
$1. 75

FOR SDS INTERNAL USE ONLY

TSD REFERENCE MANUAL
for

SOS SIGMA 7 COMPUTERS

90 15 20A

January 1968

SJCl5
SCIENTIFIC DATA SYSTEMS/1649 Seventeenth Street/Santa Monica, California

©1968. Scientific Data Systems. Inc. Printed in U.S.A.

CONTENTS

l. INTRODUCTION Simple Loading 21
Single-Modules, Mul tiple-

Hardware 1 Fi Ie Loadi ng 21
Software 3 Multiple-Module, Single-File

Loading 21
2. START -UP PROCEDURE 4 ;Y 22

;G 23
Turn-on Procedure 4 Stopping and Continuing Execution",~ 24
Log-in Procedure 4 Stopping Execution 24

;B 24
3. TSD EXECUTIVE 5 Continuing Execution 24

;P 24
BYE 5 ;1 25
ASSIGN 5 Examining Resul ts 25
EDIT, SYMBOL, DEBUG 6 Pattern Searching 25

Break and Proceed 7 ; 1 ;2 ; L 25
PROCEED 7 ;M 26

4. EDIT SUBSYSTEM 8
;W 26
;N 26

RESEQUENCE Output Formats 26
8 27

Cr (Carriage Return) 8
;A 27

Typing Error Recovery During Edit 9
;R 27

WC 9
Absol ute/Relative Addresses 27

HC 9
Updating Source Images

Cell Contents/Expression Yal ues 27
10 ;/ 27

DELETE 10 28 COpy 11
,
Special Debug Symbols 29

APPEND 1 1
CC Examine Command 29

11 I 29
Completing an Update 12 ;Q 30 STOP 12

Lf (Li ne Feed) 30
END 12 t (Up Arrow) 30

Originating Source Input On-line 13
Modifying the Executable Program 31

ORIG 13
Instruction Modification 31

Lf (Line Feed) 13
\ 31

Using the Break Key During an Edit 14
Cr (Carriage Return) 31

INQUIRE 14
;Z 32

Additional Edit Features 14
Symbol Modification 33

LIST 14
;U 33

NOS. 15
<> 33

TABS 15
IC 34

15
;K 34 BC 16
;X 34 Yc 16

FILE 16
7. USER PROGRAM CONSIDERA nONS 36

5. SYMBOL SUBSYSTEM 18

Symbol Options 18 TSD Restrictions 36
Symbol Error Messages 19 User Recommendations 36

Special System Calls 36
6. DEBUG SUBSYSTEM 20 Read One Character 37

Test Input Buffer 37
Loading and Starting Execution 20 Write One Character 37

Loading 20 Change Echo Control Type 37
;T 20 Return Control to Debug 38

iii

APPENDIXES EXAMPLES

A. SPECIAL TELETYPE KEYS AND 1. TSD Log-in Procedure 4
CONTROLS - MODEL 35KSR 39 2. RESEQUENCE Commands 8

3. Use of RESEQUENCE 9
Control Panel 39 4. WC Correction 9
Keyboard 39 5. HC Correction 9

6. Successive HC Commands 9

B. SYSTEM CALLS 40
7. DE LETE Commands 10
8. COpy Commands 11
9. APPEND Commands 12

C. UNUSUAL CONDITIONS AT THE 10. HC and WC Text Corrections 13
USER'S TERMINAL 43 11. On-line Origination 13

12. INQUIRE Command 14
Start-up Malfunctions 43 13. LIST Command 15
Execution Malfunctions 43 14. NOS. Command 15

15. TABS Command and IC Tabulate 16
D. COMMAND SUMMARIES 44 16. FILE Commands 16

17. Binary Output with Debugging Symbol
TSD Executive 44 Table, No Listing 18
Edit Subsystem 44 18. Only Diagnostic Messages Desired, No Listings

Special Characters 44 or Bi nary Output 18
Symbol Subsystem (Options) 45 19. Prepare Off-line Compatible Binary Output
Debug Subsystem 45 File and Off-line Listing Output File 19

Constants 45 20. Binary Output for Debugging, Terminal Listing
Format Letters 45 (but No LO File) 19
Special Symbol s 45 21. Load with Location Expression 20

Commands 46 22. Simple Loading 21
23. Single-Modules, Multiple-File Loading 21
24. Mul tiple-Module, Single-Fi Ie Loading 21

ILLUSTRATIONS 25. Special Debug Capabilities 22
26. Debug Go Commands 23

1. Teletype Keyboard 2 27. Debug Proceed Command 24
28. Count-Control I ed Proceed Command 25

2. Teletype Control Panel 2 29. Set Instruction Counter Command 25
30. Set Pattern Searching Li mi ts 25

3. TSD Software Hierarchy 3 31. Set Searching Mask Command 26
32. Set Word, and Match Search Command 26
33. Set Word, and No-match Search Command __ 26

TABLES 34. Sample Match Search 26
35. Expression Eval uation 27

1. Allowable ASSIGN Options for TSD 6 36. Examine Command 29
37. Examining Last Quantity Typed 30

2. EDIT Controls on Punched Cards 17 38. Tracing-Examining Successive Quantities 30
39. Addressing Limitations of Examine Command-- 30

3. Symbol Subsystem Options 18 40. Sample Instructions for Debug 32
41. Patching Successive Locations 32

4. A and R Format Bit Positions 28 42. Patching with the ;Q Symbol 32
43. Zero Storage Command 32

5. Special Debug Symbols 29 44. Defining Symbol s 33
45. Symbol Definition Using Exclamation Point __ 34

6. Examine Command Variations 31 46. The Ki II Command 34
47. Reinitializing 34

7. Echo Control Types 37 48. Single Instruction Execution 35
49. Selective Instruction Execution with

B-1 Monitor Function Calls for TSD 40 EXU and ;X 35

iv

1. INTRODUCTION

The TSD system is primarily a Time Shared Debugging aid. Using lSD, up to eight programmers can simultaneously
perform checkout tasks, with each user acting as if he had excl usive use of the computing system.

TSD provides the following capabilities for such users:

1. Various RAD files can be dynamical I y assigned (and reassigned) for input/output purposes.

2. A source version of a program can be created or modified by use of convenient editing features.

3. Source programs can be assembled by use of an on-line version of SYMBOL during a debugging session.

4. An assembled program can be loaded and executed under T~D .control.

5. Execution of assembled programs can be interrupted for examination and/or modification, and then continued
or restarted at any point in the program.

6. Symbol ic references can be used when examining or modifying a loaded program, and new symbols can be created
and defined. In addition, the debugging language includes a limited subset of the SYMBOL language so that,
while debugging, instructions can be coded in a symbolic form that resembles their source language counterparts.

HARDWARE

The TSD system has three components that are of immediate interest to the user:

1. A Sigma 7 with 32K memory (or more).

2. A RAD storage unit.

3. A user terminal.

The memory unit has 16K words set aside for the exclusive use of the on-line user. Programs occupying this lIuser
corell run only in slave mode. Of the remaining memory, another 16K provides services and performs master mode
control functions. The user cannot directly access this region, but certain system calls are available which obtain
services from and modify tables in this region (see Appendix B).

If the Sigma 7 contains more than the minimum 32K memory, off-line (background) programs may be processed con­
currently with on-line work. However, the user is independent of both background work and other on-line users.
The RAD is the only device on which input/output files are maintained for on-line usage. Card reading, printing,
card punching, and magnetic tape operations cannot be performed by the on-line user. However, RAD files can be
set up off-line (see IIFMGE II in the SDS Sigma 5/7 Batch Processing Monitor Reference Manual, Publication No.
900954). These files can then be processed on-line or off-line and hard copies produced as needed.

Th~ user terminal is a Teletype unit, but other terminals (e.g., keyboard/displays) could be used in future imple­
mentations of TSD. Presently, the system employs one model 35ASR Teletype (which has a paper tape punch and
reader) and seven model 35KSR Teletypes.

The Teletypes provide the communication link between the user and the computer. Inputs are typed in by the user
and outputs are printed on the Teletype. Figure 1 shows the keyboard layout of a 35KSR and Figure 2 shows the
control panel. Appendix A contains a description of the control s and special keys.

TSD's time-sharing capability is accomplished by time-slicing and swapping. Eight on-line users (and possibly a
background job) can share computing facilities during the same period of time. After a given burst of computing
time, TSD stops servicing one user and gives service to another (or possibly to the background job).

The 16K user core is swapped via the RAD, i.e., the first user's software is written out and then a second user's
software is read into user core. As a result of this procedure, a user will note that response occasionally is delayed.
Ordinarily, the delay should be no longer than five seconds.

Introduction

Figure 1. Teletype Keyboard

Figure 2. Teletype Control Panel

2 Hardware

SOFTWARE

Five items of software are important to the TSD user:

1. TSD executive 4. DEBUG subsystem

2. EDIT subsystem 5. User's program

3. SYMBO L subsystem

The TSD executive is always available to the user. The executive can call (one at a time) any of the subsystems;
I.e., EDIT, SYMBOL, or DEBUG. They, in turn, can automatically return to the executive. Only DEBUG can
be used to load and execute the user's program. The user's program can then recall DEBUG. Figure 3 illustrates
the hierarchy of the software.

TSD
Executive

I
EDIT SYMBOL DEBUG

Subsystem Subsystem Subsystem

User's
Program

Figure 3. TSD Software Hierarchy

During service to the user, either the user's program or one of the three subsystems resides in user core. DEBUG
and the user's program are never in core simultaneously. The TSD executive resides in the master portion of memory
rather than user core, to ensure ultimate control for the user. The executive, therefore, is never swapped.

'.

Software 3

2. START-UP PROCEDURE

On-I ine servi ce is obtained from TSD by turning on the user terminal and logging into the system.

TURN-ON PROCEDURE

The Teletype units are turned on by depressing the 1I0RIG II key (see Figure 2, Teletype Control Panel). The key
locks in the depressed position and lights up. The key remains in this condition until the user Teletype is turned off
(see II Signing Offll, Section 3).

LOG-IN PROCEDURE

After the terminal is opened, the user alerts the TSDsystembymomentarily depressing the BREAK key (see Figure 1,
Teletype Keyboard).

If the system is operative, one or more of the following messages will be typed/

TSD SYSTEM IS UP - 10/15/67

The date shown identifies which version of TSD is in use. Following this message, the system types out a request for
user identification.

! LOGIN:

The exclamation point (I) informs the user that he is communicating with the TSD executive and the colon (:) signi­
fies a request for data, to which the user must respond. In this case, the data required is an 8-character (maximum)
user identifier, followed by a period. TSD compares the user identifier with a table of valid identifiers. If the
response is valid, further service may be obtained from TSD. If the identifier is invalid, TSD outputs a question
mark (?) followed by another log-in request.

User identifiers may contain both letters and digits.

After a successful log-in, TSD outputs an exclamation point indicating that the system awaits commands to the TSD
executive.

The following example shows a successful log-in procedure as viewed at the Teletype printer.

Example 1. TSD Log-In Procedure.

TSD SYSTEM IS UP - 10/15/67

! LOGIN: ABCD1234.

1

In this example, ABCD1234 is the user identification. Note that the period following the identification is required
input from the user. Following the second exclamation point, the user may type any TSD executive command.

tMessages output by TSD are underlined throughout this manual for clarity. It should be understood, however, that
actual Teletype outp~t is not underlined.

4 Start-up Procedure

3. TSD EXECUTIVE

The TSD executive provides control commands that influence the flow of the user.ls on-line work. There are six
executive commands:

1. BYE 4. SYMBOL

2. ASSIGN 5. DEBUG

3. EDIT 6. PROCEED

BYE is used in signing off. ASSIGN lets the user specify RAD I/O files to be used in on-line processing. EDIT,
SYMBOL, and DEBUG constitute subsystem calls, and PROCEED is used to continue an interrupted subsystem process.

There is a high degree of interplay between the TSD Executive and the user during executive command input.

First, the Executive must be in control; this is signified by the appearance of an exclamation point at the teleprinter.

Second, the user types two letters that begin an Executive command, namel y: BY, AS, ED, SY, DE, or PRo

Third, TSD types the remaining letters of the command (in cases of confusion, the executive outputs a question mark
and starts a new command I ine with another exclamation point).

Fourth, the user supplies parameters, if any, and confirms the command by typing a period. The user can scratch
the command by depressing the BREAK key any time prior to typing the confirming period. Scratched commands
are never executed, and the executive responds by typing an exclamation point to indicate readiness for a new
command.

Discussions of each executive command are given below.

BYE Signing Off

An on-line work session is terminated by giving the executive command BYE and by turning off the user terminal.
The correct form of the BYE command shown below assumes that the TSD executive is in control. Note the excla­
mation point.

!BYE.

The user turns off the terminal after completing the BYE command by momentari I y depressing the "C LR II key (see
Figure 2, Teletype Control Panel).

