
SVC'TrnllC' COIIIll'rpTC' I SUITE 300 FIRST FEDERAL BLOG.
I V I ~/Vlv IVv~J I V 401 WILSHIRE BOULEVARD

COMPUTER' SPECIALISTS , SANTA MONICA, CALIFORNIA 90401

. . (213) 395·7418
1...----.-...

TIME SHARING ASSEMBLER AND DEBUG SYSTEM

DESIGN SPECIFICATION

July 31, 1967

LlO\!..V- ---vJ,tCr'..) . ..(>_ -"'>',~ ';~:, ,," t.;-·:--,/)

,f~ -E:..(..1(\ lC-l -

1~r,., (,' \~ ~,~. 1.. /- /000' J ", '. I .. ' ",//l0' ! htt:lcoo-'J'j!
\<::"'N t ~,) , ' "II"" j t. ~,

L .zb61-E~D I FJ}J IS I
)

, ,

SV'STrll.11 ,('\, COIAIr.rpT('\! SUITE 300 FIRST FEDERAL BLDG.
I, I J:.1'IbJ JVlJJ:.J I u 401 WILSHIRE BOULEVARD

COMPUTER SPECIALISTS SANTA MONICA, CALIFORNIA 90401

'. (213) 395-7418

ERRATA for TSD Design Specification

July 31, 1967

~ Line Sho\V's
I

Chan e to

4 2 of IPROCEED In cases In most cases

S 2 telling having V

9 2 EBCDIC back ASCI
EBCDIC back to ASCII v

11 3 of second insert MTS MAT
numbered (1) ,

19 4 (not counting The EDIT, EDIT v

inserts)
)b> ~b~ third from' bottom .,.

24 just below midpage \ expr eXEr' .""

2S last line quan;X quan;X

TABLE OF CONTENTS

L Design Criteria

2. Batch/TSD Interface 2

3. Executive' 3

4. Teletype Interface 7

5. Scheduler 10

6. Swapper 11

7. File I/O 13

8. Edit 14

9. Debug, Interactive Section 21

10. Debug, Loader Section 28

L DESIGN CRITERIA

SYSTEMS CONCEPTS
TSD Design Spec p •. 1

The TSD system was designed, with several criteria in. mind. Various trade"";offs

were made to satisfy these requirements as well as possible while·remaining within the·

original scope of the project. The general considerations were that is should be easy to

use, simple to implement, and yet be versatile enough to handle a wide variety of jobs.
-

Specifi c items considered wi II be discussed in the fol bwi':1g. paragraphs.

An essential feature of the system is the use of, the.' hardware memory map. With

only one user in the core at a time, the full power of the map is not required. A further

restriction on the map usage results from the inability of the file management system to

handle requests properl ywhen a page boundary is crossed.

The subsystems wi II be written in a re-entrant manner al though this fact wi II not

be used to advantage initially. This results chiefly from having only one user in core at

a time, but is also related to the restricted use of memor'y mapping.

Initially,the user will have a full 16K of core available. This limit was set to

allow space for the remainder of the system. It is estimated that a 500 word program

'would be necessary to ·handle requests for new page acquisitions. This feature may be

implemented at some future time •

The implemented schedu ler is of the simple round-robin type. A speed advantage

is realized as one pass through the scheduler takes a maximum of 500 I-lS for 8 users.

This was accomplished in 30 instructions. A more sophisticated and versatile scheduler

is possible to implement, but it would be longer/slower, and much more difficult to debug.

As more features are included in the executive, the size increases. Eventually

. swapping is required to bring ,in those portions of the execu.tive which are used infrequently.

This executive has been limited in scope so that swapping will not be required with a

. corresponding improvement in system efficiency and ease ~f implementation.

The pEBUG package was similarly limited with respect to the number and type of

features implemented. Thecomm~nds available represent those felt tobe within the scope

of the.TSD sy~tem. Others may be added at a later time.

SYSTEMS CONCEPTS
TSD Design Spec p. 2

2.' BATCH/TSD INTERFACE

The,TSD System wi II be under the control of Batch Monitor. The 48K of core wi II

be allocated,as detailed in the TSD Planning Specification. The various programs com­

prising TSD are individually described in this document, and their interrelationships are

e~plained in the Planning Specification.

Batch will pass control to the TSD Monitor at specified intervals. TSD'wil1 be

allowed the same privi leges as any other foreground' user under Batch, except that it

must be sure to return to Batch by the ~nd of the TSD quantum. It may return .to Batch·

befor'e that·tir:ne if the scheduler is unable to f!nd a user who is ready to run, or if there

is some RAD 1/0 for which it must wait. This could occur for any of the following

reasons:

(1) Modifying the map to change individual, pages

(2) . Swapping one process for another

(3) File I/O

By returning to Batch whenever the central processor wou Id be idle, greater system

utili'zation is attained. If Batch were to call TSD under similar circumstances, ahig hlj1J"" ~ I I'

, x,,\ ... trlt> t~<""'J
efficient system would result ..

When Batch returns control to TSD, TSD refers to a switch set by the routine,

whi~h;passed control to Batch so that TSD can restart itselfin the proper place.

The basic'quantu!11 of both Batch and TSD will be a sys tem parameter, but a good

starting value seems to be about 100 ms. TSD uses a ~'watchdogll clock to make sure

that is doesn't get lost and forget ·about the Batch Monitor. If this clock should trigger,

TSD will immediately return to Batch.

A different clock, is'lJsed to time each process allotted a quantum under TSD. If
'. . .

a process runs out its time',' it is dismissed at the next convenient point. Thus~ TSD has

two levels. of clock protection.

