
Xerox BPM/BTM/UTS
Sigma 5-9 Computers

System Generation

Technical Manual

90 18778

Xerox Corpora:tion
701 South Aviation Boulevard
EI Segundo, California 90245
213 679-4511

Xerox BPM/BTM/UTS
Sigma 5-9 Computers

System Generation

Technical Manual

90 18 77B

September 1973

Price: $13.00

XEROX

Printed in U.S.A.

REVISION

The System Generation processors described in this manual operate under the 000 version of UTS and the HOO version
of BPM/BTM.

RELATED PUBLICATIONS

Title

Xerox Sigma 5 Computer/Reference Manual

Xerox Sigma 6 Computer/Reference Manual

Xerox Sigma 7 Computer/Reference Manual

Xerox Sigma 8 Computer/Reference Manua I

Xerox Sigma 9 Computer/Reference Manual

Xerox Batch Processing Monitor (BPM) and Batch Time-Sharing Monitor (BTM)/SM
Reference Manua I

Xerox Control Program-Five (CP-V)/SM Reference Manual

Xerox Batch Processing Monitor (BPM)/System Technical Manual

Xerox BPM/BTM Subsystems and Utilities Technical Manual

Xerox BPM/BTM/UTS/Overlay loader Technical Manual

Xerox BPM/BTM/UTS Peripheral Conversion language (PCl) Technical Manual

Xerox Batch Time-Sharing Monitor (BTM)/Delta Subsystem Technical Manual

Xerox Batch Time-Sharing Monitor (BTM)/Edit Subsystem Technical Manual

UTS Overview and Index Technical Manual

UTS Basic Control and Basic I/O Technical Manual

UTS System and Memory Management Technical Manual

UTS Symbiont and Job Management Technical Manual

UTS Operator Communication and Monitor Services Technical Manual

UTS File Management Technical Manual

UTS Reliability and Maintainability Technical Manual

UTS Initialization and Recovery Technical Manual

UTS Command Processors Technical Manual

UTS System Processors Technical Manual

UTS Data Bases Technical Manual

Publication No.

900959

90 17 13

900950

90 17 49

90 17 33

90 17 41

90 16 74

90 1528

90 3061

90 1803

90 19 32

90 1879

90 19 11

90 19 84

90 19 85

90 19 86

90 19 87

90 19 88

90 19 89

90 19 90

90 19 92

90 19 93

90 19 94

90 19 95

Manual Content Codes: BP - batch processing, IN - language, OPS - operations, RP - remote processing,
RT - real-time, SM - system management, TS - time-sharing, UT - utilities.

The specifications of the software system described in this publication are subject to change without notice. The availability or performance of some features
may depend on a specific configuration of equipment such as additional tape units or larger memory. Customers should consult their Xerox sales representative
for details.

ii

CONTENTS

PREFACE vii 2.4.9 XMONITOR Messages 101
2.4.10 Flow Charts 102

1.0 SYSGEN OVERVIEW 2.5 XLlMIT 106
2.5.1 Purpose 106

1.1 Introduction 1 2.5.2 Usage 106
1.2 Syntactical Requirements 1 2.5.3 Input 106
1.3 The SYSGEN Processors ______ 1 2.5.4 Output 106

1.3.1 PASS2 1 2.5.5 Interacti on 107
1.3.2 PASS3 3 2.5.6 Data Bases 107
1.3.3 LOCCT 4 2.5.7 Description 108
1.3.4 DEF 5 2.5.8 Flow Chart 109

1.4 Functional Flow of SYSGEN 6 2.6 ABS 112
2.6.1 Purpose 112

2.0 PASS2 10 2.6.2 Usage 112
2.6.3 Input 112

2.1 P2CCI 10 2.6.4 Output 112
2.1.1 Purpose 10 2.6.5 Subroutines 113
2.1.2 Calling Sequence 10 2.6.6 Description 113
2.1.3 Return 10 2.6.7 ABS Messages 115
2.1.4 Input 10 2.6.8 Interna I Routines 116
2.1.5 Output 10 2.6.9 Flow Chart 118
2.1.6 Subrouti nes Used 10 2.7 BTM 120
2.1.7 Base Registers 10 2.7.1 Purpose 120
2.1.8 Description 10 2.7.2 Usage 120
2.1.9 P2CCI MESSAGES 13 2.7.3 Input 120
2.1.10 Internal Subroutines 13 2.7.4 Output 120
2.1.11 Flow Charts 16 2.7.5 Interaction 124

2.2 UBCHAN 23 2.7.6 Data Bases 124
2.2. 1 Purpose 23 2.7.7 Description 124
2.2.2 Usage _____ 23 2.7.8 BTM Messages 125
2.2.3 Input 23 2.7.9 Flow Chart 126
2.2.4 Output 23 2.8 P2COC 128
2.2.5 Subroutines Used _ 30 2.8.1 Purpose 128
2.2.6 Data Base ___ 30 2.8.2 Usage 128
2.2.7 Description 39 2.8.3 Input 128
2.2.8 Error and Informational 2.8.4 Output 128

Messages 43 2.8.5 Interaction 131
2.2.9 Major Internal Routines 49 2.8.6 Data Bases 131
2.2. 10 Flow Chart 51 2.8.7 Subroutines 131

2.3 SDEVICE 85 2.8.8 Description 131
2.3. 1 Purpose 85 2.8.9 P2COC Messages 132
2.3.2 Usage 85 2.8.10 Flow Chart 133
2.3.3 Input 85 2.9 IMC 137
2.3.4 Output ______ 85 2.9.1 Purpose 137
2.3.5 Subroutines Used 87 2.9.2 Usage 137
2.3.6 Other External References __ 87 2.9.3 Input 137
-2-.-J.7- -- (;)esGl"ipti..on B7 _2.J ___ 4 __ 9UJEut 137
2.3.8 SDEVICE Messages 90 2.9.5 Interaction 140
2.3.9 Internal Routines 90 2.9.6 Data Bases 140
2.3.10 Flow Chart ______ 93 2.9.7 Description 140

2.4 XMONITOR 95 2.9.8 IMC Messages 141
2.4. 1 Purpose 95 2.9.9 Flow Chart 142
2.4.2 Usage 95 2.10 SPROCS 146
2.4.3 Input 95 2. 10. 1 Purpose 146
2.4.4 Output 95 2.10.2 Usage 146
2.4.5 Interaction 100 2.10.3 Input 146
2.4.6 Data Bases 100 2.10.4 Output 146
2.4.7 Subroutines 100 2.10.5 Interaction 148
2.4.8 Description 100 2.10.6 Data Bases 148

iii

2.10.7 Subroutine .149 5.0 LOCCT 225

2.10.8 Description 149
2.10.9 SPROCS Messages 150 5.1 Purpose 225

2.10.10 Flow Charts 151 5.2 Calling Sequence 225

2.11 FRGD 154 5.3 Input 225

2.11.1 Purpose 154 5.4 Output 225

2.11.2 Usage 154 5.5 Base Registers 225

2.11.3 Input 154 5.6 Subroutines 225

2. 11.4 Output 154 5.7 Description 225

2. 11.5 Subroutines Used 158 5.8 LOCCT Messages 226

2. 11.6 Specia I Restriction 158 5.9 LOCC T Processor Flag 229

2.11.7 Description 158 5.10 Internal Routines 229

2.11.8 FRGD Messages 162 5.11 LOCCT Flow Charts 230

2.11.9 Flags Used by FRGD 163
2. 11. 10 Internal Routines 163
2. 11. 11 Flow Chart 167

2.12 XPART 172 6.0 TABLES, FILES, SUBROUTINES 234

2.12.1 Purpose 172
2.12.2 Usage 172 6.1 SYSGEN Loader Overlay Control

2.12.3 Input 173 Command Table (LOCCT) 234

2.12.4 Output 173 6.2 SYSGEN Load Module Components __ 236

2.12.5 Subroutines and Definitions_ 174 6.3 SPEC:HAND File Contents 242

2.12.6 Data Base 174 6.4 SYSGEN MODIFY Subroutine

2.12.7 Description 174 Parameter Lists (PLISTS) 242

2. 12.8 XPART Messages 175 6.5 Modify 248

2.12.9 Flow Chart 177 6.5.1 Purpose 248
6.5.2 Ca II i ng Sequence 248
6.5.3 Input • 248
6.5.4 Output .248
6.5.5 Subroutines 248

3.0 PASS3 182 6.5.6 Description 251
6.5.7 Flowcharts 253

3.1 Purpose 182 6.6 SYSGEN CHARACTER Routines

3.2 Calling Sequence 182 Parameter List (PLIST) 278

3.3 Input 182 6.7 Character Routines 279

3.4 Output 182 6.7.1 NXACTCHR .279

3.5 Base Registers 183 6.7.2 NAMSCAN 283

3.6 Subroutines Used 183 6.7.3 CHARSCAN 284

3.7 Description 183 6.7.4 HEXSCAN 285

3.7.1 Overview 183 6.7.5 QUOTSCAN 287

3.7.2 Generation of ROOT 6.7.6 DECSCAN 289

Load Module 187 6.7.7 CHSTSCAN 291

3.8 PASS3 Messages 192 6.7.8 GETCHST 293

3.9 PASS3 Processor Flags 194 6.8 SYNTAX Routine in P2CCI (PASS2) __ 295

3.10 Interna I Routi nes 195 6.8.1 Purpose 295

3.11 PASS3 Processor Flowcharts 197 6.8.2 Usage 295
6.8.3 Input-Output 295
6.8.4 Interaction 298
6.8.5 Errors 298
6.8.6 Description 299

4.0 DEF 205 6.8.7 Flow Chart 300
6.9 MODGEN Routine in P2CCI

4.1 Purpose 205 (PASS2) 313
4.2 Calling Sequence 205 6.9.1 Purpose 313

4.3 Input 205 6.9.2 Usage .313

4.4 Output 205 6.9.3 Input 314

4.5 Data Base and Registers 205 6.9.4 Interaction 314

4.6 Subroutines 205 6.9.5 Errors 314

4.7 Control Commands 206 6.9.6 Description 314

4.8 Description 207 6.9.7 Flow Charts 315

4.9 DEF Messages 210 6.10 COREALLOC Routine in P2CCI

4.10 Internal Routines 210 (PASS2) 319

4.11 Flowcharts 212 6.10.1 Purpose 319

iv

6.10.2 Usage 319 FIGURES
6.10.3 Output 319
6. 10.4 Input 319 1-l. Flow Diagram of SYSGEN 7
6.10.5 Interacti on 320
6.10.6 Errors 320 2-l. Flow Diagram of P2CCI 16
6.10.7 Description 320
.6.10.8 Flow Chart 321 2-2. CHANTBL Entry 36

6. 11 WRITELM Routine in P2CCI (PASS2) __ 324
6.11.1 Purpose 324 2-3. Initial DEVICD1 Entry 37
6. 11.2 Usage 324
6.11.3 Interaction 324 2-4. Fina I DEVICD1 Entry 37
6.11.4 Description 324
6.11.5 Flow Chart 325 2-5. FINAL DCINTBL ENTRY 37

2-6. Two Types of STDLCD1 Entry and
HANDTBL Entry 38

2-7. Special CLISTS 41

APPENDIXES 2-8. ALLOCATION TABLE FORMAT (HGP) 42

A.O BPMBT - DEF OVERLAY 326 2-8.1. SGP Format and Contents by Type 44

A.1 Purpose 326 2-9. Flow Diagram of UBCHAN 51
A.2 Calling Sequence 326
A.3 Input __ 326 2-10. Flow Diagram of SDEVICE 93
A.4 Output 326
A.5 Core Usage 326 2-11. Flow Diagram of XMONITOR 102
A.6 Overview 326

A.6.1 Description 326 2-12. Flow Diagram of XLIMIT 109
A.6.2 Module Organization-

BPMPT 326 2-13. Flow Diagram of ABS 118
A.7 Description 327
A.8 BPMBT Subroutines 327 2-14. Flow Diagram of BTM 126

A.8.1 WRSEG 327
A.8.2 DISPSEG 328 2-15. Flow Diagram of P2COC 133

A.9 WRITEMON Messages 329
2-16. Flow Diagram of IMC 142

B.O UTMBPMBT - DEF OVERLAY 334 2-17. Flow Diagram of SPROCS 151

B. 1 Purpose 334 2-18. PROCDEF Table 159
B.2 Callin~ Sequence 334
B.3 Input 334 2-19. Flow Diagram of FRGD 167
B.4 Output 334

2-20. Flow Diagram of XPART 177

C.O DEF (HOO BPM/BTM VERSION) 337 3-l. Flow Diagram of PASS3 197

C.1 Purpose 337 4-l. F low Diagram of DEF 212
C.2 Calling Sequence 337
C.3 Input 337 5-l. LOCCT Record Format 228
C.4 Output 337
C.5 Data Base and Registers 337 5-2. Flow Diagram of LOCCT 230
C.6 Subrout i nes 338
C.7 Control Commands 338 6-l. LOCCT Format .234
C.8 Description 339
C.9 DEF Messages 342 6-2. TREE Entry Format 235
C.lO Internal Routines __ . 343

6-3. ROM Table Entry 236

D.O BPM/BTM MODULE NAMES 359 6-4. HEAD Record Format 236

v

6-5. TREE Record Format 237 TABLES

6-6. RFDFSTK Format 238 2-l. PASS2 STACK ALLOCATION 10

6-7. EXPRSTK Format 239 2-2. PASS2 Control Commands 15

6-8. RELDICT Format 241 2-3. IOTA8LE Load Module 24

6-9. SPEC:HAND File Format 242 2-4. PASS2 Stack Allocation 30

6-10. MASTER PLlST Format 243 2-5. STANDARD DEVICES 38

6-11. CHANGE DESCRIPTION TABLE 2-5.1 Swapper Table Constants by Type 43
(SUBPLlST) Format for DEF 244

2-6. M:SDEV Load Module 86
6-12. CHANGE DESCRIPTION TABLE

(SUBPLlS T) Format for REF 245 2-7. INTERMEDIATE NAME TABLE 89

6-13. Change Description Table (SUBPLlST) 2-8. Contents of M:CPU Load Module 96
Format for Sect. Modification 246

2-9. Contents of M:SYMB Load Module 99
6-14. Change Description Table (SUBPLlST)

Format for RELDICT Modification 247 2-10. Contents of M:DLlMIT 106

6-15. Flow Diagram of MODIFY 253 2-11. Contents of M:OLlMIT/M:BLIMIT/M:ELlMIT_107

6-16. Character String PLlST Format 279 2-12. M:ABS Load Module 112

6-17. Flow Diagram of NXACTCHR 281 2-13. ABS Work Area 114

6-18. Flow Diagram of NAMSCAN 283 2-14. ABSPROC Table 114

6-19. Flow Diagram of CHARSCAN .284 2-15. M:BTM Load Module Contents 120

6-20. Flow Diagram of HEXSCAN 286 2-16. Contents of M:C OC 129

6-21. Quote Constant 287 2-17. M:IMC Load Module Contents 137

6-22. Flow Diagram of QUOTSCAN 288 2-18. M:SPROCS Load Module Contents 146

6-23. Flow Diagram of DECSCAN 290 2-19. M:FRGD Load Module Contents 154

6-24. Flow Diagram of CHSTSCAN 292 2-20. :INTLB INTERMEDIATE TABLES 161

6-25. Flow Diagram of GETCHST 294 2-21. INTS INTERMEDIATE TABLE 161

6-26. Flow Diagram of SYNTAX 300 2-22. M:PART Load Module 173

6-27. Flow Diagram of MODGEN 315 3-l. ROOT LOAD MODULE CONTENTS 183

6-28. Flow Diagram of COREALLOC .321 3-2. BIAS RESULTS 184

6-29. Flow Diagram of WRITE LM 325 3-3. Table of SAVE Names 185

3-4. PASS3 1I0LDSEGS II TABLE FORMAT 188
A-1. Flow Diagram of BPMBT 330

4-l. File Types 207

8-l. Output Tape Format 335 4-2. Automatic INCLUDES 209

8-2. System Information Format 336
6-l. Relocation Digit Interpretation 241

C-l. File Types 339

C-l. Flow Diagram of DEF 345 C-2. Automatic INCLUDEs 341

vi

PREFACE

This document describes the purpose and architecture of the System Generation processors that operate under BPM/
BTM/UTS. It is assumed that the user is familiar with information contained in other operating system manuals,
particularly those listed on the related publications page.

vii

1.0 SYSGEN OVERVIEW.

1. 1 INTRODUCTION.

SYSGEN comprises a series of processors capable of forming a UTS or BPM/BTM system tailored to a specified

installation. These processors are PASS2, PASS3, DEF and lOCCT, each of which has various control commands

described in detail in the following chapters. Files are accessed from Xerox-supplied or user tapes or for BPM/BTM

private disc packs via the Peripheral Conversion language (PCl) processor. Discussion of this processor is not in­

cluded in this manual.

1.2 SYNTACTICAL REQUIREMENTS

In general, the various SYSGEN processors have certain common syntactical rules and requirements that may be ap­

plied to their control commands. Any deviation for a given processor is noted under the detailed discussion of it.

1. The legitimate characters that may be used in names are:

Alpha: A-Z, a-z

Numeric: 0-9, X' A'-X'F'

Special (alpha): $ - I : # @

2. All control commands to processors begin with a : in column 1.

3. When the options for a particular control command do not all fit on a physical image (80 column), they
may be continued on one or more images.

4. Continuation is indicated by the use of a semicolon and the continuation command must have a : in
column 1. A semicolon may be placed anywhere within a command as well as anywhere within a name o

If the semicolon is found within a name, the continuation command must contain the remainder of the
name, starting with the second character position so that the name may be reformed.

5. There are three methods of incorporating comments with a processor control command sequence.

a. Comments are accepted following a semicolon.

b. If no semicolon is used, comments are accepted if preceeded by a period.

c. If an entire command is a comment, the first character in the image must be an asterisk.

1.3 THE SYSGEN PROCESSORS.

1, 3. 1 PASS2.

This SYSGEN processor receives as input various parameters concerning a target system. PASS2 then generates the

library modules (nearly all of which are load modules) which identify the system variables. These modules are

incorporated into the target system1s Monitor and any other processor which requires a knowledge of the target

system1s configuration. The target system parameters include: peripheral definitions, operational label assign­

ments, real-time information, symbiont device information, core size, number of index and blocking buffers.

The following diagram shows what operational labels and corresponding peripherals are accessed during a PASS2.

...

I
I
I

I
I
I

i

51

1. PASS2 Control Commands.

SIGMA
CORE

LL

TM

PRINTER

1. Generated Li brary
Load Modules.

1. Display control Information.

PASS2 is entered via the Monitor control command IPASS2 and terminates input from the 51 device when a Monitor

control command is encountered (i.e., a control with "1" in column 1).

The PASS2 generated Library Modules consist of:
_. --- --

NAME *GENERATED BY MODULE TYPE

IOTABLE CHAN, DEVICE, STDLB, and OSTDLB (UTS) Load Module

SPEC:HAND DEVICE Data

M:HGP CHAN, DEVICE Load Module

M:SDEV SDEVICE Load Module

M:CPU UTM (UTS) Load Module
MONITOR (BPM/BTM)

MON::ORG UTM (UTS) RelocatabIe
MONITOR (BPM/BTM) Object Module

M:SYMB UTM (UTS) Load Module

M:BIG9 UTM (UTS) Load Module

M:BLlMIT BLIMIT (UTS) Load Module

M:OLlMIT OLIMIT (UTS) Load Module

M:ELIMIT ELIMIT (UTS) Load Module

M:DLlMIT DLIMIT (BPM/BTM) Load Module

M:ABS ABS (BPM/BTM) Load Module

M:BTM BTM (BPM/BTM) Load Module

M:FRGD FRGD, INTLB (BPM/BTM) Load Module

M:COC COC (UTS) Load Module

M:IMC IMC (UTS) Load Module

M:SPROCS SPROCS (UTS) Load Module

M:PART I PARTITION (UTS) Load Module

*NOTE: When a specific system type is specified (in parentheses), the preceding control command is the one
that generates or helps in generating the Module NAME. Otherwise, if no system is specified, the
assumption is BPM!BTM/UTS.

2

1. 3" 2 PASS3.

This SYSGEN processor communicates to the system LOADER the necessary information to load a specific

Monitor, processor or library. Each PASS3 control command identifies a file which contains information for the

LOADER. Such a file is referred to as an LOCCT (see LOCCT processor overview 1. 3. 3). These LOCCT files

eliminate the maintaining of Monitor, processor or library LOAD/TREE control command structures. An LOCCT

conveys to the LOADER the information which the original LOAD/TREE control commands contained as parameters

(e.g., element file names, load parameters, tree structure).

The following diagram shows what operational labels and corresponding peripherals are accessed during a PASS3.

:.-, .

.....L!Monitor COMMANDS
() / ,,,,.

COMMANDS
II

1. PASS3 Control Commands.

SIGMA
CORE

SI

EI EO

Get LOADER as
needed.

LL PRINTER

~

1. LOCCT Files used by
PASS3 LOADER.

2. Element Files used by
LOADER.

3. Generate Load Module •

1. Display Control Information.
2. Load Maps.

PASS3 fs entered via the Monitor control command !PASS3 and terminates input from the SI device when a Monitor

control command is encountered (i. e., a control command with II! II in column 1).

Processors and Libraries may also be loaded by the system LOADER and eventually included (through DEF processor)

in a target system without the use of the SYSGEN PASS3/LOCCT processors. This can be accomplished by using

the ! LOAD (! OVERLAy) and !TREE Monitor control commands.

3

The following diagram shows what operational labels and corresponding peripherals are accessed during this

procedure.

SIGMA
CORE

c

1. Mon itor Control Commands.
2. !TREE Command is optional.

1.3.3 LOCCT.

EF, LM

LL

PRINTER

RANDOM
ACCESS
DEVICE

1. Obtain element files.
20 Generated Load Module.

1. Display Control Information
2. Load Maps.

This SYSGEN processor intercepts from the system1s Control Command Interpreter (CCI) the table of information

generated from LOAD (!LOCCT)/ !TREE control commands for the system LOADERo This table of information is

referred to as an LOCCT {Loader Control Command Table}. An LOCCT, when obtained from CCI, is converted

into a permanent file. Therefore, such a file may be used by SYSGEN PASS3 for purposes of loading a Monitor,

processor or library.

4

The following diagram shows what operational labels and corresponding peripherals are accessed during a LOCCT

process.

C

SIGMA
CORE

t Generate LOCCT from Control Commands.

2. !TREE Command is optional.

1.3.4 DEF.

TM

PO

1.

1. Generated LOCCT file.

CARD
PUNCH

Generated LOCCT

1. Display Control
Information.

Currently, there are two versions of DEF; one for UTS (DOO version) and pre-HOO versions of BPM/BTM as described

in Chapter 4, and one for BPM/BTM (HOO release) as described in Appendix C.

This SYSGEN processor generates either a target system tape (a PO tape) or a BO Tape which may eventually be

used as a new BI tape for subsequent SYSGENs. DEF may create multiple tapes in any given run. In addition, for

BPM/BTM only, DEF generates either a BO disc pack or PO disc pack, which are functionally synonymous to BO/PO

tapes.

If the taptYdisc pack being created is a BO tape/disc pack, it contains a bootstrap, absolute monitor, the monitor

overlays and the load modules PCl, CCI, lOADER, PASS2, lOCCT, PASS3, DEF, FMGE, ERRMSG, M:MON:LIB­

:DIC containing the system DCBs. VOLINIT is also inclurlerl if a BO disc pack is being generated. In addition, if

the system is a UTS system, then the following are also automatically included: XDELTA, LOGON, TEL, SUPER,

DEFCOM, SUPER, JITO, JITl, JIT2, JIT3, JIT6, ANLZ, GHOSTl, RECOVER, M:SPROCS (containing the overlays of

M:MON). For BO tapes the null fi Ie LASTLM terminates the load module portion of the tape. All of the named files

are obtained from the System account (:SYS). For BO disc packs, LASTLM contains the names of all the files on the

BO pack that are to go into the :SYS account. This is necessary because disc pack files are accessed through the

alphabetized fi Ie directory. DEF then obtains all of the non-keyed files from the current account and any keyed files

that have been specifically identified via are :INCLUDE command and writes these on the tape or disc pack.

5

The following diagram shows what operational labels and corresponding peripherals are accessed during a DEF.

PRINTER

1. Display Control
Informati on.

LL

20 Display PO/BO
Tape/Disc Pack Summary.

SI

:COMMANDS

1. DEF control commands

~?sC /e0 PACK

1. BOOTSTRAP

BO

SIGMA
CORE

2. Absolute monitor (:SYS)
3. Monitor overlays (:SYS)
4. Special load modules (:SYS)
5. Non-keyed files (current account)
6. Specified keyed fi les (current account)

TM

1. PO - Target System
BO - System from :SYS

20 Special element files (as requested)
3. PO - All keyed files.

Non-keyed as specified.
BO - all non-keyed fi les

keyed as specified.

PO

1. BOOTSTRAP
2. Absolute monitor (current account)
3. Monitor overlays (current account)
4. Keyed files (current account)
5. Specified non-keyed files (current

account)

If the tape/disc pack being created is a PO tape/disc pack, it contains a bootstrap, or absolute monitor (for the

target system), the monitor overlays (for the target system), special element files if requested and all of the keyed

fi les (normally load module) from the current account unless certain of these are specifically identified to be

:IGNORED. The null file, LASTLM, terminates the PO tape/disc pack. Since all files on the tape/disc pack are

to go into the :SYS account, LASTLM is the same for PO tapes and disc packs.

DEF is entered via the MONITOR control command I DEF and terminates input from the SI device when a Monitor

control command is encountered (i.e., a control command with a ! in column 1). DEF requires assignments for PO

and/or BO.

1.4 FUNCTIONAL FLOW OF SYSGEN

The following diagram represents a functional flow of the SYSGEN operation. Note, the LOCCT process may not

be needed and the PASS3 function may be replaced or augmented by using the system LOAD control commands to

form a processor or library although PASS3 must be used to load M:MON.

6

ENTER

8
! PASS2 COMMAND TARGETJ SYSTEM

__ u!.s _ _ _ _ _ _ _ _ B!M/BTM

h,,'r:p-ro-ce-ls'-S:--:::C:-:-:H-:""A-:-N:---::D:-='EVICE
, STDLB, OSTDLBb' SDEVICE,

'----y----- I UTM, BLIMIT,l LIMIT,

PASS2
rocess: N4- DEVICE,

STBLB SDEVlCc :
MI NiTOR, DUMl T,

!LOCCT COMMAND /

LOCCT

pg.2

I
\

OC, IMCc.:>PROCS,
PART, ELIMIT

ABS, FRGD, INTLB, I
BTM

-----6 --- --­
U
ENTER

/

UTS r---- BPM/BTM ----1
Process: Process:

:LOCCT :LOCCT

I I
Get LOCCT Table Get LOCCT Table
from COMMON from ABS Area
CORE. (disc)

_t _ _ _ _ _ _ _ _ _ _ ____ J
\

\
\

Generate
Permanent LOCCT

\ file.

\

\

Figure 1-1. Flow Diagram of SYSGEN

7

Page 1

I

{NTER
/

/

/

Process:
PASS3 COMMAN""""~rral
:id

I PASS3 COMMAN D

/

/

/

PASS3
/

...------/

pg. 3

I

I

I

I

I
I

/
/

OBTAIN LOCCT'
FOR id

BASE SYSTEM

T~_ _ _ BP.M/]TM __

SAVE LOCCT
IN COMMON
CORE

M:LINK TO LOAD R
IN :SYS ACCOUN

DELETE ELEMENT
FILES IF REQUESTE

SAVE LOCCT IN
ABS AREA OF
DISC

1 __ -

Figure 1-1. Flow Diagram of SYSGEN (Cont)

8

Page 2

!DEF COMt-MND

DEF

null/or
Illegal =
PO

UTS

illegal

AUTOMATIC
INCLUDES FOR
PO

OTHER INCLUDES
(NON-KEYED)
PO

GET/WRITE
KEYED FILES
CURRENT ACCOU T

SYNONOMOUS
FILES CURRENT
ACCOUNT

LASTLM

ENTER

AUTOMATIC
INCLUDES FOR
BO

OTHER INCLUDES
(KEYED ONLy)
BO

LASTLM

GET/WRITE
NON-KEYED
FILES CURRENT
ACCOUNT

1- ----------- _ - - _ --_

Figure 1-1. Flow Diagram of SYSGEN (Cant)

9

Pbge3

r
2.0 PASS2

2. 1 P2CCI

2. 1. 1 Purpose

To read PASS2 control commands and call the appropriate processors to handle them. P2CCI is the root segment of

PASS2.

2. 1.2 Calling Sequence

P2CCI is ca lied by the monitor control command:

! PASS2 •••

which runs the load module PASS2 of which P2CCI is the initial part.

2. 1.3 Return

P2CCI exits when it encounters an end of data, that is, a card with a "!" in column 1 or an END command. It may

also make earlier error exits to the monitor if significant faults are found.

2. 1.4 Input

Register 0 contains the address of the pointer to PASS2's temp stack.

2. 1.5 Output

Display of PASS2 control information to the LL device.

2. 1.6 Subroutines Used

NAMSCAN (Used to get PASS2 IItypell field from IPASS2 control command.)

2. 1.7 Base Registers

Register 3 = Address of data in PASS2's temp stack.

Register 2 = PASS2 type index where:

0= BPM

2 = UTMBPM

Register 7 = Address of FETCHLST

2. 1.8 Description

P2CCI is entered when the monitor control command! PASS2 is encountered. Its first action is to move its

dynamic data to the temp stack. The resulting form of the stack is as shown in Table 2-1.

Table 2-1. PASS2 STACK ALLOCATION

BASESTAC EaU 0 REL"DISPLACEMENT TO STACK BASE

SSIZE EaU BASESTAC+1 DISC SECTOR SIZE (FROM :DEVICE)

CORE EaU BASESTAC+2 CORE SIZE (FROM :MONITOR)

SDGANSG EaU BASESTAC+3 #GRAN/PER, #SEC2/GRAN (FROM :DEVICE)

OPTNWD EaU BASESTAC+4 TEMP STORAGE

72FLAG EaU BAS ESTAC+5 #7202-04 RADS

10

LASTSPEC EaU BASESTAC+6

CCBUFRS EaU LASTSPEC+l BASE OF BUFFERS

BUFFADDR EaU CCBUFRS+O POINTER TO CC BUFFER (=BUFFER)

BUFFER EaU CCBUFRS+1 CONTROL COMMAND BUFFER (20 WORDS)

FETCHLST EaU CCBUFRS+21 CC PROCESSOR PARAM. LIST (7 WORDS)

FETCHCCP EaU CCBUFRS+24 CURNT-CHAR-POS-PROCESSED IN CC

FETCHCSL EaU CCBUFRS+26 CHAR-STRING LENGTH OF FIELD IN CC

FETCHBUF EaU CCBUFRS+28 CC CHAR-STRING BUFFER (9 WORDS)

FETCHADR EaU CCBUFRS+37 POINTER TO FETCHLST (=FETCHLST)

XBUFADDR EaU CCBUFRS+38 POINTER TO XBUFFER (=XBUFFER)

XBUFFER EaU CCBUFRS+39 ERROR BUFFER FOR $ CHAR.

P2FLAGS EaU CCBUFRS+59 BASE OF PASS2 FLAGS

CCFLAGS EaU P2FLAGS+0 CC FLAGS FOR CC TYPE FOUND

* 00000000000000000000000000000000 < ALL CC TYPES MISSING>

* 00000000000000000000000000000001 :CHAN FOUND (00000001)

* 00000000000000000000000000000010 :DEVICE FOUND (00000002)

* 00000000000000000000000000000100 :STDL B FOUND (00000004)

* 00000000000000000000000000001000 :SDEVICE FOUND (00000008)

* 00000000000000000000000000010000 :MONITOR FOUND (00000010)

* 00000000000000000000000000100000 :DLIMIT FOUND (00000020)

* 00000000000000000000000001000000 :ABS FOUND (00000040)

* 00000000000000000000000010000000 :BTM FOUND (00000080)

* 00000000000000000000000100000000 :FRGD FOUND (00000100)

* 00000000000000000000001000000000 :INTLB FOUND (00000200)

* 00000000000000000000010000000000 :COC FOUND (00000400)

* 00000000000000000000100000000000 :IMC FOUND (00000800)

* 00000000000000000001000000000000 :SPROCS FOUND (00001000)

* 00000000000000000010000000000000 :BLIMIT FOUND (00002000)

* 00000000000000000100000000000000 :0 LIMIT FOUND (00004000)

* 00000000000000001000000000000000 :UTM FOUND (00008000)

* 00000000000000010000000000000000 :OSTDLB FOUND (00010000)

* 00000000000000100000000000000000 :PART FOUND X 120000 1

* 00000000000001000000000000000000 :ELIMIT FOUND X 1400001

* 00000000100000000000000000000000 BATCH HEADER FLAG

* 00000000001000000000000000000000 ON-LINE HEADER FLAG

* 01000000000000000000000000000000 : DEVICE CC JUST PROC (40000000)

* 10000000000000000000000000000000 END OF CCs < EOF > (80000000)

11

CHANFLG EQU P2FLAGS+1 CHAN CC ENCOUNTERED

STDFLG EQU P2FLAGS+2 STDLB CC BEl NG PROCESSED

P2TYPE EQU P2FLAGS+3 PASS2 TYPE (BPM, UTMBPM)

OSTD:STD EQU P2FLAGS+4 STDLB/OSTDLB FLAG

P2CNTRS EQU P2FLAGS+5 BASE OF PASS2 COUNTERS

RCHAN EQU P2CNTRS+O II CHAN CCIS

SDEVFLG EQU P2CNTRS+1 II SYMBIONT DEVICES

P2CORE EQU P2CNTRS+2 BASE OF PASS2 CORE VALUES

DYSTORND EQU P2CORE+O END OF AVAILABLE CORE FOR PASS2

SAVEPAGE EQU P2CORE+1 II PAGES OF CORE, 1ST PAGE ADDR.

DEVS EQU P2CORE+3 DP/7T/9T/O

COCS EQU P2CORE+4 COC ADDRESS NOD

SWAPBTM EQU P2CORE+8 SWAPPER FLAG FOR BTM

AVTBLGTH EQU P2CORE+9 A VRT AB LE SIZE

LORBIN EQU P2CORE+10 LOW RBT OCT INDEX

HIRBIN EQU P2CORE+11 HIGH RBT OCT INDEX

IIRBTS EQU P2CORE+ 12 II RBTs DEFINED

II PRDP EQU P2CORE+13 II PRIVATE PACKS DEFINED

DUALFLG EQU P2CORE+14 DUAL FLAG

SCYLPSA EQU P2CORE+15 II GRAN/PHYCYL; II PHYCYL

BIG9FLG EQU P2CORE+16 BIG9 FLAG FOR UTS

SWAPUTS EQU P2CORE+17 DPSWAPPER FOR UTS

P2DYNEND EQU P2CORE+18 END BASIC PASS2 STACK

The stack data area is pointed to by R3. That is, to obtain the contents of the word "BUFFER" one executes:

LW, REG BUFFER, R3

This area is initialized to all zeros except that XBUFFER is filled with blanks and a seven word PLIST is moved to

FETCHLST.

Once the data area has been initial ized P2CCI reads the "type" field from the! PASS2 card and tests it for validity.

If it is not valid P2CCI prints an error message and does an ERROR exit to the monitor, otherwise the type is stored

in P2TYPE and P2CCI begins to read cards.

When P2CCI reads a card, a check is first made to determine whether the card was an end of data. If it was, actions

discussed below are taken. Otherwise the card is checked to see if it is out of order. A :CHAN card must precede

any :DEVICE card; and all :CHAN, :DEVICE, :STDLB, and :OSTDLB cards must precede :SDEVICE, and :MONITOR

or :UTM cards. In addition, :UTM must precede :SPROCS and :IMC. Also, most cards may appear only once. If

a card is illegal or out of order, it is listed with appropriate error information and P2CCI continues.

If the card is found acceptable it is used to obtain an index to the table of PASS2 processor overlays. This index and

the PASS2 type index are used to decide the name of the required overlay which is segloaded and entered. Illegal

control commands for the type of PASS2 being performed are detected at this stage. (See Table 2-2.) When the

processor overlay completes itls operations it returns to P2CCI which reads another card and calls another processor

overlay. Some processor overlays read cards internally for themselves.

12

When an end of data is found P2CCI prints a I ist of PASS2 commands that have not been encountered and

exits to the monitor.

2. 1 .9 P2CCI MESSAGES

. • • PASS2 eCI IN CONTROL. •. a !PASS2 command has called P2CCI •

***U NKNOWN TYPE the type field of the ! PASS2 command was not BP(M) or UT(MBPM).

***U NKNOWN OR MISPLACED CC the conditions for a CC discussed above were not met.

***CC IGNORED, PREVIOUS CC OF THIS TYPE ENCOUNTERED

has been dupl icated.

a CC which can appear only once

***CC'S NOT ENCOUNTERED, BUT POSSIBLY NEEDED heading for a list of control commands legal

for this type PASS2 that were not processed. This list is printed just before P2CCI exits.

•• . END OF PASS2 .•. P2CCI has completed its task and exits .

***CANNOT READ CONTINUATION RECORD-PASS2 ABORTED self-explanatory

***UTM MUST PRECEDE SPROCS/IMC--CC IGNORED :SPROCS or :IMC has just been read but :UTM

has not yet been processed.

2. 1. 10 Internal Subroutines

Several subroutines internal to P2CCI and used by it and/or the PASS2 processors are discussed below.

CCLOAD

CCLOAD is used by P2CCI to load processors. It is called by the following sequence:

BAL, SR4 CCLOAD

TEXTC "Segname II

CCLOAD does a segload CAL on the name addressed by SR4 then converts the byte count of the "segname" to

words, adds this to SR4 and exits through SR4.

LISTIT

LISTIT is called to list the current control command by:

BAL, SR4 LISTIT

It checks to see if the CC has already been listed and exits if so. If not, it marks the CC as listed and does

a print CAL through M.:LL.

PRINTMSG

PRINTMSG is usually called in the following form:

BAL, SR4 A

A BAL, SR3 PRINTMSG

TEXTC 'MESSAGE'

Effectively it is:

PRINTMSG M:PRINT (MESg, *SR3)

B *SR4

13

READCC

READCC is ca lied by:

BAL, SR4 READCC

It BAL IS to LISnT to I ist the last CC if it has not been listed. Then it reads the next card. If the card begins

with a colon, READCC exits. If the first character is a "_" it is listed (LISTIT) and the next card read. If

neither, the first character of the card is printed (LISnT) with error information and the next card is read. The

process continues until a I: I card has been found.

RDINCFCH

RDINCFCH is called by :

BAL, R4 RDINCFCH

It BAL IS to READCC to read a card then to NAMSCAN to get the first field. If the field is not a legal name

it prints the card (LISTIT) with error information and branches to the beginning of P2CClis card checking

routine. Otherwise RDINCFCH moves the first 4 bytes of the name to R 1 and exits.

OUTLLERR

OUTLLERR is ca lied by:

BAL, SR4 OUTLLERR

It lists the current control command (LISnT) then obtains the current character position of the scan routines.

It then builds a line for printing that is blank except for a 1$1 at that character position, prints it, and exits.

ABNRETUR

ABNRETUR is entered when an error or abnormal condition is encountered on a read from the C device. If the

card being read is the !PASS2 command it error exits. Otherwise it assumes the abnormal was an end of file and

sets a flag to this effect. AB\NRETUR then determines which processor was doing the read and returns control to

that processorls end of data handl ing routine.

SYNTAX, COREALLOC, MODGEN and WRITELM are used by PASS2 overlays to process their control

commands, allocate core for building a load module, creating DEFs and REFs, and writing the load module.

A detailed discussion is found in Chapter 6.8 - 6. 11.

14

Table 2-2. PASS2 Control Commands

CONTROL COMMAND PROCESSOR CALLED NOTES

BPM UTS -:STDLB UBCHAN UBCHAN

:CHAN UBCHAN UBCHAN

:DEVICE *ILLEGAL* *ILLEGAL* READ BY UBCHAN

:SDEVICE SDEVICE SDEVICE

:MONITOR XMONITOR *ILLEGAL*

:DLIMIT XLIMIT *ILLEGAL*

:ABS ABS *ILLEGAL*

:FRGD FRGD *ILLEGAL *

:INTLB *ILLEGAL* *ILLEGAL* READ BY FRGD

:BTM BTM *ILLEGAL*

:COC *ILLEGAL* P2COC

:IMC *ILLEGAL* IMC

:SPROCS *ILLEGAL* SPROCS

:BLIMIT *ILLEGAL* XLIMIT

:OLIMIT *ILLEGAL* XLIMIT

:ELlMIT *ILLEGAL* X LIMIT

:UTM *ILLEGAL * XMONITOR

:OSTDLB *ILLEGAL * UBCHAN

:PARTITION *ILLEGAL * XPART

15

2. 1. 11 Flow Charts

Move data
area to
temp stack

Fill in fetch
PLIST and blank
buffers

' ••••• PASS2
CCI in
control ••••

Read IPASS2
"type II
command

NAMSCAN

Get "typell
field

Get type index
BPM= 0
UTS = 2

(LISTIT Pg. 5)
fRINTMSG Pg. 6)
(OUTLLERR Pg. 8)

Figure 2-1. Flow Diagram of P2CCI

16

Page 1

Read a card

Pg. 7

yes

(PRINTMSG Pg. 6)

(USTIT Pg. 5)

:GARBAGE
***Unknown yes

no

Get overlay
name for
this CC

Get overlay name
for this
PASS2 TYPE2

Figure 2. 1. Flow Diagram of P2CCI (cont.)

17

Pg. 2

Pg. 4

yes

:XXX ***CC
$

ignored previous
of this type

ncountered.

no

Test and
set flag for
this CC found

Figure 2-1 Flow Diagram of P2CCI (Cont.)

18

Pg. 3

Reads

Cards

Pg. 2

yes

(PRINTMSG Pg. 6)

*** CCIS not
encountered but
possibly needed.

Search I ist of
.----~ CC IS for th i s

type PASS2

yes

no

:CCNAME

(PRINTMSG Pg. 6)

End of

List

••••• End of

PASS2 ••••

Release

Stack area

Pg. 4

(PRINTMSG Pg.6)

-----------------------------------_._------ -<

Figure 2-1. Flow Diagram of P2CCI (Cont.)

19

Segload name
addressed by
SR4

convert ~yte
count to words

Add count
to SR4

Print image of
current CC and set
as listed

Figure 2-1 Flow Diagram of P2CCI (Cont.)

20

Pg. 5

M:PRINT

(MESS, *SR3)

List last CC

r----....... --....

Read a Card

Set
current character
position

Pg. 5

no

Figure 2-1 Flow Diagram of P2CCI (Cont.)

21

Pg.6 I

OUTLLERR

Display error
information

Pg. 7

Read a Card

g. 6

NAMSCAN

Check first
field for
legal name

Ie al First 4
I--..:..=.o::~-w dcracters of

(PRINTMSG Pg. 6)
(OUTLLERR Pg. 7)

:XfX

*** unknown or
misplaced CC

field to R 1

Set EOF
found flag

Figure 2-1 Flow Diagram of P2CCI (Cont.)

22

LIST CC

Get current
character
position

Pg. 7

Build blank line

with $ at CCP

Print it

Processor 's
EOF Routine

2.2 UBCHAN

2.2. 1 Purpose

To process the PASS2 commands: :CHAN, :DEVICE, :STDLB and :OSTDLB (UTS) and build the load module lOT ABLE

containing the I/O tables for the monitor being generated. M:HGP load module is also generated containing the

HGPs. The keyed file SPEC:HAND containing the device handler names is also built.

2.2.2 Usage

B CHAN (BPM/BTM)

B UBCHAN (UTS)

with R1 = Type of control command

1 for :CHAN

= 4 for :STDLB

= X 11 00001 for :OSTD LB

:DEVICE cards require a preceding :CHAN and are aJways read by UBCHAN itself

RO = address of temp stack pointer

R3 = base address of data in temp stack

R7 = address of contro I card P LIST

2.2.3 Input

Control card images (:CHAN, :DEVICE, :STDLB, :OSTDLB)

2.2.4 Output

Display of control information to LL device

IOTABLE load module (See Table 2-3)

M:HGP load module contains all the HGPs

SPEC:HAN D keyed fi Ie (see Chapter 6.3 for detai Is).

23'

1

Table 2-3. 10TABLE Load Module

Label Entry Size (Words) Length Contents or Value Target System

1. Tables

10TABLE Variable Variable CLISTS for device Handlers Both
(CLIST) (l/device)

DCTl 1/2 #DEVICES+l Device address (X'ndd ') Both

DCT2 1/4 #DEVICES+l CIT index Both

DCT3 1/4 #DEVICES+l Bits 0-1 I/O operation Both
Bits 6-7 access control key

DCT4 1/4 #DEVICES+l Device type index Both

DCT5 1/4 #DEVICES+l 0 Both

DCT6 1/4 #DEVICES+l 0 Both

DCT7 1/2 #OEVICES+l OW address of CLIST for devi ce Both

DCT8 1 #OECIVES+l REF to Hand lerl name Both

DCT9 1 #OEVICES+l REF to Handler2 name Both

DCT10 1/2 #OEVICES+l 0 Both I

DCT11 1 #OEVICES+l 0 Both

DCT12 1 #0 EVIC ES+l 0 Both

DCT13 2 #OEVICES+l 0 Both
i

DCT14 1/4 #OEVICES+l o or 1 if dedicate Both

DCT15 1/4 #OEVICES+l 0 Both

DCT16 2 #OEVICES+l TAB VYNDD UTS
,

for Remote Batch de vi ces
N/L * RBndd

N/L !!VYNDD BPM/BTM

DCT17 1/2 #OEVICES+l 0 Both

DCT18 1/4 #OEVICES+l 0 Both

DCT19 1/4 #OEVICES+l 0 Both

DCT20 1/4 #OEVICES+l 0 Both

DCT21 1/2 #OEVICES+l 0 Both

DCT22 1/4 #OEVICES+l contai ns di sk type index UTS
0= not disk device
1 = 7204, 2 = 7232, 3 = 7212
4 = 7242, 5 = 7260, 6 = 7265

24

Table 2-3. IOTABLE Load Module (cant.)

Labe'l Entry Size (Words) Length Contents or Value Target System

DCT23 1/2 #DEVICES+l o if entry not disk type device UTS
otherwise, contains displace-
ment in words from HGP (DEF)
to the in core HGP for the spe-
cific device.

OCT lPt 1/2 #DEVICES+l X 'ndd I from OCT 1 Both

OCT lA t 1/2 #DEVICES+l If pooled devi ce X 'ndd I where Both
X'nd' specifies the secondary
lOP/controller field from DUAL
option; if devi ce not pooled
X'ndd' from DCTL

CITl 1/4 #CHAN+l 0 Both

CIT2 1/4 #CHAN+l 0 Both

CIT3 1/4 #CHAN+l 0 Both
Bit 4 = 1 if DUAL for given
entry

CIT4 1 #CHAN+l 0 Both

CIT5 1/4 #CHAN+1 0 Both

CIT6tt 1/4 #CHAN+l 0 Both

OPLBTBL 1 1/2 #OPLABELS+1 Text of OPLABEL Both

OPLBTBL2 1/4 #OPLABELS+1 OCT index Both

OPLBTBL3 1/4 #OPLABELS+1 OCT index Both

OPLBTBL4 1/4 #OPLABELS+1 Bits 0-1 similar to DCT3 Both
I/O flags

OPLBTBL5 1/4 #OPLABELS+1 OCT index for OSTDLB UTS

TYPMNE 1/2 #Device type Text of Mnemonic Both
mnemonics+l

AVRTBL 2 #r ape de vi ces o for TAPE; for DP second word Both
+DP Bit 0 = Public;Private

Bits 16-31 HGP displacement

AVRID 1/2 # of tape de- 0 UTS
vices+DP

SOL ICIT 1/2 # of tape de- 0 UTS
vices+DP

AVRNOU 1/2 # of tape de- 0 UTS
vices+DP

tThese tables generated only if DUAL specified on any :CHAN command, if not then labels equated to DCTL

ttCIT6 generated only if DUAL specified on any :CHAN command, if not, CIT6 is equated to CITS.

25

Table 2-3. 10TABLE Load Module (cont.)

Label Entry Size (\Nords) Length Contents or Va lue Target System

AVRSIO 1 #tape devi ces 0 UTS

HGP variable variable HGPS (see Figure 2-8) BPM/BTM
Headers of public HGPs and UTS

H GPs for private dp

ABSFOLL 1 1 ABSF disk address lower limit BPM/BTM

ABSFOC 1 1 ABSF next disk address BPM/BTM
available

ABSFOUL 1 1 ABSF disk address upper limit BPM/BTM

ABSFOISC S S Word O=OCT index of ABSF di sk BPM/BTM
Word 1 = 55 of ABSF disk
Word 2 = NSPT of ABSF disk
Word 3 = Max bytes perl/O call
Word 4 = Max sectors per

I/O call

BCHKLl 1 1 BCHK disk address lower limit BPM/BTM

BCHKUL 1 1 BCH K disk address upper limit BPM/BTM

BCHKOISC S S Word 0= OCT index of BCH K disk BPM/BTM
Word 1 = SS of BCHK disk
Word 2 = NSPT or BCHK disk
Word 3 = Max bytes per I/O ca II
Word 4 = Max sectors per

I/O call

BCHKSIZ 1 1 Si ze (words) of BCH K area BPM/BTM

BCHKFLG 1 1 0 BPM/BTM

BCHKCNT 1 1 0 BPM/BTM

10CTQ variable #OEVICES+ Word 0-1 stack pointer OW Both
#T ape+#OP+3 remainder is stack

MB:GAM 1t 1/4 #of disks with Granule address mask UTS
PSA

MB:GAM2t 1/4 #of disks with (SGP words/granu Ie position)-l UTS
PSA

MB:GAM3t 1/4 #of disks with Shift for GSP index to granule UTS
PSA position

MB:GAM4
t

1/4 #of disks with Shift for track to granule UTS
PSA address

MB:GAMS
t

1/4 #of disks with Shift for disk address to UTS
PSA track #

tEntries for these tables are determined by the disk type and number of tracks defined on the given disk. If
the swapping device is a disk pack pseudo - 7232 type entries are made. See 2.2.7. 1 for complete discussion.

26

Table 2-3. IOTABLE Load Module (cont.)

Label Entry Size (Words) Length Contents or Value Target System

MB:GAM6t 1/4 #of disks with Sector address mask UTS
PSA

MB:GPT
t

1/4 #of disks with Granules/rrack UTS
PSA

MB:SWAPS
t

1/4 #of disks wi'th Shift for granu Ie position UTS
PSA SGP index

MB:DWTt 1/4 #of disks with DW size of SGP UTS
PSA

MB:SPACEJITt 1/4 #of disks with Increment for spacing users UTS
PSA around disk

MB:SDI 1/4 #of disks with Disk DCT index UTS
PSA

M:GATLIM
t

1 #of disks with Highest valid track UTS
PSA

M:GASLIM
t 1 #of disks with Highest sector position UTS

PSA

M:ADRINCRt 1 #of disks with Increment to get from last UTS
PSA Sector/Band to first sector

next Band

M:S'vVPEND 1 #of di sks with Address of the fi rst sector on ' UTS
PSA the next BAND /r RAC K/CYLI

following the PSA area data is
in the format returned by a
sense command

M:FREE#GRAN 1 #of di sks with # of unused granu les on swap- UTS
PSA pi ng devi ce, the fi rst devi ce

entry = 0

M:SWAPD 1 #of disks with Disk device address UTS
PSA

M:SNSDA 1 #of disks with 0 UTS
PSA

M:HLTIC 1 # of disks with TIC to sense CDW UTS
PSA

M:SGP 1 #of disks with WA of granule pools (see Fig- UTS
ure 2-8. 1 for format of granule
pools)

M:SBAND 1 #of disks with 0 UTS
PSA

t Entries for these tables are determined by the disk type and number of tracks defined on the given disk. If
the swapping device is a disk pack pseudo - 7232 type entries are made. See 2.2.7.1 for complete discussion.

27

Table 2-3. IOTABLE Load Module (cont.)

Label Entry Size (Words) Length Contents or Va lue Target System

M:JITPAGE 1 #of discs with 0 UTS
PSA

M:CLBGN 1 #of discs with 0 UTS
PSA

M:WCKBCL 1 #of discs with 0 UTS
PSA

M:WCKECL 1 #of discs with 0 UTS
PSA

MH:CLEND 1/2 #of discs with 0 UTS
PSA

MH:LDA 1/2 #of discs with 0 UTS
PSA

MB:#RTRY 1/4 #of discs with 0 UTS
PSA

MB:SFC 1/4 #of discs with 0 UTS
PSA

S:DP 1 1 1 if disc pack is swapping de- UTS
vi ce, 0 if RAD is swapping
device

S:CYLSZt 1 1 The number of granules/physical UTS
cylinder

RBLIMS 2 2 If Remote Batch devices defined: Both
word 0 = Lowest RB DCT index
word 1 = Highest RB DCT index

If no Remote Batch devi ces
defined:
word 0 = DCTSIZ+l
word 1 = DCTSIZ

RB:FLAGtt 1 Highest RBT Each RBT entry = 0 if HALF dup- Both
DCTl index lex Keyword, = X '8000' if FULL

dup lex Keyword, defau It is HA LF

WARBFLAGtt 1 1 Address of table points to first BPM/BTM
s,ignificant word of RB:FLAG

RBH:ACK
tt

1/2 Highest RBT Each RBT entry = 0 Both
DCT 1 index

RBB:SPCtt 1/4 Highest RBT Each RBT entry = 0 Both
DCTl index

t
Generated only when swapping device is disc pack.

ttGenerated only if Remote Batch devices defined. Significant entries in tables only in the range of
RBT DCTl indices.

28

Table 2-3. lOT ABLE Load Module (cont.)

Label Entry Size (Words) Length Contents or Value Target System

RBB:SFCt 1/4 Highest RBT Each RBT entry = 0 Both
DCT1 index

RBB:CPZt 1/4 Highest RBT Each RBT entry = X'50' UTS
DCll index

RBB:LPZ
t

1/4 Highest RBT Each RBT entry WIDTH UTS
DCll index parameter on PAPER

Keyword option or de-
fault of X'80'

2. Absolute DEFs

HGPSIZE - - Total words of HG Ps BPM/TBM

DCN - - DCTX of first disk UTS

DCTSIZ - - #of entries in DCT tables Both

CITSIZ - - #of entries in CIT tables Both

NTYPMNE - - # of type mnemon i cs Both

BATAPE - - DCTX of first tape or disk Both
pack (BPM)

NBATAPE - - - BATAPE Both

PSA - - PSA size in tracks BPM/BTM

OPLBTSIZ - - #of entries in op label table Both

AVRTBLSIZ - - #of tape entries in AVRTBL Both

AVRTBLNE - - #of entries in AVRTBL (includes Both
tape+DP)

LSWAP - - #of devices with PSA-1 UTS

CDP:NGC - - #granules/logical cylinder BPt·II/BTM

CDP:NCYL - - If CDP:NGC =30, value is 399 BPM/BTM
((12000/CDP:NSC) -1)

If CDP:NGC =2, value is5998
((12000/CDP:NGC)-2)

BCRBFLAGt - - Length in bytes of significant BPM/BTM
words of RB: FLAG

NUMRBTS - - #RBTs defined BPM/BTM

SC2SKtt - - ((#granules per physical UTS
cylin-2)/4) * 1 0

tGenerated only if Remote Batch devices defined. Significant entries in tables on Iy in the range of RBT DCT 1 indices.

ttGenerated only when swapping device is disk pack.

29

2.2.5 Subroutines Used

CHARSCAN
NAMSCAN}

CHSTSCAN Character scanning routines

HEXSCAN

ABNRETUR

CLEARDYN

OUTLLERR Card reading and message printing routines

PRINTMSG

RDINCFCH

MODIFY l . Load module mampulator
MODGEN

2.2.6 Data Base

2.2.6.1 Temp Stack

When UBCHAN is called it allocates temp stack area as in Table 2-4. PLISTS are moved into position and

pointers and addresses initialized via R3. The area from BASESTAC to P2DYNEND has already been initialized

by P2CCI. See discussion of P2CCI for descripti on of this part of data base (Table 2-1).

