sssssssssssssssss

System Generation
Technical Manual

XEROXEROXEROXEROXEROXEROXEROX
DXEROXEROXEROXEROXEROXEROXERC
ROXEROXEROXEROXEROXEROXEROXER
ROXEROXEROXEROXEROXEROXEROXE
EROXEROXEROXEROXEROXEROXEROXI
IXEROXEROXEROXEROXEROXEROXERO
OXEROXEROXEROXEROXEROXEROXERC
OXEROXEROXEROXEROXEROXEROXEIR
ROXEROXEROXEROXEROXEROXEROXE
KEROXEROXEROXEROXEROXEROXEROX
IXEROXEROXEROXEROXEROXEROXERO)
OXEROXEROXEROXEROXEROXEROXER(
ROXEROXEROXEROXEROXEROXEROXE
EROXEROXEROXEROXEROXEROXEROXE
XEROXEROXEROXEROXEROXEROXEROX
OXEROXEROXEROXEROXEROXEROXER(C
ROXEROXEROXEROXEROXEROXEROXER
ROXEROXEROXEROXEROXEROXEROXE
FROXEROXEROXEROXEROXEROXEROXI

90 18 77B

Xerox Corporation

701 South Aviation Boulevard
El Segundo, California 90245
213 679-4511

Xerox BPM/BTM/UTS

Sigma 5-9 Computers

System Generation

Technical Manual

90 18 778

September 1973

Price: $13.00

XEROX

Printed in U.S.A.

REVISION

The System Generation processors described in this manual operate under the DOO version of UTS and the HOO version

of BPM/BTM.

RELATED PUBLICATIONS

Title Publication No.
Xerox Sigma 5 Computer/Reference Manual 90 09 59
Xerox Sigma 6 Computer/Reference Manual 90 17 13
Xerox Sigma 7 Computer/Reference Manual 90 09 50
Xerox Sigma 8 Computer/Reference Manual 90 17 49
Xerox Sigma 9 Computer/Reference Manual 90 17 33
Xerox Batch Processing Monitor (BPM) and Batch Time-Sharing Monitor (BTM)/SM

Reference Manual 90 17 41
Xerox Control Program~Five (CP-V)/SM Reference Manual 90 16 74
Xerox Batch Processing Monitor (BPM)/System Technical Manual 90 15 28
Xerox BPM/BTM Subsystems and Utilities Technical Manual 90 30 61
Xerox BPM/BTM/UTS/Overloy Loader Technical Manual 90 18 03
Xerox BPM/BTM/UTS Peripheral Conversion Language (PCL) Technical Manual 90 19 32
Xerox Batch Time-Sharing Monitor (BTM)/Delta Subsystem Technical Manual 90 1879
Xerox Batch Time-Sharing Monitor (BTM)/Edit Subsystem Technical Manual 90 19 11
UTS Overview and Index Technical Manual 90 19 84
UTS Basic Control and Basic 1/0 Technical Manual 90 19 85
UTS System and Memory Management Technical Manual 90 19 86
UTS Symbiont and Job Management Technical Manual 90 19 87
UTS Operator Communication and Monitor Services Technical Manual 90 19 88
UTS File Management Technical Manual 90 19 89
UTS Reliability and Maintainability Technical Manual 90 19 90
UTS Initialization and Recovery Technical Manual 90 19 92
UTS Command Processors Technical Manual 90 19 93
UTS System Processors Technical Manual 90 19 94
UTS Data Bases Technical Manual 90 19 95

Manual Content Codes: BP — batch processing, LN — language, OPS — operations, RP — remote processing,
RT — real-time, SM — system management, TS — time=sharing, UT — utilities.

The specifications of the software system described in this publication are subject to change without notice. The availability or performance of some features
may depend on a specific configuration of equipment such as additional tape units or larger memory. Customers should consult their Xerox sales representative
for details.

CONTENTS

PREFACE vii 2.4.9 XMONITOR Messages________ 101
2.4.10 Flow Charts 102

1.0 SYSGEN OVERVIEW i 2.5 XLIMIT 106
2.5.1 Purpose 106

1.1 Introduction 1 2.5.2 Usage 106
1.2 Syntactical Requirements 1 2.5.3 Input 106
1.3 The SYSGEN Processors S | 2.5.4 Output 106
1.3.1 PASS2 1 2.5.5 Interaction 107

1.3.2 PASS3 3 2.5.6 Data Bases 107
1.3.3 LOCCT 4 2.5.7 Description 108

1.3.4 DEF 5 2.5.8 Flow Chart 109

1.4 Functional Flow of SYSGEN 6 2.6 ABS 112
2.6.1 Purpose 112

2.0 PASS2 10 2.6.2 Usage 112
2.6.3 Input 112

2.1 P2CCl 10 2.6.4 Output 112
2.1.1 Purpose 10 2.6.5 Subroutines 113
2.1.2 CallingSequence 10 2.6.6 Description 113
2.1.3 Return 10 2.6.7 ABSMessages_ 115
2.1.4 Input 10 2.6.8 Internal Routines ____ 116
2.1.5 Output 10 2.6.9 Flow Chart 118
2.1.6 SubroutinesUsed 10 2.7 BTM 120
2.1.7 BaseRegisters_____ 10 2.7.1 Purpose 120
2.1.8 Description 10 2.7.2 Usage 120
2.1.9 P2CCIMESSAGES 13 2.7.3 Input 120
2.1.10 Infernal Subroutines 13 2.7.4 Ouvutput 120
2.1.11 Flow Charts 16 2.7.5 Interaction 124

2.2 UBCHAN 23 2.7.6 Data Bases 124
2.2.1 Purpose . 23 2.7.7 Description 124
2.2.2 Usage 23 2.7.8 BTMMessages 125
2.2.3 Input 23 2.7.9 Flow Chart 126
2.2.4 Output 23 2.8 P2CcOC 128
2.2.5 SubroutinesUsed 30 2.8.1 Purpose 128
2.2.6 Data Base 30 2.8.2 Usage 128
2.2.7 Description 39 2.8.3 Input 128
2.2.8 Error and Informational 2.8.4 Output 128
Messages . 43 2.8.5 Interaction 131

2.2.9 Major Internal Routines 49 2.8.6 Data Bases 131
2.2.10 Flow Chart 51 2.8.7 Subroutines 131

2.3 SDEVICE 85 2.8.8 Description 131
2.3.1 Purpose 85 2.8.9 P2COCMessages_. 132
2.3.2 Usage 85 2.8.10 Flow Chart 133
2.3.3 Input 85 2.9 IMC 137
2.3.4 Output 85 2.9.1 Purpose 137
2.3.5 SubroutinesUsed 87 2.9.2 Usage 137
2.3.6 Other External References 87 2.9.3 Input 137
-2.3.7 - Description. 87 2.9.4 Output 137
2.3.8 SDEVICEMessages 90 2.9.5 Interaction 140
2.3.9 Internal Routines — 90 2.9.6 Data Bases 140
2.3.10 Flow Chart 93 2.9.7 Description 140

2.4 XMONITCR 95 2,.9.8 IMCMessages___ 141
2.4.1 Purpose 95 2.9.9 Flow Chart 142
2.4.2 Usage 95 2.10 SPROCS 146
2.4.3 Input 95 2.10.1 Purpose 146
2.4.4 Output 95 2.10.2 Usage 146
2.4.5 Inferaction 100 2.10.3 Input 146
2.4.6 Data Bases 100 2.10.4 Ouvtput 146
2.4.7 Subroutines 100 2.10.5 Interaction 148
2.4.8 Description 100 2.10.6 Data Bases 148

3.0

4.0

2.10.7 Subroutine 149
2.10.8 Description 149
2.10.9 SPROCS Messages_ 150
2.10.10 Flow Charts 151
2.11 FRGD 154
2.11.1 Purpose 154
2.11.2 Usage 154
2.11.3 Input 154
2.11.4 Output 154
2.11.5 Subroutines Used 158
2.11.6 Special Restriction___________ 158
2.11.7 Description 158
2.11.8 FRGDMessages — 162
2.11.9 Flags Used by FRGD 163
2.11.10 Internal Routines 163
2.11.11 Flow Chart 167
2.12 XPART 172
2.12.1 Purpose 172
2.12.2 Usage 172
2.12.3 Input 173
2.12.4 Output 173
2.12.5 Subroutines and Definitions_ 174
2.12.6 Data Base 174
2.12.7 Description 174
2.12.8 XPARTMessages . 175
2.12.9 Flow Chart 177
PASS3 182
3.1 Purpose 182
3.2 Calling Sequence 182 -
3.3 Input 182
3.4 Output 182
3.5 Base Registers 183
3.6 Subroutines Used 183
3.7 Description 183
3.7.1 Overview 183
3.7.2 Generation of ROOT
Load Module .. 187
3.8 PASS3 Messages 192
3.9 PASS3 ProcessorFlags 194
3.10 Internal Routines 195
3.11 PASS3 Processor Flowcharts 197
DEF 205
4.1 Purpose 205
4.2 Calling Sequence 205
4.3 Input 205
4.4 Output 205
4.5 Data Base and Registers 205
4.6 Subroutines 205
4,7 Control Commands 206
4.8 Description 207
4.9 DEF Messages 210
4.10 Internal Routines 210
4.11 Flowcharts 212

5.0

6.0

LOCCT

5
5
5
5
5
5.
5
5
5
5
5

“ZooNoun

0 Internal Routines

Purpose

Calling Sequence

Input

Output
Base Registers

Subroutines

Description

LOCCT Messages
LOCCT Processor Flag

1 LOCCT Flow Charts

TABLES, FILES, SUBROUTINES

6.6

6.7

6.8

6.9

SYSGEN Loader Overlay Control
Command Table (LOCCT)

SYSGEN Load Module Components

SPEC:HAND File Contents
SYSGEN MODIFY Subroutine
Parameter Lists (PLISTS)

Modify
6.5.1 Purpose

6.5.2 Calling Sequence

6.5.3 Input_*

6.5.4 Output

6.5.5 Subroutines

6.5.6 Description

6.5.7 Flowcharts

SYSGEN CHARACTER Routines
Parameter List (PLIST)

Character Routines

6.7.1 NXACTCHR

6.7.2 NAMSCAN

6.7.3 CHARSCAN

6.7.4 HEXSCAN

6.7.5 QUOTSCAN

6.7.6 DECSCAN

6.7.7 CHSTSCAN

6.7.8 GETCHST

SYNTAX Routine in P2CCI (PASS2) _____

6.8.1 Purpose

6.8.2 Usage

6.8.3 Input-Output

6.8.4 Interaction

6.8.5 Errors

6.8.6 Description

6.8.7 Flow Chart

MODGEN Routine in P2CCI
(PASS2)

6.9.1 Purpose

6.9.2 Usage

6.9.3 Input

6.9.4 Interaction

6.9.5 Errors

6.9.6 Description

6.9.7 Flow Charts

6.10 COREALLOC Routine in P2CCI

(PASS2)

6.10.1 Purpose

225

225
225
225
225
225
225
225
226
229
229
230

234

234
236
242

242
248
248
248
248
248
248
251
253

278
279

279

283
284
285
287
289
291
293
295
295
295
295
298
298
299
300

313
313
313
314
314
314
314
315

319
319

A.0

B.O

C.0

D.o

.10.2 Usage
.10.3 Output

.10.4 Input

.10.5 Interaction

.10.6 Errors

.10.7 Description

.10.8 Flow Chart

EO~O~O~O~O~O~O~

.11.1 Purpose

RITELM Routine in P2CCI (PASS2)____

Usage

Interaction

Description

o~ O~ O O8N O
—_ o —

i.
1.
1.
1.

G wWhN

Flow Chart

APPENDIXES

BPMBT — DEF OVERLAY

Purpose
Calling Sequence

Input

Output

Core Usage

>>>>>>
cuhwivo

Overview

A.6.1 Description

A.6.2 Module Organization —

BPMPT

Description

> >
o N

BPMBT Subroutines

A.8.1 WRSEG

A.8.2 DISPSEG

A.9 WRITEMON Messages

UTMBPMBT — DEF OVERLAY

Purpose

Calling Sequence

Input
Output

W www®
AWN —

DEF (HOO BPM/BTM VERSION)

Purpose

Calling Sequence

Input

Output

Subroutines

Control Commands

Description

.

.2

3

4

.5 Data Base and Registers
6

7

8

9 DEF Messages

ﬁﬁﬁ'ﬂﬁﬂﬁﬂﬂﬁ

.10 Internal Routines

BPM/BTM MODULE NAMES

319
319
319
320
320
320
321
324
324
324
324
324
325

326

326
326
326
326
326
326
326

326
327
327
327
328
329

334

334
334
334
334

337

337
337
337
337
337
338
338
339
342
343

359

2-13.

2-14,

2-15.

2-16.

2-17.

2-18.

2-19.

2-20.

FIGURES
Flow Diagram of SYSGEN

Flow Diagram of P2CCI

CHANTBL Entry

Initial DEVICD]1 Entry

Final DEVICD1 Entry

FINAL DCINTBL ENTRY

Two Types of STDLCD1 Entry and
HANDTBL Entry

Special CLISTS

ALLOCATION TABLE FORMAT (HGP)

. SGP Format and Contents by Type

Flow Diagram of UBCHAN

Flow Diagram of SDEVICE

Flow Diagram of XMONITOR

Flow Diagram of XLIMIT

Flow Diagram of ABS

Flow Diagram of BTM

Flow Diagram of P2COC

Flow Diagram of IMC

Flow Diagram of SPROCS

PROCDEF Table

Flow Diagram of FRGD

Flow Diagram of XPART

Flow Diagram of PASS3

Flow Diagram of DEF

LOCCT Record Format

Flow Diagram of LOCCT

LOCCT Format

TREE Entry Format

ROM Table Entry

HEAD Record Format

16
36
37
37

37

38

41

51

93
102
109
118
126
133
142
151
159

167

197
212
228
230
234

235
236

236

6-5.

6-7.

6-8.

6=-9.

6-10.

6-11.

6-15.

6-16.

6-20.

6-21.

6-22.

6-23.

6-24.

6-25.

6-26.

6-27.

6-28.

6-29.

TREE Record Format

RFDFSTK Format

EXPRSTK Format

RELDICT Format

SPEC:HAND File Format

MASTER PLIST Format

CHANGE DESCRIPTION TABLE
(SUBPLIST) Format for DEF

CHANGE DESCRIPTION TABLE
(SUBPLIST) Format for REF

Change Description Table (SUBPLIST)
Format for Sect. Modification

Change Description Table (SUBPLIST)

Format for RELDICT Modification

Flow Diagram of MODIFY

Character String PLIST Format
Flow Diagram of NXACTCHR
Flow Diagram of NAMSCAN
Flow Diagram of CHARSCAN

Flow Diagram of HEXSCAN

Quote Constant

Flow Diagram of QUOTSCAN

Flow Diagram of DECSCAN
Flow Diagram of CHSTSCAN

Flow Diagram of GETCHST

Flow Diagram of SYNTAX

Flow Diagram of MODGEN

Flow Diagram of COREALLOC

Flow Diagram of WRITELM

Flow Diagram of BPMBT

Output Tape Format

System Information Format

Flow Diagram of DEF

237
238
239
241
242

243

244

245

246

247
253
279
281

283

284

286
287
288
290
292
294
300

315

321

325

330

335

336

345

vi

2-18.

2-19.

2-20.

2-21,

2-22,

TABLES
PASS2 STACK ALLOCATION

PASS2 Control Commands

1OTABLE Load Module

PASS2 Stack Allocation

STANDARD DEVICES

Swapper Table Constants by Type

M:SDEV Load Module
INTERMEDIATE NAME TABLE
Contents of M:CPU Load Module
Contents of M:SYMB Load Module

Contents of M:DLIMIT

15
24
30
38
43
86
89
96
99

106

Contents of M:OLIMIT/M:BLIMIT/M:ELIMIT__ 107

M:ABS Load Module

ABS Work Area

ABSPROC Table

M:BTM Load Module Contents

Contents of M:COC

M:IMC Load Module Contents
M:SPROCS Load Module Contents
M:FRGD Load Module Contents
:INTLB INTERMEDIATE TABLES

INTS INTERMEDIATE TABLE

M:PART Load Module

ROOT LOAD MODULE CONTENTS

BIAS RESULTS

Table of SAVE Names

PASS3 "OLDSEGS" TABLE FORMAT

File Types

Avutomatic INCLUDES

Relocation Digit Interpretation

File Types
Automatic INCLUDEs

112
114
114
120
129
137
146
154
161
161
173
183
184
185
188

207
209
241
339
341

PREFACE

This document describes the purpose and architecture of the System Generation processors that operate under BPM/
BTM/UTS. It is assumed that the user is familiar with information contained in other operating system manuals,
particularly those listed on the related publications page.

vii

1.0 SYSGEN OVERVIEW,

1.1 INTRODUCTION,

SYSGEN comprises a series of processors capable of forming a UTS or BPM/BTM system tailored to a specified
installation. These processors are PASS2, PASS3, DEF and LOCCT, each of which has various control commands
described in detail in the following chapters. Files are accessed from Xerox-supplied or user tapes or for BPM/BTM
private disc packs via the Peripheral Conversion Language (PCL) processor. Discussion of this processor is not in-

cluded in this manual.

1.2 SYNTACTICAL REQUIREMENTS
In general, the various SYSGEN processors have certain common syntactical rules and requirements that may be ap-

plied to their control commands. Any deviation for a given processor is noted under the detailed discussion of it.

p—

. The legitimate characters that may be used in names are:
Alpha: A-Z, a~z
Numeric: 0-9, X'A'-X'F!
Special (alpha): $ -1 _: t@

2. All control commands to processors begin with a : in column 1.

3. When the options for a particular control command do not all fit on a physical image (80 column), they
may be continued on one or more images.

4. Continuation is indicated by the use of a semicolon and the continuation command must have a : in
column 1. A semicolon may be placed anywhere within a command as well as anywhere within a name.
If the semicolon is found within a name, the continuation command must contain the remainder of the
name, starting with the second character position so that the name may be reformed.

5. There are three methods of incorporating comments with a processor control command sequence.
a. Comments are accepted following a semicolon,
b. If no semicolon is used, comments are accepted if preceeded by a period.

C. If an entire command is a comment, the first character in the image must be an asterisk.
1.3 THE SYSGEN PROCESSORS,

1,3, 1 PASS2,

This SYSGEN processor receives as input various parameters concerning a target system. PASS2 then generates the

library modules (nearly all of which are load modules) which identify the system variables. These modules are

incorporated into the target system's Monitor and any other processor which requires a knowledge of the target
system's configuration. The target system parameters include: peripheral definitions, operational label assign-
ments, real-time information, symbiont device information, core size, number of index and blocking buffers,

The following diagram shows what operational labels and corresponding peripherals are accessed during a PASS2.

SIGMA ™

CORE
1. Generated Library
Load Modules.
:COMMANDS St LL PRINTER
1. PASS52 Control Commands. 1. Display control Information,

PASS2 is ent:

control command is encountered (i.e., a control with

ered via the Monitor control command IPASS2 and terminates input from the SI device when a Monitor

"1" in column 1),

The PASS2 generated Library Modules consist of:
NAME *GENERATED BY MODULE TYPE
IOTABLE CHAN, DEVICE, STDLB, and OSTDLB (UTS) Load Module
SPEC:HAND DEVICE Data
M:HGP CHAN, DEVICE load Module
M:SDEV SDEVICE Load Module
M:CPU UTM (UTS) Load Module
MONITOR (BPM/BTM)
MON::ORG UTM (UTS) Relocatable
MONITOR (BPM/BTM) Object Module
M:SYMB UTM (UTS) Load Module
M:BIG? UTM (UTS) Load Module
M:BLIMIT BLIMIT (UTS) Load Module
M:OLIMIT OLIMIT (UTS) Load Module
M:ELIMIT ELIMIT (UTS) Load Module
M:DLIMIT DLIMIT (BPM/BTM) Load Module
M:ABS ABS (BPM/BTM) Load Module
M:BTM BTM (BPM/BTM) Load Module
M:FRGD FRGD, INTLB (BPM/BTM) Load Module
M:COC coc (uTs) Load Module
M:IMC IMC (UTS) ’ Load Module
M:SPROCS SPROCS (UTS) Load Module
M:PART PARTITION (UTS) Load Module
*NOTE: When a specific system type is specified (in parentheses), the preceding control command is the one
that generates or helps in generating the Module NAME. Otherwise, if no system is specified, the
assumption is BPM/BTM/UTS.

1.3.2 PASS3,

This SYSGEN processor communicates to the system LOADER the necessary information to load a specific
Monitof, processor or library. Each PASS3 control command identifies a file which contains information for the
LOADER. Such a file is referred to as an LOCCT (see LOCCT processor overview 1, 3. 3). These LOCCT files
eliminate the maintaining of Monitor, processor or library LOAD/TREE control command structures. An LOCCT
conveys to the LOADER the information which the original LOAD/TREE control commands contained as parameters

(e.g., element file names, load parameters, tree structure).

The following diagram shows what operational labels and corresponding peripherals are accessed during a PASS3,

SIGMA ELEO _/TANDOM
CORE ACCESS
(DEVICE
, Get LOADER as
needed. 1. LOCCT Files used by
PASS3 LOADER,
2, Element Files used by
LOADER.
3. Generate Load Module.
!Monitor COMMANDS
| COMMANDS !
LL PRINTER
1. PASS3 Control Commands. 1. Display Control Information,

2. Load Maps.

PASS3 is entered via the Monitor control command !PASS3 and terminates input from the SI device when a Monitor

control command is encountered (i.e., a control command with "!" in column 1),

Processors and Libraries may also be loaded by the system LOADER and eventually included (through DEF processor)

in a target system without the use of the SYSGEN PASS3/LOCCT processors. This can be accomplished by using
the ILOAD (IOVERLAY) and !TREE Monitor control commands.

The following diagram shows what operational labels and corresponding peripherals are accessed during this

procedure.

RANDOM
SIGMA EF, LM ACCESS
CORE DEVICE
1. Obtain element files.
2, Generated Load Module.
LL

PRINTER

1. Display Control Information
2, Load Maps.

LOAD
OVERLAY

_V

1. Monitor Control Commands.
2, !TREE Command is optional,

1.3.3 LOCCT,

This SYSGEN processor intercepts from the system's Control Command Interpreter (CCI) the table of information

generated from LOAD (!LOCCT)/ ITREE control commands for the system LOADER, This table of information is
referred to as an LOCCT (Loader Control Command Table). An LOCCT, when obtained from CCI, is converted

into a permanent file, Therefore, such a file may be used by SYSGEN PASS3 for purposes of loading a Monitor,

processor or |ibrary.

The following diagram shows what operational labels and corresponding peripherals are accessed during a LOCCT

process,

RANDOM
ACCESS
DEVICE

SIGMA ™
CORE

1. Generated LOCCT file.

CARD
PO PUNCH
1. Generated LOCCT
ILOCCT c
1. Generate LOCCT from Control Commands.
LL PRINTER

2. ITREE Command is optional.

_

1. Display Control
Information,

1.3.4 DEF.
Currently, there are two versions of DEF; one for UTS (DOO version) and pre-HOO versions of BPM/BTM as described
in Chapter 4, and one for BPM/BTM (HOO release) as described in Appendix C.

This SYSGEN processor generates either a target system tape (a PO tape) or a BO Tape which may eventually be
used as a new BI tape for subsequent SYSGENs. DEF may create multiple tapes in any given run. In addition, for
BPM/BTM only, DEF generates either a BO disc pack or PO disc pack, which are functionally synonymous to BO/PO

tapes.

If the tape/disc pack being created is a BO tape/disc pack, it contains a bootstrap, absolute monitor, the monitor
overlays and the load modules PCL, CCI, LOADER, PASS2, LOCCT, PASS3, DEF, FMGE, ERRMSG, M:MON:LIB —
:DIC containing the system DCBs. VOLINIT is also included if a BO disc pack is being generated. In addition, if
the system is a UTS system, then the following are also automatically included: XDELTA, LOGON, TEL, SUPER,
DEFCOM, SUPER, JITO, JIT1, JIT2, JIT3, JIT6, ANLZ, GHOST1, RECOVER, M:SPROCS (containing the overlays of
M:MON). For BO tapes the null file LASTLM terminates the load module portion of the tape. All of the named files
are obtained from the System account (:SYS). For BO disc packs, LASTLM contains the names of all the files on the
BO pack that are to go into the :SYS account. This is necessary because disc pack files are accessed through the
alphabetized file directory. DEF then obtains all of the non-keyed files from the current account and any keyed files

that have been specifically identified via are :INCLUDE command and writes these on the tape or disc pack.

The following diagram shows what operational labels and corresponding peripherals are accessed during a DEF.

LL SIGMA
PRINTER CORE
1. Display Control
Information. I. PO - Target System
2, Display PO/BO BO - System from :SYS
Tape/Disc Pack Summary. 2, Special element files (as requested)

3. PO = All keyed files,
Non-keyed as specified.
BO - all non-keyed files
keyed as specified.

SI

:COMMANDS /

1. DEF control commands

BO : PO PO
DISC BO PO TAPE DISC
PACK - PACK

1. BOOTSTRAP 1. BOOTSTRAP

2, Absolute monitor (:SYS) 2, Absolute monitor (current account)
3. Monitor overlays (:SYS) 3. Monitor overlays (current account)
4, Special load modules (:SYS) 4, Keyed files (current account)

5. Non-keyed files (current account) 5. Specified non-keyed files (current
6. Specified keyed files (current account) account)

If the tape/disc pack being created is a PO tape/disc pack, it contains a bootstrap, or absolute monitor (for the
target system), the monitor overlays (for the target system), special element files if requested and all of the keyed
files (normally load module) from the current account unless certain of these are specifically identified to be
:IGNORED. The null file, LASTLM, terminates the PO tape/disc pack. Since all files on the tape/disc pack are
to go into the :SYS account, LASTLM is the same for PO tapes and disc packs.

DEF is entered via the MONITOR control command IDEF and terminates input from the SI device when a Monitor
control command is encountered (i.e., a control command with a ! in column 1). DEF requires assignments for PO
and/or BO.

1.4 FUNCTIONAL FLOW OF SYSGEN

The following diagram represents a functional flow of the SYSGEN operation. Note, the LOCCT process may not
be needed and the PASS3 function may be replaced or augmented by using the system LOAD control commands to
form a processor or library although PASS3 must be used to load M:MON.

ENTER

IPASS2| COMMAND

d ENTER

/

Page 1

LY, S BPM/BTM i
, ,
PASS2 , ;
| |
i [UTM, LMT bOLIM RXSI\?TT(%R DLIMIT ‘
© oG, IMC, $PR ABS, FRGD, INTLB,
ART, ELlMlT BTM
[
| TGenerate: TOTABLE Generafe TOTABLE
(| SPEC :HAND, MSDE'V C:HAND, MSDE’V
MON::ORG, o ::0RG, M:CPU,
| MEIIEIGMIT Mc%léMIf IMC M:DLIMIT, M:ABS,
| MSPROCS 7 . il M:FRGD, MBTMMHCP ‘
| M:5YiMB, MHGPM ELIMIT, M:BIG9
|
|
!
b
©ENTRR -
(/
e BASE | SYSTEM
ILOCCT | COMMAND | uts oy B_I_’WBTM
Process: Process:
LOCCT |
:LOCCT :LOCCT
|
] Get LOCCT Table Get LOCCT Table
from COMMON from ABS Area
"1 CORE. (disc)
S i
\ l
\\ Generate
‘\ Permanent LOCCT
pg. 2 “ file.
\
\
Figure 1-1. Flow Diagram of SYSGEN

1PASS3] COMMAND

PASS3

EnTeR
/ (PAss3
/ °
/T Process:
rocess:
/| PAss3 coMmANG END OF
id OMMARIDS
/
/
/
/ OBTAIN LOCCT
/ FOR id l
/ BASE [SYSTEM
/ {UT.S___ — _ |BPMW/BTM _
| SAVE LOCCT SAVE LOCCT IN
IN COMMON ABS AREA OF
! CORE DISC

: L"y ______ |

| M:LINK TO LOADER
IN :SYS ACCOUNT

DELETE ELEMENT
| FILES IF REQUESTE

Page 2

Figure 1-1. Flow Diagram of SYSGEN (Cont)

IDEF] COMMAND

DEF

/ FINISHED \

PROCESS
:CONTROL
COMMANDS

UTS
illegal

null/or
Illegal =
PO

WRITE
MONITOR
FOR PO

AUTOMATIC
INCLUDES FOR
PO

OTHER INCLUDES
(NON=KEYED)
PO

GET/WRITE
KEYED FILES }\1

CURRENT ACCOU

Y
GET/WRITE
SYNONOMOUS
FILES CURRENT
ACCOUNT

!

LASTLM

WRITE
MONITOR
FOR BO

AUTOMATIC
INCLUDES FOR
BO

!

OTHER INCLUDES
(KEYED ONLY)
BO

LASTLM

GET/WRITE
NON-KEYED
FILES CURRENT
ACCOUNT

Figure 1-1. Flow Diagram of SYSGEN (Cont)

2.0 PASS2
2.1 P2CClI

2,1.1 Purpose

To read PASS2 control commands and call the appropriate processors to handle them. P2CCI is the root segment of

PASS2.

2.1.2 Calling Sequence
P2CCI is called by the monitor control command:

1PASS2,, .
which runs the load module PASS2 of which P2CCI is the initial part,

2.1.3 Return
P2CCI exits when it encounters an end of data, that is, a card with a "1" in column 1 or an END command. It may

also make earlier error exits to the monitor if significant faults are found.

2.1.4 Input
Register O contains the address of the pointer to PASS2's temp stack.

2,1.5 Output
Display of PASS2 control information to the LL device.

2.1.6 Sﬁbmufines Used
NAMSCAN (Used to get PASS2 "type" field from 1PASS2 control command.)

2.1.7 Base Registers
Register 3 = Address of data in PASS2's temp stack.
Register 2 = PASS2 type index where:

0 =BPM

2 = UTMBPM

Register 7 = Address of FETCHLST .

2,1.8 Description
P2CCI is entered when the monitor control command IPASS2 is encountered, Its first action is to move its

dynamic data to the temp stack, The resulting form of the stack is as shown in Table 2-1,

Table 2-1, PASS2 STACK ALLOCATION

BASESTAC EQU 0 REL*DISPLACEMENT TO STACK BASE

SSIZE EQU BASESTAC+1 DISC SECTOR SIZE (FROM :DEVICE)

CORE EQU BASESTAC+2 CORE SIZE (FROM :MONITOR)

SDGANSG EQU BASESTAC+3 #GRAN/PER, #SEC2/GRAN (FROM :DEVICE)
OPTNWD EQU BASESTAC+4 TEMP STORAGE

72FLAG EQU BASESTAC+5 #7202-04 RADS

10

LASTSPEC EQU | BASESTACH6
CCBUFRS EQU | LASTSPECH
BUFFADDR EQU | CCBUFRS+0

BUFFER EQU | CCBUFRS+]

FETCHLST EQU | CCBUFRS+2I
FETCHCCP EQU | CCBUFRS+24
FETCHCSL EQU | CCBUFRS+26
FETCHBUF EQU | CCBUFRS+28
FETCHADR EQU | CCBUFRS+37
XBUFADDR EQU | CCBUFRS+38
XBUFFER EQU | CCBUFRS+39
P2FLAGS EQU | CCBUFRS+59
CCFLAGS EQU P2FLAGS+0

* 00000000000000000000000000000000
* 00000000000000000000000000000001
* 00000000000000000000000000000010
* 00000000000000000000000000000100
* 00000000000000000000000000001000
* 00000000000000000000000000010000
* 000000000000060000000000000100000
* 00000000000000000000000001000000
* 00000000000000000000000010000000
* 00000000000000000000000100000000
* 00000000000000000000001000000000
* 00000000000000000000010000000000
* 000000000000000000001 00000000000
* 00000000000000000001000000000000
* 00000000000000000010000000000000
* 00000000000000000100000000000000
* 00000000000000001000000000000000
* 00000000000000010000000000000000
* 00000000000000100000000000000000
* 0000000000000 1000000000000000000
* 00000000 100000000000000000000000
* 0000000000 1000000000000000000000
* 01000000000000000000000000000000
* 10000000000000000000000000000000

11

BASE OF BUFFERS

POINTER TO CC BUFFER (=BUFFER)
CONTROL COMMAND BUFFER (20 WORDS)
CC PROCESSOR PARAM.LIST (7 WORDS)
CURNT. CHAR-POS-PROCESSED IN CC
CHAR-STRING LENGTH OF FIELD IN CC
CC CHAR-STRING BUFFER (9 WORDS)
POINTER TO FETCHLST (=FETCHLST)
POINTER TO XBUFFER (=XBUFFER)

ERROR BUFFER FOR $ CHAR,

BASE OF PASS2 FLAGS

CC FLAGS FOR CC TYPE FOUND
< ALL CC TYPES MISSING >
:CHAN FOUND (00000001)
:DEVICE FOUND (00000002)
:STDLB FOUND (00000004)
:SDEVICE FOUND (00000008)
:MONITOR FOUND (00000010)
:DLIMIT FOUND (00000020)

:ABS FOUND (00000040)
:BTM FOUND (00000080)
:FRGD FOUND (00000100)
JINTLB FOUND (00000200)
:COC FOUND (00000400)
:IMC FOUND (00000800)
:SPROCS ~ FOUND (00001000)

BLIMIT FOUND (00002000)

:OLIMIT FOUND (00004000)
:UTM FOUND (00008000)
.OSTDLBE FOUND (00010000)
PART FOUND X'20000"

ELIMIT FOUND X'40000'
BATCH HEADER FLAG
ON-LINE HEADER FLAG
:DEVICE CC JUST PROC (40000000)
END OF CC's < EOF > (80000000)

CHANFLG EQU P2FLAGS+1 CHAN CC ENCOUNTERED
STDFLG EQU P2FLAGS+2 STDLB CC BEING PROCESSED
P2TYPE EQU P2FLAGS+3 PASS2 TYPE (BPM, UTMBPM)
OSTD:STD EQU P2FLAGS+4 STDLB/OSTDLB FLAG

P2CNTRS EQU P2FLAGS+5 BASE OF PASS2 COUNTERS

RCHAN EQU P2CNTRS+0 # CHAN CC'S

SDEVFLG EQU P2CNTRS+1 # SYMBIONT DEVICES

P2CORE EQU P2CNTRS+2 BASE OF PASS2 CORE VALUES
DYSTORND | EQU P2CORE+0 END OF AVAILABLE CORE FOR PASS2
SAVEPAGE EQU P2CORE+1 # PAGES OF CORE, 1ST PAGE ADDR.
DEVS EQU P2CORE+3 DP/7T/9T/0

COCS EQU P2CORE+4 COC ADDRESS NDD

SWAPBTM EQU P2CORE+8 SWAPPER FLAG FOR BTM

AVTBLGTH EQU P2CORE+9 AVRTABLE SIZE

LORBIN EQU P2CORE+10 LOW RBT DCT INDEX

HIRBIN EQU P2CORE+11 HIGH RBT DCT INDEX

#RBTS EQU P2CORE+12 # RBTs DEFINED

PRDP EQU P2CORE+13 # PRIVATE PACKS DEFINED
DUALFLG EQU P2CORE+14 DUAL FLAG

SCYLPSA EQU P2CORE+15 # GRAN/PHYCYL; # PHYCYL
BIGSFLG EQU P2CORE+16 BIGY FLAG FOR UTS

SWAPUTS EQU P2CORE+17 DPSWAPPER FOR UTS

P2DYNEND | EQU P2CORE+18 END BASIC PASS2 STACK

The stack data area is pointed to by R3. That is, to obtain the contents of the word "BUFFER" one executes:
LW, REG BUFFER, R3

This area is initialized to all zeros except that XBUFFER is filled with blanks and a seven word PLIST is moved to

FETCHLST.

Once the data area has been initialized P2CCI reads the "type" field from the IPASS2 card and tests it for validity.

If it is not valid P2CCI prints an error message and does an ERROR exit to the monitor, otherwise the type is stored
in P2TYPE and P2CCI begins to read cards.

When P2CCI reads a card, a check is first made to determine whether the card was an end of data. If it was, actions
discussed below are taken. Otherwise the card is checked to see if it is out of order. A :CHAN card must precede
any :DEVICE card; and all :CHAN, :DEVICE, :STDLB, and :OSTDLB cards must precede :SDEVICE, and :MONITOR
or UTM cards. In addition, :UTM must precede :SPROCS and :IMC. Also, most cards may appear only once. If

a card is illegal or out of order, it is listed with appropriate error information and P2CCI continues.

If the card is found acceptable it is used to obtain an index to the table of PASS2 processor overlays. This index and
the PASS2 type index are used to decide the name of the required overlay which is segloaded and entered. Illegal
contro|l commands for the type of PASS2 being performed are detected at this stage. (See Table 2-2.) When the
processor overlay completes it's operations it retums to P2CCI which reads another card and calls another processor

overlay. Some processor overlays read cards internally for themselves.

12

When an end of data is found P2CCI prints a list of PASS2 commands that have not been encountered and

exits to the monitor.

2.1.9 P2CCI MESSAGES

...PASS2 CCI IN CONTROL... a 1PASS2 command has called P2CCI.

***UNKNOWN TYPE the type field of the IPASS2 command was not BP(M) or UT(MBPM).

***UNKNOWN OR MISPLACED CC the conditions for a CC discussed above were not met.

***CC IGNORED, PREVIOUS CC OF THIS TYPE ENCOUNTERED a CC which can appear only once
has been duplicated.

***CC'S NOT ENCOUNTERED, BUT POSSIBLY NEEDED heading for a list of control commands legal
for this type PASS2 that were not processed. This list is printed just before P2CCI exits.

...END OF PASS2... P2CCI has completed its task and exits.

***CANNOT READ CONTINUATION RECORD-PASS2 ABORTED self-explanatory

***JTM MUST PRECEDE SPROCS/IMC--CC IGNORED :SPROCS or :IMC has just been read but :UTM

has not yet been processed.

2.1.10 Internal Subroutines

Several subroutines internal to P2CCI and used by it and/or the PASS2 processors are discussed below.

CCLOAD
CCLOAD is used by P2CCI to load processors. It is called by the following sequence:

BAL,SR4 CCLOAD
TEXTC "Segname"

CCLOAD does a segload CAL on the name addressed by SR4 then converts the byte count of the "segname" to
words, adds this to SR4 and exits through SR4.

LISTIT
LISTIT is called to list the current control command by:
BAL, SR4 LISTIT
It checks to see if the CC has already been listed and exits if so. If not, it marks the CC as listed and does
a print CAL through M:LL,

PRINTMSG
PRINTMSG is usually called in the following form:
BAL,SR4 A
A BAL,SR3 PRINTMSG
TEXTC '"MESSAGE'
Effectively it is:
PRINTMSG M:PRINT (MESg, *SR3)
B *SR4

13

READCC
READCC iscalled by:
BAL,SR4 READCC
It BAL's to LISTIT to list the last CC if it has not been listed. Then it reads the next card. If the card begins
with a colon, READCC exits, If the first character is a " "it is listed (LISTIT) and the next card read. If

neither, the first character of the card is printed (LISTIT) with error information and the next card is read. The

process continues until a ':' card has been found.

RDINCFCH
RDINCFCH is called by :

BAL,R4 RDINCFCH
It BAL's fo READCC to read a card then fo NAMSCAN to get the first field. If the field is not a legal name
it prints the card (LISTIT) with error information and branches to the beginning of P2CCI's card checking
routine. Otherwise RDINCFCH moves the first 4 bytes of the name to R1 and exits.

OUTLLERR
OUTLLERR is called by:
BAL,SR4 OUTLLERR
It lists the current control command (LISTIT) then obtains the current character position of the scan routines.

It then builds a line for printing that is blank except for a '$' at that character position, prints it, and exits.

ABNRETUR

ABNRETUR is entered when an error or abnormal condition is encountered on a read from the C device., If the
card being read is the !PASS2 command it error exits. Otherwise it assumes the abnormal was an end of file and
sets a flag to this effect. AB\NRETUR then determines which processor was doing the read and returns control to

that processor's end of data handling routine.
SYNTAX, COREALLOC, MODGEN and WRITELM are used by PASS2 overlays to process their control

commands, allocate core for building a load module, creating DEFs and REFs, and writing the load module.

A detailed discussion is found in Chapter 6.8 - 6,11,

14

Table 2-2.

PASS2 Control Commands

CONTROL COMMAND

PROCESSOR CALLED

NOTES

:STDLB
:CHAN
:DEVICE
:SDEVICE
:MONITOR
:DLIMIT
:ABS

:FRGD
:INTLB
:BTM

:COC

:IMC
:SPROCS
:BLIMIT
:OLIMIT
:ELIMIT
UTM
:OSTDLB
:PARTITION

BPM
UBCHAN

UBCHAN
ILLEGAL
SDEVICE
XMONITOR
XLIMIT
ABS

FRGD
ILLEGAL
BTM
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL

UTS
UBCHAN

UBCHAN
[LLEGAL
SDEVICE
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
P2COC
IMC
SPROCS
XLIMIT
XLIMIT
XLIMIT
XMONITOR
UBCHAN
XPART

READ BY UBCHAN

READ BY FRGD

2,1,11 Flow Charts

ENTER

Move data
areda to
temp stack

X

Fill in fetch
PLIST and blank
buffers

Y
' e..o PASS2
CCl in
control....

(PRINTMSG pg. 6)

Read 1PASS2
ll‘,ypell
command
¥ _NAMSCAN
Get "type“
field
Get type index
BPM =0
UTS =2
TPRISNZ
m "BLOBII
***nknown
yes Type
(LISTIT Pg. 5)
PRINTMSG Pg. 6)
(OUTLLERR Pg. 8)
Pg. 2

Page 1

Figure 2-1. Flow Diagram of P2CCI

16

RDINCFCH
Read a card

(PRINTMSG Pg. 6)
(LISTIT Pg. 5)

*kkkkkkk

:GARBAGE

***Unknown
or mis=

placed

cc?k

l yes

Get overlay
name for

this CC

Get overlay name
for this
PASS2 TYPE2

Legal C
= 4r this ty(fé
PASS2?

yes

Pg. 3

Figure 2,1. Flow Diagram of P2CCI (cont.)

17

Test and

set flag for
this CC found

only
one allowed

?

CCLOAD
ound Segload
Before appropriate
processor
Pg. 5

PROCESSOR

XXX #%*CC
$

ignored previous

of this type

ncountered,

Pg. 2 Pg. 2

Figure 2-1 Flow Diagram of P2CCI (Cont.)

18

Pg. 4

Processors

EOF Routine

from processor

(PRINTMSG Pg. 6)

*%% CC's not
encountered but
possibly needed.

1 (PRINTMSG Pg. 6)
Search Ivisf of
CC's for this End of PASS2
type PASS2 List tene

ﬁgs\,
yes /fﬁone found
?

Release

Stack area

:CCNAME

EXIT
(PRINTMSG Pg. 6)

Figure 2-1, Flow Diagram of P2CCI (Cont.)

19

CCLOAD
(BAL, SR4)

Segload name
addressed by
SR4

convert Byte
count to words

i

Add count
to SR4

RETURN

(B *SR4)

LISTIT
(BAL, SR4)

current CC
been listed

Print image of
current CC and set
as listed

RETURN
(B *SR4)

Flow Diagram of P2CCI (Cont,)

20

PRINTMSG

(BAL, SR4)

M:PRINT
(MESS, *SR3)

RETURN
(B *SR4)

READCC

(BAL, SR4)

Pg. 6

RETURN
(B *SR4)

£t Pl

LISTIT

List last CC

Y

Read a Card

Y

Set

current character
position

Pg. 5

OUTLLERR

Display error
information

A

Pg. 7

Figure 2-1

Flow Diagram of P2CCI

21

(Cont.)

Pg. 7

RDINCFCH
(BAL,R4)
OUTLLERR
READCC (BAL, SR4)
Read a Card
LISTIT
Pg. 6
LIST CC
y NAMSCAN l
Check first legal First 4 Get current
field for 9 characters of character
legal name field to R1 position
(PRINTMSG Pg. 6) | !
, (OUTLLERR Pg. 7) Build blank fine
XXX B *R4 with ¢ at CCP
**%* ynknown or :
misplaced CC Y
Abnormal return Print it

from read

PASS

Being read ? RETURN

(B *SR4)

Set EOF
found flag

Processor's
EOF Routine

Pg. 2

Figure 2-1 Flow Diagram of P2CCI (Cont.)

22

2.2 UBCHAN [

2.2.1 Purpose

To process the PASS2 commands: :CHAN, :DEVICE, :STDLB and :OSTDLB (UTS) and build the load module IOTABLE l
containing the 1/O tables for the monitor being generated. M:HGP load module is also generated containing the
HGPs. The keyed file SPEC:HAND containing the device handler names is also built.

2.2.2 Usage
B CHAN (BPM/BTM)
B UBCHAN (UTS)
with R1 = Type of control command
1 for :CHAN
= 4 for :STDLB
= X'10000' for :OSTDLB

:DEVICE cards require a preceding :CHAN and are always read by UBCHAN itself
RO = address of temp stack pointer
R3 = base address of data in temp stack

R7 = address of control card PLIST

2.2.3 Input
Control card images (:CHAN, :DEVICE, :STDLB, :OSTDLB)

2.2.4 Output

Display of control information to LL device

IOTABLE load module (See Table 2-3)

M:HGP load module contains all the HGPs
SPEC:HAND keyed file (see Chapter 6.3 for details).

23

Table 2-3. IOTABLE Load Module

0 = not disk device
1=7204, 2=7232, 3=7212
4=7242, 5=7260, 6 =7265

Label Entry Size (Words) | Length Contents or Value Target System
1. Tables
IOTABLE Variable Variable CLISTS for device Handlers Both
(CLIST) (1/device)
DCT1 1/2 #DEVICES+1 Device address (X'ndd") Both
DCT2 1/4 #DEVICES+] | CIT index Both
DCT3 1/4 #DEVICES+ Bits 0~1 1/O operation Both

Bits 6~7 access control key
DCT4 1/4 #DEVICES+ Device type index Both
DCT5 1/4 #DEVICES+1 0 Both
DCT6 1/4 #DEVICES+ 0 Both
DCT7 1/2 #DEVICES+1 DW address of CLIST for device Both
DCT8 1 #DECIVES+! REF to Handler1 name Both
DCT9 1 #DEVICES+] REF to Handler2 name Both
DCT10 1/2 #DEVICES+1 0 Both
DCTN 1 #DEVICES+ 0 Both
DCT12 1 #DEVICES+ 0 Both
DCTI3 2 #DEVICES+ 0 Both
DCT14 1/4 #DEVICES+1 O or 1if dedicate Both
DCT15 1/4 #DEVICES+ 0 Both
DCT16 2 #DEVICES+1 | TAB YYNDD uts

for Remote Batch devices

N/L * RBndd

N/L 11YYNDD BPM/BTM
DCT17 1/2 #DEVICES+] 0 Both
DCT18 1/4 #DEVICES+ 0 Both
DCT19 1/4 #DEVICES+1 0 Both
DCT20 1/4 #DEVICES+ 0 Both
DCT21 1/2 #DEVICES+] | 0 Both
DCT22 1/4 #DEVICES+1 contains disk type index uts

24

Table 2-3. IOTABLE Load Module (cont.)

Labell Entry Size (Words) | Length Contents or Value Target System
DCT23 1/2 #DEVICES+1 | 0 if entry not disk type device uts
otherwise, contains displace-
ment in words from HGP (DEF)
to the in core HGP for the spe-
cific device.
pcripf 1/2 #DEVICES+] | X'ndd" from DCT1 Both
DCT lAf 1/2 #DEVICES+1 If pooled device X'ndd' where Both
X'nd' specifies the secondary
IOP /controller field from DUAL
option; if device not pooled
X'ndd' from DCT1.
CITI 1/4 #CHAN+ 0 Both
CIT2 1/4 #CHAN+ 0 Both
CIT3 1/4 #CHAN+ 0 Both
Bit 4 =1 if DUAL for given
entry
CIT4 1 #CHAN+ 0 Both
CITS 1/4 fCHAN+ 0 Both
crre't 1/4 #CHAN +1 0 Both
OPLBTBL1 1/2 #OPLABELS+1 | Text of OPLABEL Both
OPLBTBL2 1/4 #OPLABELS+1 | DCT index Both
OPLBTBL3 1/4 #OPLABELS+1 | DCT index Both
OPLBTBL4 1/4 #OPLABELS+1 | Bits 0-1 similar to DCT3 Both
1/0 flags
OPLBTBLS 1/4 #OPLABELS+1 | DCT index for OSTDLB uts
TYPMNE 1/2 #Device type | Text of Mnemonic Both
mnemonics+1
AVRTBL 2 #Tape devices | O for TAPE; for DP second word Both
+DPp Bit 0 = PublicPrivate
Bits 16-31 HGP displacement
AVRID 1/2 # of tape de= | O uts
vices+DP
SOLICIT 1/2 # of tape de= | 0 urs
vices+DP
AVRNOU 1/2 # of tape de- | O uts
vices 1DP

Mhese tables generated only if DUAL specified on any :CHAN command, if not then labels equated to DCT1.
"CITé generated only if DUAL specified on any :CHAN command, if not, CITé is equated to CIT5.

25

Table 2-3. IOTABLE Load Module (cont.)

Label Entry Size (Words) | Length Contents or Value Target System
AVRSID 1 #tape devices | 0 uts
HGP variable variable HGPS (see Figure 2-8) BPM/BTM
Headers of public HGPs and UTS
HGPs for private dp
ABSFDLL 1 1 ABSF disk address lower limit BPM/BTM
ABSFDC 1 1 ABSF next disk address BPM/BTM
available
ABSFDUL 1 1 ABSF disk address upper limit BPM/BTM
ABSFDISC 5 5 Word 0=DCT index of ABSF disk | BPM/BTM
Word 1 = SS of ABSF disk
Word 2 = NSPT of ABSF disk
Word 3 = Max bytes per /O call
Word 4 = Max sectors per
1/0 call
BCHKLL 1 1 BCHK disk address lower limit BPM,/BTM
BCHKUL 1 1 BCHK disk address upper limit BPM/BTM
BCHKDISC 5 5 Word 0=DCT index of BCHK disk | BPM/BTM
Word 1 =SS of BCHK disk
Word 2 = NSPT or BCHK disk
Word 3 = Max bytes per I/O call
Word 4 = Max sectors per
I/0 call
BCHKSIZ 1 1 Size (words)of BCHK area BPM/BTM
BCHKFLG 1 1 0 BPM/BTM
BCHKCNT 1 1 0 BPM,/BTM
IOCTQ variable #DEVICES+ Word 0~1 stack pointer DW Both
#lape+?DP+3 | remainder is stack
MB:GAMT' 1/4 #of disks with | Granule address mask uTS
PSA
MB:GAM2' 1/4 #of disks with | (SGP words/granule position)-1 uTS
PSA
MB:GAM3' 1/4 #of disks with | Shift for GSP index to granule | UTS
PSA position
MB:GAM4f 1/4 #of disks with | Shift for track to granule UTS
PSA address
MB:GAM5' 1/4 #of disks with | Shift for disk address to uTS

PSA

track #

tEni‘ries for these tables are determined by the disk type and number of tracks defined on the given disk. If
the swapping device is a disk pack pseudo ~ 7232 type entries are made. See 2.2.7.1 for complete discussion.

26

Table 2-3.

IOTABLE Load Module (cont.)

Label Entry Size (Words) | Length Contents or Value Target System
MB:GAM&' 1/4 #of disks with | Sector address mask urs
PSA
MB:GPT 1/4 #of disks with | Granules/Track uts
PSA
MB:SWAPS! 1/4 #of disks with | Shift for granule position urs
PSA SGP index
MB:DWT 1/4 #of disks with | DW size of SGP utsS
PSA
MB:SPACEJIT! 1/4 #of disks with | Increment for spacing users urs
PSA around disk
MB:SDI 1/4 #of disks with | Disk DCT index uts
PSA
M:GATLIM’. 1 #of disks with | Highest valid track UTS
PSA
M:GASLIM' 1 #of disks with | Highest sector position urs
PSA
M:ADRINCR! 1 #of disks with | Increment to get from last uTS
PSA Sector/Band to first sector
next Band
M:SWPEND 1 #of disks with | Address of the first sector on uts
PSA the next BAND /TRACK /CYLI
following the PSA area data is
in the format returned by a
sense command
M:FREE*GRAN 1 #of disks with | # of unused granules on swap- uTS
PSA ping device, the first device
entry = 0
M:SWAPD 1 #of disks with | Disk device address uts
PSA
M:SNSDA 1 *of disks with | 0 uTs
PSA
M:HLTIC 1 # of disks with | TIC to sense CDW uTs
PSA
M:SGP 1 #of disks with | WA of granule pools (see Fig- uTsS
ure 2-8. 1 for format of granule
pools)
M:SBAND 1 #of disks with | 0 uTs

PSA

TEntries for these tables are determined by the disk type and number of tracks defined on the given disk. If
the swapping device is a disk pack pseudo - 7232 type entries are made. See 2.2.7.1 for complete discussion.

27

Table 2-3. IOTABLE Load Module (cont.)

Label Entry Size (Words) | Length Contents or Value Target System
M:JITPAGE 1 #of discs with | 0 uTs
PSA
M:CLBGN 1 #of discs with | 0 uTsS
PSA
M:WCKBCL 1 #of discs with | 0 uts
PSA
M:WCKECL 1 #of discs with | 0 uTs
PSA
MH:CLEND 1/2 #of discs with | 0 uts
PSA
MH:LDA 1/2 #of discs with | 0 uts
PSA
MB:#RTRY 1/4 #of discs with | 0 uTs
PSA
MB:SFC 1/4 #of discs with | 0 uTsS
PSA
S:DP 1 1 1 if disc pack is swapping de- utsS
vice, 0if RAD is swapping
device
s:cyLszt 1 1 The number of granules/physical | UTS
cylinder
RBLIMS 2 2 If Remote Batch devices defined: | Both
word 0 = Lowest RB DCT index
word 1= Highest RB DCT index
If no Remote Batch devices
defined:
word 0 =DCTSIZ+]
word 1= DCTSIZ
RB:FLAG'! 1 Highest RBT Each RBT entry = 0 if HALF dup- | Both
DCT1 index lex Keyword, =X'8000" if FULL
duplex Keyword, default isHALF
WARBFLAG'! 1 1 Address of table points to first | BPM/BTM
significant word of RB:FLAG
RBH:ACK'" 1/2 HighestRBT | Each RBT entry =0 Both
DCT1index '
rRBB:SPC't 1/4 Highest RBT Each RBT entry =0 Both
DCT1 index

t
Generated only when swapping device is disc pack.

tt R .
Generated only if Remote Batch devices defined. Significant entries in tables only in the range of

RBT DCT1 indices.

