Xerox Universal Time-Sharing System (UTS)

A 4 4 Sigma 6/7/9 Computers

Reliability and Maintainability
Technical Manual

BXEROXEROXEROXEROXEROXEROXEROX
8)XFROXEROXEROXEROXEROXEROXERC
ROXEROXEROXEROXEROXEROXEROXER(
ROXEROXEROXEROXEROXEROXEROXE
FROXEROXEROXEROXEROXEROXEROXE
IXEROXEROXEROXEROXEROXEROXERO)
OXEROXEROXEROXEROXEROXEROXER(C
OXEROXEROXEROXEROXEROXEROXER
ROXEROXEROXEROXEROXEROXEROXERS
KEROXEROXEROXEROXEROXEROXEROX
OXEROXEROXEROXEROXEROXEROXERO
SR OXEROXEROXEROXEROXEROXEROXER (IS
S ROXEROXEROXEROXEROXEROXEROXET:
=t CROXEROXEROXEROXEROXEROXEROXE
S\ EROXEROXEROXEROXEROXEROXEROX
UXEROXEROXEROXEROXEROXEROXERC
ROXEROXEROXEROXEROXEROXEROXER
FROXEROXEROXEROXEROXEROXEROXE
EROXEROXEROXEROXEROXEROXEROXI

&
L
3

990A ~1

Xerox Corporation

701 South Aviation Boulevard X — {OX
El Segundo, California 90245

213 679-4511

Xerox Universal Time-Sharing System (UTS])

Sigma 6/7/9 Computers

Reliability and Maintainability
Technical Manual

FIRST EDITION
90 19 90A

February, 1973

Price: $8.25

© 1973, Xerox Corporation Printed in U.S.A.

NOTICE

This publication documents the reliability and maintainability functions of the Universal Time-Sharing System (UTS)
for Sigma 6/7/9 computers. All material in this manual reflects the CO1 version of UTS.

RELATED PUBLICATIONS

Title Publication No.
UTS Overview and Index Technical Manual' 90 19 84
UTS Basic Control and Basic 1/O Technical Manual 90 19 85
UTS System and Memory Management Technical Manual 90 19 86
UTS Symbiont and Job Management Technical Manual 90 19 87
UTS Operator Communication and Monitor Services Technical Manual 90 19 88
UTS File Management Technical Iv‘u:mumlf 90 19 89
UTS Interrupt Driven Tasks Technical Manual 90 19 91
UTS Initialization and Recovery Technical Manual 90 19 92
UTS Command Processors Technical Manual 90 19 93
UTS System Processors Technical Manual 90 19 94
UTS Data Bases Technical Manual 90 19 95

"Not published as of the publication date given on the title page of this manual. Refer to the PAL Manual for cur-
rent availability. ’

The specifications of the software system described in this publication are subject to change without notice. The availability or performance of some features
may depend on a specific configuration of equipment such as additional tape units or larger memory . Customers should consult their Xerox sales representative
for details.

CHK — System Consistency Checks

Purpose

CONTENTS

Usage

Overview

Input

Output

Subroutines

Errors

Description

Diagnostic and Exerciser Interface

Purpose
Overview

Interface

Data Base

Description

ERRLOG — Error Logging Routine

Purpose

Usage
Input

Output

Interaction

Data Base

Description

Flowchart

ERR:FIL — Copy Error Log

Purpose

Usage

Input

Output

Interaction

Data Bases

Subroutines

Description

Summary Record Format
Copy Error Record Format

Flowchart

ERR:SUM — Print Error Summary

Purpose
Usage

Input

Qutput
Interaction

Subroutines

Restriction

Description

Error Summary Listing Format

Flowchart

ERR:LIST — Error Log Lister

Purpose
Usage

Input

NN = e et

S N T

(oo e N e S0 N e Sie o NN o

10

10
10
10
10
10
12
12
15
16
17

21
21
21
22
22

22
22
22
24
25

27
27
27
27

vee
i

PFSR — Power Fail-Safe Recovery

Delta

User Program Debugging

RUNNER

Output

Interaction

Errors

Description

Purpose

Usage

Input
Output

Interaction

Description

Introduction

General Description of Delta in UTS
Memory Map and Layout

Access Protection

Symbol Tables
User Execution Control

DCBs

Detailed Description of Routines
Introduction

Definitions

Command Structure

Initialization

Command Parse (DRSCANT)

Formatting Routines

Input Formatting Routines
Output Formatting Routines

Evaluation and Symbol Table Search Routines

Flowcharts

Punctuation Commands

Semicolon Commands

System Control

Utility Routines
1/O Routines

Constant Data

Variable Data (User's Context)
Exec Delta

Purpose

Overview

Usage
Description

Restrictions

Delta Interface with Other Processors
Purpose

Usage

Overview

Purpose

Usage
Input

Qutput

Data Bases

Subroutines

Errors

Restrictions

Description

27
27
27
27

29
29
29
29
29
29
29

31
31
31
31
32
32

35
35
35
35
36
36

38
38
39
41
45
48
51
61
65
70
71
73
74
74
74
74
74
76
77

77

79
79

80
80

80
80
80
81
82
83
83

Debug Routines
SNAP — Process Debug CALs

Purpose

Overview

Usage

Error

MSNAP — Process !SNAP Request

Purpose

Input

MSNAPC — Process !SNAPC Request

Purpose
Input

Description

MIF — Process !IF Request

Purpose
Input

Description

MAND — Process IAND Request

Purpose

Input

Description
MOR ~ Process ! OR Request

Purpose

Description

MCOUNT — Process | COUNT Request

Purpose

Description

PMD — Provide Postmortem Core Dumps
Purpose

Usage

Description

TELLUSR

Purpose
Usage

Input

Output

Interaction

Data Bases

Subroutines

Flowchart

DUMP

Purpose
Entry

Operation

DUMPW

PRINT

PRINTM

SCREECH

Purpose

Usage

Input
Qutput

Interaction

Description

SCREECH Codes

ANALYZE — Monitor Debug Program

Purpose

Overview

Interaction of ANALYZE Routines

85
85
85
85
85
85
86
86
86
87
87
87
87
88
88
88
89
90
90
90
920
20
90
90
21
21
92
923
23
93
93

94
94
94
94
94
25
95
95
98

103
103
103
103
103
104
105

108
108
108
108
108
108
108
109

113
113
113
114

vi

Usage 115
Input 115
Output 116
Interaction 116
Data Bases 116
Subroutines 121
Error Messages 122
Commands and Routines 124
ALL 124
ALLJIT 124
COMPARE 124
DISPLAY 124
COCODE 125
IODISPLAY 125
JITS 126
PROCS 126
PSDS 126
REGS 126
SWAP 127
USERS 127
DUM 127
DLAST 127
DNEXT 127
INDR 127
EXITCL 127
INITIAL 127
INPUT 128
LP 128
MAPMODE 128
MONITOR 129
PRINT 129
REPLACEMENT 129
RUN 129
SCANNER 130
SEARCH 130
MASK 130
SYMBOLMAP 130
TRACE 131
UCLO 131
UNMAP 131
ASSOCIATEDEL 132
DISASSDEL 132
FILENAME 132
DELTAGET 132
DELTAPUT 132
Flowchart 133.
Implementing a New Command 161
Adding Code to ANALYZE 162
DRSP — Dynamic Replacement of Shared Processor 172
Purpose 172
Overview 172
Proposed Enhancements 173
Description 173
Usage 175
Interaction 175
Restrictions 175
Flowchart 176
Subroutines 177
START 177
RESTART 178

90 19 90A-1(8/73)

INITIAL 180

DRSPMAIN 182
SYNTAX 183
LIST 188
RADNEED 191
GETRADSLOT 193
FINDSLOT 195
TELCCIONLY 197
WRITESWAP 198
PERM 200
MODRAD 202
RWRAD : 204
SWITCH 206
CLOSEQUT 207
CLEANUP 208
SEARCH 210
GFID 211
WORTH 213
FINDGRAN 215
SCAN, SCANT 217
POST, POST 1 218
DAGRAN, GRANDA 219
TCTEST 221
XGRTEST 222
BUFAD 223
MASTER, SLAVE 224
5400 225
$360 226
S430 227
HEX2PRNT 228
FSAVE Processor 229
Purpose 229
Basic Philosophy 229
Module Analysis 229
INITIATE 229
Purpose 229
Entry 229

Exit 230
Operation 230
INITIATE] 230
Purpose 230
Entry 230

Exit 230
Operation 230
SPECINIT 231
Purpose 231
Entry 231

Exit 231
Operation 231
INITIATE4 232
Purpose 232
Entry 232

Exit 232
Operation 232
INITIATES 233
Purpose 233
Entry 233

Exit 233
Operation 233
RDCARD 233
Purpose 233
Entry 234

90 19 90A-1(8/73) . vii

Exit

234

Operation
RCD

234

234

Purpose

Entry

234

Exit

234

Operation
INTER

234

235

235

Purpose
Entry

235

Exif

235

Operation
NOIPRI

235

235

Purpose

235

Entry

236

Exit

236

Operation
NACN

236

237

Purpose

237

237

Entry
Exit

237

Operation

NOTLB

237

238

238

Purpose
Entry

238

Exit

239

Operation
GETFILE

239

239

Purpose

239

Entry

240

Exit

240

Operation
FITCHKS

240

240

Purpose

240

241

Entry
Exit

241

Operation
BLD:BOF

241

242

242

Purpose
Entry

242

Exit

242

Operation

GETMIX

242

243

Purpose

243

Entry

244

Exit

244

Operation
QUEREC

244

245

Purpose

245

245

Entry
Exit

245

Operation
GETKEYI

245

246

246

Purpose
Entry

246

Exit

246

Operation

246

MOVEKEY
Purpose

246

Entry

246

Exit

247

Operation

viii

247

90 19 90A-1(8/73)

MOVE

Purpose
Entry

Exit

Operation
GETKEY

Purpose

Entry

Exit

Operation
GETKEYN

Purpose
Entry

Exit

Operation
SCHEDULE

Purpose

Entry

Exit

Operation
QUEMIX

Purpose
Entry

Exit

Operation
RANFILE

Purpose

Entry
Exit

Operation
GETTBUF

Purpose

Entry

Exit

Operation
GETIBUF

Purpose

Entry
Exit

Operation
GETFOUR

Purpose

Entry

Exit

BUILD
Purpose

Entry

Exit

BUILDN

Purpose

Entry
Exit

QSECTOR

Purpose

Entry

Exit

DISCIO2

Purpose
Entry

Exit

DENAC

Purpose

90 19 90A-1(8/73)

247
247
247
247
248
248
248
248
248
249
249
249
249
249
249
250
250
250
250
250
250
250
251
251
251
251
251
251
252
252
252
252
252
252
253
253
253
253
253
253
253
253
253
254
254
254
254
254
254
254
254
254
255
255
255
255
255
255
255
256
256
256

Entry 256
Exit 256
FITENAC 256
Purpose 256
Entry 256
Exit 256
MTIO 257
Purpose 257
Entry 257
Exit 257
WTENAC 257
Purpose 257
Entry 257
Exit 257
SENTENAC 258
Purpose 258
Entry 258
Exit 258
NEWREEL 258
Purpose 258
Entry 258
Exit .258
WRTDAT 259
Purpose 259
Entry 259
Exit 259
DCTXERR/OPNABN/OPNERR 259
Purpose 259
Entry 259
Exit 259
GOEOR 259
Purpose 259
Entry 260
Exit 260
EOFQ 260
Purpose 260
Entry 260
Exit 260
BOFQUE 260
Purpose 260
Entry 260
Exit 260
MOVEI 261
Purpose 261
Entry 261
Exit 261
WRTMARK 261
Purpose 261
Entry 261
Exit 261
NOTENUFF 261
Purpose 261
Entry 261
Exit 262
ENDUP 262
Purpose 262
Entry 262
Exit 262
ADDONE 262
Purpose 262
Entry 262
Exit 262

90 19 90A-1(8/73)

ADERROR

Purpose

Entry
Exit

IORUNDOWN

Purpose

DISPRUNTOTL

Purpose

Entry

Exit

DTOGRAN

Purpose

Entry
Exit

FDERR

Purpose
Entry

Exit

FITSNAP/FITERR

Purpose
Entry

Exit

LISTFD

Purpose

Entry

Exit

LISTFIT

Purpose

Entry

Exit

LISTOUTBUF

Purpose

Entry
Exit

LISTMIX

Purpose
Entry

Exit

LISTAD

Purpose

Entry

Exit

MIXSNAP/MIXERR
Purpose

Entry

Exit

DATAERR

Purpose

Entry
Exit

FDDONE

Purpose

Entry

Exit

ENDOFD

Purpose
Entry

Exit

CKTIO

Purpose

Entry

Exit

90 19 90A-1(8/73)

263
263
263
263
263
263
263
263
263
263
263
263
264
264
264
264
264
264
264
264
264
264
265
265
265
265
265
265
265
265
265
265
265
265
266
266
266
266
266
266
266
266
266
266
266
266
267
267
267
267
267
267
267
267
267
267
268
268
268
268
268
268

xi

CODESCAN

268

268

Purpose
Entry

268

Exit

268

MOVENTRY

269

Purpose

269

Entry

269

Exit

269

269

HEXTODEC
Purpose

269

Entry

269

Exit

269

TACNT/TFILNME
Purpose

269

269

269

Entry
Exit

270

ACCK

270

Purpose

270

Entry

270

Exit

270

READFAIL

270

270

Purpose
Entry

270

Exit

270

READFAIL2

270

Purpose

270

Entry

270

Exit

270

READFAIL3

271

Purpose

271

Entry

271

Exit

271

READFAILS

271

Purpose

271

271

Entry
Exit

271

LPRINT

271

271

Purpose
Entry

271

Exit

271

PLIST

272

Purpose

272

Entry

272

Exit

272

BUFSET

272

Purpose

272

Entry

272

Exit

272

PRINT

272

Purpose

272

Entry

272

Exit

272

SPACE

273

Purpose

273

273

Entry
Exit

273

TYPEIO/TYPEIO2

273

273

Purpose
Entry

273

Exit

273

FRES PROCESSOR

274

Purpose

274

xit

90 19 90A-1(8/73)

Coding Conventions
Basic Philosophy

QTAP

Purpose

Usage
Input

Description

MTREAD

Purpose

Usage

Input

Description

OPNTAP

Purpose

Usage

Input
Description

SKPTMK

Purpose

Usage

1npuf

Description

NEXTBUF

Purpose
Usage

Input

Description

INITIAL

Purpose

Usage

Input

Description

CCI

Purpose

Usage
Description

SKP:BOF

Purpose

Usage

Description

GOT1

Purpose

Usage
Input

Description

CHECKIT

Purpose

Usage

Input

Description

ACCTOUJIT
Purpose

90 19 90A-1(8/73)

274
274

274
274
274
275
275

275
275
275
275
275

276
276
276
276
276

276
276
276
276
277

277
277
277
277
277

277
277
277
278
278

278
278
278
278

279
279
279
279

279
279
279
279
279

280
280
280
280
280

280
280

xiii

xiv

Usage 280
Input 281
Description 281
GETVLP 281
Purpose 281
Usage 281
Input 281
Description 281
BUILD 282
Purpose 282
Usage 282
Input 282
Description 282
EXIT 282
Purpose 282
Usage 282
Input 283
Description 283
FILL Processor 284
Purpose 284
Modules 284
Description 284
BACKUP 286
Purpose 286
Overview 286
Usage 286
Input 287
Output 287
Interaction 288
Subroutines 288
Errors 289
Restrictions 289
Description 289
Flowcharts 291

FILL — Fill Restoring 295
Purpose 295
Usage 295
Input 295
Output 295
Interaction 295
Data Bases 296
Subroutines 296
Error and Messages 296
Restrictions 298
Description 298
Flowcharts 300

PURGE 302
Purpose 302
Usage 302
Input 302
Output 302
Interaction 304
Subroutines 304
DOPURLIST 305
DOPURDEL 305
PURGEINT 305

90 19 90A-1(8/73)

PURGELOG

DOPURGE

Restrictions

Description

Flowcharts

FILL FORMATS

Description

FILL Tape Formats

Data Formats

FILL Disc File Formats

SEL:FILL Table/:BREC Record

90 19 90A-1(8/73)

305
305
306
306
308

314
314
314
315
316
318

Xv

SECTION KC
| PAGE 1
UTS TECHNICAL MANUAL 2/22/71

D

CHK - System consistency checks .

PURPOSE

CHK runs various system consistency checks in order to facilitate system debugging.

USAGE

CHK has two calling sequences.
General user checks:
LI, 14 n
BAL, 11 CHECK
where n is a code telling who is calling check. Currently n =1 is
idle and n =2 is end of swap.

Running monitor or swapper page chains:
LI, 7 S:FPPH/M:FPPH
BAL, 11 T:PGCHK

T:PGCHK is called by the swapper at six critical points.

OVERVIEW

CHK consists of two routines; CHECK and T:PGCHK. CHECK runs all the state queues,
gathering and checking various data on all users in the system, or does nothing. The
presence of this routine is controlled by an assembly parameter BIGCHK. BIGCHK SET

0 causes the null routine to be assembled. BIGCHK SET 1 causes the checking software
to be generated. For debugging purposes BIGCHK SET 1 might be desirable but for work-
ing systems BIGCHK must be set to 0 since the routine runs disabled and its execution is
quite lengthy (unrecognized disc pack interrupts etc. can result if the number of users

is high).
T:PGCHK runs any page chain to see if the head, tail, and count are consistent.

Both routines are executed only if SSW4 is set (up).

INPUT

Input for check consists of:

SNSTS the number of states
SB:HQ the head of each state chain
UH:FLG the user flags

SECTION KC

UTS _ TECHNICAL MANUAL oy
UBJIT the user's physical JIT page
UB:US the user's state
SB:HIR the list of SIR states
SB:EXU the list of executable states
PTEL TEL's processor number
PCCI CClI's processor number
UB:APR
UB:APO
UB:ASP the user's associated processor tables
UB:DB .
UB:OVv
UB:FL the state queuve link
S:CUIS the current number of users in the system
S:SIR the number of users ready to SWAP in
S:HIR the number of users of high priority who are ready to run.
OUTPUT

Software checks 2, 3,4, 6 or 7 from CHECK ond 1 from T:PGCHK if inconsistencies are

found, otherwise none.

SUBROUTINES
SHIRE in SSS is used to find out if a user is in an SIR or HIR state.

ERRORS

- user in wrong state queue
- bad JIT

wrong number of users

- bad SIR count

- bad HIR count

Software check

NO A WN
|

DESCRIPTION

CHECK zeros internal counts for SIR, HIR and processor usage counts (UC). It then runs
each state queue starting at SB:HQ and linking through UB:FL to find all users in the

SECTION KC
PAGE 3
UTS TECHNICAL MANUAL 2/22/71

system. For each user it adds one to R9, the count of users in the system (unless the
user is waiting to log in), it checks his state UB:US against the index of the state queue
it is running (software check 2), adds one to HIR if he is ready to run and his state is

in SB:HIR, adds one to SIR if he is not ready to run and his state is in SB:EXU; and if
his JIT is in memory, increments the internal usage count of all his associated shared
processors and checks his JIT by verifying the temp stack pointer (software check 3).

Upon conclusion of running all users, the number of users found (register 9) is checked
against S:CUIS the current number of users in the system (software check 4). SIR and
HIR are compared with S:SIR and S:HIR (software check 6 and 7). CHECK then exits.

T:PGCHK begins at the head of the page chain pointed to by register 7 and follows it
through MB:PPUT, counting pages as it goes, until it encounters the end of the chain
(a zero in MB:PPUT). It then compares the count and tail it calculated with the count
and tail pointed to by register 7. If either disagrees it causes a software check 1.

SECTION KD
PAGE 1
UTS TECHNICAL MANUAL 4/14/71

D

Diagnostic and Exerciser Interface

PURPOSE

Direct access to card reader, card punch, line printer and other symbiont devices as
well as mag tape is provided through a varient of the M:OPEN CAL. The facility is
provided primarily for interfacing on-line diagnostic and exerciser programs to UTS

so that they may perform ordinary PM and maintenance activities concurrently with
regular system operation.

OVERVIEW

The facility is implemented via a set of changes mainly to the open routines in the
module OPN. To gain direct access to the symbiont device the user program, which
must have a privilege of AO or higher, issues an Open CAL in the special format
given in the UTS Reference manual. If the CAL and privilege are correct and the
device is not in use (symbionts must have been suspended by the operator) then the
direct I/O connection is made and the program has exclusive use of the device.
Erroneous usage is reported via abnormal exit codes as specified in the UTS Reference

Manual (codes 9/00 through 9/03).

INTERFACE

Code elements relating to the diagnostic open also occur in the modules COOP to
pass the I/O request directly to IOQ, in IOQ end action to place status information
in the DCB, and in CLS to release the device from diagnostic use.

DATA BASE
Bit 2 of DCT3 is used to flag the device as in use by diagnostic program.

Bit 2 of word 5 of the calling DCB is used to switch control directly to IOQ and to
cause IOQ to place status information from the transfer in the DCB.

Words 15 through 18 of the DCB, which usually contain tab stops, are used to retum
status:
DCB Word 15 | 0——0 | AIO status
16 | TDV status | TDV byte cour
17 | 0—————0 | TDV cmd. addt
18 ' TIO status |[TIO byte count

=

SECTION KD
PAGE 2
UTS TECHNICAL MANUAL 12/20/72

DESCRIPTION

The code in OPN to implement the diagnostic direct~device open follows a test of the
device field in the FPT which indicates that a device (or free=form tape) is to be
Opened. If the user's privilege (JB:PRIV) is less than A0, an abnormal code of 9/00
is returned. If the /O address from the device field of the DCB (word 12, bits 21-31)
is not a symbiont device, i.e. does not provide a DCT1 index, abnormal code 9/01

is returned, If the diagnostic-use bit (DCT3, bit 2) is already set, abnormal code
9/02 is returned. The symbiont table SNDDX is searched for the required DCT index -
(or tape index) and if not found, abnormal code 9/01 is returned. If found but the
symbiont is active (SSTAT=1), abnormal code 9/03 is returned. Finally the diagnostic
use bit is set and the direct=-IOQ bit (DCB, word 5, bit 2) is set and Open continues.

In addition code at the beginning of COOP checks DCB word 5 bit 2 for the diagnostic
use flag and passes control to IOQ directly if it is set.

Code in IOQ at REQCOM examines the same bit, and if set, places the device status
information in the DCB.

Code in CLS near CLSDEV resets the DCT3 bit 2 flagging diagnostic use. DCB word 5,
bit 2 is reset at the beginning of every open.

SECTION KE. 01

UTS TECHNICAL MANUAL PAGE 1]
' 12/20/72

D
ERRLOG - Error Logging Routine

PURPOSE

ERRLOG is called by the various parts of the system which detect errors, such as
I/O errors, memory-parity, file and symbiont inconsistencies, etc. When an error
is detected by some routine, it builds a message of up to 10 words and calls
ERRLOG. ERRLOG packs the message into a buffer, when it becomes full, writes
the buffer on a special RAD file and, each time five errors have been logged,
awakens the ERR:FIL ghost to copy the errors from the special file to a keyed file.

USAGE

ERRLOG is called with the address of the error message in register 6. The message
may be in registers or in memory. If the message is in registers, it may wrap around,
e.g., it may start in register 12 and end in register 3. The format of each message
is described in Section VK.

LL 6 message address
BAL, 5 ERRLOG
return

All registers are non-volatile

INPUT
As described in USAGE

OUTPUT

The special error log file as described in Section VK.

INTERACTION

ERRLOG calls the T:GJOBSTRT subroutine to wake up or initiate
the ERR:FIL ghost. QUEUE is called to write ERRLOGs special RAD file. GSG is

called to get Symbiont granules for the special file,

DATA BASE

The core buffers and their controlling pointers are described in Section VK.

DESCRIPTION
When called ERRLOG saves all registers in the monitor's TSTACK and checks to see

SECTION KE. 01
UTS TECHNICAL MANUAL PAGE 2

12/20/72

if any new RAD granules are needed for its special file. If any are needed, GSG
is called to get them.

Interrupts are disabled and if the message was passed to ERRLOG inregisters, the
address of the message in TSTACK is computed. The length of the message is checked
and if it is greater than 10 words it is set to 10 so that at least part of the message
will be recorded.

Next, the current buffer is checked to see if there is roomfor the message. If
there is not sufficient space in the buffer, the other buffer is checked. If it is full,
the message is ignored, the registers are restored and ERRLOG returns to the calling
routine. If it is not full, the first buffer is marked full, the forward and backward
links for the special file are put in it, the core pointers for the file are updated and
QUEUE is called to write the buffer to the file. The registers are then restored and
control goes back to the entry point of ERRLOG so that the message will be logged
in the other buffer. The end-action routine that is specified when the full bufferis
written out merely re-initializes the pointers for that buffer so that it may be used
again.

If there is sufficient space in the buffer for the message, the message is moved to
the buffer and the buffer pointers are updated.

A counter is then incremented and checked to see if 5 errors have been logged since
ERR:FIL was last awakened. If not, the registers are restored and ERRLOG returns
to the calling routine. If 5 errors have been logged, a check is made to see if we
are booting. If we are, ERR:FIL cannot be awakened so the registers are restored
and ERRLOG returns to the calling program. If we are not booting, T:GJOBSTRT
is called to awaken ERR:FIL.

N

UTS TECHNICAL MANUAL

SECTION KE. 01

PAGE 3

FrowenprT (Gemerat)

h un—

\ ERlRCOCG /

SAVE
RECASTERS

GET GRAMPVLES
o SpPecTrAL

MDD [Fr1cE F
MNET 68 ATRY

b

pisapgLes
INTERRUPTS

y

MESSACYE No i
1 RcerITERS ?

|

VET
\)

COMPL™E ADDPA:SS
PV TS - R
M TR TR R

M, of woRDS /a0
NO ——
METSAOE 2 0 'z

|
Yes

¥

SET MESTACT
te ™ ™ [4-]

Wite MESSACSE BT
N CURRENT Buir)

Yc 3
%

MOVE MeTSsACS

7 BuFFETt

12/18/70

VPOATE BurfFen
LorrTERS

lv'.f», PEXT Ayat(ABCE

wonP, word counT

{91:1) SPAcE counT

ERApLE
INTEREOPTS

\
= ‘: \
5 ErRronS cocGey? N
G

yes

4
(Ale w e \
2oaTrr~ 7 ; Y5 !

\»

YY)
AUARKEN ERAFTL
€4esr TJap

] NBer e X¥dar

CounT

-

¥

RSO
RecisTe® 5

CXIT

SECTION KE. 01

PAGE 4
UTS., TECHNICAL MANUAL 12/18/70
Makie BumFst A D
END-AC
Fue e
pl
1S orver Rurrent
Fvee 2 yes
1 Re- 1 iTAui e
wo PoruTvIv Fenk
¥) GuFeernn Tusr
SwITTH TO 1 w T
OTHsL. BuFFen- J
\
SET uP Pnﬂmem-u]' EXIT

] WRITE BUFFER !
™ RAD weTH |
CRI-AcTe N }

|

QuevE

RITORE
Rseis 7y rd

ER&L%C

~0

SECTION KE. 02
UTS TECHNICAL MANUAL PAGE 1

12/18/70

ID
ERR:FIL - Copy Error Log

PURPOSE

ERR:FIL copies the special file created by ERRLOG onto a normal keyed file that
is more readily available to diagnostic programs. While copying ERRLOG's file,
ERR:FIL compiles a summary of the errors copied. A file of these summaries, which
contains a summary of errors for each hour of operation and a master summary of
all errors, is also maintained by ERR:FIL.

USAGE

ERR:FIL is a ghost job that is awakened by ERRLOG whenever 5 errors have been
recorded. ERR:FIL may also be awakened by a program with diagnostic privilege
by using the intitiate job CAL(CALI, 6FPT) or by an operator Keyin of GJOB
ERR:FIL. ERR:FIL may also be run by an on-line user running under account :5YS$
with diagnostic privilege by typing !ERR:FIL.

INPUT

Input to ERR:FIL is the special file written by ERRLOG. This file and the format of
the entries in the file are described in Section VK of this manual. The core buffers
of ERRLOG are also input and are likewise described in Section VK.

OUTPUT

ERR:FIL builds a detailed error log file (ERRFILE) and an error summary file
(SUMFILE). These files are described under DATA BASE.

INTERACTION

Monitor services used by ERR:FIL are:

M:OPEN, M:READ, M:WRITE and M:CLOSE are used to construct and update
ERRFILE and SUMFILE,

M:TIME used to get tine and date for keys

M:EXIT return to the monitor

T:RDERLOG used to read the special file constructed by ERRLOG (CALI, 6)

DATA BASES

ERRFILE is a keyed file built and updated by ERR:FIL for use by diagnostic programs.
The file contains one record for each error entry in the file created by ERRLOG.

SECTION KE. 02
UTS TECHNICAL MANUAL PAGE 2

12/18/70

The format of each record is identical to the format of the error entries in ERRLOG's
file. (The format of these entries is described in Section VK.) The keys for this
file contain the Julian date in packed decimal, the time of the error in EBCDIC and
a sequence number for errors with the same time tag. This sequence number is reset
to zero for each entry with a new time tag. The format of the key is:

08 YY oD DD

H H M. M

N

08 = number of bytes in key

YYODDD = Julian date in packed decimal
HHMM = Time (hours & minutes) in EBCDIC
N = Sequence number

The first rccord of ERRFILE is th= kev of the last recor in ERUILE ond has a key
of zero.

Several consistency checks are made while copying the error data from ERRLOG's
file to ERRFILE, If an error is detected, a "copying error" record is written on
ERRFILE. The key for such a record has the same date and time as the previous
record and the sequence number is one greater than that of the previous record.
The format of the "copying error" record and the errors that cause them to be

written are described in Figure KE. 02-2.

SUMFILE is a keyed file built and updated by ERR:FIL for use by ERR:SUM (described
in Section KE. 03). The first record of SUMFILE is the key of the last record of
SUMFILE and has a key of zero. The second record of the file is the master error
summary and has a key of one. Subsequent records of the file are the summaries of
errors for each hour of operation. The keys of these records begin at two and are
incremented for each successive record. The master error summary is the summation
of the hour summaries. The format of the summary records (master and hourly) is
detailed in Figure KE.02-1. The format of the keys for SUMFILE is:

!

01 N

01 = number of bytes in key
N = sequence number

11

SECTION KE. 02
UTS TECHNICAL MANUAL PAGE 3
12/18 /70

SUBROUTINES

NEWTIME converts the ERRFILE key to date and time in the format used by
the M:TIME routine.

UPDATE updates the master error summary, i.e., adds the error counts of
the current hour summary to the error counts of the master summary.

ERRWRITE constructs the "copying error” record and writes it on ERRFILE. Also

writes the 256 word record just read from ERRLOG's file if necessary.
The reading of the ERRLOG file consists of 256 word records, only
the first 64 being meaningful.

SUMINIT initializes the summary record

JULIAN converts date and time returned by M:TIME to Julian date and time
in packed decimal (described in detail in section UA).

DETAILED DESCRIPTION

When ERR:FIL is awakened, an attempt to open ERRFILE in the update mode is made.
If the attempt is successful, the first record of ERRFILE is read to get the last key used.
If the attempt is unsuccessful, the error code is checked. If ERRFILE exists, ERR:FIL
exits. If the file does not exist, it is opened in the output mode, M:TIME and
JULIAN are used to get the date to initialize the key, the key is written on ERRFILE,
ERRFILE is closed und reopened in the update mode.

After ERRFILE has been opened, an attempt is made to open SUMFILE in the update
mode. If the attempt is successful, the key of the last record of the file is read and
then the last record, which is an incomplete hour summary, is read. If the attempt
is unsuccessful, the error code is checked. If the file exists, it is considered to be
in error and is marked for release. Processing continues as though the file was
successfully opened and therefore nothing will be added to SUMFILE. If SUMFILE
does - not exist, it is opened in the output mode, the initial key is written followed
by two copies of the initialized summary record. This is done to initialize the
master summary and the first hour summary. SUMFILE is then closed and reopened in
the update mode.

When both files are opened in the update mode, T:RDERLOG is used to read a
record from ERRLOG's file. The condition codes set by T:RDERLOG are checked.
If they indicate that no errors have been logged or that this job has insufficient
privilege, the files are "cleaned~up" and ERR:FIL exits.

"Cleaning up" the files consists of saving the key of the last record of each file,
saving the incomplete summary in SUMFILE and closing the files. If either file did

12

SECTION KE. 02
UTS. TECHNICAL MANUAL PAGE 4

12/18/70

not exist when ERR:FIL was entered and if no errors were copied, the file is released
when it is closed. Otherwise, it is saved.

If a record was read by T:RDERLOG, each entry in the record is copied onto ERRFILE

as a keyed record. The time of each entry is checked as it is copied. If it is in the same
hour as the previous entry the proper counter in the summary record is incremented

and the next entry is processed. If the entry is not in the same hour, the master

summary is read, updated and rewritten, the hour summary is written over the last

record in SUMFILE and an initialized summary record is written as the next record

in SUMFILE. Copying of the errors is then continued.

When the record read by T:RDERLOG is exhausted, the condition codes set by T:RDERLOG
are checked again. If they indicate that there is no more data available, ERRFILE

and SUMFILE are "cleaned-up"” and ERR:FIL exits. If there is more data available,
another record is read ‘and processed. This continues until ERRLOG's file and its

core buffers have been emptied.

While copying the ERRLOG file, consistency and error checks are made on the
input data. If any errors or inconsistencies are found "copy error" records are
written and a "copy error" counter in the summary record is incremented. The
format of the "copy error" records is given in Figure KE. 02-2. The error and con-
sistency checks and the recovery actions taken are described below.

1 T:RDERLOG READ ERROR - If the condition codes set by T:RDERLOG
indicate a read error, a "copy error” record is written and copying of the
record is attempted. If no inconsistencies are found in the record, another
"copy error" record is written after the last entry of the record to indicate
the end of the questionable data.

2) ERRLOG RECORD LENGTH ERROR - If the Iengfh.' of the ERRLOG record is
greater than 256, a "copy error" record folloved by the ERRLOG record is
written on ERRFILE. No attempt is made to copy this record in the detailed
format.

3) ILLEGAL ENTRY TYPE - If the entry type is not one of the legal types, a
"copy error" record followed by the ERRLOG record is written on ERRFILE.
No attempt is made to copy the remainder of the record.

4) ILLEGAL ENTRY LENGTH - If the length byte of an entry does not correspond
to the entry type, a "copy error” record is written on ERRFILE followed by the
ERRLOG record. No attempt is made to copy the remainder of the record.

5) INCORRECT TIME - If the time of an entry is out of sequence, i.e., ifitis

13

SECTION KE. 02
UTS TECHNICAL MANUAL PAGE 5
12/18/70

earlier than the time of the last record and the date has not changed, a
"copy error" record is written on ERRFILE followed by the ERRLOG record.
The time of this entry is then used for the key and processing continues.

NOTE: Errors that occur while booting have a time tag of 24XX but the keys of
these records contain the current date and 0000 is for the time.

If read or write errors are detected while reading or writing ERRFILE and SUMFILE,
they are ignored.

14

SECTION KE. 02

UTS TECHNICAL MANUAL PAGE 6

FIG. KE.02-1

© NV 0 4 O U b W N

19

20

12/18/70

Summary Record Format

length

H

M

@)

g
=11 |
4

]

'ERROR

UXI

NIR

MPE

SYS

wWDT

FIL

SYM

SIO

DTO

DE

DF

words 13-18 repeated

for each device
in DCT

<

15

number of words in record

Time - the time of the first error included
in this summary for the master
summary and open summary records -
for closed summary records, it is
effectively the closing or completion
time.)
count of "copy error" records

count of unexpected interrupt entries
count of unrec;.ognized interrupt entries
count of memory parity error entries
count of system start up entries

count of watch dog timer trap entries
count of file inconsistency entries
count of symbiont inconsistency entries

EBCDIC device name

count of SIO failure entries for thisdevice
count of Device Timeout entries for this device
count of Device error entries for this device

count of Device Failure entries for this device

SECTION KE. 02
UTS TECHNICAL MANUAL PAGE 7

12/18/70

FIG. KE.02-2 COPY ERROR RECORD FORMAT

1)

2)

3

5)

6)

Read error - record precedes first entry copied from an ERRLOG
record not read’ correctly by T:RDERLOG

CIEN\\X

End read error - record follows last entry copied from an ERRLOG
record not read correctly by T:RDERLOG
(only if no inconsistencies appeared in the record)

00 | 02 \\\

02

Illegal record Ienéth - length of ERRLOG record incorrect
(followed by 256 word ERRLOG record)

00 02 \\\‘ 03.1
NN

Incorrect entry length = length of an entry does not correspond to its entry
type (followed by 256 word ERRLOG record)

00 02 N 04

index

index = displacement within ERRLOG record of first word of
erronenus entry

Incorrect time - the time of an entry is less than the previous time (followed

by 256 word ERRLOG record)

00 02 k\\\\\ 05

index (same as in (4))

Illegal entry type - entry type not one of the 10 legitimate entry types
(followed by 256 word ERRLOG record)

00 02 &N 06

| index (same as in (4))

16

SECTION KE, 02
PAGE 8

Uis. TECHNICAL MANUAL 12/18/70

; ERR FIL [
ERR[AGN
OPs? CRRFI¢E 1w]) : EMAFLE
THE UPOATT mobE 2———————*“ B s 3 > Vs
And RIBD THE T l

KEY OF Irs LAsST o
ReCor ~
€ D 4 ExXTT

THNITIACTRE
ERR FiE

®—

ERR/AGH
OPEN SUMFILE ja THE
UPDAR modE, REWD 2_______‘_,(D0€3: SuMiN.? yes
TWE KEF of ITS LAY st ¢ l
Retennd AwmD TS Jl T
(AT RyCoRD ° ccose
. ‘ . . ERRFILE

U

SHWAPILS

s RDENLE &
ReEPY oNg RECORD 2
FROMm £RRLOG 'S

Frlres

(/«wv o MSG's — o

Y
M ETIAL e *

10 THE FPirodF 7

]
yes

\ H
(:3 PRLVILECE \ - o P‘
SOEFIC anT D j
1

ves

\ J
(wvﬂ reeNRE A \ YES

ReRVD ERAOR y

PeT Y
ERARWRIr &
- = 1) = 1

WAINE ‘eofy
EMNAAR’' RETCOAD

P.z

U’S TECHNICAL MANUAL

Grmﬂo LENCTH & 15} A }
l e’nm.;mnr\
Y&sS (&‘) - - /
p.3
()
/‘rm: o -.-‘wm-/—\ NO
N S EGuShEE 7/. —*
Ves ERRAWRITE
¥ ()= 5
vroATY
ERAF ILE KEY _J
(S TIME A~ A qux ANO
' Houd <
J ey
Y&s
weITE . MHouvfe
SOMAMARY ©OPr
SOMFt &
4
UPDATE MARETENR
SumMmARY
INMITIALI®E VW
Hovd SumaARy
b
LECITIMATE 7 / *
ves mﬂumrex
@PJ ®nNH=6
p3

18

SECTION KE. 02
PA SEQ
12/18/70

- SECTION KE. 02
. v PAGE 10
- UTs TECHNICAL MANUAL 12/18/70

18 comern w2 mav) . AO : —_
Gonnger 1 .
{ 5
ERRWRITE
. ,

' -7 (f1)= ¢4
W T8 ENTRY oM
Enngicé

L

VPDATE PREPGR
£1aon CounrTEN
I BUMmMMATRY

1S N4y Tiew MH‘\ Ne
Fmed e Rétoad T

4

URDATE LNDEY For
NEYT | RTRY

P,?..
f s oe A RcAp
\;&"g&‘;,‘?? } ves 1
/lo ' ERRWATTE
R =2
i N

y

13 NS TN LaeT P!
REee0 s F1sY e
1

Y&s

Ol

19

SECTION KE. 02
PAGE 11
UTS TECHNICAL MANUAL 12/18/70

THWE LAGT ReTonl)
OF &L rPiIE @p

\ E‘ﬂ/l.we:'re’/
SJAYE 1HE K6y os {

e FiesTr fAcTonDd
oF ERAFILE WRATY A ! cepV
ENAOAR’ REColN
l ConiMeinG (1) i

WRITE M5 ,aCOm - \
P eTT SommArY ((R!) >2 \ NO
ON T AT /-———
e
e

Rceconrn o©F e+ =
3

SunrFiree

’ WRITE THE pAccond

ReNY Pl GRIZLEG 'S

SAVE THE wEY oF Fitéi om gRAFICE

niE cAST Ricond

oF JumFic o

Nre A3 Rotand
or Fumrred

J‘

0]
S}
R
\,
N\
AN

C
N

HAVE APy Fareees ¥

BEWN pAAOE 1nd ~Ne
ERAFILE Y J l
!
R
CLose aAno
BT ASE
CLOSE AmMD ERRFIE
SAVE
eRAFNT

A
;Mu? ANy ewmies

Berm R&carpeEDp 10 »o
dumi s L

Qurese ApMD

A RELE Aoy
SumFILE
Ceose Awp §
SAVE
Sva FrLéE
A
rrT

20

SECTION KE. 03
UTS. TECHNICAL MANUAL PAGE 1
12/18/70

ID
ERR:SUM = Print Error Summary

PURPOSE

ERR:SUM reads the master error summary and the last hour summary from the error .
summary file (SUMFILE) constructed by ERR:FIL, prints the master summary (updated
from the last hour summary) on the LO device and if requested by the user, purges

SUMFILE.

USAGE

ERR:SUM is a LMN file which can be run underany account with diagnostic
privilege. When executed ERR:SUM reads, and prints an updated version of error
summary. ERR:SUM then asks the user if SUMFILE is to be deleted by typing the
following question on the user's console.

"PURGE SUMMARY FILE?"
If the user responds:
"NO. "
SUMFILE is saved and the message:
"SUMMARY FILE SAVED."
is typed on the user's console and ERR:SUM exits.

If the user responds:

IIYE S. "

v

confirmation is requested by typing the following question.
"ARE YOU SURE?"

If the user responds
"YES."

SUMFILE is released, the message
"SUMMARY FILE PURGED. "

is typed on the user's console and ERR:SUM exits.

If the user responds:

IINO. "
he is again asked

"PURGE SUMMARY FILE?"
21

SECTION KE. 03

UTS TECHNICAL MANUAL PAGE 2

INPUT

12/13/72

The error summary file (SUMFILE) constructed by ERR:FIL. (SUMFILE is described
under DATA BASE in Section KE. 02 of this manual.)

OUTPUT

The format of the printed summary is given in FIG. KE.03-1

INTERACTION

Monitor services used by ERR:SUM are :

M:OPEN
M:READ -
M:WRITE -
M:CLOSE

M:DEVICE .
SUPERCLOSE (CAL1,9 é) -
M:EXIT

CALI, 66 -
M:WAIT -

SUBROUTINES

PRINTS -
DATALINE -
BCDBIN -

UPDATE -

CHECK -

RESTRICTION

used to read from SUMFILE and UC
used to write on UC and LO

used for vertical formatting on LO
used to close LO symbiont file

used to awaken ERR:FIL ghost
used to wait for ghost to run

formats and prints error summary

format and prints the device associated
converts a positive binary integer to an 8
character EBCDIC number with leading
zeros suppressed

prepares an updated copy of the master
summary, i.e., adds the error counts of
an hour summary to the error counts of the
master summary. '
examines the master summary record after
it has been updated to see if any errors
have been logged. .

The summary file (SUMFILE) will be deleted only if ERR:SUM is being run in the

:SYS account. -

DESCRIPTION

ERR:SUM awakens ERR:FIL to insure that the SUMFILE is current via the awaken ghost

CAL (CAL1,6). If the account in which ERR:SUM is running does not have

diagnostic privilege, the message:

"ERR:SUM EXIT: INSUFFICIENT PRIVILEGE. "

22

SECTION KE. 03
UTS TECHNICAL MANUAL PAGE 3

12/13/72

is typed and ERR:SUM exits. If the account has sufficient privilege, the message:
"ERR:FIL RUNNING, PLEASE WAIT.
is typed and ERR:SUM waits for 6 seconds to allow the ghost job to run,

ERR:SUM then attempts to open SUMFILE in the mpuf mode. If the file does not exist,
ERR:SUM informs the user by typing

"SUMMARY FILE DOES NOT EXIST"
on his console and then exits. If the file cannot be opened for some other reason,
ERR:SUM informs the user by typing

"SUMMARY FILE BUSY, PLEASE WAIT. "
on his console, waits 6 seconds and then attempts to open the file again. This
sequence will continue until the file becomes free.

When SUMFILE has been opened, the master summary record, the key of the last
record and the last summary record are read from it. If an error occurs on any of
these records, ERR:SUM informs the user by typing

"SUMMARY FILE READ ERROR"
on his console and exits. If no read errors occur, the subroutine UPDATE is called
to add the error counts of the last summary record to the error counts of the master
summary record. Subroutine check is then called to examine the updated master
summary to see if any errors have been logged for this period. If no errors exist
the message

"THERE ARE NO RECORDS FOR THIS PERIOD"
is typed on the user's console and exits. Otherwise, the subroutine PRINTS is then
called to print the master summary.

After the master summary has been printed, ERR:SUM asks the user if SUMFILE is to
be purged by typing

"PURGE SUMMARY FILE?"
on his console. The user responds by typing "YES" or "NO". If he types "YES"
ERR:SUM asks him for confirmation by typing

"ARE YOU SURE?"
The user responds by typing "YES" or "NO". 1If he types "YES", SUMFILE is
closed with the REL option, ERR:SUM informs the user that SUMFILE was purged
by typing

"SUMMARY FILE PURGED"
on his console and exits. If he responds "NO", he is again asked if SUMFILE is to
be purged. If the user's response to the original question was "NO", SUMFILE is
closed with the SAVE option, ERR:SUM informs him that SUMFILE has been saved by
typing

"SUMMARY FILE SAVED"

and exits.

23

SECTION KE. 03
PAGE 4
UTS TECHNICAL MANUAL 12/18/70

FIGURE KE. 03-1 ERROR SUMMARY LISTING FORMAT

(MASTER) ERROR LOG SUMMARY HH:MM MON DD, 'YY THROUGH HH:MM
MON DD,' YY

SIO DEVICE DEVICE DEVICE
DEVICE FAILURE TIMEOUT ERROR FAILURE TOTAIL
yyndd xx xx xx xx XXX
yyndd xx xX XX xx XXX
yyndd xx xx xx xx XXX
UNEXPECTED INTERRUPTS XXX
NO INTERRUPT RECOGNITION XXX
‘MEMORY PARITY ERROR XXX
SYSTEM STARTUP/RECOVERY XXX
WATCHDOG TIMER TRAP XXX
SOFTWARE DETECTED FILE INCONSISTENCY XXX
SOFTWARE DETECTED SYMBIONT INCONSISTENCY XXX
ERRLOG FILE COPYING ERRORS XXX
xXX TOXXXX

TOTAL plo'e 4 206X KKK

24

\ EYZ/ZiSUVI/

INITIATE
ERN.FTL G HEST

‘UTS. TECHNICAL MANUAL

»e

CENAFLLE Rumning,

PLeRIe NATT. "

AT 6 SETesdS

o

agePcw SUmWmE e

[(3300 od w100

4

<A D THe masien
Tunspr ANY AN D Tty
CAST " 1mComr1PC 7T

SV arninily F eron
SYUMF LS

L 4

UPDAYE TIE A srEnt
Surmany (crew

N CEmPETE Tum Aty

FORAMAT AMD
Pl i1oT
on L DeVvies

Summnariy

P'Z.

> SRR JABM

i
FYRIS

NENAR Sum ERETS
IS uFFr VT
PRIVILETE . "

SECTION KE. 03
PAGE 5

12/18/70

= -

Vsuman ity @il

-]

DowT wmoT EKsygf

EXIT

o
3 tRA /A s
v
o
Go:’s SumkbI6E c‘xz;r?\\ ~ }
yes M .JC
yes

-
Q} SumFrcE Busy /

po

M

YSunttaRLY PrlE
(7.8 2 eyl

1
FURTAS

YSummarn ¥y Food
BISY, PLvHre

IR TS 84

[WAIT 6 Sceenb s

Mive
"PUROET §ummAty
r3xY 2 L g

I1MPUT ANE W EN
FREM M UG

SUTS. TECHNICAL MANUAL

G AN EWE R ‘Vﬂ'?
-
yes

‘ sET

ConFinmanos

M v

“ane vYou sosl”

{riPOT ARTw e
Flom pMive

Cs PO I '-’)'—'“ "6)
1

yed
)

CLasE AwD ARELAMSE
Sume R &

M et
VEummARY LS
putese”

¢

SECTION KE. 03
PAGE 6
12/18/70

C]J Arvswenr o’ ?

