 SYSTEMS CONCEPTS /o wismse sovconas -

COMPUTER ‘SPECIALISTS - SANTA MONICA, CALIFORNIA 90401

(213) 395-7418
[

TIME SHARING ASSEMBLER AND DEBUG SYSTEM
DESIGN SPECIFICATION |

July 31, 1967

mile Levi uis

| b
-’UOQ,‘LL “Tn UL DU U

J(c'\ G_&\LO‘L -

v\mé;h @ L /= 10000) e 2400 Lincleco=34

b
~ "{étbl—[”b F)"}‘sl

[
J

SYSTEMS CONCEPTS

COMPUTER SPECIALISTS

SUITE 300 FIRST FEDERAL BLDG.

401 WILSHIRE BOULEVARD

SANTA MONICA, CALIFORNIA 90401

(213) 395-7418

ERRATA for TSD Design Specification

July 31, 1967

Page . Line Shows Changé to
4 2 of IPROCEED In cases In most cases -
5 2 telling having v
9 |2 EBCDIC back ASCIT .
' EBCDIC back to ASCII ¢
11 | 3 of second.insert 1 MTS MAT e
. _ngmbered (1)
© 19 | 4 (not counting The EDIT. EDIT v
inserts)
third from bottom >b> >b2> -
24 | just below midpage \ expr expr\| —
25 | last line quan;X - quan;X

-—
.

©® N oo s N

o

TABLE OF CONTENTS

Design Criteria
Batch/TSD Interface
Executive - |
Teletype Interface
Scheduler

Swapper

File 1/O

Edit

Debug, Interactive Section

. Debug, Loadel; Section

SYSTEMS CONCEPTS
TSD Design Spec p..1

1. DESIGN CRITERIA

The TSD system was designed with several criteria in mind. Various trade-offs
were made to sahsFy these requirements as well as possible while remaining within the -
original scope of the project. The general consuderqhons were that is should be easy to
use, simple to implement, and yet be versatile enough to handle a wide variety of jobs.
Specific items eohsiden;ed will be discussed in the following paragraphs.

An essential feature of the system is the use of the:ihdrdw'are memory map. With
only one user in the core at @ time, the full power of the map is not required. A further
resfrlchon on the map usage results from the inability of the file management sysfem to
handle requesfs properly when a page boundary is crossed,

The subsystems will be written in a re-entrant manner although this fact will not
be used to advantage initially, This results chiefly from having only one user in core at
a time, but iselso related to fhe restricted use of memory mapping.

Initially, the user will have a full 16K of core available, This limit was set to
allow space for the remainder of the system. It is estimated that a 500 word program

~would be necessary to handle requests for new page ocquisifiohs. This feature may be
implemented atsome future time,

The implemented scheduler is of the simple round robin type. A speed advantage
is realxzed as one pass through the scheduler takes a maximum of 500 ps for 8 users,

This was accomplished in 30 instructions. A more sophisticated and versahle scheduler
s poseiBle to implement, but it would be longer, slower, and much mo.re difficult to debug. -
As more features are included in the exe‘cu’rive, the size increases, Eventually
" swapping is required fo b.‘ring .in those portions of the executive which are used infrequently,
This executive has been limited in scope so that swapping will not be required with a
.correspondmg lmprovemenf in system efficiency and ease of implementation.

The DEBUG package was similarly limited with respect to the number and type of

 features implemented. The commands available represent those felt to be within the scope'

of the TSD system, Others may be added at a later time.

SYSTEMS CONCEPTS
TSD Design Spec p. 2

2. BATCH/TSD INTERFACE

The. TSD System will'b_e under the control of Batch Monitor, The 48K of core will -
| be allocated as detailed in the TSD Planning Specifi;:afion. The various programs com=
prising TSD are in,divi.dually described in this document, and their interrelationships are
explcineci in the .Plaﬁﬁing Specifi‘caﬁon. .
Batch will pass control to the TSD Monitor at specified intervals. TSD will be
allowed the same privileges as any other foreground user under Batch, except that it
must be sure to return to Bcn‘chvby the end of the TSD quantum, It may refurn to Batch -
~ before that time if the scheduler is unable to find a user who is ready fé run, or if there
is some RAD 1/O for which it must-wait. This could decur for any of the following
reasons: | . |
(]) Modifying the map to change individual pages
(2) Swappihg one process for another
(3) File I/O
By returning ~fo Batch whenever the central processor would be idle, greater system
~ utilization is attained, If Batch were to call TSD under similar circumstances, a highli‘j%

: Yoveew THerd
efficient system would result,

When Batch returns c‘onfrol to TSD, TSD refers to a swifch set by the routine.

‘which, pcssed control to Batch so fhaf TSD can restart itself in the proper place

v The basic ‘quantum of both Bafch and TSD will be a system parameter, but a good

starting value seems to be about 100 ms. TSD uses a "watchdog” clock to make sure

that is doesn't get lost and forget about the Batch Monitor. If this clock should trigger,

TSD will immediately refurn to Batch
A dlfferen’r clock is used to hme each process allotted a quantum under TSD, If

a _pfocess runs ouf» its time, it is dismissed at the next convenient point, Thus, TSD has

“two levels of clock protection,

SYSTEMS CONCEPTS
TSD Design Spec p. 3

3. EXECUTIVE

- . The executive is the basic medium through which the user communicates with the
‘ _"sysfe_fq“.' This communication is effected in two ways:
| | (1) teletype commands to the éxec
| (2) sysfefn calls to obtain common user services

In fh_e initial system, the user at the terminal will be able to have access to only

one of the following levels at a time:

(1) the exec teletype command processor

(2) o-sub;sysfem (EDIT, SYMBOL, or DEBUG)

(3) @ user program in execution
When the user cpproacheé a console which is not currently being used, he gets recognition
from the sysfefn by pushing the BREAK button. The exec will respond with a standard
enfry message, and will automatically fype out '

~ 1LOGIN:

The user must now type in his identification code and a dot. When it is recognized by -
‘the exec, the exec will enter the console into the system and place the user at level 1
(exec commands).

