
Xerox Data Systems

XEROX. X~roxUniversal Time-Sharing System (UTS)
Sigma 6/7/9 Computers

Time-Sharing
Reference Manual

Xerox Data Systems

701 South Aviation Boulevard
EI Segundo, California 90245
213679-4511

XEROX

Xerox Universal Time-Sharing System lUTS)

Sigma 6/7/9 Computers

Time-Sharing

Reference Manual

90 09 07e

November 1971

Price: $5.00

Printed in U.S.A.

REVISION

This publication is a revision of the Xerox Universal Time-Sharing System (UTS)/TS Reference Manual for Sigma 7
Computers, Publication Number 9009 07B (dated February 1971). This revision documents the BOO release of the
system. A change in text from that of the previous manual is indicated by a vertica I I ine in the margin of the page.
Chapter 6 (Edit) and Chapter 7 (Delta) are new chapters in this manual and are rewritten versions of the Edit Refer­
ence Manual, 90 16 33 and the Delta Reference Manual, 90 16 34.

RELATED PUBLICATIONS

Title

Xerox Sigma 6 Computer/Reference Manual

Xerox Sigma 7 Computer/Reference Manual

Xerox Sigma 9 Computer/Reference Manual

Xerox Universal Time-Sharing System (UTS)/OPS Reference Manual

Xerox Universal Time-Sharing System (UTS)/SM Reference Manual

Xerox Universal Time-Sharing System (UTS)/BP Reference Manual

Xerox Universal Time-Sharing System (UTS)/TS User's Guide

Xerox BASIC/LN,OPS Reference Manual

Xerox Meta-Symbol/LN,OPS Reference Manual

Xerox Extended FORTRAN IV/LN Reference Manual

Xerox Extended FORTRAN IV lops Reference Manual

Xerox FORTRAN Debug Package (FDP)/Reference Manual

Xerox ANS COBOL/LN Reference Manual

Xerox ANS COBOL/OPS Reference Manual

Xerox Manage/Reference Manual

Xerox Sort-Merge/Reference Manual

Xerox Functional Mathematical Programming System (FMPS)/Reference Manual

Xerox SL-1/Reference Manual

Xerox 1400 Series Simulator/Reference Manual

Publication No.

90 17 13

900950

90 17 33

90 16 75

90 1674

90 1764

90 16 92

90 15 46

900952

9009 56

90 11 43

90 16 77

90 1500

90 15 01

90 16 10

90 11 99

90 16 09

90 1676

90 1502

Manual Content Codes: BP - batch processing, LN - language, OPS - operations, RBP - remote batch processing,
RT - real time, SM - system management, TS - time-sharing, UT - utilities.

The specifications of the software system described in this publication are subject to change without notice. The availability or performance of some features may
depend on a specific configuration of equipment such as additional tape units or larger memory. Customers should consult their XDS sales representative for details.

ii

CONTENTS

GLOSSARY vii 2741 and Teletype Differences 10
Line State 11

l. INTRODUCTION Log-On 11
BREAK and ESC 11

Definition of UTS ____ 1 COC Routine 11
Time-Sharing Service ___ 1 Summary of 2741 and Teletype Differences __ 12

Terminal Executive Language 1
Edit 1
Xerox Extended FORTRAN IV 1
Meta-Symbol 2 3. TERMINAL EXECUTIVE LANGUAGE 13
BASIC _________ 2
Delta 3 Introduction 13
Periphera I Conversion LClnguage 3 Major Operations 13
Link 3 Composing Program and Data Files 14
Super 3 Assembling or Compiling Programs 14
Control 3 Linking Ob ject Programs 16
Rates 3 Loading Programs and Ini tiating Execution __ 18
Fill 4 Initiating Debugging Operations 19
USTPM 4 Managing and Backing Up Files 19
Summary 4 Submitting Batch Jobs 20
DRSP 4 Ca" i ng Subsystems 20
SYSGEN _ 4 Interrupting, Continuing, and Terminating
ANLZ 4 Execution 21
Manage 4 Minor Operations 21

Batch Service 4 Checkpointing On-Line Sessions 21
Assigning I/o Devices and DCB Parameters _ 22
Determining On-Line User Status 25
Listing System Load Parameters 25
Setting Simulated Tab Stops 25
Changing Terminal Type 25

2. TERMINAL OPERATIONS 5 Changing Terminal Platen Size 26
Sending Messages to the Operator 26

Introduction _ 5 Printing or Punching Output 26
Conventions 5 Error Messages 26

Initiating and Ending On-Line Sessions 5 TEL Error Messages 26
Typing Lines - 7 Batch Error Messages 26

Prompt Choracters --- 7 TE L Command Summary 26
Echoing Clharacters --- 7
Erasing Characters ___ 7
Erasing the Current Input Line 8
Cancell in~1 All Input and Output 8 4. META-SYMBOL, EXTENDED FORTRAN IV,
Entering Blank Lines ___ 8 AND BASIC OPERATIONS 33
Retyping tlhe Current Linc~ 8
Entering Multiline Records 8 Introduction 33
Terminating Lines --- 8 Meta-Symbol 33
T yp i ng Ahead 8 FORTRAN IV 35
Pag ination and Lineation 8 UTS BASIC 38
Simulating Tab Stops __ 8
Simulating Tab Characters 9
Inserting Spaces 9
Setting the Tab Relative Mode 9 5. PERIPHERAL CONVERSION LANGUAGE 39
Restricting Input to Upper Case 9
Interpreting Upper Case os Lower Case 9 Introduction 39
Exiting the Lower Case Interpret Mode 9 Conventions 39

Typing Commonds ____ 9 Syntax 39
Detecting and Reporting Errors 9 Device Identification Codes 39
Interrupti ng UTS - _____ 10 File and Reel Identification 40
Paper Tape Input 10 Capabi I ities 41

Half Duplex Paper Tape Reading Mode 10 Break Function 41

iii

File COpy Command ___________ 41 F _____________________ 67

COpy Command Format (General ized) 41 o 68
COpy Command Format (Specific) 42 E 68
Data Encoding 43 Rand L 68

Account COpy Command 45 L 68
Control File COpy Command 48 R 68
Other Commands 49 TS 69

DELETE 49 TY 69
DELETEALL 49 JU 69
LIST 50 NO 69
REVIEW 51 RF 70
SPF 52 Messages 70
SPE 52 Edit Command Summary 70
WEOF 52
REW 52
REMOVE 52
TABS 52

7. DELTA 77

Termination of PCL 52
Error Messages 53
PCL Command Summary 54

Introduction _______________ 77

Ca II i ng De I ta 77
Exiting Delta 77
Prerequisites 77
Saving Program Modifications 78

6. EDIT 56
Conventions 78
Command Delimiters 78

Introduction ______________ 56
Calling Edit 56
Record Formats 56
Multiline Records 56
BREAK Function 57

Edit Commands 57
Command Structure 57
Fi Ie Commands 57

EDIT 58
BUILD 58
COpy 58
DELETE 59
MERGE 59
END 59
CR 60
TA 60
BP 60

Record Editing Commands 61
IN 61
IS 61
DE 62
TY 62
TC 62
TS 63
MD 63
MK 63

Correcting Typing Errors 79
Expressions 79
Constants 79

De I ta Comma nds 79
Expression Evaluation: The = Command ___ 79
Memory Cell Opening and Display: The I,

TAB, and \ Commands ________ 80
Memory Modification: The RET, LF, t ,

and TAB Commands _________ 81
Symbol Table Control: The ;U, ;K, ;S,

!, and < > Commands ________ 82
Execution Control: The ;G, ;P, ;X,

and) Commands __________ 83

Breakpoints: The ;B, ;T, ;D, and ;Y
Commands ____________ 84

Memory Search and Modification: The ;W,
;N, ;M, and ;L Commands ______ 88

Memory Clearing: The;Z Command 89
Display Modes: The ;A, ;R, and ;RK

Commands ____________ 89

Printer Output: The;O and;J Commands __ 89
Executive Delta 90
Writing Programs with Delta 90
Errors and Error Messages 90
Program Exits 91
Delta Command Summary 91

FD 64
FT 64
FS 64 8. LINK PROCESSOR 96
RN 65
CM 65 Introduction ______________ 96
SE 65 Load Module Structure 96
SS 65 Progrom 96
ST 66 Global Symbols 97

Intrarecord Editing Commands 66 Internal Symbols 97
S 66 Symbol Tables 97
D Q Conventions 98
P 67 li nk Commands 98

iv

Error Messages 98 C. COMPARISON OF UTS AND BTM
Link Command Summary __ 98 TIME-SHARING SERVICES 122

Teletype Operations 122
Input/Output Conventions 122

9. MONITOR SERVICES TO USER PROGRAMS 101 Terminal Executive Language (TEL)
Versus BTM Exec 122

Introduction 101 Subsystem Comparisons 124
On-Line UTS Service Calls 101 UTS META and BTM Symbol Assemblers ___ 124

Set Prompt' Character __ 101 UTS FORT4 and BTM FORTRAN Subsystems_ 124
M:PC 101 UTS LINK and BTM Loader Subsystems 124

Change Terminal Type __ 101 UTS Edit and BTM Edit 128
M:CT _ 101 UTS Delta and BTM Delta 128

Change Activation Charocters 101 UT S BASIC and BPM/BTM BASIC 129
On-Line and Batch Differences 102 UTS Counterparts to FERRET Commands 130

Exit Return (M:EXIT)-- 102 Miscellaneous Information 130
Error Return (M :ERR) __ 102
Abort Return (M:xxx) 102
Type a Message (M:TYPE) 102
Request a Key-In (M:KEYIN) 103
Connect to INTERRUPT or BREAK Key

(M:INT) 103 FIGURES

1. Model 33 Teletype Terminal Keyboard 6

10. COMMUNIC.ATION SERVICES TO 2. FORTRAN and Assembly-Language
USER PROGRAMS 104 Programming 13

Introduction _ 104 3. A Multiline Record 57
Write Operations 104
Read Operations 104
Error and Abnormal Control _ 105
Break Cont ro I 106
Monitor Escape 106
Set and Device DCB CALs __ 106 TABLES
Page Control and Headings __ 106
Tab Simulation 108 1. On-Line User Processors
Transparent Mode ____ 108

2. Summary of Differences Between 2741
and Teletype Services 12

INDEX 131
3. DCB Assignment Codes - SET Command 23

4. Device Options - SET Command 24

5. Fi Ie Options - SET Command 24

6. TE L Error Messages 27
APPENDI)(:ES

7. Batch Service Error Messages 28
A. XDS STANDARD SYMBOLS" CODES,

AND CORRESPONDENCES 109 8. TE L Command Summary 29

XDS Standard Symbols and Codes 109 9. BATCH Subsystems LIMITS - Option
XDS Standard Character Sets 109 Maximums Versus Job Priority 32
Contro I Codes 109
Special Code Properties __ 109 10. Meta-Symbol Assembly Options 34

11. FORTRAN IV Compi lation Options 36

B. MONITOR ERROR MESSAGES 117 12. Device Identification Codes 40

Introduction 117 13. Data Codes 43

v

14. Data Formats 43 A-2. XDS Standard 7 -Bit Communication
Codes (ANSCII) 110

15. Mode Codes - COpy Command 43
A-3. XDS Standard Symbol-Code

16. Record Sequencing Options - COpy Correspondences 111
Command 45

A-4. ANSClI Control-Character Translation
17. Account Options - COpy Command 45 Table 115

18. Valid Option Combinations 46 A-5. Substitutions for Nonexistent Characters
on 2741 Keyboards 116

19. PC L Error Codes 53
B-l. Abnormal Codes - Insufficient or

20. PCL Command Summary 54 Confl icting Information 117

2l. Edit Messages 70 B-2. Abnormal Codes - Device Failure or
End-of-Data 118

22. Edit Command Summary 72
B-3. Error Codes - Insufficient or Conflicting

23. Format Codes 78 Information 119

24. Special Symbols 79 B-4. Error Codes - Device Fai lure or
End-of-Data 120

25. Delta Command Summary 91
B-5. Other Monitor Error Codes 120

26. link Error Messages 98
C-l. Spec ia I Teletype Characters for UT S 123

27. link Command Summary 100
C-2. TE L Command Summary and Equiva lent

28. M:DEVICE CALs Acknowledged by COC BTM Command(s) 125
Routines 107

C-3. FERRET Commands and Corresponding
A-l. XDS Standard 8-Bit Computer Codes (EBCDIC)_ 110 UTS Commands 130

vi

GLOSSARY

address resolution code: a 2-bit code that specifies whether
an associated address is to be used as a byte address or
is to be converted (by truncating low order bits) to
a halfword, word, or doubleword address.

batch job: a job that is subm i tted to the batch job stream
through the card reader, or fohrough an on-line termi­
na I (using the BATCH commond).

binary input: input from the device to which the BI (binary
input) operational label is assigned.

conflicting reference: a reference to a symbolic name that
has more than one definition.

control command: any control message other than a key-in.
A control command may be iinput via any device to
which the system command input function has been
assigned (norma Ily a card reClder).

control key-in: a control message of the type that must be
input from the operator IS console.

control message: cmy message received by the Monitor that
is either a control command or a control key-in.

data control block (DCB): a table in the user program that
contains the information used by the Monitor in the
performance of an I/o opero:tion.

external reference: a reference to a declared symbolic
name that is not defined within the object module in
wh i ch the reference occurs. An externa I reference
can be satisfied only if the referenced name is defined
by an external load item in (mother object module.

file extension: a convention that is used when certain sys­
tem output DeBs are opened. Use of this convention
causes the fi Ic~ (RAD, tape, disk pack, etc.) con­
nected to the DCB to be positioned to a point just fol­
lowing the last record in the fi Ie. Thus, when
additional output is produced through the DCB, it is
added to the previous contents of the fi Ie, thereby
extending the fi Ie.

function parameter table (FPT): (l table through which a
userls program communicates with a Monitor function
(such as an I/o function).

ghost job: a job that is initiated by the Monitor, the
operator, or (I program that is neither a batch nor an
on-line progn:lm.

global symbol: a symbolic name that is defined in one
program modu Ie and referenced in another.

GO fi Ie: a temporary RAD storage fi Ie created, for ex­
ample, from relocatable object modules formed by a
processor. Such modu les may be retrieved by use of a
LOAD or RUN control command in batch mode or a
dollar sign in on-line mode.

internal symbol: a symbolic name that is defined and
referenced in the same program modu Ie.

job information table (JIT): a table associated with each
active job. The table contains accounting, memory
mapping, swapping, terminal DCB (M:UC), and tempo­
rary Monitor information.

job step: a subunit of job processing such as compilation,
assembly, loading, or execution. Information from
certain commands (JOB, LIMIT, and ASSIGN) and all
temporary fi les created during a job step are carried
from one job step to the next but the steps are other­
wise independent.

key: a data item consisting of 1-31 alphanumeric characters I
that uniquely identifies a record.

key-in: information entered by the operator via a keyboard.

linking loader: a program that is capable of linking and
loading one or more relocatable object modules and
load modules.

load map: a I isting of loader output showing the location or
value of all global symbols entering into the load. Also
shown are symbols that are not defined or have multi­
ple definitions.

load module (LM): an executable program formed by the
linking loader, using relocatable object modules (ROMs)
and/or load modules (LMs) as source information.

logical device: a peripheral device that is represented in a
program by an operational label (e.g., BI or PO) rather
than by specific physical device name.

monitor: a program that supervises the processing, loading,
and execution of other programs.

object language: the standard binary language in which
the output of a processor is expressed.

vii

object module: the series of records containing the load
information pertaining to a single program or subprogram
(i .e., from the beginning to the end). Object modules
serve as input to the loader.

on-line job: a job that is submitted through an on-line ter­
minal by a command other than the BATCH command.

operational label: a symbolic name used to identify a logi­
cal system device.

option: an elective operand in a control command, proce­
dure call, or on-line command, or an elective param­
eter in a Function Parameter Table.

parameter presence i ndi cator: a bit in word 1 of a Functi on
Parameter Table that indicates whether a particular
parameter word is present in the remainderofthe table.

physi cal devi ce: a peripheral devi ce that is referred to by
a name specifying the device type, I/O channel, and
device number (also see "logical d.evice").

prompt character: a character that is sent to the terminal
by an on-line language processor to indicate that the
next line of input may be entered.

public library: a set of library routines declared, at System
Make time, to be public (i .e., to be used in common
by all concurrent users).

reentrant: an attribute of a program that allows the program
to be shared by severa I users concurrentl y. Shared pro­
cessors in UTS are map reentrant. That is, each in­
stance of execution of a single copy of the program's
instructions has a separate copy of the execution data.

relative allocation: allocation of virtual memory to a
user program starting with the first unallocated page
avai lable.

relocatable object module (ROM): a program, or subpro­
gram, generated by a processor such as Meta-Symbol
or FORTRAN (in XDS Sigma 7 object language).

resident program: a program that has been loaded into a
specifi c area of core memory.

secondary storage: any rapid-access storage medium other
than core memory (e.g., RAD storage).

viii

shared processor: a program (e.g., FORTRAN)thatisshared
by all concurrent users. Shared processors must be es­
tablished in UTS by SYSGEN.

source language: a language used to prepare a source
program suitable for processing by an assembler or
compiler.

special shared processor: a shared processor that may be in
core memory concurrently with the user's program(e.g.,
Delta or TEL).

specific allocation: allocation of a specific page of unallo­
cated virtual memory to a user program.

static core module: a program module that is in core mem­
ory but is not being executed.

symbiont: a Monitor routine that transfers information be­
tween RAD storage and a peripheral device independent
of and concurrent with job processing.

symbolic input: input from the device to which the SI(sym­
bolie input) operational label is assigned.

symbolic name: an identifier that is associated with some
parti cular source program statement or item so that
symbolic references may be made to it even though its
value may be subject to redefinition.

system library: a group of standard routines in object­
language format, any of which may be incorporated in
a program being formed.

system register: a register used by the Monitor to communi­
cate information that may be of use to the user program
(e.g., error codes). System registers SR1, SR2, SR3,
and SR4 are current general registers 8, 9, 10, and 11,
respectively.

task control block (TCB): a table of program control infor­
mation built by the loader when a load module is
formed. The TCB is part of the load module and
contains the data required to allow reentry of library
routines during program execution or to allow a synchro­
nous entry to the program incases ~f traps, breaks, etc.
The TCB is program associated and not task associated.

unsatisfied reference: a symbolic name that has been ref­
erenced but not defined.

1. INTRODUCTION

DEFINITION OF UTS

The Universal Time-Sharing System (UTS) is a comprehensive
operating system designed for use with Sigma 6/7/9 com­
puters. It provides a time-shared computing service with a
Sigma 6, 7, or 9 computer as the central computer and up to
128 on-line terminals. In addition to time-sharing services,
UTS provides local batch service.

TIME-SHARING SERVICE

There are three general categories of time-sharing service
provided to on-line users. They are on-line file manage­
ment, on-line program execution and debugging, and on-
I ine entry of jobs into the batch job stream • The processors
that provide these services are listed in Table 1 and are
discussed in more detail in the following paragraphs.

TERMINAL EXECUTI\I'E LANGUAGE

The terminal Executive language (TEL) is the principal
terminal language for UTS. Most activities associated with
FORTRAN and assembly language programming can be
carried out directly in TEL through requests that take the

Processor

TEL

EDIT

FORT4

META

BASIC

FDP

DELTA

PCl

LINK

Table 1. On-Line User Processors

Function

Executive language control of all terminal
activities.

Composition and modification of programs
and other bod i es of text.

Compi lation of Xerox Extended
FORTRAN IV progrCIms.

Assembly of Me·ta-Symbol programs.

Compilation and execution of programs or
direct statements written in an extended
BAS Ie language.

Debugging of Xerox Extended
FORTRAN IV progmms.

Debufming of progroms at the machine
language level.

Transfer (and conversion) of data between
peripheral devices.

Linkage of programs for execution

form of single-line commands and declarations. These
activities incl ude such major operations as composing
programs and other bodies of text, compiling and assembling
programs, linking object programs, initiating execution, and
debugging programs. They also include such minor operations
as checkpointing on-I ine sessions, determining program status,
and setting simulated tab stops. (Reference: Chapter 3.)

EDIT

The Edit processor is a I ine-at-a-time context editor
designed for on-line creation, modification, and handling of
programs and other bodies of information. All Edit data is
stored on RAD or disk pack storage in a keyed fi Ie structure
of sequence,...numbered variable length records. This struc­
ture permits Edit to directly access each I ine or record of
data.

Edit functions are controlled through single-line commands
supplied by the user. The command language provides for
insertion, deletion, reordering, and replacement of I ines or
groups of lines of text. It also provides for selective print­
ing, renumbering records, and context editing operations of
matching, moving, and substituting line-by-line within a
specified range of text lines. File maintenance commands
are also provided to allow the user to bui Id, copy, and delete
whole files of text lines. (Reference: Chapter 6.) I

XEROX EXTENDED FORTRAN IV

The Xerox Extended FORTRAN IV language processor (FORT4)
consists of a comprehensive algebrai c programming language,
a compiler, and a large library of subroutines. The language
is a superset of most available FORTRAN languages, contain­
ing many extended language features to faci I itate program
development and checkout. The compiler is designed to
produce very efficient object code, thus reducing execution
time and core requirements, and to generate extensive diag­
nostics to reduce debugging time. The library contains over
180 subprograms and is available in a reentrant version.
Both the compiler and runtime library for object programs
are reentrant programs that are shared among all concurrent
users to improve the utilization of the critical CQre resources.

The principal features of Xerox Extended FORTRAN IV are
as follows:

Extended language features to reduce programming
effort and increase range of applications.

Extensive meaningful diagnostics to minimize
debugging time.

In-line assembly language code to reduce execu­
tion time of critical parts of the program.

Introd ucti on

Overlay organization for minimal core memory
uti I ization.

Comp i I er prod uced reentrant programs.

Full use of UTS features.

Availability of reentrant version of library.

(Reference: Extended FORTRAN IV /LN Reference
Manual, 90 09 56 and Extended FORTRAN IV lOPS
Reference Manual, 90 11 43.)

META-SYMBOL

Meta-Symbol is a procedure-oriented macro assembler that
provides services available in sophisticated macro assemblers
and has special features that permit the user to execute
dynamic control over the parametric environment of assem­
bly. Meta-Symbol's highly flexible assembly language
gives users full use of the available Sigma hardware
capabil iti es.

Under UTS, Meta-Symbol may be used in batch or on-I ine
mode. In on-line mode, the assembler allows programs to
be assembled and executed on-line but does not allow
conversational interaction.

One of Meta-Symbol's features is a highly flexible list
definition and manipulation capability. Lists and list
elements may be conveniently redefined, thus changing
the value of a given element.

Another Meta-Symbol feature is the macro capability. XDS
uses the term "procedure" to emphasize the highly sophisti­
cated and flexible nature of this macro capability. Proce­
dures are assembly-time subroutines that provide the user
with an extensive function capabi I ity. Procedure defini­
tions, reference, and recursions may be nested up to 32
levels.

Meta-Symbol also has an extensive set of operators to
facilitate the use of logical and arithmetic expressions.
These operators faci I itate the parametric coding capabi I ities
available with Meta-Symbol (parametric programming aliows
for dynamic specification of both "if" and "how" a given
statement or set of statements is to be assembled).

Users are also provided with an extensive set of directives.
These directives, which are commands intrinsic to the
assembly, fall into three classes:

1. Directives that involve manipulation of symbols and
are uncondi ti onally executed.

2. Directives that allow parametric programming.

3. Directives that do not allow parametric programming.

Intrinsic functions are also included in Meta-Symbol. These
give the user the ability to obtain information on both the
structure and content of assembly time constructs. For
example, the user can acquire information on the length of

2 Time-Sharing Service

a certain list. He can inquire about a specific symbol and
whether it occurs in a procedure reference. (Reference:
Meta-Symbol/LN, OPS Reference Manual, 9009 54.)

BASIC

BASIC is a compiler and programming language similar to
Dartmouth BASIC. It is, by design, easy to teach, learn,
and use. It allows individuals with I ittle or no programmi ng
experi ence to create, debug, and execute programs via an
on-I ine terminal. Such programs are usually small to medium
size, predominantly arithmetic applications.

BASIC is designed primarily for on-line program development
and execution, or on-line development and batch execution.
In addition, programs may be developed and executed in
batch mode.

BASIC provides two user modes of operation. The editing
mode is used for creating and modifying programs. The
compi lation/execution mode is used for running completed
programs. This arrangement simpl ifies and speeds up the
program development cycle.

BASIC statements may be entered via a terminal and immedi­
ately executed. During execution, programs may be investi­
gated for loop detection, snapshots of variables may be
obtained, values of variables may be changed, flow of execu­
tion may be rerouted, and so on. This unique capabi I ity also
allows an on-line terminal to be used as a "super" desk
calculator.

At compile and execute time, the user may specify an array
dimension check. In the safe mode, statements are checked
to verify that they do not reference an array beyond its
dimensions. In the fast mode, this time consuming check is
not made. The safe mode is used during checkout; the fast
mode is used when the program reaches the production state,
to speed up execution.

BASIC provides an image statement that uses a "picture II of
the desired output format to perform editing. It also has TAB
capability and a precision option to indicate the number of
significant digits (6 to 16) to be printed.

BASIC also has an easy-to-use feature allowing the user to
read, write, and compare variable alphanumeric data. This
is particularly important for conversational input processing.

Chaining permits one BASIC program to call upon another for
compi lation and execution without user intervention. Thus,
programs that woul d exceed user core space may be sequenced
and overlay techniques may be employed via the chaining
facility. (Reference: BASIC/Reference Manual, 90 15 46.)

FORTRAN DEBUG PACKAGE

The FORTRAN debug package (FDP) is made up of special
I ibrary routines that are called by XDS Extended FORTRAN
IV object programs compiled in the debug mode. These rou­
tines interact with the program to detect, diagnose, and in
many cases, temporarily repair program errors.

The debugger can be used in batch and on-I ine mode. An
extensive set of debugging commands are available in both
cases. In batch operation, the debugging commands are
included in the source input and eIre used by the debugger
during execution of the program. In on-line operation, the
debugging commands are entered through the terminal key­
board when requested by the debugger. Such requests are
made when execution starts or restarts and for all execution
stops in which the debugger has control. The debugger
normally has control of such stops"

In addition to the debugging commands, the debugger has a
few automatic debugging features" One of these features is
the automatic comparison of standard calling and receiving
sequence arguments for type compatibi I ity. When appl i­
cable, the number of arguments in the standard calling
sequence is checked for equal ity with the number of dum­
mies in the receiving sequence. These calling and receiving
arguments are also tested for protection conflicts. Another
automatic feature is the testing of subprogram dummy storage
attempts, to determiine if they violate the protection of the
call ing argument. (Reference: FORTRAN Debugger/
Reference Manual, 90 16 77.)

DELTA

Although Delta is designed to aid in the debugging of
programs at the assembly-language or machine-language
levels, it may be used to debug FORTRAN, COBOL, or any
other program. It is designed and interfaced with UTS in
such a way that it may be called in to aid debugging at any
time (even after a program has been loaded).

Delta operates on object programs and tables of internal
and global symbols used by the programs but does not require
the tables to be present. With or without the symbol tables,
Delta recognizes computer instruction mnemonic codes and
can assemble machine-language programs on an instruction­
by-instruction basis. The main purpose of Delta, however,
is to facilitate the Clctivities of debugging by

1. Examining, inserting, and modifying program elements
such as instructions, numeric values, coded information
(i. e., data in <:tIl its representations and formats).

2. Control I ing execution, incl uding the insertion of break
points into a program and requests for breaks on changes
in elements of data.

3. Tracing execution by displaying information at
designated points in a program.

4. Searching programs and data for simple elements or
elements within a hierarchy.

To assist the first activity, UTS ass,emblers and compilers
include information identifying the type of data each symbol
in the symbol table represents. The type of data includes
symbolic instructions, decimal integers, floating-point
values, single and double precision values, EBCDIC encoded
information, and other types. (Reference: Chapter 7.)

PERIPHERAL CONVERSION LANGUAGE

The Peripheral Conversion Language (PCL) is a utility
subsystem designed for operati on in a batch or on-I ine envi­
ronment under UTS. It provides for information movement
among card devices, line printers, on-line terminals,
magnetic tape devices, disk packs, and RAD storage.

PCL is controlled by single-line commands suppl ied through
on-line terminal input, through a file containing PCL com­
mands, or through command card input in the job stream.
The command language provides for single or multiple file
transfers with options for selecting, sequencing, formatting,
and converting data records. Additional file maintenance
and utility commands are provided. (Reference: Chapter 5.)

LINK

Link is a linking loader that constructs a single entity called
a load module, which is an executable program formed from
relocatable object modules. Link is a one-pass linking
loader that makes full use of mapping hardware. It is not an
overlay loader. If the need for an overlay loader exists, the
overlay loader (Load) must be called by entering the job in
the batch stream. (Reference: Chapter 8.)

SUPER

Supe/ gives system management control over the entry of
users and the privi leges extended to users. Through the use
of Super commands, a system manager may add and delete
users, specify how much core and RAD storage space a user
will have, and control the use of central site magnetic tape
units, symbi ont printers and punches. He may also grant
certain users, say system programmers, special privileges such
as the privilege of examining, accessing, and changing the
Monitor. (Reference: UTS/SM Reference Manual, 901674.)

CONTROL

The Control processo/ provides on-I ine control over system
performance. UTS has a number of performance measures
built directly into the system. Commands of the Control
processor enable system management to display these mea­
surements and to "tune" the system as needed. (Reference:
UTS/SM Reference Manual, 90 16 74.)

RATES

t
The Ra tes processor a II ows the system manager to set re la-
tive charge weights on the utilization of system services.
(Reference: UTS/SM Reference Manual, 90 1674.)

t
These processors are system management processors and are

not available to other on-line terminal users.

Ti me-S hari ng Servi ce 3

FILL

The Fi II processort performs three basic fi Ie maintenance
functions:

1. It copies fi les from disk to tape as a backup.

2. It restores fi les from tape to disk.

3. It deletes files from disk.

(Reference: UTS/SM Reference Manual, 90 1674.)

UTSPM

The UTS Performance Monitor (UTSPM/ displays and collects
performance data on a running system and produces snap­
shot fi les to be displayed by the report generator Summary.
(Reference: UTS/SM Reference Manual, 90 16 74.)

SUMMARY

The Summary processo/ provides a global view of UTS per­
formance by formatting and displaying the statistical data
collected by UTSPM. (Reference: UTS/SM Reference
Manual, 90 1674.)

DRSP

DRSpt (Dynamic Replacement of Shared Processors) enables
the system manager to dynamica Ily add, replace, or delete
shared processors and Monitor overlays. He may do this
during norma I system operations with other users on the sys­
tem. (Reference: UTS/SM Reference Manual, 90 1674.)

SYSGEN

SYSGEN
t

is made up of several processors. These proces­
sors are used to generate a variety of UTS systems that are
tailored to the specific requirements of an installation.
(Reference: UTS/SM Reference Manual, 90 1674.)

4 Batch Service

ANLZ

ANLzt (Analyze) provides the system programmer with a
means of examining and analyzing the contents of dumps
taken duri ng system recovery. (Reference: UT S/SM
Reference Manual, 90 16 74.)

MANAGE

Manage
tt

is a generalized file management system. It is de­
signed to a Ilow decision makers to make use of the computer
to generate and update files, retrieve useful data, and gen­
erate reports without having a knowledge of programming.
(Reference: Manage/Reference Manual, 90 16 10.)

BATCH SERVICE

Batch processing facilities are described in UTS/BP Refer­
ence Manual, 90 1764. Although some facilities and pro­
cessors are reserved for on-I ine use and others for batch use,
the two classes of service are complementary. Generally
speaking, anything that can be done in batch mode can be
done on-line, although sometimes in a curtailed manner.
In particular, compi lers and assemblers are compatible
across the two classes of service at source and relocatable
levels. For example,

1. Processors for Extended FORTRAN IV and Meta-Symbol
are ava i lab I e both in batch and on -I i ne mode.

2. Programs compi led or assembled in batch can be I inked
with those produced on-I ine and can be run and
debugged on-I ine.

3. Programs compiled or assembled on-line can be linked
and run in batch mode.

(Reference: UTS/BP Reference Manual, 90 17 64.)

t
These processors are system management processors and are

not available to other on-line terminal users.

ttThis processor is made available by XDS on an optional
basis. It wi II be provided only to those users who execute a
License Agreement for each applicable Sigma installation.

2. TERMINAL OPERATIONS

INTRODUCTION

The following types of on-I ine terminals may be used with
UTS:

XDS Model 7015 Keyboard/Printer

Teletype® Models 33, 35, and 37

IBM 2741 Terminals

The terminal operations described in this chapter apply
primarily to Teletype and XDS Model 7015 terminals (see
Figure 1) and to the Terminal Exec:utive Language (TEL).
Operations that are unique for 2741 terminals are delineated
at the end of the chapter. TerminGI communication services
to user programs are! discussed in Chapter 10.

Seven facets of terminal operations are described in this
chapter. They are

1. Initiating and ending on-line sessions.

2. Typing lines.

3. Typing commands.

4. Detecting and reporting errors.

5. Interrupting UTS.

6. Paper tape input.

7. 2741 and Teletype differences.

CONVENTlonlS

A number of conventions are used in command specifica­
tions and examples I-hroughout the remainder of this manual.
These conventions are I isted below.

BRACES {}

Braces enclose requiired alternatives.

BRACKETS []

Brackets enclose opl-jonal parameters.

COMMAND TERMINATOR @)@

These symbols indicClte that a carriClge return ® or I ine feed
@character has been sent to signcli the end of a command.

ELLIPSIS ••• or :

The ellipsis indicate-s that parameh9rs (••.) or commands (:)
have been om i tted. •

®Registered Trademark of the Teletype Corporation.

ESCAPE KEY @l

The symbol @ indicates that an ESC character has been
sent.

The superscript is used with the letters of term inal keys to
indicate a combination of keys. For example LC indicates
a control shift (CONTROL and L keys) and L cs indicates a
control and case shift (CONTROL, SHIFT, and L keys).

UNDERSCORE

All terminal output received from TEL or a subsystem is
underscored. Terminal input is not.

INITIATING AND ENDING ON-LINE SESSIONS

An on-I ine user must establ ish a connection with UTS and
identify himself properly before he can use TEL or any of its
subsystems. When a connection with UTS is established,
UTS responds by typi ng

UTS AT YOUR S ERVIC E

ON AT (time and date)

LOGON PLEASE:

UTS then waits for user account, name, and password
(optional) to be entered. The name must be from one to
twelve characters in length; account and password must be
from one to eight characters. Any of the following charac­
ters may be used in user account, name, and password:

A-Z a-z 0-9 $ * % : # @ - backspace

Underscores count as characters and pri nt as I eft-fac ing
arrows (-). Commas are used as separators. After name
(or password) is entered, the RETURN or LINE FEED key is
depressed to return the carriage to the left margin of the
next line and to deliver the line to UTS for examination.

For terminals operated in full-duplex mode, character echo­
ing by the system is normally on but can be turned off (e.g.,
to suppress printing of passwords or other security-related
information) by stri king the @ E keys. Striking the @ E
keys a second time turns echoing back on. For terminal
units operated in half-duplex mode, character echoing by
the system must be turned off, as above, to suppress dupl i cate
printing of characters.

If the identification is valid and consistent with UTS records,
TEL types its prompt character (!) at the left margin of the
top line of the next page and then awaits the first command.
If automatic association of a program or processor is

Terminal Operations 5

..... o·
-..
:l co
a
:l
a..
m
:l
a..
:l
co
o
:l
I

Co
:l
CD

VI
CD
en
en o·
a

0, 0' OOO~ 00f7\0000-1 2 3 4 5 6 7 V 9 0 : -

ITJ These keys are missing on some models.

[]] This key is positioned elsewhere on some models.

(US) (NUL)

SPACE BAR

IT] This is interpreted as I (OR) on Model 7015.

[I] This is interpreted as, (NOT) on Model 7015.

~
\::)

Characters obtained by depressing the SHIFT key are shown at the top of the key and characters obtained by depressing the CTRL key are shown at the bot­
tom of the key. Characters obtained by depressing both SHIFT and CTRL keys are shown above the key. On the actual keyboard, all unparenthesized
forms appear at the top of the key.

Figure 1. Model 33 Teletype Terminal Keyboard

specified in the userls log-on record, control passes to that
program instead of TE L for identification and command re­
quest. UTS sends an error message to the terminal and re­
peats the log-on request if the identification is garbled or
otherw i se i nva lid. The error messoges are

EH? (Preceded by a repeat of the input for hardware
debugg i n9 purposes.)

ACCOUNT/ID account/id?

PASSWORD?

It may not always be possible to log on. If an error prevents
the reading of the log-on file, the message UN RECOVER­
ABLE I/O ON RAD, or ABN ORMAL ERROR ON LOGON
FILE will be typed. Whenever the user is unable to log on,
he may start over by striking the BREAK key and trying
again. The system tries five times to log each user on
before dismissing him.

Following a successful log-on, if the user has - in a previous
session - exhausted his allocated permanent file storage
space, he receives the following message:

FILE STORAGE LIMIT EXCEEDED

This means that no file storing operations can be performed
until the user deletes one or more of his fi les.

If a MAILBOX fi Ie (a message fi Ie) exists at log-on time,
the message CHECK DC/MAILBOX will appear. This
MAILBOX file can be examined by copying it to the ter­
minal as follows:

!COpy MAILBOX TO ME

(The underscored exclamation mark is the "prompt character II
issued by TEL.)

The password in the log-on file can be set or changed at
any time by typing PASSWORD XX)(X, where xxxx is a
character string from one to eight characters in length.
(See Chapter 3.) Characters that may be used in a pass­
word command are as specified above.

If the PASSWORD command is used without specifying a
password (xxxx), a password is no longer required for log-on.

An on-line session is ended by entering the OFF command.
UTS sends the following use accounting information to the
term i na I when a user logs off:

CPU=m. mmmm CON=n:mm I~~T=nn CHG==xxxx

CPU time is expressed in minutes and ten-thousandths of a
minute. Terminal time (CON) is expressed in hours and
minutes. INT is the number of terminal interactions during
the on-line session. CHG is the total number of charge
un its for t he on-I i ne sess ion. (Reference: C ha pter 4,
UTS/SM Reference Manual, 90 16 74.)

TYPING LINES

The rules governing the typing of I ines are concerned with
operations such as erasing characters or I ines, terminating
lines, pagination, tabbing, and so on. These rules are
common to TEL, all subsystems, and programs that carryon
a I ine-by-I ine dialogue with the user.

PROMPT CHARACTERS

When a connection is first establ ished between a terminal
and the computer, a message is sent to the terminal request­
ing the user to log on. As soon as the user has logged on,
TEL types a prompt character at the left margin of the next
line to indicate that requests may be entered. Thereafter,
a prompt character is sent to the terminal following a com­
pleted request, an error, or an interruption by the user. If
the services of a subsystem are requested, the subsystem
identifies itself with a different prompt character.

The prompt characters used by TEL and all subsystems that
carryon line-by-line, rather than intraline, dialogues with
the user are as follows:

TEL

FORT4
META
BASIC

EDIT

FDP
DELTA

PCL
LINK

SUPER
CONTROL

Libraries

>
>
>
*

@
bell

<

?

ECHOING CHARACTERS - ESC E

For terminals operated in echoplex (full-duplex) mode,
character echoing - display on the terminal IS output device
of characters typed in - by the system is normally lon l, but
can be turned off, and on again, etc., at the userls discre­
tion (e. g., to suppress printing of passwords or other security­
related information). Successive uses of the ESC-E key
sequence toggles the echoplexing on/off state. For terminal
units operated in local-printing (half-duplex) mode, charac­
ters typed at the terminal are automatically printed by the
terminal. When operating in local-printing mode, the user
will need to turn echoplexing off to avoid redundant echoing
by the system. (In half-duplex, a direct electrical connec­
tion exists between the keyboard and printer, via the modem
unit.)

ERASING CHARACTERS - RUBOUT OR ESC RUBOUT

Depressing the RUBOUT key (or the ESC RUBOUT sequence)
erases the last un erased character. UTS responds by typing

typing Lines 7

a backs lash (\) to indicate it has effectively backspaced
and erased. On terminals that can backspace, backspacing
does not erase. Thus, it is possible to overstrike characters
as we II as to erase them.

ERASING THE CURRENT INPUT LINE - ESC X

The current input message (one line or less) is erased by
depressing two keys ESC and X sequentially. UTS types a
left-facing arrow or underscore, returns the carriage to the
position at the beginning of input on the next line, and
returns control to the user without further comment. The
correct message may then be entered.

CANCELLING ALL INPUT AND OUTPUT - CONTROL X

Depressing the CONTROL and X keys simultaneously will
cause all input (including messages typed ahead) and all
output to be deleted. If an input operation was pending,
additional action is identical to that for ESC X above.

ENTERING BLANK LINES

Blank lines are usually ignored by subsystems. However,
some subsystems, in certain modes, treat a blank line as a
command to change to a different program control level.

RETYPING THE CURRENT LINE - ESC R

When the ESC R sequence is received, the carriage is
returned to the position at the beginning of input on
the next line and all characters accumulated will be
retyped by the system. The user is then allowed to complete
the message.

ENTERING MULTILINE RECORDS - LOC RET,
ESC LINE fEED OR ESC RET

On a terminal unit having an inherent line-width limit of
less than 140 (e.g., Teletype Models 33, 35, and 37), a
single, multiline record may be entered in either of two
ways:

1. Using the local carriage return key marked LaC RET,
if present, to "break" the input line without releasing
it to· the system.

2. Using the simulated local carriage return sequence
ESC RET or ESC LINE FEED for the same purpose.

8 Typing Lines

TERMINATING LINES

When TEL or a subsystem that carries on a line-by-line
dialogue is in use, an "end-of-message" is signaled by
depressing either the RETURN or LIN E FEED key. Depress­
ing the CONTROL and L keys simultaneously signals an end­
of-message II and an "end-of-page". FS, RS, US, and GS (see
Table A-3) signal"end-of-message" without carriage motion
or character printing. ESC and then F signa Is "end-of-fi Ie ".
Each read operation at the terminal specifies a maximum
number of characters to be read (never more than 140). If
this number is reached, "end-of-message II is signa led.

TYPING AHEAD

COC routines allow Itype-ahead l operations. Key strokes
(or paper tape frames) that are input by the user before the
system requires them wi" be retained unti I an M :READ is
issued.

PAGINATION AND LINEATION - CONTROL L

Pagination and lineation are controlled by UTS so as to pro­
vide 8-1/2 by 11-inch pages with l-inch margins at the top
and bottom of each "page". This assumes a 9-1/2 inch
platen, giving 85 characters to the line on XDS 7015; Tele­
types provide For 72 characters. UTS counts lines to give
54 I ines per page. Pagination can be requested directly by
depressing the CONTROL and L keys simul taneously.
Pagination consists of the following:

1. Blank I ines to the page bottom.

2. A heading line containing date, time, user identifica­
tion, terminal identification, and page number.

3. Five additional blank lines.

4. User heading I ine, if any.

Other settings of platen width and page length may be made
with a TEL command.

SIMULATING TAB STOPS - ESC T

The user can enter tabulation characters into his terminal in­
put, either with the CONTROL and I key combination or
ESC I sequence on teletypewriter units, or the TAB key on
terminal units that have it. UTSsimulates tabbing by typing
(echoing) successive blank characters. Tab-stop values for
this simulation can be setor changed by the TABS command.
This tab simulation is under the userls control: it is normally
lon l at the beginning of a terminal session, but the user can
turn it off, and back on again, with the ESC-T key sequence
(i .e., successive uses of the ESC-T sequence has a toggle­
switch effect on tab simulation each use reversing the previous
on or off state). With tab simulation on, any tab characters

either sent from the terminal or received for transmission to
the terminal are replaced at the terminal by an appropriate
string of blanks (in lieu of mechanical tabulation). If no
tab-stop values are set, each tcib character is replaced by
a single blank. The state of tab simulation does not deter­
mine whether or not blanks are substituted fora tab character
in the input stream received by the processor or program
requesting the input".

SIMULATING TAB CHARI~CTERS - ESC I

The ESC I sequence is treated exactly as a tab character.
This function is provided for termi nals that are not equipped
with a TAB key.

INSERTING SPACES - ESC S

One or more spaces are normally inserted into the terminal
input stream in place of a tab chalrOcter (i. e., the tab
characters themselves are not normally passed to the pro­
cessor or program reiquesting the input). When space­
insertion mode is on (initial state)" each tab character is
replaced in the input stream by an appropriate number of
blanks if tab settings are in effect. If there are no tab
settings, only a singlle space is ins1erted. This space inser­
tion is under the user's control, however: he can turn
space-insertion mode off by use of the ESC-S key sequence,
causing the tab characters to remain in the input stream.
(This can result in a significant spoce saving in large files.)
Successive uses of ESC-S toggles the space-insertion mode
from on to off, off to on, etc.

SETTING THE TAB RELATI\'E MODE - ESC C

Normally tabs are considered to he physical carriage posi­
tions. If the tab relative mode is active, tabs on input, are
consi dered to be offset from the pos i ti on of the carri ag e at
the beginning of input.

The tab relative mod~ is toggled on or off by the ESC C
character sequence. The tab relaHve mode is initially set
to OFF.

RESTRICTING INPUT TO UPPER CASE - ESC U

When the character pair ESC U is received, a flag that
controls alphabetic characters is toggled. When set, all
lower case letters received are translated to their upper
case counterparts.

INTERPRETING UPPER CASE AS; LOWER CASE - ESC)

Receipt of the ESC) sequence causes all subsequent upper
case alphabetic characters to be interpreted as the corres­
ponding lower case character unti I receipt of the ESC (
sequence. The parenthesis are echoed, thus bracketing the
characters that were interpreted as upper case. This feature
is provided to enable terminals thClt are upper case only to
input lower case characters.

EXITING THE LOWER CASE INTERPRET MODE - ESC (

The ESC (character sequence removes the effect of the
ESC) sequence (described previously).

TYPING COMMANDS

Except for a few declaratives, commands take the form of
imperative sentences. They consist of an imperative verb
followed by a direct object or I ist of objects. Indirect
objects usually follow a preposition but may follow the verb
with elision of the implied direct objects. Minor variations
of this structure are expressed as encoded parentheticals
following either the verb or one of the objects. Individual
elements of a I ist of objects are set off from one another by
commas.

Common rules of composition are applicable to commands.
Words of the language, numerals, object identifiers, and
other textual entities may not be broken by spaces. Other­
wise, spaces may be used freely. For purposes of scanning
commands, both by machine and by human eye, this rule has
a simple interpretation. Leading spaces are skipped over in
a left-to-right scan for the next syntactic element of a com­
mand, and trai I ing spaces are treated as terminators for
words, numerals, and other textual entities. In terms of
machine scanning, tabs are treated as spaces.

Since it is impossible to determine whether or not trailing
characters in a command are in error, a unique code that
identifi es the end of the command is recognized as a syn­
tactic element. For TEL and the subsystems that carryon a
line-by-line dialogue, this is either a LINE FEED or
CARRIAGE RETURN code.

DETECTING AND REPORTING ERRORS

The primary object of the UTS error detection procedure is
that user information should not be destroyed by an attempt
to execute a command that cannot be carried through to
completion. To ensure that each command is at least for­
mally val id, TEL and all subsystems that carryon a I ine-by­
line dialogue always parse an entire command before starting
an operation.

Error messages sent to a terminal are as terse as possible
since the majority of errors are easi Iy found once the fact
that an error exists has be('}n brought to the attention of the
user.

The error messages and actions initiated by the errors are
contained at the end of each chapter for the system or
subsystem to which they apply. Many subsystems use the
following format for reporting garbled, malformed, or
unintell igible commands:

EH?@ n

where n gives the character position where the confusion
was first encountered.

Typing Commands/Detecting and Reporting Errors 9

INTERRUPTING UTS

UTS can be interrupted whenever it, one of its subsystems,
or a user program has control of the keyboard. Subsequent
control depends on which interrupt keys are used and which
subsystem or user program is in control.

CONTROL Y, ESC Y, OR ESC ESC

Regardless of what program is in control of the keyboard,
the operation can always be interrupted by simultaneously
depressing the CONTROL and Y keys (or by typing the
ESC Y sequence or the ESC ESC sequence.) UT S responds
by stopping the current operation as soon as there is a con­
venient breakpoint and turning control over to TEL. All
input received prior to this key-in that has not yet been
read by the program will be erased.

BREAK

If UTS, one of its subsystems, or a program explicitly
requesting break control is in control of the keyboard, the
operation can be interrupted by depressing the BREAK key.
This action gives control to the program that is currently in
communication with the terminal.

A succession of four or more BREAK signals always returns
control directly to TEL. There are two reasons for this
return to TEL. First, some actions can only be stopped at
points of convenience and others have so much inertia they
cannot be stopped at all. Second, machine or program
errors may have disabled the program1s response to the
BREAK signal. However, it must be emphasized that de­
pressing the BREAK key one time does not constitute a
preemptive request for the services of TEL as does depressing
the CONTROL and Y keys (or the ESC Y or the ESC ESC
sequence) •

The precise handling of interruptions by subsystems is defined
by the subsystems. The handling of interrupts by object pro­
grams is defined by the calls these programs can make on
UTS services. If the user does not have break control,
interruption of an object program always causes a return to
TEL. In general, interruption of the system or any of its
subsystems results in termination of the current operation as
soon as possible and return of control to the user after the
appropriate prompt character has been typed.

ESC Q

Teletype users may request acknowledgment from the system
at any time by use of the ESC Q sequence. The system wi II
respond by sending two exclamation po ints (!!) to the
terminal. No other action is taken by the Monitor.

PAPER TAPE INPUT

Paper tape may be punched off-line on Teletype terminals
and subsequently read on-line after the user has logged on

and a prompt for data on the tape has been issued. The
same characters that are keyed in during on-line input may
be punched into paper tape. The procedure for reading
paper tape on-line is as follows:

1. Insert the paper tape in the paper tape reader.

2. Depress the X-ON (QC) key. This will start the
reading of the tape by the paper tape reader under
control of the computer.

3. Depress the X-OFF (SC) key to turn off the paper tape
mode (read operation).

Rubout characters are ignored during a paper tape read
operation. This enables the user to use rubout characters
to delete unwanted characters as in normal paper tape
operation.

The paper tape read mode is set when a DC 1 character
(X-ON) is received from the Teletype. It is reset (to normal
processing) when a DCT3 character (X-OFF) is received.
Characters that are input through the keyboard while the
Teletype is in the paper tape mode are normally received
after the reader reaches the end of the tape or the tape is
removed from the reader.

Restrictions:

1. Line feed (LF) characters received after any other
activation condition is reached are ignored unless
Delta is reading.