ASSIGN File Assignment

The ASSIGN command is used to control all RAD file assignments for TSD users. This command has format and options
similar to the ASSIGN control card in the Batch Monitor (see SDS Sigma 5/7 Batch Processing Monitor Reference
Manual, Publication No. 900954). A general form of the command is shown below. Items in capital letters are
required as shown; items in lower case letters represent parameters. Brackets denote optional items.

~ASSIGN dcb-name, (FILE, file-nameL acct. no.]) [, (option) .••] .

where

dcb-name is a name of up to eight characters formed from the SYMBO L character set and having as its first
two characters either F: or M:. The F: identifies files utilized in the userls program. The M: identifies
system fi les. Names used at present in TSD operations are

M:SI Source input M:BO Binary output

M:SO Source output M:LO Listing output

M:BI Binary input M:C Command fi Ie (for EDIT)

TSD Executive 5

file-name is a user-selected identifier of up to eight letters or digits.

[,acct. no.] is an arbitrary identifier that designates the named file as a user-account file. There are two
kinds of files; TSD temporary files and user-account files. If no account number is given, a TSD temporary
file is used. During on-line operation, these files are reserved for the user, but the user cannot save them
for off-line processing. Consequently, TSD temporary files "belong" to a user only until the user signs off.

User-account files are specified by giving any acct. no. of up to eight characters comprised of letters or
digits.

User-account files can be saved for off-line processing (e.g., printing or punching) or saved for future on­
I ine sessions. (The user is referred to the Batch Monitor Manual, cited above, for complete descriptions of
Batch file utilities - see FMGE.)

[, (option)]. represents the various ASSIGN options recognized by the Monitor. Those allowed to the TSD
user are given in Table 1 below.

Option

(IN) .j
(INOUT)
(OUT)
(OUTIN)

(REL) }
(SAVE)

(EXPIRE, NEVER)

(PASS, value)

(READ, ALL)

(WRITE, ALL)

(READ, NONE)

(WRITE, NONE)

Table 1. Allowable ASSIGN Options for TSD

Purpose

These options describe the function of an assigned file.

The meanings are identical to their Batch Monitor counterparts.

Same meaning as in Batch, i.e., release or save the file.

No expiration date is allowed. If this option is not given, the default
Batch value is used.

Defines a password. The "value" may be up to eight characters.

All accounts have read access to the given file.

All accounts have write access to the given file.

No other account number may read the given file.

No other account number may write in the given file.

Files created off-line for TSD work must specify that either ALL accounts have access or, at least, that the TSD
account number (:TSD) is allowed access. Otherwise, TSD (which operates as a foreground program) cannot access
files even though user account numbers agree. It is recommended that unlimited access (ALL) be specified for files
involving TSD work, but that passwords be used if privacy is a consideration.

A sample ASSIGN command is shown below:

lASSIGN M:SI, (FILE, INPUT,ACCT29), (PASS, FRIEND).

The above command states that the file named "INPUT" was created off-line under account number IACCT29". It
is to be used as a source input file. If the created file does not permit the password "FRIEND", TSD is not allowed
to access the file, and the user will receive an error message. Other examples of ASSIGN usages are given in sub­
sequent sections.

EDIT, SYMBOL, DEBUG Subsystem Call s

Proper file assignments must be given before the EDIT, SYMBOL, or DEBUG subsystems are called. In Sections 4,
5, and 6, the assignments appropriate for each subsystem are detailed. In the following sample subsystem calls, it

6 TSD Executive

is assumed that the TSD executive is in control, and that proper assignments have been made. The correct
forms for the three subsystem calls are

lEDIT·
!SYMBOL.

! DEBUG. - --
Once a subsystem call is made, the executive is no longer in control and control has been transferred to the
given subsystem. In some cases the subsystems automaticall y return control to the executive, but general I y, the
user must initiate an action that results in control returning to the executive. This topic is fully covered in Sections
4, 5, and 6; however, the remainder of this section briefly explains how a user can return control to the executive.

BREAK AND PROCEED

The BREAK key returns control to the TSD Executive. If a subsystem has control, a single BREAK causes TSD to
put the Executive in control. If the user's program is being executed, one BREAK returns control to the DEBUG
subsystem (see Section 6), and a second BREAK puts the Executive in control.

Once the Executive has regained control, any Executive command may be given. Two commands are of special
interest to the user when subsystem operation has been interrupted. If the user wishes to make a fresh start in a
subsystem that has just lost control, a new call is issued to the subsystem (possibly after changing file assignments
if the user desires). If the user wishes to continue subsystem operations rather than restart, the PROCEED command
is used.

PROCEED Continue Subsystem Operation

The correct form of the PROCEED command is

!PROCEED. - ---
This command is used onl y to continue an interrupted subsystem process. Two steps must be taken to continue exe­
cution of the user's program. First, the user must put DEBUG in control with a PROCEED command. Second, the
user must issue the DEBUG proceed command (see Section 6). Note that once a new subsystem is called, an old
subsystem cannot be continued. It can only be restarted.

Break and Proceed 7

4. EDIT SUBSYSTEM

The EDIT subsystem permits the user to start with a source (EBCDIC) input file and to produce an updated source out­
put file. The source files are treated as a sequence of card images in which card columns 74 through 80 contain
sequence numbers. Under user control, EDIT copies cards from the input file to the output file until a sequence
number is encountered at which the user has indicated a deletion, replacement, or insertion. After m~king the de­
sired change, EDIT continues co'pying until another specified sequence number is reached. The user must put the
desired changes in the proper order before exercising EDIT. Once a given card image has been output, EDIT will
not back up to permit changing earlier images. If it becomes necessary to make such changes,a new EDIT call may
be used, but this is an inefficient and time-consuming procedure.

It is important to note that EDIT does not modify the input file. Thus, if a user finds that his updated output file is
incorrect, he may start again, with the original input file intact.

Sequence numbers are 7-digit decimal constants. EDIT places a decimal point between the fourth and fifth digit;
thus, if card col umns 74-80 contain 1234567, EDIT considers the sequence number to be 1234.567. Therefore,
EDIT deals onl y with the following range of sequence numbers - 0000. 000 through 9999.999. For the user's con­
venience, EDIT automaticall y generates sequence numbers when inserts are made on-I ine.

RESEQUENCE Output New Sequence Numbers

The RESEQUENCE command enables the user to generate correct sequence numbers in a file that, though correctly
ordered, contains incorrect sequence numbers, or is blank in col umns 74-80.

Two parameters are required for a RESEQUENCE command: a start number and an increment. The user mayor
may not wish to provide these parameters; implicit, or default, values are used by EDIT if the user omits one or b~th
parameters. The implicit increment is 1.000, and the implicit start value is usually 1.000 (refer to the later discus",:,
sion "Completing An Update II for an exception).

There are many acceptable ,forms for RESEQUENCE (this is true of all EDIT commands). An individual user may
adopt a form that fits his requirements. The permissible variations are as follows:

1. Parameters may be placed either before or after the command designator. ' (Command designators are the
characters that uniquel y identify each command. The command designator for RESEQUENCE is R.)

2. Parameters may be separated by a comma, a slash, a colon, or any other punctuation mark except a period.

3. Command designators may be followed by any number of other letters at the user's discretion.

The RESEQUENCE examples below illustrate various forms that may be used. The ")" sign preceding each example
is output by EDIT, and therefore, is underl ined in this manual. It is used to inform the user that EDIT has control
and awaits a command.

Cr (Carriage Return)

The "Cr" following each example for the EDIT subsystem represents the Carriage Return. This key signifies the end
of an EDIT command.

Example 2.' RESEQUENCE Commands.

> lO/.lRESEQUENCE Cr
:> 0/2RE SEQ Cr
:> 100, lR Cr
> lOOR Cr
> , lR Cr
> RESEQ 10/. 1 Cr
> R 100:2 Cr
> R100 Cr
> R, 2 Cr
:> RESEQUENCE Cr
>R Cr

The user may infer similar forms for other EDIT commands.

8 EDIT Subsystem

The following printout shows a typical example of RESEQUENCE as used by a new on-line user.

Example 3. Use of RESEQUENCE.

TSD SYSTEM IS UP - 10/15/67

! lOG IN: AJC24

!ASSIGN M:SI, (FIlE,OlDE,ACCT29).
TASSIGN M:SO, (FILE, NEW,ACCT29).

lEDrr.--
~RESEQ 10/lCr

In the above example, the ASSIGN commands indicate that the two files named ° lDE and NEW were created off­
line under the account number ACCT29. The input file, OlDE, contains card images that are copied onto the
NEW file after new sequence numbers are generated. The EDIT subsystem generates the sequenced images onto
the NEW file, overwriting any previous information there. The RESEQUENCE command specifies that the first
NEW card image has sequence number 0010000, the second has 0011000, the third has 0012000, etc. After the
last card image is placed in the NEW file, EDIT concludes resequencing by returning control to the TSD Exe­
cutive. Therefore, after any resequence is finished, an exclamation point is printed.

TYPING ERROR RECOVERY DURING EDIT

The EDIT subsystem provides two control mechanisms for correcting typing errors: the "erase" and "backspace"
control functions.

WC Erase.

To erase the current line, the user employs the control-W function (designated as WC). To perform any control
function£; the user depresses and holds the CTRl key followed by the appropriate control designator (in this case W).
Since W erases only the current line, it must be exercised before the carriage return ending that line. Example 4
shows a printout when WC is used.

Example 4. WC Correction.

~ 1O/2RESEQU@@

>
In the example, the user depressed WC after typing "U"; EDIT responded by outputting two @ signs, "erasing" the
current I ine, and starting a new line.

HC Effective Backspace.

The other EDIT control function for correcting typing errors is the effective "backspace". To backspace,' the user
types a control-H (designated HC) in the same manner described for Wc. Example 5 illustrates one use of HC•

Example 5. HC Correction.

~ RESEQ 10/1 ~ 2 Cr

In the example, the user entered a single HC to replace the increment" 1" with "2". After typing the" 1 ", the
user immediately used the HC; EDIT responded by typing a # sign and effectively backspaced over the unwanted" 1".
More than one character may be spaced over by using successive HC type-ins. Example 6 illustrates this situation.

Example 6. Successive HC Commands.

~ RESEQ 1/10#### 10/2 Cr

In the example, the user entered four successive H
C

characters to replace the entire parameter list. The resulting
I ine becomes "RESEQ 10/2 Cr". Note that HC onl y appl ies to the current line being typed. The user cannot "back­
space" over a carriage return.

Typing Error Recovery During EDIT 9

UPDATING SOURCE IMAGES

There are three EDIT commands used in updating: DELETE, COPY, and APPEND. Designators for these commands
are: D, C, and A, respectively. In the following explanations of these commands, examples are given to clarify
their use. In all the examples, assume that the user has entered EDIT as follows:

IASSIGN M:SI, (FILE, INP, ACCT29).
TASSIGN M:SO, (FILE, UP, ACCT29).
TEDrr.--

>

Also assume that the input file, INP, has the following contents:

Columns

1

Al0

A20

A30

A40

A50

A60

A70

A80

A90

DELETE Delete Source Images

73 74 80

0010000

0020000

0030000

0040000

0050000

0060000

0070000

0080000

0090000

The DELETE command has two parameters that specify the starting and ending point of its operation. Example 7
ill ustrates use of the DELETE command {refer to the sample input file above}.

Example 7. DELETE Commands.

> DE LETE, 20 Cr
'5 DELETE50,60 Cr
~ DELETE, 90 Cr

Note the comma following the DELETE in the first and last commands, which implies a "blankUfirst parameter.
This defines the starting location for the command as "current point".

The first c~mmand skips over all cards in the INP file until the card having sequence number 0020000 is skipped.

The second command copies cards from the current point in the INP file until sequence number 0050000 is found;
all cards from 0050000 through 0060000 are then skipped.

The third command causes a skip over all cards from the current point (0060006) until 0090000 is skipped. As a
resul t of these three commands, the output fi leU P contai ns onl y the two cards numbered 0030000 and 0040000.

Note that the following forms of the DELETE command are equivalent:

> DELETE30 Cr

~ DE LETE30, Cr

~ DELETE30, 30 Cr

In each case, onl y c-ard 30 is deleted.

10 Updating Source Images

If this command were given at the beginning of an update process, all cards up to 0030000 would be copied onto
the output file, card 0030000 would be deleted, and the EDIT subsystem would then wait for further commands.

COpy Copy Source Image

The COpy command, which is the complement of the DELETE command, also has two parameters that define the
starting and ending point of its operation. In the example below, assume that the user starts with a new update;
i.e., the break key has been pushed, the TSD Executive has gained control and typed an exclamation point, and
the user has entered a new EDIT command. This effectively rewinds the assigned output file UP and the input file
INP.

Example 8. COpy Commands.