At level 1, the exec prompts the user to type in a command by starting a new line
with _'_ The usér,fhen types in the first two letters of a command word. If it is illegal,
the exec will respond? and prompt another command. If it is legal, the exec will
instantly type out the remainder of the command word. For example, if he types in EX,

the exec responds with IT, confirming that it recognizes the EXIT command. If the command

requires pararﬁefers, (Iiké ASSIGN), the exec also types out a colon and expects them to
be fyped in. " After the parameters (if any) are correctly entered, the user must type a -
confirming dot. The exec only obeys a command when:

- (1) it is well-formed, including the pdramefers, if any;

(2) it is not prohibited to this user (no commands presently implemented
are prohibited to any user);

-(3) it is meaningful (e.g., PROCEED means nothing when no subsystem
has been called yet); S

(4) the confirming dot is typed.

SYSTEMS CONCEPTS
TSD Design Spec p. 4

If a carriage return is typed before a confirming dot, the command is aborted and the

exec prompfs another. IF any. of the conditions (1-3) are violated, the exec types out

o ? and prompts” a new command.

The commmands presenfly available at level 1 are listed below. Those characters

. typed by the user are underlined. See design specifications for specific subsystems for

further information:
‘ IEXIT.
IEDIT.

ISYMBOL.

IDEBUG..

. IPROCEED.

Flush this console from the system - the user is done.

Call in the editor subsystem (level 2). EDIT reads text

from device SI (source input) and produces an,updated
text file on device SO (source output) by making one pass

“through these devices under control of directive commands

from the terminal.

Call in the assembler subsystem (level 2). The assembler
reads text from device SI (source input), and assembles it
in one pass, producing a listing with diagnostics on device

- LO (listing output) and an object program and symbol

table on device BO (binary output).

Call in the DEBUG subsystem (level 2). DEBUG under

directive commands from the terminal, can load an object
program and its symbol table from device BI (binary input),
examine and change user core, and execute the program
(level 3) with or without breakpoints.

Confmue a subsystem that was interrupted by a break.
In,\ccses, this will return to requesting commands at level

2 as soon as the subsystem cleans up critical buffers and
switches. In particular, EDIT has a command to inquire
about the positioning of the devices SI and SO and DEBUG
has commands to inspect the program counter, the condition
code, and all registers in the user machine. SYMBOL
merely continues assembly where it left off. To begin a
new assembly, new edit, or new load, the subsystem calls
SYMBOL, EDIT, and DEBUG must be used again instead
of PROCEED.

lASSIGN device code, file name.

In the present system, the ASSIGN command is the only
way to assign a device like SI or BO to a real user file
like PROG1. This means that between subsystem calls,
one or more ASSIGNs must be done so that the subsystem
will have access to the proper files. This is open to sim=
plification in later versions by allowing subsystem calls

SYSTEMS CONCEPTS
TSD Design Spec p. 5

to have file=name parameters which are gutomatically
assigned to the standard devices, or by eﬁi/ng subsystems
request that information at run-time. '

Programs at all levels can use CALL instructions to request certain common services.
The only such services that will be available initially are listed below with their calls.

CAL3,0 Read a character from the user terminal (input buffer),
.. convert it to EBCDIC, clear register 0 (R0),. and place
the character in the low-order byte of RO.. Nothing else
in the user machine is affected.

CAL3, 1 . W'riré the character in the low—§rder byte of RO on the
L ~ user terminal (output buffer). The character is in EBCDIC -
code. Nothing in the user machine is affected.

CAL3,2» | - Change echo control type to the integer in RO (see TTY
' - routines spec). This type is initially 1 when the user logs
in, and when a subsystem is called.

CAL3, 3 Skip if any characters are presently in the input buffer.
: Otherwise, execute the next instruction in sequence.
This feature is used especially by subsystems to notice
demands for attention by the user. Unlike CALS, 0, it
does not dismiss the user if the input buffer is empty.

The cbove calls are meaningful and are allowed at all levels. However, the remaining
calls are restricted to use at certain levels. These calls have not yet been assigned
specific operation codes.

- Executive call (from level 1)

CAL-, - Call subsystem. The eight-character subsystem name is in
: ’ RO and R1. This changes levels from 1 to 2.

Subsystem calls (from level 2) .

CAL-, - - Return to exec. This goes up one level, i.e., from level 2
’ to level 1 in this case. ~

- CAL~, - ‘Read the n'th RAD page of the user program into the
' ‘m"th virtual page of subsystem core. This allows the
debugger to examine the user program. All page reads
- from the RAD of course are preceded, if necessary, by
 swapping out whatever was in the real core page to be
overwritten.

CAL-, - Start up the user process. This changes levels from 2 to 3.
‘ RO contains floating controls and CC in bits 0-7 and IA
in bits 15-31. If the process exits, the exec will access
floating controls, CC, and IA and put them in RO.

SYSTEMS CONCEPTS
TSD Design Spec p. 6

‘User process calls (from level 3)

CAL-, - . Return to subsystem normally. This goes up one level,
o ' i.e., from level 3to level 2. It is the same as the "Return
to exec” call at level 2.

SYSTEMS CONCEPTS
TSD Design Spec p. 7

4. TELETYPE INTERFACE

" The TTYiroufines do the following:

(1) Receive a character from a user terminal and drop it into a byte array
associated with that user. This array forms a ring and is called the
user's input buffer.