2. The full duplex paper tape facility requires the X-ON,
X-OFF op"tion on the Teletype.

HALF DUPLEX PAPER TAPE READING MODE

A special mode is available for half duplex terminals that
are reading paper tape. Whi Ie in this mode, no attempt is
made by the Monitor to turn the tape reader off or on. Input
is accepted unti I avai lable buffer space is exhausted. No
program output, prompt characters, or echoes are sent to the
terminal because the mode renders the terminal incapable of
accepting output.

The half duplex paper tape mode is entered upon receipt of
an ESC P sequence or upon receipt of an X-ON character
while in the non-echoplex mode (controlled by ESC E). The
mode is exited by a balancing ESC P sequence or by an
X-OFF character if it was initiated by X-ON.

2741 AND TELETYPE DIFFERENCES

In addition to the differing code sets that are translated in
a straightforward way, certain unique features of 2741
terminals must be treated in a special way. First, use of the
2741 terminal is proprietary. Both computer and user must,
in turn, explicitly release control of the typewriter to the
other. Second, two code sets and two keyboard arrangements

10 Interrupting UTS/Paper Tape Input/2741 and Teletype Differences

for the 2741 EBCD and Selectri c(~) terminals are supported
and must be properly identified at log-on time. Third, the
important functions provided on Te·letypes by the ESC and
BREAK keys are combined in the 2741 ATTN key. Finally,
a line editing mode that uses backward and forward spacing
to positi on the carrii er for character replacement by over­
striking is introduced.

LINE STA1"E

Unlike Teletypes, 2741 terminals cannot transmit and
recei ve at the same ti me. The 2741 operator can type onl y
when the computer has unlocked the keyboard. The com­
puter can type only when the operator has locked the key­
board by ending his message with a carriage return or
attention character ..

LOG-ON

When a Teletype line is connected to UTS, a log-on message
is automatically sent to the terminal. Logging on from 2741
lines must be handled differently s,ince the keyboard is ini­
tiated for user inpul" when the I ine! is connected and the
code set and keyboard arrangement are unknown to the
computer at this poiint. The user (It the 2741 terminal must
identify the code set and type of keyboard before logging
on by sending an asterisk (*) followed by a carriage return
character. From this point on, the standard log-on sequence
is followed.

BREAK AND IESC

Separate BREAK and ESC keys are not present on 2741
keyboards. On these keyboards, the BREAK and ESC func­
tions are performed by the ATTN key. During input, while
the keyboard is unlocked, depressi ng the ATTN key sends
an EaT character to the computer. During output, while
the keyboard is locked, depressing the ATTN key sends a
break signal to the computer. When an EaT character is
input to the computer, an escape s,equence is performed.
The control function is represented by the character input
just prior to the EaT. If EaT is r1eceived when no other
input is received, it' is interpreted as a break.

COC ROUTliNE

A number of functions are perform.ed in the COC routine to
accommodate 2741 terminals. These functions are outlined
below.

LOG-ON PROCEDURE

The proper translation table is determined by a special
dial-up procedure for 2741 lines. When the asterisk key is
depressed, a different code is transmitted for the EBCD and

® Registered trademark of the IBM Corporation.

Selectric code sets (both APL and standard versions). This
character (*), followed by a carriage return character, is
the protocol for 2741 lines to log on wi th the proper trans­
lation table. If the asterisk character is not entered just
prior to the carriage return, a space and backspace are
transmitted to indicate that the I ine has been connected but
the translation table has not been determined. The proce­
dure can then be repeated.

SPECIAL CHARACTERS

Backspace: The normal mode for processing backspace
characters is to put the character in the user's buffer and to
include it in the count of characters received. See below
for backspace-overstrike editing.

Tab: Tab characters are processed like Teletype except that
ooinput spaces are not echoed to the terminal to position
the carrier to the next tab stop since actual physical tabs
are available on the 2741 keyboard.

Attention: The ATTN key performs the BREAK and ESC func­
tions of a Teletype terminal (see the section titled "BREAK
and ESC "). When a character that represents a control
function is detected by the COC handler, a backspace and
underscore are transmitted to the terminal to identify the
character as part of an escape sequence. An exception is
the escape sequence used to retype a line (R ATTN) which
results in an R being typed at the terminal before the
carrier is returned and the line is retyped.

Lowercase Carriage Return (Carriage Return): The input
message is terminated and a carriage return character
(X 'OD') is put in the user's buffer.

Uppercase Carriage Return (Line Feed): The input message
is terminated and a line feed character (X'15 1

) is put in
the user's buffer.

CONTROL CHARACTERS

Certain terminal characters perform control functions if
preceded by an ESC on the Teletype or if followed by an
ATTN (EaT) on the 2741. For the control characters listed
below, the function performed is the same on both types of
terminals:

C Tab re lative mode.
F End of file.
L Form feed.
Q - Acknowl edge.
R Retype.
S - Toggle space insertion.
T - Tab.
U Res tr i ct code to upper case.
X Cancel Line.
Y Escape to Mon i tor.
(Upper case sh ift.
) Lower case shift.

The function of the following 2741 characters do not corre­
spond directly to Teletype characters.

2741 and Teletype Differences 11

BACKSPACE: A BACKSPACE ATTN sequence on the 2741
is the same as the Teletype ESC RUBOUT sequence, except
in the backspace edit mode (which is discussed below.)

T: The tab simulation mode is switched from on to off or
vice versa with the T ATTN sequence. If on during output,
enough blanks are sent to the terminal to move the carrier
to the next higher tab position. Since actual physical tabs
are available on 2741 keyboards, the tab-simulation mode
state is ignored during input.

B: Since a break signal is sent to the computer only if the
"keyboard is locked, the B ATTN sequence simulates a break
when the keyboard is unlocked and is treated like a break
signal on a Teletype during input. If no other input has
been received, ATTN by itself is interpreted as a break.

SPACE: The input line is terminated and the end-of-message
character US (X'1F') is put in the user's buffer when the
SPACE ATTN sequence is received.

0: The backspace edit mode is switched from off to on or
vice versa when the 0 ATTN sequence is received. If on,
backspace editing is performed inside the COC handler
(see below).

BACKSPACE EDITING

The standard mode for processing backspace characters is to
pass the character to the user's buffer and to include it in
the count of characters received. The backspace edit mode
is invoked when the character sequence 0 ATTN is received.
If a backspace is received in this mode, the pointer into the
input buffer for the next character is saved and then decre­
mented by one character. Characters are processed in the
following manner unti I this pointer is incremented to its
original position:

1. Additional backspace characters decrement the pointer
that points to the current character in the input buffer
by one.

2. A space increments the pointer that points to the
current character in the input buffer by one.

3. The character sequence BACKSPACE ATTN is an
explicit blank. The current character in the buffer is
replaced with a blank and the pointer that points to
the current character in the input buffer is incremented
by one. Two SPACE characters are sent to the terminal
to correct the carriage posi ti on.

4. End of message characters (NL, L ATTN, F ATTN, or
SPACE ATTN) cause the message to be terminated and
the appropriate end of message characters to be placed
at the end of the current line (after the rightmost
character) .

5. Any character other than another backspace, blank,
rubout, or end of message overlays a character in the
buffer; the pointer that points to the current character
in the input buffer is incremented by one.

12 2741 and Teletype Differences

When the pointer that points to the current character in the
input buffer becomes equal to its original value, normal
processing of input characters resumes.

SUMMARY OF 2741 AND TELETYPE DIFFERENCES
Table 2 summarizes the differences between 2741 terminals
and Teletype terminals. (Refer to Table A-5 for substitu­
tions for characters nonexistent on 2741 term inals.)

Table 2. Summary of Differences Between 2741 and
Teletype Services

Function Teletype 2741

Get log-on BREAK * and CRLF if
message dialing up. ATTN

if line is already
connected.

Erase line ESC X none

Tab relative ESC C C ATTN

Suppress ESC U U ATTN
lowercase

Uppercase sh i ft ESC ((ATTN

Lowercase sh i ft ESC)) ATTN

Erase last RUBOUT BACKSPACE ATTN
character

Tab ESC I TAB

End of input FS, RS, US, SPACE ATTN
GS (L cs, NCs,
OCS, MCS)

Line continuation ESC CR N ATTN

Retype ESC R R ATTN

Toggle tab ESC T T ATTN
simu lation mode

Toggle space ESC S S ATTN
insertion mode

End of fi Ie ESC F F ATTN

Monitor escape ESC ESC, FourATTNs. Also,
(to TEL) ESC Y, or Y ATTN if input.

4 BREAKs

Break BREAK B ATTN on input or
ATTN on output.

Toggle backspace None o ATTN
edit mode

Form feed ESC L L ATTN

Half duplex ESC P none
paper tape

Toggle ECHO ESC E none
mode

Acknowl edge ESC Q none

Erase all input CONTROL X X ATTN
and output

3. TERMINAL EXECUTIVE LANGUAGE

INTRODUCTIION Minor Operations

The Terminal Executive Language (TEL) is the principal
terminal language for UTS. Most activities associated
with FORTRAN and assembly language programming can
be carried out directly in TEL. These activities include:

Checkpointing on-line sessions.
Assigning I/O devices and DCB parameters.
Determining on-line user status.
Listing system load parameters.

Major Operations

Composing program and data files.
Assembling and compiling programs.
Linking object programs.
Loading programs and initiating execution.
Initiating debugging operations.
Managing and backing up fil€!s.
Submitting batch jobs.
Calling subsystems.

Setting simulated tab stops.
Changing terminal type.
Changing terminal platen size.
Sending messages to operator.
Pri nti ng or punch i ng output.

MAJOR OPERATIONS

Interrupting, continuing, and terminating execution.

Figure 2 illustrates the sequence in which major operations
normally take place. Capitalized words identify TEL com­
mands and UTS subsystems that are used to carry out the
various programming activities.

EDIT
BUILD

FORTRAN Source "'
Language Programs.J

FORT4

Filed Copy of Core Module
,I---::=-==--~

User's Terminal

Relocatab'e Object
Modules (ROMs)

LINK

Load Modu les (LMs)

START

Executing Core Module

EDIT
BUILD

Meta-Symbol Source
Language Programs

META

RUN

---,
CONTINUE,GO I

Static Core Module

Changes
I and

Dis la s

Debugging Subsystems
(FDP and Delta)

I Interrupts,
I errors, break-

I
points, and
stops

I
--~

Output and
responses to
demands for
input

Figure 2. FORTRAN and Assembly-Language Programming

Terminal Executive Language 13

A Meta-Symbol or FORTRAN program may be composed
on-line in one of two ways. It may be composed and filed
away by the Edit subsystem, which is called by the EDIT
or BUILD commands, or entered directly from the terminal
one I ine at a time after Meta-Symbol or FORTRAN has
been called with a META or FORT 4 command. In both
cases, program assembly or compilation is in itiated by the
META or FORT4 command and a relocatable object module
(ROM) and program I isting may be produced. Output is
di rected to the fi I es or devi ces spec ifi ed by the user.

Relocatable object modules that have been assembled or
compiled separately are put together by the LINK command
to form c load module (LM). On completion of the link­
ing operation, execution is started by the START command.
Or, if desired, both linking and execution can be initiated
by a single RUN command.

Debugging activities are initiated by starting the execution
of a load module under control of oneof the debugging sub­
systems, DeltaorFDP. Delta is most appropriately used for
debugging Meta-Symbol programs but may be used for de­
bugging any program. Itmayalwaysbecalledintoassociation
with an executing user program for aid even after execution
has begun. FDP is used for debugging FORTRAN programs.

An executing program becomes a static core module when­
ever it is interrupted or whenever an error occurs. This
static core module can be stored by the SAVE command
and retrieved later by the GET command; it can then be
restarted with the CONTINUE or GO command.

COMPOSING PROGRAM AND DATA FILES

The Edit subsystem provides for line-at-a-time composition
and editing of files and is called in either of two ways:

EDIT fid

BUILD fid

File identification (fid) has the following format/

name . account. password
[

account ~
. . password

where

name is the name of the fi Ie and may have a maxi-
mum of 31 characters. (TEL, Link, and Load allow
a maximum of 10 characters.)

account is the account number of the fi Ie and may
have a maximum of eight characters. A user may
not create (BUILD) a fi Ie in any account other than
the one under which he is running. He may not
EDIT a fi Ie in another account unless he has write
access to the fi Ie.

password is the password for the fi Ie and may have
a maximum of eight characters.

Account and password are optional, defaulting tothe log-on
account and no password if omitted. The minimum character

tThis definition of file identification is intended whenever
Fid is used in a command specification; PCL commands allow
a larger character set, however.

14 Major Operations

set allowed in the three elements of a fid for Edit and all
on-I ine systems is as follows:

A-Z a-z 0-9 $ * % : # @ - backspace

When called by EDIT, the Edit subsystem opens the specified
file (fid) for updating, issues the Edit prompt character (*),
and then waits for input of commands. The commands of
the, Edit subsystem may then be used to update the fi Ie.
(Reference: Chapter 6.)

When called by BUILD, the Edit subsystem assumes that a
new file is to be entered a line at a time, beginning with
line number 1.000 and continuing in increments of one.
Edit responds by printing the number of each line at the left
margin and waiting for entry of the line. The end of the
fi Ie is signaled by enteri ng an empty I ine. Edit is avai lable
for corrections and other editing operations after the file
has been keyed in.

ASSEMBLING OR COMPILING PROGRAMS

TEL has two commands that permit a program to be assembled
or compi led into a single ROM. These commands are

META[sp] [g~ER [rom] [,list]]

FORT4 [sp] [g~ER [rom] [,list]]

where

sp specifies a source program and may be either a
file identification (fid) or the terminal identifi­
cation (ME). If no source file is specified, TEL
assumes input is from the terminal (ME). (sp is
assigned to the M:SI DCB.)

ON indicates that ROM output is to be on a new
file.

OVER indicates that ROM output is to be over an
existing file •

rom specifies that the relocatable object module
produced by assembly or compilation is to be di­
rected to a specific file (fid). If no ROM is speci­
fied, output is directed to a special file that may
subsequently be referenced by a dollar sign. (rom
is assigned to the M:G 0 DCB.)

list specifies that I isting output is to go to a fi Ie
(fid), a line printer (LP), or the terminal (ME).
If list is not specified, no listing output is pro­
duced. (list is assigned to the M: LO DC B.)

Whenever TEL encounters an input specification (sp) desig­
nating the terminal (ME), the program to be assembled or
compiled must be entered through the terminal a line at a
time. The end of program input is signaled by an end-of­
fi Ie that is produced at the terminal by the key sequence
ESC and F.

Any assignments made at a job step within METAand FORT4
commands apply to all subsequent job steps, except for

source input wh i ch a Iways reverts to the term i na I. These
assignments may be changed by subsequent assignments
either by META and FORT4 or by '~he OUTPUT, LIST, and
COMMENT commands described below.

CONTROLLING OUTPUTS

Control over output may be exercised before the FORT4
and MET A commands are entered. This is accomplished by
the commands

OUTPUT [g~ER rom]

LIST [g~ER liS~
COMMENT [g~ER liS~

OUTPUT specifies I·he destination of ROM output and may
designate a fi Ie (fid) only. LIST specifies the destination
of listing output; COMMENT specifies the destination of
error commentary. LIST and COMMENT may designate a
RAD storage file (fid), a line prin~er (LP), or the terminal
(ME) •

Output parameters set up in this way are valid across job
steps from the time ~given unti I the session is terminated or
unti I reset. They may be reset by other LIST, OUTPUT,
COMMENT, and SET commands or by META and FORT4
commands that specify output.

Whenever output parameters are specified by the LIST,
OUTPUT, and COMME NT commands, execution of multiple
META or FORT4 commands without output parameters will
continue to place the output from these operations on the
same files. This is accomplished by file extension (see
II Extension of Output Fi les ll

).

Examples:

1. Assume a FORTRAN source IJrogram, on file A, is
to be compiled. The name of the rom file is C,
the name of the list fi I e is D. Both C and Dare
new files. All files have the user's log-on ac-
count and password.

!FORT4 A ON C, D @;

2. Assume the same conditions as in the previous example
except that the output files are to be specified by LIST
and OUTPUT commands. Error commentary is to go to
the terminal.

lOUTPUT ON C @;

lLIST OI'J D @;

lCOMMENT ON ME ~~

!FORT4 A. @

Output from an assembly can be interrupted and turned off
at any time by one of the following commands:

DONT LIST
DONT OUTPUT
DONT COMMENT

and turned on again subsequently with LIST I OUTPUT I or
COMME NT, respectively.

Output need not be directed to the terminal to be controlled
by these commands. Error commentary is normally directed
to the terminal and accompanies listing output, ifspecified.

After output has been redirected, as desired, processing is
continued by the CONTINUE comrro nd. If continuation is
not desired, processing may be discontinued by the QUIT
command.

Example:

Assume that source file B is to be assembled. ROM
output is going to C and listing output is going to the termi­
nal. After part of the output has been typed, the output
operation is interrupted and the listing is discontinued.

!META B ON C, ME @l

(Listing output.)

(User presses BREAK key.)

lDONT LIST @;

1 CONTINUE @)

(Assembly is completed with no more listing.)

1..

EXTENSION OF OUTPUT FILES

Fi Ie extension is a convention by whi ch records are added
to an output file by successive job steps. Each time the
file is opened, the file pointer (RAD, disk pack, labeled
magnetic tape, etc.) is positioned to a point immedi­
ate�y following the last record in the file. Thus, when
additional output is produced it is added to the previous
contents of the file, thereby extending it. File extension
simulates output to physical devices, such as line printers
or typewriters, when output is actually directed to a fi Ie.

File extension takes effect at the time UTS opens system
output DCBs. The output DCB's that are affected by file
extension are those that are normally assigned by default
to devices, either in batch or on-I ine operation, but that
are explicitly assigned to a file (e.g., on RAD storage) at
the time the DCB is opened. These DCB's include M:AL,
BO, CO, EO, LL, LO, PO, SL, and SO. The M:GO DCB
is also subject to file extension.

Fi Ie extension is discontinued when a fi Ie is reassigned
with a SET or other output-control I ing (e. g., OUTPUT)
command, or when a file is opened with an OPEN pro-
cedure call that specifies an explicit file name In
these cases, a new file is created. Extension of the
GO file is terminated following a LINK or RUN
command.

Major Operations 15

ERROR HANDLING AND END ACTIONS

Whenever an operation is aborted, either because the oper­
ation cannot be continued or because a QUIT command is
issued, UTS restores certain specifications before reporting
and returning control to the user. In particular, aborts
occurring outside of TEL (within compilers, assemblers, or
user programs) result in all previous output specifications
and file assignments being restored to the specifications in
effect at the beginning of the job step.

When syntax errors are encountered in input messages, the
input is erased and an error message is sent to the terminal.
An entirely new command must be issued.

ENTERING PROGRAMS FROM TERMINAL

Whenever the input designator ME is encountered, such as
in the processing of META or FORT 4 commands, the car­
rier is returned to the left margin of the next line and a
prompt character is sent to the terminal. A program state­
ment can then be entered. It is followed by a carriage
return or line feed character to identify the end of the
statement. Error commentary, if any, is sent to the termi­
nal immediately thereafter. The end of source input is
signaled either by the ESC and F keys (for META and FORT4)
or by the appropriate subsystem command (such as END).

To aid in formatting, print columns on the terminal's platen
are in a one-to-one correspondence with card columns.
Trail ing blanks are assumed for short I ines. The terminal's
tab stops shoul d be set by the user to conform to the pro­
gramming language being used and will be simulated if
tab simulation is in effect. For FORTRAN, a single tab
stop is set at column 7. For Meta-Symbol, tab stops are
set at columns 10, 19, and 37.

The handl ing and simulation of tab stops is described in
Chapters 2 and 10. Briefly, tab simulation works in the fol­
lowing way. Spaces are sent to the terminal to bring the car­
rier to the position indicated by the next tab position that
has been set. Tabbing requested when the carrier is beyond
the last set tab position is simulated by a single space.

DEBUGGING INFORMATION

The ROM output of a Meta-Symbol assembly contains
suffi cient information for subsequent debuggi ng at assembly­
language level under Delta. However, for symbolic de­
bugging, a symbol table is needed. The user can get a
symbol table by using the SD option during assembly.

To debug FORTRAN programs under FDP, additional infor­
mation must accompany the compiled code. This informa­
tion is not normally produced by the compi ler since it·
increases the size of object programs and decreases their
execution speed. To produce the information for a specific
compi lation, the DE BUG option for the FORT4 command
must be used (Chapter 4).

LINKING OBJECT PROGRAMS

ROMs and LMs are both representations of programs and
data. ROMs are designed so that they can be efficiently

16 Major Operations

combined with other ROMs, and LMs are designed so that
they can be efficiently translated into executable programs
and loaded into core. Both may be pictured as bodies of
potential machine code to whi ch symbol tables are appended.
These symbol tables list the correspondence between the
symbolic identifiers used in the original source program and
the values of virtual core locations that have been assigned
to them. Some of these identifiers are defined and refer­
enced within the same module and are internal symbols.
Others are defined (DEF) and referenced (REF) in separate
modules and are global symbols.

Functionally, these modules can be compared with black
boxes with labeled connectors dangling from them, some
pointing out and others in. The labeled connectors are the
global symbols associated with the modules; the internal
connections have all been sealed and are hidden. In the
process of linking modules, internal symbols associated
with the constituent parts of the new load module are sealed
and hidden, but all global symbols are still visible.

Continuing the black box analogy, if a module is split open,
a jumble of internal connections should be visible. If the
module has been tested and is ready for production, the in­
ternal connections need not be labeled. However, if the
module is sti II in the debugging stage, the labels may be
necessary. An option is provided in the LINK command to
indicate that the internal symbols associated with a module
are to be kept with the resulting load module.

Note that LINK is a one-pass loader. It is beyond the scope
of a one-pass loader to handle the multiple use of dummy sec­
tions with code that involves REFs that have not been satisfied.

SIMPLE LINKAGES

Most commonplace linkages of ROMs can be carried out
directly in TEL and are initiated with the LINK command.
The format of this command is

LIN K rom&rom J ... [,rom] [g~ER Imn]

where

rom specifies a relocatable object module and may
be either a file identification (fid) or a dollar
sign. The dollar sign designates the most recent
compilation or assembly.

Imn (load module name) specifies where the load mod-

Example:

ule is to be placedandmaybeafile identification
(fid) or dollar sign. If Imn is omitted, the resulting
load module is placed in a specia I fi Ie and is avai lable
for subsequent execution (see Initiating Execution).

Assume that a load module, E, is to be created for exe­
cuti on from fi les A, B, C, and D. Publ ic library Pl is to
be associated with the load module to satisfy external ref­
erences. No search of the system library is required. (See
the secti on titled II Searching Libraries".)

I LINK (NL) A, B, C, D ON E @)
T

LOAD MODULE SYMBOL TABLES

A load module consists of three ports: a body of code, a
table of global symbols, and a table or set of tables of in­
ternal symbols. Each table of internal symbols is associated
with a specific input module (ROM) and is identified by the
fi Ie name of that module. This identifi cation is used by
Delta to specify the set of internal symbols to be used for
debugging. The section titled IIMerging Internal Symbol
Tables ll describes what happens to the tables when a ROM
is linked with other ROMs.

An optional parameter is used with the LINK command to
indicate when the internal symbols of an input module are
to be kept with the resulting load module. The rules
governing this parameter are as follows:

1. The parenthesi:;~ed letters II NIII preceding the file
identification specify that internal symbols for that
module are not to be included in the load module;
the parenthesized letter 11111 specifies that internal
symbols are to be included.

2. Once given, a specification clpplies to all subsequent
modules in the command until the occurrence of a new
specification.

3. In the absence of any specifications, all internal sym­
bols are retained.

Example:

Assume that a load module, E, is; to be created from fi les
A, B, C, and D. Public library P1 is to be associated with
the load modu Ie to satisfy external references but no search
of the system library is required" Internal symbol tables
are to be created for files A and [) but not for files BandC.

lLl NK A, (NI) B, C, (I)D 01'-1 E @)

MERGING INTERNAL SYMBOL TABLES

Keeping the interned symbol table for each input module
uniquely identified in a load module is useful when dupli­
cate names have been used in the programming of the input
modules. However,r if duplicate names have not been used,
several symbol tabl13s may be merged into a single table in
the resulting load module by enc:losing the list of input
modules named in the command in parentheses.

I
-ON 1

LINK (rom[,rom] ••• [,rom]) L.OVER ImnJ

Only one level of parentheses is allowed. Multiple
uses of internal id3ntifiers are rl9so1 ved by assigning
them to the object they identify in the first (reading from
left to right) input module with which they were associated.
The identification given to the inlternal symbol table is the
name of the last input module specified in the merge.

Example:

Assume that a load module, E, is to be created from ROMs
A, B, C, and D. The internal symbols for files D and A
are to be merged. The internal symbols for Band Care
not to be included in load module E.

lJINK (A,D), (NI) B,C ON E@)

SEARCHING LIBRARIES

Unsatisfied external references are resolved by specifying
the order and identification (lid) of libraries to be searched
after the input modules have been linked. A list of library
identifications, (lid) separated by commas, is appended to
the list of modules in the LINK command and is separated
from the module list by a semicolon.

LINK rom [,rom]' .. [,rom] [g~ER Imn] [lid ~Iid]~

[... [,lid]]

where lid specifies a library file identification (fid). In
the absence of any other specifications, public library P1
is associated with the load module to satisfy external ref­
erences and the system (ROM) I ibrary is searched if neces­
sary. Optional search codes may be entered anywhere in
the command except between a preposition and its object.
For convenience, they are shown below immediately fol­
lowing the command verb.

LINK [codes]rom[,rom] .•• [,rom] [g~ER Imn]"]

qlid[,lid] ... [,lid]]

where codes may be one or more of the following:

(L) spec ifi es that the system I ibrary is to be searched
to satisfy external references that have not been
satisfied by the program. (This is a default option.)

(N L) specifi es that a system I ibrary search is not
required.

(P.) specifies that the ith publiccore library is to be
I associated with the program to satisfy external ref­

erences. Only one publ ic library may be associated
with a program. POand P1 are supplied by XDS; P1
contains a subset of the FORTRAN I ibrary sub­
routines; PO includes Pl and the FORTRAN Debug
Package. Additional publ ic I ibraries must be named
P2-P9andJl-J9. (P1 is a default option.)

(FDP) equival ent to (PO).

(NP) specifies that a public core library is not
required.

The sequence of the library search is as follows: User li­
braries are searched first, the public library is associated,
and the system Ii brary is searc hed.

Major Operations 17

Examples:

1. Assume that a load module, E, is to be created from
fi les A, B, C, and D. Internal symbols for fi les Band
C are not to be included in the load module; internal
symbols for fi les D and A are to be merged. Two user
libraries, F and G, are to be searched to satisfy ex­
ternal references. Public library P1 isto be associated
with the load module but no search of the system
library is required.

! LINK (D,A), (NI)B, C ON E;F,G e

2. Assume the same problem as in the previous example
except that the system library is to be searched for
external references and publ i c library P2 is to be
associated with the load module.

! LINK (L)(P2)(D,A), (NI)B,C ON E;F,Ge

3. Assume the same conditions as in the first example
except that no Ii brari es are to be searched.

! LINK (NL)(NP)(D,A),(NI)B,C ON E e

END ACTIONS AND ERROR DISPLAYS

Options governing error displays consist of parenthesized
codes. These codes may be placed anywhere in the com­
mand except between a preposition and its object in the
same manner as the library search options.

(D) specifies that all unsatisfied internal and ex-
ternal symbols are to be displayed at the comple­
tion of the linking process (including library
searches, if specified). The unsatisfied symbols
are identified as to whether they are internal or
external and to which module they belong.

(ND) specifies that the unsatisfied internal and ex-
ternal symbols are not to be displayed.

(C) specifies that all conflicting internal and ex-
ternal symbols are to be displayed. The symbols
are displayed with their source (module name) and
type (internal or external).

(NC) specifies that the conflicting symbols are not
to be displayed.

(M) specifies that the load map is to be displayed
upon completion of the linking process. The sym­
bols are displayed by source with type resolution
and value.

(NM) specifies that the load map is not to be displayed.

The normal default options are D, C, and NM.

18 Major Operations

LOADING PROGRAMS AND INlnATING EXECUnON

Any stored load module may be loaded into core and started
by presenting TEL with the name of the load module (/mn)
as a command verb. Additional parameters may be given
to specify assignments. The format of the command is
the same as for FORT4 and META commands with a load
module name replacing the processor name.

Imn ~p] [g~ER [rom] [,Iist]]

where Imn is the load module name and has the followi ng
format:

name [[account] [. password]]

When Imn is used as a command verb, the default account
is interpreted as follows:

name implies the system account.

name. implies the log-on account.

name. account
password.

specifies an account and no

name. account. password
and password.

speci fi es an account

name .. password impl ies the log-on account and
speci fi es a password.

sp is the identification (fid or ME) of the input file
to be assigned to the M:SI DCB.

rom is the identification (fid) of the output file to
be assigned to the M: GO DC B.

list is the identification (fid, LP, or ME) of the
output file to be assigned to the M:LO DCB.

TEL scans the parameters in an attempt to create assign­
ments as it does for the FORT 4 and MET A commands. If the
line scan is not desired and there are parameters to scan,
the parameters may be enclosed in parentheses since TEL
ignores all parameters within the parentheses. Unpaired
parentheses are treated as syntax errors.

Examples:

! TESTOR e

(loads the LM using the system account)

! TESTOR. @)

(loads the LM using the log-on account)

! TESTOR. 1234 (§)

(loads the LM using account 1234)

! TESTOR •• SECRET (§)

(loads the LM using the log--on account and the pass­
word II SECRET")

.!. TESTOR FILEA 01'-1 FILEB, FILEC @

(loads the LM using the systlsm account - FILEA is
assigned to the M:SI DCB, FILEB to the M:GO DCB,
and FI LEC to the M: LO DC B)

! TESTOR (ABC(DEF(GHI)JK)) (§)

(loads the LM using the system account and passes
the line image to the progn:.m, starting at JIT word
location J:CCBUF.)

Two other TEL commands are provided to initiate the exe­
cutj on of a program. One of these commands (START)
loads a load module into core and starts execution at its
beginning address. The other command (RUN) links relo­
catable object modules, loads the resulting load module
into core, and starf's execution.

The format of the START command

where Imn is the name (fid) of the load module to be exe­
cuted. If Imn is omitted or a dollar sign is specified, the
last load module formed byLlNK on the $ file is executed.

The RUN command is a combination of LINK and START.
It has the following format:

RU N [rom] [,rom] .•• [,rom]

where rom is the name (fid) of a relocatable object module
to be linked, loaded, and executed. A dollar sign may be
used for rom to designate the most recent assembly or com­
pilation. If no parameters are given, the result of the
last major operation (assembly or compi lation) is loaded
and executed.

Example:

Assume that fil e A is, to be assembl Eld, loaded, and executed.

!META A8

! RUN 8

All options of the UN K command may be exercised in the
RUN command in exactly the sam's manner.

Assume there are jrhree modules to be loaded: A, B, and
C. The internal symbols for A and B are to be kept with
the resulting load module. The internal symbols for C
are not. User library D and the system library are to be

searched for external references that have not been satis­
fied by the program. Public library P2 is to be associ­
ated wi th the program.

! RUN (L)(P2) (I)A, B, (NI)CiD ®

INITIATING DEBUGGING OPERATIONS

Execution of programs can be started under control of
either one of two debugging subsystems, Delta or FDP, by
appending the word IIUNDERII and the name of the debug­
ging subsystem to a RUN command.

f, DELTAl
RUN .•• LUNDER FDP J

where

DELT A identifies the assembly language debuggi ng
subsystem.

FDP identifies the FORTRAN debugging
subsystem.

Debugging operations can also be initiated with the START
command. This is accomplished as follows:

START ... [UNDER DELTA]

After the programs have been loaded into core, control
passes to the designated debugging subsystem whi ch sends
an identifying message to the terminal and awaits
commands.

Delta may also be called when execution has been initiated
without it. This is usually done after an interruption by the
user or an error comment by the system. In this case, Delta
is called by typing

DELTA

FDPmay also be initiated by specifying eitherofthe library­
search codes PO or F DP in a RU N or LIN K command, e. g. :

RUN (PO)~om][,rom] ... [,rom]

This associates public library PI and FDP with the user pro­
gram, thus allowing execution of the program under FDP.

MANAGING AND BACKING UP FILES

File management and information-transfer capabil ities are
provided by the PCL subsystem (Chapter 5). PCL can be
called implicitly, however, at TEL level, via the COpy

Major Operations 19

command. A very simple form of the COpy command is as
follows:

{
TOt }

COpy sf OVER df

where

sf specifies an input device or a source fi Ie on
RAD, labeled tape, or disk pack.

df specifies an output device or a destination file
on RAD, labeled tape, or disk pack.

The transfer of information to a printer or to the terminal
may be aborted by depressing the BREAK key.

The many additional variations of the COpy command,
as described in the section on PCL, are also available
through TEL.

Files can be deleted with the TEL DELETE command. This
command has the following format:

DELETE fid

where fid is the identification of the file to be deleted.
The filename in this fid is limited to 10 characters; see also
the PCL DELETE. Deletions cannot be interrupted after
they have been started.

Files created or modified during an on-line session may be
saved by using the BACKUP command. The format of this
command is

BACKUP fid

where fid (lO-character limit) names the file to be copied
to the standard system backup tape. Automatic system
restart includes restoration of all entries on the backup tape
onto the permanent-fi Ie RAD.

The backup process is mechanized by an asynchronous pro­
cess that handles backups for all users. Therefore, there
may be a delay between the time the backup command is
issued and the time that the file is placed on tape. Also,
by rules of simultaneous file access, the file may be unavail­
able to the user during the time it is being copied by BAC K­
UP. The user-requested backup process delivers error
messages as well as successful completi on messages to a
keyed file (called MAILBOX) in the user's account. The
user may print his MAILBOX file using the command

COpy MAILBOX ON ME

SUBMITTING BATCH JOBS

Programming functions described earlier in this chapter are
performed on-line. The user may also compose batch

tWherever TO is specified, ON may be substituted.

20 Major Operations

job-control 'decks' on-line, using the Edit subsystem, and
submit these to the batch queue for later execution. Op­
tionally, the specification field of the JOB and LIMIT con­
trol commands may be left blank and Batch wi II supply the
missing subfields before submitting the job. The command
used for this purpose has the form

BATCH fid [,fid, ... ,fid]

where fid is the identificati on of a job fi Ie to be submitted
for batch processing. This command may be executed in
batch mode as well as on-line mode.

UTS responds to this command by assigning the batch job a
job identification (jid) and sending this message to the
terminal or printer (M:LL):

ID = jid SUBMITTED time-date

WAITING: n TO RUN

An automatic job-status report is issued immediately follow­
ing this message.

The procedure for assigning priorities to remotely submitted
batch jobs is the same as the procedure for assigning priori­
ties to jobs submitted at the central site. This procedure is
described in the UTS/BP Reference Manual, 90 1764. But
see Table 9, in this chapter, for as-distributed maximum
priority for on-line submission and for maximum LIMITS­
option values as related to job priority. Batch subsystem
error messages are I isted in Table 7.

The status of one or more jobs submitted to the batch queue
may be interrogated at any time by typing

JOB jid[,jid, .•. ,jid]

where jid is the job identification reported when the job was
submitted using the BATCH command. Response is one of the
following:

COMPLETE if the job has been run.

EH? if the jid is indecipherable.

DOESN'T EXIST if the job never existed.

RUNNING if the job is currently in
execution.

WAITING: n TO RUN if the job is waiting to run
behind n others.

WAITING TO OUTPUT if the job has run and sym­
biont output remains to be
printed or punched.

CALLING SUBSYSTEMS

All subsystems are called by typing the subsystem identifi­
cation. The subsystems respond by identifying themsel ves
and then typing their prompt character at the left margin
of the next I ine before returning control to the user. The

subsystem identific·ation and prompt character for each
subsystem are listed below.

FORT4 >
META>
BASIC>

EDIT *

FDP@
DELTA bell

Example:

PCl <
LINK:

SUPER -
CONTROl-

Assume that the PCl subprocessor is to be called.

.!. PCl ~0

PCl BOO HERE

<

INTERRUPTING, RESUMING, AND tERMINATING EXECUTION

There are several courses of action that may be taken when­
ever a major operairion, a subsystem operation, or an exe­
cuting user program has been stopped or interrupted. First,
any of the minor operations listed in the next section ex­
cept the operation of the SET command may be initiated.
TEL operations may then be resumed by one of the following
commands:

CONTINUE or GO

Second, the operation may be given up completely by
entering

QUIT, END, or STOP

In this case, TEL restores certain specifications before re­
turni ng control to the user (see Error Hand ling and End
Actions).

Third, a new major operation may' be initiated. Here the
effect is the same CIS if TEL had been told to QUIT. The
sole exception to this occurs when Delta is interrupted
during execution of a user program. The program must be
initiated again under control of Delta. (Note: When a
program is being e>:ecuted under control of FDP, program­
end or the BREAK key is pressed four times. Control goes
to F D P if there is cm error or the BREAK key is pressed
one or two times.)

Three categories of TEL commands may be identified:

1. Commands that may be given any time TEL prompts,
even if a program or processor has been interrupted.
They are:

BACKUP
CONTINUE
DELETE
DELTA
DISPLAY
DONT COMMENT
DONT LIST
DONT OUTPUT
GO

JOB
MESSAGE
PASSWORD
PLATEN
PRINT
SAVE
STATUS
TABS
TERMINAL

2. Commands that may be given at any time but abort
and erase any currently running program or process.
They are:

BASIC
BATCH
BUILD
COpy
EDIT
END
FORT4
LINK
META
OFF
PCl
QUIT
RUN
START

3. Commands that result in an error message if given
during an interruption of a running program or pro­
cessor. They are:

COMMENT
GET
LIST
OUTPUT
SET

(And the impl icit loadi ng of a program by giving its
name.)

MINOR OPERATIONS

Minor operations consist of the operations that support on­
I ine programming. They include checkpointing, assigning
I/O devices and DeB parameters, determining current user
status, and so on.

CHECKPOINTING ON-LINE SESSIONS

During interruptions of execution, core images of programs
may be saved on RAD storage for subsequent recall and con­
tinuation. The SAVE command is used for this purpose.
The format of this command is

where fid is the identification of the file in which the
image should be saved.

A checkpointed core image may be recall ed for continua­
tion by the GET command. The format of this command is

GET fid

where fid is the identificati on of the fi Ie to be recalled.
This file must be in the user's log-on account. The pro­
gram may be restarted with a CONTINUE command.

Minor Operations 21

SAVE is implemented in such a way that execution of a pro­
gram is unaffected by a SAVE-CONTINUE sequence of
operations except for the time delay. Especially important
is the fact that open fi I es are not closed or repos i ti oned.

A GET operation, however, requires that any current
execution be terminated and all files using default close
options be closed. This means that current position in­
formation is lost for IN and INOUT fi les (they are effec­
tively rewound) and OUT and OUTI N fi les are released.
Thus, whenever a GET command is issued the user must
take responsibility for repositioning of IN files and re­
creation of OUT fi les that were open at the time of the
save in whatever way is appropriate to continuation of
his program.

The collection of I/O assignments made during the job
(up to the point of SAVE) and collected in the user's
assign-merge table is not preserved, but the active DCBs
are. The effect of the current assign-merge activity
is therefore carried over to the GET operation through DCBs.
The assign-merge table current at GET time has no effect
on the retri eved DC Bs.

SAVE remembers the names of any shared processors associ-
0ted with the program that are to be saved. These same
named processors are reassociated by the GET command.
If the shared processor has changed in the elapsed time
between the SAVE and the GET, proper conti nuation may
not be achieved.

Symbiont output that has been produced, say for printer
or punch, is packaged for delivery to the appropriate
device whenever a SAVE command is given.

ASSIGNING I/O DEVICES AND DCB PARAMETERS

DCB assignments to files or devices, and many DeB param­
eters, may be set from an on-I ine terminal. Th is includes
most of the parameters that are set by a b,atch ASS I G N com­
mand and many of the parameters that are set by OPEN and
DEVICE procedure calls in a batch program. The command
that sets these assignments and parameters is the SET command.

UTS retains all information supplied by SET commands in a
permanent table associated with each user. This table is
called the assign-merge table and is stored on RAD. At
each job step (i. e., each time a new user program or pro­
cessor is loaded), the information in the assign-merge table
is merged into the DCBs associated with the program. An
entry for a DCB that is currently in the assign-merge table
may be deleted by the command

SET dcb 0

This allows the default assignment (if any) for that DCB to
take effect.

Assignments are one of two types: device (printer, punch,
magnetic tape, etc.) or file (RAD, disk pack, or labeled
magnetic tape). If a DCB that has already been as­
signed to a device is assigned to a file, the new in­
formation replaces the old information in the assign-merge

22 Minor Operations

table. The same procedure appl ies to device assignments
for DeBs currently assigned to fi les. Each DeB assignment
requires an entry in the assign-merge table. The total
number of DeBs that may be assigned is I imited to 12.

Changes to device parameters are added to DCBs assigned to
devices. Changes to device parameters for DCBs assigned
to files yield an error message.

SET commands may be issued only between job steps, i.e.,
not during interruptions thereof. Once issued, the informa­
tion specified by the command for all but the M:SI DCB
remains in effect until revoked, regardless of whether one
or many job steps are included in the session.

The several formats of the SET command are:

SET dcb 0

SET dcb device ;dopt[;doptJ •• , [;doptJ
[

OPlabel] [~
, tapecode[tapeid)]

rtapecodeLtapeid]/fidl [[] []~
SET dcb lfi lecode[packidJ/fid J ;fopt ;fopt •. , ;fopt ~

where

dcb identifies a DCB and is in the form M:x or F:x
where x is 1 to 9 characters. (Assignments of
M:Ue, M:OC, and M:XX are not allowed).

oplabel specifies an operational label (BI, C, CI,
etc.). (See Table 3.)

device specifies a device code (CP, PP, LP).
(See Table 3.)

tapecode specifies a magnetic tape code (9T, 7T,
MT), (See Table 3,)

filecode specifies a secondary storage code (DC
or DP). (See Table 3,)

tapeid if followed by /fid, specifies a serial number
for a labeled tape and has the form #serial number,
The tape is accessed with the serial number apply­
ing as both an INSN and an OUTSN. (Serial
numbers may conta in al phanumeric characters and
are 1-4 characters in length.) If not followed by
/fid, it may specify an external reel number for
free-form tape.

packid must be followed by /fid; specifies a serial
number of a private pack and has the form #serial
number,

/fid specifies the name of a fi Ie on tape or
secondary storage. The form is

[

• account ~
name • account. password

.. password

If not preceded by a tapecode or fi I ecode, fi I ecode
DC is implied. -

dopt specifies a device olotion. (See Table 4.)

fopt specifies a file option. (See Table 5.)

If the M:LO DCB is not assigned when the above
changes are made, an error message wi II be sent to
the terminal.

DCB ASSIGNMENT CODES

A device assignment is made whenever a SET command
contai ns an expression with an operational label or device
code, or a tapecode/tapeid not followed by a fi Ie identifi­
cation. For each assignment, an assign-merge table entry is
made or an existing entry is modified. DCB assignments are
specified by the two-letter codes in Table 3.

DEVICE OPTIONS
Spaces may be arbitrarily used in a SET command between
numbers, words, and identifiers but may not be embedded
within them.

SET commands specifying device options may be issued only
between job steps. The device options take effect on sub­
sequent input or output through the DCB. The options are
then in effect from job step to job step unti I reset. Examples:

1. Assume that the Monitor DCB for I isting output is to be
assigned to RAD storage file N under account A with
password P.

The device options allowed for the SET commands are listed
in Table 4. Options corresponding to the M:DEVICE options
PAGE, FORM, SIZE, and HEADER are not provided.

lSET M:LO/N. A. P ~~ FILE OPTIONS

2. Assume that the Monitor DCB for source input is to be
assigned to file M on magnetic tape serial number 4003.

When a DCB is assigned to a RAD storage fi Ie or to a labeled
tape, certain options may be specified. These options are
the same as those that may be specified by a batch ASSIGN
command with a few exceptions. Batch ASSIGN options
that are not allowed in a SET command incl ude:

!SET M:SI MT#4003/M ~v

1. READ and WRITE - account numbers (default appl ies).
3. Assume that tab positions 27, 38, 47, and 75 are to be

added to the listing output DCB. In addition, the first
character of each record of the I isting is to control
vertical format and the listing is to be double spaced.

2. Multiple INSN and/or OUTSN - serial numbers.
3. RECL - record length.
4. TRIES - recovery tries.
5. KEYM - key maximum.

1SET M:LO;TAB=27,38,47,75;VFC;SPACE=2 §
6. VOL - volume number.

Options that are allowed are listed in Table 5.

Table 3. DCB Assignment Codes - SET Command

Type Codes Description

Operational Label BI, BO, Cor C I, CO, DO, EI, When the DCB is assigned to one of the system operational labels,
EO, GO, LL, LO, OC, PO, the actual device connected to the DCB is that implied by the
SI, SL, SO , UC operational label, if any, for on-I ine mode.

NO No assignment, i.e., no default is to be applied.

Device CP Card punch.
PP Paper tape punch.
LP Line printer.

Magnetic Tape 9T 9-track tape.
7T 7-track tape.
MT Any magnetic tape.

Secondary DC RAD data fi Ie. (Th is is the defau I t code if no other code is given.)
DP Disk pack storage.

Minor Operations 23

Table 4. Device Options - SET Command

Format Description

TAB = tab~tab] ••• [, tab] Specifies simulated tab stops and is followed by a list of up to 16 decimal numbers, separated
by commas, giving the column position of the stops. If all 16 stops are not specified, the stops
given are assigned to the first stops and the remainder are reset.

LIN ES = value Gives the number of printable lines per page and is a single decimal value. The maximum
value is 255.

SPACE = value Gives the number of lines of space after printing and is a single decimal value. Values of 0
or 1 result in single spacing. The maximum value is 255.

DRC, NODRC Turns the special formatting of records on and off. DRC specifies that the Monitor is not to do
special formatting of records on read or write operations. NODRC specifies the Monitor is to
do special formatting. If neither DRC nor NODRC is specified, NODRC is assumed by default.
DRC used in conjunction with BIN will invoke the transparent mode. (See Transparent Mode
section of Chapter 10.)

VFC, NOVFC Controls the formatting of printing by using the first character of each record. VFC specifies
that the first character of each record is a format-control character. NOVFC specifies that
records do not contain a format-control character. NOVFC is assumed by default.

COUNT = value Turns on page counting and specifies the col umn number at which the page number is to be
printed.

BCD, BIN Controls the binary-BCD mode for device read and write operations. BIN used in conjunction
with DRC wi II invoke the transparent mode. (See Transparent Mode section of Chapter 10.)

FBCD, NOFBCD Controls the automatic conversion between external Hollerith code and internal EBCDIC code
(FORTRAN BCD conversion). NOFBCD is assumed by default.

PACK, UNPACK Controls the packed or unpacked mode of writing 7-track tape. PACK is assumed by default.

DATA = value Controls the beginning column for printing or punching and is a decimal value. The maximum
value is 144.

SEQ = value Specifies that sequence numbers are to be punched in columns 77-80 of punched output. Four
characters of nonblank sequence identification may be given for columns 73-76. Fewer than
4 characters are left-justified and fi lied with blanks.

L, NOL Identifies the device type. L specifies that the device must be listing type. NOL. specifies
that it need not be listing type. NOL is assumed by default.

Table 5. File Options - SET Command

Type Format Description

Organization CONSEC Consecutive record organization.
KEYED Keyed record organization.
RANDOM Contiguous relative - sector addressed organization.

Access SEQUEN Records will be accessed sequentially.
DIRECT Records wi II be accessed by key.

Function IN File is read only. -,

OUT File is write only.
INOUT File is to be updated.
OUTIN Fi Ie is scratch.

24 Minor Operations

Table 5. File Options - SET Command (cont.)

Type Format Description

Disposition REL File is to be released on closing.
SAVE File is to be saved on closing.

Size RSTORE = v, lue Specifies the number of granules allocated to the RAN DOM file.

Storage Control CYLINDER Specifies that the data blocks of a public file are to be allocated from
public disk packs having cylinder allocation.

Key Storage NOSEP Specifies that index blocks of a publ ic fi Ie are to be allocated in the same
manner as data blocks. (Disk pack if possible; otherwise RAD).

Expiration EXPIRE = { i Idd
m,dd,yy) Specifies either an explicit expiration date, the number of days to retain the

-JEVER
file, or that the files is never to expire.

DETERMINING ON-LINE USER STATUS

The current accounting records applying to an on-I ine
session can be displayed by entering the following command
into a terminal:

STATUS

Output is similar to that produced at log-on time and
incl udes:

1. CPU time in miinutes and ten--thousandths of a minute.
2. Console time in hours and minutes.
3. Number of interactions.
4. Total charge units.

The format of output is

CPU=M. MMMM CON=h:mm JNT=nn CHG=xxxx

LISTING SYSTEM LOAD PARAMETERS

System load parameters supply information about current
system operation, such as the number of users currently
active and the current values of interactive and compute
response times. The format of the command used to display
this information is

DISPLAY

Output is

USERS = xxxx
ETMF =: xxxx
RESPONSE 90% < xxxx MSECS
RADS = xxxx GRANULES

where

US ERS is the number of currently active on-I ine

calculated by summing the time spent computing
plus the time spent waiting in high priority
ready-to-run queues by all users, and dividing
by the sum of time spent computing. Note fhat
since the value is averaged over all users, it is
only an approximate measure of how much slower
a given process will run due to the time-sharing
environment.

RESPONSE gives the number of milliseconds that
just exceeds the response time of 90 percent of
the responses to term i na I requests.

RADS gives the number of unused RAD granules
that were available in the user's account at the
time he logged on.

SETTING SIMULATED TAB STOPS

Simulated tab stops for a terminal are set by the TABS
command. The format of this command is

TABS s[,sJ ••• [,s]

where s is a column position where a tab stop is to be
placed.

Up to 16 tabs, in ascending sequence, may be set. When­
ever a tab character is sent to or received from a terminal,
spaces are sent to the terminal to positi on the carrier to the
next stop that is higher than the current position (if tab
simulation is in effect). The setting applies unti I superseded
by another TABS command or by an M: D EVIC E procedure
call in a program. (The tabs are set in the M:UC DCB.)

users. CHANGING TERMINAL TYPE

ETMF is the execution multiplier currently relating
program CPU time to job throughput time. ETMF
is calculated and updated each minute. It is a
moving average covering the preceding minute

Whenever the type of terminal used with UTS is changed
from the type specified at SYSGEN time, UTS must be
informed. The system uses this information to adjust
character tables and in responses to line-delete and

Minor Operations 25

character-delete options. The format of the command used
to identify the terminal type is

TERMIN AL type

where type may be anyone of the following:

33 for Model 33 Teletype.
35 for Model 35 Teletype.
37 for Model 37 Teletype.
7015 for XDS Model 7015 Keyboard/Printer.