{BREAK key is used. }
!EDIT.

> COPY,20 Cr
> COPY50, 60 Cr
~ COPY, 90 Cr

The first command copies all cards in input file INP until the card having sequence number 0020000 is placed in
the UP file.

The second command skips all INP cards from the current point until sequence number 00500000 is found; then cards
from 0050000 through 0060000 are copied to the UP fi Ie.

The third COPY command causes all cards from the current point through 0090000 to be copied. In this particular
example, the only INP cards not copied to the UP file are those with sequence numbers 0030000 and 0040000.

Note that with both DE LETE and CO PYa single parameter must be preceded by a separator {e.g., a comma}.

APPEND Append Source Image

The APPEND command is used.for inserting new cards. It may have one, two or no parameters. The first parameter
states the sequence number' at which inserts are to be placed. All cards from the last one copied {if any} up to the
sequence number given are automatically copied to the output file. If this number is not given, inserts are placed
immediatel y after the last card written ou,t.

The second parameter is an increment used to establish new sequence numbers {that are automatically generated for
the user}. If the increment is not given, EDIT uses 1.000.

The APPEND command may be used to replace cards, but if successive cards are to be replaced, it is recommended
that a DELETE precede the APPEND.

In replacing cards, APPEND deletes input cards falling within the range of the new cards being input. However,
if a short routine is intended to replace a larger one, "Ieft-over" cards may be inadvertently copied if a DELETE
does not precede the APPEND.

Once an APPEND command is given, EDIT starts a new line, generates a sequence number, and awaits the text to
be inserted. Each new line of text {i.e., card columns 1-73} ends when the user types a carriage return. EDIT then
starts another line, generates the next sequence number, and awaits the next line of text.

CC End Text Insert

An APPEND process may be continued until the user signals completion of the current text insert by typing control-C
{designated CC}.

Example 9 illustrates the important features of APPEND. Assume again that the user starts a new EDIT.

Updating Source Images 11

Example 9. APPEND Commands.

(BREAK key is used.)
IEDIT.

> APPEND Cr
1.000 Bl Cr
2.000 B2 CC

> APPEND 15 Cr
15.000 B15 Cr
16.000 B16 CC

> DELETE20,40 Cr
"> APPEND, 3 Cr
19.000 B19 Cr
22.000 B22 Cr
25.000 C C

> APPEND79, 3 Cr
79.000 B79 Cr
82.000 B82 CC

>

The contents of the output file that results from the preceding sequence of commands is shown below. Refer to the
sample input fi Ie shown previously for comparison.

Columns

1 73 74 80

Bl 0001000

B2 0002000

AlO 0010000

B15 0015000

B16 0016000

B19 0019000

B22 0022000

A50 0050000

A60 0060000

A70 0070000

B79 0079000

B82 0082000

It should be noted that the above output file is not necessarily complete; the user is free to make further additions
or to continue copying (e.g., A90 in the sample input file).

COMPLETING AN UPDATE

There are three commands used to complete the update: STOP, END, and RESEQUENCE.

5TO P Stop Upda te

The STOP command (designator $, no parameters) is used if no further cards are to be copied.

END End Update

The END command (designator E, no parameters) is used if the remainder of the input file is to be copied at the end
of the output file. After STOP or END command processing, EDIT closes the input and output files and returns con­
trol to the TSD Executive. Thus, final completion of an update is confirmed by the exclamation point produced by
the Executive.

12 Completing an Update

The RESEQUENCE command offers another method for the user to complete an update. When this command is entered,
EDIT copies the remaining input cards after assigning sequence numbers as dictated by the RESEQUENCE parameters.
If no start number is specified (parameter number 1), the RESEQUENCE increment is added to the latest sequence
number placed in the output file. From that point on, RESEQUENCE continues as previously described.

Note that the control functions HC {Backspace} and WC {Erase} may be used to modify not onl y command inputs but
text inputs as well.

Example 10. He and WC Text Corrections.

> APPEND35, .5 Cr
35.000 C3355### 5 Cr
35.500 C35.5@@
D35.5 cc

>

In this example, the user gave three successive HC inputs to correct line 35.000, and used WC to scratch the first
attempt at line 35.500. The result is equivalent to the following:

> APPE ND35, • 5 Cr
35.000 C35 Cr
35.500 D35.5 CC

>

ORIGINATING SOURCE INPUT ON;.LlNE

. ORIG Originate Source File

Although the primary function of EDIT is to facilitate source updates, EDIT also provides a command for originating
a source program at the terminal. The ORIGINATE command {command designator O} is essentially the same as the
APPEND command. However, when ORIGINATE is used, there is no RAD input file since the source of input is the
terminal. Example 11 illustrates on-line origination of the same input file used in previous examples. Assume that
the TSD executive has initial control.

Example 11. On-line Origination.

!ASSIGN M:SO, (FILE, INP, ACCT29).
TEDrr:--

> ORIG 10, 10 Cr
To.ooo A 10 Cr
20.000 A20 Cr
30.000 A30 Cr
40.000 A40 Cr
50.000 A50 Cr
60.000 A60 Cr
70.000 A70 Cr
80.000 A80 Cr
90.000 A90 CC

In example 11, note that the ORIGINATE is terminated by CC {end text insert}. This is the onl y way to complete
an origination; once CC is given, EDIT closes the file and returns control to the TSD Executive.

Lf (Line Feed)

The Teletype limits printing to 72 characters per line. This sometimes proves restrictive in using the ORIGINATE
and APPEND commands because a print line will not hold the necessary number of characters {the Teletype simply
overprints in its last column}. A special character is 9vailable in EDIT to circumvent this difficulty. The keyboard
character LINE FEED {designated Lf} causes EDIT to return to a new line. Thus, subsequent characters are visible
as the user inputs them, and the new line is considered by EDIT to be a continuation of the current card. If more
than 73 characters are input, EDIT ignores those beyond column 73 {of the input image}.

Originating Source Input On-Line 13

USING THE BREAK KEY DURING AN EDIT

As stated previously, the BREAK key can-be depressed to interrupt current processing. During an EDIT, BREAK
causes control to be returned to the TSD Executive and this is the quickest method to abandon an update and make
a new start (see the COpy example above). Then, giving the Executive command EDIT effectivel y causes the user's
input and output files to be rewound.

Another reason for using BREAK during an EDIT is that occasionally the user will start an update only to realize
that something has been overlooked.

Recovery is sometimes possible in this situation because of the relative slowness of the I/O operations involved.
Three steps must be taken: .

1. The EDIT in progress is stopped via BREAK. This places the Executive in control.

2. Control is then restored to EDIT via the PROCEED command. When PROCEED is used, EDIT is placed in
control but not reinitial ized. Furthermore, the update in progress at the BREAK is not automaticall y resumed.

3. The user must determine how far the update progressed. A special EDIT command, INQUIRE, achieves this.

INQUIRE Inquire Update Status

The INQUIRE command (command designator I, no parameters) prints for the user the sequence number and contents,
respectively, of the last card processed by EDIT. That card image is no longer accessible (on the current EDIT), but
its successors may be copied, deleted, or replaced. Example 12 illustrates this procedure. (Refer to the previous
sample input file.)

Example 12. INQUIRE Command.

!EDIT.

> DE LETE 30, 90 Cr
(BREAK is activated immediately)
!PROCEED. -

> INQUIRE Cr
50.000
A50
> DELETE, 80 Cr
> END Cr

In Example 12, the user was able to stop the deletion process after card number 50. The user then had to issue a
second DELETE command to remove the remaining unwanted cards, A60, A70, and A80.

There is no timing guarantee given for a BREAK. If data is being printed when the BREAK occurs, printing may
continue for a short time. In no event should BREAKs be given in rapid succession because loss of RAD output file
data can occur. One BREAK is usuall y sufficient.

ADDITIONAL EDIT FEATURES

In addition to the primary features already described, EDIT has a number of secondary features, including a set of
mode commands: LIST, NOS., and TABS. Mode commands differ from other EDIT commands in that they set a mode
of operation rather than cause an action. Mode commands depend on other commands for their effect to become
evident.

LIST List Output Images

When the LIST mode is initially activated, nothing isprinted. However, as other EDIT commands occur, LIST causes
a printout to be produced every time a card image is moved from the source input file to the source output file.
Example 13 shows the effect of LIST during an EDIT session. It is assumed that the input file is the same as that used
on previous EDIT examples. -

14 Using the Break Key During an EDIT/Additional EDIT Features

Example 13. LIST Command.

!EDIT.

> LIST Cr
)" DELETE30, 80 Cr
TO.OOOA 10
20.000A20
> END Cr
90.000A90

The LIST mode is initiated by typing the command designator L and, optionally, preceding it with a plus sign, e.g.,
+L. To turn off the mode, the user precedes the command designator with a minus sign, e.g., -L. The LIST mode
is initially off.

NOS. List Sequence Numbers

The NOS. command is used to decrease the EDIT printout. It will be recalled that when APPEND or ORIGINATE
are used, sequence numbers are automaticall y generated. If the NOS. mode is on, these sequence numbers are
printed out at the terminal. To eliminate this printout, the user precedes the command designator with a minus
sign, e.g., -N. The NOS. mode can be turned on again by typing +N or simpl y N. Example 14 ill ustrates both
the on and off mode for NOS.

Example 14. NOS. Command.

!EDIT.

> -NOS. Cr
:> APPEND15 Cr
F15Cc

> +NOS. Cr
') APPEND25 Cr

25.000 F25 Cr
26.000 F26 CC

>

In example 14, it should be emphasized that the sequence number for the card F 15 is, in fact, 0015000 although
nothing prints to indicate it. The user must exercise great care in further updating if he has turned off the NOS.
mode. The NOS. mode is initiall"y on.

TABS Tab Set or Clear

The TABS command differs from LIST and NOS. commands in that the TABS mode is always oni the user determines
whether to use it or not. The TABS command permits the user to assign tab stops at various columns of a card image.
Initially, the tab settings are 10, 19, and 37 which correspond to SYMBOL keypunch columns. The user sets tab
stops by e~tering the TABS command followed by numbers designating the columns at which stops are to be set.

The user exercises a tab by activating control-I (designated IC). The upper part of the I key is labeled "TAB" (see
Figure 1, Teletype Keyboard).

When I
C

is used, EDIT spaces the printout over to the next tab column. If there is no next tab column, EDIT does
not space but rings the terminal IS bell instead. Tabs are cleared by giving the command (designator T) followed by
a carriage return. Example 15 illustrates the setting and clearing of tabs.

Additional EDIT Features 15

Example 15. TABS Command and IC Tabulate.

!EDIT.

> TABS6, 10 Cr
:> APPEND Cr
1.000 A BC D CC
> TABS Cr- --

>

In the above example, the user input an "A" followed by IC• EDIT then spaced over to column 6. After typing "BC",
the user again typed IC, and EDIT spaced over to colmn 10. The last TABS command cleared the tab stops.

Of the six control characters provided by EDIT, W
C

(Erase), H
C

(Backspace), C
C

(End Insert) and I
C

(Tab) were
explained previously. The remaining two EDIT controls are B

C
(Retype) and yC (Literal Next).

BC Retype

B
C

causes a line to be retyped. This feature is especially beneficial to the user who has been making H
C

(Backspace)
corrections and who wishes to view the corrected version of the line. For example,

~ TES###RESEQ 100~, .5«

prints as follows if B
C

is used before a carriage return is given:

> RESEQ 10, .5

After a line is retyped, the user may further correct or add to it. A carriage return would probably be added in the
above example. Note, in the example, that EDIT outputs "«" to signify that BC has been used.

VC Literal Next

The yC control can be used to place EDIT controls into the user's output file. When yC is given, the subsequent
character is not interpreted as an EDIT control but is stored as a noncontrol character. In other words, a yc causes
the next character to be accepted literally.

FILE Take Updates from Command File

The FILE command {designator F, no parameters} is used for large volume updates. To invoke this capability, the
user types an For + F. EDIT then takes its commands from a command file {see "CMDFILE" below} rather than from
the terminal. To use this capability, an EBCDIC command file, which contains EDIT commands and text, is pre­
pared off-line. This file has almost the same apperance as if the user performed the update on-line (exceptions
are discussed below).

The advantage of the FILE command is that the user may prepare updates off-line and monitor the results on-line
without laborious typing at the terminal.

Example 16 shows how this command may be invoked at the terminal.

Example 16. FILE Command.

!ASSIGN M:C, (FILE, CMDFILE,ACCT29).
TASSIGN M:SI, (FILE, OLD, ACCT29).
TASSIGN M:SO, (FILE, NEW,ACCT29).
TEDrr--

> FILE Cr

To terminate the FILE command, the command file should end with the command designator preceded by a minus
sign, i.e., -F. However, the user may also interrupt this activity by depressing the BREAK key; the file command is
then disabled. If the user then issues the PROCEED command, EDIT will accept further input from the terminal.