(2) Notice characters waiting to be typed out in another byte array
associated with each user and type them on the proper terminal. This
array also forms a ring and is called the user's output buffer.

(3) Echo certain input characters under some conditions.

(4). Dismiss the calling process if it executes a READ (CALS3, 0) when the

 input buffer is empty or a WRITE (CAL3, 1) when the output buffer is
full. The scheduler will reactivate the process under appropriate
circumstances. .

' . . . ' . N7
- Each user's teletype interface is driven through a table. The user's table contains

- pointers to the input and output buffers, character counters, and status bits. These are: -

O pointer to the next byte in the input buffer into which a character

from the terminal can be dropped. When the input buffer is full, £

characters typed in are ignored.

- (2) A pointer to. the next byte in the input buffer out of which a character
' will be read by READ.

© (3) A pointer to the next byte in the output buffer into which a character
can be written by WRITE.

(4) A pointer to the next byte in the output buffer out of which a character
will be sent to the terminal.

+'(5) A count of characters in the input buffer (empty=0; full=max size —-
"~ parametric, e.g., 80)..

(6): A count of characters in the output buffer (analogous to (5)). '

(7) The deferred echo flag. While it is ON, characters that are received
© from the terminal are not echoed immediately. Instead, .if they are
“echoable, they are marked (in their high order bit) as having yet to
be echoed, and left in the input buffer. '

- “While it is OFF, characters that are received from the terminal
~ that are echoable are echoed immediately. In any case, when a READ
picks up a character that is marked as having yet to be echoed, it
echoes it then. The deferred echo flag is turned ON when there is
either (a) an activation condition caused by receipt from the terminal

SYSTEMS CONCEPTS
TSD Design Spec p. 8

~of a character that is specified as an activator by the current echo
control type', or (b) an attempt is made to echo a character just received

_ from the terminal (i.e., not demanded by a READ) but the output
buffer is non-empty. It is furned OFF whenever a READ is done with
one character in the input buffer (i.e., when the input buffer becomes
empty).

(8) The echo-activation table. This has one byte for each character in
" the character set. If the byte is 0, the character is illegal. Otherwise,

bit 0 tells whether the character is printable: all non=-control characters

~are printable, Cr and Lf are printable, but all other control characters
are unprintable. Bits 1-4 are not used (they are always 0). Bits 5-7
classify the character: '

Class (bits 5-7) | characters
4 Cr, Lf
3 . other control
2 punctuation
1 : letters, digits, and blanks

When a character is received from the terminal, its echo-activation
byte is fetched. If it is zero, the character is illegal, and is ignored.
Otherwise, the echo control mode is examined. Echo control mode
can be:

(4)‘ All chars echo; Cr or Lf activates (class 4)) \N

(3) All chars echo; all controls activate (class 3 & 4) M

(2) All chars echo; all but class 1 activate ' ,,.gb

(1) All chars echo; all characters activate J
(0) No chars echo; all characters activate

* If the mode is nonzero and the character is printable, an attempt is
made to echo it (see:Deferred echo flag). A character is echoed by
sending it to the back of the.output buffer. Then, the character class

- is compared with the echo control mode; if it is greater than or equal
to the echo control mode, an activation condition is present. The
deferred echo flag is turned ON and a flag is set in the user's table
so that the scheduler will know that activation status has been obtained:

“All characters in the buffers are in 7-bit ASCII code, as received from the terminal.
This leaves the high-order bit free for deferred-echo marking. It also simplifies echoing,
since to echo a'character, it is merely transmitted unchanged (except for setting bit 0

toal) to the back of the output buffer. Conversion from ASCII to EBCDIC occurs when

v

SYSTEMS CONCEPTS
TSD Design Spec p. ¢

a character is senf to a process that has asked for it with a READ. Conversion from’g @M
EBCDIC back, ASCII occurs only when a character is sent to the back of the output

buffer from a process-that has done a WRITE.

SYSTEMS CONCEPTS
TSD Design Spec p. 10

5. SCHEDULER

The scheduler scans a reactivation ring to select the next user to be scheduled. This
_ring is a byte array with one byfyé for each user '(eig.hf users in the initial implementation).
Each byte contains a code which indicates the type of activation condition necessary to
start this job up agcin.‘ | -
Thel.scheddler can be invoked either _
(1) by a job being dismissed for using up its quantum, For Y 1/O, or for
an abnormal fermmcmon, .

(2) by Batch using up its quantum,
The scheduler scans the rmg starting just after the user who was last activated, It examines
each recchvchon byfe to determine fhe corresponding user's activation condmon The
value of this byte is an infeger indicating:the fo“ownng.

(0} dead job -- ignore user;

) (1) unconditional start —-- always satisfied;

(2) waiting for room in fhe output buffer == check user's TTY table to see
if output count is below threshold yet;

(3} waiting for an'input activation condition == check user's TTY table to
- see if activation status has been attained yet,

When a user is found whose activation condition is:satisfied, his user number is sent to

the swcpper so that he can be broughf in (Batch is allowed to run during most of the swap).
If a complefe scan of all users is made and no user can be activated, then TSD

wull return to Batch. When Batch's quantum is used up, the scheduler is reinvoked to mcke

another scan. Even if there is no user fo activate, Batch will only be interrupted for

300-500 us, so consequently the overhead is kept very low.,

SYSTEMS CONCEPTS
TSD Design Spec p. 11

6. SWAPPER

" The qupper is called by the scheduler wﬁen it finds that a particular user can be
,acfiQa’red. Associ_oted;wifh the user is a level code which indicates at what level he will
‘be running. The possible values of this code anc iheir meanings are:

(M ~The executive process | |
(2) A subsystem process
(3) A user process
" The level code as well as all other values and tables describing user status will be kept
Afésidem“ in the initial implementation. '
>Thv<‘.a exec proceés (level 1) is kept resident at all times in the initial version.
_ H_‘ow‘et've‘r,. level 2 and level 3 processes must be swapped in and out as the user changes.