CHANGING TERMINAL PLATEN SIZE

Unless a special platen width and page length are specified,
a width of 72 characters and a printable page si ze of 54
lines are used for all input and output. A width or page
length greater or less than this may be specified, if desired.
The format of the command that accompl ishes this is

PLA TEN [v1~ IJ

where

w is the maximum number of characters to be
written per line on the terminal. If more than w
characters are written, a I ine feed and carriage
return character sequence is inserted to break up
the output into segments no longer than specified
by w. If w is 11 or less, no line feed and carriage
return sequence is supplied. If the w field is omit­
ted, the current width setting is retained.

is the number of lines per page of terminal output
and must be within the range 0-256. If no I value
is given, then the number of lines per page remains
unchanged. Note that the automatic page heading
and associated spacing results in a standard 11-inch
page (54 I ines per page) for the default. If I is set
to 11 or less, no heading is produced and the page
length is unl imited.

Examples:

lPLA TEN 72,54 8

lPLA TEN ,208

! PLA TEN 27 8

lPLATEN ,108

!PLATEN 2 @)

sets Ii ne wi dth to 72; lines
per page to 54.

sets printable I ines per page to
20; width remains unchanged.

sets width to 27; I ines remain
unchanged.

turns off page heading; width
remains unchanged.

prints full line width.

SENDING MESSAGES TO THE OPERATOR

The MESSAG E command causes a message to be sent to the
machine operator. The format of the command is

MESSAGE text

the text may be from 1 to 50 characters.

26 Error Messages/TEL Command Summary

PRINTING OR PUNCHING OUTPUT

Normally the output destined for the line printer and the
card punch from all on-line compilations, assemblies, PCL
operations, Delta dumps, etc., is accumulated on RAD or
push pack unti I the user logs off. When the user logs off,
this output is put in the print and punch queues and is
printed or punched when it becomes first in the queue. The
PRINT command causes output accumulated for the line
printer and punch to be placed in the queue at once. The
format of the command is

PRINT

ERROR MESSAGES

During each on-line session, a check is made for a variety
of error conditions. Some of these error conditions are
detected by TEL, some by BATCH (the BATCH command pro­
cessor), and some by the Monitor. The messages that are
output for these error conditions are listed in Tables 6 and 7,
except for Monitor error messages. These are I isted in
Appendix B.

All error messages are variable and may be changed by the
management of an installati on through a terminal that is
logged on with a special identifi cation and account. The
procedure for changing error messages is defined in the
UTS/SM Reference Manual, 90 16 74.

TEL ERROR MESSAGES

TEL error messages are all syntax messages. They are listed
in Table 6 together with their hexadecimal error subcodes.

BATCH ERROR MESSAGES

Error conditions that may be encountered and reported when
a user has submitted a job for batch processing are I isted in
Table 7. Three categories of error conditions may be en­
countered: command, job, or system.

TEL COMMAND SUMMARY

Table 8 is a summary of TEL commands. The left-hand col­
umn gives the command format, the right-hand column gives
the command function and option codes.

BATCH LIMITATIONS

The on-line user's maximum job priority, as specified in his
JIT, is the limiting value on the priority he can assign to a
batch job submitted on-line, i. e., through the BATCH Sub­
system. Also, the maximum values of LIMITS options that he
can specify in a batch job submitted on-I ine are controlled,
by the BATCH subsystem, in relation to the actual priority
assigned to the job. Table 9 shows these limiting values.

Table 6. TEL Error Messages

Error
Message Subcodes Description

ASSIGN LIMIT EXCEEDED 5C The number of DCBs assigned exceeds 12.

BAD PLIST - RESPECIFY DCB 67 The specified DCB was not properly defined by a previous
SET command because of a machine software error. For
example, the second SET command below would yield an
error if the first SET command failed to assign the DCB.

!SET M:LO LO @l

lSET M:LO; TABS = 5, 10 @)

CAN NOT ACCESS THE FILE 69 If this message is returned for a PASSWORD command, it
indicates that TEL cannot read the user's file because it is
open. If the message is returned for a DELETE command,
it indicates that no password was specified or that the fi Ie
to be deleted is in another account.

COMMAND LEGAL AT JOB STEP ONLY 66 The command can be issued in between job steps only.

CONFLICT WITH DELTA - TRY LATER 75 A conflict in use of the M:XX DCB exists.

CONTINUE WHAT? 65 The CONTINUE command can be issued only when a
major operation, a subsystem, or executing user program
has been stopped or interrupted. An attempt to use it at
other times such as between job steps will result in an
error message.

DCB NOT ASSIGNED 71 The SET command cannot be used to update a DCB that
has not been assigned.

FILE: ME ILLEGAL 60 The terminal may not be used for the requested purpose.

GET WHAT? 73 TEL cannot find the GET fi Ie.

IMPROPER FILE

BAD DCB 76 The specified GET file cannot be used because of illegal
BAD JIT 77 format.
BAD LIMITS 78

IMPROPER FORMAT FOR SET CMD 64 A format error has been made in the SET command.

IN PUT ERROR - RETRY 5E TEL received a parity error in the input from the terminal.

INSUFFICIENT ASSIGN/MERGE ENTRY SIZE 70 The total size of all DCB assignments is too large.

NO SUCH FILE liN YOUR ACCOUNT 6A The file specified by the DELETE command does not exist.

Imn NOT FOUN D 62 The load module specified by the START command does
not exist.

ON FILE fid ILLEGAL 5F The file following the preposition ON already exists.

dopt OPTION ILl.EGAL FOR DEVICES 6C The option named in the SET command is not applicable to
the device. Only the first non-appli cable option is iden-
tified (dopt).

fopt OPTION ILLEGAL FOR FIl.E 6D The option named in the SET command is not appl icabl e to the
fi I e. Only the first non-appl icabl e option is identifi ed (fopt).

-

TEL Command Summary 27

Table 6. TEL Error Messages (cont.)

Error
Message Subcodes Description

PASSWORD CHANGE SUCCESSFUL 6B The change specified by the PASSWORD command has
been made.

PROCESS NOW ACTNE: QUIT OR CONTINUE 6F The last command was issued during a yc interrupt and
would abort the previous command if executed. For
example, assume a LIN K command is interrupted,

l1INK A, B ON E@

Yc

L FORT4 AA ON BB~

QUIT WHAT? 6E QUIT is legal only in a "break" condition. An error
message is returned if the command is issued in between
job steps.

SAVE WHAT? 74 TEL cannot find the SAVE file.

START WHAT? 63 Either the START command did not specify a load module
or it specified a dollar sign and there was no previous
I ink operation.

TERMINAL TYPE NOT VALID 72 The TERMINAL command specified a terminal type other
than 33, 35, 37, or 7015.

UNABLE TO READ AIM TABLE 50 TEL could not get the I/O devices necessary to read the
assign-merge table during the job step. The message
indicates there is something wrong with RAD storage or
the software.

WHAT FID? 68 The name of the file was not specified by the DELETE
command.

Table 7. Batch Service Error Messages

Type Message Description

Command ACCESS ERROR The file is in use or has been assigned a password and no password has been
specified.

EH? @ n A syntax error exists at character n.

NO SUCH FILE The fi Ie or account does not exist.

Job COMMAND REJECTED The file contains a BIN or FIN control command.

DATA LOST The job expects card image input: 80 characters-per-record maximum,
EBCDIC; 120 characters-per-record maximum, binary.

EH? @n A syntax error exists at character n.

ILLEGAL PRIORITY The terminal-batch job priority may not exceed the user's maximum on-I ine
priority. This maximum value is contained in the user's job-informati on-
table (JIT).

ILLEGAL NAME The name on the JOB control command must match the user log-on name.

28 TEL Command Summary

Table 7. Batch Service Error Messages (cont.)

Type Message Description

Job ILLEGAL ACCOUI T The account on the JOB control command must match the user log-on
(cont.) account.

ILLEGAL KEYWOI D A limit parameter keyword not corresponding to a recognized system resource
was spec i fi ed.

ILLEGAL VALUE A specified limit-option value exceeded the maximum value implied by the
specified job priority (see Table 9); or the value was not a decimal integer.

MISSIN G JOB CC MMAND The first record of the job must be a JOB control command.

System BATCH QUEUE FL ILL No more symbiont space is available or the queue is full.

FILE READ ERROR A fi I e read error occurred; the job must be restarted.

Table 8. TEL Command Summary

Command Description

BACKUP fid Saves the specified file on a system tape. In case of
a crash in which fi les are lost, fi les on the tape wi II
be restored.

BATCH fid Enters the specified file in the batch job stream.

BUILD fid Accepts a new fi Ie from the terminal.

COMMENT {ON } list
OVER

Directs error commentary to the specified device.
Options: list may be fid, LP, or ME.

CONTINUE Continues processing from the point of interruption.

{TOt } COPY sf OVER df
Copies a file or device input to the specified file
or device.

(Simpllified format)
Options:

sf may be fid or device code.
df may be fid or device code.

(See PCL section for complete description.)

DELETE fid Deletes the specified file.

DELTA Calls the Del ta subsystem.

DISPLAY Lists the current va I ues of vari ous system parameters.

DONT COMMENT Stops error commentary output.
1---

DONT LIST Stops I isting output.

DONT OUTPUT Stops object output.

EDIT fid Calls Edit to modify a fi Ie.

tWhenever TO is specified, 01'-I may be substituted.

TEL Command Summary 29

Table 8. TEL Command Summary (cont'.)

Command

END

FORT4[sp] [g~ER [rom] [,list]]

GET fid

GO

JOB jid

LIN K [codes]rom[,rom] .•• [,rom] [g~ER Imn] [; I id[,1 id). . ':::::J

L [lid]] [UNDER FDP]

Imn [sp] [g~ER [roml&I ist]]

30 TEL Command Summary

Description

Terminates the current job step.

Compi I es an XDS Extended FORTRAN IV source
program.

Options:

sp may be fid or ME.
rom may be fid only.
I ist may be fid, LP, or ME.

Output may be interrupted and continued by the
following commands:

LIST
OUTPUT
COMMENT

DONT LIST
DONT OUTPUT
DONT COMMENT
CONTINUE

Restores the previously saved core image.

Continues processing from the point of interruption.

Requests the status of remotely entered jobs.

Forms the load modules as specified.

Options:

library search: (L), (NL), (Pi), (FDP), (NP)
default: (L), (Pl)

display: (D), (ND), (C), (NC), (M), (NM)
default: (D), (C), (NM)

symbol tables: (I), (N I)
default: (I)

rom may be fid or $; parentheses enclosing roms
cause merge of symbol tables.

lid must name a file containing one or more ROMs.

Directs the listing output to the specified device, or
counteracts the preceding DONT LIST command.

Options: I ist may be fid, LP, or ME.

Initiates execution of a load module.

Options:

Imn has the form:

name[. [account][. password]]

absence of period and account specifies system
account.

presence of period and absence of account
specifies log-on account.

sp is assigned to M:SI DCB.

rom is assigned to M:GO DCB.

list is assigned to M:LO DCB.

Table 8. TEL Command Summary (cont.)

Command

MESSAG E text

OFF

OUTPUT [g~ER rom]

PASSWORD xxxx

PLATEN [wJ[,1]

PRINT

QUIT

RUN [codes][rom ~rom] ... [,rom] [g~ER Imn] [;lid['lid ... ~

L[,lid]] [UNDER ~~~TA] -

Description

Sends the specified message to the operator.

Assembles the specified source program.

Options:

sp may be fid or ME.
rom may be fid only.
I ist may be fid, LP, or ME.

Output may be interrupted and continued by the
following commands:

LIST
OUTPUT
COMMENT

DONT LIST
DONT OUTPUT
DONT COMMENT
CONTINUE

Disconnects terminal from system and provides
accounti ng summary.

Directs object output to the specified device, or
counteracts the previous DONT OUTPUT command.

Options: rom may be fid only.

Assigns a new log-on password for the user. xxx x is
1-8 characters. Any of the following characters may
be used: A-Z a-z 0-9 $ * % : # - @
backspace.

Sets the value of the terminal platen width and
page length.

Sends print output to the I ine printer and punch
output to the punch.

Terminates the current job step.

Loads the specified module and starts execution.

Options:

library search: (L), (NL), (Pi), (FDP), (NP)
default: (L), (P1)

display: (D), (ND), (C), (NC), (M), (NM)
default: (D), (C), (NM)

symbol table: (I), (N I)
default: (I)

rom may be fid or $; parentheses enclosing roms cause
merge of symbol tables.

I id must name a file containing one or more ROMs.

Saves the current core image on the designated fi Ie.

TEL Command Summary 31

Table 8. TEL Command Summary {cont.}

Command Description

SET dcb 0 Assigns file or device to a DCB or sets DCB
parameter.

[OPlabel] Options: see Tables 3, 4, 5, and 6.
SET dcb devi ce [;dopt[;dopt] ••• [;dopt]]

tapecode [tapeid]

SET d b [tapecode [tapeid]/fidJ
c fi lecode[pack id]/fid [ifopt[;fopt] ••• [;fopt]]

START [~mnJ [UNDER DELTA]
Begins with execution of the program just loaded,
either with or without an associated debugger.

STATUS Displays the current accounting values.

Subsystem Calls These calls are entered while TEL is in control of the

BASIC FORT4
terminal. They turn over control of the terminal to

CONTROL META
the subsystem.

DELTA PCl
EDIT SUPER

Imn {user's program}

TABS s~s] ••• [,s] Sets the simulated tab stops at the terminal.

TERMINAL type Sets the terminal type for proper I/O translations.
Type may be 33, 35, 37, or 7015.

Table 9. BATCH Subsystem Limits - Option Maximums Versus Job Priority

TIME PO lO DO UO TSTORE PSTORE SCRATCH
Priority min cards pages pages pages granules granules tapes

0 9999 9999 9999 9999 9999 9999 9999 50
1 9999 9999 9999 9999 9999 9999 9999 50
2 240 9999 9999 9999 9999 9999 9999 50
3 120 9999 9999 9999 9999 9999 9999 50
4 60 9999 9999 9999 9999 9999 9999 50
5 30 9999 9999 9999 9999 9999 9999 50
6 15 9999 9999 9999 9999 9999 9999 50
7 5 9999 9999 9999 9999 9999 9999 50

--- -- --- --- --- --- -- - -- -- ------ --
8 5 9999 9999 9999 9999 9999 9999 50
9 5 9999 9999 9999 9999 9999 9999 50
A 5 9999 9999 9999 9999 9999 9999 50
B 5 9999 9999 9999 9999 9999 9999 50
C 5 9999 9999 9999 9999 9999 9999 50
D 5 9999 9999 9999 9999 9999 9999 50
E 5 9999 9999 9999 9999 9999 9999 50
F 5 9999 9999 9999 9999 9999 9999 50

tThe maximum batch-job priority for on-line initiation is seven in the system as-distributed (set in the user's JIT).
Therefore, the portion of the table below the dashed line is not utilized. Both the maximum priority and the table
values can be altered by the user-installation.

32 TEL Command Summary

4. META-SYMBOL, EXTENDED FORTRAN IV, AND BASIC OPERATIONS

INTRODuc~nON

Meta-Symbol, Extended FORTRAN IV, and BASIC processors
may be used under UTS in either on-line or batch mode.
The on-I ine operati' ng features of '~hese processors are de­
scribed in this chapter. The batch operating features are
descri bed in the following manuals:

Meta-Symbol/LN, OPS Reference Manual, 90 09 52

Extended FORTRAN IV lOPS Reference Manual,
90 11 43

BASIC/Reference Manual, 90 1546

META-SYMBOL

The Meta-Symbol assembler is called from an on-line
terminal by the following command:

META [sp] [g~ER [rom) Llist]]
where

sp specifies a source proglrOm and may be either a
file identification (fid) or the terminal identifi­
cati on (ME). If no source fi Ie is specified, TEL
assumes input is from the fi Ie/device currently
assigned to the M:SI DCB. If the M;SI DCB is not
assigned, TEL expects input to come from the ter­
minal (ME). (Note that on-line DCB assignments
are made expl icitly by the SET command and im­
plicitly by META. Once set, DCB assignments re­
main in effect until reassignment by subsequent SET
commands or specified META options.)

ON indicates that ROM output is to be on a new fi Ie.

OVER indicates that ROM output is to be over an
existing fi Ie or on a new fi Ie.

rom specifies that the relocatable object module
produced by assembly is 1'0 be directed toa specific
fi Ie (fid). If no ROM is specified, output is directed
to a special fi Ie that may subsequently be referenced
by a dollar sign. (rom is assigned to the M:G 0 DCB.)

list specifiesthatlistingou'~putisto go to afile(fid),
a line printer (LP), or the terminal (ME). If list is
not specified, TEL assumes that the listing output is
to go to the fi Ie/device currently assigned to the
M: LO DCB. If the M: LO DCB is not assigned, TEL
produces no listing outpuj~.

This command replaces the control cards that Clre needed to
perform the equivalent operations j·hrough batch processing.
The replaced cards ore

IJOB ...
!ASSIGN M:SL •.
IASSIGN M:LO .••
!ASSIGN M:GO •..
IMETASYM SI, LO, GO

When the assembler is entered, it sends a request for options
(WITH » to the terminal. If there are no options, a carriage
return character may be entered following the request. This
initiates the assembly, providing additional inputs are not
required by the assembler.

Example:

Assume that file A is to be assembled with ROM output
going to Band list output going to the terminal. No special
assembly options are desired, and no additional input is re­
quired by the assembler.

!META A ON B,ME @)

WITH> @

* ERROR SEVERITY: 0

* NO ERROR LINES

If assembly options are desired, the codes (Table 10) for the
desired options are entered following the request for options.
These codes are separated by commas and terminated by a
carriage return or line feed character which initiates
assembly. If a concordance option (CN in Table 10) has
been specified, additional input is required. Meta-Symbol
sends a prompt character to the terminal to request each
concordance command. Assembly is initiated only after the
last concordance control command (.END) has been entered.

Some of the assembly options avai lable in batch mode are
not recommended in on-line mode. These options either
have no meaning for on-line mode or are assumed when
the META command is used (such as GO, LO, and SI).
Options that are allowed are listed in Table 10.

Examples:

1. Assume that a RAD storage file, called SOURCE, is to
be assembled. ROM output is to go to BIN and I ist out­
put is to go to the line printer. A cross-reference is to
be included with list output. The cross-reference is to
exclude symbols Xl and X2 and to include operation
code CAL3.

1 META SOURCE ON BIN, LP @

WITH> CN @

~ . SS Xl, X2 @)

~ .10 CAL3 @l

~ .END @l

Meta-Symbol, Extended FORTRAN IV, Basic Operations 33

Option

DC

CN

CO

LU

NS

SD

SO

CI

Table 10. Meta-Symbol Assembly Options
t

Descri pti on

Specifies alternate accounts that are to be searched when the assembler must access system fi les
that are not logged either under the system (:SYS) account or under the user's log-on job
account. The ac items are alternate account that are searched first; then by default, the :SYS
account and finally the log-on account are searched as necessary.

Specifies that a "standard" concordance is to be produced on the LO devi ceo The "standard"
listing does not include operation code names, but otherwise includes all symbol references,
incl uding function and command procedure names and intrinsi c functions.

Requests that a symbolic cross-reference listing be included with the assembly listing. When this
option is given, the assembler sends a prompt character to the terminal to indi cate that concor­
dance control records identifying special concordance options should be entered. One control
record, preceded by a period, is entered following each prompt character. The last control
record must be an END record.

The concordance control commands are as follows:

10 Include all or a selected set of operation codes.

SS Suppress all or a selected set of symbols.

OS Include only a selected set of symbols.

DS Produce a modified LS listing, displaying only lines that reference a selected set of
names.

END Terminate concordance control commands.

Causes the assembler to produce a compressed version of the input program on the file specified
in the M:CO DCB. This DCB must have previously been assigned by a SET command.

Requests that the assembler include a listing of the Meta-Symbol update records with the program
listing.

Requests that no assembly summaries be included with the listing.

Causes the assembler to produce symbolic debugging object code for use with the Delta debug­
ging processor. The object code is included with the standard binary output ROM.

Causes the assembler to create a source output file corresponding to the input program. The input
program may be Edit-source, compressed, or compressed with updates. The M:SO DCB must have
been previously assigned.

Causes the assembler to access M:CI for compressed input. Typically it would be specified if the
user wishes to update the compressed file with the contents of the source file assigned to M:SI
(via, e. g., the META command). The source input on the M:SI fi Ie must be terminated with a
+END statement. The M:CI DCB must have been previously assigned by a SET command. Con­
sult the Meta-Symbol/LN, OPS Reference Manual, 9009 52 for a full discussion of the assem­
bler's operation when both SI and CI inputs are specified.

t For additional details concerning assembly options, refer to the Meta-Symbol/LN, OPS Reference Manual, 9009 52.

34 Meta- Symbo I

2. Assume that a source program, called SOURCE, is to
be assembled with ROM output going to BIN and I ist­
i ng output going to the I ine printer. The following
assembly options are desired:

a. A source output fi Ie (SOURCEOUT) corresponding
to SOURCE.

b. A compressed version of SOURCE.

c. A symbolil:: cross-reference.

d. A symbolic debugging object code for Delta.

lSET M:SO DC/SOURCEOUT @)

! SET M:CO CP @l

l MET.A SOURCE ON BIN,LP @l

WITH~ SO, CO, CN., SD §

>.END@l

When input is from a keyed Edit file, a decimal repre­
sentation of the seq1uence number For each record is placed
in the assembly lisHng. This representation is placed in
the position normally occupied by columns 73-80 of an
input card.

It is possible to make use of Meta-·SymboI1s internal edi tor
in conjunction with compressed source files while running
on-line. The internal editor and source compression facil­
ity are oriented toward card image batch processing but can
be useful to on-line operation whell1 backup files must be
kept on cards or when work must he done in strictly a BPM­
compatible fashion. These Meta-Symbol features are de­
scribed in Chapter 12 of the Meta··SymboI/LN, OPS
Reference Manual, 90 09 52.

If a program in compressed format exists on RAD or disk pack
storage, either as thl9 output of the assembler or as a result
of a fi I e management operati on, it can be assemb I ed wi th
on-I ine Meta-Symbol simply by specifying it as input (sp)
in a META command. Meta-Symbol distinguishes between
the keyed source format of the Edit' fi I es and the sequential
binary format of compressed fi les.

Example:

Assume that CI-FILE is a program fi Ie in compressed format.
This file is to be assembled with ROM output going to
BO-FILE and list output going to the line printer.

,LMETA CI-FILE ON BO-FILE, LP @)

WITH> @

It is also possible to maintain an update file through the use
of the Edit subsystem and to use the file to modify a com­
pressed fi Ie. In this case the former would be assigned to
M:SI and the latter to M:CI, via a SET command and the
CI assembly option.

Example:

Assume that an update fi Ie (UPDATE-FIL) is being main­
tained under Edit and is to be used to update a CI-FILE on
labeled tape. ROM output is to go to BIN and list output
is to go to the line printer.

! BUILD UPDATE-FIL@)

1.000 + 4,6 @)

2.000 BANZ EXIT@)

3.000 + 10,1O@)

4.000 + END @)

5.000 @)

*END @)

lSET M:CI LT#1234I/CI-FILE @)

l META UPDATE-FILE ON BIN,LP @)

WITH>CI(§

FORTRAN IV
The XDS Extended FORTRAN IV compiler is called from an
on-line terminal by the following TEL command:

where

sp specifies a source program and may be either a
file identification (fid) or the terminal identifi­
cation (ME). If no source file is specified, TEL
assumes input is from the terminal (ME). (sp is
assigned to the M:SI DCB.)

ON indicates that ROM output is to be on a
new file.

OVER indicates that ROM output is to be over
an existing fi Ie or on a new fi Ie.

rom specifies that the relocatable object module
produced by compi lation is to be directed to a
specific file (fid). If no ROM is specified, output
is directed to a special fi Ie that may subsequently
be referenced by a dollar sign. (rom is assigned to
the M:GO DCB.)

FORTRAN IV 35

list specifies that listing output is to go to a file
(fid), a line printer (LP), or the terminal (ME).
If list is not specified, ME is assumed, but no
listing output is produced unti I a LIST command is
issued (list is assigned to the M:LO DCB).

The naming of fi les sp, rom, and list can be thought of as
simple assignments for the DCBs used by the compi ler. The
DCBs M:SI, M:GO, and M:LO are used by FORTRAN for
its input and output operations and UTS directs the data to
and from the respective files. The specifications sp, rom,
and list are used for these assignment purposes and have no
effec t on the operation of the compi ler. The control of the
compi lation rests with the compi leroptions descri bed below.

In the absence of a specification for rom or list, UTS will
direct the data to or from the last fi Ie or device to which
GO or LO was assigned. In this way a user may make these
assignments at the beginning of a job and they will remain
in effect unti I changed. If an identifier is not specified for

ROM, the object program produced by the compi lation will
be written on a scratch fi Ie which may be referenced later
by the name $.

When the FORTRAN IV compiler is entered in the on-line
mode, it sends a request for options to the terminal by typing

OPTIONS>

The user may then enter the opti on codes (Table 11) to be
used for this compi lation. The codes are separated by
commas and terminated by a carriage return. If no option
codes are entered before the terminating carriage return,
the compilation will be done as thoughthesingle option PS
had been typed. The PS option ensures that the user is
aware of the size of his program and the first and last card
while producing a minimum of output. A source input file
is always expected and an object program is always produced
when operating from an on-line terminal.

Table 11. FORTRAN IV Compi lation Option/

Option Description

ADP Causes all real operations to be done in double precision and all complex operations to be done in double
complex. (See Extended FORTRAN IV /LN Reference Manual, 90 09 56.)

BC [(n)] Permits a number of programs to be compiled from the source file. When this option is used, the compi ler
reads source programs until the conditions of the option are met. Thus, a number of different programs may·
be compiled using only one FORT4 command. The suboption, n, allows the BC option to specify
compi lat ion of the first n programs from the source fi Ie.

BO Causes a binary object deck to be produced (via M:BO). If the BO option is used, the correct assignment
for M:BO must be ensured. There is no default assignment for this DCB.

DEBUG Causes the compi ler to generate I inkages, such as internal symbol tables, to the FORTRAN Debug Package.

GO This option is redundant. In on-line operation, a binary object deck is produced for all programs via the
M:GO DCB.

LO Lists the object program on the LO device.

LS Lists each source program and compi lation summary on the LO device.

NMP Causes the generated code of the object program to be a control section with protection type 00 instead
of 01.

NS Eliminates the compilation summary map and the printing of the first and last card of the source program.
To eliminate the entire listing of a com pi lation, NS or PS should be specified and LS or LO should not
be specified.

t For more details concerning compilation options, refer to the Extended FORTRAN IV lops Reference Manua I, 90 11 43.

36 FORTRAN IV

Option

PS

S

--

SBIT

--
SI

SO

X

Table 11. FORTRAN IV Compilation Option/ (cont.)

Description

Causes the fi rst' and last cards and a partial summary map of the program to be printed. The partial sum­
des mary map inclu

1'1 UMBER OF E

NUMBER OF S

RROR MESSAGES:n }
These are pri nted only if there were errors in the program.

TATEMENTS DELETED:m

HIGHEST ERRC
{

0 (NO ERRORS) }
.4 (NO MAJOR ERRORS)
7 (MAJOR ERRORS)

10 (MAJOR ERRORS)

R SEVERITY:

DEC HEX
WORDS WORDS ------

GENERATED C ODE: ddddd xxxxx

CONSTJlI NTS: ddddd xxxxx

LOCAL VARIA BLES: ddddd xxxxx

TE: MPS: ddddd xxxxx
----- -----

TOTAL PROG RAM: ddddd xxxxx

Specifies that i
information con

n-line assembly code is to be accepted on cards that have an S in column 1. For
cerning the rules for in-line symbolic code, see the Extended FORTRAN IvlLN
ai, 90 09 56. Reference Man'

--

Preserves the in tegrity of the maximum negative number expressible on a Sigma computer.

Specifies sourCE input. This is unnecessary but is acceptable for compatibility.

Reproduces the source program on the source output fi Ie (via M:SO).

Compi les recor< s with X in column 1.

,---------,---~

t For more detai Is concerning con pilation options, refer to the Extended FORTRAN IV lOPS Reference Manual, 90 11 43.

,---------,---~

After the option request has been completed, the compi ler
reads the source program from the sp fi Ie. Input continues
unti I an END statement or end-of··fi Ie (ESC F keys) is en­
countered. The program summary and object program are
then output as requE~sted and control is returned to the UTS
executive (TEL). If the source filre contains more than one
program, subsequent compi lations can be obtained from it
by usi ng the BC opti on.

When used from an on-line termincd, the compiler accepts
horizontal tab charocters in source program records. It re­
places each tab cholracter with the correct number of spaces

to locate the next input character at the position specified
by the next tab stop. At the on-I ine terminal, this position­
ing is done by the UTS executive so that the typist is aware
of the tabbing action. Internally, the compiler performs a
similar action by inserting the correct number of spaces into
the source record image. Any characters in the record fol­
lowing the tab character are shifted to the right. The listing
output and source output from the compiler do not contain
the character. They contain the spaces which were inserted
into the image. As many t'ab characters as are required may
be entered but care should be taken to ensure that tab stops
are provided. If the compi ler cannot match a tab character

FORTRAN IV 37

with a corresponding tab stop position during its internal
expansion operation, the tab character will remain in the
record and wi II cause a syntax error. Tab stops may be set
from the on-line terminal by the TEL commands TAB and SET.

When accepting source input from an on-line terminal, the
compi ler normally checks each record as it is typed and
immeditaely prints out any diagnostic on the following line.
However, if a statement is to be continued, thiserrorcheck­
ing is not done unti I the conti nuing statements have all been
input. When a statement is to be continued, the last char­
acter preceding the carriage return must be a colon (:) to
indicate that this record is continued. The next record, the
continuation record, must follow standard FORTRAN rules
and have blanks in columns 1 to 5 and a continuation
character in column 6. Statements containing errors and
continued over several records have their error diagnostics
printed following the last record. The colon used to in­
dicate that a record is continued is removed from the record
and replaced with a blank character.

Since the colon is contained in the Extended FORTRAN IV
standard character set, it is possible to use it in a
FORTRAN statement. Some difficulty might be expected in
statements which end with a colon, such as, A = 4HABC:.
This problem can be overcome by typing an extra blank
following the colon and before the carriage return.

Examples:

Assume a program is to be compi led with the source input
read from file SOURCE, the relocatable object module
written onto file DECK, and the listing written onto the
user's terminal.

! FORT4 SOURCE ON DECK,ME @J

OPTIONS>LS@J

Since the compiler always expects an SI file and always
generates a GO file, the only option (LS) is used to cause
a listing of the source program at the user's terminal. If
any errors occur they are printed at the terminal.

38 UTS BASIC

UTSBASIC

UTS BASIC may be operated in on-line or batch mode. The
on-line mode is expected to be normal. Batch operations
are I imited to ,those requiring no user intervention and differ
from on-line operations primarily in the assignment of input/
output devices.

The BASIC system is called from a UTS terminal in the
following way:

! BASIC @J

>

When the system is ready to accept input, it prompts with a
IIgreater than ll character (». At this point, BASIC is in
editorial mode with no program text.

In the on-line mode, BASIC returns to TEL only if terminal
input fai lure occurs, the BREAK key is activated twice
without any intervening terminal input or the SYS [TEM]
command is typed. In batch mode, exit to the Monitor also
occurs after a compi lation that contai ns errors, or after a
run-time error.

While using BASIC in on-line mode, the user fully con­
trols the flow of activity via the termi nal. The normal mode
for doing so is to respond to prompt characters that indicate
the system is prepared for input. Two prompt characters are
used: a question mark and a IIgreater than ll symbol. A
question mark indicates that execution is in progress and
input data is required. A IIgreater than ll symbol indicates
that the system is ready for editorial input or commands.

In some instances, such as during the output of an extended
listing or when a program is suspected of being in a loop,
it is desirable to acquire terminal control without waiting.
A faci lity is provided via the BREAK key activation to
interrupt current activity.

For additional detail about BASIC operations, refer to the
BAS IC/Reference Manual, 90 15 46 - Revision B or later.

5. PERIPHERAL CONVERSION LANGUAGE

INTRODUCTION

The Peripheral Conversion language (PCl) is a utility
subsystem designed for operation in a batch or on-line
environment under UTS. It provid1es for information
movement among card devi ces, I inle printers, Teletype
terminals, magnetic tape devices, clnd RAD or disk pack
storage.

PCl is controlled bY' sing Ie-I ine commands suppl ied through
on-line terminal input, through a file containing PCl com­
mands, or through command card input in the batch job
stream. The command language provides for sing Ie or mul­
tiple file transfers with options for selection, sequencing,
formatting, and conversion of data records. Additional file
maintenance and uti I ity commands are provided. The actual
input/output operations are carried out using standard UTS
CAls.

For batch operation" PCl is activated by a ! PCl control
command card in the job stream. Once active, PCl reads
subsequent command cards directly through the M:SI DCB
until terminated by an END commond card or some other
control command card. Input and output is done through
the M: EI and M: EO DCBs respectively. Error messages are
transmitted to the device currently' assigned to the M:DO
DCB.

For on-line operation, PCl is called by typing "PCl" while
TEL is in command of the terminal, PCl responds by typing
"PCl version HERE" followed by a prompt character «) at
the left margin of the next line. This indicates that PCl is
ready to accept a command.

Example:

!PCl@)

PCl BOO HERE

<

When accepting or processing a command on-nne, PCl is
in the command state. Entry to this state is always indi­
cated by the displa), of the PCl prompt character. Once a
valid command begins execution, IPCl enters the active
state. In this state, PCl prompts for input, if required, with
a period (.). This state remains in effect unti I execution of
the command terminates, at which time PCl reenters the
command state, issules a < prompt character, and waits for
the next command. As in batch operation, user input and
output is processed through the M: EI and M: EO DCBs; error
messages go to the M:UC DCB and commands are received
through the M:SI DeB.

The user has the opt"ion of bui Idin~J a file of PCl commands
and having the commands executed by preceding the call
to PCl by an ASSIGN or SET command that assigns M:SI to
the file of commands. In this case, PCl will not prompt the

on-line user for input, but will print each command,
preceded by a prompt character «), as it begins execution
of the command.

Example:

lSET M:SI/CMDFIlE @)

!PCl @)

PCl BOO HERE

< first command

The following description of PCl is oriented toward the
on-line user. For the batch user, communication is estab­
I ished with input through the job stream and output through
the M:LO DCB with no user interacti on. Thus, all user
prompting and terminal-specific operations given here may
be ignored by the batch user.

CONVENTIONS

SYNTAX

PCl is a free form language with a few restrictions imposed
for simplicity in implementation and use. These restrictions
are outlined below:

1. All commands must comply with the general format
given in the definition.

2. Blanks preceding or following an argument field are
permitted; embedded blanks are not permitted.

3. At least one blank must follow each command verb,
except REW and REM when followed by a number (#)
character, and must precede and follow each command
preposition (TO, ON, or OVER).

4. Continuation between input records is not allowed.
(Only one command per line is allowed.)

5. "End-of-command" is indicated by the end of the input
record (column 72) for card input or by a carriage return
or line feed character for either card or Teletype input.

6. Only one input device and only one output device may
be open at any given time.

DEVICE IDENTIFICATION CODES

Device identification codes are symbols used to identify
source and destination devices in PCl commands. These
codes are listed in Table 12.

Peripheral Conversion language 39

Table 12. Device Identification Codes

Device
Code Description

CR Card reader (Not available for on-line
operations. For batch operations, files are
separated by two successive EOD control
cards.)

CP Card punch.

lP Line printer.

ME On-line terminal (Input is terminated by an
ESC F - end-of-fi I e - code.)

DC RAD storage.

DP Disk pack.

IT labeled tape.

FT Free form tape. (Fi les are separated by an
EOF mark.)

Most device codes correspond to unformatted unit record
equipment, and the action is very close to direct device
access. In the case of the codes DC, DP, and IT, however,
the intent is not to give access to RAD, disk pack, and
magnetic tape as devices, but to provide a means for sym­
bolic reference to files of information created and main­
tained by the Monitor's fi Ie management system.

Through various subsystems and/or Monitor services, the user
can create logically connected groups of records called
fi les. Each fi Ie has a name by which it is known. These
files are contained on RAD (DC), disk pack (DP), or labeled
magnetic tape (IT). labeled tape carries internally a serial
number and the creator IS account number, in addition to the
file names and the file contents.

The following paragraphs give the conventions to be used
when creating or otherwise working with fi les.

FILE AND REEL IDENTIFICATION

A fi Ie identifier (fid) has three parts: name, account, and
password. A file name consists for PCl of 1 to 31 charac­
ters, t which in general may be any characters except the
following PCl delimiters:

blank /

However, any character including these delimiters may be
used in a file name if the name is delimited by single

tNote that most on-line subsystems allow a maximum of
10 characters for a fi Ie name.

40 Conventions

quotes, e.g., '(A)'. Single quotes within such a file name
must each be represented by paired quotes.

A hexadecimal format may be used to represent a file name
that contains one or more unprintable characters, e. g.,
X '00E71.

When PCl outputs a file name, account, or password, it
prints the string in hexadecimal format if any of the charac­
ters do not belong to the EBCDIC 57-character set.

Account and password are one to eight characters from the
same set and may also be written as hexadecimal or charac­
ter strings. The various combinations are written as follows:

name

name. account

name. password

name. account. password

fi Ie in log-on account
directory.

fi Ie in specified account
directory.

fi Ie in log-on account with
password.

file in specified account,
with password.

In general, a job may create, delete, read, or modify files
in the account in which it is running. However, files in
different accounts can only be read - not created, deleted,
or modified. A file identifier is the same whether the file
is on RAD, disk pack, or labeled tape. However, in order
to access a file on labeled tape, the physical reel identifier
must in general also be given.

To access a file on a private disk pack, the serial number of
the primary volume must be given. When creating files on
a disk pack, all serial numbers for the volume set must be
specified. The following description of a reel identifier
appl ies to disk pack as well as to labeled tape.

A reel identifier (reel-id) consists of two parts: a serial
number and an account number.

The account has the same format as described above, while
a seri al number is one to four a I phanumeri c characters of the
same character set as fi Ie identifier, except that the number
sign (#) may not be used. Also, character string and hexa­
decimal string notation are not allowed. The two permissible
forms for a reel identifier are as follows:

#serial no. [#serial no.] [#serial no.]

Reel(s) created, or to be created, in log-on
account.

#serial no. [#serial noJ [#serial no.] . account

Reel(s) created in specific account.

The # is a syntactic identifier used to introduce the serial
number, e. g.,

#MEFA
#MEF1#MEF2. C7308300

The optional second and third serial numbers are used to
indicate a multi-volume file or set of files.

In general, a job cannot create files on a labeled tape or
disk pack in a different account than that in which it is
executing. However, it may read tapes or disk packs that
were created in different accounts.

Therefore, in subsequent command descriptions, the follow­
ing convention is adopted. If a lieel identifier is used in
an input sense, where either of the above representations is
valid, then it will be symbolized as "#reel-id". However,
if it is used in an output sense, where only a serial number
is valid, then lI#serial no. II will be used explicitly. In
either case, up to frhree serial numbers may be specified if
a multi-volume fil4~ is involved. Free form tape (FT) only
needs to be identified by a serial number.

The absence of a reel identifier on a labeled tape or free
form tape specification implies that a scratch tape is to be
used. After the first occurrence of a scratch tape specifi­
cation in an output, sense, the output serial number of the
tape is communicated to the on-I ine user in order that this
tape may be referenced by subsequent commands. However,
a reel identifier is not actually rElquired by any command.
If a scratch tape is used for the first time in an input sense,
an I/O error is reported. If a scratch tape has been
written, a command in the same PCl session that specifies
a tape without a reel identifier, in either an input or out­
put sense, is interpreted by PCl os referring to the same
scratch tape. PC l must be reentered if a second scratch
"ape is needed.

If the fi Ie is random, the absence of a reel identifier on a
disk pack specification indicates that the system disk pack
is to be used. For other types of fi les, the absence of a
reel identifier causes the DP device code to be treated the
same as DC.

CAPABILITIES

The following is a I ist of avai labl4~ functions in PCl defined
in terms of the actual command verbs:

COpy device(s) and/or file(s) TOt device or new file.

COPY device(s) and/or file(s} OVER device or existing
file. --

COpy All files in specified OIccount on RAD or disk
pack TO labeled tape(s) or to a device.

COPYAll files in specified account on RAD or disk
pack TO log-on account on RAD.

COpy All fi les on labeled taloe(s) TO RAD or disk pack.

COPYAll files on labeled tape(s) TO files on labeled
tape(s) or to a devi ce.

COPYSTD performs a copy of a control fi Ie and all
files indicated within the control file.

tWherever TO is specified, ON moy be substituted.

DELETE an existing file.

DElETEAll deletes all or a portion of the user's RAD
files.

LIST a file directory for RAD, tape, or disk pack.

REVIEW user's RAD fi Ie directory.

SPF space file ±n files on free form (unformatted)
magnetic tape.

WEOF write end-of-fi Ie on current output device

REW rewind designated tape.

SPE space to end of last file on labeled tape.

REM remove designated tape or disk pack.

TABS define tab settings for tab expansion.

BREAK FUNCTION

The function of the BREAK key under PCl (as under TEL) is
to interrupt current activities. If the BREAK key is pressed
while PCl is in the active state, PCl usually terminates what
it is doing, such as printing or copying, passes control to the
terminal, and reverts to the command state. If the BREAK
key is pressed while PCl is in the command state, PCl
ignores the current command as if Xc has been pressed. The
effect of the interruption or the termination varies with the
command being executed and is discussed in detai I with each
command, where necessary. If no mention is made of the
effect, the BREAK key is assumed to have no effect on exe­
cuti on of the command.

FILE COpy COMMAND
The file COpy command permits single or multiple file
transfers to take place between peripheral devices or
between file storage and peripheral devices. Options are
included for selecting, formatting, and converting data
records.

COPY COMMAND FORMAT (GENERALIZED)

The COpy command is of the form

COpy source(Source 00 oJ [~~ER destinotion]

where

source may be an input device such as card reader
(CR), a RAD fi Ie (e. g., ALPHA), a file on private
disk pack, or a file on labeled or free form tape.
Fi Ie concatenation may be performed by specifying
more than one source device or fi Ie.

destination may be an output device such as card
punch (CP), a RAD fi Ie, a file on private disk pack,
or a fi Ie on labeled or free form tape. Absence of
a destination specification is allowed and will
normally cause file extension to occur.

File COpy Command 41

If the destination of the COpy is a RAD file currently
existing in the user's account directory, PCl will require
that the preposition OVER be used in the command. That
is, COpy TO or COpy OVER will create a file, but for the
user's protection only COpy OVER can replace an existing
file. After this check, PCl opens the source devices and
files one at a time in the order given, and copies them to
the destination device or file. Source files are closed after
they have been copied. The destination device or file is
closed at the same time.

If the BREAK key is pressed during execution of the COpy
command, PCl responds by typing the message 'ENTER X
TO ABORT COMMAND'. Any character typed, except X,
causes continuation of the command. Typing an X aborts
the command.

Note that the TO or OVER command preposition and the
destination are optional. If the COPY command contains
only a source specification, PCl uses the destination device
or file defined on the most recently issued COPY command
containing a destination specification. (This is illustrated
in the sixth COpy example.) It should be noted that file
extension will occur in this case. Any PCl command except
COpy All may be used between the COpy defining the
destination specification and the COpy with this specifica­
tion omitted, since the output specification will not be
changed by these commands.

If a COpy command is used without a destination specifica­
tion and a destination has not been defined by a previous
command, the default destination is to the terminal.

The message ' .. COPYING' prints at the terminal when the
copy operation begins if neither the input nor the output
device is ME.

COpy COMMAND FORMAT (SPECIFIC)

The specific format of the COpy command is

--- Source 1 ---

COpy d [(s)][/fid [(s)]G fi d [(s)]] .•.]

---- Source 2 ---

[;d[(s }][/fid [(s)] ,fid [(s)]] •••]

- Destination -
..

••• [6~ER d[(S)][!fid[(S)]]]

where

disk packs (IT, FT, or DP). Absence of a reel
identifier for a tape device implies a scratch tape.

/ separates a devi ce identification code from the
files on that device.

fid represents file identification and has the form

[
[. [accountJ. password]l

name . account J

The DC device identification code is optional on
a COpy command referencing a RAD fi Ie. For
example, RAD file A may be specified in one of
three formats: DC/A, /A, or A. However, this
flexibility makes the device codes in Table 12
reserved words. For example, file CR must be
referred to as DC/CR, /CR or 'CR', never simply
as CR. The format / A cannot be preceded by
device options.

separates fi I es on the same devi ceo

separate devi ces.

(s) represents specifications for data encoding: data
codes (Table 13), formats (Table 14), modes
(Table 15), and record selection. It has the form

(optionGoption J ... [,option])

Specifications given at the device level apply to
all files on that device. Those given at the file
level apply to that file only and have precedence
if a conflict occurs between levels.

Data encoding is discussed in detail below.

Examples:

1. Assume that three consecutive files, each terminated
by a double lEaD mark, are to be copied from a card
reader to an existing RAD storage fi Ie ca lied ALPHA.
(This would only be allowed in batch.) The PCl com­
mand would be:

COpy CR;CR;CR OVER DC/ALPHA

or

COpy CR OVER ALPHA

COpy CR

COpy CR

2. Assume that a Meta-Symbol source program file, called
SOURCE, is to be copied from RAD storage to the ter­
minal. The command could be coded as

d represents device identification and has the form S.COPY DC/SOURCE TO ME e
device identification code[#reel-id]

Device identifications were defined in Table 12.
Reel identifiers apply only to magnetic tapes or

42 Fi Ie COpy Command

START lW, R1 ALPHA

AI, Rl 5

CW, Rl BETA

This command could also be typed as

< COpy SOURCE TO ME e

3. Assume that successive cards are to be copied from the
card reader to a new RAD storage fi Ie with the follow­
ing file identification: KD. 2024. PLEASE. (This would
only be allowed in batch processing.) Two I EODs are
used to signal the end of the card file. The COpy
command would be:

COpy CR TO DC/KD. 2024. PLEASE

4. Assume that files Band C from labeled tape No. 57
are to be copied, in that order, to a new RAD storage
fi Ie c a II ed B. • PAS S •

~COPY LT#57/B,C TO DC/B •• PASSe

• .COPYING

5. Assume file A from labeled tape No.5, file D from
RAD storage, ond all files on free form tape No.8 up
to the next double end-of-file are to be copied to
file A on labeled tape Nos. 6 and 7. Tape No.7 is
to be used only if No. 6 overflows.

~ COpy LT#5/A;DC/D;FT#8 TO LT#6#7/A@J

· .COPYING

6. Assume three successive sets of files, each separated
by a doubl e end-of-fi Ie, are to be punched in cards
from free form tape No. 7236. Two! EODs are written
when the output device is closed.

or

< COpy FT#7236 TO cpe

· .COPYII'-JG

< COpy FT#7236@J

• .COPYING

< COpy FT #72360

• .COPYING

~ COpy FT#7236;FT#7236;FT#7236 TO CP €V

· .COPYING

DATA ENCODING

The COpy command may contain various codes and specifi­
cations which either describe certoin characteristics of
input and output files or devices, or which request various
types of data conversion or format changes in the output to
be produced. Parti 01 fi I es may be copi ed by use of record
sel ecti on and output records may have sequence identifica­
tion inserted or deleted.

A description of the available codes and specifications
follows:

DATA CODES

Data codes (Table 13) describe the source or destination
data types to be expected or produced.

Table 13. Data Codes

Code Meaning

E EBCDIC (defaul t data code)

H Hollerith

DA T A FORMATS

Data formats (Table 14) describe the source or destination
record formatting to be expected or produced.

Table 14. Data Formats

Code Meaning

X Hexadecimal dump

C Meta-Symbol compressed

The X option produces a single-spaced dump on the line
printer or terminal. The presence of an asterisk following
the word count in the dump indicates that omitted lines are
identical to the preceding I ine. If output is to the line
printer, the EBCDIC equivalent is also printed.

A C option on an input specification indicates that input is
in compressed format and is to be decompressed on output.
A C option on an output specification indicates that input
is in symbol ic form and is to be compressed on output. The
presence of a C option on both input and output is invalid.
Also, record selection is not allowed when compressing or
decompressing files.

MODES

Mode codes dictate the control modes for the specified files
or devices. They are shown in Table 15.

Table 15. Mode Codes - COpy Command

Mode Description

BCD,BIN Binary-coded decimal or binary mode.
These codes are va lid for cards, paper
tape, and magnetic tape.

7T,9T 7-track or 9-track magnetic tape.

PK,UPK 7-track binary tape packed or unpacked.

Fi Ie COpy Command 43

Table 15. Mode Codes - COpy Command (cont.)

Mode Description

SSP,DSP,
VFC

NC

CR

TX

FA,NFA

DEOD

K

Single, double, or variable format controlled
spacing on I ine printer or terminal.

No carriage return. Removes carriage­
control character (X'15 1 or X'OD '), if
present, from each record on output. This
mode is the default mode if input is from
the terminal.

Retains carriage return. Must be specified
if carriage returns are to be retained when
copying 'ME' to a file or device.

Tab expansion. Values specified on a PCl
TABS command are used. If a PC l TABS
command was not issued, the tab values in
the M:UC DCB are used. If no tab values
are specified, single spaces replace tabs on
output.

File attributes. These codes specify
whether or not the attributes (i. e.,
variable-length parameter I ist except
name, account, and password) of the
source fi Ie are to be carried over to the
destination file. If the file name remains
the same from source to destination and
neither FA nor N FA is specified, the
attributes are copied. If the names of the
source and destination fi les are different,
the attributes are not normally copied;
information specified in ASSIGN or SET
commands takes effect.

Double end-of-file. Multiple source files
are copied into a single output file. Thus,
while COpy FT copies files including
single end-of-file marks up to a double
end-of-file, COpy FT (DEOD) copies files
to a double end-of-file without copying
the single end-of-fi Ie marks.

Reconstruct edit keys. If the file has a
3-byte key, the I isting is not to be in
hexadecimal form and the destination is
a printer or terminal; the fi Ie is assumed
to be an Edit format file. The use of the
K option on output causes the key to be
decoded as an Edit line number in the.
form xxxx. xxx and to be printed on the
same line with the record contents (Edit or
EDCON listing format). A record sequence
number precedes the key. If the fil e is not
an Edit format file, only the record sequence
number precedes the record contents.

44 File COpy Command

Examples:

1. Assume that fi Ie A is to be copied to labeled tape No.4
with exactly the same attributes it had on RAD storage.

COpy A TO IT#4/A @)
· .COPYING

2. Assume tha·t RAD storage fi Ie A is in compressed form
and is to be converted to symbolic and listed on the
printer with double spacing.

