000 00416 .00 00 00 F3 .00000 00565

.00 00 00 34 .00000 00121 .000000 74 .00000 00270 .000000 B4 .00000 00419 .00 00 00 F4 .00000 00568

.000000 35 .00000 00123 .00000075 .00000 00272 .00 00 00 B5 .00000 00421 .0000 00 F5 .00000 00570

.00000036 .00000 00 125 .00000076 .00000 00274 .000000 B6 .00000 00423 .000000 F6 .00000 00572

.00000037 .00000 00 128 .0000 00 77 .00000 00277 .000000 B7 .00000 00426 .0000 00 F7 .00000 00575

.00000038 .00000 00 130 .00 00 00 78 .00000 00279 .00 00 00 B8 .00000 00428 .000000 F8 .00000 00577

.00000039 .00000 00132 .00000079 .00000 00281 .000000 B9 .00000 00430 .00 00 00 F9 .0000000579

.00 00 00 3A .00000 00135 .00 00 007A .00000 00284 .000000 BA .0000000433 .000000 FA .00000 00582

.0000003B .00000 00137 .00 00 00 7B .00000 00286 .00 00 00 BB .00000 00435 .00 00 00 FB .00000 00584

.0000003C .00000 00139 .0000 00 7C .00000 00288 .000000 BC .00000 00437 .000000 FC .00000 00586

.000000 3D .00000 00142 .0000 00 7D .00000 00291 .00 00 00 BD .00000 00440 .000000 FD .00000 00589

.0000003E .00000 00 144 .0000 00 7E .00000 00293 .00 00 00 BE .00000 00442 .000000 FE .00000 00591

.0000003F .00000 00 146 .00 00 00 7F .00000 00295 .000000 BF .00000 00444 .000000 FF .00000 00593

Appendi X A 155

TABLE OF POWERS OF TWO MATHEMATICAL CONSTANTS

2n n 2-n

I 0 1.0
2 I 0.5
4 2 0.25
8 3 0.125

16 4 0.062 5
32 5 0.031 25
64 6 0.015 625

128 7 0.007 812 5

256 8 0.003 906 25
512 9 0.001 953 125

I 024 10 0.000 976 562 5
2 048 11 0.000 488 281 25

4 096 12 0.000 244 140 625
8 192 13 0.000 122 070 312 5

16 384 14 0.000 061 035 156 25
32 768 15 0.000 030 517 578 125

65 536 16 0.000 015 258 789 062 5
131 072 17 0.000 007 629 394 531 25
262 144 18 0.000 003 814 697 265 625
524 288 19 0.000 001 907 348 632 812· 5

1 048 576 20 0.000 000 953 674 316 406 25
2 097 152 21 0.000 000 476 837 158 203 125
4 194 304 22 0.000 000 238 418 579 101 562 5
8 388 608 23 0.000 000 119 209 289 550 781 25

16 m 216 24 0.000 000 059 604 644 775 390 625
33 554 432 25 0.000 000 029 802 322 387 695 312 5
67 lOB 864 26 0.000 000 014 901 161 193 847 656 25

134 217 728 27 0.000 000 007 450 580 596 923 828 125

268 435 456 28 0.000 000 003 725 290 298 461 914 062 5
536 870 912 29 0.000 000 001 862 645 149 230 957 031 25

1 073 741 824 30 0.000 000 000 931 322 574 615 478 515 625
2 147 483 648 31 0.000 000 000 465 661 287 307 739 257 812 5

4 294 967 296 32 0.000 000 000 232 830 643 653 869 628 906 25
8 589 934 592 33 0.000 000 000 116 415 321 826 934 814 453 125

17 179 869 184 34 0.000 000 000 058 207 660 913 467 407 226 562 5
34 359 738 368 35 0.000 000 000 029 103 830 456 733 703 613 281 25

68 719 476 736 36 0.000 000 000 014 551 915 228 366 851 806 640 625
137 438 953 472 37 0.000 000 000 007 275 957 614 183 425 903 320 312 5
274 877 906 944 38 0.000 000 000 003 637 978 807 091 712 951 660 156 25
549 755 813 888 39 0.000 000 000 001 818 989 403 545 856 475 830 078 125

1 099 511 627 776 40 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5
2 199 023 255 552 41 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25
4 398 046 511 104 42 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625
8 796 093 022 208 43 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5

17 592 186 044 416 44 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25
35 184 372 088 832 45 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125
70 368 744 177 664 46 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5

140 737 488 355 328 47 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25

281 474 976 710 656 48 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625
562 949 953 421 312 49 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5

1 125 899 906 842 624 50 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25
2 251 799 813 685 248 51 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125

Constant

rr-l

.frr

Inrr

e
-1

e

.. /e

10910 e

log2 e

Y

InY

.JT

In2

109102

,'TO
In 10

4 503 599 627 370 496 52 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5
9 007 199 254 740 992 53 0.000 000 000 000 000 III 022 302 462 515 654 042 363 166 809 082 031 25

18 014 398 509 481 984 54 0.000 000 000 000 000 055 511 151 231 257 827 021 181 583 404 541 015 625
36 028 797 018 963 968 55 0.000 000 000 000 000 027 755 575 615 628 913 510 590 791 702 270 507 812 5

72 057 594 037 927 936 56 0.000 000 000 000 000 013 877 787 807 814 456 755 295 395 851 135 253 906 25

Decimal Value

3.14159 26535 89793

0.31830 98861 83790

1.77245 38509 05516

1.14472 98858 49400

2.71828 18284 59045

0.36787 94411 71442

I .64872 12707 00128

0.43429 44819 03252

1.44269 50408 88963

0.57721 56649 01533

-0.54953 93129 81645

1.41421 35623 73095

0.69314 71805 59945

0.30102 99956 63981

3.16227 76601 68379

2.30258 40929 94046

144 115 188 075 855 872 57 0.000 000 000 000 000 006 938 893 903 907 228 377 647 697 925 567 626 953 125
288 230 376 151 711 744 58 0.000 000 000 000 000 003 469 446 951 953614 188 823 848 962 783 813 476 562 5
576 460 752 303 423 488 59 0.000 000 000 000 000 001 734 723 475 976 807 094 411 924 481 391 906 738 281 25

1 152 921 504 606 846 976 60 0.000 000 000 000 000 000 867 361 737 988 403 547 205 962 240 695 953 369 140 625
2 305 843 009 213 693 952 61 0.000 000 000 000 000 000 433 680 868 994 201 773 602 981 120 347 976 684 570 312 5
4611686018427 387904 62 0.000 000 000 000 000 000 216 840 434 497 100886801 490560 173988 342 285 15625
9 223 372 036 854 775 808 63 0.000 000 000 000 000 000 108 420 217 248 550 443 400 745 280 086 994 171 142 578 125