3. ' EXECUTIVE

SYSTEMS CONCEPTS
TSD Design Spec p. 3

The executive is the basi c medium through wh i ch the user communi cates with the

,"systen~". This communi cation is, effected in two ways:

(1) te'letype commands to the exec

(2) system calls to obtain common user services

I~ the initial system, the user at the terminal will be able to have access to only

one of the following levels at a time:

(1) ,the exec teletype command processor

(2) a subsystem (EDIT, SYMBOL, or DEBUG)

(3) a user program in execution

Whenthe user approaches a console which is not currently being used, he gets recognition

from the system by push i ng the BREAK button. The exec wi" respond wi th a standard

entry message, and wi" automati cally type out

!lOGIN:

The user must now type in his identification code and a dot. When it is recognized by ,

the exec,the exec, will enter the console into the system and place the user at level

(exec commands) ~

At level 1, the exec prompts the user to type in a command by starting a new line

with .!..' The user then types in the first two letters of a command word. If it is illegal,

the exec wi"respond~ and prompt another command. If it is legal, the exec will

instantly type out the remainder of the command word. For example, if he types in EX,

the exec responds with IT, confirming that it 'recognizes the EXIT command. If the command

requi~es parameters, (like ASSIGN), the exec also types out a colon and expects them to

be typed in. ,After the parameters (if any) are correct Iy entered, the user must type a

confirming dot. The exec only obeys a command when:

(1) it is well-formed, including the parameters, if any;

(2) it is not prohibited to this user (no commands presently implemented
are prohibited to any user);

,(3) it is meaningful (e.g., PROCEED means nothing when no subsystem
has been called yet); "

(4) ,the confirming dot is typed.

SYSTEMS CONCEPTS
TSD Design Spec p. 4

If a carriage return is typed before a confirming dot, the command is aborted and the

exec prompts another. If any. of the conditions (1-3) are violated, the exec types' out

:!. and prompts'o new command.

~he command.s presently available at level 1 are listed below. Those characters

typed by the user are, underlined. See design specifications for specific subsystems for

further i nformati on~

!EXIT.

! EDIT.

ISYMBOL.

I DEBUG.

! PROCEED.

!ASSIGN:

Flush this console from the system - the user is done.

·Call in the editor subsystem (Iev'el 2). EDIT reads text
from devi ce SI (source input) and produces an. updated
text fi Ie on devi ce SO (source output) by making one pass

. 'through these devi ces under control of directive commands
from the terminal.

Cal/ in the assembler subsystem (level 2). The assembler
reads text from devi ce SI (source input), and assembles it
in one pass, producing a listing with diagnostics on device
LO (listing output) and an obi~ct program and symbol
table on device BO (binary output).

Cdll in the DEBUG subsystem (level 2). DEBUG under
directive commands from the terminal, can load an object
prograrnand its symbol table from device BI (binary input),
examine and change. user core, and execute the program
(level 3) with or without breakpoints.

Cont~ue a subsystem that was interrupted by a break.
In~~ses, th is wi II return to requesti ng commands at I eve I
2 as soon as the subsystem cleans up critical buffers and
switches. In parti cu lar, EDIT has a command to inquire
about the positioning of the devi ces SI and SO and DEBUG
has commands to inspect the program counter, the condition
code, and all registers in the user machine. SYMBOL
merely continues assembly where it left off. To begin a
new assembly, ne'wedit, or new load, the subsystem calls
SYMBOL, EDIT, and DEBUG must be used again instead
of PROCEED.

devi ce code, fi Ie name.
In the present system, the ASSIGN command is the on Iy
way to assign a device like SI or BO to a real user file
like PROG 1. This means that between subsystem calls,
one or more ASSIGNs must be done so that the subsystem
will have access to the proper files. This is open to sim­
plification in later versions by allowing subsystem calls

SYSTEMS CONCEPTS
TSD .Design Spec p. 5

to have file-name parameters which areJIutomatically
assigned to the standard devi ces, or by letting subsystems
request that information at run-time.

Programs at all levels can use CALL instructions to request certain common servi ces.

The·only such services that will be available initially are listed below with their calls.

CAL3, 0

CAL3, 1

CAL3,2

CAL3,3

Read a character from the user termina I (input buffer),
.. convert it to EBCDIC, clear register O· (R O)~.'. and place

the character in the low-order byte ofRO.. Not.hing else
in the u~er machine is affected.

Write the character in the low-order byte of R 0 on the
user terminal (output buffer). The character is in EBCDIC
code. Nothing in the user machine is affected.

Change echo control type t~ the integer in R:O (see TTY
rqutines spec). This type is initially 1 when the user logs
in, and when a subsystem is called.

Skip if any characters are presently in the input buffer.
Otherwise, execute the next instruction in sequence.
Th is feature is used especia Ily by subsystems to noti ce
demands for attention by the user. Un like CAL3,0,. it
does not dismiss the user if the input buffer is empty.

The Cibove calls are meaningful and are allowed at all levels. However, the remaining

calls are restricted to use at certain levels. These calls have not yet been assigned

specifi c operation codes.

Executive call (from level 1)

CAL-/,- Call. subsystem. The eight-character subsystem name is in
RO and R 1. Th is changes I eve Is from 1 to 2.

Subsystem calls (from level 2) .

CAL-, -

CAL-,-

CAL-,-

Return to exec. This goes up one level, i. e., from level 2
to level 1 in this. case.

Read the n1th RAD page of the user program into the
ml'th virtual page of subsystem Wre. This allows the
debugger to examine the user program. All page reads
from the RAD of course are preceded, if necessary, by
swapp i ng out whatever was in the rea I core page to be
overwri tten.

Start up the user process. This changes levels from 2 to 3.
RO contains floating cootrols and CC in bits 0-7 and IA
in bits 15-31. If the process exits, the exec wi II access
floating controls, CC, and IA and put them in RO.