!

ves

t

CLOSE MIP JTAVE
SomFIitc

?

MV
"Sommaty Sl
SAvED "

26

NO

SECTION KE.05
PAGE 1
UTS TECHNICAL MANUAL 12/20/72

ID

Error Log Lister - ERR:LIST

PURPOSE

ERR:LIST provides a way for a remote user to examine the keyed file "ERRFILE"
constructed by ERR:FIL. ERR:LIST examines ERRFILE for the period specified
and produces a formatted listing of the error records and/or a summary of

the errors for that period. The formatted listing is complete with English
headings and all format conversions intended for use by field personnel.

USAGE

ERR:LIST may be called by a terminal user with a diagnostic privilege run-
ning in the :SYS account. When running as a batch job, the card format is
the same as for terminal input. The usage of ERR:LIST is described in
detail in the UTS System Management Reference Manual, 9016 74.
INPUT

File "ERRFILE" in account '":SYS".
User format specifications.

OUTPUT
As specified by the user.
INTERACTION

Monitor services used are: M:0PEN, M:READ, M:WRITE, M:CLOSE, M:DEVICE,
M:EXIT, M:TIME. '

ERRORS

If "ERRFILE" does not exist, "ERRFILE.:SYS- DOES NOT EXIST" is output to

the LO device. If no records can be found following the date and time
specified, "THERE ARE NO RECORDS FOR THIS PERIOD" is output to the LO
device. All other errors use the default monitor error communications.

DESCRIPTION

ERR:LIST opens "ERRFILE" and attempts to read a record with a key corres-
ponding to the starting date and time specified. If there is no such
record, the next sequential record is read.

27

SECTION KE.O05
PAGE 2
UTS TECHNICAL MANUAL 12/18/70

The record is formatted according to type and is output on the selected
devite. Sequential records are read and output until an end-of-file is
reached. At that point, a summary of all the errors for the period is
output if requested.

If only a summary of errors is requested, outputting of the formatted
records is inhibited and only statistics are gathered. When an end-of-
file is reached, the summary is output to the selected device.

28

SECTION KF
PAGE 1
UTS TECHNICAL MANUAL 1/29/71

D

PFSR - Power fail-safe recovery

PURPOSE

In the event of a power failure, some system information is saved and all 1/O is halted.
When power returns, the system is restored to its condition at the time of the failure.

USAGE

The power=on interrupt cell (X'50') and the power-off interrupt cell (X'51') contain
XPSDs to the two routines POWRON (BEGINON) and POWROFF (BEGINOFF).

INPUT
DCTSIZ and DCT1 are used to halt all I/O and locate the system RAD,

S:CUN is used in reloading the current user's map access. OPLBT3 and DCT5 for the
OC and DCT5 for the system RAD are checked for busy.

OUTPUT
During power-on, counters 3 and 4 (cells X'55' and X'54', indirect) are set to 100.

DCT13 for the system RAD is set to indicate transmission error.

INTERACTION

During power on:
LMA (Section N; INITIAL) is called to load locks, maps, and access

T:XMMC (Section GA) is called to load current users map access
COCINIT (Section DC) is called to initialize COC

INTSIM and SERDEV (Section DA) are called to service the OC and the system
RAD so that they are not noted as timed-out.

DESCRIPTION

During power off: all registers are pushed into the monitor's TSTACK, all 1/O is
halted (for devices in DCT1) and the computer WAITs,

During power on: the message "POWER FAIL-SAFE" is typed on the OC. The locks,
map and access are restored for the current user. A write-direct is issued to arm and
enable counters 3, 4 count pulse and zero, memory parity, 1/O, and control panel.

29

SECTION KF
PAGE 2
UTS TECHNICAL MANUAL 1/29/71

Counters 3 and 4 are set to 100. Next the operator's console and the system RAD are
assured to be not busy and not in danger of being timed out. This is accomplished by
calling INTSIM and SERDEV within module IOQ. Finally COCINIT is called to
initialize COC, the registers are pulled and control is returned to the instruction which

was interrupted by the power-off.

UTS TECHNICAL MANUAL SECTION LA

Page 1
DELTA
LT 4/13/71

INTRODUCTION

The purpose of this document is: (1) to assist programmers maintaining Delta, and (2)
to serve as a reference document for programmers seeking detailed knowledge of
particular aspects of Delta code.

The tools a programmer should have available for understanding Delta are: (1) The
UTS/TS Reference Manual (90 09 07), (2) this document, (3) the listing of Delta
which is organized to parallel Part 11 of this document, and (4) an assembly con-
cordance of the listing produced by Meta-Symbol (a concordance is an index of

symbol usage in a listing). It is assumed in this document that the reader is familiar
with the DELTA reference manual - or an equivalent description of the DELTA language.

Part I of this document provides a general picture of how Delta fits into UTS and des-
cribes special features of the Delta-UTS interface. Part II, which parallels the listing
in section organization, consists of prose description or flow charts (or both) of the
individual routines of the Delta processor. The functional categories into which the
routines are divided correspond to the section headings of Part II. Part III describes
the features unique to the executive version of Delta and how it interfaces with the
Monitor and the machine.

PART 1

This Part explains how Delta fits into the UTS system and certain other general features
of Delta-UTS operation.

Memory Map and Layout

Delta is a special shared processor in the UTS system. A shared processor is a reentrant
program which can be used by any number of users without having to reload the processor
for each user. In addition, Delta is one of several special shared processors which are
assigned to a fixed, high virtual memory area, dedicated so that DELTA may be called
at any time. The layout of virtual memory is:

Delta Delta

Context o©or TEL
or LINK

or PUBLIC LIBRARY

Monitor Job Context User Data User Procedure

As the UTS scheduler selects each user for execution, the hardware memory map is loaded
with the proper correspondences between physical and virtual memory for the current

user. The correspondences for the DELTA area (and library) remain the same for all users
associated with DELTA. The code for DELTA is not aware of which user data (DELTA

31

UTS TECHNICAL MANUAL SECTION LA
Page 2
4/13/71

context) the Monitor has set up for it via the map.

Access Protection

When the user's program is in execution, the access protection registers are set fo 00
(unlimited access) for his data, 01 (read and execute) for his pure procedure and for
Delta's data, and 11 (no access) for DELTA's procedure. When by any of several means,
control passes from the user's program to Delta, the access for DELTA's procedure is
changed to 01 and for DELTA's context (data) to 00. In addition, if Delta stores into
the user's pure procedure area, the Monitor loads the access protection registers for
user's procedure with 00 code and sets the bit which indicates that procedure has been
altered (PPSWAP),

Symbol Tables

There are two types of symbol tables in Delta: (1) constant (internal to Delta), and

(2) user associated or defined. The constant symbol tables are the special mnemonic
table, SPECODES, the regular opcode mnemonics, OPCODES, and the special symbol
table, SPECSYM. The mnemonic tables are constant and exist in DELTA's pure proce-
dure area. The special symbols are variable in value but constant in symbol. They are
included in the user's context page.

The user associated tables are the global and internal symbol tables. When the user
creates a load module via LINK, the external references are gathered into a global
symbol table and the internal symbols within each ROM are gathered into an internal
symbol table. LINK determines the sizes of the largest internal symbol table and of
the global symbol table. It then allocates virtual memory starting from DELTA's con-
text page and moves down (higher to lower addresses) to determine the start address
of the largest internal symbol table and of the global symbol table.

Globdl Internal Delta

Symbols ~ Symbols Context Delta

User Data User Procedure

The user can then load via Delta commands, the global symbol table and/or a single
selected internal symbol table (specified by ROM name). The internal symbol table
selected is always loaded at the start address of the largest internal symbo!l table in

the load module. In addition to these symbols, the user can define symbols on-line

Via DELTA commands. These symbols are added to the top (low addresses) of the

global symbol table. The address for the current top (low address) is in item SYMBEGIN,

32

. UTS TECHNICAL MANUAL SECTION LA
Page 3
4/13/71

The format of the symbol tables is illustrated in the following table:

Location Symbol - code =01

01

—A 0

t Jres value

where
CT is a six-bit field containing the character count of the original symbol,

S. are the first seven (7) characters of the symbol. Symbols with fewer
than seven characters are zero filled.

t is a five-bit field where the values are:

00000 - instruction

00001 - integer

00111 - EBCDIC text (also for unpacked decimal)
00010 - short floating point

00011 - long floating point

00110 - hexadecimal (also for packed decimal)
01001 - integer array

01010 - short floating point array

01011 - long floating complex array

01000 - logical array

10000 - undefined symbol

res is a three-bit field representing the internal resolution. The values
are:

000 - byte

001 - halfwaord
010 - word

011 - doubleword

value Location symbols are always represented as a 19-bit byte resolution
value,

33

UTS TECHNICAL MANUAL SECTION LA
Page 4
4/13/71

Constants - Code = 10

10

-
wv
v
w

where
CT and S; have the same meaning as above.
value is the 32-bit value of the constant.

Delta-User Execution Control

Contro! comes to Delta initially through the break key entry point, T:DBRK (i.e.,
Delta has break key control). Delta has trap, exit, break and abort control by
virtue of special case tests for Delta in the Monitor, Execution control is now in
Delta. When the user wants to start execution of his program he specifies a start
address with the ;G command. Delta then performs a trap return CAL (M:TRTN) with
the start address in the PSD in the user's temp stack (DTSTACK). The Monitor trap
return processor pulls the environment from DTSTACK and transfers control to the
address in the PSD in the stack. Execution control is now in the user's program,

If the user's program traps, aborts or exits, control returns to Delta. In addition,
the user may have specified instruction, transfer or data breakpoints., For instruc-
tion and transfer breakpoints, XPSD instructions are planted in the user's program
when the user requests execution of his program. The user's program operates in
slave mode. Thus, when execution reaches a breakpoint, a privileged instruction
trap results, Control goes to Delta's trap processor T:DTRAP which checks for
instruction or transfer breakpoint. Data breakpoints are achieved by increasing the
protection type on the data page containing the specified address from 00 (unlimited
access) to 01 (read and execute). If a memory store into that page occurs, a memory
protection violation trap ensues. If there is no breakpoint on the page, it is a
genuine trap and Delta reports the violation and prompts (unless the user has trap
control). If the page has a data breakpoint in it, Delta executes the trapping
instruction and checks for a breakpoint on the cell being altered. If no breakpoint,
control returns to the user's program. If there is, the action taken depends on the

34

UTS TECHNICAL MANUAL - SECTION LA
Page S5
4/13/71

breakpoint specifications,

" If the user has requested trap control and the trap is not the result of one of Delta's
execution (;X) or breakpoint commands, Delta will push the trap environment into
the user's temp stack and transfer control to the users trap entry point as specified

in JIT,

DCB's

Delta makes use of only two DCB's, M:UC and M:XX, both of which are present
in the user's JIT. M:UC is used only for reading and writing the teletype. M:XX
is used to send output to the printer and to read the global and internal symbol
tables from file storage.

PART 11

The discussion of individual routines presupposes a knowledge of the following defi-
nitions and descriptions of terms and command structure in the DELTA language.

Definitions

Constant A decimal or hexadecimal integer, or EBCDIC
value as described in the Functional Speci-
fication

Symbol One to seven* alphanumeric characters and

#,:, $, @, in which at least one character
is alpha (except for % which is used only
for constructing illegal opcodes, e.g., %01)

Term A constant or a symbol |
Arithmetic Operator Plus (+) and minus (-)
Field delimiters Comma (,) and space ()
Punctuation commands {,\ , Cr, If, ! , tab, =, < >, 1, .,),
*
’

* ROM names in the ;S command (symbol table load) may be up to 12 characters
long.

35

UTS TECHNICAL MANUAL SECTION LA
Page 6
4/13/71
Semicolon commands A semicolon followed by one of the following
letters: A, B, C, D, F, G, I, J, K, L, M,
N, O, P QRS T,U V,WXY, Z
or by / or = (see Part 111 for ;E, ;V)

Field A term or a set of terms connected by the
arithmetic operators and terminated by a
field delimiter or a punctuation or semi-
colon command. (In the special cases of
fields 3 and 4, 'space’ is equivalent to 'plus'
with respect to the definition of 'field'.
See below for discussion of 'space'.) The
maximum number of fields in a DELTA command
is four,

Field designator Space (). This operator advances the field
pointer to field 3. If the pointer is already
at or beyond field 3, the 'space' is equiva-
lent to 'plus'. (This algorithm results in a
simple scan for symbolic machine instruction

value with op, reg, address, and index
falling into fields 1, 2, 3, and 4.

Expression Consists of (a) terms, (b) arithmetic operators
plus (+) and minus (=), and (c) field des-

criptors space () and comma (,).

Command Structure

Each DELTA command has a unique interpretation of the input fields. Some com-
mands such as equal (=) and ;X combine the fields into a single value expression.
These commands merge the input fields via DREVALIT to form the single value.
Other commands such as slash (/) and ;L expect a set of limits, and merge the
fields into two values via DRGETLIM, The way this merge is performed results

in field designator 'space' being equivalent to 'plus' with respect to value (see
DRGETLIM), Still other commands such as ;B, ;Y, ;Z, attach individual meaning
to each field position. For these routines, 'space' is equivalent to 'plus’ only in

fields 3 and 4.

1. INITIALIZATION

The initialization section consists of (1) command scan initialization, (2) defini-
tions for Read, Write, Open, and Access CAL's, and (3) DEF and REF declarations.

36

UTS TECHNICAL MANUAL SECTION LA
Page 7
4/13/71

Command scan initialization has four entry points. The first entry 'DRINIT', sends
a Cr to the output buffer, dumps all waiting output, sets the message routine exit
to initial entry point 'DRINITA’, and branches to the routine that reads a message
from the teletype, 'PMESS'. This entry is used when a fresh start on a new line

is desired. The second entry, 'DRINITA', resets the switch that indicates a register
is currently open (DROPENSW), and clears the flag register R8, This entry is used
to start scanning a new command except when the previous command resulted in a
cell being opened (/, t, NL,\ , Tab). The third entry, 'DRINITB’', resets the
field counter R5, the element counter R10, the comma counter R11, the field
presence flags in 'FLDREG', zeros the value accumulators for the four possible
fields in an expression DREXPRS(+0-3), and sets the arithmetic operator to 'plus'.
This entry sets the scanner up to parse a new expression for value or for command
parameters. The fourth entry, 'DRINITC', initializes the symbol accumulator
DRCHRBUF, the character counter R, the input term type register R7, and resets the
hex input mode flag. This entry sets the scanner up to examine a new term within
an expression. It is used when plus, minus, space, or comma is encountered. Low
entries flow into higher entries, i.e. branching to DRINITA will execute DRINITB
and DRINITC also,

2. COMMAND PARSE (DRSCAN 1)

The 'scanner’ referred to below consists of DRSCAN1, entered with input parameters
inregisters 5, 6, 7, 8, 10, and 11, where:

RS points to the current field in the input text string.

R6 contains a negative index into the symbol buffer. Thus, the
character count is the maximum allowable number of char-
acters plus (R6).

R7 current input mode type. Initially, number type is assumed
and then changed if a characteristic of another legal type
is encountered,

R8 special flags are set here during the scan and evaluation.
Meaning of bit if set:
18 = Indirect bit 22 = Symbol! definition mode
20 = Immediate instruction 27 = Undefined symbol
21 = Special Shift instruction 31 = Shift instruction
R10 count of the number of elements (terms) in the input expression.
R11 comma count,

37

UTS TECHNICAL MANUAL SECTION LA
Page 8
4/13/71

DRSCAN 1 proceeds as follows:

If the input character is a special character (EBCDIC mode,\), process it, If
it is a letter or number, switch on input type R7 through the transfer vector,
DRBUILD, to convert via one of the formatting routines (see Section 3). Check
again for special characters that don't fit the general case (:, t, @, $, symbol
define mode, (). If not one of these, it is a punctuation character, Switch on
the low order six bits of the character through DRKEY1 and DRPOINT1 to enter

a punctuation command processor,

3. FORMATTING ROUTINES

The formatting routines consist of both input and output routines. The input routines
are entered by the scannér through a transfer vector indexed by input symbol type

in R7, Integer, Hexadecimal, and EBCDIC input is accumulated in R3, while symbolic
input is accumulated in the symbol buffer DRCHRBUF, All of these input routines
return to DRSCAN to continue the scan after processing the current character,

The output formatting routines consist of Hex, EBCDIC, integer, and floating
point converters and also the expression formatter DRPTEXP, the address formatter
DRPRTADR, the op code and symbol output routines DRMNEMPT and DRSYMPT,
and two message output routines DRPRTSML and DRPRTMSG. All these routines
result in characters being stored in the output buffer, OUTBUF. They do not cause
output to be sent to the teletype. In the discussion of output formatting routines
that follow, "outputs" should be taken to mean "moves to the output buffer".

3.1 Input Formatting Routines
3. 1.1 DRINPNUM Integer Input Conversion

This is a standard integer input conversion routine with one
exception. The input characters are saved in the symbol
accumulator, DRCHRBUF, in case the term is a symbol with
leading numeric characters, If a non-numeric character is
encountered, the input type flag in R7 is set to 'symbolic'
and the scan proceeds.

3.1.2 DRINPSYM Symbolic Input Routine

This routine stores the characters of the input term in the
symbol buffer, DRCHRBUF, for later evaluation.

38

3.2

3.1.3

3.1.4

UTS TECHNICAL MANUAL SECTION LA
Page 9
4/13/71

DRINPHEX Hexadecimal Input Conversion

This is standard hexadecimal conversion routine.

DRINPEBD EBCDIC Input Routine

This routine accumulates up to four EBCDIC characters, with
leading zeros, in the input value accumulator R3.

Output Formatting Routines

3.2.1

3.2.2

3.2.3

3.2.4

3.2.5

DRPRTHXA Hexadecimal Print Routine

This routine outputs a period (.) to indicate a hexadecimal
value, suppresses leading zeros, and performs the conversion
on the input value in R3.

DRPRINT Integer Print Routine

This routine checks the size of the value in R3, outputs a minus
sign (=) if it is negative, and converts and outputs the absolute
decimal value.

DRPRTEBD EBCDIC Print Routine

This routine outputs in EBCDIC mode, i.e., directly, the four
bytes of the value input in R3.

DRPRTFL Floating Print Routine - Double Precision Entry

DRPRTFS Single Precision Entry

This is a standard floating point output converter,

DRPTEXP Expression Print Routine

If other than symbolic output mode is specified, DRPTEXP switches
to the appropriate output formatting routine. If symbolic mode

is specified, this routine outputs the value in R3 as an expression,
either symbolic instruction or a less complex expression. If no
bits are set in either the op code or R fields, the address field
(and index register, if it is non-zero) is output in the current
address output mode.

39

UTS. TECHNICAL MANUAL SECTION LA
Page 10
4/13/71
If bits are set in the op code or R fields, the symbolic op code
(or %XX when XX is not a legal instruction) and integer R
field are output and then the address and index fields are pro-
cessed,

The mnemonic op code is obtained by using the op code value as
an index into a full word table of mnemonics, OPCODES. If
the op code value uniquely defines the mnemonic, the entry in
OPCODES contains the mnemonic or "%XX" for nonexistent
instructions, If other bits in the value must be checked to deter-
mine the mnemonic (e.g., S, SCS, SLS or LCI, LF, etc.), the
entry in OPCODES contains the address of a routine to perform
the special processing required by that instruction. For detail

on address output, consult the next Section, 3.2.6. Further

details of DRPTEXP are included in the flow chart.
3.2.6 DRPRTADR Address Print Routine

This routine outputs the value in R3 as a symbol, a symbol + hex
offset (if the value is within a certain user setable offset from
the nearest lower valued symbol), or as a hex constant if no
symbol lies within the offset. " There is an additional address
output mode called csect mode whichhas the following char-
acteristics:

(a) If the input value exactly matches that of a symbol, that
symbol is output regardless of symbol type.

(b) In the search, the nearest symbol flagged as csect-type
is retained.

(c) If no csect-type symbol is found, the value is output as
a hex constant,

(d) If one is found, the hex offset limit is ignored and the
output is "nearest csect-type symbo! + any hex offset".

This feature allows the user to label control sections and get

addresses output as a symbol plus relative line number which

corresponds to the listing. Only location symbols are output
by DRPRTADR if location-only mode is set (LOC$ONLY).

3.2.7 DRMNEMPT Mnemonic Op Code Output

Mnemonic op code in Ré.

4.1

UTS TECHNICAL MANUAL SECTION LA
Page 11

4/13/71

DRSYMPT Symbol Output

Symbol table pointer R9.

This routine has two entry points. The mnemonic entry simply
outputs the symbol in R6. The symbol entry loads the symbol
from the symbol table using the address in R? as a pointer and
then shifts off the leading code-byte count byte. The symbol
is then output,

3.2.8 DRPRTSML Print 1 word of characters right to left

This routine outputs backward messages, i.e., right-most byte
first, It results in a little saving of space in message storage.

3.2.9 DRPRTMSG Print TEXTC message
Byte address of message in R1.
DLMSG
Word address of message in R1,

This routine outputs TEXTC messages.

EVALUATION AND SYMBOL TABLE SEARCH ROUTINES

DREVAL Term evaluation and field value accumulation routine

This routine adds the value of the current term to the value buffer (DREXPRS)
for the current field of the input expression. If the term is a symbol, this
routine searches the mnemonic symbol tables and constant/location symbol
tables for a matching symbol, If not found, the error exit is taken. If
found but undefined, a value of zero is returned and the undefined flag

is set. If found and defined, the value of the symbol is added to the value
accumulator for the current field.

This routine is invoked when the arithmetic operators plus (+) and minus (-)

and the field delimiters space () and comma (,) are encountered. It is
also called by the following punctuation and semi-commands: Cr, If,1,\ ,

/I =l 14 Tab

iB, iD, iG, L, iN, ;P, iR, ;W, X, Y, ;Z

41

UTS TECHNICAL MANUAL SECTION LA
Page 12
4/13/71

DREVALIT Accumulate input fields to form an instruction value

This routine evaluates the input fields as a machine language instruction.
Field 1 is the op code, field 2’is the register field, field 3 is the address
field, and field 4 is the index register field. A full word value for the input
expression is returned in R3. Typically the value will be an instruction.

DRGETLIM Get input limits routine

This routine analyzes the input expression as a set of limits separated by a
comma, If more than one comma occurs, the error exit is taken. The problem
in this routine is that 'space’ advances the field position to field 3, if the pre-
sent field is 1 or 2, while 'plus' and 'minus' don't affect the field position in
an expression, Phus, there are three basic possibilities:

() = space as a connector or operator
Li = term or terms connected by the arithmetic operators + or - .

Limit 1 Limit 2
Q) L-I I'4 L2 ‘
Field 1 Field 2
b) L] ’ L2 () L3
Field 1 Field 2 Field 3
c) LI () L2 , L3
Field 1 Field 3 Field 4

Thus, " if field 2 is not present, field 3 is part of limit 1. Otherwise, field 3
is part of limit 2. The lower limit is returned in R2, the upper in R3. It
should be noted that the item names and comments of the listing number the
fields 0-3 rather than 1-4 as above,

SRCHCODE Search mnemonic table for input symbol

This routine is entered with the input symbol in R14, The table of special mnemonics,
SPECODES, is searched first. This table contains (a) the immediate type mnemonics,
(b) load conditions and floating mnemonics, (c) branch mnemonics, (d) byte string
mnemonics, and (e) shift mnemonics. If the symbol is found in SPECODES, the op
code value and appropriate special bits are correctly positioned in R2 and the flag
appropriate to the special instruction type is set in R8, RO is set non-zero to

42

4.5

4.6

4.7

UTS TECHNICAL MANUAL SECTION LA
Page 13
4/13/71
indicate that a value for the symbo!l was found. If not found in SPECODES, the
regular mnemonic table, OPCODES, is searched. OPCODES is ordered so that
the index into the table is the value of the op code for each mnemonic. If the
symbol is found, the index (i.e., op code) is correctly positioned in R2, the
'found' flag is set in RO and the routine exits.

Symbol Table Searches (location and constant symbols)

SRCH$SYM Search special, global, and internal symbol tables
LOC$SRCH Search global and internal symbol tables

These entry points are drivers for the two routines that do the actual symbol table
search; FINDSYM, which searches on symbols, and FINDVAL, which searches

on value. There are three location and constant symbol tables present in DELTA:
(a) the special symbol table (always present) which includes the following symbols:
i, iQ, %, iM, G, iF, i1, 2, i3, i4, (b) the global symbol table which includes
symbols defined on-line in DELTA and whi ch can be released, and (c) the internal
symbol! table which may or may not be present.

FINDSYM Search on symbol routine

This routine positions the input symbol in R14-15 to match the symbol table format
and then searches the symbol table pointed to by the address in R9. The size of
the current symbol table is given in R1. If found and undefined, the exit is taken
through the drivers link, R4, with the undefined symbol code in RO. If found

and the code indicates location symbol, the 17 low order bits of the value word
are extracted to R2, the symbol type is extracted from the value word and saved
in SYMS$TYPE (in case symbol table control of output mode is requested) and exit
is through driver's link, R4, If the symbol is a constant, the full value word is
picked up in R2 and exit is through R4. If not found, exit is through R7 back to
driver for searching next table or for exit.

FINDVAL Search on value routine

This routine is invoked when symbolic output of an address or constant value is
desired. The routine is basically searching for the symbol whose value is closest
to (and less than, or equal to), the input value. The input value is in item
DRSRCHLM+1 and the nearest value, DRSRCHLM, is initially input value - hex
offset =1, Symbol table values are checked within limits and if they lie between
(DRSRCHLM) and (DRSRCHLM+1), DRSRCHLM is set to the new value, SYM$TYPE
(see Section 5. 14) is set to the symbol's type and the symbol table pointer is
updated to this entry. If an exact match is found, the type is saved in SYM$TYPE

43

. UTS TECHNICAL MANUAL SECTION |~

Page 14
4/13/71

and the symbol is output. Undefined symbols are not checked for value, nor

are constant type symbols if the location-only flag (LOC$ONLY) is set. In

addition, if in csect mode (see Section 3.2.5 for a discussion of csect mode),

only symbols flagged as csect types are considered for closest value, except

that an exact match will print that symbol even if it is not csect type. In

the event of an exact match, symbol type is saved in SYM$TYPE, the symbol

is output and exit is through the driver's link, R4,

SECTION LA
PAGE 15
UTS TECHNICAL MANUAL 4/13/71

Rl —» R1l is the index into DPROINTI which

is arranged so that 'space', 'plus', 'minus’
P
CURNOPR and 'COMMA' come first.

Did a

period.occur
1n this

item?

Any
Characters
Input ?

value accuin
lated in R3

Rl —» Save operator for next pass through DREVAL
DRLSTOPR

Term and Field Evaluation - 1

45

SECTION LA
PAGE 16

UTS. TECHNICAL MANUAL 4/13/71

DOTPROC
0 —» Turns off Dotmode
If any input between Dot and
_ next operator or command, Dot
$/ meant Hex. If none, Dot
Yes‘ meant $.
DR#DSIGN]
‘— R2 |
DREVLDNE ___ Accumulate field value

t Save current
operator. Get

previous oper-
S .alit_o ro__ |

g Complement
" input value if

:g)revious operat
‘'Or was mimnus
{

R
Add this value td

the accumulated

value for the
¢urrent field.

Element

Count +1
FElemént Cnf

v Term and Field Evaluation - 2

46 -

DREVLSYM
UTS. TECHNICAL MANUAL

oo long
N S /)
to be a mnemonigX» D)

no

/ SRCHCODE '\

/Search mnemonics

Fou >-——-—>yes /

no\

SRCHSSYM \

Search special}

symbols

« Found —L'E
T e

;
EVL60 no D\

LOCsSRCH |
(Search global ,/

“.and internal fobles
wooif any .
'-\

E

Error /

F<>una\‘~>_m;\i Y/ DRERR
2 -

yes i

ﬁeflned 1_33\/)

no\ ”

" Set undefined

Lo ﬂ°9 1 Term and Field Evaluation - 3

rs}Tv—a—lué i

\ B / 47

SECTION LA
PAGE 17

4/13/71

5.1

5.2

5.3

5.4

3.5

UTS TECHNICAL MANUAL SECTION LA
Page 18
4/13/71

PUNCTUATION COMMANDS

DRASTISK Asterisk routine

This routine checks to see that the scan is currently in the address field (field 3)
and that the asterisk is the first character input for this field. If no, error exit.
If yes, set the asterisk flag in R8 and exit to DRSCANT1,

DRBSLASH Backslash routine

If an undefined symbol preceded the backslash, branch to error exit. Evaluation
of the input expression is completed and the oddress field is extracted, The
current location counter DREFDSIGN, is set to the input address, the backslash,
get page, and open register mode flags are set, two spaces are output and the
exit is to MESSAGE, with the scan for the next command starting at DRINTB,

The backslash command can be used to get a virtual page not already allocated

to the user. Opening a cell in the virtual page via backslash and attempting

to store into it (e.g., O Cr) causes a trap. If in get-page mode, the trap routine
gets the page and continues execution of DELTA,

DRCOMMA Comma routine

This routine checks the current field number against the maximum (4). If currently
in field 4, there are too many commas and the error exit is taken. Field number
is checked rather than comma count because the space operator can advance the

field count. The field and comma counts are advanced by one and the presence
bit for the current field is set in FLDREG. The scan is continued at DRINITC,

DRCRTRN Carriage return routine

This routine simply branches to DRCLOSE and exits to MESSAGE,
DRDEFCHK Symbol definition

This routine, entered when ! or > are encountered, searches the symbol table to
see if the input symbol exists, If it does and is defined, the new value word

is stored in the table, If undefined, the link of unsatisfied references to this
symbol is run, storing the new value. The code is set to location type and exit
is to DRINITB leaving open the current location (in case of ! type symbol
definition), If not found, the symbol and specified value and type are added

to the top of the global symbol table by routine DRSYMAPD, The output mode
to be associated with this symbol and csect type can be specified. If they are,

they are included in the value word.

48

5.6

5.7

5.8

5.9

5.10

5.1

UTS TECHNICAL MANUAL SECTION LA
PAGE 19
4/13/71

DREQUAL Equal routine

If there was no input, the last value typed (;Q) is output in the current or expli-
citly given output mode. If there was input, it is evaluated into a full word
quantity by DREVALIT and output as specified. Exit is to DRINITB, leaving
open the current register,

DREXCLAM Exclamation routine

This routine gets the current value of the location counter, DR¥DSIG N, and saves
it in the symbol definition value buffer, DRVALSAV. It then branches into rou-
tine DRDEFCHK to complete symbol definition processing.

DRLFEED Line feed routine

Line feed goes to DRCLOSE to store into and close the current location, incre-
ments current location by one, and continues in DRUPAROW,

DRLPAR (CHNGMODE) Output mode specification routine

Left parenthesis reads the next character in the input buffer via INPTCHAR and
checks it against the possible mode characters. If the character is not a legal
mode character, error exit. If legal, the index (which is the mode value) is

saved in MODINPUT,

In addition, the pointer to the occurrence of 'Dot' in this term is advanced by
two. This is a null action if 'Dot' did not occur. (See Section 5,12 for
details.)

DRLSTHAN Less than routine (symbol definition)

This routine gets the full word input value from DREVALIT and saves it for use
later when the 'greater than' character () is encountered. It then sets the
symbol definition mode in R8 and exits to DRINITB (avoiding resetting R8 and
leaving the current register open).

DRPERCNT Percent routine
This routine just checks to be sure the percent character is the first character of

a term, resets the input symbol type to symbolic and exits to the symbolic input
routine, Permits reference to non-existent instruction mnemonics (e.g., %01).

49

5.12

UTS TECHNICAL MANUAL SECTION LA
Page 20
4/13/71

DRPERIOD Period or Dot routine

The period or dot can mean ‘either 'hexadecimal input mode' or '$'. These mean-
ings are distinguished by the number of characters intervening between the occur-
rence of the dot and the next punctuation character, If no characters intervene,
dot means $ (as in './"). If one or more characters intervene, the evaluation
routine will ignore the fact that dot occurred in the preceding term (i.e., dot
meant 'hex mode'). In any case, Hex input type is set in R7 and the character
position of the dot is saved in DOTCHAR.

DRRPAR Right parenthesis routine

This routine causes the instruction in-the currently open location to be interpretively
executed. Specifically, the routine checks for an open register. If no open cell,
error exit. It then branches to the interpretive execution routine, TRACEXEC, with

the flag STEPMODE set to true (=1).

DRSLASH Slash routine

If there were no input characters, this routine extracts the address field from the

last value typed (;Q) and displays the contents of that address in the current slash
output mode (determined by previous presence or absence of temporary specifica-
tion and the default type). If input preceded the slash, the limits for slash dis-

play are obtained from DRGETLIM, If only one address was specified, the upper
limit is zero and the routine exits after displaying the contents of the first loca-

tion. If the location being displayed is one of the general registers, 0-15, the value
is fetched from the user's register temp stack.

The current slash output mode is checked for 'symbol-table-control -of-output-format'
mode. If in that mode, the item SYM$TYPE is checked for being set (greater than
zero). If a symbol is associated with the current location, the type for that symbol
is present in SYM$TYPE and will be used in DRPTEXP, If no symbol is associated
with the current location, the default mode is relative output. The contents of

the current location are output in the appropriate mode. If there are more loca-
tions to be displayed, the address is output on a new line in the current address
mode, If that mode is symbolic, a flag is set so that only location symbols are
considered in the symbol table search-output routine, FINDVAL. The contents

are displayed as described above. The exit point sets a flag, DROPENSW, to show
that the current location, DREDSIGN, is open and exits indirect through SLSHEXIT,

DRSPACE Space routine

If the scan is not yet in field 3, set the current field pointer to 3. If in field

50

TECHNICAL MANUAL SECTION LA
Page 21
4/13/71
3 or 4, the routine doesn't affect the field pointer. Exit is to the code in
DRCOMMA which sets the relevant field presence bit in the field register,
FLDREG, and exits to DRINITC to scan the next term,

5.16 DRSQUOTE Single quote routine

If the scanner is in an initialized state, the input type in R7 is set to EBCDIC
mode and exit is to DRSCAN1, If not initialized, set input type to a non-
input type and exit to DRSCAN1, The assumption is that this is the terminating
single quote,

5.17 DRTAB Tab routine

This routine first stores input (if any) and closes the currently opén cell via
DRCLOSE. It then gets the last value typed (;Q), the address field of which
will be used in DRSLASHS as the current location to be opened and displayed.

5.18 DRUPAROW Up arrow routine
A branch to DRCLOSE stores any input and closes the current register. The
current location is decremented by one and the new register is opened and dis-

played via DRSLASH, entered at DRSLASHS (no display if in backslash mode).

6. SEMICOLON COMMANDS

When the semicolon character is encountered, control is transferred to the semicolon
dispatcher, DRSCOLON. The trailing character is fetched and used as an index into a
byte table, DRKEY2, which contains an index into the halfword table, DRPOINT2,
which, in tumn, contains the relative address of the routine appropriate to the command.
The absolute address is computed and control is transferred either to that routine or to
DREVAL for argument evaluation, and thence, to the routine, depending on position

in DRPOINT2,

There is a special class of semicolon commands which are really special symbols but
can be set by typing a value before the symbol (except for ;Q). These commands are:

iC, iR L GM, R, T, 02, 53, 4
When one of them is encountered, DRPOINT2 points to the special semi routine, DRSPCHR,
which either sets the value word in the appropriate entry of the special semi symbol table,

SPECSYM= or stores the EBCDIC for this semi symbol into the symbol buffer, DRCHRBUF,

and continues the scan (see flow chart).

51

6.1

6.2

- UTS TECHNICAL MANUAL SECTION LA
Page 22

4/13/71

DRSEMIA Set absolute address print mode

Sets address print mode to absolute.

DRSEMIR Relative address print mode

If there is any input preceding ;R, it is evaluated and saved in item HEX$OFFSET,
The trailing character is fetched. If it is not the letter 'K', the input buffer
character pointer, CHARINDX, is backed up by one and the csect output mode
flag, K$OUTMODE, is turned off (=0). If the trailing character is a 'K', the
csect output mode flag is turned on (see Section 3.2.5 for a description of csect
type output).

In all cases, the current slash output mode item DRSLSHMD and the address
output mode item DRADRMOD are set to relative output format type (=0).

52

SECTION LA

PAGE 23
DRSPCHR UTS TECHNICAL MANUAL 4/13/71
DRSPCHR

‘ DREVAL saves R1 in DRLSTOPR,
Address of velue Below ethen the value is stored
worc.i for special *DRLSTOPR it willﬁ go into the
semi symbol+-R1 value word of the appropriate

entry in the special symbol table,

SPECSYM

Used as a command to set a given

valuate input

value
Construct EBCDIC
value of command
in symbol buffer, Used as a symbol in this case,
DRCHRBUF
/DRERR \
Error Message .
tore value in value
word of this special
semi symbol .
R3—*DRLSTOPR Semi-colon command switching and special symbol
processing.
ESSA

33

UTS TECHNICAL MANUAL SECTION LA
Page 24
4/13/71

6.3 Data and Instruction Breakpoints

DRSEMIB

DRSEMID

Instruction breakpoint processor

Data breakpoint processor

Since the format of the commands for both breakpoint types is similar, as is the
table structure maintaining infomation on the breakpoints, - common processing
routines are used which return to the calling semi command for any special
processing required. These common routines appear in the Utility chapter of the
listing but are discussed here.

In the constant data area are two tables of addresses, IBRKADRS and DBRKADRS,
These tables contain the addresses of tables and items that are set up when break-
point requests are made. By moving the relevant table into a similar table,
BASEADRS, in the variable data area, the common routines can pick up fields
from the command and store indirect through items in BASEADRS to set up the
correct tables and items.

6.3.1

BRKSET

The structure of the breakpoint command is as follows:

Field 1 location or break number to be released
Field 2 breakpoint number
Field 3 I-breaks = display address
D-breaks = conditional value
Field 4 D-breaks only - conditional mask

The specified table is moved into BASEADRS. The number of fields of
input is then checked. If only one field was input, it could be an
address with no break number specified or it could be a break release.
If less than 9, control is transferred to the break release~-dump driver,
RELEASE. If the input was greater than 15, it is a set breakpoint
request and the table is searched for an available entry (GETANUMB),

. If the input value was between 9 and 15, an error message is output,

If more than one field was input, field 2 - the breakpoint number field -
is checked for being in the range 1-8. The current status of the speci-
fied break number is checked and if it is active the number of break-
point entries is not incremented.

UTS TECHNICAL MANUAL SECTION LA
Page 25

4/13/71

After verifying or obtaining the break number, field 1 is stored in

the appropriate table of break locations. If field 3 was input, it

is stored in the specified table (it will be either the display address
for instruction breaks or the data compare value for data breaks).

The trailing character is now checked. If it isa 'T', -the trace bit

for this entry is set; if not, the trace bit is reset and the input
character pointer is backed up by one, Exit then goes through the
return link in item CURNOPR (CURNOPR just happens to be available
at the point of break processing).

DRSEMIB

On return from BRKSET, the proceed count is initialized to -1 and
exit is to MESSAGE.

DRSEMID

On return from BRKSET, the mask and condition entries are initialized
and a check is made to see if a data break condition was specified.

If not, field 4 (the mask field) is ignored and exit is to MESSAGE.,

If specified, the- appropriate conditional branch is stored in DBRKCOND
and the mask field is checked. If no mask field, the nominal 32-bit mask
is used; if specified, it is stored in DBRKMASK and exit is to MESSAGE.

6.3.2 RELEASE

If there was no input at all, ;B or ;D is a request to display the
instruction or data breakpoint table and contro! goes to BRKDUMP,
If the input value is zero, all active breaks are released. If the
breaks being released are data breaks, the access protection type
in the user's access image is reset to data type (00). If the input
is 1-8, the specified entry is released and access reset,

6.3.3 BRKDUMP

This routine outputs the break number, trace indicator and break
address and then returns to link R14 plus one for completion of the
line. The special processing at DRSEMIB or DRSEMID finishes

the line and branches directly to TESTBD, At this point, the line
is output and the test for completion is done. Exit is to MESSAGE.

55

6.4

6.5

UTS TECHNICAL MANUAL SECTION LA
Page 26

4/13/71

DRSEMIG Start user execution

If there is no input, the start address is the current value of the location counter
(;I). If the user is in interpretive execution mode (INTPMODE), contro! goes to
INTEX, Otherwise, the start address is inserted in the PSD in the temp stack

which will be loaded by the Monitor trap return processor. The conditions (;C)

and floating controls (;F) are set in the PSD also and instruction and data breakpoints
are set up (IBRKSET-DBRKSET). Delta's internal flags are turned off, the users

trap control setting is restored and the trap return CAL is executed.

DRSEMIJ Switch output device
The output device switch is toggled. With regard to ;J, there are two classes of

output from DELTA: (a) that which can go only to the teletype, and (b) that
which can go to the teletype or printer depending on the setting of the switch,

56

SECTION LA
PAGE 27
UTS TECHNICAL MANUAL 4/13/71

L Get current
. NO .
—»pllocation counter
;1

Evaluate inpuf\
for go
Address

(Transfer Bloc
Modul

Ayes*

INTEX /"

Start up interpretive
execution mode

IBRKSET \
et up information

Break points

/ DBRK SET N\

Set up access on

&iofo break pages>
/
2

Set items in GO
PSD and reset

DELTA' internal
3&9{9_!.?.93_{!995-

Restore user's
trap control
settings

4
\ M:TRIN_/
Go to user

through trap
refurn

A DRSEMIG: GO (;G) Command Processing

57

6.6

6.7

6.8

6.9

UTS TECHNICAL MANUAL SECTION LA
Page 28

4/13/71

DRSEMIK Delete a symbol or symbol table

If input precedes ;K it is a symbol that exists in, and is to be "removed"
from, the symbol table or the error exit is taken. If the symbol is unde-
fined no action is taken and exit is normal. If defined, the "kill bit"

is set in the entry in the symbol table to prevent use of the symbol for
output and exit is to MESSAGE.

If no input, the trailing character is checked. If it is an'l', the pages
containing the internal symbol table are released, the internal symbol! table
size, NENTINT!, is set to zero, and the presence flag, INTLFLAG, is

set to false (=0). If the letter 'G', the same thing happens for the global
symbol table (which includes symbols defined on-line in DELTA), If

the character 1s a blank or a carriage return, both internal and global
symbol tables are released. Storage for the symbol tables is released to

the Monitor, Any other character is an error.

DRSEMIL Set search limits
Sets the memory search limits ;1 and ;2,

DRSEMIO Hex dump on printer

The input dump limits are accumulated (DRGETLIM), if any. Any wait-

ing output is sent to the specified device. The remainder of the command
line after ;0 is positioned in the output buffer (or blanks if no characters after
;0), and a page eject-print a line is sent to the device. If no dump limits
were specified (or lower limit =0), exit. Otherwise, space three lines

down from the header, output the users registers, and output the specified
area of memory suppressing output of duplicate lines,

DRSEMIP Proceed from a breakpoint

If the user is in transfer break mode, go to INTEX to continue execution,
If in data break mode, continue at DRSGO in DRSEMIG. If in instruc-
tion break mode, input before ; P is a proceed count and is stored in
IBRKPRCD. At this point, the instruction at the active breakpoint
location is fetched and set up to be executed by routine BRKINTPT and
the location in Delta's context where broken instructions are executed,
IBRKEXEC, is placed in the PSD for user execution. Processing con-
tinues at DRSEMIGB,

58

6.11

UTS TEGHNICAL MANUAL SECTION LA
Page 29

4/13/71

DRSEMIS Load symbol table

The global and internal symbol tables exist as files on the RAD. The
file name (the current load module name) and the password, if any, are
in JIT. The key for the read of the files is the load module name with
a trailing byte of X'09' for the global symbo! table and ROM name plus
trailing byte of X'0A' for the internal symbol table.

The virtual pages required for the specified symbol table are obtained
as specified by JIT values (J:IST - internal, J:GST - global) the file
opened and the read performed. The number of words read is obtained
from the M:XX DCB and is added to the appropriate number of entry
items, NENTSYM or NENTINTL.

DRSEMIT Set trace mode

The mode of the currently active breakpoint is set to 'trace'.

DRSEMIU Display undefined symbols

This routine examines the symbol tables via the driver SRCH$SYM (entry
LOCS$SRCH), and outputs the names of all the undefined symbols

encountered,

Search Routines

DRSEMIW Word search routine

DRSEMIN Not word search routine

These routines search memory for a match (;W) or mismatch (;N) between the
input value and memory using ;M as a mask. The input value can be any
single expression, If, and only if, fields 1 and 2 and no others are
specified, field 2 will be substituted in memory wherever field 1 is found,
through the mask ;M by the utility routine STORWORD (STSWORD).

When a match (or mismatch) is found, the location and contents are

printed out. If substitution mode is in effect, printout occurs after the
substitution has been made.

DRSEMIY Transfer break mode set up and down

The entry to ;Y sets up switches on the trailing character,

59

UTS TECHNICAL MANUAL SECTION LA
Page 30
4/13/71

No relevant character or 'T'

If not 'T', 'R', 'S', or 'D', the input character pointer is backed up by
one and the trace mode flag, TRACMODE, is reset. 1f 'T', TRACMODE
is set. This ;Y entry is now going to set flags and start up interpretive
transfer break execution,

All flags except TRACMODE are initialized to nominal values, If there
is no input, interpretive execution is started at the current value of the
location counter (;I). If only one field was input and the value is 0

(or <16), transfer break mode isturned off, If the value is greater than
15, execution begins at the input location, If fields 2 and 3 were speci-
fied, the values are stored in DO$DONT and TRACLOOP, respectively.
If the options (fields 2 and 3) are specified, a value less than 16 for

the location (field 1) is treated as nul! and execution proceeds from ;I.
This allows setting of the options and continuing from last break without
specifying an address,

Trailing 'R' Release

This routine releases entries in the special action table, TRACSPEC, Up
to four addresses may be specified. If no input, release the entire table.
Otherwise, each field specified contains an address which is to be deleted
from the table. If an address specified does not appear in the table,
error message and error exit, If it appears, zero the entry and check
next input field,

Trailing 'S' Set

This routine sets entries in the special action table, TRACSPEC, If no
input, error exit. TRACSPEC is then searched for a zero entry. If none,
error message and error exit, Otherwise, store address in current field
into the entry just found.

Trailing 'D' Display

This routine displays the addresses currently in the special action table,
TRACSPEC,

DRSEMIZ Set core routine
Fields 1 and 2 are the lower and upper limits, respectively, of memory

to be affected. Field 3 is optional but if not specified by the user, it
will already contain the nominal value to be stored, zero. The value

60

7.1

UTS TECHNICAL MANUAL SECTION LA
Page 31
4/13/71

in field 3 is stored in the specified range of memory by the utility
routine, STORWORD,

SYSTEM CONTROL

Delta is entered as a result of one of the five following events:

1 Trap during user or DELTA execution,

2) User request (Monitor simulates a break entry).
3) BRK key event,

4) Error abort or exit CAL,

5) Monitor abort of the user,

These events are divided into three classes of DELTA entries:

a. Trap entry 1)
b. Break entry 2)and 3)
c. User exit 4)and 5)

The first three locations in DELTA's procedure are the corresponding entry
points:

Relative location 0 B T:DTRAP
Relative location 1 B T:DBRK
Relative location 2 B ABORTENT

The environment (PSD and registers) at the time of the event are pushed
into DELTA's stack (DTSTACK). When the user program is in execution,
DTSTACK is empty. Thus, if the user exits his pfogram in any way, one
environment will be present in DTSTACK, If the user then hits BRK or
causes DELTA totrap (e.g. by attempting to display memory he doesn't
have) a second environment will be pushed. In such a case, the second
environment will be discarded as will any waiting output, the current
operation in DELTA will be suspended and exit is to the initialization

entry DRINIT, (A special two-environment case is discussed under
T:DTRAP, section 7.2 below).

T:DBRK General break key entry

If this is the first time DELTA has been entered by this user, global and
internal symbol table items are initialized, program start address is stored
in;l and $, and a greeting is output.

If DELTA was in control at the time of the break, a break flag, BREAKEY,

61

7.2

UTS TECHNICAL MANUAL SECTION LA
- Page 32
4/13/71
is set. DELTA's stack is adjusted and a fresh start is made after a
break message.

