Xerox BTM/BPM/UTS

Dg SSSSSSSSSSSSSSS rs

Overlay Loader
Technical Manual

X EROXEROXEROXEROXEROXEROXEROX
DXEROXEROXEROXEROXEROXEROXERC
BROXEROXEROXEROXEROXEROXEROXERK
ROXEROXEROXEROXEROXEROXEROXE
EROXEROXEROXEROXEROXEROXEROXE
IXEROXEROXEROXEROXEROXEROXEROX
PROXEROXEROXEROXEROXEROXEROXER(C
MROXFROXEROXFROXEROXEROXEROXER
ROXEROXEROXEROXEROXEROXEROXE
KEROXEROXEROXEROXEROXEROXEROX
IXEROXEROXEROXEROXEROXEROXERO
{OXEROXEROXEROXEROXEROXEROXERC
B ROXEROXEROXEROXEROXEROXEROXET
& [ROXEROXEROXEROXEROXEROXEROXE
IXEROXEROXEROXEROXEROXEROXEROX
OXEROXEROXEROXEROXEROXEROXERC
ROXEROXEROXEROXEROXEROXEROXER
CYROXEROXEROXEROXEROXEROXEROXE
EROXEROXEROXEROXEROXEROXEROXI

701 South Aviation Boulevard
E! Segundo, California 90245
213 679-4511

©1971, 1972, Xerox Corporation

Xerox BTM/BPM/UTS

Sigma 5-9 Computers

Overlay Loader

Technical Manual

90 18 03B

June 1972

Price: $5.00

R0X

Printed in U.S.A.

REVISION

The Overlay Loader described in this manual operates under the BOO version of UTS and the FO1 version of BPM/BTM.
Changes in the text marked by revision bars apply only to UTS. The previous (A) edition of this manual completely
describes the loader operating under the FO1 version of BPM/BTM.

RELATED PUBLICATIONS

Title Publication No.
Xerox Sigma 5 Computer/Reference Manual 90 09 59
Xerox Sigma 6 Computer/Reference Manual 90 17 13
Xerox Sigma 7 Computer/Reference Manual 90 09 50
Xerox Sigma 8 Computer/Reference Manual 90 17 49
Xerox Sigma 9 Computer/Reference Manual 90 17 33
Xerox Universal Time-Sharing System (UTS)/TS Reference Manual 90 09 07
Xerox Universal Time-Sharing System (UTS)/SM Reference Manual 90 1674
Xerox Universal Time-Sharing System (UTS)/OPS Reference Manual 90 16 75
Xerox Batch Processing Monitor (BPM)/System Technical Manual 90 15 28
Xerox Batch Time-Sharing Monitor (BTM)/Edit Subsystem Technical Manual 90 19 11
Xerox Batch Time=Sharing Monitor (BTM)/Delta Subsystem Technical Manual 90 1879
Xerox BPM/BTM/UTS/Sysfem Generation Technical Manual 90 1877
Xerox Batch Processing Monitor (BPM)/BP, RT Reference Manual 90 09 54
Xerox Batch Processing Monitor (BPM) and Batch Time~Sharing Monitor (BTM)/OPS

Reference Manual 90 1198
Xerox Batch Time-Sharing Monitor (BTM)/TS Reference Manual 90 1577

Manual Content Codes: BP —batch processing, LN — language, OPS —operations, RBP —remote batch processing,
RT —real-time, SM —system management, TS — time-sharing, UT —utilities.

The specifications of the software system described in this publication are subject to change without notice. The availability or performance of some features
may depend on a specific configuration of equipment such as additional tape units or larger memory. Customers should consult their Xerox sales representative
for details.

PREFACE

GLOSSARY

1.0

2.0

3.0

ENVIRONMENT

1.1
1.2

Introduction
System Interface and General Operating
Characteristics
Loader Operation Under BPM

or UTS

1.2.2 Loader Entry/Exit
1.2.3 What the System Does with the

Loader's Output

1.2.1

GENERAL OPERATING CHARACTERISTICS

2.1

2.2

2.3

2.4

2.5.

Functional Overview
2.1.1 Loader Terminology
2.1.2 The First Pass
2.1.3 The Second Pass
2.1.4 Advantages of a Two-Pass Loader__
Structure: The Major Pieces
2.2.1 LDR
2.2.2 The First Pass
2.2.3 The Second Pass
2.2.4 Forming the Loader
How the Loader Uses Memory
2.3.1 Partitioning Core for the
First Pass
2.3.2 Partitioning Core for the
Second Pass
How the Loader Obtains Memory
2.4.1 Loader Running Under BPM
2.4.2 Loader Running Under UTS
Maintaining the Loader, DEBUG Mode ——

INPUT, OUTPUT, LOADER-GENERATED

3.1

3.2

TABLES

Input

3.1.1 LOCCT, ROM, Tree Tables

3.1.2 Files (ROMs and Load Modules)
3.1.3 Registers and JIT Input

3.1.4 ASSIGN Record

3.1.5 Error Message File (ERRMSG)______
3.1.6 Modify File (idD)

3.1.7 Core Libraries (UTS only)

Output

3.2.1 load Modules, Overall Format

3.2.2
3.2.3
3.2.4
3.2.5
3.2.6

Library Load Modules

REF/DEF Stack

Expression Stack

Relocation Dictionary .

Miscellaneous (Map, Diagnostics,
Severity Level)

CONTENTS

16
16
17
19
19
20
20

20

21
27
27
27
27

29

29
29
37
38
39
39
4
41
42
42
44
45
50
52

53

4.0

5.0

6.0

3.3 Loader-Generated Tables

3.3.1 Formats for the TCB and
DCB Name Table
TREE

2
.3 REF/BREF Tables
.4 DCBs

3.4 Examples

A Sample Program

The ROM

The Load Module

ARADND Www

WWWWwMmMmwww
AWON —

The Relationship Between the
Expression Stack and the
REF/DEF stack

DESCRIPTION OF THE FIRST PASS

4.1 INIT1 — Initialization for the First Pass
4.2 PASS1

4.2.1 The Main Loop

4.2.2 Object Module Processor
(LP1-Pass One)

4.2.3 Load Module Processor
(ADLDMD=-Pass One)

4.2.4 The Librarian (SATREF)

PREPARING TO FORM THE CORE IMAGE

.1 IN2

5
5.2 PS2 — The Driver for the Second Pass
5.3

ALL — Memory Allocation

FORMING THE CORE IMAGE (EVL)

6.1 EVEXPRS

1
6.2 LOADSEG

E

L

6.2.1 The Main Loop

6.2.2 Object Module Processor
(LP1-Pass Two)

6.2.3 Load Module Processor

(ADLDMD-Pass Two)

7.0 WRITING THE LOAD MODULE (WRT)

8.0

APPENDIX A,
INTERNAL SYMBOL TABLES (UTS Only)

FINISHING UP (FIN)

LOADER-GENERATED

APPENDIX B. STORAGE LAYOUT

OF STUFF

58
58
58
58
60
62
62

62
65

66

68
68
72
72
72
78
82

86

88
88

21

91
92
92

93

105
108

19

126

134 |

%a.

9.

10.

1.

12.

13.

14.

15.

15b.

16.

FIGURES

Load Module Layout at Run-Time
Segment Processing Sequence, Pass One

The First Pass — General Flow

Segment Processing Sequence, Pass Two
The Second Pass — General Flow
Loader's DATA (00) Area (Within LDR)
How the Loader Uses Memory: Pass One

How the Loader Uses Memory: Pass Two —
Nonextended Memory Mode

How the Loader Uses Memory: Pass Two —
Extended Memory Mode, Construction
of Core Image Records

How the Loader Uses Memory: Pass Two —
Extended Memory Mode, Concatena-
tion of Core Image Records

Loader Control Command Table (LOCCT)

ROM Tables

Tree Tables

TREE Table Linking — in Relation to

the Overlay Structure

LOCCT, TREE, and ROM Table

Relationships

ERRMSG File

Variable Diagnostic Information

Recognized DCBs and Their Defaults

1

12

14

15

18

21

23

25

26

32

33

35

36

40

55

61

20a.

20b.

21.

22.

23.

24.

25.

26.

27a.

27b.

27c.

28.

29.

30.

31.

32.

The Loader Driver (in LDR)
Flow Chart

INIT? Flow Chart

Declaration Stack Format

PASST Object Module Processor (LP1)
Flow Chart

PASS1 Load Module Processor

(ADLDMD) Flow Chart
Core Library Association Flow Chart

INIT2 Flow Chart

ALLOCATE Flow Chart

Format of the Keys of idX
(Extended Memory File for
Standard Load Module)

Snapshot of Core Usage During EVL

PASS2 Object Module Processor
Flow Chart

Field and Expression Logic Flow Chart

EXPRIN Flow Chart

GETVAL Flow Chart

PASS2 Load Module Processor Flow Chart

WRITESEG — Overall Flow

WRITELIB Flow Chart

FINISH Flow Chart

Memory Layout During MAPER
Routine

70

71

73

76

81

85

87

90

93

94

101

102

103

104

106

109

114

121

123

PREFACE

This document describes the purpose and architecture of the Overlay Loader within the environment of BPM or UTS,
It is assumed that the reader is familiar with the usage of BPM/UTS Monitor services as well as the Sigma Standard
Object Language (see the BPM/BTM/SM Reference Manual, 90 17 41).

GLOSSARY

CCI (Control Command Interpreter): a processor (brought
into core by the Monitor) which reads the |LOAD card
and records the information in an LOCCT Table.

core image: that part of a load module which is laid into
core af execution time,

core library: for UTS, a special collection of files under
the :SYS account for association with FORTRAN
programs,

DCB (Device Control Block): a table for use by the Monitor
in performing an 1/O operation.

DCB Name Table: a loader-built table which directs the
Monitor to the location of a particular DCB within a
program.

declaration stack: a Loader stack which serves to keep track
of the declarations made in a given ROM,

DEFCOM: a processor which outputs a special type of load
module.

expression stack: for any segment, a collection of expres-
sions defining DEFs and forward references and expres-
sions whose values are to be placed in the segment's
core image.

extended memory mode: a mode in which the Loader builds
core images and relocation dictionaries in page-sized
records within a file on the RAD.

HEAD: a key to one of the records of a load module file,
the record containing basic size and source information.

idB: a CCI-built table containing information from the BI
device (when BI is specified on the LOAD card).

idD: a file built by CCI on the basis of IMODIFY cards
following the ILOAD card.

idG: the file name the Loader uses to access information
specified by the GO option.

idL: the file name assigned to a load module if no name is
specified via the LMN option.

idX: the name of the intermediate file used during the ex-

tended memory mode to build standard (i.e., nonpaged)
core image and relocation dictionary records (BPM only).

vi

JIT (Job Information Table): a Monitor table of information
pertinent to the job currently in execution.

library: the term ascribed to two files, :LIB and :DIC, which
are constructed by the Loader.

load item: a string of bytes representing a "clause" in ob~
ject language.

load module: a keyed file which is output by the Loader
{and several other processors).

LOCCT (Load Control Command Table): a table which the
Loader must access for its own control card input.

object language: the language generated by assemblers and
compilers to convey information to the Loader.

PASS3: a processor which calls the Loader to form a load
module,

path: a collection of segments of a program which can re-
side in core at the same time.

REF/DEF Stack: a Loader-built stack for each segment whose
entries contain values for control sections, external
names (DEFs, REFs, SREFs), and forward references.

relocation dictionary: a record constructed by the Loader
which indicates how to relocate each word of a corres-
ponding core image record.

ROM (Relocatable Object Module): a type of input compo-
nent to the Loader which was generated by an assembler
or compiler.

segment: a piece of a program which may be replaced in
core by another piece of the program.

stack path: the collection of REF/DEF or expression stacks
belonging to the segments on a given path.

system id: a job~oriented identification number determined
by the Monitor and supplied to the Loader via the
LOCCT Table.

TCB (Task Control Block): a Loader-built table containing
the user's temp stack and areas for system use.

TREE: a collection of tables reflecting the overlay structure
of a program.

ENVIRONMENT

INTRODUCTION

The purpose of any loader is to translate and unite its input (ROMs and libraries) into such a form
that the output (a l.ood module) may be executed under the target operating system, Accordingly,
the Overlay Loader performs those functions which might be expected of any loader operating
under BPM or UTS:

a. Process ROMs producing continuous sections of data, procedure, and DCBs
(or static data if BPM), insuring a page boundary for the three protection

types (00, 01, 10, respectively).
b. Satisfy REFs among the ROMs,
c. Access "libraries" to satisfy PREFs,
d. Build DCBs.
e. Build a DCB Name Table for Monitor use.

f. Build o TCB.

The special characteristics of the Overlay Loader are identified as follows:
a. Create Overlay Programs

An overlay program is one which has only one piece (segment) resident in core
permanently. The other segments are called by the M:SEGLD procedure and
brought into core as needed. These segments may reside (at different times) in
the same core areq, thus reducing the amount of core required to house the

entire program,

Since, in general, a program may consist of three areas (one per protection type),
each beginning on a page boundary, the Overlay Loader must have the ability to

create the three trees, each beginning on a page boundary.

C.

e,

Reference Loading

If the user does not choose to maintain responsibility for calling the segments

of an overlay program (by explicitly using M:SEGLD), he may direct the
Loader to insert the M:SEGLD code into his program by specifying REF or BREF
on the |LOAD card. This code is built, in the BREF mode, wherever there is

a branch type instruction involving a REF to a higher segment. In the REF mode,
it is built wherever there is any expression whatsoever involving a REF to a

higher segment,

Load Module Libraries

It is desirable to maintain libraries of frequently used routines which are themselves

already in load module form, since subsequent inclusion of a library module would

be faster than processing the original ROM language.
Relocatable Load Modules

The Loader creates a relocation dictionary which allows subsequent placement of
the load module into a core area other than the one at which it was originally
biased. Relocation is accomplished via a BIAS option on the !RUN command for
BPM. (NOTE: UTS does not allow a BIAS on the !RUN card; hence for UTS,
the only use of the relocation dictionary is in the case of merging a library load

module into another program.)
Dummy Sections

The Loader has the ability to recognize dummy sections of the same name in
various modules and to allocate on the basis of the largest one encountered,
This feature is generally used in large FORTRAN programs which rely heavily
on COMMON (COMMON is a form of dummy sectioning).

1.2 SYSTEM INTERFACE AND GENERAL OPERATING CHARACTERISTICS

1.2.1 Loader Operation Under BPM or UTS

The Loader operates under BPM or UTS and produces either BPM or UTS load modules. These
load modules are not interchangeable due to differences in the format of the HEAD record and
in the allocation of the DCB area (see Section 3,2.1). Neither are the Loaders themselves
interchangeable. That is, the UTS Loader will not operate under BPM and vice versa, due to
differences in obtaining memory (see Section 2,4), An assembly parameter will select those
areas of loader code which are unique to BPM or UTS., The parameter is MODE, At assembly

time, in each source module except the last, this parameter must be set to O for BPM and 1 for

UTS.

1.2.2 Loader Enhl/Exit

Loader entry/exit is via CCI or the SYSGEN PASS3 processor (as a result of !LOAD or !PASS3),
If the Loader is entered via CCI, the !LOAD and !TREE cards and (optionally) the BI device are
read by CCl and packaged into tables (see Tables, Section 3.1, 1) prior to entry. If entry is
through PASS3, these tables are accessed from a previously existing file (created by the 1LOCCT
processor) and presented to the Loader in the same form that CCI would have presented them.
The Loader decides which return to execute (an M:EXIT to CCI or an M:LDTRC to PASS3) on the
basis of register or JIT input, Also, for UTS, if the Loader is to exit to PASS3, it must first

"release" all memory which it obtained (via M:GP or M:GCP or M: GVP).

1.2.3 What the System Does With the Loader's Output

A 'RUN command will cause the "Program Loader" (in BPM-PRGMLDR, in UTS-FETCH) to
access the load module file, modify and/or relocate it, lay it into core per the dictates of its
HEAD and TREE records and transfer control to the START address (whereupon the program is

"in execution"), Figure 1 shows the user program as it sits in core during execution.

If the program is overlaid, at some point it will issue an M:SEGLD call. (This was part of the
user's code or was inserted by the Loader per the REF/BREF option.) Since a copy of the TREE
is always a permanent part of the root segment (protection type 01), the segment loader has all
the information it needs to access the desired segment, deposit it in its destination, and record

the fact that the segment is now in core (to avoid unnecessary reloading in the future).

Branching between segments is the user's responsibility if he issued an explicit M:SEGLD, If

REF or BREF is in effect, the branching is automated by the Loader-built table entry,

(2£/8)1-9€0 81 06

General Picture

Background Lower Limit

f t

Next doubleword

or LOAD BIAS

Data(00) * Procedure(01) Static Data(10)** Dynamic Data *Shaded areas are unused.
o Run-time Menitor **St tic Data i I
i T debu . . atic Data is generally
BPM Monitor Root(00) | Overlay(00) B Root(01) | Overlay(01) Root(10) | Overlay(10) fcble% M:GP M:GCP usage empty.
(1 page)
f !
Background Lower Limit Page Boundary Page Boundary Page Boundary Next Page ~ Background Upper Limit |
DCB(10) Data(00) Procedure(01) Dynamic Data
User's Szgagme Monitor,
uTsS Monitor | JIT DCBs Monitor Root(00) Overlay(00) Root(01) | Overlay(01) tables M:GP M:GCP | shared processors,
(1 page) core library procedure
{ ! t
Background Lower Limit Page Boundary Page Boundary - Next Page End of User Pages (J:EUP in JIT)
Detail of Root
Data(00) Procedure(01)
BPM Blank | 7cp | Control Tree table | DCBname | REF/BREF | pepe | control sections
common sections table tables
Background Lower Limit or
LOAD BIAS or
RUN BIAS
L e e e e e e e e — e — — — — 4
Data(00) Procedure(01) DCB(10)
uTs Core library's | Blank 1CB Con-trol Tree table REF/BREF Con.trol DCB name DCBs
context area common sections tables sections table

t

Notice that the 10 area is actually

placed below background.

Figure 1. Load Module Layout at Run-Time

2.0

2.

2.

1

1.

]

GENERAL OPERATING CHARACTERISTICS

FUNCTIONAL OVERVIEW

Loader Terminology

At this point, it might be well to review some fundamentals of the object language and

define some terminology relative to the Loader.

Q.

Declaration Numbers

Within a given ROM, all control sections, DEFs, PREFs, SREFs are declared; that is
to say, each is assigned a "declaration number". (The ROM assigns declaration
numbers consecutively.) In an expression which involves any of these items, the
ROM refers to them via their declaration number. The Loader, therefore, must
remember these numbers; it does so by building a declaration stack as the numbers
are encountered within the module. (The stack is destroyed at module end since it
has no meaning for the next module.) An entry in the declaration stack is simply a
pointer to the proper entry in the segment's REF/DEF stack (which will eventually

contain the complete story about that declaration).

Dummy Sections

Within a ROM, a dummy control section is treated as both a DEF and a control
section. In particular, the ROM must first declare the dummy section's name (the
label that is to be associated with the first location of the section) as an ordinary
external definition. Subsequently, the ROM declares the dummy section itself as
a control section (via 'Declare Dummy Section'). This declaration refers to the
previously declared label, thereby associating the name with the dummy control

section.

Expressions

The value of a DEF, Origin, Start or forward reference is given to the Loader from the
ROM via an expression. Load items to be placed in the core image also involve expres-
sions. An expression consists of operators (control bytes) which operate on constants,
declarations, and forward reference numbers, Thus, an expression might say "add the
value of declaration 5 with the constant X'10'", When the Loader wants to calculate

the result of ("evaluate™) this expression, it first looks in the fifth entry of the declaration
stack to get a pointer to the proper REF/DEF stack entry. Next it adds the value word of
that REF/DEF entry to the expression accumulator and then adds the value X'10' to the

expression accumulator,

Forward Reference Numbers

Within a ROM we will encounter expressions involving forward references, These are
referred tovia random numbers, Therefore, the Loader must keep track of them in a
similar way that it keeps track of declaration numbers. This is done by creating an entry
in the REF/DEF stack containing the reference number. When a forward reference number
is encountered in an expression, the Loader searches the REF/DEF stack for a match, If
none is found, a new entry is created. Since the numbers are meaningless for the next

module, the Loader "releases" them at module end.