Table 2-4. PASS2 Stack Allocation

#TYPMNE EQU 64 ******#Entries in TYPMNE Table (Max)

TYPMNLNG EQU #TYPMNE #TYPMNE entries

TYPMNEAD EQU P2DYNEND+1 Pointer to TYPMNE Table (=TYPMNE)

TYPMNESZ EQU P2DYNEND+2 #Entries in TYPMNE Table (CURRENT)

TYPMNE EQU P2DYNEND+3 TYPMNE Table (1/2 word/entry)

TYPMNEND EQU P2DYNEND+3+ End of TYPMNE Table
(#TYPMNE/2)

******* ****

#STDLB EQU 128 ******#Entries in STDLB Table (Max)

*

* This table contains both STDLB & OSTDLB Info.

STDLCDPT EQU TYPMNEND+O Pointer to next STDLB Table entry

STDLADDR EQU TYPMNEND+1 Pointer to STDLB Table (=-STDLCD 1)

STDLeDl EQU TYPMNEND+2 STDLB Table (2 word/entry)

30

Table 2-4. PASS2 Stack Allocation (cont.)

STDLEND EQU TYPMNEND+2
+ (#STDLB*2) End of STDLB Table

****** ****

#CHAN EQU 32 ******#Entries in CHAN Table (Max)

CHANPTR EQU STDLEND+O Pointer to next CHAN Table entry

CHANADDR EQU STDLEND+1 Pointer to CHAN Table (=CHANTBL)

CHANTBL EQU STDLEND+2 CHAN Table (5 wrds/entry)

CHANEND EQU STDLEND+2
+ (#CHAN*5) End of CHAN Table

#DEVICE EQU 96 ******#Entries in DEVICE Table (f.Aax)

DEVICDPT EQU CHANEND+O Pointer to next DEVICE Table entry

DEVIADDR EQU CHANEND+-1 Pointer to DEVICE Table (=OEVICD1)

DEVICD1 EQU CHANEND+2 DEVICE TABLE (4 wrd/entry)

DEVIEND EQU CHANEND+2
+ (#DEVICE*4) End of DEVICE Table

DEVIXTRA EQU 22 < Extra work area >
******* ****

#HANDLER EQU 96 ******#Entries in HANDLER Table (Max)

HANDTADR EQU DEVIEND + Pointer to HANDLER Table
DEVIXTRA+O (=HANDTABL)

HANDTABL EQU HANDTADR+1 HANDLER Table (4 wrds/entry)

HANDEND EQU HANDTADR+1
+ (#HANDLER*4) End of HANDLER Table

******* ****

#OPLB EQU 128 ******#Entries in OPLB Table (Max)

OPLBADDR EQU HANDEND+O Pointer to OPLB Table (=OPLBTAB1)

OPLBSIZE EQU HANDEND+l #Entries in OPLB Table (current)

OPLBTAB1 EQU HANDEND+2 OPLB Table (1/2 word/entry)

OPLBEND EQU HANDEND+2
+ (#OPLB/2) End of OPLB Table

******* ****

#DCDP EQU 32 ******#Entries in DC/DP/CM Table (Max)

DCINPNTR EQU OPLBENDtO Pointer to next DC/DP/CM Table entry

DCINADDR EQU OPLBEND+l Pointer to DC/DP/CM TBL
(=OCINTAB)

DCINTABL EQU OPLBEND+2 DC/DP/CM Table (21 words/entry)

DCINEND EQU OPLBEND+2
+ (#DCDP*21) End of DC/DP/CM Table

******* ****

DCTlPTR EQU DCINEND+O Pointer to DCTl Table

DCT2PTR EQU DCINEND+l Pointer to DCT2 Table

31

Table 2-4. PASS2 Stack Allocation (cont.)

DCT3PTR EQU DCINEND+2 Pointer to DCT3 Table

DCT4PTR EQU DCINEND+3 Pointer to DCT4 Table

DCT5PTR EQU DCINEND+4 Pointer to DCT5 Table

DCT6PTR EQU DCINEND+5 Pointer to DCT6 Table

DCT7PTR EQU DCINEND+6 Pointer to DCT7 Table

DCT8PT R EQU DCINEND+7 Pointer to DCT8 Table

DCT9PTR EQU DCINEND+8 Pointer to DCT9 Table

DCT10PTR EQU DCINEND+9 Pointer to DCT10 Table

DCTllPTR EQU DCINEND+l0 Pointer to OCT 11 Table

DCT12PTR EQU DCINEND+11 Pointer to OCT 12 Table

DCT13PTR EQU DCINEND+12 Pointer to DCT13 Table

DCT14PTR EQU DCINEND+13 Pointer to OCT 14 Table

DCT15PTR EQU DCINEND+14 Pointer to DCT15 Table

DCT16PTR EQU DCINEND+15 Pointer to OCT 16 Table

DCT17PTR EQU DCINEND+16 Pointer to OCT 17 Table

DCT18PTR EQU DCINEND+17 Pointer to DCT18 Table

DCT19PTR EQU DCINEND+18 Pointer to DCT19 Table

DCT20PTR EQU DCINEND+19 Pointer to DCT20 Table

DCT21PTR EQU DCINEND+20 Pointer to DCT21 Table

DCT22PTR EQU DCINEND+21 Pointer to DCT22 Table

DCT23PTR EQU DCINEND+22 Pointer to DCT23 Table

DCT1PTR EQU DCINEND+23 Pointer to OCT lP Table

DCT1APTR EQU DCINEND+24 Pointer to OCT lA Table

DCTLAST EQU DCINEND+25 End OCT Tables

NDCTS EQU DCTLAST - DCT1PTR H OCT Tables

******* ****

CIT1PTR EQU DCTLAST+l Pointer to CIT 1 Table

CIT2PTR EQU DCTLAST+2 Pointer to CIT2 Table

CIT3PTR EQU DCTLAST+3 Pointer to CIT3 Table

CIT4PTR EQU DCTLAST+4 Pointer to CIT4 Table

CIT5PTR EQU DCTLAST+5 Pointer to CIT5 Table

CIT6PTR EQU OCT LAST +6 Pointer to CIT6 Table

CIT LAST EQU DCTLAST+7 End of CIT Tables

NCITS EQU CITLAST - CIT lPTR HeIT Tables

******* ****

TYPINDX EQU CITLAST+l Type Index to Reorder DCTs

DCTSIZE EQU CITLAST+2 H Entries in OCT Table

CLISTPTR EQU CITLAST+3 Pointer to CLIST Table

PACKRPTR EQU CLISTPTR End of Tables to be packed

******* ****

32

Table 2-4. PASS2 Stack Allocation (cont.)

HEADADDR EQU PACKRPTR+l Pointer to HEADER

TREEADDR EQU PACKRPTR+2 Pointer to TREE

RDEFADDR EQU PACKRPTR+3 Pointer to REF ;OEF Stack

EXPRADDR EQU PACKRPTR+4 Pointer to Expr. Stack

RDICADDR EQU PACKRPTR+5 Pointer to REL' DICT' 0

CLISTADR EQU PACKRPTR+6 Pointer to SECT' 0

HEADLNG EQU PACKRPTR+7 HEADER SIZE

TREELNG EQU PACKRPTR+8 TREE SIZE

RDEFLNG EQU PACKRPTR+9 REF ;nEF Stack size

EXPRLNG EQU PACKRPTR+lO Expr' Stack SIZE

RDICLNG EQU PACKRPTR+ 11 REL' DICT' 0 SIZE

SECTOLNG EQU PACKRPTR+12 SECT' 0 SIZE

******* ****

CLISWDCT EQU SECTOLNG+1 lIwords in all command lists

HGP1PTR EQU SECTOLNG+2 Pointer to next HGP Table entry

HGP1ADDR EQU SECTOLNG+3 Pointer to HGP Table Base

LASTHGP1 EQU SECTOLNG+4 Pointer to base of last HGP Table

OPLBT lAD EQU LASTHGP1+1 Pointer to OPLBT1 Table

OPLBT2AD EQU LASTHGP1+2 Pointer to OPLBT2 Table

OPLBT3AD EQU LASTHGP1+3 Pointer to OPLBT3 Table

OPLBT4AD EQU LASTHGP1+4 Pointer to OPLBT 4 Table

OPLBT5AD EQU LASTHGP1+5 Pointer to OPLBT5 Table

TYPMNPNT EQU LASTHGP1+6 Pointer to TYPMNE Table

AVRTBLAD EQU LASTHGP1+7 Pointer to AVR Table

AVRTBLSZ EQU LASTHGP1-tB AVF Table SIZE

FDABCHAD EQU LASTHGP1+9 Pointer BCH K/ABSF Info.

FDABCHSZ EQU 18

ABSFDLL EQU FDABCHAD+1 ABSF disk address lower limit

ABSFDC EQU FDABCHAD+2 ABSF Current disk address

ABSFDUL EQU FDABCHAD+3 ABSF disk address upper limit

ABSFDISC EQU FDABCHAD+4 ABSF DCT 1 Index

BCHKLL EQU FDABCHAD+9

BCHKUL EQU FDABCHAD+l0

BCHKDISC EQU FDABCHAD+ll

BCHKSIZ EQU FDABCHAD+16

#SWAPDEVS EQU BCHKSIZ+1 Number of disks with PSA

SWAPPTR EQU BCHKSIZ+2 Pointer to SWAPPER Table area

SOLICIT EQU BCHKSIZ+3 Pointer to SOLICIT Table area

33

Table 2-4. PASS2 Stack Allocation (cont.)

AVRIDARA EQU BCHKSIZ-t4 Pointer to AVRID Table area

AVRSID EQU BCHKSIZ+5 Pointer to AVRSID table

DCN EQU AVRSID+l Index into DCTl of l-ST DC;t>P/CM

BAT APE EQU DCN+l Index into OCT 1 of l-ST 9T/lT
or DP (BPM)

NBATAPE EQU DCN+2 Compliment of BAT APE

PSA EQU DCN+3 Perm Storage Size (T racks)

****** ****

LMODPLIS EQU PSA+l Master P LIST

EXPRCALL EQU PSA+9 Expression (and MODGEN) PLIST

HEAD EQU PSA+19 Load Modu Ie HEAD

TREE EQU PSA+31 Load Module TREE

MAXOO EQU PSA+43 End of SECT 00

RDEFCALL EQU PSA+44 REF PUST

DEFCALL EQU RDEFCALL DEF PUST

DICTCALL EQU PSA+52 Relocation Dictionary PUST

TREETOP EQU PSA+57 End of PLISTS

******* ****

RBLIMSPTR EQU TREETOP+l Pointer to RBLIMS Table

RBFLAGPTR EQU TREETOP+2 Pointer to RB:FLAG

RBHACKPTR EQU TREETOP+3 Pointer to RBH:ACK

RBBSPCPTR EQU TREETOP+4 Pointer to RBB:SPC

RBBSFCPTR EQU TREETOP+5 Pointer to RBB:SFC

RBBCPZPTR EQU TREETOP+6 Pointer to RBB:CPZ

RBBLPZPTR EQU TREETOP+7 Pointer to RBB:LPZ

****** ****

STACKEND EQU TREETOP+8 End of Stack

******* ****

SDBEGIN EQU PACKRPTR Base of avai lable stack for SDEVICE

SDVEND EQU DYSTORND End of avai lable stack for SDEVICE

******************** "*********** ********************* **************************************

34

2.2.6.2 Preliminary Tables

The WBCHAN processor contains several tables necessary to its operation. They are described below:

TYPCHARS - This is a list of the type mnemonics (YY or YYNDD) for standard devices. It is moved to the

temp stack at TYPMNE before UBCHAN processing starts, and may be extended during processing as new types

of devices are defined. The index into this table is used to index other tables and is referred to as the

IIdevice index ll
•

HANDNAME - This table, ihdexed by device index, is a list of default handler names for standard

devices.

IOFLOWACT - This table, indexed by device index, contains a code for the standard I/O flow of standard

devices. INPUT = X140 ' OUTPUT = X '80 ' I/O = X1C01•

CLISTDAT - This table, indexed by device index, contains the standard CLIST length for standard devices.

DCDPCM - This table is a list of disc types.

DEFAULTS - This table, parallel to DCDPCM, contains the defaults of SIZE, SS, and NSPT for each disc

type.

OPLBCHAR - This table is a list of the standard oplabels. It is moved to temp stack at OPLBTAB1 before

UBCHAN processing begins and may be expanded as oplabels are defined during processing.

OPFLOWACT - This table, parallel to OPLBCHAR, contains the flow codes (as in IOFLOWACT above)

for each oplabel.

STANDARD - This table contains the default assignment for all standard labels, both batch and on-I ine.

ABSFX1 and ABSFX2 - These are parallel tables containing values representing maximum bytes per I/O call

to NEWQ used in generating words 3 and 4 in the table ABSFDISC and BCHKDISC.

2.2.6.3 Intermediate Tables

As control commands are processed UBCHAN stores its information in intermediate tables in the temp stack.

This is required because in many cases final tables cannot be built until all the commands have been read.

The intermediate tables are described below.

CHANTBl - The 5 word entries in this table contain device information for dual channel access and the start

and end address for the DEVICD1 entries for the devices on this channel. (Described in Figure 2-2).

DEVICD1 - The entries in this table begin as 9 words and contain device information (Figure 2-3). later the

size of each entry is reduced to 3 words. (Figure 2-4). The rest of the information is moved to the

DCINTBl entry if this device was a disc. One DEVICD1 entry is built for each :DEVICE command processed.

DCINTBL - The 21 word entries (only 5 of which are used) in this table contain disc information. It is moved

to this table from the DEVICD1 table entry. One DCINTBL entry is formed for each :DEVICE command that

defines a disc system (DC, DP, CM). (Described in Figure 2-5).

35

OPLBTABl - This table contains a list of monitor operational labels in text. It initially contains the

standard oplabels and others are added as they are defined with :STDLB and :OSTDLB commands.

STDLCD1 - This table contains information defining operational labels derived from :STDLB and OSTDLB

commands. The oplabel index is the index of the defined oplabel into OPLBTABl. There are two formats

since an oplabel may be assigned to a device or to another oplabel. (Described in Figure 2-6).

TYPMNE - This table oontains a list of all device type mnemonics in text. Initially it contains the

standard types from TYPCHARS, and more are added if they are defined with device cards.

HANDTBL - This table is a list of handler names for devices. As :DEVICE commands are read the handlers

required for the devices defined have their names placed here. The names are in pairs, initial handler

first then clean up handler, in TEXTC format. Housekeeping is done so that each pair of names appears

only once. (Table 2-6).

o I X'ND 1' I X'ND2 ' I Bit 0=1 if Ns are different

X'ND ' X'ND 'from dual
1 ' 2

2 option on :CHAN

3 DEVICD1START ADDRESS

DEVICEDl
END ADDRESS

4

Figure 2-2. CHANTBL Entry

36

o

2

3

4

5

6

7

8

NOD

Txpe
+1

Paper
Width

*Flags Handler
Index

DEVICD1 Index

SS

SIZE

PFA

BCHK

N

TYPMNE
Index

***Flags

I Paper
Size

X'NDD '

Iyyl Temporary

r If I Type 1 NGC

NSPT

PSA >

PER

Disk
Devices
Only

Fldgs if set

Flow = 1 INPUT

= 2 OUTPUT

FLOW

= 3 INPUT/OUTPUT

DE = DEDICATE

Bit 0::1: 1

DP

1

ABSF Bit3 = 1 if FULL DUPLEX

Figure 2-3.Initial DEVICDl Entry

D D , Paper Size

Paper Width Device Address

Handler Index Y l y

Figure 2-4. Final DEVICD1 Entry

o OEVICDllndex ~\I ! I Type I FLINK

SS NSPT

2 SIZE PSA

3 PFA PER

4 BCHK ABSF

Figure 2-5. FINAL DCINTBL ENTRY

37

DOUBLEWORD

BOUNDARY o

o

o
1

2

3

o
1

OPLABEL
INDEX

DEV. MNEMONIC
IVY I

0 OPe LBL.
1

INDEX

0 0 0 0 ~ ~

OPe LABEL
DEF. IVY I

DEVICE
ADDR.

OPe LABEL

DEF. IVY I

EQUIV. OPe

LABEL IYY'

HANDTBL ENTRY

COUNT I NAME OF HANDLER

INITIALIZATION ROUTINE

COUNT I NAME OF HANDLER

CLEANUP ROUTINE

1 = OSTDLB

0= STDLB

Figure 2-6. Two Types of STDLeDl Entry and HANDTBL Entry

Table 2-5. STANDARD DEVICES

DEVICE TYPCHARS 10 FLOWACT HANDNAME

NO DEVICE NO *****ILLEGAL DEVICE DEFINITION *****

OPERAT OR CONS OLE TY I/O KBTIO, KBTCU

PAPERTAPE READER PR I PTAP,PTAPCU

PAPERTAPE PUNCH PP 0 PTAP,PTAPCU

CARD READER CR I CRDIN, CRDINCU

CARD PUNCH CP 0 CRDOUT, CRDDCU

LINE PRINTER LP 0 PRTOUT, PRTCU

LINE PRINTER (7450) 1 LP 0 PRTOUTL, PRTCU

LINE PRINTER (7446) 1 LP 0 744610, 7446CU

RAD3 DC I/O DISCIO, DISCCU

9 TRACK TAPE2 9T I/O MT AP, MT APCU

7 TRACK TAPE2 7T I/O 7T AP, 7T APCU

ANY TAPE MT *****ILLEGAL DEVICE DEFINITION*****

DISC PACK (7242)3 DP I/O DPAK, DPAKCU

DISC PAC K (7260/7265)3 DP I/O DISKAB, DSKABCU

REMOTE BATCH CONTROLLER RB I/O DSCIO, DSCCU

38

CLISTDAT

6

8

8

8

2

74

6

6

6

6

8

8

12

12

10

DEVICE TYPCHARS 10 FLOWACT I:JANDNAME ~LISTDAT

,
COC CONTROLLER CO I/O COC,COC 6

(BPM/BTM)1

COC CONTROLLER fBATCH CO I/O COCBS, COCBS 6
SWAPPING BTM)

COC CONTROLLER (UTS) ME I/O COC,COC 6

1. User must specify handler names.

2. Inclusion of either tape handler causes additional module MAGTAPE to be added.

3. For UTS - if swapping device is RAD then module TSIO also included. If swapping device is Disk Pack
then module DPSIO also included.

2.2.7 Description

UBCHAN is segloaded and entered from P2CCI when a :CHAN, :STDLB, or :OSTDLB (UTS only) control command

is encountered. If P2CCI encounters a :DEVICE command, it is considered an error. An image of the command

is passed in the read buffer to UBCHAN and a flag is set according to the type of command. From this point

on UBCHAN reads its own input, a process which continues until a command which is neither :CHAN, :DEVICE,

:STDLB, nor :OSTDLB is encountered. Upon entry UBCHAN first initial izes its temp stack.

When UBCHAN reads a :CHAN command, it sets a CHAN encountered flag and calls CHANNEL to process the

card. It then reads the next command.

When a :DEVICE command is encountered, UBCHAN checks to see if it was preceeded {not necessarily

immediately} by a valid :CHAN. If it was not, an error message is printed and the command is ignored.

Otherwise, the type mnemonic is checked. If it is IINO" or IIMT" the command is in error. If it is a standard

type mnemonic the index into the TVPMNE table is obtained. Otherwise, the new mnemonic is added to the

TYPMNE table and the new index is noted. Whenever any table is expanded, it is checked for overflow and

when this occurs error messages are printed.

Once the index ofthe type mnemonic has been obtained, it is used to bui Id a DEVICD ltable entry for this device and all

avai lable defau It parameters are placed in it. A count is kept ofthe number of Remote batch devices. The rest of the

command is then scanned for options, and as they are found, their values replacethedefaults in DEVICD1. If the de­

vice was a disc, thedisc options are also processed and when this is completed, the extra words ofDEVICDlare moved

to DCINTBL. All options are checked for syntax and for legal values. When the DEVICD 1 and DCINTBL entries

are completed, the next card is read.

When a control command is a :STDLB or :OSTDLB command, an entry is added to STDLCDl for each

assignment on the card. In BPM/BTM, :OSTDLB cards are illegal while in UTS the high order bit of the

first word of each entry is set to one for these assignments. The oplabels are checked to see if they are

standard and if not, are added to the OPLBTAB 1 table. When all assignments have been processed, the

next card is read.

39

When UBCHAN reads a command that is not :CHAN, :DEVICE, :STDLB, or :OSTDLB or when an EOF is

encountered during UBCHAN processing, the reading of control commands is stopped and UBCHAN begins

to build its files. A check is made to determ ine whether CHAN/DEVICE information was read and if not

UBCHAN exits. Otherwise, pages are obtained and allocated among the tables to be built. In allocating

the OCT and CIT tables a check is made to determine if the DUAL flag is set (i.e., DUAL option was

specified on any :.cHAN command). If so, DeT1A, DCT1P and CIT6 are allocated space.

If not, then the labels DCTlA and DCTlP are equated to DCT1, and CIT6 equated to eIT5.

The first CHANTBL entry is examined and the information in it and the DEVICD1 entries to which it points

are used to begin building the DCT and CIT tables. When this CHANTBL entry is exhausted, the next

is fetched and this process continues through all of CHANTBL. The CLIST area is also built at this time.

Most devices have CLlSTs of all zero and length dictated by CLISTDAT, although some devices have special

CLlSTs (See Figure 2-7).

Whi Ie processing DEVICD 1 entries when a remote batch devi ce is first encountered, space is allocated for

those RBT-dependent tables. Since table entries are significant only in the area of RBT indices, the pointers

to the several tables are bumped back, overlapping other areas.

When the DCT and CIT tables (except for DCT22 and DCT23, - UTS only) have been bui It, RBLIMS table entries

are defined. Then the DCINTBL is searched for a disk with PSA defined on it. The DCT 22 entry for the disk

device is determined and stored in the appropriate location. Then if the swapping device (Le., has PSA de­

fined on it) for UTS is a disk pack, the #tracks of PSA is converted to #physical cylinders. If the #tracks does

not equal a physical cylinder(s) the PFA and PER (if necessary) is decremented. The maximum number of PSA

tracks that may be specified is X'3FC' for a 7242 and X'21C' for a 7260/1265.

The HGP for this device is generated and if the device is a disk pack, then an entry is made in the AVRTBL

table. After the PSA discs are processed, DCINTBL is searched for other entries and the HGPs for them are

generated (Figure 2-8).

UBCHAN then proceeds to bui Id OPLBT 1-4. For each operational label in OPLBTAB1 an entry is made in each

OPLBTeitherfrom STDLCD1 or from STANDARD. Op labels assigned to "NO" are assigned to device

NOAOO (DCTX=O). If this is for UTS, OPLBT5 is bui It in the same manner. When the oplabel tables are com­

plete, TYPMNE is moved to its allocated area in the working pages. Then the area for the control task and

temp stack are allocated. If the system is BPM/BT M, a copy of the HGPs are then written out as the load mod­

ule M:HGP even though they are also included in the load module lOT ABLE. UBCHAN then enters the comple­

tion routines to generate IOTABLE. If the system is UTS, the swap tables are generated (see 2.2.7. 1) and then

an area is allocated for the load module M:HGP which is created and written out to the disk. This load module

contains the HGPs for all devices. In addition, the HGPs for private devices remain a part of IOTABLE as well

as the 7 word headers of the HGPs for public devices. When M:HGP has been created, in a UTS system, the

headers of the HGPs and the swap tables are squeezed into the area from where the full HGPs had been written.

DCT23 entries are then computed and space is allocated for the AVRID and SOLICIT tables.

At this point the data (SECT 00) area of the load module IOTABLE is completed. Using MODIFY UBCHAN builds

the head, tree, expression stack and REF/DEF stack for the module. MODGEN is used to generate the swapper

40

tables. Finally RDICLIST is used to make final modifications to the relocation di ctionary, and lOT ABLE is written

out via M:TM. Following this the handler names are written out into the SPEC:HAND file and UBCHAN exits.

If UBCHAN is unable to bui Id IOTABLE, SPEC:HAND, or M:HGP, appropriate, definitive error messages are pro­

duced and PASS2 (being unable to continue without these vital tables) aborts.

o 0

2 2

3 3

Paper Size 4 4

Paper Width 5 5

LP or TY CLIST 6

LINES

WIDTH

16161616

01000200

RB CLIST

o

2

3

4

5

6

7

8

9

38

39

40

41

42

73

CP CLIST

X'09000000'+BA($+6)

X '2E 000078 '

X '08000000'+DA($-2)

0

X '080000000'

0

X'09000000+BA($+6)

X '2E 000078'

X '08000000'+DA($-2)

0

X '8000000'

0

0

Figure 2-7. Special CLISTS

41

1

X'13'

o

2

3

4

6

7

N

where

FLINK

0 I DCT INDEX It If I TYPE I NGC

No SECTORSITRACK

NO. SECTORS/GRANULE
PER MAPWL PFA MAPWL

NVAT
~ - - - - -- - - - - - - - - - - - - - - - - -

PER MAPWD PER 1st SECT NO.

PFA MAPWD PFA 1 st SECT NO.

PFA BIT MAP
(1 = AVAILABLE)

PER BIT MAP

(1 = AVAILABLE)

o 78 15 16 17 2324 31

CYL indicates whether device is allocated by cylinder (bit 16=1)

or granule (bit 16=0).

PRIV indicates whether device is private (bit 17=1) or

public (bit 17=0)0

NGC number of granules/logical cylinder, has meaning only if CYL set.

The # granules/logical cylinder is a SYSGEN definable parameter. For

UTS this may be 1:n:255. For RBM this value may be either 2 or 30.

TYPE contains devi ce type (7=disk; B=disk pack).

PER/MAPWL/PFA/MAPWL contain the number of words in the bit map

area for PER/PFA.

PER/MAPWD/PFA/MAPWD contain the word displacement from the start

of this allocation table to the first word of the bit map for PER/PFA.

NVAT contai ns the next volumes cylinder 0 allocation table if PRIV is set.

Figure 2-8. ALLOCATION TABLE FORMAT (HGP)

42

2.2.7.1 Generation of SwapperTables (UTS only)

Upon e{ltry into the routine (ALLOSWAP) to generate the swap per tables, space is allocated first for each table.

Then for the type of the given swapping" device (of which there may be only one if it is defined on a disk pack) is

determined. The type controls the values to be generated for the various tables. See Table 2.5. 1 for the types and

i values being used. If the swapping device is a disk pack then pseudo-7232 values are used, that is the number of

tracks of PSA specified for the 7242/7260/7265 is compared to the numbers of tracks for 7232 devices to determine

the type. After building the tables, the granule pools or SGPs are generated. The starting address of each pool is

generated as an entry in the M:SGP table. The SGP for the first swapping device has all bits set to o. All sub­

sequent pools have the bits set according to the type, See Figure 2.8. 1 for the vari ous types.

2.2.8 Error and Informational Messages

All messages are output on the LL device.

***STDLB ENTRY TABLE FULL

The STDLB control command information has overflowed the allocated area. Up to 128 standard label definitions

or up to 32 unique operational labels are allowed. UBCHAN tries to continue.

***DEVICE ENTRY TABLE FULL

The DEVICE control commands have overflowed the allocated core area. Up to 96 devices may be defined.

UBCHAN tries to continue

***TYPMNE ENTRY TABLE FULL

A maximum of 64 unique type mnemonics are accepted from DEVICE control commands, and more have been speci­

fied. UBCHAN tries to continue.

Table 2-5.1. Swapper Table Constants by Type

7212 RAD
7232 RAD or 7242/7260/7265 Disk Pack

Table Name Type 0 Type 1 (0-80) Type 2 (81-100) Type 3 (101-200

MB:GAM1 X'3F' 7 7 7

MB:GAM2 1 3 7 15

MB:GAM3 -1 -2 -3 -4

MB:GAM4 6 3 3 3

MB:GAM5 -7 -4 -4 -4

MB:GAM6 X'7F' XIF' X'F ' X'F '

MB:GPT 41 6 6 6

MB:SWAPS 0 1 2 3

MB:DWT 41 12 24 48

MB:SPACEJIT 7 1 1 1

M:GATLIM X'3F ' X'7F ' X'FF ' X' 1FF '

M:GASLIM 80 10 10 10

M:ADRINCR X'2E' 4 4 4

43

Type

0

1

2

3

04

r
Words 41

I -

•

1
Words 6

I
~

l
Words 6

1
•

r
Words 6

1

Device PSA (Hex Tracks) --
7212 0-40

f232 or 1 0-80

7242/7260 81-100

7265 101-200

WORDS 2 ..
GRANULE 40

- ----~

- - ~
GRANULE 0

WORDS 4 ..
GRANULE 5

GRANULE 0

WORDS 8 '

GRANULE 5

GRANULE 0

WORDS 16

GRANULE 5

GRANULE 0

Figure 2-8. 1 SGP Format and Contents by Type

44

..

Type 0

Type 1

Type 2

•

Type 3

Location

Every 4th OW from 0 to 40 t
Every 4th OW from 1 to 37
Every 4th OW from 2 to 38
Every 4th OW from 3 to 39

tDoubleword 37 is

Type (Value in Doublewords)

0-1
8-9
4-5
2-3
6-7
10-11

2

0-3
16-19
8-11
4-7
12-15
20-23

3

0-7
32-39
16-23tt

8-15
24-31
40-47

Contents

X' l111111111111111 1

X 188888888888888881

X 14444444444444444 1
X 122222222222222221

X 188888888088888881

Contents

X 15555555555555555 1

X 15555555555555555 1

X I AAAAAAAAAAAAAAAA I
o
o
o

ttDoubleword 23 is X 'AAAAAAAA2AAAAAAA 1

Figure 2-8.1 SGP Format and Contents by Type (Cont.)

***DISC ENTRY TABLE FULL

The DEVICE control commands defining disc units o. e., YVNDD is of DCndd, DPndd, and CMndd types) have over­

flowed the allocated core area. Up to 32 discs may be defined. UBCHAN tries to continue.

***HANDLER CLIST FULL

When generating the CLIST (peripheral command list area) tables, the core area allocated is not large enough. Up

to 64 handler definitions are allowed. UBCHAN aborts.

***DCT TABLE FULL

When generating the OCT tables (peripheral device information tables), the core area allocated is not large enough.

UBCHAN aborts.

***HGP TABLE FULL

When generating the HGP tables for disc, disc pack or cram devi ces, the allocated core area is not large enough.

UBCHAN aborts.

***OPLB XX EQUIVALENT YY MISSING

STDLB control command specifies that an operational label (XX) standard assignment is to another operational label

(YY) that has not been defined. UBCHAN tries to continue.

***UN KNOWN DEVICE YYNDD (for LL)

The YVNDD field of a DEVICE control command is invalid, {i.e., bad syntax) or for the STDLB control command, the

YVNDD referenced has not been defined by a DEVICE control command. UBCHAN tries to continue.

45

***INSUFFICIENT PAGES AVAILABLE

When core is being allocated for the generation of the load modu Ie, the avai lable core is not large enough for the

required allocation. UBCHAN aborts.

***ONLY XXX X PAGES OBTAINED

This message appears immediately after the preceding message. XXXX is the number of pages that was available to

bui Id the load module. UBCHAN aborts.

***LOAD MODULE CANNOT BE GENERATED

This message is produced in conjunction with the two preceding messages. UBCHAN aborts.

***SPEC:HAND CANNOT BE GENERATED

An inconsistency has occurred in building the HANDLERS record of the SPEC:HAND file. UBCHAN aborts.

***PASS2 UNABLE TO CONTINUE

This message is produced after any of the messages in which the explanation indi cates that UBCHAN aborts.

***NO DISC DEFINED

This message is the result of no disc being defined by a DEVICE control command. This is only an informational
message.

***NO HANDLER NAME GIVEN

When a device is being defined whose type mnemonic is unknown to PASS2, the HANDLER option must be present.

UBCHAN continues to next control command.

***DEVICE TYPE YY ILLEGAL

A DEVICE control command YVNDD field contains "NO II or IIMT II as its YY. UBCHAN tries to continue.

***PSA/PER INVALID ON CYLIN ALLOCATED DEVICE - PSA/PER IGNORED

An attempt has been made to define PSA!PER on a device that is allocated in logical cylinders. The options are

ignored. UBCHAN continues.

***NO PSA DEFINED

***NO PER DEFINED

No PSA;PER has been defined on any disc. UBCHAN tries to continue.

***SYNTAX ERROR DUAL OPTIONS USED

The closing double parenthesis on the DUAL option of the CHAN command are in error. However, the preceeding

option has been correctly processed and is used. UBCHAN continues.

***ONLY PFA VALID ON PRIVATE DEVICES

An attempt has been made to define otherthanPFAon a private device. All other allocations are zeroed out. UBCHAN
continues.

46

SS AND NSPT MUST BE NONZERO - SET TO XXXX DEFAULTS

The options SS and/or NSPT have not been specified nor has the device type been specified (i.e., 7204, 7212,

7232, 7242, 7260, and 7265). The default (XXXX) for the parti cular type of target system (UTS-7232, BPM/

BTM - 7204) is substituted. UBCHAN continues.

***VALID 'CHAN ' CC MUST PRECEDE 'DEVICE' CC

A DEVICE control command is encountered without being preceded by a valid CHAN control command. UBCHAN

continues to the next control command.

***'NAME I OR SYNTAX INVALID

A CHAN control command option field has a syntax error or the DEVICE control command contains a syntax error or

invalid name for HANDLER option. UBCHAN tries to continue.

***CHAN TABLE FULL

The CHAN control command has overflowed the allocated core area. Up to 32 :CHAN commands are allowed.

UBCHAN tri es to continue.

***NO CHAN,/1)EVICE INFO

No CHAN and DEVICE control commands have been encountered, although STDLB control commands have been pro­

cessed. UBCHAN aborts.

***NO DEVICE FOR CHAN

A CHAN control command has been encountered without having any DEVICE definitions for this channel. UBCHAN

tries to continue.

***'ABSF '/,BCHK ' PREVIOUSLY DEFINED

A DEVICE control command has defined ABSF and/or BCHK and they have also been defined previously. UBCHAN

continues to the next control command.

***SUM OF PSA+PER+PFA+BCHK+ABSF>SIZE

This warning message appears if there is a conflict in the summation of the given list of variables and the defined

disc size. The message may appear several times for a given disc, i.e., if the conflict is determined after the sum­

mation of PSA+PER, then the message appears for this summation and once for each of the remaining summations,

the overflowing value is replaced with the reamining SIZE and the processor continues.

***THIS DISC ALREADY DEFINED

A DEVICE control command is defining a disc, cram or disc pack device (i .e., YVNDD) which has already been

defined. UBCHAN will try to continue.

***SYNTAX ERROR

A syntax error has been encountered on a control command. UBCHAN continues.

47

***NO DEVICE FOR TYPMNE YY (OPLBL=LL)

A operational label is assigned (or defaulted) to a device that has not been defined. In UTS, these messages have

the headi ngs:

---BATCH (STDLB)---for batch and

---ON LINE (OSTDLB)---for on-line.

They are printed at the end of UBCHAN processing.

***HGP CANNOT BE FORMED FOR YYNDD

The DEVICE control command defining this disc did not provide enough information to generate an HGP. UBCHAN

continues.

***CYLIN VALUE INVALID--VALUE IGNORED

For BPM/BTM only, the value for number of granules per logical cylinder on the CYLIN option was not 2 or X'lE'.

The value is ignored and UBCHAN continues.

***NGC=2 FOR ALL PRIVATE PACKS

***NGC=30 FOR ALL PRIVATE PACKS

For BPM/BTM only, one of the above messages always generated after the first, and only the first, command defining

a private pack. All subsequent private packs are allocated in terms of the first defined pack regardless of what value

is used on the subsequent commands. UBCHAN continues.

***NGC=30 FOR ALL PUBLIC PACKS

For BPM/BTM only, an attempt has been made to define public packs in terms of two granules;1ogical cylinder.

The correct value is substituted and UBCHAN continues. This message is produced only once even if several publi c

device CYLIN options are in error.

***PSA VALUE TOO LARGE - MAX VALUE USED - PFA INCREMENTED

For UTS only, in an attempt to define PSA on a disc pack, the number of tracks specified exceeded X '3FC' for a

7242 or X' 21C' for a 7260/7265. The correct value is substituted and the extra tracks added to the total number

of PFA tracks defined. UBCHAN continues.

***PSA INCREMENTED FOR DP SWAPPER - PFA'/pER DECREMENTED

For UTS only, the number of tracks defined for PSA on a disc pack is not equal to a physical cylinder(s) i.e., evenly

divisible by 20 (#tracks/physical cylinder). The number of tracks of PSA is incremented and PFA and PER, if neces­

sary, are decremented. UBCHAN continues.

***PSA MUST BE 7212/7232/bISC PACK - PSA IGNORED

For UTS only, an attempt was made to define PSA on other than the above devices. The option is ignored. UBCHAN

continues.

***PSA PREVIOUSLY DEFINED ON DP - PSA IGNORED

For UTS only, if PSA is defined on a disc pack it may not also be defined on a RAD or more than one disc pack. An

attempt to do so has been detected. The option is ignored and UBCHAN continues.

48

***PSA DEFINED ON RAD, NOT ALLOWED ON DP

For urs only a RAD has previously been defined with PSA on it. Therefore, it may not also be defined on a disc

pack. The option is ignored and UBCHAN continues.

***NGC>255-- 55 USED FOR 7260/7265

***NGC>255 -- 30 USED FOR 7242

For urs only, the value specified for the number of granules per logical cylinder option on the CYLIN parameter

is >255, the appropriate default is used and one of the above messages is generated. UBCHAN continues.

2.2.9 Major Internal Routines

UBCHANjCHAN

CHANNEL

IODEFRD

IODDEVIC

TYPFOUND

DEVOPTPA

DEVCDOUT

IOSTDLBjIOSTDLBO

UBENDITALLjENDITALL

GNDCTCIT

SETDCTl

CPCLIST

GENCIT

SRCHPSA

SRCHNXT

HGPENSET

NOAVRENT

FORMHGP

Main entry, initialization, control

Processes :CHAN command, bui Ids CHANTBL entry

Sets flag and reads next card and branches to

appropriate routine.

Processes :DEVICE command gets VYNDD and finds

type mnemonic

Gets type mnemonic index, puts default entries in

DEVICDl

Processes other options on :DEVICE command, stores

valid options in DEVICD1.

Completes building of DEVICDl entry. If tape, increments

AVRTBL size. Checks options if disc for validity and

moves correct va lues to DCINTBL.

Process :STDLB, :OSTDLB command. Gets options

and stores in STDLCD 1.

Entry po int when all commands for UBCHAN read.

Allocates space for OCT, CIT, OPLBT, TYPMNE, andAVRTBL

Generates DCT and CIT tables.

Generates CLISTs for devices.

Generates special CP and RB CLISTs.

Generate special setting in CIT3 if DUAL option on

:CHAN command.

Searches for disk with PSA defined on it.

Checks for end of disk information. If not, then

I inks to next DCINTBL when all PSA disks completed.

Initial setting of HGP values. Makes entry in AVRTBL

if disk pack.

If ABSF, BCHK areas defined, generates appropriate

values.

Gets number of tracks of PER, PFA BALs to SETGRANO

and stores displacements in HGP.

49

CNVTCYL

SETGRANO

OPLBTYPM

DOSTAND

CHKSTDL

CHKASGN

OPLBNDD

SETOPLBN

SETOPLB5

OPLBENDX

XFERTYPM

XFERFDAB

ALLTMP

SWAPSET

HGPSTAK;WRTHGP

HMOVIT

LOADMODL

GETMODFY l
EQUMODFY~
SETMODFY

GENEXP

RDICLIST

For UTS systems in which PSA defined on a disc pack. First,

checks that PSA ~ X'BFC' for 7242 or ~ X'21C' for 7260/

7265. Then converts 'tracks to , of physical cylinders.

Bui Ids HGP bit maps for PFA, PER upon entry

R6 = , sectors/track

R7 = , sectors/granu Ie

Rll = DCINTBL WD8 addr, WD7 addr.

R12 = PSA, PSA+PFA addr.

R15 = PFA, PER addr.

This routine entered twice. In the above, the value pre­

ceeding the comma is the first entry value and that after

the comma the second.

Main entry to bui Iding OPLBT 1-5. Initialize pointers

and check if any :STDLB or :OSTDLB commands.

Checks STANDARD table for default Op label.

Searches STDLCD 1 for Op label •.

Determines type of Op label assignment if it is to Oplabel

then searches table for YY assignment.

Entered when oplabel assigned to device. Stores Op label

in OPLBTl and searches DCTl for device address.

Put DCTX of device for Op label in OPLBT2 and OPLBT3.

Stores flow in OPLBT4.

Generates value for OPLBT5 for UTS system only.

Finishes generating OPLBT 1-5 by storing 'NO' in OPLBT 1

entry 1 and sets DCT3 entry to 'NO I •

Transfers TYPMNE to SECT 00 area.

Transfers ABSF, BCHK values to SECT 00 area for BPM/BTM.

A"ocates area for controltaskandtempstack. If BPM/BTM at

end sets up toHGPs as load module and branches toWRTHGP.

Bui Ids Swap tables for UTS system.

Bui Id, write M:HGP load module via M:TM.

Packs headers of HGPs and Swap tables into area from which

full HGPs were written (UTS only).

Sets up IOTABLE load module.

These routines change the MODIFY.

PLIST before entering SETMODFY.

This routine calls MODIFY to manipulate the load module

bei ng created.

Sets up the name pointed to for a call to SETMODFY placing

the name in IOTABLE's expression stack and REFing it. The

routine is used for handler names.

Changes the relocation di ctionaryfor special card punch CLIST
words.

50

RDEF5'NAP

NOSWAP

WRITELM

OurOFIT

2.2. 10 Flow Chart

Using MODGEN to set up changes to PLIST and call

MODIFY, generates the Swap tables and remote batch

tables.

Final set up for IOTABLE includes opening file.

Writes IOTABLE file using M:TM then closes and saves file.

Writes out SPEC:HAND file and returns to READOK in

P2CCI.

Prints unable to continue message and does an error exit

from PASS2.

Initialize temp

stack area

Move standard
Oplabels from
OPLBCHAR to
OPLBTBL1

Move standard
type mnemonics
from TYPCHARS
to TYPMNE

CHANNEL
Process:CHAN

CC

CHANce

Figure 2-9. Flow Diagram of UBCHAN

51

Page 1

IODEFRD

Set CC
Flags

~--",,----..... RDINCFCH

Read Next
CC

Complete
last channel
entry

Pg. 9

Figure 2-9. Flow Diagram of UBCHAN (Cont.)

52

Pg. 2

:DEVICE
$

***VALID 'CHAN'
CC must preceedt

'DEVICE'CC' I+---
no
--""

Pg. 4

:DErICE

***DEVICE no
entry table full

:DEVICE VYND
$

Yes ***DEVICE T y
VY Illegal

TYPFO,UND yes

. Pg. 4

Pg. 3

Set up
Flags

evice VYNDD
Get $

'VY' Syntax Error

DVCYNXT

Search TYPMNE
for this YY

Put new type
mnemonic in
TYPMNE

TYPMNE
>--_y_e_s ~ Table

Full

DVCYNXT

Pg. 4

Pg. 4

Figure 2-9. Flow Diagram of UBCHAN (Cont.)

53

***Unknown
Device YVNDD Bad

DVCYNXT

OUTOFIT

Pg. 27

***Handler
CLIST Full

No Room

Get
TYPMNE
Index

Get CLISTDAT
indexed by
TYPMNE and add
to CLIST count

Get
NOD
and Save

Convert NOD to
Device
Address

Put device address
paper wdth.,
defau It TYPMNE
Index in DEVICD 1

Put text NOD and
paper size default
into

DEVICDl

Put YY
into DEVICD 1

Put Disc
defaults into

DEVICDl

Put defau It handler
name in
HANDTBL, Index
in DEVICDl

Figure 2-9. Flow Diagram of UBCHAN (Cont.)

54

Pg. 4

DVCYNXT

Scan to
end of

card

IODEFRD

Pg. 2

If RBT defau It
paper width,
keep count of
RBTs here.

DEVOPTPA

Pg. 5

DVCDFINI DEVOPTPA

no

No, try again

Pg. 6

:DEVICE YVNDD OPT
$

*** Syntax Error

no

Get
Option Name

Check for
Disc options

Check Device
'--9+ Options

no

Get value
of name
fields

Store over
default in
DEVICDl

DEVOPTPA

Pg. 5

Bad :DEVICE YVND9
1-----..-.,;;;.-...... (OPT, N) *** Ina"lel or

$ Syntax invalid

Put new handler
names in
HANDTBL

Figure 2-9. Flow Diagram of UBCHAN (Cont.)

55

*** No Handler
Name Given

Increment
AVRTBL

Size

Pg. 2

no

yes

no

Merge words
3 and 4 to

options for
validity

Move correct
values to
DCINTBL

Increment
DCTSIZE

Pg. 2

Figure 2-9. Flow Diagram of UBCHAN (Cont.)

56

Pg. 6

BPMCYL
For BPM check
for CYLIN alloc.
and VALIDATE

pg.30

SIZECHK

Is sum
> size

pg.30

Set Flag

Bit 0 = 0

:STDLB (,),(,),
$

Pg. 8

:STDLB (, VYNDD)
$ I

Bad

Convert
VYNDD to
VY and device

OK

no

yes

Set up
Flags

Get first
field (...!)

Or with
Flag

Store in
STDLCDl

Pg. 8

Figure 2-9. Flow Diagram of UBCHAN (Cant.)

57

IODSTDLl

Pg. 7

IOSTDLBO

Set Flag

Bit 0 = 1

***Syntax error

&
Return

IODSTDLl

Search
OPLBTABl
For Oplabel

Store new
OPLABEL into
OPLBTABl

Put index in
OPLBTABl
into STDLCDl

Pg. 2

Figure 2-9. Flow Diagram of UBCHAN (Cont.)

58

Pg. 8

P2CCI Reads
EOF while
UBCHAN in
con

GNDCTCIT

control entry .J
Get Max pages
of work area

A I locate for
CLIST data

DCT,CITS

Allocate space for
TYPMNE, AVRTBL,
AVRID(UTS) RBLIM
Foregl1 und ntries

No PSA
Per
Defined

Pg. 9

DCTl PPTR=DCTLAST CIT6PTR=C IT LAST
DCll PTR=DCTlAPTR CIT5PTR=CIT6PTR

no

DCTlPPTR

Insufficient
Space OUTOFIT

Pg. 27

Figure 2-9. Flow Diagram of UBCHAN (Cont.)

59

GENEXT

GEN2

OCT index = 1
Increment type

index

Get
OEVIC01
CIT index = 1

Get
OEVCO 1 Entry

Store NOD in
DCT1

R7= 0
Used for DCT3
Bits 6-7

0----.......
Pg. 11

Figure 2-9. Flow Diagram of UBCHAN (Cont.)

60

Pg. 10

GENCIT

Pg. 15

Increment CIT
index and get
next entry

DCT3GEN

Pg. 11

1st ND of
CHANTBL
=NO of

device

Store ndd
in OCTlP

Merge NO of
CHANTBL with
D of Device
store in DCT1A

R7 = 3
(Bits 6-7 = 11)

Store NOD
no in DCTlA

Store NOO in
>-_no _____ ~ DCTlA

DCT3GEN

R7 = 0
(B i ts 6-7=00)
Non pooled
device

Store R7 in
OCT3

~
Pg. 12

Figure 2-9. Flow Diagram of UBCHAN (Cont.)

61

Pg. 11

R7 = 0
(bits 6-7=00) Non
pooled device

R7 = 1
(Bits 6-7 = 01)
Non pooled
device

R7 = 2
(Bits 6-7 = 10)
Non pooled
device

Store CIT index in
DCT2 - GET
TYPMNE Index.

yes

no

If 1st defined then
save DCT index as
LO RBT index, save
also as possible
HIRBT index.

Compute start of
tab les for RBT s

(only 2 for BPM)
allocate area for
tables.

Store TYPMNE
index in DCT 4.

Pg. 13

yes

GENON2

Significant entries
____ only in range of

RBT i ndi ces •

Get flow
default.

Get flow
from DEVICD 1.

Figure 2-9. Flow Diagram of UBCHAN (cont.)

62

Store X'ndd ' in

COC, R3 for use

by P2COC.

pg. 12

no

Set up BAT APE, yes

NBATAPE

Increment DEVS,
R3 for DP,7T, 9T
for over lays use

Merge flow
code into

DCT3

Store 1 in
OCT14

Store UTS - TAB
YVNOD BPM-N/L
llYVNDD in

OCT16

Store Handler
NAME1 index

in DCT8

Store Hand ler
NAME2 in

OCT9

no

1

Pg. 13

For RBT UTS
- - TAB *YYNDD

Figure 2-9. Flow Diagram of UBCHAN (Cont.)

63

CLIST
Size = 6

*** Handler
I ist full

no

No room

Pg. 27

Set up Special
CLIST (includes
Paper Wi dth and
Size

For UT S stores
Width in
RBB:LPZ

For Both if Full
Duplex X '8000'- If
Half Duplex 0 In

Get CLIST Size
from CLISTDAT

Store CLIST
doubleword
address in DCT7

Bump pointer
to CLISTs by
CLIST Size

Increment DCT
Index and

I DEVICD1

RB:F LAG Pg. 10

Pg. 14

Move CP
es to CLIST to

CLIST area

yes

Made addresses
in CLIST
Relative

Put paper size
and width in
CLIST

Figure 2-9. Flow Diagram of UBCHAN (Cont.)

SRCHNXT

no

GENCIT

Set up RBLIMS
low RBT index
word 0, High RBT
index word 1.

Set CIT3
Bit 4 = 1

Set Up RBLIMS
DCTSIZE+1 word 0
DCTSIZE word 1

Set up storti ng
DCINTBl to do
other disc HGP

16

Figure 2-9. Flow Diagram of UBCHAN (cont.)

65

Pg. 15

OPlBTYPM

pg. 18

For UTS Set up
DCT22 for
DISC TYPE

Set up

Linking

Put OCT X , NSPT

NSG and 53

Make entry

in AVRTBL

Set PUBLICI
PRIVATE bit in
AVRTBL

Save # tapes in

AVRTBL

no HGP
Table Full

Change to

Number GRAN&
CYL N

Save NS PT for
check if last RAD
is 720X BTM

NOAVRENT

Pg. 17

Figure 2-9. Flow Diagram of UBCHAN (Cont.)

66

Pg. 16

OUTOFIT

Pg. 27

NOAVRENT

Pg. 17

NOAVRENT

FORMHGP

Set OCT Index
SS, NSPT.

Set DCT Index
SS, NSPT.

yes

Convert TRK/CYL
to STD Disc
Address.

Convert TRK/CYL
to STO Disc
Address.

Pg. 17

Store inABSFDUL,
ABSFDLL,
ABSFDC.

Store in BCHKLL,
BCHKUL.

. Computations for
>-ye-s--~ # physi ca I

cylinders.

Pg. 33

Use # Tracks
as PSA.

Return tota I tracks
in PSA as multiple
of # physical

Set up PFA map
Set up PER map.

c linders.

Granu les and
NSG for
symbionts.

Figure 2-9. Flow Diagram of UBCHAN (cont.)

67

For UTS save
tracks PSA for swap
tables-LF. HW
WD3 of HGP.

*** No disc
Defined

DOSTAND

Pg. 19

Put zero link
in last HGP

Set Flag for
STDLB

Set OPLABEL
Index to one

GETOPLB

Get next
OPLABEL from
OPLBTABI

Pg. 19

Figure 2-9. Flow Diagram of UBCHAN (Cont.)

68

i \

/

possible
BTM

I Swapper

Pge 18

Set
SWAPBTM
= 1

CHKASGN

GETOPLB

OPLBTYP

Search
STDLCD 1 for this

yes

Pg. 20 for this OPlABEL
with right flag

yes

yes

Pg. 23
yes

Set Flag
= OSTDLB

Pg. 18

Figure 2-9. Flow Diagram of UBCHAN (Cont.)

69

Pg. 19

NXTOPLB

OPLBNDD

FNDTYPMN

NXTOPLB

***OPLB
equivalent

Pg. 19

no

CHKASGN

Search
TYPMNE for
YY Ass ignment

Label assigned to
another label.
Search for it in
STDLCD1

Search standard
for new

label assignment

yes

yes

Make assign
to DEVICE
NO

Make old
label's assign
new one's

Pg. 20

~---~'
Figure 2-9. Flow Diagram of UBCHAN (Cont.)

70

no

, *** Unknown
Device XXNDD no
for LL

NXTOPLB

Pg. 19

SETOPLBN

Pg. 22

OPLBNDD

Put Op Label

in OPLBTl

Device Address

Pg. 22

Set DCTX

=Zero

Figure 2-9. Flow Diagram of UBCHAN (Cont.)

71

Pg. 21

Flow = I/O

SETOPLBN

Put DCTX in
OPLBT2 and
OPLBT3

from OPFlOWACT

Put flow

in OBlBT4

Pg. 19

SETOPLB5

Put OPLABEl

in OPlBTl

Put DCTX in

OPlBT5

Pg. 19

Figure 2-9. Flow Diagran of UBCHAN (Cont.)

72

Pg. 22

SETOPLB5

FNDTYPMN

Search DCT4

for this type

Put OPLABEL

in

Pg. 22

OPLBENDX

Put no

in OPLBTl

Merge X'CO'
in first byte of
DCT3

Move TYPMNE,
ABSF, and BCH K
tables to working
area

Pg. 23

*** no device
for TYPMNE YY
(OPLB=LL)

yes

yes ---Batch (STDLB
---on line

(OSTDLB)

Figure 2-9. Flow Diagram of UBCHAN (Cant.)

7.3

Allocate area
for Contro I Task
Tempstack.

no

Bui Id UTS specific
tables in lOT ABLE
(Swap Tab les).

Allocate, Bui Id
M:HGP Load
Module.

Set up REF EF
Stack to W ri te
M:HGP.

OPEN, WRITE,
CLOSE M:HGP
load module.

no

Squeeze HG Ps (head
ersonly)and Swap
tab les into area wher
full HGPs were.

Set up DCT23 with
disp'lcmt.from HGP
stait incore HGPfor
gi ven di sc de vi ce or
o if not disc.

Allocate space for
AVRID and
SO LICIT table.

Pg. 25

Figure 2-9. Flow Diagram of UBCHAN (cont.)

74

Pg.24

no

no

LOADMODL _/

Build HEAD and
TREE, initialize
REF/DEF and
express ion stac ks

Set relocation
dictionary to
al\ X'E'

and values

pg. 32

Generate express.
and REFs for Hand­
lers

Finalize REF/DEF
a nd express io n
stacks

pg.26

Figure 2-9. Flow Diagram of UBCHAN (Cont.)

75

Pg. 25

Make re I.dict.
r-----------t changes for

HGPS.

Gen. Remote
Batch Tables.

Write lOT ABLE
to TM Device.

Move handler
names to working
area from handler.

Pg. 26

Pg. 34

MODGEN
Gen. DEFs
for Swap
tables AVRID
SO LCIT,
AVRNOU

If inconsistency
go to
OUTOFIT PS27

yes

Add DPSIO
to

SPEC:HAND

Figure 2-9. Flow Diagram of UBCHAN (cont.)

76

no

Restore current
character for
CC reads

Release Dynamic
Data

OUTOFIT

PASS2
Unable to
Continue

Figure 2-9. Flow Diagram of UBCHAN (cont.)

77

Pg. 27

Other messages
concerning
specific reason
for abort have
been pri nted

Scan the rest

control

command

Put end DEVICD 1
in previous
CHANTBL entry

Adjust
CHANPTR
(+5)

yes

Increment CHAN
counter Set new
CHANTBL entry
(start DEVICD 1)

no

Pg. 29

Figure 2-9. Flow Diagram of UBCHAN (Cont.)

. 78

Syntax
Error

Pg. 28

r-----'---...., 8HANNG 1
Set CHAN CC

Error Flag

yes

Put end
DEVICDl in
previous CHANTBL
entry

Pg.4

no

yes

Get NO
Convert to

Binary

Store in position

in WORDO of

CHANTBl

Increment
DUAlFlG

Set Bit 0 of

WORD 0 to 1

Figure 2-9. Flow Diagram of UBCHAN (Cont.)