If the user was in control, a message reports the instruction address at
time time of the break and control goes to the console (DRINIT),

T:DTRAP Trap entry point

All traps enter here., After saving trap conditions, the internal DELTA-
control flag, DELTCNTL, is examined. If DELTA was in control, DELTA's
temp stack is decremented by 20 (the number of words pushed by the
Monitor). If not a memory violation, output error message and restart,

If it was a memory violation, check if in get page mode (GTPGMODE=
-1). If in get page mode, get the page, reload DELTA's registers, and
continue execution in DELTA at the trapping instruction. If not in

get page mode or the page is not available output an error message and
restart Delta. If Delta was not in control, a switch is executed on the
trap location, 40 - 45,

TRAP40

Non-existent instruction and non-existent memory are error conditions,
Control goes to the trap control routine, ERRCOND,

Privileged instruction trap may be an occurrence of an instruction,
transfer or execute (;X) breakpoint. Control goes to the instruction
break processor, IBRKRTRN,

Memory violation trap may be an occurrence of a data breakpoint. The
location which caused the trap is analyzed to determine its effective
address. If there are no data breakpoints or there isn't one on the page
containing the address, it is @ memory violation and control goes to

ERRCOND.

If there is a break on the page, the instruction doing the store is executed.
Check is made to see if there is a break on the altered location, If not,
execution of the user continues. If there is, a check is made to see if

it is a conditional break. If not, go to DATABRK to process the break-
point. If it is conditional, the new value is compared as specified

in the data break tables. Exit will be either to DRSGO (to to user)

or to DATABRK.

62

7.3

7.4

7.5

7.6

UTS TECHNICAL MANUAL SECTION LA
Page 33
4/13/71

7.2.1 ERRCOND (MEMVIOL) Trap control routine

This routine goes to routine TRAPCNTL to see if the user
has contro!l of the current trap, If he does, TRAPCNTL
exits to the users trap control routine. If not, the appro-
priate error message is output and control goes to the con-

sole (DRINIT).
DATABRK
The Data breakpoint message is output. If this is a trace breakpoint, the
message is dumped to the device and execution of the user continues.
If not a trace break, go to routine RESTORE for some setup and leave con-

trol (in DELTA) and the console (DRINIT),

The other traps 41-45

An appropriate message is output and control goes to the console (DRINIT),
If the user was in control at the time of the trap, go to RESTORE, If
DELTA was in control, error exit.

ABORTENT

If entered when DELTA was in control, decrement DELTA's temp stack.
If user was in control, go to RESTORE. In either case, put out the error
message associated with the abort code and sub code and return control

to the console (DRINIT),
IBRKRTRN Instruction breakpoint return

Instruction breaks (and transfer breaks) use XPSD instructions planted

in the user's program, Since the user is operating in slave mode, attempt-
ing to execute these instructions causes a privileged instruction trap.

For instruction breaks, the address field of the XPSD contains the break-
point number. Hence, if the address causing the trap appears in the entry
in the table of instruction break locations pointed to by the address of the
XPSD, we have an active instruction breakpoint, If a proceed count

was specified and has not yet been counted down, execution proceeds
via IBRKCONT (DRSEMIP), Otherwise, the instruction break message
and the display, if requested, is output, If it is a trace break, the

output is sent to the specified device (Printer or Teletype) and execution
continues in the user, If not a trace, routine RESTORE is invoked,
various items set, and control goes to the console.

63

7.7

UTS TECHNICAL MANUAL SECTION LA
Page 34

4/13/71

Interpretive Execution

Inter pretive execution works as follows: From a given start location,
search down the routine until a branch type instruction is encountered,
plant a uniquely flagged return (XPSD) there and start normal execution
at the start location. In the routine that gets return control, TRACRTRN,
check if there is an instruction break on the location containing the
branch., Continuation after instruction break processing is at INTEX
where the branch is analyzed and interpretively executed, i.e., the
users registers are appropriately affected, the location counters in
DELTA are adjusted and TRACRTRN is entered wi th a flag indicating
whether the branch occurred or not. If the branch falls through, go back
to the search above and continue. If the branch branches, check the
special action table, TRACSPEC, and the special action flag, DO$DONT,
for what action to take. Also, check the BDR/BIR do-don't trace flag,
TRACLOOP, If after all that, there is a break, check TRACMODE

for whether to continue execution or halt in Deltq, returning console
control to the user via MESSAGE,

If there is an instruction break on the branch or on its effective address,
that message will also be printed.

Step execution mode uses this same code except that a return to the
user's consol e occurs after every instruction execution with display of
the contents of the current instruction address.

7.7.1 INTEX

This routine starts interpretive execution, If the instruction
at the current A is a branch, exit to TRACEXEC. Otherwise,
search memory for the next branch, save that instruction

and replaee it with an XPSD, with address field 11, then
start normal execution at IA (entry DRSG3 in DRSEMIG).

7.7.2 TRACEXEC

This routine interprets the current instruction and executes

it accordingly. If the instruction is not a branch or EXU,
execute it in the execute area, EXCTRAC, in user's context.
If it is an EXU, trace down to the object instruction and
check for branch, If not, execute. In either case, if it

is a branch, appropriately affect the users registers and
enter TRACRTRN with flag indicating whether it branched

or not,

8.

7.7.3

- UTS TECHNICAL MANUAL SECTION LA
T Page 35
4/13/71

TRACRTRN

Interpretive execution control return processor. This routine
handles return from user execution as a result of interpretive
execution. If the return was type 11 (see INTEX), i.e., to
interpret and execute a branch instruction, check for an
instruction break on this address and if none, exit to TRACEXEC.
If there is an instruction break, the message is output and

the setting of the instruction trace bit for this location deter-
mines whether execution proceeds.

If the return was type 9 (non-branching branch), check for
instruction breaks as above but exit to INTEX if execution
is to continue,

If the return was type 10 (branching branch), check the three
output determiners - table TRACSPEC, and flags DO$SDONT
and TRACLOOP (see DELTA reference manual 201634 A page 12)
and if no output, check for an instruction break and exit

as above, If output is called for, do it and proceed or not
depending on the trace mode flag TRACMODE,

Step mode always outputs and halts and does not print
instruction break messages.

UTILITY ROUTINES

The routines in this section are for the most part subroutines invoked by one or
more of the routines in previous chapters,

8.1

8.2

8.3

BDMP

If a dump of the instruction break table is requested, the common dump
routine, BRKDUMP, calls BDMP to output the display location for the
current breakpoint, Exit is to TESTBD in BRKDUMP,

BLAN KBUF

This routine stores blanks in the output buffer.

BRANCHK

This routine checks the instruction in the location pointed to by the
address in R1 for being a branch type instruction, If it is, exit is

65

8.4

8.5

8.6

8.7

8.8

UTS TECHNICAL MANUAL SECTION LA

Page 36
4/13/71
through the link, R7. If it is not, R1 is incremented by one and exit
is to link + 1,

BREAK$ MESSAGES
8.4.1 DBRKMSG Data Break entry
8.4.2 IBRKMSG Instruction Break entry

This routine outputs the data or instruction breakpoint

message. It is invoked by DATABRK and IBRKRTRN,
BRKDUMP Dump Breakpoint table

See Section 6.3.3

BRKINTPT Instruction Break proceed setup

This routine fetches the instruction from the location of the currently
active breakpoint, If the instruction is a BAL, it is changed to an uncon-
ditional branch to the effective address of the BAL, and the link register
in the user's register stack is set to point to Break location plus one.

In any case, the instruction is stored in the execute area, IBRKEXEC,

in the context page. An unconditional branch to the break location

plus one is stored at IBRKEXEC+]1.

This routine is invoked by DRSEMIP, but only if the active instruction
break flag is on (‘active' simply means that control is in DELTA as a
result of encountering an instruction break).

BRKSET

See section 6.3. 1
CHKTABL

This routine checks the transfer breakpoint special action table for the
presence of the address specified in R10. If found, exit through link
R4, If not found, exit to link plus one, Invoked by TRACRTRN and
SEMIYR and SEMIYS,

66

8.9

8.10

8.13

8. 14

UTS TECHNICAL MANUAL SECTION LA
Page 37
4/13/71

CONV

This routine converts the hexadecimal value in R7 to external EBCDIC
format and stores the eight characters in the output buffer, OUTBUF,
Invoked by LINESET (DRSEMIO). As each character is converted, it is
compared with the character in the same position already in OUTBUF,
If the characters are different, the non-duplicate indicator, SUM, is
set,

DRCLOSE

This routine resets the temporary output mode flag, MODINPUT, and the
step mode flag, STEPMODE, and checks if a location is open. If not,

it exits. If open, it checks for current command input. If not, exit.

The input is evaluated and stored in the currently open location by the
utility routine, STORWORD. DRCLOSE is invoked by DRCRTRN, DRLFEED,
DRUPAROW, DRTAB,

DRERR Error exit routine

This routine outputs a question mark and the current integer value of the
input character pointer, CHARINDX, It exits to DRINIT and is invoked
all over the place.

DRSYMAPD

This routine adds an entry to the top (low addressed memory) of the
global symbol table. The entry to be added is in registers 12-14,

A check is performed to see if the addition of these three words will
cross a page boundary. If so, the new virtual page is obtained.

GET$HEADER

This routine blanks the output buffer, stores a page eject format character
in it and moves the remaining characters in the command line (except
the last charzcter) to the output buffer. Invoked by DRESMIO,

Virtual page control

8.14.1 FREESPAGES
8.14,2 GET$PAGES

These two routines get or release pages from the page containing

67

8.15

8.16

8.17

UTS TECHNICAL MANUAL SECTION LA
Page 38

4/13/71

the address in R6 to the page containing the address in R7. Invoked
by DRSEMIK, DRSEMIS, DRSYMAPD, GETONE (TRAP40). If an

error occurs, exit is to link + 1; normal exit is to link + 2,

DBRK$CHK

Depending on a mask in R7, this routine (1) checks for a data break in
the page that contains the address in R6, or (2) checks for a data break
at the address in R6. Invoked by TRAP4J.

DUMPER

If a dump of the data break table is requested, the common dump routine,
BRKDUMP, calls DUMPER to output the releation, the conditional value
and the mask if they were specified. Exit is to TESTBD in BRKDUMP,

Instruction break set and restore

8.17.1 IBRKSET Set instruction breakpoints
8.17.2 IBRKRSTR Restore instruction breakpoints

Instruction breakpoints are set when going to the user (the
XPSD's are planted and the instructions saved) and restored
when control returns to DELTA (instructions are returned

to where they belong). When setting instruction breakpoints,
a check must be made to see if the location already con-
tains a transfer breakpoint, If so, the instruction break is
not planted, but the instruction break will be reported

via the transfer break return routine TRACRTRN,

LINESET

This routine sets up a line of output for the printer dump routine,

DRSEMIO.,

Open DCB M:XX

8.19.1 OPENSFILE

8.19.2 OPENSPRINT

These entries open the M:XX DCB to a file using the current

68

8.20

8. 21

8.22

8.23

8.24

8.25

UTS TECHNICAL MANUAL SECTION LA
Page 39
4/13/71
load module name and password, or to the LO device, respectively.
The DCB is closed by the routine which uses it.

RELEASE

See Section 6.3.2

Symbol table page control

8.21.1 RELEASE$ GLOBAL

8.21.2 RELEASESINTERNAL

These routines release the global and internal symbol table
pages. If the boundary between the global and internal
symbol tables is within a page and if only one of the tables
is being released, the boundary page is not released.

RESTORE

This routine restores instruction breakpoints via IBRKRSTR and sets up
the special symbols ;C, ;F, ;I, ;3, ;4 from the user's PSD,

SET$PRTCT

Executes a set memory protect CAL using the address in R12 and the
protection type in R10.

SPACER

This routine is a tab simulator. It inserts blanks in the output buffer to
the position specified in RO,

STORWORD

STSWORD

This routine stores the value inRO into the location specified in R3 through
a mask in R1, Entry at STORWORD sets a 32 bit mask in R1 or the caller
inputs the mask in R1 and enters at STSWORD. If R3 is 15 or less, the
value is stored in the appropriate register in the users temp stack

(SAVREGS).

69

9.

UTs TECHNICAL MANUAL SECTION LA
- Page 40

4/13/71

1/O ROUTINES

There are two classes of 1/O routines: Internal which move a character at a time
between DELTA routines and the input/output buffers, and External which move
mul ti-character messages between DELTA's I/O buffers and the specified devices.

External Routines

2.1

9.2

PMESS

This routine sends out DELTA's prompt character, the bell, and executes
a read for a maximum of 80 characters. When the Monitor returns with
the completed message, the num ber of characters actually typed by the
user is saved in NUMBCHAR, PMESS falls directly into the MESSAGE

switching routine. :
9. 1.1 MESSAGE

This routine checks if the break key was hit by the user.

If so, all output is ignored and it exits through DRINIT to
PMESS. If no break, it checks for characters in the output
buffer. If so, they are output to the device via DUMPBUF,
It then checks for characters remaining to be scanned in
the input buffer. If none, branch to PMESS for next com-
mand line, If there are characters, leading blanks are
stripped off and the exit is indirect through MESSEXIT to
one of the scan entry points.

DUMPBUF

This routine checks to see if the break key was hit recently by the user.
If so, it clears the output buffer and the break key flag and branches

to DRINIT, If no break, the items SEMIJ and MSG$TYPE determine
which device the output is going to (LO or UC).

Internal Routines

9.3

TYPEOUT

This routine stores the low order byte of RO in the next available posi-
tion (OUTCHAR) of the output buffer, OUTCHAR is incremented by one
and a check is made to see if the line has been filled, If so, it is
printed via DUMPBUF, Otherwise, exit,

70

9.4

10.

10.1

10.2

10.3

UTS TECHNICAL MANUAL SECTION LA.
Page 41
4/13/71

INPTCHAR

This routine returns the: next character from the input buffer in RO. It
then increments the pointer, CHARINDX, by one. If no characters
remain in the buffer, error exit,

CONSTANT DATA

Op Code Tables

The use and structure of these tables is described in Section 3.2.5 and
4.4,

DRSPCSYM
A halfword table of addresses of the value words for the special semicolon
symbols (SPECSYM). This table is used when setting new values for those

symbols,

Punctuation and semicolon transfer tables

10.3. 1 DRPOINTI

Halfword table of relative addresses of punctuation routines.
10.3.2 DRPOINT2

Halfword table of relative addresses of semicolon routines.
10.3.3 DRKEY]

Byte table of indexes into DRPOINTI,
10.3.4 DRKEY?2

Byte table of indexes into DRPOINT2,
The use and organization of the tables for punctuation and semi commands
are identical. When a punctuation character (or, after the semicolon,
a valid character) is encountered, the high order bits are cleared and the

remaining value is used as an index into DRKEY1 or 2, which value is

then used to get the relative address of the appropriate routine from
DRPOINTI or 2,

71

_ UTS TECHNICAL MANUAL SECTION LA
Page 42

4/13/71

In addition, the first N routines in both tables, have evaluation (DREVAL)
automatically performed before they are entered. For DRPOINTI, N is
determined by the position of item DRVAL1XX, and for DRPOINT2 by

the position of DRSLIMIT,

10. 4 CONDITIONS

Table of the EBCDIC form of legal conditionals that can be specified on
Data breaks.

10.5 DBKCONDTN

Table of conditional branches parallel to CONDITION which are

executed when a conditional data break is processed.
10.6 DBRKADRS

Table of relevant addresses for data breaks which is stored into table
BASEADRS when the common break setup routines are operating.

10.7 DRBUILD

Transfer vector used for processing input terms in the scan. R7, the
input type, is the index into this table,

10.8 DRPRTVEC
Transfer vector for output mode switching.
10.9 DRTYPCHAR
Byte table of legal output format modes.
10..10 IBRKADRS
Similar to DBRKADRS, Section 10.6, but for instruction breaks.

10.11 TRAPS

Transfer vector for trap control processing.

72

11,

UTS. TECHNICAL MANUAL SECTION LA
Page 43

4/13/71

VARIABLE DATA (USER's CONTEXT)

This page of DELTA is flagged as 00 protection type, i.e. variable datq,
when DELTA is operating but is protected with an 01 (read and execute)
protection type when the user has control, There is a page of this data

for each user that has DELTA associated.

73

SECTION LA

PAGE 44
UTS TECHNICAL MANUAL 5/17/71
ID
Exec Delta
PURPOSE

The purpose of this document is to describe the usage of Exec Delta rather than its
implementation.

OVERVIEW

Exec Delta, the executive version of Deltq, is basically a stand-alone debugger used

to debug the monitor. It is also used to process the patches to the monitor (root and
overlays) at boot time. Exec Delta runs in the master mode, mapped or unmapped, and
performs its own I/O. It is loaded with the monitor's ref/def stack (MONSTK) and is
biased at X'EC00'. The Exec Delta command syntax is the same as the user Delta syntax
and the command set is much the same.

USAGE

Exec Delta is called by GHOST1 to process monitor patches via
LI, 1 PACHSTRT
BAL, 11 *DLTBIAS, 1

For use as a debugger, Exec Delta is entered via the following steps:

1. Set the RUN switch on the control panel to IDLE

2. Display location X'4E' which contains the DELTA entry XPSD
3. Move the RUN switch to STEP

4. Move the RUN switch to RUN

DESCRIPTION

Exec Delta performs its own 1/O. When it is entered it checks to see if the devices it
uses are busy or have interrupts pending. If so, it waits for not busy, clears the inter-
rupts, and remembers which devices had interrupts pending. When Delta exits, it
performs a dummy 1/O operation on each device which had interrupts cleared and waits)
until the interrupts are pending before exiting.

Patch Deck Processing
The patches to monitor are processed by a special routine in Delta. The format of the
patches is as follows:

seg/address/instruction/comment

where:
seg = a hexidecimal number indicating the overlay to be patched (0 or omitted
for the root)

74

SECTION LA

PAGE 45
UTS. TECHNICAL MANUAL 5/17/71
address = a constant or a monitor label + constant for patches to the root. For
overlays the address must be a relative address in the overlay (labels may
not be used).)
instruction= a constant or an instruction with a constant or monitor label + constant

address field. For patches to overlays the address field must be absolute.

Some examples of monitor patches:
1. patch to root

/TOSPIN+12/B IOSPIN+8/ COMMENT
the specified branch instruction is stored in location IOSPIN plus decimal 12. .
The patch will be listed on the printer as follows:

/TOSPIN+12/ B IOSPIN+, A B IOSPIN+8/ COMMENT
where the underlined portion is the previous contents of IOSPIN+12

2. patches to an overlay

1/. 3BE+. 50/. 3FFF/ CHANGE CONSTANT IN OVERLAY 1
1/.415/LW, 12 . 83BE+. 50, 3/

At location . 40E(. 3BE+. 50) in overlay 1 the constant X'3FFF' is stored. At
location . 415 in overlay 1 the instruction 'LW, 12 . 840E, 3' (X'32C6840E") is
stored.

Note that all overlays are biased at X'8000' and the address of the location to
be changed in an overlay is relative to X'8000' but the instruction to be inserted
is absolute, i.e. X'8000' + offset into overlay.

The labels used in monitor patches must be defined in the Exec Delta patch symbol

table module (SYMTAB).

Patches to an overlay may not be intermixed with patches to another overlay. In fact,
overlay patches must be in order by segment number in the patch deck but root patches
may be placed anywhere. Thus the third patch in the following sequence would be
illegal.
1/.841/L1,1 0o/
2/.43/LS,5 .8541/
1/.842/AND, 1 .8035/

If Delta detects anerror in a patch, it is printed on the operator's console typewriter.
The operator then types logical not (M) and new line. To ignore the patch and go on,
the operator then types G. Any character other than G is interpreted as the first char-
acter of the correct patch. If a typing error is made while typing in the correct patch,
the line rubout command is a question mark (?).

After the monitor root and segments have been patched and written on the RAD, the

75

SECTION LA
PAGE 46
UT5 TECHNICAL MANUAL 5/17/71

system initializer, GHOSTI, asks the operator if he wants to retain Exec Delta. If he
responds yes, the pages Delta occupies are acquired from the monitor free page pool and
thereafter Exec Delta is available for use. If he does not respond or responds no, the

pages Delta occupies are left in the free page pool and the Exec Delta entry mechanism
is disabled.

RESTRICTIONS

Exec Delta may not be entered while the computer is running in the slave mode since
the XPSD will cause a privileged instruction trap.

76

SECTION LA
PAGE 47
. UTS TECHNICAL MANUAL 9/29/71

1D
DELTA interface with processors

PURPOSE

To provide communication between user-DELTA and system processors (ANALZ and
MONFIX). This interface allows a user to examine and modify a running monitor,
a crashed monitor dump or a BOOTFILE using the language and tools of DELTA,

USAGE

The associate/disassociate CAL places the address of the vector taken from the first

word of the FPT into J:INTENT and associates DELTA with the processor, The format
of the vector is

JAINTENT —> | GETSUBR

PUTSUBR
EXITLOC
LMNLOC

GETSUBR is the address of the start of the GET subroutine,
PUTSUBR is the address of the start of the PUT subroutine,
EXITLOC is the address to ';G' to.

LMNLOC is the address of the LMN table,

The 7-word LMN table identifies the load module to be ysed by DELTA

LMNLOC = 0 [account
ASSWORD
% {, if absent)
4 NAME *
2 (TEXTC format)

*NAME is restricted to three words maximum,

A user-hit break causes control to be transformed to DELTA and a subsequent '; G’
causes control to be returned to EXITLOC,

77

SECTION LA
PAGE 48
UTS TECHNICAL MANUAL 9/29/71

Each request to display a location causes DELTA to transfer control to the GET subroutine
(GETSUBR) and request to store a value causes control to pass to the PUT subroutine
(PUTSUBR).

GET Subroutine:

R3 = core address of word requested
BAL, R4 GETSUBR
(Value must be returned in R3, GETSUBR may use regs RO-R4, but must not

clobber R5-R15),

PUT Subroutine

RO = word to be stored, ' '
R1 = mask by which to store, } as for *STS, RO

R3 = word address in which to store,

R2 = address of symbol text string corresponding to patch (for MONFIX),
BAL, R4 PUTSUBR

(PUTSUBR may use regs RO-R4, but must not clobber regs R5-R15),

EXAMPLE:

The user types 'LOC+, 1A/*, If 'LOC" has the value X'1000', GETSUBR is called with
X'101A" in R3. DELTA then types out the word returned by GETSUBR in R3, and prompts
for another input. The user now types 'SLS,3 1 CR ', DELTA now calls PUTSUBR with:

RO = X'25300001"
R1 = X'FFFFFFFF'

R3 =X'101A'
R2 = o

o TESTC 'LOC+,1A/SLS,3 1!

Note that the symbolic string is in TEXTC form with no termination character,

78

SECTION LB
PAGE 1

3/27/72
UTS TECHNICAL MANUAL

ID

User Program Debugging

OVERVIEW

Batch debugging services include 1) program modification via MODIFY commands,
2) execution test and output via SNAR SNAPC, I AND OR and COUNT
commands and user CALs, and 3) post mortem dumps via PMD, PMDE and PMDI
commands.,

These commands, which follow the RUN command, are read by CCI and each
written as a record into the 'D' star file. A flag is set in J:ASSIGN (bit 14)
to indicate the presence of PMD, PMDE and PMDI records. The count of the
number of other debug records is set into the RUN table (consisting of RUN

command information), which is left in high virtual memory for use by STEP
and RUNNER.

If there is a 'D' star file, FETCH a routine of STEP, calls RUNNER before it
brings the requested load module into memory. RUNNER reads the file and
builds a Clobber and a Debug table in core. The Clobber table consists of 2
word entries containing |) a location to modify or where a debug function is

to take place, and 2) the modify value or the debug CAL, The Debug table
consists of the parameter lists (FPTs) for the debug CALs, RUNNER rewrites, in
a new format, the PMD, PMDE AND PMDI records and deletes the rest from the
file. It also computes the start address if it is symbolic.

When RUNNER returns to FETCH, the load module is brought in and the debug
CALs and modifies are set up using the Clobber table. As the user executes,
the SNAP, COUNT, etc. CALs, inserted as a result of the above procedure

and set up by the user, are honored by execution of routines in the modules SNAP
and DUMP,

Upon termination of the program, if the flag in J:ASSIGN indicates PMDs or if

the user was errored or aborted, STEP goes to the PMD routine of the DEBUG monitor
overlay. PMD honors the PMD, PMDE and PMDI records and the TELUSER routine
of DEBUG processes the error and abort codes. STEP then does the remainder of the
job step shutdown.

79

SECTION LB.OI
PAGE 1

3/27/72

UTS TECHNICAL MANUAL

1D

RUNNER

PURPOSE

The purpose of RUNNER is to build, just prior to execution time, two tables which
become part of the user's pure procedure: 1) containing the locations to be

by modified instructions or debug CALs, and 2) containing the Plists for the debug
CALs. RUNNER also reformats the PMD, PMDE and PMDI records and deletes the
rest of the records in the 'D' STAR file. If there is a symbolic start address specified
in the Run table, RUNNER converts it to an absolute value.

USAGE

When the FETCH part of module STEP determines that RUNNER functions must be per-
formed, it associates the special shared processor, RUNNER, and sets as the last
entry in the stack the address of the beginning of the RUN table in the J:EUP (End

of User's Program) page, i.e. X'1BEQO',

INPUT

The RUN table created by CCI contains in byte 1 the number of debug control
commands and in byte 2, the number of modify control commands. Starting in
word 10 of the RUN table, if present, is the symbolic start address in TEXTC
format. DEBUG field (bit 14) in J:ASSIGN indicates the presence of PMD
PMDE or PMDI records in the 'D' STAR file.

OUTPUT

The Clobber table contains two=-word entries for each Debug or Modify request,
specifying the location and the CAL or the modify word. If the top bit of the
location word is set, it is a modify entry. All debug entries have a corresponding
entry in another table, the Debug table, containing the Plist/FPT for the debug CAL.

DATA BASES
A Flag table is created in BUP (Beginning of User's Program) page and used in RUNNER
" to keep track of the flags used on the debug commands. Entries consist of a 2 word

name followed by the address of word 7 of the Debug table entry which first re-
ferenced this flag.

80

SECTION LB, 01
PAGE 2
3/27/72

UTS TECHNICAL MANUAL

SUBROUTINES

SEGSRCH finds the tree entry, in the tree pointed to by register 0, for a specified
segment name pointed to by register 4. At SSH5 wi thin the subroutine,
it sefs up in register 3 a pointer to the entry of the tree of the segment's
back link. It then places the buffer address (the top of the buffer area
input in register 5) and the REF/DEF size into an FPT to read in the
segment's REF/DEF stack and sets its key into a key buffer. The
pointer to-the tree entry is output in register 14.

ERSUBR is used to output an error message from the error message file and
return to the calling routine to continue processing. It calls upon
ERRMSGE (an internal routine), to read the message from the error
message file. If the high order bit of register 11, containing the
return address, has been set by the calling routine, the name pointed
to by location BA" NAME is set into the buffer and the message is
output.

PASSNAME increments register 5, which is pointing to a TEXTC name, to point
byeond the name.

LOCNAM returns in register 6 the DEF value from the REF/DEF stack of the
name, i.e., symbol, pointed to in register 5.

FROMTO returns in registers 8 and 9 the values from the REF/DEF stack of the
"from" location and the "to" location of the debug commands.

ENTCLT enters the double word contained in registers 8 and 9 into the Clobber
table.
ADFLG - tries to find the flag name specified in registers 10 and 11 in the Flag

table. If it is found, the address contained in the following word is
placed in word 7 of the FPT in the Debug table. If the flag is not

found, the name is entered into the table and the address of word 7

of the FPT currently being set up is set into the word following the name in
the Flag table and a zero is set into word 7 of the FPT.

INITDB sets up words 0, 5, 6 and 7 of the FPT in the Debug table.

81

SECTION LB. 01
PAGE 3

3/27/72

UTS TECHNICAL MANUAL

All of the following subroutines process some type of debug record from the 'D*
STAR file and make the appropriate Flag, Clobber, and Debug table entries. Input is:

register 5 = beginning address of debug record

register 12 = address of next available entry in Debug table
register 13 = address of next available entry in Clobber table
register 14 = - address of the segment's name in tree

register 15 = address of next entry in the Flag table

All of the routines check for invalid names and addresses and call on the error message
routine to output appropriate error messages. Most of the previous subroutines are used
to serve the following routines:

MOD processes a Modify record.

PMD processes a PMD, PMDE or PMDI record and is an exception. It does
not create entries in the tables but creates a differently formatted
PMD/PMDI record. It does not create entries
in the tables but creates a differently formatted PMD/PMDI record
and rewrites it to the 'D' STAR file,

SNAP processes a SNAP or SNAPC record.
IAO processes and IF, AND or OR record.
ERRORS

Following is a list of the RUNNER errors found in the error message file. The key is
followed by the name in parentheses used in RUNNER to reference the error, followed
by a description, followed by the name of the routine where error occurs.

040358 (ABB) Name of locations where debug function to be done is not found in
: REF/DEF stack (INITDB)

040359 (ABC) Name on IF, AND, or OR not found in REF/DEF stack (IAO)

04035A (ABD) Name on SNAP not found in REF/DEF stack (SNAP)

04035B (ABE) Name on PMD not found in REF/DEF stack (PMD)

04035C (ABF) Name on MODIFY not found in REF/DEF stack (MOD)

04035D (AB5) Debug flags overflowing space allowed (ADFLG)

04035E Exceeding space allocated for Clobber table (EnTCLT)

04035F Debug record from Debug file has an invalid byte 0 (main routine)

040360 (LMAB) 1/0 error reading load module head or tree (main routine)

040361 (SGAB, 1/0 error reading the load module's REF/DEF stack (main routine)
(SGER)

040362 (DBER) I/0 error reading the Debug file (main routine)

040363 (ABG) Bad symbolic name for start address (main routine)

82

SECTION LB. 01
PAGE 4

3/27/72
UTS TECHNICAL MANUAL

040364 Location to Modify is not within limits (MOD)
040365 (ABH) Start address not within legal program limits (main routine)
040366 Invalid tree size in load module (SEGSRCH)

040367 (ABI) Can't get page following user's pure procedure for Debug and
Clobber tables (main routine)

040368 Location to dump on PMD is not within legal program limits (PMD)

040369 Location where debug function fo be performed is not within legal
program limits (INITDB)

04036A Location (FROM or TO) on SNAP not within legal program limits
(SNAP)

040368 Loglcal error in size of debug table when trying to move it to
user's core (main routine)

04036C PMD's or debugs were attempted on a LINKed LMN

RESTRICTIONS

RUNNER is and must be a special shared processor with special JIT access.

DESCRIPTION

Since FETCH has set up M:XX for reading the load module, RUNNER saves and, before
it exits, restores the error and abnormal addresses in M:XX. It moves the RUN table
from the EUP page into its own data page and releases that page. It reads the LM
(Load Module) head into the data page, and using that information, sets up the FPT

to read in the tree at the top of the EUP page. It then computes space needed for the
Debug and Clobber tables from bytes 1 and 2 of the RUN table and maximum REF/DEF
stack area needed from the head. It then gets the necessary Common pages for these
and reads in the tree. If there are no debug requests to process, it processes the
symbolic start.

If there are debug requests, it gets virtual page, BUP, for the Flag table and opens the
'D' STAR file. RUNNER goes through a loop to process each debug record. The
record is read and deleted. Its KEY consists of the name of the segment this debug
applies to, plus an N indicating whether this is the 0 or the N record in the file

for this segment.

The first time a segment is referenced, its entire REF/DEF stack is read in and the
address of the next available entry of the Clobber table is set into word 10 of the
segment's tree entry. Byte O of the Debug record indicates the type of debug
command and the appropriate subroutine is called to process the record and set up
the tables,

83

SECTION LB. 01
PAGE 5
3/27/72

UTS TECHNICAL MANUAL

After all debug records are processed, the file is closed. If there is a symbolic
start address, the REF/DEF stack for the root segment is read and the start
address determined by adding the value of the symbolic location (determined by
LOCNAM) to the displacement. This value is set into the head.

The Flag table page is released since it is used only for internal processing as are

the REF/DEF stack pages. The header pure procedure doubleword size is updated

to reflect the addition to it of the Clobber and Debug tables and the virtual pages

for them are obtained. The Clobber table is moved and the CAL addresses relocated

from the table setup area to where the Debug table will reside. It is then moved and

word O (for chained Plists) and word 7 (for flags) relocated. The last word (word 10)

of each entry of the tree is moved to the top of RUNNER's data page and they are

relocated to reflect where the Clobber table is now rather than where it was built.

The rest of the common pages are released. If there were any errors, RUNNER does an abert
exit; otherwise, it exits normally.

STEP intercepts RUNNER's normal exit and drives directly into FETCH which reads in
the load module and moves the word 11's into the tree. If there is a Clobber table, it
is used to set up the Debug CALs and Modify's for the root. SEGLD sets them up for
the overlays.

SECTION LB. 02
PAGE |
3/27/72

UTS TECHNICAL MANUAL

ID

SNAP
PURPOSE

SNAP consists of a number of routines that process the SNAP, SNAPC, IF, AND,
OR and COUNT debug CALs,

OVERVIEW

Each of the debug CAL routines performs its function of either dumping portions of
core or making tests capable of altering the setting of a flag for a conditional snap.
All of the routines exit to DEBUGX which checks word O of the FPT for the link
address to another debug FPT, If one is specified, the proper routine is executed
and DEBUGX is re-entered. This process continues to the end of the chain. If
the chain is circular or contains more than 255 links, the job will be aborted.
When the end of the chain is found, the PSD in TSTACK is altered so that the
instructions in words 5 and 6 of the FPT will be executed. (Word 6 is a branch
instruction to the point immediately following the CAL,) Therefore, once normal
trap exiting functions have been performed by TRAPEXIT (of ENTRY), control

will eventually be returned to the user at the point directly after the CAL in-
struction,

USAGE

For all routines:
register 5 = address of JIT
register 7 = address of word 1 of FPT

ERROR

00B0O02 Is key to message in error message file when flag address is invalid on
conditional debug command

85

ID

SECTION LB, 02
PAGE 2
3/27/72

UTS TECHNICAL MANUAL

MSNAP - process ISNAP request

PURPOSE

To take an unconditional 'snapshot' of the memory locations specified by the user.
Snaps ry P Y

INPUT

word 0
word 1

word 2

word 3
word 4

word 5
word 6

where

chained FPT

EPT FOR M:SNAP

X'00' 0 0 Chained FPT
* 0 O |First address to be dumped
x| 0 0 |Last address to be dumped

First four characters of comment

Last four characters of comment

Code for NOP, or replaced instruction

Code for BCR, 0 Z + 1 where Z is location

of CAL1, 3

01 78 14 15 31

is the address of an FPT for a CAL], 3 that is to be executed im-
‘mediately following the current CAL1, 3. This address is used
for a ISNAP control command with multiple dump locations
("from's” and "tos"). A zero address indicates that there is
no chained FPT.

86 -

SECTION LB.02
PAGE 3
3/27/72

UTS TECHNICAL MANUAL

word 5 is the NOP instruction if the CAL1, 3 was coded by the users, Other-
wise, if the CAL1, 3 is to be executed as the result of a debug control
command (i.e. !SNAP), this ts the instruction from the user's program
that was replaced by the CAL], 3.

word 6 is the branch instruction to the location immediately following the
CAL], 3 instruction.

D

MSNAPC - process ISNAPC request (conditional SNAP)

PURPOSE

To take a snapshot of memory if the flag specified by the SNAPC FPT is set (1).

INPUT

FPT same as SNAP except:

word 0, byte 0 = X'01" and
word 7 , , address of flag (1, 15, 16)

DESCRIPTION

The MSNAPC CAL checks the flag specified by the FPT. If the flag is set (flag = 1),
the routine branches to MSNAP so that a dump can take place. Otherwise, it branches
to DEBUGX which checks for chaining to any other DEBUG FPT. MSNAP then calls
PRINT which writes on the diagnostic output device (M:DO) the comment specified in
the FPT. The routine REGPRNT is then called which writes on the DF device, |) the
PSD, and 2) the registers. MSNARP verifies that the core to be dumped is in the

proper range and, if it is not, aborts the job at ABORTI of STEP. Otherwise, it enters
the subroutine DUMPW, which dumps out on the M:DO device the core specified by
the FPT. Finally, MSNAP exists to DEBUGX.

87

ID

SECTION LB, 02
PAGE 4
3/27/72

UTS TECHNICAL MANUAL

MIF = process lIF request

PURPOSE

To make an FPT - designated test at a specified location and set the flag bit associated
with the conditional srapshot if the test condition is true, and reset the flag if the test

is false.

INPUT

word 0
word 1
word 2
word 2
word 4
word 5
word 6

word 7

where

chained FPT

word 1

word 2

IF FPT
X'02' 0 0 Chained FPT
* Instruction to load L1 into register 0
%*

Instruction to load L2 into register 0

Instruction to branch if specified relation (r) is true

0

0

Code for NOP or feplaced instruction

Code for BCR, 0 Z+1 where Z is location of CAL]1, 3

*

0

0| Address of FLAG

is the address of another DEBUG FPT that is to be executed
immediately following the current CAL1, 3. If address is
zero, no other FPT is chained.

is the instruction (LW, LH, LB, LD) to load the first comparand (L1)
into register 0,

is the instruction (LW, LH, LB, LD) to load the second comparand
(L2) into register 0.

88

SECTION LB.02

PAGE 5
3/27/72
UTS TECHNICAL MANUAL
word 3 is the instruction to branch if the specified relation (r) between L1
and L2 is true. See below.
r Instruction
GT |BCS, 100
LT |BCS, 2 0
EQ |BCS, 3 0
GE |BCR 1 0
NF. |BCS, 3 0
word 5 is the NOP instruction if the CALI, 3 was coded by the user. Otherwise

if the CAL1, 3 is to be executed as the result of a debug control command

(i.e., !F card), this is the instruction from the user's program that was
replaced by the CALI, 3.

word 6 is the branch instruction to the location immediately following the CAL1, 3
instruction

word 7 is the address of the flag associated with the conditional snap for the
M:IF.

DESCRIPTION

The MIF routine obtains the two comparands, L1 and L2 (purpose of subroutine
GETDTA). It then gets the branch instruction from word 3 of the FPT and fills its
address portion with the address of SETF; L1 and L2 are compared and the conditional
branching instruction, just updated with ETF in its address portion, is immediately
executed. Therefore if the relation (r) is true, the MIF routine branches to SETF,
where a switch is set to indicate that the flag is to be set. If r is not true, the routine
falls through the branching instruction and sets a switch to indicate that the flag is to
be reset.

Once the flag setting or resetting switch has been set, the flag itself is checked. If

it is not within the legal limits of memory, the job is aborted at ABORT1 of STEP.
Otherwise, the flag is set or reset and MIF exits to DEBUGX.

89

SECTION LB. 02
PAGE 6
3/27/72

UTS TECHNICAL MANUAL

1D

MAND - process !AND request

PURPOSE

To make a specified test at a designated location if the flog bit is set. If the test
condition is found to be true, the flag bit remains set; otherwise, the flag bit is
resef,

INPUT

a

Same as IF FPT except word 0, byte 0 = X'03'

DESCRIPTION

The MAND routine checks the flag specified by word 7 of the FPT. If it is set, MAND
branches to MIF, If the flag is not set, MAND branches to DEBUGX.

ID

MOR - process !OR request
PURPOSE

To make a specified test at a designated location provided the flag bit is not set
(i.e. flag =0). If the test condition is true, the flag bit is set; otherwise, the flag
bit remains reset. :

DESCRIPTION

The MOR routine checks the setting of the flag specified by word 7 of the FPT. If the
flag is reset (i.e., 0), MOR branches to MIF to make the specified test. Otherwise,
MOR branches to DEBUGX.

90

SECTION LB.02
PAGE 7
3/27/72

UTS TECHNICAL MANUAL

1D

MCOUNT = process !ICOUNT request*
PURPOSE

To specify an iteration range (and steps within that range) in which a designated flag
will be set. The flag will be set only if (1) the count is within the range specified
by the start and end count parameters in the FPT and (2) the quotient (count-start)/
step is a non-zero integer.

COUNT FPT
word 0 X'05' 0 0 Chained FPT
word 1 Binary number to start count
word 2 Binary number to end count
word 3 Binary number specifying step intervals
word 4 [0 | o) 0
word 5 Code for NOP or replaced instructions

word 6 Code for BCR, 0 Z+1 where Z is location of CAL, 3

—

word 7 | */(Q 0 Flag address

f

N el

0 1 78 14 15 31

where

Chained FPT is the address of another DEBUG FPT that is to be executed im-
mediately following the current CALI, 3. If the address is zero,
no other FPT is chained.

word 1 specifies the starting count at which the testing of the count is
to begin.
word 2 specifies the ending count at which the incrementing of the

count is to cease,

21

word 3

word 4

word 5

word 6

word 7

DESCRIPTION

SECTION LB. 02
PAGE 8

3/27/72
UTS TECHNICAL MANUAL

specifies the count increment that determines the intervals (within
the range designated by 'start' and 'end') at which the conditional
snap flag will be set. (Flag will be set if and only if (1) the count
is within the range specified by start and end, and (2) the quotient
of (count-start)/step is a nonzero integer.)

is the cell used by the Monitor for the count which initially must
be zero.

is the code for a NOP is the CAL1, 3 was included within the user's
program. If the CALI, 3 is to be executed as the result of a debug
control command (i.e., a ICOUNT card), it is the instruction
from the user's program that was replaced by the CALI, 3,

is the branch instruction to the location immediately following the
CAL1, 3 instruction.

is the address of the flag associated with the conditional snap.

Word 4 of the FPT becomes a counter which is incremented by 1 each time the FPT i
used. If the count is less than the starting count or greater than the ending count, or
if the quotient of (count-start)/step is not a non-zero integer, an attempt is made to
reset the flag specified by word 7 of the FPT, However, if the FPT is chained to
another DEBUG FPT, two checks are made: (1) is the chained FPT in core? and (2)

is the FPT code (byte O of word 0) of the chained FPT legal ? If either check is
negative, the job is adborted. Otherwise, DEBUGX branches to the routine that will
process the new chained FPT: MSNAP, MSNAPC, MIF, MAND, MOR, or MCOUNT,
Chained FPTs are built by RUNNER when multiple dump locations have been specified
on a ISNAP or ISNAPC card.

92

SECTION LB. 03

PAGE 1
3/27/72
UTS TECHNICAL MANUAL
ID
PMD
PURPOSE

PMD provides dumps of the user's memory following user execution. It also calls upon
TELLUSR to output error and abort messages and their associated debug information.

USAGE

STEP calls PMD with the user's exit environment in the stack.

DESCRIPTION

The run status (J:RNST) in JIT is interrogated. If a user was running and this is an
abnormal termination, TELLUSR is called to list appropriate error or abort messages
and dump related error information,

If PMDs are requested as indicated by field DEBUG (bit 14) in J:ASSIGN, and an M:DO
DCB is found, a blocking buffer is obtained unless one remains from TELLUSR. An

extra stack area is set up in the blocking buffer. The M:XX DCB is opened to the 'D'
STAR file containing any PMD records defining the PMDs to accomplish. If the user
exited normally, PMDIs are honored; otherwise, PMDEs PMDs and PMDIs are honored.
The records are read into the buffer one at a time and the from/to pairs are pushed

into a special stack in the blocking buffer. DUMPER is then called to dump the PSD,
Registers and requested memory.

93

SECTION LB. 04

PAGE 1
3/27/72
UTS TECHNICAL MANUAL
D
TELLUSR
PURPOSE

TELLUSR is the routine in the DEBUG overlay segment which prints all monitor error
messages to batch users who encounter an illegal trap, who are errored or aborted by
the operator, or who error or abort themselves.

TELLUSR also prints 1/O error messages.

TELLUSR prints the message, the location in the user program which generated it.

USAGE

TELLUSR is accessed via a OVERLAY DEBUGSEG, 7 from the exit logic in the monitor
routine STEP. This transfers control to the routine PMD which uses TELLUSR as a
subroutine to print the error message.

INPUT

CELLS

All table information used by TELLUSR is from the user's JIT, Specifically, TELLUSR
accesses the following locations: ERO, J:ABC, J:ASSIGN, J:DCBLINK, J:FPOOL,
J:JIT, J:RNST, M:XX, MDPO, MPPO, TSTACK. For adescription of the contents
of these cells consult Section VA.

FILES '
TELLUSR reads the file ERRMSG which contains all monitor error messages. Section UB
and the UTS System Management Guide, Chapter 8 detail the format of the file.

OUTPUT
TELLUSR output to the user is of the following format:

m m m

AT YYY

where m m m is the monitor error message, YYYY the location where the error occurred.

94 -

SECTION LB. 04
PAGE 2
3/27/72

UTS TECHNICAL MANUAL

If an I/O error is being reported, the DCB is appended to the above messages:
ON DCB d:dd

INTERACTION

GFBB to get a blocking buffer as a scratch pad
MSRRDWT to read the error message file

REGPRNT to print the PSD ;md registers (DUMP subroutine)
T:OVERLAY to overlay to MSROPN to open M:XX to ERRMSG

DATA BASES

TELLUCR uses a blocking buffer as a scratch area for building messages. The address of
this buffer is maintained in R1.

SUBROUTINES
AT sets message 'AT XXXX" into the working buffer, where XXXX is the
address at which the error was encountered
Access: BAL, O
Uses: 56,7, 11
CHKDG routine to check the existence of the M:DO DCB
Access: BAL, 11
Uses: 0,34,12

Exits normally if M:DO exists, exits skipping if not.
ERRMSGE the routine which reads the file ERRMSG with a specified key.

If an error is encountered on the read, the key is translated into EBCDIC
and put in place of the expected message.

Access: BAL, 11
In: 1 = Buffer
12 = Key

Out: Message in buffer

95

FORM

GETBUF

GETWHO

TRANS

WRITERR

SECTION LB.04
PAGE 3

3/27/72
UTS TECHNICAL MANUAL

sets a specified message into the working buffer
Access: BAL, 0
Uses: 4,58
In: 1 = buffer address
2 = Pointer into buffer
6 = Message address
8 = Count of characters in message

routine to get a blocking buffer as a work area. First attempts to get
a blocking buffer via GFBB. If unsuccessful, GETBUF searches the
DCB chain for an open file DCB and truncates it.

Access: BAL, 8 GETBUF

Out: R1 = Buffer address

routine which determines who aborted the user by analyzing the run
flags in J:RNST,
Access: BAL, O

Uses: 35
Out: 5 contains index to who aborted the user:
0 = Monitor
1 = Processor
2 = User
3 = Loader

translates specified word to EBCDIC and stores it in the output buffer.

Access: BAL, 0
Uses: 4,5,6,7,8
In: 1 =Buffer address

2 = Pointer into buffer

5 = Number to translate

7= { 0 suppress leading zeros

1 insert leading zeros }

the routine which opens M:XX to ERRMSG, forms a key from the user's
error and abort code, and

03 | 00 ABC ERO

calls ERRMSGE to read the error message. M:XX is then opened to the
DO device and the message written to it.

Access: BAL, 0

926

DESCRIPTION
TELLUSR

ILLEGAL TRAP

IOERR

MAXMSG

MSGOUT

SECTION LB, 04
PAGE 4
3/27/72

UTS TECHNICAL MANUAL

TELLUSR obtains a working buffer and branches to the appropriate
routine as determined by J:RNST,

012314567

JIRNST | 11111111

Illegal Trap
1/0O Error

Maximum Exceeded

Presently Unused
X Keyin

E Keyin
M:XXX
M:ERR

Routine which uses WRITERR to print the monitor error message, then
prints "BY () AT () WHICH CONTAINS ()" using routines

GETWHO, AT, FORM, and TRANS.

Routine to print the monitor error message and the DCB on which the
error occurred, TOERR first calls WRITERR to print the error message,
then attempts to locate the DCB associated with the error. If the DCB
is found, and if M:DO DCB exists, the message "ON DCB d:dd" is
printed. If the DCB is not located, the message "NON-EXISTANT DCB
ADDRESS AT XXXX" is given.

Routine which determines the exceeded maximums, stores the appro-
priate codes in J:ABC and M:ERO, and transfers control to ILLEGAL
TRAP, '

Routine which determines how the user was errored or aborted, and
tells him, MSGOUT prints the message

MONITOR

PROCESSOR
ABORTED LOADER

OPERATOR

using routines FORM, GETWHO, and AT.