28

Table 2-3. TOTABLE Load Module (cont.)

Label Entry Size (Words) | Length Contents or Value Target System
RBB:SFC' 1/4 Highest RBT Each RBT entry =0 Both
DCTI index
RBB:CPZ! 1/4 Highest RBT Each RBT entry = X'50' uTsS
DCT1 index
RBB:LPZt 1/4 Highest RBT Each RBT entry WIDTH UTS
DCT1 index parameter on PAPER
Keyword option or de-
fault of X'80"
2. Absolute DEFs
HGPSIZE - - Total words of HGPs BPM/TBM
DCN - - DCTX of first disk uts
DCTSIZ - - #of entries in DCT tables Both
CITS1Z - - #of entries in CIT tables Both
NTYPMNE - - #of type mnemonics Both
BATAPE - - DCTX of first tape or disk Both
pack (BPM)
NBATAPE - - - BATAPE Both
PSA - - PSA size in tracks BPM/BTM
OPLBTSIZ - - #of entries in op label table Both
AVRTBLSIZ - - #of tape entries in AVRTBL Both
AVRTBLNE - - #of entries in AVRTBL (includes Both
tape+DP)
LSWAP - - #of devices with PSA-1 uTsS
CDP:NGC - - #granules/logical cylinder BPM/BTM
CDP:NCYL - - If CDP:NGC =30, value is399 BPM/BTM
((12000/CDP:NSC) -1)
If CDP:NGC =2, value is5998
((12000/CDP:NGC)-2)
BCRBFLAG' - - Length in bytes of significant BPM/BTM
words of RB:FLAG
NUMRBTS - - #RBTs defined BPM/BTM
scask't - - ((fgranules per physical UTS

cylin-2)/4)*10

'Generated only if Remote Batch devicesdefined. Significantentriesin tables only inthe range of RBT DCT1 indices.

" Generated only when swapping device is disk pack.

29

2.2,5 Subroutines Used

NAMSCAN
CHARSCAN
CHSTSCAN
HEXSCAN

Character scanning routines

ABNRETUR

CLEARDYN
OUTLLERR , Card reading and message printing routines
PRINTMSG
RDINCFCH

MODIFY
MODGEN

Load module manipulator

2,2.6 Data Base

2,2.6.1 Temp Stack

When UBCHAN is called it allocates temp stack area as in Table 2-4, PLISTS are moved into position and
pointers and addresses initialized via R3, The area from BASESTAC to P2DYNEND has already been initialized
by P2CCI. See discussion of P2CCI for description of this part of data base (Table 2-1).

Table 2-4. PASS2 Stack Allocation

#TYPMNE EQU 64 *#xxx+#Entries in TYPMNE Table (Max)

TYPMNLNG EQU #TYPMNE #TYPMNE entries

TYPMNEAD EQU P2DYNEND+ Pointer to TYPMNE Table (=TYPMNE)

TYPMNESZ EQU P2DYNEND+2 #Entries in TYPMNE Table (CURRENT)

TYPMNE EQU P2DYNEND+3 TYPMNE Table (1/2 word/entry)

TYPMNEND EQU P2DYNEND+3+ End of TYPMNE Table
(*TYPMNE/2)

. .

#STDLB EQU 128 #xxxx+#Entries in STDLB Table (Max)

*

* This table contains both STDLB & OSTDLB Info.

STDLCDPT EQU TYPMNEND+0 Pointer to next STDLB Table entry
STDLADDR EQU TYPMNEND+1 Pointer to STDLB Table (=STDLCD1)
STDLCD1 EQU TYPMNEND+2 STDLB Table (2 word/entry)

30

Table 2-4. PASS2 Stack Allocation (cont.)

STDLEND

*kkkkk

#CHAN
CHANPTR
CHANADDR
CHANTBL
CHANEND

#DEVICE
DEVICDPT
DEVIADDR
DEVICDI
DEVIEND

DEVIXTRA

*hkkhkhk

#HANDLER
HANDTADR

HANDTABL
HANDEND

hekkkdkkk

#OPLB
OPLBADDR
OPLBSIZE
OPLBTABI
OPLBEND

ok ke e de e ke ke

#DCDP
DCINPNTR
DCINADDR

DCINTABL
DCINEND

kkkhkkk

DCT1PTR
DCT2PTR

EQU

EQU

EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU

EQU

EQU
EQU

EQU
EQU

EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU

EQU
EQU

EQU
EQU

TYPMNEND+2
+ (FSTDLB*2)

32

STDLEND+0
STDLEND+1
STDLEND+2

STDLEND+2
+ (FCHAN*5)

96

CHANENDH0)
CHANEND+1
CHANEND+2

CHANEND+2
+ (*DEVICE*4)

22

96

DEVIEND +
DEVIXTRAHO

HANDTADRH1

HANDTADR+1
+ ("HANDLER*4)

128

HANDEND+0
HANDEND+1
HANDEND+2

HANDEND+2
+ (*OPLB/2)

32
OPLBEND+0
OPLBEND+1

OPLBEND+2

OPLBEND+2
+ (*DCDP*21)

DCINEND+0
DCINEND+1

End of STDLB Table
S
*xxxx+#Entries in CHAN Table (Max)
Pointer to next CHAN Table entry
Pointer to CHAN Table (=CHANTBL)
CHAN Table (5 wrds/entry)

End of CHAN Table
*xxxxx#Entries in DEVICE Table (Max)
Pointer to next DEVICE Table entry
Pointer to DEVICE Table (=DEVICD1)
DEVICE TABLE (4 wrd/entry)

End of DEVICE Table

< Extra work area >

*de k%

xxxxx+#Entries in HANDLER Table (Max)

Pointer to HANDLER Table
(=HANDTABL)

HANDLER Table (4 wrds/entry)

End of HANDLER Table

*k gk

#xxx%+#Entries in OPLB Table (Max)
Pointer to OPLB Table (=OPLBTAB1)
#Entries in OPLB Table (current)
OPLB Table (1/2 word/entry)

End of OPLB Table
*%k %k

#xsxxxf Entries in DC/DP/CM Table (Max)
Pointer to next DC/DP/CMTable entry

Pointer to DC/DP/CMTBL
(=DCINTAB)

DC/DP/CMTable (21 words/entry)

End of DC/DP/CM Table
kkk%k

Pointer to DCT1 Table
Pointer to DCT2 Table

31

Table 2-4. PASS2 Stack Allocation (cont.)

DCT3PTR
DCT4PTR
DCTSPTR
DCT6PTR
DCT7PTR
DCT8PTR
DCT9PTR
DCTIOPTR
DCTIIPTR
DCTI2PTR
DCTI3PTR
DCTI14PTR
DCT15PTR
DCT16PTR
DCTI7PTR
DCTI8PTR
DCTI9PTR
DCT20PTR
DCT21PTR
DCT22PTR
DCT23PTR
DCTIPTR
DCT1IAPTR
DCTLAST

NDCTS
ek ke
CITIPTR
CIT2PTR
CIT3PTR
CIT4PTR
CIT5PTR
CIT6PTR
CITLAST

NCITS

kkkkkkd

TYPINDX
DCTSIZE

CLISTPTR
PACKRPTR

EZ X XL

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU

EQU
EQU
EQU
EQU

DCINEND+2
DCINEND+3
DCINEND+4
DCINEND+5
DCINEND+6
DCINEND+7
DCINEND+8
DCINEND+9
DCINEND+10
DCINEND+11
DCINEND+12
DCINEND+13
DCINEND+14
DCINEND+15
DCINEND+16
DCINEND+17
DCINEND+18
DCINEND+19
DCINEND+20
DCINEND+21
DCINEND+22
DCINEND+23
DCINEND+24
DCINEND+25

DCTLAST - DCTIPTR

DCTLAST+1
DCTLAST+2
DCTLAST+3
DCTLAST+4
DCTLAST+5
DCTLAST+
DCTLAST+7

CITLAST - CITIPTR

CITLAST+1
CITLAST+2
CITLAST+3
CLISTPTR

*hkk

*kkk

*kkk

Pointer to DCT3 Table
Pointer to DCT4 Table
Pointer to DCT5 Table
Pointer to DCT6 Table
Pointer to DCT7 Table
Pointer to DCT8 Table
Pointer to DCT9 Table
Pointer to DCT10 Table
Pointer to DCT11 Table
Pointer to DCT12 Table
Pointer to DCT13 Table
Pointer to DCT 14 Table
Pointer to DCT15 Table
Pointer to DCT16 Table
Pointer to DCT 17 Table
Pointer to DCT18 Table
Pointer to DCT19 Table
Pointer to DCT20 Table
Pointer to DCT21 Table
Pointer to DCT22 Table
Pointer to DCT23 Table
Pointer to DCTIP Table
Pointer to DCT1A Table
End DCT Tables

DCT Tables

Pointer to CIT1 Table
Pointer to CIT2 Table
Pointer to CIT3 Table
Pointer to CIT4 Table
Pointer to CIT5 Table
Pointer to CITé Table

End of CIT Tables

#CIT Tables

Type Index to Reorder DCTs

Entries in DCT Table
Pointer to CLIST Table

End of Tables to be packed

32

Table 2-4. PASS2 Stack Allocation (cont.)

HEADADDR EQU PACKRPTR+1 Pointer to HEADER
TREEADDR EQU PACKRPTR+2 Pointer to TREE

RDEFADDR EQU PACKRPTR+3 Pointer to REF/DEF Stack
EXPRADDR EQU PACKRPTR+4 Pointer to Expr. Stack
RDICADDR EQU PACKRPTR+5 Pointer to REL-DICT-0
CLISTADR EQU PACKRPTR+6 Pointer to SECT-0

HEADLNG EQU PACKRPTR+7 HEADER SIZE

TREELNG EQU PACKRPTR+8 TREE SIZE

RDEFLNG EQU PACKRPTR+9 REF /DEF Stack size
EXPRLNG EQU PACKRPTR+10 Expr* Stack SIZE

RDICLNG EQU PACKRPTR+11 REL*DICT-0 SIZE
SECTOLNG EQU PACKRPTR+12 SECT-0 SIZE

*hkkkhk *rk

CLISWDCT EQU SECTOLNG+1 #Words in all command lists
HGPIPTR EQU SECTOLNG+2 Pointer to next HGP Table entry
HGP1ADDR EQU SECTOLNG+3 Pointer to HGP Table Base
LASTHGP1 EQU SECTOLNG+4 Pointer o base of last HGP Table
*xk

OPLBT1AD EQU LASTHGP1+ Pointer to OPLBT1 Table
OPLBT2AD EQU LASTHGP1+2 Pointer to OPLBT2 Table
OPLBT3AD EQU LASTHGP1+3 Pointer to OPLBT3 Table
OPLBT4AD EQU LASTHGP1+4 Pointer to OPLBT4 Table
OPLBT5AD EQU LASTHGP1+ Pointer to OPLBT5 Table
TYPMNPNT EQU LASTHGP1+6 Pointer to TYPMNE Table
AVRTBLAD EQU LASTHGP1+7 Pointer to AVR Table
AVRTBLSZ EQU LASTHGP1+8 AVF Table SIZE

FDABCHAD EQU LASTHGP1+9 Pointer BCHK/ABSF Info.
FDABCHSZ EQU 18

ABSFDLL EQU FDABCHAD+I ABSF disk address lower limit
ABSFDC EQU FDABCHAD+2 ABSF Current disk address
ABSFDUL EQU FDABCHAD+3 ABSF disk address upper limit
ABSFDISC EQU FDABCHAD+ ABSF DCT1 Index

BCHKLL EQU FDABCHAD+9

BCHKUL EQU FDABCHAD+10

BCHKDISC EQU FDABCHAD+11

BCHKSIZ EQU FDABCHAD+16

#SWAPDEV'S EQU BCHKSIZ+1 Number of disks with PSA
SWAPPTR EQU BCHKSIZ+2 Pointer to SWAPPER Table area
SOLICIT EQU BCHKSIZ+3 Pointer to SOLICIT Table area

33

Table 2-4. PASS2 Stack Allocation (cont.)

AVRIDARA
AVRSID
DCN
BATAPE

NBATAPE
PSA

*kkkkk

LMODPLIS
EXPRCALL
HEAD
TREE
MAX00
RDEFCALL
DEFCALL
DICTCALL
TREETOP

*hkkkkkk

RBLIMSPTR
RBFLAGPTR
RBHACKPTR
RBBSPCPTR
RBBSFCPTR
RBBCPZPTR
RBBLPZPTR

*hkkkkk

STACKEND

SDBEGIN
SDVEND

khkhkhhhkhkkkhkhkdkhkrhhrdtd

EQU
EQU
EQU
EQU

EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU

dede de e hedeke

EQU
EQU

ek kkxkkkkkhkd

BCHKSIZ+4
BCHKSIZ+5
AVRSID+1
DCN+I1

DCN+2
DCN+3

PSA+1
PSA+9
PSA+19
PSA+31
PSA+43
PSA+44
RDEFCALL
PSA+52
PSA+57

TREETOP+1
TREETOP+2
TREETOP+3
TREETOP+4
TREETOP+5
TREETOP+6
TREETOP+7

TREETOP+8

PACKRPTR
DYSTORND

EEEEEIE T LT ETE LT RT RS,

dedke ke ok

*kkk

dkdkk

Pointer to AVRID Table area
Pointer to AVRSID table
Index into DCT1 of 1-ST DC/DP/CM

Index into DCT1 of 1-ST 9T/7T
or DP (BPM)

Compliment of BATAPE

Perm Storage Size (Tracks)

Master PLIST

Expression (and MODGEN) PLIST
Load Module HEAD

Load Module TREE

End of SECT 00

REF PLIST

DEF PLIST

Relocation Dictionary PLIST

End of PLISTS

Pointer to RBLIMS Table
Pointer to RB:FLAG
Pointer to RBH:ACK
Pointer to RBB:SPC
Pointer to RBB:SFC
Pointer to RBB:CPZ
Pointer to RBB:LPZ

End of Stack

*kkk

Base of available stack for SDEVICE
End of available stack for SDEVICE

[khkdkkdkkkhkkhhhkhrhkkhddhkhhkhkdkkkhhrhrkdtd

34

2.2.6.2 Preliminary Tables

The WBCHAN processor contains several tables necessary to its operation. They are described below:
TYPCHARS - This is a list of the type mnemonics (YY or YYNDD) for standard devices. It is moved to the
temp stack at TYPMNE before UBCHAN processing starts, and may be extended during processing as new types
of devices are defined, The index into this tableis used to index other tables and is referred to as the

"device index",

HANDNAME - This table, indexed by device index, is a list of default handler names for standard

devices.

IOFLOWACT = This table, indexed by device index, contains a code for the standard I/O flow of standard
devices. INPUT = X'40' OUTPUT = X'80' I/O = X'C0’,

CLISTDAT - This table, indexed by device index, contains the standard CLIST length for standard devices.
DCDPCM - This table is a list of disc types.

DEFAULTS =~ This table, parallel to DCDPCM, contains the defaults of SIZE, SS, and NSPT for each disc
type.

OPLBCHAR - This table is a list of the standard oplabels. It is moved to temp stack at OPLBTAB1 before

UBCHAN processing begins and may be expanded as oplabels are defined during processing.

OPFLOWACT = This table, parallel to OPLBCHAR, contains the flow codes (as in IOFLOWACT above)

for each oplabel.
STANDARD - This table contains the default assignment for all standard labels, both batch and on-line.

ABSFX1 and ABSFX2 - These are parallel tables containing values representing maximum bytes per 1/0 call
to NEWQ used in generating words 3 and 4 in the table ABSFDISC and BCHKDISC.

2,2,6.3 Intermediate Tables
As control commands are processed UBCHAN stores its information in intermediate tables in the temp stack.
This is required because in many cases final tables cannot be built until all the commands have been read.

The intermediate tables are described below,

CHANTBL - The 5 word entries in this table contain device information for dual channel access and the start

and end address for the DEVICD1 entries for the devices on this channel. (Described in Figure 2-2).

DEVICDI1 - The entries in this table begin as 9 words and contain device information (Figure 2-3), Later the
size of each entry is reduced to 3 words. (Figure 2-4), The rest of the information is moved to the

DCINTBL entry if this device was a disc. One DEVICD] entry is built for each :DEVICE command processed.

DCINTBL - The 21 word entries (only 5 of which are used) in this table contain disc information. It is moved
to this table from the DEVICD]1 table entry. One DCINTBL entry is formed for each :DEVICE command that
defines a disc system (DC,DP, CM). (Described in Figure 2-5).

35

OPLBTABI1 -~ This table contains a list of monitor operational labels in text. It initially contains the
standard oplabels and others are added as they are defined with :STDLB and :OSTDLB commands.

STDLCD1 - This table contains information defining operational labels derived from :STDLB and OSTDLB
commands. The oplabel index is the index of the defined oplabel into OPLBTAB1, There are two formats

since an oplabel may be assigned to a device or to another oplabel. (Described in Figure 2-6).

TYPMNE - This table contains a list of all device type mnemonics in text. Initially it contains the

standard types from TYPCHARS, and more are added if they are defined with device cards.

HANDTBL - This table is a list of handler names for devices. As :DEVICE commands are read the handlers
required for the devices defined have their names placed here. The names are in pairs, initial handler
first then clean up handler, in TEXTC format. Housekeeping is done so that each pair of names appears

only once., (Table 2-6),

O][XND,* | X'NDy' Bit 0=1 if Ns are different
! X'ND. ', X'ND,," from dual
2 option on :CHAN
3 |PEVICDIsrart ADDRESS
4 |DEVICEDI

END ADDRESS

Figure 2-2. CHANTBL Entry

36

Paper

NDD Size
Type POPEI’ 1 1
o Width X'NDD
“Flags | Hendler

'YY' Temporary

= -
DEVICD1 Index V= | Type | NGC
Al
SS NSPT
SIZE PSA
PFA PER
BCHK ABSF

(=]
W
N

D D
E P FLOW
Flags if set
Flow = T INPUT
=2 OUTPUT
= 3 INPUT/OUTPUT
Disk DE = DEDICATE
? Devices BitO=1
Only
DP

Bit3 =1 if FULL DUPLEX

Figure 2-3.Initial DEVICDI1 Entry

N D D Paper Size
TYPMNE Paper Width Device Address
Index

***Flags Handler Index Y Y

Figure 2-4. Final DEVICD1 Entry

0 |DEVICD! Index CYLIN b Tree FLINK
i ss NSPT
2 SIZE PSA
3 PFA PER
4 BCHK ABSF

Figure 2-5. FINAL DCINTBL ENTRY

37

DOUBLEWORD 0| [opLABEL OP. LABEL
BOUNDARY Y 1 INDEX DEF. 'YY'
DEV. MNEMONIC 7% DEVICE
] S 77 ADDR, 1 = OSTDLB
0 = STDLB
0 <]) OP.LBL. OP. LABEL
INDEX DEF. 'YY'
] e e ? EQUIV. OP.
) LABEL YY"
HANDTBL ENTRY
0 COUNT] NAME OF HANDLER
] INITIALIZATION ROUTINE
) COUNT]J NAME OF HANDLER
3 CLEANUP ROUTINE
Figure 2-6. Two Types of STDLCD1 Entry and HANDTBL Entry
Table 2-5. STANDARD DEVICES
DEVICE TYPCHARS IO FLOWACT HANDNAME CLISTDAT
NO DEVICE NO xwwex]| | EGAL DEVICE DEFINITION #¥¥#% 6
OPERATOR CONSOLE TY 1/0 KBTIO, KBTCU 8
PAPERTAPE READER PR 1 PTAP, PTAPCU 8
PAPERTAPE PUNCH PP 0 PTAP, PTAPCU 8
CARD READER CR I CRDIN, CRDINCU 2
CARD PUNCH cp 0 CRDOUT, CRDDCU 74
LINE PRINTER LP o PRTOUT, PRTCU 6
LINE PRINTER (7450)! LP o PRTOUTL, PRTCU 6
LINE PRINTER (7446)! Lp 0 744610, 7446CU 6
RAD3 DC 1/0 DISCIO, DISCCU 6
9 TRACK TAPEZ oT 1/0 MT AP, MTAPCU 8
7 TRACK TAPE2 7T 1/0 7TAP, 7TAPCU 8
ANY TAPE MT ###x+] LEGAL DEVICE DEFINITION *****
DISC PACK (7242)° DP 1/0 DPAK, DPAKCU 12
DISC PACK (7260,7265)3 DP 1/0 DISKAB, DSKABCU 12
REMOTE BATCH CONTROLLER RB 1/0 DSCIO, DSCCU 10

38

DEVICE TYPCHARS IO FLOWACT HANDNAME CLISTDAT

COC CONTROLLER co 1/0 cocC, coc 6
(BPM/BTM)!

COC CONTROLLER (BATCH co 1/0 COCBS, COCBS 6
SWAPPING BTM)

COC CONTROLLER (UTS) ME 1/0 coc,coc 6

1. User must specify handler names.
2. Inclusion of either tape handler causes additional module MAGTAPE to be added.

3. For UTS - if swapping device is RAD then module TSIO also included. If swapping device is Disk Pack
then module DPSIO also included.

2.2.7 Description

UBCHAN is segloaded and entered from P2CCI when a :CHAN, :STDLB, or :OSTDLB (UTS only) conirol command
is encountered. If P2CCI encounters a :DEVICE command, it is considered an error. An image of the command
is passed in the read buffer to UBCHAN and a flag is set according to the type of command. From this point

on UBCHAN reads its own input, a process which continues until a command which is neither :CHAN, :DEVICE,
:STDLB, nor :OSTDLB is encountered. Upon entry UBCHAN first initializes its temp stack.

When UBCHAN reads a :CHAN command, it sets a CHAN encountered flag and calls CHANNEL to process the

card. It then reads the next command.

When a :DEVICE command is encountered, UBCHAN checks to see if it was preceeded (not necessarily
immediately) by a valid :CHAN, If it was not, an error message is printed and the command is ignored.
Otherwise, the type mnemonic is checked. If it is "NO" or "MT" the command is in error. If it is a standard
type mnemonic the index info the TYPMNE table is obtained, Otherwise, the new mnemonic is added fo the
TYPMNE table and the new index is noted. Whenever any table is expanded, it is checked for overflow and

when this occurs error messages are printed,

Once the index of the type mnemonic hasbeen obtained, it is used to build a DEVICD 1table entry for this device and all
available default parameters are placed init. A countis kept of the number of Remote batch devices. The rest of the
command is then scanned for options, and as they are found, their values replace the defaults in DEVICD1. If the de-
vice was a disc, thedisc options are also processed and when this is completed, the extrawords of DEVICD 1are moved
to DCINTBL. All options are checked for syntax and for legal values. When the DEVICD1 and DCINTBL entries

are completed, the next card is read.

When a control command is a :STDLB or :OSTDLB command, an entry is added to STDLCD1 for each
assignment on the card. In BPM/BTM, :OSTDLB cards are illegal while in UTS the high order bit of the
first word of each entry is set to one for these assignments. The oplabels are checked to see if they are
standard and if not, are added to the OPLBTAB1 table. When all assignments have been processed, the

next card is read.

39

When UBCHAN reads a command that is not :CHAN, :DEVICE, :STDLB, or :OSTDLB or when an EOF is
encountered during UBCHAN processing, the reading of control commands is stopped and UBCHAN begins
to build its files, A check is made to determine whether CHAN/DEVICE information was read and if not
UBCHAN exits. Otherwise, pages are obtained and allocated among the tables to be built. In allocating
the DCT and CIT tables a check is made to determine if the DUAL flag is set (i.e., DUAL option was
specified on any :CHAN command). If so, DCT1A, DCTIP and CITé are allocated space.

If not, then the labels DCTIA and DCT1P are equated to DCT1, and CITé equated to CITS,

The first CHANTBL entry is examined and the information in it and the DEVICD1 entries to which it points
are used to begin building the DCT and CIT tables, When this CHANTBL entry is exhausted, the next

is fetched and this process continues through all of CHANTBL, The CLIST area is also built at this time,
Most devices have CLISTs of all zero and length dictated by CLISTDAT, although some devices have special
CLISTs (See Figure 2-7).

While processing DEVICD1 entries when a remote batch device is first encountered, space is allocated for
those RBT-dependent tables. Since table entries are significant only in the area of RBT indices, the pointers

to the several tables are bumped back, overlapping other areas.

When the DCT and CIT tables (except for DCT22 and DCT23, = UTS only) have been built, RBLIMS table entries
are defined. Then the DCINTBL is searched for a disk with PSA defined on it. The DCT 22 entry for the disk
device is determined and stored in the appropriate location. Then if the swapping device (i.e., has PSA de-
fined on it) for UTS is a disk pack, the #tracks of PSA is converted to #physical cylinders. If the #tracks does
not equal a physical eylinder(s) the PFA and PER (if necessary) is decremented. The maximum number of PSA

tracks that may be specified is X'3FC' for a 7242 and X'21C"' for a 7260/7265.

The HGP for this device is generated and if the device is a disk pack, then an entry is made in the AVRTBL
table. After the PSA discs are processed, DCINTBL is searched for other entries and the HGPs for them are
generated (Figure 2-8).

UBCHAN then proceeds to build OPLBT1-4. For each operational label in OPLBTAB! an entry is made in each
OPLBT either from STDLCD1 or from STANDARD. Op labels assigned to "NO™" are assigned to device

NOAQGO (DCTX=0). If this is for UTS, OPLBT5 is built in the same manner. When the oplabel tables are com-
plete, TYPMNE is moved to its allocated area in the working pages. Then the area for the control task and
temp stack are allocated. If the system is BPM/BTM, a copy of the HGPs are then written out as the load mod-
ule M:HGP even though they are also included in the load module IOTABLE. UBCHAN then enfers the comple-
tion routines to generate IOTABLE. If the system is UTS, the swap tables are generated (see 2.2.7.1) and then
an area is allocated for the load module M:HGP which is created and written out to the disk. This load module
contains the HGPs for all devices. In addition, the HGPs for private devices remain a part of IOTABLE as well
as the 7 word headers of the HGPs for public devices. When M:HGP has been created, in a UTS system, the
headers of the HGPs and the swap tables are squeezed into the area from where the full HGPs had been written.

DCT23 entries are then computed and space is allocated for the AVRID and SOLICIT tables.

At this point the data (SECT 00) area of the load module IOTABLE is completed. Using MODIFY UBCHAN builds
the head, tree, expression stack and REF/DEF stack for the module. MODGEN is used to generate the swapper

40

tables. Finally RDICLIST is used to make final modifications to the relocation dictionary, and IOTABLE is written
out via M:TM. Following this the handler names are written out into the SPEC:HAND file and UBCHAN exits.

If UBCHAN is unable to build IOTABLE, SPEC:HAND, or M:HGP, appropriate, definitive error messages are pro-
duced and PASS2 (being unable to continue without these vital tables) aborts.

CP CLIST
0 0 1
|] X"13"
2 2 | X'09000000"+BA($+6)
3 3 | X'2E000078'
Paper Size 4 4 X'08000000'+D A($-2)
Paper Width 5 5 0
LP or TY CLIST 6 | X'080000000"
0 0
‘ 38 X'09000000+BA (5-+6)
2 39 | x'2E000078"
3 40 | X'08000000*+DA($-2)
LINES 4 o1 .
WIDTH 5 42 X'8000000"
16161616 6
01000200 7 0
8 73 0
9

RB CLIST

Figure 2-7. Special CLISTS

41

H W N ~ O

where

FLINK
clP
0 DCT INDEX [{ [5 TYPE [NGC
No, SECTORS/TRACK
NO, SECTORS/GRANULE
PER MAPWL i PEA MAPWL
I
PER MAPWD PER 1st SECT NO.
PFA MAPWD PFA 1st SECT NO.
PFA BIT MAP
(1 = AVAILABLE)
PER BIT MAP
(1 = AVAILABLE)
0 78 1516 17 23 24 31

CYL indicates whether device is allocated by cylinder (bit 16=1)
or granule (bit 16=0),

PRIV indicates whether device is private (bit 17=1) or
public (bt 17=0).

NGC number of granules/logical cylinder, has meaning only if CYL set.
The # granules/logical cylinder is a SYSGEN definable parameter. For
UTS this may be 1>n>255. For RBM this value may be either 2 or 30.

TYPE contains device type (7=disk; B=disk pack).

PER/MAPWL/PFA/MAPWL contain the number of words in the bit map
area for PER/PFA.

PER/MAPWD/PFA/MAPWD contain the word displacement from the start
of this allocation table to the first word of the bit map for PER/PFA.

NVAT contains the next volumes cylinder O allocation table if PRIV is set.

Figure 2-8. ALLOCATION TABLE FORMAT (HGP)

42

2.2.7.1 Generation of Swapper Tables (UTS only)

‘ Upon entry into the routine (ALLOSWAP) to generate the swapper tables, space is allocated first for each table.
Then for the type of the given swapping device (of which there may be only one if it is defined on a disk pack) is
determined. The type controls the values to be generated for the various tables. See Table 2.5.1 for the types and

i values being used. If the swapping device is a disk pack then pseudo-7232 values are used, that is the number of
tracks of PSA specified for the 7242/7260/7265 is compared to the numbers of tracks for 7232 devices to determine
the type. After building the tables, the granule pools or SGPs are generated. The starting address of each pool is
generated as an entry in the M:SGP table. The SGP for the first swapping device has all bits set to 0. All sub-

sequent pools have the bits set according to the type, See Figure 2.8.1 for the various types.

2.2.8 Error and Informational Messages

All messages are output on the LL device.

***STDLB ENTRY TABLE FULL

The STDLB control command information has overflowed the allocated area. Up to 128 standard label definitions

or up to 32 unique operational labels are allowed. UBCHAN tries to continue.

***DEVICE ENTRY TABLE FULL

The DEVICE control commands have overflowed the allocated core area. Up to 96 devices may be defined.
UBCHAN tries to continue

***TYPMNE ENTRY TABLE FULL

A maximum of 64 unique type mnemonics are accepted from DEVICE control commands, and more have been speci-
fied. UBCHAN tries fo continue.
Table 2-5.1. Swapper Table Constants by Type

7232 RAD or 7242/7260/7265 Disk Pack
7212 RAD

Table Name Type O Type 1 (0-80) Type 2 (81-100) Type 3 (101-200
MB:GAM1 X'3F! 7 7
MB:GAM2 1 7 15
MB:GAM3 -1 -2 -3 -4
MB:GAM4 6 3 3 3
MB:GAMS -7 -4 -4 -4
MB:GAMé6 X'7F' X'F* X'F! X'F!
MB:GPT 41 6 6 6
MB:SWAPS 0 1 2 3
MB:DWT 41 12 24 48
MB:SPACEIT 7 1 1 1
M:GATLIM X'3F! X'7F! X'FF! X'IFF!
M:GASLIM 80 10 10 10
M:ADRINCR X'2E' 4 4 4

Words 41

|

Words 6

|

Words 6

l

Words 6

7212
7232 or
7242/7260

7265

4+——WORDS 2 ——»

GRANULE 40

r.._,-\/v—\./'w\/“\.—

A/—\/\/vv\/v‘_

GRANULE 0

A

WORDS 4 ——

GRANULE 5

PSA (Hex Tracks)

GRANULE 0

' §

0-40

0-80

81-100

101-200

WORDS 8 .

\

GRANULE 5

GRANULE 0

A

WORDS 16

 J

GRANULE 5

GRANULE 0

Type O

Type 1

Type 2

Type 3

A4

Figure 2-8.1 SGP Format and Contents by Type

Type O

Location Contents

Every 4th DW from 0 to 40 PO RRRRRRARRERRRRAL
Every 4th DW from 1 to 37" X'8888888888888888"
Every 4th DW from 2 to 38 X'4444 444444444444
Every 4th DW from 3 to 39 X12222222222222222"
"Doubleword 37 is X'8888888808883888"

Type (Value in Doublewords)

1 2 3 Contents

0-1 0-3 0-7 X'5555555555555555"

8-9 16-19 32-39 X'5555555555555555"

4-5 8~11 16-23t X'AAAAAAAAAAAAAAAA'
2-3 4-7 8-15 0

6-7 12-15 24-31 0

10-11 20-23 40-47 0

M Doubleword 23 is X'AAAAAAAA2AAAAAAA'

Figure 2-8.1 SGP Format and Contents by Type (Cont.)

***DISC ENTRY TABLE FULL
The DEVICE control commands defining disc units (i.e., YYNDD is of DCndd, DPndd, and CMndd types) have over-
flowed the allocated core area. Up to 32 discs may be defined. UBCHAN tries to continue.

***HANDLER CLIST FULL

When generating the CLIST (peripheral command list area) tables, the core area allocated is not large enough. Up

to 64 handler definitions are allowed. UBCHAN aborts.

***DCT TABLE FULL

When generating the DCT tables (peripheral device information tables), the core area allocated is not large enough.
UBCHAN daborts.

***HGP TABLE FULL

When generating the HGP tables for disc, disc pack or cram devices, the allocated core area is not large enough.

UBCHAN aborts.

***OPLB XX EQUIVALENT YY MISSING
STDLB control command specifies that an operational label (XX) standard assignment is to another operational label

(YY) that has not been defined. UBCHAN tries to continue.

***UNKNOWN DEVICE YYNDD (for LL)
The YYNDD field of a DEVICE contro! command is invalid, (i.e., bad syntax)or for the STDLB control command, the
YYNDD referenced has not been defined by a DEVICE control command. UBCHAN tries to continue.

45

***INSUFFICIENT PAGES AVAILABLE
When core is being allocated for the generation of the load module, the available core is not large enough for the

required allocation. UBCHAN aborts.

***ONLY XXXX PAGES OBTAINED
This message appears immediately after the preceding message. XXXX is the number of pages that was available to
build the load module. UBCHAN aborts.

*** OAD MODULE CANNOT BE GENERATED
This message is produced in conjunction with the two preceding messages. UBCHAN aborts.

***SPEC:HAND CANNOT BE GENERATED
An inconsistency has occurred in building the HANDLERS record of the SPEC:HAND file. UBCHAN aborts.

***PASS2 UNABLE TO CONTINUE

This message is produced after any of the messages in which the explanation indicates that UBCHAN aborts.

***NO DISC DEFINED

This message is the result of no disc being defined by a DEVICE control command. This is only an informational
message.
***NO HANDLER NAME GIVEN

When a device is being defined whose type mnemonic is unknown to PASS2, the HANDLER option must be present.

UBCHAN continues to next control command.

***DEVICE TYPE YY ILLEGAL
A DEVICE control command YYNDD field contains "NO" or "MT" as its YY. UBCHAN tries to continue.

***PSA/PER INVALID ON CYLIN ALLOCATED DEVICE — PSA/PER IGNORED
An attempt has been made to define PSA/PER on a device that is allocated in logical cylinders. The options are
ignored. UBCHAN continues.

***NO PSA DEFINED
***NO PER DEFINED
No PSA/PER has been defined on any disc. UBCHAN tries to continue.

***SYNTAX ERROR DUAL OPTIONS USED
The closing double parenthesis on the DUAL option of the CHAN command are in error. However, the preceeding

option has been correctly processed and is used. UBCHAN continues.

***ONLY PFA VALID ON PRIVATE DEVICES

An attempt has been made to define other than PFA on a private device. All other allocations are zeroed out. UBCHAN
continues.

46

SS AND NSPT MUST BE NONZERO — SET TO XXXX DEFAULTS
The options SS and/or NSPT have not been specified nor has the device type been specified (i.e., 7204, 7212,
7232, 7!242, 7260, and 7265). The default (XXXX) for the particular type of target system (UTS-7232, BPM/
BTM - 7204) is substituted. UBCHAN continues.

***\/ALID 'CHAN' CC MUST PRECEDE 'DEVICE' CC
A DEVICE control command is encountered without being preceded by a valid CHAN control command. UBCHAN

continues to the next control command.

**NAME' OR SYNTAX INVALID
A CHAN control command option field has a syntax error or the DEVICE control command contains a syntax error or

invalid name for HANDLER option. UBCHAN tries to continue.

***CHAN TABLE FULL
The CHAN control command has overflowed the allocated core area. Up to 32 :CHAN commands are allowed.

UBCHAN fries to continue.

***NO CHAN /DEVICE INFO
No CHAN and DEVICE control commands have been encountered, although STDLB control commands have been pro-
cessed. UBCHAN oaborts.

***NO DEVICE FOR CHAN
A CHAN control command has been encountered without having any DEVICE definitions for this channel. UBCHAN

fries to continue.

**¥ABSF' ABCHK' PREVIQUSLY DEFINED
A DEVICE control command has defined ABSF and /or BCHK and they have also been defined previously. UBCHAN

continues to the next control command.

***SUM OF PSA+PER+PFA+BCHK+ABSF>SIZE
This warning message appears if there is a conflict in the summation of the given list of variables and the defined
disc size. The message may appear several times for a given dise, i.e., if the conflict is determined after the sum-
mation of PSAHPER, then the message appears for this summation and once for each of the remaining summations,

the overflowing value is replaced with the reamining SIZE and the processor continues.

***THIS DISC ALREADY DEFINED
A DEVICE control command is defining a disc, cram or disc pack device (i.e., YYNDD) which has already been
defined. UBCHAN will try to continue.

***SYNTAX ERROR

A syntax error has been encountered on a control command. UBCHAN continues.

47

***NO DEVICE FOR TYPMNE YY (OPLBL=LL)
A operational label is assigned (or defaulted) to a device that has not been defined. In UTS, these messages have
the headings:

--=BATCH (STDLB)-=~for batch and

---ON LINE (OSTDLB)---for on=line.
They are printed at the end of UBCHAN processing.

***4GP CANNOT BE FORMED FOR YYNDD
The DEVICE control command defining this disc did not provide enough information to generate an HGP. UBCHAN

continues.

***CYLIN VALUE INVALID-~-VALUE IGNORED
For BPM/BTM only, the value for number of granules per logical cylinder on the CYLIN option was not 2 or X'1E'.
The value is ignored and UBCHAN continues.

***NGC=2 FOR ALL PRIVATE PACKS

***NGC=30 FOR ALL PRIVATE PACKS
For BPM/BTM only, one of the above messages always generated after the first, and only the first, command defining
a private pack. All subsequent private packs are allocated in terms of the first defined pack regardless of what value

is used on the subsequent commands. UBCHAN continues.

***NGC=30 FOR ALL PUBLIC PACKS
For BPM/BTM only, an attempt has been made to define public packs in terms of two granules/logical cylinder.
The correct value is substituted and UBCHAN confinues. This message is produced only once even if several public

device CYLIN options are in error.

***pSA VALUE TOO LARGE — MAX VALUE USED — PFA INCREMENTED
For UTS only, in an attempt to define PSA on a disc pack, the number of tracks specified exceeded X'3FC' for a
7242 or X'21C' for a 7260/7265. The correct value is substituted and the extra tracks added to the total number
of PFA tracks defined. UBCHAN continues.

***pSA INCREMENTED FOR DP SWAPPER — PFA /PER DECREMENTED
For UTS only, the number of tracks defined for PSA on a disc pack is not equal to a physical cylinder(s)i.e., evenly
divisible by 20 (*tracks/physical cylinder). The number of tracks of PSA is incremented and PFA and PER, if neces-
sary, are decremented. UBCHAN continues.

***PSA MUST BE 7212/7232/D1SC PACK — PSA IGNORED
For UTS only, an attempt was made to define PSA on other than the above devices. The option is ignored. UBCHAN

continues.

***PSA PREVIOUSLY DEFINED ON DP — PSA IGNORED
For UTS only, if PSA is defined on a disc pack it may not also be defined on a RAD or more than one disc pack. An
attempt to do so has been detected. The option is ignored and UBCHAN continues.

48

***pSA DEFINED ON RAD, NOT ALLOWED ON DP
For UTS only a RAD has previously been defined with PSA on it. Therefore, it may not also be defined on a disc
pack. The option is ignored and UBCHAN continues.

***N GC>255 -- 55 USED FOR 7260/7245
***NGC>255 -- 30 USED FOR 7242
For UTS only, the value specified for the number of granules per logical cylinder option on the CYLIN parameter

is >255, the appropriate default is used and one of the above messages is generated. UBCHAN continues.

2.2.9 Major Internal Routines

UBCHAN/CHAN Main entry, initialization, control

CHANNEL Processes :CHAN command, builds CHANTBL entry

IODEFRD Sets flag and reads next card and branches to
appropriate routine,

IODDEVIC Processes :DEVICE command gets YYNDD and finds
type mnemonic

TYPFOUND Gets type mnemonic index, puts default eniries in
DEVICD1

DEVOPTPA Processes other options on :DEVICE command, stores
valid options in DEVICD1,

DEVCDOUT Completes building of DEVICD1 entry. If tape, increments

AVRTBL size, Checks options if disc for validity and

moves correct values fo DCINTBL,

IOSTDLB/IOSTDLBO Process :STDLB, :OSTDLB command. Geis options
and stores in STDLCD1.

UBENDITALL/ENDITALL Entry point when all commands for UBCHAN read.
Allocates space for DCT, CIT, OPLBT, TYPMNE, and AVRTBL

GNDCTCIT Generates DCT and CIT tables.

SETDCT1 Generates CLISTs for devices.

CPCLIST Generates special CP and RB CLISTs.

GENCIT Generate special setting in CIT3 if DUAL option on
:CHAN command.

SRCHPSA Searches for disk with PSA defined on it.

SRCHNXT Checks for end of disk information. If not, then
links to next DCINTBL when all PSA disks completed.

HGPENSET Initial setting of HGP values. Makes entry in AVRTBL
if disk pack.

NOAVRENT If ABSF, BCHK areas defined, generates appropriate
values,

FORMHGP Gets number of tracks of PER, PFA BALs to SETGRANO

and stores displacements in HGP,

49

CNVTCYL

SETGRANO

OPLBTYPM

DOSTAND

CHKSTDL

CHKASGN

OPLBNDD

SETOPLBN

SETOPLBS
OPLBENDX

XFERTYPM
XFERFDAB

ALLTMP

SWAPSET

HGPSTAK/WRTHGP

HMOVIT
LOADMODL
GETMODFY
EQUMODFY
SETMODFY

GENEXP

RDICLIST

For UTS systems in which PSA defined on a disc pack. First,
checks that PSA < X'BFC' for 7242 or < X'21C' for 7260/
7265. Then converts #tracks to # of physical cylinders.
Builds HGP bit maps for PFA, PER upon entry

Ré = # sectors/track

R7 = # sectors/granule

R11 = DCINTBL WD8 addr, WD7 addr.

R12 = PSA, PSA+PFA addr.

R15 = PFA, PER addr.
This routine entered twice. In the above, the value pre-
ceeding the comma is the first entry value and that ofter
the comma the second.
Main entry to building OPLBT 1=5. Initialize pointers
and check if any :STDLB or :OSTDLB commands.
Checks STANDARD table for default Op label.
Searches STDLCD 1 for Op label. -
Determines type of Op label assignment if it is to Oplabel
then searches table for YY assignment.
Entered when oplabel assigned to device. Stores Op label
in OPLBT1 and searches DCT 1 for device address.
Put DCTX of device for Op label in OPLBT2 and OPLBT3.
Stores flow in OPLBT4.
Generates value for OPLBT5 for UTS system only.
Finishes generating OPLBT 1-5 by storing 'NO' in OPLBT1
entry 1 and sets DCT3 entry to 'NO'.
Transfers TYPMNE to SECT 00 area.
Transfers ABSF, BCHK values to SECT 00 area for BPM/BTM.
Allocates area for control task and tempstack. 1f BPM/BTM at
endsets up to HGPs as load module and branches to WRTHGP.
Builds Swap tables for UTS system.
Build, write M:HGP load module via M:TM.
Packs headers of HGPs and Swap tables into area from which
full HGPs were written (UTS only).
Sets up IOTABLE load module.
These routines change the MODIFY.
PLIST before entering SETMODFY.
This routine calls MODIFY to manipulate the load module
being created.
Sets up the name pointed to for a call to SETMODFY placing
the name in IOTABLE's expression stack and REFing it. The
routine is used for handler names.
Changes the relocation dictionary for special card punch CLIST

words.

50

RDEFSWAP

NOSWAP
WRITELM

OUTOFIT

2.2.10 Flow Chart

Using MODGEN to set up changes to PLIST and call
MODIFY, generates the Swap tables and remote batch

tables.

Final set up for IOTABLE includes opening file.

Writes IOTABLE file using M:TM then closes and saves file.
Writes out SPEC:HAND file and returns to READOK in

P2CCI.

Prints unable to continue message and does an error exit

from PASS2.

10STDLB

Pg. 7

Yes

ENTER

Initialize temp

stack area

¥

Move standard
Oplabels from
OPLBCHAR to
OPLBTBL1

Move standard
type mnemonics
from TYPCHARS
to TYPMNE

ntered
via: STDLB
?
No
ntere:

via: OSTDLB

2

No 1
A

CHANNEL

Process:CHAN
CcC

Pg. 28

IODEFRD

Pg. 2

CHANCC

Page 1

Figure 2~9. Flow Diagram of UBCHAN

51

IODEFRD

Set CC
Flags
¥ RDINCFCH

Read Next
CcC

//’
IOSTDLBO&@DLB
g. 7 ?

Complete
last channel
entry

ENDITAL

Pg. 9

Figure 2-9. Flow Diagram of UBCHAN (Cont.)

52

Pg. 3

:DEVICE

$
***VALID 'CHAN'
CC must preceedl
'DEVICE'CC'

IODDEVIC

DVCYNXT
r Pg. 4

:DE%/ICE
***DEVICE
entry table full
_J evice YYNDD
> $
Syntax Error

:DEVICE YYNDD
$
#**DEVICE Type
YY Iliegal

Search TYPMNE
for this YY Pg. 4

TYPFOUND

TYPMNE
Table
Full

Put new type
mnemonic in
TYPMNE DVCYNXT

Figure 2-9., Flow Diagram of UBCHAN (Cont.)

53

TYPFOUND Pg. 4

Get
TYPMNE
Index

CVCYNXT

1
Get CLISTDAT
indexed by
TYPMNE and add

to CLIST count Scan to
¥ end of

f

***Unknown | Get card
Device YYNDD

Bad NDD

and Save y
IODEFRD
¥

Convert NDD to Pg. 2
Device

DVCYNXT Address

¥
Put device address If RBT default

paper wdth. , paper width,
default TYPMNE [~ — keep count of

Index in DEVICD1 # RBTs here.

¥
Put text NDD and
paper size default
into

DEVICDI

Put YY
into DEVICD1

QUTOFIT
2 =
Pg. 27 Put Disc

***Handler defaults into
CLIST Full DEVICD1

DEVOPTPA

Put default handler
name in

HANDTBL, Index
in DEVICD1

No Room

Figure 29, Flow Diagram of UBCHAN (Cont.)

54

of Card
?

No, try again

yes

DEVCDOUT

Pg. 6

Check for
Disc options

¥

T

Check Device
Options

:DEVICE YYNDD OPT
$

*%% Syntax Error

D
Get value Bad :DEVICE YYNDQ
of name (OPT, N) ***'name" or
fields $ Syntax invalid
Store over || Put new handler
default in names in
DEVICD1 1 HANDTBL
Y
~(DEVOPTPA "}«

Figure 2-9. Flow Diagram of UBCHAN (Cont.)

55

DEVCDOUT Pg. 6

this new

TYPMNE ?

*** No Handler
Name Given

IODEFRD

Pg. 2

Increment
AVRTBL

Handler

name given
?

Merge words
3and 4 to
complete final

DEVICD1

Size

yes

no

Check disc BPMCYL

SIZECHK

For BPM check

for CYLIN alloc.
and VALIDATE

options for
validity

11

Is sum
> size

Y

Move correct
values to
DCINTBL

pg. 30

Y

Increment

DCTSIZE

IODEFRD

Pg. 2

pg-30

Figure 2-9.

Flow Diagram of UBCHAN (Cont.)

56

Pg. 7
(I10STDLB) IOSTDLBO

Set Flag Set Flag
Bit0=10 F v BitO=1

U

Set up
Flags

IODSTDLI

:STDLB (,), (),
$

**%*STDLB entry
table full

~

Get first
STCDOUT2 field () f X
Pg. 8 l
SIDLE)
. Or with $
:STDLB (, YYNDD) Flag **%*Syntax error
$
Y
Get Second
Field E@
G_) X
Return

Convert

YYNDD to Yo

YY and device|

addr,

oK

Store in
STDLCD1
TRYFORE

Pg. 8

Figure 2-9, Flow Diagram of UBCHAN (Cont.)

57

Pg. 8
TRYFORE

Search
OPLBTABI
For Oplabel

Was

it there
”

no

Store new
OPLABEL into
OPLBTAB1

Y

Put index in
OPLBTAB1
into STDLCD1

STCDOUT2

More Fields
?

IODEFRD

Pg. 2

1ODSTDL1
Pg. 7

Figure 2-9, Flow Diagram of UBCHAN (Cont.)

58

P2CCI Reads
EOF while
UBCHAN in

control

GNDCTCIT

Pg. 10

o ENDITALL

PSA
per defined

Pg. 9

No PSA
No | Per

Defined

Finish last
conirol entry

I E

Get Max pages
of work area

Allocate for
CLIST data

DCT, CITS

no

yes

Allocate space
for OPLBT1~4
(BPM)

OPLBT1 lS (UTS)

Allocate space for
TYPMNE, AVRTBL,
AVRID(UTS) RBLIM

Foregr?éxp& ?nfries

Enough room
?

DCT1PPTR=DCTLAST

DCTIPTR=DCTIAPTR| |

DCTIPPTR

CIT6PTR=CITLAST
CIT5PTR=CIT&PTR

Insufficient
Space

OUTOFIT
Pg. 27

Figure 2-9, Flow Diagram of UBCHAN (Cont,)

59

Pg. 10
GNDCTCIT

DCT index = 1
Increment type
index

GENEXT |

Get
DEVICD1
CIT index=1

GENCIT

Pg. 15

Increment CIT
index and get

Right
CHANTBL

entry 2 next entry

yes

Get
DEVCD1 Entry

1

Store NDD in
DCT1

R7=0
Used for DCT3
Bits 6-7

no DCT3GEN

Pg. 11 Pg. 11

Figure 2-9, Flow Diagram of UBCHAN (Cont.)

60

1 Tst ND of |

CHANTBL
=ND of
device

Store ndd
in DCTIP

Merge ND of
CHANTBL with
D of Device
store in DCT1A

R7 =3
(Bits 6-7 = 11)

Store NDD
Store NDD in R7 =0
| DCTI1A L (bits 6-7=00) Non
pooled device]
R7 =1
(Bits 6~7 = 01)
Non pooled
device
R7 =2
(Bits 6-7 = 10)
Non pooled
; device
R7=0
(Bits 6-7=00)
Non pooled
(" DCT3GEN ice

Pg. 11

Store R7 in
DCT3

(GENON)

Pg. 12

Figure 2-9,

61

Flow Diagram of UBCHAN (Cont.)

GENON

Store CIT index in
DCT2 - GET
TYPMNE Index.

Store X'ndd' in
COC, R3 for use
by P2COC.

)

»{ GENON2)

If 1st defined then
save DCT index as
LORBT index, save
also as possible
HIRBT index.

'

g%TePSU;grSE%[FSOf Significant entries
(only 2 for BPM) | — — — — only.m.range of
allocate area for RBT indices.
tables.

\
GENON2)

Store TYPMNE
index in DCT4.

default in Get flow
table ? default.

option on Get flow
comd. from DEVICD1.

Set asdefault (1/0)-

|

GENON3

Pg. 13

pg. 12

Figure 2-9. Flow Diagram of UBCHAN (cont.)

62

Pg. 13

Merge flow
code into

DCT3

option specifi
?

Store 1 in

DCT14

¥

Store UTS - TAB
YYNDD BPM-N/L For RBT UTS
> 1IYYNDD in — — — TAB *YYNDD

DCT16

Y

Store Handler
NAMET1 index
in DCT8

¥

Store Handler
NAME2 in
DCT9

Set up BATAPE,
NBATAPE

Increment DEVS,
R3 for DP, 7T, 9T

for overlays use

y

»{ SETDCTI '
Pg. 14

Figure 2-9, Flow Diagram of UBCHAN (Cont.)

63

CLIST
Size =6

SETDCT1

Get CLIST Size
from CLISTDAT

¥

*** Handler

Store CLIST
doubleword
address in DCT7

¥

list full

OUTOFIT
Pg. 27

Set up Special
CLIST (includes
Paper Width and
Size)

No room

Bump pointer
to CLISTs by
CLIST Size

For UTS stores
Width in
RBB:LPZ

device card

For Both if Full
Duplex X'8000'~ If
Half Duplex 01n
RB:FLAG

ENEXT <
o

Increment DCT

Index and
DEVICD1

Pg. 14

Move CP
| to CLIST to
CLIST area

Made addresses
in CLIST

Relative

Put paper size
and width in

| CLIST

Pg. 10

Figure 2-9,

Flow Diagram of UBCHAN (Cont.)

64

Pg. 15
(GENCIT }

Is

CHANTBL

entry dual
?

Set CIT3
Bit 4 =1

Set Up RBLIMS
DCTSIZE+] word 0O
DCTSIZE word 1

Set up RBLIMS
Low RBT index

word 0, High RBT
index word 1.

|

'

Get DCINTBL
Entry

.

Any
PSA on this
disc

HGPENSET

(SRCHNXT }

of disc info.
?

done with discs
?

OPLBTYPM

Get forward link
to next DCINTBL

Set up starting
DCINTBL to do

other disc HGP

y
(HGPENSET)

pg. 16

Figure 2-9. Flow Diagram of UBCHAN (cont.)

65

HGPENSET

Set up
Linking

left

For UTS Set up
DCT22 for
DISC TYPE

Put DCTX, NSPT
NSG and §§

in HGP

Make entry
in AVRTBL
¥

Set PUBLIC/
PRIVATE bit in
AVRTBL

Save # tapes in
AVRTBL

o~

Change to

| Number GRAN
CYLIN

Save NSPT for
check if last RAD
is 720X BTM

NOAVRENT
Pg. 17

Pg. 16

HGP
Table Full | OUTOFIT

Pg. 27

NOAVRENT

Pg. 17

Figure 2-9,

Flow Diagram of UBCHAN (Cont,)

NOAVRENT

FORMHGP

Pg. 17

Convert TRK/CYL Store in ABSFDUL,
2‘;* ?\IC;,TI.““X = to STD Disc ABSFDLL,
' Address. ABSFDC.
Convert TRK/CYL]
= ggt IL(;'LTIndex to STD Disc Store inBCHKLL,
, . i BCHKUL.

|

no
FORMHGP

(FORMHGP)

CNUTCYL

pack swapper

| Computations for

physical

cylinders.

Use 0 as PSA.