COpy A (C) TO lP(DSP)@)
· . COPYING

3. Assume that line images are to be read from RAD storage
fi Ie A, converted from EBCDIC to Hollerith, and written
on a 7-track scratch tape in BIN mode.

COpy DC/A TO FT(BIN, 7T, H) @)
· . COPYING

4. Assume that a source file, SOURCE, containing tab
characters was created on-line and is to be punched
with tab characters expanded and carriage return
characters removed.

COpy SOURCE TO CP(TX, NC) @)
· .COPYING

RECORD SEQUENCIN G

Insertion or deletion of sequence identification for output
data records is accomplished by using record sequencing
specifications (Table 16). These specifications are available
only as output options.

Examples:

1. Assume that a file called SORC on labeled tape #25 is
to be sequenced and punched into cards. The card
identification is SRCE, the initial value is 1, and the
increment is 1. Thus, logical records are to be given
sequential identification as follows: SRCE0001,
SRCE0002, SRCE0003, etc.

COpy LT#25/S0RC TO CP (CS(SRCE, 1, 1)) @)
· .COPYING

2. Assume that PCl is to read successive records from free
form tape #73, to assign line numbers starting at 5, in
increments of 5, and to write the records on RAD stor­
age fi Ie A.

COpy FT#73 TO DC/ A(lN(5, 5)) @)
· .COPYING

3. Assume that two keyed files A and B, are to be merged
into file C and assigned new keys. Default keys are
to be assi gned.

COpy A, B TO C(lN) @)
· . COPYING

Table 16. Record Sequencing Options - COpy Command

Code

CS L(id~n,kJ)J

NCS

IN [(n, k)J

NlN

Description

Card sequenciing in columns 73-80.

id is identiification
(0-4 characters)

n is initial value

k is increment

The identificCition (id) is left-justified
in the field (73-80) and is followed
by the sequence number, wh ich is
right-justified in the same field.
Precedence is given to the sequence
number if overlapping occurs. The
default val ue:; for id, n, and k are
null, 0, and 1, respectively.

No card sequ,encing. Th is specifica­
tion strips columns 73-80 from each
output data record.

Line numbering. The file starts at n
and continues in sequentiCiI steps of
k. Line number and increment for­
mats are as in the Edit subsystem.
Li ne numbers must be between 1 and
9999. Increments may range from
.001 through 100.000. The default
va I ues for both nand k are 1.

No line numbering.

ASSIGNMENT OF ACCOUNTS

A maximum of eight read accounts and eight write accounts
may be added as attributes of the output file as shown in
Table 17.

Table 17. Account Options. - COpy Command

Code Description

RD(ac
1
[,ac2,·· .J) Adds read account(s) on output.

A maximum of eight accounts
may be given.

WR(ac
1
[,ac2'" .]) Adds write account(s) on output.

A maximum of eight accounts
may be given.

Examples:

1. Assume that file A is to be copied to labeled tape
No.4 with the same attributes it had on RAD storage
plus the addition of read accounts ON E and TWO.

COPY A TO LT#4/A(RD(ONE, TWO)) @)
•• COPYING

2. Assume that read account ALPHA and write accounts X
and Yare to be added as attributes of file SRCE.

COpy SRCE OVER SRCE(RD(AlPHA),WR(X, Y)) @)
•. COPYING

RECORD SE lECTION

This specification permits selection of the logical records
to be copied by giving the sequential position of the records
within the file. The specification has the form

X -Y

All records within the fi Ie that have a position, n, satisfying
the condition X n Yare selected. Multiple selections
may be specified if separated by commas (X-Y, U-V, W-Z).
Selections do not have to be in sequential order (but non­
sequential selection is very slow for tape operations). The
maximum number of selections is ten for each input fi Ie.

Example:

Assume that sections of two fi les, N1 and N2, are to be com­
bined to form a third fi Ie, N3. Records 20-30 and 40-100 of
N 1 followed by records 50-75 of N2 are to be copied, in
that order, to N3. The job account is assumed for fi les N 1
and N3; N2 is from account 34 under password PA.

COpy DC/N1 (20-30, 40-100), N2. 34. PA(50-75)

TO DC/N3 0

•. COPYING

VALID OPTION COMBINATIONS

Not all combinati ons of source and destination devi ces,
data types, formats, modes, or sequencing codes are val ide
Table 18 shows the valid combinations, the invalid com­
binations, and the default provisions for the various possible
combinations. If an inval id combinati on is found, an error
message is produced. Execution of the command mayor
may not continue, depending on the severity of the error
encountered (see Error Messages).

EXTENSIONS USING ASSIGN OR SET

Not all of the facilities available in the UTS I/O system
are made available through PCL. More complicated data
transfers may be specified by ASSIGN cards (batch mode)
or SET commands (on-I ine mode). Since PCl reads through
M:EI and writes through M:EO DCBs, special information,
such as I ists of read and write account numbers, may be
prespecified by assigning either the input or output DCB.

ACCOUNT COpy COMMAND

This command allows all files, or a specified subset of files,
in the log-on or some other account to be copied from a

Account COpy Command 45

Table 18. Val id Option Combinations

Source Device

C P D L D

Option Codes R R C T P

Data codes E d x d d d
H x - x x x

Data formats X - - - - -
C x x x x x

Modes None - d d - d
BCD d - - - -
BIN x - - d -
7T - - - x -
9T - - - d -
PK - - - x -
UPK - - - - -
SSP - - - - -
DSP - - - - -
VFC - - - - -
NC - - - - -
CR - - - - -
K - - - - -
FA - - - - -
NFA - - - - -
TX - - - - -
DEOD - - - - -

Sequencing None - - - - -
CS - - - - -
NCS - - - - -
LN - - - - -
NLN - - - - -

Accounts RD - - - - -
WR - - - - -

Selection x-y x x x x x

Legend: d = default
x = optional
- = error, not available, unreasonable

file-type device (RAD, labeled tape, or disk pack) to any
valid output device. It has the general form

COPYALL files [TO device]

where

files may be one of the following:

[DC][. acct][(s)][/r]

LT[#reel-id][(s)][/r]

D p[# ree I-i dJ[(s)][/r]

46 Account COpy Command

F

T

d
x

-
x

-
x
d
x
d
x
x

-
-
-
-
-
-
-
-
-
x

-
-
-
-
-
-
-
x

Destination Device

M D L D F M

E C T P T E

d d d d d d

- x x x x -

- - - - - x
- x x x x -
d d - d - -
- - - - x -
- - d - d -
- - x - x -
- - d - d -
- - x - x -
- - - - x -
- - - - - d
- - - - - x
- - - - - x
- x x x x x
- x x x x x
- - - - - x
- x x x - -
- x x x - -
- x x x x x
- - - - - -
- d d d d d
- x x x x x
- x x x x x
- x x x - -
- x x x - -
- x x x - -
- x x x - -
- - - - - -

device may be one of the following:

DC[(a)]

LT[#serial no.] [(a)J

DP[#serial no.] [(a)]

FT[#serial no.] [(7T)]

LP

ME

CP

L

P

d

-
x

-
-
-
-
-
-
-
-
d
x
x
x
x
x

-
-
x

-
d
x
x

-
-
-
-
-

C P

P P

d x
x -

- -
x x

- d
d -
x -
- -
- -
- -
- -
- -
- -
- -
x x
x x
- -
- -
- -
x x

- -

d d
x x
x x

- -
- -

- -
- -
- -

In the above specification,

may be KEY to copy keyed files only; or SEQ to
copy sequential files only; or RAN to copy random
files only; and/or 7T to copy from a 7-track tape;
and/or PHY to copy in physical order from tape.

may be f,t; or f; or ,to

where

f is 1 to 31 chamcters representing the
beginning of a range of fi les to be
copied.

is 1 to 31 chawcters representing the
IBnd of a range of fi les to be copied.

Both f and t are used as sort keys only and gener­
ally do not have to be file names. They may be
written in character string or hexadecimal nota­
tion (e.g." A, IA I, or X IC1 1 all represent A.).
The t field must be equal to or greater than the f
field. Fi les on tape are assumed to be in alpha­
numeric order unless the PHY option is used.

If PHY is specified, the f and t fields define a
physical range of files on tape instead of an alpha­
numeric rcmge and therefore must be fi Ie names.
If the f field is null, copying begins wherever the
tape is positioned. If the t field is null, copying
continues to end of tape. If the file in the f field
does not ex ist, the command is aborted. If the
file in the t field does not exist, copying contin­
ues to end of tape.

Note: The introductory slash (/) is optional if no
codes or options precede it.

a may be RD with one to eight account numbers
enclosed in parentheses, e.g., RD (XX, YY);
and/or WR with one to eight account numbers
enclosed in parentheses CIS for RD; and/or 7T to
copy to a 7 -track tape.

PCl copies all files from the input device to the output de­
vice. Files protected by passwords cannot be copied with
th is command unless the correct pClssword is placed in the
M:EI DCB by a SET command or an ASSIGN card. The
BREAK key terminates execution of this command and causes
PCl to type the identification of the last file copied.

A synonym file is copied to RAD or disk pack only if the
parent fi Ie was copied or previously existed on the destina­
tion device. A synonym file is always copied to tape re­
gardless of whether the parent fi I€~ is present on the tape.
If a range is specified on the command, the synonym fi les
with in the range are copied if the above condi tions are met.
A parent fi Ie of a synonym fi Ie within the range is not
copied unless it is ellso within the range. If files are copied
by organization (KEY, SEQ, or RAN option), synonym
fi les are not copied.

If files are being copied to the terminal or line printer,
each file copy is preceded by the name of the file. If files

are being copied to any device other than the terminal,
the message

•• COPYING

prints when the first file copy begins.

If there are no fi les present in the specified account, the
following message prints:

NO FILES IN DIRECTORY

If a file cannot be opened due to a password requirement,
the following message is printed and execution of the com­
mand continues:

CAN NOT ACCESS FILE XXX

PCl indicates completion of the command by printing a
message of the form

• • nnnn FILES COPIED

where nnnn is the number of files copied during execution
of the command.

Examples:

1. Assume that all files listed in the user's account direc­
tory are to be copied to labeled tape Nos. 3 and 4.
Tape No.4 is to be used only if No.3 overflows.

< COPYAll TO IT#3#4 @)

• .COPYING

Note that RAD storage space previously occupied by
this account can be released for other use after the files
have been copied.

2. Assume that fi I es are to be restored on RAD storage
under the job account from labeled tape Nos. 3 and 4,
created under account :SYSGEN.

< COPYAll IT#3#4. :SYSGEN @)

•• COPYING

3. Assume that an exact copy of labeled tape No. 3 is to
be written on tape No.4. The record size must fit the
allowable installation-set allocation of core to a single
job.

< COpy All IT#3 TO IT#4 @l

• .COPYING

4. Assume that all keyed files on disk pack #5 are to be
wri tten to a scratch tape.

~ COPYAll DP#5 (KEY) TO IT ~

OUTPUT SERIAL NUMBER = XXXX

• .COPYING

Account COpy Command 47

5. Assume that all files on RAD between the sort
keys C and l are to be copied to the I ine printer.
Each file name will print before the file copy. It
is assumed that records are in BCD format.

$.COPYALL C,l TO lP@)

••• COPYING

6. Assume that all files on RAD are to have read
accounts 123 and X 'OOC6 1 and write account XY
added as attributes.

$.COPYAll TO DC(RD(123,X 'OOC6 1
), ~

LWR(XY))@)

• • COPYING

CONTROL FILE COPY COMMAND

The control file copy command allows the copying of files
whose identifiers appear in a control file. The command
is called "copy standard" and has the form

COPYSTD input [TO output]

where

input may be one of the fo II ow i ng :

[DC/]fid

IT [#serial no.] [(7T}]/fid

DP [#seria I no .]/fid

output may be one of the following:

DC

IT [#serial no.] [(7T)]

DP [#seria I no.]

FT [#seria I no.] [(7T)]

lP

ME

CP

PCl opens the file named in the input specification a'nd
unless this file is specified as existing in the user's RAD
account and the output device is I DC, the fi Ie wi 1\ be
copied to the specified output device. The files named in
the standard fi Ie are copied to the output device using the
running account and the same fi Ie names as appear in the
standard fi Ie for output.

48 Control File COpy Command

The format of a standard file record is an initial character
followed by name, account, and password separated by
periods. For example:

*NAME. ACCT. PASS

*NAME.ACCT

*NAME

The initial character is unused in the copy operation. If no
account is specified, then the source account for the file is
assumed to be the same as the account of the standard fi Ie
itself. Commentary may appear on each record.

Files named within the standard file may be from labeled
tape, disk pack, or RAD; in fact all variations allowed for
the input specification field of a COpy command are valid
for these devices except that options are not allowed .
Device codes and accounts present in the record override
the one present on the COPYSTD command.

If files are being copied to the terminal or line printer,
each fi I e copy is preceded by the name of the fi Ie. If fi I es
are being copied to any device other than the terminal, the
message

•• COPYING

prints when the first file copy begins.

If a fi Ie does not exist or can not be opened due to a pass­
word requirement, the following message prints:

CAN NOT FIND OR ACCESS FILE XXX

The fi Ie is then bypassed and execution of the command
continues.

The BREAK key terminates execution of the COPYSTD com­
mand and causes PCl to type the identification of the last
fi Ie copied.

PCl indicates completion of the COPYSTD command by
printing a message of the form

•• nnnn FILES COPIED

where nnnn is the number of the files copied during execu­
tion of the command including the standard file itself.

Examples:

1. Assume that all files listed in file STDF on labeled tape
No. 5 are to be copied to RAD storage. The format of
fi Ie STDF is

*A COMMENTARY
*B
*C

The command to be used is

~COPYSTD IT#5/STDF @)

• .COPYING

On completion of the command, the files STDF, A, B,
and C, will have been copied from tape No.5 to the
userls RAD account.

2. Assume that all fi les I isted in file ST in the userls RAD
account are to be copied to his account. The files
named in ST must not currently exist in his account.
The format of file ST is

.ALPHA.ACCT. PASS,BETA. :SYSGEN

:LT#5/B,C

The command to be used is

< COPYSTD ST @)

• • COPYING

On completion of the command, only four files will
have been copied: ALPHA and BETA from other ac­
counts to the user IS account, c:md fil es Band C from
labeled tape No.5.

3. Assume that all files listed in file :STD in account
:SYSGEN are to be copied to the line printer. The
files listed are all in account :SYSGEN. The format
of fil e :STD is

=ALPHA,BETA,GAMMA

The command to be used is

< COPYSTD :STD. :SYSGEN TO LP 0~

•• COPYING

On completion of the command, files :STD, ALPHA,
BETA, and GAMMA will have been copied from ac­
count :SYSGEN to the printer.

OTHER COMMANDS

This group of commands provides fiile deletion, file position­
ing, and other manipulation and maintenance functions.

DELETE The DELETE command deletes complete files
and has the form

DELETE fid['fid ••• J

where fid specifi es the identificatiion of the fi Ie to be
deleted.

Example:

Assume that RAD storage file SOURCE is to be deleted.
This file is assumed to have been set up under the log-on
account with password PLEASE.

< DELETE SOURCE •• PLEASE ~~

1 FILES DELETED

Depressing the BREAK key terminates execution of the
command. The summary message tells how many files were
deleted.

DELETEALL Another delete command deletes all files,
or a specifi ed range of files, in the log-on account. The
form of the command is

DELETEALL [fromJ[,toJ

where Ifrom I and Ito l are sort keys of 1 to 31 characters
each that define a range of files to be deleted. Absence
of a Ifrom l field indicates that files are to be deleted from
the beginning of the account. Absence of a Ito l field indi­
cates that files are to be deleted through the end of the
account. Absence of both the Ifrom l and Ito l fields indi­
cates that all files in the log-on account are to be deleted .

Both Ifrom l and Ito l are used as sort keys only and do not
have to be file names. They may be written in character
string or hexadecimal string notation (e.g., A, IA I, or XICl l

all represent A). The Ito l field must be equal to or greater
than the Ifrom l field.

A synonym fi Ie within the range is deleted only if its parent
file is within the range.

A confirmation, YES$, is required in the on-I ine mode.
(This is shown in the examples below.)

If there are no files in the log-on account, PCL responds to
the command with the following message:

NO FILES IN DIRECTORY

If a fi Ie cannot be opened due to a password requirement,
the following message prints:

CAN NOT ACCESS FILE XXX

The file is then bypassed and execution of the command
continues.

After the delete function is performed, the following message
prints:

•• nnnn FILES DELETED

The count (nnnn) does not include synonym files which were
deleted.

Examples:

1. Assume that all fiI es in the log-on account are to be
deleted.

< DELETEALL@)

DELETEALL?

• YES$@)

8 FILES DELETED

Other Commands 49

2. Assume that all fi les in the inclusive range B through H
are to be deleted.

~ DElETEAll B, H @

DElETEAll?

• YES$@

4 FILES DELETED

Depressing the BREAK key terminates execution of the com­
mand and causes PCl to type the identification of the last
fi Ie deleted.

LIST The LIST command is of the form

IT[#reel-id][(s)J

[DC G acct]J [(s)J

IT(#serial no.J [(s)J/fid[(s)][,fid[(s)J ••• J

LIST fid [(s)J[, fid [(s)J ••• J

D p[# reel- i dJ[(s)J

DP(#serial no.J /fid [(s)J['fid ((s)J ••• J

FT#serial no. [(s)J

All listed output goes through the M:lO DCB.

The action for the various specifications is as follows:

1. IT[#reel-idJ[(s)J (I ist file directory)

Device opti ons may be 7T, 9T, A, or EA

PCl scans the labeled tape and lists the names of all
fi les contained on it. If option A has been requested,
the attributes of each file are also listed. These attri­
butes include

Size in granules.
Record count.
Organization (keyed or consecutive).
Read accounts, if other than 'All'.
Write accounts, if other than 'NONE',
Modification date.

If option EA (extended attributes) has been requested,
the following attributes are listed in addition to those
described above:

Creation date
Expiration date
Backup date
last access date

If a file requires a password or account and none is
given, this will be noted.

2. [DC[. acctJl [(s)] (list file directory)

Device option may be A or EA.

50 Other Commands

PCl scans the user's RAD fi Ie directory and I ists the
names of all files. If A or EA has been specified, the
attributes are I isted as in 1.

3. IT[#serial no.J [(s)]/fid((s)]Gfid[(s)] .•• J (list file attributes)

This is a request for the attributes of the indicated fi les .
Device options may be 7T or 9T. File options may be
A (which is the defaul t) or EA. If an account is
required, it must be included in the file identifier. pel
prints an attribute summary for each file, as in 1.

4. fid [(s)][, fid[(s)) •••] (I ist fi Ie attributes)

5.

This is a request for the attributes of the one or more
RAD files named. Options may be A (which is the
default) or EA. PCl prints an attribute summary for
each file, as in 1.

DP(#reel-idJ[(s)] (list file directory)

Device option may be A or EA.

PCl scans the disk pack and lists the names of all files
contained on it. If A or EA has been specified, the
attributes are listed as in 1.

6. D P(#serial no.J /fid[(s)](, fid[(s)J ... J (list fi Ie attributes)

This is a request for the attributes of the indicated fi les
on disk pack. File options may be A (which is the
default) or EA. If an account is required, it must be
included in the file identifier. PCl prints an attribute
summary for each file, as in 1.

7. FT#serial no. [(s)J

Device options allowed are 7T and 9T. Serial no. can
be a fake. If the tape conforms to BPM label ing con­
ventions, PCl prints the serial number, account, and
contents (file names) of the tape. The tape remains
posi ti oned after the last file, thus enabl ing the user to
add fi les.

If only the command LIST is given, and no specification
follows, then the command executes as though it were LIST
DC. LIST (A) and LIST. acct are also val id commands. All
output, except for completion messages, is written through
the M:lO DCB.

The BREAK key terminates execution of this command.

PCl indi cates completion of the command by printing a
message of the form

•• nnnn FILES LISTED

where nnnn is the number of fi les I isted during execution of
the command.

If attributes of all files in a RAD or disk pack directory are
listed, the following message also prints:

•• xxx x TOTAL GRANULES

Examples:

1. Assume that all files on RAD under the log-on account
are to be listed.

< LIST @)

ALPHA

BETA

GAMMA

ZETA

4 FILES LISTED

2. Assume that files on 7-track labeled tape Nos. 3 and
4 are to be listed. These tapes were created under the
account :SYSGEN.

~ LIST LT#3# 4. :SYSG EN(7T) @)

SOURCE

ALPHA

XYZ

3 FILES LISTED

3. Assume that the attributes of files ALPHA and BETA on
RAD are to be I isted. The attributes I isted have the
following meaning:

ORG C = consecutive, K = keyed file,
R = random file.

GRAN Number of grcmules of RAD space
(1 granule = 512 words).

REC Number of records in file.

DATE Modification date.

Name Fi Ie name.

Read and write accounts print on a separate line and
will print only if they have other than default values.

< LIST ALPHA,BETA@l

ORG GRAN REC DATE NAME

C 2 71 22 JUL 71 ALPHA

K 14 590 1 AUG 71 BETA

2 FILES LISTED

16 TOTAL GRANULES

4. Assume that the extended attributes of fi I e ABC on
disk pack No. 2 are to be I isted. This file has had
write account 123 assigned previously.

~ LIST DP#2/ABC(EA)@J

ORG GRAN REC DATE NAME

C 28 385 16 AUG 71 ABC

WRITE= 123

WILL EXPIRE

CREATED ON

BACKED UP ON

31 DEC 71

2 AUG 71

10 AUG 71

LAST ACCESS ON 18 AUG 71

1 FILES LISTED

5. Assume that a type requires identification. The fake
serial no. X is used in the command.

< LIST FT#X@l

INSN = 8522

ACCT = :SYSG EN

ONE

TWO

THREE

FOUR

FIVE

SIX

6 FILES LISTED

REVIEW This command lists files in the log-on account
and waits for a user response after listing each file name to
allow the option of deleting the file. The format of the
command is

REVIEW[fromJGtoJ

where 'from I and Ito I are sort keys of 1 to 31 characters each
which define a range of files to be reviewed. Absence of a
'from ' field indicates that the account is to be reviewed from
the beginning. Absence of a Ito l field indicates that the
review is to continue to the end of the account. Absence
of both the 'from I and Ito I fields indicates that the entire
account is to be revi ewed.

Both I from I and Ito I are used as sort keys only and do not
have to be file names. They may be written in character
string or hexadecimal string notation (e.g., A, IA I, or X'C1'
all represent A). The 'tol field must be equal to or greater
than the 'from' field.

This command may be used in the batch mode and wi II func­
tion identically to 'LIST' except that a range specification
is permitted.

The BREAK key terminates execution of this command.

Other Commands 51

Example:

< REVIEW N,X @)

--ENTER D TO DELETE FILE.

NAY@)

P •
W99 D *DElETED*

3 FILES LISTED

Each file name within the inclusive range N through X is
listed and a wait occurs. If a D is typed, the confirmation
message *DElETED* prints, and the next fi Ie name is listed.
If any character other than D is typed, including carriage
return (@)) or line feed (8), the file is not deleted. Note
that pel responds immediately to the character that is typed
(the period (.) and the D in the example above) and that a
carriage return is not required. (The carriage return that
occurred at the end of the line

P •

was provided by peL.)

If a file has a password or is open by another user, this is
noted by an appropriate message, and the review continues
without the usual wait.

SPF This command positions free form tape forward or
backward a designated number of fi les. The form of the
command is

SPF FT[#serial no.][(7T)],±n

where

+

n

specifies forward direction.

specifies backward direction.

is the number of files to be skipped.

If the direction is not given, forward direction is assumed.
If an end-of-reel condition is encountered prior to comple­
tion, an error message is sent to the terminal.

Example:

Assume that free form tape No. 2076 is to be positioned
forward two files.

< S PF FT#2076,+2 @

SPE This command skips to the position following the
last fi Ie on labeled tape. The form of the command is

SPE l T[#serial no.] [(7T)]

Prior to issuing this command, the user must make sure that
the tape is not write protected, i. e., the operator must be
informed to insert a ring in the tape if it is a saved tape.

52 Termination of pel

Example:

Assume that labeled tape No.5 is to be positioned past the
last file on the tape so that additional files may be added.

~SPE LT#5@)

WEOF WE OF writes an end-of-file on the current out­
put device. This is an end-of-fi Ie mark for free form tape
units, IEOD for card or paper tape punches, or top-of-form
for line printers. The form of the command is

WEOF

(Note that only one output file will be open at a time.)

REW This command rewinds the specified magnetic tape
ree I. It has the form

REW~~] [Hserial no.] [(7T)]

Example:

Assume that magnetic tape reel No. 205 is to be rewound.

~REW#205@)

REMOVE This command removes a magnetic tape or disk
pack no longer needed, thus releasing the drive or spindle
for other purposes. The form of the command is

REM[OVE{~~] [IIserial no.] [(7T)]

If a tape is removed, the tape is rewound and a dismount
message is sent to the computer operator. If a disk pack is
removed, the user's interest in that spindle is released; how­
ever, no message is sent to the operator.

Example:

Assume that magnetic tape reel No. 2075 is to be rewound
and removed.

TABS This command sets tab values to be used in con­
junction with the TX (tab expansion) option. As many as
16 values may be specified. The form of the command is

TABS sGs] ... [, s]

where s is a column position to be used in expanding a line.

Example:

Assume that tabs are to be set for standard Meta-Symbol
I ist format.

~TABS 1O,19,37@)

TERMINATION OF pel

pel operations are terminated by the END command. This
command returns control to TE L.

Example:

< END@)

PCl uses the ERRMSG fi Ie (see Appendix B). If there is an
error message in the ERRMSG file, PCl sends that message
to the terminal instead of the decimal code. If there is no
error message in the fi Ie, PCl sends a decimal code.

PCl has two types of error conditions. One type consists
of the I/O error and abnormal conditi ons as I isted in
Appendix B. The other type consi!;ts of errors arising out
of the use of PCl commands. These conditions are defined
in Table 19.

Table 19. PCl Error Codes

Decimal Severity
Code Message level

01 Argument greater them 2
31 chclracters.

02 Illegal device code. 2

03 More than four chamcters ina 2
reel number specificotion.

04 Illegal file name specification. 2

05 III egal account number 2
specification.

06 Illegal password specification. 2

07 Too many fields in a file 2
identification specification.

08 Invalid file range specification. 3

09 More than ten RS fields for an 2
input devicet•

10 Overflow on an RS volue. 2

11 Error on Y va I ue of RS opti on tt. 2

12 CS ID-fi eld greater than
four characters.

13 Error on N or K va I ule of
CS option.

14 Improper termination within 3
RS, l~-J, or CS option.

15)) must terminate RS, IN, or 3
CS option.

t RS signifi es record selection.

tty' 'f' h I" f d I ' slgnl les t e upper Imlt 0 a recor se echon.

Table 19. PCl Error Codes (cont.)

Decimal Severity
Code Message level

16 Special arguments must have) 3
as termination character.

17 EH? 3

18 Undefi ned command action 2
verb.

19 Illegal input device. 3

20 No defined output devices. 3

21 Illegal output device. 2

22 Reel number specification not 2
val id for this device.

23 Fi Ie specification not val id for 2
this devi ceo

24 Data code specification not 2
val id for this device.

25 Mode specification not valid 2
for this device.

26 Sequence specification not 2
valid for this device.

27 Record selection specification 2
not valid for this device.

28 PK/BIN/7T combination not 2
valid.

29 Null arguments (two delimiters 1
in a row).

30 Improper termination of the 1
command.

31 One reel number must be 2
specified on this command.

32 'TO' or 'OVER' not specified. 3

33 Record size exceeds avai lable 3
memory.

34 Invalid device type for this 3
command.

35 More than three reel numbers 3
specified.

36 Overflow on number of fi I es on 3
'SPF' command.

37 Inval id direction indicator on 3
'SPF' command.

38 Input record size larger than 3
32767 bytes.

39 Invalid option for COpy ALL. 3

40 Account specification not 3
valid on 'SPE' command.

Error Messages 53

Table 19. PCl Error Codes (cont.)

Decimal
Code Message

41 RS specification beyond end
of file.

42 Error in compressed input.

43 C option invalid on both
input and output.

44 Record selection invalid with
C option.

45 Invalid tab specification.

46 Overflow on Edit line number.

47 Zero increments on CS or IN
option.

48 TX option used without TABS
command.

49 Invalid option for COPYSTD.

50 More than eight read or write
accounts.

51 More than 16 tab values.

52 Unable to dismount.

Severity
level

2

3

3

3

3

3

1

1

2

1

1

2

2. Invalid Syntax or I/O Error

This level terminates execution of the command but
continues the syntax edit of the command for both on­
line and batch operations.

3. Format Error

This level terminates the command.

In the case where a command is terminated (severity
level 2 or 3), PCl reverts to the command state if the
error occurs during on-line operations; it reads the
next command card if the error occurs during batch
operations.

Example:

Assume that a fj lei s to be copi ed from RAD storage fi I e A
to the card punch. In entering the command, the de vi ce
code for the RAD is entered as CC instead of DC.

~COPY CC/A TO CP (§

Error message printout:

IllEGAL DEVICE CODE

A severity level of 1, 2, or 3, is attached to each error
and has the following effect on the execution of the com­
mand in question:

1. Warning PCL COMMAND SUMMARY

PCl continues execution. The message wi II be printed
only if a higher error severity level occurs during exe­
cution of a command.

Table 20 is a summary of PC L commands. The left-hand
column gives the command formats. The right-hand column
gives the command function and options.

Table 20. PCL Command Summary

Command

COPY d [(s)] [/fid [{s)J[, fid [(sB 1. ..]I;d [(s)] ~

L[lfid[(S)]][,fid[(S)j ... J ... [6~ER ----,1

{

[DC][. acct] [(s)][jr] }
COpy ALL L T[#reel-id][(s)]f/r] [TO d[(a)]]

DP[# reel-id][(s)][/r]

54 PCL Command Summary

Description

Copies file between devices or between RAD storage and devices.

Options:

d may be CP, CR, DC, FT, LP, LT, or ME.

s may be a data code (E, H); a data format (X,C); a mode (BCD,
BIN, 7T, 9T, PK, UPK, SSP, DSP, VFC, NC, FA, NFA, TX,
DEaD, K); a sequence (CS, NCS, LN, NLN); an account
(RD, WR); or selection (x-y).

Copies files from RAD, labeled tape, or disk pack to any output
device.

Options:

d may be DC, LT, DP, FT, LP, ME, or CPo
s may be KEY, SEQ, RAN, or 7T.
r is a range specifica'tion.
a may be RD, WR, or 7T.

Table 20. PCL Command Summary (cont.)

Command Description

{[DC/Jfid } Copies a control file and all files named within the file.
COPYSTD LT[# seri a I no.] [(7T)J/fid [TO d [(7T)J]

DP[#seriai noJ /fid Option: d may be DC, LT, DP, FT, LP, ME, or CPo

DELETE fid[, fid ...] Deletes the specified files.

DELETEALL [fron1l['to] Deletes al I fi les or a specified range of fi les in the log-on account
and requires a confirmation:

DELETEALL?

. YES$ @)

.. nnnn FILES DE LETED

END Returns control of the terminal to TEL.
r-- -

L T[# ree I -i d1 [(s)] Lists fi Ie names and, optionally, attributes from the account
[DC[. acct] [(sil dictionary, tape, or disk pack.
LT[#seriai no.] [(s)J/fid [(s)][,fid [(s)]. .. J

LIST fi d [(s)][, fi d[(s)]. ..] Option: s may be A, EA, 7T, or 9T.
DPf#reel-id][(S)]
DP #serial no.J/fid[(s)J['fid[(s)J ... J
FT #serial no. [(s)J

-'--

REM[OVE{~~}# seri a I no,] [(7T)]
Removes a magnetic tape or disk pack.

REVIEW [fromlLtcJ Reviews all or a portion of files in the log-on account.

REW~~][#serial no.] [(7T)J
Rewi nds tape reel.

SPE LT[#serial no~] [(7T)] Spaces to the end of the last fi Ie on labeled tape.

S PF FT[# seri a I no.J [(7T)J,±n Positions free form tape forward or backward a designated number
of fi les.

TABS s[,s]. .. [,s] Sets tab values for tab expansion.

WEOF Wri tes an end-of-fi Ie on the current output de vi ceo

PC L Command Summary 55

6.

INTRODUCTION

Edit is a line-at-a-time context editor for on-I ine creation,
modification, and manipulation of files of EBCDIC text.
All Edit data is stored on disk in a keyed fi Ie structure of
sequence-numbered variable-length records, which permits
Edit to directly access each I ine or record of data. Edit
functions are controlled via single-I ine commands from the
user. The command language provides for the following:

1. Creating a sequenced EBCDIC coded text file.

2. Inserting, reordering, and replacing I ines or groups of
lines of text.

3. Selective printing and renumbering.

4. Reordering groups of records within a file.

5. Merging part of one file into another.

6. Context editing operations that allow matching, moving
and substituting character strings within a specified
range of text lines.

7. Maintaining fi les (allowing the user to build, copy,
and delete whole files of text lines).

A user may edit files under his own account (i. e., the one
under which he logged on) or under accounts to which he
has been granted write-access by the file creator. He may
copy his own fi les or those to which he has read-access.
Under the rul es of UTS fil e access, a fil e may not be created
(i.e., built or copied to) under an account number different
than that used for log-on.

In using Edit, it must be stressed that the edit takes
place as the commands are given; the file is edited in
place. Therefore, a backup file should be kept to protect
against user or machine errors.

CALLING EDIT

An on-I ine user of UTS may call the Edit processor either
directly,

IEDIT

or indirectly through one of two executive-level commands:

IEDIT fid

IBUILD fid

(edit an existing file)

(bui Id new file)

The first executive-level command allows the user to call
Edit for updating an existing file. Edit first opens the speci­
fied file and then prompts for command input by typing its
identifying mark, the asterisk (*). The second executive­
level command allows the user to call Edit for on-I ine

56 Edit

EDIT

creation of a text file. Edit opens the specified file and
prompts for command input by typing the first I ine number
at the left margin of a fresh line. The user is expected to
enter the text I ines of the new fi Ie.

If an Edit command is given at the executive level without
a file identifier, Edit types EDIT HERE and prompts for
further commands by typing an asterisk (*).

RECORD FORMATS

The editing process is based on a sequence number associated
with each line. Unsequenced files of text lines may be
sequenced via the Edit COpy command. Sequence numbers
for inserting new I ines may be generated automatically by
Ed i t or may be supp lied by the user.

Sequence numbers consist basically of an integer and three
fractional digits. However, the user may write a sequence
number with one or more fractional digits omitted and Edit
will automatically assume sufficient trailing zeros to com­
plete the sequence number. For example:

Sequence Number Implies

50 50.000

50.01 50.010

50.5 50.500

50.008 50.008

Edit writes variable-length records, with a maximum record
size of 140 characters including the@l. Trailing blank char­
acters in a record are not written on the file.

Edit files are stored on disk as keyed records, with the keys
being binary representations of the sequence numbers. The
sequence number DDDD. DDD is taken as a seven-digit deci­
mal integer and converted to binary, giving a key with a
maximum length of three bytes. For example, the following
record created in a BUILD operation would have a key value
of 800010 and a record length of 20 bytes (assuming that@l
is in column 20):

8.000 B2 LI,5 0@J

If the @J is preceded by a number of blanks, they wi II not
be carried in the output. The record terminator can be
either @)or C0 and is carried in the record as X'15 1

•

MULTILINE RECORDS

On a terminal unit having an inherent I ine-width I imit of
less than 140 (e. g., Teletype models 33, 35, and 37), a

single, multiline record may be entered into a file (using
the BUILD or IN commands, for example) in either of two
ways:

1. Using the local carriage return key marked LOC CR, if
present, to "break II the input I ine without releasing it
to the system.

2. Using the simulated local carriage return sequence
@ @J for the S(Jme purpose.

Either method permiits entering a record of up to 139 char­
acters plus @) on virtually any terminal unit.

An exampl e of a mu I ti line record is presented in Fig ure 3.

BREAK FUNCl'ION

The BREAK key always causes an iimmediate interruption in
Edit activity, with (:.my partially completed input being dis­
carded and any waiting output beiing del ivered to the ter­
minal. Edit stops any command in progress and reverts to
accepting command input from the user.

If the command in progress when (In interrupt occurs is a
display command (for example, TY), the display will stop
within the next sevleral lines after the interrupt is given.

For commands that produce no display while operating on a
range of records, the point of interrupt is reported by a mes­
sage which denotes the sequence Iilumber(s) of the record(s)
being processed at the time of the interrupt. Edit then types
this message

--ENTER X TO ABORT COMMAND. ANY OTHER
CHARACTER CONTINUES.

and prompts for a single character input. If the user enters
an X, the operation aborts; if he ,enters any other character,
the operation continues.

If a command is being executed and the BREAK key causes
an interrupt during an I/O operation (e. g., READ, WRITE,
OPEN, DELETE record), the I/O operation is completed.
After the I/O is completed, the user may continue execution

of the command to normal conclusion or may immediately
terminate the command. With record or intrarecord com­
mands (see Command Structure), the current Edit file remains
open. All file commands terminate by closing all files.

EDIT COMMANDS

COMMAND STRUCTURE

Edit commands fall into the following three categories:

1. File commands: Commands that apply to an entire file.
These commands may be given at any time.

2. Record commands: Commands that act upon one record
or a group of records within a file. These commands
may be given only after a file has been selected for
editing.

3. Intrarecord commands. Commands that make changes
within an individual record. These generally manipu­
late character strings. These commands may be given
only after a specific set of records has been selected
by a command of type 2, above (either the SE, SS, or
ST command.)

FILE COMMANDS

The file commands will be discussed in the following order:

EDIT Select file for editing.

BUILD Create a new fi I e.

COpy Copy fi Ie 1 to file 2.

DELETE Delete fi Ie.

MERGE Merge files.

END Exit to executive.

CR Set carriage return mode.

TA Set tab positi ons.

BP Set blank preservation mode.

Line number 4. 000 is input as a mul ti I ine record in the following manner:

4.000 THIS IS AN EXAMPLE OF A MULTILINE§@)
RECORD. A RECORD CAN CONTAIN UP TO 140 §@)
CHARACTERS INCLUDING THE CARRIAGE RETURN.@)

If this record were displCllyed by Edit, it would appear as

4.000 THIS IS AN EXAMPLE OF A MULTILINERECORD. A RECORD CAN CONTAIN U
P TO 140 CHARACTERS INCLUDING THE CARRIAGE RETURN.

Note that the user did not type a space after the word 'multiline' and that Edit did not assume a space. Also,
the system IIfolds II the record indiscriminately when the physical I ine width I imit is reached.

Figure 3. A Multiline Record

Edit Commands 57

EDIT Edit Fi Ie

EDIT opens a file to be edited. The EDIT command has the
format shown below.

*EDIT fid

The EDIT command must be used to enter the record editing
mode and to identify the file that is to be edited.

Use of any of the following commands terminates the record
editing mode: BUILD, DELETE, MERGE, and COPY. If an
EDIT command is given while in the record editing mode,
the previously open fi Ie is closed and the specified fi Ie is
opened. In both situations, the following message is printed
by Edit:

•• EDIT STOPPED

Edit then processes the new command.

Edit responds to user errors with the following messages:

-NO SUCH FILE The file does not exist.

-FILE NOT KEYED; MUST COpy The file is not

BUILD

in the keyed format needed by Edit and must be
copied (via the COpy command) before it can
be edited.

Build New File

The BUILD command enables the user to create a new file.
The command may be given at the executive level with the
form

IBUILD fid

or it may be given at the Edit subsystem level with the form

*BUILD

where

fid is the identifier of the file to be created.

n is the sequence number at which the new fi Ie is
to start. The default value is 1.

is the value by which sequence numbers for the
new file are to be incremented. The default
value is l.

The system prompts by typing a sequence number, and
the user then types in the corresponding line. A null line
(indicated by @) alone) terminates the build operation and
closes the file. If the BUILD command is used at the
executive level, then control returns to the executive level
after typing a null record (@) alone); and if the BUILD
command is invoked while in the Edit subsystem, then
control returns to the Edit subsystem after typing a null
record.

58 Edit Commands

Example:

*BUILD SOFILE €V
1. 000

2.000

3.000

4.000

5.000

6.000 @)

*

SYSTEM SIG5 @)

DEF B@)

REF A @)

B A @l

END @l

The null record, consisting of
only a carriage return, termi­
nates the command and does not
appear in the output file.

Edit responds to user errors with the following messages:

--OVERFLOW More than 140 nonblank characters
were entered.

-FILE EXISTS:CAN IT BUILD
name (fid) already exists.

A file with the same

COpy Copy Fi Ie

COpy causes Edit to copy a specified fi Ie. The COpy
command has the format shown below.

where

identifies the file that is to be copied.

fid
2

.identifies the file to which fid
1

is to be
copied.

n is the starting sequence number for the new file.
If omitted, the old sequence numbers of fid 1 are
retained in the copy.

is the sequence number increment for the new
file. The default value is 1.

If ON is specified, a new fi Ie is created (and must not
already exist). If OVER is specified, fid 2 may exist; and if
it does, it will be deleted and replaced by the copy of fid

1
•

Example:

*COPY PROG 1 ON PROG2@)

•• COPYING

.. COpy DONE

Edit responds to user errors with the following messages:

-P2:FILE EXISTS
fid

2
exists.

-Pl:NO SUCH FILE
does not exist.

A COpy ON has been given but

The file identified by fid
1

-P1:FILE NOT KEYED & P3 NULL. There are no
keys on the file identific:l:d by fid 2 and resequenc­
ing has not been specified; thus, if copied, the
resultant file could not be edited.

DELETE Delete File

DELETE causes Edit to delete a specified file from the log­
on account. The DE LETE command has the format shown
below.

*DELETE fid

Example:

*DELETE PROG 1 @)

•• DELETED The file has been deleted •

If the file does not exist, Edit prints the message:

-NO SUCH FILE

MERGE Merge Files

MERGE causes Edit to transfer rec:ords between specified
files. The MERGE command has j·he form shown below.

Records n 1 through n2 from fi Ie fid 1 are merged into file
fid2 where they replace records n:3 through n4. In the
target file the new records are numbered from n3 in steps
of i. The source file, fidl, must be keyed format or else
Edit aborts the command. If no rcmge specification is
attached to fid l' all of its records are subject to the move.
If a range specification exists, Edit checks that at least one
record is contained in it.

Example:

*MERGE fid
1

INTO

*MERGE fid
1
,10 INTO

*MERGE fid
1
,10-12.5

Merges all of fid l'

Merges record 10.000
of fid 1.

INTO Merges records
10.000 through
12.500.

After val idity checks are made on fid l' Edi t checks for the
existence of fid2. If fid2 does not exist, ! Edit creates
a fi Ie identified by fid2 and then moves the appropriate
record set from fid 1 into fid2, resequencing from n3 and
incrementing by i. (If no value for i is specified, the
value is 1 by default.) This operation is similar to a COpy
operation, except for the selection of records from fid 1-
If fid2 exists, Edit deletes from it all records in the
range n3-n4 and thlEm replaces them with the appropriate
records from fid l' starting at sequC:l:nce n3 and incrementing
by i.

Example:

':MERGE ALPHA. ACCTl, 100-120 INTO BETA, 400-440@)

_. MERGE STARTED

--DONE AT 420 420 is the last sequence number
assigned in BETA.

If (when fid2 exists) the number of records to be transferred
at the specified increment causes Edit to equal or exceed
the next higher existing sequence number above the des­
tination range n3-n4, the merge is stopped with the message

where

n5 is the last sequence number assigned in fid
2

•

n6 is the sequence number of the last record moved
from fid

1
•

The user may then give subsequent commands to investigate
how to move the remaining records.

Edit responds to user errors with the following messages:

END

--EOF HIT The range of n3-n4 passes beyond the
end-of-file in fid

2
•

-P1:NO SUCH FILE
exist.

-NOTHING TO MOVE
contains no records.

The parameter fid
1

does not

The specified range in fid 1

-MERGE SOURCE NOT KEYED
must be a keyed fi I e.

The parameter fid 1

-MERGE DEsnNA nON NOT KEYED The
parameter fid

2
must be a keyed fi Ie.

Exit

EN D causes the Edit to close all active fi les and return
control to the terminal executive language (TEL). The EN D
command has the format:

*END

Example:

*END@)

Any TEL command may now be given.

Edit Commands 59

CR Set Carriage Return Mode

The CR command controls the inclusion of the CR (X'15')
character at the end of each record in the user's output
file. The CR command has the form shown below.

*CR{ON}
- OFF

where

ON includes the X'15' terminator in the user's
output fi Ie.

OFF excludes the X'15' terminator from the user's
output file and is the default setting.

The carriage return is normally not included since this is
provided by the COC routines. However, if the user wishes
to reproduce the fi Ie on cards or tape (for later use by other
than UTS software), he may want the carriage return. In­
clusion of the carriage return character will have no effect
on the typing of records on the Teletype, however.

The CR command may be given at any time.

If a parameter other than ON or OFF is specified, Edit
prints the message:

-NOT ON/OFF

TA Set Tab Positions

TA causes the Editor to set or reset the terminal tab stops.

where

F implies FORTRAN and a tab set at column 7.

M implies Meta-Symbol and tabs set at columns 10,
19, and 37.

S implies Meta-Symbol, short-form, and tabs set at
columns 8, 16, and 30.

These tab settings correspond to record column numbers and
are offset to provide for the I ine number produced at the
left margin of the user terminal. The TA command may be
given whi Ie an edit operation is in progress without stopping
the edit operation, but it may not be used as an intrarecord
command.

If the parameter suppl ied is not from the legal set, Edit
prints the message:

-NOT F/M/S

60 Edit Commands

When the programmer uses the Teletype to build a file, he
can columnarize the instructions as if he were typing them
on a coding sheet. However, unl ike the TAB key on most
typewriters, the TAB key on many Teletypes does not move
the carriage across the page. Therefore, a UTS service is
provided to simulate tabbing action when the TAB key is
struck. To achieve simulation the user must do three things:

1. Tell the system where the tab stops are by using the
executive command TABS or the Edit command TA.

2. Be sure tab simulation is on to cause the appropriate
number of spaces to be sent on output and echoed on
input whenever a tab character is detected. (Tab
simulation is discussed in Chapter 10.)

3. Set space insertion mode. If space insertion mode is
on, an appropri ate number of spaces wi II be inserted
into the input record. If space insertion mode is off,
the tab character (X'05') wi II be inseted into the input
record. (Space insertion mode is discussed in Chapter 2.)

Edit puts the actual tab character (X'05') into the fi Ie being
constructed whenever the TAB key is struck, regardless of
whether simulation is carried out.

When using intraline commands to edit text that contains tab
characters, the user must give a TA or TABS command so that
Edit wi II know how to interpret the tab characters it fi nds.
Edit then uses this information to expand the records by
inserting an appropriate number of blanks for each tab char­
acter it finds. (See the discussion of the blank preservation
command, BP, later under "Intrarecord Editing Commands".)
If tab stops have not been set by a T A or TABS command and
Edit finds a tab character, the user is notified with the
message

- TAB CHARACTER FOUND. NO TAB STOPS SET.

BP Set Blank Preservation Mode

BP sets the blank preservation mode on or off. The BP com­
mand has the format shown below.

When "on", all strings of blanks are preserved during intra­
record operations. When "off", blank strings are compressed
to a single blank or expanded as required to retain column
alignment of nonblank fields. The default mode is "off".

When a string is inserted or replaced in a manner that
changes the number of characters in a record, the record
format is adjusted as follows.

When the blank preservation mode is off, the blanks between
two successive strings are not preserved. When a string
operation causes the first of two strings to be expanded or
contracted, the number of blanks between the two strings
are decreased or increased so that the second string stays in
the same columnar position. (If the first string expands, the
number of blanks between the two strings decreases; if the

first string contracts., the number of blanks increases.) At
least one blank must be left between strings.

When the blank preservation mode is on, the blanks between
the two strings are preserved. ThClt is, when the first string
expands or contracts, the second sltring is moved to the left
or right so that the same number olF blanks remains between
the two strings.

For example, the following string substitution command

.:IS/S/LIN K/ ~~

substitutes the strin~J "LIN K II for the string "S" in the
instruction

$10 BAL,S SUB

adjusting blanks as indicated below:

old $lOHAL, S SUB
new (BP-OFF)
new (BP-ON)

$lOHAL, LINK SUB
$lOBAL, LINK SUB

Although the BP command is discussed with the file com­
mands, it may also be used when Edit is in the record mode
or the i ntrarecord mode.

If a parameter other than ON or OFF is specified, Edit
prints this message:

-NOT ON/OFF

RECORD EDITING COMMANDS

The record editing commands may only be given after a file
has been opened for editing via the EDIT command. If the
user does not open (J fi Ie for editing before giving a record
editing command, Edit prints the message:

-NO FILE NAMED

The record editing commands will be discussed in the fol­
lowing order:

IN}
IS

DE

TY)
TC
TS

MD}
MK

FD

FT

Insert records.

Delete records.

Type individual records.

Reorder records within a file.

Delete records contctining a specified
character string.

List sequence numbers and contents of records
containing a specified character string.

IN

FS

RN

CM

SE

55}
ST

List sequence numbers of records containing a
specified character string.

Renumber record.

Insert commentary.

Select a group of records for character
operations.

Select records for step mode operation •

Insert New Records

IN causes Edit to insert new records into a file. The IN
command has the format shown below.

New records are inserted starting at the record with sequence
number n, with each successive record being sequenced from
n with increment i. (If i is omitted, the increment size
specified in the most recent record editing command is used.
If no such commands have been given, the value 1 is assumed
by default.) If a record with seqOence number n exists in
the file, it is replaced by the newly inserted record n.

Edit prompts the user console with the first sequence to be
inserted, and repeats the prompt for each subsequent in­
sertion, increasing the sequence number by the increment i.

The insertion can be terminated in either of two ways. If a
null record (@)only) is supplied, the insertion terminates.
An equivalent action takes place if an incremented sequence
equals or exceeds a sequence existing in fi Ie. In the latter
case, the console bell is rung.

Example:

*EDIT SOURCEFILE @)

100.000

100. 100

10 A = 2.5@ Replaces the existing record.

B = 0.9

* Record insertion terminates
because sequence number
100.200 existed previously;
the console bell is rung.

If the user types more than 140 nonblank characters, Edit
prints the message

--OVERFLOW

IS Insert New Records

The IS command is identical to the IN command in function
and format except that Edit does not prompt with sequence
numbers. The format of the IS command is:

':15 n[,i]

Edi t Commands 61

Example:

*EDIT SOMEFILE @)

~IS 100,. 1 @)

10 A = 2.5@)

B=O@)

*

If the user types more than 140 nonblank characters, Edit
prints the message

--OVERFLOW

DE Delete Records

DE causes Edit to delete all records whose sequence numbers
lie in a specified range. The DE command has the form
shown below.