97

SECTION LB. 04
PAGE 5
3/27/72

UTS TECHNICAL MANUAL

N
" TELLUSR

| ZAP RNST;
i Close M:XX

{_if open

A

t

J/GETBUE \
//Gef a Scratch

wocking Buffer

//|.
e Old Yes

QN ST= 0_”

No

Transfer Vector on . -

setf run 0-3 4 5 6 7
Status Bits:

i Illegal Trap

"TOERR
MAXMSG
CUPT (Return)

MSGOUT

Restore Regs,)

Close M:XX

if Open
“Return

to
PMD

98

SECTION LB.04
PAGE 6
3/27/72

UTS TECHNICAL MANUAL

MAXMSG

Which MAX

was exceeded
I

[Set it into

& ABC of
LT Find & Print

Error Message
Illegal Trap

Determine]

]

__Form, Trans, at
"By () at () which contains ()"

Tell Who,
Where,
Why

W

99

SECTION LB. 04
PAGE 7
3/27/72

UTS TECHNICAL MANUAL

IOERR

~

Yes

Not a Monitor 1/O error

< ABC780 ™
. ’/

/ Find and print \\\

\\ the error /

 messqage)
\ 9 /

AT

Tell where

\ it occurred

Find the DCB ad-

dressed by the CAL

and match it with
Lf?e in the DCB chain

Find No

From ERRMSG File

"AT xxxx"

"Non-exis

tant DCB

A LS No
Tell which

pce /

100

address at

xxxx"
s

&OCALEP/

SECTION LB. 04
PAGE 8
3/27/72

UTS TECHNICAL MANUAL

MSGOUT

- FOR \ "Job errored"
Set MSG (aborted)
\info Buffer
llB o i, n
< Operator y perdror
Find Who
Did It
R Forlmh "By Monitor"
eveal nis (Processor)
ldenfli‘y (User)
(Loader)
F
nA‘. JIJUU("

[Suppress Limit
checks; write
the buffer

W

101

SECTION LB, 04

PAGE 9
3/27/72
UTS TECHNICAL MANUAL
WRITERR ERRMSG
. 1
Open M:xx to Store Key, load
the ERRMSG file read fpt into
via A BAL, 11 regs for read
T: Overlay
/MSRRDWT ~ \
Read the record 1
into the working
BUF

Form an
ERRMSG Key 03/00 | ABCIERO Form Key into
' ' an EBCDIC
ERRMSGE \ message
Get the
message '
Save Size,
Close M:xx
Open M:xx,
write the
message Return

102 -

SECTION LB, 05
PAGE 1
3/27/72

UTS TECHNICAL MANUAL

ID

DUMP
PURPOSE

To serve as main entry for PMD, PMDI, PMDE, dumps PSD, registers and memory
for users.

ENTRY

BAL, 11 DUMPER
(R 6) = address of M:DO DCB.
(R 10) = address of user D4 in TSTACK,

(R 14) = address within blocking buffer that has a push down stack containing pairs
of from-to address and a flag (must be first word pushed into stack). The
flag non-zero implies an extended dump. The TS and TW bits must be set
in the stack pointer doubleword (SPD).

(R 15) address of TSTACK
OPERATION

The from-to pairs of dump locations and the flag word are pulled from the stack in the
Monitor buffer and pushed into TSTACK. The PSD and registers are printed via a
BAL to REGPRINT. If an extended dump is specified, the JIT is printed via DUMPW,
If the program is overlayed, the names of the overlays currently in core are printed.
Next, all DCBs are printed via DUMPW and, if an extended dump is specified, the
CFUs blocking buffers and Index buffers for these DCBs are also printed via DUMPW.,
Then all from=to pairs are printed via DUMPW. Next, any pages obtained by M:GP,
any pages obtained by M:GCP then any pages obtained by M:GVP are printed via
DUMPW. See Figure 1.

DUMPW
PURPOSE

To print contents of core locations in hexadecimal and EBCDIC format.

103

SECTION LB.05
PAGE 2
3/27/72

UTS TECHNICAL MANUAL

ENTRY

BAL, 11

(R 6) = address of output DCB.
(R 14) = address of output buffer.
(R 8) =low address to dump.

(R 9) =high address to dump.

R 15) = TSTACK

ALTERNATE ENTRY

BAL, 11 DUMPWO (Same as DUMPW except that core addresses are not printed.)

eXIT

*11
OPERATION

Each 8 word block of core is formatted into the buffer at R14, then the buffer is
written via PRINT,

PRINT

PURPOSE
To write a data record through a DCB.

ENTRY

BAL, 12
(R 6) = address of DCB.
(R 14) = buffer address.

104

SECTION LB.05
PAGE 3

3/27/72
UTS TECHNICAL MANUAL

RETURN
*12

ALTERNATE ENTRY

PRINTV

(R 15) = number of characters to print.

OPERATION

Routine pushes all the registers into TSTACK and does a BAL MSRRDWT
PRINTM

PURPOSE
To write a TEXTC message via a DCB.

ENTRY

BAL, 11
(R1) = address of TEXTC message.
(R6) = address of DCB.

EXIT

*11
OPERATION

This routine moves the message to the 34=word buffer, loads R15 with the byte count,
adds one (for vertical format control), sets the first byte of the message in the buffer
to an A (for double spacing), and calls PRINTV.

105

SECTION LB. 05

PAGE 4
3/27/72
UTS TECHNICAL MANUAL
USERS PROGRAM STATUS DOUBLEWORD
XXXXXXXX XXXXXXXX *eeceeee®
where
x equals the hexadecimal representation of the PSD,
e equals the EBCDIC representation, if printable.
USERS GENERAL REGISTERS
XXXXXXXX — XXXXXXXX) ees XXXXXXXX *eeeeee*
XXXXXXXX — XXXXXXXX cee XXXXXXXX *eeeceee*

where

x equals the hexadecimal representation (eight words per line) of the
general registers.

e equals the EBCDIC representation, if printable.

current JOB Information Table (JIT).
ifIPMDE was used the users JIT is listed

THE FOLLOWING SEGMENTS ARE PRESENTLY IN CORE

If the program is an overlaid program, list of the segments in core.

ALL USERS DCB'S FOLLOW,
List of user's DCBs.
SYSTEM CFU FOR ABOVE DCB.

If !PMDE was used and the DCB is open to a file, list of the CFU.

Figure 1. Format of a Dump Printout

106

SECTION LB. 05
PAGE 5
3/27/72

UTS TECHNICAL MANUAL
SYSTEM INDEX BLOCK (IPOOL) FOR ABOVE DCB

If IPMDE was used and the DCB has an IPOOL assigned, list of the IPOOL.
SYSTEM BLOCKING BUFFER (FPOOL) FOR ABOVE DCB

If IPMDE was used and the DCB has an FPOOL assigned, list of the FPOOL,
USER SPECIFIED DUMP LIMITS FOLLOW

List any user=specified dump limits or protection types.
USER'S DYNAMIC PAGES FOLLOW

List of any presently allocated pages obtained by an M:GP procédure call.
USER'S COMMON DYNAMIC PAGES FOLLOW

List of any presently allocated pages obtained by an M:GCP procedure call.
USER'S VIRTUAL PAGES FOLLOW

List of any pages obtained by an M:GVP procedure call,

PRINTM

107

SECTION LD
UTS TECHNICAL MANUAL PAGE 1

D
SCREECH

PURPOSE

SCREECH provides the one "bail-out” exit from the UTS Monitor. The error code
(SCREECH code) which is transmitted to SCREECH defines not only the problem but

also which module discovered the problem. SCREECH loads and transfers control to
Recovery.

USAGE

LI, 15 X'SCREECH code'

B SCREECH

SCREECH codes are defined in Table LD-1.
The monitor symbol RECOVER is equated to SCREECH.

INPUT

There is no input for SCREECH except the calling sequence register 15,

OUTPUT
SCREECH pushes the registers into SAVEREGS (also equated to INITRCVR).

INTERACTION

All modules of the Monitor may call SCREECH. If switch 3 is down, the boot from
RAD branches to MRECOVER so that register 15 is set to a =1 to indicate an operator
call to SCREECH (MRECOVER EQ SCREECH-T).

DESCRIPTION

SCREECH pushes the registers into SAVEREGS, halts I/O on all devices in DCTI,
loads recovery from the swapping RAD and transfers control RCVCTL.

108

601

CODE

CALLING
ROUTINE

TABLE OE-1, SCREECH Codes

CONDITION

MTMOOPD>PO0O0ONOCCOGOHEWN

NV ONRAWN—-O

SSS
CHECK

CHECK
CHECK
CHECK
CHECK
CHECK
CHECK
CHECK
CHECK
CHECK
CHECK
CHECK
CHECK
CHECK
T:SIO
CcOC
CcOocC
CcocC
CcocC
cocC
10Q
coor
BUFGRAN

Event reported is not consistent with user's state,

Either a user or processor's physical pages are not consistent (count noi 2qual to chain
g q

or more than one user is connected to the same physical page.
State code and state queue are inconsistent.

Stack pointer is self inconsistent,

Number of users in the various states not equal to number of users,
Name of processor not in word 2 of processor's procedure.

SIR count inconsistent with sum in corresponding states.

HIR count inconsistent with sum in corresponding states,

Processor usage count inconsistent with number of associated users.
Core page not accounted for by the totality of users.

OP codes in swap 1/O chain are not all read or all write orders.
Seek or a TIC must occur in every I/O chain element (and doesn't),
Swap attempt into monitor core area.

Swap 1/O command chain does not terminate where it should.

1/O request with null command chain,

Input parameter function code is not read or write,

Buffer with impossible address.

Input interrupt on line with impossible state,

Line state inconsistent with write operation,

Line state inconsistent with read operation,

Hardware ‘entering bytes out of ring buffer.

Iltegal DCT index.

Address in sector not equal to address of sector read,

Attempt to return buffer with rediculous address.

TVANVW TVOINHDAL sIn -

2L/12/8
Z 39Vd

1=-Q1°i9°L
A7 NIATIA3C

oLl

CODE
1A
18
1B
1C
1C
1D

1E
1F

20

25
26
27
28

CALLING
ROUTINE

OPEN/CLOSE
S ﬁP ER

S
W

Tables
UCAL
T:0OV

IDLE
SWAPPER

RCYL
RNCUL
RBG
RMAT

MM

TYPR

RECOVER

Tables S9TRARS
SPTRAPS

STEP

Tables SPTRAPS
S9TRAPS

Tables

CONDITION

The world is gone (File System)

At end of swap the number of pages remaining in the SWAPPER's
FREE PAGE pool is non-zero

Watchdog Timer Trap = PSM or PLM -
Jit error, user name or account is all blanks
(Temporary) requested monitor overlay not in processor table

Entry to RECOVER at system quiescence if users have been deleted
without normal shutdown — files may still be open

Swap scheduler has not provided enough pages for the requested
swap

Illegal to release specified disc adr

Afr.emPf to set AC on pg greater than 100
Private volume allocation error. .
Operator Recovery in order to revert to base monitor (A01)

Uncorrectable Memory Parity or Map Check error

Malformed XPSD or MMC instruction, or invalid register designation

in the monitor caused an Instruction Exception Trap
Unmapped
A double PDF trap occurred

Loop Check or Overtemperature error

A Memory Parity Error occurred in a page not owned by the current

user or while executing in the unmapped mode.

© 1-a7 318vl

$3d0OD HO33IOS

[-a13i9r1

IVANVYW TVIINHD3LSIN

zL/Le/e
£ 39vd

dil NOILD3S

L1l

29

2A
2B
2C
2D
49
61
62
6A
75
79
7A
7C

50-5F
7E
FF

S9TRAPS

SRCHF
GRAN
ADD
COoOp
TYPR

MM
BUFGRAN
ENTRY
COoOorP
ALTCP

BPM/BTM
ALTCP

Disc Pack
Handler

Map Check or Data Base Check error while in Master Mode and the
Register Altered bit was set

Illegal DCT index

Granule release error

Attempt to read beyond symbiont file end
Buffer allocation error

Tape Unit Allocation error

TEL/CCI trapped

User program too large

Sad Cal release without priv level
Attempt to release unallocated granule
Monitor stack blown

No pages available for COOPerative buffers

Got to ALTCP with a CAL1, 1 in CALI, 2 which CAL]1, 2 which CALPROC
should have handles

BPM/BTM specifics
Monitor Trapped

Cannot access header track

1-d1 374vl

(P,4U0D) $3AOD HOIFYDS

TVANVW TYDINHDIL SIN

2L/Lle/e
¥ 39vd
dl NOLD3S

SECTION LD
PAGF 5
UTS TECHNICAL MANUAL 3/27/72
Table LD-1
A screech code of X'80' or greater, indicates a swapper I/O error. Generally each bit
or combination of bits has a meaning as follows:

01 2 3 45 67

1 Swapper 1/O error

1 0 1 Write Operation

1 10 Read Operation

1T 11 Compare Operation

1 1 Trqr;smission data error

1 1 Transmission memeory error
1 1 Memory address error

1 1 IOP memory error

1 1 IOP control error

Bits 3 - 7 are from /O status bits 9 - 13,

0 0 Indicates bits 3 = 7 are not to be interpreted
as status error bits,

If the byte is:

CODE ROUTINE CONDITION

80 TSIO Sense # seek on write

81 TSIO Read check wasn't satisfied.

82 TSIO Write check error - Bad order

83 TSIO Not done with CL or write = no status

90 TSIO Device unusual end or IOP halt occurred and no other bits were
set,

91 TSIO Write check not in system,

92 TSIO In logging sector, 1IOCD bad.

93 TSIO N write errors occurred and the offending command list can't be
found.

94 TSIO Discovered invalid order trying to continue write checking the rest
of command list after N errors occurred.

95 TSIO N read errors occurred and there is an invalid address pointing to
the offending command list.

96 TSIO N errors occurred trying to read a processor.

112

SECTION LE
PAGE 1

3/27 /72
UTS TECHNICAL MANUAL

ID

——

ANALYZE - Monitor Debug Program

PURPOSE

ANALYZE is the ghost job wakened by recovery which prints a map and a summary of
the crashed monitor. ANALYZE may be run on-line or in batch to summarize the
monitor dump or the running monitor.

OVERVIEW

ANALYZE consists of the following general groups of routines: initialization, command
scanner, main command routines, generalized subroutines. Initialization obtains work-
ing space and detemines the user's identity (ghost, batch, or on-line). Control is trans-
ferred to the command scanner if the user is on~line or in batch, or a summary routine

if the user is a ghost.

The command scanner reads the teletype, breaks the command into its component parts,
and transfers control to the specified main routine to process further. In the case of a
ghost job, the summary routine fransfers control to each main routine in order. These
routines return to the command scanner which will return control to the summary routine
if a summary is in progress, and in batch commands through the card reader function
similar to the on-line processing.

The main command routines may examine the user's command further, then perform the
task requested, summarizing the COC line tables for example.

The generalized subroutines perform common operations for the main command routines.
These routines translate and format data, print data, access locations, etc.

Figure LE-1 shows the interactions of the routines making up the ANALYZE processor,
as well as an idealized picture of where things are done.

113 90 19 90A-1(8/73)

SECTION LE

PAGE 2
UTS TECHNICAL MANUAL 2/27/72
Batch User (STARTUP)
(Input Card 1
, ' Initialization
On-line \:‘ne Gh
User on- Bo*c\" Osf
Commands| Command Summary in Progress | Summary
Scanner Routine
S5 o J
g 9
a4 o
Main Command Routines
Generalized Subroutines ———p{ LP
Output Directed
to User Console A A

Core
Buffers
and

Tape

Tables

Output to Line
Printer

Figure LE-1. Interaction of Analyze Routines

90 19 90A-1(8/73) 114

SECTION LE
PAGE 3
UTS TECHNICAL MANUAL 12/20/72

USAGE

ANALYZE is initiated automatically during the recovery process. Following an
unrecoverable crash, ANALYZE may be initiated by the operator via the keyin

1GJOB ANLZ
to dump the tape produced by the crash.

ANALYZE may be accessed on-line by typing

IANLZ
from any account. Consult the UTS System Management Reference Manual, for
details of using ANALYZE.

INPUT

Files:
ANALYZE reads the monitor dump file produced by recovery

MONDMPn

where n is the number of the crash assigned by recovery in the range 0 - 7. Each
record in the file is a page (512 words) of the crashed system, with key

03 [00| 00} k

where k is the page number. Included in the file are the user JITS from the swapping
RAD, with keys of the format

03(00ju {00

where u is the user number.
ANALYZE produces a map from the file

MONSTK
under the :SYS account, MONSTK contains the REF/DEF stack for the monitor. Con-
sult the loader documentation for the detailed format of a REF/DEF stack.

Tapes:

ANALYZE reads the tape produced by an impossible recovery with INSN
RCVT

This tape is in label format, with LABEL
TAPDUMP

Each record a page (512 words) or the crashed monitor. From this tape ANALYZE
produces the file

UTSDUMP

115 90 19 90A-1(8/73)

SECTION LE
PAGE 4
UTS TECHNICAL MANUAL 12/20/72

with exactly the same format as MONDMPn,

Buffers and Tables:
See DATA BASES for internal Buffers and Tables. ANALZ formats many of the monitor
tables, for a detailed description consult the Technical Manual, Section V.

OUTPUT

For a detailed description of ANALYZE output, see the UTS System Management
Reference Manual.

Buffers and Tables - See DATA BASES.

INTERACTION
ANALYZE uses the following monitor services:

I/O functions:
M:OPEN
M:CLOSE
M:READ
M:WRITE
M:SETDCB to change ERR/ABN returns
M:DEVICE to skip to top of form

Memory Management:

M:GP to get buffers
M:FP to free them
M:GVpP to get a specific page
M:FVP to free it
M:CVM change Virtual Map to access the monitor
DATA BASES
Buffers:
PAGEBUF A word containing the address of a two page buffer acquired

during initialization into which the dump is read or the monitor
is mapped two pages at a time,

PAGEBUF | R9 from M:GP |

|

Two Page
Buffer

L

90 19 90A-1(8/73) 116

SECTION LE

PAGE 5
UTS. TECHNICAL MANUAL 3/27/72
BIGBUF A word containing the address of a large buffer acquired when a map is

requested. This buffer expands until MONSTK can be read into it with

no loss of data. It is then used as a scratch buffer for sorting and
printing MONSTK.

BIGBUF R? from M:GP — I Multi-Page

' E Buffer
Command Input Buffers and Pointers:
UCBUF Buffer into which ANALYZE commands are read (80 bytes)
FIELDS1-5 Two-word buffers into which fields from UCBUF are stored
F1-5 Two-word buffers into which subfields (field following a + or =) of

corresponding main fields are stored. This arrangement allows only one
level of addition or subtraction.

FIELD_5 Pointers into FIELDS1-5
OPFIELD_5 Pointers into F1-5

CHRS SP, CR, LF, comma, +, -, b, =, #
used as field and subfield separators

OPS Bytes to contain associated +/- operation

Example: UCBUF |[DISPLAY 4 JIT, 1,606 60 + 100

FIELD OPFIELD} OPS
FIELD 1 FI[0-0] [0]
FIELD2 [JIT | F2[0 - 0] [0]
FIELD3 [1] Ff3[0-0] [0]
FIELD4 [60] F4[0 - 0] [0]

FIELD5 F5[100 | [+]

117 90 19 90A-1(8/73)

SECTION LE
PAGE 6
UTS TECHNICAL MANUAL 3/27/72

Output Buffer and Pointers:

OBUF
PTR
TPTR

TPTRSV
COLPT
OBUFSIZ

Example:

The buffer into which ANALYZE formats its output to the user
Points to the next available position in OBUF

Points to the next available translation position in OBUF (for translation
of dumps to EBCDIC only)

Original starting position for translated characters

Position of the TTY carriage on the output line

Size of OBUF

PTR
C?LPT TPTlRSV T{’TR

OBUF |CIC2C3FI1F2F3 ABC123
b—— OBUFSIZ ~

Dynamic Flags and Cells:

BALL

BRKCNT
BUFLIM
PSTACK
FILETEXT
GETFLAG

KEEPKEY
KEY
LASTWORD
LASTLOC
LPFLAG
MAPFLAG
MASQ
MONFLAG

90 19 90A-1(8/73)

1 = summary command in progress. Checked by SCANNER for a return
to ALL.

1 = user hit break. Checked in MSG and BUFOUT.

Doubleword set up by INITIAL containing limits of the working buffer.
Stack to contain DELTA request environment,

Text of LMN from which DELTA obtains a symbol table,

1 = DELTA get operation
0 = DELTA put operation

A blank key 4 bytes in length

Key for reading and writing (core dump file).

The last word examined in the dump; to be compared with the next.
Last location dumped.

1 = output is directed to the line printer

1 = requested pages must be translated through the user's map
adjustable search mask

1 = examining current monitor rather than a dump.

118

SECTION LE
PAGE 7
UTS TECHNICAL MANUAL 3/27/72

NOPS Count of operations in summary command

OLDPAGE Last page retrieved for the user

OLDPAGEM Last page requested by the user (not necessarily = OLDPAGE)

PAGEBUF Location of dynamic working buffer

PFLAGS Word containing in upper half byte flags determining the status of the
line being dumped

0 123 31
0111

IL—PRINTFLAG - Print the line and reset all flags

FIRSTFLAG = Print first identical line
SKIPTFLAG - Skipped printing the last line, flag next with

an I*l.

RBUFEND Pointer to the end of the event recorder
RBUF1 Pointer to the beginning of the event recorder
READAGAINFLG 1 = changed origin of input, must read OLDPAGE again.

REPFLAG 1 = AN = sign was encountered, this operation is a replace

RDSIZE Buffer size word in RDSTK fpt used for reading MONSTK
SERVAL Cell containing value for which to search
STACK 80 word analyze tempstack; reset by the SCANNER routine I

STKSIZE Cell to contain the size of MONSTK after it is read successfully

SUPPLZ 0 = suppress leading zeros on translation
1 = translate leading zeros

TRAPPAGE Address at which the monitor trapped (or zero)

TRTOTAL Count of events to trace in the event recorder
UNDERDELTA 1 = operations being performed under DELTA

VIRPAGE Virtual address word inChange Virtual Map CAL fpt
WRITELOC Buffer address word inWrite fpt used for writing UTSDUMP

119 90 19 90A-1(8/73)

SECTION LE
PAGE 8
UTS TECHNICAL MANUAL 3/27/72

Tables:

Three types of tables are common in the main command routines, Type 1 determines
which monitor table to dump néxt, by loading R14 with its address for input to GETADDR,
Type 2 determines its resolution, by LB, LH, LW or LD instructions into R3 for input

to TRANS or TRANSSZ, Type 3 dictates the spacing between the printed values,
containing the tab stops.

The following kst of tables is grouped by the main routines using them:
Routine Table Name

COCODE GETCOC
COCACT
COCsP
IODISPLAY CITS
GETCIT
CITSPACES
DCTS
GETDCT
DCTSPACES
I0QS
IOLOAD
IOSPACES
PROCS LOADP
ACTP
SWAP FINDTAB
LOTAB
TABTAB
LISWAP
LWSWAP
USERS UTABS
ACTION

—
B
o

N =N WN—=N=WN=WN—==WN —=WN —

Other Tables:

Table Routines Use

CHRS SCANNER List of command separators

COMMANDS SCANNER List of the first two characters of

commands

CVEC SCANNER Command transfer vector

EBCDIC TRANS Translate table: Binary - EBCDIC

EVENTS TRACE TEXTC table of events

JITPAG RUN, JITS, AJOUT, Table of unmapped addresses of the
MAPMODE, LOCIJIT user JITS

LIST TRANS TEXT string of the hex numbers for

binary EBCDIC translation

120

SECTION LE

PAGE ¢
UTS TECHNICAL MANUAL 3/27/72
MAP MAPMODE, GETPAGE Table loaded with a user's CMAP
image
SCRMSGS REGS TEXTC table of Screech messages
SCRS REGS Table of addresses pointing to
SCRMSGS
STATEX TRACE, RUN, USERS TEXTC table of states
SVEC SCANNER Transfer vector for action on separators

SUBROUTINES

Register conventions: Main routines accessed from CVEC may use all registers. The
following subroutines preserve registers used in the stack, and are accessed by a

BAL, RO (routine)

BITPUT Routine to convert a byte to EBCDIC 1's and 0's in the output buffer.
IN: R3 contains byte to be translated, right-justified

BUFOUT Routine to write contents of the output buffer to M:LG DCB.

DUMPSOME Prints a formatted memory dump for on=line and batch users.
Translates the dump as well as deleting identical lines.
IN: R7 = number of locations to dump
R8 = starting address in PAGEBUF

GETADDR Routine to obtain dump page containing address specified and
return an equivalent pointer into the working buffer. Uses the
subroutine GETPAGE,

IN: R14 contains desired location
OUT: RI15 contains pointer to the desired location

GETHEX Routine to convert a location specified in an EBCDIC command to

its hex value
IN: Rt = FIELDn

OUT: R2 = hex value

GETPAGE Given a page number, reads that page and the next from the dump
file into the working buffer, or if MONFLAG = 1, maps the
desired page of the current monitor and the next into the working

buffer.,
IN: RT = desired page number

LOCJIT Subroutines to interpret the JIT address table in the monitor (or dump)
and return the appropriate JIT address in R14.

121 90 19 90A~1(8/73)

SECTION LE

PAGE 10
UTS TECHNICAL MANUAL 3,/27,/72
LOCLOC Routine to return in hex the starting and ending locations specified

in a command, and the difference, when given the field in which
to expect the starting location in EBCDIC

IN: R1=FIELDn

OUT: R7 = difference
R8 = starting location
R? = ending location

If REPFLAG = 1, R9? will be put into the location specified in R8.

MSG1 Inserts TEXT message into output buffer
IN: R1 = address of message; R2 = byte count.

MSG Inserts TEXTC message into output buffer
IN: R1= address of the Ist word of the message in TEXTC.

TRANS and TRANSSZ
Routine to translate binary word into EBCDIC and store it into EBCDIC
and store it into OBUF. If TPTR # 0, the EBCDIC equivalent of the

word will also be placed in OBUF.
TRANSSZ is the entry point to suppress leading zeros, TRANS

leaves them in.

IN: R3 contains the word to be translated.

SPACES Routine to insert spaces in OBUF to a specified column.

IN: R1 contains pointer to desired column number in OBUF.

SPACE2 Routine to insert two spaces into OBUF.

MDSNAPY Routine to dump area specified in the MONDUMP fomat.

MDIOSYM Routine to dump the IOQ, DCT, CIT and symbiont tables in the
MONDUMP fomat.

MDDCB Routine to dump the active user DCBs in the MONDUMP format.

MDCORE Entry point to set up the 0 through 5000 Monitor root dump.

ERRORS

Error Messages Meaning and Action to Take

EH ? ANLZ did not understand the command. Retry.

CANNOT OPEN FILE (NAME) An unsuccessful attempt was made to open the specified

file as input. Check file's existence.

90 19 90A-1(8/73) 122

SECTION LE

PAGE 10-1
3/27/72
Error Messages Meaning and Action to Take /27/7
CANT ASSOCIATE DELTA Assocaite DELTA CAL was unsuccessful. Major
difficulty, SIDR it.
CANT GET THE BUFFER Unable to get a buffer large enough to read
MONSTK. Increase user page limit with

SUPER.

122-1 90 19 90A-1(8/73)

SECTION LE
PAGE 11

UTS TECHNICAL MANUAL 3/27/72

ERR/ABN CODE = |CODE |00 |DCB

INCORRECT DUMP PAGE n

LOC1 GREATER OR EQUAL LOC2

NO FILE OPEN FOR INPUT

NOTHING TO DISASSOCIATE

ZZ PRIVILEGE NOT HIGH ENOUGH

SORRY, NO PAGE n

TYPE INPUT COMMAND
YOU MUST BE LOOK AT THE MONITOR
TO CHANGE IT

CANT READ THAT JIT # XXXX

123

Accompanies most 1/O error messages.
Consult UTS Reference Manual for codes.

Data in page n fails a consistency check.
Try to create the dump from tape.

Negative range specified in a command.
Retry.

Attempt made to read a non-existent file,
Type INPUT command.

Unsuccessful disassociate DELTA CAL,
Don't worry about it.

Message resulting from an unsuccessful
Change Virtual Map CAL. Increase
privilege level with SUPER, ZZ indicates
your current privilege level.

Record with key n does not exist in the dump
file. Try to recreate file from tape.

M:EI not open and MONFLAG =0.

Replacement attempted with MONFLAG
=0. Type "MONITOR DISPLAY",

and retry.
An attempt on-line to read a user JIT

from the file, and that record is not
present.

90 19 90A-1(8/73)

SECTION LE. 01

PAGE 1
UTS TECHNICAL MANUAL 3/27/72
D
ANALYZE - Commands and Routines
ALL The ALL command uses most of the main routines to summarize the dump or the

running monitor. As all routines return to the SCANNER, the flag BALL is set
to indicate an ALL operation is in progress.

Using the cell NOPS to contain the number of routines to execute, ALL decre-
ments it, then uses the value as a displacement into a branch table to each rou~
tine. When NOPS becomes zero, BALL is reset. If the user is ghost or batch,
ALL dumps memory from zero to X'5000' and exits. Otherwise, control is passed
to SCANNER to process the next command.

Entered From: SCANNER from BALL # O test.

Exits To: Main command routines, or portions of them; to EXIT or SCANNER when
completed.

ALLJIT The routine ALLJIT is not accessed from SCANNER, but is called upon by ALL
to print the current user's JIT, AJIT, and context area, and the inswap and out-
swap users' JITs and AJITs.

ALLJIT first builds a list of users = current, inswap, outswap, and all others in
core. Running down the list, it accesses, formats and prints each user's JIT and
AJIT. If the RUNMODE is ghost or batch, the JIT page will be output in the
MONDUMP fomat; if on-line, the LP command will enable the MONDUMP type
display; otherwise, the output will be in a four~column Hex dump. To print the
current user's context, the routine MAPMODE is used to load that user's map to
facilitate accessing his context pages. Then JB:CMAP is consulted to detemine
which pages to dump. Page entries other than FPMC and NPMC are dumped
within the limits of his context area.

Entered From: ALL
Exits To: SCANNER

COMPARE Command: COMPARE LOC1, LOC2
The routine COMPARE compares a monitor dump from the file UTSDUMP and
the running monitor between the specified locations. A dynamic page is obtained
and the page of the monitor containing LOCI is mapped into it. The corres—
ponding page of the dump is obtained by GETADDR.

Corresponding locations are compared and when an inequality is found, the
loaction and the differing contents are printed. If the range exceeds a page,
the next page of the dump and the monitor are obtained.

Entered From: SCANNER
Exits To: SCANNER

DISPLAY ~ Command: DISPLAY op[,id][, LOC, LOC]

fop = JITS only
op = USERS, JITS, or COC

90 19 90A-1(8/73) 124

SECTION LE. 01

PAGE 2
UTS TECHNICAL MANUAL 3/27/72

In order to format and print the tables associated with the specified request,
the Display command drives into a transfer vector to the routines: COCODE,
IODISPLAY, JITS, PROCS, ID, REGS, SWAP, USERS, P1, P2, P3, P4, PA, SY, PR. I

The routines which summarize monitor tables use a table driven technique to
determine the monitor table, its resolution, and the spacing to the next
column. The tables are described in DATA BASES; use is as follows:

Table type 1 is accessed by either a LOAD WORD or an EXU indexed by an
internal ANALZ table number in the range from O to total number of tables

in the display. The result of accessing table type 1 is loading R14 with the
physical address of a particular table. This is followed by a BAL to the sub-
routine GETADDR, which returns with R15 pointing to the desired location in
the working buffer. Table type 2 is now accessed via an EXU, loading a byte,
halfword, word, or doubleword into R3. This is generally followed by a BAL
to TRANS or TRANSSZ to translate the contents of R3 and place it into the
output buffer. Table type 3 is accessed, generally by a load byte indexed by
column which will load R1 with the next tab stop. A BAL to SPACES inserts
the requisite spacing. Indexes are incremented, and the cycle continued
until completed.

COCODE Command: DISPLAY COC
The COC routine displays the following COC tables: LM:UN, COCTERM,
STATE, PROMPT, CODE, MODE, MODE2, MODE3, FLAG, COCBP, TL, LINK,

The routine first prints a header, then accesses and prints the above tables
for a specified line number, or for all line numbers for which the LB:UN
entry is non-zero. Two tables are special-cased, COCTERM and STATE:
instead of being translated via a BAL to TRANSSZ, the terminal type and
line state are placed into the output buffer by MSG.

Entered By: ALL, DISPLAY
Exits To: SCANNER

IODISPLAY Command: DISPLAY 1/0O
The routine IODISPLAY formats the channel information tables, selected
device information tables for devices on each channel, and all the 1/O
queue tables for requests queued on each channel.

IODISPLAY first builds a list of channels which have devices, then using

this list formats and prints CIT3, CIT4, and CIT5 for the first channel. The
DCT tables are searched for devices on this channel, and for each device the
tables DCT16, DCT1, DCT2, DCT3, DCT5, DCT6é, DCTI12, DCT13 are for-
matted and printed. DCTs 3 and 5 are formatted as bits, to more easily read

the tables.

After all device tables are printed, CIT1 is checked to see if any requests

125 90 19 90A-1(8/73)

SECTION LE. 01
PAGE 3
UTS TECHNICAL MANUAL 3/27/72

are queued for this channel. If so, each IOQ table is formatted and printed
(IOQ1 - 15) and IOQ2 is checked for another request. All entries for
requests are printed.

If no requests are queued, or when they are all printed, the channel number
is bumped and IODISPLAY continues down the list. When all channels have
been accessed, IODISPLAY returns to SCANNER,

Entered From: ALL, DISPLAY
Exits To: SCANNER

JITS Command: DISPLAY JITS, [M, id] [LOCI, LOCZ]

The routine JITS determines which JIT to print, reads that JIT into PAGEBUF,
obtains the specified limits (if any), and dumps that portion via DUMPSOME,
Control is then returned to SCANNER.

Entered From: ALL, DISPLAY
Exits To: SCANNER

PROCS Command: DISPLAY PROCS

The routine PROCS formats and prints the processor tables PB:HPP, PB:TPP,
PB:PSZ, PB:DSZ, PB:DCBSZ, PH:PDA, PH:DDA, PB:UC, PB:LNK, PB:PVA,
PB:HVA, P:SA, P:TCB for all processors with non-zero size entry in PB:PSZ.

Entered From: ALL, DISPLAY
Exits To: SCANNER

REGS Command: DISPLAY REGS
The routine REGS determines the cause of the crash with R15, prints an
appropriate message, and dumps the registers from SAVEREGS.

If the crash was caused by a monitor trap, its address from RO is set into

TRAPPAGE to allow ALL to dump that page.

Entered From: ALL, DISPLAY
Exits To: SCANNER

SWAP Command: DISPLAY SWAP

The routine SWAP formats and prints the swap tables S:SIR, S:HIR, S:SIP,
#SWAP$DEV, S:CUN, SISUN, S:CUIS, S:IDLF, SB:OSN, SB:NP, SB:FPN
and the SWAP lists SB:OSUL, SB:PNL, SB:FPL, S:BECL. In addition the
following tables indexed by swap device are dumped: M:SWAPD, MB:SDI,
MB:SFC, MB:#RTRY, M:CLBGN, MH:CLEND,

Entered From: ALL, DISPLAY
Exits To: SCANNER

90 19 90A-1(8/73) 126

SECTION LE.O1

PAGE 4
UTS TECHNICAL MANUAL 3/27/73

USERS Command: DISPLAY USERS[,id]

The routine USERS displays the following tables for all users or a specified user:
UB:US, UB:BL, UB:FL, UH:FLG, UH:FLG2, UB:JIT, UB:SWPI, UH:JIT, UH:AJIT,
UB:PCT, UB:APR, UB:APO, UB:ASP, UB:DB, UB:OV, UH:TS, UH:ID.

USERS first prints a header, then accesses and prints the above tables for a speci-
fied user or for all users with their entry in UB:US # 0.

Each user's state is output in EBCDIC via a BAL to MSG. Otherwise, the tables are
printed as described in DISPLAY.

Entered By: SCANNER and ALL
Exits To: SCANNER

PARTITIONS Command: DI[SPLAY] PA[RTITIONS][,ID]

The routine PARTITIONS displays the following tables for either specified partition
number or all partitions: PLO=ACT, PLB:USR, PLH:FLG, PLH=QN, PLH:TOL,
PLH:CVR, PLH:TL, PLH:TV, PLH:SIP, PL:MIN, PL:MAX.

PARTITIONS first prints a header and then accesses and prints the above tables
for specified partitions or all.

SYMBIONTS Command: DI[SPLAY] SY[MBIONTS]

P1

P2

P3

The routine SYMBIONTS reads the RBBAT recovery file and dumps the contents with

a Header denoting the information being displayed.

Command: DI[SPLAY] P1

The subroutine MDIOSYM is entered via this command to format all I0Q, DCT,
CIT/BPLBL, and output symbiont tables.

Command: DI[SPLAY! P2

The subroutine MDCORE is entered from this command to dump core locations

0—+50001¢4 in the MONDUMP format.

Command: DI[SPLAY] p3
The subroutine MOTRAPS is entered from this command to dump the TRAP and INTERRUPT

locations in MONDUMP fomat.

127 90 19 90A-1(8/73)

SECTION LE.O1
PAGE 4-1

UTS TECHNICAL MANUAL 3/27/72

P4 Command: DI[SPLAY] P4

The subroutine MDDCB is entered from this command to dump the active user DCBs
in MONDUMP format.

D Command: DI[SPLAY] ID[,#]

The subroutine UID is entered from this command to list all active users or the
number specified. The user number, origin, account number and user name
are listed.

PROCESSORS Command: DI[SPLAY] PRLOCESSOR][,1[VALUE]

The PROCESSOR command displays either the given processor number, or all
processors in the system. All tables associated with the processors (PB:HPP,
PB:TPP, etc. (are displayed.

ROWS Command: RO[WS] [VALUE]

This command sets the Hex column count for Hex dump displays; standard on-line
Hex displays are four columns wide; batch and ghost line printer output is eight
columns wide. 12 (<]6) is the maximum for a line printer, and four is the maximum
for the user console; any value in between is acceptable.

CL[OSE] If the batch or on-line user has been examining a crash file and now wants fo
examine the running Monitor, the CLOSE command will close up the open crash
file and r eturn to SCANNER for the next interactive command.

DUM, DLAST, DNEXT, INDR Command: LOC1, LOC2; T ; LF; *

The routine DUM obtains the specified limits from the command, saves the
last location to be dumped in LASTLOC, gets the page containing the first
location into PAGEBUF, and uses DUMPSOME to dump the range,

DLAST Specifies 1 location ((LASTLOC)-1) to DUM
DNEXT Specifies 1 location ((LASTLOC)+1) to DUM
INDR Specifies 1 location (*(LASTLOC)) to DUM

Entered From: SCANNER
Exits To: SCANNER

90 19 90A-1(8/73) 127-1

SECTION LE. 01
PAGE 4-2

3/27/72
UTS TECHNICAL MANUAL

EXITCL Command: END

EXITCL closes the DCB M:EI with a release if the user is a ghost, and with
save if not. The routine then executes a normal exit to the monitor.

Entered From: ALL, SCANNER

INITIAL The entry point to analyze from SCANNER, INITIAL first acquires the two-
page working buffer and stores its location in PAGEBUF, its limits in BUFLIM,
The type of user is checked, and if ghost, control is passed to LASTCRASH,
one of the input routines to open and summarize the most recent monitor dump
file. If on-line INITIAL takes break control, informs the user he is accessing
ANALYZE, requests him to specify his input source via an INPUT command,
and branches directly to SCANNER,

Entered From: Start location of ANLZ load module is INITIAL, Entered
when ANALYZE is first accessed,
Exits To: To the SCANNER or the ALL command logic.

127-2 90 19 90A-1(8/73)

SECTION LE.O1
PAGE 5
UTS TECHNICAL MANUAL 3/27/72

INPUT Command: INPUT

The input routines INPUT, SPECFIL, LABEL$TAPE, TAPEP, LASTCRASH,
OPNUTSD result in the M:EI DCB open to some dump file consisting of keyed
records one page long, the keys corresponding to the page numbers.

INPUT is a transfer vector to the other routines

SPECFIL opens a recovery~created file MONDMPn, where n is specified
in the input command. Example: IN 6 6 results in opening

M:EI to MONDMPé.

LABEL$TAPE reads the tape created by recovery after a recovery impossible
situation, and forms a dump file called UTSDUMP, to which
M:EI is opened.

TAPEP is similar to LABEL$TAPE except it reads a tape created by
the EXEC DELTA ;V command

LASTCRASH opens the most recent MONDMPn.
OPNUTSD opens M:EI to the existing UTSDUMP file.

LP Command: LP |, value]

The routine LP closes M:LO and re-opens it specifying device LP, value in-
dicates the number of Hex dump columns on the print page. The default is
eight.

Entered From: SCANNER
Exits To: SCANNER

MAPMODE Command: MAP {,id]

The routine MAPMODE obtains the specified user number, reads his JIT
into PAGEBUF, loads ANLZs internal MAP from the user's JB:CMAP,
and sets a flag to indicate to the GETPAGE routine that mapping is in
progress. Control returns to the BAL+1.

Entered From: SCANNER, ALLJIT

Exits To: BAL+I

90 19 90A-1(8/73) 128

SECTION LE. 01
PAGE 6
UTS TECHNICAL MANUAL 3/27/72

MONITOR Command: MONITOR [DISPLAY]

The routine MONITOR sets and resets the flag MONFLAG depending on the
presence of the DISPLAY part of the command, In either case, READAGAINFLG
is set to require GETPAGE to renew the old page if accessed.

Entered From: SCANNER
Exits To: SCANNER

PRINT Command: PRINT
The routine PRINT issues a Superclose CAL to close symbiont files.

Entered From: SCANNER
Exits To: SCANNER

REPLACEMENT Command: LOC = VAL

The routine REPLACEMENT allows the ANLZ user to alter the running
monitor. If the user is not looking at the monitor (MONFLAG =0), he is
not allowed to change it. Otherwise, the page containing the specified
location is mapped into PAGEBUF, and the value is stored into it.

Entered From: SCANNER
Exits To: SCANNER

RUN Command: RUN op, id

The RUN routines UPAGES, MPAGES, PPAGES and STATES display
threaded lists of pages and states. These routines pick up the head, tail,
and count in the list and pass them in R4-6 to the subroutine PGSOUT,
which displays the list as a chain. An exception to the above procedure is
the routine STATES, which passes the head, tail, and count in R4=6 to a
PGSOUT subroutine HLOOP,

Subroutines:
PGSOUT In: R4 Head of chain
R5 Tail of chain
R6 Count
Linking Register = RO

HLOOP In: Same as PGSOUT
Linking Register = R12

Entered From: CVEC or ALL command
Exits To: SCANNER

129

SECTION LE. 01
PAGE 7
UTS TECHNICAL MANUAL 3/27/72

SCANNER SCANNER breaks commands into their component parts and partially
interprets them. Then transfers control to the appropriate routine.

Each main routine is branched to directly from CVEC in SCANNER; upon
completion of its function, the main routine returns directly to SCANNER,

SCANNIER is also the "bail-out" for any routine in trouble, so the first
thing done is to clear the temp stack. In the case of the summary command
ALL, when each routine returns to the SCANNER, it recognizes the ALL
command in progress, and returns control to the ALL routine.

Entered From: INITIAL, as normal return for all main routines, as
"BAILOUT" for most error conditions.
Exits To: Command routine specified by the user.

SEARCH Command: SEARCH VAL, LOCI1, LOC2

The SEARCH routine searches under the mask MSQ for the specified VAL
between the specified limits of LOC1 and LOC2 in the dump file or the
running monitor. SEARCH uses the GETADDR subroutine to read the pages
containing LOC1 and LOC2 into PAGEBUF then compares the specified

VAL with the contents of PAGEBUF starting at LOC1. Each time a match

is found, the location and contents is printed in hex form using the subroutines

TRANS, TRANSSZ and BUFOUT. If LOC2 - LOCI1 is greater than PAGEBUF
size, GETPAGE is used to get the next page.

Entered From: SCANNER
Exit To: SCANNER
MASK Command: SMASK VAL
The routine MASK sets the specified VAL into MASQ via a bal to GETHEX.
Entered From: SCANNER
Exit To: SCANNER

SYMBOLMAP The routine SYMBOLMAP reads the monitor's REF/DEF stack,

forms the DEFs into 4-word entries of value and symbol,

ABSFLAG

90 19 90A-1(8/73) 130

TRACE

UCLO

UNMAP

SECTION LE. 01
PAGE 8

3/27/72
UTS TECHNICAL MANUAL

An initial 8K buffer is obtained and MONSTK is read into it. If there is lost data
on the read, the buffer size is increased by one page until MONSTK will fit into it.

Each entry is tested for a length of 4 or greater and to see if it is a DEF. If not,
the next entry is tested. If so, a 4-word image is created as follows: symbol value,
symbol in TEXTC (7 byte maximum), and a flag indicating whether the symbol is
ABS (1) or not (#). The 4-word image is sorted into the symbol table by value,
and the process continues until all symbols are in the table.

At this point, an additional table is build and sorted into place that indicates the
ALPHA-SORTED position of each entry, and this map is then printed. The SYMBOLS
are then listed in a numericaly-sorted display.

Command: TR[ACE][, VAL][, id]

The TRACE routine dumps the event recorder made by the monitor routine
RECORD. The number of events to trace may be specified in the command

up to the size of the buffer (32 events). An associated user may also be
specified. TRACE establishes the location of the wrap-around buffer RECBUFI,
and the location of the last event recorded. It then calculates the location

of the first event to dump from the number specified, or if none, the size of
the buffer. For each event to be displayed, the subroutine GOGET4 is called
to format and output the record.

Entered By: SCANNER and ALL
Returns To: SCANNER
Command: UC[, value]

The routine UCLO closes M:LO and re-opens it to device UC. "value" is the width
of the Hex columns for dump output. The default is 4 columns wide.

Entered By: SCANNER
Exits To: SCANNER

Command: UNMAP
The routine UNMAP resets the flag to indicate mapping in progress

(MAPFLAG)
Entered From: SCANNER
Exits To: SCANNER

131 90 19 90A-1(8/73)

SECTION LE, 01
PAGE?¢
UTS TECHNICAL MANUAL 3/27/72

ASSOCIATEDEL Command: DELTA

The ASSOCIATEDEL routine executes the associate CAL (documented in
the UTS reference manual 90 09 07B) with an FPT which supplies the
entry points of the routines DELTAGET and DELTAPUT via a transfer
vector to DELTA, ASSOCIATING DELTA in the process,

Entered From: SCANNER
Exits To: SCANNER

DISASSDEL Command: NO DELTA

The DISASSDEL routine executes the disassociate CAL to disassociate
DELTA from ANALYZE,

Entered From: SCANNER
Exits To: SCANNER

FILENAME Command: BF fid. ACN#

The FILENAME routine scans the FID supplied in the command, and sets

it into the file name pointed to by the transfer vector of the associate
CAL. The default FID is M:MON, :SYS,

Entered From: SCANNER
Exits To: SCANNER

DELTAGET, DELTAPUT

Routines which provide the ANALYZE portion of the ANALYZE/DELTA
interface. This routine obtains a cell specified by DELTA in R3 using the
ANALYZE routine GETADDR, The contents of that cell are returned to
DELTA if DELTAGET was called, otherwise the new value specified by

DELTA in RO is stored into it. For further information, see the ANALYZE/
DELTA interface documentation, section LA,

90 19 90A-1(8/73) 132

SECTION LE. 02

UTS TECHNICAL MANUAL PAGE 1
3/27 /72
From CVEC From BALL # 0
in Scanner Test in Scanner
Zero optior: Fieds,
set NOPS and Ball.
Bump
NOPS, Test >=0
NOPS
?
20 L _» PATCHES
——» SYMBOLMAP
———————— INIT:MD
» REGS
» TRPAGE
+» MDTRAPS
» TRACE
» COCODE
» UID
-» USERS
» STATES
» UPAGES
o PARTITIONS
» PROCS
» PPAGES
» MPAGES
» SWAP
» PHYMAP
» [ODISPLAY
» CITS
» DCTS
*Confd.
133 90 19 90A-1(8/73)

SECTION LE. 02
PAGE 1-1

UTS TECHNICAL MANUAL 3/27/73

Continued

» I0QS

» SYMTABLS

» SYMBIONTS
JITS+3

n

All Completed
yes From J:JIT
no
MDCORE
Dump 0-5000in

MONDUMP In Batch or Ghost mode

Format

90 19 90A-1(8/73) 133-1

SECTION LE. 02

PAGE 2
W UTS TECHNICAL MANUAL 3/27/72
BOWD ST T
of USRS Y
Te PRIWT ©soL -= T
Fit I
ey coRRBENT OSER
e SoREY Wsw AP oser
<R Y
OSER'S V) STHER &OTSWAP LSCRZ
‘ SOTLWARP VSER B2

/[EXTOUT \ sor s S a g
PRANT CORRINT CooNT ©F TS To DoMP
USER'S Copdil

/ AsvT \

PRIT swaf
oste's i g

e e we e ey

| GET ULSER# oL VSERF |
Yr< {\\)\‘F,Hﬁ)\ ‘ fport &sUL t{ﬂgﬁ_ WSt
L T L\‘of, z : ' S
& beropn VARV SN
. -~ TOIC v e ~q - ¥)
S('A\)M NG Ne £Ron S OSER S \}'
[BisoT MAIDIE \ WA/
PRWT AN N ~
VT AT U{:ei'ﬁ,’)) Yes hon sy C“‘P
T 7 [GETANE, IAsG, . PAGE W CMA
J ' ButeoT, Qog?ﬁmﬁ -
— fOLHAT i
ALD PRINY
0%€Xs T

L_,/(
e i T
}uwoé asiézﬂ

|
fekMAT A |
PrwT WS |

pNT
ReTo Rl (/&@

134

UTS TECHNICAL MANUAL

GET Ay il
ORpAMIC lr"'."ot.J
| S4wir VY

GET cu-nkiie ;;;.xé

Me N 1TOk TAGE!
l J—
.
,"(,/c-;r o .;[Tw\mmf-_ [
Mownwt-R Fr".eg/—x—":—""i NET HabH ’
) | Eneoen]
. i //’
(es :'
]
|
WOCET IO M ES .
1oL A SSennrin
3 P
.