Forward references are of two types: those which can be resolved by module end or sooner,
and those which cannot be so resolved. The latter type consists of forward references
whose defining expressions contain REFs or DSECTs. When the expression to define the
forward reference is encountered, it will indicate which of the above was meant (define
forward reference (DFREF) or define forward reference and hold (DFREFH)). A DFREF

expression implies that the corresponding forward number is now closed and invalid;

a new expression involving that number refers to a new forward reference. The Loader
must mark its REF/DEF entry as such ("release" it). On the other hand, a-DFREFH expres-
sion implies that the number may occur within another expression. Therefore, it is still

valid and cannot be released until module end. Notice that the number is always released

at module end, even though the forward reference itself may not be resolved yet,

Files, Segments, and Paths

A segment is made up of files (ROMs or load modules) and is a piece of the target load
module. A segment may be overlaid by another segment. A path of an overlay structure
is a set of segments which reside in core at the same time. The root is the segment which
is always in core. In Figure 2, there are three paths: S0-51-53, SO-51-S4, and S0-S2,

Given a segment we may speak of its back-link, forward-link, and overlay-link. (The

forward-link is also called the "sublink"-.)

Referring again to Figure 2:

Segment Back-Link Forward-Link ~ Overlay-Link
SO None S1 None
S1 SO S3 S2
S2 SO None None
S3 S1 None S4
S4 S1 None None

f. Loader Stacks
The Loader forms three stacks: the declaration stack, REF/DEF stack, and expression stack.
The declaration stack is created and destroyed for each ROM, An entry in the declaration
stack is simply a pointer to that entry in the REF/DEF stack which describes the declaration.
The REF/DEF stack is really a misnomer since it includes an entry for every declaration
(control section, DEF, REF, SREF) as well as for forward references.
The expression stack contains defining expressions for DEFs and forward references, as

well as expressions whose value is to be added to a word in the core image itself (core

expressions).

The components of an expression are operators (control bytes) acting on declaration
numbers, forward reference numbers, and constants, The value (result of performing the
operations, e.g., add value of declaration, add constant, etc.) is either placed in the
VALUE word of the REF/DEF stack or in the core image if it is a core expression.

The Loader creates a REF/DEF and expression stack for each segment. These stacks are
created along a path, The Loader's stack area will develop in the same way that the seg-
ments are overlaid. In Figure 2, if we are working on S4, then the stacks for SO and S1
and S4 are in core. If stack S4 is in core, stack S3 will not be, since they are on
different paths. (This implies, incidentally, that if one segment is to communicate with
another via REFs and DEFs, they must lie on the same path.) We refer to a "stack path"

as the set of stacks belonging to a given path,

2.1.2 The First Pass

The first pass gathers all information relative to the sizes of major pieces of the load module
(i.e., the size of each protection type per segment and the stack sizes). Additionally, the first
pass provides the second pass with an efficient means of developing the core image by constructing

the REF/DEF and expression stacks. As it scans each input component (ROM or load module),

Pass One examines only that information necessary to accomplish these two functions; viz.
size computation and stack construction. Any information not relevant to these functions

is ignored until Pass Two.

If the component is a ROM, the sizes are to be found in the "declare control section"
load items. Pass One accumulates each control section size in the appropriate protection
vfype of the TREE. A REF/DEF entry is also built for each "declare control section" load
item, as well as for load items which declare names as forward references. (For each
name declaration, either a new entry is added to the REF/DEF stack or an cld one is
modified.) Expression stack entries result from load items which define external DEFs or
forward references. (When a new entry is made in either the REF/DEF or expression stack,
the size of that stack is updated in the TREE.) All load items dealing with the content of

the core image (e.g., "load relocatable") are ignored.

If the component is a load module, the HEAD and TREE records contain the sizes of the
core image and the stacks. These are added to the TREE. The load module's stacks are
then merged with the ones being constructed. The core image and relocation dictionary

records are ignored until Pass Two.

At the end of processing each segment's explicit element files, the REF/DEF stack is
scanned for al | PREFs except those having names starting with M: or F: (for which the
Loader will build DCBs). For each PREF found, Pass One searches those libraries specified
on the LOAD card for a load module which will satisfy the PREF. If it finds one, the load
module's name is added to the list of input files (ROM Tables), the size is recorded in the

TREE and its stacks are merged with the ones being built.

10

The sequence of processing the overlay structure is from the root segment outward, as shown in

Figure 2. Figure 3 shows the general flow during Pass One,

®

S3

(2:\

S

® L ©

S4

50 (5)

S2

Figure 2. Segment Processing Sequence, Pass One

At the end of the first pass we have:

a. sizes of the segments per protection type, including the sizes of modules obtained

from the library. These sizes are in the Tree Tables.

b. a REF/DEF and expression stack for each segment written to the RAD. The stacks
are structurally complete. They include the merged library stacks. The value and

resolution for each REF/DEF entry is not determined until the second pass.

c. defining expressions for DEFs and FREFs in the appropriate expression stacks.

The expression stacks also include expression stacks from library load modules.
d. sizes for the REF/DEF and expression stacks in the Tree Tables.

e. ROM Tables augmented by the names of library load modules pulled in as a

result of satisfying PREFs,

11

Enter
Pass One

INIT]

Allocate work space for
PASS1.

PASSI |

Set Current Segment
(CSEG) to ROOT,

LP1 or ADLDMD

Process input files
(ROMs or load mod-
ules). Building stacks
and accumulating sizes.

SATREF

Satisfy any PREFs except
M: or F: from Librories.

STANDARD

OPL2 [

Set CSEG to Sublink.

Write CSEGs Expr.
Stack, adjust stack
pointer to remove
this stack.

Flag DCBs to be built
by Loader.

EXIT
PASS1

no

Write CSEGs REF/DEF
Stack, adjust stack
pointer to remove this
stack.

Set CSEG to Overlay
Link.

Set CSEG to
Back-Llink.

Figure 3. The First Pass — General Flow

12

2.1.3 The Second Pass

This pass develops the actual core images and relocation dictionaries and writes the load module

to the RAD.

Based on the sizes known from PASS1, core is partitioned into the stack area and buffers for the
core images and relocation dictionaries. If this partitioning is not possible, Pass Two goes
into "extended memory mode", meaning that the core images and dictionaries will be developed

within an intermediate RAD file, page by page.

The expression and REF/DEF stacks for an entire path are brought into core and, from the size

and protection type of every control section, locations are assigned to all of the sections (the

control sections are "allocated") along this path,

After evaluating and defining all possible DEFs and FREFs, Pass Two is now in a position to
reread the input files (proceeding backwards along a path). As it reads, it places data in the
core and relocation buffers (or into the extended memory mode file, as the case may be) as per
the dictates of the load items, When a segment is complete, its REF/DEF stack, expression stack,
core images, and relocation dictionaries are written out (unless we are in extended memory mode,
in which case processing of the paged core image and relocation dictionary records

is deferred until the root segment has been constructed).

The sequence of forming the core images for an overlay structure proceeds from the sublinks
back toward the root, but, as mentioned, allocation occurs forward along a path (see

Figure 4).

13

3)

S3 (/ S3 @

s Sl
@ ss @

O . L 9,

50 52 S0 52

Sequence of Core Image Allocation Sequence of Forming Core Image
Per Segment Per Segment

Figure 4. Segment Processing Sequence, Pass Two

Special attention comes into play when we reach the root segment at the end of the second pass.
If extended memory mode is in effect, the load module must be reconstructed from the page rec-
ords of the extended memory mode file which were created during the formation of the core image
In any case, the TCB and DCBs are built, the HEAD and TREE records are written, necessary
modifications per | MODIFY cards are made, the severity level is printed, and the Loader

returns control to CCI or PASS3.

Figure 5 shows the general flow of Pass Two.

14

Enter the
2nd pass.

INIT2

Partition core. Set
XMEM if necessary.

NEXTSEG3 ‘

Set current segment
(CSEGH1) to root.

Set CSEG to sublink.

Read CSEG's stacks.

ALLOCATE {

Assign locations to all
control sections.

EVEXPRS

Evaluate path's
expressions.

LOADSEG

Process input files (ROMs
or lood modules) forming
core images ond reloca-
tion dictionaries within

buffers or XMEM file.

l

Write CSEG's REF/DEF
and EXPR stacks.

4

Write core images and

relocation dictionaries.

Set CSEG to overlay
link.

Pull CSEG's stacks, and
location counters (DLOC,
PLOC, and SLOC) back
to the beginning of this
segment,

Reconstruct load module
from XMEM file or clean
up paged load module.
Write load module.

Exit the
2nd poss.

EXIT
PASS2

Set CSEG to Back Link.

Figure 5. The Second Pass — General Flow

15

2.1.4 Advantages of a Two-Pass Loader

2.2

a. The primary advantage is accorded to FORTRAN programs which use Blank COMMON.

A two-pass Loader has the ability to discover the largest dummy section of the same name

(dummy sections are intrinsically externally defined) and to allocate accordingly. This

would be, if not impossible, an extremely difficult matter for a one-pass Loader.

b. A one-pass Loader has difficulty with overlaid load modules having more than one

protection type. The problem arises in determining how many pages of memory should be

allocated for the 00 protection type before allocating for the C1 protection type. A two-

pass Loader can compute, in its first pass, the size each protection type requires and can

allocate memory accordingly for the second pass.

STRUCTURE: THE MAJOR PIECES

The Overlay Loader is a two-pass Loader; that is, the ROMs and load modules from which the

target load module is constructed are read two distinct times.

The Loader is composed of nine

ROMs. These ROMs may be grouped according to their usage in the first or second pass.

When Used File Name

Entry Points

Throughout LDR
both passes

First Pass INI1
PSI1

Second Pass IN2
PS2
ALL
EVL
WRT
FIN
MOD

LOADER

INIT1
PASS1

INIT2

PASS2

ALLOCATE
LOADSEG, EVEXPRS
WRITESEG

FINISH

MODIFY

16

Catalog No.

704724

704725
704726

704727
704728
704729
704730
704731
706258
705396

2.2.1

LDR
This ROM is a collection of frequently used subroutines, temp space, variable data,
DCBs and a driver which contains the start address (LOADER) and which subsequently

BALs to the first and second passes and exits.

The LDR module contains the Loader's only DATA area (one page). This area is
composed of two parts: a temp stack (pointer in RO) and a collection of variable data
(stack pointer, doubleword buffer pointers, location counters, etc.). See

Appendix B for a description of the use of the variable data cells in the loader's

STUFF stack.

Figure 6 illustrates the format of this area.

17 90 18 03-1(8/72)

DECLSTK{>

b e — = - —— — —

Doubleword

RFDFSTK-{>

REF/DEF Stack Pointer

Doubleword

-4

EXPRSTK{>>[

Expression Stack Pointer

Doubleword

Declaration Base

REF/DEF Base

Expression Base

A

Miscellaneous Variable data such
as OPEN lists, card and
printer buffers, buffer pointers, etc.

r~— g

RO points here——»

Doubleword

Temp stack begins-—»

here

DECLSTK+X'100"

A couple of subroutines placed
here to fill up the Loader's
Data page.

DECLSTK+X'IFF!

Figure 6.

Loader's DATA (00) Area (Within LDR)

18

gt

2.2.2 The First Pass

IN1

PS1

2.2.3 The Second Pass

IN2

PS2

ALL

EVL

WRT

FIN

MOD

eni'ry/exif from LDR.

allocates the work space for PS1.

reads the LOCCT, ROM, TREE Tables.
reads and processes the ASSIGN record.

entry/exit from LDR.

reads and processes ROMs and load modules, collecting the
information necessary to ascertain sizes of control sections
and maximum stacks.

satisfies PREFs from libraries.

writes out interim stacks.

entry/exit from LDR.
allocates the work space for the second pass, determining
if extended memory mode is necessary.

entry/exit from LDR.

a driver for the second pass.
calls ALL, EVL, and WRT.
reads current segment's stacks.

entry/exit from PS2.
assigns locations to all control sections.
prints load module allocation summary.

has two entry points, EVEXPRS and LOADSEG, both from PS2.

evaluates expressions from PASS1 and core expressions from load modules.
forms core image and relocation dictionary going through extended
memory mode logic.

builds reference loading table.

entry/exit from PS2.

creates TCB and DCBs, and the DCB Name Table.

concatenates the pages of the extended memory mode file for a
standard load module.

cleans up the paged core image records for a paged load module.
writes the load module to the file.

entry/exit from LDR.

updates and prints severity level.
reads idD and calls MOD.
generates load map.

entry/exit from FIN.
performs the modifications per IMODIFY cards which followed
the 1LOAD.

19 90 18 03B-1(8/72)

2.2.4 Forming the Loader

If the Loader is overlaid, it bears the following TREE structure:

ITREE LDR-(INT, PS1,IN2, PS2-(ALL, EVL, WRT), FIN-MOD)

IN1
PS1
IN2
LDR ————— ALL
PS2
EVL
WRT

FIN-MOD

The UTS Loader is overlaid according to the following TREE structure:
ITREE LDR-PS2-:JO—-(INT1, PS1, IN2, ALL, EVL, WRT, FIN-MOD)

INT

PS1

IN2
LDR-PS2-:JO ALL

EVL

WRT
FIN-MOD

The tree structure is such for the UTS Loader because, as a shared processor, the Loader is
allowed only one level of overlay. Note also that the file :JO (in :SYS) must be listed as
the last element file when forming the UTS version:

ILOAD (LMN, LOADER), (NOTCB), (NOSYSLIB), (SL, F), ;
I (EF, (LDR), (IN1), (PS1), (IN2), (PS2), (ALL), (EVL), (WRT), (FIN), (MOD), (JO, :5YS))

2.3 HOW THE LOADER USES MEMORY

2.3.1 Partitioning Core for the First Pass

Recall that the first pass, after it has read the LOCCT, ROM, and TREE Tables, constructs the
REF/DEF and expression stacks. (The declaration stack is volatile for each ROM.) Accordingly

the partition concerns itself with only these areas. (Partitioning for the first pass is done by INT.)

20

2.3.2

Background Lower Limit
LOADER T
DATA See Figure 6 for Detail.
__(page)__ |}
LOADER
PROCEDURE)
-First Available Page
LOCCT
ROM Tqbl
TRt e
Declaration | Initially 64 Words, expanded up if necessary.
Stack f
<« REF/DEF Begins Here
REF/DEF
STACK
Growth
/v
1 T
g
EXPRESSION
STACK /EXPRESSION Stack Begins Here
t
Growth 14" TOPOMEM

Figure 7. How the Loader Uses Memory: Pass One

If the REF/DEF and EXPRESSION Stacks meet during Pass One, processing is discontinued

(JOB aborts).

Partitioning Core for the Second Pass

The second pass is concerned with developing the core images and relocation dictionaries (unless
ABS was specified, in which case there are no relocation dictionaries). Buffers are needed to

house these.

There must also be room to hold the REF/DEF and EXPRESSION stacks for the largest path. The
size of the REF/DEF stack is known from PASS1, but the expression stack can grow (due to

unevaluatable core expressions). Maximum declaration stack size was also retained in PASSI1.

21

There are two partitioning schemes: nonextended memory mode and extended memory mode.

IN2 (which performs the partitioning) will select the former, if space permits.

a. Nonextended Memory Mode (Fig. 8)
Two buffers are reserved for each protection type; one for the core image and one for the
relocation dictionary. Such buffers are reserved for the root and for the current segment.
Hence, in a full-blown relocatable TREE, there would be 12 buffers. (The reason for
the double buffers is to permit a higher segment with load items in a DSECT belonging

to the root to store those items into the root.)

Since the expression stack can grow, the buffer allocation begins from TOPOMEM
down. (Notice that the expression stack is growing in the opposite direction than it did

in the first pass.)

22

<= Background Lower Limit
Loader's

DATA Area

Loader's

1 PROCEDURE

Area

<4— First Available Page
LOCCT

ROM Tables
TREE Tables

Declaration

Stack
REF/DEF Room allowed for the largest
Stack REF/DEF stack path.,
EXPRESSION
Stack
(can grow due
ll’o core expres-—
sions)
Current.Segm'ent g , CRELOO { g‘SEG are byte pointers to
Relacation Dictionarigd CRELO1 RJIREL the buffers, They
(Room allowed for «—CREL10 are kept in the
largest of each type.) CSEG00 Loader's DATA Area.
Current Segment (
Core Images CSEGO1
(Room allowed for
largest of each type.) <«—CSEG10
) RREL0O
Root Relocation <«—RRELO1
Dictionaries L < RREL10
) = <— RSEG00
Root Core 00
Images RSEGO1
4 01
RSEG10
§ 10*
TOPOMEM

*
For UTS, these buffers can grow due to rounding to prevent DCBs from overlapping page bound-
aries, If this occurs, all buffer pointers are shifted down accordingly. See Section 5.3.

Figure 8. How the Loader Uses Memory: Pass Two — Nonextended Memory Mode
23 90 18 03B-1(8/72)

Extended Memory Mode (Figures 9a and 9b)

If the above partition is not possible, IN2 enters extended memory mode which
consists of replacing the 12 buffers with page buffers (one if ABS is specified, two
if not) at TOPOMEM down. All segments, including the root, are built within
these buffers. The EVL module uses these buffers to construct page records of the
core images and relocation dictionaries. The file used to develop these records is
either a temporary (idX) file (for a standard load module) or the load module file
itself (for a paged load module). Only one page buffer is required in the latter
case since a paged load module is forced ABS. Figure 9a illustrates the use of

memory during the construction of the page records.

If a standard load module is to be constructed in extended memory, memory is

partitioned differently at the end of the second pass (in the module WRT). Six
buffers (or three if ABS) are used to concatenate the page records, one segment
at a time. Figure 9b illustrates memory usage during the concatenation (some-

times called "put-together" phase) of extended memory mode.

The above partition is not required for the paged load module; instead, room is
needed only for those core image records belonging to the root which are to
contain loader-built tables. These records are read in successive order above

DECLBAS according to protection type.

24

1 page

1 page

Loader's

DATA Area

«4—Background Lower Limit

Loader's

PROCEDURE Area

LOCCT
ROM Tables
TREE Tables

<«—First Available Page

Declaration

Stack

REF/DEF
stack

) Room allocated for the longest
REF/DEF stack path.

EXPRESSION

Stack

(Can grow due to-
core expressions.)

Relocation
Dictionary

: Establish this page if not ABS

Control
Sections

<TOPOMEM

Figure 9a. How the Loader Uses Memory: Pass Two — Extended

25

Memory Mode, Construction of Core Image Records

Loader's DATA
Area
Loader's PROCEDURE
Area
LOCCT, ROM and
TREE Tables DECLBAS
U -
Relocation 00
Dictionary 01
Buffers 10
-
00
Core < 01
Image
Buffers
10
\ ‘JEPOMEM

Figure 9b. How the Loader Uses Memory: Pass Two — Extended
Memory Mode, Concatenation of Core Image Records

26

2.4

2.4.1

2.4.2

2.5

HOW THE LOADER OBTAINS MEMORY

Loader Running Under BPM

IN1 simply does a M:GP requesting the maximum (256) number of pages.

Loader Running Under UTS

Since memory must be obtained from both ends of the dynamic page area, and since UTS
restricts the number of pages obtained, the above BPM technique does not suffice. N1
initially gets four pages via M:GP, It then takes memory trap control (M:TRAP) such that
"demand paging" is in effect. That is, whenever a memory violation occurs due to access of
an unauthorized page, the Loader's TRAP routine (in the LDR module) is entered. TRAP com-

putes the virtual page address requested and obtains the page via M:GVP,

MAINTAINING THE LOADER, DEBUG MODE

The Loader program, as a processor, cannot be executed as a user's program since it does not
read its own control card, However, a speciai version of the Loader (called the "debug
version") can run as a user's program, thus making Loader méinfenance and modification an
easier task. The debug version of the Loader is obtained by assembling LDR, IN1, and PS2 with
the assembly parameter DEBUG EQU'd to 1. This causes code to be assembled which will read
the LOCCT, ROM, and Tree Tables from a file (created by the LOCCT processor). It also
causes the M:Bland M:DO DCBs to be built for reading the LOCCT and for handling !SNAPs,
IMODIFYs, and IPMDs. A debug Loader can be assembled for either UTS or BPM, as

determined by the parameter MODE.

Example:
1 IASSIGN M:BI,(FILE,LOCCTTEST)
2 IRUN (LMN,DELOAD),(XSL,F)
3 IMODIFY ..vvviiiinennnnnnn
. ISNAP MESSAGE,MSG,(DECLSTK,DECLSTK+100),(+E200,+E600)
n {PMD (00)

27 90 18 03B-1(8/72)

Card 1, The file must have been created by the LOCCT processor
(see BPM Reference Manual, 90 09 54).