Pg. 33

Use # Tracks in PSA as mu
as PSA. of # physical
cylinders.

Return total 7 tracks

Itiple

Store in HGP.

Any SETGRANO # Granules and For UTS save #
PER/PFA Set up PFA map NSG for fracks PoATer swap
? Set up PER map. symbionts. ao’es=ir -
WD3 of HGP.
fio T

Getmapdisplace~
ments, add Bias.

Update table pointer,
Set Done flag.

{ SRCHNXT) pg. 15

Figure 2-9. Flow Diagram of UBCHAN (cont.)

67

OPLBTYPM Pg. 18
*** No disc
\ possible
Defined | BTM
o Swapper
Set
SWAPBTM

=1

Put zero link
in last HGP

——

Set Flag for
STDLB

OPLBTYP

Set OPLABEL
Index to one

GETOPLB

Get next
OPLABEL from
OPLBTAB1

Y

ere :STDLB
or :OSTDLB

CC's
?

DOSTAND

Pg. 19

CHKSTDL

'1

Pg. 19

Figure 2-9. Flow Diagram of UBCHAN (Cont,)

68

CHKSTDL Pg. 19

Search

STDLCDI1 for this
label with right
flag

yes

DOSTAND

(CHKASGN Search STANDARL

for this OPLABEL
Pg. 20
° with right flag

NXTOPLB

GETOPLB

?

| Set Flag
OPLBTYP — OSTDLB

Pg. 18

Figure 2-9. Flow Diagram of UBCHAN (Cont.)

69

CHKASGN

abel

assigned

OPLBNDD

Pg. 20

to device
?

Pg. 21

Label

Make assign

assigned | to DEVICE
to NO NO
2
Search
TYPMNE for
YY Assignment
FNDTYPMN
Label css'igned to
another label.
Search for it in
STDLCDI1
Make old
label's assign
new one's

Search standard
for new
label assignment

(NXTOPLB)

1 Pg. 19

***QPLB
equivalent
missing

no yes

A

Figure 2-9. Flow Diagram of UBCHAN (Cont.)

70

OPLBNDD

Put Op Label
in OPLBTI1

Pg. 21

. ';‘I:a.bel Set DCTX

: /Assigned toN - =Zero
?
no

‘Seurch DCT1 for

Device Address

[Unknown
Device XXNDD
for LL

NXTOPLB

: '

SETOPLBN

SETOPLBS

Pg. 22

Figure 2-9. Flow Diagram of UBCHAN (Cont.)

71

Flow = 1/O

SETOPLBN

Put DCTX in
OPLBT2 and
OPLBT3

tandard

Oplabel
?

yes

Get flow
from OPFLOWACT

|

\

Put flow
in OBLBT4

NXTOPLB
Pg. 19

SETOPLB5

J

Put OPLABEL
in OPLBT1

¥

Put DCTX in
OPLBT5

NXTOPLB)

Pg. 19

Pg. 22

Figure 2-9. Flow Diagram of UBCHAN (Cont.)

72

FNDTYPMN

Search DCT4

for this type

device

SETOPLB5

Put OPLABEL

in

OPLBT1

SETOPLBN

Pg. 22

OPLBENDX

Put no
in OPLBT1

¥
Merge X'CO"
in first byte of
DCT3

¥

Move TYPMNE,
ABSF, and BCHK

tables to working
area

Pg. 24

Pg. 23

*** no device
for TYPMNE YY
(OPLB=LL)

~-=Batch (STDLB

~~-on line

(OSTDLB)

Figure 2-9. Flow Diagram of UBCHAN (Cant.)

73

Pg. 24

Allocate area
for Control Task
Tempstack.

UTsS
? no

yes

Build UTS specific
tables in IOTABLE
(Swap Tables).

Allocate, Build
M:HGP Load

Module.

Set up REF/DEF
Stack to Write
M:HGP.

OPEN, WRITE,
CLOSE M:HGP
load module.

? no

yes

Squeeze HGPs (headt
ersonly) and Swap
tables into area wher¢
full HGPs were.

sfléret Tcrrlr::c;rgolr-ln Pfor
givendiscdevice or

0 if not disc.

Allocate space for
AVRID and

SOLICIT table.

(MAKBONDS

Make load module
end - Bound 8.

(LOADMODL) bg. 25

Figure 2-9. Flow Diagram of UBCHAN (cont.)

74

(_ LoabmonL)

Build HEAD and
TREE, initialize
REF/DEF and

expression stacks

¥

Set relocation
dictionary to
all X'E!

SETMODFY

no

DEF Names
and values

pg. 32

Done
?

yes
Y

GENEXP

Generate express.

and REFs for Hand~

fers

pg. 33

Finalize REF/DEF
and expression
stacks

{ RDICSETA)

pg. 26

Pg. 25

Figure 2-9. Flow Diagram of UBCHAN (Cont,)

75

RDICSETA Pg. 26
!

Put X'A'inRel.
Dict.for CLIST
Addrs. (DCT7)

RDICLIST
Make rel.dict.
hgs.for CP CLIST

1

Pg. 34

Make rel.dict.

changes for
HGPS.

Make IOCTQ
Relﬁcalsqble
In Rel. Dict. MODGEN

Gen.DEFs
for Swap
tables AVRID

ves SOLCIT,
AVRNOU

no 1

MQDGEN {

Gen. Remote
Batch Tables.

{

Write IOTABLE
to TM Device.

Move handler If inconsistency
names to working }~——go to
area from handler. OUTOFIT PS527

Add MAGTAPE tg
SPEC:HAND

Add DPSIO
| to

SPEC:HAND

Add TSIO to
SPEC:HAND

Figure 2-9. Flow Diagram of UBCHAN (cont.)

76

Restore current
character for
CC reads

and EOF Read
?

yes

| CLEARDYN

Release Dynamic
Data

EXIT
(to READOK)

Pg. 27

(outoFIT)

Error Abort
of
PASS2

Other messages
concerning
specific reason
for abort have
been printed

Figure 2-9. Flow Diagram of UBCHAN (cont.)

77

CHANNEL

Scan the rest
control

command

CHANENF——— | no

Put end DEVICD1
in previous
CHANTBL entry

' >y

Y
Adjust
CHANPTR
(+5)

Increment CHAN
counter Set new
CHANTBL entry
(start DEVICD1)

y
(EXIT)

Pg. 29

Pg. 28

CHANNG1

Set CHAN CC
Error Flag

no

Put end’
DEVICD]1 in

previous CHANTBL

entry

|

]

DVCYNXT

Pg. 4

Figure 2-9. Flow Diagram of UBCHAN (Cont.)

- 78

Pg. 29

oom le
for CHANTBL
entry

CHAN Table
Full CHANNG1

Get ND
Convert to

Binary |
_Y

Store in position
in WORDO of
CHANTBL

ND done
?

Increment

DUALFLG

Set Bit 0 of
WORD 0 to 1

HANENT
7 Pg. 28

Figure 2-9, Flow Diagram of UBCHAN (Cont.)

79

Pg. 30

(BPMCYL) (SIZECHK >

l

Save registers and
get NGC

from y
DEVICD entry Get
Option
Value
Disk Set NGC = 30 and
private | print message if not
? previously done
T [
Compare with
Remaining
WSIZE"
Set NGC = 30and
print message if not
previously done L ***Sum of PSA+
o —= PER+PFA+BCHK
_ﬂ> SIZE
yes
Is this Set NGC = 30and
device's NGC b print message if not
=30 no .
previously done
|
Subtract option Re lace.:}?ﬁon
: “value from ::m:ein?:l
devxc: 2NGC Ses ugIZE" "IN g

done \

Set NGC = 2 15 ,

and print message ‘_—’GNDRTN

if not previously (RETURN)
[

Restore

Registers

\?
RETURN

Figure 2-9. Flow Diagram of UBCHAN (cont.)

80

Pg. 31

SETGRANO

Get * of tracks
for this map and

Build # granules save .
32 words of -1 l
in HGP Get ¥ of

granules from
NSG and NSPT

as

there a Y
remainder Get ¥ Wds. in
this map

Build word of
(-1**(32-R)
at end of map

32 divide

' Granules =

yes

(RETURN)‘

Save
remainder

v

Set st track
into HGP -

i

Figure 2-9. Flow Diagram of UBCHAN (Cont)

81

GETMODFY

1

Store reiaﬁve
addr. In Load

modules into
MODIFY PLIST

EQUMODFY

r

Store name one
info MODIFY
PLIST

SETMODFY

}

Set up pointer
to load module
area

| MODIFY

Make adjustments
fo Load Module

(RETURN)

Pg. 32

(GENEXP

Get Handler
Index from
DCTS, 9

¥

Make address by
adding base

'

Put name into

MODIFY PLIST
for expression call

Y

Set up rest of
expression call
PLIST

SETMODFY

Make call to
MODIFY

)

< RETURN >

Figure 2-9. Flow Diagram of UBCHAN (cont.)

82

Save Registers

Valid for
Disk Type
?

Pg. 33

For 7242 Max ¥
| =X'3FC!,

For 7260/7265
= X'21C'

Tracks PSA
Tracks Physical
Cylinder.

Any

Remainder
?

FNHCYL)

Increment # phys.
cylins., compute
tracks of PSA based

on? phys. cylinders.

Round up
PSA tracks.

Decrement PFA
tracks by number
required for PSA.

If not enough
check PER and
use them.

Print message
indicating action
taken.

(FNHCYL)

Calculate ¥ gran-
ules per physical
cylinder, save for

later use.

Restore registers
restore # tracks of
PSA. May be ad-

justed value.

|
(o)

83

Figure 2-9. Flow Diagram of UBCHAN (cont.)

RDICLIST j

Set up MODIFY
PLIST for changes
to Relocation
Dictionary

Get first word
from CLIST area

|

Save and zero
bits 8-11

Use bits to set
PLIST to correct
Relocation value

v

Get next word
from CLIST

area

SETMODIFY

Make Relocation

D ictionary

change)
Pg. 32

RETURN

Figure 2-9,

Flow Diagram of UBCHAN (Cont.)

. 84

2.3 SDEVICE

2.3.1 Purpose
To process the PASS2 :SDEVICE command and generate the load module M:SDEV . This load module defines

the devices controlled by the symbionts,

2,3.2 Usage
B SDEVICE
With R7 pointing to the control card PLIST
RO pointing to the temp stack pointer
R3 pointing to PASS2 stack data
R3 and R7 are saved
Return is to SDVRETRN in P2CCI

Error return is to the Monitor.

2,3.3 Input
Control card (:SDEVICE) image

2.3.4 Output

Ré contains the number of symbiont devices defined on the :SDEVICE command
M:SDEV load module (Table 2-6)

85

98

Table 2-6, M:SDEV Load Module

Label Entry Size #gﬂg!h_ '
(Wds) N=7 Entries Contents or Yalue Target System
of OSSEG YYNDDs plus 2
SODV VALUE - for each remote batch device BOTH
SSTAT 1/4 N+3 0 BOTH
SRET 1 N+2 0 BOTH
SNDDX 1/4 N+3 Ist entry = N+2 BOTH
o | _Others = DCT1 Index BOTH o
ssiec | ya | ows [o | som
SCNTXT 1/2 N+3 0 BOTH
SQHD 1 1 0 BOTH]
SQTL 1 1 0 BOTH
SQUE 1/4 N+3 0 BOTH
SCDA 1 N+2 0 BPM/BTMonly
SSDA 1 N+2 0 BPM/BTM only
SYMX 1/4 N+3 See Insert BOTH

F#Entries includes devices defined on :SDEVICE command plus 2 entries for each Remote Batch device
(RBndd) defined via :DEVICE commands,

where

SYMX contains:

For UTS
Entry O

Entry 1 through N

Last entry-1
Last entry

nn

o

NWN—-O

if ISSEG
if OSSEG

For BPM/BTM

Entry O

Entry 1 through N
Last Entry - 1

Last Entry

REF ISSEG or OSSEG
REF SFSEG
REF OSSEG

alt entires for remote batch devices are set to 1 (UTS) or a REF to ISSEG (BPM/BTM)

2.3.5 Subroutines Used

CHARSCAN (Used to check a specific character for legal syntax)
NAMSCAN (Used to scan a field containing a name)
QUOTSCAN (Used to scan a field containing a keyword)
MODIFY (Used to generate M:SDEV load module)

PRINTMSG (display error information)

OUTLLERR }

2,3,6 Other External References
SDVRETRN = return point from SDEVICE processor.
SDVBEGIN base of work area in PASS2 stack
SDVEND - end of work area in PASS2 stack
DCTSIZE = length of DCT tables
DCTIPTR ~ pointer to DCT1 Table
DCT4PTR - pointer to DCT4 Table

TYPMNPNT =~ pointer to type mnemonic table

SDEVFLG - number of Symbiont devices (set by SDEVICE)

#RBTS - number of Remote batch devices defined via :DEVICE commands
LORBIN - DCTI index of the first Remote batch device defined

2,3.7 Description

The SDEVICE processor is entered when P2CCI encounters a :SDEVICE command which must have been preceeded
by valid :CHAN/:DEVICE commands, The work area available for generating M:SDEV is allocated by UBCHAN
and its boundaries are located in PASS2's temp stack and referenced by the labels SDVBEGIN and SDVEND,

SDEVICE first determines via fRBTS if any Rembot batch devices have been defined. If there are any on the target
system, LORBIN is used as an index into DCT1 table to obtain the connest X'ndd' which is merge { with 'RB' and
stored in the intermediate table with the symbiont name ISSEG, A count symbiont devices is incremented for

each entry,

The syntax for the :SDEVICE command is:
:SDEVICE (LMN, MANE, YYNDD, YYNDD...), (LMN,...)

SDEVICE begins processing a parenthetical expression by requiring the keyword "LMN". The name which follows
is that of a symbiont which controls the input or output of the device(s) identified by YYNDD. The symbiont names
are ISSEG (input) and OSSEG (output). The "NAME" is obtained and syntactically checked (1 to 7 alphanumeric
characters, one of which is alpha) and if legal, is saved in an intermediate table (See Table 2-7). The next field
"YYNDD" is obtained and is validated by checking certain tables in the work area built by UBCHAN. Note if
YY=RB, it is not processed as it is already in the table, The DCTI table (pointed to by DCT1PTR) is searched for
the value "NDD". If none is found, the "YYNDD" is invalid and SDEVICE skips to the closing parenthesis and
then continues processing. However, if found, the index to the value in DCT1 is used as an index to the DCT4
table (pointed to by DCT4 PTR) where a value is obtained which in turn is an index into TYPMNE (pointed to by
TYPMNPNT).

87

The value "YY" is then checked against the indexed value in the TYPMNE, If not equal, SDEVICE continues
the search of the DCT1 table for another "NDD" equivalent. If the "YY" val ue is found, the "YYNDD" is

saved in the intermediafe table and the number of entries in the table is incremented by one.

SDEVICE then obtains the next "YYNDD", If there is none, the current parenthetical field is ferminated and the
syntax scan begins with the next parenthetical field, If there is another "YYNDD" in the current field,
the "name" (ISSEG/OSSEG) is obtained from the previous "YYNDD" and is entered into the intermediate table,

Processing continues as previously described.

To complete processing SDEVICE, it sets up PLISTs and allocates and initializes the load module areas in the

working storage areqa, and proceeds to generate SECT, 00 using the information from the intermediate table and

DCTI, DCT4, and TYPMNE tables.

The tables generated for M:SDEV are listed in the OUTPUT section of this chapter, Note that in creating SNDDX,
the entries in the intermediate table are processed in the order of occurrence and, therefore, the SNDDX table

is ordered accordingly. As each entry is generated, a count of the number of "OSSEG" references is maintained.

The contents of the byte table SYMX depend on whether a BPM/BTM or UTS system is being generated. For
both the first and last two entries are null. For a UTS system, the entries are set fo 1 for an "ISSEG" name
and to 2 for an "OSSEG" name, and the first null entry at the end of the table is set to 3 and the second null
entry to 2. For a BPM/BTM system, the entries in SYMX are referenced by the REFs ISSEG and OSSEG as
encountered in the intermediate table, Therefore, the destination of each REF is a specific byte in SYMX
The first null entry at the end of the table is the destination for the REF SFSEG and the second null entry

for the REF OSSEG.

When the generation of the tables is completed, the load module M:SDEV is written, SDEVICE then puts the
number of symbionts in Register 6 and checks for error conditions having been detected (ABORTFLG # 0). If
errors have occurred, SDEVICE prints message and exits back to the monitor. If error-free, SDEVICE exits
back to SDVRETRN in P2CCI and PASS2 continues processing.

88

Table 2-7, INTERMEDIATE NAME TABLE

BA

RA

EA

LOW CORE
contains
DCT1,DCT4
TYPMNE
NO N A
C‘ C2 u
n n Cn 1
Y Y NDD SDEVICE
< Cy " " WORK
AREA
n n Cn
Y Y NDD
v V
| | \
HIGH CORE
where
N = number of entries in intermediate table (3 words/entry)
CI Cop . Cp = characters in name (i.e., ISSEG, OSSEG)
YY= EBCDIC "YY" from YYNDD value
ndd = hexadecimal equivalent of "NDD" from YYNDD value
BA = base address of work area pointed to by SDVBEGIN
EA = end address plus 1 work area pointed to by SDVEND
RA = base address of remainder of work area which is used in

generating M:SDEV and is forced to a doubleword boundary.

NO = number of OSSEG name references

89

2.3.8 SDEVICE Messages
INVALID SYMBIONT NAME

INVALID KEYWORD

SYNTAX ERROR

INVALID '"YYNDD'

NO ROOM LEFT FOR :SDEVICE

REMAINDER OF CC IGNORED

MODIFY ERROR

'SDEVICE' ABORTED

2.3.9 Internal Routines
SDEVICE

The "name" field is either non-alphanumeric or is
greater than seven characters long. SDEVICE skips

to end of parenthetical field and continues processing.
The keyword "LMN" is expected but not found.
SDEVICE skips to end of parenthetical field and
continues processing.

A open parenthesis, a closing parenthesis, a comma
after "LMN" or "name" is expected but not found;
end of command cannot be found;or a "YYNDD"

is encountered where YY = 9T, 7T, or DC and "DD"
is less than X'80' or YY is not equal to 9T, 7T, or DC
and "DD" is greater than or equal to X'80'. SDEVICE
skips to end of parenthetical field and continues
processing.

The "YYNDD" is not alphanumeric, is greater than
five characters long, is not defined in DCTI table, the
value "N" is not from A through H, or the value "DD"
is not hexadecimal, SDEVICE skips to end of
parenthetical field and continues processing.

There is no work area left for generating the
intermediate table. SDEVICE displays abort message
and exits back to the Monitor,

This message appears with previously described
messages if SDEVICE cannot find end of current
parenthetical field. SDEVICE continues by

attempting to generate load module.

There is not enough work area available to generate
load module. SDEVICE displays abort message and
exits back to the Monitor.

Message is displayed in previously described error

conditions,

Main entry, initialize and control.

90

SDEVICEO
SDEVO

WRTMSDEV

WRITEF

VALID

ROOM

DEFX

EXPRX

STADDR

STREGS
BUILDCDT

Process next parenthetical field.

Process next "YYNDD",

Load module generation completed, write it to
"M:SDEV" file.
Perform actual write of load module.

Register 1 = buffer address.

Register 2 = buffer size (bytes).

Register 3 = key address of load module record.

Check current "YYNDD" against available devices
as specified by DCT1PTR, DCT4PTR, and
TYPMNPNT and respective tables DCT1, DCT4,
and TYPMNE,
Register 1 = "YYNDD", with "NDD" converted
from EBCDIC to hexadecimal,
Check if any work area remains for intermediate table.
Register 5 = address of next available entry.
Register 6 = address of last available entry
plus one.
Set up DEF PLIST for MODIFY routine for generation
of an external definition,
Register 1 = address of NAME,.
Register 13 = VALUE2.
Set up EXPR PLIST for MODIFY routine for generation
of an external reference.
Register 1 = address of NAME,.
Register 13 = VALUE] .
Call MODIFY to perform the function DEF or EXPR.
Register 4 = address of PLIST needed by
Master PLIST,
Save contents of registers 12 through 14, and 1 through 4.
Set up Master PLIST with address supplied.
Register 13 = relative word address to be stored
in Master PLIST,
Register 12 = double word address to be stored in

Master PLIST,

91

Register 2 = half word address of Master PLIST entry
where final address is to be set.
Register 5 = word address of base of work area.
Special error routines include: ERR1, ERRCOMON, ERR1X, ERR2, ERR3, ERR3A,
ERRX, ERR4, ERR5, ERR6, ERR7, ERR8, ERRY,

ERRA1, ERRA11, ERRA2, ERRZZ, RECOVER, MODERR,
ERR12,

92

2,.3.10 Flow Chart

Gendo
NI

SDEVO

ENTER

Get work

area limits

From SDEVEND
& SDVBEGIN
in Temp Stack

merge 'RB' and
| add from connect
DCTI entry

New parenthetical
field, Get
keyword "LMN"

Store in
Interim Table

!

Get Name

Get previous

'

name & put in
Interim Table

Put name in

interim table

ore
Parenthetical

Fields
?

Get YYNDD &
convert "NDD" .
from EBCDIC to

Hexadecimal

Validate YYNDD Thru DCT1,
asvalid | | DCT4, & TYPMNE
Device Tables

Put YYNDD in

Interim Table

Y

Update "N*
counter in
interim table

v

SDEVICEO
Pg. 2

Figure 2-10. Flow Diagram of SDEVICE

93

Exit to

Monitor

Set up PLISTS &
allocate load modul
areas in work area

Initialize
work area

!

Generate
M:SDEV Load
Module

WRTMSDl;V

Write load module
to "M:SDEV" File

Pg. 2

Exit to
SDVRETRN

in P2CCI

Figure 2-10. Flow Diagram of SDEVICE (Cont.)

94

2.4 XMONITOR

2.4.1 Purpose

To process MONITOR or UTM PASS2 control commarids, creating the M:CPU and (For UTS) M:SYMB, and M:BIG?9
load modules, the MON::ORG object module, and an updated SPEC:HAND file if SIGY and or ANS specified on
the UTM command.

2.4.2 Usage
B MONITOR (MONITOR command)
B UBMONITOR (UTM command)
with: R7 pointing to control card PLIST
RO pointing to temp stack pointer
R3 pointing to PASS2 stack data
Ré containing the number of symbiont devices
(BPM/BTM only)
RO and R3 are saved
Return is to READSTRG in P2CCI

2.4.3 Input

Control card (:MONITOR or :UTM)

SDGANSG - to create SDGA value

#RBTS - number of remote batch devices defined via :DEVICE commands
LORBIN - DCT1 index of first remote batch device defined

#PRDP - number of private disc packs defined

DEVS - contains # private pack, #7 track and #9 track tapes

BIG9FLG - Set by XMONITOR for UTS systems if BIG? option specified

2.4.4 Output

M:CPU load module (Table 2-8)

MON:ORG object module - is of length 2*((ORG+1)/2) reserved words with the last one equated to MONORG

label. ORG is the keyword parameter on :UTM or :MONITOR

M:SYMB Module (Table 2-9) UTS only

SPEC:HAND file - If SIG? is present on :UTM command, the handler name S9TRAPS and 1 or if ANS is specified
on :UTM command the name ANSTP is added to the HANDLERS record of this file.

M:BIG9 module UTS only - contains an absolute DEF :9 only - This DEF is 1 if BIG? option specified on UTM

command, otherwise :9 =0.

95

Table 2-8. Contents of M:CPU Load Module

Entry
Label Size (words) Length Contents/Value (in terms of Keywords) Target System
1. Absolute DEFs
MAXBM Value - MPOOL-FMPOOL(if >0) BPM/BTM
MAXCFU Value - CFU BPM/BTM
MAXBKGDCFU [Value - CFU-FCFU (if > 0) BPM/BTM
MAXBQ Value - QUEUE - FQUEUE (if > 0) BPM/BTM
Value - QUEUE uTsS
SDGA Value - # Granules PER defined BOTH
CORE Value - CORE in words BOTH
BCRBID! Value - length in bytes of significant words BPM/BTM
of RBB'ID table
SSSIZE Value - Sector Size uTsS
SBSECTS Value - number of buffers/sector uTsS
SGSIZE Value - number of sectors/granule uTS
ANS Value - 1 if ANS specified UTS
0 if ANS not specified
LAVRFMT2 Value - number of entries in AVRFNMT table UTsS
LCLX Value - 0 if no Remote batch devices on system UTS
else is highest RBT DCT! index +1
RBLIMSZ' Value - number of RBTs defined uTS
RBLIMSIX]! Value - DCT1 index of first RBT defined uTS
2, Tables
TSTACK 1 TSTACK+2 Stack pointer followed by TSTACK BPM/BTM
words containing 0
ABSBASE 1 1 0 BPM/BTM
ABSEND 1 1 0 BPM/BTM ;
MPOOL] (34*MPOOL)+2 | For both systems, Ist word on DW uTS !
boundary contains address of Ist E
MPQOOL buffer (also starting on DW i
boundary) and the Ist word of each i
buffer contains address of next buffer or |
0 if last buffer
(34*MPOOL-2)+2 BPM/BTM
SPOOL 1 (256*SPOOL)+2 Same as MPOOL except for buffer size BPM/BTM
CPQOL 1 (40*CPOOL)+2 Same as MPOOL except for buffer size BOTH
CPOOLEND 1 1 represents address of end of CPOOL table | BOTH

1. Generated only if remote batch devices is defined for the Target System.
2, Generated only if ANS is specified.

96

Table 2-8. Contents of M:CPU Load Module (cont.)

Entry
Label Size (words) Length Contents/Value (in terms of Keywords) Target System
SYMFILE 1 SFIL+1 0 except first word contains SFIL BPM/BTM
SYMFSDA 1 SFIL+1 0 BPM/BTM
RBSYMFID 1/4 SFIL+1 0 BPM/BTM
10Q1 1/4 QUEUE+1 0 BOTH
10Q2) 1/4 QUEUE+1 each entry= (Byte displacement from BOTH
QFREE] I0Q2)+1 except last entry =0
10Q3 1/4 QUEUE+1 0 BOTH
10Q4 1/4 QUEUE+] 0 BOTH
10Q5 1/4 QUEUE+1 0 BOTH
10Q6 1 QUEUE+] 0 BOTH
10Q7 1/4 QUEUE+1 0 BOTH
10Q8 1 QUEUE‘H 0 BOTH
I0Q9 1/2 QUEUE+1 0 BOTH
10Q10 1/4 QUEUE+1 0 BOTH
10Q11 1/4 QUEUE+] 0 BOTH
10Q12 1 QUEUE+] 0 BOTH
I0Q13 2 QUEUE+1 0 BOTH
I0Q14 1/4 QUEUE+1 0 BOTH
10Q15 1/4 QUEUE+1 0 uTsS
ACNCFU 1 19 0 BOTH
FILCFU 1 19 0 BOTH
BGRCFU 1 19*(CFU-1) 0 BOTH
LASTCFU 1 19 0 BOTH
MPATCH 1 MPATCH O(if MPATCH > 0) starts on DW BOTH
boundary
JIT - 153 + CORE (in All 0 except word 71 contains $+4 BPM/BTM
8K units) words 72~73 - M:OC(TEXTC)
word 72 contains $+2 words 76-77
(M:OC DCBY) contains X'200003',
X60002' word 108 contains X'F0404040'
words 153 to END contain all 1 bits
MX:PPUT 1/4 or 1/2 CORE (in pages) The first 32 entries (8 or 16 words) uTS
+ 8 or 16 words overlay MPATCH or LASTCFU Re-
(overleid) maining bytes on halfwords are forward
linked same as IOQ2
RB:XFLG! 1 1 0 BOTH
RBB:ID 1 1 0 if no RBTs on system BOTH
1/4 highest RBT DCT1 Significant entries (containing 0) only BPM
index highest RBT | in the RBT DCTI index range (plus 1 uts
DCT1 index + for UTS)
WARBBID! 1 1 Address of table points to word con- BPM/BTM
taining first significant entry of RBB:ID

1. Generated only if remote batch devices defined on target system.

97

Table 2-8, Contentsof M:CPU Load Module

Entry
Label Size (words) Length Contents/Value (in terms of Keywords) Target System
RBD:WSNI 2 Highest RBT DCT1 Significent entries (containing 0) uTS
index only in the DCTI index range of RBTs
SITEID 2 2 name identified by SITE Keyword or UTS
blank
AVRFNMTZ 6 #tapes defined 0 uTS
on system
ANSFLGS2 1/4 #tapes defined on | 0 uTS
system
ANSPRT2 1 1 1 if ANSPROT 0 if keyword not UTS
specified
M:FPPH3 1 1 X'20" (first linked entry in MX:PPUT) | UTS
M:FPPT 1 1 CORE (in pages)-1
M:FPPC 1 1 CORE (in pages)-X'20"
BW:CHG 1 1 0 uTS
BL:IFS } i 1 (INFILE-1 uTS
BL:OFS 1 1 OUTFILE-1 UTS
LSERIAL 1/4 (((AVGSER*16) (Byte displacement from LSERIAL)+1 uTS
+3)/4)+17 except last entry =0
TSERIAL] ({((AVGSER*16) entry 0 = # entries in LSERIAL uTs
+3)/4)+17 all other entries =0
PARPSD4 1 1 DW boundary PARXXXX (PREF) UTsS
PARITYCC# 1 1 0 uTs
PARERPSD# 2 4 words 0-1 = 0 uTS
word 2 = PARITYER(PREF)
word 3 = X'17000000'
BUSER]O4 2 2 word 0 = X'00400000'+ BUSERT(PREF) uTsS
PSDTEMP4 2 2 0 uTs
BUSTEMP4 2 2 0 uTs
IETPSD# 2 2 word 0 = IETXXXX(PREF) UTS
word 1 =0
INSTXPSD4 2 4 words 0-1 = 0 uTS
word 2 = INSTXCPT (PREF)
word 3 = X'17000000"
MEMFTPSD#4 2 4 words 0-1 = 0 uTsS
word 2 = MEMFAULT (PREF)
word 3 = X'17000000'
PARXPSD4 2 2 word 0 = PARXX1 (PREF) UTS
word 1 = X'07000000"
1. Generated only if remote batch devices defined on target system
2, Generated only if ANS specified ANSPROT. Keyword ignored if ANS not specified also
3. These words are order dependent
4. Generated only if SIG? or BIG? option specified

98

Table 2-9. Contents of M:SYMB Load Module

Entry Size
Label (words) Length Contents/Value in terms of Keywords
1. Absolute DER
MFS Value - 2 +2 * #RBTs defined on system
OUTFIL Value - OUTFILE + MFS
INFIL Value - INFILE
1. Tables
BD:ACCT 2 INFIL+1 0
BW:RES 1 INFIL+1 0
BH:TIME 1/2 INFIL+1 0
BH:PART 1/4 INFIL+1 0
BH:SLNK 1/2 INFIL+1 0
BH:XLNK 1/2 INFIL+1 0
BH:HPRI]] 1/2 X'23' (HW) all entries 0 except X'22' = 1 X'23' = INFIL+1
BH:TPRI 1/2 X'23' (HW) all entries 0 except X'22' = INFIL X'23' = QUTFIL+INFIL
BW:SDA 1 INFIL+OUTFIL+] 0
BH:SID 1/2 INFIL+QUTFIL+1 0
BB:PI
ey | 1/4 INFIL+OUTFIL+1 0
BH:LINK 1/2 INFIL+OUTFIL+1 Entry 0=0
Entry 1 through INFIL -1 are (1+ displacement from
BH:LINK)
Entries INFIL + 1 through INFIL + QUTFIL -1 are (1+
displacement from BH:LINK)
Entries INFIL and INFIL + OUTFIL are O
BB:RID 1/4 INFIL+OUTFIL+1 0
S*H:LNK 1/2 (((INFIL*AV GSER) 0
+3)/4)+1
S#W:SER] ((INFIL*AVGSER)
+3)/4)+1
RB:SPMF 1 1 0 if no RBTs defined significant entries (contianing 0)
of RBTs + 1 in range of DCT1 index for first RBT through LCLX
RB:MFAD 1 1 0 if no RBTs defined significent entries (containing 0)
of RBTs + 1 in range of DCT1 index for first RBT through LCLX
RBB:MFC2 1/4 #RBTs+1 Significent entries (containing 0) only in range of
DCTI index for first RBT through LCLX
RBB:MXP2 1/4 #RBTs=1 Significent entries (containing 0) only in range of
DCT1 index for first RBT through LCLX
SYMND 1 address is that of test cell in M:SYMB

1. Tables are order dependent

2. Generated only if Remote batch devices defined for target system

99

2.4.5 Interaction
M:OPEN, M:READ, M:WRITE, M:CLOSE are used to write MON::ORG and to update SPEC:HAND,

SYNTAX is used to inferpret input control card.

COREALLOC is used to allocate memory for M:CPU and M:SYMB.

MODGEN is used to manipulate REFDEF stacks, EXPRESSION stacks, and RELOCATION DICTIONARIES.
WRITELM is used to write M:CPU,M:SYMB and M:BIG9.

READSTRG is exit location,

2,4.6 Data Bases

KWDTBLO is a two-part input table for SYNTAX. The first part is a set of SYNTAX control halfwords that
prints SYNTAX fo process the non-standard format of SITE option on the UTM command as well as
the standard format for the rest of the UTM options and all of the MONITOR standard options. The
second part of the table is the normal SYNTAX keyword table.

DYNAM is the MONITOR virgin stack data block. It contains entries for UTM~specific keywords,
but they are zeroed to cause SYNTAX to reject them.

UDYNAM is the UTM virgin stack data block containing one doubleword table pointer for the SITE option
in addition to the normal keyword entries. It causes SYNTAX to reject MONITOR-specific
keywords.

ORGROM is a MON::ORG module with ORG set to 0.

2.4.7 Subroutines
BUFGEN generates linked buffers (MPOOL, SPOOL, CPOOL). It is entered via a branch to BUFGEN
while under MODGEN control and exits by restoring R10 (MODGEN's controlling register).

2.4.8 Description

If entered at MONITOR and R6 (number of symbiont devices) is non-zero, the default values in DYNAM for SPOOL,
CPOOL, and TSTACK are adjusted appropriately. Then, or otherwise, SYNTAX is used to decode the control card.
COREALLOC is used to set up the M:CPU module in memory for generation and MODGEN interaction. The M:CPU
module is generated using MODGEN, checking where necessary to omit those items not belonging to the particular
target system being generated (See Table é-S). WRITELM creates the M:CPU file, If the BIG? option has been used,
XMONITOR sets BIGPFLG in the stack for subsequent use by the SPROCS and IMC overlays.

Thenthe ORG input value is inserted into ORGROM, the checksum is adjusted and ORGROM is written as the
MON::ORG file. Then if the target system is BPM/BTM, XMONITOR returns to P2CCI.

Otherwise, COREALLOC again sets up a module generation environment, and MODGEN is used to generate the
M:SYMB module which is then written by WRITELM. If the SIG9 (BIG9) and/or ANS opfions have been specified
the SPEC:HAND file is read into core and the names SPTRAPS and/or ANSTP are added to the HANDLERS record

of the file which is then written out to disc. COREALLOC is then used to allocate a module generation enviornment
in which only REFDEF entry space is defined and MODGEN is used to define the absolute DEF:9, which is equal to 1
if the BIG9 option has been used on the :UTM command. Otherwise,:9 is set equal to 0. WRITELM then writes the
load module M:BIG9 out to disc. XMONITOR then returns to P2CCI at READSTRG.

100

2.4.9 XMONITOR Messages
***TROUBLE WITH SPEC:HAND—
S9TRAPS AND/OR ANSTP NOT
INCLUDED

#+FQUEUE > = QUEUE - FQUEUE
IGNORED

***FEMPOOL > = MPOOL- FMPOOL
IGNORED

***ECFU > = CFU - BKGD HAS NO
CFU

***ANS NOT SPECIFIED-ANSPROT
IGNORED

***AVGSER OUT OF RANGE —
DEFAULT (1) USED

***B]G9 SPECIFIED — SIG9 ALSO
INCLUDED

101

In attempting to open SPEC:HAND file to add the name
S9TRAPS and/or ANSTP, an error or abnormal con-

dition was encountered, XMONITOR continues.

The value specified for FQUEUE is equal or greater than
specified for QUEUE. XMONITOR continues.

The value for FMPOOL is equal or greater than
that of MPOOL+ XMONITOR continues.

The value for FCFU was equal or greater than that

specified for CFU. XMONITOR continues.

The keyword ANSPORT was specified but not ANS,
XMONITOR continues.

The value specified for AVGSER is invalid and the
default is used. The legal range is 1 to 63 unless no
private packs are defined on the system in which

instance the minimum may be 0, XMONITOR continues.

The option BIG? has been specified but not SIG9.
SIGY is also included XMONITOR continues.

2.4.10 Flow Charts

Page 1

MONITOR UBMONITOR

Set flag for
MONITOR command Set flag for UTM
(=0) command (=1)

!

Adjust defaults for
symbionts if any

defined
y SYNTAX
Decode
command
~ N
Process ANS, SIG9,
4 | BIG? and AUGSER !
yes opfions
L no
y 4
‘ COREALLOC
Set up core for
M:CPU
MODGEN
yes Generate DEFs for
BPM/BTM TSTACK MAXBM
ABS

no

A

Generate DEFs for
MAXBQ MPOOLs

BUFGEN l

Generate buffers and
links for MPOOLS —__.®

pg.2

Figure 2-11. Flow Diagram of XMONITOR

102

Page 2

MODGEN

Generate DEFs for
symbionts and

BPM/BTM

SPOOLS
no
MODGEN
Generate DEFs
CPOOLS, I0QTables, |«
CFUs, MPATCH
MODGEN
Generate JIT and
BPM/BTM RBT tables if
required
no
MODGEN
Generate other UTS
tables, ANS tables
if required
MODGEN

Generate RBT
| tables

MODGEN

General single entry
RBT tables

MODGEN

Generate SIG?
tables and data
area

no

WRITELM

Write M:CPU load
module

o pg.3

Figure 2-11. Flow Diagram of XMONITOR (cont.)

103

Set up ORGROM

Write MON::ORG

BPM/BTM
?

no

Set up CORE for
M:SYMB

MODGEN

Generate M:SYMB
tables

Any RBTS
?

no
l MODGEN

Generate single entry
RBT tables

y WRITELM

Write M:SYMB load
module

pg.4

COREALLOC

MODGEN

Generate special
RBT tables

Page 3

Figure 2-11. Flow Diagram of XMONITOR (cont.)

Page 4

Update SPEC:HAND
file adding S9TRAPS

ANS Update SPEC:HAND
Keyword yes ~1 file adding ANSTP

no

COREALLOC

Allocate space
for M:BIG?

y MODGEN

Generate :9 DEF

WRITELM

Write M:BIG?

Clean up stack

EXIT

Figure 2-11. Flow Diagram of XMONITOR (cont.)

105

2,5 XLIMIT
2.5.1 Purpose
To process DLIMIT, BLIMIT, OLIMIT or ELIMIT PASS2 control commands, creating the M:DLIMIT, M:BLIMIT,

M:OLIMIT or M:ELIMIT load module.

2.5.2 Usage

B DLIMIT (DLIMIT command)

B UBBLIMIT (BLIMIT command)

B UBOLIMIT {OLIMIT command)

B UBELIMIT (ELIMIT command)
2.5.3 Input

Control card (:DLIMIT, :BLIMIT, :OLIMIT, or :ELIMIT) image.
2.5.4 Output
M:DLIMIT load module = BPM/BTM (Table 2~10)

M:OLIMIT/M:BLIMIT/M:ELIMIT load modules - UTS (Table 2-11)

Table 2-10, Contents of M:DLIMIT

Label Entry Size | Size Contents/Value (in terms of Keywords)
(Wds)
DLIMTBL —_ —_— Base address of M:DLIMIT
TIMELIM 1 16 TIME |
LOLIM 1 16 LO
POLIM 1 16 PO
DOLM 1 16 DO
UOLIM 1 16 uo .
SCTLIM 1 16 SCRATCH Default limit table,
FPOOLIM! 1 16 FPOOL indexed by priority
PSTLIM 1 16 PSTORE
TSTLIM 1 16 TSTORE
| 1PooLim? 1 16 IPOOLIM J
#1. Left half of each FPOOLIM entry contains buffer size (512 words)
#2. Left half of each IPOOLIM entry contains buffer size (256 words)

106

Table 2-11, Contents of M:OLIMIT/M:BLIMIT/M:ELIMIT

Labell ' Size Contents (in terms of Keywords)

SL:XTIME 1 TIMEZ*

SL:XLO 1 LO

SL:XPO 1 PO

SL:XDO 1 DO

SL:XUO 1 uo

SL:XTS 1 TAPES

SL:XFP3: 1 FPOOL

SL:XPS 1 PSTORE

SL:XTS 1 TSTORE

SL:X1P3- 1 IPOOL

sL:xc - 1 CORE

SL:XF3- 1 FILES

SL:XSP3. 1 SP

1. Xin label is replaced by 'O’ or 'B' or 'E' |
2. SL:OTIME is always zero. ‘
3. Not generated in M:ELIMIT |

2.5.5 Interaction
SYNTAX is used fo convert control card to stack data blocks,
COREALLOC is used to allocate dynamic data pages.
MODGEN is used fo generate DEFs,
WRITELM is used to write the output module.
READSTRG is exit location,

2,5.6 Data Bases

Initially:
UKWD and DKWD are overlapping keyword tables for SYNTAX, UKWD is used for BLIMIT and
OLIMIT and ELIMIT; DKWD for DLIMIT.

DSYS is the DLIMIT virgin stack data block for SYNTAX (containing default values).
OsYs is the OLIMIT virgin stack data block,
BSYS is the BLIMIT virgin stack data block,
ESYS is the ELIMIT virgin stack data block,

DNAMES, ONAMES, BNAMES and ENAMES are the portions of code (interlaced with TEXTCs) which are fed to
MODGEN to generate the corresponding load modules,

107

After SYNTAX:
Stack data block (now in the stack and pointed to by R5) for OLIMIT, BLIMIT and ELIMIT contains an image of

the output module data record.

For DLIMIT, R5 points to a number of data blocks equal to one more than the number of PRTY options
encountered in the :DLIMIT command. Each block contains a word for each kind of limit (UO, PO,

etc.), and a word for the PRTY value (priority). PRTY is a type 4 keyword with a default of -1, so

the first block has a PRTY value of =1 and positive values (either default or command - specified) for all
limits. Every other block has positive values only for those limits command - specified for the block's

PRTY value. If the PRTY value in the block is negative, it is less than =1 and indicates that the command -

specified value was too large or had been previously specified.

2.5.7 Description
Each entry point sets a flag (0, 1 or 2) in R4 and branches to LIMIT. LIMIT sets input pointers for SYNTAX and
BALs to it. Upon return, the values specified for SCRATCH and SP (UTS only) are examined to determine if they
are equal to or less than the total number of tapes units and private disc packs specified via :DEVICE commands.
If not, error routines are entered that change the value fo the maximum number specified and print an appropriate
message and return. For the :ELIMIT command, all parameters are checked to determine that no value specified
exceeds the maximum permissible value. Any error detected causes a message to be generated and the default
value substituted, A BAL to COREALLOC allocates core. The address of the proper name table (DNAMES,
ONAMES, BNAMES or ENAMES) is put in R10 and a branch to MODGEN generates the required DEFs. Then,
for BLIMIT OLIMIT and ELIMIT a branch to BUILD moves the stack data block to the output module data record
and drops into WRITE, which points R14 to the proper filename, BALs to WRITELM, cleans data block(s) out of the
stack, and exits to READSTRG, For DLIMIT, BUILD is replaced by a routine which moves values from the first
data block to the module data record for all priorities, and then for every other data block with non-negative PRTY
values, moves non-negative limit values to the data record only for that priority. Then, a branch to WRITE
finishes up and exifts.
**SCRATCH TAPES > TOTAL ON SYSTEM -- For the designated priority, the number of tapes specified
FXXXX*USED FOR XXXXXXXPRIORITY for SCRATCH exceeds the total numbers of tape drives
(9T and 7T) defined via :DEVICE commands, XLIMIT
substitutes the *XXXX* value and continues, (BPM/

BTM only)
**TAPES > TOTAL ON SYSTEM -- The number of Tapes/Disc Pack (SP) specified exceeds the
XXXX USED total number of tape drives (9T and 7T) disc packs defined
**DISC PACKS > TOTAL ON SYSTEM -- via :DEVICE commands. XLIMIT substifutes the *XXXX*
XXXX USED value and continues. (UTS only)
FXYUXXXXXXX INVALID— The parameter (XXXXXXXX) on the :ELIMIT canmand
XXXX USED . is in error and the value (XXXX) has been substituted

108

2.5.8 Flow Chart

ENTER
DLIMIT
UBBLIMIT
UBOLIMIT
UBELIMIT

Pg. 1

Set flag for DLIMIT R4 = 0
1 _ | UBBLIMITRA =1
type of entry UBOLIMIT R4 = 2
UBELIMIT R4 = 3

Y
Get Max Tapes
units and disk
packs specified via
:DEVICE Commandy

SYNTAX

\

Get :commands
in tabular form

‘ Validate
yes parameters
l no
Check SCRATCH ERRTAPES
against max Process error
tapes Error condition
: ¥ Pg. 3
Check SCRATCH
for each
priority
Check SP against ERRSP
Max private disk == Process
packs Error Condition | p 3
-y g.
COREALLOC
Get Dynamic
data pages
Pg. 2

Figure 2-12, Flow Diagram of XLIMIT

109

Pg. 2

Get table of DLIMIT - DNAMES
names to be - — — - BLIMIT - BNAMES
generated OLIMIT - ONAMES
ELIMIT - ENAMES
MODGEN
To generate
DEFs
l UTS BPM/BTM
Generate Table Generate
DEFs (1 word Table DEFs
each) (16 words each)
¥ ——— o
Store value Get priority
in Table from DYNAM

WRITELM

Write
Load Module

v

Clean up
Stack

EXIT

Store values from
| default DYNAM
in all priorities
of one table

Y

Search DYNAM fo
changed value

ables done

ables defaulted

?

value
changed

Store in table
L indexed by
priority

|

?

Pg. 2

Figure 2-12,

110

Flow Diagram of XLIMIT (Cont.)

ERRTAPES Pg. 3

it

Store Max

Convert value to
EBCDIC put in

error message

es Print
uts -7 Eeror RETURN

Message

no

Determine priority,
error occurred in
convert to EBCDIC
and print

(RETURN)

Convert value
to EBCDIC put
in error message

PRINT

RETURN

i

Figure 2-12. Flow Diagram of XLIMIT (Cont.)

111

2,6 ABS

2,6.1 Purpose
To process the PASS2 :ABS command and generate the load module M:ABS. This load module defines which
processor root segments are to be located in the absolute area on the system random access device for a

BPM/BTM target system only.

2,6.2 Usage
B ABS
With R7 pointing to the control card PLIST
RO pointing fo the temp stack pointer
R3 pointing to PASS2 stack data
R3 and R7 are saved
Return is to READSTRG in P2CCI

2,6.3 Input
Control card (:ABS) image

2.6.4 Output
M:ABS load module (Table 2-12)

Table 2-12, M:ABS Load Module

Label Size Contents or Value

ABSGOSZ Value DEF SIZE option on :ABS

ABSPROC 4*(number of :L file and names of
processorst1)+ processors specified

entries for names | and space for control
of processors in information,

TEXTC

112

2.6.5 Subroutines

CHARSCAN (used to check a specific character for legal syntax)
DECSCAN (used to scan a field containing a decimal value)
NAMSCAN (used to scan a field containing a name)
QUOTSCAN (used to scan a field containing a keyword)
MODIFY (used to generate the M:ABS load module)
PRINTMSG (display error information)

OUTLLERR }

2.6.6 Description
The ABS processor is entered when the PASS2 type is BPM (i.e., BPM/BTM target system) and :ABS is
encountered by P2CCI, When entered, ABS obtains and initializes four pages of core work area (Table

2-13) to be used in generating the M:ABS load module. The syntax for the :ABS control command is:

:ABS [rsize] [(processor[, S])] [, (processor |, S])] ..

The "size" field is obtained and identifies, in decimal, the number of words clesired>for the absolute
read/write scratch area on the system random access device for the target system. This scratch area will
be used by CCI, LOADER, LOCCT, PASS3 for transmitting the loader overlay control command tables
(LOCCTs) between processors in a BPM/BTM base system, This area is also usable by any other processor

or user if so desired. If the "size" parameter is null or less than 1024, the value 1024 is used.

ABS then obtains the parenthetical expression. If the processor "name" is syntactically legal (1-15
alphanumeric characters 1 of which must be alpha), it is checked to see if it has already been encountered
or is ":L", if so, it is ignored and ABS continues processing the command. If the name is unique, it is
entered into an intermediate table (Table 2-14) and the next field is scanned. If no character exists, then
ABS continues with the next parenthetical expression, If the field contains information, the contents is
checked for the letter "'S" and if it is not, it is assumed to be, Therefore, a flag is set in the intermediate

table indicating the presence of the "S" field. ABS then continues processing the command.

When this processing is completed ABS generates the M:ABS load module, The RELDICT.00 (Table 2-13)
is initialized to all Es, The contents of SECT, 00 (See Table 2-14) is complete once the syntax analysis

is accomplished. The intermediate table thus generated becomes SECT,00. The ABS processor continues
by generating an external definition (ABSPROC) defining the base address of SECT.00. The value obtained
from the "size" option is used fo generate the value DEF ABSGOSZ,

When completed, the generated load module (M:ABS) is written and ABS releases its work area and temp
stack area and returns to P2CCI at READSTRG.

13

Table 2-13 ABS Work Area

Low Core

SECT.00
(Intermediate Table)

A

RELDICT, 00
1/8 Size of SECT, 00 /\
4 Pages

1/2 of Remaining Work Area 9,
=l ©
é £
EXPRSTK g ;‘5

1/2 of Remaining Work Area *

High Core

Table 2=-14. ABSPROC Table

Word 0

O A W N

nl
n2
n3
n4

02 : | L -—

00 00 00 00 -

00 00 00 00 3 £

00 o | oo 00 =

o0 |1]oo] of 00 0 00

#c < C2 I i A

v v

—— Cn S l —-—= £

PO SECTODA i

P1 SECTIDA I

SECTOSZ SECTISZ

p2 sl o | STRTAD .y
VAN
2

Table values set by ABS processor:

where
#C
e ©2

=number of characters (Cn) in name (TEXTC type name).

(oo C

= characters in name,

114

procedure

2,6.7 ABS Messages
":L" NAME ILLEGAL OR NAME
ALREADY DEFINED

NO PAGES AVAILABLE

'ABS' ABORTED

(" EXPECTED BUT NOT FOUND

NO FIELDS ON CC

115

S=1 Save load modules of "name" after it has been made absolute, (i.e.,
the parenthetical field on the ABS command specified "S").
$S=0 Release load module of "name" after it has been made absolute unless

it contains an overlay structure.
L=1 Last item in ABSPROC table,
L=0 Not last item in ABSPROC table.

Table values not set by ABS processor but eventually set by the bootsirap

PO =page address of SECT, 00 (protection type 0) when loaded into core,

P1 =page address of SECT. 01 (protection type 1) when loaded into core.

P2 =page address of SECT, 10 (brotection type 2) which indicates the page
address plus one of the end of SECT,01.

SECTODA =disc address of the SECT,00 information,

SECTIDA =disc address of the SECT.01 information,

SECTO0SZ =size of SECT.00 (words).

SECT1SZ =size of SECT.01 (words).

STRTAD =start address of the absolute processor.

T =0 absolute processor contains a task control block (TCB).

T = 1 absolute processor does not contain a task control block (TCB).

A field has specified a processor name which is either
":L" or has already been specified, The ABS
processor skips to next field and continues
processing,

Not enough core availabe for work area. The abort
message is displayed and the ABS processor returns
to the Monitor,

Displayed in conjunction with other catastrophic
error messages. ABS returns to the Monitor.

A parenthetical field is expected but not found.
Also could imply no absolute processors are desired.
ABS continues by generating the load module
"M:ABS",

For information purposes only. Implies no size field
was specified, ABS continues by displaying " ('
EXPECTED BUT NOT FOUND" message.

INVALID PROCESSOR NAME

'S' EXPECTED BUT NOT FOUND

**15' ASSUMED

' EXPECTED BUT NOT FOUND

SYNTAX ERROR

PROCESSOR NAME > 11
CHARACTERS

INVALID SIZE OR SIZE MISSING,
DEFAULT TAKEN

LOAD MODULE GEN.

The processor name is not alphanumeric. ABS

skips to next field and continues processing.

This message appears if there is a field specification
following the processor name which should be the
key value "S", but instead is an unknown character
string. The value "S" is assumed and ABS continues.
The syntax requires a ")", and the character found is
unknown, ABS continues to next parenthetical field.
A terminator is encountered and is unknown or
misplaced. ABS continues to next parenthetical
field.

Self-explanatory ABS continues to next

parenthetical field.

The size option is either <1024 or is not specified .
The value 1024 is used and ABS continues.

The number of processor names specified causes the

UNSUCCESSFUL intermediate table to overflow the available work
area. ABS displays abort messages and returns to
the Monitor.

2.6.8 Internal Routines
ABS main entry, initializer and controls

Register 3 = address in PASS2 temp stack of information,

Register 7 = address in PASS2 temp stack of PLISTs for processing

control command,

ABSO process next parenthetical field.

CHEKNAME check processor name against previous names., Name cannot be defined

more than once and cannot be ":L",

Register 1 = length of new name,

Register 15 = address of new name,

Register 6 = address of end of absolute processor name table,

FINDEOC search for end of control command,
FINDRPAR search for ")" and start processing with next "(",
ABSOUT Control command processing finished, now generate "M:ABS" load module.

Register 6 = address of next available entry in work area.

Register 9 = base address of work area,
WRITE Write load module to "M:ABS" file,
Register 12 = buffer address.

Register 13 = buffer size (bytes).

Register 14 = key address (load module elements key).

DECCNV convert decimal size to hexadecimal equivalent,
Input: Register 2 = number of characters,
Register 1 = address of character string.
Output: Register 3 = converted value,
CC1 = 0 = converted value,

CC1 =1 = conversion cannot be completed.

117

2.6.9 Flow Chart

ABSO

ABSO

es

Set size to
default
(1024)

Y

ENTER

Get 4
pages work
area
[7 o
Initialize Put default
work area L — ":L" entry
| into interim I
Lfable |
Y
Get Size
field

no

Convert size
fo
hexadecimal

y

Y

Get processor

name from
next field
Y
":L name Put name in
illegal or name interim
already table
defined"
Find end
1 of field
Set to next Set S=1
interim < in interim
entry table entry
yes /’N no
more field ABSOU

?
Pg. 2

Figure 2-13. Flow Diagram of ABS

118

Pg. 2

ABSOUT

Set L=1 in
last interim
table entry

Initialize temp

stack & PLISTS

Allocate
work area
& initialize

enerate
M:ABS load
odule-

|

Write load
module to

"M:ABS" file
¥

Release work
area & Temp
Stack

EXIT

Figure 2-13. Flow Diagram of ABS (Cont.)