79

CHAN Table
Full

Pg. 29

~l
-~9.28

BPMCYL

Save registers and
get NGC

from
DEVICD entry

Set NGC = 2
and print message
if not previously
done

Set NGC = 30and
print message if not

previously done

Restore

Registers

Set NGC = 30 and
print message if not
previously done

Set NGC = 30and
print message if not

previously done

Figure 2-9. Flow Diagram of UBCHAN (cont.)

80

SIZECHK

Get
Option
Value

Compare with
Remaining

"SIZE"

Subtract opti on
. value from

"SIZE"

Pg. 30

***Sum of PSA+
PER+PFA+BCH K

+ABSF > SIZE

Replace option
value witli
remaining
"SIZE"

Build # granules
32 words of - 1

in HGP

Bu iI d word of
(-1)**(32-R)
at end of map

no

Pg. 31

SETGRANO

Get # of tracks
for this map and
save

Get # of
granules from
NSG and NSPT

Get # Wds. in
this map

Save
remainder

Set 1st track
into HGP

yes

Figure 2-9. Flow Diagram of UBCHAN (Cont~

81

GETMODFY

Store relative
addr. In Load
modu les into
MODIFY PLIST

Store name one
into MODIFY
PLIST

Set up pointer
to load modu Ie
area

MODIFY

Make ad justments
to Load Modu I e

Figure 2-9. Flow Diagram of UBCHAN (cont.)

82

Pg. 32

'(GENEXP)
J

Get Handler
Index from
DCT8,9

t
Make address by
adding base

t
Put name into
MODIFY PLIST
for expression call

• Set up rest of
expression call
PLIST

J
SETMODFY

Make call to

MODIFY

J
(RETURN)

Save Reg i ste rs

Tracks PSA
Tracks Physical
Cylinder.

Increment phys.
cylins., compute #
trac ks of P SA based
on # h • c linders.

Decrement PFA
tracks by number
required for PSA.

Print message
indicating action
taken.

Co Icu late gran­
ules per physical
cylinder, save for
later use.

no

-- --

Figure 2-9. Flow Diagram of UBCHAN (cont.)

83

Pg. 33

For 7242 Max
=X'3FC',
For 7260/7265
= X'21C'

FNHCYl

Round up
PSA tracks.

If not enough
check PER and
use them.

RDICLIST .)

Set up MODIFY
PLIST for changes
to Relocation
Dictionary

Get first word
from C LIST area

Save and zero
bits 8-11

Use bits to set
PLIST to correct
Relocation val ue

SETMODIFY
Make Relocation
Dictionary
change

no

yes Get next word
from CLIST
area

Pg. 34

RETURN

Pg. 32

L---______ J
Figure 2-9. Flow Diagram of UBCHAN (Cont.)

84

20 3 SDEVICE

2.3. 1 Purpose

To process the PASS2 :SDEVICE command and generate the load module M:SDEV. This load module defines

the devices controlled by the symbionts.

2.3.2 Usage

B SDEVICE

With R7 pointing to the control card PLIST

RO pointing to the temp stack pointer

R3 pointing to PASS2 stack data

R3 and R7 are saved

Return is to SDVRETRN in P2CCI

Error return is to the Monitor.

2.3.3 Input

Control card (:SDEVICE) image

2.3.4 Output

R6 contains the number of symbiont devices defined on the :SDEVICE command

M:SDEV load module (Table 2-6)

85

Table 2-6. M:SDEV load Module

~ Entr~ Size jength_ t
(Wds) N= Entries Contents or Value Target Slstem

of OSSEG YYNDDs plus 2

SODV VALUE - for each remote batch device BOTH

SSTAT 1/4 N+3 0 BOTH

SRET 1 N+2 0 BOTH

SNDDX 1/4 N+3 1 st entry = N+2 BOTH

Others = DCT 1 Index BOTH -- r------ - -----.-r- - --------------------- ._---------_.- -.- ---_ .. ~-.

SSIG 1/4 N+3 0 BOTH
~------ -~--.-- 1-- - - _._----_.-. r'----'- .-.-.---- .. ----- r------- --- --------_.- .. ---.-.. -- ~---. -. - -_ .. _---_. -

SCNTXT 1/2 N+3 0 BOTH

SQHD 1 1 0 BOTH

SQTl
I
I 1 1 0 BOTH --I

SQUE ! 1/4 N+3 0 BOTH
-

SCDA I 1 N+2 0 BPM/BTM only
_.......-....- ____ ... _...&.....-.--0

SSDA 1 N+2 0 BPM/BTM only

SYMX 1/4 N+3 See Insert BOTH
--~

t#Entries includes devices defined on :SDEVICE command plus 2 entries for each Remote Batch device
(RBndd) defined via :DEVICE commands.

where

SYMX contains: For BPM/BTM

For UTS
Entry 0 0 Entry 0 =0 =

Entry 1 through N = 1 if ISSEG Entry 1 through N = REF ISSEG or OSSEG

2 if OSSEG
last Entry - 1 = REF SFSEG

last entry-1 =3
last Entry = REF OSSEG

last entry =2

all entires for remote batch devices are set to 1 (UTS) or a REF to ISSEG (BPM/BTM)

2.3.5 Subrouti nes Used

CHARSCAN

NAMSCAN

QUOTSCAN

MODIFY

PRINTMSG}

OUTLLERR

(Used to check a specific character for legal syntax)

(Used to scan a field containing a name)

(Used to scan a field containing a keyword)

(Used to generate M:SDEV load module)

(display error information)

2.3.6 Other External References

SDVRETRN return point from SDEVICE processor.

SDVBEGIN base of work area in PASS2 stack

SDVEND

DCTSIZE

DCTlPTR

DCT4PTR

TYPMNPNT -

SDEVFLG

URBTS

LORBIN

2.3.7 Description

end of work area in PASS2 stack

length of DCT tables

pointer to DCTl Table

pointer to DCT4 Table

pointer to type mnemonic table

number of Symbiont devices (set by SDEVICE)

number of Remote batch devices defined via :DEVICE commands

DCT1 index of the first Remote batch device defined

The SDEVICE processor is entered when P2CCI encounters a :SDEVICE command which must have been preceeded

by valid :CHAN/:DEVICE commands. The work area available for generating M:SDEV is allocated by UBCHAN

and its boundaries are located in PASS2's temp stack and referenced by the labels SDVBEGIN and SDVEND.

SDEVICE first determines via URBTS if any Rembot batch devices have been defined. If there are any on the target

system, LORBIN is used as an index into DCn table to obtain the conned X'ndd' which is mt::igt"! J \",~Lh 'RB' and

stored in the intermediate table with the symbiont name ISSEG. A count symbiont devices is incremented for

each entry.

The syntax for the :SDEVICE command is:

:SDEVICE (LMN, MANE, YYNDD, YYNDD •••), (LMN, •••)

SDEVICE begins processing a parenthetical expression by requiring the keyword IILMN II. The name which follows

is that of a symbiont which controls the input or output of the device{s) identified by YYNDD. The symbiont names

are ISSEG (input) and OSSEG (output). The IINAMEII is obtained and syntactically checked (l to 7 alphanumeric

characters, one of which is alpha) and if legal, is saved in an intermediate table (See Table 2-7). The next field

IIYYNDD" is obtained and is validated by checking certain tables in the ~rk area built by UBCHAN. Note if

YY=RB, it is not processed as it is already in the table. The DCT1 table (pointed to by DCn PTR) is searched for

the value IINDD ". If none is found, the "VYNDD II is invalid and SDEVICE skips to the closing parenthesis and

then continues processing. However, if found, the index to the value in DCT1 is used as an index to the DCT4

table (pointed to by DCT4 PTR) where a value is obtained which in turn is an index into TYPMNE (pointed to by

TYPMNPNT).

87

The value "YY" is then checked against the indexed value in the TYPMNE. If not equal, SDEVICE continues

the search of the DCTl table for another "NDD" equivalent. If the !lYY" val ue is found, the "YYNDD" is

saved in the intermediate table and the number of entries in the table is incremented by one.

SDEVICE then obtains the next "YYNDD". If there is none, the current parenthetical field is terminated and the

syntax scan begins with the next parenthetical field. If there is another "YYNDD" in the current field,

the "name" (ISSEG/OSSEG) is obtained from the previous "YYNDD" and is entered into the intermediate table.

Processing continues as previously described.

To complete processing SDEVICE, it sets up PLlSTs and allocates and initializes the load module areas in the

working storage area, and proceeds to generate SECT. 00 using the information from the intermediate table and

DCTl, DCT4, and TYPMNE tables.

The tables generated for M:SDEV are listed in the OUTPUT section of this chapter. Note that in creating SNDDX,

the entries in the intermediate table are processed in the order of occurrence and, therefore, the SNDDX table

is ordered accordingly. As each entry is generated, a count of the number of "OSSEG" references is maintained.

The contents of the byte table SYMX depend on whether a BPM/BTM or UTS system is being generated. For

both the first and last two entries are null. For a UTS system, the entries are set to 1 for an "ISSEG II name

and to 2 for an "OSSEG" name, and the first null entry at the end of the table is set to 3 and the second null

entry to 2. For a BPM/BTM system, the entries in SYMX are referenced by the REFs ISSEG and OSSEG as

encountered in the intermediate table. Therefore, the destination of each REF is a specific byte in SYMX

The first null entry at the end of the table is the destination for the REF SFSEG and the second null entry

for the REF OSSEG.

When the generation of the tables is completed, the load module M:SDEV is written. SDEVICE then puts the

number of symbionts in Register 6 and checks for error conditions having been detected (ABORTFLG"I 0). If

errors have occurred, SDEVICE prints message and exits back to the monitor. If error-free, SDEVICE exits

back to SDVRETRN in P2CCI and PASS2 continues processing.

88

BA

RA

EA

Table 2-7. INTERMEDIATE NAME TABLE

NO N
C1 C2 II

II Cn II

Y Y NDD
C1 C2

II

Cn

Y Y NDD

~ \I v

LOW CORE

contains
DCTl,DCT4
TYPMNE

J~

SDEVICE
WORK
AREA

~--------------------------------------~I " I
where HIGH CORE

N = number of entries in intermediate table (3 words/entry)

C1 C2 •• Cn = characters in name (i.e., ISSEG,OSSEG)

YY= EBCDIC "yv" from YVNDD value

ndd = hexadecimal equivalent of IINDDII from YVNDD value

BA = base address of work area pointed to by SDVBEGIN

EA = end address plus 1 work area pointed to by SDVEND

RA = base address of remainder of work area which is used in

generating M:SDEVand is forced to a doubleword boundary.

NO= number of OSSEG name references

89

2.3.8 SDEVICE Messages

INVALID SYMBIONT NAME

INVALID KEYWORD

SYNTAX ERROR

INVALID IYVNDD I

NO ROOM LEFT FOR :SDEVICE

REMAINDER OF CC IGNORED

MODIFY ERROR

ISDEVICE I ABORTED

2.3.9 Internal Routines

SDEVICE

The "name" field is either non-alphanumeric or is

greater than seven characters long. SDEVICE sk ips

to end of parenthetical field and continues processing.

The keyword "LMN" is expected but not found.

SDEVICE skips to end of parenthetical field and

continues processing.

A open parenthesis, a closing parenthesis, a comma

after "LMN II or "name" is expected but not found;

end of command cannot be found;or a "YVNDD II

is encountered where YY = 9T, 7T, or DC and "00 II

is less than XI80 1 or YV is not equal to 9T, 7T, or DC

and liDO II is greater than or equal to X 1801• SDEVICE

skips to end of parenthetical field and continues

processing.

The "YVNDD" is not alphanumeric, is greater than

five characters long, is not defined in DCll table, the

value "N" is not from A through H, or the value "00"

is not hexadecimal. SDEVICE skips to end of

parenthetical field and continues processing.

There is no work area left for generating the

intermediate table. SDEVICE displays abort message

and exits back to the Monitor.

This message appears with previously described

messages if SDEVICE cannot find end of current

parenthetical field. SDEVICE continues by

attempting to generate load module.

There is not enough work area available to generate

load module. SDEVICE displays abort message and

exits back to the Monitor.

Message is displayed in previously described error

conditions.

Main entry, initialize and control.

90

SDEVICEO

SDEVO

WRTMSDEV

WRITEF

VALID

ROOM

DEFX

EXPRX

STADDR

STREGS

BUILDCDT

Process next parenthetical field.

Process next "YVNDD".

Load module generation completed, write it to

"M:SDEV" file.

Perform actual write of load module.

Register 1 = buffer address.

Register 2 = buffer size (bytes).

Register 3 = key address of load module record.

Check current "VYNDD II against available devices

as specified by DCTlPTR, DCT4PTR, and

TYPMNPNT and respective tables DCTl, DCT4,

and TYPMNE.

Register 1 = "YVNDD", with "NDD" converted

from EBCDIC to hexadecimal.

Check if any work area remains for intermediate table.

Register 5 = address of next available entry.

Register 6 = address of last available entry

plus one.

Set up DEF PLIST for MODIFY routine for generation

of an external definition.

Register 1 = address of NAME 1•

Register 13 = VALUE2•

Set up EXPR PLIST for MODIFY routine for generation

of an externa I reference.

Register 1 = address of NAME2 0

Register 13 = VALUE
1

0

Ca II MODIFY to perform the function DEF or EXPR.

Register 4 = address of PUST needed by

Master PLIST.

Save contents of registers 12 through 14, and 1 through 4 o

Set up Master PUST with address supplied.

91

Register 13 = relative word address to be stored

in Master PLIST.

Register 12 = double word address to be stored in

Master PUST.

Special error routines include:

Register 2 = half word address of Master PLIST entry

where final address is to be set.

Reg ister 5 = word address of base of work area.

ERR 1, ERRCOMON, ERR 1 X, ERR2, ERR3, ERR3A,

ERRX, ERR4, ERR5, ERR6, ERR7, ERR8, ERR9,

ERRA 1, ERRA 11, ERRA2, ERRZZ, RECOVER, MOD ERR,
ERR12.

92

2.3.10 Flow Chart

ENTER

Get work

area limits

From SDEVEND
& SDVBEGIN
in Temp Stack

merge IRBI and
>----l~ add from connect

yes

New parenthetica I
field, Get
keyword "LMN"

Get Name

Put name in

interim table

convert "NDD"
from EBCDIC to
Hexadecimal

Validate VYNDD
as valid
Device

Put VYNDD in
Interim Table

Update "N"
counter in
interim table

DCTI entry

Store in
Interim Table

Thru DCT1,

Get previous
name & put in
Interim Table

DCT4, & TYPMNE
Tables

Figure 2-10. Flow Diagram of SDEVICE

93

Pg. 1

SDEVICEO

\J

Exit to

Monitor EXIT

Set up PLISTS &
a Ilocate load modu I
areas in work area

Initial ize
work area

Generate
M:SDEV Load
Module

WRTMSDEV
I

Write load modu Ie
to "M:SDEV" File

no

Figure 2-10. Flow Diagram of SDEVICE (Cont.)

94

Exit to
SDVRETRN

in P2CCI

Pg. 2

2.4 XMONITOR

2.4. 1 Purpose

To process MON ITOR or UTM PASS2 control com:-n::mJs, creating the M:CPU and (For UTS) M:SYMB, and M: BIG9

load modules, the MON::ORG object module, and an updated SPEC:HAND file if SJG9 and or ANS specified on

the UT M command.

2.4.2 Usage

B MONITOR (MONITO.~ command)

B UBMONITOR (UTM command)

with: R7 pointing to control card PLIST

RO pointing to temp stack pointer

R3 pointing to PASS2 stack data

R6 containing the number of symbiont devices

(BPM/BTM only)

RO and R3 are saved

Return is to READSTRG in P2CCI

2.4.3 Input

Control card (:MONITOR or :UTM)

SDGANSG - to create SDGA value

#RBTS - number of remote batch devices defined via :DEVICE commands

LORBIN - DCT 1 index of first remote batch device defined

#pRDP - number of private disc packs defined

DEVS - contains # private pack, #7 track and #9 track tapes

BIG9FLG - Set by XMONITOR for UTS systems if BIG9 option specified

2.4.4 Output

M:CPU load module (Table 2-8)

MON:ORG object module - is of length 2*((ORG+l)/2) reserved words with the last one equated to MONORG

label. ORG is the keyword parameter on :UTM or :MONITOR

M:SYMB Module (Table 2-9) UTS only

SPEC:HAND file - If SIG9 is present on :UTM command, the handler name S9TRAPS and 1 or if ANS is specified

on :UTM command the name ANSTP is added to the HANDLERS record of this file.

M:BIG9 module UTS only - contains an absolute DEF :9 only - This DEF is 1 if BIG9 option specified on UTM

command, otherwise :9 = O.

95

Table 2-8. Contents of M:CPU Load Module
---- -

Entry
Label Size (words) Length Contents/Value (in terms of Keywords) Target System

1. Absolute DEFs

MAXBM Value - MPOOL-FMPOOL(if > 0) BPM/BTM

MAXCFU Value - CFU BPM/BTM

MAXBKGDCFU Value - CFU-FCFU (if> 0) BPM/BTM

MAXBQ Value - QUEUE - FQUEUE (if> 0) BPM/BTM

Value - QUEUE UTS

SDGA Value - # Granules PER defined BOTH

CORE Value - CORE in words BOTH

BCRBID 1 Value - length in bytes of significant words BPM/BTM
of RBB'ID table

SSSIZE Value - Sector Size UTS

SBSECTS Value - number of buffers/sector UTS

SGSIZE Value - number of sectors/granule UTS

ANS Value - 1 if ANS specified UTS
o if ANS not specified

LAVRFMT
2

Value - number of entries in AVRFNMT table UTS

LCLX Value - o if no Remote batch devices on system UTS
else is highest RBT DCn index +1

RBLIMSZ 1 Value - number of RBTs defined UTS

RBLIMSIX1 Value - DCll index of first RBT defined UTS

2. Tables
i

TSTACK 1 TSTACK+2 Stack pointer followed by TSTAC K BPM/BTM
words containing 0

ABSBASE 1 1 0 BPM/BTM

ABSEND 1 1 0 BPM/BTM

MPOOL 1 {34*MPOOL)+2 For both systems, 1st word on DW UTS
boundary contains address of 1st
MPOOL buffer (also starting on DW
boundary) and the 1st word of each
buffer contains address of next buffer or
o if last buffer

(34*MPOOL-2)+2 BPM/BTM

SPOOL 1 (256*SPOOL)+2 Same as MPOOL except for buffer size BPM/BTM

CPOOL 1 {40*C POOL)+2 Same as MPOOL except for buffer size BOTH ..
CPOOLEND 1 1 represents address of end of C POOL tabl e BOTH

1. Generated only if remote batch devices is defined for the Target System.

2. Generated only if ANS is specified.

96

Table 2-S. Contents of M:CPU Load Module (cont.)

Entry
Label Size (words) Length Contents/Value (in terms of Keywords) Target System

SYMFILE 1 SFIL+1 o except first word contains SFIL BPM/BTM

SYMFSDA 1 SFIL +1 0 BPM/BTM

RBSYMFID 1/4 SFIL+1 0 BPM/BTM

IOQl 1/4 QUEUE+1 0 BOTH

IOQ2 1 1/4 QUEUE+1 each entry= (Byte displacement from BOTH
QFREEJ IOQ2)+ 1 except last entry = 0

IOQ3 1/4 QUEUE+l 0 BOTH

IOQ4 1/4 QUEUE+l 0 BOTH

IOQ5 1/4 QUEUE+l 0 BOTH

IOQ6 1 QUEUE+1 0 BOTH

IOQ7 1/4 QUEUE+1 0 BOTH

IOQS 1 QUEUE;!" 1 0 BOTH

IOQ9 1/2 QUEUE+1 0 BOTH

IOQ10 1/4 QUEUE+1 0 BOTH

IOQl1 1/4 QUEUE+ 1 0 BOTH

IOQ12 1 QUEUE+1 0 BOTH

IOQ13 2 QUEUE+l 0 BOTH

IOQ14 1/4 QUEUE+1 0 BOTH

IOQ15 1/4 QUEUE+1 0 UTS

ACNCFU 1 19 0 BOTH

FILCFU 1 19 0 BOTH

BGRCFU 1 19*(CFU-l) 0 BOTH

LASTCFU 1 19 0 BOTH

MPATCH 1 MPATCH O(if MPATCH > 0) starts on DW BOTH
boundary

JIT - 153 + CORE {in All 0 except word 71 contains $+4 BPM/BTM
SK units} words 72-73 - M:OC (TEXTC)

word 72 contains $+2 words 76-77
{M:OC DCB} contains X'200003 1

,

X60002 1 word lOS contains XI F0404040'
words 153 to END contain all 1 bits

MX:PPUT 1/4 or 1/2 CORE (in pages) The fi rst 32 entries (S or 16 words) UTS
+ S or 16 words overlay MPATCH or LASTCFU Re-
(overleid) maining bytes on hal fwords are forward

linked same as IOQ2

RB:XFLG1 1 1 0 BOTH

RBB:ID 1 1 o if no RBTs on system BOTH

1/4 highest RBT DCT1 Significant entries (containing 0) only BPM
index highest RBT in the RBT DCn index range (plus 1 UTS
DCn index + for UTS)

WARBBID 1 1 1 Address of table points to word con- BPM/BTM
taining first significant entry of RBB:ID

l. Generated only if remote batch devices defined on tprget system.

97

Table 2-8. Contents of M:CPU Load Module

Entry
Label Size (words) Length Contents/Value (in terms of Keywords) Target System

RBD:WSN1 2 Highest RBT DCTl Significent entries (containing 0) UTS
index only in the DCTl index range of RBTs

SITEID 2 2 name identified by SITE Keyword or UTS
blank

AVRFNMT2 6 #tapes defined 0 UTS
on system

ANSFLGS2 1/4 #tapes defined on 0 UTS
system

ANSPRT2 1 1 1 if ANSPROT 0 if keyword not UTS
specified

M:FPPH3j 1 1 X'20' (first linked entry in MX:PPUT) UTS
M:FPPT 1 1 CORE (in pages)-l
M:FPPC 1 1 CORE (in pages)-X'20'

BW:CHG 1 1 0 UTS

BL:IFS } 1 1 (INFILE-1 UTS
BL:OFS 1 1 OUTFILE-1 UTS

LSERIAL 1/4 «(AVGSER*16) (Byte displacement from LSERIAL)+ 1 UTS
+3)/4)+17 except last entry = 0

TSERIAL 1 «(AVGSER*16) entry 0 = # entries in LSERIAL UTS
+3)/4)+17 a II other entri es = 0

PARPSD4 1 1 DW boundary PARXXXX (PREF) UTS

PARITYCC4 1 1 0 UTS

PARERPS04 2 4 words 0-1 = 0 UTS
word 2 = PARITYER (PREF)
word 3 = X'17000000'

BUSER104 2 2 word 0 = X'00400000'+ BUSER 1 (PREF) UTS
PSDTEMp4 2 2 0 UTS

BUSTEMp4 2 2 0 UTS

IETPS04 2 2 word 0 = IETXXXX(PREF) UTS
word 1 = 0

INSTXPS04 2 4 words 0-1 = 0 UTS
word 2 = INSTXCPT (PREF)
word 3 = X'17000000'

MEMFTPSD4 2 4 words 0-1 = 0 UTS
word 2 = MEMFAUL T (PREF)
word 3 = X'17000000'

PARXPS04 2 2 word 0 = PARXX 1 (PREF) UTS
word 1 = X '07000000'

l. Generated only if remote batch devices defined on target system
2. Generated only if ANS specified ANSPROT. Keyword ignored if AN S not specifi ed also
3. These words are order dependent
4. Generated only if SIG9 or BIG9 option specified

98

Label

1. Absolute DEF~

MFS

OUTFIL

INFIL

1. Tables

BD:ACCT

BW:RES

BH:TIME

BH:PART

BH:SLNK

BH:XLNK

BH:HPRI I}

BH:TPRI

BW:SDA

BH:SID
BB:PI }
BB:DEV
BH:LlNK

BB:RID

S#H:LNK

S#W:SER

RB:SPMF

RB:MFAD

RBB:MFC2

RBB:MXp2

SYMND

Entry Size
(words)

Value

Value

Value

2

1

1/2

1/4

1/2

1/2

1/2

1/2

1

1/2

1/4

1/2

1/4

1/2

1/4

1/4

1. Tables are order dependent

Table 2-9. Contents of M:SYMB Load Module

Length

INFIL+l

INFIL+l

INFIL+ 1

INFIL + 1

INFIL+l

INFIL + 1

X'23' (HW)

X'23' (HW)

INFIL+OUTFIL+l

INFIL+OUTFIL+l

INFIL +OUTFIL + 1

INFIL+OUTFIL+ 1

INFIL+OUTFIL+l

(((INFIL *AVGSER)
+3)/4)+1

(((INFIL *AVGSER)
+3)/4)+1

1
of RBTs + 1

1
of RBTs + 1

#RBTs+1

#RBTs=l

Contents/Value in terms of Keywords

2 + 2 * #RBTs defined on system

OUTFILE + MFS

INFILE

o
o
o
o
o
o
all entries 0 except X'22' = 1 X'23' = INFIL+l

all entries 0 except X'22' = INFIL X'23' = OUTFIL+INFIL

o
o
o
Entry 0 = 0
Entry 1 through INFIL -1 are (1+ displacement from

BH:LlNK)
Entries IN FIL + 1 through IN FIL + OUTFIL -1 are (1 +

displacement from BH:LlNK)
Entries INFIL and IN FIL + OUTFIL are 0

o
o

o if no RBTs defined significant entries (contianing 0)
in range of DCll index for first RBT through LCLX

o if no RBTs defined significent entries (containing 0)
in range of DCll index for first RB T through LCLX

Significent entries (containing 0) only in range of
DCll index for first RBT through LCLX

Significent entries (containing 0) only in range of
DCll index for first RBT through LCLX

address is that of test cell in M:SYMB

2. Generated only if Remote batch devices defined for target system

99

2.4.5 Interaction

M:OPEN, M:READ, M:WRITE, M:CLOSE are used to write MON ::ORG and to update SPEC:HAND.

SYNTAX is used to interpret input control card.

COREALLOC is used to allocate memory for M:CPU and M:SYMB.

MODGEN is used to manipulate REFDEF stacks, EXPRESSION stacks, and RELOCATION DICTIONARIES.

WRITELM

READSTRG

2.4.6 Data Bases

KWDTBLO

DYNAM

UDYNAM

ORGROM

2.4.7 Subroutines

is used to write M:CPU,M:SYMB and M:BIG9.

is exit location.

is a two-part input table for SYNTAX. The first part is a set of SYNTAX control halfwords that

prints SYNTAX to process the non-standard format of SITE option on the UTM command as well as

the standard format for the rest of the UTM options and all of the MONITOR standard options. The

second part of the table is the normal SYNTAX keyword table.

is the MONITOR virgin stack data block. It contains entries for UTM-specific keywords,

but they are zeroed to cause SYNTAX to reject them.

is the UTM virgin stack data block contain ing one doubleword table pointer for the SITE option

in addition to the normal keyword entries. It causes SYNTAX to reject MONITOR-specific

keywords.

is a MON ::ORG module with ORG set to O.

BUFGEN generates linked buffers (MPOOL, SPOOL,CPOOL). It is entered via a branch to BUFGEN

while under MODGEN control and exits by restoring R10 (MODGEN's controlling register).

2.4.8 Description

If entered at MONITOR and R6 (number of symbiont devices) is non-zero, the default values in DYNAM for SPOOL,

CPOOL, and TSTACK are adjusted appropriately. Then, or otherwise, SYNTAX is used to decode the control card.

COREALLOC is used to set up the M:CPU module in memory for generation and MODGEN interaction. The M:CPU

module is generated using MODGEN, checking where necessary to omit those items not belonging to the particular

target system being generated (See Table 2-8). WRITELM creates the M:CPU file. If the BIG9 option has been used,

XMONITOR sets BIG9FLG in the stack for subsequent use by the SPROCS and IMC overlays.

Then theORG input value is inserted into ORGROM, the checksum is adjusted and ORGROM is written as the

MON::ORG file. Then if the target system is BPM/BTM, XMONITOR returns to P2CCI.

Otherwise, COREALLOC again sets up a module generation environment, and MODGEN is used to generate the

M:SYMB module which is then written by WRITELM. If the SIG9 (BIG9) and/or ANS options have been specified

the SPEC:HAND file is read into core and the names S9TRAPS and/or ANSTP are added to the HANDLERS record

of the file which is then written out to disc. COREALLOC is then used to allocate a module generation enviornment

in which only REFDEF entry space is defined and MODGEN is used to define the absolute DEF:9, which is equal to 1

if the BIG9 option has been used on the :UTM command. Otherwise,:9 is set equal to O. WRIT ELM then writes the

load module M:BIG9 out to disc. XMONITOR then returns to P2CCI at READSTRG.

100

2.4.9 XMONITOR Messages

***TROUBLE WITH SPEC:HAND­

S9TRAPS AND/OR ANSTP NOT

INCLUDED

***FQUEUE > = QUEUE - FQUEUE

IGNORED

***FMPOOL > = MPOOL- FMPOOL

IGNORED

***FCFU> = CFU - BKGD HAS NO

CFU

***ANS NOT SPECIFIED-ANSPROT

IGNORED

***AVGSER OUT OF RANGE­

DEFAULT (l) USED

***BIG9 SPECIFIED - SIG9 ALSO

INCLUDED

101

In attempting to open SPEC:HAND file to add the name

S9TRAPS and/or ANSTP, an error or abnormal con­

dition was encountered. XMONITOR continues.

The value specified for FQUEUE is equal or greater than

specified for QUEUE. XMONITOR continues.

The value for FMPOOL is equal or greater than

that of MPOOL + XMONITOR continues.

The value for FCFU was equal or greater than that

specified for CFU. XMONITOR continues.

The keyword ANSPORT was specified but not ANS.

XMONITOR continues.

The value specified for AVGSER is invalid and the

default is used. The legal range is 1 to 63 unless no

private packs are defined on the system in which

instance the minimum may be O. XMONITOR continues.

The option BIG9 has been specified but not SIG9.

SIG9 is also included. XMON ITOR continues.

2.4. 10 Flow Charts

(MONITOR)

Set flag for
MONITOR command
(=0)

Adjust defaults for
symbionts if any
defined

Decode
command

SYNTAX

Process ANS, SIG9,
BIG9 and AUGSER

yes options

COREALLOC

Set up core for
M:CPU

Generate DEFs for
MAXBQ MPOOLs

BUFGEN

Generate buffers and
links for MPOOLS

yes

MODGEN

Generate DEFs for
TSTACK MAXBM
ABS

A

pg.2

UBMONITOR

Set flag for UTM
command (= 1)

Figure 2-11. Flow Diagram of XMONITOR

102

Page 1

MODGEN

Generate DEFs for
>----+1 symbionts and

yes SPOOLS

Generate DEFs
CPOOLS, IOQ Tables, ---------'
CFUs, MPATCH

Generate other UTS
tables, ANS tables
if required

General single entry
RBT tables

Write M:CPU load
module

pg.3

MODGEN

Generate JIT and
RBT tables if

yes required

MODGEN

Generate RBT
yes tables

yes

MODGEN

Generate SIG9
tables and data
area

Figure 2-11. Flow Diagram of XMONITOR (cont.)

103

Page 2

Set up ORGROM

yes

COREALLOC

Set up CORE for
M:SYMB

Generate M:SYMB
tables

pg.4

MODGEN

Generate special
/----~ ...

yes RBT tables

Generate single entry
RBT tables

WRITELM

Write M:SYMB load
module

Figure 2-11. Flow Diagram of XMONITOR (cont.)

104

Page 3

c~c)

COREALLOC

Allocate space
for M:BIG9

MODGEN

Generate :9 DEF

WRITELM

Write M:BIG9

Clean up stack

EXIT

yes

yes

Update SPEC:HAND
fi Ie adding S9TRAPS

Update SPEC:HAND
file adding ANSTP

Figure 2-11. Flow Diagram of XMONITOR (cont.)

105

Page 4

2.5 XLIMIT

2.5. 1 Purpose

To process DLIMIT, B LIM IT, OLIMIT or ELIMIT PASS2 control commands, creating the M:DLIMIT, M:BLIMIT,

M:OLIMIT or M:ELIMIT load module.

2.5.2 Usage

B DLIMIT (DlIMIT command)

B UBBLIMIT (BLIMIT command)

B UBOLIMIT (OLIMIT command)

B UBELIMIT (ELIMIT command)

2.5.3 Input

Control card (:DLIMIT, :BLIMIT, : o LIM IT, or :ELIMIT) image.

2.5 0 4 Output

M:DLIMIT load module - BPM/BTM (Table 2-10)

M:OLIMIT/M:BlIMIT/M:ELIMIT load modules - UTS (Table 2-11)

Table 2-10. Contents of M:DLlMIT

label Ent!:l Size .Size ContentstYalue (in terms of Keywords)

(Wds)

DLIMTBl '- - Base address of M :DLIMIT
...,

TIME LIM 1 16 TIME

lOLIM 1 16 lO

POLIM 1 16 PO

DOlM 1 16 DO

UOLIM 1 16 UO >
SCTLIM 1 16 SCRATCH Default limit table,

FPOOLIM 1 1 16 FPOOl indexed by pri ority

PSTLIM 1 16 PSTORE

TSTLIM 1 16 TSTORE

IPOOLIM2 1 16 IPOOLIM ~ -
#l. left half of each FPOOLIM entry contains buffer size (512 words)

#2. left half of each IPOOLIM entry contains buffer size (256 words)

106

Table 2-11. Contents of M:OLIMIT/M:BLIMIT/M:ELIMIT

Labell. Size Contents (i n terms of Keywords)

SL:XTIME 1 TIME2•

SL:XLO 1 LO

SL:XPO 1 PO

SL:XDO 1 DO

SL:XUO 1 UO

SL:XT3• 1 TAPES

SL:XFp3. 1 FPOOL

SL:XPS 1 PSTORE

SL:XTS 1 TSTORE

SL:XIp3. 1 IPOOL

SL:XC 3. 1 CORE

SL:XF 3• 1 FILES

SL:XSp3. 1 SP

1. X in label is replaced by 101 or IBI or lEI
2. SL:OTIME is always zero.
3. Not generated in M:ELIMIT

2.5.5 Interaction

SYNTAX is used to convert control card to stack data blocks.

COREALLOC is used to allocate dynamic data pages.

MODGEN is used to generate DEFs.

WRITELM is used to write the output module.

READSTRG is exit location.

2.5.6 Data Bases

Initially:

UKWD and DKWD are overlapping keyword tables for SYNTAX. UKWD is used for BLIMIT and

OLIMIT and ELIM1T; DKWD for DLIMIT.

DSYS is the DLIMIT virgin stack data block for SYNTAX (containing default values).

OSYS is the OLIMIT virgin stack data block.

BSYS is the BLIMIT virgin stack data block.

ESYS is the ELIMIT virgin stack data block.

DNAMES, ONAMES, BNAMES and ENAMES are the portions of code (interlaced with TEXTCs) which are fed to

MODGEN to generate the corresponding load modules.

107

After SYNTAX:

Stack data block (now in the stack and pointed to by R5) for OLIMIT, BLIMIT and ELIMIT contains an image of

the output module data record.

For DLIMIT, R5 points to a number of data blocks equal to one more than the number of PRTY options

encountered in the :DLIMIT command. Each block contains a word for each kind of limit (UO, PO,

etc.), and a word for the PRTY value (priority). PRTY is a type 4 keyword with a default of -1, so

the first block has a PRTY value of -1 and positive values (either default or command - specified) for all

limits. Every other block has positive values only for those limits command - specified for the block1s

PRTY value. If the PRTY value in the block is negative, it is less than -1 and indicates that the command -

specified value was too large or had been previously specified.

2.5.7 Description

Each entry point sets a flag (0, 1 or 2) in R4 and branches to LIMIT. LIMIT sets input pointers for SYI'~TAX and

BALs to it. Upon return, the values specified for SCRATCH and SP (UTS only) are examined to determine if they

are equal to or less than the total number of tapes units and private disc packs specified via :DEVICE commands.

If not, error routines are entered that change the value to the maximum number specified and print an appropriate

message and return. For the :ELIMIT command, all parameters are checked to determine that no va lue specified

exceeds the maximum permissible value. Any error detected causes a message to be generated and the default

value substituted. A BAL to COREALLOC allocates core. The address of the proper name table (DNAMES,

ONAMES, BNAMES or ENAMES) is put in R 10 and a branch to MODGEN generates the required DEFs. Then,

for BLIMIT o LIM IT and ELIMIT a branch to BUILD moves the stack data block to the output module data record

and drops into WRITE, which points R 14 to the proper fi lename, BALs to WRITELM, cleans data block(s) out of the

stack, and exits to READSTRG. For DLIMIT, BUILD is replaced by a routine which moves values from the first

data block to the module data record for all priorities, and then for every other data block with non-negative PRTY

values, moves non-negative limit values to the data record only for that priority. Then, a branch to WRITE

finishes up and exits.

**SCRATCH TAPES> TOTAL ON SYSTEM -- For the designated priority 1 the number of tapes specified

*XXXX*USED FOR XXXXXXXPRIORITY for SCRATCH exceeds the total numbers of tape drives

(9T and 7T) defined via :DEVICE commands. XLIMIT

substitutes the *XXXX* value and continues. (BPM/

BTM only)

**TAPES > TOTAL ON SYSTEM --

XXXX USED

**DISC PAC KS > TOTAL ON SYSTEM -­

XXXX USED

**XXXXXXXX INVALID-

XXX X USED

The number of Tapes/Disc Pack (SP) specified exceeds the

total number of tape drives (9T and 7T) disc packs defined

via :DEVICE commands. XLIMIT substitutes the *XXXX*

value and continues. (UTS only)

The parameter (XXXXXXXX) on the :ELIMIT canmand

is in error and the value (XXXX) has been substituted

108

2.5.8 Flow Chart

ENTER
DLIMIT
UBBLIMIT
UBOLIMIT
UBELIMIT

Set flag for

type of entry

Get Max Tapes
units and disk
packs specified via
:DEVICE Command

SYNTAX

Get :commands
in tabular form

DLIMIT R4 = 0
UBBLIMIT R4 = 1
UBOLIMIT R4 = 2
UBE LIMIT R4 = 3

Validate
yes parameters

Check SCRATCH ERRT PES
against max Process error
tapes Error condition

Check SCRATCH
yes for each

priority

Check SP against
ER

Max private disk rror Process
packs Error Condition

COREA LOC

Get Dynamic
data pages

Pg. 2

Figure 2-12. Flow Diagram of XLIMIT

109

Pg. 1

Pg. 3

Pg. 3

no

S

Generate Table
DEFs (1 word
each)

Store value
in Table

Write

Load Module

Clean up
Stack

Get table of
names to be
generated

MODGEN

To generate
DEFs

no

no

DLIMIT - DNAMES I
BLIMIT - BNAMES
OLIMIT - ONAMES I
ELIMIT - ENAMES !

Generate
Table DEFs
(16 words each)

Get priority
from DYNAM

Search DYNAM fo
changed value

Store val ues from
default DYNAM
in all priorities
of one table

Store in table
indexed by
priority

Figure 2-12. Flow Diagram of XLIMIT (Cont.)

110

Pg. 2

yes

Store Max
value in
DYNAM

Convert value to
EBCDIC put in
error message

ERRSP

Store Max
value in
DYNAM

Convert value
to EBCDIC put
in error message
PRINT

Print
Error
Message

Figure 2-12. Flow Diagram of XLIMIT (Cont.)

111

Pg. 3

RETURN

2.6 ABS

2. 6. 1 Purpose

To process the PASS2 :ABS command and generate the load module M:ABS. This load module defines which

processor root segments are to be located in the absolute area on the system random access device for a

BPM/BTM target system only.

2.6.2 Usage

B ABS

With R7 pointing to the control card PLIST

RO pointing to the temp stack pointer

R3 pointing to PASS2 stack data

R3 and R7 are saved

Return is to READSTRG in P2CCI

2.6.3 Input

Control card (:ABS) image

2.6.4 Output

M:ABS load module (Table 2-12)

Table 2-12. M:ABS Load Module

Label Size Contents or Value --

ABSGOSZ Value DEF SIZE option on :ABS

ABSPROC 4*(number of :L file and names of

processors+ 1)+ processors specified

entri es for names and space for control

of processors in information.

TEXTC

112

2.6.5 Subroutines

CHARSCAN

DECSCAN

NAMSCAN

QUOTSCAN

MODIFY

PRINTMSG}

OUTLLERR

2.6.6 Description

(used to check a specific character for legal syntax)

(used to scan a field containing a decimal value)

(used to scan a field containing a name)

(used to scan a field containing a keyword)

(used to generate the M:ABS load module)

(display error information)

The ABS processor is entered when the PASS2 type is BPM (i. e., BPM/BTM target system) and :ABS is

encountered by P2CCI. When entered, ABS obtains and initializes four pages of core work area (Table

2-13) to be used in generating the M:ABS load module. The syntax for the :ABS control command is:

:ABS [, size J [(processor[, S]~ ~ (processor [, S]~ ..

The IIsize ll field is obtained and identifies, in decimal, the number of words desired for the absolute

read/write scratch area on the system random access device for the target system. This scratch area will

be used by CCI, LOADER, LOCCT, PASS3 for transmitting the loader overlay control command tables

(LOCCTs) between processors in a BPM/BTM base system. This area is also usable by any other processor

or user if so desired. If the II sizell parameter is null or less than 1024, the value 1024 is used.

ABS then obtains the parenthetical expression. If the processor "name" is syntactically legal (1-15

alphanumeric characters 1 of which must be alpha), it is checked to see if it has already been encountered

or is ":LII, if so, it is ignored and ABS continues processing the command. If the name is unique, it is

entered into an intermediate table (Table 2-14) and the next field is scanned. If no character exists, then

ABS continues with the next parenthetical expression. If the field contains information, the contents is

checked for the letter "5 11 and if it is not, it is assumed to be. Therefore, a flag is set in the intermediate

table indicating the presence of the "S" field. ABS then continues processing the command.

When this processing is completed ABS generates the M:ABS load module. The RELDICT.OO· (Table 2-13)

is initial ized to all Es. The contents of SECT. 00 (See Table 2-14) is complete once the syntax analysis

is accomplished. The intermediate table thus generated becomes SECT. 00. The ABS processor continues

by generating an externa I definition (ABSPROC) defining the base address of SECT. 00. The value obtained

from the IIsize" option is used to generate the value DEF ABSGOSZ.

When completed, the generated load module (M:ABS) is written and ABS releases its work area and temp

stack area and returns to P2CCI at READSTRG.

113

Word 0

1

2

3

4

5

n

nl

n2

n3

n4

m

Table 2-13 ABS Work Area

SECT.OO
{Intermediate Table}

RELDICT.OO
1/8 Size of SECT. 00

RFDFSTK
1/2 of Remaining Work Area

EXPRSTK

1/2 of Remaining Work Area

Table 2-14. ABSPR OC Table

.
02 .
00 00

00 00

00 00

00 110101 01

HC C1

--- Cn

PO

Pl

SECTOSZ

P2 SILITI 0 I

Table va lues set by ABS processor: '

where

I L I
00

00

I 00

00 0

1 C2 J

, --- J
SECTODA

SECTlDA

1 SECT1SZ

STRTAD

00

00

00

00

=number of characters (C) in name (TEXTC type name).
n

= characters in name.

114

Low Core

~~

~ ,~

~ g c
.- Q)
C t-

'0 «
E~
Q)

~ ~

,
"

High Cor.e

~~

....
"'5 ~
.E ~ Q)

0

"
~,

~

>...
t-.... c

w
..c:

I
c

..... ', --c

V v
~'~ ~i:

2.6.7 ABS Messages

S = 1 Save load modules of "name" after it has been made absolute, (i. e.,

the parenthetical field on the ABS command specified "S").

S = 0 Release load module of "name" after it has been made absolute unless

it contains an overlay structure.

L = 1 Last item in ABSPROC table.

L = 0 Not last item in ABSPROC table.

Table values not set by ABS processor but eventually set by the bootstrap

procedure

PO =page address of SECT. 00 (protection type 0) when loaded into core.

P1 =page address of SECT.01 (protection type 1) when loaded into core.

P2 =page address of SECT. 10 (protection type 2) which indicates the page

address plus one of the end of SECT. 01.

SECTODA =disc address of the SECT. 00 information.

SECTl DA =disc address of the SECT .01 information.

SECTOSZ =size of SECT. 00 (words).

SECTlSZ =size of SECT.01 (words).

STRTAD =start address of the absolute processor.

T = 0 absolute processor contains a task control block (TCB).

T = 1 absolute processor does not contain a task control block (TCB).

":L II NAME ILLEGAL OR NAME

ALREADY DEFINED

A field has specified a processor name which is either

":L II or has already been specified. The ABS

processor skips to next field and continues

NO PAGES AVAILABLE

'ABS' ABORTED

'(I EXPECTED BUT NOT FOUND

NO FIELDS ON CC

115

processing.

Not enough core avai lable for work area. The abort

message is displayed and the ABS processor returns

to the Monitor.

Displayed in conjunction with other catastrophic

error messages. ABS returns to the Monitor.

A parenthetical field is expected but not found.

Also could imply no absolute processors are desired.

ABS continues by generating the load module

"M:ABS".

For information purposes only. Implies no size field

was specified. ABS continues by displaying II '('

EXPECTED BUT NOT FOUND" message.

INVALID PROCESSOR NAME The processor name is not alphanumeric. ABS

skips to next field and continues processing.

's' EXPECTED BUT NOT FOUND

**'S' ASSUMED

This message appears if there is a field specification

following the processor name which should be the

~. EXPECTED BUT NOT FOUND

key value "S", but instead is an unknown character

string. The value "S" is assumed and ABS continues.

The syntax requires a ") ", and the character found is

unknown. ABS continues to next parenthetical field.

A terminator is encountered and is unknown or

misplaced. ABS continues to next parenthetical

field.

SYNTAX ERR OR

PROCESSOR NAME> 11

CHARACTERS

Self-explanatory ABS continues to next

parenthetical field.

INVALID SIZE OR SIZE MISSING,

DEFAULT TAKEN The size option is either <1024 or is not specified.

The va lue 1024 is used and ABS conti nues.

LOAD MODULE GEN. The number of processor names spec ified causes the

intermediate table to overflow the available work

area. ABS displays abort messages and returns to

the Monitor.

2.6.8 Internal Routines

ABS

ABSO

CHEKNAME

FINDEOC

FINDRPAR

ABSOUT

WRITE

UNSUCCESSFUL

main entry, initia lizer and controls

Register 3 = address in PASS2 temp stack of information.

Register 7 = address in PASS2 temp stack of PLISTs for processing

control command.

process next parenthetical field.

check processor name against previous names. Name cannot be defined

more than once and cannot be ":L ".

Register 1 = length of new name.

Register 15 = address of new name.

Register 6 = address of end of absolute processor name table.

search for end of control command.

search for ")" and start processing with next "(".

Control command processing finished, now generate "M:ABS" load module.

Register 6 = address of next available entry in work area.

Register 9 = base address of work area.

Write load module to "M:ABS" file.

Register 12 = buffer address.

Register 13 = buffer size (bytes).

Register 14 = key address (load module elements key).

116

DECCNV convert decimal size to hexadecimal equivalent.

Input: Register 2 = number of characters.

Register 1 = address of character string.

Output: Register 3 = converted value.

CCl = 0 = converted value.

CC 1 = 1 = conversion cannot be completed.

117

2.6.9 Flow Chart

Set size to
default
(1024)

Get 4
pages work
area

Initialize
work area

Get Size
field

Get processor
4-----------l~ name from

yes

yes

":L name
i1lega I or name
already
defined II

Find end
of field

yes

next field

Set to next
interim
entry

Pg. 1

I-Putdefaul-t - I
_ J ":L" entry I

I into interim I
I tab~ __

hexadecimal

no

no

Put name in
interim
table

Set 5=1
w------~ in interim

table entry

Figure 2-13. Flow Diagram of ABS

118

Set L=1 in

Write load
module to
"M:ABS II file

Release work
area & Temp
Stack

Figure 2-13. Flow Diagram of ABS (Cont.)

119

Pg. 2

2.7 BTM

2.7.1 Purpose

To process BTM P ASS2 control command, creating M:BTM load module for BTM systems, and to include the

name BTMSTAT in SPEC:HAND if the BTM performance monitor routine is to be included in the target

system.

2.7.2 Usage

B BTM with RO = temp stack pointer

R3 = PASS2 stack data pointer

R7 = control card PLIST

Return is to READSTRG with RO and R3 intact.

2.7.3 Input

:BTM control command image

2.7.4 Output

M:BTM load module (Table 2-15).

Table 2-15. M:BTM Load Module Contents

Label Entry Length Contents or value (in terms -- Size (Wds) of BTM Keyword values)

NUMUSERS Value - NUMUSERS

USERSIZE Value - USERSIZE

NUMSYSTS Value - NUMSYSTS

BPMQTM Value - BPMQTM/2
(i. e., converted to clock
ticks)

BTMQTM Value - BTMQTM/2
(i.e., converted to clock ticks)

BTMQTM2 Value - BTMQTM2/2

(i. e., converted to clock ticks)

IBUFSIZE Value - IBUFSIZE

OBUFSIZE Value - OBUFSIZE

COCIINTl Value - lINT

COCIGRP1 Value - Interrupt group of liNT

COCIIBTl Value - Write direct bit setting for lINT

COCOINT1 Value - OINT

COCOGRP1 Value - Interrupt group of OINT

120

Table 2-15. M:BTM load Module Contents (Cont.)
-------------.,.------...,------------ ---.

i
1 label Entry length

Size (Wds)
Contents or Val ue (in terms of
BTM Keyword values)

I--C-O-C-O-B-IT-1-----~-V-al-u-e-~-------+-W-ri-te-d-i-re-c-t-bi-t-se-tt-i-ng-f-o-r-O-I-N--T l
ClK3INT Value-

BTMGl Value-

BTMIBIT Value-

BTMPM Value-

USERPGS 1

PMNQINTS1

PMMISC1

ACTFLAG

ACTPASSD

ACTTYPE

TTYFLAG

INCOUNT

OUTCOUNT

LITNEXT

RDROFF

ITABPSN

OTABPSN

INBUF

OUTBUF

COCBUF1

INPNTI

INPNTR

INBFEND

OUTPNTI

OUTPNTR

OUTBFEND

TABSTOPS

ACTCOND

HASITBYT

OOSIZ

01SIZ

DYPG

UNUSD

1. If BTMPM=l

Value -

Value -

Value -

1/4 NUMUSERS

1/4 NUMUSERS

1/4 NUMUSERS

1/4 NUMUSERS

1/4 NUMUSERS

1/4 NUMUSERS

1/4 NUMUSERS

1/4 NUMUSERS

1/4 NUM USERS

1/4 NUMUSERS

1/4 NUMUSERS*
IBUFSIZE

1/4 NUMUSERS*
OBUFSIZE

1/2 NUMUSERS*2

1

1

1

1

1

1

2

1/4

1/4

1/4

1/4

1/4

1/4

+2

NUMUSERS

NUMUSERS

NUMUSERS+1

NUMUSERS

NUMUSERS

NUMUSERS+1

NUMUSERS

NUMUSERS

NUMUSERS

NUMUSERS*2

NUMUSERS*2

NUMUSERS*2

NUMUSERS*2

BTMINIT

Interrupt group for BTMINIT

Write direct bit setting for BTMINIT

=0 if BTMPM Keyword not present
=1 if BTMPM Keyword present

of pages computed from USERSIZE .
+1

26

58

o
o
o
o
o
o
o
o
o
o
o

o

o

o
o
o
o
o
o
XI FFOOOOOOI, XIOOOOOOOOI

o
o

o
o
o

'--__ . __ _______________ --1.. ___________ _

121

Table 2-15. M:BTM Load Module Contents (Cont.)

Label ~ Length Contents or Value (in terms of -- Size (Wds) ~TM Keyword values).

COMPG 1/4 NUMUSERS*2 0

PROGLEVL 1/4 NUMUSERS 0

BREAKC 1/4 NUMUSERS 0

USRTABLE 1 NUMUSERS 0

LOG NAME 2 NUMUSERS 0

PSDLEVOP 2 NUMUSERS 0

PSDLEVOC 2 NUMUSERS 0

PSDLEV1P 2 NUMUSERS 0

PSDLEV1C 2 NUMUSERS 0

PSDLEV2P 2 NUMUSERS 0

PSDLEV2C 2 NUMUSERS 0

RESTCMND 2 N UMSYSTEMS+8 See Insert Following

CMNDOBEY 1 NUMSYSTEMS+8 II II II

COMMANDS 1/2 NUMSYSTEMS+8 II II II

SYSBEG 1/2 NUMSYSTEMS 0

SYSCOUNT 1/4 NUMSYSTEMS 0

SYSTABLE 1 NUMSYSTEMS 0

SWPLST 2 120 if SWAPPER 0
= 720X

15 if SWAPPER=
7232/7212/7242
(Swapping device
passed from
UBCHAN)

QFREQ1
1 PMNQINTS (26) 0

RSPFR 1 1 PMNQINTS (26) 0

DATPGS41 1 USERPGS 0

QUANTBGN 1 1 NUMUSERS 0

PPPGS 1 1 USERPGS 0

LASTIM 1 1 NUMUSERS 0

QTMSAV 1 1 NUMUSERS 0

SUBSQTM1 1 NUMSYSTEMS 0

SUBSTSK 1 1 NUMSYSTEMS 0

SUBSESQ 1 2 NUMSYSTEMS 0

PMREQS
1

2 PMMISC (58) 0

1. If BTMPM=l

122

Insert:

RESTCMND - contents

First N entries (Doubleword) where N=NUMSYSTS are O.

Last eight entries (Doubleword) in TEXTC format are

SIGN

E

SSAGE

OCEED

STORE

VE

BS

EKATMEM

COMMANDS I"' contents

First N entries (halfword) where N=NUMSYSTS are O.

Last eight entries (halfword) in TEXTC format are

AS

BY

ME

PR

RE

SA

TA

PE

CMNDOBEY - contents

First N entries (word) where N=NUMSYSTS are

X'680000OQ' + STSUBSYS (REFed)

Last eight entries (word) are

X'68000000'+STASSIGN (REFed)

X'68000000'+STEXIT (REFed)

X'68000000'+STMESS (REFed)

X '68000000 '+STPR OCED (RE Fed)

X'68000000'+RESTEXC (REFed)

X '68000000 I+SA VEXC (REFed)

X '68000000 '+ TABEXC (REFed)

X '68000000 '+STLOOK (REFed)

SPEC:HAND Data File

If BTMPM=l

Then BTMSTAT name is added to SPEC:HAND data file so that PASS3 will include the module

in the HANDLERS file in M:MON.

123

2.7.5 Interaction

SYNTAX to convert command to stack data block

COREALLOC to allocate dynamic memory

MODGEN to generate DEFs, REFs

WRITELM to write M:BTM load module

2.7.6 Data Bases

KWD is the Keyword table for SYNTAX

DYNAM is the virgin stack data block for SYNTAX, containing the defaults for each Keyword.

CMNTBL 1 is the table used in generating the COMMANDS entry in M:BTM.

CMNTBL2 is the table used in generating the RESTCMND entry in M:BTM.

RANGE is the table used to verify that the values specified with the Keywords are within a valid range.

This is required as the defaults are greater than the minimum permissible values and SYNTAX

cannot do both limit checking and default setting under these conditions.

VALERR - a table of error message addresses and default values used in conjunction with RANGE. The

index value of the parameter in RANGE isused to obtain the appropriate default and error

message.

2.7.7 Description

After determination of the type of swapping device to be used on the target system, a BAL to SYNTAX puts

command information and defaults (except for USERSIZE) from DYNAM into the stack, pointed to by R5

and returns. The parameter USERSIZE is defaulted if the Keyword has not been specified. All parameters are

then checked against the permissible values in RANGE. If any is out of range an error routine is entered that

stores the appropriate default in the stack and prints a message indicating the parameter in error and the value

used and then returns.

Upon completion of this checking, a BAL to COREALLOC causes memory to be allocated. A BAL to

MODGEN begins the generation of the value DEFs, followed by the location DEFs and where applicoble the

REFs. The value DEFs and location DEFs for the BTM Performance Monitor are by-passed if the module is not

to be inc I uded in the target system.