Card 2. The Loader (DELOAD in this example) must have been
formed with LDR, IN1, and PS2 assembled in the DEBUG
EQU 1 mode.

Card 3-n MODIFYs and debug commands.

In this mode the Loader may also be executed from the terminal under the RUN

subsystem for BPM,

90 18 03B-1(8/72) 28

3.0

3.1

3.1.

1

INPUT, OUTPUT, LOADER-GENERATED TABLES

INPUT

LOCCT, ROM, Tree Tables

Based on the ILOAD and ! TREE cards, three related and contiguous tables are presented to the
Loader upon entry: the Load Control Command Table (LOCCT), the Tree Table, and the ROM
Table. If BPM is operating, the tables reside on sector 36 of the absolute area of the disk.
Total size is contained in R6 upon entry to the Loader, If UTS is operating, the tables are left
in core preceded by a word containing the size. A pointer to this area is in word JB:BCP of the

JIT.

In either case, the Loader moves these tables into its first dynamic page (M:GP) during

initialization.

29

LOCCT 0
1
2

3

10
11
12

13
14

15
16

17
18

19
20

8 max.

8 max.

TREET

Size of the three tables to follow

2 7,8 1112 15(16 17 18 19 2021 22 23,24 25 26 27 28 29 30 31*

Q SL PIO[N[M[L|K|J|I[H|G

F

E

D

C

BIA

Displacement from LOCCT to ROMT

Displacement from LOCCT to TREET

0 SYSid

REF or BREF count (default = 0) LOAD BIAS (WA)

* %

FCOM size FCOM (DA)

* Kk *k

ERSTACK size (default = X'AY)

ERTABLE size (default = X'AY)

Number of UNSAT t
TSS size (default = X'40") umoer gecounts

(default = 0 if NOSYSLIB;=1(:SYS) if not)

Number of READ accounts (default = 1)

Number of WRITE accounts (default = 1)

Load Module Name,
TEXTC followed by blanks.
(default = three characters SYSid L)

User account number

Load Module Password
(default = 0,0)

EXPIRE date; 'mmddbbyy' or 'NEVER' (BPM)
0,0 (UTS)

Library password, i.e., (PERM, LIB, password)
(default = 0,0)

/

READ account numbers
2 words per acct. ¥, (default = 'ALLbbbbb")

/

WRITE account numbers
2 words per acct. ¥, (default = ‘NONEbBb")

4

UNSAT account numbers and passwords
4 words per (acct#,pass). (default password = 0,0)

-

Total number of words in Tree Tables

ROMT —»

>

/

Tree Tables 1 Table per Segment
11 words per table (see Figure 12 for format)

{

ROM Tables 1 Table per ROM
7 words per table (see Figure 11 for format)

Figure 10. Loader Control Command Table (L‘OCCT)

90 18 03B-1(8/72) 30

(UTS only)

Tree Tables

Overall victure for M segments (SO, ... SM)

n = total size of the tables

TREE

S n -1
0
1
2

S 1 10
11
20

SMI
n-1

Tree Table Format (one 11-word Table per Segment)

___________ Segment Name in 0
TEXTC Format ~~ ~ ~ ~ ~ ~ 7 7 1
Displacement \ —————————————————————————————— 2
from the beginningy| ROM Pointer Back Link ** 3
of the ROM Tables | Forward Link** Overlay Link** 4
to the first ROM 00 Size * 00 Loc* 5 Init
Table for this REF/DEF Size REF/DEF Loc* 6 io;I
segment 01 Size* 01 Loc* 7 Y
- - Clear=
Expr. Size Expr. Loc 8 d
10 Size* 10 Loc* 9o} °
10

Figure 12. Tree Tables

Segment name is determined by the name of the first file in the segment. (If the load

module has only one segment, i.e., the root, the keys begin with load module name. If

no load module name was supplied, the name is idL.

33

Words 5-10 of each Tree Table are computed by the Loader.

Word 10 of the ROOT Tree Table is used to monitor the size of the REF/BREF Tables.

*Doubleword address or # of doublewords

** Displacements from TREE

34

Tree Tables Tree Structure

0
0
— S1 3
1
4
-] 0
_ __1 5
SO 2
— S3 S2 —
6
2
50 Rl
— S5 0
Tree Table Link Pointers
3
S1 back
0 S4 sub (fwd) overlay
4
S1
0 0
5
S2
0 Sé6
[
S2
0 0

Figure 13. TREE Table Linking — in Relation to the Overlay Structure

35

Tree Structure

Figure 14. LOCCT, TREE,

36

SEG 3
SEG 1 ROM6 ROM7
ROMI RO
) M2
SEGO0 | —
ROMS
ROM3 ROM4 ROMS
Displacements
LOCCT
0
TREE Tables / ROM Tables
1 ROM Table 1 : : RT1 o
2 TREE Table | 1| |
[|
L RT 2
last
T | | |
. RT 3
L |
Py
| RT 4
SEG1 I
T |||
|l RTS (1oen
R
Il
I I RT 6
SEG2
1T | |
| I RT 7 (last)
| |
l RT 8 (last)
SEG3
T |
|
SEG4
T

and ROM Table Relationships

3.1.2

Files (ROMs and Load Modules)

The Loader will access ROM files and load module files. All file names specified on the
ILOAD card under the EF option appear in the ROM Table. Additionally, the files idB
and idG may appear in the ROM Table if the user specified (BI) or (GO), respectively.
During Pass One processing, the Loader augments the ROM Table by those library load
modules which are to be included. Note that the Loader is entirely file-oriented. That is,
ROMs coming from cards on BI will be read by CCI which :reates a file by the name of idB.
(Exception: M:EF may be assigned to labeled tape.)
a. ROM Files
A ROM file consists of one or more ROMs produced by an assembler or compiler (see
the BPM Reference Manual (90 09 54) for a description of the ROM language). ROM
files are accessed either from the accounts specified in the EF list (which the Loader
sees in the ROM Table) or from the files idB and idG. (If a !TREE card has been

included, idB and idG would appear in the ROM Tables for the root segment.)

b. Load Module Files
Load modules acceptable for combination with ROMs to form a new load module are
built either by

1) the Loader itself, in which case they are library load modules (see Output Section
3.2, for format);

2) PASS2 of SYSGEN; or
3) DEFCOM processor.

The HEAD of the input load module indicates one of the above sources in order that
any attributes may be handled correctly. Any such load module must be of one
protection type, relocatable, and not overlaid. Furthermore, if such a load module

contains a DSECT, then the entire load module consists of that DSECT alone.

37

3.1.3 Registers and JIT Input

BPM

R6 = word size of LOCCT, ROM, and Tree Tables
R7 =1 [x| [id |

SR1 = information needed by CCI or PASS3, This is
simply stored and restored upon exit,

D4 = foreground COMMON bias

uts

J:EUP = page number of the last user page
J:JIT, byte 3 id
JB:BCP, byte 1 page pointer to LOCCT Table -1,

This word contains:

[xx | n |

which is followed by the LOCCT, ROM,
and Tree Tables,

SR1, D4 = same as BPM

xx =0, if CCI called the Loader.
#0, if PASS3 called the Loader,

n = size of LOCCT, ROM, and Tree Tables
id = system id (see Glossary)

38

3.1.4 ASSIGN Record

3.1.5

CCI builds a record of all ASSIGN information encountered during a job. The Loader
examines this record to see if any F: number DCBs have been entered and, if so, will gen-
erate those DCBs with default entries (if they are PREFs within the user program). In UTS
this record is read via an FPT code = X'2D'. In BPM the record is in section 35 of absolute
area of the RAD and is read with an FPT code of X'16'. (See Section 16 of the FOO BPM

Technical Manual for formats,)

Error Message File (ERRMSG)

This is a keyed file under the :SYS account. Its keys are of the form:

l 03] 02|error number !

The records are the text error messages. To alter the file, one uses the programs ERROM
(Cat. No. CN706106) and ERRDATA (Cat. No. SI706107) for BPM, and the program ERRMWR

for UTS.

When an error occurs, the Loader transfers control to MESSAGE (in LDR) with the error number

in R3. MESSAGE builds the key, reads and prints the associated record,

Figure 15 is a listing of ERRMSG (to date).

39 90 18 03B-1(8/72)

KEY

020001

020002
020003
020004
020005
020006
020007
020008
020009
02000A
020008
02000C
02000D
02000E
02000F
020010
020011

020012
020013
020014
020015
020016
020017
020018
020019
02001A
020018
02001C
02001D
02001E
02001F
020020
020021

020022
020023
020024
020025
020026
020027
020028
020029
02002A

MESSAGE

UNEXPECTED EOF
ILLEGAL RECORD 1. D.
SEQUENCE ERROR
ILLEGAL RECORD SIZE
CHECKSUM ERROR
ABNORMAL I/O
CANNOT OPEN E. F,
STACK OVERFLOW

BIAS TOO LARGE

ILL. ROM LANGUAGE
BAD START ADDRESS
UNEXPECTED ROM END
REPEAT LOAD IS ZERO
IMPROPER BOUND
ILLEGAL ORG

BAD 1/O RETURN FROM M:LM DCB
SEV. LEV. EXCEEDED
ILL. LIB. LOAD MOD.

NO ROOM TO ROUND DCBS TO PAGE BOUNDARIES. TRY FORCING XMEM

ILL. DSECT

ROOT SEGMENT TOO LARGE TO LOAD

NEW UTS ERR FROM XMEM

CANNOT ENTER XMEM. STACKS TOO LARGE.

NOT ENOUGH ROOM TO CONCATENATE XMEM PAGES
NO ROOM TO READ LIBRARY CORE IMAGE

NO ROOM TO READ LIBRARY RELOCATION DICTIONARY
NO ROOM FOR NEW EXPRESSION

NO ROOM TO BUILD DCB TABLE. TRY FORCING XMEM
NO ROOM TO BUILD DCB TABLE

LIBRARY LOAD MODULE REF/DEF STACK TOO LARGE TO UPDATE
INSUFFICIENT PHYSICAL MEMORY

BAD ASSIGN/MERGE RECORD

NO ROOM TO ADD LIBRARY LOAD MODULE TO ROM TABLE
NO ROOM TO READ LIBRARY REF/DEF STACK

NO ROOM TO UPDATE LIBRARY

INVALID KEY SUPPLIED FOR DELETE RECORD ON M:DIC
1/O ERROR ON M:DIC IN WRITESEG

ILLEGAL LIBRARY LOAD MODULE NAME

ABNORMAL 1/O ON OPEN OR READ TO CORE LIBRARY
INVALID DECLARATION NUMBER REFERENCE (BAD ROM).
INVALID KEY SUPPLIED FOR WRITE RECORD ON M:DIC
ILLEGAL LOADER TRAP

Figure 15. ERRMSG File

90 18 03B-1(8/72) 40

IN2
IN2
IN2
IN2
EVL
WRT
WRT
WRT
WRT
WRT

KEY MESSAGE

02002B ABNORMAL 1/O IN WRITELIB

02002C CANNOT FIND REF/DEF NAME IN STACK

02002D LIB LOAD MODULE TOO BIG - CANNOT USE EXTENDED MEMORY
02002E LIB LMN IS NOT ALLOWED ON A PRIVATE VOLUME

Figure 15. ERRMSG File (cont.)

3.1.6 Modify File (idD)

This keyed file is built by CCI in the user's account on the basis of the IMODIFY cards.

Its keys are of the form:

TEXTC segment name concatenated with xx, where 0 < xx < n and

n = the hexadecimal number of |MODIFY cards.

See Section 16 of the FOO BPM Technical Manual for a more detailed format.

3.1.7 Core Libraries (UTS only)

Core libraries exist only under the :SYS account. An absolute copy of a core library's
procedure area exists on swap storage associated with the name :Pnnn and is placed at
run-time into a fixed area. The DEFs for :Pnn which relate the core library's context
area (preceding the user's blank COMMON) with the user and the library procedure are
contained in a load module (formed by DEFCOM) named :Pn. The Loader's job is to read
:Pn, merge the DEFs into the REF/DEF stack of the target load module, and signal the
IRUN processor that it is to associate :Pnn with this program. The signal consfsfs of
placing the text :Pnnn in the HEAD record of the load module.

:PO is the name of the FORTRAN core library with debug.

:P1 is the name of the FORTRAN core library without debug.

See Chapter é of the UTS System Management Guide for details on core libraries.

41 90 18 03B-1(8/72)

3.2 OUTPUT

3.2.1 Load Modules, Overall Format

A load module is a keyed file whose name was supplied on the !LOAD card (default = idL). The

keys and records are as follows:

Record
M
0 8 16 24 31
a. Key= O 8X 00 FF n
HEAD AlB SL START address
2 TCB* Module Bias*
3 DATA (00) Base* PROCEDURE (01) Base*
4 STATIC DATA (10) Base* Next Available Page*
5 MAX RF/DF SIZE TREE Size)
uTsS
0 8X 00 FF n
1 |A[B SL " START address
2 TCB* Module Bias*
3 DATA Size* DATA (00) Base*
4 PROCEDURE SIZE * PROCEDURE (01) Base*
5 MAX RF/DF Size TREE Size
6 DCB Size* DCB Base (10)*
7 0 o **
8 0 0
9 0 0
A 0 0 *kk
B 0 0

(Footnotes are on next page.)

42

Footnotes to keys and records shown on previous page:

*Doubleword address

In byte 0, word O X =0, load module produced by Loader.
1, load module produced by SYSGEN.

2, library load module produced by Loader,
=3, load module produced by DEFCOM (con-
sists of HEAD, TREE, and REF/DEF (Stack).

=5, pages load module produced by Loader.

1l

n = number of bytes in the HEAD record. For UTS, n= X'30'; for BPM, n = X"'18',
A =1, abs module
B =1, NOTCB
SL = Final Severity Level
** Word 7 If DEFCOM output, this word = byte size of DATA area,
*** Words 9, A, B If the LMN is associated with a core library, these words
are :Pnnn in TEXTC format.
Key = TREE Record is the Tree Tables (see Figure 12).

Segment Components - Standard Load Module

For each segment, the following records are built:

Key Record

00 ———— REF/DEF stack
01 — -+ EXPR stack
02 ———— 00 REL DICT

03 ————»00 Control Sections

Segment Nlame

c it 04 ——————01 REL DICT
oncatenated with: 05 ——— 01 Control Sections
06 ————— 10 REL DICT

07 —————» 10 Contro! Sections

Segment Components - Paged Load Module

For each segment, the expression stack and REF/DEF stack records have the same

format as those for the standard load module. Relocation dictionary records are

not constructed.

The core images are partitioned into records of at most 512 words in length with

3-byte keys of the following format:

SEG 00 PAGE

where SEG = the TREE segment number of the segment containing the core image.
PAGE = the page number of the virtual page that will contain this record at

execution time.

All core image records are one page in length except for the first record of an overlay
segment's 00, 01, and 10 areas. The length of this record satisfies the following: at
execution time, the record begins at the execution bias for this protection type and

ends at the next page boundary.

3.2.2 Library Load Modules

A library constructed by the Overlay Loader consists of two keyed files, :LIB and :DIC.
The library load modules actually reside in one file (:LIB). :DIC is a dictionary whose
keys are the text names of DEFs. The record associated with a dictionary key is the text
name of the load module (within :LIB) in which that DEF is defined. Thus, in order to lo-
cate the unique group of records within :LIB which pertain to a given PREF, the Loader
does a keyed READ to :DIC, the key being the PREF which is being satisfied. This keyed
READ returns the library load module name within :LIB. With this information the Loader
can then read the library load module records into core and merge them with the target

load module.

The keys and records in :LIB are idenfibal to those of non-library load modules (see above)
except that the keys "HEAD" and "TREE" are concatenated with the TEXT load module
name (to keep them unique). Each individual library load module name is "synonymous"

(in a file sense) with the name :LIB.

A slight difference also exists in the REF/DEF and expression stack formats. The VALUE
word of an entry in the REF/DEF stack is actually the head of a chain through the expres-
sion stack of all those entries which involve that REF/DEF. (This expedites subsequent

merging of the stacks when the library is included in a user program.)

44

3.2.3 REF/DEF Stack

There is one REF/DEF stack for each segment. A REF/DEF stack is composed of entries for

every control section and forward reference in the segment. It also contains an entry for every

name (DEF, REF, SREF) in the segment which does not occur in this segment's backward path,

Before a name is added to a segment's REF/DEF stack, the segment's stack and the REF/DEF

stacks for this segment's backward path are searched. If the name is not in these stacks, a new

entry is added to the segment's stack. If the name already exists, the entry in which the name

appears is treated as follows:

New Name

DEF
DEF
DEF
REF
REF
REF
SREF
SREF
SREF

Type of Existing
REF/DEF Entry

DEF
REF
SREF
DEF
REF
SREF
DEF
REF
SREF

45

Modification of
Existing REF/DEF Entry

Double DEF
DEF

DEF

Used DEF
No change
REF

Used DEF
No change
No change

GENERAL REF/DEF STACK FORMAT

0 7__M215 31
n E[TYPE
VALUE
RESOLUTION
= =

where:

TYPE

VALUE

RESOLUTION =

number of words in this entry.

1, if the entry has a VALUE.

Oor8 DEF
1 SREF
2 PREF

3orB Dummy Section
4 or 6 Control Section
5 or7 Forward Reference

constant or address if the load module is not a library

or
head of a chain in the expression stack if the load module
is a library (see SQZ, Section 7.0).

the resolution in which the VALUE is expressed. Resolution
is of the form:

0 16 31
byte half word double

If the VALUE is a constant, the RESOLUTION word is 0.

If the VALUE is an address, one and only one byte of the
RESOLUTION word is nonzero (viz., the appropriate byte = X'01"),

If the RESOLUTION assumes a form different from either of the above,
the VALUE is of mixed resolution. (In this case the load module
cannot be relocated and is forced ABS.)

46

[TYPE = 0 or 8 (DEF) |

0 7 1112 1B ¥ 29 331
% '
n //IE Oor 8 DISP U|L
VALUE
RESOLUTION

Name in TEXTC

N

where:

TYPE = 0, this entry is a DEF,
= 8, this entry is a double DEF,.
E =1, the DEF has a value.
DISP = Displacement to the segment in the Tree Table where the
DEF is located.
1, used DEF (the DEF has been referenced).
1, the DEF was defined in a library.

U
L

[TYPE = 1,2 (SREF or REF) |

0 7 12 1516 31

,/- Pad o
n 11 or j '
Ppa

A
Name in TEXTC

T T

TYPE =1, SREF
= 2, PREF

47

[TYPE

= 4 or 6 (Contro! Section) |
0 89 11 12 1516 31
03 [Pp{]E [40r6 SIZE
VALUE
RESOLUTION
where:

TYPE = 4, when first declared in PASS1 (LP1).

6, after rereading the declaration in PASS2 (LP1 of EVL).
protection type
size of the control section in doublewords.

E
SIZE

NOTE: A special entry is created by the Loader and inserted in front
of a library load module's REF/DEF stack. It has a TYPE = 4,
but can be detected (in PASS2) because all previous control
sections would have been changed to 6 by this time.

0 8 9yll 12 1516 31
03 PPLIE| 4 SIZE
VALUE
EXP SIZE EXP DISP
where:
SIZE Size of the load module's core image in doublewords,

VALUE Location of this load module's core image (within
the target load module).

EXP SIZE= Word size of the load module's expression stack.
EXP DISP= Displacement of load module's expression stack

within this segment's expression stack.

[TYPE = 3 or B (Dummy Control Secrion)l

’

0 78910112 5% 31
n P |EPors SIZE
VALUE
RESOLUTION

Name of DSECT
(or DCB) in TEXTC

where:

TYPE = 3, Dummy Contro!l Section ’
= B, At the end of PASS1, all PREFs (TYPE2) with names
beginning with M: or F: are changed to TYPE B,
indicating that the Loader is to build them at the
end of the second pass.

[TYPE = 5 or 7 (Forward Reference) |

0 78 0N12B % 31
04 A |E|50r7
VALUE
RESOLUTION
K Forward Reference Number|
where:

TYPE = 5, Forward Reference.
=7, Forward Reference is defined from a library.

K =0, Until the forward reference is defined.
=FF, Define forward REF and "release" the reference number,
=F0, Define forward REF and hold the reference number until

module end,
F =1, the forward reference is used in a "Define forward reference

and hold" expression.