The swapper handles this function.

. The folloWihg fqbles are used by the swapper:

(1) MAT (Memory Access Table). This is a word table giving control
information for a virtual page of a level 2 or level 3 process. The
- format of an entry in the %is as follows:

real page | acc q disc sector
* *

0o 7 89 10-11 12 31
acc = access code '

g=queue (0, 1, or 2)

Those fields marked by an asterisk (*) are not used in the initial version.
All pages will have the same access code (read and write). Also, the
‘real page number can be computed by simply adding a constant offset

- to the virtual page number.

| (2) MAP2. There is one of these byte arrays for each user's level 2 process.
A pointer to the MAT entry for virtual page P of this process is kept
in MAP2+P. '

- (38) LEVL2MAP. This is a word table. The location of the MAP2 array
for user U is pointed to by (LEVL2MAP+U).

(4) - MAP3. Same as MAPZ for each user's level 3 process.
(5) LEVL3MAP. Same as LEVL2MAP, but points to the MAP3s.
The éwcpbing algorithm in the initial version is very straightforward. The current

user number is compared with the next user number from the scheduler. If they are the same,

SYSTEMS CONCEPTS
TSD Design Spec p. 12

the process already in core is ready to be run, so the swapper returns. Otherwise, it
swcps‘ou‘f the current user and swaps in the next user, then returns.

.Swapping out is performed by one scan through the appropriate MAPn of the
current user. To swap out the virtual page P, MAPn+P provides a pointer to the MAT entry
» ‘in which the disc address of the page can be found. The real core page is determined
by.simply adding a constant offset to P. The swapper then sends the real core address
and the disc address o the Batch Monifof, which adds the write request to the RAD I/O
queuel.‘ After sending all ‘the core pages used by the current user to the queue, the

- swapper lets Batch run until the writes are all complete. Then it scans the dppropriate
MAP for the next user on'.d s_e~nd's‘reccli. requests to Batch Monitor in a similar manner to the
 earlier write requests. “
~ All writes are -con.qpleA’red before any reading begins to insure that Batch Monitor
does not accidentally read over a page that has not yet been written out. This procedure
is open to irhp'ro?eméh'r in later versions of the system.
Future swappers will employ more sophisticated swapping algorithms to reduce

the RAD I/O necessary to switch between users.

SYSTEMS CONCEPTS
TSD Design Spec p. 13

7. FILE I/O

All file 1/O is performed by the Batch file managemeni; routines. The TSD File
I/O system intercepts user 1/O calls and keeps track of all device/file assignments made
at the executive level. TSD makes the following checks before passing 1/0 calls on
to Batch 1/O: - '

(1) Referencing a device which has no file currently assigned to it will
cause an error indication, : -

(2) Attempting to access a file that has not ye’r been created, wnll cause
‘the following action: :

(a) for input files, an error indication will be given
(b) for output flles, the file will be created and opened

(3) Attempting to open an already open file will cause the file to be
" "rewound" or positioned at the beginning of the file.

(4) Attempting to read or write an unopened file will force TSD to Fll’Sf\\
open if, h

- TSD also augments certain executive functions as follows:

(]) When the executive process calls a new subsys‘rem all files for that ‘,

user are closed to provide some degree of protection. However, the il;jm
|

user must still be careful to make the correct assignments before |
calling a subsystem. :

(2} When the executive process assigns a new file to a device, any
currently open F:le attached to that device is first closed.

A table is ‘kept for each user of his device/file assignments, TSD does not keep
frcck of all Flles reserved under a user's ID, because the Batch system already performs

- this function.

SYSTEMS CONCEPTS
TSD Design Spec p. 14

8. EDIT

The TSD text editor (EDIT), under control of directive commands from the terminal,
“makes or‘mevaqss through a file designated as source input (SI) to create the file designated ‘}!

as source output (SO) by either

(1) resequenéing the lines from SI, or M/M
geh
(2) merging selected lines from SI with lines from the terminal. -\ JM{&
Every line on a text file has text in columns 1-72 only. An eight-digit positive sequencel wa/“/

number must appear in columns 73-80, with an assumed decimal point between columns ')
76 and 77. The lines in a .fexf file must appear in ascending sequence number order. J/M{IW""'

EDIT specifies a sequence number by a string of from one to eight decimal digits =
wn‘h an optional imbedded decimal point. There may be at most four dlgn‘s on either side

of the decimal point. Examples:

. sequence number col. 73-80
. 0091 o 00000091
. | 0001%000
263 . 00268000
19999.8888. 99998888

When EDIT is ready to accept input from the terminal, it types out at the left

margin:

LF > ifitis awaiting a command line

Lf | if it is qui’ri_ng a line of text to be appended

Lf @ ifitis awaiting a list of columns at which to set tabs
. These characters are called prompfs.. |

EDIT features uniform editing of lines typed in, whether they are command lines,

text lines, or tab-list lines. Every line is terminated by a carriage return (Cr), at which
“point it is obeyed if it is a command or tab-list, or appended to SO if it is a text line.
Until the Cr is fyped, the user can ;rype .cmy characters. However, the following control
characters _hq\'/e‘speciqlbmeanings' (exactly which teletype keys wi“ produce them will be
decidea later): | a

BS - If there are. cny characters in the line, delete the rightmost one and
type cuf at, Ofnerwnse, ring the bell.

SYSTEMS CONCEPTS
TSD Design Spec p.

awaiting a new line.