156 Appendix A

Hexadecimal Value

3.243F 6A89

0.517C CIB7

I.C5BF 891C

l.250D 048F

2.B7El 5163

0.5E2D 58D9

I.A612 98E2

0.6F2D EC55

1.7154 7653

0.93C4 67E4

-0.8CAE 9BCI

1.6A09 E668

O.BI72 17F8

0.4Dl0 4D42

3.298B 075C

2.4D76 3777

APPENDIX B. SIGMA 9 INSTRUCTION LIST

Mnemonic Code Instruction Nome Page Mnemonic Code Instruction Nome Page

LOAD/STORE FLOATING-POINT ARITHMETIC

Ll 22 Lood Immediote 47 FAS 3D Floating Add Short 77
LB 72 Lood Byte 47 FAL 1D Floating Add Long 77
LH 52 Load Halfword 47 FSS 3C Floating Subtract Short 77
LW 32 Load Word 47 FSL lC FloaTing Subtract Long 77
LD 12 Load Doubleword 48 FMS 3F Floating Multiply Short 77
LCH 5A Load Complement Halfword. 48 FML IF Floating Multiply Long 77
LAH 5B Load Absolute Halfword 48 FDS 3E Floating Divide Short 78
LCW 3A Load Complement Word 48 FDL IE Floating Divide Long 78
LAW 3B Load Absolute Word 49
LCD lA Load Complement Doubleword 49

DECIMAL
LAD lB Load Absolute Doubleword 50
LRA 2C Load' Real Address 50

DL 7E Decimol Load 80
LAS 26 load and Set 51

DST 7F Decimal Store 80
lMS 2D load Memory Status 51

DA 79 Decimal Add 81
lS 4A Load Selective 53

DS 78 Decimal Subtract 81 LM 2A Load Multiple 54
DM 7B Decimal Multiply 81

LCFl 02 load Conditions and Floating Control Immediate 54
DD 7A Decimal Divide 82

lCF 70 Load Conditions and Floating Control 55
DC 7D Decimal Compare 82

XW 46 Exchange Word 55
DSA 7C Decimal Shift Arithmetic 82

STB 75 Store Byte 55
PACK 76 Pack Decimal Digits 83

STH 55 Store Halfword 55
UNPK 77 Unpack Decimal Digits 84

STW 35 Store Word 55
STD 15 Store Doubleword 56
STS 47 Store Selective 56 BYTE STRING
STM 2B Store Multiple 56
STCF 74 Store Conditions and Floating Control 56 MBS 61 Move Byte String 86

CBS 60 Compare Byte String 87
ANALYZE/INTERPRET TBS 41 Translate Byte String 87

HBS 40 Translate and Test Byte String 88
ANlZ 44 Analyze 57 EBS 63 Edit Byte String 89
INT 6B Interpret 58

FIXED-POINT ARITHMETIC
PUSH DOWN

AI 20 Add Immediate 59
PSW 09 Push Word 95
PLW 08 Pull Word 96

AH 50 Add Halfword 60
PSM OB Push Multiple 96

AW 30 Add Word 60
AD 10 Add Doubleword 60

PlM OA Pull Multiple 97

SH 58 Subtract Halfword 61
MSP 13 Modify Stack Pointer 98

SW 38 Subtract Word 61
SO 18 Subtract Doubleword 61 EXECUTE/BRANCH
MI 23 Multiply Immediate 62
MH 57 Multiply Halfword 62 EXU 67 Execute 99
MW 37 Multiply Word 63 BCS 69 Branch on Conditions Set 100
DH 56 Divide Halfword 63 BCR 68 Branch on Conditions Reset 100
OW 36 Divide Word 63 BIR 65 Branch on Incrementing Register 100
AWM 66 Add Word to Memory 64 BDR 64 Branch on Decrementing Register 101
MTB 73 Modify and Test Byte 64 BAl 6A Branch and link 101
MTH 53 Modify and Test Halfword 64
MTW 33 Modify and Test Word 65

CAll

COMPARISON
CAll 04 Call 1 102

CI 21 Compare Immediate 66
CAl2 05 Call 2 102
CAl3 06 Call 3 102

CB 71 Compare Byte 66
CAl4 07 Call 4 102

CH 51 Compare Halfword 66
CW 31 Compare Word 67

CONTROL
CD II Compare Daub I eword 67
CS 45 Compare Selective 67

lPSD OE load Program Status Doubleword 103
CLR 39 Compare with limits in Register 67
CLM 19 Compare with limits in Memory 68

XPSD OF Exchange Prograll;l Status Doubleword 103
lRP 2F load Register Pointer 106

LOGICAL
MMC 6F Move to Memory Control 106
WAIT 2E Wait 108

OR 49 OR Word 68
RD 6C Read Direct 108

EOR 48 Exclusive OR Word 68
WD 60 Write Direct 110

AND 4B AND Word 68
INPUT/OUTPUT

SHIFT
SIO 4C Start Input/Output 114

S 25 Shift 69 TIO 4D Test Input/Output 117
SF 24 Shift Floating 71 TOV 4E Test Device 118

HIO 4F Halt Input/Output 119
CONVERSION RIO 4F Reset Input/Output 120

POLP 4F Poll Processor 120
CVA 29 Convert by Addition 72 POlR 4F Poll and Reset Processor 120
CVS 28 Convert by Subtraction 73 AIO 6E Acknowledge Input/Output Interrupt 120

Appendix B 157

APPENDIX C. INSTRUCTION TIMING

TIMING CONSIDERATIONS

Because of SIGMA 9 1s complexity, simple timing formulas
cannot exactly express central processor operations. Timings
and formulas in this section are a reasonable approximation
of actual SIGMA 9 performance, taking all factors into
consideration. However, system performance can be estab-
I ished using benchmark programs under actual operating
system envi ronments.

All times are based on the assumption that, whenever the
CPU requests a service cycle from a particular memory
bank, it never waits for such service due to other devices
(such as lOPs), which are connected to that memory bank.

Execution times depend not only on the nature of the spe­
cific instructions but also on the configuration of memory
banks in the system, and the placement of instructions and
operands in memory. Basic timing information is summarized
in Table C-1. Execution times for instructions assume the
most common conditions that the user can expect to encounter
in his program. These basic execution times must be
increased to account for the effects of memory interference,
indexing, and indi rect addressing. These effects are dis­
cussed in the following paragraphs.

EFFECTS OF MEMORY INTERFERENCE

Memory interference will affect central processor speed,
which varies with the memory cycle time, the number of
memory banks capable of running in parallel, and the func­
tion being executed. Interference is minimized by inter­
leaving memory banks to allow maximum memory overlap.

In a typical instruction mix used in scientific/engineering
applications, the percentages of the instructions executed
might be as follows:

Type of Instruction Percent

Floating-point 8.5

Fixed-point 53.0
(incl uding loads and stores)

Type of Instruction Percent

Branch 27.5

Miscellaneous 11. 0

The effect of memory interference on the above instruction
mix in an 8-bank system for 100 instructions is an increase
of approximately 7.4 microseconds or an average of 74
nanoseconds per instruction. In a minimum SIGMA 9 con­
figuration (a 4-bank system), the effect of memory inter­
ference would double. Changing the mix to a commercial
application that uses decimal and byte string instructions
does not significantly change the effect of memory inter­
ference on the average instruction. Over a wide range of
mixes, the effect of memory interference in an 8-bank sys­
tem changed by less than 10 percent.