SYSTEMS CONCEPTS
TSD Design Spec p. 6

'User process c'alls (from level 3)

CAL-, -, Return to subsystem normally. This goes up one level,
i. e., from level 3 to level 2. It is the same as the '~Return
to exec" call at level 2.

4. TELETYPE'INTERFACE

The TTY routines do the following:

SYSTEMS CONCEPTS
TSD Design Spec p. 7

(1) Receive a character from a user termina I and drop it into a byte array
associated with that user. This array forms a ring and is called the
user's i nput buffer.

(2) Noti ce characters waiting to be typed out in another byte array
associated with each user and type them on the proper terminal. This
'array also' forms a ring and is called the user's output buffer.

(3) Echo certain input characters under some conditions.

(4), Dismiss the calling process if it executes a READ (CAL3,O) when the
input buffer is empty or a WRITE (CAL3, 1) when the output buffer is
full. The :scheduler wi II reactivate the process under appropriate \,)I""

, ,circum~tances. , t;"'"1,ht~ ..
Each user's teletype interface is driven through a table. The user's table contains\/ eylLJ '

, ' pointers to the input and output buffers, character counters, and status bits. These are:

(1) A poi'nter to the next byte in the input buffer into wh i ch a character
hom the'terminal can be dropped. When the input buffer is full, k'
characters typed in are ignored.

(2) A pointer to. the next byte in the input buffer out of whi ch a character
wi II be read by READ.

(3) A pointer to the next byte in the output buffer into which a character
can be written by WRITE.

(4) A pointer to the next b'yte in the outpu,t buffer out of wh i ch a character
will be sent to the terminal.

';,'(5) A/count of characters in the input buffer (empty=O; full=max size -­
parametri c, e. g., 80).,

(6) A count of characters in the ,output buffer (analogous to (5)).

(7) The deferred echo flag. Whi Ie it is ON, characters that are received
from the terminal are not echoed, immediately. Instead" if they are

,echoable, they are marked (in their high order bit) as having yet to
be echoed, and left in the input buffer.

While it is OFF, characters that are received from the terminal
that' are echoable are echoed immediately. In any case, when a READ
pi cks up a character that is marked as having yet to be echoed, it
echoes it then. The deferred echo flag is turned ON when there is
either (a) an activation condition caused by receipt from the terminal

SYSTEMS CONCEPTS
TSD Design Spec p. 8

of a character that is specified as an activator by the current echo
control type~ or (b) an attempt is made to echo a character i ust received

, from the terminal (i. e., not demanded by a READ) but the output
buffer is non-empty. It is turned OFF whenever a READ is done with
one character in the input buffer (i. e., when the input buffer becomes
empty).

(8) The echo-activation table. This has one byte for each character in
the character set. If the byte is 0, the character is i Ilega I. Otherwise,
bit 0 tells whether the character is printable: all non-control characters

are printable, Cr and Lf are printable, but all other control characters
are unpri ntabl e. Bi ts 1-4 are not used (they are always 0). Bi ts 5-7
classify the character:

Class (bits 5-7)

4

3

2

characters

Cr, Lf

other control

punctuation

letters, digits, and blanks

When a character is received from the terminal, its echo-activation
byte is fetched. If it is zero, the character is illegal, and is ignored,.
OtherWise, the echo control mode is examined. Echo control mode
can be:

(4) All chars echo; Cr or Lf activates (class 4)

(3) All chars echo; all controls activate (class 3 & 4)

(2) All chars echo; a II but class 1 activate

(1) All chars echo; all characters activate

(0)' No chars echo; all characters activate

../

If the mode is nonzero and the character is printable, an attempt is
made to echo it (see: Deferred echo flag). A character is 'echoed by
sending it to the back of the.output buffer. Then, the character class

, is compared with the echo control mode; if it is greater than or equal
to the ~cho control mode, an activation condition is present. The
deferred echo flag is turned ON and a flag is set in the user1s table J
so that the scheduler wi II know that activation status has been obtained ..

, All characters in the buf~ersare in 7-bit ASCII code, as received from the terminal.

This leaX,es the high-order bi't free for deferred-echo marking. It also simplifies echoing,

since to echo a' character, it is merely transmitted unchanged (except for setting bit 0

to 01) to the back of the output buffer. Conversion from ASCII to EBCDIC occurs when

SYSTEMS CONCEPTS
TSD Design Spec p. 9

. . . ~1
a character i~!ent ta a process that has asked for it with a READ. Conversion from 1lu-~~y J

EBCDIC back"ASCII occurs only when a characfer is sent to the back of the output .)

buffer from a process)hat has done a WRITE.:

5~SCHEDULER

SYSTEMS CONCEPTS
TSD Design Spec p. 10

The scheduler scans a reactivation ring to select the next user to be scheduled. This

ring is. a byte array with one byt~ for each user (eight users in the initial implementation).

Each byte contains 'a code which indicates the type of activation condition necessary to

start this job up again.

The,sched~ler can be invoked either

(1) by a job being dismissed for using up its quantum, for TTY I/O, or for
an abnormal termination;

(2) ,by Batch using up its quantum.

The scheduler scans the ring starting just after the user who was last activated. It examines

each reactivation byte to determine the corresponding' user's activation condition. The

value of th~s byte is an int~ger indicating;the following:

(0) dead job -- ignore user;

(1) unconditional start -- al ways satisfied;

(2) waiting for room in the output buffer -- check user's TTY table to see
if output,count is below threshold yet;

. (3) waiting for an input activation condition -- check user's TTY table to
see if activation status has been attained yet.

When a user is found whose activation condition is satisfied, his user number is sent to

the swapper so that he can be brought in (Batch is allowed to run during most of the swap).