49

3.2.4 Expression Stack

The Loader builds an entry in the expression stack by re-formatting a ROM expression, This
re-formatting process consists of grouping all of the control bytes together in one part of the
entry, and all of the operands in another, If the ROM operand is a constant, it is transferred
verbatim from the ROM to the operand portion of the entry. If the ROM operand is a declara-
tion number, the REF/DEF stack pointer is accessed from the declaration stack and placed in
the 4operond portion of the expression entry. If the ROM operand is a forward reference number,
the corresponding REF/DEF stack pointer is transferred to the operand portion of the entry.

Some control bytes have no operands (viz., expression end or change resolution) and therefore,
have no corresponding item in the operand portion. Thus, the control byte portion of the entry

is related sequentially to the operand portion, except in the case where no operand exists,

The value of an expression is deposited either in a REF/DEF stack entry or in a field in the core
image of the target load module. (See Section 2. 1. 1f). In the first case, the destination of
the expression's value is described by a pointer to the entry in the REF/DEF stack, In the

second case, the destination is described by a core expression. A core expression contains the

field size, in bits (which can cross up to eight words of the core image); the address of the last

word in the core image to be changed; and the terminal bit position of the field.

50

GENERAL EXPRESSION STACK ENTRY
0 78910 15 24 31
] n EIC| DISP CB CB

1 2
2 CB3 CB4

Destination

Resolution
Word]
Word2
n Wordm
where:
n = number of words in entry
E = 1, this entry has been evaluated.
= 0, this entry has not been evaluated,
C = 0, this entry's Destination is a pointer to the REF/DEF stack.
= 1, this entry's Destination is a core expression.
DISP = number of words to Word 1.
Destination: (where the value of the entry is to be deposited) =
one of the following forms, depending upon the value of C,
REF/DEF Pointer
0 15 16 31
FC=0 Segment's Displacement Displacement within
in Tree Table segment's REF/DEF stack
Core Expression
0 78 14 15 31
Terminal
FC=1 Field Size | pit Poctfion Word Address
Resolution: Same as REF/DEF stack.
CBi = a control byte of the expression.
Wordi = is referenced by a control byte and is a constant

or pointer to the segment's REF/DEF stack (same
form as Destination where C=0).

51

3.2.5 Relocation Dictionary

If ABS is not specified on the ILOAD card, each segment will have records of relocation
dictionaries (one per protection type). One relocation digit is developed for each word in
the protection area,

Relocation Dictionary Digits

Digit Type of Relocation
0 relocate the word at byte resolution,
1 relocate the word at halfword resolution,
2 relocate the word at word resolution.
3 relocate the word at doubleword resolution.
8 relocate the left half of the word at doubleword resolution,
9 relocate the right half of the word at doubleword resolution,
A relocate both halves of the word at doubleword resolution,
E absolute.

Notice that relocation digits exist only for items that terminate on halfword boundaries.

A load module which has an item not amenable to one of these digits is set to ABS,

Example: BOUND 4
ZAP EQU DA($)
GEN,8,16,8 0, ZAP,0
or

BOUND 4
ZAP EQU $
GEN, 3,17,12 0, ZAP,0

Either of these would cause the module to be set ABS since ZAP does not terminate on

a halfword boundary.

52

3.2.6

Miscellaneous (Map, Diagnostics, Severity Level)

The map, diagnostics, and the severity level of the load module are output via the

M:LL DCB (normally the printer):

a.

Load Map

The load map is generated at the end of the load process. For each segment, the

map includes:

i)

i)

vii)

A header consisting of the segment name and size. For the root segment, the

load module name, account number, start address, and bias are also listed.

A summary of the segment's protection type bourdaries and sizes of the format:
****PROTECTION TYPES: 00 DATA 01 PROCEDURE 10 STATIC

SEGHI-0 valhi ~ SEGHI-0 valhi SEGHI-2 valhi
SEGLO-0 vallo SEGLO-1 vallo SEGLO-2 vallo
00SIZE=size 01 SIZE=size 10 SIZE=size
where valhi = the high word address for this protection type.
vallo = the start address (word resolution) for this protection type.

size = the size, in words, of the protection type area.

A list of any unsatisfied primary references (PREFs).

A list of any unsatisfied secondary references (SREFs).

A list of any multiply-defined definitions (DDEFs).

A list of definitions with absolute values (ADEFs).

A list of relocatable definitions and control sections for this segment, sorted
either by value or by name. A value sort produces a list of the DEFs and
contro| sections in increasing value, with a new line started for a CSECT or
DSECT. The control section's address and protection type is noted in the left-

hand margin of this line and its size is noted in the right-hand margin.

A name sort really produces two lists. The first list, entitled 'SECT-PROGRAM
SECTIONS MAP' contains the control sections (in increasing value) and the
first DEF in each section. One (lowest in value) control section, its first

DEF, and the control section size is printed on a single line. The second

list, entitled 'RELOCATABLE DEFINITIONS SORTED BY NAME', lists the

DEFs, sorted alphanumerically by name over the entire segment.

53

In both the value and name type of DEF lists, the control sections are printed
in the format:

CSECT]
p

value{DSECT

where p = the protection type of the control section.

value = the word address at which this section begins.

The relocatable DEFs have the format:

value r symbol

where value = the value of the definition, expressed as a word address.

r = the byte displacement (i.e., the two high order bits of the value if
it were expressed as a byte address).

symbol = the symbolic name of the item.

The following flags can precede the symbolic name of a DEF (or ADEF).
* = unused definition.
+ = multiply defined definition.

- = definition satisfied from a library.

The map for each segment starts on a new page. For the lists (iii)-(vii),
four symbols are listed on a line unless there is a large symbol which cannot
fit in one column.. In this case the symbol is printed on a single line. Lists

(iii)=(vi) are always sorted by name.

b. Diagnostics
The diagnostic consists of the pertinent record obtained from the ERRMSG file and
the following information: the name of the element file currently being processed,
the sequence number of the record most recently read, and a third field of data
pertinent to the particular error that occurred. (See Figure 15b for a list of the

error message keys and the corresponding data printed in this field.)

c. Severity Level

A nonzero severity level is printed at the end of the load process immediately before
the map is printed. The final severity level is actually the maximum of any severity

levels inherited from the ROMs and those generated internally by the loader.

54.

Internal Loader-generated Severify Levels:

Type of Error Severity
PREF 7
DDEF 4
REF load table exceeded F
BREF load table exceeded 6

(After printing the final severity level, it is compared with the maximum specified

by the user (for CCI). If it is greater loading is aborted).

d. Register Output for PASS3
D4 =0 if normal return.
= =1 if abnormal return.

SR1 = original contents upon entry to the Loader.

ERROR KEY Diagnostic Information Output

020001 SR3

020002 Record I.D.

020003 (none)

020004 Record Size

020005 (none)

020006 SR3

020007 SR3

020008 SR3

020009 Bias

02000A Object Module Control Byte

020008 Start Address

02000C (none)

02000D (none)

02000E Byte addr of load relocatable destination
02000F SR4 (for debugging purposes)

020010 SR3

020011 Computed Severity Level

020012 (none)

020013 No. of words to be added to 10 area

020014 ' st 4 characters of DSECT name

020015 No. of words exceeding available background
020016 (none)

020017 No. of words that stacks exceed available background
020018 No. of words exceeding available background
020019 No. of words in library's core image and rel. dict.

Figure 15b. Variable Diagnostic Information

55 90 18 03B-1(8/72)

ERROR KEY

02001A
020018
02001C
02001D
02001E
02001F
020020
020021

020022

020023
020024
020025
020026
020027
020028
020029
02002A
020028
02002C
02002D
02002E

Diagnostic Information Output

Size of relocation dictionary

(none)

(none)

No. of words in DCB Name Table and its rel. dict.
(none)

Register O

SR3

High addr. of REF/DEF stack (which would overwrite exprstk)
Size of library load module's REF/DEF stack

Size of REF/DEF stack corresponding to old version of library Imn
Key Size 4

SR3

No. of characters in load module name

SR3

Invalid Declaration Number

Key Size

Register 0

SR3

Ist 3 characters and byte count of name

(none)

(none)

Figure 15b. Variable Diagnostic Information (cont.)

DESCRIPTION OF COMMON LOADER ERROR MESSAGES

UNEXPECTED EOF
ILLEGAL RECORD 1.D.

SEQUENCE ERROR
ILLEGAL RECORD SIZE

CHECKSUM ERROR
ABNORMAL 1/0O

CANNOT OPEN E.F.

90 18 03B-1(8/72)

An end-of-file was encountered before the end of an object
module was reached (incomplete object module).

The type of record read was neither X'3C' nor X'1C" (object
module), nor X'81', X'82', or X'83' (Load Module).

The cards of an object module were out of sequence.

The number of bytes in an object module card was less than
four or greater than X'6C".

A bit (or bits) was uropped in punching or reading the object
module.

An abnormal return was encountered while reading a library
load module.

An element file-could not be opened. (It does not exist, it
has a password, etc.)

56

STACK OVERFLOW (BPM)

BIAS TOO LARGE

ILL. ROM LANGUAGE
BAD START ADDRESS

- UNEXPECTED ROM END
REPEAT LOAD 15 ZERO
IMPROPER BOUND
ILLEGAL ORG

BAD 1/O RETURN FROM

M:LM DCB
SEV. LEV. EXCEEDED

ILL. LIB. LOAD MOD.

ILL. DSECT

INSUFFICIENT PHYSICAL
MEMORY (UTS ONLY)

Insufficient memory in which to load. If no map has been
partially printed, the module is too large. If a map has been
partially printed, some unsatisfied primary references have
caused the stacks to grow to excessive size.

At the given bias, the load module will exceed 131K of
memory .

The object language in a relocatable object module was not
translatable (assembler or compiler error).

A start address was given which is either not on a word
boundary or is not within the load module.

Module end was given on some card of the object module
other than the last card (assembler or compiler error).

An assembler or compiler generated a repeat load item with
a 0 count (assembler or compiler error).

A short- or long=form relocatable item was not on a word
boundary.

An origin was generated having no resolution or was not within
load module (assembler or compiler error).

The load module file could not be opened.

The severity level specified in the LOAD card was less than
that encountered in some object module or that generated by
the Loader (a DDEF yields a severity level of 4, a PREF
yields 7).

(PERM, LIB) was specified and the load module had one of the
following:

1. More than one protection type.

2. No relocation dictionary (ABS was specified or forced
by the Loader due to nonstandard relocatable fields).

3. More than one segment.

Two dummy sections having the same name but different pro-
tection types were encountered.

This message can only occur running under UTS and has the

same meaning as STACK OVERFLOW for BPM.

3.3

3.3.1

3.3.2

3.3.3

LOADER-GENERATED TABLES

All Loader~generated tables reside in the root segment of the load module in the

order indicated by Figure 1. Loader-generated tables are the TCB, Tree Tables,

DCB Name Table, REF/BREF Tables, and DCBs.

Formats for the TCB and DCB Name Table are in the BPM Reference Manual.

The TCB resides in 00. The DCB Name Table resides in 01 for BPM and 10 for UTS.

TREE. A copy of the Tree Tables (see Figure 12) is placed at the beginning of the

01 area (as well as being separately recorded in the TREE record).

REF/BREF Tables

REF mode
An entry is created for every load item involving a REF defined in a higher segment.
The load item is replaced by a CAL1,8 X where X is the REF Table entry address

(a PLIST for the CAL).

X—-»

0180 0 00O
| SEG SEG = 17 bit address of higher
‘Replaced load item. segment name in Tree Table.

B load item + 1

BREF

An entry is created for every branch type instruction involving a REF to a higher

segment. The branch type instruction is replaced by a branch (of the same type) to the
BREF entry.

58

BAL,RO S:OVRLY
*|SEG | x ADDR

where: S:OVRLY is a system library routine

SEG = segment number (Tree Table displacement/11)
ADDR = address field of replaced instruction
*x o= indirect and index fields from replaced instruction

EXAMPLE:
Assume that a segment S references ZAP (defined in a -higher segment):

Segment S

REF ZAP

@ BAL,7 *ZAP

If REF loading mode:

« CALL,8 B8

59

3.3.4

B 0 1 80 0000
SEG SEG is as defined for
BAL, 7 *Z AP REF above.
B e + 1
If BREF loading mode:

a BAL,7 8

g | BAL, RO S:OVRLY
11 SEG [0000 [ZAP SEG is as defined for

BREF above.

DCBs

The Loader will build a DCB if, at the end of PASS1, there exist any PREFs which begin
with M: or F:. This can occur if: 1) CCI's ASSIGN record contained F: number
entries; 2) the user had a REF DCB name and had no ROMs or libraries which satisfied

this REF; 3) the NOTCB option is absent, whereupon an M:DO is generated; 4) a ! TREE

card is present, whereupon an M:SEGLD is generated.

All Loader-generated DCBs are DSECTs whose allocation is forced to the root. The
standard 22 words are allocated for the fixed portion of the DCB. In the variable length
parameter portion of the DCB, three words are allocated for file name, two words for

account, two words for password, three words for INSN numbers, and three words for

OUTSN. Two additional words are allocated for an EXPIRE date for UTS DCBs. The

60

total DCB size is 48 words for BPM, 51 words for UTS. Default information is placed

into recognized DCB names. The recognized DCB names and their defaults are shown

in Figure 16.

DCB RECORD OPERATIONAL
NAME FUNCTION BYTE SIZE LEVEL
M:C Input 120 C
M:0OC Inpuf/Oufpuf 85 oC
M:L O Output 132 LO
M:LL Ovutput 132 LL
M:DO Ovutput 132 DO
M:PO Output 80 : PO
M:BO Output 120 BO
M:LI Input 120 LI
M:S1 Input 80 SI
M:BI Input 120 BI
M:SL Output 132 SL
M:SO Output 80 SO
M:CI Input 120 Cl
M:CO Output 120 CcoO
M:AL Output 80 AL
M:EI Input 120 El
M:EO Output 120 EO
M:GO Ovutput 120 NO
F:101 Input 0 ocC
F:102 Output 0 OoC
F:103 Input 0 PR
F:104 Output 0 PP
F:105 Input 80 S1
F:106 Output 120 BO
F:108 Output 132 LO

Figure 16, Recognized DCBs and their Defaults

For UTS, nonstandard DCBs (i.e., those not listed in Figure 16) are assigned to 'ME',
which goes to the terminal for an on-line user or to device 'NO' for batch.

61 90 18 03B-1(8/72)

3.4

3.4.1

3.4.2

EXAMPLES
The following example is designed to illustrate: 1) a load module's expression stack
in relation to its REF/DEF stack, and 2) the correspondence of these two stacks to

the ROM from which they were derived. This example should also clarify many of the

files and tables discussed in this chapter.

A Sample Program

The following program was assembled under the METASYM processor.

1 SYSTEM SIG7FDP
2 DEF ABI

3 REF AB2

4 01 00000 6A900000 X START BAL, 9 AB2

5 01 00001 00000008 02 DATA ZAP+2

6 02 00000 CSECT 0

7 02 00000 RES 5

8 02 00005 000000FF A ABI1 DATA X'FF!

9 02 00006 ZAP EQU $

10 01 00000 END START

CONTROL SECTION SUMMARY: 01 00002 PTO 02 00006 PT O

The ROM

Following is a load-item-by-load-item interpretation (known as a ROMBUST) of the ROM
for this program. The load items are interpreted in the order that they were output by
the METASYM processor. Note that each load item is listed, in hexadecimal, on the line

immediately above its verbal description.

62

ROMBUST OF SAMPLE PROGRAM
RECORD NUMBER: 0

RECORD TYPE: LAST, MODE: BINARY, FORMAT: OBJECT LANGUAGE.
SEQUENCE NUMBER 0

CHECKSUM: 200

RECORD SIZE: 66

0303C1C2F1

DECLARE EXTERNAL DEFINITION NAME (3 BYTES) NAME: AB1 DECLARATION
NUMBER : 1

0503C1C2F2

DECLARE PRIMARY REFERENCE NAME (3 BYTES) NAME: AB2 DECLARATION NUMBER
2 :

0C000008
DECLARE NONSTANDARD CONTROL SECTION DECLARATION NUMBER: 3
ACCESS CODE: FULL ACCESS. SIZE 8 X'8'

0C000018
DECLARE NONSTANDARD CONTROL SECTION DECLARATION NUMBER: 4
ACCESS CODE: FULL ACCESS. SIZE 24 X'18'

0AO10100000014200402

DEFINE EXTERNAL DEFINITION

NUMBER 1

ADD CONSTANT: 20 X'14'

ADD VALUE OF DECLARATION (BYTE RESOLUTION)
NUMBER 4

EXPRESSION END

04200302

ORIGIN

ADD VALUE OF DECLARATION (BYTE RESOLUTION)
NUMBER 3

EXPRESSION END

826A 900000 -

LOAD RELOCATABLE (SHORT FORM). RELOCATE ADDRESS FIELD (WORD RESOLUTION}
RELATIVE TO DECLARATION NUMBER 2

THE FOLLOWING 4 BYTES: X'6A900000'

63

8400000008 .

LOAD RELOCATABLE (SHORT FORM), RELOCATE ADDRESS FIELD (WORD RESOLUTION)
RELATIVE TO DECLARATION NUMBER 4

THE FOLLOWING 4 BYTES: X'8'

040100000014200402

ORIGIN

ADD CONSTANT: 20 X ‘14

ADD VALUE OF DECLARATION (BYTE RESOLUTION)
NUMBER 4

EXPRESSION END

" 44000000FF

LOAD ABSOLUTE THE FOLLOWING 4 BYTES: X'000000FF'

0D220302

DEFINE START

ADD VALUE OF DECLARATION (WORD RESOLUTION)
NUMBER 3

EXPRESSION END

OE00
MODULE END
SEVERITY LEVEL: X'0O'

64

3.4.3

The Load Module

The following load card was used to form a load module for this program:
ILOAD (EF, (SAMPLE)), (NOTCB), (SL,A), (LMN, TARGET)
(Where the ROM was located in the file with name SAMPLE).

The resultant load module is listed below.

TARGET LOAD MODULE
HEAD
00 8000FF18 47006F00 00003700 37003800 39003200 0011000C

07E3C1D9C7C5E300

00 03160000 00O006EOO 00000100 04100000 0001B81C 01000000
08 00000000 00000000 03C1C2F2 03160001 00006EQ0 00000100
10 00000100

07E3CI1D9C7C5E301
00 06840120 02000003 00000003 01000000 00000014 OOOOOOOE
08 00000000 00000007

07E3C1D9C75E302
00000 E2EEEEEE

- 07E3C1D9C7C5E303

00 6A900000 OO006EOA 00000000 00000000 00000000 00000000

07E3C1D9C5E304
00 2EEEEEEE 9E9E99EE EEEEEE

07E3C1D9C7C5E305

00 00000000 00000000 0000000C 06E3CIDY C7C5E301 40404040
08 00043700 00113E38 000B3800 OOOA3ES53 000039200 00000000
10 00000000 06040120 02000003 00000003 00000000 00000014

TREE

00 0000000C 06E3C1D9 C7C5E305 40404040 00000000 00000000
08 000B3800 OOOA3E53 00003900 00000000

65

03C1C2F1 04020000
03160003 00006F02

04432202 113E6F00

00000000 OOOO00OFF

00000000 00000000
00000000 00000000

00043700 00113E38

3.4.4 The Relationship Between the Expression Stack and the REF/DEF Stack

The REF/DEF stack of the preceding load module (the second record listed) has entries

as follows:
TYPE DISPLACEMENT
FROM STACK BASE
Control Section Word 0
DEF (of AB1) Word 3
PREF (of AB2) Word 7
Control Section Word B
Control Section Word E

The first REF/DEF entry is a special control section and corresponds to Declaration
Number O (for one-pass assemblers and compilers). The subsequent four entries reflect

Declaration Numbers 1, 2, 3, and 4 made in the ROM.

The expression stack (the third record of the load module) contains two entries. The loader
reads the first entry as follows: 1) Add the constant 14 to the expression accumulator;

2) Get the value word of that REF/DEF entry which begins at Word E of the REF/DEF Stack
(a control section); 3) Change the value word, if necessary, to byte resolution and add it

to the expression accumulator; 4) Store the result in that REF/DEF entry which begins 3
words into the stack (the DEF). The "result" signifies both the sum in expression
accumulator, which goes into the value word of the DEF, and the resolution of the expression
which goes into the resolution word of the DEF. Notice that a similar expression appears

in a load item of the ROM, and that the loader built its expression entry by re-formatting

the ROM's expression.

Looking at the second expression, the fact that Bit 9 of its first word is set indicates that

this is a core expression. The expression says to add the value of that REF/DEF entry

beginning at word 7 of the Stack (the PREF), at word resolution, to a word in the core
image. (In fact, the core image word is Word 0 of the fifth load module record.)
This expression was constructed because the Loader could not completely satisfy the

first "load relocable" load item in the ROM (which involves a PREF in the address field).