Upon completion of this generation, a BAL to WRITELM causes M:BTM load module to be written. Then, if the

BTM Performance Monitor is required, the SPEC:HAND data file is read into that area of core previously

occupied by the Data Base whi ch is no longer needed. The name BTMSTAT is added to the file, and the

number of entries in SPEC:HAND incremented by 1. Then the file is written and closed. Any difficulty

encountered causes BTMSTAT not to be included and an error message is printed indicating this has

occurred.

The stack generated by SYNTAX is then c leaned up and BTM exits to READSTRG in P2CCI.

124

2.7.8 BTM Messages

***TROUBLE WITH SPEC:HAND­

BTMSTAT NOT INCLUDED

***NUMUSERS ERROR - DEFAULT (8) USED

***USERSIZE ERROR - DEFAULT (16384) USED

***NUMSYSTS ERROR - DEFAULT (12) USED

***BPMQTM ERROR - DEFAULT (200) USED

***BTMQTM ERROR - DEFAULT (800) USED

***BTMQTM2 ERROR - DEFAULT (800) USED

***IBUFSIZE ERROR - DEFAULT (100) USED

***OBUFSIZE ERROR - DEFAULT (100) USED

***IINT ERR OR - DEFAULT (60) USED

***OINT ERROR - DEFAULT (61) USED
***BTMINIT ERROR - DEFAULT (5A) USED

125

In attempting to open the file SPEC:HAND

to add the name of the file BTMSTAT an error

or abnormal condition was encountered. BTM

continues.

The values used for the specified parameter

is in error. The given default is used.

BTM continues.

2.7.9 Flow Chart

ENTER

Determine

Swapping Device

SYNTAX

CC in tabular
form

Default if i

necessary !

r--_~=US=E=RS~I_ZwE ___ .J

Pg. 1

ERR
no

>-_---j~ R l=Index value

no

Figure 2-14. Flow Diagram of 8TM

126

of parameter in
error

Pg. 2

no

WRITELM

Write

M:BTM

Read
/ SPEC:HAND

/ J
i ---E--'

I Add
BTMSTAT

Name

I

'-----r---,

j

I

I

Figure 2-14. Flow Diagram of BTM (Cont.)

127

Pg. 2

Access ERRMSG
name and
default using
index parameter
in error

appropriate position
in stack table I

---....
RETURN

2.8 P2COC

2. 8. 1 Purpose

To process the :coe PASS2 control command generating the M:COC load module and updating the

SPEC:HAND file to include requested translate tables.

2.8.2 Usage

B COC

With: R7 pointing to control card PLIST

RO pointing to temp stack pointer

R3 pointing to PASS2 stack data

RO and R3 saved

Return is to READSTRG in P2CCI.

2.8.3 Input

Control card (:COC)

eocs - the relative address in PASS2 Stack where a halfword table of coe device addresses begins if any

have. been defined via :DEVICE commands.

2.8.4 Output

SPEC:HAND

The names of any standard requested translate tables are added.

M:COC (Table 2-16).

128

Table 2-16. Contents of M:COC

Label Entry Length Contents/Value (In terms of Keywords) -- Size 0Nds)

LCOC Value - Number of COC-1

COD:LPC 2 COC 1st entry word 0=0, word 1= LINES-1 for each
subsequent entry. Word 0 = 1 more than previ ous

:
entry's word 1. Word 1 = LINES-1 (for the cor-

: responding COC) added to previous entry's
I word 1

CO:INO 10
I

{COC)-6 First entry-4 words only 0,0 COCIP {PRE F), i

! X' 10000000' . All other entries -10 words 0,0,
$+2, X' 11000000', STW,5 $+5 LI,5 COCO
Interrupt mask bit WD,5 X'1700'+COCO group
level LW,5 $+2 LPSD,l1 $+8 DATA 0

Note: Each entry is pointed to by CO:XPSDI

Out Interrupt 6 COC Each 6 word entry is
(no name)

0,0 $+2, X'170000NO' where N is the
entry number
LI,3 N-1
B COCOP (PREF) 1st entry only all

other entries here branch to this
location

Note: Each entry is pointed to by CO:OUT
and CO:XPSDO

I/O Command 4 COC Each entry has I/o command

(no name) Read; DATA CHAIN into RING buffer,

I 4* RING bytes; TIC DA{$-2),0

Note: Each entry pointed to by CO:CMND

COH:DN 1/2 COC DEVICE address

COH:II 1/2 COC INput interrupt address

COH:ILI 1/2 COC INput interrupt level bit

CO:WDAEI 1 COC Each entry = WD, 5 X' 1200 + IN leve I group
I

1/2 COH:IO I COC OUT put interrupt address

COH:ILO 1/2 COC OUT put interrupt level bit

CO:WDAEO 1 COC Each entry=WD,5 X'1200'+ OUT level group

CO:STAT 1 COC WD,O X'30NO'

CO:OUTRS 1 COC RD,7 X'30NO'

CO:RCVON 1 COC WD,7 X'30N1'
where n =

CO:RCVDOFF 1 cae WD,7 X'30N3' index in table

CO:TRNDOFF 1 COC WD,7 X'30N7'

CO:XDATA 1 cac WD,6 X'30N5'

CO:XSTOP 1 COC WD,7 X'30NE'

129

Table 2-16. Contents of M:COC (Cont.)

Label Entry Length Contents/Value (In terms of Keywords)
Size (Wds)

CO:RINGE 1 COC Each entry contains word address of end
of RING buffer

CO:LST 1 COC Each entry= 4*RING n buffer size

CO:OUT 1 COC Each entry= word address of OUT interrupt
routine

CO:CMND 1 COC Each entry= Doubleword address of I/O
command

CO:XPSDI 1 COC Each entry= XPSD,8 CO:INO entry

CO:XPSDO 1 COC Each entry= XPSD, 8 Out interrupt routine

COB:RBS 1/4 COC Each entry=4*RING n buffer size

LNOL Value - Total LI NES for all COCs

COCOC 1/4 LNOL 0

LB:UN 1/4 LNOL 0

RSZ 1/4 LNOL 0

MODE2 1/4 LNOL For 2741 model type entry = X'301

For other model types entry=X '20 '

MODE 1/4 LNOL For 2741 model type entry = X I08 1

For other mode I types entry=X 188 '

COCTERM 1/4 LNOL For 2741 mode I type entry = 0

For other mode I types = 3

MODE3 1/4 LNOL 0

ARSZ 1/4 LNOL 0

CPOS 1/4 LNOL 1

CPI 1/4 LNOL 0

BUFCNT 1/4 LNOL 0

TL 1/2 LNOL X '8000 ,

COCOI 1/2 LNOL 0

COCOR 1/2 LNOL 0

COCII 1/2 LNOL 0

COCIR 1/2 LNOL 0

EOMTIME 1/2 LNOL 0

COD:HWL 2 COC For each doubleword entry - given the
total # of lines defined in a COC, right-
justified, those lines that are HARDWIREd
have the corresponding bit set. All other
bits are O. Ex tota I lines = 8,
HARDWIRE = 0, 1,2

Entry = 00000000, OOOOOOEO

Ring buffers Each buffer has all bits set and is RING
(no name) words long.

130

Table 2-16. Contents of M:COC (Cont.)

Label Entry Length Contents,Nalue (In terms of Keywords)
Size (Wds)

COCBUF 4 Each buffer's first word has the word

displacement of the next from COCBUF

except the last, which has O.

COCNB Value - number of 4 word buffers

HRBA Value - displacement of the last buffer from COCBUF

COCHPB 1 1 4 (head of buffer poo I)

2.8.5 Interaction

M:OPEN, M:READ, M:WRITE, M:CLOSE are used to update SPEC:HAND

SYNTAX is used to decode the contro I command.

COREALLOC is used to allocate dynamic memory

MODGEN is used to generate M:COC

WRITELM is used to write M:COC

2.8.6 Data Bases

KWDTBL is the Keyword table for SYNTAX

DYNAM is the virgin stack data block

2.8.7 Subroutines

ERR LIST outputs an error message after inserting the COC number into it. (BAL, R 11 with coe number in R 15,

message address in R 14).

WDLG returns in R12 an interrupt group number, in R13 the interrupt level bit for the interrupt at the

address in R 12 on entry. (BAL, R 14)

COCGEN is similar to MODGEN in that if interpretively executes code, but its link register is Rl1.

All MODGEN-type code encountered is skipped except relocation dictionary changes, for

wh ich MODG EN is used to effect the changes.

2. 8. 8 Descri pti on

SYNTAX decodes the control card, producing a number of stack data blocks equal to the requested number of

COCs. P2COC first checks that IN and OUT have be.en specified for every COC and that every IN is less than

the corresponding OUT, and that no IN or OUT is the same as any other IN or OUT. If not, P2COC returns.

All the LINES options are added up, all BUFFERS options are added, and all RING, BUFFERS, and LINES options

are validated.

All DEVICE options are checked for presence and correspondence with some :DEVICE MENDD (from COCS).

131

Then if translate tables were requested, the SPEC:HAND file is updated appropriately. The total size of

the data record is calculated and COREALLOC is called to set it up.

Then MODGEN is entered and the value DEF for LCOC and all tables of COC length are generated. The

same code (from LGEN to L1NETBLS) is then executed under the control of the COCGEN routine. This

causes changes to be made to the relocation dictionary but bypasses the generation of the DEFs. The

different link register also allows selective branches to take place. When the COC tables are completed,

MODGEN is reentered to generate the line tables. WRITELM then creates the M:COC file and P2COC

exits to READSTRG.

2.8.9 P2COC Messages

***COCX -- INTERRUPT LEVEL CONFLICT -

coe ABORTED

***COCX -- LINES> 64 - DEFAULT TAKEN

***COCX -- WARNING: BUFFERS< 3XLINES

***COCX -- RING INADEQUATE -

DEFAULT TAKEN

***COCX -- DEVICE OPTION MISSING -

coe ABORTED

***COCX -- DEVICE NOT DEFINED -

cae ABORTED

132

The IN, or OUT parameter for coex were

in conflict with either previously defined

levels or IN was greater than OUT or IN

or OUT was undefined. P2COC restores

the temp stack and exits.

Greater than 64 LINES were specified per

COC device. P2COC defaults the value

and continues.

The va lue specified for BUFFER was less

than 3 lines the number of LINES specified.

P2eOe issues this warning and continues.

The value specified for RING was too small

for the number of LINES specified. P2COC

defau I ts the va I ue (2 bytes / line for the fi rst

30 lines and 1 byte/line above 30, divided

by 4) and continues.

For the given COC, no DEVICE was

specified. P2COC restores the temp stack

and exits.

For the given COC, the DEVICE option

specifies a device (NDD) that was not

defined via :DEVICE commands. P2COC

restores the temp stack and exi ts.

2.8.10 Flow Chart
r-----/:::====~------------------

Pg. 1

Decode
Control
Command

Check interrupts Bad
for all COCs

Print Error
Message

Default and
print error
message if too
many

/' uffer'; Defau It if not

~
ecified and specified, print

valid /- No warning message
? ,/ if < 3 X lines
~~ __________________ J

/Ring -'.
/specified a~,- . ___ Default and print

error message

~,=~id //'No I
0(Yes . ___ ~-=--=--=--_-_-J....,.---_--J

Print error
message

Print error -€
message B .

'-----ol

Pg. 3

Figure 2-15. Flow Diagram of P2COC

133

Colle:t XLATE

table flags

Pg. 2

Update
~r----..! SPEC:HAND

File

module size

COREALLOC
Set up core
to generate
loadmodule

MODGEN
Generate first
COC tables

LGEN

In interrupt RTN,
out interrupt RTN,
I/O Command
and other tables

Generate Tables
for next cac

Under control
of MODGEN
using WDLG

WDLG
- - - Calculate

group level bit
of interrupt

Figure 2-15. Flow Diagram of P2COC (Cont.)

134

9. MOD GEN

Generate

Line Tables

+
Store va lues in
MODE, MODE2
COCTERM Tables

~ MOD GEN

Generate
More line
Tables

..
Form COD:HWL
table - bit=l if
corresponding line
is HARDWIREd

l MODGE N
Generate ring
buffers and links
in COCBUF

t WRITELM

WRITE
M:COC load

I
Module

• +
Restore Stack

•
EXIT

Figure 2-15. Flow Diagram of P2COC (Cont.)

135

Pg. 3

Shifted right
to reflect

- -' toto I # lines
defined

Set up dictionary
modification

Yes

Yes

MODGEN

Modify reloc o

dictionary

Increment
Rll

Figure 2-15.

R 11 = address of
location to
be processed

Execute instruc.
increment
Rll

Increment R 11
beyond TEXTC
word(s)

Exit from COCGEN
is effected by cod
it executes.

Flow Diagram of P2COC (Cont.)

136

Pg. 4

2.9 IMC

2.9. 1 Purpose

To generate the M:IMC SYSGEN load module for UTS systems only.

2.9.2 Usage

B IMC with RO = temp stack pointer

R3 = PASS2 stack data pointer

R7 = Contro I card PLIST po inter

Return is to READSTRG in P2CCI with RO and R3 intact.

2.9.3 Input

:IMC control command image.

BIG9FLG flag set by XMONITOR if target system> 128K (i. e., BIG9 option specified, see 2.4.8).

2.9.4 Output

M:IMC load module (Table 2-17)

Tab Ie 2-17. M :IMC Load Modu Ie Contents

Label ~ I Length ContentslYalue (in terms of IMC -- Size {wds} Keyword va lues)

SMUIS Value - MAXG+MAXB+MAXOL-1

MING Value - 4

MAXG Value - MAXG

5MBUIS Value - MAXB

SL:THRS Value - THRESHOLD

SL:BKUP Value - 1 if BACKUPALL specified

o if not

SL:EX Value - EXPIRE (converted to hours)

SL:MEX Value - MAXEXPIRE (converted to hours)

S:GUAIS 1 1 MAXG

S:BUAIS 1 1 MAXB

SL:TB 1 1 BLOCK

SL:UB 1 1 UNBLOCK

SL:QUAN 1 1 QUANTA/2

SL:QMIN 1 1 MINQUAN/2

SL:SQUAN 1 1 MINTIME/2

SL:BB 1 1 PERCENT

SL:IOC 1 1 IOCORE

SL:IOPC 1 1 IOPASSCOUNT

137

Table 2-17. M:IMC Load Module Contents (Cont.)

Label Entry I Length Contents;Value {in terms of IMC -- Size (w(s) Keyword va lues)

SL:OLTO 1 1 LOGTIME

SL:OITO 1 1 INTIME

S:QUAIS 1 1 MAXOL

SL:PI 1 1 PI

SL:9T 1 7 Word 0 = T9TAPE

1 = 0

2 = B9TAPE

3=0

4 = 09TAPE

5=0

6=0

SL:n 1 7 Word 0 = T7TAPE

1 = 0

2 = B7TAPE

3=0

4 = OnAPE

5=0

6=0

SL:SP 1 7 Word 0 = TOISC

1 = 0

2 = BOIC

3=0

4 = OOISC

5=0

6=0

SL:C 1 7 Word 0 = X'7FFFFFFF'

1 = 0

2 = TBCORE

3=0

4= TOCORE

5=0

6=X ',C '

SL:ONCB 1 1 COCBUF

SL:CORE 1 1 0

SL:OXMF 1 1 6

138

Table 2-17. M:IMC Load Module Contents (Cont.)

Label Entry I Length Contents/Value (in terms of IMC -- Size (wds) Keyword values)
_ .. __ .. _-- ---- ---"--- ._---

SL:BXMF 1 1 6

SL:OIMF 1 1 3

SL:BIMF 1 1 3

U:MISC 1 SMUIS+1 0

UH:FLG 1/2 SMUIS+1 0

UH:JIT 1/2 SMUIS+1 0

UH:AJIT 1/2 SMUIS+1 0

UH:FLG2 1/2 SMUIS+1 0

UH:TS 1/2 SMUIS+1 0

U:JIT 1 1/4 SMUIS+1 0
or 1/2

UB:PCT 1/4 SMUIS+1 0

UB:SWAPI 1/4 SMUIS+1 0

UB:MF 1/4 SMUIS+1 0

UB:US 1/4 SMUIS+1 0

UB:FL 1/4 SMUIS+1 Beginning with UB:FL+MING entry each

byte has 1 + its byte index from UB:FL

except the last, which is 0

UB:BL 1/4 SMUIS+1 Beginningwith UB:BL+MIG+1 entry, each

byte has -1 + its byte index from UB:BL

UB:APR 1/4 SMUIS+1 0

UB:APO 1/4 SMUIS+1 0

UB:ASP 1/4 SMUIS+1 0

UB:ACP 1/4 SMUIS+1 0

UB:DB 1/4 SMUIS+1 0

UB:OV 1/4 SMUIS+1 0

S:UCYL2 1 1 UCYL

UB:C#2 1/4 SMUIS+1 Entry 0 = 0

Entry 1 = highest PSA cylin. #

Entry 2 = 0

Entry 3 = highest PSA cylin. # - UCYL

Entry 4 to MING = UCYL less than
preceding entry

1 Entry size is 1/2 word when target system> 128K on Sigma 9. Otherwise, entry size is

1/4 word. Determining factor is BIG9 option on UTM command (see 2.4).

2 Generated on Iy for no-RAD target systems.

139

:
I

t

Table 2-17. M:IMC Load Module Contents (Cont.)

Label Entry I Length Contents/Value (in terms of IMC --
Size (wds) Keyword va lues)

S:GJOBTBL 2 MAXG+5 Entry 0 = 0

Entry 1 = KEYIN (fEXTC)

2 = ALLOCAT (TEXTC)

3 = RBBA T (fEXTC)

4 = GHOSTl (fEXTC)

5 = MAXG = 0

SB:GJOBUN 1/4 MAXG+5 0

2.9.5 Interaction

SYNTAX to convert command to stack data block.

COREALLOC to allocate dynamic memory.

MODGE N to generate DEFs.

WRITELM to write output module.

READSTRG EXIT

2. 9. 6 Data Bases

is the keyword table for SYNTAX. KWDTBL

OYNAM is the virgin stack data block for SYNTAX, containing default or limits for each keyword.

2. 9. 7 Oescri pti on

,Upon entry, the total number of DP, 7T, and 9T units defined via :DEVICE is obtained (DEVS, R3) and the

defaults for total, batch and on line values are computed and stored in DYNAM.

A BAL to SYNTAX puts command information and defaults from DYNAM into the stack, pointed to by R5. If

the option UCYl has been used and the target system is not a no-RAD system, the option is ignored and an

error message produced. If the option is used for a no-RAO system, then it must be 1 or 2 or the default 1 is

used and an error message generated. If the command specified UNBLOCK greater than BLOCK, BLOCK is

used. QUANTA and MINQUAN are converted from milliseconds to clock pulses.

MINTIME is converted from milliseconds to clock pulses and compared to the QUANTA value. If MINTIME

is less than QUANTA, an error message is produced and the value set equal to QUANTA. MAXG value is

compared with 3 and if less, is defaulted to 8 and produces an error message. If MAXG+MAXB+MAXOL is

greater than 255, a message is generated indicating IMC processing has been terminated and control returned

to P2CCI.

COCBUF value is then compared with 255 and if greater is set to 255 and an error message is generated. The

values for EXPIRE and MAXEXPIRE are converted to hours and compared (EXPIRE must be ~ MAXEXPIRE) unless

-1 specified indicating never for expiration or retentio!" period. The values specified for DP, 7T, and 9T in

terms of total, batch and online are compared with the total defined via :DEVICE commands. Should any

value exceed the total, an appropriate message is produced indicating the parameter in error and the value

to be used. Then, COREALlOC is used to allocate memory. A BAl to MOOGEN begins generation of DEFs

140

after the data have been moved from the stack to the data record. A short loop to generate UB:BL and UB:FL

exits from MODGEN with its BDRs, so another BAL to MODGEN is necessary to finish generating DEFs. Then,

a BAL to WRITELM writes the output module and IMC exits to READSTRG in P2CCI.

2. 9. 8 IMC Messages

***UNBLOCK> BLOCK - SET EQUAL TO BLOCK

***MINTIME > QUANTA -- QUANTA VALUE USED

***LOGTIME OUT OF RANGE -- DEFAULT (3) USED

***INTIME OUT OF RANGE -- DEFAULT (15) USED

***EXPIRE OR MAXEXPIRE OUT OF RANGE --

999 DAYS, 23 HOURS USED

***UCYL VALUE INVALID -- DEFAULT (1) USED

***MAXEXPIRE < EXPIRE -- EXPIRE VALUE USED

***COC BUFFERS> 255 -- 255 USED

***MAXG < 3 -- DEFAULT (8) USED

***MAXG > 255 -- DEFAULT (8) USED

***XXXXONLINE EXCEEDS TOTAL ON SYSTEM -­

*XXXX*USED

***XXXXBATCH EXCEEDS TOTAL ON SYSTEM -­

*XXXX*USED

***XXXXTOTAL EXCEEDS TOTAL ON SYSTEM -­

*XXXX*USED

***USERS > 255 - IMC ABORTED

***SWAPPER NOT DP -- UCYL IGNORED

141

}

}

The value used for the specified

parameter is in error. The

designated value is used. IMC

continues.

The value used for the specified

parameter is in error. The

designated value is used. IMC

continues.

The 9T, 7T or disc pack value for online

batch or tota I parameter exceeds the

total number of device units specified

via :DEVICE commands. The *XXXX*

value is used. IMC continues.

The sum of MAXG + MAXOL+MAXB

exceeds 255. IMC restores the temp

stack and exits to READSTRG in P2CCI.

UCYL has been specified for a target

system in which the PSA is not defined

on a disc pack. IMC ignores the option

and continues processing.

2.9.9 Flow Chart

options in
tabular form

no

Convert QUANTA
and MINQUAN
to clock pulses

Pg. 2

From DEVS,R3

Total=Total defined
Batch=ToIjal -1

or 0
On" =

Error
message

Set default
produce error
message

Set default
produce error :

message ... "_~

Set Unblock =
Block

Set
default

Figure 2-16. Flow Diagram of IMC

142

P g. 1

Q Pg. 2

MINTIME
no

Default Produce error
--=n-~ message ---+- MINTIME to

QUANTA

~XG < 3'~ 255

Set default and--I
~=----l~produce error no

" ?