If a complete scan of all users is made and no user can be activated, then TSD

will return' to Batch. When Batch's quantum is used up, the scheduler is reinvoked to make

another scan,. Even if there is no user to activcite, Batch will only be interrupted for

300-500 f-lS, so consequently the overhead is kept very low •

6. SWAPPER

SYSTEMS CONCEPTS
TSD Design Spec p. 11

The sWdpper is ca lied by the scheduler when it finds that a parti cu lar user can be

.activated. Associated with the user is a level code which indicates at what level he will

:berunning. The possible values of this code anC:iheir meanings are:

(1)· The executive process

(2) A subsystem process

(3) A user process

.. The level code as well as all other values and tables describing user status will be kept

resident in the initial ·implementation .

. Th~ exec process (level 1) is kept resident at all times in the initial version.

However, level 2 and level 3 processes must be swapped in and out as the user changes.

th~ swapper handles this function.

The following tables are used by the swapper:

. (1) MAT (Memory Access Table). This is a word table giving control
information for a virtual page of a level 2 or level 3 process. The
format of an entry i.n the is as follows:

rea I page disc sector

* o 7 8-9 10-11 12 31
ace = access' code
q = queue (0,1, or 2)

Those fields marked by an asterisk (*) are not used in the initial version.
All pages will have the same access code (read and write). Also, the
real page number can be computed by simply adding a constant offset

: to the virtual page number.

(2) MAP2. There is one of these byte arrays for eqch user's leve I 2 process.
A pointer to the MAT entry for virtual page P of this process is kept
in MAP2+P.

(3) LEVL2MAP. This is a word table. The location of the MAP2 array
for user U is pointed to by (LEVL2MAP+U).

(4) . lV\AP3. Same as MAP2 for each user's leve I 3 process.

(5) LEVL3MAP:' Same as LEVL2MAP, but poi nts to the MAP3s.

The swapping algorithm in the initial version is ..very straightforward. The current

user number is; compared wIth the next user number from the scheduler. If they are the same,

SYSTEMS CONCEPTS
TSD Design Spec p. 12

·the process al ready in core is rE~adyto be run, so the swapper returns. Otherwise, it

swaps out the current user and swaps in the next user, then returns.

Swapping out is performed by one scan through the appropriate MAP..'2 of the

current user. T6swap out the virtual page P, MAP..'2+P provides a pointer to the MAT entry

in which the disc address of the page can be found. The real core page is determined

by simply adding ~ constant offset to P. The swapper then sends the real core address

and the disc address to the Batch Monitor, which adds the write request to the RAD I/O

queue.' After sending all 'the core pages used by the current user to the queue, the

swapper lets Batch run unti I the writes are all complete. Then it scans the dppropriate

. MAP for the next user and se.nds read requests to Batch Monitor in a similar manner to the

earl ier write requests.

All writes are completed before any reading begins to insure that Batch Monitor

does not accidental [y read over a page that has not yet been written out. This procedure

is open to improvement in later versions of the system.

Future swappers wi II employ more sophisticated swapping algorithms to reduce

the RAD I/O' necessary to swi tch between users.

7. FILE I/O

SYSTEMS CONCEPTS
TSD Design Spec p. 13

All fi Ie I/O is performed by the Batch fi Ie management routines. The TSD File

I/O system intercepts user I/O calls and keeps track of all device/fi Ie assignments· made

at the executive level. TSD makes the following checks before passing I/O calls on

to ~atch I/O:

(1) Referencing a device which has no file currently assigned to' it will
cause an error indication.

(2) Attemptin'g to access a fi Ie that has' not yet been created, wi II cause
. the following action:

(a) for input files, an error indication will be given
(b) for output fj !es, the fi Ie wi II be created and opened

(3) Attempting to open an already open file will cause the file to be
IIrewound" or positioned at the beginning of the file.

(4) Attempting to read or write an unopened fi Ie wi II force TSD 'to firs~
open it •

. TSD also augments certoin executive functions as follows:

(1) When the executive process calls a new subsystem, all files for that
user are closed to provide some degree of protection. However, the j\"
user must. still becarefu I to make the correct assignments before
call ing a subsystem.

(2) When the executiye process assigns a new fi Ie to a device, any
currently open file attached to that device is first closed.

A table is kept for each user of his device/file assignments. TSD does not keep

track-of all files reserved. under a user1s ID, because the Batch system already performs

. this function.

8. EDIT

SYSTEMS CONCEPTS
TSD Design Spec p. 14

The TSDtext editor (EDIT), 'under control of directive commands from the terminal,

makes one pass through a fi Ie designated as source input. (SI) to create the fi Ie designated ~1
1/
! as source output (SO) by either

(1) . resequencing the lines from SI, or
jj

d .. vu1.
(2) merging selected lines from SI with lines from the terminal. .--.. I AI:tJJ'-'

. . \yl7/
Every line on a text file has text in columns 1-72 only. An eight-digit positive sequence~ cr tv ~ :
n umbe r must appea r inca I umns 73-80, with a n ass ume d de c i ma I pa i nt betwe'en co I umns wit/" .v;;
76 and 77. The I.ines in a text file must appear in ascending sequence number order.)fjb~

. EDIT specifies a sequence number by a string of from one to eight decimal digits ~
with an optional imbedded decima.l point. There may be at most four digits on either side

of the decimal point. Examples:

. sequence number

.0091

26.3'

9999.8888· .

col. 73-80

0001~091
0001pOOO

0026~OOO

9999~888
When EDIT is ready to accept input from. the terminal, it types out at the left

margin:

Lf > if it is awaiting a command line

Lf if it is awaiting a I ine of text to be appended

Lf @. if it is awaiting a list of columns at which to set tabs

These c;;haracters are called prompts.

EDIT features uniform editing of lines typed in, whether they are command lines,

text lines, or tab-list lines. ~very line is terminated by a carriage return (Cr), at which

. point it is obeyed if it is a'command 'or tab-list, or appended to SO if it is a'text line.