A-I

4.0 DESCRIPTION OF THE FIRST PASS

Overall execution of the Loader is controlled by the driver within the LDR segment beginning
at location LOADER. Exit from the Loader back to CCI or PASS3 always occurs at

location LEAVE withinr'rhe driver. If an error occurs during processing, control is
transferred to MESSAGE with the error number. MESSAGE builds the key, reads the

ERRMSG file, prints the offending error (and the key) and transfers to LEAVE.

.1 INITT-INITIALIZATION FOR THE FIRST PASS

IN1 obtains memory by the method described in Section 2. 4. It then zeroes

its own data page (in LDR) and reads the LOCCT, ROM, ond.Tl’ee Tables. Knowing the
size of these tables, the-decloraﬁon, REF/DEF, and expression stack pointers are now
initialized. Sixty-four words are set aside for the declaration stack. The REF/DEF Stack
follows. TOPOMEM is computed (from J:EUP in the JIT if UTS or on the basis of the

number of pages given to the Loader if BPM) and the expression stack pointers are set.

Dynamic PLISTS are moved into dedicated areas of the DATA page for future use and,
since CCI did not clear the last six words of each Tree Table, INIT1 does

SO now.

The ASSIGN record is scanned for F:number DCB names and these are entered as

PREFs in the REF/DEF stack for future building by the Loader (if they do not get satisfied
during PASS1). Unless NOTCB was specified, M:DO is also primary=-referenced to allow
for SNAPs and PMDs. If the load module is overlaid, M:SEGID is primary-referenced for use
by the segment | oader. If BREF was specified, the library routine S:OVRLY is also

primary-referenced. The load module file is opened and the information in the LOCCT

90 18 03B-1(8/72) 68

is moved into the OPENLM PLIST. In UTS, if the first word of the EXPIRE field
is zero, the number of significant words in the EXPIRE control word of the OPEN
VLP is set to zero. The system library is opened to prevent the alteration of the

library while the Loader is using it.

If M:EF was assigned to labeled tape, the M:EF DCB has a 2 in fhe ASN field.

All ROMs in the ROM Tables are then assumed to be on the labeled tape and are
flagged by a 1 in bit position 30 in the third word of each ROM name. Load
modules added from libraries are recognized as coming from disk, not tape, by not

having this bit set.

For BPM, if M:LM has been assigned to a private vélume, the (PERM, LIB) bit in

the LOCCT is checked; the Loader will abort at this point if it is set.

Finally, the known sizes not associated with CSECTs or DSECTSs are added to the TREE.
These include the TREE size and the TCB size in 01 and 00 of the root. (For BPM,
an obsolete feature is unfortunately still retained for compatibility - two words at

the beginning of the root's 01 area are reserved and never used.)

The relationship of the LOCCT to the Tree Tables and ROM Tables are shown in

Figure 14 and the linking among the Tree Tables is shown in Figure 13.

69 90 18 03B-1 (8/72)

LOADER

ENTRY
from CCI or

PASS3

'Read the error
record from

ERRMSG and print

or M:ERR

Figure 17. The Loader Driver (in LDR) Flow Chart

70

INITI

Obtain Memory.

#

Read LOCCT, ROM, and
TREE tables.

Y

Initialize stack pointers.

Y

Set up open list for
M:LM with param-
eters from LOCCT.

i

Read ASSIGN/MERGE
record, if any. PREF
the F: number DCBs.

%

PREF M:DQO if no
NOTCB. PREF M:SEGLD

if an overlay.

'

If M:EF assigned to labeled
tape, mark every entry in

ROM table.

INITSIZE i

Account for TREE size and
TCB size in root segment
tree table.

EXIT

Figure 18. INITI Flow Chart

71

4.2

4.2.1

PASSI
We can think of PASST as consisting of four major parts: the main loop, the object

module decoder (LP1), the load module processor (ADLDMD), and the librarian

(SATREF).

The Main Loop

Starting with the root segment and proceeding along a path, the HEAD record of each
input file named in the ROM Table for this segment is read and control directed to
ADLDMD or LP1, depending upon whether the file is keyed or not (ROMs are
sequential, load modules are keyed). At segment end, SATREF is called to augment
the ROM Tables by library module names needed to satisfy PREFs (except PREFs to M:
or F: DCBs). When there are no more forward links, PASS1 writes the current
segment's stacks on the RAD, updates SEVLEV if there are PREFs (other than M: or F:
names), and proceeds to the overlay links, then to the back links. See Figure 2 for
processing sequence. When all of the segments have been processed and their stacks
written, we will be sitting at the root segment. (Its REF/DEF stack is not written

since PASS2 needs it immediately anyway).

At this point, all references to DCBs have been forced to the root. The root's REF/DEF
stack is scanned for PREF DCBs and they are marked as Type B. FCOUNT contains the
number of words needed for the DCB Name Table and is also accumulated during the

DCB scan. In UTS, REFs to M:XX and M:UC ("special" DCBs not to be built by the

90 18 03B-1(8/72) 72

Loader) are satisfied from the corresponding values in the JIT. The entry is changed

to a library DEF. Figure 3 illustrates the flow of the main loop.

4,2.2 Object Module Processor (LP1-Pass One)

All names (DEF, PREF, SREF) and control sections are "declared" by the ROM. Reference

72-1 90 18 03B-1(8/72)

to these items is by declaration number. This requires that the Loader associate

a "declaration number" with every name and every control section.

Inherently, this number is a position in the declaration stack, every entry being a
pointer to the-enfry in the REF/DEF stack which contains either the name or the
protection type and size (if a control section). See Figure 19.

0 15 16 31

Segment's Tree Table Displacement to Entry in
Displacement this segment's REF/DEF Stack

Figure 19. Declaration Stack Format

LP1 looks at all declarations (control sections and names) and all definitions (DEFs
and forward references). It ignores all other load items. Every declaration results

in creating an entry in the REF/DEF stack and an entry in the declaration stack which
points to it. Every definition results in creating an entry in the expression stack
whose destination is the REF/DEF stack entry which is being defined. The REF/DEF
stack may gain one or more entries as a result of a definition whose defining expression

involves an unknown forward reference.

a. Declarations - Declarations identify either control sections or names.

1. Control Sections

As control sections are encountered, the size is added to the appropriate protection

type and in the segment's Tree Table for use by INIT2 in allocating buffers.

Declaration number O is special, being dedicated to a standard control section
(DCSO) for use by one=-pass compilers and assemblers. The Loader initially
generates this declaration for expression reference; the processor will declare

its size and protection type at the end of the compilation when it finally has this

information.

73

Names

When a name is declared, LP1 makes an entry in the DECL stack. The name

may have been previously entered in the REF/DEF stack via an object module

‘or may now be added to the segment's stack. The appropriate type entry, i.e.

DEF, PREF, or SREF, is added to the REF/DEF stack if the name is not found.

In either case, the declaration will point to the segment in whose REF/DEF stack
the name is stored and will indicate the relative position within that REF/DEF stack.

A later module may change a PREF or an SREF to a DEF.

The routine which searches for names and adds them if necessary is ENNAM.
Incidentally, all names beginning with M:, F: or F4:COM are forced to the root

segment 's REF/DEF stack.

NOTE: A dummy section falls into both of the above categories. (See Section
2.1.1b.) Names that have been declared as DEF names may be redeclared as
dummy sections, with the object language indicating size and protection type.
Given dummy sections with the same name in different ROMs, LP1 will determine
the maximum of the section sizes and accumulate it in the appropriate protection

type and segment in the Tree Tables.

74

Definitions

Eventually, the ROM will define a DEF or a forward reference. That is, it will
present an expression in terms of other declaration numbers (other names, control
sections or forward references) which, when evaluated in the second pass, will
yield the definition or VALUE (in the REF/DEF entry). For now, the Loader
simply decodes the expression (in EXPRIN) and builds an entry in the expression
stack whose DESTINATION is that entry in the REF/DEF stack indicated by the
declaration number of the DEF or forward reference number. Déclaroﬁons
involved in the expression are converted to their REF/DEF pointers (picked up
from the declaration stack entry) and stored in the appropriate WORD of the
expression entry. If a Define Forward Reference and Hold expression mentions a
forward reference number (add FREF), bit 10 of the corresponding REF/DEF entry

is set for use by SQZ in WRITESEG.

References to FREF numbers that are not known cause these to be added to the
REF/DEF stack. These FREFs will later be defined similar to DEFs (see Terminology,

Section 2.1.1d.).

At module end, the forward reference numbers are released, severity level is ac-

cumulated, and control returns to the main loop of PASS1. Figure 20 illustrates

the flow of LPI.

75

LP1

‘ Entry ’

Process Declaration 0 (declare
and enter in REF/DEF).

LDR1

Get next load item
type.

ENNAM

Declare a
name ?

yes

Search REF/DEF stack
for name. Add it if
not present. Return
pointer to name.

Declare a
<confrol >——>—
yes

Set up 3-word
REF/DEF entry,

section?
no
Define
dummy D—a=
section? yes

Get declaration

Enter pointer in

declaration stack.

FIXSIZE

number of this
DSECT's DEF,

Define
forward?

Skip this

load item.

|

Update severity level
(SEVLEV). Release for-
ward reference numbers
which were held
(marked FO).

|

Exit
LP1 to main loop of PASS1

Decode

ENDECL

Get size, accumu-
late size in tree.

definin
expression,

Mark the forward number
release (FF) or hold (FO).

Y

Figure 20a. PASS1 Object Module Processor (LP1) Flow Chart

76

LDR1

EXPRIN -

Purpose:

Input:

Output:

Comment:

Flow:

Expression Decoding Routine (in PS1)

To decode a ROM expression which defines a DEF or forward
reference and place a corresponding expression in the expression
stack.
(R7) = pointer to REF/DEF entry which is to become
the destination of this expression.
(D2) = Declaration Stack Base
(D3) = Tree Table Pointer
(SR4) = return address

(SR2) # 0 if expression is to be skipped.

A new entry in the expression stack consisting of decoded
expression.

The destination is from R7, and resolution = 0.

Expressions are decoded if they follow a Define DEF, Define
Forward Reference or Define Forward Reference and Hold.

Hence, this routine is entered for the purpose of decoding only
from those three points in LP1. All other expressions are skipped
in PASS1. The expression skip mode is determined by SR2

(SR2 £ O means skip.)
A skeletal entry is appended to the expression stack with resolution

set to 0 and destination set with R7.

77

4.2.3

-—

Top of expression stack.

03030000

(R7)
00000000

An expression control byte is gotten (CB;) and inserted into its

slot and the appropriate decoding routine is entered.

The decoding routine gets the item (constant, forward

reference number, declaration entry, etc) which is to be
stored in WORD; and branches to PTWRD which puts it in the
new expression entry. If a forward reference is mentioned in the
expression (add FREF) and this forward reference is new, it is

added to the REF/DEF stack.
When the expression end control byte (02) is encountered, EXPREND1
updates the expression stack pointer, adds the size of the entry

to the TREE and exits.

Load Module Processor (ADLDMD - PASS ONE)

A load module may be encountered as a result of either an EF specification or satisfying
a PREF from a library. In either case, ADLDMD has at its disposal a header, a TREE, a
REF/DEF stack, an expression stack, and the core image and relocation dictionary for

one (and only one) protection type.

Using the space just above the REF/DEF stack, PASS1 reads the TREE record to determine

the REF/DEF stack size. The expression stack is read in just below the current
expression stack and inverted, since the stack is being built upside down. All the
expressions must be marked as unevaluated (bit 8=0) so that PASS2 logic can recognize

the expression as such.

All core expressions in the load module (e.g., an expression that defines the address
of an instruction in terms of an unsatisfied reference) have their destinations changed
to be relative to the base of the load module. These will later(in EVL) have the control

section base added to yield the correct destination word.

The REF/DEF stack is read in below the expression stack. An additional control section
is added at the start which reflects the size of the entire load madule (potentially

many control sections) (See Sec. 3 2 3) The other control sections will be type 6 instead

of type 4 and will hence be ignored by PASS2. The special control section also contains
as the third word (normally, resolution) the relative position (within the expression
stack being built) and size of the load module's expression stack so that the core

expressions can be located and evaluated.

Each entry in the load module's REF/DEF stack is merged into the large REF/DEF stack.
Control sections are added, and all named entries (PREFs, SREFs, and DEFs) are
passed through CHKRFDF and are either added or not added according to whether the

name had previously been encountered.

Forward REFs are flagged as "used" so that they will be ignored. Dummy sections are

flagged as "defined". Space will be allocated for the entire module; reallocation of any

79

individual dummy section within the module is undesirable.

If the Loader generated the load module (as distinct from PASS2 of SYSGEN which
also generates load modules), each entry in the REF/DEF stack has, as its value, the
header of a chain (through the expression stack) of all words that pointed to that

REF/DEF entry. The values are relative positions within the expression stack.

These values are replaced by the actual location of the REF/DEF entry. If PASS2

of SYSGEN generated the load module (indicated by the header, 81 being SYSGEN's
PASS2 and 82 being the Loader), then each expression must be decoded control byte
by control byte to find out which words are pointers to the REF/DEF stack. These are

changed as above.

Special CSECT?

ADLDMD

Set LIBFLG
Reset CSEGFLG.

l

Read tree of Imn
above RF DF stack.

!

Read Imn expr. stack
below major expr. stack.

Account for size
of CSECTintree.

Add control section
to stack.

Flip Imn expr. stack.

CLREXPR ‘

Mark Expressions
Unevaluated.

Adjust destination WDS
of core expressions.

ADLDMI

Read Imn RF DF stack
below expr. stack.

!

Add special control
section to front of
Imn RF DF stack.

ADRFDE +

Move entry to top of major
RF DF stack. Mark forward
REFs used. 1f a DEF from
library, set Bit 31,WDO.

Figure 20b.

81

CHKRFDF

Add to stack (If
not there). R7
points fo entry.

ADRFDF4

If max, RFDF

th, odd size of
Imn RF DF stack
to MAX RF DF,

DLEXSTK

Correct expr. pointers to
new location of RF DF entry.

More entries
— ADRFDF,
Else Exit.

PASS1 Load Module Processor (ADLDMD) Flow Chart

4.2.4 The Librarian (SATREF)

a. Load Module Libraries

The satisfy-reference logic works as follows: after each segment's element files

have been read and its REF/DEF stack built, SATREF is called to satisfy the segment's
PREF's by searching the specified libraries. Thus we attempt to satisfy all the PREF's
we can in a lower segment before starting to build the REF/DEF stack for a higher

segment.

The purpose of this approach is to handle the situation where a high segment contains
a PREF which is also contained in a lower segment and the corresponding DEF is in a
library. It is certainly desirable to have the library routine containing the DEF in the
lower segment (otherwise the high segment and all of its backward path would have to
be in core every time the lower segment needs this DEF). Note that this method
produces the following result: if a low segment has a PREF whose corresponding DEF

is located in both a higher segment and one of the specified libraries, the library DEF

will be used.

SATREF initiates the library search by checking the LOCCT for UNSAT account numbers
The first dictionary (:DIC) is opened and the segment's REF/DEF stack is searched for
the lowest (alphanumerically) PREF. This name is used as the key for reading the
dictionary. If the response is "no such key, " the alphanumeric search continues through
the stack for the next lowest PREF. If the read is successful, the record read contains
the name of the load module with the DEF corresponding to the PREF key, and the

load module is merged with the other input files in the manner described below.

82

In either case, the search continues until all of the segment's PREFs have been checked
against this dictionary. Then the first dictionary is closed and the next dictionary is
opened.

Each time a library load module is to be merged with other input files, room is made

for inserting an entry in the ROM table at the end of the entries for the given segment.
The last ROM bit is set on the previous entry, and reset on this entry. It is also flagged
as coming from a library to save unnecessary opens and closes later. (See Figure 8.)
All other tables are moved up eight words in memory to make roor;\ for the insertion

(the extra word maintains even-word boundaries on the REF/DEF stacks). Pointers from

the TREE to higher parts of the ROM Table are adjusted up by eight words.

The name is transferred to the ROM Table and to the open element file PLIST. If not
already open, :LIB is opened. The header is read into BUF with the key LMN concat-
enated with HEAD. Control goes to CHECKROM which verifies the header and calls
the load module processor ADLDMD to form the appropriate stack entries. The routine

then returns for the next PREF.

When there are no more PREFs and no more accounts, control returns to the main loop

of PASS1.

Core Libraries (UTS only)

The association of core library is triggered by one of two conditions:
a. A PREF to 9INITIAL (FORTRAN) or 9DBINIT (FORTRAN DEBUG)
b. The presence of a :Pn in the UNSAT list on the !LOAD card.

In ENNAM, a record is kept in word CORELIB if 9INITIAL or 9DBINIT is encountered

as a PREF.

In the SATREF loop, CORELIB is checked as is the UNSAT list (for a :Pn).

If either condition dictates a core library, the :Pn HEAD is read to determine the
core library's coﬁfexr size. This is retained in CORELIB for future use by ALLOCATE
in PASS2, which must bump the DATA location counter (DLOC) accordingly. Control
is transferred to ADLDMD (via CHECKROM) in order to merge the DEFs of :Pn in

with the REF/DEF stack.

The association of core library is inhibited if (PERM, LIB) is specified or if the load
module name begins with the characters :P. This is done by setting CORELIB to -1

in IN1.

ENTER PASSI

Process ROMs or LMs
from named files and/
or from Bl or GO,

CORE LIB

Has any :Pn
<peen loaded?’ yes
no

Get the requested :Pn
(from :SYS) and asso-
ciote it with the load
REFs to module being built.

-———————n—<9osan or

° “9INITIAL?
yes
Return
Is :SYS the
no<on|y entry 2
yes
D?::rmim(e)whk;’h :Pn Note: If NOSYSLIB is presented the
(either :PO or :P1). ILOAD card, the UNSAT list is
empty or consists of those sources
(accounts and/or :Pn) mentioned
under the UNSAT option.
B
CORE LI If NOSYSLIB is not present, the
UNSAT list consists of the above
_— plus the :SYS account (which

occurs last),

Initialize UNSAT list.

Get next entry in
UNSAT list, no more entries

e
REFs to

<9DBINIT D —
CORE LIB 9INITIAL?
yes
Wﬁs
no

Determine which :Pn

Satisfy remaining REFs from (either :PO or :P1).
:LIB in this account. —
CORE LIB
Return

Figure 21. Core Library Association Flow Chart

85

5.0

5.1

PREPARING TO FORM THE CORE IMAGE

IN2

INIT2 contains the logic which partitions memory for PASS2 usage. It also determines
the size of each protection type area for the final load module. First, the size of the
TCB and library error tables is accounted for, the necessary information being in the
LOCCT. The DCBMName Table size is calculated from FCOUNT which was computed

at the end of PASS1 (two is added for the top and bottom of the table).

Then each path of the TREE is followed, and the sums of 00, 01, and 10 segment sizes
are accumulated in D1, D2, and D3. When a segment has no sublink, these sums are
compared with SR1, SR2, and SR3, respectively to determine the maximum path for
eachprotectiontype. Also, the large protectiontype for a single overlay segment is retained
in MAX00, Ol and 0. This is done in order to allow for CSEG buffers of the maximum

size.

ALLMEM is called once to allocate buffers for the core image and relocation dictionary
(unless absolute) of the root segment, and again with the values MAX00, 01 and 10 for
current segment I.ocuding. The double buffering permits dummy sections in the root and
higher segments all to store into the section in the root. The byte addresses of these
buffers are in RSEG00 through CREL10. The buffers are allocated from the top of merﬁory

(TOPOMEM), down.

The load module's location counters are held in DLOC, PLOC, and SLOC (00, 01
and 10 respectively). They initially represent the beginning of each of the three TREES.

The bias or background lower limit is used as the beginning value of DLOC, and the

86

INIT2

(ENTER)

CALCSIZE

Save TCB size for
future use.

CALCSIZE2

Add DCB name table
size to 01 (BPM) or
10 (UTS).

FINDLGTPATH

Find beginning of each
protection type.

ALLMEM

Allocate core buffers
and relocation
dictionaries.

CALCS1Z74

Initialize DLOC, PLOC,
SLOC. Save00, 01 and 10
area sizes for ALLOCATE

|

Allocate stacks.

enough room for

yes stacks and buffers

Is there enough room

<for the stacks and 1-2
> no

pages for extended
memory buffers.

yes Abort

Set extended memory mode
bit in LOCCT. Find max-
imum buffer sizes and re-
compute RSEGOO . . .
CRELOO.