119

2.7 BTM

2.7.1 Purpose

To process BTM P ASS2 control command, creating M:BTM load module for BTM systems, and to include the
name BTMSTAT in SPEC:HAND if the BTM performance monitor routine is to be included in the target

system,

2.7.2 Usage

B BTM with RO = temp stack pointer
R3 = PASS2 stack data pointer
R7 = control card PLIST
Return is to READSTRG with RO and R3 intact.

2,7.3 Input

:BTM control command image

2,7.4 Output
M:BTM load module (Table 2-15).

Table 2=15, M:BTM Load Module Contents

Label Entry Length Contents or value (in terms
Size (Wds) of BTM Keyword values)

NUMUSERS Value - NUMUSERS
USERSIZE Value - USERSIZE
NUMSYSTS Value - NUMSYSTS
BPMQTM Value - BPMQTM/2

(i.e., converted to clock

ticks)
BTMQTM Value - BTMQTM/2

(i.e., converted to clock ticks)
BTMQTM2 Value - BTMQTM2,/2

(i.e., converted to clock ticks)
IBUFSIZE Value - IBUFSIZE
OBUFSIZE Value - OBUFSIZE
COCIINT1 Value - IINT
COCIGRP1 Value - Interrupt group of IINT
COCIIBT1 Value - Write direct bit setting for IINT
COCOINTI Value - OINT
COCOGRP1 Value - Interrupt group of OINT

120

Table 2-15. M:BTM Load Module Contents (Cont,)

, Label Entry Length Contents or Value (in terms of
Size (Wds) BTM Keyword values)
COCORBITI E Value - Write direct bit setting for OINT ‘
CLK3INT ! Value - BTMINIT ‘
BTMGL " Value - Interrupt group for BTMINIT
BTMIBIT Value - Write directbit setting for BTMINIT -
BTMPM Value - =0 if BTMPM Keyword not present
: =1 if BTMPM Keyword present
USERPGS! . Value - # of pages computed from USERSIZE
+1
PMNQINTS! | Value - 26
© pMmiIsc! Value - 58
| ACTFLAG 1/4 NUMUSERS 0
ACTPASSD 1/4 NUMUSERS 0
ACTTYPE 1/4 NUMUSERS 0
TTYFLAG 1/4 NUMUSERS 0
- INCOUNT 1/4 NUMUSERS 0
i OUTCOUNT 1/4 NUMUSERS 0
LITNEXT 1/4 NUMUSERS 0
" RDROFF 1/4 NUMUSERS 0
ITABPSN 1/4 NUMUSERS 0
OTABPSN 1/4 NUMUSERS 0
INBUF 1/4 NUMUSERS* 0
IBUFSIZE
. OUTBUF 1/4 NUMUSERS* 0
OBUFSIZE
COCBUF1 1/2 NUMUSERS*2 0
] +2
INPNTI 1 NUMUSERS 0
INPNTR 1 NUMUSERS 0
INBFEND 1 NUMUSERS+1 0
OUTPNTI 1 NUMUSERS 0
| OUTPNTR 1 NUMUSERS 0
OUTBFEND 1 NUMUSERS+1 0
TABSTOPS 2 NUMUSERS X'FF000000', X'00000000'
ACTCOND 1/4 NUMUSERS 0
HASITBYT 1/4 NUMUSERS 0
00s1Z 1/4 NUMUSERS*2 X'or
01s1Z 1/4 NUMUSERS*2 0
DYPG 1/4 “{ NUMUSERS*2 0
UNUSD 1/4 NUMUSERS*2 0
1. If BTMPM=1

121

Table 2-15, M:BTM Load Module Contents (Cont.)
Label Entry Length Contents or Value (in terms of
Size (Wds) BTM Keyword values),

COMPG 1/4 NUMUSERS*2 |0
PROGLEVL 1/4 NUMUSERS 0
BREAKC 1/4 NUMUSERS 0
USRTABLE 1 NUMUSERS 0
LOG NAME 2 NUMUSERS 0
PSDLEVOP 2 NUMUSERS 0
PSDLEVOC 2 NUMUSERS 0
PSDLEVIP 2 NUMUSERS 0
PSDLEVIC 2 NUMUSERS 0
PSDLEV2P 2 NUMUSERS 0
PSDLEV2C 2 NUMUSERS 0
RESTCMND 2 " NUMSYSTEMS+8 | See Insert Following
CMNDOBEY 1 NUMSYSTEMS+8 [* » »
COMMANDS 1/2 NUMSYSTEMS+8 [* * »
SYSBEG 1/2 NUMSYSTEMS [0
SYSCOUNT 1/4 NUMSYSTEMS [0
SYSTABLE 1 NUMSYSTEMS |0
SWPLST 2 120 if SWAPPER |0

= 720X

15 if SWAPPER=

7232/7212/7242

(Swapping device

passed from

UBCHAN)
QrREQ’ 1 PMNQINTS (26) |0
RSPFR ! 1 PMNQINTS (26) |0
DATPGS4! 1 USERPGS 0
QUANTBGN! 1 NUMUSERS 0
PPPGS! | USERPGS 0
LASTIM' 1 NUMUSERS 0
QTMSAV !] NUMUSERS 0
SUBSQTM! 1 NUMSYSTEMS |0
SUBSTSK | 1 'NUMSYSTEMS |0
SUBSESQ' 2 NUMSYSTEMS |0
PMREQS' 2 PMMISC (58) 0

1. If BTMPM=1

122

Insert ¢
RESTCMND = contents

First N entries (Doubleword) where N=NUMSYSTS are 0.

Last eight entries (Doubleword) in TEXTC format are
SIGN
E
SSAGE
OCEED
STORE
VE
BS
EKATMEM

COMMANDS = contents

First N entries (halfword) where N=NUMSYSTS are 0.

Last eight entries (halfword) in TEXTC format are
AS
BY
ME
PR
RE
SA
TA
PE

CMNDOBEY - contents

First N entries (word) where N=NUMSYSTS are
X'68000000"' + STSUBSYS (REFed)

Last eight entries (word) are
X'68000000+STASSIGN (REFed)
X'68000000"+STEXIT (REFed)
X'68000000'+STMESS (REFed)
X'68000000+STPROCED (REFed)
X'68000000+RESTEXC (REFed)
X'68000000*+SAVEXC (REFed)
X'68000000'+TABEXC (REFed)
X'68000000'+STLOOK (REFed)

SPEC:HAND Data File
If BTMPM=1

Then BTMSTAT name is added to SPEC:HAND data file so that PASS3 will include the module
in the HANDLERS file in M:MON.,

123

2,7.5 Interaction
SYNTAX to convert command to stack data block
COREALLOC to allocate dynamic memory
MODGEN to generate DEFs, REFs
WRITELM to write M:BTM load module

2,7.6 Data Bases

KWD is the Keyword table for SYNTAX

DYNAM is the virgin stack data block for SYNTAX, containing the defaults for each Keyword,

CMNTBLI is the table used in generating the COMMANDS entry in M:BTM,

CMNTBL2 is the table used in generating the RESTCMND entry in M:BTM,

RANGE is the table used to verify that the values specified with the Keywords are within a valid range.
This is required as the defaults are greater than the minimum permissible values and SYNTAX
cannot do both limit checking and default setting under these conditions,

VALERR - a table of error message addresses and default values used in conjunction with RANGE, The

index value of the parameter in RANGE isused to obtain the appropriate default and error

message.

2,7.7 Description

After determination of the type of swapping device to be used on the target system, a BAL to SYNTAX puts
command information and defaults (except for USERSIZE) from DYNAM into the stack, pointed to by R5

and returns. The parameter USERSIZE is defaulted if the Keyword has not been specified, All parameters are
then checked against the permissible values in RANGE, If any is out of range an error routine is entered that
stores the appropriate default in the stack and prints a message indicating the parameter in error and the value

used and then returns.

Upon completion of this checking, a BAL to COREALLOC causes memory to be allocated, A BAL to
MODGEN begins the generation of the value DEFs, followed by the location DEFs and where applicable the
REFs, The value DEFs and location DEFs for the BTM Performance Monitor are by-passed if the module is not

to be included in the target system,

Upon completion of this generation, a BAL to WRITELM causes M:BTM load module to be written. Then, if the
BTM Performance Monitor is required, the SPEC:HAND data file is read info that area of core previously
occupied by the Data Base which is no longer needed. The name BTMSTAT is added to the file, and the
number of entries in SPEC:HAND incremented by 1. Then the file is written and closed, Any difficulty
encountered causes BTMSTAT not to be included and an error message is printed indicating this has

occurred,

The stack generated by SYNTAX is then cleaned up and BTM exits to READSTRG in P2CCI,

124

2,7.8 BTM Messages

***TROUBLE WITH SPEC:HAND=-
BTMSTAT NOT INCLUDED

***NUMUSERS ERROR - DEFAULT (8) USED
***JSERSIZE ERROR ~ DEFAULT (16384) USED
***NUMSYSTS ERROR - DEFAULT (12) USED
***BPMQTM ERROR - DEFAULT (200) USED
***BTMQTM ERROR - DEFAULT (800) USED
***BTMQTM2 ERROR - DEFAULT (800) USED
***]BUFSIZE ERROR - DEFAULT (100) USED
***OBUFSIZE ERROR ~ DEFAULT (100) USED
***[INT ERROR - DEFAULT (60) USED

***OINT ERROR ~ DEFAULT (61) USED
***BTMINIT ERROR - DEFAULT (5A) USED

125

In attempting to open the file SPEC:HAND

to add the name of the file BTMSTAT an error
or abnormal condition was encountered. BTM
continues,

The values used for the specified parameter

is in error, The given default is used.

BTM continues.

2,7.9 Flow Chart

ENTER Pg. 1

Determine

Swapping Device

SYNTAX

CC in tabular
form

¥

Default if |
necessary |
USERSIZE

ERROR

| R1=Index value

of parameter in
error

Pg. 2

¢alues checked

C ALLOC

Get dynamic
memory
allocated

L MODGEN
Generate
value DEFs
location DEFs
REFs

Figure 2-14, Flow Diagram of BTM

126

Pg. 2

ERROR

WRITFLM Access ERRMSG
) _ name and
Write default using
M:BTM ; index parameter
o _l in error

Y
Store default in
appropriate position
in stack table

BTMPM
Specified

f/ SPEC:HAND

,/
f /

" Add
Name ;

rite
SPEC:HAND

\
EXIT)

Figure 2-14, Flow Diagram of BTM (Cont.)

127

2,8 P2COC

2,8.1 Purpose
To process the :COC PASS2 control command generating the M:COC load module and updating the
SPEC:HAND file to include requested translate tables.

2.8.2 Usage
B cocC
With: R7 pointing fo control card PLIST
RO pointing to temp stack pointer
R3 pointing to PASS2 stack data
RO and R3 saved
Return is to READSTRG in P2CCI.

2,8.3 Input
Control card (:COC) »
COCS - the relative address in PASS2 Stack where a halfword table of COC device addresses begins if any

have been defined via :DEVICE commands,

2.8.4 Output
SPEC:HAND
The names of any standard requested translate tables are added,

M:COC (Table 2-16).

128

Table 2-16. Contents of M:COC

Label Entr Length Contents/Value (In terms of Keywords)
Size (Wds)
LCOC Value - Number of COC-1
COD:LPC 2 - CoC Ist entry word 0=0, word 1=LINES-1 for each
subsequent entry. Word 0=1 more than previous
{ entry's word 1. Word 1=LINES-1 (for the cor~
responding COC) added to previous entry's
! word 1
CO:IND 10 | (COC)-6 First entry-4 words only 0,0 COCIP (PREF),
@ X'10000000'. Al other entries - 10 words 0, 0,
$+2, X'11000000', STW, 5 $+5 LI, 5 COCO
Interrupt mask bit WD, 5 X'1700'+COCO group
level LW, 5 $+2 LPSD, 11 $+8 DATA 0
Note: Each entry is pointed to by CO:XPSDI
Out Interrupt 6 cocC Each 6 word entry is
(no name) 0,0 $+2, X'170000NO’ where N is the
entry number
LI, 3 N-1
B COCOP (PREF) 1st entry only all
other entries here branch to this
location
Note: Each entry is pointed to by CO:OUT
and CO:XPSDO
I/O Command | 4 coC Each entry has /O command
(no name) Read; DATA CHAIN into RING buffer,
4* RING bytes; TIC DA($-2),0
Note: Each entry pointed to by CO:CMND
COH:DN 1/2 cocC DEVICE address
COH:II 1/2 cocC INput interrupt address
COH:ILI 1/2 cocC INput interrupt level bit
CO:WDAEI 1 coc Each entry = WD, 5 X'1200+IN level group
COH:IO 1/2 cocC OUTput interrupt address
COH:ILO 1/2 cocC OUTput interrupt level bit
CO:WDAEO 1 cocC Each entry=WD, 5 X'1200'+ QUT level group
CO:STAT 1 cocC WD, 0 X'3ONO')
CO: OUTRS 1 cocC RD, 7 X'3ONO’
CO:RCVON 1 ' COC WD, 7 X'3ONT' _
‘ where n=
CO:RCVDOFF 1 © CoC WD, 7 X'3ON3' index in table
CO:TRNDOFF 1 cocC WD, 7 X'3ON7'
CO:XDATA 1 ' cocC WD, 6 X'30N5"
CO:XSTOP 1 . coc WD, 7 X'3ONE")

129

Table 2-16, Contents of M:COC (Cont.)

Label Entry Length Contents/Value (In terms of Keywords)
Size (Wds)

CORINGE 1 cocC Each eniry contains word address of end
of RING buffer

CO:LST 1 CoC Each entry= 4*RING | buffer size

CO:0UT 1 CcoC Each entry= word address of OUT interrupt

routine
CO:CMND 1 coc Each entry= Doubleword address of 1/O
command

CO:XPsSDI 1 coC Each entry= XPSD,8 CO:INO entry

CO:XPSDO 1 cocC Each entry= XPSD, 8 Out interrupt routine

COB:RBS 1/4 cocC Each entry=4*RING _ buffer size

LNOL Valuve - Total LINES for all COCs

COCOoC 1/4 LNOL 0

LB:UN 1/4 LNOL 0

RSZ 1/4 LNOL 0

MODE2 1/4 LNOL For 2741 model type entry = X'30'
For other model . types entry=X'20'

MODE 1/4 LNOL For 2741 model type entry = X'08'
For other model types entry=X'88'

COCTERM 1/4 LNOL For 2741 model type entry =0
For other model types = 3

MODE3 1/4 LNOL 0

ARSZ 1/4 LNOL 0

CPOS 1/4 LNOL 1

CP1 1/4 LNOL 0

BUFCNT 1/4 LNOL 0

TL 1/2 LNOL X'8000"

COCOI 1/2 LNOL 0

COCOR 1/2 LNOL 0

CcocCll 1/2 LNOL 0

COCRR 1/2 LNOL 0

EOMTIME 1/2 LNOL 0

COD:HWL 2 cocC For each doubleword entry — given the
total # of lines defined in a COC, right-
justified, those lines that are HARDWIREd
have the corresponding bit set. All other
bits are 0. Ex total lines =8,
HARDWIRE = 0, 1, 2

Entry = 00000000, 000000EQ
Ring buffers Each buffer has all bits set and is RING
(no name) words long.

130

Table 2-16. Contents of M:COC (Cont,)

Label Entry Length Contents/Value (In terms of Keywords)
Size (Wds)
COCBUF 4 Each buffer’s first word has the word

displacement of the next from COCBUF
except the last, which has O,

COCNSB Value - number of 4 word buffers
HRBA Value - displacement of the last buffer from COCBUF
COCHPB 1 1 4 (head of buffer pool)

2.8.5 Interaction

M:OPEN, MRREAD, M:WRITE, M:CLOSE are used to update SPEC:HAND
SYNTAX is used to decode the control command.

COREALLOC is used to allocate dynamic memory

MODGEN is used to generate M:COC

WRITELM is used to write M:COC

2.8.6 Data Bases
KWDTBL is the Keyword table for SYNTAX
DYNAM is the virgin stack data block

2.8.7 Subroutines
ERRLIST outputs an error message after inserting the COC number into it, (BAL,R11 with COC number in R15,
message address in R14),
WDLG returns in R12 an interrupt group number, in R13 the interrupt level bit for the interrupt at the
address in R12 on entry. (BAL,R14)
COCGEN s similar to MODGEN in that if interpretively executes code, but its link register is R11,
All MODGEN-type code encountered is skipped except relocation dictionary changes, for
which MODGEN is used to effect the changes.

2.8.8 Description

SYNTAX decodes the control card, producing a number of stack data blocks equal to the requested number of
COGs. P2COC first checks that IN and OUT have been specified for every COC and that every IN is less than
the corresponding OUT, and that no IN or OUT is the same as any other IN or OUT. If not, P2COC returns.

All the LINES options are added up, all BUFFERS options are added, and all RING, BUFFERS, and LINES options
are validated,

All DEVICE options are checked for presence and correspondence with some :DEVICE MENDD (from COCS).

131

Then if translate tables were requested, the SPEC:HAND file is updated appropriately, The total size of
the data record is calculated and COREALLOC is called to set it up.

Then MODGEN is entered and the value DEF for LCOC and all tables of COC length are generated. The
same code (from LGEN to LINETBLS) is then executed under the control of the COCGEN routine, This

causes changes fo be made to the relocation dictionary but bypasses the generation of the DEFs, The

different link register also allows selective branches to take place. When the COC tables are completed,
MODGEN is reentered to generate the line tables. WRITELM then creates the M:COC file and P2COC

exits fo READSTRG.
2.8.9 P2COC Messages

***COCX -~ INTERRUPT LEVEL CONFLICT -
COC ABORTED

***COCX == LINES > 64 - DEFAULT TAKEN

***COCX -~ WARNING: BUFFERS < 3XLINES

***COCX -- RING INADEQUATE -
DEFAULT TAKEN

***COCX -~ DEVICE OPTION MISSING -
COC ABORTED

***COCX -~ DEVICE NOT DEFINED -
COC ABORTED

132

The IN, or OUT parameter for COCX were
in conflict with either previously defined
levels or IN was greater than OUT or IN
or OUT was undefined. P2COC restores
the temp stack and exits,

Greater than 64 LINES were specified per
COC device. P2COC defaults the value
and continues,

The value specified for BUFFER was less
than 3 lines the number of LINES specified.
P2COC issues this warning and continues.
The value specified for RING was too small
for the number of LINES specified. P2COC
defaults the value (2 bytes / line for the first
30 lines and 1 byte/line above 30, divided
by 4) and continues,

For the given COC, no DEVICE was
specified. P2COC restores the temp stack
and exits,

For the given COC, the DEVICE option
specifies a device (NDD) that was not
defined via :DEVICE commands. P2COC

restores the temp stack and exits,

2,8.10 Flow Chart

ENTER

SYNTAX

Decode
Control
Command

Pg.

]
Check interrupts

for all COCs Bad

Print Error
Message

@

Good

Pg. 3

ine
ecified and

valid
?

Yes

Default and
print error
message if too
many

Add to total
lines

.
uffers
pecified and

valid

Default if not
specified, print
warning message

if <3 X lines
|

~Ring ™

s

specified o}d‘\ .
valid _"No
? 7

Default and print
error message

J

Print error

ed. e
> No message
N Yes
p . Print error
defined via] essage
:DEVICE C No essag

Figure 2-15,

133

Flow Diagram of P2COC

° Pg. 2

Collezt XLATE
table flags

Pg. 1

Update
SPEC:HAND
File
|
Calculate
module size
'l' COREALLOC
Set up core
to generate
loadmodule
y MODGEN
Generate first
COC tables
Under control
LOEN_y of MODGEN
In interrupt RTN, [———— using WDLG
out interrupt RTN, ng
1/O Command
and other tables WDLG
- — — —{ Calculate
group levelbit
> ‘l of interrupt
COCGEN
Generate Tables
for next COC
Pg. 4
No Yes
Pg. 3

Figure 2-15. Flow Diagram of P2COC (Cont.)

134

INETBLS)

MODGEN

Generate

Line Tables

X
Store values in
MODE, MODE2
COCTERM Tables

G enerate
More line
Tables

¥
Form COD:HWL
table = bit=1 if
corresponding line] ™
is HARDWIREd

} MODGEN
Generate ring
buffers and links
in COCBUF

¢ WRITELM

WRITE
M:COC load

Module

Restore Stack

EXIT

v MODGEN

Pg. 3

Shifted right
to reflect

| total # lines

defined

Figure 2-15, Flow Diagram of P2COC (Cont.)

135

Pg. 4

R11 = address of
location to
be processed

Execute instruc,
increment
R11

Increment R11 _@

beyond TEXTC
word(s)
Set up dictionary
modification
y MODGEN
Modify reloc.
dictionary
Increment
RTY Exit from COCGEN

is effected by cod
it executes,

Figure 2-15. Flow Diagram of P2COC (Cont.)

136

2.9 IMC

2.9.1 Purpose
To generate the M:IMC SYSGEN load module for UTS systems only.

2.9.2 Usage
B IMC with RO = temp stack pointer
R3 = PASS2 stack data pointer
R7 = Control card PLIST pointer
Return is to READSTRG in P2CCI with RO and R3 intact.

2.9.3 Input
:IMC control command image.

BIGYFLG flag set by XMONITOR if target system > 128K (i.e., BIG? option specified, see 2.4.8).

2.9.4 Output
M:IMC load module (Table 2-17)

Table 2-17, M:IMC Load Module Contents

Label Entry] Length Contents/Value (in terms of IMC
Size (wds) Keyword values)

SMUIS Value - MAXG+MAXB+MAXOL-1

MING Value - 4

MAXG Velue - MAXG

SMBUIS Value - MAXB

SL:THRS Value - THRESHOLD

SL:BKUP Value - 1 if BACKUPALL specified
0 if not

SL:EX Value - EXPIRE (converted to hours)

SL:MEX Value - MAXEXPIRE (converted to hours)

S:GUAIS 1 1 MAXG

S:BUAIS 1 1 MAXB

SL:TB 1 1 BLOCK

SL:UB 1 1 UNBLOCK

SL:QUAN 1 1 QUANTA /2

SL:QMIN 1 1 MINQUAN /2

SL:SQUAN 1 1 MINTIME/2

SL:BB 1 1 PERCENT

SL:1O0C 1 1 IOCORE

SL:IOPC 1 1 TIOPASSCOUNT

137

Table 2-17. M:IMC Load Module Contents (Cont,)

Label

§n_tr_y l Length
Size (wds)

Contents/Value (in terms of IMC
Keyword values)

SL:OLTO
SL:OITO
S:QUAIS
SL:PI
SL:9T

SL:7T

SL:SP

SL:C

SL: ONCB

SL:CORE
SL:OXMF

1

1
1
1

N o —

LOGTIME

INTIME

MAXOL

P1

Word 0 = T9TAPE
1=0
2 = B9TAPE
3=0
4 = 09TAPE
5=0
6=0

Word 0 = T7TAPE
1=0
2 = B7TAPE
3=0
4 = O7TAPE
5=0
6=0

Word 0 = TDISC
1=0
2=BDIC
3=0
4 = ODISC
5=0
6=0

Word 0 = X'7FFFFFFF'
1=0
2 =TBCORE
3=0
4 =TOCORE
5=0
6=X'C!

COCBUF

138

Table 2-17. M:IMC Load Module Contents (Cont.)

Label Entry l Length
Size (wds)
SL:BXMF 1 1
SL:OIMF 1 1
SL:BIMF 1 1
U:MISC 1 SMUIS+]
UH:FLG 1/2 SMUIS+
UH:JIT 1/2 SMUIS+
UH:AJIT 1/2 SMUIS+
UH:FLG2 1/2 SMUIS+
UH:TS 1/2 SMUIS+I
U:Jt! 1/4 SMUIS+1
or 1/2

UB:PCT 1/4 SMUIS+
UB:SWAPI 1/4 SMUIS+
UB:MF 1/4 SMUIS+
UB:US 1/4 SMUIS+
UB:FL 1/4 SMUIS+1
UB:BL 1/4 SMUIS+
UB:APR 1/4 SMUIS+I
UB:APO 1/4 SMUIS+1
UB:ASP 1/4 SMUIS+
UB:ACP 1/4 SMUIS+
UB:DB 1/4 SMUIS+
UB:OV 1/4 SMUIS+
s:uCyt? 1 1
uUB:C#2 1/4 SMUIS+1

Contents/Value (in terms of IMC
Keyword values)

©O O O © © O O W w o

0
0
0
0
Beginning with UB:FL+MING entry each
byte has 1+ its byte index from UB:FL
except the last, which is 0

Beginning with UB:BL+MIG+1 entry, each
byte has -1 +its byte index from UB:BL

o O © o O o

UCYL

Entry 0=0

Entry 1 = highest PSA cylin, #

Entry 2=0

Entry 3 = highest PSA cylin. # - UCYL
Entry 4 to MING = UCYL less than

preceding entry

]Enfry size is 1/2 word when target system > 128K on Sigma 9. Otherwise, entry size is
1/4 word. Determining factor is BIG? option on UTM command (see 2. 4).

2Generuted only for no-RAD target systems.

139

Table 2-17. M:IMC Load Module Contents (Cont.)

Label Entry I Length Contents/Value (in terms of IMC
Size (wds) Keyword values)
S:GJOBTBL 2 MAXG+5 Entry 0=0

Entry 1= KEYIN (TEXTC)
2 = ALLOCAT (TEXTC)
3 = RBBAT (TEXTC)
4= GHOSTI (TEXTC)

5=MAXG =0
SB:GJOBUN 1/4 MAXG+5 0
2.9.5 Interaction
SYNTAX to convert command tfo stack data block.
COREALLOC to allocate dynamic memory.
MODGEN to generate DEFs,
WRITELM to write output module,
READSTRG EXIT
2,9.6 Data Bases
KWDTBL is the keyword table for SYNTAX.
DYNAM is the virgin stack data block for SYNTAX, containing default or limits for each keyword.

2,9.7 Description
Upon entry, the total number of DP, 7T, and 9T units defined via :DEVICE is obtained (DEVS, R3) and the

defaults for total, batch and on line values are computed and stored in DYNAM,

A BAL to SYNTAX puts command information and defaults from DYNAM into the stack, pointed to by RS, If
the option UCYL has been used and the target system is not a no-RAD system, the option is ignored and an
error message produced. If the opfion is used for a no~RAD system, then it must be 1 or 2 or the default 1 is
used and an error message generated. If the command specified UNBLOCK greater than BLOCK, BLOCK is
used. QUANTA and MINQUAN are converted from milliseconds to clock pulses,

MINTIME is converted from milliseconds to clock pulses and compared to the QUANTA value, If MINTIME
is less than QUANTA, an error message is produced and the value set equal to QUANTA, MAXG value is
compared with 3 and if less, is defaulted to 8 and produces an error message. If MAXG+MAXB+MAXOL is

greater than 255, a message is generated indicating IMC processing has been terminated and control returned
to P2CCI.

COCBUF value is then compared with 255 and if greater is set to 255 and an error message is generated. The
values for EXPIRE and MAXEXPIRE are converted to hours and compared (EXPIRE must be < MAXEXPIRE) unless
-1 specified indicating never for expiration or retention period. The values specified for DP, 7T, and 9T in
terms of total, batch and online are compared with the total defined via :DEVICE commands. Should any
value exceed the total, an appropriate message is produced indicating the parameter in error and the value

to be used. Then, COREALLOC is used to allocate memory. A BAL to MODGEN begins generation of DEFs

140

after the data have been moved from the stack to the data record. A short loop to generate UB:BL and UB:FL
exits from MODGEN with its BDRs, so another BAL to MODGEN is necessary to finish generating DEFs. Then,
a BAL to WRITELM writes the output module and IMC exits to READSTRG in P2CCI.

2.9.8 IMC Messages
***NBLOCK > BLOCK - SET EQUAL TO BLOCK)
***MINTIME > QUANTA -~ QUANTA VALUE USED
**%| OGTIME OUT OF RANGE -- DEFAULT (3) USED
***INTIME OUT OF RANGE -- DEFAULT (15) USED
***EXPIRE OR MAXEXPIRE OUT OF RANGE -~

999 DAYS, 23 HOURS USED

***JCYL VALUE INVALID -- DEFAULT (1) USED)

The value used for the specified
parameter is in error. The
designated value is used. IMC

continues,

***MAXEXPIRE < EXPIRE -- EXPIRE VALUE USED) The value used for the specified

***COC BUFFERS > 255 -~ 255 USED \ parameter is in error. The
***MAXG < 3 -- DEFAULT (8) USED designated value is used. IMC
***MAXG > 255 -~ DEFAULT (8) USED) continues,

*rt X XXXONLINE EXCEEDS TOTAL ON SYSTEM -- W The 9T, 7T or disc pack value for online

batch or fotal parameter exceeds the

*XXXX*USED

#xXXXXBATCH EXCEEDS TOTAL ON SYSTEM ~- total number of device units specified
OOKRUSED | via :DEVICE commands. The *XXXX*

*xeX XXXTOTAL EXCEEDS TOTAL ON SYSTEM -- value is used. IMC continues.
FXXXX*USED The sum of MAXG + MAXOL+MAXB

exceeds 255, IMC restores the temp
y stack and exits to READSTRG in P2CCI,

***SERS > 255 - IMC ABORTED

UCYL has been specified for a target

system in which the PSA is not defined

***SWAPPER NOT DP -- UCYL IGNORED on a disc pack. IMC ignores the option

J and continues processing.

141

2.9.9 Flow Chart

ENTER

Obtain-total ;
DP,7T, 9T defined

commands

via :DEVICE]r_-

From DEVS,R3

Y

Compute defaults Total=Total defined
for total, batch |-— Batch=Total -1
online or0
Online=1 _____|
SYNTAX
GET :IMC
options in
tabular form
no
Error Set
message default
Set default
produce error
message
i
Set default
produce error i
message
1
Set Unblock =
Block
Produce error

mescie

Convert QUANTA
and MINQUAN
to clock pulses

Pg. 2

Pg. 1

Figure 2-16. Flow Diagram of IMC

142

Pg. 2

MINTIME
specified
?

yes

Convert to clock |
pulses and
store in fable

Produce error Default

message »| MINTIME to

QUANTA
I
Set default and
produce error
message
T
|Produce error
MAXOL+ * message
MAXB < 255 :
P — I bg. 4
yes
OCBUF Set default
< 255 \‘*—-—y produce error
T2 / no message
\ées |
e
Expire
=-1 yes
~?

{no

Convert value
to hours

mEXPIRE\
- -] yes
Pg. 3

Pg. 3

Figure 2-16. Flow Diagram of IMC (Cont.)

143

Pg. 3
Convert value
to hours

Set MAXEXPIRE
to EXPIRE
produce error
message |
Defaulf = CONVERT Produce
total on system Convert value L] error

for message

message
Pg. 4 l
Default= CONVERT |
total =1 or || convert value Produce
0 for message error message
Pg.4
- [_CORVERT
Default =1 Convert Produce
—} value for error message
message \
Pg. 4 i

DP,7T,9T
all checked

no

yes
COREALLOC

Get core
allocated for
load module

—

Move data
to SECT 0

area

MODGEN

Generate
DEFs, REFs

Pg. 4

Figure 2-16, Flow Diagram of IMC (Cont.)

144

Pg. 4
WRITELM

WRITE
M:IMC
Load Module

=

Restore stack

EXIT

CONVERT
_/

!

Convert value
inD1 from
hex to
EBCDIC

Y

L RETLRN)

Figure 2-16. Flow Diagram of IMC (Cont.)

145

2.10 SPROCS

2,10.1 Purpose
To process SPROCS PASS2 control commands, creating the M:SPROCS load module for UTS systems only.

2.10.2 Usage
B SPROCS
with: R7 pointing to control card PLIST
RO pointing fo temp stack pointer
RO and R3 saved
Return is to READSTRG in P2CCI.

2.10.3 Input

Control card (:SPROCS)

TREEOO is the word in the TREE built by COREALLOC containing the size and address of the SECT 00.
BIG9FLG flag set by XMONITOR if target system >128K (i.e., BIG? option specified; see 2.4.8).

2.10.4 Output
M:SPROCS module (Table 2-18).

Table 2-18. M:SPROCS Load Module Contents

Label Entry Length Contents/Value
Size
(Wds)

PPROCS Valve - =1+ # of Monitor overlays required
(UTM Keyword and defaults) +

#of shared processors required
(NAMES + defaulth MOSPACE+
PSPACE+POSPACE+number of
processors overlays required

(decimal optionstdefaults)

MAXOVLY Value - 1+ # of Monitor overlays +
MOSPACE+first processor index
PTEL Value - Index of TEL (first defavlt processor)
(PTEL=MAXOVLY)
PCCI Valve | = Index of CCI (second default processor)
PDEL Value - Index of DELTA (seventh default
processor)

146

Table 2-18. M:SPROCS Load Module Contents (cont.)

Label Entry Length Contents/Value
Size —_—
(Wrds)

BGNPMPRC Value - PDEL-1

ENDPMPRC Value - 10

PNAMEND Valuve - PPROCS less processor overlays and POSPACE

SPSIZE Value - Second PSPACE option. This value, in NO-RAD
systems must be < # of granules per physical
cylinder or the latter value is substituted.

P:NAME 2 PPROCS First doubleword=0. Others = TEXTC names for
monitor overlays, MOSPACE entries with TEXTC
M:DUMLM, TEXTC names for shared processors,
PSPACE entries with TEXTC M:DUMLM, and the
rest =0. Names are ordered with defaults first.

P:NAMEND 1 1 Is the address of last non zero entry+2 (i.e.,
address of 1st zero entry).

NXTPOVLY 1 1 0

PH:PDA 1/2 PPROCS 0

PB:LNK 1/4 PPROCS 0

PX:HPP' 1V4or 1/2 | PPROCS 0

px:TPP' 1/4or 1/2 | PPROCS 0

PB:PSZ 1/4 PPROCS 0

PB:REP 1/4 PPROCS 0

PB:UC 1/4 PPROCS 0

PB:PVA 1/4 PPROCS 0

pp.C#'" 1/4 PPROCS 0

pp:DCH'" 1/4 PPROCS 0

P:SA 1 PNAMEND Bits 8 to 31 of each word = 0.

Bits 0 - 7 represent the flag options associated
with the processor whose name is in the corre-
sponding entry in P:NAME. Monitor overlays
and M:DUMLM have zero flags

Bit 0 = J flag

Bit 1 =S flag

Bit 2 = D flag (implies S)

tEnfry size is 1/2 word when target system > 128K on Sigma 9. Otherwise, entry size is 1/4 word.
Determining factor is BIG9 keyword on :UTM command (see 2.4).

M hese tables are generated only for NO-RAD systems.

147

Table 2-18. M:SPROCS Load Module Contents (cont.)

Label Entry Length Contents/Valuve
Size
(Wrds)
Bit 3 = P flag (implies S)
Bit 4 = M flag
Bit 5=T flag
Bit 6 =B flag
Bit 7 = G flag
Bits 5,6,7 = C flag
P:AC 2 PNAMEND First entry = X'7FFFFFFF', -1; other entry =0
P.TCB 1 PNAMEND 0
PH:DDA 1/2 PNAMEND 0
PB:DSZ 1/4 PNAMEND 0
PB:DCBSZ 1/4 PNAMEND 0
PB:HVA 1/4 PNAMEND 0
PBT:LOCK Bits PNAMEND 0

: 2,10.5 Interaction

COREALLOC
 SYNTAX
' MODGEN
- WRITELM
READSTRG

2.10.6 Data Bases
KWDTBLO

DYNAM

FLGS
FLAGS
STDOLY
STDPROC

is used to set up memory for load module generation
is used to decode the control command
is used to generate DEFs

is used to write the M:SPROCS module

is exit location

is a two part input table for SYNTAX, The first part is aset of SYNTAX control halfwords
that permits SYNTAX to process the non~standard format of the :SPROCS card (see
SYNTAX Chapter 6.8), The second part is a normal SYNTAX Keyword table,

is the virgin stack data block for SYNTAX, containing two doubleword table

pointers and four normal keyword entries.

is a byte table of valid flag characters

is a word table corresponding.to FLGS containing an internal representation of each flag.
is a two=word-entry table of default monitor overlay names in TEXTC form,

is a two=plus-n-word=-entry table of default processor names. Each entry has the

name in TEXTC format in the first two words, followed variously by any number of words
containing either a binary number (indicating .a number of overlays) or up to four TEXT

flag characters (left-adjusted, blank-filled).

148

2.10.7 Subroutine

SQUEEZE moves a string of words in memory from one location (starting at the address in R2) to another
(starting at the address in R12), As each word in moved, its old location is zeroed and
R2 and R12 are incremented. If a single zero word is encountered, it is not moved (R2 is
incremented, but R12 is not). When two consecutive zero words are encountered,
SQUEEZE returns *R11 with R2 pointing to the first zero word, R12 pointing to where it

was moved to, and R13 zero.

2.10.8 Description

SPROCS begins, unconventionally, by using COREALLOC to obtain some work space, 400 words are

reserved for REFDEF stack and EXPRESSION stack, and the remainder of available core for the data record

and its relocation dictionary. Then preparation is made to use SYNTAX to decode the control command.

The data record (from TREEQOO is divided in half. The end address of each half is put in the table upper

limit word of the corresponding table pointer in DYNAM, STDOLY is moved to the first half, and the

address of the word after the last word moved is put in the table pointer in DYNAM, STDPROC is

moved to the second half, and its table pointer set up similarly. Then SYNTAX decodes the card image.

The result in memory is the same as before except that more entries may have been added to the two tables

and the table pointers updated accordingly (now in the copy of DYNAM in the stack). New entries are

in the same format as the default entries (see DATA BASES). (Section 2.10.6) If a no=RAD system is being generated,
SPROCS, upon return from SYNTAX, validates the second value specified on the PSPACE option. This value repre-
senting the size reserved for one space processor, must be less than or equal to the number of granules per physical
cylinder on the disc pack containing the PSA area. See 2.2.7 for definition of this number. Should the PSPACE
value be invalid, the previously computed number is substituted and an error message produced. The term S:CYLSZ
in the message refers to this completed value. SPROCS then adds MOSPACE M:DUMLM entries to the first table.
The SQUEEZE subroutine is used to attach the second table to the end of the first one and remove any extraneous
zero words from it. If SQUEEZE did not reach the end of the second table (because of two consecutive zero words
in the middle of it) it is reentered at the skip-zero~words point until it finishes the table. Then PSPACE M:DUMLM

entries are appended to the end of the (now only one) table. The table now contains no zero words.

Every word in the table is one of four types:
1. First word of a TEXTC name (byte 0 between 1 and 7).
2. Second word of a TEXTC name (follows first word always).
3. Binary number representing number of overlays (byte 0 =0).

4. Flag word in TEXT form (byte O greater than 7).

The name count is now initialized to one, the overlay count to POSPACE and the NAME loop is entered.

NAME looks ot all but type 2 words in the table, Name count is incremented for each type 1 word. The

next word (type 2} is skipped and an internal flag word is initialized to zero. Words are then examined

until the next type 1 is encountered. Type 3 words are added to the overlay count. Each byte of a type word is
converted via FLGS and FLAGS to an internal representation and OR'ed into the internal flag word (R15)

unless it is not valid or is P when the name is not :PO through :P9, in which case it is ignored with an
explanatory message. If the P flag is validly encountered, the name (previous type 1 and 2 words) is changed
from :Pn to :Pnn. The internal flag word is stored in the word following the previous type 2 word. When

the next type 1 word or zero is encountered, SQUEEZE is called to slide it and what follows down to the

149

internal flag word, unless no flags were encountered, in which case the SQUEEZE is to the type 2 word.

When NAME is finished with the table, it consists of only two~ or three~word entries. The first two words are
TEXTC name, and the third, if it exists, is a flag word, in internal form. Name count has PNAMEND in it, and
overlay count has PPROCS-PNAMEND. At this point MODGEN is entered and the tables P:NAME through P:SA
are DEF'ed. The entry size of two tables, PX:HPP and PX:TPP depends on whether or not the BIG? option was
specified on the :UTM command. This information is passed via a DEF'ed location in P2CCI stack. If BIG9 has
been specified, the entry size is 1/2 word, otherwise, these tables have byte size entries. Tables, PB:C# and
PB:DC¥ are only generated if the target system is to be of the NO-RAD type. Now that the core location of P:SA
is determined, the flag words are converted to P:SA form and put in corresponding entries to P:SA. As they are
moved, SQUEEZE squeezes them out of P:NAME, resulfing in a doubleword table of TEXTC names. There can

be no overlays of the end of the two or three word entry and P:SA because there are at least 4 byte tables between
P:NAME and P:SA.

Then the rest of the module is generated, WRITELM writes it to the M:SPROCS file, and SPROCS exits.

2,10.9 SPROCS Messages

***INSUFFICIENT SPACE -- SPROCS ABORTED There is insufficient room in the table area for pro-
cessor overlays. SPROCS restores the tempstack and
exits,

***[LEGAL FLAG f FOR XXXXXXXX - The flag "f" isnotan S, J, P, D, M, T, B, GorC

FLAG IGNORED or is a P when XXXXXXXX is not Pi. Only "f" is

ignored, even when it occurs in a multiflag option
field. SPROCS continues.

**%*PSPACE SIZE >S:CYLSZ--S:CYLSZ USED For a no-RAD target system, the second value on
the PSPACE option is not < to the number of granules
per physical cylinder (S:CYLSZ) for the disc pack on
which the PSA area has been defined. SPROCS sub-

stitutes the correct value and continues.

150

2.10,10 Flow Charts

ENTER

y COREALLOC

Get work

area

Y

Divide data record
area for overlay
table and PROC
table

Store upper limits
of overlay +
PROC tables in

[DYNAM

Move defaults

(STDPROC and i

STDOLY) to table

and set pointers

to end ‘
‘t SYNTAX

Decode contro

command

¥
For each MOSPACE
value store

M:DUMLM' in
@,rloygb_le at end

SQUEEZE]

Move PROCS table
to end of overlay
table delete zeros

]

Pg. 3

For each PSPACE

value store

PROCS table

'M:DUMLM' in ‘

NAME *

Pg. 2

Figure 2=17, Flow Diagram of SPROCS

151

Check locations
in table

Pg. 2

!

Entry is name
skip second

Entry is not name=
reduce to max of
one word

word
r

!

Entry is flag
validate flags
store in next location

|

yes
MODGEN

Generate
P:NAME to
P:SA

Y

Check for flags
in fable-store
flags in P:SA

SQUEEZE P:NAME now
If flag found doubleword
remove it from tables
P:NAME table

Pg. 3
A ODGEN
Generate
remaining
tables
‘ WRITE
Write Restore stack
M:SPROCS ——»‘ EXIT)

152

Figure 2-17. Flow Diagram of SPROCS (Cont,)

Pg. 3

SQUEEZE

R2 =
~| Starting Addr.

/\
Next value
also=0 RETURN
2 yes

no

Move to new
location
(R12 address)

Increment i
destination
address (R12)

y
Increment
starting
address (R2)

|

Figure 2=17, Flow Diagram of SPROCS (Cont.)

153

2,11 FRGD

2,11.1 Purpose

To process the :FRGD and :INTLB commands and to generate the load module M:FRGD which defines the

foreground characteristics for BPM/BTM systems only.

2.11.2 Usage
B FRGD
With R7 pointing to the control card PLIST
RO pointing to the temp stack pointer
R3 pointing to the PASS2 stack data
Return is to READSTRG (if :INTLB was processed)
READOK (if no :INTLB encountered)
R3 and R7 are equivalent to that upon entry.

2,11,3 Input
Control Cards (:FRGD and optional :INTLB) images

2,11,4 Output
M:FRGD load module (Table 2-19),

N. B:

The column entitled "Internal Control" refers to the FRGD processor internal control routine that generates

the tables or values and apply to all subsequent tables up to the next entry in the column,

Table 2-19, M:FRGD Load Module Contents

Label _Egn_fﬂ Length Contents or Value Internal Control
ize (Wrds)

NFRGD Value - NFRGD DNFRGD
FPDESIZE Value - 12 "
FPDTLINK Value - 0 "
FPDTCF Value - 1 "
FPDTNAME Value - 2 "
FPDTP1 Value - 4 "
BAFPDTP1 Value - 16 "
FPDTSA Valve - "
FPDTP2 Value - 5 "

154

Table 2-19. M:FRGD Load Module Contents {cont.)

Label _E{rm Length Contents or Value Internal Control
ize (Wrds)
BAFPDTP2 Value - 20 DNFRGD
FPDTTCB Value - "
FPDTTF Value - "
BAFPDTTF Value - 24 "
FPDTTA Value - "
FPDTDAI Value - 7 "
FPDTDA2 Value - "
FPDTCSSO Value - 9 "
FPDTCSS1 Value - 10 "
FPDTCSS2 Value - 11 "
FPDTH1 1 1 Address of FPDT "
FPDTH2 1 1 0 "
FPDTT 1 1 0 "
FPDTIAC 1] 0 "
FPDT 12 NFRGD 1st word=FLINK to next entry "
other words = 0
FPDTEND 1 1 (is end of FPDT+1) "
NINT Value - NINT DNINT
FIDTLINK Value - 0 "
FIDTPDA Value - 0 "
FIDTCF Value - 1 "
FIDTIL Value - 2 "
BAFIDTIL Value - 8 "
FIDTGL Value - 2 "
FIDTWD Value - 3 "
FIDTPSM Value - 4 "
FIDTBAL Value - 5 "
FIDTLPSD Value - 6 "
FIDTXPSD Value - 8 "
FIDTMCLK Value - 3 "
FIDTMCSA Value - 4 "
FIDESIZE Value - 12 "
MCLKH 1 1 0 "
MCLKT 1 1 0 "
FIDTH 1 1 address of FIDT "

155

Table 2-19. M:FRGD Load Module Contents (cont.)

Label Entry Length Contents of Value Internal Control
Size (Wrds)
FIDTIAC 1 1 0 DNINT
FIDT 12 NINT Ist word = FLINK to next entry "
Other words =0
FIDTEND 1 1 (is end of FIDT+1) "
CLOCKS 2 3 0 "
NCTQE Value - c1Q DCTQ
CTQESIZE Value - 4 "
CTQLINK Value - 0 "
CTQINT Value - 1 "
CTQNAME Value - 2 "
CTQH1 1 1 address of CTQ "
CTQH2 1 1 0 "
cTQr 1 1 0 u
cT1Q 4 cTQ Ist word = FLINK to next entry "
' Other words = 0
INTSPGMT 4 INTS See table 2-21 for contents INTS
INTSPGMTEND 1 (is end of INTSPGMT-+1) "
RJIT - 164 See Insert Below DRJIT
FCOMLL 1 1 0 "
FCOMUL 1 1 0 "
RESDFLL 1 1 0 "
RESDFUL 1 1 0 "
FBUFLL 1 1 0 "
CTINT Value - CT DCT
FDFRSIZE Value - Interrupt group of CT "
CTWDA 1 1 X'6D201200'+level of CT interrupt "
(i.e., write direct to arm, enable
CT)
CTIDE 1 2 0 "
CTGL 1 1 Group level indicator of CT "
CTwD 1 5 st word = X'6D201700" level of CT "
inferrupt (i.e., write direct to
trigger CT) other words =0
CTPSD 1 6 Words 0-1=0 "
Words 2 =X'40000000'+CNTASK (REF)

156

Table 2-19. M:FRGD Load Module Contents (cont.)

-Label Entry Length Contents of Value Internal Control
Size —_—
(Wrds)
Word 3 = X'07000000"
Word 4-5 =0
CTXPSD 1 1 XPSD, 8 CTPSD DCT
CTINTENV 1 1 X'80000000'+CTIDE "
CURPDA 1 1 0 "
CURINT 1 1 0 "
BKPSD 1 2 0 "
CTQHC 1 1 0 "
CTQTD 1 1 0 "
CTDFRFLG 1 1 0 "
FDFRFLAG 1 1 0 "
FDFRINTS 1 FDFRSIZ 0 "
+1
NFIPOOL Value - FIPOOL DOTHERS
NFFPOOL Value - FFPOOL "
FIBUFSIZE Value - 256 "
FFBUFSIZE Value - 512 "
FCOMSIZ 1 1 FCOM*512 "
RESDFSIZ 1 1 RESDF*512 "
RESDFSIZP 1 1 RESDF*512 "
IBUFTBL 1 2*FIPOOL | O "
FBUFTBL 1 2*FFPOOL | O "
STOPTBL 1/4 #tape de= | 0 "
fined on
system
INTLBSIZ Value - # of INTLB Entries DINTLB
INTLB1 1/2 # of INTLB | See Table 2-20 for contents "
INTLB2 1/2 # of INTLB | See Table 2-20 for contents "
RJIT Contents
Word 0 =0
Words 1-2 = :SYSRT (TEXT)
Words 3-70 =0

Words 71 = $+4

Words 72-73 = M:OC (TEXTC)
Word 74 = $+2

Word 75 =0

Word 76 = X'00200003"

Word 77 = X'00060002'

Words 78 - 163 =0

157

2,11.,5 Subroutines Used

CHARSCAN (used to check a specific character for syntax)

DECSCAN (used to obtain a field whose value is decimal/hexadecimal).
HEXSCAN;

QUOTSCAN (used to scan a field containing a Keyword)

NAMSCAN (used to scan a field containing a name)

MODIFY } (used to generate the load module)

PRINTMSG (display error information)

2,11.6 Special Restriction

The option INTS must be contained wholly on one physical card image.
2,11.7 Description

2,11.7.1 Overview

The FRGD processor is entered when P2CCI encounters the :FRGD command. The processor initializes its
temp stack area by moving the DYNAM table into the stack. It then obtains 100 pages of core for use as
its work area to generate the load module M:FRGD,

The initial syntax analysis of the :FRGD command is performed in the GETKEY routine which processes a
parenthetical expression up to the first comma and then determines what the Keyword is and enters an

appropriate routine which in turn processes the remainder of the expression and returns. This continues

until the entire command is processed. Then the FRGD portion of the load module is generated, When completed,
the next control command is read and if it is :INTLB it is processed by the GETOPLB and OPLBENT routines.
GETOPLB syntactically checks the parenthetical expression and OPLBENT saves the "label” and "loc" in
intermediate tables (See Table 2-20). The load module is then written and FRGD releases its work area

restores the temp stack and returns to P2CCI at READSTRG.

When the FRGD processor obtains the next control command and it is not :INTLB, the load module M:FRGD
is written, and the work area released, the stack restored and control is returned to P2CCI at READOK,

When FRGD requests the next control command and it is @ Monitor control command, P2CCI will enter

FRGD at FRGDLMX and the remainder of the FRGD procedure is as described for no :INTLB encountered.

2,11.7.2 Details

When the GETKEY routine is entered, it obtains a Keyword and determines through the FRGDOPT table which
subroutine to enter for further processing. For all Keywords except "INTS" the subroutine obtains the value
(i.e., value, address, or size in the parenthetical expression), converts it to binary and checks if the value

is within range. The value is saved in the temp stack for use in generating the load module. If the

158

Keyword is INTS, the subroutine entered generates an intermediate table (see Table 2-20) containing the
information from all expressions within the INTS option. When the complete parenthetical expression has

been processed, GETKEY returns and the next expression is analyzed.

The LMFRGD routine allocates the work area for the M:FRGD load module and generates the data. The
procedure used when generating the necessary SECT, 00 information is controlled by various tables within
the FRGD processor. The routine PROCDEF interrogates a given table and performs the necessary function

according to Figure 2-18:

Word 0 NAME

(TEXTC FORMAT)

CODE VALUE
0 78 31

where
NAME a TEXTC formatted name of a value, table or data word which is to be externally
defined.
CODE =0 NAME is to be equated to VALUE
=1 NAME is to be equated to the address of a data word or table where VALUE
is the number of words in table
=2 NAME is to be equated to the value found in the temp stack pointed to by
the displacement VALUE,
=3 NAME is to be equated to the address of a table or series of tables to be
generated. This code indicates that each table or series of tables will be
generated according to pre-described algorithms
CODE = 4 NAME is to be equated to the value pointed to by VALUE multiplied by 4.

Figure 2-18. PROCDEF Table
The internal tables controlling the generation of the ":FRGD" command's portion of the "M:FRGD" load module

consist of:
DNFRGD for the NFRGD option
DNINT if NINT# 0
DCTQ ifCTQ# 0
DINTS if the INTS option was specified
DRJIT always used
DCT for the CT option, where (X'60'<CT<X'13F')
DOTHERS always used,

When an internal controlling table is being processed, each entry's code is interrogated. An appropriate
] g P Y [¢] pprop!

routine is then entered fo generate the necessary load module information,

159

When the code is 0, the routine GENTO, is entered and it sets up the PLIST required by the MODIFY

routine for the generation of an external definition whose value is a constant,

When the code is 1, the routine GENT1 is entered and it sets up the PLIST required by the MODIFY
routine for the generation of an external definition whose value is the address in the load module of a data
word. The data word may be a one-word table or it may be the first word of a multi-word table. Each

word is sef to zero.

When the code is 2, the routine GENT2 is entered and it sets up the PLIST required by the MODIFY

routine for the generation of an external definition whose value is an constant.

When the code is 3, the routine GENT3 is entered. The address of the current internal table's entry is used

to search another internal table (vix., INVECT), for a match. When found, the relative position of the

match in the INVECT table is used as an index into the OUTVECT table, The OUTVECT entry identifies

the entry point fo a special subroutine which generates the desired data, tables, external definitions or references

for a given parameter. These special subroutines are referred to as "Special Compile Processors",

When the code is 4, the routine GENT4 is entered and it sefs up the PLIST required by the MODIFY
routine for the generation of an external definition whose value is an expression which is evaluated
intoa constant, The expression is a constant or value multiplied by four (e.g., a byte displacement into

a table).