Unti I the Cr is typed, the user can type any characters. However, the foll~wing control

charac~ers have .special me.anings: (exactly which teletype keys will pro~uce them will be

deci ded later):

BS . If there are any characters in the line, delete the rightmost one and
type out.:a If • . ' Otherwise, ring the bell.

SYSTEMS CONCEPTS 1
TSD Design Spec p. 15 \ t

DEL type out @@, erase the entire I ine, type out Cr and the prompt
awaiting·a new line.

EOB End of text block. If any characters are in the text line, append it
to SO. Then type out CrLf and > awaiting a new·command. This

. is also used while a tab-list is being typed in to abort the input·
and clear all tabs.

j~~
, ,\V<~

RE

"~~41'
r~~
flU

Retype. Type out «Cr, then the prompt, then the line so far omitting
deleted characters for better readability.

LIT The next character typed is accepted I iterally; even if it is a control
character such as Cr, LIT, or BS, . it becomes part of the I ine and no
spe'cial meaning is attributed to it.

TAB Space up to but not including the next column at which a tab has been
set by the last complete TABS command. If there is no such column, .
ring the bell instead of spacing over. . ~

Suppose the fi Ie to whi ch devi ce 51 is assigned has the following contents (this·

example wi" be used throughout this document):

------------.-------- col.
. A10.
A20 '
A30
A40,

.. ,A50
A60
A70
A80
A90

1-72 ---------------- col. ,73-BO
00100000
00200000

t

00300000
00400000
00500000
00600000
00700000
0080pOOO
.0 01°0 QQ.O

To.o.btain a listing of this file, the e.ditor is called from the exec, and the following

comm,ands are used. C6-P-I-E5"PRtN-T (or +COPm-PRINT) switches the EDIT copY.-printing L \ $-'
. .

m9de, which is initially OFF, to ON. -COPIESPIUN-T·is the command used to turn

this mode back to OFF~ When this mode is ON.! ev'ery line written on SO that was copied

from sr (rather than from the terminal) is printed on the terminal. The END command
)

causes theunscanned portion of 51 to be copied to .50 and returns to the exec. In the

examples in this document, that which the user types is underlined. The conversation for

obtaining a listing is as follows:

. >+COPIESPRINT
>END
--10.0000 Ala

20. 0000 A20
30. 0000 A30
40. 0000 A40
50.0000 A50
60.0000 A60
70. 0000 A70
80.0000A80
90. 0000 A90

SYSTEMS CONCEPTS
TSD Design Spec p. 16

Some commands are used to simply set tabs or switch modes. These ar.e called

Jlmode change U commands. The mode change commands in EDIT are COPIESPRINT,

NUMBERSPRINT, and TABS. Other comman·ds cause lines from SI or from the terminal to

be written on ,SO. These are called JJactive Ji commands. The active commands are

RESEQUENCE, DELETE, APPEND, and END. One command neither changes modes nor

writes on· SO; this is the INQUIRE command, whi ch informs the user about the state of

the EDIT.

All commands have the form: r ~umber, ~umber}
l empty

command word '

The command word is a string of letters of which only the first is significant in determining

·the action to be taken. Some commands (RESEQUENCE, DELETE, and APPEND) require

.two sequence numbers as parameters. Others (mode change commands) may be given a sign

(-~OFF, + or nothing = ON) .. Such parameters are provided before the command word.

The comma that is shown in the above command model to separate ,the two numbers

may be replaced by any other punctuation character except +, -, or period. However,

for mnemoni t reasons, colon or comma (meaning THROUGH) is generally used in the

DELETE command, and slash (meaning IN STEPS OF) is used in the APPEN D and RESEQUENCE

commands.

All blanks are completely ignored in all commands. A command must fit in its

entirety on one 'line. The first letter that appears on the line is assumed to be the first
, "

letter of t~e command word, and the rest of the line after that is ignored .

. Supposeit is desired to edit the file in our example. The user makes notations on

his listing something like this:

10. 0000 Ala

SYSTEMS CONCEPTS
TSD Design Spec p. 17

-~Q-:-QQgQ-A~Q-- - -de I ete "
-2G-:-QQgQ-A2Q---- delete \.1
40. 0000 A40 ~JJ

50. 0000 A-W- 850 . 'At. fL
60.0000 A.£JJ- 860 75 875 ~ }J I
70. 0000 A70 . t

---85~5505-A85-~-lnsert: 76 876 . J ~ f
90.0000 A90 77 877· . ~i . ~

Since EDIT makes iust one pass through 51, the user must order his commands carefully. .~~ Of
For these changes to the file, the correct order is: I' I

1) Delete 20-30: Use the DELETE command. j1h?&tr:r /--
2) Replace 50';'60 by new 50-60: Use DELETE followed by ~P.PEND.

3) Insert 75-77: . Use ~J~p-.E-KrD.1(VtJ&rt,1 --

. It is notnecessary to tell EDIT about lines in 51 that are to be kept, i. e., copied to SO.

Itis only necessary to tell it which Iines in 51 to leave out (DELETE), and what to insert

from the terminal (APPEND). The conversation for this edit is as follows:

>20:30 DELETE
>50:60 DE LETE
>50/10 APPEND
. 50. 0000 B50

60. 0000 860 eob
>75/1 . APpEN5-

75.0000 875
76. 0000 876
77. 0060' S77 eob -->END

b:c DELETE copies lines fr~m 51 numbered less than!? to SO, then skips lines from 51

numbered between ~ and ~ inclusive. b/c APPEND copies lines from 51 numbered less

than!? to SO, then appends to SO the lines typed in after the command up to EOS.