< EXIT ’

Figure 22, INIT2 Flow Chart

87 90 18 03B-1(8/72)

PLOC and SLOC are computed. These values plus the total sizes of the 00, 01, and 10
areas, respectfully, are saved in BUF-BUF+5 for generation of the allocation summary

by ALLOCATE.

We now have to allow space for the maximum stack paths.

In PASS1, the maximum REF/DEF and expression stack size was saved. It is known that

the REF/DEF stack will not grow and also that the declaration stack is still at its

maximum size. The expression stack is allocated immediately above the REF/DEF stack,

and the top of it is compared to the bottom of the buffers. If there is enough room,

PASS2 begins with memory partitioned as shown in Figure 8; otherwise we determine whether

extended memory mode can be entered. If so, the maximums of

SEGl 00 ’SEGlOO are computed and
C 01 01
REL | 30+ R [REL g

the buffer pointers for the current segment and the root are set equal. Hence for the
concatenation phase of id there will be six (or three) buffers to work with. See

Figure 9B.

5.2 PS2 - THE DRIVER FOR THE SECOND PASS

PS2 is really a driver for the second pass. It calls ALL, EVL, and WRT as it proceeds

along the segments. Figure 5 illustrates the overall sequence for this pass.

5.3 ALL - MEMORY ALLOCATION

Refer to Figure 1 for memory layout of the load module being formed. DLOC, PLOC,

and SLOC -- the three location counters for 00, 01, and 10 -- have been established

90 18 03B-1(8/72) 88

at their beginning values by INIT2. If the segment being allocated is the root se gment,

we save a pointer to the TREE and increment the PLOC location counter by the TREE size.

We save a pointer to the DCB Table and inc rement PLOC (or SLOC if UTS) by the
DCB Table size. If REF or BREF was specified, we increment PLOC by the number

specified by the user, or supply the default.

PLOC now has the location of the first control or dummy section. Control goes to

LOADFO and LOADM to allocate the F: and M: DCBs (Still only for the root segment).

For UTS, if rounding has occurred to prevent DCBs from overlapping page boundaries and
the adjustment did not fit in the RSEG10 buffer, it must be taken into account at this time
by readjusting the Loader's buffers for protection type 10 (refer to Figure 8). The additional
size is accounted for in the root's tree and, if the load module is relocatable, in the

root's relocation dictionary. Buffers are moved down for the root's and current segment's
core image buffers and for their corresponding relocation dictionary buffers if the load
module is relocatable. If in nonextended memory mode the buffer shifts result in a

collision with the expression stack, the Loader will abort at this point.

Next all 01 protection type sections are allocated by putting PLOC into the value word,
setting the resolution, and adding the size to PLOC. Then we go to work on the 00
protection area, first accounting for Blank COMMON*, then establishing the TCB pointer,
and then appropriately incrementing DLOC (root segment only). All 00 protection
type control and dummy sections are then allocated. Finally, using SLOC, all 10

protection type sections are allocated.

89 90 18 03B-1(8/72)

A final run is made through the REF/DEF stack to put values in the control sections
read from the library. Since these are all type 6 entries, they were not allocated;
therefore, the value of the last type 4 entry is put in the first type 6 entry encountered;
that section size is added and put in the next type 6 entry, and so on until a new type

4 entry is encountered.

If the segment just allocated is the root, the allocation summary is output, including a
possible adjustment in the 10 size for UTS as a result of rounding DCBs fo prevent

overlap on a page boundary.

*If UTS, we first account for the core library's context area.

89-1 90 18 03B-1(8/72)

ALLOCATE
Establish 01 base in tree.

yes

01DCSECT

M

no

B o
Uibrary 7
load yes
-1
!

(0IDCsECT)

Bump PLOC by tree size.

Reference
looding?

BPM; 1uTs

01DCSECT
Establish 10 base in tree.

Allocate 01 control
sections.

BPM

Establish 00 bose in tree.

FIXLIB
8ump SLOC by DCB
Name Table.

Allocate DCBs
Allocate common,
urs BPM

Allocate core library dota)

Establish 00 bose in tree.

Allocate TCB,
FIXLIB 0IDCSECT

00DCSECT
Aljocate 00 control
sections.

BPM tuts

1

[Esooblish 10 bose in tree. | (LOADFO)
[Allocate 10 control sections,

FIXLiB

Allocate control sections
from librories.

n (Output allocation summory

Figure 23. ALLOCATE Flow Chart

90 18 03B-1(8/72) 90

FORMING THE CORE IMAGE (EVL)

EVL is entered from PS2 once for each segment, beginning with the sublinks, to the
overlay links, and back down toward the root (see Figure 4). It has two entry points,
EVEXPRS and LOADSEG. PS2 first calls EVEXPRS to evaluate all expressions for this
segment which were formed during the first pass. It then calls LOADSEG to actually
form the core image and relocation dictionary by reprocessing the object language

of a ROM or reading in and relocating the core image of a load module.

EVEXPRS

Since all control and dummy sections for a given segment have been allocated at this
point, we are in a position to evaluate the expressions which are typically in terms of
these values plus constants. Because some expressions will be in terms of other DEFs,
every expression in the stack must be evaluated repeatedly until one complete pass

has been made during which no expressions were evaluated. Evaluating an expression
consists of decoding the expression's control bytes. (Note that we are "decoding" those
expressions which are already in the expression stack from the first pass. Since we are not
forming the stack entry, EVEXPRS is a much simpler version of expression evaluation

than the EXPRIN routines found in PASS1 and LOADSEG.)

If the byte is either an add or subtract declaration or a forward reference, the corresponding
entry in the REF/DEF stack is picked up if it is defined. If it is not defined, the expression
cannot yet be evaluated. The other control bytes add constants or affect the resolution.
When the expression is successfully defined, the value and resolution are put into the

REF/DEF entry pointed to by the destination word of the expression. Core expressions

91

6.2

6.2.1

(which come from load module expression stacks in PASS1) are ignored at this point.
(This routine may also be entered (later) from ADLDMD for the purpose of evaluating

core expressions which come from load modules.)

LOADSEG
LOADSEG can ke viewed as consisting of three major parts: the main loop, the object

module processor (LP1) and the load module processor (ADLDMD). (Notice the similarity

between LOADSEG and PASS1.)

The Main Loop

The main loop begins by initializing the relocation dictionary buffers if XMEM is inot

in effect. The buffer is filled with E's or 0's for the current or root segment, respectively.
The segment name is printed at top~-of-form if a map was requested and a !TREE card was
present. LOADSEG now begins to reprocess the input files by running through this
segment's ROM table. Control is directed to LP1 if the module is a ROM or to ADLDMD

if it is a load module.

Both LP1 and A.DLDMD are concerned with developing the core image. The logic of
extended memory mode (XMEM) will come into play for every word of the core image
and eve& relocation digit which is constructed. When information is about to be stored
into a buffer (core or relocation) and extended memory mode is in effect, a three-byte
key is created consisting of the segment number and a page number. (For a standard
load module, this number corresponds to the page address of the buffer this record will
go into during the concatenation process. For the paged load module, this number cor-
responds to the page containing this record at execution time.) The key is compared to

the key of the page currently in memory. (Recall that there are only one or two buffer

92

6.2.2

pages at TOPOMEM.) If the keys are not the same, the page in memory is written out

and the new key is used to read in the desired page.

0 8 16 24 31
03 00 SEG PAGE

SEG = Displacement within TREE Table of this segment's entry

PAGE = Page number of the concatenation buffer.

Figure 24. Format of the Keys of idX (Extended Memory File
for Standard Load Module)

Object Module Processor (LP1-PASS TWO)

An object module is processed through straightforward decoding of the load items.

The main loop of LP1 is at LDR1 which contains a jump table to the individual routines.
A control byte of Module End terminates LP1 and control returns to the main loop of
LOADSEG (at NEXTROM). The load items fall into two categories: those which

were handled in Pass One (declarations and definitions) and those which were ignored

in Pass One (start address, origins and items which result in words or bytes in core).

Of the first category, LP1 handles declarations and definitions as follows: A declaration
stack is formed again so that expressions can be related to their REF/DEF components.
Name declarations are handled by looking up the name in the REF/DEF stack, forming

a pointer to it and entering the pointer in the declaration stack.

93

Current SEG's Buffers

Dynamic (Sg) ‘ RootA Buffers
REF/DEF EXPR Core ""REC " REC T
DECL Stack
CL Stac Stack Stack DICTS Code DICTS Code
A, eI, e, e, o ~ \ A ~ m—
- T 7T T
Loader | LR 10 10
ol ~[R s|sls|slsls 00 01 - 00 01 .
HME oj113/0l113 QOO (Dot | (Proced.) | ©Srotic- 100101110l (nere) | (Proced.) | Sotic:
1M Data) Data)
—_ E 11 11 —
CRELOO RRELOO
A TOPOMEM
Beg:nnmg of A CRELOY RRELO1
available space Locations CRELIO
determined RREL10
by INIT2 CSEG00 RSEGO0 ———
CSEGO1 RSEGO1
CSEG10 RSEG10
Executable Location Layout
DLOC PLOC SLOC
Tree Tables :':L ;———AT‘————‘ »————An:z——— }———-AEOE——-—
SO
aas ! 00 are) 01 (Procedure) 1 10 (Static. Data) J
=
} Protection Type = > Full Access ; Protection Type = > No Write I Protection Type = > Read Only L
5 N’ \.._,—Jl |s_.,_/|s_~—_/.- bq—/“-—J‘b—v—l
. ROOT | | ROOT | | root | |
¢ |
Il | | | I
9 I ' ' ! |
I I L
| | | [
S1 | |
' !
5 . | |
| | |
7
™ [| l
9 = I I
| | |
| | I
s3 [

Conditions:

1. B
2,
3

PM.

Nonextended Memory Mode.
. CSEG = S3 (see Figure 2).

Figure 25. Snapshot of Core Usage During EVL

94

Control sections are handled by looking through the REF/DEF stack for the first TYPE 4
entry. The type is then changed to a 6 to prevent its being used again, the pointer is
formed and entered into the declaration stack. Expressions which define DEFs and for-
ward references are skipped. Define forward marks the FREF entry in the REF/DEF stack
with an FO and FF (depending on Define Forward Reference or Define Forward Reference
and Hold, respectively). Forwards with FO are marked with FF at module end to prevent

their being used again.

We now consider load items of the second category, and these are, of course, the heart

of LP1.

Define Start is handled by evaluating the expression (EXPRIN), shifting the obtained

value to word resolution and storing it in START (for later placement in the HEAD record).

LP1 switches from one control or dummy section to another by an origin. The ORIGIN
control byte (from the ROM) is the only means by which the Loader determines where

data is to be placed within a cortrol secfion. (Note: It is the responsibility of the ROM to
present at least one ORIGIN cortrol byte for every control or dummy secfion.) The expression
defining the origin is evaluated (it must be evaluatable and have resolution) and the value
obtained is shifted to byte resolution. The value is then compared with the bounds of three
protection types of the current segment and of the root segment. It must be within one of
those segments. Once the appropriate segment and type are discovered, the base of that
section is subtracted and the base of the corresponding buffer is added, yielding the
appropriate byte address at which to place the next load item. This value is put into the
location counter, LOC. The segment base and buffer base are remembered in BIAS and

FBIAS, respectfully, for possible use by XMEM.

95

Basically, LP1 is concerned with load items that result in words or bytes fn core (that is,
from a Loader perspective, they result in words being placed in the segment buffers

or the XMEM file). These items are Load Absolute, Field, Load Long Relocatable, and
Load Short Relocatable (see Sigma Object language). These items are either

absolute or contain expressions involving the base of a control section, a forward reference
or some combination of externals. The expression evaluator, EXPRIN, is used to decode
and evaluate the expressions. Unless the load module has unsatisfied references, values
are obtained and the load item is placed in the core image buffer. The relocation digit

is calculated and placed in the relocation buffer.

If there is an unsatisfied reference where an instruction references external data, the
absslute part of the instruction is put in the core image and a "core expression" is

added to the expression stack.

Core expressions left in the expression stack in this manner are, in general, meaningful
when the load module being formed is to become part of the library. In this case, the
core expression would be evaluatable when the load module is combined with other
ROMs siﬁce the PREFs would presumably have been satisfied. ADLDMD (which would be
handling the module) would do the evaluating and would insert the value into the field

part of the absslute instruction in the core image.

a. Load Absolute

The simplest item is Load Absolute. This load item contains a byte count followed

by the number of bytes that are to be placed sequentially into the core image,

96

beginning at the current value of the location counter. The relocation digit for

these absolute load items is X'E'.

Field

The field allows an expression to be evaluated and added to any width and any
position in a word or words. Since this logic handles all relocatable items, it

includes the devel opment of the relocation digit.

Before the expression is read, the relocation digit is initialized. If the field
terminates at the end of a word, the relocation digit will be 0, 1, 2, or 3,
according to whether resolution is byte, hal%word, word, or doubleword. If the
field does not terminate at the end of a word, left-half doubleword resolution

or both-halves doubleword resolution is checked for. If none of these criteria are
met, then the item is absolute.

Next a core expression destination word is constructed (See Section 3. 2. 4).

The expression is evaluated (EXPRIN) and, if it is not absolute, the relocation
digit is calculated. If it is not evaluatable, FIELD exits. (At this point, a

core expression has been added to the expression stack; a stack overflow may

have been encountered if there was no room for the expression.)

For expressions that have resolution, the relocation digit is the resolution control
(O for byte, 1 for halfword, etc.), if the field is right-adjusted. Resolution
control is the output from WHATRES in R2. In the case of doubleword resolutions

in halfwords, the resolution digit already present is checked for the case where both

97

halves must be relocated.

Next, the destination word is used to add the value of the expression to the
appropriate field in the core image. Remember that this field may extend

backward across as many as 8 words.

Finally, if reference loading has been specified (REF or BREF), the CAL and
PLIST must be constructed. During the expression evaluation, the highest
segment above the current segment referenced in the expression was remembered
in RFLDSG (0 means that no REF - loading is required). A pointer to the next
available location for building the PLIST is kept in the last word of the root
segment of the TREE Table. The PLIST is constructed in SR1 through SR4 with
the call formed in SR3, and exchanged with the word in memory requiring REF-
loading. The PLIST is put away in the area saved in the 01 root segment and

the field logic finally exits.

Load Long/Short Relocatable

Both of these load items contain a four-byte word and a declaration or FREF number
to be added to the word ot a given resolution. (Short form assumes word resolution
and a six-bit declaration number.) For these forms, a byte string that looks like

a ROM field expression is created in BUF2. (See Define Field in Object Language,

BPM Reference Manual.) It has the form:

98

BUF 2 K L expression
Al

0 7 15 23 31 15 23
FF width add number 02

where:

FF determines the location of the field.
Rightmost bit is location minus 1 bit.

width is 19 bits less specified resolution: 0 bit for byte; 1 bit for
halfword; 2 bits for word; 3 bits for doubleword.

add is 20 bits for add declaration, 24 bits for add constant at
the appropriate resolution.

number is the two-byte forward reference or the two-byte
de claration number if there are over 100, , declarations;

16

or the one-byte declaration number followed by an 00
(padding) if there are fewer than 10]]6 declarations.

02 is expression end.

The four absolute bytes are then placed in memory at the location pointed to

by the location counter that is incremented to the next word. (The location
counter must begin at a word boundary or we have an ILLEGAL BOUND.)
Certain pointers are then switched so that the field logic will get the expre:ssion
from BUF2 rather than from the standard input buffer (BUF) and the FIELD logic is

called.

Figure 26 illustrates the general flow of LP1. Two important subroutines of LP1

are EXPRIN and FIELD, illustrated in Figures 27a, 27b, and 27c.

99

LP1 Routines

DDNAM

DPNAM

DSNAM

ORG (Origin)

DFREFH
or

DFREF

DDSECT

DCSO, DCS
DSTART

MODEND

FIELD

LABS
LSREL

LLREL

(Declare DEF name) - Locate the name (LOCRFDF) and declare
it (ENDECL).

(Declare REF name) - Locate the name (LOCRFDF) and declare

it (ENDECL).

(Declare SREF name) - Locate the name (LOCRFDF) and declare
it (ENDECL).

Evaluate the expression which follows (EXPRIN). Shift to byte
resolution and store value in RLOC. Determine which segment and
protection type the ORG value is in, then compute the Loader's

location counter, LOC (=ORG value - SEG base + buffer address .)
Define forward - Locate entry in stack and mark it with FO and FF.
Skip defining expression.

Declaration # is fetched and DSECT declared.

Locate next control section in stack. Change type from 4 to 6 and
declare.

Evaluate the expression which follows EXPRIN. Shift value to word
resolution and save in START.

Update severity level, release all forward REF numbers, exit LP1.
Form the destination word stack. Evaluate the expression which
follows (EXPRIN). If a value is obtained, calculate reloc. digit,
store in buffer and store value in buffer. If no value, leave
expression stack and exit.

Fetch bytes and place in buffer.

Create a field type expression BUF2. Store the four-byte item in
buffer.

Call FIELD to evaluate the expression and store in buffers.

100

‘ LDR1 ’

l Get load item type.]

A

Is it declare DEF, delfcare REF,

declare SREF, delcare DEF, 3 Miscellaneous simple func-
define forward, define control yes tions (see description).
section, define dummy section?

Tronslate value into a
buffer location counter
(LOC).

Save value for later
placement in HEAD -

record,

FIELD
(calls
EXPRIN)

no

Load
absolute
?
no

Load short
<or long >
relocatable? 7*°

Get the bytes and store
in loading buffer,

Place the 4-byte item
which follows in the
loading buffer.

Create a field-type
expression in BUF2,

(Rk) FIELDFB [Set control byte pointer
Exit LP1 to BUF2.

FIELD
(calls
EXPRIN)

Reset control byte
pointers to their

normal position (BUF).
< LDR1 ’

Figure 26. PASS2 Object Module Processor Flow Chart

101

FIELD ENTRY
RELFLD2N

Form core destination
word for the expression
which is about to be
evaluated.

A

:Absolufe
yes “load module '?>

hd

Coalculate relocation digit

Evaluate
expression.

<Absolufe
load module 7 yes

no

Adjust relocation digit.

PUTDIGIT {

Put relocation digit in
relocation buffer.

STOREFLDN

Adjust value per desired
resolution and set into
proper core buffer,

Con the item

[stored induce)

an overlay ?

yes

Create entry in REF
load table.

FIELDEX)\

Did we enter
<from load oy
relocatable ?

yes
FIELDFB1 LDRI

Reset the control
byte pointers.

EXIT *SR4

Figure 27a. Field and Expression Logic Flow Chart

102

EXPRIN

(Enter ’

|

Initialize a new expres-
sion at top of expression
stack.

EXPRIN1
Get a CB;.

Register Output: SR1 = value (SR1 is expression

GETVAL

Add declar-

<aﬂon or cdd>______,.
yes

forward ?

Get value (if any), add
to expression accumula-
tor (see Figure 27c).

accumulator).

SR2 = resolution.

= 0 if value obtained.

SR3 [f' 0 if no value obtained.

Add

constant

Add it to expression
accumulator,

PTWRD

Save constant or

Determine current
resolution and shift to
desired one.

declaration in WORDi
of new expression.

Does the expres~
sion have a value >—-‘-
yes

(SR3=00?

Pick up resolution
—— SR2,

no

:]s this a core,

no - expression ? >

yes

Adjust destination to be
relative to module base,

Retain expression in
stack. (Modify stack
pointer and augment
size in tree.)

Return

Figure 27b.

EXPRIN Flow Chart
103

\

‘ EXPRIN1 ’

GETVAL

Reference

loading ?

no

Save the highest segment
involved in RFLDSG.

no

been defined

GETVAL4

{

Pick up value.

SR3740. The

expression cannot
be evaluated.

Determine

no resolution

resolution

GETVAL3

Shift value to resolu-
tion desired and change
accordingly in ex-
pression stack.

GETVAL2

Accumulate the value

(in SR1).

PTWRD

Figure 27c. GETVAL Flow Chart

104

PTWRD

6.2.

Load Module Processor (ADLDMD - PASS TWO)

When a load module is encountered, ADLDMD is called. The special control section
inserted in PASS1 in the REF/DEF stack containing the address and size of the module

is located. The buffer address for the core image in the appropriate Loader buffer is
calculated (in extended memory mode, the image is read in above the expression stack).
Next, the relocation dictionary is read into its buffer if the mode is not ABS or extended
memory. In ABS mode, the relocation dictionary is read in above the expression stack.