~AXG+
~"j MAXOL+

MAXB < 255
T

message

! Produce error ~!
>--~ message IVEUP

1_-- _. ___ ._.J Pg. 4

OCBUF", Set default

"'~' 2?55/'~n-o-~produce error I
", o/.' es message __ . __ ~

no

Convert value
to hours

yes

~-.---

~~~PIRE,- .~. G ~no-"""~. ~. ' 
Pg. 3 Pg. 3 

_____________________________________________ J 

Figure 2-16. Flow Diagram of IMC (Cont.) 

143 



nO 

Convert va I ue 
to hours 

--- --1 
Move data 
to SECT 0 
area 

MODGEN 

Generate 
DEfs, REFs 1 

Set MAXEXPIRE 
to EXPIRE 
produce error 
message 

Default = 
total on system 

Default= 
total -lor 

o 

Default = 1 

Figure 2-16. Flow Diagram of IMC (Cont.) 

144 

CONVERT 
Convert value 
for message 

Pg. 3 

Produce 
error 
message 

convert va lue Produce 
for message error message 

P .~ 

Convert Produce 
value for error message 
message 



WRITE 
M:IMC 
Load Module 

Restore stack 

Convert value 
inD1 from 

hex to 
EBCDIC 

'-- RETURN) 

Figure 2-16. Flow Diagram of IMC (Cont.) 

145 

Pg. 4 



2. 10 SPROCS 

2. 10. 1 Purpose 

To process SPROCS PASS2 control commands, creating the M:SPROCS load module for UTS systems only. 

2. 10.2 Usage 

B SPROCS 

2. 10.3 Input 

with: R7 pointing to control card PLIST 

RO pointing to temp stack pointer 

RO and R3 saved 

Return is to REAOSTRG in P2CCI. 

Control card (:SPROCS) 

TREEOO is the word in the TREE built by COREALLOC containing the size and address of the SECT 00. 

BIG9FLG flag set by XMONITOR if target system >128K (i.e., BIG9 option specified; see 2.4.8). 

2. 10.4 Output 

M:SPROCS module (Table 2-18). 

Table 2-18. M:SPROCS Load Module Contents 

Label Entry Length ContentsNalue 
Size 
(Wds) 

PPROCS Value - = 1 + # of Mon itor overlays required 

(UTM Keyword and defaults) + 

#of shared processors required 

(NAMES + default)+- MOSPACE+ 

PSPACE+POSPACE+number of 

processors overlays required 

(decimaloptions+defaults) 

MAXOVLY Value - 1 + # of Monitor overlays + 

MOSPACE+first processor index 

PTEL Value - Index of TEL (first default processor) 

(PTEL=MAXOVL y) 

PCCI Value - Index of CCI (second default processor) 

POEL Value - Index of DELTA (seventh default 

processor) 

146 



Table 2-18. M:SPROCS Load Module Contents (cont.) 
----------...,r-------t-------r-------.--

Label 

BGNPMPRC 

ENDPMPRC 

PNAMEND 

SPSIZE 

P:NAME 

P:NAMEND 

NXTPOVLY 

PH:PDA 

PB:LNK 

PX:HPp
t 

PX:TPp
t 

PB:PSZ 

PB:REP 

PB:UC 

PB:PVA 

PB:CU
tt 

PB:DCl
t 

P:SA 

~ 
Size 
(Wrds) 

Value 

Value 

Value 

Value 

2 

1 

1 

1/2 

1/4 

1/4 or 1/2 

1/4 or 1/2 

1/4 

1/4 

1/4 

1/4 

1/4 

1/4 

1 

PPROCS 

1 

1 

PPROCS 

PPROCS 

PPROCS 

PPROCS 

PPROCS 

PPROCS 

PPROCS 

PPROCS 

PPROCS 

PPROCS 

PNAMEND 

Contents/Va lue 

PDEL-1 

10 

PPROCS less processor overlays and POSPACE 

Second PSPACE option. This value, in No-RAD 

systems must be ~ # of granules per physical 

cylinder or the latter value is substituted. 

First doubleword=O. Others = TEXTC names for 

monitor overlays, MOSPACE entries with TEXTC 

M:DUMLM, TEXTC names for shared processors, 

PSPACE entries with TEXTC M:DUMLM, and the 

rest = O. Names are ordered with defaults first. 

Is the address of last non zero entry+2 (i .e., 

address of 1st zero entry). 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
Bits 8 to 31 of each word = O. 

Bits 0 - 7 represent the flag options associated 

with the processor whose name is in the corre­

sponding entry in P:NAME. Monitor overlays 

and M:DUMLM have zero flags 

Bit 0 = J flag 

Bit 1 = S flag 

Bit 2 = D flag (implies S) 

t Entry size is 1/2 word when target system> 128K on Sigma 9. Otherwise, entry size is 1/4 word. 
Determining factor is BIG9 keyword on :UTM command (see 2.4). 

tt 
These tables are generated only for No-RAD systems. 

147 



Table 2-18. M:SPROCS Load Module Contents (cont.) 

Label Entry -- Length Contents/V a lue 
Size 
(Wrds) 

Bit 3 = P flag (implies S) 

Bit 4 = M flag 

Bit 5 = T flag 

Bit 6 = B flag 

Bit 7 = G flag 

Bits 5,6,7 = C flag 

P:AC 2 PNAMEND First entry = X'7FFFFFFF', -1; other entry = 0 

P:TCB 1 PNAMEND 0 

PH:DDA 1/2 PNAMEND 0 

PB:DSZ 1/4 PNAMEND 0 

PB:DCBSZ 1/4 PNAMEND 0 

PB:HVA 1/4 PNAMEND 0 

PBT:LOCK Bits PNAMEND 0 

2. 10.5 Interaction 

COREALLOC 

SYNTAX 

MODGEN 

WRITELM 

READSTRG 

2. 10.6 Data Bases 

KWDTBLO 

DYNAM 

FLGS 

FLAGS 

STDOLY 

STDPROC 

is used to set up memory for load module generation 

is used to decode the control command 

is used to generate DEFs 

is used to write the M:SPROCS module 

is exit location 

is a two part input table for SYNTAX. The first part is a set of SYNTAX control halfwords 

that permits SYNTAX to process the non-standard format of the :SPROCS card (see 

SYNTAX Chapter 6.8). The second part is a normal SYNTAX Keyword table. 

is the virgin stack data block for SYNTAX, containing two doubleword table 

pointers and four normal keyword entries. 

is a byte table of valid flag characters 

is a word table corresponding .to FLGS containing an internal representation of each flag. 

is a two-word-entry table of default monitor overlay names in TEXTC form. 

is a two-plus-n-word-entry table of default processor names. Each entry has the 

name in TEXTC fonnat in the first two words, followed variously by any number of words 

containing either a binary number (indicating a number of overlays) or up to four TEXT 

flag characters (left-adjusted, blank-filled). 

148 



2. 10.7 Subroutine 

SQUEEZE moves a string of words in memory from one location (starting at the address in R2) to another 

(starting at the address in R 12). As each word in moved, its old location is zeroed and 

R2 and R 12 are incremented. If a single zero word is encountered, it is not moved (R2 is 

incremented, but R 12 is not). When two consecutive zero words are encountered, 

SQUEEZE returns *R 11 with R2 pointing to the first zero word, R 12 pointing to where it 

was moved to, and R 13 zero. 

2.10.8 Description 

SPROCS begins, unconventionally, by using COREALLOC to obtain some work space. 400 words are 

reserved for REFDEF stack and EXPRESSION stack, and the remainder of available core for the data record 

and its relocation dictionary. Then preparation is made to use SYNTAX to decode the control command. 

The data record (from TREEOO is divided in half. The end address of each half is put in the table upper 

limit word of the corresponding table pointer in DYNAM. STDOL Y is moved to the first half, and the 

address of the word after the last word moved is put in the table pointer in DYNAM. STDPROC is 

moved to the second half, and its table pointer set up similarly. Then SYNTAX decodes the card image. 

The result in memory is the same as before except that more entries may have been added to the two tables 

and the table pointers updated accordingly (now in the copy of DYNAM in the stack). New entries are 

in the same format as the default entries (see DATA BASES). (Section 2. 10 .6) If a no-RAD system is being generated, 

SPROCS, upon return from SYNTAX, validates the second value specified on the PSPACE option. This value repre­

senting the size reserved for one space processor, must be less than or equal to the number of granules per physical 

cylinder on the dis~ pack containing the PSA area. See 2.2.7 for definition of this number. Should the PSPACE 

value be invalid, the previously computed number is substituted and an error message produced. The term S:CYLSZ 

in the message refers to this completed value. SPROCS then adds MOSPACE M:DUMLM entries to the first table. 

The SQU EEZE subroutine is used to attach the second table to the end d the first one and remove any extraneous 

zero words from it. If SQU EEZE did not reach the end of the second table (because of two consecutive zero words 

in the middle of it) it is reentered at the skip-zero-words point unti I it finishes the table. Then PSPACE M:DUMLM 

entries are appended to the end of the (now only one) table. The table now contains no zero words. 

Every word in the table is one of four types: 

1. First word of a TEXTC name (byte 0 between 1 and 7). 

2. Second word of a TEXTC name (follows first word always). 

3. Binary number representing number of overlays (byte 0 = 0). 

4. Flag word in TEXT form (byte 0 greater than 7). 

The name count is now initialized to one, the overlay count to POSPACE and the NAME loop is entered. 

NAME looks at all but type 2 words in the table. Name count is incremented for each type 1 word. The 

next word (type 2 ) is skipped and an internal flag word is initialized to zero. Words are then examined 

until the next type 1 is encountered. Type 3 words are added to the overlay count. Each byte of a type word is 

converted via FLGS and FLAGS to an internal representation and OR led into the internal flag word (R 15) 

unless it is not valid or is P when the name is not :PO through :P9, in which case it is ignored with an 

explanatory message. If the P flag is validly encountered, the name (previous type 1 and 2 words) is changed 

from :Pn to :Pnn. The internal flag word is stored in the word following the previous type 2 word. When 

the next type 1 word or zero is encountered, SQUEEZE is ca lied to slide it and what follows down to the 

149 



r 

internol flag word, unless no flags were encountered, in which case the SQUEEZE is to the type 2 word. 

When NAME is finished with the table, it consists of only two- or three-word entries. The first two words are 

TEXTC name, and the third, if it exists, is a flag word, in internal form. Name count has PNAMEND in it, and 

overlay count has PPROCS-PNAMEND. At this point MODGEN is entered and the tables P:NAME through P:SA 

are DEFied. The entry size of two tables, PX:HPP and PX:TPP depends on whether or not the BIG9 option was 

specified on the :UTM command. This information is passed via a DEFied location in P2CCI stack. If BIG9 has 

been specified, the entry size is 1/2 word, otherwise, these tables have byte size entries. Tables, PB:C# and 

PB:DC# are only generated if the target system is to be of the NO-RAD type. Now that the core location of P:SA 

is determined, the flag words are converted to P:SA form and put in corresponding entries to P:SA. As they are 

moved, SQUEEZE squeezes them out of P:NAME, resulting in a doubleword table of TEXTC names. There can 

be no overlays of the end of the two or three word entry and P:SA because there are at least 4 byte tables between 

P:NAME and P:SA. 

Then the rest of the module is generated, WRITELM writes it to the M:SPROCS file, and SPROCS exits. 

2.10.9 SPROCS Messages 

***INSUFFICIENT SPACE -- SPROCS ABORTED 

***ILLEGAL FLAG f FOR XXXXXXXX -

FLAG IG NORED 

****PSPACE SIZE >S:CYLSZ--S:CYLSZ USED 

150 

There is insufficient room in the table area for pro­

cessor overlays. SPROCS restores the tempstack and 

exits. 

The flag "f" is not an S, J, P, 0, M, T, B, G or C 

or is a P when XXXXXXXX is not Pi. Only "f" is 

ignored, even when it occurs in a multiflag option 

field. SPROCS continues. 

For a no-RAD target system, the second value on 

the PSPACE option is not ~ to the number of granu les 

per physical cylinder (S:CYLSZ) for the disc pack on 

which the PSA area has been defined. SPROCS sub-

stitutes the correct value and continues. 



2. 10. 10 Flow Charts 

C:TER~ 
COREALLOC 

Get work 

area 

Divide data record 
area for overlay 
table and PROC 
table 

Store upper limits 
of overlay + 
PROC tables in 
DYNAM 

ove e au ts 
(STDPROC and 
STDOL Y) to table 
and set pointers 
to end 

-~-----~-- ! 

value store 
M:DUMLM'in 
~rlay table at end 1 .... 1 

SQUEEZE 
Move PR OCS table 
to end of over lay 
table delete zeros I 

I 

'------ ________ .1 
Pg. 3 

For each PSPACE 
value store 
'M:DUMLM' inl 

PRO~: P902

J 

Figure 2-17. Flow Diagram of SPROCS 

151 

Pg. 1 



Entry is name 
skip second 
word 

Check locations 
in table 

Entry is not name­
reduce to max of 
one word 

Generate 
P:NAME to 
P:SA 

Check for flags 
in table-store 
flags in P:SA 

Write 
M:SPROCS 

Entry is flag 
validate flags 

Pg. 2 

store. in next location 

P:NAME now 
doubleword 
tables 

Restore stack 

~ EXIT 

Figure 2-17. Flow Diagram of SPROCS (Cont.) 

152 

) 



SQUEEZE 

Move to new 
location 
(R 12 address) 

Increment 
starting 
address (R2) 

yes 

Pg. 3 

R2 = 
./ Starting Addr. 

RETURN 

no 

'------------------------------------------------------------------------------------
Figure 2-17. Flow Diagram of SPROCS (Cont.) 

153 



2. 11 FRGD 

2. 11. 1 Purpose 

To process the :FRGD and :INTLB commands and to generate the load module M:FRGD which defines the 

foreground characteristics for BPM/BTM systems only. 

2. 11.2 Usage 

B FRGD 

With R7 pointing to the control card PLIST 

RO pointing to the temp stack pointer 

R3 pointing to the PASS2 stack data 

Return is to READSTRG (if :INTLB was processed) 

READOK (if no :INTLB encountered) 

R3 and R7 are equ iva lent to that upon entry. 

2. 11. 3 Input 

Control Cards (:FRGD and optional :INTLB) images 

2. 11. 4 Output 

M:FRGD load module (Table 2-19). 

N. B: 

The column entitled "Internal Control" refers to the FRGD processor internal control routine that generates 

the tables or values and apply to all subsequent tables up to the next entry in the column. 

Table 2-19. M:FRGD Load Module Contents 

Label ~ Length Contents or Va lue Internal Control -- ize (Wrds) 

NFRGD Value - NFRGD DNFRGD 

FPDESIZE Value - 12 II 

FPDTLINK Value - 0 " 

FPDTCF Value - 1 " 

FPDTNAME Value - 2 " 
FPDTP1 Value - 4 " 

BAFPDTP1 Value - 16 II 

FPDTSA Value - 4 II 

FPDTP2 Value - 5 .. 

154 



Table 2-19. M:FRGD Load Module Contents (cont.) 

Label ~ Length Contents or Value Internal Control -- ize (Wrds) 

BAFPDTP2 Value - 20 DNFRGD 
FPDTTCB Value - 5 II 

FPDTTF Value - 6 II 

BAFPDTTF Value - 24 II 

FPDTTA Value - 6 II 

FPDTDA1 Value - 7 II 

FPDTDA2 Value - 8 II 

FPDTCSSO Value - 9 II 

FPDTCSS1 Value - 10 II 

FPDTCSS2 Value - 11 II 

FPDTH1 1 1 Address of F PD T II 

FPDTH2 1 1 0 II 

FPDTT 1 1 0 II 

FPDTIAC 1 1 0 II 

FPDT 12 NFRGD 1st word=FLIN K to next entry II 

other words = 0 

FPDTEND 1 1 (is end of FPDT + 1) II 

NINT Value - NINT DNINT 

FIDTLINK Value - 0 II 

FIDTPDA Value - 0 II 

FIDTCF Value - 1 II 

FIDTIL Value - 2 II 

BAFIDTIL Value - 8 II 

FIDTGL Value - 2 II 

i 

FIDTWD Value - 3 II i 

FIDTPSM Value - 4 II 

FIDTBAL Value - 5 II 

FIDTLPSD Value - 6 II 

FIDTXPSD Value - 8 II 

FIDTMCLK Value - 3 II 

FIDTMCSA Value - 4 II 

FIDESIZE Value - 12 II 

MCLKH 1 1 0 II 

MCLKT 1 1 0 II 

FIDTH 1 1 address of FIDT II 

----

155 



Table 2-19. M:FRGO Load Module Contents (cont.) 

Label ~ Length Contents of Va lue Interna I Contro I -- Size (Wrds) 

FIOTIAC 1 1 0 ONINT' 
FIDT 12 NINT 1st word = FLINK to next entry II 

Other words = 0 

FIOTEND 1 1 (is end of FIDT+1) II 

CLOCKS 2 3 0 .. 
NCTQE Value - CTO OCT a 
CTOESIZE Value - 4 .. 
CTOLINK Value - 0 .. 
CTOINT Value - 1 .. 
CTONAME Value - 2 II 

CTOH1 1 1 address of CTO .. 
CTOH2 1 1 0 II 

CTOT 1 1 0 .. 
CTO 4 CTO 1st word = FLINK to next entry .. 

Other words = 0 

INTSPGMT 4 INTS See table 2-21 for contents INTS 

INTSPGMTENO 1 1 (is end of INTSPGMT+l) .. 

RJIT - 164 See Insert Below DRJIT 

FCOMLL 1 1 0 II 

FCOMUL 1 1 0 II 

RESDFLL 1 1 0 II 

RESDFUL 1 1 0 .. 
FBUFLL 1 1 0 II 

CTINT Value - CT DCT 

FDFRSIZE Value - Interrupt group of CT .. 
CTWDA 1 1 X'6D201200 '+level of CT interrupt II 

(i .e., write direct to arm, enable 

CT) 

CTIDE 1 2 0 II 

CTGL 1 1 Group level indicator of CT II 

CTWD 1 5 1st word = X'6D201700 ' level of CT .. 
interrupt (i .e., write direct to 

trigger CT) other words = 0 

CTPSD 1 6 Words 0 - 1 = 0 .. 
Words 2 =X '4QOOOOOO'+CNTASK (REF) 

156 



Table 2-19. M:FRGD Load Module Contents (cont.) 

·Label --

CTXPSD 

CTINTENV 

CURPDA 

CURl NT 

BKPSD 

CTQHC 

CTQTD 

CTDFRFLG 

FOFRFLAG 

FOFRINTS 

NFIPOOL 

NFFPOOL 

FIBUFSIZE 

FFBUFSIZE 

FCOMSIZ 

RESDFSIZ 

RESDFSIZP 

IBUFTBL 

FBUFTBL 

STOPTBL 

INTLBSIZ 

INTLB1 

INTLB2 

RJIT Contents 

Word 0 =0 

Entry 
Size 
(Wrds) 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

Value 

Value 

Value 

Value 

1 

1 

1 

1 

1 

1/4 

Value 

1/2 

1/2 

Words 1-2 = :SVSRT (TEXT) 

Words 3-70 = 0 

Words 71 = $+4 

Length 

1 

1 

1 

1 

2 

1 

1 

1 

1 

FDFRSIZ 
+1 

-
-
-
-
1 

1 

1 

2*FIPOOL 

2*FFPOOL 

#tape de-
fined on 
system 

-
# of INTLB 

# of INTLB 

Words 72-73 = M:OC (TEXTC) 

Word 74 = $+2 

Word 75 =0 

Word 76 = X 1002000031 

Word 71 = X 100060002 1 

Words 78 - 163 = 0 

Contents of Value 

Word 3 = X 1070000001 

Word 4-5 = 0 

XPSD,8 CTPSO 

X 180000000 I+CTI DE 

0 

0 

0 

0 

0 

0 

0 

0 

FIPOOL 

FFPOOL 

256 

512 

FCOM*512 

RESDF*512 

RESDF*512 

0 

0 

0 

# of INTLB Entries 

See Tab Ie 2-20 for contents 

See Table 2-20 for contents 

157 

Internal Control 

OCT 

II 

II 

II 

II 

II 

II 

II 

II 

II 

DOTHERS 

II 

II 

II 

II 

II 

II 

II 

II 

II 

DINTLB 

II 

II 



2. 11.5 Subroutines Used 

CHARSCAN 

DECSCANt 

HEXSCANj 

QUOTSCAN 

NAMSCAN 

(used to check a specific character for syntax) 

(used to obtain a field whose value is decimal/hexadecimal). 

MODIFY} 

PRINTMSG 

{used to scan a field containing a Keyword} 

{used to scan a field containing a name} 

(used to generate the load module) 

{display error information} 

2. 11.6 Special Restriction 

The option INTS must be contained wholly on one physical card image. 

2. 11. 7 Description 

2. 11. 7. 1 Overview 

The FRGD processor is entered when P2CCI encountersthe :FRGD command. The processor initializes its 

temp stack area by moving the DYNAM table into the stack. It then obtains 100 pages of core for use as 

its work area to generate the load module M:FRGD. 

The initial syntax analysis of the :FRGD command is performed in the GETKEY routine which processes a 

parenthetical expression up to the first comma and then determines what the Keyword is and enters an 

appropriate routine which in turn processes the remainder of the expression and returns. This continues 

until the entire command is processed. Then the FRGD portion of the load module is generated. When completed, 

the next control command is read and if it is :INTLB it is processed by the GETOPlB and OPlBENT routines. 

GETOPlB syntactically checks the parenthetical expression and OPLBENT saves the Ilabel" and "loc" in 

intermediate tables (See Table 2-20). The load module is then written and FRGD releases its work area 

restores the temp stack and returns to P2CCI at READSTRG. 

When the FRGD processor obtains the next control command and it is not :INTLB, the load module M:FRGD 

is written, and the work area released, the stack restored and control is returned to P2CCI at READOK. 

When FRG D requests the next control command and it is a Monitor control command, P2CCI will enter 

FRGD at FRGDlMX and the remainderof the FRGD procedure is as described for no :INTLB encountered. 

2. 11. 7.2 Details 

When the GETKEY routine is entered, it obtains a Keyword and determines through the FRGDOPT table which 

subroutine to enter for further processing. For all Keywords except "INTS" the subroutine obtains the value 

(i. e., value, address, or size in the parenthetical expression), converts it to binary and checks if the va lue 

is within range. The value is saved in the temp stack for use in generating the load module. If the 

158 



KeyV(ord is INTS, the subroutine entered generates an intermediate table (see Table 2-20) containing the 

infonnation from a II expressions within the INTS option. When the complete parenthetical expression has 

been processed, GETKEY returns and the next expression is analyzed. 

The LMFRGD routine allocates the work area for the M:FRGD load module and generates the data. The 

procedure used when generating the necessary SECT. 00 information is controlled by various tables within 

the FRGD processor. The routine PROCDEF interrogates a given table and performs the necessary function 

according to Figure 2-18: 

Word 0 
NAME 

(TEXTC F~MAT) 

CODE I VALUE 

o 78 31 

where 

NAME a TEXTC formatted name of a value, table or data word which is to be externally 

defined. 

CODE = 0 

= 1 

NAME is to be equated to VALUE 

NAME is to be equated to the address of a data word or table where VALUE 

is the number of words in table 

= 2 NAME is to be equated to the value found in the temp stack pointed to by 

the displacement VALUE. 

= 3 NAME is to be equated to the address of a table or series of tables to be 

generated. This code indicates that each table or series of tables will be 

generated according to pre-described algorithms 

CODE = 4 NAME is to be equated to the value pointed to by VALUE multiplied by 4. 

Figure 2-18. PROCDEF Table 

The internal tables controlling the generation of the ":FRGD" command's portion of the "M:FRGD" load module 

consist of: 

DNFRGD 

DNINT 

DCTQ 

DINTS 

DRJIT 

DCT 

DOTHERS 

for the NFRGD option 

if NINT -I 0 

if CTQ -I 0 

if the INTS option was spec ified 

always used 

for the CT option, where (X'60'~CT~X '13f1) 

a Iways used. 

When an internal controlling table is being processed, each entry's code is interrogated. An appropriate 

routine is _ then entered to generate the necessary load module information. 

159 



When the code is 0, the routine GENTO, is entered and it sets up the PLIST required by the MODIFY 

routine for the generation of an external definition whose valwe is a constant. 

When the code is 1, the routine GENTl is entered and it sets up the PLIST required by the MODIFY 

routine for the generation of an external definition whose value is the address in the load module of a data 

word. The data word may be a one-word table or it may be the first word of a multi-word table. Each 

word is set to zero. 

When the code is 2, the routine GENT2 is entered and it sets up the PLIST required by the MODIFY 

routine for the generation of an external definition whose value is an constant. 

When the code is 3, the routine GENT3 is entered. The address of the current internal table IS entry is used 

to search another internal table (vix., INVECT), for a match. When found, the relative position of the 

match in the INVECT table is used as an index into the OUTVECT table. The OUTVECT entry identifies 

the entry point to a special subroutine which generates the desired data, tables, external definitions or references 

for a given parameter. These special subroutines are referred to as "Special Compile Processors". 

When the code is 4, the routine GENT4 is entered and it sets up the PLIST required by th~ MODIFY 

routine for the generation of an external definition whose value is an expression which is evaluated 

into a constant. The expression is a constant or value multiplied by four (e. g., a byte displacement into 

a table). 

FRGD proceeds to finish creation of SECT. 00 by generating the information concerning :INTLB command. 

The internal table controlling this portion of the load module generation is DINTLB. 

160 



Table 2-20. :INTLB INTERMEDIATE TABLES 

OP 0 0 OPL1 

OPL2 - - - -
- - - - - OPLn 

LC 0 0 LOC 1 

LOC? - - - -
- - - - LOCn 

where 

OP is the op-Iabel table pointed to by INTLBOP 

LC is the location table pointed to by INTLBLOC 

Table 2-21. INTS INTERMEDIATE TABLE 

--------------------------.. _----, 

IN #E NAV 

UNUSED 

(INTSPGMT) #C Cj C? C3 

- - - - - - - -
- - - - Cn -
FIMAX PAGES SIZE 

where 

IN = the INTS table pointed to by INTSAREA 

#E=number of entries in table 

NAV = next available address in table 

#C = number of characters in name 

Ci' C2, ••• Cn = characters in name 

161 

Word 0 

2 

3 

4 

5 



FIMAX = FIMAX value from ,INTS expression 

PAGES = Pages value from INTS expression 

SIZE = Size value from INTS expression 

INTSPGMT = Starting address of the table DEF for M:FRGD 

2. 11.8 FRG D Messages 

***DELIMITER ERROR 

***UNKNOWN KEYWORD 

***DELIMITER ERROR, PROCESSOR 

ABORTED 

***INVALID DECIMAL VALUE 

***INVALID HEXADECIMAL VALUE 

***VALUE ERROR, DEFAULT TAKEN 

***NAME INVALID or > 11 CHAR. 

OR> 2 CHAR. 

***SIZE/PAG ES/FIMAX VALUE 

INVALID 

***NOT ENOUGH CORE AVAILABLE 

TO GEN LM, PROC. ABORTED 

***GEN. OF LM UNSUCCESSFUL 

***CT FIELD NOT = >60 OR 

=< 13F, PROC. ABORTED 

***NFRGD FIELD MISSING OR 

INVALID, PROC. ABORTED 

Invalid delimiter encountered. FRGD continues at next 

parenthetical expression. 

The keyword in a parenthetical expression is unknown. 

FRGD continues at next parenthetical expression. 

The end of ":FRGD" or ":INTLB" command cannot be 

found. FRGD returns to PASS2 control. 

The value field is expected to be either decimal or 

hexadecimal. FRGD continues at next parenthetical expression. 

The value specified is less than the default or is less 

than a previously defined value of the same type. 

FRGD continues at next parenthetical expression. 

The name is not alphanumeric (at least one alpha), 

is greater than 11 characters in "INTS" option, or is 

greater than two characters in INTLB command's options. 

FRGD continues at next parenthetical expression. 

The size, page, or fimax value after the INTS option is 

not a valid decimal number. FRGD continues at next 

parenthetical expression. 

The work area for FRG D has been used and no more 

is available. FRGD returns to PASS2 control. 

There is not enough work area available. FRGD returns 

to PASS2 control. 

The address field for the CT option is too small or too 

large, or there is no CT option specified FRGD returns to 

PASS2 control. 

The value field for the NFRGD option is invalid or 

missing. FRGD returns to PASS2 control. 

162 



2. 11.9 Flags Used by FRGD 

VNFRGD NFRGD field's value 

VCT CT field's value (address) 

VFCOM 

VRESDF 

VFIPOOL 

VFFPOOL 

VNINT 

VCTO 

LMAREA 

WORKSIZE 

INTSAREA 

SAVER 1 

#INTLB 

INTLBOP 

INTLBLOC 

#AVTENT 

= 

= 

= 

= 

= 

= 

FCOM field's value (size) 

RESDF field's value (size) 

FIPOOL field's va lue 

FFPOOL field's value 

NINT field's value 

CTO field's value 

base address in work area (foHowing INTS option's information). 

number of pages in work area. 

base address of INTS option's information and also entire work area. 

control command type which foHows II:FRGD" command: 

= first four characters of next command if not ":INTLB II command. 

= -1 if next command is a Monitor system command (i.e., end of file 

to PASS2). 

= 0 if ":INTLB" command was found; Initially, SAVER1=-1 

number of entries in intermediate table generated as a result of the ":INTLB" 

command 

address of OP table 

address of LC tab Ie 

obtained from the REF AVRTBLGTH # tapes drives defined on system 

2. 11.10 Internal Routines 

FRGD 

FRGDOP 

INTLBOPC 

FRGDLMX 

GETKEY 

PNFRGD 

PCT 

PFCOM 

PRESDF 

PFIPOOL 

main entry, initializer, and controller 

Register 3 = address of PASS2 information in temp stack 

Register 7 = address in temp stack of command processing PLISTs. 

process FRGD command's parenthetical expressions. 

process INTLB command s parenthetical expressions. 

there is no INTLB command, but instead, there is a Monitor system control command 

(i.e., end of file to PASS2). 

check for "(", get keyword, and check for 11,11 in next parenthetical expression. 

set conditions for processing value for NFRGD option. 

set conditions for processing value for CT option. 

set conditions for processing value for FCOM option. 

set conditions for processing value for RESDF option. 

set conditions for processing value for FIPOOL option. 

163 



PFFPOOL 

PNINT 

PCTa 

COMRET 

COMRETA 

PINTS 

GETVAL 

GETOPLB 

OPLBENT 

LMINT 

CNVDEC 

CNVHEX 

LMFRGD 

WRITLM 

WRITETM 

PROCDEF 

set conditions for processing value for FFPOOL option. 

set conditions for processing value for NINT option. 

set conditions for processing value for CTa option. 

set conditions for value in decimal. All other values, above, are hexadecimal. 

obtain value. 

process INTS option. 

obtain value, convert it to binary, check if value is va.lid. 

(i. e., use default or use value), and check for ") ". 

Register 13 = 0 value in hexadecimal 

= 1 value in decimal 

Register 14 = address in temp stack where value is to be saved. 

check for "(", get oplabel, check for ", II get location value, and validate it, 

and check for ") II in :INTLB command's next parenthetical expression. 

Register 2 = address in work area of next avai lable word for interim 

tables. 

saves oplabel and location value in next available entry in interim tables for 

: I NT LB command. 

Register 12 = hexadecimal location 

Register 13 = oplabel in TEXT format 

Register 2 = address of next available word in work area 

this routine takes the interim tables generated by OPLBENT and adds them to 

SECT .00 portion of the M:FRGD load module. 

convert EBCDIC decimal to hexadecimal. 

exit: Register 12 = converted value 

convert EBCDIC hexadecimal to hexadecimal 

exit: Register 12 = converted value. 

allocate work area for the M:FRG D load module. Request the generation of load 

module information according to the internal control tables. 

Register 3 = address in temp stack of PASS2 information 

Register 6 = address in temp stack of FRG 0 processor information 

Register 7 = address in temp stack of PLIST used in processing control command 

Register 15 = Register 3 = temporary save of Register 3. 

write M:FRGD load module to M:FRGD file. 

do actua I write for M:FRGD load module parts. 

Register 8 = buffer address 

Register 9 = buffer size (.bytes) 

Register 10 = address of key (load module elements key) 

interrogate each internal control table's entry, and give control to appropriate 

processor according to entry's code. 

164 



GENTO 

GENTl 

GENT2 

GENT3 

GENT4 

VALU 

MODF 

Register 2 = address in work area to generate tables. 

Register 5 = address of next entry in internal control table. 

Register 15 = address of end of current internal control table. 

processes Code = 0 type internal control table entries. 

Register 2 = address in work area of next available word. 

Register 5 = address of current internal control table entry. 

Register 7 = address of MASTER PUST for MODIFY. 

processes Code = 1 type internal control table entries. 

Register 2 = address in work area of next avai lable word. 

Register 5 = address of current internal control table entry. 

Register 7 = address of MASTER PUST for MODIFY. 

processes Code = 2 type internal control table entries. 

Register 2 = address in work area of next avai lable word. 

Register 5 = address of current internal control table entry. 

Register 7 = address of MASTER PUST for MODIFY. 

processes Code = 3 type internal control table entries by 

searching INVECT table for a corresponding address equivalent to the 

current i nterna I contro I table entry, and then enter appropriate routine 

as indicated by the same relative entry in OUTVECT table. 

Register 2 = address in work area of next avai lable word. 

Register 5 = address of current internal control table entry 

Register 7 = address of MASTER PUST for MODIFY 

processes Code = 4 type internal control table entries. 

Register 2 = address in work area of next available word. 

Register 5 = address of current internal control table entry 

Register 7 = address of MASTER PUST for MODIFY 

obtain the value from the internal control table entry whose code 

is 0, 1, or 2. 

Register 13 = 0 

and code = 0 value is in current entry 

and code = 2 value in current entry is index 

in temp stack where value is found. 

Register 1310 value is relative to the base address of SECT. 00 in load module. 

exit: Register 14 = actual value. 

set up MASTER PUST and sub-PLISTs with desired information (DEF, EXPR, or DICT) 

and then go to MODIFY routine. 

Register 4 = VALUE 1, if applicable 

Register 5 = address of NAME1 

Register 7 = address of MASTER PUST for MODIFY 

Register 12 = relative address in temp stack of desired sub-PUST (DEF, EXPR, or DICT). 

165 



Register 13 = for DEF, DICT = NAME2 

for EXPR = address of NAME2 

Register 14 = VALUE2 
Register 15 = RELDICT. 00 code, if applicable 

The following is a list of the routines that generate the DEF,RELDICT.OO changes and the data in SECT. 

for the appropriate tables. 

CFPDTH 1 CCTPSD CFDFR 

CFPDT CCTXPSD 

CFIDTH CCINTENV 

CFIDT CBKPSD 

CCLOCKS CFCOMSIZ 

CCTQH1 CRESDFSIZ 

CCTQ CRESDFSIZP 

CINTSPGMT CINTLB 1 

CRJIT CINTLBSIZ 

CCTWDA CINTLB2 

CCTIDE DOIBTB 

CCTGL DOFBTB 

CCTWD DOSPTB 

Special error routines include: DELY, DEL, COMERR, KEY, FINDRPAR, DELX, FRGDEXIT, EOCCSCAN, 

DEC, HEX, DEFAULT, NAMY, NAM, SIZPAG, NOROOM, NOROOMX, 

COMABORT, MOD, CTERR, NFRGDERR 

166 



2. 11.11 Flow Chart 

ENTER 

Initialize FRGD 
Temp Stack 

Get work area & 
Initialize 

~f-----4t' 
'-.J .~\ 

V 
t 

Get keyword from 
next parenthetical 
expression 

Distribute onl 
table FRGDOP~ 

Pg. 1 

NFRGD CT FCOM RESDF FIPOOL FFPOOL NINT CTQ 

PNFRGQ 

Get value & 
put in 
~NFRGD 

PCT 

PFCOM 

Get value & 
put in 
VFCOM 

PRESDF 

Get value & 
put in 

Get value & 
put in 
VRESDF VCT 

, 

INTS !; ---
~P9.2 

~OO~ PNINT ~ 
Get value & Get value & 
put in put in 
VFIPOOL VNINT 

PFFPOOI Pr=C,-,-lQ-=--L-__ , 

Get value & Get value & 
put in put in 
VFFPOOL VCTQ 

'~----~-----+----~ 

End of Options 

FRGDOp, 

"--./ 
- - -~ 

( \ 
LMFRGD 
'-----/ Pg. 3 

Figure 2-19. Flow Diagram of FRG D 

167 



Initialize 
internal table 
pointers 

Update interim 
table pointers 

yes 

Get name & put 
into interim 
table entry 

Get size & 
convert & put 
in table 

Get page & 
convert & put in 
table 

Get FIMAX 
convert put 
in table 

More 

INTS 7 no 

Update necessary 
interim table 
pointers 

Figure 2-19. Flow Diagram of FRGD (Cont.) 

168 

Pg. 2 



no 

Process 
module areas in 

DNINT 
work area 

Control Table 

Set up necessary 
PLISTS 

Initial ize load 
module information 

Process 
DINTS 

Process Control Table 

DNFRGD 
control table 

? 

? 

Process 
DRJIT 

Control Table 

Process 
DCT 
Contro I Table 

Process 
DOTHERS 
Control Table 

Figure 2-19. Flow Diagram of FRGD (Cont.) 

169 

Pg. 3 

no 

Process 
DCTQ 
Control Table 



Read O. K. 

r--\ 
INTLBOPE:"---i~ 

"---/ 

Next 

GETOPLB 

Get op-Iabel from 
in parenthetical 
expression 

Option Get LOC 
from 
expression 

Put Op-Iabel & 
LOC in respective 
interim table 

Update 
Pointers 

INTLBOPC 

"--/ 

no 

yes 

Read next 
control 
command 

FRGDLM 

\J 

A Ilocate work 
area & 
initialize 

inters 

End of File --A 
f=RGDLMX 

~ 

End of Options 

Process 
DINTLB 
control table 

Pg. 4 

/"\ 
t-+---FRGDLM 

Set 
SAVER 1 
Flag 

f\ 
FRG DLM-------'l~ 

"---/ 

\J 

Figure 2-19. Flow Diagram of FRGD (Cont.) 

170 



Exit to 
READSTRG in 
P2CCI 

yes 

EXIT 

.~ 
WRITLM 

Write load 
module to 

M:FRGD File 

FRGDEXIT 

Release 
work 
area 

Restore 
PASS2 Temp 
Stack 

no 

EXIT 

Figure 2-19. Flow Diagram of FRGD (Cont.) 

171 

Exit to 
---.JREADOK in 

P2CCI 

Pg.5 



2. 12 XPART 

2. 12. 1 Purpose 

To process the :PARTllnON]command and generate the load module M:PART in which is defined the permissible 

number of partitions and the resources ovai lable for each for UTS systems only. 

2. 12.2 Usage 

B UTXPART 

With: 

R3 pointing to PASS2 stack data 

R7 pointing to control card PLIST 

RO pointing to temp stack pointer 

R3 and R7 are saved 

Return is to READSTRG in P2CCI 

172 



2. 12.3 Input 

Control card (:PART) image 

2. 12.4 Output 

Display of PASS2 control information to LL device 

M:PART load module (Table 2-22) 

Table 2-22 M:PART Load Module 

Label Entry Length Contents or Value in terms of -- Size (Wrds) PART Keywords 

LPART Value - #pART defined 

PL:LK 1 1 0 

PL:CHG 1 1 0 

PLD:ACT 2 LPART+1 0 

PLB:USR 1/4 LPART+1 0 

PLH:CUR 1/2 LPART+1 0 

PLH:SID 1/2 LPART+1 0 

PLH:TOL 1/2 LPART+1 0 

PLH:FLG 1/2 LPART+1 Bit 0 of each entry for HOLD/SWAP 

if SWAP = 0 if HOLD = 1 

Bit 15 of each entry for LOCK/UNLOCK 

if LOCK=1 if UNLOCK = 0 

PLH:TL 1/2 LPART+1 Lower TIME limit 

PLH:TU 1/2 LPART+1 Upper TIME limit 

PLH:QN 1/2 LPART+1 QUAN 

PL:MIN 1 LPART+1 Lower limits 

Bits 0 - 7 = DP 

Bits 8 - 15 =7T 

Bits 16 - 23 = 9T 

Bits 24 - 31 = CORE 

PL:MAX 1 LPART+1 Upper limits 

Bits 0 - 7 = DP 

Bits 8 - 15 = 7T 

Bits 16 - 23 = 9T 

Bits 24 - 31 = CORE 

173 



2.12.5 Subroutines and Definitions 

1. Subroutines 

SYNTAX used to convert control card to stack data blocks 

COREALLOC used to allocate dynamic data pages 

MODGEN used to generate DEFs 

WRITELM used to write output module 

2. Definitions 

DEVS,R3 A core location in P2CCI basic dynamic data area containing 

the total number of private disk packs, 7-Track tape drives and 

9-Track tape drives defined via :DEVICE commands. 

o 78 15 16 23 

I #DP 

2. 12.6 Data Base 

The XPART module contains two tables for use by the SYNTAX routine. 

1. KEYWORD TABLE 

Contains an entry for each val id keyword on the :PART card. This entry consists of the 

TEXT form of the keyword followed by a word containing an operation identifier and the 

displacement into the temp stack table. 

2. SKELETON TEMP STACK TABLE 

Each entry in the table is a sing Ie word in length and contains the default value 

assoc iated with the parameter. 

Note, the entries are order dependent because of the method subsequently used to error 

check the parameters. 

2. 12.7 Description 

Upon entry the processor accesses the DEVS, R3 cell and stores the total DP, 7T, and 9T on the system 

permissible in a table of maximum value. This method is required in order to allow zero to be a 

legal maximum value for peripheral parameters, (i. e., 7T, 9T, DP). 

The processor then BALS to the SYNTAX routine which converts the control command image into managable 

tempstack tables. All keywords encountered by SYNTAX prior to the first (PART, value) are incorporated 

into the first table to be used for all partitions as their default parameters. The first PART options causes 

SYNTAX to set the system defaults for all unchanged parameters in the first table and initiate a new table. 

Subsequent PARTs only cause new tables to be started. Upon return R5 contains the starting address of the 

generated tables which is saved for subsequent cleanup. 

174 



The p'rocessor then BALS to COREALLOC, specifying an unknown word size for the REF/DEF stack 

and data record. Upon return R7 contains the address of the MODIFY PLISTi SR 1 contains the first 

address of the allocated data record area; SR2, the address of the REF/DEF stack area. 

The highest partition number specified (providing that ~ 3 or ~ 16) is used as the total number of 

partitions desired (LPART) and all tables are LPART + 1 in length. If the highest PART specified 

is less than 3, then 3 is used as the default. 

The processor then BALs to MODGEN and causes the value DEFs, location DEFs, and requisite 

tables to be generated for M:PART. Prior to storing val ues into the tables, the registers are saved 

and the processor checks each specified value that the maximum and minimum are within range, 

to determine the maximum is greater equal than the mimimum and core is the range 0 to 64, and that 

there is no conflict between the LOCK and UNLOCK, SWAP and HOLD paramters. If an error is 

detected, the processor puts a code in R3 and BALs on 02 to an internal subroutine (ERROR) that 

determines what error occured in which partition, and formulates an appropriate error message 

identifying the error, the partition and the value(s) used. The corrected value is stored in the skeleton 

table upon return from the routine. Note, if the mimimum is out of range, or if maximum is less 

than mimimum, zero is used for the minimum. If the maximum value is out of range, the SYSGEN 

defau I ts are used for both va lues. 

The defaults are then stored in all tables to which are added any parameters that have been specified 

for a given partition. 

The registers are restored and the processor BALs to WRITELM with the address of the file name to be 

created in 03. Upon return, the tempstack is cleaned up, releasing all the area obtained by SYNTAX 

for the tempstack tables and the processor exits to READSTRG in P2CCI. 

2. 12.8 XPART Messages 

**ERROR-PARAMETER*XXXX* 

IN XXXXXXXX MAX < MIN-­

o USED FOR MIN 

**ERROR-PARAMETER*CORE* 

IN XXXXXXXX MIN > 64--

o USED FOR MIN 

**ERROR-PARAMETER*CORE* 

IN XXXXXXXX MAX>64--

64 USED FOR MAX 

175 

The specified parameter in the designated 

partition or default (INXXXXXXXX) is in 

error. The value used is indicated in the 

message. XPART continues. 



*ERROR-PARAMETER*XXXX* 

IN XXXXXXX MAX INVALID-­

SYSGEN DEFAULTS USED 

**ERROR-PARAMETER*XXXX* 

IN XXXXXXX MIN INVALID-­

a USED FOR MIN 

**ERR OR-PARAMETER*XXXX* 

IN XXXXXXX MAX & MIN INVALID -­

SYSGEN DEFAULTS USED 

**CONFLICT IN HOLD IN XXXXXXX -

PARTITION NOT HELD 

**CONFLICT IN LOCK IN XXXXXXX -

PARTITION NOT LOCKED 

**PART a NOT ALLOWED --

SPECIFIED RESOURCES IGNORED 

176 

The specified parameter (*XXXX*) in the 

designated partition or default (IN XXXXXXX) 

is in error. The value used is indicated in the 

message. XPART continues. 



2. 12.9 F low Chart 

CC in 
Tabular form 
(DYNAMS) 

COREALLOC 

Get allocated 
core for load 
module 

Determine 
highest part 
# defined 

Compute table 
sizes based on 
toto I # parts+ 1 

MODGEN 

Generate va I ue 
DEFs, location 
DEFs and tables 

Figure 2-20. Flow Diagram of XPART 

177 

Pg. 1 



Save 
Registers 

Error 
Flag = 0 

Add 1 to 
Error Flag 

ERROR 

~--.1 R3 = 2 max. 

R3 = 1 min. 
Pg.5 

Add -3 
to 
Error Flag 

no Store min & Add -2 
max defaults to 

Error Flag 

Store 0 Add -1 
no 

in min to 
Error Flag 

R3 = 0 max < min 
no R3 =-1 max out of ranger 

R3 =-2 min out of range 
R3 =-4 max and min 

out of range 

Pg. 5 

Figure 2-20. Flow Diagram of XPART (Cont.) 

178 

Pg. 2 



Pg.4 

Store core, 
,----'~ max, min, 

values defaults 
in table 

no 

LOCKS 
Check HOLD/ 
SWAP 
LOCK/UNLOCK 

Store HOLD, 
LOCK settings 
in table 

ERROR 

R3 = 5 

Pg. 5 

Pg. 4 

Pg. 4 

Figure 2-20. Flow Diagram of XPART (Cont.) 

'179 

Pg. 3 



no 

Store in 
Table 

/ 
All entries 

MAX,MIN,COB 
""'-qUAN) done 
~ 

Check hold swap 
LOCK/UNLOCK 
store if changed 
and correct 

Restore 
Registers 

no 

WRITELM 

Write 
Load module 

Figure 2-20. Flow Diagram of XPART (Cont.) 

180 

Restore 
Stack 

EXIT 

Pg. 4 



yes 

Access 
Appropriate 
Error Message 

Compute part # 
of error 
store in message 

Print 
i Message 

~ 

Select lock 
mask and value 

Or HOLD 
mask and 
value 

Entry 
from defau I ts 

? 
/ 

./ 

no 

Store in 
Table 

Figure 2-20. Flow Diagram of XPART (Cont.) 

181 

Pg.5 

ERROR 

R3 = 4 

Pg. 5 

ERROR 
yes 

R3 = 3 

Pg.5 

yes 
RETURN 

- ____________________ --1 



3.0 PASS3. 

3. 1 PURPOSE. 

To provide the communication with the system LOADER necessary to load a specific Monitor, processor, or library. 

PASS3 provides for automatic biasing and, optionally, the releasing of random access device files. 

3.2 CALLING SEQUENCE. 

Monitor Control Command: IPASS3 

3.3 INPUT. 

PASS3 control commands from SI device. 

:name 

where 

name is the name of a LOCCT (see LOCCT processor Chapter 5) to be used by the system LOADER in 
loading an element. 

Comment commands from 51 device .. 

Files containing LOCCTs from random access device. 

M:MON load module, if target system is BPM/BTM, to determine background lower limit. 

SPEC:HAND file when LOCCT is for M:MON •. 

I/O handlers named in SPEC:HAND file plus BASHANDL file for basic I/O handler set when LOCCT is for 
M:MON. 

3.4 OUTPUT. 

Display of PASS3 control information to LL device. 

HANDLERS file containing all necessary I/O handlers when LOCCT is for M:MON. 

LOCCT to absolute read/write scratch area on system's random access device (BPM/BTM base system) or to core 
common storage (UTS base system). 

ROOT Load Module generated if LOCCT is for M:MON and target system is BPM/BTM. See description (Chapter 3.7. 2) 
for detailed discussion of contents of various tables. See Table 3. 1 for contents of ROOT load module. 

182 



I 
I 

I 

I 

Table 3 1 ROOT LOAD MODULE CONTENTS · 
LABEL ENTRY SIZE LENGTH CONTENTS OR VALUE 

MAXLEV Value - Max. levels in TREE structure 

TBBASE 1 MAXLEV 0 

COVLSEG 1 MAXLEV segment number (starting 
with X'3F ' and incremented by 
1 for subsequent entries) 

OSTACK 1 18 stack pointer doubleword 
in 1st 2 words followed by 
16-word stack. 

MAXSEG Value - Number of segments in TREE 
structure (number of TREE 
entries - 1) 

SlTB 2 MAXSEG 0 

XSEG* Value - segment number 

YSEG* Value. - segment number 
-

* where the names in the TREE entries are substituted for X and the names of ROMS found in OLDSEGS 
tables are substituted for Y. 

3.5 BASE REGISTERS. 

Register 7 = address of control command PLISTs, I/O PLISTs, and data in temp stack. 

Register 6 = address in temp stack of positions of "ROOT" load module. 

3.6 SUBROUTINES USED. 

NXACTCHR (obtain next character from control command). 

NAMSCAN (used to scan a field which contains a name). 

CHARSCAN (used to check a specific character, such as a terminator, for legal syntax). 

HEXSCAN (used to scan a field which contains a hexadecimal value). 

QUOTSCAN (used to scan a field which contains a key word, e.g., SAVE). 

System Processor, LOADER (PASS3 does a M:LINK call to this processor to perform a load function. The 
LOADER must be in the :SYS account). 

MODIFY (used when generating the "ROOTI! load module). 

3.7 DESCRIPTION. 

3.7. 1 Overview. 

PASS3 is entered when the monitor control command !PASS3 is encountered. Upon entry, PASS3 obtains 4 pages 
of core as an initial work area. PASS3 then processes its own control command. A parameter is required (BPM 
or UTS) identifying the target system type. The presence of an optional parameter (MON or ALL) wi II cause 
PASS3 to abort should M:MON or any module be unable to be loaded successfully. 

183 



PASS3 then initializes its work area to zero and proceeds to read a :command and processes it according to the follow­

ing options and syntax: 

:name (option, option· •• ) 

,.. The "name ll is used to form a file-name which will identify a file containing a LOCCT (see Chapters 5 and 6)0 

The "name" is syntactically checked and must be from one to ten alphanumeric characters of which one character 

must be alpha. 

PASS3 proceeds to obtain the file containing the LOCCT referenced by "name ll
• This file is made up of in­

dividual records of binary card image format. PASS3 reads each record, checks its sequence number, checks its 

check-sum, and reforms the LOCCT in one continuous record in the work area. 

The remainder of PASS3's control command is then processed. 

The options which may be encountered are as follows: 

BIAS=value 

BIAS=+offset 

specifies that the load bias in the LOCCT identified by "name" is to be changed to the specified 
hexadecimal "value'" The "value" cannot be greater than X'lFFFF'. The "value" is also 
converted to the next higher page boundary, if not already at.a page boundary. If a bias 
offset is specified (see "BIAS=l-offset"), the "offset" is added to the bias "value". 

specifies that a hexadecimal Iloffset", converted to next higher page boundary, if not at one 
already, is to be added to the specified bias "value ll (see IIBIAS=value ll

). If no BIAS=value 
has been specified, the offset is added to the lower I imit of the background area 
(BKGRDLL)o This background 10Y.er limit is determined from the M:MON load module in the 
current accounto However, if M:MON is not present, the offset value has no effect and the 
original LOCCT bias is unchanged. The logical interaction of these bias values is illustrated 
in the following table: 

PASS3 processes these two options. However, they have no effect on a LOCCT's bias for a UTS SYSTEM. 

The original bias in the LOCCT is assumed to be correct. 

Table 3-2. BIAS RESULTS 

BIAS=value BIAS=toffset M:MON Resulting BIAS 

unspecified unspecified absent LOCCT unchanged 

unspecified unspecified present BKGRDLL 

unspecified specified absent LOCCT unchanged 

unspecified specified present BKGRDLL+offset 

specified unspecified absent value 

specified unspecified present value 

specified specified absent val ue + offset 

specified specified present val ue + offset 

184 



DELETE specifies that when the system LOADER has completed the loading of the module (load module) 
IIname", all element files comprising this module, as well as its LOCCT, are to be deleted. 
However, this does not include those files specifically named by the SAVE option (see SAVE 
option). The deleted files must be in the current account and must not be protected by a 
password. 

SAVE (name L, name' • • • ) specifies that the named elements ("name") are not to be deleted (see DELETE 
option). All element names in the LOCCT from the current account not SAVEd 
are deleted. The presence of this option automatically implies a DELETE option. 

If, during the loading of a module, the system LOADER encounters an error, the DELETE/SAVE feature is 

ignored. That is, no element files are deleted, as the LOADER has not been successful in loading them. 

If the SAVE option is encountered, PASS3 obtains enough core to build an internal table of "name. II entries 
I 

(Table 3-=3)" This table of names is used when PASS3 performs the DELETE for all element files named in the 

ROM Table entries in the LOCCT. This option is necessary when certain element files are referenced by several 

LOCCTs. 

Table 3-3. Table of SAVE Names 

LOWCORE 

LW1 

NAB 

INIT IIC C
1 

C
2 

C
3 

-- C
N 

IIC C
1 

C
2 

. . . . . . C
N 

BANAB 
\' \' 

BALW " \1 

where 

LW1 = byte address of the last available word plus one in the Table work area, {i. e., BA (BALW+l» 

NAB = byte address of next available byte in table's work area (i. e., BA (BANAB», NAB initially contains 
the byte address of INIT. 

IIC = number of characters in name (TEXTC format) 

C l' C2' •• • , C N = characters in name 

When the control command has been processed, PASS3 checks the load module nome in the LOCCT, which 

exists in the work area, to see if it is "M:MON" (i.e., this LOCCT is for a Monitor). If it is, and the target 

system is BPM/BTM, PASS3 generates a IIROOT II load module. This module describes the Monitor's overlay 

structure as identified by the TREE entries in the current LOCCT. 

185 



The uROOT" module is ultimately loaded with the Monitor and controls the Monitor1s run-time overlay structure. If 

the current LOCCT's load module name is "M:MON ", and the target system is UTS, the "ROOT II module is not 

generated. 

If the current LOCCr's load module name is not uM:MON", PASS3 determines if a previous Monitor has been 

loaded, and if so, what is its background lower limit. This is accomplished by obtaining the keyed record TREE 

from the load module M:MON in the current account. If the M:MON module does not exist, there is no back­

ground lower limit. However, if the TREE structure is available, the end of the longest Monitor overlay path is 

determined and is used as the background lower limit. Note RCUR2, RCURSYMB, TSDBTA and CLS are ignored in 

determining the longest overlay path. 

If the target system is UTS, all further bias analysis ceases, and PASS3 assumes that the bias in the LOCCT 

is correct. However, if the target system is BPM/BTM, the resulting bias in the LOCCT is calculated 

according to Table 3-1. 

PASS3 then determines where to save the LOCCT for the System LOADER's use. If the base system is BPM/BTM, 

the LOCCT is written to the absolute read/write scratch area on the system's random access device. But, if the 

base system is UTS, the LOCCT is saved in common core storage. 

When the LOCCr's load module name is "M:MON IJ
, PASS3 proceeds to generate the IIHANDLERS II file. This 

file contains all of the necessary peripheral I/O handlers as defined by the user on PASS2 II:DEVICE II control 

commands. The required handler names are found in the keyed file "SPEC:HAND II
• The format of this table of 

names is described in Chapter 6. PASS3 obtains the contents of the "BASHANDL II file and writes it to the 

"HANDLERS" file. The "BASHANDL" file, by default, contains the handlers for: typewriter (handler name = 
KBTIO), card reader (handler name = CRDIN), I ine printer (handler names = PRTOUT and PRTOUTL), RAD 

(handler name = DISCIO). 

The handler names ere then obtained from the IlSPEC:HAND Il file. Any name which is already a part of 

"BASHANDL II is ignored. If a name is not a part of "BASHANDL", it is used as the name of a handler 

file which must be merged into the new "HANDLERS" file. If a specific name is encountered a second or sub­

sequent time in the "SPEC:HAND" file, it is ignored. Any name encountered for which there is no 

handler file, causes PAS5)3 to discontinue the processing of this control command and, therefore, to 

continue to its next command. 

When all LOCCT and "HANDLERS" file processing is completed, PASS3 performs a Monitor M:LINK call to the 

system LOADER which is found in the :SYS account, and must be a load module file. 

When the System LOADER has completed its task, it performs a Monitor M:LDTRC call requesting a return to 

the calling processor, namely, PASS3. The LOADER returns a flag which indicates whether or not the load 

function was successful. If not successful (ioe., flag set), PASS3 proceeds to read and process the next control 

command, therefore, ignoring any DELETE/SAVE option requested. If the load was successful (i.e., flag reset), 

and no DELETE/SAVE option was specified, PASS3 proceeds by reading and processing the next control command. 

186 



However, if the load was successful, and the DELETE/SAVE option was requested, PASS3 attempts to release each file 

named i,n the LOCCT ROM entries, and the actual LOCCT used in loading the module. Each ROM entry is checked 

to see if its account field corresponds to the running account. If not, the entry is ignored. Each entry is then checked to 

determine if it was listed as a SAVE file. If it was, the named file is saved. When PASS3 has completed the delete 

phase, it proceeds to read and process the next control command. 

3.7.2 Generation of ROOT Load Module. 

When the LOCCT is for M:MON, after obtaining background lower limit for a BPM/BTM target system, the 

GENROOT routine is entered to generate the "ROOT" load module. 

First, the dynamic data is moved into the stack and maximum core obtained and initialized for the load module 

generati on. 

The TREE table in the LOCCT is searched to determine the number of levels in the tree structure. The number of 

levels starts at 1 and is incremented by 1 for each non-zero OVERLAY LINK encountered in the TREE. The number 

of levels cannot exceed 5. 

The value DEF MAXLEV is generated followed by the table TBBASE, a word table of MAXLEV length, each entry 

containing zero. COVLSEG is then generated, a word table of MAXLEV length. PASS3 stores X' 3F' in the first 

word and increments this by 1 for each subsequent entry. OSTACK is then "generated. This is an 18 word table, 

containing a stack pointer doubleword in the first two words, followed by a 16-word stack. 

The number of segments in the tree structure (i.e., the number of TREE entrys in the LOCCT minus one) is used 

for the value DEF MAXSEG and to build the table S 1 TB. PASS3 allocates a doubleword entry initialized to zero 

for each segment. 

Each TREE table entry is processed, starting with the root segment. The segment number designation starts with the 

value X' 3F'. As each successive TREE entry is processed, the segment number is incremented by one, the least 

significant six bits being saved. That is, the segment number which follows X' 3F' would be XIQQI. The TREE 

entries are processed serially, and not according to overlay structure. 

As an entry is processed, a segment name is formed by appending the characters "SEG II to the name in the TREE 

entry. That is, if a TREE entry IS name is "A", the result will be "ASEG". This segment name is then used to 

create an external definition as follows: 

nameSEG 

where 

EQU segment' < an absolute value> 

"name ll is the name from the TREE entry (e.g., A). 

segment' is the current segment number value (e. g., X' 3F'). 

After generating this def, the first ROM POINTER (in the current TREE entry) is used to obtain the Relocatable 

Object Module (ROM) names from the ROM entries in the LOCCT. 

187 



The first ROM name is ignored, as it is the same as the name in the current TREE table entry. However, each sub­

sequent name in the ROM table, up to and including the name whose FLAG (see ROM table description in Chapter 6) 

is X'OO', will be processed. The segment number value (e. g., X'3f1) remains the same throughout the processing 

of these ROM names. Each ROM name identifies an element file needed to complete the segment identified in the 

current TREE entry. As a ROM name is processed, it is used to generate an external definition only if it is found 

in the table of special segmert names (Table 3-4). Otherwise, the ROM name is ignored. If the ROM name is 

found, a segment name is formed by appending the characters "SEG" to the ROM name. That is, if a ROM name 

is "B", the result will be "BSEG li