The first appended line is numbered!? and subsequent sequence numbers are !?+~, !?+2~,

... , !?+n~." Finally, APPEND skips any lines in 51 numbered between!? and !?+n~

inclusive.' It is recommended that to replace a range of lines with new lines, a DELETE

command for the old lines precede the APPEND command for the new lines.

After the above conversation, SO contains:

Al0
A40·.
B50
B60
A70
B75
B76
B77
A80
A90

SYSTEMS CONCEPTS
TSD Design Spec p. 18

00100000
00400000
00500000
00600000
00700000
00750000
00760000
00770000
00800000
00900000

Suppose it is now desired to resequence this file. Back in the exec, SI is assigned

to the fi Ie, and a new fi Ie is designated SO. The following conversation demonstrates

the use of the RESEQUENCE command:

>+COPIESPRINT
>100/20 RESEQUENCE

lOa. 0000 A 10
120. 0000 A40
140. 0000 850
160. 0000 B60
180. 0000 A70
200. 0000 B75
220. 0000 B76
240. 0000 877
260. 0000 A80
280. 0000 A 90

No END is necessary because RESEQUENCE automati cally returns to the exec.

The· two mode change commands that have not yet been· explained are NUMBERSPRINT

and TABS. The number~printing mode is normally ON. When it is ON, every line typed

out due to a copy when copy-printing mode is ON is preceded by its sequence number,

with leading zeroes changed to blanks. Also,every line that the user must type in after

an APPEN D command is· prompted by the sequence number that wi II be attached to that

line. This mode can be turned off by -NUMBERSPRINT.

To set tabs so that the control character TAB can be used for formatting text input

lines, use the command

>TABS

Th is wi II cl ear ~ II tabs, go to a new line, and prompt wi th an @. Then, the user types

in the numbers of those columns at which tabs should be set. For example, to set tabs

for FORTRAN, the conversation is:

>TABS·
@=r-

To set tabs for SY MBO L, say:

>TABS
@TO;T9, 37

SYSTEMS CONCEPTS
TSD Design Spec p. 19

EDIT initializes its tabs for SYMBOL program editing. To clear all tabs, say either

>-TABS

or

>TABS
@cr

~ EDIT reads from·· SI and writes on SO~eria"y. The last line written on SO (copied from

either SI or the terminal) is always remembered in the LAST-LINE buffer, and its sequence

n!Jmber is kept ·in the variable LAST -SEQ. Similarly, the next line to be read from SI

is always avai lab Ie in the NEXT-LINE buffer, and its sequence number is kept in the

variable NEXT -SEQ. At the beginning of the edit, LAST -SEQ is set to zero, an impos-
. I .

· sible ~equence number, and the NEXT-LINE buffer is loaded with the first record from

SI. ·At all times during the edit, NEXT-SEQ is kept just greater than LAST-SEQ by

· reloading NEXT-LINE from SI whenever LAST-SEQ surpasses NEXT -SEQ. This procedure

assures that SO is kept in ascending sequence number order and that the fi les are processed

serially.

At times,the user may become confused about what .point in the scanning of SI

and SO EDIT has reached. For example, if-he presses the RUBOUT button while the edit

is being performed, and then asks the exec to II! PROCEED. JI, it is not clear where the

edi~or was stopped;" The command

>INQUIRE

causes EDIT to type o·ut LAST -SEQ and LAST -LINE, then NEXT -SEQ and NEXT -LINE, to
.. \-'. '~

resolve thIs problem. --C k- f_\." &0 91/ .. __ .It .•. ,-7 7
~ ~ 40 f-.MVUJ T\.MA 0

To maintain ordered files, certain restrictions are imposed upon the numbers provided

· as parameters in the commands. In the fo II owi ng com~and forms, the restri cti ons are:

>b/IRESEQUENCE. Cr·
. >b/i APPENDCr

>b:c DELETE Cr
>TABS CrLf
~w, .. ·.;zCr

b > 0; i > 0
b > LAST -SEQ; i >'0
c? b ~NEXT -SEQ

u <v <w < ... <'z

SYSTEMS CONCEPTS
TS D Design Spec p. 20

In the first three of these commands, either or both of the numbers may be omitted. In

RESEQUENCE and APPEND, if b is omitted its value is taken as LAST -SEQ + i, and

if i is omitted, its value is taken as 1. In DELETE, if b is omitted, its value is taken as

NEXT -SEQ, and if c is omitted, it is assumed to be equal to b (i. e., only one line is

deleted). For example,' to append new lines to the end ofa fi Ie, the command sequence

that follows can be used:

>/5 APPEND
. 285. 0000 Cl00

290. 0000 Cll a
>END

SYSTEMS CON CEPTS
TSD Design Spec p. 21

9. DEBUG; INTERACTIVE SECTION

The basic components of the DEBUG language are:

Symbols'

Symbols and Constants ... 32-bit val ues

Forms ... letters which specify the format in which values are to be printed

Commands ... , ,direct DEBUG

A'symbol is asdefined in ,the SYMBOL manual~ or one 'of the following:

$, 'The last register opened, whether or not still open.

The special symbols:

ilv\ The mask used for word searches.

i 1 ,The lower bound for all searches.

i2 The upper bound for all searches.

,iQ The latest quantity typed out. Also assigned a value by "Store",
"Symbol table definition", and all register-opening commands •

. iC The condition code.

;1 The instruction counter.

A confl ict can arise if a symbol ic la,bel is spelled in the same manner as an

opcode mnemonic (e. g., ~). The user should avoid this situation.

Constants

Constants are as in SYMBOL: decimal digit strings and "general constants".

Their values are self-defined. An alternate form for the hexadecimal XI .•. I is " ... "

The final I or " may be omitted, except in character strings.

Forms

These letter codes are used to specify the format in which the contents of a

register oranyother quantity demanded by / or = should be typed.