EFFECTS OF INDEXING

Indexing causes a maximum increase of .235 fJsec in the
execution time of an instruction. Many instructions are
I imited in speed due to memory access time. Indexing
is often performed in con junction with memory accesses.
This overlapping of indexing with memory time allows the
effective time due to indexing to be .235 I-Isec less the
memory overlap time. For a typical scientific mix of
instructions, the average memory overlap is . 120 fJsec. The
typical indexing time would then be . 115 fJsec.

EFFECTS OF INDIRECT ADDRESSING

Indirect addressing requires a memory access. This acc'ess
may be from the general registers or the main memory.

1. Indirect addressing from general registers requires a
maximum time of .960 fJsec.

2. Indirect addressing from main memory requires a max­
imum time of 1.050 fJsec.

The maximum time required for indirect addressing is reduced
when the indirect memory request is overlapped with instruc­
tion execution. This effect is instruction dependent.

Table C-1. Basic Instruction Timing

Instruction
Mnemonic Time (fJsec)t Notes

AD 1.66

AH .73

tAdd 0.6 if analyzed instruction is indirect; subtract 0.3 if it is LCFI, AI, LI, CBS, MBS, or EBS.

158 Appendix C

Table C-1. Basic Instruction Timing (cont.)

Instruction
Mnemonic Time (I-Isec)t Notes

CS 1. 33

CVA 8.57 +. 6N N = number of lis in the word converted.

CVS 27.43

CW .81

DA 5.1 + .46D D = number of digits (including the sign) in the effective
decimal operand.

DC 4.2+ .36D D = number of digits (including the sign) in the effective
decimal operand.

DD 18.5+ .5K K = (D + 6) (16 - Q); D = number of digits (including the sign)
in the effective decimal operand; Q = number of leading zeros
in the quoti ent.

DH 9.5

DL 4.7+ .13D D = number of digits (including the sign) in the effective
decimal operand.

DM 38.2+ .28DN D = number of digits (including the sign) in the effective
decimal operand; N = number of nonzero decimal digits in
the decimal accumulator.

DS 5.1 + .46D D = number of digits (including the sign) in the effective
deci ma I operand.

DSA 12.5

DST 4.5+ .36D D = number of digits (including the sign) to be stored.

DW 9.5

EBS 7.8 + 3.4N N = number of bytes in the editing pattern.

EOR .73

EXU 1.2 Add execution time for subject instruction.

FAL 2.9 (min) No prealignment or postnormalization required.

FAL 3.35 (typical) One hexadecimal prealignment and one hexadecimal
postnormal ization.

FAL 9.82 (max) Unnormal ized operands.

FAS 2.05 (min) No preal ignment or postnormal ization required.

FAS 2.54 (typical) One hexadecimal prealignment and one hexadecimal
postnormal ization.

FAS 5.33 (max) Unnormal ized operands.

tAdd 0.6 if analyzed instruction is indirect; subtract 0.3 if it is LCFI, AI, LI, CBS, MBS, or EBS.

Appendi x C 159

T abl e C-1. Basic Instruction Timing (cont.)

Instruction
Mnemonic Time (fJsec)t Notes

AI .73

AIO 6.78 + D RIO.

Includes 3 fJsec to claim the processor bus.

D = turnaround time on the interface.

AIO 5.96 + D R= O.

Includes 3 fJsec to claim the processor bus.

/) = turnaround time on the interface.

AND .73

ANlZ 1. 65

AW .73

AWM 1. 77

BAl .9

BCR .81 Branch

BCR 1. 63 No Branch

BCS .81 Branch

BCS 1. 63 No Branch

BDR 1.10 Branch

BDR 1. 63 No Branch

BIR 1. 1 Branch

BIR 1. 63 No Branch

CAll-4 1. 98

CB .81

CBS 4.3+ .6N N = number of destination bytes processed.

CD 1.4

CH .81

CI .80

ClM 1.4

ClR .92

tAdd 0.6 if analyzed instruction is indirect; subtract 0.3 if it is lCFI, AI, LI, CBS, MBS, or EBS.

160 Appendix C

Table C-l. Basic Instruction Timing (cont.)

Instruction
Mnemonic Time (flsec)t Notes

FDL 17.46 (min) Nonzero, norma I i zed operands.

Minimum time is also typical time.

FDL 24.58 {max} Unnorma I i zed operands.

FDS 7.69 (min). Nonzero, normal ized operands.

Minimum time is also typical time.

FDS 10.86 {max} Unnormal ized operands.

FML 6.27 {min} Nonz~ro, normalized operands.

Minimum time is also typical time.

FML 10.83 {max} Unnormal ized operands.

FMS 3.32 (min) Nonzero, normalized operands.

Minimum time is also typical time.

FMS 6. 12 (max) Unnormal ized operands.

FSL 2.9 (min) No prealignment or postnormalization required.

FSL 3.35 (typical) One hexadecimal prealignment and one hexadecimal
postnormal ization.

FSL 9.82 (max) Unnormal ized operands.
)

FSS 2.05 {min} No prealignment or postnormalization required.

FSS 2.54 (typical) One hexadecimal prealignment and one hexadecimal
postnormal ization.

FSS 5.33 (max) Unnormal ized operands.

HIO 7.37 + D R = even, f O.

Includes 3 flsec to claim the processor bus.

D = turnaround time on the interface.

HIO 6.78 + D R = odd.

Includes 3 flsec to claim the processor bus.

D = turnaround time on the interface.

HIO 5.96 + D R= O.

Includes 3 flsec to claim the processor bus.

D = turnaround time on the interface .

INT
• 73 R= odd
.75 R = even

LAD 1. 66

tAdd 0.6 if analyzed instruction is indirect; subtrdct 0.3 if it is LCFI, AI, LI, CBS, MBS, or EBS.

Appendix C 161

Table C-1. Basic Instruction Timing (cont.)

Instruction
Mnemonic Time (I-Isec)t Notes

LAH .81

LAS 1. 94

LAW .73

LB .73

LCD 1. 66

LCF .73

LCFI .73

LCH .73

LCW .73

LD 1. 58

LH .73

LI .73

LM 2.8+ .8N N = number of words moved.

LMS 1. 94

LPSD 3.63

LRA 1.06

LRP .73
I

LS .99

LW .73

MSS 3.4+.6N N = number of destination bytes processed regardless of word or
byte boundaries.

MH 2.44

MI 3.32

MMC 3.42 + 2.51 N (L:7 map) N = number of words moved.
or + 1. 83N (L:9 map)

For SIGMA 7 compatible mode, use3.42+2.51N, where N is
the number of words. Maximum N is 64 since each page is one
byte. For SIGMA 9 mode, use 3.42 + 1. 83N. Maximum N is
128 since each page is 13 bits or approximately a halfword.