*DE n[-m]

where

n specifies the number of the first record to be
deleted.

m specifies the number of the last record to be
deleted. If m is omitted, only record n is deleted.

Example:

*DE 50@) Deletes record 50.000 only.

*DE 50-60.5 @) Deletes all records in the range
50.000 through 60.500, inclusive.

If no records are found in the speci fi ed range, Ed it pri nts
the message:

--NOTHING TO DE

If the range n-m passes beyond the end-of~fi Ie, Edit prints
the message:

--EOF HIT

TV Type Records

TY causes Edit to type the sequence numbers and the con­
tents of specified columns of one or more records. The TY
command has the format shown below.

~TY n[-m][,c [,d]]

Edit types records in the range n to m, and types only the
portions between columns c and d. If m is omitted, only
record n is typed. If the values for c and d are not given,
c has a value of 1 and d has a value of 140 by default.

62 Edit Commands

Example:

,:::EDIT SOURCEFILE @)

':::TY 1-2,4,B@)

1.000 EQU

1.200 SYST

1.400 REF

1.600 DEF

1.BOO PAGE

2.000 ITIAL

*

Edit responds to user errors with the following messages:

-BAD COl. NO. PAIR The columns specified are
not in the range 1 through 140, or c > d.

--EOF HIT The range n-m passes beyond the
end-of-file.

TC Type Compressed

TC causes Edit to type the sequence numbers and the contents
of specified columns of one or more records. Any nonblank
strings within the columns are shifted to the left to compress
each blank string to a single blank. This compression affects
only the typed output; the records themselves are not af­
fected. TC is the same as TY with all blank strings com­
pressed to a length of one. The TC command has the format:

':TC [n -m][,c[,d]]

Edit types records in the range n to m, and types only
the portions between columns c and d. If m is omitted, only
record nis typed. If the values for c and d are not given,
c has a value of 1 and d has a value of 140 by default.

Example:

,:::EDIT SOURCEFILE @)

':::TC 1-2,1,7 @)

1.000 A EQU

1.200 SYS

1.400 B REF

1.600 C DEF

1.BOO PAGE

2.000 -kINITIA

Edit responds to user errors with the following messages:

-BAD COl. NO. PAIR The columns specified are
not in the range 1 through 140, or c > d.

-EOF HIT The range n-m passes beyond the
end-of-fi Ie.

TS Type Records, Suppressing Sequence Number

TS causes Edit to type the contenlts of specified columns of
one or more records, without accompanying sequence num­
bers. The TS command has the format shown below:

~TS [n -m]~c[,d]]

Edit types records in the range n Ito m, and types only the
portions between columns c and d. If m is omitted, only
record n is typed. If the va I ues for c and d are not given,
c has a value of 1 and d has a vallue of 140 by default.

Example:

~EDIT SOURCEFILE @)

~T S 1-2 , 1 , 8 @)

A EQU

SYS

B REF

C DEF

PAG

Edit responds to user errors with the following messages:

-BAD COL. NO. PAIR The columns specified are
not in the range 1 throu~~h 140, or c > d.

--EOF HIT The range n-m passes beyond
end-of-fi lie.

MD Move and Delete Records

MD causes Edit to move records from one specified range to
another. Records originally in the destination range are
deleted. The MD command has the form shown below.

~MD [n -mJ,k[-p][,i]

where

n specifies the sequence number of the first record
that is to be moved.

m specifies the sequence number of the last record
that is to be moved. If omitted, only n is moved.

k specifies the lower limit (i.e., sequence number)
of the range of destinati on records that wi II be
deleted.

p specifies the upper limit of the range of records
to be deleted. If omitted, only k is deleted.
However, records from the range n-m are sti II
moved to record k and following.

specifies the increment value to be used for
renumbering records. If omitted, the most recent
increment value specified in a record edit com­
mand is used. If no such commands have been
given, the default value is 1.

The first record (n) is renumbered as k. Successive records
from the range n-m are renumbered consecutively higher,
incremented by i.

It is important to note that the ranges n-m and k-p may not
overlap.

As each record from the range n-m is moved, it is deleted
from the original range (n-m). At the end of this operation,
a message is printed specifying the new sequence number of
the last record moved from the range n-m.

Example:

*EDIT BETA@)

~MD 5-21, 100-101, .02 @)

-,-DON EAT 100.32

If the increment is too large to permit all records in the
range n-m to be moved into the space between k and the
next record after p, a message is printed specifying the
sequence numbers, from both ranges, of the last record moved.

In this case the original contents of range k-p will be lost,
but only those records in the range n-m that have actually
been moved will have been deleted. Thus, the user can
perform another move (with a smaller increment) to move
the remaining records in the range n-m.

Example:

*EDIT BETA @)

*MD 10-30, 100-110, 1 @)

--CUTOFF AT 110. (20.) 20 is the number of the
last record that was moved.

Edit responds to user errors with the following messages:

--NOTHING TO MOVE
range n-m.

No records exist in the

--RNG OVERLAP Ranges n-m and k-p overlap.

--EOF HIT Range n-m passes beyond the end-of-file.

MK Move and Keep Records

MK is identical to MD except that the records in the range
n-m are not deleted as they are moved; thus a copy of
records in the range n-m is made. The MK command has the
form shown below.

':MK [n -m],k[-p][,i]

Edit Commands 63

FD Find and Delete Records

FD causes Edit to search for a specified string between
specified columns. If the string is found, the record con­
taining it is deleted from the file. The FD command has
the form shown below.

:'FD [n -m],/string/~c~d]]

where

n specifies the sequence number of the first record
to be searched.

m specifies the sequence number of the last record
to be searched. If omitted, only record n is
searched.

/string/ specifies the character string identifying
the record to be deleted.

c specifies the lower limit (i. e., column number) of
the field to be searched. The default value is 1.

d specifies the upper I imit of the field to be
searched. The default value is 140.

The specified string must be entirely contained within
columns c through d to cause deletion. At the end of this
operation, a message is printed telling how many records
were deleted.

*EDIT FILEA @)

:'FD 5-20.4,/DATA/, 10, lB@)

--006 RECS DLTED

If there are no records in the specifi ed range containing the
indicated string, Edit prints the following message:

--NONE

Edit responds to user errors with the following messages:

-BAD COL. NO. PAIR The columns specified are
not in the range 1 through 140, or c > d.

--EOF HIT The specified range passes beyond the
end-of-fi I e.

FT Find and Type

FT causes Edit to search for a specified string between
specified columns. If the string is found, Edit types out the
sequence number and the contents of the record. (The string
must be entirely contained within the specified columns.)
The FT command has the format:

*FT [n -mJ,/string/Gc[,dJ]

The parameter speci fi cati ons are the same as those for the
FD command.

64 Edit Commands

Example:

*EDIT SOMEFILE @)

:'FT l-100,/LW/,10@

5.000 LVV,3

9.000 LVV,2

21. 4BO LVV,10

73.000 LVV,9

*

DATA

TABLE,7

LOC+5,B

FLAG

If there are no records in the specified range containing the
indicated string, Edit prints the message

--NONE

Edit responds to user errors with the following messages:

-BAD COL. NO. PAIR The columns specified are
not in the range 1 through 140, or c > d.

--EOF HIT The specified range passes beyond the
end-of-fi Ie.

FS Find String and Type Sequence Number

FS causes Edit to search a given range of records for a
specified character string between designated columns. Edit
wi II type the sequence number of each record satisfying the
search criteria. The FS command has the format:

:'FS n[-mJ,/string/Gc~dJJ

The parameter specifications are the same as those for the
FD command.

Example:

*EDIT SOMEFILE @)

:'FS 10-20,/BE/, 10, 11 @

15.000

lB. 000

*

If there are no records in the specified range containing the
indicated string, Edit prints the following message:

--NONE

Edit responds to user errors with the following messages:

-BAD COL. NO. PAIR The columns specified are
not in the range 1 through 140, or c > d.

--EOF HIT The specified range passes beyond the
end-of-fi Ie.

RN Renumber Record

RN causes Edit to renumber a spec:ified record. The RN
command has the form shown below.

':'RN n,k

This has the same eHect as deleting record n and then
entering a new record with sequence number k with the
same contents as n. Sequence number k must not already
exist.

Edit responds to user errors with the following messages:

-Pl :NO SUCH REC

-P2:REC EXISTS

eM Commentary

Record n does not exist.

Record k already exists.

CM causes Edit to insert commenteJry into specified columns
of each successive Irecord beginning at a specified sequence
number. The CM command has the format shown below.

':'CM n,c

where

n

c

is the record number.

is the column number.

The sequence number of each record is typed and then the
user types in the data he wants inserted starting at col umn
c. The data he types in is blank lFilled to the right through
column 140, as required. A null record terminates the
command. It is not necessary to del imit commentary with
slashes.

Example:

*EDIT SOURCEFILE @)

*CM 37.6, 40 '8

37.600 * COIv\tv\ENT 1 '8

37.800 * COMMENT 2 '8

40.500 ':'8

*

Edit" responds to user errors with the following messages:

-P2:COL ERROR Column c > 140.

-Pl :NO SUCH REC Record n does not exist.

--EOF HIT The end-of-file has been encountered.

--OVERFLOW Commentary typed in has overflowed
past column 140 with nonblank characters.

SE Set Intrarecord Mode

SE causes Edit to accept successive I ines of intrarecord
commands. The SE command has the format shown below.

Each input line of intrarecord commands is appl ied, in order,
to col umns c through d of every record in the range n through
m. If m is missing, only record n is processed. The default
va lues for c and dare 1 "and 140 respectively.

If several commands are entered on one line, all commands
on the I ine are executed on one record before the next
record is processed. The first occurrence of a fi I e or record­
editing command terminates the effect of the SE command.
All commands executed in the intrarecord mode apply only
to the strings lying entirely within columns c through d.

SE may be used on the same input line with other intrarecord
commands, but when so used, it must be the first command on
the line.

Edit responds to user errors with the following messages:

SS

-BAD COL. NO. PAIR The columns specified are
not in range 1 through 140, or C $ d.

-Pl :NO SUCH REC Record n does not exist.

--EOF HIT The end-of-fi I e was encountered.

-Cn:COMMND ILGL HERE The nth command of the
input I ine is not an intrarecord command; the
intrarecord mode is terminated.

Set and Step

SS causes Edit to start at a specified record and proceed to
each record in succession, accepting one I ine of intrarecord
commands to update the current record. The SS command
has the format shown below.

The first record to be updated has the sequence number n.
Intrarecord commands will only be effective on strings that
lie wholly within columns c through d. The default values
for c and dare 1 and 140, respectively.

Edit prompts for commands for each successive record with
the sequence number, followed by a double asterisk. The SS
command is terminated by typing a null record in place of
an intrarecord command.

Edit responds to user errors with the following messages:

-BAD COL. NO. PAIR The columns specified are not
in range 1 through 140, or c ~ d.

-Pl :NO SUCH REC Record n does not exist.

Edit Commands 65

--EOF HIT The end-of-fi Ie was encountered.

-Cn:COMMND ILGL HERE The nth command of
input line is not an intrarecord command; the
"set and step" mode is terminated.

ST Set, Step, and Type Record

This command is similar to SS except that the contents of
each record is typed, along with its sequence number, prior
to accepting a command. The ST command has the format
shown below.

The parameters of the command and the error messages
which Edit types are the same as those for the SS command.

INTRARECORD EDITING COMMANDS

The intrarecord commands make changes within an individual
record. They generally manipulate character strings. These
commands may only be given after the user selects an intra­
record mode with the S E, SS, or ST commands.

The intrarecord commands will be discussed in the following
order:

S Substitute string.

D Delete string.

F Insert string following.

P Insert string preceding.

0 Overwrite string.

E Overwrite string; blank fi II.

Rand L Shift string.

TS }
TY

Type individual records.

JU Jump to new sequence.

NO No change.

RF Reverse blank preservation flag.

Commands in the intrarecord group may be I inked together
on a single I ine through use of the semicolon (;). The fol­
lowing command sequence would select a I ine, type the
original, edit, and type the new version:

':SE 100; TY; /TEMP/S/B/;/JK/F/+BETA/;TY@)

The following conventions are used with intrarecord
commands:

1. j/string/x

means that command x is to operate on the jth occur­
rence of the indicated string found between columns c

66 Edit Commands.

2.

through d as specified by an SE, SS, or ST command.
If j = 0, this means that the command is to operate on
all occurrences of the string between columns c and d.
If j is missi ng, the default is 1. A single / may be in­
cluded in the string by typing two slashes in succession.

kx

means that command x is to operate on the character
contained at column k, where k must lie between col­
umns c and d of the SE, S5, or ST command.

The following general errors are possible:

-MISSING SE No SE command was given. Either
an SE, SS, or ST command must be given in response
to this message.

--Cn:NO SUCH STRG The string referred to by the
nth command of the input line does not exist be­
tween columns c and d. When the SE command
operates on a range of lines, this message will be
given once if the condition occurs at any time
during scanning of the range.

--Cn:COL> LIMIT The value specified for k is
greater than d for the nth command.

--Cn:COL < LIMIT The value specified for k is less
than c for the nth command.

Before reading the intrarecord command descriptions, it is
important to note the following information:

Note: In any intrarecord command that seeks a matching
string in the image, only those strings that lie totally
within the specified column bounds will be found.
Partial matches to a column boundary will be ignored.
In subsequent examples, references to columns c and
d pertain to the column boundaries given in the SE,
SS, or ST command.

S String Substitution

S causes Edit to locate a specified string (stringl) between
columns specified by an SE, SS, or ST command and replace
it with another string (string2). The 5 command has the
format shown below.

.: j /string l/S/stringl

The image to the right of string 1 is adjusted right or left as
required, i~ the lengths of stringl and string2 differ. String2
may extend past col umn d if d < 140.

If j = 0, all occurrences of string 1 between columns c and d
are replaced by string2. Otherwise, only the jth occurrence
is replaced. If j is missing, the default value is 1.

Example:

Command Effect

~/LW/S/CW/ LW,R5 ALPHA+2 old
CW"R5 ALPHA+2 new

':/1O/S/5/ LW,RlO B old
LW,R5 B new

':/$lO/S/ENTRY/ $10 LW,R5 ALPHA old
ENTRY LW,R5 ALPHA new

~/ ALPHA/S/B/ LW,R5 ALPHA+2,R6 old
LW,R5 B+2,R6 new

,:2/5/S/55/ 15 C=DISQ RT(TEMP+2. 5
*BASE) old

15
C=DSQ RT(TEMP+2. 55

*BASE) new

If nonblank charact"ers overflow beyond column 140 of the
nth command, Edit prints the meSSCtge:

--Cn:OVERFLOW

o Delete String

D causes Edit to locate a given occurrence of' an indicated
string, between columns specified by an SE, SS, or ST com­
mand, and delete it. The D command has the format shown
below.

*[j]/string/D

If j = 0, all occurrences of the striing between c and dare
deleted. Otherwise, only the jth occurrence is deleted.
If j is omitted, the default value is 1.

Example:

*EDIT SOMEFILE @)

*TY 7 €V

7.000 STW,4 ALIPHA ANSWER

*SE 7 €V

~/ANSWER/D (§v

*TY 7 @J

7.000 STW,4 ALIPHA

P Precede Strin!g

P causes Edit to start before the first character of a given
occurrence of a specified string (string1) or column k and
insert another strin~, (string2), pushing characters of the first

string to the right as required to make room. The P command
has the format shown below.

':OJ/string l/P/stringl

or

String2 may legally extenq beyond column d if d < 140. The
first character of string2 wi II occupy the col umn vacated by
the first character of string l' etc.

If j = 0, Edit wi II insert string2 before all occurrences of
string 1 between columns c and d. However, after string 1
has been found once and string2 inserted before it, scanning
for the next occurrence resumes at the next character after
string l' as adjusted by the insertion. If j is not equal to
zero, the command will only affect the jth occurrence of
string l' If j is omitted, the default value is 1.

Example:

*5E 17.69r@> (set intrarecord mode)

':T5;0/AA/P/./;TS€V (type; edit; type)

AAAAAAA

.AA.AA.AAA

(ori gina I record)

(edited record)

If nonblank characters overflow beyond column 140 by the
action of the nth command, Edit prints the following message:

--Cn:OVERFLOW

F Follow By

F causes Edit to start after the last character of a given
occurrence of a specified string (stringl) or column k and
insert another string (string2)' pushing everything from this
column right as required to make room. The F command has
the format shown below.

':O]lstring l/F/stringi

or

.:kF/stringl

The j spec i fi es that the j th occurrence of string 1 between
columns c and d (specified by an SE, 55, or ST command) is
to be fo lIowed by stri ng2' If j is om i tted, the defau I t va I ue
is 1. In the case where j = 0, the Editor inserts string2 at
all occurrences of stringl between columns c and d. Scan­
ning for the next occurrence of string1 resumes following
the last character of string2' If a given occurrence of
string1 is shifted beyond column d due to previous inser­
tions, it wi II not be scanned.

5tring2 may legally extend past column d if d < 140.

Edit Commands 67

Example:

Command Effect

':'/AB/F/+2/ LW,R6 AB,R2 old
LW,R6 AB+2,R2 new

If nonblank characters overflow beyond column 140 by
action of the nth command, Edit prints the following
message:

--Cn:OVERFLOW

o Overwrite

o causes Edit to start at the column occupied by the first
character of a given occurrence of a specified string
(stri ng 1) or col umn k and overwri te wi th another stri ng
(string2). No blank preservations or other adjustment is
done and all columns not overwritten remain unchanged.
The 0 command has the form shown below.

or

String2 may overwrite beyond column d if d< 140. The j
spec i fies that the j th occurrence of stri ng 1 between affected
columns is to be overwritten by string2' If j is omitted,
only the first occurrence is overwritten. If j = 0, all occur­
rences are overwritten. In the case where j = 0, string2 is
not scanned by Edit after string 1 is overwritten. Edit begins
scanning with the column following string2'

If nonblank characters overflow beyond column 140 by ac­
tion of the nth command, Edit prints the following message:

--Cn:OVERFLOW

E Overwrite and Extend Blanks

E causes Ed i t to start at the col umn occupi ed by the fi rst
character of a given occurrence of a specified string
(string1) or column k and overwrite with another string
(string2)' The E command has the format shown below:

or

Blanks are extended from the end of string2 through column
d (where d is the upper limit of the column range selected
by an SE, SS, or ST command). String2 may overwrite
beyond column d if d < 140, but blank extension only
occurs through column d.

68 Edit Commands

The j specifies that the jth occurrence of string 1 between
affected columns is to be overwritten by string2' If j is
omitted, only the first occurrence is overwritten. The spec­
ification j = 0 may not be specified, since blank extension
precludes multiple substitutions within the same record.

Edit responds to user errors with the following messages:

--Cn: 'ALL I IGNORED The specification j = 0 was
used, but since it is not meaningful for E, j = 1
was substituted.

--Cn:OVERFLOW String2 overflowed past column
140 with nonblank characters.

Rand L Image Shifting

Rand L commands cause portions of the record image to be
shifted right (R) or left (L). The Rand L commands have the
form shown below.

~j]lstring/ {~}s
or

The string must I ie wholly within columns c and d specified
by the current SE, SS, or ST command. The specified sub­
string may contain embedded blanks, but the string to be
shifted terminates with the first blank following the specified
substring.

The j specifies that the jth occurrence of the specified sub­
string between affected columns is to be shifted, together
with all subsequent contiguous nonblank characters. If j is
omitted, only the first such occurrence is sh if ted • Note
that j = 0 may not be specified for this command.

L Shift Left

The jth field that begins wi th the indicated string (or col­
umn k) is shifted left s positions. If blank preservation (see
the BP command) is ON, all of the fields to the right of the
string are shifted left, intact, and the fields to the left of
the string are overwritten (i. e., destroyed). If blank pre­
servation is OFF, blanks are inserted to the right of the jth
field, and the fields to the left of the string are overwritten.
The shift may legally overwrite below column c.

R Shift Right

The jth field that begins with the indicated string (or column
k) is shifted right s positions. If blank preservation is ON,
blanks are inserted to the I eft of the string and all of the
fields to the right of the string are shifted right, intact. If
blank preservation is OFF, blanks are inserted to the left of
the string and are removed to the right. With blank preser­
vation OFF, the image area to the right of the string may be

compressed, but at least one blank wi II be left between
each field; that is, overwriting does not occur in a shift
right. The shift may legally push characters beyond
column d, if d is less than 140.

In the following examples, blank preservation is OFF.

Command Effect

':/L/Rl $10 LW,R6 B old
$10 LW,R6 B new

':/L/R9 $10 LW,R6 B old
LW,R6 B new

---~

':/L/L 1 $10 LW,R6 B old
LW,R6 B new

Edit responds to US€ir errors with the following messages:

--Cn: 'ALL I IGNORED The value j = 0 was
specified but since it is not meaningful for
Rand L, j = 1 was substi tuted.

--Cn:UN DERFLOW
I eft of the record.

--Cn:OVERFLOW
of the record.

Characters were lost to the

Characters were lost to the right

TS Type, Suppressing Sequence Number

TS causes Edit to type the content's of the record currently
open for editing under control of an SE, SS, or ST command.
(Unlike the record-editing version, the intrarecord version
of TS does not allow column specification.)

The TS command hCls the format shown below.

~l .. i] TS[; .' ••]

The three dots indicate that intrarecord commands may pre­
cede or follow the TS command.

Example:

':SE 5; TS €V
L 1 LW,5 K

':190/KLB/; TS; 370/GET KLB/; TS @)

(overwrite, type, overwrite, type)

L 1 LW,5 KLB

L1 LW,5 KLB GET KLB

Because a II commands on a sing lei nput line are executed
for the first record before the second record is processed,
etc., TS will type each I ine in tum after all editing up to
the TS command has been done.

Example:

*SE 10- 10.2 @>

:'2/A/F/,4/;TS @l

DATA,4 X'FF '

DATA,4 0.5

DATA,4 GQX,X'OB'

(10.0)

(10. 1)

(l0.2)

TV Type, Including Sequence Number

TY is the same as TS, except that each line is printed with
its sequence number. (Unlike the record-editing version,
the intrarecord version of TY does not allow column
specification.)

The TY command has the format shown below.

:,[. • .;] TY[; • • .J

JU Jump

JU causes the SS or ST command to jump to a specified
record and then continue stepping from that point. JU may
only be used while in the "step" mode (i. e., while under
the control of an SS or ST command). The JU command has
the form shown below.

:J .. ;]JUn

Record n may be forward or backward from the current
sequence number at the time JU is given. The dots indicate
that JU may be used on compound lines (i. e., a line with
more than one command on it), but in such a case JU must
be the I ast command on the line.

If the record specified by n does not exist, Edit prints the
following message:

--Cn: NO SUCH REC

NO No Change

NO may be used only while in the "step" mode and specifies
that no editing is desired on the current active I ine under
the set. The NO command has the format shown below.

*NO

Example:

*ST27.5@

27.500

*NO@

LW,6

30. 000 STW,6

:/ALT/F/+ 19 ; TY ; JU 34 @

30.000 STW,6

34.000 AI,F

*

BLK

ALT

ALT + 19

X '91 1

Edit Commands 69

RF Reverse Blank Preservation Mode

RF causes the current setting of the blank preservation mode
(see the BP command) to be reversed temporarily. The RF
command has the form shown below.

':t .. ;J RF ; •••

or

* • • ; RF[; • • .J

The mode is reversed only for the duration of the input line
in which RF appears and only for those commands which
follow the RF command, and blank preservation is restored
to its initial setting when a new input line is entered (i. e.,
at the time a new prompt character is given). Thus, to have
any effect, RF must always be used as part of a compound
input line and must be followed by other commands.

Example:

*SE 10; TY@

10.000 L5 LW,4 X GET CURRENMT ADDR

':RF;/NM/S/N/;Tye

10.000 L5 LW,4 X GET CURRENT ADDR

Without using RF in this case (assuming that BP OFF is the
initial setting), one would get two blanks after CURRENT.
In all cases, the BP mode is restored to the value it had
before any RF commands were g,iven.

MESSAGES

During the course of executing any command, Edit may
communi cate wi th the user through a vari ety of messages.

Possible messages are summarized in Table 21. The fo"ow­
ing conventions are used in regard to message formats:

1. A message preceded by two periods is a comment on
some system-oriented operation. For example,

2.

. .COPY DONE

A message preceded by two minus signs indicates the
occurrence of some event (during the execution of a
command) of which the user should be aware; the com­
mand is not aborted. For example,

--EOF HIT

3. A message preceded by a single minus sign is an error
message describing a condition that aborts the current
command and causes any others on the same line to be
skipped. For example,

-Pl:NO SUCH REC

Such a message is particularized as to cause by the following
prefixes:

Prefix

-Ck:

-Pk:

-CkPj:

Cause of Error

The kth command of the previ ous line caused
the error.

The kth parameter of the fi rst command on
the previous line caused the error.

The jth parameter of the kth command of the
previous line caused the error.

EDIT COMMAND SUMMARY

Table 22 is a summary of Edit commands. The left-hand
column gives the command formats. The right-hand column
gives the command function and options.

Table 21. Edit Messages

Message Meaning

--xxx RECS DLTED The indicated number of records have been deleted.

-BAD COL. NO. PAIR The columns specified are not in the range 1 through 140, or c > d.

--Cn: 'ALL' IGNORED The value 0 was specified for j. Since this value is not meaningful for the
command, the value 1 has been assumed.

-Cn: COMND ILGL HERE The nth command of the previ ous I ine is inval id and the intrarecord mode has
been terminated.

--Cn: NO SUCH STRING A speciHed string was not found and no substitution was made in processing the
nth command of the previous line. Processing continues. When the S E command
operates on a range of lines, this message will be given once if the condition
occurs at any time during scanning of the range.

--Cn: OVERFLOW The nth command of the previous line has caused characters to be shifted past
column 140. Processing continues.

70 Messages/Edit Command Summary

Table 21. Edit Messages (cont.)

Message Meaning

--Cn: UNDERFLOW Characters were lost to the left of the record.

· .COPY DONE A COpy operation has been completed.

• .COPYING A COpy operation has begun.

--CUTOFF AT x(y) A specified operation could not be completed because of a confl ict between an
existing sequence number and a new one. The value x is the current sequence
number of the last record affected (formerly record y).

•• DELETED A specified file has been deleted •

--DONE AT x A specified operation has been completed. The value x is the current sequence
number of the last record affected.

• • EDIT STOPPED The record editing mode has been terminated.

--EOF HIT One or both sequence numbers specifi ed are higher than the highest one in
the file.

-FILE EXISTS: CAN IT BUILD An existing file has the same name as that specified in a BUILD command.

-FILE NOT KEYED:MUST COP' (A specified file hCls no sequence numbers. The file must be copied with sequenc-
ing specified (via the COpy command).

-MERGE DESTINATION NOT I (EYED The destination file in a MERGE command is not keyed. The file must be copied
with sequencing specified.

-MERGE SOURCI: NOT KEYED The source file in a MERGE command is not keyed. The file must be copied with
sequencing specified.

•• MERGE STARTED A MERG E operation has begun .

-MISSING SE No SE, SS, or ST command is currently in effect. The specified intrarecord task
has been aborted.

-NO SUCH FILE A specified file does not exist.

--NONE There were no records in the specified range containing the indicated string.

-NOT F/M/S A parameter other than F, M, or S has been specifi ed in a TA command.

-NOT ON/OFF A parameter other than ON or OFF has been specified in a BP or CR command.

--NOTHING TO DE No records (to be deleted) were found in the specified range.
-

--NOTHING TO MOVE No records (to be moved) were found in the specified range.

--OVERFLOW More than 140 characters have been typed on a line or characters have been
shifted past col umn 1 or 140. Excess characters are lost.

-P1: FILE NOT KEYED & P3 N I J LL A file to be copied has no sequence numbers and no sequencing has been
specified. The COpy operation has been aborted.

-P1: NO SUCH FILE A COpy command has specified that a nonexistent file is to be copied.

-Pl: NO SUCH REC A specified record does not exist. The command has been aborted.

-P2: COL ERROR Co I umn cis greater than 140.

Ed i t Command Summary 71

Message

-P2: FILE EXISTS

-P2: REC EXISTS

--RNG OVERLAP

Command

CM n,c

[jYstring/D

DE n[-m]

DELETE fid

72 Edit Command Summary

Table 21. Edit Messages (cont.)

Meaning

A COpy ON command specified the name of an existing file.

A specified record already exists. The command has been aborted.

Specifi ed ranges of sequence numbers overlap. The command has been ignored.

Table 22. Edit Command Summary

Description

Sets the blank preservation mode. When "on ", all strings of blanks are preserved
during intrarecord operations. When "off", blank strings are compressed to a single
blank or expanded as required to retain column al ignment of nonblank fields. The
default mode is "off ".

Enables the user to create a new file.

Options:

n is the sequence number at which the new file is to start. The default value
is l.

i is the value by which the sequence numbers are to be incremented. The
default value is 1.

Causes Edit to insert commentary (given by the user) into specified columns (starting at
column number c) of each successive record beginning at the specified sequence
number n.

Copies a file. Fid2 identifies the file to which fid 1 is to be copied.

Options:

n is the starting sequence number for the new fi Ie. If omitted, the sequence
numbers of fid 1 are retained in the copy.

i is the sequence number increment for the new fi Ie. The default val ue is 1.

Controls the inclusion of the carriage return character (X'15') at the end of each
record in the user's output file. ON includes the X'15' terminator in the output file.
OFF excl udes the X'15' terminator from the output fi Ie and is the default setting.

Locates a given occurrence of the indicated string, between col umns specified by an
SE, SS, or ST command, and deletes it.

Options:

j specifies that only a particular occurrence (the jth occurrence) of the string
in the specified columns is to be deleted. If j equals zero, all occurrences of
the string in the specified columns are to be deleted. If j is omitted, the
default value is 1.

Deletes all records whose sequence numbers lie in a specified range beginning at n.

Option:

m indicates the number of the last record to be del eted. If m is omitted, only
record n will be deleted.

Deletes the file specified by fid from the log-on account.

Command

[jYstring 1 /E/string 2 /

or

EDIT fid

END

or

FD n[-mJ,/string/[,c~dJJ

Table 22. Edit Command Summary (cont.)

Description

Starts at a column occupied by the first character of a given occurrence of a specified
string (string1) or column k and overwrites with another string (string2)' Blanks are
extended from the end of string2 through column d (which is specified in an SE, SS, or
ST command.)

Option:

j specifies that the jth occurrence of string 1 between affected col umns is to be
overwritten by string2' If j is omitted, only the first occurrence is over­
written; j may not be zero.

Opens a file to be edited and enters the record editing mode.

Closes all active files and returns control to the terminal executive language (TEL).

Starts after the last chawcter of a given occurrence of a specified string (string 1) or
column k and inserts another string (string 2), pushing everything from this column right
as required to make room.

Opf"ion:

j specifies that the jth occurrence of string1 between columns c and d
(specified by an SE, SS, or ST command) is to be followed by string2' If j is
omitted, the default value is 1. If j equals zero, string2 is inserted at all
occurrences of string 1 between col umns c and d.

Searches for the specified string between specified columns in a specified range of
records beginning at record n. If the string is found, the record containing it is deleted
from the fi Ie.

Opt'ions:

m specifies the sequence number of the last record to be searched. If omitted,
only record n is searched.

c specifies the lowest column number of the field to be searched. The default
value is 1.

d specifies the highest column number of the field to be searched. The
default value is 140.

r-----------------------.---+---;

FS n [-mJ,/string/[,c~dJ]

FT n[-mJ,/string/[~c~dJJ

IN n~iJ

Searches for the specified string between specified columns in a specified range of
records beginning at record n. Each time the string is found, the sequence number of
the record is printed.

Options:

Same as for FD.

Searches for the specified string between specified columns in a specified range of
records beginning at record n. Each time the string is found, the sequence number and
the contents of the record are printed.

Options:

Same as for FD.

Inserts new records into CI fi I e starting at record n. Edit prompts the user with the
sequence number of each record to be inserted.

Option:

i specifies an increment amount for successive record numbers. If i is omitted,
the increment size specified in the most recent- record editing command is used.
If no such command has been given, the default value is 1.

Edit Command Summary 73

Command

IS n[,i]

[••• ,] JU n

MD n[-m],k[-p]~iJ

MERGE fid l [,n l [-n2J]INTO ~

L fid 2' n3[-n41[,i]

MK n[-m],k[-p]Gi]

NO

[jVstring 1 /O/string2/

or

74 Edit Command Summary

Table 22. Edit Command Summary (cont.)

Description

Inserts new records into a file starting at record n. Edit does not prompt with sequence
numbers of the records to be inserted.

Option:

i specifies an increment amount for successive record numbers. If i is omitted,
the increment size specified in the most recent record editing command is used.
If no such commands have been given, the default value is 1.

Causes the SS or ST command to jump to the specified record n and then continues
stepping from that point.

Option:

The dots indicate that JU may be used on a I ine with more than one command
on it, but in such a case JU must be the last command on the line.

Moves records within a file from a range beginning at n to a range beginning at k.
Records originally in the destination range are deleted.

Options:

m specifies the sequence number of the last record that is to be moved. If
omitted, only record n is moved.

p specifies the upper limit of the range of records to be deleted. If omitted,
only record k is deleted. However, records from the range n-m are still
moved to record k and following.

i specifies the increment value to be used for renumbering records. If
omitted, the most recent value specified in a record edit command is used.
If no such commands have been given, the default value is 1.

Merges records from fid 1 into fid 2• The records are numbered beginning at n3 in fid 2•

Options:

n] specifies the number of the first record in fid 1 to be merged. If omitted,
a II records of fi d 1 are to be merg ed.

n2 specifi es the number of the last record in fid 1 to be merged. If omitted,
only record n 1 is merged. .

n4 specifies the number of the last record in fid2 which is to be replaced by
merged records. If omitted, only record n3 is replaced by a merged record.

i specifies an increment amount for resequencing from n3. The default value
is 1.

MK is identical to MD except that the records in the range n-m are not deleted as they
are moved.

Options:

Same as for MD.

Specifies that no editing is to be performed on the current active line.

Starts at the column occupied by the first character of a given occurrence of a specified
string (string 1) or column (k) and overwrites with another string (string2).

Option:

j specifies that only a particular occurrence (the jth occurrence) of the string
is to be overwritten. If j equals zero, all occurrences of the string are to be
overwritten. If j is omitted, the default val ue is 1.

Command

nYstring 1 /P /string 2 /

or

or

[••• iJRFi •••

or

••• i RF[; ••• J

RN n,k

SE n[-mJ~cGdJJ

Table 22. Edit Command Summary (cont.)

Description

Starts before the first character of a given occurrence of a specified string (string 1) or
column k and inserts another string, pushing characters of the first string to the right as
required to make room.

Option:

Same as for the 0 command.

Shifts portions of the record right (R) or left (L) the number of positions indicated by s.
The field to be shifted begins with the indicated string.

Option:

j specifies that the jth occurrence of the specified substring between affected
columns is to be shifted, together with all subsequent contiguous nonblank
characters. If j is omitted, only the first such occurrence is shifted. Note
that j = 0 may not be specified for this command.

Causes the current setting of the blank preservation mode (lion II or "off") to be reversed
temporarily (for the current line only).

Option:

The dots indicate that other commands are present on the line.

Renumbers a specifi ed record from number n to number k.

Locates a specified string (string1) between columns specified by an SE, SS, or ST
command and replaces it with another string (string2).

Option:

j specifies that only a particular occurrence (the jth occurrence) of string 1 is
to be replaced. If j equals zero, all occurrences of string 1 are to be replaced.
If j is omitted, the defaul t value is 1.

Causes Edit to accept successive I ines of intrarecord commands to be appl ied to records
beginning at record n.

Options:

m specifies the number of the last record to which the intrarecord commands
are to be applied. If omitted, the intrarecord commands are only applied to
record n.

c specifies the smallest column number of the range of columns to which the
intrarecord commands are to be applied. The default value is l.

d specifies the largest column number of the range of columns to which the
intrarecord commands are to be appl ied. The default value is 140.

Causes Edit to start at a specified record (record n) and proceed to each record in
succession, accepting one I ine of intrarecord commands to update the current record.

Options:

c specifies the smallest column number of the range of columns to which the
intrarecord commands are to be applied. The default value is l.

d specifies the largest column number of the range of columns to which the
intrarecord commands are to be appl ied. The default val ue is 140.

Causes Edit to start at a specified record (record n) and proceed to each record in
succession, accepting one line of intrarecord commands to update the current record.

Edit Command Summary 75

Command

(cont.)

TC n[-mJ~cGdJJ

[••• ;] TS[; ••• J

TS n[-mJ~c~dJ J

[... ;J TY[; ••• J

TY n[-mJ~cGdJJ

76 Edit Command Summary

Table 22. Edit Command Summary (cont.)

Description

The sequence number and contents of each record is typed prior to accepting a
command.

Options:

Same as for the SS command.

Causes Edit to set or reset the terminal tab stops. F implies FORTRAN and a tab set at
column 7. M implies Meta-Symbol and tabs set at columns 10, 19, and 37. S implies
Meta-Symbol, short form, and tabs set at columns 8, 16, and 30.

Types the sequence numbers and the contents of specified columns of one or more
records beginning at record n. Any nonblank strings within the columns typed are
shifted to t~e left to compress each blank string to a single blank.

Options:

m specifies the number of the last record to be typed. If omitted, only
record n is typed.

c specifies the smallest column number of the range of columns to be typed.
The default value is 1.

d specifies the largest column number of the range of col umns to be typed.
The default val ue is 140.

Types the contents of the record currently open for editing under control of an SE, SS,
or ST command.

Option:

The ellipses (dots) indicate that other commands may be present on the line.

Types the contents of specified columns of one or more records beginning at record n.

Options:

Same as for the TC command.

Types the sequence number and contents of the record currently open for editing under
control of an SE, SS, or ST command.

Option:

The ellipses (dots) indicate that other commands may be present on the line.

Types the sequence numbers and the contents of speci fi ed col umns of one or more
records beginning at record n.

Options:

Same as for the TC command.

7. DELTA

INTRODUCTION

Delta is designed j-o aid in the on-line debugging of
programs at the assembly-languaHe or machine-language
levels. It operates on object programs and tables of inter­
nal and global symbols used by the program but does not
require that the tables be at hand. With or without the
symbol tables, Delta recognizes computer instruction
mnemonic codes and can assembl,e machine-language pro­
grams on an instruction-by-instruction basis. The main
purpose of Delta, however, is to facilitate the activities of
debugging by

1. Examining, inserting, and modifying such program
elements as instructions, numeric values, and coded
information {i. e., data in all its representations and
formats}.

2. Controlling execution, including the insertion of
breakpoints into a program and requests for breaks on
changes in elements of data.

3. Tracing execution by displaying information at
designated points in a program.

4. Searching programs and data for specific elements and
subel ements.

Although Delta is specifically tailored to machine language
programs, it may be used to debug programs written in
FORTRAN, COBOIL, or any other language. Delta is de­
signed and interfaced to UTS in such a way that it may be
called in to aid debugging at any time, even after a pro­
gram has been loaded and executi on has begun.

The command language of Delta is cryptic and highly
encoded, but is easily learned and used by the professional
programmer. It is simi lar to the DDT {Dynamic Digital
Debugging Tool} language family that has been used on a
vari ety of mach i nes for the I ast decade.

There are two versions of Delta:

1. A user version with codes and restrictions appropriate
to multiple on--line users operating in the slave mode
from on-line t€~rminals.

2. An executive version for system debugging that operates
in executive mode under cont'rol of one of the operator's
consoles.

Differences in the language syntax of the two versions are
few and are noted in this chapter. The main orientation of
the chapter, however, is towards the user version of Del tao
Instructions for call ing the executive version of Delta are
given in the UTS/Prel iminary Technical Manual.

CALLING DELTA

The user version of Delta may be brought in at the time the
user loads his program into core for execution or by direct
call after execution begins. Del ta also may be brought in
without prior program loading for writing and checking short
Meta-Symbol or machine language programs. The commands
used to call Delta are at the executive level:

1. To bring in Delta at program load time, the user gives
the command "RUN rom UN D ER DELTA" or the command
"START Imn UNDER DELTA". Control goes to Delta,
and the user may examine and modify his program before
passing control to it.

2. To bring in Delta after a program has started, the user
returns to the executive level by using the terminal
command yC (by simultaneously pressing the control shift
and the Y keys) and then giving the executive command
DELTA.

Note: Attempting this approach may result in the
message:

A 100 DON'T TRY TO DEBUG A SHARED PROCESSOR

This means that execution of the user's program had not
actually begun when the yc command was given and a
processor such as LIN K was operational instead. If this
happens, the user may either re-try this approach and
wait for execution of this program to actually begin or
use the approach outlined in 1 (bringing Delta in at
program load time).

3. To bring in Delta without prior program loading, the
user simply gives the executive command DELTA.
Writing programs with Delta is discussed at the end of
this chapter.

Delta responds to these commands by typing "DELTA HERE".
In the user version, it follows this by its prompt character,
the bell. (The executive version of Delta does not have a
prompt character, nor does the user version when connected
to a keyboard display.) Delta is then ready to accept a
command.

EXITING DELTA

There is no Delta command that concludes Delta and returns
control to TEL. Therefore, the yc control combination must
be used to return control to TEL.

PREREQUISITES

There are three Del ta restri cti ons the user must be aware of
when he writes a program that will be run under Delta:

1. All assembly language mnemonics are reserved words in
Delta and may not be used as symbols for instruction or
data tags.

Delta 77

2. The symbols used for the program must follow the rules
for symbols in Meta-Symbol, except that the first seven
characters of all the symbols must be unique. This is
necessary because symbols are carried in Delta's symbol
table as seven characters. Symbols with more than
seven characters are truncated to include only the first
seven. Thus, symbols that originally were longer than
seven characters are indistinguishable from each other
if the first seven are the same. (If this happens, only
the last definition is retained.)

3. A Meta-Symbol program should be assembled with the
option SD if the user wishes to use internal symbolic
references while debugging. (The SD option causes
the assembler to produce debugging object code for
internal symbols for use with Delta.) Also, at run time
the user must request that the internal symbol table
with this code be made available to Delta by using the
Delta command SiS where s is the name of the fi Ie.
(See the section "Symbol Table Control".)

SAVING PROGRAM MODIFICATIONS

When a user debugs a program under Delta, he may make
modifications to the program code and symbol tables. These
modifications only affect the core image of the program and
are not saved unless the user returns control to TEL (by issu­
ing the yC command or by depressing the break key four
times) and then issues a SAVE command. (See SAVE com­
mand in Chapter 3.) A program that contains overlays
cannot be saved as one intact program and therefore this
approach to making the modifications permanent is not
applicable.

CONVENTIONS

The following conventions are used in explaining the format
of the commands typed by the user:

1. Special characters, numbers, and uppercase letters
stand for themselves. Thus, in the command e;G the
user actually types the semicolon and the G.

2. Lowercase letters are used to indicate places where the
user has a choice of things to type. The letter e, alone
or postscripted, is used to represent any expression con­
sisting of symbols, special symbols, instruction mnemonics
constants, the operators plus (+) and minus (-) and
space (). At times, other lowercase letters are used
to stand for expressions when some additional mnemonic
content seems desirable (e. g., n, loc, val, m).

3. The letter f stands for one of the format characters.
(The format codes are listed in Table 23.)

4. Abbreviations for user keystrokes are as follows:

Characters User Delta Executive Delta
Used in Text Keystroke Keystroke

RET RETURN RETURN

LF LINE FEED EOM

78 Introduction

Characters
Used in Text

\
TAB

BRK

User Delta Executive Delta
Keystroke Keystroke

SHIFT and N &

SHIFT and L i
CTRL and I TAB

BREAK Sigma INTERRUPT
Switch

Table 23. Format Codes

Code Meaning

F Symbol table specified format.

X Hexadecimal word.

I Signed decimal integer

C EBCDIC characters.

R Symbolic instructions with symbolic addresses.

A Symbol ic instructions with hexadecimal addresses.

S Short floating-point number. t

L Long floating-point number. t

tUser version only; both have the format XXXXX E ±yy

COMMAND DELIMITERS

The characters I isted below are used as end-of-message
characters and, in most cases, as commands in the Delta
language. Each has a particular meaning that will be
discussed in detail with the commands to which it applies.

/

RET

LF (This character is represented by the EOM key
in the executive version of Del ta.)

TAB

(This character is represented by the & key in
executive Delta.)

With the exception of the slash (/) and equal (=) characters,
which interact immediately within a single typed line, these
characters cause a carriage return and a I ine feed.

More than one command can be input on a command I ine by
separating the commands with spaces. The following line
contains five commands:

PROG;S TAG l;B TAG2;B ;B ;D @)

However, it is important to note that any command that
changes the contents of a cell should be the last command
on a multiple-command line. -

CORRECTING TYPINIG ERRORS

Correcting typing errors while using Delta requires special
consideration because the = and / characters cause imme­
diate interaction with UTS without proceeding to a new
line. The RUBOUT key wi II not clffect a / or = character
nor any information which precedes it on a line. Canceling
a line by simultaneously pressing Ithe ESC or CONTROL key
and the X key may only cancel a partial line. If a / or =

character appears in the line, tha~ character and all char­
acters preceding it will not be canceled.

In the executive version of Delta, the question mark (?)
cancels the command line and the at sign (@) is the rubout
command.

EXPRESSIONS

Expressions are typed by the user for location val ue, for
parameter value, and for assembly into an instruction.
Expressions are composed of

Program symbolls.

Special symbols (see Table 24).

Assembly language mnemonics.

Explicit constants.

The operators plus (+) and minus (-).

Space ().

Examples:

;1

. lE07

A

A+3

A+3-B

AI,l 2

STW,7 *LOC

LW,7 TAB,5

CAL 1,3 LIST

Table 24. Special Symbols

Symbol Meaning

$ or . Last opened cell address.
; I lnstrue t ion counter} As se t by the lost entry
;C Condition code to Delta or as changed
;F Floating controls by the user.
;M Search mask.
i 1 Lower search bound.
;2 Upper search bound.
;Q Last quantity typed.

The space character is used to introduce the address field
in expressions to be assembled into instructions.

CONSTANTS

Constants must be input in the following formats:

1. Hexadecimal - hexadecimal numbers preceded by a
period.

.lC28

• BE3

• FFFFFFFF

2. EBCDIC - EBCDIC characters surrounded by single
quotes. (EBCDIC text strings must consist of no more
than four characters. If fewer than four characters are
specified, the characters are right-justified and zero­
fi lied.)

'%ERR'

'LOC2 1

'TOM '

3. Decimal - numerics only.

1234

-250

10

Hexadecimal and decimal constants are output in the same
format that they are input. EBC D IC constants are output as
EBCDIC characters without the surrounding single quotes •
Non-printing EBCDIC characters may also be output, includ­
ing the EaT (end of transmission (04)) character, which will
turn off some types of terminals.

DELTA COMMANDS

EXPRESSION EVALUATION: THE = COMMAND

Expressions consisting of program symbols, special symbols,
assembly language mnemonics, explicit constants, and the
operators plus (+) and minus (-), and space () may be
eval uated by use of the = command. When a program symbol
is evaluated, the result is its absolute address. When a
special symbol is evaluated, the result is the val ue that the
symbol is set to. When an explicit constant is evaluated,
the resul t is its numeric equivalent. When an assembly
language instruction is evaluated, the result is its machine
language equivalent.

The basic = command is

e=

Note that no carriage return is given. Delta responds im­
mediately to the = character and eval uates the expression e.

Delta Commands 79

In this command, no format is specified for typing the
expression evaluation, so the default format is used. Usually
the default format is X (hexadecimal), but the default can
be changed by one of the variations of the = command
(which will be discussed shortly).

Examples:

2+2 = .4

5+5 = .A

TOT = • C12E

AI,6 1 = .20600001

The user may temporari Iy change the output format with the
following = command:

e(f =

where f specifies a particular format code selected from
those listed in Table 23, "Format Codes". The temporary
change only affects the = command in wh ich it is given.

The default format for output can be changed by the
command:

(f; =

where f specifies a particular format code selected from
those listed in Table 23, "Format Codes". The new default
will be retained until another (f;= command is given. The
original default setting of the output conversion format is X.

Example:

5+5 = A§
(I; = 6+7 = 13 (The default format is changed

to integer.)

The last expression typed by Delta may be evaluated simply
be typing the = character. In the example below, Delta
types the expression BAL,5 SUB as a result of the command
ALPHA/ (which is discussed in the next section). Then the
entire expression BAL,5 SUB is evaluated and the results are
typed as a result of the = command.

ALPHA/ BAL,5 SUB = .6A5006B3

MEMORY CELL OPENING AND DISPLAY:
THE I, TAB, and \ COMMANDS

The slash (/) character is a command to Delta to open a
memory cell and display its contents. There are several
variations of the slash command and these wi II be discussed
below. In each command the cell to be opened and dis­
played is indicated by an expression (designated by an e in
the i nstruc ti on formats)

The basic / command is

e/

80 Delta Commands

Note that no carriage return is given. Delta responds
immediately to the / character and opens the cell, displaying
its contents on the same line. In this command, no format
is used. Usually this default format is F (symbol table speci­
fied format), but the default can be changed by one of the
variations of the slash command (which wi II be discussed
shortly). If the default is F, then the symbol table is
searched to find a symbol at the same or at the closest
smaller location (within a hexadecimal offset that may be
specified by the Delta ;R command discussed later) than the
indicated address and the data type associated with the
symbol found is used to control output. If no symbol is found
within the range, the default is R (symbolic instruction).

Examples:

. C125/

Al/

A+l/

BETA/

.34

BAL,6 ALPHA

STW,5 BETA

ABCD

The user may temporarily change the output format with the
follow ing slash command:

e(f /

where f specifies a particular format code selected from
those listed in Table 23, "Format Codes ". The temporary
conversion type is retained for all slash commands until the
next RET command is given or another format change is
specified. (The temporary conversion type is retained over
any following LF, t , /, and TAB commands.)

Examples:

X(X/

X(C/

· Cl

A

(hexadecimal conversion)

(EBCDIC character conversion)

X(I/ 193 (decimal integer conversion)

Below is an example which shows that temporary conversion
types are retained until the next RET command is given:

D(X/

V/
• 3230C 122

• 2030C 122 §

Z/ AI,3 AA §

(D, V, and Z are locations
of program instructions)

The default format for output can be changed by the command

(f;/

where f specifies a particular format code selected from
those listed in Table 23, "Format Codes ". The new default
wi II be retained unti I another (f;/ command is given. The
original default setting of the output conversion format is F.

Example:

X/
(Ci/

~@)

X/ A

The cell addressed by the last expression typed by Delta
may be opened and displayed by typing a TAB (produced by
simultaneously pressing the CTRL and the I keys for the user
version or by pressing the TAB key for executive Delta).

In the example below, the cell DCT8 is opened and
displayed.