16 Additional EDIT Features

When keypunching a command file, two exceptions must concern the programmer: carriage returns and the CC con­
trol used in terminating text input under the APPEND command. The user is free to omit carriage returns on com­
mand file cards; however, if he wishes to give them explicity, an 11-5-9 punch is used. The character CC is
generated by a 0-6-9 punch. Table 2 lists required punching for other EDIT controls and special characters.

Table 2. EDIT Controls on Punched Cards

Hexadecimal
Character Function Equivalent Card Punch

Cr Carriage X' 151 11-5-9
Return

Lf Line Feed X'25 1 0-5-9

B
C

Retype X' 141 11-4-9

CC End of Text X'26 1 0-6-9

H
C

Effective X' 16 1 11-6-9
Backspace

I
C

Tab X'051 12-5-9

VC
Literal X'2T 0-7-9

W
C

Erase X'071 12-7-9

Additional EDIT Features 17

5. SYMBOL SUBSYSTEM

The TSD Symbol subsystem is a slightly extended (on-line) version of SDS Sigma 5/7 Symbol. The standard Symbol
system assembles source input (51) to produce two files: binary output (BO) and listing output (LO).

TSD's (on-line) Symbol can be directed to produce the same results, but is usually used to provide a load file for
on-line debugging. Therefore, the user will want a BO file that contains a symbol table for debugging purposes,
in addition to the usual BO data.

SYMBOL OPTIONS

Other options are available to the TSD Symbol user that can be used or declined as desired. They are:

Request or decline a BO file.

Request or decline an LO file.

Request or decline a listing at the terminal (TSD Symbol prints error messages at the terminal in any case).

There is a close relationship between the options selected and the file assignments the user must make before calling
the Symbol subsystem. This is reflected in the examples shown below.

Once Symbol subsystem is called, it responds immediately with a request for options. The user then types an option
list in which the options are separated by commas, and the list terminates with a period. Any time prior to typing
the period, the user may give a carriage return to erase the option list. Symbol then prints a new option request.
The following table gives the form of each option. Options underlined in the table are default options. If the
user desires a defaul t option, it is not necessary to supply that option in the option list.

Table 3. Symbol Subsystem Options

Option Form
Description Wanted

BO produced BO

LO produced LO

Debugging Symbol table on BO DB
-

Terminal listing TL

Example 17. Binary Output with Debugging Symbol Table, No Listings.

!ASSIGN M:SI, (FILE, SOURCE, ACCT29).
TASSIGN M:BO, (FILE, OBJECT).
ISYMBOL.

OPTIONS

Not Wanted

NOBO

NOLO --
NODB

NOTL

Example 18. Only Diagnostic Messages Desired, No Listing or Binary Output.

!ASSIGN M:SI, (FILE, SOURCE,ACCT29).
TSYMBOL.

OPTIONS NOBO.

18 Symbol Subsystem

Example 19. Prepare Off-line Compatible Binary Output File and Off-line Listing Output File.

!ASSIGN M:SI, (FILE, SOURCE,ACCT29).
TASSIGN M:BO, (FILE, OBJECT, ACCT29).
lASSIGN M:LO, (FILE, LISTING,ACCT29).
ISYMBOL.

OPTIONS LO, NODB.

Example 20. Binary Output for Debugging, Terminal Listing (but No LO File).

!ASSIGN M:SI, (FILE, SOURCE,ACCT29).
lASSIGN M:BO, (FILE, OBJECT).
ISYMBOL.

OPTIONS TL.

SYMBOL ERROR MESSAGES

Symbol's error messages are output at the terminal regardless of the options selected. These diagnostics contain the
same data given in standard Symbol assembly listings. Because the Teletype prints only 72 characters per line,
diagnostic messages may be rearranged.

One common example of this rearrangement occurs with simple syntax errors. Three lines are printed:

1. The first I ine contains the assembl y val ues (I ine no., hex. location, hex. contents, address classification,
etc.) followed by the sequence number field (col umns 73-80) of the card in error.

2. The second line is the source image, columns 1-72 of the card.

3. The third line contains error indications.

If the TL option is specified, the terminal listing wi" always contain the first and second lines for each source card
image; the third line appears for cards in error.

Regardless of option selection, TSD Symbol always outputs an error count message at the terminal. If errors occur,
this message has the form

EC = n

where n = the number of errors encountered.

When the assembl y is completed, Symbol automatica" y returns to the TSD Executive. An assembl y may be inter­
rupted via BREAK if the user desires. In such cases the user may continue the interrupted assembl y by giving the
Executive command PROCEED.

Symbol Error Messages 19

6. DEBUG SUBSYSTEM

Debug is the most interactive subsystem in TSD. The user may load a program, start execution, stop it, examine items
of interest, search for patterns, modify the program, continue execution, etc.

There is a continual interplay of type-in and printout in most debugging sessions. For this reason, Debug command
formats are abbreviated and designed for fast interpretation by Debug. Output forms are short and simple. Never­
theless, Debug offers a high degree of flexibility and convenience.

Capabilities of the Debug subsystem are covered under the following topics:

1. Loading and starting execution 4. Modifying the executable program

2. Stopping and continuing execution 5. Single-instruction execution

3. Examining results

Users who are familiar with the on-line debugging language DDT will note much similarity with Debug. Debug's
methods of operation and syntax are derived from the DDT system used on the SDS 940. Closely allied to the dis­
cussion of Debug is Section 7, "User Program Considerations".

LOADING AND STARTING EXECUTION

The user can exercise three alternatives after calling the Debug subsystem:

1. Load an assembled version of his program.

2. Create a program using Debug by entering instructions and defining symbols.

3. Evaluate quantities of interest; for example, the user could obtain the hex. equivalent of a decimal integer.

LOADING

Debug's loader can load one or more program modules. These may have been assembled by the TSD version of
Symbol, by standard Symbol {off-I ine}, or by standard Meta-Symbol {off-I ine}. If the TSD Symbol produced the
assembly, Debug permits the user to reference all nonlocal symbols. If the standard assemblers are used, only ex­
ternal symbols (those identified by DEF, REF, SREF) may be referenced.

jT Load

The Debug load command is ;T. For added flexibility, Debug permits the user to specify a load location (i.e.,
location of first word) by typing a location expression before the ;T. An example of a location expression to start
loading at 100 is shown below.

Example 21. Load with Location Expression.

100;T

Usually, no location expression is given. If not, loading begins at hex. location 40 with subsequent loads following
at the next available doubleword boundary {unless Debug is restarted}. A maximum load, in this case, is 16,320
words. Note that the symbol table does not occupy this "user core". Symbol tables reside with the Debug subsys­
tem of an individual user.

It is recommended that no load start prior to hex. location 40. This ensures register integrity and leaves room for
TSD to save critical items.

For purposes of discussion, three kinds of loads exist:

1. Simple

2. Single-modules, multiple-file

3. Multiple-mo.dule, single file

20 Debug Subsystem

This distinction is arbitrary. The user can make multiple-module, multiple-file loads by combining the pro­
cedures descri bed for 2 and 3.

SIMPLE LOADING

The simple load involves one file containing one module. The user assigns that file as binary input, calls Debug,
and issues the LOAD command.

Example 22. Simple Loading.

!ASSIGN M:BI, (FILE, OBJECT).
TDEBUG.

;T

Herrors are detected, Debug produces error messages and lists the error severity level (if greater than zero). If
this occurs, the user should consult the assembly listing. After loading, Debug outputs the next available hex.
location {doubleword boundary}. This information may be useful in patching the program. Assuming no errors, the
Debug response to the above command might be

;T A3E

SINGLE-MODULES, MULTIPLE-FILE LOADING

The single-modules, multiple-file load involves a series of files, each containing one module. In this case, the
user must reassign each file as binary input before proceeding to load it. In the following example, note that the
PROCEED command is used. If Debug were called, loading would restart rather than continue sequential I y.

Example 23. Single-Modules, Multiple-File Loading.

!ASSIGN M:BI, (FILE, OBJ 1).
TDEBUG.

;T --.l.li
(BREAK key is hit.)
!ASSIGN M: BI, (FILE,OBJ2).
TPROCEED.

;T A30
(BREAK key is hit.)
!ASSIGN M:BI, (FILE, OBJ3).
TPROCEED.

;T F7E

The advantage of single-modules, multiple-file loading is that each file may be reassembled on-line if necessary.
Its disadvantage is that extra typing is required by the user.

MULTIPLE-MODULE, SINGLE-FILE LOADING

The multiple-module, single-file load requires little type-in, but if one module is seriously in error, the entire file
must be rewritten {off-I ine}. This type of load is most useful when the user has a set of routines that are fairl y well
checked out. In the following example, note that each ;T loads the next available module.

Example 24. Multiple-Module, Single-File Loading.

!ASSIGN M:BI, (FILE, PACKS,ACCT29).
TDEBUG.

;T 'A32
;T E44
;T ..J..ll§
;T 2FBO

Loading and Starting Execution 21

In all cases, after an individual module is loaded, the user may examine and modify the loaded module. One
important modification may be to provide values for undefined symbols. By defining the symbols before loading the
next module, inadvertent I ink-up between modules is prevented.

If several modules contain the same defined internal symbol, Debug will only reference the symbol as defined in
the most recently loaded module that contained it. As an example, suppose the routines OBJ 1 and OBJ2 (see the
single-modules, multiple-file load shown previously) both contain the label TEMP. Using Debug, the contents of
TEMP in OBJ2 can be examined simply by using TEMP as a symbolic reference. However, some other method must
be used to examine the contents of the TEMP in OBJ 1. This is usual I y onl y a minor inconvenience to the user.
(Note that all references to TEMP are correctl y I inked.)

The user is free to add patches to the end of each module of a mul tiple-module load. In such cases, it is the user's
responsibility to start the next load at a subsequent doubleword location {i.e., by preceding the ;T command with
a location expression}.

The ability to examine and to patch a program prior to execution are two of Debug's most useful capabilities. Some
examples will provide a preliminary understanding of these capabilities - they will be covered more fully later. In
the examples below note the following:

1. Slash (/) is the command used for examining a given word.

2. Equal (=) is the command used for eval uating the last item typed.

3. Both / and = are followed by a blank. This indicates that standard formats are used: instruction format
and hexadecimal format, respectively. The user may use other format options if desired; for instance,
octal, integer, or EBCDIC. In such cases a format letter may be used instead of the blank.

4. Carriage return (Cr) is the command used to store in a given word. If the user types a word or instruction
before the carriage return, it replaces the word or instruction displayed.

5. Line feed (Lf) is similar to carriage return in storing a word or instruction. In addition, Debug examines
the next word in sequence.

The following examples illustrate these items. Note that output is underlined.

Example 25. Special Debug Capabil ities.

ALP/ BAL,3 S3 Cr
S3/ LI,5 1 = 22500001 Cr
BET/ LW,454 AW,454 Cr
TABL+8/_8_Lf
TABL+9/ 9 Lf
TABL+A/ A Lf
TABL+B/ A ll=j!Lf
TABL+C/ C Lf
TABL+D/ 0 X'D' Lf
TABL+E/ 0 X'E' = E Lf
TABL+F/ 0 X'F' Cr

jV Loadi'ng Complete

When the user decides that all needed modules have been loaded, Debug must be notified that loading is complete.
To do this the user types the following command:

;Y 300A

Debug responds by printing the next available doubleword location after loading is complete. The unused space
from this address to X'3FFF' can be used for patching. The "Ioad complete" notification must be given prior to
starting execution of the loaded program.

The ;Y command is used to instruct Debug's loader to perform the final stages of the load process. These stages are:

1. Any required Monitor Data Control Blocks (DCBs) are generated.

2. The DCB nam~s (user and Monitor) are placed in the DCB table.

22 Loading and Starting Execution

3. The Task Control Block (TCB) is created and initialized to the proper val~es, with allocation for the
userls temporary stack.

4. Register zero is set to point to the location of the TCB.

(For a discussion of DCBs and TCBs, see the Batch Processing Monitor Reference Manual.)

Once the; Y command has been given, no new; Y or ; Tcommand is allowed unti I Debug has been restarted. In
other words, the user cannot add more load modules to a completed load.

iG Go (Start Execution)

After issuing the ;Y command, the user may start execution of his program at any desired address. The starting
address is given prior to the command designator ;G. For example, if the first instruction to be executed has the
label BEGIN, the user could start execution by giving the command

BEGIN;G

In general, any location expression may precede the ;G. A location expression consists of a series of symbolic
labels and/or constants. These items are connected by minus signs, plus signs, or blanks. Blanks in location ex­
pressions are equivalent to plus signs; they are provided as a typing convenience (since plus signs require shifting).
Symbol ic labels are as defined in the Symbol language (see SDS Sigma Symbol and Meta-Symbol Reference Manual,
Publication No. 900952).