o The external definition would then be: 

BSEG EQU segment# < an absolute value > 

When all TREE table entries have been processed, the generated load module will be written to a file called 

"ROOT". 

The following table controls the generation of external definitions using the ROM nameso The format of a table 

entry is as follows: 

TABLE 3-4. PASS3 "OLDSEGSII TABLE FORMAT 

TEXTC NAME 

F LINK 

I 

Each entry contains a name (TEXTC form), for which a segment number must be assigned. When a ROM name 

from a ROM entry (LOCCT) is found in this table, the characters "SEG IJ are appended to this TEXTC name, and 

an external definition is generated o Note that the I inked entries each contain a dupl icate entry for the very first 

name o The reason is that the first entry of a chain of I inked entries is ignored, yet, it must be defined. 

Example 3-1. 

03 I C I L I S 

01 000 
0123 14567 18910111121314151161718191202122 23124 i5 2627 128293031 

188 



If ROM name in ROM entry is IIClSII, and this name is found in the table, then the following def is generated: 

ClSSEG EQU segment# 

The "segment#1I will be the same as that used when defining the segment number for the name in the TREE table 

entry. 

LINK "10 

LINK = 0 

is the address of another table entry (TEXTC name) which is to be defined. 

If F = 8, 

If F = 0, 

then the current entry's name is defined, and the LINK address is used to obtain the 
next entry's name which is to be defined. This continues until LINK = O. 

then the current entry's name is ignored and the LINK address is used to obtain 
an entry's name which is to be defined. This condition continues for only one 
level, and not until LINK = O. 

the current table entry is not linked to other entryso 

Example: If ROM name in ROM entry is IIRDF", and this name is found in this table, then, the 
following defs are generated when F = 8, and LINK to or LINK = 0: 

Address = 100 03 R D F RDFSEG EQU segment# 

RlBTSEB EQU segment# 

TRUNCSEG EQU segment# 
1 102 

102 04 R l B 

T 

t 105 
---

105 05 T R U 

N C 

81 000 
4 891011 121314151]617 18 19 /:<0 ii2-2"2j1"242526-2728 £9- 3031 0123 567 

If the ROM name in ROM entry is "M: 16", and this name is found in this table, then the following def is generated 

when F = 0, and LINK "10: 

Address = 200 
02 [ 5 I 

01234S6789101112131415 1617181920212223 24252627 28 2y 3031 

Address = 300 

04 M : 1 ISSEG EQU segment# 

6 

0 200 

o 1 2 3 4 5 6 7 9 10 1112 13 14 15 16 17 1819 20 212223242,) 26 ~I L.IHY.JU 31 

189 



-..1:""-
",/ 

15 )( 

The following example shows pictorially what has just been described (to conserve space, the element file names 

used are not those specified in PASS3 1s "OLDSEGS" table, although the philosophy is the same). The LOCCT 

would look like: 

EXAMPLE 3-2. DIAGRAM OF LOCCT. 

"7 

67 01 G ~ I 
18B 01 C 

w ,I( 

~ 
0 

4A ROM TAB ~E 0 
u.. 
Z 

1D TREE TAB E -0 
,~ « 
",,/ 0 

....J 

1002A OOOB --
0021 0000 

0 
>- x 0:: .... 1/ 
Z .... 
w 
w .... 
w Z 

00 0:: 

-¥ , >-
" 

0:: 

V t-

~ Z-.; 
1m f) w 

~ 

40 0 
0:: 

192 

2D TREE SI2 E 
.-

0:: W 
I- ~ 

0 
,if ~ t=' 

~~ If >-,,;., 
.f: \' 

hl J: Z ~, 

w 199 

JI'-

172 01 I "':'- Z 
0 ~ C-

101 A 

t=' 
-- Z 

c--l--- _·'4 W 

0000 0000 
~~ 
8k 
V') 1/ 

0000 OOOB 
.... ,,, 
0 
07 
~~ 
~~ 
z~ 
w 
w w 
W ....J 
0:: co .... « .... 

w 
W 
0:: .... 

15 
-- .~ ----~- - N g 

0 w 
. ---.- •• - •• 1 •. >- X ....J 

0038 0008-
co 0:: « I- 1/ 

llQOO.~. 0000 Z I-.... 
W W .... W 
W Z 0:: 
W .... 

--~ 0:: W .... ~ 
0 
w 
V') 

~iI II 

17E 01 A ~I'I. '1\ .... 
Z 

40 
w 

~ , iI' 0 
'\~ Y 0:: W 

....J 

4 01 B II' co « >- .... 
0:: 

~ 
40 

.... 
Z 0 
W 0:: 

..v ~I-
~ 

18 

lAn 0 w 
:::> , 

\' 
0:: Z 

-...~ .;, 
~ \/ 

i::! 

1m F Z 1\ 
Z 
0 

w g 
oc ~ w 

0 ....J 

~ t- o:: co « 
>- II' .... 

m r-. 1= I~ ~ 
Z 0 
W 0:: 

:A() ~ 
.. , ~ 0 
v V 0:: 

-..... ,/ 

01 H 0::'" .... 
Z 

po w 

~ 
,~ ,~ 0 

0:: ... 1; 

1m T >- "!\ 
0:: .... 

190 

197 

lAE 

lB5 

15 e () D Y y gil if 00 
Z 
w 

~~ ~~ 
~ 
0 , 
0:: \,/ 

1 BC < END OF LOCCT> a 
D015 0000 0 

x 
1/ 

DOOO 0016 .... 
>- W 0:: U .... 
Z Z 
w w 
w :::> 
w C 
0:: W .... V') 

- ,r--

~ V\ 
(Cont) 

190 



Assume that PASS3's "OLDSEGS" Table contains the following entries: 

=200 01 A The resultant external definitions are: 

0 000 
From TREE entry for ItAII 

202 01 8 ASEG EQU X'3F' 

8 204 

204 03 P 0 S From ROM entry for "8" 

8 206 BSEG EQU X'3P --
POSSEG EQU X'3F' 

206 04 A R D ARDLSEG EQU X'3F' 

L 
---

8 000 
From TREE entry for liD" 

209 01 D DSEG EQU X'OO' 

0 300 

03 R D F -.-- -208 From TREE entry for "G" 

8 20D GSEG EQU X'Ol' 

20D 04 R 8 L From TREE entry for II!)" 

T 
.---:... ------ -- ISEG EQU X'02' 

8 210 --- From ROM entry for II I" 

05 T R U 
l-

210 OSSEG EQU X'02' 

N C --- --_ .. _---

8 000 

213 01 G 

0 000 

215 01 ~_L~J 1 
0 302 

1 
"- - --------- ,~ 

300 04 M L 

K 

302 02 o S 

191 



3. 8 PASS3 MESSAGES. 

The error or information messages which may appear during a PASS3 consists of the following: 

""PASS3--IN-CONTROL"" 

""PASS3--COMPLETEO"" 

**1/0 ERR/ABN ON M:SI~ 

**OPEN M:EI ERR/ABN=xxxx(LOCCT) 

**WRITE ABS ERR/ ABN=xxxx(LOCCT) 

**READ M:EI ERR/ ABN=xxxx(LOCCT) 

t**OPEN M:MON ERR/ABN=xxxx 

t **READ M:MON ERR/ ABN=xxxx 

**CANNOT OPEN/RELEASE 

**CC ERROR, NO 1:1 IN COLUMN-l 

**CC 10 INVAUD 

**10 SIZE> 10 OR = 0 CHARACTERS 

The PASS3 processor has been entered. 
For information only. 

PASS3 has completed its function and exits to the 
Monitor. For information only. 

An error/abnormal code (xxxx), has been encountered 
when reading the SI device. If there is a background 
lower limit, it is displayed. PASS3 displays 
completed message and exits to the Monitor. 

An error/abnormal code (xxxx), has been encountered 
when attempting to obtain a referenced LOCCT file. 
PASS3 continues to next control command. 

An error/abnormal code (xxxx), has been encountered 
when attempting to write the LOCCT to the absolute 
read/write scratch area on the random access device 
(BPM/BTM base system only). PASS3 continues to 
the next control command. 

An error/abnormal code (xxxx), has been encountered 
when attempting to read a LOCCT file. PASS3 continues 
to next control command. 

An error/abnormal code (xxxx), was encountered 
when attempting to open the M:MON load module 
file, and the error/abnormal was other than file 
does not exist (code=03). PASS3 displays back­
ground lower limit, if available, displays com­
pleted message, and then exits to Monitor. 

An error/abnormal code (xxxx), was encountered 
when attempting to read the keyed file TREE within 
the M:MON load module file. PASS3 displays back­
ground lower limit, if available, displays completed 
message, and then exits to Monitor. 

An attempt is made to release (through DELETE/SAVE 
option) an element file, but the file does not exist, 
or is from an account other than the running account 
or the file has a password. If the file does not exist, 
it may be because it is referenced more than once and 
the first reference has already released the item. This 
message is followed by the name of the element file. 
PASS3 continues. 

PASS3 control commands require a 11:" in character 
position one. PASS3 continues to next control 
command. 

The name identifying a LOCCT is not a valid alpha~ 
numeric character string. PASS3 continues to next 
control command. 

The name identifying a LOCCT does not exist or is 
longer than ten characters. PASS3 continues to 
next control command. 

tNote: When one of these messages appears, PASS3 is in the process of determining a new background 
lower limit. That is, a "M:MON" load module does exist in current account, but cannot be accessed. 

192 



**DELIMITER NOT 0, =OR SYNTAX BAD 

**KEYWORD NOT BIAS/DELETE/SAVE 

**KEYWORD SAVE ALREADY USED 

**NAME INVALID 

**BIAS NOT HEXADECIMAL VALUE OR 
TOO LARGE VALUE 

**BIN. CARD INVALID TYPE, SEQ. 'xxxx 

**BIN. CARD SEQUENCE ERR, SEQ. 'xxxx 

*CHECKSUM ERROR, SEQ. ,XXX>( 

****SPECIFIED BIAS < BKGRDLL 

****BIAS USED WILL BE XXX>< 

****M:MON BK GROLL IS XXX>< 

*****LM 'ROOP' CANNOT BE GEN: RATED 

-----PASS3 ABORTED 

*****M:MON TREE STRUCTURE> 5 LEVELS 

*****PASS3 TYPE UNK NOWN 

***OPEN/READ NNNNNNNNN 
ERR/ ABN = xxxx 

193 

One of the specified delimiters is expected but not 
found or the delimiter is recognized but is syntactically 
incorrect. PASS3 continues to next control command. 

The keyword is inval ide PASS3 continues to next 
control command. 

The SAVE option can be defined only one time. PASS3 
continues to next command. 

A SAVE option "name" is not alphanumeric. PASS3 
skips to next "name ll

, if one exists, or to next field. 

The BIAS "value" is not valid. It is either not 
"exadecimal or is greater than X'lFFFF'. 
PASS3 continues to next control command. 

A LOCCT file contains an image, sequence 'xxxx, 
with an invalid 10 type (i.e., not a X13E' or XI1EI). 
PASS3 continues to next control command. 

A LOCCT contains an image, with an invalid SEa 
field. The sequence 'XXX>< is the number whrch the 
image should have been. PASS3 continues to next 
control command. 

A LOCCT file contains an image, sequence ')(XXX 
with a checksum error. PASS3 continues to next 
control command. 

The bias specified is less than the calculated back­
ground lower limit. This is a warning message, and 
appears when target system is BPM/BTM only. 

The bias used (xxxxx) is that which appears in the 
LOCCT. For information only. 

When PASS3 has completed its function, and the 
target system is BPM/BTM, and an "M:MON" load 
module has been built, its background lower limit, 
xxxxx, is displayed. PASS3 displays completed 
message and exits to Mon itor. 

PASS3 cannot generate the "ROOT" module (BPM/ 
BTM target system). This results from PASS3 not 
having enough core for work area. PASS3 ex its 

to the Monitor. 

This message is displayed in conjunction with other 
messages and implies an abort condition. 

A Monitor overlay structure containing more than 
five levels (BPM/BTM target system) is illegal. A 
level implies the root segment as well as each over­
lay area with the tree structure. PASS3 displays 
abort and completed messages and exits to Monitor. 

The system control command, "! PASS3", contains 
a parameter which is neither IIBPM" nor IIUTS II • 
PASS3 does an error exit to Monitor. 

An I/O error/abnormal code = xxxx, was en­
countered when attempting to form the "HANDLERS" 
file. The name IINNNNNNNNN" is initially 
"BASHANDL" and then is changed to the handler 
name which PASS3 is attempting to obtain and merge 
into the "HANDLERS" file. PASS3 continues to 
next control command. 



****OPEN/READ SPEC :HAND FILE 
ERR/ ABN = xxxx 

***U NKNOWN TYPE - XXM USED 

M:MON NOT SUCCESSFU LLY LOADED 

MODULE NOT SUCCESSFULLY LOADED 

OPTION NOT 'MON ' OR 'ALL' -
NONE ASSUMED 

3.9 PASS3 PROCESSOR FLAGS. 

TYPEFLG 

LOC. X' 2B' in Monitor 

where 
MON =4 BPM 

MMONTYPE 

M:MONFLG 

MONFLG 

BKGDRLL 

BIAS 

BIASADD 

= 5 BPM/BTM 
=6 UTS 

194 

An I/o error/abnormal code = xxxx, was encountered 
when attempting to obtain the "SPEC:HAND file gen­
erated by PASS2. PASS3 continues to next control 
command. 

The type field of !PASS3 was not specified. System 
type under which doing SYSGEN is used, (XXM). 

The MON or ALL option has been specified on the 
! PASS3 command and M:MON either cannot be loaded 
or has not been loaded. PASS3 aborts. 

The ALL option was specified on the! PASS3 command 
and the Loader found errors loading a processor. PASS3 
aborts. 

The option field on the! PASS3 command is inval id. 
PASS3 continues. 

Designates the type of PASS3 specified: 

::() BPM 
=2 UTS 

This location contains the information which identifies 
what type of base Monitor is in control (e. g., 
BPM/BTM or UTS). The format is: 

A flag indicating the base Monitor type: 

:::() non-UTS. 
"lOUTS. 

A flag which indicates that the current LOCCT 
generates a M:MON (Monitor) load module. This 
flag and the MMONTYPE flag control whether or not 
a IIROOT" module is to be generated. 

:::() LOCCT not for M:MON. r 0 LOCCT is for M:MON. 

A flag set the same as M:MONFLG, except it 
controls the generation of the HANDLERS file o 

:::() No HANDLERS file generation. 
10 generate HANDLERS file. 

A cell containing the target system Monitor's back­
ground lower limit, if one exists (BPM/BTM target 
system only). If none exists, it is = O. 

A cell containing the bias (BIAS = value) defined 
on PASS3's control command, and used only if 
BPM/BTM target system: 

= -1 no bias defined. 
> 0 the bias as defined (page boundary). 

A cell containing the bias offset (BIAS = tvalue) 
defined on PASS31s control command, and used only 
if BPM/BTM target system: 



LOADFLG 

DELETE 

SAVE 

3. 10 INTERNAL ROUTINES. 

PASS3 

PASS3NXT 

PASS3LCT 

PASS3CHK 

GENHAN 

PASS3PAR 

NXTNAM 

GETPAGE 

PASS3DEL 

PASS3BIS 

SAVINCOM 

GTMONTRE 

GENHANDL 

CPYHNDL 

ROMDELET 

195 

=0 no bias offset defined. 
>0 the bias offset as defined (page boundary). 

This flag indicates the System LOADER's success or 
failure in loading a module. The LOADER return to 
PASS3 with register 15 set = 0, if successful, or f if 
failure. This value is saved in LOADFLG, and indi~ 
cates whether or not the DELETE/SAVE options are to 
be honored: 

= 0 yes, DELETE/SAVE options to be honored. 
f 0 no, do not perform DE LE TE/SA VE. 

This flag indicates that the DELETE and/or SAVE 
option was encountered on the PASS3 control command. 
A SAVE option implies a DELETE: 

= 0 no DE LETE and no SAVE encountered. 
f 0 a DELETE and/or SAVE was encountered. 

This flag is set when a SAVE option is encountered. 
The value in SAVE is the base address of the work 
area obtai ned for the SAVE II names .. : 

= 0 no SAVE option. 
> 0 the base address of the work area. 

main entry, initialize processor, and general controller. 

get next control command. 

obtain information from LOCCr file and re-form the 
records into continuous LOCCT. 

control command has been processed, put various 
values into LOCCT table. 

determine if HANDLERS file is to be generated for 
M:MON load module, and then do a M:LINK call to 
the System LOADER. 

process all parameters on the current control command. 

get next name after SAVE option and enter it into the 
work area table. 

get more work area for SAVE option if needed o 

process DELETE option. 

process BIAS option. 

get common storage and save LOCCr for System 
LOADER. 

Register 15 = buffer address; Register 13 = 
LOCCT size in bytes. 

obtain M:MON's TREE structure from M:MON load 
module in current account {if one exists} and determine 
the background lower limit. 

generate HANDLERS file from list of handler names 
found in SPEC:HAND file. 

copy a handler to HANDLERS file. Register 9 = 
buffer address. 

delete element files which are named in the current 
LOCeT ROM entries. Register 13 = LOCCT size in 
bytes; Register 15 = base address of LOCCT. 



CHKNAM 

READCC 

READCONT 

LISrCONT 

L1STCC 

EOCCSCAN 

GENROOT 

WRI Ttvy'WRITRO OT 

APNDSEG 

EIA/EIE 

RSPHER/RSPHAB/OSPHER/OSPHAB/HANDLER/ 
ONHER/ONHAB/ABSHER/OBSHAB 

CONY 

GENDEF 

GENDICT 

Special error routines include: 

196 

check LOCCT element file name against table of SAVE 
names to determine if delete is desired. If found, do 
not delete (condition code one = 1 if found, = 0 if not 
found). Register 1 = address of name to be checked; 
Register 4 = address of table of names. 

read next control command. Register 12 = buffer 
address. 

conti nuation command requested. 

display control command from character subroutineso 

display control command. 

search for end of control command. 

generate "ROOT" load module from M:MON's TREE 
structure in M:MON load module in current account. 
Register 13 = addr~ss of LOCCT table minus one. 

write "ROOP' load module to uROOT" file. Register 
1 = buffer address; Register 2 = buffer size in bytes; 
Register 3 = address of key (load module element's 
key). 

append "SEG" to a given segment name. INPUT: 
Register 4 = address of segment name OUTPUT: 
Registers 8-10 =segment name with appended 
"SEG". 

desired LOCCT file not available. 

The HANDLERS file cannot be generated. Either 
a handler file, the BASHANDL file, or the 
SPEC:HAND file, is not available. 

convert error/abnormal code to EBCDIC. 

bui Id DEF PLIST for MODIFY routine to add external 
definition. Register 1 = address of NAME • 
Register 2 = address of NAM~. Register ~ = 0, no 
NAME20 Register 3 = VALUEj. 

built DICT PlIST for MODIFY routine to change 
RELDICT.OO. Register 1 = address of NAME r 
Register 2 = VALUE 1. Register 3 = resolution code 
for RELDICT. 00. 

RBSHER, RBSHAB, CE, CA, CEAO, CEAOX, EIAE, 
EOA, RE, RA, OTME, OTMA, OTMAE1, RTME, 
RTMA, DE, DA, NO:, IDERR, IDSIZE, DEL, 
COMEXIT, KEYWRD, KEYWRDX, DUPKEYWD, 
NAM, HEX, TYP, COMERR, SEQ, SUM, MODERR, 
BADM:MON, TYPERR, COMNERo 



3. 11. PASS3 PROCESSOR FLOWCHARTS 

Read 
EOF 

"PASS3 
Completed" 

ENTER 

Obtain 4 pages 
of Work Area 

Command 

Page 1 

1st 30 words are 
Control Command 
Buffer. Remainde 
is for LOCCT. 

Set TYPEFLG 
=0 BPM 
=2 UTMBPM 

Determine type 
...-__ B_P_M/-,--B T_M_-;of base system 1--------, 

UTS 

Initialize 
work area 

Reset FLAGS, 
SAVE s.IAS 
BIASADD, 
DELETE, MONFLG 

Y 

GET "id" 
from Command 

Append "id" 
to "LOCCT" 

Figure 3-1. Flow Diagram of PASS3 

197 

Pg.2 

Set MMONTYP 
FLAG 



Set up OPEN 
FILE PLIST 

NO FILE OPEN FILE 
t-?1r-1-____ -r--r---n-.....-r--l (LOCCT) 

yes 

Set M:MONFLG, 
MONFLG, 
FLAGS 

"OPEN M:EI 
ERR/ABN = 
xxxx (LOCCT)" 

pg. 1 

Read one Recor 

Check SEQ. N, 
CHECKSUM 
Image 

Add record 
to previous 
records 

Figure 3-1. Flow Diagram of PASS3 (CaNT) 

198 

Page 2 

RE-FORM 
LOCCT 

SAVE VALUE 
IN BIASADD 

pgo 3 



I Keyword SAVE 
already USED" 

T pg.l 

Set 
delete 
flag 

Get 1 page 
for work 
area 

Set save flag 
to base work 
area 

Initial ize 
work area 

"name" 

Put "name" in 
Work Area 

no 

no 

pg.2 

"UNKNOWN 
KEYWORD" 

T 

: 'Wi i I -~o~t~ i ~ -, 
-: save names 

pg.4 

Figure 3-1. Flow Diagram of PASS3 (CONn 

199 

Page 3 

pg. 1 



Update work 
area contro I s 

I Used fur- - -
-.; Additional 

I "names" 

pg. 3 

no 

pg.5 

None 

pg. 3 

Open File 
"M:MON" 

Release 4 pages 
of work area 

pg.5 

Page 4 

,-----
I Used for 

__ -I M:MON's 

L ~E~T~I~ .J 

EXISTS 

Read keyed 
record "TREE" 

Find end of 
longest PATH 
and SET BKGRD L 

CLOSE and 
.L..---i SAVE M:MON 

Figure 3-1. Flow Diagram of PASS3 (CONT) 

200 



7 

Put BIAS into 
LOCCT Table 

Put BKGRDLL 
into LOCCT 
Table 

Get BIAS from 
LOCCT Table 

Page 5 

"BIAS used 
~-------------t will be ><xxx" 

Set severity 
level in LOCC 
table to "F II 

Put current 

Buffer for formi g 
HANDLERS 
File 

no 

Not M:MON 
LOCCT 

pg.4 

SYSTEM 

Get 1 page for 
Work Area 

pg.6 

Used for 
SPEC:HAND 
Data 

Figure 3-1. Flow Diagram of PASS3 (CONT) 

201 

"OPEN/READ 
SPEC:HAND 
FILE -ERR/ABN'I 

Release 1 page 
Work Area 

pg. 1 



Open named 
file 

CLOSE and 
SAVE OPEN 
FILE 

Get HANDLER 
name from 
SPEC:HAND Do a 

Copy OPEN FIL ERR/ABN 
to HANDLERS 

CLOSE and 
SAVE OPEN 
FILE 

Copy OPEN 
FILE to 
HANDLERS 

OPEN 
BASHANDL 
FILE 

CLOSE and 
RELEASE 
HANDLERS 

CLOSE and 
SAVE 
HANDLERS 

Figure 3-1. Flow Diagram of PASS3 (CaNT) 

202 

"OPEN/READ 
xxxxxxxx FILE 
ERR/ABN" 

Page 6 

"xxxxxxxx" is 
name of CURRE T 
FILE 

Release 2 pages 
work area 

T pg. 1 

pg. 5 



Pointer from 
LOCCr's TREE 
Entry·....------' 
Obtain name 
from ROM 
Entry 

Register 15 
saved in 
LOADFLG 

Release 2 page 
COMMON 
STORAGE 

Return from 
LOADER, SAY 
SUCCESS FLA( 

T pg. 1 

Page 7 

DELETE LOCCT 
ro--------J id FILE 

Work Area 

pg. 1 

Figure 3-1. Flow Diagram of PASS3 (CONT) 

203 



Reset BKGRDLL 
nd M:MONFL 

System 

Set Up TEMP 
STACK Work 
Area 

GET All Available 
Pages for Work 
Area 

Initialize Work 
Area for LOAD 
Module "ROOT I 

Initialize all 
PLISTs 

Generate 
"ROOT" Load 
Module 

Write Load 
Module to 
"ROOT" file 

Release Core 
Work Area 

Pg.4 

Figure 3-1. Flow Diagram of PASS3 (CONT) 

204 

Page 8 



4.0DEF. 

Note This Chapter discusses DEF for UTS (000 release) and pre-HOO releases of BPM/BTM. DEF for BPM/BTM 

(HOO releases) is described in Appendix C. 

4. 1 PURPOSE. 

To generate one or more target system tapes (PO tape) or BO tapes which maybe used as master BI tapes for sub­

sequent SYSGENs. 

4.2 CALLING SEQUENCE. 

Monitor control command 

!DEF •• 

4.3 INPUT. 

DEF control commands from the SI device. 

! DEF (from C device) 
:WRITE 
:INCLUDE 
:IGNORE 
:DELETE 
END 
Files from random access device. 
Comment commands 

4.4 OUTPUT. 

Display of DEF control information to LL device. 

PO tape 
BO tape 

4.5 DATA BASE AND REGISTERS. 

R7 = address in temp stack of control command PLISTS 
R6 = address in temp stack of data and I/O PLISTS 

IGSTRT/lGEND - Pointer to START/END of IGNORE table 
INCLSTRT/INCLEND - Pointer to START/END of INCLUDE table 
Open FPTs 

OPNTMSQN - Open disc to file 
OPNPO - Open PO or BO (via DCB whose address is in R5) 
OPNTM - Open disc to next file 
OPNSYN - Open tape for Synonymous file 
OPNPOLST - Open tape for LASTLM file 

POIGS Table - Automatic IGNOREs for PO tape 
POINCLS Table - Automatic INCLUDEs for UTS PO tape 
BOINCLS Table - Automatic INCLUDEs for UTS BO tape 
BBOINCLS Table - Automatic INCLUDEs for BPM/BTM BO tape 

4.6 SUBROUTINES. 

BPMBT (write BPM/BTM system to unlabeled portion of BO/PO tape) (See Appendix A for description) 
UTMBPMBT (write UTS system to unlabeled portion of BO/PO tape) (See Appendix B for description) 
NAMSCAN (to scan any field containing a name) 
CHARSCAN (to check a specific character for legitimate syntax) 
CHSTSCAN {to obtain a character-string field} 
NXACTCHR (to get next active character from input record) 
HEXSCAN (to scan for a hexadecimal number) 

:205 



DECSCAN (to scan for a decimal number) 
QUOTSCAN (to compare a quote constant with a character string) 
GETCHST (to obtain the next character string) 

4.7 CONTROL COMMANDS. 

Upon entry DEF requires a parameter on the IDEF command that identifies the SYSGEN system for which tapes are 

being created. This parameter may be either BPM, BTM or UTS. If none is specified then the currently running 

operating system is used to determine the system type. If the parameter is invalid DEF prints an indicator message and 

aborts. For UTS, an optional second parameter is a version number. There is no syntax analysis made on the field 

so any set of characters is accepted. However, only the first three characters are retained as a general practice 

the format of the character string is: 

LOD 

where 

L = an alphabetic character 

o = the digit zero 

D = a numeric digit (0-9) 

The format then for the DEF control command is: 

IDEF IUTS l[,LOD] 
BPM 
BTM 

The type and composition of the tape(s) DEF creates is a function of the control commands read by DEF. If the IDEF 

is immediately followed by a monitor control command, one PO tape is created by default. The function of 

the END command is to cause DEF to exit since an EOF on reading M:SI causes one PO tape to be generated unless 

the last command processed was :WRITE. To write a BO tape and/or include, ignore or delete files for either tape 

type, :Commands are required. These commands have the following format: 

:INCLUDE (name 1, name2 ••• ) 

IGNORE (nameA, nameB ••• ) 

:DELETE 

:WRITE {~g} [, SN] 

All commands preceeding the :WRITE apply to that tape being created and may appear in any order. The :WRITE 

is required for BO tapes as PO is generated if the type parameter is null or illegal. The optional SN field permits a 

generalized assignment of PO/BO to (DEVICE, 9T) prior to calling DEF. The processor itself stores the particular 

SN into the DCB. 

The type of fi les that may be specified or are affected by the other commands depend on the type of tape being 

generated. Table 4-1 summarizes this information. 

206 



Table 4-1. File Types 

:COMMAND BO PO 

:INCLUDE Keyed Files Consecutive Files 

:IGNORE Consecutive Jobs Keyed Files 

:DELETE BOTH BOTH 

4.8 DESCRIPTION. 

Upon entry DEF initializes its dynamic data area and processes the !DEF command. One page of core is obtained 

for storing file names into the tables pointed to by IGSTRT and INCLSTRT. 

DEF then reads it :Commands and branches to the appropriate routine to process them. For :INCLUDE and :IGNORE, 

this involves syntax checking the names (~ 15 characters); determining if room exists for the entry (if not, obtaining 

an additional page of core); storing the name in the appropriate table; and exiting to read another command. 

For :DELETE,a flag (DELETEF) is set before exiting to read another command. When an abnormal return (EOF) is 

made from reading SI for commands, ENDFLG is set and if the WRTFLG is non-zero indicating the last command was 

:WRITE then the routine is entered to clear up the stack and exit. If WRTFLG is zero, then the routine to write a 

PO tape by default is entered. 

For the :WRITE command, entry is made to the initial routine that determines which type of tape is being generated. 

From here, a branch is made to either the PO or BO routines. 

For PO tapes, after processing the optional SN field, the names of files that are to be automatically ignored 

(i. e., LASTLM and SPEC :HAND) are I inked to the end of the IGNORE table. If the system being created is UTS, 

then the names of fi les to be automatically included are I inked to the end of the INCLUDE table. These files are 

listed in Table 4-2. The appropriate routine to write the unlabelled portion of the tape is segloaded and entered. 

See Appendices A and B for a description of these routines. Upon return, ten additional pages of core are obtained 

and the common routine (CCA) to generate the remainder of either type of tape is entered. 

For BO tapes, after processing the optional SN field, the appropriate routine to write the unlabelled portion of the 

tape is segloaded and entered. Upon return, for BPM/BTM systems, the fi les to be automatically included (see 

Table 4-2), are linked to the end of the INCLUDE table, ten additional pages of core are obtaine'd and exit is 

made to CCA. If the system is UTS, the file, M:SPROCS in :SYS account, is opened, ten pages of core are ob­

tained and the file is read into the newly acquired area and linked to the end of the INCLUDE table. M:SPROCS 

contains the names of the monitor overlays and shared processors but only the overlays are added to the INCLUDE 

table. The names of the other files to be automatically included are linked to the end of the added monitor over­

lay names and exit is made to CCA. For UTS the automatic INCLUDES reflect earl ier releases of the system. 

Upon entry, the common routine (CCA) begins by processing the INCLUDE list. This involves obtaining the name 

of a fi Ie, storing it in the open F PT (OPNTMSQN) for M: TM to the disc and then opening the fi Ie, using the 

FPARAM option. The file, thus opened, is checked first if it is a synonymous file in which case special handling 

is required, namely its parent name must be added before writing it to the tape. Note the parent fi Ie must occur 

before the synonymous fi Ie or the latter is lost. 

207 



Then the organization of the file is determined. If the tape being generated is PO then only consecutive files are 

processed, if BO then only keyed files. The other types are automatically handled later. 

The PO/BO tape is then opened and the fi Ie is read into core and written to tape unti I an EOF is encountered at 

which point the DCB is closed. This routine is repeated until all the names in the INCLUDE table have been 

processed. When this processing is completed and the files thus written to the tape have been listed on the LL 

device, the next phase of DEF is entered. 

If a BO tape is being generated, a null file, LASTLM, is written to the tape. Subsequently, or if a PO tape is 

being created, the FPT for open-next to the disc (OPNTM) is opened and fi Ie parameters obtained. If the file organ­

ization is consecutive (BO)/keyed (PO), the IGNORE table is searched to determine if it is listed there. If the 

DELETEF is set, then the file is deleted when M:TM is closed. If the file is not be be IGNOREd, then it is read 

into core and written to the tape. This procedure is repeated until all files in the current account have been processed. 

If on opening-next-file, an abnormal return is made indicating the file is a synonymous file, its name is stored in a 

new INCLUDE table whose location is pointed by INCLSTRT and a flag (SYNFLG) is incremented, thus main­

taining a running total of the number of synonymous files found. 

When an abnormal return is made indicating an end of all files on open-next, if the tape being created is BO, it is 

immediately closed, rewound, and saved. If a PO tape is being generated, SYNFLG is tested. If non-zero,a 

second pass is made through the INCLUDE routines. If or when SYNFLG is zero, the null file, LASTLM, is written 

to the tape which is closed, rewound, and saved. 

The pages of core acquired thus far are released. If ENDFLG is not set, the flags and counters are zeroed to pre­

pare for the generation of another tape. If ENDFLG is set, DEF exits. 

208 



Table 4-2. Automatic INCLUDES 

PO Tape * BO Tape ** 

UTS UTS t BPM/BTM -- --

BPM XDELTA I FMGE ! 

UTS LOGON : PASS 1 
SIG7FDP I TEL i ERRMSG 
:BLIB SUPER :DIC 
FLIBMODE DEFCOM :LlB 
SIGMET SYMCOM M:C 
M:CDCB JITO I M:OC 
M:OCDCB JITl I M:BI 
M:BIDCB JIT2 M:CI 
M:CIDCB JIT3 M:SI 
M:SIDCB JIT6 M:EI 
M:EIDCB ANLZ M:BO 
M:BODCB ERRMSG M:CO 
M:CODCB GHOSTl M:SO 
M:SODCB RECOVER M:PO 
M:PODCB M:SPROCS M:GO 
M:GODCB M:MON M:lO 
M:LODCB PCl M:DO 
M:DODCB CCI M:EO I 
M:EODCB LOADER M:lL I 

! 
M:LlDCB PASS2 M:CK 
M:SLDCB lOCCT M:SL 
M:AlDCB PASS3 M:AL 
M:LIDCB DEF M:LI 

Plus Monitor overlays M:MON ! 
from M:SPROCS PCl 

I CCl 
I lOADER 

I 
PASS2 
lOCCT 

I PASS3 

i DEF 

* From Current Account 
** From :SYS Account 

t Reflects earl ier releases of UTS 

209 



4.9 DEF MESSAGES. 

::::SYSGEN DEF IN CONTROL:::: 

::::DEF COMPLETED:::: 

**CC TYPE UNK NOWN 
****GET NEXT CC 

**SYNTAX ERROR, NO I( I 

**DEUMITER MUST BE 1,1 OR 1 )1 

**NAME INVALID OR > 15 CHAR. LONG 

****NOT ENOUGH CORE AVAILABLE 
*****SYSGEN DEF ABORTED 

****WRITING PO BY DEFAULT 

***ILLEGAL INCLUDE - WILL BE COPIED LATER 

***DEF TYPE UNK NOWN 

***TYPE UNKNOWN - xx Mused 

**NO 1:1 in column-1 

****TROUBLE WITH M:SPROCS 

***CANNOT WRITE TAPE 

***CANNOT OPEN OUTPUT DEVICE 

PO TAPE CONTENTS ••• 

BO TAPE CONTENTS. 

***INCLUDE ITEMS*** 

***OTHER ITEMS*** 

********INCLUDE ITEMS NOT FOUND 

4. 10 INTERNAL ROUTINES. 

DEF 

READFRST 

INIT 

DEFRDCC 

DEFINCL 

DEFIG 

DEFWRITE 

DFWRTPO 

DFWRTBO 

DEFTABLR 

PAGER 

210 

Commentary at beginning of execution. 

Commentary at end of execution. 

Error in :Command. DEF reads next command. 

Error in syntax. DEF reads next command. 

Invalid terminator on :Command. DEF reads next 
commando 

DEF searches for next parameter. 

Work area too small. DEF exits. 

Either no tape type specified or parameter invalid on :WRITE. 

On the :INClUDE command a keyed file (for PO) 
or a consecutive file (for BO) has been specified. 
The file name is printed above this message. DEF 
continues. 

System type field of ! DEF command has been specified 
but is invalid. DEF exits. 

System type field of !DEF missing. DEF defaults to 
currently running system type (xx). 

Command in error. DEF reads next command. 

In attempting to open M:SPROCS in creating a 
BO tape for UTS system, difficulty encountered. 
DEF releases the tape and if ENDFLG set, exits. 

In attempting to open tape (BO/PO), abnormal 
condition occurs. DEF releases tape and if ENDFLG 
set, exits. 

These are subtitles that are followed 

by a I ist of the appropriate files. 

Main entry, initial ize processor dynamic data area 

Process DEF command. 

Initialization of pointers. 

Read :Command for DEF, and branch to appropriate 
routine or set DELETEF. 

Process :INCLUDE. 

Process :IGNORE. 

Initial processing of :WRITE. 

:WRITE processing for PO. 

:WRITE processing for BO. 

Processing name options on :INCLUDE or :IGNORE. 

Get a page of core and zero it out. 



READCC 

LISTCC 

GETRITEMON 

EOCCSCAN 

CCA 

NXTINCL 

RDWRITEM 

SYNINCL 

NOINCL 

NXTFILE 

IGNORl 

ISSPEC 

CLSDSK 

RDWRITE 

ALLDONE 

NXTTPE 

Error and abnormal return routi nes. 

LSlVVRT 

RTMAINCL 

OTMAINCL 

RTMA 

OTMA 

OPOA 

.211 

Reads :Commonds for DEF. 
Register 12 = CC Buffer address 

Displ ay commands on LL device. 
Register 12 = CC Buffer address 

Obtain appropriate WRITEMON overlay according 
to system type (UTS or BPM/BTM). 

Find end of current control command. 

Generate PO/BO tape. 

Obtain next INCLUDE fi Ie name. 

Read and write fi Ie. 

Process synonymous file includes. 

End of includes, begin generating remainder of tape. 

Obtain next fi Ie on disc. 

Search ignore table for match. 

Delete fi Ie if required. 

Close file. 

Read file and write to tape. 

Releases pages acquired, if ENDFLG set, exits. 

Zeroes flags and counters, restores FPTs to original 
state, returns to INIT via PAGER. 

EOF on reading M:SI. 

EOF on reading INCLUDE files. 

Abnormal return on opening of INCLUDE file. 

EOF on reading M:TM file. 

EOF on open next of M:TM or synonymous file found 
for open-next. 

Cannot open BO/PO Tape. 



4. 11 Flowcharts 

Process 
:INCLUDE 

Initialize 
Dynamic 
Data Area 

Process IDEF 
command 

PAGER 
Get one of Core 

Initialize 
pointers 

list :Command 

pg. 11 

Determine type 
of:Command 

Process 
:IGNORE 

TYPEFLG 
0= BPM/BTM 
2 =UTS 

Abnormal Rtn 
LSTWRT 
Exit from Loop 

pg. 11 

Process 
:WRITE 

pg. 3 

:DELETE 
Set flag 
(DELETEF) 

Figure 4-1. Flow Diagram of DEF 

212 

Page 1 

ID 
Process if Card 
in Error 



Initialize 
>--~ INCLSTRT 

(= NXTNAME 

Adjust INCLEN 
(= NXTNAME+ 

1) 

Process name '~--_----..JL..-____ --1 
options and 

ore' t ble 
pg. 12 

DEFIG 

ENTER 

Process name 
opti ons, store 
in table 

pg. 12 

Adjust IGEND 
(=NXTNAME) 

Page 2 

Adjust IGEND 
>--y_e_s _~ (=NXTNAME+1 

Figure 4-1. Flow Diagram of DEF (CONT) 

213 



DEFWRITE 

Get tape type 
Field 

III egal-PO by 
Defau I t (pri nt 
message) 

pg. 4 

Figure 4-1. Flow Diagram of DEF (CONT) 

214 

Page 3 



DFWRTPO 

DCB Poi nter (R5 
to M:PO 

OUTSN 
Process pt JOn, 
set in DCB 

pg. 4 

WRTFLG= 
ORG (x'20') 

Link automatic 
IGNORES at 
end of IGEND 

Save 
Registers 

Get version # 

R7 = M:PO address 
o 

Link automatic 
yes i ncl udes at end 

of INCLEND 

Restore Registers 
Pri nt PO tape 
contents 

OUTSN 

EXIT 

Get 10 pages 
of Core 

Figure 4-1. Flow Diagram of DEF (CONT) 

215 

Page 4 

Store in DeB 

pg. 6 



DCB Pointer 
(R5) to M:BO 

OUTSN 
Process SN 
option,. set in 

pg. 4 

WRTFLG = 
ORG (Xl 101) 

Save Registers 
Get version number 
R7 = M:BO address 

Restore 
Registers 

Link automatic 
includes for 
BPM/BTM at 
INCLEND 

Get 10 pages of 
Core 
R5 = DCB point 

pg. 6 

Open M:SPROCS 
(:SYS) 

Get 10 pages 
of Core 

Link to 
INCLEND 

Close M:SPROC 

Search for TE L 
Name-End of 
Monitor Overlays 

Link automatic 
includes to end 
of Monitor overlays 

Ad i ust Buffer 
Addresses 

R5 = DCB point 
to M:BO 

Figure 4-1. Flow Diagram of DEF (CONn 

216 

Page 5 



Get Byte count 
of Entry name 

AND =0 
got entry 

Must be XI 4F I 
Code • Turn on 
:SYS in account 
field of FPT 

Increment (+ 1) 

Save Position 
no in Table 

pg. 9 

L 

position in tablel-_________________ ---' 

Figure 4-1. Flow Diagram of DEF (CO NT) 

217 

Page 6 



Pointer to File parameters 
(F PARAM) (02) Pointer to start 
of variable parameters 
(R 1) 

and size 

OPEN M:TM 
to FILE 

Close and Save 
File 

NXTINCN 

Abnormal addre!s 
OTMAINCL 

pg. 13 

pg. 13 

no 

pg. 6 

Access file nam 
from FPARAM 

Check ORG 
of file 

Get Key Lengt 
(04), ORG (03) 
from FPARAM 

OPEN 
M:PO/M:BO 

(Print file name) 

Page 7 

For INCLUDE 
PO - CONSEC only 
BO - KEYED only 

Abnormal addres 
___ OPOA 

pg. 12 

Abnormal Addres 
RTMAINCL 

- - - - (Exit Point of 

Get actual 
Record Size 

Looo) 
pg. 8 

Figure 4-1. Flow Oiagram of OEF(CONT) 

218 



RETURN 

PGCNTL 
Determine reeso 
for ABN return 

pg. 8 
RTMAIN1 

Close and save 
Disc and Tape 
Files 

M 

PGCNTL 

Get max pages 
Set FLAG 

Position one 
record back 
adjust pointer 

Flag set 
release extra 
pages 

rror messages 
~_.,..istCC 

DEF DONE 

RETURN 

Figure 4-1. Flow Diagram of DEF (CONT) 

219 

Page 8 

RETURN 

EXIT DEF 



NX F E 
no 

D1 = OPEN-NXT 
FPT for M: M 

D2 = FPARAM 

OPEN (NEXT) 
M:TM 

Get file name 
from FPARAM 

Abnormal 
address OTMA 

pg. 10 

CLSDSK 

pg. 9 

PO-keyed fi les 
BO~onsecutive 
fi les 

e lose and Save 
File 

RDWRITE 
Get KEYMAX 
D1 = OPEN FPT 

OPEN DeB 
to Write 
Tape 

/ Read Record 
M:TM 

Get actual 
Record Size 

Figure 4-1. Flow Diagram of DEF (CONT) 

220 

Page 9 

Close and 
Release File 

Abnormal opot 

pg.12 

Exit pointer 
of Loop 

pg. 



Determine reaso 
for ABN return 

pg. 8 

Close Tape 
FILE 

pg. 9 

~TFIL no SYNONYMOUS 
FILE 

? 
pg. 9 . 

Put SYNON 
name in table 

pg. 9 

Set Table addre s 
in INCLSTRT 

POOUT 
Write LASTLM 
Close and 
Save and 
Rewind M:PO 

ERRDNN 

NXTTPE no 

zero o""'u'-t =fl-og-s----, 

and constant 
set DCB to 

Set pointer to 
INIT 

pg. 1 

Figure 4-1. Flow Diagram of DEF (CONn 

221 

Page 10 

Close, Save 
M:BO and 
Rewind 

Set End of 
SYNON TABLE 

Print 
DEF DONE 

pgo 6 



Get 1 page 

Zero page out 

Increment page 
count keep trac , 
of end 

Set ENDFLG 

pg. 3 

M 

pg. 8 

LISTCC 

11 

fRead ~~SI for 
Command 

--i ABN LSlWRT I 

pg. 11 

ENDFLG 

pg. 10 

RETURN 

a..-____ ...J0-e pg. 11 

RETURN 

RETURN 

Figure 4-1. Flow Diagram of DEF (CONT) 

222 



PAGER 
Get 1 page 
and zero it 

Store name 
in table 

RETURN 

Error Message 

Reset Flags 

pg. 1 

Open, Close 
Release, 
Rewind Tape 

pg. 10 

Figure 4-1 •. Flow Diagram of DEF (CONn 

223 

Page 12 



SEGLOAD 
appropriate over 
lay to write un­
labeled tape po ion 

Branch to 
Overlay 

RETURN 

B 
Store SYNaN name 
and parent file name 
in special SYNaN 

OPEN FILE 
(" WRITE II FILE) 

pg. 8 

BPMBT -
(BPM/BTM) 
UTMBPMBT-UT~ 

pg. 7 

!-________ ~-~ ___ J 
Figure 4-1. Flow Diagram of DEF (CaNT) 

224 



5.0 LOCCT 

5. 1 PURPOSE 

To generate a permanent file containing the Loader Overlay Control Command Table (LOCCT) information used 

by SYSGEN PASS3 and the system Loader when loading a specified element (e.g., M:MON, PCL, EDIT,). 

5.2 CALLING SEQUENCE 

The following Monitor control command sequence: 

! LOCCT (LMN, X), ••••• 

! TREE •••••••••• < optional> 

!DATA 

:LOCCT X 

5.3 INPUT 

LOCCT control command from C device (80 characters maximum per physical image): 

:LOCCT 

LOCCT from core common storage (UTS Base System) or abso lute read/write scratch area on system's random 

access device (BPM/BTM Base System). 

5.4 OUTPUT 

A display of LOCCT control information to LL device. A permanent file to random access device containing 

LOCCT table. A copy of permanent file information to the PO device. 

5.5 BASE REGISTERS 

Register 7 = address in temp stack of control command PLISTs, and I/O PLISTs. 

5.6 SUBROUTINES 

NAMSCAN (used to obtain the name from the LOCCT control command). 

5.7 DESCRIPTION 

The LOCCT processor is entered from the system's Control Command Interpreter (CCI) as a result of a 

"!LOCCT" Monitor control command being encountered. The "!LOCCT" command replaces the "!LOAD" 

or "!OVERLAY" command, although the information on the "!LOCCT" command is identical to that of a 

LOAD or OVERLAY command. CCI processes the "!LOCCT" command and the optional "lTREEIl 

command and terminates on the II! DATA II command. The resultant output is a LOCCT (see Chapter 6) 

which contains all of the information from the II! LOCCT" and II !TREE II commands in a compressed format. 

If the base system is BPM/BTM, the LOCCT is saved, temporarily, in the absolute read/write scratch area 

on the system random access device. However, if the base system is UTS, the LOCCT is saved in the 

common area of core. 

225 



CCI then enters the LOCCT processor. LOCCT proceeds to read its own control command, ":LOCCTII. 

The syntax for this command is 

:LOCCT name 

This control command must immediately follow the II ! DATA II control command. The "name" field is 

optional, however, if present, it is used to form a file-name which is the name of the permanent file 

containing the LOCCT. The "name" is syntactically checked and must be from one to ten alphanumeric 

characters of which one character must be alpha. 

This control command cannot be continued to other physical images. Unlike other SYSGEN processors, 

a comment control command (i. e., a control command with an asterisk in character position one), is 

not recognized. However, comments may be added to the ":LOCCT" control command by preceding 

the comment with a peri ode 

The file-name formed from the IIname II option is accomplished by appending the IIname II to the characters 

IILOCCT II • 

If the Iiname ll field is not specified, a previous assignment must have defined the file-name. This is 

accompl ished with the Monitor control command II !ASSIG N ". The assignment is to the M:EO DCB, 

and must provide a file-name which is equivalent to that which would have been generated by the 

LOCCT processor, i.e., the name must be appended to the characters "LOCCT". 

If an Assign command is specified, and the II:LOCCT" command specifies a "name ", the "name" on the 

II:LOCCT" command supersedes the assignment. 

The LOCCT processor continues by obtaining the LOCCT from either the absolute read/write scratch area 

or the system random access device (if the base system is BPM/BTM), or from the common area of core 

storage (if the base system is UTS). The LOCCT is interrogated to determine if it is legal. That is, all 

element file names (Relocatable Object Module names) are checked to make sure that they do not 

reference labeled tape for their inputs. All element file references must be to a random access device. 

The LOCCT processor then forms binary card image type records (Table 5-1) from the LOCCT. Each record 

contains a binary type identification, a hexadecimal sequence number, a byte checksum, a byte containing 

the size of the record (in bytes), and 84 bytes of LOCCT table information. The last eight columns 

(or 32 bytes) remain unused. Each record is then written in the file "LOCCT name" and is also output 

the PO device. 

When the LOCCTs are being generated, it is recommended that they be built in the same account in which 

SYSGEN PASS3 executes. In a LOCCT, each element file reference contains a corresponding account 

number in which that file is to be found. If these account numbers vary, and t~ files and accounts do not 

exist when SYSGEN PASS3 eventually uses the LOCCTs, then the load phase will not be successful. 

5.8 LOCCT MESSAGES 

The error messages which may appear on the LL device whi Ie generating a LOCCT are as follows: 

226 



***UNKNOWN CC OR 

CONTINUA nON ILLEGAL 

The LOCCT control command II:LOCCT II contains an invalid 

character string for the characters assumed to be IILOCCT", 

or the command requests a continuation command (i. e., the 

":LOCCT II command contains a semicolon prior to the "name ll 

field). LOCCT displays abort message and exits to the Monitor. 

LOCCT PROCESSOR ABORTED This message is displayed in conjunction with other LOCCT 

***NAME INVALID 

processor messages. 

The ":LOCCT II commandls "name" is not a legal alphanumeric 

name. LOCCT displays abort message and exits to the Monitor. 

***CANNOT GENERATE LOCCT 

WITH ROMS ON LABELED A load item or element file (Relocatable Object Module - ROM) 

TAPE is to be found on labeled tape and is invalid. LOCCT displays 

abort message and exits to the Monitor. 

***ROM TABLE END CANNOT 

BE FOUND The LOCCT, as generated by CCI (System IS Control Command 

Interpreter), contains inval id or unrecognized Relocatable 

Object Module (ROM) information, i.e., the end cannot be 

found. LOCCT displays abort message and exits to the Monitor. 

***NAME> 10 CHARACTERS The "name" contains more than ten characters. LOCCT displays 

abort message and exits to the Monitor. 

***1/0 ERR/ABN FOR READ C = XXXX 

***1/0 ERR/ABN FOR WRITE EO=XXXX 

***1/0 ERR/ ABN FOR WRITE PO=XXXX 

***OPEN EO ERR/ABN = XXXX 

***ABS READ ERR/ ABN = XXXX < for BPM/BTM only> 

One of the above messages appears when an I/O error or 

abnormal condition is encountered on the C, EO, or PO devices. 

Under a BPM/BTM base system, the ABS READ message may appear. 

The value XXXX is the I/O error/abnormal code. LOCCT 

displays abort message and exits to the Monitor. 

227 



Character 

1 2 3 4 5 6 7 8 9 10 / 70 71 72 73 74 75 76 77 78 79 80 
12 

11 
/ 

0 
SEQ 

1 I--

2 ID 

Row 3 
NOT USED 

4 
DATA 

5 
I-- CKS ~ 

6 

7 

8 
SEC 

9 / 
V 

ID XI3E 1 binary card code 

X 11 E 1 binary end card code 

SEQ two-digit hexadecimal sequence number 

CKS byte checksum of card image 

SIZ number of useful bytes in card image, including the control word in columns 1-3. 

However, the size will never include columns 73-80, but, will include all of the 

DATA. If the useful data ends prior to column 72, then the size will not include 

those columns (or bytes) prior to column 72. 

Figure 5-1. LOCCT Record Format 

228 



5.9 LOCCT PROCESSOR FLAG 

LOC X'2B' in Monitor This location contains the information which identifies what type of base 

Monitor is in control (e.g., BPM/BTM or UTS). 

The format is: 

MON 

o 

where 

MON = 4 BPM 

5 BPM/BTM 

6 UTS 

34 31 

5. 10 INTERNAL ROUTINES 

LOCCT main entry, initialize processor, and general contro lIer 

GENFILE generate a permanent file for LOCCT 

LOCCTl form next record from LOCCT information 

GETCOM 

FINDEND 

FINDENDX 

FINDROMX 

CONY 

get original LOCCT from common storage 

Reg i ster 13 = buffer address where L OCCT is to end up 

Register 14 = buffer size in bytes 

find end of LOCCT for purposes of generating a permanent copy 

Register 13 = base address of work area 

Register 7 = size of LOCCT in words 

check for valid ROM table in LOCCT 

Register 2 = relative address of ROM table in LOCCT 

obtain from TREE table (in LOCCT) the next ROM table 

information pointer. 

Reg ister 1 = address of LOCCT 

convert error/abnormal code to EBCDIC 

Input: Register 10= error/abnormal code, (bits 0-7) 

Output: Register 4 = converted code in EBCDIC. 

Special error routines include: EO, ECOMMON, E1, E2, E3, E4, CE, CA, WE, WA, PE, 

PA, OE, OA, RE, RA 

229 



5. 11 LOCCT Flow Charts 

Pg.2 

Display 
Command 

Read ABS 
Scratch from 
disc 

yes 

Get 4 pages 

for work area 

Initialize 
LOCCT flags & 
work area 

Read 
LOCCT 
command 

No, Monitor has already 
displayed command 

Initialize 
LOCCT's 
temp stack 

Get 
Name 
field 

Append name 
to "LOCCT" 
characters 

Set up open 
PLIST for perm. 
file 

Base Monitor 
type 

no name 
given 

Set up open 
PLIST, no 
file name 

Page 1 

BPM/BTM_ --8 
Pg. 2 

UTS 

Figure 5-2. Flow Diagram of LOCCT 

230 



no 

Calculate 
LOCCT size 
with no ROMI 

TREE 

3 

Get common 
Limits 

Get LOCCT 
size (word 1) 

Move LOCCT 
to work area 

Release 
common 
core 

Open output 
file perm. 

FINDENDA 

Calculate 
LOCCT size 
with TREE, no 
ROM 

Pg. 3 

Figure 5-2. Flow Diagram of LOCCT (Cont.) 

231 

Determine TREE 
address & end of 
TREE 

Page 2 

f\ 
~ ___ FINDROM1 

~ Get 1st ROM 
entry pointer 
from TREE entry 

FINDENDX 

~pg. 3 



"Cannot Gen. 
LOCeT with 
ROMS on 
labeled tape" 

"LOCCT 
ABORTED II 

yes 

Calculate 
LOCCT size with 
ROMs last 

yes 

Initialize 120 
Byte image 
buffer 

Binary code size, 
Byte checksum, & 
sequence # 

Set up 1st 4 
Bytes, 
Co ntro I word 

To next 
TREE entry 

Calculate 
LOCCT size 
with TREE last 

Figure 5-2. Flow Diagram of LOCCT (Cont.) 

232 

Page 3 

Pg.2 



Close & Save 

File 

yes 

Move ~ 84 Bytes 
from L occr to 
buffer 

Form checksum & 
put in image 

Write buffer 

to file 

Write buffer to 

PO device 

Page 4 

Move max. of 84 
Bytes or remainder 
LOCCr, which 
ever is less 

Set to next 

sequence # 

e 
Pg. 3 

Figure 5-2. Flow Diagram of LOCCr (Cont.) 

233 



6.0 TABLES, FILES, SUBROUTINES 

6. 1 SYSGEN LOADER OVERLAY CONTROL COMMAND TABLE (LOCCT) 

FI 

Word - 0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

13 

15~ v 

Word - m 
Word - m1 

~ 

Word - n 

~ 

l 

LOCCT SIZE J~ 

Is l\ 
, ~~ ~~ 

ROM TABLE DISPLACEMENT 

TREE TABLE DISPLACEMENT 

I Z 
0 

LOAD BIAS j:::: w 

~ () 
4: 

~ ~ 

0 0 
L1- I-

~ Z Vl 

0 w 
0 w ~ 

~ 
j:::: - w U 0 

~ 
w :> V N !:: 

....I Vi ~ W L1-

<5 ~ 0 0 
l-

f:' L1- V Vl Vl 
Z V 0 Vl W ~ « w () Load Module NAME (3 words) - 0 U w w « l-I- ~ ~ V a.. Vl 

User Account (2 words) V w 4: >-V I- :E .... - Z Vl 

~ 0 => 0 W 
....I ....I O:E :E Vl :; 

" 
0 o~ « Vl ZVl ~ co 
co 0 TREE SIZE « «>- Vl 

~'" ~Vl V I-
Z Z~ Z 2-

ROOT Segment Information Vl W- 0 O~ -w 
0 0 ....I N «~ co v; Z Z 4: => wI- => I- ~co Segment 1 information w 0 4:"-.,. 0 w w 

w ~ L1- :c~ L1-

~ 
~ t::. Vl Va.. Vl I- « I- CO « 

,it I- «'-' I-
U ~ V 

ELEMENT FILE Information ~ '" U U U 
0 

Vl 
0 

(Root Segment) ....I ....I 

Vl 
W 
....I 

ELEMENT FILE Information co 
« 

(Segment 1) I-

:E 
0 
~ 

~ 

I , , , 
" 

,,, 
where 

ROM TABLE DISPLACEMENT the number of words from word - 0 to word n. 

TREE TABLE DISPLACEMENT the number of words from word - 0 to word - m 1 • 

LOAD BIAS the bias at which to load this element. 

LOAD MODULE NAME the name given to this element. 

USER ACCOUNT the account in which this LOCCT is being generated. PASS3 
forces th is to the current account. 

F a flag which identifies this LOCCT (if in common storage only, i.e., UTS Base System) 
as coming from PASS3 or the or the Systems Control Command Interpreter (CCI). If CCI, 
F=O (Bit 0); if PASS3, F = 1 (Bit 0). 

SL the load severity level indicator. PASS3 forces this to be "F", the highest severity level 
";""-__ possible (B its 8-11). 
tBASE SYSTEM refers to the monitor type which is in execution. 

Figure 6-1. LOCCT Format 

234 



Word 0 

l 

2 

3 

4 

5 

6 

7 

8 

9 

10 

SEGMENT NAME 

(TEXTC FORM) 

1st ROMPOINTER BACK LINK 

FORWARD LINK OVERLAY LINK 

00 SIZE 00 LOCATION 

RF/DF SIZE RF/DF LOCATION 

01 SIZE 01 LOCATION 

EXPRESSION SIZE EXPRESSION LOCATION 

10 SIZE 10 LOCATION 

where 

* 1st ROM POINTER the number of words from word-n to first ROM name (or Element File 
Information block) in the LOCCT. 

BACK, OVERLAY, AND FORWARD LINKS the displacements from word-m1 to Segment 
Information for next overlay, in the overlay structure. 

00 SIZE AND 00 LOCATION the load modules' protection type 0 size (doublewords) 
and base location (doubleword address). 

01 SIZE AND 01 LOCATION same as for 00, except it is for load modules' protection type 1. 

10 SIZE AND 10 LOCATION same for 00, except it is for load modules' protection type 2. 

RF /DF SIZE AND RF /DF LOCA nON the External DEF /REF table's size (words) and base 
location (doubleword address) for th is load module. 

EXPRESSION SIZE AND EXPRESSION the Expression (External DEF/REF) table's size 
(words) and base location (doubleword address) for th is load modu Ie. 

* NOTE: ROM name implies Relocatable Object Module name. 

Figure 6-2. TREE Entry Format 

The Element (ROM) Table's entry has the following format: 

Word 0 

2 

3 

4 

5 

6 

ELEMENT FILE NAME 

(TEXT FORM) r FLAG 

ACCOUNT OF ELEMENT FILE 

PASSWORD 

where 

FLAG is a flag identifying the last Element File Name 
within this Table and identifying the element file 
name as being found on labeled tape, i. e., 

235 

: 



X'4x ' = not end of Element File names within 
this table. 

XIOx' = end of Element File names within this 
table. 

x = 2 = Element File name found on labeled tape. 

Figure 6-3. ROM Table Entry 

6.2 SYSGEN LOAD MODULE COMPONENTS 

KEY = IIHEAD" 
Word 0 TYPE I 00 FF I SIZE 

1 AI T I II I STADD 
2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

where 

TYPE = X'81 1 

= X '80 ' 

SIZE = X'18 1 

= X '30 ' 

MODBIAS 

LOCB/SIZU LOCU 

RFDFU #W 

library load module (used by SYSGEN). 

load module. 

HEAD size (bytes) for BPM/BTM target system. 

HEAD size (bytes) for UTS target system. 

~ ..... Q a:l 

~ <l: w 
Q.. :::c 
a:l 

,It 

*A = 1 load module is in absolute form, i. e., no relocation dictionary{s) (RELDICT). 

= 0 load module is relocatable. 

*T = 1 no TCB 

= 0 TCB is present. 

*STADD Load module's entry point or start address. 

#W number words in TREE. 

MODBIAS load module's bias, doubleword address. 

LOCB SECT. 00 base location, doubleword address for BPM/BTM module. 
LOCU SECT .00 base location, doubleword address for UTS module. 
SIZEU SECT. 00 size, in doublewords, for UTS module. 
RFDFU REF/DEF STACK (RFDFSTK) size, in words, for UTS module. 

*For SYSGEN - generated load modules: A=O, T=l, and STADD=O. 

Figure 6-4. HEAD Record Format 

236 

------------ -----

J~ 

Q 

~ 
:::c 
en ..... 
:::> 



Word 0 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

#W 

SEGMENT NAME 

(TEXTC FORM) 

00 SIZE 00 LOCATION 

RF /DF SIZE RF /DF LOCATION 

EXPRESSION SIZE EXPRESSION LOCATION 

where 

#W number words in TREE. 

SEGMENT NAME name of load module root segment. 

00 SIZE SECT. 00 size in doublewords 

00 LOCA nON SECT 000 base address, as a doubleword address. 

RF/DF SIZE RFDFSTK size in words 

RF/DF LOCATION 

EXPRESSION SIZE 

RFDFSTK base address, as a doubleword address. 

EXPRSTK size in words. 

EXPRESSION LOCA nON EXPRSTK base address, as a doubleword address. 

Figure 6-5. TREE Record Format 

The KEY names used to identify the remainder of a load module are formed by appending to the 

SEGMENT NAME a one-byte digit which identifies a component as follows: 

digit 00 segments RFDFSTK 

01 segments EXPRSTK 

02 RELDICT. 00 (relocation di ctionary for SECT. 00) 

03 SECT. 00 (SYSGEN - generated tables, data) 

Therefore, for a segment name of "ROOT" (refer to PASS3), the corresponding components will 

be: 

05D9D6D6E300 implies "ROOT II =RFDFSTK 
00 

05D9D6D6E30l implies IIROOT01 
II =EXPRSTK 

05D9D6D6E302 implies "ROOT02 
II =RELDICT.OO 

05D9D6D6E303 implies "ROOT II =SECT.OO 03 

237 



RFDFSTK (Generated by call to MODIFY subroutine, 6.5) 

Word 0 

2 

3 

n 

#W I TP I J~ 

VALUE 

BA HA I WA DA >-
0::: 
I-
Z 

REF /DEF NAME 
w 
u.. 
w 

~ 

I (TEXTC FORM) 

V ~ v 

I 
u.. 
W 
0::: 

, 

where 

#W number of words in REF/DEF entry (n + 1). 

TP = 0 external definition. 

= 1 secondary external reference. 

= 2 primary external reference. 

= 3 dummy section. 

= 4 or 6 control section. 

=5 

VALUE 

BA = 1 

HA= 1 

WA= 1 

DA= 1 

forward reference (null if #W = 1). 

actual value assigned to an external definition. 0, when name is external 
reference. 

VALUE is byte resolution. 

VALUE is halfword resolution. 

VALUE is word resolution. 

VALUE is doubleword resoiution. 

Figure 6-6. RFDFSTK Format 

238 



EXPRSTK (Generated by call to MODIFY Subroutine 6.5) 

Word 0 

1 v 

nO 

n1 

n2 

n3 

~ 

m 
I 

where 

#W 

DSP 

#w IElq DSP CB1 CB2 

I CB3 CBn 

~ 

DESTINA TION 

BA I HA I WA I DA 

WORD 1 

WORD 2 

V v 

WORD n I 
number of words in expression entry (m + 1). 

the number of words to word - n2. 

expression evaluation control bytes. 

Figure 6-7 EXPRST K Format 

>-
0::: 
I-
Z 
w 

z 
o 
v; 
V') 
w 
s: 
X 
w 

The expression control byte values recognized by SYSGEN include: 

CB. = 0 null 
I 

= 1 add constant from next word (word i) in word list in EXPRSTK. 

= 2 end of expression 

= X'20' to X'23' 

= X'28' to X'2B ' 

= X'30 ' to X'33 1 

= X '34 1 to X '37 1 

= X'38 1 to X'3B I 

add declaration according to pointer given in text word (word i) of 

word list with resolution of bits 6-7 of CB. 

subtract declaration similarto X'20' to X'23 1
• 

change expression resolution to bits 6-7 of CB. 

add the ASECT doubleword address zero to the expression at 

the resolution given. 

subtract the ASECT similar to X'34 1 to X '37'. 

The CBj digit IS format for X '20 ' throught X '2B ' is 

00 10 SO rr 

where 

S = 0 add 

= 1 subtract 

rr = 0 byte reso lution 

= 1 halfword resolution 

= 2 word resolution 

= 3 doubleword resol ution 

239 



The CBi digit's format for X'30' through X'33' is 

I 00 11 00 rr l 
where 

rr = resolution code as previously described. 

The CB i digit's format for X'34' through X'37' is 

100 11 01 rr I. 

where 

rr = resolution code as previously described. 

The CB i digit's format for X'38' through X'3B' is 

I 00 11 10 rr I 
where 

rr = reso lution code as previously described. 

wordO, word 1 , ••• wordn corresponds to control bytes (CBi) whose values are 1 or X'20' 

through X'2B', and are either constants or displacement pointers to the RFDFSTK. The 

format is the same as for DESTINATION. 

BA=HA=WA=DA 0 {resolution word} 

DESTINATION a displacement pointer to the RFDFSTK. 

C= 0 destination is to RFDFSTK. 

= 1 DESTINATION is a core expression with the format 

FLDSZ TBP ADDR 

where 

FLDSZ the destinations (ADDR) field size (in bits) where ultimate value 

is to be set. 

TBP terminal bit position of value in the destination's field. 

ADDR word address in SECT. 00 of DESTINATION. 

E =0 expression not evaluated. 