EOB End of text block. If any characters are in the text line, append it
to SO. Then type out CrLf and > awaiting a new command. Thls
“is also used while a tab-list is being typed in to abort the input
and clear all tabs.

DEL fype out @@, erase the entire line, type out Cr and the prompiL (\{3 Jlj/

RE Retype. Type out << Cr, then the prompt, then the line so far omm‘mg
-deleted characters for better readability.

LIT The next character typed is accepted llferclly; even if it is a control
character such as Cr, LIT, or BS, it becomes part of the line and no
special meaning is attributed to it.

_@A Space up to but not including the next column at which a tab has been
‘ set by the last complete TABS command. If there is no such column, -
ring the bell instead of spacing over. . . —

Sup.pos.e the file to which device SI is assigned has the following contents (this

example will be u:s.ed throughout this document):

——————————— ———————— cole 172 e col. 73-80

CATO. . 00100000

A20 A | ‘ 00200000

A0 o | © 00300000

A40. E ‘ | 00400000

CA50 - 00500000

AsO ' - 00600000

A70 o 00700000

A80 o . 00800000

A%0 - ’ 00500000 -3 Alg&s

Té obtain a listing of this file, the editor is called from the exec, and the following

commands are used. C@PPE‘S’PRTNT (or +COPTE‘5PRINT) switches the EDIT copy-printing | \S1
‘mode, which is mmaHy OFF, to ON. -COPIESPRINT is the command used to turn

| this mode back to OFF. When this mode is ON, every line written on SO that was copied

* from SI'(rather than from the terminal) is printed on the terminal. The END command |

- causes the unscanned portion of SI to be copied to SO and returns fc)> the exec. In the

examples in this document, that whicl.q‘fi'he user types is underlined. The conversation for

obtaining a listing is as follows:

SYSTEMS CONCEPTS
TSD Design Spec p. 16

©>+COPIESPRINT
- SEND
~70.0000 A10
20.0000 A20
30.0000 A30
40.0000 A40
50.0000 A50
60.0000 A0
70.0000 A70
80.0000 A8O
90.0000 A90

Some commands are used to simply set tabs or switch modes. These are called

"mode change” commands. The mode change commands in EDIT are COPIESPRINT,
'NUMBERSPRINT, dnd-TABS. Other commands cause lines from SI or from the terminal to
be written on SO. These are called "active” commands. The active commands are |
'RESEQUENC‘E,I DELETE, APPEND, and END. One command neither changes modes nor
writes on SO; this is the INQUIRE command, which informs the user about the state of
the EDIT. |

Al .c:émmcnds hdve the form:

r‘wmber,'r'wmber |
-+

command word -

- empty

The command word is a string of letters of which only the first is significant in determining
“the action to be taken. Some commands (RESEQUENCE, DELETE, and APPEND) require
fwo sequence numbers as parameters. Others (mode change commands) may bé given a sign
(-=OFF, + or nothing = ON)A.A‘ Such parameters are provided before the command word.
The‘comma that is shown in the above command model to separate the two numbers

may be replaced by any other punctuation chcrc;cfer except +, -, or period. However,
. for mnemonic reaspn's; colon or comma (meaning THROUGH) is generally used in the
DELETE command, and slash (meaning IN STEPS ‘OF) is used in the APPEND and RESEQUENCE
' commands. | '
Al blanks are completely ignored in all commands. A command must fit in its
. entirety on one line. The first letter that appears on the line is assumed to be the first
leiter o? the commdx;md w.ord,‘an.d the rest of the line a%fer that is ignored.

Suppose it is desired to edit the file in our example. The user makes notations on

his listing something like this:

SYSTEMS CONCEPTS
TSD Design Spec p. 17

~10.0000 Al10 o
-20-0000-A20-- - -delete ' _ , N
-39-0000-A30---- delete ’

40.0000 A40

50.0000 A59- B50
60.0000 A60- B6O

%

70.0000 A70 . 75 B75 /
————————————————— insert: 76 B76
80.0000 A80 . V’
77 B77 i J
- 90.0000 A90 ﬂ/ £ 0[
Since EDIT makes just one pass through SI, the user must order his commands ccrefu”y .,1 (’6
For these changes to the file, the correct order is: o ‘
1) Delef‘e'.20 30: Use the DELETE command. /J//Mézf /(

2) Replace 50-60 by new 50-60: Use DELETE followed by APPEND

3) Insert 75-77: Use ABPENID. J059¢T
‘It is not necessary to tell EDIT about Imes in SI that are to be kept, i.e., copied to SO.
It is only necessary fo fe” it which lines in SI to leave out (DELETE), and what to insert ,
from fhe ’rermmal (APPEND) The conversation for this edit is as follows:

- >20 30 DELETE
>50:60 DELETE
>50/] 0 APPEND

50. 0000 B50

~ 60.0000B60 eob

. >75/1 APPEND
75.0000 B75
76.0000 B76
77. 0000 B77 eob

>END o

b:c DELETE copies lines from SI numbere‘d' less than b to SO, then skips lines from SI

numbered between b and ¢ inclusive. b/c APPEND copies lines from SI numbered less

than b to SO, then appends to SO the lines typed in after the command up to EOB.

The first appended line is numbered b and subsequent sequence numbers are btc, b+2c,
, bimc.” Finally, APPEND skips any lines in SI numbered between Eandé‘*‘ng
inclusive.’ _If is recommended that to replace a range of lines with new lines, o DELETE

command for the old lines precede the APPEND command for the new lines.