(ricins Tom o>
TO4COT, Mots
T L AT
e v‘nhm,.{,l
NTENTS!

—~

BomP T
NERT CoxaTios
]

e é- - e e
TR SE Y B
-

SECTION LE. 02
PAGE 3
3/27/72

SECTION LE. 02
PAGE 4
3/27/72

UTS TECHNICAL MANUAL

DISPLAY

LEGAL

BADCOM COMMAND
no >

yes
GOTIT

YoDIspLAY

Sap

!IOCODE
PROCS v

JITS UIDS
SERS

PSDS

REGS
v

PARTITIONS
SYMBIONTS
MDIOSYM

MDCORE

¥ MDTRAPS
MDDCB

90 19 90A-1(8/73) 136

SECTION LE. 02
PAGE 5

UTS TECHNICAL MANUAL 3/27/72

A
PONTIALTZ ¢ 48K
B e #s

™~
LRIOW ™
foR ~THIS Ling
N S YA

-

[Seay

RESTI I)
e

Plen wP yuc
NRExs TAJLE

Pav TYPE

N

a1 &SRO
;o\

l \'\ PutT S TATE
g R SAY &&:ﬁ/ :
! |
i‘? PR, , |
TE A LSS ; :
VALIE 10 ‘
| W S—— N

<

=2
Ld

/

137

© D1SPLAY

UTS TECHNICAL MANUAL

SECTION LE. 02
PAGE 6

Bold TRABLE
o cHAanneL
INDENE L

[

O —3»> cupn 8

~
AOY T
Df vrier < LYY
TS TRANKNTD

FUT s UT WEABIK
AL CHALMEL #

/CITARUE N\
rPJY ouvUT 3
CIT ThuS /

T_.-,_-____J

Pur evT ’
B X N ST YT _;
T A
e
SURES T e
1s Diviee.

/f"’/\;'i"\)*(lt'_
N THIS
SLCHAN L
< m
T4 es

DC_T)\ELE:J ‘\\

N\
PUT oW Dev _}
oLl foid
s DEvice

138

PO oUT
QUEVE TRTLE PEAN

g

/ TOTAGLLS

POT €oOv
Quior THELE%

lyes .~ PANBYREX
Quiivt swt
Jws CuNk

BoMe CupawL
NomTl €

r/ »
Ne ¢ \
Mg
)

.

P S A,
Fke Queog > N
CrutRysH”

e

Pur ®oT Quiue
TABLE HEADLR
|
ET PEAD of
AREE @utuls

S IOTPABLES \

PoT suT
\\qu(-sf TATLLS

W

SECTION LE. 02

PAGE 7
UTS TECHNICAL MANUAL 3/27/72

CITARES
feRkmat C(T , Mgi& c
TABLES W TERT
oBu¥
SET \WT®
CEANS
N Es
_ SeT BITS
BN N BRuE
Rero rat\s/"-
e

fo RMKT 18R
TRBLS fok
shahep Qobd

A4
X
/

i

S (I

139

SECTION LE. 02
PAGE 8

UTS TECHNICAL MANUAL 3/27/72

[/ GETHEX M6,
qﬁr o L BuisuT -
SPEc I[P USER Pl
MUMZITK A VTS -F74
N\T"
“
Teanrz,] —

MG, Zusset

Z Loc;) [X \
FIRD A\ BATBNS
- AL v

TS

—)

«

[iLbceee \
GET SFPEchED
MKMITS TO
D OMP (W Any)

POMP THE JIT
RETWELK SPE,
A1 MITS uf*V/‘

a

'

[MOSHAFY \

hudme =:7
(A O 1324 a5
FOBMAT

90 19 90A-1(8/73) 140

UTS TECHNICAL MANUAL

PROCS

s this
Processor's

Size Zeros yes

Transize, Spaces,

BUFQUT
Format and
Print PROC
Tables.

Another -.

yes Processor

?

SCANNER

141

SECTION LE. 02
PAGE 9
3/27/73

90 19 90A-1(8/73)

UTS TECHNICAL MANUAL

e s

GET Riersihes
WRERk SAVCD

“OPERATOIK
PlcoyERY Mt

LPe\m e

S G
PRt Chust
Ot Rewuel

DETT I MINE.
CSEEEC'C HM\ -
M S SAGE

SAVEREGS

<etr PSSO of
TAP INTe
TRAPFAKE

142

SECTION LE. 02
PAGE 10

3/27/72

SECTION LE. 02

UTS TECHNICAL MANUAL PAGE 11
3/27/72

VOERS

A== F = B B T DsPavy
i fNestT

Prew LP

THS OSER'S | OB OS
STATLE -

GET ATl —_—A—r _ _
l FRow TATLE STATE TRBLE m TRAK
Reovind

T

NS
ﬁﬂm“; — I
FORMAT ANYD
PN pseprs

TABLES
7

v

4

~

Ne //‘i”/qusa&x) IMOLIS & # NeT

Loy TH AL

OLE S SPECPHEO
NES

SCANNE
143

(MDSNAP4)

:

Move Snap
Limits to

Doubleword
Table

INITIATE
All Pointers,
Cells, etc.

SNAPPing
a JIT

Set JITPDS =
JJIT

FETCH

Get 4 Words
of Area to
SNAP

Set Loop to Look
for DEFs in These]

4 Words

SVALTXT
Look for a DEF

SECTION LE. 02
PAGE 11-1

3/27/72

UTS TECHNICAL MANUAL

Termi-
nate Equal
Cheocks

no

DEF
in This Print
Line
?

Mark address
as Start of
Equal Locations

Address Same

Move DEF
Name To
Print Line

This
Print Line Loop

Done
?

90 19 90A-1(8/73)

143-1

SECTION LE. 02
UTS TECHNICAL MANUAL PAGE 11-2

3/27 /73
(SVALTXT)

!

Search Value

Skip a Line,
Print Equal Ad- In R12.
dress and Con-
tents, Skip a

Line.
1 | yes

Put Addr. Con-
tents in Hex.
Contents in

Los}
Search Pointer
Usable

EBCDIC, Con~-

tents in DPCODE Start S h at .
gont’r)erlﬂs in ' Bo(::ome:; cha Bump Pointer
S Table. by 4.

»la
oot Rl

4 no

Va R
Compare To

Table Greater
Vallpue

Print it
On M:LO

EXIT +] I

Is
ABSFLAG
Set

\\
(EXIT +1 Y,

?
Increment
Current Address
o Next Save Pointer for
Symbo!| Same Next Search Re-
¢ Pturn +2w/Sym-
g Value no : :
i) bol PrinterinR13
Wii‘hin \\”‘a Exit To s
Snap Limits yes
BAL + 2

?

Advance Pointer
To Next
Symbol.

143-2 90 19 90A-1(8/73)

SECTION LE. 02

PAGE 11-3
UTS TECHNICAL MANUAL 3,/27 /72

(MDTRAPS o

l

Print Header, Set
First Trap Location
to 4016, Set Run

Count to Zero. LA A
_~ Trap
< Locohon Equal
No “~._MONOR
Fetch Contents
of Trap
Location.

~ Print "Traps

Con:\\
tents Contain
XPSDs .-no

-

?

e
e

yes

Destroyed"

Bump Running
Count of XPSDs.

Fetch PSD from
XPSD Pointer.

‘

/ SVALTXT
Look for DEF
Name of Trap

Receiver

\//

SVA LTXT

\
Look for DEF
Name of Trap
Handler.

'

Format Values into

EBCDIC, Move
Values and DEFs
into Print Line.

90 19 920A-1(8/73) 143-3

SECTION LE.02
PAGE 11-4

UTS TECHNICAL MANUAL 3/27/72

C

CITS j
l

Set Loop Equal
To OPLBLTS12
Print
Header.

Greater than
~._ CITS12 _~"yes
\\\ ? P s

w \

Fetch Contents
of CIT1—
CITé.

J‘.—____

Fetch Contents
of OPLBTI-
OPLBT5.

Convert Valuey
to EBCDIC and

move them to
print line.

ndex
Equal to

OPLBTS 12
?

@eturn to BAL +l>

\ /)

\ /

Q SYMTABLS)
!

Set Loop Equal to
Byte Zero of
SNDDX (Length
of Tables).

l

Fetch SQHD
and

SQTL.

—]

Fetch SQUE,
\ |SNDDX, DCT16,

SSTAT, SSIG, SRET
SCNTXT and
SYMX.

/ CONVERT \

Contents to
EBCDIC and mov
to print line.

Save Value

In

CPOOL Table.

143-4

\ /N

no

)

Any\
CPOOLS
Found

7/

GETADDR
Bring the Indi-
cated Address

In Core.

DUMPSO
Snap This (40 if
CPOOL) (256
if SPOOL)

Save SPOOL
Address.

Count FINI1
?

C BAL +1)

90 19 90A-1(8/73)

 MDIOSYM)

=

/e

Output All
DCT
Tobles

IOQS

Output All
I0Q
Tables.

SYMTABLS
Output the

Output Symbiont
Tables.

/ ___CIIS
Output the
CIT/OPLBL

Tables.

90 19 90A-1(8/73)

UTS TECHNICAL MANUAL

(DCTS)
'

Set Loop = to
DCTSI12
Print
Header.

1:____.

Fetch Contents of
DCT1 through
DCT22 using loop
current value as
an index.

Display
print line, con

tents of DCT1
thruDCT2

Bump Index to
DCT
Tab les

Index ~~.

Equal To
DCTS12 no
?

yes

e’rurn to BAL +1
(Retum 10 BAL +1)

143-5

SECTION LE. 02

PAGE 11-5
3/27 /72

Q__JSFS._L)

Set Loopr

Print
Header.

Fetch Contents of
IOQ1 through
IOQ15 Using Loop
Valuve as Index.

Display
rint line, con

tents of IOQ]1
hru I0Q1

Bump Index.

7 Index
At

\\ Max. ///no

\’)/

Lw

1 Re’rurn to BAL +1

(oo)
&

Print Header,
Set Max Loop
to "SMUIS"

==0

Fetch UH:FLG
and UB:JIT in=-
dexed by Loop
Value.

Bring in JIT,
Fetch Contents
of DCBLINK.

pon

Use the Users
Map for Further
Addressing.

e

Print User Number
Account and User

Origin.

Set up DCB

SECTION LE. 02
PAGE 11-6
3/27 /72

UTS TECHNICAL MANUAL

Chain
Exam.

143-6

i End
\Hlf

/ Chain

yes

/ DCBSTAT '\

Move DCB Status
To Print
Lme

Move DCB Name
and Address
Prmf Line.

Snap DCB
(Print it).

Loop
Equal to

SMUIS
?

90 19 90A-1(8/73)

’ Pointer
Zero

Intiial
Peek at This
Chgin

yes

Advance Pointer
(of Stop Address)
By One.

l‘

Fetch 9 Words
of DCB Name
From Chain.

Use DCB Name
Length to Advance|
Chain Pointer.

Move Name and

DCB Address into
my Pointers.

}

UTS TECHNICAL MANUAL

(DCBSTAT)
l

SECTION LE. 02
PAGE 11-7
3,/27,/72

Fetch first 2
Words of DCB
Contents.

--""I/\le;f' L
. Look BG at
Endof Chain

Reset Initial Look
Flag for Next

Pass Through.

(w2)e

90 19 90A-1(8/73)

IIFCD Il’ II"I"YC L]

} Extract "ASN™"
Fields.

"Closed"
“Open u

efc,

l

Use Extracted
Fields to Get
Canned MSG
About DCB State.

"Device"
"File®

!
(BAL +1

)

(DCBPRINT)
l

143-7

Construct Print
Line, Name, Ad-
dress, State As-
singment, etc.

SECTION LE. 02
PAGE 12

UTS TECHNICAL MANUAL 3/27/72

e

steedy 4 \ec,

seEafy L 6C,

GEX uasnsc)
FinD Ad0RESe

Pom

[/ LecitscC \

GET <Pechfd
DuMP WiMITS

WAsTece - 4 AT LeC +1 AND SPET 1T
¥ + E) S .
SAVE LRST
WeRP of KASTLOC
CORLENT RERVET

144

Ty
GEY PAGCE N

CRNTAININS Lo
ockTioN [/

£ Dumiss MEN

POMP BETWEEN
3 (NCLUDING Lm7
ot KEQVEST

SECTION LE.O02

PAGE 13
UTS TECHNICAL MANUAL 3/27/73
EXTCL
Close M:EI
With Save.
CALLY 17 it to TEL or CCI
INITIAL
Get Two M:GP
Pages.
Save Address | o\ SeaUE BUFLIM
and Limits.
01 31
Am 1 JJIIT 11

BATCH ? host
C o Wyes t & User is o GHOST (40)
- LASTCRAS User is On-Line (80)
& Neither User is BATCH (00)
y Take Break

e Control. "ANALYZE HERE"
"TYPE INPUT COMMAND™"

Put Message

BUFOUT

Output
OBUF.
SCANNER

145 90 19 90A-1(8/73)

UTS TECHNICAL MANUAL

SECTION LE. 02

PAGE 14

Yoo2 1y MiET

3/27/72

Ck_ssé M eL
—
RESET T
DOORESS TABLE
6ePNUTSP CASTCRAS P SPECEWL LABEL$TAME Tf\,?_r\o
oPEny MIET Ger A PAGE Piun P SPEUFK Gev B K
. Ve
UTSDUMP anN0 FRee v M fROM , BOTFE R
© fold Misap BOHFER I
I i “Es RESTORE WEY
T ghy EEEL] [Fres |
we PosiTION P
| g
‘ MES) RF[(ESP‘D' (goo1cTRAP)
BT oW s £ BOILD F1LL M wene >iLE RERD TK
{REE SAP PAGE { wenl on e
| — ABN £Rom TRl AT ATIME
W OPEN MonOMP WABEL § TRPE
ReEAD @
[Jod cLese FLE HES
ALL o

90 19 90A-1(8/73)

ot ot
Men (PN

146

AND THPE

|

TELL B &F

PAGES \N Dumf

efeN

YL e

foRk \WeuT

l

RELEASE BOFFER

L ¥

SECTION LE. 02
PAGE 15
UTS TECHNICAL MANUAL 3/27/72

Dk

Yo
SPELA\ED ™
f l)
| SET Mebiias RESET MONFLAG
ipm} KR RRGANS LG SEX RLAD%Q\NYLG

147

UTS TECHNICAL MANUAL

- €

lcuosf- M e

I
6Pt M. LS
™~ k‘,‘)\)(
PRL\)TF—K

/‘Mk\kf. SLURE

/ GETAODR \

GET WS 4T\
\mns PRGEBUE

90 19 90A-1(8/73)

oPY JB:CMA@

Te (NTORN
MB P

STT ARG
FLAG

148

SECTION LE. 02

PAGE 16
3/27/72

ISSUE SopPfR-
s -

SECTION LE. 02

PAGE 17
UTS TECHNICAL MANUAL 3/27/72
1 Mse, Bufsur
"Yeu MosT
Te LepninNG

Ar Twf. MENTD
TG CHRANLE

w'!

149

RoLN

SECTION LE. 02

COUONT=

\\\ OZ -~
S

e

PeeeooT \
pPoT BUT T e
UHYSIAC PREE

AN

-

GET THE
WEAT VSER

b‘

W

150

- PAGE 18
GeT TP FLELD2 UTS TECHNICAL MANUAL 3/20/72
of Roun
| OPAGES JMPRGES) PPAGES rﬂ TATES
PAEYATSAN lbf'" W £PPH] 1 GeT ?Qr&(_f’gm; L(—jj.T HEAD &+
MALE So€ Jw CMLERPT, M e \WORME QUEVE SBHQ
ADDRECS THBUE L | I
DO IR SET PR PP,
/ Poeor \ Re. 0P, {8 7%=
: s A rOT oo\ .
—=Cocc fREL TAEE g
<PLC\rED ?%L CHAY Y#
GET OB TL
Wt PASELUY
ivm\ Ny GET SEerY, 1
Eoans N eeRE S FPT S50 PC TParely N\ e
.1 AL D ',
: P [h &V TIeK & T-NY STYS
GEr w5 / Pe=s \ f;%r,gw.m& Seews -
Y J\T ()0‘\— 90“' e e P
A SuOAPPER
TFCAHD? 22, w—“l Thet cuail/ 1es " ngm\ AN
10T, 3Bk W‘ et u‘t;
1 6

UTS TECHNICAL MANUAL

BAL, ko PeoeLT
YaooT

GEY MG or

|
/ Wieer \

POT BSUOYT
Tvi. THYsIca
TAE CRAN

PRANT TAIC
ANE COUNT MY

e

SECTION LE. 02
FAGE 19
3/27/72

BALR\Z Wese?P

&—- —p—
\lm

-re_kusc_ﬁrﬁ
ETE

FLINK T

151

\

"Edroy 10 TAIL
" ERRER (N cOONT

SECTION LE. 02

PAGE 20
_UTS__TECHNICAL MANUAL 3/27/72
SCANNEY
r —
| CLEAR STACK
ORbEDEL = 4
2ale =1
J.h\TT
Zht heups s€e e PoT BOFFER DATA BASCS

L

S\N(:L\t\ YES —
%‘}/ < CE—, L‘F L * A *
‘Lh;\m‘ Wi FEd R2-0 ‘

o

e

GET CHARACTER
FeeM oCBLOE

COMMA + b, LF

— g STREVIBOSS T |
STGRE CRAR | TCHARMCTER AT ROMP REPFING |
3 o Sbace bomim i l e emad

FIECD POWOTER]
T &PS |

{

|

|

i

N |
e [‘ v

BomMb Ly eep 22
CeuNT

152

SECTION LE. 02

UTS TECHNICAL MANUAL PAGE 21
3/27/72
PiCw OF FKoT .
T\Se M ,;;M.D fwem £ udl
MAPFULNG = 4
= I
ST ST [T e e
...q_______.
DL KU TR AL SE SsMm LP ve MA | CNEC T AN p MB Tk gy
? S Y Y L
Al o2 3]l s 8| 6,7 2 aj w viazj 1319 'S e 17 %
t : i i H
| | o ,\
| | b V< fpmgoimnt’
1 ? | b VeRanT
} o ! Vs ror
| P |0 Ve omPARE
! : * YA R
! 3 W PLT
i ! (o Ay
| DO RA
v\)MM{M’
i 'MI\PMGDE'v
t '\)C.L.e
|
| FUT "]
Y cepken
VAL
‘TRM.E
* 'QON
pwsPLay

153

SECTION LE. 02

UTS TECHNICAL MANUAL L AGE 22
SEARCH v/
/ GETHEX 1\
Gy TWE
S¥ ARCY
VALLE
/ Leciec AN wTV

GET TRe
vy ‘ L g
J‘:,‘.M'\T% / /Gf-THt\A "
. ICIo SH(\M{;D

MASK UM E

/ Gf TADD R \ /

=1 'T‘Hﬁ »_) ' I

fnwf Locr o -
y VAL —b MA Q,

0T 9 —
! r;nasr ol R3 commans VAL W/

RS centang WOC

VAN =

'\u»x_ oMU
MASQ L

ES

oY '\.ecnmou
AR CONTINTG

NG R2 e (J:;I’j')

Funisury

154

SECTION LE. 02

PAGE 23
UTS TECHNICAL MANUAL 3/27/72

(SYMBOLMAP)
{

te t
Get an Initial Truncate to ERR/ABN
7 Bytes. From CAL
8K Buffer. Reading
| MONSTK
no
s
Cant Get re /)
The Buffer. Issue CAL to
Read MONSTK. maller Than
Previous
l Value
? Ask for one
Save ARS in
More Page.
STKSIZE. Move Previous Entry
l | _{Down, Compare
Previous with Next
Set up Pointers To Above.
Index Buffer. ¥
@——————h" Store 4 Words 0 no
in Proper Num=- ——
Pull Up An Entry. /\ erical Position. Yes

Bump Read Size
in CAL FPT.

Less
han 4 words™
Logg

Stack
Finished

ERR/ABN
xxxx DCB.
Set
It an ABS ABSFLAG
DEF Zero.

yes

Set ABSFLAG .
To ~1.

155 90 19 90A-1(8/73)

SECTION LE.02
PAGE 23-1

7
UTS TECHNICAL MANUAL 3/27/73

Symbol Table Now
In Numerical Order.

Get 4 Pages To
Sort Symbols Into
Alpha Sorted
Position.

Sift Symbols
Into Alpha
Sorted Position.

Display Symbols
on M:LO.

Return Table
To Numerical
Sort Position.

90 19 90A-1(8/73) 155-1

SECTION LE. 02

PAGE 24
UTS TECHNICAL MANUAL 3/27/72

pefroLt = vze
Sf VBoifER

\S THE
VSER NOMBE
SPELFIED,

DEFPOLT = AL
USERS

_—y

FND RecwoH,
SEY UP coevy
ANDd pixfcnioN

TEANSULATL OSER

< X AME WS TRANSSZ
/ 666ET4 \ LA GS
GET N Ricek),
TRANSLATE, GET CALUIMG RTNE
oOT PUT !
/ GETVEC \
NG N6 TRANSIATE BY
cALNG Reon
£s :
_\(/T POouMP 1\
W Domp BECSRD
W RENR
/ ot LT\

PRWT THC—>
(e CoRY y

W

156

SECTION LE. 02

UTS TECHNICAL MANUAL PAGE 25

GE T\V 3/27/72

CAL

(Mr'l

EVENT €Ex TS € RRBR ABSRT ARORT M ESBLE.
INSERT INSERY | INSERY Tne
Texr cAl "ASBRT i’ APPREPRINTE
ANG ABC | ME<<Acl
INSE RT BOILD E NSCRT
"MABORT "cAU,~
AND A;\?;c,
| ;
| :
i !
‘ Y
TRANSLATE VS ERY
E\J&ﬁ\'; T, :RSMJ "&{(E&R" AND
STATE A BC |
1 ‘]'
RETORN
CeNsSOLT THE DD MEN TAT (N e nJ

THE FeRrMmpaT L TrE EVENT RécsrOEL

o (T ERPRET TS fLow cuART

ESe\E TRANSLAES EXEcOTION, SwHAP SuT,

SWAP N AND ENDSwAP REceRDS,

)

157

SECTION LE, 02

PAGE 26
UTS TECHNICAL MANUAL 3/27/72

Oue

cLesf Mo
' |
fefEN MO
e VC

ScAVNF

uNwmp P

x

158)

uMPse

fur ADDRESS |
IN GuTPUT Bof

ADD AW =

[/ (ZET PRGE \

GET ToE fhel
LN TANWNE
‘ THE ADDRESS

' o

(\{¢)

1 <Ees

TORN ©OR THE
PIANT FLiG

|
/ TRANS \

TRANSLATE THE \

WBRY S+ THE
! pLUMP
i /I\
nNe AWITH W AOE &
COrMMARD

SECTION LE, 02

PAGE 27
UTS TECHNICAL MANUAL 3/27/72
© ROF
CLLAGS
BUELiM

LASTWBRD = SAME AS CORRENT

PLLAGES
g7 = ©
K7 = O

159

SECTION LE, 02

PAGE 28
UTS TECHNICAL MANUAL 3/27/72

CenerAn — o HALT OF SerPAcc
MeNfLAG = 4

“es w

P $Ree dst ond] PAGE BOF
P of TR ¢ -
~TMOSY g . 3 ~ &E
RE AD READAGANALG = 1 MISAD 1N\t ViR A

MISAD »me " ppwiest WoT
OLDPAGE SOcc£1Y 1 HoH ENBUVEH”

Hes YEs

W g’{Qr-,r: Zvo Pﬂj

iA—NO VY it M
"Tupe o]

COMMAND \
RETORN 7o ZoccEn R
SANNE K " “)_

SAVE REQUIT] GLodref A

™~ fes
\ —
NG~ \pbPed? MAPHLAG = L W
ES
LOEPRP REAC PG
Flom uaeraLs MAf) MaP

READ AGAINTLG

€E - wWTIALIZE PAGERUF
PR

FoRrRM WUEY

ALY READ KEY
ConNsécvnvt. Pbs |

W

160

SECTION LE.O3
PAGE 1

3/27/72
UTS TECHNICAL MANUAL

To implement a new display command:

1. Add to the table DCOM in ANLZ the first two
characters of the second field of the display
command; for the example, 'FN' is added.

2. Add to the transfer vector GOTIT in ANLZ,
in parallel to the addition in 1 above, a branch
to the entry label for the new display routire;
for the example, B FNORTTABS is added.

3. If the routine is in an overlay, the entry label
must be REF'ed.

To include the display in the ALL command (the crash dump):

1. Add to the transfer vector AOPS in ANLZ a branch
to the entry label for the new display routine.

2, Same as step 3 above,
To implement as a totally new ANLZ command:

1. Add to the table COMMANDS in ANLZ the first fwo

characters of the new command; for the example, 'FN!
is added.

2. In parallel to 1 above, add to the transfer vector CVEC in

ANLZ a branch to the entry label; for the example, B FNORTTABS
is added.

3. REF the entry if it's in an overlay.

The areas in ANLZ referred to in the above procedures are fairly well documented
and any questions may be resolved by exgmining the code.

161

SECTION LE.03
PAGE 2
D 3/27/72

Adding code to ANLZ,

New display or dump routines are simple to code using existing ANLZ subroutines,
and simple to add to ANLZ by making them overlays or adding them to the current
overlay ANALZO1. Descriptions of pertinent subroutines have been abstracted

from the Technical Manual, and are appended to this section. The easiest way to
learn to write ANLZ routines is by example, so, let's. take as an example the FNORT
tables and data, to be added as a display to ANLZ, These tables are indexed by
user number, and consist of the following:

BFNORT byte resolution - flags

HFNORT halfword resulution = data

WFNORT word resulution - physical address of a
16=word context block

DFNORT doubleword containing account of the

user in text,
The desired format is the following for each user in the system:

FNORT TABLES:
USER # BFNORT HFNORT DFNORT
N [0l0l0IO NNNN ACCOUNT

CONTEXT:

NNNNNNNN NNNNNNNN NNNNNNNN NNNNNNNN
NNNNNNNN NNNNNNNN NNNNNNNN NNNNNNNN
NNNNNNNN NNNNNNNN NNNNNNNN NNNNNNNN
NNNNNNNN NNNNNNNN NNNNNNNN NNNNNNNN..............

Notice BFENORT has been broken into its flag bits, the account printed in
EBCDIC, and the context of 16 words is in the format of a core dump. This
display might be coded as shown on the attachment, although with table-
building PROC:s the size of the routine would be significantly reduced.

There are three existing ways the new display may be added to ANLZ:

(1) as a new display command, e.g., DISPLAY FNORT, (2) as a display to

be included in the crash dump (ALL command), or (3) as a totally new command,
e.g., FNORT, These should be implemented as fol lows.

162

SECTION LE. O3
PAGE 3

3/27/72

UTS TECHNICAL MANUAL

SYSTEM
DEF
REF
REF
REF
REF

SIG7

FNORTTABS

UB:US, BENORT, HFNORT, WENORT, DFNORT
MSG, BUF OOT, MSGI, GETADDR

SPACES, BITPUT,DUMPSOME

TRANS, TRANSSZ, SMUIS, SCANNER

THIS FIRST PART OF THE EXAMPLE ROUTINE PUTS OUT THE TWO
FIRST MESSAGES -~ THE HEADERS FOR THE FNORT DISPLAY

FNORTTABS EQU
LI, 1
BAL, 0
BAL, 0
LI, 1
BAL, 0
BAL, 0
LI, 6

$
FNORTMSG
MSG
BUFOUT
FNORTHDR
MSG
BUFOUT™

1

FOR THE DURATION, Ré WILL CONTAIN THE USER NUMBER, R5
THE TAB INDEX FOR THE TABLE BEING DISPLAYED FOR THAT USER.
THE FIRST PART CHECKS TO SEE IF THE USER'S STATE IS NON=-ZERO.

FNORTLOOP! EQU
LL, 5
LI, 14
BAL, 0
MTB, 0
BEZ

$
0

UB:US
GETADDR
*15, 6
NEXTFNORT

TAB TO THE LOCATION OF THE USER # ON THE LINE TO BE OUTPUT

LB, 1
BAL, 0

TABS, 5
SPACES

NOW OUTPUT THE USER # ITSELF

LW, 3
BAL, 0

6
TRANSSZ

163

SECTION LE. 02
PAGE 4

3/27/72

UTS TECHNICAL MANUAL

TAB TO THE FIRST TABLE DISPLAY AND PUT OUT THE ENTRY FOR
THE USER IN BIT FORMAT

Al 5
LB, 1
BAL, 0
LI, 14
BAL, 0
LB, 3
BAL, 0

1
TABS, 5
SPACES
BFNORT
GETADDR
*15,6
BITPUT

TAB TO THE NEXT THEN PUT OUT THE NEXT ENTRY IN HEXIDECIMAL
SUPPRESSING LEADING ZEROS

Al 5
LB, 1
BAL, 0
L, 14
BAL, 0
LH, 3

1

TABS, 5
SPACES
HFNORT
GETADDR
*15,6

BEING SURE TO TRIM OFF ANY SIGN BITS DUE TO THE LOAD HALF

AND, 3

BAL, 0

=X'FFFF"
TRANSSZ

ON TO THE NI"XT, TO BE DISPLAYED IN EBCDIC

Al 5
LB, 1
BAL, 0
LI, 14
BAL, 0
LD, 8
LI, 1
L, 2
BAL, 0

1

TABS, 5
SPACES
DFNORT
GETADDR
*15,6

8

8

MSGI

THE LINE COMPLETED, PRINTIT, THEN DUMP THE CONTEXT
STARTING WITH THE MESSAGE

164

SECTION LE.02

PAGE 5
3/27/72
UTS TECHNICAL MANUAL

BAL, 0 BUFOUT

L, 1 CONTEXT

BAL, 0 MSG

BAL, 0 BUFOUT

LI, 14 WENORT

BAL, 0 GETADDR

Lw, 14 *15, 6

WITH CONTEXT ADDRESS IN HAND HEAD FOR THE
DUMPSOME ROUTINE

BAL, 0 GETADDR

LW, 8 15

L, 7 16

BAL, 0 DUMPSOME
NEXTFNORT EQU $

Al 6 1

IF FINISHED, HEAD BACK TO THE BARN OTHERWISE,
GET THE NEXT USER AND DUMP HIS FNORT TABLES TOO

Cl, 6 SMUIS

BLE FNORTLOOPI

B SCANNER
TABS DATA, 1 2,8, 19, 26
FNORTMSG TEXTC 'ENORT TABLES:'
FNORTHDR TEXTC 'USER # BENORT HFNORT DFNORT'
CONTEXT TEXTC 'CONTEXT:'

END

165

Pages 166-171 deleted

M:UC
M:RCLOK2
S:CUN
S:ISUN
SB:OSN
SB:OSUL
TSTACK
UB:APR

OUTPUT

SECTION LF
PAGE 2
UTS TECHNICAL MANUAL 1/29/71

DCB for terminal 1/0

CLOCK?2 for time

Current user number

Inswap user number

Number of outswap users in

The outswap user list

Temp stack in the JIT

User table of associated processor number

The format of the recording buffer is described in Section VO. 02,

INTERACTION

None

DATA BASES

None

SUBROUTINES

None

ERRORS

None

RESTRICTIONS

None

DESCRIPTION

When accessed, RECORD first decides to record or not based on the setting of the

soft-switch RONOFF,

RECLOCI] is bumped by 4 to make room for the information to be recorded, and the

If it is set, the pointer RECLOCT1 is compared against the size
of the buffer RECEND; and if equal, is set to the beginning of the buffer RECBUF to
wrap-around properly.

calling routine is set into the first byte of the entry.

167

UTS

TECHNICAL MANUAL

SECTION LF

PAGE 3

' Calling
Routine

~

—

N

RECLOC1 [Value |

1/29/71

If the number of the calling routine >10, control is given to the routine RNINER,
which places the current user number and his flags in word 0, places R2 from the call-
ing routine in word 1 of the entry, and transfers control to the common exit RECTHRU.

Calling] User User's
Routine| Number Flags
R2

Otherwise, the vector RECVEC is used to branch to the routine handling
for the recognized callers:

Routine

RECEVNT
RECEXIT
RECATSE
RECSWAP
RECCAL

Caller
0
1 -4
5
6-9
10

the entry

All the above routines exit to RECTHRU. RECEVNT expects the following information:

168

SECTION LF

PAGE 4
UTS TECHNICAL MANUAL 1/29/71
R2 = OP code (usually new state)
R3 = Current state
R4 = User number
R6 = Event number
R7 = Line number

and stores it in the entry in the following format:

0 User User's 0
Number _ Flggs
OoP Line
State Event Code | State 1
2
3

The line state entry is made only if the user is on-line, and is obtained from STATE.

RECEXIT obtains current user from S:CUN, flags from UH:FLG, inserts item in the entry,
then checks to see if this entry is for a normal exit. If so, R6 is set in word 1 of the
entry. Otherwise the associated processor from UB:APR and ABC and RNST from the
user's JIT are set into word 1.

User User's|
1-4 Number Flags 0
EXIT ~ R6 1
ERROR/ABORT | APR | RNST | ABCT 00
2
.

RECATSE merely records the user number and his flags in word 0.

RECSWAP determines if a swap is being scheduled, and if so merely inserts zeros in
word 1. Otherwise the inswap user number and his flags are placed in word 0, and
again word 1 is filled with zeros.

169

SECTION LF
PAGE 5
UTS TECHNICAL MANUAL 1/29/71

SWAP SCHEDULE| 6 0 -0

SWAP[791 TSUN] User’s Flags] °
0 - of 1

2

3

RECCAL expects the following information:

R3 = CAL]1 type
R6 = Ist word of the PLIST
R8 = OP code from R6

The current user and his flags are set into word 0, and the CAL type, the OP code,

and the right half of the 1st word of the PLIST (usually the DCB address) are set into
word 1.

User User's

A Number Flags 0
CAL CAL 1st Word
TYPE| OF°P of PLIST(RH)

RECTHRO records the time of the report in word 2, and fills word 3 with F's, to
facilitate reading the buffer in a dump.

Control is then returned to the calling routine.

170

UTS TECHNICAL MANUAL

RECORD

RECORDINGZ

= d

STARY AT
i-rne_ Tof

| ——

BOMP E;.of—cf—{{
anTel wl BV

l

SEY CALLING
OV 1UTEe
LA RST S IL

W

SECTION LF
PAGE 6

1/29/71

-

SLCcON, U»;ﬂﬁ)
ANY R2 {rom
CAUL \NTe
oL 2

no L

RECEWWY | = O RECEXVT f=1~4 Ricace | = 6 Recsunl| =9 KC-«-%L * lo
WLy LIER T, et’.vf S, CUN, SET OoCW. B i ’ 6\'-.& G._.‘}_s
SET OHITLE VR TLE, WSEs AND M5 SLAGS AR LWL
wT 6L <TAE, W BusiTER INTe BOFFER VRITS ToiTR
TUENT, BFP cuui
S e tE | 1

: | s6T el

[5o IS0 myp ';MWEJ f)v't»vl“‘"f,

Wis Y UAGS 2 Ut e Tl

RNIKT WS

Ll TTATE

—

6LT Rl $voM
EXT cAL €NV

Bo INGERT

Ger OTIAMR,
RWST, ABL

Linse v 1w gOiFFR

P ——

InTO VU YT l?—J '

¥

WLAT 4 es
N wey 2

Or CUYIl &

—

o —r

TYME ~>Tpy W,
-l =t 4Ty WELY
RESTOL R 65

| 171

W

&

SECTION LH
PAGE 1

10/27/72
UTS TECHNICAL MANUAL

ID

DRSP - Dynamic Replacement of Shared Processor

Design Specification

PURPOSE

Provides a dynamic facility for replacing, entering or deleting a shared processor
or monitor overlay. Only users with a high privilege level (>CO) will be able to
use this facility .

OVERVIEW

The shared processor tables in core describe the characteristics (location and size)
of the processors as they exist on the swapping RAD. The introduction of a new
item (via ENTER or REPLACE) entails writing that item on the RAD and modifying
the tables in core. Current users must be allowed to continue their association
with the old copy. Therefore, until all current users disassociate, the old and
new copies must exist simultaneously, each one occupying a separate slot in the
tables. There can be no conflict between the old and new copies since the user
tables retain only the index to the old copy after association, (rather than the
name of the old copy). That is, current users will continue to get the old copy
but a new user will associate with the new copy since the new slot is the only one
which contains the name.

Extra slots will be provided as SYSGEN time, to accommodate brand new items
(via ENTER) and to deal with the new copy without disabling the current one (via
REPLACE). Additionally, space must be allocated on the swapping RAD to accom-
modate the. new items. :

When RAD and slot availability have been successfully established, SYSMAK writes
the item to the swapping RAD and modifies the core version of the processor tables

appropriately .

If the user requests a "PERM", he is asking for a copy which will be restored to the
system after a crash. In the case of a processor this translates to the placement of
the processor file within the :SYS account. For either a monitor overlay or a pro-
cessor, the RAD version of the shared processor tables in the current monitor are
changed in some selected items (e.g., flags, name).

172

SECTION LH
PAGE 2

10/27/72

UTS TECHNICAL MANUAL

The final phase consists of "enabling and disabling" the new and old copies
respectively . With interrupts disabled, the new name is placed in the new
slot and the old slot name is replaced by its index.

The program runs predominantly in slave mode with access to the monitor gained
via the Change Virtual Map CAL. Master mode is used only when necessary.
Usage of the program is restricted to one user to avoid a deadly embrace
situation,

The DRSP commands recognize BREAK control at feasible junctures, respond with
a type-out and return to the prompt situation.

PROPOSED ENHANCEMENTS

The following features are proposed as future enhancements.

1. Dynamic RAD and slot housekeeping. Fre up table slots and pool RAD
resources.

2, Resolve SAVE-GET problem by including a date within the SAVE file and
processor table.

DESCRIPTION

The write=up which follows is divided into

START LH .01 Sets up the initial program conditions
required by DRSP.

RESTART LH.02 Reads DRSP commands and starts their
execution

INITIAL LH.03 Establishes access to the resident monitor

DRSPMAIN LH.04 Serves as a driver for each major phase
of processing.

SYNTAX LH.05 Scans command line for options specified.

LIST LH.06 Output to the user the contents of selected

processor tables

173

RADNEED
GETRADSLOT
FINDSLOT
TELCCIONLY
WRITESWAP
PERM
MODRAD
RWRAD
SWITCH
CLOSEOUT

CLEANUP

SEARCH

GFID

WORTH
FINDGRAN
SCAN, SCANT

POST, POST 1

DAGRAN,
GRANDA

TCTEST
XGRTEST
BUFAD

MASTER, SLAVE

5400
5360

LH. 07
LH.08
LH. 09
LH. 10
LH. 11
LH. 12
LH. 13
LH. 14
LH. 15
LH. 16

LH. 17
LH. 17.00

LH. 17.01
LH.17.02
LH.17.03
LH.17.04
LH. 17.05

LH. 17.06

LH. 17.07
LH.17.08

- LH. 17.09

LH.17.10
LH.17. 11
LH. 17.12
LH.17.13

SECTION LH
PAGE 3
3/27/72

UTS TECHNICAL MANUAL

Reads the TREE record of the fid file

Finds a new slot for the proname

Finds an available slot in P:NAME table

Sets up the environment necessary to repiace TEL/CCI
Calls SYSMAK to write fid to RAD

Copies fid into :SYS account and modifies RAD tables
Modifies shared processor tables on RAD

Reads/Writes RAD tables

Finalizes core copy of the processor tables

Restores DRSP's original conditions prior to reading the
next command

These routines are used throughout the program

Release inactive processor and overlay name slots back to
system

Searches P:NAME table

Decodes file, account, password from command line.
Checks if processor table slots are available

Computes RAD granules associated with a shared processor

Transfers a field from the command buffer to a specified

. areaq,

Post error message

Disc address = granule conversion
Test for TEL/CCI

Test for illegal pronames

Buffer - table address conversion
Set MASTER/SLAVE modes
EBCDIC - hex conversion

Public library test

174

SECTION LH

PAGE 4
3/27/72
UTS TECHNICAL MANUAL
5430 LH. 17.14 EBCDIC - digit conversion
HEX2PRNT LH.17.15 Hex to printer conversion
USAGE

DRSP entered from TEL with the command DRSP or from CCI with a IDRSP card.

INTERACTION

SYSMAK1 Used to write the fid to the swapping RAD and to modify the core
processor table.

NEWQ The monitor I/O service used to read/write the tables under PERM.

GFB, RFB The monitor routines used to get and release the monitor buffer to
hold an end-action routine.

RESTRICTIONS

Replace or entered items are always load modules.
One level of overlay is permitted in a processor.
A monitor overlay itself has no tree structure.
DRSP occasionally runs in master mode.

Only one DRSP user at a time.

User of DRSP must have a privilege of > CO.

Upon entry to SYSMAK, JIT access is acquired.
DRSP requires maximum core.

175

SECTION LH
UTS TECHNICAL MANUAL PAGE 5

GATEN: REA D # L | =rron
AHouse - ! pRIP CALD | TYPEOGLT,
MAeErPING [Nonizee: TreE| | exxr

EXIT JHouUSE -
"DRSP KERE™ MKEEPING

TYPeOUT:
PILLEGAL
CoMmanD "

LF BATCH: No
LITST INPUT
CoOMMAND

READ
INPUT
COMMAND

PRoCESS
TNPUT
COMMAND

A ELLol
1 TYPeOUT

ALSHIRTE
SonTEd ASER
FRoM TR3IP,

175

SECTION LH. 01
PAGE 1
3/27/72

UTS TECHNICAL MANUAL

1

START

Design Specification

PURPOSE
Sets up the initial program conditions required by DRSP,

USAGE

Automatic starting point of DRSP, Executed only once during any run of DRSP, Exits
to RESTART if privilege level is 80 or greater, '

ERRORS
INSUFFICIENT PRIVILEGE LEVEL FOR DRSP USAGE

DESCRIPTION

START zeros out data area and sets up the stack pointer double-word. If the user is a
b atch job the !DRSP card is read and discarded. If the user is on=line, the message
'DRSP HERE' and the prompt character ™>' are printed. The privilege is checked for
>'80'; an error message is printed if it is not high enough and the routine aborts
(M:ERR). If the privilege level is satisfactory, control is transferred to INITIAL to
obtain memory required for execution. Then DRSP commands are processed starting
at RESTART.

INTERACTION

FULLERR Prints error mess?:ge.
DATA BASE

J:JIT On=line bit.

JB:PRIV User's privilege level.

177

SECTION LH, 02
PAGE 1

3/27/72
UTS TECHNICAL MANUAL

D

RESTART

Design Specification

PURPOSE

To read DRSP commands and start their execution if they are legitimate and the user has
the appropriate privilege level (>80 for LIST, > CO for Replace, Enter and Delete).

USAGE

Point in DRSP to which control is returned in order to get next function to process.

ERRORS

ILLEGAL COMMAND

INSUFFICIENT PRIVILEGE LEVEL TO PROCESS THIS COMMAND
DRSP INHIBIT SET

DRSP PROGRAM ERROR (Shouldn't Happen)

INTERACTION

POST Post error message

FULLERR Print error message

SEARCH ~ Search P:NAME table (for DRSP)
MASTER Enter Master Mode

SLAVE Return to Slave Mode

SCAN Scan input line for command name
M:WAIT Suspends program execution waiting for change in the DRSP inhibit flag
DATA BASE

JJIT On-line bit

JB:PRIV User's privilege level

UB:APR Associated processor table

S:CUN Current user number

DRSP DRSP inhibit flag

178

OUTPUT

DRSP
COMD

CFLAG

EHHCNT

DESCRIPTION

SECTION LH. 02

PAGE
13/27/72

UTS TECHNICAL MANUAL

Set to current user number (= inhibited)

One to eight characters of option specified;
remaining characters are spaces.

one word code defining option specified

-2 for REPLACE

-1 for ENTER

-0 for DELETE

+1 for LIST options

Character count for "EH" message set to 8.

2

RESTART contains the house=keeping code required between execution of commands
The next command i read (and printed if this is a batch job) and the privilege is
checked to see if it can be executed (>80 for LIST, > CO for Replace, Enter and
Delete). If the command is '?', the latest error message is printed. 'If the command
is 'R', 'E' or 'D', the DRSP inhibit flag is set to prevent another user from modifying
the processor tables simultaneously. The LIST command does not set the inhibit flag.
Once it is determined that the command can be executed, control goes to DRSPMAIN.

179

ID

INITIAL

Design Specification

PURPOSE

SECTION LH. 03
PAGE 1
3/27/72

UTS TECHNICAL MANUAL

To establish access to the resident monitor.

USAGE

BAL, 15 INITIAL
OUTPUT
MONPGS
MADDR

PAGES

XTRA}

W500
Monitor Address Table

2PGERR

INTERACTION

M:GP
M:FP

M:CVM

M:GVP

Number of pages in monitor required to access all pertinent
tables, counts, etc.

Beginning virtual address of monitor root.

Contains location of first page obtained.

Contains location of next page to be accessed when
reading TREE (RADNEED)

Contains the virtual address of monitor data referenced

by DRSP routines. The convention used in naming

this table is to precede the monitor name with an 'X'
(e.g. XP:NAME contains the virtual address of P:NAME)
Set to error code '2' if DRSP cannot obtain two additional
pages to read the TREE record in RADNEED routine. Error
message type-out is delayed until DRSP actually tries to
read the TREE record in RADNEED.

Get pages to reference resident monitor.

Free pages once it is determined they are availdable

to reference resident monitor

Change Virtual Map to address monitor thru monitor address
table.

Get Virtual Pages (2 pages) for subsequent read/write of
TREE record in RADNEED routine.

180

SECTION LH.03
PAGE 2
3/27/72

UTS TECHNICAL MANUAL

SUBROUTINES

FULLERR Print error message
ERRORS

INSUFFICIENT VIRTUAL MEMORY TO EXECUTE DRSP.
INSUFFICIENT MEMORY TO READ TREE.

DESCRIPTION

INITIAL establishes access to the resident monitor by:

1) calculating number of pages required to reference monitor counts, flags, etc.
2) obtaining the required number of pages (M:CVM), and
3) computing the addresses in the monitor address table.

The routine then gets two additional pages in order that RADNEED can read the

TREE record. The next virtual address is stored in XTRA and W500, to be used
to read/write the file in WRITESWAP and PERM.

181

SECTION LH. 04
PAGE 1
3/27/72

UTS TECHNICAL MANUAL

D

DRSPMAIN

Design Specification

PURPOSE
Serves as a driver for each major phase of the processing.

USAGE

Entered from RESTART in order to process command read.

DESCRIPTION

INITIAL and SYNTAX are called to establish initial conditions and read the
command. If the command is LIST, subroutine LIST is called and control is
passed to CLOSEOUT. If the command is DELETE, control is passed to PERM
in case the PERM option is also wanted. In all other cases control is passed
to RADNEED, GETRADSLOT, TELCCIONLY, WRITESWAP, PERM, SWITCH,
and CLOSEOUT in that order. DRSPMAIN finally exits to RESTART,

182

ID

SYNTAX

SECTION LH. 05
PAGE !
3/27/72

UTS TECHNICAL MANUAL

Design Specification

PURPOSE

To scan command line for options specified; defines illegal combination of options;
incidentally obtains P:NAME table index if proname exists and sets TEL/CCI flag.