=1 expression has been evaluated. 

240 



RELDICT .00 (Generated by SYSGEN, modified by call to MODIFY Subroutine, 6.5) 

Word 0 

n 

where 

DO' D1, •.• , Dn =a four-bit digit which describes how to relocate a data word 

in SECT. 00. 

DO impl ies relative word - 0 in SECT. 00 

? 1 implies relative word - 1 in SECT. 00 
. 
o implies relative word - n in SECT. 00 

n 

Figure 6-8 RELDICT Format 

Table 6-1. Relocation Digit Interpretation 

Relocation Part of Word Resolution Relocate With Request 
Digit (D i) to Relocate for What Bias 

0 Address Byte Module Bias 

1 Address Half Word Module Bias 

2 Address Word Module Bias 

3 Address Doubleword Module Bias 

A Both Halves Doubleword Module Bias 

E Absolute ------- -------

SYSGEN uses the above relocation digits with their corresponding implications and results. 

SECT. 00 (Generated by SYSGEN) 

This area contains the actual data, tables, and reserve area which are generated by SYSGEN 

for a given control command. 

241 



6.3 SPEC:HAND FILE CONTENTS 

Word -0 

Word - 2 
Word - 3 

HC 
--

HC 

C1 

--
C, 

#E 

UNUSED 

C.., ---
-- C 

C ---
~ 

y 
Word m l 

~ 
I 

where 

HE = number of entries in table. 

UNUSED = this word is unused. 

HC = number of characters (C ) in name (TEXTC format). 
n 

C1' C
2
'. • • Cn = characters in handler name, (from one to seven characters 

only). Each name ison a doubleword boundary. 

Figure 6-9. SPEC:HAND File Format 

6.4 SYSGEN MODIFY SUBROUTINE PARAMETER LISTS (PLISTS) 

The SYSGEN MODIFY subroutine requires parameter lists (PLISTS) which describe what is to be 

accomplished. This procedure is useful only when changing, adding or defining items in a 

load module. The master PLIST refers to sub-PLISTS which will be referred to as change 

description tables, (pointed to by Register 7). 

Word 0 

1 

2 

3 

4 

5 

6 

7 

where 

II 

V I 
RFDFAD 

RELDICTOAD 

RELDICTlAD 

RELDICT2AD 

RFDFUL 

ADDRCDT 

SUBR 

TREEAD 

EXPRAD 

SECTOAD 

SECTlAD 

SECT2AD 

EXPRUL 

ADDRCDT word address of a change description table or sub-PUST. 

I = 1 a change description table is not supposed to cause expansion of the RFDFSTK or 

EXPRSTK. Therefore, the EXPR type of change description table is not permitted, 

and "name 2" of the DEF type change description table must be defined. 

1=0 a change description table may cause an expansion of the RFDFSTK or EXPRSTK. 

Therefore, it is assumed that the area between the given RFDFSTK and EXPRSTK lines 

is available for that expansion. 

242 



SUBR = 0 

SUBR f. 0 

no action taken. 

the address of a subroutine to be entered under the following circumstances. 

Any call on the MODIFY subroutine may result in a number of core locations 

in SECT. 0, SECT. 1, or SECT. 2 being modified. If it is so desired that 

MODIFY not make these changes, but, instead, inform the caller of the 

changes, then this subroutine is entered. The subroutine is entered 

via: Set Register 1 = core location to which change applies; Set Register 2 = 

value to store; Set Register 3 = mask for BAL, 11 SUBR. 

V =00 RELDICT. 00, 01, 10 are available. 

=01 RELDICT. 00, 01 , 10are not available, (i.e., the load module is an absolute module). 

TREEAD 

RFDFAD 

EXPRAD 

RFDFUL 

EXPRUL 

=word address of the load module TREE table. 

=double word address of RFDFSTK. 

=double word address of EXPRSTK. 

=double word address of RFDFSTK upper limit, (i. e., last useable doubleword). 

=double word address of EXPRSTK upper limit, (i.e., last useable doubleword). 

RELDICTOAD, RELDICTlAD, RELDICT2AD =doubleword address of the relocation dictionaries 

for SECT. 00, SECT. 01, SECT. 10 respectively. 

SECTOAD,SECTlAD,SECT2AD =doubleword address of the SECT.OC, SECT.Ol, SECT.10 

data areas respectively. 

Figure 6-10. MASTER PLIST Format 

DEF (no EXPR evaluation) 

Word 0 

I 

TYPE ~\\\\ \ \\\ \\\ \\\\ \\\\\\\\ \\\\\\\\i R 1 #Cl 

NAME1 v 

1 1 n #C2 
NAME2 v 

t I m ±VALUE2 

DEF (with EXPR evaluation) 
Word 0 

1 
TYPE ~ \\ \\\\\ \ \\\\\\\\\ \ \\% \\\ \ \\ \\ \W R 

1 #C1 

NAME1 

1 J n #C2 

'V NAME2 I v 

m I ±VALUE2 

243 



where 

* 

R =the resolution of NAME2. * 
#Cl =number characters in NAME1. 

NAMEl 

#C2 

NAME2 

=the name of the external definition. 

=number of characters in NAME2. If = 0, no NAME2, thus, NAME 1 is absolute. 

=the name of an exter~al definition or reference upon which NAME1's value 

depends. 

±VALUE2 =a positive or negative displacement from NAME2, or the absolute value 

to which NAMEl is equated (if #C2 = 0). 

TYPE = 01 definition with no expression 

TYPE = 04 definition with expression 

The resolution codes ("R ") consist of: 0 = byte address, 1 = halfword address, 

2 = word address, 3 = doubleword address, and 4 = same resolution as NAME 1. 

Figure 6-11. CHANGE DESCRIPTION TABLE (SUBPLlST) Format for DEF 

These two change description tables both generate an external definition. In the first case 

TYPE = 01, no EXPRSTK entry is made which evaluates the definition. However, in the second case 

TYPE = 04, an EXPRSTK entry is made which generates an actual value for a DEF. 

The interpretation of these tables is: 

NAMEl EaU resolution (NAME2) ±VALUE2 

NAMEl EaU resolution (NAME2) 

NAMEl EaU ±VALUE2 

244 



EXPR 
Word 0 

j TYPE P \\\ \\ \\\\\\ \\\\\\\ \\\1 R 

I 
#C1 

NAME1 v 
v v 

I 1 
n 

±VALUE1 
n1 #C2 

NAME2 

1 
v 

I m 
±VALUE2 

where 

R =the resolution of NAME2. 

#C1 =number of characters in NAME 1. 

NAME1 =the name of an external definition for the destination. 

±VALUE1 =a positive or negative displacement from NAME1 for the destination. 

#C2 =number of characters in NAME2. 

NAME2 =the name of an external definition or reference for which a value is to 

be evaluated. 

±VALUE2 

TYPE = 00 

=a positive or negative added used to mod ify NAME2 1s va lue. 

Figure 6-12. CHANGE DESCRIPTION TABLE (SUBPLIST) Format for REF 

The interpretation of this table is : 

Destination NAME1±VALUE1 will be set with the resolution (NAME2)±VALUE2 when 

NAME2 is defined. 

The format of VALUE 1 is: 

where 

FLDSZ 

FLDSZ TBP ADDR 

=the destination (NAME1±ADDR) field size (in bits) where ultimate value 

is to be set. 

TBP =terminal bit position of value in the destination field. 

ADDR =relative word address in SECT.OO,Ol, 10 of destination (relative to NAME1). 

245 



MOD 
Word 0 

I 
TYPE ~~~~\\\\\~ R 

1 #C1 
~ 

1 
NAME1 

I 
n 

n1 
±VALUE1 

#C2 

NAME2 ~ 
~ 

I m I VALUE2 

where 

R =the resolution of NAME2. 

#C1 =number of characters in NAMEl. 

NAME 1 =the name of an external definition for the destination. 

±VALUE1 =a positive or negative displacement from NAME1 for the destination. 

#C2 =the number of characters in NAME2. 

NAME2 

VALUE2 

TYPE = 02 

=the name of an external definition used in relocating VALUE2. 

=value to be put into cell NAME1±VALUEl. 

Figure 6-13. Change Description Table (SUBPLIST) Format for Sect. Modification 

The interpretation of this table is: 

Destination NAME±VALUE1 will be replaced with the ±VALUE2 +resolution (NAME2) 

0. e., if resolution is byte, then bits 13-31 in VALUE2 will be relocated as a byte 

address according to the defined value of NAME2). 

The effective address, NAME1±VALUE1, within the load module, determines whether the 

modification is to SECT. 00,01, or 10. 

246 



DICT 

1 
Word 0 

1 
TYPE ~~~\\\'\\\\\1 C 

#C 

NAME 1 v 

I I n 
±VALUE1 

where 

C =relocation code to be used to modify the relocation dictionary 

#C =number of an external definition. 

±VALUE1 =a positive or negative displacement from NAMEl. 

TYPE = 03 

Figure 6-14. Change Description Table (SUBPLIST) Format for RELDICT. Modification 

The interpretation of this table is: 

Change the code in the Relocation Dictionary, whose relative position corresponds to the 

relative address \(NAME1±VALUE1) - module base address 1 ' to the code IIC". 

The effective address, NAME1±VALUE1, within the load module, determines whether 

the modification is to RELDICT.OO,Ol, or 10 

247 



6.5 MODIFY 

6.5. 1 Purpose 

To accept parameters via parameter lists and to generate external definition and reference entries 

in a load module's RFDFSTK and EXPRSTK, respectively, and to modify a load module's relocation 

dictionary (i.e., RELDICT.OO, 01, 10) or dat~ section (i.e., SECT.DO,Ol,lO). 

6.5.2 Calling Sequence 

BAL, SR4 MODIFY 

6.5.3 Input 

Register 7 = word address of MASTER PUST 

6.5.4 Output 

Condition code one (CC1) set if generation of external definition or reference or modification 

of relocation dictionary or data section is unsuccessful, or the change description table TYPE 

code is un known. 

Condition code one (CC1) reset if generation or modification is successful. 

6.5.5 Subroutines 

LOC - Evaluate Location 

INPUT: 

CALL: 

Register 13 = address of NAMEl in Sub-PLIST minus 1. 

BAL,ll LOC 

RETURN: Register 13 = address of NAME2 in Sub-PUST minus 1. 

Register 4 = core address of designated location, i. e., NAME 1 ::. VALUE 1• 

Register ° = Section number of SECT.DO,Ol, 10 in load module where 

core address is located. 

SECTION - Compute Section Number 

INPUT: Register 13 = address of VALUE i in Sub-PLIST. 

Register 4 = core address for which Section Number is to be obtained. 

CALL: BAL,ll SECTION 

RETURN: Register ° = Section Number of SECT.OO,Ol or 10 in load module where 

core address is located. 

RSEARCH - RFDFSTK Search 

INPUT: Register 13 = address in Sub-PUST of NAME i • 

CALL: BAL,11 RSEARCH 

RETURN+O: NAMEi was not found in RFDFSTK. 

Register 13 same as input. 

Register 3 address of next available RFDFSTK entry 

Register 12 index to next available RFDFSTK entry. 

RETURN+ 1: NAME. was found in RFDFSTK. 
I 

Register 13 same as input. 

Register 3 

Register 12 

address of name in RFDFSTK. 

index to next available RFDFSTK entry. 

248 



ADJUST - Adjust Value 

INPUT: Register 14 = value from RFDFSTK entry to be adjusted to desired resolution. 

CALL: 

Register 15 = Resolution word from RFDFSTK entry, 

Register 10 = Resolution desired from Sub-PUST. 

BAL,ll ADJUST 

RETURN: Register 14 = value from RFDFSTK entry adjusted to desired resolution. 

Register 15 = resolution word adjusted to indicate desired resolution. 

Register 10= resolution code of resolved value in Register 14. 

resolution code BA = 0, HA = 1, WA = 2, DA = 3 

EVAL - Evaluate Expression 

INPUT: Register 13 = address of NAME. in Sub-PUST minus 1. 
I 

Register 10= desired Resolution code. 

CALL: BAL,ll EVAL 

RETURN+O: NAME. not found in RFDFSTK. 
I 

Registers 10 and 13 are the same as for RETURN+1. 

Register 3 = address of next available RFDFSTK entry. 

Register 12 = index to next available RFDFSTK entry. 

RETURN+ 1: NAME. was found in RFDFSTK as a Ref. 
I 

Register 13 = address of NAME. in Sub-PLIST 
I 

Register 10 = resolution code of desired value. 

Register 3 = address of RFDFSTK entry. 

Register 12 = index to RFDFSTK entry. 

RETURN+2: Expression for NAME. ±VALUE. evaluated. 
I I 

Register 13 = address of next NAME. in Sub-PUST minus 1. 
I 

Register 10 = resolution code of final value in Register 14. 

Register 12 = index to RFDFSTK entry. 

= -1 no NAME .• 
I 

Register 15 = resolution word of final value in Register 14. 

Register 14 = evaluated expression value, NAME. ±VALUE .• 
I I 

EVALR - Evaluate Expression 

INPUT: Same as EVAL, except, 

Register 10= desired resolution code from Sub-PLIST. 

CALL: BAL, 11 EVALR 

RETURNS: Same as EVAL. 

249 



RAOD 1_ Add RFOFSTK item (REF/DEF) 
DADO 

INPUT: 

CALL: 

CALL: 

Register 3 = address of next available RFDFSTK entry. 

Register 13 = address of NAMEi in Sub-PUST. 

BAL,11 RADD 

BAL,11 DADO 

RETURN: Register 3 = address in RFDFSTK of current entry. 

Register 12 = index to RFDFSTK entry. 

Register 13 = address of NAME. in sub-PUST. 
I 

EADD - Add EXPRSTK item 

INPUT: Register 9 = code = 0 Expression for a DEF. 

CALL: 

code = 4 Expression for a REF, i. e., core destination. 

Register 8 = value of NAMEi ±VALUE i• 

Register 13 = address of NAMEi in Sub-PUST. 

Register 12 = Index to next available entry in RFDFSTK if Register 10 :s < 4. 

Register 10= Resolution code for a REF expression. 

BAL, 11 EADD 

CHCORE - Change Core Location or EXPRSTK 

INPUT: Register 4 = Destination information word, i.e., address field size and terminal 

CALL: 

bit position of address field and destination address. 

FLDSZ I TBP I ADD I 
78 1516 31 

Register 0 = Section number of SECT. 00, 01, lOin load module where 

destination address is found. 

Register 14 = the value to be stored in destination. 

Register 15 = mask for masking value into destination. 

Register 10 = resolution code, 0 = BA, 1 = HA, 2 = WA, 

3 = DA, 4 = NONE, for EXP or MOD type Sub-PUST, 

or the resolution code plus bit 0 set = 1 if DICT type 

Sub-PUST. 

BAL, 11 CHCORE 

EOEST - EXPRSTK Destination Address 

INPUT: Register 4 = desired destination address for searching purposes. 

CALL: BAL,11 EDEST 

RETURN: All EXPRSTK items having a destination (OEST) address equivalent to the desired 

destination address in Register 4, are removed from EXPRSTK by setting Bit 8 in 

word 0 of EXPRSTK entry to 1. 

250 



EFIX - Fix EXPRSTK for Unsatisfied REF 

CALL: BAL,ll EFIX 

RINDEX 

INPUT: Register 13 = RFDFSTK entry index 

CALL: BAL,ll RINDEX 

RETURN: Register 4 = RFDFSTK entry address 

6.5.6 Description 

The MODIFY routine consits of various subroutines which interpret input parameter lists 

(PLISTS), evaluate their designated expression, (e. g., NAME1 .:!: VALUE 1), generate 

RFDFSTK (external reference and definition stack) EXPRSTK (expression stack defining a 

ref/def expression value) entries, and modify core, RFDFSTK, relocation dictionary, 

EXPRSTK values. 

When an expression (EXPR) PLIST is encountered, NAME + VALUE is evaluated and is 

the destination address used when the expression NAME2 ~ VALUE 2 is satisfied (i.e., 

evaluated). If there is no NAME]' VALUE
1 

then becomes the destination. The expre­

ssion, NAME2.:!: VALUE2, is then interrogated. If NAME2 is not in the RFDFSTK, it 

is added to it as a ref type and an EXPRSTK entry is made which expresses the 

evaluation algorithm for NAME2• If NAME2 is in the RFDFSTK and is a ref type, an 

EXPRSTK entry is made which expresses the evaluation algorithm for NAME
2

• How-

ever, if NAME2 is in the RFDFSTK and is a def type, the expression, NAME2.:!: VALUE2, 

is evaluated. The resulting value is then used to replace the field in the destination 

address which is masked according to the destination resolution. That is, if the 

destination resolution is a byte value, then the evaluation of NAME2 ::. VALUE2 is 

converted to a byte va lue and replaces the designated field in the destination. Each entry 

in the EXPRSTK is then checked to see if its destination address is the same as the destin­

ation address of NAME1 ::. VALUE 1, and if so, the EXPRSTK entry is removed by setting 

flag (E = 1) indicating that this expression has been evaluated. If there is no NAME2 

(i. e., only a ±VALUE2), then the result is the same as if there was a NAME2 defined in 

the RFDFSTK with value O. 

When a definition (DEF, TYPE =01) PLIST is encountered, NAME1 is entered into the 

RFDFSTK as a reference type unless it is already in the RFDFSTK. The expression, NAME2 

+ VALUE2 is then interrogated. If NAME2 is not in the RFDFSTK, it is added to it 

as a ref type and an EXPRSTK entry is made which expresses the evaluation algorithm 

for NAME 2_ However, if NAME2 is in the RFDFSTK and is a def type, the expression, 

NAME2 ::. VALUE2, is evaluated. The result is then put into the RFDFSTK entry and the 

entry is flagged as a def. When NAME2 is a reference, then the RFDSTK entry remains 

as a ref type. The EXPRSTK is then searched to find all entries which reference this 

definition. Each satisfied reference is then evaluated. The resulting value is then 

used to replace the field identified by the destination and is masked according to 

the destination resolution. That is, if the destination resolution is a double word value, 

251 



.then the resulting value is converted to a double word value and replaces the designated 

field in the destination. If there is no NAME2 (i. e., only a ±VALUE2) then the result is 

the same as if there was a NAME2 with value O. 

When a definition (DEF, TYPE = 04) PLIST is encountered, NAME is entered into the 

RFDFSTK as a definition type (unlike that for a definition of TYPE = 0) unless it is 

already in the RFDFSTK. The expression, NAME2 ~ VALUE2 is then interrogated. If 

NAME2 is not in the RFDFSTK, it is added to it as a ref type and an EXPRSTK entry 

is made which expresses the evaluation algorithm for NAME2• If NAME2 is in the 

RFDFSTK and is a ref type, an EXPRSTK entry is made which expresses the evaluation 

algorithm for NAME2• However, if NAME2 is in the RFDFSTK as a def type or if there 

is no NAME2 (i.e., only a ~ VALUE2), the expression, NAME2.:!:. VALUE2, is evaluated. 

The result is then put into the RFDFSTK entry for NAMEl • 

When a core modification (MOD) PLIST is encountered, NAMEl ~ VALUE l is 

evaluated and is the destination address word when the expression NAME2 ~ VALUE2 is 

satisfied (i. e., evaluated). If there is no NAME 1 ' VALUE l then becomes the destination. 

The expression, NAME2 ~ VALUE2, is then interrogated. If there is a NAME2, it must 

have been previously defined with complete evaluation. If there is no NA~E2' (i. e., 

only a ~ VALUE2), then the result of the expression evaluation is the same as if 

there was a NAME2 whose value is known as O. Once the expression, NAME2.! VALUE
2

, 

has been evaluated, the entire 32 bit value replaces the contents of the destination 

address. The EXPRSTK is then checked to see if any of its entries contain a destination 

address equivalent to the destination address, NAME 1 .± VALUE 1, and if so, each such 

EXPRSTK entry is removed by setting a flag (E = 1) indicating that th is expression has 

been evaluated. 

When a relocation dictionary modification (DICT) PLIST is encountered, NAMEl ~ VALUE l 
is evaluated and represents the destination address for which a re location dictionary 

modification is desired. This type of PLIST will normally accompany a MOD PLIST. 

That is, if a core modification is made, its corresponding relocation dictionary entry may 

also require a resolution code change. The address NAMEl ~ VALUE l relative to the 

section base, becomes the relative digit position (4 bits per digit) in the section 

relocation dictionary. 

When MODIFY finishes processing a PLIST successfully, condition code one (CC1) is reset 

(i. e., CCl = 0) and a return is made to the caller at the BAL plus one. However, if 

MODIFY finds any error condition, it sets condition code one (i. e., CC 1 = 1) and 

a return is made to the caller at the BAL plus one. 



The following conditions will cause an error return (i. e., CCl = 1); 

1. TYPE> 4 (sub-PUST type invalid). 

2. No NAME1 in DEF PUST (TYPE = 01). 

3. No NAME1 in DEF PLIST (TYPE = 04). 

4. NAME2 in MOD PUST is not defined or is a reference. 

5. NAME1 in EXPR, MOD, or DICT PUST is not defined or is a reference. 

6. The expression value (NAME l ~ VALUE 1) does not fit into any of the 

sections of a load module, (i.e., SECT.OO,Ol, or 10). 

7. The MASTER PUST indicates (I = 1) that the RFDFSTK and EXPRSTK 

cannot be expanded and a DEF (TYPE = 01 or 04) or EXPR PLIST is 

encountered which would require expansion of either the RFDFSTK or 

EXPRSTK or both. 

8. An EXPR, or MOD PLIST requests a core modification whose field size 

(FLDSZ in sub-PUST) is either greater than 32 bits or overlaps a word 

boundary. 

6.5.7 Flowcharts 

EXP 

t 
Evaluate 
NAMEl, VALUEl 
Evaluate 
NAME2, VALUE2 

~ 
Change Core if 
Evaluated NAME2 
VALUE2 or 

f 
Add NAME2 to 
RFDFSTK, 
Expression to 
EXPRSTK 

+ 
RETURN 

ENTER 

+ 
Sub-PUST 
Type = 

DEF MbD 
~ t 

Add NAME1 to Evaluate NAMEl 
RFDFSTK and VALUEl 
(REF Type}Eval. Eva luate NAME2 
NAME2, VALUE2 and VALUE2 

t t 
Value in RFDFSTk Change core 
Satisfy all Destination 
EXPRSTK REFs NAMEl +VALUEl 
to Value or to Evaluated 

-l 
Add NAME2 to 

NAME2 ~VALUE~ 

RFDFSTK with 
EXPRSTK 
EXDression 

t 
RETURN RETURN 

Figure 6-15. Flow Diagram of MODIFY 
(General Flow) 

253 

DICT 

t 
Evaluate 
NAMEl and 
VALUE1 

~ 
Change Re locat. 
Dictionary Entry 
to New 
Resolution code 

~ 

RETURN 

Page 1 

ADDDE 
t 

Add NAMEl 
to RFDFSTK 
(DEF TYPE) 

~ 
Evaluate 
NAME2 + 

VALUE2J 

~ 
Add NAMI:~ to 
RFDFSTK with 
EXPRSTK 
Expression 

" RETURN 



Get TREEAD 
from Master 

PLIST 

Get ADDRCDT 
from Master 

PLIST 

Get Type 
from 
Sub-PLIST 

=0 = 1 

Pg. 3 Pg. 4 

=2 

Pg. 8 

Figure 6-15. Flow Diagram of MODIFY (Cont.) 
(Entry Point) 

254 

Page 2 

=3 =4 

Pg. 9 Pg.6. 



0 
t 

LOC 
Eval. NAME1, 
VALUE1 for 
Destination 

~ 
EVALR 

Eval. NAME2, 
VALUE2 for 
Expression 

l 
NAME2 not 
in RFDFSTK 

NAME2 is 
a REF 

RADD 

Add NAME2 
to 

RFDFSTK 

Pg. 14 

R8 = Core Add or 
NAME1 + VALUE1 
R7 = X'40' 
(Core Destination) 

t 
EADD 

Add Expr. 
to 

EXPRSTK 

l' Pg. 15 

CC1=0 

RETURN 

Pg. 10 

Pg. 12 

Page 3 

Expression for NAME2 + 
VALUE2 Evaluated 

Get Mask to 
use in Core 
Change of an 
Address 

8 
Pg. 8 

Figure 6-15. Flow Diagram of MODIFY (Cont.) 
(Process EXPR SubPLIST) 

255 



Get Sub-PLIST 
Pointer to 

NAME1 

NAME2 not in 
RFDFSTK 

Add NAME2 
to RFDFSTK 

Pg. 7 

yes 
RSEARCH 

Search RFDFSTK 
for NAME1 

Pg. 11 

NAMEl to 
RFDFSTK 

Save RFDFSTK 
addr. entry in R4 
Set Sub-PLIST 
PTR to NAME2-1 

Eval. NAME2 + 
VALUE2 -

NAME2 is 
a REF 

Pg. 12 

Page 4 

In RFDFSTK 

Expres. Eva I. 
for NAME2 + VA UE2 

Resol. word in 
WORD-2 of 
RFDFSTK Entry 

Value of 
NAME2 + VALUE 
In WORD-1 of 
RFDFSTK Entry 

Pg. 5 

Figure 6-15. Flow Diagram of MODIFY (Cont.) 
(Process DEF SubPLIST - No Expression. of DEF) 

256 



Byte - 1 in 
RFDFSTK entry =0 

(DEF Type) 

EFIX 
Fix EXPRSTK 
Entry Referencing 

this DEF 
Pg. 20 

CCl = 0 

Page 5 

.-.-_._.- ... _------_ .. _-------------------------_._---

Figure 6-l5.Flow Diagram of MODIFY (Cont.) 
(Process DEF SubPLIST - No Expression of DEF) 

257 



Set Sub-PLIST 

PRT to NAME1 

yes 

A 

RSEARCH 
Search 

RFDFSTK for 
NAME1 

Not in 
RFDFSTK 

Pg. 11 

Add NAME1 
to RFDFSTK 

R D 

NAME2 not 
in RFDFSTK 

Add NAME2 
to RFDFSTK 

Save RFDFSTK 
entry addr. (R4) 
set Sub-PLIST PTR 
to NAME2 - 1 

(R 13) 

Eva I. NAME2 + 
VALUE2 

In RFDFSTK 

Expr. Eva I. for 
NAME2 + VALUE2 

Put Resolution 
Word into WORD­

of 
RFDFSTK Entry 

Put VALUE of 
NAME2 + VALUE2 
In WORD - 1 of 
RFDFSTK Entry 

Figure 6-15. Flow Diagram of MODIFY (Cont.) 
(Process DEF SubPLIST, Bu i1d Express ion of DEF) 

258 

Page 6 



R13 = PTR to 
NAME2 in 
Sub-PLIST 

R8 = Index to 
RFDFSTK 

Entry 

R9 = 0 
(Expression of 

DEF) 

EADD 

Add Expression 
to EXPRSTK 

Pg. 15 

CCl = 0 

Figure 6-15. Flow Diagram of MODIFY (Cont.) 

Page 7 

(Process DEF SubPLIST, Build Expression of DEF) 

259 



NAME2 Not 
in RFDFSTK 

Pg. 2 

Evaluate NAME 1 
+ VAlUEl 

Eva luate NAME2 
+ VALUE2 

Expression 

NAME2 Is 
a REF 

Pg. 2 

P • 12 

Figure 6-15. Flow Diagram of MODIFY (Cont.) 
(Process MOD SubPLIST) 

260 

Page 8 

Expression 
NAME2 + 
VALUE2 
Evaluated 

':"';":o-rm-m-a-s~k-to-sa-v-e-" 

part of word not to 
be re located 

Get VALUE2 from 
Sub-PLIST on mask 
do not disturb 
resolved VALUE of 
NAME2 + VALUE2 

R 15 = -1 
(Core Change) 

CHCORE 

Change Core 

~ ____ ~ __ ~~16 

CC1 = 0 



Set CCl = 0 no yes 

LOC 
Evaluate NAMEl 
±VALUEl 
Expression 

Get resolution 
Code from Sub­
PLIST Set BitO=l 

R15 = 0 
(No Core Change) 
Set up Return to 

MEXIT 

Pg. 16 

Set CCl = 0 

Figure6-15. Flow Diagram of MODIFY (Cont.) 
(Process DICT SubPLIST) 

261 

Page 9 

Enter CHCORE 

Returns to 

MEXIT 



NAME1 Not 
In RFDFSTK 

2 

Set Resolution 
=2 

(Word Address) 

Evaluate NAME1 
+ VALUE1 

Expression 

Pg. 12 

NAME1 is 
a REF 

Value of expression 
in R4 = doubleword 
address 
Save bit 31 of word 
addr. of expres. va • 

Expression 
NAME1 + VALUE1 
Evaluated 

R4 = 

Page 10 

Expression Value 

Store Sect # 

">----r----+-i in byte O. 
yes 

yes 

yes 

Reg O. 

Convert address 
to word address 
using saved bit 31 

in R4 

Set Bits 0-14 of 
R4 to bits 0-14 of 
VALUE. word in 
SUB-PL~ST 

Figure 6-15. Flow Diagram of MODIFY (Cont.) 
(Subroutines) 

262 



Name not in 
RFDFSTK, 
no RFDFSTK 

"\. , 
C RETURN ) yes 

RETURN 

Get RFDFAD 
from MASTER 
PLIST 

no 

no 

Figure 6-15. Flow Diagram of MODIFY (Cont.) 
( Subroutines) 

263 

Get name size 
in Sub-PLIST 

Page 11 

entry 

Set to # items 
left in 

RFDFSTK 



EVALR ( EVAL 

'" 
1--- - -

Get Resolution 

from SUB PLIST 

Set PTR to 
NAME. in 
SUBPLI'sT 

A RSEARCH 
Search RFDFSTK 

for Name 
Present 

yes 
? 

no 

I Pg. 11 

1 Name Not 1 Found 
Found 

Get TP from 
RETURN RFDFSTK 

./ 

Type is a REF 

entry 

p=o Get value from 
RETURN or TP > 3 RFDFSTK entry 

- I 
~ 

no / yes Get Resolution 
? 

/ ~ 

/ ADJUST 

/ Adjust value 

Type is to resolution 

DEF, CSECT, + DSECT 
Set PTR to 
Value in 
Sub-PLIST 

~ 

Add value in 
Sub PLIST to 
ad i usted va I ue 

8 
Figure 6-15. Flow Diagram of MODIFY (Cont.) 

( Su brouti nes ) 

264 

Page 12 

Resolution code 

set upon entry. 

I 
; 
I 
i 

i 
Set VALUE = 0 I 
Set Resol. = 0 
(Simulate return 
from RSEARCH) 

't i 
Set R 15 == 4 

I 
(Resolution = none) 
Index to next 
available RFDFSTK 

I Entry == $-1 
I 
I 

i 

Pg. 13 



RETURN 

yes 

yes 

yes 

yes 

(Value Absolute) 
~--I R10=4 

Resolution of 
Ad'usted Value 

Resolve Value from 
RFDFSTK entry to 
Resolution 
Required 

Set RESOL. Word 
to Represent 
Resolved value 

no 

no 

No Resolution 
Required. 

Page 13 

R 10 = Resol code of 
value in RFDFSTK 

- ----------- -- ._-----------' 

Figure 6-15. Flow Diagram of MODIFY (Cont.) 
( Subroutines) 

265 



no 

Save R 10 
(Resolution) 
Set R 1 0 = 2 
(REF Type Entry) 

Calculate # words 
needed for entry 
(name size/4+4) 

Calculate total size 
RFDFSTK from 
Master PLIST 
(RFDFUL - RFDFAD 
+ 2) 

Calculate #RFDFSTI( 
Words in use + need 
(RFDF SIZE IN 
TREE + ENTRY 
SIZE) 

yes 

Save R 10 
Set R 10 = 0 
(DEF Type Entry) 

Update RFDF 
size in TREE 

Store entry size 
Byte 0, 1 st word 
REF/DEF code in 
Byte 1, 1 st word 

Move name to 
entry starting 
at Byte 12 

Restore R 10 

Figure 6-15. Flow Diagram of MODIFY (Cont.) 

(Subroutines) 

266 

Page 14 



P = 0 DEF expr. 
= 4 REF expr. 

R = RESOL. code 
(0 - 3) 

T = 2 RESOL cod 
meaningful 

= 0 no RESOL. 

SETT = 2 

Form and set word 
o of EXPRSTK 
entry = 

X'06P4lTR 

Set word 1 of 
EXPRSTK entry = 

X!02000000' 

Set Word 2 of 
destination. Set 
word 3 = 0 

Value from Sub­
PLIST to Word 4 
Word 5 = 

RFDFSTK Index 

no 

Calculate total I 
size EXPRSTK ; 

from Master PLIsj 
(EXPR UL - EXPRA 
+ 2) 

Calculate #EXPRSTK 
words in use + 
needed (EXPR SIZE 
in TREE + 6) 

Update expr. size 
in TREE 
Set PTR to next 
available entry 

Page 15 

yes 

(Sub-PUST has 
no NAME.) 
Set T = 0 I 

yes 

Form and set 
L...---------1 word 0 of entry = 

X '06P40 120' 

Figure 6-15. Flow Diagram of MODIFY (Cont.) 
( Subroutines) 

267 



Remove EXPRSTK 
entries which 
reference LaC, R4 

Pg. 19 

Get SECT # 

Calculate relative 
address insect 
where LaC 
NAME1 + VALUE1 

Resides 

Set address part of 
destination to 
relative address 
in sect 

Set mask in 
R 15 = -1 

E)-y-es--< no 

Pg. 17 

Form mask of 
field bits in 
R15 

no 

Pg. 17 

Figure 6-15 Flow Diagram of MODIFY (Cont.) 
( Subroutines) 

268 

Set R1 = FLDS 
Set R5 = TBP 

yes 

Page 16 

Pg. 2 



Position value 
and mask to 

no TBP 

Page 17 

~oI(--G 
(User makes core 
changes) 
R 1 = destination adl

,.....;..----'"'­

R2 = value to be sto ed 
R3 = mask for storin 

User's 
Subroutine 

L ____________________ __ 

no 

no 

(MOD or EXP Type) 
Store masked part 
of value into 
masked destination 

I ~14 ~ L1ion co~: 

0. 
Pg. 18 

Figure 6-15. Flow Diagram of MODIFY (Cont.) 
( Subrouti nes ) 

269 

yes 

R5 = 

yes 

I 

Set R 14 = 
Resolution code 
From R 10 L __ .. _" ____ . 



RETURN 

R2 = 
Rei. addr. in 

Sect. xx 

R3 = 
Value to be 
stored 

word which is to 
be modified 

R15 = MASK 

Position RESOL.. j 
code and 

MASK to DIGIT# 

Store masked 
resolution code into 

RELDICTxx 

Figure 6-15. Flow Diagram of MODIFY (Cont.) 
( Subroutines) 

270 

Page 18 



/ 
RETURN 

EXPRAD from 
master PLIST 
EXPRSIZE from 
load module TREE 

no 

Get Bits 0-15 
from word 0 
in EXPRSTK 
ent 

Bit 8=1 
yes '------------1 Position PTR 

to next 
EXPRSTK entry 

,/ 

~ Bit 9=1 / 
no ~ ~/ 

entries DSP value 
a nd set PTR to 

• destination word 

~~ 
/ ntry Dest. = ",> 

Dest. Des~~ 

yes 

Set Bit 8=1 
In EXPRSTK entry 

Figure 6-15. Flow Diagram of MODIFY (Cont.) 
( Subroutines) 

271 

Page 19 



Position pointer 
to next 

EXPRST K entry yes 

EXPRAD from 
Master PLIST EXPR. 
size from word 
module TREE 

Bits 0-15 of 
word 0 of 
EXPRSTK entry 

R 1 = addr. in EXPRSTK of 
resolution word 

R5 = contro I byte index 
R2 = index to constant word 

RETURN 

~ ,'~~ex~t -8 
G~;o 

Pg. 21 '--R2-=-~-.... -------] ---8 
Next word a 

• - EF5 
~fRs:;~~- --
c;--.------------: Next control by e 

Figure 6-15. Flow Diagram of MODIFY (Cont.) 
( Subrou tines) 

272 

Page 20 



yes 

Pg. 20 
no 

Get RFDFSTK 
Index 

Find RFDFSTK 
Entry 

R8 = Type (TP) 
from RFDFSTK 

Entry 

Pg. 20 

Pg. 25 

Figure 6-15. Flow Diagram of MODIFY (Cont.) 
( Subrouti nes ) 

273 

Page 21 



R12 = 0 
R13 = 0 

R 15 = Resol word EXPRSTK 
R 14 = 0 value accum. 
R2 = 1 EXPRSTK word index 
R5 = 2 CB index 

~~-----------. 

Set R5 = 
Next CB 

yes 

yes 

Save R 14 & R 15 
Set R 14 = 0 
Set R 15 = 1 

R10 = ReSOle] 
code, Bits 6-7 

of CB 

R 13 = RFDFSTK 
Index 

R2 = Index to 
next word 

RINDEX 

Find RFDFSTK 
entry 

Pg. 25 

Pg. 23 

Figure 6-15. Flow Diagram of MODIFY (Cont.) 
( Subroutines) 

274 

Page 22 

word correse 
to CB from 
EXPRST K entry 
to R 14 

Set R2 = 
next word 



Save R 14 and 

R15 

R 14 = value from 
RFDFSTK 

R15=Resol. C\ from RFDFSTK 01------....... 
Save R5 

yes 

Subtract expression 
value from value 

accumu lator 

DJUST 

Adjust value to 
resolution 

Update RESOL. 
word in R 15 to 
equal RESOL. of 
adjusted 
expression 

Restore R5 

13 

no 

Add expression 
value to value 

accumu lator 

Figure 6-15. Flow Diagram of MODIFY (Cont.) 
( Subro uti nes ) 

275 

Page 23 



9 
Set expr. eva I. 
Bit in word 0 
EXPRSTK entry 

(E=l) 

~ 
no ? yes ! 

R 13 = RFDFSTK Save R3 *R9 
index from dest. Set R 10 = 4 
word in (Resol. code) 
EXPRSTK entry 

+ ~ 
RINDEX ADJUST 

Find RFDFSTK Adjust value to 
entry Resolution 

t 
Pg. 25 t 

Put value Set R 15 to mask for 
accumlator in storing value 
word 1 of Set R4 = Destination 

IRFDFSTK entry from EXPRST K entry 
f 

...... _, ___ -....0.. 

Put new resolution t 
word (word 2) in SECTION 

RFDFSTK entry Determine section 

+ where addr 0 locat 

Set RFDFSTK t 
entry to a DEF CHCORE 

TP=O Satisfy core with 
evaluated express. 

,. 
Restore R 9 & R3 

j 

a 
Pg. 20 

Figure 6-15. Flow Diagram of MODIFY (Cont.) 
( Subroutines) 

276 

Page 24 

Pg. 13 

Pg. 10 

P g. 16 



R4 = Base address 
RFDFSTK from 
Master PLIST 

Calculate actual 
RFDFSTK entry 
address in R4 

Figure 6-15. Flow Diagram of MODIFY (Conto ) 

( Subroutines) 

277 

Page 25 



6.6 SYSG EN CHARACTER Routines Parameter List (PLIST) 

The SYSGEN character subroutines (NXACTCHR, NAMSCAN, CHARSCAN, HEXSCAN, QUOTSCAN, 

DECSCAN, CHSTSCAN, and GETCHST) require a parameter list (PLIST) which controls certain aspects 

of control command processing. The PLIST is as follows: 

PLIST (pointed to by Register 7) 

Word - 0 

2 

3 

4 

5 

6 

7 

8 

9 

D 

CNTC 

FLAGS 

CHARACTER 

STRING 

BUFFER 

CLD 

CONTR 

OUTR 

CCP 

CBUF 

CSL 

PCCP 

10 

11 

12 

13 

14 

15 

(~35 CHARACTERS) 

CLD 

#D 

CNTC 

CONTR 

OUTR 

CCP 

byte address of list (byte table) of delimiters 

(terminators ). 

number of delimiters in list. 

continue scan at th is re lative character 

position in continuation image, i. e., 1 

impl ies character position 2. 

word address of read routine which is to read a 

continuation image. The subroutine must be 

supplied by the user. 

word address of output routi ne wh ich will 

display current image when a semicolon, 

period, new line, or end of image (80 

characters maximum) is encountere~ This 

is optional but, if specified, the subroutine 

must be supplied by user. 

relative character position in image of 

current character, i. e., 11 implies current 

character position 12. 

CBUF word address of buffer containing current 

FLAGS 

278 

images. 

special indicators which control the scan 

function. 

BA = 0 

BO o 

B lank character not active 

character, i.e., ignore it 

and get next character 

B lank character is an active 

character, i 8 e., it is not a 

field delimiter unless 

specified in delimiter list. 

do not blank out input image 

when a character is obtained 

from input image, replace its 

position in image with a blank 

character. 



CSL 

PCCP 

BF o character string buffer is empty 

character string buffer is full, 

i. e., no further scan of input 

image is needed, therefore, 

use what is in buffer. 

number of characters in current character string 

in character stri ng buffer. 

relative character position in input image of 

the first character in the character string 

now in character string buffer i. e., 20 

implies current character position 21. 

CHARACTER STRING BUFFER = a nine word (36 bytes) buffer 

which contains the characters of a field after the field has 

been s.canned. There can be from one to th irty-six characters. 

Figure 6-16. Character String PLIST Format 

6.7 CHARACTER ROUTINES 

6.7. 1 . NXACTCHR (SYSGEN Next Active Character Retrieve) 

6.7. 1. 1 Purpose 

To obtain a character from the input image, check it for a delimiter, then return to caller. 

6.7. 1.2 Calling Sequence and Input 

Set REGISTER 7 = address of parameter list 

Set REGISTER 8 ::: current character from input buffer or zero if no character exists (i. e., get next character). 

BAL,ll NXACTCHR 

6.7. 1.3 Output 

Register 8 = current character from input buffer. 

Condition Code one (CC1) set if current character is delimiter, or reset if not a delimiter. 

6.7. 1.4 Subroutines Used 

Users display image routine, if desired. 

Users read continuation image routine. 

6.7. 1.5 Description 

Th is routine obtains the next active character from the input buffer (as specified by the PUST) if Register 8 

is zero. If Register 8 is non-zero, it then is assumed to contain the next active character. If the next active 

character is a sem ico lon, the users spec ified output subroutine is entered, if one is spec ified, and then 

the users read continuation image routine is entered. The first character (represented by CNTC in 

PUST) is then obtained. If the next active character is a period, new I ine, or end of buffer (i. e., spec ial 

delimiters), then the input buffer end has been found. If the next active character is other than those already 

described, the del imiter I ist (represented by #D and CLD in PUST) is searched to determine if the current 

279 



character is a delimiter. If not a delimiter, then condition code one (CC1) is set to zero and NXACTCHR 

returns to caller. 

However, if the current character is a delimiter, or the input buffer end has been found, CCl is set to one 

and NXACTCHR returns to ca Iler. 

6.7.1.6 NXACTCHR Flags and Counters 

CCP = current character position, in input image, relative to beginning of image, i. e., CCP 

= 3 impl ies current character is character number 4. 

= 80, implies end of buffer has been found. 

FLAGS = BO obtain next character, and replace its position with a blank. 

CLD 

#D 

OUTR 

CONTR= 

CNTC = 

CBUF 

o just obtain next character. 

BA if next character is a blank, accept it as a non-delimeter unless specified as 

delimiter in delimiter list. 

= 0 if next character is a blank, ignore it. 

byte address of delimiter list. 

number of delimiters in list. 

address of output subroutines. 

o unspecified 

address of read continuation image subroutine. 

continue scan on continuation image at this character position (relative to beginning of 

image, i. e. I C NTC = 1 impl ies character position 2). 

input buffer address. 

280 



6.7.1.7 Flowchart 

Set 

Reg. 8 = EOB 

BAL,ll OUTR 

Set 

CCl = 1 

yes 

yes 

Get next 
character from 
CBUF in Reg. 8 

Set 
CCP = 80 

Set 
REG. 8 = NL 

Figure 6-17. Flow Diagram of NXACTCHR 

281 

no 

yes 

no 

Page 1 

8 Pg. 2 

CCP=CCP + 1 

character in 
current position in 
CBUF 



yes 

yes 

yes 

yes 

no 

Obtain CLD & 
#0 for Delimiter 
search 

Set 
CC1 = 0 

es 

'NL-=CRET= -.,' --f 
new line I 1.- ___ _ 

'-EOB -- --, 
- I 

- -- -l end of buffer 
1 _____ 1 

Set 
Reg. 8 = X'FF ' 
Ce1 = 1 

no 

Obtain CONTR 
CONTC 

Set 
CCP = CONTC 

BAL,ll 

Figure 6-17. Flow Diagram of NXACTCHR (Cont.) 

282 

no 

Page 2 

Pg. 1 

I" DisPlay -- 1 
I Image I 

-,--_1 

/ 

, USERS S.R. 

BAL,ll OUTR 

I--~---I 

__ J Read 1 

t continuation I 
I image I -----_._. 

es 



6.7.2 NAMSCAN (SYSGEN Get next field and check for name) 

6.7.2. 1 Purpose 

To obtain next field from input buffer and check if it is an alphanumeric character string of which at least 

one character is alpha. 

6.7.2.2 Calling Sequence 

Set REGISTER 7 = addressof parameter list. 

Set REGISTER 8 = current character from input buffer or zero. If zero, start name string with next 

character. If non-zero, start name with this character, then get next character. 

BAL,11 NAMSCAN 

6.7.2.3 Input 

See Calling Sequence. 

Character string in PLIST's Character String Buffer. 

Register 2 = byte address displacement of Character String Buffer in PLIST (from GETCHST). 

6.7.2.4 Output 

Register 8 = current character from input buffer. 

Condition Code one (CC 1) set if name not legal. 

Condition Code one (CC1) reset if name is legal. 

6.7.2.5 Subroutines Used 

GETCHST (Get next character string into character string buffer). 

6.7.2.6 Description 

This routine requests the next string of characters from the input buffer to be put into the character string 

buffer. Each character is then checked for legality (i.e., alphanumeric) and the entire string of characters 

must contain at least one alpha character. If the name is legal, condition code one (CC1) is set to zero. 

However, if the name is illegal, CC1 is set to one. NAMSCAN then returns to the caller. 

6.7.2.7 Flow Chart 

Set 
CC1=1 

RETURN 

~ NAMSCAN) 
t 

GETCHST 

non-alphanumeric 

Figure 6-18. Flow Diagram of NAMSCAN 

283 

Set 
BF = 0 



6.7.3 CHARSCAN (SYSGEN check current or next character for a specific character) 

6.7.3. 1 Purpose 

To obtain next character from input buffer, or use current character if one exists, and check it for a specific 

character. 

6.7.3.2 Calling Sequence and Input 

Set REGISTER 7 = address of parameter list (PLIST) 

Set REGISTER 8 = current character from input buffer or zero. If zero, get next character from input buffer. 

If non-zero, the next character is already in Register 8. 

Set REG ISTER 9 = the specific character which is being checked for. 

BAL, 11 CHARS CAN 

6.7.3.3 Output 

Register 8 = 0 if character check does compare. 

Condition code one (CC1) reset if character check does compare. 

Register 8 = current character if check does not compare. 

Condition Code one (CC1) set if check does not compare. 

6.7.3.4 Subroutines Used 

NXACTCHR (Get next character from input buffer). 

6.7.3.5 Description 

This routine obtains the next character from the input buffer if Register 8 equals zero. If Register 8 is 

non-zero, the next character is assumed to be in the register 8. The character is compared to that in 

Register 9. If they compare, Register 8 is set to zero and CC1 is reset. If they do not compare, Register 8 

is not modified and CC1 is set. CHARSCAN then returns the caller. 

6.7.3.6 Flow Chart 

NXACTCHR 

Set 
CC1 = 1 8=0 

Set 
CC1 = 0 

Figure 6-19. Flow Diagram of CHARSCAN 

284 



6.7.4 HEXSCAN (SYSGEN get next field and check for hexadecimal value) 

6.7.4. 1 Purpose 

To obtain next field from input buffer and check if it is a hexadecimal va lue. If it is hexadecimal, then 

convert it from EBCDIC hexadecimal to hexadecimal. 

6.7.4.2 Call ing Sequence 

Set REG ISTER 7 = address of parameter list 

Set REGISTER 8 = current character from input buffer or zero. If zero, start string with next character. If 

non-zero, start string with this character, then get next character. 

BAL,11 

6.7.4.3 Input 

HEXSCAN 

Character string in PLIST's character string buffer. 

Register 2 = byte address displacement of character string buffer in PLIST (from G ETCHST). 

6.7.4.4 Output 

Register 8 = current character from input buffer. 

Condition Code one (CCI) reset if value is hexadecimal. 

Condition Code one (CC1) set if value is illegal. 

Register 12 and last word in character string buffer = converted value (EBCDIC HEX to HEX). 

6.7.4.5 Subroutines Used 

GETCHST (Get next character string into character string buffer). 

6.7.4.6 Description 

This routine requests the next string of characters from the input buffer to be put into the character 

string buffer. Each character is then checked for legality (i.e., EBCDIC hexadecimal). If the character 

string is legal, it is converted and saved in Register 12 and in the last word of the character string 

buffer in the PLIST. HEXSCAN sets CCl = 1 if illegal string or CC 1 = 0 if legal, and returns to ca lIer. 

285 



6.7.4.7 Flow Chart 

GETCHST 

Illegal 

non-hexadec imal 
Set 

CCl = 1 

RETURN 

Figure 6-20. Flow Diagram of HEXSCAN 

286 

no 

Convert from 

EBCDIC to HEX 

Save in Reg. 17 & 
PLIST + 15 

Set BF=O 

CC1=0 



6.7.5 QUOTSCAN (SYSGEN get next field and check for specific character string) 

6.7.5.1 Purpose 

To obtain next field from input buffer and check the character string for a specific quote constant. 

6.7.5.2 Calling Sequence 

Set REGISTER 7 = address of parameter list 

Set REGISTER 8 = current character from input buffer or zero. If zero, start string with this character, then 

get next character. 

Set REGISTER 9 = address of a quote constant in TEXTC format. 

BAL,11 QUOTSCAN 

6.7.5.3 Input 

Character string in PLIST's character string buffer. 

Register 2 = byte address displacement of character string buffer in PLIST (from GETCHST). 

6.7.5.4 Output 

Register 8 = current character from input buffer. 

Condition Code one (CC 1) set if comparison fai Is. 

Condition Code one (CC 1) reset if comparison is ok. 

6.7.5.5 Subroutines Used 

GETCHST (Get next character string into character string buffer). 

6.7.5.6 Description 

Th is routine requests the next string of characters from the input buffer to be put into the character string 

buffer. The size of the field and each character in the buffer is compared to the quote constant pointed 

to by register 9. If they compare, CC 1 is set to zero. If they do not compare, CC 1 is set to one. 

QUOTSCAN then returns to the caller. 

Word 0 

m 

< TEXTC FORMAT> 

Cn 

~ 
I 

#C = number of characters in quote constant. 

C
l
, ---, C

n 
= characters in quote constant. 

Figure 6-21. Quote Constant 

287 



6.7.5.7 Flow Chart 

Set 
CC1=1 

RETURN 

QUOTSCAN 

GETCHST 

no 

Set 
BF = 0 

Set 
CCl = 0 

L~ ____________________________________________________________________________ ~ 

Figure 6-22. Flow Diagram of QUOTSCAN 

288 



6.7.6 DECSCAN (SYSGEN Get next field and check for decimal value). 

6.7.6. 1 Purpose 

To obtain next field from input buffer and check if it is a decimal value. If it is decimal, then convert it 

to binary. 

6.7.6.2 Call ing Sequence 

Set REGISTER 7 = address of parameter list 

Set REGISTER 8 = current character from input buffer or zero. If zero, start string with next character. If 

non-zero, start string with this character, then get next character. 

BAL,11 DECSCAN 

6.7.6.3 Input 

Character string in PLIST's character string buffer. 

Rggister 2 = byte address displacement of character string buffer in PLIST (from GETCHST). 

6.7.6.4 Output 

Register 8 = current character from input buffer. 

Condition Code one (CC 1) reset if va lue is dec imal. 

Condition Code one (CCl) set if value not decimal. 

Register 12 and last word in character string buffer = converted value. 

6.7.6.5 Subroutines Used 

G ETCHST (Get next character string into character string buffer). 

6.7.6.6 Description 

This routine requests the next string of characters from the input to be put into the character string buffer. 

Each character is then checked for legality (i. e., EBCDIC decimal). If the character string is legal 

it is converted and saved in Register 12 and in the last word of the character string buffer in the PLIST. 

DECSCAN sets CC1=1 if illegal string or CC1=0 if legal, and then returns to caller. Legal EBCDIC 

decimal characters include: 0 through 9 

289 



6.7.6.7 Flow Chart 

Set 
CC1=1 

yes 

Illegal 
String 

Illegal 
non-decimal 

GETCHST 

Figure 6-23. Flow Diagram of DECSCAN 

290 

no 

convert from 

EBCDIC to DEC 

Save in REG. 
12 & PLIST + 15 

Set SF = 0 
CC1=0 



6.7.7 CHSTSCAN (SYSGE"I Get next field) 

6.7.7.1 Purpose 

To obtain next field from input buffer. 

6.7.7.2 Calling Sequence 

Set REG ISTER 7 = address of parameter list 

Set REGISTER 8 = current character from input buffer or zero. If zero, start string with next character. 

If non-zero, start string with this character, then get next character. 

BAL, 11 CHSTSCA N 

6.7.7.3 Input 

See Calling Sequence 

Next character from input buffer. 

6.7.7.4 Output 

Register 8 = current character from input buffer. 

Condition Code one (CC1) set if string not legal. 

Condition Code one (CC1) reset if string is legal. 

A character string in the character string buffer. 

6.7.7.5 Subrouti nes Used 

NXACTCHR (Get next character from input buffer). 

6.7.7.6 Description 

Thi~ routine sets the character string buffer to blanks and then requests the next character from the 

input buffer. If it is a delimiter, and no characters have been obtained, condition code (CC 1) is set and 

CHSTSCAN returns to caller. If the next character is not a delimiter, it is saved in the character string 

buffer in the PUST, and if the character obtained is the first character in a string, the current character 

position count is set into the PUST. When the character obtained is a delimiter and a string has been 

found, condition code one (CC1) is reset and CHSTSCAN returns to caller. If the number of characters 

in a string exceeds thirty-five, condition code one (CC1) is set and CHSTSCAN returns to caller. In 

each case, CHSTSCAN puts the character string length into the PUST • 

6.7.7.7 CHSTSCAN Flags and Counters 

BA 

PCCP 

o Set initially to ignore leading blanks. 

Set after first non-blank, non-del imiter character is obtained, indicating that a blank 

character is no longer ignored., 

re lative position in input buffer of first non-blank character in character string. That is, 

if PCCP = 2, first character is in position 3. 

CCP relative position in input buffer of current character. If CCP = 3, then character position 

is 4. 

CSL the number of characters in string. 

291 



6.7.7.8 Flow Chart 

Set 
CCl = 1 

yes 

Set character 
string 

Buffer = Blanks 

Set 
BA = 0 

NXACTCHR 

Delimiter 
Character 

Set 
CCl = 0 

_. __ •. _--,--------' 

in String 

Set 
BA = 0 

Figure 6-24. Flow Diagram of CHSTSCAN 

292, 

no 

Set 
BA = 1 

I+----f Set 
PCCP=CCP-l 

Put Char. in 
Character String 

Buffer 



6.7.8 GETCHST 

6.7.8. 1 Purpose 

To check if a character string alreedy exists in the Character String Buffer, and if not, obtain the next field 

from the input buffer. 

6.7.8.2 Calling Sequence and Input 

Set Register 7 = address of parameter list 

Set Reg ister 8 = current character from input buffer or zero. 

If zero, start string with next character if Character String Buffer is empty. 

If not zero, start string with this character, then get next character providing Character 

String Buffer is empty. 

BAL,ll G ETCHST 

6.7.8.3 Output 

Register 1 = character string length (in bytes) 

Register 2 = byte address displacement of Character String Buffer in PLIST. 

Condition code one (CC 1) set or reset depending upon character string legality. 

set if not lega I 

reset if lega I 

6.7.8.4 Subroutines Used 

CHSTSCAN (Get next character string from input image). 

6.7.8.5 Description 

This routine is entered by the character subroutines NAMSCAN, HEXSCAN, DECSCAN, and QUOTSCAN 

to obtain the next character string from the input image. When a string is obtained, the BF flag in the PLIST is 

set to one which indicates that the Character String Buffer contains a character string. The BF flag is reset 

on Iy when one of the character subroutines (as named) finds that the character string satisfies its 

requirements (i. e., the string is legal). If a string is not legal, the BF flag remains set such that when 

another one of the character subroutines (as named) requests a character string, it will receive the 

string which is currently in the Character String Buffer. Therefore, a field which may be either a name 

or decimal value, may be scanned by both the NAMSCAN and DECSCAN subroutines to determine which 

type it is. The GETCHST routine sets condition code one (CC1) according to the character strings legality 

and then exits to the caller. 

6.7.8.6 Flagsand Counters 

BF 0 Character String Buffer in PLIST is empty. 

Character String Buffer in PLIST contains a character string. 

CSL number of characters in character string. 

293 



6.7.8.7 Flow Chart 

CHSTSCAN 

Save 
CCl in Reg. 4 

R4=CCl = 0 

Set 

yes 

Char. String 
Exists 

in 
Buffer 

Reg. 1 = CSL 

Set Reg. 2 = Byte 
Addr. Displacemen 
of Char. String 
Buffer in 
PLIST. 

Set 
BF = 1 

Set 
CC 1 from Reg. 

~ 
Figure 6-25. Flow Diagram of GETCHST 

294 



6.8 SYNTAX ROUTINE IN P2CCI (PASS2) 

6.8.·1 Purpose 

SYNTAX is a PASS2 subroutine which converts control command images into manageable temp stack tables. 

It can analyze commands of arbitrary format, detect any syntax errors, and reject (with notification to the 

user) any syntactically correct information which is not acceptable to the calling program. 

6.8.2 Usage 

SYNTAX is called via a BAL, 11 to SYNTAX. Registers 0, 1, 2, 3, 4, and 7 are assumed to contain: 

(0) word address of TEMPSTAC K doubleword 

(1) word size of the TEMPSTACK table to be generated (see OUTPUT) 

(2) word address of a skeleton TEMPSTACK table (see INPUT) 

(3) base word address of P2CCI dynamic data 

(4) 0-14 word size of the keyword table to be used (actual keyword portion) 

(4) 15-31 word address of the keyword table (see INPUT). 

(7) word address of character routine parameter list connected with the command image. 

A II registers are saved except (5), wh ich upon return contains the word address of the generated. 

TEMPSTACK table. SYNTAX returns to BAL+1 when it has scanned and interpreted all of the command 

image (including continuation records). 

6.8.3 Input-Output 

6.8.3. 1 Keyword-Format Table 

The keyword table serves two purposes. It defines 'l'alid keywords for the command and what action is to be 

taken when they are encountered. It also defines the format of the command if it is not stand9rd, i. e., 

options separated by commas of the form: 

(Keyword, va lue ,value •••• ) 

The keyword table format is as fo I lows: 

o 
0 

FCH, FCH2 ... 
FCH n 

N Keyword entri es 
(2 or 3 words each) 

#DEFAULTS 

o 15 16 

FCH (Format Control Halfword): 

o 78 

I M ERR FOP 

295 

N 

31 

15 

I Optional, used 
to specify 
nonstandard 
formats. 



Where: 

FOP is a syntax operation (see table of FOP's below). 

ERR is the number of the format control halfword to be used next if FOP is unsuccessful. 

M if set, implies that an error message be produced if FOP is unsuccessful. 

Keyword Entry: 

o 
C1 

C5 

OIKOP 

KOP 

KF 

VDISP 

#DEFAULTS 

7 S 15 16 23 24 31 

C2 C3 C4 

C6 C7 Cs 

KF VDISP 

is a key operation (see table of KOPs below) 

is usually zero (see FLAG KOP) 

Keyword characters (blank-filled) 

2nd word optional, C 1 and C5 ~ 

X1SOI. 

is the displacement in the TEMPSTAC K table of the word associated 

with this keyword. 

is the number of words in TEMPSTACK table that should be replaced 

by their defaults if the command did not specify values for them. 

Currently implemented values and meanings of FOP: 

VALUE NAME MEANING 

0 NOP Used to set error return (WDTBL, DWTBL) 

GOTO Set POINTER to ERR (M must be zero) 

2 LEFT Next character must be left parenthesis 

3 FLEFT Search for left parenthesis or end of command 

4 RIGHT Next character must be right parenthesis 

5 FRIGHT Search for right parenthesis or end of command 

6 COMMA Next must be comma 

7 FCOMMA Search for comma or end of command 

8 INTEROPT Next must be right parenthesis followed by 

end of command or comma, left parenthesis 

9 KWD Next string must be a valid keyword 

10 PROCKWD Determined by KOP, KF, and VDISP for the 

particular keyword 

11 ANTXT Next string must be alphanumeric, convert 

it to TEXT form 

12 ANTXTC Next string must be alphanumeric, convert it 

to TEXTC form 

13 DEC Next string must be decimal, convert it 

to binary 

14 HEX Next string must be hexadecimal, convert 

it to bi nary. 

296 



VALUE 

15 

16 

17 

18 

19 

20 

NAME 

CNVTXTC 

CNVOEC 

CNVHEX 

WOTBL 

DWTBL 

GETSTRG 

MEANING 

Convert current string to TEXTC form 

Convert current string from decimal to binary 

Convert current string from hexadecimal to binary 

Store current value (output of 11 through 17) in a 

word table whose next available address is contained 

in the TEMPSTACK table displaced by ERR and whose 

last address is in the word preceding that. Error return 

is that of the previous control halfword. 

Same as WOTBL except two-word entries are made. 

GET NEXT CHARACTER STRING. 

By way of example, the standard format control table: 

Displacement M ERR FOP 

0 0 0 FLEFT 

0 KWD 

2 0 PROCKWD 

3 1 0 INTEROPT 

4 0 GO TO 

Currently implemented values and meanings of KOP: 

VALUE 

o 

2 

3 

4 

5 

8 

MEANING 

If KF nonzero, OR's KF into byte displaced by VDISP from 

TEMPSTACK table. If KF zero, sets defaults and initiates a 

new TEMPSTACK table. No comma or value is expected 

for these keywords. 

One decimal value expected. 

One hexadecimal value expected. 

One device address (NDD) value expected. 

Same as 0 if KF zero, except one hexadecimal value 

is read,put into the new table, and defaults are set 

only for the first table. 

Same as 4, except expects one decimal value 

The value of VDISP represents a displacement into the 

table of FOP's. Effectively this performs a keyword 

GOTO function. 

X '40' Stores the flag KF in a byte table (at VDISP into TEMPSTACK 

table) indexed by each decimal value following the keyword. 

The byte size of the table must be in VDISP-1 into TEMPSTACK 

table. 

NOTE: When the KOP is 1-5, then the KF field may be used to represent the number 

of va lues expected to follow the keyword. The entries at VDISP into the temp 

stack table are arranged to conform with the order of the values following the 

keyword. 

297 



6.8.3.2 SKELETON TABLE 

The skeleton table is copied intact into the TEMPSTACK table at SYNTAX initialization. Its format is 

arbitrary, but SYNTAX expects format in most cases. 

If FOP is WDTBL or DWTBL, the format is as is described in the ir descriptions. 

If FOP is PROCKWD and KOP is not 0 or X'40· (whose skeleton (TEMPSTACK) table fonnats are described 

above), then the word at VDISP into TEMPSTACK table has three parts: 

Bit 0 is a flag. When set it implies that no value has been stored into the word by 

SYNTAX (the associated keyword either has not been encountered or the 

value following it was in error). If this bit is set when end of command is 

reached and VDISP is less than #DFLT, then SYNTAX replaces the word 

Bits 16-

31 

Bits 1-

with its default. 

is the upper limit of acceptable values. If it is zero, no limit checking is 

done. 

15 is the default value and, if the upper limit is nonzero, is also the lower limit 

of acceptable values. (Signed arithmetic value). 

Note that this implies that SYNTAX cannot do both I imit checking and default setting if 

the lower limit is not the same as the default. 

6.8.4 Interaction 

SYNTAX is currently used by PASS2 modules: XMONITOR, XLIMIT, IMC, P2COC, SPROCS, XPART, and 

BTM. SPROCS and XMONITOR provide their own format table. 

SYNTAX uses PASS2's character scanning subroutines to scan the command, P2CCI's LISTIT to print the 

command, and P2CCI's OUTLLERR to print error position indicators. 

6.8.5 Errors 

*** 

*** 

*** 

*** 

*** 

*** 

SYNTAX ERR OR - 1(' EXPECTED 

Self-explanatory. Occurs on LEFT or INTEROPT FOP. 

SYNTAX ERR OR - I) 1 EXPECTED 

Self-explanatory. Occurs on RIGHT or INTEROPT FOP. 

SYNTAX ERROR - ., I EXPECTED 

Self-explanatory. Occurs on COMMA, INTEROPT, or PROCKWD FOP. 

INVALID, UNKNOWN, or DUPLICATE KEYWORD 

Self-explanatory. Occurs on KWD or PROCKWD FOP. 

INVALID ALPHANUMERIC STRING 

Self-explanatory. Occurs on ANTXT or ANTXTC FOP. 