ALPHAI LW,5 DCT8_@l

DCT81 .32 (The carriage return was automatically
provided b:f Delta.)

The format for display is by default only and is the same
default as for the slash command"

If the user types a slash by itself/' the cell addressed by the
last expression typed by Delta is displayed but not opened.
In the example below, ALPHA remains the open cell even
though the contents of cell DCTB are displayed.

ALPHAI LW,5 DCT8 I .32

Conversely, a cell may be opened without displaying its
contents by the use of the \ command (produced by simul­
taneously pressing the SHIFT and the L keys for the user
version or by using the f. key for executive Delta). The
format of the command is

e\

In the example below, the cell SUM is opened but not
displayed. Then SUM is set to zero.

SUM\ 0 @)

Opening a cell without displaying its contents is convenient
when the user wishes to insert new contents in memory and
is not interested in the current contents.

If the user wishes to store data into a page that is not
assigned to his program, the \ command wi II request that
the Monitor assign the page. (This is particularly useful
when using Delta to write new programs.) For example:

.18000\

If the page at . 18000 is not assi~,ned to the program, the
Monitor will assign it (if possible). Also, the cell at
. 18000 wi II be op,sned.

More than one cell may be dispk.yed by using the following
command:

e 1,e21

where

e1 is an expression which identifies the lower
address of a range of cE~lIs to be displayed.

e2 is an expression whi ch identi fies the upper
address of a range of cE~lls to be displayed.

Following the display of these cells, the upper limit cell is
open for change. In the following example, ALPHA + 2 is
open for change.

ALPHA,ALPHA+21 BAL,4 SUB
ALPHA+.11 STW,5 DCT2
ALPHA+.21 AI,6 . 100

Note that Delta types the word increments as hexadecimal
numbers.

Temporary change in the output format may be added to the
above command as shown below:

el,e2 (fl

where f specifies a particular format code selected from
those listed in Table 23, "Format Codes".

Example:

100, 10l(xl
lOll

.58000100

.68000200

If the user wishes to interrupt a display that is too long, he
presses the BREAK key and the remaining output is discarded.
The last displayed cell is opened. The INTERRUPT switch
on the Sigma Processor Control Panel accomplishes this in
the executive version of Delta.

MEMORY MODIFICATION:
THE RET, LF,t, AND TAB COMMANDS

These four commands allow the user to store a typed expres­
sion for word value into the currently open memory loca­
tion -- opened by I, \, or one of the modification commands
LF, t, or TAB. If no expression precedes the command char­
acter, the action taken is as described, except that the open
cell remains unchanged.

The RET command causes an expression to be assembled and
stored in the open memory cell. Carriage return (RET) and
new line (LF) characters are sent to the terminal, and tem­
porary display modes are reset to default values. The format
of the RET command is

Example:

AI BAL,4 JWS BAL,4 GEB @
AI BAL,4 GEB @

(The expression BAL,4 GEB is assembled and stored into A).

JEDI EXU LS (Xl .680006431 . 78C @

(The contents of J ED are typed. Then the contents of LS
are typed in hexadecimal. JED remai ns the open cell.
Then the contents of .0643 are typed.)

·1 EXU LS

(The contents of JED are typed. The . is a special
symbol (see Table 24) that specifies the last opened cell
address.}

Delta Commands 81

Note that a temporary display format was established by the
(XI which carried over unti I reset by the carriage return
(RET) command.

When the user terminates an expression with the new line
(LF) command, the value of the expression is stored in the
currently open cell, that cell is closed, a new I ine is pro­
duced at the terminal, and the cell with the next higher
location value is opened. The type of command used for
initial cell opening is preserved and carried forward on
succeeding openings as is the display format.

The format of the new line (LF) command is:

e0

Example:

A (1/ 435 436 @

A+.1/ 7630

(A+.1 is displayed but remains unchanged.)

(A+.2/ 7689 7000@
-'---"-----

EM\ STM,4 ERS 0

EM+. 1\ BAL,6 LP ®

EM+.2\ BGE GAP @

For the executive version the EOM (end-of-message) key
replaces the LF key.

The e t command is the same as the LF command except that
the cell with the next lower location value is opened. For
the executive version, & replaces t .

Example:

EM+4/ ~ B Gwt

EM+.3/ 0 AI,3 1 @l

The TAB command causes the typed expression to be stored
in the currently open cell, and that cell is closed. Follow­
ing output of a carriage return, the cell addressed by the
most recently closed cell is opened and displayed (only the
address is displayed in the \ mode). The effect is like that
of a RET command followed by a ;Q/ command (see Table 24,
Special Symbols). The format of the TAB command is:

The TAB command is useful for patches:

AI BAL,5 SUB 0

A+.1/ STW,6 BETA B PATCH @)

(The carriage return is performed as part of the TAB
command.)

PATCH/ .0 AI,6 1 @

PATCH+.1/ .0 STW,6 BETA @

PATCH+.2/ .0 B A+2 @)

82 De I ta Commands

SYMBOL TABLE CONTROL:
THE ;U, ;K, ;S, !, AND <>COMMANDS

There are two types of symbol tables in Delta:

1. Constant (Internal to Delta).

2. User associated or defined.

The first type of table is always present in Delta and consists
of the Meta-Symbol instruction mnemonics and a list of
special symbols (see Table 24) associated with program
debugging.

The second type of table consists of a set of global symbols
(those defined by DEF directives) and a set of internal sym­
bol tables, one for each ROM loaded (although some may be
combined by Link). (See Chapter 8 on Link.) The internal
symbol tables are filed under the name of the fi Ie from which
the ROM was loaded.

The user must specify that the internal symbol table is to be
loaded if he wishes to debug using internal symbolic tags.
The command for specifying this is

s;S

where s is the name of the fi Ie from which the ROM was
loaded. This command causes Delta to load the internal
symbols from the program loaded from fi Ie s, and these
internal symbols replace, for reference purposes, any previ-
0us�y selected internal symbol set. An example of the s;S
command is

C=

?2

(Delta is confused because no internal symbol table
had been previously loaded. The internal symbol C
is not recognized).

BIN;S@

(The internal symbol table is loaded).

C=. C125

(The symbol C is now recognized).

The ;S command alone loads the global symbol table. The
user must specify this command if he wishes to debug using
global symbolic references.

The user may wish to release to the system the pages used
for symbolic tables. The command ;K releases the pages
containing the global and internal symbol tables. The
command ;KG releases only pages containing the global
symbol table and the command ;KI releases only pages
containing the internal symbol table. Other uses of the ;K
command are

s;K prevents use of the symbol s in constructing
output. The symbol is still recognized when typed
in. Symbol s is returned to use if the user reloads
the symbol table.

;K removes all symbols from the symbol table. The
lists of instruction mnemonics and special symbols
are not erased. Individual internal symbol tables
are recoverable using the s;S command. Global
symbols are restored by ;:5.

Undefined symbols in the loaded programs are printed by
Delta when the ;U command is given. Undefined symbols
within the range of an assembler LOCAL directive are lost.
They are given a value of zero in the loaded code and do
not appear when the ;U command is given.

Symbols may be defined by the user at any time during his
debugging session. Symbols so d.?Jfined are added to the
global symbols associated with the program load. Commands
for adding symbols to the global symbol table are

s(f! adds the symbol s to the global symbol table
with the location value of the currently open cell
and format type f. (See Table 23, IIFormat Codes II.)
If format type f is omitt/?Jd, symbolic instruction (R)
type is assumed. For e>eamp I e,

C+1/ Q LaC! LW,4 TAB @l.

In this ex.ample, location C+1 is given the name
LaC. Then the conten~s of LaC are changed to
contain the assembled instruction LW,4 TAB.

Note that if a format code is specified for a slash
command (e(f/), it is retained unti I the next
carriage return and meanwhile the format specified
is applied to any commclnd.

Example:

INsr/ CI,2 . 4 ~~

INSr(X/ .21200094 SYM! @l

INSlr/ CI,2 .4 SYM/ .21200004

The cell INST was displayed in its default format.
The instruction at INST was then displayed in
hexadecimal format and then the cell INST was
assigned an additional name, SYM, with the dis­
play format for SYM being X.

e(f<s>[K] adds the symbol s to the global symbol
table with value defined by the expression e and
format code f. In addition to the format codes of
Table 22, the letter K may be used to indicate
value is to be a constant. If f is omitted, R is
assumed. If the final angle bracket is followed
by a K, the symbol is fl10gged as a control section
type symbol in the symbol table. K may not be
used as the format code if K is specified following
the final angle bracket.

SINGLE LINE MACROS

Since the symbol table definition gives a 32-bit value to
constant symbols, it may be used as a macro-definition
faci lity for single-word values.

Example:

LI,3 O(K<CLEAR>@l

AA\ CLEAR@)

MM\ CLEAR@)

The symbol CLEAR now
represents the i nstructi on
LI,3 O.

The cell AA is opened and
its content is set to the
instruction LI,3 O.

The content of MM is also
set to the instruction LI,3 O.

EXECUTION CONTROL:
THE ;6, ;P, ;X,AND\) COMMANDS

The four commands described in this section allow the user
to begin execution of his program and to resume execution
of the program if it is interrupted.

Execution is started by typing the [e];G command,where e
is an expression which identifies the starting location. The
expression e may be omitted, in which case execution will
begin at the first instruction of the program.

Example:

BEGIN;G@)

;G@l

Execution can be stopped in four ways:

1. A breakpoint. (Breakpoints are discussed in the next
section.)

2. A user interruption via the BRK key (INTERRUPT key in
executive Delta.)

3. An error causing a machine trap (i Ilegal instruction,
memory protection violation, etc.).

4. A normal program exit.

In each case the values of ;1, ;C, and ;F (See Table 24 on
Special Symbols) are set, the cause of the stop is reported
by an appropriate message, and terminal control returns to
the user.

Example:

BRK AT .5C3

PRIVIL INSTR AT .77B

;1 = .77B

Proceeding from a stop condition is accomplished by typing
the ;P or ;G command. Execution continues from the loca­
tion specified by the current value of ;1 (i. e., where
execution left off). The;P command has an optional special
format for use with instruction breakpoints. This is discussed
in the section on breakpoints. For user interruptions via the

De I ta Commands 83

BRK key, the ;P and ;G commands cause execution to
continue as if the interruption had not occurred.

BRK at .68C

;P C§

Proceeding from a machine trap causes reexecution of the
violating instruction and another trap.

MEM PROTECT FAULT AT .74B

;P €V

MEM PROTECT FAULT AT .74B

The e;X command assembles and executes the expression e.
The expression e must be an assembly-language instruction.

Examples:

LH,3 TABLE+4;X

STB,6 *LOC;X

If the expression does not result in a legitimate instruction,
an error message is typed.

In most cases the instruction is executed and then terminal
control returns to the user. However, if the expression is
a branch instruction, control goes to the user's program (or
causes a memory violation). Thus, the commands B GO;X
and GO;G are equivalent. If the expression is a subroutine
jump, the subroutine is entered. If the subroutine returns
normally (i. e., to the calling location plus 1, 2, or 3),
control returns to Delta and termi nal control returns to the
user. If the return is to other than the calling location
plus 1, 2, or 3, the results are unpredictable.

The) command controls step mode execution. It executes
the instruction in the currently open cell and opens and
displays the next program step. If the instruction executed
by) causes a branch, the effective branch address specifies
the location to be opened and displayed. By using the /
command to open and display a location and repeatedly
issuing the) command, the user can proceed step-by-step
through his program.

BREAKPOINTS: THE iB, iT, iD, AND iY COMMANDS

Delta provides the user with multiple breakpoints of three
types:

1. Instruction breakpoints.

2. Data breakpoints.

3. Transfer breakpoints.

The BRK key a Iso causes a break in execution and is dis­
cussed in this section.

Eight instructions and eight data breakpoints are available
to the user. Transfer breakpoints are I imited only by op­
tions within the transfer breakpoint command.

84 Delta Commands

As each breakpoint is reached, a small amount of information
is printed out, giving the breakpoint location and an associ­
ated value. An optional "trace" mode allows execution to
continue automatically after the breakpoint report to provide
a flow-trace of both execution control and variation of data
values.

INSTRUCTION BREAKPOINTS

Instruction breakpoints allow the user to halt execution at
specified locations in the logical flow of his program. Eight
instruction breakpoints, numbered 1 to 8 may be set. The
command has the format

eGn] G loc];B

where

e specifies the location of an instruction. The
breakpoint stop occurs just before execution of
the instruction at e.

n specifies the number of the breakpoint. If n is
not specified, Delta assigns the next available
breakpoint. If all instruction breakpoints are used,
the error message NONE is typed. The user may
then release one of the eight instruction breakpoi nts
he has set and try again. (Releasing breakpoints
wi" be discussed shortly.)

loc specifies a location, the contents of which is
to be displayed when the breakpoint is reached.
Registers as well as core locations can be displayed.

The following list shows the format of the command when
vari ous parameters are omi tted :

e;B

e,n;B

e"loc;B

The breakpoint stop occurs just before execution of the
instruction at e. When the breakpoint is reached, Delta
prints the number and type of breakpoint, its location, and
optionally the contents of the location specified by loc.

Examples:

A+3, l;B A;G @)

1;B>A+.3

A+8, 1,FF;B ;G @)

1 ;B>A+.8 FF/ .54

When stopped at a breakpoint, the user may examine and
modify his program as appropriate and then continue from
the point of interruption by giving the command

;P
or

n;P

For instruction breakpoints, the ;G command will cause the
break to reoccur and execution wii II not proceed. The;P
command bypasses "he special brecJkpoint code at the point
of interrupt and execution of the program can proceed. If
the command n;P is given, program execution resumes as
with the ;P command but the breakpoint that caused the
interrupt wi II be passed n times bElfore the break occurs
again.

Example:

PH+8,2,R2;B PH;G €V

2;B> PH+8 R2/ .4 ;P (R!~

2;B> PH+8 R2/ .5 ;P €V

2;B>PH+8 R2/ .6 5;P@

2;B> PH+8 R2/ . 12

(The breakpoint was passed five times before it caused this
interrupt.)

If the user wishes to trace a particular instruction, he may
give any of the four forms of the breakpoint command and
specify the trace mode with a T following the B. That is,

e,n;BT

e;BT

e,n,val ;BT

e"val;BT

In this mode when 1'he instruction e is reached, the break­
point reporting information is printed and execution con­
tinues automatically.

Example:

A+3,4,5;BT A;G@

4;B>A+3 5/ 54

4;B>A+3 5/ -1

4;B>A+3 5/ -175

The trace mode may be set after CI breakpoint occurs with
the ;T command, which sets the tr10ce mode at the current
breakpo i nt i nstructi on.

Instruction breakpoints may be removed by

1. Giving an instruction breakpoint command that speci­
fies the same breakpoint number as the instruction
breakpo i nt to be removed.

Example:

AA,2;B €V

FF,2;B €V (There is no longer a breakpoi nt
at AA.)

2. Giving the command n;B that specifies that the nth
instruction breakpoint is to be removed.

3. Giving the command O;B that specifies that all instruc­
tion breakpoints are to be removed.

The current instruction breakpoints may be listed for inspec­
tion with the ;B command. The list has the following form
for each established breakpoint:

n[TJloc display

where

n is the breakpoint number

T indicates that the trace mode is set for that
breakpo i nt .

loc is the breakpoint location.

display is the address to be displayed when the
breakpoi nt occurs.

CALs, XPSDs, or LPSDs that depend on following calling
sequences wi II not operate properly if they have an instruc­
tion breakpoint on them. BALs are not limited in this way.

DATA BREAKPOINTS

Data breakpoints allow the user to halt execution when a
specified memory location changes value in a specified way.
Eight data breakpoints (numbered 1 through 8) may be set.
The command has the format

e~nJ~vaIJ~m J;D[rJ

where

e specifies a memory location. When the contents
of this location changes, a break wi II occur (unless
other optionally specifi ed requirements are not met)

n specifies the number of the breakpoint. If n is
not specified, Delta assigns the next available
breakpoint. If all data breakpoints are used, the
error message NONE is typed. The user may then
release one of the eight data breakpoints he has
set and try again. (Releasing breakpoints wi II be
discussed shortly.)

val specifies a value that is compared with the
value in e. The parameters val and r must both
be present if either one is present. The parameter
val will be discussed further when r is discussed.

specifies a relationship such as less than or equal
to. When r and val are specified, a breakpoint
wi II occur only whenever the contents of the
memory location at e is in relation r to val. If
no r and val specifications are given, a breakpoint
occurs for all changes in the data and if a mask m
is specified, it is ignored.

Delta Commands 85

The letters used for r and their me ani ngs are

LS (e) < val Contents of e under m
c

is less than value.

EQ (e) = val Contents of e under m
c

is equal to value.

GR (e) > val Contents of e under m
c

is greater than value.

GQ (e) > val Contents of e under m c-
is greater than or equal
to value.

LQ (e) :s val Contents of e under m
c

is less than or equal to
value.

NQ (e) I- val Contents of e under m
c

is not equal to value.

m specifies a mask. If m is specified, the contents
of e are masked under m before being compared
with val. The default mask is all one1s.

Some specific variants of data breakpoint commands are
gi ven below.

e,n;D Sets data breakpoint n. Terminal control
returns to the user after each change in the con­
tents of e and pri nti ng of the data breakpoi nt
message.

e;D Sets next available data breakpoint. If all
data breakpoints are used, the error message
NONE is typed. Terminal control returns to the
user immediately after each change in the contents
of e and printing of the data breakpoint message.

e"val ;Dr Sets next avai lable data breakpoint with
value, val, and relation, r. Terminal control
returns to the user when the contents of e stand in
relation r to the value val and the data breakpoint
message has been printed.

e"val,m;Dr Same as above except that the contents
of e are masked by the mask m before bei ng com­
pared with val.

Some sample breakpoint settings are:

A, 1 ,3;DGR

A+5,2,. FF,. FF ;D~Q

AB,3;D

SDS,4,CSC;DGE

A T or trace parameter applies to all data breakpoint com­
mands in the same way and with the same effects as described
above for instruction breakpoints. For example,

A,1,3;DTGR

86 De I ta Commands

Also the command ;T may be given to set the trace mode at
the current breakpoint (which just caused an interrupt.)

The output resulting from a data breakpoint has the form

n;D> loc e/cont

where

n is the number of the breakpoint.

loc is the location of the data modifying instruction.

e is the data address in question.

cont is the new value as just modified.

Example:

4;D > ADD SUM!. 14

When stopped at a data breakpoint, the user may examine
and modify his program as appropriate and then continue
from the poi nt of interrupti on by gi vi ng the command

;G
or

;P
or

niP

These commands are discussed in the previous section,
"Instruction Breakpoi nts ". (For data breakpoi nts, the ;G
command is effectively the same as the ;P command.)

Data breakpoints may be removed by

1. Giving a data breakpoint command that specifies the
same breakpoint number as the data breakpoint to be
removed.

2. Giving the command n;D that specifies that the nth
data breakpoint is to be removed.

3. Giving the command O;D that specifies that all data
breakpoi nts are to be removed.

T~e current data breakpoints may be listed for inspection
with the command ;D. The list has the following form for
each establ ished breakpoint:

n[TJloc cond value mask

where

n is the breakpoint number.

T indicates that the trace mode is set.

loc is the breakpoint location.

cond is the breakpoint condition relation.

value is the breakpoint value.

mask is the mask under which the data is tested.

The data breakpoi nt does not detect changes caused by
direct hardware I/O transfers into the user's area nor does
it detect changes in a temp stack caused by a push instruc­
tion (PSM, PSW). It does detect' the change to the stack
pointer doubleword.

TRANSFER BREAKPOINTS AND INTERPRETIVE EXECUTION

Transfer breakpoints allow the user to halt or trace execu­
tion when a branch instruction is encountered that branches
when executed. this command differs from the other two
breakpoint commcmds in that it initiates execution as soon
as the command is decoded and processed. The format of
the transfer breakpoint command is

[Ioc][,option
l
][,option

2
];Y

where

loc specifies a location I:lt which to begin execu-
tion of the program. The default value is the
value of the current location counter.

optionl indicates whether or not an interrupt should
be allowed to occur at t'he branches specified in
the speci III action table (SAT) whi ch wi II be de­
scribed below. If optionl = 0, then all branches
except those speci fied in the SAT are to be pro­
cessed as possible transf<er breakpoints. If optionl
= 1, then only those bmnches specified in the
SAT are t,o be processed as possible transfer break­
points. If this option is omitted and the SAT con­
tai ns no entri es, then all branches are processed
as possible transfer breakpoints. If the option is
omitted and the SAT doe,s contain entries, then the
default value for the option is Lero (so that all
branches lexcept those specified in the SAT are to
be processed as possible transfer breakpoints).

option2 indicates whether or not BDR and BIR
branches are to be proc€issed as possible transfer
breakpoints. If option2 = 0, then BDR/BIR branches
are not to be processed OS possible transfer break­
points. If option2 = 1, f'hen BDR/BIR branches are
to be processed as possible transfer breakpoints.
The default value is O.

The following list shows the format of the command when
vari ous parameters are om i tted:

;Y
10c;Y

loc,optionl ;Y

loc"option2;Y

,optionl ;Y

"option2;Y

,optionl ,option2; Y

When a break occurs as the result of the transfer breakpoint
command, the following message is output:

locl - loc2

where

locl is the address of the branch instruction that
just branched.

loc2 is the address of the instruction to which the
program branched.

Execution may be continued with the ;P or ;G command.
The ;P command with a proceed count (n;P) is not meaning­
ful in the transfer breakpoint mode.

If the user wishes to use the trace mode with the transfer
breakpoint command, he may give any of the forms of the
command and specify the trace mode with a T following
the Y. For examp Ie:

;YT

loc"option
2

;YT

loc,option 1,option
2

;YT

In this mode, when a breakpoint occurs, the breakpoint
reporting information is printed and execution continues
automati cally.

The trace mode for all transfer breakpoints may be set after
a transfer breakpoint break occurs. The command which sets
the trace mode is ;T.

The transfer breakpoint mode may be turned off with the
command:

O;Y

Special Action Table (SAT). The special action table lists
up to eight locations in the user's program. These locations
are meaningful only if they contain branch type instructions.
The action to be taken depends on option

l
of the transfer

breakpoi nt command.

The following command enables the user to set entries in
the SAT:

I oc 1 [, I oc2[, loc3[, I oc4]]J; YS

The command enters the specified locations in the SAT if
space is avai lable.

The command

loc 1[, loc2[' loc3[,loc4]]];YR

releases specified locations from the SAT.

The command ;YR releases all SAT entries. The command
;YD displays the SAT.

Delta Commands 87

BRK KEY BREAKPOINTS

At any time during program execution the user may halt his
program by pressing the BRK key. A message is printed for
the user, giving the location of the breakpoint. If the user
hits the BRK key while his program is in execution, the
message is:

BRK AT loc

After such a break poi nt, the ;P or ;G command conti nues
execution.

If the breakpoint occurs whi Ie Delta is exec uti ng, the
message is

BRK IN DELTA

The user may then give any of the Delta commands.

MEMORY SEARCH AND MODIFICATION:
THE iW, iN, iM, AND iL COMMANDS

There are two search commands, e;W and e;N. The e;W
command searches for values which match the expression e
and displays the location and contents of each cell contain­
ing the value. The e;N command searches for cells that
do not contain the expression e and displays their location
and contents.

The search is carried out between the limits determined by
the symbol table values of ;1 and ;2. The special symbols
;1 and ;2 identify the lower and upper search bounds respec­
tively. The initial value of ;1 is the lowest current user
data area address, and the initial value of ;2 is the highest
current user data area address. Usually the initial value
of ;2 is greater than the last address of the user's program
and this causes a trap to occur when a search is requested.
Therefore, the user should always set I imits on the area in
which the search is to be done by using the e;l and e;2
commands. The field e is an expression which specifies
the bound location. An example is given below:

AA;l EE;2 'ABCD';W @)

In the example, each cell between AA and EE wi II be
searched for the EBCDIC value ABCD. The location and
contents of each cell containing that value will be
displayed.

Both bounds may be set by one command, the ;L command.
The format of the ;L command is

e 1 ,e2;L

where e1 specifies a value for ;1 and e2 specifies a'value
for ;2. The example above might also be written

AA,EE;L 'ABCD';W @)

When the user sets t,he search bounds, they remai n set at
the specified value until they are reset by the user. The

88 Delta Commands

bounds do not revert back to their initial values after a
search has been performed.

The search may examine entire cells or portions of cells.
This is determined by a mask which is identified by the
special symbol ;M. The initi al value of ;M is all ones, so
that entire cells will be examined. The mask ;M may be
reset by the ;M command which has the format

e;M

The expression e is used to set the bits of ;M to a particular
pattern of ones and zeros. Only those bits corresponding
to the one bits of the mask wi II be examined when a search
is performed. For example:

. FFOOOOOO;M

The mask wi II be set so that only the first eight bits of each
cell will be examined to see if they match the value being
searched for.

Like the search bounds, the value of the mask ;M wi II not
be changed until another ;M command is given.

In the following example, only the last byte of the cells AA
through EE wi II be examined. Those containing the EBCDIC
value 'D' will be displayed.

AA,EE;L .OOOOOOFF;M 'D';W @)

(In the. OOOOOOFF;M command, the leading zeros are not
required.)

The user may express values to be searched for in their
assembly-language format or in their machine-language
format. In the example below, all words between ABC
and ABC+. 100 with the last 17 bits equal to the address of
the ERR will be displayed as shown.

.1FFFF;M ABC,ABC+.l00;L ERR;W@)

ABC+.3/ BAL,4 ERR

ABC+.A/ BAL,4 ERR

ABC+. DL: BALl4 ERR

ABC+.6A/ AWM,l ERR

A second value may be specified in the ;W and ;N commands
so that the formats of the commands are

el,e2;W and el,e2;N

The e2 field specifies a value which will be stored through
the mask ;M into all locations that meet the specified con­
dition (i. e., match or mismatch). Locations meeting the
conditions wi II be displayed after the substitution has taken
place. The following example is the same as the example
above, except that the symbo lOUT wi II be substi tuted for
ERR. (OUT must be a defined symbol withi n the program.)

Example:

• 1 FFFF;M ABC,ABC+. 100;L ERR,OUT;W@)

ABC+.3/ BAl,4 OUT

ABC+.A/ BAL,4 OUT

ABC+.D/ BAL,4 OUT

ABC+.6A/ AWM,l OUT

The user may interrupt an in-progress search by pressing the
BRK key. Delta halts the search and returns terminal con­
trol to the user.

MEMORY CLEARING: THE ;Z COMMAND

The ;Z command is basically used to clear (i. e., set to
zeros) specified areas of memory. The basic format of the
;Z command is

e 1,e2;Z

where expression e 1 is the lower limit and expression e2 is
the upper limit of the memory arel:! to be cleared. An error
results if the value of e2 is less than that of e1. Also el
and e2 must not specify addresses outside of the user's area
in memory.

A third field may ble added to the ;Z command so that the
format is

e 1,e2,v;Z

The field v specifies a value to be stored into each of the
memory cells in the area del imited by eland e2. In this
way, the; Z command may be used for purposes other than
clearing memory.

Examples:

A,A+5;Z@)

• lCEO,. lC FOi Z @) I(St th I l' t th ores e va ue In 0 e
ALPHA,ALPHA+2,1;Z@) thre4S! memory cells ALPHA,

ALPHA+ 1, and ALPHA+2).

DISPLAY MODES: THE ;A, ;R, .AND ;RK COMMANDS

The ;R and iA commands control the way in which Delta
displays location values when typing the contents of cells.
The mode display is either relative (iR) or absolute (;A).
When in the relative mode, Delta looks up location values
in the symbol table and displays the symbol if one corres­
ponds exactly to the value. If no exact correspondence is
found, Delta displa)/s the symbol with the next smaller value
followed by a word offset in hexadecimal. If the mode is
absolute (iA), then location valuell are displayed as hexa­
decimal numbers. Note that these commands control the
display of location values but not the display of the address

portion of instructions contained in those locations. Examples
of the ;R and ;A commands are shown below:

;R Display Example:

A,A+5/ LI, 1 • 10

A+.l/ CW,l K45

A+.2/ BGE ZZZ

A+.3/ AI,l

A+.4/ B Al?

ZZZ/ STW,2 BR13

;A Display Example:

A,A+5/ LI, 1 .10

.5CD/ CW,l K45

.5CE/ BGE ZZZ

.5CF/ AI,l

.5DO/ B Al?

.5Dl/ STW,2 BR13

The ;R command may be preceded by a value (n;R) that sets
the maximum offset to be used in address output. If no sym­
bol lies within "offset" of the value, the address is printed
as absolute hexadecimal. Thus, 10;R causes Delta to display
symbol plus relative offset only when a symbol lies within
10 locati ons of the display address.

The ;RK command sets relative address output mode, using
only control section type symbols for output unless there is
an exact match between the symbol value and output value
(for a discussion of setting the control section type, see
"Symbol Table Control: The ;U, ;K, is, !, and <> Commands"
earlier in this chapter). If there are no control section sym­
bols, the output is hexadecimal. Thus, output is "control
section plus hexadecimal offset ll

, IIsymbol ll
, or IIhexadeci­

mal constant ll
•

iRK Display Example:

A,A+5/ LI,l 10

.5CD/ CW,l K45

.5CE/ BGE ZZZ

.5CF/ AI,l 1

.5DO/ B Al?

ZZZ/ STW,2 BR13

PRINTER OUTPUT: THE ;0 AND ;J COMMANDS

These two commands provide for output (via symbionts) to
the line printer. The;O command produces hexadecimal
dumps on the I ine printer, while the; J command directs
all Delta output to the line printer. This is particularly

Del ta Commands 89

useful in the cases of large formatted displays and output
from tracing breakpoints.

The printer and tape I/O routines are completely self­
contained in the executive version with no dependence on
system I/O routines. The executive version of Delta oper­
ates with all interrupts except console interrupts disabled.
Examples of the ;0 and ;J commands are

e 1,e2;0 [header] contents of memory from location
e 1 through location e2 are pri nted on the line
printer, single-spaced, eight hexadecimal words
with initial hexadecimal location value per line.
Duplicate lines are suppressed. If any input fol­
lows the 0, it is printed as a header. Each dump
begins at the top of a fresh page with the contents
of the general registers printed first.

;J toggles the output location switch that alter-
nates between the terminal and the line printer
each time the command is gi ven. Output from
the equal command, from nontracing breaks, from
trap, abort, and error returns, and from syntax and
other error conditions in Delta are always directed
to the terminal. Examples are

A, l;B

X,2,3;DLS ; J B;G

Note: The output that would have appeared here
from data break 2 goes to the line pri nter •

EXECUTIVE DELTA

Executive Delta does not honor the following commands:

;Y
;S

;R

All other Delta commands may be used. Special executive
Delta restrictions have been noted throughout this chapter.

WRITING PROGRAMS WITH DELTA

The user may write and check short Meta-Symbol or machine
language programs using Delta. The following two com­
mands are especially helpful for writing programs:

1. Symbolic tags may be defined at a specific address
using the command

e(f <s >[K]

(See the section "Symbol Table Control ".) Each sym­
bolic tag should be defined with this instruction before
it is used in the program. The range of addresses
available to the user is • COOO-. 1 BFFF.

2. Pages for the program may be requested from the
Monitor by using the command

e\

(See the section "Memory Cell Opening and Display".)
This command also opens the specified cell so that the
user may store an i nstructi on or data into it.

Example:

.10000(R<BEGIN>K@) defines the tag
BEGIN at location. 10000.

BEGIN LI,2 0 @) opens the cell at
BEGIN and requests the page from the Monitor
(if it is not already assigned to the user). The
instruction LI,2 0 is then stored into the cell
at BEGIN.

ERRORS AND ERROR MESSAGES

Errors that result in mac hine traps are reported to the user,
and console control is returned to the user to await further
commands. Each message is accompanied by the location,
symbolically if possible, of the offending instruction. The
messages are

NON EXIST INSTR AT

NONEXIST MEM REF AT

PRIYIL INSTR AT

MEM PROTECT FAULT AT

STACK LIMIT FAULT AT

UNIMP INSTR AT

FIXED ARITH OYFLW AT

FLOAT FAULT AT

DECIMAL FAULT AT

Syntax errors are reported by the message"?n ", where n is
the number of the character in the command line that Delta
was processing when the error was detected. This message
is sent to the user whenever Delta cannot understand the
userls command syntax. Because the commands are brief
(i. e., requiring few keystrokes) and most errors can be spot­
ted easily by eye, only a few syntax errors are expl icitly
commented. Exampl e errors and Del ta IS response to them
are I isted below:

IABCDE I=
? 6

ABC;K €V
? 5

Constant value larger than
one word.

Symbol not in symbol table.

FF;M 100,XY;L .6B;W@) Symbol value not found.
? 13 Remainder of command string

ignored.

90 Executive Delta/Writing Programs with Delta/Errors and Error Messages

A,5;E @)
? 5

LW*5 ALPHA=
? 3

.3ACR/
? 5

(B;/
? 2

LOC,,3; DN E @)
? 10

;T §
? 2

Command unknown.

Ast,erisk in the wrong place.

IIIe'gal character in a
hex,adecimal number.

IIIe!gal format control
cholracter.

Illegal relation.

No break in an attempt to
set trace mode on.

PROGRAM E)~ITS

Code

0

2

4

10

20

40

80

Type of Exit Example

Normal M:EXIT.

Trap error Decimal or floating trap.

I/O error No error address.

Limits Maximum time; maximum
pages output.

Termination Operator aborted job.

Termination Operator errored job.

Abnormal M:XXX.

Job errored M:ERR.

When called, Delta takes control of program exits via the
CAL M:SXC. Deitci reports execution of exit CALs with a
message of the form

EXIT n AT loc

where DELTA COMMAND SUMMARY
n is the exit code as defined in the table below.

The Delta commands are summarized in Table 25. They <:Ire
I isted by groups according to the types of function they
perform.

loc is the address of the CAL or instruction causing
exit.

Command

Expression Evaluation

e=

e(f=

(f;=

Memory Cell Opening and Display

e/

e(f/

e 1,e2/
e 1,e2(f/

e\

/

Table 25. Delta Command Summary

Function

Evaluates and types the value of the expression e in the most
appropri ate format.

Evaluates and types the value of e in format f.

Following a display, evaluates and types the value of the last expression
typed by Delta.

Changes the default format for output for the = command to the format
specified by f.

Displays the contents of a cell e in the most appropriate format, and
opens the cell in preparation for change.

Opens and displays the contents of cell e in format f.

Displays the contents of cell e 1 through e2 in the most appropriate
format or in the specified format f, and opens cell e2.

Opens but does not display cell e. Also may be used to request pages
from the Monitor. (The \ command is replaced by I. in the executive
version.)

Following a display, displays but does not open the last cell addressed
by the display. The new display is in the default format.

Program Exits/Delta Command Summary 91

Table 25. Delta Command Summary (cont.)

Command

Memory Cell Opening and Display (cont.)

(f;/

Memory Modification

e@)

e@

et

Symbol Table Control

SiS

;5

;U

e(f<s>[K]

s(f!

s; K

;K

; KI

;KG

Execution Control

e;G

;G

;P

niP

e;X

92 Del ta Command 5 ummary

Function

Following a display, displays and opens the last cell addressed by
the display.

Changes the default format for output for the slash command to the
format specified by f.

Stores the word specified by e in the currently open cell and closes
the cell.

Stores e in the currently open cell, closes it, and opens and displays
the next higher addressed cell. (The LF is replaced by EOM in the
executive version.)

Stores e in the currently open cell, closes it, and opens and displays
the next lower addressed cell. (The t is replaced by & in the executive
version.)

Displays and opens the cell addressed by the last quantity typed. If an
expression precedes the TAB, the expressi on is stored in the open cell
and that cell is closed.

Selects internal symbol table s.

Loads global symbol table.

Displays undefined symbols.

Assigns to symbol s the value e and the format f.

Assigns to symbol s the value of the currently open cell and the format
code f.

Flags symbol s in the symbol table. It will not be used in output
expressions, but it can still be used in input expressions.

Removes all symbols except instruction mnemonics and special symbols.

Removes the current internal symbol table.

Removes the global symbol table and any symbols defined from
the consol e.

Begins execution at e.

Begins execution at the address specified by the current location
counter value.

Begins execution at the address specified by the current location
counter value.

Proceeds with no output the next n times the current instruction
breakpoint is encountered.

Executes the instruction e.

Executes the current instruction and displays the next one.

Command

Instruction Breakpoints

e,n;B

e,n;BT

e;B

e;BT

e,n,loc;B

e,n,loc;BT

ellloc;B

ellloc;BT

;T

niB

O;B

;B

Data Breakpoints,

e,n,val,m;Dr

ellval,m;Dr

e,n,val,m;DTr
ellval,m;DTr

e,n;D

e;D

e,n;DT
e;DT

ellval; Dr

ellval,m;Dr

ellval;DTr
ellval,m;DTr

Table 25. Delta Command Summary (cont.)

Function

BREAKPOINTS

Sets the nth instruction breakpoint at location e.

Same as above, but the program automatically proceeds from the
breakpoint after the breakpoint message is printed (trace mode).

Sets the next available breakpoint at location e.

Same as above, but the program automatically proceeds from the
breakpoint after the breakpoint message is printed (trace mode).

Sets the nth instruction breakpoint at location e and causes the contents
of loc to be displayed when the break occurs.

Same as clbove, but the program automatically proceeds from the
breakpoint after the breakpoint message is printed (trace mode).

Sets the next available breakpoint at location e and causes the contents
of loc to be displayed when the break occurs,

Same as above, but the program automatically proceeds from the
breakpoint after the breakpoint message is printed (trace mode).

Sets the trace mode at the current breakpoint (which just caused a
breakpoint interrupt).

Removes I"he nth instruction breakpoint.

Removes all instruction breakpoints.

Displays all active instruction breakpoints.

Causes data break n to occur whenever the contents of cell e, masked
by m, are in relation r to val. The relations are

LS e < val
EQ e = val
GR e> val
GQ e ~val
NQ e -I val
LQ e ~ val

Same as above, but uses the next available data breakpoint number.

Same as the two above, but the program automatically proceeds from
the breakpoint after the breakpoint message is printed (trace mode).

Causes dClta breakpoint n to occur whenever the contents of cell e
are changed.

Same as Clbove, but uses the next available data breakpoint number.

Same as the two above, but the program automatically proceeds from
the breakpoint after the breakpoint message is printed (trace mode).

Sets the next available data breakpoint. A break will occur whenever
the contents of e are in relation r to val.

Same as above except that the contents of e are masked by the mask m.

Same as the two above, but the program automa ti ca II y proceeds from
the breakpoint after the breakpoint message is printed (trace mode).

Delta Command Summary 93

Command

Data Breakpoints (cont.)

;T

ni D

O;D

;D

Table 25. Delta Command Summary (cont.)

Function

Sets the trace mode at the current breakpoint (which just caused a
breakpoint interrupt).

Removes the nth data breakpoint.

Removes all data breakpoints.

Displays all active data breakpoints.

Transfer Breakpoints and Interpretive Execution

;Y

10c;Y

iYT
10ciYT

,option l;Y

loc,option 1iY

,option 1; YT
loc,option l;YT

"opti on2; Y

loc"option2;Y

"option,2;YT
loc"option2;YT

,option 1,opti on2; Y

loc,option 1,option2;Y

,option 1,option2;YT
loc,option l,option2;YT

iT

O;Y

loc 1 [, I oc2[' I oc3[, I oc4JJJ; YS

I oc 1 [, I oc2~ I oc3~ I oc4JJJ; YR

iYR

iYD

94 Delta Command Summary

Starts execution at the current location counter in the transfer
breakpoint mode. Does not display branches specified in the SAT.
Does not display BDR and BIR branches.

Same as above except that execution begins at loc.

Same as the two above, except that the trace mode is also set.

Starts execution at the current location counter in the transfer
breakpoint mode. Does not display branches specified in the SAT if
option 1 = O. Displays only those branches specified in the SAT if
option 1 = 1. Does not display BDR and BIR branches.

Same as above except that execution begins at loc.

Same as the two above, except that the trace mode is also set.

Starts execution at the current location counter in the transfer
breakpoint -mode. Does not display branches specified in the SAT.
Displays BDR and BIR branches if option2 = 1. Does not display BDR
and BIR branches if option2 = O.

Same as above except that execution begins at loc.

Same as the two above, except that the trace mode is also set.

Starts execution at the current location counter in the transfer
breakpoint mode. Does not display branches specified in the SAT if
option 1 = O. Displays only those branches specified in the SAT if
option1 = 1. Displays BDR and BIR branches if option2 = 1. Does not
display BDR and BIR branches if option2 = O.

Same as above except that execution begins at loc.

Same as the two above, except that the trace mode is a Iso set.

Sets the trace mode for all transfer breakpoints.

Turns off the transfer breakpoint mode.

Sets one to four entries in the SAT (Special Action Table).

. Releases one to four entries in the SAT.

Releases all entries in the SAT.

Displays the SAT.

Table 25. Delta Command Summary (cont.)

Command I Function

Memory Search and Modificatio!~

Memory between the bounds. specifi ed in ; 1 and ;2 {initially set to the lower and upper I imits of memory assigned for
user data} is searched under the mask in ;M {initially ali ones}. If field e2 is specified in the search command, the
value in that field is stored through mask ;M into each location that meets the specified condition.

e;W

e l,e2;W

e;N

el,e2;N

e;l

e;2

el,e2;L

e;M

Memory Clearing

e l,e2;Z

e l,e2,v;Z

Display Modes

;R

n;R

;RK

;A

Pri nter Output

e l,e2;0 [header]

;J

Searches for and displays words that match e under the mask ;M.

Stores e2 through mask ;M in locations that match e 1 through the mask.

Searches for and displays words that do not match e.

Stores e2 through mask ;M in locations that do not match e 1 through
the mask.

Sets the memory search lower bound to e.

Sets the memory search upper bound to e.

Sets; 1 to eland ;2 to e2.

Sets the search mask to e.

Zeros memory from e 1 through e2.

Stores the val ue v in memory from e 1 through e2.

Sets the display mode in memory addresses to symbol plus relative
hexadecimal offset.

Same as above, but sets the maximum hexadecimal offset to n.

Displays addresses as control section type symbol pi us any hexadecimal
offset. If the value displayed is equal to that of any symbol, then the
symbol is displayed. If there is no control section type symbol, then a
hexadecimal constant is displayed.

Sets the display mode for locations to hexadecimal numbers.

Prints the contents of memory from location el through location e2 on
the line printer in the standard core memory dump format. If any input
follows the 0, it is printed as a header.

Toggles the output location switch which alternates between the
terminal and the line printer each time the command is given.

~ ______________ . ___________ . _________ . __ -L __ ~

Delta Command Summary 95

8. LINK PROCESSOR

INTRODUCTION

The on-line linking and loading of programs is carried out
by the Link processor. Link constructs a single entity called
a load module (LM) which is an executable program formed
from relocatable object modules (ROMs). Link also pro­
vides the necessary data space and program I inkages for the
association of public libraries.

Link is a one-pass linking loader that makes full use of map­
ping hardware. It is not an overlay loader. If the need for
overlays exists, the overlay loader must be called byenter­
ing the job in the batch stream (see UTS/BP Reference
Manual, 90 1764).

The access protection types provided by Sigma 6,7, or 9
hardware are

00 read, write, and execute access permitted (data)

01 read and execute access perm i tted (pure procedure)

02 read access permitted (stati c data)

03 no read or write permitted (no access)

The final program resulting from a linking operation has
three protection types, one for data, one for pure procedure,
and one for DCBs. Static data and nonaccess information,
if specified, are loaded with the pure procedure.

LOAD MODULE STRUCTURE

A load module formed by Link is composed of three parts:
program, global symbol table, and internal symbol table.
Each of these parts is descri bed in the foil owi ng sections.

PROGRAM

A program may be sectioned into six parts: pure procedure,
data, common, DCBs, public libraries, system library.

1 . Pure Procedure

This section of code contains machine instructions and
is generated by compilers and assemblers with protec­
tion type 01 (read and execute access). Sections with
a nondata protection type (stati c data and no access)
are also included here.

2. Data or Program Context

This section is generated by the compi lers and assem­
blers with protection type 00 (read, write, and execute
access).

3. Common

This is blank common storage is generated by compilers
and assemblers as a dummy section with the name F4:COM.
The size of blank common storage is determined by the

96 Link Processor

first size declared. All subsequent F4:COM declara­
tions must be less than or equal to that size.

4. DCBs

A data control block (DCB) is a table containing the
information used by the Monitor in performance of an
I/O operation. At the end of a link operation, Link
constructs a DCB corresponding to each outstanding
external reference with names beginning with F: and M:.

The M:UC DCB, which is the DCB most commonly used
for terminal I/O, is supplied as a portion of the user's
JIT (job information table); any M:UC reference is
automatically satisfied thereby. The default assignment
of M:UC ,to the user's terminal is unalterable. (Output
operations via M:UC are treated specially by the Mon­
itor; see Chapter 10.) If the program being linked does
not contain a reference to M:DO, a reference to it is
supplied by Link, since diagnostic output is generally
written via this DCB. If the user does not want this
DCB to be constructed, due to space considerations,
he can expl i citly reference M:DO and satisfy the ref­
erence (vacuously) within his program. (Some diag­
nostic output is likely to be lost.)

A DCB name of the form M:ab, where ab corresponds
to an operational label, is considered a reference to a
standard system DCB. The standard system DCBs are
discussed in terms of operational labels and default
assignments in UTS/BP Reference Manual, 90 1764.

DCBs constructed by Link are 51 words long and con­
si st of

a. A 22-word standard initial segment, containing a
standard default operational label if the DCB is
one of the system DCBs.

b. Five variable length items including a control word
for each, with space for

• A three-word fi Ie name.

• A two-word account number.

• A two-word password.

• A three-word block for three input serial
numbers.

• A three-word block for three output serial
numbers.

• A two-word block for expiration date.

c. An eight-word key buffer.

The standard system DCBs also exist in ROM form on
fi I es in the system accou nt; in th i s form they d i Her from
Link-constructed DCBs in size and composition, as de­
scribed in UTS/BP Reference Manual, 90 17 64. These
ROMs can be explicitly named in a LINK or RUN
command to satisfy corresponding references.

While allocating, constructing, and combining DCBs,
Link guarantees that each DeB is contained within a
page. This aillows the operating system to access DCBs
in either mapped or unmapped mode. User-suppl ied
DCBs (i.e., DSECTs with names beginning M: or F:)
are placed in the DCB record, in user-context space,
together with those constructed by Link. All are given
protection type 02.

5. Publ ic Libraries

Any UTS installation can define a set of subroutines
that constitute a public librClrY. The installation may
specify several different public libraries containing
collections of routines that (Ire useful in various envi­
ronments. Only one library may be associated with an
exec uti ng program. DEF stacks for publ ic Ii brari es are
stored under special names in the system account and
are used to I ink programs to them. See the UTS/SM
Reference Manual, 90 16 74/, Chapter 6, for more
detailed information on the structure and creation of
public libraries.

Only one block of core memory is required for the
public library no matter how many users are using it.
However, use of just one routine in the public library
requires core for the entire package. The reentrant
portion of each library is shClred among users (on-line
and batch), thus saving physical core memory and
allowing for more efficient system operation. User­
dependent data storage for each library routine is allo­
cated by Link at a fixed virtual address. Thus, each
public library is constructed in two parts: reentrant
procedure and direct access data. By forming the li­
brary in this manner, a speed advantage of from 5 to 20
percent over push-down storoge reentrancy is obtained.

UTS provides three public libraries: PO, P1, and JO
(only the first two are of general interest). Library P1
contains the most commonly Irequired routines from the
Extended FORTRAN IV run-time and mathematical
library (about 65 routines). Library PO includes
library P1 plus. the FORTRA~~ Debug Package (FDP).
These two libn::lries will satisfy the requirements of the
majority of users for program execution and debugging,
respectively. (The remainder of the run-time and
mathemati cal routines comprFsing the entire Extended
FORTRAN IV subprogram I ibrary reside on the system
library, described below.) Public library JO contains
the user-JIT Definition Packoge. (See Chapter 6 of the
UTS/SM Reference Manual, 90 16 74, also for more
detailed descriptions of libraries PO, P1, and JO.)
Additional public libraries created by a user-installation
may be named P2- P9.

6. System Li brary

The system library consists of approximately 170
FORTRAN IV library routines in ROM form, on file
:BLIB in the :SYS account. Searching of this library is
implied by the default library-search code L in a LINK
or RUN command. This I ibrar)' is always searched last if
any unsatisfied references remain unless the NL option is

specified. Routines that are obtained from the system
I ibrary become part of the user program and are not
shared. Thus, core is required for each system library
routine. The speed advantage is still maintained since
each routine includes any necessary data.

GLOBOL SYMBOLS

While performing the linking process, Link constructs a
global symbol table. This table is a list of correspondences
between symbolic identifiers (labels) used in the original
source program and the values or virtual core addresses that
have been assigned to them by Link. The global symbols
define (DEF) objects within a module that may be referenced
(REF) in other modules. This table is available to Delta for
use in debugging.

INTERNAL SYMBOLS

An internal symbol table is a list of correspondences similar
to the global symbol table but applies only to symbols
defined within the module. Each internal symbol table
constructed by Link is associated with a specific input file
and is identified by its name. This table is also available
to Delta for debugging.

When an internal symbol is equated to an external symbol
with an addend, and the module containi ng the external def­
inition is in a different file from the module containing the
external reference, the file containing the definition must
appear on the LINK or RUN command before the file con­
taining the external reference. Furthermore, an internal
symbol should not be equated to an external reference with
an addend satisfied from a library.

No internal symbol table is generated for a named library
(one with a fid).

SYMBOL TABLES

Delta makes it possible to reference both global and internal
symbols at the time programs are debugged. Programs formed
by loaders, together with the tables of global and internal
symbols, are operated on in a code simi lar to assembly lan­
guage symbolic code.

Global and internal symbol tables, as formed by Link and
used by Delta, consist of three word entries. Symbol ic
identifiers (labels) are limited to seven characters. Symbols
originally longer than seven are truncated, leaving the ini­
tial seven characters, although the original count is retained.
Thus, symbols that are identical in their first seven charac­
ters and are of equal length occupy one position in the sym­
bol table. The value retained for multi-defined symbols
is the first one encounteredduringthe linking process. Each
symbol entered into the table has an internal resolution and
a type classification. Internal resolutions are: byte, half­
word, word, doubleword, and constant. Symbol types are:
instruction, integer, EBCDIC text, short floating-point, long
floating-point, decimal, packed decimal, and hexadecimal.

Symbol Tables 97

Object language code produced by UTS assemblers and com­
plilers provides internal symbols with internal resolution and
type classifi cation. UTS loaders retain of this information
in processing object language code.