USAGE
BAL, 15

INPUT

COMD

CFLAG
BYTE
ENDC

EOI

BUF

LCF

CHAR
J:ACCN
MAXOVLY
XP:NAME
XP:NAMEND
XP:SA

SYNTAX

one to eight characters of function specified; remaining
characters are spaces

number code defining function

current position in command line

the terminating byte

the end of input character

the field composed by SCAN in TEXT format
the number of bytes in the field

the command line image, one character/word
the user's account number

index pointer to end of monitor overlays
beginning of processor name table

end of processor name table

processor flag table

183

OUTPUT

OINDEX
NEWFLAGS

PRONAME
TEL:CCI
PFLAG
FILE
ACCN
PSWD
TYPE
UFLAG

FFLAG
WAIT

LTYPE

LRANGE

LNAMES

LTITLE

LFIRST
LLAST
EHHCNT

SECTION LH.05
PAGE 2
3/27/72

UTS TECHNICAL MANUAL

word containing address of "old" index in P:NAME table
word containing processor flags as set by the command (in
format nn0000000)

two word proname in TEXTC format

-1 if TEL, 1if CCI, O if neither

flag set if PERM option requested

four words of fid file name in TEXTC format

two words containing the users/file account number

two words containing the file password if specified; otherwise
zero

flag (first byte of word) set to =1 for a processor and +1 for an
overlay.

flag (first byte of word) set to "U" for the unconditional
option; otherwise zero.

flag set non=zero if any flags set in command; otherwise, zero.
flag set non=zero if "W" option specified for a processor'
otherwise, set zero.

=0 for LISTALL

=1 for LIST

=0 no index range specified
= | proname specified

= 2 for both indexes specified
= 3 for one index specified

-1 table names are not to be printed
0 table names are to be printed

inn

-1 "P:NAME TABLE" title to be printed
0 no title to be printed
1 "PROCESSOR TABLES" title to be printed

n

set to first index specified
set to second index specified (or first if only one is specified)
character count for "EH" message set to 3.

184

SUBROUTINES

SCAN, SCANT
POST
SEARCH

GFID
TCTEST

XGRTEST

S400
5360
S430

ERRORS

"PRONAME REQUIRED"

SECTION LH. 05
PAGE 3

3/27/72

UTS TECHNICAL MANUAL

"NO SUCH OVERLAY/PROCESSOR"

"ILLEGAL COMMAND OPTION"

"ILLEGAL FLAG COMBINATION"

"DON'T SET FLAGS WITH MONITOR

OVERLAY"

"PROCESSOR/OVERLAY ALREADY

EXISTS"

"DON'T USE COMMAND ON

TEL/CCI"

"PROGRAM ERROR (SHOULDN'T

HAPPEN)"

- 185

composed next field from command line

posts error message

finds proname in P:NAME table and return
index or returns to "notfound" exit

scans command line for fid

tests proname for TEL or CCI; sets flag
TEL/CCI

accordingly

tests proname for XDELTA, RECOVER, ALLOCAT
M:DUMLM or GHOST1 and exits on found or
not (two returns)

convert EBCDIC index to hex

test proname for :PNN format

Convert EBCDIC character to hex digit

A proname was not recognized for the
REPLACE, ENTER or DELETE options.

The proname does not exist in the P:NAME
table

general error message for several illegal
command options

Characters other than J, S, M, D, P set
or D and P set.

flag option not applicable to the ENTER/
REPLACE of an overlay.

The proname specified with the ENTER
already appears in the P: NAME table.

Cannot ENTER/DELETE TEL or CCI.

Logical "dead-ends" in program; should
not occur after system is debugged.

SECTION LH.05
PAGE 4

10/27 /72

UTS TECHNICAL MANUAL

"ILLEGAL PRONAME, NOT P:NN"
"INCORRECT FID"
"WAIT OPTION IGNORED

FOR MONITOR OVERLAYS

DESCRIPTION

Processor defined as a public library does
not have a proname in the correct format
File name, account or password exceeds
field limits

Message posted but option "W"

is ignored and processing of command
continues

SYNTAX checks each field of the command line for the defined options.

There is a main logical path for each of the commands except for ENTER and REPLACE
which are combined because of their similar command formats. Once the requirement
of the command are satisfied, no other anlaysis takes place. (The end-of-line isnot

required to terminate the command scan.)

Each of the command options is tested in the order indicated below:

LIST and LISTALL

DELETE

REPLACE AND ENTER

186

Command is checked for presence of a proname
or index or index range. The index option
allows the user to print specific slots in the
P:NAME table. The proname option allows
the printout of a particular processor slot, If
proname = M:DUMLM, all slots containing
that dummy name will be printed. A proname/
index is not required.

Routine requires a proname which is stored in
PRONAME if it is found in the P:NAME table.
Proname is checked for TEL, CCI, XDELTA,
RECOVER, ALLOCAT, GHOST 1 and
M:DUMLM. Deleting these "processors" is not
permitted.

The PERM option is processed if it is specified.
Routine requires a proname which is stored

in PRONAME. _

Proname is checked for XDELTA, RECOVER,
GHOST 1, ALLOCAT and M:DUMLM which
are not permitted.

For ENTER, the proname TEL or CCI is not
permitted.

For REPLACE, proname must exist in P:NAME;

SECTION LH.05
PAGE 5

10/27/72

UTS TECHNICAL MANUAL

REPLACE AND ENTER (cont'd)

For ENTER, proname must not exist in P:NAME
The fid, if specified, must be preceded by
"WITH" or "FROM" :

If no fid is specified, PRONAME is used as
the file name with the account specified

as the user's account; no password is specified.
The "O" option is allowed in the ENTER
command only

The "PERM" option may be specified for

either REPLACE or ENTER

Flag settings are allowed for processors only

If the "P" flag is specified, the PRONAME
must be of the format P:nn. If :Pnn is proname
specified, "P" and "S" flags are set.

The "W" option is available for processors only.

Error messages are posted for illegal combinations or missing options. The routine exits

to CLOSE.

The normal exit back to the calling routine is taken when no contradictory or illegal

options are found in the command line.

- 187

ID

LIST

Design Specification

PURPOSE

SECTION LH. 06
PAGE 1
3/27/72

UTS TECHNICAL MANUAL

To output to the user the contents of selected processor tables.

USAGE

BAL, 15 LIST

INPUT

P:NAME
PPROCS
PNAMEND
PB:REP
PB:HPP
PB:TPP
PB:DSZ
PB:DCBSZ
PH:PDA
PH:DDA
PB:UC
PB:LNK
PB:PVA
PB:HVA
P:SA

Called for by DRSPMAIN

Table of processor and overlay names
Length of P:NAME table

Index to last processor name + 1

Total number of users associated with processor
Head of the physical page chain

Tail of the physical page chain

Number of data pages

Number of DCB pages

Disk address of first procedure page

Disk address of first page of data and DCBs
Number of users in core using the processor
Processor number of next overlay

Virtual page number of first procedure page
Virutal page number of first unused page
Processor flags and start address

188

SECTION LH. 06
PAGE 2
3/27/72

UTS TECHNICAL MANUAL

(The following flags are set in SYNTAX)

LTYPE =0 for LISTALL
= =| for LIST
LRANGE = 0 no index range specified

= 1 proname specified
= 2 for both indexes specified
= 3 for one index specified

LNAMES = =1 table names are not to be printed
=0 table names are to be printed

LTITLE = =1 "P:NAME TABLE" title to be printed
= 0 no title to be printed
=1 "PROCESSOR TABLES" title to be printed

LFIRST set to first index specified

LLAST set to second index spec fied (or first if only one index is
specified)

INTERACTION

M:PRINT Output lines to user terminal/Printer

JJIT On-line/batch bit set

SUBROUTINES

FINDGRAN Find RAD granules for slot specified

L400 Convert hex word to EBCDIC

L450 Convert byte to EBCDIC

SEARCH Search P:NAME table for proname

DESCRIPTION

|
Two list options are implemented:

L [1STI[(proname which causes the routine to print portions/entire
{#xx -YY} P:NAME table.

LISTALL}(proname which causes the routine to print selected processor
{#xx ~YY/|| tables for part/all of the processors listed in the
P:NAME table.

189

SECTION LH.06
PAGE 3
3/27/72

UTS TECHNICAL MANUAL

Specification of a proname causes the tables for that processor to be printed. A
special case is made of the proname M:DUMLM., Since slots with the name
M:DUMLM are available for replacement/entering of a processor name, all
such slots are printed to show the resources available to the user.

One index can be specified if the user wants to see the tables relating to a
specific slot. Two indexes can be specified if the user wants to see several slofs.

If neither a proname nor an index are supplied, the LIST option results in the
printout of the entire P:NAME table. For LISTALL, some tables (named in
section INPUT) associated with processors are printed.

The routine scans the P:NAME table for zeroed or "empty" slots (those which
contain their own index). The contents of these slots are printed in hex format.
Otherwise, the routine assumes that a processor name is stored in the slot and

this is moved to the print line without modification. Monitor overlay, processor
root and processor overlay slots are printed although only the monitor overlays and
processor roots can be Replaced/Entered/Deleted. Processor overlay slofs are
filled/deleted along with their associated processor root.

190

SECTION LH.07
PAGE 1

3/27/72
UTS TECHNICAL MANUAL

1D

RADNEED

Design Specification

PURPOSE

To read the TREE record of the fid in order to determine the number of granules
required to write the load module on the swapping RAD.

USAGE

The routine is entered with a BAL, 15 RADNEED,

INPUT

PAGES Starting address of record read buffer

2PGERR Set non-zero if pages are not available to read the TREE record
(set in INITIAL)

TYPE Set for processor (~1) or monitor overlay (+1)

FILE Used to set file, account and password in open M:EL

ACCN '

PSWD

EIPLIST P:LIST for open M:EIL

Procedure, data and DCB sizes read from TREE record.

OUTPUT

MAXRCD The number of pages needed for the longest record of the fid

GRANEED The number of granules needed

NOLAYS The number of overlays if this is a processor

ERROR MESSAGES

CANNOT OPEN THE FID

FID IS NOT A LOAD MODULE

ONLY ONE LEVEL OF OVERLAYS FOR SHARED PROCESSORS
ONLY PROCEDURE IS ALLOWED IN A PROCESSOR OVERLAY

191

SECTION LH. 07
PAGE 2
3/27/72

UTS TECHNICAL MANUAL

INSUFFICIENT MEMORY TO READ TREE

ILLEGAL PROTECTION TYPE FOR PUBLIC LIBRARY
INSUFFICIENT MEMORY TO READ MAX RECORD OF FID
MONITOR OVERLAY CANNOT HAVE OVERLAYS

OVLY DATA EXCEEDS RANGE 8000~8BFF

DESCRIPTION

The OPEN M:EIP-list is constructed out of the fid, the file is opened and the TREE
record is read. The root's DATA size is bounded up to pages and the result stored
in GRANEED. If this is a monitor overlay no further action is necessary since a
monitor overlay (at the load module level);) is assumed to consist purely of DATA
and 2) has not further overlays. Failure to meet these requirements results in
appropriate error message.

If this is a processor, the root's PROCEDURE and DCB size are bounded up to pages.
If this processor is not overlaid the three counts are totaled into GRANEED.

If the processor is overlaid, a check is made to insure that only one level of
overlays exist and that each overlay consists of pure procedure (since shared
processors must be of this form), The number of overlays is remembered, and the
procedure of each overlay is bounded up to pages and totaled.

Special checks are made if a public library is being manipulated:

1) DCB and data size must be zero.
2) must have no overlays

Error messages are typed if the load module for a public library does not conform to
this structure,

Since each granule on the RAD corresponds to a page in core, RADNEED must
account for any difference between an overlay's procedure start and the next
lower page boundary. (This difference actually represents the tail end of the
root's procedure and is carried along on the RAD as the beginning of each overlay).

Throughout the processing, the length of the longest record is retained in

MAXRCD in order to get enough pages for SYSMAK (and the file copying if
PERM). The pages are obtained and RADNEED returns to DRSPMAIN,

192

SECTION LH. 08
PAGE 1
3/27/72

UTS TECHNICAL MANUAL

D

GETRADSLOT

Design Specification

PURPOSE

To find an available slot in the appropriate part of the tables and to determine
whether the granules allocated to this slot are sufficient for the new item.

USAGE

GETSLOTRAD is entered from DRSPMAIN with a BAL, R15
OUTPUT

NINDEX The new index for the replaced or entered item.

ERROR

INSUFFICIENT SPACE ON SWAP RAD

SUBROUTINES

FINDSLOT searches P:NAME within the appropriate bounds for a 'M:DUMLM!
slot.

INTERACTION

FINDSLOT Find minimum sized dummy slot

POST posts error messages
FINDGRAN computes RAD granules associated wi th a slot

DATA BASES

TEL:CCI TEL or CCI flag

PRONAME proname

TYPE monitor overlay or processor designator
GRANEED number of granules needed

193

SECTION LH.08
PAGE 2

10/27 /72

UTS TECHNICAL MANUAL

DESCRIPTION

FINDSLOT discovers an available slot and identifies if in NINDEX. Determining
RAD availability consists of subtracting the pertinent granule number associated
with the new slot (NINDEX) from the pertinent granule number of the next slot

(for processors this is NINDEX+1; for monitor overlays it is NINDEX-1). Pertinent
granule numbers are formed from the disc address in DDA or PDA for processors or
monitor overlays, respectively. The subtraction is performed at the granule level,
using subroutine DAGRAN to perform the conversions. If the new slot (NINDEX)
happens to be the last slot in a section (monitor overlay or processor root), the
"upper" disc addresses are obtained from slot 0, (DDA or PDA depending on pro-
cessor or monitor overlay). Note: If the processor is CCI, the "upper" disc address
is DDA of LOGON which is actually the adjacent processor on the RAD. This is
not reflected in the tables. Having computed the number of granules available,
GETRADSLOT makes a comparison between that number and the number needed
(GRANEED). If there are not enough, an error message is posted and control passes
to FIDREQ to print the size needed for the fid and exit to CLOSE.

194

SECTION LH. 09
PAGE 1
3/27/72

UTS TECHNICAL MANUAL

1D

FINDSLOT

Design Specification

PURPOSE
To find an available slot in the appropriate part of the P:NAME table. If the

item has overlays, FINDSLOT also determines whether there are sufficient
overlay slots available.

USAGE

BAL, 11 FINDSLOT

OUTPUT

NINDEX the index of the availdble slof

INTERACTION

HEX2PRNT Convert hex to EBCDIC

CLEANUP Release processor slots

POST Post error message

FINDGRAN Compute granules for a slot

WORTH Test if possible slots are available

DATA BASE

TYPE monitor overlay/processor designator

NOLAYS number of overlays

P:NAME core copy of P:NAME table
_ERRORS

NO PRONAME SLOTS AVAILABLE
INSUFFICIENT OVERLAYS SLOTS
FID REQUIRES xxxx GRANULES

195

SECTION LH.09
PAGE 2
3/27/72

UTS TECHNICAL MANUAL

DESCRIPTION

FINDSLOT sets the bounds (LOW, HIGH) of the search for a new slot in P:NAME
depending on whether the item is a monitor overlay or a processor. If it is
monitor overlay LOW is P:NAME+]1 (slot O is special) and HIGH is P:NA?:E +2+
MAXOVLY. (P:NAME is double word table,) If this item is a processci, L{ N
is P:NAME +2 MAXOVLY and HIGH is P:NAMEND. The search is on ar ¢:
with the name = 'M: DUMLM'. A successful search results in the sefting of
NINDEX, the index to the found slot. No available slot results in an error and
exit to CLOSE. A message " [FID] requires xxxx Granules" is typed to tell the
USER how big a slot is required for the new load module. If an overlaid pro-
cessor is being handled, the area from P:NAMEND to NXTPOVLY is searched
for NOLAYS (number of overlays) slots. Not finding enough is an error.
Otherwise FINDSLOT returns to GETRADSLOT.

A subroutine WORTH is used if the "W" is set in the command options. FINDSLOT
determines if any slots are large enough for the writing of the new load module;

if yes, the routine will wait for a slot to free up. If no slots are large enough,
even when free, the error message is posted as in the non="WAIT' case.

196

SECTION LH.10
PAGE 1

10/27/72

UTS TECHNICAL MANUAL

D

TELCCIONLY

Design Specification

PURPOSE
Sets master mode.,

USAGE

BAL, 15 TELCCIONLY

DATA BASE

UH:FLAG Used to test for BREAK; used to test
users associated

BREAK Used to test for BREAK

SUBROUTINES

BAL, 12 MASTER Sets Master Mode

197

ID

WRITESWAP

Design Specification

PURPOSE

SECTION LH.11
PAGE 1
10/27/72

UTS TECHNICAL MANUAL

To write the fid to the swapper and modify the core processor tables.

USAGE

BAL, 15 WRITESWAP from DRSPMAIN

INTERACTION

SYSMAK 1

DATA BASES

NEWFLAGS
NINDEX
PAGES
XS:CUN
XUH:FLG
XP:SA

SUBROUTINES

BAL, 12 SLAVE

writes fid and modifies ‘tables (all entries except P:NAME
and P:SA)

processor flags

new index

buffer address -
current user number
user flag table
processor flags table

Set Slave Mode

198

SECTION LH.11
PAGE 2

10/27,/72

UTS TECHNICAL MANUAL

DESCRIPTION

The routine stores the proper processor flags in the P:SA table, then sets up
the environment for SYSMAK 1. The M:EI DCB is open and R7 and Ré contain
the new index qnd buffer address. R8 contains a read buffer and address.

ERRORS

INCORRECT FID

WRITE RAD FILE I/O ERRORS

RAD OVERFLOW

SWAP 1/0O ERROR (QUEUE)
ILLEGAL LMN (LOAD BIAS CHECK)

199

SECTION LH. 12
PAGE 1

3/27/72
UTS TECHNICAL MANUAL

D

PERM

Design Specification

PURPOSE

To copy the fid to the :SYS account and modify the RAD versions of the shared
processor tables if PERM was specified.

USAGE

PERM is entered from DRSPMAIN with a BAL, 15

ERROR MESSAGES

READ ERROR READING FID (COPY)

WRITE ERROR WRITING FID (COPY)

FILE STORAGE LIMIT IN SYSTEM ACCOUNT
DRSP M:BO ERROR (PERM)

CANT OPEN M:BO IN :SYS (PERM)

DRSP M:EI ERROR (PERM)

SUBROUTINES

POST 1 Post error message

MODRAD reads, modifies and writes the RAD processor tables
DATA BASE

PERM perm flag

TYPE monitor overlay flag

PRONAME processor name requested

EIPLIST variable parameter list for M:EI

PAGES buffer address

RCVRAD disk address of monitor end

200

SECTION LH. 12

PAGE 2
3/27/72
UTS TECHNICAL MANUAL

INTERACTION

M:SETDCB Set error/abnormal exits in DCB

M:CLOSE Close M:EI, M:BO

M:PFIL Position file M:EI

M:READ Read M:EI

M:WRITE Write M:BO

M:PRECORD Position record M:EI

DESCRIPTION

If a BREAK key, or no PERM was specified, PERM returns to DRSPMAIN., If a
REPLACE or ENTER was specified, and the fid is a processor, it is copied
sequentially to the :SYS account. During the copy, BREAK is checked.
Regardless of the TYPE, MODRAD is called to modify the monitor's RAD
tables. PERM returns to DRSPMAIN,

[3

In case of errors during the copy into :SYS, an error message is posted but the
routine returns to DRSPMAIN to allow at least a temporary ENTER/REPLACE
of the proname.

201

SECTION LH. 13
PAGE 1

3/27/72
UTS TECHNICAL MANUAL

ID

MODRAD

Design Specification

PURPOSE

MODRAD modifies the shared processor tables on the RAD if PERM had been
specified. |

USAGE

The routine is entered by a BAL, 15 MODRAD from PERM, R8 contains the disc
address of the beginning of a monitor.

OUTPUT

The RAD copy of the shared processor tables is modified and rewritten to the RAD,
Specifically, the proname slot in P:NAME and the new index slots for P:NAME,
P:SA, PB:PSZ and PB:PVA are modified.

SUBROUTINES

SEARCH locates the proname in the buffer

POST posts error messages

DAGRAN converts a disc address (in R8) to a granule number (in R9)
RWRAD calls NEWQ to read or write a number of granules
BUFAD find relative address in 1/O buffer

202

SECTION LH. 13
PAGE 2
3/27/72

UTS TECHNICAL MANUAL

DESCRIPTION

The first and last granule numbers of the RAD copy of the processor tables are
computed and the tables are read via RWRAD into the I/O buffer pointed to

by PAGES. SEARCH looks for the proname in the P:NAME table within the
buffer. The name should be found if the operation is REPLACE or -DELETE.

The name should not be found if the operation is an ENTER, Error messages are
posted through POST if these conditions are not satisfied but MODRAD exits
normally. The word 'M:DUMLM!' is placed in the proname buffer slot if the
operation is REPLACE or DELETE and the proname is placed in the new index
slot within P:NAME in the buffer. If a monitor overlay is being handied,
P:PSZ and P:PVA are copied from the new slot core positions to the new slot

positions in the buffer. If this is not a monitor overlay, only P:SA is copied.
In all cases the tables are rewritten to the RAD via RWRAD and MODRAD exits.

RWRAD is entered with the appropriate function code, the first granule number
and the number of granules to process.

ERRORS

PRONAME NOT FOUND ON RAD DELETE or REPLACE had been specified
PRONAME FOUND ON RAD ENTER had been specified
CAN'T MAKE PERM, NO RAD SLOTS the RAD tables contain no M:DUMLM slots

DATA BASES

PAGES 1/0O buffer

FC I/0 function code (0 for read, 1 for
write)

GRAN1 first granule to process

NGRAN number of granules to process

203

SECTION LH. 14

PAGE |
3/27/72
UTS TECHNICAL MANUAL

ID

RWRAD

Design Specification

PURPOSE

To read or write n granules on the system RAD.,

USAGE

Preset FC, GRANI1, NGRAN, PAGES as defined in DATA BASE

BAL, 15 RWRAD

INTERACTION

M:WAIT Program pause

NEWQ used to read or write the RAD

GMB gets a monitor buffer for the end-action to NEWQ

RMB releases the monitor buffer

SUBROUTINES

MASTER Sets master mode

SLAVE , Sets slave mode

POST Post error message

DATA BASE

FC function code (=00 for read, Ol for write)

GRANT1 first granule to process

NGRAN number of granules to process

PAGES points to 1/O buffer

MB:SDI byte 0 contains DCT index for system RAD

ERRORS

DRSP I/0O ERR/ABN (PERM) 10 attempts to read/write the RAD have failed

204

SECTION LH. 14
PAGE 2
3/27/72

UTS TECHNICAL MANUAL

DESCRIPTION

RWRAD sets master mode and gets a monitor buffer to which the end action routine
is moved. The relative granule and the registers are set for NEWQ, NEWQ
processes | granule. At end action, the TYPC is stored. After NEWQ the TYPC
is checked and the granule number and 1/O buffer are updated. After the last
granule has been processed, the monitor buffer is released, slave mode is restored

and RWRAD returns.

205

SECTION LH.15
PAGE 1

10/27/72
UTS TECHNICAL MANUAL

D

SWITCH

Design Specification

PURPOSE

To finalize the core version of the tables by entering the proname in the new slot
and "erasing" the old slot.

USAGE

BAL, 15 SWITCH
DATA BASES
NINDEX new slot index

OINDEX old slot index
PRONAME proname

TYPE type of command
SUBROUTINES

MASTER Set Master Mode
SLAVE Set Slave Mode

CLEANUP Release Processor slots

DESCRIPTION

If ENTER, put proname in new slot. If DELETE, put old index into old slot.
If REPLACE, disable interrupts and do both. Enable interrupts and return.

RESTRICTIONS

Interrupts inhibited.

206

UTS TECHNICAL MANUAL

ID

CLOSEOUT

Design Specification

PURPOSE

SECTION LH. 16
PAGE 1

3/27/72

To restore DRSP's original conditions prior to return to read next command.

USAGE

BAL, 15 CLOSEOUT from DRSPMAIN

DATA BASES

MAXRCD max record size

INTERACTION

M:FVP Free extra pages

M:CLOSE Close file

M:SETDCB Set error/abnormal exits in DCB

ERROR MESSAGE

DRSP I/O ERR/ABN (Close)

SUBROUTINES

POST1 Post error message

DESCRIPTION

Pages obtained must be freed. Close all open DCB's.

207

Return to DRSPMAIN.

SECTION LH. 17.00
PAGE 1
3/27/72

UTS TECHNICAL MANUAL

ID

CLEANUP

Design Specification

PURPOSE
Release inactive processor and overlay name slots back to the system.

USAGE

BAL, 11 CLEANUP

INPUT
P:NAME Names of processors and overlays
PB:REP Count of users associated with processors
PB:LNK Table of links to associated processor overlays
PB:HPP Head of processor page chain
PB:TPP Tail of processor page chain
OUTPUT
P:NAME Names of processors and overlays
PB:LNK Table of links to associated processor overlays
M:FPPT Monitor free page chain (tail)
M:FPPC Monitor free page count
INTERACTION
M:PRINT Used to print the slot index number and count of associated users.
SUBROUTINES
L450 Convert hex digifs o EBCDIC
POST Print error message
MASTER Sets Master Mode
SLAVE Sets Slave mode

208

SECTION LH. 17.00

PAGE 2
3/27/72
UTS TECHNICAL MANUAL
ERRORS
xx xx USERS Printed if count in PB:REP has gone negative or has
exceeded the maximum number of users.
DESCRIPTION

CLEANUP scans the P:NAME table for slots containing an index. If the
corresponding PB:REP table entry has been counted down to zero, the name
M:DUMLM is stored in the P:NAME entry and any associated overlay slots
are set to zero.

CLEANUP sets master mode and inhibits interrupts in order to release any
dedicated pages back to the monitor.

209

SECTION LH, 17,01
PAGE 1

3/27/72
UTS TECHNICAL MANUAL

ID

SEARCH

Design Specification

PURPOSE

To search memory area specified for a two=word field equal to the one specified.

USAGE

R8 = beginning address of table

R9 = end address of table + 1

R10 = address of two=-word field to search for
BAL, 11 SEARCH

Exit = field not found

Exit = field found

R8 = table location at end of search (= end of table + 1 if not found)
R9 = end address of table + 1

R10 = INDEX (=0 if none found)
DESCRIPTION

SEARCH compares a specified two-word field against a table of two-word fields
(given a start and end + 1 address). The subroutine assumes that both the two=-word
field and the table are on a double-word boundary. The routine returns a table
address and index if the two-word field is found. Returns an index of zero if the
field is not found.

210

SECTION LH. 17.02
PAGE 1

3/27/72
UTS TECHNICAL MANUAL

D

GFID

Design Specification

PURPOSE

Decodes file name, account, password entered as part of input line and stores
these fields as directed.

USAGE

R12 - Destination address of file name field

R13 e Destination address of account field

R14 - Destination address of password

BAL, 15 GFID

G505 = Flag cell set non=zero if any field exceeds the maximum number of
characters allowed.

INPUT

CMDBUF = Input field stored in command line buffer.
BYTE - Character position in command line

OUTPUT

File Name = Maximum of four words stored at destination address specified.
Account = Maximum of two words stored at destination address specified.
Password = Maximum of two words stored at destination address specified.

DATA BASE
G514 Table of field delimitors
SUBROUTINES

SCAN, SCANT Pick up next field defined by given table of delimitors.

211

SECTION LH. 17.02
PAGE 2
3/27/72

UTS TECHNICAL MANUAL

DESCRIPTION

GFID scans the command line buffer for the file name, account and password

that might be entered there. If the file name is not specified in the command
line, zeros are stored; if the account or password is not specified, the destination
locations are ignored. If any field exceeds the maximum number of characters
expected, the flag word G505 is set non-zero. The file name is stored in TEXTC
format; the account and password are stored as TEXT, Scan for the account and
password fields occurs only if the fields are separated by "period". Unused
character positions are space filled.

212

1D

WORTH

SECTION LH. 17.03
PAGE 1
3/27/72

UTS TECHNICAL MANUAL

Design Specification

PURPOSE

To check if processor table slots can become available.

USAGE

BAL, 15, WORTH

INPUT

TYPE

OUTPUT

MAYBE
MAYBESLOTS

DATA BASE

P:NAME
PB:LNK

SUBROUTINES

FINDGRAN

Type flag for processor/monitor overlay

Set # 0 if processor slot found
Set # 0 if processor overlay slots found

Processor name table
Overlay link table

Calculate granules assigned to a slot

213

SECTION LH.17.03
PAGE 2
3/27/72

UTS TECHNICAL MANUAL

DESCRIPTION

WORTH searches the P:NAME table for slots in the process of being released
(they contain their own index number). When such a slot is found and if

there are overlays associated, MAYBESLOTS count is incremented. FINDGRAN
is used to determine if this slot can accommodate the size of the load module
(GRANEED)., If yes, the MAYBE count is incremented.

The search continues until the entire table is checked. It exits with the counts

MAYBE and MAYBESLOTS set to the number of possible released slots and
available processor overlay slots.,

214 -

SECTION LH. 17.04
PAGE 1
3/27/72

UTS TECHNICAL MANUAL

D

FINDGRAN

Design Specification

PURPOSE
To compute the RAD granules on the swapper associated with a shared processor.

USAGE

BAL, 15 FINDGRAN

INPUT
Ré = address of P:NAME
R7 = processor slot number
OUTPUT
R8 = number of granules
DATA BASE
PH:DDA disc addresses of processors
PH:PDA disc addresses of monitor overlays
SUBROUTINES
DAGRAN converts a disc address to a granule number.

215

SECTION LH. 17. 04
PAGE 2

3/27/72

UTS TECHNICAL MANUAL

DESCRIPTION

PH:DDA or PH:PDA is selected as the table on the basis of slot number (in R7).

If R7< MAXOVLY, the lower disc address is obtained from PH:DDA in the slot
pointed to by R7. The upper disc address is obtained from the next higher slot,
i.e. R7) - 1.

IF R7>MAXOVLY, the lower disc address is obtained from PH:DDA in the slot
pointed to by R7. The upper disc address is obtained from the next higher slot,
i.e., (R7) +1.

In the event that R7 points to the last processor, the upper disc address is
obtained from slot 0.

The routine gets the lower and upper disc addresses, converts them to granule
numbers and subtracts, yielding the number of granules.

216

SECTION LH. 17.05
PAGE 1
3/27/72

UTS TECHNICAL MANUAL

ID

SCAN, SCANT

Design Specification

PURPOSE
To transfer a field from the command buffer to input specified area.
USAGE

BAL, 15 SCAN
or BAL, 15 SCANT (character count precedes field)

INPUT

R8 = deposit address
R? delimiter table address

R10 = # of delimiters
R11 = maximum number of characters

BYTE byte displacement into CMDBUF for next byte
CMDBUF command buffer

OUTPUT

R12 =0 if field was within maximum number of characters. Otherwise, >0.
BYTE = is updated to point to next byte
ENDC contains last character of the field

LCF contains field length

DESCRIPTION

The deposit field is initialized with blanks. Leading blanks are ignored.
Characters are transferred to the deposit area until a delimiter or a blank or the
end of the command is encounted. Trailing blanks are ignored.

217

SECTION LH. 17.06

PAGE 1
3/27/72
UTS TECHNICAL MANUAL
D
POST
POST 1

Design Specification

PURPOSE
Post error message code for future reference.

USAGE

REGISTER 14: Contains error sub=code
BAL, 15 POST
BAL, 15 POST 1

SUBROUTINES

HEX2PRNT Convert hex number for typeout
FULLERR Print error message
DESCRIPTION

POST stores SR 1 and SR 3 and error sub-code for future printout. For the on=line
user it types either the "EH @ n" or "EH" message. For the batch user it calls
FULLERR to print the error message.

POST 1 sets a flag SRISR3PO to signal FULLERR to print the SR 1 and SR 3 registers as
part of the error message and goes to POST.

218

D

SECTION LH. 17.07

PAGE 1
3/27/72

UTS TECHNICAL MANUAL

DAGRAN, GRANDA

Design Specification

PURPOSE

To convert disc addresses to (from) RAD granule numbers.

USAGE

BAL, 15

INPUT

R8 contains

R? contains

DATA BASE

MB:GAM6
MB:GAM5
MB:GPT

or

[DAGRAN }
GRANDA

disc address for | DAGRAN
RAD granule number GRANDA
disc address for [(GRANDA
or] [or
RAD granule number DAGRAN

sector extraction mask
shift to get track
number of granules per track

219

SECTION LH.17.07

PAGE 2
3/27/72
UTS TECHNICAL MANUAL
DESCRIPTION
DAGRAN: granule number = track x number of granule/track + sector
GRANDA: disc address = track number merged properly with secfor2

number.
track number = quotient of granule number

number of granules/track.
sector number = 2x remainder of granule number

number of granules/track.

220

SECTION LH. 17.08
PAGE 1

3/27/72
UTS TECHNICAL MANUAL

D

TCTEST

Design Specification
1

PURPOSE

To test if the proname is TEL or CCI and set a flag accordingly.

USAGE

BAL, 11 TCTEST

INPUT

PRONAME Processor/overlay name in TEXTC format.

OUTPUT

TEL:CCI Set to non-zero if proname is either TEL or CCI: set to zero if
neither,

DESCRIPTION

Tests the field PRONAME to determine whether or not it is equal to TEL or CCI.
Sets the flag TEL:CCI to -1 if TEL, +1 CCI and zero if neither.

221

SECTION LH. 17.09
PAGE 1

3/27/72

UTS TECHNICAL MANUAL

D

XGRTEST

Design Specification

PURPOSE

To test if the proname is XDELTA, GHOST1, ALLOCAT, M:DUMLM or
RECOVER and exit accordingly.

USAGE

BAL, 11 XGRTEST
INPUT

PRONAME Processor/overlay name in TEXTC format (on a doubleword
boundary)

ERROR

PRONAME IS ILLEGAL.

DESCRIPTION

Tests the field PRONAME to determine whether or not it is equal to XDELTA,
GHOST1, ALLOCAT, M:DUMLM, or RECOVER. If yes, the routine exits
to CLOSE; if no, the return is to the calling routine.

222 -

SECTION LH. 17.10
PAGE 1
3/27/72

UTS TECHNICAL MANUAL

ID

BUFAD

Design Specification

PURPOSE

To return relative address of table location in the read-write buffer.

USAGE

R8 Monitor address
BAL, 15 BAL, 15 BUFAD
R9 Buffer address
DESCRIPTION

BUFAD computes the 1/O buffer address of the Monitor address presented in
register 8.

223

SECTION LH. 17.11

PAGE 1
3/27/72
UTS TECHNICAL MANUAL
ID
MASTER
SLAVE
Design Specification
PURPOSE
To set up Master or Slave mode.
USAGE
BAL, 12 MASTER
BAL, 12 SLAVE
SUBROUTINES
POST Post error message
DESCRIPTION
MASTER Sets Master Mode using M:SYS. Checks to see if the user's
' privilege is high enough. If not, sends an error message
and exits to ERREXIT,
SLAVE Sets Slave Mode.

224

SECTION LH.17.12
PAGE 1

3/27/72
UTS TECHNICAL MANUAL

D

5400

Design Specification

PURPOSE
To convert the EBCDIC index to hex representation

USAGE

R6 = Preset to user's value

R1 = Byte pointer to proname field

BAL, 15 5400

ERROR EXIT

OK EXIT

Ré - Result (maximum of last 7 digits)

R8 = Terminating byte

R1 = Resultant byte pointer to proname field

INPUT

PRONAME - Contains the index range to be converted to hex

SUBROUTINES

S430 - Convert EBCDIC character to hex digit

DESCRIPTION

Converts a series of EBCDIC characters representing an index, terminated by a "dash"
or space character, to hex digits. If any of the characters are not hex the error exit is
taken. When the maximum of seven digits is reached, the routine exits. In the
normal case, digits are converted until a terminator is reached.

225

SECTION LH.13.
PAGE !}

3/27/72
UTS TECHNICAL MANUAL

Design Specification

PURPOSE
To test if the proname is in the format of a public library name (:Pnn).

USAGE

BAL, 15 5360
"No" exit
"Yes" exit

INPUT

PRONAME Name of processor being modified

DESCRIPTION

5360 tests the proname for the following characteristics:

1. The name is four characters long starting with ":P".
2. The two digits nn areequal and 1< n< 9,

If the above characteristics are present the proname represents a public library and the
routine takes the "yes" exit. If not, the "no" exit is taken.

226

SECTION LH. 17. 14
PAGE 1
3/27/72

UTS TECHNICAL MANUAL

D

S 430

Design Specification

PURPOSE
Convert EBCDIC character to hex digit

USAGE

R8 = Input character in byte 3 position
BAL, 15 5430
R7 - Output character in digit 7 position or error flag

DESCRIPTION

S 430 converts the character presented in register 8 to its corresponding hex digit.
The result (leading zeros and digit) is passed back to the calling routine in
register 7. If the EBCDIC character has no hex equivalent, register 7 is set to =1
as an error flag.

227

SECTION LH. 17.15
PAGE 1
3/27/72

UTS TECHNICAL MANUAL

D

HEX2PRNT

Design Specification

PURPOSE
Convert hex to EBCDIC

USAGE

R4 number to be converted
BAL, 15 HEX2PRNT
R10, R11 results

DESCRIPTION

Converts 8 hex digits in R4 to 8 EBCDIC characters in R10 and R11.

228

SECTION WA.01
PAGE 1
8/1/73

UTS TECHNICAL MANUAL

1D

FSAVE Processor

PURPOSE

The FSAVE processor is designed to save files on tape at or near tape speed. FSAVE must be
run under an account with CO privilege.

All tape record blocks written to tape will be 512 words or less. The label on tape cycle

from PRG1 to PRG9 to be compatible with FPURGE. Tapes can be restored using either the
FRES or FPURGE processors.

BASIC PHILOSOPHY

FSAVE bypasses system file and labeled tape management by branching directly to 10Q for
all its /O operations. This requires that FSAVE know the file management table structure
(on disc) and that it simulate the file management and labeled tape portions of the monitor.

All the attributes of a file, including all dates, are saved in the :BOF sentinel and are re-~

stored by FRES. However, FPURGE does not preserve creation, modification, access or
expiration date.

MODULE ANALYSIS

INITIATE

PURPOSE

This is the first module executed in the FSAVE processor. It gets pages from the Operating
System for index buffers.

ENTRY

Entered in slave mode as first executable statement in FSAVE.

229 90 19 90A-1(8/73)

SECTION WA.01

PAGE 2
8/1/73
UTS TECHNICAL MANUAL
EXIT
ERROR EXIT
B SP:INIT (if not enough pages of core available)
NORMAL EXIT

B INITIATE1

OPERATION

An M:GP CAL is executed to get pages for index sector buffers. The number of pages re-
ceived is saved in page total. If the requested number of pages are not readily available,
the processor exits to SP:INIT.

Otherwise, the number of pages requested is saved in INDPAGES and the program exits to
INITIATET.

INITIATE1

PURPOSE

This module is responsible for computing and saving the word address of each index buffer
in table IBUF.

ENTRY

B INITIATEI
(R1) = number of index buffers
(R?) = address of first page received from get page CAL.

EXIT

B GET:CC
OPERATION

Register 1 is used as an index into table IBUF for saving the Word address of each page received
for use as an index buffer. Register 9 initially contains the word address of the first page

90 19 90A-1(8/73) 230

SECTION WA.01
PAGE 3
8/1/73

UTS TECHNICAL MANUAL

received. It is stored into the last entry of IBUF, then the next address is computed by adding
IBUFSIZ to (R9), and this address is saved. This process is repeated until all index buffer ad-
dresses have been computed and saved in the IBUF table.

The routine then exits to GET:CC.

SPECINIT

PURPOSE
This module is entered if INITIATE or INITIATE4 is unable to get enough pages of core for

the allocation of buffers. The routine releases all pages that it received and then requests
4 pages and allocates them for index, data, tape, and sentinel buffers.

ENTRY

B SPECINIT
PAGETOTAL = Number of pages received from Get Pages CAL.

EXIT

ERROR EXIT

B NOTENUFF (if at least 4 pages are not available)
NORMAL EXIT

B INITIATES

OPERATION

A M:FP CAL is executed to release all pages previously obtained. An M:GP CAL is executed
to ask for all pages available. If at least 4 pages are not available, the program exits to

NOTENUFF.

Otherwise, a value of 1 is stored into DAPAGES and TAPAGES to set the number of Data
buffer and Tape buffer pages to one. R? contains the address of the first page received. This
address is stored in DBUF to provide the address of the Data Buffer. R? is then incremented
by 512 to compute the next page address and this address is saved in TBUF for the Tape buffer
address. The address in R? is incremented again by 512 words and this address is stored in
IBUF entry 1. The contents of R? are again incremented by 256 and stored in entry 2 of IBUF

231 90 19 90A-1(8/73)

SECTION WA.01
PAGE 4
8/1/73

UTS TECHNICAL MANUAL

to provide the address of the second index buffer. A value of 2 is stored infto INDPAGES to
save the total number of 256 word index buffers available. The address is incremented again
by 256 to compute the address of the next page. This address is saved in LIMIT and in
CURPOS. The address is incremented by 512 and this address is saved in BUFTOP, the last
buffer address. ‘

The program then exits to INITIATES.

INITIATE4
PURPOSE

This module is responsible for requesting pages from the Operating System for tape buffer and
Data buffers and saving their addresses.

ENTRY

BAL, R7 INITIATE4
GETPAGES = Max Page request FPT (M:GP procedure).

EXIT

ERROR EXIT

B SP:INIT1 (if not enough pages are available)
NORMAL EXIT

B INITIATES

OPERATION

Ask for one page, and if one is not available, exit to SPECINIT. Otherwise, increment
PAGETOTAL and save the address of the page in LIMIT and CURPOS. The address of the
top of the page is computed and saved in BUFTOP.

It then requests all possible pages. The total number received is added to PAGETOTAL. If
at least 3 pages were not available it exits to SP:INITI.

Otherwise, the address of each alternate page is stored into tables TBUF and DBUF, and the

number of tape buffers, TAPAGES, and the number of data buffers, DAPAGES, are incre-
mented until all pages are used or all entries in TBUF have been filled.

90 19 90A-1(8/73) 232

SECTION WA.01
PAGE 5
8/1/73

UTS TECHNICAL MANUAL

Any remaining pages are used for data buffers and their address is saved in DBUF table until
that table is full. The number of data buffers is stored in DAPAGES.

The total number of tape buffers available = TAPAGES, is stored in the first entry of table
TBUF. The total number of data buffers available, DAPAGES, is stored in the first entry
of table DBUF.

The program then exits to INITIATES.

INITIATES
PURPOSE

This module is responsible for getting the date and time from the monitor.

ENTRY

B INITIATES

EXIT

B 0,R7

OPERATION

An M:TIME CAL is executed to store the date and time from the monitor into words 3-6 of
DATBUF. The date and time are converted to the appropriate format and stored in BKUPVLP+1
and BKUPVLP+2 (MMDDHHYY). The background lower limit is computed from the first
address of the program and stored in word 8 of DATBUF.

RDCARD

PURPOSE

This module is responsible for reading control cards, interpreting control cards, and setting

the appropriate flags. It calls on module RCD to read the cards and module INTER to interpret

the cards and set the flags. It also sets up the header for the line printer according to the
options specified and initializes the line printer output.

233 90 19 90A-1(8/73)

SECTION WA.01

PAGE 6
8/1/73
UTS TECHNICAL MANUAL

ENTRY

B RDCARD

EXIT

B NOIPRI

OPERATION

BAL on R14 to RCD read a control card. Print the card on the M:LL device. BAL on R15 to
INTER to interpret the control card and set the appropriate flags. When INTER detects a
+END card it returns skipping. Otherwise, RDCARD continues to call RCD to read and INTER
to interpret cards.

The routine then sets up the header message, ejects a page on the M:LL device, and exits

to NOPRI.

RCD

PURPOSE

This module reads a card from the M:C device, tests the card for +END in first 4 columns,
sets word END to non-zero if +END card, and returns.

ENTRY

BAL, R14 RCD

EXIT

B *R14

OPERATION

Read one card through M:C device, if the card contains a +END in columns 1 through 40,
RCD will set location END to non-zero.

90 19 90A-1(8/73) 234

SECTION WA.O01
PAGE 7
8/1/73

UTS TECHNICAL MANUAL

If an error or abnormal return occurs from the READ card it sets location END to non-zero.
(END will be tested in module INTER to exit the card read loop.)

The program then retums indirect on R14.,

INTER
PURPOSE

The routine is responsible for interpreting control cards in INBUF and setting appropriate flags
according to the options on the cards. It verifies the card commands and aborts on errors.

ENTRY

BAL,R15 INTER

INBUF contains the control card to be interpreted.

EXIT

NORMAL EXIT

B *R15 for normal control command

B *R15+ 1 if +END command

ERROR EXIT

M:XXX if invalid control command or card sequence error.

OPERATION

Checks are made on control command, and all the necessary flags are set. If an error is
detected on any control commands, the message 'FASTPURGE CONTROL CARD ERROR'
is put out and FSAVE aborts.

NOIPRI

PURPOSE

This module completes initialization, gets the tape mounted and initialized, and reads in the
first account directory block.

235 90 19 90A-1(8/73)

SECTION WA.01

PAGE 8
8/1/73
UTS TECHNICAL MANUAL
ENTRY
B to NOIPRI
EXIT

B READFAIL 2 if unable to read Account Directory or if bad data is in Account Directory
NORMAL EXIT

B NACN

OPERATION

If the STATS flag is non-zero the module opens the STATS file as follows: File name = DISK-
POOL, OUT mode. An abnormal or error return on the open causes a message "FILE
MANAGEMENT ERROR FROM STAT FILE".

If the DUMP flag is non-zero, the program does a BAL,R10 to NEWREEL to get a tape mounted.
It then does a BAL,R7 WRTDAT to write the DATE file on the tape.

The disc address of the Account Directory is found from word one of ACNCFU. The address is
verified as valid by a BAL,R15 to DTOGRAN. If the address is bad the program branches to
READFAIL.

The first sector of the account directory is read infto ACBUF by a BAL,R15 to DISCIO. Ifa
read failure occurs, the program branches to READFAIL2.

Otherwise, the account directory BLINK is picked up from Word 0 of ACBUF and saved in
ACBLINK. The account directory FLINK is picked up from ACBUF + 1 and stored in
ACFLINK. The account directory NAV is picked up from the first half-word of ACBUF+2
and stored in ACSIZE.

If the DIRLISTSW is set, the program does a BAL,R14 LISTAD to print out the account directory
on the M:LL device.

The account directory BLINK from ACBUF is compared with LASTAC (in this case, it equals
zero) and if they are not equal the program branches to READFAIL2.

The current account directory address from R8 is stored into LASTAC. A value of 12 is stored

into NEXACN (the next index into the account directory) and into CURACN, (the current
index into the account directory). The program then branches to NACN.

90 19 90A-1(8/73) 236

SECTION WA.O01
PAGE 9
8/1/73

UTS TECHNICAL MANUAL

NACN

PURPOSE

This module fetches the next account directory entry from ACBUF, checks it for errors in
format, determines if this account is to be processed, reads cards if necessary to determine

the select option or skip option accounts, and branches to NOTLB after finding an account
fo process.

ENTRY

B NACN
ACBUF contains account directory sector
NEXACN points to next entry to be processed

EXIT

ERROR EXIT
B ADERROR if an error exists in the account directory

NORMAL EXIT

B ENDUP if all select card accounts have been processed or if end of account directory
B NOTLB if an account is found to be processed

OPERATION

The next account directory index is retrieved from NEXACN and stored into CURACN to
update the current entry pointer. If all entries in this sector of the account directory have
been processed, the program branches to ADDONE to read in the next sector.

The entry is verified to contain X'OB404040' in the first word and if it does not, the program
branches to ADERROR.

Otherwise, if the flag "SELECT" is on and a +END card has been read, branch to ENDUP. If
and END card has not been read, BAL,R15 to ACCK to determine if this account corresponds to
the last SELECT account card read, and if so, read the next card. If this account number does
not correspond to the last Select account card read, branch to NACN and process next entry.

If it does correspond, and the 'ALL' option has been specified BAL,R14 to READATA to read

the next card, and branch to NOTLB to process the account. If 'ALL' was not specified,
branch to NOTLB without reading another card.

237 90 19 90A-1(8/73)

SECTION WA.01
PAGE 10
8/1/73

UTS TECHNICAL MANUAL

If SELECT was not specified, determine if a +END card has been read, and if so, turn on the
ALL flag to specify no SKIP, SELECT, START options and branch to NOTLB.

If an END card has not been read, check the SKIP flag. If SKIP has been specified BAL,R15 to
ACCK to determine if this account is to be skipped. If it is not branch to NOTLB to process it.