FRGD proceeds to finish creation of SECT. 00 by generating the information concerning :INTLB command.
The internal table controlling this portion of the load module generation is DINTLB,

160

Table 2-20. :INTLB INTERMEDIATE TABLES

orp 0 0 OPL;
OPL, -
----- OPL,,
LC 0 0 LOC,
LOC, - -
- === LOC,
where
OP is the op~label table pointed to by INTLBOP
LC is the location table pointed to by INTLBLOC

Table 2-21, INTS INTERMEDIATE TABLE

IN #E NAV
UNUSED
(INTSPGMT) #C C; C, Cq
- - - - Cn -
FIMAX | PAGES SIZE
where

IN = the INTS table pointed to by INTSAREA
#E=number of entries in table

NAYV = next available address in table

#C = number of characters in name

Ci/ C2, een C = characters in name

161

FIMAX = FIMAX value from INTS expression
PAGES = Pages value from INTS expression
SIZE = Size value from INTS expression

INTSPGMT = Starting address of the table DEF for M:FRGD

2.11.8 FRGD Messages

***DELIMITER ERROR

***UNKNOWN KEYWORD

*#**DELIMITER ERROR, PROCESSOR
ABORTED

***INVALID DECIMAL VALUE

#***INVALID HEXADECIMAL VALUE

***\VALUE ERROR, DEFAULT TAKEN

*#**NAME INVALID or > 11 CHAR,
OR > 2 CHAR,

*#*S1ZE/PAGES/FIMAX VALUE
INVALID

***NOT ENOUGH CORE AVAILABLE
TO GEN LM, PROC, ABORTED
***GEN. OF LM UNSUCCESSFUL

***CT FIELD NOT = >60 OR
=< 13F, PROC. ABORTED

***NFRGD FIELD MISSING OR
INVALID, PROC, ABORTED

Invalid delimiter encountered. FRGD continues at next
parenthetical expression,

The keyword in a parenthetical expression is unknown,
FRGD continues at next parenthetical expression.

The end of ":FRGD" or ":INTLB" command cannot be
found, FRGD returns to PASS2 control,

The value field is expected to be either decimal or

hexadecimal. FRGD continues at next parenthetical expression.

The value specified is less than the default or is less
than a previously defined value of the same type.

FRGD continues at next parenthetical expression,

The name is not alphanumeric (at least one alpha),

is greater than 11 characters in "INTS" option, or is
greater than two characters in INTLB command's options.
FRGD continues at next parenthetical expression,

The size, page, or fimax value after the INTS option is
not a valid decimal number. FRGD continues at next
parenthetical expression,

The work area for FRGD has been used and no more

is available, FRGD returns to PASS2 control,

There is not enough work area available, FRGD returns
to PASS2 control.

The address field for the CT option is too small or too
large, or there is no CT option specified FRGD returns to
PASS2 control.

The value field for the NFRGD option is invalid or
missing, FRGD returns to PASS2 control,

162

2.11.9 Flags Used by FRGD

VNFRGD
VCT
VFCOM
VRESDF
VFIPOOL
VFFPOOL
VNINT
VCTQ

LMAREA
WORKSIZE
INTSAREA
SAVERT

#INTLB

INTLBOP
INTLBLOC
#AVTENT

2.11.10 Internal Routines

FRGD

FRGDOP
INTLBOPC
FRGDLMX

GETKEY

PNFRGD
PCT
PFCOM
PRESDF
PFIPOOL

NFRGD field’s value

CT field's value (address)
FCOM field's value (size)
RESDF field's value (size)
FIPOOL field's value
FFPOOL field's value
NINT field's value

CTQ field's value

base address in work area (following INTS option's information).

number of pages in work area,

base address of INTS option's information and also entire work area.

control command type which follows ":FRGD" command:

= first four characters of next command if not ":INTLB" command,

= =1 if next command is a Monitor system command (i.e., end of file
to PASS2),

=0 if ":INTLB" command was found; Initially, SAVER1=~1

number of entries in intermediate table generated as a result of the ":INTLB"

command

address of OP table

address of LC table

obtained from the REF AVRTBLGTH # tapes drives defined on system

main entry, initializer, and controller

Register 3 = address of PASS2 information in temp stack

Register 7 = address in temp stack of command processing PLISTs.

process FRGD command's parenthetical expressions,

process INTLB command s parenthetical expressions,

there is no INTLB command, but instead, there is a Monifor system control command
(i.e., end of file to PASS2),

check for "(", get keyword, and check for "," in next parenthetical expression.

set conditions for processing value for NFRGD option,

set conditions for processing value for CT option,

set conditions for processing value for FCOM option,

set conditions for processing value for RESDF option,

set conditions for processing value for FIPOOL option,

163

PFFPOOL set conditions for processing value for FFPOOL option,

PNINT set conditions for processing value for NINT option,

PCTQ set conditions for processing value for CTQ option.

COMRET set conditions for value in decimal, All other values, above, are hexadecimal.
COMRETA obtain value.

PINTS process INTS option,

GETVAL obtain value, convert it to binary, check if value is valid.

(i.e., use default or use value), and check for ")".
Register 13 = 0 value in hexadecimal
=1 value in decimal
Register 14 = address in temp stack where value is to be saved.
GETOPLB check for "(", get oplabel, check for ", " get location value, and validate it,
and check for ")" in :INTLB command's next parenthetical expression,
Register 2 = address in work area of next available word for interim
tables.
OPLBENT saves oplabel and location value in next available entry in interim tables for
:INTLB command.
Register 12 = hexadecimal location
Register 13 = oplabel in TEXT format

Register 2 = address of next available word in work area

LMINT this foutine takes the interim tables generated by OPLBENT and adds them to
SECT.00 portion of the M:FRGD load medule,
CNVDEC convert EBCDIC decimal to hexadecimal.
exit: Register 12 = converted value
CNVHEX convert EBCDIC hexadecimal to hexadecimal

exit: Register 12 = converted value.
LMFRGD allocate work area for the M:FRGD load module, Request the generation of load
module information according to the internal control tables.
Register 3 = address in temp stack of PASS2 information
Register 6 = address in temp stack of FRGD processor information
Register 7 = address in temp stack of PLIST used in processing control command
Register 15 = Register 3 = temporary save of Register 3.
WRITLM write M:FRGD load module to M:FRGD file.
WRITETM do actual write for M:FRGD load module parts.
Register 8 = buffer address
Register 9 = buffer size (bytes)
Register 10 = address of key (load module elements key)
PROCDEF interrogate each internal control table's entry, and give control to appropriate

processor according to entry's code,

164

GENTO

GENT1

GENT2

GENT3

GENT4

VALU

MODF

Register 2 = address in work area to generate tables.
Register 5 = address of next eniry in internal control table.
Register 15 = address of end of current internal control table.
processes Code =0 type internal control table entries.
Register 2 = address in work area of next available word.
Register 5 = address of current internal control table entry,
Register 7 = address of MASTER PLIST for MODIFY.
processes Code = 1 type internal control table entries.
Register 2 = address in work area of next available word.
Register 5 = address of current internal control table entry,
Register 7 = address of MASTER PLIST for MODIFY,
processes Code =2 type internal control table entries.
Register 2 = address in work area of next available word.
Register 5 = address of current internal control table entry,
Register 7 = address of MASTER PLIST for MODIFY.
processes Code =3 type internal control table entries by
searching INVECT table for a corresponding address equivalent to the
current internal control table entry, and then enter appropriate routine
as indicated by the same relative entry in OUTVECT table.
Register 2 = address in work area of next available word.
Register 5 = address of current internal control table entry
Register 7 = address of MASTER PLIST for MODIFY
processes Code = 4 type internal control table entries.
Register 2 = address in work area of next available word.
Register 5 = address of current internal control table entry
Register 7 = address of MASTER PLIST for MODIFY
obtain the value from the internal control table entry whose code
is0, 1, or 2.
Register 13=0
and code = 0 value is in current enfry
and code = 2 value in current entry is index
in temp stack where value is found.
Register 13# 0 value is relative to the base address of SECT.00 in load module.
exit: Register 14 = actual value.
set up MASTER PLIST and sub-PLISTs with desired information (DEF, EXPR, or DICT)
and then go to MODIFY routine,
Register 4 = VALUE], if applicable
Register 5 = address of NAME]
Register 7 = address of MASTER PLIST for MODIFY
Register 12 = relative address in temp stack of desired sub-PLIST (DEF, EXPR, or DICT).

165

Register 13 = for DEF, DICT = NAME2

for EXPR = address of NAME,
Register 14 = VALUE2
Register 15 = RELDICT, 00 code, if applicable

The following is a list of the routines that generate the DEF,RELDICT, 00 changes and the data in SECT,
for the appropriate tables.

CFPDTHI CCTPSD CFDFR
CFPDT CCTXPSD
CFIDTH CCINTENV
CFIDT CBKPSD
CCLOCKS CFCOMSIZ
CCTQHT CRESDFSIZ
oare CRESDFSIZP
CINTSPGMT CINTLBI
CRIIT CINTLBSIZ
CCTWDA CINTLB2
CCTIDE DOIBTB
ccTGL DOFBTB
CCTWD DOSPTB

Special error routines include: DELY, DEL, COMERR, KEY, FINDRPAR, DELX, FRGDEXIT, EOCCSCAN,
DEC, HEX, DEFAULT, NAMY, NAM, SIZPAG, NOROOM, NOROOMX,
COMABORT, MOD, CTERR, NFRGDERR

166

2,11.11 Flow Chart

Pg. 1
{ ENTER)

Initialize FRGD
Temp Stack

Get work area &
Initialize

TN

.)

N

Get keyword from Distribute on '
next parenthetical t---- table FRGDOPT
expression
NFRGD CT FCOM RESDF FIPOOL FFPOOL NINT CTQ
PNFRG PFCOM PFPOOL PINIINT
Get value & Get value & Get value & Get value &
puf in puf in put in put in
VNFRGD VFCOM VFIPOOL VNINT
PCT PRESDF PFFPOO PCTQ ¥y
Get value & Get value & Get value & Get value &
put in put in put in put in
VCT VRESDF VFFPOOL VCTQ
J \ Y A)
’ y
\ . /"
FRGDO FRGDOP
INTS End of Options N
- - Y

PINTS LMFRGD
Py. 2 ~~—" Pg. 3

Figure 2-19, Flow Diagram of FRGD

167

Initialize
internal table
pointers

Get name & put
into interim
table entry

y

Get size &
convert & put
in table

Get page &
convert & put in

table
!

Get FIMAX
convert put
in table

Update interim
table pointers

INTS fields
?

no

Update necessary
interim table
pointers

FRGDOP
Pg. 1

Pg. 2

Figure 2-19. Flow Diagram of FRGD (Cont.)

168

LMFRGD

Allocate load
module areas in
work area

Set up necessary

PLISTS

Process

DNINT

Control Table

y

Initialize load
module information

Pg. 3

Y

Process

DCTQ
Control Table

Process
DNFRGD

control table

Process

DINTS

Control Table

no

Process

DRJIT
Control Table

|

Process
DCT
Control Table

y

Process
DOTHERS
Control Table

Pg. 4

Figure 2-19. Flow Diagram of FRGD (Cont,)

169

Read O.K.

Read next
control
command

!

INTLB

command no
?
INTLBOPE fRGDLM
GETOPLB
Get op-label from
in parenthetical
expression
Y
Next —
Option | Get LOC
from
expression
yes
Y
Allocate work
area &
initialize
Put Op-label & pointers

LOC in respective
interim table

Y

Update
Pointers

INTLBOPC

End of File

Pg. 4

FRGDLMX

End of Options

Process

DINTLB

control table

«——FRGDLM

Set
SAVER1
Flag

Figure 2-19. Flow Diagram of FRGD (Cont.)

170

Exit to
READSTRG in
P2CC1

)

Write load
module fo

M:FRGD File

Release
work
area

Restore
PASS2 Temp
Stack

NTLB
command

found
?

Pg. 5

Exit to
READOK in
P2CC1

Figure 2-19, Flow Diagram of FRGD (Cont.)

171

2,12 XPART

2,12,1 Purpose
To process the :PARTHTION]command and generafe the load module M:PART in which is defined the permissible

number of partitions and the resources available for each for UTS systems only.

2.12,2 Usage
B UTXPART
With:
R3 pointing to PASS2 stack data
R7 pointing to control card PLIST
RO pointing to temp stack pointer
R3 and R7 are saved
Return is to READSTRG in P2CCI

172

2,12,3 Input

Control card (:PART) image

2.12.4 Output

Display of PASS2 control information to LL device
M:PART load module (Table 2-22)

Table 2-22 M:PART Load Module

Label Entry Length Contents or Value in terms of
Size (Wrds) PART Keywords
LPART Value - #PART defined
PL:LK 1 1 0
PL:CHG 1 1 0
PLD:ACT 2 LPART+1 0
PLB:USR 1/4 LPART+1 0
PLH:CUR 1/2 LPART+1 0
PLH:SID 1/2 LPART+1 0
PLH:TOL 1/2 LPART+1 0
PLH:FLG 1/2 LPART+1 Bit O of each entry for HOLD/SWAP
if SWAP =0 if HOLD =1
Bit 15 of each entry for LOCK/UNLOCK
if LOCK=1 if UNLOCK =0
PLH:TL 1/2 LPART+1 Lower TIME limit
PLH:TU 1/2 LPART-+1 Upper TIME limit
PLH:QN 1/2 LPART+1 QUAN
PL:MIN 1 LPART+1 Lower limits
Bits 0 - 7 = DP
Bits8 - 15=7T
Bits 16 - 23 = 9T
Bits 24 - 31 = CORE
PL:MAX 1 LPART+1 Upper limits
Bits 0 -7 = DP
Bits8 - 15=7T
Bits 16 - 23 = 9T
Bits 24 - 31 = CORE

173

2,12,5 Subroutines and Definitions
1. Subroufines
SYNTAX used to convert control card to stack data blocks
COREALLOC used to allocate dynamic data pages
MODGEN used to generate DEFs
WRITELM used to write output module

2, Definitions
DEVS,R3 A core location in P2CCI basic dynamic data area containing
the total number of private disk packs, 7-Track tape drives and
9-Track tape drives defined via :DEVICE commands.

0 78 15 16 23

#DpP #71 ot

2,12,6 Data Base
The XPART module contains two tables for use by the SYNTAX routine,

1. KEYWORD TABLE
Contains an entry for each valid keyword on the :PART card. This entry consists of the
TEXT form of the keyword followed by a word containing an operation identifier and the

displacement into the temp stack table.

2. SKELETON TEMP STACK TABLE
Each entry in the table is a single word in length and contains the default value

associated with the parameter,

Note, the entries are order dependent because of the method subsequently used to error

check the parameters,

2.12,7 Description
Upon entry the processor accesses the DEVS,R3 cell and stores the total DP,7T, and 9T on the system
permissible in a table of maximum value, This method is required in order to allow zero to be a

legal maximum value for peripheral parameters, (i.e., 7T,9T,DP),

The processor then BALS to the SYNTAX routine which converts the control command image into managable
tempstack tables. All keywords encountered by SYNTAX prior to the first (PART,value) are incorporated
into the first table to be used for all partitions as their default parameters, The first PART options causes
SYNTAX to set the system defaults for all unchanged parameters in the first table and initiate a new table.
Subsequent PARTs only cause new tables to be started. Upon return R5 contains the starting address of the

generated tables which is saved for subsequent cleanup.

174

The processor then BALS to COREALLOC, specifying an unknown word size for the REF/DEF stack
and data record, Upon return R7 contains the address of the MODIFY PLIST; SR1 contains the first
address of the allocated data record area; SR2, the address of the REF/DEF stack area.

The highest partition number specified (providing that > 3 or < 16) is used as the total number of
partitions desired (LPART) and all tables are LPART + 1 in length, If the highest PART specified

is less than 3, then 3 is used as the default.

The processor then BALs to MODGEN and causes the value DEFs, location DEFs, and requisite

tables to be generated for M:PART, Prior to storing val ues into the tables, the registers are saved

and the processor checks each specified value that the maximum and minimum are within range,

to determine the maximum is greater equal than the mimimum and core is the range 0 to 64, and that
there is no conflict between the LOCK and UNLOCK, SWAP and HOLD paramters. If an error is
detected, the processor puts a code in R3 and BALs on D2 to an internal subroutine (ERROR) that
determines what error occured in which partition, and formulates an appropriate error message
identifying the error, the partition and the value(s) used, The corrected value is stored in the skeleton
table upon return from the routine, Note, if the mimimum is out of range, or if maximum is less

than mimimum, zero is used for the minimum. If the maximum value is out of range, the SYSGEN

defaults are used for both values,

The defaults are then stored in all tables to which are added any parameters that have been specified

for a given partition,

The registers are restored and the processor BALs to WRITELM with the address of the file name to be
created in D3, Upon return, the tempstack is cleaned up, releasing all the area obtained by SYNTAX
for the tempstack tables and the processor exits to READSTRG in P2CCI.

2.12,8 XPART Messages

\
**ERROR-PARAMETER* XXX X* The specified parameter in the designated

IN XXXXXXXX MAX < MIN-- partition or default (INXXXXXXXX) is in
0 USED FOR MIN error, The value used is indicated in the
**ERR OR-PARAMETER*CORE* message. XPART continues.

IN XXXXXXXX MIN > 64-- >
0 USED FOR MIN

**ERROR~PARAMETER*CORE*
IN XXXXXXXX MAX>64--
64 USED FOR MAX

175

ERR OR-PARAMETER XXXX* The specified parameter (*XXXX*) in the

IN XXXXXXX MAX INVALID-- designated partition or default (IN XXXXXXX)
SYSGEN DEFAULTS USED is in error, The value used is indicated in the
**ERR OR-PARAMETER* XXXX* message. XPART continves.

IN XXXXXXX MIN INVALID--
0 USED FOR MIN

**ERR OR-PARAMETER* XX XX*
IN XXXXXXX MAX & MIN INVALID --
SYSGEN DEFAULTS USED

**CONFLICT IN HOLD IN XXXXXXX -
PARTITION NOT HELD

**CONFLICT IN LOCK IN XXXXXXX -
PARTITION NOT LOCKED

**PART 0 NOT ALLOWED -~
SPECIFIED RESOURCES IGNORED

176

2,12,9 Flow Chart

(ENTER)

4

Store Max 7
DP,7T,9T in
MAXVAL Table

SYN

AX

{ CCin

Tabular form

(DYNAMS)

A

COREALLOC

Get allocated
core for load
module

A

Determine
highest part
defined

Y

Compute table
sizes based on
total # parts+1

MODG

EN

| Generate val ve

DEFs, location
DEFs and tables

Pg. 2

Pg. 1

177

Figure 2-20. Flow Diagram of XPART

Save
Registers

ERROR
R3 = 2 max.
R3 =1 min.
I Pg.5
Flag = 0
g. 3
Store 0 Add -3
{ inmin —» to
Error Flag
!
Store min & Add -2
| max defaults to
Error Flag
Store 0 Add -1
| in min to
Error Flag
|
Add 1 to
Error Flag
ERROR

R3 = 0 max < min

|R3 =-1 max out of rang

R3 =-2 min out of range

R3 =-4 max and min
out of range

Pg. 5

Pg. 2

Figure 2-20, Flow Diagram of XPART (Cont.)

178

Pg. 3

Pg. 5

Store core,
max, min,
values defaults
in table Pg. 4

LOCKS
Check HOLD/
SWAP
LOCK/UNLOCK
|
Pg. 5

A

Store HOLD,
LOCK settings
in table

~

All

tables done
)

Pg. 4

Figure 2-20. Flow Diagram of XPART (Cont.)

179

Entry
changed in
DYNAM

Store in

Table

Y
e

no All entries
‘——_‘@AX, MIN, COB

“NQUAN) dore
N2

yes

LOCKS

Check hold swap
LOCK/UNLOCK
store if changed
and correct

Pg. 5

Y

D/xl |
INAMS

(parts) done

Restore
Registers

Y __ WRITELM

Write
Load module

Pg. 4

Restore
Stack

[EXIT)

Figure 2-20. Flow Diagram of XPART (Cont.)

180

ERROR

Access
Appropriate
Error Message

Compute 'par’r #
of error
store in message

/ Print

/ Message

(RETURN)

Pg. 5

ERROR

R3 =4

Select lock
mask and value

Pg. 5

[ERROR |

R3=3

Or HOLD
mask and
value

Entry
from defaults

Store in
Table

‘ RETURN)

Figure 2-20. Flow Diagram of XPART (Cont,)

RETURN

3.0 PASS3,

3.1 PURPOSE.
To provide the communication with the system LOADER necessary to load a specific Monitor, processor, or library.

PASS3 provides for automatic biasing and, optionally, the releasing of random access device files.

3.2 CALLING SEQUENCE.
Monitor Control Command: !PASS3

3.3 INPUT.

PASS3 control commands from SI device.
:name

where

name is the name of a LOCCT (see LOCCT processor Chapter 5) to be used by the system LOADER in
loading an element.,

Comment commands from SI device.

Files containing LOCCTs from random access device.

M:MON load module, if target system is BPM/BTM, to determine background lower limit.
SPEC:HAND file when LOCCT is for M:MON. .

I/O handlers named in SPEC:HAND file plus BASHANDL file for basic I/O handler set when LOCCT is for
M:MON.

3.4 OUTPUT.
Display of PASS3 control information to LL device,
HANDLERS file containing all necessary I/O handlers when LOCCT is for M:MON,

LOCCT to absolute read/write scratch area on system's random access device (BPM/BTM base system) or to core
common storage (UTS base system),

ROOT Load Module generated if LOCCT is for M:MON and target system is BPM/BTM. See description (Chapter 3,7.2)
for detailed discussion of contents of various tables. See Table 3,1 for contents of ROOT load module.

182

Table 3.1 ROOT LOAD MODULE CONTENTS

LABEL ENTRY SIZE LENGTH CONTENTS OR VALUE
MAXLEV Value - Max, levels in TREE structure
TBBASE 1 MAXLEV 0

COVLSEG 1 MAXLEV segment number (starting

with X'3F' and incremented by
1 for subsequent entries)

OSTACK 1 18 stack pointer doubleword
in 1st 2 words followed by
16-word stack.

MAXSEG Value - Number of segments in TREE
structure (number of TREE
entries = 1)

STIB 2 MAXSEG 0

XSEG* Value - segment number

YSEG* Value. - segment number

* where the names in the TREE entries are substituted for X and the names of ROMS found in OLDSEGS
tables are substituted for Y.

3.5 BASE REGISTERS,
Register 7 = address of control command PLISTs, 1/O PLISTs, and data in temp stack.
Register 6 = address in temp stack of positions of "ROOT" load module,

3.6 SUBROUTINES USED.

NXACTCHR (obtain next character from control command).

NAMSCAN (used to scan a field which contains a name),

CHARSCAN (used to check a specific character, such as a terminator, for legal syntax),
HEXSCAN (used to scan a field which contains a hexadecimal value).

QUOTSCAN (used to scan a field which contains a key word, e.g., SAVE),

System Processor, LOADER (PASS3 does a M:LINK call to this processor to perform a load function, The
LOADER must be in the :SYS account).

MODIFY (used when generating the "ROOT" load module).

3.7 DESCRIPTION,

3.7.1 Overview,

PASS3 is entered when the monitor confrol command !PASS3 is encountered. Upon entry, PASS3 obtains 4 pages
of core as an initial work area, PASS3 then processes its own control command, A parameter is required (BPM

or UTS) identifying the target system type. The presence of an optional parameter (MON or ALL) will cause
PASS3 to abort should M:MON or any module be unable to be loaded successfully.

183

PASS3 then initializes its work area to zero and proceeds to read a :command and processes it according to the follow=
ing options and syntax:
:name (option , option ..)
The "name" is used to form a file-name which will identify a file containing a LOCCT (see Chapters 5 and 6).
The "name" is syntactically checked and must be from one to ten alphanumeric characters of which one character

must be alpha,

PASS3 proceeds to obtain the file containing the LOCCT referenced by "name”, This file is made up of in—-
dividual records of binary card image format, PASS3 reads each record, checks its sequence number, checks its

check=sum, and reforms the LOCCT in one continuous record in the work area.

The remainder of PASS3's control command is then processed.

The options which may be encountered are as follows:

BIAS=value specifies that the load bias in the LOCCT identified by "name” is to be changed to the specified
hexadecimal "value”. The "value" cannot be greater than X'1FFFF', The "value" is also
converted to the next higher page boundary, if not already at.a page boundary. If a bias
offset is specified (see "BIAS=toffset"), the "offset" is added fo the bias "value™,

BIAS=toffset specifies that a hexadecimal "offset”, converted to next higher page boundary, if not at one
already, is to be added to the specified bias "value” (see "BIAS=value"). If no BIAS=vdlue
has been specified, the offset is added to the lower limit of the background area
(BKGRDLL), This background lower limit is determined from the M:MON load module in the
current account. However, if M:MON is not present, the offset value has no effect and the
original LOCCT bias is unchanged. The logical interaction of these bias values is illustrated
in the following table:

PASS3 processes these two options, However, they have no effect on a LOCCT's bias for a UTS SYSTEM,

The original bias in the LOCCT is assumed to be correct,

Table 3-2, BIAS RESULTS

BIAS=value BIAS=+offset M:MON Resulting BIAS
unspecified unspecified absent LOCCT unchanged
unspecified unspecified present BKGRDLL
unspecified specified absent LOCCT unchanged
unspecified specified present BKGRDLL+offset
specified unspecified absent value

specified unspecified presenf value

specified specified absent value + offset
specified specified present value + offset

184

DELETE specifies that when the system LOADER has completed the loading of the module (load module)
“name", all element files comprising this module, as well as its LOCCT, are to be deleted.
However, this does not include those files specifically named by the SAVE option (see SAVE
option). The deleted files must be in the current account and must not be protected by a
password.

SAVE (name [, name’ . . .) specifies that the named elements ("name") are not to be deleted (see DELETE
option). All element names in the LOCCT from the current account not SAVEd
are deleted. The presence of this option automatically implies a DELETE option.

If, during the loading of a module, the system LOADER encounters an error, the DELETE/SAVE feature is

ignored. That is, no element files are deleted, as the LOADER has not been successful in loading them,

If the SAVE option is encountered, PASS3 obtains enough core to build an internal table of "name," entries
(Table 3<3), This table of names is used when PASS3 performs the DELETE for all element files named in the

ROM Table entries in the LOCCT. This option is necessary when certain element files are referenced by several
LOCCTs.

Table 3=3, Table of SAVE Names

LW1i
NAB
INIT #
C Cl C2 C3
- #
CN C C]
C2 e o » o & o CN
BANAB
\, v
BALW WV \
where

LW1 =byte address of the last available word plus one in the Table work areq, (i.e., BA (BALW+1))

NAB = byte address of next available byte in table's work area (i.e., BA (BANAB)), NAB initially contains
the byte address of INIT.

#C = number of characters in name (TEXTC format)

CI’ C2, P CN = characters in name

When the control command has been processed, PASS3 checks the load module name in the LOCCT, which
exists in the work areq, to see if it is "M:MON" (i,e., this LOCCT is for a Monitor), If it is, and the target
system is BPM/BTM, PASS3 generates a "ROOT" load module. This module describes the Monitor's overlay
structure as identified by the TREE entries in the current LOCCT,

185

LOWCORE

The "ROOT" module is vltimately loaded with the Monitor and controls the Monitor's run~time overlay structure, If
the current LOCCT's load module name is "M:MON", and the target system is UTS, the "ROOT" module is not
generated,

If the current LOCCT's load module name is not "M:MON", PASS3 determines if a previous Monitor has been
loaded, and if so, what is its background lower limit. This is accomplished by obtaining the keyed record TREE
from the load module M:MON in the current account, If the M:MON module does not exist, there is no back-
ground lower limit. However, if the TREE structure is available, the end of the longest Monitor overlay path is
determined and is used as the background lower limit. Note RCUR2, RCURSYMB, TSDBTA and CLS are ignored in
determining the longest overlay path.

If the target system is UTS, all further bias analysis ceases, and PASS3 assumes that the bias in the LOCCT
is correct. However, if the target system is BPM/BTM, the resulting bias in the LOCCT is calculated

according to Table 3-1.

PASS3 then determines where to save the LOCCT for the System LOADER's use. If the base system is BPM/BTM,
the LOCCT is written to the absolute read/write scratch area on the system's random access device. But, if the

base system is UTS, the LOCCT is saved in common core storage.

When the LOCCT's load module name is "M:MON?®, PASS3 proceeds to generate the "HANDLERS" file, This
file contains all of the necessary peripheral 1/O handlers as defined by the user on PASS2 ":DEVICE" control
commands. The required handler names are found in the keyed file "SPEC:HAND", The format of this table of
names is described in Chapter 6. PASS3 ebtains the contents of the "BASHANDL" file and writes it to the
"HANDLERS" file. The "BASHANDL" file, by default, contains the handlers for: typewriter (handler name =
KBTIO), card reader (handler name = CRDIN), line printer (handler names = PRTOUT and PRTOUTL), RAD
(handler name = DISCIO).

The handler names ¢re then obtained from the “"SPEC:HAND" file. Any name which is already a part of
"BASHANDL" is ignored. If a name is not a part of "BASHANDL", it is used as the name of a handler

file which must be merged into the new "HANDLERS" file. If a specific name is encountered a second or sub-
sequent time in the "SPEC:HAND" file, it is ignored. Any name encountered for which there is no

handler file, causes PASS3 to discontinue the processing of this control command and, therefore, to

continue to its next command,

When all LOCCT and "HANDLERS" file processing is completed, PASS3 performs a Monitor M:LINK call to the
system LOADER which is found in the :SYS account, and must be a load module file,

When the System LOADER has completed its task, it performs a Monitor M:LDTRC call requesting a return to

the calling processor, namely, PASS3, The LOADER returns a flag which indicates whether or not the load
function was successful, If not successful (i.e., flag set), PASS3 proceeds to read and process the next control
command, therefore, ignoring any DELETE/SAVE option requested. If the load was successful (i.e., flag reset),
and no DELETE/SAVE option was specified, PASS3 proceeds by reading and processing the next control command,

186

However, if the load was successful, and the DELETE/SAVE option was requested, PASS3 attempts to release each file
named in the LOCCT ROM entries, and the actual LOCCT used in loading the module. Each ROM entry is checked
fo see if itsaccount field corresponds to the running account. If not, the entry is ignored. Eachentryis then checked to
determine if it was listed as a SAVE file. If it was, the named file is saved. When PASS3 has completed the delete
phase, it proceeds to read and process the next control command.

3,7.2 Generation of ROOT Load Module.

When the LOCCT is for M:sMON, after obtaining background lower limit for a BPM/BTM target system, the
GENROOT routine is entered to generate the "ROOT" load module,

First, the dynamic data is moved into the stack and maximum core obtained and initialized for the load module

generation,

The TREE table in the LOCCT is searched to determine the number of levels in the tree structure. The number of
levels starts at 1 and is incremented by 1 for each non-zero OVERLAY LINK encountered in the TREE, The number

of levels cannot exceed 5,

The value DEF MAXLEV is generated followed by the table TBBASE, a word table of MAXLEV length, each entry
containing zero. COVLSEG is then generated, a word table of MAXLEV length. PASS3 stores X'3F' in the first
word and increments this by 1 for each subsequent entry. OSTACK is then generated. This is an 18 word fable,

containing a stack pointer doubleword in the first two words, followed by a 16-word stack,

The number of segments in the tree structure (i.e., the number of TREE entrys in the LOCCT minus one) is used
for the value DEF MAXSEG and to build the table S1TB. PASS3 dllocates a doubleword entry initialized to zero

for each segment.

Each TREE table entry is processed, starting with the root segment. The segment number designation starts with the
value X'3F', As each successive TREE entry is processed, the segment number is incremented by one, the least
significant six bits being saved, That is, the segment number which follows X'3F' would be X'00', The TREE

entries are processed serially, and not according to overlay structure.

As an entry is processed, a segment name is formed by appending the characters "SEG" to the name in the TREE
entry, That is, if a TREE entry's name is "A", the result will be "ASEG". This segment name is then used to

create an external definition as follows:

nameSEG EQU segment ¥ < an absolute value>

where

n L]

name is the name from the TREE entry (e.g., A).

segment ¥ is the current segment number value (e.g., X'3F').

After generating this def, the first ROM POINTER (in the current TREE entry) is used to obtain the Relocatable
Object Module (ROM) names from the ROM entries in the LOCCT.

187

The first ROM name is ignored, os it is the same as the name in the current TREE table entry, However, each sub-
sequent name in the ROM table, up to and including the name whose FLAG (see ROM table description in Chapter 6)
is X'00', will be processed. The segment number value (e.g., X'3F') remains the same throughout the processing

of these ROM names. Each ROM name identifies an element file needed to complete the segment identified in the
current TREE entry. As a ROM name is processed, it is used to generate an external definition only if it is found

in the table of special segment names (Table 3-4), Otherwise, the ROM name is ignored. If the ROM name is
found, a segment name is formed by appending the characters "SEG" to the ROM name, That is, if a ROM name

is "B", the result will be "BSEG", The external definition would then be:

BSEG EQU segment? < an absolute value >

When all TREE table entries have been processed, the generated load module will be written to a file called
"ROOT"

The following table controls the generation of external definitions using the ROM names, The format of o table
entry is as follows:

TABLE 3-4, PASS3 "OLDSEGS" TABLE FORMAT

Ny S
e TEXTC NAME

/(__,

F LINK

IL I I T T
01234 567{891011 12131415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

) } } n

Each entry contains a name (TEXTC form), for which a segment number must be assigned. When a ROM name
from a ROM entry (LOCCT) is found in this table, the characters "SEG" are appended to this TEXTC name, and
an external definition is generated. Note that the linked entries each contain a duplicate entry for the very first

name. The reason is that the first entry of a chain of linked antries is ignored, yet, it must be defined.

Example 3-1.

3 [C f L S

0
0| 000

0123 la567 |89101112131415V161718191202122 23124 25 262712829 30 31

188

If ROM name in ROM entry is "CLS", and this name is found in the table, then the following def is generated:

CLSSEG

EQU

segment #

The “"segment®" will be the same as that used when defining the segment number for the name in the TREE table

entry.

LINK #0 is the address of another table entry (TEXTC name) which is to be defined.

IfF=8, then the current entry's name is defined, and the LINK address is used to obtain the
next entry's name which is fo be defined. This continues until LINK = 0,
IfF =0, then the current entry's name is ignored and the LINK address is used to obtain

LINK =0 the current table entry is not linked to other entrys.

an entry's name which is to be defined. This condition continues for only one

level, and not until LINK =0,

Example: If ROM name in ROM entry is "RDF", and this name is found in this table, then, the
following defs are generated when F =8, and LINK # 0 or LINK =0:

Address = 100 03 R F RDFSEG EQU segment?
g 102 RLBTSEB EQU segment#
102 04 R B TRUNCSEG EQU segment
T
8 105
105 05 T u
N C
8 000

512374567780 101171213141511617 18 19120 2122 23724 25 26 2728 2930 31

If the ROM name in ROM entry is "M:16", and this name is found in this table, then the following def is generated
when F =0, and LINK #0:

Address =200

Address = 300

l 02

1

0123456789101

1213141516 17 1819 20 21 2223 24 25 26 27 28 2% 30 31

04

6

0

0 1234567

9 10 11 12 13 1415 16 17 18 19 20 21 22 23 24 25 28 27 2829 30 31

200

ISSEG EQU segment?

The following example shows pictorially what has just been described (to conserve space, the element file names

used are not those specified in PASS3's "OLDSEGS" table, although the philosophy is the same).

would look like:

EXAMPLE 3-2. DIAGRAM OF LOCCT.

4A ROM TABLE o
L
zZ
1D_|TREE TABLE S
~ A4 <
v v 9
150 2D | TREE SIZE
15101 Al
=
zZ
r - 0l e
28
0000 |0000] Ot
zju
0000 {000B| OT.
or
Nt
zb
—
Z N
w
vl i
%4 [aa]
-l <
[
|78]
w
(a4
[—
15q 01| D
o)
015 0000 S
x
I
0 £
0000 [0016 .3
Elo
Z|Z
=)
w
2|8
—lun
0 3
(Cont)

167 01| G /
002A 10008 "5
0021 10000 > %

o
[aed B
ZI
e
ml Z
2l w
==
8/\
w —
Z
172|011 5
- U
e g N N
Ao A >~ ; Y
0038 0o Bl 2
0000 _ loooo Zl =
w w
i
w ==
O
w
wy
EJ’)
170011 A = (
Z
w
40 s
\'2 v O
N7 Y o w
-}
184 101 | B Z ﬁ
40 2 3
L o
‘J/ N g
1 Y o \

190

The LOCCT
>
oz
[
Z
w
188 (01| C $
o)
00 &
Y \\f E
Z 4
192 loiln Z%
s
40 Q
Yy ¥z
199 RUE Z 3
s (=)
40 O]
N/ ¥ = 4
2y F
190 loilE z 1 e}
w)
AT
; / o g
>
=X =
197 1ol G 5 5
w o
40 =
L v O
~ v &
S,
1AE [01]H 3 }ﬂ(“
a4
w
' 4 Y g
v \\'3 p/
185 1011 z
Z
00 &
=
\! ‘1/ 8
1BC < END OF LOCCT>

Assume that PASS3's "OLDSEGS" Table contains the following entries:

=200 01 A The resultant external definitions are:
0 000 From TREE entry for "A"
202 01 B ASEG EQU X'3F'
8 204
204 03 P o S From ROM entry for "B"
8 206 BSEG EQU X'3F'
POSSEG EQU X'3F
206 04| A R D ARDLSEG EQU X'3F'
L
8 000 From TREE entry for "D"
209 01 D DSEG EQU X'00'
0 300
208 03| R D F From TREE entry for "G"
o 20D GSEG EQU X'o1'
20D 04| R B L From TREE entry for "1"
T ISEG EQU X'02'
8 210 From ROM entry for " 1"
210 | o05] T R U OSSEG EQU X'02!
N C
8 000
213 01 G
0 000
215 01 I
! 0 o..302 y
300 |__04 M L I
N K
302 | 02 o) 5

191

3.8 PASS3 MESSAGES,

The error or information messages which may appear during a PASS3 consists of the following:

####PASS 3-~IN-CONTROLF###
####PASS 3--COMPLETED####

**1/O ERR/ABN ON M:SI=x¢xxx

**OPEN M:EI ERR/ABN=x0x(LOCCT)

**WRITE ABS ERR/ABN=00xx(LOCCT)

**READ M:EI ERR/ABN=xxxx(LOCCT)

he*OPEN M:MON ERR/ABN=xxx

T+*READ M:MON ERR/ABN=00¢x

*CANNOT OPEN/RELEASE

**CC ERROR, NO ':' IN COLUMN-=1
**CC ID INVALID

**ID SIZE> 10 OR = 0 CHARACTERS

tNote:

The PASS3 processor has been entered.
For information only,

PASS3 has completed its function and exits to the
Monitor. For information only,

An error/abnormal code (xxxx), has been encountered
when reading the SI device, If there is a background
lower limit, it is displayed. PASS3 displays
completed message and exits to the Monitor,

An error/abnormal code (xxxx), has been encountered
when attempting to obtain a referenced LOCCT file,
PASS3 continues to next control command,

An error/abnormal code (xxxx), has been encountered
when aftempting to write the LOCCT to the absolute
read/write scratch area on the random access device
(BPM/BTM base system only)., PASS3 continues to

the next control command,

An error/dbnormal code (xxxx), has been encountered
when dattempting to read a LOCCT file, PASS3 continues
to next control command,

An error/dbnormal code (xxxx), was encountered
when aftempting to open the M:tMON load module
file, and the error/abnormal was other than file
does not exist (code=03), PASS3 displays back=
ground lower limit, if available, displays com=
pleted message, and then exits to Monitor,

An error/abnormal code (xxxx), was encountered
when attempting to read the keyed file TREE within
the M:MON load module file. PASS3 displays back=
ground lower limit, if available, displays completed
message, and then exits to Monitor,

An attempt is made to release (through DELETE/SAVE
option) an element file, but the file does not exist,
or is from an account other than the running account
or the file has a password. If the file does not exist,
it may be because it is referenced more than once and
the first reference has already released the item. This
message is followed by the name of the element file.
PASS3 continues.

PASS3 conirol commands require a ":" in character
position one, PASS3 continues to next control
command,

The name identifying a LOCCT is not a valid alpha=
numeric character string. PASS3 continues to next
control command.

The name identifying a LOCCT does not exist or is
longer than ten characters, PASS3 continues to
next control command,

When one of these messages appears, PASS3 is in the process of determining a new background

lower limit. That is, a "M:MON" load module does exist in current account, but cannot be accessed.

**DELIMITER NOT (), =OR SYNTAX BAD

**KEYWORD NOT BIAS/DELETE/SAVE
**KEYWORD SAVE ALREADY USED
**NAME INVALID

**BIAS NOT HEXADECIMAL VALUE OR
TOO LARGE VALUE
**BIN, CARD INVALID TYPE, SEQ, Fxxxx

**BIN, CARD SEQUENCE ERR, SEQ. Fxxxx

*CHECKSUM ERROR, SEQ. # xxxx
*#%*SPECIFIED BIAS< BKGRDLL

**+*B]JAS USED WILL BE xxxx

*x%£M:MON BK GRDLL IS xxxx

**kkx| M 'ROOT" CANNOT BE GENERATED

----- PASS3 ABORTED

***%¥M:MON TREE STRUCTURE > 5 LEVELS

*****PASS3 TYPE UNKNOWN

***OPEN/READ NNNNNNNNN
ERR/ABN = xxxx

193

One of the specified delimiters is expected but not
found or the delimiter is recognized but is syntactically
incorrect. PASS3 continues to next control command.

The keyword is invalid. PASS3 continues to next
control command.

The SAVE option can be defined only one time. PASS3
confinues to next command.,

A SAVE option "name" is not alphanumeric. PASS3
skips to next "name", if one exists, or to next field.

The BIAS "value" is not valid. It is either not
hexadecimal or is greater than X' 1FFFF'.
PASS3 continues to next control command.

A LOCCT file contains an image, sequence Frxxx,
with an invalid ID type (i.e., not a X'3E' or X'1E').
PASS3 continues to next control command,

A LOCCT contains an image, with an invalid SEQ
field, The sequence *xxxx is the number which the
image should have been, PASS3 continues to next
control command,

A LOCCT file contains an image, sequence ¥ xxxx
with a checksum error, PASS3 continues to next
confrol command.

The bias specified is less than the calculated back=
ground lower limit. This is a warning message, and
appears when target system is BPM/BTM only.

The bias used (xxxxx) is that which appears in the
LOCCT. For information only.

When PASS3 has completed its function, and the
target system is BPM/BTM, and an "M:MON" load
module has been built, its background lower limit,
xxxxx, is displayed. PASS3 displays completed
message and exits fo Monitor,

PASS3 cannot generate the "ROOT" module (BPM/
BTM target system). This results from PASS3 not
having enough core for work area. PASS3 exits

to the Monitor.

This message is displayed in conjunction with other
messages and implies an abort condition,

A Monitor overlay structure containing more than
five levels (BPM/BTM target system) is illegal. A
level implies the root segment as well as each over-
lay area with the tree structure. PASS3 displays
abort and completed messages and exits to Monitor.

The system control command, " !PASS3", contains
a parameter which is neither "BPM" nor "UTS",
PASS3 does an error exit to Monitor,

An 1/O error/abnormal code = xxxx, was en=
countered when attempting to form the "HANDLERS"
file. The name "NNNNNNNNN" is initially
"BASHANDL" and then is changed to the handler
name which PASS3 is attempting to obtain and merge
info the "HANDLERS" file, PASS3 continues to
next control command.

**x*QPEN/READ SPEC:HAND FILE
ERR/ABN = xxxx

***J NKNOWN TYPE - XXM USED

M:MON NOT SUCCESSRULLY LOADED

MODULE NOT SUCCESSFULLY LOADED

OPTION NOT 'MON' OR 'ALL' -
NONE ASSUMED

3.9 PASS3 PROCESSOR FLAGS,
TYPEFLG

LOC, X'2B' in Monitor

An 1/O error/abnormal code = xxxx, was encountered
when attempting to obtain the "SPEC:HAND file gen-
erated by PASS2. PASS3 continues to next control
command.

The type field of IPASS3 was not specified. System
type under which doing SYSGEN is used, (XXM).

The MON or ALL option has been specified on the
IPASS3 command and M:MON either cannot be loaded
or has not been loaded. PASS3 aborts.

The ALL option was specified on the 1PASS3 command
and the Loader found errors loading a processor. PASS3
aborts.

The option field on the IPASS3 command is invalid.
PASS3 continues.

Designates the type of PASS3 specified:

=0 BPM
=2 UTS

This location contains the information which identifies
what type of base Monitor is in control (e. Oer
BPM/BTM or UTS). The format is:

MON

where
MON =4 BPM
=5 BPM/BTM
=6 UTS

MMONTYPE

M:MONFLG

MONFLG

BKGDRLL

BIAS

BIASADD

194

01 2 3145 6 718 9 10 FRERD lsilé 17 18 19120 21 22 23124 25 26 27128 29 30 31

A flag indicating the base Monitor type:

=0 non-UTS,.
#0 UTS,

A flag which indicates that the current LOCCT
generates a M:MON (Monitor) load module, This
flag and the MMONTYPE flag control whether or not
a "ROOT” module is to be generated.

=0 LOCCT not for M:MON. .
#0 LOCCT is for M:MON.

A flag set the same as MitMONFLG, except it
controls the generation of the HANDLERS file,

=0 No HANDLERS file generation.
#0 generate HANDLERS file.
A cell containing the target system Monitor's back=

ground lower limit, if one exists (BPM/BTM target
system only), If none exists, it is =0.

A cell containing the bias (BIAS = value) defined
on PASS3's control command, and used only if
BPM/BTM target system:

==1 no bias defined,
>0 the bias as defined (page boundary).

A cell contdining the bias offset (BIAS = +value)
defined on PASS3's control command, and used only
if BPM/BTM target system:

LOADFLG

DELETE

SAVE

3.10 INTERNAL ROUTINES,
PASS3
PASS3NXT
PASS3LCT

PASS3CHK

GENHAN

PASS3PAR

NXTNAM

GETPAGE
PASS3DEL
PASS3BIS
SAVINCOM

GTMONTRE

GENHANDL

CPYHNDL

ROMDELET

195

=0 no bias offset defined.

>0 the biaos offset as defined (page boundary).
This flag indicates the System LOADER's success or
failure in loading a module, The LOADER return to
PASS3 with register 15 set =0, if successful, or # if
failure. This value is saved in LOADFLG, and indi-
cates whether or not the DELETE/SAVE options are to
be honored:

=0 yes, DELETE/SAVE options to be honored.
#0 no, do not perform DELETE/SAVE,

This flag indicates that the DELETE and/or SAVE
option was encountered on the PASS3 control command.
A SAVE option implies a DELETE:

=0 no DELETE and no SAVE encountered.
#0 a DELETE and/or SAVE was encountered.

This flag is set when a SAVE option is encountered.
The value in SAVE is the base address of the work
area obtained for the SAVE "names":

=0 no SAVE option,
>0 the base address of the work area.

main entry, initialize processor, and general controller.
get next control command.

obtain information from LOCCT file and re~form the
records into continuous LOCCT,

conirol command has been processed, put various
values into LOCCT table.

determine if HANDLERS file is to be generated for
M:MON load module, and then do @ M:LINK call to
the System LOADER,

process all parameters on the current control command.

get next name after SAVE option and enter it into the
work area table.

get more work area for SAVE option if needed.
process DELETE option,
process BIAS option,

get common storage and save LOCCT for System
LOADER.,
Register 15 = buffer address; Register 13 =
LOCCT size in bytes.

obtain M:MON's TREE structure from M:MON load
module in current account (if one exists) and determine
the background lower limit.

generate HANDLERS file from list of handler names
found in SPEC:HAND file,

copy a handler to HANDLERS file, Register 9 =
buffer address.

delete element files which are named in the current
LOCCT ROM entries. Register 13 = LOCCT size in
bytes; Register 15 = base address of LOCCT.

CHKNAM

READCC

READCONT
LISTCONT
LISTCC
EOCCSCAN
GENROOT

WRITM/WRITROOT

APNDSEG

EIA/EIE
RSPHER/RSPHAB/OSPHER/OSPHAB/HANDLER/
ONHER/ONHAB/ABSHER/OBSHAB

CONV
GENDEF

GENDICT

Special error routines include:

196

check LOCCT element file name against table of SAVE
names to determine if delete is desired. If found, do
not delete (condition code one =1 if found, =0 if not
found), Register 1 = address of name to be checked;
Register 4 = address of table of names.

read next control command, Register 12 = buffer
address.

continuation command requested,

display control command from character subroutines,
display control command.

search for end of control command,

generate "ROOT" load module from M:MON's TREE
structure in M:MON load module in current account.
Register 13 = address of LOCCT table minus one,

write "ROOT" load module to "ROOT" file. Register
1 =buffer address; Register 2 =buffer size in bytes;
Register 3 = address of key (load module element's
key).

append "SEG" to a given segment name. INPUT:
Register 4 = address of segment name OUTPUT:
Registers 8-10 =segment name with appended
"SEG".

desired LOCCT file not available.

The HANDLERS file cannot be generated. Either
o handler file, the BASHANDL file, or the
SPEC:HAND file, is not available.

convert error/abnormal code to EBCDIC,

build DEF PLIST for MODIFY routine to add external
definition. Register 1 = address of NAME ..
Register 2 = address of NAME,. Register } =0, no

NAME,. Register 3 = VALUE.

built DICT PLIST for MODIFY routine to change
RELDICT, 00, Register 1 = address of NAME..
Register 2 = VALUE
for RELDICT, 00,

RBSHER, RBSHAB, CE, CA, CEA0, CEAOX, EIAE,
EOA, RE, RA, OTME, OTMA, OTMAEI, RTME,
RTMA, DE, DA, NO:, IDERR, IDSIZE, DEL,
COMEXIT, KEYWRD, KEYWRDX, DUPKEYWD,
NAM, HEX, TYP, COMERR, SEQ, SUM, MODERR,
BADM:MON, TYPERR, COMNER,

1 Register 3 = resolution code

3.11.

PASS3 PROCESSOR FLOWCHARTS

BPM/BTM

(PASS3)

ENTER

Page 1

Ist 30 words are
Obtain 4 pages Control Command
of Work Area [- - 1 Buffer. Remaindes
is for LOCCT.
Read and Proceks Set TYPEFLG
"IPASS3" L. _ | =0 BPM
Command =2 UTMBPM

Determine type

Initialize
work area

i

of base system

UTsS

COND

Reset FLAGS,
SAVE BIAS
BIASADD,

DELETE, MONFLG

!

Read and DISPLAY
PASS3's Control
Command

Read
EOF
SI Dev,|
"PASS3
Completed"

EXIT

1

GET "id"
from Command

Append uid"
to "LOCCT"

Pg. 2

Set MMONTYPI
FLAG

Figure 3-1. Flow Diagram of PASS3

197

Set up OPEN
FILE PLIST

I

OPEN FILE

NO FILE

vailable
"OPEN M:El

ERR/ABN =
xxxx (LOCCT)"

(Loce

ASSINXT
Pg. 1

CLOSE and
SAVE LOCCT
FILE

Any
Parameters

OCCT

for M:MON"
yes P

Set MiMONFLG,
MONFLG,
FLAGS

{

SET DELETE

Reset BKGDRqL
FLAG

@ ON pg. 4 D pe.

Read one Record

¥

Check SEQ, #,
CHECKSUM
Image

¥

Add record
fo previous
records

PASS3LET

/

Page 2

RE-F ORM
LOCCT

Obtain BIAS
VALUE and
CONVERT

BIAS

OFFSET
?

IAS

SAVE VALUE IN SAVE VALUE
IN BIASADD
L T
P D pg. 3

Figure 3-1,

198

Flow Diagram of PASS3 (CONT)

Pcrar';neters

"Keyword SAVE
already USED"

PASS3NIXT pg. 1

"UNKNOWN
KEYWORD"
Sef T
delete
flag
Get 1 page ' Will contain
for work ~ - - -' save names '
area . ;

l

Set save flag
to base work
area

!

Initialize
work area

"name "

o

Put "name" in
Work Area

Page 3

pg. 1

199

Flow Diagram of PASS3 (CONT)

Page 4

more work area pg. 3

pg. 3 Get 1 Page ' Used for !
: Additional workl - -, Additional :
area i "names" .

Update work
area controls

@ pg. 3 ON
. yes BKGRDLL SET no
? 1

Get 4 pages - = - = T
BPM/BTM for work area | Used forl :
SYSTEM . - - M:MON's ;
| TREE Table |
4 ————— 4
Open File
None | im:MON" | EXISTS

o]

N '
Read keyed

record "TREE"

"BIAS <
BKGRDLL"

Release 4 pages
of work area l

Find end of
longest PATH

@ v and SET BKGRD|L

CLOSE and
SAVE M:MON

Figure 3-1, Flow Diagram of PASS3 (CONT)

200

| Page 5

Put BIAS into Put BKGRDLL Get BIAS from
LOCCT Table into LOCCT LOCCT Table
Table
"BIAS used

will be xxxx"

NOBIA

Set severity
level in LOCC1
table to "F"

l

Put current
account No, int
LOCCT Table

BPM/BT SYSTEM
Write LOCCT Get 2 pages
Table to ABS write Common Storagg
area on RAD

Move LOCCT
Table to Commé¢n
Core

LOCCT

for M:MON Get 1 page for Used for
7 Work Area | .| SPEC:HAND
Set: Data
R6 = LOCCT Side
R7 = SYSID (JIT {

Obtain SPEC:HAND

FILE N
M:LINK "OPEN/READ
To LOADER [] SPEC:HAND
IN :SYS Buffer for formihg Get 1 page for FILE ERR/ABN"
HANDLERS .. 4 Work Area i
File
Release 1 page
Work Area

XT o 1

Figure 31, Flow Diagram of PASS3 (CONT)

201

Page 6

Mxexooxxxxx” 1s
name of CURREN
FILE

OPEN
BASHANDL
FILE

Copy OPEN
FILE to ERR/AB "
HANDLERS
CLOSE and
SAVE OPEN CLOSE and SA\{E
FILE RELEASE
HANDLERS

ONHER
ONHAB
CLOSE and

RELEASE
HANDLERS

Get HANDLER
name from
SPEC:HAND Da}a

OPEN ERR/ABN

"OPEN/READ
xxxxxxxx FILE

ERR/ABN" T

l

Release 2 pages
work area

@‘ T Pg.]

already
encountered
CLOSE and
DL SAVE
Open named HANDLERS
file
L Release 2 pages
work area

to HANDLERS

Copy OPEN FILE ERR/ABN @

)

CLOSE and
SAVE OPEN
FILE

Figure 3-1. Flow Diagram of PASS3 (CONT)

202

no

OMDEL

Register 15
saved in

LOADFLG

Return from
| LOADER, SAV
SUCCESS FLAG

]

Release 2 page
COMMON
STORAGE

SAVE
FLA(.}2 SET

not
successful

pg. 1

XT pg. 1

Obtain 1st ROM
Pointer from
LQCCT's TREE
LEntry
Obtain name
from ROM
Entry

Element
file account

current

account
?

Page 7

DELIT

id FILE

DELETE LOCCT

”

Release SAVE
Work Area

DELETE
ELEMENT (RON
FILE

Jame in SAVE
Name Table
?