, The possible codes are: (~</

R As an instruction with a relative address (e. g., LP+'12)
, eu-t\.:""t.\' \J

A' As an instruction with an absoluteJ\address (e. g., 2049)

X As hexadecimal digits with leading zeroes omitted

o As octal digits with leading zeroes omitted.

C As four EBCDIC characters.

As a signed decimal integer.

SYSTEMS CONCEPTS
TSD Design Spec p. 22

The7e ,form letters are reserved for possible future implementation:

B· '. As four bytes in decimal integer form.

H Astwo half-words in decimal integer form.

. D As the doubleword decimal integer represented by the even'-odd pair - '.,
of locations ,to which this location belongs,. I,

S 'As a short floating point number.

L As the long floati~g-point number determined as in D.

Express ions

Let primcryrefer to any symbol or constant. Let series refer to a lIsum ll of primaries,

i. e., one or more primaries separated by ,+, or 1_'. Examples of series:

.A

A+2-BX'

$+1

;Q-1

Let a term refer to (1) a primary; or (2) a series enclosed in a single pair of parentheses

preceded by BA, HA, WA, or DA. Then an expression is a term or a Hsum ll of terms. ------ ----. --- -
Examples of expressions:)..

Instructi ons

, $-1

BA(A)+17

An instruction is of the form:

Command-field '\'Space(s) Argume'nt-field

The first blank terminates the command field. Either the command field or the argument

field may be omitted, but if an argument field is present, it must be preceded by at least'\

on~ blankspace.

The command field is of the form:

Operation expression, Register expression

Either expression may be zero (0). The register expression and its introductory comma

may be omitted if the register expression is zero.

, ..

. .:'./ :'<. /"
I ,

?

SYSTEMS CONCEPTS
TSD Design Spec p. 23

. Th~ argument field is of the form:

Address expression, Index expression

Either expression may may be zero (0). The index expression and its introductory comma

may be omitted if the index expression is zero.

A 32-bit quantity is computed from the instruction by generating the incl usive

OR of these four quantities:

. 1.
(1) The operation expression .

(2) The low-order 4 bits of the register expression, shifted 20.

(3) The low-order n bits of the address expression (see below) .. * a..J) I ~'~'"
(4) The low-order 3 bits of the index exp~ession, shifted 17. l~Lo-J\ oL'({if1 (J-;

For the address expression, case (3), n is computed according to bits 1-7 of the operation

expression ~as follows: .

Operations n

Shift 7

Immediate 20

Byte stri ng 20

All' other 17

Examples of instructions:

LW,14 A+2, 1

LI, 11 -1

BLOOP

LOOP, 6

0,0 -1

Inthe last example, the result wi II be ones in ~bit positions 15-31.

.. Coommands

'. In the following summary. of commands, these abbreviations are employed:

expr

frr.lt

An express ion. .

A quantity (expression or instruction).

A symbol.

A special symbol (one of: ;M. ;1 ;2 ;Q ;C ;1).

A form letter (one of: R A X 0 C I)

SYSTEMS CONCEPTS
TSD Design Spec p. 24

form A form letter or a blank (blank means lluse default form ll
).

Important note:

Blanks may not appear in commands except to either:

(1) introduce the argument field of an instruction;

(2) specify default form after / or =.
Symbol table definitions

expr<symb> Define symb ,to have the value expr. Also assign expr to ;Q.

symb;K

symb.!

exprspec

i U

Examine

l'Aake symb undefined. If it is not a special symbol,
symbol table. (lll(i II JJ)

D~fine symb to have the value $ (same as $<Symb».

Give special symbol spec the value expr. Example: to set the search
mask, the user coul d say --

X I F77F.';M

Print all undefined symbols in the table.
,.- \(~~'), ~

.. rfO:~;; ~ ~ ,
Examine register;iQ, i. e. r the register whose location is given by the
last quantity of interest (usually the last one typed out). When a
register is examinedr Hs contents are assigned to ;Q and typed out
using format form. DEBUG will space before and after typing out.

Open register expr. When a register is open, and only when it is openr
it is possible to change its contents using the Store command (expr Cr).

,'The DEBUG location counter ($) is given, as its valuer the location­
pointed to by expr. It is closed by the execution of any subsequent
command except typeout (=)r Examine (/form)r symb!r and Delete (?).
However I even when it is closed, its location remains assigned to $
unti I a different register is opened. When a register is openedr its

, contents are assigned to ;Q. whether or not they are typed out.

Exami ne and Ooen
, I

exprr expr/form
, -- -- Examine all registers numbered in ascending sequence between the first

and second expr incl'usive. Also, open the last register examined.
S~e the JlExamine JJ and JlOpen only" commands for further details.

expr/form. Exami ne and open register expr.

Open'adia cent

line feed 00 to a new line and type out the value of location $+1 in the current

SYSTEMS CONCEPTS
TSD Design Spec p. 25

label form mode, followed by a / and some spaces. Then open register
$+1. If register $ was examined when it was opened, also examine this
register using the same form. However, if register $ was not examined
when it was opened, do not examine this register either.

Same as .line feed, but uses register $-1 instead of $+1. ~

Typeout

Store

quan=form Type the value of the expression or instruction quan in the form specified.'
'This value is also assigned to ;Q, as is the value of any other quantity
typed out by DEBUG.

=form -'- Type out ;Q in the form specified. This is used when a quantity has
just been typed out in one form (say, instruction with a relative address)
but the user would like to see it !n another form (say, hexadecimal).
It is also used when a register has been opened with HOpen onlyll 'and not

. examined, but the user would like to examine it after all.

quan Cr. If a regisf.er is open, assign quan to;Q and store it in the open register.