In the extended memory (XMEM) mode, it is read in above fhe‘core image which is then
relocated by interpreting each relocation digit and adding the appropriate bias to the
corresponding word. Next, if we are in XMEM mode, each word of the relocated

image is stored through the XMEM logic and the same is done for the relocation dictionary

if the module is not ABS.

Since we know the relative beginning and size of the module's expression stack from the
special control section, we can now evaluate the core expressions in the module's stack
and resolve any words whose addresses were in terms of PREFs that are now satisfied by
other modules. The evaluation is performed in the EVEXPRS section of EVL. The
relocation digit for each word must also be corrected. The value and relocation digit

for the core expression is then stored (through XMEM logic, if necessary).

105

ADLDMD

for this module.

Find dummy control section

Y

Calculate relocation bias

bias (in HEAD).

MBIAS=CSEC value-module

!

Calculate address within
buffer for the module's core
image MODBAS=Buffer

+(CSEC value-segment base).

{

If XMEM, address is

changed to above expres-

sion stack (if there is room).

l

Read core image.

no

yes

Read relocation dictionary
above core image.

!

Read relocation dictionary
into its buffer,

l

RELOCATE
Relocate the
core image per

MBIAS,

no

yes
XMEM

Move each word of core
image and relocation dic~
tionary into XMEM buffers.

ADXM3X i

Get the bounds of the

module's expression stack,

l

Begin core expression scan

COREXP.

page 107

Figure 28, PASS2 Load Module Processor Flow Chart

106

from page 106

COREXP

Is this a core,

express:on ? ’n

¥

Evaluate it through the
EVEXPRS logic.

A

Is the load \
module ABS?” yes

no

Adjust relocation digit
and store in rel. dic.

(XMEM if necessary).

COREXPO r-

STOREFLDN
Store value in
core buffer (XMEM

if necessary).

Any more

xt one, .
Get ne Yes expressions?

COREXP2
Exit ADLDMD

to main loop of

LOADSEG.

Figure 28. PASS2 Load Module Processor Flow Chart (cont.)

107

7.0

WRITING THE LOAD MODULE (WRT)

WRT is entered at WRITESEG from PS2. If this is a library load module, it updates the
library dictionary (WRITELIB), makes a copy of the REF/DEF stack for mapping purposes
(LIBCPY), and eliminates forward references from the just copied stack (SQZ). The

segment's stacks are written (WSEGL) as are the segment's core images and relocation

dictionaries (WSEG1).

WRT performs several additional tasks after the root has been constructed. If extended
memory mode is in effect and a standard load module is to be constructed, the pages of
all of the segments are put together and written out (XMEM). If a paged load module

is to be constructed, the first record of each overlay segment's 00, 01, and 10 areas are
shortened and the first few records of the root are read into core to insert the appropriate
tables (SUPMEM). In any case, once the root has been processed, the DCB Name Table
is built (SAVEROOT) as well as the DCBs and TCB (FIXROOT). The HEAD and TREE

records are constructed and written to the load module file.

See Figure 29 for an overall view of the flow of WRT.

108

WSEGL

ENTER

Library
oad module

Write REF/DEF
and EXPR stacks
for this segment

Librax

load module

Paged .
load module -~
N » -

' NO
|

YES

/_sAVEROOT _\
Build DCB
Name Table if
not library

FI1XROOT

Library

load module

Build DCBs

YES

Write out
final XMEM
buffer.

WRITELIB XMBOF

A
Position to be-
ginning of file
and begin read-
ing sequentially
(put together

one segment).

Update and write

library

dictionary.

—_
XMEM1

Read a page into
the buffer it

SAVEROOT

Build DCB
Name Table

Insert tables

would have gone |eand of file : °

into if non- T~ in root via

extended memory. ! FIXROOT.
XMEMEOFy

Do we have all

one previously
read)?

Write core
images and
relocation

dictionaries.

Library

WSEG!
- and exit

the pages for
__No thispsggment (com-~
pare newkey with

Shorten first
records of
overlay to start
at execution
bias.

TREE

YES
/// FIXROOT
-

Write out TREE.
Concatenate key
if library.

HEAD

WSEGL

Build and write
HEAD. Concate-
nate key if
library.

and TCB.

G

Figure 29. WRITESEG — Overall Flow

109

Extended NO le NO
[E— memory mode - load module EXIT
\‘ ?
| YES
LIBCPY :
Move copy | T
of REF/DEF \ Extended ™ YES
stack above | memory mode
EXPR stack. |
| NO Root
I <& YES just put
TREE3 together
NO

XMEM1

LIBCPY: The MAP routine in FIN must have an unchained, expendable copy of the
library load module's REF/DEF stack. For this reason LIBCPY makes a
copy of the REF/DEF stack above the expression stack before the SQZ
routine is entered. In order to provide as much room as possible for this
copy, the library load module's core image and relocation dictionary

records are written out immediately prior to entering LIBCPY.

After LIBCPY has moved the REF/DEF stack above the expression stack,

memory layout is as follows:

TOPOMEM
LOCCT Original Copy of
LOADER | ROM 'SDfECt REE/DEF E’r‘ap:'; REF/DEE
TREE i ac Stack Stack

A TREE pointer is adjusted so that the new copy of the REF/DEF stack is
squeezed, chained, and written out by WRITESEG, and the original REF/
DEF stack is used by the MAP routine (which needs the area above the
REF/DEF stack for sorting names). The start of the original REF/DEF stack

is remembered in MBIAS.

Entry is made to LIBCPY from the WSEG1 routine. After calling SQZ,

LIBCPY exits to WSEGL, whereupon the proper stacks are written out.

SQZ: This routine streamlines a library load module's REF/DEF stack in order to
expedite subsequent adding of a library to a user's load module. Two

functions are performed:
a. at RFDFLOOP —all evaluated forward reference entries in the REF/DEF

stack with bit 10, word 0 reset are removed from the stack. All

110

evaluated expressions are removed which involve that entry. If
bit 10 is set, the FREF entry is retained (so that an unevaluated
DFREFH expression in the library load module involving this FREF

(add FREF) can be evaluated when it is merged into another program).

At SQZDN - chaining is installed. The VALUE word of every REF/
DEF entry becomes the head of a chain within the expression stack
which replaces pointers to the REF/DEF entry; the tail of the |

chain = 0. That is, the VALUE word of each REF/DEF entry is re-
placed by a pointer to the word in the expression stack that formerly
pointed to that REF/DEF entry. (The pointer is a displacement
relative to the base of the expression stack.) This expression stack
word is replaced by a pointer to the next user of the REF/DEF entry.

This process continues until a zero terminates the chain.

For example, consider a DEF entry which has a displacement of X'B'

m

words into the root's REF/DEF stack. Then any expression involving

the DEF refers to it by means of a pointer of the form X'B'. Assume
there are three such pointers in the root's expression stack: PT1,

PT2, and PT3, with displacements X'F', X'1A', and X'22', respectively,
relative to the base of the expression stack. Then the chaining process

with respect to this DEF entry is outlined as follows:

Contents Before Contents After
Word Displacement Chaining Chaining
Value of X'B' (Into R/D stk) Constant or Addr X'F!
DEF entry
PT 1 X'F' (into expr. stk) X'B' X'1A!
PT 2 X'1A" (into expr. stk) X'B' X'22
PT 3 X'22' (into expr. stk) X'B' 0

WRITELIB:

The benefit is that the expressions do not have to be relocated (with
respect to the new REF/DEF stack) each time the library load module

is added to another.

Writes the dictionary for the library. This entails three cases.

The three cases are distinguished via abnormal or nomal returns. In
any case, a ROM of the same name as the LMN is deleted to insure
proper handling.

Case 1 - The library (:LIB and :DIC) do not exist. Here we create them
by opening in the OUT mode.

Case 2- The library exists but this new load module is not within it.

112

Case 3 - The library exists and this new load module is to replace

one with the same name which already exists within it.

In general, WRITELIB does the following:

Step 1. Opens the :DIC file; and then it opens the library file
with the load module name synonymous to :LIB. The only
anticipated abnormal return would be that the file :LIB
does not exist (Case 1) and we go to FIRSTLIB. The file
:LIB is created and the opening isrreoﬂempfed with the load

module name, and we proceed to Step 3.

Step 2. (RDRFDF) If :LIB clréady existed, an attempt is made to read
the REF/DEF stack from :LIB for a module with the same name
as our module. An error return implies that the desired load
module is not within :LIB and we proceed to Step 3. If the
read is successful, a delete CAL is made to the :DIC file,
with each DEF serving as a key to remove the old module's
dictionary entries. (A delete CAL is also made for

each DDEF and DSECT entry in the old REF/DEF stack).

Step 3. (WRITEDEF) Then, we run through our module's REF/DEF
stack. Every DEF, DDEF, and DSECT of our module is
used as a key to write the :DIC file, the record being the

module name. The dictionary is closed and we exit to

WSEGL of WRITESEG.

113 90 18 03B-1(8/72)

WRITELIB

Open:DICin | [Dictionary doesn'F |
INOUT mode.

{gbnormal; exist. Reopen wnh!
return ’: MODE = OUT
{

re

b - — — —

Set up open PLIST to M:LM !

File name = LMN , ~ gbnormal > lercry doesn’ exlst Reopen
Synonym = :LIB return with mode = ile nome

= :LIB
Y 1he file exists, — -

Delete the file with name = E f;?lopen WIT Lml\iile —SINOUT'_
. MN, to avoid confusion if "qETme T s dynonym =

ROM name = LMN,

—

[Open the M:LM INOUT
filename = LMN
Synonym = :LIB

RDRFDF k2 l'
Error Read the REF/DEF Stack for
I-— Returm — 1 this module above the
buffers.
| © NEXTDEF—y .
This deule

doesn't ' exist

Run through the REF/DEF
within Ilhe library

stack just read and delete
i the_corresponding record in

.
2. A

— — " “WRTIEDEF—

Run through this module's
REF/DEF stack, writing the
corresponding record in :DIC,

Figure 30. WRITELIB Flow Chart

114

SAVEROOT

constructs the DCB Nume Table and its relocation
dictionary. Entries are put in this table for every DSECT
with a name beginning with M: or F: in the REF/DEF
stack. The DCB Nome Table is initially built above

the REF/DEF stack (beginning at the expression stack).
Because the DCB Name Table was the only item requiring
the REF/DEF stack after mapping the stack can now be
destroyed and we move the DCB N:mé Table down to the
declaration stack (at TAMOV). This is done to make as
much room as possible for the reconstruction of XMEM

files, if necessary. (If there is no room to build the

table, i.e., we would collide with the buffers, loading
is aborted).
or
Initially: EXPRBAS X MEM BUFFERS
Decl. REF/DEF Build DCB Name Table and CSEG | Root |
Stack Stack its relocation dictionary Buffers | Buffers|:
after TAMOV: DECLBAS TOPOMEM
DCB Nbome Table and CSEG | Root |!
its relocation dictionary Buffers | Bufferg;

Recall that at the end of PASS1, all PREF DCBs were set to

type B. During the building of the DCB Name Table, SAVE-

115

90 18 03B-1(8/72)

FIXROOT:

XMEM:
(BPM only)

ROOT flags the location word (bit 8) of
each table entry which resulted from a type B REF/DEF

entry, as a signal for DCB building in FIXROOT .

Moves the TREE into the 01 buffer. Then it moves the
DCB Name Table and its relocation digits to the buffers
(01 for BPM, 10 for UTS). The TCB and its relocation
dictionary are built in the 00 buffers. The DCB Nime
Toble is scanned for those DCBs which are to be built by
the Loader. If one is to be built (we know this from the
hi-order flag bit in the location word of the entry),
FIXROOT builts it (in 01 for BPM or 10 for UTS) then
checks whether it has a standard name. If so, default
information is inserted. The proper relocation dictionary
is built. In BPM, if the load module is being

written to private disk pack, the serial number(s)

is inserted in the M:SEGLD DCB.

This routine is entered only if CSEG =root segment and
extended memory mode is in effect, and a standard load
module is being constructed. Its function is to recon-
struct the load module from the XMEM file into the form
necessary for writing it out as a keyed file in load module
format. This requires that the pages be placed in the

core image and relocation buffers, (see Figure 9b). Re-

116

call that the keys of idX indicate the page number of

the buffers (see Figure 24).

The last core buffer is forced out and, if the module is not
ABS, the last relocation dictionary buffer is forced out.

The file is positioned to its beginning and is read sequentially,
first with O byte count to get the next key from which the
buffer address is calculated and again to read the page in.
This process continues until an end-of-file is encountered

or the segment number in the key changes. If the segment
read is the root segment, FIXROOT is called. The segment
is then written out into the normal load module file. This
process continues until all segments are reconstructed.
Notice that the advantage afforded to large load modules
by XMEM during this concatenation process is that the area
of core otherwise dedicated to the stack can now be part of

the 6 buffers.

A final constraint on the size of the load module that can be
concatenated is that the DCB Name Table and its relocation
dictionary (which have been temporarily placed at DECLBAS
and up by SAVEROOT) are co-resident with the largest

segment.

117

SUPMEM: If extended memory mode is in effect and a paged load module is being con-
structed, SUPMEM is entered immediately, after the current segment’s stacks
are written. If the segment is not the root, return is made to ENDWRT1 where-

upon WRITESEG exits. If CSEG is the root, the following functions are performed.

The last core image record (from EVL) is written out and SAVEROOT is called
to build the DCB Name Table. Upon returning from SAVEROOT, the size of
the root's tables are determined and, in the order of protection types, GETRECS
is called to read in the records which are to contain these tables (if the records

already exist).

GETRECS reads in the first such record into the first available page above the
DCB Name Table. The next record is read just above this page, and so on. If
GETRECS tries to read a record which does not exist, it still reserves space for
this record in the next available page. Finally, the buffer pointer corresponding
to the protection type of the records being read in (RSEG00, RSEGOT, or RSEG 10)

is adjusted to point to the beginning of these records as they sit in core.

After fhese records have been collected, FIXROOT is called to build and insert

the table. The updated records are then written out.

Next the first record of the 00,01, and 10 areas of each overlay segment if it
does not begin on a page boundary (and the root's 00 area, if it is a core
library, has been associated) must be shortened to start at the first word of
code. This is done by reading each record into the page at the top of memory

(as a 512-word record). The size of the record to be output is computed from

90 18 03B-1(8/72) 118

the execution bias in the segment's TREE. The buffer pointer is moved accordingly

and the truncated record is written out.

118-1 90 18 03B-1(8/72)

8.0

When this process is complete, SUPMEM exits and the HEAD and TREE records

are constructed.

FINISHING UP (FIN)
The FIN segment comprises the final stage of the Loader. By now the entire load module
has been written out. All that remains is o output the severity level, perform any mod-

ifications per IMODIFY cards, and generate the load map.

FIN is entered from LDR at FINISH. FINISH computes and outputs the severity level.

At this point the user sees the general allocation summary and the severity level. Next
the MOD routine is called. This routine establishes the environment for both the MODIFY
(Catalog Number 705396) and MAPER routines. If the severity level is less than or equal
to the maximum (supplied by the user or CCI in the LOCCT), modifications are performed
per the IMODIFY cards which have been packaged into the idD file by CCI. In any case

MOD calls MAPER to generate the load map.

MOD first checks to see if: 1) a library load module is being formed; 2) extended memory
mode is in effect; or 3) the severity level is greater than the allowable ma.ximum. If any
of these conditions are true, a flag (NOTDD) is set to inhibit modifications. Otherwise
the idD file is opened (if the file doesn't exist, NO1DD is set). The REF/DEF stack for

the first segment is read (except for a library load module, whose stack is already in core).

Now if NOIDD #0, this segment is mapped and the next segment's REF/DEF stack is read.
If NOIDD =0, the core images and relocation dictionaries for this segment are read, the

idD file is read, the MODIFY routine is called to perform the modifications, the segment
is rewritten, and the load map is generated by MAPER. This processing continues until

there are no segments, whereupon MOD exits to the main FINISH program.

119

At this point, if the severity level is greater than the maximum allowable, the loader

aborts. Otherwise FIN closes M:LM and M:LL (load module and map DCBs) with SAVE

and returns normally to the driver in LDR (which exits to CCI or PASS3).

See Figure 31 for a flow of the FIN segment.

. MAPER:

The MAPER routine works mostly within the framework of the REF/DEF stack
itself in order to generate a segment's load map. The routine does, however,

use the core above the REF/DEF stack for two purposes: 1) to save "displaced"
DEF entries (a DEF whose defining expression is located in another segment) so
they can be included in the map of the segment in which they are defined;

2) to collect sort keys (a pointer to a REF/DEF entry) of all the names of a
particular type (e.g., SREF, DEF, PREF) in order to produce an alphanumerically
sorfed name list. The displaced DEF stack is saved throughout the entire load
module mapping process and is constructed from TOPOMEM down. The sort keys
are destroyed after each name list is written (the keys are built just above the
REF/DEF stack). Any possible collision between these areas results in halting
the addition of more sort keys/displaced DEF entries. See Figure 32 for mem-

ory layout during MAPER.

MAPER first outputs several lines of preliminary information which it obtains
from this segment's TREE (and the LOCCT table, if this is the root segment).
The boundaries and sizes of the protection type areas are computed by the
SEGEVAL routine and translated and output by VALMOVE. Then four major
routines — PREPROC, PSMALIST, SORTMAP, and MAPLIST — are called in

succession to generate the name lists.

120

Update SEVLEV;
if REF/BREF
errors & print
if #0

MOD 1

0—R7
(current seg-
ment counter)

Move pointer to
: Set REF/DEF stack
Library
Load Module NOIDD#0 from MBIAS to
NO tree
XMEM in effect
or SEVLEV > Set
. e
severity level NOIDD#0
in LOCCT
Such
: Set
File |
NOIDD#0
MOD8 Y 1
Build table in
PBUF for
MODIFY routine >
MOD5 No More
Modify Rec- MODO
Read next record | ords For Rewrite
i;‘c.)m 1dD fo: | This Segment this
is segmen segment
Head segment's
core images & MODIFY
relocation (Cat. 705396)
dictionaries
Figure 31. FINISH Flow Chart

121

RDRFDF

Read this
segment's REF/
DEF stack

MAP1

MAPER

Generate load
map for this
segment

Update R7
to point to
next segment

(More segments

NO

NOIDD=0

NO

SEVLEV =
severity level
in LOCCT

CLOSEIT

Close & save

M:IM and M:LL

Figure 31. FINISH Flow Chart (cont.)

122

Backround Lower

-
Limit
Loader
LOCCT
ROMS
TREE
- RFDFBAS

REF/DEF stack for this segment

SORT AREA

DISPLACED DEFS

— TOPOMEM

Figure 32. Memory Layout During MAPER Routine

123

PREPROC runs through the REF/DEF stack, deleting unnecessary REF/DEF
entries (FREFs and control sections with zero size), clearing the resolution word
of each entry (used for chaining the stack in SORTMAP), flagging ADEFs, and
resolving relocatable values to word resolution with a byte displacement (of the
form X'0BOAAAAA'). In addition, each displaced DEF entry in this stack is
moved to the displaced DEF stack and deleted from this stack. After the entire
REF/DEF stack has been scanned, the displaced DEF stack is examined for any
entries belonging to this segment. If any are found, they are appended to this

segment's REF/DEF stack.

MAPER calls PSMALIST four times — each time to generate a list of a specific
type of REF/DEF entry. In this way PSMALIST produces the PREF, SREF, DDEF,
and ADEF lists (no list is generated if the stack is void of that type of entry).
PSMALIST scans the REF/DEF stack for a given type of entry, building sort keys
for all the entries of this type it finds. Then SSSUBR is called (via SRTEXIT2)

to perform the sort and MAPFINS3 is called to list the names.

SORTMAP uses the resolution words to chain (in order of ascending value)
either: 1) all CSECTS, DSECTS, and relocatable DEFs if (MAP, VALUE) was
specified on the LOAD card, or 2) all CSECTs, the first relocatable DEF in
each CSECT, and all DSECTs if (MAP, NAME) was specified. Also, if NAME
wé:us specified, SORTMAP builds the sort keys for the relocatable DEFs in the

sort area and calls SSSUBR to sort them.

MAPLIST directs the generation of the relocatable DEF list. After the correct

heading is printed, the chain through the REF/DEF stack is followed to move each

124

entry to the output buffer. Whenever MAPLIST encounters a control section
as the next link, it calls NUSECT to write out the current line and move the
control section's information to the buffer. If the NAME option was specified,

MAPFIN3 must be called to sort and output the DEF names.