There are four types of constants in the Debug language:

1. Integer 3. Octal

2. Hexadecimal 4. Character (EBCDIC)

To specify EBCDIC character strings, the user types Cxxxx', where xxxx represents up to four characters not con­
taining an imbedded single quote mark. This is the only type of constant requiring the terminating quote mark.

For the remaining constants the user may use the terminating quote mark if he wants to, but it is unnecessary.
Decimal integers may be typed without any special specification, or the user may provide the integer specifier, II.
Octal numbers are preceded by the specifier, 0 1• Hexadecimal numbers are preceded by XI or else by II. The
following equalities illustrate these formats:

16 = 1'16 = 0'20 = X110 = 1110

Since hexadecimal constants are so common in Sigma 7 programming, the ability to specify them by typing only one
character (II) is important to on-line users.

Other examples of start commands are shown below.

Example 26. Debug Go Commands.

BEGIN + 3 ;G
1143 ;G
1145 - 112 ;G
1140 113;G

PROG + LaC - 113A ;G
0'103 ;G
67 ;G
X'43 1 ;G

Note: To recover from typing errors in a Debug command, a question mark may be typed and the command will
be erased.

Loading and Starting Execution 23

STOPPING AND CONTINUING EXECUTION

Once the start command is given, Debug relinquishes control to the user program. The user cannot communicate
with Debug until execution stops. Three causes for execution stops are covered below:

1. An abort 2. A BREAK 3. A breakpoint

Hardware aborts, such as memory parity, are catastrophic and necessitate a complete restart of the TSD system.
However, when a software abort (e.g., nonexistent instruction, memory protection violation, etc.) occurs, control
automatically returns to Debug. The Debug subsystem then generates a message describing the abort, sets the
instruction counter (;1) to point to the word causing the abort, and preserves the condition code existing when the
abort occurred as the value of ;C. In addition, the floating controls are saved as the value of ;F (the special
symbols ;1, ;C, and ;F are discussed below).

STOPPING EXECUTION

If the user pushes the BREAK key during user program execution, the program stops and control returns to Debug.
To determine where execution stopped, the user may examine the instruction counter (;1) which points to the next
user program instruction that would have been executed (see "Examining Results", below).

jB Set Breakpoint

Debug contains a breakpoint capability that allows the user to achieve a controlled stop at a given location. Prior
to starting execution, the user gives the location at which the stop is to occur. For example, the user could give
the command

ALPHA-3 ;B

which would cause program execution to stop at location ALPHA-3.

In general, any location expression may precede the breakpoint command designator (;B). Execution is stopped just
prior to the given location. Debug then regains control, prints "BKPT 1, starts a new print line, and awaits a Debug
command.

Only one breakpoint exists for a given execution; if the user gives a new breakpoint location, it supersedes a pre­
vious one. To remove a breakpoint (without replacement), the user types the command ;B without giving a location
expression.

From the user1s point of view, breakpoints are invisible. If the breakpoint location is examined, the original in­
struction is printed. However, Debug replaces the instruction (after saving it) prior to program execution. For this
reason, the user is advised to avoid placing a breakpoint at a BAL or EXU, since, if these instructions are followed
by a calling sequence, incorrect results occur when continuing execution. This happens because the original in­
struction is moved to make room for the breakpoint instruction.

CONTINUING EXECUTION

j P Proceed with Execution

After reaching the breakpoint, the user may continue execution by issuing the Proceed command ;P (see example 27).

Example 27. Debug Proceed Command.

BKPT
;P

In proceeding from a breakpoint, Debug always causes the original {moved} instruction to be executed. If the pro­
gram loops back to the breakpoint location, another stop occurs.

For added flexibility, Debug permits the user to specify a count in proceeding from a breakpoint. This count {any
location expression value} determines the number of times the breakpoint may be reencountered before a stop occurs
(see example 28).

24 Stopping and Continuing Execution

Example 28. Count-Controlled Proceed Command.

BKPT
liP

The command in the above example tells Debug to allow the breakpoint location to be reached once without stopping.
A second encounter would result in hal ting execution.

After any program stop, the user may give a ;P command to continue executing. The first location executed is
alwaySthe one pointed to by the instruction counter.

jl Instruction Counter

The instruction counter, designated ;1, is initiall y set to the start location, given in the last module that was loaded.
This value is updated whenever execution stops. The instruction counter can also be set by giving a location expres­
sion as in the following example:

Example 29. Set Instruction Counter Command.

LOOP-l ;1

The user also may continue execution of a program by giving a new start (;G) command as discussed above. This is
particularly useful when initializations are required.

Finally, a completely fresh start can be made by returning to the TSD Executive, giving the DEBUG command, and
reloading. This is recommended only when a user program appears to have been modified beyond repair, since in
reloading, all patches and definitions made up to that time are lost.

If control is inadvertently returned to the TSD Executive, reloading can be avoided by giving the PROCEED command.
This returns control to Debug (unless another subsystem call was given) with all program code and tables intact.

EXAMINING RESULTS

Debug offers considerable flexibility in examining results. Via Debug, the user can perform pattern searching,
examine the contents of a given word, or look at any number of successive words. One of several output format
options can be used, incl uding convenient defaul t options. In addition, the user may specify what the defaul t
print options are and change them as desired~

Actual use of Debug is relatively simple because, in typical practice, only one or two commands are used frequently
in eX<;lmining a program, and the variations are easy to remember.

PATTERN SEARCHING

In pattern searching, the object is simply to look at words from IIhere ll to IIthere ll for a specified arrangement of
bits. For each word satisfying the requirement, Debug prints its location and contents. .

il i2 Searching Limits
jL Set Searching Limits

The beginning and ending limits for a pattern search are identified by;l and;2 respectively. The values for these
limits may be assigned in either of the two ways shown in Example 30.

Example 30. Set Pattern Searching Limits.

ALPHA; 1
ALPHA + 50 ;2

or alternatively,

ALPHA, ALPHA +50 ; L

Either of the above limit settings could be used in searching from lo~ation ALPHA through location ALPHA + 50.

Examining Results 25

iM Set Searching Mask

The search pattern is restricted by a mask, designated as ;M. A sample mask setting command is given in Ex~mple 31.

Example 31. Set Searching Mask Command.

"FFFF ;M

The above example would be used.to isolate the right half of each word searched; that is, the left half would not be
examined during the search. The user is free to change the mask or search limits whenever necessary. Initially, the
mask is set to all ones and the search I imits are set for searching the entire user core.

iW Set Word, and Match Search

In calling for a search the user must supply a specific bit pattern for which the search is to be made. Two types of
search may be used - "match" or "no-match". An example of a Match Search command is given below.

Example 32. Set Word, and Match Search Command.

Using the limits and mask previously explained, this example results in searching for occurrences of the EBCDIC
characters ZY in the right half of each word from ALPHA through ALPHA + 50.

iN Set Word, and No-match Search

No-match search commands use ;N in place of the match search command designator ;W. The following example
shows a No-match Search command:

Example 33. Set Word, and No-match Search Command.

O;N

Using the sample I imits and mask previousl y specified, the above command would look for each word from ALPHA
through ALPHA + 50 whose right half is nonzero.

In making the pattern search, both the specific bit pattern and each word examined are masked by the value specified
by ;M. If the bit pattern and examined word are identical for each "one II in the mask, they are said to match. If
not, a no-match condition occurs.

For each word satisfying the search conditions, Debug prints one I ine containing the location, a slash (/), two blanks,
and the contents of the word. The prevailing default formats are used in printing the location and the contents.
These formats are discussed later. A sample match search procedure is given below.

Example 34. Sample Match Search.

"1FFFF;M
LOOP, LOOP + 19;L
ERR6 ;W
LOOP + 31
LOOP + AI
LOOP + BI
LOOP + 131

BAL,4 ERR6
BAL,4 ERR6

AWM, 1 ERR6,2
BAL,4 ERR6

The above example finds all words between LOOP and LOOP + 19 that have the location ERR6 in their address fields.

Note: If DEBUG prints out an undefined symbol it is followed by [U] to ,warn the user.

OUTPUT FORMATS

Debug wi~~ __ l f~_-_~t three kinds of doto'; l.~olues, cell contents,_ and ex r • values. In the preceding
example, lwr+A ~asa location value whi eBAL, 4 ER'R6 was the cell contents at that location.

26 Output Formats

---... -----------------.-- ------------------------

= Eval uate Expression

One example of an expression value occurs when the user requests Debug to print the hexadecimal equivalent of
a location expression. This request can be made by typing the location expression followed by an equal sign and
one blank; for example,

R1+R15-2= I

where R1 equals 1, R15 equals XIF I, and the default option is hexadecimal. Expression values are not limited to
location expressions. The following example provides the hexadecimal equivalent of an entire word.

Example 35. Expression Eval uation.

BA L, 5 R 1 + R 15 - 2 = 6A50000E

There are two options for printing addresses: relative, and absolute.

jA Set Address Print Format to Absol ute

Initially, Debug is set to print in the relative address form, but can be changed to absolute by giving the co'mmand ;A.

iR Restore Address Print Format to Relative

To revert to the relative address format, the user types ;R.

ABSOLUTE/RELATIVE ADDRESSES

Absolute addresses are printed as hexadecimal numbers, relative addresses as symbolic except in two cases. First,
if there is no label at the location in question, Debug looks through its symbol table for the nearest symbol whose
val ue is less than the given location. If the resul ting symbol is not within X?F I words of that location, Debug
prints the absol ute address. Second, if the location in question is less than location X 1401, Debug uses absol ute ad­
dressing. This somewhat arbitrary arrangement results from a symbol conflict problem. If two or more symbols have
the same val ue, Debug has no way of knowing which is the label attached to the location in question. Ordinari I y,
when this occurs, Debug uses the last entry in its symbol table {that matches the given location value}. But since
it is the low address values that are most frequently equated to many symbols, absolute addresses are preferred to
relative addresses in this case.

Assuming that neither exception occurs, relative addresses take one of the following three forms:

1. ZORCH The symbol ZORCH has a valu~ equal to the location in question (but mayor may not be the
expected symbol i c address of the location).

I,

2. ZORCH + F The nearest symbol val ue prior to the location in question is ZORCH. The location is
15 (XIFI) words from ZORCH. In this case, the hexadecimal number shown is called the "ADDEND".

3. ZORCH + F. 2 The nearest symbol value prior to the location in question is ZORCH, which is defined
at a halfword boundary. Therefore, the location is 15 words and two bytes from ZORCH. If a decimal
point occurs in an addend, it is followed by a byte offset number, i.e., 1, 2, or 3.

CELL CONTENTS/EXPRESSION VALUES

There are six format options available for printing cell contents. These options also are available for printing
expression values. The six formats, which are defined below, are designated by the following letters: R,A,X,O,C,I.
When a user gives a command to examine cell contents or to obtain an expression value, part of the command is a
format letter or a blank. Blank is used when the defaul t format is desired. For cell contents, the standard defaul t
format is R; for expression values, the standard default format is X.

jf Set Defaul t Format for / {Examine}

The defaul t settings can easi I y be changed for user convenience. For example, to change the defaul t form for cell
contents, the ,user could give the command

;/C

which changes the def<lult form to EBCDIC characters.

Output Formats 27

j= Set Default Format for = (Evaluate)

The command i= is used to change the defaul t format for expression val ues. For example, the user can type

i = I

making the default form integer constants for the 11=11 (Evaluate) command.

The meanings of the format letters are as follows:

R - instruction format, with relative address field.

A - instruction format, with absolute (hexadecimal) address field.

X - hexadecimal constant with leading zeros omitted.

o - octal constant with leading zeros omitted.

C - four-character EBCDIC constant.

- signed integer constant.

The X, 0, C, I formats are self-explanatory. The R and A formats both provide output in essentiall y a four-field
format that is similar to symbol ic machine instructions.

The first field is the operation code field and the second is the register field. These fields are separated by a
comma.

The register field is a decimal integer. The operation code field usually contains a familiar instruction mnemonic.
However, if Debug cannot translate this field into a mnemonic, it prints a percent sign (%) followed by two hexa­
decimal digits that correspond to the op-code encountered.

The third field is the (address) and is always preceded by a blank. If indirect addressing applies, the first character
is an asterisk (*). The remainder of the third field is expressed in absolute hexadecimal form in the A-format and
symbolic (relative) form in the R-format. The same exception cases occur in the relative form as were discussed
under location value formatting (the same routines are used by Debug in producing the relative address and the
relative location value).

The fourth field, which is the tag, is printed onl y if nonzero. It is separated from the address by a comma, and
is expressed as an integer from 1 through 7, corresponding to an index register.

The following table relates the A and R formats to bit positions in the item printed.