MSP 4.75

MTB 1. 77

tAdd 0.6 if analyzed instruction is indirect; subtract 0.3 if it is LCFI, AI, LI, CBS, MBS, or EBS.

162 Appendix C

Table C-1. Basic Instruction Timing (cont.)

Instruction
Mnemonic Time (fJsec)t Notes

MTH 1. 77

MTW 1. 77

MW 3.32

OR .73

PACK 7.5 + .55N N = number of bytes in zoned number i.n memory.

PLM 7.75 +. 39N N = number of words moved.

PLW 6.03

PSM 7.32 + .65N N = number of words moved.

PSW 5.86

RD 1. 41 Internal

RD 2.07 + 0.24N External

N = integer (0, 1, 2, ...), dependent on delay in external
device.

S (left) 1. 5 + .06N N = number of bit positions shifted.

S (right) 1. 6 + .06N N = number of bit positions shifted.

S (searching left) 2.9+ .06N N = number of bit positions shifted.

S (searching right) 2.7+ .12N N = number of bit positions shifted.

SD 1. 66

SF (left) 2.0+ .23N Single

N = number of hexadecimal positions shifted.

SF (left) 2.1 + .23N Double

N = number of hexadecimal positions shifted.

SF (right) 2.5+ .23N Single

N = number of hexadecimal positions shifted.

SF (right) 2.6+ .23N Double

N = number of hexadecimal positions shifted .

SH . 73

SIO 7.37 + D R = even, -10
Includes 3 fJsec to claim the processor bus.

D = turnaround time on the interface.

tAdd 0.6 if analyzed instruction is indirect; subtract 0.3 if it is LCFI, AI, LI, CBS, MBS, or EBS.

Appendix C 163

Table C-1. Basic Instruction Timing (cont.)

Instruction I
Mnemonic Time (fJsec)t Notes

SIO 6.78 + D R = odd

Includes 3 fJsec to claim the processor bus.

D = turnaround time on the interface.

SIO 5.96 + D R=O

Includes 3 fJsec to claim the processor bus.

D = turnaround time on the interface.

STB 1. 77

STCF 1. 77

STD 2.42

STH 1. 77

STM 2.1+.65N N = number of words moved.

STS 1. 81

STW 1. 77

SW .73

TBS 5.9 + 2. 25N N = number of destination bytes processed.

TDY 7.37 + D R= even, /:0

I Incl udes 3 fJsec to claim the processor bus.

I D = turnaround time on the interface.

TDY 6.78 + D R = odd

Includes 3 fJsec to claim the processor bus.

D = turnaround time on the interface.

TDY 5.96 + D R=O

Includes 3 fJsec to claim the processor bus.

D = turnaround time on the interface.

T10 7.37 + D R = even, /:0

Incl udes 3 fJsec to claim the processor bus.

D = turnaround time on the interface.

T10 6.78 + D R= odd

Incl udes 3 fJsec to claim the processor bus.

D = turnaround time on the interface.

tAdd 0.6 if analyzed instruction is indirect; subtract 0.3 if it is LCFI, AI, LI, CBS, MBS, or EBS.

164 Appendix C

Table C-l. Basic Instruction Timing (cont.)

Instruction
Mnemonic Time (fJsec)t Notes

TIO 5.96 + D R=O

Includes 3 fJsec to claim the processor bus.

D = turnaround time on the interface.

TTBS 13 + 1. 9N N = number of destination bytes processed.

UNPK 7.1 + .72N N = number of bytes to be stored in memory.

WAIT .73 Minimum time.

WD 1. 41 Internal

WD 2.07 + O. 24N External

N = integer (0, 1, 2, •..), dependent on delay in external
device.

XPSD 5.43

XW 1. 77

tAdd 0.6 if analyzed instruction is indirect; subtract 0.3 if it is LCFI, AI, LIt CBS, MBS, or EBS.

Appendix C 165

APPENDIX D. SYSTEM RELIABILITY AND MAINTAINABILITY

The SIGMA 9 computer system has many new design features
that provide the user with rei iable operation and efficient
maintenance. For example, the extent to which a system
can be partitioned into separate un its for either checkout
or maintenance is a "fai I-soft" feature (i. e., abi I ity to
keep remainder of a system operational in case of failure
of any given unit), which was a major design goal for
SIGMA 9 development.

The new design features are outl ined in the following
sections:

System tv\aintainability Features

CPU Features

Main Memory Features

Multiplexor Input/Output Processor Features

High-Speed RAD I/O Processor Features

SYSTEM MAINTAINABILITY FEATURES
SIGMA 9 computer systems are maintained by means of the
following:

1. Diagnostic Programs

Diagnostic programs for centralized SIGMA 9 units
(CPUs, memory units, and lOPs) use built-in hardware
features to detect and isolate system faults. Interface
with maintenance personnel is simpl ified and is pro­
vided through a local keyboard-printer or a telephone
line. Diagnostic programs are designed with a multi­
level structure consisting of the following capabilities.

a. System verification and testing to determine wh ich
unit is faulty.

b. Unit functional testing to determine the specific
function that is faulty.

c. Fault location diagnosis to analyze which compo­
nent is malfunctioning.

2. Snapshot Log i c

Snapshot logic enables diagnostic programs to retrieve
control flip-flops and internal register contents that are
not otherwise "visible" to a program. This feature
makes it possible to determine system status at the time
a fau I t occurs and to locate the source of a fau I t con­
dition down to the level of a small set of replaceable
elements. (See "CPU Features".)

166 Appendix D

3. Status and Fault Retrieval

When a fault is detected, system status and fault infor­
mation is avai lable for program retrieval and error
logging for subsequent analysis.

4. Partitioning Feature

5.

A SIGMA 9 system can be reconfigured through the use
of reconfiguration controls. SIGMA 9 units can be
partitioned out of the system by selectively disabling
them from the busses. Thus, faulty units can be isolated
from the system, or an entire subsystem (including a
CPU in a multiprocessing environment) can be parti­
tioned from the primary system to permit diagnosis and
repair of a faulty unit. Repaired units can be returned
to service by reenabl ing the connections. A set of
reconfiguration control panels are centrally located to
accompl ish this function.

RESET I/O (RIO) Instruction

This instruction provides programmed I/O Reset that
operates exactly as though the I/O Reset had been
initiated with the switch on the processor control panel
(PCP). The addressed lOP and all peripheral devices
connected to it are initialized. Special coding of RIO
will reset a CPU. (See RIO instruction, Chapter 3.)

6. Parity Checking

Parity on all data and addresses communi cated in either
direction on busses between memory units and processors
(CPUs, MIOPs, and HSRIOPs) is checked. This feature
provides fault detection and location capabilities that
enhance the abi lity of an operating system or diag­
nostic program to quicklydeterminewhichunit isfaulty.