CONVENTIONS

The terminal and language conventions for link are the same
as for TEL except the function of the BREAK key. If the
BREAK key is depressed whi Ie a LINK command is being
entered, the command is ignored and a new command must
be typed (as if XC had been pressed).

LINK COMMANDS

The Link processor is called implicitly by a LINK or RUN
command given at TEL level, as described in Chapter 3.

Example:

Assume there are two relocatable object modules. The in­
ternal symbols for the first module (MFLl) are to be left out
of the resulting load module, but the internal symbols for
the second module (MFL2) are to be included. The result­
i ng load module is called LM 1.

1. LINK (NI) MFLl ,(I) MFL2 0 N LM 1 e

If link needs additional information, it wi" identify the
problem, and then prompt (:) for input.

Example:

Assume the same example as above except that link cannot
find MFL2 because it was supposed to be MFL3.

1. LINK (NI) MFLl, (I) MFL2 ON LMl e
CANT FIND: RETYPE MFL2

: MFL3 e

Note that the ROM specification indicated as unfound (e. g. ,
MFL2) can, alternatively, be bypassed by responding with
carriage-return only.

Example:

Assume that modules A and B are to be linked, with merging
of internal symbol tables, to form output module C. In the
linking process, one double definition (Z) and one internal
unsatisfied defi nition (Y) are found.

1. LINK (A,B) ON C @)

LINKING A

LINKING B

~ (internal double definition)

IUSAT Y (internal unsatisfied reference)

ERROR MESSAGES

Whenever an error occurs during a linking operation,
link sends an error message to the terminal. Some of
these messages are for syntax errors, others are for errors
arising out of the linking operation. They are listed in
Table 26. Most of these errors terminate the linking op­
erati on premature I y.

LINK COMMAND SUMMARY

Table 27 is a summary of the LINK and RUN commands. The
left-hand column gives the command format, the right-hand
columns gives the command function and options. Note that
the format of the two commands differ only in the UNDER­
clause options.

Table 26. Li nk Error Messages

Message Descri pti on

CANT FIND :RETYPE rom The specified relocatable object module cannot be found.

CARD CKS/COMPUTED CKS/cd/cp/ This message is sent to the terminal along with the
CHECKSUM ERROR message. It specifies the card
checksum (cd) and the computed checksum (cp).

CHECKSUM ERROR A checksum error has occurred. The CARD C KS/
COMPUTED CKS/cd/cp/ message specifies the difference.

CORE LIBRARY OVERLAPS PURE PROCEDURE There is insufficient virtual memory to contain the pure
procedure and the core library REF/DEF stack.

98 Conventions/Link Commands/Error Messages/Link Command Summary

Table 26. Link Error Messages (cont.)

-
Message Descri pti on

-
DUMMY SECTION LARGER T HAN PREVIOUS DEF The dummy section initially defined was not the largest

dummy secti on.

GLOBAL SYMBOL TABLE 0' v ERLAPS PURE There is insuffi ci ent virtual memory to contain the pure
PROCEDURE procedure and the symbol tables.

ILLEGAL DATA FORMAT Input modules did not contain ROM data.

ILLEGAL LOAD ADDRESS An attempt was made to load outside the I imits of the
program.

ILLEGAL LOAD ITEM TYPE ROM input data is illegal (e. g. , it is load module data
instead).

INSUFFICIENT PHYSICAL NI EMORY TO CONTINUE A request for a memory page has been refused.

I/O ERROR LIINKING SYSTE: M LIBRARY This message usually indicates there is no system library.
--- -~---

I/O ERROR OPENING OUT, p UT FILE An I/O error occurred duri ng the openi ng of an output fi Ie.

-------~-----... ~---------~---.--

I/O ERROR READING ASSIC N MERGE RECORD This message usually indicates there is no assign-merge
record.

I/O ERROR READI NG CORE LIBRARY This message usually indicates there is no core library.

--
MODULE # /SEQUENCE# /mc /sq/ This message accompanies most other messages. It iden-

tifies the module number (md) and sequence number (sq)
of the last card before the error. Both numbers start
at zero.

MORE THAN 2 PAGES REQl J ESTED FOR DCBs This message indicates that the limit of two pages for
DCBs has been exceeded.

- --------"--------"------

NO PROGRAM START ADDF ESS The program has no start address.

1--

ON FILE fid ILLEGAL ON was specified and the output file (fid) already exists.

SEQUENCE ERROR A sequence error has occurred.

STACK OVERFLOW An internal storage overflow has occurred.

-

UNEXPECTED END OF ROIv \ DATA EOF encountered before last card of ROM.

Note: All errors, except CJ ~NT FIND, cause abnormal termination of Link.

Error Messag es 99

Table 27. Link Command Summary

Command Description

LINK [codesJrom[.rom] ••. Lron!! [g~ER Imn] LlidJ Forms the load module as specified.

L [J [JJ [:l Options (codes): ,lid ... ,lid UNDER FDPJ

RUN [codes] rom [,rom] •.• Lrom] [g~ER Im~ [; Ii d:=J

L Clid] .•• Llid]] [UNDER ~~~TA]

100 Link Command Summary

library search:

(L) search system library

(NL) do not search system library
default: (L)

(Ji)or(Pi)

(FDP)

associate ith public library
where i = 0-9

associated public library PO

(NP) do not associate any public library
default: Pl

display:

(D) display undefined internal and
external symbols

(ND) do not display undefined internal
and external symbols

(C) display conflicting internal and
external symbols

(NC) do not display conflicting internal
and external symbols

(M) display load map

(NM) do not display load map
default: (D), (C), (NM)

Options (symbol table):

(I) include symbol table with LM

(NI) do not include symbol table with LM
default: (I)

rom may be fid or $; parentheses enclosing mfl's cause
merge of symbol tables.

lid must name a file containing one or more ROMs.

Loads a specified load module and starts execution.

Options: (see LINK command)

£1. MONITOR SERVICES TO USER PROGRAMS

INTRODUCl'ION

All Monitor services available to UTS batch programs are
described in the UTS/BP Referenc,~ Manual, 90 1764. Those
services that are unique to time-siharing are discussed in this
chapter. In addition, a description of differences between
on-I ine and batch responses to certain procedures is provided.

ON-LINE UTS SERVICE CALLS

SI:T PROMPT CHI~RACTER

M:PC Ordinarily, when control is turned over to an on-
I ine program, a null prompt character is assigned. The PC
routine allows an on-line program to set a prompt character.
This character, if non-null, is typed (usually at the left
margin) whenever input is requested from the terminal (UC
device). If M :PC is used in a batch program, it is ignored.

The procedure ca II is of the form

M:PC 'character'

where character specifies the EBCDIC prompt character that
is to be associated with the user program (an EBCDIC 00 or
null character means that no prompt character is desired.)

Illegal EBCDIC cha:racters and lower case ANSCII charac­
ters are not allowed. If there is em illega I character, no
change in the prompt character wi II be made and CC 1 wi II
be set on return.

Calls generated by the M:PC procedure have the form

CALl,l fpt,

where fpt points to the FPT shown below.

[X '2C 0
o I 2 3 14 5 6 7 8 9

CliANGE TERMINAL TYPE

M:CT The CT routine allows an on-I ine program to
switch among the terminal transla1'ions provided by the
COC I/O routines. Tables related to each terminal type
control the translatiion of characte:rs transferred between
the computer and the terminal.

The CT routine also affects other functions treated differen­
tially by terminal type. These functions include certain
I ine editing and terminal control functions.

The procedure call is of the form

M:CT number

where number specifies the number of the desired table (the
range of the number is currently 0 $ number ~ 11 .)

Calls generated by the M:CT procedure have the form

CAL 1,8 fpt

where fpt points to the FPT shown below.

The current tables translate for Models 33, 35, and 37
Teletypes and the XDS 7015 Keyboard/Printer.

The assignment of terminal type numbers are

Number Meaning,

o Teletype Model 33.

Teletype Model 35.

2 Teletype Model 37.

3 XDS Model 7015 Keyboard/Printer

4 IBM 2741 Terminal EBCD Standard.

6 IBM 2741 Terminal EBCD APL.

8 IBM 2741 Terminal Selectric Standard.

10 IBM 2741 Terminal Selectri c APL.

CC 1 is set if there is an illegal type code or M:CT is not in
an on-I ine program.

CHANGE ACTIVATION CHARACTERS

A variation of the call corresponding to the M:CT procedure
a II ows the ca II i ng program to choose among three sets of
message-terminating, or activation, characters for terminal
input. The normal set of activation characters is: CR, LF,
FF, FS, RS, US, GS, EaT, SUB, and ESC F. Two addi­
tional activation sets are avai lable that augment the normal
activation set. They are:

1. "AII" special graphics and control characters.

2. "AII" control characters.

Character-count-satisifed is also an activation condition for
all sets. (Activation on every character can be achieved by
requesting one-character read operations.)

Monitor Services to User Programs 101

The desired activation set is requested with the following
call:

CAL 1,8 fpt

where fpt points to the FPT shown below.

where

n = 0 for normal activation set.

n = 1 for the special graphics and control characters
defined below.

n = 2 for the teletype control characters defined below.

n = 3 for EOT activation on 2741s.

The special graphics characters are

] [} { \ II = I @ # : ? > %, A / _ -'i) * $! &
I+{<·p!'

The control characters are

SOH, STX, ETX, HT, ACK, BEL, BS, ENQ, NAK,
VT, SO, SI, DLE, DC2, DC4, SYN, ETB, CAN

All characters are transmitted to a reading program in their
XDS Standard EBCDIC value (see Appendix A). Note that
the control characters EM, ESC NUL (ignore), and DEL
(RUBOUT) are not included in any set.

ON-LINE AND BATCH DIFFERENCES

The UTS Monitor responds differently to certain procedures
depending on whether an on-I ine or a batch program issued
the call. These differences are outlined below. (The pro­
cedures are discussed in the UTS/BP Reference Manual,
90 1764.)

EXIT RETURN (M:EXln

Batch: The Monitor performs any PMDI dumps that have
been specified for the program. It then reads the C device,
ignoring everything up to the next control card.

On-I ine: The Monitor returns control to the on-line execu­
tive program (TEL) and, after sending a message, sends a
prompt (I) character to the terminal. It then awaits addi­
tional commands.

102 On-Line and Batch Differences

ERROR RETURN (M:ERR)

Batch: The Monitor lists the message

II JOB id ERRORED BY USER AT xxxx

where xxxx is the address of the last instruction executed in
the program. The message pi us the contents of the c~rrent
register block and program status doubleword (PSD) are listed
on the LL and DO devices. Postmortem dumps are performed
and the C device is read; everything up to the next control
command is ignored.

On-I ine: The Monitor I ists the message

A800 YOU ISS UED AN ERR OR OR ABORT CAL

The Monitor then returns control to the on-I ine executive
(TEL), which sends a prompt character (I) to the terminal
and awaits commands.

ABORT RETU RN (M:xxx)

Batch: The Monitor lists the message

!! JOB id ABORTED BY USER AT xxxx

where xxx x is the address of the last instruction executed.
This message plus the contents of the current register block
and program status doubleword (PSD) are listed on the LL
and DO devi ceo

When a job is aborted, all specified postmortem dumps are
performed but no further control commands are honored unti I
a JOB or FIN control command is encountered.

On-I ine: The Monitor I ists the message

A800 YOU ISSUED AN ERROR OR ABORT CALL

This message is listed on the UC device. The Monitor then
returns control to the on-line executive, which sends a
prompt character (I) to the terminal and awaits additional
commands.

TYPE A MESSAGE (M:TYPE)

Batch: The Monitor I ists the specified message on the OC
device.

On-line: The Monitor lists the specified message on the
UC device.

A variant of M: TYPE is M:MESSAG E which unconditionally
lists a message on the operator's console (OC device). The
format of M:MESSAGE is identical to that of M:TYPE except
for the FPT code which is zero.

REQUEST A KEY-IN (M:KEYIN)

Batch: The Monitor lists the specified message on the OC
device and enables the operator's reply to be returned to
the user program. The ECB flag is set to zero when the
reply is completed.

On-I ine: The Monitor I ists the specified message on the UC
device and enables the user IS reply to be returned to the user
program. A prompt character is sent to the terminal if it
was specified by an M:PC. The ECB flag is set to zero
when the reply is completed.

COMMENT TO INTERRUPT OR BREAK KEY (M:INT)

Batch: The purpose of this procedure is to set the address
of a routine to be entered when the INTERRUPT button is

depressed at the operator IS console. When control is given
to the INT routine as a result of an interrupt, the Monitor
pushes the PSD and general registers into a 19-word block
of user's memory (the user's TCB) on a doubleword boundary
and places a pointer to word 0 of the PSD in register 1.
The TRTN routine may be used to restore control to the user
program.

On-I ine: The purpose of this procedure is to set the address
of a routine to be entered when an interrupt is generated at
an on-I ine terminal. When the BREAK key is depressed, the
Moni tor pushes the PSD and general registers into a 19-word
block of user's memory (the user's TCB) on a doubl eword
boundary and places a pointer to word 0 of the PSD in reg­
ister 1. The TRTN routi ne may be used to restore control to
the user program.

On-Line and Batch Differences 103

10. COMMUNICATIONS SERVICES TO USER PROGRAMS

INTRODUCTION

Communication services are the functions performed by
character-oriented communication (COC) routines for user
programs. COC routines control the operation of input/
output terminals, such as Teletype and 2741 terminals, that
communicate with the computer a character at a time. The
functions performed by COC routines include

1.

I 2.

3.

4.

5.

6.

Device handling for XDS Model 7611 Character­
Oriented Communication hardware.

Character translation (unless suppressed) to and from
internal EBCDIC codes and the external codes of the
various types of terminals that may be attached to UTS.
Terminal types include: Teletype Models 33, 35, and
37; XDS Model 7015 Teletypewriters; IBM 2741 Selec­
tric and EBCD; and others by extension.

Parity generation and detection by character for those
terminals requiring it.

Division of input character strings into messages as
defined by receipt of activation characters (usually
carriage return, line feed, form feed, and count com­
plete, but other sets are specially available).

Communication with the UTS scheduler on break, read,
read complete, output blocked, output unblocked, and
other events that effect swap and execution schedul ing.

Special interpretation of certain characters for intra­
line editing and software control functions.

Input and output from COC terminals is stored in four-word
blocks, each containing 14 characters plus a halfword link
to the next related block. After a read operation is com­
plete, the input message is moved from these buffers directly
to the userls buffer area (BUF in M:READ). The actual num­
ber of characters received is reported in ARS (actual record
size) of the DCB. On a write operation, the user output
message (BUF in M:WRITE) is moved to COC buffers to await
transmissi on. Unused COC buffers are held in an available
pool. The user program is blocked appropriately when
needed buffers are not avai lable for output and restarted
when they become available.

WRITE OPERATIONS

Records are written on a COC terminal using the M:WRITE
procedure call. The WRITE routine moves the specified
number of bytes from the userls buffer to a buffer in the COC
routines. The write operation is always a "wait" operation.
This means that control is returned to the user program after
the character stri ng has been transferred to the C OC buffer
but before it has been completely transmitted to the termi­
nal. If record keys are specified, they are ignored.

104 Communication Services to User Programs

Output in excess of 140 bytes from a single write CAL is
ignored. If the specified record size is zero, no action is
taken and no characters are transmitted. If more than three
trail ing blanks occur in an output record, all are suppressed.

If the output contains a NUL character (X 1001) the write
operation is terminated at that point; i. e., the zero byte
and all remaining characters in the record are ignored.

Characters are transmitted to the terminal exactly as sup­
plied, with the following exceptions. Certain characters
such as FF and SUB are modified (see Table A-4). When­
ever either a carriage return or line feed character is de­
tected, the appropriate character pair (carriage return and
line feed) is sent to the terminal to return the carrier.

If the write operation is through a DCB other than the M: UC
DCB, say the M:LO or M:DO DCB, the COC routines auto­
matically supply carriage return and I ine feed characters at
the end of the character string unless a carriage return,
SYNC, or line feed were the last characters in the buffer
(see VFC in "Device and DCB calls" for special format con­
trol). This means that the number of bytes specified in the
function parameter table is moved from the user's buffer area
to COC buffers and the carriage return and line feed char­
acters are appended in the COC buffers.

If the write is through the M:UC DCB, the carriage return
and I ine feed characters are not automatically suppl ied.
The user may therefore make up single lines through a series
of writes (without carriage return characters) or may produce
several lines at the terminal with a single write (by inserting
several carriage return characters in the buffer).

For all write operations, a count of characters between car­
riage returns is maintained. This count is compared with the
maximum for the physical terminal as specified with the
PLATEN command. If the line is too long, additional car­
riage return and line feed characters are inserted to break
the line unless the platen width is less than 12 characters.
Line length is a parameter supplied at system generation time
and is retained in the job information table (JIT). It may
be altered with the TEL PLATEN command. A count of the
lines on a page is also maintained and a page heading line
is supplied to the terminal as outlined in the section "Page
Control and Page Headings ".

READ OPERATIONS

Records are read from a COC terminal using the M:READ
procedure call. The READ routine causes the COC routines
to accept input characters from the terminal. If a prompt
character has been specified, it is sent to the terminal to
signal that the COC routines are ready to accept input

characters. If characters have been typed ahead, they are
echoed after the prompt is issued.

The read operation is always a "wait" operation. This
means that the complete input message is transferred to the
user's buffer area before control passes to the next i nstruc­
tion. Messages are completed on receipt of

1. The number of characters requested.

2. A carri age return character.

3. A I ine feed character.

4. A form feed character.

5. The FS, RS, GS, and US codes (L
cs

, M
Cs

, N
Cs

,
and Ocs keys)"

6. The EOT and SUB codes (Dc and ZC keys).

7. The end-of-file convention, ESC F.

The activation character (any item in 2-6 above) is the last
character in the buffer. Additional special activation or
termination characters are supplied when Delta initiates a
read operation. They are

tab

/

The actual number of characters in the message received,
incl uding the activation character, is returned in word 4
(ARS) of the DCB. No more charocters than specified in
the M:READ functional parameter table are transferred to
the user's buffer arEla. Read requl9sts for zero bytes yields
an abnormal code of 1D.

The response of cac routines to receipt of various end-of­
message characters from a terminal is as follows:

Characters

Carriage return
or line feed

Form feed

Response

The appropriate characters are sent
to the term ina I to ensure a carri er
return. However, the actual char­
acter rec,eived is placed in the
buffer.

The code FF (EBCDIC OC) is placed
in the buffer, a carri age return and
I ine feed character pair is sent to
the terminal, followed by page
heading output.

FS,RS,GS,US,EOT The carrit8!r is not moved. The
character is placed in the buffer,
and the message is terminated.

Characters

Break

ESC F

Response

An underscore (left arrow on TTYs)
is sent to the terminal, the carrier
is returned, the message is del eted,
and the break entry of the program,
if any, is taken.

The end-of-file exit from the read
CAL is taken. Any characters
preceding the ESC F are del ivered
to the reading program and ap­
pended wi th a carri age return
character.

Other characters may act as message terminators if special
activation sets are requested; see Change Activation
Characters, Chapter 9.

Characters received with parity errors for terminals in the
parity checking mode are identified by the SUB code
(EBCDIC 1A) which is placed in the buffer. For these
characters, a number character, #, is returned to the
terminal.

Bad information, such as a character parity error, is reported
via the lost-data (07) code to the abnormal CAL exit, if it
exists. If no abnormal exit is specified, then the bad infor­
mation is not reported.

In addition to the line cancel, which may be initialized by
the ESC X keys, individual characters may be deleted by the
RUBOUT key. In this case, the last character typed is re­
moved from the COC buffer and a backslash character (\)
is sent to the terminal. A number of characters, n, may be
deleted by typing the rubout character n times. If the first
character of a line is deleted, the response is as if ESC X
were received.

The user program or processor may set up a prompt character
to be delivered to the terminal just prior to each read. The
prompt character is set by using the M:PC procedure cal I
described in Chapter 9. Any val id EBCDIC character may
be specified. A null character (EBCDIC 00) turns off the
prompt action.

Since the prompt character is carried in JIT for each user,
the TEL and Delta processors do not prompt via this mecha­
nism. They prompt by writing single character records before
issuing a read.

ERROR AND ABNORMAL CONTROL

Error returns occur in the following cases:

1. Bad DCB address (CAL error return)

2. Bad buffer address (DCB error return)

Error and Abnorma I Control 105

CAL abnormal returns are taken for

1. Lost data (TYC=2) - parity errors in received message
or insuffi cient COC buffers.

2. Beginning-of-tape (TYC=3) - CAL not read or write,
bad line number, or zero byte count.

3. End-of-file (TYC=7) - ESC F character pair received.

If no error return is specified, control is returned to TEL
and an error message is typed on the terminal.

BREAK CONTROL

Action on receipt of the break character depends on whether
the terminal is reading or not. If reading, the carrier is
returned and the message, if any, is deleted. The current
read operation is terminated.

Whether reading or writing, control goes to an al ternate
address associated with the user program, and the user pro­
gram status doubleword (PSD) and registers, as of the point
of interrupt, are placed in the users task control block (TCB)
temporary stack. The program may be continued from the
point of interrupt by giving a trap return (M: TRTN or
CAL 1,9 5). The actual alternate address used depends on
the user program and associated processors in the following
order:

1. If the user has issued a M:INT CAL, the address speci­
fied by that CAL is used. A zero or inval id address
resets break control.

2. If Delta is associated with the program, then control
goes to Delta.

3. If neither 1 nor 2 apply, then control goes to TEL. A
message is typed and TEL issues a request for commands
from the terminal.

In all of the above cases, all current output is transferred
to the terminal; none is lost. Because of the blocking
action of the COC routines, this output is not usually longer
than four seconds or four seconds plus one line.

Break signals are counted by the COC handler. This is done
to provide fail-safe operation against program errors in the
user break handling routine, to allow special subprocessor
action on multiple break signals and to provide compatible
operation with future communication equipment that does
not have full-duplex lines. If four break signals are re­
ceived from a terminal without intervening characters, con­
trol is given to TEL as if a Monitor escape (yC) character
had been received.

MONITOR ESCAPE

A terminal may always be put in communication with TEL
by input of the yc character. No current output is lost

but the current input line is canceled (characters for a
left-facing arrow, a carriage return, and a I ine feed are
sent and the carrier is returned) if the terminal is in read
status. If the user program is restarted (via the CONTINUE
or GO command) from the point of escape and the terminal
was previously reading, the read is reissued.

SET AND DEVICE DCB CALs

The M:SETDCB CAL may be used to set abnormal and error
addresses in a DCB associated with a terminal. Error codes
and other information communicated to the user program is
as specified in Appendix B. If no error address is specified
in the DCB, control is transferred to TEL and a message is
sent to the terminal.

Only certain M:DEVICE CALs are acknowledged by the
COC routines. These CALs are listed in Table 28. All
other CALs that set parameters in a DCB associated with a
COC terminal are ignored without comment. In general,
any CAL may be used and wi II result in the specified modi­
fication to the DCB but only the parameters I isted in
Table 28 are used by COC routines.

PAGE CONTROL AND HEADINGS

COC routines count the lines transmitted to and from a
terminal. Whenever a read or write operation is initiated,
this I ine count is compared with the I imit for the terminal.
If the maximum has been exceeded, a new page heading is
produced. (The maximum may be exceeded by several lines
if several input lines have been canceled via the Xc keys
at the bottom of the page before the next read or write call
is issued. If this occurs an appropriate adjustment is made
in the heading.)

Page headings are also produced whenever an M:DEVICE
call specifying PAGE is issued by a user program or the
characters "FF" (L C) are entered into the terminal. This
case is similar to page overflow in that heading information
is not produced until the assoc iated user program or processor
issues its next read or write call.

Two kinds of page headings are produced:

1. The standard page heading.

2. A user heading as specified by HEADER and COUNT in
a device call.

Heading information is taken from the DCB associated with
the read or write call. Thus, if write calls are issued through
several DCBs, the heading printed wi II depend on the DCB
associated with the call that produced the page overflow.

The standard page heading includes current time, date, user
identification and account number, user identification and
line number, page number, and possibly an administrative
message. The heading is typed on the top line of the form
just under the fold (if any). The heading information is
preceded by six blank I ines (fewer if excess I ines were printed

106 Break Control/Monitor Escape/Set and Device DCB CALs/Page Control and Headings

Tabll:l 28. M:DEVICE Parameters Acknowledged by COC Routines

Parameter Set by
M:DEVICE CAL COC Actio n

PAGE Page headil g is typed on the terminal (see IIPage Control and Page Heading II).

LINES Number of printable I ines per page is set.

NLINES The current number of lines on the terminal page is contained in the JIT (byte JB:LC).
-

SIZE Record size (in bytes) used by read and write CALs for which no size is specified. If record si ze is
not spec i fi e d in either the CAL FPT or t'he DCB, no characters are transmitted and return is
immediate.

SPACE Number of indicated spaces minus one are inserted before each write if VFC is not on and SPACE is
set. Count o and 1 result in single spacing (no spaces are inserted before each write).

VFC COC routin es simulate the printer's vertical format control as specified in the first character of the
text line if VFC is set. The simulation is I imited to the following cases:

Hex C< de Action

C1-(F COC routines inser't 1-15 spaces before the print line.
(Page check on each insert.)

F1 COC routines skip to top of page and print the heading information followed
by the print line.

60, EO COC routines do not insert carriage return and line feed characters after
print line.

In all cases except the latter, the print line is followed by a carriage return and line feed characters
and a checl for page overflow.

DRC/NORDC Used to inhl bit automatic page heading if the mode is BCD. Used to control transparent mode if BIN
is speci fi ed (See IITransparent Modell section.)

COUNT See Page C o ntrol and Page Headings section.

HEADER See Page C o ntrol and Page Headings section.

TABS See TABS SE ction.

01) the preceding page). It is followed by five blank lines.
With a standard of 54 printed I ines to a page, this spacing
produces 11-inch pages with one-inch margins at top and
bottom. The standard heading I ine may be omitted, if
desired, by setting DRC in the DCB or by setting the page
length less than 11 lines.

4. Log-on identification.

5. Scheduler's job identification (ID) and I ine number of
COC line.

6. Page number, enclosed in brackets, centered for a
platen 72 characters wide.

Example:

12:01 12/12/69 ACCT NAME 1A-03[36] Administrative
Message

2 4 5 6 7

1. Time the page heading was isslued (24-hour clock).

2. Current date.

3. Log-on account.

7. Administrative message (I imited to 64 characters) suppl ied
to all terminals by system operator via this mechanism.

User headings, which are specified in the DCB of the read
or write call, are provided following the automatic heading.
The position, text, and page numbers of these headings are
as specified in the UTS/BP Reference Manual, 90 17 64.
The page count in this heading is that carried in the DCB and
and is reset with each COUNT device call while page count
for the standard heading is carried in the JIT and is never
reset.

Page Control and Headings 107

TAB SIMULATION

TAB stops that are set in output DCBs by a device call
specifying TAB, by a SET command, or by the TEL command
TABS, cause spaces to be sent to the terminal. These spaces
bring the current position of the carrier to that indicated by
the next higher tab stop in the DCB. The platen width test
is sti II in effect and the carrier is returned if the count-on­
I ine exceeds the platen width. If tab simulation is not in
effect, the tab character is sent directly to the terminal.
If tab simulation is on but no tab stops are set, one space is
sent for each tab character.

Tabs received in the input stream are handled similarly,
except that a tab is always echoed by at least one space
(if echoplexing is on).

Three things are necessary for tab simulation to take effect:

1. Tab simulation must be on (ESC and T control).

2. Tab stops must be set in the M:UC DCB or the DCB
controlling read or write.

3. Tab characters must be sent or recei ved.

Simulation of tab stops is turned off and on by the user via
the character pai r ESC-T. These characters are not trans­
mitted to the reading program and each pair switches tab
simulation flag from on to off or vice versa. When the flag
is on and a tab character (ANSCII 09) is received, enough
blanks are sent to the terminal to move the carrier to the
next higher tab position. When reading, the tab character
is replaced by one or more spaces, as appropriate, in the
input buffer if space-insertion mode is on; if off, the tab

108 Tab Simulation/Transparent Mode

character is placed in the input buffer for the reading
program. Space-insertion mode is toggled by the ESC-S
character pair. Carriage returns are not inserted to spl it
extra long input lines created this way.

When in effect, the tab stops used for simulation are
obtained in the following order:

Output

1. If tab stops are set in the calling DCB, they are used.

2. If tab stops are set in M:UC DCB, they are used.

3. Tabs are replaced with a single space.

Input

1. If tab stops are set in the M: UC DCB, they are used.

2. A single space is echoed for each tab.

In all cases in which tabs are set but the current carrier
position is beyond any tab stop that is set, the tab is replaced
with a single space.

TRANSPARENT MODE

The transparent mode for input or output is controlled by
setting the DRC and BIN mode flags in the DCB. If DRC
and BIN are se"t, the transparent mode is in effect. This
will cause all input and output through that DCB to be
passed literally (i. e., no translation or interpretation wi II
be done). The transparent mode may be escapted from by
depressing BREAK. This mode of operation is not allowed
for 2741 terminals.

APPENDIX A. XDS STANDARD SYMBOLS, CODES AND CORRESPONDENCES

XDS STANDARD SYMBOLS AND CODES
The symbols listed here include two types: graphic symbols
and control characters. Graphic: symbols are displayable
and printable; control characters are not. Hybrids are SP
(the symbol for a bliank space), and DEL (the delete code)
wh ich is not considered a control command.

Two types of code ore olso shown: (1) the 8-bit XDS Stan­
dard Computer Code, i. e., the XDS Extended Binary­
Coded-Interchange Code (EBCDIC); and (2) the 7-bit
American National Standard Code for information Inter­
change (ANSClI), i. e., the XDS Standard Communica­
tion Code.

XDS STANDARD CHARACTER SETS
1. EBCDIC

57-character set: uppercase letters, numerals, space,
and & / < > () + I $ *
% # @ I =

63-character set: same as above plus i ?
" ...,

89-character set: same as 63:-character set plus lower­
case letters

2. ANSCll

64-character set: uppercase letters, numerals, space,
and ! $ % & () * + / \

= < > ? @ _ [J A II I -.:.

95-character set: same as above plus lowercase letters
and { } : ,.., \

CONTROL CODES
In addition to the standard character sets listed above, the
XDS symbol repertoire includes 37 control codes and the
hybrid code DEL (hybrid code SP is considered part of all
character sets). These are listed in the table titled XDS
Standard Symbol-Code Correspondences.

SPECIAL CODE PROPERITIES
The following two properties of all XDS standard codes will
be retained for future standard code extensions:

1. All control codes, and only the control codes, have
their two high-order bits equal to "00". DEL is not
considered a control code.

2. No two graphic EBCDIC codes have their seven low­
order bits equal.

Appendix A 109

Hexadecimal 0 1

Binary 0000 0001

0 0000 NUL OLE

1 0001 SOH DCl

2 0010 STX DC2

3 0011 ETX DC3

4 0100 EOT DC4

5 0101 HT
LF
NL

'0, 8
0 6 0110 ACK SYN

i:
0 7 0111 BEL ETB
~
'c 8 1000

EOM CAN 0) BS Vi

e 9 1001 ENQ EM
Qj

-'
A 1010 NAK SUB

B 1011 VT ESC

C 1100 FF FS

0 1101 CR GS

E 1110 SO RS

F 1111 51 US
\ .

Decimal
0 1 rows) (col's.)-

I Binary
1

xOOO xOOl

0 0000 NUL OLE

1 0001 SOH DCl

2 0010 STX DC2

3 0011 ETX DC3

4 0100 EOT DC4

5 0101 ENQ NAK
.::!
'0,
0 6 0110 ACK SYN

i:
0 7 0111 BEL ETB
~
'c

8 1000 BS CAN 0)

Vi

e 9 1001 HT EM
Qj

-' LF
10 1010 SUB

NL

11 1011 VT ESC

12 1100 FF FS

13 1101 CR GS

14 1110 SO RS

15 1111 51 US
, .

110 Appendix A

I

2 3

0010 0011

ds 6

ss

fs

si

CR
only

LF
only

Table A-l. XDS Standard 8-Bit Computer Codes (EBCDIC)

Most Significant Digits

4 5 6 7 8 9 A

0100 0101 0110 0111 1000 1001 1010

SP & -

~ ~ / a j

~ ~ ~~ b k s

~ ~ ~~ c I t

~ ~ ~~ d m u

N~; n~;~~II;~~gned7 e n v
'" ,

~ ~ ~ ~ f 0 w

~ ~ ~ ~ g p x

~ ~ ~ ~ h q Y

~ ~ ~ ~ i r z

12 ~ 1
I :

$, /I

< * % @

()
,

-
+ ; > =

I 2 --, 2
? II . ~\ . .

B C 0 E F

1011 1100 1101 1110 1111

0

\1
j-----

A J 1

t 1 B K 5 2

} 1 C L T 3

[1 0 M U 4

] 1 E N V 5
-- --_._- --

F 0 W 6

G P X 7

H Q Y 8

1 R Z 9

~ ~ ~ ~
W} ~ ~ ~
'N~~II/~:sig;;:;7
'J",. ", , /. //J.

~ ~ ~ ~
~ ~ ~ ~
~ ~ ~ DEL

I

The characters ~ \ t } [] are ANSCll
characters that do not appear in any of the
XDS EBCDIC-based character sets, though
they are shown in the EBCDIC table.

The characters 1 I --, appear in the XDS
63- and 89-character EBCDIC sets but not
in either of the XDS ANSCII-based sets.
However, XDS software translates the char­
acters 1 I --, into ANSCII characters
as follows:

EBCDIC ANSCII

1
I

\ (6-0)

l (7-12)

- (7-14)

The EBCDIC control codes in columns 0
and 1 and their binary representation are
exactly the same as those in the ANSCll
table, except for two interchanges: LF/NL
with NAK, and HT with ENQ.

Characters enclosed in heavy lines are
included only in the XDS standard 63-
and 89-character EBCDIC sets.

, These characters are included only in the
XDS standard 89-character EBCDIC set.

Line feed has been assigned the EBCDIC
value of X'20'. Line feed allows a user to
continue to output on a new line without
affecting the carrier position.

APL characters are assigned EBCDIC values
that fall within the "not normally assigned"
area of the standard XDS code set. These
assignments are for APL internal use and are
only reflected in 2741-APL translation tables.

Placing a SYN code as the last position of a
nontransparent message wi II prevent the nor­
mal message appendage of the CR/LF pair •
This allows a user to continue writing more
than one message on the same line without
affecting the carrier position. The EBCDIC
SYN code is translated to an idle (IL) on

Table A-2. XDS Standard 7-Bit Communication Codes (ANSCII) output to 2741 terminals.

Most Significant Digits

2 3 4 5

xOl0 xOll x 100 xl0l

SP 0 @ P

I 5 1 A Q

II 2 B R

/I 3 C 5

$ 4 0 T

% 5 E U

& 6 F V

,
7 G W

(8 H X

) 9 I Y

* : J Z

+ ; K [5

, < L \

- = M] 5

> N
4 5

/ ? 0
4

-

6 7

x110 xlII

\ P

a q

b r

c s

d t

e u

f v

g w

h x

i Y

j z

k t
I I

I

m }
4

n -
0 DEL

Most significant bit, added for 8-bit format, is either 0 or an even-parity bit for the
remaining 7 bits.

Columns 0-1 are control codes.

Columns 2-5 correspond to the XDS 64-character ANSCII set.
Columns 2-7 correspond to the XDS 95-character ANSCll set.

On many current teletypes, the symbol

is (5-14)

is (5-15)

is ESC or ALTMODE control (7-14)

and none of the symbals appearing in columns 6-7 are provided. Except for the three symbol
differences noted abave, therefore, such teletypes provide all the characters in the XDS 64-
character ANSCll set. (The XDS 7015 Remote Keyboard Printer provides the 64-character
ANSCIl set also, but prints A as II. It also interprets the [] characters as I....,.)

On the XDS 7670 Remote Batch Terminal, the symbol

is (2-1)

is I (5-11)

is (5-13)

is (5-14)

and none of the symbols appearing in columns 6-7 are provided. Except for the four symbol
differences noted above, therefore, this terminal provides all the characters in the XDS 64-
character ANSCII set.

H I .

Table A-3. XDS Standard Symbol-Code Correspondences

EBCDICt
ANscn tt

Hex. Dec. Symbol Card Code Meaning Remarks

00 0 NUL 12·-0-9-8-1 0-0 null 00 through 23 and 2F are control codes.
01 1 SOH 12·-9-1 0-1 start of header
02 2 STX 12·-9-2 0-2 start of text
03 3 ETX 12·-9-3 0-3 end of text
04 4 EOT 12·-9-4 0-4 end of transm iss i on
05 5 HT 12·-9-5 0-9 horizontal tab
06 6 ACK 12·-9-6 0-6 acknowledge (positive)
07 7 BEL 12·-9-7 0-7 bell
08 8 I~S or EOM 12·-9-8 0-8 backspace or end of message EOM is used only on XDS Keyboard/
09 9 ENQ 12·-9-8-1 0-5 enquiry Printers Models 7012, 7020, 8091,
OA 10 NAK 12·-9-8-2 1-5 negative acknowledge and 8092.
OB 11 VT 12·-9-8-3 0-11 vertical tab
OC 12 FF 12·-9-8-4 0-12 form feed
OD 13 CR 12·-9-8-5 0-13 carriage return
OE 14 SO 12·-9-8-6 0-14 shift out
OF 15 SI 12·-9-8-7 0-15 shift in

10 16 DLE 12·-11-9-8-1 1-0 data link escape
11 17 DCl 11·-9-1 1-1 device control 1
12 18 DC2 11·-9-2 1-2 device control 2
13 19 DC3 11·-9-3 1-3 device control 3
14 20 DC4 11·-9-4 1-4 device control 4
15 21 LF or NL 11·-9-5 0-10 I ine feed or new line
16 22 SYN 11·-9-6 1-6 sync Id I e for 2741 term ina Is •
17 23 ETB 11·-9-7 1-7 end of transmission block
18 24 CAN 11·-9-8 1-8 cancel
19 25 EM 11·-9-8-1 1-9 end of medium
lA 26 SUB 11·-9-8-2 1-10 substi tute Replaces characters with parity error.
1 B 27 ESC 11·-9-8-3 1-11 escape
lC 28 FS 11·-9-8-4 1-12 fi Ie separator
10 29 GS 11·-9-8-5 1-13 group separator
1 E 30 RS 11·-9-8-6 1-14 record separator
IF 31 US 11·-9-8-7 1-15 unit separator

20 32 ds 11·-0-9-8-1 digit selector 20 through 23 are used with
21 33 ss 0-9-1 significance start Sigma 7 EDIT BYTE STRING (EBS)
22 34 fs 0-9-2 field separation instruction - not input/output con-
23 35 si 0-9-3 immediate significance start trol codes.
24 36 0-9-4 24 through 2E are unassigned.
25 37 0-9-5
26 38 0-9-6
27 39 0-9-7
28 40 0-9-8
29 41 0-9-8-1
2A 42 0-9-8-2
2B 43 0-9-8-3
2C 44 0-9-8-4
2D 45 0-9-8-5
2E 46 0-~?-8-6

2F 47 0-9-8-7

30 48 12·-11-0-9-8-1 30 through 3F are unassigned.
31 49 9-'1
32 50 9-2
33 51 9-:~

34 52 9-4
35 53 9-5
36 54 9-6
37 55 9-7
38 56 9-8
39 57 9-8-1
3A 58 9-8-2
3B 59 9-8-3
3C 60 9-8-4
3D 61 9-8-5
3E 62 9-8-6
3F 63 9-8-7

tHexadecimali and decimal not<ltion.

ttDecimal noj'ation (column-row).

Appendix A 111

Table A-3. XDS Standard Symbol-Code Correspondences (cont.)

EBCDICt Symbol Card Code ANSCll
tt

Meaning Remarks
Hex. Dec.

40 64 SP blank 2-0 blank
41 65 12-0-9-1 41 through 49 will not be assigned.
42 66 12-0-9-2
43 67 12-0-9-3
44 68 12-0-9-4
45 69 12-0-9-5
46 70 12-0-9-6
47 71 12-0-9-7
48 72 12-0-9-8
49 73 12-8-1
4A 74 i or ' 12-8-2 6-0 cent or accent grave Accent grave used for left single
4B 75 12-8-3 2-14 period quote. On model 7670, \ not
4C 76 < 12-8-4 3-12 less than available, and i = ANSCII 5-11.
4D 77 { 12-8-5 2-8 left parenthesis
4E 78 + 12-8-6 2-11 plus
4F 79 I or

I 12-8-7 7-12 vertical bar or broken bar On Model 7670,: not available, I

and I = ANSCII 2-1.

50 80 & 12 2-6 ampersand
51 81 12-11-9-1 51 through 59will not be assigned.
52 82 12-11-9-2
53 83 12-11-9-3
54 84 12-11-9-4
55 85 12-11-9-5
56 86 12-11-9-6
57 87 12-11-9-7
58 88 12-11-9-8
59 89 11-8-1
5A 90 I 11-8-2 2-1 exclamation point On Model 7670, ! is I.
5B 91 $ 11-8-3 2-4 dollars
5C 92 * 11-8-4 2-10 asterisk
5D 93 } 11-8-5 2-9 right parenthesis
5E 94 ; 11-8-6 3-11 semicolon
5F 95 - or ..., 11-8-7 7-14 tilde or logical not On Model 7670, - is not available,

and -,= ANSCII 5-14.

60 96 - 11 2-13 minus, dash, hyphen
61 97 / 0-1 2-15 slash
62 98 11-0-9-2 62 through 69 will not be assigned.
63 99 11-0-9-3
64 100 11-0-9-4
65 101 11-0-9-5
66 102 11-0-9-6
67 103 11-0-9-7
68 104 11-0-9-8
69 105 0-8-1
6A 106

......
12-11 5-14 circumflex On Model 7670 is"". On Model

6B 107 , 0-8-3 2-12 comma 7015 is" (caret).
6C 108 % 0-8-4 2-5 percent
6D 109 - 0-8-5 5-15 underline Underline is sometimes called "break
6E 110 > 0-8-6 3-14 greater than character"; may be printed along
6F 111 ? 0-8-7 3-15 question mark bottom of character line.

70 112 12-11-0 70 through 79 wi II not be assigned.
71 113 12-11-0-9-1
72 114 12-11-0-9-2
73 115 12-11-0-9-3
74 116 12-11-0-9-4
75 117 12-11-0-9-5
76 118 12-11-0-9-6
77 119 12-11-0-9-7
78 120 12-11-0-9-8
79 121 8-1
7A 122 8-2 3-10 colon
7B 123 # 8-3 2-3. number
7C 124 @ 8-4 4-0 at
7D 125 I 8-5 2-7 apostrophe (right single quote)
7E 126 = 8-6 3-13 equals
7F 127 " 8-7 2-2 quotation mark

tHexadecimal and decimal notation.

ttDecimal notation {column-row}.

112 Appendix A

Tabl e A-3. X DS Standard Symbol-Code Correspondences (cont.)

EBCDIC t

Hex. Dec. Symbol Card (:ode ANSCn
tt

Meaning Remarks

80 128 12-0-B-1 80 is unassigned.
81 129 01 12-0-1 6-1 81-89, 91-99, A2-A9 comprise the
82 130 b 12-0-2 6-2 lowercase alphabet. Available
83 131 c: 12-0-3 6-3 only in XDS standard 89- and 95-
84 132 cI 12-0-4 6-4 character sets.
85 133 e, 12-0-5 6-5
86 134 f 12-0-. 6 6-6
87 135 91 12-0-7 6-7
88 136 h 12-0-B 6-8
89 137 i 12-0-9 6-9
8A 138 12-0-8-2 8A through 90 are unassigned.
8B 139 12-0-B-3
8C 140 12-0-B-4
80 141 12-0-8-5
8E 142 12-0-8-6
8F 143 12-0-8-7

--- -----.~--------

90 144 12-11 ··8-1
91 145 j 12-11 ··1 6-10
92 146 k 12-11 -2 6-11
93 147 I 12-11 ·-3 6-12
94 148 m 12-11 -4 6-13
95 149 n 12-11 -5 6-14
96 150 C> 12-11 -6 6-15
97 151 p 12-11 -7 7-0
98 152 q 12-11 ··8 7-1
99 153 r 12-11 -9 7-2
9A 154 12-11 -8-2 9A through Al are unassigned.
9B 155 12-11 ··8-3
9C 156 12-11 -8-4
90 157 12-11 -8-5
9E 158 12-11 -8-6
9F 159 12-11 -8-7

AO 16G 11-0-8-1
Al 161 11-0-1
A2 162 s 11-0-2 7-3
A3 163 t 11-0-3 7-4
A4 164 LJ 11-0-4 7-5
A5 165 v 11-0-5 7-6
A6 166 w 11.-0-6 7-7
A7 167)(11-0-7 7-8
A8 168)' 11-0-8 7-9
A9 169 2~ 11-0-9 7-10
AA 170 11-0-8-2 AA through BO are unassigned.
AB 171 11-0-8-3
AC 172 11-0-8-4
AD 173 11-0-8-5
AE 174 II-O-8-6
AF 175 11-0-8-7

BO 176 12-11 ·-0-8-1
Bl 177 \ 12-11 -0-1 5-12 backslash
B2 178 1 12-11 -0-2 7-11 left brace
B3 179 ~ 12-11
B4 180 [12-11
B5 181] 12-11
B6 182 12-11

-0-3 7-13 right brace
-0-4 5-11 left bracket On Model 7670, [is i.
·-0-5 5-13 right bracket On Model 7670,] is !.
·-0-6 B6 through BF are unassi~ned.

B7 183 12-11 ·-0-7
B8 184 12-11 -0-8
B9 185 12-11 -0-9
BA 186 12-11 -0-8-2
BB 187 12-11 ·-0-8-3
BC 188 12-11 ·-0-8-4
BD 189 12-11 -0-8-5
BE 190 12-11 -0-8-6
BF 191 12-11 ·-0-8-7

tHexadecimal and decimal notatio n.

ttDecimal notation {column-row}.
-

Appendix A 113

Tabl e A-3. X DS Standard Symbol-Code Correspondences (cont.)

EBCDICt Symbol Card Code ANscn tt Meaning Remarks
Hex. Dec.

CO 192 12-0 CO is unassigned.
Cl 193 A 12-1 4-1 Cl-C9, Dl-D9, E2-E9 comprise the
C2 194 B 12-2 4-2 uppercase alphabet.
C3 195 C 12-3 4-3
C4 196 D 12-4 4-4
C5 197 E 12-5 4-5
C6 198 F 12-6 4-6
C7 199 G 12-7 4-7
C8 200 H 12-8 4-8
C9 201 I 12-9 4-9
CA 202 12-0-9-8-2 CA through CF will not be assigned.
CB 203 12-0-9-8-3
CC 204 12-0-9-8-4
CD 205 12-0-9-8-5
CE 206 12-0-9-8-6
CF 207 12-0-9-8-7

DO 208 11-0 DO is unassigned.
Dl 209 J 11-1 4-10
D2 210 K 11-2 4-11
D3 211 L 11-3 4-12
D4 212 M 11-4 4-13
D5 213 N 11-5 4-14
D6 214 0 11-6 4-15
D7 215 P 11-7 5-0
D8 216 Q 11-8 5-1
D9 217 R 11-9 5-2
DA 218 12-11-9-8-2 DA through DF will not be assigned.
DB 219 12-11-9-8-3
DC 220 12-11-9-8-4
DD 221 12-11-9-8-5
DE 222 12-11-9-8-6
DF 223 12-11-9-8-7

-~

EO 224 0-8-2 EO, El are unassigned.
El 225 11-0-9-1
E2 226 S 0-2 5-3
E3 227 T 0-3 5-4
E4 228 U 0-4 5-5
E5 229 V 0-5 5-6
E6 230 W 0-6 5-7
E7 231 X 0-7 5-8
E8 232 Y 0-8 5-9
E9 233 Z 0-9 5-10
EA 234 11-0-9-8-2 EA through EF will not be assigned.
EB 235 11-0-9-8-3
EC 236 11-0-9-8-4
ED 237 11-0-9-8-5
EE 238 11-0-9-8-6
EF 239 11-0-9-8-7

FO 240 0 0 3,-0
Fl 241 1 1 3-1
F2 242 2 2 3-2
F3 243 3 3 3-3
F4 244 4 4 3-4
F5 245 5 5 3-5
F6 246 6 6 3-6
F7 247 7 7 3-7
P8 248 8 8 3-8
F9 249 9 9 3-9
FA 250 12-11-0-9-8-2 FA through FE will not be assigned.
FB 251 12-11-0-9-8-3
FC 252 12-11-0-9-8-4
FD 253 12-11-0-9-8-5
FE 254 12-11-0-9-8-6
FF 255 DEL 12-11-0-9-8-7 delete Special - neither graphic nor con-

trol symbol.

tHexadecimal and decimal notation.

ttDecimal notation {column-row}.

114 Appendix A

TTY
ANSCII Key

NUL (00) pcs

SOH (DOt AC

STX (02)t BC

ETX (03)t CC

EOT (04)t DC

ENQ (05/ EC

ACK (06/ FC

BEL (07) GC

BS (08) HC

HT (09) IC

LF/NL (OA) NL

VT (DB) KC

FF (~C) LC

CR (OD) CR

SO (DE) NC

SI (OF) OC

DLE (lO)t pC

DC 1 (1l) iQc

DC2 (12) RC

DC3 (13) ,-c
.)

DC4 (14)t rC

NAK (l5)t uC

SYN (16)t Vc

ETB (l7)t WC

CAN (18) Xc

EM (19) yc

SUB (1A) 7 C
1.-

ESC (1 B) te CS

ESC
PREFIX

FS (lC) LCS

GS (1 D) MCS

Table A-4. ANSCII Control-Character Translation Table

Echoe

None

SOH

STX

ETX

EOT

ENQ

ACK

BEL

BS

Input

d

SpacE
if tab

~ to tab stop
I simul ation

on,o
not.

r 1 space if

CR or ld LF

VT

None

CR ar Id LF

SO

51

DLE

DCl

DC2

DC3

DC4

NAK

SYN

ETB

arrow Back­
andC R/LF

(lrrOW Back­
andC R/LF

SUB

#(A3)

FS

GS

Prog. Receives
(EBCDIC)

None

SOH

STX

ETX

EOT

ENQ (09)

ACK

BEL

BS

Spaces to tab stop,
or one space, or tab
(05) depending on
mode.

LF (15)

VT

FF

CR

SO

51

DLE

DCl

DC2

DC3

DC4

NAK (15)

SYN

ETB

None

None

SUB

None

FS

GS

Process EBCDIC

None NUL (00)

None SOH (01)

None STX (02)

None ETX (03)

None EOT (04)

None HT (05)

None ACK (06)

None BE L (07)

None BS (08)

None ENQ (09)

Input Complete NAK (OA)

None VT (DB)

Page Header FF (DC)

Input Complete CR (OD)

None SO (DE)

None 51 (OF)

None DLE (10)

None DC 1 (11)

None DC2 (12)

None DC3 (13)

None DC4 (14)

None LF/NL (15)

None SYN (16)

None ETB(17)

Cancel input CAN (18)
or output
message.