Table 4. A and R Format Bit Positions

Field Meaning Bit Positions

1 Op-code 1-7

2 Register 8-11

f\
3 Indirect (*) 0

Address 15-31

FO{~ :r immediate type instructions,

4 Tag (Index) 12-14

Note: bits 12-31 are given as the address field.

In the event that fields 1 and 2 are both zero, Debug will omit printing them.

In summary, the preceding discussion has explained the Equal command, which obtains expression val ue. Generall y,1
the user first types the expression to be evaluated, then an' equal sign, followed by either a format letter (R, A, X, <_0' ,/,'~
0, C, I) or a blank (for default form). The expression to be evaulated will usually be a symbol, a constant, a 10-0
cation expression, an instruction, or a special symbol. However, reasonable combinations of these items may also
be eval uated.

28 Output Formats

There is a restriction on instruction evaluation that should be noted. Debug is designed to recognize Sigma 7 in­
struction mnemonics as defined for Symbol; however, Debug does not recognize Symbol or Meta-Symbol directives.

SPECIAL DEBUG SYMBOLS

Debug has a number of special symbols that can be used to provide program status and debugging status information.
Some of the symbols have been discussed previously (e.g., ;1, ; 1, ;2, ;M). The following table shows all special
symbols:

Special
Symbol

; 1

;2

;M

;1

;C

;F

;Q

$

EXAMINE COMMAND

Table 5. Special Debug Symbols

Information Provided

Lower limit for pattern searching.

Upper limit for pattern searching.

Mask for pattern searching.

Instruc ti on counter.

Condition code.

Floating controls.

Latest quantity typed (this special symbol is discussed in detail in remaining portions of
this section).

Debug location counter. Points to last cell opened. The open cell may be stored into for
user program modification (this is further described in a later section).

Synonymous with $ (provided as a typing convenience).

To evaluate any special Debug symbol, the user types the symbol, an equal sign, and a format specifier. Several
of the special symbols represent locations (; 1, ;2, ;1, ;Q, $, and.). The user may determine the value of these
items as desribed above. In addition, the contents of the cells represented by these symbols can be examined.

/ Examine Word

To examine anyone word of interest, the use~ types an expression followed by a slash and a format specifier. Debug
responds by typing out the contents of the word addressed by the given expression. The Examine function is the most
useful tool in debugging. It provides the only mechanism for looking at the program after loading or following
execution.

Because of its importance, Examine has several variations and properties. One variation permits the user to dump
sequential words. To do this, the user types a beginning expression, a comma, an ending expression, a slash, and
a format specifier. Following is a typical example.

Example 36. Examine Command.

PR3,PR3+3/ LW,4 J77
PR3+1/ AW,4 CONST,2
PR3+2/ AI,4 3
PR3+3/ B DRIVER, 2

One of the important properties of Examine concerns the Debug location counter $ (or.). The examined location
becomes the value given to $. In the previous example the final value for $ is PR3+3. The user may use $ in an
expression for further examinatio"n, as in

$+5/ LI,2 1

or, al ternativel y,

.+5/ LI,2 1

Output Formats 29

This property facilitates rapid searching for key points in programs or tables. : ?
iQ Set Last Quantity Typed

Another important property of Examine concerns the use of the special symbol ;Q. This symbol represents the latest
quantity typed out. Often, the user wants to know not only the contents of a critical location, but also the contents
of the cell that the location addresses. The special symbol ;Q enables the contents to be examined.

Example 37. Examining the Location Specified in the Last Quantity Typed.

$+6/ LW,3 DATAX ;Q/X 9

In this example, the cell DATAX contained hexadecimal 9.

As a convenience, the user is not required to type the special symbol ;Q when examining its contents. The fol­
lowing example illustrates a case in which the user traces through a path of subroutine calls:

Example 38. Tracing - Examining Successive Quantities.

S+l/ BAL,4 SUB1 / BAL,5 SUB2/ BAL,6 SUB3

Note: When using ;Q for examination of an addressed item, only the address field is applicable; indirect ad­
dressing and indexing are not used. The following example illustrates this:

Example 39. Addressing Limitations of Examine Command.

SUB3/ LW,5 QUEX,3 /X 9A

In this example, X '9A' is the contents of QUEX, not of QUEX plus the contents of register 3. Debug examines the
program as a static entity; it does not execute each location ~xamined. Therefore, examined quantities during
debugging do not necessarily reflect the path of execution the program will follow while operating.

A "----Another common and perhaps more useful application of ;Q is its use in a program patching process. The symbol ;Q /J '" /allow~ t~e user to modify the contents of the last word typed. This application is explained later in this section under
p/ "ModlfYlng an Executable Program".

~. Lf (Line Feed) . Open $+1 and Examine

During debugging, the user often finds one word of interest and wants to know the contents of the next word. This
happens so frequentl y that Debug contains a special variation of Examine for looking at the next word (using the
format specification given when the current location was examined).

\ To examine the next word, the user need only type '0 line feed (Lf) after the current word is printed. This is
\ equivalent to typing a new Examine command but is much more convenient.

\, t CUp Arrow) Open $-1 and Examine

i

\... . \~ebug also contains an Examine variation for looking at the word previous to the last one examined. For this,
~he user types an up-arrow (t, shift-N on the teletype keyboard).

Table 6 summarizes variations of Examine. In the table, expr represents an expression and f represents one of the
format specifiers (R,A,X,O,C,I, or blank).

30 Output Formats

Table 6. Examine Command Variations

Code Explanation)
expr/f Examine the contents of the word at location expr using format f.

//
Vi ---

..,.,
~. ,"

,,-" <: expr 1, expr2/f Examine each word from expr1 through expr2 using for~51JJ.-/)i-

/f Examine the word addressed by ;Q using format f(nO';; that $ does not change). :/
Lf (I i ne -feed) Examine the word at $+1 using the same format used in examining $. "-
t (up-arrow) Examine the word at $-1 using the same format used in examining $.

Note: The difference between numeric input and output may be confusing to a new user. The standard form for
input numbers is decimal; the standard form for output numbers is hexadecimal. Hexadecimal was chosen ~
as the output standard for Debug because of Sigma 7 design. Thus output closely corresponds to location 7 s,;,it~
values in assembly listings. However, hexadecimal is not used as the input standard because of possible J/",)
conflicts with symbolic names. If hexadecimal were the input standard, the label ACE, for example, 5fo<e l#

would be confused with a hexadecimal number. / /;' A
"7-"':cJ1~...J

At this point, many command exam'ples of the Examine command have been given, but sophisticated combinations
have not been shown. The interested user is encouraged to try any combination thatoHers promise since such exper­
imentation is one of the important advantages of on-line systems such as TSD.

MODIFYING THE EXECUTABLE PROGRAM

Basically, there are two ways to modify the program after it has been loaded and optionally executed: by storing
new instructions (replacements or additions) in the program, or by defining new symbolic labels (including redefining
or "undefining" existing labels).

Debug permits the user to store instructions in only one location at a time and this location must be "open". There
are two ways to open a location: to examine it or to give an "Open-Only" command. (The only Examine command
that does not open a location is the /f command).

INSTRUCTION MODIFICATION

\ Open-only

The Open-Only command consists of a location expression followed by a reverse slash (,\). (To input a reverse slash,
the user types shift-L.) The open location address is always assigned to Debug's location counter, which is identified
by the special symbols ($) or (.).

Cr (Carriage Return) Store

Once a location has been opened, the user stores a full word into that location by giving an expression followed
by a carriage return. The expression is ordinarily a constant or instruction, although location expressions and
the val ue of'special symbol s can be stored as well. The four types of constants (decimal, h'exadecimal, octal, and
EBCDIC) accepted by Debug were described earlier in this section.

Instructions are formed from four basic parts:

1. Operation expression 3. Address expression

2. Register expression 4. Index expression

Though the operation expression may be any Debug expression, it is usually a Symbol instruction mnemonic (it
cannot be a directive, however).

A comma is used after the operation expression, unless no register expression is desired. The register expression
then follows: it is usually a decimal constant from 0 through 15.

Modifying the Executable Program 31

The first blank in an instruction introduces the address expression. If indirect addressing is to be specified, an
asterisk is the first character following the blank. Any location expression may be given for the address expression.
A comma is used after the address expression, unless no index expression is desired. Ordinarily, index expressions
are given as constants from 0 through 7.

If one of the four expressions is omitted, the stored result is equivalent to an explicit zero. The instructions in
the following example help illustrate these points.

Example 40. Sample Instructions for Debug.

LW,14 A+2, 1
LI,ll -1
BLOOP

LOOP,6
0,0 -1

After the user issues a Store command (a carriage return) and it has been executed, the affected location is closed,
and it cannot be stored into unless reopened. The user also can close the open location without storing by issuing
a carriage return that is not preceded by an expression.

Successive instructions can be stored by using Lf or t in place of Cr. After opening a given location and typing
the instruction it is to contain, the user can type Lf or t instead of Cr. This will store the instruction in the cur­
rent location and then open the next location or previous location, respectivel y.

In the following example, note that the first command examines the contents of a location, thus opening it. The
initial contents of each word in the patch area are shown to be zero.

Example 41. Patching Successive Locations.

PATCHA+l0/ JL BAL,4 PRNT Lf

~PA....:....:T:....::C:...:....;H~A:....-+.:......:ll.L../,...----:o:....-- 6 Lf
::-PA:-::T::-::C:-:-H:-:-A_+-::-12...L..1.----_0 _C ' PA TC' Lf
_PA_T_C_H_A_+_13....!.../_0_C 'HA 'Cr

This example points out the simplicity with which a program may be patched using Debug. Using the printout, the
user may check the patch at a glance, examining the instructions, their locations, and the previous contents of
these locations. (Cr and Lf do not print.)

The special symbol ;Q is useful in certain common patching situations. Recall that ;Q represents the value of the
last item typed. The following example indicates how ;Q can be used to minimize the typing required to change
that value.

Example 42. Patching with the ;Q Symbol.

SBX/
SBX/

B LX+2 ;Q+ 1 Cr
B LX+3

(The second line is not necessary but shows the results of the change.)

jZ Zero Storage

For the user's convenience, Debug contains a special command ;Z for zeroing a block of locations. The following
example ill ustrates this command.

Example 43. Zero Storage Command.

PATCH, PATCH+99 ;Z

In this example, the user zeroed 100 sequential words.

The user may zero an entire program by giving ;Z with no preceding expressions. This might be used if a new program
is going to be stored one instruction at a time. In other words, the whole program is to be patched in, and the user

32 Modifying the Executable Program

wants to ensure that user core is clear. For safety, Debug responds to ;Z with the message "OK". If the user wants
this special Zero command to be obeyed, he confirms it by typing a period. Any other character erases the command,
and user core is not cleared. An example of the special Zero command is shown later in this section.

SYMBOL MODIFICATION

As stated earlier in this section, Debug provides symbol definition commands. These commands

1. Enable the user to provide definitions for undefined symbols in a program or load module. After a symbol
is defined, all previous references to the symbol are automaticall y corrected to reflect the given definition.

2. Allow the user to define and redefine symbols for convenience in patching a program.

Note: Once a symbol has been defined, all previous references to the symbol are replaced by appropriate values.
Debug permits the user to redefine (or even "undefine") such symbols, but this does not affect program
code that has already been stored. However, the change in definition will affect code that is stored after
the defi ni tion change has been processed.

jU Check for Undefined Symbols

/~fre.~tion of undefined symbols is a valuable and commonly used feature of Debug's symbol definition capability.
f Consequently, Debug contains a specific command for detecting undefined symbols - ;U. It is recommended that
! the user issue a ;U command after each load command (;T). If undefined symbols are found, the user will be able
I to provide definitions before continuing to load.

There is one situation in which an undefined symbol requires special treatment. Assume that the symbol TEMP was
directed to be a local symbol (i.e., the LOCAL directive was used). Assume further that, subsequent to the LOCAL
directive, TEMP was referenced but never defined within the local section.

During assembly of such local regions, Symbol/Meta-Symbol "scrubs" references to undefined symbols and replaces
them with forward reference numbers, assuming that the symbols will be defined later in the local region. Con­
sequently, when Debug processes such a program, it will detect the forward reference numbers as undefined labels but k
it will not be able to determine what the labels were originally. (Of course, the assembly listing ~ill contain an
error message describing the problem, but it is assumed that the user has loaded the program without ~!_I')9:;) +h'7:1J ~L
~orrec.ting the error involves deal ing with two problems: the original symbol has been lost, and all references to ,,?}t AA I k
It are Incorrect. . tv:tl'~~ ,

/ C\~
Debug deals with this situation by creating a special symbolic label. If the user then provides a definition for the
label, Debug automatically substitutes the definition at each location referencing the label.

When the user issues the ;U command, Debug prints all undefi~ed symbols, including created symbols. The created
symbols have the form :xxx, where xxx is a three digit hexadecimal number. Thus, :001 is assigned to the first
encountered undefined local symbol, :002 assigned to the second, and so on. The user may discern which undefined
local symbol (e.g., TEMP) corresponds to a given created symbol by a judicious mixture of pattern searching and
examination of the assembl y listing.