=

yes
nd To Next
of ROM YesS| TREE ENTRY
En’gs'ies

TREE Entries

Figure 3-1.

203

Flow Diagram of PASS3 (CONT)

A
System

Set Up TEMP
STACK Work
Area

GET All Available
Pages for Work
Area

Initialize Work
Area for LOAD
Module "ROOT

i

Initialize all
PLISTs

Generate
"ROOT" Load
Module

OT

Write Load
Module to
"ROOT" file

i

Release Core
Work Area

Pg. 4

Page 8

Figure 3=1. Flow Diagram of PASS3 (CONT)

204

4.0 DEF.

Note ~This Chapter discusses DEF for UTS (DOO release) and pre-HOO releases of BPM/BTM. DEF for BPM/BTM
(HOO releases) is described in Appendix C.

4.1 PURPOSE.

To generate one or more target system tapes (PO tape) or BO tapes which maybe used as master BI tapes for sub=-
sequent SYSGENs,

4.2 CALLING SEQUENCE,
Monitor control command
IDEF.
4,3 INPUT,
DEF control commands from the SI device.

IDEF (from C device)

:WRITE

:INCLUDE

:IGNORE

:DELETE

END

Files from random access device.
Comment commands

4.4 OUTPUT.
Display of DEF control information to LL device.

PO tape
BO tape

4.5 DATA BASE AND REGISTERS.

R7 = address in temp stack of control command PLISTS
R6 = address in temp stack of data and 1/O PLISTS

IGSTRT/IGEND =~ Pointer to START/END of IGNORE table
INCLSTRT/INCLEND - Pointer to START/END of INCLUDE table
Open FPTs

OPNTMSQN = Open disc to file

OPNPO =~ Open PO or BO (via DCB whose address is in R5)
OPNTM = Open disc to next file

OPNSYN = Open tape for Synonymous file

OPNPOLST = Open tape for LASTLM file

POIGS Table - Aufomatic IGNOREs for PO tape

POINCLS Table - Automatic INCLUDEs for UTS PO tape
BOINCLS Table - Automatic INCLUDEs for UTS BO tape
BBOINCLS Table - Automatic INCLUDEs for BPM/BTM BO tape

4.6 SUBROUTINES.

BPMBT (write BPM/BTM system to unlabeled portion of BO/PO tape) (See Appendix A for description)
UTMBPMBT (write UTS system to unlabeled portion of BO/PO tape) (See Appendix B for description)
NAMSCAN (to scan any field containing a name)

CHARSCAN (to check a specific character for legitimate syntax)

CHSTSCAN (to obtain a character-string field)

NXACTCHR (to get next active character from input record)

HEXSCAN (to scan for a hexadecimal number)

.205

DECSCAN (to scan for a decimal number)
QUOTSCAN (to compare a quote constant with a character string)
GETCHST (to obtain the next character string)

4.7 CONTROL COMMANDS.
Upon entry DEF requires a parameter on the !IDEF command that identifies the SYSGEN system for which tapes are
being created. This parameter may be either BPM, BTM or UTS. If none is specified then the currently running
operating system is used to determine the system type. If the parameter is invalid DEF prints an indicator message and
aborts, For UTS, an optional second parameter is a version number, There is no syntax analysis made on the field
so any set of characters is accepted. However, only the first three characters are retained as a general practice
the format of the charuci-er string is:

LOD
where

L = an alphabetic character

0 = the digit zero

D = a numeric digit (0-9)
The format then for the DEF control command is:

IDEF [UTS][,LOD]

BPM
BTM

The type and composition of the tape(s) DEF creates is a function of the control commands read by DEF. If the IDEF
is immediately followed by a monitor control command, one PO tape is created by default. The function of
the END command is to cause DEF to exit since an EOF on reading M:SI causes one PO tape to be generated unless
the last command processed was :WRITE. To write a BO tape and/or include, ignore or delete files for either tape
type, :Commands are required. These commands have the following format:

:INCLUDE (namel, name2 . . .)

IGNORE (hameA, nameB . . .)

:DELETE

:WRITE {BO} [,sN]

PO

All commands preceeding the :WRITE apply to that tape being created and may appear in any order. The :WRITE
is required for BO tapes as PO is generated if the type parameter is null or illegal. The optional SN fieid permits a
generalized assignment of PO/BO to (DEVICE, 9T) prior to calling DEF, The processor itself stores the particular
SN into the DCB.

The type of files that may be specified or are affected by the other commands depend on the type of tape being

generated, Table 4~1 summarizes this information.

206

Table 4=1. File Types

:COMMAND BO PO
:INCLUDE Keyed Files Consecutive Files
:IGNORE Consecutive Jobs Keyed Files
:DELETE BOTH BOTH

4.8 DESCRIPTION.
Upon entry DEF initializes its dynamic data area and processes the !DEF command. One page of core is obtained

for storing file names into the tables pointed to by IGSTRT and INCLSTRT,

DEF then reads it :Commands andbranches to the appropriate routine to process them. For :INCLUDE and :IGNORE,
this involves syntax checking the names (< 15 characters); determining if room exists for the entry (if not, obtaining
an additional page of core); storing the name in the appropriate table; and exiting to read another command.

For :DELETE,a flag (DELETEF) is set before exiting to read another command. When an abnormal return (ECF) is
made from reading SI for commands, ENDFLG is set and if the WRTFLG is non-zero indicating the last command was
:WRITE then the routine is entered to clear up the stack and exit. If WRTFLG is zero, then the routine to write a

PO tape by default is entered.

For the :WRITE command, entry is made to the initial routine that determines which type of tape is being generated.

From here, a branch is made to either the PO or BO routines.

For PO tapes, after processing the optional SN field, the names of files that are to be automatically ignored

(i.e., LASTLM and SPEC:HAND) are linked to the end of the IGNORE table. If the system being created is UTS,
then the names of files to be automatically included are linked to the end of the INCLUDE table. These files are
listed in Table 4=2. The appropriate routine to write the unlabelled portion of the tape is segloaded and entered.
See Appendices A and B for a description of these routines. Upon return, ten additional pages of core are obtained

and the common routine (CCA) to generate the remainder of either type of tape is entered.

For BO tapes, after processing the optional SN field, the appropriate routine to write the unlabelled portion of the
tape is segloaded and entered. Upon return, for BPM/BTM systems, the files to be automatically included (see
Table 4-2), are linked to the end of the INCLUDE table, ten additional pages of core are obtained and exit is
made to CCA, If the system is UTS, the file, M:SPROCS in :SYS account, is opened, ten pages of core are ob-
tained and the file is read into the newly acquired area and linked to the end of the INCLUDE table. M:SPROCS
contains the names of the monitor overlays and shared processors but only the overlays are added to the INCLUDE
table. The names of the other files to be automatically included are linked to the end of the added monitor over=-

lay names and exit is made to CCA. For UTS the automatic INCLUDES reflect earlier releases of the system.

Upon entry, the common routine (CCA) begins by processing the INCLUDE list. This involves obtaining the name
of a file, storing it in the open FPT (OPNTMSQN) for M:TM to the disc and then opening the file, using the

FPARAM option. The file, thus opened, is checked first if it is a synonymous file in which case special handling
is required, namely its parent name must be added before writing it to the tape. Note the parent file must occur

before the synonymous file or the latter is lost.

207

Then the organization of the file is determined. If the tape being generated is PO then only consecutive files are

processed, if BO then only keyed files. The other types are automatically handled later.

The PO/BO tape is then opened and the file is read into core and written to tape until an EOF is encountered at
which point the DCB is closed. This routine is repeated until all the names in the INCLUDE table have been
processed. When this processing is completed and the files thus written to the tape have been listed on the LL

device, the next phase of DEF is entered.

If a BO tape is being generated, a null file, LASTLM, is written to the tape. Subsequently, or if a PO tape is
being created, the FPT for open-next to the disc (OPNTM) is opened and file parameters obtained. If the file organ-
ization is consecutive (BO)/keyed (PO), the IGNORE table is searched to determine if it is listed there. If the
DELETEF is set, then the file is deleted when M:TM is closed, If the file is not be be IGNOREd, then it is read

into core and written to the tape. This procedure is repeated until all files in the current account have been processed.

If on opening=next-~file, an abnormal retumn is made indicating the file is a synonymous file, its name is stored in a
new INCLUDE table whose location is pointed by INCLSTRT and a flag (SYNFLG) is incremented, thus main-

taining a running total of the number of synonymous files found.

When an abnormal return is made indicating an end of all files on open-next, if the tape being created is BO, it is
immediately closed, rewound, and saved. If a PO tape is being generated, SYNFLG is tested. If non-zero,a
second pass is made through the INCLUDE routines. If or when SYNFLG is zero, the null file, LASTLM, is written

to the tape which is closed, rewound, and saved.

The pages of core acquired thus far are released, If ENDFLG is not set, the flags and counters are zeroed to pre-

pare for the generation of another tape. If ENDFLG is set, DEF exits.

208

Table 4-2. Automatic INCLUDES

PO Tape * ' BO Tape **
uTs. uts! BPM/BTM
BPM XDELTA FMGE
uTs LOGON PASS1
SIG7FDP TEL ERRMSG
:BLIB SUPER :DIC
FLIBMODE DEFCOM :LIB
SIGMET SYMCOM M:C
M:CDCB JITO M:0OC
M:OCDCB Jim M:BI
M:BIDCB JIT2 M:CI
M:CIDCB JIT3 M:SI
M:SIDCB JITS M:EL
M:EIDCB ANLZ M:BO
M:BODCB ERRMSG M:CO
M:CODCB GHOSTI M:SO
M:SODCB RECOVER M:PO
M:PODCB M:SPROCS M:GO
M:GODCB M:MON M:LO
M:LODCB PCL M:DO
M:DODCB Ccl M:EO
M:EODCB LOADER M:LL
M:LLDCB PASS2 M:CK
M:SLDCB LOCCT M:SL
M:ALDCB PASS3 M:AL
M:LIDCB DEF M:LI
Plus Monitor overlays M:MON
from M:SPROCS PCL
CCl
LOADER
PASS2
LOCCT
PASS3
DEF

* From Current Account

** From :SYS Account

tReﬂecl's earlier releases of UTS

209

4,9 DEF MESSAGES,
::2:SYSGEN DEF IN CONTROL::::
::::DEF COMPLETED::::

**CC TYPE UNKNOWN
*+:+GET NEXT CC

**SYNTAX ERROR, NO (!
**DELIMITER MUST BE *,' OR ')’

**NAME INVALID OR > 15 CHAR, LONG

****NOT ENOUGH CORE AVAILABLE
*****SYSGEN DEF ABORTED

***FWRITING PO BY DEFAULT
***]| | EGAL INCLUDE ~ WILL BE COPIED LATER

***DEF TYPE UNKNOWN
***TYPE UNKNOWN = xx M ysed

**NO ':! in column-1
****TROUBLE WITH M:SPROCS
***CANNOT WRITE TAPE

***CANNOT OPEN OUTPUT DEVICE

.+ . PO TAPE CONTENTS, . .
. . . BOTAPE CONTENTS, . .

INICLUDE ITEMS >

*#*OTHER ITEMS***

Fedkkkkt*INCLUDE ITEMS NOT FOUND
4,10 INTERNAL ROUTINES, ’

DEF

READFRST

INIT

DEFRDCC

DEFINCL
DEFIG
DEFWRITE
DFWRTPO
DFWRTBO
DEFTABLR

PAGER

210

Commentary at beginning of execution,
Commentary at end of execution,

Error in :Command, DEF reads next command,

Error in syntax, DEF reads next command,

Invalid terminator on :Command., DEF reads next
command,

DEF searches for next parameter,

Work area too small. DEF exits.

Either no tape type specified or parameter invalid on :WRITE.

On the ANCLUDE command a keyed file (for PO)
or a consecutive file (for BO) has been specified.
The file name is printed above this message. DEF
continues,

System type field of IDEF command has been specified
but is invalid. DEF exits.

System type field of IDEF missing, DEF defaults to

currently running system type (xx).
Command in error. DEF reads next command.

In attempting to open M:SPROCS in creating a
BO tape for UTS system, difficulty encountered.
DEF releases the tape and if ENDFLG set, exits,

In attempting to open tape (BO/PO), dabnormal
condition occurs. DEF releases tape and if ENDFLG
sef, exits,

These are subtitles that are followed

by a list of the appropriate files.

Main entry, initialize processor dynamic data area
Process DEF command.
Initialization of pointers,

Read :Command for DEF, and branch to appropriate
routine or set DELETEF,

Process :(INCLUDE.

Process IGNORE.

Initial processing of :WRITE.

:WRITE processing for PO,

:WRITE processing for BO.

Processing name options on :INCLUDE or :IGNORE.

Get a page of core and zero it out.

READCC

LISTCC

GETRITEMON

EOCCSCAN
CCA
NXTINCL
RDWRITEM
SYNINCL
NOINCL
NXTFILE
IGNOR1
ISSPEC
CLSDSK
RDWRITE
ALLDONE
NXTTPE

Error and abnormal return routines,

LSTWRT
RTMAINCL
OTMAINCL
RTMA
OTMA

OPOA

211

Reads :Commonds for DEF,
Register 12 = CC Buffer address

Display commands on LL device.
Register 12 = CC Buffer address

Obtain appropriate WRITEMON overlay according
to system type (UTS or BPM/BTM),

Find end of current control command.

Generate PO/BO tape.

Obtain next INCLUDE file name,

Read and write file.

Process synonymous file includes,

End of includes, begin generating remainder of tape.
Obtain next file on disc.

Search ignore table for match,

Delete file if required.

Close file,

Read file and write to tape.

Releases pages acquired, if ENDFLG set, exits,

Zeroes flags and counters, restores FPTs to original
state, returns to INIT via PAGER,

EOF on reading M:SI.

EOF on reading INCLUDE files,

Abnormal return on opening of INCLUDE file,
EOF on reading M:TM file,

EOF on open nexi of M:TM or synonymous file found
for open=-next.

Cannot open BO/PO Tape.

4,11 Flowcharts

ENTER

\
Initialize
Dynamic

Data Area

'

Process !DEF TYPEFLG
command | _ .. 0 =BPM/BTM

2=UTS
|_PAGER |

Get one of Core
and zero it

pg. 11

INIT

Initiclize
pointers

READCC Abnormal Rin

READ :Command|- - - - | LSTWRT
Exit from Loop

l pg. 11 pg. 11

List :Command

Page 1

pg. 11
Determine type
of :Command
,)
DEFINCL DEFIG DEFWRITE :DELETE ID
Process Process Process Set flag !’roEcess if Card
{INCLUDE AGNORE WRITE (DELETEF) in Error
Pg. 2 Pg. 2 Pg. 3 Pg. 12

Figure 4-1. Flow Diagram of DEF

212

DEFINCL

Initialize
| INCLSTRT
(= NXTNAME

+ 1)

Adjust INCLEND
| (= NXTNAME+

)

DEFTABLR

Process name

options and

ore in table

lpg. 12

Adjust INCLEN
(=NXTNAME)

EXIT

DEFTABLR

Process name

Adjust IGEND
(=NXTNAME+]

options, store
in table

pg. 12

Adjust IGEND
(=NXTNAME)

EXIT

Figure 4-1. Flow Diagram of DEF (CONT)

213

{ DEFWRITE ’

Get tape type
Field

PODFLT

Il |egal';PO by
Default (print

message)

D
pg. 4

Page 3

Figure 4=1. Flow Diagram of DEF (CONT)

214

i

(DFWRTPO)

\ 4

DCB Pointer (R5!
to M:PO

OUTSN
Process SN Option,
sef in DCB

pPg. 4

WRTFLG=
ORG (x'20")

Link automatic
IGNORES of
end of IGEND

Link automatic

OUTSN

Option PRESEN

yes includes atend
of INCLEND
no

Save

Registers

Get version *

R7 = M:PO address
Ré6 = Fl QO
GETRITEMON Restore Registers Get 10 pages
SE.GLOAD Overlay _y| Print PO tape of Core
write unlabelled contents
portion of tape

pg. 13

Page 4

yes

Store in DCB

pg. 6

Figure 4=1, Flow Diagram of DEF (CONT)

215

(DFWRTBO ’

y

DCB Pointer
(R5) to M:BO

OUTSN
Process SN
option, set in
DCR

pg. 4

WRTFLG =
ORG (x'10")

Save Registers

Get version number
R7 = M:BO address

LR6 =Flogs for BO |

GETRITEMON

write unlabelled
portion of tgpe

SEGLOAD overlay

Pg.

Restore
Registers

no

Link automatic
includes for

BPM/BTM ot
INCLEND

y

Core
R5 = DCB point:

Get 10 pages of

)

|

|
Open M:SPROCS

(:SYS)

Get 10 pages
of Core

Link to
INCLEND

Yy
ead M:S

3l

-

Close M:SPROCS

A

Search for TEL
Name=End of
Monitor Overlays

Link automatic
includes to end
of Monitor overlays

Adjust Buffer
Addresses

Y

R5 =DCB point+
to M:BO

CCA |\,
pg. 6

Page 5

Figure 4-1,

Flow Diagram of DEF (CONT)

Page 6

Get Byte count
of Entry name |«

Save Position
in Table

BC:X'40’

pg. 9
AND =0 NXTINGL
got entry

pg. 7
= X'40'

Must be X'4F'
Code. Turn on

:SYS in account
field of FPT

Increment (+1)
position in table

Figure 4-1. Flow Diagram of DEF (CONT)

217

Pointer to OPE
FPT (M:TM) (D1

!

Pointer to File parameters
(FPARAM) (D2) Pointer to start
of variable parameters

R1)

INCLSTRT
=0

no

from FPARAM

Access file namd

name
?

yes

as INCLUDE

Check ORG
of file

Is it
correct for

Store file name i
OPEN FPT C.Iose and Save
File
NXTINCN
Adjust table
pointers

///
no

Adjust variable
parameter contfrp
word

4

Get buffer addréss

and size

OPEN M:TM Abnormal addre
to FILE L _. _| OTMAINCL

pg. 13

pg. 6

INCLUDE
?

Get Key Length
(D4), ORG (D3)
from FPARAM

Y
D1= OPEN FPT
for M:PO/M:BO

I}

Page 7

For INCLUDE
| PO = CONSEC only
BO - KEYED only

OPEN Abnormal addresﬂ
M:PO/M:BO + - - JOPOA
(Print file name)
pg. 12
Abnormal Addresk
RTMAINCL

“|(Exit Point of

Get actual
Record Size

Write Record
M:PO/M:BO

S— |

Loop)
pg. 8

Figure 4-1, Flow Diagram of DEF (CONT)

218

Page 8

PGCNTL
Determine reasoh
for ABN return

pg. 8

RTMAINI

Close and save
Disc and Tape
Files

Pg. 7

PGCNTL

Flag set

release extra RETURN
pages

Buffer
too small

RETURN no

NOROOM

es rror messoges
VS Jist CC ‘ EXIT DEF
DEF DONE '

pages obtained
?

no

Get max pages
Set FLAG

Position one
record back RETURN
adjust pointer

Figure 4~1. Flow Diagram of DEF (CONT)

219

Page 9

ISSPEC

BO yes Write !.ASTLM Close and
TAPE | (hull file) Rel Fil
? Close Save | Release Tile
‘Tgs_e_r_,
no
CLSDSK no
Close and Save
File
NXTEIL
D1 = OPEN-NXT
NXTFILE
FPT for M:TM T
D2 = FPARAM
OPEN (NEXT) Abnormal
M:TM L - —- 4 oaddress OTMA
’ pg. 10
Get file name RDWRITE
from FPARAM Get KEYMAX
D1 = OPEN FPT
Monitor OPEN DCB Abnormal OPOA
Specioal file CLS?SK to Write Lo
) Tape
pg. 9 P
} pg. 12
‘_
PO~%eyed fll.es { Read Record . Ab.norm’ol RT
BO~consecutiv - - -| Exit pointer
- M:TM
of Loop
pg. |

Get actual
Record Size

Yy

Write ;
Record
{M:PO) /M :B9

Figure 4-1. Flow Diagram of DEF (CONT)

220

pg. 9

no

PGCNTL

Determine reason
for ABN return

lpg.8

Close Tape
FILE

SYNONYMOUS
FILE
?

SYNON FILE

yes
—

Set Table addres
in INCLSTRT

n

no
Put SYNON
name in table

pg. 9

Page 10

Close, Save
M:BO and
Rewind

m

Write LASTLM
Close and
Save and
Rewind M:PO

ERRDNIN

ALLDON

NXTTPE
[zero out flags
and constant
set DCB to
original items

Set End of

SYNON TABLE

pg. 6

ENDFLG &S

Print
DEF DONE

EXIT DEF

Set pointer to
INIT

pg. 1

Figure 4-1. Flow Diagram of DEF (CONT)

Get 1 page

Page available
) ’

Zero page out

Increment page
count keep track
of end

RETURN

¥

| Set ENDFLG

Last
Command

WRITE
?

pg. 10

LISTCC

List previous CQ
if not already dq¢

bne

[
/ Read M:SI for

LIST COMMA

and ERROR
MESSAGE

pg. 11

ABN LSTWRT

pg. 11

Set ENDFLG

pg. 10

RETURN

£ pg. 1

RETURN

| [ustir /

[

RETURN

Page 11

222

Figure 4=1, Flow Diagram of DEF (CONT)

PAGER
Get 1 page
and zero it

no

Pg-

DEFTABYR

Get name optioh

11

Name

Invalid
?

Error Message

Room
on page for
name

?

Store name
in table

RETURN

of options
?

yes

Page 12

Print Message
invalid commarnid

pg. 1

Print can't
OPEN OUTPUT
DEVICE

Open, Close
Release,
Rewind Tape

pg. 10

Figure 4=1, Flow Diagram of DEF (CONT)

223

GETRITEMON
SEGLOAD BPMBT -
appropriate overr [(BPM/BTM)

lay to write un=-
labeled tape porfion

Y
Branch to
Overlay

< RETURN)

l

UTMBPMBT-UT

Store SYNON name
and parent file name
in special SYNON
EPT

/

OPEN FILE
("WRITE" FILE)

Page 13°

INCLUDE File

not found

Figure 4-1,

Flow Diagram of DEF (CONT)

224

5.0 LOCCT

5.1 PURPOSE
To generate a permanent file containing the Loader Overlay Control Command Table (LOCCT) information used

by SYSGEN PASS3 and the system Loader when loading a specified element (e.g., M:MON, PCL, EDIT,).

5.2 CALLING SEQUENCE
The following Monitor control command sequence:

ILOCCT (LMN,X),.....

ITREE.....uvnn < optional >
IDATA
:LOCCT X

5.3 INPUT
LOCCT control command from C device (80 characters maximum per physical image):

:LOCCT

LOCCT from core common storage (UTS Base System) or absolute read/write scratch area on system's random

access device (BPM/BTM Base System).

5.4 OUTPUT

A display of LOCCT control information to LL device. A permanent file to random access device containing

LOCCT table. A copy of permanent file information to the PO device.

5.5 BASE REGISTERS
Register 7 = address in temp stack of control command PLISTs, and 1/O PLISTs,

5.6 SUBROUTINES
NAMSCAN (used to obtain the name from the LOCCT control command).

5.7 DESCRIPTION

The LOCCT processor is entered from the system's Control Command Interpreter (CCI) as a result of a
"ILOCCT" Monitor control command being encountered. The "ILOCCT" command replaces the "ILOAD"
or "I OVERLAY" command, although the information on the "ILOCCT" command is identical to that of a
LOAD or OVERLAY command. CCI processes the "ILOCCT" command and the optional "!ITREE"
command and terminates on the "!DATA" command., The resultant output is a LOCCT (see Chapter 6)
which contains all of the information from the "ILOCCT" and "ITREE" commands in a compressed format,
If the base system is BPM/BTM, the LOCCT is saved, temporarily, in the absolute read/write scratch area
on the system random access device. However, if the base system is UTS, the LOCCT is saved in the

common area of core,

225

CCI then enters the LOCCT processor. LOCCT proceeds to read its own control command, ":LOCCT",
The syntax for this command is

:LOCCT name
This control command must immediately follow the "IDATA" control command, The "name" field is
optional, however, if present, it is used to form a file=name which is the name of the permanent file
containing the LOCCT. The "name" is syntactically checked and must be from one to ten alphanumeric

characters of which one character must be alpha.

This control command cannot be continued to other physical images. Unlike other SYSGEN processors,
a comment control command (i.e., a control command with an asterisk in character position one), is
not recognized. However, comments may be added to the ":LOCCT" control command by preceding

the comment with a period,

The file-name formed from the "name" option is accomplished by appending the "name" to the characters

"LOCCT",

If the "name" field is not specified, a previous assignment must have defined the file=name. This is
accomplished with the Monitor control command "IASSIGN", The assignment is to the M:EO DCB,
and must provide a file-name which is equivalent to that which would have been generated by the

LOCCT processor, i.e., the name must be appended to the characters "LOCCT",

If an Assign command is specified, and the ":LOCCT" command specifies a "name", the "name" on the

":LOCCT" command supersedes the assignment.

The LOCCT processor continues by obtaining the LOCCT from either the absolute read/write scratch area
or the system random access device (if the base system is BPM/BTM), or from the common area of core
storage (if the base system is UTS). The LOCCT is interrogated to determine if it is legal. That is, all
element file names (Relocatable Object Module names) are checked to make sure that they do not
reference labeled tape for their inputs. All element file references must be to a random access device.

The LOCCT processor then forms binary card image type records (Table 5-1) from the LOCCT. Each record
contains a binary type identification, a hexadecimal sequence number, a byte checksum, a byte containing
the size of the record (in bytes), and 84 bytes of LOCCT table information. The last eight columns

(or 32 bytes) remain unused. Each record is then written in the file "LOCCT name" and is also output

the PO device,

When the LOCCTs are being generated, it is recommended that they be built in the same account in which
SYSGEN PASS3 executes. In a LOCCT, each element file reference contains a corresponding account
number in which that file is to be found, If these account numbers vary, and the files and accounts do not

exist when SYSGEN PASS3 eventually uses the LOCCTs, then the load phase will not be successful.

5.8 LOCCT MESSAGES

The error messages which may appear on the LL device while generating a LOCCT are as follows:

226

***UNKNOWN CC OR The LOCCT control command ":LOCCT" contains an invalid
CONTINUATION ILLEGAL character string for the characters assumed to be "LOCCT",
or the command requests a continuation command (i.e., the
"sLOCCT" command contains a semicolon prior to the "name"

field). LOCCT displays abort message and exits to the Monitor.

LOCCT PROCESSOR ABORTED This message is displayed in conjunction with other LOCCT

processor messages.

***NAME INVALID The ":LOCCT" command's "name" is not a legal alphanumeric
name. LOCCT displays abort message and exits to the Monitor.

***CANNOT GENERATE LOCCT
WITH ROMS ON LABELED A load item or element file (Relocatable Object Module - ROM)
TAPE is to be found on labeled tape and is invalid. LOCCT displays

abort message and exits to the Monitor.

***ROM TABLE END CANNOT
BE FOUND The LOCCT, as generated by CCI (System's Control Command
Interpreter), contains invalid or unrecognized Relocatable
Object Module (ROM) information, i.e., the end cannot be
found. LOCCT displays abort message and exits to the Monitor,

*#**NAME > 10 CHARACTERS The "name" contains more than ten characters. LOCCT displays

abort message and exits to the Monitor.

#] /0O ERR/ABN FOR READ C = XXXX

***] /O ERR/ABN FOR WRITE EO=XXXX

***1/0O ERR/ABN FOR WRITE PO=XXXX

***QPEN EO ERR/ABN = XXXX

***ABS READ ERR/ABN = XXXX < for BPM/BTM only >
One of the above messages appears when an 1/O error or
abnormal condition is encountered on the C,EO, or PO devices.
Under a BPM/BTM base system, the ABS READ message may appear.
The value XXXX is the 1/O error/abnormal code. LOCCT
displays abort message and exits to the Monitor,

227

Row

D

SEQ
CKS
SIZ

NV 0N O WwN

Character

1 2345678910 / 70 71 72 73 74 75 76 77 78 79 80

SEQ

NOT USED

DATA

59

X'3E' binary card code

X'T1E" binary end card code

two-digit hexadecimal sequence number

byte checksum of card image

number of useful bytes in card image, including the control word in columns 1-3,
However, the size will never include columns 73-80, but, will include all of the
DATA, If the useful data ends prior to column 72, then the size will not include

those columns (or bytes) prior to column 72,

Figure 5-1. LOCCT Record Format

228

5.9 LOCCT PROCESSOR FLAG
LOC X'2B' in Monitor This location contains the information which identifies what type of base
Monitor is in control {e.g., BPM/BTM or UTS).

The format is:

MON
0 34 31
where
MON = 4 BPM
5 BPM/BTM
6 UTS
5.10 INTERNAL ROUTINES

LOCCT main entry, initialize processor, and general controller
GENFILE generate a permanent file for LOCCT
LOCCT1 form next record from LOCCT information
GETCOM get original LOCCT from common storage

Register 13 = buffer address where LOCCT is to end up
Register 14 = buffer size in bytes

FINDEND find end of LOCCT for purposes of generating a permanent copy
Register 13 = base address of work area

Register 7 = size of LOCCT in words

FINDENDX check for valid ROM table in LOCCT
Register 2 = relative address of ROM table in LOCCT
FINDROMX obtain from TREE table (in LOCCT) the next ROM table

information pointer.
Register 1 = address of LOCCT
CONV convert error/abnormal code to EBCDIC

Input: Register 10 = error/abnormal code, (bits 0-7)
Output: Register 4 = converted code in EBCDIC,
Special error routines include: EO, ECOMMON, El, E2, E3, E4, CE, CA, WE, WA, PE,
PA, OE, OA, RE, RA

229

5.11 LOCCT Flow Charts

Pg. 2

ENTER

Get 4 pages

for work area

{

Initialize
LOCCT flags &

work area

Y

Read
LOCCT

command

Display
Command

—> displayed command

Initialize
LOCCT's

temp stack

Y

Get

no hame

Name

field

¥

—

Append name
to "LOCCT"

characters

-~

Set up open
PLIST for perm.
file

Read ABS
Scratch from
disc

Base Monitor
type

R

given

UTS

Page 1

Set up open
PLIST, no

file name

Pg. 2

Figure 5-2, Flow Diagram of LOCCT

230

Calculate
LOCCT size

with no ROM/
TREE

Get common
Limits

¥

Get LOCCT
size (word 1)

¥

Move LOCCT

to work area

¥

Release
common
core

Open output

file perm.

FINDENDA

N

LOCCT]‘]

Pg.

Calculate
LOCCT size

with TREE, no
ROM

LOCCTI

Pg. 3

¥

Page 2

Determine TREE
address & end of
TREE

y

Get Ist ROM

entry pointer
from TREE entry

FINDENDX

Pg.

N

Figure 5-2, Flow Diagram of LOCCT (Cont.)

231

"Cannot Gen.
LOCCT with
ROMS on

labeled tape

¥

"LOCCT
ABORTED"

EXIT

[

Calculate

ROMs last

LOCCT size with

{

éniries after

TREE entries -

entry refers
to label tape
?

Page 3

of ROM entrys
?
To next
ROM eniry
Y
To next
TREE entry INDEND2
FINDROMI1
Pg. 2

Y

Calculate
LOCCT size
with TREE last

!

Binary code size,
Byte checksum, &
sequence

Byte image
buffer

Initialize 120

—

Set up 1Ist 4

-« ——Bytes,

Control word

Pg.

Figure 5-2, Flow Diagram of LOCCT (Cont,)

232

Y

yes

Close & Save

File

\
EXIT

Move < 84 Bytes
from LOCCT to
buffer

Page 4

Y

Move max. of 84
Bytes or remainder
LOCCT, which
ever is less

Form checksum &
put in image

¥

Write buffer

to file

Y

Write buffer to
PO device

_nd
~ of LOCCT

A

Set to next

sequence ¥

Figure 5-2,

Flow Diagram of LOCCT (Cont.)

233

6.0 TABLES, FILES, SUBROUTINES

6.1 SYSGEN LOADER OVERLAY CONTROL COMMAND TABLE (LOCCT)

F LOCCT SIZE
Word = 0 S Y ' ‘
1 ROM TABLE DISPLACEMENT
2 TREE TABLE DISPLACEMENT
3 Z
O
4 LOAD BIAS g §
5 o2 o
O O
6 o 5
= ¢} =
< i T w | Y
o) N 5l S v
8 =1 — o~ e} L.
& : 2 o (@]
7 <19 K 8 g
10| Load Module NAME (3 words) =10 S| 6 Q |u
- 1 oz | O f.(_ [
13 User Account (2 words) 8 w < - &
N v o} 2 5’5 O |w
15V N - 10 3 = 7
) Y 225 =2
k <z O |2
Word = m TREE SIZE 2= n 05
- Z o z |~
Word - ml ROOT Segment Information g o g o% ;
Z|5 252 2
. . - | w 2|z o]
Segment 1 information w | o| << O
Y voElF 2 2s 2
Y =1 g —
) A o9 o
Word - n ELEMENT FILE Information ol o
(Root Segment) — —
vy
pr
ELEMENT FILE Information 2
(Segment 1) ;
O
(=4
V, v
Y \

where

ROM TABLE DISPLACEMENT the number of words from word = 0 to word n.
TREE TABLE DISPLACEMENT the number of words from word = 0 to word - m1.
LOAD BIAS the bias at which to load this element.

LOAD MODULE NAME the name given to this element,

USER ACCOUNT the account in which this LOCCT is being generated. PASS3

forces this to the current account.

F a flag which identifies this LOCCT (if in common storage only, i.e., UTS Base System)
as coming from PASS3 or the or the Systems Control Command Interpreter (CCI). If CCI,
F=0 (Bit 0); if PASS3, F =1 (Bit 0).

SL the load severity level indicator. PASS3 forces this to be "F", the highest severity level
- possible (Bits 8-11).
BASE SYSTEM refers to the monitor type which is in execution,

Figure 6-1. LOCCT Format
234

Word

10

SEGMENT NAME
(TEXTC FORM)

1st ROMPOINTER BACK LINK
FORWARD LINK OVERLAY LINK
00 SIZE 00 LOCATION
RF/DF SIZE RF/DF LOCATION
01 SIZE 01 LOCATION
EXPRESSION SIZE EXPRESSION LOCATION
10 SIZE 10 LOCATION
where

1st ROM POINTER the number of words from word-n to first ROM* name (or Element File
Information block) in the LOCCT,

BACK, OVERLAY, AND FORWARD LINKS the displacements from word-m1 to Segment
Information for next overlay, in the overlay structure,

00 SIZE AND 00 LOCATION the load modules' protection type O size (doublewords)
and base location (doubleword address),

01 SIZE AND 01 LOCATION same as for 00, except it is for load modules’ protection type 1.
10 SIZE AND 10 LOCATION same for 00, except it is for load modules' protection type 2,

RF/DF SIZE AND RF/DF LOCATION the External DEF/REF table's size (words) and base
location (doubleword address) for this load module.

EXPRESSION SIZE AND EXPRESSION the Expression (External DEF/REF) table's size

(words) and base location (doubleword address) for this load module.

*
NOTE: ROM name implies Relocatable Object Module name.

Figure 6-2, TREE Entry Format

The Element (ROM) Table's entry has the following format:

Word ‘: ELEMENT FILE NAME
2 (TEXT FORM) [rAc
j ACCOUNT OF ELEMENT FILE
5
. PASSWORD

where

FLAG is a flag identifying the last Element File Name
within this Table and identifying the element file
name as being found on labeled tape, i.e.,

235

X'4x" = not end of Element File names within
this table,

X'0x' = end of Element File names within this
table.

x = 2 = Element File name found on labeled tape.

Figure 6-3. ROM Table Entry

6.2 SYSGEN LOAD MODULE COMPONENTS

KEY = "HEAD"
Word 0 TYPE 0 | FF SIZE J \
! A+ | | stapD
2 MODBIAS =
3 LOCB/SIZU LOCU BE
4 &
o
3 RFDFU Aw 3
6 %
7 3
8
9
10
11 Y
where
TYPE = X'81' library load module (used by SYSGEN),
= X'80' load module.
SIZE = X'18' HEAD size (bytes) for BPM/BTM target system.
= X'30' HEAD size (bytes) for UTS target system,

*A =1 load module is in absolute form, i.e., no relocation dictionary(s) (RELDICT).

=0 load module is relocatable.

*T=1 no TCB
=0 TCB is present.

*STADD Load module's entry point or start address.
#W number words in TREE,
MODBIAS load module’s bias, doubleword address,
LOCB SECT.00 base location, doubleword address for BPM/BTM module,
LOCU SECT.00 base location, doubleword address for UTS module.
SIZEU SECT.O00 size, in doublewords, for UTS module.
RFDFU REF/DEF STACK (RFDFSTK) size, in words, for UTS module.
*For SYSGEN - generated load modules: A=0, T=1, and STADD=0,

Figure 6-4. HEAD Record Format

236

KEY="TREE"

Word 0

tw
1 SEGMENT NAME
2 (TEXTC FORM)
3
4
5
6 00 SIZE 00 LOCATION
7 RF/DF SIZE RF/DF LOCATION
8
9 EXPRESSION SIZE EXPRESSION LOCATION
10
11

where

#w

number words in TREE.

SEGMENT NAME

00 SIZE
00 LOCATION
RF/DF SIZE

RF/DF LOCATION
EXPRESSION SIZE
EXPRESSION LOCATION

name of load module root segment.

SECT. 00 size in doublewords
SECT. 00 base address, as a doubleword address,
RFDFSTK size in words

RFDFSTK base address, as a doubleword address,

EXPRSTK size in words,

EXPRSTK base address, as a doubleword address,

Figure 6~5, TREE Record Format

The KEY names used to identify the remainder of a load module are formed by appending to the

SEGMENT NAME a one-byte digit which identifies a component as follows:

digit = 00
= 01
= 02
= 03

segments RFDFSTK
segments EXPRSTK
RELDICT.00 (relocation dictionary for SECT.00)
SECT.00 (SYSGEN ~ generated tables, data)

Therefore, for a segment name of "ROOT" (refer to PASS3), the corresponding components will

be:
05D9DSD6EE300
05D9D6DGE301
05D9D6D6OE302
05D9D6D6E3D3

implies
implies
implies

implies

237

ROOTOO
"ROOTo" it
IIR OOT02 "

IIROOT03 n

=RFDFSTK
=EXPRSTK
=RELDICT. 00
=SECT. 00

RFDFSTK (Generated by call to MODIFY subroutine, 6.5)

Word 0
1
2
3

tw ||t] 3
VALUE
BA HA | wa DA >
Z
REF/DEF NAME -
w
v Y <
ul
| (TEXTC FORM) l e
Y
where

#W number of words in REF/DEF entry (n+ 1),

TP=0
=1
=2
=3

external definition,
secondary external reference.
primary external reference.

dummy section,

=4 or 6 control section.

=5

VALUE
BA =1
HA =1
WA =1
DA =1

forward reference (null if #W = 1),

actual value assigned to an external definition. 0, when name is external
reference.

VALUE is byte resolution,

VALUE is halfword resolution.

VALUE is word resolution.

VALUE is doubleword resolution.

Figure 6-6, RFDFSTK Format

238

EXPRSTK (Generated by call to MODIFY Subroutine 6.5)

Word 0 #w E[d pse CB, CBy i
] CB3 ——— CBn ==
; . Y >
. =
n0 DESTINATION E
nl BA J HA J WA DA (Z)
n2 WORD 1 E
n3 WORD 2 g
- us
g . v
m WORD n [
where

*W number of words in expression entry (m + 1),

DSP the number of words to word - n2.

CB,y, CBQ, vee

,CB

n

expression evaluation control bytes.

Figure 6-7 EXPRSTK Format

The expression control byte values recognized by SYSGEN include:

CBi=0
=1
=2

null

add constant from next word (word;) in word list in EXPRSTK.

end of expressi

= X'20' to X'23'

= X'28' to X'2B'
= X'30' to X'33'
= X'34' to X'37'

= X'38' to X'3B’

on

add declaration according fo pointer given in text word (word;) of
word list with resolution of bits 6-7 of CB,

subtract declaration similarto X'20' to X'23!,

change expression resolution to bits 6-7 of CB,

add the ASECT doubleword address zero to the expression at

the resolution given,

subtract the ASECT similar to X'34' to X'37'.

The CB; digit's format for X'20' throught X'2B' is

00 10 SO «rr

where

$S=0 add

=1 subtract

rr=0 byte resolution

=1 halfwo

rd resolution

=2 word resolution

=3 double

word resolution

239

The CB; digit's format for X'30" through X'33' is

00 11 00 rr

where

rr = resolution code as previously described.

The CB; digit's format for X'34' through X'37' is

00 11 O1 rr

where

rr = resolution code as previously described.

The CB; digit's format for X'38" through X'3B" is

00 11 10 rr

where

rr = resolution code as previously described.

word0, wordl, . . . wordn corresponds to control bytes (CB;) whose values are 1 or X'20'
through X'2B', and are either constants or displacement pointers to the REDFSTK, The
format is the same as for DESTINATION,

BA=HA=WA=DA 0 (resolution word)

DESTINATION a displacement pointer to the RFDFSTK,

C= 0 destination is to RFDFSTK,

= 1 DESTINATION is a core expression with the format

FLDSZ TBP ADDR

where
FLDSZ the destinations (ADDR) field size (in bits) where ultimate value
is to be set.
TBP terminal bit position of value in the destination's field.
ADDR word address in SECT, 00 of DESTINATION,
E =0 expression not evaluated.

=1 expression has been evaluated,

240

RELDICT.00 (Generated by SYSGEN, modified by call to MODIFY Subroutine, 6.5)

Word
od 0 Ipg| Dy [Dp | D3| -] = | | b
Y : Y
n l . '
where
Do D] ++ + D, =afour-bit digit which describes how to relocate a data word
in SECT, 00.
D0 implies relative word - 0 in SECT. 00
D] implies relative word -~ 1 in SECT, 00
I.) implies relative word = n in SECT.00

Figure 6-8 RELDICT Format

Table 6-1. Relocation Digit Interpretation

Relocation Part of Word Resolution Relocate With Request
Digit (D;) to Relocate for What Bias

0 Address Byte Module Bias

1 Address Half Word Module Bias

2 Address Word Module Bias

3 Address Doubleword Module Bias

A Both Halves Doubleword Module Bias

E Absolute | —=-—-m- ——————

SYSGEN uses the above relocation digits with their corresponding implications and results.

SECT. 00 (Generated by SYSGEN)

This area contains the actual data, tables, and reserve area which are generated by SYSGEN

for a given control command.

241

6.3 SPEC:HAND FILE CONTENTS

Word -0 #E
UNUSED
Word - 2 |_*C Cy Co == .
Word - 3 — = == < Words
e 1 G C Max.
\
v v
Word m \f J
A\
where
#E = number of entries in table.
UNUSED = this word is unused.,
#C = number of characters (Cn) in name (TEXTC format).
Cyr C2, .. .Gy = characters in handler name, (from one to seven characters

only). Each name is on a doubleword boundary.

Figure 6-9. SPEC:HAND File Format

6.4 SYSGEN MODIFY SUBROUTINE PARAMETER LISTS (PLISTS)

The SYSGEN MODIFY subroutine requires parameter lists (PLISTS) which describe what is to be
accomplished, This procedure is useful only when changing, adding or defining items in a

load module. The master PLIST refers to sub-PLISTS which will be referred to as change

description tables, (pointed to by Register 7).,

Word 0[] ADDRCDT
! SUBR
2 v | TREEAD
3 RFDFAD EXPRAD
4 | RELDICTOAD SECTOAD
5 RELDICTIAD SECTIAD
6 RELDICT2AD SECT2AD
7 RFDFUL EXPRUL
where

ADDRCDT word address of a change description table or sub-PLIST,

I=1 a change description table is not supposed to cause expansion of the REDFSTK or
EXPRSTK, Therefore, the EXPR type of change description table is not permitted,
and "name 2" of the DEF type change description table must be defined.

I=0 a change description table may cause an expansion of the RFDFSTK or EXPRSTK,
Therefore, it is assumed that the area between the given RFDFSTK and EXPRSTK lines

is available for that expansion.

242

SUBR = 0
SUBR # 0

no action taken,

the address of a subroutine fo be entered under the following circumstances.
Any call on the MODIFY subroutine may result in a number of core locations
in SECT.0, SECT. 1, or SECT.2 being modified. If it is so desired that
MODIFY not make these changes, but, instead, inform the caller of the
changes, then this subroutine is entered. The subroutine is entered

via: Set Register 1 = core location to which change applies; Set Register 2 =

value to store; Set Register 3 = mask for BAL, 11 SUBR,

\Y =00 RELDICT. 00, 01, 10 are available,
=01 RELDICT. 00, 01, 10 are not available, (i.e., the load module is an absolute module).

TREEAD
RFDFAD
EXPRAD
RFDFUL
EXPRUL

=word address of the load module TREE table.

=double word address of RFDFSTK.,

=double word address of EXPRSTK.

=double word address of RFDFSTK upper limit, (i.e., last useable doubleword).
=double word address of EXPRSTK upper limit, (i.e., last useable doubleword).

RELDICTOAD,RELDICTTAD,RELDICT2AD =doubleword address of the relocation dictionaries

for SECT, 00, SECT. 01, SECT. 10 respectively.

SECTOAD, SECT1AD, SECT2AD =doubleword address of the SECT.00, SECT.01, SECT.10

data areas respectively.

Figure 6-10. MASTER PLIST Format

DEF (no EXPR evaluation)

o o |17 [TV
R i AN

243

where
R =the resolution of NAMEZ.*
#C1 =number characters in NAME1,

NAME1 =the name of the external definition.

#C2 =number of characters in NAME2, If = 0, no NAME2, thus, NAME] is absolute.

NAME2 =the name of an external definition or reference upon which NAME1's value
depends,

+VALUE2 =a positive or negative displacement from NAME2, or the absolute value
to which NAMET is equated (if #C2 = 0).
TYPE =01 definition with no expression

TYPE = 04 definition with expression

*The resolution codes ("R") consist of: 0 = byte address, 1 = halfword address,

2 = word address, 3 = doubleword address, and 4 = same resolution as NAMET1.

Figure 6-11, CHANGE DESCRIPTION TABLE (SUBPLIST) Format for DEF

These two change description tables both generate an external definition, In the first case
TYPE = 01, no EXPRSTK entry is made which evaluates the definition. However, in the second case
TYPE = 04, an EXPRSTK entry is made which generates an actual value for a DEF,

The interpretation of these tables is:
NAME1 EQU resolution (NAME2) +VALUE2
NAME1 EQU resolution (NAMEZ2)
NAME1 EQU +VALUE2

244

EXPR

Word 01 rvee RN g

#C1

NAME1

<<
<KL

+VALUE]

nl

#C2
A NAME2

<<

+VALUE2

where

R =the resolution of NAME2,

#C1 =number of characters in NAMET.

NAME1 =the name of an external definition for the destination.

+VALUE1 =a positive or negative displacement from NAMET] for the destination.

#C2 =number of characters in NAME2,

NAME2 =the name of an external definition or reference for which a value is to
be evaluated.

+VALUE2 =a positive or negative added used to modify NAME2's value.

TYPE = 00

Figure 6-12. CHANGE DESCRIPTION TABLE (SUBPLIST) Format for REF

The interpretation of this table is :
Destination NAMET+VALUET will be set with the resolution (NAME2)+VALUE2 when
NAME2 is defined.

The format of VALUET is:

FLDSZ TBP ADDR
where
FLDSZ =the destination (NAMEI1+ADDR) field size (in bits) where ultimate value
is to be set.
TBP =terminal bit position of value in the destination field.

ADDR =relative word address in SECT. 00,01, 10 of destination (relative to NAMET1).

245

MOD

o 01 tvee. RN &

where
R =the resolution of NAME2,
#C1 =number of characters in NAME1,

NAMEI =the name of an external definition for the destination.

+VALUE] =a positive or negative displacement from NAMET for the destination.
#C2 =the number of characters in NAME2,

NAME2 =the name of an external definition used in relocating VALUE2,
VALUE2 =value to be put into cell NAMET+VALUET,

TYPE = 02

Figure 6-13. Change Description Table (SUBPLIST) Format for Sect. Modification
The interpretation of this table is:
Destination NAME+VALUET will be replaced with the +VALUE2 +resolution (NAME?2)
(i.e., if resolution is byte, then bits 13-31 in VALUE2 will be relocated as a byte
address according to the defined value of NAME2),

The effective address, NAME1£VALUE1, within the load module, determines whether the
modification is to SECT. 00,01, or 10,

246

DICT

Mo 0 L v RN ¢
*c
\ NAME1 M
n +VALUE1
where
C =relocation code to be used to modify the relocation dictionary
e =number of an external definition.

+VALUEI =a positive or negative displacement from NAMET,
TYPE = 03

Figure 6=14, Change Description Table (SUBPLIST) Format for RELDICT, Modification

The interpretation of this table is:
Change the code in the Relocation Dictionary, whose relative position corresponds to the
relative address \(NAMEI:\:VALUEI) - module base address] , to the code "C",

The effective address, NAME1+VALUET, within the load module, determines whether
the modification is to RELDICT, 00, 01, or 10

247

6.5 MODIFY

6.5.1 Purpose

To accept parameters via parameter lists and to generate external definition and reference entries
in a load module's RFDFSTK and EXPRSTK, respectively, and to modify a load module's relocation
dictionary (i.e., RELDICT, 00, 01, 10) or data section (i.e., SECT.00,01,10).

6.5.2 Calling Sequence
BAL, SR4 MODIFY

6.5.3 Input
Register 7 = word address of MASTER PLIST

6.5.4 Output
Condition code one (CC1) set if generation of external definition or reference or modification
of relocation dictionary or data section is unsuccessful, or the change description table TYPE

code is unknown.
Condition code one (CC1) reset if generation or modification is successful.

6.5.5 Subroutines
LOC - Evaluate Location
INPUT: Register 13 = address of NAME; in Sub-PLIST minus 1.
CALL: BAL,11 LOC
RETURN: Register 13 = address of NAME2 in Sub=PLIST minus 1,
Register 4 = core address of designated location, i.e., NAME] + VALUE] .
Register 0 = Section number of SECT,00,01, 10 in load module where

core address is located,

SECTION -~ Compute Section Number
INPUT: Register 13 = address of VALUE; in Sub-PLIST.
Register 4 = core address for which Section Number is to be obtained.
CALL: BAL,11 SECTION
RETURN: Register O = Section Number of SECT.00,01 or 10 in load moduie where

core address is located.

RSEARCH - RFDFSTK Search
INPUT: Register 13 = address in Sub-PLIST of NAME;,
CALL: BAL,11 RSEARCH
RETURN+0: NAME; was not found in RFDFSTK,

Register 13 = same asinput.

1

Register 3 address of next available RFDFSTK entry
Register 12 = index to next available RFDFSTK entry.
RETURN+I: NAMEi was found in RFDFSTK,

Register 13

same as input.
Register 3 = address of name in RFDFSTK.,
index to next available RFDFSTK entry.

Register 12

248

ADJUST - Adjust Value
INPUT: Register 14 = value from RFDFSTK entry to be adjusted to desired resoluticn,
Register 15 = Resolution word from RFDFSTK entry,

BA | HA | WA | DA

Register 10 = Resolution desired from Sub-PLIST.

CALL: BAL,11 ADJUST

RETURN: Register 14 = value from RFDFSTK entry adjusted to desired resolution.
Register 15 = resolution word adjusted to indicate desired resolution.

Register 10 = resolution code of resolved value in Register 14,
resolution code BA=0, HA=1, WA=2, DA=3

EVAL - Evaluate Expression
INPUT: Register 13 = address of NAME; in Sub-PLIST minus 1.
Register 10 = desired Resolution code.
CALL: BAL,11 EVAL
RETURN+O: NAN\Ei not found in RFDFSTK.
Registers 10 and 13 are the same as for RETURN+1,
Register 3 = address of next available RFDFSTK entry.
Register 12 = index to next available RFDFSTK entry.
RETURN+T: NAME. was found in RFDFSTK as a Ref.
Register 13 = address of NAMEi in Sub-PLIST
Register 10 = resolution code of desired value,
Register 3 = address of RFDFSTK entry.
Register 12 = index to RFDFSTK entry.
RETURN+2: Expression for NAMEi :tVALUEi evaluated.
Register 13 = address of next NAMEi in Sub-PLIST minus 1.
Register 10 = resolution code of final value in Register 14,
Register 12 = index to RFDFSTK eniry.
=-1no NAMEi.
Register 15 = resolution word of final value in Register 14,

Register 14 = evaluated expression value, NAMEi :l:VALUEi.
EVALR - Evaluate Expression

INPUT: Same as EVAL, except,

Register 10 = desired resolution code from Sub-PLIST.
CALL: BAL,11 EVALR
RETURNS: Same as EVAL,

249

RADD

DADD
INPUT:

CALL:
CALL:
RETURN:

- Add RFDFSTK item (REF/DEF)

Register 3 = address of next available RFDFSTK entry.
Register 13 = address of NAME; in Sub~PLIST.
BAL,11 RADD

BAL,11 DADD

Register 3 = address in RFDFSTK of current entry,
Register 12 = index to RFDFSTK entry.

Register 13 = address of NAMEi in sub=PLIST.

EADD - Add EXPRSTK item

INPUT:

CALL:

Register 9 = code = 0 Expression for a DEF.
code = 4 Expression for a REF, i.e., core destination.
Register 8 = value of NAME; +VALUE;.
Register 13 = address of NAME; in Sub-PLIST.
Register 12 = Index to next available entry in RFDFSTK if Register 10 is < 4,
Register 10 = Resolution code for a REF expression.
BAL,11 EADD

CHCORE -~ Change Core Location or EXPRSTK

INPUT:

CALL:

Register 4 = Destination information word, i.e,, address field size and terminal

bit position of address field and destination address.

FLDSZ | TBP ADD

1 78 1516 3

Register 0 = Section number of SECT, 00, 01, 10 in load module where

destination address is found.

Register 14 = the value to be stored in destination.

Register 15= mask for masking value into destination.

Register 10 = resolution code, 0 =BA, 1=HA, 2=WA,
3=DA, 4=NONE, for EXP or MOD type Sub-PLIST,
or the resolution code plus bit 0set = 1 if DICT type
Sub~PLIST,

BAL,11 CHCORE

EDEST - EXPRSTK Destination Address

INPUT:
CALL:
RETURN:

Register 4 = desired destination address for searching purposes.

BAL,11 EDEST

All EXPRSTK items having a destination (DEST) address equivalent to the desired
destination address in Register 4, are removed from EXPRSTK by setting Bit 8 in
word 0 of EXPRSTK entry to 1.