7. Clock and Voltage Margins

Central ized units are provided with clock and voltage
margin capabilities that assist maintenance personnel
or diagnostic programs to quickly locate the source of
an intermittent fault. Programmable clock margin
control is provided and status is avai lable for program
retrieval. NOT NORMAL conditions are indicated on
the PCP.

8. AI ternate Processor Bus (opt i ona I)

This feature provides a redundant connection of the
lOPs and CPUs in a system. It is used in partitioning
central ized units for diagnostic or reconfiguration
purposes.

9. Unique Processor Numbers

All processors have unique numbers so that they can be
identified in communications on the processor bus.

10. Processor Fault Interrupt

A processor fault interrupt (PFI) signal is generated by
processors (CPUs, MIOPs, and HSRIOPs) when certain
fault conditions are detected. The interrupt signal is
transmitted via the processor bus to all CPUs in the
system (except to the CPU generating the PFI) for
special fault handl ing.

11. Status Instructions

The two instructions, POLL PROCESSOR (POLP) and
POLL AND RESET PROCESSOR (POLR), are used to
determ ine status. All processors in a SIGMA 9 system
retain the status of faults, internal conditions, and pro­
cessor identification. When a Processor Fault Interrupt
(PFI) occurs, the CPU{s) that receive the interrupt must
determine which processor caused the PFI and the nature
of the fault.

The POLP instruction causes the addressed processor to
return the contents of its fault status register and, in
the condition code bits, indicate whether the processor
had detected a fault and generated PFI. (See POLP
instruction, Chapter 3.)

The POLR instruction performs the same functions as
POLP but, in addition, causes the addressed processor
to reset the contents of the processor fault register and
reset the PFI signal. (See POLR instruction, Chapter 3.)

CPU FEATURES

1. Processor Control Panel (PCP)

The PCP (see Chapter 5) is divided into two sections.
The upper portion (MAINTENANCE SECTION) con­
tains controls and indicators used exclusively by main­
tenance personnel. The lower portion is used primarily
by operating personnel to load, execute, and trouble­
shoot programs. A Control Mode switch disables cer­
tain maintenance functions during normal operation.

2. Maintenance Display

Various phases, control fl ip-flops, and registers of the
CPU and decimal unit can be displayed on the PCP.
A 16-position thumbwheel switch identifies and selects
display information during maintenance activities.

3. Snapshot Logic

All CPU logic- that can be displayed on the PCP can be
mon itored by a program with the snapshot logic. At a

preselected clock time of a given instruction execution,
selected logic is stored into a 32-bit snapshot register.
The contents of the snapshot register are then retrieved
by a specially coded READ DIRECT instruction. By com­
paring the "snapped" information with known correct
information, the diagnostic program can accurately
determine a specific fault. The failing component can
then be identified. Snapshot action can also be initi­
ated at the PCP, and the contents of the snapshot reg­
ister displayed.

4. Clock and Voltage Margins

Clock margin control is accomplished manually at the
PCPwith the CLOCK MARGIN switch or under program
control with a properly coded WRITE DIRECT instruction.
Three clock rates are provided:

• NORMAL

• FAST

• SLOW

Voltage margins are also provided at each local d. c.
power supply within a unit.

5. Memory Clear and Scan

Manual memory clear and scan capabilities are pro­
vided to enable operators or maintenance personnel
to rapidly clear or read selected data from, or store
selected data into, any or all consecutive CPU main
memory locations. During the read scan operation,
the CPU can be made to halt on a memory parity
error, at which time the address and data of the
inclicated memory location can be displayed.

6. Address Stop Feature

This feature allows the operator or maintenance person­
nel to:

a. Stop on any instruction whose virtual address equals
the SELECT ADDRESS switch value. At the time
of the halt, the instruction pointed to by the
SELECT ADDRESS appears in the DISPLAY indicators.

b. Stop on any real memory reference indicated by
the SELECT ADD RESS switch.

c. Stop when any word in a selected page is referenced.

7. Manual I/O Instruction Execution

The PCP allows manual execution of READ/WRITE
DIRECT instructions while the CPU is in the idle mode.
This feature is in addition to the programmable interro­
gation provided via the READ/WRITE DIRECT instruc­
tions (see Chapter 3). Thus, all devices connected to

Appendix D 167

the direct I/o or maintenance interface may be
examined manually by maintenance personnel.

8. Single Clock Mode

The CPU has a single clock mode of operation that
enables maintenance personnel to execute an instruc­
tion from the PCP, one internal phase at a time.

9. Timer and Decimal Override

The operation of the watchdog timer and decimal unit
can be selectively overridden to aid maintenance
personnel in diagnosing related machine faults .(see
Chapter 5).

10. CPU Traps

CPU traps are provided for a variety of detected CPU
and system fau It conditions. The trap system (see
Chapter 2) provides a high degree of system recovera­
bility. Indicators and audit trails enable the system
programmer to accurately determine the status of the
machine at the time of the trap. CPU fault conditions
are:

a. Memory Parity Error - When a CPU receives a
signal from the memory indicating a memory parity
error, the CPU traps. The condition code identi­
fies the memory parity error trap condition.

b. Data Bus Check - If the CPU detects a parity error
on data received from memory, and the memory
does not also indicate a parity error on the infor­
mation sent, then a data bus check occurs. like­
wise, the data bus check occurs if the memory
indicates a parity error, but the CPU does not de­
tect the parity error or the information received.
Occurrence of the data bus check condition causes
the CPU to trap.

c. Map Check - When the CPU is operating with the
memory map, a parity check is made on the page
address retrieved from the map. If an error is
found, the CPU aborts the memory request and
traps.

d. Watch Dog Timer - The watch dog timer prevents
the CPU from being "hung up" due to internal
faults or faults in other units. When the timer
times out, the CPU traps and sets the condition
code indicating which fault has occurred.

e. Instruction Exceptions - If a CPU encounters an
illegal condition in certain CPU operations, an
instruction exception fault is detected and causes
a trap. Included as instruction exceptions are:

• A processor-detected fault occurring during
the execution of an interrupt or trap entry
sequence.

168 Appendix D

• An illegal instruction in a trap (not XPSD)
or interrupt (not XPSD, MTB, MTH, MTW)
location when operating a trap or interrupt
sequence.

• The setting of the register pointer of the PSD
to a nonexistent register block as a result of
an LRP, LPSD, or XPSD.

• An illegal MOVE MEMORY CONTROL (MMC)
instruction.

• An invalid register (odd) for an instruction
(doubleword and byte string) that would yield
an unpredictable result.

11. Processor Fau I t Interrupt

Whenever a CPU fault is detected, a Processor Detected
Fault (PDF) flag is set in that CPU. If a second fault is
detected (w i th PD F set), the CPU will generate and
transmit the Processor Fault Interrupt (PFI) to any other
CPUs in the system and enter a WAIT state that requires
a Reset function to clear. Another CPU (in a multi­
processor system) may issue an RIO instruction to the
malfunctioning CPU, which will clear the machine (in
the same way as a CPU RESET or SYS RESET would),
and cause it to resume execution at a predetermined
instruction location. For a monoprocessor, operator
action is required.