Define Symbol

To define a symbol (Debug-created or otherwise), the user types

1. A defining expression

2. A less-than sign

Examples follow.

Example 44. Defining Symbols.

SUBR8+5 <:001>
"1A3 <ALPH>
2 <TWO>
C'ERR5' <ERROR5>

3. The name of the symbol

4. A greater-than sign

Modifying the Executable Program 33

Define Symbol to have Value $

Another important Debug feature is that patching can be done symbolically rather than in hexadecimal or octal.
For instance, a user can construct a subroutine while debugging, and can also store instructions that call the
subroutine by name. The user must define the name, but Debug simplifies this task with an alternative method of
defining labels. If the user types the name, followed by an exclamation point, Debug defines the name to have
the value $. The following example illustrates the simplicity of this method of definition. The first instruction
opens the location in which the patch will start.

Example 45. Symbol Definition Using Exclamation Point.

PATCHB+1/ ~ SUBRBI_Ll,2 -1 Lf
SUBRB+ 1/ ° AW,2 *TPOINT Lf
SUBRB+2/ ° LW,14 CONST9 Lf
SUBRB+3/ ° B 0,4 Lf
SUBRB+4/ ° TPOINTI_O, ° TABL Lf
TPOINT+1/ ° CONST91_119 Cr
PATCHA+10/..Q. BAL,4 SUBRB Cr

In the preceding example, the user first defined the subroutine name SUBRB {located at PATCHB+1) and then stored
the four-instruction routine. He referenced a table pointer (TPOINT) and constant (CONST9), intending to define
these symbols after completing the subroutine. The user then defined and stored those two items. Note that he
terminated his PATCHB insertions (see TPOINT+1) with a Cr storing hexadecimal 9, but not examining and opening
TPOINT+2 (which would have occurred had he used an Lf instead of Cr). Finally, the user examined PATCHA+10
and stored a call to the new subroutine.

~] LT. here are many sophisticated applications of Debug1s symbol definition commands. For instance, new operation.
code symbols can be defined, new symbols can be defined in terms of Debug1s special symbols, and redefinition
can be used. Users are encouraged to try such appl ications. .

jK Kill Symbol

Debug permits the user to IIkili li symbols (make them undefined). The Kill command may be used to remove any
symbol from Debug1s symbol table, but this has no effect on previous references to such symbols. To kill a
symbol, the user types the symbolic name followed by ; K.

Example 46. The Kill Command.

SUBRB ;K

If the above command followed the patch shown in Example 45, location PATCHA+10 would continue to reference
the subroutine despite the fact that the name SUBRB would now become undefined by the ;K command.

~
~A special application of the Kill command is useful for reinitializing Debug1s symbol table. This command removes

~ all user symbols including those obtained in loading. However, Debug retains its special symbols and the ordinary
.~ instruction mnemonic symbols (e.g., BAL, LI, AW, etc.,). This command generally will be used only when the user
~ l. zeros all user core assigned to him. Like the special zero command, the special Kill command for symbols requires

~
~ \ a confirming period to be typed after Debug asks 1I0KII. The following examples typifies use of these two commands:
.' ~

~ .. tl Example 47. Reinitializing.

't' ~ ~~ g~:
\ Any response other than a period after the OK eraseS the command. The above application is not particularly

recommended, but it does allow a user to patch in an entire program without conflicting with earlier code or symbols.
(This is better accompl ished by BREAKing and calling in the Debug subsystem again.)

jX Execute Instruction

There is one other command in the Debug repertoire remaining to be explained: the;X command which executes
a single instruction. The user types an expression, (usual I y an instruction, but any expression can be given)
followed by ;X. Debug then executes, or attempts to execute, the expression as an instruction.

34 Modifying the Executable Program

This command is useful for presetting registers, for testing special instruction sequences, and for checking com­
munications between various parts of a program. The;X command can also be used to start execution at any
point in the program by executing a branch instruction to some location in the program.

Example 48. Single Instruction Execution.

LI, 1 -5;X
LW,2 TEMP3;X
LH,3 TABLE,l;X
B TCHEK;X

In general, any instruction that can be stored can also be executed. Among the Sigma 5/7 instructions available to
the user for debugging is the EXU instruction. This is useful in stepping through certain instructions in the
existing program without having to specify their exact format.

Example 49. Selective Instruction Execution with EXU and ;X.

EXU LOOP;X
EXU LOOP+ 1 iX
EXU LOO P+2 ;X

3/ .-£

Bf(eT 3/ L -
This shows a case in which the user stepped through three instructions and then examined register 3.

Assumi ng that location BET A2 contai ns a branch instruction, the user program will start to run if the foil owi ng
command is given:

EXU BETA2;X

This example is given as a warning to the user that the execution (iX) of an EXU instruction is not the same as
single stepping at the computer console since the program can start running.

Modifying the Executable Program 35

7. USER PROGRAM CONSIDERATIONS

This section discusses relationships between a user program and the TSD system. The material in this section is
divided into two parts: the first part presents general information that concerns all users; the second contains
descriptions of certain TSD system calls that are of use in advanced applications.

TSD RESTRICTIONS

Every user program must adhere to the following restrictions imposed by the TSD system:

1. User core is limited to 16,384 words. Of this space, the first 64 (X'40') words are reserved for registers
and for TSD use. The remaining space is occupied by the user program, Task Control Block (TCB), Data
Control Block (DCB) name table, and the DCB's.

2. The size of the Symbol table used in debugging is I imited, at present, to approximatel y 2,000 symbols.

3. All input/output files for the user program must be RAD files. No other device is permitted.

4. TSD allows no more than four files to be open at one time. However, the user program may maintain a
larger number by closing unnecessary files before opening new ones.

5. The Debug subsystem uses a common table for symbolic names and operation code mnemonics. The user,
therefore, must avoid labels that are the same as Symbol instruction names (i .e., B, S, LI, AW, etc.).

USER RECOMMENDATIONS

In on-line debugging, the user may want to restart execution fairly frequently. For this reason, it is recommended
that user programs be designed to be self-initializing. The user can then restart execution at an initialization
routine to ensure that critical storage is correctly preset. Otherwise, the user may be forced to reload, which
eliminates any corrections or patches made while debugging.

When the user's program occupies a single load module, he can obtain a one-to-one correspondence between the
hexadecimal locations in the assembly listing and those exhibited by Debug by specifying that loading start at zero.
(That is, the load command O;T is used). However, the user must ensure that the program origin is at hexadecimal
40 or higher. For instance, the assembly might start with the following card: ORG X'40'. The resulting cor­
respondence may simpl ify debugging in some cases.

In general, user programs make use of the same Batch Processing Monitor calls (i.e., CAll's) under TSD that they
would use if run in Batch mode. However, there are certain differences imposed by the TSD system. These are
described in Appendix B.

For system protection, TSD intercepts all CAL 1 instructions and validates them before passing them to the Batch
Processing Monitor. If a call is improper (for on-line use), TSD outputs an error message, stops execution of the
user program, and places the Debug subsystem in control.

SPECIAL SYSTEM CALLS

The TSD system contains service routines that may be called by the user program or subsystems. Appendix B describes
these calls in detail. While a large number of these calls are for exclusive use of TSD's subsystems, five are avail­
able to the user's program. The remainder of this section discusses these five calls. This information is not required
for use of TSD.

By using the TSD system calls, a user program can communicate with a terminal during execution. In other words,
the program becomes an on-line program instead of an off-line program being debugged on-line. Calls are avail­
able for the following services:

1. Read one character from the input buffer. 4. Change echo control type.

2. Test input buffer. 5. Return control to Debug.

3. Write one character in the output buffer.

36 User Program Considerations

READ ONE CHARACTER

TSD accumulates characters from the terminal in'an i'nput buffer. To read a character from this buffer, the
user program executes the CAL3, a instruction .. TSD automatically converts teletype characters (ASCII) into
EBCDIC form when executing the Read call.· ·If input·data is available, TSD clears register.O and places the
EBCDIC character in its low-order byte. However, if data has not yet been entered, TSD r~leases the user pro-'
gram until data has been input at the termi nal. The read call is then executed-.

TEST INPUT BUFFER

The user program may test the input buffer by executing a CAL3, 3 instruction. This system call sets the two low­
order bits of the condition code. If the input buffer is empty, these bits are set to 00; otherwise, they become 10.

WRITE ONE CHARACTER

To write a character at the terminal, the user program executes a CAL3, 1 instruction. This results in placing the
low-order byte of register a in the output buffer. That byte should contain an EBCDIC character: TSD automat­
icall y converts it to ASCII form.

CHANGE ECHO CONTROL TYPE

Before considering how to change echo control type, two concepts must be understood - echoing and activation.

When the user depresses keys to input characters, printing of those characters does not immediately occur. All
printing is under control of the computer {full duplex operation}.

After receiving an input character, TSD determines whether to print it or not. When an input character is printed,
it is said to be echoed. If the echo control type is zero, echoing does not occur. This control type is useful in
situations where the user wants to issue data that is private, such as passwords. Ordinarily, the echo control type
is nonzero. If nonzero, the echo control type allows all printable characters to be echoed. This includes letters,
digits, punctuation characters, carriage return, and line feed; other control characters are nonprintable.

The echo control type also determines the activation setting. While a program is waiting for input, it is inactive
and does not occupy user core. The activation setting determines the input condition required for permitting the
program to become active again. The setting may cause activation on receipt of any input character or it may
delay activation until an "activate" character has been input. In the latter case, TSD will accumulate data in
the input buffer up to and inc I udi ng the ac ti vati ng charac ter. Thus, the program wi II not become ac ti ve unti I a
complete message has been input. This type of operation increases swapping efficiency.

The following five echo control types are recognized by TSD:

Table 7. Echo Control Types

Echo Control
Type Echo and A.ctivation Settings

a No echoing; activate on each character.

1 Echo {all printable characters}; activate on each character.

2 Echo; activate on all characters other than letters, digits, blanks, or the special
charac ters #, :, @, $.

3 Echo; activate only on control characters, carriage returns, or line feeds.

4 Echo; activate onl yon carriage returns or line feeds.

The echo control type is initially set to 1 and is automatically reset to 1 whenever a subsystem is called.

To change echo control type, the user program sets register a to the desired type (0-4) and then executes a CAL3, 2
instruction.

Special System Calls 37

RETURN CONTROL TO DEBUG

This special system call permits a user program to return control to Debug. To perform this return, the user program
executes a CAL3,6 instruction. By placing several of these instructions in a program, the user can force execution
to stop at critical points, isolating particular areas for checkout purposes. These controlled stops are similar to a
BREAK during user program execution, in that the instruction counter (;1), the condition code (;C), and the floating
controls {iF} are set by Debug for user interrogation.

38 Special System Calls

APPENDIX A. SPECIAL TELETYPE KEYS AND CONTROLS - MODEL35KSR

CONTROL PANEL

Most of the control panel switches are useful only for communications or long distance computer connections. Those
used in TSD are ORIG and CLR; occasionally LCL and BUZ-RLS are also used, although they are not directly related
to the TSD system. A short description of each item on the control panel follows:

ORIG

CLR

ANS

TST

LCL

BUZ-RLS

Conditions Teletype set to make a call.

Clears all other keys.

Connects called station to call ing station via teletype I ines; called station answers.

Permits test of data set from central office.

Conditions Teletype set for off-I ine operation.

Silences alarm buzzer when set needs servicing.

Number Buttons Touch-tone telephone "dial".

BRK-RLS

REST

OUT OF SERV

NORMAL­
RESTORE

SPKR VOL

KEYBOARD

Lamp indicates break has been initiated by local or remote station; depressing button restores local
station to sending condition.

Lights up when set is transmitting to slower-speed TWX station and buffer storage of central office
is near! y full.

Lamp indicates set will not answer a call; automatic answer feature is disabled.

Rotation of switch to left puts set out of service. To restore set to service, switch is rotated to
right and held until dial tone is heard. Used when replenishing paper supply.

Adjusts speaker volume for touch-tone telephone.

Most of the Teletype console keys are explained by legends printed on the key tops. However, there are three
printing characters for which no legend appears:

\(backward slash) Use SHIFT - L.] (right bracket) Use SHIFT -M. [(left bracket) Use SHIFT -K.

A brief explanation of the unusual legends follows. Except for BREAK and BELL, these controls are not used in
TSD operation.

WRU

TAPE

-fA.pf-

X-OFF

EaT

RU

BELL

VT

FORM

RUB OUT

LaC Lf

LaC Cr

REPT

BREAK

HERE IS

(Who are you?) Requests remote station's identification and actuates its answer-back. (CTRL-E).

Turns on remote auxiliary tape punch. (CTRL-R).