250

EFIX - Fix EXPRSTK for Unsatisfied REF
CALL: BAL,11 EFIX
RINDEX

INPUT: Register 13 = RFDFSTK entry index
CALL: BAL,11 RINDEX
RETURN: Register 4 = RFDFSTK entry address

6.5.6 Description

The MODIFY routine consits of various subroutines which interpret input parameter lists
(PLISTS), evaluate their designated expression, (e.g., NAME] + VALUE]), generate
RFDFSTK (external reference and definition stack) EXPRSTK (expression stack defining a
ref/def expression value) entries, and modify core, RFDFSTK, relocation dictionary,

EXPRSTK valuves.

When an expression (EXPR) PLIST is encountered, NAME + VALUE is evaluated and is
the destination address used when the expression NAME2 + VALUE, is satisfied (i.e.,
evaluated). If there is no NAME] p VALUE] then becomes the destination, The expre-
ssion, NAME2 + VALUE), is then interrogated. If NAMEj is not in the RFDFSTK, it

is added to it as a ref type and an EXPRSTK entry is made which expresses the

evaluation algorithm for NAME,. If NAME, is in the RFDFSTK and is a ref type, an
EXPRSTK entry is made which expresses the evaluation algorithm for NAME2. How-
ever, if NAME, is in the RFDFSTK and is a def type, the expression, NAME, + VALUE,,
is evaluated. The resulting value is then used to replace the field in the destination
address which is masked according to the destination resolution, That is, if the
destination resolution is a byte value, then the evaluation of NAME, + VALUE, is
converted to a byte value and replaces the designated field in the destination. Each entry
in the EXPRSTK is then checked to see if its destination address is the same as the destin-
ation address of NAME] + VALUE,, and if so, the EXPRSTK entry is removed by setting
flag (E = 1) indicating that this expression has been evaluated. If there is no NAME,
(i.e., only a ﬂ:VALUEz), then the result is the same as if there was a NAME, defined in
the RFDFSTK with value 0,

When a definition (DEF, TYPE = Q1) PLIST is encountered, NAME, is entered into the
RFDFSTK as a reference type unless it is already in the RFDFSTK. The expression, NAME,
+ VALUE, is then interrogated. If NAME2 is not in the RFDFSTK, it is added to it

as a ref type and an EXPRSTK entry is made which expresses the evaluation algorithm

for NAME,. However, if NAME, is in the RFDFSTK and is a def type, the expression,
NAMEj + VALUE, is evaluated. The result is then put into the RFDFSTK entry and the
entry is flagged as a def, When NAMEj is a reference, then the RFDSTK entry remains

as a ref type. The EXPRSTK is then searched to find all entries which reference this
definition, Each satisfied reference is then evaluated, The resulting value is then

used to replace the field identified by the destination and is masked according to

the destination resolution. That is, if the destination resolution is a double word value,

251

thenthe resulting value is converted to a double word value and replaces the designated
field in the destination. If there is no NAME, (i.e., only a +VALUE,) then the result is
the same as if there was a NAME, with value 0.

When a definition (DEF, TYPE = 04) PLIST is encountered, NAME is entered into the
RFDFSTK as a definition type (unlike that for a definition of TYPE = 0) unless it is
already in the RFDFSTK, The expression, NAME2 + VALUE, is then interrogated. If
NAME, is not in the RFDFSTK, it is added to it as a ref type and an EXPRSTK entry

is made which expresses the evaluation algorithm for NAME,. If NAME, is in the
RFDFSTK and is a ref type, an EXPRSTK entry is made which expresses the evaluation
algorithm for NAME,. However, if NAME, is in the RFDFSTK as a def type or if there
is no NAME, (i.e., only a iVALUEz), the expression, NAME2 + VALUE,, is evaluated,
The result is then put into the RFDFSTK entry for NAME, .

When a core modification (MOD) PLIST is encountered, NAME; + VALUE; is

evaluated and is the destination address word when the expression NAME, + VALUE, is
satisfied (i.e., evaluated), If there is no NAME;, VALUE; then becomes the destination.
The expression, NAMEj + VALUE), is then interrogated. If there is a NAMEy, it must
have been previously defined with complete evaluation, If there is no NAME,, (i.e.,
only a + VALUE,), then the result of the expression evaluation is the same as if

there was a NAME2 whose value is known as 0. Once the expression, NAME2 + VALUEZ,
has been evaluated, the entire 32 bit value replaces the contents of the destination
address. The EXPRSTK is then checked to see if any of its entries contain a destination
address equivalent to the destination address, NAME] + VALUE], and if so, each such
EXPRSTK entry is removed by setting a flag (E = 1) indicating that this expression has

been evaluated,

When a relocation dictionary modification (DICT) PLIST is encountered, NAME] + VALUE]
is evaluated and represents the destination address for which a relocation dictionary
modification is desired. This type of PLIST will normally accompany a MOD PLIST,

That is, if a core modification is made, its corresponding relocation dictionary entry may
also require a resolution code change. The address NAME] + VALUE] relative to the
section base, becomes the relative digit position (4 bits per digit) in the section

relocation dictionary.

When MODIFY finishes processing a PLIST successfully, condition code one (CC1) is reset
(i.e., CCI =0) and a return is made to the caller at the BAL plus one. However, if
MODIFY finds any error condition, it sets condition code one (i.e., CC1 =1) and

a refurn is made to the caller at the BAL plus one.

-252

The following conditions will cause an error return (i.e., CC1 = 1);

TYPE> 4 (sub-PLIST type invalid).

No NAME] in DEF PLIST (TYPE = 01).

No NAME7 in DEF PLIST (TYPE = 04).

NAME2 in MOD PLIST is not defined or is a reference,

NAME] in EXPR, MOD, or DICT PLIST is not defined or is a reference.

The expression value (NAME] + VALUE,) does not fit into any of the

sections of a load module, (i.e., SECT.00,01, or 10).

7. The MASTER PLIST indicates (I = 1) that the RFDFSTK and EXPRSTK
cannot be expanded and a DEF (TYPE = 01 or 04) or EXPR PLIST is
encountered which would require expansion of either the RFDFSTK or
EXPRSTK or both.

8. An EXPR, or MOD PLIST requests a core modification whose field size

(FLDSZ in sub~PLIST) is either greater than 32 bits or overlaps a word

o v ox W N =

boundary,

6.5.7 Flowcharts

Page 1
ENTER

Sub=PLIST
Type =
EXP DEF MOD DICT ADDDE
¥ Y) '
Evaluate Add NAMET to Evaluate NAMET Evaluate Add NAMET1
NAMET, VALUE1 RFDFSTK and VALUE1 NAME1 and to RFDFSTK
Evaluate (REF Type)Eval. Evaluate NAME2 VALUE1 (DEF TYPE)
NAME2, VALUE2 NAME2, VALUE2 and VALUE2 1
Y
iChange Core if Value in RFDFST Change core Change Relocat. Evaluate
Evaluated NAME2, Satisfy all Destination Dictionary Entry NAME2 +
VALUE?2 or EXPRSTK REFs NAMET +VALUE1 to New VALUE2
to Value or to Evaluated Resolution code
Y NAME2 +VALUEZ 1
Add NAME2 to Add NAME2 to Add NAME? to
RFDFSTK, RFDFSTK with RFDFSTK with
Expression to EXPRSTK EXPRST.K
EXPRSTK Expression Expression

Y \ A
RETURN RETURN (RETRRN) (RETURN) RETURN

Figure 6-15. Flow Diagram of MODIFY
(General Flow)

253

Set CC1 =

{ ENTER)

A

Get TREEAD
from Master
PLIST

4

Get ADDRCDT
from Master
PLIST

S

Get Type
from
Sub-PLIST

Page 2

ADDDE

Pg. 6.

Figure 6-15. Flow Diagram of MODIFY (Cont.)

(Entry Point)

254

Page 3

LOC
Eval. NAMET,
VALUET1 for
Destination
Pg. 10
EVALR
Eval. NAME2,
VALUE2 for
Expression
Pg. 12
4
NAME2 not NAME2 is Expression for NAME2 +
in RFDFSTK a REF VALUE2 Evaluated
A
RADD
Y
Add NAME2 Get Mask to
to use in Core
RFDFSTK Change of an
Address
) MOD2
R8 = Core Add or
NAMET + VALUE1 Pg. 8
R7 = X'40"
(Core Destination)
¥
EADD
Add Expr.
to
EXPRSTK
Y Pg. 15
CC1=0

RETURN

Figure 6~15.

Flow Diagram of MODIFY (Cont,)

(Process EXPR SubPLIST)

255

Get Sub=PLIST
Pointer to

NAME1

Page 4

™ RSEARCH
Present >———»| Search RFDFSTK
° for NAME1
Pg. 2 Pg. 11
yNot in RFDFSTK
RADD
NAMET to
RFDFSTK
{ Pg. 14 ¥
Y
Save RFDFSTK
addr, entry in R4
Set Sub=-PLIST
PTR to NAME2-1
EVALR
Eval, NAME2 +
VALUE2
Expression
Pg. 12
NAME2 not in NAME2 is Expres. Eval,
RFDFSTK a REF for NAME2 + VALUE2
y Resol. word in
1 ____RADD | WORD-2 of
Add NAME2 RFDFSTK Entry
to RFDFSTK
Pg. 14 < Value of
NAME2 + VALUE?Z
In WORD=-1 of

Pg. 7

RFDFSTK Entry

Pg. 5

Figure 6=15. Flow Diagram of MODIFY (Cont.)

(Process DEF SubPLIST = No Expression.of DEF)

256

Byte = 1 in
RFDFSTK entry =0
(DEF Type)

EF

X

Fix EXPRSTK
Entry Referencing
this DEF

}

Pg. 20

CC1=0

(RETURN)

Page 5

Figure 6=15.Flow Diagram of MODIFY (Cont.)

(Process DEF SubPLIST = No Expression of DEF)

257

Set Sub-PLIST
PRT to NAMET

?

Pg. 2

AM
Present

RSEARCH
Search
RFDFSTK for

NAMET1

Pg. 1

yes

Not in
RFDFSTK

DADD
Add NAME1
to RFDFSTK

{ Pg. 14

Y
Save RFDFSTK
entry addr, (R4)
set Sub-PLIST PTR

In RFDFSTK

Page 6

to NAME2 -1
(R13)
Y
EVALR
Eval. NAME2 +
VALUE2
Expression
y Pg. 12
NAME2 not NAME2 is Expr. Eval. for
in RFDFSTK REF NAME2 + VALUE2
RADD Put R ;F i
Add NAME?2 ut e.so ution
to RFDFSTK Word |:;o WORD-2
RFDFSTK Entry
~Pg. 1%
9 ¥
Put VALUE of
NAME2 + VALUE2
In WORD - 1 of
Pg. 7 RFDFSTK Entry
Pg. 7
Figure 6-15. Flow Diagram of MODIFY (Cont.)

(Process DEF SubPLIST, Build Expression of DEF)

258

DEF1

Set Byte 1in
RFDFSTK Entry
=0

(DEF Type)

y

R13 = PTR to
NAME2 in
Sub~PLIST

/

R8 = Index to
RFDFSTK

Entry

R9=0
(Expression of
DEF)

\
EADD

Add Expression
to EXPRSTK

Pg. 15

CC1=0

(RETIRN)

Page 7

Figure 6~15. Flow Diagram of MODIFY (Cont.)
(Process DEF SubPLIST, Build Expression of DEF)

259

MOD

L O

Evaluate NAMET
+ VALUEI
Expression

*Pg. 10

Evaluate NAME2

Page 8

+ VALUE2
Expression
y Pg. 12
NAME2 Not NAME2 Is Expression
in RFDFSTK a REF NAME2 +
VALUE2
Evaluated Y
orm mask to save
part of word not to
be relocated
Pg. 2 Pg. 2

Y
Get VALUE2 from
Sub-PLIST on mask
do not disturb
resolved VALUE of
NAME2 + VALUE2

¥

R15 = =1
(Core Change)

"
CHCORE

Change Core

Y Pg. 16

CC1=0

)
< RETURN)

Figure 6~15, Flow Diagram of MODIFY (Cont.)
(Process MOD SubPLIST)

260

Set CC1 =0

Y

(" RETRN)

Page 9

LOC
Evaluate NAME1
I £VALUE1
Expression

¥ Pg. 10
Get resolution
Code from Sub-
PLIST Set Bit0=1

!

R15=0
{No Core Change)
Set up Return to

MEXIT
] Enter CHCORE
Returns to
Pg. 16 MEXIT
/
/
/
Set CC1=0

(RETURN >

Figure 6-15.

Flow Diagram of MODIFY (Cont.)
{Process DICT SubPLIST)

261

Page 10

Set Resolution
=2
(Word Address)
EVAL
Evaluate NAME1
+ VALUEIT
Expression
Pg. 12
NAMET Not NAMET1 is Expression
In RFDFSTK a REF NAME1 + VALUET
Evaluated
(™) |
Pg. 2 R4 =

ER@
Pg. 2
(SECTION)

Value of expression
in R4 = doubleword
address

Save bit 31 of word
addr, of expres. val.

Expression Value

Store Sect #
in byte 0.

Pg. 2

Reg 0.

!

in R4

Convert address
to word address
using saved bit 31

¥

SUB-PLIST

Set Bits 0-14 of
R4 to bits 0-14 of
VALUE. word in

RETURN

Figure 6-15. Flow Diagram of MODIFY (Cont,)

(Subroutines)

262

Page 11

RSEARCH

Get RFDFAD

from MASTER
Name not in PLIST
RFDFSTK,

no RFDFSTK
N\
\

REE Get name size
RETURN - RFBF 312'5 —>1 in Sub=PLIST

2

Point to next
RFDFSTK
RETURN entry

Set to # items
left in
RFDFSTK

Figure 6-15. Flow Diagram of MODIFY (Cont,)

(Subroutines)

263

EVALR

from SUBPLIST

Get Resolution >

(EVAL)

Page 12

).———-—-—_—

Resolution code

set upon eniry,

NAME,

A
Set PTR

SUBPLIS

to
in

T

RSEARCH
Search RFDFSTK
for Name yes
Pg. 11
Name Not Found
4 Found A
Get TP from
RETURN RFDFSTK
entry

RETURN

z
Type is a REF
ya
Type is
DEF, CSECT,
DSECT

Name
Present

?

Set VALUE =0
Set Resol. =0

(Simulate return

from RSEARCH)

Y

Set R15=4
(Resolution = none)
Index to next
available RFDESTK
Entry = $-1

Get value from
RFDFSTK entry
Get Resolution

ADJUST

Adjust value
to resolution

¥

Set PTR to
Value in

Sub=PLIST

Y

Add value in
Sub PLIST to
adjusted value

RETURN

13

Figure 6~15. Flow Diagram of MODIFY (Cont.)

(Subroutines)

264

ADJUST

Page 13

? yes
no
~BA”
~ RESOL.
s yes
no

RETURN

(Value Absolute)
R10=4

Resolution of
Adjusted Value

Resolve Value from
RFDFSTK entry to
Resolution

no

%{PE
RESOL.=+1

Required

Set RESOL, Word
to Represent
Resolved value

RETURN

no

Figure 6~15, Flow Diagram of MODIFY (Cont.)

(Subroutines)

265

No Resolution
Required,

R10 = Resol code of
value in RFDFSTK

4

RETURN

RADD

Save R10
(Resolution)

Set R10=2
(REF Type Entry)

Page 14
DADD

Save R10
Set R10=0
(DEF Type Entry)

|

Growth inhibited

Calculate # words
needed for entry
(name size/4+4)

¥
Calculate total size
RFDFSTK from
Master PLIST
(RFDFUL - RFDFAD
+2)

¥

Calculate RFDFSTK
Words in use + need
(RFDF SIZE IN
TREE + ENTRY
SIZE)

-

‘Room for

this entry
?

Update RFDF
size in TREE

¥

Store eniry size

Byte 0, 1st word
REF/DEF code in
Byte 1, 1st word

¥

Move name to
entry starting
at Byte 12

Y
Restore R10 J

RETURN

Figure 6-15. Flow Diagram of MODIFY (Cont.)

(Subroutines)

266

Calculate total |

size EXPRSTK

from Master PLIST
(EXPRUL - EXPRAD
+2)

¥

Calculate FEXPRSTK
words in use +
needed (EXPR SIZE
in TREE + 6)

SETT = 2
Y

Update expr, size
in TREE

Set PTR to next
available entry

P = 0 DEF expr.
= 4 REF expr.
R = RESOL. code
(0-3)
T = 2 RESOL codd
meaningful

= 0 no RESOL.

Form and set word

0 of EXPRSTK

entry =
X'06P41TR

¥ -~

(Sub~PLIST has

no NAMEi)

Set T=0
R=0 -

Set word 1 of
EXPRSTK entry =

X'02000000'

Page 15

ino

]

Set Word 2 of
destination, Set
word 3 =0

¥

Value from Sub-
PLIST to Word 4
Word 5 =

RFDFSTK Index

RETURN

Form and set
word 0 of entry =
X'06P40120"

Figure 6-15,

Flow Diagram of MODIFY (Cont.)

(Subroutines)

267

CHCORE

EDEST

Remove EXPRSTK
entries which

reference LOC, R4

CC5 Pg. 19

Get SECT #

_____;__
Calculate relative
address in sect
where LOC
NAME; iVALUE]
Resides

¥

Set address part of
destination to
relative address

in sect

{

Set mask in
R15 = =1

Destination

Info < X'IFFFF!
?

Pg. 17

Set R1 =FLDS.

Set R5 = TBP

no

Form mask of
field bits in
R15

Pg.

17

FLDSZ>32

Page 16

Pg. 2

Figure 6~15 Flow Diagram of MODIFY (Cont.)

(Subroutines)

268

Pg. 2

Position value

and mask to
boundary - no TBP
] R
. /’
(User makes core L
changes) AN
R1= destination ad = < SUBE—O P 1
R2= value to be stofed e
R3= mask for storing .
User's
Subroutine
RETURN | ho

Page 17

CC1

R5 =
Resolution cod

4

(MOD or EXP Type)
Store masked part
of value into
masked destination

—

R14 =
Resolution code

Set R14 =
Resolution code
From R10

~F

Y

Get RELDICT #
LOC from master-
.PLIST into R9

Pg. 18

Figure 6~15. Flow Diagram of MODIFY (Cont.)
(Subroutines)

269

Page 18

R2 =
Rel, addr, in
Sect, xx

R3 =
Value to be
stored

Y
Calculate RELDICTx
and DIGIT # in
word which is to
be modified

Y

R15 = MASK

Position RESOL
code and
MASK to DIGIT#

F IeN
from master

PLIST=0

RETURN
no

Store masked
resolution code into

RELDICTxx

RETURN

Figure 6-15. Flow Diagram of MODIFY (Cont,)
(Subroutines)

270

EDEST

EXPRAD from
master PLIST
EXPRSIZE from
load module TRE

E

RETURN

Position PTR

to next
EXPRSTK entry

 Entry Dest. =
.‘Nest. Desiped

Get Bits 0-15
| from word 0
in EXPRSTK

e
iyes

Page 19

Use EXPRSTK
entries DSP value
; and set PTR to
" destination word
{in ent

KPRSTR_

~

P
?.7

|

>

Set Bit 8=1
In EXPRSTK entry

Figure 6=15. Flow Diagram of MODIFY (Cont,)

(Subroutines)

271

EFIX

EXPRAD from
Master PLIST EXPR,
size from word
module TREE

Position pointer
fo next
EXPRSTK entry

ves RETURN
¢no

Bits 0-15 of
word 0 of
EXPRSTK entry

1

EF9

RS5=
+ Next control byfe

‘ = _ Bit 8;] V/’/,
no

R1 = addr. in EXPRSTK of
resolution word

R5 = control byte index

R2 = index to constant word

- Next

Next word

B

R2=
@

Page 20

Figure 6-15. Flow Diagram of MODIFY (Cont,)

(Subroutines)

272

Page 21

Pg. 22

Get RFDFSTK
Index
RINDEX
Find REDFSTK
Entry
7 Pg. 25
R8 = Type (TP)
from RFDFSTK
Entry
‘ yes
Pg. 20 — 0
es
Pg. 20

Figure 6=15. Flow Diagram of MODIFY (Cont,)
(Subroutines)

273

Page 22

R15 = Resol word EXPRSTK
R14 = 0 value accum.,

R2 =1 EXPRSTK word index
R5 =2 CB index

EF10
yes
A
Set RS =
Next CB
yes no
) AT viord
word corres,
R10= Rcfsol. to CB from
code, FBg; 6-7 EXPRSTK entry
o foR14
— ‘y
Set R2 =
next word
yes
CBZX'34' yes R13 = RFDFSTK
\ ? \ Index
R2 = Index to
R]2 =0 Save R]4 & R15 next word
SetR15=1 RINDEX
Find RFDFSTK
entry
@ Pg. 25
Pg. 23
Pg. 23

Figure 6~15. Flow Diagram of MODIFY (Cont.)
{ Subroutines)

274

EF20

Save R14 and
R15

R14 = value from
RFDFSTK
R15 =Resol,
from RFDFSTK

i

Save R5

¥
ADJUST

Adjust value to
resolution

Subtract expression
value from value
accumulator

Page 23

Add expression
value to value
accumulator

!

Update RESOL.
word in R15 to
equal RESOL, of
adjusted
expression

'

Restore R5

Pg. 22

Figure 6=15. Flow Diagram of MODIFY (Cont,)
(Subm utines)

275

Page 24

Set expr. eval,
Bit in word O
EXPRSTK entry
(E=1)
C=1
no ? yes
1 A
R13 = RFDFSTK Save R3 *R9
index from dest. SetR10=4
word in (Resol. code)
EXPRSTK entry
RINDEX ADJUST
Find RFDFSTK Adjust value to
entry Resolution
Put value Set R15 to mask for
accumlator in storing value
word 1 of Set R4 = Destination
RFDFSTK*entry from EXPRSTK entry
Put new resolution ¥
word (word 2) in SECTION
RFDFSTK entry Determine section
1 where addr, locat}
Pg. 10
Set RFDFSTK Y
entry to a DEF CHCORE
TP=0 Satisfy core with
evaluated express.
¥ Pg. 16
Restore R? & R3
, !
Pg. 20

Figure 6~15. Flow Diagram of MODIFY (Cont.)

(Subroutines)

276

‘ RINDEX)

R4 = Base address
RFDFSTK from
Master PLIST

Calculate actual
RFDFSTK entry
address in R4

' RETURN)

Page 25

Figure 6=15, Flow Diagram of MODIFY (Cont.)

(Subroutines)

277

6,6 SYSGEN CHARACTER Routines Parameter List (PLIST)
The SYSGEN character subroutines (NXACTCHR, NAMSCAN, CHARSCAN, HEXSCAN, QUOTSCAN,
DECSCAN, CHSTSCAN, and GETCHST) require a parameter list (PLIST) which controls certain aspects

of control command processing. The PLIST is as follows:

Word - 0
1

VO 0 N O v b WwN

— o et et e e
g A W N — O

PLIST (pointed to by Register 7)

| 1|

7D CLD

TNTC CONTR

OUTR

ccp

FLAGS CBUF

csL

PCCP

1

[CHARACTER T
T STRING T
[BUFFER]
| (<35 CHARACTERS) |
S -]

CLD

#D

CNTC

CONTR

OUTR

Cccp

CBUF

FLAGS

278

I

1l

1

il

byte address of list (byte table) of delimiters
(terminators),

number of delimiters in list,

continue scan af this relative character
position in continuation image, i.e., 1
implies character position 2,

word address of read routine which is to read a
continuation image, The subroutine must be
supplied by the user.

word address of output routine which will
display current image when a semicolon,
period, new line, or end of image (80
characters maximum) is encountered, This

is optional but, if specified, the subroutine
must be supplied by user.

relative character position in image of
current character, i.e,, 11 implies current
character position 12,

word address of buffer containing current
images,

special indicators which control the scan

function,
s | 50 IZBF 3&\\\\\\\\\\\;1
BA = 0 Blank character not active
character, i.e., ignore it
and get next character
= 1 Blank character is an active
character, i.e,, it is not a
field delimiter unless
specified in delimiter list,
BO = 0 do not blank out input image
= 1 when a character is obtained

from input image, replace its
position in image with a blank

character,

BF = O character string buffer is empty
= 1 character string buffer is full,
i.€., no further scan of input
image is needed, therefore,
use what is in buffer,
CSL = number of characters in current character string

in character string buffer.

PCCP

relative character position in input image of
the first character in the character string
now in character string buffer i.e., 20

implies current character position 21,

CHARACTER STRING BUFFER = a nine word (36 bytes) buffer

which contains the characters of a field after the field has

been scanned. There can be from one to thirty-six characters,

Figure 6~16. Character String PLIST Format

6.7 CHARACTER ROUTINES

6.7.1. NXACTCHR (SYSGEN Next Active Character Retrieve)

6.7.1.1 Purpose

To obtain a character from the input image, check it for a delimiter, then return to caller,

6.7.1.2 Calling Sequence and Input

Set REGISTER 7 = address of parameter list

Set REGISTER 8 = current character from input buffer or zero if no character exists (i, e., get next character).
BAL,11 NXACTCHR

6.7.1.3 Output
Register 8 = current character from input buffer.

Condition Code one (CC1) set if current character is delimiter, or reset if not a delimiter.

6.7.1.4 Subroutines Used
Users display image routine, if desired.

Users read continuation image routine.

6.7.1.5 Description

This routine obtains the next active character from the input buffer (as specified by the PLIST) if Register 8

is zero. If Register 8 is non-zero, it then is assumed to contain the next active character. If the next active
character is a semicolon, the users specified output subroutine is enfered, if one is specified, and then

the users read continuafion image routine is entered. The first character (represented by CNTC in

PLIST) is then obtained. If the next active character is a period, new line, or end of buffer (i.e., special
delimiters), then the input buffer end has been found. If the next active character is other than those already

described, the delimiter list (represented by #D and CLD in PLIST) is searched to determine if the current

279

character is a delimiter. If not a delimiter, then condition code one (CC1) is set to zero and NXACTCHR

returns to caller.

However, if the current character is a delimiter, or the input buffer end has been found, CC1 is set to one

and NXACTCHR returns to caller.

6.7.1.6 NXACTCHR Flags and Counters

ccP =

FLAGS

I

ClD =
#D =
OUTR =

CONTR=
CNTC =

CBUF =

current character position, in input image, relative to beginning of image, i.e., CCP

= 3 implies current character is character number 4.

80, implies end of buffer has been found.

BO =

BA =

1
0
1

0

obtain next character, and replace its position with a blank.

just obtain next character.

if next character is a blank, accept it as a non-delimeter unless specified as
delimiter in delimiter list.

if next character is a blank, ignore it.

byte address of delimiter list.

number of delimiters in list.

address of output subroutines.

0 unspecified

address of read continuation image subroutine.

continue scan on continuation image at this character position (relative to beginning of

image, i.e., CNTC = 1 implies character position 2),

input buffer address.

280

6.7.1.7 Flowchart

Set

Reg. 8 = EOB

BAL,11 OUTR |

Q_&@R =0
I)
USER’'s S.R. :

NXACHS

Set
CC1 =1

(RETURN)

NXACTCHR

Get next

character from
CBUF in Reg. 8

no

Page 1

Pg. 2

Set
REG. 8 =NL

Pg. 2

[

Put blank
character in
current position in

CBUF

CCP=CCP + 1

Pg. 2

Figure 6-17.

Flow Diagram of NXACTCHR

281

Page 2

Reg. 8=Blank

yes

e !
- Reg. 8=NL — — NL=CRET=
new line |
? i _ _ _
no
"EGB=" T
B yes Reg. 8=EOB™>-- -~ end of buffer | Pg. 1
: .
no
- yes Reg. 8=.
]
no
Obtain CLD & '
#D for Delimiter es . USERS S.R.
search
I % BAL,11 OUTR
/'Fin\d\ i
yes /R/e?- 8 Cm Obtain CONTR &
N\ inCd CONTC
2
G ¢ Te]
! —
NXACH5 | Set | Set
CCi=0 . CCP=CONTC
' :
4 + . —
NXACH9 RETURN LISERS S.R : Read :
- BAL, 11 CONTJ 1 fontinuation
I ge |

obtain
continue
image
?

Set
Reg. 8= X'FF'
CCi=1

RETURN)
—

Pg. 1

Figure 6-17. Flow Diagram of NXACTCHR (Cont.)

282

6.7.2 NAMSCAN (SYSGEN Get next field and check for name)

6.7.2.1 Purpose
To obtain next field from input buffer and check if it is an alphanumeric character string of which at least

one character is alpha,

6.7.2.2 Calling Sequence
Set REGISTER 7 = addressof parameter list.
Set REGISTER 8 = current character from input buffer or zero. If zero, start name string with next

character . If non-zero, start name with this character, then get next character.

BAL,11 NAMSCAN

6.7.2.3 Input

See Calling Sequence,

Character string in PLIST's Character String Buffer.

Register 2 = byte address displacement of Character String Buffer in PLIST (from GETCHST),

6.7.2.4 Output
Register 8 = current character from input buffer.
Condition Code one (CC1) set if name not legal.

Condition Code one (CC1) reset if name is legal,

6.7.2.5 Subroutines Used
GETCHST (Get next character string into character string buffer),

6.7.2,6 Description

This routine requests the next string of characters from the input buffer to be put into the character string
buffer. Each character is then checked for legality (i.e., alphanumeric) and the entire string of characters
must contain at least one alpha character. If the name is legal, condition code one (CC1) is set to zero.

However, if the name is illegal, CC1 is set fo one. NAMSCAN then returns to the caller.

6.7.2,7 Flow Chart
NAMSCAN

Al

GETCHST
Set
1 CC1=0
|
I";g‘;g RETURN
I Lo —_ character
St non=-alphanumeric strina”
CCl=i OK

RETURN

Set
BF=0

Figure 6-18. Flow Diagram of NAMSCAN

283

6.7.3 CHARSCAN (SYSGEN check current or next character for a specific character)

6.7.3.1 Purpose
To obtain next character from input buffer, or use current character if one exists, and check it for a specific

character.

6.7.3.2 Calling Sequence and Input
Set REGISTER 7 = address of parameter list (PLIST)
Set REGISTER 8 = current character from input buffer or zero. If zero, get next character from input buffer.
If non-zero, the next character is already in Register 8.
Set REGISTER 9 = the specific character which is being checked for.
BAL,11 CHARSCAN

6.7.3.3 Output

Register 8 = 0 if character check does compare,

Condition code one (CCl) reset if character check does compare.
Register 8 = current character if check does not compare.

Condition Code one (CC1) set if check does not compare.

6.7.3.4 Subroutines Used
NXACTCHR (Get next character from input buffer).

6.7.3.5 Description
This routine obtains the next character from the input buffer if Register 8 equals zero. If Register 8 is
non-zero, the next character is assumed to be in the register 8, The character is compared to that in

Register 9. If they compare, Register 8 is set to zero and CC1 is reset. If they do not compare, Register 8
is not modified and CC1 is set, CHARSCAN then returns the caller.

6.7.3.6 Flow Chart

CHARSCAN

NXACTCHR

Set Set

ccr=1 Reg. 8=0

G *
Set
RETURN cCl=0
RETURN

Figure 6-19. Flow Diagram of CHARSCAN

284

6.7.4 HEXSCAN (SYSGEN get next field and check for hexadecimal value)

6.7.4.1 Purpose
To obtain next field from input buffer and check if it is a hexadecimal value. If it is hexadecimal, then

convert it from EBCDIC hexadecimal to hexadecimal.

6.7.4.2 Calling Sequence
Set REGISTER 7 = address of parameter list
Set REGISTER 8 = current character from input buffer or zero. If zero, start string with next character, If

non-zero, start string with this character, then get next character.

BAL,11 HEXSCAN

6.7.4.3 Input
Character string in PLIST's character string buffer.
Register 2 = byte address displacement of character string buffer in PLIST (from GETCHST).

6.7.4.4 Output

Register 8 = current character from input buffer,

Condition Code one (CCI) reset if value is hexadecimal,

Condition Code one (CC1) set if value is illegal.

Register 12 and last word in character string buffer = converted value (EBCDIC HEX to HEX),

6.7.4.5 Subroutines Used
GETCHST {Get next character string into character string buffer).

6.7.4.6 Description

This routine requests the next string of characters from the input buffer to be put into the character

string buffer, Each character is then checked for legality (i.e., EBCDIC hexadecimal). If the character
string is legal, it is converted and saved in Register 12 and in the last word of the character string

buffer in the PLIST. HEXSCAN sets CC1 = 1 if illegal string or CC1 = 0 if legal, and returns to caller.

285

6.7.4,7 Flow Chart

_ yes -

OMEXI Illegal C\C]1/
. ?
String y

(HEXSCAN)
A

GETCHST

no

| Illegal

chec
character

y

Set
CCt

\
(RETURN >

non-hexadecimal

string
\ :

OK

Convert from
EBCDIC to HEX

'

Save inReg. 17 &
PLIST + 15

Set Be=g

CC1=0

Y

(RETKRN)

Figure 6-20. Flow Diagram of HEXSCAN

286

6.7.5 QUOTSCAN (SYSGEN get next field and check for specific character string)

6.7.5.1 Purpose

To obtain next field from input buffer and check the character string for a specific quote constant.
6.7.5.2 Calling Sequence

Set REGISTER 7 = address of parameter list
Set REGISTER 8 = current character from input buffer or zero, If zero, start string with this character, then
get next character.
Set REGISTER 9 = address of a quote constant in TEXTC format.
BAL,11 QUOTSCAN

6.7.5.3 Input
Character string in PLIST's character string buffer.
Register 2 = byte address displacement of character string buffer in PLIST (from GETCHST).

6.7.5.4 Output
Register 8 = current character from input buffer,
Condition Code one (CC1) set if comparison fails,

Condition Code one (CC1) reset if comparison is ok.

6.7.5.5 Subroutines Used
GETCHST (Get nexi character string into character string buffer),

6.7.5.6 Description

This routine requests the next string of characters from the input buffer to be put into the character string
buffer. The size of the field and each character in the buffer is compared to the quote constant pointed
to by register 9, If they compare, CC1 is set to zero. If they do not compare, CC1 is set to one.
QUOTSCAN then returns to the caller,

<TEXTC FORMAT >

Word 0O #C Co | = Cn

#C = number of characters in quote constant.

Cl’ -— Cn = characters in quote constant,

Figure 6-21, Quote Constant

287

6,7.5.7 Flow Chart

(QUOTSCAN)

GETCHST

no

Set
CCl=1

Set

CCi=0

< RETURN)
Set
w
(RETURN)

Figure 6~22. Flow Diagram of QUOTSCAN

288

6.7.6 DECSCAN (SYSGEN Get next field and check for decimal value),

6.7.6.1 Purpose
To obtain next field from input buffer and check if it is a decimal value. If it is decimal, then convert it

to binary.

6.7.6.2 Calling Sequence
Set REGISTER 7 = address of parameter list
Set REGISTER 8 = current character from input buffer or zero. If zero, start string with next character, If

non-zero, start string with this character, then get next character,
BAL,11 DECSCAN

6.7.6.3 Input
Character string in PLIST's character string buffer.
Rggister 2 = byte address displacement of character string buffer in PLIST (from GETCHST).

6.7.6.4 Output

Register 8 = current character from input buffer,
Condition Code one (CC1) reset if value is decimal.
Condition Code one (CC1) set if value not decimal.

Register 12 and last word in character string buffer = converted value.

6.7.6.5 Subroutines Used

GETCHST (Get next character string into character string buffer).

6.7.6.6 Description

This routine requests the next string of characters from the input to be put into the character string buffer.
Each character is then checked for legality (i.e., EBCDIC decimal). If the character string is legal

it is converted and saved in Register 12 and in the last word of the character string buffer in the PLIST,
DECSCAN sets CC1=1 if illegal string or CC1=0 if legal, and then returns to caller, Legal EBCDIC

decimal characters include: O through 9

289

6.7.6.7 Flow Chart

DECSCAN

i

GETCHST
yes CCl1=0 no
Illegal ?
COMEXIT2 String)
/ check
character
- Illegal I string
non=decimal ?
convert from
Set EBCDIC to DEC
CCi=1
Save in REG,
12 & PLIST + 15
4

COMEXITI
RETURN K
Set BF =0

CC1=0

RETURN

Figure 6-23. Flow Diagram of DECSCAN

290

6.7.7 CHSTSCAN (SYSGEN Get next field)

6.7.7.1 Purpose

To obtain next field from input buffer,

6.7.7.2 Calling Sequence
Set REGISTER 7 = address of parameter list
Set REGISTER 8 = current character from input buffer or zero. If zero, start string with next character,

If non-zero, start string with this character, then get next character.

BAL, 11 CHSTSCAN

6.7.7.3 Input
See Calling Sequence

Next character from input buffer,

6.7.7.4 Output

Register 8 = current character from input buffer.
Condition Code one (CCl) set if string not legal.
Condition Code one {(CC1) reset if string is legal.

A character string in the character string buffer.

6.7.7.5 Subroutines Used
NXACTCHR (Get next character from input buffer).

6.7.7.6 Description

This routine sets the character string buffer to blanks and then requests the next character from the

input buffer. If it is a delimiter, and no characters have been obtained, condition code (CC1) is set and
CHSTSCAN returns to caller. If the next character is not a delimiter, it is saved in the character string
buffer in the PLIST, and if the character obtained is the first character in a string, the current character
position count is set into the PLIST. When the character obtained is a delimiter and a string has been
found, condition code one (CCI) is reset and CHSTSCAN returns to caller. If the number of characters
in a string exceeds thirty-five, condition code one (CC1) is set and CHSTSCAN returns to caller. In
each case, CHSTSCAN puts the character string length into the PLIST,

6.7.7.7 CHSTSCAN Flags and Counters

BA = 0 Set initially to ignore leading blanks,
= 1 Set after first non=blank, non-delimiter character is obtained, indicating that a blank

character is no longer ignored. .,

PCCP = relative position in input buffer of first non-blank character in character string. That is,
if PCCP = 2, first character is in position 3.

ccp = relative position in input buffer of current character. If CCP = 3, then character position
is 4,

csL o= the number of characters in string.

291

6.7.7.8 Flow Chart

CHSTS21

Cha

Delimiter

CHSTSCAN

Set character
string
Buffer = Blanks

Y

Set
BA =0

NXACTCHR

racter

Set CSL=7Char.
in String

Y
Set
BA=0

RETURN

Set
PCCP=CCP-1
A
Put Char. in
Character String
Buffer
no

Figure 6-24. Flow Diagram of CHSTSCAN

292

6.7.8 GETCHST

6.7.8.1 Purpose
To check if a character string alreedy exists in the Character String Buffer, and if not, obtain the next field

from the input buffer.

6.7.8.2 Calling Sequence and Input
Set Register 7 = address of parameter list
Set Register 8 = current character from input buffer or zero.
If zero, start string with next character if Character String Buffer is empty.
If not zero, start string with this character, then get next character providing Character

String Buffer is empty.
BAL,11 GETCHST

6.7.8.3 Output

Register 1 = character string length (in bytes)

Register 2 = byte address displacement of Character String Buffer in PLIST,

Condition code one (CC1) set or reset depending upon character string legality.
set if not legal

reset if legal

6.7.8.4 Subroutines Used
CHSTSCAN (Get next character string from input image).

6.7.8.5 Description

This routine is entered by the character subroutines NAMSCAN, HEXSCAN, DECSCAN, and QUOTSCAN

to obtain the next character string from the input image. When a string is obtained, the BF flag in the PLIST is
set to one which indicates that the Character String Buffer contains a character string. The BF flag is reset
only when one of the character subroutines (as named) finds that the character string satisfies its

requirements (i.e., the string is legal). If a string is not legal, the BF flag remains set such that when
another one of the character subroutines (as named) requests a character string, it will receive the

string which is currently in the Character String Buffer, Therefore, a field which may be either a name

or decimal value, may be scanned by both the NAMSCAN and DECSCAN subroutines to determine which

type it is. The GETCHST routine sets condition code one (CC1) according to the character strings legality

and then exits to the caller.

6.7.8.6 Flags and Counters

BF = 0 Character String Buffer in PLIST is empty.
= 1 Character String Buffer in PLIST contains a character string.
CSL = number of characters in character string.

293

6.7.8.7 Flow Chart

GETCHST

R4=CC1 =0

yes
CHSTSCAN
Char. String
Exists
Save > Bulfr;er
CC1 in Reg. 4
y
Set
Reg.1 = CSL

Y

Set Reg. 2 = Byte
Addr. Displacement
of Char, String
Buffer in

PLIST,
Set
BF =1

Y
Set

CC1 from Reg. 4

Y

(RETURN)

Figure 6-25. Flow Diagram of GETCHST

294

6.8 SYNTAX ROUTINE IN P2CCI (PASS2)

6.8.1 Purpose

SYNTAX is a PASS2 subroutine which converts control command images into manageable temp stack tables.
It can analyze commands of arbitrary format, detect any syntax errors, and reject (with notification to the

user) any syntactically correct information which is not acceptable to the calling program.

6.8.2 Usage
SYNTAX is called via a BAL, 11 fo SYNTAX, Registers 0, 1, 2, 3, 4, and 7 are assumed to contain:

(0) word address of TEMPSTACK doubleword

(N word size of the TEMPSTACK table o be generated (see OUTPUT)
(2) word address of a skeleton TEMPSTACK table (see INPUT)

(3) base word address of P2CCI dynamic data

(4) 0-14 Word size of the keyword table to be used (actual keyword portion)
(4) 15-31 word address of the keyword table (see INPUT),
) word address of character routine parameter list connected with the command image.

All registers are saved except (5), which upon return contains the word address of the generated.
TEMPSTACK table. SYNTAX returns to BAL+1 when it has scanned and interpreted all of the command

image (including continuation records).

6.8.3 Input-Output

6.8.3.1 Keyword-Format Table
The keyword table serves two purposes. It defines valid keywords for the command and what action is to be
taken when they are encountered. It also defines the format of the command if it is not standgrd, i.e.,

options separated by commas of the form:

(Keyword, value ,value ,...)

The keyword table format is as follows:

0 N
Optional, used
"o FCH? to specify
o FCH, nonstandard
N Keyword entries formats.
(2 or 3 words each)
#DEFAULTS
0 15 16 31
FCH (Format Control Halfword):
I M ERR] FOP

295

Where:

FOP is a syntax operation (see table of FOP's below).
ERR is the number of the format control halfword to be used next if FOP is unsuccessful,
M if set, implies that an error message be produced if FOP is unsuccessful.

Keyword Entry:

0 1 7 8 15 16 23 24 31
C C C3 Cy Keyword characters (blank-filled)
Cs Cq Cy Cg 2nd word optional, G and Cg5 >

X'80',
0F<0P KF VDISP

KOP is a key operation (see table of KOPs below)

KF is usually zero (see FLAG KOP)

VDISP is the displacement in the TEMPSTACK table of the word associated

with this keyword.
#DEFAULTS is the number of words in TEMPSTACK table that should be replaced
by their defaults if the command did not specify values for them.

Currently implemented values and meanings of FOP:

VALUE NAME MEANING

0 NOP Used to set error return (WDTBL, DWTBL)

1 GOTO Set POINTER to ERR (M must be zero)

2 LEFT Next character must be left parenthesis

3 FLEFT Search for left parenthesis or end of command

4 RIGHT Next character must be right parenthesis

5 FRIGHT Search for right parenthesis or end of command

6 COMMA Next must be comma

7 FCOMMA Search for comma or end of command

8 INTEROPT Next must be right parenthesis followed by
end of command or comma, left parenthesis

9 KWD Next string must be a valid keyword

10 PROCKWD Determined by KOP, KF, and VDISP for the
particular keyword

11 ANTXT Next string must be alphanumeric, convert
it o TEXT form

12 ANTXTC Next string must be alphanumeric, convert it
to TEXTC form

13 DEC Next string must be decimal, convert it
to binary

14 HEX Next string must be hexadecimal, convert

it to binary,

296

VALUE

15
16
17
18

19
20

NAME
CNVTXTC
CNVDEC
CNVHEX
WDTBL

DWTBL
GETSTRG

MEANING
Convert current siring to TEXTC form
Convert current string from decimal to binary
Convert current string from hexadecimal to binary
Store current value (output of 11 through 17) in a
word table whose next available address is contained
in the TEMPSTACK table displaced by ERR and whose
last address is in the word preceding that, Error return
is that of the previous control halfword.
Same as WDTBL except two=word entries are made.

GET NEXT CHARACTER STRING.

By way of example, the standard format control table:

Displacement M ERR
0 0 0
] 1 0
2 1 0
3 1 0
4 0 1

FOP
FLEFT
KWD
PROCKWD
INTEROPT
GO TO

Currently implemented values and meanings of KOP:

VALUE

0

AwWN

X'40’

MEANING

If KF nonzero, OR's KF into byte displaced by VDISP from
TEMPSTACK table. If KF zero, sets defaults and initiates a

new TEMPSTACK table. No comma or value is expected

for these keywords.

One decimal value expected.

One hexadecimal value expected.

One device address (NDD) value expected.

Same as 0 if KF zero, except one hexadecimal value

is read,put info the new table, and defaults are set

only for the first table.

Same as 4, except expects one decimal value

The value of VDISP represents a displacement into the

table of FOP's, Effectively this performs a keyword

GOTO function.

Stores the flag KF in a byte table (at VDISP into TEMPSTACK

table) indexed by each decimal value following the keyword.
The byte size of the table must be in VDISP-1 into TEMPSTACK

table,

NOTE: When the KOP is 1-5, then the KF field may be used to represent the number
of values expected to follow the keyword. The entries at VDISP info the temp

stack table are arranged to conform with the order of the values following the

keyword.

297

6.8.3.2 SKELETON TABLE
The skeleton fable is copied intact into the TEMPSTACK table at SYNTAX initialization, Its format is
arbitrary, but SYNTAX expects format in most cases.

If FOP is WDTBL or DWTBL, the format is as is described in their descriptions.

If FOP is PROCKWD and KOP is not 0 or X'40' (whose skeleton (TEMPSTACK) table formats are described
above), then the word at VDISP into TEMPSTACK table has three parts:
Bit 0 is a flag. When set it implies that no value has been stored into the word by
SYNTAX (the associated keyword either has not been encountered or the
value following it was in error). If this bit is set when end of command is
reached and VDISP is less than #DFLT, then SYNTAX replaces the word
with its default,

Bits 16~

31 is the upper limit of acceptable values, If it is zero, no limit checking is
done,

Bits 1=

15 is the default value and, if the upper limit is nonzero, is also the lower limit

of acceptable values. (Signed arithmetic value),
Note that this implies that SYNTAX cannot do both limit checking and default setting if

the lower limit is not the same as the default.

6.8.4 Interaction
SYNTAX is currently used by PASS2 modules: XMONITOR, XLIMIT, IMC, P2COC, SPROCS, XPART, and
BTM. SPROCS and XMONITOR provide their own format table,

SYNTAX uses PASS2's character scanning subroutines to scan the command, P2CCl's LISTIT to print the
command, and P2CCI's OUTLLERR to print error position indicators.

6.8.5 Errors
*% SYNTAX ERROR ~ '(' EXPECTED
Self-explanatory, Occurs on LEFT or INTEROPT FOP,
*kE SYNTAX ERROR = *)' EXPECTED
Self-explanatory. Occurs on RIGHT or INTEROPT FOP,
*hE SYNTAX ERROR ~ !, ' EXPECTED
Self-explanatory. Occurs on COMMA, INTEROPT, or PROCKWD FOP,
Fkk INVALID, UNKNOWN, or DUPLICATE KEYWORD
Self-explanatory. Occurs on KWD or PROCKWD FOP,
Tk INVALID ALPHANUMERIC STRING
Self-explanatory. Occurs on ANTXT or ANTXTC FOP,
i ILLEGAL TYPE OR SIZE
A non~keyword string does not conform to the restraints imposed on it,

Occurs on FOP's 10 through 19,

298

| R TOO MANY VALUES
A table has been filled. Occurs on WDTBL or DWTBL FOP,
ki ERROR IN PROCESSOR-JOB ABORTED
A FOP or KOP has not been implemented,
*kk INVALID CHARACTER STRING

Error has occurred in getting character string, occurs on FOP 20,

6.8.6 Description

SYNTAX initializes itself by copying the skeleton table to the TEMPSTACK, and finding the keyword
table and the appropriate format table. It then proceeds to perform the operations contained in the
format table, putting valid information from the command into the TEMPSTACK table and producing error
messages for invalid information. When it reaches the end of the command, it finds #DEFAULTS at the

end of the keyword table, sets the appropriate number of defaults, restores the registers, and returns,

299

6.8.7 Flow Chart

Page 1
SYNTAX

dave space in
TEMPSTACK and
put data in it
save registers

Get address of Get start of

| user supplied jN keyword table
format words (R4)
(Ré)
* 1§
Increment R6 (+1)
and store 0 in
-1, R6 (used as
pointer)
Save
KWDTBL pointer
in stack
Get FOP from
format control
halfword
BADCB
//FOP error in
in range processor | EXIT
JOB

Figure 6-26. Flow Diagram of SYNTAX

300

Page 2

FOP= GOTO

0 EX1 Pg. 3
1 EX2 Pg. 3
2 LEFT Pg. 4
3 FLEFT Pg. 4
4 RIGHT Pg. 4
5 FRIGHT Pg. 4
6 COMMA Pg. 4
7 FCOMMA Pg. 4
8 INTEROPT Pg. 8
9 KWD Pg. 8
10 PROCKWD Pg. 9
1 ANTXT Pg. 5
12 ANTXTC Pg. 5
13 DEC Pg. 5
14 HEX Pg. 5
15 CNVTXTC Pg. 6
16 CNVDEC Pg. 6
17 CNVHEX Pg. 6
18 WDTBL Pg. 7
19 DWTBL Pg. 7
20 GETSTRG Pg. 14

Figure 626 Flow Diagram of SYNTAX (Cont.)

301

Page 3

(2

ERR
Increment Print error
Index to PROC message with
(-1,Ré) $ under error

Reset buffer
flags
Pg. 1

& D>

Get FOP

ERR

Error Message

: Pg. 3

e
Get ERR field

Go to
ffect [— 7 of
e FOP store in PROC
index

Pg. 1

Figure 6-26 Flow Diagram of SYNTAX (Cont.)

302

Select '(* as
compdrison
character

Select '}' as
comparison
character

Select ', ' as
comparison
character

'

i

'

CHAR

[

CHARSCAN

compare
character with
current
character

Select '(' as
search
character

T

Select ')' as
search
character

FCOMMA

!

Select ', ' as
search
character

!

FIND

CHARSCAN

Find current
character

Figure 6-26 Flow Diagram of SYNTAX (Cont,)

303

NAMSCAN

Pick up
anumeric
string

| Move string

i fo registers

| (D1 - D4)
Convert to TEXT

EX1
Pg. 3

DECSCAN

Convert
Decimal to
Binary

Aalid™
. numb%r \

.

Pg. 3

Pg. 3

Page 5

‘\ NAMSCAN

Pick up
anumeric
string

Move string
to registers

(D1-D4)
convert to TEXTC

HEXSCAN

1

convert HEX
to binary

alid
number
~?
Pg. 3

Pg. 3

Figure 6-26

Flow Diagram of SYNTAX (Cont.)

CNVDE

Put address of
entry info
DECSCAN into

Page 6

Put address of
entry into
HEXSCAN into
link register (R4)

A4
Get error
message address

TXTC >

Pg. 5

entry into

Prepare registers
for simulation of

DECSCAN/HEXSC/

N

Convert
DEC/HEX
to binary

¥ DECS-] /HEXS-1

alid

?

number

Figure 6~26

305

Flow Diagram of SYNTAX (Cont.)

Page 7

Set DATASIZE Set DATASIZE
Y
_“Data Bump pointer (-1
~"Size correct for error
\ . no message
N g. 3

Get and adjust

table pointer

ERREND ERR
ERR Find end of
Error Message > cc]
pull registers
y ERROUTS
Set error flag
| Store value in find error return
| table of overlay
return
)
) Pg. 3
Figure 6-26 Flow Diagram of SYNTAX (Cont.)

306

irst
<~ character

no
.~ End ON\
\‘(\:a’;d

no

Pg. 3

- CHSTSCAN
Get

Character

String

/’S/f‘ri ng
&c lid

_/Ke’ywor
_in table
\?

nd
of table

Page 8

Figure 6-26 Flow Diagram of SYNTAX (Cont.)

307

Get VDISP from
keyword table

l<

>

Get code for
operation

no

Decrement

KF (-2)

Y

Increment

VDISP

g. 11

ERR

Print syntax
error

Pg. 3

Process Value/
Keyword

Read and convert
value

Pg. 10

Pg. 3

Store value
in keyword
table

Figure 6~26 Flow Diagram of SYNTAX (Cont.)

308

(conv)

4

CODE= GOTO
-1 EX1 Pg. 3
0,6,7,9,10-14 BADCB Pg. 1
1 DECSCAN}predefined
2 HEXSCANfprocess
3 NDD Pg. 10
4,5 NEWDYN Pg. 12
8 KWGT Pg. 10
A
RETURN
KWGT
Get address
at VDISP
Store in
pointer
(-]IRé)
Pg. 1

CHARSCAN

Get
NDD

character

vali

characters
?
yes

Page 10

Set CC

| In Error

]

{ RETURN)

Figure 6-26 Flow Diagram of SYNTAX (Cont.)

Get flag

to store

Y

Get max, value
for input

Get table
base

b
’ -

y

Get value

ERR

Error message

Get (Byte)
VDISP

¥

'OR" Byte
with flag

Y

Store in
TEMPSTACK
Table

Pg. 2

NEWDYN

Pg. 12

310

Pg. 3
Store flag in
table indexed by
value
yes
no
Pg. 3
Figure 6-26 Flow Diagram of SYNTAX (Cont.)

Page 12

(D

Save keyword
PTR Set SR1=0
as flag for return

RO,

Get address of
defaults

defaults =0
?

Default values

List control

command

EXIT

Figure 6-26 Flow Diagram of SYNTAX (Cont.)

311

Page 13

Set # of
defaults =0

-
Y

Get new temp-
stack size and old
starting address

Y

Save space in
stack for new

DYN

Y
Move saved
registers (30) to
end of new DYN
area

Copy skeleton in
new DYN

¥

Pull Registers

HEXSCAN

Convert HEX
to binary
number

DECSCAN
Convert valid
decimal to number
binary number 3

number
?

RETURN

Figure 6-26. Flow Diagram of SYNTAX (Cont.)

312

Page 14

GETSTRG

CHSTSCAN

Get character

string. Need

not have alpha
_ character.

/ B/cd string - EX2

/yh* " b, 3
\m

~
e
-

P T Set maximum
o~ length > length = 8.

e |

>8
o2 -
“ho .
———— e R

Put string in
registers,

Pg. 3

Figure 6-26, Flow Diagram of SYNTAX (Cont.)