ILLEGAL TYPE OR SIZE 

A non-keyword stri ng does not conform to the restrai nts imposed on it. 

Occurs on FOp·s 10 through 19. 

298 . 



*** 

*** 

*** 

TOO MANY VALUES 

A table has been filled. Occurs on WDTBL or DWTBL FOP. 

ERROR IN PROCESSOR-JOB ABORTED 

A FOP or KOP has not been implemented. 

INVALID CHARACTER STRING 

Error has occurred in getting character string, occurs on FOP 20. 

6.8.6 Description 

SYNTAX initializes itself by copying the skeleton table to the TEMPSTACK, and finding the keyword 

table and the appropriate format table. It then proceeds to perform the operations contained in the 

format table, putting valid information from the command into the TEMPSTACK table and producing error 

messages for invalid information. When it reaches the end of the command, it finds #DEFAUL TS at the 

end of the keyword table, sets the appropriate number of defaults, restores the registers, and returns. 

299 



6.8.7 Flow Chart 

put data in it 
save reg i sters 

Get address of 
>-__ ~ user supplied 

no 

Increment R6 (+ 1) 
and store 0 in 
-1, R6 (used as 

Save 
KWDTBL po inter 
in stack 

Get FOP from 
format control 
halfword 

no 

format words 
R6 

BADCB 

error in 
processor 
JOB 

aborted 

Figure 6-26. Flow Diagram of SYNTAX 

300 

Page 1 

Get start of 
keyword table 
(R4) 

EXIT 



Page 2 

A 

,~ 

FOP= GOTO 

0 EX1 Pg. 3 

1 EX2 Pg. 3 

2 LEFT Pg.4 

3 FLEFT Pg.4 

4 RIGHT Pg.4 

5 FRIGHT Pg.4 

6 COMMA Pg.4 

7 FCOMMA Pg.4 

8 INTEROPT Pg. 8 

9 KWD Pg. 8 

10 PROCKWD Pg. 9 

11 ANTXT Pg. 5 

12 ANTXTC Pg. 5 

13 DEC Pg. 5 

14 HEX Pg.5 

15 CNVTXTC Pg. 6 

16 CNVDEC Pg. 6 

17 CNVHEX Pg. 6 

18 WDTBL Pg. 7 

19 DWTBL Pg. 7 

20 GETSTRG Pg. 14 

Figure 6-26 Flow Diagram of SYNTAX (Cont.) 

301 



Go to 
effect ---

Increment 
Index to PR OC 
(-1, R6) 

Get FOP 

/' 

/~OP>O 
ERR 

~no-~ Error Message 

~fes 
.~~--~====~~~ Pg. 3 

of 
FOP store in PRO 

Figure 6-26 Flow Diagram of SYNTAX (Cont.) 

302 

ERR 

Print error 
message with 
$ under error 

Reset buffer 
flags 

Page 3 



-----
I 
I 
i 

Select Ie as 
comparison 
character 

Select I( I as 
search 
character 

Select I) I as 
comparison 
character 

CHAR CHARSCAN 

compare 
character with 

Select I) I as 
search 
character 

FIND CHARSCAN 

Find current 
character 

Figure 6-26 Flow Diagram of SYNTAX (Cont.) 

303: 

Select I, I as 
comparison 
character 

Select I, I as 
search 
character 

Page 4 



Pick up 
anumeric 

string 

I Move string 
: to registers 
1(01 - 04) 

Convert to TEXT 

Convert 
Decimal to 
Binary 

Pg. 3 

-1------- --
_/~Ii~"'-~ 
~b~r >---~ 

Figure 6-26 Flow Diagram of SYNTAX (Cont.) 

304 

Pick up 
anumeric 

string 

Move string 
to registers 

(01-04) 
convert to TEXTC 

8 Pgo 3 

convert HEX 
to binary 

Page 5 



Put address of 
entry into 
DECSCAN into 

Get error 
message address 

) 
Pg. 5 

Convert 
DEC/HEX 
to binary 

Put address of 
entry into 
HEXSCAN into 
link register (R4) 

Figure 6-26 Flow Diagram of SYNTAX (Cont.) 

305 

Page 6 



Set DATASIZE 
=4 

Get and adjust 
table pointer 

no 

Set DATASIZE 
=8 

Bump pointer (-1 
for error 
message 

ERR 

Page 7 

3 

Error Message 

Find end of 
CC 

pull registers 

I Store value in 
, table 

Figure 6-26 Flow Diagram of SYNTAX (Cont.) 

306 

ERROUTS 
Set error flag 

find error return 
of overlay 
retYJ:!L __ _ 



Figure 6-26 

CHSTSCAN 

~
et 
Character 

String 
- ~-- -_ .. 

Flow Diagram of SYNTAX (Cont.) 

307 

Page 8 



Get VDISP from 
keyword table 

Get code for 
operation 

Read and convert 
value 

Store value 
in keyword 
table 

11 

no Print syntax 
error 

Pg. 3 

Figure 6-26 Flow Diagram of SYNTAX (Cont.) 

308 

Decrement 
KF (-2) 

Increment 

VDISP 



CODE= 

-1 
0, 6, 7, 9, 1 0-1 
1 
2 
3 
4,5 
8 

Get address 
at VDISP 

Store in 
pointer 
(-1, R6) 

GOTO 

EX1 Pg. 3 
BADCB Pg. 1 
DE CSCA N}predefi ned 
HEXSCAN process 
NOD Pg. 10 
NEWDYN Pg. 12 
KWGT Pg. 10 

Get 

Figure 6-26 Flow Diagram of SYNTAX (Cont.) 

309 

CHARSCAN 

NOD 

character 

no 

Page 10 

Set CC 

In Error 



yes 

Get flag 

to store 

Get max. va lue 
for input 

Get table 
base 

Get val ue 

Store flag in 
table indexed by 
value 

ERR 

no 
Error message 

Pg. 3 

Figure 6-26 Flow Diagram of SYNTAX (Cont.) 

310 

Get (Byte) 
VDISP 

lOR I Byte 
with flag 

Store in 
TEMPSTACK 

Table 

Page 11 



Save keyword 
PTR Set SR 1 =0 
as flag for return 

Get address of 
# defaults 

Default va lues 

List control 

command 

yes 

Figure 6-26 Flow Diagram of SYNTAX (Cont.) 

311 

Page 12 



Get new temp­
stack size and old 
starting address 

Save space in 
stack for new 
DYN 

Move saved 
registers (30) to 
end of new DYN 
area 

Copy skeleton in 
new DYN 

Pull Registers 

no 

HEXSCAN 

Convert HEX 
to binary 
number 

Figure 6-26. Flow Diagram of SYNTAX (Cont.) 

312 

Page 13 



CHSTSCAN 

l Get character 
stri ng. Need 
not have alpha 
character. 

~ 

r--:t string in 

1___ registers. 

---------l--' 

~ Pg. 3 

Page 14 

------~- - - - ---------_._---------------------------' 

Figure 6-26. Flow Diagram of SYNTAX (Cont.) 

6.9 MODGEN ROUTINE IN P2CCI (PASS2) 

6.9. 1 Purpose 

To facilitate REFDEF stack, expression stack, and relocation dictionary changes (functions performed by the 

MODIFY module) for PASS2 module builders whose memory has been allocated by COREALLOC. 

6.9.2 Usage 

BAL,10 MODGEN 

MODGEN interpretive Iy executes all code following the BAL, saving condition code and all registers (except 

R 10, which is used to save the condition codes and/or the instruction address). Any successfu I branch 

instruction (BIR, BDR, BCS, or BCR) constitutes a return from MODGEN (except when used as a return to 

BAL+1 from a subroutine whose BAL was executed by MODGEN). Any instruction for which bits 0 to 3 

are all reset is not executed but constitutes input data for MODGEN functions (See INPUT)o A zero byte-O 

error address word (see COREALLOC) must be present. 

313 



6.9.3 Input 

All MODGEN specific input is in TEXTC format (maximum 15 characters) as follows: 

Byte 0 

N 

The type of operation is determined by N which is an EBCDIC decimal digit (X'FO' through X'F9 1
) 

N OPERATION MEANING OF C •• CD COMMENT 

o Create value DEF Name of DEF Value inR12 

Create location DEF Name of DEF Address (i n data record) 

in R8 

2 Change relocation n=l, Address (in data) in R8 

dictionary C1=new relocation code 

3 Create PREF for address C 1 through Cn -1 = name of Address (in data) in R8 

field REF; C = resolution 
n 

6. 9.4 Interact ion 

MODIFY is used to make the modifications. 

6.9.5 Errors 

If a MODGEN operation (other than a value type DEF) is requested with the address in R8 larger than the 

highest va lid address in the data record, the message 

***INADEQUATE CORE SPACE - SKIP TO NEXT CC 

is printed, R8 is set to minus one (as a flag for WRITELM), memory is released, and the word address in R lOis 

decremented until it po ints to a byte which is zero, wh ich word is used for an error return address. 

An Identical sequence occurs if MODIFY reports an error except that the message is 

***MODIFY ERROR - SKIP TO NEXT CC 

If an illegal operation code is encountered (N not EBCDIC decimal or not implemented), MODGEN errors the 

job step with the message. 

***ERROR IN PROCESSOR - JOB ABORTED 

6.9.6 Description 

MODGEN examines the word pointed to by R10. If any of bits 0-3 are set, the word is assumed to be an 

instruction and the condition codes are loaded from R 10, the word is executed, the new condition codes 

stored in R 1 0, and R lOis incremented. Otherwise, the operation code is picked up from the end of the 

TEXTC and a corresponding subroutine generates a change description table and performs the operation 

through MODIFY. R10 is incremented to point to the word after the TEXTC. This process is repeated 

until a successful branch instruction is encountered, since its execution transfers control out of 

MODGEN. 

314 



6.9.7 Flow Charts 

yes 

no 

Save 9 registers 

Build required change 
description table, perform 
o eration (MODIFY) 

Pg. 2 

Find next 
location after 
TEXTC 

Restore 9 registers 
increment SR3 
to next location 

yes 

EXU 

Restore R 1, load 
CCs from SR3 
(Byte 0) 

BADCB 
Error in 
processor 
job 
ABORTO 

MODER 

Print 

Execute 
Instruction 

EXIT 

Free Core , set 
error flag,error 
return to overlay 

Pg. 2 

Figure 6-27 Flow Diagram of MODGEN 

315 

Page 1 

Save CCs in 
Byte 0 of 
SR3 



CODE= 

o 

2 

3 

4-15 

GOTO 

DEFABS Pg. 3 

DEFREL Pg. 3 

DICTMOD Pg. 4 

DICTMOD (REF) Pg. 4 

BADCB Pg. 1 

ERROUTM 

Free core 
Pcges 

Set error flag 

Find error return 
address of 
call ing overlay 

Figure 6-27 Flow Diagram of MODGEN (Cont.) 

316 

Page 2 



Set NAME2 
=0 

Set NAME2= 
X'OlooOOOO' 

Get value 
for NAMEl 

Get NAMEl and 
store in change 
description TBL 

(COT) 

Store va lue of 
NAME2 in COT 

Store type code 
= 4 in CDT 

no 

MODERO 

Get appropriate 
error message 

MODIFY 

MODIFY 
load module 
return 

Figure 6-27 Flow Diagram of MODGEN (Cont.) 

317 . 

Page 3 



Set NAME2 = 
X'OlOOOOOO' 

Get value for 
NAME 1 

Get reso lution 
code and convert 
to binary 

Put in CDT 
resolution 
code 

Store NAMEl 
in COT 

Store VALUEl 
(a constant) 

in COT 

Store NAME2 
in COT 

no 

Store type 
code = 3 
in COT 

Store type 
code=O 

Page 4-

MODIFY 

MODIFY load 
module 
Return 

MODIFY 

MODIFY load 
module 
Return 

Figure 6-27 Flow Diagram of MODGEN (Cont.) 

318 



6. 10 COREALLOC ROUTINE IN P2CCI (PASS2) 

6. 10. ~ Purpose 

To obtain and allocate memory for building SYSGEN library load modules. 

6. 10.2 Usage 

BAL,ll 

(0) Temp stack pointer address 

(3) P2.CCI dynamic data address 

(12) Desired word size ofREFDEF stack or -1, if unknown 

(13) Desired word size of data record or -1, if unknown 

Upon exit: 

(7) Address MODIFY PLIST 

(8) Address of data record 

(9) Address of REFDEF stack. 

4 and 14 are destroyed. 

6. 10.3 Output 

Allocation of Memory: 

'II1II( 

REFDEF Stack 

X words 

One 4-word entry 

Rest zero-fi lied 

EXPRESSION Stack 

X words 

Zero-filled 

Z words 

Data Record 

Relocation 

Dictionary 

IE I filled 

Data Record 

8 times Rei. 

Diet. size. 

Y words 

zero-fi lied 

Unused 

W words 

Higher addresses Upper limit of memory 

If neither R12 nor R13 is minus one: 

If only R 12 is minus one: 

If only R13 is minus one: 

If both R 12 and R 13 are minus one: 

The entry in REFDEF defines the data base address. 

X=(R12), Y=(R13), W=Z-2X-9Y/8 

Y=(R13), X=(Z-9Y/8)/2, W=O 

X=(R 12), Y=(Z-2X) *8/9, W=O 

X=Z/3, Y=8Z/27, W=O 

In the Temp stack, COREALLOC bui Ids a MODIFY PLIST, a ten-word Change Description Table area, a 

HEAD record, a TREE record, and an M:OPEN FPT, and one word (MAXOO for the word address of the 

end of the data). Each of these has appropriate address and size fields fi lied in. 

6. 10.4 Input 

The highest addressed word before the BAL to COREALLOC which contains a zero in byte-O. This word must 

contain the address of code which c leans up if sufficient memory not available and contains a BAL to 

WRITELM which releases stack space used by COREALLOC. 

319 



6. 10.5 Interaction 

M:GP, M:FP to obtain and release memory. 

6. 10.6 Errors 

If available memory is insufficient, the message: 

***INADEQUATE CORE SPACE-SKIP TO NEXT CC 

is printed, (RS) is set to minus one as a flag for WRITELM, and a return is made to the address described 

under INPUT. 

6. 10.7 Description 

COREALLOC first sets up R7 and moves a blank data area (PLIST, HEAD, TREE) to the stack. All available 

memory is obtained. The sizes of the various sections are calculated according to the formulas under OUTPUT. 

If enough memory is available, all the appropriate slots in PLIST, HEAD, and TREE are filled in, the memory 

is set up, and COREALLOC returns. 

320 



6. 10.8 F low Chart 

Move HEAD, TRE 

PLIST, CDT. t.O .. 1 temp stack 

Get maximum 
core 

RFDFOK yes 

convert to 
doubleword 

--t 
SECTO 
Given 

convert to 
doubleword 

/sECT 
-<~ Given 

no ~? no 

Set RFDF = 
total WDS/3 

Figure 6-28. Flow Diagram of COREALLOC 

321 

Page 1 

Compute 
(tota 1-2*RFDF) 

Set SECTO= 
(tota 1-2*RFDF}*8 

9 



Compute RFDF= 
(total -9/8*SECTO 

2 

Store RFDF addr., 
EXPR address in 
TREE 

Store RFDF addr. 
in PLIST and 

Store address an 
size of RELDICT 
and SECTO addr. , 

in PLIST 

Store SECTO size 
in TREE, address 
in HEAD RECORD 

Figure 6-28. Flow Diagram of COREAlLOC (Cont.) 

322 

Zero out 
work area 

Store SECTO 
bias in REFDEF 
entry 

Page 2 

Store T EE addr. 
and CDT address 
in PLIST 

Store IE IS in 
RELDICT 

. Restore 
REGISTERS 



List 
command 

Restore 

Registers 

Print 
Error 

Message 

Free pages 
set error fl ag 

ind error return 
address of 
calling overlay 

RETURN 

Page 3 

Figure 6-28 Flow Diagram of COREAllOC (Cont.) 

323 



6. 11 WRITELM ROUTINE IN P2CCI (PASS2) 

6. 11 • 1 Purpose 

To write a SYSGEN library load module file whose memory has been allocated by COREALLOC. 

6. 11. 2 Usage 

BAL,11 

(0) 

(7) 

(8) 

(14) 

Temp stack pointer address 

Modify PLIST address (also used to find HEAD, TREE, and M:OPEN FPT) 

Actual end of data record or minus one to skip the write for errors. 

Address of TEXTC file name. 

All registers saved except 12, which is used to reduce the temp stack to pre-COREALLOC status. 

6. 11.3 Interaction 

M:OPEN, M:WRITE, M:CLOSE to create the file. M:FP to release memory obtained by COREALLOC. 

6. 11.4 Description 

If R8 contains minus one, the stack is pulled to pre-COREALLOC status and WRITELM returns. If not, 

the actual data record size is put into the TREE and the HEAD is ad.justed according to the running monitor 

type The first entry in the REFDEF stack (put there by COREALLOC) is replaced with a CSECT entry, the 

fi lename (from R 14) is put in the TREE, and the OPEN FPT and the file is opened in the output mode. 

Then the HEAD, TREE, REFDEF stack, Expression stack, relocation dictionary, and data are written to the 

file, which is then closed and saved. Memory is released, the stack is pulled, and WRITELM returns. 

324 



6,.11,5 Flow Chart 

Calculate SECTO 
size and store in 
TREE 

Store SECTO size in 
HEAD record. Store 

>----..1 RFDFSTK address 

Put (SECT DEF 
in REFDEF Stack 

Get fi Ie name 
open file 

Close fi Ie release 
pages restore 
registers 

no in HEAD record 

Readjust 
Stack Pointer 

Set HEAD 
record size= 
24 Bytes 

EXIT 

--------- --- ---------------------..,,-.1 

Figure 6-29 Flow Diagram of WRITELM 

325 



APPENDIX A 
A. 0 BPMBT - DEF OVERLAY 

A.1 PURPOSE 

To write a bootable BPM monitor to either 9-track tape, 7-track tape or disk pack. 

A.2 CALLING SEQUENCE 

BAL instruction from DEF 

BAL, 12 BPMBT 

A.3 INPUT 

R6 = address of the parameter list control word to open the input DCB to read the monitor 

R7 = address of DCB for writing BO/PO tape/disk 

RO = push down stack poi nter address 

A.4 OUTPUT 

Error messages to LL device bootable monitor 

A.5 CORE USAGE (not to scale) 

BPMBT OVERLAY WORK AREA 

DEF WRITEMON Mag Tape COWs Boot System -
Processor (Procedure) Mini-Boot for Subroutine Device To Read To Read MON Root 
Root DISKLOAD Boot MON Head & SGMT-Names' -To-Read- -

Routine Tree (l Page) and #IS Monitor 
(1 Page) SEGMESTS 

A.6 OVERVIEW 

A.6. 1 Description 

BPMBT consists of two sections; both sections are contained in one ROM. Section I is the portion of BPMBT that is 

executed as part of the DEF processor to write a bootable monitor. This section of BPMBT is executed under the 

BPM operating system. Section II contains bootstrap routines and the Boot Subroutine. This section of BPMBT is 

written to the boot device along with the bootable monitor by Section I. The coding in this section is executed in 

the master mode at boot time in order to bring up the BPM system. 

A. 6.2 Module Organization - BPMPT 

I WRITEMON (writes a bootable monitor) 

II BOOTMON (routines to boot the monitor) 

A. Magnetic Tape Bootstrap 

B. COWs for Disk Pack Boot Deck 

C. Boot Subroutine 

1. RDROOTTP (boots monitor from tape) 

2. RDROOTDP (boots monitor from disk pack) 

326 



3. WRTROOT (writes monitor to system device) 

4. WRTLOOP (reads overlays and writes them to system device) 

5. Various BOOTMON Subroutines 

6. System Devi ce Bootstrap 

Only the WRITEMON portion (Section I) of BPMBT is documented in detail here. For details concerning the 

BOOTMON portion (Section II of BPMBT) refer to the BPM Technical Manual, 90 15 28, Chapter 3. 

A. 7 DESCRIPTION 

Upon entry, WRITEMO N issues an M:GP to get all of core to use as a work area. WRITEMON then opens M: TM 

DCB to the keyed fi Ie M:MON. The account specified is determined by the parameter list control word whi ch is 

passed to WRITEMON by DEF. If creating a BO device this is the :SYS account; if PO, the current account. 

After M:MON has been opened, WRITEMON reads the keyed record 'HEAD' to get the start address. This start 

address has been defined by the END INITIAL Metasymbol directive in the module M:TABLES. The stack address 

is stored in the Boot-Subroutine to be used as an entry point to the Monitor initialization routine after the Monitor 

root has been read into core by the Boot-Subroutine. 

Next the keyed records 'TREE' and MON::ORG are read. WRITEMON then accesses the size of the Monitor root 

from the Tree Table and stores the byte size of the root in the System Device Boot Routine. This address also is 

used as the buffer address to read the Monitor Tree Table at boot time and is stored within the Boot Subroutine in 

the C DW used to read the tree. 

The Monitor root is to be written out in 2048 byte segments on either tape or disk pack. To avoid the increased 

possibi I ity of tape read errors caused by reading an extremely short record the last segment is always written using 

a minimum of 40 bytes. The Boot Subroutine must know how many of these segments to expect and the size of the 

last segment. So WRITEMON makes these calculations at this point and stores the result in the Boot Subroutine. 

During the initia; boot process the Boot Subroutine will be read (either by the mag-tape mini boot or DISKLOAD) 

into core location TOPRT + 1 page. Again, using the size of the Monitor root as accessed from the tree table, 

WRITEMON calculates this address and stores it into the CDWs used to read the Boot Subroutine in both the mag­

tape mini-boot and the CDWs set up for DISKLOAD. This address is also stored at all entry points to the Boot 

Subroutine so that it may be accessed and used as a base register by the various routines within the Boot Subroutine. 

A.8 BPMBT SUBROUTINES 

A. 8.1 WRSEG 

A. 8. 1. 1 Purpose 

To write the Monitor Root and Overlay Segments to the output device. 

A. 8. 1. 2 Calling Sequence 

BAL, 11 WRSEG 

A. 8. 1. 3 Input 

Reg. 4 = Number of bytes to be written 

Reg. 14 = Address of buffer 

327 



A. 8. 1.4 Description 

The WRSEG routine writes out the buffer in 2048 byte segments to the output tape or pack. Following each write 

operation the cell CURBLOCK is updated. This cell is used for each subsequent write operation to indicate the 

BLOCK value when the output device is pack. 

A. 8.2 D ISPSEG 

A. 8. 2. 1 Purpose 

To bui Id the Segment Names and Numbers Record and list it on the LL Device. 

A. 8. 2.2 Calling Sequence 

BAL, 11 DISPSEG 

A. 8. 2. 3 Input 

Reg. 1 = Segment Number (binary) 

Reg. 2 = Address of Segment Name 

Reg. 13 = Address of work area to build the record 

A. 8. 2. 4 Description 

If the overlay number contained in R1 is '3F ' , DISPSEG puts out a standard segment message for the Root. Other­

wise, the value in R1 is converted to EBCDIC and stores it along with the overlay name in a message work area 

and prints this message. 

In any case the message is moved to the work area allocated to building the Segment Names and Number Record. 

The first word in this work area is used to indicate the displacement into the work area where the next segment 

message is to be stored. Each message is 6 words long. 

Next WRITEMON determines if a pack or tape is being created. If pack, WRITEMON calculates the required 

size of BOOTFILE by searching through the Monitor Tree Table and accumulating the total number of granules 

required for the Monitor Root and all Monitor Overlays. Added to this are 6 granules which is a fixed requirement 

for the Boot Subroutine, Monitor Tree Table and Segment Names and Numbers Record. This value is then used as 

the RSTORE value to open random file 'BOOTFILE' on the BO/PO pack. After the file has been opened 

WRITEMON accesses the FDA from the Fi Ie CFU to determine if BOOTFILE is the first data fi Ie on a private pack 

that has been initialized at 2 granules per cylinder. If not the DEF processor is aborted. Otherwise, the Boot 

Subroutine, along with the CDWs required to boot that routine, is written to the first 4 granules in BOOTFILE. 

If a tape is to be written, the tape DCB is opened to device. Then the Mag-Tape Mini-boot, followed by the 

Boot Subroutine, is written to the tape. The FPTs used to write the Monitor Root and Overlays, the Monitor Tree 

Table and the Segment Names and Numbers Record are then modified to delete the BLOCK parameter. This enables 

the same FPTs to be used to write to both tape and pack. From this point on, processing is the same for both tape 

and pack output. 

WRITEMON next BALs to the WRSEG subroutine to write out the Monitor Root in 2048 byte segments. Fo"owing 

this the Monitor Tree Table is written. 

328 



WRITEMON then bt ins the process of reading the overlay segments and writing these segments, again in 

2048 byte records,,) the output device. First, a page is reserved in the work area to bui Id the Segment Names 

and Numbers Recore. WRITEMON scans the Monitor Tree Table to locate each successive overlay. For each 

overlay a BAL is mcde to the DISPSEG subroutine to bui Id the Segment Names and Numbers Record and list it on 

the LL Device. WRIH:MON then obtains the segment name and size from the tree table and reads the Monitor 

Overlay into the work area. The overlay name is moved to the three words preceding the overlay to be written out 

along with the overlay itself. The Boot Subroutine wi II use this information to compare against the Monitor Tree 

Table as a check at boot time. WRITEMON BALs to the WRSEG subroutine to write out each Monitor Overlay in 

2048 byte segments. 

After all overlays have been written to the output device, the Segment Names and Numbers Record is written, the 

input M:TM DCB is cb;.ed, the output tape/pack DCB is closed, the work area is released and control is returned 

to the calling routine. 

A.9 WRITEMON MESS.·\GES 

$$$$SEGMENT #IS FOR PATCHING MONITOR 
MONITOR $1$$ 

xxxxxxxxxxxx = SEG. #nnnn 

This is a title message that precedes the 
list of segment numbers. 

This message identifies the segment num­
ber {nnnn} for each segment {xxxxxxxxxxxx} 
as the absolute bootable Monitor is written 
for the PO tape. 

I----- --- -- -------------------------+--------------------{ 
*****CANNOT OBTAIN IM:MONI FROM 

CURRE NT ACCOUNT 

*****CANNOT OBTAIN IM:MONI FROM 
I:SYS 1 ACCOUNT 

---------PROCESSOR ABORTED (WRITEMON) 

*****CANNOT READ KEYED RECORD 'HEAD' 
FROM IN M:MON 

*****CANNOT READ KEYED RECORD 'MON::ORG' 
IN M:MON 

*****CANNOT READ KEYED RECORD 'TREE' IN 
M:MON 

*****CANNOT READ KEYED RECORD 
I xxxxxxXXXXXXI IN M:M ON 

The M:MON load module cannot be ob­
tained from the current account. The 
processor is aborted. 

The M:MON load module cannot be ob­
tained from the :SYS account. The pro­
cessor is aborted. 

--- --------- ----

One of these messages appears if a part of 
the M:MON load module cannot be ob­
tained. IXXXXXXXXXXXXI is the name of a 
M:MON segment. The processor is 
aborted. 

1---------------------------+------------- -------------.-------.---
*****CANNOT USE PACK - REINITIALIZE 

WITH CYL SZ=2 
The PO or BO pack must not contai n any 
fj les prior to the DEF. Processor is aborted. 

----------------------------+-----------------------
*****SPACE OVERFLOW ON SEGMENT NAMES 

RECORD 

---------PROCESSOR ABORTED (WRITEMON) 

The Monitor Tree Table is too large for seg­
ment name information to be contained in 
one page. The processor is aborted. 

Information message to indi cate the BPMBT 
overlay has caused the abort of the DEF 
processor. l 

' _______ ---L---______ _ 

329 



"'\ 

. \ WRITEMON : 

r-' " " __ r----- / 
~orkarea -,-' ." 

t 
Set FPT to get 
M:MON from :SYS 
or current account 

Open keyed fi Ie 
M:MON 

1_. _____ ._--

___ --.1 __ _ 

i Get start addr" 
(initial in tables) 
and store as entry 
point to monitor 
Initia lization 

, I Read 'TREE' fr~; I' 

M:MON 

, l R.ead M:MON~oot 
MON::ORG 

, 
:: byte ,'i ~e_o: _ j-

Set up CDWs for 
system devi ce 
bootstrap 

- -- - - -_. -

Set up CDW to 
I boot tree from 
tape/pack 

Set up CDWs to 
boot root from 

tape/J'a~ __ 

-,~ ) 

: Get ADDR of 
TOPRT + 1 page 

Set up CDWs to in 
mag-tape mini-boot 
to read BOOT SR 

Set up CDWs for 
DISKlOAD to read 
BOOT SR from pack 1 

-S;t addr;ss-t~ ~ - -I 
used as basi c I 

register at all entry 
points of BOOTSR 

~W "t" no - writing \ 

< n Ing _____ ---..IOPNTAPE 
'- to pack /' I 
'- ? / to tape / 
~/ ~ 

i yes 
r--------'----.- --

I , 
I Open output DCB 

to random fi Ie 
'BOOTFIlE' 

--- -----
I 

~ 
.-i0 

/-bootfi I e~ 
first fiVe on -', 

pack 
? 

r-------"+L.. yes 
Write BOOl-SRI 

to 'BC?OT!~~~' __ J 
, 
(~ 

pg 2 

no 

~ __ J __ 
Abort DEF \ 

. "-- processor) 

Figure A-l" Flow Diagram of BPMBT 

330 

Page 1 

pg 2 



( OPNTAPE ) 

* Open output DeB 
to tape device 

~ 
Delete 'block' 
paramej'er in FPT's 
to \AIr i te to output 
DeB 

~ 
Write mag-tope j 
mini-hoot to 
outputl.1t,e _____ 

I 

-'---
I Write BOOT SR 
I to output tape 

..L--.. _ - --_._"-

I 

J-. 
( ~\ 

~:::;; 

* 
rwrite monitor '-d,)t 

WRSEG j 
I to output device 

pg. 3 

Wri te moni tor tree 
tc output device 

- -'- --
Update granule 
count for 'bootfile' 

Allocate work area 
for names and 
number's record 

0 
i 

Search tree table 
to get overlay 
segment name 

t 
DISPSEG 

Output seg name 
and number on LL. 
Bui Id names and 
number record. 

pg. 

Read overlay 
from input file 
M:MON 

Get size of 
overlay 

WRSEG 

Write overlay to 
output devi ce 

Write seg names 
and number's 
record to output 
device 

Close output 
device DeB 

Figure A-l. Flow Diagram of BPMBT (Cont. ) 

331 

4 

Page 2 

Re I ease work 
area 



8 

Set FPT to write 
2048 bytes 

Write record to 
output devi ce 

Update granule 
count for 
'bootfile ' 

Update buffer 
address 

Decrement 
number of bytes 
left to write 

Return 

yes Set FPT to 
write remaining 
byte size 

no 

Figure A-l. Flow Diagram of BPMBT (Cont.) 

332 

Page 3 



Move segment 
name to message 

Convert segment 
number to EBCDIC 

Store segment 
number in message 

Write message 
to LL device 

Move message to 
next avai lable 
entry in names and 
number1s record 

Update pointer 
to next available 
entry 

Return 

yes 

Figure A-l. Flow Diagram of BPMBT (Cont.) 

~33 

message is set to 
rootseg = 3F 

Page 4 



APPENDIX B 

B.O UTMBPMBT - DEF OVERLAY 

B. 1 PURPOSE 

To write the bootable portion of a UTS system tape. 

B.2 CALLING SEQUENCE 

BAL, 11 

B.3 INPUT 

UTMBPMWRITEMON 

(6) = X'01010202' for input from current account (DEF) 

(7) = output tape DCB address 

(8) = version number (3 EBCDIC characters, left-adjusted) 

(0) = temp stack pointer address 

All registers destroyed. 

Load module files for M:MON, XDELTA, GHOSTl, ALLOCAT RECOVER, M:SPROCS, and all Monitor overlays 

(according to M:SPROCS) in the current account (for DEF usage). 

B.4 OUTPUT 

Error messages to the LL Devi ce 

Bootable monitor (see Figures B-1 and B-2) 



Tape 
boot 

GHOSTl 
DeBs 

OverlaY1 
Data 

NOTE: 

Head 

Data 

DCBs 

Procedure 

OVERLAY. 
I 

M:MON 
Data 

System 
informa­
tion 

Exec 
Delta 
head 

Exec 
Delta 
Data 

ALLOCAT DATA 
head 

GHOSTl 
data 

RECOVER 
head 

GHOSTl 
procedure 

RECOVER 
data 

OverlaYn 
head 

:EOF 

Head portion of load module 

Protection type 0 portion of load module 

Protection type 2 portion of load module 

Protection type 1 portion of load module 

OverlaYn 
head 

Procedure 
GHOSTl 
head 

OverlaY1 
head 

M:MON overlays (shared processor type) as described in M:SPROCS module (except 
M:DUMLMs) 

Figure B-1. Output Tape Format 

335 



VD] NL 

Blank line 
***** 
---UTS---
SYSTEM GENERATED ON: 

hh:mm MM DD YY 

VERSION NO. IS: XXX)$' 
***** 

PATCH SEGMENT NUMBERS: 

00 
SN 

****** 
Blank line 

M:MON 
SSSSSS 

byte + 3 bytes 

Six words each line. First 
character of each line must 
be X'40'. 

The message contains the time/data (hh:mm, MM DD YY) of when the tape was generated, and the seg­
ment numbers (SN) assigned to each segment (SSSSSS) for absolute patching purposes. 

VD word displacement to version number (XXXW) 

NL number of six-word lines of text 

Figure B-2. System Information Format 

DESCRIPTION 

Initialization consists of saving the version number (in R8) in the canned information record, obtaining all 

avai lable dynamic data pages, and putting the appropriate fi Ie name control word (in R6) into M:OPEN FPTs for 

M:MON, M:SPROCS, and monitor overlays, GHOSTl and RECOVER. Then the output tape DCB is opened and 

set to the unformatted mode. The M:MON HEAD record is used to put the start address into the tape bootstrap. 

The data size from the HEAD is used to set up the bootstrap, which is then written to tape. It is followed by 

M:MON data in 2048-byte records. M: TIME puts the date and time into the canned information record. The 

M:SPROCS data record is then used to construct a doubleword table of fi Ie names for transfer to tape, since this 

record starts with P: NAME (doubleword table of TEXTC format monitor overlay names). This table is then used to 

construct the segment number portion of the monitor information record, which is then written in a 2048-byte to tape 

and line-by-line to the LL device. Then the loop, NXTULBL, is entered which picks names out of the file name 

table, and copies appropriate protions of the fi Ie to tape. The HEAD record is copied unless the fi Ie is a JIT. Then 

the data protection type is copied unless the fi Ie is GHOSTl or ALLOCAT, in which case DCB (for GHOSTl only), 

data, and procedure are copied, in that order. All pieces of information (including the HEAD record) are copied in 

2048-byte segments. When RECOVER has been copied, those pages that were obtained are freed, the tape DCB is 

CLOSEd (to write an :EOF record), and a return is made to the caller via Rl1. 

An abort via M:MERC with X'80 ' merged into the error code occurs if any module cannot be obtained. 

336 



APPENDIX C 
c.o DEF (HOO BPM/BTM VERSION) 

This Appendix describes DEF released as the HOO version for BPM/BTM systems. This version is based on the 

processor described in Chapter 4 but has been significantly enhanced to permit creation (for BPM/BTM only) of 

PO/BO disk packs in addition to PO/BO tapes. 

C.l PURPOSE 

To generate one or more target system tapes (PO tapes) or disk packs (PO packs) or BO tapes or disk packs which 

maybe used as master BI tapes/packs for subsequent SYSGENs. 

C.2 CALLING SEQUENCE 

Monitor control command 

! DEF •••• 

C.3 INPUT 

DEF control commands from the SI device. 

! DE F (from C devi ce) 

:WRITE 

:INCLUDE 

:IGNORE 

:DELETE 

END 

Fi les from random access device comment commands 

C.4 OUTPUT 

Display of DEF control information to LL device. 

PO tape 

PO disk pack 

BO tape 

BO disk pack 

C.5 DATA BASE AND REGISTERS 

R7 = address in temp stack of control command PLISTS 

R6 = address in temp stack of data and I/O PLISTS 

IGSTRT/IGEND - Pointer to Start/End of IGNORE table 

INCLSTRT/INCLEND - Pointer to Start/End of INCLUDE table 

LSTLMST - Pointer to Start of intermediate table for LASTLM for BO disc pack 

LSTLMBUF - Pointer to Start of compact LASTLM record to be written for BO disc pack 

OPEN FPTs 

OPNTMSQN - Open disc to fi Ie 

OPNPOBO - Open PO/BO (via DCB whose address is in R5). Originally set up to write to tape, 

dynamically changed if writing to disc pack. 

337 



OPNTM - Open disc to next fi Ie. 

OPNSYN - Open for Synonomous files originally set up to write to tape, changed dynamically if writing 
to di sc pack. 

OPNPOBOLST - Open to write null LASTLM used for PO/BO tapes and PO disc pack set up for tapes, 
changed if disc pack. 

OPNDPLST - Open to write non-null LASTLM to BO disc pack. 

POIGS/BOIGS Tables - Automatic IGNOREs for BO/PO tapes and disc packs. 

POINCLS Table - Automatic INCLUDEs for UTS PO tape. 

BOINCLS Table - Automatic INCLUDEs for UTS BO tape. 

BBOINCLS Table - Automatic INCLUDEs for BPM/BTM BO tape/disc pack. 

C.6 SUBROUTINES 

BPMBT - to write BPM/BTM system to unlabeled portion of BO/PO tape or to random file 'BOOTFILE' on 

BO/PO disc pack. See Appendix A for description. 

UTMBPMBT - to write UTS system to unlabeled portion of BO/PO tape. See Appendix B for description. 

NAMSCAN - to scan any field containing a name. 

CHARSCAN - to check a specific character for legitimate syntax. 

CHSTSCAN - to obtain a character string field. 

NXACTCHR - to get next active character from input record. 

HEXSCAN - to scan for a hexadecimal character. 

DECSCAN - to scan for a decimal character. 

QUOTSCAN - to compare a quote constant with a character string. 

GETCHST - to obtain the next character string. 

C.7 CONTROL COMMANDS 

Upon entry DEF requires a parameter on the !DEF command that identifies the SYSGEN system for which tapes/disc 

packs are being created. This parameter maybe either BPM, BTM, or UTS. If none is specified, then the currently 

running operating system is used to determine the system type. If the parameter is invalid, then DEF prints an 

indicative message and aborts. For UTS, an optional second parameter is a version number. There is no syntax 

analysis made on the field, therefore any set of characters is accepted. However, only the first three characters 

are retained. 

The type and composition of the tape(s}/disc packs DEF creates is a function of the control commands read by DEF. 

If the !DEF is immediately followed by a monitor control command, one PO tape is created by default. The 

function of the END command is to cause DEF to exit since an EOF on reading M:SI causes one PO tape to be 

generated unless the last command processed was :WRITE. To write a BO tape/PO or BO disc pack and/or include, 

ignore or delete files for any tape or pack type, :Commands are required. These commands have the following 

format: 

:INCLUDE (namel, name2 .•. ) 

:IGNORE (nameA, nameB ••. ) 

:DELETE 

:WRITE 

f
~g } , [SN] 

BODP 
PODP 

338 



All commands preceding the :WRITE apply to that tape/disk pack being created and may appear in any order. The 

:WRITE is required for BO tapes and oacks and PO packs as a PO tape is generated if the type parameter is null 

or illegal. The optional SN fie Id permits a generalized assignment of PO/BO to (DEVICE, 6~ prior to calling 

[lEF. The processor itself stores the particular SN into the DCB. 

The type of fi les that may be specified or are affected by the other commands depend on the type of tape/disc pack 

being generated. Table C-l summarizes this information. 

Tab I e C -1. Fi I e Types 

:COMMAND BO tape/pack PO tape/pack I 

: 

:INCLUDE Keyed fi les Consecuti ve fi I es I 
I 

:IGNORE Consecuti ve fi I es Keyed fi les ! 
i 

:DELETE BOTH BOTH 
! 

C.8 DESCRIPTION 

Upon entry DEF initializes its dynamic data area and processes the !DEF command. One page of core is obtained 

for storing file names into the tables pointed to by IGSTRT and INCLSTRT. 

DEF then reads it :Commands and branches to the appropriate routine to process them. For: INC LUDE and: IG NORE, 

this involves syntax checking the names ~ 15 characters); determining if room exists for the entry (if not, obtaining 

an additional page of core); storing the name in the appropriate table; and exiting to read another command. For 

:DELETE, a flag (DELETEF) is set before exiting to read another command. When an abnormal return (EOF) is made 

from reading SI for commands, ENDFLG is set and if the WRTFLG is non-zero indicating the last command was 

:WRITE then the routine is entered to clear up the stack and exit. If WRTFLG is zero, then the routine to write a 

PO tape by default is entered. 

For the :WRITE command, entry is made to the initial routine that determines which type of tape or disc pack is 

being generated. From here, a branch is made to either the PO or BO tape/pack routines. 

For PO and BO packs for BPM/BTM systems only, the initial routines alter the fpts to reflect file type operations and 

change the fi Ie access parameter in the fpt for synonymous fi les to update mode. From these routines DEF then 

enters the main processing routines for PO and BO tapes. 

For PO tapes, after processing the optional SN field, the names of files that are to be automatically ignored 

(i. e., LASTLM and SPEC: HAND) are linked to the end of the IG NORE table. If the system being created is UTS, 

then the names of files to be automatically included are linked to the end of the INCLUDE table. These files are 

listed in Table C-2. The appropriate routine to write the unlabeled portion of the tape is segloaded and entered. 

See Appendixes A and B for a description of these routines. Upon return, ten additional pages of core are obtained 

and the common routine (CCA) to generate the remainder of either type of tape is entered. 

For BO tapes, after processing the optional SN field, the appropriate routine to write the unlabeled portion of the 

tape is segloaded and entered. Upon return, for BPM/BTM systems, the files to be automatically included (see 

Table C-2), are linked to the end of the INCLUDE table, ten additional pages of core are obtained and exit is 

made to CCA. If the system is UTS, the fi Ie, M:SPROCS in :SYS account, is opened, ten pages of core are 

339 



obtained and the fi Ie is read into the newly acquired area and linked to the end of the INCLUDE table. M:SPROCS 

contains the names of the monitor overlays and shared processors but only the overlays are added to the INCLUDE 

table. The names of the other files to be automatically included are linked to the end of the added monitor over­

lay names and exit is made to CCA. 

Upon entry, the common routine (CCA) first determines if a disc pack is being created, if not then VOLINIT is 

removed from the list of automatic INCLUDEs. If a BO disc pack is being generated then the start of the INCLUDE 

table is stored as the start of the list of fi les for the non-null LASTLM fi Ie. The INCLUDE list is then processed. 

This involves obtaining the name of a file, storing it in the open FPT (OPNTMSQN) for M:TM to the disc and then 

opening the fi Ie, using the FPARAM option. The fi Ie, thus opened, is checked first if it is a synonymous fi Ie in 

which case special handling is required, namely its parent name must be added before writing it to the tape. Note 

the parent fi Ie must occur before the synonymous fi Ie or the latter is lost. 

Then the organization of the fi Ie is determined. If PO, then only consecutive fi les are processed, if BO, then only 

keyed files. The other types are automatically handled later. If a file for a disc pack is invalid then a link is set 

over the entry thus removing it from possible subsequent processing in BO pack situations. 

The PO/BO tape disc pack is then opened and the fi Ie is read into core and wirtten to tape/pack unti I an EOF is 

encountered at which point the DCB is closed. This routine is repeated until all the names in the INCLUDE table 

have been processed. When this processing is completed and the files thus written to the tape/pack have been 

listed on the LL device, the next phase of DEF is entered. 

If a BO pack is being generated then the routine WRLSTLM is entered to bui Id a LASTLM fi Ie of one record contain­

ing the names of all the INC LUDEd fi les and terminated by a final word of zero. The fi les so named are to go into 

the :SYS account at boottime. On BO tapes, the file LASTLM is null and its position on the tape serves as a 

termination of the fi les for :SYS. However, on BO packs, because the fi les on a disc pack are accessed through 

the alphabetized fi Ie directory, LASTLM is used as a mini-directory for the :SYS file. 

If a BO tape is being generated, a null fi Ie, LASTLM, is written to the tape. Subsequently, or if a PO tape is 

being created, the FPT for open-next to the disc (OPNTM) is opened and fi Ie parameters obtained. If the fi Ie 

organization is consecutive (BO)/keyed (PO), the IGNORE table is searched to determine if it is listed there. 

If the DE LETEF is set, the fi Ie is deleted when M: TM is closed. If the fi Ie is not to be IG NOREd, it is then read 

into core and written to tape/disc pack. This procedure is repeated unti I all fi les in the current account have been 

processed. 

If on opening-next-file, an abnormal return is made indicating the file is a synonymous file, its name is stored in a 

new INCLUDE table whose location is pointed by INCLSTRT and a flag (SYNFLG) is incremented, thus maintaining 

a running total of the number of synonymous fi les found. 

When an abnormal return is made indicating an end of all files on open-next, if the tape/pack being created is 

BO, it is immediately closed, rewound, and saved. If a PO tape/pack is being generated, SYNFLG is tested. 

If non-zero, a second pass is made through the INCLUDE routines. If or when SYNFLG is zero, the null file, 

LASTLM, is written to the tape/pack which is closed, rewound, and saved. 

Note: When writing Synonymous fi les to disc pack, the DCB is opened in the update mode. If the parent fi Ie is 

not there, then the fpt is set to open out and the fj Ie is subsequently written out. 

340 



The pages of core acquired thus far are released. If ENDFLG is not set, the flags and counters are zeroed to 

prepare for the generation of another tape. If ENDFLG is set, DEF exits. 

Table C-2. Automati c INC LUDEs 

PO Tape/Pack * BO Tape/Pack ** 

UTS UTS BPM/BTM - -
BPM XDELTA FMGE 
UTS LOGON PASSl 
SIG7FDP TEL ERRMSG 
:BLIB SUPER :DIC 
FLIBMODE DEFCOM : LIB 
SIGMET SYMCOM M:C 
M:CDCB JITO M:OC 
M:OCDCB JIT1 M:BI 
M:BIDCB JIT2 M:CI 
M:CIDCB JIT3 M:SI 
M:SIDCB JIT6 M:EI 
M:EIDCB ANLZ M:BO 
M:BODCB ERRMSG M:CO 
M:CODCB GHOSTl M:SO 
M:SODCB RECOVER M:PO 
M:PODCB M:SPROCS M:GO 
M:GODCB M:MON M:LO 
M:LODCB PCL M:DO 
M:DODCB CCI M:EO 
M:EODCB LOADER M:LL 
M:LLDCB PASS2 M:CK 
M:SLDCB LOCCT M:SL 
M:ALDCB PASS3 M:AL 
M:LIDCB DEF M:LI 

Plus Monitor overlays M:MON 
from M:SPROCS PCL 

CCI 
LOADER 
PASS2 
LOCCT 
PASS3 
DEF 
VOLINIT*** 

* From Current Account 

** 
From : SYS Account 

*** 
For BO pack only 

341 

-, 
i 

I 
I 

I 
I 



C.9 DEF MESSAGES 

::::SYSGEN DEF IN CONTROL:::: Commentary at beginning of execution. 

::::DEF COMPLETED:::: Commentary at end of execution. 

**CC TYPE UNKNOWN Error in Command. DEF reads next command. 
****GET NEXT CC 

**SYNTAX ERROR, NO 1(' Error in syntax. DEF reads next command. 

**DELIMITER MUST BE I, I OR 1)1 Invalid terminator on :Command. DEF reads next 
command. 

**NAME INVALID OR > 15 CHAR. LONG DEF searches for next parameter. 

****NOT ENOUGH CORE AVAILABLE Work area too sma II. DEF exits. 
*****SYSGEN DEF ABORTED 

***WRITING PO TAPE BY DEFAULT Either no type specified or parameter invalid on 
:WRITE. 

***ILLEGAL INCLUDE - WILL BE COPIED LATER On the :INCLUDE command a keyed file (for PO) 

I 

or a consecutive fj Ie (for BO) has been specified. 
The file name is printed above this message. DEF 
continues. 

-

***DEF TYPE UN KNOWN System type field of !DEF command has been spec-
ified but is invalid. DEF exits. 

_. 

***TYPE UNKNOWN - xx Mused System type field of !DEF missing. DEF defaults to 
currently running system type (xx). 

**NO 1:1 in column-1 Command in error. DEF reads next command. 
------_ .. -----. - -

****TROUBLE WITH M:SPROCS In attempting to open M:SPROCS in creating a 
***CANNOT WRITE TAPE BO tape for UTS system, difficulty encountered. 

DEF releases the tape and if ENDFLG set, exits. 

*****CANNOT WRITE DP DEF is unable to write to the disc pack. It re-
leases the pack and proceeds to the next command. 

***1/0 ERR/ABN = xx/xx An I/O error/abnormal condition has been de-
tected by DEF and is not expected. 

****TROUBLE WRITING LASTLM FOR BO DP An error or abnormal return has been made when 
opening or writing LASTLM for BO packs . 

..• - ------ ----------------- .--- .-.--- --_ .... 

***CANNOT OPEN OUTPUT DEVICE In attempting to open tape/pack (BO/PO), an 
abnorma I condition occurs. DEF releases tape 
pack and if E NDFLG set, exits. 

---------

... PO TAPE CONTENTS ... 
\ 

· .. PO DP CONTENTS ... ) 
· .. BO TAPE CONTENTS ..• I These are subtitles that are followed by a list of 
· .. BO DP CONTENTS ... 

the appropri ate fi I es. 
***INCLUDE ITEMS*** I 

I ***OTHER ITEMS*** ) 
I ********INCLUDE ITEMS NOT FOUND I 

342 



C.10 INTERNAL ROUTINES 

I 
DEF Main entry, initialize processor dynamic data area. I 

I 
i 

READFRST Process DEF command. I I 
I 

INIT Initialization of pointers. 

DEFRDCC Read :Command for DEF, and branch to appropriate routine 
or set DELETEF. 

DEFINCL Process :INCLUDE. 

DEFIG Process :IGNORE. 

DEFWRITE Initial processing of :WRITE. 

Initial processing of PO/BO disc pack for :WRITE commands. 
DFPODP Sets DPFLG and changes FPT to reflect fj Ie type operations, 
DFBODP changing mode of synonymous file fpt to update. Exits to 

DFWRTPO/DFWRTBO. 

DFWRTPO :WRITE processing for PO. 

DFWRTBO :WRITE processing for BO. 

DEFTABLR Processing name options on :INCLUDE or :IGNORE. 

PAGER Get a page of core and zero it out. 

READCC Reads :commands for DEF. 
Register 12 = CC Buffer address 

~. 

LlSTCC Display commands on LL device. 
Regi ster 12 = CC Buffer address 

I GETRITEMON Obtain appropriate WRITEMON overlay according to system 
type (UTS or BPM/BTM). 

EOCCSCAN Find end of current control command. 

CCA Generate PO/BO tape/disc pack. 

NXTINCL Obtain next INCLUDE file name. i ---

I 
RDWRITEM Read and write file. 

SYNINCL Process synonymous fi Ie includes. 
---,---.. 

NOINCL End of includes, begin generating remainder of tape/disc pack. 
--.------- -- --- - -.~. 

WRLSTLM Builds non-null LASTLM record for BO disc pack after com-
pletion of processing of :INCLUDEs. 

NXTFILE Obtain next file on disc. ! 

.--~ --
IGNOR1 Search ignore table for match. 

ISSPEC Delete fi Ie if required. 

CLSDSK Close file. 

343 I 



RDWRITE Read fi Ie and write to tape/disc pack. 

ALLDONE Releases pages acquired, if ENDFLG set, exits. 

NXTTPEDP Zeroes flags and counters, restores FPTs to original state, 
returns to INIT via PAGER. 

Error and abnorma I return routi nes. 

-- - .. - . .....----

LSTWRT EOF on reading M:SI. 

RTMAINCL EOF on reading INCLUDE files. 

OTMAINCL Abnormal return on opening of INCLUDE fi Ie. 

RTMA EOF on reading M: TM fi Ie. 
----.-

OTMA EOF on open next of M: TM or synonymous file found for 
open-next. 

OPOA Cannot open BO/PO Tape/disc pack. 
. ---

DPABN Abnormal condition for opening writing disc pack. 
-----
SYNERR 

I 
Abnormal/error conditions for writing synonymous files to 
disc pack. 

-- --.- - .,- _.- ----- .,--- --. _. ,- ---------.--- ---------- -------

344 



~ FLOWCHARTS FOR DEF 

DEFINCL 

Process 
:INCLUDE 

( ENTER) 

Initial ize dynamic 
data area 

TYPEFLG 
Process ! DEF 
command 

- - - 0 = BPM/BTM 
2 = UTS 

PAGER 

Get one of Core 
and zero it 

INIT 
pg. 11 

Initial ize pointers 

DEFRDCC 

READCC 

Read :Command 

pg. 11 

LlSTCC 

List :Command 

pg. 11 

Determi ne type 
of :Command 

DEFIG DEFWRITE 

Process 
:IGNORE 

Process 
:WRITE 

pg. 3 

Abnorma I routi ne 
LSTWRT 
exi t from loop 

pg. 11 

:DELETE 

Set flag 
(DELETEF) 

Figure C-1. Flow Diagram of DEF 

345 

Page 1 

ID 

Process if 
card in error 



( DEFINCL ) 

yes Initia lize 
INCLSTRT 
(=NXTNAME + 1) 

yes Adjust INCLEND 
>---------1 ... 

DEFTABLR 

Process name 
opti ons a nd store 
in table 

pg. 12 

Adjust INCLEND 
(=NXTNAME) 

EXIT 

(=NXTNAME + 1) 

DEFIG 

ENTER 

/' 

Linkin~ yes Adjust IGEND 
needed -r-"---~ (=NXTNAME + 1) 

DEFTABLR ~ 
Process name 
opti ons, store 
in table , 

pg. 12 

Adjust IGEND 
(=NXTNAME) 

Figure C-l. Flow Diagram of DEF (Cont. ) 

346 

Page 2 



DEFWRITE 

Get tape type 
field 

Search table for 
match and go to 
appropriate 
routine 

no match 

PODFLT 

Illegal-PO by 
DEFAULT (print 
message) 

pg.4 

yes 

Figure C-l. Flow Diagram of DEF (Cont. ) 

347 

Page 3 



(DFWRTPO ) 

DCB pointer 
(R5) to M:PO 

WRTFLG = 
ORG (x'20') 

Link automatic 
IGNORES at 
end of IGEND 

/~ 
// UTS 

? 
yes 

OUTSN 

SN ~ 
Option ~RESE~ 

~ 
~-) 

Link automatic 
includes at end 
of INCLEND 

Save ,egisters-J ...... t--------' 

Get versi on number 
R7 = M: PO address 
R6 = Flags for PO 

GETRITEMON 

SEGLOAD overlay 
write unlabeled 
portion of tape/dis 

pg. 13 

------.--~ 

Restore registers. 
Pri nt PO tape/DP 
contents 

Store in DCB 

BO 

pg. 5 

DFPODP 

DCB pointer 
to M:PO 

( DFBODP ) 

-~.-, 
DCB pointer 
to M:BO 

UTS 

~ 
no 

Set up FPTs 
to fi Ie type 

PO 

Get 10 pages of 
core -8 
----------' 

pg. 6 

Figure C-1. Flow Diagram of DEF (Cont. ) 

348 

Page 4 

Error message 
PO by default 



DFWRTBO 

DCB pointer 
(R5) to M:BO 

OUTSN 

Process SN option, 
set in DCB 

WRTFLG = 
ORG (Xl 10 1

) 

Save registers 

pg.4 

Get version number 
R7 = M: BO address 
R6 = F lags for BO 

.-__ --L-___ _ 

GETRITEMON 

SEGLOAD overlay 
write unlabeled 
portion of tape 

pg. 13 

Restore registers 

Link automatic 
includes for BPM/ 
BTM at INCLEND 

Get 10 pages of 
Core - R5 = DCB 
pointer to M:BO 

pg. 6 

Figure C-1. Flow Diagram of DEF (Cont.) 

349 

Open M:SPROCS 
(:SYS) 

Get 10 pages 
of Core 

Link to INCLEND 

Read M:SPROCS 

Close M:SPROCS 

Search for TEL 
Name-End of 
Monitor overlays 

Link automatic 
inc I udes to end of 
Monitor overlays 

Adjust buffer 
addresses 

R5 = DCB poi nter 
to M:BO 

Page 5 



Remove VOLINIT 
from auto includes 

Set up INCLUDE 
start as LASTLM 
start 

NXTON 

Get byte count 
of entry name 

BC:X '40 ' 

AND=O 
got entry 

= X'40 ' 

yes 

yes 

pg. 9 

LINK= 
O? 

pg. 9 

------------------------------

no 

/' 

7 

Save posi ti on 
in table 

Page 6 

---------------------------~ 

Must be X'4F' 
code. Turn on 
:SYS in account 
field of FPT 

Increment (+ 1 ) 
position in table 

l ___________________ ~ __ .~ .. ___ ._ .. _. ______________________ --1 

Figure C-l. Flow Diagram of DEF (Cont.) 

350 



( NXTINCL ) 

Pointer to OPEN 
FPT (M:TM) 

Pointer to Fi leparam ters 
(FPARAM) pointer t 
start of variable 
parameters 

Store fi Ie name in 
OPEN FPT 

Close and Save 
Fi Ie, if disc pack 
set link over bad 
entr 

Adjust table 
pointers 

no 

-8 L-_________ , pg. 6 

Access fi I e name 
from FPARAM 

Check ORG of 
fi Ie 

Get Key Length, 
ORG from 
FPARAM 

D1 = OPEN FPT 
for M: po/M: BO 

Page 7 

For INCLUDE 
PO - CONSEC ani 
BO - KEYED only 

Ajust variable 
parameter contra I 
word 

OPE N M: PO/M: BO 
{print file name} -- Abnormal address 

OPOA 

Ge t buffer address 
and size 

OPEN M:TM 
to FILE 

__ Abnorma I address 
OTMAINCL 

pg. 13 

Read record 
r------;~ (M: T M) 

Get actual 
record size 

Wri te record 
1--__ 1 M:po/M:BO 

Figure C-1. Flow Diagram of DEF {Cant. } 

351 

Abno~ma I address 
-- RTMAINCL {exit 

point of loop} 

pg. 8 



Pri nt II 0 error 
code 

RETURN 

no 

~ 
PGCNTL 
Determi ne reason 
for AB N return 

RT ~ pg. 8 
MAINl 

Close and save 
Disc and Tape/disc 
pack Fi les 

~~M 
pg. 7 

PGCNTL 

EOF 
? 

Flag set release 
es 

").-£--~ extra pages 

no 

BUFF~" 
too small /' 

/' MAX 
/ pages obtained / 

? 

Get max. pages 
set FLAG 

yes 

NOROOM 

Error messages 
List CC DEF 
DONE 

-k Position one record 
back adjust pointer RETURN 

Figure C-l. Flow Diagram of DEF (Cont. ) 

352 

) 

Page 8 

RETURN 

EXIT DEF 



8 

NXTFILE 

D1 = OPEN-NXT 
FPT for M:TM 

D2=FPARAM 

OPEN (NEXT) 
M:TM 
:----~----

,~ 

Get fi Ie name 
from FPARAM 

J:0 
~ 

Write null 
LASTLM close 
save tape 

r -Abnormal 
address OTMA 

pg. 10 

CLSDSK 

pg. 9 

PO-keyed fi les 
BO-consecuti ve 
files 

WRLSTLM 

pg. 14 

8 

CLSDSK 

Close and Save 
File 

RDWRITE 

Get KEYMAX 
D1 = OPEN FPT 

OPEN DCB to 
write tape/disc 
pack 

Page 9 

yes Close and Re I ease 
File 

Abnormol OPOA I 
pg. 12 

r 
Abnormal RTMA 

Read record M: TM - - exit pointer of 
1-__ ...--,-_____ loop 

~et actua I record J 
size 

Wri te record 
(M:PO)/M:BO 

pg. 10 

Figure C-1. Flow Diagram of DEF (Cont.) 

353 



e 
Determine reason 
for ABN return 

pg. 8 

Close Tape/disc 
pack File 

8 
pg. 9 

// EOF"""" 
onM:TM ~~ 

OPENNXT ~ 

Put SYNON name 
in table 

e 
pg. 9 

Set table address 
in INCLSTRT 

POOUT 

Write LASTLM 
Close and Save 
and Rewind M:PO 

ERRDNNE * 
Re I ease a II pages 
acquired 

ALLDONE 

ENDFLG 

Zero out flags and 
constant set DCB 

, to original items 

Set pointer to INIT 

pg. 1 

Figure C-l. Flow Diagram of DEF (Cont.) 

354 

Close, Save 
M:BO and 
Rewind 

Page 10 

Set End of -8 
_

S_Y_N_O_N __ , NXTON 
TABLE 

pg. 6 

EXIT DEF 



( PAGER) 

Increment page 
count keep track 
of end 

8 

pg.3 

LISTCC 

pg. 11 

rR-e-a-d-M--:S~I-fu-r----~ _JrA--BN--L-S-nN--R-T--~ 
command l 

Li st Command and 
Error Message 

list it 

RETURN 

yes 

yes 

Set ENDFLG 

RETURN 

RETURN 

Figure C-1. Flow Diagram of DEF (Cont.) 

355 

pg. 11 

pg. 11 

Page 11 



G 

PAGER 

Get 1 page and 
zero it 

Get name option 

no 

Store name in 
table 

// 

// End 
of options 

? 

yes Errorme~ 

Figure C-1. Flow Diagram of DEF (Cont. ) 

356 

Pri nt message 
invalid command 

Print can't Open 
Output Devi ce 

Open, Close 
Release, Rewind 
Tape/disc pack 

pg. 10 

Page 12 



GETRITEMON 

SEGLOAD 
appropriate overlay 
to write unlabeled 
tape porti on or 
random bootfi Ie if 
disc ack 

Branch to overlay 

8 
Store SYNON name 
and parent file name 
in special SYNON 
FPT 

WRTSYN 

Open fi Ie ("WRITE II 
file) 

pg. 8 

BPMBT - (BPM/BTM 
- - - UTMBPMBT -UTS 

SYNERR abnormal 
address 

Print name 
INCLUDE file not 
found 

Set FPT to open 
OUT (for disc pack 
fi les) 

Figure C-1. Flow Diagram of DEF (Cont.) 

357 

Page 13 



Get start of include 
table and buffer 
address to bui Id 
LASTLM record 

Convert to textc 
format store in 

'-----1 buffer area posi ti on 
for next entry 

DPABN 

Convert I/O error 
code print error 
message close M: B 
if open 

ERRDNNE 

pg. 10 

no 

yes 

Compute number 
bytes in record, 
open, write, close 
LASTLM 

Get link address 
-~n-o--tl~ of next entry 

DPABN abnormal/ 
error address 

~ NXTFILEJ 

pg. 9 

Figure C-1. Flow Diagram of DEF (Cont. ) 

358 

Page 14 



APPENDIX D 

D.O BPM/BTM MODULE NAMES 

For BPM/BTM systems only, the following is a list of the ROM names, CL labels and internal names of the modules 

comprising the SYSGE N processors. This information is avai lable in LISTFILE on CI tape or BO pack releases of 

the system. 

Sect. of manual 
LMN ROM CL Label Internal Names where described 

PASS2 P2CCI CN704896 M:SYSCCI2 2. 1 

UBCHAN CN704897 M:SYSDVLB2 2.2 

SDEVICE CN704893 M:SYSSDEV2 2.3 

XMONITOR CN704868 M:MONITOR2 2.4 

X LIMIT CN704957 M:DLIMIT2 2.5 

ABS CN705536 M:SYSABS2 2.6 

BTM CN705418 BTM:CCI 2.7 

P2COC CN706164 M:P2COC 2.8 

IMC CN706165 M:IMC 2.9 

SPROCS CN706163 M:SPROCS 2. 10 

FRGD CN705538 M:SYSFRGD2 2.11 

XPART CN706293 M:XPART 2. 12 

MODIFY CN704898 M:SYSMOD 6.5 

PASS3 PASS3ROM CN705539 M:PASS3ROM 3.0 

DEF DEFROM CN704876 M:TMTOPO 4.0, C.O 

BPMBT CN704875 M:WRITEMON A 

UTMBPMBT CN706166 M:UTMBPMBT B 

LOCCT LOCCTROM CN705540 M:LOCCTROM 5.0 

359 



Xerox Corporation 
701 South Aviation Boulevard 
EI Segundo, California 90245 

Reader Comment Form 
We would appreciate your comments and suggestions for improving this publ ication. 

XEROX 

Publ ication No. I Rev. Letter I Title I Current Date 

How did you use this publication? Is the material presented effectively? o Learning o Installing 0 Sales o Fully Covered DWell o Well Organized D Clear III ustrated o Reference o Maintaining 0 Operating 

What is your overall rating of this publication? What is your occupation? 

o Very Good 0 Fair o Very Poor 

o Good o Poor 

Your other comments may be entered here. Please be specific and give page, column, and line number references where 
applicable. To report errors, Please use the Xerox Software Improvement or Difficulty Report (1188) instead of this form. 

Your N arne & Return Address 

2190( 12172) 

Thank You For Your Interest. (fold & fasten as shown on back, no postage needed if mai led in U.S.A.) 



Staple 

Fold 

Attn: Programming Publications 

Fold 

BUSINESS REPLY MAIL 
No postage stamp necessary if mailed in the United States 

Postage will be paid by 

Xerox Corporation 
701 South Aviation Boulevard 
EI Segundo, California 90245 

Staple 

First Class 
Permit No. 229 

EI Segundo, 
California 



701 South Aviation Boulevard 
EI Segundo, California 90245 
213679-4511 

XEROX 

XEROX® is a trademark of XEROX CORPORATION 


	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	replyA
	replyB
	xBack