(Tape off) Turns off local or remote auxiliary punch. (CTRL-T).

(Transmitter off) Turns off local tape reader. (CTRL-S).

(End of transmission) Terminates the call and turns off both machines. (CTRL-D).

(Are you?) Conditions remote station to acknowledge its own identification code. (CTRL-F).

Rings signal bell at local and remote stations. (CTRL-G).

Vertical tabulation. (CTRL-K).

Automatic form feed to first printing line of next page. (CTRL-L).

Null character.

Local line feed (not transmitted to the computer).

Local carriage return (not transmitted to the computer).

Repeat the character currentl y being transmitted.

Interrupt communication (used as an II interrupt" to gain the attention of the TSD system).

Actuates local answer-back and generates station identification code.

Appendix A 39

APPENDIX B. SYSTEM CAllS

The TSD system allows use of certain CAL 1 and CAL3 instructions (CAL2 and CAL4 instructions are not permitted).

CAll instructions are used to acquire various services from the Batch Processing Monitor. A subset of these CAllis
has been implemented in TSD. In general, most (RAD) I/O operations are present, but no foreground operations
are allowed. A detailed I ist of the calls, with TSD restrictions, is given in Table B-l. (A complete "CALl-TO­
FUNCTION INDEX" appears on the inside front cover of the Batch Processing Monitor Reference Manual, Publ i­
cation No. 90 09 54).

Table B-l. Monitor Function Calls for TSD.

Call FPT Code Function Comments

CAL 1, 1 X'01 1 M:REW Allowed

X'02 1 M:WEOF Not allowed

X'03 1 M:CVOL Not allowed (tape operation)

X'04 1 M:DEVICE (PAGE) Not allowed

X'05 1 M:DEVICE (VFC) Not allowed

X'06 1 M:SETDCB Allowed

X'OB ' M:DEVICE (DRC) Not allowed

XIOC M:RELREC Allowed

X'OD ' M:DELREC Allowed

X'OF ' M:TFILE Not allowed

X'lO' M:READ Allowed (wait is implied)

X'll ' M:WRITE Allowed (wait is implied)

X' 12 1 M:TRUNC Not allowed

X' 14 1 M:OPEN Allowed. The ASSIGN image, if given,
overrides any DCB or FPT options. Only
four files may be opened at one time.

X' 15 1 M:CLOSE Allowed

X' 1C ' M:PFIL Allowed

X' 1D ' M:PRECORD Allowed

X'20 ' M:DEVICE (LINES) Not allowed

X'21 1 M:DEVICE (FORM) Not allowed

X'22 1 M:DEVICE (SIZE) Allowed

X'23 1 M:DEVICE (DATA) Not allowed

X'24 1 M: DEVICE (COU NT) Not allowed

X'25 1 M:DEVICE (SPACE) Not allowed

X'26 1 M:DEVICE (HEADER) Not allowed

X'27 1 M:DEVICE (SEQ) Not allowed

X'28 1 M:DEVICE (TAB) Not allowed

X'29 1 M:CHECK Allowed

CAL1,2 Not allowed

CAL 1,3 Not allowed

40 Appendix B

Table B-1. Monitor Function Calls for TSD (cont.)

Call FPT Code Function Comments

CALl,4 Not allowed

CALl,5 Not allowed

CAll, 8 Not allowed

CALl,9 Not allowed

The CAL3 instructions are used to acquire various services from the TSD system itself. Only five of these calls are
available to the user program:

CAL3,0 Read character from input buffer.

CAL3,1 Write character in output buffer.

CAL3,2 Change echo control type.

CAL3, 3 Test i nput buffer.

CAL3,6 Return control to Debug.

(See also "SPECIAL SYSTEM CALLS" in Section 7.) The remaining calls are for exclusive use of TSD's subsystems
and Executive. A list of all valid CAL3 1s and their functions is given below.

CAL3,0

CAL3,1

CAL3, 2

CAL3,3

CAL3,4

CAL3,5

CAL3,6

Inputs a character from the input buffer to byte 3 of register 0, clearing bytes 0, 1, and 2. (If
no character is available, the user is dismissed.) No other register is changed.

Outputs a character from byte 3 of register 0 to the output buffer. (If the buffer is full, the user
is dismissed.) No register is changed.

Changes teletype echo control type to the value specified in register O. Table 7 in Section 7
shows the function of each echo control type.

Tells the status of the input buffer. If characters are available, this call sets the condition code
to xx10; otherwise, the condition code is set to xxOO. No registers are modified.

(Used onl y by the TSD Executive)
Brings a subsystem in from the RAD and transfers control to it. Registers 0 and 1 are set as follows:

RO = Starti ng address of subsystem

R 1 = Subsystem number:

0= Debug,

1 = Symbol,

2 = Edit.

No other registers are changed.

(Used onl y by the TSD Executive and subsystems)
Starts the process on the next lower level. Register 0 must contain the program status word to
be used when the new process is initialized; I"he format of register 0 contents must be:

Bits 0-3 = Condition Code (CC)

Bits 4-7 = Floating Controls (FC)

Bits 15-31 = Instruction Address (IA)

Performs a normal return to the next higher level process (same results as activating BREAK).

Appendix B 41

CAL3, 7

CAL3, 9

42 Appendix B

(Used only by subsystem)
Reads page N of user1s program into page M of subsystem area (user core). Note that all processes
start at page 0 and go to page 31 because processes are limited to exactly 16,384 words of storage.
Register 0, 1, and 2 must contain the following:

RO = N (new page).

R 1 = M (old page).

R2 = swap type

where

< 0 means that the current page is not to be written out before the new page is read in

= 0 means that the current page is written out before the new page is read in

> 0 means that the new page is not to be read in after the old page has been written out.

(Used onl y by the TSD Executive and subsystems)
Calls the PAST or CURRENT program status doubleword (PSD) for the desired level. Whenever a
process is restarted via CAL3,5 the old IIcurrent ll val ue is saved (PAST) and the new val ue in
register 0 is entered (CURRENT). Registers 2 and 3 must contain the following:

R2 = level number,

R3 = even (if PAST, PSD is desired),

= odd (if CURRENT, PSD is desired).

CAL3,9 returns results in registers 0 and 1 as follows:

RO = CC, FC, IA (same as in CAL3, 5)

R 1 = error code

where

0= normal return caused by BREAK or CAL3, 6

1 = nonexistent instruction

2 = nonexistent memory address

3 = privileged instruction

4 = memory protection violation

5 = unimplemented instruction

6 = push-down stack limit reached

7 = fixed point arithmetic overlow

8 = floating point fault

9 = decimal arithmetic faul t

10 = improper arguments to a call

11 = illegal call

12 = read error on RAD during transfer.

These error condition codes (1-12) result in corresponding messages to the user.

APPENDIX C. UNUSAl CONDITIONS AT THE USER'S TERMINAL

START-UP MALFUNCTIONS

When a terminal is turned on and BREAK is activated, the user should wait at least five seconds for a response.
If nothing happens, another BREAK should be given. If no response occurs within five seconds, the system is mal­
functioning (i.e., either the system is down or there are serious RAD read errors associated with the terminal IS

swap area). The user should abandon the terminal, try another terminal, and notify operations personnel of the
difficul ty.

After giving the first or second BREAK, the response may be simply an exclamation point (I) rather than the ex­
pected log-in request. This condition occurs if the previous user of the terminal left it without exiting via the
BYE command. To recover,. the current user should issue the BYE command, wait ten seconds, and activate BREAK.
The log-in request should then occur.

EXECUTION MALFUNCTIONS

If the user's terminal becomes nonresponsive (even to the BREAK key), the system is malfunctioning. The user
may try another terminal. Operations personnel should be notified of the difficulty immediately.

Appendix C 43

APPENDIX D. COMMAND SUMMARIES

TSO EXECUTIVE

Command Explanation Page No.

AS RAD file assignment. Uses parameters followed by a confirming period as follows: 5

BY

DE

ED

PR

SY

DCB name, (FILE, file name[, acct. no.J) [, (option) .•• J •

DCB name = F:xxxxxx or. M:xxxxxx
file name and acct. no. are formed from a maximum of 8 letters or digits.
Options allowed are: (IN), (INOUT), (OUTIN), (OUT), (RE L), (SAVE),

(EXPIRE, NEVER), (PASS, xxxxxxxx), (READ, ALL), (READ, NONE),
(WRITE, ALL), (WRITE, NONE)

Sign-off. Requires confirming period.

Debug subsystem call. Requires confirming period.

Edit subsystem call. Requires confirming period.

Proceed with interrupted subsystem. Requires confirming period.

Symbol subsystem call. Requires confirming period.

Note: Executive commands may be erased by activating BREAK prior to the confirming period.

EDIT SUBSYSTEM

Command Explanation

A Append, use carriage return for next card; end text insert with CC

C Copy

D Delete

E End update

±F FILE (take updates from command file)

I Inquire update status

±L List mode

±N NOS. mode

0 Originate source file, see APPEND

R Resequence

S Stop update

T Tab set or clear

SPECIAL CHARACTERS

Char. Use Page No. Char. Use

Cr Carriage Return 8 CC End Text Insert

Lf Line Feed 13 IC Tab

WC Erase 9 VC Literal Next

H
C

Effective Backspace 9 BC Retype

44 Appendix D

5

6

6

7

6

Page No.

11

11

10

12

16

14

14

15

13

8, 12

12

15

Page No.

11

15

16

16

SYMBOL SUBSYSTEM {Options)

(See page 18 for a complete description.)

Option Form Explanation Page No.

BO Binary output produced (defaul t setting) 18

NOBO No binary output produced 18
"

lO Listing output (for off-I ine printing) produced 18

NOLO No I isting output (for off-line printing) produced {defaul t setting) 18

DB Debugging symbol table on BO file (default setting) 18

NODB No debugging symbol table on BO file 18

Tl Listing output on the terminal 18

NOTl No listing output on the terminal (default setting) 18

The OPTIONS response is terminated by a confirming period. To erase the option list, issue a carriage return prior
to the period. A new OPTIONS request is automatically given.

DEBUG SUBSYSTEM

The Debug language contains four categories of terms: constants, format letters, special symbols, and commands.

CONSTANTS (Page 23) SPECIAL SYMBOLS (Page 29)

Code Meaning Symbol Meaning

Blank or I' Decimal integer
; 1 lower limit for search

II or X' Hexadecimal integer
O' Octal integer

;2 Upper Ii mi t for search

C'xxxx' EBCDIC string
;M Mask for search

FORMAT LETTERS (Page 28)
;1 Instruction counter

;C . Condition code
letter Meaning

;F Floating controls
R Instruction format, relative
A Instruction format, abs. hex. ;Q last quantity typed
X Hexadecimal
0 Octal $ Debug location counter
C EBCDIC
I Integer Same as $

Appendix D 45

COMMANDS

Command

/
\

Lf
(Line Feed)

t
(Up Arrow)

Cr
(Carr. Return)

< ... >
;/
;=

; 1

;2

;A
;B

;C

;F

";G

; I

;K

;L

;M

;N

;P
;Q

;R

;T

;U

;W

;X

;Y

;Z

Explanation

Examine word

Open ani y, do not examine (Use Shift-L to type"")

If $ was examined, open $+ 1 and examine

If $ was examined, open $-1 and examine (Use Shift-N to type t)

Store (start new line also)

Evaluate expression

Define symbol to have val ue $

Define symbol

Set default format for / (Examine)

Set defaul t format for = (Eval uate)

Set lower limit for searching

Set upper limit for searching

Set defaul t format for location val ues to absol ute hexadeci mal

Set (or clear) the breakpoint

Set condition code

Set floating controls

Go (start execution)

Set instruction counter

Kill symbol (make it undefined)

Set searching limits

Set mask for searching

Set word, and no-match search

Proceed executing (often from breakpoint)

Set last quantity typed

Set default format for location values to relative

Load

Check for undefined symbols

Set word, and match search

Execute instruction

Notify that loading is complete

Zero storage

To erase an incomplete command, the user types a question mark (?), see page 23.

46 Appendix D

Page No.

29

31

30

30

31

27

34

33

27

28

25

25

27

24

29

29

23

25

34

25

26

26

24

30

27

20

33

26

34

22

32

Following is a classification of Debug commands by function. This material is given as a brief reminder of the
Debug commands that are applicable in various situations. Note that duplications occur between the various sets.

Load

iT

iY

iU

Start

iG

i P

iX

Symbol
Definition

< ... >
ill

i K

Breakpoint

iB

iP

Format

il

i=

iR

iA

Setting Special
Symbols

i 1 i I

i2 iC

iM iF

i L iQ

Search

iW

iN

iM

i 1

i2

iL

Examine

I
Line Feed

t
il

Evaluate

i=

Store

Carr. Return

Line Feed

t
\

i Z

Appendix D 47