Mon i tor Escape/ EM (19)
Control to TEL

None SUB (lA)

In itiate escape ESC (1B)
sequence mode.

Input Complete FS (l C)

Input Complete GS (1 D)

Output

T ransm i tted
(ANSCII)

Noth ing (end of
output message).

SOH

STX

ETX

EOT

Space(s) if tab
simulation on, or
HT (09) if not.

ACK

BEL

BS

ENQ (05)

NAK (15)

VT

Page Header

CR and LF (OA)

SO

51

DLE

DCl

DC2

DC3

DC4

CR and LF (OA)

SYN

ETB

CAN

EM

(A3)

ESC

FS

GS

Appendix A 115

Table A-4. ANSCII Control-Character Translation Table (cont.)

TTY
ANSCII Key Echoed

RS (1 E) NCS RS

US (1 F) Ocs US

} (7D) ALT- } or None
MODE

Input

Prog. Receives
(EBCDIC)

RS

US

} or None

Process

Input Complete

Input Complete

} if model 37; as
ESC if model 33
or 35.

EBCDIC

RS (lE)

US (1 F)

} (B3)

Output

T ransm i tted
(ANSCII)

RS

US

} (7E)

-(7E) ESC -or None -or None - if model 37; as .., (5F) -(7E)
(7015) ESC if model35

or 7015.

DEL (7F) Rubout \ None Rubout last DEL (FF) None
character.

All ANSCII upper and lower case alphabetics are translated on input into the
corresponding EBCDIC graphics as shown in Tabl es A-1 and A-2. All special
graphics map as shown, allowing for Table A-1, Note 2, and the exceptions
above for model 33 and 35. Lower case alphabetics map into corresponding
EBCDIC upper case if the ESC-U mode is set. Upper case alphabetics map
into corresponding EBCDIC lower case if ESC-) is set.

Alphabetic and symbol output trans­
lation is also as shown in Tables A-l
and A-2; for Models 33 and 35, and
7015 terminals, however, lower case
alphabetics are automatically trans­
lated to upper case.

t These characters are communication control characters reserved for use by hardware. Any other use of them risks in­
compatibil ity with future hardware developments and is done so by the user at his own risk.

Table A-5. Substitutions for Nonexistent Characters on 2741 Keyboards

EBCDIC APL Selectric® EBCD
Character Keyboard Keyboard Keyboard

> > & on output on Iy >

< < # on output only <

A t ¢ ¢

I I 0
(degree) I

--, - ± --,

I # #

% P % %

¢ c ¢ ¢

@ a @ @

II V II II

J 0 ! I

& n & &

$ u $ $

116 Appendix A

J~PPENDIX B. MONITOR ERROR MESSAGES

INTRODUC1f10N
All Monitor error conditions are identified by an error code
or by a un ique user-defined error message. These conditions
are reported to TEL by various parts of the Monitor and,
when detected, cause TEL to examine a special ERRMSG
file. If TEL does not find a message in the file for the
error condition, i1- returns the error code and subcode
(Tables B1-B5) to ,·he terminal. If it finds a message in the
file for the error condition, it sends the message to the ter­
minal in place of t'he error code.

Two groups of Monitor error codes are defined in this sec­
tion. Theyare I/O error and abnormal codes (Tables B1-B4)
and other Monitor codes (Table B5). In both cases, a mes­
sage is printed only if the Monitor has control. If the user
asks for control, the error codes ore returned to him. Other­
wise, the Monitor takes unilaterc::d action and prints the
message corresponding to the code or the code itself if no
message is in the ERRMSG file. Users who have taken con­
trol may return itfor Mon itor disposition by using M:MERC.

The error and abnormal addresses spec ified in a function
parameter table (FPT) for a Read, Check, or Write function
are temporary and are not retained by the Monitor between
calls. Those addresses specified in an FPT for an Open
function are retained in the spE!cified data control block
(DCB).

I/o error an abnormal conditions fall into two general
categori es:

1. Those associated with insufficient or conflicting
information.

2. Those associated with device failures or end-of-data
conditions.

The Mon itor responds to conditions of the first category by
honoring the error and abnormal addresses in the associated
DCB. The Monitor responds to conditions of the second
category by honoring the error and abnormal addresses in
the FPT for the associated Read, Check, or Write functions.

All Monitor error codes are in hexadecimal. The error and
abnormal codes for conditions of the first category above
are: 01, 02, 03, 08, 09, OA, 13, 1 4, 15, 16, 1 7, 18,
19, 20, 2E, 40, 42, 43, 44, 46, 47, 4A, 4D, 51, 54, 55,
and 56. Those for condi tions of the second category above
are: 04, 05, 06, 07, lC, 1 D, 41, 45, 49, and 57.

The Monitor communicates the error or abnormal code and
the DCB address in SR3, and the location foil owing the
associated CAL 1 in SR1. The code is contained in byte 0
of the word in SR3, a subcode is contained in bits 8-14,
and the DCB address is contained in the rightmost 17 bits.

SR3

Note that the subcode field contains seven bits and an
error code of 75/13 would appear as X'7526 1 in bits 0-15.
(The first digit of the subcode is contained in bit positions 8,
9, and 10. Hence, it may have a value of 0-7.) The pre­
vious contents of SR 1 and SR3 are lost. The mean ing of
each error and abnormal code is shown in Tables B-1 to B-4.

Table B-1. Abnormal Codes - Insufficient or Conflicting Information

Originatin
Error Sub- Monitor
Code code Routine

01 OPEN

02 OPEN

03 OPEN

08 OPEN

09 00 OPEN

01 OPEN

02 OPEN

03 OPEN

g

Mean ing of Code

An attempt was made to open a DCB with insufficient information.

An attempt was made to open the next fil e but there are no more fi les.

The input or update file does not exist.

An attempt was made to open the next file but the name of the next file is a
synonym for the primary name of the file.

The IUser privi I ege I evel was not high enough to allow issuing a direct device OPEN.

The device I/O address was not that of a symbiont device (card punch, card
reader, line printer, or paper tape unit).

The device was already in use by another diagnostic program.

The device was currently in use bya symbiont. The operator must be asked to suspend the
symbiont. The program shoul d waitfor this action before re-issuing the call.

Appendix B 117

Table B-1. Abnormal Codes - Insufficient or Conflicting Information (cont.)

Originating
Error Sub- Monitor
Code code Routine Meaning of Code

OA CLOSE An attempt was made to close a DCB that is already closed.

13 DELREC or The specified key was not found for an update file and the option is not NEWKEY.
WRITE

14 00 OPEN Any of the following may have occurred: (1) the Monitor has not received all infor-
mation required to access the fi Ie, (2) access permission (read/write account numbers
or password) has been violated for an existing file, (3) the fi Ie name length has been
greater than 31 or less than 1, or (4) open NXTF was specified without room for
synonymous file name in the DCB.

01 OPEN An attempt was made to open a file for output and another user or DCB has the file
open for input or output.

15 DELREC or An improper sequence of operations has been requested for an update file, or the
WRITE FPARM address did not belong to the user. For example, a WRITE or DELREC was

issued for a keyed file and there is no key given on the WRITE or DELREC.

16 WRITE The N EWKEY option was specified, but the key already exists.

17 WRITE The N EWKEY option was not specified for an output or scratch fi Ie.

18 WRITE An attempt was made to write a keyed file sequentially with an out-of-order key.

19 OPEN/CLOSE An illegal operation was attempted on M:UC DCB.

2E OPEN An attempt was made to open a DCB that is already open.

Note: In all of the above cases, return is made to the user's program for continuation of execution if no abnormal address
is specified in the DCB.

Table B-2. Abnormal Codes - Device Failure or End-of-Data

Error
Code Originating Monitor Routine Meaning of Code

04 PRECORD or READ The beginning-of-file has been encountered.

05 PRECORD or READ The end-of-data has been encountered.

06 READ The end-of-file has been encountered (or first read of ! card).

07 READ Data has been lost because the buffer was smaller than the record read, or a
parity error was detected.

OB OPEN A read error has been encountered during labeled-tape sentinel processing,
resulting in an unrecognized tape sentinel.

lC READ, WRITE or PRECORD The end-of-tape has been encountered.

lD READ or PRECORD The beginning-of-tape has been encountered or a bad command has been sent
to the terminal.

Note: In all of the above cases, return is made to the user's program for continued execution if no abnormal address is
specified in the I/O CAL FPT.

118 Appendix B

Error
Code

4,0

42

43

44

46

47

4A

51

54

55

56

75

75

75

75

75

75

Note:

Tobie B-3. Error Codes - Insufficient or Conflicting Information

Originating
Sub- Monitor
code Routine Meaning of Code

READ A request was made to read an output fil e.

READ, WRIT E, The key was not val id. The key length was zero or greater than the key maximum
or RANDOf..

READ

WRITE

XX READ

XX WRITE

READ or
WRITE

XX CLOSE

READ

OPEN

CLOSE or
CVOL

01 READ

02 READ

03 OPEN

04 OPEN

05 OPEN

06 OPEN

In all of I'he above case:
Monitor skips to the nex
further user commands.

A for the file or a random file granule number is out of legal range.

No record having the specified key was found.

A request was made to write in an input file.

The DCB contains insufficient information to open a closed DCB on a Read oper­
ation. Subcodes corresponding to the OPEN error codes above describe why the
error code di d not take.

The DCB contains insufficient information to open a closed DCB on a Write oper­
ation. Subcodes corresponding to the OPEN error codes above describe why the
error code did not take.

Either the specified buffer or the indirect address in FPT does not belong to user.

An attempt was made to close ond save an output file that is open in IN
mode through some other DCB.

The user has tried to read a control command via the control input (C) device
more than once through the same DCB.

Too many files are open simultaneously (the Monitor's file-use tables cannot
handle that many files).

This RAD is saturated, or the system is unable to switch to the next tape volume
because the reel number has not been specified.

Data records were lost due to a bad RAD address in master index.

The master index is inaccessible due to bad RAD address in preceding master
index.

The entire file is inaccessible due to bad RAD address in file directory or file
information table.

The file directory (and all files therein) is inaccessible due to a bad RAD address
in file directory.

All fiI es in account were lost due to bad RAD address in account directory.

A bad RAD address I ink to next account directory exists. The current account
and other accounts are gone.

i, the job is aborted if no error address is specified in the DCB. In batch mode, the
t job; in on-line mode, control is returned to TEL which prints the message and awaits
For error code 54, the job is aborted in all cases.

Appendix B 119

Table B-4. Error Codes - Device Failure or End-of-Data

41 An irrecoverable read error has occurred.

41 A bad RAD address was detected by the input cooperative when reading the input
symbiont file.

45 An irrecoverable write error has occurred.

49 No tape is available, or user privilege level is insufficient.

57 READ or The RAD is saturated, or the system is unable to switch to next tape volume because
WRITE the reel number has not been specified.

Note: In all of the above cases, the job is aborted if no error address is specified in the I/O CAL FPT. In batch mode,
the Monitor skips to the next job; in the on-line mode, control is returned to TEL which prints the message and
awaits further user commands.

Table B-5. Other Monitor Error Codes

Originating
Error Sub- Monitor
Code code Routine Meaning of Code

AO ASP An attempt was made to RUN under an inval id debugger name, or a request for an
inval id debugger through TEL.

A1 ASP An attempt was made to associate a debugger with a shared processor.

A2 Unused.

A3 TRAP Trap control cannot be given to the user because his task control block (TCB) does
not exist or is full, or his pointer has been destroyed.

A4 00 TRAP A user trap occurred.
01 Trap 40 - Nonexistent instruction
02 Trap 40 - Nonexistent memory reference
03 Trap 40 - Privileged instruction
04 Trap 40 - Memory protect violation
05 Trap 41 - Unimplemented instruction
06 Trap 42 - Stack overflow
07 Trap 43 - Fixed point overflow
08 Trap 44 - Floating point fault
09 Trap 45 - Decimal arithmetic fault
OA Trap 46 - Watchdog timer
OB Trap 47 - Storage
OC Trap 4C - Parity error

A5 STEP User's load module exceeds virtual core size limit.

A6 The Monitor cannot find the requested load module.

30 Bad DCB or DCB table (BOO).

A7 TEL A program in . progress was erased to make room for the latest user request.

A8 STEP An error or abort CAL was issued. (RNST bits are also set.)

A9 Unused.

AA STEP A request was made for core library that does not exist.

120 Appendix B

Originatin~

Error Sub- Monitor
Code code Routine

AB OPEN

AC

AD

AE CALPROC
ACTCP

AF CALPROC

BO 00 DUMP
01
02

B1 SEGLOAD

B2

B3 00
01
02
03
04
05
06
07
08
09

B4 00
01
02
03
04

B5

01
03
14
46
61
62

63
64
65
66
67

B6

B7

Table B-5. Other Monitor Error Codes (cont.)

Meaning of Code

An invali d operational label was found in the DCB.

An attempt was made to read the card reader by an on-line user.

Unused.

The user issued a CAL with unknown codes.

A CAL 1 instruction references a non-DCB.

The program specified snapshot dumps but did not have an M:DO DCB.
The program attempted snapshot dump of inaccessibl e or nonexistent memory.
Inaccessible flag address given on conditional debug command.

The Monitor cannot find the segment named in the user M:SEGLD.

The user issued a CAL2, CAL3, or CAL4.

Limit exceeded
Punch
Pages by processors
Pages by user
Pages through M: DO
Permanent RAD storage
Temporary RAD storage
Scratch tapes
Execution time
RAD allocation

Exit
User issued M:ERR
User issued M:XXX
Operator E (error) key-in
Operator X (abort) key-in

Load and link (M:LINK) and load and transfer control (M:LDTRC) error messages:

The user fi Ie cannot be opened.
The user file does not exist.
The user is denied access to his file.
The file cannot be opened because of insufficient information.
M:LINK and M:LDTRC are not permitted under Delta.
M:LINK and M:LDTRC are not permitted when a shared processor is associated

with the user program.
The program must not be loaded with Link.
The user must own all memory from data through dynamic data.
The DCB is not in the DCB area.
The user cannot get a blocking buffer.
A logically impossib!e exit to Load and Link has occurred.

M:LINK: Not SEGLOAD DCB.

Too many buffers requested on POO Leard.

Appendix B 121

APPENDIX C. COMPARISON OF UTS AND 8TM TIME-SHARING SERVICES

INTRODUCTION

The following is a comparison of the time-sharing services
of UTS to those of BTM from the terminal user's point of
view. It is assumed that the reader is familiar with the BTM
on-line capabilities described in the BTM/Reference Man­
ual, 90 15 77.

TELETYPE OPERATIONS

Before dialing UTS for the first time, the terminal user
accustomed to BTM time-sharing services should be aware
of the fact that in UTS all on-line commands (except for
DELTA) are terminated by a RETURN or LIN E FEED. There
is no system activation on two-characters of a name or on
punctuation as in BTM.

The UTS terminal is activated with the same procedure used
for BTM. Once the terminal is operational under UTS, the
system responds by typing

UTS AT YOUR SERVICE
ON AT (date 'and time)
LOGON PLEASE:

The user inputs his account, name, and an optional password
(in that order) as he would for BTM. There will be a short
delay before UTS responds; the LOGON data must be
printed on the operator's console first.

If the LOGON sequence is correct, the UTS response is
quite elaborate compared to BTM: several I ines on the
terminal are skipped, a line or two of information is printed,
several more I ines are skipped, and finally, a prompt char­
acter (!) is printed. This response is due to the pagination
feature of UTS; that is, the treatment of the terminal paper
as if it were segmented into 8 1/2 by 11 inch pages with
one-inch margins at the top and bottom of each page. Un­
less altered by a Terminal Executive Language (TEL) com­
mand, UTS assumes each page to be 54 I ines long with 72
characters per I ine. Each page begins with a header. The
header consists of the date, time, user's name, terminal id,
page number, and operator's messages.

To terminate an on-line session, the user types the OFF
command. This serves the same function as the BTM BYE
command. UTS responds by typing the following statistics:

CPU=m. mmm CON=n:mm INT=nn CHG=xxxx

where

CPU = the CPU time in minutes.

CON = the terminal time in hours and minutes.

INT = the number of terminal interactions during the
session.

CHG = the number of charge units for the session.

122 Appendix C

Unlike BTM, the number of RAD and disk granules used
during the on-line session are not printed.

If the user wants to log on again while the line is still con­
nected to UTS, he does not have to hit the BREAK key as he
would for BTM. All he must do is wait a few seconds and
UTS will type the LOGON request again.

Several special teletype characters for UTS have different -
or new - meanings from their BTM counterparts. These
characters are I isted in Table C-l.

INPUT/OUTPUT CONVENTIONS

The special CAL3's for terminal I/O in BTM are not imple­
mented in UTS. Most of the services these calls provide,
however, are available to the UTS on-line user in other
forms:

CAL3,O
CAL3,l
CAL3,2
CAL3,3
CAL3,4
CAL3,5
CAL3,6
CAL3,7
CAL3,8
CAL3,9
CAL3,10
CAL3,l1
CAL3,12
CAL3,13
CAL3,14
CAL3,15

M:READ,M: KEYIN
M: TY PE, M: WRIT E,M: PRIN T

Batch: M:LINK,M:LDTRC
On-Line: M:ASP,M:DSP
M:EXIT (to TEL)

- (TCB avai lable in JIT)

- (Error messages avai lable in ERRFILE)

= (Mapped System does this automatically)

M:JOB
M:GL
M:DATE,M: TIME

The fact reflects a fundamental aspect of the UTS system;
that is, on-I i ne users are treated in essenti a II y the same way
as batch users. In this case, it can be said that the great
majority of system procedures available to one class of users
are available to the other.

TERMINAL EXECUTIVE LANGUAGE (TEL)
VERSUS BTM EXEC

Some of the new or different features provided by TEL as
compared to BTM are

1. All TEL commands are terminated by a RETURN or LIN E
FEED. There is no system activation on two characters
of a name or on punctuation as in BTM.

2. Many functions that had to be accompl ished via a sub­
system parameter in BTM can be accompl ished by a
single TEL command under UTS. Either such a function
is carried out directly by TEL (e.g., submitting a batch

Table C-1. Special Teletype Characters for UTS

UTS Character Response BTM Character Response Meaning

RUBOUT or ESC RUBOUT \ ESC RUBOUT - Erase last character

ESC RET or ESC LF Local
tt

ESC RET Local
tt

Lineation Lineation
Local new line

ESC Y, ESC ESC, ! ESC ESC, !
4 BREAKS, oryct 4 BREAKS

Return to executive

ESC T (none) (none) Toggle tab simulation

t
ttt

L c or ESC L Pagination (none) End of page

ESC F Lineation
tt

(none) End of fi Ie

ESC U (none) (none) Toggle upper/lower case

t
ESC

c
(none) (none) Toggle tab relative mode

ESC S (none) (none) Toggle space insertion mode

ESC ((none) (none) Upper case shift

ESC) (none) (none) Lower case shift

t
QC (X-on) (none) (none) T urn on paper tape reader

t
c

S (X-off) (none) (none) Turn off paper tape reader

tThe superscript C indicates th<lt the CONTROL key is to be depressed.

ttLineation means that a carriage return and line feed are sent to the terminal.

ttt Pagination means that I ines ore skipped until the next terminal is reached and then a header is typed.

job) or an impl icit call is made to the proper subsystem
(e. g., the TEL command BUILD results in an impl icit
call to EDIT).

3. In contrast to the BTM subsystems FORTRAN, SYMBOL,
and LOADER, the on-I ine user does not have to pre­
assign his files to source input" binary output, and list­
ing output for the corresponding UTS subsystems (FORT4,
META, and LIN K). In fact, all of the control commands
needed to perform an assembly or load (assignment of
DCBs, processor' call, processor opti ons) are combined
into one TEL command.

4. UTS allows a properly-authorized user on-line access
to peripheral devices (printer, punch, paper tape, card
reader) and magnetic tape. Such capabi I ities do not
exist for the BTM user.

5. Any load module under UTS may be called for execution
by an on-line user via TEL. This includes load modules
under any account (not just :SYS).

6. Whereas BTM recognizes the word HERE to mean the
user's Teletype, UTS recognizes the word ME.

7. In UTS, a dollar sign may be used to refer to a program
just assembled, compiled, or loaded during the current
on-I ine session.

8. Under BTM, the only device-type assignment permitted
is the assignment of a DCB to the user's terminal. With
the UTS SET command, it is possible to set most of the
DCB parameters which are set by the batch ASS IGN
command and many of the parameters whi ch are set by
the BPM OPEN and DEVICE procedures.

Appendix C 123

9. TAB characters are handled somewhat differently in
UTS. The effect of a tab character on input and output
is dependent upon the DCB tab settings, the space
insertion mode, the tab simulation mode, and the tab
relative mode as described below:

On input of a
tab character,
the userls
buffer receives:

On input of a
tab character,
UTS wi II echo
the following
(unless echo­
plex is
suppressed):

and
On output of a
tab character,
UTS will send
the following:

Space Insertion
Mode ON (Default)

N blanks according to
the DCB tab settings
and the effective carrier
positi on. If the tab rela­
tive mode is in effect, the
position of the carrier at
the start of input is used
to offset the DCB tab set­
tings. This effectively
compensates for prompt
messages of varying
lengths.

TAB Simulation
Mode ON (Default)

N blanks according to
the DCB tab settings and
the carrier position

Space Insertion
Mode OFF

HT - horizon­
tal tab char­
acter (X 105 1)

Tab Simulation
Mode OFF

HT - horizon­
tal tab char­
acter - to
Teletype
Models 35
and 37 and
the 274l.

A blank to the
Teletype
Model 33 and
the 7015. (This
will be sent
even if echo­
plex is
suppressed.)

A summary of TEL commands and the comparable BTM com­
mands appear in Table C-2. The first column contains the
TEL command format; the middle column contains the cor­
responding BTM command(s) required to achieve the same
function. The command function is described in the third
col umn. File identification is designated by "fid" and has
the format:

UTS BTM

name [: ~~~:~~:. passwordl
•• password J [

(accounD ~
name (account,password)

(,password)

The prompt bharacter (!) has been left off the TEL and BTM
EXEC commands. Prompt characters for subsystems, however,
are indicated.

SUBSYSTEM COMPARISONS
In several cases, the BTM on-line subsystems are toned-down
versions of more powerful processors available to batch users.

124 Appendix C

In contrast, the UTS system allows both batch and on-I ine
users access to many of the same processors. Differences
between the UTS and BTM processors are described below:

UTS META AND BTM SYMBOL ASSEMBLERS

The on-I ine Meta-Symbol assembler for UTS, META, has
several advantages over the BTM Symbol Assembler:

1. The I imitations imposed by the Symbol language are
lifted for the UTS on-line user. He can form as sophis­
ticated assembly language programs as the UTS (and
BPM) batch user.

2. The META Subsystem recognizes more assembly options
than the BTM Symbol Subsystem:

AC (ac., ••• ,ac) LO
BO* n LU
CI* NS
CN SD
CO SI*
GO* SO

*implicitly specified in the META command.

3. The parameters CI, SI, LO, BO, and GO do not need
to be preassigned before call ing META.

4. An on-line UTS user can update a CI file with a source
file built under EDIT simply by specifying both files as
input in the META command. (META can distinguish
between the keyed records of the Edit file and the se­
quential binary records of the compressed fi Ie.)

UTS FORT4 AND DTM FORTRAN SUBSYSTEMS

The UTS FORT 4 subsystem is an Extended FORTRAN IV
compiler. The BTM FORTRAN subsystem is an Extended
FORTRAN IV-H compiler. Since FORTRAN IV-H is a sub­
set of FORTRAN IV, the UTS user can compile FORTRAN
programs on-line which in BTM would have to be compiled
in batch.

Note: When entering FORTRAN programs a I ine at a time,
syntax checking is performed after each I ine is received.
If a statement is to be continued, each comtinued I ine must
end with a colon (:) and each continuation I ine must use
column six. This is the exact opposite of BTM, where the
colon indicates no continuation.

UTS LINK LOADER AND BTM LOADER SUBSYSTEMS

Both UTS LIN K and BTM Loader Subsystems form nonoverlaid
load modules from ROMs and I ibraries. Several options are
available under LIN K, however, which are not avai lable
under LOAD.

Take, for instance, internal symbol tables (ISTs). Consider­
able flexibil ity exists with regard to the construction of ISTs
by LIN K for use under DELTA. The user can specify whether

Table C-2. TEL Command Summary and Equivalent BTM Command(s)

TEL Command BTM Command(s) Description

BACKUP fid (none) Saves the specified file on a system tape.

BATCH fid ASSIGN M:SI,(FILE,file) Enters the specified file in the batch job stream.
BPM
INSERT JOB?Y

BUILD fid EDIT Accepts a new file from the terminal.
*BUILD fid -

COMMENT {g~ER} list ASSIGN M:DO,(I ist) 1 Directs error commentary (from an on-line
where list= FILE,name or HERE assembler or compiler) to the specified device.

where list is fid, LP, or ME

CONTINUE or GO PROCEED Continues processing from the point of
termination.

COPYsf{~~} df
FERRET Copies a file to the specified device.
~[OPY]fid l,fid2

where sf = [DC/]fid or
df = [DC/]fid, LP, or ME

~E[XAMIN E]fid

DELETE fid FERRET Deletes the specified file.
~D[ELETE]fid

DISPLAY FERRET Lists the current values of various system
~S[TATISTICS] parameters.

DONT COMMENT (none) Stops error commentary output.

DONT LIST (none) Stops listing output.

DONT OUTPUT (none) Stops object output.

EDIT fid EDIT Calls Edit to modify a file.
*EDIT fid -

FORT4[sp] ••• [,sp]~ ASSIGN M:SI,(FILE,file) Compiles the specified FORTRAN program.
ASSIGN M:BO,(FILE,file)

[[g~ER[rom][, list]] ASSIGN M:LO,(FILE,file)
FORTRAN

where sp=fid or ME
rom=fid
list=fid,LP, or ME

GET fid RESTORE fid Restores the previously saved core image.

Appendix C 125

Table C-2. TEL Command Summary and Equivalent BTM Command(s) (cont.)

TEL Command BTM Command(s) Description

JOB jid BPM Requests the status of a previously entered
STATUS CHECK?Y batch job.
ID = jid

LIN K[codes]rom[,rom][••• , rom]] LOAD Forms a load module as specified.
ELEMENT FILES: [fid] •• "

L[g~ER Im~ [;lid[,lid] •• 'l L[fid]

[[,lid]]

where rom = fi d or $ SA~lmn
lid= library fid

codes include (L), (NL), (D),
(ND), (C), (NC), (M), (NM)

LIS T {
0

N } lis t ASSIGN M:LO,(list) Directs the I isting output to the specified device.
OVER where list= FILE,name or HERE

where list=fid,LP, or ME

Imn[sp] ••• [,sp]. • • I (none) Initiates execution of a load module where sp is
assigned to M:SI; rom is assigned to M:GO; list

L [g~ER [rom][, I i't]]
is assigned to M:LO.

MESSAGE text FERRET Sends the specified message to the operator.
~M[ESSAGE]text

META[sp] ... [,sp] I ASSIGN M:SI,(FILE,name) Assembles the specified source program.
ASSIG N M:BO,(FILE,name)

L[g~ER [rom]['li,t]]
ASSIG N M:LO,(FILE,name)
SYMBOL

where sp = fid or ME
rom = fid
list=fid,LP, or ME

OFF BYE Disconnects terminal from system and provides
accounting directory.

OUTPUT {g~ER}rom ASSIGN M:BO,(FILE,name) Directs rom output to a specified file.

PASSWORD xxx x (none) Assigns a new log-on password for the user.

PLATEN,I MESSAGE OFF Inhibits operator messages (No page header is
where I $ 11 printed for UTS).

P LA TE N w [, I] (none) Sets the value of the terminal platen width and
page length.

126 Appendix C

Table C-2.. TEL Command Summary and Equivalent BTM Command(s) (cont.)

TEL Command BTM Command(s) Description

PRINT (none) Sends output to the I ine printer and card punch
without waiting for the user to log off.

ESC ESC, yC, or 4 BREAKs Escape Command Terminates the current job step.
followed by (ESC-ESC)
QUIT

RUN [codes] rom(,rom J ... [rorra-I

L[g~ER Imn] [;lid~lid]"'l

LOAD Loads the specified load module and starts
ELEMENT FILES: fid ••. .=J execution (optionally under a debugging

proc essor) •
L[fid]

LGlid]] [UNDER ~~~T1
parameters same as in LIN K

XEQ?Y

SAVE {g~ER}fid SAVE fid Saves the current core image on the designated
file.

SET dcb 0 ASSIGN dcb Clears DCB of previous parameters.

[OPlabel]
SET dcb device [tapeid]]

tapecode

L[;oPt] ••• [;op~]

ASSIGN dcb (HERE) Assigns device to a DCB or sets a DCB
parameter.

where opt=device options

SET d b [tapecode[tapeid]
c fi lecode[packid] I

L /fid] (;opt] ••• [; opt]

ASSIGN dcb (FILE,fid)-:=J Assigns file to a DCB or sets a DCB parameter.

I [,(option) •••]

where opt= file options
~-

START [~mn] [UNDER DELTA] RUN Begins execution of a load module, either with or
LOAD MODULE FID:lmn without an associated debugger.
(executed under a subset
of BTM DELTA)

--

STATUS FERRET Displays the current accounting values.
~S[TATISTICSJ

--
Subsystem Calls These calls turn over control of the terminal
BASIC BASIC executive to the subsystem.
CONTROL
DELTA DELTA
EDIT EDIT
FDP
FORT4 FORTRAN
LINK LOAD

Appendix C 127

Table C-2. TEL Command Summary and Equivalent BTM Command(s) (cont.)

TEL Command BTM Command(s)

Subsystem Calls (cont.)
META SYMBOL
PCl FERRET
SUPER SUPER
Imn (user's program) (none)

BPM
RUN

TABS s~s] ••• (,sJ TABS [sJ ••• [,sJ
(maximum=16) (maximum=8)

TERMINAL type (none)
where type = 33,35,37, or 7015

or not he wants an 1ST to be built for each input file. Also,
the ISTs for several input files can be merged. These cap­
abilities contrast to the BTM loader Subsystem, whereby the
D (debug) option allows only all-or-none 1ST construction.

In addition to the load map option (M) (available in both
on-I ine loaders), LIN K recognizes two other display options.
The (D) option produces a list of all unsatisfied external
and internal symbols at the completion of the linking pro­
cess. The (C) option results in a display of all conflicting
internal and external symbols. These displays may be inhib­
ited by the (N D) and (NC) options. (BTM always outputs
an undefined-external symbol map if debug is specified. It
cannot output any undefined internal symbol map.)

Both on-line loaders search libraries to resolve unsatisfied
external references. (Such a I ibrary is a fi Ie containing
ROMs "Iinked" together.) LINK, however, does not restrict
its search to the :BLIB fi Ie of any account, as does the BTM
loader Subsystem. Instead it searches any file specified in
the library (I id) portion of the LIN K command. In this way,
the UTS user is relieved of maintaining all of his library­
type ROMs in one unique file.

Link places code in the 00 and 01 protection type sections
according to the dictates of the input ROMs. It does not
force the entire load module into protection type 00, as
does the BTM loader.

UTS EDIT AND 8TM EDIT

Features of UTS Edit that are different from those of BTM
are listed below.

1. The following edit commands may be given via TEL:

BUILD fid
EDIT fid
DELETE fid

2. The file identification (fid) must follow the UTS file
identification structure.

128 Appendix C

Description

Sets the simulated tab stops at the terminal.

Sets the terminal type for proper I/O translations.

3. UTS terminates the entire command if the BREAK key
is depressed.

4. A new command is available, TA. It sets the tab
positions and has the following format:

where

F implies FORTRAN; tab set at column 7.

M implies Meta-Symbol; tabs set at columns 10,
19, and 37.

S implies Meta-Symbol, short form; tabs set at
col umns 8, 16, and 30.

The actual tab simulation is carried out exactly like
the TABS command.

UTS DELTA AND 8TM DELTA

Features of UTS Delta that are different from those of BTM
Delta are I isted below:

1. Delta may be called by the following means:

a. To load and execute a program under Delta, give
the TEL command

RUN rom UNDER DELTA

b. To execute a load module under Delta, give the
TEL command

START Imn UNDER DELTA

c. To call Delta after a program has already started
executing, strike the CONTROL and Y keys simul­
taneously to return to TEL. Then give the TEL
command DELTA.

d. To call Del ta to write and check a short program,
give the TEL command DELTA.

2. Symbol tables can be manipu~ated at load time (see
Chapter 8).

3. The following new commands are available:

a. Symbol table control

iU Display undefined symbols.

i KI Remove current internal symbol tables.

iKG Remove global symbol table and any
symbols defined at terminal.

b. Execution control

Execute current instruction and display
next one.

c. Memory searching and modification

e 1,e2;W Store e2 ~hrough mask in locations
that match e 1 through the mask.

d. Breakpoint control (data (md transfer)

e ,r ,val ,m;DR

e,r ,val ,m;DTr

ni D

Oi D

i D

iY

iYT

Data breakpoint whenever
contc~nts of e, masked by m,
are in relation r to val (r op­
tions are LS, EQ, GR, GQ,
NQ, LQ).

SamE: as above in trace mode.

Remove nth data breakpoint.

Remove all data breakpoints.

Display I ist of active data
breakpoi nts.

Set transfer breakpoint mode.

Same as above in trace mode.

0iY Turn off transfer breakpoint
mode.

lOCi Y S tart transfer brea kpo int
execution mode at loc.

lociYT Same as above in trace mode.

l,m,n,oiYS Set entries in SAT.

l,m,n,oiYR ReleOise entries in SAT.

iYR Release all entries in SAT.

iYD DispklY SAT.

loc,optl,opt2iY Set transfer breakpoints as
follows:
optl :: 0 all branches except

those in SAT.
opt 1 ::: 1 on Iy SAT branches.
opt2 ::: 0 no trace on BIR/BDR.
opt2 ::: 1 trace BIR/BDR.

e. Printer output

;J Divert DELTA output to line
printer.

a,biO Print hex dump from a to b on
line printer. A header for the
dump may be appended to O.

f. Miscellaneous

e 1,e2,viZ Store v in memory from e 1
through e2.

iRK Display addresses as CSECT type
symbol pi us any hex offset.

UTS BASIC AND BPM/BTM BASIC

The following differences are completely described in
Chapter 5 of the BAS IC/Reference Manual, 90 15 46 - Revi­
sion B or later.

1. Language extensions

2.

a. String capability

String variables (scalars, matrices, substrings).
String expressions.
Character strings.
Length and value assignments (LEN, VAL).
Numeric-to-string conversion (STR).
Assignment and concatenation.
Comparison.
I/O.
String-to-alphanumeric constant conversion.

b. New intrinsic functions - CSC, SEC, COT, ASN,
ACS, HSN, HCS, HTN, LTW, DEG, RAD.

c. CHAIN LIN K statement

New edit mode commands

a. CLEAR

ARRAYS
STRINGS

b. NULL

ARRAYS
STRINGS
SIMVARS

c. FILE PACK

d. SET

e. EXECUTE

Appendix C 129

3. Increased edit mode-execute mode commands

a. Changes in BREAK-PROCEED logic

b. Changes in direct statement capability

(1) Smaller number of non-direct statements
(2) Direct capabil ity in edit mode

UTS COUNTERPARTS TO FERRET COMMANDS

2. BTM and UTS load modules have different formats.
Therefore, load modules currently running under BTM
must be reformed under UTS before they wi II execute
correctly. ROMs are compatible between BTM and
UTS.

Most of the functions of the BTM FERRET subsystem can be
accomplished with UTS TEL and PCL commands. The FERRET
commands and their UTS counterparts are listed in Table C-3.

3. Under BPM/BTM, X ' 15 1 corresponds to a carriage return
and X'25 1 corresponds to a line feed. Under UTS, X ' 15 1

corresponds to a line feed and X 'OD I corresponds to a
carriage return; X'25 1 is unassigned.

4. UTS does not set ASN in the DCB to 5 if the DCB is
assigned to a Teletype as in BTM. UTS sets ASN to 3,
DEVF to 1, and TYPE to 10. TYPE is not set until the
DCB is opened. Prior to the opening of the DCB, it may
contain an OPLB code or the EBCDIC representation of
that OPLB.

MISCELLANEOUS INFORMATION

Miscellaneous differences between BTM and UTS are listed
below:

1. In UTS, read operations, through a DCB assigned to the
NO operational label return an end-of-file code.

5. In UTS, all input/output through COC routines (M:UC)
is restricted to 140 characters.

Table C-3. FERRET Commands and Corresponding UTS Commands

FERRET Command UTS Command Description

2:L[IST] [acct] !PCL Lists the specified account directory.
<LIST [. acct]

2:T[EST] file TpCL Tests file accessibility.
<LIST fid

>A[CTIVITY] file (none) Checks file activity.
~S [T A TIS TICS] ! STATUS Displays accounting statistics for this on-line session.

>LOG -
>RAD
>RADS
>CPU
>10
>SERV

~S [TATISTICS] IDISPLAY - Displays system load parameters.
>N

>D[ELETE] file I DELETE file Deletes specified file.
~C[OPY] fi Ie 1 ,fi le2 } .!.COPY file

1
to file

2
Copies filel to file2'

. ~K~OPY] filel,fi le2 Copies filel to file2 retaining keys.
>E XAMINE] fid}

!COPY fid[TO ME]
Examines a fi Ie.

>I[NSPECT] fid Examines a file and displays keys.
>M[ESSAGE] text !MESSAGE text Sends message to operator.
>P[UNC H] fid (none) Punches file to paper tape.
>G[RANULES][(acct)] (none) Displays number of granules.
~R[EVIEW] IPCL Lists and selectively keeps or deletes all files in account.

.'SREVIEW fid
1
[,fid

2
]

130 Appendix C

INDEX

Note: For each entry in this inde)<, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

A
abnorma I codes

device failure or end of data, '118
insufficient or confl icting information, 117, 118

abnormal returns, COC routines, '106
access protection types, 96
account options, COpy command, 45
accounting information, 7
Analyze, 4
ANLZ, 4
ANSCIl, 110
ANSCII control-character translation table, 115, 116
assembling programs, 14
assigning I/o devices, 22
assignment codes, SET command, 23
ATTN key, 11

B
backing up files, 19
BASIC, 2,33,38
BATCH, 20
batch jobs, 20

submitting, 20
batch I imitations, 26
batch service, 4
ba tch serv ice error messages, 28
batch subsystem limits, 32
blank lines, 8
BP, 60,61
BREAK, 10,41,57,88
BREAK control, 106
BTM and UTS comparison

Basi c, 129
Delta, 128-129
Edit, 128
EXEC and TEL, 122-124
FERRET, 130
FERRET commands and corresponding UTS

commands, 130
FORTRAN and FORT4, 124
Loader and Link Loader, 124
miscellaneous information, 130
Symbol and META, 124
TEL commands and equ ivalent BTM commands, 125-128
Teletype operations, 122

BUILD, 58, 14

c
calling subsystems, 20
cancelling input and output, 8

changing termina I type, 25
character echoing, 7
character sets, fi les, 14
character sets, XDS standard, 109
Character-Oriented Communi cation routines, 104
checkpointing on-line sessions, 21
CM,65
CN,78
COC routines, 104
codes, UT S standard, 109
commands, typing, 9
COMMENT, 15
common storage, 96
communications services, 104
compi I ing programs, 14
composi ng program and data fi I es, 14
CONTINUE, 21
Control, 3
control code, 109
CONTROL L, 8
CONTROL X, 8
CONTROL Y, 10
controlling outputs, 15
conventions

command specifications, 5
Delta, 78
examples, 5
LINK, 98
PCL, 39

COpy
Edit, 58
PCL, 4·1-45, 20

COpy command
account options, 45
data codes, 43
data formats, 43
mode codes, 43,44
record sequencing options, 45

COPYALL, 46-48
COPYSTD, 48,49
CR, 60

o
D, 67
data codes, COpy command, 43
data context, 96
Data Control Block, 96,97
data files, composing, 14
data formats, COpy command, 43
DCB, 96,97
DCB assignments, 22
DCB parameters, 22
DE, 62

Index 131

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numeri ca I sequence.

debugging information, 16
debugging operations, 19
DELETE

Edit, 59
PCl, 49

DElETEAll, 49,50
Delta, 77,3, 16, 19,21

calling, 77
command delimiters, 78
conventions, 78
Executive, 90
exiting, 77
expressions, 79
prerequisites, 77
SAT, 87
Special Action Table, 87
special symbols, 79
writing programs with, 90

Delta command summary, 91-95
De I ta comma nds

breakpo ints, 84
data breakpoints, 85
display modes, 89
execution control, 83
expression evaluation, 79
instruction breakpoints, 84
LINE FEED, 81
memory cell opening and display, 80
memory clearing, 89
memory modification, 81
memory search and modification, 88
printer output, 89
RETURN, 81
symbol table control, 82
TAB, 80,81
transfer breakpoints, 87
;A, 89
;B, 84
;BT, 85
;D, 85,86
;DT, 86
;G, 83,84,85,86
;J, 89
;K, 82
;l, 88
;M, 88
;N, 88
;0, 89
; P, 83,84,85,86
;R, 89
;RK, 89
is, 82
;T, 85
;U, 82
;W, 88
iX, 83
;Y, 87
;YT, 87
;Z, 89

132 Index

I, 82
< >, 82
=, 79
I, 80
\, 80,81
t, 81

device DCB CAls, 106
device identification codes, 39,40
device options, SET command, 24
DISPLAY, 25
DONT COMMENT, 15
DONT LIST, 15
DONT OUTPUT, 15
DRSP, 4
Dynamic Replacement of Shared Processors, 4

E
E, 68
EBCDIC, 110
echoing characters, 7
Edit, 56,1, 14,58
Edit command structure

intrarecord commands, 66,57
record commands, 61,57
file commands, 57

Edit command summary, 72-76
Edit commands

BP, 60,61
BUILD, 58
CM,65
COPY, 58
CR, 60
D, 67
DE, 62
DELETE, 59
E, 68
EDIT, 58
END, 59
F, 67,68
FD, 64
FS, 64
FT, 64
IN, 61
IS, 61,62
JU, 69
l, 68,69
MD,63
MK,63
NO,69
0,68
P, 67
R, 68,69
RF, 70
RN, 65
S, 66,67
SE, 65
SS, 65

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numeri ca I sequence.

ST, 66
TA, 60
TC, 62
TS, 63,69
TY, 62,69

Edit messages, 70-72
Edit record formats, 56
END

Edit, 59
PCl, 52
TEL, 21

ending on-line sessions, 5
entering programs from terminal, 16
erasing characters, 7
erasing lines, 8
error codes, device fai lure or end of data, 120
error handl ing and end actions, 16
error messages

batch, 26
batch service, 28,29
Delta, 90
Edit, 70
Link, 98,99
PCl, 53,54
TEL, 26-28

error returns, COC routines, 105
errors, detecting and reporting, 9
ESC, 9
ESC (, 9
ESC C, 9
ESC E, 7,5
ESC ESC, 10
ESC F, 8
ESC I, 9
ESC P, 10
ESC Q, 10
ESC R, 8
ESC RET, 8
ESC RUBOUT, 7
ESC S, 9
ESC T, 8
ESC U, 9
ESC Y, 10
ESC X, 8
Executive Delta, 90
extension of output files, 15

F
F, 67
FD, 64
FDP, 19,2,16,21
fid, 14,40
file backup, 19
fi Ie extension, 15
fi Ie identification, 14
file identifier, 14,40
file management, 19'
fi Ie options, SET command, 24

FIll, 4
FORTRAN Debug Package, 2
FORTRAN IV, 35, 1,33
FORTRAN IV compilation options, 36,37
FORT 4, 35,1, 14
FS, 64
FT, 64

G
GET, 21
global symbols, 97, 17
GO, 21

H
half duplex paper tape reading mode, 10

I/O abnorma I codes, 117 -119
I/O error codes, 119- 120
IBM 2741, 10, 116
IBM 2741 and Teletype differences, 10
IN, 61
initiating execution, 18
initiating on-line sessions, 5
inserting spaces, 9
internal symbol tables, merging, 17
internal symbols, 97, 17
interpreting upper case as lower case, 9
interrupting UTS, 10
interrupting execution, 21
IS, 61,62

L
l, 68
libraries

public, 97, 17
system, 97

lineation, 8
LINK, 16- 18, 3, 98
Li nk command summary, 100, 98
LINK commands
LINK, 16-18,98
RUN, 19,98
link error messages, 98,99
Link processor, 96
linking object programs, 16
LIST, 15,50,51
I mn command, 18
load module, 17
load module structure, 96
load parameters, 25
load programs, 18
lOC RET, 8
lower case interpret mode, 9

Index 133

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

M
M:CT, 101
M:ERR, 102
M:EXIT, 102
M:INT, 103
M:KEYIN, 103
M:PC, 101
M:TYPE, 102
M:XXX, 102
MAILBOX fi Ie, 7,20
Manage, 4
managing files, 19
MD,63
MERGE, 59
messages to the operator, 26
META, 33, 14
META-SYMBOL, 33,2
META-SYMBOL assembly options, 33,34
MK,63
mode codes, COpy command, 43,44
Monitor error codes, 120, 121
Monitor error messages, 117
Monitor escape, 106
Monitor service ca lis

CALl,8, 102
M:ERR, 102
M:EXIT, 102
M:INT, 103
M:KEYIN, 103
M:TYPE, 102
M:xxx, 102

Monitor services, 101
multiline records, 56,57,8

N
NO, 69

o
0,68
on-I ine and batch differences, 102
on-line sessions, 5
OUTPUT, 15
output, printing or punching, 26

p
P, 67
page control, 106
page head i ngs, 106, 107
pagination, 8
paper tape, 10
paper tape input, 10
paper tape, half duplex reading mode, 10
PCL, 39

134 Index

PCL command summary, 54,55
PCL commands

COpy, 41-45
COPYALL, 46-48
COPYSTD, 48,49
DELETE, 49
DELETEALL, 49,50
END, 52
LIST, 50,51
REMOVE, 52
REVIEW, 51,52
REW, 52
SPE, 52
SPF, 52
TABS, 52
WEOF, 52

PCL conventions, 39
PCL error codes, 53,54
Periphera I Conversion Language, 39,3
PLATEN, 26
PRINT, 26
processors, on-I ine,
program, 96
program context, 96
program fi les, composing, 14
prompt characters, 7,21
public libraries, 97, 17
pure procedure, 96

Q

QC, 10
QUIT, 21

R
R, 68
RATES, 3
read operations, 104
record sequencing options, COpy command, 45
reel, ID, 40
reel identifier, 40
REMOVE, 52
restricting input to upper case, 9
resuming execution, 21
retyping the current line, 8
REVIEW, 51
REW, 52
RN, 65
RUBOUT, 7
RUN, 19

s
S, 66
SAVE, 21
SC, 10

Note: For each entry in this inde)(, the number of the most significant page is listed first. Any pages thereafter are listed in
numeri ca I sequence.

SE, 65
SET, 22,23
SET command

DCB assignment codes, 23
device options, 23,24
fi Ie options, 24,25

SET DCB CALs, 106
simulating tab stops, 8
simu lating tab charocters, 9
spaces, inserting, 9
SPE, 52
SPF, 52
SS, 65
ST, 66
standard character sets, 109
standard codes, 109
standard symbol-code correspondences, 111
standard symbols, 109
standard 7-bit communication codes, 110
standard 8-bit computer codes, 110
START, 19
STATUS, 25
STOP, 21
subsystems, calling, 20
Summary, 4
Super, 3
symbol tables, 97, 17
symbols

global, 97, 17
internal, 17,97
UTS standard, 109

SYSGEN, 4
system library, 97

T
TA, 60
tab characters, simulating, 9
tab relative mode, 9
tab simu lation, 108
tab stops, simulated, 8,25
TABS

Edit, 52
TEL, 25

TC, 62
TEL, 13, 1
TEL command summalry, 29-32
TEL commands

BACKUP, 20
BATCH, 20
BUILD, 14
COMMENT, 15
CONTINUE, 21
COPY, 19,20
DELETE, 20
DISPLAY, 25
DONT COMMENT, 15
DONT LIST, 15
DONT OUTPUT, 15
EDIT, 14

END, 21
FORT4, 14
GET, 21,22
GO, 21
JOB, 20
LINK, 16-18
LIST, 15
Imn, 18
MESSAGE, 26
META, 14,33
OUTPUT, 15
PLATEN, 26
PRINT, 26
QUIT, 21
RUN, 19
SAVE, 21,22
SET, 22,23
START, 19
STATUS, 25
STOP, 21
TABS, 25
TERMINAL, 26

TEL error messages, 27
Teletype, 10
Teletype terminal keyboard, 6
Terminal Executive Language, 13, 1
terminal keyboard, 6
terminal operations, 5
terminal platen size, 26
terminal type, changing, 25
terminating execution, 21
terminating lines, 8
transparent mode, 108
TS, 63,69
TY, 62,69
typing ahead, 8
typing commands, 9
typing lines, 7

u
user status, 25
USTPM, 4

w
WEOF, 52
write operations, 104

x
X-OFF, 10
X-ON, 10
X D S standard symbol-code correspondences, 111- 114
XDS standard symbols, codes and correspondences, 109

Index 135

Xerox Data Systems

READER COMMENT FORM XEROX~
We would appreciate your comments and suggestions for improving this publication.

Publication No. IRev. Lette,: I Title I Current Oate

How did you use this publicaticm? I s the material presented effectively?

D Learning 0 I nsta II ing 0 Operating 0 Fully covered 0 Well illustrated

0 Reference 0 Maintaining 0 Sales 0 Clear 0 Well organized

What is your overall rating of this publication? What is your occupation?

D Very good 0 Fair o Very poor

0 Good 0 POior

Your othel' comments may be entered here. Please be specific and give page, column, and
line number references where applicable. To report errors, please use the XDS Software
Improvement or Difficulty Report (1188) instead of this form.

-

Thank you for your interest. Your name and return address.

Fold and fasten as shown on back.
No postage needed if mailed in U.S.A.

2190(5/71) Xerox Data Systems

STAPLE

FOLD

FOLD

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY

Xerox Data Systems

701 South Aviation Boulevard
EI Segundo, California 90245

ATTN: PROGRAMMING PUBLICATIONS

STAPLE

------l

FIRST CLASS
PERMIT NO. 229

EL SEGUNDO, CALIF.

I
-------------..,

w
Z
.....J

<.9
Z
o
.....J
«
f­
::J
U

Xerox Data Systems

XEROX~
701 South Aviation Boulevard
EI Segundo, California 90245
213679-4511

Xerox IS a registered trademark of Xerox Corporation

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	replyA
	replyB
	xBack