12. Automatic Instruction Fetch Retry

When fault conditions are detected on overlapped in­
struction fetch operations, the fetch is aborted and an
automatic instruction fetch retry is attempted. If the
fault recurs on the second attempt, the CPU traps in
the normal manner.

13. Partitioning Feature

Various partitioning features in the SIGMA 9 CPU en­
able system reconfiguration. These features are locally
controlled by switches and are readable by specially
coded READ DIRECT instructions (see Chapter 3).

a. Homespace bias switches enable placing the Home­
space for each CPU in different physical locations
of memory (see "Homespace", Chapter 2).

b. CPU-lOP control bus selection is provided for the
purpose of switching the CPU from primary to alter­
nate processor busses. Thus, a failed CPU may
be effectively partitioned out of the system; also,
an entire subsystem consisting of an lOP, including
attached peripherals, CPU, and memory unit can
be partitioned from the primary system via this
switch and the memory port disable switches, to
allow diagnosis of any unit in the subsystem while
the primary system continues operation.

c. The direct I/o bus and the maintenance interface
bus may be selectively disabled from the CPU.

MAIN MEMORY FEATURES

1. Snapshot Logic

Each memory bank contains snapshot logic that is auto­
matically activated when a memory fault occurs to
record the nature and environment of the fault. The
contents of the memory snapshot wards (each 32 bits in
size) can be retrieved by the use of tne instruction,
LOAD MEMORY STATUS (see Chapter 3). This feature
may be used by the operating system for error logging,
or by a diagnostic program to assist in fault locating.
Notification of a fault occurrence is via the Memory
Fault Interrupt.

2. Memory Fault Detection

Memory fault detection covers the following types of
faults:

a. Parity errors detected on information read out of
the memory bank.

b. Parity errors detected on addresses received from
processors.

c. Parity errors detected on data received from
processors.

d. Port selection errors detected if more than one port
is simultaneously selected for one bank. Under
this condition, the memory aborts the requested
operation without modifying the contents of any
memory location.

e. Memory bank operational status, e. g., overtem­
perature, d. c. voltages out of tolerance, etc.

f. Data loop checks that provide additional fault de­
tection on read operations. As data is gated onto
the memory bus for transmission to a processor, it is
also gated from the bus back through the input path,
clocked into a register, and checked for parity.
Thus, the integrity of the I ine drivers/receivers at
the memory is tested on every read cyc Ie.

3. Memory Interleave Switch

The interleaved mode of memory operation may be dis­
abled for certain diagnostic purposes with a switch
located on the PCP (see Chapter 5).

4. Clock f'..Aargin Switches

Clock margins are controlled manually by means of
switches or by use of the LOAD MEMORY STATUS in­
struction. Voltage margin control is also provided at
each local d. c. power supply within a unit.

5. Partitioning of Memory

Partitioning of memory units is allowed on a memory
port basis where each memory bus connection may se­
lectively be disabled. Starting address switches allow
the memory system to remain a contiguous unit after
partitioning. A centrally located reconfiguration con­
trol panel for each memory unit is provided for this
purpose.

6. Memory Mode Feature

Two additional memory modes of operation are provided
for testing memory un its. These modes are called Read
and Inhibit Parity and Read and Change Parity (see
Chapter 3).

a. During the Read and Inhibit Parity operation, a
word is read from memory and transmitted to the
requesting processor. If a parity error is detected
in the memory bank, the memory is prohibited from
taking any snapshot and does not generate the
Memory Fault Interrupt. It does transmit the Parity
Error signal, however. The CPU recognizes this
mode of operation and inhibits the trap that might
occur for memory parity error and data bus check
and, instead, records these attributes in the con­
dition code at the conclusion of the instruction.
If there is no parity error, the instruction is treated
as a normal LOAD WORD instruction, except for
the setting of the condition code.

b. During the Read and Change Parity operation, a
word is read from memory and transmitted to the
requesting processor. In the write half cycle, the
word is restored to memory, and the word with an
invalid parity bit is unconditionally restored. This
allows the parity generation and checking logic of
the memory to be tested.

MULTIPLEXOR INPUT/OUTPUT PROCESSOR
(MIOP) FEATU RES

1. Maintenance Interface Bus

The maintenance interface bus (a special mode of the
direct I/O bus) is connected to each MIOP from the
CPU for maintenance purposes. The MIOP responds
in the following way to special WRITE DIRECT and
READ DIRECT instructions executed by the CPU.

a. Under RD control, monitors one of 32 selectable
groups of MIOP logic.

b. Under WD control, steps the clock control of the
MIOP in a single-phase mode.

c. Under WD control, a snapshot mode of operation
selects a display group and stores it in a snapshot
register at the end of a preset countdown for later
monitoring by an RD instruction.

Appendix D 169

d. Under WD control, writes directly into an
addressed subchannel.

e. Under RD control, reads directly from an addressed
subchannel.

f. Under WD control, sets the clock margins to fast,
normal, or slow rates.

2. Parity Checking

Parity is checked on information brought out of the
MIOP's local memory for each subchannel. A fault is
reported to the system via the Processor Fault Interrupt.

3. Maintenance Subcontroller

A maintenance subcontroller feature on each I/o chan­
nel assists in diagnosing the I/o system. A diagnostic
program controls and monitors the maintenance sub­
controller via the maintenance interface and the I/O
bus. The following functions can be accomplished:

a. Simulation of a device controller that responds to
commands sent to it by the MIOPand receives and
sends strings of data bytes.

b. Monitoring of lOP bus during diagnostic operations.

c. Exercising of the lOP at variable rates up to and
including its maximum rate.

d. Self-testing of the maintenance subcontroller logic.

4. Clock and Voltage Margins

Clock margins are programmatically controlled by a
specially coded WRITE DIRECT instruction (see Chap­
ter 3). Voltage margins are provided at each d. c.
power supply.

5. Partitioning of MIOPs

Partitioning of MIOPs is accompl ished by disabling the
primary {or alternate} processor bus connection and
disabling the appropriate memory port{s}. A centrally
located reconfiguration control panel is provided for
this purpose.

HIGH-SPEED RAD 1/0 PROCESSOR (HSRIOP) FEATURES

1 . Ma i ntenance Interface Bus

The maintenance interface bus (a special mode of the
direct I/O bus) is connected to the HSRIOP from the
CPU for maintenance purposes. The HSRIOP responds

170 Appendix D

in the following way to special WRITE DIRECT and
READ DIRECT instructions executed by the CPU:

a. Under WD control, selects a phase that causes the
HSRIOP to halt when entered during execution of
any HSRIOP operation. At this time, the HSRIOP
may be "snapped" for diagnostic purposes, via RD
control.

b. Under RD control, "snaps" one of seven selectable
groups of internal HSRIOP logic.

c. Under WD control, steps the clock control of the
HSRIOP in a single-phase mode.

d. Under WD control, selectively sets various fault
indicators (e.g., device and memory faults) to
simulate actual fault occurrence. This feature
allows the diagnostic to test for correct HSRIOP
response under these fault conditions.

e. Under WD control, selectively initiates one of
two test modes of the HSRIOP in which the HSRIOP
responds to normal I/O instructions whi Ie simu­
lating action of the storage units. In this way,
major portions of the HSRIOP logic can be diag­
nosed separately from the storage units.