‘After the above conversation, SO contains:

SYSTEMS CONCEPTS
TSD Design Spec p. 18

A10 . | 00100000
Ad0 00400000
B50 - | 00500000
BsO . 00600000
A70 00700000
B75 . | 00750000
B76 - 00760000
B77 - ‘ 00770000
A80 : | | © 00800000
A90 : 00900000

Suppose it is now desired to resequence this file. Back in the exec, SI is assigned

to the file, and a new file is designated SO. The following conversation demonstrates

the use of the RESEQUENCE command:

>+COPIESPRINT
>T00/20 RESEQUENCE
T00-0000 AT0
120. 0000 A40
140. 0000 B50
160. 0000 B60
180. 0000 A70
200.0000 B75
220.0000 B76
240.0000 B77
260.0000 A80
280.0000 A90

No END is necessary because RESEQUENCE aufomahcally returns to the exec.

The two mode change commands that have not yef been explained are NUMBERSPRINT
and TABS. The number-printing mode is normally ON. When it is ON, every line typed
out due to a copy when copy-printing mode is ON is preceded by its sequence number,
with leading zeroes chqnged to blanks. Also, every line that the user must type in after
an APPEND‘command is prompted by the sequence number that will be attached to that
line. This mode can be turned off by ~NUMBERSPRINT.

To set tabs so that the _confrol'charqc’rerT_AB can be used for formatting text input
lines, use the corﬁmand | |
| >TABS

This will clear all tabs, go to a new line, and prompt with an @. Then, the user types -

in the numbers of those columns at which tabs should be set. For example, to set tabs

for FORTRAN,“’ the conversq’ri‘onv i‘s:'

SYSTEMS CONCEPTS
TSD Design Spec p. 19

>TABS.
@r
To set tabs for SYMBOL, sa‘y‘:
-~ >TABS
@T10,19,37
EDIT initializes its tabs for SYMBOL program editing. To clear all tabs, say either
>-TABS |
or

>TABS
@cr

e EDIT reads ffqrﬁ'SI and writes on SO ';serially. The last line written on SO‘ (copied from
either SI or the terminal) is always remembered in the LAST-LINE buffer, and its sequence
number is kept in the variable LAST-SEQ. Similarly, the next line to be read from SI

is always available in the NEXT-LINE buffer, and its sequence number is kept in the
variable NEXT-SEQ. At the beginning of the edit, LAST-SEQ is set to zero, an impos-
'siblé‘s'equ.ence number, and the NEXT-LINE buffer is loaded with the first record from

SI. At all times during the edit, NEXT-SEQ is kept just greater than LAST-SEQ by
‘reloading NEXT-LINE from SI whenever LAST—SEQ surpasses NEXT-SEQ. This procedure
assures that SO is kept in ascending sequence number order and that the files are processed
serially. , |
At times, the user may become confused about what point in the scanning of SI
and SO EDIT has reached. For eXample; if he presses the RUBOUT button while the edit
s being perfbrmed; and then asks the exec to "!PROCEED.", it is not clear where the
- editor was stopped. .The command
| >INQUIRE :
causes EDIT fo type out LAST-SEQ and LAST-LINE, then NEXT-SEQ and NEXT-LINE, fo -
resolve this problem. | _/(,;A_,____. w\%mz&(j ;kjmw% 27
To maintain ordered files, certain restrictions are imposed upon the numbers provided

as parameters in the commands. In the following command forms, the restrictions are:

>b/i RESEQUENCE Cr- b>0; i>0

. 3b/i APPEND Cr b > LAST-SEQ; i>.0
>bic DELETE Cr ¢ »b BNEXT-SEQ
STABS Gk

,z Cr uv<w<...<z

@v, VW,

SYSTEMS CONCEPTS
TSD Design Spec p. 20

In the first three of these commands, either or both of the numbers may be omitted. In
RESEQUENCE and APPEND, if b is omitted its value is taken as LAST-SEQ + i, and

if i is omitted, its value is taken as 1. In DELETE, if b is omitted, its value is taken as
NEXT—SEQ; and if ¢ is omitted, it is assumed to be equal to b (i.e.., only one line is
deleted). For example, to append new lines to the end of a file, the command sequence

that f‘oll'o'wsvccn be used:

>/5 APPEND

- 285.0000 C100
290.0000 C110

END T

SYSTEMS CONCEPTS
TSD Design Spec p. 21

9. DEBUG, INTERACTIVE SECTION

The basic ;omponents of the DEBUG language are:
Symbols and Constants ... 32-bit values
Forms ... lefters which specify the format in which values are to be printed
Comma.nds ... direct DEBUG
Symbols |
A symbol is as deflned in fhe SYMBOL manual, or one of the following:
) " The Ics’r register Opened whether or not still open.

The specucl symbols:

;M The mask used for word s;e_arches.
;1 The lower bound for all searches.
,2 The upper bound for all searches.

;Q The latest quantity typed out. Also assigned a value by "Store",
"Symbol table definition", and all register-opening commands.

;C The condition code.
;I‘ The instruction counter.
A conflict can arise if a symbolic label is spelled in the same manner as an
opcode mnemonic {e.g., B). The user should avoid this situation.
Constants
Constants are as in SYMBOL:‘ decimal digit strings and "general cons’ranfs"..
Their values are self-defined. An alternate form for the hexadecimal X'..."is "..."

The final ' or " may be omitted, except in character strings.
| ' may P _

Forms

These letter codes are used to specify the format in which the contents of a

register or any other quantity demanded by / or = should be typed. »
. ¥ L
The possible codes are: e —
e
R As an instruction with a relative address (e.g., LP+‘]2)
(CIEAN

L st
A As an instruction with an absolutejaddress (e.g., 2049)

X As hexadecimal digits with leading zeroes omitted

SYSTEMS CONCEPTS
TSD Design Spec p. 22

O As octal digits with leading zeroes omitted.