If it is check the ALL flag to determine if all files in this account are to be skipped. If ALL
is not specified, branch to NOTLB to process the account. If ALL is specified, VAL,R14
READATA to read the next data card, and branch to NACN to process the next entry.

If SKIP was not specified, test the STARTSET flag to determine if the +START option was
specified. If it was not specified, set the ALL flag to minus one to indicate no SELECT,
NO SKIP, NO STATT option and branch to NOTLB.

If +START was specified, BAL,R15 to ACCK to see if this account matches the account specified
on the +START card. If no match, branch to NACN to process the next entry.

If this account does match the START account, reset the STARTSET flag, turn on the ALL flag,
and branch to NOTLB.

NOTLB

PURPOSE

This routine prints the current account number on the M:LL device, reads in the next account
directory sector if this is the last entry in current sector, gets the disc address of the file

directory, verifies the address as valid, reads in the first file directory sector, lists it if neces-
sary, and branches to GETFILE.

ENTRY

B NOTLB
ACN#DISP is displacement to Account Directory entry to be processed.
ACBUF contains current account directory sector.

90 19 90A-1(8/73) 238

SECTION WA.01
PAGE 11
8/1/73

UTS TECHNICAL MANUAL

EXIT

ERROR EXIT

B ADERROR if file directory first sector address is invalid.

B READFAIL3 if unable to read in a file directory sector or in case of a file directory BLINK
failure.

NORMAL EXIT
B GETFILE

OPERATION

Move the account number from ACBUF to ACN*CURNT and space M:LL device to top of form
and print " ACCOUNTFXXXXXXXX".

If this is the last entry in the current account directory sector, get the FLINK from ACFLINK
and BAL,R15 to DTOGRAN to verify the address. If it is a valid address, BAL,R15 to
QSECTOR to queue the next account directory block.

If this is not the last entry or if the FLINK is an invalid address, get the address of the file
directory from the Account directory entry. Set LASTFD, ACNSIZE, and ACNGRAN to zero
and BAL,R15 to DTOGRAN to verify the file directory address. If it is invalid, branch to
ADERROR; otherwise BAL,R15 to DISCIO to read in the first sector of the file directory.

If a read error occurs, branch to READFAIL3. If the read is OK, get the BLINK from the first
word of FDBUF and store in FDBLINK. Get the FLINK from the second word of FDBUF and
store in FDFLINK. Get the NAV from first halfword of third word in FDBUF and store in
FDSIZE.

If the list flag DIRLISTSW is set, BAL,R14 to LISTFD to list the file directory. If the BLINK
is not zero for the first sector, branch to READFAIL3. Otherwise, store the current sector
address in LASTFD and branch to GETFILE.

GETFILE

PURPOSE

This module gets the next file directory entry, picks up the disc address of the FIT, and reads
the FIT info FITBUF.

239 90 19 90A-1(8/73)

SECTION WA.O01
PAGE 12
8/1/73

UTS TECHNICAL MANUAL

ENTRY

B GETFILE

NEXFILE is index to next entry in FDBUF

FDBUF contains current file directory sector

FDSIZE contains the NAV for current file directory sector.

EXIT

ERROR EXIT
B FDERR if FIT address is not valid or if read error occurs when reading FIT.

NORMAL EXIT
B FILECHKS

OPERATION

Get the index to the next file directory entry and if the index equals the NAV, meaning the
entire sector is processed, branch to FDDONE to get the next sector.

Get the disc address of the FIT for this entry and BAL,R15 to DTOGRAN to verify the address.
If it is invalid, branch to FDERR. If it is valid, test to see if it is already in core. If not in
core, is it already being read in. If so, wait until it's in.

Otherwise, BAL,R15 to DISCIO to read it into FITBUF. If a read error occurs, branch to
FDERR. If the read is successful, or if the FIT is already in core, branch to FILECHKS.
SYNFLAG is set if file descriptors indicate that this is a synonymous file.

FITCHKS
PURPOSE
This routine examines the FIT in FITBUF to determine if the FIT is valid. It tests to see if this
file should be saved on tape, reads another SKIP or SELECT data card, if necessary, lists the

FIT, and then branches to BLD:BOF. If this is the last file in the current file directory sector,
it queues up to read in the next file directory sector.

90 19 90A-1(8/73) 240

SECTION WA.O0I
PAGE 13
8/1/73

UTS TECHNICAL MANUAL

ENTRY

B FITCHKS
FITBUF contains current fit to be processed.

CURFILE points to current file directory entry in FDBUF.

EXIT

ERROR EXIT
B FITSNAP if byte length of file name in FIT is zero or less.
B FITERR if file name in FIT doesn't compare to file name in file directory.

NORMAL EXIT
B BLD:BOF to process file.
B GETFILE if this file is not to be processed.

OPERATION

If the current file directory entry is the last entry in this sector and the FLINK is non-zero
and valid, BAL,R15 to QSECTOR to queue the next file directory sector.

If the byte length of the name in the FIT is zero or less, branch to FITSNAP. If the byte
length is valid, but the file name is not in EBCDIC branch to GETFILE to get the next file,
and ignore this one.

If the file name in the FIT is valid, compare it with the file name in the current file directory
entry. If there is no match branch to FITERR.

Otherwise, test the ALL flag and if it is on, meaning all files are to be saved, branch to
BLD:BOF. If ALL is not set, compare the FIT file name with the file name contained in
Column 14 then, BAL,R14 to READATA to read a card and follow with a BAL,R14 to READATA
to read a card and follow with a BAL,R15 to INTER to interpret the card. If the card specifies
a new account, set ACEQU flag to zero. If the SELECT mode is not set branch to GETFILE

to process the next file.

If the SELECT mode is specified, branch to BLD:BOF to process the current file.
If the file names above do not match and the SKIP flag is not set, branch to GETFILE.

Otherwise, test the FITLISTSW flag and if it is on, BAL,R14 to LISTFIT to list the FIT. Then,
branch to BLD:BOF.

241 90 19 90A-1(8/73)

SECTION WA.01
PACE 14
8/1/73

UTS TECHNICAL MANUAL

BLD:BOF
PURPOSE
This routine clears all index buffers, (IBUF), clears out the STACK, (DSTACK), builds a
FIT record for tape, constructs a :BOF record, checks the file against the SAVE BY DATE

option, writes a :BOF record on tape if necessary, writes a SYNON record if necessary,
and finally branches to GETMIX.

ENTRY

B BLD:BOF
FITBUF contains FIT of file to be processed.

EXIT

ERROR EXIT

B FITERR if no file size entry is available in the FIT or if the MIX address contained in the
FIT is invalid.

B FITSNAP if no '09' entry is available in the FIT.

NORMAL EXIT

B GETFILE if file is not to be saved because of SAVE BY DATE option or SAVE BY HOUR
option.

B FILEDONE if no tape is being written.

B RANFILE if file is RANDOM.

B GETMIX to save the keys and records.

OPERATION

If the file is not a SYNONYMOUS file, (no 'OB' entry was found), initialize and free up
all index buffers and clear the Stack.

Look for an 'OC" entry, branch to FITERR if none is found. The next word in FITBUF after
the 'OC' entry is the FDA of address of the MIX. Save this in FDA. BAL,R15 to DTOGRAN
to verify the address. If it is invalid, branch to FITERR.

Otherwise, test to see if a SAVE BY DATE/HOUR is being done. If not, set up to read ahead
the first MIX sector so it will be in core when it is needed.

90 19 90A-1(8/73) 242

SECTION WA.01
PAGE 15
8/1/73

UTS TECHNICAL MANUAL

Clear the tape label and print buffers. Search for an '09' entry in the FIT by BAL,R15 to
CODESCAN. If none is found, branch to FITSNAP. Otherwise, get organization type and
save in ORG. Get the maximum key length and save in KEYM.

Search for an 'OD' entry by a BAL,R15 to CODESCAN to see if there is a CREATION DATE.
If this is a SYNONYMOWUS file transfer the synonymous name to the :BOF record.

If it isn't SYNONYMOUS BAL,R15 to QUEMIX to queue up the first MIX read.

Construct a :BOF record. Construct a TLABEL record, include the account number, password,
READ Accounts, WRITE accounts, ORGANIZATION, KEYMAX, and GRANULE count.

If a creation date exists and the SAVE BY DATE/HOUR flag is on, test to see if this file
should be saved. If this file is not to be saved, branch to GETFILE.

Otherwise, store the creation date in the tape label record. Get the PBS flag (previous block
count) and the size (size of last record) to zero.

Next, a read is queued up to read the FIT from the next file directory entry into core.

If a DUMP has been specified, BAL,R15 to BOFQUE to write the :BOF record and the
TLABEL record to tape.

If a RANDOM file is being processed, branch to RANFILE.

If a SYNONYMOUS file is being processed, write a SYNON record and a :EQOF record to
tape and return to FILEDONE.

If a NULL file exists or a RANDOM file with no data, write a :EOF record via B to CKTIO.
(Note: CKTIO will also branch to a routine to print the file information on the M:LL device

if specified.)

If the file is neither NULL, RANDOM nor SYNONYMOUS, branch to GETMIX.

GETMIX
PURPOSE
This routine clears and releases all the data buffers and then clears the disc address table. It

gets the disc address of the first MIX and reads it in printing the mix if necessary. It calls
GETKEY to READ in the data records, queueing up as many Reads as possible for MIX sectors

243 90 19 90A-1(8/73)

SECTION WA.01
PAGE 16
8/1/73

UTS TECHNICAL MANUAL

and data granules. It calls the MOVEKEY and MOVE routines to transfer the records to the
tape buffer. When the tape buffers are full, it writes them to tape. When all records have
been processed, it branches to FILEDONE.

ENTRY

B GETMIX
FDA contains address of current MIX sector.

EXIT
NORMAL EXIT
B FILEDONE after entire file has been processed.

OPERATION

The program sets all data buffers free and clears the disc address table. It determines the first
MIX sector address on the disc from FDA and checks to see if it is already being read in by
comparing it with table INDEXDA. If it is not in the table, the program does a BAL,R8 to
QUEMIX to read it in core.

If it is in the table, it tests bit zero of the correct table entry to see if it is already in core.

If bit zero is a one, it loops until the bit goes to zero, meaning that it is in core. It then picks
up the address of the sector in core from the parallel entry in the IBUF table and stores that in
MIXBUF. It initializes the MIX displacement in CURRMIX to point to the first entry in the
MIX. It picks up the NAV from word two of the MIX in MIXBUF and saves it in MISIZE.

It then BAL's on R11 to GETFOUR to read in data granules from the disc. If the INDEX flag
ison, it does a BAL,R14 to LISTMIX to print the MIX sector on the LL device.

It does a BAL, R15 GETTBUF to get a tape output buffer to put the records in and saves the
address of the buffer in CURBUF.

It does a BAL,R15 to GETKEY]I to initialize the previous block size in the tape buffer. It does

a BAL,R15 to GETKEY to get a key from the index buffer, does a BAL,15 to MOVEKEY to move
the key to the buffer, and if it is writing « tecpe, it does a BAL,R15 to MOVE to move the data

record into the buffer.

90 19 90A-1(8/73) 244

SECTION WA.01
PAGE 17
8/1/73

UTS TECHNICAL MANUAL

It does a BAL,R7 to 'SCHEDULE' to get the required buffers to read ahead for other data
blocks. It does a BAL,R11 to GETFOUR to read in additional data blocks. It tests the flag
MIXEOF to determine if all MIX for the file have been processed. If all entries have not
been processed (MIXEOF is zero), it continues to move each key and data record to the tape
buffer and write the tape buffer out when its full.

If all MIX entries have been processed, it branches to QUEREC to write out the tape buffer
and then branches to MIXEND.

QUEREC

PURPOSE

This routine calls MTIO to write out a tape buffer.

ENTRY

BAL,RI5 QUEREC
CURBUF contains address of current tape buffer.
KEYDISP has number of bytes in the buffer.

EXIT

NORMAL EXIT
B MTIO
R15 has address to branch to after tape record has been queued.

OPERATION

The program gets the current key displacement from KEYDISP and rounds it up to the nearest
word. It tests a flag called 'BLOCKS' to determine if all tape records are to be dumped to
the printer. If they are not, it branches to MTIO with R15 unchanged. MTIO will then return
to the address in R15.

If records are to be listed, it saves R15 in R14 and loads R15 with the address of LISTOUTBUF
routine before branching to MTIO. MTIO will then branch to LISTOUTBUF which will return
to the original address in R15.

245 90 19 90A-1(8/73)

SECTION WA.01
PAGE 18
8/1/73

UTS TECHNICAL MANUAL

GETKEYI
PURPOSE

This routine sets the previous block size into a tape buffer and sets the displacement into the
buffer to four.

ENTRY

BAL,R15 GETKEYI
RBS contains previous block size from last record.
CURBUF contains address of buffer to store PBS into.

EXIT

B *15

OPERATION

The program gets the previous tape block size from PBS and stores it into the buffer pointed
to by CURBUF. It then sets KEYDISP fo four so that the buffer index now points past the
previous block size.

It returns on Register 15 to the calling program.

MOVEKEY
PURPOSE

This module moves the current key to the current blocking buffer.

ENTRY

BAL,R15 MOVEKEY

KEYDISP contains current key displacement.
CURBUF contains address of current tape buffer.
MIXBUF contains address of mex buffer.
CURMIX contains index into MIX buffer.

90 19 90A-1(8/73) 246

SECTION WA.O01

PAGE 19
8/1/73
UTS TECHNICAL MANUAL
EXIT
NORMAL EXIT
B *15
OPERATION

The routines increment the first word of the tape buffer to update the number of keys. It gets
the maximum key length for this file from KEYM and increments it by one. It gets the current
key displacement from KEYDISP, rounds it up to the nearest word, and saves it in LASTKEY .

It then moves the mix record from MIXBUF to CURBUF at the appropriate displacements. It
saves the new MIX displacement on KEYDISP, it sets P1 flag to X'100' to indicate this is the
first appearance of this key.

It then returns to the calling program.

MOVE
PURPOSE

This routine moves a data record to a tape blocking buffer.

ENTRY

BAL,R15 MOVE

R1 contains the output buffer size in bytes.

CURBUF contains the byte address of the tape blocking buffer.
CURDBLK contains the byte address of the input buffer.
KEYDISP contains the output buffer displacement.

BLDISP contains the input buffer displacement.

RWS is the number of bytes to be transferred.

EXIT
ERROR EXIT

B FAILURE if the granule pointed to by CURRB doesn't compare to the granule pointed to by
the current disc address key GRANULEADR.

247 90 19 90A-1(8/73)

SECTION WA.01
PAGE 20
8/1/73

UTS TECHNICAL MANUAL

NORMAL EXIT
B *15 if data was not all moved.
B *15(+1) exit skipping if no bytes moved or if all data is moved successfully.

OPERATION

The program checks RWS to see how many bytes to move. If it is equal to zero, it exits
skipping.

Otherwise, it compares the disc address in CURRB with the disc address in GRANULEADR.
If they are not equal, it takes an error exit to FAILURE.

It increments the return address and moves as many data bytes as possible into the output

buffer. If all cannot be moved, it decrements the return address, updates the granule accounting
table RBHIST with the number of bytes moved, sets DATA$SW if buffer can be released, and
returns. If all bytes can be moved successfully, it updates the granule accounting table and
exits skipping.

GETKEY

PURPOSE

This module gets the next key from the MASTER INDEX of the file currently being processed.

ENTRY

BAL,R15 GETKEY

EXIT

ERROR EXIT
B FDERR1 if error in Read of MIX
B MIXERR if RWS in new MIX is zero.

NORMAL EXIT
B D when last record has been processed
B *R15

90 19 90A-1(8/73) 248

SECTION WA.O01
PAGE 21
8/1/73

UTS TECHNICAL MANUAL

OPERATION

If the file organization is consecutive, control is transferred > GETKEYN. Otherwise, the
routine reads in the next mix sector as required. It extracts the key from the MIX, queues up
a read for the corresponding data block if it is not already in core, then attempts to queuve
up a read for the next MIX sector so it will be in core when needed.

It exits by a branch to D if the last mix record has been processed.

Otherwise, it returns to the calling program via R15.

If an error occurs while reading the MIX sector, it branches to FDERRT. If an error occurs in
processing the MIX entry, it branches to MIXERR.

GETKEYN

PURPOSE

This module performs the function of GETKEY for consecutive files.

ENTRY

B GETKEYN

EXIT

B GETKEYS if blocked segment.
B GETKEYO!1 if unblocked segment.
B CHKEND?2 if at EOF.

OPERATION

The routine processes the next segment control word for a blocked or unblocked record seg~

ment. It stores the appropriate values for FAK, CSET, RWS, BLDISP, CURDBLK, GRANULEADR,
etc. and increments the tape key for consecutive files, CONKEY. This is done in such a way
that the MOVEKEY and MOVE routines can process consecutive files or keyed files in exactly
the same manner. This routine is entered from within GETKEY and its three exit points are

also within GETKEY.

249 90 19 90A-1(8/73)

SECTION WA.01
PAGE 22
8/1/73

UTS TECHNICAL MANUAL

SCHEDULE
PURPOSE

This module releases data buffers when they have been processed.

ENTRY

BAL,R7 SCHEDULE

EXIT

B *R7

OPERATION

The routine checks each entry of the RB1 table to see if it is currently in use. If the entry
is zero, it insures that the corresponding entry in DBUF is free.

If it finds the address it releases the buffer in IBUF and checks to see if there is a FLINK.

If none exists, it branches to CKTIO.

Otherwise, it checks to see if the FLINK MIX is in INDEXDA. If it is not, it branches to
MIXRATERR. If it is in the table, it waits until it is in core, makes sure the BLINK is valid,
saves the address of the next sector in MIXBUF, initializes the displacement to 12, does a
BAL,R15 to QUEMIX to read in the sector, and branches to NXTSECTR.

If the BLINK does not compare with the previous sector address, the program branches to
READFAILS.

QUEMIX

PURPOSE

This routine queues up a read for the next MIX sector, with END ACTION address set to
MIXENAC.

90 19 90A-1(8/73) 250

SECTION WA.01
PAGE 23
8/1/73

UTS TECHNICAL MANUAL

ENTRY

BAL,R15 QUEMIX

EXIT

ERROR EXIT
B READFAILS if FLINK address is not valid.

NORMAL EXIT

B *RI5

OPERATION

The routine requests an index buffer. If none is available, it exits.

If it gets a buffer, it picks up the FLINK of the MIX from NXTFLINK. If the FLINK equals

zero, it exits.
It verifies the disc address of the FLINK and if it is invalid, it branches to READFAIL4. If

it is valid, it branches to DISCIO2, with the return register set to the original calling routine,
to queue up a read of the next mix. ENDACTION address is set to MAXANAC.

RANFILE
PURPOSE

Writes tape records for RANDOM files.

ENTRY

B RANFILE

251 90 19 90A-1(8/73)

SECTION WA.01
PAGE 24
8/1/73

UTS TECHNICAL MANUAL

EXIT

ERROR EXIT

B MIXERRT if the disc address of the data granule is not valid, i.e., a matching HGP
cannot be found.

B MIXSNARP if the disc address is not valid.

NORMAL EXIT

B CKTIO when entire file has been processed or if no tape is being written.

OPERATION

It checks DUMP flag to see if tape is being output, and if not, it stores the number of bytes
in the record file size and branches to CKTIO.

If tape is being written, it searches the HGP to find an HGP corresponding to the data block
address. If it cannot find a matching HGP, it branches to MIXERRT. Otherwise, it saves
the file size in RSTORE and releases all data buffers in DBUF.

If RESTORE is zero, it branches to CKTIO. If RSTORE is non-zero, it gets a data buffer,
verifies the disc address, and queues up a disc read for each 2048 character block in the

RANDOM file. It then writes each record on tape. When all records have been processed,
it branches to CKTIO.

GETTBUF

PURPOSE

This routine gets a tape output buffer.

ENTRY

BAL,R15 GETTBUF

EXIT

B *R15 condition codes set non-zero if buffer found. R1 is index into TBUF table for
available entry.

90 19 90A-1(8/73) 252

SECTION WA.O01

PAGE 25
UTS TECHNICAL MANUAL 8/1/73

OPERATION
The routine searches for an available tape buffer, by scanning table TBUF until an available

entry is found. The index into TBUF is returned in R7. Condition codes are set non-zero if
a tape buffer is found.

GETIBUF
PURPOSE

Gets a disc input buffer for MIX.

ENTRY

BAL, R15 GETIBUF

EXIT

B *R15 condition codes set non-zero if buffer is found. R1 is index into IBUF table
for available entry.

OPERATION

The routine searches table IBUF for an available index buffer. The index iv ine available
entry in IBUF is returned in R7. Condition codes are set non-zero if a buffer is found.

GETFOUR
PURPOSE

This routine performs read ahead for data granules from the disc.

ENTRY

BAL,R11T GETFOUR

DSTACK contains addresses of granules to be read.

253 90 19 90A-1(8/73)

SECTION WA.O01
PAGE 26

UTS TECHNICAL MANUAL 8/1/73

EXIT

ERROR EXIT A

B DATAERR if a bad disc address is encountered.

NORMAL EXIT

B *RIt

BUILD

PURPOSE

This routine pushes the address of all data granules specified in the Just Read index sector

infto DSTACK. If the file organization is consecutive, control is transferred to BUILDN.

ENTRY

BAL,R11 BUILD

R7 is index into IBUF to current mix sector.

EXIT

NORMAL EXIT

B *R11

BUILDN

PURPOSE

This routine pushes the address of all unblocked data record segments for consecutive files
info DSTACK.

ENTRY

B BUILDN
EXIT

B BUILD31
B BUILD7 if no unblocked data record segments in this granule.

90 19 90A-1(8/73) 254

SECTION WA.01

PAGE 27
UTS TECHNICAL MANUAL 8/1/73

QSECTOR
PURPOSE
This routine queues up the disc address’in R8 to be Read by branching to DISCIO2. FITENAC

is specified as the end action address.

ENTRY

BAL,R15 QSECTOR

R8 equals disc address to be read.

R10 = Byte address of buffer.

EXIT

B DISCIO2

R15 points to exit for DISCIO2 routine to original program.
DISCIO2

PURPOSE

This routine is the RAD and DISC Pack handler routine for FSAVE. An entry at DISCIO2
specifies no wait on I/O. End action address is in R7.

An entry at DISCIO specifies normal I/O WAIT and no end action.

It calls for I/O by branching to monitors NEWQ routine.

ENTRY

BAL,R15 DISCIO2 specifies no wait, and end action address in R7.
BAL,R15 DISCIO specifies wait, and no end action.

R1 = I/O table index (used for End Action Information)
R8 = Disc address

R? = Byte count

R10 = Byte address of buffer

R7 = End Action Address if specified

R15 = Return address

255 90 19 90A-1(8/73)

SECTION WA.01

PAGE 28
UTS TECHNICAL MANUAL 8/1/73
EXIT
B *R15
DENAC
PURPOSE

This is the DISCIO end action routine; it resets the busy flag RBUSY and saves the TYC in-
formation in DSTATUS.

ENTRY

BAL,R11 DENAC from IOQ

EXIT

B *R11

FITENAC
PURPOSE
This is the end action receiver for Account directory, file directory or file information table

reads. It resets the busy bit in the flag specified by R14, decrements the outstanding 1/O
count, and saves the Disc status (TYC) information in DSTATUS.

ENTRY

BAL,R11 FITENAC from 10Q

R14 s address of busy flag for this operation.
R12 is TYC of this operation.

R11 is return address.

EXIT

B *R11 returns to 10Q.

90 19 90A-1(8/73) 256

SECTION WA.01
PAGE 29
UTS TECHNICAL MANUAL 8/1/73

MTIO
PURPOSE

This is the routine which queues up tape 1/O for FSAVE. It does so by branching to the
monitor's NEWQNWM routine.

ENTRY

BAL,R15 MTIO A

R6 =0, this is a normal call, the command list has the end-action-address.
R6 <0 RS has byte count, CURBUF is the word address of the buffer.

R6 >0 No data XFER. Ré6 contains function code.

R7 Points to calling sequence regisrers for 10Q call.

R15 Has return address.

EXIT

B *R15

WTENAC

PURPOSE

This module is the end action routine for all tape data writes. It decrements the outstanding

I/O count in OPCNT. It saves the status from R12 into TPSTATUS. It clears the busy bit in

the appropriate entry of TBUF tables. If the TYC indicates end of reel, it switches output !
reels. If the TYC indicates unrecoverable tape error, it types a message to the operator and '
switches the output reels. Otherwise, it exits to the address in R11.

ENTRY |

BAL,R11 WTENAC from IOQ.
R14 is index into TBUF table.
R12 is TYC.

R11 is return register.

EXIT

B *R11 return to I0Q.

257 90 19 90A-1(8/73)

SECTION WA.O01
PAGE 30
UTS TECHNICAL MANUAL 8/1/73

SENTENAC
PURPOSE

This is the end action routine for tape sentinel writes. A tape error will cause a reel change.
End of Reel Status is ignored.

ENTRY

BAL,R11 SENTENAC from IOQ.
R12 is TYC.

EXIT

B *R11

NEWREEL
PURPOSE

This routine is called to open a new output reel. It executes an open CAL, verifies the DCT
index returned, rewinds the tape, writes a :LBL sentinel, an :ACN sentinel, and a tape mark.

ENTRY

BAL, SR3 NEWREEL

EXIT

ERROR EXIT
B DCTXERR if bad DCT index returned from Open.

NORMAL EXIT
B *SR3

90 19 90A-1(8/73) 258

SECTION WA.O01
PAGE 31
UTS TECHNICAL MANUAL 8/1/73

WRTDAT
PURPOSE

This routine is called to write the DAT file on reel PRG1.

ENTRY

BAL,R7 WRTDAT

EXIT

B *R7

DCTXERR/OPNABN/OPNERR
PURPOSE

This routine is an error routine from DCB opens. It types OPNFAIL and does an M:SNAP of
the M:EO DCB.

ENTRY

B DCTXERR
B OPN ABN
B OPNERR
EXIT

B IORUNDWN

GOEOR
PURPOSE
This is the routine used to handle end-of-reel conditions. It writes a tape mark, an :EQOV

record, another tape mark, an :EOR record, 4 more tape marks, and does a M:CLOSE for
that tape reel.

259 90 19 90A-1(8/73)

UTS TECHNICAL MANUAL

ENTRY

BAL,R1 GOEOR

EXIT

B *Rl

EOFQ
PURPOSE

This routine creates and writes a :EOF record onto tape.

ENTRY

BAL,R14 EOFQ

EXIT

B WRTMARK (WRTMARK then returns to original routine)

BOFQUE
PURPOSE

This routine creates and writes a :BOF record on tape.

ENTRY

BAL,R15 BOFQUE

EXIT

B WRTMARK

90 19 90A-1(8/73) 260

SECTION WA.O01
PAGE 32
8/1/73

SECTION WA.01

PAGE 33
UTS TECHNICAL MANUAL 8/1/73

MOVEI
PURPOSE

This subroutine is used to transfer sentinel records into background records to be written to
tape.

ENTRY

BAL,R14 MOVEI

EXIT

B *R14

WRTMARK
PURPOSE

This routine queues up a write tape mark operation.

ENTRY

BAL, R15 WRTMARK

EXIT

B MTIO+2

NOTENUFF
PURPOSE

This routine prints "NOT ENOUGH CORE TO RUN, LESS THAN 5 PAGES AVAILABLE" and
then does an M:XXX.

ENTRY

B NOTENUFF

261 90 19 90A-1(8/73)

SECTION WA.O01

PAGE 34
UTS TECHNICAL MANUAL 8/1/73
EXIT
B IORUNDWN
ENDUP
PURPOSE

This routine sets the ENDOFSET flag to end processing, closes the tape, and does an M:EXIT.
If no tape is being written, it displays the run totals, closes the statistics file, and runs down
I/O and does an M:EXIT.

ENTRY

B ENDUP

EXIT

CALL 92 1

ADDONE
PURPOSE
This routine is entered when the current account directory block has been processed. It gets

another block of account directory if possible. Otherwise, it branches to ENDUP if processing
of all accounts is completed.

ENTRY

B ADDONE
ACFLINK has FLINK for account directory.

EXIT
ERROR EXIT

B READFAIL2 if FLINK address is not valid.

NORMAL EXIT
B ENDUP if FLINK is zero.
B GETAD to queue up another read of account directory.

B GETAD3 after waiting for next block to be read in.

90 19 90A-1(8/73) 262

SECTION WA.01
PAGE 35
UTS TECHNICAL MANUAL 8/1/73

ADERROR
PURPOSE

This routine is entered when an error is found in an account directory key. It types a
message, dumps the block, skips to the next key, and exits.

ENTRY

B ADERROR

EXIT

B ADELETE

IORUNDOWN
PURPOSE

This routine loops until all DISC and tape operations are completed, then it returns.

DISPRUNTOTL
PURPOSE

This routine displays the final run statistics.

ENTRY

BAL,R15 DISPRUNTOTL

EXIT

B *RI15

DTOGRAN
PURPOSE

This module checks a disc address to verify that (1) the DCT index is correct, (2) an HGP
exists for that DCT index, and (3) the sector number is within range.

263 90 19 90A-1(8/73)

SECTION WA.O01
PAGE 36
UTS TECHNICAL MANUAL 8/1/73

ENTRY

BAL, R15 DTOGRAN
R8 is disc address.

EXIT

ERROR EXIT
B *R15 if address is bad.

NORMAL EXIT

B *R15+1 if address is valid.
FDERR

PURPOSE

This routine is entered if an error is detected in a file directory key. The key is skipped, a
message is typed, and the routine branches to FDLETE.

ENTRY

B FDERR
EXIT

B GETFILE

FITSNAP/FITERR
PURPOSE

The routine is entered if there is an error in the contents of FIT. An error message is typed,
the file directory and FIT are listed, and the program branches to FDERRT.

ENTRY

B FITSNAP
B FITERR

EXIT

B FDERRI

90 19 90A~1(8/73) 264

UTS TECHNICAL MANUAL

LISTFD

PURPOSE

This routine lists the current file directory block.

ENTRY

BAL, R14 LISTFD

EXTT

B *R14

LISTFIT
PURPOSE

This routine lists the current FIT.

ENTRY

BAL,R14 LISTFIT

EXIT

B *R14

LISTOUTBUF
PURPOSE
This routine lists the current tape output buffer.

ENTRY

BAL,R14 LISTOUTBUF

EXIT

B *R14

265

SECTION WA.O01
PAGE 37

8/1/73

90 19 90A-1(8/73)

SECTION WA.O01
PAGE 38
UTS TECHNICAL MANUAL 8/1/73

LISTMIX
PURPOSE
This routine lists the current MIX block.

ENTRY

BAL, R14 LISTMIX

EXIT

B *R14

LISTAD
PURPOSE
This routine lists the current account directory block.

ENTRY

BAL,R14 LISTAD

EXIT

B *R14

MIXSNAP/MIXERR
PURPOSE

This routine is entered when a mix error occurs. It frees all tape buffers and branches to
EOFQ to close out the file on tape.

ENTRY

B MIXSNAP
B MIXERR

EXIT

B FDERR! if no tape is being dumped.
B EOFQ if no tape is being written.

90 19 90A-1(8/73) 266

SECTION WA.01
~ PAGE 39
UTS TECHNICAL MANUAL 8/1/73

DATAERR
PURPOSE

This routine is entered if a data granule,address error has occurred. It types an error message

and branches to MIXSNAP.

ENTRY

B DATAERR
EXIT

B MIXSNAP

FDDONE
PURPOSE

This module is entered when a file directory block has been completed. If this is not the last
link, it reads the next link in.

ENTRY

B FDDONE
EXIT

ERROR EXIT
B READFAIL3 if FLINK address is invalid.

NORMAL EXIT

B GETFD1 if next block already in core.
B GETFD to read in next block.

B ENDOFD if FLINK is zero.

ENDOFD

PURPQOSE

Entered when a file directory is completed. It prints next header with new account on M:LL
device after printing summaries for previous account. It then branches to NACN.

267 90 19 90A-1(8/73)

SECTION WA.01
PAGE 40

UTS TECHNICAL MANUAL 8/1/73

ENTRY

B ENDOFD
EXIT

B NACN

CKTIO

PURPOSE

This routine is entered when a file has been completely processed. It writes an :EOF record
if necessary, prints the file name and the file information summary on M:LL device. It then

branches to GETFILE to process the next file.

ENTRY

B CKTIO
EXIT

B GETFILE

CODESCAN
PURPOSE

This routine scans the FIT for the entry whose code corresponds to that in R2.

ENTRY

BAL,R15 CODESCAN
R2 contains code fo search for.

EXIT

B *R15 if not found.
B *R15+1 if found.

90 19 90A-1(8/73) 268

SECTION WA.01
PAGE 41
UTS TECHNICAL MANUAL 8/1/73

MOVENTRY
PURPOSE
This routine moves an entry from the FIT to a :BOF record.

ENTRY

BAL,R15 MOVENTRY
RO is word address of entry in FIT.
R4 is address of :BOF record.

EXIT

B *RI15

HEXTODEC
PURPOSE
This routine converts a number from hexadecimal EBCDIC.

ENTRY

BAL, R15 HEXTODEC
R3 is number to be converted.
R1 is address to store result.

EXIT

B *RI15

TACNT/TFILNME
PURPOSE

These routine types "ACCOUNT" and an account name, or "FILE" and a FILENAME on the
operator's console.

ENTRY

BAL,R15 TACNT to type account.
BAL,R15 TFILNME to type file name

269 90 19 90A-1(8/73)

SECTION WA.01

PAGE 42
UTS TECHNICAL MANUAL 8/1/73
EXIT
B *RI1S
ACCK
PURPOSE

Checks if current account number matches current data card. Sets ALL =-1 if all files mode,
sets ACEQU = -1 if account number compares to card, sets ACEQU to zero if no compare.

ENTRY

BAL,R15 ACCK

EXIT

B *R15

READFAIL
PURPQOSE
Entered because of an ACNCFU disc address error. Causes M:XXX abort.

ENTRY

B READFAIL
EXIT

B ENDUP

READFAIL2
PURPOSE
Entered because of an account directory LINK failure. Causes M:XXX abort.

ENTRY: B READFAIL2

EXIT: B ENDUP

90 19 90A-1(8/73) 270

SECTION WA.01
PAGE 43
UTS TECHNICAL MANUAL 8/1/73

READFAIL3
PURPOSE

Entered because of a link failure in the.file directory. Causes a branch to ENDOFD to skip
to next account.

ENTRY

B READFAIL3
EXIT

B ENDOFD

READFAILS
PURPOSE
Entered because of a LINK failure in a MIX. Causes branch to MIXERR] to skip to next file.

ENTRY

B READFAILS
EXIT

B MIXERRI

LPRINT
PURPOSE
This routine prints one line and then clears the buffer.

ENTRY

BAL,R15 LPRINT

EXIT

B *RI15

271 90 19 90A-1(8/73)

SECTION WA.O01
PAGE 44
UTS TECHNICAL MANUAL 8/1/73

PLIST
PURPOSE
This routine is used to snap out a buffer on the M:LL device.

ENTRY

BAL,R15 PLIST
R1 contains number of bytes in buffer.
R3 contains beginning buffer address.

EXIT

B *RI15

BUFSET
PURPOSE
This routine is called fo move a print line from one buffer to another.

ENTRY

BAL, R15 BUFSET

EXIT

B *R15

PRINT
PURPOSE
Writes one line of print via a CALT,1 to WRTPBUF.

ENTRY

BAL, R15 PRINT

EXIT

B *R15

90 19 90A-1(8/73) 272

SECTION WA.O01

PAGE 45
UTS TECHNICAL MANUAL 8/1/73

SPACE
PURP OSE

Writes N lines of blanks on M:LL via CAL1, 1 WRTBLNK where number of blanks is supplied
by R1.

ENTRY

BAL, R15 SPACE
EXIT

B *RI15

TYPEIO/TYPEIO2
PURPOSE

This routine types a message on the operators console.

ENTRY

BAL,R15 TYPEIO
R1 is byte address of TEXTC message

BAL,R15 TYPEIO2
R1 is byte address of message buffer
R3 is byte count

EXIT

B *R15

273 90 19 90A-1(8/73)

SECTION WA.02
PAGE 1
8/1/73

UTS TECHNICAL MANUAL

D
FRES PROCESSOR
PURPOSE

The FRES Processor is designed to restore files from tapes created by the FSAVE processor.
FRES must be run under an account with CO privilege.

FRES relies on the fact that FSAVE never writes tape blocks larger than 512 words; therefore,
FRES should not be used to restore tapes written by FPURGE.

CODING CONVENTIONS

FRES was coded in a highly subroutinized manner.
Register 0 is the link register.

Registers 1 through 6 are nonvolatile.
Registers 7 through 15 are volatile.

BASIC PHILOSOPHY

FRES bypasses sytem labeled tape management by branching directly to 10Q for its tape op-~
erations. For creating files, however, FRES uses standard system services (i.e., M:OPEN,

M:WRITE, M:CLOSE).
FRES restores all of the attributes of a file that were saved by FSAVE including all applicable

dates.

D

QTAP

PURPOSE

Call MTREAD to queue the next physical tape read.

USAGE

BAL,O QTAP

90 19 90A-1(8/73) 274

SECTION WA.02
PAGE 2
8/1/73

UTS TECHNICAL MANUAL

INPUT

NXTBUF contains the index of the next tape buffer to be used.
TSTATUS a byte table indicating the status (or TYC) of each tape buffer.

DESCRIPTION

Check the status of the buffer to ensure that it is free (TSTATUS =0). If it is not free, return
to the calling routine. Otherwise, mark the buffer busy (TSTATUS = FF) and call MTREAD.
When MTREAD returns, update NXTBUF so that it points to the next buffer and return to the
calling routine.

ID

MTREAD

PURPOSE

Call NEWQNWM in IOQ which performs (queues) the actual read.

USAGE

BAL,0 MTREAD

INPUT

R7 contains the index of the tape buffer.

DESCRIPTION

Enter master mode (M:SYS) and increment UB:MF by one. Call NEWQNWM to read 2048 bytes
into the appropriate buffer with the end action address equal to the physical address of

EAREAD and end action information equal to the physical byte address of the STATUS entry

for the appropriate buffer. When NEWQNWM returns, reenter slave mode and return to the
calling routine.

275 90 19 90A-1(8/73)

SECTION WA.02

PAGE 3
8/1/73
UTS TECHNICAL MANUAL
D
OPNTAP
PURPOSE

Open M:EI to device tape with the correct serial number.

USAGE

BAL,0 OPNTAP

INPUT

OPTPFPT the FPT used to open M:EI.

DESCRIPTION

Check M:EI to see if it is open. If so, allow 1/O to run down (UB:MF = 0), close M:EI
(M:CLOSE), change the serial number in OPTPFPT, and open M:EI to the next volume
(M:OPEN). If M:El is not open, then merely open it (M:OPEN) without changing OPTPFPT.
After opening M:E], save the DCT index in MTDCTX, rewind the tape (M:REW) and initialize
CURBUF, NXTBUF and TSTATUS. Then return to the calling routine.

D
SKPTMK
PURPOSE

Logically read physical records until encountering a tape mark.

USAGE

BAL,0 SKPTMK

INPUT

CURBUF contains the index of the current tape buffer.
TSTATUS a byte table indicating the status (or TYC) of each tape buffer.

90 19 90A-1(8/73) 276

SECTION WA.02
PAGE 4
| 8/1/73
UTS TECHNICAL MANUAL

DESCRIPTION

Check the status of the current buffer, returning to the calling program if a tape mark is
indicated (TYC =6). Otherwise, call NEXTBUF to update CURBUF to the next buffer and
repeat the above test until it is satisfied.

D

NEXTBUF

PURPOSE

Updates CURBUF to the next tape buffer.

USAGE

BAL,0 NEXTBUF

INPUT

CURBUF contains the index of the current tape buffer.
TSTATUS a byte table indicating the status (or TYC) of each tape buffer.

DESCRIPTION

Free the current tape buffer (TSTATUS =0), update CURBUF to the next buffer in sequence,
check to ensure that it is neither busy (TSTATUS = FF) nor free (TSTATUS =0), and return to
the calling routine. If the buffer is busy, spin until it is no longer busy. If it is free, force
a read by calling QTAP and recycle through the above status checks.

)
INITIAL
PURPOSE

Perform appropriate initialization of tables and data.

USAGE

BAL,0 INITIAL

277 90 19 90A-1(8/73)

SECTION WA.02
PAGE 5
8/1/73

UTS TECHNICAL MANUAL

INPUT

#BUF number of tape buffers.
#PAGES initial size in pages of the data buffer.

DESCRIPTION

Enter master mode (M:SYS), set JIT limit for maximum run time to unlimited (= 0), set JIT
limits for temporary and permanent RAD and disc to 128K granules, and reenter the slave
mode. Obtain pages (M:GP) for tape buffers and the data buffer. Save the logon account
from JIT in MYACCT and return to calling routine.

CCl1
PURPOSE
Process control cards and data cards.

USAGE

BAL,0 CCI

DESCRIPTION

Read control cards through M:C and process as follows:

a. +END = return to calling routine.
+VOL - read data card and store serial number in OPTPFPT (see OPNTAP).

c. +START - read data card and store account in STACCT and file name, if present, in
STFILE.

d. +SKIP = read data cards (up to #SKIP allowed) and store accounts in the doubleword
table, SKIP. The data cards must be sorted so that the accounts are in ascending
order.

90 19 90A-1(8/73) 278

SECTION WA.02

PAGE 6
8/1/73
UTS TECHNICAL MANUAL
D
SKP:BOF
PURPOSE

Logically read physical records until encountering a :BOF, :EQV or :EOR sentinel.

USAGE

BAL,0 SKP:BOF

DESCRIPTION

Call SKP:TMK to locate the next tape mark, read the next record and check to see if it is a
:BOF, in which case return to the BAL+2. If not a :BOF, check to see if it is an :EOV or
:EOR, in which case return to BAL+1. If none of the above, repeat the entire process.

D
GOTI
PURPOSE

Open the disc file corresponding to the next tape file.

USAGE

BAL,0 GOTI

INPUT

CURBUF contains the index of the current tape buffer which contains the :BOF from tape.
OPNFLFPT the FPT used to open the file.

DESCRIPTION

Reinitialize data cells. For each variable length parameter (VLP) entry that must be preserved
from the original file, call GETVLP which moves the VLP entry from the :BOF to OPNFLFPT.
For VLP entries that were not present in the original file (e.g., PASSWORD, READ accounts,
etc.) an appropriate dummy entry is used so that the entry from the previous file which is in

the DCB is not carried across to the new file. Read the user label which is the record following
the :BOF and call ACCTOJIT to move the account from the user label to JIT. Check the file

279 90 19 90A-1(8/73)

SECTION WA.02
PAGE 7
8/1/73

UTS TECHNICAL MANUAL

organization in the user label for RANDOM and perform special setup if it is RANDOM.,
Next, call CHECKIT to determine whether or not to restore this file. If not, return to the
BAL+1. If so, open the file (M:OPEN) using OPNFLFPT and return to the BAL+2.

D

CHECKIT

PURPOSE

Determine whether to open on disc or skip the current tape file.
USAGE

BAL,0 CHECKIT

INPUT

CURBUF contains the index of the buffer containing the user tape label.

DESCRIPTION

If starting account/file was specified, determine whether or not we are there yet. If not,
return to the BAL+1. If skip accounts were specified, see if this is one of them. If so,
return to the BAL+1. If none of the above, check date in user label to ensure that tape files
are in sequence. If no sequence error, return fo BAL+2. Otherwise, notify user of file se-
quence error and exit.

D
ACCTOJIT
PURPOSE

Move account from user tape label to JIT.

USAGE

BAL,0 ACCTOJIT

90 19 90A-1(8/73) 280

SECTION WA.02

PAGE 8
8/1/73
UTS TECHNICAL MANUAL
INPUT
CURBUF contains the index of the buffer containing the user tape label.

LASTACCT contains the account of the last file that was processed.

DESCRIPTION

If the account in the user label and the account in LASTACCT are equal, return to the
calling program. Otherwise, move the account from the user label to LASTACCT and also
to JIT. Set J:FDDA =0 in JIT and return to the calling program.

ID

GETVLP
PURPOSE

Search a variable length parameter (VLP) list for a specified entry and, if found, move the
entry from the VLP list to a specified location.

USAGE

BAL,0 GETVLP

INPUT

R4 contains the word address of the source VLP list.
R5 contains the byte address of specific entry"s destination.
R6 contains the VLP for the entry to be found and moved.

DESCRIPTION

Search the VLP list which begins at the word address in R4 for the VLP code in R6. If not
found, return to the BAL+1. If found, move the entry from the VLP list to the byte address
in R5 and return to the BAL+2 with R5 pointing to the first byte address following the entry's
destination. In addition, if the VLP code is for a file name (VLP code =01), move the entry
to LASTFILE.

281 90 19 90A-1(8/73)

SECTION WA.02
PAGE 9
8/1/73

UTS TECHNICAL MANUAL

D
BUILD
PURPOSE

Transfer logical data records from the labeled tape to the disc file.

USAGE

BAL,0 BUILD

INPUT

CURBUF contains the index of the tape buffer containing the user tape label.

DESCRIPTION

Process the tape blocks until the :EOF sentinel is encountered. If a fatal error occurs before
the :EOF, snapshots are performed and we return to the BAL+1. TSTATUS is checked for each
tape block to ensure that TYC =1 for data blocks. If an :EQV is encountered, OPNTAP is
called to close the current volume and open the next volume which is positioned to the beginning
of the data and we continue. When processing the data blocks for KEYED or CONSEC files,
write directly from the data block to the file (M:WRITE) whenever the data is blocked in a
single tape block. When the data is chained between two or more tape blocks it is first
moved to the data buffer, DBUF, prior to writing the file. If DBUF is not large enough,
additional pages are obtained (M:GP). Inability to obtain enough pages for a record is
considered a fatal error for this file. When the :EOF is encountered, return to the BAL+2.
When processing the data for RANDOM files, always move the data to DBUF until it is full
and then issue the M:WRITE.

D

EXIT

PURPOSE
Terminate the run.

USAGE

B EXIT

90 19 90A-1(8/73) 282

SECTION WA.02
PAGE 10
8/1/73

UTS TECHNICAL MANUAL

INPUT

MYACCT contains the logon account for this job.

DESCRIPTION

Move the logon account from MYACCT to JIT. Wait for /O to run down (UB:MF = 0) and
exit (M:EXIT).

283 90 19 90A-1(8/73)

SECTION wB
PAGE 1
8/1/73

UTS TECHNICAL MANUAL

ID

FILL Processor
PURPOSE

FILL provides the ability to protect the file system and to control the amount of space avail-
able for files. File system protection is provided through scheduled operations that save files
modified since the last save, or files saved through specific on-line user request. The entire
file system can be restored following disasterous system failure or selected files can be re-
stored. Available file space control is achieved through deletion of expired files and through
operator initiated purges of the file system based on last reference of files.

MODULES

The FILL processor consists of three functional modules (BACKUP, FILL, and PURGE), a
module of DCBs (FILLDCB); two subroutine modules that are also used by some other processors
(JULIAN and MAILBOX) and the system definitions module (MONSTK). BACKUP, FILL, and
PURGE are described herein; and the other modules are either described in other parts of the
Technical Manual (JULIAN and MAILBOX), or do not require description (FILLDCB and
MONSTK).

DESCRIPTION

When the FILL processor is initiated, whether automatically from GHOST1 at system initiation,
through operator keyin of GJOB FILL, or through an on-line user using the command BACKUP,
the entry is to the FILL module at location FILL. FILL determines if it is running as a ghost
job (it aborts if not) and whether it is initiated by GHOST1 (permits the operator to wipe out
FILL's "memory" if not). The operator is then asked whether he wants a fill, no fill, or an
instant squirrel — resulting in continuation of FILL, branch to BACKUP in module BACKUP,

or branch to SETSQ in module BACKUP. At SETSQ, a schedule is constructed indicating a
squirrel run at the current time, then proceeds to do the backup. At BACKUP, the backup
schedule is interrogated (see below). If a fill occurs, the starting tape serial number is ob-
tained from the operator as in the "skip to" file if the operator wishes the file to start other
than at the beginning of the tape. Files are then copied from tape to disk, automatically
switching reels at the end of each tape. When the end of the tape set is reached, the op-
erator is asked if there are more tapes to file. If yes, the above sequence is repeated. If

no, FILL branches to BACKUP, as above. At the conclusion of restoring each file, FILL
checks to see if ALLOCAT has set the flag indicating that file space is getting low, or if the
operator wants fo initiate a file purge. If either is true, FILL branches to PURGE in module
PURGE. When PURGE completes its function, it returns (as a closed subroutine) to the FILL
module and the fill completes.