6.9 MODGEN ROUTINE IN P2CCI (PASS2)

6.9.1 Purpose
To facilitate REFDEF stack, expression stack, and relocation dictionary changes (functions performed by the
MODIFY module) for PASS2 module builders whose memory has been allocated by COREALLOC,

6.9.2 Usage
BAL,10 MODGEN

MODGEN interpretively executes all code following the BAL, saving condition code and all registers (except
R10, which is used to save the condition codes and/or the instruction address). Any successful branch
instruction (BIR,BDR, BCS, or BCR) constitutes a return from MODGEN (except when used as a return to
BAL+1 from a subroutine whose BAL was executed by MODGEN), Any instruction for which bits 0 to 3

are all reset is not executed but constitutes input data for MODGEN functions (See INPUT). A zero byte-0
error address word (see COREALLOC) must be present.

313

6.9.3 Input
All MODGEN specific input is in TEXTC format (maximum 15 characters) as follows:

Byte O
n+1 Cy Co
Cn N -- -

The type of operation is determined by N which is an EBCDIC decimal digit (X'FO' through X'F9")

N OPERATION MEANING OF C,.C, COMMENT

0 Create value DEF Name of DEF Value inR12

1 Create location DEF Name of DEF Address (in data record)

inR8

2 Change relocation n=1, Address (in data) in R8
dictionary Ci=new relocation code

3 Create PREF for address Cl through C_-1 = name of Address (in data) in R8
field REF; Cn = resolution

6.9.4 Interaction
MODIFY is used to make the modifications.

6.9.5 Errors
If a MODGEN operation (other than a value type DEF) is requested with the address in R8 larger than the

highest valid address in the data record, the message

***INADEQUATE CORE SPACE - SKIP TO NEXT CC
is printed, R8 is set to minus one (as a flag for WRITELM), memory is released, and the word address in R10 is

decremented until it points to a byte which is zero, which word is used for an error return address.
An identical sequence occurs if MODIFY reports an error except that the message is

***MODIFY ERROR - SKIP TO NEXT CC

If an illegal operation code is encountered (N not EBCDIC decimal or not implemented), MODGEN errors the

job step with the message.

***ERROR IN PROCESSOR - JOB ABORTED

6.9.6 Description

MODGEN examines the word pointed to by R10. If any of bits 0-3 are set, the word is assumed to be an
instruction and the condition codes are loaded from R10, the word is executed, the new condition codes
stored in R10, and R10 is incremented. Otherwise, the operation code is picked up from the end of the
TEXTC and a corresponding subroutine generates a change description table and performs the operation
through MODIFY, R10 is incremented to point to the word after the TEXTC, This process is repeated
until a successful branch instruction is encountered, since its execution transfers control out of

MODGEN,

314

6.9.7 Flow Charts

Find next
location after

TEXTC

Y

Restore 9 registers
increment SR3
to next location

|

Page 1
MODGEN
Save R1 l
Restore R1, load Execute Save CCs in
| CCs from SR3 N Instruction L | Byte O of
(Byte 0) SR3
BADCB
Error in
processor EXIT
Save 9 registers
MODPROC
Build required change
description table, perform
operation (MODIFY) MODER
P Pg. 2 Print ERROUTM
_~error error . Free Core , set
 found Ve message error flag,error
/ refurn to overlay
Pg. 2

Figure 6-27 Flow Diagram of MODGEN

315

(MODPROC)

CODE= GOTO
0 DEFABS Pg. 3
1 DEFREL Pg. 3
2 DICTMOD Pg. 4
3 DICTMOD (REF) Pg. 4
4-15 BADCB Pg. 1
RETURN
ERROUTM
Free core
Pag es

!

Set error flag

Y

Find error return
address of
calling overlay

EXIT
RETURN

Page 2

Figure 6-27 Flow Diagram of MODGEN (Cont.)

316

DEFABS

Set NAME2
=0

Set NAME2=
X'01000000'

address

in SECTO
?

MODERO

Get appropriate
error message

Geft value
for NAMET

Get NAME1 and

store in change
description TBL

Page 3

(CDT)

¥
Store value of
NAME2 in CDT

3 MODIFY
Store type code MODIFY
=4 in CDT load module

refurn
Figure 6-27 Flow Diagram of MODGEN (Cont.)

317

Set NAME2 =
X'01000000*

dddress
in SECTO

Get value for
NAME1

1

T
Get resolution
code and convert

Page 4

to binary
MODIFY
Store type MODIFY load
— code = 3 module
in CDT Return
es
Put in CDT
resolution
code
¥
Store NAME1
in CDT
¥
Store VALUE]
(a constant)
in CDT
¥ MODIFY
Store NAME2 Store type MODIFY load
in CDT code=0 > | module
Return

Figure 6-27 Flow Diagram of MODGEN (Cont.)

318

6.10 COREALLOC ROUTINE IN P2CCI (PASS2)

6.10.1 Purpose

To obtain and allocate memory for building SYSGEN library load modules.

6.10.2 Usage

BAL, 11
(0) = Temp stack pointer address
(3) = P2CCI dynamic data address
(12) = Desired word size of REFDEF stack or -1, if unknown
(13) = Desired word size of data record or -1, if unknown
Upon exit:
(7) = Address MODIFY PLIST
(8) = Address of data record
(9 = Address of REFDEF stack.

4 and 14 are destroyed.

6.10.3 Output

Allocation of Memory:

- Z words
REFDEF Stack EXPRESSION Stack Data Record Data Record Unused
X words X words Relocation 8 times Rel. W words
One 4-word entry | Zero-filled Dictionary Dict. size.
Rest zero-filled 'E' filled Y words
zerofilled
Higher addresses ———— Upper limit of memory

If neither R12 nor R13 is minus one: X=(R12), Y=(R13), W=Z-2X-9Y/8

If only R12 is minus one: Y=(R13), X=(Z-9Y/8)/2, W=0

If only R13 is minus one: X=(R12), Y=(Z-2X) +8/9, W=0

If both R12 and R13 are minus one: X=Z/3, Y=8Z,/27, W=0

The entry in REFDEF defines the data base address.

In the Temp stack, COREALLOC builds a MODIFY PLIST, a ten-word Change Description Table area, a
HEAD record, a TREE record, and an M:OPEN FPT, and one word (MAXO00 for the word address of the

end of the data). Each of these has appropriate address and size fields filled in.

6.10.4 Input
The highest addressed word before the BAL to COREALLOC which contains a zero in byte=0. This word must
contain the address of code which cleans up if sufficient memory not available and contains a BAL to

WRITELM which releases stack space used by COREALLOC.

319

6.10.5 Interaction
M:GP, M:FP to obtain and release memory.

6.10.6 Errors
If available memory is insufficient, the message:
***INADEQUATE CORE SPACE-SKIP TO NEXT CC
is printed, (R8) is set to minus one as a flag for WRITELM, and a return is made to the address described
under INPUT.

6.10.7 Description

COREALLOC first sets up R7 and moves a blank data area (PLIST, HEAD, TREE) to the stack. All available
memory is obtained. The sizes of the various sections are calculated according to the formulas under QUTPUT,
If enough memory is available, all the appropriate slots in PLIST, HEAD, and TREE are filled in, the memory
is set up, and COREALLOC returns,

320

6.10,8 Flow Chart

Page 1

COREALLOC

Move HEAD, TREé
PLIST, CDT to

temp stack

Get maximum
core

FDF

specified

Set RFDF = Compute
total WDS/3 (total=2*RFDF)

RFDFOK

convert to ‘

doubleword
Yy

SECTB\
~ Given

no

~ Set SECTO=
\‘/ yes (total ~2*RFDF)*8

convert to o ‘9,
doubleword ’

SIZESOK
SIZESOK

Pg. 2
Pg. 2 9

Figure 6-28. Flow Diagram of COREALLOC

321

Page 2
OONORRDF

Compute RFDF=
(total -9/8*SECTO)

Zero out
.3 work area

}

Store SECTO
bias in REFDEF

entry
Store TREE addr.
and CDT address
in PLIST

Store RFDF addr.,

EXPR address in ‘

TREE Store 'E's in

! RELDICT

Store RFDF addr.

in PLIST and

upper limits in

PLIST ‘Restore
Store address and REGISTERS
size of RELDICT

and SECTO addr. ,

in Pi.IST EXTT

Store SECTO size
in TREE, address
in HEAD RECORD

¥

Save end of
SECTO

Figure 6-28. Flow Diagram of COREALLOC (Cont.)

322

Page 3

List
command

;T‘*

Restore

Registers

Print
Error
Message

Free poées
set error flag

A
ind error return
address of

calling overlay

RETURN

Figure 6-28 Flow Diagram of COREALLOC (Cont.)

323

6.11 WRITELM ROUTINE IN P2CCI (PASS2)

6.11.1 Purpose
To write a SYSGEN library load module file whose memory has been allocated by COREALLOC,

6.11.2 Usage

BAL, 11
(0) = Temp stack pointer address
(7) = Modify PLIST address (also used to find HEAD, TREE, and M:OPEN FPT)
(8) = Actual end of data record or minus one to skip the write for errors,
(14) = Address of TEXTC file name.

All registers saved except 12, which is used to reduce the temp stack to pre~COREALLOC status.

6.11.3 Interaction
M:OPEN, M:WRITE, M:CLOSE to create the file. M:FP to release memory obtained by COREALLOC,

6.11.4 Description

If R8 contains minus one, the stack is pulled to pre~COREALLOC status and WRITELM returns. If not,

the actual data record size is put into the TREE and the HEAD is adjusted according to the running monitor
type The first entry in the REFDEF stack (put there by COREALLOC) is replaced with a CSECT entry, the
filename (from R14) is put in the TREE, and the OPEN FPT and the file is opened in the output mode.

Then the HEAD, TREE, REFDEF stack, Expression stack, relocation dictionary, and data are written to the
file, which is then closed and saved. Memory is released, the stack is pulled, and WRITELM returns.

324

6.11.5 Flow Chart

WRITELM

rror
Flag Set

Calculate SECTO
size and store in
TREE

Readjust
Stack Pointer EXIT

Store SECTO size in
HEAD record. Store
RFDFSTK address

in HEAD record

Set HEAD
record size=

24 Bytes

Put CSECT DEF
in REFDEF Stack

——

Get file name
open file

Close file re|ease
pages restore
registers

NOWRT

rite HEA
TREE, REFDEF
xpression,
ELDICT records,

rite SECTQ
record

Figure 6=29 Flow Diagram of WRITELM

325

APPENDIX A

A.0 BPMBT — DEF OVERLAY

A.1 PURPOSE

To write a bootable BPM monitor to either 9-track tape, 7-track tape or disk pack.

A.2 CALLING SEQUENCE
BAL instruction from DEF
BAL, 12 BPMBT

A.3 INPUT

R6 = address of the parameter list control word to open the input DCB to read the monitor

R7 = address of DCB for writing BO/PO tape/disk
RO = push down stack pointer address
A.4 OUTPUT

Error messages to LL device bootable monitor

A.5 CORE USAGE (not to scale)

BPMBT OVERLAY WORK AREA
DEF WRITEMON {Mag Tape |CDWs Boot System S
Processor [(Procedure) |Mini-Boot |for Subroutine | Device {To Read To Read MON Root
Root DISKLOAD Boot (MON Head & | SGMT Names |To Read |
Routine |Tree (1 Page) |and #'s Monitor
(1 Page) SEGMESTS

A.6 OVERVIEW

A.6.1 Description

BPMBT consists of two sections; both sections are contained in one ROM, Section I is the portion of BPMBT that is
executed as part of the DEF processor to write a bootable monitor. This section of BPMBT is executed under the
BPM operating system. Section II contains bootstrap routines and the Boot Subroutine. This section of BPMBT is
written to the boot device along with the bootable monitor by Section 1. The coding in this section is executed in

the master mode at boot time in order to bring up the BPM system,

A. 6.2 Module Organization — BPMPT
1 WRITEMON (writes a bootable monitor)
11 BOOTMON (routines to boot the monitor)
A. Magnetic Tape Bootstrap
B. CDWs for Disk Pack Boot Deck
C. Boot Subroutine
1. RDROOTTP (boots monitor from tape)
2. RDROOTDP (boots monitor from disk pack)

326

WRTROOT (writes monitor to system device)
WRTLOOP (reads overlays and writes them to system device)
Various BOOTMON Subroutines

S

System Device Bootstrap

Only the WRITEMON portion (Section I) of BPMBT is documented in detail here. For details concerning the
BOOTMON portion (Section II of BPMBT) refer to the BPM Technical Manual, 90 15 28, Chapter 3.

A.7 DESCRIPTION

Upen entry, WRITEMON issues an M:GP to get all of core to use as a work area. WRITEMON then opens M:TM
DCB fto the keyed file M:MON. The account specified is determined by the parameter list control word which is
passed to WRITEMON by DEF. If creating a BO device this is the :SYS account; if PO, the current account,
After M:MON has been opened, WRITEMON reads the keyed record 'HEAD' to get the start address. This start
address has been defined by the END INITIAL Metasymbol directive in the module M:TABLES. The stack address
is stored in the Boot-Subroutine to be used as an entry point to the Monitor initialization routine after the Monitor

root has been read into core by the Boot-Subroutine,

Next the keyed records 'TREE' and MON::ORG are read, WRITEMON then accesses the size of the Monitor root
from the Tree Table and stores the byte size of the root in the System Device Boot Routine, This address also is
used as the buffer address to read the Monitor Tree Table at boot time and is stored within the Boot Subroutine in

the CDW used to read the tree.

The Monitor root is to be written out in 2048 byte segments on either tape or disk pack. To avoid the increased
possibility of tape read errors caused by reading an extremely short record the last segment is always written using
a minimum of 40 bytes. The Boot Subroutine must know how many of these segments to expect and the size of the

last segment. So WRITEMON makes these calculations at this point and stores the result in the Boot Subroutine.

During the initiai boot process the Boot Subroutine will be read (either by the mag-tape mini boot or DISKLOAD)
into core location TOPRT + 1 page. Again, using the size of the Monitor root as accessed from the tree table,
WRITEMON calculates this address and stores it into the CDWs used to read the Boot Subroutine in both the mag-
tape mini-boot and the CDWs set up for DISKLOAD. This address is also stored at all entry points to the Boot

Subroutine so that it may be accessed and used as a base register by the various routines within the Boot Subroutine.
A.8 BPMBT SUBROUTINES
A.8.1 WRSEG

A.8.1.1 Purpose

To write the Monitor Root and Overlay Segments to the output device,

A.8.1.2 Calling Sequence
BAL, 11 WRSEG

A.8.1.3 Input
Reg. 4 = Number of bytes to be written
Reg. 14 = Address of buffer

327

A.8.1.4 Description
The WRSEG routine writes out the buffer in 2048 byte segments to the output tape or pack. Following each write
operation the cell CURBLOCK is updated. This cell is used for each subsequent write operation to indicate the

BLOCK value when the output device is pack.
A.8.2 DISPSEG

A.8.2.1 Purpose
To build the Segment Names and Numbers Record and list it on the LL Device.

A.8.2.2 Calling Sequence
BAL, 11 DISPSEG

A.8.2.3 Input

Reg. 1 = Segment Number (binary)
Reg. 2 = Address of Segment Name
Reg. 13 = Address of work area to build the record

A.8.2.4 Description
If the overlay number contained in R1 is '3F', DISPSEG puts out a standard segment message for the Root. Other-
wise, the value in R1 is converted to EBCDIC and stores it along with the overlay name in a message work area

and prints this message,

In any case the message is moved to the work area allocated to building the Segment Names and Number Record.
The first word in this work area is used to indicate the displacement into the work area where the next segment

message is to be stored. Each message is 6 words long.

Next WRITEMON determines if a pack or tape is being created. If pack, WRITEMON calculates the required
size of BOOTFILE by searching through the Monitor Tree Table and accumulating the total number of granules
required for the Monitor Root and all Monitor Overlays. Added to this are 6 granules which is a fixed requirement
for the Boot Subroutine, Monitor Tree Table and Segment Names and Numbers Record. This value is then used as
the RSTORE value to open random file 'BOOTFILE' on the BO/PO pack. After the file has been opened
WRITEMON accesses the FDA from the File CFU to determine if BOOTFILE is the first data file on a private pack
that has been initialized at 2 granules per cylinder. If not the DEF processor is aborted. Otherwise, the Boot
Subroutine, along with the CDWs required to boot that routine, is written to the first 4 granules in BOOTFILE.

If a tape is fo be written, the tape DCB is opened to device. Then the Mag-Tape Mini-boot, followed by the

Boot Subroutine, is written to the tape. The FPTs used to write the Monitor Root and Overlays, the Monitor Tree
Table and the Segment Names and Numbers Record are then modified to delete the BLOCK parameter, This enables
the same FPTs to be used to write to both tape and pack. From this point on, processing is the same for both tape

and pack output.

WRITEMON next BALs to the WRSEG subroutine to write out the Monitor Root in 2048 byte segments, Following

this the Monitor Tree Table is written.

328

WRITEMON then be-:ins the process of reading the overlay segments and writing these segments, again in

2048 byte records, > the output device. First, a page is reserved in the work area to build the Segment Names
and Numbers Recorc. WRITEMON scans the Monitor Tree Table to locate each successive overlay. For each
overlay a BAL is mcde to the DISPSEG subroutine to build the Segment Names and Numbers Record and list it on
the LL Device, WRITEMON then obtains the segment name and size from the tree table and reads the Monitor
Overlay info the work area. The overlay name is moved to the three words preceding the overlay to be written out
along with the overlay itself. The Boot Subroutine will use this information to compare against the Monitor Tree
Table as a check af boot time. WRITEMON BALs to the WRSEG subroutine to write out each Monitor Overlay in
2048 byte segments,

After all overlays have been written to the output device, the Segment Names and Numbers Record is written, the
input M:TM DCB is ciosed, the output tape/pack DCB is closed, the work area is released and control is returned

to the calling routine,

A.9 WRITEMON MESSAGES

$$$$SEGMENT #'s FOR PATCHING MONITOR
MONITOR $4$$

This is a title message that precedes the
list of segment numbers.

xxxxxxxxxxxx = SEG. #nnnn

This message identifies the segment num-
ber (nnnn) for each segment (xxxxxxxxxxxx)
as the absolute bootable Monitor is written
for the PO tape.

**xx*CANNOT OBTAIN '"M:MON' FROM
CURRENT ACCOUNT

The M:MON load module cannot be ob-
tained from the current account. The
processor is aborted.

*#*x**CANNOT OBTAIN 'M:MON' FROM
':SYS' ACCOUNT
--------- PROCESSOR ABORTED (WRITEMON)

The M:MON load module cannot be ob-
tained from the :SYS account. The pro-
cessor is aborted.

%CANNOT READ KEYED RECORD 'HEAD'
FROM IN M:MON

***xx*CANNOT READ KEYED RECORD 'MON:: ORG!
IN M:MON

*#*x%*CANNOT READ KEYED RECORD 'TREE' IN
M:MON

x%CANNOT READ KEYED RECORD
Txxxxxxxxxxxx' IN M:MON

One of these messages appears if a part of
the M:MON load module cannot be ob-
tained. 'xxxxxxxxxxxx' is the name of a
M:MON segment. The processor is
aborted,

**xx*CANNOT USE PACK - REINITIALIZE
WITH CYL SZ=2

The PO or BO pack must not contain any
files prior to the DEF. Processor is aborted.

***x*x*SPACE OVERFLOW ON SEGMENT NAMES
RECORD

The Monitor Tree Table is too large for seg-

" ment name information to be contained in
“one page. The processor is aborted.

————————— PROCESSOR ABORTED (WRITEMON)

Information message to indicate the BPMBT
overlay has caused the abort of the DEF
processor.

329

K WRITEMON

T

Get work area

|

!
Y

| Get ADDR of

-Se{u;) CDWs o in

Set FPT to get
M:MON from :SYS

or current account

T
!
|

v

Open keyed file
M:MON

l

TOPRT + 1 page

- — -4

mag -tape mini-boot
to read BOOT SR
Set upClSW; for
DISKLOAD fto read |
BOOT SR from pack

used as basic
register af all entry

points of BOOTSR

Read 'HEAD' from

!

M:MON
1

|
! Get start addr.
(initial in tables)
and store as entry
| point to monitor
"Initialization

\J

M:MON

.Y -
Read M:MON root
MON::ORG

A |

no - writing /\ N\

< Writing
to pack
\Q?;/

i yes

—

Calculate size of

'BOOTFILE'

¥

Read 'TREE' from |

Cet byte size of
i roof
Set up CDWs for
system device
bootstrap

| boot free from
tape/pack

Set up CDWs to
boot root from

(A)

Open output DCB
to random file

'BOOTFILE'

i

RS

fo tape

no

““bootfile .
<fi rst file on
pack
\?

*‘ yes

'Setup CDWto

Write BOOT SR
to 'BOOTFILE'

tape/pack

v
fron

N
N s
g

pg 2

l

S JS—

—
~ Abort DEF

processor

OPNTAP
N

E
pg 2

Page 1

Figure A-1,

330

Flow Diagram of BPMBT

_/

A

Open output DCB
o tape device

'

Delete 'block!
parameter in FPT's
to write to output

DCB

Write mag-tape
mini~hoot to
output fape

N S

Write BOOT SR
to output tap

P S

R

~

\

@MO)
o
Y

WRSEG

Write monitor oot
to output device

pg. 3

y

Write monitor tree
tc output device
Update granule
count for 'bootfile!

)

Allocate work area
for names and
number's record

!

Search tree table

to get overlay
segment name

|

v

DISPSEG

Output seg name
and number on LL.
Build names and
number record.

‘ pg.

4

Read overlay
from input file
M:MON

'

Get size of
overlay

'

WRSEG

Write overlay to
output device

Write seg names
and number's
record to output
device

Y

Close M:MONDCB

/

Page 2

Close output
device DCB

Release work

area

Return to DEF

Figure A-1.

Flow Diagram of BPMBT (Cont,)

331

Page 3

Number
of l.uytes left to if:tzpr]-er:\:ining
write < 2048 by"e Size

‘no

Set FPT to write
2048 bytes

Write record to
output device

Update granule
count for
'bootfile'

A 4

Update buffer
address

\

Decrement
number of bytes
left to write

Have
all been
written

yes

Figure A-1. Flow Diagram of BPMBT (Cont,)

332

Is
segment

number = 3F
?

Move segment
name fo message

Convert segment
number to EBCDIC

Store segment
number in message

<

yes

\ J

Write message
to LL device

/

Move message to
next available
entry in names and
number's record

Update pointer
to next available
entry

A

Return

1 message is set to

rootseg = 3F

Page 4

Figure A-1.

Flow Diagram of BPMBT (Cont.)

333°

APPENDIX B

B.0 UTMBPMBT — DEF OVERLAY

B.1 PURPOSE

To write the bootable portion of a UTS system tape.

B.2 CALLING SEQUENCE

BAL, 11 UTMBPMWRITEMON
(6) = X'01010202' for input from current account (DEF)
(7) = output tape DCB address

{8) = version number (3 EBCDIC characters, left-adjusted)
(0) = temp stack pointer address

All registers destroyed,

B.3 INPUT
Load module files for M:MON, XDELTA, GHOST1, ALLOCAT RECOVER, M:SPROCS, and all Monitor overlays
{(according to M:SPROCS) in the current account (for DEF usage).

B.4 OUTPUT
Error messages to the LL Device

Bootable monitor (see Figures B~1 and B-2)

334

System Exec Exec
} Tape M:MON informa- | {Delta | |Delta hAeLchOCAT DATA | |Procedure Segé)sn

| boot Data tion head Data

/ NG
GHOST1 GHOST1 GHOST! Overlay,, Overlay Overlay,
DCBs data procedure head head head
NG -

\\ Overlay; RECOVER | | RECOVER .EOF

Data head data

NOTE:
Head Head portion of load module
Data Protection type O portion of load module
DCBs Protection type 2 portion of load module
Procedure Protection type 1 portion of load module

OVERLAYi M:MON overlays (shared processor type) as described in M:SPROCS module (except
M:DUMLM:s)

Figure B-1. Output Tape Format

335

VD NL byte + 3 bytes

Blank line
*kkkk

—=-UTS---
SYSTEM GENERATED ON:

hh:mm MM DD YY

VERSION NO. IS: XXX§

*kkkk
PATCH SEGMENT NUMBERS: Six words each line. First
character of each line must
00 = M:MON be X'40'.
SN = SSSSSS
*****;
Blank line

The message contains the time/data (hh:mm, MM DD YY) of when the tape was generated, and the seg-
ment numbers (SN) assigned to each segment (55555S) for absolute patching purposes.

vD

NL = number of six-word lines of text

I

word displacement fo version number (XXX¥g)

Figure B-2, System Information Format

DESCRIPTION

Initialization consists of saving the version number (in R8) in the canned information record, obtaining all

available dynamic data pages, and putting the appropriate file name control word (in R6) into M:OPEN FPTs for
M:MON, M:SPROCS, and monitor overlays, GHOST] and RECOVER, Then the output tape DCB is opened and

set to the unformatted mode. The M:MON HEAD record is used to put the start address into the tape bootstrap.

The data size from the HEAD is used to set up the bootstrap, which is then written to tape. It is followed by
M:MON data in 2048-byte records. M:TIME puts the date and time into the canned information record. The
M:SPROCS data record is then used to construct a doubleword table of file names for transfer to tape, since this
record starts with P:NAME (doubleword table of TEXTC format monitor overlay names). This table is then used to
construct the segment number portion of the monitor information record, which is then written in a 2048-byte to tape
and line~by~line to the LL device. Then the loop, NXTULBL, is entered which picks names out of the file name
table, and copies appropriate protions of the file to tape. The HEAD record is copied unless the file is a JIT. Then
the data protection type is copied unless the file is GHOST1 or ALLOCAT, in which case DCB (for GHOST1 only),
data, and procedure are copied, in that order. All pieces of information (including the HEAD record) are copied in
2048-byte segments, When RECOVER has been copied, those pages that were obtained are freed, the tape DCB is

CLOSEd (to write an :EOF record), and a return is made to the caller via R11,

An abort via M:MERC with X'80' merged into the error code occurs if any module cannot be obtained.

336

APPENDIX C

C.0 DEF (HOO BPM/BTM VERSION)
This Appendix describes DEF released as the HOO version for BPM/BTM systems, This version is based on the

processor described in Chapter 4 but has been significantly enhanced to permit creation (for BPM/BTM only) of
PO/BO disk packs in addition to PO/BO tapes.

C.1 PURPOSE

To generate one or more target system tapes (PO tapes) or disk packs (PO packs) or BO tapes or disk packs which
maybe used as master Bl tapes/packs for subsequent SYSGENS,

C.2 CALLING SEQUENCE
Monitor control command

IDEF....

C.3 INPUT
DEF control commands from the SI device,
IDEF (from C device)
:WRITE
:INCLUDE
:IGNORE
:DELETE
END

Files from random access device comment commands

C.4 OUTPUT
Display of DEF control information to LL device.
PO tape
PO disk pack
BO tape
BO disk pack

C.5 DATA BASE AND REGISTERS

R7 = address in temp stack of control command PLISTS

R6 = address in temp stack of data and 1/O PLISTS

IGSTRT/IGEND — Pointer to Start/End of IGNORE table

INCLSTRT/INCLEND - Pointer to Start/End of INCLUDE table

LSTLMST — Pointer to Start of intermediate table for LASTLM for BO disc pack
LSTLMBUF — Pointer to Start of compact LASTLM record to be written for BO disc pack

OPEN FPTs
OPNTMSQN = Open disc to file
OPNPOBO —~ Open PO/BO (via DCB whose address is in R5). Originally set up to write to fape,
dynamically changed if writing to disc pack.

337

OPNTM — Open disc to next file,

OPNSYN — Open for Synonomous files originally set up to write to tape, changed dynamically if writing
to disc pack.

OPNPOBOLST — Open to write null LASTLM used for PO/BO tapes and PO disc pack set up for tapes,
changed if disc pack.

OPNDPLST — Open to write non-null LASTLM to BO disc pack.
POIGS/BOIGS Tables — Automatic IGNOREs for BO/PO tapes and disc packs,
POINCLS Table — Automatic INCLUDEs for UTS PO tape,

BOINCLS Table — Automatic INCLUDEs for UTS BO tape.

BBOINCLS Table — Automatic INCLUDEs for BPM/BTM BO tape/disc pack.

C.6 SUBROUTINES

BPMBT — to write BPM/BTM system to unlabeled portion of BO/PO tape or to random file 'BOOTFILE' on
BO/PO disc pack. See Appendix A for description.,

UTMBPMBT — to write UTS system to unlabeled portion of BO/PO tape. See Appendix B for description.

NAMSCAN - to scan any field containing a name,

CHARSCAN = to check a specific character for legitimate syntax.

CHSTSCAN — to obtain a character string field.

NXACTCHR — to get next active character from input record.

HEXSCAN — to scan for a hexadecimal character,

DECSCAN — to scan for a decimal character.

QUOTSCAN — to compare a quote constant with a character string.

GETCHST — to obtain the next character string.

C.7 CONTROL COMMANDS

Upon entry DEF requires a parameter on the IDEF command that identifies the SYSGEN system for which tapes/disc
packs are being created. This parameter maybe either BPM, BTM, or UTS. If none is specified, then the currently |
running operating system is used to determine the system type. If the parameter is invalid, then DEF prints an
indicative message and aborts, For UTS, an optional second parameter is a version number, There is no syntax
analysis made on the field, therefore any set of characters is accepted. However, only the first three characters

are retained,

The type and composition of the tape(s)/disc packs DEF creates is a function of the control commands read by DEF.
If the IDEF is immediately followed by a monitor control command, one PO tape is created by default. The
function of the END command is to cause DEF to exit since an EOF on reading M:SI causes one PO tape to be
generated unless the last command processed was :WRITE, To write a BO tape/PO or BO disc pack and/or include,
ignore or delete files for any tape or pack type, :Commands are required. These commands have the following
format:

:INCLUDE (namel, name2...)

:IGNORE (nameA, nameB...)

:DELETE
:WRITE (BO ,[sN]
PO
BODP
PODP

338

All commands preceding the :WRITE apply to that tape/disk pack being created and may appear in any order. The
:WRITE is required for BO tapes and nacks and PO packs as a PO tape is generated if the type parameter is null

or illegal. The optional SN field permits a generalized assignment of PO/BO to (DEVICE, 9.{, prior to calling

D
DEF. The processor itself stores the particular SN into the DCB,

The type of files that may be specified or are affected by the other commands depend on the type of tape/disc pack

being generated, Table C-1 summarizes this information.

Table C-1. File Types

:COMMAND BO tape/pack PO tape/pack .
:INCLUDE Keyed files Consecutive files i
:IGNORE Consecutive files Keyed files ‘
:DELETE BOTH BOTH |

C.8 DESCRIPTION

Upon entry DEF initializes its dynamic data area and processes the IDEF command. One page of core is obtained

for storing file names into the tables pointed to by IGSTRT and INCLSTRT,

DEF then reads it :Commands and branches to the appropriate routine to process them. For :INCLUDE and :IGNORE,
this involves syntax checking the names (< 15 characters); determining if room exists for the entry (if not, obtaining
an additional page of core); storing the name in the appropriate table; and exiting to read another command. For
:DELETE, a flag (DELETEF) is set before exiting to read another command. When an abnormal return (EOF) is made
from reading SI for commands, ENDFLG is set and if the WRTFLG is non-zero indicating the last command was
:WRITE then the routine is entered to clear up the stack and exit. If WRTFLG is zero, then the routine to write a
PO tape by default is entered.

For the :WRITE command, entry is made to the initial routine that determines which type of tape or disc pack is

being generated, From here, a branch is made to either the PO or BO tape/pack routines,

For PO and BO packs for BPM/BTM systems only, the initial routines alter the fpts to reflect file type operations and
change the file access parameter in the fpt for synonymous files to update mode. From these routines DEF then

enters the main processing routines for PO and BO tapes.

For PO tapes, after processing the optional SN field, the names of files that are to be automatically ignored

(i.e., LASTLM and SPEC:HAND) are linked to the end of the IGNORE table. If the system being created is UTS,
then the names of files to be automatically included are linked to the end of the INCLUDE table, These files are
listed in Table C-2. The appropriate routine to write the unlabeled portion of the tape is segloaded and entered.
See Appendixes A and B for a description of these routines. Upon return, ten additional pages of core are obtained

and the common routine (CCA) to generafe the remainder of either type of tape is entered.

For BO tapes, after processing the optional SN field, the appropriate routine to write the unlabeled portion of the
tape is segloaded and entered. Upon return, for BPM/BTM systems, the files to be automatically included (see
Table C-2), are linked to the end of the INCLUDE table, ten additional pages of core are obtained and exit is
made to CCA, If the system is UTS, the file, M:SPROCS in :SYS account, is opened, ten pages of core are

339

obtained and the file is read into the newly acquired area and linked to the end of the INCLUDE table. M:SPROCS
contains the names of the monitor overlays and shared processors but only the overlays are added to the INCLUDE
table. The names of the other files to be automatically included are linked to the end of the added monitor over-

lay names and exit is made to CCA,

Upon entry, the common routine (CCA) first determines if a disc pack is being created, if not then VOLINIT is
removed from the list of automatic INCLUDEs, If a BO disc pack is being generated then the start of the INCLUDE
table is stored as the start of the list of files for the non-null LASTIM file, The INCLUDE list is then processed.
This involves obtaining the name of a file, storing it in the open FPT (OPNTMSQN) for M:TM to the disc and then
opening the file, using the FPARAM option. The file, thus opened, is checked first if it is a synonymous file in
which case special handling is required, namely its parent name must be added before writing it to the tape, Note

the parent file must occur before the synonymous file or the latter is lost,

Then the organization of the file is determined. If PO, then only consecutive files are processed, if BO, then only
keyed files. The other types are automatically handled later. If a file for a disc pack is invalid then a link is set

over the entry thus removing it from possible subsequent processing in BO pack situations,

The PO/BO tape disc pack is then opened and the file is read into core and wirtten to tape/pack until an EOF is
encountered at which point the DCB is closed. This routine is repeated until all the names in the INCLUDE table
have been processed. When this processing is completed and the files thus written to the tape/pack have been

listed on the LL device, the next phase of DEF is entered.

If a BO pack is being generated then the routine WRLSTLM is entered to build a LASTLM file of one record contain-
ing the names of all the INCLUDEJ files and terminated by a final word of zero. The files so named are to go into
the :SYS account at boottime, On BO tapes, the file LASTLM is null and its position on the tape serves as a
termination of the files for :SYS. However, on BO packs, because thefiles on a disc pack are accessed through

the alphabetized file directory, LASTLM is used as a mini~directory for the :SYS file,

If a BO tape is being generated, a null file, LASTLM, is written to the tape. Subsequently, or if a PO tape is
being created, the FPT for open-next to the disc (OPNTM) is opened and file parameters obtained, If the file
organization is consecutive (BO)/keyed (PO), the IGNORE table is searched to determine if it is listed there,

If the DELETEF is set, the file is deleted when M:TM is closed. If the file is not fo be IGNOREd, it is then read
into core and written to tape/disc pack. This procedure is repeated until all files in the current account have been

processed.

If on opening-next-file, an abnormal return is made indicating the file is a synonymous file, its name is stored in a
new INCLUDE table whose location is pointed by INCLSTRT and a flag (SYNFLG) is incremented, thus maintaining

a running total of the number of synonymous files found.

When an abnormal return is made indicating an end of all files on open-next, if the tape/pack being created is
BO, it is immediately closed, rewound, and saved. If a PO tape/pack is being generated, SYNFLG is tested.
If non-zero, a second pass is made through the INCLUDE routines, If or when SYNFLG is zero, the null file,
LASTLM, is written to the tape/pack which is closed, rewound, and saved.

Note: When writing Synonymous files to disc pack, the DCB is opened in the update mode. If the parent file is

not there, then the fpt is set to open out and the file is subsequently written out,

340

prepare for the generation of another tape, If ENDFLG is set, DEF exits.

Table C-2. Automatic INCLUDEs

The pages of core acquired thus far are released. If ENDFLG is not set, the flags ond counters are zeroed to

PO Tape/Pack™

BO Tape/Pack™*

urs

BPM

uTsS
SIG7FDP
:BLIB
FLIBMODE
SIGMET
M:CDCB
M:OCDCB
M:BIDCB
M:CIDCB
M:SIDCB
M:EIDCB
M:BODCB
M:CODCB
M:SODCB
M:PODCB
M:GODCB
M:LODCB
M:DODCB
M:EODCB
M:LLDCB
M:SLDCB
M:ALDCB
M:LIDCB

uts

XDELTA
LOGON
TEL
SUPER
DEFCOM
SYMCOM
JITo0

Jim

JiT2

JIT3

Jité
ANLZ
ERRMSG
GHOST1
RECOVER
M:SPROCS
M:MON
PCL

Ccl
LOADER
PASS2
LOCCT
PASS3
DEF

Plus Monitor overlays

from M:SPROCS

BPM/BTM

FMGE
PASS1
ERRMSG
:DIC
:LIB
M:C
M:0C
M:BI
M:CI
M:SI
M:El
M:BO
M:CO
M:SO
M:PO
M:GO
M:LO
M:DO
M:EO
M:LL
M:CK
M:SL
M:AL
M:LI
M:MON
PCL
CC1
LOADER
PASS2
LOCCT
PASS3
DEF
VOLINIT

*k ¥k

*
From Current Account

* %
From :SYS Account

*

* %k
For BO pack only

341

C.9 DEF MESSAGES

::::SYSGEN DEF IN CONTROL::::

Commentary at beginning of execution.

::::DEF COMPLETED::::

Commentary at end of execution,

**CC TYPE UNKNOWN
**¥*GET NEXT CC

Error in Command. DEF reads next command.

**SYNTAX ERROR, NO '(

Error in syntax. DEF reads next command,

**DELIMITER MUST BE ',' OR *)'

Invalid terminator on :Command. DEF reads next
command,

**NAME INVALID OR > 15 CHAR. LONG

DEF searches for next parameter,

****NOT ENOUGH CORE AVAILABLE
***x%*SYSGEN DEF ABORTED

Work area too small. DEF exits.

***WRITING PO TAPE BY DEFAULT

Either no type specified or parameter invalid on
:WRITE.

***[LLEGAL INCLUDE - WILL BE COPIED LATER

On the :INCLUDE command a keyed file (for PO)
or a consecutive file (for BO) has been specified.
The file name is printed above this message. DEF
continues,

***DEF TYPE UNKNOWN

System type field of IDEF command has been spec-
ified but is invalid. DEF exits.

***TYPE UNKNOWN - xx M used

System type field of IDEF missing. DEF defaults to
currently running system type (xx).

**NO ':' in column-1

Command in error. DEF reads next command.

****TROUBLE WITH M:SPROCS
***CANNOT WRITE TAPE

In attempting to open M:SPROCS in creating a
BO tape for UTS system, difficulty encountered.
DEF releases the tape and if ENDFLG set, exits,

**x+*CANNQOT WRITE DP

DEF is unable to write to the disc pack. It re-
leases the pack and proceeds to the next command.

***1 /0 ERR/ABN = xx/xx

An 1/O error/abnormal condition has been de-
tected by DEF and is not expected.

****TROUBLE WRITING LASTLM FOR BO DP

An error or abnormal return has been made when
opening or writing LASTLM for BO packs.

***CANNOT OPEN OUTPUT DEVICE

In attempting to open tape/pack (BO/PO), an

abnormal condition occurs. DEF releases tape
pack and if ENDFLG sef, exits,

. PO TAPE CONTENTS, ..
. PO DP CONTENTS. ..
... BO TAPE CONTENTS. ..
. BO DP CONTENTS. ..
INCLUDE ITEMS
OTHER ITEMS
*ExRkx**INCLUDE ITEMS NOT FOUND

These are subtitles that are followed by a list of
the appropriate files,

342

C. 10 INTERNAL ROUTINES

DEF Main entry, initialize processor dynamic data area.
READFRST Process DEF command.
INIT Initialization of pointers,
DEFRDCC Read :Command for DEF, and branch to appropriate routine
or set DELETEF,
DEFINCL Process :INCLUDE.
DEFIG Process :IGNORE,
DEFWRITE Initial processing of :WRITE.
Initial processing of PO/BO disc pack for :WRITE commands.
DFPODP Sets DPFLG and changes FPT to reflect file type operations,
DFBODP changing mode of synonymous file fpt to update, Exits to
DFWRTPO/DFWRTBO.
DFWRTPO :WRITE processing for PO.
DFWRTBO :WRITE processing for BO,
DEFTABLR Processing name options on :INCLUDE or :IGNORE.
PAGER Get a page of core and zero it out.
READCC Reads :commands for DEF.
Register 12 = CC Buffer address
LISTCC Display commands on LL device.
Register 12 = CC Buffer address
GETRITEMON Obtain appropriate WRITEMON overlay according to system
type (UTS or BPM/BTM).
EOCCSCAN Find end of current control command.
CCA Generate PO/BO tape/disc pack.
NXTINCL Obtain next INCLUDE file name.
RDWRITEM Read and write file,
SYNINCL Process synonymous file includes.
NOINCL End of includes, begin generating remainder of ’rape/divs‘c“;'ck.
WRLSTLM Builds non-null LASTLM record for BO disc pack-;;';‘;r‘“eém—
pletion of processing of :INCLUDEs,
NXTFILE Obtain next file on disc.
IGNORI Search ignore table for match.
ISSPEC Delete file if required.
CLSDSK Close file.

343

RDWRITE Read file and write fo tape/disc pack,
ALLDONE Releases pages acquired, if ENDFLG set, exits.
NXTTPEDP Zeroes flags and counters, restores FPTs to original state,

returns to INIT via PAGER.

Error and abnormal return routines.

LSTWRT EOF on reading M:SI.

RTMAINCL EOF on reading INCLUDE files.

OTMAINCL Abnormal return on opening of INCLUDE file,

RTMA EOF on reading M:TM file,

OTMA EOF on open next of M:TM or synonymous file found for
open-next,

OPOA Cannot open BO/PO Tape/disc pack.

DPABN Abnormal condition fc;r-opening writing disc pack,

SYNERR Abnormal/error conditions for writing synonymous files to

disc pack.

344

C.11_FLOWCHARTS FOR DEF

345

Page 1
(ENTER ’
\
Initialize dynamic
data area
A
TYPEFLG
Process (!jDEF — — | 0=BPM/BTM
comman 2=UTS
PAGER
Get one of Core
and zero it
pg. 11
INIT
Initialize pointers
A >
DEFRDCC
READCC Abnormal routine
[— — | LSTWRT
Read :Command exit from loop
} pg. 11 pg. 11
LISTCC
List :Command
g. 11
\ i
Determine type
of :Command
' 4 !

DEFINCL DEFIG | DEFWRITE :DELETE 1D
Process Process Process Set flag Process if
:INCLUDE :IGNORE :WRITE (DELETEF) card in error

pg. 2 pg. 2 pg. 3 pg. 12
Figure C-1. Flow Diagram of DEF

DEFINCL

no
Linking
needed
?
lno

DEFTABLR

Process name

Initialize
INCLSTRT
(=ENXTNAME + 1)

Adjust INCLEND
(=NXTNAME + 1)

options and store
in table

pg. 12

y

Adjust INCLEND
(=NXTNAME)

EXIT

DEFIG

ENTER

LinkinN

needed
?

Page 2

Adjust IGEND
(=NXTNAME + 1)

DEFTABLR

Process name

options, store
in table

pg. 12

[

Adjust IGEND
(=NXTNAME)

Figure C-1,

Flow Diagram of DEF (Cont.)

346

(DEFWRITE)

\

Get tape type
field

BAD

yes

or
NULL
?

lno

Search table for
pg. 4 match and go to
appropriate

BO routine

| popP

pg. 4

BODP

no match

PODFLT y

Illegal-PO by
DEFAULT (print
message)

DFPODP

DFBODP

-

Page 3

Figure C-1. Flow Diagram of DEF (Cont.)

347

‘ DFWRTPO)

DCB pointer
(R5) to M:PO

!

OUTSN

Process SN option,
set in DCB

pg-

4

WRTFLG =
ORG (x'20")

'

Link automatic
IGNORES at
end of IGEND

SN
Option PRESEN\}M Store in DCB
?
no
EXIT
DFPODP

Link automatic
includes at end

of INCLEND

Save registers

i

v

A

DCB pointer
to M:PO

v

DCB pointer
to M:BO

Page 4

le
- UTS\ e:

? /L¥ |

Error message
PO by default

Get version number EWRTB BO | Set up FPTs PO)
R7 = M:PO address bg. 5 to file type
R6 = Flags for PO
y
GETRITEMON T -
Restore registers
0000 oy ot Ry e St e
write u
portion of tape/disk contents __ f
—] o
pg. 13 P
Figure C-1. Flow Diagram of DEF (Cont.)

348

< DFWRTBO)

A

DCB pointer
(R5) to M:BO

OUTSN

Process SN option,
set in DCB

pg. 4
v

WRTFLG =
ORG (x'10")

,

Save registers

Get version number
R7 = M:BO address
R6 = Flags for BO

4
GETRITEMON

SEGLOAD overlay
write unlabeled
portion of tape

pg. 13

\ 4

Restore registers

uTsS yes

no

Link automatic
includes for BPM/
BTM at INCLEND

\

Get 10 pages of

Core = R5 = DCB
pointer to M:BO

Open M:SPROCS

(:5Y$)
Y

Get 10 pages
of Core

'

Link to INCLEND

Read M:SPROCS

!

Close M:SPROCS

A

Search for TEL
Name~-End of

Monitor overlays

y

Link automatic
includes to end of
Monitor overlays

y

Adjust buffer
addresses

R5 = DCB pointer
to M:BO

Page 5

Figure C-1.

Flow Diagram of DEF (Cont.)

349

Page 6

Remove VOLINIT
from auto includes

le

INCLSTRT=
0?

*no pg.

Set up INCLUDE
start as LASTLM
start

NXTON

Get byte count
of enfry name

no Save position
in table

BC:X'40" l

79
AND =0 PS 7 e lNxTINGL
got entry \-/
pg. 7

= X'40°

y
Must be X'4F!
code. Turn on

:SYS in account
field of FPT

/

Increment (+1)
posifion in table

Figure C-1. Flow Diagram of DEF (Cont.)

350

(NXTINCL)

A

Pointer to OPEN
FPT (M:TM)

Yy

Pointer to Fileparameters
(FPARAM) pointer o
start of variable
parameters

yes

©

'

Access file name

from FPARAM

Same
as INCLUDE

name
?

Check ORG of
file

Is it

no
correct for

pg. ¢

ino
A

INCLUDE

Close and Save

Store file name in File, if disc pack

Page 7

For INCLUDE
PO - CONSEC only
BO - KEYED only

b= 4

Abnormal address
OPOA

1
]
1

OPEN FPT sef link over bad Get Key Length,
‘ entry ORG from
NXTINCNM ? FPARAM
ﬁ file yes | Adjust table \
SPEC:HAND | pointers
? D1=OPEN FPT
pg. 6 | for M:PO/M:BO
4
Ajust variable OPEN M:PO/M:BO
parameter control .
(print file name)
word
Get buffer oddress '
and size Read record
T (M:TM)
X .
OPEN M:TM | _ _| Abnormal address
to FILE OTMAINCL Get actual
record size
pg. 13

Write record
M:PO/M:BO

Abnormal address
RTMAINCL (exit
point of loop)

pg. 8

Figure C-1. F

low Diagram of DEF (Cont.)

351

Print
code

1/O error

Page 8

RTMAINGL

'

PGCNTL
Determine reason
for ABN return

pg. 8

RTMAINT y

Close and save
Disc and Tape/disc
pack Files

-

Q\IXTINC M

TP, 7

PGCNTL
es Flag set release
>JV-——P extra pages RETURN
no

UFFER\

B
no ~
f— *—Qsmall P
?

RETURN

NOROOM

Error messages
List CC DEF EXIT DEF
DONE

pages ofl:;foined >

Get max. pages
set FLAG

A -

Position one record
back adjust pointer RETURN

Figure C~1. Flow Diagram of DEF (Cont,)

352

WRLSTLM
pg. 14

| Write null

‘ LASTIM close
‘ save tape

l

? NXTFILE

' D1=OPEN-NXT

. FPT for M:TM

i D2=FPARAM

: OPEN (NEXT)

M:TM

address OTMA

Abnormal l

A

Get file name

from FPARAM

Monitor
special file

correct
for tape type
IGNORE

O

—| BO-consecutive

pg. 10

CLSDSK

pg. 9

PO-keyed files

files

CLSDSK y no

Page 9

Close and Release
File

Close and Save
File

-

y

NXTFILE)

RDWRITE

Get KEYMAX
D1=OPEN FPT

A

OPEN DCB to
write tape/disc
pack

Abnormal OPOA

A

pg. 12

Read record M:TM

'

Abnormal RTMA
exit pointer of
loop

Get actual record
size

A

Write record
(M:PO)/M:BO

pg. 10

Figure C-1.

353

Flow Diagram of DEF (Cont.)

PGCNTL
Determine reason
for ABN return

pg. 8

A
Close Tape/disc
pack File

pg. 9

Synonymous

FILE

Set table address
in INCLSTRT

e

Put SYNON name

in table

pg. 9

Close, Save
M:BO and
Rewind

SYNFLG yes | Set End of

Set SYNON
5 TABLE
no
POOUT ‘

Write LASTLM
Close and Save
and Rewind M:PO

ERRDNNE

—d

Release all pages
acquired

ALLDONE

ENDFLG

Set
?

Print DEF
DONE

NXTTPE

Zero out flags and
constant set DCB
| to original items

Set pointer to INIT

EXIT DEF

Page 10

Figure C-1. Flow Diagram of DEF (Cont.)

354

Page 11

LISTCC
List previous CC
if not already done

+ pg. 11
Read M:3lfor L — 2 ABN LsTWRT
pg. 11
Zero page out -
I END Card Set ENDFLG | E

Increment page pg. 10

count keep track
of end

RETURN

First Character RETURN

?

List Command and
Error Message pg. 11

OMMAND
Already Listed

l

Set ENDFLG ‘}

RETURN

" Last
" Command

WRITE

?
|no
pg. 3

List it l

pg. 10 \
RETURN

Figure C-1. Flow Diagram of DEF (Cont.)

355

DEFTABLI

O—

Get name option

Name

invalid

” e

PAGER

Get 1 page and

zero it

on page for
name
?

pg. 11

g

-

Print message
invalid command

y

Error message

Reset Flags

Store name in
table

of options
?

yes

RETURN

s

pg. 1

OPOA

a,

Print can't Open
Output Device

i

Open, Close

Release, Rewind

Tape/disc pack

‘

pg. 10

Page 12

Figure C-1,

Flow Diagram of DEF (Cont.)

356

(GETRITEMON)

SEGLOAD

appropriate overlay

tape portion or
random bootfile if
disc pack

\ 4

Branch to overlay

RETURN

!

to write unlabeled | - — -

BPMBT - (BPM/BTM
UTMBPMBT-UTS

and parent file name|
in special SYNON
FPT

Store SYNION name

WRTSYN ¢

Open file ("WRITE"
file)

pg. 8

found

Print name
INCLUDE file not

Y

Set error flag if
disc pack

not there
condition

Set FPT to open
OUT (for disc pack
files)

L _ _ _| SYNERR abnormal

address

A
WRTSYN

pg.

Page 13

Figure C-1.

357

Flow Diagram of DEF (Cont.)

|

Get start of include
table and buffer
address to build
LASTLM record

4

Is entry

a file name
)

Convert to textc
format store in
buffer area position
for next entry

< DPABN)

Convert 1/O error
code print error
message close M:B
if open

Y

" ERRDNNE

pg. 10

Is ;fo__> Get link address

Compute number
bytes in record,

open, write, close |— ——

LASTLM

L.

(s)
NXTFILE

pg. 9

| of next entry

DPABN abnormal/

error address

Page 14

Figure C-1.

Flow Diagram of DEF (Cont.)

358

D.0 BPM/BTM MODULE NAMES

APPENDIX D

For BPM/BTM systems only, the following is a list of the ROM names, CL labels and internal names of the modules

comprising the SYSGEN processors. This information is available in LISTFILE on CI tape or BO pack releases of

the system,

LMN

PASS2

PASS3

DEF

LOCCT

ROM

P2CCI1
UBCHAN
SDEVICE
XMONITOR
XLIMIT
ABS

BTM
P2COC
IMC
SPROCS
FRGD
XPART
MODIFY

PASS3ROM

DEFROM
BPMBT
UTMBPMBT

LOCCTROM

CL Label

CN704896
CN704897
CN704893
CN704868
CN704957
CN705536
CN705418
CN706164
CN706165
CN706163
CN705538
CN706293
CN704898

CIN705539

CN704876
CN704875
CN706166

CN705540

Internal Names

M:SYSCCI2
M:SYSDVLB2
M:SYSSDEV2
M:MONITOR2
M:DLIMIT2
M:SYSABS2
BTM:CCI
M:P2COC
M:IMC
M:SPROCS
M:SYSFRGD2
M:XPART
M:SYSMOD

M:PASS3ROM

M:TMTOPO
M:WRITEMON
M:UTMBPMBT

M:LOCCTROM

359

Sect. of manual
where described

N0 0N 0N =

[—
-_— O

SN DNMDNDNMNDNDNMDNDMDNDDDDND
-
)

Xerox Corporation :
701 South Aviation Boulevard
El Segundo, California 90245

Reader Comment Form

We would appreciate your comments and suggestions for improving this publication.

Publication No. Rev. Letter | Title Current Date

How did you use this publication? Is the material presented effectively?

Learning Installing Sales ,
O O) 0 [Fuily covered [] Well Illustrated [_] Well Organized [] Clear
D Reference D Maintaining D Operating

What is your overall rating of this publication? What is your occupation?

[a Very Good E] Fair D Very Poor
Good Poor

Your other comments may be entered here. Please be specific and give page, column, and line number references where
applicable. Toreport errors, Please use the Xerox Software Improvement or Difficulty Report (1188) instead of this form.

Your Name & Return Address

2190(12/72)
Thank You For Your Interest. (fold & fasten as shown on back, no postage needed if mailed in U.S.A.)

Staple Staple

First Class
Permit No. 229
Ef Segundo,
California

BUSINESS REPLY MAIL
No postage stamp necessary if mailed in the United States

Postage will be paid by

Xerox Corporation
701 South Aviation Boulevard
El Segundo, California 90245

Attn: Programming Publications

XEROX

701 South Aviation Boulevard
El Segundo, California 90245
213 679-4511 XEROX® is a trademark of XEROX CORPORATION

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	replyA
	replyB
	xBack