C As four EBCDIC characters.

] I As a.s’ign.éd decimal integer. i o :
' Theée'férm letters are reserved for possible future implementation: : - //
B- As four byfé§ in decimal integer form. ' ’ , . ‘
H As:fwo' half-words in decimal integer form. . " ;/:.4'/73://
D As the doubleword decimal integer represented by the even-odd pair ';7
of locations to which this location belongs. ‘ s

S . As a short floating point number.

N

As the long floating=point number determined as in D.

Expressions

Let primary refer to any symbol or constant. Let series refer to a “sum” of primaries,

i.e., one or more primaries separated by ‘+' or '='. Examples of series:
A
A+2-BX
$+#1
; Q-1
. : ‘ ‘ ™
Let a term refer to (1) a primary; or (2) a series enclosed in a single pair of parentheses -
preceded by BA, HA, WA, or DA. Then an expression is a term or.a "sum” of terms. / L:
2 T T B O _— _ \
Examples of expressions: o . l \»l"'-‘»]
T s - I
| = g e
BA(A)+17 ’
Instructions
An instruction is of the form: ,
Command-field 'Space(s) Argument~field . W w
The first blank terminates the command field. Either the command field or the argument N)
. 1 , 1w
field may be omiffed,l but if an argument field is present, it must be preceded by at least \ :r.'”"’.

one blank space.
The command field is of the form:

Operafion expression, Register expression

Either expression may be zero (0).. The register expression and its introductory comma .

may be omitted if the register expression is zero.

SYSTEMS CONCEPTS
TSD Design Spec p. 23

The argument field is of the form:

. ! e T \
Address expression, Index expression e _ .

Either é_xpression may may be zero (0). The index expression and its infroductory comma
' ,maybe omiﬂ'ed if the index expression is zero.
A 32-bit quanh’ry is computed from the instruction by generahng the inclusive

OR of ’rhese four qucnfmes

o

(1) The operahon expression. _ :] wa;) -
(2) The low-order 4 bifs of the register expression, shifted 20. M Py ;,L(NA'
(3) The low-order n bits of the address expression (see below). " “ o
.) o 155
(4) '.The low=order 3 bits of the index expxjession, shifted 17. Lon t] m% [“,u,;

For the address expression, case (3), n is computed according to bits 1-7 of the operation
e_x_pression:as follows: - | '

Operations

; h

- Shift 7
Immediate v‘ 20

Byté string 20
All other 17

sz.dmpie's of instructions:
LW, 14 A2, 1
| LI 11 -1
B LOOP
LOOP, 6 -

0,0 -1
.In the last exc:mple, i‘he result will be ones in bit positions 15-31.
* Comraands '
*.In the foHdWing summary of commands, these abbreviations are employed:

expr An exprassion. |

quan A quantity (expression or instruction).

 symb A symbol.
spec | A special symbol (one of: ;M ;1 ;2 ;Q ;C :1).
fmlt . Aform letter (one of: R A X O C I)

SYSTEMS CONCEPTS
TSD Design Spec p. 24

- form A form letter or a blank (blank means "use default form").

[Important note:

Blanks may not appear in commands except to either:
(1) introduce the argument field of an instruction;
(2) specify default form after / or =.

" Symbol table definitions

expr<symb> Define symb to have the value expr. Also assign expr to ;Q.

| symb; K- Make symb undefined. 1If it is not a special symbol, remove it from the
symbol table. (“Kill") R
.) . : ;"},'.‘_':ﬁﬁ» o
symb! " Define symb to have the value $ (same as $<symb>). * =15

expr spec Give special symbol spec the value expr Example: to set the search
~mask the user could say

_ X1F77F4‘,M
;U | o Print all undefined syr\x:bols in the table. iz‘
. K . Lc‘ . .

. A.N J\/\
/form Examine register;;Q, i.e., the register whose location is given by fhe
,«,é&,me» last quantity of interest (usually the last one typed out). When a

,,-p‘b Ny) register is examined, its contents are assigned to ;Q and typed out

Q(M\w ha b using format form. DEBUG will space before and after typing out.

Open only

' .‘&,expr\ Open register expr. When a register is opén, and only when it is open,

it is possible to change its contents using the Store command (expr Cr).
" The DEBUG location counter ($) is given, as its value, the location
pointed to by expr. It is closed by the execution of any subsequent
command except typeout (=), Examine (/’r'orm), symb!, and Delete (?).
However , even when it is closed, its location remains assigned to $
until a different register is opened. When a register is opened, its
~contents are assigned to ;Q whether or not they are typed out.

Examine and Open

_expr, expr/form
Examine all registers numbered in ascending sequence between the first
and second expr inclusive. Also, open the last register examined.
See the “Examine” and "Open only” commands for further details.

expr/form Examine and open register expr.

Open adjacent

line feed . Go to a new line and type out the value of location $+1 in the current

SYSTEMS CONCEPTS
TSD Design Spec p. 25

label form mode, followed by a / and some spaces. Then open register
$+1. If register $ was examined when it was opened, also examine this
register using the same form. However, if register $ was not examined
when it was opened, do not examine this register either.

T o . Sdme'as line feed, but uses register $-1 instead of $+1.

Typeout

‘quan=form Type the value of the expression or instruction quan in the form specified.:
-This value is also assigned to ;Q, as is the value of any other quantity .
typed out by DEBUG.

=form Type out Q in the form specnﬂed This is used when a quantity has

just been typed out in one form (say, instruction with a relative address)
but the user would like to see it in another form (say, hexadecimal).

It is also used when a register has been opened with "Open only" ‘and not
~examined, but the user would like to examine it after all.

Store v
quan Cr If a register is open, assign quan to ;Q and store it in the open register.
. Otherwise, this is illegel. DEBUG responds to illegal commands with v

~a ?, and ignore them.