2. Test Mode 1.

This is called the "short loop" test and is initiated via
maintenance interface WD action. In this test mode,
the HSRIOP responds to Write and Read I/O commands.
Data is transferred from memory into the data buffer
and sent back to. memory. The memory interface, data
buffer, and control logic are checked in Test Mode 1.

3. Test Mode 2

This is called the "long loop" test and is initiated via
maintenance interface WD action. In this test mode,
the HSRIOP responds to Write and Read I/O com­
mands. Data is transferred from memory through the
data buffer, through the deskew logic, and then back
to memory via the data buffer again. Assuming the
"short loop" test was successful, the deskew logic is
specifically checked in Test Mode 2.

4. Clock and Voltage Margins

Clock margins for the HSRIOP are not appl icable be­
cause of its unique design. Voltage margins are pro­
vided at each local d. c. power supply.

5. Partitioning of HSRIOPs

Partitioning of HSRIOPs is accomplished by disabling
the primary {or alternate} processor bus connection and
inhibiting the appropriate memory port(s). A centrally
located reconfiguration control panel is provided for
th i s purpose.

Term

()

n

u

AM

AS

CC

CI

DA

DBS

DECA

DM

APPENDIX E. GLOSSARY OF SYMBOLIC TERMS

Meaning

Contents of.

AND {logical product, where: 0 n 0 = 0,
o n 1 = 0, 1 n 0 = 0, and 1 n 1 = 1).

OR (logical inclusive OR, where 0 u 0 = 0,
o u 1 = 1, 1 u 0 = 1, and 1 u 1 = 1).

EOR (logical exclusive OR, where
o @ 0 = 0, 0 @ 1 = 1, 1 @ 0 = 1,
and 1 @ 1 = 0).

Fixed-point arithmetic trap mask - bit posi­
tion 11 of PSD. If set (=1), computer traps
to Homespace location X'43 1 after executing
an instruction causing fixed-point overflow;
if not set, computer does not trap.

ASCII control - bit position 12 of PSD. When
set (=1), ASCII codes are generated; when
not set, EBCDIC codes are generated.

Condition code - 4-bit value (bit positions
labeled CC1, CC2, CC3, and CC4), estab­
I ished as part of the execution of most
SIGMA 9 instructions.

Counter interrupt group inhibit - bit posi­
tion 37 of PSD. If set (=1), all interrupt
levels within this group are inhibited.

Destination address - in byte string instruc­
tions, address of the destination byte string.

Destination byte string - operand specified by
byte string instruction.

Decimal accumulator - general registers 12,
13, 14, and 15 in decimal instructions.

Decimal arithmetic trap mask - bit posi­
tion 10 of PSD. When set (=1), decimal
artthmetic fault trap is in effect.

Term

EA

Meaning

Extension address - 6-bit field concatenated
to 16-bit extended displacement field to
form 22-bit real extended address.

EB Effective byte - 8-bit contents of effective
byte location (EBL).

EBL Effective byte location - byte location
pointed to by effective virtual address of an
instruction for byte operation.

ED Effective doubleword - 64-bit contents of
effective doubleword location (EDL).

EDL

EDO

Effective doubleword location - doubleword
location pointed to by effective virtual ad­
dress of an instruction for a doubleword
operation. If odd-numbered word location is
specified, low-order bit of effective address
field (bit position 31) is automatically forced
to O. Hence, odd-numbered word address (re­
ferring to middle of doubleword) designates
same doubleword as even-numbered word
address when used for a doubleword operation.

Effective decimal operand.

EH Effective hal fword - 16-bit contents of
effective halfword location, or (EHL).

EHL Effective halfword location - halfword loca­
tion pointed to by effective virtual address of
an instruction for halfword operation.

EI

ES

ESA

External interrupt group inhibit - bit posi­
tion 39 of PSD. If set (=1), all interrupt
levels within this group are inhibited.

Extension selector - 1-bit flag used during
real extended addressing.

Effective source address - in byte string in­
structions, address of the source byte
string.

Appendix E 171

Term

EVA

EW

EWL

FN

FS

FZ

IA

II

L

Meaning

Effective virtual address - virtual address
value obtained as result of indirect addressing
and/or indexing. This address value is inde­
pendent of the program's actual location in
main memory, and is final address value be­
fore memory mapping is performed.

Effective word - 32-bit contents of effective
word location (EWL).

Effective word location - word location
pointed to by effective virtual address of an
instruction for a word operation.

Floating normalize mode control - bit posi­
tion 7 of PSD. If not set, results of floating­
point additions and subtractions are to be
normalized; if set (=1), results are not
normalized.

Floating significance mode control - bit posi­
tion 5 of PSD. If set (=1), computer traps- to
location X'44' when more than two hexa­
decimal places of postnormal ization sh ifting
are required for a floating-point addition or
subtraction; if not set, no significance
checking is performed.

Floating zero mode control - bit position 6
of the PSD. If set (= 1), computer traps to
location X'44' when either characteristic
underflow or zero result occurs for a floating­
point multiplication or division; if not set,
characteristic underflow and zero result are
treated as normal conditions.

Instruction register - internal CPU register
that holds instructions obtained from memory
whi Ie they are being decoded.

Instruction address - 17-bit value that defines
virtual address of instruction immediately
prior to the time that it is executed.

I/O interrupt group inhibit - bit position 38
of the PSD. If set (=1), all interrupt levels
within this group are inhibited.

Numeri c va lue of bits 8-11 of decimal in­
struction word (va lue of 0 is 16 bytes).

172 Appendix E

Term

MA

MM

MS

PSD

R

RA

RP

Ru1

SA

Meaning

Mode altered - bit position 40 of PSD. This
bit is set (=1) during master-protected mode
of operation and during real extended type
of addressing.

Memory map mode control - bit position 9 of
PSD. When set (=1), the memory map is in
effect.

Master/slave mode control - bit position 8 of
PSD. When set (=1), computer is in slave
mode; when not set, computer may be in
master or master-protected mode as deter­
mined by bit 40.

Program status doubleword - collection of
separate registers and flip-flops treated as a
64-bit internal CPU register to store and
display critical control information.

General register address value - 4-bit con­
tents of bit positions 8-11 (R field) of instruc­
tion word, also expressed symbolically as
(1)8-11. In instruction descriptions, register R
is general register (of current register block)
that corresponds to R field address value.