Note: The sort routine implemented is that described in a "A High-Speed

Sorting Procedure"”, D.L. Shell, Communications of the ACM, Vol. II,

July, 1959.

125

APPENDIX A

LOADER-GENERATED INTERNAL SYMBOL TABLES (UTS ONLY)

PURPOSE:

DEFINITIONS:

USAGE:

COMMENTS:

INPUT:

To output internal symbol table (IST) records as a part of a load module.

A source program can contain both internal and external symbols. An
external (or global) symbol is one which is declared as a DEF in this
program and which may be referenced in other, separately assembled
programs as a REF or SREF. An internal symbol is one which applies only
within the given source program (and hence is not REF'd or DEF'd). A
symbol table consists of a list of correspondences between symbols used
in a source program and the values or virtual core addresses assigned to

them by the Overlay Loader (or LINK).

The association of internal and external symbol tables with a user's pro-
gram enables the user to reference such symbols under various debugging
processors (in particular, under DELTA). Under DELTA, the user can
operate on his programs in what appears to be assembly language sym-
bolic; with regard to internal symbol tables, he has the ability to define
which set of internal symbols are to be used for specific debugging

activities.

The Loader builds internal symbol tables only. (Global symbol tables
can be generated by the SYMCOM processor.) Each IST corresponds to
one particular ROM. If more than one ROM is contained in an element
file, an IST is generated for only the last ROM in the file. IST genera-
tion is suppressed for library load modules and core libraries (i.e., load

modules whose name begins with :P).

The Loader generates an internal symbol table entry when it encounters
a "Type and EBCDIC for Internal Symbol" load item (control byte X'12")
in a ROM. See BPM Reference Manual, Appendix A, for the format of

this load item.

126.

OUTPUT:

The loader ou’rp;Jrs one IST record for each element file (specified in |

the EF list) which contains a ROM with IST load items. The record is

a keyed record, the key consisting of the element file name concatenated
with X'10'. The internal symbol table has two types of entries — symbols

whose values are constants and symbols whose values are addresses.

SYMBOL TABLE FORMAT-ADDRESS TY PE

012 78 31
01 CT ‘
SYMBOL IN TEXT
TYPE | RES] | VALUE
0 45 7 12 13 ' 31
where

CT = Character count of the original symbol.

SYMBOL = The first 7 characters of the symbol. Symbols with fewer
than 7 characters are zero-filled. Longer symbols are
truncated to 7 characters, though the original character

count is retained.

TYPE 00000 Instruction
00001 Integer
00010 Short floating point
00011 Long floating point
00110 Hexadecimal (or packed decimal)
00111 EBCDIC text (or unpacked decimal)
01000 Logical array
01001 Integer array
01010 Short floating point array
01011 Long floating complex array
10000 Undefined symbol

RES is a 3-bit field indicating the internal resolution.
000 Byte
001 Halfword
010 Word
011 Doubleword

127

VALUE s the address corresponding to this symbol, in byte
resolution. '
SYMBOL TABLE FORMAT — CONSTANT TYPE

012 78 31
10 CT

SYMBOL IN TEXT
VALUE

where
CT and SYMBOL are the same as above.
VALUE is the 32-bit constant value.

FLOW: INIT1 checks to see if the (PERM, LIB) option is specified or if the
LMN name starts with :P. Either of these conditions results in setting

SYMBOLTB to -1.

Initialization of the IST buffer (to be used for IST generation during
PASS2) occurs in INIT2. Space is allotted for the buffer between the
expression stack and the core image/relocation buffers. Refer to
Figures 8 and 9a for the Loader's memory layout during PASS2. (The

table is constructed from the top end of the buffer down.)

Internal symbol tables are constructed in the LP1 section of LOADSEG.
When a X'12' control byte is encountered at LDR1, a branch is made to
SD12. If SYMBOLTB is non-negative, LPT checks the IST buffer limits

to determine if the expression stack has grown into the IST being constructed
(by the addition of core expressions) or if the addition of a new IST entry
would cause a collision with the expression stack. If either of these events
occur, IST generation is suppressed (SYMBOLTB is set to -1). Otherwise,
the new entry is constructed and added to the IST, and SYMBOLTB is

updated to point to the base of the new entry.

128

At module end the current IST is written out. If this is the largest IST
output so far, its base address (in SYMBOLTB) is remembered in BSEG2.
In any case SYMBOLTB is reinitialized to the first word above the IST
buffer (kept in SYMTOP).

In WRITESEG, the size of the largest IST is stored in Word 8 of the
HEAD record (as well as its future location under DELTA).

129

SUMMARY OF LOADER RESTRICTIONS

1.

Load Module Size

The primary constraint with regard to the largest standard load module that can be con-

structed by the Loader concerns the number (Background size - Loader size file buffers -
LOCCT, ROM and TREE Tables.) This represents the maximum size of that area

which must contain the DCB Name Table and its relocation dictionary plus the

largest core image of each protection type (00, 01, and 10) of any segment and

their respective relocation dictionaries.

—Background -
LOCCT| DCB Name 00 o1 10 00| 01 10
Loader | ROM | Table and its | rel dic |rel dic |rel dic] core] core |core file
TREE |rel. dic. imagg image] image |buffers

T T T T T T \TOPOMEM
largest for any segment

An additional constraint for a standard load module — and the main constraint for a

paged load module — is that there must be enough room (in Pass Two) to accommodate

the Loader, the LOCCT, ROM, and Tree Tables, the maximum declaration, REF/DEF and

expression stacks, plus 2 pages for building the load module (or 1 page if the module is to

be ABS.)

The name of an input file must be < 10 characters (see ROM Tables).

The name of a load module must be < 11 characters (see LOCCT Table).

If a DEF in a library load module is > 11 characters, the corresponding entry in the
:DIC file is forced to 11 characters. (The DEF entry in the library load module
itself is not changed.)

A load module acceptable for the combination with ROMs to form a new load module

must be of one protection type, relocatable, and not overlaid. DSECTs in such a
load module are allowed only if the entire load module consists of one DSECT.

130

10.

11.

A load module will be set ABS if any of the following conditions exist:

a) It contains a relocatable field not ending on a half word boundary.

b) It contains an expression of mixed resolution.

c) REF or BREF has been specified on the ! LOAD card.

Segments may communicate with each other via REFs and DEFs only if they lie

in the same path.

Load items of a DSECT are always placed in the corresponding DSECT of the root

segment. That is to say, there must be a DSECT by the same name in the root.
The following case is not permitted.

A DSECT 0
DATA 1,2 3,

A DSECT O
RES 3

Root

The loader cannot perform modifications (IMODIFY) on a library load module.
That is, a MODIFY following a |LOAD (PERM, LIB) will be ignored.

The loader will ignore modifications (!MODIFY) if extended memory mode has
been entered.

If a low segment references a DEF name which is both in a higher segment and a
library, the library DEF will be used.

131

COMMON QUESTIONS ABOUT THE LOADER

Why is the expression stack retained as a permanent part of the load module ?

The expression stack is retained for only one reason: that is, for the purpose of
combining the load module with other ROMs. At the time of combination, we
must process the unevaluated core expressions to complete the load items which
involve PREFs. The PREFs will presumably have been satisfied and the expressions

involving them will not be evaluatable.

What are the final contents of the expression stack?
The final contents consist of:

a. Defining expressions for DEFs and forward references. (If this is a library
load module, only those expressions involving unsatisfied forwards are
retained. The others are squeezed out as are the REF/DEF entries which

identified the forward rumbers.)

b. All unevaluated core expressions (core expressions are unevaluatable if they

involve PREFs).

Load modules which are combinable with ROMs can have only one protection type.

Why is this so?

Generally speaking, load modules are relocated by computing a relocation factor
(=new bias-module bias). This relocation factor is added to all relocatable items
in the module. (The relocation factor is actually modified via the relocation digit

to the proper resolution but this is irrelevant for the current discussion.)

Consider a load module with two protection types.

If we try to combine this load module with other ROMs we must also relocate the

132

core images (00 and O1) with respect to their newly acquired position in the
target load module. Having detached the 00 and 01 areas we have of course
changed the relative distance from one to another and now cannot compute a

relocation factor since "module bias" is meaningless.

Example: Consider a load module, X, with two protection types 00 and O1.
The instructions at « are in 01 and ZAP is in 00.

a LW, 1 ZAP
LI, 1 $

Assume that in X, 00 begins at relative location 0 and 01 begins at relative

location 500. Assume that ZAP is relative location 100 and « is relative 550.

Now assume that for the new module, X', the new positions for 00 and 01 are to

begin at 2000 and 4000, respectively.

The Loader sees only the core image from X:

(4050) LW,1 100
(4051) LI, 1 551

It has no way knowing that it should relocate for X' by adding 2000 to o but 3500 to

at 1.

133

APPENDIX B

STORAGE LAYOUT OF STUFF

NAME DISPLACEMENT. © CONTENTS

DECLSTK. o +0 ~ Declaration stack pointer doubleword.

DECLSTKI +1 Declaration stack pointer doubleword.

RFDFSTK +2 ~ REF/DEF stack pointer doubleword.

RFDFSTK1 +3 REF/DEF stack pointer doubleword.

EXPRSTK +4 Expression stack pointer doubleword.

EXPRSTKI +5 Expression stack pointer doubleword,

DECLBAS +6 Base of declaration stack; see Figure 9b.

RFDFBAS +7 Base of REF/DEF stack.

EXPRBAS +8 Base of expression stack.

BSEGI +9 Temporary segment number; used for small subroutines
as in INITI,

BSEG2 +10 Base address of largest internal symbol table.

CSECGI +11 Displacement from beginning of tree tables to be-

ginning of tree for current segment.

CSEG2 +12 Temporary storage for renumbering current segment
number; used in PS1 for temporary sequence number
in the name routines.

CROMI1 +13 Current ROM pointer in ROM table; displacement
from start of ROM table to current ROM; used in
PS1 and EVL.

CROM2 +14 Tgmporary storage for current ROM pointer; used in
PST.

CRFDF1 +15 Pointer to the current REF/DEF entry being looked at.

CRFDF2 +16 Top of REF/DEF stack being looked at.

CURBYTE +17 Displacement into card image now being read in
GBYTE; contains last byte read in ROM record,

RECDSIZE +18 Size of ROM record just read by GBYTE.

90 18 03B-1(8/72) 134

NAME

SEQNUM

SEVLEV

XSL

LASTCARD

BUF

BUF2

TEMPPTR

TREEPTR

ERRPTR

FCOUNT
FTABLE
ERRTAB
ERRSTK
TCBSIZE

TCBPTR

FTAB

RSEGO0

RSEGO1

RSEGI10

DISPLACEMENT

CONTENTS

+19

+20

+21

+22

+23

+53

+57

+58

+59

+60
+61
+62
+63
+64

+65

+66

+67

+68

+69

Actual sequence number of record just read in GBYTE
routine,

Severity level of load module; starts out with that of
ROMs; gets raised if need be; see WRT and FIN,

Maximum severity level from ILOAD card; now in
LOCCT.

Flag that this is last card of this ROM; see GBYTE.

Used in PS1 and EVL as input buffer for reading ROMs;
used as output buffer by FIN; used as buffer for the
map; some of its words are used by WRT.

Used to construct an expression from load relocatable
type load item; see pages 98 and 99; used in WRT.

Used to keep track of temp stack in user's TCB; see
INIT2, ALL, WRT,

Pointer (execution type address) to loader — built tree
table; used in WRT,

Pointer (execution type address) to loader — built
ERTABLE; used in WRT.

Size of DCB name table; used in PSI.

Starting address of DCB name table at execution time.
ERTABLE size from the LOCCT.

ERSTACK size from the LOCCT,

Total size of target TCB including ERSTACK and
ERTABLE sizes; see WRT and IN2.

Execution starting address of target TCB; see ALL .
and WRT.

Starting address of DCB name table at execution time;
set in ALL; used in WRT.

Pointer to root segment for protection type 00; see
Figure 8.

Pointer to root segment for protection type 01; see
Figure 8.

Pointer to root segment for protection type 10; see
Figure 8.

135 90 18 03B-1(8/72)

NAME DISPLACEMENT CONTENTS

RRELOO +70 Pointer to root segment's relocation dictionary for
protection type 00; see Figure 8.

RRELOT +71 Pointer o root segment's relocation dictionary for
protection type 01; see Figure 8.

RREL10 +72 Pointer to root segment's relocation dictionary for
protection type 10; see Figure 8.

CSEGO00 +73 Pointer to current segment for protection type 00;
see Figure 8.

CSEGO1 +74 Pointer to current segment for protection type 0O1;
see Figure 8.

CSEGI10 +75 Pointer to current segment for protection type 10;

' see Figure 8. '

CRELOO +76 Pointer to current segment's relocation dictionary for
protection type 00; see Figure 8.

CRELO1 +77 Pointer to current segment's relocation dictionary for
protection type 01; see Figure 8.

CREL10 +78 Pointer to current segment's relocation dictionary for
protection type 10; see Figure 8.

MAX00 +79 Largest protection type areas which have to be allo-
cated for each segment; see INIT2, FINDLGSTPATH.

MAXO01 +80 Largest protection type areas which have to be allo-
cated for each segment; see INIT2, FINDLGSTPATH.

MAX10 +81 Largest protection type areas which have to be allo-
cated for each segment; see INIT2, FINDLGSTPATH.

DLOC +82 Execution location counter for 00.

PLOC +83 Execution location counter for O1.

SLOC +84 Execution location counter for 10.

LOC , +85 Load location counter; see EVL.

START +86 Starting address; gets put in HEAD; see DSTART in EVL.

LOCCT +87 Address of LOCCT, first available page above loader's
procedure,

LOADBAS +88 Actual load bias; either from LOCCT or defaults to

BGLL; see INIT2,

90 18 03B-1(8/72) 136

NAME

MODBAS

RELDBAS

MBIAS
FBIAS

BIAS
RDIG
MODSIZ

NOTLLM
MAXRFDF

MAXEXPR

TOPOMEM
OPENEF
OPENDIC
PBUF
CSECFLG

PLIB

LIB

XMKEY

LOCWD
USID

DISPLACEMENT

CONTENTS

+89

+90

+91
+92

+93
+94
+95

+96
+97

+98

+99

+100
+117
+132
+153

+154

+155

+156

+157
+158

Used for merging core image record into XMEM buffers;
see EVL.

Base of relocation dictionary for core image library;
used in EVL.

In WRT, start of original REF/DEF stack.

Used for paged load modules; address pointing into
loader's core image buffers; see ORG in EVL; see
also WRT's old XMEM code.

Equivalent of ORG to execution address of start of ROM.
Relocation digit; see ADLDMD.

ARS from M:EF after reading relocation dictionary;
see ADLDMD in EVL.

Flag in WRT for not a library load module.

Computed dynamically in PS1 to find longest REF/DEF
path needed by PS2,

Computed dynamically in PS1 to find longest expres-
sion path needed by PS2,

Last available address (ends in E).
Contains the open PLIST for M:EF.
Contains the open PLIST for :DIC.
Print buffer for loader diagnostics.

Flag for special CSECT used in merging library Imns;
see ADLDMD in PST.

Flag which gets set if addition of a core expression
would cause expression stack to overwrite a core image
buffer above it; see EXPRIN routine in EVL.

1 if a library Imn is being added; see ADLDMD.

Extended memory mode key used to write core image
records; initialized in INIT2; used in EVL and WRT.

First word of the LOCCT, containing parameter bits,

User ID number passed in register by Monitor; used in
INT and IN2 to open temporary file.

137 90 18 03B-1(8/72)

CONTENTS

NAME DISPLACEMENT
RFLDSG +159
ERFLAG +160
MXRFDFSG +161
NXTAVPG +162
RLOC +163
O151Z +164
TRESIZ +165
FCOMSIZ +166
XMRKEY +167
04LOC +168
DOREFPTR +169
RFLDTBSZ +170
BREFERR +171
PASS3RET +172
ENTFLAG +173
CORELIB +174

90 18 03B-1(8/72)

See REF/BREF option; segment number of where DEF is
defined in the branch referencing mode.

Message key; see MESSAGE.

Contains segment number; aid in determining path
having largest REF/DEF stack; see PS1.

Execution address of page just above the load module;
gets put in HEAD; computed in IN1; picked up in WRT,

Loader's load location counter for relocation dic-
tionaries; goes with LOC,

For special CSECT in merging library Imns; see ALL.

Size of the loader to see if it must do SEGLOADs or
can just branch; see LDR.

Size of blank COMMON from the LOCCT; set up in
PS1 when loader finds ROM defining FACOM; takes
largest size for any DSECT declaration with name or
FACOM.

Extended memory mode key for reading the relocation
dictionary.

In ALL pointer to remember last control section when
searching for special library control sections; in

SPECDSEC location of an 04 entry,

In BREF mode pointer to name S:OVRLY in REF/DEF
stack; see INT,

REF count from LOCCT, word 4.

Count of REF's overflowing table; if in BREF mode,
count of nonbranching REF's overflowing table; BREF
error in EVL is picked up in FIN,

Information saved for PASS3/CCI if must return to it;
see INIT1 and LDR.

Type of entry we are making: PASS3 or CCl; see
INIT1 and LDR,

UTS only; used in PST to show whether REF to
9DBINIT or 9INITIAL set; see INIT2 and WRT; also
used to turn off trigger.

138

NAME

BFR

FIRSTF
LASTF
XCSEGI

SYMBOLTB
SYMTOP
TRAPCC

CODE

DISPLACEMENT

+175

+176
+177
+178

+179
+180
+181

+182

CONTENTS

Pointer into BUF; storage for checksum in GBYTE;
also in FIELDEX routine of EVL used in switching
logic for define field.

Pointer into REF/DEF stack for first forward reference.
Pointer into REF/DEF stack for last forward reference.

See XMEM logic of EVL; retains current segment to
permit alternate use of CSEG] for XMEM,

Base of current internal symbol table.
Top of current internal symbol table.

For UTS; retains condition codes when loader enters
its trap handler for trap 40; see LDR.

New field of information output with diagnostics;
part of QUIT procedure.

139 90 18 03B-1(8/72)

Footnotes for Figure 10:

*NOTE: A = 1, MAP specified K = 1, GO specified
B = 1, NOSYSLIB specified L 1, Bl specified
C 1, REF specified M 1, CSEC1 was specified
D = 1, PERM specified N = 1, NOTCB specified
E 1, LIB specified O = 1, XMEM in effect (set by the
F 1, M10 specified Loader in IN2)
G 1, M100 specified P = 1, MAP,VALUE specified
H 1, FCOM specified = 0, MAP, NAME specified
I = 1, ABS specified Q = T, BREF specified
J = 1, Assigns Read R = 1, EF specified

SL = Sev. Level (default = 4)

**BPM-UTS differences in the LOCCT Tables:

Word BPM UTS
4 LOAD BIAS field LOAD BIAS
Default =0 Default = background lower limit WA
5 Background lower = ------
limit
*x ok 6 Passed to the Loader

in Reg. D4 (D4) =
FCOM size

31

ROM Tables

The ROM Tables contain an entry for every input file (ROM or load module).

Below is an overall picture for M segments (S0, S1,...SM).

word entry.

SO

8

S1

418

SM R

[00]

ROM Table Entry

o WN—-O

TEXTC of ROM name (EF name, or SYSid B

b — = e e - e e e e e e e o e o = o— - —

(default = 0, 0)

,T are initially O but set by the Loader.
=1, if file come from a library,
=1, if file is on labeled tape.

Figure 11. ROM Tables

32

1, if this is not the last ROM file in the segment.

Each box is a seven-

XEROX Publication Revision Sheet

August 1972

CORRECTIONS TO XEROX BTM/BPM/UTS OVERLAY LOADER TECHNICAL MANUAL (Sigma 5-9 Computers)
PUBLICATION NO. 90 18 03B, JUNE 1972

The attached pages contain changes that update the manual to the CO0 version of UTS and the G0O version of BPM/
BTM. Pages in the B edition of the manual that are to be replaced are: iii, iv, 5, 6, 17-20, 23, 24, 27-30, 39-
42, 55, 56, 61, 62, 67-72, 87-90, 113-118. New pages to be inserted are: 133-139.

These changes will be incorporated into the next edition.

Revision bars in the margins of replacement pages identify changes. Pages without the publication number

90 18 03B-1(8/72) at the bottom are included only as backup pages; revision bars appearing on such pages identify
changes made in a previous revision.

XEROX® is a trademark of XEROX CORPORATION. 1 90 18 03B-1(8/72)

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072-0
	072-1
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089-0
	089-1
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118-0
	118-1
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	31
	32
	_01