Cr Carria'g‘e return with no quantity before it simply closes the open register
if it is still open. It does not modify its contents. If there is no open
' regisfer, fhis merely goes to a new line. ‘

Change default forms

,/f_m_lj Change the defaulf form for ¥ Exc'nlne—qnd-open” to fmlt. Itis w
' initially R (msfruchon with relative address). ‘T
=fmlt Chqnge the default form for “Typequ’r‘f to fmlt. It is initially X ‘)\

(hexadecimal).

. Chcmge label form mode

;RH‘ . Change the label form mode to relative. Whenever a location is typed
out by DEBUG (except in the address field of an instruction typed out
after / or =), it will be typed in the form

symb £ constant

where symb is the symbol whose value is closest to that location. If
no symbol is within 100 locations, the location is typed out in absolute
form instead.

A | Change the label form mode to absolute. Locations are typed as decimal 7
e b
integer constants.

Execute and Goto

aguan; X . Execute the word quan as an instruction. If it is a branch, the program

expr; G

Search user core

" expr; W

, e.xpr;‘Nk

- expr;E

SYSTEMS CONCEPTS
TSD Design Spec p. 26

will start to run. Otherwise, ' control will return to DEBUG, which will
CrLf and wait for a command.

Go to location expr. The program will begin to execute from that point.

 Word-search. Search user core between locations ;1 and ;2 and type

out the locations and contents of all words satisfying the condition:
that their contents are equal to expr in all bit positions selected by
ones in ;M.

Not-word search. Same as word—secrch but all words not satisfying

~ the above condition are typed out.

Effective-address search. Same as word-sedrch, but the condition is

" that the effective address of the contents (assumed to be an msfruchon)

equals expr.

expr, expr;L Same as

Breakpoints

expr;B
NI

expr;P

\/ e ' ; P

Memory loovding

expr; T

~ break as soon as it is re-encountered. -

expr,l expr;2

It sets both the lower and upper bounds for searches
sV A

] .
s s) py e ol

Set the breakpoint at location expr. ‘ k‘\‘ br(m‘t’r‘”:'
.

Turn off the breakpoint. » A

. Proceed to run the program from the breakpoint. Allow the breakpoint -

to be encountered expr more times, then break again. A break types
out CrLf() and awaits a command. '

Same as ‘0;P. Proceed to run the program from the breakpoint, but
P

These commands type out YOK?” and await a confirming . " before
executing. - Any other response aborts them.®

Transfer a program to memory. This loads a relocatable program and
its symbol table starting at location expr.

This loqu'eivfh‘ér a relocatable program starting at location X*'100*

or an absolute program.

expr, expr;Z Zero memory. This stores zero in every location between the first

,Z

Delete command .

anything?

and second expr inclusive.

This zeroes all of user memory.

The partially typed command before the ? is erased. DEBUG tabs and
awaifs a new command.

SYSTEMS CONCEPTS
TSD Design Spec p. 27

Symbol table killing

;K

Erase the entire symbol table, after receiving a confirming dot as in
“"Memory Loading". Special symbols are not killed, and operction code

‘mnemonics are given their standard values and restored to the symbol
table.

SYSTEMS CONCEPTS
TSD Design Spec p. 28

10. DEBUG, LOADER SECTION

The stand-alone loader is to be modified and incorporated into the TSD system.
. The gehéral réquireménfs involve proviéions for paging, and construction of a symbol
| table for use by DEBUG. The loader is invoked by the T command in DEBUG.

The DEBUG syrbol kta'ole will have 4 words per entry with the following form:

wl flag word

bit0 1if DEF, 0 if not

bit 1 -1 if external, 0 if not . o

bit 2 A " 1if more than 4 characters in symbol, 0 otherwise -2 b

bit 3- reserved for expansion -
' : ' —_ 0)} J“\

bits 4-15 ~ count of number of times this undefined symbol must have its value e e

) substituted when defined et

bits 16-31 form a 16 bit flag word. If bit i=1, then pages 2(i-16), 2(i-16)+1 -
require substitutions when this undefined symbol -becomes defined,
otherwise not. .

w2 value (if defined)

w3-4 symbol (left justified with trailing zeroes)

The count in bits 4-15 :w‘ill be used to terminate various procedures such as searches
or substitutions. The flag word will be used to minimize the number of pages accessed |
. during fhese» procedures. 7

‘SYMBOL does not currently provide symbol definitions or names for those symbols
'whlch are not external definitions or references. DEBUG will require this mformahon
A modlfl cation will be mcde to SYMBOL which will cause these symbols and fhelr values
to be output for the loader. The loader will accept this information and include it in
the symbol table for DEBUG.

The initial load operation will be quite similar to the batch load.. The chief
loader modification is the provision for and insertion of the paging mechanism.

The loader currently handles "simple address” forward references by means of a
chaining technique. This may require that several pages be accessed to substitute the
definition of a parficular symbol. Even worse, a given page will be accessed once for
each disfihcf symioo} to be substituted since only one chain can be satisfied af a time.

This procedure is described in the following paragraph.

SYSTEMS CONCEPTS
TSD Design Spec p. 29

- Each word of user core will be represented in a bit table of 512 32-bit words
(16,384 bits). This table is marked appropriately for each address substitution required.
Theléorresponding program word contains a pointer to the DEBUG symbol table. Thus,
all references of this type may be satisfied with one pass over the program, performed at
the end of loading. Any bits remaining in the table represent words containing undefined
| addresses. The symbols required by the urdefined addresses will be determined by checking

the DEBUG symbol table for those symbols whose reference count (Word 1 bits 4=15)

is .non-zero. -