Reference address - contents of bit posi­
tions 15-31 of instruction word, a 17-bit
field capable of directly addressing any
general register in current register block (by
using a value in range 0-15) or any word in
main memory in address range 16 through
131,071. This address value is initial ad­
dress value for any subsequent address com­
putations, memory mapping, or both
computation and mapping.

Register pointer - bit positions 56-59 of PSD;
bits 58 and 59 select one of four possible reg­
ister blocks; bits 56 and 57 are reserved.

Odd register address value - register Ru 1 is
general register pointed to by value obtained
by logically ORing 0001 into address for
register R. Thus, if R field of instruction
contains even value, Ru1 = R + 1 and if R
field contains odd value, Ru 1 = R.

Source address - in byte string instructions,
contents of specified R register.

Term

SBS

SE

SPD

TCC

TS

Meaning

Source byte string - operand specified by
byte string instruction.

Sign extension - some instructions operate on
two operands of di fferent lengths; they are
made equal in length by extending sign of
shorter operand by required number of bit
positions. For positive 6perands, result of
sign extension is high-order O's prefixed to
the operand; for negative operands, hi gh­
order l'sare prefixed to operand. Sign
extensi on. process is performed after operand
accessed from memory and before operation
called for by instruction code is performed.

Stack pointer doubleword - contains the
context (TSA, space count, word count, and
TS, TW inhibit bits) of the push-down
instructions.

Trap condition code - 4-bit value (bit
positions labeled TCC1, TCC2, TCC3, and
TCC4), establ ished as part of trap operations.

Trap-on-space inh ibit bit - conditions push­
down stack limit trap for impending overflow
or underflow of space count.

Term

TSA

TW

WK

x

X'n'

Meaning

T op-of-stack address - pointer that points to
highest-numbered address of operand stack in
push-down instructions.

Trap-on-word inhibit bit - conditions push­
down stack limit trap for impending overflow
or underflow of word count.

Write key - bit positions 34 and 35 of PSD;
they are evaluated by the memory write­
protect feature to determine accessibi lity of
real memory by current program.

Index register address value - 3-bit contents
of bit positions 12-14 (X field) of instruction
word. In instruction word, if X = 0, no
indexing is performed; if X 10, indexing is
performed (after indirect addressing if indi­
rect addressing is called for) with general
register X in current register block.

Hexadecimal qualifier - hexadecimal value
(n) is unsigned string of hexadecimal digits
(0 through 9 and A through F) surrounded by
single quotation marks and preceded by the
qualifier "X" (for example, 7B016 is written
X'7BO'.

Appendix E 173

XDS SIGMA 9 INSTRUCTION LIST (OPERATION CODES)

Code Mnemonic Instruction Nome Page Code Mnemonic Instruction Name Page

02 LCFI Load Conditions and Floating Control Immediate 54 40 HBS Translate and Test Byte String 88
04 CAll CollI 102 41 TBS Translate Byte String 87
05 CAL2 Call 2 102 44 ANLZ Analyze 57
06 CAL3 Call 3 102 45 CS Compere Selective 67
07 CAL4 Call 4 102 46 XW Exchange Word 55
08 PLW Pull Word 96 47 STS Store Selective 56
09 PSW Push Word 95 48 EOR Exclusive OR Word 68
OA PLM Pull Multiple 97 49 OR OR Word 68
OB PSM Push Multiple 96 4A LS Load Selective 53
OE LPSD Load Program Status Doublew~rd 103 4B AND AND Word 68
OF XPSD Exchange Program Status Doubleword 103 4C SIO Start Input/O~tput 114

4D no Test Input/Output 117
4E TDV Test Device 118

10 AD Add Doubleword 60 4F HIO Halt Input/Output 119
11 CD Compare Doubleword 67 4F RIO Reset Input/Output 120
12 LD Load Doubleword 48 4F POLP Poll Processor 120
13 MSP. Modify Stack Pointer 98 4F POLR Poll and Reset Processor 120
15 STD Stare Doubleword 56
18 SD Subtract Doubleword 61

50 AH Add Halfword 60
19 CLM Compare with Limits in Memory 68

51 CH Compere Halfword 66
IA LCD Load Complement Doubleword 49

52 LH Load Halfword 47
1 B LAD Lood Absolute Doubleword 50

53 MTH Modify and Test Halfword 64
IC FSL Floating Subtract Long 77

55 STH Store Ha I fword 55
ID FAL Floating Add Long 77

56 DH Divide Halfword 63
IE FDl Floating Divide long 78

57 MH Multiply Halfword 62
IF FML Floating Multiply Long 77

58 SH Subtract Halfword 61
5A LCH load Complement Halfword 48
5B LAH Load Absolute Halfword 48

20 AI Add Immediate
21 CI Compare Immediate 59 60 CBS Compare Byte String 87
22 LI Load Immediate ·66 61 MBS Move Byte Stri ng 86
23 MI Multiply Immediate 47

63 EBS Edit Byte String 89
24 SF Shift Floating 62

64 BDR : Branch on Decrementing Register 101
25 S Shift 71 65 BIR Branch an Incrementing Register 100
26 LAS Load and Set 69

66 AWM . Add Word to Memory 64
28 CVS Convert by Subtraction 51

67 EXU Execute 99
29 CVA Convert by Addition 73

68 BCR Branch on Conditions Reset 100
·2A LM Load Multiple 72 69 BCS Branch on Conditions Set 100

2B STM Store Multiple 54
6A BAL Branch and Link 101

2C LRA Load Rea I Address 56
6B INT Interwet 58

2D LMS Load Memory Status 50 6C RD Read Direct 108
2E WAIT Wait 51

6D WD Write Direct 110
2F LRP Load Register Pointer 108 6E AIO Acknowledge Input/Output Interrupt 120

106
6F MMC Move to. Memory Contra I 106

70 lCF load Conditions and Floating Control 55
30 AW Add Word 60 71 CB Compare Byte 66
31 CW Compare Word 67 72 LB Load Byte 47
32 LW Load Word 47 73 MTB Modify and Test Byte 64
33 MTW Modify and Test Word 65 74 STCF Store Conditions and Floating Control 56
35 STW Store Word 55 75 STB Store Byte 55
36 DW Divide Word 63 76 PACK Pack Decimal Digits 83
37 MW Multiply Word 63 77 UNPK Unpeck Decimal Digits 84
38 SW Subtract Word 61 78 DS Decimal Subtract 81
39 CLR Compare with Limits in Register 67 79 DA Decimal Add 81
3A LCW Load Complement Word 48 7A DO Decimal Divide 82
3B LAW Load Absolute Word 49 7B DM Decimal Multiply 81
3C FSS Floating Subtract Short 77 7C DSA Decimal Shift Arithmetic 82
3D FAS Floating Add Short 77 7D DC Decimol Compere 82
3E FDS Floating Divide Short 78 7E DL Decimal Load 80
3F FMS Floating Multiply Short 77 7F DST Decimal Store 81

	0000a
	0000b
	0001
	0002
	0003
	0004
	0005
	001
	002
	003
	004
	005
	006
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	xBackA