90 19 90A-1(8/73) 284

SECTION WB
PAGE 2

8/1/73
UTS TECHNICAL MANUAL

At BACKUP, a check is made for selective fill commands. If there are any, FILL is entered

at SELFILL, the commands are interpreted, and FILL restores the files. Upon conclusion,
SELFILL returns (as a closed subroutine) to the BACKUP module. (SELFILL, like FILL, checks
for purge flags and if set, calls PURGE.) BACKUP then examines the BACK:SCHED. :SYS$

file to determine if a backup is scheduled. If not, purge flags are checked, as above, and

the FILL processor either puts itself to sleep until the next scheduled backup, or for 15 minutes,
whichever is less. If a backup is scheduled, the entire file system is examined for files that
have been modified since the last backup of the current type (SA, IN or SQ). Modified files
are written to tape as encountered. After each file is inspected, the purge flags are checked,
as above. At the conclusion of the scheduled backup, or immediately if there was no scheduled
backup, the :BACKUP file (account :SYS) is checked for user or purge (see below) backup re-
quests. Any such files are also copied to tape if not already done, and if the entry is flagged
as a backup-and-delete (X'1F' VLP code) DOPURDEL in module PURGE is called to delete the
file and log that fact. If the operation was a scheduled backup, or execution of a scheduled
WRAPUP, the output tape, if any is dismounted, and as above, the job puts itself to sleep.
When the job wakes up, whether from time elapsing, ALLOCATE waking it, a GJOB FILL,

or user BACKUP command, the processor goes back to point BACKUP, etc.

Note: Normal FILL is entered only when the job is initiated.

PURGE is a closed subroutine that is called by FILL or BACKUP. A purge is initiated by the
operator answering "yes" to the "expired file purge" question, or by the operator keying in a
PURGE request. In either event, all files in the system are examined for expiration, and if
expired they are purged (see below). For an expired file purge that is the only operation.
For an operator-initiated PURGE-OLDER, files are also checked for last access, and if older
than specified they are purged. For an operator-initiated PURGE-UNTIL, a table is built
(currently 4 pages long) that is sorted by last access date. When all files have been examined,
the table contains the oldest files in the system, based on access date, that are eligible for
purge. Files are then purged until the required number of granules is available or the list is
exhausted. In doing a purge, the account :SYS is not eligible, nor are files with the "no
purge" descriptor set on a "NEVER" expiration. Otherwise, all expired files are purged as
encountered unless the BACKUPALL SYSGEN parameter was set and the file has not been
backed up since it was last modified. In this case, an entry is added to the :BACKUP.:SYS
file. When the "backups" approach a page in length or at the end of the purge, the BACKUP
module is entered at USR:BCK. BACKUP then copies the file fo tape, encounters the X'1F'
VLP and calls DOPURDEL in PURGE to delete the file, etc., until :BACKUP is exhausted and
then returns to PURGE. For an operator-initiated purge, files not previously backed up are
always backed up before deletion as the files are not expired. When a purge is complete, the
new granule available counts are logged and PURGE returns from whence it was called. At
that point in time there may be some files that have not yet been backed up but that are in
:BACKUP. The number of granules of such files is logged as "in progress". Such files will be
backed up and deleted before BACKUP puts the FILL job to sleep.

285 90 19 90A-1(8/73)

SECTION WB.01
PAGE 1
8/1/73

UTS TECHNICAL MANUAL

ID

BACKUP
PURPOSE

Backup copies files from the rapid access devices controlled by the file management system
onto labeled tapes. During a system start or following a catastrophe, these tapes are used to
restore the file system data base.

OVERVIEW

There is one ghost processor which includes automatic Backup, user-requested Backup, instant
Squirrel, and Fill. Automatic Backup operates from a schedule established by the installation
manager and it includes Saveall, Incremental, and Squirrel. The Saveall saves all files ex-
cept account :SYSGEN and those files which were booted from the PO tape. Incremental
saves all files which were created or modified since the last complete execution of Saveall,
Incremental or Fill. Squirrel saves all files created or modified since the last execution of
automatic Backup or Fill. User-requested Backup is initiated by a terminal user with a request
to back up an individual file. Instant Squirrel is requested by the operator after a crash which
resulted in an impossible recovery. The instant Squirrel is an attempt to save all recent files
so that they can be restored after a boot from PO tape.

USAGE

The file BACK:SCHED, :SYS contains the schedule for automatic Backup. The format is
TYPE = HH:MM, HH:MM. The TYPE is SA, IN, SQ, or WR. The time is a 24-hour clock.
The BACK:SCHED file may be either keyed or sequential. More details of the scheduling
may be found in the UTS Operations Manual - 90 16 75A.

TEL places the user Backup requests in file :BACKUP in the keyed record BACKUP. The format
of the request is the file name . account . password as specified in the variable parameter list
of OPEN or in the DCB. The name is code 01, the account is 02, and the password is 03.

TEL then issues a wake up CAL for FILL.

At BACKUP the schedule is examined to see if automatic Backup is required. If it is, it is
performed and any user requests from :BACKUP are processed and the ghost puts itself to sleep.
If there is no scheduled request, any user requests are processed and the ghost puts itself to
sleep. Subsequently, anytime the ghost is awakened because of a user request, sleep interval
elapses, or an operator key-in of GJOBBACKUP, it first checks the schedule, then the user
requests and then puts itself to sleep.

90 19 90A-1(8/73) 286

SECTION WB.01
PAGE 2
8/1/73

UTS TECHNICAL MANUAL

INPUT

The schedule file BACK:SCHED, :SYS is read and each request is scanned and sorted into a
table by request time. Any requests which contain errors are deleted from the file.

The file :BACKUP, :SYS can contain two keyed records. The record BACKUP is written by
the TEL command BACKUP. It contains the user's requests of the name, account, and password
already formatted for the parameter list of OPEN. There is a one page limit set by TEL for
this record. The record SAV contains the checkpoint information for automatic Backup. It
contains the completion time of the Saveall, Incremental, Squirrel, the type of the last
Backup, whether or not a tape is mounted, and the completion time of Fill. This record is
read and written by automatic backup.

All files in all accounts are read by automatic Backup regardless of their password or read-access.
OUTPUT

The Backup tapes are created as multi-file, multi-reel, labeled tapes. Each user file is opened
with FPARAM and the information thus returned is written as a user tape label when the file is
opened on tape. If the amount of information thus returned is greater than the limit of 255 bytes,
it is written as the first record of the file instead of as a user label. The first four words of the
user label contain

word 1, byte 0 =byte count of the label
words 2 and 3 = date time returned by JULIAN (YYYYODDD, hhmm0000) packed decimal
word 4 = null

Each file is written to tape with its original name, organization, (RANDOM files are se-
quential on tape), key max, etc.

Each record of each file is extended by one word of value X'56565656'. Each file is extended
by one record of value X'76767676'. This provides Fill with information necessary to determine
whether a file was completely written and is therefore restorable.

During an incremental Backup, as each account is processed, the names of all files in the
account are added to a buffer. At the completion of the account, the file~names buffer is
written as a file on the Backup tape. The name of the file is the same as the last file written
but the user label contains a flag indicating it is the special file. This file is used by Fill

to determine which files should be allowed to remain in each account. Files not listed in
this special file are deleted.

287 90 19 90A-1(8/73)

SECTION WB.01
PAGE 3
8/1/73

UTS TECHNICAL MANUAL

INTERACTION

The file management system is used to perform all 1/O. The services used are M:OPEN,
M:CLOSE, M:READ, M:WRITE, M:PRECORD, M:PFIL, M:DELREC, M:CVOL.

M:TYPE is used to tell the operator about problems and about beginning and completion of
automatic Backup.

M:TIME is used to establish the current time.

M:XXX is used in case of fatal trouble although normal temination is via the M:WAIT CAL.

Dynamic core is acquired and released by Get Common and Free Common CALs for the 1/O
buffer. The file names buffer is acquired and released by Get Dynamic and Free Dynamic
CALs.

Super Close terminates the output to the line printer.

The DCBs for :BACKUP, the user input files (F:EI) and the Backup tape files (F:EQ) are

created by M:DCB PROCs. F:1 is used for reading the file BACK:SCHED. The F:EO DCB

is referenced from FILL.

A 50-word table (TABLE) is used to remember user requests if the specified files are busy
when Backup aftempts to open them.

A 20-word table (NTRY) is used to hold the sorted times from BACK:SCHED.

SUBROUTINES

PROCs: The procedure MOVE:FLD FROM, TO is defined and used to move a variable
parameter list into a specified area. The end-indicator (byte 1) terminates the list
being moved.

External Subroutines: The MAILBOX subroutine is called to deliver messages to the user's
MAILBOX and to the line printer. Successful Backup messages are sent to the MAILBOX
only for user-requested Backup. Otherwise, only failure messages are delivered to the

user.

JULIAN is called to convert the time from M:TIME into a julian format.

90 19 90A-1(8/73) 288

SECTION WB.O1
PAGE 4
8/1/73

UTS TECHNICAL MANUAL

Internal Subroutines:

ESSENCE — converts the current time from M:TIME and puts it in CURRENT in the format
of YDDD in bit positions 1 through 15 in packed decimal and the number of minutes
since midnight in hex in the right-half. Essence also calls READ:SCH to read the
schedule file.

FND:DATE — extracts the creation date from the FPARAM data and converts it to the
format described under Essence. The creation date is stored in CREATION.

READ:SCHED — reads and scans the schedule file BACK:SCHED. The requests are sorted
by time and the types are stored in SC:TYPE and the times are stored in SCHED in
the same format described under Essence. The number of requests is stored in
NSCHED. Any request specifying NULL causes all entries of that type to be deleted
from SCHED. Entries in BACK:SCHED which are not valid are deleted from BACK:
SCHED by M:DELREC.

ERRORS
Error message sent to the line printer and the user's MAILBOS:
ERR xx DID NOT BACKUP FILE filename
The xx is the error code returned by the file management system. The error may have resulted
from reading the user's file or writing the Backup tape. Each message is date-time stamped

by mailbox and the account of Backup (:SYS) is included in the user's MAILBOX message.
The account included in the line printer message, however, is the user's account.

RESTRICTIONS

Backup/Fill ghost must be executed as a ghost with X'CQO' privilege. Execution as a
batch or terminal shared processor causes execution of an abort CAL.

Files with names whose first character is less than "$" are not backed up.

DESCRIPTION

Backup first examines the backup schedule to determine whether or not there is something
for automatic Backup to do. If there is, it is done. Next, it processes all user requests for
backup and finally, it sets its alarm clock and goes to sleep. Any subsequent CAL to wake
up causes it to run the same scenario.

289 90 19 90A-1(8/73)

SECTION WwB.01
PAGE 5
8/1/73

UTS TECHNICAL MANUAL

The current time is established and the checkpoint information regarding last completion
times is read from :BACKUP. The sorted requests from BACK:SCHED are examined to see if
any request is within =1 or +15 minutes of the current time. If none is within range, the
requests (if any) in :BACKUP are processed. If one is within range, it is examined to see
whether or not it is too close to the completion time of its type. The reason for this is if
Backup completed and the system crashed and Backup were awakened following the crash,
the request in the schedule should not be honored again. The limits are :Squirrels cannot
run less than 15 minutes apart. Incrementals less than 20, and Saveall less than 30.

The beginning of each automatic Backup with type, date, and time is noted on the operator's
console. The first account is located and the first file is opened. The file name is entered
in a file-name buffer in TEXTC format. The creation date is extracted, converted, and
tested. If it is time 2400, or if the NOBACKUP descriptor is set, the file is skipped because
it was booted from the PO tape. If the corresponding dynamic descriptor is not set, it is
skipped. Otherwise, the FPARAM information and the name and account are passed to the
processing for copying the file to the Backup tape. After all files for one account have been
processed, the file-name buffer is copied to the Backup tape and the file-name buffer is
reset. After all accounts have been processed, any outstanding user requests are processed
and the completion message is typed on the operator's console. If the run was a Saveall or
Incremental, the tape is dismounted. Finally, the Backup schedule is read again and the
period of wait is established for the M:WAIT CAL.

Copying a file to the Backup tape involves moving the FPARAM data to a buffer (BLABL),
adding the time, opening the tape, reading the file, adding the magic word, and writing
the tape.

Errors in opening or reading the user's file causes a message to be sent to the user's MAILBOX
and to the line printer. Successful copies are noted on the line printer. Normal volume
closing of the tape is handled by the file management system, but an unrecoverable write
error and some other unexpected errors (56, 57, and 1C) may cause premature volume
switching. When the end-of-file is detected in the user’s file, the magic record is written

to the tape and the tape file is closed.

90 19 90A-1(8/73) 290

@

ESSENCE

Set date. Readﬁ
and build schedu

SECTION WB.01
PAGE 6
8/1/73

X

ESSENCE

Set date. Read
and build schedule.

BB1
Read Recovery
record and determing
interrupted backup
ype, if any.

rash or
no schedule

No Schedule

Change schedule to
Squirrel.

neither

Establish environme

to resume interrupte
backup.

NOSCHD
/ USR:BCK \

Do user requested
backups

Determine next
scheduled backup,
if any, and initial
ize for it.

Y

Initialize SN for
tape if not mounted.
Log start initialize
account.

i

NXT:ACT

Prepare for next
account. Output
recovery record.

(a)

(NORUN)

OPX ’#

Fetch next account.
If an incremental,ob
tain dynamic pages
to build account file
list and initialize.

~ ABN/ERR

DT:ERR

No more accounts

(OPNNXF)

291 (NOMORE)

90 19 90A-1(8/73)

SECTION WB.01

PAGE7
UTS TECHNICAL MANUAL 8/1/73
OPNNXF 3} NOMORE
If user backup has | ABN/ERR Set lcrsf run type
operated, reset DCB— — — — — — — — and time
Get next file descript

fion. Add name to :

account list. Modify No more file

dates, descriptors for] i qd » ’—UgRJBtK_‘
label and file. If >

Do user requested
backups

closing a closed
file

file not ready for
backup, go back an
get next

Log complete
to operator

Copy file

NORUN
\
/ FINITAP \

Write trailer tape
file and remove

Setup and WAIT for
CLEANUP) next schedule backu*:,
or 1/2 hour if none

Construct label for
account-file list & | ABN/ERR

write file to tape, [~ — . 7
if data available

SPDONE r

Close tape file.
Save current reel

(Wait)
number. Release Closed a

dynamic pages. closed file @

Return *SR1 (BACKUP)

(i.e., ignore)

9

(NXT:ACT)
90 19 90A-1(8/73) 292

SECTION WB.01

PAGE 8
UTS TECHNICAL MANUAL 8/1/73
USR:BCK
Get 5 pages of Save Sched type
COMMON for datgr and force Squirrel.
buffer. Set fid and Get 5 pages of
account VLPs in COMMON for datd
buffer. buffer.
OPN:BC @
OPN:BCK
Yes as entry a No
¢ AUTOBACK
\/
A_El_l/E_R_R_ Read 'SAV' record,
BCK:ERR/ set fid and account
BCK:ABN VLP in buffer and
write back balance
record. |
ABN/ERR
fype?
No data busy
condifion? (Woit 1 minute)
REC:MPTY A A
If any skipped files,
write list into 'SAV
RELEASE .i J
Release COMMON
Retum *BACKX
v

293 90 19 90A-1(8/73)

UTS TECHNICAL MANUAL

SECTION WB.01
PAGE 9

90 19 90A-1(8/73)

messages, close
(PTL) if open.

success messages.

8/1/73
MVENT
Setup messages. | ABN/ERR
Setup FPTs. Open il
user file. Setup |
SPN:TAP labels. Open tape |
-l |
@ RDUSR 'l : '
Read file, set |
magicword, set | ABN/ERR |
key if keyed. | —: '
I
i | |
NOT l | TAP:ERR/ |
ABN/ERR TAP:ABN | |
Write tape record. t——-— - '
| |
- . . |
not oyall. write error | |
P
CONTZ P
Close files. Save other .
hames if USR:BCK Back to begin file, | | |
CVOL. | |
call. Send error
message . ! |
I
-
|
RECMPTY onrs ¢ OPNITAP other f:;‘@f lost data
Log trouble. Abort .|
(M:XXX)
A END:FILE TST1 v
Save name if file Write 'Magic’ recor Get more common
OK. Send error close files. Send story back record.

(OPNZBCK)

294

(OPNBCK)

(RDUSR)

SECTION WB.02
PAGE 1
8/1/73

UTS TECHNICAL MANUAL

ID

FILL - File Restoring
PURPOSE

FILL restores files to disk from tapes written by BACKUP. The restoration of files may be
either non-selective or selective. The non-selective mode restores all files found on a
set of tapes following a specified file or account. The selective mode restores the spec-
ified files or accounts from the specified tapes.

USAGE

FILL is entered each time the Backup/Fill ghost is initialized. Subsequent wake up of the
ghost causes entry to Backup. If the ghost is not initialized (not sleeping nor running)
either a GJOB BACKUP Keyin or a TEL command BACKUP causes FILL to be initialized.
It is normally initialized by GHOST1 during the system initialization process.

Selective FILL is entered from BACKUP if the SEL:FIL file exists in the :SYS account or if
the :BREC file in the :SYS account has a record keyed SEL:FIL.

INPUT

The Backup tapes described in the Data section below are input to FILL. The operator's
console is read to receive decisions from the operator.

The SEL:FIL file in the :SYS account is read to receive Selective Fill commands.
OUTPUT

The user's files from the Backup tapes are written into the user's accounts. Files which
were deleted between executions of Backup are not restored.

A complete transaction log is printed on the line printer.
Error messages are written in the user's MAILBOX.

Operator messages are output to the operator console.

INTERACTION

The file management system is used to perform all tape and RAD 1/O. The services include
M:OPEN, M:CLOSE, M:PFIL, M:READ, M:WRITE.

M:TYPE and M:KEYIN are used to communicate with the operator.

295 90 19 90A-1(8/73)

SECTION WB.02
PAGE 2
8/1/73

UTS TECHNICAL MANUAL

Super Close terminates the output to the line printer after each set of input tapes.
M:WAIT is used to wait a minute for a requested operator action.

M:XXX abort CAL is executed if FILL is not entered as a ghost.

The Get Common CAL gets 10 pages of core for 1/O buffer.

DATA BASES

The F:TI DCB is REFed to the DCB defined in FILLDCB. It is equated to FL:TAPE. The user
file DCB, F:USR, is defined by an M:DCB PROC. The :BACKUP file and SEL:FIL file
DCB's are also defined by M:DCB PROC's.

The table used to drive Selective Fill is derived from the (KEYED or CONSECUTIVE) inputs

in the SEL:FIL file. The table is constructed in a dynamic memory page and saved on disk

in the :BACKUP file, record SEL:FIL. This table actually consists of two stacks of informa-
tion. Starting with the third word of the table are entries that describe the Selective Fill
requests. These entries are four words long and contain the account number (two words),
pointer to the file name if specified (one word), and tape serial number to be searched.
Stacked backwards from the other end of the page are the file names that have been speci-
fied, eight words per entry. The first two words of the page contain pointers to the first empty
request and the first file name entry. The table formats are detailed in the Data section below.

Other data are REFed to the Backup data base such as the buffer location, the user tape
label buffer, and the magic words.

SUBROUTINES

PROC: The MOVE:FLD PROC is used to move the data from the tape label to the
OPEN parameter list.

MAILBOX is called to deliver error messages to the user and a complete log to the line
printer. Subroutine NO:RCV formats the error message for MAILBOX.

ERROR AND MESSAGES

The messages sent by mailbox are: successful only to the printer and failures to both printer
and MAILBOX in the user's account. Each message is date-time stamped by the mailbox sub-

routine and the user account is included in the line printer message; whereas, :SYS is included
in the MAILBOX message.

Success: FILLED filename
Failure: ERR xx FAILED TO RECOVER filename

90 19 90A-1(8/73) 296

SECTION WB.02
PAGE 3
8/1/73

UTS TECHNICAL MANUAL

The xx is the error code returned by the file management system either because of tape
failure or RAD failure. Special cases:

'E' means file out of sequence; 'F' means missing account number (can't happen);
'D' means short record, i.e., missing magic word.

Messages to the operator console:
1. REQUEST FILL, NOFILL, OR INSTANT SQUIRREL (F, N, S)

If the operator wishes to fill from Backup tapes, he types an 'F' in response. If he
wishes no action, he types 'N'. If he wishes an instant Squirrel to save files after a
crash, he types 'S'.

2. FILL REEL NUMBER =

This message is typed if 'F' is specified above or if 'YES' is the reply to 4, below.
The operator then types the digit-digit-letter-digit reel number and a line feed to
specify the starting reel of the set to be used. The message is repeated if the reply
is of incorrect format.

3. SKIP TO FILE

This message is typed following the reel number message to determine the starting point
for the Fill operation. The operator may enter a line feed to specify the fill starts at
the beginning of the tape, or either a period and account number or a filename, period,
account number to specify that the Fill is to start with the specified file or account.

If the file or account is not found, the Fill starts with the first file/account alpha-
numerically larger than that specified.

4. ARE THERE MORE SETS OF BACKUP TAPES (YES/NO)

This message is typed after the completion of each set of tapes. Any number of sets may
be processed. The operator types NO following the last set.

5. FILL RESTARTED — REMEMBER OR IGNORE PREVIOUS RUNS (R/1)
The FILL job has been aborted, then restarted by either a GJOB FILL keyin or a BACKUP
TEL command. An "R" causes FILL to resume whatever it was doing when aborted, and

"I" causes FILL to ignore previous operations and to reinitialize the BACKUP tape serial
numbers.

297 90 19 90A-1(8/73)

SECTION WB.02
PAGE 4
8/1/73

UTS TECHNICAL MANUAL

6. FILE OUT OF SEQUENCE — QUIT OR CONTINUE (Q/C)

Each file is checked to be in chronological sequence with the previous file. A file
out of sequence means that the operator may have done a time change Keyin during
the execution of Backup or, more catastrophically, the system crashed during execu-
tion of Backup and the file just read was really written on this tape in some bygone
time and should not be restored. If the operator types 'Q", the Super Close will flush
the line printer buffer so that he can know how much of the current set was restored
and he will again be asked question 4.

7. BAD FILE ENCOUNTERED

Each time an error message is sent to the user's MAILBOX and to the line printer, this
message is typed for the operator. It is just a warning that there is trouble. Too many
of these messages may mean a bad tape drive or RAD trouble.

8. BAD SEL:FIL INPUT record

The record that prints out was in the SEL:FIL file but is of incorrect format. The record
is ignored.

9. UNFILLED REQUEST fid

The file "fid" was included in a SEL:FIL command but was not found on the specified
fape set.

RESTRICTIONS

FILL must be executed as a ghost, otherwise, the abort CAL is used. The ghost must have
X'CO! privilege.

DESCRIPTION

When FILL is initialized, it first determines that it is a ghost, otherwise, it aborts. It then
asks the operator whether he wants FILL, no~FILL, or instant Squirrel. If he says no-FILL,
control is transferred to BACKUP. If he specifies Squirrel, a dummy schedule is created
specifying Squirrel now and Backup processing is initiated. If he specifies FILL, a 10 page
buffer is acquired in Common and the starting reel number is requested. Each file is opened
until the specified starting point is reached, then information from the user label is moved
to the OPEN parameter list for the user output file and the file is copied. If the file already
exists on disk with at least as late a modification date as the tape file, the file is skipped.
If the user label indicates the special file-name file, each file in the specified account is
compared with the list of names in the file-name list. Files which are not in the file-name
and have a modification date earlier than the list's are deleted.

90 19 90A-1(8/73) 298

SECTION WB.02
PAGE 5
8/1/73

UTS TECHNICAL MANUAL

If a lost data condition is encountered, FILL gets another 32 pages of COMMON and re-
reads the record. If the read still fails, all of available core is obtained and the record
reread. If still unsuccessful, the file is skipped. After a successful read following acquisi-
tion of extra pages, all pages in excess of record size plus two pages are released. At the
conclusion of copying each file, if more than 20 pages of COMMON are held, all but

10 pages are released, thus optimizing the swap size.

Files which are found to be short, i.e., missing the magic word or magic record, are not
restored. Any file named MAILBOX is opened in update mode rather than output so that

messages are appended rather than having each backed up MAILBOX replace the previous
copy. The reason for this is that Fill may create or add to a MAILBOX and, if backed up
copies deleted current copies, the Fill messages would be lost. The disadvantage is that

old messages keep coming back like a song.

At the completion of the last reel of each set of the Backup tapes, the operator is asked if
there are more sets of tapes. If there are, Fill processing continues. If there are not, Fill
transfers control to Backup in order to check the Backup schedule and set the alarm clock.

When Selective Fill (SELFILL) is entered it obtains a dynamic page and reads the SEL:FIL
record of the :BREC file into the page. Then records are read sequentially from the SEL:FIL
file. Each record is converted into a SEL:FIL entry and merges into the Selective Fill Table,
the table is written to disk, and the SEL:FIL file record is deleted. This process terminates
when either the table is full or the SEL:FIL file is empty. If an incorrect format command is
found it is sent to the operator's console. When SEL:FIL file is exhausted it is deleted. The
Selective Fill Table is sorted on the first three characters of the tape serial number (SN).

When the Selective Fill Table is completed, the first SN is set into the FILL SN buffer, start
at beginning is indicated, the Selective Fill Flag is set, and normal FILL routines are entered.
In this mode, when an account=-file list record is encountered the Selective Fill Table is
searched for a matching account entry. If found the entry is deleted because the end of that
account has been reached. When a data file is encountered, its account and SN (and file
name, if specified) is checked against the Selective Fill Table. If not found, the file is
skipped. If found, the file is then copied as in FILL. After copying, if the Selective Fill
Table entry was for a specific file, the entry is deleted.

If the end of a tape set is reached, all unfilled requests are logged as such and are deleted.
After deleting a request due to filling or reaching end account, if there are no more entries
in the Selective Fill Table for the current tape set, the tape is removed. In either event the
Selective Fill Table (and SEL:FIL record) are added to from the SEL:FIL file and the process is
repeated. When the SEL:FIL record and the SEL:FIL file are exhausted, SELFILL exits to
BACKUP.

If the operator interrupts for Purge, or if BUFGRAN flags Purge to be operated at the con-
clusion of processing the current file, SELFILL transfers control to PURGE. Control returns
to SELFILL when PURGE completes.

299 90 19 90A-1(8/73)

_ IFI
YESFL '_'!l

Get keyins for
SN's and start-
ing fid/acct

Set Selective
Fill Flag

]

SET:SN l‘

Initialize DCB

OPN:NXT

PURGE

{

ENDEND

Set time
Remove tape
Super Close

Adjust common

pages Open Tape
file

£°1 4
A\ O N

Y

s this
a selective
fill
?

Operato
key in-more
tapes ?

NO:FILE

Delete SELFIL
entries for this
tape Write SEL:
FIL record

Assure :BACKUP
file exists

BACKUP

90 19 90A-1(8/73)

300

SECTION WB.02
PAGE 6

8/1/73

SELFILL

Build SELFIL Tabl
from SEL:FIL file
SEL:FIL record

Any
Selective

Fill to do
?

BACKUP

Acct
file list

USERLAB

a selective

fill?

Delete this acct
from SELFIL
Delete files Table

earlier than list
and not in list

More
Selective
fill entries

>

SECTION WB.02
PAGE 7

8/1/73
SERLAB

USERLAB

Build FPT for disk
Setup SYNON if
X'B' VLP present

Is this
a selective
fill?

Isa
SELFIL

entry satisfied
?

arting fid/ace
been reached

OPEN:USER

Open Disk File

RD:US ﬁ

Read Tape and
Verify Record

End File ENDFILE
Y Close disk and
Normal tape files
?
NOKEY l
Write Disk Lost Data s this If SELFIL entry
Record a selective fid #0, delete
fill entry, write

SEL:FIL record.

Get more common N
Backspace tape

301 90 19 90A-1(8/73)

SECTION WB.03
PAGE 1
8/1/73

UTS TECHNICAL MANUAL

ID

PURGE
PURPOSE

The PURGE module performs the automatic and operator initiated semi-automatic file purge
operations.

USAGE

PURGE can be initiated as a result of the Monitor detecting a granule shortage (automatic)

or as a result of operator action (Semi-automatic). In either case the number of available
granules-is logged. In the automatic mode all expired files are deleted. In the semi-automatic
mode, all expired files are deleted and either all files not accessed in an operator specified
interval are deleted, or sufficient files are deleted, on the basis of access date, to bring the
number of available granules up to the operator specified number. In both semi-automatic
procedures, files are deleted only after assuring that they are backed up.

INPUT

Automatic initiation is performed by ALLOCAT. When the number of available granules
reaches a threshold value, or 3/4, or 1/2, or 1/4 thereof, or after reaching such a level
then increasing by 1/4 the threshold value, a WAKEUP CAL (Initiate Diagnostic Job CAL)
is made by the Monitor. If FILL is already operating, the Monitor sets a flag to tell the
currently operating FILL function to temporarily switch to the Purge function. Semi-
automatic initiation is performed by the operator entering an interrupt Keyin for the
BACKUP ghost job. The Keyin results in the job being set to indicate that BACKUP or
FILL should switch to PURGE, as above.

OUTPUT
When PURGE is initiated it outputs the message:
AVAILABLE GRANULES = nnnnn
where nnnnn is the number of granules currently available for file use. If there are cur-
rently any files that are being backed up so that they can be purged (deleted), the sum

of the granules involved is indicated by the following message to the operator:

GRANULES IN PROGRESS = nnnnn

90 19 90A-1(8/73) 302

SECTION WB.03
PAGE 2
8/1/73

UTS TECHNICAL MANUAL

When PURGE determines that the threshold has been passed, the following is output on the
operator’s console:

DO EXPIRED FILE PURGE (Y/N)

If N is entered, no action is taken and the message will not be repeated during that hour.
If Y is entered, the message:

EXPIRED FILE PURGE INITIATED

is output on the operator's console. Then PURGE examines all files in the system, deleting
those whose expiration date has passed. If the BACKUPALL SYSGEN parameter is set, files
that have not been backed up will be prior to deletion.

When PURGE has been initiated by operator action (INT Keyin), the above messages are
followed by :

ENTER PURGE COMMAND

The operator must then enter one of the following commands:
NONE indicates no further action is to be taken.

MIN n indicates the threshold value for automatic purge is to be
changed to n.

PURGE UNTIL n indicates files already backed up are to be purged, by order
of time since last access, until there are at least n granules
available or in progress .

PURGE ALL UNTIL n same as preceding except files not already backed up are to
be backed up and included.

PURGE OLDER t indicates all files already backed up and not accessed in the
last t days are to be purged.

PURGE ALL OLDER t same as preceding except files not already backed up are to
be backed up and purged if their access date qualifies them.

In the above commands: n =one to four digits indicating number of granules.
t =one to three digits indicating number of days

or

: and two digits indicating number of hours.

303 90 19 90A-1(8/73)

SECTION WB.03
PAGE 3
8/1/73

UTS TECHNICAL MANUAL

When files are purged, a description of the file is written to the M:LO DCB in the following
format:

account, filename, modification date, backup date

INTERACTION

PURGE interacts with the Monitor through the following CAL's for the specified purposes
Operator — PURGE communication
M:INT
M:KEYIN
M:TYPE
Purge and delete list generation
Test File CAL

Delete Files

M:OPEN
M:CLOSE (REL)

Output Purge List

M:WRITE
M:CLOSE (SAVE)

PURGE Initiation

Initiate Diagnostic Job CAL
M:TRTN

SUBROUTINES

PURGESETCTR

Resets GRANMIN to the smallest positive value of:

THRESHOLD

3/4 * THRESHOLD
GRANRAD+GRANPACK - {1/2 * THRESHOLD

1/4 * THRESHOLD

0

90 19 90A-1(8/73) 304

SECTION WB.03
PAGE 4

8/1/73
UTS TECHNICAL MANUAL

and sets GRANRESET to a large negative value if the number reflected in GRANMIN
of granules is greater than THRESHOLD, otherwise to minus 1/4 * THRESHOLD.

DOPURLIST

Writes the description of the file being purged to the M:LO DCB, and closes the file
with SAVE if the file has not previously been closed. The files descriptors are set for
No Backup, No Access Date Update, and No Purge.

DOPURDEL
Opens the file to be deleted and closes it with REL.

PURGEINT

Is the entry point established for operator initiated interrupts. It sets the interrupt
flag (INT), wakes up the BACKUP Ghost, and returns to M:TRTN.

PURGELOG

Writes to the operator the total number of RAD and pack granules currently available
and, if not zero, writes the number of granules in process of being backed up prepara-

tory to purge. If LOGFLAG is sef, no messages are output. LOGFLAG is set upon
exit.

DOPURGE

Performs the file deletion or purge function based on the attributes of files, the PURGE
items: PTYPE, ALLFLAG, PDATE, PTIME, INPROGRAN, and BACKUPALL and the
Monitor items DATE, TIME, GRANRAD, and GRANPACK. If PTYPE is 'A' (automatic
mode), only expired files are deleted. If PTYPE is 'O' the expired files are deleted
and all eligible backed up files having an access date older than PDATE are released.
If PTYPE is 'U' the expired files are deleted and a list of eligible, backed up files is
generated and sorted according to access date. Files listed in this table are then re-
leased until the sum of GRANRAD+GRANPACK+INPROGRAN equals or exceeds
PNUM. The descriptions of files released other than due to expiration is listed via the
M:LO DCB. If ALLFLAG is set, files that are not backed up are included in the above
processing, but are set into a list for BACKUP to backup and release and their size is
added to INPROGRAN. If a file has not been backed up because its No Backup Flag is
set, and the ALLFLAG is set, the file is treated the same as though it was backed up.
If BACKUPALL is set, backup is assured for expired files except those flagged as 'No
Backup'. BACKUPALL is assembled as a zero and must be changed to one to activate
expiration backup. If a file has the 'No Purge' flag set, PURGE will delete it only for
reason of expiration.

305 90 19 90A-1(8/73)

SECTION WB.03
PAGE 5
8/1/73

UTS TECHNICAL MANUAL

The only error condition recognized as such by PURGE is an unrecognizable input by the
operator. Such input is treated as though the operator input 'NONE'.

RESTRICTIONS

PURGE operates under the same set of restrictions as BACKUP - FILL and must be loaded
with MONSTK.

DESCRIPTION

The PURGE routine checks the various granule counters and resets them where necessary. If
the entry is due to operator action the number of available granules is logged and a purge
command is requested. The command results in no action (‘NONE'), a new threshold value
("MIN') or a purge operation ('"PURGE'). If the entry is due to automatic initiation by
ALLOCAT, and if a minimum granule threshold has been crossed, the operator is alerted via
a number of available granules message. If an expired file purge message has not been output
in the hour, a message is sent fo the operator. If the operator so indicates, the expired file
purge is then initiated.

The PURGE routine is entered at location PURGE where initialization is performed. PURGE
then exits unless the INT flag is on indicating an operator request, or either GRANMIN is
less than zero, indicating a minimum granule threshold has passed, or GRANRESET is positive
indicating granule availability has increased sufficiently (1/4*THRESHOLD) to reset
GRANMIN. The PURGE triggers are reset and the automatic or semi-automatic procedure
is followed depending on whether INT is 0 or 1, respectively.

In the automatic mode, if the number of available granules plus the granules of those files

in process of being backed up preliminary to purge (GRANRAD+GRANPACK+INPROGRAN)
is greater than the threshold value (THRESHOLD), PURGE exits. Otherwise, messages are
sent to the operator indicating the number of available granules and, if any, the number of
granules "in progress" (INPROGRAN). Then PURGE exits if a purge has been completed in
the hour (i.e., hh and dd of TIME and DATE are unchanged since the last purge. Otherwise,
the question 'DO EXPIRED FILE PURGE (Y/N)' is asked via the operator's console. If the
response is N, PURGE exits. If the response is Y, the purge type is set to automatic, an
'"AUTOMATIC PURGE INITIATED' message is sent to the operator, and DOPURGE is called.
DOPURGE deletes all files whose expiration date has passed. Upon completion of DOPURGE
operation, the granules available messages are repeated, purge triggers are reset, and

PURGE exits.

In the semi~-automatic mode, granule available messages are sent to the operator, as in the
automatic mode, then a keyin is requested with the message 'ENTER PURGE COMMAND"'.
Upon receipt of the operator's input the interrupt flag (INT) is cleared and the command is
examined. If the command is unintelligible or is 'NONE', PURGE types '"NONE' and con-
tinues as for automatic mode. If the command is '"MIN', the threshold value is reset to the

90 19 90A-1(8/73) 306

SECTION WB.03
PAGE 6
8/1/73

UTS TECHNICAL MANUAL

input decimal number of granules and PURGE proceeds as for automatic mode. If the com-
mand is 'PURGE', the balance of the command is analyzed, ALLFLAG is set if 'AL' is
found, PTYPE is set to 'U' or 'O', depending on whether '"UNTIL' or 'OVER' is found, and
PNUM is set from the decimal number in the last input field if '"UNTIL', or PDATE is set
with current date minus the indicated ddys and hours if 'OVER'. DOPURGE is then called
to perform the purge, upon return the available and in progress granule counts are logged,
and PURGE proceeds as for the automatic mode.

307 90 19 90A-1(8/73)

PURGE

UTS TECHNICAL MANUAL

Initialize

SECTION WB.03

PAGE 7
8/1/73

PURGE1

Was
entry dve
to interrupt

threshold
exceeded ?

PURGE2

Is this
the initial
entry ?

PURGESET

Count HGP bits and
initialize RAD &
Pack counters

PURGESETCTR

entry due to
interrupt
?

v

PURGE3

M:KEYIN 'ENTER
PURGE COMMAND

)

'

Clear interrupt flag

90 19 90A-1(8/73)

Is a
threshold

exceeded

Purge done this
hour ?

308

Purge type = Auto
Log- AUTOPURGE
Initiated

DOPURGE

PURGELOG

Set Auto-purge tim

UTS TECHNICAL MANUAL SECTION WB.03
PAGE 8

8/1/73

Keyin type = ?

'‘PURGE'

l

Analyze Command
and Set command
Descriptors

"MIN'

PURMIN l

Set THRESHOLD

to 'n' message

Error

in command
?

&

PURGEM
DOPURGE

PURGELOG

D

Clear Flags Enable
Auto Call

ENDPURGE

i

309 90 19 90A-1(8/73)

DOPURGE

Initialize FPT

UTS TECHNICAL MANUAL SECTION WB.03
PAGE 9

8/1/73

PURNXA l‘

Initialize for a/c

PURNXF

Test File CAL
Get Next File

'UNTIL

If this is the last
file for this a/c,
set the end out fld

Is
file open

urge =Auto
or file = no

file this
account ?

90 19 90A-1(8/73)

UTS TECHNICAL MANUAL

D2

Get dynamic page
page if not yet

purge type = obtained

"UNTIL'

?

!

Build entry and
merge into purge
Initialize to proces% table

Purge table l

SECTION WB.03

PAGE 10

8/1/73

PURUN i‘

Set fid and a/c
into DCB

DOPURBKQ

PURDEL
DOPURDEL

able or no
more required

?

DOPUROUT ‘
SUPER CLOSE

Housekeep ctrl items
Free Dynamic purge,
if used

" *DOPURX

311

DOPURDEL DOPURBKQ
* 2
DOPUR-
NXT

90 19 90A-1(8/73)

UTS TECHNICAL MANUAL SECTION WB.03
PAGE 11

8/1/73
DOPURLIST DOPURDEL

Q"J’cﬁ,;’ﬁ‘;f:“'"e' DOPURLIST

Mod date to Bfr

M:PRINT

M:CLOSE with
REL M:El
Return *SR3 b

(PURGELOG) PURGEINT

Y INT =1

'BACK UP'
LOGFLAG =1
Message =EBCDIC
sum of GRANRAD
and GRANPACK @N

INPROGRA
<0°?

N

| INPROGRAN to /MTYPE O\ Return *SR4
MSG 2 "‘—"\In Prog MSG)

90 19 90A-1(8/73) 312

PURGESETCTR

If AUTOFLAG
set =0
INPROGRAN =0

l

GRANMIN =
GRANRAD +
GRANPACK -
THRESHOLD
GRANRESET =X'FFq00000'

UTS TECHNICAL MANUAL

GRANRESET =

-~ THRESHOLD
THRESHOLD

GRANMIN =GRAN

MIN-

GRANRESET

Return SR4

313

SECTION WB.03
PAGE 11

8/1/73

DOPURBKQ

| —

Enqueue file for
backup and purge

L

INPROGRAN =
INPROGRAN +

file size

Return

90 19 90A-1(8/73)

SECTION WB.04

PAGE 1
8/1/73
UTS TECHNICAL MANUAL
D
FILL FORMATS
DESCRIPTION
FILL Tape Formats
User Labels Account Filename List
. Number
Data Files Size Function {pages in
0 |size 0/((48) |designator|data record
! Julian Date Date written (Julian)
2 2
3 unused 3 Size of data record, in bytes
4] FPARAM list for file except 4
X'01' VLP (filename). If s Account Number
SYNON, first VLP is X'0B'
(SYNON) 6
o ~ 7 C'CRISMNSOSKNS'
T LEI on for last VLP 7 8
filename VLP (X'01') o
~ account VLP (X'02") o
" password if present (X'03") | 10 Date written (VLP format)
LEI on for last VLP 11

End Tape Sef
(BACKEND)

0]X'76'|
X'76767676'

—r

| unused l

where

size = size of label in bytes. If zero, the record was of excessive length for a user label
so was written as the first data record.

90 19 90A-1(8/73) 314

SECTION WB.04
PAGE 2

8/1/73

UTS TECHNICAL MANUAL

Juliandate=0lY Y Y Y O DD D
1'HHMMOOODO

YYYY = Year in packed decimal.
DDD = Day of year in packed decimal.
HH = Hour in packed decimal.

MM = Minute in packed decimal.

VLP date =0 | M M D D
1tH H Y Y
2fH H m m

two digit EBCDIC fields represent
MM = month (01-12)
DD =day (01-31)
HH = hour (00-24)
YY = year (00-99)
mm = minute (00-60)

function designator =0 normal account file list.

1 truncated list-bypass checks for this account.

Data Formats

Data files are exact copies of the backed up disc files, including keys for keyed files,
except:
1. Each record has appended a four byte trailer of X'56565656"'.
Each file has appended a four byte trailer record of X'76767676".

3. Random files are written to tape as a one granule per record (plus trailer, above)
sequential file.

4. All files are written under account :SYS, no password, read and write accounts =

NONE.

Account filename lists are written as a single data record, densly packed (i.e., byte aligned)
as strings of TEXTC format filenames.

315 90 19 90A-1(8/73)

SECTION WB.04
PAGCE 3
8/1/73

UTS TECHNICAL MANUAL

FILL Disc File Formats

Three special disc files are used by FILL. All are in account :SYS. 'SEL:FIL' is the selective
Fill command input file, ':BACKUP' is the selective Backup command input file, and ':BREC'
is the recovery data file.

'SEL:FIL' may be either keyed or consecutive and contains EBCDIC lines of selective Fill
commands. The content of the commands are described in the FILL module writeup, section
KA.02, and are of the general format:

FILL = (filename . account), (REEL = serial number)

':BACKUP' is a keyed file containing no more than one record whose key is 'BACKUP'. The
record contains VLP lists for files that are to be backed up as a result of the TEL command
BACKUP, or a PURGE operation. Each entry contains a filename VLP (X'01'), and an account
VLP (X'02'), and may also contain a password VLP (X'03"') and a purge VLP (X'1F'). The last
VLP of each entry has the LEI set. The name, account, and password VLPs are of the standard
form. The purge VLP is of the following form:

0 X"IF | LEI 1 1

file size, in granules

The purge VLP is defined only internally to FILL. ':BACKUP' should not exceed 512 words.

":BREC' is a keyed file containing up to two records. The keys are 'SAV' and 'SEL:FIL'.
'SAV' contains nine words of information necessary to resume a backup following a system
recovery. The record format and the BACKUP module labels, are as follows:

LASTSAV The Julian format time of the last completed SAVEALL.

LASTINC The Julian format time of the last completed Incremental.

LASTSQ The Julian format time of the last completed Squirrel.

LASTRUN If no backup is in progress, the Julian format time of the last com-

pleted backup or fill. If a backup is in progress, the number 1, 2, or 3
to designate the type of backup as SAVEALL, Incremental, or Squirrel,
respectively.

NOTAPFG Indicates whether or not an output tape for Backup has been requested
(0 = not, nonzero = mounted).

90 19 90A-1(8/73) 316

SECTION WB.04
PAGE 4
8/1/73

UTS TECHNICAL MANUAL

LAST ACCT (Two words) Current, or last, account being backed up, i.e., the
starting point to restart a backup. (Meaningful only if a backup is
in progress.)

LASTREEL The SN of the current or last tape used for backup.

LASTFIL The Julian format time of the last fill, i.e., time of the most recent
occurrence of a file having been restored.

The 'SEL:FIL' record, if it exists, contains a copy of the selective fill command table,
derived from the 'SEL:FIL' file. The record is 512 words in length (2048 bytes). The com-
mand table has two parts, four-word per entry commands packed from the low address end
(actually word 2), and eight-word per entry file names, for commands specifying a filename,
built back from the high address end. The first word of the record contains the byte index of
the first empty command list entry (i.e., if no entries contain an 8, which is the byte index
of word 2). The second word contains the byte index of the first filename entry (i.e., if no
entries, contains 2048, the byte index of the first byte beyond the table). The command list
entry format and, FILL module labels, are as follows:

TACTO The two-word account number in the selective file command, left-
TACT1 justified and blank filled.
TFIDPTR Zero if no filename specified; otherwise the byte index to the filename

(in the filename portion of the record).

TSN Before the required tape has been mounted — the SN specified. This
value is used as the key to sort the command entries. After the first
tape of the set has been mounted — the count of the number of files

that have been restored in filling this request.

The file name entries occupy eight words each and are in TEXTC format.

317 90 19 90A-1(8/73)

SECTION WB.04
PAGE 5
8/1/73

UTS TECHNICAL MANUAL

SEL:FILL Table/:BREC Record

0 SELNENT | FIDSTART
8 21| ACTOg ACTlg FIDPTRy | SNQM
IDPTR SN
24 6 ACTO ACTTy FIDPTRy 1__ 11 selective fill entries
40 10 ACTO, ACTI, FIDPTR, SNy .’
56 14 L L
1984 496 N] fids referenced by
7 FIDPTR
2016 504 N0
-t
SELNENT Byte displacement to first unused Fill entry.
FIDSTART Byte displacement to first used fid entry.
ACTO, ACT1 Account number associated with request.
FIDPTR Byte displacement to fid associated with request (0 = no fid)
SN Starting INSN for search.
N Number of data bytes in fid (0 = no entry).

Fill entries are initially packed, ordered by SN, SN =0 if in current tape set, ACTO =0
shows empty.

Fid entries are not necessarily packed, N =0 shows empty.
SEL:FILL occupies first dynamic page in core.

Mirror table for manipulating single entry

0 | TACTO | TACTI | TFIDPTM | TSN
4 | TFID

8

FILL = ([fid].account), (REEL = ddId)

90 19 90A-1(8/73) 318

Xerox Corporation

701 South Aviation Boulevard X
El Segundo, California 90245

Reader Comment Form

OX

We would appreciate your comments and suggestions for improving this publication.

Pubtication No. Rev. Letter] Title

Current Date

How did you use this publication?

Is the material presented effectively?

D Learning D Installing D Sales

Fully Covered Well |llustrated Well Organized Clear
D Reference D Maintaining D Operating D D D D
What is your overall rating of this publication?

What is your occupation?
[:] Very Good D Fair D Very Poor
D Good D Poor

Your other comments may be entered here. Please be specific and give page, column, and line number references where
applicable. To report errors, Please use the Xerox Software Improvement or Difficulty Report (1188) instead of this form.

Your Name & Return Address

2190(12/72)

Thank You For Your Interest. (fold & fasten as shown on back, no postage needed if mailed in U.S.A.)

Staple Staple

First Class
Permit No. 229
El Segundo,
California

BUSINESS REPLY MAIL
No postage stamp necessary if mailed in the United States

Postage will be paid by

Xerox Corporation
701 South Aviation Boulevard
El Segundo, California 90245

Attn: Programming Publications

XEROX

701 South Aviation Boulevard

' El Segundo, California 90245
1213 679-4511 XEROX® is a trademark of XEROX CORPORATION

	00000
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	00015
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122-0
	122-1
	123
	124
	125
	126
	127-0
	127-1
	127-2
	128
	129
	130
	131
	132
	133-0
	133-1
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143-0
	143-1
	143-2
	143-3
	143-4
	143-5
	143-6
	143-7
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155-0
	155-1
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	replyA
	replyB
	xBack