Cr

, . Otherwise, th is is i1lege L DEBUG responds to illegal commands with v-

a ? ,~ndignore them.

Carriage return with no quantity before it simply closes the open register
if it is sti /I open. It does not modify its contents. If there is no open
register, this merely goes to a new line.

Change default forms

i/fmlt Change'the default form for IlExamine-and-open H to fmlt.
initially R (instruction with relative address). --

It, is \
\"
I

;=fmlt Change the default form' for JJTypeoutJ~ to fmlt. It is initially X J
(hexadecimal). --

Change label form mode

;R

iA

Execute and G01·0

Change the label form mode to relative. Whenever a location is typed
out by DEBUG (except in the address field of ~n instruction typed out
after I or =), it, wi II be typed in the form

symb ± constant

where symb is the symbol whose val ue is closest to that location. If
no symbol is within 1,00 locations, the location is typed out in absolute
form instead.

Change the label form mode to absolute.
integer constants.

Locations are typed as decimal
.....-1... l "~ .. b \.... ... '\,

~;x. . Ex~cute the word quanas an instruction. If it is a branch, the program

expri G

Search user core

expr;W

expr;N

" expri E

SYSTEMS CONCEPTS
TSD Design Spec p. 26

wi II start to run. Otherwise,' control wi II" return to DEBUG, wh i ch wi II
CrLf and wait for a command.

Go to location expr. The program wi II begin to execute from that point.

Word-search . Search user core between locati ons ; 1 and ;2 and type
out the locations and contents of all words satisfying the condition"
that their contents are equal to expr in all bit positions selected by
ones in iM. --

Not-word search. Same as word-search, qut all words not satisfying
the above condition are typed out.

Effective-address search. Same as word-sea"rch, but the condition is
that the effective address of the contents (assumed to be an instruction)
equa Is expr.

expr, expri L Same as

Breakpoints

" expri B

i B

expr;l expr;2

It sets both the "I ower and upper bounds for searches.

Set the breakpoint at location expr.

Turnoff the breakpoint.

\r: expriP
\'. '.1.: {~. < ~\\

, Proceed to run the program from the breakpoint. Allow the breakpoint
to be encountered expr more times, then break again. A break types
out CrL~O and awaits a command.

\ " t w~. 41

11, • \ ' ,/
J 'j ~\ X J

,1,.1

c' V I,' i P Same as "OiP. Proceed to run the program from the breakpoint, but
break as soon as It is re-encountered. 7

Memory loading These commands type out JJOK?Jl and await a confirming II. II before
executing. Any other response aborts them. \

expr;T Transfer a program to memory. This loads a relocatable program and
its symbol table starting at I.ocation expr.

iT Th is loads" e ithe"r a re locatable program starting at location X 1100'
or an absol ute program.

expr, expr;Z Zero memory. This stores zero in every location between the first
and second exprincl usive~

i Z Th ~s zeroes a II of user memory.

Delete command

anyth ing? The partially typ.ed command before the? is erased. DE.BUG tabs and
awaits a new command.

SYSTEMS CONCEPTS
TSD Design Spec p. 27

Symbol table killing

;K Erase the entire symbol table, after receiving a confirming dot as in
IIMerriory Loading ll

• Special symbols are not killed, and operation code
'mnemoni cs are given their standard val ues and restored to the symbol
table ..

SYSTEMS CONCEPTS
TSD Design Spec p. 28

10. ,DEBUG, LOADER SECTION

The stand-alone loader is to be modified and incorporated into the TSD system.

,The gen~ral requir~ments involve provisions for paging, and construction of a symbol

table for use by DEBUG. The loader is invoked by the T command in DEBUG.

The DEBUG symbol table wi II have 4 words per entry with the following form:

wl flag word

bit 0 1 ,if DEF, 0 if not

w2

bit 1

bit 2

bit 3 '

bits "4~15

bits 16-31

w3-4

if external, 0 if not

if more than 4 characters in symbol, 0 otherwise

reserved for expansion

count of number of times this undefined symbol must have its value
; substituted when defined

form a'16 bit flag word. If bit i=l, then pages 2(i-16), 2(i-16)+1
require substitutions when this undefined symbol 'becomes defined,
otherwise not. /,_.-

value (if defined)

symbol (left justified with trailing zeroes)

The count in bits4-15wi II be use~ to terminate' various procedures such as searches

~r substitutions. The flag word wi II be used to minimize the number or pages accessed

durin'g these procedures.

'SY,V\BOL does not currently provide symbol definitions or names for those symbois

which qre not ~xternal definitions or references. DEBUG will require this information.

A modification will be made to SYMBOL which will cause these symbols and their values

to be output for the loader. The loader will accept this information and include it in

the symbol table fo~ DEBUG.

The'initial load operation will be quite similar to the batch load.> The chief

loader modifi cation is the provision for and. insertion of the paging mechanism.

The loader currently ~andles Jlsimple address ll forward references by means of a

chaining techniqu,e. This may require that several pages be accessed to substitute the

definition of a pad-i cular symbol. Even worse, a given page, wi II be accessed once for

each distinct symbol to be substituted since only one chain can be satisfied at a,time.

Th is procedure is described in the following paragraph.

SYSTEMS CONCEPTS
TSD Design Spec p. 29

Each word of user core wi /I be represented in a bit table of 512 32-bit words

(16, 384 bits). Th is· tab Ie is marked appropri ately for each address substitution required.

The corresponding program word contains a pointer to the DEBUG symbol table. Thus,

af I referenc~s of this type may be satisfied with one pass over the program,' performed at

the end of .Ioading. Any bits remaining in the table represent words containing undefined

addresses. The symbols required by the undefined addresses wi II be determined by checking

the DEBUG symbol table for those symbols whose reference count (word 1 bits 4.:..15)

is non-zero .. '

